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Abstract

In this thesis, we are interested in harmonic morphisms between Riemannian manifolds
(M™,g) and (N", h) for m > n. Such a smooth map is a harmonic morphism if it pulls
back local harmonic functions to local harmonic functions: if f : V — R is a harmonic
function on an open subset V on N and ¢~ !(V) is non-empty, then the composition
fo¢:¢ (V) — R is harmonic. The conformal transformations of the complex plane
are harmonic morphisms.

In the late 1970’s Fuglede and Ishihara published two papers ([Fu]) and (|Is|), where
they discuss their results on harmonic morphisms or mappings preserving harmonic func-
tions. They characterize non-constant harmonic morphisms F' : (M, g) — (N, h) between
Riemannian manifolds as those harmonic maps, which are horizontally conformal, where F'
horizontally conformal means : for any x € M with dF(x) # 0, the restriction of dF(z) to
the orthogonal complement of kerdF(x) in T, M is conformal and surjective. This means
that we are dealing with a special class of harmonic maps.

The theory becomes very successful when the codomain N is a surface. In this case,
the harmonic morphisms have particular properties. Note the conformal invariance : the
equations of harmonic morphisms with values in a Riemannien manifold N of dimension 2
depend only of the conformal class of the metric on V.

In this thesis we focus on the case when the codomain is a surface. The geometric
characterization due to Baird and Eells (|[B-E|) reduces the problem of harmonicity to the
minimality of the fibres (at regular points): If dimN = 2 a horizontally conformal map
is harmonic (then a harmonic morphism) if and only if the regular fibers are minimal in
M. If dimN > 2, a harmonic morphism has minimal fibers if and only if it is horizontally
homothetic.

The study of harmonic morphisms from 4-dimensional Einstein manifolds to Riemann
surfaces has been greatly simplified with the aid of twistor methods. In some cases even,
a complete classification of these maps has been found, see [B-W, Vil, Wo|.

J. Wood in [Wo| ( complemented by M. Ville [Vil]) proved that when the domain is
a 4-dimensional Einstein manifold and the codomain is a surface, a harmonic morphism
can be equivalently characterized as a map which is holomorphic with respect to some
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integrable Hermitian structure on its domain and has superminimal fibres. It follows that
there do not exist non-constant harmonic morphisms from (S, can) into a Riemann surface.

In chapter 2, we investigate the structure of a harmonic morphism F from a Riemannian
4-manifold M* to a 2-surface N2 near a critical point mg. If mg is an isolated critical point
or if M* is compact without boundary, we show that F is pseudo-holomorphic w.r.t. an
almost Hermitian structure defined in a neighbourhood of mg. If M* is compact without
boundary, the singular fibres of F' are branched minimal surfaces.

In chapter 3, we study examples of harmonic morphisms due to Burel from (S%, gy ;)
into S? where (gi;) is a family of metrics which are conformal to the canonical metric. To
do this construction we define the two maps, F from (S‘ﬂng) to (83,9@) and ¢y, from
(S, gka1) to (S%, can); these two maps are both horizontally conformal and harmonic. The
map P = g, o F'is a harmonic morphism. It follows from Baird-Eells that the regular
fibres of @, for every k,l are minimal. If |k| = || = 1, the set of critical points is given
by the preimage of the north pole : it consists in two 2-spheres meeting transversally at 2
points. If k,1 # 1 the set of critical points are the preimages of the north pole (the same
two spheres as for & = [ = 1 but with multiplicity !) together with the preimage of the
south pole (a torus) with multiplicity k.

Finally, in chapter 4, we investigate a construction by Baird-Ou of harmonic morphisms
from open sets of (S? x S?,can) to a 2-surface S? . We check that they are holomorphic
with respect to one of the four canonical Hermitian complex structures.

Keywords :  Harmonic Morphism, Minimal Surface, Almost Complex Structure.
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Chapter 1

Introduction

1.1 Preliminaries

Here we remind the reader of some important notions around harmonic morphisms that
we needed. We used the book [B-W| and we refer the reader to it for more details.

Given a smooth map ¢ : M — N between manifolds, its differential will be denoted by
d¢ : TM — TN for each x € M, this restricts to a linear mapping dgy : Tp M — Ty N
called the differential at x. In local coordinates (z!,...,2™) on M and (y',...,y™) on N, we
shall write ¢ = y® o ¢ and ¢ = 9¢/dz’ so that

n

do(0/0x") =y 40 /oy (1.1)

a=1

More generally, given bases {X;} and {Y,} of T, M and Ty, N, respectively, we write

d¢x(Xz> = Z¢?Ya' (1'2)
a=1

If N =R, we can identify the differential d¢ with a 1-form on M, which we also denote by
do.

By a (smooth) Riemannian metric g on a (smooth) manifold M we mean a symmetric
positive-definite inner product on each tangent space:

9o T:M xT,M — R, (v,w)— gv,w) (xe€ M, vyweT,M) (1.3)

which varies smoothly with x (i.e., for any smooth vector fields E and F, the function
x +— g(Ey, Fy) is smooth). We shall often use the notation

(v,w) = g(v,w) (1.4)

when the metric is clear from the context. Canonical or standard metrics will often denoted
by can. The corresponding norm will be denoted by |v| = \/(v,v), so that the square norm

13



1.1. PRELIMINARIES

is given by |v|? = (v,v). Later on, we shall find it convenient to extend the complexified

tangent bundle given by T°M = TM ®g C.

For the rest of this section, (M,g) will be a smooth Riemannian manifold.
In local coordinates (z?, ..., 2™) on M we write g = Z gijdz*dz’; thus we have g(dz?, 927) =
i,J
gij- More generally, if {X;} is a frame on M, we write g;; = g(X;, X;). The gradient of a
smooth function f: M — R is the vector field characterized by

g(gradf,E) =df(E) (re M,Ee€T,M) (1.5)

In local coordinates, it has the expression
- Of 0
— ij 2
gradf = Z <g 3$j> EE (1.6)
0.J

where (g*/) is the inverse matrix of (g;;). Welet V.= VM denote the Levi-Civita connection
on M determined by the formula: for any vector fields E,F and G we have

VgF —VpE = [E,F);
E(9(F,G)) = g(VEF,G) + g(F,VEgG). (L.7)

The Levi-Civita connection induces connections on other tensor bundles, e.g., if 8 is a
1-form and E a vector field, Vg6 is the 1-form given by

(Ved)(G) = E(6(G)) = 0(VeG) (G eT(TM)),
i.e. we have the Leibniz product rule

E(0(G)) = (V) (G) + 6(VEG) (G eT(TM).
Equation (1.7) can then written in the form

Vg=0.

Now let ¢ : (M, g) — (N, h) be a smooth map between Riemannian manifolds and let
x € M. The Hilbert-Schmidt norm |d¢,| of its differential at x is defined by

|des|” =D h(dea(e:), dx(es)), (1.8)

=1

where {e;} is an orthonormal basis for T, M.
Define the pull-back ¢*h of the metric h by

¢*h(E, F) = h(dg.(E),do.(F)) (E,F €T, M); (1.9)
then we have
|dée|” = Tred™h = ¢*hles, ;). (1.10)
=1

14



1.2. HARMONIC MAPS AND MINIMAL SURFACES

1.2 Harmonic maps and minimal surfaces

Definition 1. Let ¢ : M — N be a smooth mapping between Riemannian manifolds.
Then ¢ is called a harmonic morphism if, for every harmonic function f :V — R defined
on an open subset V of N with ¢~1(V) non-empty, the composition f o ¢ is harmonic on

o~ H(V)

Thus a harmonic morphism is a smooth map which pulls back (local) harmonic functions
to harmonic functions; equivalently, it pulls back germs of harmonic functions to germs
of harmonic functions. The most obvious examples of harmonic morphisms are constant
maps and isometries.

1.2.1 Horizontally weakly conformal maps

For any smooth map ¢ : (M™,g) — (N™, h) between Riemannian manifolds, and any
regular point x € M, set V, = Ker d¢, and H, = ij_; then V is called the vertical space
and H, the horizontal space of ¢ at x.

Definition 2. Let ¢ : (M™,g) — (N", h) be a smooth map between Riemannian mani-
folds, and let x € M. Then ¢ is called horizontally weakly conformal or semiconformal at
x if either

(1) d¢, = 0,0r

(i3) db, maps the horizontal space H, = {Ker(dpy)}* conformally onto Ty N, i.e., dp,
is surjective and there exists a dilation factor A(x) # 0

such that

h(d¢x(X>7d¢m(Y)) = AQ(x)g(Xv Y) (X,Y € Hx)

Since a horizontally weakly conformal map is a submersion at regular points, we have
the following restriction on dimensions.

Proposition 1. Let ¢ : M — N be a horizontally weakly conformal map. If dimM <
dimN, then ¢ is constant.

1.2.2 Harmonic mappings

1.2.2.1 The Energy

Let (M™,g) and (N", h) be Riemannian manifolds and let ¢ : M — N be a smooth
mapping between them. The energy density of ¢ is the smooth function e(¢) : M — [0, c0)
given by

e(@)e = %Id%\? (z € M), (1.11)

where |d¢,| denotes the Hilbert-Schmidt norm of d¢, defined by (1.8).
Let D be a compact domain of M. The energy of ¢ over D is the integral of its energy

15



1.2. HARMONIC MAPS AND MINIMAL SURFACES

density:

B(6:0) = [ ey, =5 [ 1ol (1.12)

where v, denotes the volume form.

Note that E(¢; D) > 0, with equality if and only if ¢ is constant on D. If M is compact,
we write E(¢) for E(¢p; M).

Let C*°(M, N) denote the space of all smooth maps from M to N. A map ¢ : M — N is
said to be harmonic if it is a critical point of the energy functional E(.; D) : C*°(M,N) —
R for any compact domain D. (If M is compact it suffices to check this for D=M). We now
explain this more fully. By a smooth variation of ¢ we mean a smooth map

¢: M x (—e,€) — N, (x,t) — ¢(x)
(e > 0) such that ¢y = ¢.

Definition 3. A smooth map ¢ : (M,g) — (N, h) is said to be harmonic if

d

d*E(Q%; D)l=0=0 (1.13)
t

for all compact domains D and all smooth variations {¢} of ¢ supported in D.

In order to understand this definition, we will now calculate the left-hand side of (1.13).

1.2.2.2 Tension field

Let M = (M, g) and N = (N, h) be Riemannian manifolds, and suppose that ¢ : M —
N is a smooth mapping between them. The differential d¢ of ¢ can be viewed as a section
of the bundle T*M ® ¢ 'TN = Hom(TM, ¢ 'TN) — M. This bundle has a connection
V induced from the Levi-Civita connection VM of M and the pull-back connection V¢ of
the Levi-Civita connection on N. On applying that connection to d¢, we obtain the second
fundamental form of ¢:

B=Vd¢ cT(T*M OT*M ® ¢ 'TN). (1.14)
Explicitly, for X, Y € T'(TM),
Vdp(X,Y) = V§(d(Y)) — dp(VAY). (1.15)

Now let ¢ : (M,g9) — (N, h) be a smooth map between Riemannian manifolds. On
taking the trace of the second fundamental form, we obtain the following very important
quantity.

Definition 4. The tension field of ¢ is the section 7(¢) € T'(¢"'TN) defined by
7(¢) = TrB = B(¢)(e1, e2) = Ve, dd(e1) + Ve, dd(e2) (1.16)

where {e1,es} is a normal frame on M.

16



1.2. HARMONIC MAPS AND MINIMAL SURFACES

Proposition 2. (First variation of the energy) Let ¢ : M — N be a smooth map and let
{¢:} be a smooth variation of ¢ supported in D. Then

iﬂ@mmo:—/mﬂ@m (1.17)

D

where v(x) = (0pt/0t)(x)|t=0 denotes the variation vector field of {¢:}. Here (.,.) denotes
the pull-back metric on ¢~ TN explicitly, at any point x of D, (v, 7(¢)) = Py (v(2), T(#)z)-

Theorem 1. (Harmonic equation, Fells and Sampson, [Ee-Sam/[) Let ¢ : M — N be a
smooth map. Then ¢ is harmonic if and only if

() = 0. (1.18)

1.2.3 Minimal submanifolds

Let ¢ : M™ — N™ be an isometric immersion. The mean curvature u* of ¢ (or of
the immersed submanifold ¢(M) in N) is defined by

m

pM=—TrB=— ZB(ei,ei) ((e;) an orthonormal frame); (1.19)
i=1

here B denotes the second fundamental form of the immersed submanifold.

Definition 5. Let ¢ : M™ — N be an immersion; then ¢ is minimal if and only if
M _ 0.
Proposition 3. Let ¢ : M — N be an isometric immersion. Then
7(¢) = TrB = (dimM )™ (1.20)
Hence, an isometric immersion 4s harmonic if and only if it is a minimal immersion.

