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Abstract

In this thesis we consider two coupled PDE-ODE models. One to model moving bottle-
necks and the other one to describe traffic flow at junctions.
First of all, we consider a strongly coupled PDE-ODE system that describes the influence
of a slow and large vehicle on road traffic. The model consists of a scalar conservation
law accounting for the main traffic evolution, while the trajectory of the slower vehicle is
given by an ODE depending on the downstream traffic density. The moving constraint
is expressed by an inequality on the flux, which models the bottleneck created in the
road by the presence of the slower vehicle. We prove the existence of solutions to the
Cauchy problem for initial data of bounded variation. Moreover, two numerical schemes
are proposed. The first one is a finite volume algorithm that uses a locally nonuniform
moving mesh that tracks the slower vehicle position. The second one uses a reconstruc-
tion technique to display the behavior of the vehicle. Some numerical tests are shown.
Next, we consider the Lighthill-Whitham-Richards traffic flow model on a junction com-
posed by one mainline, an onramp and an offramp, which are connected by a node. The
onramp dynamics is modeled using an ordinary differential equation describing the evo-
lution of the queue length. The definition of the solution of the Riemann problem at the
junction is based on an optimization problem and the use of a right of way parameter.
The numerical approximation is carried out using a Godunov scheme, modified to take
into account the effects of the onramp buffer. We present the result of some simulations
and check numerically the convergence of the method. Moreover, after suitable modi-
fication, the model is used to solve an optimal control problem on roundabouts. Two
cost functionals (total travel time and total waiting time) are numerically optimized with
respect to the right of way parameter.

Keywords:Traffic flow modeling, Conservation laws, Finite volume methods, Road traf-
fic on networks, Macroscopic models
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Résumé

Les modèles hydrodynamiques ont été fréquemment utilisé dans la littérature pour décrire
l’évolution macroscopique de la densité du trafic routier et ont été généralisés avec succès
aux réseaux au cours des dernières années. Dans les années 1950, Lighthill et Whitham
[111] et Richards [127], indépendamment, ont proposé un modèle de dynamique des flu-
ides pour le trafic routier sur une route unique infinie, en utilisant une équation aux
dérivées partielles hyperbolique non linéaire (EDP). Ensuite, la formulation du problème
de Cauchy a été étendue avec succès aux problèmes aux limites en [11], puis développée
spécifiquement pour les lois de conservation scalaires avec flux concave dans [102]. Plus
récemment, plusieurs auteurs ont inclu plus de fonctionnalités dans les modèles. En par-
ticulier, certains modèles proposés permettent de décrire le mouvement d’un seul véhicule
dans la circulation routière. Dans ces modèles, la trajectoire du véhicule spécifique est
décrite par un équation aux dérivées ordinaires (EDO) produisant des modèles couplés
EDP-EDO.

Dans cette thèse, nous considérons deux modèles EDP-EDO couplés: un pour mod-
éliser des goulots d’étranglement mobiles et l’autre pour décrire la distribution du trafic
sur une rampe d’accès.

Le premier modèle a été introduit pour décrire le mouvement d’un poids lourd ou un
bus, qui roule à une vitesse inférieure à celle des autres voitures, en réduisant la capacité
de la route et générant ainsi un goulot d’étranglement.
On peut modéliser cette situation d’un point de vue macroscopique par le système suivant:





∂tρ+ ∂xf(ρ) = 0, (t,x) ∈ R
+×R,

ρ(0,x) = ρo(x), x ∈ R,

f(ρ(t,y(t)))− ẏ(t)ρ(t,y(t))≤
αρmax

4V
(V − ẏ(t))2 t ∈ R

+,

ẏ(t) = ω(ρ(t,y(t)+)), t ∈ R
+,

y(0) = yo.

(CP1)

L’EDP est une loi de conservation scalaire avec une contrainte mobile sur le flux et
l’EDO décrit la trajectoire du véhicule plus lent. L’inconnue ρ(t,x) ∈ [0,ρmax] représente
la quantité scalaire conservée, à savoir la densité moyenne des voitures circulant sur la
route. La fonction flux f : [0,ρmax] → R

+ est une fonction strictement concave avec
f(0) = f(ρmax) = 0. Elle est donnée par la formule f(ρ) = ρv(ρ), où v(ρ) = V (1− ρ

ρmax
)

est la vitesse moyenne des véhicules et V est la leur vitesse maximale. La variable y
dénote la position du bus, qui se déplace à une vitesse qui dépend du trafic environnant,
c’est-à-dire que le bus se déplace avec une vitesse constante Vb tant qu’il n’est pas ralenti
par les conditions de circulation en aval. Lorsque cela se produit, il se déplace à la vitesse
moyenne des véhicules. Cela peut être modélisé par la définition suivante de la vitesse

ω(ρ) =

{
Vb si ρ≤ ρ∗

.
= ρmax(1−

Vb

V
),

v(ρ) autrement,
(V)

A son tour, la circulation est modifiée par la présence du véhicule plus lent. En particulier,
α ∈]0,1[ est le taux de réduction de la capacité de la route dû à la présence du bus. Il y
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a donc un couplage fort entre l’EDP et l’EDO.
Le modèle (CP1) a été introduit dans [75] pour modéliser l’effet des moyens de transport
en commun, comme le bus, dans un réseau routier. Des autres modèles macroscopiques
pour les goulots d’étranglement mobiles ont été récemment proposé par [15, 69, 100]. Par
rapport à ces approches, notre modèle propose une définition plus réaliste de la vitesse
du véhicule lent et une description de son impact sur les conditions de circulation qui est
plus simple à traiter du point de vue analytique et numérique.
Du point de vue analytique, le modèle que nous proposons peut être vu comme une
généralisation aux contraintes mobile du problème consistant en une loi de conservation
scalaire avec contrainte (fixée dans l’espace) sur le flux, introduit et étudié dans [3, 37, 43].
L’étude des systèmes couplés EDP-EDO n’est pas nouvelle dans le cadre des lois de
conservation, nous renvoyons le lecteur à [29, 14, 46, 100]. Néanmoins, le problème posé
ici est légèrement différent. D’un côté, nous traitons un couplage fort dans l’EDP et
l’EDO lequel s’affectent mutuellement, contrairement à [29, 46] oú la solution de l’EDP
ne dépende pas de l’EDO. De l’autre côté, même si le terme droit de l’EDO est discontinu,
la définition spécifique du modèle nous permet de considérer des solutions classiques au
sens de Carathéodory au lieu des solutions généralisées au sens de Filippov.
En outre, dans notre cas, la présence de la contrainte qui se déplace en fonction des
conditions de circulation environnantes, génère des ondes des chocs non-classique, c’est-
à-dire des chocs qui satisfont la condition de Rankine-Hugoniot mais qui ne respectent
pas la condition d’admissibilité de Lax.
Nous présenterons un résultat d’existence des solutions du modèle (CP1), obtenu par
la méthode d’approximation de suivi des fronts, et nous montrerons des simulations
numériques obtenues avec une méthode “front/capturing" et une méthode basée sur une
technique de reconstruction des ondes de chocs. Dans le premier cas, les résultats sont
obtenus par la combinaison d’un algorithme de suivi dans les coordonnées de Lagrange,
qui utilise un maillage localement non-uniforme comme dans [131], et un algorithme de
suivi qui calcule la position de bus en prenant en compte son interaction avec les ondes
de densité comme dans [33]. En particulier, nous allons décaler les points du maillage
prés du bus et, par conséquent, nous aurons un maillage localement non uniforme parce
que la seule cellule qui se modifie avec la trajectoire de bus est la cellule qui contient le
bus.
Le deuxième schéma présenté utilise une technique de reconstruction effectué dans chaque
cellule de calcul pouvant contenir un choc classique ou non classique comme dans [17], et
un algorithme de suivi (comme celui de [33]) qui suit à chaque pas de temps la position
de l’autobus. Nous comparons aussi les deux méthodes.

Dans la deuxième partie, nous introduisons un nouveau modèle macroscopique de
jonction pour les bretelles d’autoroute et une discrétisation de Godunov du modèle pour le
contrôle de l’accès. Nous considérons le modèle de trafic de Lighthill-Whitham-Richards
sur une jonction composée par une voie principale, une bretelle d’accès et une bretelle
de sortie, toutes reliées par un noeud.
Une loi de conservation hyperbolique scalaire décrit l’évolution de la densité des véhicules
sur la voie principale et une équation ordinaire différentielle décrit l’évolution de la
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longueur de la file d’attente sur la bretelle d’accès, qui est modélisée par un "buffer"
à fin de s’assurer que les conditions aux limites soient satisfaites au sens fort:





∂tρi+ ∂xf(ρi) = 0, (t,x) ∈ R
+× Ii, i= 1,2

dl(t)

dt
= Fin(t)− γr1(t), t ∈ R

+,

ρi(0,x) = ρi,0(x), sur Ii, i= 1,2
l(0) = l0,

(CP2)

où Ii, i = 1,2 sont les segments sortant et entrant de la voie principale et le flux est
f(ρ) = ρv(ρ), où v(ρ) = 1− ρ est la vitesse moyenne des véhicules. La variable l dénote
la longueur de la file d’attente, Fin(t) et γr1(t) sont, respectivement, les flux entrant
et sortant de la bretelle d’accès, ρi,0(x) et l0 ∈ [0,+∞[ sont les conditions initiales.
Le système (CP2) est couplé avec un problème d’optimisation à niveau des jonctions,
qui donne la répartition du trafic entre les routes. À chaque jonction, nous définissons
la demande de la bretelle d’accès d(Fin, l), la fonction demande sur la voie principale
entrante δ(ρ1) et la fonction d’offre sur le segment de voie principale sortante σ(ρ2) de
la manière suivante:

d(Fin, l) =

{
γmax
r1 si l(t)> 0,

min(Fin(t),γ
max
r1 ) si l(t) = 0,

(0.0.1)

δ(ρ1) =

{
f(ρ1) si 0≤ ρ1 < ρcr,
fmax si ρcr ≤ ρ1 ≤ 1,

(0.0.2)

σ(ρ2) =

{
fmax si 0≤ ρ2 ≤ ρcr,
f(ρ2) si ρcr < ρ2 ≤ 1,

(0.0.3)

où γmax
r1 est le débit maximal sur la bretelle d’accès et fmax = f(ρcr) est le flux maximal

sur I1 et I2. Nous introduisons aussi le paramètre β ∈ [0,1] qui représente, le taux de
sortie de la bretelle de sortie et le flux correspondant γr2(t) = βf(ρ1(t,0−)). La défini-
tion de la solution du problème de Riemann à la jonction est basée sur la résolution d’un
problème d’optimisation linéaire et sur l’utilisation d’un paramètre de priorité. Nous dé-
montrons l’existence et l’unicité de la solution du problème de Riemann correspondant.
Contrairement à [41], où le flux à travers la jonction est maximisé, notre optimisation
linéaire consiste à maximiser le flux sur la voie principale sortante. La bretelle de sortie
est traité comme un puits, et le paramètre de priorité est introduit pour assurer l’unicité
de la solution. Nous faisons le choix de satisfaire la priorité de façon approximative, c’est
à dire, la priorité ne sera pas toujours respectée, au profit de la maximisation du flux.
De plus, la présence du "buffer" peut créer des ondes supplémentaires à la jonction qui
apparaissent lorsque la file d’attente se vide. Cet effet est observé aussi dans les modèles
qui décrivent les chaînes d’approvisionnement et doit être prise en compte pour les sim-
ulations numériques
Ensuite, ce modèle est étendu aux réseaux et discrétisé en utilisant un schéma de Go-
dunov qui prend en compte les effets du "buffer" de la bretelle d’accès. En particulier,
nous modifions de manière appropriée le schéma de Godunov pour inclure les condi-
tions aux limites à la jonction, comme dans [32, 48], et l’ODE décrivant la file d’attente.
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Cela permet de tenir compte de la création éventuelle d’un choc supplémentaire lorsque
le "buffer" se vide. Nous montrons des approximations numériques de solutions, qui
peuvent être discontinues, obtenues utilisant ce modèle. Le schéma donne des approx-
imations numériques précises, comme le montrent les tests numériques. En suite, ce
modèle discrétisé a été utilisé pour des problèmes de contrôle d’accès sur l’autoroute.
En particulier, le problème d’optimisation est résolu en utilisant la méthode de l’adjoint
discret.

Enfin, nous présentons un modèle d’optimisation de la circulation sur les ronds-points.
Les ronds-points peuvent être considérés comme des réseaux routiers particuliers et ils
peuvent être modélisés comme une concaténation de jonctions. Nous référons au modèle
(CP2) et nous l’appliquons au ronds-points. Chaque jonction est décrite par un système
couplé EDP - EDO. Nous nous concentrons sur un rond-point avec trois routes entrantes
et trois sortantes. Chaque entrée et sortie du rond-point peut être modélisée comme une
jonction 2× 2 où le cercle du rond-point est la voie principale. En particulier, chaque
jonction a une voie principale entrante et une sortante et une troisième route avec des
flux entrants et sortants. Cette dernière est modélisée avec un "buffer" de capacité infinie
pour le flux entrant et un puits infini pour le flux sortant. L’évolution de la voie principale
est décrite par une loi de conservation scalaire, tandis que la dynamique du "buffer" est
décrite avec une EDO qui dépend de la différence entre le flux entrant et sortant sur
la troisième voie. A chaque jonction le problème de Riemann est résolu uniquement en
utilisant un paramètre de priorité et les solutions sont construites par la méthode de suivi
des fronts. Nous visons à réduire au minimum le temps total de parcours des voitures
sur le réseau (TTT) et le temps d’attente à l’entrée (TWT), qui sont définis comme suit:

TTT (T, ~P ) =
3∑

i=1

∫ T

0

∫

Ii

ρ(t,x)dxdt+
3∑

i=1

∫ T

0
li(t)dt+

T ·
3∑

i=1

∫

Ii

ρ(T,x)dx+T ·
3∑

i=1

li(T ),

(TTT)

TWT (T, ~P ) =

3∑

i=1

∫ T

0
li(t)dt+T · li(T ), (TWT)

où P est le paramètre de priorité et T > 0 le temps final. Ces fonctions coût sont
optimisées pour un réseau simple composé d’une seule jonction de type 2 × 2. Une
expression analytique des fonctions coût est obtenue et l’optimisation est faite par rapport
au paramètre de priorité. Puis, à travers des simulations, le comportement du trafic
pour le rond-point complet est étudié. Nous distinguons différents cas de simulations
qui varient en fonction de la valeur de Fin et de β. Vu les expressions compliquées des
fonctions coût, il est difficile d’utiliser une approche analytique pour la mise au point
d’un algorithme optimisé pour tout le rond-point. Pour cette raison, nous considérons à
chaque jonction et à chaque pas de temps les paramètres optimaux correspondant aux
densités de la route près de la jonction. La technique pour le calcul du cas optimal est
basée sur l’optimisation locale de chaque jonction de type 2×2, qui forment le rond-point.
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Les résultats de ces simulations sont ensuite comparés à ceux obtenus en supposant que
le paramètre de priorité soit maintenu fixé pour chaque jonction.

Mots clés: Modèles de trafic, Lois de conservation, Méthodes des volumes finis, Trafic
routier sur réseaux, Modèles macroscopiques
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Introduction

The aim of this thesis is to investigate some mathematical models arising in traffic flow,
from both analytical and numerical points of view. Traffic is a phenomenon that is hard to
model and simulate due to the difficulty of reproducing the formation and the presence
of traffic jams. Several approaches have been developed during the years, each one
focusing on some particular traffic characteristic. In particular, researchers have started
looking at traffic for different purposes as, for example, minimization of congestion,
accidents, pollution, and safety issues. There are several ways of describing traffic flow
and the different methods can be summarized in three big categories: microscopic models,
macroscopic models and kinetic models. Microscopic models describe the trajectory of
each single car in the road with an ordinary differential equation (ODE). The basic models
are the car-following ones or models based on Newton’s law. The main assumption of the
car-following models is that an individual car’s motion only depends on the car ahead; see
[10, 18, 39, 59, 70, 87, 128]. Kinetic models, instead, use Boltzmann-like equations and
the main quantities describing traffic are expressed with density distribution functions;
see [1, 115, 121, 123, 124]. The works in thesis refer to macroscopic models where traffic
is considered as a fluid. The first ones to introduce this concept were Lighthill, Whitham
[111] and independently Richards [127] in the fifties. They were the first ones to describe
traffic flow with equations coming from fluid dynamics, using a non linear hyperbolic
partial differential equation (PDE). The Cauchy problem has successfully been extended
to initial boundary value problems in [11] and then developed specifically for scalar
conservation laws with genuinely nonlinear flux in [102]. More recently, several authors
proposed models on networks that take into account different types of solutions at the
intersections, see [40, 41, 58, 64, 67, 68, 89, 93, 95, 112] and the references therein.
In all these works, the road network is described as a graph, incoming and outgoing
roads are the edges while the junctions are described by the nodes. Several models
on how to distribute the traffic are proposed: in [40, 41, 58, 67, 68, 95] the traffic is
distributed according to an optimization problem, while in [64, 93] the junction dynamics
is described by a buffer and finally in [89] the traffic is distributed with a multilane model.
Subsequently, different numerical methods that approximate solutions for road networks
have been developed, see for example [3, 32, 89, 106, 109, 110].

More recently several authors have been investigating different areas of study in order
to include more features in the models. In particular, some models were proposed that
track a single vehicle moving in the vehicular traffic. In these models, the single vehicle
trajectory is described with an ODE generating coupled PDE-ODE models that are able

1



Introduction

to take into account the advantages of a microscopic approach and a macroscopic one, see
[14, 15, 46, 57, 69, 75, 100]. And later on, also numerical methods have been developed
to tackle this type of problems, see for example [52, 53, 56].

All these models rely on the assumption that at any point of the road the flux of
cars is a function of the density. This led to several assumptions on the flux function to
consider. Many of these models use a concave flux function, which depends only on the
density and on the velocity of the traffic flow, which was introduced in [82]. However,
many researchers claim that this relation is valid only in steady state conditions and it
is not realistic in some situations [78] because it does not match the experimental data.
In order to overcome this issue they proposed new models which couple the equation of
mass conservation to a second equation in the spirit of the conservation of momentum. In
the traffic flow literature, these models are called "second-order" models. These models
have been introduced by Payne [122] and Whitham [130] and then consequently a big
literature has been developed in the last decades following the work in [5], see [13, 42,
44, 45, 66, 77, 63].

A line of research that applies optimal control to traffic has been developed thanks to
the work of Herty et al. [9, 81, 83, 89, 94, 90, 62, 88] and Piccoli et al.[34, 35, 47]. Several
approaches have been used to solve the optimal control: adjoint methods, combinatorial
methods, mixed-integer methods and instantaneous control. A separate line of research
is the one followed by Bressan et al. that tries to unify the Nash game theory with
optimal control for traffic flow [23, 24, 25, 26].

The work presented in this thesis follows two research lines: one regarding coupled
PDE-ODE models and their application to moving bottlenecks and traffic flow networks,
the other one involving junction modeling and its application to optimal control problem.
We are going to present two different coupled PDE-ODE models: a strongly coupled
problem to model a large and slow vehicle among the traffic flow that reduces the road
capacity and the other one to model the behavior of an entrance of an highway or a
roundabout. We provide existence of solution for BV initial data for the first model,
and we propose two numerical schemes to solve the problem numerically. Moreover, we
propose a new junction model and we show how this model could be used for optimal
control problems.

Contribution and organization of the dissertation

After a brief introduction on the theory of traffic flow and hyperbolic partial differential
equations, the thesis is divided in two parts which follow the two big lines of research of
this PhD: the first one concerning models for moving bottlenecks and their theoretical and
numerical aspects and the other one concerning models for junctions in road networks.
In particular, the manuscript is organized as follows.

In Chapter 1 we give an introduction to the mathematical modeling of traffic flow
using hyperbolic scalar conservation laws. The chapter includes a background on the
known results on the theory of hyperbolic conservation laws and their application to
traffic flow. Moreover, it includes an introduction to the numerical methods for scalar
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conservation laws. Particular attention is reserved to the Godunov finite volume scheme
and some of its extension to traffic flow models. We also give a review of the most
known traffic flow models and we present some models that are important for the results
developed in the thesis.

In Chapter 2 we present a model for moving bottlenecks. The model is a strongly
coupled PDE-ODE model that is studied from an analytical and numerical point of view.
An existence result for the model is proposed and a strategy for the stability of solution
is attempted. Moreover, two different numerical methods are presented: a Lagrangian
approach with a front tracking/capturing method and a reconstruction based conservative
scheme.

In Chapter 3 a new model for 2× 2 junctions on highways is proposed. The model
consists on a PDE-ODE system. The conservation law describes the main traffic flow
while the ODE describes the behavior of the entrance of the highway. The entrance is
modeled as a vertical buffer, allowing us to consider strong boundary conditions. A sim-
ilar model is then used for control problems simulating a ramp-metering situation. The
control problem is solved using the discrete adjoint method. Some numerical simulations
obtained with the new junction model are presented.

In Chapter 4 we use the model introduced in Chapter 3 to simulate the dynamics on
roundabouts. A roundabout can in fact be seen as a concatenation of 2× 2 junctions,
each junction representing an entering/exiting point. An optimal control on two cost
functionals as the Total Travel Time and the Total Waiting Time is numerically solved
with respect of a right of way parameter. Some numerical tests are presented.
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Introduction

Le but de cette thèse est d’étudier certains modèles mathématiques de trafic routier
d’un point de vue analytique et numérique. Le trafic routier est un phénomène qui
est compliqué à modéliser et à simuler en raison de la difficulté à reproduire la forma-
tion et l’évolution de bouchons. Plusieurs approches ont été développées au cours des
dernières décennies, chacun axé sur une caractéristique particulière du trafic. En par-
ticulier, les chercheurs ont commencé à examiner le trafic à des fins différentes comme,
par exemple, la réduction des encombrements, des accidents, de la pollution et pour des
problèmes de sécurité. Il y a plusieurs façons de décrire l’écoulement du trafic et les
différentes méthodes peuvent être regroupées en trois grandes catégories: les modèles
microscopiques, les modèles macroscopiques et les modèles cinétiques. Les modèles mi-
croscopiques décrivent la trajectoire de chaque voiture avec une équation différentielle
ordinaire (EDO). Les modèles de base sont les "car-following" ou des modèles basés sur
la loi de Newton. La principale hypothèse des ces modèles est que le mouvement de
chaque voiture ne dépend que de la voiture précédente; voir [10, 18, 39, 59, 70, 87, 128].
Les modèles cinétiques, à la place, utilisent des équations de type Boltzmann et les quan-
tités principales décrivant le trafic sont exprimées avec des fonctions de distribution de
la densité; voir [1, 115, 121, 123, 124]. Les travaux de cette thèse se réfèrent aux mod-
èles macroscopiques, où le trafic est considéré comme un milieu continu. Les premiers
à introduire ce concept furent Lighthill, Whitham [111] et, indépendamment, Richards
[127] dans les années cinquante. Ils ont été les premiers à décrire le trafic avec des équa-
tions provenant de la dynamique des fluides. Ils ont utilisé une équation aux dériveés
partielles (EDP) non linéaire. Le problème de Cauchy a été étendu aux problèmes aux
limites dans [11], puis développé spécifiquement pour les lois de conservation scalaires
avec flux non-linéaire dans [102]. Plus récemment, plusieurs auteurs ont proposé des mod-
èles de trafic sur réseau qui prennent en compte différents solutions aux intersections,
voir [40, 41, 58, 64, 67, 68, 89, 93, 95, 112] et les références qu’ils contiennent. Dans
tous ces travaux, le réseau routier est décrit sous forme de graphe, les routes (entrantes
et sortantes) constituent les arcs, tandis que les jonctions sont décrites par les sommets.
Plusieurs modèles, qui décrivent la façon de répartir le trafic aux intersections, sont pro-
posés: en [40, 41, 58, 67, 68, 95] le trafic est distribué selon un problème d’optimisation,
en [64, 93] la dynamique de la jonction est décrite par un "buffer" et enfin en [89] le trafic
est distribué avec un modèle voies multiples. Ensuite, différentes méthodes numériques
pour calculer les solutions approchées pour les réseaux routiers ont été mis au point, voir
par exemple [3, 32, 89, 106, 109, 110].
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Plusieurs auteurs, dans des domaines différents, ont inclu plus de fonctionnalités
dans les modèles. En particulier, certains modèles ont été proposés, permettant de
reconstruire la trajectoire d’ un seul véhicule en mouvement dans la circulation routière.
Dans ces modèles, la trajectoire du véhicule est décrite avec une EDO, donnant lieu ‘́a
des modèles couplés EDP-EDO qui prennent en compte les avantages d’une approche à
la fois microscopique et macroscopique, voir [14, 15, 46, 57, 69, 75, 100]. Ensuite, des
méthodes numériques ont été développées pour résoudre ce type de problèmes, voir par
exemple [52, 53, 56]. Tous ces modèles se basent sur l’hypothèse que, à tout point de
la route, le flux de voitures dépend seulement de la densité. Cela a conduit à plusieurs
hypothèses sur la fonction flux à considérer. La plupart de ces modèles utilisent une
fonction de flux concave, qui ne dépend que de la densité de l’écoulement du trafic,
qui a été introduite dans [82]. Cependant, de nombreux chercheurs affirment que cette
relation n’est valable que à l’équilibre et elle n’est pas réaliste dans certaines situations
[78], car elle ne correspond pas aux données expérimentales. Afin de remédier à ce
problème, de nouveaux modèles ont été proposés, qui couplent l’équation de conservation
de la masse à une deuxième équation dans l’esprit de la conservation du moment. Dans
la littérature, ces modèles sont appelés "modèles de second ordre". Ces modèles ont
été introduits par Payne [122] et Whitham [130]. Ensuite, nombreux travails ont été
développés au cours des dernières décennies à partir des travaux de Aw and Rascle [5],
voir [13, 42, 44, 45, 66, 77, 63].

Une ligne de recherche qui applique le contrôle optimal au trafic routier a été dévelop-
pée grâce au travail de Herty et al. [9, 81, 83, 89, 94, 90, 62, 88] et Piccoli et al. [34, 35, 47].
Plusieurs approches ont été utilisées pour résoudre les problèmes de control optimal: les
méthodes de l’adjoint, les méthodes combinatoires, les méthodes "mixted integer" et le
contrôle instantané. Une autre ligne de recherche est celle suivie par Bressan et al., qui
utilise la théorie des jeux de Nash pour le contrôle optimal du trafic [23, 24, 25, 26].

Le travail présenté dans cette thèse suit deux axes de recherche: l’un concernant les
modèles couplés EDP-EDO et leur application aux goulots d’étranglement mobiles et aux
réseaux, l’autre concernant l’application des modèles des jonctions à des problèmes de
contrôle. Nous allons présenter deux modèles couplés EDP-EDO différents: un problème
fortement couplé qui modélise un véhicule gros et lent dans le flux de la circulation et
qui réduit la capacité de la route et l’autre qui modélise le comportement d’une bretelle
d’accès d’une autoroute ou d’un rond-point. Nous fournissons un résultat d’existence
des solutions pour données initiales BV pour le premier modèle, et nous proposons deux
schémas numériques pour résoudre le problème numériquement. De plus, nous proposons
un nouveau modèle de jonction et nous montrons comment ce modèle pourrait être utilisé
pour des problèmes de contrôle optimal.

Plan de la thèse

Après une brève introduction sur la théorie du trafic et des lois de conservation, la thèse
est divisée en deux parties qui correspondent aux deux axes de recherche de ce travail:
la première partie concerne les modèles pour les goulots d’étranglement mobiles et leurs
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aspects théoriques et numériques, l’autre est relative aux modèles de jonction pour les
réseaux routiers. Plus précisément, le manuscrit est organisé comme suit.

Dans le Chapitre 1, nous donnons une introduction à la modélisation mathématique
de l’écoulement du trafic en utilisant les lois de conservation scalaires. En particulier,
le chapitre comprend une introduction aux résultats connus sur la théorie des lois de
conservation scalaires. En outre, il comprend une introduction aux méthodes numériques
pour les lois de conservation scalaires. Une attention particulière est réservée au schéma
de type volumes finis de Godunov et son application aux modèles de trafic. Nous donnons
également une revue des principales modèles de trafic et nous présentons quelques modèles
qui seront importants pour les résultats développés dans la thèse.

Dans le Chapitre 2, nous présentons un modèle pour des goulots d’étranglement
mobiles. Il s’agit d’un modèle EDP-EDO fortement couplé qui est étudié d’un point
de vue analytique et numérique. Un résultat d’existence pour les solutions est proposé
et une stratégie pour montrer la stabilité des solutions est proposée. En outre, deux
méthodes numériques différentes sont présentées: une méthode "front/capturing" et un
schéma conservatif basé sur une technique de reconstruction des chocs.

Dans le Chapitre 3, un nouveau modèle de jonction 2 × 2 pour les autoroutes est
proposé. Le modèle se compose d’un système EDP-EDO. La loi de conservation décrit
le trafic sur la voie principale, tandis que l’EDO décrit le comportement de la bretelle
d’accès. L’entrée est modélisée comme un "buffer" vertical, ce qui nous permet d’utiliser
des conditions aux limites fortes. Un modèle similaire est ensuite utilisé dans un problème
d’optimisation pour une situation de control d’accès. Le problème de contrôle est résolu
en utilisant la méthode de l’adjoint discret. Des simulations numériques obtenues avec
le nouveau modèle de jonction sont aussi présentées.

Dans le Chapitre 4, nous utilisons le modèle présenté dans le Chapitre 3 pour simuler
la dynamique des ronds-points. Un rond-point peut, en fait, être considéré comme une
concaténation de jonctions 2× 2. Deux problème d’optimisation relatifs au temps total
de parcours et au temps total d’attente sont résolus numériquement par rapport à un
paramètre de priorité. Des tests numériques sont présentés.
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1.1. Hyperbolic conservation laws

1.1 Hyperbolic conservation laws

The works presented in this thesis are based on hyperbolic conservation laws that are non-
linear partial differential equations where the unknown variable is a conserved quantity.
In this chapter, we introduce some basic notions about scalar conservation laws.

A scalar conservation law in one space-dimension is a first order partial differential
equation of the form:

∂tu+ ∂xf(u) = 0 (t,x) ∈ R
+×R, (1.1.1)

where u : [0,+∞[×R→ R is the conserved quantity and f : Ω ⊆ R→ R is the flux, with
t being the time variable and x the one-dimensional space variable. Conservation laws
own their name to the fact that if we formally integrate (1.1.1) on an arbitrary space
interval [a,b] then we obtain

d

dt

∫ b

a

u(t,x)dx=−

∫ b

a

f(u(t,x))xdx= f(u(t,a))− f(u(t,b)). (1.1.2)

This means that the integral of u on any interval [a,b] varies according to the difference
between the flux of u that enters at x = a and exits at x = b, see Figure 1.1.1. In other
words, u is neither created nor destroyed but is conserved.

0 a b x

t1

t2

t

u u

Figure 1.1.1: Flow across two points.

1.1.1 Weak solution

It is known that for non-linear conservation laws, classical solutions may not exist even
for very smooth initial data because discontinuities develop in finite time. Consider the
scalar Cauchy problem {

∂tu+ ∂xf(u) = 0,
u(0,x) = ū(x).

(1.1.3)

Assuming that u is a smooth solution, the equation can be rewritten in the quasi linear
form

∂tu+ f ′(u)∂xu= 0. (1.1.4)

For any given point (τ,ξ) ∈ R
+ × R we denote by t → x(t;τ,ξ) the characteristic line

through (τ,ξ), i.e., the solution of the Cauchy problem

ẋ(t) = f ′(u(t,x)), x(τ) = ξ. (1.1.5)
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1.1. Hyperbolic conservation laws

The function (t,x0)→ (t,x(t,x0)) is locally invertible and so it is possible to consider the
map u(t,x) = u(t,x(t)) that satisfies (1.1.4). Observe that the value of u0 at point x0
determines the value of the solution u along the entire characteristics t→ x(t;0,x0), the
information contained in the initial data is transported along the characteristic lines.

Nevertheless, for large times t, problem (1.1.5) may not have a unique solution. This
happens when the characteristics cross, see Figure 1.1.2. In this condition, it is evident
that classical solutions cannot exist. In order to construct solutions globally in time, we

t

x

Figure 1.1.2: Intersection of characteristics.

must work in a space of discontinuous functions and consider the conservation law in a
distributional sense.

Definition 1.1.1 Fix u0 ∈ L1
loc(R;R) and T > 0. A function u : [0,T ] × R → R is a

weak solution to the Cauchy Problem (1.1.3) if u is continuous as a function from [0,T ]
into L1

loc(R;R) and if, for every C1 function ϕ with compact support contained in the set
]−∞,T [×R, it holds

∫ T

0

∫

R

{u · ∂tϕ+ f(u) · ∂xϕ}dxdt+

∫

R

u0 ·ϕ(0,x)dx= 0. (1.1.6)

Next we look at a discontinuous function and derive some properties that must be re-
spected at jumps. Consider a function u which is piecewise Lipschitz continuous like

U(t,x) :=

{
u− if x < λt
u+ if x > λt

(1.1.7)

for some u−, u+ ∈ R and λ ∈ R.

