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Résumé

Nous nous proposons dans ce travail de construire des modèles stochastiques
permettant de reproduire les propriétés statistiques de données spatio-tempo-
relles de vent. Ces modèles peuvent être utilisés comme générateurs aléatoires
de séquences artificielles de conditions de vent. Les séries de variables météoro-
logiques observées couvrent des intervalles de temps généralement trop courts
ou contiennent trop de valeurs manquantes pour estimer de manière fiable
des probabilités d’évènements complexes. Un des objectifs de ces généra-
teurs stochastiques de conditions météorologiques est de simuler un nombre
illimité de séquences artificielles aussi longues que souhaitées. Ces séquences
peuvent être utilisées dans des études d’impact mettant en jeu des variables
météorologiques (voir par exemple (Skidmore and Tatarko, 1990; Hofmann
and Sperstad, 2013)). Les générateurs aléatoires permettent également la sim-
ulation conditionnelle de données manquantes (Yang et al., 2005) ou la con-
struction des scénarios de changements climatiques à échelle locale (Semenov
and Barrow, 1997). La majorité des générateurs proposés tendent à repro-
duire au mieux certaines des propriétés statistiques observées sur les données
servant à calibrer le modèle, comme par exemple la distribution en probabil-
ité ou la fonction d’autocorrélation des variables étudiées. Par la suite, nous
considérerons entre autres ces statistiques pour valider les modèles suggérés.

En introduction de cette thèse, nous proposons une description des données
étudiées et des problématiques associées en vue de construire des générateurs
aléatoires. Une description des modèles utilisés à savoir les modèles à espace
d’états et les modèles à changement de régimes latents est donnée. Ensuite
cette partie introductive est organisée selon les thématiques de modélisation
mises en jeu. Pour chacune de ces thématiques, un bref état de l’art est
donné ainsi que l’approche que nous proposons. Dans la première partie de
ce travail, nous nous intéressons à la construction d’un modèle multi-site pour
les vitesses de vent au large de la Bretagne. Nous proposons un système
linéaire gaussien, nous montrons que celui-ci tend à bien reproduire la struc-
ture moyenne spatio-temporelle des données et leurs distributions marginales.
Dans la suite de ce travail, nous considérons les processus bivariés en coordon-
nées polaires et en coordonnées cartésiennes afin de prendre en compte toute
l’information contenue dans le champ de vent et de capturer l’information au-
delà du comportement moyen. En premier lieu, nous nous intéressons à la
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dynamique temporelle et à la distribution marginale de chaque processus bi-
varié en un site. La modélisation est faite à l’aide de modèles autorégressifs à
changement de régimes cachés markoviens (MS-AR) avec différentes probabil-
ités d’émission selon le couple étudié. Nous proposons ensuite une extension de
ce modèle au cas multi-site pour le couple des coordonnées cartésiennes. Nous
discutons la question d’un régime régional commun à toutes les stations. De
plus, ce travail est l’occasion de comparer des modèles autorégressifs (AR) à
changement de régimes a priori avec un modèle AR à changement de régimes
cachés pour des données de vent. En effet ces deux types de modèles ont été
largement appliqués à des données météorologiques mais sans jamais avoir été
comparés.

Les modèles proposés ont été ajustés sur des données de réanalyse pro-
venant d’ECMWF (European Center of Medium-range Weather Forecast), ces
données peuvent être téléchargées gratuitement et à but scientifique à l’adresse
http://data.ecmwf.int/data/. La zone étudiée est constituée de 18 sites situés
au large de la Bretagne. Nous étudions les mois d’hiver afin d’éviter les effets
saisonniers. Les modèles proposés peuvent être ajustés sur des données réelles
sans aucun changement. Nous nous plaçons ici dans le cadre simplifié d’une
zone rectangulaire loin des côtes afin de mettre en place la modélisation dans
un contexte simple. L’objectif est ensuite de considérer une zone côtière pour
laquelle les applications sont plus importantes. Cependant près des côtes,
les effets locaux sont forts et difficiles à prendre en compte. Nous noterons
U l’intensité du vent, Φ sa direction et u et v ses composantes zonales et
méridionales.

Un modèle multi-site pour les vitesses de vent

Beaucoup de modèles pour les séries temporelles de vitesse de vent sont basés
sur des modèles de type AutoRegressive Moving Average (Brown et al., 1984).
Il existe peu de modèles multi-sites pour le vent et la plupart d’entre eux sont
développés pour répondre à des besoins de prédiction à court terme. (Haslett
and Raftery, 1989) ont proposé un modèle ARMA multi-site pour le vent en
Irlande. (Rychlik and Mustedanagic, 2013) ont également construit un modèle
basé sur des champs gaussiens et suggèrent une paramétrisation de la fonction
de covariance spatio-temporelle.

Dans cette première partie, nous développons un modèle multi-site pour les
vitesses de vent ayant pour objectif de capturer et reproduire les déplacements
spatio-temporels des évènements liés aux conditions de vent. Les données
météorologiques spatio-temporelles présentent fréquemment dans leur fonction
de covariance une non-séparabilité des coordonnées en temps et en espace
(de Luna and Genton, 2005; Finkenstädt et al., 2007). La modélisation est
basée sur un système linéaire gaussien. Ces modèles ont été largement étudiés
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dans (Durbin and Koopman, 2012). La forte corrélation entre les sites suggère
l’utilisation d’un signal commun à chaque site contenant une majeure partie
de l’information. Ce signal n’est pas directement observé et est introduit en
tant que processus caché X. Nous proposons le modèle suivant :

(M)

{
Xt+1 = ρXt + σεt+1,
Yt = α1Xt+1 + α0Xt + α−1Xt−1 + Γ1/2ηt

pour t ≥ 0,

Yt ∈ RK , où K est le nombre de sites étudiés, Y représente le vent observé en
chaque site, ρ > 0 et σ > 0. Les coefficients α1, α0 et α−1 sont des vecteurs
K-dimensionnels, ε et η sont des bruits blancs gaussiens indépendants.

L’identifiabilité des paramètres a été étudiée via la structure d’ordre 2
du processus gaussien Y , elle est obtenue au signe près sous les hypothèses
suivantes : ρ

1−σ2 est fixe et les vecteurs α1, α0 et α−1 sont libres. Nous montrons
également que sous ces conditions d’identifiabilité la fonction de covariance
spatio-temporelle du processus multivarié Y est non-séparable.

Deux méthodes d’estimation ont été implémentées et comparées, l’une
basée sur la méthode des moments généralisée et l’autre sur le maximum de
vraisemblance via l’algorithme Expectation-Maximization. Chacune des méth-
odes présente des avantages divers tant du point de vue de l’implémentation
des calculs que du point de vue des résultats. En simulation, le modèle estimé
par la méthode des moments généralisée décrit plus précisement la structure
temporelle à très court terme que lorsque celui-ci est estimé par maximum de
vraisemblance. Tandis que ce dernier reproduit mieux la structure temporelle
à plus long terme.

Différents modèles réduits ont été étudiés, notamment afin de paramétrer
différentes quantités en fonction de la latitude et la longitude. Il s’avère que
la paramétrisation de α1, α0 et α−1 en une fonction quadratique en latitude
et longitude est simple à mettre en place et satisfaisante du point de vue
des résultats en simulation. La paramétrisation de Γ avec des modèles clas-
siques (gaussien et sinusoïdal, voir (Cressie, 1991)), quant à elle, ne permet
pas de restituer la structure de Γ. La matrice Γ semble contenir beaucoup
d’informations et sa paramétrisation par des structures simples dégrade la
qualité du modèle contrairement à la paramétrisation des quantités α1, α0 et
α−1.

La validation en simulation de ce modèle révèle notamment via les fonc-
tions de covariance spatio-temporelles que celui-ci capture la majeure partie
de la structure spatio-temporelle des données : non-séparabilité et anisotropie
nord-sud/ouest-est (voir Figure 1). Le modèle reproduit ainsi les déplacements
moyens des évènements de conditions de vent liés au déplacements des masses
d’air. La distribution marginale du processus est très bien reproduite par le
modèle. Cependant, ce modèle ne permet de reproduire que les comportements
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Figure 1: Corrélations estimées sur des simulations pour le modèle (M) en
fonction des corrélations observées au temps 0 (gauche) et au temps 1 (droite).
Les résultats sont présentés pour les deux méthodes d’estimation : GMM
(méthode des moments généralisée) et ML (maximum de vraisemblance).

moyens des données sur la zone étudiée. Les données présentent les change-
ments de régimes naturels liés au type de temps à grande échelle. Afin d’affiner
la modélisation et de prendre en compte ces changements de régimes observés
sur les données, nous considérons par la suite des modèles à changement de
régimes.

Un modèle pour les composantes cartésiennes et
polaires du vent en un site

Dans un second temps, nous nous intéressons aux processus des composantes
polaires (U,Φ) et cartésiennes du vent (u, v) en un site afin de prendre en
compte la direction du vent. Vitesse et direction du vent sont étroitement liées
et la direction du vent est un bon descripteur des conditions météorologiques
synoptiques. A notre connaissance, aucun modèle n’a été proposé pour mod-
éliser jointement des séries temporelles de vitesse et direction du vent. Ceci
peut être réalisé via la modélisation de (U,Φ) ou de (u, v). Dans (Holzmann
et al., 2006), un modèle à variable latente est proposé pour modéliser un couple
linéaire-circulaire de données. Cependant, conditionnellement à l’état caché,
les variables linéaire et circulaire sont supposées indépendantes. Dans (Hering
and Genton, 2010) un modèle de prédiction pour u et v est proposé, il est basé
sur une régression linéaire avec une innovation de distribution Skew-t. Dans
(Ailliot et al., 2006b), le couple (u, v) est modélisé par un modèle vecteur auto-



CONTENTS 5

régressif à coefficients variant en fonction du déplacement du champ (u, v) entre
deux instants successifs (voir aussi (Wikle et al., 2001; Modlin et al., 2012)).

Les données de vent présentent une alternance de périodes stables associées
à une direction de vent généralement d’est et une intensité faible à modérée
avec des périodes plus instables associées à des vents majoritairement d’ouest,
plus volatiles et plus forts. Afin de restituer cette alternance et ainsi capturer
l’information contenue dans les données au-delà du comportment moyen, nous
proposons de considérer des modèles à changement de régimes. Ceux-ci ont été
largement utilisés pour les données météorologiques : ils permettent de mieux
restituer la dynamique temporelle des processus par rapport à des modèles sans
régime (Ailliot and Monbet, 2012). Les modèles autorégressifs à changement
de régimes cachés markoviens ont été initialement introduits pour les séries
temporelles en économie dans (Hamilton, 1989). Ces modèles apparaîssent
comme une généralisation des modèles à Chaîne de Markov Cachée et des
modèles autorégressifs. Dans (Ailliot et al., 2006a) un modèle autorégressif à
changement de régimes est proposé pour décrire l’évolution spatio-temporelle
des champs (u, v).

Les transitions observées entre les régimes dépendent du vent observé, par
exemple les transitions d’un régime dépressionnaire vers un régime anticy-
clonique se font en général lorsque la direction est associée à un vent venant
du nord et sont très peu probables lorsque la direction est associée à un vent
venant du sud. Dans le but de prendre en compte les observations passées,
nous utilisons des probabilités de transition entre régimes non-homogènes sim-
ilairement à (Hughes and Guttorp, 1994).

Nous considérons le modèle suivant : (St)t≥0 est une chaîne de Markov à
valeurs dans {1, 2, ..,M}, St décrit le régime dans lequel se trouve l’observation
Yt à l’instant t. Cette variable est en général non-observée et nous la supposons
ici latente. Notons pour un processus {Xt} : X t+u

t = (Xt, ..., Xt+u) et xt+ut =
(xt, ..., xt+u). Supposons que l’observation Y soit à valeurs dans E.

Définition 1 Soit p,M ≥ 1 deux entiers, le processus (St, Y
t
t−p+1)t∈Z est pro-

cessus autorégressif à changement de régimes Markoviens cachés si c’est un
processus de Markov à valeurs dans {1, ...,M} × E et tel que :

• la distribution de St sachant {St′}t′<t et {Yt′}t′<t ne dépend que de St−1

et Yt−1, on note p1(st|st−1, yt−1) = P (St = st|St−1 = st−1, Yt−1 = yt−1),

• la distribution conditionnelle de Yt sachant {Yt′}t′<t et {St′}t′≤t ne dépend
que de St et Yt−1, . . . , Yt−p et a pour densité de probabilité p2

(
yt|st, yt−1

t−p

)
.

Nous choisissons la paramétrisation de von Mises suivante pour p1 avec la
direction du vent Φ comme covariable :

p1(st|st−1, yt−1) ∝ Γst−1,st exp(κ(st−1,st) cos(φt−1 − φ(st−1,st)
0 )), (1)
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où φ0 ∈ [0, 2π], κ ≥ 0 et Γ une matrice stochastique. Pour réduire le nombre
de paramètres, le restriction suivante est considérée : κ(s,s′) = κ(s′). De plus

les contraintes suivantes d’identifiabilité sont appliquées :
M∑
s′=1

κ(s′) = 0.

Un modèle pour (u, v)

Nous introduisons un modèle MS-AR à émissions gaussiennes et à transitions
non-homogènes décrites par p1 pour le processus (u, v). Conditionnellement
au régime St, l’observation Yt s’écrit :

Yt = B(St) + A
(St)
1 Yt−1 + A

(St)
2 Yt−2 + ...+ A(St)

p Yt−p + (Σ(St))−1/2εt,

Y représente ici le processus bivarié (u, v), B(i) est un vecteur K-dimensionnel
où K est le nombre de composantes de Y (ici K = 2), A(i)

1 , ..., A
(i)
p ,Σ(i) sont

des matrices K × K et ε est un bruit blanc gaussien de dimension K. Les
transitions de la chaîne S sont définies par p1 en (1). L’étude des critères
BIC et de statistiques calculées sur les données et sur des échantillons simulés
conclut à choisir un modèle avec M = 3 et p = 2. Le graphe des distributions
conditionnelles est le suivant, pour p = 1 :

· · · //

��

St−1
//

��

St //

��

St+1
//

��

· · ·

��
· · · //

==

Yt−1
//

==

Yt //

==

Yt+1
//

==

· · ·

Un modèle pour (U,Φ)

Premièrement, nous ajustons un modèle MS-AR non-homogène à la variable
Φ, p2 est défini par un processus de von Mises (Breckling, 1989) et p1 est défini
en (1). Pour ce modèle nous choisissonsM = 4 et p = 2. L’intensité du vent U
est ensuite modelisée par un modèle MS-AR non-homogène avec p1 paramétré
comme ci-dessus. Sous les mêmes critères que précédemment le modèle est
choisi avec M = 3 et p = 2. Le graphe des distributions conditionnelles dans
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ce modèle pour (U,Φ) est le suivant, pour p = 1 :

· · · //

��

S
(Φ)
t−1

//

��

S
(Φ)
t

//

��

S
(Φ)
t+1

//

��

· · ·

��
· · · //

==

!!

Φt−1
//

<<

""

Φt
//

<<

""

Φt+1
//

==

!!

· · ·

· · · //

��

S
(U)
t−1

//

��

S
(U)
t

//

��

S
(U)
t+1

//

��

· · ·

��
· · · // Ut−1

// Ut // Ut+1
// · · ·

Résultats

Dans chaque cas, le modèle à transitions non-homogènes restitue plus pré-
cisement les quantités étudiées que le modéle avec des transitions homogènes
entre les régimes. Ces modèles MS-AR non-homogènes révèlent de bonnes ca-
pacités à reproduire les distributions jointes et marginales de (u, v) et (U,Φ)
et la structure d’ordre 2 de ces processus. De plus, la comparaison entre les
conditions simulées de (u, v) et de (U,Φ) révèle que la dynamique temporelle
du vent est mieux reproduite par le modèle pour les coordonnées cartésiennes
que par le modèle pour les coordonnées polaires. Les distributions jointe et
marginales de (u, v) tendent à être reproduites de manière équivalente par
les deux modèles. D’autres statistiques sont également considérées comme le
nombre de rotations dans le sens horaire et anti-horaire, le modèle pour (U,Φ)
semble le mieux décrire cette statistique (voir Figure 2).

Modèles multi-sites pour les composantes cartési-
ennes du vent

Nous étudions dans la troisième partie une extension du modèle homogène
MS-AR pour (u, v) au cadre multi-site. Cette extension soulève la question
de la pertinence d’un régime régional commun à tous les sites. Nous mon-
trons que cette hypothèse est raisonnable si la zone choisie est suffisamment
homogène. En effet l’ajustement d’un modèle MS-AR homogène en plusieurs
sites montre une cohérence entre les régimes déterminés en chaque site et entre
les coefficients des modèles autorégressifs dans chaque régime.

Nous proposons également plusieurs modèles autorégressifs multi-variés
à changement de régimes observés. Un de nos objectifs est de comparer
ces modèles selon que les régimes sont observés ou latents. Ces deux types
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(a) (b) (c) (d)
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Figure 2: Frequence de rotations anti-horaires entre deux observations pour
les différents modèles. La ligne grise correspond à la valeur obtenue sur les
observations (45.4 % de rotations anti-horaires contre 54.6 % de rotations
horaires). Modèles : (a) MS-AR homogène pour (u, v), (b) modèle homogène
pour (U,Φ), (c) MS-AR non-homogène (u, v), (d) modèle non-homogène pour
(U,Φ).

de modèles ont largement été utilisés pour modéliser les variables météo-
rologiques. Nous proposons des régimes a priori déterminés à partir d’une
variable atmosphérique grande échelle : la hauteur de géopotentiel à 500mb
pour l’Atlantique Nord-Est et déterminés à partir des variables locales étudiées
à l’aide de méthodes de classification adaptées. Nous discutons ici les méthodes
de classification et le choix des descripteurs afin de construire une classifica-
tion observée pertinente du point de vue météorologique et du point de la
validation en simulation. Nous montrons ici que la classification extraite sur
la hauteur de géopotentiel ne permet pas d’extraire des régimes aussi marqués
que lorsque la classification faite sur les données locales. La classification a
priori la plus adaptée semble celle extraite par un modèle à chaîne de Markov
cachée à émission gaussiennes sur les données {ut−ut−1, vt−vt−1}. Les régimes
provenant de modèles à changement de régimes cachés présentent quant à eux
une certaine optimalité vis-à-vis du modèle et des données. Cependant ceux-
ci ne contiennent pas d’information sur la circulation atmosphérique à une
échelle plus grande que celle de la zone étudiée.

De plus nous décrivons le lien entre les régimes déterminés à petite échelle
spatio-temporelle, avec les régimes de temps à grande échelle observés en
Atlantique Nord. L’alternance de ces derniers gouverne la météorologie de
l’Europe, il est donc d’intérêt d’étudier leur influence sur les régimes à plus
petite échelle déterminés à partir des données de vent. Nous montrons que les
régimes petite échelle apparaîssent dans des régimes grande échelle privilégiés.

Lorsque les régimes a priori sont choisis pertinemment, les deux types de
modèles tendent à se comporter de manière équivalente en simulation. No-
tamment nous mettons en évidence le bénéfice des modèles à changement de
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régimes dans la description de l’alternance en intensité et variabilité des con-
ditions de vent.

Conclusion

Nous avons proposé ici plusieurs modèles pour simuler des données de vent
à l’echelle régionale au large de la Bretagne. Un premier modèle permet de
restituer les déplacements moyens des conditions de vent liées aux déplace-
ments des masses d’air. L’originalité de ce modèle est l’introduction d’une
variable latente représentant le vent à l’échelle régionale. Le vent local est en-
suite obtenu par projection linéaire de cette condition régionale. Deux perspec-
tives d’amélioration de ce modèle sont possibles afin d’affiner la modélisation
temporelle. Une possibilité est d’introduire des changements de régimes afin
de proposer une description des données à une échelle plus fine que l’échelle
moyenne. Cependant l’inférence d’un modèle à deux variables latentes est très
complexe. Une autre perspective est de modéliser le vent moyen régional par
un processus multi-dimensionnel afin de capturer plus d’information contenue
dans les données.

Dans la suite de ce travail, nous avons construit deux modèles pour les séries
temporelles de conditions de vent prenant en compte la dépendance jointe entre
direction et intensité du vent. En l’état actuel de nos connaissances, aucun
générateur de ce type n’avait été proposé avant ce travail. Ces deux modèles
permettent de simuler les coordonnées polaires et cartésiennes du vent en un
site. Les deux modèles proposés font intervenir une structure de changement
de régimes cachés dont les transitions sont gouvernées par la direction du vent.
Nous avons ici comparé ces deux modèles en terme de réalisme des séquences
simulées. Notamment, le modèle pour les composantes cartésiennes du vent
tend à mieux reproduire la dynamique temporelle des conditions de vent tandis
que les distributions jointe et marginales de (u, v) tendent à être reproduites
de manière équivalente par les deux modèles.

Pour finir, nous présentons un générateur multi-site de coordonnées cartési-
ennes du vent. L’originalité de ce modèle est qu’à notre connaissance, aucun
générateur multisite n’avait été conçu pour les coordonnées cartésiennes du
vent. De plus la question de la modélisation du régime dans un cadre multi-
site n’a pas été traitée. Une perspective serait de construire une procédure de
test basée sur le rapport de vraisemblance permettant de décider la pertinence
d’un régime régional ou local. Nous avons également proposé une comparai-
son en simulation et en terme d’interprétation météorologique des modèles à
changement de régimes cachés et observés. Ces deux types de modèles ont été
très largement utilisés sans avoir été comparés. Lors de cette comparaison spé-
cifique aux données de vent, nous avons mis en évidence la difficulté d’extraire
une classification à la fois pertinente météorologiquement et en terme de de-
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scription du modèle conditionnel pour ces données. Nous avons également
mis en évidence que l’apparition des régimes à petite échelle se fait dans des
régimes à grande échelle privilégiés. Par la suite, une paramétrisation adap-
tée des matrices autoregressives permetterait d’ajuster le modèle sur de plus
grands jeux de données en évitant les phénomènes de sur-paramétrisation.

Dans cette thèse, nous avons considéré plusieurs modèles à variable la-
tente. Un premier modèle fait intervenir une variable latente à valeurs contin-
ues. L’identifiabilité de celui-ci a été étudiée et deux méthodes d’estimation
de ce modèle ont été comparées. Un second type de modèle étudié est celui
des modèles à variable latente discrète. Nous avons ici proposé une modéli-
sation originale des transitions entre les valeurs de cette variable. En terme
d’applications, des modèles multi-sites pour les données de vent ont été pro-
posés, un premier permet de restituer les déplacements moyens des masses
d’air. La modélisation de la loi jointe et marginales du processus des coordon-
nées cartésiennes du vent a été étudiée. Enfin une prise en compte des régimes
observés sur les données a été réalisé via les modèles à changement de régimes.
Nous avons également montré que ceux-ci sont influencés par les régimes de
temps à grande échelle qui régissent la météorologie en Europe.



Chapter 1

Introduction and context

Those last decades, more and more impact studies involve meteorological mea-
sures and simulations, for instance in the growing field of wind energy. Various
measures related with wind are needed, such as short-term wind power pro-
duction or weather uncertainties for the maintenance of off-shore wind farms.
Furthermore, according to the kind of applications, one may need a large
number of long sequences of realistic wind data, such as in impact studies.
Stochastic generators of artificial sequences of weather conditions have been
introduced to respond this problem. They are statistical models that are cal-
ibrated on a dataset and that aim at simulating sequences of meteorological
variables with statistical properties similar to the ones of the calibration set.
They can also be used as statistical downscaling tools.

Meteorological time series exhibit non-linearities induced by various causes
such as space-time non-separability, regime-switching patterns or interaction
with other variables. Meteorological data may be discrete-valued, continuous
or circular and interaction may occurred between these variables of various
natures. Describing these features is very challenging from a statistical point
of view. Indeed the modeling has to be sophisticated enough to handle these
patterns but tractable to keep the estimation and simulation feasible. We
propose in this work various approaches to build space-time models that handle
the non-linearities of the studied wind direction and wind speed time series.

In this work, we propose to construct stochastic generators of surface wind
conditions off-shore Brittany in France. We base the construction of wind con-
ditions generators on Hidden Markov models and state-space models, which
both include a latent process that represents a non-observed regional-scale
component. In a first time a Gaussian linear state-space model shows good
abilities to reproduce average behaviors of wind speed. To go one step ahead
and model the scale beyond the average one and to consider all the informa-
tion of wind fields, we use regime-switching models for polar and Cartesian
coordinates of wind. In this modeling, a discrete variable describes the current
weather type and helps to model the regime-switching observed on data due

11
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to the large-scale meteorological conditions.
The introduction is organized as follow, we present a brief state of the art

about stochastic weather generators in Section 1.1. In Section 1.2, we describe
sources of meteorological data, the dataset under study and its associated
modeling challenges. In Section 1.3, we describe the classes of Hidden Markov
models and state-space models that we use to build stochastic generators that
encompass the features of the data. The following sections are linked to the
patterns observed on the data, which we want to reproduce. Namely in Sec-
tion 1.4, we describe the way of accounting space-time motions for multi-site
dataset of time series and accounting for regime-switching. In Section 1.5, we
describe the literature on existing models dealing with interactions between
wind direction and speed. We finish in Section 1.6 by a description of the
proposed work.

1.1 Stochastic weather generators

A growing number of recent impact studies requires a large number of long
sequences of meteorological data at fine spatial scale that are consistent with
the observed meteorology and climatology, such as in hydrological design, in
agricultural or ecosystem simulation. In that purpose, stochastic weather gen-
erators have been developed, namely they simulate, in a statistical framework,
unlimited number of sequences of meteorological data at small spatial and tem-
poral scales. Those sequences may account for climate change scenarios and
enable to reproduce a greater part of the variability of the considered process
that may not be assessed through a limited number of observed sequences.

The major fields of applications of the stochastic weather generators are
the followings. These models have been adopted in various impact studies as
a computationally inexpensive tool that generates quickly as many synthetic
time series as desired of unlimited length without missing data (Flecher et al.,
2010). Stochastic weather generators can also be used as a tool to condi-
tional simulation of missing values (Yang et al., 2005), besides parameters of
stochastic weather generators can be spatially interpolated to generate me-
teorological data at non-observed station (Wilks, 1998; Kleiber et al., 2012).
Concerning the third field of application, these models have been combined
to downscaling techniques to generate scenarios of climate change at a local
scale (Semenov and Barrow, 1997) or they can be used to generate synthetic
data at small spatio-temporal scale consistent with climate changes scenarios
at larger spatio-temporal scale (Wilks, 1992), see (Maraun et al., 2010; Wilks,
2010, 2012) for the use of stochastic weather generators in downscaling.

