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Summary

Dynamic contrast-enhanced ultrasound (DCE-US) is an imaging modality used in clinical and pre-clinical

studies to evaluate the functional flow in a tissue using an ultrasonic contrast agent made of coated mi-

crobubbles. Because the microbubbles have a strictly intravascular distribution and a non-linear response

to ultrasound, sequences imaging the passage of the contrast agent in the tissue can provide information

about functional microvascular flow.

The aim of this work was to develop new methods to achieve a more robust, in vivo evaluation of the

functional flow within the tumor vascular network with DCE-US. Three specific aspects of data analysis

were addressed: 1) insuring best fit between parametric flow models and the experimentally acquired

contrast-enhanced echo-power curves, 2) compensating sequences for movement occurring during data

acquisition and 3) evaluating a new method to discriminate between tissues with di�erent functional flow.

A multiplicative model is proposed to better describe the dynamic contrast-enhanced ultrasound sig-

nal. Based on this multiplicative model, a new parametric regression method of the signal is derived.

Characterization of the statistical properties of the noise and signal is also used to develop a new method

simulating contrast-enhanced ultrasound 2D+t sequences. The signal samples (or pixels) in these simu-

lations present spatial correlation and statistical distribution properties that well approximate those in

experimentally-acquired contrast image sequences. A significant decrease (between 25 and 60%, p<0.05)

in the variability of the functional flow parameters extracted according to the new multiplicative-noise

fitting method is demonstrated using both simulated and experimentally-acquired sequences.

The new sequence simulations are then applied to test a method combining motion estimation and

flow-parameter estimation within a single mathematical framework. Because this new method does not

require the selection of a reference image, it reduces operator intervention. Tests of the method on both

simulations and clinical data and demonstrate significantly in a majority of sequences a more accurate

motion estimation than the commonly used, mutual-information-based image registration method.

Finally, a non-parametric method, developed by Yves Rozenholc, for perfusion curve clustering is

evaluated on 2D+t sequences. The aim of this method is to regroup similar filling patterns without a

priori knowledge about the patterns. The method is tested on simulated and on pre-clinical data.

The methods developed improve robustness of DCE-US evaluations through more rigorous signal

analysis, reduction of operator-dependent intervention and consideration of the spatial heterogeneity of

microvascular flow patterns. In the future, e�ect such as attenuation could be also considered and these

methods could also be applied to other ultrasound imaging configurations such as targeted DCE-US or

3D+t sequences.
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Notations

Recurrent notations:

• Region of interest : ROI

• Region of analysis : ROA

• Transit time distribution probability density function: Tr(t)

• Transit time distribution cumulative density function: Trcdf (t)

• Measured signal,contrast echo-power data curves : f(t)

• Concentration : C(t)

• Input function: I(t)

• Echelon function : U(t)

• Parametric model of signal : u(◊, t)

• Vector of parameters : ◊

• Motion : T

• Electronic noise : ‘

• Speckle noise : v



Chapter 1

Introduction

1.1 Context

With 355 354 cases and 148 378 deaths in 2012, cancer is one of the most prevalent diseases in France.

It is the first cause of mortality [1], and is therefore a major concern in public health policy. Between

1980 and 2012, cancer incidence (assessed based on the number of new cases normalized with respect

to the population) has increased by 39% while the mortality has decreased by 1.3% [2]. Several factors

contribute in di�erent ways to these figures. Improved therapeutic care, such as that due to advances in

chemotherapy and the development of targeted therapy, has led to a decrease in mortality. At the same

time, the development of better detection and monitoring tools has enabled earlier diagnosis and even,

in some cases, overdiagnosis (detection of disease that will never cause symptoms or death).

In this context, medical imaging is an indispensable tool for radiologists. There is a need for medical

imaging techniques that can go beyond the bounds used currently for diagnosis and therapeutic follow-up.

Imaging techniques able to more precisely characterize the e�ect of treatments on tumors in pre-clinical

or clinical studies could have a major impact both on cancer detection and on individualized therapy

and drug development[3]. The development of imaging modalities able to capture subtle functional

information in an accurate and robust way is, therefore, one of the essential elements in the fight against

cancer.

1.1.1 Therapeutic options

In France, patients are treated using three main types of therapy: radiotherapy (176 000 patients in

2011), chemotherapy (269 000 patients) and surgery (376 000 patients) [1]. Radiotherapy consists in

irradiating tumours using X-rays to kill tumorous cells. However, the dose of ionizing radiation a patient

can receive is limited, and radiotherapy can damage surrounding tissues. Moreover, radiotherapy is less

e�ective when tumours are hypoxic because oxygen is an e�cient radio-sensitizer [6]. Surgery consists

in removing the tumour. Its main drawbacks are that it is highly invasive and often a source of anxiety

for the patient. Moreover, some tumour sites are not surgically accessible, and surgery can miss cells or

metastases that have spread from the primary tumour. Radiotherapy and surgery are e�cient when the

tumorous cells are localised in an identified part of the body. When they are dispersed, chemotherapy

is typically applied in conjunction with radiotherapy or surgery to pursue tumorous cells that may have
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Figure 1.1: Illustration of the role of angiogenesis in tumoral development (adapted from Bergers and

Benjamin [4])

Figure 1.2: Image acquired using optical frequency domain imaging. At the center of the image, MCaIV

tumor transplanted in the left hemisphere of a mouse brain (from Vakoc et al. [5]).
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spread throughout the body. It consists in the administration of cytotoxic molecules through the vascular

network to kill the tumorous cells. However, during chemotherapy, toxicity to healthy tissues also occurs

and tumours can develop resistance to the therapeutic e�ects.

More recently, anti-angiogenic and antivascular drugs have been developed to target the vascular sys-

tem that develops to support tumors. Angiogenesis is the process by which tissues create new vessels

from pre-existing ones in order to provide their metabolism with enough nutrients and oxygen. Angiogen-

esis plays a major role in tumour growth beyond a few millimetres and to metastatic dissemination ([7],

Figure 1.1). Tumours induce a shift in the balance between pro and anti-angiogenic factors in tumoural

angiogenesis which leads to a disorganised growth of the vessels surrounding the tumour. Figure 1.2

illustrates the heterogeneous and chaotic characteristics of the tumoural vascularization.

Because angiogenesis is critical for tumour development, therapies capable of regulating it have been

the subject of growing interest. Anti-angiogenic therapies have been shown to lead to a reduction of

tumoural blood flow [8, 9, 10]. The chaotic characteristics of the tumoural vascular network are also

believed to prevent e�cient targeting of the tumour with cytotoxic therapies [11]. New therapeutic

strategies have entered trials to investigate use of anti-angiogenic in conjunction with chemotherapy to

normalize the tumour vasculature and to enhance delivery of cytotoxic molecules [12]. However, due

to the very large number of pro and anti-angiogenic pathways, patients can develop resistance to anti-

angiogenic therapy, by bypassing the targeted pathway [13]. Indicators of the microvascular network

structure of the tumour can play a central role to evaluate more precisely the e�ects of anti-angiogenic

therapies on the vascular network and to detect the development of drug resistance.

1.1.2 Role of detection and monitoring techniques

Each therapeutic option has specific targets, limitations and undesirable side e�ects. Therefore, thera-

peutic choice must be based on accurate diagnosis and sensitive monitoring to garde against ine�cient

or unnecessary therapy. Tumour monitoring and characterization can also play a central role in therapy

development. Pre-clinical studies which aim at appreciating the e�ciency of a new drug also require

accurate tumour characterization and monitoring techniques. Imaging methods able to detect early re-

sponse (or non-response) to therapy can provide early stage end-points for pre-clinical evaluations of new

drugs. This could both accelerate drug development and reduce its cost. Accurate characterization and

monitoring requires techniques able to assess morphological, molecular or functional indicators specific

and predictive of tumour state.

1.1.3 Indexes used to follow cancer therapy

Morphological

Morphological indicators are widely used in clinical practice. Tumour size has been shown to be an

indicator of the tumour’s therapeutic sensitivity [14] or of the metastasis probability [15]. The current

clinical standard for the evaluation of cancer therapy is based on a set of recommendations toward

classification of a tumor as "stable", "in regression" or ’in progression", known as the RECIST criteria

[16]. However, by definition, these criteria do not provide information about the functional state of a

tumor. For instance according to this criteria, a tumour with a large necrotic core would be assessed to
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be of equal risk as a highly vascularized tumor of the same size.

Molecular

Because tumour growth or functional modifications lead to the release of specific molecules, being able

to follow the evolution of the concentration of those molecules can provide valuable information about

the type, the stage or the grade of the disease [17]. The development of new technologies that are able to

simultaneously assess the concentration of thousands proteins has permitted great progresses in diagnosis

and tumour classifications [18].

Functional

Functional indicators provide information about the physiological activity of the tumour and can therefore

allow a more precise monitoring of cancer. In particular, microvascularization is a good index for the

assessment of tumour angiogenesis. Microvascularization designates the blood circulation in capillaries

having diameters between 5 and 25 µm. The velocity of blood in capillaries is on the order of 0.7 mm/s [19].

Doppler ultrasound can provide information about the flow speed and direction, however its resolution

is limited to vessels with a size greater than 200 µm [20]. Developments such as Power Doppler or, more

recently, ultrafast Doppler [21] have significantly improved the resolution down to approximately 100 µm,

but the resolution is still too low to fully assess the microvascular structure in tumours. Because contrast

agent uptake in a microvascular network can provide functional information about the microvascular

flow, dynamic contrast-enhanced (DCE) imaging modalities, where a contrast agent enhancing signal is

injected in the vascular network of the patient, have been used to follow tumoral angiogenesis [22, 23, 24].

The choice of the imaging modality between DCE-MRI, DCE-CT and DCE-US is made according to

the location of the tumour, its characteristics, and the information to retrieve. Compared to the other

modalities, DCE-US presents several advantages: it is a non-toxic modality, that can be brought directly

to the patient, with a relatively low cost. Moreover, ultrasound contrast agent is strictly intravascular

which allows to investigate tumours vascular bed with model that are simpler than in MRI or CT.

1.2 Dynamic contrast-enhanced ultrasound

1.2.1 Ultrasound contrast agent

Ultrasonic contrast agents are microbbubles of gas, encapsulated in a lipidic or another type of coating.

The gas used in the first, commercially available contrast agents was air (for instance Echovist R• from

Bayer or Albunex R• from Molecular Biosystems), but this formulation has been progressively replaced

by gasses that are less soluble in plasma such as perfluorocarbons (PFCs), to improve their stability in

blood. Microbubbles coatings (e.g. albumin, phospholipids) have been developed to make microbubbles

more resistant and increase their circulatory lifetime [25].

More recently, targeted microbubbles have emerged [26]: the surface of these microbubbles is linked

to peptides or ligands that specifically associate with the targeted biomolecules. Therefore, they attach

at sites where the targeted-molecule is expressed.

Because of the di�erence in density between their gaseous core and blood, microbubbles have a high

compressibility. This, coupled with their capacity for asymmetric oscillation in the acoustic field, confer
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Figure 1.3: Schematic diagram of a miccrobubbles and of its structure.

to microbubbles a strong and specific non-linear acoustic response [27, 28]. This non-linear response can

be exploited to enhance contrast of vessels relative to the surrounding tissues using specific ultrasound

sequences. Their sub-micrometric size gives them a resonance frequency in the range of frequencies used

in medical ultrasonics (1-10 MHz).

The small size of microbubbles also provides them with the ability to circulate in the whole vascular

and microvascular network, while remaining strictly intravascular (as opposed to CT or MRI contrast

agents that extravasate). Due to this, DCE-US can be used as blood flow tracers to evaluate the vascular

volume and microvascular flow. To reliably make such evaluations with ultrasound contrast agents,

specifically adapted data acquisition techniques are necessary.

Contrast ultrasound image formation

In classical B-mode imaging, the envelope of the received pulses (RF signal) is computed and used to

form an image. In DCE-US imaging, contrast sequences exploiting the strong non-linear component of

the microbubbles’ acoustic responses have been developed to improve contrast between the microvascu-

lar network and other tissues. In particular, harmonic imaging, aiming at forming an image with the

backscattered signal at 2f when the transmitted signal has a fundamental frequency of f , have been

highly popular in DCE-US due to strong non-linear response of microbubbles. Several harmonic imaging

sequences have been proposed, consisting in emitting several pulses with di�erent characteristics and then

processing the received echoes to predominately retain harmonic components due to the microbubble re-

sponse. The first and most common sequence is pulse inversion [29]. It consists in summing the response

to two out-of-phase pulses to suppress echoes from linear scattering structures. Other techniques such

as contrast pulse sequence (CPS) [30], exploit phase and amplitude modulation to extract the non-linear

component of the returning echoes. Beside harmonic imaging, sub-harmonic imaging has also been pro-

posed to improve detection of microbubbles using their unique sub-harmonic response [31]. It presents

the advantage to allow a better suppression of the surrounding tissue than harmonic imaging [32], be-

cause sub-harmonic response of tissue is generally a lot weaker than their harmonic response. All these

technique aim at suppressing signal components that do not come from microbubbles. After non-linear

signal processing has been applied to detect the microbubble response, this signal must be processed to

form an image.
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1.3 Objectives of this thesis

Angiogenesis plays a key role in tumour development. DCE-US can potentially be used to follow modifica-

tions in the microenvironment and the microvascular network of tumour during development and therapy.

However, the capacity of DCE-US to fulfil this potential is still limited by several factors. Variability in

DCE-US data due to factors such as injection profile, image-plane selection or physiological variations

limits the repeatability of measurements. The development of repeatable in vivo acquisition protocols and

of robust and easy-to-interpret biomarkers are, therefore, keys to make DCE-US more e�cient and more

widely applicable in pre-clinical and clinical studies. This thesis is focused on a better characterization of

the quantification process in DCE-US, and the development of new processing techniques based on this

characterization. By developing better techniques for the analysis of DCE-US sequences, a more precise

and accurate indication of microvascular flow modifications during therapy will be achieved.

In Chapter 2, the microvascular flow quantification process using DCE-US is described in detail using

a linear system formalism. Each step that composes the process is identified, examples from the literature

showing the state of the art for each step in the DCE-US quantification process are described. The sources

of variability in the process are highlighted so that they can better be addressed in the subsequent chapters

of this thesis.



Chapter 2

Linear system formalism for flow

quantification using dynamic

contrast-enhanced ultrasound

2.1 Overview of flow quantification in DCE-US

As presented in the introduction, the aim of flow quantification techniques in the context of angiogenesis

monitoring is to follow modifications of the microvascular network of a tumour, in order to evaluate and

quantify its response to therapy. This vascular network can be locally characterized by its transit time

distribution Trx(t) in a region of analysis (ROA) x, or its cumulative density function Trx,cdf (t). The

transit time designates the time the contrast agent stays in the ROA which is a quantity of clinical interest

because it is related to the tortuousness of the vascular network, its homogeneity and its density [33].

The ROA designates the area from which the signal to analyse is extracted. ROAs are included in the

region of interest (ROI), which is the area of interest for angiogenesis monitoring (typically drawn around

the whole tumour). Flow quantification techniques using contrast-enhanced imaging aim to provide

quantitative flow parameters that correlate with the properties of Trx(t). However, those flow parameters

are estimated via an imaging process made of several steps which introduce sources of variability.

Figure 2.1 schematically summarizes the succession of steps (represented by boxes) for the process

of flow quantification using DCE-US: from the contrast agent injection to the extraction of quantitative

flow parameters. The input and output at each step are represented by arrows while the parameters

and the external conditions that e�ect each step are described above each box. In the following sections

of this chapter, a general formalism using linear systems is proposed to model flow quantification using

DCE-US. The important steps of flow quantification are then explained based on this formalism to better

identify the sources of variability. The main approaches that have been proposed in the literature to

reduce parameter estimation variability are summarized in each section.
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Figure 2.1: Schematic diagram of the main steps of flow quantification in a given tissue using DCE-

US. Blue arrows represent input and output, boxes represent processing, and quantities above boxes are

parameters or external elements that e�ect the processing.
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2.2 Linear system formalism relating microvascular flow to DCE-

US data analysis

The linear system formalism is a widely used formalism to describe electronic circuits or mechanical

systems. It has also been used in the development of quantification techniques for imaging modalities such

as Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) and Computed Tomography

(DCE-CT). Linear system formalism o�ers a useful approach to describe and better understand the

influence of individual steps in a quantification process on the measured output. However, only a few

groups developing deconvolution methods have applied it to the problem of quantification in DCE-US[34,

35, 36].

Mathematically, a linear time-invariant system satisfies the properties of superposition and scaling

[37]. Under these conditions, the output of the system f(t) can be calculated as the convolution of an

input function I(t) with the impulse response of the system h(t):

f(t) =
⁄ t

0
I(t ≠ ·)h(·)d· = I ú h(t) (2.1)

In the context of DCE-US, the input function I(t) represents the concentration of contrast agent that

arrives in the ROA at a time t. hx(t) is the impulse response of the microvascular network in the ROA

around position x. It is related to the transit time of the contrast agent in the analysis region: hx(t)

represents the proportion of contrast agent that stays, at most, t seconds in the analysis region. Therefore,

h(0) = 1 and h(Œ) = 0. This function is related to the cumulative density function of the transit time

distribution hx(t) = 1 ≠ Trx,cdf (t). The output function f(t) is the function Cx(t), which represents the

concentration of contrast agent in the ROA centered on x at time t.

The function Cx(t) is never directly measured: it is evaluated via the signal fx(t) acquired using

an imaging modality. The relationship between fx(t) and Cx(t) depends on the modality, the imaging

conditions and the acoustic properties of the imaged medium (e.g. scattering cross section, attenuation in

the medium). In DCE-US, one fundamental assumption is that the relationship between contrast agent

concentration and average, measured contrast echo-power can be considered linear throughout a certain

range of agent concentrations. Beyond an agent and system-dependent threshold, this relationship no

longer holds and fx(t) remains constant as the contrast concentration increases [38, 39], and can even

decrease due to multiple scattering and attenuation e�ects from contrast agent microbubbles. Within the

range of concentrations commonly used when quantifying DCE-US, it can be assumed that the expected

value of fx(t) follows the relationship:

E[fx(t)] = aCx(t) + fx0 (2.2)

with a a constant and fx0 the level of signal without contrast agent. This linear relationship between

signal and concentration can only be written via the expected value of the signal: random processes make

the direct relationship between fx et Cx non-deterministic.
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2.3 Factors influencing the input function

2.3.1 Injection

Because it has a strong influence on I(t) in Eq. (2.1), the injection of contrast agent is an important

source of variability for DCE-US, in particular for bolus injection. Injections are generally performed

manually.

To give an order of magnitude of the variations introduced by the injection phase, Dizeux et al.

estimated the coe�cients of variation (CV) for flow parameters assessed in an in vitro flow phantom

and in the renal cortex of mice for manual and controlled-injections. Lognormal curves fits to data from

seven repeated in vitro injections are presented in Figure 2.2. Manual vs controlled injection CVs were

79% and 40%, respectively, for mean transit time (MTT) and 13% and 10% for peak enhancement (PE)

assessed in the renal cortex of mice1. These results demonstrate that injection of the contrast agent is an

important part of the DCE-US imaging process and that it contributes to its variability, in particular,

when no modulation of the entry function is performed after the injection.

Figure 2.2: (A, B) - Fitted curves from experimentally acquired data using a lognormal model obtained

from in vitro experiments using, respectively, controlled injection and manual injection. (C, D) - Unpro-

cessed data (from Dizeux et al. [40])

1The flow parameters, MTT and PE, are described in detail in Section 2.5.6
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2.3.2 Input function modulation

After injection, contrast agent flows through the vascular network and through di�erent tissues until

it reaches the tissue of interest. The shape of the bolus concentration vs. time curve describing the

arrival of microbubbles in the ROA, characterizes the function I(t). In the case of bolus injection, the

agent concentration entering the tissue of interest is unknown and influenced by both injection variability

and the tissues it has traversed before reaching the tissue of interest. It is generally assumed that the

input function is identical for the entire analysis region. This is a strong hypothesis that is probably

quite far from the reality. However, in the absence of 3D data acquisition, it cannot be more precisely

characterized.

Microbubbles respond to moderate ultrasonic excitation by oscillating, but when the mechanical index

of ultrasound pulses is strong enough, it can lead to the rupture of the microbubble shell and to partial

or total destruction of the contrast agent microbubbles. This property can, therefore, be used to locally

modulate the input function I(t).

The destruction-replenishment (DR) method, proposed for the first time in [41] uses this property.