Proof. Let ¢ be an isometric embedding of dimension m.
Since d¢ is an isometry, we can identify an orthonormal frame (e;); of TM with (d¢(e;));
and

(@) => Ve — Ve

It follows that
T(¢) =D Vdd(ei e) = Y Blei,ei)

where B is the second fondamental form.
By definition 5 , 7(¢) = 0 if and only if ¢ is minimal. O

Proposition 4. A conformal immersion ¢ from a Riemannian manifold M of dimension
2 (or conformal surface) is harmonic if and only if its image is minimal.

17
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Proof. Let the metric § = ug, where p is a positive function on M. If (e;) is an orthonormal

basis for g then (\%) is an orthonormal basis for g. The Hilbert-Schmidt norm becomes

1
2 _ 2
|dol = ;Idcb\g,

and the volume form
dvg = pdvg.

Then the energy of ¢ depends only on the conformal class on M. So ¢ is harmonic for all
the metrics on M conformal to g. O

1.2.4 Minimal surfaces and branch points

We now consider maps that are not necessarily immersions. To that effect we recall
some facts on branch points according to [G-O-R]. Let M be a 2-dimensional differential
manifold, and N an n-dimensional differentiable manifold, n > 2. Let ¢ : M — N be a
differential map. For a point p € M, let (u1,u2) be local coordinate around p. In place of
(u1,uz) we shall often use the complex parameter z = uj + ius.

Definition 6. The map ¢ has a branch point at p if there exists an integer m > 2 and local
coordinates ui, ug al p,x1, ..., Ty al G(p) such that the map ¢ expressed in these coordinates
takes the form

x1 +izg = 2" +9(2)
xr = xk(2), k=3,..,n,
where
V(2), x(2) = o([2[™),

99 vk L

More precisely, p is then called a branch point of order m — 1.

Definition 7. A map ¢ from an oriented surface M into a manifold N (of dimension
> 2) is a branched immersion if and only if it is an immersion except at branch points i.e.
where the differential d¢ vanishes and locally it is given by Definition 6.

Notice that the set of branch points is a discrete set.

Proposition 5. (see for example [Gau]) A non-constant conformal harmonic map from a
Riemann surface into a Riemannian manifold is a branched immersion.

Moreover proposition 4 extends to branched immersions. Indeed let ¢ be a branched
minimal immersion. We know that 7(¢) = 0 at regular points. If d¢(z) = 0, then ¢
is a branch point and z is the limit point of regular points, in which case 7(¢), = 0 by
continuity.

18



1.2. HARMONIC MAPS AND MINIMAL SURFACES

Hence ¢ is harmonic if and only if 7(¢) is zero at regular points, and this holds if and only
if ¢ is minimal at regular points.
Going back to definition 6, we see that, in a neighborhood of a branch point

gi/\gw =m?|2)2m ey A ey + o|2|2m D) (1.21)
( where e; = %,i =1,---,n). Thus we can define an oriented 2-plane bundle T'¢ on M

by setting for a point z € M :

i) if z is a regular point of ¢ : (T'¢), := dp(T, M),

ii) if z is a branch point (T'¢), is the oriented plane generated by e; A e2 as in equation
(1.21).

We call it the image tangent bundle of ¢ and denote it T'¢.
At a singular point of ¢, the branching order of this point is the index at this point of the
homomorphism d¢ of T in T'¢.

1.2.5 Harmonic morphisms

Proposition 6. The second fundamental form of the composition of two maps ¢ : M —
N and ¢ : N — P is given by

Vd(y o ¢) = dip(Vde) + Vdiy(de, do). (1.22)

Corollary 1. (Composition law) The tension field of the composition of two maps ¢ :
M — N and ¢ : N — P 1is given by

(¢ 0 ¢) = dip(7(9)) + TrVdi(de, de). (1.23)
Here TrVdiy(de,de) = ZVdd)(dgb(ei), dg(e;)), where {e;} is an orthonormal frame.
i=1

Lemma 1. Let M=(M,g) and N=(N,h) be Riemannian manifolds. A harmonic horizontally
weakly conformal map ¢ : M — N s a harmonic morphism.

Proof. Let f be a harmonic function on an open subset of N. The composition law (Corol-
lary 1) yields
7(f o ¢) = df (7(¢)) + TrVdf(de,de). (1.24)

As ¢ is harmonic, the first term vanishes. Let (e;) be orthonormal basis on M consisting of
vertical and horizontal vectors. If e; is a vertical vector then d¢(e;) = 0. For the horizontal
vectors e;, (d¢(e;)) is an orthogonal basis of TN consisting of vectors of the same norm.
Then

7(f o ¢) = N2 Trvdf = N7 (f). (1.25)
It follows that, if f is harmonic, so is f o ¢. Hence ¢ is harmonic morphism. O

Theorem 2. (Characterization; [Ful, [Is][) A smooth map ¢ : M — N between Rienman-
nian manifolds is a harmonic morphism if and only if ¢ is both harmonic and horizontally
weakly conformal.
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1.2. HARMONIC MAPS AND MINIMAL SURFACES

1.2.6 The mean curvature of the fibres

We now relate the tension field of a horizontally conformal submersion to the mean
curvature of its fibres and the horizontal gradient of its dilation.

Proposition 7. (Fundamental equation) Let ¢ : M™ — N™ be a smooth horizontally
conformal submersion between Riemannian manifolds of dimensions m,n > 1. Let X :
M — (0,00) denote the dilation of ¢. Then the tension field of ¢ is given by

T(¢) = —(n — 2)dp(grad InX) — (m — n)dp(u”) (1.26)

We shall call (1.26) the fundamental equation (for the tension field of a horizontally con-
formal submersion).

Theorem 3. (Baird and Eells 1981) Let ¢ : M™ — N™ be a smooth non-constant
horizontally weakly conformal map between Riemannian manifolds of dimensions m,n >
1. Then ¢ is harmonic, and so a harmonic morphism, if and only if, at every reqular point,
the mean curvature vector field ¥ of the fibres and the gradient of the dilation \ of ¢ are
related by

(n—2)9H(grad In\) + (m —n)u” =0, (1.27)

where § is the horizontal component on the horizontal space.
In particular, if n=2, then ¢ is harmonic, and so a harmonic morphism, if and only if, at
every reqular point, the fibres of ¢ are minimal.
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Chapter 2

On harmonic morphisms from
4-manifolds to Riemann surfaces and
local almost Hermitian structures

We investigate the structure of a harmonic morphism F' from a Riemannian 4-manifold
M* to a 2-surface N? near a critical point mg. If mg is an isolated critical point or if
M* is compact without boundary, we show that F is pseudo-holomorphic w.r.t. an almost
Hermitian structure defined in a neighbourhood of my.

If M* is compact without boundary, the singular fibres of F' are branched minimal surfaces.

2.1 Introduction

2.1.1 Background

A harmonic morphism F' : M — N between two Riemannian manifolds (M, g) and
(N, h) is a map which pulls back local harmonic functions on N to local harmonic functions
on M. Although harmonic morphisms can be traced back to Jacobi, their study in modern
times was initiated by Fuglede and Ishihara who characterized them using the notion of
horizontal weak conformality, or semiconformality:

Definition 8. (see [B-W] p.46) Let F' : (M,g) — (N,h) be a smooth map between
Riemannian manifolds and let © € M. Then F is called horizontally weakly conformal at
x if either

1) dF, =0

2) dF, maps the space Ker(dF,)*t conformally onto Trz)N, i.e. there exists a number
Az) called the dilation of F' at x such that

VX,Y € Ker(dF,)", h(dF,(X),dF,(X)) = A2 (2)g(X,Y).
The space Ker(dF,) (resp. Ker(dF,)") is called the vertical (resp. horizontal) space at x.
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2.1. INTRODUCTION

Fuglede and Ishihara proved independently

Theorem 4. ([Ful,[Is]) Let F : (M,g) — (N, h) be a smooth map between Riemannian
manifolds. The following two statements are equivalent:

1) For every harmonic function f :V — R defined on an open set V' of N, the function
f o F defined on the open set F~Y(V) of M is harmonic.

2) The map F is harmonic and horizontally weakly conformal.

Such a map is called a harmonic morphism.

When the target is 2-dimensional, Baird and Eells proved

Theorem 5. ([B-E]) Let F : (M™,g) — (N?% h) be a smooth nonconstant horizon-
tally weakly conformal map between a Riemannian manifold (M™,g) and a Riemannian
2-surface (N2,h). Then F is harmonic (hence a harmonic morphism) if and only if the
fibres of F' at regular points are minimal submanifolds of M.

It follows from Th.5 that holomorphic maps from a K&hler manifold to a Riemann sur-

face are harmonic morphisms; this raises the question of the interaction between harmonic
morphisms to surfaces and holomorphic maps. John Wood studied harmonic morphisms
F : M* — N? from an Einstein 4-manifold M* to a Riemann surface N2 and exhibited an
integrable Hermitian structure J on the regular points of F' w.r.t. which F' is holomorphic
(|Wo|). He extended J to some of the critical points of F' and the M. Ville extended it to
all critical points ([Vil]).
By contrast, Burel constructed many harmonic morphisms from S* to S?, for non-canonical
metrics on S* ([Bu]); he was building upon previous constructions on product of spheres
by Baird and Ou ([B-O]). Yet it is well-known that S* does not admit any global almost
complex structure (see for example [St| p.217).

2.1.2 The results

In the present paper, we continue along the lines of [Wo| and |Vil| and investigate the
case of a harmonic morphism F : M* — N? from a general Riemannian 4-manifold M*
to a 2-surface N2. In [Wo] the integrability of .J follows from the Einstein condition so we
cannot expect to derive an integrable Hermitian structure in the general case. Could F' be
pseudo-holomorphic w.r.t. some almost Hermitian structure J on M*? Burel’s example on
S* tells us that we cannot in general expect J to be defined on all of M*: the most we can
expect is for F' to be pseudo-holomorphic w.r.t. a local almost Hermitian structure. We
feel that this should be true in general; however, we only are able to prove it in two cases:

Theorem 6. Let (M*,g) be a Riemannian 4-manifold, let (N2, h) be a Riemannian 2-
surface and let F' : M* — N? be a harmonic morphism. Consider a critical point mg in
M* and assume that one of the following assertions is true

1) mg 1is an isolated critical point of F

OR

2) (M*,g) is compact without boundary (and mg need not be isolated).

Then there exists an almost Hermitian structure J defined in a neighbourhood of mg w.r.1.
which F is pseudo-holomorphic.
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NB. The pseudo-holomorphicity of F means: if m € M* and X € T}, M*,
dF(JX)=jodF(X)
where j denotes the complex structure on N2.

Th.6 enables us to use the work of [McD] and [M-W] on pseudo-holomorphic curves to
study singularities: the local topology of a singularity of a fibre of F' is the same as the
local topology of a singular complex curve in C2.

We derive from the proof of Th. 6

Corollary 2. Let ' : M* — N? be a harmonic morphism from a compact Riemannian
4-manifold without boundary to a Riemann surface and let uy be a singular value of F.
Then the preimage F~1(ug) is a (possibly branched) minimal surface.

If the manifold M* is Einstein, the Hermitian structure constructed by Wood is parallel
on the fibres of the harmonic morphism and has a fixed orientation. In the general case,
around regular points of F', there are two local almost Hermitian structures making F
pseudo-holomorphic; they have opposite orientations and we denote them Jy and J_. We
follow Wood’s computation without assuming M* to be Einstein and get a a bound on the
product of the [|[VJyi|’s (we had hoped for a local bound on one of the ||VJi|’s):

Proposition 8. Let (M*,g) be a Riemannian 4-manifold, let (N2 h) be a Riemannian
2-surface and let F' : M* — N? be a harmonic morphism. We denote by j the complex
structure on N2 compatible with the metric and orientation. For a regular point m of F,
we let J (resp. J_) be the almost complex structure on M* such that

i) J4 and J_ preserve the metric g

i) Jy (resp. J_) preserves (resp. reverses) the orientation on Ty, M*

ii) the map dF : (T,,M*, J1) — (N?,7) is complez-linear.

Let K be a compact subset of M*: there exists a constant A such that, for every regqular
point m of M* in K and every unit vertical tangent vector T at m,

Ve T IV < A

where ¥V denotes the connection induced by the Levi-Civita connection on M*.

2.1.3 Sketch of the paper

In §2.2, we recall that the lowest order term of the Taylor development at a critical
point of F'is a homogeneous holomorphic polynomial; we use it to control one of the two
local pseudo-Hermitian structures for which F' is pseudo-holomorphic at regular points
close to mg. We express this in the Main Lemma (§2.2.3) and the first case of Th.6 follows
almost immediately (§2.3).

In §2.4 we prove second case of Th. 6 using the twistor constructions of Eells and Sala-
mon ([Ee-Sal]): the twistor space Z(M?*) is a 2-sphere bundle above M* endowed with
an almost complex structure J and the regular fibres of F' lift to J-holomorphic curves
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in Z(M*). The assumptions of the second case of Th. 6 enable us to prove that these
curves have bounded area so we can use Gromov’s compacity theorem: as we approach
my, the lifts of the regular fibres of F in each of the two twistor spaces of M* converge to a
J-holomorphic curve. The Main Lemma 2.2 enables us to pick one of the two orientations
so that the limit curve has no vertical component near mg: near my, it is the lift of the
fibre of F' containing mg. This is the key point in the proof of Th. 6 2).

