
HAL Id: tel-01079956
https://theses.hal.science/tel-01079956v1
Submitted on 4 Nov 2014 (v1), last revised 21 Apr 2015 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cloud Environment Selection and Configuration: A
Software Product Lines-Based Approach

Clément Quinton

To cite this version:
Clément Quinton. Cloud Environment Selection and Configuration: A Software Product Lines-Based
Approach. Software Engineering [cs.SE]. Université Lille 1, 2014. English. �NNT : �. �tel-01079956v1�

https://theses.hal.science/tel-01079956v1
https://hal.archives-ouvertes.fr

Département de formation doctorale en informatique École doctorale SPI Lille

UFR IEEA

Cloud Environment Selection and

Configuration: A Software Product

Lines-Based Approach

THÈSE

présentée et soutenue publiquement le 22 Octobre 2014

pour l’obtention du

Doctorat de l’Université Lille I

(spécialité informatique)

par

Clément Quinton

Composition du jury

Rapporteurs : Roberto Di Cosmo, Université Paris Diderot - France

Christian Perez, Inria - France

Examinateurs : Patrick Heymans, Université de Namur - Belgique

Daniel Le Berre, Université d’Artois - France

Daniel Romero, Université Lille I - France

Directrice : Laurence Duchien, Université Lille I - France

Laboratoire d’Informatique Fondamentale de Lille – UMR USTL/CNRS 8022 – Inria Lille - Nord Europe

Mis en page avec la classe thloria.

“We know it well that none of us acting alone can achieve success."

Nelson Mandela, Inaugural Address, May 10th 1994.

i

ii

To Louise

iii

iv

Acknowledgement

First of all, I would like to really thank my supervisor, Laurence Duchien. For five years
now, we have learned to know each other, and we have built a relationship made of mutual
respect, professionalism and sense of humor. Thank you for taking my request into consid-
eration three years ago when, at the end of my temporary contract in your team, you gave
me your trust and accepted me to start this PhD. Thank you for still trusting me when, at the
end of my first year, I did not take charge of my thesis subject yet. Thank you again for your
constant support, feedback and advices given parsimoniously to let me learn on my own. I
was not really sure of the effectiveness of this kind of guidance at first, but I can now guar-
antee it was definitively the right way to supervise me. You gave me the taste for research,
and I hope we will still have a lot of fun together. Thank you!

Next, I would like to thank the members of my thesis committee. Roberto Di Cosmo
and Christian Perez, thank you for having accepted to review my manuscript. You gave me
valuable comments, and I really appreciated your feedback. A special thanks to Roberto for
the discussions we have had during my PhD, and for the invitation to give a talk in your
team nearly two years ago. I was very honored, but at the same time tremendously stressed!
Thank you. Then, I would like to thank Patrick Heymans and Daniel Le Berre, to have
accepted to be part of my committee but most of all, because you generously shared your
expertise with me during your presence in my office as visiting professors. In addition to be
leading researchers in your own areas, you both are great people to discuss and share jokes
with! Finally, a special thanks to Daniel Romero. I would like to thank you for all the great
work you did during my PhD, always giving me feedback and reviewing most of the ideas
described in this dissertation. Thanks for your support, thanks for the running sessions, and
thanks for the love of life you bring every day in the office. Keep smiling, and I wish you the
best for your future. You deserve it.

I would also like to thank Goetz Botterweck and Andreas Pleuss for their hospitality
during the three months I visited them at Lero, in Limerick. Goetz, even though we did not
have lot of time to discuss together, I really appreciated your research skills and most of all,
the research vision you described me on my arrival day: "have fun"! Andreas, thanks a lot
for everything you did for me. Not only the amazing research work, but all your everyday
friendship, giving me the opportunity to play football together, go out and drink beers, and
even meet your 3 days old daughter. Take care of her and your wife, who I thank as well for
receiving me in your house, in particular for an unforgettable sweating Indian meal.

During the last three years, I had the chance to be part of the SPIRALS (formerly ADAM)
team. I would thus like to thank all the permanent members of this team, Lionel Seinturier,
Philippe Merle, Romain Rouvoy and Martin Monperrus. Thanks for all the feedback and
comments you gave me, as many ideas emerged from these inspiring discussions. More
generally, I would like to thank all the members of the team I met since 2009. It would be
hard for me not to forget someone, regarding the existing turn-over in the team. So I would
just thank the PhD students who assisted me in the last three years, as we suffered together

v

:-). I wish you the best for your future. A special thanks however to a former postdoc,
Sébastien Mosser. I would like to thank you for the endless discussions we had 3 years ago,
about starting or not a PhD. Thanks a lot for convincing me (well, it was not really hard,
was it?), I am far from regretting today. I would like to thank you also for supporting me in
the tedious writing process of my first ever research paper. Thanks to you (and Laurence), I
guess I now get the correct strictness to do it on my own.

Finally, I would like to thank my family and friends for their immeasurable support.
Thanks to my parents, Véronique and Philippe, to my sister Cécile, my brother Cyril and of
course Laurent and Sophie. Thank you for supporting me, even in the distance. Knowing
you believe in me has always been a great support in the hard times. Thank you for every-
thing! Thank you, Aurélien, Fanny, Rémi and Sarah, for the great time we had together. I
hope to see you again soon. Thank you Aldo and Thérèse for preparing me succulent dishes
every week. Last but not least, I would like to thank my everyday life sugar, Louise. I know
I haven’t been as available as you wished, and I know how deeply you supported me for 3
years now. I will eternally be grateful to you for that. Thanks for your love, and thanks for
believing in me. You are my daily motivation and inspiration and for sure, I would not be
who I am today without you.

vi

Abstract

In the recent years, cloud computing has become a major trend in distributed comput-
ing environments enabling software virtualization on configurable runtime environments.
These environments provide numerous highly configurable software resources at different
levels of functionality, that may lead to configuration errors when done manually. There-
fore, cloud environments selection and configuration tools and approaches have been de-
veloped, ranging from ad-hoc implementation software, to automated strategies based on
model transformation. However, these approaches suffer from a lack of abstraction, or do
not provide an automated an scalable configuration reasoning support. Moreover, they are
often limited to a certain type of cloud environment, thus limiting their efficiency.

To address these shortcomings, and since we noticed that an important number of such
cloud environments share several characteristics, we present in this thesis an approach based
on software product line principles, with dedicated variability models to handle cloud envi-
ronments commonalities and variabilities. Software product lines were defined to take ad-
vantage of commonalities through the definition of reusable artifacts, in order to automate
the derivation of software products. In this dissertation, we provide in particular three ma-
jor contributions. First, we propose an abstract model for feature modeling with attributes,
cardinalities, and constraints over both of them. This kind of feature models are required to
describe the variability of cloud environments. By providing an abstract model, we are thus
implementation-independent and allow existing feature modeling approaches to rely on this
model to extend their support. As a second contribution, we provide an automated support
for maintaining the consistency of cardinality-based feature models. When evolving them,
inconsistencies may arise due to the defined cardinalities and constraints over them, and
detecting them can be tedious and complex whenever the size of the feature model grows.
Finally, we provide as third contribution SALOON, a platform to select and configure cloud
environments based on software product line principles. In particular, SALOON relies on our
abstract model to describe cloud environments as feature models, and provide an automated
support to derive configuration files and executable scripts, enabling the configuration of
cloud environment in a reliable way.

The experiments we conducted to validate our proposal show that by using software
product lines and feature models, we are able to provide an automated, scalable, practical
and reliable approach to select and configure cloud environments with respect to a set of
requirements, even when numerous different kind of these environments are involved.

Résumé

Ces dernières années, l’informatique dans les nuages est devenu une tendance majeure
dans les environnements distribués, permettant la virtualisation des logiciels sur des en-
vironnements d’exécution configurables. Ces environnements fournissent de nombreuses
ressources hautement configurables à des niveaux de fonctionnalité différents, pouvant
mener à des erreurs lors de la configuration si cette dernière est effectuée manuellement.
Des approches permettant la sélection et la configuration de tels environnements ont donc
été développées, allant de logiciels basés sur une implémentation ad-hoc à des stratégies au-
tomatisées basées sur des transformations de modèles. Cependant, ces approches souffrent
d’un manque d’abstraction, ou ne fournissent pas un support automatisé et extensible pour
raisonner sur de telles configurations. De plus, elles sont souvent limitées à un certain type
de nuage, restreignant ainsi leur efficacité.

Pour faire face à ces limitations, et puisque nos travaux ont montré qu’un important
nombre de caractéristiques est partagé parmi ces environnements de nuage, nous présen-
tons dans cette thèse une approche basée sur les principes des lignes de produits logi-
ciels, reposant sur des modèles de variabilité dédiés à la description des similitudes et de
la variabilité de ces environnements de nuage. Les lignes de produits logiciels ont été
élaborées pour tirer profit des similitudes à travers la définition d’artefacts logiciel réutil-
isables, afin d’automatiser la génération de produits logiciels. Dans cette dissertation, nous
proposons notamment trois contributions essentielles. En premier lieu, nous fournissons
un méta-modèle permettant de décrire des modèles de caractéristiques étendus avec des
attribuées, des multiplicités et des contraintes s’appliquant sur ces extensions. Ce type de
modèle de variabilité est nécessaire à la description de la variabilité des environnements de
nuage. En fournissant un modèle abstrait, nous somme donc indépendant de toute implé-
mentation et permettons ainsi aux approches existantes de s’appuyer sur ce modèles pour
étendre leur support. Deuxièmement, nous proposons un support automatisé pour main-
tenir la cohérence des modèles de caractéristiques étendus avec des multiplicités. En effet,
lorsque ceux-ci évoluent, des incohérences peuvent survenir dues aux différentes multiplic-
ité définies et aux contraintes sur ces multiplicités. Les détecter peut alors être une tâche
complexe, surtout lorsque la taille du modèle de caractéristiques est grande. Enfin, nous
fournissons comme troisième contribution SALOON, une plateforme pour automatiser la
sélection et la configuration des environnement de nuage basée sur les principes des lignes
de produits logiciels. SALOON s’appuie notamment sur notre méta-modèle pour décrire les
environnements de nuage en tant que modèles de caractéristiques, et fournit un support au-
tomatisé pour générer des fichiers de configurations et scripts exécutables, permettant ainsi
une configuration fiable desdits environnements.

Les expérimentations que nous avons conduites pour évaluer notre approche montrent

qu’en utilisant des lignes de produits logiciels et des modèles de caractéristiques, on est capa-
ble de fournir une approche pratique, extensible, fiable et automatisée permettant de sélec-
tionner et de configurer des environnements de nuage en finition d’un ensemble d’exigences,
et ce même en présence de nombreux et différents environnements.

Contents

List of Tables xix

Part I Motivation and Context 1

Chapter 1 Introduction 3

1.1 Problem Statement . 5

1.2 Research Goals . 6

1.3 Contribution . 7

1.4 Dissertation Roadmap . 8

1.5 Publications . 10

Part II State of the Art 13

Chapter 2 Background and Concepts 15

2.1 Introduction . 15

2.2 Cloud Computing . 16

2.3 Software Product Lines . 20

2.4 Feature Models . 24

2.5 Summary . 27

xi

Contents

Chapter 3 Modeling, Selecting and Configuring Cloud Environments 29

3.1 Introduction . 29

3.2 Cloud Environments Selection and Configuration Approaches 30

3.3 Software Product Lines for Cloud Environments Configuration 37

3.4 Variability Modeling Approaches . 39

3.5 Approaches for Evolving Feature Models 45

3.6 Summary . 49

Part III Contribution 51

Chapter 4 Cardinality and Attribute-based Feature Models 53

4.1 Introduction . 53

4.2 Motivation and Challenges . 54

4.3 Variability Modeling with CardEx Feature Models 57

4.4 Reasoning on CardEx Feature Models . 64

4.5 Challenges Revisited and Discussion . 67

4.6 Summary . 68

Chapter 5 Evolution and Consistency Checking of Cardinality-based Feature

Models 69

5.1 Introduction . 69

5.2 Motivation and Challenges . 70

5.3 Edits to Cardinality-Based Feature Models 73

5.4 Cardinality-based Feature Model Consistency 78

5.5 Implementing Local Range Consistency . 83

5.6 Improving the Encoding . 86

5.7 Challenges Revisited . 88

5.8 Summary . 89

xii

Chapter 6 SALOON, a Model-based Approach for Selecting and Configuring Cloud

Environments 91

6.1 Introduction . 91

6.2 Challenges . 92

6.3 SALOON in a Nutshell . 93

6.4 From Requirements Specification to Features Selection 96

6.5 Automated Configuration and Product Derivation 102

6.6 Challenges Revisited and Discussion . 106

6.7 Summary . 108

Part IV Validation 111

Chapter 7 Validation 113

7.1 Introduction . 113

7.2 Tool Support . 114

7.3 Experiments and Evaluation . 122

7.4 Discussion . 134

7.5 Summary . 135

Part V Conclusion 137

Chapter 8 Conclusion and Perspectives 139

8.1 Summary of the Dissertation . 139

8.2 Contributions . 140

8.3 Perspectives . 142

Appendices 145

Appendix A SALOON models 147

Bibliography 159

xiii

Contents

xiv

List of Figures

2.1 Cloud computing overview . 17

2.2 Cloud computing service models . 18

2.3 Costs for developing with software product lines 21

2.4 Domain and application engineering . 22

2.5 A feature model described following the FODA notation 25

2.6 A feature model extended with cardinalities and attributes 26

4.1 The Jelastic interface . 55

4.2 Configuring two application server instances in Jelastic 56

4.3 CardEx metamodel . 58

4.4 The Jelastic feature model . 59

4.5 A feature model . 63

5.1 Evolution Example . 71

5.2 Cardinality-based feature model . 73

5.3 Moving a feature . 75

5.4 Updating feature cardinality . 76

5.5 Updating a group cardinality . 76

5.6 Adding a constraint . 77

5.7 Updating a Constraint . 77

5.8 Cardinality Inconsistencies . 78

xv

List of Figures

5.9 Updating a Constraint . 81

5.10 . 82

5.11 Cardinality Inconsistencies . 83

5.12 Inconsistency detection and explanation for M′

LRI 84

5.13 Inconsistency detection for M′

GRI . 87

5.14 Inconsistency detection for the "user-friendly" M′

GRI 87

6.1 SALOON overview . 94

6.2 The SALOON metamodels . 97

6.3 Mappings between the Cloud Knowledge Model and the feature models . . . 99

6.4 A sample mapping rule for the Windows Azure feature model 100

6.5 The Heroku feature model and its assets (excerpt) 104

6.6 derived files to configure Heroku for hosting a Scala application 105

7.1 Tool support overview . 114

7.2 The Cloud Knowledge Model interface . 117

7.3 The Acceleo generation engine . 122

7.4 Time to find a valid configuration . 126

7.5 Time to translate from XMI to CSP . 126

7.6 Detecting an inconsistency in feature models with maximum upper bound
cardinality set randomly from 1 to 10. 129

7.7 Detecting inconsistency while varying the maximum upper bound cardinality
(FM size = 200). 131

7.8 Detecting an inconsistency in feature models whose one feature out of ten has
its cardinality upper bound greater than one. 132

A.1 The Cloud Knowledge Model. 148

A.2 The Amazon EC2 feature model. 149

A.3 The Cloudbees feature model. 150

A.4 The Dotcloud feature model. 151

A.5 The GoGrid feature model. 152

A.6 The Google App Engine feature model. 153

xvi

A.7 The Heroku feature model. 154

A.8 The Jelastic feature model. 155

A.9 The OpenShift feature model. 156

A.10 The Pagoda Box feature model. 157

A.11 The Windows Azure feature model. 158

xvii

List of Figures

xviii

List of Tables

3.1 Summary of cloud selection and configuration approaches. 34

3.2 Synthesis of approaches for cloud selection and configuration. 38

3.3 Summary of variability modeling approaches. 43

3.4 Summary of approaches for evolving feature models. 48

4.1 Difference between comparison and functional constraints 64

4.2 Feature model notations and related constraints 66

5.1 Atomic edits . 74

7.1 Modeled cloud environments . 124

7.2 Feature selection and configuration analysis time 127

7.3 Configuring Heroku and deploying the application 133

7.4 Configuring Heroku and deploying the application using SALOON 133

xix

Part I

Motivation and Context

1

Chapter 1

Introduction

Contents

1.1 Problem Statement . 5

1.2 Research Goals . 6

1.3 Contribution . 7

1.4 Dissertation Roadmap . 8

1.5 Publications . 10

In the last years, computing was being transformed to a model consisting of services that
are commoditized and delivered in a manner similar to traditional utilities such as water,
electricity, gas, and telephony [BYV+09]. Back in 1969, Leonard Kleinrock [Kle03], member
of the original Advanced Research Projects Agency Network (ARPANET) project, already envi-
sioned such a model: "As of now, computer networks are still in their infancy, but as they grow up

and become sophisticated, we will probably see the spread of ’computer utilities’ which, like present

electric and telephone utilities, will service individual homes and offices across the country" [Buy09].
In this model, users access services based on their requirements without regard to where the
services are hosted or how they are delivered [BYV+09]. Over the years, several computing
paradigms have been proposed promising to achieve this utility computing vision, such as
cluster computing, grid computing and more recently, cloud computing.

In cloud computing, resources are accessed on demand by customers and are delivered
as services by cloud providers in a pay-per-use approach, according to service level agreement
contracts established between cloud providers and the application’s developer. This service
provisioning model brings flexibility to those developers that rely on cloud providers’ en-
vironments to run their applications. However, porting an existing application or deploy-
ing a new one to one of these environments is a challenging and error-prone task. Indeed,
there exist tens of those cloud environments, providing different supports and services as

3

Chapter 1. Introduction

a wide range of resources at different level of functionality. It is generally up to the devel-
oper to specify and exploit these characteristics to her best knowledge, leading to complex
choices among cloud environments which are usually made in an ad hoc manner. There is
thus a high risk that the results do not meet the expected requirements due to this lack of
knowledge. On the other hand, switching between platforms just for testing purposes is too
costly [Paa13].

Nevertheless, there exist some techniques to select and configure cloud environments in
an automated way. One of these techniques is software product line engineering [CN01]. In
software product line engineering, commonalities and variabilities across a set of software
products are identified, so that assets can be developed and used to create new different soft-
ware products, where an asset is any software artifact that can be used in the development
of an application [PBL05]. Software product lines are used in a wide variety of domain, like
flight programs, engine-control software for gasoline systems or printer firmware [ABKS13].
We consider that the software product line engineering constitutes a suitable candidate to
manage the variety of configurations that we find in cloud computing environments. By
manage, we mean find a valid configuration, i.e., a proper combination of assets, and rely
on this combination to concretely configure the targeted cloud environment. Two essential
tasks in software product line engineering can achieve such goals: variability management
and product derivation [CN01]. Managing variability is defining the common and variable
characteristics, i.e., features, of the product line. One way to document efficiently variability
is by means of feature models [KCH+90].

At the same time, there is a strong need to edit those variability models, as they have
to co-evolve together with the cloud environments they describe. In the case of cloud envi-
ronments, feature models can be large and complex, and evolving them manually may be
considerably hard and error-prone. In particular, inconsistencies may arise during evolution
which are difficult to detect and explain. As a solution to these issues, we thus explore
in this dissertation a software product line-based approach that supports the developer
when migrating an application to the cloud: from requirements definition, to the selected
cloud environment configuration. Our proposal intends to leverage software product
line principles, in particular using variability models to describe cloud environments and
relying on the derivation process to automate the configuration of the selected environment.

The remainder of this introductory chapter is organized as follows. In Section 1.1 we
identify the problems that motivate this research. Next, in Section 1.2 we present our re-
search goals. Section 1.3 explains the contributions described in this dissertation. In Sec-
tion 1.4, we give a brief introduction to each of the chapters of the document. Finally, we list
in Section 1.5 the publications made during the development of our work.

4

1.1. Problem Statement

1.1 Problem Statement

In this dissertation, we deal with the selection and configuration of cloud environments.
More precisely, we state the main problem addressed by this dissertation as follows:

Given a set of requirements related to the application to deploy, select a suitable cloud

environment and propose a proper configuration of this environment to host the applica-

tion. The requirements taken into consideration are both functional and non-functional

ones. The selection of a cloud environment as well as the configuration proposition must

be automatically performed.

Existing approaches aiming at achieving the same objectives are subject to many limitations
hampering the efforts for building a well-suited approach. In particular, we have identified
that those approaches are confronted to the following issues.

Lack of selection support. Numerous cloud environments are available. The first prob-
lem faced by developers is therefore to select a cloud for hosting the application to be de-
ployed. This cloud environment must be suitable regarding the application functional and
non-functional requirements. The wide range of clouds likely to host the application makes
the selection difficult, and there is a lack of visibility among them, in particular without any
decision-support tools. This selection is thus limited to the developer’s knowledge, which
has a limited scope compared to available cloud environments.

Lack of unified representation. The selection of a cloud environment is made even more
difficult by the diversity and heterogeneity of those environments. Provided services may be
described at a low level, e.g., at implementation level using a dedicated API, or conversely
relying on a service model describing high level conceptual elements. Moreover, among the
provided description mechanisms, there exists no or little consensus such as those cloud de-
scription are not standardized yet. This heterogeneity makes the cloud comparison difficult,
and therefore the selection as well, in particular regarding non-functional properties, e.g., the
price model which is specific to each cloud environment.

Heterogeneous configuration processes. Close related to the previously discussed is-
sue is the problem of configuring a cloud environment, as the diversity is not only present
at functional level. Several configuration mechanisms are available among existing environ-
ments, e.g., through a web configurator, using an API or dedicated SDK or using a general-
purpose programming language, which often depend on the underlying cloud infrastruc-
ture. This heterogeneity makes in particular the interoperability between cloud environ-
ments difficult and therefore limits the migration between them, e.g., when a less expensive
configuration is available.

Lack of evolution support. Cloud environments evolve over time, e.g., a new database
support is provided. The changing nature of these environments and the heterogeneity in
terms of provided services make the understanding, the selection and the configuration

5

Chapter 1. Introduction

hardly manageable. This means that the identification and gathering of required config-
uration elements can be a tedious and error-prone task. Therefore, a global approach for
modeling and supporting the evolution of models describing such cloud environments is
required.

Limited automated support. Once selected, a cloud environment must be properly con-
figured to suit a given set of requirements. Although some of these environments provide
support for being - partially or not - configured, the developer sill has to make the configu-
ration choices manually. Moreover, since each environment relies on its dedicated configu-
ration support, it presupposes that the developer masters this technology. Once again, the
configuration is error-prone, especially to the lack of knowledge of the developer regarding
those heterogeneous environments. Thus, an automated support providing reliable config-
uration tools is required.

1.2 Research Goals

As explained in the previous section, the selection and configuration of cloud environments
implies to consider several issues related to variability, representation, evolution and au-
tomation. The main objective of this dissertation is thus to provide a solution facing this
issues, and we thus propose an approach based on software product line principles. With
such an approach, we introduce in particular high-level abstraction of cloud environments,
as well as configuration mechanisms using feature models. To achieve this, we decompose
this objective in the following goals.

Describe cloud environments. First of all, our approach has to provide means to de-
scribe cloud environments of different levels of granularity, but using the same formalism.
Thus, a unified representation would be used among all cloud environments, helping the
developer comparing and selecting one of them.

Manage clouds variability. Our approach for modeling cloud environments must also
be able to take into consideration commonalities and variabilities across them. This helps
identifying and building reusable assets that can be used to yield cloud configurations files,
helping once again the developer in its task. Leveraging feature models seems to be a suit-
able solution, as part of the software product line principles.

Guarantee environment independence. As cloud environments are heterogeneous re-
garding both the functionalities they provide and the mechanisms they rely on to be config-
ured, our approach must provide a way to define the application’s requirement and config-
ure the selected cloud without technical or implementation-related considerations.

Maintain consistency. Cloud environments evolve over time, as new functionalities are
provided or old one are deprecated. Thus, our approach must deal with this evolution and
maintain the consistency of the described cloud environments representation, which in turn
as to co-evolve with the environment it represents.

6

1.3. Contribution

Consider existing approaches. We aim at constructing our solution for variability man-
agement and cloud description relying on existing ones. In particular, our feature modeling
approach must leverage abstract models dedicated to feature modeling proposed in the lit-
erature. This choice is motivated by our desire to propose an approach that can be applied
in different contexts and with different domains, by different feature modeling implementa-
tions.

Provide a simple and flexible solution. We aim at providing an approach relying on
two main concerns: simplicity and flexibility. It must be simple for the developer to han-
dle and apply. Regarding flexibility, the approach must provide means to be extended and
maintained over time without difficulties. The application of software product line princi-
ples helps us in those purposes.

Deliver an automated support. Close related to the simplicity, the proposed approach
must be as automated as possible to help the developer. In particular, finding a suitable
cloud environments regarding the defined requirement as well as establishing a proper con-
figuration must not be let to the developer.

1.3 Contribution

In this section, we present an overview of the contributions described in this dissertation.
As stated before, the goal of our research is to provide models, approaches and tools for se-
lecting and configuring cloud environments. The main contributions of our work are sum-
marized as follows.

Feature Models for Cloud Environments. Our first contribution is an abstract model
for feature modeling, i.e., variability modeling software products sharing commonalities and
differentiated by their variabilities using a feature-based approach. This abstract model en-
ables the definition of feature models with attributes and cardinalities. Moreover, constraints
over both attributes and cardinalities can be defined. Such feature models are well-suited
to describe cloud environments, e.g., number of instances to run or amount of resources re-
quired. By providing an abstract model, we are thus implementation-independent and allow
existing approaches to rely on this model for both modeling feature models and reasoning
on their configurations. Indeed, we provide in addition rules to translate this abstract model
into constraints satisfaction problem, thus enabling existing tool support to automatically
reason on the defined feature model.

An Evolution and Consistency-Checking Support. As a second contribution, we pro-
vide an automated support for maintaining the consistency of cardinality-based feature
models. Indeed, even though extending feature models with cardinalities is common, lit-
tle is known about their evolution. We thus show how, when evolving them, inconsistencies
may arise due to the defined cardinalities and constraints over them. Moreover, detecting
them can be a tedious and complex task, in particular when the size of the feature model
grows. Therefore, relying on a formal description of cardinality inconsistencies, we provide

7

Chapter 1. Introduction

an automated support for detecting them end explaining how and why they arose. This
support provides a better understanding of the evolution scenario, and especially of the par-
ticular edit that led to the inconsistency.

The SALOON Platform. Finally, we provide as third contribution SALOON, a platform
to select and configure cloud environments based on software product line principles. In
particular, SALOON relies on our abstract model to describe cloud environments as fea-
ture models, and integrates our consistency-checking support as well. SALOON provides
an interface to define the application’s requirements, and then automatically searches for a
suitable configuration among the described feature models. Finally, the platform leverages
the software product line derivation process to derive automatically configuration files and
executable scripts regarding a valid feature model configuration. SALOON thus acts as a
black-box from the user’s perspective, who retrieves those configuration files according to
the defined requirements. The configuration of cloud environment is thus done in a reliable
way.

1.4 Dissertation Roadmap

The dissertation is divided in five parts. While this introductory chapter is part of the first
part, the second one encloses the State of Art. The third part presents the contribution of this
dissertation, and the fourth one the validation of our proposal. Finally, the last part includes
the conclusions and perspectives of this dissertation. Below, we present an overview of the
chapters that compose the different parts.

Part II: State of the Art

Chapter 2: Background and Concepts. In this chapter, we give a brief introduction to
the Cloud Computing, Software Product Lines and Feature Models domains. Since used
throughout the dissertation, the idea of the chapter is to provide a better understanding of
these background and context concerns in which our work takes place, as well as the termi-
nology and concepts presented in the later chapters.

Chapter 3: Modeling, Selecting and Configuring Cloud Environments. In this chapter,
we list and describe some of the most relevant works related to cloud environments selec-
tion and configuration. We compare these related works using different criteria and high-
light the benefits of our approach based on software product lines. Then, we study existing
approaches for feature modeling cloud environments and describe what is lacking for such
a purpose.

8

1.4. Dissertation Roadmap

Part III: Contribution

Chapter 4: Cardinality and Attribute-based Feature Models. In this chapter, we present
our approach for feature modeling with attributes, cardinalities and constraints over both of
them. In particular, we describe our abstract model and we formally define the semantics of
such feature models. We also show how translating these feature models into a constraints-
based formalism to automate the reasoning on their configurations.

Chapter 5: Evolution and Consistency Checking of Cardinality-based Feature Models.

In this chapter, we show that evolving a cardinality-based feature model is error-prone re-
garding the consistency of its defined cardinalities. We thus present common evolution sce-
narios that may lead to cardinality inconsistencies. Then, we describe two kinds of cardi-
nality inconsistencies, and present a formal approach to detect and explain such inconsis-
tencies. Finally, an automated support providing detection and explanation mechanisms is
proposed.

Chapter 6: SALOON, a Platform for Selecting and Configuring Cloud Environments. In
this chapter, we present our implementation to select and configure cloud environments,
called the SALOON framework. Based on software product lines, the platform relies on the
approach described in Chapter 4 for feature modeling those environments. Then, configura-
tion files and executable scripts are generated to automate the configuration of the selected
cloud environment.

Part IV: Validation

Chapter 7: Validation. In this chapter, we describe the implementation details of SALOON.
We also report on some experiments we conducted to evaluate the platform. This evaluation
investigates in particular the soundness, the scalability and the practicality of our approach
when dealing with numerous cloud environments. Overall, as our empirical evaluation
shows, we observe that SALOON is well-suited to handle the configuration of those cloud
environments.

Part V: Conclusion

Chapter 8: Conclusion and Perspectives. This chapter concludes the work presented in
this dissertation. We summarize the overall approach and discuss about some limitations
that motivate new ideas and future directions as short-term and long-term perspectives.

9

Chapter 1. Introduction

1.5 Publications

We present below the list of research publications related to the work done while developing
the approach described in this dissertation.

International Journal

• Clément Quinton, Daniel Romero and Laurence Duchien. SALOON: A Platform for

Selecting and Configuring Cloud Environments. Submitted to Software: Practice and Ex-
perience journal (SPE) on June 2014, accepted with minor revisions on September 2014.

International Conferences

• Clément Quinton, Andreas Pleuss, Daniel Le Berre, Laurence Duchien and Goetz Bot-
terweck. Consistency Checking for the Evolution of Cardinality-based Feature Models. In
Proceedings of the 18th International Software Product Line Conference, SPLC’14 (Ac-
ceptance Rate: 28 %). Florence, Italy, September 2014.

• Clément Quinton, Daniel Romero and Laurence Duchien. Automated Selection and Con-

figuration of Cloud Environments Using Software Product Lines Principles. In Proceedings
of the 7th IEEE International Conference on Cloud Computing, CLOUD’14 (Accep-
tance Rate: 20 %). Anchorage, Alaska (USA), June 2014.

• Clément Quinton, Daniel Romero and Laurence Duchien. Cardinality-Based Feature

Models With Constraints: A Pragmatic Approach. In Proceedings of the 17th International
Software Product Line Conference, SPLC’13, pages 162-166 (Acceptance Rate: 33 %).
Tokyo, Japan, August 2013.

