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ON THE ENUMERATION OF PSEUDO-INTENTS : CHOOSING THE ORDER AND EXTENDING TO PARTIAL IMPLICATIONS

This thesis deals with the problem of the computation of implications, which are regularities of the form "when there is A there is B", in datasets composed of objects described by attributes. Computing all the implications can be viewed as the enumeration of sets of attributes called pseudo-intents. It is known that pseudointents cannot be enumerated with a polynomial delay in the lectic order but no such result exists for other orders. While some current algorithms do not enumerate in the lectic order, none of them have a polynomial delay. The lack of knowledge on other orders leaves the possibility for a polynomial-delay algorithm to exist and finding it would be an important and useful step. Unfortunately, current algorithms do not allow us to choose the order so studying its influence on the complexity of the enumeration is harder than necessary. We thus take a first step towards a better understanding of the role of the order in the enumeration of pseudo-intents by providing an algorithm that can enumerate pseudo-intents in any order that respects the inclusion relation.

In the first part, we explain and study the properties of our algorithm. As with all enumeration algorithms, the first problem is to construct all the sets only once. We propose to use a spanning tree, itself based on the lectic order, to avoid multiple constructions of a same set. The use of this spanning tree instead of the classic lectic order increases the space complexity but offers much more flexibility in the enumeration order. We show that, compared to the well-known Next Closure algorithm, ours performs less logical closures on sparse contexts and more once the average number of attributes per object exceeds 30%. The space complexity of the algorithm is also empirically studied and we show that different orders behave differently with the lectic order being the most efficient. We postulate that the efficiency of an order is function of its distance to the order used in the canonicity test.

In the second part, we take an interest in the computation of implications in a more complex setting : relational data. In these contexts, objects are represented by both attributes and binary relations with other objects. The need to represent relation information causes an exponential increase in the number of attributes so naive algorithms become unusable extremely fast. We propose a modification of our algorithm that enumerates the pseudo-intents of contexts in which relational information is represented by attributes. A quick study of the type of relational information that can be considered is provided. We use the example of description logics as a framework for expressing relational data.

In the third part, we extend our work to the more general domain of association rules. Association rules are regularities of the form "when there is A there is B with x% certainty" so implications are association rules with 100% certainty. Our algorithm already computes a basis for implications so we propose a very simple modification and demonstrate that it can compute the Luxenburger basis of a context along with the Duquenne-Guigues basis. This effectively allows our algorithm to compute a basis for association rules that is of minimal cardinality.

Je tiens à remercier tous ceux qui, à un titre ou à un autre, m'ont apporté aide et soutien pour l'élaboration et la rédaction de ma thèse.

J'exprime tout d'abord ma profonde reconnaissance à Monsieur le Professeur Jean-Gabriel Ganascia, mon directeur de thèse, qui m'a chaleureusement accueilli dans son équipe et dont les conseils, dispensés avec attention et rigueur, m'ont guidé dans mon travail. J'assure de ma gratitude Madame Karell Bertet et Monsieur Henry Soldano, qui ont accepté de consacrer une part significative de leur temps à l'étude de mon manuscrit ainsi que Madame la Professeur Annick Valibouze et Monsieur Alain Gély qui m'honorent de leur participation au jury.

Mes remerciements vont aux membres permanents ou non, anciens ou actuels, de l'équipe ACASA au sein de laquelle j'ai travaillé pendant quatre ans et tissé des liens d'amitié.

Ils vont encore aux personnels technique et administratif du LIP6, dont la compétence et la gentillesse m'ont permis de travailler dans les meilleures conditions possibles.

Résumé

Cette thèse traite du problème du calcul des implications, c'est-à-dire des régularités de la forme "quand il y a A, il y a B", dans des ensembles de données composés d'objets décrits par des attributs. Calculer toutes les implications peut être vu comme l'énumération d'ensembles d'attributs appelés pseudo-intensions. Nous savons que ces pseudo-intensions ne peuvent pas être énumérées avec un délai polynomial dans l'ordre lectique mais aucun résultat n'existe, à l'heure actuelle, pour d'autres ordres. Bien que certains algorithmes existants n'énumèrent pas forcément dans l'ordre lectique, aucun n'a un délai polynomial. Cette absence de connaissances sur les autres ordres autorise toujours l'existence d'un algorithme avec délai polynomial et le trouver serait une avancée utile et significative. Malheureusement, les algorithmes actuels ne nous autorisent pas à choisir l'ordre d'énumération, ce qui complique considérablement et inutilement l'étude de l'influence de l'ordre dans la complexité. C'est donc pour aller vers une meilleure compréhension du rôle de l'ordre dans l'énumération des pseudo-intensions que nous proposons un algorithme qui peut réaliser cette énumération dans n'importe quel ordre qui respecte la relation d'inclusion.

Dans la première partie, nous expliquons et étudions les propriétés de notre algorithme. Comme pour tout algorithme d'énumération, le principal problème est de construire tous les ensembles une seule fois. Nous proposons pour cela d'utiliser un arbre couvrant, lui-même basé sur l'ordre lectique, afin d'éviter de multiples constructions d'un même ensemble. L'utilisation de cet arbre couvrant au lieu de l'ordre lectique classique augmente la complexité spatiale mais offre plus de flexibilité dans l'ordre d'énumération. Nous montrons que, comparé à l'algorithme Next Closure bien connu, le nôtre effectue moins de fermetures logiques sur des contextes peu denses et plus de fermetures quand le nombre moyen d'attributs par objet dépasse 30% du total. La complexité spatiale de l'algorithme est aussi étudiée de façon empirique et il est montré que des ordres différents se comportent différemment, l'ordre lectique étant le plus efficace. Nous postulons que l'efficacité d'un ordre est fonction de sa distance à l'ordre utilisé dans le test de canonicité.

Dans la seconde partie, nous nous intéressons au calcul des implications dans un cadre plus complexe : les données relationnelles. Dans ces contextes, les objets sont représentés à la fois par des attributs et par des relations avec d'autres objets. Le besoin de représenter les informations sur les relations produit une augmente exponentielle du nombre d'attributs, ce qui rend les algorithmes classiques rapidement inutilisables. Nous proposons une modification de notre algorithme qui énumère les pseudo-intensions de contextes dans lesquels l'information relationnelle est représentée par des attributs. Nous fournissons une étude rapide du type d'information relationnelle qui peut être prise en compte. Nous utilisons l'exemple des logiques de description comme cadre pour l'expression des données relationnelles.

Dans la troisième partie, nous étendons notre travail au domaine plus général des règles d'association. Les règles d'association sont des régularités de la forme "quand il y a A, il y a B avec une certitude de x%". Ainsi, les implications sont des règles d'association certaines. Notre algorithme calcule déjà une base pour les implications et nous proposons une très simple modification et montrons qu'elle lui permet de calculer la base de Luxenburger en plus de la base de Duquenne-Guigues.

Cela permet à notre algorithme de calculer une base de cardinalité minimale pour les règles d'association. List of Tables 

Research Context

Data mining is the science of finding interesting information in data. More often than not, this information takes the form of regularities that either help predict future results or understand the nature of the phenomenon that generated the data.

Depending on the kind of information one wants to extract, different mathematical frameworks are used. We mainly differentiate methods using probabilities and approximations from those manipulating sets, lattices or graphs. In this work, we are interested in the latter.

Formal concept analysis is a mathematical framework introduced by Rudol Wille [START_REF] Wille | Restructuring lattice theory: An approach based on hierarchies of concepts[END_REF] in the 1980s. Based on lattice theory and manipulating intuitive "concepts", it naturally finds its uses in knowledge discovery, data analysis and visualization. Of particular interest is the notion of implication. Implications are regularities of the form "if there is X, then there is always Y ". Various fields, such as association rules mining and databases, are concerned with the problem of finding those implications in data composed of sets of objects associated with attributes. The problem of computing a minimal set of implications that summarizes them all, the Duquenne-Guigues basis, has been extensively studied in formal concept analysis. While algorithms exist, their efficiency is limited by multiple factors. First, the number of implications to find can be exponential in the size of the input data. Hence, algorithms are exponential and nothing can be done about it. Second, batch algorithms usually compute the set of implications in the so-called lectic order and it has been shown that this does not guarantee a polynomial delay between two implications. There is no such result for the enumeration of implications in other orders so this leaves the possibility for a polynomial-delay algorithm to exist. However, the effects of the enumeration order in the computation of the Duquenne-Guigues basis is poorly understood. Since batch algorithms do not allow for other orders and since other approaches prevent fine-tunings, studying the role of the order is harder than necessary.

Contributions

This work aims at providing a first step towards a better understanding of the role of the enumeration order in the computation of the Duquenne-Guigues basis of implications, both in traditional object-attributes and relational data. If this role is to be studied, it is necessary to first be able to efficiently enumerate in different orders. We thus provide an algorithm that allows for any order that extends the inclusion order to be used in the enumeration of the elements of the basis.

Evidently, this freedom comes at a price in terms of time and space and, compared to specialized algorithms that enumerate in a single order, we risk a loss of efficiency that would render the algorithm unusable in practice. In order to ensure this is not the case, we empirically studied the time and space complexity of the algorithm. For the time, we compared it with Next Closure, the most studied algorithm for this problem, using the number of logical closures -the most expensive operation and the main difference between the two algorithms. For the space, we chose three orders we believe to be good representatives of how different orders produce different behaviors and studied the memory consumption of our algorithm Once sure the algorithm works correctly and efficiently on traditional data, i.e. sets of objects described by sets of attributes, we showed it could be used on relational data -objects described by both attributes and relations with other objectsthrough the same kind of method used by existing algorithms. We use the example of description logics and provide a more general formalization of the representation of relational knowledge by attributes.

Finally, we went back to the more general notion of association rules to which implications belong. We showed that the properties of our algorithm make it easily modifiable to compute a basis for association rules along with just the minimal basis for implications.

Organization

This thesis is organized as follows :

Chapter 2 contains the notions needed to understand the principles behind our proposed algorithm. It provides some basic definitions in order theory, lattice theory and formal concept analysis. It also presents known algorithms -most notably Next Closure -for the problem of computing the Duquenne-Guigues basis and important results on the complexity of the enumeration and recognition of pseudointents as well as a brief overview of the different methods for computing the logical closure of sets.

Chapter 3 introduces our proposed algorithm and its properties. It starts with an explanation of the method we use for the construction of attribute sets and continues with the algorithm itself. Then, it presents and analyzes the results of our empirical comparison with Next Closure using, as a metric, the number of logical closures performed in the average and worst cases. Finally, we provide an empirical study of the space complexity of the enumeration in three different orders with our algorithm.

Chapter 4 deals with with the use of our algorithm on relational data. It contains a brief overview of description logics as an example of a formalism for expressing relational knowledge along with related works on the subject. It also presents how to use our algorithm on data in which attributes are used to represent relational knowledge. It ends with an analysis of the type of relational knowledge it is able to handle.

Chapter 5 addresses the modification of our algorithm that allows for a basis of association rules to be computed. After some basic definitions, notions and history concerning association rules and their mining, the method that allows us to efficiently compute the Luxenburger basis along with the Duquenne-Guigues basis is explained.

Chapter 6 presents potentially good ideas that will be the subject of future works and draws conclusions. 

CHAPTER 2. DEFINITIONS, RESULTS AND ALGORITHMS

Basic Definitions

Formal Concept Analysis

Formal concept analysis is a mathematical framework for the detection of regularities in data and representation of knowledge. The formal context represented in Figure 2.1 will be used as a running example throughout this work. For the sake of simplicity, sets of attributes {a, b, c} will be abbreviated abc from now on.

Formal concept analysis makes use of two operators, both noted . , that are defined as follows :

. : 2 A → 2 O A = {o ∈ O | ∀a ∈ A, (o, a) ∈ R} . : 2 O → 2 A O = {a ∈ A | ∀o ∈ O, (o, a) ∈ R}
The . operator maps an attribute set A to the set of all the objects that are described by A. Applied on an object set O, it maps it to the set of all the attributes the objects of O have in common. The composition of these two operators forms a Galois connection and, thus, the two compositions are closure operators on O and A respectively. A set X such that X = X is said to be closed under . or more simply closed when there is no ambiguity on the operator. Computing the closure of a set is in O(|O| × |A|). In our example, the closure of a is ab and the closure of bcd is bcd. Definition 2 An attribute set I that is closed under . is called an intent. An object set E closed under . is called an extent.

Definition 3 A pair (E, I) in which E is an extent and I an intent such that E = I and I = E is called a formal concept.

When two formal concepts (E, I) and (K, J) are such that K ⊆ E and/or I ⊆ J, we will say that (E, I) is more general than (K, J) and note (E, I) ≤ (K, J). In a given formal concept C, the set of all concepts together with ≤ forms the concept lattice of C. This lattice is a complete lattice. Computing the concept lattice of a context, or even just the set of formal concepts, is an important problem that has been extensively studied. We will look into it in Section 2.3.

Implications

The other major FCA problem is the computation of implications.

Definition 4 An implication between two attribute sets A and B, noted

A → B, is said to hold in a context C if and only if A ⊆ B .
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From this definition, it is clear that, for any two attribute sets A and B such that A ⊆ B, the implication B → A holds. Most notably, an implication A → A always holds. Finding the set of all the implications that hold is one of the great problems in FCA. Of course, as it is often the case with this kind of problem, we are more interested in an "interesting" subset than in the whole set. For example, we say that implications A → B with B ⊆ A are trivial. From there, the problem is trying to find all non-trivial implications that hold in a given context. Definition 5 A set L of implications is a cover if and only if all the implications in L hold and we can derive all the other implications from L using Armstrong's rules :

B ⊆ A A → B , A → B A ∪ C → B ∪ C , A → B, B → C A → C
The number of implications that hold can be quite high and, as many of them are redundant, it is necessary to focus on the interesting ones. For example, if an implication A → B holds, then A → C also holds for every C ⊆ B. In order to take that into account, we can use the following proposition.

Proposition 1 An implication A → B holds if and only if B ⊆ A .

Proof Every object described by A is also described by A . Hence, A → A holds and the same can be said about A → B for any B ⊆ A .

Let C be an attribute set such that C ⊆ A . From the definition of a closure operator, we deduce that there is an attribute i ∈ C such that A \ i = ∅. Since there is an object described by A but not by i, the implication A → C does not hold. Thus, A → B holds only if B ⊆ A . This proposition states that L = {A → A | A ⊆ A and A = A } is a cover for all the implications of a formal context. In our running example, this cover is :

• a → ab • ac → abcde • ad → abcde • ae → abcde • bc → bcd • be → bde • cd → bcd • abc → abcde • abd → abcde • abe → abcde • acd → abcde • ace → abcde • ade → abcde • bce → abcde • cde → abcde • abcd → abcde • abce → abcde • abde → abcde • acde → abcde • bcde → abcde
Evidently, some of these implications are still redundant. For example, if we know that abc → abcde is valid, it is obvious that abcd → abcde is valid too. As such, this cover is not minimal. Definition 6 A basis L of implications is a minimal cover.

Given the potentially very high number of implications that hold in a context, trying to find minimal sets of implications that summarize them all is therefore natural as well as interesting. Many bases have been proposed in the literature, each with different strengths and weaknesses. We will see examples of bases in Section 2.2.

Logical Closures

Definition 7 If L is a set of implications then the logical closure of an attribute set A under L, noted L(A) is defined as

A + = A ∪ {C | B → C ∈ L and B ⊆ A} L(A) = A ++...+ (up to saturation)
The logical closure is a closure operator. Sets closed under B are also closed under . so they form a lattice isomorphic to the concept lattice.

Definition 8 If L is a set of implications then the logical pseudo-closure of an attribute set A under L, noted L(A) is defined as

A • = A ∪ {C | B → C ∈ L and B ⊂ A} L -(A) = A ••...• (up to saturation) 8 CHAPTER 2.
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The logical pseudo-closure is also a closure operator. The difference between the logical closure and pseudo-closure is that, in the latter, the conclusion of an implication is added to a set only if the premise is strictly contained in the set.

Let us suppose that L = {b → abe, de → c}. We have

L(b) = abe, L(bd) = abcde, L -(b) = b and L -(bd) = abcde.

Bases of Implications

Duquenne-Guigues Basis

The most studied basis and the focus of our work is the Duquenne-Guigues basis. It is based on the notion of pseudo-intent. Definition 9 An attribute set P is a pseudo-intent if and only if P = P and Q ⊂ P for every pseudo-intent Q ⊂ P .

A pseudo-intent is a set of attributes that is not an intent and contains the closure of every pseudo-intents that are its subsets. As such, the definition is recursive. The closure of pseudo-intents are called essential intents.

Definition 10

The set of all the implications of the form P → P in which P is a pseudo-intent is called the Duquenne-Guigues basis of the context.

The Duquenne-Guigues basis, also called canonical basis, has first been proposed in [START_REF] Guigues | Familles minimales d'implications informatives résultant d'un tableau de données binaires[END_REF] and is the smallest (cardinality-wise) of all the bases.