Lemma 1 The function U in (1.1.7) is a solution of (1.1.1) if and only if

λ(u+−u−) = f(u+)− f(u−). (1.1.8)

For the proof of Lemma 1 we refer the reader to [20].
Equation (1.1.8) is called the Rankine-Hugoniot condition and gives a condition on dis-
continuities of the weak solutions of (1.1.1). In the scalar case (1.1.8) is a single equation
and for arbitrary u+ 6= u− the shock speed is given by

λ=
f(u+)− f(u−)

u+−u−
. (1.1.9)
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1.1. Hyperbolic conservation laws

The definition of weak solution alone does not guarantee uniqueness, since it is
possible to construct infinitely many weak solutions starting from an initial datum.
Therefore, it is necessary to introduce some admissibility conditions, motivated by
physical consideration.

• Condition 1 (vanishing viscosity)
Let us assume that the conservation law can be seen as an approximation of the
equation

ut+ f(u)x = εuxx (1.1.10)

for some ε > 0 small.

Definition 1.1.2 We say that a weak solution u(t,x) is an admissible solution in
the vanishing viscosity sense if there exists a sequence of smooth solutions uε to

uεt + f(uε)x = εuεxx

which converges to u in L1
loc as ε→ 0+.

• Condition 2 (Entropy)
From the previous condition, the following can be derived

Definition 1.1.3 An entropy for (1.1.1) is any C1 convex function η : R → R.
Moreover, any C1 function q : R→ R is said an entropy flux for η provided that

η′(u)f ′(u) = q′(u) (1.1.11)

for every u ∈ R. The pair (η,q) is said entropy-entropy flux pair for (1.1.1).

In particular, by approximation, for each k ∈R, η = |u− k| and q(u) = sgn(u− k) ·
(f(u)− f(k)) is an entropy-entropy flux pair and satisfy (1.1.11) at every u 6= k.

Definition 1.1.4 A weak solution u= u(t,x) to the Cauchy problem (1.1.3) is said
entropy admissible if satisfies the Kružhkov entropy condition [99]

∫ T

0

∫

R

|u− k|∂tϕ+sgn(u− k)(f(u)− f(k))∂xϕdxdt≥ 0 (1.1.12)

for every k ∈ R and every C1 function ϕ≥ 0 with compact support in [0,T [×R.

We have the following theorem.

Theorem 2 Let u = u(t,x) be a piecewise constant solution to the scalar Cauchy
problem (1.1.3). Then u satisfies condition (1.1.12) if and only if along every line
of jump x= ξ(t) the following condition holds. For every α ∈ [0,1]

{
f(αu++(1−α)u−)≥ αf(u+)+ (1−α)f(u−), if u− < u+,
f(αu++(1−α)u−)≤ αf(u+)+ (1−α)f(u−), if u− > u+,

(1.1.13)

where u− := u(t,ξ(t)−) and u+ := u(t,ξ(t)+).

12



1.1. Hyperbolic conservation laws

For a proof of Theorem 2 and for all the details regarding hyperbolic conservation
laws, we refer the reader to [20].
From equation (1.1.13) we can derive the following admissibility condition intro-
duced by P. Lax [101].

• Condition 3 (Lax condition)
A discontinuity connecting two states u− and u+ and traveling with speed λ given
by (1.1.9) is entropy if and only if

f ′(u−)≥ λ≥ f ′(u+).

The geometric meaning of this condition is given in Figure 1.1.3. In particular, this
condition requires that characteristics run into the jumps and that jumps where
characteristics are "created" are not allowed.

x

t

(a) Entropy admissible solution.

x

t

(b) Not entropic solution.

Figure 1.1.3: Geometric explanation for the Lax admissibility condition.

1.1.2 Riemann Problem

A Riemann problem is a Cauchy problem with Heaviside type initial datum.
Let Ω ⊆ R be an open set, let f : Ω → R be a smooth and strictly concave flux and
consider the scalar conservation law (1.1.1).

Definition 1.1.5 A Riemann problem for equation (1.1.1) is a Cauchy problem with the
initial datum of the form

u0(x) =

{
u−, if x < 0,
u+, if x > 0,

(1.1.14)

where u−, u+ ∈ Ω.

The Riemann problem provides the building block for the construction of the solution of
Cauchy problems with more general initial data as well as some numerical approximation
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1.1. Hyperbolic conservation laws

schemes (wave-front tracking, Godunov, etc.).
If u = u(t,x) is the unique weak solution of (1.1.1)-(1.1.14), then for every θ > 0 the
rescaled function uθ(t,x) = u(θt,θx) provides another solution. By uniqueness, u = uθ

for every θ > 0. Therefore, we seek for solutions of the type u(t,x) = v(x
t
). Let us consider

the following cases.

1. Centered rarefaction waves
Let us set x

t
= ξ and v = v(ξ) smooth such that

∂tv+ ∂xf(v) = 0

is satisfied. Applying the chain rule we get

v′(ξ)
(
−

x

t2

)
+ v′(ξ)f ′(v)

(1
t

)
= 0,

which gives v′(ξ)
(
−

x

t2
+
f ′(v)

t

)
=0. Since we are looking for a non constant solution

v′ 6= 0 and hence, −
x

t
+f ′(v) = 0 which yields ξ = f ′(v). Now, if we assume f ′′ < 0,

f ′ is a decreasing function for each ξ ∈ [f ′(u−),f ′(u+)], if u+ < u− we can find a
unique continuous solution of the form

u(t,x) =





u− if x < f ′(u−)t,
(f ′)−1(ξ) if f ′(u−)t≤ x≤ f ′(u+)t,
u+ if x > f ′(u+)t.

(1.1.15)

The solution u(t,x) is called a centered rarefaction wave.

t

x

u+u−

x= f ′(u−)t
x= f ′(u+)t

Figure 1.1.4: An example of rarefaction wave.

2. Shock waves
Given equation (1.1.1) and the initial data (1.1.14) if u− < u+, we define a shock

14
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wave an entropy admissible solution of the form

u(t,x) =

{
u− if x < λt
u+ if x > λt

(1.1.16)

for some λ. By Lemma 1, λ can be found using the Rankine-Hugoniot condition
(1.1.8).

t

x

u+

u−

Figure 1.1.5: An example of shock wave.

1.1.3 Function with bounded variation

Consider an interval J ⊆ R and a function u : J → R. The total variation of u is defined
by

TV(u) = sup
{ N∑

j=1

|u(xj)−u(xj−1)|
}
, (1.1.17)

the points xj belongs to J for every j ∈ {0, ...,N}, N ≥ 1 and satisfying x0 <x1 < ... < xN .

Definition 1.1.6 A function u : J →R has bounded total variation if TV(u)<+∞. We
denote by BV (J) the set of all functions u : J → R with bounded total variation.

The next theorem provides the key ingredient in the existence proof for weak solutions
to scalar conservation laws.

Theorem 3 ([20, Theorem 2.4]) Consider a sequence of functions uν : [0,+∞[×J →
R
n such that

TV(uν(t, ·))≤ C, |uν(t,x)| ≤M for all t, x,

and ∫

R

|uν(t,x)−uν(s,x)|dx≤ L|t− s| for all t, s≥ 0.

for some constants C, M, L. Then there exists a subsequence uµ which converges to some
function u ∈ L1

loc([0,∞)× J ;Rn). This limit function satisfies
∫

R

|u(t,x)−u(s,x)|dx≤ L|t− s| for all t, s≥ 0.
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The point values of the limit function u can be uniquely determined requiring that

u(t,x) = u(t,x+)
.
= lim

y→x+
u(t,y) for all t, x.

In this case we have,

TV (u(t, ·))≤ C, |u(t,x)| ≤M for all t, x.

For the proof see [20, Chapter 2].

1.1.4 Wave-front tracking method

Here we discuss the existence of entropy admissible solutions to the Cauchy problems
(1.1.3) , where ū ∈ L1(R) has bounded total variation. For simplicity, we assume that
f : Ω⊆ R→ R is a strictly concave scalar smooth function.
We introduce at this scope the wave front tracking method. It is a procedure that allows
one to prove existence of solutions by following these steps:

1. Approximate the initial condition by piecewise constant functions.

2. At each point of discontinuity solve the corresponding Riemann problem.

3. Approximate the exact solutions to the Riemann problems with piecewise constant
functions and piece them together. Solutions can be extended up to the first time
t when two waves collide.

4. Repeat steps 2, 3 at the time of interaction.

5. Prove that the approximate solutions so constructed converge to a limit function
and that this limit function is an entropy admissible solution.

For a more detailed explanation, we refer the reader to [20, §6].
We will follow these steps to prove the existence of entropy admissible solution to

(1.1.3).
We approximate the initial data with piecewise constant functions such that

TV(ūν)≤ TV(ū)

‖ūν‖L∞ ≤ ‖ū‖L∞

and

‖ūν − ū‖L1 <
1

ν
,

for every ν ∈ N. By construction, ūν has a finite number of discontinuities located at
x1 < ... < xN . At each i = 1, ...,N, we solve the Riemann problem given by the jump
(ūν(xi−), ūν(xi+)). The solution will be exact if we deal with a shock, otherwise if
a rarefaction wave appears then it is split in a centered rarefaction fan that contains
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t1

t

x1 x2 x3 x4 x5 x

Figure 1.1.6: Construction of approximate solutions constructed by the wave front track-
ing up to the first time of interaction.

a sequence of jumps of at most size
1

ν
. At this point, we can construct approximate

solutions uν(t,x) up to a time t1 where two waves interact together, see Figure 1.1.6. At
t1 we repeat the construction up to a second point of interaction t= t2. In order to prove
that the approximate solution exists for every t ∈ [0,T ] we have to provide a bound for

1. The number of waves;

2. The number of interactions among the waves;

3. The total variation of the approximate solution.

The first two estimates are concerned with the possibility to construct a piecewise con-
stant approximate solution. The third one is concerned with the convergence of the
approximate solutions towards the exact one. The following lemma shows that the num-
ber of interactions is finite.

Lemma 4 For any ν ∈ N, the number of wave fronts for the approximate solution uν is
not increasing with respect to time. Moreover, the number of interaction is bounded by
the number of wave fronts.

We can prove that the total variation is not increasing

Lemma 5 The total variation of uν(t, ·)is not increasing with respect to time: for every
t≥ 0

TV(uν(t, ·))≤ TV(ū).

By Theorem 3, the following holds:

Theorem 6 Let f :R→R be smooth and concave and ū∈L1(R) with bounded variation.
Then there exists an entropy-admissible solution u(t,x) to the Cauchy problem (1.1.3)
defined for every t≥ 0. Moreover,

‖u(t, ·)‖L∞ ≤ ‖ū(·)‖L∞

for every t≥ 0.

This theorem holds as well for the general class of Lipschitz flux functions f , see [20,
Chapter 6].
For the proof of the above theorems and lemmas we refer the reader to [20, 67].
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1.2. Traffic flow modeling

1.2 Traffic flow modeling

1.2.1 LWR model

In the fifties, Lighthill and Whitham [111] and, independently Richards [127] introduced
a hydrodynamic model for traffic flow on a single infinite road. They thought of traffic as
a fluid and used fluid dynamics equations to describe its behavior. Their model is based
on the conservation of cars and it consists of a single conservation law, which describes
the traffic evolution in terms of macroscopic variables (density, average speed of cars).
This type of models is referred to as macroscopic models in traffic literature.

Let us consider a unidirectional stretch of road which is modeled by an interval
I = [a,b] with a < b, a,b,∈R and the possibility of either a and b equal to ∞. The model
is based on the equation for the conservation of mass.

∂tρ+ ∂xf(ρ) = 0, (t,x) ∈ R
+×R (1.2.1)

where ρ = ρ(t,x) ∈ [0,ρmax] is the conserved quantity representing the density (number
of cars per unit length), ρmax being the maximal density allowed in the car. The flow
f : [0,ρmax] → R is a smooth flux function that is usually given by f(ρ) = ρv where
v = v(ρ) is the average speed of cars.
The following hypotheses are made on the flux:

(A1) f is a C2 function;

(A2) f is a strictly concave function:f ′′(ρ)> 0;

(A3) f(0) = f(ρmax) = 0.

This model is known in the traffic literature as LWR model.
The main assumption for the LWR model is that the velocity depends only on the density
of cars. A reasonable supposition is that v is a decreasing function of the density.
In the transportation literature, the graph that links the flux and the density is called
fundamental diagram. According to the choice of the velocity function we can have a
variety of fundamental diagrams. The simplest choice is a linear function of the density,

v(ρ) = vmax

(
1−

ρ

ρmax

)
, (1.2.2)

see Figure 1.2.1. The corresponding fundamental diagram is obtained by multiplying the
density by the speed. This gives a C2 concave function like the one in Figure 1.2.2. This
flow-density relation was introduced by Greenshields [82] and it is one of the most used
in the mathematical community in transportation.

Now, let us consider the Riemann problem




ρt+ f(ρ)x = 0,

ρ(0,x) =

{
ρL if x < 0,
ρR if x > 0.

(1.2.3)

We can define the Riemann Solver for the LWR model as follows:
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ρ

v(ρ)

0 ρmax

vmax

Figure 1.2.1: Speed of cars: linear decreasing function.

ρρmax0

f(ρ)

fmax

Figure 1.2.2: Fundamental diagram.

Definition 1.2.1 The Riemann solver RS for the problem (1.2.3) is the (right contin-
uous) map ρ(t,x) → RS(ρL,ρR)(

x
t
) given by the standard weak entropy solution. It is

defined as follows.

• If ρL < ρR, then the entropy-admissible solution is given by the shock wave

ρ(t,x) =

{
ρL if x < λt,
ρR if x > λt,

(1.2.4)

where, by the Rankine-Hugoniot condition, we get λ=
f(ρR)− f(ρL)

ρR − ρL
.

• If, instead, ρL >ρR the entropy-admissible solution to the Riemann problem is given
by the rarefaction wave

ρ(t,x) =





ρL if x < f ′(ρL)t,
(f ′)−1(x

t
) if f ′(ρL)t < x < f ′(ρR)t,

ρR if x > f ′(ρR)t.
(1.2.5)

1.2.2 Traffic flow on a road network

The LWR model has been used extensively as the starting point for macroscopic traffic
flow models. This model has been extended in the last decades to the network case, see
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[41, 67, 68, 80, 89, 93, 95]. In these works, the authors introduce the concept of a road
network as a graph with a finite number of vertices and edges. Each vertex describes a
road junction and each edge a road, see Figure 1.2.3. In the literature, there are several

Figure 1.2.3: An example of network. The circles are the vertexes of the graph and they
describe the junctions, while the edges represent the roads.

works treating this problem. Hereafter, recall those more closely related to the results
presented in the following chapters.

The first work dealing with traffic flow on networks dates back to the nineties when
Holden and Risebro [95] introduced the concept of road network and traffic distribution
at junctions. The Riemann problem at the junction J for j roads is solved maximizing

a concave function of the fluxes of this form
∑

roads j at J

g
(f(ρj)
fmax

)
. Their work, which

considers only unidirectional networks, has then been extended for general networks by
Coclite, Garavello and Piccoli in [41].
In [41], the road network is described as a graph and it can be uniquely determined by a
couple (I,J) where I represents a finite collection of edges describing the roads and J a
finite collection of nodes representing the road junctions. On each edge the LWR model
describes the evolution of the cars density and coupling conditions are given at the nodes
to correctly distribute the traffic through the junction. Let us consider a network (I,J)
with a single junction J and N incoming roads and M outgoing ones, see Figure 1.2.4.
Each road can be described with an interval Il = [al, bl] for l = 1, ...,N,N +1, ...,N +M .
On each road consider the equation

∂tρl + ∂xf(ρl) = 0, l = 1, ...,N +M, (1.2.6)

where ρl = ρl(t,x) ∈ [0,ρmax], (t,x) ∈R
+× Il for l = 1, ...,N +M is the density of cars in

the road Il, f : [0,ρmax] → R is the flux function and it is taken equal to f(ρ) = ρv(ρ),
see Figure 1.2.5. v(ρ) is the average speed of cars equal to v(ρ) = vmax(1−

ρ
ρmax

). To
distribute the traffic at the junction the following assumptions are made:

• The drivers have some prescribed preferences that means that there are some fixed
coefficients which distributes the traffic from the incoming roads to the outgoing
ones.

• The drivers choose to maximize the flux through the junction, respecting the pre-
scribed preferences.
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J

1

2

3

N N+M

N+3

N+2

N+1

Figure 1.2.4: An example of a graph representing a road junction.

ρρmax0

f(ρ)

fmax

ρcr

Figure 1.2.5: Fundamental diagram considered in [41].

Moreover, in order to fulfill the conservation of ρ at J mass must be conserved, i.e., the
total incoming flux must be equal to the outgoing one:

N∑

i=1

f(ρi(t,bi−)) =
N+M∑

j=N+1

f(ρj(t,aj+)). (1.2.7)

A traffic distribution matrix is introduced to distribute the traffic among the incoming
and outgoing roads.

Definition 1.2.2 Fix a junction J and Ii incoming roads for i= 1, ...N and Ij outgoing
roads for j =N +1, ...,N +M . A traffic distribution matrix A is given by

A=




aN+1,1 aN+1,2 · · · aN+1,N

aN+2,1 aN+2,2 · · · aN+2,N
...

...
. . .

...
aN+M,1 aN+M,2 · · · aN+M,N


 (1.2.8)
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1.2. Traffic flow modeling

where 0≤ aj,i ≤ 1 for every i= 1, ...,N and for every j =N +1, ...,N +M and

j=N+M∑

j=N+1

aj,i = 1

for every i= 1, ...N.

Moreover, the matrix A needs to satisfy the following technical condition in order to have
a unique solution of the Riemann problem.

Remark 1 Let {e1, ...en} be the canonical basis of Rn. Define for every i= 1, ...N , Hi =
{ei}

⊥ and for every j = N + 1, ...,N +M let aj = (aj1, ...,ajN ) ∈ R
N and define Hj =

{aj}
⊥. Let K be the set of indices k = (k1, ...,kl), 1 ≤ l ≤N − 1 such that 0 ≤ k1 < k2 <

· · ·< kl ≤N +M and for every k ∈ K set Hk =
l⋂

h=1

Hkh . Letting 1= (1, ...,1) ∈ R
N , then

for every k ∈ K,
1 /∈H⊥

k .

This condition implies, in particular, that it is possible to find a unique solution to the
Riemann problem at the junction only if M ≥ N. In particular, for the case of 2 × 2
junctions the condition imposes that for every j = 3,4, aj,1 6= aj,2.
The Cauchy problem to solve is:

{
∂tρl + ∂xf(ρl) = 0, (t,x) ∈ R

+× Il, l = 1, ...,N +M
ρl(0,x) = ρl,0(x), on Il l = 1, ...,N +M

(1.2.9)

where ρl,0(x) represents the initial conditions.
Let us now introduce the definition of admissible solution.

Definition 1.2.3 ρ = (ρ1, ...,ρN+M ) ∈
N+M∏
l=1

C0
(
R
+;L1 ∩BV(R)

)
is an admissible solu-

tion to (1.2.6) if

1. ρ = (ρ1, ...,ρN+M ) are weak solutions on Il, for every l = 1, ...,N +M , i.e., ρl :
[0,+∞[×Il → [0,1], l = 1, ...,N +M , such that

∫

R+

∫

Il

(
ρl∂tϕl + f(ρl)∂xϕl

)
dxdt= 0, l = 1, ...,N +M (1.2.10)

for every ϕl ∈ C1
c (R

+× Il).

2. ρl satisfies the Kružhkov entropy condition [99] on (R+×Il), i.e., for every k ∈ [0,1]
and for all ϕl ∈ C1

c (R× Il), t > 0,

∫
R+

∫
Il
(|ρl − k|∂tϕl +sgn(ρl − k)(f(ρl)− f(k))∂xϕl)dxdt

+
∫
Il
|ρl,0− k|ϕl(0,x)dx≥ 0; l = 1, ...,N +M. (1.2.11)
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1.2. Traffic flow modeling

3.
N∑
i=1

f(ρi(t,bi−)) =
N+M∑
j=N+1

f(ρj(t,aj+)).

4.
N∑
i=1

f(ρi(t,bi−)) is maximum subject to

f(ρj(·,aj+)) =

N∑

i=1

aj,1f(ρi(·, bi−)) for each j =N +1, ...,N +M, (1.2.12)

and to the conservation of mass in 3.

Let us show the procedure to construct solutions to the Riemann problem. Given
ρi,0,ρj,0 ∈ [0,ρmax], for i = 1, ..,N and j = 1, ..N +M . The Riemann problem at J is
the Cauchy problem (1.2.9) where the initial conditions are given by ρi,0,ρj,0. Define the
map

E : (Γ1, ..,ΓN ) ∈ R
N →

N∑

i=1

Γi (1.2.13)

and the sets Ωi := [0,Γmax
i ] i= 1, ....,N and Ωj := [0,Γmax

j ] j =N +1, ....,N +M and
Ω := {(Γ1, ...,ΓN ) ∈ Ω1× ...×ΩN |A(Γ1, ...,ΓN )T ∈ ΩN+1× ...×ΩN+M}, where

Γmax
i =

{
f(ρi,0) if 0≤ ρi,0 ≤ ρcr
fmax if ρcr < ρi,0 ≤ ρmax,

i= 1, ...,N, (1.2.14)

Γmax
j =

{
fmax if 0≤ ρj,0 ≤ ρcr
f(ρj,0) if ρcr < ρj,0 ≤ ρmax,

j =N +1, ...,N +M. (1.2.15)

The set Ω is closed, convex and not empty. Moreover, due to Remark 1 there exists a
unique vector (Γ̂1, ..., Γ̂N ) ∈ Ω such that

E(Γ̂1, ..., Γ̂N ) = max
(Γ1,..,ΓN )∈Ω

E(Γ1, ..,ΓN ).

Once we have the fluxes, we are able to solve the Riemann problem and get the corre-
sponding density. Hence, we can define the Riemann Solver RS for (1.2.6) with Riemann
initial data at a junction J with N incoming roads and M outgoing ones, such that
N ≤M. Let us first introduce the following function:

Definition 1.2.4 Let τ : [0,1]→ [0,1] be the map implicitly defined by:

• f(τ(ρ)) = f(ρ) for every ρ ∈ [0,1];

• τ(ρ) 6= ρ for every ρ ∈ [0,1] \ {ρcr}.

We recall that ρcr is the point at which the flux function f(ρ) attains its maximum.
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1.2. Traffic flow modeling

Definition 1.2.5 Fix a junction J and an initial datum (ρi,0,ρj,0), for i = 1, ...,N and
j =N +1, ...,N +M. We define the Riemann solver RS for (1.2.6):

RS(ρi,0,ρj,0) = (ρ̂i, ρ̂j)

such that

ρ̂i ∈

{
{ρi,0}∪]τ(ρi,0),1] if 0≤ ρi,0 ≤ ρcr,
[ρcr,1] if ρcr ≤ ρi,0 ≤ ρmax;

i= 1, ...,M, f(ρ̂i) = Γ̂i (1.2.16)

and

ρ̂j ∈

{
[0,ρcr] if 0≤ ρj,0 ≤ ρcr,
{ρj,0}∪ [0, τ(ρj,0)[ if ρcr ≤ ρj,0 ≤ ρmax;

j =N +1, ...,N +M, f(ρ̂j) = Γ̂j

(1.2.17)
and for i ∈ {1, ...,N} the solution is given by the wave (ρi,0, ρ̂i), while for j ∈ {N +
1, ...,N +M} the solution is given by the wave (ρ̂j ,ρj,0).

In the case of N > M , following [40], some additional parameters can be introduced to
find uniquely the solution to the Riemann problem.
In particular, for the case of a 2×1 junction the traffic at the junction is distributed using
the following yielding rule. Assume that not all the cars from the incoming roads can
enter the outgoing one. Let f(ρj(·,aj+)) be the flux of cars that can enter the outgoing
link. Then, given any P ∈]0,1[, Pf(ρj(·,aj+)) is the flux allowed from the first incoming
link and (1− P )f(ρj(·,aj+)) is the flux coming from the second incoming link. P is
called rigth-of-way (or priority) parameter and it sets the amount of cars that from each
incoming road can go to the outgoing one. Also, in this case, the Riemann problem is
solved maximizing the flux at the junction. The feasible set is given by Ω = {(Γ1,Γ2) :
0≤ Γi ≤ Γmax

i (ρi,0,0)≤ Γ1+Γ2 ≤ Γ̂3} where Γ̂3 =min(Γmax
1 (ρi,0)+Γmax

2 (ρi,0),Γ
max
3 ) and

Γmax
i for i= 1,2 is given by (1.2.14) and Γmax

3 is given by (1.2.15). Consider the priority
line

Γ2 =
1−P

P
Γ1, (1.2.18)

and S the point of intersection of this line with the line Γ1+Γ2 = Γ̂3. If this point belongs
to Ω then (Γ̂1, Γ̂2) = S otherwise (Γ̂1, Γ̂2) = Q where Q is the point belonging to Ω on
the line Γ1+Γ2 = Γ̂3 closest to the priority line. Once the fluxes are found, it is possible
to proceed like in Definition 1.2.5 to find the corresponding densities.

Demand and supply functions

Another way to define the problem at the junction is the one that considers demand
and supply functions on the road network that has been introduced independently by
Lebacque [106] and Daganzo [50] in the context of vehicular traffic flow. The demand
function is described as follows

δ(ρ) =

{
f(ρ) if 0≤ ρ≤ ρcr,
fmax if ρcr < ρ≤ ρmax;

(1.2.19)
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1.2. Traffic flow modeling

and the supply function is given by

σ(ρ) =

{
fmax if 0≤ ρ≤ ρcr,
f(ρ) if ρcr < ρ≤ ρmax.

(1.2.20)

These two functions can be seen as the maximal flux that can be sent by the incoming
road (demand) and the maximal flux that can be received by the outgoing road (supply).
Given those functions, it is possible to define Riemann problems at the junctions that
choose as optimal criterion the maximality of either the demand or the supply.

Remark 2 Note that the works in the context of demand and supply functions can be
recast in the framework of the work of [41] setting Γmax

i = δ and Γmax
j = σ.

Modeling of junctions with a buffer

An alternative way to describe the dynamics of a junction is to represent it with a buffer as
done in [64, 93], see Figure 1.2.6. Usually the junction is represented as a single point with
no dynamics, but experience shows that sometimes the geometry of the intersection has a
non negligible effect on traffic conditions [93], as for example in the case of roundabouts.
The buffer mimics the behavior of this type of junctions. This modeling choice allows to
take into account the fact that traffic does not immediately pass through a junction. The
buffer, in fact, allows for some storage capacity. Mathematically, the buffer evolution is

buffer

Inc. roads Out. roads

Figure 1.2.6: An example of junction represented with buffer.

described by an ordinary differential equation, which describes the evolution of the total
number of cars in the junction at each time. In the works presented in [64, 93] the buffer
has a fixed maximal and minimal capacity. In [93], the distribution of fluxes at the
junction is done by maximizing the traffic through the junction and setting the outgoing
flux fout = min{σ,µ} and the incoming flux f in = min{δ,µ} where µ is the maximal
number of cars that enter or exit the node.
More recently, Bressan et al. [28], introduced a model for junctions with several buffers
at the intersection. The goal of the authors is to introduce a model that could be useful
in the analysis of global optimization and Nash equilibrium. In fact, in [30] one can find
counterexamples to the well-posedness and to the continuity w.r.t. weak convergence of
the models introduced in [41, 67, 68], which are the key properties for the use of the
model in the framework of global optimization and Nash equilibrium.
The model introduced in [28] has at each road intersection a buffer of limited capacity for
every outgoing link. In particular, the buffer of limited capacity is able to model exactly
backward propagation of queue along roads like it happens in crowded intersections.
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Incoming drivers are admitted to the outgoing links at a rate that depends on the length
of the queue at the entrance of the road of their choice. They are able to prove well-
posedness for general L∞ data and continuity w.r.t. weak convergence.

1.2.3 Bottlenecks and coupled micro-macro models

It is possible to extend the LWR model in order to include many features of traffic flow.
Many works that go in this direction have been published in the last years. One particular
line of research has been focusing on how to model the effects of a bottleneck among
traffic. Bottlenecks may be generated by different reasons. We distinguish between fixed
bottlenecks and moving ones. A fixed bottleneck is created by a reduction of the road
capacity due to the presence of toll gates or road works, etc. The reduction in the
capacity is fixed in one specific position. Moving bottlenecks are, instead, created by the
presence of something that moves along the road that can be a slow and large vehicle
(bus, trucks, etc.) or a moving road construction site. In this case it becomes necessary,
not only, to be able to model the capacity reduction, but also to be able to track a single
vehicle among the traffic flow.

During the years several works have focused on modeling these effects. In the engi-
neering framework, we recall the works by C. Daganzo and J.Laval [52, 53] and by L.
Leclercq, J.-P. Lebacque, J. B. Lesort and F. Giorgi [75, 76, 86, 107, 108]. All these
works are developed in the discrete setting. In the mathematical community, research
has focused both on fixed and moving bottleneck [3, 15, 37, 43, 69, 100].

Modeling of a tollgate

Colombo and Goatin [43] model the effect of a tollgate on traffic flow by a conservation
law with a time-dependent unilateral constraint. The problem reads





∂tρ+ ∂xf(ρ) = 0 (t,x) ∈ (R+,R),
ρ(0,x) = ρ0(x) x ∈ R,
f(ρ(t,0))≤ q(t), t ∈ R

+,
(1.2.21)

where q(t) is the maximal flux allowed through the toll at time t.
Global well-posedness of (1.2.21) in BV setting is proved. The presence of the constraint
imposes the definition of a new type of weak solutions. Indeed, it leads to the creation
of shock waves that satisfy the Rankine-Hugoniot equation but violates the Lax entropy
condition when the constraint is enforced. These waves are denoted as non-classical
shocks. The concept of non-classical shocks has been introduced in the framework of
phase transitions by LeFloch and Hayes in the nineties in [84] and after that literature
has been developed [2, 6, 7, 8, 85] to apply it to hyperbolic systems. For an extensive
reading about non-classical shocks we refer the reader to [103].
The Riemann problem (1.2.21) is studied in [43] under the following assumptions:

1. f : [0,ρmax]→ R is Lipschitz, f(0) = 0 = f(ρmax), f ′(ρ)(ρcr− ρ) for a.e. ρ,

2. q ∈ [0,f(ρcr)], q(t)≡ q.
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1.2. Traffic flow modeling

The Constrained Riemann solver is defined by means of the standard one RS, see Defi-
nition 1.2.1:

Definition 1.2.6 The Constrained Riemann Solver RSq is defined as follows.
If f(RS(ρL,ρR))(0))≤ q then RSq(ρL,ρR) =RS(ρL,ρR).

Otherwise, RSq(ρL,ρR)(x) =

{
RS(ρL, ρ̂)(x) if x < 0,
RS(ρ̌,ρR)(x) if x > 0,

where ρ̌ < ρ̂ are the solution to f(ρ) = q, see Figure 1.2.7.

ρρmax0

f(ρ)

q

ρ̂ ρ̌ρcr

Figure 1.2.7: An example of fundamental diagram considered in [43].

The Riemann solver constrained is consistent, self-similar and the map RSq : [0,ρmax]
2 →

L1 uniformly continuous. Moreover, existence, uniqueness and stability of solutions for
BV initial data are proved. In particular, a new definition of entropy condition is intro-
duced to include non-classical shocks.

Definition 1.2.7 A weak solution ρ ∈ C0(R+;L1(R; [0,ρmax])) is an entropy solution to
(1.2.21) if for every k ∈ R and for every ϕ ∈ C1

c (R
2;R+)

∫ T

0

∫

R

|ρ− k|∂tϕ+sgn(ρ− k)(f(ρ)− f(k))∂xϕdxdt+

∫

R

|ρ0− k|ϕ(0,x)dx+2

∫ +∞

0

(
1−

q(t)

fmax

)
f(k)ϕ(t,0)dt≥ 0

(1.2.22)

We remark that the model (1.2.21) is closely related to conservation laws with space-
discontinuous flux, see [4] and reference therein. In particular, in [3] it is recast in the
framework of discontinuous fluxes to prove well-posedness for L∞ data and convergence
of finite volume schemes.

Tracking a car among traffic flow

As mentioned above, in many cases it might be useful to track a vehicle among traffic
flow. The first work that goes in this direction is the one by Colombo and Marson [46].
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Here, the main traffic flow is described by the LWR model while the ordinary differential
equation (1.2.23) accounts for the trajectory of a single driver moving at average speed.

{
ẏ = v(ρ(t,y))
y(0) = y0,

(1.2.23)

where y is the position of the driver and it is supposed that the driver is influenced by
the traffic surrounding him but it does not influence it.

The ODE is considered in Filippov’s sense [60, §4], due to the discontinuity of the
right hand side. Well-posedness of the Cauchy problem w.r.t. the initial datum both of
the ordinary differential equation and of the conservation law is proved. In particular,
Hölder-continuous dependence from the initial position of (1.2.23).

We remark that the model considered in [46] introduces a weak coupling between
the LWR and the ODE imposing only a "one-way" influence. In particular, the PDE is
independent of the ODE solution.