In §2.5, we prove Prop 8 using an identity which Wood established to prove the supermin-
imality of the fibres in the Einstein case.

For background and detailed information about harmonic morphisms, we refer the reader
to [B-W].
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2.2 The main lemma

2.2.1 The almost complex structure at regular points

A REMARK ABOUT THE NOTATION. If m is a point in M*, we denote by |m| the
distance of m to mgy. We introduce several constants, which we number C,...,C1,...; they
all have the same goal which is to say that one quantity or another is a O(|m|), so the
reader in a hurry can ignore the indices and think of a single constant C.

Let m be a regular point of F in M*; as we mentioned above in Def.8, the tangent space
of M* at a regular point m of F splits as follows:

TM* =V, ® Hp, (2.1)
where the vertical space V;, is the space tangent at m to the fibre F~1(F(m)) and the
horizontal space H,, is the orthogonal complement of V,, in T,,, M 4,

2.2.2 The symbol and its extension in a neighbourhood of a critical point

We use the notations of Th.6 and we let mg be a critical point of F. We denote by k,
k > 1, the order of F' at mg; namely, if (x;) is a coordinate system centered at mg, mg
being identified with (0, ...,0), we have
1) for every multi-index I = {iy,...,i4} with [I| < k-1, |I| = Z?Zl i < k-1,

oM F

Gy fiimg O 0 =0
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2.2. THE MAIN LEMMA

2) there exists a multi-index J = {ji, ..., ja} with |J| = k such that

oFF
Olgy...004xy

(0,...,0) #0
The lowest order term of the Taylor development of F' at mg is a homogeneous polynomial
Pg : Tm0M4 — TF(mO)N2

of degree k called the symbol of F' at mg. Fuglede showed (|Fu|) that Py is a harmonic
morphism between T,,, M* and T F(mo) NV 2. it follows from [Wo| that P is a holomorphic
polynomial of degree k for some orthogonal complex structure Jy on Ty, M*.

REMARK. The complex structure Jy is not always uniquely defined as the following two
examples illustrate:

1) Py(z1,22) = z122: Jy is uniquely defined

2) Py(z1,22) = 23: there are two possible Jy’s with opposite orientations.

2.2.3 The main lemma

We identify a neighbourhood U of mg with a ball in R, the point mg being identified
with the origin and we let (x;) be a system of normal coordinates in U. We pick these
coordinates so that, at the point mg, we have

0 0 0 0

Tl F T v 22

We extend Jy in U by requiring (2.2) to be verified for all points in U. Of course Jy does
not necessarily preserve the metric outside of mg, nevertheless there exists a constant Cy
such that, for a vector X tangent at a point m

| < JoX,JoX > — < X, X > | < Colm|?|X|? | < JoX,X >|<Colm|?|X|? (2.3)

We identify a neighbourhood of F'(mg) with a disk in C centered at the origin, with F'(mq)
identified with 0. We also extend Py in U by setting

P:U—C
P(xy,...,xq) = Py(x1 +izo, 23 + ixy).
It is clear that for me U and i =1, ..., 4

opP (m) = P,
81‘i - 8l‘z

(x(m))

hence P is Jp-holomorphic.

Main Lemma 1. Let M* be a Riemannian 4-manifold, N? o Riemannian 2-surface and
F: M* — N? a harmonic morphism. We consider a critical point mg of F which we do
not assume isolated. We denote by Py the symbol of F' alt mg, assumed to be holomorphic for
a parallel Hermitian complex structure Jy on Ty, M* and we extend Jo to a neighbourhood
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2.2. THE MAIN LEMMA

of mg as explained above.

In a neighbourhood U of mg, there exists an almost Hermitian structure J continuously
defined on the regular points of F' in U such that

1) J has the same orientation as Jy

2) F is pseudo-holomorphic w.r.t. J.

Moreover, for o point m in U

|J(m) — Jo(m)| < Cs|m|
for some positive constant Cs independent of m.
Proof. We let ¥ = F' — P. By definition of the symbol of F, there exist Cy, Cs such that
VYm e U,VX € T, M|¥(m)| < Cqlm[**L,  [d¥(m)(X)| < Cs|m|*|| X| (2.4)

We let (e1,€2) be a local positive orthonormal basis of N? in a neighbourhood of ug :=
F(myg). Denoting by j the complex structure on N2, we have

€9 = j61 (2.5)
If m is a regular point of F', we define two unit orthogonal vectors ey, es in H,, such that
dF(el) = /\(m)el dF(eg) = )\(m)EQ (26)

where A(m) denotes the dilation of F' at m (see Def.8 and |[B-W| pp. 46-47).
Next we pick an orthonormal basis (es,eq) of V;,, in a way that (e, es,es,e4) is of the
orientation defined by Jy. We define the almost complex structure J by setting

Jei=ey Jez=ey (2.7)
We first show that Jye; is close to es; we set
Joer = aey + beg +v (2.8)

where a,b € R and v € V,,,.
Since a =< Jpey,e1 >, we get from (2.3)

la| < Ca|m|? (2.9)
Next we compute dF(Joey):
dF(Jgel) = dP(Joel) + d\I/(Joel) = de(el) + d\I/(Joel)

= de(el) — jd\I/(el) + d\I/(Joel) (2.10)
On the other hand, it follows from (2.8) that

dF(Joel) = adF(el) + bdF(eg)

= adF(e1) + jbdF (e1) (2.11)
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2.2. THE MAIN LEMMA

by definition of e; and ez (see (2.6)).
Putting (2.10) and (2.11) together, we get

Jj(1— b)dF(el) = adF(el) —i—jd\II(61) — d\I/(Joel)
and using (2.6), we derive
|1 — b|A(m) = |adF(e1) + jd¥(e1) — d¥(Joer)| (2.12)

We already know that the right-hand side of (2.12) is a O(Jm|*); in order to show that
|1 —b| is a O(|m|), we need to bound A(m) below.

Lemma 2. There exists a Cg > 0 such that, for m small enough,
A(m) > Cglm|*~!
Proof. First we notice that

A(m) = sup |dF(m)X|| (2.13)
X €T M4,||X||=1

Indeed, take a vector X € T,,M with || X|| = 1. We split it into X = X, + X} with X,
vertical and X}, horizontal. Then || X,||? + || X#|> = 1 and

[dE (m) X = |dF(m) Xn[| = A(m) | Xa] < A(m).
Since Py is of degree k, there exists C'7 such that for m small enough

sup |dP(m)X]|| > C’7|m\k_1.
X €T M4,[|X||=1

It follows that, for m € U and X € T,,, M* with || X|| = 1, we have
ldE(m)X]| = [[dP(m)X + d¥(m)X]| > ||dP(m)X]| — [|[d¥(m)X]|
> Cr|m|*~" — C5|m/*
We take m small enough so that C5|m| < % and the lemma follows by taking Cg = % O
It follows from (2.12) and from Lemma 2 that
|b— 1| < Co|m)| (2.14)

for m small enough and some constant Cy.
To estimate ||v||, we use (2.3) to write for m small enough

Il Joex]l® = 1] = |a? + b + [[o]|* — 1] < C2|m/? (2.15)

Hence
|v||* < Co|m|? + a® + |b* — 1]
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and it follows from (2.9) and (2.14) that

Jo]] < Cra|m| (2.16)
for some positive constant C1y.
We can now conclude. Since
[Jer — Joer|| = llez — Joer | < la| + [b— 1] + vl

|Jexr — Joei|l is a O(|m]); similarly for ||Jea — Joez||.

We now prove that ||Jes — Joes|| is a O(]m|): there are no new ideas so we skip the
details. We write

Joez = aey + PBes + yes + dey

Since (e;) is an orthonormal basis,
la| = | < Joez,e1 > | < | < Joer, ez > |+ Com|?

using (2.3); it follows from the estimates above for Jpe; that « (and for the same reason
B) is a O(|m|).
We also derive from (2.3) that

| = | < Joes, ez > | < Ca|m/|?
Now that we know that a, 8 and v are O(|m|?)’s, we focus on § and derive from (2.3)
|0® + 8% + % + 62 — 1] = ||| Joes||* — 1| < Cofm/?

It follows that |62 — 1] is an O(|m|?), hence § is either close to 1 or to —1: let us prove that
d is positive, using orientation arguments.

In a neighbourhood of m, we identify A*(M) with R so we can talk of signs of 4-vectors.
If we denote by * the Hodge star operator, the sign of e; A Jype1 A *x(e1 A Joer) gives us the
orientation of Jy hence, by our assumption, it is of the same sign as e; Aea AegAeq. We have
seen that, close to m, Jpey is close to ey, hence e; A Jye; Ax(eg AJper) and eg AJper AesAJpes
have the same sign; this latter 4-vector has the same sign as de; A ea A ez A eq. It follows
that § is positive.

Hence ||Joes — Jes|| is a O(|m|) and so is ||Jopeq — Jey||, by identical arguments; this
concludes the proof of the Main Lemma. O

2.3 Proof of Th.6 1): an isolated critical point

If myg is an isolated critical point, the almost complex structure J given by the Main
Lemma is defined in U\{mg} where U is a neighbourhood of mg. At the point mg, we put
J(mg) = Jp and the Main Lemma tells us that the resulting almost complex structure is
continuous.
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2.4 Proof of Th.6 2):M is compact without boundary

2.4.1 Background: twistor spaces

We give here a brief sketch of Eells-Salamon’s work with twistors ([Ee-Sall); the reader
can find a more detailed exposition in Chap. 7 of [B-W].
The twistor space ZT(M*) (resp. Z~(M*)) of an oriented Riemannian 4-manifold (M4, g)
is the 2-sphere bundle defined as follows: a point in ZT(M*) (resp. Z~(M*)) is of the form
(Jo, mo) where myg is a point in M* and Jy is an orthogonal complex structure on Ty, M*
which preserves (resp. reverses) the orientation on T,,M*. The twistor spaces Z*(M%*)
admit the following almost complex structures Jy.
We split the tangent space T(JO7mO)Zi(M4) into a horizontal space Hj, m,) and a vertical
space V(,.mg)- Since Hy, m,) 1s naturally identified with TonoM*, we define Jy on H(Jo,mo)
as the pull-back of Jy from T,,,, M*; the fibre above my is an oriented 2-sphere so we define
Jx on V(j, me) as the opposite of the canonical complex structure on this 2-sphere. If
S is an oriented 2-surface in M4, it has a natural lift inside the twistor spaces: a point
p in S lifts to the point (J,,p) in ZT(M*?) (resp. Z~(M*?)), where J, is the orthogonal
complex structure on 1), M 4 which preserves (resp. reverses) the orientation and for which
the oriented plane 7,5 is an oriented complex line.
Jim Eells and Simon Salamon proved

Theorem 7. ([Ee-Sal]) Let (M*,g) be a Riemannian 4-manifold. A minimal surface in
M* lifts into a Jy-holomorphic (resp. J_-holomorphic) curve in Z+(M*) (resp. Z—(M*)).
Conwersely, every non vertical Jy-holomorphic curve in Z=(M?) is the lift of a minimal
surface in M*.

2.4.2 Convergence of the twistor lifts of regular fibres

We assume M*? to be oriented: Th.6 is local so if M* is not oriented, we endow a ball
centered at mgo with an orientation given by the complex structure Jy on T, M* defined
by the symbol (see §2.2.2). From now on we drop the superscript + and we write Z(M?)
for Z+(M*).

We denote uy = F(mg) and we let (u,,) be a sequence of regular values of F' which converges
to ug. The preimages of the u,’s are smooth compact closed 2-submanifolds of M*. For
every positive integer n, we let

Sy = F~ up).

Lemma 3. The S,,’s all have the same area.

Proof. The singular values of F' are discrete so we can assume that the 5,’s are all deforma-
tion of one another; moreover they are all minimal. It follows from the formula for the first
variation of area that if (X;), ¢t € [0, 1], is a family of minimal surfaces without boundary
in a compact manifold, %£area(;) = 0, hence area(%;) is constant, for ¢ € [0, 1]. O

We denote by S, the lift of S,, into Z+(M*): Th. 7 tells us that they are J-holomorphic
curves. Moreover we have
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Lemma 4. There exists a constant C' such that, for every positive integer n,

area(S,) < C.

Proof. We parametrize the S,’s by maps
Yot Sp — Sp

We let (e1,e2) be an orthonormal basis of the tangent bundle 7'S,, and we denote by €1, é;
their lift in Z(M*). For i = 1,2, we split & into vertical and horizontal components,

e =el e
We write the area element of S’n:
. ~h A =h “h A s ~v A =h SV A 5
l[éx A éal| < [ley Aégll + ller Aésll + [ler A ezl + e A el (2.17)

Integrating (2.17) and using Cauchy-Schwarz inequality, we get

area(gn) < area(Sy) + 2\/area(Sn)1 // |Vl —|—/ HV’ynH2
Sh Sn

where V denote the connection on Z(M*) induced by the Levi-Civita connection on M*.