Two approaches are used to build stochastic weather generators: the em-
pirical one based on re-sampling, non-parametric methods (Rajagopalan and
Lall, 1999) and model-based methods (Richardson, 1981; Wilks, 1999; Flecher
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et al., 2010). We focus on this second method in this thesis. It has the advan-
tage of bringing a framework that leads to easy interpretations and enables
to simulate unobserved events. However more efforts have to be paid on the
modeling than when considering non-parametric models. When constructing
a stochastic weather generator, one has to find a good compromise between
the simplicity of the model, that ensures an ease of fitting and simulation, and
the fidelity to the data.

In the early days of stochastic weather generators, most of the efforts were
focused on precipitation processes at one location, see (Richardson, 1981) or
(Wilks and Wilby, 1999; Maraun et al., 2010; Srikanthan and McMahon, 1999)
for a review. This meteorological variable is of great interest for applica-
tions and many generators simulate other variables conditionally to the rain
state. Modeling several meteorological variables is challenging since the de-
pendence between variables of various nature has to be accounted. Various
single-site models of multivariate meteorological dataset have been proposed
(Wilks, 1999; Flecher et al., 2010). Recent researches are focused on the de-
velopment of multi-site models, which is a challenging issue especially in the
context of multivariate meteorological variables (Wilks, 2009; Kleiber et al.,
2013).

Wind generators have in particular been used to assess wind power pro-
duction (Brown et al., 1984), to account for coastal erosion (Skidmore and
Tatarko, 1990), drift of objects in the ocean (Ailliot et al., 2006a) or weather
uncertainties into a simulator of maintenance costs of off-shore wind-farm (Hof-
mann and Sperstad, 2013). Various stochastic weather generators of multiple
variables include wind speed modeling, however specific wind generators have
been developed to refine the modeling (Ailliot and Monbet, 2012). To the best
of our knowledge, very few multi-site models for wind conditions have been
proposed and especially for Cartesian coordinates of wind.

1.2 Meteorological data

1.2.1 Various sources of data

In situ wind data may come from direct measures from inland stations, from
off-shore buoys or from satellites. Data may contain missing values or exhibit
non-regular sampling (especially satellite data). Multi-site sets of time series
are often non-consistent in space and time or are available over periods of
time that are not long enough to estimate reliably probabilities of complex
events. Besides one may have reservation about the quality of observational
data due to the possible bias or aging of sensors, changes of measurement site.
Homogenization of observed meteorological data is a current research topic,
however there exists no standard methods to homogenize wind data due to
their important variability in space and time. Ground measurements of wind
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is subject to topography that has a strong influence on this process
As a surrogate to observed data, one may use reanalysis data that fill gaps

and provide estimates of unobserved data. They are obtained by combining
observations and Numerical Weather Prediction models; and provide a histor-
ical data base, which is available at a regular temporal and spatial resolution.
However they provide a limited number of sequences of meteorological pro-
cesses that are coherent with the experienced meteorology and climatology.

Many recent investigations tend to use data consistent with possible future
climate. Preferred source of climate projections for impact studies is Global
Climate Models (GCM), these models based on physics perform reasonably in
simulating the current climate over regional and global scale. However these
models are computationally expensive and are not reliable at fine spatial scale
due to their course spatial resolution. Downscaling tools have been developed
to fill the gap between the resolution required for end users and the climate
change scenarios. One approach is the dynamical downscaling where outputs of
a GCM are used to drive a Regional Climate Model (RCM) at a higher spatial
resolution. Another approach is the statistical downscaling where statistical
links are established between local observations and large-scale variables.

1.2.2 Considered wind data and associated issues

In this subsection, we introduce the data we use and the associated modeling
challenges in the context of stochastic weather generators. In situ data are
neither available on a long time period nor on a large area offshore Brittany in
France. Besides the quality of various dataset is poor due to the lack of homog-
enization. In this work, we consider wind data (zonal and meridional compo-
nents (u, v)) at 10 meters above sea level extracted from the ERA Interim Full
dataset produced by the European Center of Medium-range Weather Forecast
(ECMWF). The dataset can be freely downloaded and used for scientific pur-
poses at the URL http://data.ecmwf.int/data/. This dataset is available on
a regular space-time grid with a temporal resolution of 6 hours and a spatial
resolution of 0.75◦. The observed wind fields are generally smooth, which leads
to a high correlation between the different sites. Although the smoothness ob-
served here is inherent to reanalysis data that are known to be smoother than
observations, it is also coherent with the considered spatio-temporal scale. A
convention when using wind direction is that we deal with the direction from
where the wind is blowing rather than with the direction to which it blows.

Off-shore the coasts, without topographical obstacle, reanalysis data are a
good approximation of observational data. In a first step, in order to settle
the modeling in a simple context, we consider a rectangular area away from
the coastline to avoid local effects due to the coasts. Our purpose is then to
consider data along the coast which may be more useful for the applications.
However the methodology introduced in this paper could easily be adapted to
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Figure 1.1: Map of the two studied areas. Arrows correspond to the average
field of (u, v).

handle datasets with more complicated space-time sampling such as the one
obtained when considering networks of meteorological stations.

The dataset consists in 33 years of wind data from 1979 to 2011 and we
focus on wintertime to avoid seasonal effects. Daily components are weak in
wintertime and are neglected in the following. Further, the statistical infer-
ence is based on the assumption that the wintertime months of wind data
are independent realizations of a common stationary stochastic process. This
assumption is usual for meteorological processes but it does not take into ac-
count low frequency variations such as the North Atlantic Oscillation (NAO).
In a first time, the most northern area was studied, later we found that the
bottom rectangle is more homogeneous in terms of wind events and then we
worked with this area, see Figure 1.1.

Challenges raised while considering this dataset and more generally multi-
site wind data are developed in the following paragraphs. They are linked with
the distributions and dependence of the various components of wind fields and
with the description of space-time propagation of wind events and the observed
alternations between stable wind conditions and more volatile wind conditions.
In the sequel wind intensity is denoted as U , wind direction as Φ and zonal
and meridional components of wind as u and v.

• Marginal distribution and complex dependences at one site.
· Joint and marginal distributions. In Figure 1.2, distributions of wind speed
U and of the components (u, v) are depicted. Wind speed distribution is
skewed and the joint distribution of (u, v) admits complex patterns. The
margin of u reveals two separate modes whereas the one of v does not exhibit
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Figure 1.2: Left: histogram of wind intensity data, central panel: rose diagram
of wind direction, right: joint and marginal distribution of (u, v) at the location
(47.25◦N, 9.75◦W ).

a clear bi-modality. The bi-modality of marginal distributions urges to use
models with regime-switching. The very few points around the point (0, 0)
indicate that the transitions between the two modes of each component are
not realized through a vanishing of the field but rather through a rotation of
the field. Power transformations are commonly used to approximate Gaussian
margins. In order to handle the asymmetry of the wind speed distribution,
the Box-Cox transformation is applied, see for instance (Brown et al., 1984).
More precisely, let us denote for a given λi ≥ 0, Uλi,i,t =

U
λi
i,t−1

λi
if λi > 0

Uλi,i,t = log(Ui,t) if λi = 0.

with Ui,t the wind speed at time t and location i. Following (Hinkley, 1977),
λi can be estimated by searching the roots of the asymmetry measure

S(λi) =
mean(Uλi,i,t)−median(Uλi,i,t)√

var(Uλi,i,t)
. (1.1)

In Chapter 2, the same power transformation is applied at each site to preserve
the variance structure. The average value of the λ̂i estimated at each site is
used as a common power: λ̂ = 0.85. In Chapter 2, the model is fitted on these
transformed data.

The following transformation is used on both components u and v:{
ũ = Uα cos(Φ)
ṽ = Uα sin(Φ).

This transformation with α > 1 aims at filling the hole around (0, 0) in order
to facilitate the modeling. In practice, α is chosen empirically equal to 1.5. In
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Figure 1.3: Left: cross-correlation between u and v. Right: wind rose plot of
wind speed and direction, at the location (47.25◦N, 9.75◦W ).

Chapters 3 and 4, we will see that the description of this distribution by the
proposed models is satisfying.

The value of α̂, which is greater than 1, enables to fill the hole around
zero by strengthening the values of weak winds. Whereas the value of λ̂,
which is smaller than 1, allows to reduce the positive skewness of wind speed
distribution by reducing the transformed values of strong winds.

The circular nature of wind direction requires to use specific distribution
probability models. Most of the proposed models are based on von Mises and
wrapped normal distributions that have a as central role for circular data as
the normal distribution has for linear variables. In Chapter 3, we propose
to work with von Mises distribution to handle the circular nature of wind
direction, see (Breckling, 1989).

· Intensity and direction interaction. A typical pattern of wind fields is the
dependence between speed and direction, which is also observable on (u, v)
data. Prevailing flows are westerly in wintertime, this induces a temporal
advance of the meridional component v on the zonal one u, see Figure 1.3. In
the right panel of Figure 1.3, one can notice the strong link between intensity
and direction of wind, stronger wind conditions are more likely to occur in
westerly blowing conditions and in easterly conditions, intensity is weaker.
This phenomenon is also observable on the time series of Figure 1.4. To cope
with this dependence, the MS-AR models that we introduce in Chapters 3
and 4 are designed for polar and Cartesian coordinates of wind. Moreover,
transitions between stable and volatile periods generally occur in privileged
wind direction, for instance transitions from unstable conditions to stable ones
are more likely when wind is southward. We propose in Chapter 3 to account



18 CHAPTER 1. INTRODUCTION

0 50 100 150 200 250

Time

W
ind

 di
re

cti
on

E
N

W
S

E

0 50 100 150 200 250

0
5

10
15

20
25

Time

W
ind

 sp
ee

d

0 50 100 150 200 250

5
10

15
20

Time

W
ind

 sp
ee

d

Figure 1.4: Top and central panels: wind direction and speed at a western
location (48◦N, 10.5◦W ), bottom panel: wind speed at an eastern location
(48◦N, 6.75◦W ). Weather regimes in grey, from the lighter to the darker: BL,
AR, NAO+, NAO-.

for that pattern by driving the transitions between regimes by wind direction.

• Space-time motions and non-separability. In wintertime, the prevailing
air masses are generally moving westerly. In Figure 1.4, we can observe the
propagation of maximal wind speed from a western site (central panel) to
an eastern one (bottom panel). It induces non-separability between time and
space components of the space-time covariance function of wind processes. The
asymmetry with respect to 0 of lagged by 1 cross-correlations of wind speed
shown in Figure 2.2 highlights this phenomenon. Moreover, one can notice
on this figure some anisotropy patterns. Indeed dependences in latitude and
longitude differ. Methods discussed in Subsection 1.4.2 generally enable to
reproduce these average patterns. We introduce in the modeling two scales to
capture these patterns, a regional scale, which is not observed, is modeled with
its own dynamic as a latent process and conditionally to it a model drives the
local scale. In Chapters 2 and 4, we show that the proposed model enables to
capture and reproduce space-time interactions of wind and to deal with the
spatial non-stationarity.



1.2. METEOROLOGICAL DATA 19

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0
.5

0
0
.6

0
0
.7

0
0
.8

0

dLat

C
o
rr

e
la

ti
o
n

−4 −2 0 2 4

0
.5

0
0
.6

0
0
.7

0
0
.8

0

dLong

C
o
rr

e
la

ti
o
n

Figure 1.5: Lagged-one cross-correlations of wind speed against differences of
latitude (left) and longitude (right).

• Regime-switching patterns. The meteorology and climatology of Europe
are governed in part by the alternate of large-scale weather regimes (Michelan-
geli et al., 1995; Cassou, 2008). These are characteristic patterns of the atmo-
spheric circulation above the North-Atlantic Ocean. In winter, four regimes
are identified and described in various references (Michelangeli et al., 1995;
Cassou, 2008; Najac, 2008). They correspond to the two phases of North-
Atlantic Oscillation (NAO+ and NAO-), the blocking (BL) and the Atlantic
Ridge (AR) regimes. In France in wintertime, these four regimes respectively
correspond to privileged flows that are respectively: south-western flows with
numerous storms (NAO+), western slow flows (NAO-), southern or eastern
very stable flows (BL) and northern flows (AR).

The large-scale conditions influence the local wind, it is then observed an
alternation of different intensity and variability of wind conditions. In Figure
1.4, we can see that volatile conditions are associated with the NAO+ phase,
whereas more stable wind conditions are associated with BL and AR regimes.
In Figure 1.4, one can also notice that wind has stronger intensity and temporal
variability when wind is westerly, whereas easterlies are generally associated
with lower and more stable wind conditions. Regime-switching models are
introduced in Subsection 1.4.3 to reproduce this instantaneous alternate of
different temporal variabilities and intensities in wind conditions. In Chapters
3 and 4, we propose Markov-Switching Autoregressive (MS-AR) models in
which the current weather state is not observed and then modeled as a hidden
Markov chain. In Chapter 4, we also discuss the choice of a latent or observed
weather state.



20 CHAPTER 1. INTRODUCTION

1.3 Hidden Markov and state-space models
In this section, we describe the general classes of models that we use to cope
with the various features of the data in our aim to construct a realistic stochas-
tic wind conditions generators. Namely in this work, we propose a Gaussian
linear state-space models for wind speed and hidden Markov-Switching Au-
toregressive models for polar and Cartesian components of wind. Hidden
Markov models and state-space models have been extensively used in many
domains. They bring a very flexible framework for modeling time series (see
(Zucchini and MacDonald, 2009; Durbin and Koopman, 2012; Brockwell and
Davis, 2002)) and space-time processes (Wikle and Hooten, 2010).

1.3.1 Basic properties

The idea of hidden Markov and state-space models is that the behavior of the
system is determined by an unobserved series {Xt}t with which are associ-
ated a series of observations {Yt}t. The relation between the unobserved time
series and the observed one is specified by conditional independence assump-
tions. The most basic conditional structure of these models is represented
by the following Directed Acyclic Graph (see (Durand, 2003) for additional
information about DAGs):

· · · //

��

Xt−1
//

��

Xt
//

��

Xt+1
//

��

· · ·

��
· · · Yt−1 Yt Yt+1 · · ·

When X takes discrete values, these models are denoted Hidden Markov Mod-
els (HMM) whereas when X is continuous-valued, the term of state-space
models is used.

• Gaussian linear state-space model. Gaussian linear state-space models
have been widely used in engineering and control theory since they provide a
simple and flexible framework. They are written as:{

Xt+1 = ρXt + Σ1/2εt+1

Yt = ΛXt + Γ1/2ηt for t ≥ 0,

(1.2)

(1.3)

Xt ∈ Rd and Yt ∈ RK , {εt} and {ηt} are independent Gaussian white noises
with zero-means and identity covariance matrices. The autoregressive param-
eter ρ is a d × d-matrix. The loading K × d-matrix Λ links the hidden state
and the observation, Σ and Γ are covariance matrices of dimension d× d and
K × K, which model respectively the structure of the innovation of the la-
tent state and the observation error. The equation (1.2) is called the state
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equation and (1.3) refers to the observation equation. This framework can be
generalized to a non-linear and non-Gaussian context, which necessitates more
complex inference procedures.

The strong correlation of wind conditions between sites urges the use of a
common signal to all the locations, which is interpreted as the regional wind
in the sequel. In Chapter 2, the regional wind is explicitly introduced as a
latent variable X, with its own autoregressive dynamic, and the local wind Y
is expressed as a function of the regional wind at different lags to model the
mean displacement of the air masses.

• Hidden Markov-Switching AutoRegressive Models. Markov-Switching
AutoRegressive (MS-AR) models appear as a generalization of Hidden Markov
Models (HMM) in allowing temporal dynamics within the regimes (Hamilton,
1989). Let denote Y t+u

t = (Yt, ..., Yt+u), for t > 0 and u > 0, this notation
holds true with other variables. Let p,M ≥ 1 be some integers, the sequence
(Xt, Y

t
t−p+1)t∈Z follows a MS-AR model if it is a Markov chain with values in

{1, ...,M} × E such that

- the conditional distribution ofXt given the values of {Xt′}t′<t and {Yt′}t′<t
only depends on Xt−1 and on Yt−1,

- the conditional distribution of Yt given the values of {Yt′}t′<t and {Xt′}t′≤t
only depends on Xt and Yt−1, . . . , Yt−p .

The various conditional independence assumptions are summarized by the
directed graph below for p = 1:

· · · //

��

Xt−1
//

��

Xt
//

��

Xt+1
//

��

· · ·

��
· · · // Yt−1

// Yt // Yt+1
// · · ·

One generalization of hidden MS-AR models is the case of models where tran-
sitions are driven by the past observation of Y . In this case, the conditional
distribution of Xt given the values of {Xt′}t′<t and {Yt′}t′<t only depends on
Xt−1 and on Yt−1. In the sequel these models are referred to non-homogeneous
MS-AR models and are used in Chapter 3 to improve the modeling of regimes.
The associated directed graph is written as, for p = 1:

· · · //

��

Xt−1
//

��

Xt
//

��

Xt+1
//

��

· · ·

��
· · · //

<<

Yt−1
//

<<

Yt //

<<

Yt+1
//

<<

· · ·

In Chapters 3 and 4, in order to capture consistent instantaneous behaviors
linked with the current weather state and especially the alternate of temporal
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variability of wind conditions, we consider models with regime-switching. The
weather type is described by a hidden Markov chain which represents the
current weather state over the considered area. Conditionally to the weather
state, the local scale is modeled using an autoregressive model.

1.3.2 Inference

One typical aim of the statistical inference is to infer about the hidden state
X and about the parameters of the model. One of the main advantage of
these two classes of models is that estimation, forecasting and smoothing can
be processed through general and efficient procedures.

• Identifiability. The introduction of a latent process X is a source of
non-identifiability of these models since parameters of the whole system have
to be estimated only via the observations Y . In practice the non-identifiability
is a source of numerical instability, its study is then of great importance. The
identifiability of the proposed models has been studied in the literature under
various points of view. Identifiability of linear Gaussian state-space models was
initially investigated in control theory and has been largely explored during
the last decades (Hannan and Deistler, 1988; Ljung, 1999; Bai and Wang,
2012; Bork, 2010). Concerning the identifiability of HMM models, see (Cappé
et al., 2005) and references therein and for the identifiability of hidden MS-AR
models see (Francq and Roussignol, 1998; Krishnamurthy and Ryden, 1998).

• Prediction, filtering and smoothing. When inferring the hidden state,
one can consider three procedures: prediction, filtering and smoothing. The
goal of filtering (respectively smoothing, respectively prediction) is to obtain
as much as possible information about the hidden variable Xt from the ob-
servations (y1, ..., yt) (respectively (y1, ..., yT ), respectively (y1, ..., yt−1)). The
solution consists in computing recursively the conditional distribution ofXt ac-
cording to (y1, ..., yt) (respectively (y1, ..., yT ), respectively (y1, ..., yt−1)), which
realizes the best approximation of Xt according to (y1, ..., yt) in terms of a cho-
sen error. When considering a Gaussian linear state-space model, this infer-
ence is performed through the Kalman recursions. Regarding hidden Markov-
Switching AutoRegressive models, this is performed by the Forward-Backward
recursions (Hamilton, 1989).

• Expectation-Maximization algorithm. The parameters estimation of
models with latent variables is generally performed via the Expectation-Maximi-
zation (EM) algorithm which proceeds into cycling through the two following
steps (Dempster et al., 1977). The EM-algorithm aims at maximizing the com-
plete log-likelihood function based on the observations Y , assume that y−1 and
y0 are observed:

θ → E(log(L(θ;Y1, ..., YT , X1, ..., XT ))|Y T
−1 = yT−1),
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it is proven that through the iterations of the algorithm, a convergent sequences
of approximation of the Maximum Likelihood estimator of θ is computed. The
Expectation-step enables to update the values of the expected complete likeli-
hood that involves the conditional distribution of X according to Y under the
current value of the estimate parameters. Smoothing techniques are used to
that aim. The Maximization-step consists in updating the parameter estimates
by maximizing the precedent value of the expected complete likelihood. Ex-
plicit expressions of the optimal parameters can be available like for Gaussian
linear state-space model, or numerical procedures may be needed.

In this work, we introduce a Gaussian linear state-space model and various
hidden MS-AR models to encompass the various features of the data described
in Section 1.2. The following sections are organized according to the various
topics linked with the features that we want to reproduce. In each following
section, we give a small state of the art of techniques and models related to
these topics and we propose our associated modeling.

1.4 Modeling space-time dependence

One of our interests is the ability of the proposed model to describe and re-
produce space-time motions of wind events. Meanwhile, the marginal tem-
poral dynamic of the data is also to be described accurately. Various mod-
els have been proposed for wind speed at one site however very few models
have been constructed for multi-site wind time series. Nevertheless, a wide
variety of models and techniques are suitable to account for space-time prop-
agation such as state-space models. In the following, we present briefly and
non-exhaustively methods to account for the temporal dependence and space-
time patterns in parametric stochastic weather generators. Then we introduce
regime-switching models, which we use to capture instantaneous behaviors of
the data.

1.4.1 Temporal dependence at a single site

First weather generators were dealing with precipitation occurrences, a simple
approach to account for the temporal dynamic of this kind of data is the frame-
work of finite state space Markov Chain (Gabriel and Neumann, 1962). One
step further is the modeling of continuous valued time series, which is realized
through linear autoregressive (AR) models (Richardson, 1981). This classi-
cal approach for modeling continuous valued time series at a single location
consists in using the Box-Jenkins methodology, where an AR model (or more
generally an ARMA model) is fitted after achieving stationarity and applying
a marginal transformation to obtain Gaussian like margins. This method has
been widely used for wind time series and the most usual transformation of
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wind data is a power transformation (Brown et al., 1984; Nfaoui et al., 1996;
Kamal and Jafri, 1997), but specific distributions are used as well, for instance
Weibull (Brown et al., 1984). Another approach similar to the auto-regressive
modeling but with more flexibility, consists in specifying the conditional dis-
tribution of the variables between two consecutive times like in (Flecher et al.,
2010), where a closed skew normal distribution is used. Most of these models
enable to describe in a satisfying way the average and short-term behaviors
of the data. In order to model more than the average behaviors, one can
introduce non-linear models among them Artificial Neural Networks (ANN),
models with latent variables as state-space models, described in Subsection
1.3, or models with regime-switching described in Subsection 1.4.3. They have
proven their ability to improve the temporal dynamic, see (Ailliot and Monbet,
2012) where a hidden regime-switching model is used for wind speed at one
site. In (Pinson et al., 2008), several regime-switching models are compared for
the forecast of wind power, hidden MS-AR models are shown to outperform
the other proposed models, namely an ARMA model and regime-switching
models such as Self-Exiting Threshold AR model (SETAR).

1.4.2 Including multi-site interactions

Recent researches focus on multi-site stochastic weather generator and in ad-
dition to the previous requests, one has to try to reproduce the observed
dependence between sites. Some meteorological variables exhibit strong cor-
relation that should not be ignored. When considering datasets of multi-site
time series, space-time interactions linked to the propagation of meteorologi-
cal events, should be embedded. Space-time patterns of meteorological data
generally lead to properties of non-separability of space and time components
of the associated covariance function.

One way of accounting for spatial dependence of multi-station dataset is
to work in a multivariate framework, like a Gaussian multivariate framework
(Bardossy and Plate, 1992; Yang et al., 2005) or like models based on multi-
variate ARIMA (Haslett and Raftery, 1989). Random Gaussian fields are well
adapted to model space-time interactions through the second order structure
of the process (Rychlik and Mustedanagic, 2013; Fuentes et al., 2005). A more
general framework than the one of random Gaussian fields is the one where
dependences are modeled through copula (Tastu et al., 2013). However this
framework leads to more challenging estimation procedures. A wide variety of
space-time covariance models that deal with space-time interaction have been
proposed in the literature (Gneiting, 2002). Another way of accounting the
multi-site dependence is to explicitly simulate the physical phenomena that
generate weather (Cox and Isham, 1988).

Another approach is to consider single-site model and to add an extra layer
that embeds the spatial distribution of the estimate parameters (Šaltytė Benth
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and Šaltytė, 2011) or that gives a spatial structure to random numbers that
serve to simulate the variables (Wilks, 1998; Kleiber et al., 2012; Khalili et al.,
2007; Thompson et al., 2007). In (Wilks, 1998; Kleiber et al., 2012; Khalili
et al., 2007), latent spatial Gaussian processes are introduced to generate the
random numbers that drive the precipitation occurrences and amounts. When
considering multi-layer models, multi-site dependencies can be assessed in one
layer (Bardossy and Plate, 1992) or more, in (Thompson et al., 2007) for
instance both layers involve spatial structure.

Space-time propagations of meteorological events can also be introduced
using latent variables, in (Ailliot et al., 2006b), the Vector AutoRegressive
coefficients depend on a latent process that describes the motion of the air
masses.

We work in Chapters 2 and 4 with multivariate processes and models, that
account for two space-time scales. In both Chapters 2 and 4, we introduce a
regional process that intends to help the description of a part of the propa-
gation of meteorological events. In Chapter 2, we propose a Gaussian linear
state-space model, where the local observation is written as a linear projection
of the regional wind, this latter is described by a hidden autoregressive scalar
process, the projection matrix enables to account for a part of the space-time
motions. In Chapter 4, we introduce multivariate Markov-Switching Autore-
gressive models with observed and latent regional switches. In this modeling,
the local process has its own autoregressive dynamic conditionally to the re-
gional scale, which is described by a discrete Markov chain. In this model the
space-time interaction is in part included in the autoregressive matrices.

We show that all these proposed models enable to well reproduce a part
the distribution of the considered processes and the general shape of space-
time covariance functions. To account for space-time variability at another
scale than the average scale and reproduce the observed regime-shifts, one can
introduce regime-switching models, as described above.

1.4.3 Accounting for regime-switching

Typical patterns of regime-shifts observed on time series can be described by
regime-switching models at single or multiple sites. Space-time motions of
meteorological events are linked to the current weather state. Indeed storms
and stable conditions occur in privileged regional weather conditions. Conse-
quently describing weather state enables to have information about space-time
motions of meteorological events. Blocking a time series into regimes consists
in partitioning it into periods of time in which the series is homogeneous and
can be described by a single process. In that context, weather variables are
modeled conditionally to the regime; and the choice of the regimes and of the
conditional distribution are of great importance. In most cases, the regime-
switching has a Markovian dynamic (Richardson, 1981; Wilks, 1998), but non-
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parametric methods are proposed in (Racsko et al., 1991). Regime-switching
introduces in the modeling framework various temporal scales. Indeed varia-
tions of regimes is at a larger temporal scale than the one of the observations
which is a small-scale dynamic. Besides in terms of temporal dependence,
regime-switchings enable to combine several dynamics into one model. Indeed
it allows to alternate between periods with high temporal variability and more
stable periods.