It consists in destroying the contrast agent using a series of high MI pulses and observing the kinetics

of the replenishment to extract flow parameters. Mathematically, if the destruction is total and if the

imaged plane is the same as the destruction plane, this is equivalent to having a step function as an

input I(t) = U(t). In the framework of Eq (2.1), this means that Cx(t) =
s t

0 h(·)d· : Cx is the integral

over time of hx(t). However, studies [42] have demonstrated that this is only an approximation, because

the beam profile does not act like a step but rather as a Gaussian-shaped function. The DR approach

can nonetheless decrease the variability of the input function by reducing the influence of the vascular

entry network. In order to limit the destruction of contrast agent due to the imaging pulse, intermittent

imaging technique have been proposed in conjunction with DR method [43, 44]. It consists in decreasing

the imaging frame rate to decrease the exposure of microbubbles to ultrasound.

Another method known as contrast depletion burst imaging (CODIM) was proposed in 2002 by Eyding

et al. [45]. It is based on successive insonations of the contrast agent which lead to partial destruction

of the contrast agent. The concentration decreases until an equilibrium is reached between the partial

destruction and the region refill by the wash-in of new microbubbles. This technique o�ers higher SNR

than the DR technique. The fitting of an adapted parametric model allows estimation of the flow rate in

the tissue.

Recently, a method that combines bolus injection and destruction replenishment has been proposed by

Jirik et al. [36]. It consists in imaging the passage of the bolus of contrast agent followed by a destruction

with a high mechanical index pulse. Because with DR, the input function I(t) is assumed to be known, it

can improve the deconvolution of Cx(t) to the bolus input. Mathematically, this is equivalent to having,

in the same echo-power data curve, the response of the vascular network (characterized by its impulse

response h(t)) to an unknown bolus input injection Ibolus(t) and to a destruction-replenishment input

(I(t) = U(t)).

All the techniques presented above aim to estimate flow parameters with the least possible dependence

on the injection function and the vascular entry network. Each method for acoustic modulation of the

input function has advantages and limitations. The destruction replenishment method leads to a response

that is approximately the integral of the impulse function hx(t). This integration acts like a low pass
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filter on the data and leads to a loss of temporal resolution. The DR approach is thus well adapted for

the estimation of parameters related to the total quantitity of microbbubles flowing through the ROA

but is less e�cient for estimation of parameters related to the flow dynamics. The same is also true for

CODIM. Additionally, when using the CODIM approach, depth and region-dependent attenuation can

make it di�cult to optimize the MI so that the equilibrium level between microbubble destruction and

refill is reached on a time-scale allowing sensitive evaluation of the flow. Finally, the technique developed

by Jirik et al. is promising but requires a complex acquisition protocol and processing.

2.4 Obtaining contrast echo-power data

2.4.1 Imaging settings

Once the contrast agent has been injected and, if required by the selected contrast-imaging method, the

input function has been acoustically modulated, the microbubbles arrive in the imaging plane according

to the input function I(t). The image acquisition phase consists in acquiring a set of signals Gx(t) in the

region of analysis x.

Because microbubbles are sensitive to acoustic destruction, the mechanical index must be set to a

relatively low value (generally between 0.02 and 0.25) in order to minimize microbubble destruction.

Because even at low MI some microbubbles are destroyed by the insonification used to aquire each

imaged frame, a compromise has to be found between frame rate and microbubble destruction. Frame

rate is typically set to values between 2 and 10 Hz, depending on the tissue to image. The destruction

of microbubbles resulting from imaging is generally neglected, except when using the CODIM approach

which is based on acoustic destruction of some percent of the contrast microbubbles. The center frequency

of the acoustic pulse is chosen based on the contrast agent and ultrasonic transducer used as well as the

spatial resolution required for the examination. It is typically between between 1.5 MHz to 7 MHz.

Gauthier et al. [46] and Stride et al. [47] studied the e�ect of several scanner settings (acoustic

gain, mechanical index, focal depth, acoustic pulse center frequency) on the extracted values of flow

parameters. They demonstrated that scanner settings significantly e�ect estimated parameter values.

To minimize variability in estimations from these e�ects, image settings are kept as fixed as possible in

DCE-US studies.

2.4.2 Extraction of linear echo-power from images or radio-frequency data

To extract information from DCE-US data about the vascular network, it is necessary to know the nature

of the relationship between the image intensity and the concentration in contrast agent. As explained

in Section 2.2, there is an assumed linear relationship between concentration and contrast echo-power

throughout the range of concentrations encountered in diagnostic contrast-ultrasonography. However,

echo-power fx(t) must be recovered from the information recorded by the imaging system. Several cases

can be encountered, depending on the operating context.

When the ultrasound imaging system provides access to the radio frequency (RF) data, the contrast

echo-power can be directly estimated. Some imaging-system manufacturers provide access, via a propri-

etary software, to a "DICOM Raw data" format that has undergone fewer display processing steps than

the images displayed on the imaging system screen (spatial interpolation, application of a colormap...)
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[48, 49]. Moreover, this format presents the advantage to be represented with a number of bits which is

higher than the number of bits used to represent false color images displayed by the ultrasound imaging

systems. However, this format is not available with all ultrasonic imaging systems, and it requires the use

of specific software that may not be su�ciently flexible for specific applications in terms of the selection

of regions of interest and analysis models [50].

Finally, when only compressed-video images in JPEG files (DICOM JPEG) are available, algorithms

to approximate contrast echo-power from JPEG pixels intensity must be used. Recent publications [50]

and software have demonstrated techniques to estimate contrast echo-power from pixel intensity and the

limits for the validity of such estimations.

2.5 Post-processing

2.5.1 Attenuation compensation

Due to the physical nature of the ultrasonic waves and the properties of biological media, it is well known

that ultrasonic imaging is e�ected by attenuation. This attenuation is typically compensated for image

visualisation using Time Gain Compensation (TGC), but this technique assumes that the attenuation is

only a function of depth.

In the case of harmonic imaging and in particular of DCE-US, more sophisticated methods need to be

developed because time-variable microbubble concentrations and their nonlinear acoustic response can

modifiy the temporal and frequency-dependent nature of the attenuation. Microbubble attenuation has

been investigated and shown to be dependent on concentration, frequency, and acoustic pressure [47].

The presence of attenuation can a�ect the quantification. In practice, that means that the relationship

between fx(t) and Cx(t) in Eq(2.2) is not constant throughout the whole image. Attenuation can,

therefore, modify the values of the flow parameters that are related to the amplitude of the signal.

Attenuation compensation methods, taking into account non-linear attenuation, scattering [51] or local

in vivo concentration of contrast agent [52] have therefore been proposed to address the specificities of

attenuation in DCE-US.

2.5.2 Motion compensation

Motion is almost systematically present in acquired in vivo DCE-US sequences because of breathing,

cardiac and probe motions. Fig. 2.3 shows echo-power data curves extracted from a ROA selected as

the whole ROI delimiting a hepatocellular carcinoma selected on a sequence acquired in vivo in a human

patient. Fig. (a) and (b) present images of the sequences between which the patients has moved. As

a consequence in (b) the ROA does not correspond to the tumour any more. Fig. 2.3 (c) presents

the echo-power data curves extracted from the ROAs with and without motion compensation and the

corresponding lognormal flow-model fitting the curves. This example demonstrates how motion can

introduce large variations in the echo-power data curves and significantly modify fitting. The practical

importance of this in preclinical and clinical follow-up studies is significant. In the case it is not possible

to robustly correct for motion, motion degrades the spatial resolution of the estimated flow and some

sequences or ROAs have to be excluded from final analysis [74].
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 t = 10s 
(a)

 t = 12s 
(b)

(a) (b) 

(c)

Figure 2.3: (a)-(b) DCE-US sequence acquired in a human hepatocellular carcinoma, at t=10 s and

t=12 s. The ROA is marked in green. The patient clearly moved between the two images. (c) Echo-

power data curves extracted from the green ROA with and without registration. A lognormal parametric

flow model has been fit to each curve. The times at which images (a) and (b) have been extracted are

indicated with arrows.
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To limit the e�ects of motion on quantification, several approaches are possible. The simplest is to

ask the patient to hold his breath during the exam. However, this can be problematic for acquisitions of

more than 30 seconds, and it is not applicable in animal studies. It is also possible to select regions of

interest that are far from the limit of the tissue and homogeneous. However, this limits the possibility of

quantification in small lesions or peripheral zones.

Another strategy is to use gating techniques: this consists in selecting and estimating flow parameters

only on frames where anatomical structures are located at the same position. Mule et al. [53] proposed an

approach based on the analysis of local contrast echo-power variations and principle component analysis.

With this approach, images in the sequence with the same phase of the breathing cycle were extracted

to obtain a sub-set of images from approximately the same position. A more recent publication by

Christofides et al. [54] proposed another gating approach: the position of the largest moving structure

of the sequence was detected for each frame. An echo-power data curve could then be extracted from

this structure, and the frequency corresponding to breathing was extracted from it. Again, only frames

corresponding to the same breathing phase were used for final analysis. Gating methods are robust to

out-of-plane motion and provide a rapid means to handle motion. However, because a large part of the

sequence is discarded, these techniques lose information. Such loss can be problematic for observing brief

phenomenon such as the initial arrival of contrast in the ROI. Moreover, these methods can fail if the

motion is not cyclic or has other frequency components than those due to the breathing motion.

Another strategy is to use registration to compensate for motion in each image. Registration aims to

align two images (the moving image and the reference image) by maximizing a similarity criteria between

them. In addition to finding a robust and e�cient similarity criterion, the challenge is to define the

reference image with respect to which the whole sequence is to be registered. Due to the low contrast-

to-noise ratio prior to contrast arrival and the lack of stable landmarks typical of harmonic imaging

sequences, the problem is particularly di�cult in DCE-US.

Current methods used in DCE-US realign the whole sequence with respect to a reference image

defined by an operator. Di�erent strategies have been used to compute the similarity metric. Rognin et

al. [55] used a multiple mask strategy: the operator defines a delimitation mask around the region to

be realigned and a feature mask that contains well-identified features of the organ. The metric is then

computed and minimized over the intersection between these two masks. Zhang et al. [56] and Bouhlel et

al. [57] computed a similarity criterion which combined information from harmonic contrast and B-mode

images. The main drawbacks of existing methods is that they require operator-dependent selection of the

reference image. In addition, any reference image chosen in a DCE-US sequence is unlikely to provide

good representation for the entire sequence, because the distribution of intensity in the frame changes

with the arrival of the contrast agent in the tissue.

2.5.3 Echo-power data curve processing

Parametric modelling

To recover microvascular flow information from the function fx(t), one approach, similar to some inverse

problem resolution, is to replace the function Cx(t) by a model depending on a few parameters and to

find the parameters that best fit the data fx(t). With a known kinetic-flow physical model for hx(t), the

parameters obtained from the fitting phase give information about the blood flow in the imaged tissue.
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The first parametric model proposed for analysis of DCE-US data was the perfect mixed chamber

model. In this model, the tissue is considered as a single compartment in which the concentration in

contrast agent becomes instantaneously homogeneous each moment that in-flow and out-flow modify

the contrast concentration. This model has only been used with destruction replenishment modulation

[58, 59, 60]. It leads to a mono-exponential equation describing the echo-power replenishment data curves,

with two parameters: A the plateau and B the rise constant [41].

f(t) = A(1 ≠ e≠Bt). (2.3)

This instantaneous mixing chamber model does not imply the concept of transit.

A more advanced model for hx(t) uses several homogeneous compartments (each one being a perfect

mixing chamber)[61]. This leads to the Erlang probability density function, used early in DCE-MRI [62].

By relaxing the parameter of the model corresponding to the number of compartments, it corresponds

to the gamma probability function. This was introduced in DCE-US by Thijssen et al. [63], for bolus

injection analysis.

Other models consider the flow in the vessels directly, rather than modelling the vascular network

using a chamber formalism. Krix et al. [64] proposed a model based on a 3D distribution of velocities

and vessel flow angles. It assumes that the blood flow velocity is uniform. It can take into account

heterogeneous blood velocity, but at the price of a rapidly increasing complexity. Arditi et al. [42] and

later Hudson et al. [65] proposed a lognormal function to model the transit time distribution based on

work by Karshafian et al. [33] describing transit time kinetics in vascular trees. This model is widely

used in DCE-US studies, for both bolus and DR acquisitions [63, 66, 67, 68, 69].

Another approach, slightly di�erent in spirit, is to model the movement of microbubbles as the com-

bination of linear convection and longitudinal di�usion. This approach leads to the Local Random Walk

(LDRW) model, which has been applied in several applications by Mischi et al. [70, 71]. By construction,

this model can only be applied to bolus injection sequences.

It should be noted that in the case of a bolus entry function, most of the work cited in section 2.5.3

considers that the entry function I(t) can be approximated by a Dirac, and therefore that the function f(t)

is the impulse response of the tissue. To avoid this assumption, some work has proposed the application

of deconvolution techniques inspired from techniques developed for DCE-MRI that decorrelate fx(t) and

I(t). This decorrelation is performed either by evaluating I(t) in a feeding vessel outside the ROI [34, 35]

or by assessing the response in the ROA with several di�erent input modulations [36].

Non-parametric modelling

In addition to parametric flow models such as those presented in section 2.5.3, some authors prefer to

extract perfusion parameters, from the echo-power data curve without fitting a parametric model to it.

One approach consists in extracting the parameters directly from fx(t), without applying any processing

to it [72, 73, 74]. Other authors first apply a low pass filter (generally a moving average) to the echo-power

curve [75, 76]. The advantage of such methods is that there is no risk of poor fitting that could lead to

misinterpretation of the data. On the other hand, extracted parameters are more variable because they

are more sensitive to noise.

Among the other methods that do not use parametric modelling of the perfusion curves, techniques

measuring the coherence or the correlation between neighbouring perfusion curves [71, 77] have been
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proposed. Those techniques are particularly adapted for detection purpose, in order to highlight perfusion

anomalies characteristics of cancerous tissues.

2.5.4 Region of interest and region of analysis

When a DCE-US sequence is acquired, only a limited part of the frame is of clinical interest. This part is

delimited by the ROI. In this ROI, signal from one or several ROAs is extracted and analysed in order to

retrieve microvascular flow information. Ideally, if analysis can be obtained for su�ciently small ROAs,

the local flow can be presented on parametric maps reflecting the heterogeneity of the tumours. However,

because individual pixels in DCE-US present a high level of speckle noise, it may be necessary to average

the signal over several pixels, to decrease the variance of the signal and make flow parameter extraction

more robust. Another specific characteristic of DCE-US to keep in mind when drawing ROAs and ROIs

is their anisotropic nature: due to the anisotropic nature of the ultrasonic image formation process, the

axial and the transversal resolution of images are di�erent, and the correlation profile is anisotropic (an

illustration is given in [77] and in Chapter 4, Fig.4.3). Di�erent ROI and ROAs selection strategies have

been reported in the literature.

The first strategy is to select a unique ROA corresponding to the whole ROI, around the whole

tumour, to obtain a highly averaged estimation of fx(t) for each image frame [78, 79, 80]. The advantage

of this approach is to improve the signal-to-noise ratio. However, an obvious drawback is that information

may be lost in the case of heterogeneous tumours. Moreover, the larger is the analysis region, the more

complex the transit time distribution can be. There is, therefore, a higher chance that the parametric

model used to describe the signal cannot capture this complexity. Finally, as the size of the region of

analysis increases, the validity of the hypothesis of a unique input function I(t) becomes more and more

questionable.

Recently, authors have proposed the selection of several ROAs, to di�erentiate between perfused and

non perfused regions of tumours. This may provide a more relevant characterization of the tumour

microvascularization when necrotic or non perfused zones are present, but selection of the ROAs is highly

operator-dependent.

Finally, extraction of local flow parameters from sub-millimetric ROAs can be done using either

parametric flow models [69] or non-parametrically [71, 81]. Because the approach preserves spatial in-

formation, it is of great interest. However, it is much more sensitive to motion and noise than analysis

from larger regions and, therefore, necessitates robust analysis techniques to handle a low signal-to-noise

ratio.

2.5.5 Fitting algorithms

When parametric models are used to analyse echo-power data curves, a fitting procedure must be applied

to find the best parameters for the model. Surprisingly enough, despite its central role, this aspect of the

quantification has received little attention in the literature.

In fact, the method used to fit the parametric model to the echo-power data curve is rarely specified in

publications, and when it is, it is most often cited to be a least squares method [41, 45, 46, 48, 65, 69, 82].

Some authors such as Strouthos et al. [82] have reported use of a smoothing filter before fitting data,

but the technique used for fitting remains least squares.
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Figure 2.4: Illutration of the definition of WiR, AUC, TTP and MTT parameters for a bolus injection.

In [68], we examined the validity of the hypotheses that are made implicitly when using least squares

for the analysis of DCE-US data and proposed a new model to better describe the noise and to design a

more suitable fitting method. Kuenen et al. [83] also recently proposed a new method of fitting DCE-US

data based on a derivation of maximum likelihood parameters. In their work, echo-power data curves

were interpreted as transit time histograms, and maximum likelihood estimation was derived based on

the parameters of the probability density function underlying these histograms.

2.5.6 Extracted flow parameters

A large number of quantitative parameters are extracted and studied in the contrast-enhanced imaging

literature. Depending on the type of models chosen to describe the echo-power curves (parametric or

non parametric), the parameters are estimated from the fit model or from pre-processed data curves. In

this section, the most common parameters are described. In some cases, they can also be expressed very

simply, directly from the model’s parameters. It should be noted that most of these parameters depend

on the definition of a time origin that must be chosen consistently between di�erent data acquisitions.

Bolus injection sequences The first commonly used parameter is the time to peak (TTP), in seconds.

It is defined as the time the echo-power takes to reach its maximum level. For a Dirac bolus, TTP

represents the mode of the transit time distribution. By using a parametric model, the TTP can be

estimated directly.

The mean transit time (MTT), in seconds, is very commonly used in DCE-MRI. It is defined as the

statistical mean of the transit:

MTT =

s
acq

t.fx(t)dt

s
acq

tdt
(2.4)

For a Dirac bolus, this quantity represents the mean of the transit time distribution.
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The area under the curve (AUC) corresponds to the integral of the fit model, but the definition of

the boundaries for the integration may vary from one study to another. The integration can be made for

t œ Tauc = [0; Œ], to compare data with di�erent acquisition times. However, this extended integration

range can cause artificially large variabilities in AUC values. The integration can also be performed over

a finite time t œ Tauc = [0; tend]. In this case, it is important to maintain the same integration interval

from one acquisition to another.

AUC =
⁄

T
auc

fx(t)dt (2.5)

In the initial development of the indicator dilution theory by Stewart and Hamilton [84, 85], used to

assess in particular cardiac outputs, AUC was directly related to the cardiac output (CO) (CO =
Quantity of indicator

AUC ), corresponding to the volume of blood pumped by the heart. By extension, it can

be related to the volume of blood going through the tissue of interest.

TTP and MTT provide kinetic information about the vascular network, while AUC represents the

amount of contrast agent flowing through the tumour.

The Wash in rate (WiR) is also estimated in some studies. It corresponds to the highest slope during

the wash in phase. The AUC under wash-in or wash-out phases, correspond, respectively, to the area

under the curve before and after the TTP.

Destruction replenishment sequences Two main parameters are generally extracted with DR data:

the mean flow velocity is related to the speed at which the curve reaches a constant value. Its expression

depends on the parametric fit model.

Alternative measurement of blood-flow rate can also be made. Its mathematical expression depends

on the mathematical model fit to the curve. It is expressed as the value of the plateau (relative blood

volume) multiplied by the mean flow velocity. This parameter correlates well with the real blood flow, in

mL/min [41, 86].

2.6 Hypotheses behind the linear systems analysis

The di�erent approaches and methodologies presented in this chapter implicitely make a certain number

of hypotheses. As previously stated, the linear systems formalism assumes that the system has the

properties of superposition and of scaling. Due to signal saturation, these properties are only valid

when the contrast agent’s concentration scales linearly with the detected echo-power. Moreover, the

behaviour of microbubbles is assumed to be similar throughout the whole region of analysis. It has

been shown [87] that the behaviour of adherent microbubbles such as those used in molecularly targeted

imaging, is di�erent from that of freely flowing microbubbles. More generally, the acoustic response of

microbubbles is e�ected by their environment and the incident acoustic intensity is not completly uniform

througout the imaged plane. Thus, the assumption of uniform microbubble response thoughout the ROA

may not be well met under all imaging conditions. Also, the hypothesis of the uniqueness of the input

function is questionable: tumours can present a complex vascular network with several blood supplies.

Similarly, when considering small ROAs, regions are considered independent of one another although the

blood flowing from one ROA may provide blood supply to an adjacent ROA. This hypothesis cannot be

avoided, unless volumetric (three-dimensional) data are available.
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Finally, when the echo-power fx(t) is processed, the flow is assumed to be steady, and its pulsatile

nature during the cardiac cycle is not taken into account. This hypothesis can be considered satisfied if

the ROI is relatively far away from the heart in the vascular tree and if the pressure wave generated by the

heart fades away before reaching the ROI. In practice, pulsatile artefacts are not observed on echo-power

data curves so that this hypothesis is robust. In the rest of this thesis, these hypothesis are considered as

valid, but they must be kept in mind. Future work taking them into account could contribute to further

refinement of DCE-US imaging.