• Mathieu Acher, Patrick Heymans, Philippe Collet, Clément Quinton, Philippe Lahire
and Philippe Merle. Feature Model Differences. In Proceedings of the 24th International
Conference on Advanced Information Systems Engineering, CAiSE’12, pages 629-645
(Acceptance Rate: 14 %). Gdansk, Poland, June 2012.

International Workshops

• Daniel Romero, Simon Urli, Clément Quinton, Mireille Blay-Fornarino, Philippe Col-
let, Laurence Duchien and Sébastien Mosser. SPLEMMA: A Generic Framework for Con-

trolled Evolution of Software Product Lines. MAPLE/SCALE workshop, in Proceedings
of the 17th International Software Product Line Conference, Volume 2, SPLC’13, pages
59-66. Tokyo, Japan, August 2013.

10

1.5. Publications

• Clément Quinton, Nicolas Haderer, Romain Rouvoy and Laurence Duchien. Towards

Multi-Cloud Configurations Using Feature Models and Ontologies. In Proceedings of the 1st
International Workshop on Multi-Cloud Applications and Federated Clouds, Multi-
Cloud’13, pages 21-26. Prague, Czech Republic, April 2013.

• Clément Quinton, Patrick Heymans and Laurence Duchien. Using Feature Modelling

and Automations to Select among Cloud Solutions. In Proceedings of the 3rd International
Workshop on Product Line Approaches in Software Engineering, PLEASE’12, pages
17-20. Zurich, Switzerland, June 2012.

• Clément Quinton, Romain Rouvoy and Laurence Duchien. Leveraging Feature Models

to Configure Virtual Appliances. In Proceedings of the 2nd International Workshop on
Cloud Computing Platforms, CloudCP’12, pages 1-6. Bern, Switzerland, April 2012.

11

Part II

State of the Art

13

Chapter 2

Background and Concepts

Contents

2.1 Introduction . 15

2.2 Cloud Computing . 16

2.2.1 Definition . 16

2.2.2 Essential Characteristics . 17

2.2.3 Service Models . 18

2.2.4 Deployment Models . 19

2.2.5 Summary . 19

2.3 Software Product Lines . 20

2.3.1 Principles and Benefits . 20

2.3.2 Software Product Line Processes 21

2.3.3 Variability Management . 23

2.4 Feature Models . 24

2.4.1 Notation and Principles . 25

2.4.2 Feature Model Extensions . 26

2.5 Summary . 27

2.1 Introduction

In this chapter, we discuss different domains and concepts applied in our proposal, including
Cloud Computing, Software Product Line Engineering and Feature Modeling. The objective
of this chapter is not to present an in-depth description of all the existing approaches and
technologies surrounding these concerns, but to give a brief introduction to these concerns,

15

Chapter 2. Background and Concepts

used throughout the dissertation. This introduction aims at providing a better understand-
ing of the background and context in which our work takes place, as well as the terminology
and concepts presented in the next chapters.

The chapter is structured as follows. Section 2.2 explains the basics of the cloud com-
puting. In Section 2.3, we present the main concepts of software product line engineering.
Section 2.4 describes the principles and notations of feature models. Finally, Section 2.5 sum-
marizes the ideas presented in this chapter.

2.2 Cloud Computing

Cloud computing has recently emerged as a major trend in distributed computing. It is a
natural evolution of the widespread adoption of multiple technical advances in distributed
computing including virtualization, grid computing, autonomic computing, utility comput-
ing and software-as-a-service.

2.2.1 Definition

Several attempts have been done both from academic and industrial domains to define the
main characteristics of the cloud computing. We give below the most commonly used defi-
nitions:

- "Clouds are a large pool of easily usable and accessible virtualized resources (such as hardware,

development platforms and/or services). These resources can be dynamically reconfigured to

adjust to a variable load (scale), allowing also for an optimum resource utilization. This pool of

resources is typically exploited by a pay-per-use model in which guarantees are offered by the

infrastructure provider by means of customized service-level agreements" [VRMCL08].

- "Cloud is a type of parallel and distributed system consisting of a collection of inter-connected

and virtualized computers that are dynamically provisioned and presented as one or more uni-

fied computing resources based on service-level agreements established through negotiation be-

tween the service provider and consumers" [Buy09].

- "Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access

to a shared pool of configurable computing resources (e.g., networks, servers, storage, appli-

cations, and services) that can be rapidly provisioned and released with minimal management

effort or service provider interaction" [MG11].

To summarize, cloud computing is based on the virtualization of computing resources,
at different levels of functionalities, that can be configured according to the user needs. More
precisely, the cloud computing is a model composed of five essential characteristics, three
service models, and four deployment models, as depicted by Figure 2.1 [MG11]. We describe
in the following sections these different concerns.

16

2.2. Cloud Computing

Figure 2.1: Cloud computing overview

2.2.2 Essential Characteristics

In practice, there are five essential characteristics that must exist for a computing infrastruc-
ture to be characterized as a cloud [MG11].

1. On-demand self-service: consumers are able to provision cloud computing resources,
such as server time and network storage, as needed automatically without requiring
human interaction with each service provider.

2. Broad network access: cloud computing resources are accessible over the network
through standard mechanisms that promote use by heterogeneous client platforms
such as mobile phones, tablets, laptops, or workstations.

3. Resource pooling: the provider’s computing resources are pooled to serve multiple con-
sumers using a multi-tenant model, with different physical and virtual resources dy-
namically assigned and reassigned according to consumer demand. Examples of re-
sources include storage, processing, memory, or network bandwidth.

4. Rapid elasticity: capabilities can be elastically provisioned and released, in some cases
automatically, to scale rapidly on demand. To the consumer, the capabilities available
for provisioning often appear to be unlimited and can be appropriated in any quantity
at any time.

5. Measured service: cloud systems automatically control and optimize resource use by
leveraging a metering capability. Resource usage can be monitored, controlled, and
reported, providing transparency for both the provider and consumer of the utilized
service.

17

Chapter 2. Background and Concepts

2.2.3 Service Models

The different cloud computing service models are usually described as Anything as a Service

(XaaS or *aaS), where anything is divided into layers from Infrastructure to Software including
Platform, as depicted by Figure 2.2.

Figure 2.2: Cloud computing service models

1. Infrastructure-as-a-Service (IaaS): the IaaS model provides automation in the lower lay-
ers (up to the virtualization layer). Thus, the entire software stack running inside the
virtual machine must be configured as well as the infrastructure concerns: number
of virtual machines, preferred operating system (selected among those provided by
the IaaS), amount of resources, number of nodes, SSH access, database configuration,
etc. For instance, Amazon EC2 [ama] or Windows Azure [Win] are considered as IaaS
providers.

2. Platform-as-a-Service (PaaS): at this layer, the whole software stack needed by the ap-
plication is managed by the PaaS provider, i.e., patching and updating the operating
system, installing and maintaining middleware as well as the runtime the application
uses. Thus, configuring a PaaS to deploy an application is restricted to software that
compose this platform: which database(s), application server(s), compilation tool, li-
braries, etc. For instance, Google App Engine [GAE], Jelastic [jel] or Heroku [her] are
PaaS providers.

3. Software-as-a-Service (SaaS): the SaaS model is very similar to the off-the-shelf software
model where we go and buy the CD (or download the software), install the software
and start using it, but the software is virtualized and accessible through a web browser.

18

2.2. Cloud Computing

For instance, Google Docs, for editing documents, or Gmail, a mail server, are provided
as SaaS. This model relies on the principles of multi-tenancy, where a single application
is shared across several users, and leverages the computational power provided by the
underlying cloud provider.

2.2.4 Deployment Models

There exist four different deployment models, depending on the purpose of cloud services,
their physical location or their distribution. These models can be classified as follows.

1. Private cloud: the cloud infrastructure is provisioned for exclusive use by a single orga-
nization. It may be owned, managed, and operated by the organization, a third party,
or a combination of them. This infrastructure is usually dedicated to a small group of
users, e.g., the employees of a company. For instance, building a private cloud can be
done relying on technologies such as Eucalyptus [euc] or OpenStack [ope].

2. Community cloud: the cloud infrastructure is provisioned for exclusive use by a specific
community. Persons who are part of this community may be from different organiza-
tions, but sharing concerns , e.g., collaborative mission, security requirements or policy.
It may be owned, managed, and operated by one or several organizations member of
the community, a third party, or a combination of them.

3. Public cloud: this kind of deployment model is the most known one. The cloud infras-
tructure is provisioned for open use by anybody interested in, and is managed by any
academic, government or business organization. For instance, Amazon EC2 [ama] or
Windows Azure [Win] are public clouds.

4. Hybrid cloud: an hybrid cloud is the combination of two or more cloud infrastructures,
either private, community or public. Such a model is useful when an organization
requires an important resources amount to compute information about private data. A
public and a private cloud can thus be bound together, one dedicated to computation
tasks (public), the other one to store data (private).

2.2.5 Summary

As shown in this section, there exist several kinds of deployment and service models. Each
of them provides a large pool of configurable resources that can be used to run an application
and make it available as a SaaS. However, those resources are provided independently from
each other and still have to be properly configured regarding the application’s requirements.
The configuration of such resources is complex and error-prone, as many of them may be
involved at different layers of service. In this dissertation, we rely on software product line
engineering to automate such a configuration. Next section thus describes the principles of
such a process.

19

Chapter 2. Background and Concepts

2.3 Software Product Lines

There exist several models of software development processes, e.g., the V-model, the spi-
ral model or the incremental model. Each of these models describes the different tasks or
activities that take place during the process, required to build the final software. For in-
stance, a traditional development process usually starts with the analysis of the customer’s
requirements, followed by several phases such as planning, implementation, testing and de-
ployment. The aim of these processes is to develop one single software system at a time. By
contrast, software product line engineering aims at building several similar software systems
from a set of common elements [CN01, PBL05].

2.3.1 Principles and Benefits

A software product line is a product line (or production line) applied to a software product.
Product lines rely on the concept of mass customization, which is a large-scale production of
goods tailored to individual customer’s need [Dav87]. Famous examples from the industry
are Boeing, Ford or Nokia, for building aircrafts, cars and cell phones respectively relying on
product lines. Boeing, for example, developed the 757 and 767 aircrafts in tandem, as they
share up to 60% of common parts, thus reducing production costs at different phases such
as assembling and maintenance [CN01]. Based on the same principles, and with regard to
software engineering, software product line engineering aims at building software products
by exploiting their commonalities. A well-known definition for software product lines is
the one given by Clements et al. [CN01]: "A software product line is a set of software-intensive

systems sharing a common, managed set of features that satisfy the specific needs of a particular

market segment or mission and that are developed from a common set of core assets in a prescribed

way".

Software product line engineering thus focuses on the production and maintenance of
multiple similar software products by reusing common software artifacts, or assets in the
context of software product lines. With mass customization, software reuse is a main char-
acteristic of software product line engineering. Back in 1976, Parnas’s seminal paper on
product families instilled the idea that similar programs could be treated as a family rather
than as a separate and unrelated set [Par76]. Later, software reuse was defined as the process
of creating software systems from existing software rather than building software systems
from scratch [Kru92]. Contrarily to old reuse strategies, e.g., reusing relatively small pieces
of code or copy-pasting code designed for use in one system to another one, software prod-
uct lines make software reuse easier since developed products are from the same family, or
domain. Reuse indeed works best in families of related systems, and thus is domain depen-
dent [Gla01].

Several benefits motivate the use of product line engineering to develop software
systems. Thus, due to systematic reuse, software product lines are expected to improve the
software quality and reduce both the time to market and development costs [CN01, PBL05].

20

2.3. Software Product Lines

Indeed, shared software artifacts are tested in many products. There is thus an higher
chance of detecting bugs and correcting them. Then, even if the time to market is initially
higher than for a traditional development process, it is then considerably shortened as many
software artifacts can be reused for each new product. Finally, producing several software
products significantly decreases development costs, as depicted by Figure 2.3.

Figure 2.3: Costs for developing with software product lines

The solid line illustrates the costs of developing n kinds of systems as single systems,
while the dashed line sketches the costs of developing the products using product line engi-
neering. Developing software using product lines requires a significant up-front investment,
due to the creation of the assets that can be reused and planning the way in which they shall
be reused. Then, both approaches are equivalent where both curves intersect. This is the
payoff point, or break-even point. Empirical evaluations showed that this break-even point
is around 3 or 4 products in the case of software systems [WL99, CN01]. For larger quantities
of software products, the cost of product line engineering then becomes lower.

2.3.2 Software Product Line Processes

Software product line engineering is divided into two complementary processes: Domain

Engineering and Application Engineering [WL99, PBL05]. The former usually refers to
development for reuse while the latter is the development with reuse. In other words, the
domain engineering process is responsible for creating reusable assets, while application
engineering is the process of reusing those assets to build individual but similar software
products. Figure 2.4 depicts those processes.

It is important to note that both processes are complementary, they thus do not follow
any specific order. For instance, reusable software artifacts may be built from an existing set

21

Chapter 2. Background and Concepts

Problem(Space Solu.on(Space

D
o
m
a
in
(

E
n
g
in
e
e
ri
n
g

A
p
p
li
ca
.
o
n

E
n
g
in
e
e
ri
n
g

Domain'

Analysis

Applica.on'

Requirements

Domain'

Realiza.on

Applica.on'

Realiza.on

Figure 2.4: Domain and application engineering

of products. In that case, those products are analyzed to isolate software elements which are
shared among those products, so that they can be used in the development of other products.
Otherwise, software artifacts are built from scratch in order to be reused in several software
products. In both cases, the up-front investment done by creating reusable software artifacts
or isolating them from existing products (domain engineering) is outweighed by the benefits
of then deriving multiple similar software products (application engineering) [DSB05].

Domain Engineering

The domain engineering process is the process to identify what differs between products as
well as reusable artifacts, to plan their development. It thus defines the scope of the product
line. In particular, the domain analysis phase is responsible for identifying and describing
the common artifacts and those that are specific for particular applications. This is the devel-
opment for reuse process, made easier by traceability links between those artifacts [PBL05].
In the domain realization phase, each artifact is modeled, planned, implemented and tested
as reusable components.

Application Engineering

Application engineering is the development process with reuse. It is the process of combining
common and reusable assets obtained during the domain engineering process. Applications
are thus built by reusing those artifacts and exploiting the product line. During the appli-
cation requirements phase, a product configuration is defined, that fits those requirements.
Then, the final software product is built during a product derivation process, which is part
of the application realization phase.

22

2.3. Software Product Lines

- Product configuration: this process refers to the selection or deselection of a set of
reusable artifacts identified in the domain engineering process. This selection is usu-
ally done relying on a variability model, which describes the commonalities and differ-
ences between potential products at an higher abstraction level.

- Product derivation: once a configuration is defined through the variability model, the
related software artifacts are given as input to the product derivation process, which
in return yields the final software product. This process can be manual or automated,
and differs among software product lines. For instance, it can be some source code
generation or models composition.

Problem Space and Solution Space

Domain and application engineering processes are divided into two spaces, the problem
space and the solution space [CE00]. The former includes domain-specific abstractions de-
scribing the requirements on a software system. For instance, domain analysis is part of
the problem space. On the other hand, the solution space refers to the concrete artifacts of
the product line. There is thus a mapping between both spaces, describing which artifact
belongs to which requirement or abstraction.

2.3.3 Variability Management

As described in the previous section, a central activity to software product line engineer-
ing is to define common and variable artifacts of the product line, i.e., manage its variability.
Managing variability is the key, cross-cutting concern in software product line engineer-
ing [CN01, PBL05, CBK13, MP14]. It is also considered as one of the key feature that distin-
guishes software product line engineering from other software development approaches or
traditional software reuse approaches [BFG+02]. Product line variability describes the vari-
ation among the products of a software product line in terms of properties, such as features
that are offered or functional and quality requirements that are fulfilled [MP14].

Variability

An important concern regarding variability is that there exist several notions of variability,
and thus several definitions of it. When browsing the literature about variability in soft-
ware product lines, it may refer to essential and technical variability [HP03], external and
internal variability [PBL05], product line and software variability [MPH+07]. These classi-
fications are actually quite similar since they refer to the same concepts. Essential, external
and product line variability refer to the variability from the customer’s perspective. On the
other hand, technical, internal and software variability refer to the software product line

23

Chapter 2. Background and Concepts

engineer’s perspective, more interested in implementation details. Moreover, other perspec-
tives have been proposed bout variability. Bachmann et al. classify variability into six cat-
egories [BB01]. The variability in function, where a particular function may exist in some
products and not in others. The variability in data, when particular data structures may
vary from on product to another. The variability in control flow, where a particular interac-
tion may occur in some products and not in others The variability in technology, where the
platform running the product may vary, e.g., a particular product requires a given library.
The variability in quality goals, which may vary according to the customer requirement, e.g.,
quality or performance. Finally, the variability in environment refers to how a product inter-
acts with its environment. Cross-cutting notions of variability among the previous ones are
variability in time and variability in space, considered as fundamental distinct dimensions in
software product line engineering [PBL05, SSA13]. The former is defined as "the existence of

different versions of an artifact that are valid at different times", and the latter as "the existence of

an artifact in different shapes at the same time". While software product line engineering mainly
focuses on dealing with variability in space, variability in time is of prior interest when deal-
ing with the evolution of the product line. According to all those criteria, variability can thus
be defined as the combination of the two following definitions: variability is "an assumption

about how members of a family may differ from each other" [WL99], and "the ability of a software

system or artifact to be efficiently extended, changed, customized or configured for use in a particular

context" [SvGB05].

As managing variability is a key factor, it must be expressed using a dedicated support.
Product line variability is thus documented in so-called variability models.

Variability Models

One way to document efficiently variability is to model it. Chen et al. [CABA09] provide
an overview of various approaches dealing with variability modeling. Decision modeling
is one mean for variability modeling. A decision model is defined as "a set of decisions that

are adequate to distinguish among the members of an application engineering product family and to

guide adaptation of application engineering work products" [SRG11]. Another way of variability
modeling is by mean of orthogonal variability models [PBL05]. In those models, the main
concept is the one of variation points, which are an abstraction of software artifacts that rep-
resent variability. However, and as learned from Chen’s survey, most of existing approaches
in variability management can be classified (and classify themselves) as feature modeling
ones [SRG11].

2.4 Feature Models

Using feature models for variability modeling was first introduced back in 1990 by Kang et

al., as part of the Feature Oriented Domain Analysis (FODA) [KCH+90]. Since then, several

24

2.4. Feature Models

approaches for feature modeling have been proposed, more or less directly derived from
the FODA one. Thus, feature models are nowadays considered as the de-facto standard for
describing variability. In this section, we first explain their notation and principles, and then
describe the most well-known extensions for feature models.

2.4.1 Notation and Principles

A feature model represents the commonality and variability of a product line in terms of
features and relationships among them. Features have been defined as "a distinguishable

characteristic of a concept (e.g., system, component and so on) that is relevant to some stakeholder

of the concept" [CE00]. For instance, Figure 2.5 depicts a simplified feature model inspired
from cloud environments.

Cloud

JavaPHP

Language

Rails

Framework

Zend

Zend%⟶%PHP

optional

mandatory

alternative

or

Legend

Figure 2.5: A feature model described following the FODA notation

Features, graphically represented as a rectangle, are organized in a tree-like hierarchy
with multiple levels of increasing detail. The root feature describes the system under study,
e.g., a Cloud. Feature are linked together through edges, modeling the parent-child rela-
tionship between features. To express the variability of the system, feature models provide
two mechanisms. First, a feature may be decomposed into sub-features, where a sub-feature
may be mandatory or optional. For instance, Language and Framework are mandatory and
optional features, illustrated by a black circle and an unfilled one respectively. It is impor-
tant to note that a feature is mandatory with respect to its parent feature. Indeed, a feature
may be modeled as mandatory but not part of the configuration if its parent feature is not
part of the configuration itself. The second way to express variability is by mean of or- and
alternative-relationships. In an or-relationship, one or more sub-feature can be selected, while
in an alternative-group relationship, exactly one sub-feature must be selected, whenever the
parent feature is selected. In addition to the main hierarchy, cross-tree constraints can be used
to describe dependencies between arbitrary features, e.g., that selecting a feature implies the
selection of another one or that two features mutually exclude each other. For instance, since
Zend is a framework dedicated to PHP applications, then the selection of the Zend feature
implies the selection of the PHP one.

25

Chapter 2. Background and Concepts

Precision about alternatives. This relationship is massively denoted as a xor relationship in
the feature model literature. However, such a notation is semantically wrong. The alterna-
tive relationship is satisfied whenever exactly one of the sub-feature is selected. Regarding
the XOR operator, if the number of entries set to 1 is odd, then the result is true. Applied
to feature models, if the number of selected sub-features is odd, then the xor-relationship
is satisfied, which is not what is semantically expressed by alternative-relationships. This
mistake comes usually from the feature models described as use cases, in which most of
alternative-relationships consider only two sub-features. In such a case, both the xor- and
alternative-relationships are equivalent.

A feature model defines a set of valid feature combinations, i.e., product configurations.
A configuration c is thus defined as a set of selected features c = {f1, f2, ..., fn}. For in-
stance, {Language, Java} is a valid product configuration, while {Zend} is not, because the
Language feature is mandatory and must be part of the configuration (together with one of
its chill feature, PHP in that case due to the related constraint). A feature model is said void

if it represents no configuration, valid otherwise.

2.4.2 Feature Model Extensions

Two main extensions have been proposed to add more expressiveness to so-called basic

or Boolean feature models: attributes and cardinalities. Those extensions are used when the
FODA notation is insufficient to effectively model the variabilities of the system under
study [CBUE02]. Both of them can be combined in the same feature model, that is, a feature
may be extended with both a cardinality and an attribute, as depicted by Figure 2.6, inspired
by the Jelastic cloud environments [jel]. However, for the sake of clarity, we describe them
separately in the following sections.

Application
Server

Jelastic

TomEE Jetty

GlassFish

[1..4]

Nginx Cloudlet

[1..16]

Name: RAM
Domain: real
Value: 128

Name: CPU
Domain: real
Value: 200

optional

mandatory

alternative

or

Legend

attribute

cardinality[1..4]

Figure 2.6: A feature model extended with cardinalities and attributes

Attribute-based Feature Models

To include more information about features, feature models are extended with so-called fea-

ture attributes [CBUE02], mainly used to describe non-functional properties of a feature. In

26

2.5. Summary

FODA, Kang et al. already discussed the addition of information using attributes [KCH+90].
This type of models is referred to as extended, advanced or attributed feature models in the
literature [BSRC10]. As highlighted by Benavides et al., there is no consensus on a notation
to define attributes [BSRC10]. However, most proposals agree that an attribute should con-
sist of a name, a domain and a value [SRP03, BTRC05, CHE05b, WDS09]. For instance, the
Cloudlet feature holds two attributes to specify the amount of RAM and CPU provided
by this computation block.

Cardinality-based Feature Models

Cardinality-based feature models support in addition cardinalities, which actually refer
to two different notions: feature cardinalities and group cardinalities. Feature cardinali-
ties [CHE05a, CK05], were first introduced as UML-like multiplicities [RBSP02]. A feature
cardinality [m..n] can be assigned to any feature except the feature model’s root feature.
It specifies how many instances (also known as clones [MCHB11], copies [GR10] or multi-

features [CSHL13]) of a feature and its subtree can be included in a product configuration
with m as lower bound and n as upper bound, and m ∈ N, n ∈ N ∪ {∗}. Regarding the
depicted feature model, there can be up to 4 instances of Application Server in a con-
figuration.

On the other hand, a group cardinality is an interval <m..n> defining the minimum and
maximum number of sub-features to be selected in an or-relationship [CHE05a]. Or-groups
defined in the FODA notation can thus be expressed by the group cardinality <1..n>, where n
is the number of sub-features, and alternative-groups by <1..1>. Note that in the same way as
group cardinalities generalize constraints on feature groups, feature cardinalities generalize
constraints on single features as they can also be used to express that a feature is mandatory
([1..1]) or optional ([0..1]).

2.5 Summary

In this chapter, we have briefly introduced some principles and basic concepts we will use
throughout the dissertation, and given a short explanation of each one of them: Cloud Com-
puting, Software Product Lines, Feature Models.

We have shown that cloud environments provide lots of configurable resources at differ-
ent level of functionalities, while sharing some commonalities and thus being divided into
three main families. To deal with their commonalities, and therefore their variabilities, we
introduced feature models and their extensions, and explained the major role they play in
the domain analysis phase of a software product line engineering process.

In the next chapter, we present some approaches proposed to deal with cloud environ-
ments selection and configuration, and discuss their advantages and drawbacks. We explain
how software product lines could be leveraged for automating such processes, and we de-
scribe in particular existing approaches for variability modeling.

27

Chapter 3

Modeling, Selecting and Configuring
Cloud Environments

Contents

3.1 Introduction . 29

3.2 Cloud Environments Selection and Configuration Approaches 30

3.2.1 Description and Comparison . 30

3.2.2 Discussion . 33

3.2.3 Summary . 37

3.3 Software Product Lines for Cloud Environments Configuration 37

3.4 Variability Modeling Approaches . 39

3.4.1 Description and Comparison . 39

3.4.2 Requirements for Feature Modeling Cloud Environments 44

3.5 Approaches for Evolving Feature Models 45

3.5.1 Description and Comparison . 45

3.5.2 Summary and Discussion . 47

3.6 Summary . 49

3.1 Introduction

In this chapter, we review approaches, models and tools related to the modeling, the se-
lection and the configuration of cloud environments. The goal of this chapter is to study
existing cloud selection and configuration approaches, as well as existing approaches for
modeling the variability of cloud environments. We then compare and discuss these ap-
proaches in order to outline their limitations.

29

Chapter 3. Modeling, Selecting and Configuring Cloud Environments

We start by studying cloud selection and configuration approaches in Section 3.2. Then,
in Section 3.3, we argue that software product lines are relevant candidates for modeling
and automating the configuration of cloud environments. In Section 3.4, we study and com-
pare variability modeling approaches, required to model cloud environments variability.
Section 3.5 present existing approaches dealing with the evolution of feature models, and
highlight their limitation when considering feature modeling cloud environments. Finally,
we summarize our findings in Section 3.6.

3.2 Cloud Environments Selection and Configuration Approaches

In this section, we survey different approaches related to the migration or deployment of
applications in cloud environments, thus involving the selection and/or the configuration
of such environments. We select in particular five european research projects aiming at de-
ploying application in the clouds: Aeolus [Aeo13], ConPaaS [Con14a], mOSAIC [Mos13],
MODAClouds [MOD14] and Remics [REM13], as well as some close-related approaches re-
ported in [MR12, FHS13, WSH+12]. All these approaches propose an automated way to find
a cloud configuration fulfilling a set of requirements.

3.2.1 Description and Comparison

Aeolus

Aeolus is a research project aiming at automating the deployment and reconfiguration of
machine pools in the clouds [Aeo13]. From a high level application design, or according
to the user’s requirements, it proposes a configuration of the targeted cloud environment.
This configuration is provided thanks to an abstract model of the cloud, i.e., the Aeolus
component model. Thus, cloud environments are described as a set of components, where
each component represents a software package, considered as a resource which provides
and requires different functionalities, and may be created or destroyed [DCZZ12]. Required
components are given as input as constraints. From this set of constraints, a valid configura-
tion can be found relying either on a planning tool [LMZ13] or on Zephyrus, a tool allowing
the user to compute a valid configuration satisfying a high level specification [DCLT+13].
Finally, the user gets the configuration as a set of software packages, i.e., a configuration to
be executed on top of package-based FOSS (Free and Open Source Software) distributions,
e.g., Debian.

ConPaaS

ConPaaS is an environment developed as part of the Contrail project [Con14b]. ConPaaS
is an open-source Platform-as-a-Service middleware which aims at simplifying the deploy-
ment of applications in the Cloud. In ConPaaS, an application is defined as a composition

30

3.2. Cloud Environments Selection and Configuration Approaches

of one or more services, where each service is an elastic component dedicated to the hosting
of a particular type of functionality. ConPaaS thus allows the user to configure a Platform-
as-a-Service regarding a required set of services. These services are defined using either the
ConPaaS web client GUI or by uploading a manifest file. A manifest specifies the list of ser-
vices which should be created, the location of code and data that need to be uploaded to
each service, and all other configuration information necessary for the good execution of the
application [PS12]. Then, the manifest (which is also built from the GUI services definition) is
parsed using an ad-hoc implementation to provide the final configuration. However, in the
current version, ConPaaS only contains nine services, of which only one database (MySQL).
Moreover, it can only be deployed on two Infrastructure-as-a-Service, Open Nebula and
Amazon EC2.

mOSAIC

mOSAIC is an open source platform aiming to simplify the programming, deployment and
management of cloud applications, developed as part of the mOSAIC european research
project [Mos13]. The mOSAIC platform currently defines a Java API using computing (hard-
ware or software) resources from various cloud providers. This API is designed in order to
address applications requirements, such as needs for computational or storage resources as
well as various application components that must scale up or down based on current service
demand [SJP12]. Thus, the user interacts with the API to define the requirements of the ap-
plication to deploy. Then, mOSAIC searches for a collection of resources from several cloud
providers that are matching the requirements of the application relying on an external Cloud

Broker [PCN+11]. This cloud broker implements an agent-based approach to find matching
services.

MODAClouds

The aim of the MOdel-Driven Approach for design and execution of applications on multiple Clouds

(MODAClouds) project is to provide methods and a decision support system to help de-
velopers selecting a cloud provider and support them when migrating an application to
the cloud [MOD14]. In particular, CloudML, a Domain-Specific Language (DSL) that fa-
cilitates the specification of provisioning and deployment, has been developed as part of
this project [FRC+13]. Using CloudML, the developer models the requirements, constraints,
and dependencies of the application to deploy into a generic provisioning and deployment
model that is independent of the cloud provider. Then, this model is transformed semi-
automatically into a specific provisioning and deployment model, dependent of the tar-
geted cloud provider, usually at IaaS level. This requirements definition is done through
the MODAClouds IDE (Integrated Development Environment), providing a user interface
allowing users to edit and store a CloudML models. The work done in the MODAClouds
project actually leverages results of the REMICS project and extends them by providing an
additional abstraction level, CloudML [GSK13].

31

Chapter 3. Modeling, Selecting and Configuring Cloud Environments

REMICS

The Reuse and Migration of legacy applications to Interoperable Cloud Services (REMICS) project
[3] aims at supporting the migration of legacy systems to the cloud based on a Service-
Oriented Architecture together with a set of model-driven engineering tools and meth-
ods [REM13]. REMICS relies on the concept of Architecture-Driven Modernization (ADM)
provided by the OMG [ADM14]. In this concept, modernization starts with the extraction
of the architecture of the legacy application. Then, having the architectural model helps to
analyze the legacy system, identify the best ways for modernization and benefit from model-
driven engineering technologies for generating the new system according to the targeted
cloud environment [MS11]. This approach focuses on systems based on the service-oriented
architecture.

CloudGenius

CloudGenius is a framework which automates the decision-making process based on a
model and factors dedicated to web server migration to the cloud [MR12]. CloudGenius re-
lies on a multi-criteria decision approach to select an IaaS environment from a set of require-
ments. These requirements are defined manually, and fit a pattern defined in the CloudGe-
nius Model. The set of requirements is then given as input to a decision-making framework
developed by the authors [MSNT11]. Moreover, a weight can be defined for a given criteria
to guide the decision. Then, regarding these criteria, an IaaS environment is selected among
several ones stored manually and described textually. A tool prototype, named CumulusGe-
nius and used as a Java library, allows the user to programmatically define the requirements.
Then, whenever a solution is found, virtual machines can be executed on top of Amazon
EC2.