Depending on the availability of good descriptors of the current weather
state, regime-switching can be achieved through models with an observed or
a latent regime-switching. In the first case, regimes can be extracted via
clustering methods from extra-variables, such as descriptors of atmospheric
circulation (see for instance (Bardossy and Plate, 1992; Wilson et al., 1992)),
or from the studied local variables. A separation of dry-wet states has been
widely used to derive observed regimes when various meteorological variables
are considered (Richardson, 1981; Flecher et al., 2010). When considering
wind models, wind direction can be accounted for since it is a good descriptor
of synoptic conditions. In (Gneiting et al., 2006), wind direction is either used
to extract regimes or in the parametrization of the predictive distribution. In
the second case, when the regimes are not observed, they are then introduced
as a hidden variable, see for instance (Ailliot and Monbet, 2012). In that case,
the model falls into the domain of Hidden Markov Model. Hidden Markov
Model have been widely used in this context for meteorological data (Zucchini
and Guttorp, 1991; Hughes et al., 1999; Thompson et al., 2007). In (Ailliot
and Monbet, 2012) wind speed at one site is modeled by a hidden MS-AR
model.

In the multi-site context, the regime can be regional, common to all sites,
and remains scalar (Ailliot et al., 2009) or it can be introduced as a site-
specific regime (Wilks, 1998; Kleiber et al., 2012; Khalili et al., 2007; Thomp-
son et al., 2007), which enables to account for a wide range of space-time
dependence. However a site-specific regime appears to be computationally
challenging (Wilks, 1998).

In Chapters 3 and 4, we use Markov-Switching AutoRegressive models.
In Chapter 3, we describe polar and Cartesian coordinates at one site via
hidden MS-AR models, in this modeling transitions between the regimes are
driven by wind direction as we suggest in Section 1.2. In Chapter 4, Cartesian
components at several stations are modeled by Vector Autoregressive models
with regime-switching. In this multi-site context, we show that the use of a
regional regime is reasonable.

To the best our knowledge, no comparison between the use of observed
and latent shifts have been conducted. In this aim, we propose in Chapter 4
several a priori regime-switching models and a hidden one and we compare
them. The comparison is lead in terms of meteorological consistency of the
extracted regimes, of appropriate description of the associated conditional dis-
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tribution and of ability to reproduce several chosen statistics. The observed
regime-switching models are based on several classifications extracted from a
large-scale descriptor of atmospheric circulation and from the local wind con-
ditions. We discuss the difficulty to find physically consistent a priori regime
that are also appropriate to the description of the conditional model in an au-
toregressive framework. The hidden regime-switching framework seems the
most appropriate to cope with this compromise.

As the meteorology in Europe is driven by large-scale North-Atlantic weather
regimes, we investigate the link between the weather state (hidden or observed)
extracted from the local wind with these weather regimes. Finally we highlight
the benefit of using regime-switching models in the modeling of the alternate
of temporal and intensity variabilities in wind conditions.

1.5 Accounting for interaction between wind di-
rection and speed

When considering wind fields one may account for both intensity and direc-
tion. We propose in the two last chapters, models that encompass information
from both intensity and direction. Moreover, to improve the description of
space-time motions of wind events, we seek to model this interaction. Indeed,
space-time motions of wind events are associated with characteristic patterns
of wind speed and direction. Besides wind direction is a good descriptor of
synoptic conditions. The interaction between direction and intensity is very
complex. Consequently in a first time, in Chapter 3, we focus on modeling this
dependence at a single site through the modeling of polar and Cartesian com-
ponents, then an extension to the multi-site context is proposed in Chapter 4
for the Cartesian components. This extension is challenging since space-time
interaction and the dependence between wind direction and intensity are to
be accounted for.

1.5.1 Modeling wind direction time series

Wind direction is of great interest when modeling wind conditions since this
variable is very informative about the non-linear behavior of wind speed. In
comparison with the literature on the modeling of time series of wind speed,
there exists only very few models for time series of wind direction. However,
various methodologies have been proposed in the literature to describe the
temporal features of circular time series.

In (Breckling, 1989) two autoregressive models for directional data are in-
troduced: von Mises processes and models based on wrapping a linear process
on the circle. A generalization of this wrapping is introduced in (Fisher and
Lee, 1994) as the linked processes, a Markov model is introduced in (Kato,
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2010). As for linear time series, to account for non-linearities of dynamics of
circular time series, regime-switching models have been developed (McDon-
ald and Zucchini, 1997). In (Holzmann et al., 2006), various Hidden Markov
Models with emission probabilities like von Mises distributions are investi-
gated and applied to two sets of directional data. In (Muñoz et al., 2013), two
models with regime-switching and circular probabilities of emission are intro-
duced, the first is a Markov-Switching with von Mises conditional distribution
of emission and the second is a model with similar emission probabilities with
a deterministic mechanism of thresholds that governs the change of regime.

In Chapter 3, a hidden Markov-switching model is proposed for wind di-
rection time series. The modeling is based on a von Mises process with hidden
Markovian shifts between regimes. As described in Section 1.2, transitions
between regimes occur in privileged direction, we propose a parameterization
of transitions between regimes that depends on wind direction. This leads
to an accurate modeling of wind direction time series (marginal distribution,
temporal dependence and frequency of clockwise rotations). The comparison
with the first model proposed in (Muñoz et al., 2013), where transitions are
homogeneous, reveals that the model we suggest gives a better description of
wind direction time series.

1.5.2 Modeling polar and Cartesian coordinates of wind

To model the dependence between wind speed and direction, we propose mod-
els for polar and Cartesian components of wind. Various aspects of the de-
pendence between wind speed and direction have been explored namely (Qin
et al., 2010) gives an example of a joint distribution, in (Modlin et al., 2012) a
spatial modeling of polar coordinates of wind fields in hurricanes is proposed.
In (Holzmann et al., 2006), a Hidden Markov Model for linear-circular data
is proposed but the dependence between the linear and circular variables is
ignored. However to the best of our knowledge, no models have been intro-
duced to generate jointly time series of wind speed and wind direction and
to account for the dependence between these variables of different nature in a
temporal framework.

In Chapter 3, we propose a model to generate simultaneously time series of
wind speed and direction and that accounts for a part of the dependence be-
tween speed and direction. The proposed model is made of four layers, two of
them represent the model for wind direction quoted above, which is a Markov-
Switching von Mises process. The two remaining layers are dedicated to de-
scribe wind intensity U by a hidden Markov-Switching AutoRegressive model.
Transitions between regimes are driven by wind direction. The structure of
conditional distributions of the model, with two layers of hidden variables S(Φ)

and S(U), one for the wind speed and one for the wind direction, is shown on
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the directed graph below.
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This model is limited to the single-site context, the extension to a multi-
site framework of the model for wind direction is not natural and challenging.
Models for Cartesian coordinates are more easily and naturally extended to a
multi-site context.

As far as we know, only a few models have been proposed to model time
series of Cartesian coordinates of wind (u, v) and the proposed ones are not
purposed to wind conditions generation and not focused on reproducing the
same statistics we are interested in. In (Hering and Genton, 2010), a VAR
model for wind prediction with skew-t-distribution of innovation is proposed
for zonal and meridional wind components. In (Ailliot et al., 2006b), Carte-
sian components of wind are modeled through an autoregressive model with
coefficients varying in time according to a hidden state that represents the dis-
placement of the field between two consecutive times. In (Wikle et al., 2001),
a Bayesian spatio-temporal framework that accounts for a physical descrip-
tion of large-scale variations is introduced for surface wind fields. In (Fuentes
et al., 2005), Gaussian models with high structured non-separable space-time
covariance are proposed to model wind fields.

In Chapters 3 and 4, two stochastic generators of (u, v)-conditions are re-
spectively proposed for a single-site dataset and a multi-site one. We propose a
hidden Markov-Switching AutoRegressive framework to describe this bivariate
process at one location and its extension to multiple locations. In the single-
site case, transitions are driven by wind direction, however in the multi-site
context we consider homogeneous transitions since the choice of the co-variate
is delicate in a multi-site framework. In Chapter 4, we highlight the difficulty
to reproduce marginal distribution and temporal patterns of the data contrar-
ily to the Chapter 3, where these statistics are well described by the single-site
models for polar and Cartesian components. To the extent of our knowledge,
these models constitute one of the first stochastic models that generate jointly
time series of Cartesian components.
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1.6 Plan of the thesis
In a first step to model multi-site time series of wind, we focused on wind
speed and reproducing motions of wind events. In the Chapter 2, we propose
a linear Gaussian state-space model as a stochastic generator of wind speed
time series at multiple stations. We investigate the identifiability of the model
through the study of the second order structure of the model. We propose
here two methods to perform efficiently the statistical inference. One is based
on the generalized method of moments and the other on maximum likelihood
via the EM-algorithm. Various reduced models are also introduced to improve
the parsimony of the model. Validation of the model is performed through
simulations and one-step ahead prediction is used as a complementary tool for
validation.

Limitations of this proposed model are mostly due to the scalar nature
of the hidden state, which can not capture all the information of the wind
field. Indeed only average behaviors are captured with this model. In order
to capture consistent instantaneous behaviors linked with the current weather
state and especially the alternate of temporal variability of wind conditions,
we consider models with regime-switching. Moreover to account for all the
information of wind fields, we added wind direction in the modeling framework
through the consideration of polar and Cartesian coordinates of wind.

In Chapter 3, we propose several hidden Markov-switching models for wind
condition time series that explicitly model the current weather state. A model
for polar components of wind and one for Cartesian components are proposed
in a single-site framework. The temporal dynamic of Φ and the joint distribu-
tion of (u, v) reveal very complex patterns. We show that the proposed models
give a satisfying description of complex features of the studied time series such
the joint and marginal distribution, rotations of (u, v) or temporal dynamics.

In Chapter 4, we propose an extension to a multi-site context of the model
proposed for (u, v)-components in Chapter 3. We discuss the choice of the
regime-switching, which can be observed or latent, and its computation, in-
deed we compare several classifications extracted from a large-scale descriptor
of atmospheric circulation and from the local wind conditions. Moreover we
highlight the link between the weather state (hidden or observed) extracted
from the local wind with large-scale North-Atlantic weather regimes. We high-
light the difficulty to find physically consistent a priori regime that are also
appropriate to the description of the conditional model in an autoregressive
framework. Finally we highlight the benefit of using regime-switching in the
modeling of the alternate of temporal variability in wind conditions.



Chapter 2

A multi-site Gaussian linear
state-space for wind speed

This chapter is accepted for publication in Environmetrics :
Bessac, J., Ailliot, P. and Monbet, V. (2014). Gaussian linear state-space
model for wind fields in the North-East Atlantic. Environmetrics, to appear

A multi-site stochastic generator for wind speed is proposed. It aims at
simulating realistic wind conditions with a focus on reproducing the space-time
motions of the meteorological systems. A Gaussian linear state-space model is
used where the latent state may be interpreted as regional wind conditions and
the observation equation links regional and local scales. Parameter estimation
is performed by combining a method of moment and the EM algorithm whose
performances are discussed using simulation studies. The model is fitted to
6-hourly reanalysis data in the North-East Atlantic. It is shown that the
fitted model is interpretable and provides a good description of important
properties of the space-time covariance function of the data, such as the non
full-symmetry induced by prevailing flows in this area.

2.1 Introduction

Many natural phenomena and human activities depend on wind conditions.
However meteorological data are often available over periods of time that are
not long enough to estimate reliably probabilities of complex events. In order
to overcome this insufficiency, stochastic weather generators have been devel-
oped. Those stochastic weather generators are statistical models that simulate
sequences of meteorological variables with statistical properties similar to the
ones of the observations. They have been adopted in impact studies as a com-
putationally inexpensive tool that generates quickly as many synthetic time
series of unlimited length as desired (see (Srikanthan and McMahon, 1999) and
references therein). Stochastic weather generators can be adapted to in-filling
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tools that simulate missing data (Yang et al., 2005) or for downscaling global
climate models (see e.g. (Maraun et al., 2010) and references therein). Wind
generators have in particular been used to assess various quantities related to
wind power production (Brown et al., 1984; Castino et al., 1998; Hofmann and
Sperstad, 2013), drift of objects in the ocean (Ailliot et al., 2006a) or coastal
erosion (Skidmore and Tatarko, 1990).

Many natural phenomena and human activities depend on wind conditions.
However meteorological data are often available over periods of time that are
not long enough to estimate reliably probabilities of complex events. In order
to overcome this insufficiency, stochastic weather generators have been devel-
oped. Those stochastic weather generators are statistical models that simulate
sequences of meteorological variables with statistical properties similar to the
ones of the observations. They have been adopted in impact studies as a
computationally inexpensive tool that generates quickly as many synthetic
time series of unlimited length as desired, see for instance (Srikanthan and
McMahon, 1999) and references therein. Stochastic weather generators can be
adapted to in-filling tools that simulate missing data (Yang et al., 2005) or to
downscaling global climate models, see for instance (Maraun et al., 2010) and
references therein. Wind generators have in particular been used to assess var-
ious quantities related to wind power production (Brown et al., 1984; Castino
et al., 1998; Hofmann and Sperstad, 2013), drift of objects in the ocean (Ailliot
et al., 2006a) or coastal erosion (Skidmore and Tatarko, 1990).

A review of stochastic models for wind time series can be found in (Monbet
et al., 2007). Most of the existing models are designed for wind time series at a
single location. The most classical approach consists in using the Box-Jenkins
methodology, where an ARIMA model is fitted after achieving stationarity and
applying a marginal transformation to obtain Gaussian like margins. Non-
linear models have also been proposed and, in particular, weather type models
with a discrete latent variable, see (Ailliot and Monbet, 2012) and references
therein.

Generalizations to space-time models have been explored recently. Mul-
tisite wind models have to deal with the temporal and spatial dependence
and it is known that these two components are generally not separable when
air masses are moving in a prevailing direction (Gneiting, 2002). Black-box
models such as artificial neural networks may be fitted but they lead to non-
interpretable models (Lei et al., 2009). A first alternative is based on Gaussian
fields (Gneiting, 2002; Rychlik and Mustedanagic, 2013) where non-separable
parametric covariance functions can be considered to take into account the
mean displacement of the air masses. Another approach consists in using
vector AutoRegressive-Moving-Average models (Haslett and Raftery, 1989;
de Luna and Genton, 2005) where the wind dynamic is described by the au-
toregressive matrices. Motions can be introduced using covariates or latent
variables. For example, in (Ailliot et al., 2006b) the autoregressive coefficients
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depend on a latent process that describes the motion of the air masses. In
(Šaltytė Benth and Šaltytė, 2011), a latent field describes the spatial structure
of the autoregressive parameters at each station. Following similar ideas, var-
ious authors developed models that aim at embedding physical insights into a
probabilistic model. The Bayesian framework is very convenient to deal with
such coupling (Wikle et al., 2001). For instance, in (Milliff et al., 2011), classi-
cal partial differential equations for the wind at the sea surface are perturbated
by adding a white noise and the parameters are estimated following a Bayesian
inference method.

In the present work, a structural model which aims at simulating wind
speed at several locations is investigated. The main idea consists in introduc-
ing a latent variable which aims at describing regional wind conditions and the
observed local wind is modeled as a function of the regional wind at different
lags to reproduce the mean displacement of the air masses. The model is kept
simple with linear Gaussian models used to describe both the dynamics of the
latent process and the link between the latent and the observed process. It
leads to an interpretable model with efficient numerical procedures available for
parameter estimation and simulation. Despite its simplicity, the model leads
to non-separable and anisotropic covariance functions. No physical equations
were embedded because their resolution is generally computationally too ex-
pensive for a stochastic generator but the suggested model involves quantities
that have a physical meaning in the proposed context. It could be used as a
surrogate of the atmospheric model (emulator) for data assimilation or data
fusion.

The data considered in this work are presented in Section 2.2. The model is
described in Section 2.3. Parameter estimation and fitting procedures are also
discussed in this section. Validation of the model is discussed in Section 2.4.
It is shown that the fitted model is able to reproduce the anisotropy and
non-separability of the data. However, the model includes a large number of
parameters and various reduced models are introduced in Section 2.5. Conclu-
sions are given in Section 2.6. Parameter identifiability and non full-symmetry
are proven in Appendix 2.7.

2.2 The wind dataset

In situ data are neither available on a long time period nor on a large area
offshore Brittany in France. Reanalysis data, which are obtained by com-
bining assimilation of observations with numerical weather prediction models,
provides a relevant alternative for meteorological or climatological studies. In
this work we consider wind speed at 10 meters above sea level extracted from
the ERA Interim Full dataset produced by the European Center of Medium-
range Weather Forecast (ECMWF). It can be freely downloaded and used for
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Figure 2.1: Left panel: mean wind speed at the 18 numbered points under
study in the North-East Atlantic. Right panel: estimated values of the power
in the Box-Cox method at the 18 locations.

scientific purposes at the URL http://data.ecmwf.int/data/. This dataset is
available on a regular space-time grid with a temporal resolution of 6 hours
and a spatial resolution of 0.75◦. However the methodology introduced in
this work could easily be adapted to handle datasets with more complicated
space-time sampling such as the one obtained when considering networks of
meteorological stations.

We focus on 18 gridded locations between latitudes 48◦N and 49.5◦N and
longitudes 6.25◦Wand 9◦W (see Figure 4.1). The dataset consists of 33 years of
wind data from 1979 to 2011 and we focus on the month of January. Further,
the statistical inference is based on the assumption that the 33 months of
January wind data are 33 independent realizations of a common stationary
stochastic process. This assumption is usual for meteorological processes but it
does not take into account low frequency variations such as the North Atlantic
Oscillation (NAO).

In the studied area prevailing air masses are generally moving eastward. It
induces non-separability and non full-symmetry properties of the space-time
covariance function of the wind speed as for the dataset of wind speed in
Ireland considered in (Haslett and Raftery, 1989) and (Gneiting, 2002). The
lagged by 1 cross-correlations shown in Figure 2.2 highlight this phenomenon.
Indeed, the asymmetry with respect to the difference of longitude shows that
the correlation between yt(p) and yt+1(p′) is higher when location p is more
westerly with respect to p′ than when p is easterly with respect to p′ and
thus that western locations see the meteorological events before the eastern
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Figure 2.2: Lagged-one cross-correlations against differences of latitude (left)
and longitude (right).

locations. This asymmetry is less pronounced in latitude but reveals flows from
north to south. Furthermore, the correlations at lag 0 reveals some anisotropy
as dependences in latitude and longitude differ (see Figure 2.2).

Wind speed distribution is known to be skewed. It is often modeled as
a Weibull distribution (see e.g. (Brown et al., 1984)) but other distributions
such as the skew normal distribution have also been considered (see (Flecher
et al., 2010)). A classical method to handle such asymmetry in time series
analysis consists in applying a Box-Cox transformation in order to get a time
series with approximately Gaussian marginal distribution. This method has
been extensively used for analyzing wind time series at a single location (see
e.g. (Brown et al., 1984)). In (Rychlik and Mustedanagic, 2013) a different
power transformation λi is used at each location. More precisely, let us denote yλi,i,t =

y
λi
i,t−1

λi
if λi > 0

yλi,i,t = log(yi,t) if λi = 0.

with yi,t the wind speed at time t and location i. Following (Hinkley, 1977),
λi can be estimated by searching the roots of the asymmetry measure

S(λi) =
mean(yλi,i,t)−median(yλi,i,t)√

var(yλi,i,t)
. (2.1)

The resulting estimates are shown in Figure 4.1 with values ranging from
about 1 (Gaussian distribution) in the north-west to .7 closer in the south-
east. Despite this spatial variability, we have chosen to use the same power
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transformation at all sites in order to preserve the spatial structure of the
wind fields following e.g. (Haslett and Raftery, 1989). The value λ̂ = 0.85 is
used in the sequel. It is the average value of the λ̂i shown on Figure 4.1. The
simulation results given in Section 2.4 (see e.g. Figure 2.5) indicate that this
simple transformation permits to reproduce the marginal distributions of the
wind data considered in this study.

2.3 A linear Gaussian state-space model for wind
speed

State-space models first appeared in engineering and have then been exten-
sively used in many domains. State-space representations bring a very flex-
ible framework for modeling time series (see (Durbin and Koopman, 2012)
and (Brockwell and Davis, 2006)) and space-time processes (see (Wikle and
Hooten, 2010)). The model introduced in this section is a linear Gaussian
state-space model. One of the main advantages of this class of models is that
estimation, forecasting and smoothing can be processed through general and
efficient procedures.

2.3.1 Model

The observed wind fields are generally smooth, which leads to a high corre-
lation between the different sites. Although the smoothness observed here is
inherent to reanalysis data that are known to be smoother than observations
(see (Milliff et al., 2011)), it is coherent with the considered spatio-temporal
scale. This regularity suggests to explain an important part of the multisite
wind by using a common scalar process (the ’regional wind condition’). This
scalar process, denoted by {Xt} in the sequel, can not be observed directly
and is thus introduced as a latent (or ’hidden’) process. In order to model
the prevailing motion of the air masses we propose to let the wind conditions
at western locations depend more on the leading one-lag Xt+1 and Xt signals
than on the lagged signal Xt−1 with the reverse phenomenon at eastern loca-
tions. More precisely, the Gaussian state-space model which is considered in
this work is defined as small-scale fluctuations. In finance and economics this
covariance matrix of error of measurement is often assumed to be diagonal.
Here it would imply that the local wind conditions are conditionally indepen-
dent given the regional conditions which is a very strong assumption. As a first
step we have chosen to work with a full non-parametric covariance matrix but
reduced parametric models are explored in Subsection 2.5.1 (see also (Wikle
and Hooten, 2010)). In the sequel, we denote Λ = (α1|α0|α−1) ∈ RK×3 and
θ = (ρ, σ,Λ,Γ) the unknown parameters.

The temporal dynamics of the observed process is mainly contained in
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the latent process {Xt} and explained by the coefficient ρ. The model thus
imposes the same long-term temporal dynamics at each location. Under the
assumption |ρ| < 1, the AR(1) process {Xt} is stationary and so is the process
{Yt}.

2.3.2 Second-order structure and identifiability

Identifiability is required to get sensible and reliable parameter estimates. The
introduction of a latent process {Xt} is a source of non-identifiability since the
unknown parameters need to be identified uniquely from the distribution of
the observed {Yt} and Gaussian linear state-space models are known to be
often non-identifiable without additional constraints (see e.g. (Hannan and
Deistler, 1988), (Ljung, 1999), (Bai and Wang, 2012), (Bork, 2010)). Identi-
fiability of linear Gaussian state-space models has been initially investigated
in control theory and was largely explored during the last decades. Literature
is abundant on stochastic linear systems identification (Ljung, 1999; Hannan
and Deistler, 1988). To the best of our knowledge most of sufficient conditions
of identifiability are structural constraints on parameters (see (Papadopoulos
and Digalakis, 2010) for references and examples) associated with identifica-
tion procedures. In most cases structural constraints are applied depending
on the interpretability wished. Identifiability is examined through different
criteria based on transfer functions (Ljung, 1999) or likelihood (Papadopoulos
and Digalakis, 2010). Identification procedures are performed through con-
trollability and observability of several parameters in (Ljung, 1999) and via
the EM algorithm in (Papadopoulos and Digalakis, 2010). In econometrics the
identifiability of the latent factors and the loading matrix is considered (see for
example (Bai and Wang, 2012; Bork, 2010)). However the general conditions
given in (Bai and Wang, 2012) do not ensure identifiability of the model (M)
since X is scalar in (M). However we could not find any result which applies
directly to the model considered in this work.
{Yt} is a zero-mean stationary Gaussian process which is thus characterized

by its second-order structure given below

covθ(Yt,Yt) =
σ2

1− ρ2

(
α1(α1 + ρα0 + ρ2α−1)t +α0(ρα1 +α0 + ρα−1)t +

α−1(ρ2α1 + ρα0 +α−1)t
)

+ Γ, (2.2)

covθ(Yt,Yt+1) =
σ2

1− ρ2

(
α1(ρα1 +α0 + ρα−1)t +α0(ρ2α1 + ρα0 +α−1)t +

ρα−1(ρ2α1 + ρα0 +α−1)t
)
, (2.3)

covθ(Yt,Yt+k) =
σ2

1− ρ2
ρk−2(α1 + ρα0 + ρ2α−1)(ρ2α1 + ρα0 +α−1)t, (2.4)

for all k ≥ 2.
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The study of this space-time covariance function leads to the following Propo-
sition which is proven in Appendix 2.7.

Proposition 1 Assume that (M) holds. Assume further that σ2

1−ρ2 = 1 and
that the vectors α1, α0 and α−1 are linearly independent. Then the parameters
can be identified from the distribution of the process {Yt}.

These identifiability constraints are interpretable and were always satisfied
when fitting the model to the data. The first one implies that Xt has a unit
variance, the variance of the wind at the different locations being explained
by the scaling matrix Λ. The second one implies that Yt actually depends on
the three lagged values Xt−1, Xt and Xt+1 and not only on one or two lagged
values.

We will see in Section 2.4 that the proposed model enables to reproduce
various complex properties of the observed space-time covariance. Under con-
straints of Proposition 1, the covariance defined by (2.2-2.4) is neither full-
symmetric nor separable (see Appendix 2.7). Other non-symmetric space-time
covariance models have been proposed in the literature. Some of them have
been fitted to the Irish wind dataset (see for instance (Gneiting, 2002)). They
generally rely on strong assumptions such as spatial stationarity and isotropy
which are not realistic for our dataset. A noticeable exception is the model
proposed in (de Luna and Genton, 2005) which is based on the specification
of a vector autoregressive process and captures a part of the anisotropy that
is observed on the Irish dataset.

2.3.3 Parameter estimation

Two methods of estimation have been implemented and compared. The first
one is a method of moment based on the second-order structure of the process
{Yt} given by (2.2-2.4). It consists in numerically minimizing the following
objective function

θ → ‖ĉov(Yt,Yt)− covθ(Yt,Yt)‖2
2 + ‖ĉov(Yt,Yt+1)− covθ(Yt,Yt+1)‖2

2 (2.5)
+‖ĉov(Yt,Yt+2)− covθ(Yt,Yt+2)‖2

2 + ‖ĉov(Yt,Yt+3)− covθ(Yt,Yt+3)‖2
2,

where ĉov denotes the empirical covariance function and ‖.‖2 stands for the
matrix Frobenius norm. This method, denoted GMM for Generalized Method
of Moment in the sequel, is standard in geostatistics (see e.g. (Cressie, 1991)).
We have chosen to consider only the first four lags of the autocovariance func-
tion when building the objective function (2.5). It corresponds to the minimal
number of terms needed to identify the parameters (see Appendix 2.7). Simu-
lation results indicate that including more lags does not lead to more accurate
estimates.
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The second method performs Maximum Likelihood (ML) estimation using
the Expectation-Maximization (EM) algorithm (Dempster et al., 1977). EM
algorithm aims at maximizing the incomplete log-likelihood function

θ → E(log(p(X1, ..., XT ,Y1, ...,YT ; θ))|Y T
1 = yT1 )

by performing recursively two steps (E-step and M-step). For linear Gaussian
state-space models efficient numerical procedures exist for both steps. In the
E-step, the Kalman recursions lead to an exact computation of the various
conditional expectations involved and in the M-step, analytical expressions of
the maximizers of the intermediate function are available. More details about
the Kalman recursions and EM-algorithm can be found in the supplementary
materials.