2.7 Perspectives for microvascular flow quantification with DCE-

US

2.7.1 Clinical practice

While functional imaging and DCE-US imaging have been available and improved for more than 20

years, the clinical use of such techniques is still mainly qualitative, and quantitative indexes such as

presented above are rarely used outside of large scale validation study such as [94]. Several reasons can

explained the di�culty of the clinical transfer: first, because of the many factors previously mentioned,

DCE-US still su�ers from a high variability. Even if solutions are proposed to mitigate this variability,

the techniques proposed can be seen as complicated to set up in routine clinical practice. Moreover,

quantitative indicators extracted reflect a specific functional aspect, which for DCE-US is vascular network

characteristics. Contrary to more general indicators such as the size of the tumor, they can not be by

themselves exhaustive predictors of tumour state. Those characteristics, conjugate with the noisy nature

of ultrasound imaging, have the consequence that individual quantitative parameters values are not yet

fully trusted by clinicians for prognosis or diagnosis, because they are considered as too subjective and

too variable. More coarse but less variable parameters such as morphological indicators [16] are still

preferred for treatment decision making.

2.7.2 Pre-clinical studies

In pre-clinical studies, imaging modalities allowing to easily perform large number of acquisitions on small

animals at a relatively low cost are desirable. DCE-US has these characteristics. Expected outcome of

such studies is the identification of significant physiological di�erences between groups that can be related

to the e�ect of a therapy, rather than an accurate prognosis or diagnosis for a single individual. DCE-US

is able to non-invasively measure characteristics of the vascular network that are di�cult or impossible

to assess by other modalities. Therefore, it can lead to a better understanding of treatment e�ects on

the characteristics of the vascular network, which is of high interest in particular in the context of anti-

angiogenic therapies. This better understanding is also helpful in clinical practice, to improve qualitative

evaluation: signs observed in patients can be related to phenomenon observed in pre-clinical studies.

However, in order to extract useful information about the e�ect of a therapy, it is desirable to have

parameters that can be related to specific properties of the vascular network. To be able to extract such

parameters, it is thus necessary to take into account and develop methods to compensate for the e�ects

of exogenous factors previously described, such as motion or input function. It is also important to base
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the development of the post-processing method on accurate physical and physiological modelling of the

tumour and the signal.

2.8 Conclusion

Many factors influence evaluation of flow with DCE-US: the injection, the type of acoustic input function

modulation, the acquisition settings, the way data are linearised and the way the linear echo-power is

processed. The sources of variability that are specifically addressed in the following chapters are those

related to the linear echo-power post-processing. In Chapter 3, we characterize the multiplicative nature

of DCE-US noise, and propose a model of signal that allows us to derive a new method to better fit

parametric models to the DCE-US signal. In Chapter 4, a method is proposed to simulate DCE-US

sequences that uses a texture generation algorithm: random noise textures with realistic properties

in terms of statistics distribution and spatial correlation are generated. Breathing and probe motion

a�ect DCE-US sequences and increase the variability of microvascular flow parameters. To decrease

this variability, a new motion correction algorithm is proposed in Chapter 5. This algorithm takes

into account the microvascular flow temporal dynamic to improve registration quality. In Chapter 6,

a clustering method originally developed for DCE-CT and DCE-MRI sequences is adapted for DCE-

US sequences. This method automatically detects heterogeneity in the flow, and should help to better

take into account tumour heterogeneity when evaluating development and therapeutic response. Finally,

Chapter 7 demonstrates, on an in vivo data set, the potential improvements that can be obtained by

integrating the new fitting and clustering algorithms to sensitively assess tumour therapeutic response.



Chapter 3

Caracterization and modelisation of

DCE-US sequences1

3.1 Introduction

Among the di�erent steps of the quantification of microvascular flow using DCE-US presented in Chap-

ter 2, the influence of the fitting method on parameters variability has been largely overlooked.

From a probabilistic point of view, finding the parameters of the perfusion model is achieved by

determining those that are most likely, given the echo-power data. The least squares criterion achieves

this when the data are corrupted by an additive, independent, identically distributed, zero mean Gaussian

noise [88]. Conventional B-mode ultrasound medical images have a granular appearance, the acoustic

speckle, that originates from physical phenomena underlying image formation [89, 90]. Burckhardt [89]

and later Wagner et al.[90] proposed that these data are best described by the Rayleigh distribution which

is governed by the scale parameter –. Thus, the probability density function (PDF) of the envelope (E)

of B-mode ultrasound data is:

p(E; –) =

Y
_]

_[

E
–2 exp

!
≠E2/(2–2)

"
if E Ø 0

0 if E < 0.
(3.1)

Modelling the signal with this single parameter distribution implies that there is a constant linear rela-

tionship between the mean µ and the standard deviation ‡ of the envelope (µ
Ò

4
fi ≠ 1 = ‡). Thus, it is

well established that the envelope of B-mode ultrasound data presents noise that can be described by a

multiplicative model. More recently, more sophisticated PDFs (sometimes with no obvious scaling-factor)

have been introduced [91].

DCE-US images present the same type of granular appearance as seen in conventional, B-mode images.

Although the nature of the speckle in DCE-US images suggests the multiplicative nature of the noise,

only limited evidence of this multiplicative nature has been presented, based on signal correlation [92].

In the current work, theoretical background is first presented to demonstrate the link between the

least squares fitting method and the assumption of additive gaussian noise. Then, our acquisition settings
1This chapter is adapted from Barrois, G., Coron, A., Payen, T., Dizeux, A., & Bridal, L. (2013). A multiplicative model

for improving microvascular flow estimation in dynamic contrast-enhanced ultrasound (DCE-US): theory and experimental

validation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 60(11), 2284 94 2013 [68]
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for in vitro and in vivo DCE-US data are described. Using these experimental data, the non-additive

nature of the noise corrupting contrast-enhanced ultrasound images acquired with a clinical ultrasound

system is demonstrated. Therefore, least squares should not be the most appropriate criterion for fitting

parametric models to clinical data. A multiplicative model for DCE-US data and a maximum likelihood

approach to estimate perfusion parameters from such data are developed. Flow parameters estimated

using the least squares criterion and the multiplicative-model based criterion are compared on simulated

and experimentally acquired DCE-US data.

3.2 Additive model for DCE-US perfusion data

3.2.1 Model of signal

A sequence of N DCE-US frames is acquired at ti with 1 Æ i Æ N . Perfusion begins at t1 = 0. To

consider the general case, the methods of contrast agent injection and data acquisition are not specified.

The echo-power data is represented by the function f(x, ti), where x is the spatial coordinates. To

evaluate the evolution of the concentration of contrast agent in an analysis block around a pixel x and

extract information on the vascularization, the mean linear-echo-power in the analysis block, fx(ti), is

usually assessed. To analyse fx(ti), a parametric perfusion model with additive noise is considered:

fx(ti) = f+x(ti) = u(◊x, ti) + v+x(ti) (3.2)

where:

• u is a parametric perfusion model describing the echo-power as a function of time. u is the infor-

mation of interest.

• ◊x represents the local parameters of the parametric perfusion model u.

• v+x is a realization of a stationary zero-mean white Gaussian process V+x with standard deviation

‡.

3.2.2 Maximum likelihood criterion for additive model

In order to estimate the parameters of the model such that it best fits the echo-power data curve f+x, the

likelihood associated with Eq (3.2) is maximized. Considering the independence of the noise from one

frame to another, using Eq (3.2), we can write the likelihood as the product of the probability density

function of f+x at all time points:

L(◊x) =
NŸ

i=1
pF |�

x

(f+x(ti)|◊x)

=
NŸ

i=1
pV+x

(f+x(ti) ≠ u (◊x, ti)) (3.3)

The negative logarithm of Eq (3.3) is taken and the probability density of the noise is replaced by the

Gaussian density. Maximizing the likelihood is equivalent to minimizing:

≠ log L(◊x) =
Nÿ

i=1

A
log(

Ô
2fi‡) + (f+x(ti) ≠ u (◊x, ti))2

2‡2

B
(3.4)
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or solving the following problem:

arg min
◊

x

Nÿ

i=1
(f+x(ti) ≠ u(◊x, ti))2 (3.5)

Eq (3.5) corresponds to the least squares solution [88] for the data f+x(t). This method of fitting will be

termed LS method in the rest of the chapter. For an additive Gaussian noise model, the LS solution is

the maximum likelihood solution. This is valid if the noise is Gaussian and identically distributed, but

the validity of these assumptions is not demonstrated in the context of DCE-US.

3.3 Acquisition of DCE-US data

All in vivo and in vitro data were acquired with an Aplio 50 ultrasound imaging system and a PLT-1202-S

linear probe (Toshiba Medical Systems, Toshigi, Japan), used with a transmit-frequency setting of h12.0

in Contrast Harmonic Imaging (CHI) mode. The mechanical index was fixed at a low level (MI = 0.1) to

avoid bubble destruction. The size of the pixels in the sequences is 0.06 ◊ 0.06 mm2. Many ultrasound

system settings are cited without units as displayed on the Aplio monitor.

3.3.1 Dose ranging data

Dose ranging experiments were conducted with BR38 experimental ultrasound contrast agent (Bracco

Suisse SA, Geneva, Switzerland). Details of the experiment are described in [50]. The agent was recon-

stituted prior to the experiment in 5 mL of physiologic serum, to yield approximately 2 ◊ 108 microbub-

bles/mL. Data were acquired for dilutions from 1:400,000 to 1:250 of native reconstituted agent. Images

were acquired during 10 seconds at 10 Hz, giving a total of 100 images for each concentration. Data

acquisition from all dilutions was performed within less than 15 minutes to ensure that concentrations

were not depleted by microbubble-gas dissolution. An image acquired from a suspension of BR38 at

1:1,000 dilution is shown in Figure 3.1. The bracket designates the gelatin stand-o� placed between

the transducer and the surface of the agitated microbubble suspension. The white rectangle delimits

the region of interest in the contrast agent suspension from which average echo-power was calculated

after linearisation of the data. Image pixel values were converted into echo-power using custom software

developed by our group.

3.3.2 in vivo data

DCE-US data were acquired in the transverse plane of the left kidney of a mouse. A total of 4 independent

injections were performed through a catheter in the tail vein of 3 mice using a volume- and speed-controlled

injection system [40], which allows a good repeatability of the injection. Each injection consisted of 50 µL

of SonoVue R• (Bracco Imaging SpA, Milan, Italy) injected at 2 mL/min injection rate. The data for echo-

power evaluation was extracted from the renal cortex, in an area where the perfusion is approximately

homogeneous.

All the acquisitions were used for subsequent analysis except one acquisition removed due to a problem

occurring during the injection.
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Figure 3.1: Image acquired during the dose ranging experiment (2 ◊ 105 microbubbles/mL). The bracket

designates the gelatin stand-o� placed between the transducer and the surface of the microbubble sus-

pension. The white rectangle delimits the region of interest in the contrast agent suspension from which

average echo-power was calculated. Image pixel values were converted into echo-power using custom

software developed by our group [50].

3.4 Experimental analysis of the nature of DCE-US signals

3.4.1 Qualitative observations

An example of the first seconds of mean echo-power data acquired in vivo in murine kidney by DCE-US is

presented in Figure 3.2. The mean echo-power has been calculated from a region of interest of 18.72 mm2

(5, 200 pixels) that was selected to outline the renal cortex. The lognormal bolus perfusion model [69] fit

to this data using the LS approach is shown by the solid, red curve. In Figure 3.2 (a), a lack of accuracy

of the LS fitted model is apparent at the initial rise (circled region). This is not unique to this acquisition

and was often observed in the experimental curves. In Figure 3.2 (b), a grey envelope representing the

value of the local 95 % confidence interval is superimposed on the data. Its value has been calculated

based on the estimation of the standard deviation of the residuals over sets of 8 neighbouring points, and

assuming a gaussian distribution. This data illustrates that the standard deviation of the signal seems to

increase as the level of the signal increases. This is not a feature anticipated for identically-distributed

noise. In order to better evaluate the nature of the noise, the standard deviation was compared for signals

with di�erent echo-power levels acquired from controlled-dose concentrations of contrast agent.
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Figure 3.2: In panel (a), the red curve represents the least squares solution for the lognormal function best

describing the echo-power measured in the renal cortex of a mouse after injection of a bolus of contrast

microbubbles. The curve does not fit the data well during the early rise of the bolus (as designated by

the blue circle). In panel (b), a moving 95% confidence interval estimated at each time by assuming that

the noise is Gaussian additive is shown by the grey shading. The non-homoscedasticity of the noise is

demonstrated by the fact that the widths of this interval increases as the level of the echo-power increases.
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Figure 3.3: The mean linear echo-power and its standard deviation were calculated from 778, 100 tem-

porally independent measurements of the echo-power for di�erent concentration of contrast agent sus-

pensions (dose-ranging experiment). The red crosses represent the standard deviation of each data set

as a function of its mean. The mean value is linked to the concentration in contrast agent: the data set

with the lowest mean value corresponds to the lowest concentration in contrast agent (5 ◊ 102 microbub-

bles/mL), the highest mean value to the highest concentration (8 ◊ 105 microbubbles/mL). For constant

additive noise, the standard deviation would be independent of the mean value of the echo-power and the

data points would lie along a horizontal line at a level determined by the constant noise level. Clearly

the data are not well described by such a model. A linear relationship between the standard deviation

and the mean (estimated via linear regression) is proposed (solid line).

3.4.2 In vitro experiment: probability density function, mean and standard

deviation of the DCE-US echo-power data

For a region of interest of 1.86 ◊ 15.6 mm2 (31 ◊ 251 pixels) in the focal area and the proximal zone of

the contrast suspension (white rectangle in Figure 3.1), the pixel by pixel distribution of the linear echo-

power was extracted. As the sequences were made of 100 images, the total number of linear echo-power

estimation was 778, 100 for each concentration. Examples of estimated probability densities functions

for the linear echo-power at two microbubble concentrations are represented by the solid grey curves in

Figure 3.4. The distributions are asymmetric and clearly exhibit a mode. Therefore, the function chosen

to model the echo-power should have these properties. The mean linear echo-power and the standard

deviation of the distribution of the linear echo-power are then calculated for each concentration of contrast

agent. Each standard deviation is plotted as a function of the mean echo-power in Figure 3.3.

When a least squares method is used to fit a model to a perfusion curve, it relies on the assumption

that the relationship between the standard deviation and the mean of the experimental data as presented

in Figure 3.3 can be modeled by a horizontal line chosen somewhere between the minimum and maximum

standard deviations. The assumption of a linear proportionality between the standard deviation and the

mean is clearly closer to the experimentally determined characteristics. This relationship implies that a
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Figure 3.4: Distribution of data as experimentally determined from 778, 100 linear echo-power estimations

(solid grey line) fit to a gamma probability density (black dotted line). Data are from suspensions of

8.104 microbubbles/mL (a) and 2.105 microbubbles/mL (b).

multiplicative model should better describe the noise. It is therefore, relevant to develop a multiplicative

model for the estimation of parameters from DCE-US echo-power data curves.

3.5 Multiplicative model for DCE-US perfusion data

3.5.1 Model of signal

To better describe the nature of the DCE-US data, the echo-power at x or in a region around x, fx(ti),

is modeled as the multiplication of a realization of the stationary stochastic process vúx and u:

fx(ti) = fúx(ti) = u(◊x, ti)vúx(ti). (3.6)

The ultrasound echo-power is the square of the amplitude of the envelope. Therefore, because the sum

of the squares of n random variables following a Rayleigh R(‡) distribution (Eq 3.1) follows a gamma

distribution gamma(n, ‡2) [93], a gamma distribution was chosen to represent the probability density of

the noise vúx. Furthermore, as we use a clinical ultrasound system, we estimate the echo-power of each

pixel from the JPEG images encapsulated in DICOM files that were linearized [50]. Considering that

those images are not directly computed from the envelope of the RF, a gamma distribution

pVúx

(v) = gamma(v; k, –) =

Y
_]

_[

v(k≠1)

�(k)–k

exp ≠v
– if v Ø 0

0 if v < 0
(3.7)

is a good compromise in terms of accuracy and flexibility, as shown with the two examples of the PDF

given in Figure 3.4. For the gamma distribution, the ratio of the standard deviation ‡ is equal to µÔ
k

.

Therefore, the k parameter controls the sharpness of the gamma distribution of the noise vúx. The 0.7

slope value obtained in Figure 3.3 corresponds to a k value that is approximately equal to 2.

In order to apply the maximum likelihood estimation to this distribution, we impose the mode of the

gamma distribution to be one, which is equivalent to –(k ≠ 1) = 1. This condition for a multiplicative

model is the equivalent of imposing a centered noise for an additive model. Therefore, the distribution

can be parametrized by a single parameter:

pVúx

(v) = gamma

3
v; k,

1
k ≠ 1

4
(3.8)
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3.5.2 Maximum likelihood criterion for multiplicative model

As for Eq (3.2), in order to estimate the parameters of the perfusion model such that it best fits the echo-

power data curve fúx, the likelihood associated with Eq (6.1) is maximized. Supposing the independence

of the noise from one time to another, the likelihood can be expressed as

L(◊x) =
NŸ

i=1
pF |�

x

(fúx(ti)|◊x), (3.9)

which can be rewritten as

L(◊x) =
NŸ

i=1
pVúx

3
fúx(ti)

u(◊x, ti)

4
. (3.10)

Replacing the distribution of the noise by Eq (3.8), taking the opposite of the log-likelihood, the problem

aims to solve

arg min
◊

x

Nÿ

i=1

3
(k ≠ 1) log(u(◊x, ti)) + (k ≠ 1) fúx(ti)

u(◊x, ti)

4
(3.11)

which is equivalent to solving

arg min
◊

x

Nÿ

i=1

3
log(u(◊x, ti)) + fúx(ti)

u(◊x, ti)

4
. (3.12)

This equation does not depend on the parameters of the noise distribution. The rest of the regression

process consists in finding the minimum of this function in the parameter space. Note that no assumptions

have been made about the perfusion model function and the number of parameters in the model, which

makes this method applicable to all parametric models and types of contrast agent injection. This method

will be referred to as the MM method.

3.6 Validation of the multiplicative model on simulated and in

vivo data

3.6.1 Perfusion data

Simulation of perfusion data

In order to compare the two models in terms of error in the estimation of the parameters, simulated data

were used. A set of data was generated based on the multiplicative model presented in Eq (6.1). Bolus

injection data were simulated because it is currently the most commonly evaluated type of injection. To

generate the data, we selected as an echo-power data curve model the lognormal model introduced by

Rognin et al.[69]:

u((m, s, c, A), t) = A
exp ≠[log t≠m]2

2s2Ô
2fits

+ c (3.13)

with

• m the mean of the underlying normal distribution,

• s the standard deviation of the underlying lognormal distribution,
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• c an o�set to take into account the fact that the echo-power is not zero when the concentration in

microbubbles is zero,

• A a scaling parameter.

Each point of the curve was generated from the lognormal model and the gamma distribution, with the

noise distribution parameter k = 3 that corresponds to a mean signal coming from a small analysis block

of 5 ◊ 5 pixels in the dose ranging data. By considering small blocks instead of pixels, the distribution of

the linear echo-power is slightly sharper than in Figure 3.3 but the signal is still very noisy. In the fitting

phase, the parameter c was estimated independently of the fitting process using an average of the points

before bolus arrival. A, m and s are determined by the fitting algorithms. The sampling of the data

was chosen to be 0.2 s and each simulated data record was 60 s long, which correspond to typical values

encountered in experimental data. Once each fit was performed, quantitative perfusion parameters were

extracted from the fitted curves and compared to the values used to generate the data. Four widely used

perfusion parameters were compared in this study :

• Wash in Rate (WiR): maximum gradient during the wash-in phase.

• Area under curve (AUC): integral of the best-fit curve during the acquisition.

• Mean transit time (MTT): mean value of the lognormal distribution underlying the data, given by

MTT = exp (m + s2/2).

• Time to peak (TTP): time of the maximum of the best-fit curve, given by TTP = exp (m ≠ s2).

The values of the simulated perfusion parameters were chosen in a realistic range and to represent the

broad range of shapes encountered in DCE-US evaluations. Data were generated for MTT varying from

25 s to 175 s with a 15 s step (11 values) and for TTP varying from 8 s to 24 s with a 2 s step (9 values):

99 di�erent sets of parameters. For each set of parameters, 500 curves were simulated. The total number

of simulations was therefore 49, 500.

Analysis of In vivo perfusion data

The maximum likelihood and least squares regression methods were applied to echo-power data curves

calculated of 5 ◊ 5 pixels (about 0.3 ◊ 0.3 mm2) distributed in the renal cortex. In each acquisition, the

renal cortex was divided into 140 to 217 analysis blocks. The union of all the analysis blocks for a given

acquisition is referred to as the region of interest.