CloudMIG

The CloudMIG approach aims at supporting developers when migrating software systems
to IaaS or PaaS-based cloud environments [FHS13]. In this approach, cloud environments
are modeled as instances of a cloud environment metamodel. Configurations of these envi-
ronments are modeled as well, using the dedicated meta-class. Thus, for each cloud environ-
ment, all possible configurations are modeled. A configuration contains in particular a set of
elements and constraints across them. CloudMIG takes as input the legacy software system,
and extracts its architectural and utilization models based on the architecture-driven mod-
ernization principles. From this model, a compatible cloud environment model candidate is
selected. Then, CloudMIG relies on its own constraint validators to check the conformance
of the legacy software (actually the extracted models) with the candidate cloud environment
model in terms of constraint violations, among Google App Engine and Amazon EC2. The
authors then extended this framework to improve the search of well-suited IaaS environ-
ments using search-based genetic optimization [FFH13].

32

3.2. Cloud Environments Selection and Configuration Approaches

Zeel/i

The approach proposed by Wright et al. enables users to match their applications’ require-
ments to infrastructure resources relying on a two-phases resource selection model using
a constraints-based approach [WSH+12]. The proposed model provides an application-
focused, rather than a provider-focused view of resources. This enables application re-
quirements to be expressed in a domain specific way rather than using the terms used by
particular providers. From a set of constraints expressed in a text file, the two-phases re-
source selection process works as follows. First, constraints are used to find a suitable en-
vironment in terms of must-have requirements, e.g., a storage support. Then, to improve the
filtering of cloud environments, soft constraints are checked among the suitable ones, e.g.,
non-functional requirements such as latency. Once defined, constraints are given as input
to a dedicated constraints optimization engine, which tries to find a suitable IaaS environ-
ment among those described as templates in the Zeel/i framework. Finally, a list of suitable
templates is proposed to the user.

Summary

Table 3.1 summarizes the study. The first column contains the project or platform un-
der study. There are then three main columns for Requirement Definition, Reasoning

Mechanism and Cloud to indicate, respectively, how requirements are expressed, which
mechanism is used to reason on those requirements and find a valid configuration, and
which are the targeted cloud environments. We use a check mark Xif the approach proposes
solutions or deals with the different criteria, while a check mark between parenthesis (X)
indicates that the approach does not fully handle the criteria.

3.2.2 Discussion

We now discuss the advantages of these approaches, and outline their main drawbacks and
limitations when selecting and configuring a cloud environment. In particular, we focus on
four main criteria: practicality, mechanism, target and abstraction. The practicality of the ap-
proach is important as it needs to hinder the complexity of the cloud systems. Then, when
the number of components to deploy grows, it is essential to be able to specify at a certain
level of abstraction a particular configuration of the distributed software system [DCZZ12].
We also compare the different mechanisms used to reason on cloud configurations, while
target refers to the cloud environments targeted by the approach, whether they are at infras-
tructure, platform or both levels.

33

Chapter 3. Modeling, Selecting and Configuring Cloud Environments

Approach Requirement Definition Reasoning Mechanism Cloud

A
d

-h
o

c

A
D

M

A
P

I

C
o

n
st

ra
in

ts

D
S

L

M
a

n
if

e
st

A
d

-h
o

c

A
g

e
n

t-
b

a
se

d

C
o

n
st

ra
in

ts

D
S

L

P
la

n
n

in
g

to
o

l

S
e

a
rc

h
-b

a
se

d

Ia
a

S

P
a

a
S

Aeolus X X X X

ConPaaS X X X (X)

mOSAIC X X X

MODAClouds X X X

REMICS X X X

CloudGenius X X X

CloudMIG X X X X X X

Zeel/i X X X X

Table 3.1: Summary of cloud selection and configuration approaches.

Practicality

When providing an approach to select a cloud environment and find a suitable configura-
tion, one main concern is about its usefulness, which can be seen from two perspectives: the
user one and the developer one, i.e., the person who develops and maintains the platform.
From the user perspective, the platform must provide means to cope with the heterogene-
ity and variability of cloud environments, as resources choice can be a complex and error-
prone task. Approaches providing an abstract layer to specify application’s requirements
offer an high degree of flexibility, as they are not loosely-coupled with the cloud environ-
ments properties. For instance, Aeolus, MODAClouds and Zeel/i enables the user to spec-
ify requirements in a non cloud-specific way, either through a component model [DCZZ12],
a DSL [FRC+13] or a dedicated constraints builder [WSH+12] respectively. ADM-based
approaches such as REMICS [MS11] and CloudMIG [FHS13] offer an high degree of ab-
straction as well, but with a limited decisional autonomy. Indeed, requirements are auto-
matically inferred from the application architecture and the user cannot specify additional
ones, e.g., maximum configuration cost. Finally, approaches relying on manually-defined
requirements are not very practical, especially in a long-term usage when the platform is
used several times and requirements must be defined for each deployment. For instance,
in mOSAIC, the user interacts with the API to define the requirements of the application
to deploy [SJP12]. Within CloudGenius, requirements are defined manually [MSNT11]. In
ConPaaS, this is done through a manifest file [PS12], which can however be fulfilled using a
web interface.

34

3.2. Cloud Environments Selection and Configuration Approaches

From the developer perspective, the main objective is to provide a platform that can
be easily reused - and therefore maintained - over time, otherwise there is no interest to
build such a platform as a manual deployment would be faster. Thus, the architecture of the
platform must be flexible and evolutive enough to easily cope with changes in the cloud en-
vironments, e.g., evolving existing ones or adding new ones. In that sense, approaches with
an ad-hoc reasoning engine are the less practical ones [MS11, MSNT11, PS12, FHS13]. On
the other hand, approaches relying on a model-based architecture such as Aeolus [Aeo13],
MODAClouds [MOD14] or Zeel/i [WSH+12] can be easily extended with less development
efforts.

Reasoning Mechanism

Close-related to the practicality from the developer perspective is the mechanism used to
find a suitable configuration. We previously discussed about its flexibility. We now present
the pros and cons of the different approaches regarding the reasoning support. Most of
the presented approaches rely on an ad-hoc implementation to reason on cloud configura-
tions [Con14a, REM13, MR12, FHS13]. Such approaches are not likely to scale when han-
dling a significant number of cloud environments, as their are not well-suited to deal with
hundreds of requirements and constraints. For instance, ConPaaS is only able to reason on
nine cloud services [Con14a]. A cloud service is not even a cloud environment, but a func-
tionality provided by such an environment, e.g., a database support. Regarding CloudGe-
nius, all requirements are defined programmatically using a Java library and, in particular,
leveraging enumeration classes to define these requirements [MR12]. Then, an algorithm
implemented in the platform searches for a set of suitable virtual machine images, defined
programmatically [MR12]. Such an approach is considerably error-prone as there is no way
to verify that both requirements and cloud environments are well defined. In mOSAIC,
cloud providers matching the requirements are searched relying on an external cloud bro-
ker [PCN+11]. Although this separation of concern brings flexibility to the platform, it also
implies the requirements to be expressed in a given way and, moreover, that the perfor-
mance of the platform is tightly-coupled to the one of the related cloud broker. For instance,
this can lead to obvious problems in case this broker is not working anymore. In the MODA-
Clouds project, the reasoning engine relies on the internal CloudML DSL [FRC+13]. More
precisely, CloudML transforms semi-automatically a generic provisioning and deployment
model defining the requirements into a cloud specific model. Although the model-driven
approach brings reliability in the reasoning operation, this process requires however to be
partially completed manually. Moreover, transformation rules must be well-formed to en-
sure a correct cloud-specific model regarding the defined requirements. In CloudMIG, the
initial reasoning engine was an ad-hoc implementation as well. Then, the search for cloud
environment has been improved using a search-based genetic optimization engine, provid-
ing better results in terms of feasibility and scalability [FFH13]. Finally, two approaches rely
on a constraints-based reasoning engine, Zeel/i [WSH+12] and Aeolus [Aeo13]. The main
benefits of such approaches are to be independent from the reasoning engine (or constraints

35

Chapter 3. Modeling, Selecting and Configuring Cloud Environments

solver) and to hide the complexity of finding a configuration. Indeed, once constraints are
defined, the reasoning process is let to the underlying tool support. On the other hand,
if such a support is not properly implemented, this can lead in particular to scalability is-
sues. For instance, Zeel/i relies on a reasoning engine develop in an ad-hoc manner, and
scalability is likely to be a problem when a large number of infrastructure providers are
considered [WSH+12].

Target

When deploying an application on the cloud, either a PaaS or a IaaS environment can be
configured. For the former, only cloud services provided by the PaaS environment can be
configured, e.g., Tomcat for the application server support. For the latter, a virtual machine
must be launched, and any software can be configured on top of it, from the operating sys-
tem to the required libraries. All described approaches have been developed to deal with
IaaS environments. The main reason is that IaaS environments have shown that this type
of environment offers more flexibility than PaaS ones. The problem with the PaaS solutions
is that there is a significant dependence between the services these platforms offer, as ex-
plained in the REMICS project objectives [MS11]. The only one approach targeting both
PaaS and IaaS environments in its experimentations is the CloudMIG one (Google App En-
gine and Amazon EC2 respectively) [FHS13]. Both environment configurations have been
modeled and can thus be used in the platform. We thus think that other approaches such
as Zeel/i or CloudGenius could target PaaS environments as well, since they could be de-
scribed in the platforms using the dedicated approach, either as a template or a text file
respectively [WSH+12, MR12]. Regarding ConPaaS, the proposed platform does not re-
ally target PaaS environments, but configures such an environment on top of a IaaS one.
This PaaS environment is suitable regarding the application requirements. However, the
approach is limited, as only nine services are used to configure those PaaS environments,
and only two IaaS are considered for the deployment, Open Nebula and Amazon EC2. The
Aeolus project shares the same idea: build a software stack hosting the application on top of
a virtual machine [Aeo13]. The approach is slightly different, as any existing software can
be used to configure the environment, on condition that this software can be managed by
package-based FOSS distributions.

Abstraction

To cope with the complexity of cloud environments, it is essential to specify a certain level
of abstraction. Some approaches, such as Zeel/i [WSH+12] and CloudGenius [MR12], does
not provide such an abstraction, as cloud environment configurations are defined manu-
ally in a textual description. In the mOSAIC project, an API is provided to address such
an abstraction layer [Mos13]. The advantage of this low-level programming interface is
to bring flexibility to the approach, as it is thus not tied to a specific implementation lan-
guage. Other approaches rely on a model-based abstraction to describe cloud environments

36

3.3. Software Product Lines for Cloud Environments Configuration

and their configuration, either with architecture-driven modernization [FHS13, REM13], a
DSL [FRC+13] (actually a DSML, Domain-Specific Modeling Language,) or a component-based
model [Aeo13]. Although model-based approaches are well suited to provide an abstraction
layer, the main issue that may arise is the granularity level considered in those models. In-
deed, a model could be either too coarse-grained or fine-grained, thus not enabling the mod-
eling of low level functionalities or, on the contrary, being to specific. However, the proposed
approaches cope with such issues as models can be refined in the model-driven engineering
process of ADM approaches, the DSL is implemented to fit a certain level of abstraction, and
component-based approaches rely on the principles of component/composite (a composite can
contain several components) to define several levels of granularity.

3.2.3 Summary

We now summarize our study of strengths and weaknesses of existing approaches related
to the selection and configuration of cloud environments. Table 3.2 synthesizes the results of
this study, divided into four criteria: flexibility, maintainability, abstraction and heterogeneity.
By flexibility, we refer to the way requirements are defined, as well as to the independence
of the reasoning process from the rest of the platform. As cloud environments evolve
over time, the approaches have to evolve as well to remain well-suited. We thus indicate
whether these approaches offer such maintainability support or not. We then illustrate if the
considered approach provide abstraction mechanism to cope with the complexity of cloud
environments. Finally, we indicate whether the approach deals with the heterogeneity of
cloud environments, i.e., if it target different level of the cloud service model, e.g., PaaS and
IaaS. We use a check mark Xif the approach proposes solutions or deals with the different
criteria, while a check mark between parenthesis (X) indicates that the approach does not
fully handle the criteria.

As shown by Table 3.2, there exists currently no approach which, at the same time, pro-
vides a correct abstraction level to define cloud environments, is flexible enough to handle
requirements and reason on them while being easily evolved, and targets both Iaas and
PaaS environments. In the next section, we propose one possible way to deal with these
challenges.

3.3 Software Product Lines for Cloud Environments Configuration

Based on our related works study, we argue that an approach based on software product line
principles is well-suited to select and configure cloud environments. Leveraging software
product line engineering has three major benefits.

37

Chapter 3. Modeling, Selecting and Configuring Cloud Environments

Approach Flexibility Maintainability Abstraction Heterogeneity

Aeolus X (X) X

ConPaaS (X) (X)

mOSAIC (X) (X)

MODAClouds (X) (X) X

REMICS X X

CloudGenius (X) (X)

CloudMIG (X) X X

Zeel/i (X) (X)

Table 3.2: Synthesis of approaches for cloud selection and configuration.

First, as explained in Chapter 2 Section 2.3, a central activity to software product line
engineering is variability modeling. Thus, variability models, and feature models in par-
ticular, can be used to model cloud environments. There are two benefits from relying on
feature models to model cloud environments. First, it provides a mean to model a system at
any level of granularity. Indeed, features are organized hierarchically in the tree, enabling
the description of a potentially large number of concepts (i.e., features) into multiple levels
of increasing detail [Ach11]. Second, complex variable functionalities and dependencies be-
tween them can be handled. Addressing such a concern is very important, as Van der Aalst
showed that handling variability is one of the main challenges to support configurable cloud
services [VDA10].

Second, to reason on the configurations of the software system under study and thanks
to their abstraction level, feature models are independent from any reasoning engine. Usu-
ally, feature models and their configurations are translated into a specific representation or
paradigm such as propositional logic, constraint programming, description logic or ad-hoc
data structures [BSRC10]. Then, off-the-shelf solvers or specific algorithms are used as rea-
soning support to automatically analyze the feature model given as input in terms of analysis

operations. Regarding the operation to be performed, e.g., give the number of products or is
the product valid, different reasoning supports can be used to focus on a given criteria e.g.,
improve the scalability of the platform to perform a significant number of operations.

Finally, once a configuration is found by the reasoning support, a software product line
based approach could benefit from the derivation process. Indeed, such an approach could
not only find a correct configuration, but derive such a configuration. For instance, the
derivation process could leverage existing cloud configuration tools and mechanisms pro-
vided by cloud platforms to configure the cloud environment regarding the configuration
found in the previous stage. From an implementation perspective, this derivation process

38

3.4. Variability Modeling Approaches

could be the building and generation of configuration files, or the execution of configuration
commands provided by the targeted cloud environment, e.g., through an API or a SDK. Such
a process brings reliability to the approach, as the configuration only relies on tools used by
cloud environment themselves, thus avoiding an ad-hoc and error-prone configuration tool.

In the next section, we study the state-of-the art approaches for variability modeling. We
discuss in particular the main characteristics of these approaches, and report the limitation
of the existing work regarding modeling the variability of cloud environments.

3.4 Variability Modeling Approaches

Over more than two decades, numerous variability modeling techniques have been intro-
duced in academia and industry. In this section, we extend the systematic analysis of tex-
tual variability modeling languages proposed by Eichelberger et al. [ES13] and survey both
textual and graphical variability modeling approaches. In particular, we describe their char-
acteristics, and compare them in terms of both configuration and constraint expression sup-
port.

3.4.1 Description and Comparison

AHEAD

AHEAD (Algebraic Hierarchical Equations for Application Design) is an architectural model for
feature oriented programming [BSR03]. A variability model in AHEAD is defined using
the GUIDSL tool [Don08], where a GUIDSL model is an annotated grammar [Bat05]. The
GUIDSL grammar is used as input as a file format by the AHEAD tool suite, which relies on
a Java implementation to reason on feature models configurations.

Clafer

Clafer (class, feature, reference), is a general-purpose, lightweight textual meta-modeling
language, with first-class support for feature modeling [BCW11]. The language, designed to
naturally express metamodels, feature models, mixtures of meta- and feature models, aims
at providing a common infrastructure for analyses of such feature models and metamod-
els [Cla14]. Clafer integrates feature modeling into class modeling and thereby can also be
used to specify feature models. In particular, Clafer extends the FODA notation so that fea-
ture models with attributes can be defined.

39

Chapter 3. Modeling, Selecting and Configuring Cloud Environments

FaMa

FaMa is a Java-based extensible framework for the automated analyses of feature mod-
els [TBRC+08, FAM14]. FaMa allows the integration of different logic representations and
solvers in order to optimize the analysis process. It can be configured to select automati-
cally the most efficient of the available solvers according to the operation requested by the
user [BSTC07]. The implementation is based on an Eclipse plug-in and uses XML to repre-
sent feature models so it can interoperate with other tools that support it. FaMa supports
attribute-based feature models, as well as the definition of group cardinalities.

FAMILIAR

FAMILIAR (FeAture Model scrIpt Language for manIpulation and Automatic Reasoning) is a
domain-specific language for managing feature models [ACLF11a, Mat14]. The aim of FA-
MILIAR it to provide a support for separating concerns in feature modeling through the
provision of composition and decomposition operators e.g., slice or merge, and for reason-
ing facilities on these feature models. To manage and reason on feature models, FAMILIAR
provides an Eclipse-based development environment, allowing the user to define feature
models graphically or using the text editor.

FDL

The first textual language to describe feature models was FDL, back in 2002 [vDK02]. FDL
was constructed by applying design principles of domain-specific languages. In addition
to the syntax, the authors specify a feature diagram algebra. This algebra is a set of rules
for operating on FDL models such as normalization, expansion and satisfaction rules. Fur-
ther, the authors describe the mapping of FDL models to UML class diagrams for Java code
generation.

FeatureIDE

FeatureIDE is an open-source framework for feature-oriented software development based
on Eclipse [TKB+14]. It supports all phases of feature-oriented software development for the
development of software product lines: domain analysis, domain implementation, require-
ments analysis, and software generation [Fea14]. The edition of feature models is graphical
or text-based. In addition, it supports edits on feature models, i.e., categorizing edits into
refactoring, generalization, specialization or none of these. As several variability modeling
implementation techniques are integrated to FeatureIDE, it supports feature model gram-
mars from other approaches described in this survey such as GUIDSL, S.P.L.O.T, Velvet or
FMP.

40

3.4. Variability Modeling Approaches

FMP

The emphFeature Model Plugin (FMP) has also been implemented as an Eclipse plugin,
and provides tree views for creating feature models [AC04]. It supports cardinality-based
and attribute-based feature modeling, specialization of feature diagrams and configuration
based on feature diagrams. It relies on a feature metamodel, represented as a feature model
itself and containing definitions of feature diagrams, features, groups, etc. Feature models
can be edited manually as XML files or using the dedicated graphical environment. the main
purpose of FMP is to support the configuration and specialization of feature models. FMP is
no longer maintained by its developers, and has been since replaced by Clafer [FMP14].

GEARS

GEARS is a commercial tool from BigLever dedicated to the development of software prod-
uct lines [Big14]. Although not directly focused on variability modeling, GEARS integrates
feature modeling and configuration process support. In particular, it supports the definition
of feature models that express the full product line feature diversity for all assets in all stages
of the system and software development lifecycle, plus one set of feature profiles to describe
product instantiations in terms of selected feature options and alternatives from the feature
model [KC13]. GEARS models feature declarations as parameters, where different parame-
ter types stand for different kinds of variability, e.g., Boolean for optionality or enumeration
for alternatives. Feature assertions describe constraints and dependencies among the fea-
ture declarations. Feature assertions in Gears express requires or excludes relations. BigLever
provides a dedicated tool ecosystem integrating GEARS.

pure::variants

pure::variants is a commercial tool from pure::systems GmbH for variant management of
product line based software development [pur14a]. Variability modeling with pure::variants
can be done using a web browser, a command line interface or the dedicated IDE.
pure::variants supports the definition of attribute-based feature models [pur14b]. It allows
modeling global constraints between features and it offers interactive, constraint-based con-
figuration using a Prolog-based constraint solver.

S.P.L.O.T.

The Software Product Lines Online Tools (S.P.L.O.T.) is a web-based tool providing a feature
model editor as a tree view, a configuration editor with decision propagation, automated
analysis on feature models, and example feature models stored in a feature models repos-
itory [spl]. S.P.L.O.T. provides two major services: automated reasoning and product con-
figuration. Reasoning focus on automating statistics computation (e.g., depth of the feature

41

Chapter 3. Modeling, Selecting and Configuring Cloud Environments

tree, number of features) and critical debugging tasks such as checking the consistency of
feature models and detecting the presence of dead and common features. In addition, rea-
soning supports measuring properties such as the number of valid configurations and the
variability degree of feature models [MBC09].

TVL

TVL (a Text-based Variability Language) is a text-based language for feature models with a C-
like syntax. The goal of the language is to be scalable, by being concise and by offering mech-
anisms for modularity, and to be comprehensive so as to cover most of the feature model
dialects proposed in the literature [TVL14]. Further goals for TVL are to be lightweight (in
contrast to the verbosity of XML for instance) and to be scalable by offering mechanisms
for structuring the feature model in various ways [CBH11]. TVL enables the definition of
attribute-based feature models, together with related constructs to express constraints over
them. The current available version can be run in a command line interface to perform some
operations on feature models [TVL14].

VELVET

Velvet is a language for multi-dimensional variability modeling. It integrates separate
modeling and integrated analysis of variability, feature model composition, and configu-
ration [VEL14]. The definition of a variability model with VELVET is similar to a class defi-
nition, and the syntax of VELVET uses parts of the syntax of TVL [RSTS11]. VELVET comes
as a set of tools to model, compose, and configure feature models, and provides support to
read other kinds of variability models such as FeatureIDE or S.P.L.O.T. The main purpose of
VELVET is to support separation of multi-dimensional concerns in feature-based variabil-
ity modeling. VELVET thus allows a stakeholder to decompose the variability model of an
software product line into multiple models to handle its complexity.

VSL

The Variability Specification Language (VSL) is part of CVM, a framework for compositional
variability management [CVM14]. CVM is implemented as an Eclipse plugin, but stand-
alone versions are available too. Feature models can be defined using the graphical editor
or as textual VSL specifications, and conform to the CVM metamodel. The syntax of VSL
was inspired by programming languages such as Java [APS+10]. It supports in particular
the definition of cardinality-based feature models.

42

3.4. Variability Modeling Approaches

Summary

Table 3.3 summarizes the study. The first column contains the approach under study. There
are then three main columns for Description, Extensions and Constraints to indicate,
respectively, how variability models are described, which kind of extension is supported,
and is there a support for constraints on these extensions. We use a check mark Xif the
approach proposes solutions or deals with the different criteria, while a check mark between
parenthesis (X) indicates that the approach does not fully handle the criteria. In particular
regarding cardinalities, it means that only group cardinalities are supported, not feature
ones. When an approach does not provide any support for both extensions and constraints,
it implicitly means that it addresses basic feature models, i.e., feature models without
extensions but supporting Boolean constraints such as implies and excludes.

Approach Description Extensions Constraints

Textual Graphical Attributes Cardinalities Attributes Cardinalities

AHEAD X

Clafer X X X

FaMa X X X (X) X

FAMILIAR X X

FDL X

FeatureIDE X X

FMP X X X (X) X

GEARS X X

pure::variants X X X X

S.P.L.O.T. X X

TVL X X (X) X

VELVET X X

VSL X X X

Table 3.3: Summary of variability modeling approaches.

All described approaches propose a textual format to define feature models. Some of
these approaches are real text-based approaches, i.e., address feature modeling using text
e.g., Clafer, FAMILIAR, FDL, TVL or VELVET. According to Classen et al., there are several
benefits from using a text-based approach, as existing tool support for graphical feature

43

Chapter 3. Modeling, Selecting and Configuring Cloud Environments

models is lacking or inadequate, and inferior in many regards to tool support for text-based
formats [CBH11]. One main reason is the graphical nature of feature models syntax. Almost
all existing feature modeling languages are based on the FODA notation which uses graphs
with nodes and edges in a 2D space, and becomes difficult to handle and understand when
the feature model size grows. Another reason is that most of those textual-based approaches
handle feature attributes. Feature attributes are intrinsically textual in nature and do not
easily fit into this representation. Furthermore, constraints on the feature models are often
expressed as textual annotations using Boolean operators. If they were given a graphical
syntax, attributes and constraints would only clutter a feature model [CBH11].

Other approaches do not specifically rely on text-based modeling to describe feature
models, but the underlying implementation provides such a support. For instance, FaMa,
FMP, pure::variants or S.P.L.O.T propose an XML-based formats to describe feature models.
These formats were not intended to be written or read by the engineer and are thus difficult
to interpret, mainly due to the overhead caused by XML tags and technical information that
is extraneous to the model. The semantics of FaMa and pure::variants is tool-based, given
by the algorithms that translate an feature into the dedicated solver formalism, and is thus
not readily accessible to an outsider [CBH11].

3.4.2 Requirements for Feature Modeling Cloud Environments

Although comparing text and graphical-based approaches is important, the main interest in
this study is to discuss relevant concerns with respect to cloud environments modeling and
configuration. Recently, some approaches for feature modeling cloud environments have
been described [DWS12, WKM12], including ours. Dougherty et al. [DWS12] proposed an
approach for optimizing the energy consumption of cloud configurations. They thus rely on
feature attributes to specify energy amount for each feature, as well as their price. Wittern et

al. [WKM12] also propose attribute-based feature models to describe cloud environments.
For instance, attributes are used to define non-functional properties such as the cost of a fea-
ture, or its disk space size. Moreover, constraints on feature attributes values are defined,
and a product configuration is thus computed regarding those constraints. We argue that
such an extension is required to describe cloud environments and reason on their config-
urations. Indeed, when configuring a cloud to deploy an application, not only functional
concerns are important, but also non-functional ones, such as the price of an element or
the provided amount of CPU or RAM, which can themselves impact the total configuration
price.

In addition to feature attributes, feature cardinalities are required, as well as constraints
over them. Feature cardinalities are used to define the number of elements that must be part
of the configuration, e.g., the number of nodes or virtual machines. Moreover, constraints
must be expressed in terms of feature instances, e.g., to specify that instances of one fea-
ture should be included or excluded from a product, thus reasoning on feature cardinalities.
Quantifier over those cardinalities must also be used, e.g., to specify that a feature requires

44

3.5. Approaches for Evolving Feature Models

a given amount of instances of another feature. However, none of the existing approaches
addresses properly both support for attributes and cardinalities and support for constraints
over them. One possible solution would be to extend one of the closest approaches, i.e.,
the ones that partially address such supports: FaMa, FMP and TVL. Nonetheless, the inte-
gration effort would be quite consequent. For instance, FMP has not been maintained for
several years now and replaced by Clafer, while the current TVL tool prototype is still a
work in progress. Regarding FaMa, the aim of the framework is not to support all feature
modeling extensions, but to compare different solvers when performing operations on fea-
ture models. Extending the platform would thus not be interesting regarding this objective
as it does not bring new operations nor solver support.

One of our goals in this thesis is, therefore, to provide a feature modeling approach
handling feature cardinalities and attributes, as well as constraints over them to properly
describe cloud environments variability. Nonetheless, our aim is not to develop another fea-
ture modeling approach. We will thus focus on extending existing feature modeling abstract
syntaxes, e.g., the one proposed by the developers of FaMa [BSTRC06]. An approach with
such a level of abstraction will thus be "approach-independent", i.e., implementable by any
feature modeling approach. Once defined, cloud feature models need to evolve to be up-to-
date with the cloud environment they describe. In the next section, we thus survey existing
work dealing with the evolution of feature models.

3.5 Approaches for Evolving Feature Models

As software product lines are often a long-term investment, they need to evolve to meet new
requirements over many years [BP14]. This is reflected in the need to evolve feature models.
The main issue when evolving a model, and feature models in particular, is to maintain its
consistency, as problems may arise while editing the model. In this section, we thus survey
and discuss different concerns regarding existing approaches for evolving feature models.

3.5.1 Description and Comparison

Alves et al. investigate issues that need to be addressed when refactoring software product
lines, and feature models in particular [AGM+06]. They describe a feature model refactoring
as a "transformation that improves the quality of a feature model by improving (maintaining or

increasing) its configurability". Their main contribution is then to provide a catalog of edits for
refactoring feature models, e.g., add new alternative or replace mandatory feature. Finally, they
propose an approach for verifying the correctness of the refactorings. Refactorings are first
done at solution space level, by refactoring the original source code of the software product.
Then, at problem space level, feature models are generated. If a sequence of refactorings
can be applied from the original feature model, i.e., the one enabling the derivation of the
original product, to the resulting feature model, then the whole refactoring is considered as
correct. Their approach only handles Boolean feature models.

45

Chapter 3. Modeling, Selecting and Configuring Cloud Environments

Guo et al. also propose an approach to check the consistency of evolving feature
models [GWTB12]. Their approach focuses on the changes since the last version of the
feature model rather than checking the overall consistency of the resulting feature model.
To achieve their goal, the authors formalize feature models from an ontological perspective
and analyze the semantics of their changes using ontologies. More precisely, feature models
are described as a set of syntactical and semantic consistency constraints, that must hold
after changes. Once a change is performed on a feature model, the semantics of the resulting
feature model is analyzed to improve the reliability of next changes. Thus, they propose a
set of predefined strategies to keep the consistency in error-prone operations. An evolution
strategy defines the way a change will be applied, as a list of atomic operations, e.g., add

feature, rename feature.

Lotufo et al. study the evolution of a real world variability model, the Linux kernel
one [LSB+10]. However, their approach is suitable for any Boolean feature model, as the
authors provide rules for translating the Linux kernel variability model, to a feature model.
They describe different kinds of operation performed to evolve this variability model,
extracted from an analysis of the evolution of the Linux kernel feature model over almost 5
years. In particular, half of the edits are motivated by inclusion of a new functionality. The
main objective of this work is to provide an empirical evidence on how a large, real world
variability model evolves.

Neves et al. propose an approach for dealing with safe evolution of product
lines [NTS+11]. By safe, they mean an evolution that preserves the original behavior
of the product lines, i.e., products that could be generated before evolution can still be
after. Their approach is based on the notion of product line refinement, derived from the
program refinement one. As most of product line refinement scenarios described involve
many changes both at problem space and solution space level, e.g., evolve code assets and
feature model, the refactored product lines generates more products. They thus present
several safe evolution templates, described as valid modifications that can be applied to a
product line while preserving existing products. These templates can be applied to both
feature model and artifacts level, and ensure existing products to be part of the new set of
generated products.

Passos et al. also focus their work on the evolution of the variability model together
with the source code [PCW12, PGT+13]. They extend Lotufo’s work, using as example
the Linux kernel variability model as well, and describe a catalog of evolution patterns
for the co-evolution of both the variability model and the related artifacts. Those pattern
were extracted by inspecting over 500 Linux kernel commits spanning almost four years
of development. The main contribution of this work is to provide evidence that variability
evolution can follow systematic patterns.