Moving bottlenecks

The first mathematical model that describes moving bottlenecks is due to Lattanzio,
Maurizi and Piccoli [100]. They introduce a fully coupled model where the vehicle de-
scribed by the ODE interacts with the whole traffic flow, obtaining a micro-macro coupled
model. In particular, the situation that the authors refer to is that of a large and slow
vehicle that generates a drop of capacity in the road. The model reads





∂tρ+ ∂xf(x,y(t),ρ) = 0,
ρ(0,x) = ρ0(x),
ẏ = ω(ρ(t,y)),
y(0) = y0,

(1.2.24)

where the flux function f(x,y(t),ρ) = ρv(ρ)ϕ(x−y(t)), with ϕ(ξ) being a mollifier repre-
senting the capacity dropping of car flow, see Figure 1.2.8. The speed ω(ρ) : [0,ρmax]→

ϕ(ξ)

ξ

1
2

2δδ−2δ −δ

Figure 1.2.8: An example of a mollifier for the model introduced in [100].
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[0,+∞) is a smooth and decreasing function describing the slower vehicle. It is assumed
that ∃ ζ ∈ (0,1) such that

sup
ρ∈(0,1]

ω(0)−ω(ρ)

ω(0)− fρ(x,y,ρ)
= sup

ρ∈(0,1]

ω(0)−ω(ρ)

ω(0)− (ρ(v(ρ))′ϕ(x− y)
< 1− ζ.

Existence of solutions are proved with the fractional step method: iteratively in time, it
consists of first solving the conservation law with the slower vehicle position fixed, and
then solving the ODE using the car density given by the first step. Solutions to the ODE
are intended in Filippov’s sense [60].

The above model is then extended in [69] to several bus routes on a closed path on
networks. Traffic flow is described by the following initial-boundary value problem





∂tρ+ ∂xf(x,y1, ...,yN ,ρ) = g(t,x,ρ),
ρ(0,x) = ρ0(x),
ρ(t,0) = ρ(t,L),

(1.2.25)

where yi = yi(t) is the position of the i-th discrete vehicle. The flux function f is given by
f(x,y1, ...,yN ,ρ) = ρ · v(ρ) ·Φ(x,y1, ...,yN ). The function Φ(y1, ...,yN ) = min

i
ϕ(x− yi(t)),

with ϕ the mollifier as in (1.2.24), is responsible for the coupling with the ODEs and
g(t,x,ϕ) is a source term that accounts for the junctions. This macroscopic model is then
coupled with a microscopic model of a follow-the-leader type, where the behavior of the
drivers of the vehicles is influenced by the behavior of the drivers ahead. The coupling
guarantees that the velocities of buses is at most the flow velocity, thus depending on
the surrounding density, and becomes the maximal possible velocity when the effects of
vehicles ahead are negligible.

1.3 Numerical methods for hyperbolic conservation laws
and traffic flow

In this section we focus our attention on numerical methods to approximate hyperbolic
conservation laws. Usually each mathematical model needs an individual numerical treat-
ment in order to reflect all its physical features. We are going to present a brief overview of
the methods used for traffic flow models. In particular, we are going to describe schemes
adapted to treat nonlinear fluxes, coupling between equations and road networks.

The most common numerical schemes for hyperbolic partial differential equations
are finite volume methods. We refer the reader to [110] for a comprehensive list of the
classical numerical schemes. Here we limit our attention to those schemes that we use
in the course of this work. In one space dimension, a finite volume method is based
on subdividing the spatial domain into intervals called finite volumes (or grid cells) and
keeping track of an approximation to the integral of the conserved quantity over each
of these volumes. In each time step we update these values using approximations of the
fluxes at the cell interfaces.
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1.3.1 Godunov scheme

We introduce the following notation: xn
j+ 1

2

are the cell interfaces at time tn = tn−1+∆tn

with n ∈ N and j ∈ Z. A computational cell is given by Cn
j = [xn

j− 1
2

,xn
j+ 1

2

] where xnj is

the center of the cell and ∆xnj = xn
j− 1

2

−xn
j+ 1

2

is the cell width at time tn. The Godunov

scheme [79] is a first order scheme that is based on exact solutions to Riemann problems.
Given u(t,x), the cell average of u in the cell Cn

j and at time tn is defined as

unj =
1

∆xnj

∫ xn

j+1
2

xn

j− 1
2

u(tn,x)dx. (1.3.1)

Then the Godunov scheme consists of two main steps:

1. Solve the Riemann problem at each cell interface xn
j+ 1

2

with initial data (unj ,u
n
j+1).

2. Compute the cell averages at time tn+1 in each computational cell and obtain un+1
j .

We remark that waves in two neighboring cells do not intersect before ∆tn if the following
CFL (Courant-Friedrichs-Lewy) condition holds:

∆tnmax
j∈Z

∣∣f ′(uj)
∣∣≤ 1

2
min
j∈Z

∆xnj . (1.3.2)

Classical Godunov scheme can be expressed in conservative form as

un+1
j = unj −

∆tn

∆xnj

(
F (unj ,u

n
j+1)−F (unj−1,u

n
j )
)
, (1.3.3)

where F (unj ,u
n
j+1) = Fn

j+ 1
2

is the Godunov numerical flux and takes in general the fol-

lowing expression:

F (unj ,u
n
j+1) =

{
minz∈[un

j ,u
n
j+1]

f(z) if unj ≤ unj+1,

maxz∈[un
j+1,u

n
j ]
f(z) if unj+1 ≤ unj .

(1.3.4)

In order to implement the scheme, boundary conditions need to be imposed on the left
and on the right ends of the computational domain. To this end, suppose we have a
boundary condition at x= 0

u(t,0) = ub(t), t > 0.

Following [32, 110], we add ghost cells, that is we extend the computational domain to
include few additional cells at the boundary of the domain and we define

un+1
0 = un0 −

∆tn

∆xnj

(
F (un0 ,u

n
1 )−F (unb ,u

n
0 )
)
, (1.3.5)

where

unb =
1

∆tn

∫ tn+1

tn
ub(t)dt. (1.3.6)

replaces un−1.
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Fn
j− 1

2

Fn
j+ 1

2

tn+1

tn
unj−1 unj unj+1xn

j+ 1
2

xn
j− 1

2

Figure 1.3.1: Illustration of the finite volume in the x− t plane.

1.3.2 Godunov scheme on road networks

Godunov scheme is one of the most common numerical methods used to solve traffic flow
problems. Since Godunov scheme uses exact Riemann solver at the cell interfaces then
it is one of the preferable scheme for those problems where the Riemann solver can be
computed explicitly making it one of the most popular scheme for scalar conservation
laws and traffic flow models. For simplicity in the next section we drop the indexes j
and n from ∆x.
The Godunov scheme for the LWR model (1.2.1) reads:

ρn+1
j = ρnj −

∆tn

∆x

(
F (ρnj ,ρ

n
j+1)−F (ρnj−1,ρ

n
j )
)
, (1.3.7)

where the numerical flux F for a concave flux function is given by

F (u,v) =





min(f(u),f(v)) if u≤ v,
f(u) if v < u < ρcr,
fmax if v < ρcr < u,
f(v) if ρcr < v < u.

(1.3.8)

In [32] Godunov scheme has been extended to be used also on traffic road networks. In
particular, to use Godunov scheme on road network it is necessary to specify the flux at
the junction. Let us assume that each road is divided in J+1 cells numbered from 0 to J .
Since Godunov scheme uses exact Riemann solvers at cell interfaces, at the junction it
makes sense to replace the Godunov flux with the exact flux at the junction introduced
in Definition 1.2.5. In this way, for each road connected at the junction at the right
endpoint, we set

ρn+1
i,J = ρni,J −

∆tn

∆x
(Γ̂i−F (ρni,J−1,ρ

n
i,J)),

while for the roads connected at the junction at the left endpoint, we have

ρn+1
j,0 = ρnj,0−

∆tn

∆x
(F (ρnj,0,ρ

n
j,1)− Γ̂j),

for i = 1, ...N and j = N + 1, ...,N + M where Γ̂i and Γ̂j are the maximized fluxes
computed in Section 1.2.2.
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Remark 3 For Godunov scheme there is no need to invert the flux f to compute the
densities, as the Godunov flux coincides with the flux at the junction. In this case it
suffices to insert the computed maximized fluxes directly into the scheme.

1.3.3 Numerical methods for non-classical shocks

Non-classical shocks are driven by small-scale effects and they usually require additional
conditions to be able to detect them. Over the years several approaches have been
proposed, see [17, 38, 104, 105, 131] and references therein. Hereafter, we are going to
recall a couple of methods which will be used later on in this work. A way to capture
non-classical shocks is to include them directly into the numerical scheme. This is what
is done in the case of the random choice and front tracking schemes [38, 104, 105].
These schemes converge to exact solutions even in case of non-classical shocks but they
require explicit knowledge of the non-classical Riemann solver which might be expensive
numerically.

A Lagrangian algorithm with moving mesh

In 1996 Zhong, Hou and LeFloch [131] introduced a front-tracking capturing method that
uses a Lagrangian algorithm to approximate systems of conservation laws with phase
boundaries. The phase boundaries, studied in[131], are propagating solid-solid phase
boundaries; such waves (as non-classical shocks) are not uniquely determined by the
initial condition. In this case, the standard Godunov method does not produce correct
results, since it fails to show the presence of the phase boundaries. In [131] the authors
develop a front tracking/capturing method that tracks phase boundaries and captures
conventional shock waves. The space is discretized in such a way that a cell interface is
located at the phase boundary and its speed at the time tn will be denoted by V n. The
computation will proceed as follows:

1. Compute all quantities at the time tn+1 from the approximation at the time tn

including the phase boundary propagation speed and its location.

2. Shift the grid mesh according to the movement of the phase boundary so that the
phase boundary remains on a grid point.

To implement this idea one has to use a moving mesh. The algorithm introduced in [131]
follows these steps:

1. Compute the speed of propagation of the phase boundary.

2. Shift grid points according to xn+1
j+ 1

2

= xn
j+ 1

2

+V n∆tn for all j ∈ Z.

3. Compute un+1
j for all j ∈ Z.

4. Repeat steps (1)-(3).
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1.3. Numerical methods for hyperbolic conservation laws and traffic flow

When V n = 0 this algorithm corresponds to the Godunov method. The method as it is
introduced in [131] shifts uniformly the grid points. However, it is possible to shift the
grid only locally. In this way the mesh is locally nonuniform and it moves locally with the
phase boundary. Assume that at time tn the phase boundary is located at xn

m+ 1
2

, then

at time tn+1 it moves to a new position xn+1
m+ 1

2

. Instead of letting all grid points move

with the phase boundary only the point xm+ 1
2

is moved. Consequently the locations of
xm and xm+1 change as well as the mesh size.

A convergent and conservative scheme for non-classical solutions

The method introduced in [131] is able to capture non-classical shocks, however it is not
easy to implement due to the nonuniform moving mesh. More recently, Boutin, Chalons,
Lagoutière and LeFloch in [17] proposed a conservative method that is able to capture
non-classical shocks without moving meshes. The method is based on a reconstruction
technique that takes place in the cell where a non-classical shock may arise. They propose
to reconstruct the non-classical discontinuity in such a way that non-classical shocks are
computed exactly while classical shocks suffer moderate numerical diffusion. The main
idea of this method is to consider the information unj given in a single cell insufficient to
correctly evaluate the Riemann problem whose solution is a phase boundary in that cell.
Using a classical Godunov approach, we cannot have any different value from those given
by the classical Riemann solver at the interfaces in particular, for example, for shocks,
the solution of the Riemann problem is the propagation of the Riemann initial states
(unl = unj−1 and unr = unj+1) .
So, instead of considering unj as sufficient information for the Riemann solution associated
with initial states unj−1 and unj+1, they propose to introduce in the cell Cj the left (right)
state unj,l (u

n
j,r) of the non-classical discontinuity which is expected to be present in the

Riemann solution associated with unj−1 and unj+1. The position where the reconstruction
has to take place is computed using conservation as follows

x̄j = xn
j+ 1

2

+
unj,r −unj
unj,r −unj,l

∆x. (1.3.9)

At this point, it is possible to reconstruct the discontinuity given 0≤ dnj ≤ 1 such that

dnj =
unj,r −unm

unj,r −unj,l
. (1.3.10)

Then, the numerical flux becomes:

• if the flux function f is non-decreasing

∆tFn
j+ 1

2

=

{
min(∆tj+ 1

2
,∆t)f(unj,r)+max(∆t−∆tj+ 1

2
,0)f(unj,l), if 0≤ dnj ≤ 1,

∆tf(unj ), otherwise;
(1.3.11)

with ∆tj+ 1
2
=

1− dnj
λ(unj,l,u

n
j,r)

∆x;
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• if f is non-increasing

∆tFn
j− 1

2

=

{
min(∆tj− 1

2
,∆t)f(unj,l)+max(∆t−∆tj− 1

2
,0)f(unj,r), if 0≤ dnj ≤ 1,

∆tf(unj ), otherwise;
(1.3.12)

with ∆tj− 1
2
=

dnj
−λ(unj,l,u

n
j,r)

∆x,

where λ(uj ,uj+1) is the phase boundary speed. This scheme is a five-points scheme since
un+1
j depends on unj−2, u

n
j−1, u

n
j , u

n
j+1, u

n
j+2.

1.3.4 Numerical methods for coupled PDE-ODE models

Tracking a car on a road network

The work presented in [33] deals with numerical approximation of coupled PDE-ODE
systems for traffic flow on a road network. The goal of the numerical scheme is to track
a car path among the surrounding traffic flow. The car trajectory is described by an
ODE and the surrounding traffic by a scalar conservation laws as in [46] . The algorithm
proposed in [33] is divided in two steps:

1. The traffic density values are computed on each road solving Riemann problems.
At this step one can use either the wave front tracking method, see Section 1.1.4
or the Godunov scheme, see Section 1.3.1, provided that the condition at junctions
are considered.

2. The driver’s position is determined solving the ODE by means of an algorithm
which, given the densities obtained at the previous step by wave front tracking or
the Godunov scheme, determines the car position on the network. They distinguish
two situations, according to the position of the car trajectory inside the cell. In
both cases, it is necessary to check if the wave starting at the cell interface is
a shock or a rarefaction and compute the time of interaction between the wave
and the car trajectory. In the case of a rarefaction the initial and final time of
interaction is computed and the position of the car is updated by solving explicitly
an ordinary differential equation. According to the new position, the cell index of
the car position is updated.
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2.1. Mathematical model

Introduction

In this chapter, we focus on a strongly coupled PDE-ODE problem that was introduced
in [75] to describe the effects of urban transport systems in a road network. A slow
moving large vehicle, like a bus or a truck, reduces the road capacity and thus generates
a moving bottleneck for the surrounding traffic flow. The main traffic is described by
a non-linear transport equation while the bus trajectory is described by an ODE and
with an inequality constraint which describes the drop in the capacity of the road due
to the presence of the slower vehicle, for example a bus. The solution of the ODE will
be intended in Carathéodory sense. Compared to the previous models, the present one
gives a more realistic description of the velocity of the slower vehicle and it is easier to
handle both from the analytical and the numerical point of view.

The chapter is developed as follows. Section 2.1 gives a description of the model
from an analytical point of view. Section 2.2 is dedicated to the solution of the Riemann
problem and Section 2.3 shows the existence of solutions for the Cauchy problem. On
Section 2.4 we show some partial results on the stability of the solutions. Section 2.5 and
2.6 are dedicated to the numerical schemes and show some numerical tests performed on
this model. The results obtained are included in [57, 56].

2.1 Mathematical model

Our aim is to describe the phenomena caused by the presence of a bus in a car flow.
Since the macroscopic description of the traffic does not allow to consider single vehicles,
we consider the bus as a mobile obstacle that reduces the capacity of the road generating
a moving bottleneck for the surrounding traffic. This situation can be modeled by a
PDE-ODE strongly coupled system consisting of a scalar conservation law with moving
flux constraint accounting for traffic evolution and an ODE describing the slower vehicle
motion, i.e.





∂tρ+ ∂xf(ρ) = 0, (t,x) ∈ R
+×R,

ρ(0,x) = ρo(x), x ∈ R,

f(ρ(t,y(t)))− ẏ(t)ρ(t,y(t))≤
αρmax

4V
(V − ẏ(t))2 t ∈ R

+,

ẏ(t) = ω(ρ(t,y(t)+)), t ∈ R
+,

y(0) = yo.

(2.1.1)

The traffic evolution is described by a scalar hyperbolic conservation law

∂tρ+ ∂xf(ρ) = 0, (2.1.2)

where the main quantities are the mean traffic density ρ = ρ(t,x) ∈ [0,ρmax] which is
the scalar conserved quantity, with ρmax being the maximal density allowed on the road
and the flux function f : [0,ρmax] → R

+ which is a strictly concave function such that
f(0) = f(ρmax) = 0, see Figure 2.1.1a. It is given by the following flux-density relation

f(ρ) = ρv(ρ),
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2.1. Mathematical model

where v is a smooth decreasing function denoting the mean traffic speed and here set to
be v(ρ) = V (1− ρ

ρmax
), V being the maximal velocity allowed on the road. Every road

ρρcr ρmax

fmax

f(ρ)

0

(a) One lane

ρα ρmax

f(ρ)

0 ρcrρα,cr

Two lanes

One lane

(b) Several lanes

Figure 2.1.1: A typical example of flux function for traffic flow (left). Every road has a
specific fundamental diagram. For roads with different number of lanes we can consider
that the fundamental diagrams are in a ratio corresponding to their maximal capacities
(right).

has a specific fundamental diagram. For example, for roads with different number of
lanes we can consider as a first approximation that the fundamental diagrams are not
affine and in a ratio that depends on the maximal capacities of the different lanes, see
Figure 2.1.1b. The bus does not behave like cars hence, it cannot be modeled in the same
way. We represent a single bus such that we can track its trajectory at all times. When
it is possible, the bus will move at its own maximal speed which, we denote as Vb < V.
When the surrounding traffic is too dense the bus will adapt its velocity to the one of the
cars, so it will not be possible for the bus to overtake the cars, see Figure 2.1.2. From
a mathematical point of view, the velocity of the bus can be described by the following
function:

ω(ρ) =

{
Vb if ρ≤ ρ∗

.
= ρmax(1−

Vb

V
),

v(ρ) otherwise,
(2.1.3)

and the bus trajectory is described by the following ODE

ẏ(t) = ω(ρ(t,y(t)+)) (2.1.4)

where y denotes the position of the bus.
To describe the interaction between the bus and the traffic we consider the bus as a

mobile obstacle, i.e., as a moving restriction of the road. The situation is the following:
upstream and downstream with respect to the bus, the cars behave normally while on
the side of the bus the road capacity is reduced, generating a bottleneck, see Figure 2.1.3.
This discontinuity moves at the bus speed. To better capture the influence of the bus, we
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ρρ∗

ω(ρ)

Vb

v(ρ)

Bus speed

Cars speed

Figure 2.1.2: Bus and cars speed.

Bus

Vb Vb

Vb

Figure 2.1.3: Moving bottleneck.

choose to study the problem in the bus reference frame. This means setting X = x−y(t).
In this coordinate system the velocity of the bus is equal to zero. As a consequence the
conservation law can be rewritten as:

∂tρ+ ∂X (f(ρ)− ẏρ) = 0. (2.1.5)

The corresponding constraint on the flux can be written as

f(ρ(t,y(t)))− ẏ(t)ρ(t,y(t))≤
αρmax

4V
(V − ẏ(t))2, (2.1.6)

with the constant coefficient α ∈ ]0,1[ giving the reduction rate of the road capacity due
to the presence of the bus. Indeed, let fα : [0,αρmax]→ R

+ be the rescaled flux function
describing the reduced flow at x= y(t), i.e.

fα(ρ) = V ρ

(
1−

ρ

αρmax

)
,

and ρα ∈ ]0,αρmax/2[ such that f ′
α(ρα) = ẏ, i.e.

ρα =
αρmax

2

(
1−

ẏ

V

)
,
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ρα 1

f(ρ)

0 ρ̂αραρ̌α

Vb

(a) Fixed reference frame

ρρmax

Fα

f(ρ)

0 ρ̂αραρ̌α

Vbρ

(b) Bus reference frame

Figure 2.1.4: Flux functions for ẏ = Vb. The big fundamental diagram describes the
whole road and, the smaller one, the constrained flux at the bus location.

see Figure 2.1.4. Therefore, the right-hand side of (2.1.6) is given by

fα(ρα)− ẏρα =
αρα
4V

(V − ẏ(t))2.

Note that inequality (2.1.6) is always satisfied if ẏ(t) = v(ρ), since the left hand side is 0.
Moreover, it is well defined even if ρ has a jump at y(t) because of the Rankine-Hugoniot
conditions. This constraint describes mathematically the reduction of capacity of the
road due to the presence of the bus.

For our purposes, it is not restrictive to assume that ρmax = V = 1, so that the full
model writes





∂tρ+ ∂x(ρ(1− ρ)) = 0, (t,x) ∈ R
+×R,

ρ(0,x) = ρo(x), x ∈ R,

f(ρ(t,y(t)))− ẏ(t)ρ(t,y(t))≤ Fα
.
=

α

4
(1− ẏ(t))2, t ∈ R

+,

ẏ(t) = ω(ρ(t,y(t)+)), t ∈ R
+,

y(0) = yo.

(2.1.7)
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2.2. The Riemann problem with moving density constraint

2.2 The Riemann problem with moving density constraint

We devote this section to the study of the Riemann problem. Consider (2.1.7) with
Riemann type initial data

ρo(x) =

{
ρL if x < 0,
ρR if x > 0,

and yo = 0. (2.2.1)

We aim at defining a Riemann solver for the conservation law with moving flux constraint.
Therefore we consider the following Riemann problem





∂tρ+ ∂xf(ρ) = 0,

ρ(0,x) =

{
ρL if x < 0,

ρR if x > 0,

(2.2.2)

under the constraint

f(ρ(t,y(t)))− ẏ(t)ρ(t,y(t))≤
α

4
(1− ẏ(t))2,

where the bus velocity ẏ(t) is assumed to be constant by self-similarity. The definition of
the Riemann solver for (2.1.7), (2.2.1) follows [75, §V]. Denote by RS the standard (i.e.,
without the constraint (2.1.6)) Riemann solver for (2.2.2), i.e., the (right continuous)
map (t,x) 7→ RS(ρL,ρR)(x/t) given by the standard weak entropy solution to (2.2.2).
Moreover, let ρ̌α and ρ̂α, with ρ̌α ≤ ρ̂α, be the intersection points of the flux function
f(ρ) with the line fα(ρα)+Vb(ρ− ρα) (see Figure 2.1.4).

Definition 2.2.1 The constrained Riemann solver RSα : [0,1]2 → L1
loc(R; [0,1]) for

(2.1.7), (2.2.1) is defined as follows.

1. If f(RS(ρL,ρR)(Vb))> Fα+VbRS(ρL,ρR)(Vb), then

RSα(ρL,ρL)(x/t) =

{
RS(ρL, ρ̂α)(x/t) if x < Vbt,
RS(ρ̌α,ρR)(x/t) if x≥ Vbt,

and y(t) = Vbt.

2. If VbRS(ρL,ρR)(Vb)≤ f(RS(ρL,ρR)(Vb))≤ Fα+VbRS(ρL,ρR)(Vb), then

RSα(ρL,ρR) =RS(ρL,ρR) and y(t) = Vbt.

3. If f(RS(ρL,ρR)(Vb))< VbRS(ρL,ρR)(Vb), then

RSα(ρL,ρR) =RS(ρL,ρR) and y(t) = v(ρR)t.

Note that, when the constraint is enforced (point 1. in the above definition), a non-
classical shock arises, which satisfies the Rankine-Hugoniot condition but violates the
Lax entropy condition.
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Remark 4 The above definition is well-posed even if the classical solution
RS(ρL,ρR)(x/t) displays a shock at x = Vbt. In fact, due to Rankine-Hugoniot equa-
tion, we have

f(ρL) = f(ρR)+Vb(ρL− ρR)

and hence

f(ρL)> fα(ρα)+Vb(ρL− ρα) ⇐⇒ f(ρR)> fα(ρα)+Vb(ρR − ρα).

2.3 The Cauchy problem: existence of solutions

The aim of this section is to study existence of solutions of problems (2.1.1) and (2.1.7).
A bus travels along a road whose traffic evolution is modeled by

∂tρ+ ∂x(ρ(1− ρ)) = 0,

ρ(0,x) = ρo(x),

f(ρ(t,y(t)))− ẏ(t)ρ(t,y(t))≤ Fα.

(2.3.1)

The bus influences the traffic along the road but it is also influenced by the downstream
traffic conditions. The bus trajectory y = y(t) then solves

ẏ(t) = ω(ρ(t,y(t)+)),
y(0) = yo.

(2.3.2)

Solutions to (2.3.2) are intended in Carathéodory sense, i.e., as absolutely continuous
functions which satisfy (2.3.2) for a.e. t≥ 0. Observe that the function F (t,x)=ω(ρ(t,x))
is discontinuous w.r.t. x and it does not satisfy general conditions which imply well-
posedness of the Cauchy problem (2.3.2), see [60, §1] for the Carathéodory conditions,
and [19, 29] for ODEs which are discontinuous w.r.t. x. In particular, the bus velocity
function (2.1.3) does not fulfill the assumptions in [29, (A1)-(A2)] and [46, Eq. (2.1)]. In
our setting, due to the strong PDE-ODE coupling, we will prove existence and continuous
dependence of both solutions to (2.3.1) and (2.3.2) at the same time.

Definition 2.3.1 A couple (ρ,y)∈C0
(
R
+;L1 ∩BV(R; [0,1])

)
×W1,1(R+;R) is a solution

to (2.1.7) if

1. ρ is a weak solution of (2.3.1), i.e. for all ϕ ∈ C1
c (R

2;R)
∫

R+

∫

R

(ρ∂tϕ+ f(ρ)∂xϕ)dx dt+

∫

R

ρo(x)ϕ(0,x) dx= 0 ; (2.3.3a)

moreover, ρ satisfies Kružhkov entropy conditions [99] on (R+×R) \
{(t,y(t)) : t ∈ R

+}, i.e. for every k ∈ [0,1] and for all ϕ ∈ C1
c (R

2;R+) and
ϕ(t,y(t)) = 0, t > 0,

∫

R+

∫

R

(|ρ− k|∂tϕ+sgn(ρ− k)(f(ρ)− f(k))∂xϕ)dx dt

+

∫

R

|ρo− k|ϕ(0,x) dx≥ 0 ;

(2.3.3b)
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2. y is a Carathéodory solution of (2.3.2), i.e. for a.e. t ∈ R
+

y(t) = yo+

∫ t

0
ω(ρ(s,y(s)+)) ds ; (2.3.3c)

3. the constraint (2.1.6) is satisfied, in the sense that for a.e. t ∈ R
+

lim
x→y(t)±

(f(ρ))−ω(ρ)ρ)(t,x)≤ Fα. (2.3.3d)

Remark that the above traces exist because ρ(t, ·) ∈ BV(R; [0,1]) for all t ∈ R
+.

Remark 5 Our choice of Carathéodory solutions for (2.3.2) is justified by the particular
bus velocity defined by (2.1.3). With this choice it is not possible for the bus to end
up trapped in a queue unless its speed is equal to Vb, in which case ω(ρ(t,y(t)+)) =
ω(ρ(t,y(t)−)) = Vb. Therefore Carathéodory solutions are always well defined.

Theorem 7 Let ρo ∈ BV(R; [0,1]), then the Cauchy problem (2.1.7) admits a solution
in the sense of Definition 2.3.1.

The rest of the section is devoted to the proof of Theorem 7. In particular, we will
construct a sequence of approximate solutions via the wave-front tracking method, and
prove its convergence. Finally we will check that the limit functions satisfy conditions
(2.3.3a)-(2.3.3d) of Definition 2.3.1.

2.3.1 Wave-front tracking

To construct piecewise constant approximate solutions, we adapt the standard wave-front
tracking method as described in Section 1.1.4.
Fix a positive n ∈ N, n > 0 and introduce in [0,1] the mesh Mn = {ρni }

2n

i=0 defined by

Mn =
(
2−n

N∩ [0,1]
)
.

In order to include the critical points ρ̌α,ρα, we modify the above mesh as follows:

• if mini |ρ̌α− ρni |= 2−n−1, then we simply add the new point to the mesh:

M̃n =Mn ∪{ρ̌α};

• if |ρ̌α− ρnl |=mini |ρ̌α− ρni |< 2−n−1, then we replace ρnl by ρ̌α:

M̃n =Mn ∪{ρ̌α} \ {ρ
n
l };

• we perform the same operations for ρ̂α.
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In this way the distance between two points of the mesh M̃n = {ρ̃ni } satisfies the lower

bound
∣∣∣ρ̃ni − ρ̃nj

∣∣∣≥ 2−n−1. Let fn be the piecewise linear function which coincides with f

on Mn, and let ρno be a piecewise constant function defined by

ρno =
∑

j∈Z

ρno,j χ]xj−1,xj ]
with ρno,j ∈ M̃n,

which approximates ρo in the sense of the strong L1 topology, that is

lim
n→∞

‖ρno − ρo‖L1(R) = 0,

and such that TV(ρno )≤ TV(ρo). Above, we have set x0 = yo.
For small times t > 0, a piecewise approximate solution (ρn,yn) to (2.1.7) is constructed
piecing together the solutions to the Riemann problems





∂tρ+ ∂x (f
n(ρ)) = 0,

ρ(0,x) =

{
ρo,0 if x < yo,
ρo,1 if x > yo,

f(ρ(t,0))− ẏn(t)ρ(t,0)≤
α

4
(1− ẏn)

2,





∂tρ+ ∂x (f
n(ρ)) = 0,

ρ(0,x) =

{
ρj if x < xj ,
ρj+1 if x > xj ,

j 6= 0,

(2.3.4)

where yn satisfies {
ẏn(t) = ω(ρn(t,yn(t)+)),
yn(0) = yo.

(2.3.5)

Note that the solutions to the constrained Riemann problem in (2.3.4), left, coupled
with (2.3.5), is constructed by means of RSα, see Definition 2.2.1. The approximate
solution ρn constructed above can be prolonged up to the first time t > 0, where two
discontinuities collide, or a discontinuity hits the bus trajectory. In both cases, a new
Riemann problem arises and its solution, obtained in the former case with RS and in
the latter case with RSα, allows to extend ρn further in time.

2.3.2 Bounds on the total variation

Given an approximate solution ρn = ρn(t, ·) constructed by the wave-front tracking
method, we define the Glimm type functional

Υ(t) = Υ(ρn(t, ·)) = TV(ρn)+ γ =
∑

j

∣∣ρnj+1− ρnj
∣∣+ γ, (2.3.6)

where γ is given by

γ = γ(t) =

{
0 if ρn(t,yn(t)−) = ρ̂α, ρn(t,yn(t)+) = ρ̌α

2|ρ̂α− ρ̌α| otherwise.
(2.3.7)

The value of γ is chosen to get the following interaction estimates.
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Lemma 8 For any n ∈ N, the map t 7→ Υ(t) = Υ(ρn(t, ·)) at any interaction either
decreases by at least 2−n, or remains constant and the number of waves does not increases.

Lemma 8 in particular implies that the wave-front tracking procedure can be pro-
longed to any time T > 0.

Proof. In order to obtain a uniform bound on the total variation we will consider the
different types of interactions separately. In particular, it is not restrictive to assume
that at any interaction time t= t̄ either two waves interact or a single wave hits the bus
trajectory.

(I1) We consider a classical collision between two waves (see Figure 2.3.1). In this case
either two shocks collide (which means that the number of waves diminishes) or
a shock and a rarefaction cancel. In any case, TV(ρn) is not increasing and γ is
constant and we get Υ(t̄+)≤Υ(t̄−).

ρl ρr

ρm

Figure 2.3.1: Interaction between two waves away from the bus trajectory.

A particular case is when the bus trajectory coincides with one of the interacting
waves. In this case the wave must be a classical shock between a left state belonging
to [0, ρ̌α] and a right state in [ρ̂α,ρ

∗], and it must move with speed equal to Vb.
This interaction cannot generate a non-classical shock, therefore it can be treated
as the general case above.

(I2) Assume that a wave between two states ρL,ρR ∈ [0, ρ̌α]∪ [ρ̂α,1] hits the bus trajec-
tory (see Figure 2.3.2). In this case the front crosses the bus trajectory and no new
wave is created. Notice that this collision may eventually lead to a modification
of the bus trajectory (for example, if ρR > ρ∗, after the collision the bus takes the
velocity v(ρR) 6= ω(ρL)). In any case, TV(ρn), Υ and the number of waves remain
constant.

(I3) Assume that we are in the presence of the non-classical shock along the bus trajec-
tory. Different types of interactions may occur.

(I3.1) Assume the non-classical shock is present at t < t̄, and a shock between ρL ∈
[0, ρ̌α] and ρ̂α hits the bus trajectory on the left (Figure 2.3.3a). After the
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ρl

Vb ρr

Figure 2.3.2: Interaction between a wave and the bus trajectory.

collision, the number of discontinuities in ρn diminishes and the functional Υ
remains constant:

∆Υ(t̄) = Υ(t̄+)−Υ(t̄−)

= |ρL− ρ̌α|+2|ρ̂α− ρ̌α| − (|ρL− ρ̂α|+ |ρ̂α− ρ̌α|)

= 0.