Lemma 5. There exists a constant A such that, for every positive n

/ Va2 < A

n

Proof. We need to introduce a few notations to give a formula for the integral in Lemma
5. For every n, we let NS, be the normal bundle of S,, in M* and we endow it with a local
orthonormal basis (e3, e4). We denote by R the curvature tensor of (M?, g) and we put

O =< R(ey, ez)er, ea > oV =< R(e1,ez)es, eq >

Finally we let ¢1(NS,,) be the degree of NS, i.e. the integral of its 1st Chern class; it
changes sign with the orientation of M“. Note that other authors (e.g. [C-T|) denote it by
X(NS,,), by analogy with the Euler characteristic.

We denote by dA the area element of S,, and we derive from [C-T] (see also [Vi 2])
1/W%W:—ﬂ&}ﬂﬂN&%ﬂ/Q%A+ QNdA (2.18)
2J8 Sn Sn

The critical values of F' are isolated, hence the regular fibres all have the same homotopy

type and the same homology class [S,] in Ho(M*,Z). In particular, |x(S,)| does not

depend on n. The S,’s are embedded hence ¢1(NS,) is equal to the self-intersection
number [S,].[S,] which does not depend on n either.

Since M* is compact, the expression | < R(u,v)w,t > | has an upper bound for all the

4-uples of unit vectors (u,v,w,t). It follows that the integrals in Q7 and Q¥ in (2.18) have

a common bound in absolute value.

In conclusion, all the terms in the RHS of (2.18) are bounded in absolute value uniformely

in n. O
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Lemma 4 follows immediately. O

Thus the S),’s are J-holomorphic curves of bounded area in Z (M*): Gromov’s result
(|Gro]) ensures that they admit a subsequence which converges in the sense of cusp-curves
to a J-holomorphic curve C.

Lemma 6. We denote by 7 : Z(M*) — M* the natural projection. Then
7(C) = F~ Y (ug).

Proof. The map 7 o F' is continuous, so it is clear that 7(C) C F~!(ug).
To prove the reverse inclusion, we take a point p € F~1(ug) and we claim

Claim 1. There exists a subsequence (uy(y,)) of (un) and a sequence of points (pn) of M4
converging to p with

F<pn> = Us(n)

for every positive integer n.

Indeed, if Claim 1 was not true, we would have the following

Claim 2. Je > 0 such that ¥n € N* and Vm € M* with F(m) = u,, we have

d(m,p) > e.

If Claim 2 was true, the set F'(B(p,¢)) would contain uy but would not be a neigh-
bourhood of ug, a contradiction of the fact that a harmonic morphism is open ([Ful,[B-W]
p.112).

So Claim 1 is true: if we denote by (J,, p,) the pullback of the p,’s in the twistor lifts Sn,
they admit a subsequence which converges to a point (j ,p), for some J in the twistor fibre
above p. Clearly (j,p) belongs to C', hence p belongs to 7(C) and Lemma 6 is proved. [J

Their are a finite number of points py, ..., pr, € M* and positive integers qx, ..., g such
that the curve C' can be written

k
C=T+> wZy, (2.19)
=1

where I' is a J-holomorphic curve with no vertical components and the Z,,’s are the twistor
fibres above the p;’s. It follows from Lemma 6 that

(D) = F~(up).

We derive that F'~!(ug) is a minimal surface possibly with branched points and having T
as its twistor lift.

Note that the presence of twistor fibres in (2.19) is to be expected: when a sequence of
smooth minimal surfaces converges to a minimal surface with singularities, its twistor lifts
can experience bubbling off of twistor fibres above singular points (see [Vi2] for a more
detailed discussion of this phenomenon). However, in the present case, the Main Lemma
excludes such bubbling-off in a neighbourhood of my:
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Lemma 7. There exists an € > 0 such that, if p; is one of the points appearing in (2.19),
dist(mo,p;) > €

Proof. Since the p;’s are finite in number, it is enough to prove that mg is not one of them.
The almost complex structure Jy appearing in the Main Lemma does not necessarily pre-
serve the metric outside of mg; so we introduce the bundle C of all the complex structures
on TM* which preserve the orientation. It contains the bundle Z (M%) and embeds into the
bundle GL(TM*). We denote by d¢ the distance on C induced by the metric on GL(TM*)
and by dj4 the distance in M* and we prove :

Lemma 8. Ve >0 37>0  such that
dyga(m,mo) <1 = de[(J(m),m), (Jo,mo)] < €
Proof. dc[(.J(m),m), (Jo,mo)]
< de[(J(m),m), (Jo(m), m)] + de[(Jo(m), m), (Jo, mo)] (2.20)

We bound the first term in (2.20) using the Main Lemma; the second term is bounded
because Jy : U — C is continuous. ]

If m is a regular point of F', we denote by v(m) the point above m in the twistor lift
of F~Y(F(m)); in the Main Lemma, we defined the almost complex structure J(m). The
tangent plane to the fibre at m is a complex line for both v(m) and J(m); since v(m) and
J(m) both preserve the orientation, it follows that v(m) = £J(m). We can get rid of the
+ by a connectivity argument and derive an s € {—1, 41} such that for every regular point
m of F near my,

v(m) = sJ(m) (2.21)

We rewrite Lemma 8: Ve >0 3np >0 such that for a regular point m,
dyr(m,mo) < n = de[(y(m),m), (sJy, mg)] < e (2.22)

If the whole twistor fibre Z,,,M* was included in C, it would be in the closure of the union
of the twistor lifts of the regular fibres of F' in a neighbourhood of mg: we see from (2.22)
that this is impossible. This concludes the proof of Lemma 7. 0

2.4.3 Construction of the almost complex structure

We now construct a local section of Z(M*), for which F is holomorphic. As in [Vil],

we work first on the space P(Z(M*?)) obtained by taking the quotient of each twistor fibre
by its antipody; if J is an element of Z(M*?), we denote by J its image in P(Z(M*?)).
If m is a regular point of F', there are 2 complex structures, J; and Ja, on Ty, M* for which
the unoriented planes V,,, and H,, are complex lines. These two complex structures verify
J1 = —Ja, hence they define the same point, denoted J(m), in P(Z,,(M*)). To extend this
section of P(Z(M*)) above F~1(ug), we state
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Lemma 9. There exists an € > 0 such that every m € B(mg,€) N F~(ug) has either a
single pretmage in I or exactly two antipodal preimages in I.

Proof. We let € be a number satisfying Lemma 7 and we pick m € B(mg,€) N F~(ug).
Since, by defnition, I" has no vertical component it meets Z,,,(M*) at a discrete number of
points. Let us assume that J; and J; are two different elements of I'N Z,,, (M 4). There exist
two non vertical possibly branched disks A; and Ag in I' containing (J;,m) and (J2,m)
respectively. Each one of the two A;’s is the twistor lift of a (possibly branched) disk D; of
F~Y(up). The disks Dy and Do meet at m: if they have different tangent planes at m, this
implies that m is a singular point of F~1(ug). Since F~!(ug) is a closed minimal surface,
its singular points are discrete so we can make € small enough so that there is no singular
point in F'~1(ug) N B(mo, €) except for possibly mq.

So we assume that my is a singular point of F'~!(ug). Because the symbol is .Jp holomorphic,
all planes tangent to mq at F~'(ug) are Jo-complex lines and it follows that J; = —Jo =
+Jo. O

We denote by T' the projection of T' in P(Z(M*)) and by J the local section of T' given
by Lemma 9.

Lemma 10. There exists a small € > 0 such that the map
B(mo, ) — P(Z(M*))
m— J(m)

18 continuous.

Proof. Since J is continuous above U\F~!(ug), we consider a sequence of points (p,) in
M* converging to a py with F(pg) = ug. It is enough to the consider two cases

1st case: all the F(p,)’s are regular values

2nd case: for every n, F(p,) = up.

If (pn) is a general sequence, we extract subsequences of the form 1) or 2).

1st case - For every n, v, = F(py) is a regular value of F.

i) First assume that u, = v, for every n. Since T' is the limit of the twistor lifts of the
F~Y(uy) the sequence (J(py), pn) converges to a point (K, pp) in I'; Lemma 9 ensures that
K = J(po)-

ii) In the general case, the v,’s converge to ug so we can proceed with the v,’s as we did
with the u,’s and derive that the twistor lifts of the F~!(v,)’s converge in the sense of
Gromov to the twistor lift of F~1(ug) and conclude as in i).

2nd case For every n, F(p,) = ug. We denote by 7 the natural projection from P(Z(M*))
to M*. Lemma 9 ensures that 7 restricts to a continuous bijection from I'N&~*(B(mo, §))
to F~1(ug)NB(mo, §); since these spaces are compact and Hausdorff, a continuous bijection
between them is a homeomorphism (see for example [Han| p. 45). It follows that, if the
pp’s converge to po, their preimages in I' converge to the preimage of pg; in other words,
the J(p,)’s converge to J(pog). O

We conclude as in [Vil]. We lift J above the set of regular points by taking for J
the one complex structure on 7,,M which renders dF' holomorphic at that point - this
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requirement defines it uniquely on the horizontal space H,, and since, the orientation of J
is given, there is also a unique possibility for J on V,,. By the same argument as in [Vil],
this extends to the entire B(my,€).

This concludes the proof of Th.6

2.5 Proof of Prop. 8

We begin by reproducing part of Wood’s arguments (|[Wol).
We let m be a regular point of F' and we denote by V;,, (resp. H,,) the vertical (resp.
horizontal) space at m. We let SoV,, be the set of symmetric trace-free homomorphisms
of V,, and we define the Weingarten map

A:Hm —)S()Vm

X = (U VEX)

where VEX denotes the vertical projection of Vi X.

At a regular point m, we denote by .J, (resp. J_) the Hermitian structure on T}, M*
w.r.t. which dF : T,,M* — TrmyN 2 is C-linear and which preserves (resp. reverses)
the orientation on T, M*. If M* is Einstein, Wood proves in Prop. 3.2 that all horizontal
vectors X verify

PAo A(JeX) = J(*Ao A)(X).

If M* is not Einstein, we follow his proof to derive the existence of Cy; such that, for every
unit horizontal vector X tangent to a regular point of F' in K,

[FA0 A(JLX) — Jr(*Ao A)(X)| < C1y (2.23)

We now put T' = e; and we complete it into an orthonormal basis (e1, e2) of V;,,; we pick
an orthonormal basis (es, eq) of Hy, such that the almost complex structures verify

ea=Jrer =—J_e; es = Jies = J_e3 (2.24)

We let F1 and Es be the following elements of SoV,, defined by their matrices in the base

(e1, e2).
-0 h) m=()

We write the matrix of A in the bases (e3,eq4) and (Eq, Es)
a b
=)

a=—<Veee3> b=— < Ve, es> (2.25)

where

c=—<Vee3> d=—<Veees> (2.26)
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The homomorphisms J; and J_ coincide on the basis (e3, e4) (see (2.24)); we compute

: o _ 2(ab + cd) b2+ d? — (a® + %)
(Ao Ay = Js((Aod) = <b2+d2 (@t —2abted)
and we derive from (2.23)
lab + cd| < C1y b? +d* — (a®> + )| < Cy (2.27)

We take J to be Jy or J_ and we write the Euclidean norm

Ve, JI?P = D < (Ve,J)ei e >° (2.28)
i,j=1,...,4
= Z (< Vel(Jei),ej > — < JVelei,ej >)2 (2.29)
i,j=1,...,4
= Y (Ve e >+ < Veei, Jej >)? (2.30)
i,j=1,...,4

It is enough to take e; vertical and e; horizontal in (2.30):

Lemma 11. |V, J|? =2 > (< Ve, (Jei), ¢ > + < Veei, Jej >)%.
1<i<2
34
Proof. 1f e; and e; are both horizontal or both vertical, Prop. 2.5.16 i) of [B-W] yields
< Ve (Jei),ej >=< IV, €5,e5 > (2.31)

Note that Baird-Wood’s Prop. 2.5.16 is about horizontal vectors, but its proof works
identically for vertical vectors.
Assume now that e; is horizontal and e; is vertical:

< Vel(Jei),ej > 4+ < Ve, €, J@j >=— < Jey, Velej > — < €5, Ve (Jej) > (2.32)
Putting together (2.30), (2.31) and (2.32) completes the proof of Lemma 11. O

We use the values given for the Ji in (2.24) to derive

1
§”V61Jﬂ:H2 = (£ < Ve e2,e3 >+ < Vg e1,eq >)2

(£ < Ve, eg,e4 > — < Vg e1,e3 >)?