46

3.5. Approaches for Evolving Feature Models

Pleuss et al. rely on a model-driven support to handle feature model evolu-
tions [PBD+12]. In their approach, feature models are considered as a composition of
a set of clustered model fragments. Fragments are a set of feature model elements, i.e., a
feature model subtree, that are added or removed during the same evolution step. Both
fragments and feature models are instances of their related metamodel. In addition, the
authors describe a special kind of feature model, called EvoFM, that specifies dependencies
and relationships between fragments. Thus, if a fragment is evolved and has a certain
relationship with another fragment, then this other fragment has to evolve as well. The
authors also present a set of evolution operators to be performed on the EvoFM, e.g., move
a feature below another one or convert an optional feature into a mandatory one.

Seidl et al. propose an approach for co-evolving feature models and feature mappings,
i.e., mappings from elements in the problem space to elements in the solution space [SHA12].
They thus present evolutions scenarios for both spaces, e.g., duplicate, split, insert and
remove a feature or replace and extract method. Evolving a software product line in two
different spaces may lead to inconsistencies regarding the mappings. The authors thus
present a catalog of remapping operators that preserves the consistency of mappings
between spaces, by modifying existing mappings in accordance with the performed model
evolution.

Thüm et al. [TBK09] describe an approach to analyze edits performed on a feature model
and classifies them into refactoring, not changing the set of valid products, generalization, only
adding products, specialization, reducing the set of products, or arbitrary changes otherwise.
Their approach takes as input two feature models (one before and one after edits), where the
sets of features in both models is not necessarily the same, and automatically computes the
classification. To reason on those classifications, feature models are translated into proposi-
tional formula, which in turns are converted to conjunctive normal form to be handled by
off-the-shelf SAT solvers.

3.5.2 Summary and Discussion

Table 3.4 summarizes the study. The first column contains the approach under study. There
are then two main columns for Evolution Patterns and Evolution Analysis to indicate,
respectively, if the proposed evolution patterns (if any) apply to feature models or any other
element, and if the authors propose an approach to analyze feature models after evolution,
or any other elements. We use a check mark Xif the approach proposes solutions or deals
with the different criteria, while a check mark between parenthesis (X) indicates that the
approach does not fully handle the criteria. Note that all of these approaches only address
Boolean feature models.

47

Chapter 3. Modeling, Selecting and Configuring Cloud Environments

Approach Evolution Patterns Evolution Analysis

Feature Model Other Feature Model Other

[AGM+06] X Refactorings

[GWTB12] X

[LSB+10] X

[NTS+11] X Products

[PGT+13] X

[PBD+12] X (X)

[SHA12] X Mappings Mappings

[TBK09] Products

Table 3.4: Summary of approaches for evolving feature models.

This survey shows that several works exist on evolving feature models, spanning over
different research areas, such as describing evolution patterns [AGM+06, LSB+10, NTS+11,
PBD+12, SHA12, PGT+13], reasoning on products evolution [NTS+11, TBK09] or checking
the consistency of the feature model [GWTB12, PBD+12]. Even though studying evolu-
tion patterns is important to understand how and why feature models evolve, analyzing
the behavior of the product line after evolution is fundamental as well. Alves et al. ver-
ify the correctness of the applied refactorings [AGM+06], while Seidl et al. study the map-
ping operators between problem space and solution space [SHA12]. On the other hand,
some authors propose an approach to reason on the set of products for the product line,
i.e., is there less, more, or an equivalent set of products that can be generated after evolu-
tion [NTS+11, TBK09].

Another major concern when evolving feature models is to check that such evolution
do not lead to inconsistencies regarding the feature model. In the case of Boolean fea-
ture models, evolutions may lead for instance to dead or false optional features, as well
as redundancies. To deal with these issues, surveyed works propose different approaches.
Guo et al. [GWTB12] rely on semantic constraints to check feature models consistency while
Pleuss et al. [PBD+12], even though it is not the main objective of their work, ensure feature
models to conform to their metamodel before and after evolution.

However, as described in the previous section, feature modeling cloud environments re-
quires both attributes and cardinalities. Although extending feature models with attributes
introduces complexity, it does not bring additional risk for the model to be inconsistent. A
feature has one or several attributes, or has not. Contrarily to attributes, cardinalities may
introduce inconsistencies when evolving the feature model. However, little is known about

48

3.6. Summary

consistency checking cardinality-based feature models in the current state-of-the-art. To the
best of our knowledge, only Trinidad et al. [TR09] investigated the consistency of feature
models regarding group cardinalities. They thus consider a wrong cardinality "when a cardi-

nal is never used in any product". They rely on abductive reasoning to search for inconsistencies
and explain their origin.

Thus, since cloud environment feature models are extended with cardinalities, and will
evolve over time together with the environment they describe, one of the main goals in this
dissertation is to provide a mean to check their consistency. Not only group cardinalities, but
feature cardinalities as well, to find whether there exists a value in the cardinality range that
is never used in any product. In addition, as cardinality inconsistencies may be complex to
detect and understand, our approach must support the developer by automatically finding
where and why such an inconsistency arose.

3.6 Summary

In this chapter, we reviewed the state-of-the-art approaches for cloud environments selection
and configuration. An high degree of abstraction is required to cope with clouds complexity
and variability. However, only some of existing approaches offer such an abstraction layer,
sometimes not even offering a flexible enough support. In addition, the reasoning engine
often relies on an ad-hoc implementation that may cause scalability issues, while the targeted
cloud environments are most likely to be IaaS ones.

We thus described how software product line principles could be leveraged to select
and configure cloud environments. In particular, there are three main benefits of using such
an approach. Variability models, and feature models in particular, can be used to describe
clouds variability, while off-the-shelf reasoning engines such as solvers can be used to reason
on their configuration, making the approach scalable and flexible. Finally, software product
lines bring reliability by automating the cloud configuration through the derivation process.

Since the derivation process is implemented with respect to the assets described for the
software product line, and since the reasoning support is externally provided, then only
the variability modeling support must be defined. We thus propose a survey on existing
variability modeling approaches, and discuss their different modeling and configuration
supports. We argue that none of those approaches is well-suited for variability modeling
cloud environments, as there exists no one supporting feature cardinalities and attributes,
together with constraints over them.

Finally, we showed different approaches for supporting the evolution of feature models.
We need such a support as cloud feature models are likely to evolve to stay up-to-date with
the cloud environment they describe. However, as explained in the previous section, there
exists no approach supporting the evolution of cardinality-based feature models, which
is required as cardinalities increase the complexity level of the feature model, leading to

49

Chapter 3. Modeling, Selecting and Configuring Cloud Environments

inconsistencies during evolution.

Considering the approaches and concepts discussed in this chapter, we describe in the
next part of the dissertation our contribution for selecting and configuring cloud environ-
ments. We propose in particular an approach leveraging software product line principles
that addresses the research goals we discussed in Chapter 1, and highlighted below.

First, in Chapter 4, we propose to describe cloud environments using feature models
extended with cardinalities, attributes and constraints over them. Using feature models,
one can describe cloud environments with different levels of granularity and easily manage

their variability. As our goal is not to provide another feature modeling approach, we thus
consider existing approaches and propose to work on the abstract syntax level of feature
models, so that those existing approaches could benefit from this work.

Then, Chapter 5 describes our approach for evolving cardinality-based feature models.
Indeed, feature models evolve over time, but cardinalities introduce complexity when han-
dling such evolution. We therefore present some evolution scenarios with respect to cardi-
nalities, and describe how and why they may lead to model inconsistency. We thus propose
an automated approach to help the developer maintain consistency when evolving such
feature models.

Finally, we deliver an automated support based on software product line principles to
select and configure cloud environments. Relying on these principles, we provide a simple

and flexible solution that can be easily extended, as described in Chapter 6. In addition, our
approach guarantees environment independence, as it does not require any environment-
specific knowledge for the configuration.

50

Part III

Contribution

51

Chapter 4

Cardinality and Attribute-based Feature
Models

Contents

4.1 Introduction . 53

4.2 Motivation and Challenges . 54

4.2.1 Motivating Example . 54

4.2.2 Challenges . 56

4.3 Variability Modeling with CardEx Feature Models 57

4.3.1 CardEx Metamodel . 57

4.3.2 CardEx Constraints: Examples and Semantics 59

4.4 Reasoning on CardEx Feature Models 64

4.5 Challenges Revisited and Discussion 67

4.6 Summary . 68

4.1 Introduction

Feature models were first introduced as part of FODA back in 1990 [KCH+90] (see Chapter 2,
Section 2.4). Since then, the FODA notation has been extended to improve the expressive-
ness of feature models. Cardinality-based feature models support in addition feature cardinal-

ities [CHE05a, CK05], first introduced as UML–like multiplicities [RBSP02]. A feature cardi-
nality [m..n] can be assigned to any feature except to the feature model’s root feature. It spec-
ifies how many instances of a feature and its subtree can be included in a product configura-
tion with m as lower bound and n as upper bound (m ∈ N, n ∈ N∪{∗}). Feature instances are
also known as clones in the literature [CHE05a, MCHB11]. Another well-known extension
is by means of features attributes, used to describe the non-functional properties of a given

53

Chapter 4. Cardinality and Attribute-based Feature Models

feature, e.g., its size, its provided quantity or its energy consumption [CBUE02, BTRC05].
There is currently no consensus on a notation to define attributes, but they have been widely
used by several authors to define additional information in feature models. For the sake of
simplicity and clarity, feature models extended with both cardinalities and attributes will be
referred to as CardEx feature models in the rest of the dissertation.

However, even though using feature attributes and cardinalities is well-known when
feature modeling, existing approaches do not offer a support for expressing constraint over
these extensions and cannot reason in an automated way on the related feature model con-
figurations, as stated in Chapter 3. To deal with this issue, we extend the existing feature
model notation and propose an abstract syntax to define CardEx feature models. We for-
mally define the semantics of such feature models and describe how this abstract syntax can
be translated and used as input to automate the configuration of CardEx feature models.
This chapter thus covers the complete phase of feature modeling, constraint expressing and
configuration reasoning.

The chapter is structured as follows: Section 4.2 describes a motivating example high-
lighting the need for expressing constraints over features cardinality and attributes and dis-
cusses the related challenges. Section 4.3 presents the CardEx feature model metamodel
used as abstract syntax, describes the constraints semantics and explain the translation rules
to automatically reason on these feature models. Finally, Section 4.5 discusses several con-
cerns regarding our approach while Section 4.6 concludes the chapter.

4.2 Motivation and Challenges

This section introduces a motivating example for CardEx feature models. It illustrates the
need for new constraint expressions when using feature models with cardinality and at-
tributes. Based on this example, we then discuss challenges related to modeling CardEx
feature models and reasoning on their configurations.

4.2.1 Motivating Example

To introduce our approach, let us consider as an example the Jelastic cloud environment [jel].
Jelastic is a PaaS environment, providing support to deploy Java or PHP applications. In
this example, the environment is configured to host a Java-based application, as depicted
by Figure 4.1, top left corner. When configuring the Jelastic environment, at least one
application server instance must run, e.g., the Tomcat 7.0 server, and a language support
must be selected. In such a case, Java 7 is required. Then several options are available, such
as configuring up to two database supports, either SQL or NoSQL, a Cache service, a Virtual

Dedicated Server (VDS), a secured access to the deployed application (SSL) or a Maven Build
node, as depicted in the bottom left corner. To run the application, Jelastic provides several
cloudlet instances. A cloudlet is the computation unit of Jelastic. As described in the center

54

4.2. Motivation and Challenges

of the figure, it provides 128MB of RAM and 200MHz of CPU power. When describing
the Jelastic variability in a feature model, these non-functional properties would be defined
as feature attributes. There is one cloudlet in the configuration, which is actually due to
the implicit constraint that to run an application server, a minimum amount of computing
resources is required, that is, at least one cloudlet.

Figure 4.1: The Jelastic interface

Intuitively, such a constraint would be expressed as a classical Boolean constraint one
may use when feature modeling, e.g., C: ApplicationServer → Cloudlet. However,
this constraint would be semantically wrong. Let us explain this concern relying on the Je-
lastic configuration depicted by Figure 4.2. This configuration differs from the one depicted
by Figure 4.1 by the number of application server nodes which are configured. Here, a sec-
ond one has been added. There are now three cloudlets in the configuration, as depicted on
the right-hand side of the figure. Two of them are dedicated to the application server nodes
(blue color), while the third one is used to run the Nginx load balancer (green color). Thus,
the Cloudlet feature is not part of the configuration because the Application Server

is, which is the meaning of C, but each configured application server instance requires one cloudlet

to run properly. In the same way, the Nginx load balancer requires a cloudlet as well. This
leads us to a second example. When configuring at least two application server instances,
the Nginx load balancer is automatically configured to balance the load between nodes, if
required. If only one application server instance is running, the load balancer cannot be
configured. When modeling the variability of the Jelastic environment, a constraint is thus
required to express that if at least two instances of the Application Server feature are con-

figured, then the Nginx feature must be selected.

55

Chapter 4. Cardinality and Attribute-based Feature Models

Figure 4.2: Configuring two application server instances in Jelastic

These examples show that when relying on CardEx feature models to describe the vari-
ability of software systems, constraints over cardinalities and attributes must be defined to
properly handle their configuration. It is thus necessary to provide a mean for expressing
such constraints and the related support to reason on the CardEx feature models configura-
tions.

4.2.2 Challenges

The examples previously discussed use constraints over feature instances to define a proper
configuration. Our goal is to provide a support for expressing these constraints as well as
constraints over features attributes, and reason about the related configurations. To achieve
these objectives, we identify several challenges that have to be faced:

1. Extend the concept of constraint. The selection of a feature implies or excludes the selection

of another feature. In certain circumstances, such Boolean constraints are not enough
to express constraints in CardEx feature models. The first challenge is thus to extend
the existing concept of constraint, and provides means to express new constraint con-
structs.

2. Use a language independent syntax. Our goal is not to provide a new feature model-
ing language with support for expressing such constraints, but rely on existing nota-
tions. The second challenge is thus to provide an abstract syntax to describe CardEx
feature models that can be used by any variability modeling language or implemented
tool support.

56

4.3. Variability Modeling with CardEx Feature Models

3. Reason about CardEx feature model configurations. Once the CardEx feature model
is defined, one must be able to reason about its configurations, e.g., the number of
valid products. The third challenge is thus to be able to translate the proposed CardEx
feature model abstract syntax into a format that can be managed by an automated
reasoning engine.

4.3 Variability Modeling with CardEx Feature Models

This section describes in details the metamodel of our approach when variability modeling
CardEx feature models. We then illustrate the use of this metamodel with several examples
of the new constraint expressions taken from feature modeling variability of cloud environ-
ments and give the related semantics. Finally, we show how CardEx feature models can be
translated to constraint programming to support automated reasoning operations.

4.3.1 CardEx Metamodel

Several works on feature modeling have proposed a metamodel to describe the use of feature
models with an abstract syntax [CHE05a, BSTRC06, PBL05, Par11]. Therefore, our purpose
with the CardEx metamodel is not to provide an entirely new metamodel, but an exten-
sion of the existing ones. We thus gather the literature existing concepts and reuse them to
yield what we define as the InitMM , as depicted by Figure 4.3. For example, we refer as
Feature what is also called Feature in [CHE05a], but defined as Node by Parra [Par11], or
Alternative what is described as AlternativeChoice by Pohl et al. [PBL05] but Grouped in
[BSTRC06]. The extensions we provide are depicted in green in the metamodel and, together
with the InitMM , yield the CardEx metamodel.

The root of the CardEx metamodel is the FeatureModel meta-class, which contains
(i) the Root feature and (ii) a set of Constraints. Each Feature may have subFeatures
(if not, this is a leaf) or Attributes. Attributes are of type int, boolean, real or enumera-

tion, which is a fixed set of values. A feature can be an Alternative feature, which in
turn can be an Exclusive feature (for or-group and alternative-group respectively). An
alternative has at least two variants, and is given a GroupCardinality, in opposi-
tion to features which are given a FeatureCardinality. In addition, we introduce in
this InitMM the DuplicatedExclusive feature. A DuplicatedExclusive feature is a
type of Exclusive where, when several instances can be configured, each feature instance
and its whole subtree is identically configured. Note that duplicated subtrees can be ob-
tained using an Exclusive feature and configuring all its instances in the same way, even
if duplication is not explicitly specified. However, this duplication is forced when using a
DuplicatedExclusive feature. Regarding constraints, BooleanConstraints are well-
known and provide means to express that the selection of a feature Implies or Excludes
another one. Relying on this InitMM , one can model the Jelastic cloud as it was described in
Section 4.2.1. The related feature model is depicted in Figure 4.4.

57

C
h

ap
ter

4.
C

ard
in

ality
an

d
A

ttrib
u

te-b
ased

F
eatu

re
M

o
d

els

min: Int
max: Int

Cardinality

1

Constraint

Ffrom

Fto

Implies Excludes

Group
Cardinality

Feature
Cardinality

1

1
CardEx

Constraint

FeatureModel

Alternative

Feature

name: String

2..*

0..*

variants

Exclusive

0..*

subFeatures

Action

1

Legend

Feature

Operation

Literature: InitMM

CardEx extensions

Attribute

name: String
0..*

Value
Operation

Condition

1..*

Boolean

Constraint

Constrainable

Element

root
1

<<enum>>
LogicalOperator

A: And
O: Or1..*

Comparison
Operation

value: Int

Functional
Operation

value: Int
local: Boolean

Abstract
Operation

Operation

Duplicated
Exclusive

Figu
re

4.3:C
ard

E
x

m
etam

od
el

58

4.3. Variability Modeling with CardEx Feature Models

Application
Server

Jelastic

Database

SQL NoSQL

MySQL
5.5

MariaDB

PostgreSQL

MongoDB
2.2

CouchDB
1.2

GlassFish
3.1

Jetty
6.1

[1..8]

Nginx HALanguage

PHP

TomEE+
1.5

Tomcat

7.0 6.0

Cloudlet

[1..64]

Java

7 6

8.4 9.2

10 5.5

SSL BuildVDS

Name: RAM
Type: int
Value: 128

Name: CPU
Type: int
Value: 200

optional

mandatory

alternative
(xor)

or

Legend

[1..4] cardinality

attribute

Tomcat'7.0'⟶'Java'7

Figure 4.4: The Jelastic feature model

For instance, the Nginx feature is optional while the Language one is both a mandatory
and an alternative feature, and one of the two proposed languages must be selected, i.e.,
Java or PHP. The ApplicationServer illustrates a DuplicatedExclusive feature. Indeed, in
Jelastic, one can configure up to 8 instances of the same application server. Then, if several
instances are configured, the same application server must be selected for each instance,
e.g., Jetty 6.1. When configuring Databases, both a SQL one and a NoSQL one can be selected,
illustrating an or-relationship. Finally, feature Cloudlet illustrates a cardinality and attributes,
e.g., the RAM one. We now discuss in details the constraints we introduced in the CardEx
metamodel.

4.3.2 CardEx Constraints: Examples and Semantics

In addition to Boolean constraints, we introduce in our metamodel CardEx Constraints.
CardEx constraints are built on the following pattern: a list of at least one condition (con-
nected by a Logical Operator if more than one) which, if satisfied, implies what is de-
fined within the action. Both conditions and the action are Operations, which are applied
on Constrainable Elements, that is, a feature or an attribute. Thus, a CardEx constraint
is written

condition1 δ ... δ conditionn → action

with δ ∈ {∧,∨}. Note that the Abstract Operation is only for modeling purpose, as
a condition is either a Value Operation or a simple Operation. For the latter, it is used

59

Chapter 4. Cardinality and Attribute-based Feature Models

to define a constrainable element with no particular related CardEx construct. Although our
purpose is to provide a mean to express CardEx constraints (not to define a new syntax), we
introduce in the following a concrete syntax for these constraints to illustrate their use with
concrete examples. Considering that:

- M = (F ,ϕ) is a CardEx feature model, with F its non empty set of features and ϕ its
set of constraints;

- ω : F → N × N indicates the cardinality of each feature, i.e., ∀f ∈ F , ω(f) = [n,m];

- card: F → N indicates the number of instances for a feature, i.e., ∀f ∈ F , card(f) = n

with n ∈ N;

- attr : F → A returns the set of attributes of f , i.e., ∀f ∈ F , attr(f) = α with α ⊆ A,
the set of all the attributes in M;

- val : A → E returns the value of each attribute, i.e., ∀a ∈ A, val(a) = v), with v ∈ E ,
and E = R or E = the set of strings.

We define the available operations as follows.

Value Operation.

A value operation is used to reason on the value of a constrainable element, and can be used
as the condition or the action of the CardEx constraint. We propose two ways of writing
such an operation:

[i, j] constrainableElement (4.1)

constrainableElement θ n (4.2)

with i, j, n ∈ N, i ≤ j and θ ∈ {=, <,≤, >,≥}.

To illustrate this notation, let us consider the two following examples. In the dotCloud
PaaS cloud [dot], when configuring this environment to host an application, one is asked for
a wished amount of RAM, which is provided from 32MB to 4GB. Regarding the specified
RAM amount, dotCloud automatically allocates some disk space to store the application
service. For instance, if there is at least 1GB and at most 2GB of RAM, then the disk size is
set to 10GB. Such a constraint can be written

C1 : [1, 2]Memory.size → Disk.size = 10

Thus, the condition relies on the notation (4.1) while the constraint action relies on the no-
tation (4.2). For both operations, the constrainable element is a feature attribute. For the
second example, please consider again the constraint we explained in Section 4.2.1, if there

60

4.3. Variability Modeling with CardEx Feature Models

are at least two instances of the Application Server feature, then the Nginx feature must be selected.
Then, relying on the notation (4.2) such a constraint can be written

C2 : ApplicationServer ≥ 2 → Nginx

In our approach, we rely on the Cardinalitymeta-class to define this operation. Although
we could have chosen to use a dedicated meta-class, we think it would be redundant in the
CardEx metamodel, as we just need an upper bound and a lower bound to define the range
required for this operation. For example, an instance of this meta-class with min = 1 and
max = 2 is used to express the condition of C1, while min = 10 and max = 10 are used for
its action operation. Regarding C2, the use is slightly different, since there is no upper bound
required. To handle this situation, we use the −1 value to define that the given bound is not
a fixed value and will not be taken into consideration, that is, the condition of C2 is expressed
with min = 2 and max = −1. In this case, the defined range is equivalent to a set expressed
with the "*" multiplicity, e.g., [2, ∗] [RBSP02].

To summarize, there is one abstract syntax (the Cardinality meta-class) used to write
constraints with different notations and semantics. Thus, considering a constraint Cons ex-
pressed

cfrom

{

ffrom

afrom
→ cto

{

fto

ato

with

- cfrom, cto ranges defined as explained above,

- ffrom, fto ∈ F ,

- afrom, ato ∈ A,

then Cons is satisfied iff:

{

card(ffrom)

val(afrom)
∈ cfrom ⇒

{

card(fto)

val(ato)
∈ cto

Comparison Operation.

Constraints based on a comparison operation are used to maintain a relationship between
the values of two constrainable elements. This operation is only used as the action of the
CardEx constraint, where the condition is usually a constrainable element. We propose to
write such an operation:

n constrainableElement (4.3)

61

Chapter 4. Cardinality and Attribute-based Feature Models

with n ∈ N.

To be satisfied, such constraints must hold whatever the value of the condition, where
the constrainable element must be n times greater than the condition value. For instance, this
operation is extensively used in the PaaSage project [Paa13], where constraints require this
operation, e.g., the cloud environment must provide at least as much memory as the applica-
tion to be deployed requires, or there must be twice more CPU power than memory space in
the cloud configuration. Regarding the second example and considering the notation (4.3),
the related constraint would be written

C3 : Cloud.RAM → 2 Cloud.CPU

In a more general way, considering a constraint Cons expressed

{

ffrom

afrom
→ n

{

fto

ato

with

- ffrom, fto ∈ F ,

- afrom, ato ∈ A,

then Cons is satisfied iff:

{

card(fto)

val(ato)
≥ n×

{

card(ffrom)

val(afrom)

Functional Operation.

Constraints based on a functional operation are used to compute a given amount of required
constrainable elements. As well as a comparison operation, this operation is only used as the
action of the CardEx constraint, where the condition is a constrainable element. We propose
to write such an operation:

+n constrainableElement (4.4)

with n ∈ N.

To illustrate this notation, let us consider an example taken from the Jelastic cloud en-
vironment. Jelastic provides the GlassFish open source application server to host Java EE
applications, as depicted in Figure 4.4. Since GlassFish is an heavy application server, it re-
quires 5 cloudlets to work properly [Gla]. Therefore, there must be (at least) 5 more cloudlets
in the configuration than the number of running instances of GlassFish. Moreover, each
database instance requires 1 more cloudlet in the configuration. Intuitively, and relying on

62

4.3. Variability Modeling with CardEx Feature Models

the notation (4.3), such constraints would be written GlassFish → 5 Cloudlet and e.g., MySQL

5.5 → 1 Cloudlet. However, these constraints would be semantically wrong. Let us take an
example based on the constraint GlassFish → 5 Cloudlet. If 5 cloudlets are part of the config-
uration, then this constraint is satisfied. But what if 2 instances of GlassFish are running?
Then 10 cloudlets are required, which is not expressed by the constraint.

There is thus a notion of scope to express the constraint. Does the constraint have to
hold for each feature instance or for the feature itself only? Is the scope local or global respec-
tively? The notion of scope we consider here differs from the one described by Michel et

al. [MCHB11], that was dealing with the semantics of feature cardinalities according to the
way feature models are modeled. The scope was either Clone or Feature, and used in the pres-
ence of feature cardinality to define if the instances of features should be counted rather than
the features that were instantiated. To define the scope in our CardEx constraints, we rely on
the local attribute of the Operation meta-class. In the previous example involving Glass-
Fish, this attribute would be set to true, meaning that for each running GlassFish instance,
there must be 5 more cloudlets. To take into consideration the scope in our CardEx construct,
we propose to use the apostrophe punctuation mark ’ in the notation when the scope is lo-
cal, that is, when the constraint must hold for each feature instance. The constraint discussed
above would then be written

C4 : GlassF ish′ → +5 Cloudlet

At this point, the reader may wonder what is the difference between a constraint based
on a comparison operation and a functional operation. We consider functional constraints as
local constraints, that is, constraints which are local to the targeted constrainable element, e.g.,
Cloudlet. Local constraints must be computed before being considered as global constraints,
which are used to reason on the feature model configurations. Let us illustrate the difference
using a generic feature model as example, i.e., the FM feature model depicted by Figure 4.5.

FM

B CA

[0..2] [0..2] [0..15]

Figure 4.5: A feature model

Now, consider the following configuration of the FM feature model conf : 2 instances of

A and 2 instances of B, with two constraints Ex1 and Ex2 expressed either as comparison or
functional constraints. The resulting amount of instances of C regarding the used constraints
is given by Table 4.1.

Regarding comparison constraints, 6 instances of C are required for the configuration
to be valid, since it is enough for Ex1 and Ex2 to be satisfied. When using functional con-

63

Chapter 4. Cardinality and Attribute-based Feature Models

Ex1 : A → 2C Ex1 : A
′ → +2C

Ex2 : B → 3C Ex2 : B
′ → +3C

Amount of C w.r.t. A 4 4

Amount of C w.r.t. B 6 6

Required amount of C ≥ 6 ≥ 10

Table 4.1: Difference between comparison and functional constraints

straints, 10 instances are required, which is the sum of all constraints. That is why such
constraints must be computed independently before being translated as global constraints.
For instance, constraints Ex1 and Ex2 computed as a global constraint when considering
conf and functional constraints give Ex1+2: 2A∧ 2B → C ≥ 10. These constraints are based
on the assumption that the targeted constrainable element is not directly configurable. In
such a situation, the configuration space can be seen as two configuration perspectives, the
user perspective and the system perspective. The user can configure elements she/he has
access to, while elements from the system perspective and their values are deducted from
the user configuration, e.g., the configuration total price or the related resource amount.

4.4 Reasoning on CardEx Feature Models

Manually analyzing feature models is a tedious and error-prone task, quite infeasible to do
with large-scale feature models. Thus, automating the analysis of feature models has become
an important and active area of research for both practitioners and researchers in the soft-
ware product line community [Ach11]. The automated analysis of feature models is about
extracting information from feature models using automated mechanisms and has been sub-
ject to an exhaustive literature review [BSRC10]. Among proposed analysis operations, some
of them are extensively used e.g., "is a feature model void" (i.e., it represents no product), "is a

product valid", "list all products" or "give the number of products".

To support such operations, several kinds of automated support have been proposed
and can be classified regarding if they are based on:

- Propositional Logic. Feature models are mapped to a propositional formula, which is a
set of primitive symbols or variables and a set of logical connectives constraining the
values of the variables, e.g., ∧,∨ or ⇒. The formula is then given as input to an off-
the-shelf SAT or Binary Decision Diagram (BDD) solver. The first connection between
feature models and propositional formula was established in [Man02]. Then, Batory
et al. were the first to use a SAT solver to reason on feature models [Bat05], while

64

4.4. Reasoning on CardEx Feature Models

Benavides et al. proposed a multi-solver approach selecting either a BDD or SAT solver
regarding the kind of operation to be performed [BSTC07].

- Constraint Programming. A Constraint Satisfaction Problem (CSP) consists of a set of vari-
ables, a set of finite domains for those variables and a set of constraints restricting the
values of the variables. Constraint programming can be defined as the set of techniques
such as algorithms or heuristics that deal with CSPs. A CSP is solved by finding states
(values for variables) in which all constraints are satisfied. In contrast to propositional
formulas, CSP solvers can deal not only with binary values (true or false) but also with
numerical values such as integers or intervals [BSRC10].

- Description Logic. As explained in [BCM+03], description logics are a family of knowl-
edge representation languages enabling the reasoning within knowledge domains by
using specific logic reasoners. A problem described in terms of description logic is
usually composed by a set of concepts (i.e., classes), a set of roles (e.g., properties or
relationships) and a set of individuals (i.e., instances) [BSRC10]. A description logic
reasoner takes as input a problem described in description logic and provides facilities
for consistency and correctness checking and other reasoning operations, e.g., based on
OWL-DL [WLS+05].

- Other approaches which are not part of one of the previous groups, proposing ad-hoc
solutions, algorithms or paradigms [BSRC10].

In our approach, we rely on CSP to reason on CardEx feature models, as we need nu-
meric values, for both attributes and cardinalities. The translation from feature models to
CSP is well-known [BTC05, BSTRC06, MSDLM11], but must be extended to support the
constraints previously defined. Table 4.2 lists the rules for mapping a CardEx feature model
into a CSP. The table describes the different relations between features, their feature model
notation and the related CSP constraint. Thus, features depicted in the central column are
defined as CSP variables in the right column. Note that since constraints based on functional
operations are then translated to a global constraint, there is not an unique way of writing
such constraints, as it depends on their original formula. The constraint described in the last
row of the table thus relies on the example of constraint Ex1+2: 2A ∧ 2B → C ≥ 10.

Regarding features, each one is translated into a variable of the CSP while cardinalities
define the domain of these variables. Mandatory and optional features are given the {0, 1}

domain. Why is the domain of mandatory not set to {1, 1}? Because in that case, the related
feature would be part of every configuration, which may be wrong, e.g., if its parent feature
is an optional feature not selected. The constraint defined in the first row of Table 4.2 thus
forces a mandatory feature to be selected whenever its parent feature is selected. In the same
way, features whose cardinality is {m,n} are given the {0, n} domain, while the constraint
described in the third row of Table 4.2 forces the value of the variable to be at least equal to
m whenever its selected.