In our running example, the set of pseudo-intents is {a, bc, cd, be, abd, bcde} and the Duquenne-Guigues basis is therefore :

• a → ab • bc → bcd • cd → bcd • be → bde • ab → abcde • bcde → abcde
It is clear here that computing the Duquenne-Guigues basis of a context is enumerating the pseudo-intents. This is not a trivial task, as presented in Section 2.4, and it has gathered much attention since it was first proposed. 

COMPUTING THE SET OF CONCEPTS

Canonical Direct Basis

While the Duquenne-Guigues basis is the basis with the least cardinality, the canonical direct basis, noted here B d is the smallest basis for which the logical closure B d (A) is equal to A + . In other words, the logical closure can be computed with a single pass through the canonical direct basis (hence the "direct"). However, the size of the canonical direct basis being much greater than the size of the Duquenne-Guigues basis, this advantage is relative.

The canonical direct basis was initially known under five independent definitions, shown to be equivalent in [START_REF] Bertet | The multiple facets of the canonical direct unit implicational basis[END_REF] by Bertet and Monjardet.

• The optimal constructive basis ( [START_REF] Bertet | Efficient algorithms on the Moore family associated to an implicational system[END_REF]) defined as the direct basis with the least cardinality.

• The weak implication basis ( [START_REF] Rusch | Knowledge spaces and formal concept analysis[END_REF]) defined using minimal transversals of a family.

• The canonical iteration-free basis ( [START_REF] Wild | Computations with finite closure systems and implications[END_REF]) defined using minimal generators of sets.

• The left minimal basis ( [START_REF] Taouil | Computing proper implications[END_REF]) in which premises have minimal cardinality.

• The dependence relation's basis ( [START_REF] Monjardet | Arrowian characterizations of latticial federation consensus functions[END_REF]) defined using the dependency relation between irreducible elements of a lattice.

Computing the Set of Concepts

The computation of the set of all concepts in a given formal context presents two facets common to enumeration problems in general :

• how to generate all concepts

• how to avoid generating the same concept multiple times Several strategies can be used to generate concepts. There are two kinds of algorithms : those beginning with the top concept (O, O ) and those beginning with the bottom concept (A , A). However, objects and attributes can be swapped so the principles are the same. Ultimately, algorithms differ mostly on the methods employed to generate new intents. For example, some algorithms add an attribute to already computed intents and compute the closure of the new set. The result is a new intent. Others intersect already known intents. The intersection of closed set being closed, the result is also an intent. The choice of a generation method is closely tied to the space complexity and the data structures employed.

Checking whether a concept has already been generated can be done using specific data structures or properties of the set. Some algorithms maintain a tree of concepts that allows for an efficient search of every newly generated concept. Others narrow the search space by dividing the set of all known concepts into smaller sets. For example, a hash function in the form of the cardinality of intents can be used. end if 6: end for Newly generated concepts are then searched only in the set of concepts with an intent of the same cardinality, which makes sense. A third category of algorithms uses some form of lexicographical order on the set of all concepts. A newly generated concept is to be considered if it could not have been generated from another concept greater (or lesser) in the chosen order. The main advantage of this technique is that it usually only requires that we know of a current concept to be able to test whether new ones should be considered and is, for this reason, more efficient in terms of space complexity.

Next Closure

The Next Closure ( [START_REF] Ganter | Finding all closed sets: A general approach[END_REF]) algorithm is of particular interest because of its use in both the computation of the concept set and the Duquenne-Guigues basis. In fact, it can be used to compute the closed sets for any closure operator. It uses a canonicity test based on the lectic order.

Assuming the existence of a linear order on the set of attributes, a set A is lesser than a set B in the lectic order, noted A ≤ B, if and only if min((A ∪ B) \ (A ∩ B)) ∈ B. As such, the lectic order is a linear order on the set of intents and, consequently, the set of concepts. Next Closure computes the concepts in this order. In order to achieve this, it uses the ⊕ operator, defined as follows for any attribute set A and attribute i ∈ A :

A ⊕ {i} = ({a ∈ A | a < i} ∪ {i})
Hence, the set A ⊕ {i} is the closure of the set containing i and the attributes of A lesser than i. If the set A is the current set, then the next set, the one that immediately follows A in the lectic order, is equal to A ⊕ {i} where i is the greatest attribute such that min((A ⊕ {i}) \ A) = i. Using this property, Algorithm 1, called Next, computes the set immediately following its input set. It computes A⊕{i} for every attribute in decreasing order and, for each one, checks whether the property holds. It performs, at most, |A| computations of the ⊕ operator. Knowing that the closure of a set can be computed in O(|A| × |O|), Next is in O(|A| 2 × |O|), i.e. it is polynomial in the size of the context.

Next Closure computes all the concepts by starting with the closure of the empty set of attributes and generating all the intents one by one using Next. It stops once it reaches A. The lectic order being a total order on the set of intents, generating in this fashion ensures that every concept is found and that an intent is constructed only from its predecessor in the order, which plays the role of the Note that, in its classic form, Next Closure does not construct the concept lattice because the relations between the concepts are lost.

Computing the Set of Pseudo-Intents

The problem of computing the set of all pseudo-intents is closely related to the problem of computing intents. Indeed, both involve the enumeration of sets of attributes that respect certain properties. Moreover, in the case of batch algorithms, the search space for pseudo-intents contains the search space for intents.

Search Space

We have defined, in Section 2.2.1, a pseudo-intent as a set of attributes that is not closed and contains the closure of all its subsets that are pseudo-intents. It is not difficult to see that an intent is a set of attributes that is closed and contains the closure of all its subsets (or it would not be closed). If it contains the closure of all its subsets, it obviously contains the closure of all its subsets that are pseudointents. Under this definition, if a set contains the closure of all its subsets that are pseudo-intents, knowing whether it is an intent or a pseudo-intent only requires knowing whether it is closed or not.

An attribute set closed under B -contains the conclusion of every implication which premise it strictly contains. Hence, in order to compute the set of pseudointents, and with it the Duquenne-Guigues basis, we must search for them in the set of attribute sets closed under B -(.) and, in doing so, enumerate intents. It is currently unknown whether it is possible to enumerate pseudo-intents without intents.

Definition 11

The lattice Φ is the set of attribute sets closed under B -(.) ordered by inclusion. 

Next Closure

The B -operator being a closure operator, the Next Closure algorithm can be used to enumerate all the elements of the lattice Φ. As an element of Φ is either an intent or a pseudo-intent, computing the closure of every attribute set enumerated is enough to obtain the set of pseudo-intents. As such, the Next Closure presented in Algorithm 2 can easily be modified to also enumerate pseudo-intents instead of just intents. Only the closure operator has to be changed. The ⊕ operator used in the Next algorithm for the enumeration of pseudo-intents is as follows :

A ⊕ {i} = B -({a ∈ A | a < i} ∪ {i})
When enumerating in the lectic order, the successor B of a set A is such that every subset of B has already been enumerated. Consequently, every pseudo-intent P ⊂ B is known once it reaches B. If we use I ⊆ B to denote the subset of the Duquenne-Guigues basis which premises are lesser than B in the lectic order, then for any subset C of B we have I -(C) = B -(C). This means that, at any given step of the algorithm, the set of implications already found is enough to allow the computation of the logical closure under B -.

The version of Next Closure used for the computation of pseudo-intents is illustrated in Algorithm 3 ([17]). It starts with ∅ and enumerates the elements of Φ using Next. For each attribute set, it computes its closure. If it is not closed, it is a pseudo-intent and the corresponding implication is added to the list. The algorithm ends when A is reached.

The algorithm can be optimized somewhat by considering the fact that, if B Algorithm 3 Next Closure for Pseudo-Intents

1: A = ∅ 2: Impl = ∅ 3: while A = A do 4: B = A 5: if A = B then 6: Impl = Impl ∪ {A → B} 7:
end if

8:

A = N ext(A) 9: end while 10: Return Impl Algorithm 4 Improved Next Closure for Pseudo-Intents

1: A = ∅ 2: P rev = ∅ 3: Impl = ∅ 4: while A = A do 5: B = A 6: if A = B then 7: Impl = Impl ∪ {A → B} 8:
if min(B \ A) > min(A \ P rev) then A = N ext(A) 14: end while 15: Return Impl is a pseudo-intent that immediately follows a set A (in the lectic order), the set B immediately follows B if min(B \ B) > min(B \ A). Let us suppose we are in this case and we have i = min(N ext(B) \ B), meaning that i is the attribute that generates N ext(B). If i < min(B \ B), then B ⊕ {i} is lectically greater than B . We have a contradiction because it would skip B in the enumeration.. If i > min(B \ B), then B ⊕ i contains B but not B , which means it is not closed under B -. Consequently, we have i = min(B \ B) and, hence, N ext(B) = B .

On the contrary, if min(B" \ B) < min(B \ A), then B ⊕ j with j > min(B \ A) cannot be the result of N ext(B) because it would contain min(B \ A). We can thus continue computing as if A ⊕ min(B \ A) had been rejected by Next. Algorithm 4 incorporates this optimization.

Next Closure enumerates every attribute set in Φ and, for each of them, computes its closure and its successor. Computing the closure of a set can be done in polynomial time and the Next algorithm requires at most A applications of the B -operator. A logical closure can be computed in O(|A| × |B|) so Next Closure is in O(|Φ| × |A| 2 × |B|). One of the biggest advantages of Next Closure is its space complexity. At any given time, we only need to know the current set, along 15 CHAPTER 2. DEFINITIONS, RESULTS AND ALGORITHMS with the context, to be able to compute both the closure and the successor. This constant space complexity is especially important when we consider that the size of Φ can be -and usually is -exponential in the size of the context.

In our running example, Next Closure enumerates the elements of Φ in the order depicted in Figure 2 The current set is be. It is a pseudo-intent so we add be → bde to the set of implications. b ⊕ d = bd is the next set. The current set is bd. It is an intent. bd ⊕ e = bde is the next set. The current set is bde. It is an intent. bde ⊕ c = bc is the next set. The current set is bc. It is a pseudo-intent so we add bc → bcd to the set of implications. The new current set is bcd. bcd ⊕ e = bcde is the next set. The current set is bcde. It is a pseudo-intent so we add bcde → abcde to the set of implications. bcd ⊕ a = a is the next set. The current set is a. It is a pseudo-intent so we add a → ab to the set of implications. The new current set is ab. ab ⊕ e = abde is not the next set (d < e). ab ⊕ d = abd is the next set. The current set is abd. It is a pseudo-intent so we add abd → abcde to the set of implications. ab ⊕ c = abcde is the next set. The current set is abcde and the algorithm stops.

Non-Batch Methods

Even though we are interested mainly in batch algorithms in the present work, other methods have been proposed to build the Duquenne-Guigues basis.

In [START_REF] Obiedkov | Attribute-incremental construction of the canonical implication basis[END_REF], Obiedkov and Duquenne proposed an attribute-incremental algorithm based around the idea that the closure of a set can change when a new attribute (column) is added to the context. It uses a sequence of contexts C x = (O, A x , R x ) in which A x contains the x first attributes of A. The algorithm computes the set of intents and pseudo-intents in the context C x+1 from the intents and pseudo-intents in the context C x .

Sets A are said to be x -modif ied if the closure of A \ {x} in C x contains x and x -stable otherwise. In other words, x-stable sets are sets which closure is not modified when adding the attribute x to the context. By differentiating attribute sets that are modified when adding new attributes, it is possible to reduce the number of sets to consider at each step. For each attribute x, the algorithm computes the set of intents and pseudo-intents in the context C x using the intents and pseudo-intents of C x-1 and treating them differently if they are x-stable or x-modified. Experiments show that this algorithm seems to considerably outperform Next Closure on both public and randomly generated contexts.

In [START_REF] Valtchev | On the merge of factor canonical bases[END_REF], Valtchev and Duquenne proposed to use a divide-and-conquer approach in which the set of attributes is split in two, which splits the context itself. The algorithm computes the lattices of concepts and pseudo-intents corresponding to these two contexts. It then computes the direct product of these two lattices and use the result as a sort of search space for the Duquenne-Guigues basis of the whole context. As with the attribute-incremental method, experiments suggest that this 17 CHAPTER 2. DEFINITIONS, RESULTS AND ALGORITHMS approach outperforms Next Closure when the total runtime is the considered metric.

Problems

The enumeration of all the pseudo-intents of a given context is difficult because of both inherent properties and lack of knowledge.

The first problem is the size of the basis itself. Even though the number of pseudo-intents is often exponentially smaller than the total number of implications that hold in the context, the size of the Duquenne-Guigues basis of a context (O, A, R) can still be exponential in the size of the context, |O| × |A|, as demonstrated by Kuznetsov in [START_REF] Kuznetsov | On the intractability of computing the Duquenne-Guigues basis[END_REF]. Of course, if there is an exponential number of entities to be found, a polynomial algorithm is out of the question.

The second problem is the search space. Currently, we do not know whether it is possible to enumerate all the pseudo-intents without also enumerating the intents of the context. While it is obvious that the number of intents can be exponential in the size of the context, there are also cases in which the number of intents is exponential in the number of pseudo-intents. As such, algorithms such as Next Closure that enumerate both intents and pseudo-intents are not even output-polynomial.

Even though the problem cannot be solved by an existing output-polynomial algorithm, we could wonder whether there is an algorithm with a polynomial delay -meaning that, given a pseudo-intent, another one could be found in polynomial time. Representing an important step toward an answer, Distel and Sertkaya have shown in [START_REF] Distel | On the complexity of enumerating pseudointents[END_REF] that pseudo-intents could not be enumerated in lexicographic order with a polynomial delay. This of course implies that Next Closure does not have a polynomial delay. In the same work, the authors have tried to show whether the problem could be solved in polynomial time when removing the restrictions on the order of enumeration. They managed to show that, among other results, the problem of deciding whether an additional pseudo-intent has yet to be found resides in NP, and linked it to well-known problems in graph theory. However, they did not manage to find a lower bound to the problem. While these results are all but encouraging, at the time of this work, nothing proves that we cannot find an output-polynomial algorithm or an algorithm with a polynomial delay, provided it does not enumerate pseudo-intents in a lexicographic order.

Results on Pseudo-Intents

Pseudo-intents have been studied for many years, yet they are not that well understood. Some of their properties may help facilitate their enumeration. In [START_REF] Babin | Recognizing pseudo-intents is conp-complete[END_REF], Babin and Kuznetsov investigated the complexity of recognizing various types of intents and pseudo-intents. They showed that the problem of deciding whether a set P is a pseudo-intent in a given context C is coNP-complete, recognizing the lectically greatest pseudo-intent is coNP-hard and recognizing an essential intent is NP-complete.

In [START_REF] Rudolph | Some notes on pseudo-closed sets[END_REF], Rudolph proposed a non-recursive characterization of pseudo-intents using the notion of incrementor. Incrementors are sets that, once added to the context 

for every implication X → Y in L do 5: if A ⊆ X then 6: A = A ∪ Y 7:
if A changed then end for 12: end while 13: Return A as the extent of a new object, only "slightly" modify the intents of the contexts in that the old intents stay the same and only the new set becomes an intent. Pseudointents are showed to be a subset of the incrementors. This non-recursive definition, while not used in our present work, appears very promising as it could help relax the inclusion constraint on the order in which pseudo-intents can be enumerated.

In [START_REF] Gély | Uncovering and reducing hidden combinatorics in Guigues-Duquenne bases[END_REF], Gély et al. attempted to explain the exponential number of pseudointents. They supposed that so-called P-clone attributes are the reason for the combinatorial explosion. Attributes a and b are P-clone attributes if replacing a by b (b by a) in every pseudo-intent that contains a (b) gives a pseudo-intent. The goal is to reduce the size of the Duquenne-Guigue basis by identifying and removing P-clone attributes. This is an approach that tries to reduce the size of the output instead of finding more efficient algorithms that compute the whole set.

Algorithms for Computing the Logical Closure

Given a set of implications L, the logical closure of an attribute set A under L, L(A), defined in Section 2.1.3 is a crucial operation that takes a significant amount of time.

Three main algorithms can be used to compute L(A). The naive method, illustrated in Algorithm 5, is simply going through every implication until one of them adds an attribute to the set, at which point we begin again with the new set. It stops when all the implications have been considered and the set has not been modified, which means a fixed point has been reached. For each implications, the algorithm must test the inclusion of A in the premise, which can be done in O(|A|) using an adequate representation. It must go through the set of implications a maximum of

|L(A) \ A| + 1 times so the algorithm runs in O(|A| × |L| × |L(A) \ A| + 1).
LinClosure is a linear-time algorithm proposed in [START_REF] Beeri | Computational problems related to the design of normal form relational schemas[END_REF]. It associates to each implication in L a counter -initially equal to the size of the premise -and to each attribute a list of the implications in which premises it appears. Each attribute of A is used to decrement the counter of the corresponding implications and when 

Imp = a / ∈A list(a) 6:
for every implication X → Y in L \ Imp do 7:

A = A ∪ Y 8:
if A changed then end for 12: end while 13: Return A one reaches zero, the conclusion is added to A. The algorithm stops when all the attributes have been used. The manipulation of the counters is in O(|L(A)| × |L|) but it is important to note that the initialization of the lists and counters can take some time too. Algorithm 6 illustrates LinClosure.