Criteria for comparison and handling of outliers

The performances of the MM and LS approaches were compared based on the perfusion parameters

presented earlier WiR, AUC, TTP and MTT, because these parameters are used in clinical evaluations.

Results were compared for the simulated data sets using a criterion of accuracy, the absolute error,

given by |RealV alue≠EstimatedV alue|
RealV alue in % and a criterion of precision, the variation coe�cient given by

std(EstimatedV alue)
Mean(EstimatedV alue) in %. For each parameter, the evaluation of the accuracy of the methods is of interest

because the maximum likelihood does not guarantee the absence of bias. For the comparison of MM and

LS approaches using the in vivo DCE-US data sets, only a precision criterion can be used. It is assessed
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Lognormal LS criterion MM criterion

parameters mean mean

abs. error. var. coe�. abs. error. var. coe�.

% % % %

A 50.3 12.9 49.8ú 10.5ú

m 3.7 4.3 2.7ú 3.3ú

s 5.8 7.3 3.9ú 4.9ú

Perfusion LS criterion MM criterion

parameters mean mean

abs. error. var. coe�. abs. error. var. coe�.

% % % %

MTT 22.0 17.3 15.5ú 12.7ú

TTP 5.6 7.0 4.3ú 5.4ú

AUC 3.3 4.0 3.2ú 3.9ú

WiR 9.3 11.8 7.0ú 8.8ú

Table 3.1: Precision and accuracy for the two methods on simulated data for perfusion parameters.

Significantly better (p < 0.05) results are marked with an asterisk (ú)

by computing the standard deviation of parameters values obtained from the data blocks in the region of

interest. Statistical analysis was conducted using a paired t-test to compare the mean absolute errors in

the simulated data set and using Levene’s test to compare the variances of the parameter distributions

in the simulated and in vivo data sets. Di�erences were considered as significant for p < 0.05.

In the in vivo data set, due to the high level of noise from small voxels of data, the fit of the perfusion

model in some analysis blocks can fail. This can lead to outliers in the extracted perfusion parameters

values. Parameter estimates from analysis blocks with failed fits were identified and removed according

to the following criteria: if an extracted perfusion parameter is greater than 5 times or less than 1/5

the median of the parameters extracted from the other data blocks in the region of interest (relatively

homogeneous renal cortex), it was considered to be an outlier, and it was removed.

3.6.2 Results

Performance comparison on simulated data

The mean accuracy (absolute error) and precision (coe�cient of variation of the estimations) of the three

lognormal parameters and four perfusion parameters estimated from all the simulated echo-power data

curves are summarized in Table 3.1. Statistical tests have been run over the absolute errors of all the

simulations. The MM criterion provided better mean accuracy and significantly better precision than the

LS approach for all model and perfusion parameters. For both of the fitting methods, the errors made on

the lognormal parameter A are quite large. This is probably due to the fact that a small error on m or s

leads to a large compensation by A. In spite of this, estimation errors on A do not seem to strongly a�ect

the perfusion parameters. MTT, the perfusion parameter with the largest errors, is independent of A.

Boxplots of the absolute errors are displayed for ranges of parameter values in Figure 3.5. The asterisks
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Figure 3.5: Boxplot of the absolute errors as a function of the value of the perfusion parameters Wash

in Rate (WiR), Area Under Curve (AUC), Time To Peak (TTP) and Mean Transit Time (MTT). The

parameters were estimated by fitting the 49, 500 sets of simulated data using the MM (Multiplicative

Method) and the LS (Least Squares) fitting techniques. The asterisks mark the method that has the best

precision (smallest coe�cient of variation). The crosses mark the method for each paired comparison that

has the best accuracy (lowest mean absolute error). The seemingly high density of out-of-range points

(marked with circles, defined as values superior to q75% + 1.5(q75% ≠ q25%)) is due to the high number of

simulations (5, 500 simulations for TTP, AUC and WiR values, 4, 500 for each MTT value) but represent

only 3% of the total number of points.

and crosses above the bars, which indicate, respectively, the most precise and accurate methods, show

that the MM criterion outperformed LS criterion in terms of precision and accuracy except for the longest

value of simulated TTP and for the highest AUC. Also, the precision of the LS estimated parameters

are reduced when the WiR or the MTT increases and when the TTP decreases. These trends are also

observed for the MM estimated parameters but to a lower degree.

The parameters obtained in these noisy simulated data using the maximum likelihood based on the

multiplicative model criterion are more precise and accurate than those obtained using the least squares

criterion in most of the cases. This was anticipated since the simulated data were constructed using

the gamma distribution model for the noise that is used to construct the MM criterion. Nevertheless,

this noise model was selected for simulations based on the experimentally determined form of the noise

(Figure 3.4). Thus, the simulated results should be on the order of those observed for experimentally

acquired DCE-US data.
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(a) LS (b) MM

Figure 3.6: Images constructed based on the DCE-US acquisition of bolus-passage sequence in the kidney

of a mouse. A parametric map corresponding to the value of the parameter Mean Transit Time (MTT)

estimated using the LS criterion in Figure (a) and the MM criterion in Figure (b) is superimposed on

the renal cortex. The color of a pixel of the parametric map corresponds to the value of MTT estimated

for the signal coming from one analysis block (5 ◊ 5 pixels patch). It is observed that the MTT values

are more homogeneous in the map estimated using the MM criterion.

Performance comparison for in vivo data

Perfusion parameters (TTP, MTT, AUC and WiR) obtained within the analysis blocks in the same region

of interest via the two methods of estimation are compared. Example parametric maps of MTT obtained

with the two methods for the same acquisition are presented in Figure 3.6. The complete results are

presented in Figure 3.7. For each acquisition, boxplots of the distributions of the parameter estimated

using MM and LS criterion are compared. Results that have a significantly (p < 0.05, Levene’s non

parametric test) lower coe�cient of variation (after removing the outliers) are marked with an asterisk.

The coe�cient of variation for the in vivo data are often larger than those observed on simulated data.

This is expected because the area of perfusion of the renal cortex is only approximately homogeneous.

For the 11 independent sets of data acquired, the MM criterion exhibits lower coe�cients of variation

over the region of interest for 9 TTP, 10 MTT and 10 WiR parameter maps. The coe�cients of variation

were not significantly di�erent for the AUC parameter. The mean percent decreases of the coe�cient of

variation for TTP, WiR and MTT were, respectively, 40%, 25% and 59%. This is consistent with the

results obtained on simulated data. Moreover, for all the data acquired in vivo, parameter calculation

with the MM method led to a smaller or equal number of outliers as compared to the same parameter

calculated with the LS method. The smaller number of outliers obtained with the MM method indicates

that the estimator provides greater stability than the LS method.

A high coe�cient of variation on in vivo data does not necessarily mean that the estimator is not

precise: the coe�cient of variation could be due to the natural variability of the data. However, the

similarity of the in vivo results with results obtained on simulated data suggests that at least a part

of the di�erences of coe�cient of variation observed here between MM and LS, are due to the better

precision of the MM criterion.
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Figure 3.7: Each parameter was estimated for all the analysis blocks in the selected region of interest of

the kidney of 3 mice. Data acquired on independent days are displayed for each mouse. In the labels of the

abscesses, the first number in the parentheses corresponds to the mouse number, the second corresponds

to the acquisition number. For each perfusion parameter, boxplots of the distribution of parameter

estimates in the region of interest obtained using the two methods are presented. When distributions

were significantly di�erent (p < 0.05, Levene’s non parametric test) that with the lower coe�cient of

variation is marked with an asterisk

3.7 Discussion

The Gamma distribution chosen in this work to model the distribution of the squared amplitude of the

envelope has some convenient characteristics: it only depends on two parameters, its mode can be ex-

pressed analytically and the resulting maximum likelihood estimator does not depend on the distribution

parameters. This choice can be debated. Indeed, it is based on a Rayleigh modeling of the echo-power,

but more general models such as the Rician distribution, exist. Integration of a more sophisticated model

for maximum likelihood estimation will result in an increased mathematical complexity and/or larger

numbers of parameters. For instance, computing the maximum likelihood while assuming a squared

Rician distribution leads to the presence of a Bessel function in the metric, and the maximum likeli-

hood estimator is no longer independent of the distribution parameters. Although several studies have

considered the characteristics of the B-mode signal distribution [91], little information exists on the dis-

tribution characteristics in harmonic mode. In this study, our primary aim was not to identify the most

sophisticated distribution model but was rather to demonstrate that the least squares minimization was

intrinsically not adapted to DCE-US data and to propose a simple alternative that is more consistent
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with the nature of DCE-US signal and noise.

The lack of agreement between the modelled curve and the data points at the initial rise of the bolus

curve (Figure 3.3) indicates a relative lack of accuracy of the multiplicative model at low echo-power

levels. This may be due to the fact that, for low concentrations of contrast microbubbles, di�erent types

of noise combine. The method used to estimate the c parameter of the lognormal model implicitly makes

the hypothesis that the distribution of the signal is additive symmetric (with a mean value equal to c)

before the arrival of the bolus of contrast agent. We assume however that, upon arrival of the bolus, the

multiplicative part of the noise is predominant. To fully describe the mixed nature of the noise at low

concentrations will require a complimentary modeling of the signal. At lower concentration, rather than

the Rayleigh noise of DCE-US signal, the most significant e�ect could be the statistic of arrival of the

microbubbles, and models of the echo-power data curve as transit time distribution histograms, such as

proposed in [83] could make the model more accurate at low concentrations.

The coe�cients of variation of perfusion parameters obtained from simulated and in vivo experimental

data for bolus injections provide clues that may explain some trends observed by other authors [46, 94]:

the poor e�ciency of MTT in clinical studies could, at least in part, be explained by the very high

coe�cient of variation induced by the least squares fitting. Similarly, the e�ciency of time to peak, wash

in rate, or other parameters that aim to capture the form of the wash-in, may have been hidden by

the poor fitting of this part of the curve induced by the least squares fitting method. The new fitting

method improves the fitting of this part of the curve and could lead to reconsider the best parameters

for diagnoses. In this study, a more rigorous mathematical framework has been proposed for parameter

extraction in contrast-enhanced ultrasound perfusion curves. The demonstration of the e�ciency of the

new method has been done using bolus injection data curves. However, as the di�erence between the

MM and the LS criterion comes from the nature of the signal, it is very likely that similar results (better

precision and accuracy of the fitting) would be obtained for all models and injection types.

The comparison of the performance of the MM and LS criteria has been quantitatively estimated on

noisy data, which corresponds to perfusion data coming from the mean over a few pixels (Figure 3.6).

However, this does not at all mean that use of this method is of interest only for very noisy data. Indeed,

even if by averaging the noise over more pixels, the distribution of the noise (that we have approximated

by a gamma law) better approaches a gaussian law due to the central limit theorem, the multiplicative

nature of the noise remains (Figure 3.2). Therefore, the MM criterion will still be intrinsically better

than the LS criterion, in particular for the fitting of the beginning of the perfusion curves.

In order to quantify the least squares fit, a quality of fit (QOF) index is proposed by Rognin et al.[55],

based on the computation of a ratio between the sum of the squares of the residuals (SSR) and the total

sum of squares (SST). However, the derivation of this QOF index, using the least squares method of

fitting, is directly derived from an additive model of the noise which was demonstrated to fail in this

study. The new model of signal proposed in the current work should contribute to future developments

of new indexes that would better indicate the reliability of parameters estimated from DCE-US data.

Many other factors can lead to important uncertainty in DCE-US perfusion evaluation (movement,

variation of injected doses/population/response of bubbles, attenuation and propagation e�ects). Au-

thors have shown that quantitative DCE-US imaging can be degraded by attenuation or time-dependent

modifications of contrast agent [47]. Taking into account such e�ects is important in assuring the accu-
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racy and the precision of quantification in DCE-US imaging. Much work has addressed methods aimed at

reducing these sources of variability, and control of these factors is essential in obtaining good DCE-US

evaluations. The relative variability due to each of these factors depends highly on the experimental

conditions and tissues considered. The results reported in this chapter should be used in conjunction

with optimized experimental and signal analysis choices. The strength of the method o�ered by the

current work is that it can be applied universally to clinical DCE-US data. In particular, bias of the fit

at the beginning of the perfusion curves is reduced. This is of particular interest because the information

most sensitive to changes in the microvascular flow has been shown to be mainly contained in the first

passage of the bolus [95]. Therefore, having a method that more accurately fits the first seconds of the

perfusion curve is of widespread interest for better discrimination of perfusion parameters. Moreover,

local evaluation of perfusion and parametric mapping has been limited due to the high level of noise in

echo-power estimations from a small volume of scattering structures. By better addressing the nature

of the noise, our method can improve the fit of data from small voxels and provide higher resolution

parametric mapping.

3.8 Conclusion

In this chapter, we aimed to develop a new mathematical model of perfusion data in DCE-US that

considers the multiplicative nature of the noise. From this, a new fitting method was derived. To

demonstrate that this new method improves estimation of flow parameters, first, the highly non-additive

nature of the noise was demonstrated using in vitro data from harmonic imaging of suspensions of contrast

agent at di�erent doses. A multiplicative model for the signal was then proposed and a new mathematical

method to extract the perfusion parameters was derived. Using simulated data, this new method was

demonstrated to be more precise and more accurate than least squares fitting. This improved precision

was upheld when the two techniques were compared on in vivo data. In light of these results, this simple-

to-implement new method should be used to fit parametric models to DCE-US echo-power data. Use

of the method in future studies may modify relative robustness of parameters for diagnosis and should

improve the perspectives for parametric imaging able to better resolve local di�erences in tissue perfusion.
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Chapter 4

Simulation of DCE-US sequences1

4.1 Introduction

Software is available for the simulation of ultrasound data for a defined arrangement of scattering struc-

tures and sound propagation conditions, such as Field II developed by [97] or CREANUIS presented in

[98]. Such software simulates linear and non-linear propagation and scattering of ultrasonic waves based

on detailed maps of scatterer distributions. To simulate dynamic ultrasound sequences from microbubbles

in a complex vascular network, the time-varying distribution of the flowing microbubbles would need to

be mapped to simulate each frame of the sequence. Although this could be of considerable interest, mod-

elling flow in a microvascular network would be very computationally demanding and no such simulation

has been reported using Field II or CREANUIS.

The objective of this work is to propose an alternative and simpler approach to simulate DCE-US

sequences representative of data observed in tissues with complex microvascular networks. This technique

could be useful for the simulation of DCE-US sequences to evaluate quantification, motion compensation

algorithms or attenuation correction models.

The original approach proposed to simulate DCE-US perfusion data reposes on an example-based

algorithm [99]. Example-based texture generation methods allow construction of arbitrarily large textures

based on a sample and preserve spatial structure and intensity distribution. The quality of the texture

of DCE-US noise obtained with such an algorithm is assessed in terms of its spatial correlation and

distribution. A framework combining these simulated textures with data describing the evolution of

contrast agent concentration as a function of time at each pixel is developed to provide a simple but

realistic sequence in terms of its spatial correlation and distribution model of DCE-US data.
1This chapter is adapted from Barrois, G., Coron, A., & Bridal, L. (2014). Simulation of dynamic contrast-enhanced

ultrasound sequences using example-based texture generation. IRBM. [96]
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4.2 Materials and methods

4.2.1 Dose-ranging data

Acquisition

The same set of data acquired from calibrated-concentration solutions of ultrasound contrast as used in

Chapter 3 is used in this work. The acquisition protocol have been described in Section 3.3.1.

Sample and seed extraction

One of the 40 images at each dose was randomly chosen to be used for sample and seed extraction.

The other 39 were then used for evaluation. From the selected image a sample of 31 ◊ 101 pixels was

selected close to the solution’s surface, in an area where the signal was homogeneous and not significantly

attenuated. From this sample, a 3 ◊ 3 pixels seed was randomly selected and used to initialize the

K-coherence algorithm (Figure 4.1).

Figure 4.1: The use of the dose-ranging data in the context of K-coherence. From a selected image for

each contrast microbubble concentration, a region was selected in the superficial portion of the contrast

solution (box outlined in white on the image). A seed was randomly extracted from this sample and the

K-coherence algorithm was run to generate a synthetic noise texture.

4.2.2 Simulation of DCE-US sequences

Signal model

To consider additive noise, dominant at low concentrations, the contrast echo-power at x at time ti,

fx(ti), is modelled as the signal anticipated from the perfusion dependent contrast concentration, or the

perfusion signal, u, corrupted by a multiplicative speckle-noise term, v, and an additive baseline noise

term, ‘:

fx(ti) = u(ti).v(ti) + ‘(ti). (4.1)

The speckle-noise, v, is due to the random fluctuations of the power detected from the distributions of

sub-wavelength-sized contrast microbubbles. The additive baseline noise ‘ is due to electronic noise which

is present with and without contrast agent. The perfusion signal that is assumed to describe the variation

of the contrast echo-power as a function of contrast agent concentration. Therefore, the speckle-noise
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term is normalized to have a distribution with a mode value equal to 1. The distributions and the spatial

correlation properties of the terms ‘ and v are assumed to be constant.

K-coherence noise generation

Equation (4.1) includes a speckle and a baseline noise component. In order to realistically simulate these,

an example-based texture generation algorithm was used. Example-based texture generation methods

allow construction of arbitrarily large textures from a sample image while preserving spatial structure

and intensity distribution.

The K-coherence algorithm [99] was chosen because of its speed and simplicity. This algorithm, has

two phases: analysis and synthesis. During the analysis phase, for each input pixel of the sample, a

similarity set of the k most similar pixels (in the sense of the minimum squared di�erence of the contrast

echo-powers) in the sample is constructed. The first step of the synthesis phase is to initialize the center

of simulated image with a seed (selected from the sample). The pixels adjacent to the seed (which initially

have no attributed value) are then successively filled as follows: for the current pixel to fill, a candidate

set is constructed based on its filled neighbourhood (i.e. pixels in its neighbourhood that have been

attributed a value) and on the similarity sets constructed during the analysis phase. A value for the

current pixel is chosen among the best candidates in the candidate set. The algorithm continues to the

next pixel to fill. This iterative process allows the initial seed to grow progressively, until it reaches the

size specified by the user. A detailed description of the algorithm is given in pseudocode in appendix A

to facilitate implementation.

Because of the random nature of speckle noise, the algorithm is designed to allow randomness in the

generated texture: the seed is selected randomly in the sample and the choice of the value in the candidate

set is chosen randomly among the best candidates. The size of the neighbourhood is set to 3 to allow

variations in the simulated texture while limiting the computation time. Higher values of neighbourhood

size lead to a size-dependant increase computation time (55% longer for 5 neighbours than for 3) without

a significant gain in the statistical distribution and spatial correlation of the generated texture.

The baseline noise ‘ is constructed using a sample from the dose-ranging data at the concentration

of 0 microbubbles/mL. The speckle-noise term, v, is constructed using a sample from the dose-ranging

data at a concentration of 8 ◊ 104 microbubbles/mL and then normalized to have a mode value equal

to 1. This concentration has been chosen because overall, it leads to the most realistic correlations and

distributions (the quantitative measures of realism are presented after in Section 4.2.3) for the di�erent

simulated concentrations. In this particular configuration, the time to generate one texture of baseline

noise or of speckle noise is approximately 25 s for a texture of 91728 pixels on a desktop computer.

Parametric noise generation

To compare the K-coherence noise generation to a reference method, a parametric method of simulation

was used. The parametric method is the method that is used, for instance in [70] or [100]. Speckle-noise v

from equation (4.1) is generated from a given distribution and combined to the perfusion signal. Baseline

noise ‘ is assumed to be zero. The contrast echo-power is assumed to follow a Gamma distribution. This

distribution has been shown in [68] to well describe the dose-ranging data.

The parameters of the Gamma distribution are estimated using a maximum likelihood estimator
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applied on data extracted from the 40 images of the dose-ranging data at 8 ◊ 104 microbubbles/mL in

the same 31 ◊ 101 pixels zone close to the surface of the solutions as used in the K-coherence algorithm.

The distribution is then normalized to have a mode value equal to 1.

Perfusion signal generation

The perfusion term, u, models the evolution of the echo-power due to variation of contrast agent concen-

tration with time: the value of u at pixel x as a function of time represents the echo-power that would

be measured from that pixel for perfectly denoised experimental data. To generate u, noisy perfusion

curves were extracted from each pixel in an experimentally acquired 2D+time perfusion sequence and

then low pass filtered. A moving median with a 20 sample large window was applied to smooth the

experimental curves, which are corrupted due to speckle noise and noise due to motion. This window

size has been chosen to remove the noise and the motion without a�ecting the perfusion dynamic. The

resulting smoothed curves were used to reconstruct a 2D+time perfusion sequence.