65

Chapter 4. Cardinality and Attribute-based Feature Models

Relation
Feature model

notation
Constraint

Mandatory

A

B

B = A

Optional

A

B

ifThen(A = 0;B = 0;)

Feature
Cardinality

A

B

[m..n] ifThenElse(A = 0;B = 0;B ∈ {m,n})

Or-group

A

CB

ifThenElse(A > 0; sum(B,C) ≥ 1; sum(B,C) = 0;)

Alternative-
group

A

CB

ifThenElse(A > 0; sum(B,C) = 1; sum(B,C) = 0;)

Group
cardinality

A

CB

<m..n>
ifThenElse(A > 0; sum(B,C) ∈

{m,n}; sum(B,C) = 0;)

Implies A → B ifThen(A > 0;B > 0;)

Excludes A → ¬B ifThen(A > 0;B = 0;)

Value [i, j]A → [m,n]B ifThen(A ∈ {i, j};B ∈ {m,n};)

Comparison A → nB ifThen(A > 0;B ≥ n×A;)

Functional mA ∧ nB → C ≥ k ifThen(and(A = m,B = n);C ≥ k;)

Table 4.2: Feature model notations and related constraints

66

4.5. Challenges Revisited and Discussion

4.5 Challenges Revisited and Discussion

We have presented our approach for feature models extended with attributes and cardi-
nalities and described how they can be mapped to CSP for automated reasoning on their
configurations. Let us now revisit the challenges identified in Section 4.2 and discuss how
our approach face them.

1. Extend the concept of constraint. To face this challenge, we extend the existing concept
of Boolean constraints, i.e., implies and excludes, where a condition e.g., the selection of
a feature, implies an action, e.g., the selection of another feature. The extensions we
provide for expressing constraints allow us to define several constructs regarding fea-
tures and/or attributes values, e.g., n instances of a feature implies an attribute value
to be greater than m.

2. Use a language independent syntax. To face this challenge, we provide an abstract
syntax to define CardEx feature models. We rely on existing concepts one can find in
the literature to describe feature models, gathered in the InitMM metamodel. Thus,
our approach is not a new formalism in the feature modeling community, but an ex-
tension of existing approaches.

3. Reason about CardEx feature model configurations. To face this challenge, we de-
scribe how operations on CardEx feature models can be performed in an automated
way. Our approach is based on constraint programming, where CardEx feature mod-
els are translated into CSP. Once again, we extend the existing translation proposals to
handle constraints based on attributes and cardinalities.

On the expressiveness of CardEx feature models.

Even though the need for constraints with cardinalities and attributes has already been
discussed [MCHB11], there is no consensus on the constructs required to express such
constraints. Thus, one question that may naturally arise is: is our approach expressive
enough regarding CardEx constraints? In this chapter, we proposed means to express
constraints for both feature cardinality and attributes, where their value can be constrained
to be in a given range, greater, lower and/or equal to a given value, or compared with
another value. Although we do not pretend our approach to be exhaustive, we can fairly
argue that this is enough to support CardEx feature models definition in most cases. For
instance, cloud computing environments variability can be entirely handled using our
approach.

On extending the existing InitMM metamodel.

Another question that may arise while reading this chapter is: since the proposed extensions
are dedicated to constraint expressions, why not using the Object Constraint Language (OCL)
instead? There are several reasons for that. First, OCL is not dedicated to define constraints

67

Chapter 4. Cardinality and Attribute-based Feature Models

in feature models as it is a general-purpose constraint language. Thus, writing constraints is
not intuitive when feature modeling, and complex expressions are hard to write and main-
tain [KC12]. Second, the use of OCL is not popular in the feature modeling community. A
significant amount of approaches dealing with feature models rely on an automated tool
support based on approaches classified in Section 4.4. Using OCL would then be risky as
our approach may not be used by the community. Moreover, using OCL introduces short-
comings mainly related to its scalability [KC12], while off-the-shelf solvers are well-known
to reason on feature models with thousands on features in a few seconds [TBK09]. Finally, in
a more general way, the question could be: why extending the existing constraint support in-
stead of reducing OCL? Reducing OCL to fit our needs would be a difficult task, since equiv-
alent to build a Domain Specific Language (DSL) for constraints in CardEx feature models, that
is, much more effort than extending existing constraint support. Moreover, that would be
implementing another OCL-based tool, among the plethora of existing ones [CODA+11].

4.6 Summary

This chapter presented our abstract syntax to define feature models extended with attributes
and cardinalities, in particular when they are involved in constraints. We have illustrated
our approach with examples from cloud environments variability and described the related
semantics of those constraints. New constraint constructs extend the existing formalism,
where a given condition, if satisfied, implies a specific action. Relying on these extensions,
one can define constraints on feature and attribute values. We also described the related
translation into CSP, thus providing means to use it to reason in an automated way on
CardEx feature models.

In the next chapter of this dissertation, we present our approach for detecting inconsis-
tencies that may arise when evolving cardinality-based feature models, as defined cardinal-
ities may not represent the concrete set of products.

68

Chapter 5

Evolution and Consistency Checking of
Cardinality-based Feature Models

Contents

5.1 Introduction . 69

5.2 Motivation and Challenges . 70

5.2.1 Motivating Example . 71

5.2.2 Challenges . 72

5.3 Edits to Cardinality-Based Feature Models 73

5.4 Cardinality-based Feature Model Consistency 78

5.4.1 Different Forms of Consistency 78

5.4.2 From Global Range to Local Range Inconsistency 80

5.5 Implementing Local Range Consistency 83

5.6 Improving the Encoding . 86

5.7 Challenges Revisited . 88

5.8 Summary . 89

5.1 Introduction

According to Kent Beck, change is unpredictable, and software evolution seems to be in-
evitable [BB10]. Many factors can explain why software evolve [Leh80]. For instance, soft-
ware are maintained over time, e.g., financial systems used by bank companies. Maintaining
software systems means making them evolve, e.g., to meet new user or domain requirements
or to adapt to a new hardware or related software, e.g., to a library the software is depen-
dent of. As any other software systems, software product lines are subject to changes and

69

Chapter 5. Evolution and Consistency Checking of Cardinality-based Feature Models

evolution along their lifecycle [GWTB12]. Moreover, the cost of variability management in
software product lines is meant to be offset by the savings in deployment of product variants
over time [LSB+10], and since software product lines are a long-term investment, they need
to evolve to meet new requirements over many years [BP14].

As a consequence, variability models of software product lines, and feature models in
particular, are subject to evolution as well. While evolving feature models can be seen as a
common task, e.g., edits like adding or removing a feature, more complex evolutions may be
required, e.g., merging the existing feature model with another one or splitting it into several
part [Ach11]. Moreover, incremental changes can be applied to feature models, making it
difficult to check the correctness of the whole evolution process. Thus, the consistency of
feature models may be compromised during the evolution.

As described in Chapter 3, several research works provide an automated support or
describe an approach to reason about edits to feature models and their impact [TBK09,
GWTB12, PDv12], or propose a catalog of evolution patterns for variability models [LSB+10,
PCW12] and their related artifacts [GWTB12, SHA12, PGT+13]. However, these approaches
are dedicated to Boolean feature models. Thus, support to reason on edits to cardinality-
based feature models is still missing. In practice, feature model configuration can be a com-
plex task due to their size and complexity [RGD10]. It is hence strongly desirable to avoid ad-
ditional complexity or extra effort (e.g., manually analyzing why a certain cardinality value
cannot be selected) caused by an inconsistent feature model. This chapter addresses this
need. We discuss feature models edits during evolution with respect to feature cardinali-
ties and present a formal approach to detect and explain inconsistencies in cardinality-based
feature models, that is, with cardinality for both features and constraints, as described in
Chapter 4.

The chapter is structured as follows: Section 5.2 describes a motivating example high-
lighting the need for consistency checking cardinality-based feature models when evolving
them and discusses the related challenges. Section 5.3 presents atomic edits that can be
performed when evolving cardinality-based feature models, and how they may lead to in-
consistencies. Section 5.4 explains the different kinds of cardinality consistencies, gives their
definition and explain how they are related each other. In Section 5.5, an automated support
for checking the consistency of cardinality-based feature models and giving explanations -
when required - to its designer is presented. Section 5.6 describes an improved version of this
support to provide more user-friendly feedback for the detections and explanations. Finally,
Section 5.7 discusses several concerns regarding our approach while Section 5.8 concludes
the chapter.

5.2 Motivation and Challenges

This section illustrates the problems that might arise when evolving cardinality-based fea-
ture models with a motivating example involving on the Jelastic feature model. Based on

70

5.2. Motivation and Challenges

this example, we then discuss challenges related to evolving cardinality-based feature mod-
els and reasoning on their consistency.

5.2.1 Motivating Example

In August 2011, Jelastic announced the full support for the GlassFish application server as
new functionality for their cloud platform. Initially, Jelastic already provided support for
Jetty, the Java open source application server. Figure 5.1 depicts this situation on an extract
of the Jelastic feature model.

Application
Server

Jelastic

[0..4]

Cloudlet

[0..16]

C
1
:$Je'y'$⟶1Cloudlet

Jetty

Application
Server

Jelastic

[0..4]

Cloudlet

[0..16]

C
1
:$Je'y'$⟶1Cloudlet

C
2
:$GlassFish'$⟶5Cloudlet

JettyGlassFish

+

+

optional

mandatory

alternative

or

Legend

[1..4]
feature
cardinality

...

features which are
part of the same
feature model

but not necessarily
of the same subtree

+

-

added
element

removed
element

x
updated
element

<1..4>
group
cardinality

[1..1]

[0..1]

[1..1]

Figure 5.1: Evolution Example

The left-hand side shows an initial version that supports only Jetty as application server.
The right-hand side shows the feature model after the evolution where GlassFish has been
added as an alternative application server. While Jetty is a lightweight application server,
GlassFish is an heavier one and, as described on its related Jelastic documentation web page,
“more functions = more resources”. Thus, the GlassFish feature comes together with the con-
straint C2, as GlassFish requires 5 Cloudlets to work properly [Gla]. Elements added during
the evolution are depicted with the "+" symbol, removed ones with a "−" and updated ones
with a "×". As features may not be part of the same subtree, we indicate this situation using
the three dots symbol as the common parent. In the remainder of this chapter, we will rely
on this notation to depict cardinality-based feature model evolution scenarios. In particular,

71

Chapter 5. Evolution and Consistency Checking of Cardinality-based Feature Models

as the focus of the chapter is on cardinalities, the FODA notation for mandatory and optional
features is replaced by the [1..1] and [0..1] cardinality respectively.

However, although the depicted evolution scenario remains quite basic, this change
makes the feature model range inconsistent: according to the ApplicationServer feature
cardinality, there can be up to 4 application server instances in a given configuration. Nev-
ertheless, configuring 4 GlassFish instances means that 20 Cloudlet instances are required,
which is not allowed by the Cloudlet feature cardinality. This example demonstrates that
manually evolving a small cardinality-based feature model is error-prone. Thus, handling
feature models with hundreds or thousands of features requires specific tooling.

A feature cardinality is considered as range-inconsistent if no product exists for some
values of its range. This definition is analogous to the concept of wrong cardinality defined
for group cardinalities in the existing literature [TR09, BSRC10]. Thus, the feature model may
be well-formed (syntactic consistency) and defining at least one valid product (semantic con-

sistency), but inconsistent regarding defined cardinalities. In the remainder of this chapter,
we discuss cardinality-based feature models edits and the resulting range inconsistencies of
feature cardinalities and introduce a formal approach to support detection and explanation
of range inconsistencies in such feature models.

5.2.2 Challenges

The example previously discussed highlights the need for detecting inconsistencies when
evolving cardinality-based feature models. Our goal is thus to provide such a capability, and
help the user finding the reason why those inconsistencies arise. To achieve these objectives,
we identify the following challenges that have to be faced:

1. Detect cardinality inconsistencies. The cardinality-based feature model may be well-
formed, but the expected number of feature instances one may be able to configure
regarding the defined cardinalities, and therefore the number of products, may be dif-
ferent from the real one. The first challenge is therefore to detect such inconsistencies,
thus improving the correctness of the feature model.

2. Explain the inconsistencies. Detecting inconsistencies is good, understanding why
such inconsistencies arise is better, as they may be caused by different factors. The sec-
ond challenge is thus to provide some feedback and explanations to the feature model
designer for her to modify the feature model design and fix the related inconsistencies.

2. Provide an automated support. Detecting inconsistencies and getting explanations
about them can be a tedious process when handling large feature models. The third
challenge is thus to provide an automated support to reason on cardinality-based fea-
ture models consistency, as well as an effective explanation engine.

72

5.3. Edits to Cardinality-Based Feature Models

5.3 Edits to Cardinality-Based Feature Models

This section investigates edits to cardinality-based feature models with respect to consis-
tency of the defined cardinalities. By edits, we consider atomic model edits, i.e., to add,
remove or update a model element, where updating a model element means changing one of
its properties. Figure 5.2 depicts the cardinality-based feature model, which is actually the
same than the CardEx metamodel depicted by Figure 4.3 in Chapter 4, without feature at-
tributes. Note that for the sake of simplicity, constructs described about CardEx constraints
described in Chapter 4 have been removed from the figure, but are still considered.

min: Int
max: Int

Cardinality

1

Constraint

Ffrom

Fto

Implies Excludes

Group
Cardinality

Feature
Cardinality

1

1

CardEx

Constraint

FeatureModel

Alternative

Feature

name: String

variants

Exclusive

0..*

subFeatures

Boolean

Constraint

root

1

0..*

Legend

Constraint
Model elements
subjects to
atomic edits

Figure 5.2: Cardinality-based feature model

Thus, relevant model elements concerned by atomic edits, highlighted in blue in
Figure 5.2, are features, cardinality and cross-tree constraints, while relevant properties
are feature name, cardinality min and max bounds, and location in the feature model (i.e.,
the reference to the parent feature). By means of inheritance relationships, all types of
features, cardinality and constraints are thus concerned by those edits as well. This results
in nine atomic cardinality-based feature model edits discussed in this chapter and listed in
Table 5.1. An exclamation mark (!) indicates if the considered edit can lead to inconsistent

73

Chapter 5. Evolution and Consistency Checking of Cardinality-based Feature Models

feature cardinalities while a dash (–) is used otherwise. In practice, knowing which edits do
not lead to inconsistent feature cardinalities is useful because it provides the possibility to
save effort by not checking the feature model consistency after one of those edits has been
performed. The table also describes if an edit is not applicable (n.a.) for the given model
element.

Add Remove Update Move

Feature – – – !

Feature Cardinality n.a. n.a. ! n.a.

Group Cardinality n.a. n.a. ! n.a.

Constraint ! – ! n.a.

Table 5.1: Atomic edits

There are thus five of the nine atomic edits that can lead to inconsistent feature cardi-
nalities. However, more complex edits can be composed from atomic edits (e.g., inserting

a feature into the feature tree hierarchy consists of adding a feature and moving a sub-tree
to become its child) and can result in inconsistencies if any of the involved atomic opera-
tors lead to inconsistencies. Note that range inconsistencies are always detected on feature
cardinalities. If a change on a group cardinality leads to a range inconsistency for a feature
cardinality, we consider that we have to fix the feature cardinality, not the group one. Most of
the scenarios described here arose during our work regarding cloud environment variability
modeling. However, we believe these scenarios may occur in any other domain involving
cardinality-based feature modeling, and we therefore depict them in a general way, relying
on the notation described in Section 5.2.

Add Feature. The atomic edit add means adding a new feature as a leaf node to the
model, since inserting a feature as non-leaf node requires to move an existing sub-tree to
become its child. Adding a feature does not lead to inconsistent feature cardinalities as it
does neither influence any existing cardinalities nor any existing constraints.

Remove Feature. The atomic edit remove operation means to delete a feature and its
children from the model. While this can lead to inconsistencies in general, such as dangling
references in cross-tree constraints (in such a case, the involved constraint must be removed
before removing the feature), it does not lead to inconsistent feature cardinalities for the
same reasons as the add edit.

Update Feature Name. Updating the name of a feature does not lead to inconsistent
feature cardinalities.

74

5.3. Edits to Cardinality-Based Feature Models

Move Feature. Moving features can occur during refactoring a model, when inserting
new features (as non-leaf nodes), or removing non-leaf features. It can lead to inconsistent
feature cardinalities if there are hierarchies of cardinalities.

A B

...
[0..2]

A C

...
[0..3]

!B'!⟶!2A

B

[0..2]

[0..4] [0..4]

!B'!⟶!2A

+

Figure 5.3: Moving a feature

Figure 5.3 depicts an example where feature B is moved in the feature model to become
a child of feature C (e.g., as part of inserting a new feature C). An inconsistency can arise
from the combined cardinalities of C and B. We rely on the local notion of feature instances
already chosen by other authors [CHE05a, MCHB11], that is, each instance of C provides up
to two instances of B. As there can be up to three instances of C, there can be altogether up
to six instances of B. The cross-tree constraint specifies that each instance of B requires two
instances of A, i.e., up to 12 instances of A. But the feature cardinality of A allows only up to
four instances which constitutes an inconsistency.

Update Feature Cardinality. Each feature is given a cardinality, even mandatory and
optional features, which are represented as cardinality [1..1] and [0..1] respectively. Thus,
a cardinality cannot be removed, added nor moved as summarized in Table 5.1, but only
updated. Such an update is performed on the lower and/or upper bound of the cardinality
and can result in inconsistent feature cardinalities. Updating a feature cardinality occurs, for
instance, when a cloud provider changes its service offer, e.g., one can now run more than
two database instances.

Figure 5.4 shows two examples for this scenario where the cardinality of feature A is up-
dated. In Figure 5.4a, A is an optional feature and is evolved to become a mandatory feature.
The cross-tree constraint specifies that if A is selected there must be at least 4 instances of B.
When A becomes mandatory there can never be less than four instances of B which is incon-
sistent with the feature cardinality of B. In Figure 5.4b, the upper bound changes from 2 to
3, but since the lower bound of the new cardinality is still 0, feature A remains an optional
feature after this edit. The cross-tree constraint specifies that each instance of A requires 2
instances of B. As the upper bound of B is still 4, it is not possible to configure 3 instances of
A which constitutes an inconsistency.

Update Group Cardinality. A group cardinality may change when the system specifi-
cations evolve. For instance, the cloud environment might now support additional frame-

75

Chapter 5. Evolution and Consistency Checking of Cardinality-based Feature Models

A B

...

A B

...
[0..8] [0..8]

A"⟶"[4,*]"BA"⟶"[4,*]"B

*
[0..1] [1..1]

(a) Optional to mandatory

A B

...
[0..4]

A B

...
[0..4]

!A'!⟶!2B

[0..2] [0..3]

!A'!⟶!2B

*

(b) Arbitrary cardinality

Figure 5.4: Updating feature cardinality

works to be used in the same configuration. Updating a group cardinality can lead to incon-
sistent feature cardinalities.

A

B D

E

...
[0..3]

A

B D

E

...
[0..3]

B"⟶"1E

C"⟶"2E

CC

<1..3> <2..3>*

B"⟶"1E

C"⟶"2E

[1..1] [1..1]

Figure 5.5: Updating a group cardinality

In the scenario depicted by Figure 5.5, one must now select at least two child features
when A is configured, instead of one before the evolution. The constraints define the number
of E instances to be configured when selecting B or C. After the evolution, either B or C must
be selected (or both of them in the same configuration), which then requires at least one
instance of E. However, this is inconsistent with the feature cardinality of E, which is an
optional feature that thus does not have to be part of all configurations.

Add Cross-Tree Constraint. Adding a cross-tree constraint occurs, e.g., when a con-
straint is not part of the initial specification, but is added later based on experience with the
system. It may also be added together with a new feature, e.g., as depicted in Figure 5.1.
Both, cardinality-based constraints and purely Boolean constraints can lead to inconsistent
feature cardinalities.

76

5.3. Edits to Cardinality-Based Feature Models

A B

...

A B

...
[0..8] [0..8]

A"⟶"[4,*]"B+

[1..1] [1..1]

Figure 5.6: Adding a constraint

In the example depicted by Figure 5.6, a new constraint is added to specify that feature
A requires at least four instances of B. As A is a mandatory feature there can never be less
than four instances of B which is inconsistent with the feature cardinality of B.

Remove Cross-Tree Constraint. Removing a cross-tree constraint occurs when the con-
straint is not necessary anymore and cannot result in inconsistent feature cardinalities. Given
that the model is consistent before the evolution (i.e., a feature is part of at least one prod-
uct for each of its cardinality value), an inconsistency can only arise if (i) at least one of the
products is removed from the set of valid products or (ii) a new cardinality value is added
to the set of cardinality values. However, removing a constraint can never restrict the set of
products nor extend the cardinality values set.

Update Cross-Tree Constraint. Updating a cross-tree constraint occurs, e.g., when an
existing cloud service now provides less CPU power, thus requiring more instances to fit the
same requirements than before. It can lead to inconsistent feature cardinalities in the same
way as adding cross-tree constraints. Figure 5.7 shows an example where the cardinality

A B

...
[0..3]

A"⟶"[1,*]"B

A B

...
[0..3]

A"⟶"[4,*]"B*

[0..1][0..1]

Figure 5.7: Updating a Constraint

range evolves. In this scenario, this edit leads to an inconsistency if A is selected, since
feature A requires at least four instances of B, which is not possible.

This section has shown that among all atomic edits, five out of nine can result in incon-
sistent feature cardinalities (see Table 5.1). Since more complex edits can be composed from
these atomic edits, there is a high probability to get an inconsistent cardinality-based feature
model when evolving it manually. In the following section, we present a formal approach to
check the consistency of cardinality-based feature models.

77

Chapter 5. Evolution and Consistency Checking of Cardinality-based Feature Models

5.4 Cardinality-based Feature Model Consistency

In the previous section, we described how edits on cardinality-based feature models can lead
to inconsistent cardinalities. Some of those inconsistencies may seem obvious, e.g., the one
in the add cross-tree constraint scenario depicted by Figure 5.6. However, the reader should
keep in mind that features involved in these scenarios may be located in different subtrees
of the feature model, with tens of features and constraints in the feature model, or even
more, making those inconsistencies difficult to detect. In this section, we thus present a
formal approach to detect cardinality inconsistencies, based on a definition of consistency
for cardinality-based feature models.

5.4.1 Different Forms of Consistency

To define consistency for cardinality-based feature models, we specify two closely related
types of inconsistencies over feature cardinalities:

- Local range inconsistency. There is a local range inconsistency in the feature model
when there exists no product for one or several values defined by a cardinality range.

- Global range inconsistency. There is a global range inconsistency in the feature model
when a range inconsistency arises after taking into account the hierarchies of ranges.

A B

...
[0..8]

A"⟶"[4,*]"B

[1..1]

(a) Local range inconsistency

A C

...
[0..3]

B

[0..2]

[0..4]

!B'!⟶!2A

(b) Global range inconsistency

Figure 5.8: Cardinality Inconsistencies

Examples for local and global inconsistencies can be found in Figure 5.4a and Figure 5.3
after evolution has occurred, depicted here in Figure 5.8 again for convenience. Figure 5.8a
shows a local range inconsistency: as feature A is mandatory and due to the constraint, there
must always be at least 4 instances of B while the feature cardinality of B specifies a lower
bound of 0. This inconsistency occurs without having to take the cardinalities of parent
feature into account. Figure 5.8b shows a global range inconsistency: it only occurs due to
the hierarchy of cardinalities. As there is up to 3 instances of C with up to 2 instances of B
for each instance of C, there can be altogether up to 6 instances of B. Due to the cross-tree

78

5.4. Cardinality-based Feature Model Consistency

constraint this can require, in turn, up to 12 instances of A which conflicts with the feature
cardinality of A. This inconsistency occurs only when taking the hierarchies of feature
cardinalities (here C and B) into account.

Thus, considering a cardinality-based feature model M = (F ,ϕ, ω), with:

- F the non-empty set of features of M;

- ϕ the set of constraints of M;

- ω : F → N × N indicates the cardinality of each feature. It will be denoted as a range
ω(f) = [m,n];

In our context, a product may contain several instances of the same feature. It can either
be represented as a multiset of feature names or as a set of pairs (feature name, number of

instances). We only require to retrieve the number of instances of a given feature for a given
product. We denote P the set of all M products and |f |p the number of instances of the
feature f in product p.

Definition 1. LOCAL FEATURE MODEL RANGE CONSISTENCY

A cardinality-based feature model M is locally range consistent if and only if, for each
feature, there exists a product for each value defined in the feature cardinality containing
exactly that number of instances of the feature. More formally, it can be defined as follows:

∀f ∈ F , ∀i ∈ ω(f), ∃{p ∈ P | f ∈ p ∧ |f |p = i}

Thus, the feature model depicted in Figure 5.8a is not locally range consistent, since
there are values in ω(B) that are never used, i.e., {0, 1, 2, 3}. Regarding the feature model
depicted in Figure 5.8b, as explained above, one cannot configure more than two instances
of B. However, this feature model is still local consistent, that is, there is a valid product for
each cardinality value of B and C. Indeed, if there is no B configured, then C can take any
cardinality value and if the cardinality of C is set to 1, then B can take any cardinality value
as well. Relying on the local consistency property of a feature model to detect all cardinality
inconsistencies is thus not enough, as it does not take into account the number of feature
instances that can be configured regarding the parent feature cardinality. We thus extend the
Definition 1 to deal with this issue.

79

Chapter 5. Evolution and Consistency Checking of Cardinality-based Feature Models

Definition 2. GLOBAL FEATURE MODEL RANGE CONSISTENCY

A cardinality-based feature model M is globally range consistent if and only if, for each
feature, there exists a product for each value defined in the feature cardinality containing ex-
actly that number of instances of the feature associated to each instance of the parent feature.
More formally, it can be defined as follows:

∀f ∈ F \ {root}, g = parent(f), ∀j ∈ Ω(g),

∀(x1, ..., xj) ∈ ω(f)× ...× ω(f),

∃{p ∈ P | |g|p = j ∧
∧j

i=1
|fi|p = xi}

where parent(f) is a function that indicates the parent feature of the f feature, root is the
root feature of M, Ω(g) denotes the range of occurrences of g in the product, and fi denotes
the instances of f associated to the ith instance of g. Note that the root feature is considered
as globally range consistent since it only has one occurrence and no parent. Note also that to
break symmetries, it is sufficient to consider the cases where x1 ≥ x2 ≥ . . . ≥ xj .

We thus define a cardinality-based feature model as a range complete feature model if no
local or global range inconsistency is detected.

Definition 3. RANGE COMPLETENESS

A cardinality-based feature model is range complete if it is both globally range consistent
and locally range consistent.

Yet, it is interesting to note that the notion of range completeness in feature model (Def-
inition 3) is very close to the notion of Global Inverse Consistency in the area of constraint
satisfaction problems, as recently proposed by Bessiere et al. [BFL13]. A constraint satisfac-
tion problem is global inverse consistent iff for every value in the domains of its variables,
there exists a solution of the constraint satisfaction problem with such value. A value in a
domain for which there is no solution is called non-global inverse consistent. Thus, detect-
ing a local range inconsistency in a feature model is equivalent to detecting that there exists
a non-global inverse consistent value in the constraint satisfaction problem representing the
feature model. The benefit of relating our approach to the one on global inverse consistency
is that it enables the reuse of the tools to maintain global inverse consistency in constraint
satisfaction problems, to detect such inconsistencies in cardinality-based feature models.

5.4.2 From Global Range to Local Range Inconsistency

There exists a relationship between local range and global range consistencies. The latter
can be expressed using the former on a normalized feature model M′, in which feature
cardinalities define the number of instances of that feature in the product, thus taking into

80

5.4. Cardinality-based Feature Model Consistency

account the cardinality of the parent feature. We translate a cardinality-based feature model
M into the normalized cardinality-based feature model M′, such as in M′, the set of features
remains the same than in M, but feature cardinality ranges are updated to describe the
number of feature instances. Such a translation T is written

T : M = (F , ω,ϕ) → M′ = (F , ω′,ϕ)

with:

ω′(f) = ω(f) iff (parent(f) = ∅)

= ω(f)× ω′(parent(f))

ω′(f) computes exactly Ω(f). If a feature has no parent, then ω(f) corresponds to
the range of occurrences of f in the product. If a feature has a parent, then the range of
occurrences of f in the product depends on the number of instances of that parent (we
multiply the ranges together).

For instance, regarding Figure 5.9, the idea is to replace the initial range [0..2] of B feature
cardinality in M with [0..6] in M′, where 0 = 0 ∗ 0 and 6 = 2 ∗ 3. Checking the local range
consistency of M′ is, hence, performed regarding the range of feature instances ([0..6] is
not the real cardinality of B but a range defining how many instances of B can be configured).

A C

...
[0..3]

B

[0..2]

[0..4]

!B'!⟶!2A

A C

...
[0..3]

B

[0..6]

[0..4]

!B'!⟶!2A

!

" "'

Figure 5.9: Updating a Constraint

In this example, the feature model M′ is not locally consistent because there exists no
product with more than two instances of B. We can show that checking global consistency
in M is equivalent to checking local consistency in M′. The relationship between the global
range consistency and the local range one can thus be summarized as follows:

Property 1. CONSISTENCIES RELATIONSHIP

Checking the global range consistency of a feature model M is equivalent to checking the local range

consistency of T (M).

81

Chapter 5. Evolution and Consistency Checking of Cardinality-based Feature Models

Note that this result does not hold in general (i.e., for any model), but holds in feature
modeling where feature order is not considered. Let us consider the example depicted in
Figure 5.10.

g

[1..4]

f

[1..4]

root

[1..1]

|f|p = 6 :

<4,2>

<3,3>

<4,2,0>

<4,1,1>

<3,3,0>

<3,2,1>

<2,2,2>

<4,2,0,0>

<4,1,1,0>

<3,3,0,0>

<3,2,1,0>

<2,2,2,0>

<2,2,1,1>

Figure 5.10

As you can notice from the figure, there are 13 different ways to get 6 instances of feature
f . For example, 2 instances of g with 4 instances of f for the first instance of g and 2 instances
of f for the second one. Global range consistency ensures that all those 13 configurations are
possible while local range consistency only guarantees that at least one configuration for a
given number of instances of g is possible. For instance, suppose that configuration <4,1,1>
is not possible. In that case, the feature model would not be globally range consistent but
locally range consistent. Such case cannot happen in our context since the cardinality-based
constraints only focus on the number of instances of each feature, not on their precise loca-
tion in the product.

Proof. We first prove that if M is globally range consistent then T (M) is locally range con-
sistent (defined for the sake of simplicity as GRC(M) ⇒ LRC(T (M))). Then, we prove that
if T (M) is locally range consistent, then M is globally range consistent, i.e., LRC(T (M) ⇒

GRC(M).

� GRC(M) ⇒ LRC(T (M)), ad absurdum.
We suppose that M is globally range consistent but that T (M) is not locally range consis-
tent. Thus, there exists a feature f and a k ∈ ω′(f), such as no product contains k instances
of f (∄ p ∈ P | |f |p = k). This holds for any number of instances of g.
Let us take into consideration a specific one, j ∈ Ω(g). We know that

∑j
i=1

xi = k. For all
tuple (x1, ..., xj) such that

∑j
i=1

xi = k, there is thus no product with |g|p = j and |f |p = xi.
Therefore, ∄ p ∈ P | |g|p = j ∧

∧j
i=1

|fi|p = xi, which contradicts the hypothesis.