The third algorithm, Wild's Closure, has been proposed in [START_REF] Wild | Computations with finite closure systems and implications[END_REF]. It also uses lists of implications associated to each attribute but no counters. Instead, it computes the union of the lists associated to attributes that are not in A. Obviously, implications that are not in this union have premises that contain only attributes of A so they are used to modify A. This is then repeated until the fixed point is reached. This algorithm has the same complexity as LinClosure.

A comparison of these three algorithms in the context of the enumeration of pseudo-intents can be found in [START_REF] Bazhanov | Comparing performance of algorithms for generating the Duquenne-Guigues basis[END_REF]. Results tend to show the naive algorithm as more efficient in general, probably because the other two are handicapped by the initialization phase.

Chapter 3

Choosing the Enumeration Order 

Motivation

The bulk of our work is centered on the enumeration of pseudo-intents. We saw in Section 2.4.4 that pseudo-intents cannot be enumerated in lectic (or reverse lectic) order with a polynomial delay and that no such result exists for the enumeration in other orders. Unfortunately, known batch algorithms (Next Closure) work only with the lectic order and the others (attribute-incremental and divide-and-conquer approaches) do not allow for much customization in the choice of the order. On the applicative side of things, algorithms enumerate too many sets which becomes problematic as soon as contexts get decently big. Solutions would be to reduce the number of intents enumerated with pseudo-intents or, more easily, reduce the number of operations needed to compute the sets.

We believe that the order of enumeration is the key and that it would be possible to either find an order in which we can enumerate pseudo-intents with a polynomial delay or, if it is impossible, to prove it. In the latter case, the order could help optimize the runtime of the algorithms. Having an algorithm that allows for the enumeration of pseudo-intents in a chosen order would be a good first step as it would help us get a better understanding of the influence of the order on the enumeration.

In this chapter, we propose an algorithm that enumerates pseudo-intents in any order that respects the inclusion order. First, we present an algorithm, Successor, for the construction of attribute sets that uses a canonicity test similar to that of Next but does not force us to enumerate in the lectic order. Then, we use Successor to build an algorithm that enumerates the elements of Φ in any order and we empirically compare it with Next Closure using the number of logical closures as a metric. Lastly, we empirically study the effects of three different orders on the space complexity of the algorithm and use the results to infer the effects of all possible orders.

Construction of Attribute Sets

Constructing the Duquenne-Guigues basis requires constructing attributes sets, be they intents or pseudo-intents. The Next algorithm is efficient because of its canonicity test that allows for a very low space complexity and an easy generation of attribute sets. However, the Next algorithm works specifically for an enumeration in the lectic order. If we are to consider other orders, we need to find another construction method that uses another canonicity test. We wish to keep the efficiency of the lectic order while not being forced to enumerate in the lectic order. In order to do this, we propose a successor relation that is defined using the lectic order. Proof Every non-empty set in the lattice Φ having a strict subset as a predecessor, such a sequence exists. The number of attributes is finite so the sequence itself is finite. The predecessor of an attribute set is unique so the sequence is unique. When enumerating in the lectic order, constructing the next attribute set from the current one ensures that each set is considered only once because the order is total and each set is constructed from a single other set. The predecessor A of an element B ∈ Φ being unique (and always existing for non-empty sets), the same property is found when constructing attribute sets from their predecessor. From Proposition 2, we know that every set in Φ can be found by starting from ∅ and constructing the lattice along the edges of the tree. As such, using the partial order induced on Φ by instead of the lectic order would allow for the same efficiency in the canonicity test.

On that ground, in order to enumerate the elements of Φ in using , we must be able to efficiently recognize whether a set B is a successor of a given set. Proof ⇐. We know that A ⊕ i is lectically greater than A and is a subset of

B if i ∈ B. If ∀i ∈ B \ A, A ⊕ i = B, then B has no strict subset in Φ lectically greater than A. As such, A B ⇐ ∀i ∈ B \ A, A ⊕ i = B. ⇒. If A B and ∃i ∈ B \ A such that A ⊕ i ⊂ B, then B has a subset in Φ lectically greater than A, which contradicts the hypothesis. As such, A B ⇒ ∀i ∈ B \ A, A ⊕ i = B.
To recognize a successor B of A, it is necessary to know A ⊕ i for every i ∈ B \ A. By extension, knowing the set of successors of A is knowing the value of A ⊕ i for every attribute i. Obviously, if an attribute i is lesser than the minimal attribute of A, the set A ⊕ i is not a superset of A and cannot be a successor. It is thus unnecessary to compute the value of A ⊕ i for any i < min(A). Algorithm 8, Successors, computes the set of successors using Proposition 3. In its most basic form, the algorithm has to compute A ⊕ i, i.e. perform a logical closure, once for every attribute greater than min(A). As we saw in Section 2.3.1, the Next algorithm performs a logical closure for every attribute greater than some attribute j for which it finds that j = min((A ⊕ j) \ A). In practice, this attribute j is greater than min(A) for nearly every attribute set. The only exceptions are the sets A such that the cardinality of N ext(A) is 1, i.e. once for every attribute in A. This means that Next outperforms Successors in the majority of cases. This is where using the structure of the lattice Φ is important as it helps us reduce the number of required logical closures.

Proposition 4 Algorithm 8 stops and returns the set of successors of the input set A.

Proof The number of attribute is finite so the loop will eventually end and the algorithm stop. The set A ⊕ i is equal to {i} when i < min(A) so it cannot be a successor. According to Proposition 3, every successor is equal to A ⊕ i for some i > min(A) so the algorithm finds them all.

Proposition 5 If B is a successor of A with i = min(B \ A), then B ⊕ j = A ⊕ j for every attribute j < i.

Proof If j < i, then B -({b ∈ B | b < j} ∪ {j}) = B -({a ∈ A | a < j} ∪ {j}) because i = min(B \ A). Thus, we have B ⊕ j = A ⊕ j.
This proposition states that the value of A ⊕ i can be passed on to the successors of A that differ only on attributes greater than i. If we have A B and want to compute the successors of B, then the successors of A have already been computed and we know the value of A ⊕ i for all i. As such, we only have to compute B ⊕ i for i greater than min(B \ A) and this greatly reduces the number of operations. Whether this property alone makes Successors outperform Next depends on the context. Empirical results and their analysis can be found in Section 3.4.

In our running example of Context 1, the algorithm would run as follows for the set bd :

• bd ⊕ e = bde is computed, the attribute e is the minimal new attribute and also the only one. Thus, bde is a successor of bd Here, the algorithm performed a single logical closure to compute a single successor. If we now want to compute the successors of the set ce, the algorithm would run as follows :

• bd ⊕ d is not computed since d is already in bd • bd ⊕ c = bc is
• ce ⊕ e is not computed since e is already in ce

• ce ⊕ d = cd is not computed because c
ce and d < e so we already know that ce

⊕ d = c ⊕ d • ce ⊕ c is not computed since c is already in ce
• The other attributes are lesser than c

In this case, the set ce has no successor and the algorithm returns the empty set without performing logical closures.

An important point is the case of the pseudo-intents. Indeed, if a set A is a pseudo-intent, then any superset B of A that does not contain A is not closed under B -and, consequently, is not an element of Φ. As such, A is the only upper cover of A. This means that, in Φ, although an attribute set can have any number of successors, pseudo-intents have either one or no successor. Hence, for any pseudointent A and set X ∈ Φ such that X A, we have the following :

• A ⊕ i = A for any attribute i ∈ A \ A greater than min(A \ X) • A ⊕ i = X ⊕ i for any i lesser than min(A \ X)
When computing the successors of a pseudo-intent A, the value of A⊕i is already known for every attribute i ∈ A \ A and the value of A ⊕ j for j ∈ A is known not to be relevant. Thus, no additional computation is required to obtain the set of successors of a pseudo-intent.

Proposition 6 If A B, i / ∈ {o | o ∈ A } and B -(A ⊕ i) = A, then B ⊕ i is either A ⊕ i or A. Proof If i / ∈ {o | o ∈ A }, then (A ⊕ i) = A. Let us suppose that B = A ⊕ i is a successor of A. If i < min(B \ A) then B ⊕ i = A ⊕ i. If i > min(B \ A), then A ⊕ i ⊆ B ⊕ i. As such, knowing that the only superset of A ⊕ i in Φ is A, we have that B ⊕ i is either A ⊕ i or A.
This proposition states that, once an attribute i that never appears together with A in the context is found, it is unnecessary to compute B ⊕ i for the successors B of A because the result is either an intent or a pseudo-intent that is equal to A ⊕ i and is therefore already found. Obviously, this proposition plays a greater role in reducing the number of logical closures in contexts in which many small sets of attributes never appear together, i.e. very sparse contexts. Empirical results and their analysis can be found in Section 3.4.

In our running example, we know that bc bcd because bc = bcd and the attribute d is the least attribute in bcd \ bc and is greater than c, the minimal attribute in bc \ b. Similarly, we know that we do not have cd bcd because min(bcd \ cd) = b is lesser than min(cd \ c) and that c ⊕ b is not a superset of c.

As discussed in Section 2.5, the algorithm for computing the logical closure of a set with the best worst-case complexity is LinClosure in O(|A| × |B|). Successors performs, at most, |A| logical closures so the algorithm is in O(|A| 2 × |B|). Thus, Next and Successors have the same worst-case complexity. Nevertheless, we will see in Section 3.4 that they behave differently in practice.

Algorithm

Now that we can construct attribute sets from their subsets, we can enumerate the elements of the lattice Φ. Our aim was to be able to enumerate in orders less binding than the lectic order, and the successor relation can be used to achieve that. Since we want it to be possible to enumerate in any order that respects the successor relation, we can only provide a model on which algorithms for different orders can be built and optimized.

General Algorithm

Algorithm 9 Enumeration of Pseudo-Intents -Basic Form

1: Sets = {∅} 2: Impl = ∅ 3: while Sets is not empty do 4: Pick a set A in Sets 5: if A is indeed in Φ then 6: B = A 7: if A = B then 8: Impl = Impl ∪ {A → B} 9: end if 10:
Compute A ⊕ i for every attribute i and add it to Sets 11:

end if 12: end while 13: return Impl

The first problem, choosing a set, is effectively choosing an order of enumeration. As we want to be able to enumerate in any order that respects the inclusion relation, we need a way to make sure that we do not consider a set until after all its subsets have been taken into account. The most obvious solution would be to sort the set of sets to obtain the desired order, which can be changed during the algorithm, even though some orders would require more computations than others. The second problem, checking whether the chosen set is closed under B -, is linked to the successors relation. When a set A is considered, we know the closure of every subset of A but not necessarily all the subsets of A ⊕ i. The set A ⊕ i can be thought to be a successor of A, and thus an element of Φ, when first computed but a pseudointent P such that A < P < A ⊕ i can exist, and thus the value of A ⊕ i is not necessarily correct. For this reason, we have to complete the logical closure before checking whether A ⊕ i is a successor of A and taking it into consideration -which would effectively amount to updating every set with new implications. Algorithm 10 illustrates this.

A brief study of the algorithm for computing logical closures in multiple steps can be found in Section 3.6.

The enumeration algorithm has to consider every element of Φ, compute their closure and, in the case of intents, compute their successors. Given that Successors is in O(|A| 2 × |B|) and computing the closure of a set is in O(|A| × |B|), enumerating pseudo-intents using Successor is in O(|Φ| × |A| 2 × |B|). This result holds for any such algorithm in which testing whether a set is in Φ can be done with no computation other than the logical closure.

Enumeration in Order of Increasing Cardinality

For example, we can imagine an algorithm that enumerates in the following order : if A is a successor of the set it has been generated from then for every attribute i / ∈ A greater than min(A) do 13:

Add Impl -({a ∈ A| a < i} ∪ {i}) to Sets while preserving the order Place the new A in Sets according to the chosen order 18:

end if 19: end while 20: return Impl • Generate the successors of all the sets of cardinality n

• Increment the cardinality With this order, testing whether an attribute set is an element of Φ is easy. Indeed, if we are considering attribute sets of cardinality n, then every pseudo-intent of cardinality lesser than n has been found. As such, we only have to complete the logical closures of sets and, if they do not change, they are elements of Φ. Algorithm 11 enumerates in this order. The Successors algorithm is divided in two parts : the ⊕s are computed first and the canonicity (successor) test is performed once we are sure the set is an element of Φ. As we will study more in depth in Section 3.5.1, this requires that we keep the sets and the successor relations in memory for some time.

Storing the sets before finishing their logical closure takes space but no additional time. See Section 3.6 for details about the computation of logical closures in multiple steps.

Proposition 7 Algorithm 11 stops and returns the Duquenne-Guigue basis of the input context.

Proof When considering a given cardinality n, only successors of sets of cardinality n are constructed. These successors have cardinalities strictly greater than n, the number of attribute is finite and A has no successor so the algorithm eventually reaches A and stops.

Every set has a predecessor of lesser cardinality. Let us suppose that an element of Φ of cardinality n has not been found by the algorithm. The set of successors of if A = Impl(A) and A is a successor of its predecessor then for every attribute i do end for 18: end while 19: return Impl its predecessor has not been computed or it would have been found. The algorithm computes the successors of every set it considers, therefore the predecessor itself has not been found. Following the same reasoning, we eventually find that ∅ has not been found and this contradicts the fact that the algorithm is initialized with it. We then conclude that every element of Φ is enumerated by the algorithm. A pseudointent is closed under B -therefore it is an element of Φ. Thus, every pseudo-intent is enumerated by the algorithm.

Example

Using Algorithm 11 on our running example would produce the following :

The algorithm starts with ∅. It is closed so we generate its successors.

∅ ⊕ e = e ∅ ⊕ d = d ∅ ⊕ c = c ∅ ⊕ b = b ∅ ⊕ a = a
The set of sets is then {a, b, c, d, e}. They are all still closed under Impl -(.). Among them, only a is a pseudo-intent with a = ab so we add a → ab to the basis. We then generate the successors of a, b, c, d and e. The set a being a pseudo-intent, we construct only ab from it. There are no attributes greater than min(e) = e so e has no successors. The set of sets is then {ab, bc, bd, be, cd, ce, de}. They are all still closed under Impl -(.). Among them, bc, be and cd are pseudo-intents so we add bc → bcd, be → bde and cd → bcd to Impl. We then generate the successors of ab, bc, bd, ce and de. The set bc being a pseudo-intent, we only construct bcd from it. The set de has no successors for the same reasons as the set e in the previous step and we already know that c ⊕ d = cd so ce ⊕ d is known and ce has no successors. Similarly, bd ⊕ c is known to be bc, which has already been found.

ab ⊕ e = abde bd ⊕ e = bde ab ⊕ d = abd ab ⊕ c = abcd
The set of sets is then {abd, bcd, bde, abde, abcd}. All the sets with 3 attributes are still closed under Impl -(.). Among them, abd is a pseudo intent so we add abd → abcde to Impl. We then generate the successors of abd, bcd and bde. The set abd can only have one successor, abcde, but it is the set of all attributes so we do not add it. We already know bd ⊕ c so we also know bde ⊕ c. As such, computing bde ⊕ c is not needed and no other attribute is available so bde has no successors.

bcd ⊕ e = bcde

The set of sets is then {abde, abcd, bcde}. The logical closures of the sets abde and abcd are updated to abcde and they are removed. Only bcde has a cardinality of 4 and is still closed under Impl -(.). It is a pseudo-intent so we add bcde → abcde to Impl. There are no new intents so we continue with the elements of Sets of cardinality 5. There are no more sets so we stop.

The algorithm stops having produced the following implications :

• a → ab • bc → bcd • be → bde • cd → bcd • abd → abcde • bcde → abcde
It has performed 16 logical closures where Next Closure would have performed 16 (see Section 2.4.2). It is thus just as efficient in this particular context. However, as will be presented in Section 3.4, there is a significant number of cases in which using Successors provides an advantage over using Next in terms of number of logical closures computed.

Examples of enumerations in other orders (lectic and reverse lectic) can be found in Section 3.5.2.