Figure 4.2: Diagram of the di�erent steps of the simulation of DCE-US sequences. The first step is

to generate noise-free perfusion maps (u(t, x)). Speckle noise v(t, x) and baseline noise ‘(t, x) are also

generated from dose-ranging data, using the K-coherence algorithm. Perfusion maps are multiplied by

normalized speckle noise and baseline noise is added, according to Eq 4.1.
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4.2.3 Comparison of noise statistics

Distribution

An e�cient simulation algorithm for DCE-US should produce data with a statistical distribution similar to

that of experimentally acquired data. To assess this characteristic, the distance between the distributions

of simulated and experimental DCE-US data was measured.

Many di�erent measurements of the divergence between two statistical distributions p1 and p2 exist.

The squared Hellinger distance was used [101]. It presents the advantage of being symmetric and is

defined as follows:

D(p1, p2) = H2(p1, p2) =
⁄ +Œ

≠Œ
(


p1(t) ≠


p2(t))2dt (4.2)

The simulation results and the dose-ranging data are thus compared by computing the distance between

the histogram of the simulated contrast echo-power and that of the dose-ranging contrast echo-power-

data. For the simulated data, 300◊300 pixels were taken into account. For the experimental dose-ranging

data, pixels were extracted from the same area as the sample in the 39 images that were not used to

generate the data (31◊101◊39 pixels). The distances obtained were compared with those obtained with

the parametric simulation method: the squared Hellinger distance of the obtained Gamma distribution

to the dose ranging distribution was calculated.

Spatial correlation

The spatial correlation of each image was characterized by its autocorrelation. The granular appearance

characteristic of experimentally acquired DCE-US images suggests that simulated contrast echo-power

values should be correlated with their neighborhood. In order to assess the spatial correlation of the

simulated noise, its autocorrelation ACKCoher is computed and compared to the autocorrelation func-

tions of the dose-ranging data ACDR. Considering that the noise is stationary in space, one can estimate

the dose-ranging autocorrelation by computing the autocorrelation of the image, and considering that

the noise is stationary in time, this estimation was refined by taking the mean of the autocorrelation

functions ACDR,k with k œ {1, ..., 39} on the 39 images. The values of the simulated and real autocor-

relation functions were compared in a 20 ◊ 20 pixels neighborhood to assess the similarity of the spatial

correlation between simulation and experimental data. The mean of the sum of squared (MSD) di�er-

ences between the autocorrelation of the simulated noise and the autocorrelation of the dose-ranging

samples (MSDKCoher/DR) was computed. The values obtained were compared to those obtained be-

tween experimental data and the parametric model (MSDP aram) and to the variance of the experimental

autocorrelation function (MSDDR V ar) itself, which gives an idea of the variation of the autocorrelation

function occurring experimentally:

MSDKCoher/DR =
ÿ

i,j

(ACKCoher(i, j) ≠ ACDR(i, j))2) (4.3)

MSDP aram =
ÿ

i,j

(ACP aram(i, j) ≠ ACDR(i, j))2 (4.4)

MSDDR V ar =
ÿ

i,j

var(ACDR,k(i, j)) (4.5)
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4.3 Results

4.3.1 Distribution

Concentration D(pDR, pexample based) D(pDR, pparam) Improvement (in %)

(microbubbles/mL)

0 2.4 ◊ 10≠3 4.8 ◊ 10≠1 99%

2 ◊ 104 7.3 ◊ 10≠2 1.4 ◊ 10≠1 47%

4 ◊ 104 6.0 ◊ 10≠2 1.7 ◊ 10≠1 64%

8 ◊ 104 3.2 ◊ 10≠2 2.4 ◊ 10≠1 86%

2 ◊ 105 1.1 ◊ 10≠2 3.2 ◊ 10≠1 96%

4 ◊ 105 1.1 ◊ 10≠2 3.2 ◊ 10≠1 96%

Table 4.1: Comparison of the squared Hellinger distances between the dose-ranging (DR) data distribu-

tions and simulated data generated using two methods : the example-based texture generation method

and the parametric method.

For all the concentrations, the squared Hellinger distance is lower for the example-based texture

generation than for the parametric method.

The performance of the parametric method depends on the concentration in contrast agent: the

best results were obtained when there was no contrast agent, which correspond to the simulation of the

baseline noise. When non-zero concentrations of contrast agent are modelled, the noise distribution of

the simulation diverges from that of experimental measurements. However, the distance increases as

simulated concentration increases.

The example-based generation method follow the inverse tendency: for non-zero concentrations of

contrast agent, the distance decreases when the concentration increases.

4.3.2 Spatial correlation

Concentration MSDDRV ar MSDSimu/DR MSDP aram

(microbubbles/mL) (A.U) (A.U) (A.U)

0 0.68 0.55 93.97

2 ◊ 104 0.65 4.77 33.30

4 ◊ 104 0.46 1.59 43.46

8 ◊ 104 0.47 0.14 55.32

2 ◊ 105 0.42 0.25 67.56

4 ◊ 105 0.26 0.63 72.25

Table 4.2: Comparison of the mean squared di�erence between the experimental spatial autocorrelation

and the two noise simulation methods.

For each contrast agent concentration, the mean squared di�erence of the experimental autocorrela-

tion function with the autocorrelation function of uncorrelated noise (MSDP aram) and of noise generated
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(a) dose-ranging noise autocorrelation (b) example based noise autocorrelation

(c) Random noise autocorrelation

Figure 4.3: Noise spatial autocorrelation functions are displayed. (a) dose-ranging data (8 ◊

10≠4 microbubbles/mL), (b) noise generated using the K-coherence example-based texture generation

technique, (c) random noise generated without spatial autocorrelation. On the left and above the images

are the profiles of the autocorrelation functions along respectively the y axis for a 0 shift in x and along

the x axis for a 0 shift in y

using the example-based method (MSDSimu/DR) are compared. The variance of the experimental au-

tocorrelation function is also given (MSDDRV ar). Results are presented in Table 4.2. In addition, the

spatial autocorrelation functions of the experimental data, of uncorrelated noise and of noise obtained

with the example-based method for the 8 ◊ 104 microbubbles/mL concentration, are displayed in Fig-

ure 4.3. The mean squared di�erence is superior to the natural variance of the autocorrelation, for all

concentrations. The di�erence between the new simulation method and the experimental data is of the

same order as the variance of the autocorrelation function. This means that the di�erence between

simulation and experimental data is comparable to the di�erence between a single acquisition and the

estimated experimental autocorrelation function. For non-zero concentrations of contrast agent, the spa-

tial correlation of the data simulated with the k-coherence algorithm best corresponds with that of the

dose-ranging data for comparisions made at 8 ◊ 104 microbubbles/mL which was the concentration used

to generate the noise texture pattern.
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4.3.3 Example of DCE-US sequence simulation

(a) Experimental in vivo data (b) Perfusion map (denoised data)

(c) Simulated image

Figure 4.4: Images at t = 60 s from an (a) In vivo DCE-US sequence, (b) perfusion signal before its

combination with speckle and background noise and (c) Image from simulated DCE-US sequence

The algorithm of simulation presented in Section 4.2.2 was tested by simulating a DCE-US sequence.

To do so, an in vivo sequence of DCE-US, acquired with the same imaging system as the dose-ranging

data, was used. The images were acquired after injection of a bolus of 100 µL of Luminity (Bristol-

Myers Squibb) contrast agent to image tissue in a subcutaneous murine pancreatic tumor. The sequence

contained 72 images, acquired at 4 images/s. Using the algorithm summarized in Figure 4.2, perfusion

data were first extracted using low pass filtering (in the temporal dimension). Then, the baseline of the

image was subtracted. In the resulting denoised perfusion image (Figure 4.4 (b)) the gray level intensity

is proportional to the concentration-dependant echo-power at each pixel. Generated background and

contrast noise were then combined with the perfusion information according to Eq (4.1). Seventy-two

speckle-noise and baseline-noise images were simulated, respectively, from the dose-ranging images at

0 microbubbles/mL to 8◊104 microbubbles/mL concentrations. These were combined with the perfusion

maps to obtain a simulated DCE-US sequence. The whole simulation process took about 1 hour on a

basic desktop computer (Intel Core 2 CPU, 2.66 GHz x 4, 3.8 Go). The simulation of each noise texture

of 364 ◊ 252 pixels took 25 s.

An image from the simulated sequence is presented in Figure 4.4, with the corresponding original
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image and perfusion data. Qualitatively, it seems that the characteristics of the DCE-US image are

preserved. This similarity is present for all the images of the sequence.

4.4 Discussion

The K-coherence algorithm that has been chosen to simulate the noise is not the most recent example-

based texture generation algorithm [102]. However, it has several advantages. It is easy to implement and

understand. It preserves the distributions: Table 4.1 shows that the distance between the distributions

of the simulated data are very close to those of the original data, as compared to a parametric method.

The spatial correlations of the obtained images are close to that of the original images as summarized in

Table 4.2.

Speckle noise is generated using dose ranging data at a single concentration (here 8 ◊ 104 microbub-

bles/mL). That means that the distribution of the signal at this concentration is assumed to well represent

that for all the concentrations in the simulated sequence. This is a very strong assumption, but the re-

sults show satisfactory distribution and correlation similarity with experimental data at all the tested

concentrations. Therefore, the use of data acquired for a single concentration of contrast agent for the

generation of the speckle term at all the concentrations seems acceptable. Future development could

consist in finding a way to use the whole range of concentrations of the dose-ranging data to simulate

more realistically the signal distribution for the entire range of contrast agent concentrations, for instance

by using spatial interpolation techniques.

The e�ect of the attenuation encountered in DCE-US data on the noise is not simulated by the method

presented here. The hypothesis is made that the distribution of the noise is independent of the depth.

This assumption is clearly not true, in particular when the concentration of contrast agent is high. One

should account for the attenuation in the perfusion data by applying an attenuation term depending

on depth before incorporating the noise. However, this is automatically taken into account when the

perfusion signal is extracted from real DCE-US sequences.

One of the potential applications of this method is the simulation of data sets for evaluation of

motion compensation techniques. It is possible to artificially introduce known motion or deformation on

the perfusion data, before the combination with noise. Because the true perfusion would be known, it

would then be possible to quantify the improvement in quantification performance made with the motion

compensation algorithm. Another potential application is the evaluation of the robustness of perfusion

quantification parameters in the presence of noise. Again, because the true perfusion would be known, it

would be possible to evaluate the error made because of the noise.

The generation of the DCE-US textures is based on dose-ranging data. This is both an advantage

and a drawback of the method. It is an advantage because it is virtually possible to simulate data

from any DCE-US imaging system and contrast agent, without having to consider the process of image

formation. It is a drawback because in order to be able to simulate ultrasound imaging system in a

specific configuration, dose-ranging data have to be available or must be acquired.
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4.5 Conclusion

A framework for the simulation of DCE-US data has been proposed. It is based on a realistic modelling

of DCE-US data and on the use of a example-based texture generation method. The quality of the

simulated noise has been assessed and shown to be close to real DCE-US data in terms of the distribution

and spatial correlation. The method has been tested to simulate a perfusion sequence from real perfusion

data.

Contrary to the methods developed by [97] or [103], the simulation method proposed does not aim

to realistically simulate the underlying physics of DCE-US data. However, its flexibility, the possibility

that it o�ers to simulate complex perfusion patterns, and the realism of the obtained data in terms of

spatial correlation and data distribution could make it very useful for the initial validation or comparison

of registration, segmentation, or quantification algorithms.
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Chapter 5

Automatic motion estimation using

flow parameters for dynamic

contrast-enhanced ultrasound1

5.1 Introduction

As presented in Chapter 2, several factors a�ect functional flow quantification, such as attenuation from

tissue and microbubbles [47] or scanner settings [46, 48]. Motion, due to respiration or probe movements,

is another major cause of variability in the estimation of flow parameters from echo-power curves. To

limit the e�ects of motion on quantification, several approaches are possible, as presented in Chapter 2:

asking the patient to hold his or her breath during the acquisition, use of gating techniques or registration

techniques.

The two key challenges of registration are 1) to identify a robust and e�cient similarity criterion and

2) to define the reference with respect to which all other images in the sequence will be registered. Due to

the low contrast-to-noise ratio and the lack of stable landmarks in harmonic imaging sequences, selection

of the reference image is di�cult in DCE-US. Currently, mostly rigid registration techniques have been

proposed to meet the challenge of DCE-US sequence registration.

In this work, the contrast uptake information is taken into account in order to make the registration

more accurate, more precise and operator independant. Some authors have developed methods that

include the estimation of flow-parameters in the registration of DCE-MRI sequences. Bhsushan et al.

[104] combined motion estimation and flow-parameters estimation in a unified probabilistic framework.

Adluru et al. [105] and Buonaccorsi et al. [106] generated a reference sequence using the flow-parameters

locally estimated flow parameters and then registered the original sequence with respect to it. However,

contrast uptake kinetics have not yet been integrated into techniques for DCE-US sequence registration.

The goal of this work is to design and evaluate a new automatic registration method that combines

motion and flow-parameter estimations. An iterative algorithm that successively estimates motion and

flow is proposed. A final registration is then performed to refine motion estimation. The results are
1This chapter is adapted from Barrois, G., Coron, A., Lucidarme, O. & Bridal, L. (2014). Automatic motion estimation

using flow parameters for dynamic contrast-enhanced ultrasound. Manuscript in preparation for submission.
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compared to those obtained with mutual information based registration on both simulated and 12 DCE-

US sequences acquired in patients.

5.2 Material and methods

5.2.1 Joint motion and quantification estimation: problem formulation

The variable f denotes a DCE-US sequence of N frames, and f(x, tn) (or fx(tn)) represents the echo-

power at position x and time instant tn with n œ [1, ..., N ]. The ROA is located at the position x

and the ROA can be as small as a single pixel. To compensate f for motion, one needs to estimate

T = {Tn}1ÆnÆN a set of transformations. So, if the motion is correctly compensated, the sequence of

images {f(Tn(x), tn)}1ÆnÆN is still. Let u(◊(x), tn) be a parametric model of flow, for example like the

lognormal model, associated with the motion compensated sequence f , with ◊(x) the parameters of the

model u at x. Both T and ◊(x) have to be estimated from f . This estimation problem is expressed as

an optimization problem by maximizing a likelihood.

The linear echo-power f(x, tn) can be modelled as the parametric flow model u(◊(x), tn), corrupted

by a multiplicative speckle noise vx:

f(Tn(x), tn) = u(◊(x), tn)vx(tn). (5.1)

As in Chapter 3, the noise is described by a gamma distribution with a mode equal to 1 :

pV
x

(v) = “(v; k,
1

k ≠ 1) =

Y
_]

_[

v(k≠1) (k≠1)k

�(k) exp (≠v(k ≠ 1)) if v Ø 0

0 if v < 0
(5.2)

According to Eq (5.1), assuming the temporal independence of the noise, the likelihood for the model

and the transformation parameters over the analysis region can be written as:

L(◊, T) =
NŸ

n=1

Ÿ

x

pF |◊(x),k,T
n

(x) (f(Tn(x), tn)|◊(x), Tn(x))),

which can be rewritten, according to Eq (5.1):

L(◊, T) =
NŸ

n=1

Ÿ

x

pV
x

3
f(Tn(x), tn)
u(◊(x), tn)

4

The estimation problem aims to maximize this likelihood. It is equivalent to minimizing the opposite of

the log-likelihood. Assuming that the noise follows the gamma distribution of Eq (5.2), the estimation

problem can therefore be rewritten as:

arg min
◊,T

Nÿ

n=1

ÿ

x

3
log(u(◊(x), tn)) + f(Tn(x), tn)

u(◊(x), tn)

4
(5.3)

5.2.2 Joint motion and quantification estimation: the (M/Q) algorithm

In order to solve this optimization problem, the following strategy is proposed:

• Motion T and model parameters ◊ are sequentially, and iteratively estimated until convergence;
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1 Model_Based_Registration(N , f , T̂ = {T̂n}1ÆnÆN )

Input: N number of images in the sequence

f the sequence of images with f(x, tn) the echo-power at position x and instant tn (1 Æ n Æ N)

Output: T̂ = {T̂n}1ÆnÆN sequence of N estimated transformations

/* Initialization */

2 j Ω 0

3 ’n, T̂ j
n Ω 0

4 fl Ω low_resolution(f) /* Spatial-domain smoothing and subsampling */

/* Iterations */

5 while j = 0 or any
Ó

T̂ j
n ”= T̂ j≠1

n

Ô

1ÆnÆN
do

6 j Ω j + 1

7 update P and P̄ with Eq. (5.4)

8 ’x, ◊(x) Ω arg min
◊

q
n

3
log (u (◊(x), tn)) + f

l

(T j≠1
n

(x),t
n

)
u(◊(x),t

n

)

4
/* Update local flow */

9 ’x, n, fth(x, tn) Ω u(◊(x), tn) /* Update theoretical contrast sequence */

10 ’n, T̂ j
n Ω arg min

T

q
x

1
log(fth(x, tn)) + f

l

(T (x),t
n

)
f

th

(x,t
n

)

2
/* Update transformations */

11 end

/* Final registration */

12 ’x, n, fs(x, tn) Ω median_filter(f(T j
n(x), tn)) /* Time-domain smoothing */

13 ’n, T̂n Ω arg min
T

mutual_information (fs(x, tn), f(T (x), tn))

Algorithm 1: Joint motion and quantification estimation: the M/Q algorithm

• Because high level of speckle noise for small ROAs in the DCE-US sequence f and to speed up the

process, fl a lower resolution sequence associated to f is introduced: Each fl frame is computed

by spatially smoothing each image f with a 2D constant square convolution kernel of width W ,

followed by a factor W subsampling along each direction. As a consequence, the ROAs associated

with each voxel of fl is a square of W ◊W pixels of f . Thus, in Eq. (5.3), f is replaced by fl during

the iterative process.

• Some regions of the sequence are perfused and some are not. Estimating all flow parameters on

non-perfused regions is meaningless. For such regions a dedicated model is considered by fixing the

values of some of the flow parameters.

The algorithm in described in Algorithm 1. The main steps are commented below and some imple-

mentation details are given in Section 5.2.6.

Perfused and non perfused ROAs

Perfused tissue spans a limited part of each frame, so the sequence can be divided in two mutually

exclusive regions, P the set of perfused pixels and P̄ the set of non perfused pixels.

Analysis regions are classified as perfused (P) or non-perfused (P̄) at each iteration. This classification

is done (line 7) by thresholding on the median value of each registered echo-power signal during the
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sequence:
Y
_]

_[

x œ P if median_filter(fl(Tn(x), tn)) > PT

x œ P̄ if median_filter(fl(Tn(x), tn)) Æ PT

(5.4)

Functional flow-parameter estimation

At each analysis region x, the vector of parameters ◊(x) is estimated (line 8) by minimizing Eq (5.3),

with u the model u for perfused and non-perfused ROAs. When the model parameter estimation step is

completed, a theoretical contrast echo-power sequence fth is generated by attributing to each analysis x

at each time ti the corresponding model value u(◊(x), ti) (line 9).

Motion estimation

Once a parametric model value has been attributed to each analysis region of the sequence to generate

the theoretical sequence, it is possible to optimise Eq (5.3) according to the transformation matrices T.

Each frame of fl is then registered with respect to the corresponding frame of fth (line 10).

Final registration

Due to the low signal to noise ratio, flow-parameter estimation and motion estimation are done on a

lower resolution version of the sequence. This is enough to compensate for the large amplitude motion

due, for instance, to breathing. However there are still some low-amplitude motion artefacts. To refine

the motion compensation, a final registration is performed (line 13). In this step, the moving sequence

is the original sequence, with echo-power in dB. This sequence is registered with respect to a version

of the original sequence (also with echo-power in dB) registered using T̂ and smoothed in the temporal

dimension, designated as fs(x, tn). The smoothing aims at preserving image features while removing

echo-power variations due to residual motion.

The artificial reference sequence generated from the perfusion model fmodel is replaced by fs, a time

smoothed version of the motion-compensated original sequence at the finest resolution. Some smoothing

is accomplished by applying a median filter to the sequence. Median filtering is chosen as it is more robust

than mean filtering to remove extreme values resulting from motion. Each image of the initial sequence

is then registered with respect to the corresponding image in the smoothed sequence. The metric that is

optimised is the mutual information, because of its robustness. The resulting transformations T̂ is the

final transform estimation.

5.2.3 Reference mutual information registration (MI)

The performance of the registration method proposed in this chapter is compared to a reference image

based mutual information registration (MI registration) : in this technique, the whole sequence is reg-

istered with respect to a reference image chosen by an expert. The reference image is chosen as the

image where the structures of the vascular network are the most visible. The metric that is used is a

mutual information metric [107]. A mask that delimits the ROI over which the similarity measurement

will be computed is delimited. For the sake of fairness of the comparison, this mask is the same as the

mask used in the M/Q method. This reference registration is based on the method proposed in [55].
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Other registration parameters are the same as those used for the final registration of the M/Q method

(in particular the echo-power is in dB).