� LRC(T (M) ⇒ GRC(M), ad absurdum.
We suppose that T (M) is locally range consistent but that M is not globally range consistent.
There exists a feature f which is not the root, with a parent feature g (g = parent(f)), a
k ∈ ω(f) and an l ∈ Ω(g), such as no product contains k instances of f in the lth instance

82

5.5. Implementing Local Range Consistency

of g, i.e., ∄ p ∈ P | |fl|p = k. There exists a j that corresponds to the number of instances
of g such as

∑j
i=1

xi = k′. We compute ω′(f) = ω(f) × Ω(g). For one value of ω′(f), there
are several possible configurations for the same feature and its parent as explained earlier.
Since our constraints do not allow us to discriminate the configurations, then k′ is not a valid
number of occurrences for M. Thus, we know that ∃ k′ ∈ ω′(f) | ∄ p ∈ P | |f |p = k′, which
contradicts the hypothesis.

In the next section, we describe our tool support to detect and explain such inconsisten-
cies, in particular by leveraging the proposed property.

5.5 Implementing Local Range Consistency

As well as the description of CardEx feature models in Chapter 4, Section 4.4, we rely on
constraint programming to express and solve the global inverse consistency of a cardinality-
based feature models. Those feature models are thus translated into a constraint satisfaction
problem to reason on their consistency. To illustrate our approach, we translate cardinality-
based feature models into the textual format of the BR4CP (Business Recommendation for Con-

figurable Products) project [BR4]. Even though the BR4CP project supports two different for-
mats, i.e., CSP (XML format) and Aralia (textual) [DR97], we consider the latter as more intu-
itive since its syntax is closer to feature modeling constraints than the XML one, and makes
the translation easier. We take as illustrative examples the two cardinality-based feature
models depicted here in Figure 5.11 again for convenience, MLRI and MGRI , respectively
describing a locally range inconsistent and a globally range inconsistent feature model.

A B

...
[0..8]

A"⟶"[4,*]"B

[1..1]

(a) MLRI

A C

...
[0..3]

B

[0..2]

[0..4]

!B'!⟶!2A

(b) MGRI

Figure 5.11: Cardinality Inconsistencies

Transforming MLRI is straightforward. Relying on the previously defined translation
T , the LRI feature model MLRI is translated into the feature model M′

LRI as described by
Listing 5.1 using the Aralia textual format.

Lines 1 and 2 define the variables of the model, A and B, representing features A and B
respectively. Values 1,1 just before the left square bracket specify how many values can be

83

Chapter 5. Evolution and Consistency Checking of Cardinality-based Feature Models

1 #(1,1,[A.1]);

2 #(1,1,[B.0, B.1, B.2, B.3, B.4, B.5, B.6, B.7, B.8]);

3 (A.1 => B.4 | B.5 | B.6 | B.7 | B.8);

Listing 5.1: M′

LRI described as a textual configuration problem

selected in the variable range, i.e., at least 1 and at most 1. Since feature A is mandatory, its
unique possible value is 1, i.e., [A.1], contrarily to feature B which holds as cardinality the
range [0..8]. Line 3 describes the constraint A→ [4,8] B. Thus, if the value of variable A is 1,
then the value of variable B is either 4, 5, 6, 7 or 8.

Figure 5.12: Inconsistency detection and explanation for M′

LRI

To check the consistency of M′

LRI in an automated way, one need to rely on a tool able
to detect a global inverse inconsistency. In the BR4CP project, there exist two of them, either
based on SAT or CSP, e.g., Sat4j [BP10] or Abscon [BFL13] respectively. However, since
Sat4j provides in addition an explanation engine, our approach therefore relies on this tool
support. Indeed, once the consistency of the cardinality-based feature model checked, we
help the user understanding what is the problem (if any) by giving her feedback. For that,
we rely on the notion of explanation, e.g., explanation about the lower bound with value n

for variable x, well-known in the constraint programming community [JO01]. For instance,
Figure 5.12 depicts the use of Sat4j to detect the inconsistency in M′

LRI . Several information
are given about M′

LRI . As expected, the value of variable A is always 1 (rootPropagated:

A=1). The next line is an inconsistency detection, meaning that the range value of variable
B has been reduced, since values 0, 1, 2 and 3 are unreachable. To understand where does
such an inconsistency come from, the explanation mechanism is called using the #explain

command. In this example, an explanation is asked to understand why variable B cannot be
equal to 2 (or more precisely, why "not B equals 2"). As a result, the constraint leading to the
inconsistency is displayed: if variable A equals 1, then the value of B is greater or equal to 4.

To find an explanation about the inconsistency of a feature cardinality, the related feature
model must first be translated to a propositional formula in a conjunction of constraints. Let

84

5.5. Implementing Local Range Consistency

F be a conjunction of constraints defining a cardinality-based feature model, with V the
set of variables for the model. Then, finding a value non-global inverse consistent in F is
defined as follows:

∃ v ∈ V |F � ¬v

⇔ F ∧ v � ⊥

⇔ F ∧ v is unsatisfiable

An explanation F ′ on the unsatisfiability of F ∧ v is said minimal unsatisfiable subfor-

mula. The problem of finding a minimal unsatisfiable subformula is an active area of re-
search [BLMS12] and is defined as follows:

- F ′ ⊆ F ;

- F ′ ∧ v � ⊥;

- ∀f ∈ F ′, F ′ \ {f} 2 ⊥;

In practice, the set F of constraints may be divided into two sets D and C. For in-
stance, D may represent knowledge or integrity constraints, while C may represent beliefs
or relaxable constraints. In such context, the definition of minimal unsatisfiable subformula
becomes:

- F = D ∪ C; D ∩ C = ∅;

- F ′ ⊆ C;

- D ∧ F ′ ∧ v � ⊥;

- ∀f ∈ F ′, D ∧ F ′ \ {f} 2 ⊥;

To illustrate how such a minimal unsatisfiable subformula is found, and therefore how
an explanation is given about the non-global inverse consistency of a value, let us take as
example the MLRI feature model, depicted by Figure 5.11a and described in Listing 5.1. The
translation of this feature model into a conjunction of constraints is given in Listing 5.2.

1 A1 = 1

2 B0 + B1 + B2 + B3 + B4 + B5 + B6 + B7 + B8 = 1

3 ¬A1 ∨ B4 ∨ B5 ∨ B6 ∨ B7 ∨ B8

Listing 5.2: MLRI defined as a CNF formula

85

Chapter 5. Evolution and Consistency Checking of Cardinality-based Feature Models

The inconsistency detection is obvious. Since A1 must be equal to 1 (line 1), then line 3
forces B4, B5, B6, B7 or B8 to be greater or equal to 1. Thus, B0, B1, B2 or B3 cannot be equal
to 1 (line 2), because of the constraint expressed line 3. Note that the three constraints form
a minimal unsatisfiable subformula. However, the tool reports only the last constraint (see
Figure 5.12) because lines 1 and 2 correspond to definitions belonging to D.

5.6 Improving the Encoding

Let us now consider the MGRI cardinality-based feature model. Relying on the translation
T , MGRI is translated into the feature model M′

GRI . Listing 5.3 describes M′

GRI in the Ar-
alia textual format. Lines 1, 2, 3 define the variables of the model, A, B and C. As described
in Section 5.4.2, the domains of the variables now represent the instances that can be config-
ured, e.g., 6 instances of feature B.

1 /* Variables */

2 #(1,1,[A.0,A.1,A.2,A.3,A.4]);

3 #(1,1,[C.0,C.1,C.2,C.3]);

4 #(1,1,[B.0,B.1,B.2,B.3,B.4,B.5,B.6]);

5 /* Child-Parent relationships */

6 (-B.0 => -C.0);

7 /* Constraint B’ --> 2A */

8 (B.1 => (-A.0 & -A.1));

9 (B.2 => (-A.0 & -A.1 & -A.2 & -A.3));

10 (B.3 => (-A.0 & -A.1 & -A.2 & -A.3 & -A.4));

11 (B.4 => (-A.0 & -A.1 & -A.2 & -A.3 & -A.4));

12 (B.5 => (-A.0 & -A.1 & -A.2 & -A.3 & -A.4));

13 (B.6 => (-A.0 & -A.1 & -A.2 & -A.3 & -A.4));

Listing 5.3: M′

GRI described as a textual configuration problem

Line 5 defines the relationship between features B and C, describing that if the value of
B is not equal to 0, then the value of variable C must no be equal to 0 (we provided the list
of translation rules from feature models to CSP in Chapter 4, Section 4.4). In other words, if
feature B is selected, then feature C must be selected. Lines 7 to 12 describe the constraint
requiring twice more instances of feature A than instances of feature B. For instance, if
variable B is equal to 2, then the value of variable A must not be lower than 4 (line 9).
Figure 5.13 depicts the use of Sat4j to reason on the consistency of M′

GRI .

As expected, there can never be more than 2 instances of B in the configuration, as de-
picted by the third line rootReduced: B=3 B=4 B=5 B=6. Even though this result is correct
regarding the described feature model, we think that it is not enough to help the designer

86

5.6. Improving the Encoding

Figure 5.13: Inconsistency detection for M′

GRI

understand the underlying inconsistency. Indeed, one can see this inconsistency in two per-
spectives. First, in terms of instances. As we just saw, there cannot be more than 2 instances
of B. Second, in terms of configuration options. The result depicted by Figure 5.13 is not
expressive enough to understand which configurations are not allowed in the related fea-
ture model. Therefore, to deal with this issue, we propose to add a fictional variable in the
cardinality-based feature model M′, representing all possible combinations of feature cardi-
nality when a global range consistency must be checked. For instance, when dealing with
MGRI , the translated M′

GRI is yield as depicted by Listing 5.4.

Lines 1 to 13 are the same than in Listing 5.3. The fictional variable, BC, is added line 16.
It takes as values all the possible combinations of B and C. For example, BC.21 means two
instances of B and one instance of C. Thus, BC.10 is not possible since there cannot be one
instance of B if there is no instance of C. Then, lines 18 to 27 describe the constraints related
to the fictional variable. They describe how many instances of feature B correspond to the
related combination. For example, (BC.21 => B.2); line 25 means that the combination
of two instances of B for one instance of C leads to two instances of B. The same amount of
B can be obtained by using a different combination, as depicted line 23.

Now, when reasoning on the consistency of M′

GRI , we get a more detailed and helpful
result, as depicted by Figure 5.14. First, it gives the number of instances of B that cannot
be configured, i.e., rootReduced: B=3 B=4 B=5 B=6, but also the related combinations, not
allowed regarding the cardinalities and constraints defined in the feature models, i.e.,
rootReduced: BC=13 BC=22 BC=23. For instance, a configuration with the cardinality of B
and C set to 2 and 3 respectively is not possible.

Figure 5.14: Inconsistency detection for the "user-friendly" M′

GRI

87

Chapter 5. Evolution and Consistency Checking of Cardinality-based Feature Models

1 /* Variables */

2 #(1,1,[A.0,A.1,A.2,A.3,A.4]);

3 #(1,1,[C.0,C.1,C.2,C.3]);

4 #(1,1,[B.0,B.1,B.2,B.3,B.4,B.5,B.6]);

5 /* Child-Parent relationships */

6 (-B.0 => -C.0);

7 /* Constraint B’ --> 2A */

8 (B.1 => (-A.0 & -A.1));

9 (B.2 => (-A.0 & -A.1 & -A.2 & -A.3));

10 (B.3 => (-A.0 & -A.1 & -A.2 & -A.3 & -A.4));

11 (B.4 => (-A.0 & -A.1 & -A.2 & -A.3 & -A.4));

12 (B.5 => (-A.0 & -A.1 & -A.2 & -A.3 & -A.4));

13 (B.6 => (-A.0 & -A.1 & -A.2 & -A.3 & -A.4));

14

15 /* Fictional Variable */

16 #(1,1,[BC.00,BC.01,BC.02,BC.03,BC.11,BC.12,BC.13,BC.21,BC.22,BC

.23]);

17 /* Add constraints for fictional BC variable */

18 (BC.00 => B.0);

19 (BC.01 => B.0);

20 (BC.02 => B.0);

21 (BC.03 => B.0);

22 (BC.11 => B.1);

23 (BC.12 => B.2);

24 (BC.13 => B.3);

25 (BC.21 => B.2);

26 (BC.22 => B.4);

27 (BC.23 => B.6);

Listing 5.4: M′

GRI described as a textual configuration problem

5.7 Challenges Revisited

We have presented our approach for detecting cardinality inconsistencies in cardinality-
based feature models when editing them and described a formal approach to automate such
detections. Let us now revisit the challenges identified in Section 5.2 and discuss how our
approach faces them.

1. Detect cardinality inconsistencies. To face this challenge, we first provide a catalog
of cardinality-based feature model edits, thus describing which edits may lead to an
inconsistency. Knowing which edits do not lead to inconsistent feature cardinalities

88

5.8. Summary

is useful because it provides the possibility to save effort by not checking the feature
model consistency after one of those edits has been performed. Then, we define two
kinds of cardinality inconsistency, local and global range inconsistency. While the for-
mer depends on the considered feature cardinality range, the latter takes into account
the hierarchy of ranges.

2. Explain the inconsistencies. To face this challenge, our approach is twofold. First,
we rely on existing mechanisms of explanation used in constraint programming to
describe why an inconsistency arise. Second, as the explanation may not be precise
enough to understand which configuration is not allowed and the number of involved
instances, we use a fictional variable representing both feature instances and feature
range combinations. Using this variable, one can know which range combination can-
not be done and which related instances number cannot be reached.

3. Provide an automated support. To face this challenge, we rely on the notion of global
inverse consistency in the area of constraint satisfaction problem [BFL13]. As detecting
a local range inconsistency is equivalent to detect a non-global inverse consistent value
in the constraint satisfaction problem representing the feature model, one can reuse
existing tools used to maintain global inverse consistency. We thus describe a way to
translate a feature model M with a global range consistency to a feature model M′

with a local range consistency.

5.8 Summary

This chapter presented our approach to detect and explain range inconsistencies in
cardinality-based feature models. As revealed by the catalog of edits to cardinality-based
feature models we proposed, two kinds of inconsistency may arise, either local or global
range inconsistencies. While the former is related to the range of a feature, the latter takes
into account the hierarchy of feature ranges.

We then propose to rely on an existing approach to automate these inconsistency detec-
tions. This approach checks the global inverse consistency of a constraint satisfaction prob-
lem, which is actually similar to checking the local range consistency of a feature model. We
thus provide a way to translate a feature model M to a normalized feature model M′ con-
taining only local range inconsistency. Automating the detection of inconsistencies in M’ is
then straightforward.

Finally, we support the user when designing the cardinality-based feature model by
giving her/him explanations about the inconsistency, i.e., where and why it arises. We
go further in case of global range inconsistencies by providing feedback about which
configuration cannot be established regarding the defined cardinality ranges and the related
number of feature instances that cannot be reached.

89

Chapter 5. Evolution and Consistency Checking of Cardinality-based Feature Models

In the next chapter of this dissertation, we present the SALOON platform, our soft-
ware product lines-based approach for selecting and configuring cloud computing environ-
ments.

90

Chapter 6

SALOON, a Model-based Approach for
Selecting and Configuring Cloud
Environments

Contents

6.1 Introduction . 91

6.2 Challenges . 92

6.3 SALOON in a Nutshell . 93

6.3.1 Roles . 93

6.3.2 Stages . 95

6.4 From Requirements Specification to Features Selection 96

6.4.1 A Model-based Approach . 96

6.4.2 Illustrative Example . 98

6.5 Automated Configuration and Product Derivation 102

6.5.1 Cost Estimation for Cloud Selection 102

6.5.2 Product Derivation in SALOON 103

6.6 Challenges Revisited and Discussion 106

6.7 Summary . 108

6.1 Introduction

Cloud computing has recently emerged as a major trend in distributed computing, and de-
ploying an application to a cloud environment has become very trendy, since the number of
cloud providers available is still increasing. In the cloud computing paradigm, computing

91

Chapter 6. SALOON, a Model-based Approach for Selecting and Configuring Cloud Environments

resources are delivered as services. Such a model is usually described as Anything as a Service

(XaaS or *aaS), where anything is divided into layers from Infrastructure (IaaS) to Software in-
cluding Platform (PaaS) [AFG+09, BYV+09]. At IaaS level, the entire software stack running
inside the virtual machine must be configured as well as the infrastructure concerns: number
of virtual machines, amount of resources, number of nodes, SSH access, database configu-
ration, etc. Regarding platforms provided by PaaS clouds, the configuration concern only
focuses on software that compose this platform: which database(s), application server(s),
compilation tool, libraries, etc. This layered model therefore offers many configuration and
dimension choices, for the application to be deployed as well as the configurable runtime
environments [MG11]. Thus, when deploying an application to the cloud, companies or de-
velopers have to cope with clouds variability due to a wide range of resources at different
levels of functionality among available cloud environments. Selecting a suitable cloud en-
vironment and dealing with its variability leads to complex and error-prone configuration
choices that are usually made in an ad hoc manner.

To address these issues, we have developed a platform called SALOON, for SoftwAre

product Lines for clOud cOmputiNg. As its name suggests, SALOON relies on software product
lines principles to help its user selecting and configuring cloud environments according to
its requirements. In particular, SALOON leverages software product lines to ensure reliability
in those selection and configuration processes, relying on CardEx feature models to describe
cloud variability and using cloud environment configuration files as software artifacts to
derive a proper cloud configuration. This chapter presents SALOON. Since 2013, SALOON

is used in particular as a cloud environments selection and configuration platform by the
European IP PaaSage project [Paa13].

The chapter is structured as follows: Section 6.2 describes the challenges that have to be
faced when dealing with clouds variability. Section 6.3 provides an overview of SALOON,
describing the different roles and responsibilities as well as the different concerns of the
platform. Section 6.4 gives more details about the architecture of SALOON, in particular the
different metamodels involved and how they are linked together. Section 6.5 explains the
cost estimation and derivation engines of SALOON, illustrated with IaaS and PaaS environ-
ments configurations. Finally, Section 6.6 discusses several concerns regarding the platform
while Section 6.7 concludes the chapter.

6.2 Challenges

When deploying an application to the cloud, developers have to cope with a wide range
of configurable resources among available cloud environments. Our goal, by proposing
SALOON, is to provide a support to deal with this variability and help those developers
selecting and configuring a suitable cloud environment. To achieve these objectives, we
identify the following challenges SALOON must helps the developers to deal with:

92

6.3. SALOON in a Nutshell

1. Find a suitable environment. Among the plethora of cloud providers, developers
have to (i) find the ones that provide all functionalities required by the application to
run properly, e.g., the correct type of application server or database, and (ii) select one
that is suitable regarding non-functional requirements for these functionalities, e.g., the
less expensive solution with at least 4 GB of RAM. The first challenge is therefore to
provide a support to help the developer make such a selection.

2. Find a proper configuration. Dealing with clouds variability leads to complex and
error-prone configuration choices that are usually made in an ad hoc manner. Moreover,
developers’ knowledge is not exhaustive and the way a cloud environment is config-
ured can lead to inconsistencies between cloud services when running the application.
The second challenge is thus to provide a mean to find a valid cloud configuration with
respect to the required functionalities.

3. Ensure a reliable configuration. Once a cloud environment is selected and there exists
one configuration for this environment that suits the required functionalities, devel-
opers have to avoid errors in the configuration process, in particular when defining
cloud environment configuration files and scripts, to ensure the cloud environment to
be properly configured. The third challenge is thus to provide a reliable support to
handle such cloud configurations.

6.3 SALOON in a Nutshell

This section provides a global description of SALOON, presenting its architecture and ex-
plaining how different actors interact with the platform. Figure 6.1 depicts an overview of
SALOON.

SALOON relies on three main characteristics. First, cloud environments are described as
feature models. More precisely, feature models extended with attributes and cardinality as
described in Chapter 4, i.e., CardEx feature models. Second, cloud configuration files and
configuration scripts are used as assets of the feature models. Therefore, there is one soft-
ware product line per cloud environment, since the feature model and the related assets are
dedicated to one specific cloud environment. Finally, the reification and gathering of cloud
environment provided functionalities into a Cloud Knowledge Model, which are mapped to
each cloud feature model to automate the feature selection process.

6.3.1 Roles

Our approach distinguishes between two roles, domain architects and developer.

- Domain Architect. The architect is expert in the particular domain targeted by the
software product line, the cloud computing one in SALOON. He/She is responsible for

93

C
h

ap
ter

6.
S

A
L

O
O

N
,a

M
o

d
el-b

ased
A

p
p

ro
ach

fo
r

S
electin

g
an

d
C

o
n

fi
g

u
rin

g
C

lo
u

d
E

n
v

iro
n

m
en

ts

Application
Server

Cloud

Database

SQL NoSQLTomcat Jetty

Variability)Model

Application
Server

Cloud

Database

SQL NoSQLTomcat Jetty

Product)configura4on

Assets

{"id":&"SensApp",

&&"nodeTypes":&[{&"id":&"t14micro",

& &&&&&&&&"os":&"GNULinux",

& &&&&&&&&&… }&],

&&"artefactTypes":&[

{"id":&"NoSQL",

&"retrieval":&"wget&http://cloudml.org/services/nosql.sh",

&"deployment":&"sudo&nosql.sh",

&"provides":&[{&"id":&"NoSQLDB"&}]&&},

{"id":&"Jetty",

&"retrieval":&"wget&http://cloudml.org/services/jetty.sh",

&"deployment":&"sudo&jetty.sh",

&"provides":&[{&"id":&"JettyContainer"&}]&&},

&

{"id":&"SensApp",

&…

&"deployment":&"sudo&sensapp.sh",

&"requires":&[{&"id":&"JettyContainer"&},

&& &&&&&&&&&&&&{&"id":&"NoSQLDB"&}]&&}

]

}&&&&&&&&&&&&&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&...

{"id":&"SensApp",

&&"nodeTypes":&[{&"id":&"t14micro",

& &&&&&&&&"os":&"GNULinux",

& &&&&&&&&&… }&],

&&"artefactTypes":&[

{"id":&"NoSQL",

&"retrieval":&"wget&http://cloudml.org/services/nosql.sh",

&"deployment":&"sudo&nosql.sh",

&"provides":&[{&"id":&"NoSQLDB"&}]&&},

{"id":&"Jetty",

&"retrieval":&"wget&http://cloudml.org/services/jetty.sh",

&"deployment":&"sudo&jetty.sh",

&"provides":&[{&"id":&"JettyContainer"&}]&&},

&

{"id":&"SensApp",

&…

&"deployment":&"sudo&sensapp.sh",

&"requires":&[{&"id":&"JettyContainer"&},

&& &&&&&&&&&&&&{&"id":&"NoSQLDB"&}]&&}

]

}&&&&&&&&&&&&&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&...

{"id":&"SensApp",

&&"nodeTypes":&[{&"id":&"t14micro",

& &&&&&&&&"os":&"GNULinux",

& &&&&&&&&&… }&],

&&"artefactTypes":&[

{"id":&"NoSQL",

&"retrieval":&"wget&http://cloudml.org/services/nosql.sh",

&"deployment":&"sudo&nosql.sh",

&"provides":&[{&"id":&"NoSQLDB"&}]&&},

{"id":&"Jetty",

&"retrieval":&"wget&http://cloudml.org/services/jetty.sh",

&"deployment":&"sudo&jetty.sh",

&"provides":&[{&"id":&"JettyContainer"&}]&&},

&

{"id":&"SensApp",

&…

&"deployment":&"sudo&sensapp.sh",

&"requires":&[{&"id":&"JettyContainer"&},

&& &&&&&&&&&&&&{&"id":&"NoSQLDB"&}]&&}

]

}&&&&&&&&&&&&&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&...

{"id":&"SensApp",

&&"nodeTypes":&[{&"id":&"t14micro",

& &&&&&&&&"os":&"GNULinux",

& &&&&&&&&&… }&],

&&"artefactTypes":&[

{"id":&"NoSQL",

&"retrieval":&"wget&http://cloudml.org/services/nosql.sh",

&"deployment":&"sudo&nosql.sh",

&"provides":&[{&"id":&"NoSQLDB"&}]&&},

{"id":&"Jetty",

&"retrieval":&"wget&http://cloudml.org/services/jetty.sh",

&"deployment":&"sudo&jetty.sh",

&"provides":&[{&"id":&"JettyContainer"&}]&&},

&

{"id":&"SensApp",

&…

&"deployment":&"sudo&sensapp.sh",

&"requires":&[{&"id":&"JettyContainer"&},

&& &&&&&&&&&&&&{&"id":&"NoSQLDB"&}]&&}

]

}&&&&&&&&&&&&&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&...

Composi4on

So#ware(Product(Line(A(

Cloud
Knowledge

Model

Functional +
non-functional
requirements

Requirements
Specification

Features
Selection

Configuration
Analysis

configuration
Cloud A

Cloud i

Cloud N

...

...

1

2

65

3

defines

Dom

defines

Dom

Dev

Dev

SPL(i(

SPL(N(

A(

 Derivation

Cost
Estimation

4

: Manual Tasks

: Automated Tasks

: Domain Architect

: Developer Dev

Dom

executes

Feature Model A

Figu
re

6.1:S
A

L
O

O
N

overview

94

6.3. SALOON in a Nutshell

defining both the cloud feature models and the Cloud Knowledge Model. A domain
architect has all the information about commonalities and variabilities of one particular
cloud environment, and thus defines the related cloud feature model. Then, all domain
architects gather their knowledge to build the Cloud Knowledge Model, which is a
reification of cloud services and functionalities provided by all cloud environments
and used in all SALOON feature models.

- Developer. The developer is the final user of SALOON. She/He interacts with the plat-
form through the Cloud Knowledge Model, which is the entry-point of SALOON. Then,
after several automated stages, she/he selects a cloud environment among suitable
ones to automatically retrieve the related configuration files and scripts and executes
them to configure the cloud environment.

6.3.2 Stages

In addition to the roles, Figure 6.1 also illustrates the different steps to get from a require-
ments set to a configured cloud environment. These steps are presented below.

1 Requirements specification. The developer uses the Cloud Knowledge Model to select
the required cloud services, i.e., cloud services that comply with the functional and
non-functional requirements of the application to deploy, e.g., the Tomcat application
server.

2 Features selection. Regarding elements selected in the Cloud Knowledge Model, the
related features are selected in the different feature models, if provided by the cloud
environment. For instance, the Tomcat feature will be selected in all feature models
providing this feature. The features selection process is an automated step, relying on
defined mapping relationships between the Cloud Knowledge Model and the different
feature models.

3 Configuration analysis. When at least one feature has been selected in a given feature
model, SALOON provides a support to search if a valid product configuration exists
with this feature, e.g., if there exists a valid configuration for the Heroku cloud provid-
ing the Tomcat application server support. This step is automated as well, relying on
the translation from CardEx feature models to CSP as defined in Chapter 4, Section 4.4.

4 Cost estimation. Thanks to a pricing model linked to each feature model, SALOON

automatically estimates the cost of the configuration found at step 3 . This estimation
can help the user selecting a cloud when several ones are suitable to host the applica-
tion.

5 Product derivation. Once a cloud environment has been selected by the user, the
derivation engine associated with this cloud is launched to derive the related configu-
ration files and scripts, e.g., a system.properties file and a set of configuration commands
to be executed.

95

Chapter 6. SALOON, a Model-based Approach for Selecting and Configuring Cloud Environments

6 Configuration scripts execution. While configuration files are required for a proper
configuration of the cloud environment, configuration scripts have to be executed by
the user to configure the environment, e.g., through a command line interface.

In the following sections, we describe with more details the different concerns of our
approach.

6.4 From Requirements Specification to Features Selection

As described in the previous section SALOON relies on various kinds of models, i.e., feature
models and the Cloud Knowledge Model. In addition to these models, mapping relation-
ships between them used to automate the features selection process (stage 2) are described
as models as well. This section describes in details SALOON models and metamodels and
illustrates their use with several cloud environment concrete examples.

6.4.1 A Model-based Approach

The SALOON platform relies on three metamodels: the Domain Knowledge Metamodel, the
Mapping Metamodel and the CardEx Metamodel, as depicted by Figure 6.2 in green, pink and
orange respectively. For the sake of simplicity, only meta-classes involved in relationships
with the Mapping Metamodel are depicted regarding the CardEx Metamodel, but a full picture
of it can be found in Chapter 4, Section 4.3.1.

The Domain Knowledge Metamodel

The root of the metamodel is the DomainKnowledge meta-class, which contains a set of
Concepts. Each Concept is given a name and may have subConcepts. A Concept

can be of type Concept, e.g., Java, CountableElement or QuantifiableElement.
CountableElement is used to define concepts whose required amount can be specified,
e.g., 4 application servers. On the other hand, QuantifiableElement is used to define
concepts whose provided quantity and its related unit can be specified, e.g., 500 MB of RAM.
The selected attribute of the Concept meta-class is only defined for the developer use pur-
pose. When an instance of this metamodel is defined, e.g., the Cloud Knowledge Model, it is
used by the developer to select all required functionalities. This is done through the selected

Boolean attribute. Constraints can also be defined, to specify whether a concept Implies
or Excludes the selection of another concept. For instance, if the application to deploy is
written in ASP.NET, then the application server involved in the configuration cannot be Jetty.
Then, the selection of the former in the Cloud Knowledge Model implies the latter not to be
selected.

96

6.4.
F

ro
m

R
eq

u
irem

en
ts

S
p

ecifi
catio

n
to

F
eatu

res
S

electio
n

Numerical
Element

value: float

0..*

subConcepts

Domain
Knowledge

1..*

Concept

name: String
selected: booleanConstraint

Cfrom

Cto

Implies Excludes

1

1

Quantifiable
Element

quantity: float
unit: String

Feature

Attribute

0..*

Mapping

Concept
To

Feature

Concept
To

Attribute

1

Feature
Model

1..*

1

1

1
Countable
Element

amount: int

MappingRule

Expression
condition

Condition

Boolean
Expression

value: int
unit: String

<<enum>>
LogicalOperator

A: And
O: Or

<<enum>>
Comparator

G: Greater
GEQ: GreaterOrEqual
L: Less
LEQ: LessOrEqual
EQ: Equal

1

1

element

comparator

expr1 expr2

1

operator

assignment

Value
Assignment

value: int

1

Figu
re

6.2:T
he

S
A

L
O

O
N

m
etam

od
els

T
h

e
M

a
p

p
in

g
M

e
ta

m
o

d
e
l

T
he

M
a
p
p
i
n
g

relationship
s

link
concep

ts
in

the
C

lou
d

K
now

led
ge

M
od

elw
ith

featu
res

or
at-

tribu
tes

in
the

featu
re

m
od

els.T
here

are
threes

typ
es

ofrelationship
s:
C
o
n
c
e
p
t
T
o
F
e
a
t
u
r
e

,
C
o
n
c
e
p
t
T
o
A
t
t
r
i
b
u
t
e

and
M
a
p
p
i
n
g
R
u
l
e

.
T

he
tw

o
form

ers
are

u
sed

,w
ithou

t
su

rp
rise,

to
link

a
concep

t
w

ith
a

featu
re

or
a

concep
t

w
ith

an
attribu

te
resp

ectively.
For

instance,

97

Chapter 6. SALOON, a Model-based Approach for Selecting and Configuring Cloud Environments

the concept Java in the Cloud Knowledge Model is linked with the Java feature in the fea-
ture model describing the Jelastic cloud environment. Note that the name of the concept
and the feature’s one are not necessarily the same. For instance, the Load Balancer concept
can be linked to the Nginx feature, the Load balancer feature or the HAProxy feature in the
Jelastic, Heroku and OpenShift feature models respectively. Therefore, the knowledge of
the semantics of feature has to be known for such links to be established. Thus, such a role
is given to the domain architects who, once the feature model is described, provide the re-
lated relationship links to the SALOON platform. The last type of mapping, MappingRule,
is used to link concepts with attributes whose type is an enumeration. For instance, con-
sider a QuantifiableElement, e.g., RAM, and a feature attribute, e.g., memorySize. If
the developer requires RAM = 500 MB in the Cloud Knowledge Model, and memorySize

is provided as memory block of 512, 1024 or 2048 MB. Then, should the relationship link be
set for 1024 or 2048 (512 does not fit the requirements)? In such a case, one cannot know
which value to use unless a mapping rule is defined. A condition must be described for a
value to be assigned to the mapping rule. The condition is a BooleanExpression or a set
of BooleanExpressions connected with LogicalOperators. A BooleanExpression

is satisfied if the relationship between the QuantifiableElement quantity attribute, the
BooleanExpression value attribute and the defined Comparator is true. An example is
depicted below.