(£ < Veer,e3 > — < Ve, e,e4 >)?
+(£ < Ve e, eq > + < Ve, e, 63 >)? (2.33)

We rewrite (2.33) in terms of the coefficients a, b, ¢, d of the matrix A introduced above
(see (2.25) and (2.26)); we get after a short computation

Ve, I |12 = 4(a — d)2 + (b+ ¢)?] = 4[a2 + b + 2 + d2 — 2(ad — bc)] (2.34)
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Ve, J_||? = 4[(a + d)® + (b — ¢)?] = 4[a® + b + & + d® + 2(ad — bc)] (2.35)

hence
Ve, It [P IV ey J-|1? = 16[(a* + b + ¢* + d*)* — 4(ad — be)?] (2.36)

We now bound (2.36) using (2.27). To this effect we put
a=Ricos@ c=Rysinf b=LRocosa d= Rysina (2.37)

and we rewrite (2.36) as

1
TGHVethZHVelJ—HQ = (R} + R3)? — 4R{R3sin*(0 — a) (2.38)
= (R? + R3)? — 4R?R3 + 4R?R3 cos*(0 — a) (2.39)

= (R? — R%)? + 4R?R% cos*(0 — a) (2.40)

We now rewrite (2.27) as
|R1 Ry cos(f — a)| < Cyy |R? — R3] < Cpy (2.41)

and this allows us to bound (2.40) and conclude the proof of of Prop. 8.

36



Chapter 3

Harmonic morphisms on S*

In this paper we study examples of harmonic morphisms due to Burel from (84, Gk,l)
into S? where (gx,;) is a family of conformal metrics on S*. To do this construction we
define two maps, F from (S*, gx ;) to (S, gk,) and ¢y from (S3, gk;) to (S?, can); the two
maps are both horizontally conformal and harmonic. Let ®;; = ¢ o F'. It follows from
Baird-Eells that the regular fibres of ®j; for every k, [ are minimal. If |k| = [I| = 1, the set
of critical points is given by the preimage of the north pole : it consists in two 2-spheres
meeting transversally at 2 points. If k,1 # 1 the set of critical points are the preimages
of the north pole (the same two spheres as for k = = 1 but with multiplicity /) together
with the preimage of the south pole (a torus with multiplicity k).

3.1 Introduction

A harmonic morphism F : M — N between two Riemannian manifolds (M, g) and
(N, g) is a map which pulls back local harmonic functions on N to local harmonic functions
on M. Although harmonic morphisms can be traced back to Jacobi, their study in modern
times was initiated by Fuglede and Ishihara who characterized them using the notion of
horizontal weak conformality, or semiconformality:

Definition 9. (see [B-W] p.46)

Let F : (M,g) — (N,h) be a smooth map between Riemannian manifolds and let
x € M. Then F is called horizontally weakly conformal at x if either

1) dF, =0

2) dF, maps the space Ker(dF,)* conformally onto Tpo) N, i.e. there exists a number A(z)
called the dilation of F at x such that

VX,Y € Ker(dF,)", h(dF,(X),dF, (X)) = M (2)g(X,Y).
The space Ker(dF,) (resp. Ker(dF,)"') is called the vertical (resp. horizontal) space at x.
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3.2. MOTIVATION

Fuglede and Ishihara proved independently

Theorem 8. ([Fu/,[Is])
Let F : (M, g) — (N, h) be a smooth map between Riemannian manifolds. The following
two statements are equivalent:

For every harmonic function f : V. — R defined on an open set V of N, the function
f o F defined on the open set F~Y(V) of M is harmonic.

The map F is harmonic and horizontally weakly conformal.
Such a map is called a harmonic morphism

When the target is 2-dimensional, Baird and Eells proved.

Theorem 9. (/B-EJ)

Let F : (M™, g) — (N2,h) be a smooth non constant horizontally weakly conformal map
between a Riemannian manifold (M™, g) and a Riemannian 2-surface (N2, h). Then F is
harmonic (hence a harmonic morphism) if and only if the fibres of F' at reqular points are
minimal submanifolds of M.

In Makki-Ville ([Ma-Vi]) we extend Th.9 to the singular fibres if M is compact. There
is no non constant harmonic morphisms from (S*, can) to S? (|[Wo,Vi]). So Burel [Bu]
endows S* with metrics g conformal to the canonical metric o, for which he constructed
many harmonic morphisms from (S*, g) to S2.

3.2 Motivation

Let C be a complex curve in a complex compact manifold M of complex dimension
two. The adjunction formula |G-H| which relates the tangent bundle, normal bundle and
homology class of a complex curve in CP? is given by

¢1 (TC) +c1 (NC) = ¢; (TCP?) |

and c1 (TC) + ¢1 (NC) depends only on the homology class of C' in CP2.
In particular, let (C,,) be a family of complex curves in CP? such that, for n # 0, C,, is
smooth and C,, — Cj and Cj has one branch point. Then

c1 (TCn> +c1 (NCn) =C (TCO) +c1 (NCO) (3.1)

Exemple 1. Let (C.) given by 2120 = €23 be a family of complex curves in CP? and (Cp)
given by z1z9 = 0 the union of S1 = {z1 = 0} and So = {22 = 0}. Then we have:

Cc1 (TCE) =2
because Ce is defined by a polynomial of degree two (Cy is a sphere) , and

a1 (NCL) = [C] - [C] = 4.
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because it is embedded and of degree two.
On the other hand, since Cy is the union of two spheres,

1 (TCp) =2+2 =4,
and since Cy has a positive self-intersection point :
C1 (NC()) = [C()} . [Co] —2= [CE] [Ce] —2=4-2=2.

So that
C1 (TCE) + (NCE) =6

and
c1 (TCO) + (NC[)) = 6.

By contrast, let M* be an oriented manifold.
We ask here what happens if (3,,) is a sequence of minimal surfaces which degenerates to
(Xo) with a branch point 7 Here (%,,) verify ([Vi2]),[C-T])

Cc1 (TZn) + (NZn) < (Tzo) + (NZO) (32)

If we change the orientation on M* but not on the ¥/ s, ¢ (T%,) is unchanged and
c1 (NX,,) becomes —c; (NX,,). Hence (3.2) yields the following

C1 (TEn) — C1 (NEn) < C1 (TE()) — (1 (NEO) . (33)

When a singularity appears, we cannot have equality both in (3.2) and (3.3) because
C1 (TZO) 75 C1 (TEn)
In particular the complex curves C,’s converging in CP? to Cy as above satisfy the strict
inequality (3.3):
c1 (TCn) —C1 (NCn) < C (TC(]) —C1 (NCO) . (3.4)

Now if we change the orientation on CP?, the (C,) will still be minimal surfaces in
CP? and they will verify for the new orientation

c1 (TCn) +c1 (NCn) <c (TC(]) +c (NC()) .
So we ask

Question 1. When do we have a strict inequality both in (3.2) or (3.3) for the same
orientation ¢

Exemple 2. Consider the Burel map ®11 and let (X,,) be a family of regular fibres in S*
which converges to the singular fibre 3. We shall see below that the ¥, s are embedded tori
and that g 1s the union of two spheres S1 and Sy with two tranverse intersection points
of opposite signs. We have

C1 (TETL) =0
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and

1 (NX,) =[2,] - [En] =0.
On the other hand:

C1 (Tzo) = 4,
and
c1 (NXg) = [E,] - [Zn] —2(1—1) =0.
Thus
Cc1 (TEn) + Cc1 (NEn) =0
and

C1 (Tzo) + C1 (NZ()) =4.

3.3 Burel’s construction

Burel was building upon previous constructions on product of spheres by Baird and
Ou ([B-0]). He constructs a horizontally conformal map ®; with k,I € N* from S* into
S? by the composition of two horizontally conformal maps F from S* into S = S”*S? and
¢r, from S? = St « S! into S2.
The key-point of this construction is the change of variable that allows to identify the joint
S % S? and the joint S! xS,
First we are going to define the Hopf fibration H from S? into S? and then use it to define
the map F from S* into S3.

Definition 10. The Hopf fibration H : S3 — S? of the 3-sphere over the 2-sphere is
defined by
H(Zo,zl) = (’20‘2 — ‘Z1’2,22’0Z1). (3.5)

Let = = (cost €', sint e®) a point in S® where ¢ € [0,7/2] and a,b € [0, 27] then

H(z) = (cos®t—sin’t,2costsinte’ @) (3.6)
z'(a—l—b))

= (cos2t,sin 2te
We define the map F : S* — S3 for s € [0, 7], ¢t € [0,7/2] and a,b € [0,27] by
F (cos s,sin s (cost €', sint eib)> = (cosa(s),sina(s) H(x)) (3.7)

= (COS a(s),sin a(s) cos 2t, sin a(s) sin 2t ei(a+b)) .

where « is a increasing regular function such that «(0) = 0 and a(7) = 7,
with «a(s) chosen so that F' is semi-conformal i.e.

a(s) = 2arctan (tan2 (%)) .

Now for s fixed we have a geodesic sphere centred at the north pole of S* of radius sin s.
The map F sends it to a geodesic sphere centered at the north pole of S of radius sin a(s).
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Between the 3-sphere and the 2-sphere the map F' is the Hopf map.

We now define the map ¢y, ; from S3 to S?2. We need to define a new coordinate system on
an open dense subset of S* which allows us to go from S? = SY * S? into S? = S! ¥ S!, and
this by supposing :

cos a(s) + isin a(s) cos 2t = cos u(s, t) V(> (3.8)

sin ou(s) sin 2t e'(¢7)

= sinu(s, t) @), (3.9)
By changing the variable the point now is of the form
(cos u(s,t) e sinu(s,t) ei(‘”b)) in S3. (3.10)

For simplification we write u, 1, o instead of u(s,t), (s, t), a(s,t).
Now let 3 : [0, 5] — [0, 7] be a regular function of u such that

B@)zOmﬂB(%)zﬂ.

Note that the domain of 3 is [0,5] and not [0, 7] as stated in [Bul.

In the new coordinate system, we define the application ¢y : S3 — S? by:
Dkl (Cosu e sinu ei(“+b)> = (cos B(u),sin f(u) e kw+l(“+b))) (3.11)

where (u) is chosen so that ¢y is horizontally conformal.
For this, 8 must satisfy the following equation:

sin 6 \/COS2 sinu’

This equation has an explicit solution given by (|B-O|) see next section

k
B(u) = 2arctan { ‘; —plu) ) } (3.12)
with p(u = Vk2sin?u + 12 cos2u

+p(u)
Notice that the absolute value in the equation is missing in [Bu].

L
2

k+ p(u)
k—p(u)

3.4 Computation of

We now compute the function 5 and prove (3.12) following the hints of [B-O]. We begin
by quoting a result of [B-O|.

Lemma 12. Let F : (r1SY) x ... x (r,SP) — aS?! be the map from the product of p circles
of radius 71, ...,Tp, respectively, into a circle of radius a, given by

F(rie®, .. rpe) = ae®10tFkbo) = o integers ky, ..., ky. (3.13)

Then F 1s a harmonic morphism with dilation \ given by

i} ky
22 =q2 <§+...+r§> (3.14)
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We define a map ¢ : S — S? as follows:
e (cos ueiw, sin ueiA) — (cos ﬁ(u),sinﬁ(u)ei(kw+lA))

where ¢, A € [0,27], k,[ are non-zero integers and u € [0, 7/2].
We begin by solving the horizontal conformality condition for ¢.
For fixed ug € (0,7/2), by lemma 12, the restriction of ¢ to the product of circles:

cosuSt x sinuS! —» sin 3S*

(cosue™, sinue'd) — sin Be! RV A

is a harmonic morphism with dilation given by

2 . 9 k2 l2
A* =sin” 8 —l-Tu . (3.15)

cos?2u  sin

The metric on S? is induced by the metric on R%. By taking derivatives along u, 1) and A,
we get the following orthonormal basis of tangent vectors to S3:

€1 = (—sinwucos 1, —sinusin 1, cos u cos A, cos usin A)

€a = (—sin, cos 1), 0,0)
€3 = (0,0, —sin A, cos A)
Note that 8% = €1, % = COS U€2, a% = sin ues.