Both methods are sensitive to the initial parameter value which needs to be
chosen carefully. We used the following procedure which involves the properties
of the second-order structure of {Yt}:

- ρ =
cov(Yt,Yt+3)i,j
cov(Yt,Yt+2)i,j

for all i, j ∈ {1, ..., K} is initialized as the empirical

mean of
ĉov(Yt,Yt+3)i,j
ĉov(Yt,Yt+2)i,j

.

- Λ is estimated by minimizing

θΛ → ‖ĉov(Yt,Yt+1)− covθ(Yt,Yt+1)‖2
2

+‖ĉov(Yt,Yt+2)− covθ(Yt,Yt+2)‖2
2

as a function of Λ with ρ being fixed to the value obtained in the previous
step. Note that this function does not depend on Γ according to (2.3)
and (2.4).

- Γ is determined by minimizing

θΓ → ‖ĉov(Yt,Yt)− covθ(Yt,Yt)‖2
2

as a function of Γ with ρ and Λ being fixed to the value obtained in the
previous steps.

These rough estimates are used as initial conditions of the numerical optimiza-
tion of the function (2.5) to compute the GMM estimates which in turn are
used to initialize the EM algorithm. An extra step could be added to refine
the output of the EM algorithm with a numerical optimization of the likeli-
hood function which is known to be more efficient close to local maxima (see
(Durbin and Koopman, 2012)). However we did not find any improvements in
practice with such a procedure.
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Bias Sd RMSE
Parameters GMM ML GMM ML GMM ML

ρ 0.036 0.004 0.022 0.017 0.042 0.017
α1 [-0.11;-0.009] [-0.069;-0.019] [0.065;0.108] [0.071;0.097] [0.067;0.149] [0.068;0.127]
α0 [-0.047;-0.234] [0.054;0.144] [0.11;0.182] [0.11;0.144] [0.125;0.292] [0.127;0.228]
α−1 [-0.080;0.022] [-0.035;0.012] [0.078;0.114] [0.062;0.104] [0.086;0.139] [0.079;0.117]
Γ [-0.199;0.007] [-0.108;0.013] [0.058;0.367] [0.029;0.368] [0.053;0.199] [0.053;0.115]

Table 2.1: Bias, standard deviation and RMSE of parameters estimates. For
the multidimensional parameters, minimal and maximal values are given in
brackets.

2.3.4 Properties of the estimates

Under suitable conditions, GMM (see (Newey and McFadden, 1994)) and ML
(see (Newey and McFadden, 1994; Shumway and Stoffer, 2006; Hannan and
Deistler, 1988; Caines, 1988)) estimators are consistent and asymptotically
Gaussian. In order to assess the performance of the estimators for the practical
application considered in this work, we perform a simulation study. N =
100 independent sets of the size of the studied data are simulated for the
parameters set estimated by ML on the wind data. Table 2.1 gives the bias,
standard deviation and Root Mean Square Error (RMSE) of ML and GMM
estimates computed from the simulations. Bias and standard deviations are
low. ML generally outperforms GMM except when estimating Γ where both
methods give comparable results. Both methods estimate more accurately α1

and α−1 than α0 and Γ is the less accurately estimated quantity.

2.4 Results

In order to validate the proposed model we check its physical realism and its
ability to generate wind conditions similar to the ones of the dataset. We com-
pare GMM and ML estimates through this validation in order to investigate
their robustness in a practical context.

2.4.1 Interpretability

The loading matrix Λ links the latent process to observed wind conditions. The
values of α1 and α−1 shown on Figure 2.3 reveal the site-dependent relations
with the latent process. Western locations depend more on Xt+1 than on Xt−1

and the reverse is true for eastern locations. This was expected since western
locations are the first locations affected when meteorological events enter in
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Figure 2.3: ML estimate of α1 (left panel) α0 (middle panel) and α−1 (right
panel).

the studied region.
Since large-scale variability is supposed to be contained in the latent pro-

cess, Γ should contain only small-scale variations. This is confirmed when
comparing the spatial sill and range of Γ with the ones of the original co-
variance function of the data (see Figure 2.4). The shape of Γ has a block
structure which is induced by the geometry of the domain and the numbering
of the sites (see Figure 4.1). The level sets of the blocks, except the top right
corner (and by symmetry bottom left corner), look like saddle point level sets:
the model better explains the wind observed at the central locations of the
domain than at the locations which are close to the boundary. The top right
corner has elliptical level sets. These geometrical differences raise problems
when trying to develop simple parametric models for Γ (see Section 2.5.1).

2.4.2 Realism of simulated sequences

In order to further validate the model, we have checked its ability to simulate
realistic wind conditions. For that, artificial time series are simulated with the
fitted models and their statistics are compared with the ones of the original
data. According to quantile-quantile plots shown on Figure 2.5, the model is
able to reproduce the general shape of the marginal distribution of the process
at the central station 9 except for very low wind speed. Similar results were
obtained at other locations.

Figure 2.7 shows that the cross-correlations at lags 0 and 1 are well repro-
duced by the fitted models with a slightly better fit for the GMM estimates.
This was not unexpected since the GMM estimate is designed to make the first
lags of the empirical autocovariance functions coincide with the one of the fit-
ted model. Figure 2.6 shows however that the fit is better for lags greater than
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Figure 2.4: Empirical covariance matrix of the wind data (left) and ML esti-
mate of Γ (right).
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Figure 2.5: Quantile-Quantile plot at location 9 for the model (M) and the
parameters estimated by GMM (left) and by ML (right). The dashed lines
corresponds to 90% prediction intervals computed by simulation.
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one day with the ML estimates which take into account longer term dynamics.
It leads to a higher value for ρ (0.76 for ML against 0.70 for GMM). The better
fit of the ML estimates is also coherent with with Table 2.1. Note also that the
models reproduce the time shift between locations 13 and 18 which is induced
by the prevailing westerly flow (see Figure 2.6).

2.5 Some improvements of the model
In this section we explore reduced models for Γ and Λ with the aim of reducing
the number of parameters involved in the model.

2.5.1 Parameterization of Γ

The spatial structure of the estimated Γ shown on Figure 2.4 suggests to
model the covariance between locations i and j in {1, ..., K} as a function
of the distance di,j between these locations. In the sequel, we consider two
different models, one with Gaussian correlation function

Γi,j = σiσj(exp(−λ1d2
i,j) + λ2δi,j) for i, j ∈ {1, ..., K},

and the other with wave correlation function

Γi,j = σiσj

(sin(λ1di,j)

λ1di,j
+ λ2δi,j

)
for i, j ∈ {1, ..., K},

where (σ1, ..., σK , λ1, λ2) are positive parameters and δi,j denotes the Kronecker
delta. λ1 and λ2 are respectively the range and nugget parameters, and σ2

i (1+
λ2) represents the variance of the field at location i. These models are usually
well defined covariance functions (see e.g. (Cressie, 1991; Abrahamsen, 1997)).
They are denoted respectively (MΓ∼Gauss) and (MΓ∼Sinus) hereafter.

The difference in dependence on latitude and longitude of Γ (Figure 2.8)
suggests the use of an anisotropic distance (see (Refice et al., 2011; Haskard,
2007; Šaltytė Benth and Šaltytė, 2011))

di,j =
√

∆Lat(i, j)2 + θ1∆Long(i, j)2 + θ2∆Lat(i, j)∆Long(i, j)

where ∆Lat(i, j) and ∆Long(i, j) denote respectively the difference in lati-
tude and longitude between locations i and j expressed in kilometers. The
constraint θ1 >

θ22
4

is imposed to ensure the positive-definiteness of the dis-
tance.

These covariance structures have first been fitted by least square estima-
tion to the estimated Γ shown on Figure 2.4. Results are shown on the bot-
tom panels of Figure 2.8 and have to be compared with the right-hand side
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Figure 2.6: Observed (full lines) and theoretical (dashed lines) cross-
correlations between locations 13 and 18 (upper row) and auto-correlation
at location 9 (lower row) for the model (M) with parameters estimated by
GMM (left) and by ML (right). 90% prediction intervals are computed from
100 independent simulated samples of the size of the original data.
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Figure 2.7: Theoretical correlations against observed correlations at lag 0 (left)
and lag 1 (right) for the model (M) and the two methods of estimation.

of Figure 2.4. The fit is globally good for the wave covariance whereas the
Gaussian shape can not cope with the negative correlations observed between
western and eastern locations. However the covariance between the north-
ern and southern locations are poorly reproduced (bottom left corner and top
right corner of the images of Γ in Figures 2.8 and 2.4). As mentioned in
Section 2.4.1 these blocks have a particular elliptical shape which is difficult
to reproduce by parametric models. Estimated anisotropy coefficients for the
sinus and the Gaussian structures are respectively (θ̂1, θ̂2) = (0.2, 0.04) and
(θ̂1, θ̂2) = (0.23, 0.005). For both models θ1 is lower than one and θ2 is close
to zeros and thus the spatial range is maximum in the west-east direction (see
Figure 2.8).

In a second step, the parameters have been re-estimated using the GMM
and ML methods. A numerical optimization needs to be performed in the
M-step of the EM algorithm to update the values of (σ1, ..., σK , λ1, λ2). Note
that the function to minimize can be expressed in a compact way (see sup-
plementary materials) which leads to an efficient numerical procedure. The
models have been validated in the same way as model (M) (see Section 2.4).
Similar results were obtained for the marginal distributions and the temporal
correlation functions. However the description of the spatial structure was de-
teriorated when using a (MΓ) model instead of (M) (compare Figure 2.7 with
Figure 2.9). This miss-specification is also confirmed by the Bayes Information
Criterion (BIC) values given in Table 2.2 where BIC = −2 log L + Np log(Nobs)
with L the likelihood of the model, Np the number of parameters and Nobs the
number of observations. The reduced models (MΓ) are clearly outperformed
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Figure 2.8: Image of covariance matrices fitted by least square to the matrix
shown on Figure 2.4 (Gaussian covariance (left), wave covariance (right)).

Model Parameters Log-likelihood BIC
(M2) 209 -24849 52040
(M) 208 -24954 52238
(MΛ) 186 -25399 52895

(MΓ∼Gauss) 78 -29110 59082
(MΓ∼Sinus) 78 -35615 72094

Table 2.2: Table of log-likelihoods and BIC indexes for the different models.

by the full model (M). Other parametric models such as the Matérn one have
been tried without more success and it seems difficult to find a simple reduced
model which can reproduce all the complexity of the observation error Γ.

2.5.2 Parameterization of Λ

The structure of α1, α0 and α−1 reveals a quadratic dependence in longitude
and the dependence in latitude suggests the use of an intercept depending on
latitude (see Figure 2.10). This following parameterization is then proposed

Λ =
(

1 | Long | Long2
) βLat

1 βLat
4 βLat

7

β2 β5 β8

β3 β6 β9
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Figure 2.9: Theoretical correlations of the process y for model (MΓ∼Gauss)
against observed ones at lag 0 (left) and lag 1 (right).

where βLat
i for i ∈ {1, 4, 7} takes a different value for each latitude and Long ∈

RK is a vector containing the longitude of each site. Let (MΛ) denote the

corresponding model. Λ is of rank 3 if the matrix

 βLat
1 βLat

4 βLat
7

β2 β5 β8

β3 β6 β9

 is full

ranked because the matrix
(

1 | Long | Long2
)
is full ranked.

The parameterization is easily handled in the GMM procedure whereas a
numerical optimization is again needed to update Λ in the M-step of the ML
procedure. Moreover a joint optimization on Λ and Γ should be done since
both of them are involved in the same part of log-likelihood. In order to avoid
a numerical optimization in a high-dimensional space, separate optimizations
in Λ and in Γ have been performed leading to a so-called Generalized EM
algorithm (see the supplementary materials for more details). The reduced
(MΛ) and the full model (M) give similar results for the marginal distribution
and the autocorrelation function. (MΛ) leads also to an accurate description of
the spatial structure of the data (see Figure 2.11). Lagged-one correlations are
better reproduced by GMM parameters than by ML parameters. The model
(MΛ) is slightly inferior to the full model (M) in terms of BIC according to
Table 2.2. Nevertheless, it clearly outperforms the models (MΓ). It seems
easier to find an appropriate reduced model for the loading matrix Λ than for
the covariance matrix of the observation error Γ.



48 CHAPTER 2. A MULTI-SITE MODEL FOR WIND SPEED

351 352 353 354

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Longitude

α
1

351 352 353 354

1
.4

1
.6

1
.8

2
.0

2
.2

2
.4

Longitude

α
0

351 352 353 354

−
0

.2
0

.0
0

.2
0

.4
0

.6
0

.8
1

.0

Longitude

α
−
1

48.0 48.5 49.0 49.5

0
.1

5
0

.2
0

0
.2

5
0

.3
0

Latitude

α
1

48.0 48.5 49.0 49.5

2
.2

0
2

.2
5

2
.3

0
2

.3
5

2
.4

0

Latitude

α
0

48.0 48.5 49.0 49.5

0
.1

0
0

.2
0

0
.3

0
0

.4
0

Latitude

α
−
1

Figure 2.10: Estimated α1 (left), α0 (middle) and α−1 (right) against lon-
gitude at latitude 48◦ N (bottom) and against latitude at longitude 6.75◦ W
(top). Solid line: ML estimation of Λ for model (M) , dashed line: parametric
structure fitted by least square.

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0
.6

5
0
.7

5
0
.8

5
0
.9

5

Sample correlation

M
o
d
e
l 
c
o
rr

e
la

ti
o
n

GMM

ML

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85

0
.5

0
0
.6

0
0
.7

0
0
.8

0

Sample correlations

M
o
d
e
l 
c
o
rr

e
la

ti
o
n

GMM

ML

Figure 2.11: Theoretical correlations against observed ones at lag 0 (left) and
lag 1 (right) for the model (MΛ).
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2.6 General discussion

Several multisite models, all based on Gaussian linear state-space models, are
proposed to generate synthetic multivariate time series of wind speed. The
main innovation, with respect to the other space-time models which have been
proposed for meteorological variables, is the introduction of a continuous latent
process describing regional conditions. The proposed models are interpretable
and can reproduce the marginal distribution of wind speed and important
properties of the space-time covariance structure such as the asymmetries in-
duced by prevailing motions of the air masses.

An important advantage of Gaussian linear state-space models is that ef-
ficient and easy to implement procedures of estimation are available. Two
estimation procedures, one based on a method of moment (GMM) and the
other on the likelihood function (ML) have been compared. GMM yields to
better results when looking at the short-term space-time structure but ML is
better in reproducing the long-term dynamics. Note that higher-order autore-
gressive models have been considered for modeling the dynamics of the hidden
state but they led to very slight improvements and are not further discussed
here (the model with autoregressive models of order 2, denoted (M2), is given
in Table 2.2).

According to the BIC values given in Table 2.2 the ranking of the model
coincides with the complexity of the model and the quality of the model is
systematically worsened when the number of parameters is reduced. In or-
der to check the relevance of the BIC criterion, we have performed a cross-
validation study (see supplementary materials) which confirmed the ranking
of the models given by BIC. Similar results were obtained on the Irish wind
dataset considered in (Haslett and Raftery, 1989; Gneiting, 2002) which has
a different space-time resolution with daily data and stations on an irregular
spatial grid. This highlights the difficulty to find parsimonious and realistic
models for describing the space-time evolution of wind.

2.7 Proof of proposition 1

Let {Yt} [resp. {Ỹt}] denote a process satisfying (M) with parameters θ =
(ρ, σ,Λ,Γ) [resp. θ̃ = (ρ̃, σ̃, Λ̃, Γ̃)]. We assume that σ2

1−ρ2 = 1 and Λ is full
ranked, with the same constraints holding true for θ̃. We also assume that {Yt}
and {Ỹt} have the same second-order structure. We prove below that if these
conditions hold true then θ = θ̃ up to the sign of Λ i.e. ρ = ρ̃, σ = σ̃, Λ = ±Λ̃
and Γ = Γ̃. The proof is based on the properties of Ck = cov(Yt,Yt+k).

• Identification of ρ and σ. According to (2.4), we have Ck = ρk−2C2
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for k ≥ 2 and

C2 =
σ2

1− ρ2
uvt

with u = α1 + ρα0 + ρ2α−1 and v = ρ2α1 + ρα0 + α−1. Since α−1,
α0 and α1 are linearly independent, u 6= 0 and v 6= 0 and thus C2 6= 0.
ρ can thus be expressed as a ratio between some coefficients of C3 and
C2 and we deduce that ρ = ρ̃. Using the constraint σ2

1−ρ2 = 1, we also
deduce that σ2 = σ̃2.

• Identification of Λ when ρ 6= 0. According to (2.3-2.4) we have
C2 − ρC1 = (1− ρ2)α1α

t
−1 and thus α1α

t
−1 = α̃1α̃

t
−1 since ρ2 6= 1. We

deduce that there exists a real constant k1 6= 0 such that α−1 = k1α̃−1

and α1 = k−1
1 α̃1. We also have uvt = ũṽt where ũ and ṽ are defined

similarly to u and v. We deduce that there exists a real constant k2 6= 0
such that ũ = k2u and ṽ = k−1

2 v and thus ũ− ṽ = k2u− k−1
2 v with

ũ− ṽ = (1− ρ2)α̃1 + (ρ2 − 1)α̃−1

= (1− ρ2)k−1
1 α1 + (ρ2 − 1)k1α−1, and (2.6)

k2u− k−1
2 v = (k2 − ρ2k−1

2 )α1 + ρ(k2 − k−1
2 )α0 (2.7)

+(k2ρ
2 − k−1

2 )α−1 (2.8)

Since α−1, α0 and α1 are linearly independent, we can identify the
coefficients of the linear combinations (2.6-2.7) and deduce, when ρ 6= 0
that k2 ∈ {−1, 1} and αi = k2α̃i for i ∈ {−1, 0, 1}.

• Identification of Λ when ρ = 0. In this case,

C1 = σ2(α1α
t
0 +α0α

t
−1), (2.9)

C2 = σ2α1α
t
−1 (2.10)

By similar reasoning as previously from (2.10) there exists k1 6= 0 such
that α−1 = k1α̃−1 and α1 = k−1

1 α̃1. From (2.9) we deduce that
α1(k1α̃0 −α0)t + ( α̃0

k1
−α0)αt−1 = 0.

If k1α̃0−α0 6= 0 then there exists k2 6= 0 such that α1− k2
k1
α̃0−k2α0 = 0

(R1) and 1
k2
α−1 +α0 + k1α̃0 = 0 (R2). Then

(R1)− k2

k1

(R2) = α1 + (k2 +
k2

k2
1

)α0 +
1

k2
1

α−1 = 0.

Since α1, α0 and α−1 are linearly independent we obtain k1 = k2 = 0
which is a contradiction.

If k1α̃0−α0 = 0, this implies α̃0

k1
−α0 = 0, then k1 = ±1. In both cases,

α1, α0 and then identifiable from the covariance C2 and C1.
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• Identification of Γ. According to (2.2), Γ can be expressed from C0

and the other parameters. We easily deduce that Γ̃ = Γ

Here we prove that full-symmetry can not be achieved under the chosen
identifiability constraints. Separability of a space-time covariance function
implies full-symmetry of this latter (Gneiting, 2002). Full-symmetry of the
space-time covariance function implies that the matrix C2 is a symmetric
matrix. The symmetry of C2 implies uvt = vut, u and v are then collinear
vectors which implies a collinearity between α1, α0 and α−1. The space-
time covariance function defined by the model is not fully-symmetric and then
non-separable.

2.8 Maximum Likelihood Estimation for the model
(M) and associated reduced models

Maximum likelihood estimation of the parameter θ for models with latent
variables consists in maximizing the incomplete likelihood function based on
observed set (y1, ...,yT ):

L(θ;y1, ...,yT ) = p(y1, ...,yT ; θ)

= L(θ;y1, ...,yT ) = p(y1)
T∏
t=2

p(yt|y1, ...,yt−1; θ).

In the Gaussian linear case, the likelihood of the observations (y1, ...,yT ) can
be computed easily since for all t ∈ {1, ..., T} (Y1, ...,Yt) is a Gaussian vector.
It gives for the model (M):

L(Yt|Y t−1
1 = yt−1

1 ) = N (ΛX̃t|t−1,Ft|t−1) where X̃t =

 Xt+1

Xt

Xt−1

 ,

with X̃t|t−1 = E(X̃t|Y t−1
1 = yt−1

1 ) and Ft|t−1 = var(Yt|Y t−1
1 = yt−1

1 ) =

ΛPt|t−1Λ
t + Γ, where Pt|t−1 = var(X̃t|Y t−1

1 = yt−1
1 ) = E((X̃t − X̃t|t−1)(X̃t −

X̃t|t−1)t|Y t−1
1 = yt−1

1 ) with yt−1
1 = (y1, ...,yt−1). Both quantities X̃t|t−1 and

Pt|t−1 are computed from Kalman filter described below (see also (Shumway
and Stoffer, 2006)). However no explicit expressions of the optimal parameters
are available from this incomplete likelihood, a maximum likelihood estima-
tion procedure would involve a numerical optimization of this function which
is not reasonable in high dimension. A major feature of the EM algorithm
(Dempster et al., 1977) is the maximization of the complete likelihood over
the parameter θ.



52 CHAPTER 2. A MULTI-SITE MODEL FOR WIND SPEED

2.8.1 Kalman recursions

The goal of filtering (respectively smoothing, respectively prediction) is to ob-
tain as much as possible information about the hidden variable Xt from the ob-
servations (y1, ...,yt) (respectively (y1, ...,yT ), respectively (y1, ...,yt−1)). The
solution consists in computing recursively the conditional law of Xt according
to (y1, ...,yt) (respectively (y1, ...,yT ), respectively (y1, ...,yt−1)), which real-
izes the best approximation of Xt according to (y1, ...,yt) in terms of mean
square error.

Kalman prediction and filtering: (X̃t,Y1, ...,Yt−1) is a Gaussian vector
then the conditional distribution of X̃t according to (Y1 = y1, ...,Yt−1 = yt−1)
is a Gaussian distribution with parameters: X̃t|t−1 = E(X̃t|Y1 = y1, ...,Yt−1 =

yt−1) and Pt|t−1 = var(X̃t|Y1 = y1, ...,Yt−1 = yt−1) = E((X̃t − X̃t|t−1)(X̃t −
X̃t|t−1)t|Y t−1

1 = yt−1
1 ); and L(X̃t|Y1 = y1, ...,Yt = yt) = N (ΛX̃t|t,Pt|t).

Relationships between predicted and filtered quantities are the following:

X̃t|t−1 = ρ̃X̃t−1|t−1,

P̃t|t−1 = ρ̃P̃t−1|t−1ρ̃
t + σ̃,

X̃t|t = X̃t|t−1 +Kt(Yt −ΛX̃t|t−1)

and
P̃t|t = (I −KtΛ)P̃t|t−1,

whereKt = P̃t|t−1Λ
t(ΛP̃t|t−1Λ

t+Γ)−1 andK is called the Kalman gain. The
two first expressions are easily derived from independence of εt and Yt−1 and
of (X̃t−1 − X̃t−1|t−1) and εt. The two last relations are based on properties of
the Gaussian process of innovations It = Yt − E(Yt|Y1 = y1, ...,Yt−1 = yt−1).

Kalman smoothing: Computation of X̃t|t and P̃t|t is obtained through
the following backward recursions:

X̃t|t = X̃t|t + Jt(X̃t+1|T − ρ̃X̃t|t),

P̃t|t = P̃t|t + Jt(P̃t+1|T − P̃t+1|t)J
t
t ,

Jt = P̃t|tρ̃
tP̃−1

t+1|t

and
P̃t,t−1|T = P̃t|tJ

t
t−1 + Jt(P̃t+1,t|T − ρ̃P̃t|t)J tt−1.

Similar computations of the previous ones based on conditional expectation of
multivariate normal distribution are used to compute these quantities.
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2.8.2 EM algorithm

Thanks to the Markov properties and Bayes formula, the complete likelihood
of the model (M) for θ = (ρ, σ,Λ,Γ) is written as:

L(θ;x0, ..., xT ,y1, ...,yT ) = L(θ; X̃1, ..., X̃T−1,y1, ...,yT )

= p(x0)
T∏
i=1

p(xi|xi−1; θ)
T∏
i=1

p(yi|X̃i; θ).

However the set (x0, ..., xT ) is not observed, the EM-algorithm enables to ap-
proximate θ̂ that maximizes the quantity E(log(p(X̃1, ..., X̃t,Y1, ...,YT ; θ))|Y T

1 =
yT1 ). The EM-algorithm computes approximations θ̂n of θ̂ in a recursive way
by performing the following two steps at each iteration n:

Expectation step: Computation of

Q(θ, θ̂n) = E(log(L(X̃1, ..., X̃T−1,Y1, ...,YT ; θ))|Y T
1 = yT1 ; θ̂n),

through the Kalman filtering and smoothing recursions (see (Shumway
and Stoffer, 2006)).

Maximization step: Computation of θ̂n+1 by maximization of the function
(θ → Q(θ, θ̂n)).

Since X tMX = Trace(MXX t) for all K-dimensional vector X and K×K-
matrix M , the quantity Q(θ, θ̂n) is derived:

Q(θ, θ̂n) = −1

2

(
(T − 1)(log(2π) + log(σ2))

+
1

σ2

T∑
i=2

E((Xi − ρXi−1)2|yT1 ; θ̂n) + T (K log(2π) + log(det(Γ)))

+
T∑
i=1

Trace(Γ−1E((yi −ΛX̃i)(yi −ΛX̃i)
t|yT1 ; θ̂n))

)
.

Then the following quantities x̂i = E(Xi|yT1 ; θ̂n), x̂i,i−1 = E(XiXi−1
t|yT1 ; θ̂n),

ˆ̃Xi = E(X̃i|yT1 ; θ̂n) and ˆ̃Xi,i = E(X̃iX̃i
t|yT1 ; θ̂n) are needed for all i ∈

{1, ..., T} and derived from the Kalman filter and smoother. At each M-step,
analytical expressions of the estimates of the parameters can be derived:

ρn =

T∑
i=2

x̂i,i−1

T∑
i=1

x̂i,i

,
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Λn =
( T∑
i=1

yi
ˆ̃Xi

t
)( T∑

i=1

ˆ̃Xi,i

)−1

and Γn =
1

T

T∑
i=1

(yiyi
t −Λn

ˆ̃Xi
tyi

t).

The estimation of Γn in models (MΓ) and of Λn in the model (MΛ) are pro-
cessed by numerical optimization of the associated part of the log-likelihood.
For the model (MΓ), Λn is determined by its analytical expression and in-
jected in the associated part of the likelihood which is optimized numerically
to determine the parameters that structure Γn. Γn is the maximizer of:

(σ1, ..., σK ,Λ1,Λ2)→ T (K log(2π) + log(det(Γpar))) +
T∑
i=1

Trace(Γ−1
parE((yi −ΛnX̃i)(yi −ΛnX̃i)

t|yT1 ; θ̂n)).