Number of Logical Closures

As we have seen in Section 3.2, the Successors algorithm (Algorithm 8) behaves differently than Next (Algorithm 1) and usually performs more logical closures. This is counterbalanced by Proposition 5 and Proposition 6 which reduce the amount of logical closures by re-using closures that are already computed when possible. Proposition 5 applies consistently while Proposition 6 is most useful in sparse contexts. This leads us to speculate that Successors should equal or outperform Next on very sparse contexts. In order to test this theory, we implemented, in Java, both a version of Algorithm 10 and the slightly optimized version of Next Closure seen, for example, in [START_REF] Obiedkov | Attribute-incremental construction of the canonical implication basis[END_REF] and counted the number of logical closures performed by both on randomly generated contexts. We ran the algorithm on randomly generated contexts composed of 50 objects, nbAtt attributes and an average of avDesc attributes per object. The contexts were constructed by randomly associating attributes to objects with a probability of avDesc nbAtt . We ran the algorithms 5000 times for each nbAtt and each avDesc between 1 and nbAtt -2. In these tests, we used the increasing cardinality order. However, as the number of logical closures performed by Successor do not, in any way, depend on the enumeration order, these results hold for any order. For each context, we computed the ratio ρ = number of logical closures for us number of logical closures for Next Closure Table 3.1 shows the average ρ for different values of nbAtt and avDesc. These empirical results seem to back up our theory as ρ is below 1 for small values of nbDesc that generate sparse contexts. We observe that our algorithms perform significantly less logical closures for nbDesc = 1, extremely sparse contexts, but 31 CHAPTER 3. CHOOSING THE ENUMERATION ORDER the ratio quickly increases and Next Closure starts outperforming us when the average number of attribute per object is roughly a third of the total number of attributes. An unpredicted phenomenon is the very slight reduction of the ratio when approaching extremely dense contexts. Now that we know the differences between our algorithm and Next Closure on average, we can take a look at the variance. Table 3 The variance of ρ is low, which means that the average results in Table 3.1 should hold for most contexts. We observe that, when we increase the average description size, the variance initially decreases until avDesc reaches approximately half of the total number of attributes, at which point it begins to increase again.

Numerical Results

The results in the average case and the variance are interesting but extremes are important in computer science. Thus, we noted the highest values of ρ encountered for each nbAtt and avDesc. Table 3.3 presents those results. Unsurprisingly, the ratio ρ of the worst case encountered increases with both the number of attributes and the average description size. Even though the variance indicates that most cases are around the mean, this last table shows that there are specific cases in which our algorithm performs significantly (though linearly) more operations.

Curves

Knowing the average values of ρ, its variance and its worst-case should be enough to decide whether our algorithm should be used on a given formal context (provided we are only interested in the number of logical closures). But, in order to get a better understanding of the variations of the performance on different contexts and the effects of Proposition 5 and Proposition 6, we provided some graphical representations. For each couple (nbAtt, avDesc), we plotted the value of ρ obtained on each of the 5000 randomly generated contexts. Figures 3.2 to 3.9 present these results, both sorted and in the order in which they have been obtained for nbAtt = 10 and avDesc between 1 and 8. The red line is at ρ = 1 so points under it mean our algorithm outperformed Next Closure (in terms of number of logical closures) on this particular context. We observe that, as the average description size increases, Next Closure outperforms us on more contexts. This is what the average results showed so this is not a surprise. More interesting is the distribution of the values of ρ. We clearly see that most contexts are very close to the mean with only a handful significantly under or above. This unsurprinsingly corresponds to a normal distribution. However, when CHAPTER 3. CHOOSING THE ENUMERATION ORDER the contexts become dense (avDesc > 6), the number of cases under the mean is drastically reduced with no examples below 1 at avDesc = 8. We believe this is due to Proposition 6 playing virtually no role when the contexts are extremely dense. This disappearance of the best cases is what causes the reduction of the variance despite the worst cases becoming even worse. We consider that this confirms our hypothesis that Proposition 5 reduces the overall number of logical closures while Proposition 6 only creates interesting cases when the contexts are sparse.

Orders and Space Complexity

As we have mentioned in Section 3.4, the number of logical closures performed by the enumeration algorithm is the same for all the possible orders (assuming we still want to use Proposition 5 and Proposition 6), and only the space complexity changes. As such, some orders use more space, for seemingly the same result, but there are cases in which using such orders may prove useful.

For example, we know that computing the closure of a set A can be done in a time linear in the size of the context. While this theoretical result always holds, there may be applications in which the context itself is not readily accessible. Scanning the context to compute the closure of a set could cost time or money, and we may want to minimize the number of times we have to access the description of each object. The order presented in Section 3.3.2 considers the elements of Φ in groups of cardinality. Algorithm 11 can thus compute the closure of every attribute set of the same cardinality at the same time by calling the description of each object once and using it for every attribute set. This would require a total number of |A| scans of the context instead of potentially 2 |A| . In return, many attribute sets must be stored in memory at the same time. The biggest set of attribute sets of the same cardinality is for n = |A| 2 with a total of |A|! n!(|A|-n)! possible sets. When computing their successors, we need to know the value of A ⊕ i for every attribute i and every set A of cardinality n so, even though the memory used varies throughout the execution, we must be able to store a maximum of |A|! n!(|A|-n)! |A| sets. This is not surprising given that this algorithm corresponds to a breadth-first search and thus requires more space.

To study the effect of the order on the number of attribute sets stored in memory at the same time, we implemented Algorithm 10 that allows us to choose the order of enumeration by sorting the set of attribute sets in any specified order. We chose to consider 3 possibilities :

• Increasing cardinality order • Lectic order

• Reverse lectic order

The increasing cardinality order is the one used in Algorithm 11. Attribute sets are treated one by one and not as groups of the same cardinality. While the algorithm could be optimized for each order (most notably, the number of attribute sets stored could have been reduced), this allowed us to empirically compare the effects of the orders themselves on the space complexity. We ran the algorithm on randomly generated contexts composed of 50 objects, nbAtt attributes and an average of avDesc attributes per object. The contexts were constructed by randomly associating attributes to objects with a probability of avDesc nbAtt . With each order, we ran the algorithm 5000 times for each nbAtt and each avDesc between 1 and nbAtt -2. We used the size of the Sets set of attribute sets as a measure of the space consumption. We studied the average number of sets, the average maximal number of sets and the maximal maximal number of sets as well as the evolution of the number of sets over a single run of the algorithm.

Results for Each Order Increasing Cardinality

We started with the increasing cardinality order. Table 3 As expected, the average size of the set of attribute sets increases with the number of possible attributes. For a given number of attributes, the size tends to increase, at least initially, with the average size of the descriptions. However, it appears important to note that the size starts decreasing once the context becomes saturated enough. We believe that this is due to the fact that fewer implications are valid in those extremely dense contexts, which increases the size of Φ. When most attribute sets are closed under B -, the cardinality difference between new sets and the one that generated them is smaller and, as a result, they are used more quickly. Table 3.5 shows the average maximal number of sets in memory along with the maximal number found during the 5000 runs of the algorithm.

The maximal number of attribute sets once again increases with the number of attributes and the size of the descriptions. Figure 3 Table 3.5: Average maximal and maximal number of attribute sets simultaneously stored in memory when enumerating by order of increasing cardinality number of attribute sets during the execution of the algorithm for nbAtt between 9 and 15 for avDesc = 4 and avDesc = 6.

The number of attributes steadily increases then stabilizes. We suppose that the algorithm generates sets increasingly faster while the cardinality increases and, once it reaches the cardinality for which the lattice is the widest, many sets of the second half of the lattice have already been constructed and the destruction rate catches up with the construction rate.

Lectic Order

We then looked at the lectic order. While enumerating in lectic order could be done with Next Closure instead, this order has some interesting effects on the space complexity. Table 3 Expectedly, the evolution of the average number of attribute sets during the enumeration in lectic order follows the same rules as in the increasing cardinality order as it increases with both the number of attributes and the size of the descriptions. Table 3.7 shows the average maximal number of sets in memory along with the maximal number found during the 5000 runs of the enumeration in lectic order. Here, even though the evolution of the maximal number and average maximal number of sets follows the same rules as the previous order, we observe that the difference between the average and the all-time maximum is much greater. Figure 3.13 shows the evolution of the number of attribute sets during the enumeration in lectic order for nbAtt between 10 and 15 for avDesc = 4 and avDesc = 6.

A clear pattern emerges here. The size of Sets rapidly increases, stabilizes then decreases slightly multiple times during the computation. We assume that each dip corresponds to an attribute. After a singleton containing the attribute i, the algorithm considers all the elements of Φ for which i is the smallest attribute. Due to the lectic order being used in the successor relation, the new sets are quickly used and the size of Sets stabilizes before, ultimately, starting to decrease. As we progress in the computation, the attribute i becomes smaller and more sets begin with i. Thus, this pattern gets bigger.

Reverse Lectic Order

Finally, we looked at the reverse lectic order. We chose it because of its extreme incompatibility with the lectic order used for the generation of the sets, which, we thought, would induce a high spatial complexity. Table 3.8 shows the average number of sets simultaneously stored during the course of the enumeration in reverse lectic order for different values of nbAtt and avDesc.

Once again, the space required increases with the number of possible attributes and the average size of a description. But it increases faster than for the two previous orders. Table 3.9 shows the maximal and average maximal number of sets for the reverse lectic order.

The increase in the average and all-time maximal number of attributes is also much steeper than for the previous orders. Figure 3.15 shows the evolution of the number of attribute sets during the enumeration in reverse lectic order for nbAtt between 10 and 15 for avDesc = 4 and avDesc = 6. Table 3.9: Average maximal and maximal number of attribute sets simultaneously stored in memory when enumerating in reverse lectic order

The general appearance of the curve is once again very different. In reverse lectic order, the number of attribute sets in the memory skyrockets to its maximum before diminishing slowly.

Comparisons between Orders

In this section, we present a comparison of the three orders based on the data presented for each one. We compared the evolution of the average, average maximal and all-time maximal size of the set of attribute sets when the average size of a description varies. From now on, the increasing cardinality order will be in red, the lectic order in blue and the reverse lectic order in green.

Average Number of Attribute Sets

We started by comparing the evolution of the average number of attribute sets for the three orders. In Figure 3.16, each curve shows the average number of attribute sets for a given nbAtt and an avDesc between 1 and nbAtt -1.

We observe that the lectic order clearly has the lowest space requirements in average and the slowest increase of the three orders considered here. The reverse lectic order has the highest space requirements and the fastest increase and the increasing cardinality order is in-between. It is interesting to remark that the curve of the increasing cardinality order starts decreasing slightly when avDesc approaches nbAtt while the curve of the lectic order stabilizes and that of the reverse lectic order keeps increasing.

Average Maximal Number of Attribute Sets

We then made the same comparison for the average maximal number of setsarguably the most interesting data, as the amount of memory needed ultimately depends on it. In Figure 3.17, each curve shows the average maximal number of attribute sets for a given nbAtt and an avDesc between 1 and nbAtt -1.

Once again, the lectic order seems to be the most efficient with the slowest increase while the reverse lectic order is the least efficient. The increasing cardinality order once again behaves differently as its average maximal number of set starts stabilizing early when avDesc increases while the lectic order keeps increasing longer before finally stabilizing, and the reverse lectic order does not stabilize at all.

Maximal Number of Attribute Sets

Lastly, we considered the evolution of the maximal number of sets simultaneously stored in memory over the 5000 runs of each algorithm. In Figure 3.18, each curve shows the maximal number of attribute sets found simultaneously for a given nbAtt and an avDesc between 1 and nbAtt -1.

These are, perhaps, the most interesting curves because we clearly see that the lectic order, the order with the best results on average, has specific cases in which it performs worse than the increasing cardinality order. When the contexts become denser, the maximal number of sets found for the lectic order exceed that of the increasing cardinality order. From this, we can deduce that the variance of the maximal space requirements for the enumeration in lectic order increases with the average number of attributes per object and becomes much higher than for the enumeration in increasing cardinality order when the contexts become denser.

Comparison of the Behaviours of the Orders

To better understand why these orders behave differently, we must analyse the three behaviours on the same contexts. Figure 3.20 shows the evolution of the number of sets in the memory during the execution of the algorithm on a single context for the three orders plotted on the same graph.

The most obvious difference between the orders is that the lectic order is the only one for which the amount of sets decreases before increasing again in rapid successions. In increasing cardinality order and reverse lectic order, the amount of sets increases roughly once before plummeting. This effect is most clear in the reverse lectic order in which a very high number of sets are generated in the beginning with hardly any set removed. We believe that this is due to the fact that sets B are generated from their lectically greatest subset A. When B is constructed and added, all its subsets C ⊆ A are greater than A in reverse lectic order and, thus, not yet considered. As such, it is necessary to wait until we have considered every C (and their successors) before we can remove B from the memory. Furthermore, attribute sets with the highest number of successors are the smallest in reverse lectic order. This most likely causes the number of sets to rise quickly until attribute sets that have one or no successor are reached, at which point the amount of sets starts decreasing steadily.

The same effect seems to play a role in the increasing cardinality order. However, this order being closer to the lectic order, sets are treated sooner after their construction which slows the increase. Besides, each cardinality has some attribute sets with a small number of successors. This averages the number of successors and slows the overall increase in attribute sets in memory.

Example of Enumeration in the Lectic Order

To give an even better idea of the behaviours of the different orders, here are the three algorithms on our running example.

First, the lectic order :

∅ = ∅.
From ∅ we construct a, b, c, d and e.

We have e, d, c, b, a. The set e is the smallest and is a successor. e = e. From e we do not construct anything because no attribute is greater than e.

We have d, c, b, a. The set d is the smallest and is a successor. d = d. From d we construct de.

We have de, c, b, a. The set de is the smallest and is a successor. de = de. From de we do not construct anything.

We have c, b, a. The set c is the smallest and is a successor. c = c. From c we construct cd and ce.

We have ce, cd, b, a. The set ce is the smallest and is a successor. ce = ce. From ce we construct cd.

We have cd (from c), cd (from ce), b, a. The set cd (from c) is the smallest and is a successor. cd = bcd so cd → bcd is added to the basis. From cd we do not construct anything because cd ⊕ e = bcde and b is lesser than c.

We have cd (from ce), b, a. The set cd (from ce) is the smallest but is not a successor. We have b, a. The set b is the smallest and is a successor. moved). We have bcde. The set bcde is one of the smallest and is a successor. bcde = abcde so bcde → abcde is added to the basis. From bcde we do not construct anything.

Here, again, the number of attribute sets grows in the beginning before plummetting near the end. However, we can see that the increase is slower than in the reverse lectic order.

Conclusion on the Comparison

All these results suggest that the lectic order is the most efficient, in terms of space consumption, of the three orders considered here. It performs the best in terms of average and maximal number of sets simultaneously in memory in all cases except for extremely dense contexts which rarely appear in practice. The reverse lectic order obtains the worst results while the increasing cardinality order is in-between. However, the algorithm we used for the enumeration in increasing cardinality order has no specific order for the treatment of attribute sets of a given cardinality. Considering the results we have, we believe that treating the attribute sets of the same cardinality in lectic order would improve the results whereas using the reverse lectic order would worsen them slightly.

We believe that the efficiency of the lectic order is due to the definition of the successor relation being based on it. A successor B of a set A is closer to A in lectic order than it is in reverse lectic order, so it is treated sooner and, consequently, is kept in memory for a shorter time. This is consistent with our observations that the reverse lectic order is the least efficient order. We speculate that the space complexity of an order depends on its similarity with the lectic order. Thus, orders ≤ o such that Y ≤ o X and X ≤ lec Y for a high number of sets X and Y would perform significantly less well because the sets would remain in memory longer.

Optimization

Our experiments were realized using a generic algorithm in order to compare the behaviour of different orders. However, the number of sets in memory could be reduced for each order.

As a general rule, when computing the successors of a set A, the sets B that are lesser than A in the enumeration order need not be taken into account. Indeed, all the pseudo-intents lesser than A being known, the set B is directly equal to B -(B) and, thus, will not change and become greater than A. As such, there is no need to add and conserve it.

The complexity of checking whether the newly constructed potential successors of A are lesser than A is obviously dependent on the considered order. In the cases of the lectic and reverse lectic orders, comparing two sets can be done in the size of A which, while relatively easy to do, would increase the runtime. In the case of the increasing cardinality order, the test simply requires that we compare the cardinalities of the two sets, which can be done in constant time.

CHAPTER 3. CHOOSING THE ENUMERATION ORDER

When the sets are enumerated in increasing cardinality order with the closure of every set of cardinality n known before the computation of their successors, such as Algorithm 11, potential successors of cardinality n -1 have the closure of all their subsets known so their logical closure will not be updated. Thus, it is possible to check whether they are successors on the spot instead of waiting, further reducing the space requirements.

Once again, we are faced with the possibility to trade runtime for space complexity and vice versa.

Logical Closure

As we have seen in Section 2.5, the logical closure of a set A under a set of implications I can be computed in O(|A| 2 × |I|) with the naive algorithm or in O(|A| × |I|) using LinClosure. However, in our algorithm, we need to compute the logical closures of A under B without the certainty that every implication in B is known. For this reason, we have to be able to compute B -(A) in several, separate iterations without sacrificing complexity.