We compute % and g—ﬁ and we derive that

do(l cosuey — ksinues) =0

hence the horizontal space H in S* w.r.t. ¢ consists in the vectors tangent to S® and
orthogonal to V' = [ cosuea — ksinues. It is generated by

0
Hi = — =¢, Hy=ksinues + [lcosues
ou
We compute in R3 that < d¢(H;),d¢(Hz) >= 0. So the horizontal conformality of ¢

reduces to requiring that

¢ 2 _ lldg(Ha)|* _

0
do(H 2 _ 1222 = — AQ
where A is given by (3.15).
9 _ (98 : (kyp+LA)
L ZZ) (= v . 1
90 <8u> (—sin 3, cos fe ) (3.16)
Then the condition for ¢ to be horizontally conformal is
B> ., k2 12
— | = — 3.17
<8u) sin” 5 cos? u * sin? u (3:17)
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Case 1: |k| = |l|. Then Eq. (3.17) takes the form

1 g\ 4k?
sin? 3 [(%) ]  sin?2u’ (3.18)

which can be solved explicitly as follows. Set

We have that

s

v (log tan 2) 886 <log tan g) v(B)

IR T B

tan g 2 cos? g
1
2sin g cos g
1

- sin ﬁv(ﬂ)

1 op
sin 3 O0u’
Then the left-hand side of Eq. (3.18) is equal to

v <log tan g) v <log tan g) . (3.19)

On the other hand we have that

(8)

Il
S

v (log tan” u) = v (klogtanu)
k

cos?2 utanu
k

cos u sinu
2k

sin 2u

Then the right-hand side of Eq. (3.18) is equal to

v (log tan® u) v (log tan® u) .
by the substitution in Eq. (3.18) we obtain
log tan — ) =0 (log tan® u)

yielding the solution
B(u) = 2arctan (tank u) (3.20)
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Case 2: |k| # |l|. Now the reduction equation for horizontal conformality becomes

1 aB\> K 12
5 9p =——+—— (3.21)
sin® 3 | \ Ou cos?u  sin“wu
In order to proceed as before, we must write Coﬁ —+ .l22 as a derivative .
(300 7
We pose
k2 12 ol
—_— = 3.22
\/COS2 u + sinu  Ou’ (3:22)

then we find an explicit formula for I. First we must evaluate the integral

k2 [2
COS“ U S~ u

There are two cases:

(a)l? > k2.
k2 12 l 12— k2 . 9
5 T T = - l— —5—sin“u
cos“u  sin“wu cos u sinu l

We have
First make the substitution:

JIZ Z 12
sinf = — sin w. (3.23)

For the derivative we obtain:

cos 0df = VEZ R cos udu. (3.24)

Then
2 _ k,2
sin’ ) = T sin’u

l2 1.2

cos?f=1-— 2 sin® u
2 _ 1.2

cosf = \/1 - ! l2k sin? u

12 . 12— k2 —[2sin%0
cosu=1-— 22 sin? 9 = 72 (3.25)

Then by using (3.23),(3.24) and (3.25) we obtain the integral

2 .2

[ / 1% cos” 0 20

cos?2 usinuyi1? — k?
lcos® 6
= | ——F7—db
/COSQ’U,SiHQ
B / lcos? 0(12 — k2)
) sinf(12 — k2 — [2sin? 9)
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On the other hand we have the following equality
l 1k? sin 0 lcos? O(1% — k?)

sin 0 * 12— k2 —12sin’0  sinf(12 — k2 — [2sin” )

1 sin 0
I=1]—do+ ik db
/sin0 + /l2—kz2—l2sin20

The second of these integrals is easily evaluated after substituting ¢ = cos 6 and we obtain

O e LS B AN VSV bl B PO il
I—l/1_¢2+lk/lz(¢2(ﬁ)z)—zllog’1+¢'+2klog Ko

then we obtain

Let

p(u) = V12 cos? u + k2 sin? u,
then

p(u)? = 1% cos® u + k? sin® u

= (K* = >)sin®u + 12
= —*sin® 0 + 7

12 cos? 0

We thus obtain :

‘k+p’_'k+lcos€‘ _ ‘k+l¢

k—p k —1lcosf k—1l¢p
and
I+p| [1+9¢
l—p| [1-90]
Hence
1 l—p 1 kE+p
I=-llog|—— |+ =klog | ——
2" 81| T2 Og‘k—p‘
l k
=log|-——| +log|——
ity g’k—p
o l—pé k‘—i—pg
it I+p| |k—p| [

By the substitution of the two side of the Eq. (3.21) and from (3.22) we obtain

v |lo tané —g—v lo Z_J
Y A T e T

yielding the solution

1
Bu) = 2arctan{ 512]; ’

} (3.26)
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(b)I% < k2.
Similarly, we suppose
L2 _ 2
sinh § = — sinu

now involving hyperbolic functions, that gives us

sinh 6
I=1 d9+lk:2/ do
/ 12 — k2 — [2sinh? 0
=11 + 1K 1.
It is easily evaluated after substituting ¢ = cosh 6 and we obtain
d¢
I =
1 21

B e e

1 1
=—1 -1 -1 1
Slog|o — 1] = Sloglg + 1
1 |e—1
—2° p+1
and
/1 k+l¢
lk
then
1 6—1| 1 k+ 1
= —llog|—— |+ zklog |——
9" %8 ¢>+1‘+2 Og’ng—k
Using the following two equalities
o-1_»r-l
op+1 p+l1
and
p+k o+ I
p—Fk lp—k ’
we obtain l .
-1 p—12|k+p|2
p+l| |p—k
By Eq. (3.21) we obtain
v | lo tang lo p-li k—l—pg
& 2 gp—H p—k
yielding the solution
1 k
p—1|2|k+p|2
= 2arctan{ || |27 %
B(u) arcan{p+l " }
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3.5. THE PREIMAGES OF ®g

3.5 The Preimages of ¢y

In this section, we take a point P in S? and we look for its preimage in S* by Dy .
First, we look for the preimage of this point in S® by the map ¢r, and then we fix a point
on this preimage and look for its preimage in S* by the map F.

3.5.1 The preimage of F'

We recall definition of the map F' in (3.7)
F:S*— $3for s € [0,7], t €[0,7/2] and a,b € [0, 27] and

F (cos s,sin s (cost e, sint eib)> = (cos a(s),sin a(s) cos 2t, sin a(s) sin 2¢ ei(a+b)) .

where « is a increasing regular function such that «(0) =0 and a(7) =7

Proposition 9. Let P € S?,

1) If P # (1,0,0,0), then F~Y(P) is a closed loop.
2) F71(£1,0,0,0) = {(£1,0,0,0,0)}

Proof. We fix Z € S? and let P = (cosag,sinagZ) with Z € S? and ag € [0,7]. Now we
look for its preimage in S*. There exists a unique sg such that ag = a(sp).

If sinag # 0,
F~Y(m) = {(cos s9,sin sox) : H(z) = Z} (3.28)

If sinag = 0, then P = (+1,0,0,0). Moreover if ag = 0 (resp. oy = 7) then sg = 0 (resp.
so = ) and 2) follows. O

3.5.2 The preimage of ¢,

We denote by Ng2 (resp Ssz) the north pole (1,0,0) (resp. south pole (—1,0,0)).
We also recall definition of ¢y ; : S* — S? given in (3.11) :

oy (cosu e sinu ei(“%)) = (cos B(u),sin (u) ei(kw+l(“+b))> (3.29)

Proposition 10. The map ¢1,1 is the Hopf map so gbf%(Q) is a great circle in S®. More

generally, <Z>,;}({Q}) is a (k1) torus-knot if Q # Ns2, Ss2 and gbl;ll({NSg}) and (ﬁ,;}({SSg})
are great circles in S3.

Proof. Let Q = (cos v, sin vy €?0) with vy € [0,7] and g € [0, 27].

There exists a unique ug € [0, %] such that vg = 5(up).

If vyg = 0 (resp. vo = 7) i.e. Q = Ng2 (resp. @ = Ss2), then ug = 0 (resp. ug = %) and
Gr ({Nea}) = {(¢7,0) : U € [0, 21},

resp. ¢y ({Ss2}) = {(0,¢) : A € [0,2n]}.
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3.5. THE PREIMAGES OF ®g

Now assume @ = (cos vg, sin vg €10) with vy €]0,7[ and pg € [0, 27].
The preimage of @ is

QS,;ll(Q) = {(cos ug ¥, sinuge) : po =k +1A U, A € [0, 27r}} .
We obtain a torus knot of type (k,[); it is included in the torus on S* given by

Tuy = {(cos(ug) e sin(ug) ) : ¢ € [0,2n] and A € [0,271’]} .

3.5.3 The preimage of the North pole Ng: = (1,0,0) of S?* by @y,

In this section, we find the preimage of the North pole Ng2 = (1,0,0) by the map
®;.;. We also recall the definition of ®;; = ¢y, o ' : where

Pkl (cosu e sinu ei(a+b)> = (cos B(u),sin B(u) ei(kw+l(a+b))) (3.30)
and
F (cos s,sin s (cost e sint eib>> = (cos a(s),sin a(s) cos 2t sin a(s) sin 2t ei(‘”b)) .

Proposition 11. The preimage of the north pole Ns2 = (1,0,0) in S? by the map Dy s
the union of the two totally geodesic 2-spheres

S1 = {(z1, 22,73, 24,25) € R° : 34 = 25 = 0}

and
Sy = {(w1, 22, 73,74, T5) € R® : x9 = w3 = 0},

with S1,S C S* c R3.
The spheres S1 and S intersect at each pole Nga = (1,0,0,0,0) and Sg« = (—1,0,0,0,0)
with opposite signs of intersection.

Proof. We look for a point of the form (cos s,sin s cos te'®, sin s cos teib) e st

Let Q = (cosue“/’,sinuem) € S? with ¢;(Q) = Ns2. Then B(u) = 0 hence u = 0.
The preimage of Ng2 in S? is given for u = 0 by {(e?¥,0)} € §? ¢ C2.

We fix 1 and we look for the preimage of (¢?¥,0) in S*.
Looking at the two equations (4.2) and (3.9), we obtain by a small calculation the following

sin a(s) sin 2t = 0. (3.31)
cos a(s) + isina(s) cos2t = ¥t (3.32)

Then, sina(s) = 0 or sin2¢t = 0.
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3.5. THE PREIMAGES OF ®g

1) If sina(s) = 0 then sins = 0 therefore s = 0 or s = 7. Using (3.32), we have
e(5t) = 41 then, ¢ = 0 or ) = 7. Here, we obtain the two poles Nsa = (1,0, 0,0, 0)
and Sgi = (—1,0,0,0,0).

2) On the other hand, if sin2t = 0 then t = 0 or t = g Using (3.32), we obtain for
¥ # 0 and @ # 7w two cases :

a) If 0 < ¢ < 7, then o = v and t = 0, then, we obtain in S*, (cos s, sin s(e?, 0))
where a € [0,27] and s €]0, 7[.
Here we have the sphere S7 punctured at the two poles.

b) If 7 < ¢ < 27w, then @ = 27— and t = g therefore we obtain in S*, (cos s, sin 5(0, e))

where b € [0,27] and s €]0, 7.
Here we have the sphere Sy punctured at the two poles.

In case one we obtain the two poles Ng+ and Sga.
In case two we obtain the two great spheres S; and S2 minus the poles Nga and Ssa.
Putting cases 1. and 2. together shows that the preimage of Ng2 consists of two 2-spheres
S1 and Sy intersecting transversally at the poles Nga and Ssa.
Since, Hy(S*,Z) = 0, S1 and Sy have a zero total number of intersection points (counted
with sign). Hence, Nga and Sgs are intersection points of opposite signs.

O

In fact we can check by hand that the two intersection points have different signs. For
that we choose a positive orthonormal basis {e1, ea, €3, €4, €5} of R% where e; = Ngs. We
can see clearly that S; and Sy are the intersection of S* with the two subspaces of R®
generated by {e1, ea,e3} (resp. {e1,es,e5}).

Let Ng« = (1,0,0,0,0) and Sgs« = (—1,0,0,0,0) be the two intersection points of S; and Ss.
First, for Nga € S1 N S2 we have :

- Tn St and TS are generated by the two positive bases {ea,e3} resp. {es,es} and
TnS* is generated by the positive basis {es,e3,e4,e5}. So the orientation at N is
positive.

Now, we take Sg1 € S1 N Se we have :

- TpS; and TpSy are generated by the two positive bases {—eg,e3} resp. {—eq,es5}

and TpS* is generated by the positive basis {—es, e3,e4,e5}. So the orientation at

this point P is negative.

Therefore, the two intersection points have opposite signs.

3.5.4 The preimage of the South pole Sg: = (—1,0,0) in S? by @,

In this section we look for the preimage of the second pole Ss2 = (—1,0,0) by the
map (I)k,l-
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3.6. CRITICAL POINTS OF @k 1,

Proposition 12. The preimage of the pole south Ss2 = (—1,0,0) in S? is a Clifford torus
in the equator of S*.

Proof. If B(u) = 7, we have
cos B(u) = —1 and u = /2.

The preimage of this pole in S?, is given for u = g by

{(0,eM} e $3 c C2.

We fix A and we look for the preimage of (0,e'4) in S*. Looking at (3.8) and (3.9), as
above we get the two equations:

cosa(s) +isina(s)cos2t =0 (3.33)

sina(s)sin2t =1 (3.34)

Therefore,
a(s) =n/2 and 2t = /4.

By a small computation « (%) = 5; since « is strictly increasing we conclude that s = 7.
We conclude that the preimage in S* of the south pole (—1,0,0) is a Clifford torus 7' in

the equator S of S :

T:= {(0, \f e, ‘f ei”> : (a,b) € [0,27] x [0, zw]}

3.6 Ciritical points of @

In this section we are going to find the critical points of the map ®;;. To do this,
we need to prove the following theorem:

Theorem 10. The set of critical points of ®y; for k =1 = 1 is given by two 2-spheres
having the two poles as intersection points. Otherwise, if k.1 # 1 the set of critical points
are the preimages of the north pole (the same two spheres as for k =1 = 1) together with
the preimage of the south pole (a torus).