Where Γpar is the parametric covariance defined by (σ1, ..., σK ,Λ1,Λ2). Initial
conditions of the parameters of the structure of Γ are determined empirically.
In the estimation procedure associated with (MΛ), Λn is determined as the
maximizer of the function:

(βLat
1 , ..., β9)→ T (K log(2π) + log(det(Γn−1))) +

T∑
i=1

Trace(Γ−1
n−1E((yi −ΛparX̃i)(yi −ΛparX̃i)

t|yT1 ; θ̂n)),

with Λpar =
(

1 | Long | Long2
) βLat

1 βLat
4 βLat

7

β2 β5 β8

β3 β6 β9

 . Initial condi-

tions of this optimization are determined by a least square estimation between
Λ̂, the output of the EM processes for the model (M), and Λpar. Γn is then
determined as the maximizer of:

Γ→ T (K log(2π) + log(det(Γ)))

+
T∑
i=1

Trace(Γ−1E((yi −ΛnX̃i)(yi −ΛnX̃i)
t|yT1 ; θ̂n)).

The splitting of optimization in Λ and Γ into the EM algorithm refers to
a Generalized Expectation-Maximization algorithm in which at each M-step
only an improvement of the approximated incomplete likelihood is required.

2.9 Prediction as a validation tool
The time-step of the data makes unrealistic the use of the proposed model as
a forecasting tool. Nevertheless, forecasting is used here a classical statistical
tool for validation. Indeed it enables to evaluate many features linked to
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statistical modeling and it can, for instance, help to detect overfitting. The
Markovian structure of the model (M) is such that the short-term forecast can
be efficiently computed through the Kalman recursions (see (Brockwell and
Davis, 2006, chapter 8)). The forecast is performed on the last 8 years of data
(validation set) after fitting the model on the first 25 years of data (training
set). In practice the forecast skills of the model at location i ∈ {1, ..., K} is
evaluated by computing the natural empirical estimate of the Mean Square
Percentage Error (MSPE) defined as

MSPE(i) =
var(Yt(i)− E[Yt(i)|Y0, ...,Yt−1])

var(Yt(i))

where the MSE of the forecast error (the numerator) is normalized by the
variance of the field at the individual locations, with Yt the original non trans-
formed wind.

For comparison purpose, a vector autoregressive model of order 1 (VAR(1))
was also fitted on the multivariate process Y of transformed mean-corrected
wind speed. Such a high-dimension response vector may lead to a model VAR
which suffers from over-parameterization and to a difficult interpretation of the
parameters. Note that the BIC and MSPE criteria lead to coherent results.
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Chapter 3

Non-homogeneous hidden
Markov-Switching AutoRegressive
models for wind time series

This chapter is the object of a submitted paper:
Ailliot, P.,Bessac, J., Monbet, V. and Pène, F. (2014). Non-homogeneous hid-
den Markov-Switching AutoRegressive models for wind time series. Submitted

In this work, we propose various Markov-switching autoregressive models
for bivariate time series which describe wind conditions at a single location.
The main originality of the proposed models is that the hidden Markov chain
is not homogeneous, its evolution depending on the past wind conditions. It
is shown that they permit to reproduce complex features of wind time series
such as non-linear dynamics and the multi-modal marginal distributions.

3.1 Introduction
Meteorological time series are a key input in many risk forecasting and impact
studies applications and historical data are often available over periods of time
that are not long enough to get reliable estimates of the quantities of interest.
Stochastic weather generators have been developed to overcome this insuffi-
ciency by simulating artificial sequences of unlimited number of meteorological
variables with statistical properties similar to those of the observations (see
(Srikanthan and McMahon, 1999) and references therein). These generators
can also be useful for downscaling global climate models (see e.g. (Maraun
et al., 2010) and references therein) or infilling missing values by conditional
simulation. In this work we focus on wind time series. Various approaches
have been proposed in the literature for modeling time series of wind speed
(see e.g. (Monbet et al., 2007) for a review). In comparison, there exists only
very few models for circular time series of wind direction or for bivariate time
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series describing simultaneously the evolution of the wind speed and the wind
direction. There is thus a need for models which can reproduce the specificities
of such time series and this work aims at filling this gap.

In this work we consider a wind time series for a location off the French
Brittany coast which bivariate marginal distribution has complex features (see
Figure 3.1). In particular it clearly exhibits two modes, each one correspond-
ing to a different meteorological regime or ’weather type’: the prevailing mode
(westerly winds) corresponds to cyclonic conditions, i.e. low pressure systems
(e.g. storms) coming from the North-Atlantic ocean, whereas the second mode
(easterly winds) corresponds to anticyclonic conditions which can temporarily
deviate or block the westerly flow. The alternation of such weather regimes
is a well-known characteristic of the North-Atlantic/European area, and af-
ter (Vautard, 1990) brought some evidence for quasi-stationary solutions in
the equations of the atmospheric flow, thus giving a physical meaning to the
statistically-derived regimes, they have been broadly used in climate studies.
More generally, the presence of regimes with distinct weather conditions is a
usual feature of meteorological time series and a classical approach for mod-
eling these meteorological regimes consists in introducing a hidden (or latent)
variable. This idea goes back to (Zucchini and Guttorp, 1991) where Hidden
Markov Models (HMMs) were proposed for modeling the space-time evolution
of daily rainfall. HMMs have also been proposed for modeling time series of
wind direction in (Zucchini and MacDonald, 2009). However HMMs assume
that the successive observations are conditionally independent given the latent
weather type and cannot reproduce the strong relationship which exists be-
tween the wind conditions at successive time steps for the dataset considered
in this work. Markov-Switching AutoRegressive (MS-AR) models have been
proposed in this context to model time series of wind speed in (Monbet et al.,
2007; Pinson et al., 2008; Ailliot and Monbet, 2012). MS-AR models extend
both the usual HMMs, by adding dynamics in the regimes, and AR models,
which are often used to model wind time series (see e.g. (Brown et al., 1984)),
by introducing regime switchings through a latent variable.

In HMMs or MS-AR models, the evolution of the weather type is inde-
pendent of the past weather conditions. For our particular example, it would
imply for example that the probability of switching from the cyclonic condi-
tions to the anticyclonic conditions between time t and time t + 1 does not
depend on the wind conditions observed at time t whereas we know that these
switchings generally occur when the wind is blowing from the North and is
very unlikely to occur when the wind is blowing from the South. One origi-
nality of the models proposed in this work is that the evolution of the latent
weather type depends on past wind direction leading to non-homogeneous MS-
AR (NHMS-AR) models. We show that NHMS-AR models lead to a better
description of important characteristics of the data considered in this work,
such as multimodality and non-linear dynamics, compared to MS-AR models.
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The wind condition at a single location at time t can be described using
the polar coordinates {Ut,Φt}, where Ut denotes the wind speed with values
in R+ and Φt the wind direction with values in T = R/2πZ or the Cartesian
coordinates {ut, vt} where ut and vt denote respectively the zonal and merid-
ional components with values in R. The polar coordinates are generally used
by meteorologists, probably because they are easier to interpret. However,
from a statistical point of view, it is probably more straightforward to model
the time series of Cartesian components since many models, such as Gaussian
vector AR models, have been proposed for bivariate time series with values
in R2 whereas the process {Ut,Φt} is a linear-circular process with values in
R+ × T and very few models have been proposed for such variables. Both
representations are considered in this work and a discussion of their respective
advantages is given.

The work is organized as follows. NHMS-AR models are introduced in
Section 4.2 with specific parameterizations proposed when considering Carte-
sian and polar coordinates. In Section 3.3, we briefly describe the EM algo-
rithm which has been used to maximize the likelihood function and discuss the
asymptotic properties of the maximum likelihood estimates (MLE). Then the
performances of the models are discussed and compared in Section 3.4. The
data used in this work are also introduced at the beginning of this Section. At
last, we make a synthesis of the obtained results and we give some perspectives
in Section 3.5.

3.2 Models

3.2.1 Non-homogeneous Markov-switching autoregressive
models

Let Xt ∈ {1, ...,M} represent the latent weather type and Yt denote the ob-
served wind conditions at time t. Throughout the article {Yt} will represent
successively the bivariate process of Cartesian coordinates of wind in Section
3.2.3, the wind direction in Section 3.2.4, and finally {Yt} stands for the wind
speed in Section 3.2.5. Let us write E for the space in which Yt takes values
(E will respectively refer to R2, T and R+ in the following sections). It will be
useful to introduce notation Y t+u

t = (Yt, ..., Yt+u), yt+ut = (yt, ..., yt+u) (as well
as X t+u

t , xt+ut ) for t > 0 and u > 0.

Hypothesis 1 Let s,M ≥ 1 be some integers. The sequence (Xt, Y
t
t−s+1)t∈Z

follows a NHMS-AR model if it is a Markov chain with values in {1, ...,M}×E
such that

• the conditional distribution of Xt given the values of {Xt′}t′<t and {Yt′}t′<t
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Figure 3.1: Histogram of {Ut} (top left), rose plot of {Φt} (bottom left) and
histograms of {ut} and {vt} and joint distribution of {ut, vt} (right). The
lines on the scatter plots are levels of a non-parametric kernel estimate of the
bivariate density. Results for the months of January.

only depends on Xt−1 and Yt−1 and we denote p1(xt|xt−1, yt−1) = P (Xt =
xt|Xt−1 = xt−1, Yt−1 = yt−1),

• the conditional distribution of Yt given the values of {Yt′}t′<t and {Xt′}t′≤t
only depends on Xt and Yt−1, . . . , Yt−s and this conditional distribution
has a probability density function (p.d.f.) p2

(
yt|xt, yt−1

t−s
)
.

Let us write p(.|xt−1
t−u, y

t−1
t−u) for the conditional p.d.f. of (Xt, Yt) given

(X t−1
t−u = xt−1

t−u, Y
t−1
t−u = yt−1

t−u). Hypothesis 1 implies that for u ≥ s

p(xt, yt|xt−1
t−u, y

t−1
t−u) = p1(xt|xt−1, yt−1)p2(yt|x, yt−1

t−s). (3.1)

The various conditional independence assumptions are summarized by the
directed graph below for s = 1.

· · · → Xt−1 → Xt → Xt+1 → · · ·
↓ ↗ ↓ ↗ ↓

· · · → Yt−1 → Yt → Yt+1 → · · ·

NHMS-AR models define a quite general family of models:

• If p1(xt|xt−1, yt−1) does not depend on yt−1, we retrieve the usual MS-AR
models which include the HMMs as a particular case (s = 0).
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• If M = 1, {Yt} is an autoregressive process of order s.

• If p1,θ(xk|xk−1, y
k−1
k−s) does not depend on xk−1 and is parametrized us-

ing indicator functions, we obtain the Threshold AutoRegressive (TAR)
models which is another important family of models with regime-switching
in the literature (see e.g. (Tong, 1990)).

The following sections propose specific parametric models for p1 (see Sec-
tion 3.2.2) and p2 when using Cartesian coordinates (see 3.2.3) or polar coor-
dinates (see Sections 3.2.4 and 3.2.5).

3.2.2 Non-homogeneous Markov model for the weather
type

As mentioned earlier, we introduce the latent process {Xt} to describe the
weather type which evolution may depend on previous wind direction. For
example, we expect that the probability of switching from the cyclonic to the
anticyclonic conditions generally is higher when the wind is blowing from the
North that when it is blowing from the South. Such features can be modeled
through the transition kernel p1. Hereafter we assume that

p1(xt|xt−1, φt−1) ∝ qxt−1,xtfVM(φt−1;λxt−1,xt , ψxt−1,xt), (3.2)

where fVM(.;κ, φ) is the probability density function (p.d.f) of the von
Mises distribution, φt−1 is the wind direction at time t−1, Q = (qx,x′)x,x′∈{1,...,M}
is a stochastic matrix and, for x, x′ ∈ {1, ...,M}, λx,x′ ≥ 0 and ψx,x′ ∈ T are
unknown parameters. The von Mises distribution is a natural distribution
for circular variables (see (Mardia, 1972)) which p.d.f. with respect to the
Lebesgue measure on T, is given by

∀z ∈ T, fγ(z) = fVM(z;κ, φ) =
1

2πI0(κ)
exp

(
κ cos(z − φ)

)
=

1

2πI0(|γ|)

∣∣∣eγe−iz ∣∣∣ ,
(3.3)

with γ = κeiφ a complex parameter. I0 denotes the modified Bessel func-
tion of order 0 defined as

I0(κ) =
1

2π

∫
T

exp(κ cos(z)) dz.

φ ∈ T corresponds to the circular mean of the distribution and κ ≥ 0 describes
the concentration of the distribution around φ: when κ = 0 we get the uni-
form distribution whereas the larger is κ the more concentrated around φ the
distribution is. This distribution is denoted by VM(γ) hereafter.

According to (3.2), the probability that the hidden Markov chain {Xt}
switches from xt−1 to xt will increase when the wind direction Φt−1 is close to
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ψxt−1,xt and λxt−1,xt models the directional spreading in which this transition is
likely to occur. When λx,x′ = 0 for all x, x′ ∈ {1, ...,M} then we obtain again
the homogeneous MS-AR models. Observe that (3.2) can be rewritten

p1(xt|xt−1, φt−1) =

qxt−1,xt

∣∣∣∣exp
(
λ̃xt−1,xte

−iφt−1

)∣∣∣∣∑M
x′=1 qxt−1,x′

∣∣∣∣exp
(
λ̃xt−1,x′e

−iφt−1

)∣∣∣∣ , (3.4)

with λ̃x,x′ ∈ C (by taking λ̃x,x′ = λx,x′e
iψx,x′ ). With this expression, it can be

easily seen that replacing (λ̃x,x′)x,x′ by (λ̃x,x′ − ax)x,x′ (for any choice of (ax)x)
does not change p1 and thus that identifiability constraints are needed.

In order to reduce the number of unknown parameters we add the following
constraints for the non-homogeneous models developed in the sequel

λ̃x,x′ = λ̃x′ (3.5)

for all x, x′ ∈ {1, ...,M} such that x 6= x′ with the identifiability constraint

M∑
x′=1

λ̃x′ = 0. (3.6)

We have also fitted the model without the constraint (3.5) and found that the
likelihood of these models is similar to the one of the models with the constraint
(3.5) whereas they have a significantly larger number of parameters. Even
when assuming (3.5), we found that the parameter (λx′) is sometimes hard to
fit in practice and that fixing its values to e.g. the concentration parameter of
the von-Mises distribution fitted to the time series of wind direction leads to
satisfactory models. The results obtained with these alternative strategies are
not further discussed below.

3.2.3 Modeling the Cartesian coordinates conditionally
to the weather type

In this section we propose a model for the bivariate process {Yt} = {ut, vt}
conditionally to the weather type {Xt}. This process has values in R2 and
the most classical autoregressive model for such process is the linear Gaussian
vector autoregressive (VAR) model of order s. With this model, if Xt = xt
then

Yt = A
(xt)
0 + A

(xt)
1 Yt−1 + ...+ A(xt)

s Yt−s +
(

Σ(xt)
) 1

2
εt (3.7)

where A(x)
0 ∈ R2 , A(x)

l ∈ R2×2 for l ∈ {1, ..., s} and x ∈ {1, ...,M}, Σ(x) ∈ R2×2

are symmetric positive matrices for x ∈ {1, ...,M} and {εt} is a bivariate white
noise sequence.
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VAR models have been proposed for wind fields in a space-time context
in (Ailliot et al., 2006b; Wikle et al., 2001; Fuentes et al., 2005). On our
particular dataset, we found that this model was not appropriate to reproduce
the ’hole’ around the origin which can be seen on the joint distribution on
Figure 3.1. This hole corresponds to a low probability of observing low wind
speed. We can get around this issue by applying a power transformation as
follows {

ũt = Uα
t cos(Φt)

ṽt = Uα
t sin(Φt)

and fit the MS-AR model to {ũt, ṽt} instead of {ut, vt}. The value α = 1.5 was
chosen experimentally to remove the ’hole’ close to the origin in the original
distribution. The model with homogeneous hidden Markov chain is denoted
HMS-AR(u,v) and the non-homogeneous model, where p1 is given by (3.2), is
denoted NHMS-AR(u,v).

3.2.4 Modeling the wind direction conditionally to the
weather type

In this section we propose a model for the circular process {Yt} = {Φt}.
The inclusion of {Ut} in this model is discussed in the next section. Several
autoregressive models have been proposed in the literature for modeling di-
rectional time series (see (Breckling, 1989; Fisher and Lee, 1994; Holzmann
et al., 2006; Kato, 2010)). We have chosen to focus on the von Mises process
initially introduced in (Breckling, 1989) and assume that the conditional dis-
tribution of Yt given

(
Xt = xt, Y

t−1
t−s = yt−1

t−s
)
is VM

(
γ

(xt)
0 +

∑s
`=1 γ

(xt)
` eiyt−`

)
with γ

(x)
` = κ

(x)
` eiφ

(x)
` ∈ C for x ∈ {1, ...,M} and ` ∈ {0, ..., s}. This can be

rewritten

p2(yt|xt, yt−1
t−s)

=
1

b(xt, y
t−1
t−s)

exp

κ(xt)
0 cos(yt − φ(xt)

0 ) +
s∑
`=1

κ
(xt)
` cos(yt − yt−` − φ(x)

` )


=

1

b(xt, y
t−1
t−s)

∣∣∣∣∣∣exp

[γ
(xt)
0 +

s∑
`=1

γ
(xt)
` eiyt−` ]e−iyt

∣∣∣∣∣∣ (3.8)
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with

b(xt, y
t−1
t−s) =

∫
T

exp

κ(xt)
0 cos(y − φ(xt)

0 ) +
s∑
`=1

κ
(xt)
` cos(y − yt−`)

 dy

= I0


∣∣∣∣∣∣γ(xt)

0 +
s∑
`=1

γ
(xt)
` eiyt−`

∣∣∣∣∣∣
 .

In (Breckling, 1989), it was assumed that γ(x)
` ∈ R for ` ∈ {1, ..., s}. We

have chosen to extend it to a model with complex parameters in order to be
able to reproduce the prevailing rotation of the wind direction in the clockwise
direction (see Section 3.4).

In the sequel, the model with homogeneous hidden Markov chain is denoted
HMS-EVM and the non-homogeneous model, with p1 is given by (3.2), is
written NHMS-EVM.

3.2.5 A conditional model for the wind speed given the
wind direction

In (Ailliot and Monbet, 2012) it was proposed to model the wind speed {Ut}
using a homogeneous MS-AR model with M = 3 regimes and Gaussian linear
AR models (see (3.7)) of order s = 2. Figure 3.2 shows typical examples of
wind speed and wind direction time series together with the regimes identified
by the fitted MS-AR models. These regimes basically correspond to periods
with different temporal variability and there seems to be no simple relation
between the regimes identified on the wind speed and the wind direction. In
this context, it does not seem relevant to use the same weather type for the
two time series. We thus propose to introduce a different weather type X(U)

t

for the wind speed and X(Φ)
t for the wind direction.

In order to explore the link between X
(U)
t and Φ, we have computed the

most likely values of X(U)
t given the observed time series of wind speed {Ut}

and produced rose plots of the wind direction in the different weather types
which were identified for the wind speed. We got plots very similar to the
ones shown on Figure 3.3 (right panel). The first regime, which corresponds
to periods with low temporal variability for the wind speed (anticyclonic con-
ditions), can occur in any wind direction whereas the more variable regimes 2
and 3 are mainly associated to south-westerlies (cyclonic conditions). Stated
otherwise the wind direction provides information on the synoptic weather
conditions which control the intensity and the variability of the wind speed.
It suggests the use of a non-homogeneous MS-AR model for the wind speed
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Figure 3.2: Example of time series of wind direction (top plot) and wind
speed (bottom plot). The colors indicate the most likely regimes for the fitted
NHMS-EVM model with 4 regimes (top plot) and Gaussian homogeneous
MS-AR model for wind speed with 3 regimes (bottom plot). The regimes have
been ordered according to the time variability (the darker the more variability).

where the transition probabilities depend on the wind direction. Hereafter
NHMS-AR(U,Φ) denotes the model for {Ut,Φt} such that

- {Φt} is modeled by the NHMS-EVM model for {x(Φ)
t ,Φt} with M = 4

and s = 2,

- {Ut} is modeled conditionally to {Φt} by a NHMS-AR model with p1

given by (3.2) and p2 by a linear Gaussian AR model (3.7).

The structure of the model, with two layers of hidden variables, one for
the wind speed and one for the wind direction, is shown on the directed graph
below.
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3.3 Parameter estimation

3.3.1 Numerical computation of the MLE

The parameter vector of NH-MSAR models is composed of the parameters
θQ of the transition probabilities p1(xt|xt−1, yt−1), the parameters θ(x) of the
transition kernel p2(yt|x, yt−1

t−s) for each regime x ∈ {1, ...,M}.
They are estimated by maximizing the likelihood function using a gen-

eralized EM algorithm. This algorithm was initially introduced in (Baum
et al., 1970) for HMMs and then generalized to models with latent variables in
(Dempster et al., 1977). This recursive algorithm computes successive approx-
imations θ̂i of the maximum likelihood estimate (MLE) θ̂ by cycling through
the following steps.

E-step: Compute Q
(
θ|θ̂i
)

= Eθ̂i(log(pθ(X
T
1 , Y

T
1 ))|yT−s+1) as a function of θ.

M-step: Determine the updated parameter estimate θ̂i+1 = arg max
θ

Q
(
θ|θ̂i
)
.

The conditional probabilities involved in the computation of Q(θ|θ̂n) are com-
puted using the so-called forward-backward recursions (see e.g. (Cappé et al.,
2005) and references therein). The particular implementation of these recur-
sions for homogeneous MS-AR models is discussed in (Hamilton, 1990) and
(Hughes et al., 1999) discusses it for non-homogeneous HMMs. It can be easily
generalized to the models considered in this work. The M-step requires numer-
ical optimization leading to the so-called Generalized EM (GEM) algorithm.
In order to get an efficient EM algorithm, it is important to implement care-
fully the numerical optimization procedure. In practice, the function Q(.|θ̂i)
which has to be maximized in the M-step can be written as the sum of M + 1
functions as follows

Q
(
θ|θ̂i
)

= QX

(
θQ|θ̂i

)
+

M∑
x=1

QY

(
θ(x)|θ̂i

)
.

This leads to solving M + 1 separate optimization problems on spaces with
reduced dimension which is far more efficient than maximizing directly Q(.|θ̂i)
over all the parameters. Note that analytical expressions are available for
arg max

θ(x)
QY

(
θ(x)|θ̂i

)
when Gaussian linear AR models (3.7) are used and for

arg max
θQ

QX

(
θQ|θ̂i

)
when homogeneous MS-AR models are considered.

In order to avoid convergence to non-interesting maxima and save compu-
tational time, a proper initialization of this algorithm with realistic parameter
values θ̂0 is needed. In practice, we have used the nested nature of the models.
We have first fitted homogeneous models and then use the estimated param-
eters as a starting point for the corresponding non-homogeneous models. In
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the same spirit, the results obtained for the model of order s have been used
to initialize the EM for the models of order s+ 1.

3.3.2 Ergodicity of the models and asymptotic properties
of the MLE

Conditions on the parameters which warrant the existence of a unique station-
ary ergodic solution with finite moments of order 2 are given in (Ailliot and
Pène, 2013) for the models with linear Gaussian AR models (3.7). These are
desirable properties for the fitted models since we expect that the wind process
satisfies such properties and imply that the MLE are consistent (see (Ailliot
and Pène, 2013)). These conditions apply to the models with linear Gaussian
AR discussed in Section 3.4 and thus the MLE are consistent for these mod-
els. In this section we show that similar results hold true for the model with
von Mises distribution introduced in Section 3.2.4 and prove more precisely
ψ-irreducibility, aperiodicity, Harris-recurrence, identifiability and consistency
for the NHMS-EVM model.

In the rest of this section, we assume Hypothesis 1 with p1 and p2 given by
(3.4) and (3.8) respectively. Let Θ′ be the set θ = (qx,x′ , λ̃x,x′ , γ

(x)
` )`,x,x′ such

that γ(x)
` ∈ C, qx,x′ > 0 such that

∑
x′ qx,x′ = 1 and λ̃x,x′ ∈ C satisfying (3.6).

Let us now state our main result.

Theorem 2 (Consistency for NHMS-EVM) Assume that Θ is a compact
subset of Θ′ and that the coordinates of the true parameter θ∗ satisfy

x 6= x′ ⇒ (γ
(x)
0,∗ , ..., γ

(x)
s,∗ ) 6= (γ

(x′)
0,∗ , ..., γ

(x′)
s,∗ ). (3.9)

Then, for every x0 ∈ {1, ...,M} and any initial measure ν on {1, ...,M} × T,
on a set of probability one, the limit values θ = (γ,Q, λ̃) of the sequence of
MLE (θ̂n,x0)n are equal to θ∗ = (γ∗, Q∗, λ̃∗) up to a permutation of indices, i.e.
for any such limit value θ, there exists a permutation σ of {1, ...,M} such that,
for every x, x′ ∈ {1, ...,M}, for every j = 0, ..., s, the following relations hold
true

γ
(x)
j = γ

(σ(x))
j,∗ , qx,x′ = qσ(x),σ(x′),∗ and λ̃x,x′ = λ̃σ(x),σ(x′),∗.

One can notice that (3.9) just means that there is no couple of regimes
(x, x′) with x 6= x′ in which the behavior of the process {Yt} is the same.

The proof of Theorem 2 is based on two ingredients: a general consistency
result established in (Ailliot and Pène, 2013)[Thm 2] and the proof of the
identifiability up to a permutation of indices (see Proposition 2). Let us first
check that the conditions of (Ailliot and Pène, 2013)[Thm 2] apply for the
NHMS-EVM model.
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Since for every (θ, x, y) ∈ Θ × {1, ...,M} × T, qθ(x, y|·, ·) is continuous on
the compact set {1, ...,M} × Ts, we have

α =

∫
E×K

γ(x, y) dµ0(x, y) > 0, with γ(x, y) = inf
x′,y−1
−s

qθ(x, y|x′, y−1
−s).

Now we consider the probability density function (w.r.t. µ0) β given by

β(x, y) =
γ(x, y)

α
.

For every x0, x−1 ∈ E and every y0
−s, we have

qθ(x0, y0|x−1, y
−1
−s) ≥ αβ(x0, y0).

This implies the ψ-irreducibility, the strong aperiodicity (the ν1-small set be-
ing the whole space), the Harris recurrence (since we can decompose the whole
set in a union of uniformly accessible sets from the whole set) and the pos-
itiveness (the invariant measure being unique and finite). In particular, this
gives Assumption (5) of (Ailliot and Pène, 2013)[Thm 2].