Assume now a shock between ρ̌α and ρR ∈ [ρ̂α,1] hits the bus trajectory on the
right (Figure 2.3.3b). Then, after the collision, the bus assumes the velocity
v(ρR) of the traffic mainstream, the number of discontinuities in ρn diminishes
and the functional Υ remains constant:

∆Υ(t̄) = Υ(t̄+)−Υ(t̄−)

= |ρ̂α− ρR|+2|ρ̂α− ρ̌α| − (|ρ̌α− ρR|+ |ρ̂α− ρ̌α|)

= 0.

ρl

Vb

ρ̌α
ρ̂α

(a) Shock from the left.

ρr

v(ρr)

ρ̌α

ρ̂α
ρr

(b) Shock from the right.

Figure 2.3.3: Interaction between a shock and the bus trajectory.

(I3.2) Consider now the case of a non-classical shock arising at t= t̄. We first analyze
the case of a rarefaction front hitting the bus trajectory from the left (Figure
2.3.4a). We have ρR = ρ̌α < ρL ≤ ρ̂α. In this case new waves are created at t
and the total variation is given by:

• TV(t̄−) = |ρ̌α− ρL| ≥ 2−n−1;

• TV(t̄+) = |ρ̂α− ρ̌α|+ |ρ̂α− ρL| ≤ 2|ρ̂α− ρ̌α|,
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ρl

ρ̂α

ρr = ρ̌α

ρ̌α

Vb

(a) Rarefaction from
the left.

ρr

ρ̂α

ρl = ρ̂α

ρ̌α

Vb

(b) Rarefaction from
the right.

Figure 2.3.4: Interaction between a rarefaction and the bus trajectory.

where the second estimate is obtained by simple algebraic manipulation of
the total variation TV(t̄+). Then we are able to compute the changes in the
functional as follows:

∆Υ(t̄) = Υ(t̄+)−Υ(t̄−)

= (|ρ̂α− ρ̌α|+ |ρ̂α− ρL|)− (|ρ̌α− ρL|+2|ρ̂α− ρ̌α|)

= 2(ρ̌α− ρL)≤−2−n,

hence the functional is strictly decreasing.
Let us consider now the case of a rarefaction front hitting the bus trajectory
from the right (Figure 2.3.4, right). In this case we have ρ̌α ≤ ρR < ρL = ρ̂α.
A new wave is created at t̄ and the total variation is given by:

• TV(t̄−) = |ρ̂α− ρR| ≥ 2−n−1;

• TV(t̄+) = |ρ̂α− ρ̌α|+ |ρ̌α− ρR| ≤ 2|ρ̂α− ρ̌α|,

The functional changes as follows:

∆Υ(t̄) = Υ(t̄+)−Υ(t̄−)

= (|ρ̂α− ρ̌α|+ |ρ̌α− ρR|)− (|ρ̂α− ρR|+2|ρ̂α− ρ̌α|)

= 2(ρ̂α− ρR)≤−2−n,

making the functional strictly decreasing.

�

2.3.3 Convergence of approximate solutions

In this section we prove that the limit of wave-front tracking approximations provides a
solution (ρ,y) of the PDE-ODE model (2.1.7) in the sense of Definition 2.3.1.
We start showing the convergence of the wave-front tracking approximations.
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Lemma 9 Let ρn and yn, n ∈ N, be the wave-front tracking approximations to (2.1.7)
constructed as detailed in Section 2.3.1, and assume TV(ρo)≤C be bounded, 0≤ ρo ≤ 1.
Then, up to a subsequence, we have the following convergences

ρn → ρ in L1
loc(R

+×R; [0,1]); (2.3.8a)

yn(·)→ y(·) in L∞([0,T ];R), for all T > 0; (2.3.8b)

ẏn(·)→ ẏ(·) in L1([0,T ];R), for all T > 0; (2.3.8c)

for some ρ ∈ C0
(
R
+;L1 ∩BV(R; [0,1])

)
and y ∈W1,1(R+,R).

Proof. Lemma 8 gives a uniform bound on the total variation of approximate solutions:
TV(ρn(t, ·)) ≤ Υ(t) ≤ Υ(0). A standard procedure based on Helly’s Theorem (see [20,
Theorem 2.4]) ensures the existence of a subsequence converging to some function ρ ∈
C0

(
R
+;L1 ∩BV(R; [0,1])

)
, proving (2.3.8a).

Since |ẏn(t)| ≤ Vb, the sequence {yn} is uniformly bounded and equicontinuous on any
compact interval [0,T ]. By Ascoli-Arzelà Theorem, there exists a subsequence converging
uniformly, giving (2.3.8b).
In order to prove (2.3.8c), we have to show that TV(ẏn; [0,T ]) is uniformly bounded. In
fact, the analysis performed in Section 2.3.2 shows that ẏn can change only at interactions
with waves coming from its right. We can estimate the speed variation at interactions
times t̄ by the size of the interacting front:

|ẏn(t̄+)− ẏn(t̄−)|= |ω(ρL)−ω(ρR)| ≤ |ρL− ρR|.

In particular, ẏn is non-increasing at interactions with shock fronts and non-decreasing
at interactions with rarefaction fronts, which must be originated at t = 0. In fact, the
analysis performed in Section 2.3.2 shows that no new rarefaction front can arise at
interactions. Therefore,

TV(ẏn; [0,T ])≤ 2PV(ẏn; [0,T ]) + ‖ẏn‖L∞([0,T ]) ≤ 2TV(ρo)+Vb

is uniformly bounded. Above, PV (ẏn; [0,T ]) denotes the positive variation of ẏn, i.e. the
total amount of positive jumps in the interval [0,T ]. �

Proof of (2.3.3a) and (2.3.3b)

Since ρn converge strongly to ρ in L1
loc(R

+×R; [0,1]), it is straightforward to pass to the
limit in the weak formulation of the conservation law, proving that the limit function ρ
satisfies (2.3.3a). Kružhkov entropy condition (2.3.3b) can be recovered in the same way.

Proof of (2.3.3c) and (2.3.3d)

We will prove that

lim
n→∞

ρn(t,yn(t)+) = ρ+(t) = ρ(t,y(t)+) for a.e. t ∈ R
+. (2.3.9)
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By pointwise convergence a.e. of ρn to ρ, there exists a sequence zn ≥ yn(t) such that
zn → y(t) and ρn(t,zn)→ ρ+(t).

For a.e. t > 0, the point (t,y(t)) is for ρ(t, ·) either a continuity point, or it belongs
to a discontinuity curve (represented by y(·)) that can be either a classical shock or a
non-classical discontinuity between ρ(t,y(t)−) = ρ̂α and ρ(t,y(t)+) = ρ̌α.

Fix ǫ∗ > 0 and assume TV(ρ(t, ·); ]y(t)− δ,y(t)+ δ[) ≤ ǫ∗, for some δ > 0. Then by
weak convergence of measures (see [31, Lemma 15]) we have
TV(ρn(t, ·); ]y(t)− δ,y(t)+ δ[)≤ 2ǫ∗ for n large enough, and we can estimate

∣∣ρn(t,yn(t)+)− ρ+(t)
∣∣≤ |ρn(t,yn(t)+)− ρn(t,zn)|+

∣∣ρn(t,zn)− ρ+(t)
∣∣≤ 3ǫ∗

for n large enough.
If ρ(t, ·) has a discontinuity of strength greater then ǫ∗ at y(t), then also

|ρn(t,yn(t)+)− ρn(t,yn(t)−)| ≥ ǫ∗/2 for n sufficiently large, and we proceed as in [31,
Section 4]. That is, we set ρn,+ = ρn(t,yn(t)+) and we show that for each ε > 0 there
exists δ > 0 such that for all n large enough there holds

∣∣ρn(s,x)− ρn,+
∣∣< ε for |s− t| ≤ δ, |x− y(t)| ≤ δ, x > yn(s). (2.3.10)

In fact, if (2.3.10) does not hold, we could find ε > 0 and sequences tn → t, δn → 0
such that TV(ρn(tn, ·); ]yn(tn),yn(tn)+ δn[)≥ ε. By strict concavity of the flux function
f , there should be a uniformly positive amount of interactions in an arbitrarily small
neighborhood of (t,y(t)), giving a contradiction. Therefore (2.3.10) holds and we get

∣∣ρn(t,yn(t)+)− ρ+(t)
∣∣≤ |ρn(t,yn(t)+)− ρn(t,zn)|+

∣∣ρn(t,zn)− ρ+(t)
∣∣≤ 2ε

for n large enough, thus proving (2.3.9). Combining (2.3.8c) and (2.3.9) we get ẏ(t) =
ω(ρ(t,y(t)+)) for a.e. t > 0.

In order to verify that the limit solutions satisfy the constraint (2.3.3d), we can
use directly (2.3.9) and the fact that wave-front tracking approximations satisfy the
constraint (2.1.6) by construction.

2.4 An approach to the stability of the solutions

In this section we show a tentative approach to the problem of the stability of solutions for
this type of models. In particular, we get some of the bounds necessary to prove stability
but, at the moment, we are not able to prove that the shifts are uniformly bounded
for all times t > 0. We use the technique of generalized tangent vectors, introduced
in [21, 22] for systems of conservation laws, and adapted to scalar equations in traffic
applications, see [33, 68] for a detailed description. To resume, we introduce a class of
curves (pseudo-polygonals) that connect any two initial data in Dn

C = {(ρ,y) : [0,1]×R→
Mn×R : TV(ρ)≤ C}.

Let ]a,b[ ⊂ R and PC denote the set of piecewise constant functions with finitely
many jumps. An elementary path is a map γ : ]a,b[ →PC of the form

γ(θ) =

N∑

j=1

ρj ·χ[xθ
j−1,x

θ
j [
+ yθ, where xθj = xj + ξwj

θ, yθ = y+ ξbθ,
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with xθj−1 < xθj for all θ ∈ ]a,b[ and j = 1, . . . ,N .
A pseudo-polygonal is a continuous map γ : ]a,b[→Dn

C such that there exist countably
many disjoint open intervals Jh ⊆ ]a,b[ so that ]a,b[ \∪hJh is countable and the restriction
of γ to each Jh is an elementary path. Moreover, any two elements of Dn

C can be joined
by a pseudo-polygonal γ enterely contained in Dn

C .
We define the length of a pseudo-polygonal γ as

‖γ‖n =

∫ b

a

Γn[γ(θ)] dθ, where Γn =
∑

j

∣∣σjξwj

∣∣Wj +ϕ|ξb|,

for some suitable weights Wj and ϕ and σj denoting the strength of the jump at xj : σj =
ρj+1−ρj . In the next Section 2.4.1 we will show some bounds on the interactions among
waves that can be used to construct uniformly bounded weights such that Wj ,ϕ ∈ [1,W ]
and the map t 7→ Γn(u(t)) is uniformly bounded for all times t > 0 by Γn(u(0)) multiplied
by a factor depending only on the total variation of the initial datum and the final time
t. The first requirement implies that the metric

dn(u,v) = inf {‖γ‖n : γ(a) = u, γ(b) = v}

is equivalent to the L1-distance uniformly in n; the latter ensures the Lipschitz continuity
of the semigroup.

2.4.1 Estimates on shifts

We aim at estimating the L1-distance among solutions, studying how the distance be-
tween two approximate solutions varies in time through the study of the evolution of
norms of tangent vectors along wave-front tracking approximations.
Fix an approximate wave-front tracking solution (ρn,yn) to (2.1.7). Without loss of
generality, at any interaction time t̄ > 0, one of the following cases occurs:

a) two waves interact away from x= yn(t̄) and no other interaction takes place;

b) a wave interacts with the bus trajectory x = yn(t̄) and no other interaction takes
place;

c) interaction involving a non-classical shock, either the non-classical shock is created
in the interaction or it disappears at the interaction.

Case a) is classical, and it is well known that the L1-distance is decreasing, see [67, Lemma
2.7.2]. Here we concentrate on case b) and c). We denote by w(t,x) = ω(ρn(t,x+)), then
w is piecewise constant with jumps along a finite number of Lipschitzean polygonal lines.
Following [29, 46], we introduce the bus trajectory tangent vector

ξb(t) = lim
ε→0+

yε(t)− y(t)

ε
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where t 7→ yε(t) is the solution of (2.3.2) with an initial datum yo+ε. The map t 7→ ξb(t)
is piecewise constant with jumps at those times where y crosses a discontinuity in w. At
these points the tangent vector varies according to

ξ+b
.
= ξb(t+) =

ẏ(t+)−Λ

ẏ(t−)−Λ
ξb(t−) =





0 if ẏ(t+) = Λ,
w+−Λ

w−−Λ
ξ− if ẏ(t+) 6= Λ,

(2.4.1)

where Λ is the speed of the discontinuity in w and w± = ω(ρn(t±,y(t±)) are the values
of w on the sides of the discontinuity (see Figure 2.4.1). In the following, we will assume

Λ

x

t

ξ−b

ξ+b
w−

w+

Figure 2.4.1: Changes of ξb across a discontinuity in w = ω(ρn).

that both the wave front and the bus trajectory are shifted by ξ−w and ξ−b respectively.
For case b), since the wave speed does not change after the interaction, its shift remains
constant, ξ+w = ξ−w , and we just need to estimate the value of the bus shift ξ+b after the
interaction. Following [29, 46], the idea is to find a weight ϕ= ϕ(t) for the bus shift such
that the weighted tangent vector z(t)

.
=ϕ(t)ξb(t) is not increasing in time. We claim that

we can take ϕ(t) = ϕ(ρ(t,y(t)+)), where ϕ(y) is defined by

ϕ(ρ)
.
=

Vb− f ′(ρ)

ω(ρ)− f ′(ρ)
∈ [1,1+Vb] . (2.4.2)

Observe that
d

dλ

(
Vb−λ

ω(ρ)−λ

)
=

Vb−ω(ρ)

(ω(ρ)−λ)2
≥ 0. (2.4.3)

We can now define weights Wi =Wi(t) for waves such that the weighted L1-distance

Γn(t) =
∑

i

Wi(t)|ξwi
(t)σi(t)|+ |z(t)|
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is not increasing in time. We propose to take

W =





2+ ρ∗

ρ∗
if ρ∗ ≤ ρR + ρL

1 otherwise.
(2.4.4)

where W ∈ [1, c0].
In order to investigate how tangent vectors vary in time, we have to distinguish different
cases.

I. Interaction with a shock: ρR > ρ∗ and ρL ∈ [0, ρ̌α]∪ [ρ̂α,ρR] (i.e. w+ = v(ρR)<w−).
In this case the bus is slowed down by the presence of a queue in front of it. This

ρL

ω(ρL)

v(ρR)

ρR

Figure 2.4.2: Case I: interaction with a shock.

creates a discontinuity in its velocity (see Figure 2.4.2). The wave speed does not
change across interaction, so we will have ξ+w = ξ−w . For the bus shift we have the
following

ξ+b =
v(ρR)−Λ

ω(ρL)−Λ
ξ−b +

ω(ρL)− v(ρR)

ω(ρL)−Λ
ξ−w , (2.4.5)

where the speed of the discontinuity is given by Λ = 1− ρR − ρL.
If ρL ∈ [0, ρ̌α]∪ [ρ̂α,ρ

∗], then ω(ρL) = Vb and we compute

z(t+) = |ϕ(t+)ξb(t+)|=
Vb− f ′(ρR)

ω(ρR)− f ′(ρR)
ξ+b

=
Vb− f ′(ρR)

v(ρR)− f ′(ρR)
·
v(ρR)−Λ

Vb−Λ
ξ−b +

Vb− f ′(ρR)

v(ρR)− f ′(ρR)
·
Vb− v(ρR)

Vb−Λ
ξ−w

=
1− ρ∗− 1+2ρR
1− ρR − 1+2ρR

·
1− ρR − 1+ ρL+ ρR
1− ρ∗− 1+ ρL+ ρR

ξ−b +

+
1− ρ∗− 1+2ρR

1− ρR − 1+ ρL+ ρR
·

1− ρ∗− 1+ ρR
1− ρ∗− 1+ ρL+ ρR

ξ−w

=
2ρR − ρ∗

ρR
·

ρL
ρL+ ρR − ρ∗

ξ−b +
2ρR − ρ∗

ρR
·

ρR − ρ∗

ρL+ ρR − ρ∗
ξ−w

≤
∣∣ϕ−ξ−b

∣∣+ 2

ρR
|ρR − ρL|

∣∣ξ−w
∣∣

≤
∣∣ϕ−ξ−b

∣∣+ 2

ρ∗
|ρR − ρL|

∣∣ξ−w
∣∣.

(2.4.6)
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The above inequalities are obtained using the fact that ϕ(t−) = 1 and ρR > ρ∗. We
then obtain

z(t+)≤
∣∣ϕ−ξ+b

∣∣+ 2

ρ∗
∣∣σ−ξ−w

∣∣

which gives us

z(t+)+W+
∣∣σ+ξ+w

∣∣≤ z(t−)+
2

ρ∗
∣∣σ−ξ−w

∣∣+W+
∣∣σ−ξ−w

∣∣

≤ z(t−)+W−
∣∣σ−ξ−w

∣∣,

where we used that W− =W++ 2
ρ∗

and σ− = σ+.
If ρL ∈ [ρ∗,ρR],from (2.4.5) we obtain

z(t+) = |ϕ(t+)ξb(t+)|=
Vb− f ′(ρR)

ω(ρR)− f ′(ρR)
ξ+b

=
Vb− f ′(ρR)

v(ρR)− f ′(ρR)
·
v(ρR)−Λ

v(ρL)−Λ
ξ−b +

Vb− f ′(ρR)

v(ρR)− f ′(ρR)
·
v(ρL)− v(ρR)

v(ρL)−Λ
ξ−w

=
1− ρ∗− 1+2ρR
1− ρR − 1+2ρR

·
1− ρR − 1+ ρL+ ρR
1− ρL− 1+ ρL+ ρR

ξ−b +

+
1− ρ∗− 1+2ρR

1− ρR − 1+ ρL+ ρR
·

1− ρL− 1+ ρR
1− ρL− 1+ ρL+ ρR

ξ−w

=
2ρR − ρ∗

ρR
·
ρL
ρR

ξ−b +
2ρR − ρ∗

ρR
·
ρR − ρL

ρR
ξ−w

≤
∣∣ϕ−ξ−b

∣∣+ 2

ρR
|ρR − ρL|

∣∣ξ−w
∣∣

≤
∣∣ϕ−ξ−b

∣∣+ 2

ρ∗
|ρR − ρL|

∣∣ξ−w
∣∣,

(2.4.7)

since
2ρR − ρ∗

ρR
·
ρL
ρR

≤
2ρL− ρ∗

ρL
= ϕ−

for ρ∗ ≤ ρL ≤ ρR.This gives us

z(t+)+W+
∣∣σ+ξ+w

∣∣≤ z(t−)+
2

ρ∗
∣∣σ−ξ−w

∣∣+W+
∣∣σ−ξ−w

∣∣≤ z(t−)+W−
∣∣σ−ξ−w

∣∣, (2.4.8)

where we used that W− =W++ 2
ρ∗

and σ− = σ+.

II. Interaction with a rarefaction: ρ∗ ≤ ρR < ρL and |ρR − ρL| ≤ 2−n+1 (i.e. ω+ =
v(ρR) ≥ v(ρL) = ω−, see Figure 2.4.3) The bus shift is again given by (2.4.5) and
the wave shift shift does not change across the interaction.
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ρl

ρr

v(ρl)

v(ρr)

Figure 2.4.3: Case II: Interaction with a rarefaction.

Hence, we have as in (2.4.7)

z(t+) =
2ρR − ρ∗

ρR
·
ρL
ρR

ξ−b +
2ρR − ρ∗

ρR
·
ρR − ρL

ρR
ξ−w

=
2ρR − ρ∗

ρR
·
ρL
ρR

·
2ρL− ρ∗

ρL
·

ρL
2ρL− ρ∗

ξ−b +
2ρR − ρ∗

ρR2
· |ρL− ρR| ξ

−
w

=
2ρR − ρ∗

2ρL− ρ∗
·
ρL

2

ρR2

∣∣ϕ−ξ−b
∣∣+ 2ρR − ρ∗

ρR2
· |ρL− ρR| ξ

−
w

≤

(
1+

2−n+1

ρ∗

)2 ∣∣ϕ−ξ−b
∣∣+ 2

ρ∗
∣∣σ−ξ−w

∣∣

where we used the fact that

ρL
2

ρR2
=

(
1+

ρL− ρR
ρR

)2

≤

(
1+

2−n+1

ρ∗

)2

.

This gives us

z(t+)+W+
∣∣σ+ξ+w

∣∣≤
(
1+

2−n+1

ρR

)2

z(t−)+
2

ρ∗
∣∣σ−ξ−w

∣∣+W+
∣∣σ−ξ−w

∣∣

≤

(
1+

2−n+1

ρ∗

)2

z(t−)+W−
∣∣σ−ξ−w

∣∣,
(2.4.9)

taking W− ≥W++ 2
ρ∗

. Notice that, defining

ζ(t) = z(t)+W (t)|σ(t)ξw(t)|, (2.4.10)

we get

ζ(t+) = z(t+)+W (t+)|σ(t+)ξw(t+)|

≤

(
1+

2−n+1

ρ∗

)2

z(t−)+W (t−)|σ(t−)ξw(t−)|

≤

(
1+

2−n+1

ρ∗

)2

ζ(t−).

Since this multiplication factor is applied at each time the bus trajectory hits a
rarefaction fan, for any time T > 0 the total increase can be bounded by

ζ(T )≤

(
1+2

2−n

ρ∗

) 2NV (ρo)

2−n

ζ(0)≤ exp

(
4NV (ρo)

ρ∗

)
ζ(0), (2.4.11)

55



2.4. An approach to the stability of the solutions

which gives a bound depending only on the total variation of the initial datum.
For case c) we refer to the classification made in Section 2.3.2.

III. The non-classical shock is canceled. We refer here to the interaction I3.1 as shown
in Figure 2.3.3.

If the interacting wave is approaching from the left, as in Figure 2.3.3(a), the velocity
of the bus does not change along the discontinuity, therefore the shift of the bus
remains constant. Moreover, we have ϕ− = ϕ+ = 1. Concerning the wave shift, we
can use the conservation law. Hence, we have

∣∣σ+ξ+w
∣∣=

∣∣σ−ξ−w +(ρ̂α− ρ̌α)ξ
−

b

∣∣≤
∣∣σ−ξ−w

∣∣+
∣∣(ρ̂α− ρ̌α)ξ

−

b

∣∣. (2.4.12)

This gives us

z(t+)+
∣∣σ+ξ+w

∣∣≤ z(t−)+
∣∣σ−ξ−w

∣∣+(ρ̂α− ρ̌α)
∣∣ξ−b

∣∣. (2.4.13)

If the interacting wave is approaching from the right, as shown in Figure 2.3.3(b),
the conservation law still hold for the wave shift, but the shift of bus may change,
because its speed may decrease. Since the trajectory of the bus is the same as in
case I, we can use estimates (2.4.6) or (2.4.7) to bound z(t+). Hence we have

z(t+)+W+
∣∣σ+ξ+w

∣∣≤ z(t−)+W−
∣∣σ−ξ−w

∣∣+(ρ̂α− ρ̌α)
∣∣ξ−b

∣∣, (2.4.14)

where we have taken W− =W++ 2
ρ∗

.

IV. The non-classical shock arises. We refer here to the interactions I3.2 as shown in
Figure 2.3.4. In this case we have an interaction between a rarefaction and the bus
trajectory which creates a non-classical shock after t̄. The shift of the bus remains
the same ξ+b = ξ−b and also

ϕ+ =
Vb− f ′(ρR)

v(ρR)− f ′(ρR)
=

Vb− f ′(ρ̌α)

Vb− f ′(ρ̌α)
= ϕ− = 1,

if the wave is interacting on the left (as in Figure 2.3.4(a)), and

ϕ+ =
Vb− f ′(ρ̂α)

Vb− f ′(ρ̂α)
=

Vb− f ′(ρ̌α)

Vb− f ′(ρ̌α)
= ϕ− = 1,

if the wave is interacting on the right (as in Figure 2.3.4(b)), so we can focus on
the wave shift. By merely using the conservation law we have

σ+ξ+w +(ρ̌α− ρ̂α)ξ
+
b = σ−ξ−w ,

which gives ∣∣σ+ξ+w
∣∣≤ (ρ̂α− ρ̌α)

∣∣ξ−b
∣∣+

∣∣σ−ξ−w
∣∣.

Finally we obtain

z(t+)+
∣∣σ+ξ+w

∣∣≤ z(t−)+ |ρ̂α− ρ̌α|
∣∣ξ−b

∣∣+
∣∣σ−ξ−w

∣∣. (2.4.15)
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2.5. A front tracking algorithm

The main issue in proving the stability of the solutions is represented by the cases where
a rarefaction hits the bus trajectory from the right. In these cases in fact, it is difficult to
find an appropriate bound to the L1-distance. We are not yet able to prove in this case
that there exists some suitable bounded weights that ensure the Lipschitz continuity of
the semigroup.

2.5 A front tracking algorithm

The aim of this section is to present numerical methods to compute solutions to strongly
coupled constrained PDE-ODE problems with moving constraints (2.1.1). We want to be
able to track at each time step the bus trajectory and also to reproduce the non-classical
solutions generated by the constraint. Since the solutions of the Riemann problem are
known explicitly, our first attempt was to develop a Godunov-type method. The standard
Godunov method, in principle, could be applied, however, the results produced are not
correct, since it will not reproduce all the characteristics of the solutions and it fails to
show the presence of the non-classical shock. This can be overcame by applying a front
tracking capturing method which uses a Lagrangian algorithm in which the interface is
tracked, such as in [131], together with a numerical method that tracks at each time step
the slower vehicle trajectory, taken from [33].

2.5.1 Godunov-type scheme for hyperbolic PDEs with constraint

We use the following notation: xn
j+ 1

2

are the cell interfaces at time tn with n ∈ N and

j ∈ Z. A computational cell is given by [xn
j− 1

2

,xn
j+ 1

2

] where xnj is the center of the cell

and hnj = xn
j− 1

2

−xn
j+ 1

2

is the cell width at time tn. Classical Godunov scheme, as seen in

Section 1.3, can be expressed in conservative form as

ρn+1
j = ρnj −

∆tn

∆x

(
F (ρnj ,ρ

n
j+1)−F (ρnj−1,ρ

n
j )
)
, (2.5.1)

where F (ρnj ,ρ
n
j+1) is the numerical flux. Boundary conditions are imposed on the left

and on the right ends of the computational domain.
Since our aim is to track the trajectory of the bus using a Lagrangian algorithm, a

moving mesh has to be used. In particular, we develop an algorithm which follows at
each time step the bus trajectory and modifies the mesh when the inequality

f(RS(ρL,ρR)(Vb))> Fα+VbRS(ρL,ρR)(Vb) (2.5.2)

holds. In particular, if (2.5.2) is satisfied, then the solution of the Riemann solver is
non-classical and hence, classical Godunov scheme cannot be applied. We are going to
shift grid points locally and, as a consequence, we will have a locally nonuniform mesh
due to a cell interface moving with the bus trajectory. We will use the superscript new
to indicate the quantities that are modified at time tn with the grid. Assume that at
time tn, yn is the bus position and yn ∈]xn

m−
1
2

,xn
m+ 1

2

] for some m. When (2.5.2) holds,

the algorithm for the adaptive mesh reads as follows:
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2.5. A front tracking algorithm

• If
∣∣∣xn

m+ 1
2

− yn
∣∣∣ > hnm

2
then change the point xn

m−
1
2

to xnew
m−

1
2

= yn and recompute

the cell averages in the cells m− 1 and m from the formula

ρnewm−1 =
∆xnm−1ρ

n
m−1+(xnew

m−
1
2

−xn
m−

1
2

)ρnm

∆xnewm−1

(2.5.3)

with ∆xnewm−1 = xnew
m−

1
2

−xn
m−

3
2

, see Figure 2.5.1.

xn
m−

3
2

xnew
m−

1
2

= yn xn
m+ 1

2

xn
m+ 3

2

xn+1
m−

3
2

xn+1
m−

1
2

= yn+1xn+1
m+ 1

2

xn+1
m+ 3

2

xn
m−

3
2

xn
m−

1
2

xn
m+ 1

2

xn
m+ 3

2

yn

ρnewm−1 ρnm ρnm+1

Figure 2.5.1: Local shifting of a grid point when
∣∣∣xn

m+ 1
2

− yn
∣∣∣> hnm

2
.

• If
∣∣∣xn

m+ 1
2

− yn
∣∣∣≤ hnm

2
we adjust the location of the point xn

m+ 1
2

such that xnew
m+ 1

2

= yn

and then we place the point at the middle distance between xn
m−

3
2

and xnew
m+ 1

2

, see

Figure 2.5.2. We then compute the new cell averages in the cells m and m+1 from
the formulas

ρnewm =
(xn

m−
1
2

−xnew
m−

1
2

)ρnm−1+(xnew
m+ 1

2

−xn
m+ 1

2

)ρnm

∆xnewm

(2.5.4)

ρnewm+1 =
∆xnρnm+1+(xn

m+ 1
2

−xnew
m+ 1

2

)ρnm

∆xnewm+1

(2.5.5)

with ∆xnewm = xnew
m+ 1

2

−xnew
m−

1
2

and ∆xnewm+1 = xnew
m−

1
2

−xn
m−

3
2

.

Each time the constraint is enforced the bus position follows the non-classical shock
trajectory: yn+1 = xn+1

m±
1
2

= xnew
m±

1
2

+Vb∆tn. The other cell interfaces are kept unchanged.

For simplicity, in the following we replace the superscript new with n to indicate all the
quantities at time tn including the modified ones. An explicit formula for the scheme can
be derived in the following way. Consider the finite volume cell T in Figure 2.5.3 (abcd).
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2.5. A front tracking algorithm

xn
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3
2

xnew
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1
2

xnew
m+ 1

2
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m+ 3
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xn+1
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3
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xn+1
m−

1
2

xn+1
m+ 1

2
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2
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2
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m−
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m+ 3

2
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ρnm−1 ρnewm ρnewm+1

Figure 2.5.2: Local shifting of a grid point when
∣∣∣xn

m+ 1
2

− yn
∣∣∣≤ hnm

2
.
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Figure 2.5.3: Nonuniform finite volume cells.

Integrate the conservation law over the finite volume:
∫ ∫

T

(∂tρ+ ∂xf(ρ))dxdt= 0

From the Green’s theorem we have
∫

T

f(ρ)dt− ρdx= 0

which leads to the following

ρn+1
j =

∆xnj

∆xn+1
j

ρnj −
∆xnj

∆xn+1
j

[(∫ tn+1

tn
f(RS(ρnj ,ρ

n
j+1))−VbRS(ρnj ,ρ

n
j+1)

)
dt

−
(∫ tn+1

tn
f(RS(ρnj−1,ρ

n
j ))−VbRS(ρnj−1,ρ

n
j )
)
dt
]
.

For simplicity we introduce the notation F̃ (ρ) = F (ρ)− Vbρ. Notice that in our case F̃
corresponds to the Fα computed in (2.1.7) when the constraint is active and to F (ρ) with
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2.6. A conservative scheme with reconstruction of non-classical and classical shocks

Vb = 0 when the constraint is not enforced. Moreover, one needs to be careful when the
bus trajectory is dealt with. In fact, the cell size changes as time increases: one cell will
shrink and the other one will be enlarged, and it might be necessary to recompute the
averages of the density calculated at a previous time step. When one cell is too small we
adjust the location of one grid point. After the mesh has been resized and adjusted we
update the cell averages for all cells with the following conservative formula:

ρn+1
j =

∆xnj

∆xn+1
j

ρnj −
∆tn

∆xn+1
j

(
F̃ (ρnj ,ρ

n
j+1)− F̃ (ρnj−1,ρ

n
j )
)
. (2.5.6)

2.5.2 Numerical method for the ODE

We detail here how to solve numerically the ODE. At each time tn we determine the
position yn of the bus by studying the interactions between the bus trajectory and the
corresponding density waves within a cell. We distinguish two cases:

• (2.5.2) is satisfied. Then the bus moves always at velocity Vb and we update the
bus position yn+1 = Vb∆tn+ yn.

• (2.5.2) is not satisfied. In this case we implement the tracking algorithm introduced
in [33]. We have to distinguish two situations: one when yn ∈ [xn

j− 1
2

,xnj [ and one

when yn ∈ [xnj ,x
n
j+ 1

2

[. In both cases, we check if the wave starting at the cell interface

is a shock or a rarefaction and compute the time of interaction between the wave
and the bus trajectory. In the case of the rarefaction the initial and final time of
interaction is computed and the position of the bus is updated by solving explicitly
an ordinary differential equation. According to the new position of the bus, the
cell index is updated.

Numerical algorithm

The steps of the method are described in detail in Algorithm 1.