5.2.4 Simulation of DCE-US data

Simulation of DCE-US data for the validation of the registration method is done according to the method

presented in Chapter 4, with the model of signal of Eq.(4.1). The flow signal u is generated from still

in vivo sequences, by smoothing them in the time dimension, which also has the consequence to remove

residual motion. A triangular periodic motion of 2.4 mm of amplitude in both directions is added to the

sequence. The period is respectively 1 s and 0.7 s in Y and X directions. A periodic „ = 2¶ amplitude

rotation is also added, with a 1 s period. The center of rotation is at the center of the image. With ·T

the triangle function of period T and of amplitude 1:

Vi

Q

ccca

x

y

1

R

dddb
=

Q

ccca

cos(2fifl ·1s (ti)) sin(2fifl ·1s (ti)) 2.4 ·0.7s (ti)

≠ sin(2fifl ·1s (ti)) cos(2fifl ·1s (ti)) 2.4 ·1s (ti)

0 0 1

R

dddb
.

Q

ccca

x

y

1

R

dddb
(5.5)

After addition of the motion to the flow signal, it is combined with noise textures according the

model of Eq.(4.1). The resulting sequence presents the advantage to be close to real DCE-US sequences

in terms of signal distribution and spatial correlation, as demonstrated in Barrois et al. [96], but with

known motion. The important steps of the generation of moving DCE-US sequences are summarized in

Figure 5.1. The di�erence with the diagram in Chapter 4 is that motion V is added to u(t) before the

combination with the noise texture. A total of 27 di�erent sequences were generated.

5.2.5 Clinical DCE-US data

Clinical DCE-US data were acquired using an Aixplorer (Supersonic imagine, Aix-en-Provence) ultra-

sound clinical imaging system in contrast mode and a SL10-2 probe 2-10MHz, with mechanical index

fixed a low level. A bolus of SonoVue R• (Bracco SpA, Milan, Italy) was injected intravenously and a

contrast sequence was acquired during 35-50 s. 12 sequences were analysed in this study.

5.2.6 Implementation of the registration algorithms

PT the threshold of perfused and non-perfused regions

The value PT of the threshold is selected as 300% of the median value of the first image of the sequence:

at this time, no contrast agent has penetrated the tissue yet, therefore the median is representative of

non perfused tissue.

Flow model

To be applied, the model based registration necessitates the specification of a flow model. In this work,

because the available data are from bolus injections of contrast agent, the parametric model that was

used to fit the echo-power data curves was the lognormal model for a bolus, presented in [69]:

u(◊(x) = (m(x), s(x), c(x), A(x)), t) = A(x)
exp ≠[log t≠m(x)]2

2s(x)2
Ô

2fits(x)
+ c(x) (5.6)



5.2. Material and methods 53

Figure 5.1: Important steps of the simulation algorithm used to simulate moving DCE-US sequences to

evaluate the registration algorithms.
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with m the mean of the underlying normal distribution, s the standard deviation of the underlying

normal distribution, c the o�set to take into account the fact that the echo-power is not zero when the

concentration of microbubbles is zero and A a scaling parameter. At each perfused analysis region x,

the vector of parameters ◊(x) = (m(x), s(x), c(x), A(x)) is estimated by minimizing Eq (5.3) with u the

lognormal model. Because, by definition, non-perfused analysis regions should present a constant value

for u with time, the parametric model u(◊(x), ti) must be constant. This can be implemented by forcing

the parameter A to be zero. In this case:

’ti, ’x œ P̄, u(◊(x) = (m(x), s(x), c(x), 0), t) = c(x).

Lower resolution sequence

For DCE-US data, for a correlation radius defined as the distance at which image autocorrelation becomes

lower than 50% of its maximum, it has been observed in [96] that it is higher than 0.15 mm. Kuenen et

al. [108] also reported distances on this order using other ultrasound imaging systems. Considering this,

a subsampling ratio of 3 provide a reasonable compromise between processing speed and loss of spatial

information.

Stopping condition

Due to the presence of the final registration and of the subsampling, some stopping conditions (line 5 of

Algorithm 1) for the model based registration have to be chosen in order to limit the number of iterations

to a low number. Practically, txT , tyT and ◊ are fixed to limit the number of iterations to three in most

cases.

Median filtering

A 20 second window was chosen based on empirical tests: the smoothing window must be large enough

to remove the components due to motion, which are generally at low frequencies.

Registration software

The algorithms presented above were implemented using the open source software package elastix, devel-

oped by Klein et al. [109]. The software was modified to implement the metric presented in 5.3. Mutual

information metric implementation used was the Advanced Mattes Mutual Information Metric [110]. The

software was integrated in a Matlab wrapper, ElastixFromMatlab c• (CNRS and Riverside Research) .

For all the registration methods, a multi-resolution scheme and and adaptive stochastic gradient descent

method was used to find the optimal registrations.

Theoretical sequence generation

When the model parameter estimation step is completed, a theoretical contrast echo-power sequence

is generated, by attributing to each analysis region x at each time tn the corresponding model value

u(◊(x), tn). This theoretical sequence will be used for the estimation of motion.
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5.2.7 Comparison of the methods

Simulated data

For all the sequences, a ROI was selected around the tissue of interest. If the motion is perfectly estimated,

the true transformation V and the estimated transformation T̂ should compensate up to a constant rigid

transformation:

’i, Vt
i

¶ T̂t
i

= Tconst (5.7)

Therefore, when T̂ and V are applied successively, Vt
i

¶ T̂t
i

(ROI) = ROIt
i

reg should be as still as possible

because ideally:

’i, ROIt
i

reg = Tconst(ROI) (5.8)

Thus, to assess the quality of the registrations, two measures of the stability of ROIt
i

reg in the sequence

are proposed. First, the Dice coe�cient measures for each frame how well the ROI is superimposed with a

reference ROI. The transformation applied to this ROI is therefore assumed to be subject to the constant

transformation Tconst:

with ROIt
ref

= T̂t
ref

(ROI), (5.9)

’ti, Dice(ti) =
|2.(ROIt

i

reg fl ROIt
ref

)|
|ROIt

i

reg| + |ROIt
ref

| (5.10)

The second measure is the Hausdor� Distance to the same reference ROI:

’ti, Hausdor�(ti) = max( sup
xœROI

t

ref

inf
yœROI

t

i

reg

d(x, y), sup
xœROI

t

i

reg

inf
yœROI

t

ref

d(x, y)) (5.11)

The reference frame tref is chosen as the reference frame in the MI registration.

Finally, the echo-power data curves are also extracted from the sequences registered with the two

methods and from the original sequence without motion. The sum of squared di�erences SSD between

the logarithm of the echo-power data curves of the perfectly registered sequence and of the sequence

registered using the two methods are compared:

SSD = 1
N

ÿ
(log( mean

xœROI
(D3(T̂ (x)) ≠ log( mean

xœROI
(D1(V ¶ T̂t

ref

(x)))2 (5.12)

Because of the multiplicative nature of the noise, the SSD was not computed directly on the contrast

echo-power curves but on their logarithm to make the noise satisfy additive and homoscedastic conditions.

In vivo data

Comparison of in vivo results is made di�cult by the fact that the "true" motion is unknown. In order to

assess the quality of the registration obtained via the MI and M/Q algorithms, a manual registration was

performed by an expert, and considered as the ground truth. The Hausdor� Distance, Eq. (5.11) and

the Dice coe�cient, Eq. (5.9) were computed, but with V replaced by the manual registration Tmanual.

Manual registration Manual registration was performed using a program developed for this purpose.

A reference image is first selected by the user. The expert can move forward and backward in the sequence

to select an image (current image) to be aligned with the reference image. Each image displayed with



5.3. Results 56

the reference image overlayed: the overlaying is accomplished by linearly combining the intensities of the

current image and the reference image, with a weight respectively of – and 1 ≠ –, with – œ [0, 1]. The

expert can apply translation and rotation to the current image in order to align it with the reference

image. When the alignment between the current image and the reference image is judged satisfactory,

the expert can save the transformation, mark the current image as "registered" and select a new current

image.

Because the motion in the sequence is mainly due to breathing, it is mostly a succession of uni-

form motions in one direction (inhalation and exhalation phases, sometimes still phases). Therefore the

strategy adopted by the expert was as follow: first the extreme images at the beginning and the end

of uniform motion phases were identified and manually registered. For the images in-between, the pro-

gram automatically computed the motion as a linear interpolation of the extreme image transformations.

When the motion between the extreme images was truly uniform, no further alignment was required.

To assess whether the interpolated motion was satisfactory, the expert reviewed the entire sequence. If

movements were still present, the expert aligned manually the remaining non-aligned images with the

reference image.

When the manual registration was finished, the program provided the obtained transformation for all

the images of the sequence.

5.3 Results

5.3.1 Assessment of accuracy in calibrated-movement sequences

MI and M/Q registration algorithm were applied to the 27 simulated sequences. Figure 5.2 shows a box-

plot of the distribution of the di�erent metrics used to compare the registration results for the simulations.

Figure 5.2 (a) shows SSDcurves for the two registration methods. It is significantly lower (p < 0.05, Mann

Whitney U-test) with the M/Q registration method than with the MI registration method. Similarly, the

Hausdor� distances are significantly lower with the M/Q registration as shown in Figure 5.2 (b). Finally,

the Dice criteria is significantly higher with the M/Q registration method Figure 5.2 (c).

5.3.2 Registration performance with respect to manual expert registration

in DCE-US sequences acquired in patients

Table 5.1 shows the results for the registration of the 15 clinical sequences. The pathology associated

with each sequence is given. The mean Dice coe�cients and Hausdor� distances with their standard

deviations along the sequence are computed. For 80% of the sequences, the mean Dice coe�cients are

higher and the mean Hausdor� distances are lower for the M/Q method than for the MI registration.

For 87% of the sequences, the standard deviation of the two measurements are lower along the sequence

with the M/Q method than with the MI registration.

5.4 Discussion

Results obtained on simulated data show that the M/Q method retrieves the motion better than the MI

method. The method that has been used to simulate the sequence is not based on parametric assumptions
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Sequence Condition Method
Dice (%) Hausdor� (mm)

mean std mean std

1 Hepatic tumour
M/Q 89.0 8.1 0.22 0.17

MI 88.7 10.0 0.22 0.23

2 Neuroendocrine metastasis
M/Q 91.4 9.3 0.33 0.40

MI 90.8 8.9 0.35 0.36

3 Abdominal scan
M/Q 88.7 6.6 0.26 0.15

MI 91.0 8.1 0.21 0.17

4 Fast Angioma
M/Q 92.2 6.0 0.19 0.13

MI 90.3 6.0 0.24 0.23

5 Cylindroma hepatocyte
M/Q 72.7 25.7 0.49 0.49

MI 58.7 33.5 0.74 0.59

6 Hepatic tumour
M/Q 84.5 13.3 0.33 0.28

MI 72.5 20.2 0.63 0.46

7 Hepatocellular carcinoma
M/Q 69.9 18.4 0.51 0.33

MI 77.2 22.1 0.38 0.43

8 Cholangiocarcinoma
M/Q 88.3 18.2 0.40 0.66

MI 85.6 21.0 0.51 0.78

9 Hepatic tumour
M/Q 90.0 5.1 0.25 0.13

MI 81.2 11.8 0.47 0.30

10 Kidney metastasis
M/Q 91.4 5.4 0.24 0.16

MI 84.4 10.7 0.44 0.29

11 Abdominal scan
M/Q 85.4 7.8 0.35 0.18

MI 90.9 5.7 0.23 0.13

12 Thyroidic metastasis
M/Q 92.7 4.4 0.21 0.12

MI 88.9 10.1 0.32 0.26

13 Hepatic tumour
M/Q 93.7 5.4 0.23 0.17

MI 92.0 7.4 0.28 0.23

14 Suspect Nodule
M/Q 85.5 8.1 0.33 0.17

MI 81.1 8.1 0.42 0.25

15 Cholangiocarcinoma
M/Q 63.0 19.6 0.73 0.29

MI 62.9 34.1 0.70 0.67

Table 5.1: Individual results for each of the 15 clinical DCE-US sequences. For each sequence, the best

results for mean and standard deviation of Dice criterion and Hausdor� distance are in bold.
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(a) (b)

(c)

Figure 5.2: Boxplots of the distribution of the results for simulated sequences, for three criteria. a)

SSDcurves b) Hausdor� distance c) DICE coe�cient

about the distribution of the noise or the dynamic of the contrast agent, but based on experimentally

acquired data. Therefore, the simulations are not biased toward the M/Q method in any way.

The results in Table 5.1 show that the standard deviation of the Hausdor� distance and of the Dice

criterion along the sequence are lower for the M/Q method than for MI in a majority of the cases

considered. The lower standard deviation observed with the M/Q method suggests that the quality

of the registration is more uniform along the sequence. This is an important feature, because large

registration errors can cause large variations in the echo-power data curves, which in turn can lead to

large variations in the model fit. The sequences where the MI method performs better than the M/Q

method are sequences where the motion to handle is not only periodic, for instance with a shift in the

average position of the tissue of interest between the beginning and the end of the sequence. In this

case, the parametric model estimation can fail to find accurate vector of parameters ◊ at some location,

leading to a less precise registration. This could be handled by applying a quick preliminary registration

with respect to a reference image.

The M/Q method have been tested and compared to MI on data with bolus injection of contrast agent,

using a lognormal parametric model of perfusion. However, the M/Q registration is virtually compatible
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Figure 5.3: Example of echo-power data curves extracted from data acquired in vivo in a tumor. Curves

are presented before registration, after MI registration and after M/Q registration.

with any type of parametric models and input function modulation (bolus, destruction-replenishment).

Even non-parametric models such as smoothing splines could be used, as long as they are robust enough

to filter the large temporal variations due to motion.

The M/Q method has been compared to the MI method because it is commonly used. It could be of

interest to compare the M/Q method with techniques that call on both B-mode and contrast mode images

for registration. Such dual-mode methods have been demonstrated to retrieve the motion better than

methods using only the B-mode or contrast-mode images [57]. However, they necessitate dual display

availability and perfect synchronization between the two imaging modes.

By definition, registration techniques cannot handle out-of-plane images. The choice of rigid trans-

formation is made to prevent over-register the sequence by the method. Using this method, out-of-plane

images are still detectable and can be removed from flow estimation when identified. Further work could

consist in investigating whether out-of-planes images result in detectable variations in the registration

metric that could be identified and used to remove non-relevant images from quantification.

Because model fitting is, in a sense, a smoothing algorithm, one could wonder why a median filter is

applied in the final registration rather than another fitting step at a finer scale (without sub-sampling)

to obtain the new artificial reference sequence. The main reason is that model fitting is based on strong

assumptions about the kinetics of contrast agent in the tissue and is, therefore, a very coarse smoothing. It

is thus very e�cient to remove strong variations such as the ones caused by breathing motions. However,

it may also remove "natural" variations, not due to motion, that are useful for registration. Moreover,

fitting a parametric model to each pixel would take a long time, whereas median smoothing is fast (less

than 10 s to smooth the whole sequence).

The development of 3D ultrasound imaging will require the development of adapted registration

methods. This method is easily transportable to 3D by extracting echo-power data curves from 3D

analysis regions. Moreover because out-of-plane motion does not exist in 3D, one could imagine using a
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more flexible transform space to obtain more accurate registration.

5.5 Conclusion

A new completely automatic method that uses flow information to estimate motion in DCE-US is devel-

oped. By using a realistic model of noise for DCE-US signal, the two estimation problems are formulated

in one. Solutions to the problem are estimated using two steps, a first iterative step to filter low fre-

quency motions and a final registration step which aims to remove higher frequency motions. The method

demonstrates a better ability to estimate artificially added motion on simulated data sequences than a

mutual information registration. It also exhibits better matching with a manual registration performed

by an expert on in vivo acquired sequences.

By removing operator-dependent selection of a reference image, this method will renders flow pa-

rameter estimation more reproducible and non-operator-dependant. Moreover, the improvement in the

quality of motion estimation that is demonstrated should make flow parameter estimation more accurate

and precise. In particular, it could allow a more accurate local quantification, which is of interest to

better reveal the local heterogeneity of the flow.



Chapter 6

Dynamic clustering1

6.1 Introduction

It has been suggested [12] that drugs normalizing tumour vascular network could enhance the delivery

e�ciency of conventional cytotoxic therapies (see Chapter 1). Anti-angiogenic therapy can contribute to

the normalization of the vascular network. Methods able to detect changes in vascular network structures

are therefore desirable to monitor how they change throughout the tumor during anti-angiogenic therapy

[111].

As presented in Chapter 2, flow quantification using DCE-US is based on the analysis of the contrast

echo-power data curves. Because the signal to noise ratio of DCE-US images can be low at some time

points, the curves are generally extracted from a ROA that includes the entire tumor ROI. This provides

spatial averaging of the signal and e�ectively decreases the noise level. In most studies, ROIs are drawn

manually by an expert around the tissue of interest [10, 79, 112]. This approach has two main drawbacks:

first, it renders the analysis operator-dependant. Second, the tissue of interest may be heterogeneous in

terms of perfusion. Thus, averaging the signal over the whole tissue causes a loss of spatial information,

and small capillary flows can be masked be high intensity flows coming from large vessels.

Several possibilities exist to overcome these issues. First, rather than extracting the signal from the

entire ROI around the whole tumour, it is possible for the expert to draw several ROAs, delimiting, for

instance, a peripheral and central zone of the tumour. ROAs can also be selected to separate regions that

appear more or less enhanced on the initial contrast sequences. However, these approaches are operator-

dependant and may rely on a priori assumptions about the perfusion in the selected zones. Moreover, the

expert may miss spatial heterogeneity when drawing the ROAs. It is also possible to analyse signal from

small ROAs in the ROI, of typically less than one square millimetre [68, 76, 113], to obtain local values

for the flow parameters, and compute parametric maps. However, this approach requires robust analysis

methods and, due to the large variability of individual, local estimations, parametric maps are often only

qualitatively used in studies. A more desirable analysis method would provide operator-independent and

quantitative indicators, that incorporate spatial information.

In this chapter, a method that was initially developed by Y. Rozenholc (MAP5 UMR CNRS 8145,

University Paris 5) to group statistically-related perfusion from small ROAs of DCE-CT and DCE-MRI
1This chapter is adapted from Barrois, G., Coron, C., Dizeux, A., Rozenholc, Y. & Bridal, L. (2014). Manuscript in

preparation for submission.
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data is adapted to cluster highly-local ROAs together based on the shape of echo-power data curves from

DCE-US sequences. The adaptations made to the method for analysis of DCE-US are described. The

specificity and the sensitivity of the method are evaluated and compared to those of a more conventional

clustering technique on a simulated data set. The relevance of the clusters identified is qualitatively

assessed using data acquired in the kidney in vivo.

6.2 Material and method

6.2.1 Conventional technique: K-means clustering

K-means clustering is an iterative method to find clusters and their cluster’s centers in data [88]. It

is used in many image processing and data analysis applications, such as images segmentation [114] or

classification of times series [115, 116], and is at the foundation of numerous image analysis methods.

In this study, K-means is applied on a simulated dataset and results are compared to those obtained

using the DynClust algorithm. Prior to application of the clustering algorithm, principal component

analysis is used to reduce the dimensions of the data set.

The dimension reduction phase works as follows: each enhancement vector at each location is

considered as an observation, represented in a space of dimension N . The output of principal component

analysis applied on the ensemble of M observations is an orthonormal basis of N vectors (c1, ..., cN ), with

associated eigenvalues (⁄1, ..., ⁄N ). Each vector is a linear combination of the N original dimensions. The

eigenvalues correspond to the amplitudes of the projection (associated eigenvalues) of the observations

on the vectors. The vector c1 has the largest eigenvalue, c2 the second largest, etc. Therefore, the vectors

encompass a decreasing amount of variability of the dataset. To limit the dimensions of the dataset on

which the K-means algorithm is applied, only the L first vectors are selected.

The K-mean algorithm is then applied to the M observations projected on the L-dimensional space

(c1, ..., cL). The number of clusters K has to be fixed. The output of the algorithm is the attribution of

a cluster (between 1 and K) to each of the M observations.

6.2.2 DynClust algorithm

The package "DynClust: Denoising and clustering for dynamical image sequences (2D or 3D)+T" imple-

ments the DynClust algorithm in R and is available on the Comprehensive R Archive Network (CRAN).

The algorithm consists in two phases: a denoising and a clustering step. It is based on a procedure which

can statistically assess the similarity of two enhancement vectors Ix and Iy at locations x and y. This is

done by testing whether the di�erence vector Ix ≠ Iy is significantly di�erent from the zero vector, based

on a multiple test strategy.

This multiple test strategy was originally developed for Gaussian noise [117, 118], and adapted for

heterogeneous symmetric noises [119]. In the statistical framework presented above, the symmetry is

granted by the fact that the tested vector is the di�erence between two vectors corrupted by the same

noise. It requires the specification of the noise variance. It also requires a level of regularity (exponent

of the Holder condition superior to 0.25) in the enhancement vectors, which is satisfied in the context of

contrast imaging.