The naive algorithm (Algorithm 5) can easily be run in multiple steps. Let us suppose we have an attribute set A and a set of implications I A ⊆ B. In order to compute I - A (A), we must scan the set of implications once for A and then once for every attribute in The same thought process can be applied to LinClosure but the initialization phase of the algorithm can be problematic. If the counters and lists are kept after the partial logical closure, it requires the same number of operations as the batch version. However, the space requirements are too high. If the initializations are done again, from scratch, everytime the logical closure is updated, then the computation time is dramatically increased. As we saw in Section 2.5, the initialization phase already consumes a significant amount of time so the use of LinClosure in this context may depend on the number of logical closures we have to compute simultaneously. That is, it may depend on the chosen order. Concerning the closure phase itself, the initial partial closure requires

I - A (A) \ A. This is a total of |I - A (A) \ A| + 1 inclusion
|I - A (A)| × |I A | operations.
After that, assuming we keep the lists and counters as they are, computing B -(A) from I - A (A) requires that we update the counters of the implications in B \ I A a total of |A| times, then those of all the implications in B a total of B -(A) \ I - A (A) times, which sums up to |B| × B -(A) operations.

CHAPTER 4. APPLICATION TO RELATIONAL CONTEXTS

Motivation

Our initial goal was to learn ontologies from relational data expressed in description logics. That is, we wanted to compute implications on a context in which objects are described by both attributes and relations with other objects. The problem with relational data is that, if we want to represent the relations using attributes in a formal context, the number of attributes rapidly becomes too high for regular algorithms. Even though we do not pretend to outperform methods that have been proposed over the years ([7, 59, 89]), we wanted to see whether our algorithm would work efficiently on this type of data.

In this chapter, after a brief presentation of description logics as an example of language for relational data, we propose a modification of our algorithm that computes the Duquenne-Guigues basis of formal contexts that contain a great number of attributes expressing relations between objects. We show that the adaptation to relational contexts is straighforward and that it can be used with any language as long as the relations can be expressed as attributes that are functions of sets of attributes.

Relational Data

Description Logics

The term concept used in this section refers to concepts in description logics. Syntactically, description logics use a set of concept names N C (unary predicates), a set of role names N R (binary predicates) and a set of object names N O (constants). Concepts are constructed by combining concept and role names with constructors such as

• • • ¬ • ∃ • ∀ • ≤ n • ≥ n
The set of constructors that a description logic language uses defines both its representational power and its complexity. Indeed, adding a new constructor allows for more complex knowledge to be represented but increases the complexity of operations such as testing the subsumption. For example, in the description logic ALC and for any concept name A, any concepts C and D and any role name r, the following constructions are concepts :

• • ⊥ • A • C D • C D • ¬C • ∃r.C • ∀r.C
Concepts constructed using role names, of the form ∃r.C and ∀r.C, are said to have a depth of n if the concept C used in the construction has a depth of n -1. Concept names have a depth of 0 and are said to be atomic concepts.

Semantically, a description logic associates concepts to sets of instances through an interpretation I = (∆ I , . I ), where ∆ I is the domain and . I the interpretation function that maps subsets of ∆ I to concept names and subsets of ∆ I × ∆ I to role names. From this, the set of instances associated to constructed concepts is as follows :

• I = ∆ I • ⊥ = ∅ • (C D) I = C I ∩ D I • (C D) I = C I ∪ D I • ¬C = ∆ I \ C I • (∃r.C) I = {x ∈ ∆ I | ∃y, (x, y) ∈ r I and y ∈ C I } • (∀r.D) I = {x ∈ ∆ I | ∀y, (x, y) ∈ r I ⇒ y ∈ C I }
In order to accurately describe knowledge in a particular domain, one must specify the relevant concepts and the relations that exist between them. In description logics, relations are expressed by means of terminological axioms. For any two concepts A and B, the terminological axiom A B means that B subsumes A or that the concept B is more general than the concept A. With the interpretation I, we have that A B if and only if A I ⊆ B I . When A B and B A, we note A ≡ B, meaning that A is equivalent to B (their interpretations are the same) or that A is defined by B.

Assertional axioms assign object names to concepts and pairs of object names to role names. As such, given two object names o1 and o2, a concept C and a role name r, the axiom o1 : C means that o1 belongs to the concept C and (o1, o2) : r means that o2 fulfills the role r for o1.

The knowledge is contained in a knowledge base composed of a TBox and an ABox. The TBox contains all the terminological axioms and, thus, the concepts and their relations while the ABox contains the assertional axioms.

The concepts names being unary predicates and the object names constants, it is easy to see that a formal context can be derived from the domain with domain objects as objects, concept names as attributes and the relevant assertional axioms of the ABox or the interpretation function itself as the incidence relation. In order to translate the information on roles into the context, we have to also consider as attributes the various non-atomic concepts built from roles. Assertional axioms of the form (o1, o2) : r in the ABox mean that o2 fulfills the role r for o1. As such, o1 belongs to the concepts ∃r.C where C is a concept to which o2 belongs. Thus, the attributes "∃r.C" should describe the object "o1". Of course, the amount of attributes in such a derived context quickly explodes as the number of concepts of depth n is exponential in the number of concepts of depth n -1.

An implication A → B that holds in a context induced by a domain means that every object that belongs to all the concepts (attributes) in A also belongs to all the concepts in B. As such, it means that every object that belongs to the concept a∈A a also belongs to the concept b∈B b, which would correspond to the terminological axiom A B. Of course, the truth of a terminological axiom is based on the interpretation and we do not always have access to the whole domain and only know the ABox. In these cases, using the implications of the formal context derived from the ABox can help "learn" an approximation of the set of terminological axioms.

For example, let us consider the following knowledge base composed of a TBox :

• Ball Red T oy

• Boy P erson and the following ABox :

• o1 : Boy • o2 : Ball Red • o3 : P erson • o4 : Chair Big • (o1, o2) : playW ith • (o3, o4) : own
This TBox contains the knowledge that all red balls are toys and all boys are persons. The ABox contains four objects : a boy (who is also a person), a red ball (which is also a toy), a person and a big chair. Additionally, we know that the boy plays with the red ball and that the person owns the big chair. This knowledge about objects can be rewritten in the following way using the existential quantification on roles : Each object being described by a conjunction of concepts, it is possible to consider each of these concepts as an attribute and build a formal context with 4 objects and 17 attributes.

Related Works

Most works on learning terminological axioms in description logics through the computation of implications use the same principle to reduce the number of attributes. In description logics, we have ∃r.A ∃r.B when A ⊆ B. This translates, in the induced context, as A → B ⇒ ∃r.A → ∃r.B. It is known that A → A and, trivially, A → A. As such, we have that ∃r.A → ∃r.A and ∃r.A → ∃r.A. This means that ∃r.A ≡ ∃r.A for every attribute set A. It is thus sufficient to consider only attributes ∃r.X with X closed.

The work of Rudolph [START_REF] Rudolph | Relational exploration -reconciling Plato and Aristotle[END_REF] is the closest to ours as it also computes (in the lectic order) the Duquenne-Guigues basis of contexts induced by knowledge bases expressed in the description logic EL ( , ∃). It starts with a context containing attributes corresponding to atomic concepts and computes its intents and pseudointents with Attribute Exploration ( [START_REF] Ganter | Formal concept analysis: mathematical foundations[END_REF]). For every computed intent A and every role r, it constructs a new attribute ∃r.A and adds it to the context. It then uses Attribute Exploration again on the new context. It goes on until it reaches some arbitrary role depth. The resulting set of pseudo-intents, computed on the last context, is the Duquenne-Guigues basis of the induced context. The main problem with this method is that the same pseudo-intents can be found multiple times. Indeed, if the set A is a pseudo-intent and contains only attributes corresponding to atomic concepts, it is obvious that A is a pseudo-intent in every context for every role depth. Even if implications that have already been found are used to avoid finding them again, the closure of these pseudo-intents must be updated each and every time, which needlessly consumes time.

In [START_REF] Baader | Exploring finite models in the description logic EL gf p[END_REF], Baader and Distel use the same principles to compute a basis in EL gf p . It is interesting because it replaces the classic . closure operator by the DL-centric

64

. ii , which corresponds to the notion of most specific concept. This closure operator associates to a set of domain objects the most specific concept to which all these objects belong. This evidently corresponds to the classic . operator but it has the advantage that it can be computed using subsumption algorithms in description logics (see [START_REF] Baader | Computing least common subsumers in description logics with existential restrictions[END_REF]) and thus do not require that we compute the induced context.

Other works on the problem of combining formal concept analysis and description logics include two theses by Sertkaya ([92]) and Distel ([36]) as well as the work of Borchmann ( [START_REF] Borchmann | Towards an error-tolerant construction of\ mathcal {EL}ˆ\ bot-ontologies from data using formal concept analysis[END_REF][START_REF] Borchmann | Axiomatizing EL ⊥ -expressible terminological knowledge from erroneous data[END_REF]) concerning the handling of errors in data sets during the computation of terminological axioms.

Relational Contexts

If we want to use our algorithms on data with objects represented by both unary (attributes) and binary (relations) predicates, we have to transform the information provided by the relations into attributes in order to obtain a formal context. In order to do that, we use the notion of relational dependency to generalize the constructs we find in different languages, such as roles quantificators in description logics.

Definition 13 A relational dependency is a bijection r k that maps an attribute set A to a single attribute r k (A) ∈ A such that, for any two attribute sets X and Y , ). An attribute i for which there is no attribute set A and relational dependency r k such that i = r k (A) is said to be atomic or of depth 0. An attribute j is said to be of depth n if there is an attribute set A of depth n -1 for which there is a relational dependency r k such that r k (A) = j. We assume there are no cycles in the dependencies.

X → Y ⇒ r k (X) → r k (Y ).
The definition of relational dependencies allows us to obtain information on valid implications between attributes of depth n from implications which premises contain attributes of depth n-1. Indeed, once A → B is known, we can directly add r k (A) → r k (B) to the set of valid implications and use it to compute the necessary logical closures. In the case where r k (A) → r k (B) is in the Duquenne-Guigues basis, that is one less implication to find. Proposition 8 For any attribute set A and any relation dependency r k , we have r k (A) → r k (A ) and r k (A ) → r k (A).

Proof For any attribute set A, we know that A → A is valid. From the definition of a relational dependency, we deduce that r k (A) → r k (A ) is valid for 4.4. COMPUTING THE DUQUENNE-GUIGUES BASIS OF RELATIONAL CONTEXTS 66 any r k . Similarly, the implication A → A is always valid because A ⊆ A so r k (A ) → r k (A) is valid too.

Proposition 8 states that every attribute r k (A) is equivalent to the attribute r k (A ). As such, every object of the context described by r k (A) is also described by r k (A) and vice versa. Thus, every attribute r k (A) with A not closed is redundant.

Proposition 9 If C is a relational context and C2 is the context obtained by removing from C the redundant attributes, then, for every pseudo-intent P of C2, the set

P ∪ {r k (X) ∈ A | r k (X ) ∈ P } is a pseudo-intent of C.
Proof If P is a pseudo-intent of C2 then, by definition, P is not closed and contains the closure of all its subsets. Since P ∪ {r k (X) ∈ A | r k (X ) ∈ P } is equal to P , the set P ∪ {r k (X) ∈ A | r k (X ) ∈ P } is not closed. For the same reasons, it contains the closure of all its subsets. As such, P ∪ {r k (X)

∈ A | r k (X ) ∈ P } is a pseudo-intent of C.
We can obtain the Duquenne-Guigues basis of a relational context by computing the basis of the same context minus the redundant attributes. While the number of attributes is still high, the reduced context contains significantly less attributes.

Computing the Duquenne-Guigues Basis of Relational Contexts

Computing the basis of a context containing relational attributes can thus be done on the reduced context, using the method presented in Section 3.3 in which sets are constructed using attributes that are either atomic or of the form r k (A) where A is closed. Evidently, using non-atomic attributes r k (A ) requires knowing the closure of A. This means that sets containing r k (A) -including the singleton {r k (A)}must be considered after A. Fortunately, our work is all about choosing the order in which we want to enumerate the sets.

Algorithm

Using our algorithm on relational contexts would be straightforward if all the attributes were known in the beginning. This is not the case. If we want to use only attributes that are atomic or constructed from intents, we must wait to know said intents before using the attributes. The problem is that if a set r k (A ) is added to the list of "interesting" attributes only after A has been found, the logical closure of B ∪ {r k (A )} has not been considered for sets B that are lesser than A in the chosen order (for which the set of successors has already been computed without knowing this attribute was relevant). The most obvious solution is to store all the sets B ∈ Φ and compute the logical closure of B ∪ {r k (A )} everytime a new A is computed. This would certainly require an important amount of space because of the exponential number of attribute sets in Φ. Algorithm 12 shows how to compute the Duquenne-Guigues basis of a relational context with a maximum depth of maxDepth. Pick the first set A in Sets 6:

Update the logical closure of A 7:

if A has not changed then 8:

if A is a successor of the set it has been generated from then if Depth(B) < maxDepth then 14:

Att = Att ∪ {r k (B) | r k is a relational dependency} 15:
for every computed intent X and relational dependency r k do 16:

Sets = Sets ∪ Impl -({x ∈ X | x < r k (B)} ∪ {r k (B)}) 17:
end for for every attribute i ∈ Att \ A greater than min(A) do 21:

Sets = Sets ∪ Impl -({a ∈ A | a < i} ∪ {i}) 22:
end for Proof From an intent A we construct new attributes r k (A) such that the depth of r k (A) is greater than the depth of A. The depth being bounded and r k being bijective, we can only add a finite number of attributes. For each attribute set B, we consider the sets B ⊕ i for every attribute i known when B is considered, and the sets B⊕ j for every attribute j for each new attribute constructed with B. As such, each attribute set is used to construct a finite number of other attribute sets. Each new attribute set being of greater cardinality, the algorithm terminates.

Propositions 8 and 9 imply that the algorithm returns the Duquenne-Guigues basis of the context without redundant attributes, which is equivalent to the Duquenne-Guigues basis of the input context.

It is important to note that, even though the algorithm enumerates the intents and pseudo-intents of the context without the redundant attributes, the closures themselves must be done on the initial context as it is impossible to know a priori whether an attribute is redundant.
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As the number of attributes with a depth of n is equal to the number of intents of depth n -1, the amount of attributes increases exponentially with each level of depth. Furthermore, being required to keep the whole intent lattice in memory, the algorithm rapidly becomes unusable as soon as there are too many atomic attributes or relations. 

Example

Scope of the Application

Our algorithm can be used on any formal contexts in which attributes can be represented by relational dependencies. Some information on relations between objects can easily be represented by such attributes.

• The knowledge "it is in a relation r with an object that is described by X", noted ∃r.X in description logics, can be represented by the set of attributes {r 1 (Y ) | Y ⊆ X}. If every object that is A is also B (A → B), then something that is in a relation r with an object that is A is also in a relation r with something that is B. Thus, it corresponds to the framework of relational dependencies.

• The knowledge "every object it is in a relation r with is described by X", noted ∀r.X in description logics, can be represented by the set of attributes {r 2 (x) | x ∈ X}. Indeed, if knowing that every object which something is in a relation r with is described by the attributes a and b means that it is also described by {a} ∪ {b}. Consequently, we can consider only individual attributes independently without loss of information, which reduces the number of attributes. As before, if a → b, then being in a relation r with only objects that are a implies being in a relation r with only objects that are b and our algorithm can be applied directly.

• The knowledge "it is in a relation r with more than n objects that are described by X" can be represented by the set of attributes {r 3 (Y ) | Y ⊆ X}. Indeed, if more than n objects are described by X, then even more are described by the subsets of X. Once again, if A → B, then being in a relation r with more than n objects described by A implies being in a relation r with more than n objects described by B and our algorithm can be used.

• The knowledge "it is in a relation r with less than n objects that are described by X" is harder to represent because there can be more than n objects described by the subsets of X. Moreover, if A → B, we cannot say that being in a relation r with less than n objects described by A implies being in a relation r with less than n objects described by B. Consequently, this particular knowledge cannot be represented with relational dependencies and our algorithm cannot treat it. There is always the possibility to consider all the possible attributes for this particular knowledge as atomic attributes and use the algorithm anyway, but the size of the attribute set would explode.

• The knowledge "it is not in a relation r with any object described by X" similarly cannot be treated by our algorithm because if A → B then not being in a relation r with an object described by A does not necessarily imply not being in a relation r with an object described by B.

In conclusion, it seems that only knowledge of the form "being in relation r with more than n objects that are X" can be represented efficiently using relational dependencies.

Chapter 5

Computing a Basis for Association Rules 

Motivation

Implications, and the whole of formal concept analysis, are closely related to data mining and databases theory. In databases, the notions of functional dependency and minimal keys are tied to implications. In data mining, the field of association rules mining is concerned with finding sets of patterns of which implications are subsets. In fact, formal concept analysis has long been used as a mathematical framework to help develop algorithms in data mining. It is therefore natural that we took an interest in association rules.

In this chapter, after a brief overview of association rules, we show that our algorithm can be modified to compute a basis for all the association rules in a formal context without an increase in the worst-case complexity. More specifically, it can obtain a basis for association rules by computing a basis for uncertain implications, the Luxenburger basis, in addition to the Duquenne-Guigues basis.