2.6 A conservative scheme with reconstruction of non-
classical and classical shocks

The approach presented in Section 2.5 gives a good approximation of the solutions for
our problem, however it is not easy to implement due to the heavy burden represented
by the moving mesh. So, we look for another method that could be easily implemented
that would be conservative and yet still able to detect non-classical shocks and respect
the constraint (2.5.2). We mantain for this section the same notation as in the previous
one so: ∆x and ∆t are the fixed space and time discretization such that we can set
xj+ 1

2
= j∆x for j ∈ Z and tn = n∆t for n ∈ N, and we assume that at time tn, yn is

the bus position and yn ∈ Cm = [xm−
1
2
,xm+ 1

2
) for some m ∈ Z. Taking inspiration from
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2.6. A conservative scheme with reconstruction of non-classical and classical shocks

Algorithm 1 Algorithm for the tracking method

Input data: Initial and boundary condition for the PDE and the ODE, m index cell
of the bus position yn

Compute the densities at time tn+1 from the density values at time tn using the Go-
dunov flux F.
if f(RS(ρnm,ρnm)(Vb))> Fα+VbRS(ρnm,ρnm)(Vb) then

if
∣∣∣xn

m+ 1
2

− yn
∣∣∣> hnm

2
then

xnew
m−

1
2

= yn, compute the new average for ρnewm−1 and update the mesh xn+1
m−

1
2

=

xnew
m−

1
2

+Vb∆tn.

else

xnew
m+ 1

2

= yn, and place the point xnew
m−

1
2

=
xn
m−

3
2

+xnew
m+ 1

2

2
. Compute the new cell

averages for ρnewm and ρnewm+1 and update the mesh xn+1
m+ 1

2

= xnew
m+ 1

2

+Vb∆tn.

end if
end if
Compute the densities averages at time tn+1 using formula (2.5.6).
Compute the bus position
if f(RS(ρnm,ρnm)(Vb))> Fα+VbRS(ρnm,ρnm)(Vb) then
yn+1 = Vb∆tn+ yn

else
yn computed with the tracking algorithm in [33]

end if
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2.6. A conservative scheme with reconstruction of non-classical and classical shocks

xnm−1 xnm+1xnmyn

ρnm−1

ρnm+1

ρnm,r

ρnm,l

Figure 2.6.1: Reconstruction of a non-classical shock.

[17], we decided to develop a method that using the technique of reconstruction is able
to recreate the discontinuity of the non-classical shock. The idea is that, whenever a
non-classical shock appears, the information held by the initial data are not enough to
correctly generate the exact solution. So it becomes necessary to input in the problem the
left (right) trace of the non-classical discontinuity. Moreover, the presence of the bus and
condition (2.5.2) tells us exactly when and where the discontinuity is going to appear. So
let us suppose that at time tn a non-classical shock is created at yn ∈ Cm. Then the sole
information ρnm will not be enough to capture it because using, for example, a classical
Godunov approach, we cannot have any different value from those given by the classical
Riemann solver at the interfaces in particular, for example, for shocks, the solution
of the Riemann problem is the propagation of the Riemann initial states (ρnL = ρnm−1

and ρnR = ρnm+1). Hence, we propose to introduce in the cell Cm the left (right) state
ρnm,l = ρ̂α (ρnm,r = ρ̌α) of the non-classical discontinuity which is expected to be present
in the Riemann solution associated with ρnm−1 and ρnm+1 in case inequality (2.5.2) is not
satisfied. Since the presence of the non-classical shock is due to the presence of the bus,
we require that this reconstructed discontinuity is located inside the cell Cm at a position
x̄m. It is possible to reconstruct the discontinuity given 0≤ dnm ≤ 1 such that

dnm =
ρnm,r − ρnm
ρnm,r − ρnm,l

. (2.6.1)

The method is fully conservative provided that

dnm∆xρnm,l +(1− dnm)∆xρnm,r = ρnm.

Then, the numerical flux becomes

∆tFn
m+ 1

2

=min(∆tm+ 1
2
,∆t)f(ρnm,r)+max(∆t−∆tm+ 1

2
,0)f(ρnm,l) (2.6.2)

where ∆tm+ 1
2
=

1− dnm
Vb

∆x.

This method is able to capture non-classical solutions and to produce exact solutions. On
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2.7. Numerical results

the other hand, with this approach, the classical shocks suffer minor numerical diffusion
and this might be problematic in the validation of the solution on the constraint (2.5.2).
In fact, if we choose initial data in neighborhood of the values ρ̂α, ρ̌α, we notice that
the solution generated by this method is not correct. To overcome this problem we
reconstruct also the classical shocks, in this way we limit the numerical diffusion and get
correct solutions also in this case. The method proceed as follows, we locate the position
of the shock x̄j ∈ Cj , then, it is possible to reconstruct the shock given 0 ≤ dnj ≤ 1 such
that

dnj =
ρnR − ρnj
ρnR − ρnL

. (2.6.3)

Then, the numerical flux becomes

• if λ(ρnL,ρ
n
R)≥ 0,

∆tFn
j+ 1

2

=

{
min(∆tj+ 1

2
,∆t)f(ρnR)+max(∆t−∆tj+ 1

2
,0)f(ρnL), if 0≤ dnj ≤ 1,

∆tf(ρnj ), otherwise;
(2.6.4)

with ∆tj+ 1
2
=

1− dnj
λ(ρnL,ρ

n
R)

∆x,

• if λ(ρnL,ρ
n
R)≤ 0,

∆tFn
j− 1

2

=

{
min(∆tj− 1

2
,∆t)f(ρnL)+max(∆t−∆tj− 1

2
,0)f(ρnR), if 0≤ dnj ≤ 1,

∆tf(ρnj ), otherwise;
(2.6.5)

with ∆tj− 1
2
=

dnj
−λ(ρnL,ρ

n
R)

∆x,

where λ(ρnL,ρ
n
R) is the speed of the shock given by the Rankine-Hugoniot condition (1.1.8).

With this additional reconstruction we are able also to handle correctly shocks crossing
and shocks colliding with non-classical waves.

The ODE is treated as explained in the section 2.5.2. The algorithm follows the steps
described in Algorithm 2

2.7 Numerical results

We show some numerical tests obtained with the two method described in Sections 2.5
and 2.6. For illustration, we choose a concave fundamental diagram with the following
flux function:

f(ρ) = ρ(1− ρ),

with ρcr = 0.5 the density at which the unique maximum of the flux function is attained
such that f(ρcr) = fmax. Moreover, we introduce for the tracking method F̃ which is
given by

F̃ (U,V ) =

{
F (U,V ) if f(RS(U,V )(Vb))< Fα+VbRS(U,V )(Vb),
Fα otherwise.

(2.7.1)
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2.7. Numerical results

Algorithm 2 Algorithm for the conservative scheme and the bus tracking

Input data: Initial and boundary condition for the PDE and the ODE, m index cell
of the bus position yn.
Compute the densities at time tn+1 from the density values at time tn using the Go-
dunov flux F.
if ρL < ρR and f(ρnm)≤ Fα+Vbρ

n
m, then

Compute x̄j , the index j and dnj
if 0≤ dnj ≤ 1 then

if λ(ρnL,ρ
n
R)≥ 0 then

Compute Fn
j+ 1

2

else if λ(ρnL,ρ
n
R)≤ 0 then

Compute Fn
j− 1

2

end if
end if

else if f(unm)> Fα+Vbu
n
m, then

if f(RS(unm−1,u
n
m+1)(Vb))> Fα+VbRS(unm−1,u

n
m+1)(Vb) then

Compute dnm
if 0≤ dnm ≤ 1 then
∆tm+ 1

2
and Fm with unm,l = ρ̂α and unm,r = ρ̌α

end if
end if

end if
Compute the densities averages at time tn+1 using formula (2.5.1).
Compute the bus position
if f(RS(unm−1,u

n
m+1)(Vb))> Fα+VbRS(unm−1,u

n
m+1)(Vb) then

yn+1 = Vb∆tn+ yn

else
yn computed with the tracking algorithm in [33]

end if
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2.7. Numerical results

In this section we present some numerical tests performed with the schemes previously
described. Here we deal with a road of length 1 parameterized by the interval [0,1]. In
all the simulations we fix Vb = 0.3, α= 0.6.
Case I: We consider the following initial data

ρL(0,x) = 0.4, ρR(0,x) = 0.5, yo = 0.5. (2.7.2)

The solution is given by two classical shocks separated by a non-classical discontinuity,
as illustrated in Figure 2.7.1 and 2.7.2.
Case II: We consider the following initial data

ρL(0,x) = 0.8, ρR(0,x) = 0.5, yo = 0.5. (2.7.3)

The values of the initial conditions create a rarefaction wave followed by a non-classical
and a classical shocks on the density, as illustrated in Figure 2.7.3 and 2.7.4.
Case III: We consider the following initial data

ρL(0,x) = 0.8, ρR(0,x) = 0.4, yo = 0.4. (2.7.4)

In this case, the bus initial position is not aligned with the discontinuity. We can see
that the values of the initial conditions create a rarefaction wave followed by a non-
classical and a classical shocks on the density that are created when the bus approaches
the rarefaction and creates a moving bottleneck, as illustrated in Figure 2.7.5 and 2.7.6.
Case IV: We consider the following initial data

ρL(0,x) = ρ̂α, ρm(0,x) = ρ̌α, ρL(0,x) = 0.95, yo = 0.25. (2.7.5)

The solution is given by a non-classical shock and a classical one that collide. After the
collision an third shock is created, as illustrated in Figure 2.7.7 and 2.7.8.

For cases I and II we also show the convergence curves for the reconstruction method
in Figure 2.7.9. It represents the log-log L1 error between the numerical solution and
the exact one versus mesh size. The numerical order of convergence, computed with
ln(||ρexact− ρappr||L1)

ln(∆x)
, can be found in Table 2.7.1.

∆x Order of convergence for Case I Order of convergence for Case II
0.1 1.1762 0.8212

0.05 0.9928 0.8794

0.025 1.1360 0.9494

0.0125 1.5980 1.4522

0.00625 0.7769 1.0049

0.003125 0.8473 1.0103

0.0015625 0.8871 1.1898

Table 2.7.1: Order of convergence for the reconstruction scheme, corresponding to initial
data (2.7.2) and (2.7.3).

65



2.7. Numerical results

Figure 2.7.1: Evolution of the density at different times corresponding to initial data
(2.7.2) and a mesh grid of 500 points.

Figure 2.7.2: Density and bus trajectory in a x− t plane corresponding to initial data
(2.7.2) and a mesh grid of 500 points.
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2.7. Numerical results

Figure 2.7.3: Evolution of the density at different times corresponding to initial data
(2.7.3) and a mesh grid of 500 points.

Figure 2.7.4: Density and bus trajectory in a x− t plane corresponding to initial data
(2.7.3) and a mesh grid of 500 points.
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2.7. Numerical results

Figure 2.7.5: Evolution of the density at different times corresponding to initial data
(2.7.4) and a mesh grid of 500 points.

Figure 2.7.6: Density and bus trajectory in a x− t plane corresponding to initial data
(2.7.4) and a mesh grid of 500 points.
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2.7. Numerical results

Figure 2.7.7: Evolution of the density at different times corresponding to initial data
(2.7.5) and a mesh grid of 500 points.

Figure 2.7.8: Density and bus trajectory in a x− t plane corresponding to initial data
(2.7.5) and a mesh grid of 500 points.
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2.7. Numerical results

(a) Classical and non-classical shock - Case I (b) Rarefaction and non-classical shock - Case II

Figure 2.7.9: L1 convergence.

Both methods show effective results for the problem considered. We were able to ob-
tain good results for the two approaches for several cases with simple Riemann problems
and with more complex initial data, involving shocks crossings and bus trajectory not
aligned with the density discontinuity. The method with reconstruction is easier to im-
plement compared to the front/capturing method due to the moving mesh but it requires
the additional reconstruction of classical shocks for initial data neighboring the values
ρ̂α, ρ̌α. Moreover, the Lagrangian algorithm uses more iterations to achieve the same
results because of the CFL-condition that in this case requires smaller time intervals to
counterbalance the presence of smaller cells.
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Part II

Modeling of junctions using a

PDE-ODE approach
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Chapter 3

An application to ramp-metering
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3.1. Introduction

3.1 Introduction

In this chapter, we focus on a junction model designed for a ramp metering problem.
Ramp metering models have been introduced in the engineering community in a discrete
setting, see [116, 117] for details. Here, we apply a continuous approach. We consider
the scalar Lighthill-Whitham-Richards model on a network composed of a single junction
connecting a mainline, an onramp and an offramp. The mainline evolution is described
by a scalar conservation law, while the onramp dynamics is modeled by a buffer of infinite
capacity, which is defined by an ordinary differential equation (ODE) depending on the
difference between the incoming and outgoing fluxes at the ramp.

In the following sections, we prove the existence and uniqueness of solutions of the
Riemann problem at the junction. The results are obtained by solving a Linear Pro-
gramming (LP) optimization problem. Unlike [67], where the flux through the junction
is maximized, our LP -optimization consists in maximizing the flux on the outgoing main-
line, see Remark 8 below. The offramp is treated as a sink, and a priority parameter is
introduced to ensure uniqueness of the solution. As a modeling choice, the priority is
satisfied in an approximate way, i.e., the priority will not always be respected, in benefit
of flux maximization.

We present numerical approximations of possibly discontinuous solutions obtained
using this model. In particular, we suitably modify the Godunov scheme to include the
boundary conditions at the junction, as in [32, 48], and the ODE describing the buffer.
This allows one to take into account the possible creation of an additional shock when
the buffer empties. The scheme provides accurate numerical approximations, as shown
by the numerical tests provided here. Moreover, we chose an adjoint calculus approach
to solve optimal control problems.

This chapter is organized as follows. Section 3.2 contains some preliminary notations
and definitions, while Section 3.3 describes in details the solution of the Riemann problem
at the junction. In Section 3.4 we introduce the numerical scheme with the particular
boundary conditions used to compute approximate solutions to the problem. In Section
3.5 we present some numerical tests which show the effectiveness of our approximation.
Finally, in Section 3.6 an optimal control problem is introduced and solved with the
adjoint method.

The results obtained in this chapter are due to a collaboration with Prof. A. M.
Bayen, J. Reilly, S. Samaranayake and W. Krichene from UC Berkeley under the Inria
associated team ORESTE (Optimal REroute Strategies for Traffic managEment) and
can be found in [58, 125].

3.2 Fundamental definitions and notations

We consider a junction with one mainline I modeled by the real line ]−∞,+∞[, one on-
ramp R1 and one offramp R2 at x= 0, as illustrated in Figure 3.2.1. From a macroscopic
point of view, this means that on each mainline segment I1 =]−∞,0[ and I2 =]0,+∞[,
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3.2. Fundamental definitions and notations

J
I1 I2

R1 R2

Figure 3.2.1: Junction modeled.

we consider the mass conservation equation:

∂tρ+ ∂xf(ρ) = 0, (t,x) ∈ R
+× Ii, (3.2.1)

where ρ = ρ(t,x) ∈ [0,ρmax] is the mean traffic density, ρmax is the maximal density
allowed on the road and the flux function f : [0,ρmax] → R

+ is given by the following
flux-density relation

f(ρ) = ρv(ρ),

where v(ρ) is a smooth decreasing function denoting the mean traffic speed.
Throughout the chapter, we assume for simplicity that:

(A1) ρmax = 1;

(A2) f(0) = f(1) = 0;

(A3) f is a strictly concave function.

Assumptions (A2) and (A3) ensure existence and uniqueness of a point of maximum
of the flux function ρcr ∈]0,1[. A typical example of flux function that satisfies these
assumptions is given in Figure 3.2.2.

ρρcr ρmax

fmax

f(ρ)

0

Figure 3.2.2: Flux function of equation (3.2.1).

On the onramp R1 we consider the presence of a buffer modeled by the following ODE:

dl(t)

dt
= Fin(t)− γr1(t), t ∈ R

+, (3.2.2)
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3.2. Fundamental definitions and notations

where l(t) ∈ [0,+∞[ is the length of the queue, Fin(t) is the flux that enters the onramp
and γr1(t) is the flux that exits from the onramp.
This particular choice is taken to avoid backward waves on the onramp boundary, which
happens in the case of horizontal queues that consider vehicles arranged over the length of
the roadway. In particular, at the left boundary of the onramp, backward moving shock
waves can result in lost information on the flux that actually enters the buffer. The
presence of the buffer, considered as a vertical queue in which vehicles are stacked one
upon the other, helps accounting for all the flow that enters the onramp. For simplicity,
we consider the offramp as a sink of infinite capacity that accepts all the flux entering
from the mainline I1, and we assume that no flux from the onramp is allowed in the
offramp.
The Cauchy problem to solve is then:





∂tρi+ ∂xf(ρi) = 0, (t,x) ∈ R
+× Ii, i= 1,2

dl(t)

dt
= Fin(t)− γr1(t), t ∈ R

+,

ρi(0,x) = ρi,0(x), on Ii, i= 1,2
l(0) = l0,

(3.2.3)

where ρi(0,x) represents the initial condition and l0 ∈ [0,+∞[ is the initial load of the
buffer. This will be coupled with an optimization problem at the junction which will give
the distribution of the traffic among the roads.

We define the demand d(Fin, l) of the onramp, the demand function δ(ρ1) on the
incoming mainline segment corresponding to the density ρ1, and the supply function
σ(ρ2) on the outgoing mainline segment corresponding to the density ρ2 as follows.

d(Fin, l) =

{
γmax
r1 if l(t)> 0,

min(Fin(t),γ
max
r1 ) if l(t) = 0,

(3.2.4)

δ(ρ1) =

{
f(ρ1) if 0≤ ρ1 < ρcr,
fmax if ρcr ≤ ρ1 ≤ 1,

(3.2.5)

σ(ρ2) =

{
fmax if 0≤ ρ2 ≤ ρcr,
f(ρ2) if ρcr < ρ2 ≤ 1,

(3.2.6)

where γmax
r1 is the maximal flow on the onramp and fmax = f(ρcr) is the maximal flux on

I1 and I2. Moreover, we introduce β ∈ [0,1] the split ratio of the offramp, and γr2(t) =
βf(ρ1(t,0−)) its flux.

Definition 3.2.1 A triple (ρ1,ρ2, l) ∈
2∏

i=1
C0

(
R
+;L1 ∩BV(R)

)
× W1,∞(R+;R+) is an

admissible solution to (3.2.3) if

1. ρ1, ρ2 are weak solutions on I1, I2, i.e., ρi : [0,+∞[×Ii → [0,1], i= 1,2, such that
∫

R+

∫

Ii

(
ρi∂tϕi+ f(ρi)∂xϕi

)
dxdt= 0, i= 1,2, (3.2.7)

for every ϕi ∈ C1
c (R

+× Ii).
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3.3. Riemann problem

2. ρi satisfies the Kružhkov entropy condition [99] on (R+×Ii), i.e., for every k ∈ [0,1]
and for all ϕi ∈ C1

c (R× Ii), t > 0,

∫
R+

∫
Ii
(|ρi− k|∂tϕi+sgn(ρi− k)(f(ρi)− f(k))∂xϕi)dxdt

+
∫
Ii
|ρi,0− k|ϕi(0,x)dx≥ 0; i= 1,2. (3.2.8)

3. f(ρ1(t,0−))+ γr1(t) = f(ρ2(t,0+))+ γr2(t).

4. The flux of the outgoing mainline f(ρ2(t,0+)) is maximum subject to

f(ρ2(t,0+)) = min
(
(1−β)δ(ρ1(t,0−))+ d(Fin(t), l(t)),σ(ρ2(t,0+))

)
(3.2.9)

and 3

5. l is a solution of (3.2.2) for a.e. t ∈ R
+.

Remark 6 A parameter P is introduced in the next section to ensure uniqueness of
the solution. P ∈ ]0,1[ is a right of way parameter that defines the amount of flux that
enters the outgoing road from the incoming mainline and from the onramp. In particular,
Pf(ρ2(t,0+)) is the flux allowed from the incoming mainline into the outgoing mainline,
and (1−P )f(ρ2(t,0+)) the flux from the onramp. As described in Section 1.2.2.

3.3 Riemann problem

In this section, we construct step by step the Riemann Solver at the junction. This will
be the building block to construct approximate Godunov scheme (or wave-front tracking)
solutions to general Cauchy problems. We fix constants ρ1,0,ρ2,0 ∈ [0,1], l0 ∈ [0,+∞[,
Fin ∈]0,+∞[ and a priority factor P ∈]0,1[. The Riemann problem at J is the Cauchy
problem (3.2.3) where the initial conditions are given by ρ0,i(x) ≡ ρ0,i in Ii for i = 1,2.
We define the Riemann Solver by means of a Riemann Solver RS l̄, which depends on
the instantaneous load of the buffer l̄. For each l̄ the Riemann Solver RS l̄ is constructed
in the following way.

1. Define Γ1 = f(ρ1(t,0−)), Γ2 = f(ρ2(t,0+)), Γr1 = γr1(t);

2. Consider the space (Γ1, Γr1) and the sets O1 = [0, δ(ρ1)], Or1 = [0,d(Fin, l̄)];

3. Trace the lines (1−β)Γ1+Γr1 = Γ2 and Γ1 =
P

1−P
Γr1;

4. Consider the region

Ω=
{
(Γ1,Γr1) ∈ O1×Or1 : (1−β)Γ1+Γr1 ∈ [0,Γ2]

}
. (3.3.1)

Different situations can occur depending on the value of Γ2:
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3.3. Riemann problem

• Demand limited case: Γ2=(1−β)δ(ρ1(t,0−))+ d(Fin, l̄).
We set Q to be the point (Γ̂1,Γ̂r1) such that Γ̂1 = δ(ρ1(t,0−)), Γ̂r1 = d(Fin, l̄) and
Γ̂2 = (1−β)δ(ρ1(t,0−))+ d(Fin, l̄), as illustrated in Figure 3.3.1(a).

• Supply limited case: Γ2 = σ(ρ2(t,0+)).
We set Q to be the point of intersection of (1 − β)Γ1 + Γr1 = Γ2 and Γ1 =
P

1−P
Γr1. If Q ∈ Ω, we set (Γ̂1,Γ̂r1)=Q and Γ̂2 = Γ2, see Figure 3.3.1(b); if

Q /∈ Ω, we set (Γ̂1,Γ̂r1)=S and Γ̂2 = Γ2, where S is the point of the segment
Ω∩ (Γ1,Γr1) : (1−β)Γ1+Γr1 = Γ2 closest to the line Γ1 =

P
1−P

Γr1, obtained solv-
ing the problem

minimize

∥∥∥∥∥

(
γr1(t)

f(ρ1(t,0−))

)
−

[(
γr1(t)

f(ρ1(t,0−))

)
·αP

]
αP

∥∥∥∥∥

2

2

(3.3.2)

subject to f(ρ2(t,0+)) = (1−β)f(ρ1(t,0−))+ γr1(t),

γr1(t)≤ d(Fin, l̄),

f(ρ1(t,0+))≤ δ(ρ1),

where αP is the normalized vector αP =
1√

P 2+(1−P )2

(
P

1−P

)
, see Figure

3.3.1(c).

As can be seen in Figure 3.3.1(c), it might not be possible to respect the priority given
by the parameter P if we want to maximize also the flux. Once we have determined Γ̂1

and Γ̂2, we can define ρ̂1, ρ̂2 in a unique way as follows. We recall that ρ = ρcr ∈ ]0,1[
is the unique point of maximum of the flux and we recall the function τ introduced in
Chapter 1 in Definition 1.2.4. Given

ρ1(0, ·)≡ ρ1,0 , ρ2(0, ·)≡ ρ2,0,

there exists a unique couple (ρ̂1, ρ̂2) ∈ [0,1]2 such that

ρ̂1 ∈

{
{ρ1,0}∪]τ(ρ1,0),1] if 0≤ ρ1,0 ≤ ρcr,
[ρcr,1] if ρcr ≤ ρ1,0 ≤ 1;

f(ρ̂1) = Γ̂1, (3.3.3)

and

ρ̂2 ∈

{
[0,ρcr] if 0≤ ρ2,0 ≤ ρcr,
{ρ2,0}∪ [0, τ(ρ2,0)[ if ρcr ≤ ρ2,0 ≤ 1;

f(ρ̂2) = Γ̂2. (3.3.4)

For the incoming road the solution is given by the wave (ρ1,0, ρ̂1), while for the outgoing
road the solution is given by the wave (ρ̂2,ρ2,0). In this setting, given any initial data
ρ1,0, ρ2,0, we can define RS l̄ : [0,1]

2 → [0,1]2 by

RS l̄(ρ1,0,ρ2,0) = (ρ̂1, ρ̂2). (3.3.5)

Now given the initial load of the buffer l0 = l̄, the function l(t) at time t > 0 is given
according to the following possibilities, determined by straight integration of (3.2.2):

78



3.3. Riemann problem

Γr1d(Fin, l̄)

Γ1

δ(ρ1)

Γ2 = (1−β)Γ1+Γr1

Q

(a) Demand limited case

Γr1d(Fin, l̄)

Γ1

δ(ρ1)

Γ2 = (1−β)Γ1+Γr1

Γ1 =
P

1−P
Γr1

Q

(b) Supply limited case: intersection inside Ω

Γr1d(Fin, l̄)

Γ1

δ(ρ1)

Γ2 = (1−β)Γ1+Γr1

Γ1 =
P

1−P
Γr1

Q

S

Γr1d(Fin, l̄)

Γ1

δ(ρ1)

Γ2 = (1−β)Γ1+Γr1

Γ1 =
P

1−P
Γr1

Q

S

(c) Supply limited case: intersection outside Ω

Figure 3.3.1: Solutions of the Riemann Solver at the junction.
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3.3. Riemann problem

t̄

t

x0

ρ1,0 ρ2,0

ρ̂1 ρ̂2

ρ̄2ρ̄1

Figure 3.3.2: Solution of the Riemann Problem.

• If Fin < Γ̂r1, then

l(t) =

{
l0+(Fin− Γ̂r1)t if 0< t < l0

Γ̂r1−Fin
,

0 if t > l0
Γ̂r1−Fin

.
(3.3.6)

• If Fin ≥ Γ̂r1, then

l(t) = l0+(Fin− Γ̂r1)t ∀t > 0. (3.3.7)

Remark 7 The presence of the buffer can create waves when the buffer empties at time
t̄ = −l0/(Fin − Γ̂r1) > 0 (with new values of the densities ρ̄1, ρ̄2) if Fin < Γ̂r1, see Figure
3.3.2.
No waves are created instead if Fin ≥ Γ̂r1, due to the infinity capacity of the buffer. A
similar behavior is found in [80, 91] in a PDE-ODE model for supply chains. However,
that model displays only waves with positive speeds, which suits supply chains behavior,
and deals with a network which is mainly constituted by 1× 1 junctions where the queue
is fed by the previous link and not by an external inflow. Moreover, when the network
is extended to include also m× n junctions, the condition on the positivity of the speed
ensures that boundary conditions are well defined without need for additional optimization
problems at the nodes.

The following theorem ensures consistency of RS l̄.

Theorem 10 Consider a junction J and fix a priority parameter P ∈ ]0,1[. For
every ρ1,0, ρ2,0 ∈ [0,1] and l0 ∈ [0,+∞[, there exists a unique admissible solution
(ρ1(t,x),ρ2(t,x), l(t)) compatible with the Riemann Solver proposed in Section 3.3 and
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3.3. Riemann problem

the solution is given by

ρ1(t,x) =





ρ1,0 if x < ŝ1t,

ρ̂1 if ŝ1t≤ x < sgn(t̄+) ·min
(
0, s̄1(t− t̄)

)
,

ρ̄1 if sgn(t̄+) ·min
(
0, s̄1(t− t̄)

)
≤ x < 0,

(3.3.8)

ρ2(t,x) =





ρ2,0 if x≥ ŝ2t,

ρ̂2 if sgn(t̄+) ·max
(
0, s̄2(t− t̄)

)
≤ x < ŝ2t,

ρ̄2 if 0≤ x < sgn(t̄+) ·max
(
0, s̄2(t− t̄)

)
,

(3.3.9)

where ŝ1, s̄1, ŝ2, s̄2 are given by the Rankine-Hugoniot condition and t̄=− l0
(Fin−Γ̂r1)

. More-

over, for a.e. t > 0, it holds

(ρ1(t,0−),ρ2(t,0+)) =RS l(t)(ρ1(t,0−),ρ2(t,0+)).

In (3.3.8), (3.3.9), sgn(t̄+) = 1 if t̄ > 0, otherwise sgn(t̄+) = 0. The proof of the theorem
is deferred after some preliminary results. The mapping τ(ρ) as defined in (1.2.4) and
the functions δ(ρ1), d(Fin, l) and σ(ρ2) yield the following properties.

Lemma 11 If (ρ̂1, ρ̂2) is a solution of the Riemann problem with initial data (ρ1,0,ρ2,0),
then the following holds:

δ(ρ1,0) ≤ δ(ρ̂1),

σ(ρ2,0) ≤ σ(ρ̂2),

d(Fin, l0) ≤ d(Fin, l).

Proof. For the incoming road it holds:

δ(ρ1,0) ≤ δ(ρ̂1) if 0≤ ρ1,0 ≤ ρcr,

δ(ρ1,0) = δ(ρ̂1) if ρcr ≤ ρ1,0 ≤ 1. (3.3.10)

In particular, if ρ1,0 ∈ [0,ρcr], either ρ̂1 ∈ ]τ(ρ1,0),1] or ρ̂1 = ρ1,0. In the first case,
δ(ρ1,0) = f(ρ1,0) ≤ fmax = δ(ρ̂1), see Figure 3.3.3(a), while in the second case δ(ρ1,0) =
f(ρ1,0) = f(ρ̂1) = δ(ρ̂1), see Figure 3.3.3(b). On the other hand, if ρ1,0 ∈ [ρcr,1] then
ρ̂1 ∈ [ρcr,1] and δ(ρ1,0) = fmax = δ(ρ̂1), see Figure 3.3.3(c).
Using the same approach for the outgoing road, we have:

σ(ρ2,0) = σ(ρ̂2) if 0≤ ρ2,0 ≤ ρcr,

σ(ρ2,0)≤ σ(ρ̂2) if ρcr ≤ ρ2,0 ≤ 1, (3.3.11)

In particular, if 0 ≤ ρ2,0 ≤ ρcr then 0 ≤ ρ̂2 ≤ ρcr as well, and σ(ρ2,0) = fmax = σ(ρ̂2),
see Figure 3.3.4(c). Otherwise ρcr ≤ ρ2,0 ≤ 1, and either ρ̂2 = ρ2,0 or ρ̂2 ∈ [0, τ(ρ2,0)[. In
the first case, σ(ρ2,0) = f(ρ2,0) = f(ρ̂2) = σ(ρ̂2), see Figure 3.3.4(b). In the second case,
σ(ρ2,0) = f(ρ2,0)≤ fmax = σ(ρ̂2), see Figure 3.3.4(a).
For the onramp, we consider two different cases, when the buffer is initially empty and

when it is not. In both cases different situations can occur.
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ρ

,f(ρ)δ(ρ)

Shock

ρ̂1ρ1,0

δ(ρ1,0)

δ(ρ̂1) = fmax(ρ)

(a) 0≤ ρ1,0 ≤ ρcr

ρ

,f(ρ)δ(ρ)

ρ1,0 = ρ̂1

δ(ρ1,0) = δ(ρ̂1)
fmax(ρ)

(b) ρ1,0 = ρ̂1

Rarefaction

Shock

ρ

,f(ρ)δ(ρ)

ρ1,0

fmax(ρ) = δ(ρ1,0) = δ(ρ̂1)

(c) ρcr ≤ ρ1,0 ≤ 1

Figure 3.3.3: Instantaneous evolution of the demand in the Riemann problem (incoming
road).

(L1) Initially empty buffer: l(0) = 0⇒ d(Fin, l(0)) = min(Fin,γ
max
r1 ).

(L1.1) Buffer increases: l(0+)> 0⇒ d(Fin, l(0+)) = γmax
r1 .

If d(Fin, l(0)) = Fin, then d(Fin, l(0))≤ d(Fin, l(0+)).
If d(Fin, l(0)) = γmax

r1 , then d(Fin, l(0)) = d(Fin, l(0+)).

(L1.2) Buffer remains empty: l(0+) = 0⇒ d(Fin, l(0+)) = min(Fin,γ
max
r1 ).

Hence, d(Fin, l(0)) = d(Fin, l(0+)).

(L2) Buffer initially not empty: l(0)> 0⇒ d(Fin, l(0)) = γmax
r1 .

(L2.1) Buffer grows (decreases) linearly: 0 < l(0) < l(0+) (0 < l(0+) < l(0)) ⇒
d(Fin, l(0+)) = γmax

r1 .
Hence, d(Fin, l(0)) = d(Fin, l(0+)).

This concludes the proof. �

Now we are ready to prove Theorem 10.
Proof. Existence and uniqueness follow by construction of the Riemann Solver detailed

at the beginning of this section.
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Shock

ρ

,f(ρ)σ(ρ)

σ(ρ2,0)

ρ̂2 ρ2,0

fmax(ρ) = σ(ρ̂2)

(a) ρcr ≤ ρ2,0 ≤ 1

ρ

,f(ρ)σ(ρ)

σ(ρ2,0) = σ(ρ̂2)

ρ2,0 = ρ̂2

fmax(ρ)

(b) ρ2,0 = ρ̂2

Rarefaction

Shock

ρ

,f(ρ)σ(ρ)

ρ2,0

fmax(ρ) = σ(ρ2,0) = σ(ρ̂2)

(c) 0≤ ρ2,0 ≤ ρcr

Figure 3.3.4: Instantaneous evolution of the supply in the Riemann problem (outgoing
road).