6.2. Material and method 63

The denoising step consists in constructing at each spatial location x, a neighbourhood Vx of loca-

tions, regrouping enhancement vectors similar to Ix. The construction is done iteratively, using a growing

neighbourhood, by testing the similarity of the pixels spatially close to the current neighbourhood, using

the tests mentioned above. This approach is therefore local. Once the denoising step is accomplished, a

neighbourhood Vx is associated with each spatial location x.

In the clustering step, clusters are constructed iteratively from these neighbourhoods, by regrouping

them based on the same statistical test as used in the denoising step. However, spatial information is not

used in this case, and disjoint clusters can be merged together.

Another interesting feature of the algorithm is that it does not require specification of the number of

clusters to find. One hyperparameter as must be pre-selected: the variance ‡ of the noise. In practice,

this parameter defines the sensitivity of the algorithm to temporal variations: the lower it is, the more

sensitive to variation the algorithm is, but the less robust it is to noise (and consequently the higher the

number of clusters will be). The choice of the value for this parameter is a typical compromise between

robustness and sensitivity.

This algorithm has previously been tested and validated on simulated and in vivo DCE-CT data.

Tests demonstrated a good ability to di�erentiate between heterogeneously perfused areas. We propose

to adapt the algorithm and test it in the context of DCE-US data.

6.2.3 Implementation in DCE-US

Statistical framework

The same statistical framework as presented in Chapter 3 is used to describe the noise. A sequence of N

DCE-US frames is acquired at ti with 1 Æ i Æ N . The echo-power at x or in a region around x, fx(ti),

is modelled as the multiplication of a realization of a perfusion signal ux and a standardized noise v:

fx(ti) = fx(ti) = ux(ti)v(ti). (6.1)

As presented in Section 6.2.2, the DynClust algorithm, as developed for DCE-MRI and DCE-CT, assumes

that the signal of interest is corrupted by an additive noise. In order to comply with this condition, the

logarithm of the DCE-US signal is taken. Moreover, because the information of interest is encompassed

in the temporal variations of the signal and not in its baseline, the baseline value, defined as the mean

signal before the time of arrival of the contrast agent tCA, is subtracted from the signal:

Ix(ti) = log (fx(ti)) ≠ log (mean(fx(t))
t<t

CA

) = log (ux(ti)) + log (v(ti)) ≠ log (mean(ux(t))
t<t

CA

). (6.2)

The resulting quantity is the enhancement vector, and is used as an input for K-mean and DynClust

algorithms.

K-mean: Algorithm parameters

The implementation for DCE-US data is straightforward: the observations are the enhancement vectors

Ix of the ROI. The number L of components selected by the dimension reduction phase was chosen as

L = 3, because it is observed that the eigenvalues ⁄i for i > 3 are low compared to the first 3 eigenvalues.

The number of cluster was chosen to be K = 2 for the sensitivity/specificity analysis.
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DynClust: Algorithm parameters

In this work, the variance ‡ has been set to 125. This value has been fixed using the data acquired in

the kidney, by dichotomy, as o�ering a compromise between an accurate di�erentiation of anatomic areas

and a low number of clusters in the areas that are anticipated to be functionally uniform.

In order to decrease processing time, the enhancement vector was computed over small ROAs of

3 ◊ 3 pixels, from which the signal was averaged rather than for all the pixels of the original sequence.

6.2.4 Data simulation and acquisition

Simulated data set

To assess the ability of the algorithm to detect di�erences in perfusion, sequences with two compartments

were generated, each presenting a di�erent set of flow parameters.

DCE-US data were simulated using the algorithm presented in [96] and Chapter 4, based on the

linear system formalism presented in Chapter 2. First, a perfusion signal was generated by convolving

the impulse response of a vascular network with a lognormal transit time distribution generated from

Eq (5.6), with an input function I(t), also generated from a lognormal distribution with fixed parameters.

Sequences with 100 images of 18 ◊ 18 pixels were generated to simulate two compartments (I and II),

each presenting di�erent flow characteristics. Each of the two areas comprised a region with dimensions

of 9 ◊ 18 pixels. In the compartment I, the reference compartment, the flow parameters time to peak

(TTP = exp(m ≠ s2)) and scaling parameter A of the tissue transit time distribution are kept fixed,

with values, respectively of 20 seconds and 1.10≠3 (arbitrary units). These values were chosen as typical

values encountered in vivo. In the compartment II, the test compartment, only one parameter was varied

at a time with respect to the parameters used to model flow in compartment I. Data were simulated for

TTP and A varying in 5% steps, respectively, from 0% to 60% and 0% to 100% with respect to reference

values, with 5% steps. For one parameter varying the other parameter is kept at its initial values. For

each set of parameter values, 100 simulations were generated, which led to a data set of 3200 simulations.

Data acquisition in murine kidney

Data were acquired with an Aplio 50 ultrasound imaging system and a PLT-1202-S linear probe (Toshiba

Medical Systems, Toshigi, Japan), used with a transmit-frequency setting of h12.0 in Contrast Harmonic

Imaging (CHI) mode. The mechanical index was fixed at a low level (MI = 0.1) to avoid bubble de-

struction. The size of the pixels in the sequences was 0.06 ◊ 0.06 mm. DCE-US data were acquired in

the transverse plane of the left kidney of one mouse. A total of 3 independent injections were performed

through a catheter in the tail vein of a mouse using a volume and speed-controlled injection system [40],

which allowed a good repeatability of the injection. Each injection consisted of 50 µL of SonoVue R•

(Bracco Imaging SpA, Milan, Italy) injected at a rate of 2 mL/min.

Because these sequences were subject to a high level of motion due to breathing, they were registered

before applying the DynClust algorithm, using the registration method proposed in Chapter 5.
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Figure 6.1: Atlas of a mammalian kidney anatomy (adapted from Piotr Michal Jaworski, CC licence)

6.2.5 Data comparison

Evaluation of sensitivity and specificity using simulated sequences

The capacity of the DynClust and K-means algorithm to correctly classify the pixels in the two com-

partments in two di�erent clusters was assessed by computing the sensitivity and the specificity of the

classifier, for each variation of the parameter of interest.

The sensitivity is defined as the percentage of pixels in II classified correctly:

Sensitivity = Pixel in II classified in II
Total number in II , (6.3)

and the specificity is the number of pixels in I correctly classified:

Specificity = Pixel in I classified in I
Total number in I . (6.4)

Qualitative test of clustering in normal kidney

Because kidneys anatomy is well known, it is possible to qualitatively assess anatomical relevance of the

clusters obtained by the algorithm. In the data acquired in kidneys, the cluster distribution was evaluated

based on discrimination of standard anatomical structures presented on Figure (6.1): the peripheral cortex

of the kidney has a high vessel density with homogeneous perfusion. Vessels in the renal column carry

blood from the renal artery to the cortex. The renal medula is more weakly perfused. Thus, in normal

kidney, it is anticipated that three distinct flow patterns should be identified: cortex, renal columns and

medula.
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6.3 Results

6.3.1 Sensitivity and specificity analysis

Figure 6.2 and Figure 6.3 show the sensitivity and the specificity of the two clustering algorithms, as a

function of the percent di�erence between parameters (A and TTP) in compartments I and II.

(a)

(b)

Figure 6.2: Boxplots of the specificity and the sensitivity of the method depending on the variation of

TTP between the two compartments.

In the sensitivity graphs, it is visible that when the % di�erence between TTP or A in the two regions

is below a certain level, the two regions are grouped within a single cluster. For the TTP parameter,

this level is between 15 and 30% di�erence, while for A, it is between 30 and 50% di�erence. At the

same time, the specificity stays high, with median values at 100% for all the % di�erence levels that were
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(a)

(b)

Figure 6.3: Boxplots of the specificity and the sensitivity of the method depending on the variation of A

between the two compartments.

tested.

For K-means, specificity and sensitivity are always non-null, even for very low % di�erences between

parameters in the two compartments. This means that even when perfusion is approximately uniform, the

algorithm tries to identify clusters. This creates a lot of false positive detections which are demonstrated

by the specificity values between 70 and 80% obtained with the K-means algorithm.

6.3.2 Kidney qualitative evaluation

Cluster maps for the data acquired in a mouse kidney are shown in Figure 6.4 (a) (b) and (c). Only

the 3 largest clusters were retained for display. In Figure 6.4 (d), representative echo-power data curves
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extracted from the clusters in Figure 6.4 (b) are presented. Although the 3 acquisitions have been

performed on the same kidney, the cluster maps are relatively di�erent. However, in the 3 acquisitions,

a low amplitude cluster is identified in the central zone of the kidney. This is consistent with the kidney

anatomy. In the periphery, two main clusters are identified: one cluster which emits a medium signal

and one cluster with higher amplitude signal. In some cases, the high-amplitude enhancement zones

seem to span from the center of the kidney toward the periphery. That would be consistent with a zone

corresponding to the renal columns, which bring the blood to the renal cortex.

(a) (b)

(c) (d)

Figure 6.4: (a)-(c) B-mode images of three independent DCE-US sequences acquired in vivo along the

transverse axis of murine kidney. The three most prevalent clusters are supperimposed on the B-mode

image. d) Echo-power data curves obtained from the clusters presented in Figure 6.4. The color of the

curve correspond to the cluster it has been extracted from.

6.4 Discussion

The results obtained on the simulated data set give an idea of the order of magnitude of the variabilities

of amplitude (which varies with A) and of the kinetics (which varies with TTP ) the clustering algorithm

is able to detect. This could be modified by changing the hyper-parameter of the algorithm. Nonetheless,

the specificity of the algorithm is high in this configuration which prevents it from identifying insignificant

heterogeneities. Moreover, the fact that the noise simulation method is non-parametric, uses experimen-

tally acquired noise and mimics well DCE-US noise in terms of correlation and distribution according

to Chapter 4 should make simulation conditions comparable to experimental conditions. Compared to
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the K-means algorithm, results obtained via DynClust are more robust. Moreover, contrary to K-means

algorithm, the sensitivity of DynClust is highly dependent on the % di�erence in the parameters between

clustered zones. This is an advantage because clusters identified will maintain a characteristic level of

di�erences in terms of temporal dynamics.

The results for the in vivo kidney data set, presented on Figure 6.4, look di�erent although they

are from the same individual. This could be explained by the fact that the imaging plane is not the

same in each acquisitions. Moreover, the acquisitions have been performed on three di�erent days, which

could increase the variability. The results obtained on the same data set using K-means algorithm are

not presented for two reasons: they are irrelevant when the number of clusters is setted to a high value

(superior to 5). When the number of cluster is inferior to 5, results are comparable to those obtained

with DynClust, but no quantitative comparison can be done because the ground truth is unknown. This

emphasize the di�culty of using K-mean in application, such as tumour heterogeneity assessment, where

the desired number of clusters is unknown. The fact that the sensitivity of DynClust to di�erences in

temporal dynamics can be fixed via the hyperparameter ‡ is therefore a strong advantage.

In spite of the relative di�erences in the precise location of clusters detected on the three imaging

sequences, the clusters obtained with the algorithm seems to correspond well in all cases to physiological

regions of di�erent flow. Considering that the algorithm does not use any a priori information about the

shape of echo-power data curves, of the position or the number of clusters in the sequence, these results

suggest that the algorithm has the potential to detect flow variability. This potential will be further

assessed on pre-clinical data in the next chapter.

In this work, signal attenuation has not been compensated for. This could play a role because signal

with a similar dynamic could be classified in di�erent clusters, depending on how attenuated the signal

is. However, this did not seem to strongly e�ect the results obtained in the kidney. No discernible

dependence on depth was identified in the detected clusters. Attenuation is not anticipated to be very

strong for the acoustic frequency (7 MHz) and imaging depths (0.1cm) considered for the acquition of

the data in the murine kidney.

The value for the hyperparameter ‡ has been selected empirically by qualitatively adjusting the

parameter to enhance the detection of the di�erent flow territories of the kidney. If the value determined

this way leads to satisfactory results, it should be possible to determine in a more rigorous and satisfactory

way the value of ‡. In particular, using the simulations, it should be possible to fix the variance according

the desired sensitivity.

The time necessary to run the algorithm on a sequence is approximately 3 minutes for a 128 frames

sequence with 84 ◊ 126 pixels on a personal computer. This is reasonable, considering the fact than the

process is completely automatic. However, the processing time can be increased when the data requires

registration. Further work could consist in estimating simultaneously the cluster and the motion, in a

single mathematical framework.

6.5 Conclusion

The applicability of a clustering algorithm to DCE-US contrast echo-power data curves, without shape

and number of clusters a priori is evaluated, and its sensitivity and specificity are assessed on simulated,

dual compartmented data. Results obtained on in vivo kidney data suggest that the clusters obtained are
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physiologically relevant. By providing non-operator dependant indicators of the tumour heterogeneity,

this algorithm can potentially be a promising tool to assess cancer therapy in pre-clinical or clinical

studies.



Chapter 7

Evaluation of fitting and clustering

methods on pre-clinical data

7.1 Introduction

In this Chapter, clustering and fitting procedure techniques presented respectively in Chapter 6 and

Chapter 3 are tested on a pre-clinical dataset of murine tumours, to illustrate their interest and their

potential for diagnosis and therapy following.

The dataset is constituted of three treatment groups: one group receiving an anti-angiogenic therapy

acting on the vascular network, one group receiving a cytotoxic therapy stopping tumour growth but not

supposed to act on vascular network structure, and a placebo group. Because the two treated groups

have di�erent therapeutic targets, they should lead to di�erent functional modifications, in particular in

terms of microvascular architecture, that DCE-US would ideally be able to capture.

In [71], an indicator evaluating the local coherence of the echo-power data curves to detect prostate

cancer was proposed, demonstrating ability to accurately di�erentiate between cancerous and non-

cancerous tissues. This indicator was based on measures of spectral coherence between the echo-power

data curves extracted from one pixel and echo-power data curves from its neighbourhood. The results

suggest that parameters evaluating flow coherence in tissues could be of clinical interest to follow angio-

genesis. In this work, a non-parametric indicator, with a similar spirit as in [71], is proposed using the

clustering algorithm results to extract information related to the dispersion of the vascular network. A

measurement of the spectral coherence of the echo-power data curves extracted from the clusters with

the whole tumour echo-power data curve is used.

The potential clinical interest of the clustering and the fitting method is evaluated by assessing the

ability of the di�erent indicators to di�erentiate between the treatment groups.

7.2 Material and method

7.2.1 Data Acquisition

Tumours were induced by subcutaneous injection of fragment of Lewis lung (3LL) tumours cells in 61

black mice. Mice were treated from 6 days after tumour cell injection, and were allocated to three di�erent
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therapy groups: one group received 40mg/kg daily of an anti-angiogenic, one group receiving during 3

days 150mg/kg daily of a cytotoxic therapy via i.p. injections, and one group receiving a placebo.

DCE-US data were acquired from each mouse on days 1 (before therapy beginning, 6 days after cell

injection.), 3, 7 and 9 days after the therapy beginning. 61 mice were included in this study: 27 controls

received placebo (Placebo group), 20 mice were treated with the anti-angiogenic (Anti-ang group), and

14 with a cytotoxic treatment (Cytotoxic group).

Data were acquired with a Sequoia 512 ultrasound imaging system and 15L8w probe (Siemens) 7-

14 MHz, with mechanical index fixed a low level (MI = 0.1). The size of the pixels in the sequences is

0.053 ◊ 0.053 mm2. The ultrasonic probe was placed such that the ultrasound focal zone was centred on

the tumour position. Sequences were 200 frames long, with a XX Hz sampling frequency.

7.2.2 Processing

Before the analysis, regions of interest (ROIs) were drawn manually around the whole tumour by an

expert. The size of the ROI is designated as |ROI|.

Flow parameters extraction

The lognormal model (Eq.(5.6)) was fitted to the mean echo-power data of the whole tumour. To assess

the fitting methods, parameters were extracted from the whole tumour using the least squares (LS) and

the multiplicative model (MM) method (described in Chapter 3). AUC, TTP and MTT as described in

Chapter 2 were estimated.

For the whole tumour analysis, the ROA is selected as equal to the whole tumour ROI. Flow param-

eters extracted this way are designated as AUCLS
tot and AUCMM

tot , MTTLS
tot and MTTMM

tot and TTPLS
tot and

TTPMM
tot .

Clustering analysis

Clustering results The clustering method presented in Chapter 6 is applied to all the sequences.

Parameters and implementations are identical to those of Chapter 6. The number of clusters in the ROI

is K. Clusters are sorted by size, which means that cluster number 1, C1 is the largest cluster and number

K, CK , the smallest. The size of the cluster number i is designated as |Ci|. The echo-power data curve

extracted by averaging for each frame the signal coming from cluster number i is designated as fi(t),

while the echo-power data curve extracted from the whole ROI is designated as fROI(t).

Coherence indicator To assess the dispersion of flow kinetics in the whole tumour ROI, an indicators

measuring the mean coherence between the echo-power data curves extracted by cluster and from the

whole ROI is proposed, inspired by the coherence parameter presented in [71].

In order to have an indicator independent from the appearance time of the contrast agent in the cluster,

the coherence is performed in the frequency domain: because appearance time is entirely contained in the

phase of the Fourier transform, operating on the amplitude of the Fourier transform allows to overcome

this issue. Because, as presented in Chapter 3, the echo-power data curves fi(t) are considered to be

a perfusion signal ui corrupted by a multiplicative speckle noise v, the Fourier transform is performed

on the logarithm of the curves. With F log
i (‹) the Fourier transform of the logarithm of fi(t) and the
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notations of Chapter 3:

F log
i (‹) = TF [log(fi(t))](‹) = TF [log(ui(t)) + log(v(t))](‹) (7.1)

F log
i (‹) = TF [log(ui(t))](‹) + TF [log(v(t))](‹) = U log

i (f) + V log(‹) (7.2)

According to Eq (7.1), the frequency contents of the noise V log(‹) and of the perfusion signal U log
i (‹)

are summed and can therefore be more easily separated assuming that their bandwidths are relatively

disjoint.

Once the Fourier transform has been performed, the computation of the spectral coherence coe�cient

can be performed on the bandwidth [‹min, ‹max] of interest. The spectral coherence coe�cient fl (also

used in [71]) is computed for each cluster as follow:

fl(i) =
s ‹

max

‹
min

(|F log
i (‹)| ≠ |F̄ log

i |)(|F log
ROI(‹)| ≠ |F̄ log

ROI|)d‹
Òs ‹

max

‹
min

[|F log
i (‹)| ≠ |F̄ log

i |]2d‹
s ‹

max

‹
min

[|F log
ROI(‹)| ≠ |F̄ log

ROI|]2d‹
. (7.3)

From expression in Eq (7.3), it should be noted that the measurement is invariant by multiplication of

fi(t) by a constant: this means that this measurement is an indicator of the similarity of the shape of the

temporal response of the cluster with the whole tumour response, and not of their relative amplitudes.

Finally, to obtain a unique global indicator for the whole ROI, the average spectral coherence coe�-

cient flROI is computed :

flROI = 1/|ROI|
Kÿ

i

fl(i)|Ci| (7.4)

Implementation The minimum frequency is chosen as the first non-null frequency, such as the baseline

information is suppresed: ‹min = FR/N with FR the frame rate and N the number of images. The

maximum frequency is chosen ‹max = 0.5Hz, because it has been shown to be the limit of the frequency

bandwidth for DCE-US echo-power data curves in [92].

7.2.3 Results comparison

To compare the di�erent methods and parameters extracted, the evolution relative to day 1 of the di�erent

parameters are computed. For a given parameter, its evolution at day D, Param%(D) is computed as:

Param%(D) = Param(D) ≠ Param(1)
Param(1) . (7.5)

To compare the e�ciency of the di�erent approaches for therapy following of the di�erent methods and

of the di�erent parameters, their ability to reveal statistically significant di�erences between the di�erent

therapy group is assessed. To evaluate the significance, the non-parametric Mann-â��Whitney U test is

used. Di�erence are considered significant when the p-value is lower than 0,05.

7.3 Results

7.3.1 Influence of the fitting method

The whole tumour parameter analysis led to significant di�erences for AUCROI parameter. The other pa-

rameters TTPROI and MTTROI did not lead to significant di�erences. Boxplots comparing the evolution
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of AUCROI values found with MM and LS methods, at days 3, 7 and 9 are presented in Figure 7.1, with

p-values displayed only when inferior to 0,05. Divergences can be observed between the two methods for

the significance of the di�erences between the groups: at day 3 (Figure 7.1 a)), the di�erence between

the anti-angiogenic group and the cytotoxic group is significant using MM method but is not with LS.

The same is also true at day 9, and additionally a significant di�erence is observed between Placebo and

Cytotoxic group that is not observed with MM.