3.6.1 Critical points of F

We investigate the map F from S* into S? given by (3.7). For 0 < s <, o/(s) # 0.
It follows that all points of S* are regular for F, outside of the poles. We now investigate
what happens at the North and South poles.
We look at a neighbourhood of the pole Ng« = (1,0,0,0,0). Near the pole Ng: =
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3.6. CRITICAL POINTS OF @k 1,

(1,0,0,0,0), the parameter s is close to 0 so we identify a neighborhood of Ng« with a
4-ball centred at Ngu.
B = {sz:(s,2) € [0,¢] xS},
By projection on the last two coordinates we identify a neighborhood of the north pole
Ng2 in S? to a disc D of R?.
Now consider the regular function
a(s) = 2arctan (tan2 (;)) .

For s ~ 0, we have
2

a(s) ~ 2arctan SZ

Consequently,

Hence
(cos a(s),sina(s)H(z)) ~ (1 - SQH(J:)> . (3.35)

Under the above identifications we write I’ as
2
s

It follows that the North pole Nga is a critical point for F.

In the second step we look at a neighbourhood of the pole Ssa = (—1,0,0,0,0), here
we are going to use the same procedure that we use for the other pole.

So we identify a neighborhood of S with a 4-ball centred at Sga.

Near the pole Sga = (—1,0,0,0,0), the parameter s is close to 7, for s ~ m, we put
s’ =m—s, now s’ ~ 0, then

. . / . / /
sins =sin(m —§') =sins' ~ s =71 —s.

For a small € > 0, the set {(m — s)z : (7 — s,2) € [0,€¢] x S*} parametrizes a neighborhood
of the south pole Ssu.

The function

4

m(l + o(m — 3))

a(s) = a(r — §') ~ 2arctan ;%(1 +o(s")) ~ ;%(1 +o(s")) ~

or, A
[

We can write F' in this neighborhood as

a(s) ~ 1+ o(m - 5)).

(cosa(s),sina(s)H(x)) ~ <(1 + o(m — 3), H(:n)) . (3.36)

Under the above identification we write F' as
2

sy — %H(m)

It’s clear that the south pole is a critical point of the map F'.
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3.6. CRITICAL POINTS OF @k 1,

3.6.2 Estimate of § near the endpoints of [O, g}

We recall that 8 : [0, 5] — [0, 7] is a regular function of u such that 3(0) = 0 and 3 (5) =
.
Given by the formula for k # 1

L
2

k
L=p(u)|? |k +p(u) |2
u) = 2 arctan , 3.37
o {‘Hp(u) k= p(u) (330
with
p(u) = V12 cos? u + k2 sin? u. (3.38)
For k = the formula is
B(u) = 2arctan (tank u) . (3.39)
Lemma 13. Let (3 : [0, %] — [0, 7] as above
1) For u ~ 0 we have
B(u) = Cu! + o(u!) with C € RY. (3.40)
2) Foru~ 3, let v=u— % we have
k
Bu) =7 —C (u - g) + o(v*) with C € RT. (3.41)

Proof.

1) We shall examine its behavior near a critical point, for this we use Taylor’s Formula. We

have

p? =12 cos® u + k? sin® w.

Then, in a neighborhood of 0 we have :

2
=124 (k* — I*)u® + o(u?)

k% — 12
=2 (1 + l2u2> + o(u?)

u?\’
p? =12 (1 - > + k*u? + o(u?)

Then,
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We derive
2—k2
l—p= 57 u? + o(u?)
k‘2—2
l+p=20+ 5 u® + o(u?)
l—p 12—k
—H_p* 9Tz u? + o(u?)
and
-, 2
k—p=k—-1- 57 u” + o(u”)
2 _ g2
E+p=I1+k+ 57 u® + o(u?)
k+p k+I
T_p—k_leo(u).
So, we get
!
[—pl? [Pk I I
and
ktplt  |k+l|2
p1© _ _
’k‘—p _‘k—l = Cy + o(u). (3.43)

We put C3 = C1C%, then the product of the two estimates above (3.42) and (3.43) gives
us the following

SEURTS
[+p

Finally, using (3.44) we obtain for S(u) the following

k+p

= Cyu! h. 44
K p Czu' + o(u’) (3.44)

B(u) = 2arctan(Csu') + o(u!)
= 2C5u' + o(ul)

Consequently,
B(u) = Cu! + o(u!) with C' = 2C3. (3.45)

2) Now we are going to use the same procedure as in the proof of 1) but this time in a
neighborhood of g Let v = g—u > 0. Then, using the trigonometric formulas, we obtain
the following

p? =1?cos® u + k?sin’u
=5 cosQ(g —v) +k? sin2(g —v)

= ?sin? v + k? cos® v. (3.46)
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3.6. CRITICAL POINTS OF @k 1,

Then, for v in a neighborhood of 0, we have

02\
p? =120 + k2 (1 - 2) + o(v?)
=k 4+ (1% = EP)v? 4 o(v?)

2 P’ -k , 2
=k 1+TU + o(v?).

Then,
12 _ k2
p="Fky/1+ 2 v2 4 o(v?)
12— k2
We derive,
k2 — 12
k—p= 5% v? + o(v?)
l2— 2
k+p=2k+ v? + o(v?)
k+p 4k?
k—p:k2—l2ﬁ(1+0(v>)
and
A 9
l—-p=1l—k+ oV + o(v?)
2 _ 1.2
l+p=l+k+— v? + o(v?)
l—p 1—k 9
Tvp ik o)
So, we get
! i
l—plz |l-k|?
p| TR ~ Gt (347
and . .
kE+pl2 4k% |2 1 Ca(1 + o(v))
F—p| |E—m| o)== (349

We put C3 = C1C4, then the product of the two estimates above (3.47) and (3.48) gives
us the following

l k
3 2

k+p

G140
k—p ’

L

55

3.49
l+p ( )

We let y = @ be such that

LHS(3.49) = tany.
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3.6. CRITICAL POINTS OF @k 1,

We put z =y — g, then

cosy

1
— ~ —Z >~ —z+o0(z%).
siny 1-2

Therefore,
B(v) ~ m — 2C30", (3.50)

Finally, using (3.50) we obtain for S(u) the following

Bu)=m—C (g - u)k with C' = 2C;. (3.51)

3.6.3 Ciritical points of ¢y

We go back to the map from S? into S? given by

dr1(cos ue™ sinue™) = (cos B(u), sin B(u)e’ ),

where u € [0,5] and ¢, A € [0, 27].
We know that the only critical values of ¢ ; are the south and north poles Sg2, Ng2.

1) The North pole Ng2 = (1,0,0): for u = 0, the corresponding points of S* are of the
form P = (e™0,0,0), with ¢, (P) = (1,0,0). We now investigate the behaviour of
¢, in a neighborhood of such a P.

We take > 0 small. We identify a neighborhood of the point P € S with [0, ] x
[0, 27] x [0, 27] by setting

(u, ew,em> — (cosuew,sinuem) . (3.52)
Note that
(u, A) — z = sinue', (3.53)

parametrizes a disk in polar coordinates for 0 < sinu < n and 0 < A < 27.
We write the point of S? as (cos v, sin vei“) and we identify a neighborhood of Ng2 =
(1,0,0) with the disk {sinve® : v € [0,n] and e € S'}.

Lemma 14. In these two coordinates systems ¢ can be written in a neighborhood
of the North pole Ng2 as
(e, 2) — C2le™¥ (3.54)

Proof. For u ~ 0, the function

B(u) ~ Cu'.

Then,
sin B(u) ~ Cul.
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Now |z| = sinu, then

sin B(u) ~ C|z|'.
Let e’ € S!, then we have
sin B(w)e FOHA) |zl Agik
Therefore, ¢ ; can be written as
Dkl : (ew,z) —s C2let*¥.

O

The South pole Sg2 = (—1,0,0): now for u = g we get points Q € S? of the form

Q = (0,0, ¢™), with ¢r1 (Q) = (—1,0,0). We now investigate the behavior of ¢y in
a neighborhood of such a (). We proceed as above.
We identify a neighborhood of @ with [0,7] x St x [0, 27] by setting

(u, eiA,ew> — (cosuew,sinuem> . (3.55)
Note that '
(u,v)) — z = cosue'?, (3.56)

parametrizes a disk in polar coordinates for 0 < cosu <7 and 0 < Y < 27 .
We write the point of S? as (cos v, sin vei“) and we identify a neighborhood of S =
(—1,0,0) with the disk {sinve™ with v € [0,n[ and e** € S'}.

Lemma 15. In these two coordinates system ¢y can be written in a neighborhood
of the South pole Sg2 as ' 4
(e 2) — CZFeld (3.57)

Proof. For u ~ %, we have

Then,

Now |z| = cosu ~ § — u, then
sin B(u) ~ C|z|*.
Let ¢4 € S', then we have
sin B(w)e’FHA) o |z [FeikveilA.

Therefore, ¢ ; can be written as

Prl - (eiA,z) —s CZFeiA,
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3.7 Multiple fibres

3.7.1 Smooth multiple fibres

We begin by defining a notion of multiple fibres for harmonic morphisms.

Definition 11. Let ¢ : M™ — N™ be a harmonic morphism and let py be a critical
value of ¢ in N™ such that ¥ = phi~'(pg) is smooth, connected and closed. The fibre
Y = ¢ L(po) is a multiple fibre of multiplicity u if there ewists

1) a neighbourhood U of py in N™

2) a tubular neighbourhood T of X and a projection w: T — ¥ such that

i) N (U)CT

i) for every p € U, ¢~ (p) is connected and compact

iii) for every X € ¥ and every p € U, 7= 1(X) and ¢~ (p) meet at p points and these
intersection points have the same sign.

We let [¥] be the homology class of ¥ in Hy,—(7,Z). Then for p close enough to
po, and by iii), the homology class of [¢~!(p)] verifies

(67 ()] = £p[3] (3.58)

3.8 Multiple fibres of ¢; : S — S?

Proposition 13. We consider the harmonic morphism ¢ : (S?, gr) — S2.
1) The preimage of Ngz = (1,0,0) is a multiple fibre of multiplicity .
2) The preimage of Sg2 = (—1,0,0) is a multiple fibre of multiplicity k

Proof. We write the proof for Ng2 and the proof for Sg2 is identical. We let 3 =
¢ (Ng2) = {(e,0) € S*}. We define a tubular neighbourhood 7~ by

T = {(cosue™ sinue™) : ¥, A € [0,2n], 0 < sinu < n} (3.59)
We identify _
T =% xD, ={(",2)} (3.60)
where ‘
z=sinue €D, ={z€C: 2| <n} (3.61)

and the projection m becomes '
(€%, 2) > 2 (3.62)

We identify a neighbourhood of Ng2 in S? with a disk D in C; under this identification,
Ns2 is identified to 0. In the above identification of T, we write

G2 T — D (3.63)

bri : (€7, 2) = C(2)2le™¥ (3.64)
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where C(z) is of the form C(z) = C + 01(|#]), C being a non-zero complex number.
Now let w € D. Using (3.64), we can write

ot (w) = {(e",2) : O(2)2'e* = w}
If (¢%0,0) € X, a point (%0, 2) belongs to 7~ (e%0,0) N ¢! (w) if
C(z)2e™0 = w (3.65)
We derive

Lemma 16. The equation (5.65) has | preimages.

We now prove
Lemma 17. The intersections of ¢, (w) with the disk 7~ (€"¥0,0) all have the same

5gns.

Proof. We write the coordinate z in D as z = x + ¢y and we compute the derivative
doy; on D; it verifies

ot = L o) (3.66)
aaifl = i(CLe™ 4 o(12]1) (3.67)

It follows from (3.66) and (3.67) that Ker(de¢y;) does not contain vectors tangent to
a fibre of the tubular neighbourhood 7. Hence ¢,;l1(w) is always transverse to the
fibres of the tubular neighbourhood 77 since 7"\ ¢, ; (0) is connected, the sign of the

intersections of ¢,;' (w) with one of the fibres of  will be of the same sign. O

3.9 Singular multiple fibres

We need to adapt Def.11 to fit the case of a singular multiple fibre. First, we replace
the tubular neighbourhood by the following object:

Definition 12. Let ¢ : M™ — N™ be a harmonic morphism and let pg be a critical
value of ¢ in N™; suppose that ¥ = ¢~ (pg) is smooth except at a singular set S of
codimension at least 2. An open set T together with a surjective map

T — X% (3.68)

is called o singular tubular neighbourhood of 3 if there exists a sequence of open
neighbourhoods U, of S such that the following is true:

i) S=NU,

i) for every n, the restriction of ™ to 71 (X\(XNU,)) is a tubular neighbourhood of
S\(ENU,).

We now give a modified version of Def.11.
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Definition 13. Let ¢ : M™ — N™ be a harmonic morphism and let pg be a critical
value of ¢ in N™ such that ¥ = ¢~ (pg) is compact and smooth outside of a subset
S of codimension at least 2.