The Feature Model Metamodel

This metamodel describes meta-classes used to define CardEx feature models, i.e., feature
models with attributes and cardinalities and their related constraints. CardEx feature models
and the related metamodel are described in Chapter 4.

6.4.2 Illustrative Example

To illustrate our approach, let us now take as example the three following cloud environ-
ments: Windows Azure, Heroku and OpenShift. The former is a IaaS environment, the two
latter are PaaS ones. Figure 6.3 depicts the Cloud Knowledge Model, mapping relationships
and the cloud feature models. All of them are instances of the previously described meta-
models and, since depicted for illustrative purpose, are not exhaustive (extended versions
of these models are available in Appendix A).

The Cloud Knowledge Model is depicted based on the ontology formalism, which is
"a formal, explicit specification of a shared conceptualization" [CFLGP06]. Thus, every con-
cept is a Thing, and concepts are linked together through inheritance relationships or con-
straints [GDD09]. For instance, the RAM concept inherits the QuantifiableElement one, while
the defined constraint describes that if ASP.NET is part of the requirements set, then the Jetty

application server cannot be used to host the application. For ease of reading, mapping rela-
tionships are described as textual format, where the concept name is written in a bold font,

98

6.4. From Requirements Specification to Features Selection

Heroku

Load
Balancer

Dyno Application
Server

OpenShift

JBoss Tomcat

GearHAProxy

Countable
Element

Application
Server

Tomcat
Jetty

GlassFish

JBoss

Java

Quantifiable
Element

RAM CPU

Thing
RAM:%

!!!!!!Windows!Azure.Virtual!Machine.RAM!|!

!!!!!!Heroku.Dyno.RAM!|!Openshi>.Gear.RAM!!

Virtual%Machine:%

!!!!!!Windows!Azure.Virtual!Machine

Loca3on:%

!!!!!!Windows!Azure.LocaAon

Load%Balancer:%

!!!!!Heroku.Load!Balancer!|!OpenShi>.HAProxy

Applica3on%Server:%

!!!!!!OpenShi>.ApplicaAon!Server

Tomcat:%

!!!!!!OpenShi>.Tomcat

JBoss:%

!!!!!!OpenShi>.JBoss

Windows%Server:%

!!!!!!Windows!Azure.Windows!Server

(3)!Clouds!Feature!Models

(1)!Cloud!Knowledge!Model (2)!Mapping!RelaAonships

[1..3] [1..150]

Name: RAM
Type: int
Value: 512 MB

Name: RAM
Type: int
Value: 512 MB

Concept

Language

Windows
Server

Windows
Azure

Virtual
Machine

[0..40]

Location
Windows

Server

Name: RAM
Type: enumerate
Value: {768,1792,3584,7168} MB

Virtual
Machine

Location

ASP.NET ⟶ ¬Jetty

ASP.
Net

EU US

Figure 6.3: Mappings between the Cloud Knowledge Model and the feature models

while features or attributes are written in a normal font, separated by vertical lines when
several ones are linked to the same concept.

Let us now consider the following sets of requirements, REQ1: {Windows Server} and
REQ2: {8 GB RAM} a developer may define through the Cloud Knowledge Model. Regard-
ing REQ1, only Windows Azure fulfills this requirement. Indeed, it is the only one cloud to
provide such a support, as depicted by its related feature model, and there is only one map-
ping relationship from the Windows Server concept to the Windows Azure Windows Server

feature. Based on this mapping relationship, the Windows Server feature is automatically se-
lected in the Windows Azure feature model. Since only Windows Azure provides such a
support, there is no need to search for a valid configuration in the OpenShift and Heroku
feature models. Thus, using such mapping relationships reduces the range of feature mod-
els to configure by acting like a filter. Indeed, it avoids searching for a valid configuration
for certain feature models whose provided features cannot cope with the requirements set.

Regarding REQ2, the developer relies on the QuantifiableElement meta-class at-

99

Chapter 6. SALOON, a Model-based Approach for Selecting and Configuring Cloud Environments

tributes (Figure 6.2) to specify the required quantity and unit of RAM, i.e., 8 and GB respec-
tively. The RAM concept is linked to the RAM attribute in each of the three feature models.
When a concept is linked to an attribute, the feature selection process is twofold. First, an
algorithm determines the required amount of feature instances to fulfill the requirement.
Second, when applicable, the feature is selected and its feature cardinality is set to the re-
quired value. Listing 6.1 illustrates such a process. Line 7, the value of the required concept
is converted to a value in the same unit than the attribute one, e.g., from 8 to 8000 regarding
REQ2. Then, the number of feature instances is computed regarding the required amount
and the provided attribute value (line 8 and lines 19 to 27). Finally, the feature cardinality
is set according to the value found in the previously called method. Thus, for REQ2 to be
satisfied, the cardinality of the Gear and Dyno features must be set to at least 16 (other fea-
tures or constraints may require some more instances) in the OpenShift and Heroku feature
models respectively, since the defined RAM attributes provide 512 MB, and 16*512 MB ≥

8 GB. However, this is not possible for OpenShift, since at most 3 Gears can be provided
(we consider in this example the OpenShift Online offer public cloud). Then, such a cloud
environment could not be configured regarding the developer’s requirements.

What about Windows Azure? According to Listing 6.1, there are several ways to
fulfill REQ2, e.g., two Virtual Machines providing 7168 MB of RAM, three Virtual Machines
providing 3584 MB of RAM, etc. The aim of defining a MappingRule is to remove such
an ambiguity. For instance, Figure 6.4 depicts a mapping rule for this situation as an object
diagram that conforms to the metamodels depicted in Figure 6.2.

RAM:
Quantifiable
Element

quantity: 8
unit: "GB"

m:MappingRule
condition

Boolean
Expression

value: 7168
unit: "MB"

GEQ:
Comparator

assignment

v:Value
Assignment

value: 7168

a:Attribute

name: "RAM"

Figure 6.4: A sample mapping rule for the Windows Azure feature model

This mapping rule defines that if the required RAM quantity is greater or equal to 7168
MB, then the value that has to be taken into consideration for the RAM attribute enumeration
is 7168. Thus, relying on this mapping rule and applying Listing 6.1, the number of instances
of Virtual Machines must be set to 2 to fulfill REQ2. Such mapping rules must be defined by
the domain architects, who know how and why such rules must be set, e.g., for technical
reason or pricing policy.

Using such a mapping between the Cloud Knowledge Model and the feature models
has mainly three benefits. First, it automates the feature selection process. The developer
thus does not have to select features by hand in every feature models, which is consider-
ably tedious and error-prone, but simply defines the application requirements once in the

100

6.4. From Requirements Specification to Features Selection

1 /**

2 * quant is defined in the Cloud Knowledge Model, e.g. RAM 8 GB.

3 * attr is an attribute of a feature in a given feature model.

4 */

5 void mapAttribute(QuantifiableElement quant, Attribute attr) {

6 // Convert the quant value to the same unit than attr

7 int quantValue = convert(quant, attribute.getUnit());

8 int card = getCardinality(attr.getValue(), quantValue);

9 // Set the cardinality of the attribute parent feature

10 attr.getFeature().setCardinality(card);

11 }

12

13 /**

14 * Precondition: attributeValue and requiredValue

15 * are expressed in the same unit.

16 * attributeValue is the provided resource value.

17 * requiredValue is the value defined in the Cloud Knowledge Model

18 */

19 int getCardinality(int attributeValue, int requiredValue) {

20 int card = 1;

21 int referenceValue = attributeValue;

22 while (attributeValue < requiredValue) {

23 card++;

24 attributeValue = attributeValue + referenceValue;

25 }

26 return card;

27 }

Listing 6.1: Assignment of feature cardinality regarding attribute value

Cloud Knowledge Model. Second, it bridges the semantic gap between cloud environments
by mapping one Cloud Knowledge Model concepts to features in different feature models
with the same semantics. For example, features Load Balancer and HAProxy in Figure 6.3 are
mapped to the same Cloud Knowledge Model concept Load Balancer, since they are semanti-
cally equivalent even if their names differ. Finally, it reduces the range of feature models to
be configured by acting like a filter. Indeed, it avoids checking the validity of certain feature
models whose configuration can not cope with the requirements set. When a concept cannot
be mapped to a feature, then the related feature model is not considered for the rest of the
configuration process, since the related cloud environment is unsuitable.

101

Chapter 6. SALOON, a Model-based Approach for Selecting and Configuring Cloud Environments

6.5 Automated Configuration and Product Derivation

Even if the selection of features in the different feature models is automated regarding the
defined mapping relationships, the developer still has to select the final cloud environment.
Indeed, several cloud feature model configurations may be valid regarding the given re-
quirements. In such a case, the developer selects a cloud that fulfills her/his requirements
relying on additional criteria, e.g., the configuration price.

6.5.1 Cost Estimation for Cloud Selection

Once features are selected in the different feature models regarding the defined set of re-
quirements and mapping relationships, SALOON searches for a valid configuration involv-
ing those selected features. For instance, regarding REQ2: {8 GB RAM}, SALOON searches
for a valid configuration involving 2 Virtual Machine instances or 16 Dyno instances in the
Windows Azure and Heroku feature models respectively. This is done by translating the cloud
feature models, which are CardEx ones, to the related constraint satisfaction problem as de-
fined in Chapter 4, Section 4.4 and by reasoning on this CSP using a CSP solver.

Once a valid configuration is found, SALOON provides a mean to compute the cost for
such a configuration through a cost estimation engine integrated to the platform. Know-
ing the price of a configuration represents one of the main concerns when selecting a cloud
environment [DHTCB14]. However, the real price paid by the developer once the cloud en-
vironment is configured and the application is running cannot be precisely computed, since
it depends on how such an application is used, e.g., the load it will support. Therefore, SA-
LOON estimates the minimum cost of a given configuration, i.e., the cost to run an application
on this cloud configuration. The SALOON cost estimation engine relies on a plugin-based
architecture, where each cloud environment supported by the platform owns its specific
plugin dedicated to estimating the cost of the related feature model’s configurations. The
cost estimation engine can thus be easily extended in order to support new cost plugins.
Listing 6.2 defines the interface implemented by the cost plugins. Depending on the cloud
environment, the estimated cost is computed by using different pricing models, i.e., either
per hour, per month or per year. For instance, regarding Windows Azure, it is possible to
select among the three of them.

SALOON can therefore be used as a decision-making tool by the developer, providing an
automated support to find suitable cloud configurations regarding a set of functional and
non-functional requirements. Then, relying on the SALOON cost estimation engine, those
configurations can be filtered, e.g., to select the less expensive one. However, reducing the
configuration cost often means reducing the cloud provided resources as well. Thus, in the
end, the final choice for the cloud environment to be configured comes to the developer, who
then asks SALOON to derivate the related product.

102

6.5. Automated Configuration and Product Derivation

1 public interface IProviderCostEstimator

2 extends IProviderCostEstimatorFactory{

3 public double estimateCost(Configuration conf);

4 public double estimateCostPerHour(Configuration conf);

5 public double estimateCostPerMonth(Configuration conf);

6 public double estimateCostPerYear(Configuration conf);

7 }

Listing 6.2: SALOON cost estimation engine interface

6.5.2 Product Derivation in SALOON

In a software product line, features hold as assets reusable software artifacts that are put
together to derive the final product during application engineering, i.e., after assets have
been implemented (a.k.a. domain engineering). Thus, reasoning on feature combinations to
find a valid product configuration means searching for a proper way to derive concrete soft-
ware artifacts, e.g., code snippets, aspects or model fragments, to yield the software product.
Features can hold none, one or several assets, while an asset can be shared among several
features. In SALOON, feature assets are (i) cloud configuration files and (ii) configuration
commands that can be executed in a command line interface or a dedicated environment.
Therefore, each cloud environment feature model holds its own dedicated assets, since a
configuration file is not valid for two different cloud environments. Even though assets are
different from a cloud feature model to another one, the derivation process remains the same
for each of them i.e., load the feature model, get selected features and derive the configura-
tion files regarding their assets. SALOON thus provides an automated support to reason on
feature model configurations and derive the related products. We illustrate this support with
two cloud environments.

The Heroku PaaS Case Study

We illustrate the use of such assets through the Heroku PaaS example, depicted by Fig-
ure 6.5. For instance, the Java 1.7 feature holds as asset the system.properties file. By
default, OpenJDK 1.6 is installed on Heroku when configuring the environment to host
a Java-based application. However, the developer can choose to use a newer JDK by
specifying e.g., java.runtime.version=1.7 in a system.properties file that must be located in the
root directory of the application to be deployed. Another asset example is the Procfile. The
Procfile is a mandatory text file that must be located in the root directory of the application as
well, that explicitly defines, among others, which process must be run once the environment
is configured, e.g., the main class for a Java application. While being configured, Heroku
searches for such a file. If not found, the configuration process is stopped. It is thus held by

103

Chapter 6. SALOON, a Model-based Approach for Selecting and Configuring Cloud Environments

the Heroku feature since it is required for each configuration, whatever the selected features.

Heroku

JavaScala

Language
Dyno

[1..150]

Name: size
Type: enum
Values: {1X, 2X}

system
.properties

heroku'ps:scale'web=

file

command
(or part of)

Procfile

1.6 1.7

heroku'run'22size=

Name: ram
Type: enum
Values: {512, 1024}

Dyno.size = 1X ⟶ Dyno.ram = 512
Dyno.size = 2X ⟶ Dyno.ram = 1024

project/build
.properties

project/
build.sbt

build.sbt

Figure 6.5: The Heroku feature model and its assets (excerpt)

Feature may also holds as asset configuration commands. Regarding the Heroku
example, those commands are commands provided by the Heroku SDK, accessible from
the developer’s command shell. For instance, the Dyno feature holds as asset commands,
or more precisely command parts. Thus, these commands have to be completed to be
properly executed. For the Dyno feature, its attributes and cardinality are used to complete
the commands. For instance, let us consider a valid configuration involving 8 Dynos whose
size is 1X. Taking into account this configuration, SALOON derivates the two following
commands, heroku ps:scale web=8 and heroku run --size=1X. When several commands are
required to configure the cloud environment, they are gathered in a single script shell file,
which can then be executed in a command line interface.

Let us now consider as an example the set of requirements REQ3: {Scala}. Then, for
Heroku to be properly configured to host a Scala application, several configuration files
are required: the Procfile, the build.sbt and a project directory including a build.sbt and a
build.properties files. All these files must be placed at the root of the Scala application,
for the Heroku environment to recognize the Scala nature of the application and thus
be properly configured. SALOON also derivates the related commands.sh file to automate
the configuration of the environment regarding the requirements. Figure 6.6 depicts the
different files derived by SALOON regarding REQ3.

104

6.5. Automated Configuration and Product Derivation

▼ Heroku

 ▼ project

 build.properties

 build.sbt

 build.sbt

 Procfile

(a) derived files

import com.typesafe.startscript.StartScriptPlugin

version := "1.0"

scalaVersion := "2.9.2"

(b) build.sbt (excerpt)

 #!/bin/bash
 git init
 git add .
 git commit -m "Scala app"
 heroku create
 git push heroku master
 heroku run --size=1X
 heroku open

(c) commands.sh

Figure 6.6: derived files to configure Heroku for hosting a Scala application

Figure 6.6a illustrates the derived tree view, with the 4 required configuration files. An
excerpt of the build.sbt file is depicted by Figure 6.6b, while Figure 6.6c shows the derived
commands, gathered in the commands.sh file. This example illustrates how defining such
files by hand can be error-prone. First, the tree view must be well defined, and the files
must be correctly located. Then, the files must be properly written, e.g., the build.bst Fig-
ure 6.6b. For example, the correct Scala version must be defined, and even the blank lines are
required, otherwise Heroku does not recognize the file and the configuration fails. Finally,
the commands must be well-written, and in the correct order, to be properly executed.
Since the Heroku feature model holds these artifacts as assets, they can be automatically
generated by SALOON, and the commands.sh file can thus be executed in a reliable way. As
each cloud environment relies on its own commands, SALOON presupposes that the correct
set of libraries are present when executing the commands, e.g., Git for Figure 6.6 (c).

The Windows Azure IaaS Case Study

When dealing with IaaS environments, SALOON relies on the same derivation principles
but derived files are slightly different. The derivation process is twofold. First, scripts and
commands for virtual machine creation are derived. Then, SALOON derivates the scripts
required to configure the whole environment to host the application, e.g., install the Tomcat
application server. Let us take as example the Windows Azure environment. To configure
a virtual machine, one must (i) create a cloud service that will host the virtual machine,
(ii) create a storage service to be used as hard drive of the virtual machine, (iii) retrieve an
operating system image and (iv) create the virtual machine. These configuration steps can
be automated, e.g., by relying on the Windows Azure REST API. For instance, the request
defined in Listing 6.3 creates the cloud service that hosts the virtual machine.

1$ -X POST --key arg1 --cert arg2 -H arg3 -d @arg4 https://

management.core.windows.net/arg5/services/hostedservices

Listing 6.3: Rest request to create a Windows Azure cloud service

105

Chapter 6. SALOON, a Model-based Approach for Selecting and Configuring Cloud Environments

In this REST request, arg1, ..., arg5 are parameters given to the derivation engine of
SALOON. arg1 and arg2 are private key and certificate used to authenticate the developer
configuring the environment, arg3 is the header for the request body and arg4 is the body
of the request, as defined in Listing 6.4, specifying in particular the location used to deploy
the virtual machine.

1<CreateHostedService xmlns="http://schemas.microsoft.com/windowsazure">
2 <ServiceName>SALOON</ServiceName>
3 <Label>Label4SALOON</Label>
4 <Location>North Europe</Location>
5</CreateHostedService>

Listing 6.4: Body.xml for the cloud service creation request

Finally, arg5 is the identifier used to define the cloud service, e.g., SALOON_ID. All
these arguments are automatically filled when SALOON derives the related request.

Once created, the virtual machine is said empty, that is, there is no service running on top
of the operating system to host the application. Based on the developer choices done through
the Cloud Knowledge Model, SALOON can, according to the operating system, derivate the
commands used to install the required software. For instance, if the Tomcat 7 application
server is part of the requirements, the SALOON derivation engine yields the commands de-
picted in Listing 6.5.

1$ sudo apt-get update

2$ sudo apt-get install tomcat7

Listing 6.5: Installing software components on a Linux-based virtual machine

This example is based on the apt-get command-line tool, used in particular to handle the
installation of software components on Linux-based distributions. Line 1 is used to update
the list of available packages, i.e., software components, to be sure to get the last available
packages from the apt repository. Executing line 2 installs the Tomcat 7 application server.

6.6 Challenges Revisited and Discussion

We have presented SALOON, our platform for selecting and configuring cloud environment,
relying on software product lines. Let us now revisit the challenges identified in Section 6.2
and discuss how our approach face them.

106

6.6. Challenges Revisited and Discussion

1. Find a suitable environment. To face this challenge, SALOON relies on three main
characteristics. First, the modeling of cloud environment provided functionalities as
CardEx feature models. Second, the gathering of cloud features, reified as concepts,
into a Cloud Knowledge Model allowing the developer to specify functional and non-
functional requirements. Finally, the use of mapping relationships between the Cloud
Knowledge Model and the different feature models, providing an automated support
to search for suitable cloud feature models.

2. Find a proper configuration. To face this challenge, SALOON leverages the use of
CardEx feature models to describe cloud environment. Indeed, once translated to CSP,
finding a valid configuration regarding the set of selected features is well-known, e.g.,
using off-the-shelf CSP solvers. Then, SALOON provides a cost estimation engine, com-
puting the cost of a given configuration The developer can thus select the configuration
that best suits the defined functional and non-functional requirements.

2. Ensure a reliable configuration. To face this challenge, SALOON relies on the deriva-
tion process of the software product line whose feature model’s configuration has been
selected by the developer. SALOON thus derives cloud configuration files, together
with a set of commands that must be executed by the developer for the cloud envi-
ronment to be configured, e.g., commands from a cloud SDK. Therefore, relying on
SALOON, the developer avoids a tedious and error-prone process usually done manu-
ally.

On the use of a model-based approach.

The SALOON platform relies on three metamodels, as explained in Section 6.4. The advan-
tage of such an approach is its modularity, since models can be added, removed or updated
without impacting other elements. Moreover, such an approach can be used for any domain
where several feature models are required to describe the domain variability, and where an
automated support is required for features selection and configuration analysis. Thus, what
make SALOON tailored for cloud environments selection and configuration are (i) the Cloud
Knowledge Model and cloud feature models and (ii) the artifacts used to yield the final
software product, i.e., cloud configuration files and scripts. In addition, such a modularity
enables the feature model configuration analysis support to be used independently from
the rest of the SALOON platform, as explained in Chapter 4. On the other hand, the main
drawback of such an approach is that designing models represents a significant investment.
Moreover, those models have to be maintained over time for the platform to work properly,
and such a maintenance is error-prone. There are two possible solutions to overcome the
first shortcoming. The first one is to reverse-engineer cloud feature models from their web
configurator [AAHC14]. The second one is to provide SALOON as a service, where domain
architects would have a backend entry point, allowing them to design new cloud feature
models and update existing ones. Regarding the second shortcoming about maintaining
existing models, SALOON precisely integrates an automated support for reasoning on
cardinality-based feature model consistency (see Chapter 5), thus helping architects in this

107

Chapter 6. SALOON, a Model-based Approach for Selecting and Configuring Cloud Environments

maintenance.

On the use of constraints in the Cloud Knowledge Model.

A question that may arise while reading this chapter is: since constraints can be defined in
the Cloud Knowledge, then what is the difference between the Cloud Knowledge Model
and the feature models, and why the configuration analysis cannot be properly handled
by the Cloud Knowledge Model? Constraints defined in the Cloud Knowledge Model are
constraints that are not cloud-specific. Thus, these constraints are shared among every
cloud environment. On the other hand, constraints defined in the feature models are
cloud-specific, and thus can not be defined in the Cloud Knowledge Model. For instance,
a constraint implying the selection of a feature, which is valid for a given feature model,
may lead to inconsistencies in another feature model, e.g., the feature does not exist. Cloud
configurations thus cannot be analyzed in the Cloud Knowledge Model.

On the use of a plugin-based approach for the cost estimation engine.

In SALOON, the configuration cost is computed relying on a dedicated engine. The reader
may thus wonder why we did not decide to model the cost in the feature models, e.g., using
feature attributes. The reason is about the complexity of calculating a configuration cost,
which is not as simple as the multiplication of the feature cost by the number of feature
instances. Indeed, for a feature f whose cost would be 0, 02 $/h, a configuration with 10
instances of f would not necessarily costs 0, 2 $/h (10 × 0, 02 $/h). For instance, a discount
can be given starting from 5 instances, with a decreasing price for instances 5 to 10. There-
fore, capturing the cost information in the feature models would require more attributes and
complex constraints, thus hindering their readability and use.

6.7 Summary

This chapter presented SALOON, our approach based on software product lines principles
to select and configure cloud environments. SALOON relies on several pillars. First, cloud
environments variability is described in CardEx features models, with one CardEx feature
model per cloud. As the number of cloud environments is significant, and therefore the
number of feature models in SALOON, selecting features manually in each feature model is
a tedious and error-prone process. To face this issue, SALOON provides a Cloud Knowledge
Model, together with mapping relationships between this model and the feature models.
Such mappings automate the features selection in the different feature models, while the
SALOON end-user, i.e., the developer, relies on the Cloud Knowledge Model as the entry-
point of the platform. The Cloud Knowledge Model, the mapping relationships and the
feature models being described as models, it brings an high flexibility and modularity to the
platform. Finally, SALOON supports the developer by computing a cost estimation for suit-
able cloud configurations, and by derivating cloud configuration files and scripts, defined
as assets of the feature models.

108

6.7. Summary

This chapter concludes the contribution of this dissertation, which started in Chapter 4
with a description of our support for designing and reasoning on CardEx feature models.
We have then explained in Chapter 5 how evolving cardinality-based feature models may
lead to inconsistencies regarding their cardinalities, and how to detect and explain those
inconsistencies. Finally, Chapter 6 described SALOON, our platform to automatically select
and configure cloud environments relying on software product lines principles.

The next part of this dissertation is dedicated to give more details on the implementation
of our approach, as well as to describe the experimentations we led to evaluate our work.

109

Part IV

Validation

111

Chapter 7

Validation

Contents

7.1 Introduction . 113

7.2 Tool Support . 114

7.2.1 The SALOON Model-based Architecture 115

7.2.2 The Cloud Knowledge Model Interface 115

7.2.3 The Mapping Relationships . 117

7.2.4 Feature Model Consistency Checking 118

7.2.5 Feature Model Configuration Analysis 119

7.2.6 Cost Estimation Engine . 121

7.2.7 Product Derivation . 121

7.3 Experiments and Evaluation . 122

7.3.1 Soundness . 123

7.3.2 Scalability . 124

7.3.3 Practicality . 132

7.4 Discussion . 134

7.5 Summary . 135

7.1 Introduction

In this chapter, we describe the implementation details of SALOON. This includes all the
tools related to the different SALOON phases described in Chapter 6, enabling the developer
to configure a cloud environment, starting with application requirements specification and
obtaining at the end the configuration files and executable scripts, as well as the consistency
analysis support we described in Chapter 5. We also report on some experiments we con-
ducted to evaluate SALOON. This evaluation investigates in particular the soundness, the

113

Chapter 7. Validation

scalability and the practicality of our approach when dealing with numerous cloud environ-
ments.

The chapter is structured as follows: Section 7.2 describes all the implementation details
about the tools we implemented for SALOON. In Section 7.3, we report on some experi-
ments we conducted to evaluate the platform. Section 7.4 discusses on the advantages and
limitations of our approach. Finally, Section 7.5 summarizes and concludes the chapter.

7.2 Tool Support

This section presents the different tools and implementation details used at different phases
in the software product line engineering process SALOON relies on, from requirements spec-
ification to products derivation.

T
o

o
l
S

u
p

p
o

rt

Application
Server

Cloud

Database

SQL NoSQLTomcat Jetty

Variability)Model

Application
Server

Cloud

Database

SQL NoSQLTomcat Jetty

Product)configura4on

Assets

{"id":&"SensApp",

&&"nodeTypes":&[{&"id":&"t14micro",

& &&&&&&&&"os":&"GNULinux",

& &&&&&&&&&… }&],

&&"artefactTypes":&[

{"id":&"NoSQL",

&"retrieval":&"wget&http://cloudml.org/services/nosql.sh",

&"deployment":&"sudo&nosql.sh",

&"provides":&[{&"id":&"NoSQLDB"&}]&&},

{"id":&"Jetty",

&"retrieval":&"wget&http://cloudml.org/services/jetty.sh",

&"deployment":&"sudo&jetty.sh",

&"provides":&[{&"id":&"JettyContainer"&}]&&},

&

{"id":&"SensApp",

&…

&"deployment":&"sudo&sensapp.sh",

&"requires":&[{&"id":&"JettyContainer"&},

&& &&&&&&&&&&&&{&"id":&"NoSQLDB"&}]&&}

]

}&&&&&&&&&&&&&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&...

{"id":&"SensApp",

&&"nodeTypes":&[{&"id":&"t14micro",

& &&&&&&&&"os":&"GNULinux",

& &&&&&&&&&… }&],

&&"artefactTypes":&[

{"id":&"NoSQL",

&"retrieval":&"wget&http://cloudml.org/services/nosql.sh",

&"deployment":&"sudo&nosql.sh",

&"provides":&[{&"id":&"NoSQLDB"&}]&&},

{"id":&"Jetty",

&"retrieval":&"wget&http://cloudml.org/services/jetty.sh",

&"deployment":&"sudo&jetty.sh",

&"provides":&[{&"id":&"JettyContainer"&}]&&},

&

{"id":&"SensApp",

&…

&"deployment":&"sudo&sensapp.sh",

&"requires":&[{&"id":&"JettyContainer"&},

&& &&&&&&&&&&&&{&"id":&"NoSQLDB"&}]&&}

]

}&&&&&&&&&&&&&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&...

{"id":&"SensApp",

&&"nodeTypes":&[{&"id":&"t14micro",

& &&&&&&&&"os":&"GNULinux",

& &&&&&&&&&… }&],

&&"artefactTypes":&[

{"id":&"NoSQL",

&"retrieval":&"wget&http://cloudml.org/services/nosql.sh",

&"deployment":&"sudo&nosql.sh",

&"provides":&[{&"id":&"NoSQLDB"&}]&&},

{"id":&"Jetty",

&"retrieval":&"wget&http://cloudml.org/services/jetty.sh",

&"deployment":&"sudo&jetty.sh",

&"provides":&[{&"id":&"JettyContainer"&}]&&},

&

{"id":&"SensApp",

&…

&"deployment":&"sudo&sensapp.sh",

&"requires":&[{&"id":&"JettyContainer"&},

&& &&&&&&&&&&&&{&"id":&"NoSQLDB"&}]&&}

]

}&&&&&&&&&&&&&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&...

{"id":&"SensApp",

&&"nodeTypes":&[{&"id":&"t14micro",

& &&&&&&&&"os":&"GNULinux",

& &&&&&&&&&… }&],

&&"artefactTypes":&[

{"id":&"NoSQL",

&"retrieval":&"wget&http://cloudml.org/services/nosql.sh",

&"deployment":&"sudo&nosql.sh",

&"provides":&[{&"id":&"NoSQLDB"&}]&&},

{"id":&"Jetty",

&"retrieval":&"wget&http://cloudml.org/services/jetty.sh",

&"deployment":&"sudo&jetty.sh",

&"provides":&[{&"id":&"JettyContainer"&}]&&},

&

{"id":&"SensApp",

&…

&"deployment":&"sudo&sensapp.sh",

&"requires":&[{&"id":&"JettyContainer"&},

&& &&&&&&&&&&&&{&"id":&"NoSQLDB"&}]&&}

]

}&&&&&&&&&&&&&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&...

Composi4on

So#ware(Product(Line(A(

Cloud
Knowledge

Model

specifies
requirements

Mapping

Configuration
Analysis

Cloud A

Cloud i

Cloud N

...