Moreover, since p1,θ(x1|x0, y0) and p2,θ(y0|x0, y−1) are continuous with re-
spect to (θ, x1, x0, y0) and wit respect to (θ, x0, y0, y−1) (respectively), all the
other assumptions of (Ailliot and Pène, 2013)[Thm 2] are satisfied for any
compact subset of Θ′. Hence, we have

Corollary 3 Assume that Θ is a compact subset of Θ′. Then, for all θ ∈ Θ,
there exists a unique invariant probability and, for every x0 ∈ E and every
initial probability ν, the limit values of (θ̂n,x0)n are P̄θ∗-almost surely contained
in {θ ∈ Θ P̄θ = P̄θ∗}.

Now, Theorem 2 will follow from the following result giving the identifiability
of the parameter (up to permutation of indices) .

Proposition 2 (Identifiability) Let θ1 and θ2 belong to Θ′ :

θi =
(

(γ
(x)
j,(i))j,x, (qx,x′,(i))x,x′ , (λ̃x,x′,(i))x,x′

)
.

Assume that the parameters (γ
(x)
j,(1))j,x which model the evolution of the wind

direction in the different regimes through (3.8) for θ1 are such that

x 6= x′ ⇒ (γ
(x)
0,(1), ..., γ

(x)
s,(1)) 6= (γ

(x′)
0,(1), ..., γ

(x′)
s,(1)). (3.10)

Then P̄Yθ1 = P̄Yθ2 if and only θ1 is equal to θ2 up to a permutation of indices.
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Proof 4 (Proof of Proposition 2) We write Leb for the Lebesgue measure
on T. Assume that P̄Yθ1 = P̄Yθ2. In particular, we have

p̄θ1(Yt = yt|Y t−1
t−s = yt−1

t−s) = p̄θ2(Yt = yt|Y t−1
t−s = yt−1

t−s), for P̄Y
t
t−s
θ1
− a.e. ytt−s

and thus

M∑
x=1

P̄θ1(Xt = x|yt−1
t−s)p2,θ1(yt|x, yt−1

t−s) =
M∑
x=1

P̄θ2(Xt = x|yt−1
t−s)p2,θ2(yt|x, yt−1

t−s),

for P̄Y
t
t−s
θ1
− a.e. ytt−s.

Since p̄θ1(ytt−s) > 0 (since the invariant density h1 satisfies h1 > 0 since α > 0
and the transition density p satisfies p > 0 by construction) and since (3.4)
holds true, we deduce that, for Leb⊗(s+1)-a.e. ytt−s, we have

M∑
x=1

P̄θ1(Xt = x|yt−1
t−s)fγ(x)

0,(1)
+
∑s
`=1 γ

(x)
`,(1)

eiyt−`
(yt)

=
M∑
x=1

P̄θ2(Xt = x|yt−1
t−s)fγ(x)

0,(2)
+
∑s
`=1 γ

(x)
`,(2)

eiyt−`
(yt)

with fγ defined by (3.3). Due to (Fraser et al., 1981), finite mixtures of von
Mises distributions are identifiable. Hence if

M∑
x=1

π
(x)
1 f

γ
(x)
1

(y) =
M∑
x=1

π
(x)
2 f

γ
(x)
2

(y) for Leb−a.e. y

with γ(x)
1 6= γ

(x′)
1 for x 6= x′ and π(x)

1 > 0 for x ∈ {1, ...,M} then there exists
a permutation τ : {1, ...,M} → {1, ...,M} such that γ(x)

1 = γ
(τ(x))
2 and π(x)

1 =

π
(τ(x))
2 .
Recall that we have assumed that θ(x)

Y,1 6= θ
(x′)
Y,1 if x 6= x′, which implies that

for Leb⊗s−a.e. yt−1
t−s , γ

(x)
0,1 +

s∑
`=1

γ
(x)
`,1 e

iyt−` 6= γ
(x′)
0,1 +

s∑
`=1

γ
(x′)
`,1 e

iyt−` .

Therefore, since for every x ∈ {1, ...,M} and for Leb⊗s-almost every yt−1
t−s ,

P̄θ1(Xt = x|yt−1
t−s) > 0 (since hθ1 > 0), for Leb⊗s-almost every yt−1

t−s there exists
a permutation σyt−1

t−s
of {1, ...,M} such that,

∀x ∈ {1, ...,M}, γ
(x)
0,(1) +

s∑
`=1

γ
(x)
`,(1)e

iyt−` = γ
(σ
yt−1
t−s

(x))

0,(2) +
s∑
`=1

γ
(σ
yt−1
t−s

(x))

`,(2) eiyt−` .
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Since the set of permutations of {1, ...,M} is finite, there exists a positive
Lebesgue measure subset of Ts on which the permutation is the same permu-
tation σ. From this, we deduce that

∀x ∈ {1, ...,M}, ∀j ∈ {0, ..., s}, γ
(x)
j,(1) = γ

(σ(x))
j,(2)

and that, for Lebesgue almost every yt+1
t−s , the following holds true

∀x ∈ {1, ...,M}, P̄θ1(Xt = x|yt−1
t−s) = P̄θ2(Xt = σ(x)|yt−1

t−s).

Let us now discuss the identifiability of the other components of θ1 and θ2.
If P̄Yθ1 = P̄Yθ2 then

p̄θ1(Yt = yt, Yt+1 = yt+1|Y t−1
t−s = yt−1

t−s)

= p̄θ2(Yt = yt, Yt+1 = yt+1|Y t−1
t−s = yt−1

t−s) P̄Yθ1 a.s.

and thus, for Lebesgue almost every yt+1
t−s , we have

M∑
x,x′=1

P̄θ1(Xt = x|yt−1
t−s)p1,θ1(x

′|x, yt)fγ(x)
0,(1)

+
∑

`=1..s

γ
(x)
`,(1)

eiyt−`
(yt)fγ(x′)

0,(1)
+

∑
`=1..s

γ
(x′)
`,(1)

eiyt−`+1
(yt+1)

=
M∑

x,x′=1

P̄θ2(Xt = x|yt−1
t−s)p1,θ2(x

′|x, yt)fγ(x)
0,(2)

+
∑

`=1..s

γ
(x)
`,(2)

eiyt−`
(yt)fγ(x′)

0,(2)
+

∑
`=1..s

γ
(x′)
`,(2)

eiyt−`+1
(yt+1).

Using again the identifiability of von Mises distribution, we obtain

∀x, x′, p1,θ1(x
′|x, yt) = p1,θ2(σ(x′)|σ(x), yt) for Leb−a.e. yt.

Now, due to the special form of p1,θ specified in (3.4), we get

∀x, x′, Leb−a.e. yt,
qx,x′,(1)

∣∣∣∣exp
(
λ̃x,x′,(1)e

−iyt
)∣∣∣∣∑M

x′′=1 qx,x′′,(1)

∣∣∣∣exp
(
λ̃x,x′′,(1)e−iyt

)∣∣∣∣
=

qσ(x),σ(x′),(2)

∣∣∣∣exp
(
λ̃σ(x),σ(x′),(2)e

−iyt
)∣∣∣∣∑M

x′′=1 qσ(x),x′′,(2)

∣∣∣∣exp
(
λ̃σ(x),x′′,(2)e−iyt

)∣∣∣∣ .(3.11)
Let x ∈ {1, ...,M} be fixed. Applying (3.11) a first time with x′ = x and a
second time with any x′, we get

∀x′, for Leb−a.e. yt,

qx,x′,(1)

∣∣∣∣exp
(
λ̃x,x′,(1)e

−iyt
)∣∣∣∣

qx,x,(1)

∣∣∣∣exp
(
λ̃x,x,(1)e−iyt

)∣∣∣∣ =

qσ(x),σ(x′),(2)

∣∣∣∣exp
(
λ̃σ(x),σ(x′),(2)e

−iyt
)∣∣∣∣

qσ(x),σ(x),(2)

∣∣∣∣exp
(
λ̃σ(x),σ(x),(2)e−iyt

)∣∣∣∣
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and so
∀x′,

qx,x′,(1)

qx,x,(1)

=
qσ(x),σ(x′),(2)

qσ(x),σ(x),(2)

(3.12)

and
∀x′, λ̃x,x′,(1) − λ̃x,x,(1) = λ̃σ(x),σ(x′),(2) − λ̃σ(x),σ(x),(2). (3.13)

Now, since
∑

x′ qx,x′,(1) = 1 =
∑

x′ qσ(x),σ(x′),(2), due to (3.12), it comes qx,x,(1) =
qσ(x),σ(x),(2) and so

∀x′ ∈ E, qx,x′,(1) = qσ(x),σ(x′),(2).

Since θ1 and θ2 are in Θ′,
∑

x′ λ̃x,x′,(1) = 0 =
∑

x′ λ̃σ(x),σ(x′),(2), and due to
(3.13), we get λ̃x,x,(1) = λ̃σ(x),σ(x),(2) and, applying again (3.13), we conclude
that

∀x′ ∈ E, λ̃x,x′,(1) = λ̃σ(x),σ(x′),(2).

3.4 Numerical results and model comparison

3.4.1 Data

In this work, we focus on a wind time series extracted from the ERA-40 data
set which consists in a global reanalysis with 6-hourly data covering the period
from 1958 to 2001. This reanalysis was carried out by the European Centre
for Medium-range Weather Forecast (ECMWF) and can be freely downloaded
and used for scientific purposes at the URL: http://data.ecmwf.int/data. We
consider the wind data for the point with geographical coordinates (47.50 N,
50 W) which is located off the Brittany coast (northwest of France). We have
performed a comparison with in-situ data which indicates that this reanalysis
data provides an accurate description of the wind condition observed at this
location with the advantage of being easy to use in a statistical study (long time
series with no missing data). The resulting time series is non-stationary since
it exhibits an important seasonal component but also diurnal and inter-annual
components. A classical approach for treating seasonality in meteorological
time series consists in blocking the data, typically by period ranging from
a month to a trimester depending on the amount of data available, and in
fitting a separate model for each period in the year. This approach has been
used in this work and we have chosen to focus on the months of January. It
leads to 44 time series of length 124 (31 days with 4 observations each day),
each time series describing the wind conditions during the month of January
for a particular year. In the sequel, we assume that these time series are
independent realizations of a stationary process. It seems realistic according
to the results given in (Ailliot and Monbet, 2012) for the wind speed at the
same location since the diurnal components can be neglected during the winter
season. Following (Ailliot and Monbet, 2012), another approach would consist
in letting some of the coefficients of the models introduced hereafter to evolve
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in time with periodic functions for the diurnal and seasonal components and
eventually a trend.

3.4.2 Model selection

Before analyzing any numerical result, one has to discuss the choice of the
number of regimes and of the order of the AR models. In practice we found
that the BIC criterion generally permits to identify parsimonious models which
fit well the data. It is defined as

BIC = −2 logL+ k log(N)

and L is the likelihood of the data, k is the number of parameters and N is
the number of observations. In order to make the final selection among the
best models identified by BIC, we have compared their abilities to generate
realistic wind time series since this is the main motivation for this work. For
this, a large number of realizations of the various models under competition
have been simulated and various statistics of these synthetic sequences have
been compared with the ones of the original data.

The models were fitted with a number of regimes M varying from 1 to
6 at the most and the BIC values suggest selecting models with M = 3 or
M = 4 regimes (see Tables 3.1 and 3.2). For the wind direction the model
withM = 4 regimes tends to better reproduce the marginal distribution of the
process compared to the models with M = 3 regimes and we thus have chosen
to select this model. The NHMS-EVM model with M = 4 and s = 2, which
is used in the NHMS-AR(U,Φ) model, has 43 parameters. For the Cartesian
coordinates {ut, vt} and for the wind intensity {Ut} the models with M = 3
and M = 4 regimes lead to similar results and we have thus chosen to keep
the simplest model with M = 3.

We also varied the order s of the autoregressive models from s = 0 (yt
is independent of yt−1

0 given xt) to s = 5 and the BIC values are generally
decreasing with s suggesting that a model of order s ≥ 5 may be needed.
Notice however that there is generally a big improvement in the BIC values
when s increases from 0 to 1 and from 1 to 2 whereas the difference is much
smaller when comparing the models of order s = 2 and s ≥ 3 (not shown).
We will focus on models of order s = 2 in the sequel. We believe that models
of reduced order are more realistic from a physical point of view and we get
similar simulation results with s = 2 compared to the models with s ≥ 3.

The BIC of {ut, vt} models are generally smaller than the ones of {Ut,Φt}
models except for s = 0. It may be due to the higher number of parameters
involved in the NHMS-AR(U,Φ) model (66 parameters when M = 3), which
has two layers of hidden variables whereas the NHMS-AR(u,v) model has one
common weather type for {ut} and {vt} and only 44 parameters when M = 3.
Note however that BIC does not permit to make a clear distinction between



3.4. NUMERICAL RESULTS AND MODEL COMPARISON 73

M 1 2 3 4 5 6 k
Model s BIC

HMS-EVM 1 7778 6326 6334 6307 6277 6385 M(M-1)+4M
NHMS-EVM 1 7778 6266 6171 6141 6158 6372 M(M+1)-1+4M
HMS-EVM 2 7568 5952 5979 5963 6051 6075 M(M-1)+6M
NHMS-EVM 2 7568 5882 5872 5882 5968 6075 M(M+1)-1+6M

Table 3.1: BIC values for the various fitted wind direction models. The last
column gives the number of parameters. The bold value corresponds to the
selected model.

M 1 2 3 4 5 k
Model s BIC

HMS-AR(u,v) 0 48583 44616 42338 40903 40025 M(M-1)+5M
NHMS-AR(u,v) 0 - 43679 41212 39878 M(M+1)-1+5M
NHMS-AR(U,Φ) 0 - 32553 31180 30381 30000 43+M(M+1)-1+2M
HMS-AR(u,v) 1 31979 28134 27561 27219 27079 (M(M-1)+9M

NHMS-AR(u,v) 1 - 27687 27110 26855 26755 M(M+1)-1+9M
NHMS-AR(U,Φ) 1 - 28833 28543 28446 28380 43+M(M+1)-1+3M
HMS-AR(u,v) 2 30619 26753 26162 25950 25947 (M(M-1)+13M

NHMS-AR(u,v) 2 - 26275 25681 25598 25607 M(M+1)-1+13M
NHMS-AR(U,Φ) 2 - 28458 28266 28163 28196 43+M(M+1)-1+4M

Table 3.2: BIC values for the various bivariate models. The last column gives
the number of parameters. The bold values correspond to the selected models.

both parameterizations (polar or Cartesian) since the differences in BIC values
are relatively small.

3.4.3 Regimes can be interpreted as weather types

An important benefit of using weather type models for meteorological variables
is that they generally lead to interpretable models. This is illustrated in this
section onNHMS-AR(u,v) andNHMS-AR(U,Φ) models. In order to compare
the regimes of these two models, they have been ordered according to the
variance of the innovation of the autoregressive processes Σ(s). Figure 3.3
shows that the distributions of the wind direction in the different regimes
are broadly similar for both models. The first regime corresponds mainly to
anticyclonic conditions with easterly wind and a slow varying intensity (the
variance of the innovation of the AR model is lower than in the other regimes
and the first AR coefficient is larger). This regime is also the most likely
(probability of occurrence of about 46%). The two other regimes correspond
to cyclonic conditions with westerly wind and higher temporal variability in
the intensity. These two regimes are discriminated mainly by the temporal
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Figure 3.3: Rose plot of the wind direction in the three regimes identified on
wind speed by NHMS-AR(U,Φ) model (top) and by NHMS-AR(u,v) model
(bottom).

variability, which is higher in the third regime, and the wind direction with the
second regime corresponding mainly to south-westerlies and the third regime
corresponding mainly to north-westerlies (see Figure 3.3).

In order to assess the physical consistency of these three local regimes, we
confronted them to the large-scale regimes commonly used in climate stud-
ies. More precisely, we considered the four wintertime regimes of Cattiaux
et al. (2013), obtained over the North-Atlantic/European sector (90W-30E /
20-80N) by a kmeans-clustering of 3607 daily maps of 500 mb geopotential
anomalies (days of December, January and February 1981–2010). The classi-
fication of each day of January 1979–2001 into these four types was used to
compute the conditional probabilities given in Table 3.3. It shows a clear link
between the regimes identified by the NHMS-AR(u,v) model and the large-
scale regimes. For example the first regime of theNHMS-AR(u,v) model, with
low temporal variability, is more likely to occur when an anticyclone, generally
located over Scandinavia, blocks the westerly flow (large scale regime denoted
BL). At the opposite the more variable third regime of the NHMS-AR(u,v)

model is generally associated with the large scale regime NAO+ (positive phase
of the North Atlantic Oscillation). The regimes AR (Atlantic Ridge) and NAO-
(negative phases of the North Atlantic Oscillation) have intermediate temporal
variability with AR being more stable than NAO-. These results are coherent
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Figure 3.4: Matrix of non-homogeneous transitions of NHMS-AR(u,v) model
(plain line) and NHMS-AR(U,Φ) model (dashed line)

Regime BL AR NA0- NAO+ Total
1 0.1832 0.0793 0.0621 0.0548 0.3794
2 0.0897 0.0919 0.0996 0.1728 0.4540
3 0.0080 0.0166 0.0316 0.1103 0.1666

Total 0.2810 0.1878 0.1933 0.3380 1

Table 3.3: Joint probability of occurrence of the three regimes identified by
the the NHMS-AR(u,v) model (lines) and the large-scale regimes provided by
J. Cattiaux (see Cattiaux et al. (2013)) in columns.

with the climatology of the area.

BothNHMS-AR(u,v) andNHMS-AR(U,Φ) models have similar transition
probabilities (see Figure 3.4) with a more pronounced dependence on the wind
direction for theNHMS-AR(U,Φ) model. The more persistent regime is clearly
the first one (mean duration of about 3.4 days) with a high probability of
staying in this regime in any wind direction. The probability of switching
directly from regime 1 to regime 3 is very small and the Markov chain will
generally transit through the regime 2. Transitions from regime 1 to regime 2
are more likely when the wind is blowing from the west and transitions from
regime 2 to regime 3 generally occur when the wind is from south. Regime 3
is persistent only when the wind is from south-west. If the wind blows from
other directions, the weather type will quickly switch to regime 1 or 2.
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Figure 3.5: Rose plot of the marginal distribution of wind direction for the var-
ious models withM = 4 (resp. M = 3) regimes for Φt (resp.{ut, vt}) and order
s = 2. From left to right: HMS-AR(u,v), HMS-AR(U,Φ), NHMS-AR(u,v),
NHMS-AR(U,Φ)
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Figure 3.6: Joint distributions of {ut, vt} for observed wind (left) and wind
simulated with NHMS-AR(u,v) model (middle) and NHMS-AR(U,Φ) model
(right)

3.4.4 Marginal distributions

According to Figure 3.5, the models with non-homogeneous transition prob-
abilities provide a better description of the marginal distribution of the wind
direction than homogeneous models which have difficulties in reproducing the
second mode of the distribution (associated to easterlies). TheNHMS-AR(U,Φ)

model seems to perform slightly better than the NHMS-AR(u,v) model.
The joint distribution of {ut, vt} is globally well reproduced by both non-

homogeneous models (see Figure 3.6). Simulated data exhibit two modes like
in the original data. The modes seem to be slightly better located with the
NHMS-AR(U,Φ) model. It may be due to the small differences in the non-
homogeneous transition probabilities, see Figure 3.4. The NHMS-AR(U,Φ)

model having a slightly higher probability of staying in regime 3 when the
wind is blowing from the south-west. It may help to create two distinct modes
at the correct locations.
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Both models generate too much low wind and as a consequence fail to
reproduce accurately the hole at origin. Similar lack of fit for the marginal
distribution was observed on other datasets with MS-AR models. It seems to
be especially sensible when the model is miss-specified. This discrepancy may
be reduced by developing alternative estimation methods which would give
more importance to the stationary distribution of the process. This will be
the topic of future research.

3.4.5 Dependence structure

All the models reproduce approximatively the first lags of autocorrelation func-
tion of {Ut} (see Figure 3.7) and the circular autocorrelation of Φ (not shown)
defined as (see (Fisher and Lee, 1983))

ρ(h) = E[cos(Φ0) cos(Φh)]+E[sin(Φ0) sin(Φh)]−E[sin(Φ0) cos(Φh)]−E[cos(Φ0) sin(Φh)]
E[cos(Φ0)2]E[sin(Φ0)2]−E[sin(Φ0) cos(Φ0)]2

(3.14)

for any positive integer h. To further validate the models, we have also plotted
the various terms which appear in (3.14).

According to Figure 3.8, the autocorrelation function of {cos(Φt)} is gen-
erally better reproduced than the one of {sin(Φt)}. The empirical autocorrela-
tion of {sin(Φt)} has a more complex shape, with a quick decrease close to the
origin and a bump around 4 days, than the one of {cos(Φt)} which exhibits
a more monotonic decrease. Figure 3.7 shows the cross-correlation function
between the time series {cos(Φt)} and {sin(Φt)}. The sample cross-correlation
function is at its maximum value for a lag between 18 hours and 24 hours, with
the time series {sin(Φt)} being in advance of the time series {cos(Φt)}. This
may be related to the fact that, for the location of interest, the wind direction
tends to rotate more often clockwise than anti-clockwise between two succes-
sive time steps (see Figure 3.9). Note that the complex parametrization of the
von Mises autoregressive models (see Section 3.2.4) permits to model rotation
in a prevailing direction and significantly improves the boxplot shown on Fig-
ure 3.9 compared to models with real parametrization (not shown). One can
also remark that the first order autoregressive matrices of theNHMS-AR(u,v)

model have diagonal coefficients which are close to each other and out-diagonal
coefficients which are almost opposed and thus may be interpreted as the prod-
uct of rotation and dilatation matrices. Figure 3.9 shows however that they
do not generate enough anticlockwise rotations.

The non-homogeneous models generally lead to a better description of the
correlation functions compared to the homogeneous models. All the models
lead to an underestimation of the empirical autocorrelations functions of the
time series {cos(Φt)} and {sin(Φt)}. Increasing the order s of the autoregres-
sive models leads to a better description of the second order structure of the
process but models of order s ≥ 3 cannot reproduce the second mode of the
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Figure 3.7: Correlation function of {Ut} and cross-correlation functions be-
tween the time series {cos(Φt)} and {sin(Φt)} for the various models. The full
grey line corresponds to the sample functions and the dashed line to the fit-
ted model with a 95% prediction intervals (dotted line). The distributions for
the fitted model was obtained by simulation. Time on the x-axis is expressed
in days. (a): HMS-AR(u,v), (b): HMS-AR(U,Φ), (c): NHMS-AR(u,v), (d):
NHMS-AR(U,Φ)

marginal distribution and thus models of order s = 2 seem to provide a good
compromise.

3.5 Conclusion

In this work we propose to model bivariate wind time series considering Carte-
sian In this work we propose to model bivariate wind time series considering
Cartesian coordinates on one hand and polar coordinates on the other hand.
Both approaches have advantages. The {ut, vt} model is easier to write and to
fit since it is based on Gaussian distributions whereas a linear-circular model
is required when considering polar coordinates. The {ut, vt} model permits to
globally well restore the second order structure observed on the data while the
{Ut,Φt} model seems to give a better description of the marginal distributions.
However, the differences between both models are slight.

Models with homogeneous and non-homogeneous latent Markov chains are
compared. In non-homogeneous models, the transitions depend on the wind
direction at the previous time. At the location of interest, wind is rotating more
often clockwise but wind direction may also oscillate around two prevailing
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Figure 3.8: Autocorrelation functions of the time series {cos(Φt)} and
{sin(Φt)} for the various models. The full grey line corresponds to the sam-
ple functions and the dashed line to the fitted model with a 95% prediction
intervals (dotted line). The distributions for the fitted model was obtained by
simulation. Time on the x-axis is expressed in days. (a): HMS-AR(u,v), (b):
HMS-AR(U,Φ), (c): NHMS-AR(u,v), (d): NHMS-AR(U,Φ)
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Figure 3.9: Frequency of anticlockwise rotations between successive observa-
tions for the various models with M = 4 regimes and autoregressive model of
order s = 2. The grey line corresponds to the value obtained on the data (45.4
% of anticlockwise rotations against 54.6% of clockwise rotations). The box-
plots show the distributions for the fitted models. They were obtained by sim-
ulation (results based on 4400 time series of length 124). (a): HMS-AR(u,v),
(b): HMS-AR(U,Φ), (c): NHMS-AR(u,v), (d): NHMS-AR(U,Φ)
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directions (northeast for anti-cyclonic conditions and southwest for cyclonic
conditions). These features induce respectively some cycles which can be seen
in the second order structure and modes in the marginal distribution. In broad
outline, non-homogeneous transitions help the process to stay in the same
weather regime when the wind direction is close to the prevailing directions and
lead to sojourn duration in the regimes which are not geometric. In order to
generate the prevailing rotation, it is necessary to command the wind direction
to turn in the right direction inside the regimes. In {ut, vt}models the rotations
are reproduced by the autoregressive A matrices, but they are specified more
naturally in NHMS-EVM model by using a complex parametrization of the
von Mises autoregressive models.

The proposed models allow to generate wind time series with features very
close to the main features of the observed time series. The introduction of the
latent state allows to simulate the different time scale which are present in
the data, with the autoregressive part describing the short-term fluctuations
whereas the weather type, which lasts typically a few days, describes longer-
term fluctuations and is related to large scale circulation. Another layer could
be added to simulate shorter time scales for very local features. The model
could also be extended to a space-time model in several ways. For this, it will
probably be easier to work with the {ut, vt} model based on Gaussian distri-
butions which can naturally handle a space-time information. Then several
strategies could be considered for the weather type process which could be
local, with a different weather type at each site, or regional with a common
weather type for the different locations. With the first strategy one has to deal
with a space-time process of latent discrete variables and this is challenging
from both a modeling and computational point of view. The second strategy
is probably simpler to implement but requires some space-time homogeneity in
the data. These and other related modeling issues are currently investigated.



Chapter 4

Markov-Switching AutoRegressive
models for Cartesian components
of wind fields in the North-East
Atlantic

This chapter is the object of an on-going work with P. Ailliot, J. Cattiaux and
V. Monbet.

Several multi-site generators of {ut,vt} wind conditions are proposed in
this work. A regime-switching framework is introduced to account for the al-
ternation of intensity and variability that is observed on wind conditions due
to the weather state. This modeling consists in blocking time series into peri-
ods in which the series is described by a single model. The regime-switching
is modeled by a discrete variable that can be observed or latent. A hidden
Markov-Switching Vector AutoRegressive model is introduced and compared
to an unconditional and several conditional Vector AutoRegressive models
with observed regime-switching. Various questions are explored such as the
modeling of the regime in a multi-site context, the extraction of relevant clus-
terings from extra-variables or from wind data and the link between regimes
extracted from the fitting of the hidden MS-AR model and large-scale weather
types derived from a descriptor of atmospheric circulation. The proposed mod-
els reproduce the average space-time motions of wind conditions and we show
the advantage of regime-switching models in reproducing the alternation of
variability of wind conditions.