The fibre ¥ = ¢~ (po) is a multiple fibre of multiplicity p if there exists a singular
tubular neighbourhood m: T — 3 of ¥ such that for every X € ¥\S, there ezists a
neighbourhood Vx of po such that for every p € Vx, 7 1(X) and ¢~ (p) meet at p
points and these intersection points all have the same sign.

3.10 Multiple fibres of &, : S* — §?

Proposition 14. We consider the harmonic morphism ®y; : (S*, gry) — S?.
1) The preimage of Ss2 = (—1,0,0) is a multiple fibre of multiplicity
2) The preimage of Ng2 = (1,0,0) is a multiple fibre of multiplicity k.

Proof. Since the preimage of Ss2 is smooth and the preimage of Ns2 is not, we treat
both cases separately.
1) We recall the map F from the preimage of Ss2 in S* (which we denote Xg) and S?

V2 V2 V2 V2 ()
(O 5 cosa, TSIHCL 7608[) TSlnb = (0,6 ) (3.69)

We introduce the tubular neighbourhood 7 of ¥ g as | —¢, €[ x] —¢, €[ X X; we parametrize
it as

(coss,y) x (O, gem, geig — Tg (coss 1, \f ia ?eib) with

2 . 2 .
Ts (coss Y, \gem V2 ’b> = (coss,sins\/l —y\gem,sins\/lﬁ—y\geZb)

(3.70)
Thus the fibre of an element of ¥ in the tubular neighbourhood 7T is parametrized
by
(coss,y) €] — €, +e[x] — €, +¢.

We fix w close to Ss2 and we fix €, e?: we look for cos s, y close to 0 such that

D, <T5 (coss Y, \2[6“1 f lb>> =w (3.71)

We compute F' (Ts (coss Y, \? ia ‘?eib))
2 . 2 .
= (cos a(s),sina(s)H (x/l — y\gem, sinsy/1 + y\ge’b))
where H : S? — S? is the Hopf fibration; thus we translate (3.71) into
bkl (cos a(s), —ysina(s),sina(s)y/1 — y2ei(a+b)) =w (3.72)
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Similarly to (3.65) or rather its equivalent for Sg2, we rewrite (3.72) as
C(cos a(s) — iy sina(s))* (1 4 o(||(cos s, y)|) e+ = w (3.73)

This gives us k values for the couple (cos s, y).

To see that they are all of the same sign, we proceed as in Lemma 17 and we take
the partial derivatives of (3.73) w.r.t. s and y. Using the fact that sin «(s) is close
to 1, we see that these partial derivatives are linearly independent. It follows that
the fibres of the tubular neighbourhood Tg are always transverse to the preimages of
points w close to S.

This concludes the proof of Lemma 14 1).

We now prove Lemma 14 2) using the definition above of singular multiple fibres.
The preimage of Ng2 is

®,'(N) = {(cos s,sin s(cos te', sinte’)) with costsint = 0} (3.74)

A singular tubular neighbourhood will be given by

Tn = {(cos s,sin s(cos te’®, sinte'®)) with | costsint| < n} (3.75)
for 7 small enough. Since cos?t 4 sin?t = 1, Ty will split into the union of 77 and
T2 where

T: ( resp. T3) = {(cos s, sin s(cos te’®, sinte™)) with | cost| < n (resp. |sint| < n)}.
(3.76)
Note that 77 and 75 intersect only at the two poles of S*.
Now fix p € &' (Ng2).
If p = (cos s,sin se®, 0) (resp. p = (cos s, 0,sin se®)), then
77 1(p) = {(cos s, sin s cos te'®, sin ssin te™) /| sint| < n} (3.77)
( resp. 7 1(p) = {(cos s,sin s coste'?, sin ssinte’®) /| cost| < n}). (3.78)
The fibre 7—!(p) is parametrized by
z = sinte (resp. z = coste'?). (3.79)

We now show that if w is close to Ng2 and p is of the form p = (cos s, sin se?, 0), with
coss # +1, then 771 (p)N®,;! (w) contains k points and that these intersection points
have the same sign. The proof of the same fact for p of the form p = (cos s, 0, sin se?®)
is identical.

We let ¢ € 7~ 1(p) be a point of the type (3.77); we have
F(q) = (cos a(s), sin a(s) cos 2t, sin ao(s) sin 2te*0F9), (3.80)

Changing variables in S?, we have

sinue’ % = sin a(sg) sin 2te’ @+ = 2sin a(s) cos te™® sin te'?
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= 2sin a(sg) coste™z (3.81)
where z is given by (3.79). It follows that | sinu| < 2n. We also derive
B(u) = C(1 4 o(t))[2sin a(sp) cos ]’ sin' ¢. (3.82)
On the other hand,
cos a(s) + i sin a(s) cos 2t = cos ue'?. (3.83)
Since t is very small, we derive

¥ = afso) + o(t). (3.84)

We can now write the restriction of ®5; = ¢p0F (q) to 7~ (p). To do this, we continue
using the parameter z on 7~ !(p) (cf. (3.79)) and we identify a neighbourhood of Nge
with a small disk D in C. Using (3.82) we get

z =sinte’ — C[2sin a(s) cost]' sin' t(1 4 o(|z))ellFv+a+0)], (3.85)

In other words, there exists a complex number Z (independent of sg) such that we
can rewrite (3.85) as
2+ Zysin® aso) (1 + o(|z]) 2. (3.86)

Hence, if w is a small enough non-zero complex number, more precisely, if
L, -1
0 < jw| < bl | Zo| sin’ a(s0),
it has [ preimages in 7= 1(p).

REMARK. We point out the contrast with the smooth multiple fibre case: the neigh-
bourhood of Ng2 where we look for points with [ preimages in 7~!(X) depends on X
and get smaller and smaller as X approaches the singularities of the singular fibre.

This being said, we proceed as in the smooth case to show that the [ preimages
have the same sign. The map given by (3.86) is a submersion and 7; \ S; and T2 \ S2
are connected. Thus all the preimages in 77 (resp. T3) have the same sign. Possibly
after changing the orientation on one of the 2-spheres S; and Ss, we can ensure that
these signs are all the same.
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3.11 Appendix

To make this self contained we reproduce the computation of ([Bul).
The metric (gx,;) is expressed explicitly in terms of s,¢,a,b by

2 [d52 + sin s (dt2 + cos? tda® + sin? tdb2)]
9kl = .
\/(k2 sin? 2¢ + 12 cos? 2t) (sin® s) /4 + 12 cos? s

For the map F' to be horizontally conformal of dilation A, the function o must satisfy
the following equation
/ 4 sin?
a (3)2 = Smi;y('S) (3.87)

sin” s

the equation (3.87) has an explicit solution, given by

a(s) = 2arctan (tan2 (%)) .
The associated metric take the form :

_ V2
g = gs3-
(k2 sin? s + 12 cos? 3) 1/4
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Chapter 4

Harmonic morphisms and
Hermitian complex structures on

S? x §?

In this chapter, we investigate the structure of a harmonic morphism F from S? x S?
to a 2-surface S2. Baird-Ou construct a family of harmonic morphism from an open
set of S? x S? into S2. We check that they are holomorphic with respect to one of
the canonical complex structure.

4.1 Introduction

4.1.1 Background

Let M be a 2n-dimensional real manifold. An almost complex structure J on M is
a tensor field J : TM — T'M such that J? = —1I.

Definition 14. Let M be a 2n-dimensional manifold. An almost complex structure
J on M is called integrable if there exists an atlas {Uy, a : Uy — R*™} such that

dao J = Jyoda,

and the transition functions verify d(3oa~1)(z) € GL(n;C). Here Jy is the standard
complez structure on R?™.

For any two vector fields X,Y on M, the Nijenhuis tensor N is defined as
NJ(X;Y)=[JX;JY]| - J[JX;Y]| - JX;JY] - [X;Y].

One can prove that N; is actually a tensor. We have the following theorem of
Newlander-Nirenberg:
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Theorem 11. (Integrability theorem). An almost complex structure J is integrable
if and only if the Nijenhuis tensor Ny vanishes.

Now the vanishing of the Nijenhuis tensor can be viewed as a Frobenius integrability
condition:

Lemma 18. The set of the type (1, 0) vector fields is closed under the operation of
Lie bracket if and only if Ny = 0.

Proof. Let X and Y be two real vector fields and we define the projections
PYOX = %(I —i)X; PYY = %(I +iJ)Y.
It is easy to show that
[PLOX; PYOY) 4 J[PYOX; PYOY] = —N;(X,Y) —iJN;(X,Y),
which is equivalent to
POL([PYOX, POY]) = PO (—N,(X,Y)).

Hence N;(X,Y) vanishes if and only if [P2°X, P19Y] is a (1,0) vector. O

In C™*, we have the expression

0

aZj

.0 0 1.9 .0

_}i_ )7_,(74_7)
N 2 axj Zayj 7a§j N 2 a$j Zayj

or written in terms of Jy:

o 1. 9 9 1 d

b5 2 9z, 0, 2 T )G,

Hence in the local coordinates z;, the type (1,0) vector can be written as the com-
bination ), ak% where ap are complex valued functions on M. The Lie bracket
of two (1,0) type vectors is still of the (1,0) type. If ¥ is a 2-surface, then the Lie
bracket of two (1,0) vectors is of type (1,0), hence we have

Theorem 12. Every almost complex structure on a Riemann surface is integrable.

Definition 15. An integrable complex structure J on M is said to be hermitian if
and only if for every p

g(JX,JY)=9g(X,)Y) forall XY € T,M.
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4.1.2 The results

In this paper we investigate harmonic morphisms on open sets of S? x S2. J. Wood
shows that the harmonic morphisms from an open subset of CP' x CP! to a Riemann
surfaces are holomorphic with respect to a Hermitian structure.

On CP! we have two canonical complex structures +.Jy then on CP* x CP! we obtain
four canonical complex structures. Burns-Bartolomeis show that the only Hermitian
structures on open subsets of CP! x CP! are one of the four products of canonical
complex structure +Jjy.

On other hand Baird-Ou define harmonic morphism from open dense sets of S? x S?
into S?. We check that they are holomorphic w.r.t. one of these four structures.

Theorem 13. (/B-0]) There are two tori T? and T3 in S® such that there exists a
family of harmonic morphisms F : S3 x S — (T UTZ) — (S?, can) parametrized by
quadruples of non-zero integers (k,l,m,n), given explicitly by the formula:

F ((cos se'®, sin se“’) , (cos te', sin teid>> = (cos a(s,t),sina(s, t)ei(k“Hberch"d)) ,

where « 1s given by the solution of Equation

1 87a2+87a2_k2+l2+m2+n2 (4.1)
sin? o Os ot "~ cos?s  sin?s  cos?t  sin?t’ '

For |k| = |l| and |m| = |n| the equation (4.1) is solved by

afs,t) = 2tan" (A tan® stan™t),
for a positive real constant A.

Corollary 3. In the case |k| = |l| and |m| = |n|, the harmonic morphism of the
theorem factors to a harmonic morphism

F: (S* x §?)\ {two points} — S* C R3

Proposition 15. Let F : S? x §?\ {two points} — S?> C R? a harmonic morphism
defined by

F ((cos s, sin seiA) X (Cos t,sin teic)) = <cosa (;, ;) ,sin o <;, ;) ei(kA+mC)> ,

with
t t
« <;, 2> = 2tan! (Atank ;tanm 2) .

Then F is holomorphic with respect to one of the four canonical complex structures
on CP! x CP'.

Proof. To prove the theorem, we need to prove that for two orthogonal vertical
vectors V; and Vi, we have Jy(Vi) = AV, where Jp is one of the four canonical

65



4.1.

INTRODUCTION

complex structures.
The tangent space T(S? x S?) for s # 0,7 and t # 0,7 is generated by the vector
fields 2,2, 2 -0

0A> dt> aC'*
We have
F
(?9 = <— sin a , COS ags e (kA+mO)) .
F
gA ( sin avike’ kA+mC)>
oF O
E = (— sma ,cos o ez(kAerC)) ,
8C (0 im sin aez(kAerC)) .
So we need to calculate and < By a small calculation we obtain the following
da _ Atan™ gk(l +tan? §) tan(k—1) £
Os 1+ (A tan” £ tan™ L)2
Ja Atan® Sm(1 4+ tan2 t)tan(m 1) L
at 1 + (A tan” 5 tan™ £)2
Ja  sinsm da
T R 42
ot  sint k 0Os (4.2)

We can choose and easily check that the following vector fields are mutually orthog-
onal and vertical (dF(Vy) = dF(V2) =0) :

B B
i=ma7 —k56

V__aﬁﬁ+5£§
27 T otos | 0s ot

Using (4.2) we find that
Jda [ sinsm 0 6}

sint k 85—1—&

Oa 0 0
71 . -~
=kt t@ [ sin Sm@s + Slntkat]

We let Jy be one the four canonical structures defined by

JO(%) - SiIllsa%
) e
J(OEfC) = —smt&.
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Back to V7 and Vs, appliying Jy on Vi then for some constant A(k,m)

0

Jo(V1) = mJo(i) - kJo(%)

0A
.0 .
= —msin 3% + ksmta
= Ak, m)Va.
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