In the following we will show the proof of the consistency of RS l(t).
Fix t0 ≥ 0. If (ρ1(t0,0−),ρ2(t0,0+)) is a solution of the Riemann Solver, corresponding
to the same buffer value l(t0) we need to show that

RS l(t0)(ρ1(t0,0−),ρ2(t0,0+)) = (ρ1(t0,0−),ρ2(t0,0+)).

Without loss of generality, we fix t0 = 0 and we keep the same notation used in the proof
of Lemma 11.
We show that the optimal point in the feasible set Ω, as defined in (3.3.1), resulting from
the Riemann Solver does not change. From the results of Lemma 11 it is straightforward
to say that the set Ω either increases between times t= 0 and t > 0 or does not change,
see Figures 3.3.5 and 3.3.6. Now, we need to prove that the optimal point does not
change. We treat the supply constrained and the demand limited cases separately.

• Supply constrained junction problem, see Figure 3.3.5.
We assume that we are supply limited at t = 0. In this case, by construction of
the Riemann Solver, it holds ρ2,0 = ρ̂2 and hence σ(ρ2,0) = σ(ρ̂2). The priority line
is fixed, the point of intersection Q does not change.
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Γr1d(Fin, l0) d(Fin, l(0+))

Γ1

σ(ρ2,0) = σ(ρ̂2)

δ(ρ1,0)

δ(ρ̂1)

Q

(a) Q ∈ Ω

Γr1d(Fin, l0) d(Fin, l(0+))

Γ1

σ(ρ2,0) = σ(ρ̂2)

δ(ρ1,0) = δ(ρ̂1)
S

Q

(b) Q /∈ Ω, Γ̂1 = δ(ρ1,0)

Γr1d(Fin, l0) = d(Fin, l(0+))

δ(ρ̂1)

Γ1

σ(ρ2,0) = σ(ρ̂2)

δ(ρ1,0)

S

Q

(c) Q /∈ Ω, Γ̂r1(0) = d(Fin, l0)

Figure 3.3.5: Supply constrained junction problems.

– Optimal solution inside Ω, see Figure 3.3.5(a).
Since Q is determined by the intersection of the two lines and Ω can only
increase (δ(ρ1,0)≤ δ(ρ̂1),d(Fin, l(0))≤ d(Fin, l(0+))), we have

(ρ̂1, ρ̂2) =RS l(0)(ρ̂1, ρ̂2).

– Optimal solution on the border of Ω, Γ̂1 = δ(ρ1,0), see Figure 3.3.5(b).
We have to prove that the result of the minimization problem (3.3.2) (the
point S in the figure) does not change. In this case, by construction of the
Riemann Solver it holds ρ1,0 = ρ̂1. This yields δ(ρ1,0) = δ(ρ̂1) by (3.3.10).
Since, d(Fin, l(0)) can only increase according to the cases (L1) and (L2), it
holds

(ρ̂1, ρ̂2) =RS l(0)(ρ̂1, ρ̂2).

– Optimal solution on the border of Ω, Γ̂r1(0) = d(Fin, l(0)), see Figure 3.3.5(c).
For the onramp, the only case where the demand can increase is the case
(L1.1). In this particular setting, if d(Fin, l(0)) = Fin it holds γr1(0) = Fin and
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3.3. Riemann problem

Fin ≤ γmax
r1 . When the buffer increases we have γr1(0+) = d(Fin, l(0+)) = γmax

r1 ,
which implies γmax

r1 ≤ Fin. Hence, Fin = γmax
r1 and d(Fin, l(0)) = d(Fin, l(0+)).

The mainline demand can only increase. Hence,

(ρ̂1, ρ̂2) =RS l(0)(ρ̂1, ρ̂2).

• Demand constrained junction problem, see Figure 3.3.6.
Ω=Ω(ρ1,0, l(0)) = Ω(ρ̂1, l(0)). In fact, ρ1,0 = ρ̂1 and for the onramp it holds γmax

r1 =
Fin (as in the previous point), and this yields δ(ρ1,0) = δ(ρ̂1) and d(Fin, l(0)) =
d(Fin, l(0+)) by (3.3.10) and (L1) and (L2). The supply can only increase by
(3.3.11). Hence,

(ρ̂1, ρ̂2) =RS l(0)(ρ̂1, ρ̂2).

Γr1d(Fin, l(0) =d(Fin, l(0+))

Γ1

δ(ρ1,0) = δ(ρ̂1)

σ(ρ̂2)

σ(ρ2,0)
Q

Figure 3.3.6: Demand constrained junction problem.

Moreover, the limiting side of Ω does not change, i.e., it is not possible to pass from a
demand constrained junction problem to a supply constrained one and viceversa. This
follows for the fact that σ(ρ2,0) = σ(ρ̂2) when we have a supply constrained junction
problem, Figure 3.3.5 and d(Fin, l(0)) = d(Fin, l(0+)), δ(ρ1,0) = δ(ρ̂1) when we have a
demand constrained junction problem, Figure 3.3.6.
This concludes the proof. �

Remark 8 The proposed model is a variant of the junction model considered in [41] and
explained in Section 1.2.2 in the 2×2 case. The traffic distribution across the junction is
given by the distribution matrix A, subject to technical conditions that ensure uniqueness
of the solution. In our case, since we suppose that no flux from the onramp is directed

into the offramp, the distribution matrix would look as: A =

(
1−β 1
β 0

)
. Clearly, as

the offramp gets more congestioned, β decreases. If we solve the model proposed in [41]
using this distribution matrix, there can be cases in which the solution gives zero onramp
flux, see Figure 3.3.7(a). This is due to the choice of maximizing the flow throughout the
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3.4. Numerical results: modified Godunov

junction. In fact, in this way, the model tends to satisfy the mainline demand before the
onramp one. This does not reflect what happens in reality, since the demand allocation
depends on the number of lanes available for each inflow. Hence, we propose a model that
fixes this issue balancing the flux between the two incoming roads by the introduction of
a right-of-way parameter. In particular, the priority coefficient keeps the maximization
point far from the axis, avoiding blocking, see Figure 3.3.7(b).

Γr1d(Fin, l̄)

Γ1

δ(ρ1,0)

σ(ρ2,0) = (1−β)γ1+ γr1

Q

(a)

Γr1d(Fin, l̄)

Γ1

δ(ρ1,0)

σ(ρ2,0) = (1−β)γ1+ γr1

Γ1 =
P

1−P
γr1

Q

(b)

Figure 3.3.7: Comparison between Coclite-Garavello-Piccoli model [41] (left) and our
model (right).

Remark 9 This model extends the use of a priority parameter, as introduced in [40], to
the case of 2× 2 junctions. In [40], the authors use the priority parameter only for 2× 1
junctions treating 2× 2 junctions with a traffic distribution matrix which can result, in
our setting, in onramp blocking as explained in the previous remark.

3.4 Numerical results: modified Godunov

In order to find approximate solutions, we adapt the classical Godunov scheme to the
problem, with some adjustment due to the presence of the buffer.
We define a numerical grid in (0,T )×R using the following notation:

• ∆x is the fixed space grid size;

• ∆tn is the nonuniform time grid size given by the CFL condition

• (tn,xj) = (tn−1+∆tn, j∆x) for n ∈ N and j ∈ Z are the grid points.

For a function v defined on the grid we write vnj = v(tn,xj) for j, n varying on a subset
of Z and N respectively. We also use the notation unj for u(tn,xj) when u is a continuous
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3.4. Numerical results: modified Godunov

function on the (t,x) plane. In the following section, we will use the Godunov scheme,
introduced in Section 1.3, that under the CFL condition can be written as

vn+1
j = vnj −

∆tn

∆x
(g(vnj ,v

n
j+1)− g(vnj−1,v

n
j )), (3.4.1)

where numerical flux g is the numerical flux.

3.4.1 Boundary conditions and conditions at the junctions

Here we impose the boundary conditions for the incoming and the outgoing roads at
the endpoint not connected to the junction. We also assign boundary conditions at the
endpoints of the roads connected to the junction. In both cases we will use the classical
approach for road networks as introduced in [32] and shown in Section 1.3.

Boundary conditions

Each road is divided in J + 1 cells numbered from 0 to J . For the incoming road, in
practice, we proceed defining

vn+1
0 = vn0 −

∆tn

∆x
(g(vn0 ,v

n
1 )− f(vn0 )),

where f(vn0 ) is the value of the flux at the boundary.
An outgoing boundary can be treated analogously,

vn+1
J = vnJ −

∆tn

∆x
(f(vnJ )− g(vnJ−1,v

n
J )),

with f(vnJ ) the outgoing flux.
Since we are dealing with Riemann problems at the junction, the formulation of absorbing
boundary conditions is equivalent to the one with the ghost cells which is common in
literature.

Conditions at the Junction

For I1, that is connected at the junction at the right endpoint, we set

vn+1
J = vnJ −

∆tn

∆x
(Γ̂1− g(vnJ−1,v

n
J )),

while for the outgoing road, connected at the junction at the left endpoint, we have

vn+1
0 = vn0 −

∆tn

∆x
(g(vn0 ,v

n
1 )− Γ̂2),

where Γ̂1 and Γ̂2 are the maximized fluxes computed in Section 3.3.
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3.4. Numerical results: modified Godunov

3.4.2 ODE treatment

Let us consider now the buffer modeled by (3.2.2) on the onramp. At each time step
tn = tn−1+∆tn we compute the new value of the queue length according to two possible
cases, with Euler first order integration.

• If Fin(t
n)< Γ̂r1

ln+1 =

{
ln+(Fin(t

n)− Γ̂r1)∆tn for tn+1 < t̄,
0 otherwise .

• If Fin(t
n)≥ Γ̂r1

ln+1 = ln+(Fin(t
n)− Γ̂r1)∆tn.

Above, Γ̂r1 is the maximized flux described in Section 3.3, Fin(t
n) is the flux entering the

onramp at tn given by

Fin(t
n) =

1

∆tn

∫ tn+1

tn
Fin(t)dt,

and t̄ is the time at which the buffer empties. We can calculate the time at which the
buffer can empty for each time step ∆tn:

t̄=−
ln

Fin(tn)− Γ̂r1

+ tn. (3.4.2)

3.4.3 Modified Godunov scheme

Godunov scheme cannot be applied as it is when the buffer empties as noted in [48],
because the solution could potentially not be self-similar. If the buffer empties, at some
time step ∆tn, we might have multiple shocks at the junction. In this case we divide
the time step ∆tn = (tn, tn+1) in two sub-intervals ∆ta = (tn, t̄) and ∆tb = (t̄, tn+1), as in
Figure 3.4.1, with t̄ being defined in (3.4.2). Then, we solve in one time step two different
Riemann Problems at the junction. For ∆ta we solve the classical Godunov scheme. For
the ∆tb we solve a new Riemann Problem at the junction in which the value of the queue
length is l = 0. The junction conditions are

vn+1
J = vt̄J −

∆tb
∆x

(
Γ̂t̄
1− g(vnJ−1,v

t̄
J)
)
, (3.4.3)

vn+1
0 = vt̄0−

∆tb
∆x

(
g(vt̄0,v

n
1 )− Γ̂t̄

2

)
, (3.4.4)

where with the superscript t̄ we indicate the value computed at t= t̄ in the previous time
step ∆ta.
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∆t

xJ+ 1
2
= x

−
1
2

xJ x0

∆ta

tn

t̄

tn+1

∆tb

Figure 3.4.1: Junction in the case of emptying buffer.

Remark 10 We point out that in our case it is not necessary to introduce an explicit
correction on the ODE as done in [48] since at time t̄ we compute ex novo the Riemann
problem at the junction with a queue length equal to zero.

3.5 Numerical results

In this section we present some numerical tests performed with the scheme previously
described. We introduce the formal order of convergence µ of a numerical method

µ=
ln(TOTerr)

ln(∆x)
, (3.5.1)

where the L1-norm error is given by

TOTerr =
2∑

i=1

‖uie−uic‖L1 . (3.5.2)

where uie and uic are the exact solution and the computed solution in each road, respec-
tively. We show some numerical results obtained applying Godunov scheme to problem
(3.2.3). Tables 3.5.1 and 3.5.2 provide the values of the L1-error (3.5.2) and the order
of convergence (3.5.1). Here we deal with a mainline of length 8 parametrized by the
interval [−4,4] with the node placed at x= 0, such that I1 = [−4,0] and I2 = [0,4.] In all
the simulations we fix Vmax = 1, P = 0.7, β = 0.2, γmax = 0.5, l0 = 0.2 and Fin = 0.05.

• Case I: We consider the following initial data

ρ1(0,x) = 0.6, ρ2(0,x) = 0. (3.5.3)

The values of the initial conditions creates a shock on the incoming mainline and
a rarefaction on the outgoing one. After a time t = 5.3 we can see the rarefaction
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Figure 3.5.1: Evolution in time of the density in the incoming mainline (above, left), on
the outgoing mainline (above, right) and evolution of the flux in the onramp (bottom,
left) and in the offramp (bottom, right), corresponding to initial data (3.5.3) and a space
step discretization ∆x= 0.01.

caused by the buffer that empties in the incoming mainline I1, as illustrated in
Figure 3.5.1. Table 3.5.1 collects the values of the L1-error and of the order of
convergence at time T = 10.

• Case II: We consider the following initial data

ρ1(0,x) = 0.1, ρ2(0,x) = 0.6. (3.5.4)

In this case, the values of the initial conditions are chosen such that the wave
produced by the buffer that empties can be seen in the outgoing mainline. In
particular, in this case no waves are generated at initial time. The only wave
generated is a shock which appear once that the buffer empties at time t= 1.53, as
shown in Figure 3.5.2. Table 3.5.2 reports the L1-error and the order of convergence.
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∆x L1-error µ

0.02 3.69 · 10−2 0.8432

0.01 1.49 · 10−2 0.9133

0.005 7.21 · 10−3 0.9322

0.002 1.10 · 10−3 1.0962

0.001 2.23 · 10−4 1.2170

Table 3.5.1: Errors and order of convergence for the Godunov scheme at time T = 10,
corresponding to initial data (3.5.3).

∆x L1-error µ

0.02 1.70 · 10−2 1.0464

0.01 1.67 · 10−2 0.8890

0.005 1.44 · 10−2 0.8066

0.002 9.39 · 10−3 0.9878

0.001 3.57 · 10−4 1.2474

Table 3.5.2: Errors and order of convergence for the Godunov scheme at time T = 3,
corresponding to initial data (3.5.4).

3.6 Discrete adjoint method for optimization

In this section we show how the model introduced in Section 3.2 can be used in control
systems and how to apply it to a ramp metering problem. We give just an idea in a
simplified setting without claiming any convergence of the results of this section to the
solutions in Section 3.3. In the literature, there are several approaches for the adjoint
method for PDEs: continuous adjoint method, discrete adjoint method and automatic
differentiation. The first method applies the adjoint directly on the continuous PDE
[83, 96, 113, 126], while in the second case the PDE is first discretized and then the
adjoint is computed [74, 80, 98]. The third approach uses automatic differentiation to
automatically generate an adjoint solver from the numerical representation of the systems
of PDEs [71, 114]. For this section we choose a discrete adjoint method. The use of
the adjoint method might introduce numerical error at discontinuities if the numerical
scheme is not well chosen [73]. There exist results on convergence for Lax-Friedichs type
schemes [72] and relaxation methods [9]. In our model though, the presence of junction
conditions led us to use of a modified Godunov scheme. Moreover, since analytical results
on existence and stability of the solutions for our model are still missing, it is not possible
to provide a formal proof of the convergence of the results obtained by the discretized
model with the adjoint method to the continuous one.

In this section, we consider a triangular flux function, see Figure 3.6.1 and the density
on the onramp is considered to be always in free-flow condition to replicate the behavior
of the ODE (3.2.2). In this way we still keep the strong boundary condition and the
calculation is simpler. Table 3.6.1 sets the notations for this section.
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Figure 3.5.2: Evolution in time of the density in the incoming mainline (above, left), on
the outgoing mainline (above, right) and evolution of the flux in the onramp (bottom,
left) and in the offramp (bottom, right), corresponding to initial data (3.5.4) and a space
step discretization ∆x= 0.01.

We consider a network with J links at a discrete time t= n∆t for n= 1, ...,T − 1. Each
single junction i for i= 1, ...,J looks like the one in Figure 3.6.2. We take the discretized
version of system (3.2.3), given by the Godunov discretization to obtain

ρn+1
·,i = ρn·,i+

∆t

∆x
(g·(ρ

n
·,i,ρ

n
·,i+1,u

n
i )− g·(ρ

n
·,i,ρ

n
·,i−1,u

n
i−1)), i= 1, ...,J n= 1, ...,T − 1

(3.6.1)

ρn+1
onramp,i = ρnonramp,i+

∆t

Li
(fn

onramp− dni ), i= 1, ...,J n= 1, ...,T − 1 (3.6.2)

dni = uni min(fmax
onramp,

Li

∆t
ρnonramp,i), (3.6.3)

δninc,i =min(fmax,vρninc,i), (3.6.4)

σn
out,i =min(fmax,w(ρmax− ρnout,i)). (3.6.5)

where uni ∈ [0,1] is our control variable and gives the ramp-metering rate and the sub-
scripts "inc" and "out" describe the incoming and outgoing link of the junction with

92



3.6. Discrete adjoint method for optimization

ρρcr ρmax

fmax

f(ρ)

v w

Figure 3.6.1: Triangular fundamental diagram considered in this section.

Notation
v = (1− ρ) Free flow speed

w =
fmax

ρmax− ρcr
Congestion wave speed

ρ State variable
u Control variable
i index for junctions
n time index

ρninc,i Density in the incoming link for junction i at time tn

ρnonramp,i Density in the onramp for junction i at time tn

ρnout,i Density in the outgoing link for junction i at time tn

gninc,i Discrete flux in the incoming link for junction i at time tn

gnout,i Discrete flux in the outgoing link for junction i at time tn

gnonramp,i Discrete flux in the onramp for junction i at time tn

Table 3.6.1: Notations for Section 3.6.
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Figure 3.6.2: A junction considered in the network.

ρninc,i+1 = ρnout,i for every i = 1, ...,J − 1. The state variable is given by ρn·,i ∈ [0,1] for
i= 1, ...,J and n= 0, ...,T −1. The state vector is identified with ρ∈R

JT and the control
vector with u ∈ R

MT .
For each state variable ρn·,i we consider the state equation hn·,i : R

JT ×R
MT → R:

hn+1
·,i = ρn+1

·,i − ρn·,i+
∆t

∆x

(
ginc(ρ

n
·,i,ρ

n
·,i+1,u

n
i )− gout(ρ

n
·,i,ρ

n
·,i−1,u

n
i−1)

)
= 0 (3.6.6)

where
gout =min(βn

out,iδ
n
inc,i+ dni ,σ

n
out,i)

ginc =





δninc,i if
Pigout

βn
out,i(1+Pi)

≥ δninc,i

gout− dni
βn
out,i

if
gout
1+Pi

≥ dni

Pigout
βn
out,i(1+Pi)

otherwise

(3.6.7)

for the incoming and outgoing link. And,

hn+1
onramp,i = ρn+1

onramp,i− ρnonramp,i+
∆t

Li

(
fn
onramp− dni

)
= 0 (3.6.8)

with

fn
onramp = gout−βn

out,iginc, (3.6.9)

for the onramp.
In addition to the state equations H(ρ,u) = 0 we introduce as well a cost function
C(ρ,u) : RJT ×R

MT → R :

C(u,ρ) = ∆t

T∑

n=1

J∑

i=1

ρn·,i. (3.6.10)

The objective function represents the total travel time which describes the time spent
by the drivers on the road network. We want to minimize the cost functional C over the
set of control parameters u, using as constraints the state equations H(ρ,u) = 0. The
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optimization problem to solve is the following:

minimize
u∈[0,1]JT

C(ρ,u)

subject to H(ρ,u) = 0.

Remark 11 We note that both the cost functional and the state equations may be non-
convex for this problem.

To solve this optimization problem we would like to use gradient information in order
to find some control variable u∗ that gives local optimal cost C∗(ρ(u∗),u∗). However,
gradients methods do not guarantee the global optimality of u∗. The gradient of the cost
functional is given by:

∇uC =
∂C

∂ρ
∇uρ+

∂C

∂u
. (3.6.11)

Remark 12 To be able to compute fully (3.6.11) all the required partial and full deriva-
tives must be well-defined. This is not necessarily true. For this to hold, one should
require that C and H belong to C1.

To compute ∇uρ we recall that ∇uH(ρ,u) = 0 on the trajectories of the systems and
thus

∂H

∂ρ
∇uρ+

∂ρ

∂u
= 0. (3.6.12)

Now, instead of evaluating ∇uρ, the adjoint method directly solves the following system:

∂HT

∂ρ
λ=

∂C

∂ρ
. (3.6.13)

This system is called the adjoint system and the unknown λ ∈ R
JT is called the adjoint

variable. The expression of the gradient becomes then:

∇uC = λTHu+Cu. (3.6.14)

Computing then the partial derivatives in our systems of equations in 3.6.1 we get for
the links:

∂hn·,i

∂ρk
·,j

=
∂ρn+1

·,i

∂ρk
·,j

−
∂ρn·,i

∂ρk
·,j

+
∆t

∆x

( ∂

∂ρk
·,j

ginc(ρ
n
·,i,ρ

n
·,i+1,u

n
i )−

∂

∂ρk
·,j

gout(ρ
n
·,i,ρ

n
·,i−1,u

n
i−1)

)
,

(3.6.15)
for the state variable and the following result for the control variable:

∂hn·,i

∂ukj
=

∆t

∆x

( ∂

∂ukj
ginc(ρ

n
·,i,ρ

n
·,i+1,u

n
i )−

∂

∂ukj
gout(ρ

n
·,i,ρ

n
·,i−1,u

n
i−1)

)
. (3.6.16)
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We compute the partial differential equation also for the cost functional (3.6.10), for
the equations (3.6.3)-(3.6.5) and for the fluxes (3.6.7) and (3.6.9). For simplicity in the
following with s we indicate either the control variable or the state one:

∂C(ρ,u)

∂s
=

{
∆tLi if s= ρn·,i,

0 otherwise,
(3.6.17)

∂dni
∂s

=





uni if s= ρnonramp,i and ρnonramp,i ≤ fmax
onramp,

min(fmax
onramp,ρ

n
onramp,i) if s= uni ,

0 otherwise,

(3.6.18a)

∂δninc,i
∂s

=

{
v if s= ρninc,i and vρninc,i ≤ fmax,

0 otherwise,
(3.6.18b)

∂σn
out,i

∂s
=

{
w if s= ρnout,i and w(ρmax− ρnout,i ≤ fmax,

0 otherwise,
(3.6.18c)

∂gout
∂s

=





βn
out,i

∂δninc,i
∂s

+
∂dni
∂s

if βn
out,iδ

n
inc,i+ dni ≤ σn

out,i,

∂σn
out,i

∂s
otherwise,

(3.6.18d)

∂ginc
∂s

=





∂δninc,i
∂s

if
Pigout
(1−Pi)

≥
δninc,i
βn
out,i

,

1

βn
out,i

(∂gout
∂s

−
∂dni
∂s

)
if

gout
1+Pi

≥ dni ,

Pi

βn
out,i(1+Pi)

∂gout
∂s

otherwise,

(3.6.18e)

∂fn
onramp

∂s
=
∂gout
∂s

−βn
out,i

∂ginc
∂s

. (3.6.18f)

With these expressions we can then compute fully (3.6.16) and (3.6.15), and hence apply
the adjoint method to this problem.

Moreover, in [125] this approach was implemented in a coordinated ramp metering
algorithm which uses the previous adjoint method. A field test has been conducted on
the I-15 South freeway in California, showing that our approach produces significant
improvements compared to existing tools ( ALINEA, [120]). The algorithm is now being
fully implemented as a component of the traffic simulator module within the Connected
Corridor system [12], a project leaded by UC Berkeley and PATH.
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Chapter 4

An application to roundabouts
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4.1. Introduction

4.1 Introduction

In this chapter, we focus on optimization problems for roundabouts. We consider the
model introduced in Chapter 3 and apply it to roundabouts. Roundabouts can be seen
as particular road networks and they can be modeled as a concatenation of junctions.
Here, we focus on roundabouts with three entrances and three exits that can be modeled
as a concatenation of 2x2 junctions with two incoming and two outgoing roads, but
the approach can be generalized to more general networks. In particular, each junction
has one incoming mainline, one outgoing mainline and a third link with incoming and
outgoing fluxes. The third road is modeled with a vertical buffer of infinite capacity for
the entering flux and with an infinite sink for the exiting one. The mainline evolution
is described by a scalar hyperbolic conservation law, whereas the buffer dynamics is
described by an ordinary differential equation (ODE) which depends on the difference
between the incoming and outgoing fluxes on the link. The outgoing secondary road is
modeled as a sink. At each junction, the Riemann problem is uniquely solved using a
right of way parameter, and solutions are constructed exactly via wave-front tracking
method.

Our aim is to optimize some cost functionals, such as the Total Travel Time (TTT)
and the Total Waiting Time (TWT) through a suitable choice of the right of way pa-
rameter for incoming roads. The TTT and the TWT give an estimate of the time spent
by drivers in the network sections or in the queues at the buffers, respectively. The
cost functionals are computed analytically on a single 2x2 junction. Then, the traffic
behavior for the whole roundabout is studied numerically using local optima. Numerical
simulations show the effectiveness of the optimization strategy, compared to the case of
fixed constant right of way parameters.

The chapter is structured as follows. In Section 4.2 we describe the junction model
and the roundabout model. In section 4.3 we give the solution of the Riemann Prob-
lem. In Section 4.4 we describe the cost functionals and compute local optimal priority
parameters. Section 4.5 and 4.6 are devoted to the description of the numerical scheme
and to numerical tests.

The results contained in this chapter are obtained in collaboration with Prof. S. Kassa
and L.L. Obsu from the University of Addis Ababa (Ethiopia) and they are included in
[119, 118].

4.2 Mathematical model

We consider a roundabout joining three roads as illustrated in Figure 4.2.1, the general-
ization of the study to an arbitrary number of roads being straightforward. A roundabout
can be seen as a periodic sequence of junctions and it can be represented by an oriented
graph, in which roads are described by arcs and junctions by vertexes. Each link forming
the roundabout is modeled by an interval Ii = [ai, bi] ⊂ R, i= 1,2,3, ai < bi. In particu-
lar, in our case, each junction can be modeled as a 2× 2 junction, see Figure 4.2.2. To
recover the behavior of the roundabout, periodic boundary conditions are introduced on
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4.2. Mathematical model

J1

J2J3

Figure 4.2.1: Sketch of the roundabout considered.

the mainline such that bi = ai+1, i= 1,2,3 and b3 = a1. At each junction we will consider
the model introduced in Chapter 3, suitably modified to adapt it to the roundabout
structure. The evolution of the traffic flow in the mainline segments is described by a
scalar hyperbolic conservation law:

∂tρi+ ∂xf(ρi) = 0, (t,x) ∈ R
+× Ii i= 1,2,3, (4.2.1)

where ρi = ρi(t,x)∈ [0,ρmax] is the mean traffic density, ρmax the maximal density allowed
on the road and the flux function f : [0,ρmax] → R

+ is given by following flux-density
relation:

f(ρ) =





ρvf if 0≤ ρ≤ ρcr,
fmax

ρmax− ρcr
(ρmax− ρ) if ρcr ≤ ρ≤ ρmax,

(4.2.2)

with vf the maximal speed of the traffic, ρcr =
fmax

vf
the critical density and fmax = f(ρcr)

the maximal flux value, see Figure 4.2.3.

fin

Fout Fin

foutJi

(a) Part of the roundabout.

J
I1 I2

R2 R1

(b) Corresponded junction.

Figure 4.2.2: Detail of the network modeled.

Throughout the chapter, for simplicity, we will assume ρmax = 1 and vf = 1. Figure
4.2.3 gives an example of flux function satisfying the previous hypotheses.
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4.2. Mathematical model

ρρcr ρmax

fmax

f(ρ)

vf
fmax

ρmax−ρcr

Figure 4.2.3: Flux function considered.

The incoming lanes of the secondary roads entering the junctions are modeled with
a buffer of infinite size and capacity.

dl(t)

dt
= Fin(t)− γr1(t), t ∈ R

+, (4.2.3)

The Cauchy problem to solve is then:




∂tρi+ ∂xf(ρi) = 0, (t,x) ∈ R
+× Ii,

dli(t)

dt
= F i

in(t)− γr1,i(t), t ∈ R
+,

ρi(0,x) = ρi,0(x), on Ii,
li(0) = li,0

(4.2.4)

for i= 1,2,3, where ρi,0(x) are the initial traffic densities and li,0 the initial lengths of the
buffers, li(t) ∈ [0,+∞[ is the queue length, F i

in(t) the flux entering the lane and γr1,i(t)
the flux exiting the lane into the roundabout.
This will be coupled with an optimization problem at the junctions that gives the distri-
bution of traffic among the roads.

We define the demand d(F i
in, li) of the incoming lane for the secondary roads, the

demand function δ(ρi) on the incoming mainline segment, and the supply function σ(ρi)
on the outgoing mainline segment at each junction as done in Section 3.2. We can define
for the roundabout a weak solution

Definition 4.2.1 Consider a roundabout with three roads Ii = [ai, bi] ⊂ R , ai < bi, for
i = 1,2,3, with b3 = a1, three entrances R1,i i = 1,2,3, and three exits R2,i i = 1,2,3. A

collection of functions (ρi, li)i=1,2,3 ∈
3∏

i=1
C0

(
R
+;L1 ∩BV(Ii)

)
×

3∏
i=1

W1,∞(R+;R+) is an

admissible solution to (4.2.4) if

1. ρi is a weak solutions on Ii, i.e., ρi : [0,+∞[×Ii → [0,1], such that
∫

R+

∫

Ii

(
ρi∂tϕi+ f(ρi)∂xϕi

)
dxdt= 0, (4.2.5)
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4.3. Riemann problem at the junction

for every ϕi ∈ C1
c (R

+× Ii), i= 1,2,3.

2. ρi satisfies the Kružhkov entropy condition [99] on (R× Ii), i.e.,

∫

R+

∫

Ii

(|ρi− k|∂tϕi+sgn(ρi− k)(f(ρi)− f(k))∂xϕi)dxdt

+

∫

Ii

|ρi,0− k|ϕi(0,x)dx≥ 0

(4.2.6)

for every k ∈ [0,1] and for all ϕi ∈ C1
c (R× Ii), i= 1,2,3.

3. At each junction Ji, f(ρi(t,0−)) + γr1,i(t) = f(ρi+1(t,0+)) + γr2,i(t) for i = 1,2,3
(where we set ρ4 = ρ1).

4. At each junction Ji, the flux of the outgoing mainline f(ρi+1(t,0+)) is maximum
subject to 3 and

f(ρi+1(t,0+)) = min
(
(1−β)δ(ρi(t,0−))+ d(Fin(t), li(t)),σ(ρi+1(t,0+))

)
(4.2.7)

for i= 1,2,3, and ρ4 = ρ1.

5. li is a solution of (4.2.3) for almost every t ∈ R
+, i= 1,2,3.

4.3 Riemann problem at the junction

In this section we describe the construction of the Riemann Solver at a junction and
then we apply it to our particular case to recover the expressions of the cost functionals.
The Riemann problem at J is the Cauchy problem (4.2.4) where the initial conditions
are given by ρ0,i(x) ≡ ρ0,i on Ii for i = 1,2,3. In the following, we will focus only
on one junction J with two incoming roads and two outgoing ones. We fix constants
ρ1,0,ρ2,0 ∈ [0,1], l0 ∈ [0,+∞[, Fin ∈ ]0,+∞[ and a priority factor P ∈ ]0,1[. We define
the Riemann Solver at junction by means of a Riemann Solver RS l̄ : [0,1]

2 → [0,1]2,
which depends on the instantaneous load of the buffer l̄. For each l̄ the Riemann Solver
RS l̄(ρ1,0,ρ2,0) = (ρ̂1, ρ̂2) is constructed as done in Section 3.3. For the sake of clarity we
quickly recall the steps to follow.

1. Define Γ1 = f(ρ1(t,0−)), Γ2 = f(ρ2(t,0+)), Γr1 = γr1(t);

2. Consider the space (Γ1, Γr1) and the sets O1 = [0, δ(ρ1,0)], Or1 = [0,d(Fin, l̄)];

3. Trace the lines (1−β)Γ1+Γr1 = Γ2; and Γ1 =
P

(1−P )(1−β)Γr1;

4. Consider the region

Ω=
{
(Γ1,Γr1) ∈ O1×Or1 : (1−β)Γ1+Γr1 ∈ [0,Γ2]

}
. (4.3.1)
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4.4. Optimization on networks

Different situations can occur depending on the value of Γ2:

• Demand-limited case.

• Supply-limited case.