81
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4.1 Introduction and general context

4.1.1 Introduction

Stochastic weather generators have been used to generate artificial sequences
of small-scale meteorological data with statistical properties similar to the one
of the dataset that is used to calibrate the model. Various wind conditions
generators at a single site have been proposed in the literature. However very
few models were introduced in the multi-site context (Haslett and Raftery,
1989). Artificial sequences of wind conditions provided by stochastic weather
generators enable to assess related risks in impacts studies, see for instance
(Hofmann and Sperstad, 2013). We propose in this work a multi-site generator
for Cartesian components of surface wind. As far as we know, only a few
models have been proposed to model time series of Cartesian coordinates of
wind {ut,vt} (Hering and Genton, 2010; Ailliot et al., 2006b; Wikle et al.,
2001; Modlin et al., 2012). These models are mostly purposed for short-term
wind prediction and not for the generation of artificial conditions of {ut,vt}.
They are not focused on reproducing the same statistics we are interested in,
that is to say the marginal distribution and the spatio-temporal dynamic.

In the North-East Atlantic, the spatio-temporal dynamic of wind is com-
plex because a regime-switching is observed due to large-scale weather regimes.
It induces an alternation between periods with high temporal variability with
more stable periods. Introducing regime-switching in the modeling, as it is
proposed in this work, permits to reproduce the various temporal dynamics
and scales present in the wind data. In this work, we propose various Vector
AutoRegressive (VAR) Models with regime-switching. One of the challenges
is to propose a regime-switching that is physically consistent and that enables
to describe appropriately the local observation by a VAR model.

In practice, blocking a time series into regimes consists in partitioning it
into periods of time in which the series is homogeneous and can be described
by a single model. Depending on the availability of good descriptors of the
current weather state, regime-switching can be achieved through models with
an observed or a latent regime-switching. The regime is said to be observed
when regimes are identified a priori for instance before modeling the local dy-
namic. In this case, clustering methods are run on adequate variables to obtain
relevant regimes. In practice, regimes can be extracted from extra-variables,
such as descriptors of atmospheric circulation (see for instance (Bardossy and
Plate, 1992; Wilson et al., 1992)), or from local variables. For instance, sepa-
ration of dry-wet states has been widely used to derive observed regimes when
various meteorological variables are considered, see (Richardson, 1981; Flecher
et al., 2010). When considering wind models, wind direction can be accounted
for since it is a good descriptor of synoptic conditions. In (Gneiting et al.,
2006), wind direction is used both to extract regimes and in the parametriza-
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tion of the predictive distribution. A priori clusterings based on global or local
variables are discussed in Section 4.4.

When the regimes are said to be latent, they are introduced as a hidden
variable in the model. This framework is more complex from a statistical point
of view and the conditional distribution of wind given the regime has to be
simple and tractable. Hidden Markov Model have been widely used for mete-
orological data (Zucchini and Guttorp, 1991; Hughes et al., 1999; Thompson
et al., 2007). Markov-Switching AutoRegressive (MS-AR) models appear as
a generalization of Hidden Markov Models (HMM) in allowing temporal dy-
namics within the regimes (Hamilton, 1989). Models with regime-switching
improve the modeling of wind intensity time series compared with classical
AutoRegressive-Moving Average (ARMA) models, see (Ailliot and Monbet,
2012) where wind speed is modeled at one site. MS-AR models are introduced
in section 4.2 and their inference is described.

In the multi-site context, the regime can be regional for all sites and remains
scalar (Ailliot et al., 2009) or it can be introduced as a site-specific regime
(Wilks, 1998; Kleiber et al., 2012; Khalili et al., 2007; Thompson et al., 2007),
which enables to account for a wide range of space-time dependence. However a
site-specific regime appears to be computationally challenging (Wilks, 1998).
A comparison of MS-AR models with site-specific regimes against regional
regime is detailed Section 4.3.

4.1.2 Wind data

The data under study are west-east and north-south surface wind components
{ut,vt} at 10 meters above sea level extracted from the ERA Interim Full
dataset produced by the European Center of Medium-range Weather Forecast
(ECMWF). It can be freely downloaded and used for scientific purposes at the
URL http://data.ecmwf.int/data/.

We focus on gridded locations between latitudes 46.5◦N and 48◦N and
longitudes 6.75◦W and 10.5◦W (see Figure 4.1). The dataset we have extracted
consists of 32 blocks of months December and January of wind data from
December 1979 to January 2011. Further, the statistical inference is based on
the assumption that the 32 December-January blocks of wind components are
32 independent realizations of the same stationary process. In order to study
the spatial coherence of a common regime to all the locations, an homogeneous
area is sought. A spatial hierarchical clustering has been realized to choose
an homogeneous area (see Figure 4.1). The clustering is run on the process of
moving variance of wind speed, which is described more precisely in Section
4.5. This process is a good descriptor of the alternate of temporal variability
of time series (see Figure 4.2) and it is computed as the variance of wind speed
over nine consecutive time. The dendogram suggests the use of four clusters
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Figure 4.1: Left: Spatial hierarchical clustering of the moving variance as-
sociated to the process of wind speed with four clusters. Right: Joint and
marginal distribution of {ut, vt} at the central location 10, contour lines of the
estimated joint density.

that are depicted on Figure 4.1. These four clusters are likely to be divided in
an inland cluster, an intermediate cluster between ocean and land, a cluster
corresponding to storms that propagate into the Bay of Biscay and another
for storms that propagate toward northern Europe.

Components {ut} and {vt} admit a complex relationship, the joint distri-
bution and the cross-correlation of {ut, vt} reflect a part of this complexity
(Figure 4.1). The margin of {ut} reveals two separate modes whereas the one
of {vt} does not exhibit a clear bi-modality. The very few points around the
point (0,0) indicate that the transitions between the two modes of each com-
ponent are not realized through a vanishing of the field but rather through a
rotation of the field. The following transformation is used on both components
{ut} and {vt}. This transformation with α > 1 aims at filling the hole around
(0, 0) in order to facilitate the modeling of the bi-modality

{
ũt = Uα

t cos(Φt)
ṽt = Uα

t sin(Φt),

where {Ut} and {Φt} respectively denote wind speed and wind direction. In
practice, α is chosen empirically equal to 1.5.
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4.2 Markov-Switching AutoRegressive models

4.2.1 The models

In the present work, we consider the following class of models: let St be a
discrete Markov chain with values in {1, ...,M} describing the current weather
type as a function of time t. Conditionally to the weather type, the models
described here are Vector AutoRegressive models. Given the current value of
St, the observation Yt is written as:

Yt = A
(St)
0 +A

(St)
1 Yt−1 +A

(St)
2 Yt−2 + ...+A(St)

p Yt−p + (Σ(St))1/2εt, (4.1)

Y represents the observed power-transformed K-dimensional process. For
i ∈ {1, ...,M}, A(i)

0 is a K-dimensional vector, A(i)
1 , ...,A

(i)
p ,Σ(i) are K × K-

matrices and ε is a Gaussian white noise of dimension K. In the sequel, K
equals 36 when the dataset of 18 locations is considered. Conditional inde-
pendences between S and Y are displayed on the following Directed Acyclic
Graph (DAG) for p = 1, (see (Durand, 2003) for additional information about
DAGs):

· · · //

��

St−1
//

��

St //

��

St+1
//

��

· · ·

��
· · · // Yt−1

// Yt // Yt+1
// · · ·

In the above model, the regime S can be latent or observed, both cases are
discussed respectively in Sections 4.3 and 4.4. In both cases, the parameters
estimation of the model can be performed by maximum likelihood but in a
different way in each case.

For both kind of models, covariates can be included, the easiest way is
to include them in the intercept parameter A0 or in transitions between
regimes. Transitions between regimes can be parametrized with a covariate
(when regimes are latent, a parameterization with an extra covariate is given
in (Hughes and Guttorp, 1994) and with the studied variable in (Ailliot et al.,
2014) and in (Vrac et al., 2007) when regimes are defined a priori). In the
context of multi-site models, the choice of the covariate of non-homogeneous
transitions is delicate, we do not discuss this topic here and only consider
homogeneous models.

To avoid over-parameterization of the conditional models, we work in a
first step with a reduced dataset. In the following all the proposed models will
be fitted on the set of the sites (1,6,10,13,18).

4.2.2 Estimation by maximum likelihood

Firstly, let suppose that the complete set of observations (y1, ...yT , s1, ...sT )
is available, which is the case in Section 4.4. Assume that y−1 and y0 are
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observed, the complete log-likelihood, associated to an autoregressive order
p = 2, is written as:

log(L(θ;y1, ...yT , s1, ...sT |y−1,y0)) = log(L(θ(Y );yT1 |y−1,y0, s
T
1 ))

+ log(L(θ(S); sT1 |y−1,y0)), (4.2)

with θ = (θ(S), θ(Y )), where θ(Y ) corresponds to the parameters of the VAR
models, θ(S) = Π = (πi,j)i,j=1,··· ,M the transition matrix Π of the Markov
chain S, which is a stochastic matrix, and yT1 = (y1, ...,yT ). Let denote ni,j the
number of occurrences of the event {(St, St+1) = (i, j)} for all t ∈ {1, ..., T−1},
ni,. =

∑M
j=1 ni,j and ni = ni,. + δ{sT=i}, where δ is the Kronecker symbol, the

total number of occurrence of the regime i.

log(L(θ(Y );y1, ...,yT |y−1,y0, s
T
1 ))

=
T∑
t=1

log(p(yt|yt−1,yt−2, st)) by Markovian properties

=
M∑
i=1

∑
t∈{t|st=i}

log(p(yt|yt−1,yt−2, st))

=
M∑
i=1

ni(−d
2

log(2π)− 1
2

log(det(Σ(i)))−
∑

t∈{t|st=i}

1
2
e
′

t(Σ
(i))−1et,

where et = (yt −A(i)
0 −A

(i)
1 yt−1 −A(i)

2 yt−2).
For each i ∈ {1, ...,M}, each function

θ(Y ,i) → ni(−d
2

log(2π)− 1
2

log(det(Σ(i)))−
∑

t∈{t|st=i}

1
2
e
′

t(Σ
(i))−1et

can be maximized separately, where θ(Y ,i) = (A
(i)
0 ,A

(i)
1 ,A

(i)
2 ,Σ

(i)). The com-
putation of the optimal estimates of A(i)

1 and A(i)
2 is performed via the writing

of the VAR(2) model as a VAR(1): for all t ∈ {t|st = i},(
Yt
Yt−1

)
=

(
A

(i)
1 A

(i)
2

IdK 0

)(
Yt−1

Yt−2

)
+

(
εt
0

)
,

where IdK is the K×K-identity matrix. Let write A(i) =

(
A

(i)
1 A

(i)
2

IdK 0

)
and

Zt =

(
Yt
Yt−1

)
, expressions of Â(i)

1 and Â(i)
2 are extracted from the estimate

Â(i) =
( ∑
t∈{t|st=i}

ZtZ
′

t−1

)( ∑
t∈{t|st=i}

Zt−1Z
′

t−1

)−1

. (4.3)
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The other optimal estimates are:

Â
(i)
0 = (IdK − Â(i)

1 − Â
(i)
2 )µ̂(i) (4.4)

where µ̂(i) =
1

ni

∑
t∈{t|st=i}

yt is the empirical mean of Y in regime i and

Σ̂(i) =
1

ni

∑
t∈{t|st=i}

êtê
′

t, (4.5)

Σ̂(i) is the empirical variance of the empirical residuals defined as êt = (yt −
Â

(i)
0 − Â

(i)
1 yt−1 − Â(i)

2 yt−2).
Concerning the Markov chain S:

log(L(θ(S); s1, ..., sT |y−1,y0)) =
M∑
i,j=1

ni,j log(πi,j),

the associated maximum likelihood estimator is

π̂i,j =
ni,j
ni,.

,

notice that θ̂(S) satisfies naturally the constraint of a stochastic matrix.

When only observations of the process Y are available and the realizations
of S are not given a priori, like in Section 4.3, one inference method is to use
the Expectation-Maximization (EM) algorithm, which is commonly run to es-
timate the parameters of models with latent variables by maximum likelihood.
Since S is not observed, the EM-algorithm aims at maximizing the complete
log-likelihood function based on the observations Y :

θ → Eθ(log(L(θ;Y1, ...,YT , S1, ..., ST ))|Y T
−1 = yT−1).

It is proven that through the iterations of the algorithm, a convergent sequence
of approximation of the Maximum Likelihood estimator of θ is computed.

EM-algorithm proceeds into cycling through two steps: the Expectation-
step and the Maximization-step (Wu, 1983; Dempster et al., 1977). The E-step
is performed through Forward-Backward recursions (see (Hamilton, 1990) for
hidden MS-AR models) that enable to compute the smoothing probabilities
P (St|Y T

1 = yT1 ). At M-step, optimal expressions of parameters of θ(Y ), given
in (4.3), (4.4) and (4.5), are used. However in each regime i, each observation
yt is weighted by the probability P (St = i|Y T

1 = yT1 ), for instance

µ̂(i) =
1∑T

t=1 P (St = i|Y T
1 = yT1 )

T∑
t=1

P (St = i|Y T
1 = yT1 )yt.
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The estimate of the transition matrix are obtained from quantities P ({St =
i, St+1 = j}|Y T

1 = yT1 ) that are derived at the E-step.
The following notations are used in the sequel: AP-MS-VARC to denote the

a priori regime-switching model associated to the clustering C and H-MS-VAR
to denote the hidden regime-switching model.

4.3 From a single-site to a multi-site hidden MS-
AR model

When the current weather state is not estimated a priori, it is introduced as
a latent variable. Hidden regime-switching models have been used in various
fields of the literature, see (Zucchini and MacDonald, 2009) for a wide range
of applications of Hidden Markov Models. In (Ailliot et al., 2014), a single-site
model is proposed to model {ut, vt}, the proposed hidden Markov-Switching
AutoRegressive model reveals good qualities to describe marginal and joint
distribution of {ut, vt} as well as the temporal dynamics of the wind at one
location.

In this section, the assumption of a common regional regime is investigated,
we show that this assumption is acceptable. The homogeneous MS-AR model
introduced in (Ailliot et al., 2014) for {ut, vt} with M = 3 regimes and an
autoregressive order p = 2 has been fitted at each site. Most likely regimes
associated to the data are extracted from the estimation procedure of hidden
MS-AR models, at each time the regime is arg max

St∈{1,··· ,M}
P (St|Y T

1 = yT1 ). The

spatio-temporal coherence of the regimes of each of the 18 sites is checked and
reveals a strong homogeneity that urges to use a regional regime in this area.

In order to compare properly the regimes, they are ordered according to
the increasing value of the determinant of Σ(i). The first regime corresponds
mainly to anticyclonic conditions with easterly wind and a slow varying in-
tensity (the variance of the innovation of the AR model is lower than in the
other regimes and the first AR coefficient is larger). The two other regimes
correspond to cyclonic conditions with westerly wind and higher temporal vari-
ability in the intensity (see Figure 4.2). These two regimes are discriminated
mainly by the temporal variability, which is higher in the third regime, and
the wind direction with the second regime corresponding mainly to south-
westerlies and the third regime corresponding mainly to north-westerlies In
Figures 4.2, we can notice that stable wind conditions observed in the first
regime are associated to weak values of the moving mean and variance process
whereas cyclonic conditions and volatile periods observed in the second and
third regimes are characterized by higher values of moving mean and variance.

Coefficients of the AutoRegressive process Y in each regime and the transi-
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Figure 4.2: Top line: moving means computed on two days intervals in each
regime of the H-MS-VAR model fitted at site 10. Bottom line: moving mean
square error of wind speed around its moving mean, in each regime. Moving
means and errors are computed over an interval of two days .
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Diagonal of Π AR coefficients (A(i)
1 (1, 1),A

(i)
1 (2, 2) ) log(det(Σ(i)))

Site \ Regime R1 R2 R3 R1 R2 R3 R1 R2 R3
Site 1 0.93 0.83 0.64 (1.27,1.16) (1.15,1.3) (0.62,0.63) 5.62 8.87 11.96
Site 6 0.92 0.83 0.71 (1.27,1.02) (1.2,1.28) (0.61,0.72) 5.55 8.59 11.79
Site 10 0.93 0.84 0.74 (1.25,1.19) (1.17,1.27) (0.74,0.71) 5.55 8.67 11.79
Site 13 0.93 0.81 0.64 (1.22,1.24) (1.17,1.25) (0.65,0.65) 5.77 9 11.96
Site 18 0.93 0.83 0.73 (1.26,1.12) (1.17,1.25) (0.67,0.68) 5.72 8.73 11.83

Table 4.1: Diagonal of the transition matrix Π at each site, coefficients of
the AutoRegressive model in each regime at each site and logarithm of the
determinant of Σ(i).

tion matrix at each site are very comparable and spatially coherent (see Table
4.1). Other criteria such as the average field of {ut,vt} in each regime and
distribution of {Φt} in each regime were also explored and suggest similarities
between regimes at all locations.

Moreover, the sequences of regimes can be compared in Figure 4.3. Time
series of a posteriori regimes and wind speed are depicted. Homogeneity is
strong at the three locations which suggests the use of a regional regime. The
two last regimes are the less coherent from one site to another, this is partly
explained by the fact that these regimes are the less stable especially the third
one (see Table 4.1). Moreover, we can notice propagations of eastward wind
events, indeed the darkest regimes are often first observed at western stations
(station 1) and then observed at more eastern sites (10 and 18). The bottom
panel of the Figure 4.3, which depicts the sequences of regimes associated
with the model fitted on the all set of locations with a common regime to
all locations, reveals that this regional regime is coherent with the local ones
although it is less persistent.

In Figure 4.4, probability of occurrence of a regime at a given location
conditionally on the same regime that occurs at the same time at site 10,
are depicted. On each picture, conditional probabilities should be compared
to the reference value given at location 10, which is 1. The first regime has
the best spatial coherence and the third regime, which is the less persistent
regime, is the less coherent spatially. The assumption of a regional regime
seems appropriate and is then kept for the modeling of the multi-site wind in
the following.
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Figure 4.3: Time series of wind speed and a posteriori regimes from the fitting
of a MS-AR. The lighter is the grey, the smaller is the determinant of Σ(i).
From top to bottom: sites 1, 10 and 18 when the model is fitted at a single
location, bottom line: extracted regimes when the model is fitted at the 5
locations (1,6,10,13,18).
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Figure 4.4: Conditional probabilities of occurrence of regime i = 1, · · · , 3 at
one site conditionally on the occurrence of the same regime at site 10.

4.4 Observed regime-switching AutoRegressive
models

Conversely to the previous section, one may derive the regime separately
from the fitting of the conditional model. When considering a priori regime-
switching, the derivation of regimes can be done with appropriate clustering
methods. We seek for weather states that are distinct one from the other and
in which the data are homogeneous. We expect here to extract, among others,
a regime with westerly conditions and another with easterly conditions. Clus-
tering can be run on the local studied variables or on extra variables. When it
is processed on the local data, the weather states might be more appropriate
to the data but may contain fewer information about the synoptic scale. In
the second case, more information about the synoptic scale is available which
may improve the meteorological consistency of the regimes. In this subsec-
tion, we propose three clusterings, which differ by the choice of the clustering
method and by the choice of the descriptors of the variables to derive the a
priori regimes.

4.4.1 Derivation of observed regimes from extra-variables

The large-scale weather regimes commonly used in climate studies is consid-
ered as a first clustering. The four wintertime weather regimes of (Cattiaux
et al., 2013) are obtained over the North-Atlantic / European sector (90W-
30E / 20-80N) by a kmeans-clustering of the time series associated to the
first Empirical Orthogonal Functions (EOF) of the 3607 daily maps of 500 mb
geopotential anomalies ( mean-corrected fields, days of December, January
and February 1981–2010). In winter, four regimes are identified and described
in various references (Michelangeli et al., 1995; Cassou, 2008; Najac, 2008).
They correspond to the two phases of North-Atlantic Oscillation (NAO+ and
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NAO-), the blocking (BL) and the Atlantic Ridge (AR). In France in winter-
time, these four regimes respectively correspond to privileged flows that are
respectively: south-western flows (NAO+), western flows (NAO-), southern
or eastern stable flows (BL) and northern flows (AR). Let denote CZ500 this
clustering.

4.4.2 Derivation of observed regimes from the local vari-
ables

CZ500 provides persistent regimes in which the estimation and simulation of the
conditional model lead to a satisfying description of {ut,vt}. However when
using a k-means clustering on descriptors of the local wind, regimes are not per-
sistent enough to estimate reliably the conditional VAR model. Consequently,
in this subsection, we perform the clustering via a Hidden Markov Model with
Gaussian probability of emission. The hidden structure of Markov chain pro-
vides more stable regimes than with a k-means clustering. The EM-algorithm
is used to process the clustering and the number of regimes is chosen at three.
This number of clusters provides the most physically relevant regimes. Two
kinds of descriptors of the data are proposed.

The first partition of the data is obtained by clustering the time series
associated to the first EOF of the anomalies of {ut,vt}. These time series
correspond to the projections of the anomalies on the EOFs, which are eigen-
vectors of the spatial covariance matrix of the anomalies time series. This
decomposition enables to extract the main modes of variability of the spatio-
temporal process. In practice, the two first EOF, which explain 94% of the
total variance, are kept. Let denote respectively CEOF−(u,v) this clustering.

Furthermore, in order to find a clustering that may be better adapted to
the description of the conditional distribution by an autoregressive model, we
consider a method that involves descriptors of the conditional distribution of
p(Yt|Yt−1). A simplified way to account for such descriptors is to consider
the bivariate process {ut − ut−1,vt − vt−1}. This set of variables enables to
construct regimes that discriminate well the variances of the process {ut,vt}.
Let denote CDiff(u,v) the associated clustering.

4.4.3 Comparison and selection

The proposed clusterings are compared through various quantitative and quali-
tative criteria in order to select the clustering that is the most physically mean-
ingful and appropriate in terms of conditional autoregressive models. For a
proper comparison, except for CZ500, in each clustering the regimes are ordered
according to the determinant of the matrices Σ(i). For CZ500, the ranking pro-
vided by the determinant and the one provided by the trace of Σ(i) differ,
this latter ranking is the most physically consistent since NAO+ corresponds
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Figure 4.5: Time series of wind speed and a priori regimes extracted from the
proposed methods above. The darker is the grey, the smaller is the determinant
of Σ(i). From top to bottom: CZ500, CEOF−(u,v) and CDiff(u,v).

to the most unstable conditions. In the following, the regimes of CZ500 are
ordered in the following way: BL, AR, NAO-, NAO+.

Sequences of regimes from these three clusterings are shown in Figure 4.5.
CZ500 has very persistent regimes. In the top panel, one can see that the most
stable wind conditions are associated to the BL and AR phases, whereas the
most variable wind conditions occur during the two NAO phases. In the middle
panel, the second and third regime are generally associated with moderate and
high intensity of wind whereas the first regime seems to be associated with
stable conditions. In the CDiff(u,v) clustering (bottom panel), the regimes are
less persistent, due to the choice of descriptors that are less stable. Globally
the first regime is associated with the most stable conditions and the third one
seems to be associated to the most volatile conditions.

On Figure 4.6, the average fields corresponding to each regime of the three
clusterings are plotted. The three clusterings enable to extract easterly and
westerly regimes. Two regimes of CZ500, the Blocage and NAO-, are not clearly
discriminated by the clustering. This is probably due to the lack of local in-
formation in the clustering. This lack of discrimination at small scale by a
large-scale clustering was also observed in (Najac, 2008). The AR and NAO+
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regimes are consistent with the description given in Subsection 4.4.1. Since
different descriptors are used, CDiff(u,v) and CEOF−(u,v) lead to very different
results. CEOF−(u,v) leads to the most physically consistent regimes: a north-
easterly regime, a northwesterly and a southwesterly one, which are flows cor-
responding to several of the large-scale weather regimes. The two last regimes
are associated with strong intensities. From the derivation of this clustering,
it is natural to find regimes that correspond to the main mean patterns of
variability of the fields. The regimes of CDiff(u,v) have less straightforward
meteorological interpretation. The first regime corresponds to periods of weak
intensities. The two last regimes are southwesterly regimes with different in-
tensity from one to the other. These two regimes are not clearly distinct.

The optimal value of the complete log-likelihood of the model is generally a
good measure of the relevance of a model. The complete log-likelihood, given
in (4.2), evaluated at the maximum likelihood estimator of θ̂ is written in the
case of observed shifts as the sum of the two following terms:

log(L(θ̂(Y );yT1 |sT1 )) = −Td log(2π)

2
− Td

2
−

M∑
i=1

ni log(det(Σ̂(i)))

and

log(L(θ̂(S); s1, ..., sT )) =
M∑
i,j=1

ni,j log
(ni,j
ni,.

)
.

Let notice that the maximal log-likelihood of θ(Y ) is characterized by the
total time spent in each regime and the associated determinant of covariance
matrix of innovation (notice that the one-step ahead error of forecast is linked
to this quantity). The longer time is spent in a regime with a weak determinant
of covariance of innovation, the greater is the log-likelihood (see Table 4.4.3).
The maximal log-likelihood of θ(S) is equal to the opposite of the conditional
entropy of St given St−1. The conditional entropy is classically used as a quality
measure of clustering and of predictability. As a clustering measure, the weaker
is the entropy within a cluster, the better is the homogeneity within the cluster.
In prediction, the weaker is the entropy, the stronger is the predictability of
St given St−1. More generally one tends to minimize this measure. Due to the
range of values of the log-likelihood of θ(Y ), the value of the one of θ(S) has a
low contribution to the complete log-likelihood. If the complete log-likelihood
is used to select models, the persistence of the Markov chain is then ignored.
BIC indexes are also given in Table 4.4.3, where BIC = −2 log L+Np log(Nobs)
with L the likelihood of the model, Np the number of parameters and Nobs the
number of observations. BIC index enables to reflect the compromise between
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Figure 4.6: Average fields of {ut,vt} for the clusterings, from top to bottom:
CZ500, CEOF−(u,v), CDiff(u,v) and from the fitting of H-MS-VAR on the set of
5 locations.
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BIC log-L log-L Np log(det(Σ(i))) % of time spent
Model of S of Y R1 R2 R3 R4 R1 R2 R3 R4

Unconditional VAR 542640 - -269825 265 36.4 - - - - - - -
AP-MS-VARCZ500

542730 -1510 -263808 1072 29.8 30.3 39 38.1 0.27 0.18 0.2 0.34
AP-MS-VARCEOF−(u,v)

545730 -2331 -266015 801 28.9 33.3 38.9 - 0.31 0.42 0.27 -
AP-MS-VARCDiff(u,v) 520759 -4762 -251099 801 20.2 34.1 48.1 - 0.44 0.41 0.15 -

H-MS-VAR 459458 - -229616 801 18.4 32.1 48.4 - 0.43 0.41 0.16 -

Table 4.2: Np the number of parameters. Values are computed from models
fitted on {ut,vt} at the 5 locations (1,6,10,13,18).

a model with a high likelihood and its parsimony. Notice that one can not
compare BIC indexes of a priori and latent regime-switching models. However
BIC indexes of these two classes of models can be compared to the one of the
unconditional VAR model, since it is a particular case.