Association Rules

Association rules exist in the same framework as implications, i.e. a context with a set of objects described by attributes. The support of an attribute set A is the number of objects described by A. In other words, supp(A) = |A |. An attribute set is said to be frequent if its support is above a certain threshold. An association rule is an expression A → s,c B in which s is the support of A and c is the confidence of the rule, defined as supp (A∪B) supp(A) . The confidence of the rule expresses the likelihood to have the attribute set B describe an object described by A. Naturally, finding association rules with a high confidence and support has been an object of interest in the data mining community for many years. Introduced by Agrawal (see [START_REF] Agrawal | Fast algorithms for mining association rules in large databases[END_REF]) along the notion of association rule, APRIORI is the first algorithm to compute frequent association rules. As illustrated in Algorithm 13, it uses a bottom-up approach in which attribute sets are constructed from their subsets by adding a single attribute. Using the property that the support of an attribute set is lesser than the support of its subsets, the algorithm constructs new sets only from frequent ones. Effectively enumerating all the frequent elements (and some non-frequent) of the powerset of A, APRIORI is inefficient but historically significant.

Algorithm 13 APRIORI

1: F 0 = {∅} 2: k = 1 3: while F k-1 = ∅ do 4: F k = ∅ 5:
for every set S in F k-1 do 6:

for every attribute i not in S do As the support of the rules are the support of the premises, works on the computation of association rules are mainly interested in finding frequent attribute sets first, then constructing the rules from them later. Early on, algorithms tended to enumerate most, if not all, of the frequent sets. Later, it has been found that, since any two attribute sets A and B such that A = B have the same extent and thus the same support, it is sufficient to know only closed sets. Therefore, computing the frequent part of the concept lattice of a context is enough to be able to retrieve all the frequent association rules.

We saw in Section 2.3 that several algorithms can be used to compute the concepts set and most of them can be modified to only compute its frequent part. However, there is one algorithm, TITANIC (see [START_REF] Stumme | Computing iceberg concept lattices with TITANIC[END_REF]), that has been proposed specifically for the problem of enumerating only frequent closed sets. It follows the same principles as APRIORI but, instead of considering every frequent set as a candidate, it focuses on so-called key sets, i.e. minimal generators of sets under . . In addition to pruning sets that are not frequent, it prunes sets that are not keys. Keys can easily be recognized as their support is different from the support of all their lower covers in the powerset of A. Once all the key sets are found, closed sets can be retrieved by intersecting all the keys with the same support.

Of course, the number of association rules can be very high and tuning the thresholds for the support and confidence helps the pruning but, as it is insufficient, bases for association rules have been found and studied.

Association rules with a confidence of 1, sometimes called global implications, are the implications studied throughout our work. As we have seen, the Duquenne-Guigues basis plays the role of smallest set of implication that allows for all the others to be found. Association rules with a confidence c < 1, called partial implications, have their own basis called the Luxenburger basis and introduced in [START_REF] Luxenburger | Implications partielles dans un contexte[END_REF]. It can be shown that A → s,c B if and only if A → s,c A ∪ B and A → s,c B . Hence, we can restrict ourselves to associations rules in which A and B are frequent intents and A ⊂ B.

Theorem 1 (From [77]) Let A, B, C ⊆ A be intents with

A ⊆ B ⊆ D. Then A → s,c B and B → s ,c D implies A → s,c×c D.
This result implies that association rules can be derived by transitivity. Consequently, instead of all the possible association rules between intents, we only have to consider rules of the form A → s,c B such that there is no intent C such that A ⊆ C ⊆ B. In other words, only the covering graph of the lattice of intents is needed. Moreover, Luxenburger showed that, as long as a cycle exists in the (undirected) graph in which the intents are vertex and partial implication edges, we could remove a rule and still be able to derive all the partial implications. This leads us to the following definition : The Luxenburger basis corresponding to the second tree is : ) . This is effectively multiplying the confidences of the rules on the path while reversing those of the rules we go contrary to. For example, let us suppose we want to know the confidence of c → s,c bcd in our Context 1. With the first Luxenburger basis, the rule c → 2,0.5 bcd exists so the confidence is known as 0.5. With the second Luxenburger basis, the shortest path is {c, ∅, d, bd, bcd}. The confidence of the rule is thus ( 52

• ∅ → 5,0.4 c • ∅ → 5,0.6 d • ∅ → 5,0.6 e • b → 3,0.33 ab • b → 3,0.66 bd • d → 3,0.66 bd • d → 3,0.66 de • e → 3,0.33 ce • bd → 2,0.5 bcd
1 → s,c X n is Π i=1...n-1 supp(X i ) supp(X i+1
) × ( 3 5 ) × ( 2 3 ) × ( 1 
2 ) = 0.5. Since every intent is in a rule, and since the confidence of a rule between two intents can be computed and every other rule can be derived from a rule between intents, the Luxenburger basis is enough to derive all the association rules with a confidence of less than 1.

The Luxenburger basis and the Duquenne-Guigues basis form together a basis for association rules. If one is interested only in frequent association rules, as is often the case, it suffices to keep only the frequent implications and partial implications to obtain a base.

(Also) Computing the Luxenburger basis

We now want to show that the algorithms we proposed are able to compute the Luxenburger basis along with the Duquenne-Guigues basis with only a slight modification.

Successor Relation between Intents

We saw in Section 3.2 that the successor relation, presented in that same section, defines a spanning tree of the covering graph of the lattice Φ of attribute sets closed under B -. In the successor relation, every element of Φ has a unique predecessor, its lectically greatest subset in the lattice. We have also seen that the lattice Φ contains every intent and pseudo-intent and that a pseudo-intent can have a maximum of one successor. This means that every intent in Φ has an intent as predecessor, except for some essential intents.

Definition 15 (Successor relation between intents) For any two attribute sets A, B ∈ Φ, B is a successor of A (noted A I B) if and only if A is the lectically greatest strict subset of B in Φ that is an intent.

The relation I is similar to . Every element of Φ has a unique predecessor, except for ∅ and ∅ , and between 0 and |A| successors, except for A that never has a successor. The difference is that the predecessor of a set is always an intent.

Proposition 11 For any A ∈ Φ, there is a unique finite sequence A 1 , ..., A n of elements of intents such that ∅ I A 1 I ... I A n I A.

Proof Every non-empty set in the lattice Φ contains ∅ and has a strict subset that is an intent as a predecessor so such a sequence exists. The number of attributes is finite so the sequence itself is finite. The predecessor of an attribute set is unique so the sequence is unique. The differences between and I are for the essential intents B such that A B with A being a pseudo-intent. If we want to compute the Luxenburger basis with our enumeration algorithms, we have to find the predecessor (for I ) of those essential intents.

Proposition 13 Given two intents A and B and a pseudo-intent P such that A P B, the intent C such that C I B is either A or a superset of A.

Proof Let us suppose that A P B and that there is an intent C ⊆ B that is lectically maximal and not a superset of A. From the supposed order, we deduce that min(P ∆A) ∈ P and min(C∆A) ∈ C. However, we know that A ∨ C = B because otherwise C would not be lectically maximal. As such, we have B \ A ⊆ C. More precisely, we have that min(P ∆A) = min(C∆A) ∈ P . By the definition of the successor relation, we know that A ⊕ min(P ∆A) = P so C is a superset of P , which contradicts our hypothesis. Thus, the lectically greatest subset of B that is an intent is a superset of A. end if 7: end for 8: return C Proposition 14 Algorithm 14 terminates and computes the lectically greatest intent that is a subset of B Proof There is a finite number of attributes and the loop goes through them in linear order so the algorithm terminates. The attribute set it returns, C, is either A or closed under B(.), so it is an intent. It is the logical closure of a subset of B and it is not equal to B so we have C ⊂ B. Let us suppose that there is an intent D ⊂ B lectically greater than C with i = min(C∆D). The attribute i is such that B(X ∪ {i}) ⊂ B for any A ⊆ X ⊆ D so the algorithm would have added it to C. Hence, we have C = D. 

For any two intents

Discussion

The algorithm that we propose can compute both the Luxenburger and Duquenne-Guigues bases in a single run. Computing these two bases in order to obtain a minimal set of association rules using formal concept analysis is not a new idea as it has been discussed as early as 2001 (see [START_REF] Stumme | Intelligent structuring and reducing of association rules with formal concept analysis[END_REF]). In order to compute the bases, three steps are usually performed :

• The concept lattice is computed (or the iceberg concept lattice if the support has to be considered)

• The Duquenne-Guigues basis is computed from the concept lattice 

Future Work

In our work, we supposed that the order in which the attribute sets are enumerated extends the inclusion order. Given that pseudo-intents are recursively defined, it seems natural to want to know all the subsets of a set before deciding whether it is a pseudo-intent. However, being able to efficiently recognize a pseudo-intent without knowing all its subsets would allow for different orders to be used and may help find algorithms with a better delay. While we do not claim to have solved the problem, we believe that we have started working on promising ideas.

As mentioned in Section 2.4.5, recognizing a pseudo-intent in the general case is coNP-complete. However, this general case means being able to tell whether a given set is a pseudo-intent with only a context and the set itself as inputs. It would be interesting to know if it is easier to tell whether a set is a pseudo-intent when we have additional information. Indeed, an enumeration being a process, some information has already been found when we are confronted with the problem of recognizing a pseudo-intent.

Here, we are interested in the problem of recognizing a pseudo-intent when we already know a non-empty subset I of the Duquenne-Guigues basis of the context. This case is the most common as only the first pseudo-intent is found in the absence of other information. Let us call Φ I the lattice of attribute sets closed under I(.). When I = B, the lattice Φ I is the lattice of intents. Let B be a lower cover of A in Φ I . By definition, I(B ∪ {i}) = A for any attribute i ∈ A \ B so there is a subset C of A such that i ∈ C and (C \ {i}) ⊆ B that is a minimal generator of A.

This proposition states that the lower covers of A in Φ I can be obtained from the minimal generators of A, which can themselves be obtained from A and I.

Proposition 17 An attribute set A ∈ Φ I is a pseudo-intent if it is not closed and all its lower covers are closed.

Proof Let us suppose that A is not closed and that all its lower covers are closed. Let X be any subset of A and B a lower cover of A. If B ⊂ X, then I(X) = A and X = A . If X ⊆ B and X ⊆ B, then B cannot be closed and we have a contradiction. Therefore, X ⊆ B. Since the closure of every subset of A is either A or contained in A, the set A is a pseudo-intent. This proposition states that some pseudo-intents can be recognized in Φ I only by looking at their lower cover.

Definition 16

The set of pseudo-intents recognizable from I, noted Rec(I), is composed of the elements of Φ I which lower covers are all closed.

Proposition 18 ∀I ⊂ B, Rec(I) = ∅ Proof Let P be minimal among pseudo-intents that are not premises of implications in I. If there is a lower cover X of P in Φ I that is not closed, then there is a set A such that A → A holds in the context. If A ⊆ P , then P is not minimal. If A ⊆ P , then P is not a pseudo-intent. Both cases lead to contradictions so all the lower covers of P are closed and P is recognizable from I. Given that I ⊂ B, the set of pseudo-intents that are not a premise of I is not empty, so it has minimal elements. Hence, the set of pseudo-intents that are recognizable from I is not empty if I = B.

At any step during the enumeration of pseudo-intents, there is a non-empty set of pseudo-intents that are recognizable from the already acquired implications. Let us suppose the following set of implications is the Duquenne-Guigues basis of some context C = (O, {a, c, b, d, e}, R) :

• bc → bcd • cd → bcd • ae → abde • be → bde • bcde → abcde
Now, let us call I the set with the three first implications, {bc → bcd, cd → bcd, ae → abde}. Figure 6.1 shows the Φ I lattice. Since we know the Duquenne-Guigues basis, we can see that the following sets, in particular, are closed : b, e, bcd, bde. This implies that Rec(I) = {be, bcde}. If we were to know an algorithm that uses Proposition 17 to recognize a pseudo-intent, it would be possible to find bcde before be, thus bypassing the inclusion order, because bc → bcd and cd → bcd give us enough information on bcde and its lower covers. Similarly, it would be possible to find bcde before bc if we knew of the pseudo-intents be and cd but bcde would not be recognizable from only bc and be. This illustrates that the order of enumeration would play a much greater role in this kind of algorithm.

While we think that finding algorithms that can recognize pseudo-intents from subsets of the Duquenne-Guigues basis is a promising idea, using Proposition 17 directly would not be efficient as the number of lower covers of a set in Φ I can be exponential in the size of I. But we intend to investigate this lead more thoroughly in the future.

Conclusion

Initially centered around the use of formal concept analysis to learn terminological axioms in description logics, our work ventured into the construction of the Duquenne-Guigues basis in the general case. We started by developing an algorithm that enumerates the elements of the search space Φ breadth-first, which corresponds to the increasing cardinality order presented in Section 3.3.2 once the constraint of respecting the inclusion is added. From there, we saw that we could generalize the algorithm to allow an enumeration in any order, as long as it extends the inclusion order. Because of this generality and our desire to decrease the number of operations, we chose to have attribute sets constructed only from one of their subsets, which differs from algorithms the likes of Next Closure. While it would have been possible to construct sets from any other set by using another canonicity test, we felt that the inclusion relation allowed us to transmit the result of computations done on sets to their successors, thereby reducing the amount of redundant operations.

We empirically compared our algorithms with Next Closure on randomly generated contexts using the number of logical closures performed as a metric. We chose this metric instead of the runtime because the number of operations is independent of the platform, language, data structures and non-optimal coding. Results showed that our algorithms performed slightly less logical closures on sparse contexts in which objects were described by less than 33% of the available attributes on average. On denser contexts, Next Closure appeared to outperform our algorithm on the chosen metric. We then empirically studied the effect of the order of enumeration on the space complexity of our algorithms. We enumerated the pseudo-intents of randomly generated contexts using the lectic order, the reverse lectic order and the increasing cardinality order and considered the evolution of the number of attribute sets simultaneously stored in memory during the course of the algorithm. Results showed clear differences in the memory consumptions of the three orders, with the lectic order appearing to be the most efficient. We conjectured that the memory consumption of an order is function of its distance to the lectic order because of the canonicity test being based on it. However, the tests used the general version of the
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Definition 1 A

 1 formal context is a triple (O, A, R) in which O is a set of objects, A a set of attributes and R ⊆ O×A a binary relation between objects and attributes. A formal context represents knowledge, or data, on a set of objects. If, for an object o and an attribute a, the pair (o, a) is in R then we say that a describes o. By extension, if all the attributes in a set A describe an object o, then we will say that A describes o. Attributes are essentially unary predicates, and objects are constants.A formal context can be represented by a cross table, as seen in Figure2.1.
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 2 Figure 2.2 represents the concept lattice of Context 1.
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Algorithm 2 4 :

 24 Next Closure 1: A = ∅ 2: Concepts = ∅ 3: while A = A do Concepts = Concepts ∪ {(A , A)} 5: A = N ext(A) 6: end while 7: Return Concepts canonicity test. Algorithm 2 is the version of Next Closure that enumerates the formal concepts.

Figure 2 .