Since, on roundabouts exits precede entrances it is necessary that the Riemann Problem
for this type of networks has a different junction arrangement. Therefore, the flow coming
from the mainline and crossing the junction, interacting with the incoming flow, is (1−
β)Γ1. This leads to consider the priority line as Γ1 =

P
(1−P )(1−β)Γr1 adding a factor of

1
1−β

with respect to the other model. This takes into account the amount of people that
leave the roundabout before the entrance. All the proofs in Chapter 3 can be extended
and adapted to fit this case.

4.4 Optimization on networks

In this section we define the optimization problem, the cost functionals and derive their
expressions. We introduce the Total Travel Time (TTT ) on the road network and the
Total Waiting Time (TWT ) on the incoming lanes of the secondary roads, which are
defined as follows:

TTT (T, ~P ) =

3∑

i=1

∫ T

0

∫

Ii

ρ(t,x)dxdt+

3∑

i=1

∫ T

0
li(t)dt+T ·

3∑

i=1

∫

Ii

ρ(T,x)dx+T ·

3∑

i=1

li(T )

(4.4.1)

TWT (T, ~P ) =

3∑

i=1

∫ T

0
li(t)dt+T · li(T ) (4.4.2)

for T > 0 that we will take sufficiently large so that the solution is stabilized. Our aim
is to minimize (4.4.1), (4.4.2) with respect to the right of way parameter P. To this end,
we derive the explicit expressions of the cost functionals locally at junctions to study
their dependence on the right of way parameter P . We consider a single junction as in
Figure 4.2.2(b) with I1 = [−1,0] and I2 = [0,1]. We suppose that the network and the
buffer are empty at t = 0 and we assume that the following boundary data are given:
f in the inflow on the incoming mainline, fout the outflow on the outgoing mainline and
Fin the incoming flux of the secondary road. Moreover, to reduce the number of cases
to be studied, we assume Fin ≤ fmax = γmax

r1 and fout ≤ fmax. Now, we can solve the
corresponding initial-boundary value problem.
The first step is to compute the demand and supply functions of the roads. We have
δ(ρ1,0) = 0, d(Fin, l) = min(Fin,γ

max
r1 ) = Fin and σ(ρ2,0) = fmax. Then we can compute

Γ2:

Γ2 =min
(
(1−β)δ(ρ1,0)+ d(Fin, l),σ(ρ2,0)

)
= Fin.
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4.4. Optimization on networks

It is straightforward to see that the problem is demand limited, hence the optimal point
is the point at maximal demands. Thus it follows Γ̂1 = 0, Γ̂2 = Fin and Γ̂r1 = Fin, from
which we derive ρ̂1 = ρ1,0 = 0 and ρ̂2 = Fin < ρcr . Since we are demand limited we also
have l(t) = 0. The solution in the x−t plane looks as in Figure 4.4.1. The wave produced
by the junction problem interacts with the right boundary x=1 at time t1 =1. Moreover
at x = −1, the boundary condition enforces the creation of an additional wave at t = 0
with speed equal to 1. This gives a density ρ̂1 = f in < ρcr, which reaches the junction at
the same time t1 = 1, see Figure 4.4.1.

f in fout

Fin

ρ2,0ρ1,0

ρ̂2ρ̂1

t

−1 1 x

t1

Figure 4.4.1: Solution of the initial-boundary value problem for t ∈ [0, t1].

At t1 = 1 we solve a new Riemann problem at the junction with initial densities

ρ(1,x) =

{
ρ̂1 if x < 0,
ρ̂2 if x > 0.

We assume that the splitting ratio β ∈ (0,1) is the same for all roads and fixed. The
demand and supply functions on the respective roads are δ(ρ̂1) = f in, d(Fin, l0) =
min(Fin,γ

max
r1 ) = Fin, σ(ρ̂2) = fmax. Computing Γ2 from these values we obtain

Γ2 =min
(
(1−β)δ(ρ̂1)+ d(Fin, l),σ(ρ̂2)

)

Two cases can occur at this point according to the value of Γ2:

4.4.1 Γ2 = (1− β)δ(ρ̂1)+ d(Fin, l)

In this case the Riemann problem at t1 is demand limited. No wave is created in the
incoming link, and a wave with speed 1 emanates from the junction on the outgoing road
with a density ρ2 = (1− β)f in +Fin. The buffer remains empty. At this point we have
two different situations according to:

• Fin < fout,
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4.4. Optimization on networks

f in fout

Fin

ρ2,0ρ1,0

ρ̂2ρ̂1

ρ2 t2

ρ3

t
t3

−1 1 x

t1

Figure 4.4.2: Solution of the junction problem for t ∈ [0, t3].

• fout < Fin.

In the first case (Fin < fout) the wave from the junction interacts with the bound-
ary x = 1 at t2 = 2, generating a wave with negative speed and a density ρ3 =
fmax− (1− fmax)fout

fmax
∈ [ρcr,1] which reaches the junction at t3 =

2λ(ρ2,ρ3)− 1

λ(ρ2,ρ3)
as shown

in Figure 4.4.2.

Above λ(ρ2,ρ3) =
((1−β)f in+Fin− fout)fmax

(1−β)f infmax+Finfmax− fmax+(1− fmax)fout
is given by the

Rankine-Hugoniot jump condition. In the second case (fout < Fin) at time t1 the wave
that interacts with the boundary x = 1 produces a wave with negative speed and the
same density ρ3 as above. This wave intersect the wave that comes out from the junction
at time t1 generating an additional wave with negative speed. At the point of intersection
(to,xo) a new Riemann problem needs to be solved, which creates another wave which

reaches the junction at time t3 = to −
1

λ(ρ2,ρ3)
as shown in Figure 4.4.3. In both cases

at t3
fout ≤ (1−β)f in+Fin.

Clearly, at time t3 the junction problem is supply limited resulting in the following fluxes

Γ2 = fout, Γ1 =
P

1−β
fout and Γr1 = (1−P )fout. Moreover, let us introduce the following

values

• P1 =
fout−Fin

fout
,

• P2 =
(1−β)f in

fout
.

Observe that

P2−P1 =
(1−β)f in

fout
−

fout−Fin

fout
=

(1−β)f in+Fin− fout

fout
≥ 0, (4.4.3)
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f in fout

Fin

ρ2,0ρ1,0

ρ̂2ρ̂1

ρ2
ρ3

t

−1 1 x

t1

t3
O

Figure 4.4.3: Solution of the junction problem for t ∈ [0, t3].

which implies P1 ≤ P2, see Figure 4.4.4.

Γr1d(Fin, l)

Γ1

δ(ρ1)

Γ2 = (1−β)Γ1+Γr1

Γ1 =
P1

(1−P1)(1−β)Γr1

Γ1 =
P2

(1−P2)(1−β)Γr1

Figure 4.4.4: Relationship between P1 and P2.

The solutions of the Riemann problem at the junction are given by:

(1a) If max(0,P1)≤ P ≤min(P2,1), then

(
P

1−β
fout,(1−P )fout,fout

)
is the solution

of Riemann problem.

(2a) If 1≥ P >min(P2,1), then
(
f in,fout− (1−β)f in,fout

)
is the solution.

(3a) If 0≤ P <max(0,P1), then

(
fout−Fin

1−β
,Fin,f

out

)
is the solution.
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4.4. Optimization on networks

According to the different values of P, different cases can occur. For this reason we only
sketch the computation of the cost functionals.

Case max(0,P1)≤ P ≤min(P2,1).

We solve the Riemann problem at t3. The solution of the Riemann Problem is given by
(1a). From this it follows

ρ1 =
(1−β)fmax− (1− fmax)Pfout

(1−β)fmax
(4.4.4)

and the wave speed λ(ρ̂1,ρ1) is

λ(ρ̂1,ρ1) =

(
f in(1−β)−Pfout

)
fmax

(1−β)(f in− 1)fmax+(1− fmax)Pfout
(4.4.5)

The characteristic x= λ(ρ̂1,ρ1)(t− t3) crosses the boundary x=−1 at

t4 = t3−
1

λ(ρ̂1,ρ1)
(4.4.6)

On the outgoing road there is no new wave created since Γ̂2 = fout = f(ρ3) which can be
seen in Figure 4.4.5.

f in fout

Fin

ρ2,0ρ1,0

ρ̂2ρ̂1

ρ2
ρ3

ρ1

t

−1 1 x

t1

t3
O

t4

Figure 4.4.5: Solution for t ∈ [0, t4].

The buffer length is given by

l(t) = (Fin− (1−P )fout)(t− t3)> 0, for t > t3. (4.4.7)
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4.4. Optimization on networks

Case min(P2,1)< P ≤ 1.

In this case the solution of the Riemann Problem is given by (2a). On the incoming
main road there is no wave with negative speed exiting the junction. Similarly, on the
outgoing main road there is no wave since Γ̂2 = fout. The solution is shown in Figure
4.4.6. The buffer increases since l(t) = (Fin+(1−β)f in− fout)(t− t3)> 0.

f in fout

Fin

ρ2,0ρ1,0

ρ̂2ρ̂1

ρ̄2
ρ3

t

−1 1 x

t1

t3
O

Figure 4.4.6: Solution for t ∈ [0, t3] in the case min(P2,1)≤ P < 1.

Case 0≤ P <max(0,P1).

The solution of the Riemann problem is given by (3a). We get

ρ̌1 =
fmax(1−β+ fout−Fin)+Fin− fout

(1−β)fmax
. (4.4.8)

The wave with characteristic speed

λ(ρ̂1, ρ̌1) =
f in− Γ̂1

ρ̂1− ρ̌1
=

(
(1−β)f in+Fin− fout

)
fmax

(1−β)f infmax− fmax(1−β+ fout−Fin)+Fin− fout
(4.4.9)

emanating from the junction crosses the boundary x=−1 at time t= t4 expressed as:

t4 = t3−
1

λ(ρ̂1, ρ̌1)
(4.4.10)

Since
fout−Fin

1−β
< δ(ρ̂1) = f in, there is no wave produced by the interaction with the

boundary x=−1 at time t4. Also, on the outgoing mainline there is no new wave. The
complete solution at t4 is depicted in Figure 4.4.7.
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f in fout

Fin

ρ2,0ρ1,0

ρ̂2
ρ̂1

ρ2

ρ̌1

t2

ρ3

t

t3

−1 1 x

t1

t4

Figure 4.4.7: Complete solution for t ∈ [0, t4].

From the value of Γ̂r1 we can solve the ODE (4.2.3) and find l(t) = 0. This conclude
the analysis of this subsection.

4.4.2 Γ2 = σ(ρ̂2)

In this case we have
fmax ≤ (1−β)f in+Fin (4.4.11)

and hence, it is straightforward to compute the value of Γ2 = fmax, Γ1 =
P

1−β
fmax and

Γr1 = (1−P )fmax.
Moreover, let us introduce

• P1 =
fmax−Fin

fmax
,

• P2 =
(1−β)f in

fmax
.

Observe that also in this case it holds

P2−P1 =
(1−β)f in

fmax
−

fmax−Fin

fmax
=

(1−β)f in+Fin− fmax

fmax
≥ 0 (4.4.12)

because of (4.4.11), which implies P1 ≤ P2, see Figure 4.4.8. Then the solutions of the
Riemann problem at the junction are given by

(1b) If P1 ≤ P ≤ P2, then

(
P

1−β
fmax,(1−P )fmax,fmax

)
is the solution of Riemann

problem.

(2b) If P ≥ P2, then
(
f in,fmax− (1−β)f in,fmax

)
is the solution.

108



4.4. Optimization on networks

(3b) If P ≤ P1, then

(
fmax−Fin

1−β
,Fin,f

max

)
is the solution.

Γr1d(Fin, l)

Γ1

δ(ρ1)

Γ2 = (1−β)Γ1+Γr1

Γ1 =
P1

(1−P1)(1−β)Γr1

Γ1 =
P2

(1−P2)(1−β)Γr1

Figure 4.4.8: Relationship between P1 and P2.

According to the different values of P different cases can occur. We only sketch the
computation of the cost functionals.

Case P1 ≤ P ≤ P2.

In this case, at time t1 the interaction between the wave in the outgoing road and the
boundary at x= 1 can generate an additional wave if Fin > fout. When this is the case,
in fact, there is a wave with negative speed which can interact with other waves between
[0,1]. We make the following assumption:

Fin > fout. (4.4.13)

In this case, depending on the priority parameter P , the waves emanating from the
junction at t1 and t4 can collide within the region −1< x< 0. This, in particular, occurs
for the value of the priority parameter P = P̄ , given by

P̄ =
(1−β)

(
(fmax)2+ fmax(2f in− fout− f inFin+ foutf in)+ 2foutf in

)

fmax(Finfmax− fmax+ fout− foutfmax)
(4.4.14)

where P̄ is the value at which the waves interact at x = −1. We can, then, distinguish
two additional cases P1 ≤ P < P̄ and P̄ ≤ P ≤ P2.

1. P1 ≤ P < P̄ . In this case, the waves do not interact in the region −1<x< 0 and no
new waves are created. Hence, the study is concluded and the solution is depicted
in Figure 4.4.9.
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Figure 4.4.9: Solution of the problem in [0, t5].

2. P̄ ≤ P ≤ P2. In this case there is a collision between the waves emanating from
the junction at t1 and t4 on the incoming link and the final solution is showed in
Figure 4.4.10.
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t4
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SQ

Figure 4.4.10: Solution for t ∈ [0, t5] with P̄ ≤ P ≤ P2.

For all cases for t≥ t4 the buffer length increases linearly with a value

l(t) = l(t4)+
(
Fin− (1−P )fout

)
(t− t4)> 0. (4.4.15)

This concludes the analysis of the case P1 ≤ P ≤ P2.

110



4.4. Optimization on networks

Case P > P2.

The solution of the Riemann problem is given by (2b). In this case, ρ1 = ρ̂1 and no
wave is created in the incoming mainline. On the outgoing link we have ρ2 = ρcr, which
generates a wave with speed equal to 1. The buffer length increases since l(t) = (Fin +
(1−β)f in−fmax)(t−1)> 0. The wave with positive speed 1 generated at (t1,0) interacts
with the wave generated from right boundary at point S = (tS ,xS) at time t= tS under

assumption (4.4.13), see Figure 4.4.11. At the right boundary fout =
1− ρ3

1− fmax
fmax,

hence we obtain that

ρ3 = 1−
fout(1− fmax)

fmax
. (4.4.16)

At t4 the Riemann problem at the junction to solve is then

ρ(t4,x) =

{
ρ̂1 if x < 0,
ρ3 if x > 0,

coupled with the following demand and supply functions

d(Fin, l) = γmax
r1 = fmax,

δ(ρ̂1) = f in,

σ(ρ3) = fout.

(4.4.17)

We can now compute

Γ2 =min
(
(1−β)δ(ρ̂1)+ d(Fin, l),σ(ρ3)

)
=min

(
(1−β)f in+ fmax,fout

)
= fout

and

Γ̂1 =
P

1−β
fout.

Two cases can occur at this point. If (1 − β)f in < fout the solution of the Riemann
Problem at the junction is given by (Γ̂1, Γ̂r1, Γ̂2) = (f in,fout − (1 − β)f in,fout) for all

values of P > ¯̄P = (1− β)
f in

fout
. From this it is straightforward to see that ρ̂1 = ρ1 since

f in = ρ̂1 for vf = 1. No new waves are created.

For P2 < P < ¯̄P we have (Γ̂1, Γ̂r1, Γ̂2) =

(
P

1−β
fout,(1−P )fout,fout

)
. The solution

of the problem in this case is similar to the case (1− β)f in > fout hence, we defer its
description in the following. If (1−β)f in > fout the solution of the Riemann problem at
the junction becomes

(Γ̂1, Γ̂r1, Γ̂2) =

(
P

1−β
fout,(1−P )fout,fout

)
.

From this we can uniquely recover the corresponding values of the densities. The solution
looks as in Figure 4.4.11.
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Figure 4.4.11: Solution in the case P ≥ P2.

The buffer increases linearly and its expression is given by

l(t) = l(t4)+
(
Fin− (1−P )fout

)
(t− t4)> 0. (4.4.18)

This completes the analysis for this case.

The case P ≤ P1.

The solution of the Riemann problem is given by (3b). In this case, the computations
are similar to those of Section 4.4.2. The solution is sketched in Figure 4.4.12. To be
noted that the point of intersection N in this case does not depend on the value of P
but on the value of the other parameters.
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Figure 4.4.12: Solution in the case P ≤ P1.
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Finally, we compute the queue length at t4 which is given by

l(t) = l(t4)+
(
Fin− (1−P )fout

)
(t− t4)> 0. (4.4.19)

4.4.3 Local Total Waiting Time and Total Travel Time

We are now ready to compute the expressions for the Total Travel Time and the Total
Waiting Time for each value of P .
Case 4.4.1

• max(P1,0)≤ P ≤min(P2,1)

We calculate the TWTloc as follows

TWTloc(T,P ) =

∫ T

t3

(Fin− (1−P )fout)(t− t3)dt+T (Fin− (1−P )fout)(T − t3).

while the TTTloc(T ) is obtained by a constant term which does not depend on P plus a
term depending on the priority, that we denote by TTTloc(T,P ) :

TTTloc(T,P ) =

∫∫

A1

ρ̂1dtdx+

∫∫

A2

ρ1(P )dtdx+T

∫ 1

0
(ρ1(P )+ ρ3)dx

+

∫ T

t3

(Fin− (1−P )fout)(t− t3)dt+T (Fin− (1−P )fout)(T − t3),

where the areas of the integration domains are defined by A1 =
1

2
(t4(P )− t3) = A2 as

shown in Figure 4.4.13.
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ρ̂2ρ̂1
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ρ3

ρ1

t

−1 1 x

t1

t3
O

t4

Figure 4.4.13: Area of integration in the case P1 ≤ P ≤ P2.

• min(P2,1)< P ≤ 1
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The TWTloc(T,P ) is computed as

TWTloc(T,P ) =

∫ T

t3

(Fin+(1−β)f in− fout)(t− t3)dt

+T (Fin+(1−β)f in− fout)(T − t3).

The TTTloc(T ) is given by a constant term plus

TTTloc(T,P ) = T

∫ 1

0
(ρ̂1+ ρ3)dx+

∫ T

t3

(Fin+(1−β)f in− fout)(t− t3)dt

+T (Fin+(1−β)f in− fout)(T − t3).

• 0≤ P max(P1,0)

In this case TWTloc = 0 since the buffer is empty. The TTTloc(T ) is given by a constant
term plus

TTTloc(T,P ) = T

∫ 1

0
(ρ̌1+ ρ3)dx.

Case 4.4.2

• P1 ≤ P < P̄ We compute the TWTloc as follows

TWTloc(T,P ) =

∫ t4

t1

((Fin− (1−P )fmax)(t− 1))dt+T
(
Fin− (1−P )fout

)
(T − t4)

+

∫ T

t4

(
l(t4)+

(
Fin− (1−P )fout

)
(t− t4)

)
dt+T l(t4).

(4.4.20)

Concerning TTTloc(T ), it is given by a constant plus

TTTloc(T,P ) =

∫

A1

ρ̂1dtdx+

∫

A2

ρ1(P )dtdx+

∫∫

A3

ρ̌1(P )dtdx

+

∫ t4

t1

((Fin− (1−P )fmax)(t− 1))dt+T

∫ 1

0
(ρ̌1(P )+ ρ3)dx

+

∫ T

t4

(
l(t4)+

(
Fin− (1−P )fout

)
(t− t4)

)
dt+T l(t4)

+T
(
Fin− (1−P )fout

)
(T − t4),

where the areas are defined by A1 =
1

2
(t2(P )− 1),

A2 =
1

2
(t5(P )+ t4− t2− 1),

A3 =
1

2
(t5(P )− t4) and T = t5, as in Figure 4.4.14.
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Figure 4.4.14: Area of integration in the case P1 ≤ P < P̄ .

• P̄ ≤ P ≤ P2 The TWTloc is as in (4.4.20), since it does not depend on the wave
interactions but only on the queue length. The TTTloc(T ) is given by the constant
term plus

TTTloc(T,P ) =

∫∫

A1+A2+A5

ρ̂1dtdx+

∫∫

A3

ρ1(P )dtdx

+

∫∫

A4+A6+A7

ρ̌1(P )dtdx+T

∫ 1

0
(ρ̌1(P )+ ρ3)dx

+

∫ t4

t1

((Fin− (1−P )fmax))(t− 1))dt

+

∫ T

t4

(
l(t4)+

(
Fin− (1−P )fout

)
(t− t4)

)
dt

+T l(t4)+T
(
Fin− (1−P )fout

)
(T − t4).

The areas are defined by A1 =
1

2
(tQ(P )− 1),

A2 =
1

2
(tQ(P )− 1)(xQ(P )+ 1),

A3 =
1

2
(xQ(P )−xQ(P )t4),

A4 =
1

2
(tQ(P )− t4)(−xQ(P )),
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Figure 4.4.15: Area of integration in the case P̄ ≤ P ≤ P2.

A5 =
1

2
(t5(P )− tQ(P ))(xQ(P )+ 1),

A6 =
1

2
(t5(P )− tQ(P ))(xQ(P )+ 1),

A7 = (t5(P )− tQ(P ))(−xQ(P )) as in Figure 4.4.15.

• P > P2 In this case we have to consider two different situations according to the
value of P . If P > ¯̄P and (1− β)f in < fout then the functionals do not depend on
P and hence, we skip it from our analysis. If P2 < P < ¯̄P and (1−β)f in < fout or
(1−β)f in ≥ fout then the TWTloc is given by

TWTloc(T,P ) =

∫ t4

t1

(
Fin+(1−β)f in− fmax)(t− 1)

)
dt

+

∫ T

t4

(
(Fin+(1−β)f in− fmax)(t4− 1)+

(
Fin− (1−P )fout

)
(t− t4)

)
dt

+T (Fin+(1−β)f in− fmax)(t4− 1)+T
(
Fin− (1−P )fout

)
(T − t4).
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The TTTloc(T ), as usual, is instead calculated by the constant term plus

TTTloc(T,P ) =

∫

A1

ρ̂1(P )dtdx+

∫

A2

ρ̌1(P )dtdx

+

∫ t4

t1

(
Fin+(1−β)f in− fmax)(t− 1)

)
dt+T

∫ 1

0
(ρ̌1(P )+ ρ3)dx

+

∫ T

t4

(
(Fin+(1−β)f in− fmax)(t4− 1)+

(
Fin− (1−P )fout

)
(t− t4)

)
dt

+T (Fin+(1−β)f in− fmax)(t4− 1)+T
(
Fin− (1−P )fout

)
(T − t4)

and the areas for this case are A1 =
1
2(t5(P )− t4) and A2 =

1
2(t5(P )− t4) as shown

in the Figure 4.4.16.
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Figure 4.4.16: Area of integration in the case P > P2.

• P < P1 We have two different situations which depend on the intersection of the
waves as explained in Section 4.4.2. When the waves do not interact between
x=−1 and x= 0 then the TWTloc is computed as

TWTloc(T,P ) =

∫ T

t4

(
Fin− (1−P )fout

)
(t− t4)dt

+T
(
Fin− (1−P )fout

)
(T − t4),

(4.4.21)
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while the TTTloc(T,P ) is given by

TTTloc(T,P ) =

∫∫

A1

ρ1dtdx+

∫∫

A2

ρ̌1(P )dtdx+T

∫ 1

0
(ρ̌1(P )+ ρ3)dx

+

∫ T

t4

(
Fin− (1−P )fout

)
(t− t4)dt+T

(
Fin− (1−P )fout

)
(T − t4),

where A1 =
1
2(t5− t4) =A2 as shown in Figure 4.4.17.
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Figure 4.4.17: Area of integration in the case P < P1.

Whereas when the waves interact between x=−1 and x= 0 then the TWT is computed
does not change and the TTTloc(T,P ) is computed as follows

TTTloc(T,P ) =

∫∫

A1

ρ̂1dtdx+

∫∫

A2+A3+A4

ρ̌1(P )dtdx

+

∫ T

t4

(
Fin− (1−P )fout

)
(t− t4)dt+T

∫ 1

0
(ρ̌1(P )+ ρ3)dx

+T
(
Fin− (1−P )fout

)
(T − t4).

The areas are defined by

A1 =A2 =
1

2
(t5(P )− tN (P ))(xN (P )+ 1),

A3 = (t5− tN (P ))(−xN (P )),

A4 =
1

2
(tN (P )− t4)(−xN (P )) as in Figure 4.4.18.
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Figure 4.4.18: Area of integration when the waves collide in the region [−1,0].

4.5 Numerical scheme

In this section we consider the traffic regulation problem for a network as the one in
Figure 4.2.1. We analyze the cost functionals introduced in the previous section. In
particular, we want to compare the costs corresponding to the instantaneous optimal
choice of the right of way parameter and a fixed constant parameter.

4.5.1 Network topology

The roundabout will be modeled by:

• 4 roads from the circle: I1, I2, I3, I4 with I1 and I4 linked with periodic boundary
conditions;

• 3 roads connecting the roundabout with the rest of the network: 3 incoming lanes
and 3 outgoing ones.

4.5.2 Numerical scheme

From the topology, it can be noted that all the junctions in the roundabout can be
represented by 2x2 junctions for which it might be necessary to define a right of way
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parameter P . The first step is then to discretize the junction model. We define a
numerical grid in (0,T )×R using the following notation:

• ∆x is the fixed space grid size;

• ∆tn is the grid size, given by the CFL condition;

• (tn,xj) = (tn−1+∆tn, j∆x) for n ∈ N and j ∈ Z are the grid points.

Since the model used is the same as the one in Chapter 3, the numerical discretization
is done accordingly using the same scheme and the same methods as introduced in 3.4.

4.6 Numerical simulations

In this section we show some simulations results corresponding to different choices of the
right of way parameters. We consider approximations obtained by Godunov numerical
method, with space step ∆x= 0.1 and the time step determined by the CFL condition.
The traffic flow on the road network is simulated in a time interval [0,T ], where T = 50.
As for the initial condition on the roads of the network, we assume that at initial time
t = 0 all the roads and the buffers are empty, f in = fout = 0 and we take Fin 6= 0. We
consider the following parameters for each link: fmax = 0.66, ρcr = 0.66 and γmax

r1 = 0.65 .
Moreover, we distinguish different cases of simulations which vary according to the value
of Fin ∈ {0.1,0.2,0.3,0.4,0.5,0.6} and β ∈ {0.2,0.3,0.4,0.5,0.6,0.7}. For each value of Fin

and β we study different simulations cases:

• Instantaneous right of way parameter that optimizes the cost functionals
TTTloc and TWTloc. Given the complicated expressions of the cost functionals
it is difficult to use an analytical approach for the development of an optimized
algorithm for the whole roundabout. For this reason, we consider at each junction
and at each time step the optimal parameters corresponding to the road densities
near the junction. The technique for the simulation of the optimal case is based on
the local optimization of every junction of 2x2 type, which form the roundabout.
To compute the cost functionals, at each time step the values of Fin, fout and f in

are found as follows:

– f in = δ(ρinc)

– fout = σ(ρout)

– Fin = d(Fin, l
n)

The optimal value of the priority parameter is then computed exactly (i.e. analyt-
ically as explained in 4.4) at each time step for the corresponding input values.

• Fixed right of way parameter. We analyze the behavior of the cost functionals,
assuming that the priority parameter P is the same and kept fixed for each junction.

120



4.6. Numerical simulations

4.6.1 Simulation results

In Figures 4.6.2, 4.6.1, 4.6.4 and 4.6.3we show some of the simulation results for some
representative cases. More precisely we show the value of the functionals TTT (4.4.1)
and TWT (4.4.2) computed on the whole roundabout as a function of Fin and β. A
legend for every picture indicates the different simulation cases. Moreover, the tables
4.6.1, 4.6.2, 4.6.3, 4.6.4, 4.6.5 and 4.6.6 depict the gain in percentage between the optimal
case and the constant one for different values of P .

Fin
β 0.2 0.3 0.4 0.5 0.6 0.7

0.1 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

0.2 -23.9359% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

0.3 -19.2538% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

0.4 -15.8362% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

0.5 -13.3060% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

0.6 -11.5724% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

Table 4.6.1: Gain in TTT computed with the optimal right of way parameter and a fixed
one P = 0.7.

Fin
β 0.2 0.3 0.4 0.5 0.6 0.7

0.1 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

0.2 -26.1638% -26.7080% 0.0000% 0.0000% 0.0000% 0.0000%

0.3 -21.8880% -30.3638% -38.8852% 0.0000% 0.0000% 0.0000%

0.4 -18.2182% -25.1910% -32.8044% -40.3677% 0.0000% 0.0000%

0.5 -15.3961% -21.1096% -27.1844% -32.9931% 0.0000% 0.0000%

0.6 -13.3412% -18.3294% -23.2688% -27.9928% 0.0000% 0.0000%

Table 4.6.2: Gain in TTT computed with the optimal right of way parameter and a fixed
one P = 0.4.

121



4.6. Numerical simulations

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0

500

1000

1500

2000

2500

3000

3500

F
in

T
T

T

Total Travel Time for β=0.2

 

 

Poptimal

P=0.7

P=0.4

P=0.2

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0

500

1000

1500

2000

2500

3000

3500

F
in

T
T

T

Total Travel Time for β=0.3

 

 

Poptimal

P=0.7

P=0.4

P=0.2

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0

500

1000

1500

2000

2500

3000

3500

F
in

T
T

T

Total Travel Time for β=0.4

 

 

Poptimal

P=0.7

P=0.4

P=0.2

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0

500

1000

1500

2000

2500

3000

3500

F
in

T
T

T

Total Travel Time for β=0.5

 

 

Poptimal

P=0.7

P=0.4

P=0.2

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0

500

1000

1500

2000

2500

3000

3500

F
in

T
T

T

Total Travel Time for β=0.6

 

 

Poptimal

P=0.7

P=0.4

P=0.2

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0

500

1000

1500

2000

2500

3000

3500

F
in

T
T

T

Total Travel Time for β=0.7

 

 

Poptimal

P=0.7

P=0.4

P=0.2

Figure 4.6.1: TTT as a function of Fin computed for a time horizon T = 50.
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Figure 4.6.2: TWT as a function of Fin computed for a time horizon T = 50.

123



4.6. Numerical simulations

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0

500

1000

1500

2000

2500

3000

3500

4000

β

T
T

T

Total Travel Time for F
in

=0.1

 

 

Poptimal

P=0.7

P=0.4

P=0.2

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0

500

1000

1500

2000

2500

3000

3500

4000

β

T
T

T

Total Travel Time for F
in

=0.2

 

 

Poptimal

P=0.7

P=0.4

P=0.2

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0

500

1000

1500

2000

2500

3000

3500

4000

β

T
T

T

Total Travel Time for F
in

=0.3

 

 

Poptimal

P=0.7

P=0.4

P=0.2

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0

500

1000

1500

2000

2500

3000

3500

4000

β

T
T

T

Total Travel Time for F
in

=0.4

 

 

Poptimal

P=0.7

P=0.4

P=0.2

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0

500

1000

1500

2000

2500

3000

3500

4000

β

T
T

T

Total Travel Time for F
in

=0.5

 

 

Poptimal

P=0.7

P=0.4

P=0.2

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0

500

1000

1500

2000

2500

3000

3500

4000

β

T
T

T

Total Travel Time for F
in

=0.6

 

 

Poptimal

P=0.7

P=0.4

P=0.2

Figure 4.6.3: TTT as a function of β computed for a time horizon T = 50.
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Figure 4.6.4: TWT as a function of β computed for a time horizon T = 50.
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Fin
β 0.2 0.3 0.4 0.5 0.6 0.7

0.1 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

0.2 -26.2608% -26.9396% 0.0000% 0.0000% 0.0000% 0.0000%

0.3 -22.0246% -30.6028% -39.4182% 0.0000% 0.0000% 0.0000%

0.4 -18.3772% -28.0082% -33.4924% -42.2899% -49.5546% 0.0000%

0.5 -15.6867% -21.6484% -28.6658% -35.5027% -43.4925% -51.7438%

0.6 -13.5821% -18.6328% -24.1359% -30.1316% -36.6248% -43.3260%

Table 4.6.3: Gain in TTT computed with the optimal right of way parameter and a fixed
one P = 0.2.

Fin
β 0.2 0.3 0.4 0.5 0.6 0.7

0.1 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

0.2 -37.7363% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

0.3 -20.0221% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

0.4 -13.6862% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

0.5 -10.3010% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

0.6 -8.3728% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

Table 4.6.4: Gain in TWT computed with the optimal right of way parameter and a
fixed one P = 0.7.

Fin
β 0.2 0.3 0.4 0.5 0.6 0.7

0.1 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

0.2 -41.5096% -92.2568% 0.0000% 0.0000% 0.0000% 0.0000%

0.3 -23.6510% -43.9810% -72.9952% 0.0000% 0.0000% 0.0000%

0.4 -16.5219% -29.0594% -44.6035% -64.1409% 0.0000% 0.0000%

0.5 -12.5626% -21.4584% -31.6873% -42.9263% 0.0000% 0.0000%

0.6 -9.2872% -17.0847% -24.7253% -32.5150% 0.0000% 0.0000%

Table 4.6.5: Gain in TWT computed with the optimal right of way parameter and a
fixed one P = 0.4.
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4.6. Numerical simulations

Fin
β 0.2 0.3 0.4 0.5 0.6 0.7

0.1 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0000%

0.2 -41.6784% -92.3688% 0.0000% 0.0000% 0.0000% 0.0000%

0.3 -23.8452% -44.3239% -73.5147% 0.0000% 0.0000% 0.0000%

0.4 -16.7143% -29.4949% -45.5005% -66.1746% -94.3553% 0.0000%

0.5 -12.8840% -22.1229% -33.0143% -46.0431% -61.9339% -81.8636%

0.6 -10.4278% -17.6115% -25.7892% -35.1576% -45.9640% -58.3022%

Table 4.6.6: Gain in TWT computed with the optimal right of way parameter and a
fixed one P = 0.2.