The clustering CDiff(u,v) provides the greatest value of complete log-likeli-
hood since variances of innovation are well separated. The three proposed
AP-MS-VAR models lead to a satisfying description of the marginal and joint
distribution and space-time covariances (not shown). However the model
AP-MS-VARCDiff(u,v) , which exhibits the best likelihood, performs the most
accurately among the AP-MS-VAR models to reproduce the moving aver-
age and moving variance processes, see Section 4.5. Besides in terms of
BIC indexes, the smallest value amongst AP-MS-VAR models is the one of
AP-MS-VARCDiff(u,v) and it is also greater than the one of the VAR model. In
the sequel, the VAR model with shifts defined by CDiff(u,v) is kept for further
comparisons in simulation.

4.5 Comparison of the multi-site wind models

In this section, we firstly investigate the physical interpretation of the regimes
provided by H-MS-VAR. The link between large-scale regimes and the other
proposed clusterings is also explored. We finish by a comparison between
models VAR(2), AP-MS-VARCDiff(u,v) and H-MS-VAR in terms of reproducing
various scales of the spatio-temporal variability. Especially we focus on the
description of the alternate of periods with different temporal variability of
wind conditions, we highlight the benefit of using appropriate regime-switching
in reproducing this alternate.

A H-MS-VAR model has been fitted to the data with M = 4 regimes
and parameters of AP-MS-VARCZ500

as initial conditions. However this model
do not improve results in simulation and lead to non-interpretable a poste-
rior regimes. In the following we consider a H-MS-VAR model with M = 3
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CEOF−(u,v) CDiff(u,v) H-MS-VAR
BL AR NA0 - NAO+ Total BL AR NA0 - NAO+ Total BL AR NA0 - NAO+ Total

R1 0.17 0.06 0.08 0.01 0.32 0.15 0.10 0.07 0.13 0.45 0.13 0.09 0.07 0.14 0.43
R2 0.04 0.10 0.05 0.08 0.27 0.09 0.06 0.09 0.16 0.40 0.10 0.06 0.09 0.15 0.41
R3 0.07 0.02 0.07 0.26 0.42 0.03 0.02 0.04 0.06 0.15 0.04 0.02 0.05 0.06 0.16

Total 0.28 0.18 0.20 0.35 1 0.27 0.18 0.20 0.35 1 0.27 0.17 0.21 0.35 1

Table 4.3: Joint probability of occurrence of the three regimes identified by
the proposed models in lines and the large-scale regimes in columns

regimes. Notice that the initialization of the EM-algorithm is robust to ini-
tial conditions, initializations with parameters of AP-MS-VARCDiff(u,v) and
AP-MS-VARCEOF−(u,v)

lead to similar results in simulation.

4.5.1 Regimes extracted from hidden MS-VAR model

In Figure 4.6, mean fields of {ut,vt} in each regime extracted from the fitting
of the model H-MS-VAR are depicted. These three regimes are associated
with three distinct situations. In terms of mean fields, these regimes are sim-
ilar to the ones of CDiff(u,v). However when comparing Figures 4.3 and 4.5,
the sequences of instantaneous behaviors of the regimes differ. Indeed the
first regime is associated with the most stable conditions with weak intensity
whereas the third one the most variable and stronger winds. The third regime
associated with the greatest determinant of Σ(i) is the less stable regime and
seems to be associated to stormy conditions. The bottom panel of the Figure
4.3 reveals, amongst other things, that the second regime is a precursor to
the third one and that this second regime is most of the time associated with
raises of wind speed intensity.

A look at the coefficients of the model confirms that the first regime is
associated with steady conditions (high AutoRegressive coefficients and weak
variance of innovation). This regime is associated with the weakest values of
wind speed whereas the two others are related with greater wind intensity
especially the third one.

4.5.2 Link between large-scale weather regimes and the
other regimes

Meteorology of Europe is mainly driven by the alternate of the characteristic
patterns of atmospheric circulation of CZ500. The regimes described by CZ500

are related to a large spatio-temporal scale whereas the ones from the hidden
MS-VAR are related to a smaller spatio-temporal scale. We explore here the
joint occurrences of local regimes provided by CEOF−(u,v), by CDiff(u,v) and
by the model H-MS-VAR. For that, the joint probability of occurrence of the
regimes identified by the proposed models and the large-scale regimes are com-
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puted (Table 4.3). For the three clusterings, the small-scale regimes seem to
appear in privileged large-scale weather regimes. The regimes of H-MS-VAR
and of CDiff(u,v) are less persistent than the ones of CEOF−(u,v) which may ex-
plain that the joint occurrences are weaker. Besides the regimes of CDiff(u,v)

and of the H-MS-VAR were already more difficult to interpret than the others.
As said previously, the regimes of H-MS-VAR are mainly driven by the con-
ditional autoregressive model in the sense of the likelihood, which may result
in a more difficult interpretation. However the regimes of CEOF−(u,v), which
already were easier to interpret, exhibit the strongest link with the large-scale
regimes.

4.5.3 Comparison of the MS-VAR models

In this subsection we study the ability of the proposed models to reproduce, via
artificial sequences, the statistical properties of the data under study. N = 100
sequences of the length of the data are generated with the fitted models and
several statistics are computed on these data.

In a first time, marginal statistics at the central site 10 are investigated
(see Figure 4.7). Comparing Figures 4.1 and 4.7, one can notice that the
distribution of {ut} is well reproduced by the model H-MS-VAR however the
one of {vt} is less accurately described. Description of this distribution by
AP-MS-VARCDiff(u,v) is also satisfying and not shown here. Concerning the
temporal dependence, the regime-switching models are the most able to ac-
curately reproduce the autocorrelation functions of both {ut} and {vt}. All
the models tend to behave similarly in reproducing the correlation of {ut}.
However the VAR model tends to underestimate the dependence of {vt} be-
tween 2 and 5 days, the regime-switching models improve the description of
this dependence.

The space-time correlation function of the multivariate process {ut,vt}
and its simulated replicates reveals that both models reproduce very satisfy-
ingly the general shape of this function and especially the non-separable and
anisotropic patterns, see Figure 4.8. The non-separability which is reflected in
the asymmetry around the vertical axis at lag 0 is captured by the proposed
models.

In order to study further patterns than the average ones, we focus on
the ability of the models to reproduce the alternate of temporal variability.
Indeed the alternation of different weather states induces an alternation in
the intensity and temporal variability of wind. Moving average and moving
mean square error around the moving mean have been computed over nine
consecutive values of the process {ut, vt}, which corresponds to two days.

In Figure 4.9, moving mean square error of wind speed around its moving



100 CHAPTER 4. MULTI-SITE MODELS FOR (U, V )-TIME SERIES

−20 −10 0 10 20

−
20

−
10

0
10

20

y

 2e−04 

 4e−04 

 6e−04 

 8e−04 

 8e−04 

 0.001 

 0.0012 

 0.0014 
 0.0016 

 0.0018 

 0
.0

02
 

 0.0022 
 0.0024 

U

V

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (day)

A
ut

oc
or

re
la

tio
n

data
VAR
AP
Hid

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (day)

A
ut

oc
or

re
la

tio
n

data
VAR
AP
Hid

Figure 4.7: Left: joint and marginal distribution of simulated data at site
10 from the model H-MS-VAR. Central and right panels: autocorrelation
functions of {ut} and {vt} at site 10 for the reference data, simulated data
from the VAR(2), AP-MS-VARCDiff(u,v) and H-MS-VAR models.

mean at the central site 10 is depicted against its moving mean. Observations
reveal a higher variability when the intensity is high but high variability may
be associated with weaker values when the moving window overlaps transi-
tion time. Models with regime-switching enable to reproduce more tempo-
ral variability associated with moderate and high intensity of wind, which is
not captured by an unconditional VAR model. We observe that the regime-
switching models enable to reproduce high variance intervals associated with
high intensity of wind and also the high variability around 5 and 10 m.s−1

which corresponds to transitions between weather states. This is ensured by
the alternate, driven by a Markov chain, of periods associated with different
parameters of the conditional model.

Besides, similar figures than Figure 4.2 indicate that the distributions of
the moving variance and the moving mean within each simulated regime of the
CDiff(u,v) and of H-MS-VAR are clearly distinct from one regime to the other,
which indicates a characteristic behaviors of these two simulated processes
within each regime. Moreover the behavior in each simulated regime is very
close to the observed one.

4.6 Discussions and perspectives

In Section 4.3, we study site-specific regimes against regional regime. We
conclude according to mainly qualitative criteria that for this dataset the use
of a regime common to all locations is reasonable. To go one step further,
one would settle some procedures of likelihood-ratio test, to quantify more
precisely to which extent the assumption of a regional regime against a site-



4.6. DISCUSSIONS AND PERSPECTIVES 101

−5 0 5

0
10

0
20

0
30

0

Lag (day)

Di
sta

nc
e (

km
)

0.2

0.4

0.6

0.8

1.0

−5 0 5

0
10

0
20

0
30

0

Lag (day)

Di
sta

nc
e (

km
)

0.2

0.4

0.6

0.8

1.0

−5 0 5

0
10

0
20

0
30

0

Lag (day)

Di
sta

nc
e (

km
)

0.2

0.4

0.6

0.8

1.0

−5 0 5

0
10

0
20

0
30

0

Lag (day)

Di
sta

nc
e (

km
)

0.2

0.4

0.6

0.8

1.0

−5 0 5

0
10

0
20

0
30

0

Lag (day)

Di
sta

nc
e (

km
)

0.2

0.4

0.6

0.8

1.0

−5 0 5

0
10

0
20

0
30

0

Lag (day)

Di
sta

nc
e (

km
)

0.2

0.4

0.6

0.8

1.0

−5 0 5

0
10

0
20

0
30

0

Lag (day)

Di
sta

nc
e (

km
)

0.2

0.4

0.6

0.8

1.0

−5 0 5

0
10

0
20

0
30

0

Lag (day)

Di
sta

nc
e (

km
)

0.2

0.4

0.6

0.8

1.0

Figure 4.8: Correlation of between {ut} at site 1 and {ut} (left and simi-
lar quantities for {vt} on the right) at the other locations at various time-
lag. From top panel to the bottom one: data, simulation from VAR(2),
AP-MS-VARCDiff(u,v) and from H-MS-VAR.
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Figure 4.9: Moving variance against of the value {Ut} against its moving mean
at location 10. From left to right and top to bottom: data, simulation from
the VAR(2), AP-MS-VARCDiff(u,v) and H-MS-VAR
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specific regime is acceptable. Nevertheless the construction of these tests is
not straightforward since one does not know the distribution of the statistic
of test.

We have introduced observed and latent regime-switching framework, we
show that both types of regime-switching models have various advantages.
On the one hand, models with observed switchings may account for relevant
regimes that correspond to characteristic meteorological conditions in Europe.
The choice of the clustering method and of the descriptors of the data is cru-
cial, as we saw in Subsection 4.4.2 where a k-means clustering led to irrelevant
regimes. The hidden regime-switching framework seems to overcome this insuf-
ficiency by providing regimes that are driven by the conditional distribution
and then adapted to the estimation. On the other hand, when considering
hidden regime-switching models, the estimation procedure may become chal-
lenging when sophisticated models are considered. The extracted regimes are
mainly driven by the local data and the proposed conditional distribution, how-
ever, they might have less physical interpretation than regimes extracted from
atmospheric circulation descriptors. In this work, we show that for the consid-
ered dataset, the extracted regimes are meaningful when comparing them to
time series of wind and tend to occur in privileged large-scale weather regimes.

Concerning the proposed observed regime-switching models, it seems there
is a compromise between meaningful regimes and a good description of the
conditional model by a VAR, as highlighted in Section 4.4 when comparing
AP-MS-VARCDiff(u,v) and AP-MS-VARCEOF−(u,v)

models. Indeed we have cho-
sen the AP-MS-VARCDiff(u,v) since it provides the best BIC index despite its
lack of physical interpretation of average fields. This highlights the difficulty to
find relevant regimes that are adapted to the description of the data by condi-
tional Vector AutoRegressive models. The proposed hidden regime-switching
model seems to respond to this compromise in providing more interpretable
regimes than the ones of CDiff(u,v) and similar description of temporal pat-
terns.

When considering other uses than the generation of wind conditions, such
as in downscaling, one could improve the modeling of the regimes by using non-
homogeneous transitions. Although the choice of the covariate is delicate in
the multi-site context. One may use a covariate that is stable across space and
time such as the geopotential height Z500. Moreover the use of this variable
may bring information about inter-annual variability, which is known to be
underestimated by most of the weather generators.

Furthermore, finding reduced parametrization of the autoregressive coeffi-
cients and of the matrices of covariance of innovations would help to adapt the
model to a larger dataset. Indeed when looking at the autoregressive matrices,
there are generally privileged predictors according to the regimes which urges
the use of constraints matrices in each regime.
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Chapter 5

Concluding discussions

We have proposed in this work several stochastic generators of wind condi-
tions off-shore Brittany in France. An originality of these models is that they
model two scales, the regional scale through a latent process and the local one.
The framework of Markov-switching models and state-space models is used to
handle these two scales. In a first time, we have proposed a Gaussian linear
state-space model that describes wind speed at several stations. The speci-
ficity of this model is to represent a regional wind as a hidden autoregressive
process and to downscale this regional wind speed to the local scale through
a linear projection. To account for all the information of wind fields, we then
consider polar and Cartesian components of wind. We have proposed a single-
site model in order to settle properly the modeling of polar and Cartesian
components of wind. The modeling is handled into the framework of hid-
den non-homogeneous Markov-Switching AutoRegressive models. We finally
propose a multi-site framework of regime-switching models for Cartesian com-
ponents of wind at multiple stations. In Section 5.1, we propose a comparison
between the proposed multi-site models, in terms of their ability to reproduce
some of the observed patterns of wind speed. In Section 5.2, we discuss the
proposed work and give some perspectives.

5.1 Comparison of both multi-site models in sim-
ulation

The two proposed models involve a latent process which describes the non-
observed regional conditions. In the Gaussian linear state-space model (GSSM)
of Chapter 2, the latent process is purposed to describe a regional wind that
account for space-time motions of wind events. In Chapter 4, the latent process
of the H-MS-VAR model is intended to describe the unobserved weather type
and it is described by a Markov chain. In Chapter 2, the local scale is written
as a linear projection of various lagged versions of the regional process whereas

105
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Figure 5.1: Quantile-quantile plot of data and simulated data at the loca-
tion (47.25◦N, 9.75◦W ). From left to right: simulation from the Gaussian
state-space model, from the H-MS-VAR model fitted on {Ut} and from the
H-MS-VAR model fitted on {ut,vt}.

in Chapter 4, the local conditions have their own dynamic conditionally to the
regional scale.

The proposed Gaussian linear system of Chapter 2 has been fitted to the
reduced dataset of wind speed studied in Chapter 4. The model H-MS-VAR is
fitted on {ut,vt} coordinates and wind speed is obtained from the simulation
of this process. For comparison purpose, the model H-MS-VAR proposed in
Chapter 4 has been fitted on Box-Cox transformed wind speed {Ut}. We
compare here the abilities of these models to reproduce the distribution of
wind speed and space-time motions of wind events.

In Figure 5.1, the quantile-quantile plots for the simulated data from the
models are depicted. The description of the distribution is very satisfying from
the GSSM. The H-MS-VAR model fitted on {Ut} is less accurate especially for
very small and high values. The one from the H-MS-VAR model for {ut,vt}
tends to overestimate all the values of the data. Nevertheless, the distribution
of {ut, vt} is well reproduced at each site by this model. This model is not fitted
on the data of {Ut} which may deteriorate the description of this distribution.

In Figure 5.2, correlation of wind speed against distance and temporal lags
is depicted, we can notice that both models perform almost similarly in re-
producing the general shape of the covariance. The non-separability, which
is reflected by the asymmetry around the vertical axis at lag 0, is captured.
Nevertheless the GSSM and the H-MS-VAR model for {Ut} tend to underesti-
mate the temporal dependence around two days of lag. The model for {ut,vt}
seems to capture less accurately the spatial structure than the model specific
to {Ut}.

In Figure 5.3, moving mean square errors of wind (with respect to its mov-
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Figure 5.2: Correlation of between {Ut} at site 1 and {Ut} at the other loca-
tions at various time-lag. From top panel to the bottom one: data, simulation
from the Gaussian state-space model, from H-MS-VAR fitted on {Ut} and
from the H-MS-VAR fitted on {ut,vt}.
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ing average) are computed on interval of time of two days and are depicted.
The global shape is better reproduced by the hidden Markov-switching models.
This was expected since the H-MS-VAR models discriminate periods of differ-
ent temporal variability whereas the GSSM model does not enable changes of
variances since the model may be written as an ARMA model. However as said
previously, the H-MS-VAR model for {ut,vt} has difficulties to capture the
range of intensity of {Ut}, but the tendency to simulate high temporal vari-
ability associated to high values of intensity is reproduced. The H-MS-VAR
model for {Ut} tends to simulate too much variable wind associated with a
weak intensity. This is due to the third regime that is associated to a weak
mean and a high temporal variability (see Figure 5.4).

In Figure 5.4, moving mean square error of wind with respect to its moving
average and moving means are depicted in the associated regime. We compare
the ability of the H-MS-VAR models fitted on {Ut} and on {ut,vt} to separate
the regimes. They seem to be more distinct in terms of intensity and variability
of wind speed when the model is fitted on the Cartesian components of wind.
The whole information of wind fields, especially wind direction that is a good
descriptor of synoptic conditions, enables to extract more meaningful regimes.

Combining a regime-switching framework and a GSSM model instead of
a H-MS-VAR model would lighten the modeling of the conditional distribu-
tion. Conditionally to the regime, which is driven by a Markov chain, the
observations would be described by a GSSM model. Modeling conditional dis-
tribution by a GSSM rather than by a VAR model gives a simple and accurate
description of the dynamic and is more parsimonious. Additionally parameters
of multi-variate AR models are more difficult to interpret than the one of a
GSSM model. This modeling would involve huge modeling and computational
work due to the estimation procedure that is a current challenging research
topic.

5.2 General discussions and perspectives

• Discussions on statistical and modeling issues.
In this work, we have introduced models with latent variables of differ-

ent natures. The first one involves a continuous-valued latent variable. We
have studied its identifiability under an original point of view, through the
study of the second order structure of the Gaussian process of observations.
We have also implemented and compared two methods of estimation of this
model. One is based on the method of moments and the other on maximum
likelihood. Various reduced models have been proposed and we obtained con-
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Figure 5.3: Moving mean square errors of wind (with respect to its moving
average) against the moving mean of {Ut} at the location (47.25◦N, 9.75◦W ).
From left top corner to right bottom one: data, simulation from the Gaussian
linear system of Chapter 2, from the H-MS-VAR model fitted on {Ut} and
from the model of Chapter 4.
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Figure 5.4: Boxplots of moving mean square errors of wind (with respect to its
moving average) (first and third lines) and moving means (second and fourth
lines) of {Ut} in each regime extracted from the H-MS-VAR fitted on {Ut}
(top lines) and fitted on {ut,vt} (bottom lines).
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trasted results. This suggest that some parameters can hardly be described by
simple parametric shapes. Further investigations could be led to account for
the spatial structure of these parameters. Similarly, in Chapter 4 appropriate
parameterization of autoregressive matrices should be investigated to prevent
over-parameterization. Besides each regime is associated with privileged pre-
dictors which leads to a challenging parameterization.

The proposed Gaussian linear state-space model reveals good abilities to
reproduce the average and short-term behaviors of the data through simple
dynamic frameworks. However instantaneous temporal variability of wind is
not captured by this model. To overcome this insufficiency, we could model
the regional wind by a multi-dimensional process, which would be easy to im-
plement. Another possibility would be to add an extra layer modeling the
regional weather type as a latent Markov chain. However it is very challeng-
ing from the modeling and inference point of view. Indeed the estimation of
regime-switching Gaussian linear state-space model is still an on-going research
topic.

In Chapter 3, we have introduced a linear-circular model with hidden
regime-switching that embeds the dependence between the circular variable
and the linear one and the temporal non-linearities of the time series. An
originality of this model is that transitions between the shifts are driven by the
circular variable, using a proper parameterization. The wind direction is mod-
eled by a hidden Markov-Switching von Mises process with non-homogeneous
transitions, and conditionally to this circular variable, wind speed is modeled
by a non-homogeneous hidden MS-AR model.

In Chapter 4, Cartesian components of wind are modeled into a multi-
variate framework of Markov-switching models. Various questions related to
regime-switching models have been addressed. First, is discussed the modeling
of site-specific regimes against a regional regime. According to qualitative
criteria, we conclude that for this dataset the use of a regime common to all
locations is reasonable. Some further works would be to build test procedures
to investigate the appropriateness of a regional, sub-regional or site-specific
regime and give quantitative measures of this appropriateness.

We have proposed for the studied dataset a comparison between the use
of observed and latent shifts. To the best of our knowledge, such compar-
isons have not been conducted before. We proposed several observed regime-
switching models, which are based on different classifications. We have dis-
cussed the choice of descriptors of the data and of the clustering method
in terms of appropriateness to the estimation and simulation of the condi-
tional model in an autoregressive framework. The hidden regime-switching
framework seems to provide a good compromise by providing regimes that are
adapted to the conditional autoregressive models.

Non-linear behaviors are frequent in time series analysis and especially
regime-switchings. To the best of our knowledge, few criteria have been pro-
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posed to detect transitions between regimes and quantify the changes in in-
tensity and temporal variability of time series. In that goal, we propose to
study the processes of moving means and variances and show that they are
good descriptors of the non-linearity of the studied time-series. Through the
study of these processes, we highlight the benefit of using regime-switching
in the modeling of the alternate of intensity and temporal variability in wind
conditions.

• Discussions about the simulation results.
In terms of applications, we have proposed a single-site and several multi-

site models for wind conditions. Very few multi-site stochastic generators of
wind conditions have been constructed in the literature and especially for the
zonal and meridional coordinates of wind.

The distribution of wind speed is well described by the models proposed
in Chapters 2 and 3. In Chapter 3, the distribution of wind direction and of
the Cartesian components of wind are well reproduced by the proposed single-
site models. In this chapter, the use of non-homogeneous transitions between
regimes enables to describe more accurately the various distributions than
when homogeneous transitions are considered. We have proposed a single-site
framework in Chapter 3 that encompasses a great part of wind speed and
direction dependences. In the multi-site context of Chapter 4, the distribution
of Cartesian components of wind is still well described by the proposed models.

The multi-site models, proposed in Chapters 2 and 4, reveal good abilities
to reproduce the space-time covariance structure of the considered processes.
Namely the patterns of non-separability and non-spatial stationarity are well
accounted by the different models. Moreover, the marginal temporal depen-
dence of the various processes is also captured by the associated models. Es-
pecially we highlight the benefit of non-homogeneous transitions in Chapter 3
and of accounting for all the information of wind fields in Subsection 5.1.

In order to model the alternate of different intensity and temporal vari-
ability in wind conditions, we have proposed in Chapter 4 several a priori
regime-switching models and a hidden one and we compare them. The ob-
served regime-switching models are based on several classifications extracted
from a large-scale descriptor of atmospheric circulation and from the local
wind conditions. We discuss the difficulty to find physically consistent a priori
regimes that are also appropriate to the description of the conditional model in
an autoregressive framework. The hidden regime-switching framework seems
the most appropriate to respond this compromise by providing interpretable
regimes and an accurate description in simulation. Finally we highlight the
benefit of using regime-switching models in the description of the alternate of
different intensity and temporal variability in wind conditions. We show that
the hidden Markov-switching model is the most able to reproduce these fea-
tures among all the proposed regime-switching models. In Subsection 5.1, we
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have seen that the Gaussian linear state-space model proposed in Chapter 2 is
not able to reproduce well these instantaneous behaviors, due to the proposed
modeling by a Gaussian process with a constant variance.

Involving a regime-switching framework enables to capture more informa-
tion than involving a latent continuous state like in Chapter 2’s framework.
Indeed it allows to capture more than the average space-time motions, it en-
ables to extract periods with typical patterns of intensity, temporal variability
and dependence between intensity and direction. In Subsection 5.1, weather
states seem to be better described when they are extracted from a model that
involves direction and intensity of wind. However the model fitted on {ut,vt}
is less accurate in the modeling of wind speed, this is observed with the single-
site and multi-site models. One difficulty is to find a model with distinct and
relevant regimes that captures well several margins like the intensity of wind.
One may use adequate estimation procedures to fit the H-MS-VAR model on
{ut,vt} with appropriate constraints that improve the modeling of intensity
of wind. Indeed the maximum likelihood method focuses on the distribution
p(Yt|Yt−1), one may add constraints to reproduce some parameters associated
with the marginal distribution of Y .

For the studied dataset and the proposed models, short-term prediction
have been used as a validation. The proposed models are designed for gen-
erating artificial sequences of wind, then forecast is not their main features.
Besides beyond six hours ahead, statistical models are not recommended for
wind prediction, models based on physics are rather preferred (Giebel et al.,
2011). Nevertheless, the proposed models behave in short-term prediction
more accurately than the benchmark persistence forecast, especially due to the
accounting of spatial structure. Prediction of wind speed has known a wide
development those last decades, the literature is wide on the area (see (Costa
et al., 2008; Giebel et al., 2011) for reviews on models for wind short-term
prediction). Similarly to stochastic generators, recent statistical methodolo-
gies for wind prediction turned toward space-time frameworks and non-linear
models. Space-time methodologies have also been developed to analyze wind
power or wind prediction data (Tastu et al., 2011; Girard and Allard, 2012)
and non-linear models are proposed for instance in (Zhu and Genton, 2012;
Pinson et al., 2008).

To conclude, the literature is rich on single-site models for wind and these
generators work quite accurately for the proposed temporal scale, like the
model proposed in Chapter 3. Some further works should concentrate on the
modeling of finer time scale like hourly or sub-hourly scales. Few generators
have been proposed to model very fine time scales. For instance, the wind
energy field requires very fine time scales (Giebel et al., 2011). The modeling
has to be adapted when considering a finer time scale since the correlation
between observations is stronger and interactions between variables might be
accounted in a different way.
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A lot of research work remains on multi-site wind models. In particular,
parsimonious models that capture the complex spatial-temporal information
of wind and its regime-switching patterns are needed. This field is still an
open research area. Besides accounting for and modeling other meteorological
variables would help to get information from the synoptic conditions but the
modeling of interactions between these variables at several locations is very
challenging.
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