 2 Figure 2.3 represents the lattice Φ corresponding to our running example. Batch algorithms, most notably Next Closure, enumerate the entirety of Φ to find the set of pseudo-intents.
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Corollary 1

 1 Figure 3.1 is the spanning tree of the lattice Φ corresponding to our running example. {bc, bd, be} is the set of successors of b.
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 31 Figure 3.1: Spanning tree of the covering graph of Φ for Context 1 induced by the successor relation
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 3 CHOOSING THE ENUMERATION ORDER Algorithm 8 Successors(A) 1: Successors = ∅ 2: for every attribute i greater than min(A) do 3: B = A ⊕ i 4: if A ⊂ B then 5: if i = min(B \ A) and ∀j ∈ B \ A, A ⊕ j = B then end for 10: return Successors Proposition 3 For any two sets A, B ∈ Φ such that A ⊂ B, we have A B if and only if B = A ⊕ i for every i ∈ B \ A.

  not computed because b bd and c < d so we already know that bd ⊕ c = b ⊕ c • bd ⊕ b is not computed since b is already in bd • The other attributes are lesser than b
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 11 Enumeration of Pseudo-Intents by order of increasing cardinality 1: Sets = {∅} 2: Impl = ∅ 3: Card = 0 4: while Card < |A| do 5:for every A ∈ Sets of cardinality Card do 6:
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 3213333334335436 Figure 3.2: nbAtt = 10 and avDesc = 1
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 37638 Figure 3.7: nbAtt = 10 and avDesc = 6
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 39 Figure 3.9: nbAtt = 10 and avDesc = 8

  (a) nbAtt = 9 and avDesc = 4 (b) nbAtt = 9 and avDesc = 6 (c) nbAtt = 10 and avDesc = 4 (d) nbAtt = 10 and avDesc = (e) nbAtt = 11 and avDesc = 4 (f) nbAtt = 11 and avDesc = (g) nbAtt = 12 and avDesc = 4 (h) nbAtt = 12 and avDesc = (a) nbAtt = 13 and avDesc = 4 (b) nbAtt = 13 and avDesc = 6 (c) nbAtt = 14 and avDesc = 4 (d) nbAtt = 14 and avDesc = 6 (e) nbAtt = 15 and avDesc = 4 (f) nbAtt = 15 and avDesc = 6
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 311 Figure 3.11: Evolution of the number of attribute sets during the enumeration in increasing cardinality order
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  (a) nbAtt = 9 and avDesc = 4 (b) nbAtt = 9 and avDesc = 6 (c) nbAtt = 10 and avDesc = 4 (d) nbAtt = 10 and avDesc = 6 (e) nbAtt = 11 and avDesc = 4 (f) nbAtt = 11 and avDesc = 6 (g) nbAtt = 12 and avDesc = 4 (h) nbAtt = 12 and avDesc = 6 (a) nbAtt = 13 and avDesc = 4 (b) nbAtt = 13 and avDesc = 6 (c) nbAtt = 14 and avDesc = 4 (d) nbAtt = 14 and avDesc = 6 (e) nbAtt = 15 and avDesc = 4 (f) nbAtt = 15 and avDesc = 6
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 313 Figure 3.13: Evolution of the number of attribute sets during the enumeration in lectic order
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 315453 Figure 3.15: Evolution of the number of attribute sets during the enumeration in reverse lectic order
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 153161531715318 Figure 3.16: Comparison of the average number of attribute sets (Green : Reverse lectic, Red : Increasing cardinality, Blue : Lectic)

Figure 3 . 20 :

 320 Figure 3.20: Comparison of the behaviors of the three orders on the same contexts (Green : Reverse lectic, Red : Increasing cardinality, Blue : Lectic)

  tests in the worst case. Similarly, in order to compute B -(A) from I - A (A), we need a maximum of |B -(A) \ I - A (A)| + 1 inclusion tests. Thus, we must perform a total of |I - A (A) \ A| + |B -(A) \ I - A (A)| = |B -(A) \ A| inclusion tests, which is what the naive algorithm would have required in the first place.

•

  o1 : Boy P erson ∃playW ith.(Ball Red T oy) • o2 : Ball Red T oy • o3 : P erson ∃own.(Chair Big) • o4 : Chair Big As we know that ∃r.(C D) ⊆ ∃r.C ∃r.D, the ABox can again be rewritten as : • o1 : Boy P erson ∃playW ith.(Ball Red T oy) ∃playW ith.(Ball Red) ∃playW ith.(Ball T oy) ∃playW ith.(Red T oy) ∃playW ith.Ball ∃playW ith.Red ∃playW ith.T oy • o2 : Ball Red T oy • o3 : P erson ∃own.(Chair Big) ∃own.Chair ∃own.Big • o4 : Chair Big

  These relational dependencies help us represent the dependencies between attributes in a relational context. Let us consider the example of description logics where every concept corresponds to an attribute in the derived context. The four attributes a, b, ∃r 1 .(a b) and ∀r 1 .(a b) are, as we have seen, such that {a, b} → {c} ⇒ ∃r 1 .(a b) → ∃r 1 .c and ∀r 1 .(a b) → ∀r 1 .c. As such, we can use the relational dependencies r 1 1 and r 2 1 to represent respectively the existential quantification ∃ and the universal quantification ∀ on the role r 1 . We would then have that r 1 1 ({a, b}) = ∃r 1 .(a b) and r 2 1 ({a, b}) = ∀r 1 .(a b

67 CHAPTER 4 . 1 : 3 :

 67413 APPLICATION TO RELATIONAL CONTEXTS Algorithm 12 Enumeration of Pseudo-Intents in Relational Contexts Sets = {∅} 2: Impl = ∅ Att = {atomic attributes} 4: while Sets is not empty do 5:

25 :

 25 Place the new A in Sets according to the chosen order 26: end if 27: end while 28: return Impl Proposition 10 Algorithm 12 terminates and returns the Duquenne-Guigues basis of the input context.

Figure 4 . 1 :

 41 Figure 4.1: Example of relational data

Figure 4 .

 4 1 illustrates the description of objects and their relations. There is a single relational dependency that represents the existential quantification. From the objects, we obtain the context C R = ({o1, o2, o3, o4}, A R , I R ) in which A R contains every attribute of depth 0, 1 or 2. The descriptions of the objects are as follows :• o1 : a, r(∅), r(b) • o2 : a, c, d • o3 : c, d, r(∅), r(a),r(r(∅)), r(r(b)), r(ar(∅)), r(ar(b)), r(r(∅)r(b)), r(ar(∅)r(b))• o4 : bThe algorithm starts with the set of attributes Att = {a, b, c, d}. The closure of ∅ is ∅. It is an intent so r(∅) is added to the list of attributes and Att = {a, b, c, d, r(∅)}.We have a, b, c, d and r(∅). We choose a. The closure of a is a. It is an intent so r(a) is added to the list of attributes and Att = {a, b, c, d, r(∅), r(a)}.
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 51 Figure 5.1: Context 1
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 714 if S ∪ {i} is frequent then 8:F k = F k ∪ {S ∪ {i}} Return j=1..k F j

Definition 14

 14 The Luxenburger basis of a formal context C is a set L B = {A → s,c B} of partial implications such that B is an upper cover of A in the intents lattice of C, the set {(A, B) | A → s,c B ∈ L B } of edges forms a spanning tree of the covering graph of the intents lattice of C and a single partial implication has the whole set of attributes as its conclusion.
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 52 Figure 5.2: Covering graph of the lattice of intents of Context 1

  Figure 5.3: A spanning tree of the covering graph of the lattice of intents of Context 1

Figure 5 . 4 : 1 •

 541 Figure 5.4: A second spanning tree of the covering graph of the lattice of intents of Context 1

Corollary 2

 2 The successor relation I defines a spanning tree of the covering graph of the intents lattice Since I defines a spanning tree of the covering graph of the intents lattice and A has a single predecessor, given Definition 14, the set of all A → s,c B such that A I B, A and B are intents, s = |A | and c = |B | |A | is the Luxenburger basis of the context. Figure 5.5 shows both the spanning trees of Φ and the intents lattice induced by I in our running example. Proposition 12 For any intent A, if A B then A I B.

Figure 5 . 5 :

 55 Figure 5.5: Spanning tree of Φ and of the intents lattice induced by I in Context 1 (differences with are in red)

  A and B such that A P B, Predecessor (Algorithm 14) computes the predecessor of B for the relation I . Algorithm 14 Predecessor(B) 1: INPUT A et B such that A P B 2: C = A 3: for every attribute i in B \ A in increasing order do 4: if B(C ∪ {i}) = B then 5: C = C ∪ {i} 6:

•

  cd → bcd • be → bde • abd → abcde • bcde → abcde along with the Luxenburger basis • ∅ → 5,0.6 b • ∅ → 5,0.4 c • ∅ → 5,0.6 d • ∅ → 5,0.6 e • b → 3,0.33 ab • b → 3,0.66 bd • c → 2,0.5 ce • d → 3,0.66 de • bd → 2,0.5 bcd • bd → 2,0.6 bde • ab → 1,0 abcde in the chosen order.

Proposition 16

 16 Let A and B be two elements of Φ I . The set B is a lower cover of A if and only if B = A \ C with C minimal such that ∀G ∈ Gen I (A), G ∩ C = ∅. Proof Let C ⊆ A be minimal such that ∀G ∈ Gen(A), G∩C = ∅. For any attribute i ∈ A \ C, the set (A \ C) ∪ {i} = A \ (C \ {i}) contains a minimal generator of A because of the minimality of C. Therefore, any B between (A \ C) and A is such that I(B) = A and cannot be in Φ I . Hence, A \ C is a lower cover of A.

Figure 6 . 1 :

 61 Figure 6.1: Φ {bc→bcd,cd→bcd,ae→abde}
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  Definition 12 Successor relation For any two attribute sets A, B ∈ Φ, B is a successor of A (noted A B) if and only if A is the lectically greatest strict subset of B in Φ. An attribute set always has a single predecessor and can have any number of successors, including none. The only notable exceptions are ∅ which doesn't have a predecessor and A which never has a successor. For any A ∈ Φ, there is a unique finite sequence A 1 , ..., A n of elements of Φ such that ∅

	Proposition 2 A 1	...	A n	A.

When A B, the set A is said to be the predecessor of B and the set B a successor of A.

Table 3 .

 3 1: Average ρ for nbAtt between 5 and 15 and avDesc between 1 and nbAtt-2

Table 3 .

 3 .2 presents these results.

	5	6	7	8	9	10	11	12	13	14	15
	1 0.0081 0.0088 0.0082 0.0070 0.0062 0.0060 0.0053 0.0054 0.0052 0.0052 0.0052
	2 0.0014 0.0038 0.0047 0.0052 0.0051 0.0048 0.0047 0.0045 0.0042 0.0039 0.0036
	3 0.0001 0.0011 0.0023 0.0029 0.0030 0.0029 0.0027 0.0027 0.0026 0.0028 0.0026
	4	0.0002 0.0011 0.0018 0.0022 0.0020 0.0020 0.0019 0.0018 0.0018 0.0017
	5		0.0005 0.0012 0.0018 0.0017 0.0016 0.0016 0.0015 0.0014 0.0013
	6			0.0010 0.0015 0.0018 0.0017 0.0014 0.0013 0.0012 0.0011
	7				0.0015 0.0020 0.0020 0.0016 0.0013 0.0011 0.0010
	8					0.0024 0.0023 0.0022 0.0016 0.0013 0.0011
	9						0.0032 0.0026 0.0022 0.0017 0.0013
	10							0.0054 0.0033 0.0026 0.0018
	11								0.0090 0.0040 0.0030
	12									0.0131 0.0046
	13										0.0211

2: Variance of ρ for nbAtt between 5 and 15 and avDesc between 1 and nbAtt -2

  .36 1.25 1.19 1.18 1.19 1.14 1.11 1.13 1.08 1.10 1.12 2 1.27 1.37 1.31 1.27 1.21 1.18 1.18 1.08 1.10 1.05 1.04 3 1.20 1.34 1.30 1.30 1.28 1.21 1.17 1.17 1.13 1.10 1.07 4 1.24 1.30 1.37 1.39 1.21 1.20 1.17 1.16 1.13 1.

	5	6	7	8	9	10	11	12	13	14	15
	1 110
	5		1.62 1.34 1.34 1.27 1.26 1.25 1.17 1.16 1.14
	6			1.32 1.33 1.37 1.30 1.27 1.30 1.19 1.17
	7				1.57 1.37 1.46 1.31 1.27 1.32 1.28
	8					1.65 1.47 1.38 1.32 1.29 1.25
	9						1.79 1.55 1.36 1.35 1.27
								1.65 1.54 1.61 1.44
									1.85 1.57 1.49
										1.75 1.65
											1.83

Table 3 . 3

 33 

: Maximal values of ρ for nbAtt between 5 and 15 and avDesc between 1 and nbAtt -2

Table 3 . 4

 34 .[START_REF]KI 2001: Advances in Artificial Intelligence[END_REF] shows the average number of sets simultaneously stored during the course of the algorithm for different values of nbAtt and avDesc.

	5	6	7	8	9	10	11	12	13	14	15
	1 6.7 10.5 14.5 19.1 24.2 29.7 35.4 41.7 48.3 55.0 62.0
	2 7.1 13.7 22.1 31.4 40.1 48.3 56.0 64.0 72.3 80.9 89.8
	3 7.0 14.3 26.8 43.3 61.3 80.3 98.2 115 129 140 152
	4	14.0 27.8 52.2 84.1 118 151 183 216 245 271
	5		27.2 53.6 100 160 225 283 336 386 437
	6			52.1 102 189 301 418 522 611 689
	7				99.5 195 354 554 760 944 1091
	8					189 369 655 1003 1353 1654
	9						360 698 1206 1796 2369
	10							678 1302 2196 3189
	11								1265 2399 3949
	12									2335 4371
	13										4240

: Average number of attribute sets simultaneously stored in memory when enumerating by order of increasing cardinality

  .11 shows the evolution of the CHAPTER 3. CHOOSING THE ENUMERATION ORDER

	avDesc\nbAtt 5	6	7	8	9	10	11	12	13	14	15
	1	12-14 18-25 25-39 33-54 41-61	50-77	60-83	70-102	81-115	92-127	103-141
	2	12-14 22-26 35-46 50-75 64-104 76-120 88-151 99-169	110-203	122-200	134-244
	3	12-14 22-24 38-49 62-93 88-152 116-186 142-249 168-334 189-352	207-388	223-380
	4		22-25 39-49 73-92 121-171 171-262 219-351 263-511 308-592	349-678	385-770
	5			39-55 76-93 142-186 235-315 337-509 430-686 514-900	590-1077 666-1262
	6				76-96 145-180 264-345 439-600 637-938 820-1291 978-1646 1113-1972
	7					146-191 270-350 496-657 826-1188 1185-1737 1522-2456 1800-2956
	8						271-360 505-672 944-1225 1529-2322 2145-3304 2690-4198
	9							498-701 982-1361 1791-2529 2809-3905 3847-5900
	10								959-1362 1883-2580 3293-4716 4995-7680
	11									1829-2616 3478-4975 5899-8891
	12										3378-5208 6317-9680
	13											6061-9927

  .[START_REF] Baader | A finite basis for the set of EL-implications holding in a finite model[END_REF] shows the average number of sets simultaneously stored during the course of the enumeration in lectic order for different values of nbAtt and avDesc.

	avDesc\nbAtt 5	6	7	8	9	10	11	12	13	14	15
	1	3.4 5.0 6.6 8.3 10.1 12.3 14.6 17.1 20.0 22.9 25.8
	2	3.9 6.9 10.9 15.0 18.4 21.3 23.6 25.7 27.7 29.9 32.3
	3	3.9 7.1 13.5 21.4 29.2 36.9 43.8 50.5 55.3 58.3 62.1
	4		7.0 13.8 26.0 41.5 57.2 71.2 83.7 96.3 108 117
	5			13.2 26.4 49.7 79.3 109.7 136.1 159 179 200
	6				25.6 51.1 94.0 148.2 203.1 253 294 330
	7					50.0 97.7 176.2 272.5 370 458 530
	8						96.7 186.8 326.2 491 656 802
	9							187.9 354.3 599 871 1145
	10								358.8 667 1085 1536
	11									691 1238 1947
	12										1306 2265
	13											2419
	Table 3.6: Average number of attribute sets simultaneously stored when enumerat-
	ing in lectic order									

Table 3 .

 3 8: Average number of attribute sets simultaneously stored in memory when enumerating in reverse lectic order

	avDesc\nbAtt 5	6	7	8	9	10	11	12	13	14	15
	1		8.5 12.8 17.2 21.7 26.5 31.4 36.6 42.11 47.6 53.4 59.6
	2		10.5 19.0 29.1 39.8 50.1 60.2 69.4 78.8 88.2 96.9 105
	3		10.9 21.5 38.6 58.9 79.8 100 120 139	156 187
	4			21.9 43.0 75.3 113 151 189 224	258 317
	5				44.3 84.3 143 211 279 342	400 508
	6					87.4 163 269 388 502	605 781
	7						170 311 499 699	891 1059 1196
	8							329 587 911	1244 1552 1802
	9								625 1094 1644 2182 2659
	10									1177 2011 2935 3795
	11										2184 3648 5179
	12											3987 6529
	13											7137
	avDesc\nbAtt 5	6	7	8	9	10	11	12	13	14	15
	1	14-18 22-33 29-52 36-66	44-76	52-92	61-100	70-117	79-132	88-140	98-164
	2	17-18 30-35 46-66 63-95	80-138 96-169 111-186 126-219	140-242	154-277	167-306
	3	17-18 34-35 58-68 89-129 122-189 155-237 185-291 216-350	243-408	267-460	292-531
	4		34-35 65-68 111-133 167-242 226-325 284-423 337-521	389-656	437-787	482-952
	5			67-68 124-133 208-262 307-426 410-587 504-828	591-927	673-1121 756-1312
	6				130-133 238-262 389-503 560-855 727-1065 880-1375 1018-1674 1144-1817
	7					250-262 452-519 719-1032 1004-1457 1279-2042 1524-2394 1728-2738
	8						482-519 853-1032 1312-1885 1782-2885 2218-3379 2578-4065
	9							917-1032 1592-2057 2371-3724 3123-4904 3792-6074
	10								1728-2057 2934-4106 4243-6696 5440-8812
	11									3218-4106 5341-7829 7502-12142
	12										5903-8203 9581-15628
	13											10676-16396
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• The Luxenburger basis is computed from the concept lattice

The basic form of the algorithm (see Algorithm 9) is classic. We start with ∅ and for each element of Φ found, we compute its closure. If it is not closed, it is a pseudo-intent and we add the new implication. Then, we compute its successors. The algorithm ends when it reaches A. Even though it is quite similar to Next Closure, two problems that are easily solved by the lectic order and the Next algorithm reappear here, namely choosing a set to consider and checking whether it is indeed closed under B -.