7.3.2 Comparison clustering and whole tumour

As stated in the previous section, the whole tumour parameters TTPROI and MTTROI does not permit

to di�erentiate between the di�erent groups (with both fitting methods). Boxplots representing the

distribution of the evolution of the number of cluster K at days 3, 7 and 9 are presented on Figure 7.2.

Similarly, boxplots representing the distribution of the evolution of flROI at days 3, 7 and 9 are presented on

Figure 7.3. No significant di�erences are observed at day 3. At day 7, K has increased significantly more

in the Anti-angiogenic group than in the Placebo group, and decreased significantly more in the Cytotoxic

group than in the Placebo group. The coherence parameter flROI has also decreased significantly more

in the Anti-angiogenic group than in the two others. At day 9, the di�erence between Anti-angiogenic

group and placebo group has been lost, but all the other di�erences are maintained.

7.4 Discussion

7.4.1 Influence of the method of fitting

The results presented in section 7.3.1 show that the use of the MM leads to significant di�erences between

groups for the parameter AUCMM
ROI that are not completely similar with those obtained using LS fitting

AUCLS
ROI. In particular, an early di�erence is observed at day 3 between the Anti-angiogenic and the

Cytotoxic groups.

It is not possible to assert without doubt that these di�erences are real functional di�erences and

are not artefacts of the fitting method. However, several elements can be noticed: first, the di�erences

observed are coherent with the respective expected e�ects of the anti-angiogenic and the cytotoxic therapy.

Indeed, the Cytotoxic, is not supposed to act on the organization of the vascular network, while the Anti-

angiogenic is. It seems therefore consistent to observe no di�erence between Placebo group and Cytotoxic

group for an indicator related to the density of the network such as AUCROI, but significant di�erences

between those two groups and the Anti-angiogenic group. Moreover, contrary to the results obtained

using the LS method, the significance of the di�erences observed with the MM method are the same at

days 3, 7 and 9. This is an argument that plays in favour of the MM method. For the other parameters

(TTPROI and MTTROI), the absence of significant di�erence using both method suggests that those

parameters are not adapted to describe the di�erences between the groups in this particular study, and

a fortiori to di�erentiate the two fitting methods.

The results above and the better theoretical basis of the MM method presented in Chapter 3 altogether

suggest that the MM method of fitting could be adopted without risk of creating misleading results, and

could potentially lead to changes in the functional di�erences observed with again potentially better

characterisation of the e�ects of di�erent therapies.
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7.4.2 Interest of the clustering algorithm

The results observed with the evolution of the number of cluster obtained via the clustering algorithm

show significant di�erences at day 7 between all the groups. This is the only parameter allowing to

di�erentiate independently the three treatment groups. The explanation could be as follow: the number

of cluster is correlated with the dispersion of the temporal profile but also with the size of the region

of interest (R = 0.56, p<0.05), as it can be seen on Figure 7.4, where the number of cluster is plotted

against the size of the ROI for all the tumours before therapy beginning. Therefore, because the cytotoxic

therapy limits the growth of the size of the tumour and the anti-angiogenic acts on its vascular structure,

the di�erence observed may be the conjugate result of those two di�erent causes.

In this sense, results observed with the spectral coherence parameter flROI are interesting, because

this parameter is not significantly correlated with the size of the tumour. The di�erences observed are

consistent with the expected e�ects of the therapy: the heterogeneity of the vascular network decreases in

the anti-angiogenic group, compared to the two other groups. Moreover, this di�erences are maintained

at day 9. As stated earlier, this parameter is not related to the amplitude of the flow that goes through

the tumour (as AUC is) but only to the temporal profile of the echo-power data curves: for tumours

taken before therapy beginning, correlation between AUC and flROI is non-significant. The information

that it brings about the tumour is therefore di�erent from the information captured by AUC.

One limit of this work is that the flROI parameter has not been validated using a ground truth

method such as histology or another imaging modality. The assumption that its variations are related

to the variations of organisation of the vascular network is therefore theoretical. However, the clustering

technique it is based on has been validated in Chapter 6, and the spectral coherence is a well known

quantity that has been extensively used in various domains, and that has been shown to be of interest

in the context of DCE-US [71]. Associated with the fact that the results obtained are consistent with

the clinical context, that the theoretical basis of the methods are solid, and that the conventional kinetic

indicators TTP and MTT does not identify di�erences between the groups, the results obtained are

encouraging.

For the computation of flROI, the bandwith has been selected based on the literature. Further work

could consist in investigating deeper what is precisely the frequency content of echo-power data curves

f(t) and their logarithm, to have a finely tuned bandwidth that filter enough noise without leading to a

loss of information.

7.5 Conclusion

In this study, the interest of the MM fitting algorithm presented in Chapter 3 and of the clustering

technique presented in Chapter 6 are evaluated on a large pre-clinical data set. The MM fitting algorithm

allows to obtain results that seems slightly more consistent than the LS algorithm, without additional

cost. The clustering algorithm conjugated with a new proposed parameter evaluating the dispersion of

the flow kinetics in the tumour allows to identify di�erences that does not appear with the parameters

extracted via traditional parametric model fitting.
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(a)

(b)

(c)

Figure 7.1: Boxplots of the evolution of the AUC parameter, estimated from curve fit performed with

the MM fitting method and the LS fitting method, at Days 3 (a), 7 (b) and 9 (c) after therapy. The level

of significance for discrimination of the anti-angiogenic group as compared to the placebo and cytotoxic

treatment groups was strengthened when MM fitting was used.
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(a) (b)

(c)

Figure 7.2: Boxplots of the evolution of the number of clusters by group, for days 3, 7 and 9 after therapy
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(a) (b)

(c)

Figure 7.3: Boxplots of the evolution of flROI, for days 3, 7 and 9 after therapy
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Figure 7.4: Logarithm of the number of label K as a function of the logarithm of |ROI|. From this graph,

the correlation between these two parameters appears clearly.



Chapter 8

Discussion and perspectives

The goal of this thesis was to develop methods to decrease the variability and improve the robustness

of post-acquisition processing of DCE-US imaging. These advances are necessary so that DCE-US can

meet its full potential for the monitoring of anti-angiogenic therapies. The underlying approach of this

work was that improving the characterization of DCE-US signal can significantly improve post-acquisition

analysis by enabling the development of better adapted and more specific methods.

8.1 Summary and discussion

Several aspects of the quantification process in DCE-US have been addressed, and new methods have

been proposed and validated to improve the quantification. The development of these methods has been

shown to provide better and more robust quantification of the microvascular network. We have shown

that the estimated parameters are relevant for monitoring anti-angiogenic treatment e�ects on tumor

microvascular network.

The regression method proposed in Chapter 3 leads to modifications in the values of estimated flow

parameters that may not seem very spectacular, in particular when considering whole tumour ROAs.

However, the results presented in Chapter 7 demonstrate that the changes induced by the regression

method have consequences on the significance of the di�erences between the groups. Moreover, when

the method is used to fit models to data from small ROAs, estimated flow parameters are significantly

(p<0.05) more robust, as presented in Chapter 3. The regression algorithm is easy to implement, it can

be used immediately in pre-clinical studies and be transferred rapidly to the clinical setting. Software

that is currently used in clinical or pre-clinical studies, such as VueBoxTM(Bracco Suisse SA, Geneva,

Switzerland), or QLABTM(Philips) currently rely on least squares based methods to fit parametric models

to the echo-power data [120, 121]. Integration within such software of the regression method presented in

Chapter 3 would be relatively straight forward and could have impact on the sensitivity of the DCE-US

analysis to angiogenic modifications.

One of the main problems encountered in the validation of processing algorithms, in particular in

DCE-US, is the lack of realistic data where ground truth is accessible. The sequence simulation technique

presented in Chapter 4 provides a helpful alternative when large, calibrated data sets are not available.

Because the simulation of the noise is non-parametric and based on experimental data, it can be considered

as an objective dataset. This should be an advantage as compared with sequence simulations made using
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parametric methods which require subjective choices for the noise distribution. The main limitation of

the technique proposed in Chapter 4 is that to simulate the sequences, the method requires the acquisition

of a dose ranging dataset for each ultrasound imaging system, contrast agent and set of imaging-system

settings. Moreover, as the simulation is based on a simplified model for the signals, it cannot take into

account physical e�ects such as saturation or attenuation.

Follow-up studies in the pre-clinical or clinical settings can include a large number of DCE-US se-

quences acquired at di�erent points in time with varied imaging planes. Sequence analysis can be dis-

turbed by physiological motion artefacts. In this context, the possibility to use an automatic algorithm

for sequence registration as proposed in Chapter 5 is desirable. One limit of the method is that it

does not account for out-of-plane images: it therefore must be used in conjunction with an out-of-plane

image-detecting algorithm. Further work could consist in investigating whether out-of-plane images cause

variations in the registration metric that can be detected so that these images could potentially be auto-

matically discarded.

Finally, the clustering algorithm proposed in Chapter 6 also has the advantage to be completely auto-

matic. This technique has great potential as shown in Chapter 7 because it is able to capture di�erences

that do not appear with more traditional flow parameters. Moreover, it is a non parametric method

that could even be applied to other contrast uptake kinetics such as those exhibited by targeted contrast

agent, to di�erentiate between areas with attached and non-attached microbubbles. In spite of the signif-

icant promise shown by the clustering algorithm, it needs to be validated using other modalities such as

confocal microscopy capable of precisely assessing the spatial and flow distribution of the microvascular

network. Moreover, because the method is strongly e�ected by motion and in particular by out-of-plane

images, its transfer to clinical datasets should be accompanied by the use of e�cient motion-compensation

algorithms.

8.2 Key remaining questions

8.2.1 Better characterization of the input function

The work presented in this thesis has focused on reduction of variability in post-acquisition processing.

However, as stated in Chapter 2, the variability in DCE-US can also come from factors inherent to

the acquisition itself. One major identified cause of variability is the lack of repeatability of the input

function I(t). This lack of repeatability has two main causes. First the injection cannot be perfectly

repeatable, even using an automatically controlled injection system. Second, physiological variations (in

terms of temperature, anaesthesia, blood pressure or cardiac frequency) lead to di�erences in the pathway

that the injected contrast agent microbubbles must traverse before reaching the ROA. Therefore, even

for successive injections within the same individual, the repeatability of the input function cannot be

guaranteed.

Several solutions can be proposed to deal with variability of the input function. One approach is to

use non-parametric techniques that do not assume specific behaviour of the echo-power data curves, but

rather measure the spatial distribution of echo-power data curves. This is for instance what is proposed

in [71] or with the clustering technique presented in Chapters 6 and 7. However, this approach can only

provide information about the heterogeneity of the vascular network.
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Another approach is to use deconvolution techniques, such as the ones proposed in [122] and [35].

However, these techniques are di�cult to use in vivo because they require direct evaluation of the input

function, for instance, in an a�erent artery. Jirik et al. [36] have proposed a variation of this technique

that does not require an external measurement of the input function.

In theory, the best possible input function would be a Dirac of contrast agent: in the framework of

the linear formalism in Chapter 2, it would lead to a signal linearly related to h(t), i.e. of the Transit

time cumulative density function. Some preliminary works have been done to assess the feasibility of this

approach, using microbubbles destruction to modulate the input function as a Dirac.

8.2.2 Acquisition of information from the full tumor volume

All the work performed during this thesis was made using 2D+time sequences. This necessarily implies a

certain number of hypotheses and approximations. First, the imaging plane is considered representative of

the whole tumour. This hypothesis is not well upheld for heterogeneous tumours. Moreover, the selection

of the imaging plane is highly operator-dependant. This also diminishes the technique’s reproducibility

because it is very di�cult to position the probe at exactly the same location for measurements repeated

at intervals during therapeutic follow-up in longitudinal studies. Finally, as mentioned in Chapter 2, the

mathematical formalism used in DCE-US implies that the ROAs considered are all independent from

each other and perfused via a single input and a single output. This hypothesis is necessary because

2D data acquisition does not provide data of the full, volumetric neighbourhood. Three-dimensional

data can overcome these limitations. The full tumor volume can be scanned more reproducibly. The

imaging plane issue becomes almost irrelevant. Moreover, models taking into account the input/output

relationships between adjacent voxels can be developed. Such volumetric approaches would lead to more

accurate, non-parametric mapping of a tumour’s vascular network.

All the methods we have developed in this thesis can be transferred toward the analysis of volumet-

ric data sets. Because the image formation principle remains similar, the multiplicative model for the

noise applies equally well to 3D data and the fitting method developed in Chapter 3 could be directly

transferred. The registration method developed in Chapter 5 is even more relevant because 3D data

sets supply the information necessary to deal with out-of-plane motion. Gating techniques become ir-

relevant while e�cient registration becomes indispensable. Moreover, 3D acquisitions should allow the

use of a non-rigid motion framework for registration, which could strongly improve the quantification.

Clustering and simulation methods are also based on algorithms that can be easily implemented in 3D.

Cluster identification, in particular, is of critical interest for three-dimensional data sets because manual

segmentation is more complex.

The transfer to 3D is, however, costly in terms of data processing. For instance, the number of

degrees of freedom is multiplied by two for registration (more if a non-rigid motion framework is used).

The clustering method performs computation over neighbourhoods of pixels. The number of pixels in

the neighborhood is squared for volumetric data as compared to 2D data. Finally, modelling and solving

at the voxel level for parameters describing the flow of microbubbles is a very di�cult inverse problem.

Transferring techniques toward the analysis of 3D data sets will, therefore, require considerable e�ort to

make algorithms more e�cient and/or to parallelize computations.
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8.2.3 Toward a better modelling of tissues: biophysical models and multi-

modality

The regression, simulation, registration and clustering methods proposed in this thesis are based on the

model presented and validated in Chapter 3, that accounts for the multiplicative nature of the noise

corrupting DCE-US sequences. As mentioned in Chapter 2 in Section 2.6, other physical phenomena

a�ecting microbubble behaviour could also be taken into account. The next step toward a more accurate

modelling of DCE-US signal could include development of a biophysical model able to integrate attenu-

ation, microbubble behaviour and tissues properties within a single estimation framework. This would

require precise calibration using phantoms and histological reference data to be able to relate measured

signal with the nature of tumor tissues. It could also be interesting to consider information from other

ultrasonic imaging modes such as B-mode imaging, quantitative ultrasound (QUS) or elastography to

obtain complementary information about the tumor.

More generally, a promising approach in medical imaging and, in particular in cancer imaging, has

begun to emerge that uses image-based data jointly with biophysical tumour models [123]. Within

the last few years, mathematical models of tumour evolution have been developed and validated that

model growth of di�erent types of biological territories within the tumor [124]. These models necessitate

data concerning the tumor composition for their initialization and calibration. Information about the

compartments (e.g. perfused, hypoxic and necrotic) of a tumor assessed with functional medical imaging

could be a valuable source of information for such models. In principle, once models have been calibrated

and validated, they could provide information about the potential evolution of a tumour and orient

therapeutic decisions.

8.3 Conclusion

Dynamic contrast enhanced ultrasound is a promising imaging modality for cancer and therapy moni-

toring. In this work, methods have been developed to improve the robustness of the quantification, by

improving post-processing steps of the quantification and modelling more accurately DCE-US noise. By

doing so, more accurate and informative indicators are obtained to follow the modifications of microvas-

cular flow. A method to simulate realistic DCE-US sequences has also been developed. Such simulations

can be used to test new algorithms on data corrupted with realistic noise. The introduction of 3D ac-

quisitions and the development of tumour growth models o�er promising perspectives which could lead

to further improvements in the interpretation of ultrasonic data from tumors and, ultimately, a better

understanding of tumor development.



Appendix A

K-coherence algorithm

A.1 Detailed description of the K-coherence algorithm

The aim of the analysis phase is to compute, for each pixel of the sample, a set of the k-most similar

pixels in the sample. The analysis can be described in pseudo-code as follow:

1 Input:

2 k, the coherence number,

3 G = {(x1, x2), x1 œ [1 : Nsample], x2 œ [1 : Msample]} sample grid,

4 Isample : G æ R sample image

5 Output:

6 S : G æ {G, ..., G¸ ˚˙ ˝
k

} similarity set

7 Algorithm:

8 S initialized at undefined at all values of G. for all x œ G do

9 for all xÕ œ G, xÕ ”= x do

10 if undefined œ S(x) then

11 add x’ in S(x) in place of the first undefined element;

12 else

13 if ÷xÕÕ œ S(x), d(Isample(neighborhood(x)), Isample(neighborhood(xÕ))) <

d(Isample(neighborhood(x)), Isample(neighborhood(xÕÕ))) then

14 replace x” by x’ in S(x);

15 end

16 end

17 end

18 end
Algorithm 2: Analysis phase of the K-coherence algorithm

The analysis phase has two user-selected parameters, the coherence number k and the sample image.

During the analysis phase, for each input pixel of the sample, a similarity set of the k most similar pixels

in the sample is constructed. The squared di�erence between linear power of the filled neighborhoods

of the considered pixels is the distance. After the analysis phase, the synthesis phase, resulting in the
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complete construction of the simulated image, can begin:

1 Input:

2 S : G æ Gk similarity set constructed in the analysis phase,

3 Isample : G æ R sample image,

4 Output:

5 Gsimulated = {(x1, x2), x1 œ [1 : Nsimulated], x2 œ [1 : Msimulated]}, simulated image grid,

6 Isimulated : Gsimulated æ R simulated image,

7 Psimulated : Gsimulated æ Gsample position in the sample of the selected pixel selected to fill

Isimulated

8 Algorithm:

9 Selection of an m ◊ m seed in the sample;

10 Initialization of the center of Isimulated with the seed and the other points with undefined;

11 Initialization of the center of Psimulated with the positions of the seed pixels in the sample and the

other points with undefined;

12 Curr = Coordinates of a pixel adjacent to the seed;

13 while there are undefined pixels in Isimulated do

14 AlreadyF illNeigh = Psimulated(x œ neighborhood(Curr) & x defined});

15 Candidates = SelectCandidates(AlreadyF illNeigh, S);

// The SelectCandidates() function is illustrated in Figure A.1

16 Threshold = SetThresh(Candidates);

17 for x œ Candidates do

18 if d(Isimulated(AlreadyF illNeigh), Isample(neighboors(x)) < Threshold then

19 add x to V alidCandidates;

20 end

21 end

22 Psimulated(Curr) = randomChoice(V alidCandidates) ;

23 Isimulated(Curr) = Isample(Psimulated(Curr));

24 Curr = NextP ixel(Curr);

25 end
Algorithm 3: Synthesis phase of the K-coherence algorithm

In the synthesis phase, the size of the simulated image and of the initial seed are chosen by the

user. The initial seed can be selected deterministically or randomly. The construction of the candidate

set function is diagramed in Figure A.1 using an example. Several strategies can be employed for the

definition of the threshold value: its value is defined as 130% of the minimum distance among the

candidate set, which adds randomness in the construction. It would also be possible to have a fixed

value, or to set it as 100% of the minimum distance among the candidate set (in this case it is desirable

to have a deterministic algorithm). Finally, di�erent strategies can be employed for the selection of

the next pixel. Pixels were selected and filled using a helical progression. A random selection of the

next pixels in the neighborhood of the filled zone could also be imagined, to introduce another source of

randomness.

The similarity measurement used in the analysis and synthesis phases is the sum of squares of the

di�erences of neighborhood contrast echo-powers. The best distribution and correlation results were
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Legend :

Filled

neighbor

Unfilled

neighbor

Current

pixel

{ac, bc}

{a≠1, b≠1} {a0, b≠1} {a1, b≠1}

{a1, b0}

{a1, b1}{a0, b1}{a≠1, b1}

{a≠1, b0}

Candidate set

for {ac, bc}
=

Similarity sets of {a≠1 + 1, b≠1 + 1}

fi

Similarity sets of {a0, b≠1 + 1}

fi

Similarity sets of {a1 ≠ 1, b≠1 + 1}

fi

Similarity sets of {a1 ≠ 1, b0}

Figure A.1: Schematic diagram of an example of the synthesis phase. For each pixel, the original

coordinates of the pixel in the sample are shown in brackets. {ac, bc} is unknown and needs to be

determined. The candidate set is constituted according to the position of the neighbors in the original

sample image. After the end of the synthesis phase for this pixel, the algorithm will go to the next unfilled

pixel which, in this case, will be pixel {a≠1, b0}.
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obtained for k = 3 and a 3 ◊ 3 neighborhood.

Because the values in the simulated image are only those present in the sample, the choice of the

sample image is critical: it needs to be representative of the statistical distribution to be mimicked. The

integration of the dose-ranging image in the K-coherence algorithm is summarized in Figure 4.1.

To generate the baseline noise ‘, the sample is taken from an image acquired under the same conditions

as dose-ranging data but without contrast agent. To generate the contrast speckle v the sample was chosen

in an image of the dose-ranging acquisition with an appropriate concentration.
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