In both cases, the cost functionals computed with a fixed right of way parameter or with
the optimal ones have a different behavior only for those values of Fin for which the
problem is supply limited. In both cases we have better results for the optimal case. We
can see that even when optimizing the TWT , low values of the priority parameters that
should favor the entrance with the respect to the mainline are a bad choice. In fact,
for these values the roundabout tends to be overly congested blocking, as a matter of
fact, the entrances. From our analysis, it seems that in both cases the optimal priority
parameters are the ones that favors the mainline compared to the entrances.
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Chapter 5

Conclusions and perspectives

In this work we introduced two PDE-ODE-based models to describe traffic flow. First,
we set up a mathematical framework for a model for moving bottlenecks on roads. A
PDE describes the evolution of the main traffic in time while an ODE describes the bus
trajectory. The Riemann problem was defined and solved analytically. Also, we proved
the existence of solution for general BV data and give some results concerning stability.
Future work will include an effective strategy for the problem of stability of solutions for
this model. We showed also two different approaches to the numerical solution of this
class of problems. The first one computes the density using a Godunov- type scheme with
a locally nonuniform mesh. Then the position of the bus is reconstructed determining
the effects of the interactions with density waves as in [33]. Some numerical tests are
presented to show the effectiveness of the scheme. To avoid dealing with moving meshes,
we focused on the design of a conservative scheme on fixed meshes, following the approach
introduced in [17]. The method reconstructs both non-classical and classical shocks in
order to reduce numerical diffusion.

In the second part, we introduced a model for a 2× 2 junction with an onramp and
an offramp. The onramp is modeled by an ODE which represent a vertical buffer. This
way of handling boundary conditions makes possible not to lose flow information. The
junction flow distribution is solved through a LP -optimization problem, which maximizes
the flow in the outgoing mainline. Moreover, a right-of-way parameter is introduced to
ensure the uniqueness of the solution and a good representation of field experiences. The
model is solved numerically using a modified Godunov scheme that takes into account the
waves that can be produced when the buffer empties. Some numerical tests are presented
to show the stability and accuracy of the scheme. Moreover, from the analysis of the
L1 error, the convergence of the scheme is demonstrated numerically. We then applied
the discrete adjoint approach to the coupled PDE-ODE system to select an optimal
ramp-metering strategy on a road network.

Moreover on Chapter 4 we extend the PDE-ODE model to optimize traffic flow on
roundabouts. We treat the roundabout as a concatenation of 2× 2 junctions. We solve
an optimization problem where the optimal control acts on the priority parameters,
which assign right of way among incoming roads, for example through traffic lights. Two
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cost functionals are introduced, measuring the total waiting time and total travel time.
We compute analytically the cost functionals for a single junction, and find the control
parameters that locally optimize the flow. The approach is tested on a simple roundabout
with three incoming and three outgoing roads. Two different choices of parameters are
considered: instantaneously locally optimal and fixed. The local optima outperform the
other choice, improving the performances of the network.

Traffic flow modeling is a field in full development, yet many improvements could
be achieved starting from the validation of the models to the creation of new models
that can add more features. In particular, optimal control of traffic flow is a subject full
of potential and a lot of work could be done in this setting to improve performances.
Moreover, much work remains to be done to define a soundproof mathematical theory
for optimal control of traffic flow which is broadly applicable to hyperbolic conservation
laws and traffic flow applications.

130



Conclusion et perspectives

Dans ce travail, nous avons présenté deux modèles EDP-EDO pour décrire le trafic
routier. Tout d’abord, nous avons mis en place un cadre mathématique pour le modèle
des goulots d’étranglement mobiles sur les routes. L’EDP décrit l’évolution du trafic
global et une EDO décrit la trajectoire du bus. Le problème de Riemann a été défini
et résolu analytiquement. En outre, nous avons prouvé l’existence d’une solution pour
des données générales BV et nous avons exploré une piste pour prouver la stabilité. Les
travaux futurs vont concerner la recherche d’une stratégie efficace pour la question de
la stabilité des solutions. Nous avons aussi montré deux approches différentes pour la
solution numérique de cette classe de problèmes. Le premier calcule la densité à l’aide
d’un schéma de type Godunov avec un maillage localement non uniforme. Ensuite, la
position de l’autobus est reconstruite en prenant en compte les effets des interactions avec
des ondes de densité comme dans [33]. Quelques tests numériques sont présentés pour
montrer l’efficacité du schéma. Pour éviter de travailler avec un maillage adaptatif, nous
nous sommes concentrés sur la conception un schéma conservatif basé sur une technique
de reconstruction de chocs sur des maillages fixes, suivant l’approche introduite dans [17].
La méthode reconstruit les chocs non-classiques et classiques afin de réduire la diffusion
numérique.

Dans la deuxième partie, nous avons présenté un modèle pour une jonction 2 × 2
avec une bretelle d’accès et une bretelle de sortie. La bretelle d’accès est modélisée par
une EDO qui représente un "buffer" vertical. Cette façon de traiter les conditions aux
limites permet de ne pas perdre des informations sur le flux en entrée. La répartition
du trafic à la jonction est gérée par un problème d’optimisation, qui maximise le débit
dans la voie principale sortante. En outre, un paramètre de priorité est introduit afin
d’assurer l’unicité de la solution et une bonne représentation des expériences de terrain.
Le modèle est résolu numériquement en utilisant un schéma Godunov modifié, qui prend
en compte les ondes qui peuvent être produites lorsque le "buffer" se vide. Quelques
tests numériques sont présentés pour montrer la stabilité et la précision du schéma.
En outre, à partir de l’analyse de l’erreur L1, la convergence du schéma est démontrée
numériquement. Nous avons ensuite appliqué la méthode de l’adjoint discret au système
couplé EDP-EDO pour choisir une stratégie de contrôle d’accès optimal sur un réseau
routier.

Dans le Chapitre 4, nous appliquons le modèle de jonction couplé EDP-EDO à
l’optimisation du flux de trafic sur les ronds-points. Nous traitons le rond-point comme
une concaténation des jonctions 2× 2. Nous résolvons un problème d’optimisation où
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le contrôle agit sur le paramètre de priorité, qui attribue un droit de passage entre les
routes entrantes, par exemple par des feux de circulation. Les deux fonctions coût con-
sidérées mesurent le temps d’attente total et le temps total de parcours. Nous calculons
explicitement les fonctions coût pour une seule jonction, et trouvons les paramètres de
contrôle qui permettent d’optimiser localement le trafic. L’approche est testée sur un
rond-point simple avec trois routes entrantes et trois routes sortantes. Deux choix dif-
férents de paramètres sont pris en compte: localement optimale en temps et fixe. On
observe que les optima locaux sont plus performants pour améliorer les performances du
réseau.

La modélisation du trafic routier est un domaine en plein développement, toutefois
de nombreuses améliorations pourraient être réalisé à partir de la validation des modèles
jusqu’à la création de nouveaux modèles ajoutant plus de fonctionnalités. En particulier,
le contrôle optimal de la circulation routière est un sujet plein de potentiel et des efforts
pourraient être faits dans ce cadre pour améliorer les performances. En outre, beaucoup
de travail reste à faire pour développer une théorie mathématique du contrôle optimal
de la circulation qui soit applicable aux lois de conservation hyperboliques et au trafic.

132



Bibliography

[1] E. Alberti and G. Belli. Contributions to the Boltzmann-like approach for traffic
flow – A model for concentration dependent driving programs. Transportation
Research, 12(1):33–42, 1978.

[2] D. Amadori, P. Baiti, P.G. Le Floch, and B. Piccoli. Non classical shocks and
the Cauchy problem for non convex conservation laws. Journal of Differential
equations, 151:345–372, 1999.

[3] B. Andreianov, P. Goatin, and N. Seguin. Finite volume schemes for locally con-
strained conservation laws. Numer. Math., 115(4):609–645, 2010. With supplemen-
tary material available online.

[4] B. Andreianov, K. H. Karlsen, and N.H. Risebro. A theory of L1-dissipative solvers
for scalar conservation laws with discontinuous flux. Arch. Rational Mech. Anal.,
201:27–86, 2011.

[5] A. Aw and M. Rascle. Resurrection of "second order" models of traffic flow. SIAM
J. Appl. Math., 60:916–938, 2000.

[6] P. Baiti, P.G. Le Floch, and B. Piccoli. Non classical shocks and the Cauchy
problem. General conservation laws. Contemporary Math., 238:1–25, 1999.

[7] P. Baiti, P.G. Le Floch, and B. Piccoli. Uniqueness of classical and nonclassical
solutions for non linear hyperbolic systems. J. Differential Equations, 172:59–82,
2001.

[8] P. Baiti, P.G. Le Floch, and B. Piccoli. Existence theory for nonclassical entropy
solutions: scalar conservation laws. Z. Angew. Math. Phys., 55:927–945, 2004.

[9] M. K. Banda and M. Herty. Adjoint IMEX-based schemes for control problems
governed by hyperbolic conservation laws. Comput. Optim. Appl., 51:909–930,
2012.

[10] M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama. Dynamical
model of traffic congestion and numerical simulations. Physical Review E, 51:1035–
1042, 1995.

133



Bibliography

[11] C. Bardos, A. Y. le Roux, and J.-C. Nédélec. First order quasilinear equations with
boundary conditions. Comm. Partial Differential Equations, 4(9):1017–1034, 1979.

[12] UC Berkeley and Path. Connected corridors. http://connected-corridors.

berkeley.edu/, 2013.

[13] S. Blandin, D. Work, P. Goatin, B. Piccoli, and A. M. Bayen. A general phase
transition model for vehicular traffic flow. SIAM J. Appl. Math., 71(1):107–127,
2011.

[14] R. Borsche, R. M. Colombo, and M. Garavello. On the coupling of systems of
hyperbolic conservation laws with ordinary differential equations. Nonlinearity,
23(11):2749–2770, 2010.

[15] R. Borsche, R.M. Colombo, and M. Garavello. Mixed systems: ODEs - balance
laws. Journal of Differential equations, 252:2311–2338, 2012.

[16] F. Bouchut and F. James. One-dimensional transport equations with discontinuous
coefficients. Nonlinear Anal., 32(7):891–993, 1998.

[17] B. Boutin, C. Chalons, F. Lagoutière, and P. G. LeFloch. Convergent and conser-
vative schemes for nonclassical solutions based on kinetic relations. I. Interfaces
and Free Boundaries, 10(3):399–421, 2008.

[18] Mark Brackstone and Mike McDonald. Car-following: a historical review. Trans-
portation Research Part F: Traffic Psychology and Behaviour, 2(4):181–196, 1999.

[19] A. Bressan. Unique solutions for a class of discontinuous differential equations.
Proc. Amer. Math. Soc., 104(3):772–778, 1988.

[20] A. Bressan. Hyperbolic systems of conservation laws, volume 20 of Oxford Lecture
Series in Mathematics and its Applications. Oxford University Press, Oxford, 2000.
The one-dimensional Cauchy problem.

[21] A. Bressan and R. M. Colombo. Unique solutions of 2× 2 conservation laws with
large data. Indiana Univ. Math. J., 44(3):677–725, 1995.

[22] A. Bressan, G. Crasta, and B. Piccoli. Well-posedness of the Cauchy problem for
n× n systems of conservation laws. Mem. Amer. Math. Soc., 146(694):viii+134,
2000.

[23] A. Bressan and K. Han. Optimal and equilibria for a model of traffic flow. SIAM
J. Math. Anal., 43:2384–2417, 2011.

[24] A. Bressan and K. Han. Nash equilibria for a model of traffic flow with several
group of drivers. ESAIM: Control, Optim. Calc. Var., 18:969–986, 2012.

[25] A. Bressan and K. Han. Existence of optima and equilibria for traffic flow on
networks. Netw. Heterog. Media, 8:627–648, 2013.

134

http://connected-corridors.berkeley.edu/
http://connected-corridors.berkeley.edu/


Bibliography

[26] A. Bressan, C.J. Liu, W. Shen, and F. Yu. Variational analysis of Nash equilibria
for a model of traffic flow. Quarterly Appl. Math., 70:495–515, 2012.

[27] A. Bressan and A. Marson. A variational calculus for discontinuous solutions of
systems of conservation laws. Comm. Partial Differential Equations, 20(9):1491–
1552, 1995.

[28] A. Bressan and K. T. Nguyen. Conservation law models for traffic flow on a
network of roads. preprint, http://www.math.ntnu.no/conservation/2014/009.
pdf, 2014.

[29] A. Bressan and W. Shen. Uniqueness for discontinuous ODE and conservation
laws. Nonlinear Anal., 34(5):637–652, 1998.

[30] A. Bressan and F. Yu. Continuous Riemann solvers for traffic flow at a junction.
Discr. Cont. Dyn. Syst., preprint., 2014.

[31] Alberto Bressan and Philippe G. LeFloch. Structural stability and regularity of
entropy solutions to hyperbolic systems of conservation laws. Indiana Univ. Math.
J., 48(1):43–84, 1999.

[32] G. Bretti, R. Natalini, and B. Piccoli. Numerical approximations of a traffic flow
model on networks. Networks and Heterogeneous Media, 1(1):57, 2006.

[33] G. Bretti and B. Piccoli. A tracking algorithm for car paths on road networks.
SIAM Journal on Applied Dynamical Systems, 7:510–531, 2008.

[34] A. Cascone, C. D’Apice, B. Piccoli, and L. Raritá. Optimization of traffic on road
networks. Mathematical Models and Methods in Applied Sciences, 17:1587–1617,
2007.

[35] A. Cascone, R. Manzo, B. Piccoli, and L. Raritá. Optimization versus randomness
for car traffic regulation. Physical Review E, 78, 2008.

[36] C. Chalons and P. Goatin. Godunov scheme and sampling technique for comput-
ing phase transitions in traffic flow modeling. Interfaces and Free Boundariese,
10(2):195–219, 2008.

[37] C. Chalons, P. Goatin, and N. Seguin. General constrained conservation laws.
Application to pedestrian flow modeling. Netw. Heterog. Media, 8(2):433–463, 2013.

[38] C. Chalons and P.G. Le Floch. Computing undercompressive waves with the ran-
dom choice method. Nonclassical shock waves. Interfaces and Free Boundaries,
5:129–159, 2001.

[39] R. E. Chandler, R. Herman, and E. W. Montroll. Traffic dynamics: Studies in car
following. Operations Research, 6(2):165–184, 1958.

135

http://www.math.ntnu.no/conservation/2014/009.pdf
http://www.math.ntnu.no/conservation/2014/009.pdf


Bibliography

[40] Yacine Chitour and Benedetto Piccoli. Traffic circles and timing of traffic lights for
cars flow. Discrete and Continuous Dynamical Systems Series B, 5(3):599, 2005.

[41] G.M. Coclite, M. Garavello, and B. Piccoli. Traffic flow on a road network. SIAM
J. Math. Anal., 36(6):1862–1886, 2005.

[42] R. M. Colombo. Hyperbolic phase transitions in traffic flow. SIAM J. Appl. Math.,
63(2):708–721, 2002.

[43] R. M. Colombo and P. Goatin. A well posed conservation law with a variable
unilateral constraint. J. Differential Equations, 234(2):654–675, 2007.

[44] R. M. Colombo, P. Goatin, and B. Piccoli. Road network with phase transition.
Journal of Hyperbolic Differential Equations, 07(01):85–106, 2010.

[45] R. M. Colombo, P. Goatin, and F. Priuli. Global well posedness of a traffic flow
model with phase transitions. Nonlinear Anal. Ser. A, 66:2413–2426, 2007.

[46] R. M. Colombo and A. Marson. A Hölder continuous ODE related to traffic flow.
Proc. Roy. Soc. Edinburgh Sect. A, 133(4):759–772, 2003.

[47] A. Cutolo, C. D’Apice, and R. Manzo. Traffic optimization at junctions to improve
vehicular flows. ISRN Applied Mathematics, 2011:19, 2011.

[48] A. Cutolo, B. Piccoli, and L. Raritá. An upwind-Euler scheme for an ODE-PDE
model of supply chains. SIAM J. Sci. Comput., 33(4):1669–1688, 2011.

[49] C.M. Dafermos. Hyperbolic Conservation Laws in Continuum Physics. Springer,
2009.

[50] C.F. Daganzo. The cell transmission model: A dynamic representation of highway
traffic consistent with the hydrodynamic theory. Transportation Research Part B,
28:269–287, 1994.

[51] C.F. Daganzo. Requiem for high-order fluid approximations of traffic flow. Trans-
portation Research Part B, 29(4):277–287, 1994.

[52] C.F. Daganzo and J. A. Laval. Moving bottlenecks: A numerical method that
converges in flows. Transportation Research Part B, 39:855–863, 2004.

[53] C.F. Daganzo and J. A. Laval. On the numerical treatement of moving bottlenecks.
Transportation Research Part B, 39:31–46, 2005.

[54] C. D’Apice, S. Göttlich, M. Herty, and B. Piccoli. Modeling, simulation, and
optimization of supply chains: a continuous approach. SIAM, 2010.

[55] M. L. Delle Monache and P. Goatin. Scalar conservation laws with moving density
constraints arising in traffic flow modeling. Technical report, Inria Research Report,
n. 8119, 2012.

136



Bibliography

[56] M. L. Delle Monache and P. Goatin. A front tracking method for a strongly coupled
PDE-ODE system with moving density constraints in traffic flow. Discrete Contin.
Dyn. Syst. Ser. S, 7(3):435–447, 2014.

[57] M. L. Delle Monache and P. Goatin. Scalar conservation laws with moving con-
straints arising in traffic flow modeling: an existence result. Journal of Differential
equations, 2014. DOI:10.1016/j.jde.2014.07.014.

[58] M. L. Delle Monache, J. Reilly, S. Samaranayake, W. Krichene, P. Goatin, and
A. M. Bayen. A PDE-ODE model for a junction with ramp buffer. SIAM Journal
on Applied Mathematics, 74(1):22–39, 2014.

[59] L. C. Edie. Car-following and steady-state theory for noncongested traffic. Opera-
tions Research, 9(1):66–76, 1961.

[60] V. V. Filippov. Ordinary differential equations with discontinuous right-hand sides,
volume 30. Kluwer academic Publisher, 1994.

[61] A. Fügenschuh, S. Göttlich, M Herty, A Klar, and A. Martin. A discrete optimiza-
tion approach to large scale supply networks based on partial differential equations.
SIAM J. Sci. Comput., 30(3):1490–1507, 2008.

[62] A. Fügenschuh, M. Herty, A. Klar, and A. Martin. Combinatorial and contin-
uous models for the optimization of traffic flows on networks. SIAM J. Optim.,
16(4):1155–1176, 2006.

[63] M. Garavello and P. Goatin. The Aw-Rascle traffic model with locally constrained
flow. J. Math. Anal. Appl., 378(2):634–648, 2011.

[64] M. Garavello and P. Goatin. The Cauchy problem at a node with buffer. Discrete
Contin. Dyn. Syst., 32(6):1915–1938, 2012.

[65] M. Garavello, R. Natalini, B. Piccoli, and A. Terracina. Conservation laws with
discontinuous flux. Netw. Heterog. Media, 1(3):159–179, 2007.

[66] M. Garavello and B. Piccoli. Traffic flow on a road network using the Aw-Rascle
model. Comm. Partial Differential Equations, 31:243–275, 2006.

[67] M. Garavello and B. Piccoli. Traffic flow on networks, volume 1 of AIMS Series
on Applied Mathematics. American Institute of Mathematical Sciences (AIMS),
Springfield, MO, 2006. Conservation laws models.

[68] M. Garavello and B. Piccoli. Conservation laws on complex networks. Ann. Inst.
H. Poincaré Anal. Non Linéaire, 26(5):1925–1951, 2009.

[69] I. Gasser, C. Lattanzio, and A. Maurizi. Vehicular traffic flow dynamics on a bus
route. Multiscale Model. Simul., 11(3):925–942, 2013.

137



Bibliography

[70] D. C. Gazis, R. Herman, and R. W. Rhotery. Nonlinear follow-the-leader models
of traffic flow. Operations Research, 9(4):545–567, 1961.

[71] R. Giering and T. Kaminski. Recipes for adjoint code contruction. ACM Transac-
tions on mathematical software, 24(4):437–474, 1998.

[72] M. Giles and S. Ulbrich. Convergence of linearized and adjoint approximations for
discontinuous solutions of conservation laws. part 1: linearized approximations and
linearized output functionals. SIAM J. Numer. Anal., 48(3):882–904, 2010.

[73] M. Giles and S. Ulbrich. Convergence of linearized and adjoint approximations for
discontinuous solutions of conservation laws. part 2: Adjoint approximations and
extensions. SIAM J. Numer. Anal., 48(3):905–921, 2010.

[74] M. B. Giles and N. A. Pierce. An introduction to the adjoint approach to design.
Flow, turbulence and combustion, 65(3-4):393–415, 2000.

[75] F. Giorgi. Prise en compte des transports en commun de surface dans la modéli-
sation macroscopique de l’écoulement du trafic. PhD thesis, Institut National des
Sciences Appliquées de Lyon, 2002.

[76] F. Giorgi, L. Leclercq, and J. B. Lesort. A traffic flow model for urban traffic
analysis: extensions of the LWR model for urban and environmental applications.
In Proceeding of the 15th International Symposium on Transportation and Traffic
Theory, pages 393–416, 2002.

[77] P. Goatin. The Aw-Rascle traffic flow model with phase transition. Math. Comput.
Modeling, 44:287–303, 2006.

[78] P. Goatin. Analyse et approximation numérique de quelques modès macroscopiques
de trafic routier. HDR Thesis, May 2009.

[79] S.K. Godunov. A finite difference method for the numerical computation of dis-
continuous solutions of the equations of fluid dynamics. Matematicheskii Sbornik,
47:271–290, 1959.

[80] S. Göttlich, M. Herty, and A. Klar. Network models for supply chains. Comm.
Math. Sci., 3(4):545–559, 2005.

[81] S. Göttlich, M. Herty, and U. Ziegler. Modeling and optimizing traffic light settings
on road networks. preprint, 2013.

[82] B. D. Greenshields. A study of traffic capacity. Proc. Highway Res. Bd., 14:448,
1935.

[83] M. Gugat, M. Herty, A. Klar, and G. Leugering. Optimal control for traffic flow
networks. Journal of optimization theory and applications, 126(3):589–616, 2005.

138



Bibliography

[84] B.T. Hayes and P.G. Le Floch. Nonclassical shocks and kinetic relations. scalar
conservation laws. Arch. Rational Mech. Anal., 139:1–56, 1997.

[85] B.T. Hayes and P.G. Le Floch. Nonclassical shockwaves and kinetic relations.
strictly hyperbolic systems. SIAM J. Math. Anal., 31:941–991, 2000.

[86] V. Henn and L. Leclercq. Wave tracking resolution scheme for bus modelling
inside the LWR traffic flow model. In Proceedings of the 5th Triennial Symposium
on Transportation Analysis, 2004.

[87] R. Herman, E. W. Montroll, R. B. Potts, and R. W. Rothery. Traffic dynamics:
analysis of stability in car following. Operations research, 7(1):86–106, 1959.

[88] M. Herty, C. Kirchner, and A Klar. Instantaneous control for traffic flow. Mathe-
matical Methods in the Applied Sciences, 30(2):153–169, 2006.

[89] M Herty and A Klar. Modeling, simulation, and optimization of traffic flow net-
works. SIAM Journal on Scientific Computing, 25(3):1066–1087, 2003.

[90] M. Herty and A. Klar. Simplified dynamics and optimization of large scale traffic
flow networks. Mathematical Models and Methods in Applied Sciences, 14(4):579–
601, 2004.

[91] M. Herty, A. Klar, and B. Piccoli. Existence of solutions for supply chains models
based on partial differential equations. SIAM J. Math. Anal., 39(1):160–173, 2007.

[92] M. Herty, A. Klar, A.K. Singh, and P. Spellucci. Smoothed penalty algorithms for
optimization of nonlinear models. Comput. Optim. Appl., 37:157–176, 2007.

[93] M. Herty, J. Lebacque, and S. Moutari. A novel model for intersections of vehicular
traffic flow. Netw. Heterog. Media, 4:813–826, 2009.

[94] M. Herty, S. Moutari, and Rascle A. Optimization criteria for modelling intersec-
tions of vehicular traffic flow. Netw. Heterog. Media, 1:275–294, 2006.

[95] H. Holden and N.H. Risebro. A mathematical model of traffic flow on a network
of unidirectional roads. SIAM J. Math. Anal., 26:999–1017, 1995.

[96] D. Jacquet, C. Canudas de Wit, and D. Koenig. Optimal ramp metering strategy
with extended LWR model, analysis and computational methods. In Proceedings
of the 16th IFAC world congress, 2005.

[97] C. Kirchner, M. Herty, S. Göttlich, and A. Klar. Optimal control for continuous
supply network models. Networks and Heterogeneous Media, 1(4):675–688, 2006.

[98] A. Kotsialos and M. Papageorgiou. Nonlinear optimal control applied to co-
ordinated ramp-metering. IEEE Transactions on Control Systems Technology,
12(6):920–933, 2004.

139



Bibliography

[99] S. N. Kružhkov. First order quasilinear equations with several independent vari-
ables. Mat. Sb. (N.S.), 81 (123):228–255, 1970.

[100] C. Lattanzio, A. Maurizi, and B. Piccoli. Moving bottlenecks in car traffic flow: a
PDE-ODE coupled model. SIAM J. Math. Anal., 43(1):50–67, 2011.

[101] P. Lax. Hyperbolic systems of conservation laws II. Commun. Pure Appl. Math.,
6:231–258, 1957.

[102] P. G. Le Floch. Explicit formula for scalar non-linear conservation laws with bound-
ary condition. Mathematical Methods in the Applied Sciences, 10(3):265–287, 1988.

[103] P. G. Le Floch. Hyperbolic systems of conservation laws. The theory of classical
and noncalssical shockwaves. Lectures in mathematics ETH Zürich. Birkhäuser,
2002.

[104] P.G. Le Floch. Propagating phase boundaries: formulation of the problem and
existence via the Glimm scheme. Arch. Rational Mech. Anal., 123:153–197, 1993.

[105] P.G. Le Floch and M. Shearer. Non classical Riemann solvers with nucleation.
Proc. Roy. Soc. Edinburgh Sect. A, 134:941–964, 2004.

[106] J.-P. Lebacque. The Godunov scheme and what it means for first order traffic flow
models. Transportation and Traffic Theory, pages 647–678, 1996.

[107] J.-P. Lebacque, J. B. Lesort, and F. Giorgi. Introducing buses into first-order
macroscopic traffic flow models. Transportation Reasearch Record, 1644:70–79,
1998.

[108] L. Leclercq, S. Chanut, and J. B. Lesort. Moving bottlenecks in the LWR model:
a unified theory. In Proceedings of the 83rd Transportation Research Board Annual
Meeting (TRB), 2004.

[109] R.J. LeVeque. Numerical Methods for Conservation Laws. Lectures in mathematics
ETH Zürich. Birkhäuser, 1992.

[110] R.J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge Texts
in Applied Mathematics. Cambridge University Press, 2002.

[111] M. J. Lighthill and G. B. Whitham. On kinematic waves. II. A theory of traffic
flow on long crowded roads. Proc. Roy. Soc. London Ser. A, 229:317–346, 1955.

[112] A. Marigo and B. Piccoli. A fluid dynamic model for T-junctions. SIAM Journal
on Mathematical Analysis, 39(6):2016–2032, 2008.

[113] P. Moin and T. Bewley. Feedback control of turbulence. Applied mechanics reviews,
47(6S):S3–S13, 1994.

140



Bibliography

[114] J.-D. Müller and P. Cusdin. On the performance of discrete adjoint CFD codes
using automatic differentiation. International journal for numerical methods in
fluids, 47(8-9):939–945, 2005.

[115] P. Munjal and J. Pahl. An analysis of the Boltzmann-type statistical models for
multi-lane traffic flow. Transportation Research, 3(1):151 – 163, 1969.

[116] A. Muralidharan, G. Dervisoglu, and R. Horowitz. Freeway traffic flow simulation
using the link node cell transmission model. In American Control Conference, 2009.

[117] A. Muralidharan and R. Horowitz. Optimal control of freeway networks based on
the link node cell transmission model. In American Control Conference (ACC),
2012.

[118] L. L. Obsu, M. L. Delle Monache, P. Goatin, and S. M. Kassa. Macroscopic traffic
flow optimization on roundabouts. Technical report, Inria Research Report, n.
8291, April 2013.

[119] L. L. Obsu, M. L. Delle Monache, P. Goatin, and S. M. Kassa. Traffic flow opti-
mization on roundabout. Mathematical Methods in the Applied Sciences, to appear.
http://hal.inria.fr/docs/00/93/99/85/PDF/roundabout.pdf.

[120] M. Papageorgiou, H. Hadj-Salem, and J. M. Blosseville. ALINEA: A local feedback
control law for on-ramp metering. Transportation Research Board, 1320:58–64,
1991.

[121] S.L. Paveri-Fontana. On Boltzmann-like treatments for traffic flow: A critical
review of the basic model and an alternative proposal for dilute traffic analysis.
Transportation Research, 9(4):225–235, 1975.

[122] H. J. Payne. Models of freeway traffic and control. In Math. Models Publ. Sys.,
editor, Simulation Council Proc., volume 28, pages 51–61, 1971.

[123] I. Prigogine and F. C. Andrews. A Boltzmann-like approach for traffic flow. Oper-
ations Research, 8(6):789–797, 1960.

[124] I. Prigogine and R. Herman. Kinetic theory of vehicular traffic. Technical report,
American Elsevier, 1971.

[125] J. Reilly, W. Krichene, M. L. Delle Monache, S. Samaranayake, P. Goatin, and
A. M. Bayen. Adjoint-based optimization on a network of discretized scalar con-
servation law PDEs with applications to coordinated ramp metering. preprint,
http://hal.inria.fr/docs/00/87/84/69/PDF/adjoint.pdf, 2014.

[126] J. Reuther, A. Jameson, J. Farmer, L. Martinelli, and D. Saunders. Aerodynamic
shape optimization of complex aircraft configurations via an adjoint formulation.
Research Institute for Advanced Computer Science, NASA Ames Research Center,
1996.

141

http://hal.inria.fr/docs/00/93/99/85/PDF/roundabout.pdf
http://hal.inria.fr/docs/00/87/84/69/PDF/adjoint.pdf


Bibliography

[127] P. I. Richards. Shock waves on the highway. Operations Research, 4:42–51, 1956.

[128] A. Schadschneider and M. Schreckenberg. Cellular automaton models and traffic
flow. J. Phys. A Math. Gen., 26:L679–L683, 1993.

[129] D. Schrank, B. Eisele, and T. Lomax. The 2012 urban mobility report. Technical
report, Texas Transportation Institute, 2012.

[130] G. B. Whitham. Linear and nonlinear waves. John Wiley & Sons, Ltd, 1999.

[131] X. Zhong, T. Y. Hou, and P. G. LeFloch. Computational methods for propagating
phase boundaries. Journal of Computational Physics, 124:192–216, 1996.

142


	Introduction
	Preliminaries
	Hyperbolic conservation laws
	Weak solution
	Riemann Problem
	Function with bounded variation
	Wave-front tracking method

	Traffic flow modeling
	LWR model
	Traffic flow on a road network
	Bottlenecks and coupled micro-macro models

	Numerical methods for hyperbolic conservation laws and traffic flow
	Godunov scheme
	Godunov scheme on road networks
	Numerical methods for non-classical shocks
	Numerical methods for coupled PDE-ODE models


	I Modeling of a moving bottleneck
	A strongly coupled PDE-ODE model with moving constraints 
	Mathematical model
	The Riemann problem with moving density constraint
	The Cauchy problem: existence of solutions
	Wave-front tracking
	Bounds on the total variation
	Convergence of approximate solutions

	An approach to the stability of the solutions
	Estimates on shifts

	A front tracking algorithm
	Godunov-type scheme for hyperbolic PDEs with constraint
	Numerical method for the ODE

	A conservative scheme with reconstruction of non-classical and classical shocks
	Numerical results


	II Modeling of junctions using a PDE-ODE approach
	An application to ramp-metering
	Introduction
	Fundamental definitions and notations
	Riemann problem
	Numerical results: modified Godunov
	Boundary conditions and conditions at the junctions
	ODE treatment
	Modified Godunov scheme

	Numerical results
	Discrete adjoint method for optimization

	An application to roundabouts
	Introduction
	Mathematical model
	Riemann problem at the junction
	Optimization on networks
	2 = (1-)(1) + d(Fin,l)
	2 =(2)
	Local Total Waiting Time and Total Travel Time

	Numerical scheme
	Network topology
	Numerical scheme

	Numerical simulations
	Simulation results


	Conclusions and perspectives
	Bibliography