Remerciements

We have be, bd, bc, a. The set be is the smallest and is a successor. be = bde so be → bde is added to the basis. From be we construct bde.

We have bd, bde, bc, a. The set bd (from b) is the smallest and is a successor. bd = bd. From bd we construct bc, bde.

We have bde (from be), bde (from bd), bc (from b), bc (from bd), a. bde (from be) is the smallest but is not a successor. We have bde (from bd), bc (from b), bc (from bd), a. bde (from bd) is the smallest and is a successor. bde = bde. From bde we construct bc.

We have bc (from b), bc (from bd), bc (from bde), a. The set bc (from b) is the smallest and is a successor. bc = bcd so bc → bcd is added to the basis. From bc we construct bcd.

We have bc (from bd), bc (from bde), bcd, a. The set bc (from bd) is the smallest but is not a successor. We have bc (from bde), bcd, a. The set bc (from bde) is the smallest but is not a successor. We have bcd, a. The set bcd is the smallest and is a successor. bcd = bcd. From bcd we construct bcde.

We have bcde, a. The set bcde is the smallest and is a successor. bcde = abcde so bcde → abcde is added to the basis. From bcde we do not construct anything.

We have a. The set a is the smallest and is a successor. a = ab so a → ab is added to the basis. From a we construct ab.

We have ab. The set ab is the smallest and is a successor. ab = ab. From ab we construct abcd, abd and abde.

We have abd, abde, abcd. The set abd is the smallest and is a successor. abd = abcde so abd → abcde is added to the basis. From abd we do not construct anything because abcde is the final set.

We have abde and abcd. The logical closure of abde is updated to abcde. It is removed from the list. We have abcd. The logical closure of abcd is updated to abcde. It is removed from the list. We have no more sets. The algorithm ends.

The pattern previously described is clearly visible here. The amount of sets in memory is low when we reach singletons and increases fast in-between.

Example of Enumeration in the Reverse Lectic Order

Now, let us enumerate in reverse lectic order on the same running example :

From ∅ we construct a, b, c, d and e. We have a, b, c, d and e. The set a is the smallest and is a successor. a = ab so a → ab is added to the basis. From a we construct ab.

We have b, ab, c, d and e. The set b is the smallest and is a successor. b = b. From b we construct bc, bd, be.

We have ab, c, bc, d, bd, e and be. The set ab is the smallest and is a successor. ab = ab. From ab we construct abc, abd and abe.

We have c, bc, abc, d, bd, abd, e, be and abe. The set c is the smallest and is a successor. c = c. From c we construct cd and ce.

We have bc, abc, d, bd, abd, cd, e, be, abe and ce. The set bc is the smallest and is a successor. bc = bcd so bc → bcd is added to the basis. From bc we construct bcd.

We have abc, d, bd, abd, cd, bcd, e, be, abe and ce. The logical closure of abc is updated to abcd. We have d, bd, abd, cd, bcd, abcd, e, be, abe and ce. The set d is the smallest and is a successor. d = d. From d we construct de.

We have bd, abd, cd, bcd, abcd, e, be, abe, ce and de. The set bd is the smallest and is a successor. bd = bd. From bd we construct bc and bde.

We have bc (from bd), abd, cd, bcd, abcd, e, be, abe, ce, de and bde. The set bc is the smallest but is not a successor. We have abd, cd, bcd, abcd, e, be, abe, ce, de and bde. The set abd is the smallest and is a successor. CHAPTER 3. CHOOSING THE ENUMERATION ORDER abd = abcde so abd → abcde is added to the basis. From abd we do not construct anything.

We have cd, bcd, abcd, e, be, abe, ce, de and bde. The set cd is the smallest and is a successor. cd = bcd so cd → bcd is added to the basis. From cd we do not construct anything because bcd has an attribute lesser than c.

We have bcd, abcd, e, be, abe, ce, de and bde. The set bcd is the smallest and is a successor. bcd = bcd. From bcd we construct bcde.

We have abcd, e, be, abe, ce, de, bde and bcde. The logical closure of abcd is updated to abcde (and removed).

We have e, be, abe, ce, de, bde and bcde. The set e is the smallest and is a successor. e = e. From e we do not construct anything.

We have be, abe, ce, de, bde and bcde. The set be is the smallest and is a successor. be = bde so be → bde is added to the basis. From be we construct bde.

We have abe, ce, de, bde (from bd), bde (from be) and bcde. The logical closure of abe is updated to abcde (and removed). We have ce, de, bde (from bd), bde (from be) and bcde. The set ce is the smallest and is a successor. ce = ce. From ce we construct cd.

We have cd, de, bde (from bd), bde (from be) and bcde. The set cd is the smallest but is not a successor. We have de, bde (from bd), bde (from be) and bcde. The set de is the smallest and is a successor. de = de From de we do not construct anything.

We have bde (from bd), bde (from be) and bcde. The set cde (from bd) is the smallest and is a successor. bde = bde. From bde we construct bc.

We have bc, bde (from be) and bcde. The set bc is the smallest but is not a successor. We have bde (from be) and bcde. The set bde (from be) is the smallest but is not a successor. We have bcde. The set bcde is the smallest and is a successor. bcde = abcde so bcde → abcde is added to the basis. From bcde we do not construct anything.

In reverse lectic order, we can observe the number of sets skyrocketting, staying high and plummetting near the end.

Example of Enumeration in the Increasing Cardinality Order

And finally, the enumeration in order of increasing cardinality :

From ∅ we construct a, b, c, d and e.

We have a, b, c, d and e. The set a is one of the smallest and is a successor. a = ab so a → ab is added to the basis. From a we construct ab.

We have b, c, d, e and ab. The set b is one of the smallest and is a successor. b = b. From b we construct bc, bd, be.

We have c, d, e, ab, bc, bd and be. The set c is one of the smallest and is a successor. c = c. From c we construct cd and ce.

We have d, e, ab, bc, bd, be, cd and ce. The set d is one of the smallest and is a successor. d = d. From d we construct de.

We have e, ab, bc, bd, be, cd, ce and de. The set e is one of the smallest and is a successor. e = e. From e we do not construct anything.

We have ab, bc, bd, be, cd, ce and de. The set ab is one of the smallest and is a successor. ab = ab. From ab we construct abc, abd and abe.

We have bc, bd, be, cd, ce, de, abc, abd and abe. The set bc is one of the smallest and is a successor. bc = bcd so bc → bcd is added to the basis. From bc we construct bcd.

We have bd, be, cd, ce, de, abc, abd, abe and bcd. The set bd is one of the smallest and is a successor. bd = bd. From bd we construct bc and bde.
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We have bc (from bd), be, cd, ce, de, abc, abd, abe, bcd and bde. The set bc (from bd) is one of the smallest but is not a successor. We have be, cd, ce, de, abc, abd, abe, bcd and bde. The set be is one of the smallest and is a successor. be = bde so be → bde is added to the basis. From be we construct bde.

We have cd, ce, de, abc, abd, abe, bcd, bde (from bd) and bde (from be). The set cd is one of the smallest and is a successor. cd = bcd so cd → bcd is added to the basis. From cd we do not construct anything.

We have ce, de, abc, abd, abe, bcd, bde (from bd) and bde (from be). The set ce is one of the smallest and is a successor. ce = ce. From ce we construct cd.

We have cd (from ce), de, abc, abd, abe, bcd, bde (from bd) and bde (from be). The set cd (from ce) is the smallest but is not a successor. We have de, abc, abd, abe, bcd, bde (from bd) and bde (from be). The set de is one of the smallest and is a successor. de = de. From de we do not construct anything.

We have abc, abd, abe, bcd, bde (from bd) and bde (from be). The logical closure of abc is updated to abcd. We have abd, abe, bcd, bde (from bd), bde (from be) and abcd. The set abd is one of the smallest and is a successor. abd = abcde so abd → abcde is added to the basis. From abd we do not construct anything.

We have abe, bcd, bde (from bd), bde (from be) and abcd. The logical closure of abe is updated to abcde (and removed). We have bcd, bde (from bd), bde (from be) and abcd. The set bcd is one of the smallest and is a successor. bcd = bcd From bcd we construct bcde.

We have bde (from bd), bde (from be), abcd and bcde. The set bde (from bd) is the smallest and is a successor. bde = bde. From bde we construct bc.

We have bc, bde (from be), abcd and bcde. The set bc is the smallest but is not a successor. We have bde (from be), abcd and bcde. The set bde (from be) is the smallest but is not a successor. We have abcd and bcde. The logical closure of abcd is updated to abcde (and re- 

The implications can be transposed in the description logic syntax, replacing r(A) by ∃r.A :

Thus, the algorithm returns C, the lectically greatest intent that is a subset of B.

Algorithm 14, Predecessor, has to compute a maximum of |A| logical closures so the algorithm is in O(|A| 2 × |B|), which is the same complexity as Successors.

Algorithm

Now that we know how to obtain the predecessors of essential intents for I , we can construct the spanning tree of the intent lattice. Proposition 12 says that we can start from the spanning tree induced by and then compute the new predecessors of the essential intents that are successors of pseudo-intents. In order to do that, we can use Algorithm 10 and apply Algorithm 14 everytime an intent is the successor of a pseudo-intent. Algorithm 15 is a simple modification of Algorithm 10 that computes the spanning tree of the intents lattice and, thus, the Luxenburger basis along with the Duquenne-Guigues basis. B with A being a pseudo-intent, Proposition 14 states that the set C resulting from the application of the Predecessor algorithm to the set B is such that C I B and, as such, C → s,c B is in the Luxenburger basis. Therefore, the algorithm returns a subset of the Luxenburger basis. Every intent B is enumerated so every A → s,c B is found. Hence, the algorithm returns a superset of the Luxenburger basis and, as such, the Luxenburger basis itself.

The algorithm enumerates every intent and pseudo-intent. While we need to compute the successors of each set, we have seen in Section 3.2 that only the intents required any additional computation. As such, Successors is applied once to every intent. In order to compute the Luxenburger basis, we must compute the predecessor under I of the essential intents that are successors of pseudo-intents. There cannot be more essential intents than pseudo-intents so the number of sets we have to apply either Successors or Predecessor to is less than |Φ|. Predecessor and Successors having the same worst-case complexity, Algorithm 15 is in O(|Φ| × |A| 2 × |B|).

Example

In our running example, Algorithm 15 runs as follows :

From ∅ we construct a, b, c, d and e.

We have a, b, c, d and e. The set a is one of the smallest and is a successor. a = ab so a → ab is added to the Duquenne-Guigues basis. From a we construct ab. if A is a successor of the set it has been generated from then for every attribute i / ∈ A greater than min(A) do We have c, d, e, ab, bc, bd and be. The set c is one of the smallest and is a successor. c = c and c has been constructed from ∅ so ∅ → 5,0.4 c is added to the Luxenburger basis. From c we construct cd and ce.

We have d, e, ab, bc, bd, be, cd and ce. The set d is one of the smallest and is a successor. d = d and d has been constructed from ∅ so ∅ → 5,0.6 d is added to the Luxen-burger basis. From d we construct de.

We have e, ab, bc, bd, be, cd, ce and de. The set e is one of the smallest and is a successor. e = e and e has been constructed from ∅ so ∅ → 5,0.6 e is added to the Luxenburger basis. From e we do not construct anything.

We have ab, bc, bd, be, cd, ce and de. The set ab is one of the smallest and is a successor. ab = ab and ab is an essential intent that has been constructed from a. The Predecessor algorithm finds that b I ab so b → 3,0.33 ab is added to the Luxenburger basis. From ab we construct abc, abd and abe.

We have bc, bd, be, cd, ce, de, abc, abd and abe. The set bc is one of the smallest and is a successor. bc = bcd so bc → bcd is added to the Duquenne-Guigues basis. From bc we construct bcd.

We have bd, be, cd, ce, de, abc, abd, abe and bcd. The set bd is one of the smallest and is a successor. bd = bd and bd has been constructed from b so b → 3,0.66 bd is added to the Luxenburger basis. From bd we construct bc and bde.

We have bc (from bd), be, cd, ce, de, abc, abd, abe, bcd and bde. The set bc (from bd) is one of the smallest but is not a successor. We have be, cd, ce, de, abc, abd, abe, bcd and bde. The set be is one of the smallest and is a successor. be = bde so be → bde is added to the Duquenne-Guigues basis. From be we construct bde.

We have cd, ce, de, abc, abd, abe, bcd, bde (from bd) and bde (from be). The set cd is one of the smallest and is a successor. cd = bcd so cd → bcd is added to the Duquenne-Guigues basis. From cd we do not construct anything.

We have ce, de, abc, abd, abe, bcd, bde (from bd) and bde (from be). The set ce is one of the smallest and is a successor. ce = ce and ce has been constructed from c so c → 2,0.5 ce is added to the Luxenburger basis. From ce we construct cd.

We have cd (from ce), de, abc, abd, abe, bcd, bde (from bd) and bde (from be). The set cd (from ce) is the smallest but is not a successor. We have de, abc, abd, abe, bcd, bde (from bd) and bde (from be). The set de is one 83 CHAPTER 5. COMPUTING A BASIS FOR ASSOCIATION RULES of the smallest and is a successor. de = de and de has been constructed from d so d → 3,0.66 de is added to the Luxenburger basis. From de we do not construct anything.

We have abc, abd, abe, bcd, bde (from bd) and bde (from be). The logical closure of abc is updated to abcd. We have abd, abe, bcd, bde (from bd), bde (from be) and abcd (from ab). The set abd is one of the smallest and is a successor. abd = abcde so abd → abcde is added to the Duquenne-Guigues basis. From abd we construct abcde.

We have abe, bcd, bde (from bd), bde (from be), abcd and abcde. The logical closure of abe is updated to abcde (and removed). We have bcd, bde (from bd), bde (from be), abcd and abcde. The set bcd is one of the smallest and is a successor. bcd = bcd and bcd is an essential intent that has been constructed from a. The Predecessor algorithm finds that bd I bcd so bd → 2,0.5 bcd is added to the Luxenburger basis. From bcd we construct bcde.

We have bde (from bd), bde (from be), abcd, bcde and abcde. The set bde (from bd) is the smallest and is a successor. bde = bde and bde has been constructed from bd so bd → 2,0.6 bde is added to the Luxenburger basis. From bde we construct bc.

We have bc, bde (from be), abcd, bcde and abcde. The set bc is the smallest but is not a successor. We have bde (from be), abcd, bcde and abcde. The set bde (from be) is the smallest but is not a successor. We have abcd, bcde and abcde. The logical closure of abcd is updated to abcde (and removed). We have bcde and abcde (from abd). The set bcde is one of the smallest and is a successor. bcde = abcde so bcde → abcde is added to the Duquenne-Guigues basis. From bcde we do not construct anything.

We have abcde. The set abcde is one of the smallest and is a successor. abcde = abcde and abcde is an essential intent that has been constructed from abd. The Predecessor algorithm finds that ab I abcde so ab → 1,0 abcde is added to the Luxenburger basis.

The algorithm ends, having computed the following Duquenne-Guigues basis

Our algorithm, however, computes everything in a single step. To the best of our knowledge, this has not been proposed before. Of course, a similar result could be obtained by modifying Next Closure to make it compute the predecessor of each intent. The most obvious method would be to apply Successor to intents that have not been generated by one of their subsets. But this would be slightly less efficient than our algorithm because Predecessor would be applied more often, resulting in a significant increase in the number of logical closures. More efficient methods to construct a spanning tree of the intents lattice during the execution of Next Closure could surely be thought of.

The properties of algorithm presented in Section 3.3 still hold. Most importantly, the order in which implications and partial implications are enumerated can still be chosen. Since Successor and Predecessor are polynomial and every element of Φ results in an element of the basis of associal rules, the algorithm has a polynomial delay.

algorithm and optimizations can be thought for each order, which could change the results. Further research has thus to be done on the subject.

Using our general-case algorithm, we returned to our initial problem with relational data in general and description logics in particular. We showed that the flexibility with the orders allowed us to apply our method to relational contexts in the same fashion as Next Closure. Therefore, all our results on traditional contexts also apply to relational contexts. We discussed the type of relational information that could be represented using our method and found that all knowledge of the form "being in relation with at least n objects that are..." could be treated.

Finally, we applied our algorithm to the domain of association rules mining. Implications being certain association rules, this seemed natural. We showed that, by only slightly modifying our algorithm, we were able to compute the Luxenburger basis of a context alongside the Duquenne-Guigues basis. As such, we showed that our algorithm can directly compute a basis of association rules.

Concerning the complexity of enumerating pseudo-intents, we feel that the lack of results on non-lectic orders allows for the possibility of a polynomial-delay algorithm. Next Closure only enumerates in the lectic order and attribute-incremental and divide-and-conquer approaches do not allow for the order to be finely tuned. Because of this, we believe that our work is a step in the right direction as it provides an algorithm that enumerates in any order that respects the inclusion relation. While we do not claim to have a polynomial delay, we think that the further study of the different orders is promising. 
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