...

1 2

6

4

defines

Dom

defines

Dom

Dev

SPL(i(

SPL(N(

A(

 Derivation

Cost
Estimation

5

3

Dev

executes

Feature Model A

Cloud Knowledge
Model

- Java
- EMF
- REST / jQuery

Mapping
Relationships

- Java
- EMF

Design and
Consistency

- Java
- EMF
- Sat4j

Configuration
Analysis

- Java
- Choco 3

Cost
Estimation

- Java

Product
Derivation

- Java
- Acceleo

1 2 3 4 5 6

Figure 7.1: Tool support overview

114

7.2. Tool Support

Figure 7.1 depicts the different tool support parts and how they correspond to the dif-
ferent phases of the SALOON architecture. There are six parts in total as follows: 1 Cloud
Knowledge Model, to specify the application’s requirements; 2 Mapping Relationships, to
link concepts in the Cloud Knowledge Model with features one the feature models; 3 De-
sign and Consistency, that covers feature models definition and analysis of their consistency
regarding cardinalities; 4 Configuration Analysis, used to search for a valid configuration
regarding selected features; 5 Cost Estimation, which provides a mean to estimate the cloud
configuration cost; and finally 6 Product Derivation, to obtain the configuration files and
scripts of the products. We describe in details those different parts in the following sections.
However, as 1 , 2 and 3 share the same technology to define the different involved mod-
els, we start with a description of such tool support.

7.2.1 The SALOON Model-based Architecture

The SALOON platform relies on three metamodels: the Domain Knowledge Metamodel, the
Mapping Metamodel and the CardEx Metamodel, as described in Chapter 6. These metamodels
are used to create instances such as the Cloud Knowledge Model, as well as mapping
models and feature models. To define those models and metamodels, we rely on the Eclipse

Modeling Framework (EMF) [SBPM09], which is one of the most widely accepted metamodel-
ing technologies. Each metamodel is thus described as an ecore file while dynamic instances,
e.g., cloud feature models, are defined as XMI models. The XMI format is used to support
model persistence, in particular for SALOON to store the different models in a dedicated
repository.

Listing 7.1 illustrates the different tags and elements of the EMF representation of the
Cloud Knowledge Model. For instance, Tomcat is a CountableElement, sub-concept of the
Application Server concept. This inheritance relationship is described using EMF references,
e.g., inherits="//@concepts.0/@subConcept.1" line 19, where numbers are indexes. Thus,
@concepts.0 is the first concept of the list, i.e., TechnicalElement, and @subConcept.1 is the
second sub-concept of @concepts.0, i.e., Application Server. Finally, lines 30 to 33 illustrates
QuantifiableElements, where a value is given to the Memory and CPU concepts, 4 and 1 GB
respectively.

7.2.2 The Cloud Knowledge Model Interface

The configuration of cloud feature models is done in an automated way using the Cloud
Knowledge Model as entry point of the SALOON platform. To make SALOON easier to
handle (the EMF interface to manage models is not user-friendly), we expose this Cloud
Knowledge Model as a RESTful service that allows the developer to select concepts regard-
ing the application requirements. The Cloud knowledge model is thus exposed as an HTML

115

Chapter 7. Validation

1 <?xml version="1.0" encoding="ASCII"?>

2 <ckm:DomainKnowledgeModel xmi:version="2.0"

3 xmlns:xmi="http://www.omg.org/XMI" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

4 xmlns:dkm ="http://fr.saloon.model.dkm"

5 xsi:schemaLocation="http://fr.saloon.model.dkm ../metamodel/DomainKnowledgeModel.ecore">

6 <concepts name="TechnicalElement">

7 <subConcept name="Language">

8 <subConcept name="Java" inherits="//@concepts.0/@subConcept.0">

9 <subConcept name="Java 6"

10 inherits="//@concepts.0/@subConcept.0/@subConcept.0" />

11 <subConcept name="Java 7"

12 inherits="//@concepts.0/@subConcept.0/@subConcept.0" />

13 </subConcept>

14 <subConcept name="Ruby" inherits="//@concepts.0/@subConcept.0" />

15 <subConcept name="Python" inherits="//@concepts.0/@subConcept.0" />

16 </subConcept>

17 <subConcept name="Application Server">

18 <subConcept xsi:type="ckm:CountableElement" name="Tomcat"

19 inherits="//@concepts.0/@subConcept.1">

20 <subConcept xsi:type="ckm:CountableElement" name="Tomcat 6.0"

21 inherits="//@concepts.0/@subConcept.1/@subConcept.0" />

22 <subConcept xsi:type="ckm:CountableElement" name="Tomcat 7.0" />

23 </subConcept>

24 <subConcept xsi:type="ckm:CountableElement" name="Jetty"

25 inherits="//@concepts.0/@subConcept.1" />

26 </subConcept>

27 </concepts>

28 <concepts name="Provisioning">

29 <subConcept name="Resource">

30 <subConcept xsi:type="ckm:QuantifiableElement" name="Memory"

31 inherits="//@concepts.1/@subConcept.0" quantity="4.0" unit ="GB"/>

32 <subConcept xsi:type="ckm:QuantifiableElement" name="CPU"

33 inherits="//@concepts.1/@subConcept.0" quantity="1.0" unit ="GB"/>

34 </subConcept>

35 </concepts>

36 </ckm:DomainKnowledgeModel>

Listing 7.1: CloudKnowledgeModel.xmi

client, invoking SALOON Java methods dedicated to mapping through RESTful services us-
ing jQuery, a fast and feature-rich JavaScript library [jqu]. More precisely, SALOON relies on
the 1.10.2 version of the jQuery library. As the Cloud Knowledge Model evolves e.g., a new
feature model is added to the platform, SALOON automatically generates the HTML client
regarding the current version of the Cloud Knowledge Model. For instance, for a basic con-
cept, SALOON generates an HTML table cell with its name and a checkbox, for this concept
to be selected if required.

As depicted by Figure 7.2, the client proposes the different concepts defined in the Cloud
Knowledge Model. They can be selected and, in some cases, values need to be specified. For
instance, when PostgreSQL X.X and Tomcat 6.0 are selected, the developer can specify the
required size or the number of application server instances respectively.

116

7.2. Tool Support

Figure 7.2: The Cloud Knowledge Model interface

7.2.3 The Mapping Relationships

Once concepts are selected and values defined in the Cloud Knowledge Model, SALOON

provides, relying on mapping relationships, an automated support to select the related fea-
tures in each feature model. Listing 7.2 depicts the mapCKMWithFM method, called for each
feature model to address this feature selection.

117

Chapter 7. Validation

1 void mapCKMWithFM(EObject ckm, EObject mappingModel, EObject featureModel) {

2 TreeIterator<Concept> concepts = (TreeIterator<Concept>) ckm.eAllContents();

3 while (concepts.hasNext()) {

4 Concept concept = concepts.next();

5 if (concept.isSelected()) {

6 TreeIterator<Mapping> mappings = (TreeIterator<Mapping>) mappingModel.eAllContents();

7 while (mappings.hasNext()) {

8 Mapping mapping = mappings.next();

9 if (mapping instanceof ConceptToFeature) {

10 ConceptToFeature conToFeat = (ConceptToFeature) modelElement;

11 if (conToFeat.getFrom().getName().equals(concept.getName())) {

12 Feature featureToSelect = conToFeat.getTo();

13 selectFeature(featureToSelect, featureModel);

14 }

15 } else if (mapping instanceof ConceptToAttribute) {

16 ConceptToAttribute conceptToAttribute = (ConceptToAttribute) modelElement;

17 QuantifiableElement quant = conceptToAttribute.getFrom();

18 Attribute attr = conceptToAttribute.getTo();

19 mapAttribute(quant, attr);

20 } else if (mapping instanceof MappingRule) {

21 MappingRule rule = (MappingRule) modelElement;

22 boolean conditionRespected = dealWithCondition(rule.getCondition());

23 if (conditionRespected) {

24 ValueAssignment assignment = rule.getAssignment();

25 dealWithAssignment(assignment);

26 }

27 }

28 }

29 }

30 }

31 }

Listing 7.2: Features selection regarding selected concepts

For each concept in the Cloud Knowledge Model (lines 2-4), if the concept is selected
(line 5), then the algorithm searches for an existing mapping between this concept and a
feature of the feature model given as parameter. If a mapping is found, it is either a Concept-

ToFeature, a ConceptToAttribute or a MappingRule one (lines 9, 15 and 20). In the first case, the
related feature must be selected (line 13). In the second situation, the mapAttribute method
is called, already discussed in Chapter 6, Listing 6.1 (line 19). Finally, if the condition of the
MappingRule is satisfied, then the related assignment must be satisfied as well (lines 23-25).

7.2.4 Feature Model Consistency Checking

As described in Chapter 5 Section 5.5, feature models are translated into the Aralia textual
format of the BR4CP project [BR4]. This translation is done through the SALOON Java class
BR4CPBuilder. This class provides several methods to translate an EMF feature model into
the Aralia format, e.g., translateFeaturesIntoVariables described in Listing 7.3.

If the EMF container of the feature is the feature model (line 7), then this feature is the
root feature of the feature model and is mandatory. The only value for the domain of its
related variable is then 1 (line 8). For all other features, this domain is built regarding their

118

7.2. Tool Support

1 void translateFeaturesIntoVariables(FeatureModel fm) {

2 FeatCardinality featureCardinality;

3 int min, max;

4 String varName;

5 for (Feature feature : fm.getFeatures()) {

6 varName = feature.getName();

7 if (feature.eContainer() instanceof FeatureModel) {

8 String varString = "#(1,1,[" + varName + ".1]);";

9 br4cpVariables.add(varString);

10 } else {

11 featureCardinality = feature.getFeatureCardinality();

12 min = featureCardinality.getCardinalityMin();

13 max = featureCardinality.getCardinalityMax();

14 String varString = "#(1,1,[" + varName + "." + min;

15 for (int i = min+1; i <= max; i++) {

16 varString = varString + "," + varName + "." + i;

17 }

18 varString = varString + "]);";

19 br4cpVariables.add(varString);

20 }

21 }

22 }

Listing 7.3: From EMF to Aralia

cardinality range, i.e., the lower and upper bounds (lines 11-18). These variables are stored
into the br4cpVariables list (lines 9 and 19) to be written into the related Aralia file. Then,
this file is given as input to the Sat4j solver, for the consistency of the feature model to be
checked.

7.2.5 Feature Model Configuration Analysis

To reason on CardEx feature models, and determine wether a configuration is valid or
not, feature models are translated to CSP. In particular, SALOON relies on the Choco
solver [JRL08]. We selected Choco because of its maturity and spread usage in research,
education and industry. However, the architecture of SALOON is flexible enough to facilitate
the support for any Java CSP solver. The version of Choco used in SALOON is Choco 3.1.1.
Listing 7.4 illustrates an excerpt of how CardEx feature models are translated into a Choco
model.

The first method is used to translate features into variables. With Choco 3, variables
require a name, the lower and upper bounds for its domain and the solver used to reason on
these variables. Building a variable relies on the VariableFactory (VF) provided by Choco (line
5). Lines 10 to 25 describe how a ValueOperation is built (see Chapter 4 for its description).
First, the involved ConstrainableElement is retrieved. We suppose it to be stored somewhere,
e.g., features are stored in a map (line 6) and retrieved using the getCSPVariableFromFeature

method. Then, the operation itself is built, either when no upper bound is defined (line 20) or

119

Chapter 7. Validation

1 void buildFeatureVariable(FeatureModel fm) {

2 Solver solver = new Solver();

3 for (Feature feature : fm.getFeatures()) {

4 FeatCardinality card = feature.getFeatureCardinality();

5 IntVar variable = VF.bounded(feature.getName(), 0, card.getMax(), solver);

6 mapFeatToVariables.put(variable.getName(), variable);

7 }

8 }

9
10 Constraint buildValueOperation(ValueOperation valueOperation) {

11 IntVar var;

12 ConstrainableElement consElem = valueOperation.getConstrainableElement();

13 if (consElem instance of Attribute) {

14 var = getCSPVariableFromAttribute((Attribute) consElem);

15 } else {

16 var = getCSPVariableFromFeature((Feature) consElem);

17 }

18
19 if (valueOperation.getMax() == -1) {

20 return ICF.arithm(var, ">=", valueOperation.getMin());

21 } else {

22 return LCF.and(ICF.arithm(var, ">=", valueOperation.getMin()),

23 ICF.arithm(var, "<=", valueOperation.getMax()));

24 }

25 }

Listing 7.4: From EMF feature models to Choco

when both bounds are defined (lines 22-23). In the first case, it relies on the IntConstraintFac-

tory (ICF), while the second case requires both the ICF and LogicalConstraintFactory provided
by Choco.

In our approach, attributes are translated to variables as well. The type of Choco variable
depends on the type of attribute to translate, defined as follows:

- VF.bounded(attributeName, intValue, intValue, solver) for an at-
tribute of type int;

- VF.bounded(attributeName, 0, 1, solver) for an attribute of type boolean;

- VF.real(attributeName, floatValue, floatValue, floatPrecision,

solver) for an attribute of type real;

- VF.enumerated(attributeName, values, solver) for an attribute of type
enum;

- VF.bounded(attributeName, intMin, intMax, solver) for an attribute of
type bounded;

An attribute is taken into consideration when reasoning on a configuration if its parent
feature is also part of the configuration. Thus, the relationship between an attribute and its
parent feature is the same as the optional feature relationship, and is described in Listing 7.5.

120

7.2. Tool Support

1 LCF.ifThenElse(ICF.arithm(featureVar, ">", 0),

2 ICF.arithm(attributeVar, ">", 0),

3 ICF.arithm(attributeVar), "=", 0)));

Listing 7.5: Relationship between an attribute and its parent feature with Choco

7.2.6 Cost Estimation Engine

As described in Chapter 6 Section 6.5.1, the SALOON cost estimation engine relies on a
plugin-based architecture, where each cloud environment supported by the platform owns
its specific plugin dedicated to estimating the cost of the related feature model’s configura-
tions. Listing 7.6 illustrates two of those plugins, gathered here for the sake of simplicity,
and described using the JavaScript Object Notation (JSON) format [jso].

1 "AmazonEC2": {

2 "location": "US East",

3 "vm": [

4 { "size": "M", "os": "Ubuntu", "rate": "hour", "price": "0.084" },

5 { "size": "L", "os": "Ubuntu", "rate": "hour", "price": "0.17" },

6 { "size": "XL", "os": "Ubuntu", "rate": "hour", "price": "0.33" },

7]

8 }

9 "ElasticHosts": {

10 "resources": [

11 {

12 "memory": [

13 { "size": "512", "rate": "hour", "price": "0.019" },

14 { "size": "512", "rate": "month", "price": "6.99" },

15 { "size": "512", "rate": "year", "price": "69.9" },

16]

17 }

18]

19 }

Listing 7.6: Pricing models using JSON format

For instance, regarding the Amazon EC2 environment, the price depends on the size of
the selected virtual machine vm, and is proportional with respect to this size. Contrarily
to Amazon EC2, Elastic Hosts proposes a discount according to the duration of the resources

allocation. Thus, for the same duration, it is cheaper to select the year rate than pay twelve
times the month rate, since a discount equivalent to two months is proposed.

7.2.7 Product Derivation

SALOON supports the developer when configuring a cloud environment by deriving the
related cloud configuration scripts and files. This derivation process relies on the Acceleo
environment [acc]. Acceleo is an implementation of the MetaObject Facility (MOF) [MOF]

121

Chapter 7. Validation

model-to-text standards. It provides a flexible and simple environment to design and de-
velop a variety of code generators, using simple and standard templates. Furthermore, it is
compatible with the Eclipse environment, and thus with our EMF-based models. Figure 7.3
depicts some Acceleo mechanisms.

Figure 7.3: The Acceleo generation engine

One of these mechanisms relies on OCL to execute requests on a model element. For
instance, a feature model is given as parameter to the request, used to retrieve selected fea-
tures in this feature model. For all elements of the model (eAllContents()), only elements of
type Feature are selected. Then, among these features, those present in the configuration are
selected. In addition, templates are used to generate text. If the file tag is defined, then the
generated text will be contained in this file, e.g., Procfile. In this example, depending on the
language, different instructions will be generated.

7.3 Experiments and Evaluation

This section reports on some experiments we conducted to evaluate the SALOON platform.
The aim of these experiments is to evaluate the usefulness of SALOON for selecting and
configuring a well-suited cloud environment. Moreover, adding new constraints support for
CardEx feature models brings an additional cost when running the platform. This section
thus investigates whether the extra capabilities in terms of configuration introduced in the
platform penalize its performance or not. This evaluation aims at investigating the three
following criteria:

C1: Soundness. Is the platform, and our approach for CardEx feature models in particular,
well-suited to support cloud environment modeling and configuration?

C2: Scalability. Is SALOON still performing when handling feature models with a sub-
stantial amount of features and constraints and when selecting among tens of cloud
environments? What about consistency checking?

122

7.3. Experiments and Evaluation

C3: Practicality. Does running SALOON when configuring cloud environments to deploy
applications improve reliability and efficiency?

We describe in details in the following sections the experiments we conducted to evalu-
ate our approach with respect to these criteria.

7.3.1 Soundness

The aim of this evaluation is to empirically assess the soundness of our approach, by using
the CardEx metamodel as support to define a substantial number of cloud environments.
This evaluation is based on 10 cloud environments, each one then being modeled as a fea-
ture model which conforms to the CardEx metamodel. We define this set of 10 cloud feature
models in the following as the Cloudcorpus. All feature models from the Cloudcorpus are avail-
able in Appendix A. The selection of these 10 cloud environments is based on the following
criteria:

- Representativeness. Both IaaS and PaaS clouds environments are represented in the
Cloudcorpus. Thus, we cover a broader range of cloud providers and show that our
approach is well-suited whatever the cloud layer involved is. Moreover, we select
both well-known and less-known cloud providers, e.g., Windows Azure and Jelastic
respectively.

- Data access. We select clouds whose features are easily accessible either through a web
configurator or in the technical documentation. Indeed, a major issue when modeling
cloud environments is to find the functionalities they provide, an important informa-
tion often hidden in the huge amount of available documentation.

Table 7.1 shows the set of cloud environments we used in our empirical evaluation. For
each one, the table describes the cloud environment name (Cloud), its type (Type), the num-
ber of Features defined in the related feature model, the number of Attributes, and the
number of Constraints. For features and constraints, it gives details on the amount of
features and constraints with cardinalities and attributes, Fcard, Fattr and Ccard, Cattr respec-
tively. To assess the soundness of our approach, we determine how often do cardinalities
and attributes occur in cloud environments feature models, both for features and constraints.
The number of features and constraints with cardinalities and attributes varies from a cloud
environment to another according to the provided services and the way we modeled it, re-
garding the data access criteria described above.

On the whole, regarding the Cloudcorpus, there are 28 features with cardinality and 46
features with attributes, while 188 constraints are based on our CardExConstraint ex-
pressions, which gives an average feature model with about 3 features with cardinality, 5

123

Chapter 7. Validation

Features Constraints

Cloud Type Total Fcard Fattr Attributes Total Ccard Cattr

Amazon EC2 IaaS 23 2 2 5 28 9 18

Cloudbees PaaS 23 2 1 4 12 3 9

Dotcloud PaaS 34 4 3 6 21 6 17

GoGrid IaaS 14 3 4 10 21 7 21

Google AE PaaS 23 1 5 13 10 0 10

Heroku PaaS 42 1 11 20 7 0 3

Jelastic PaaS 31 3 1 2 12 10 0

OpenShift PaaS 29 1 2 7 18 2 15

Pagoda Box IaaS/PaaS 28 5 5 9 8 4 8

Windows Azure IaaS/PaaS 31 6 12 29 46 0 46

Table 7.1: Modeled cloud environments

with attributes and about 19 CardExConstraints. There exist some cloud feature mod-
els without constraint involving cardinalities or attributes. The main reason is the way we
modeled cloud environments. Feature models used in this paper have been manually de-
scribed for illustration purpose, based on our experience in cloud services configuration and
deployment. We thus had to limit our feature modeling to features which are explicitly re-
leased by cloud providers, since constraints finding and modeling for implicit features are
far more complex. Therefore, there might be additional constraints involving cardinalities
or attributes we could not reify.

To summarize, while we can not yet conclude that our approach can be generalized
to every domain with variability, results raising from this evaluation show that it remains
well-suited for cloud environment modeling, while state-of-the-art approaches do not
provide such a support.

7.3.2 Scalability

The aim of the following experiments is to evaluate the performances of the SALOON plat-
form with respect to its scalability. This evaluation is twofold. First, we evaluate the perfor-
mances of SALOON in the whole, i.e., from a set of requirements to a configuration analysis
by the CSP solver. Then, we evaluate how our approach for detecting cardinality inconsis-
tencies presented in Chapter 5 performs with large feature models. All these experiments

124

7.3. Experiments and Evaluation

were performed on a MacBook Pro with a 2,6 GHz Intel Core i7 processor and 8 GB of DDR3
RAM.

From Requirements to Configuration Analysis

This evaluation is divided into three parts. First, we measure the overhead that results from
the addition of the cardinality and attribute-based constraints in the verification time of the
underlying CSP solver. This evaluation aims at showing that the time to solve the models
does not grow significantly with feature models modeled with the extension we provide.
Second, we carried out further experiments to measure the translation time from XMI format
to constraints handled by the CSP solver. This translation process, neither part of the feature
modeling nor the configuration one, may be a threats to scalability of SALOON if taking too
much computation time. Third, we compute the time taken by SALOON to select features
and analyze the related configuration regarding a given set of requirements. The aim of this
evaluation is to show that SALOON supports the configuration of tens of cloud environments
in a reasonable time.

For these experiments, we developed an algorithm that, given nbFeat, nbCons and card-

Max, generates a random CardEx feature model with nbCons constraints and nbFeatures fea-
tures, whose cardinality is in the range [0..cardMax]. This algorithm works as follows. It
creates nbFeat features, then randomly builds the tree hierarchy. More precisely, while there
exist remaining features, it randomly selects a given amount of these features, assigns them
a tree level value and increments this value, which gives the tree depth. For instance, given
nbFeat = 10, a random tree hierarchy with 4 levels is {{f1,f2,f3}, {f4}, {f5,f6}, {f7,f8,f9,f10}}.
Then, for each feature of a given level, the algorithm randomly assigns a given amount of
child features, if possible. In the previous example, if feature f4 has already been assigned
as a child of f1, then f2 and f3 have no child feature. For features having more than one
child, the algorithm determines if the relationship is a basic parent-child relationship, an al-
ternative or an exclusive group (33% probability each). Then, 10% of features are randomly
assigned an attribute, which can be an enumeration or a fixed value, either integer or real
(50% probability each). The algorithm also generates nbCons constraints. Two features are
selected randomly. If at least one of them holds an attribute, then the generated constraint is
either a boolean constraint or a CardEx constraint (50% probability each). Whatever the oper-
ation generated for the CardEx constraint, e.g., a ValueOperation, each value is generated
to fit within the feature cardinality or attributes value, i.e., no inconsistency is introduced. In
our experiments, we only consider non-void random feature models, that is, feature mod-
els with at least one valid configuration. Indeed, our algorithm sometimes generates void
feature models by unfortunate generation of constraints.

For the first experiment, we generate random feature models with 10, 50, 100, 500, 1000,
5000 and 10000 features and we perform 50 random generations for each feature amount.
We then measure the overhead that may result from the additional verifications due to our
CardEx constraints, as well as feature cardinality themselves. We thus perform the random

125

Chapter 7. Validation

generation process twice. First, setting cardMax to 10 and generating attributes and related
constraints. Second, setting cardMax to 1 and disabling attribute generation, thus getting a
Boolean feature model with feature cardinality set to [0..1] or [1..1]. Figure 7.4 depicts the
time taken by SALOON to find a valid configuration, computed as the average time for each
feature amount, and displayed using logarithmic scale.

10 50 100 500 1000 5000 10000

101

102

103

104

Number of features

Ti
m

e
to

so
lv

e
(m

s)

Boolean feature model
CardEx feature model

Figure 7.4: Time to find a valid configuration

For the second experiment, we measure the time taken by SALOON to translate XMI
feature models into CSP constraints. We thus check if this translation is not a threat to
SALOON scalability, in particular regarding large feature models (nbFeat > 500). We also
performed 50 random generations for each feature amount. We then measure the average
computation time among these 50 runs, regarding the different model sizes. The results are
depicted in Figure 7.5, using logarithmic scale.

10 50 100 500 1000 5000 10000
100

101

102

103

Number of features

Tr
an

sl
at

io
n

ti
m

e
(m

s)

Figure 7.5: Time to translate from XMI to CSP

For the third experiment, we measure the time taken by SALOON for selecting features
in the different feature models regarding a set of requirements and check if the related
configuration is valid or not. We thus pick randomly between 2 and 10 requirements in the

126

7.3. Experiments and Evaluation

Cloud Knowledge Model and compute the average time regarding the feature model set
size, as described by Table 7.2. In this experiment, generated feature models size is lower
than 100 features, to be as close as possible to cloud environment feature models described
in the Cloudcorpus.

Nb models 10 50 100 200

Time (s) 1,3 2,8 3,3 4,4

Table 7.2: Feature selection and configuration analysis time

Result Analysis. Regarding the first experiment, the aim was to compute the verification
time overhead for the same randomly generated feature model, either with cardinality, at-
tributes and constraints over them or considerer as a boolean feature model. As illustrated
by Figure 7.4, the support for our CardEx expressions generates a small increase in the re-
quired time to find a solution. In average, this overhead is about +8%. Although we did
not define a threshold for this experiment, we can fairly argue that the overhead that results
from using our approach is not a major threat to scalability, as finding a valid configuration
is done within a few milliseconds for feature models with less than 5000 features, which are
the majority of them. Moreover, 10 seconds remains fairly reasonable for feature models
with 10000 features.

Second, as shown by Figure 7.5, the translation time from a feature model described as
an XMI model to CSP constraint is from 16 to 519 ms for 10 to 10000 features respectively.
This time is slightly increasing with the size of the model, but we believe that it is not a major
threat to scalability for the two following reasons. First, the bigger feature model from the
cloud corpus contains only 42 features (Heroku). Moreover, most of existing feature mod-
els contain less than 500 features, e.g., those from the S.P.L.O.T. repository [spl]. Then, one
of the biggest existing feature model, which is the Linux feature model, has over 5000 fea-
tures [SLB+11]. This translation time overhead remains therefore fairly low and insignificant
and does not hinder the usability of the SALOON framework.

Finally, SALOON is able to map the requirements by selecting the related features and
check the whether the configuration is valid or not within a few seconds, even for 200
feature models, as illustrated by Table 7.2. This time is negligible and is not a threat to
the scalability of SALOON, compared to the time taken to configure those feature models
manually. We believe that 2 to 10 requirements is a representative amount. Basically,
developers specifies their requirements among the language support, the application server,
the database, the number of virtual machines or the amount of resources. Moreover,
specifying more requirements would be usually inefficient, as it increases the risk not to
find any valid configuration for this set of requirements.

127

Chapter 7. Validation

Overall, as our empirical evaluation shows, we observe that SALOON is well-suited to
(i) handle an important number of cloud environments and (ii) deal with realistic cloud
feature models, with a substantial number of features and constraints, either boolean or
CardEx ones.

Cardinality Inconsistencies Detection

The intent of this evaluation is to assess the scalability of our approach when evolving large
cardinality-based feature models and checking their consistency. As a reminder, note that
there is no attribute in these feature models, and they only hold as constraints boolean
ones or CardEx constraints with a ValueOperation on a feature cardinality, further
referred to as cardinality-based constraints. As we did not find large cardinality-based
feature models in the literature, we thus implemented an algorithm to randomly generate
such feature models. This algorithm, given nbFeatures and cardMax, generates a random
feature model with nbFeatures features, whose cardinality is randomly assigned a range
R, with R ⊆ [0..cardMax]. This algorithm creates nbFeatures features, then builds the tree
hierarchy as described in the previous scalability experiment. Then, the algorithm generates
cross-tree constraints, where two features are selected randomly, with one constraint for
every 10 features as proposed by Thüm et al. [TBK09]. Either boolean or cardinality-based
constraints are generated (50% probability each). For the latter, the constraint range or
required instances amount is built to fit within the feature cardinality such as the generated
feature model is consistent. Here again, we only consider non-void feature models, that is,
feature models with at least one valid configuration.

To measure the performance of our approach while detecting cardinality inconsisten-
cies, we also generate feature model edits. In particular, regarding the edits described in
Chapter 5, Section 5.3, we implemented the following operations: (1) move a feature, (2)
add a cross-tree constraint, (3) update a feature cardinality and (4) update a cross-tree con-
straint. Operation (1) picks at random an existing feature, and create a new feature assigned
randomly as a child or a parent of this feature. In (2), the algorithm generates a random
constraint, while a feature cardinality is randomly changed by operation (3). Finally, oper-
ation (4) makes a boolean constraint a cardinality-based constraint or update the range of
an existing cardinality-based constraint. For each generated feature model, we generate one
or several edits leading, on purpose, to inconsistency. For each edit, we thus know what
kind of inconsistency will result. For instance, we update a cross-tree constraint and check
the consistency of the targeted feature, which should be local range inconsistent. We then
evaluate how our approach performs when handling cardinalities, in particular regarding
the potential combinatorial explosion. Indeed, the number of combinations that the solver
has to examine grows significantly when using cardinalities. To reduce this issue and im-
prove our inconsistency detection mechanism, we adapt the algorithm described in Chap-
ter 5, Definition 2. In our experiments, to check the global range consistency of a feature
f , the translation algorithm does not update the feature cardinality range considering all f

128

7.3. Experiments and Evaluation

parent features, but only one of them. More precisely, it is updated using its direct parent
feature if its cardinality upper bound is greater than one, or the algorithm search for another
parent feature whose cardinality upper bound is greater than one, until the root feature.
If no feature matches this criteria, then the local range consistency of f is checked. This
improvement is used only for these experiments, as the approach described in Chapter 5
handles any cardinality-based feature models. We argue that this adaptation is fair since,
in all cardinality-based feature models we found in the literature, including ours, we never
found any feature model whose cardinality upper bound is greater than one for more than
two features hierarchically linked, e.g., A:[0..3], B:[1..5] and C:[0..4] with A parent of B and B
parent of C.

Experiment 1. For the first experiment, we measure the computation time required to
find an inconsistency with (i) one random edit leading to a local or global range inconsis-
tency, (ii) a fixed value for cardMax and (iii) an increasing number of features nbFeatures,
thus varying the size of the feature model. We set the value of cardMax to 10. We argue that
this value is a fair value to evaluate our approach. First, as explained above, we never found
any feature model whose cardinality upper bound is greater than one for more than two
features hierarchically linked. Second, in the case we found a feature with a high cardMax

number, its parent feature was either an optional or mandatory feature with cardMax set to 1.
Our algorithm does not take into consideration these findings and generates feature models
with a random cardinality for each feature, i.e., feature models whose combinatory grows
significantly with feature model size.

0

10

20

30

40

50

60

70

80

10 20 50 100 200 500 1000 2000

T
im

e
 (
s)

Nb Features

Global Range Inconsistency

Local Range Inconsistency

Figure 7.6: Detecting an inconsistency in feature models with maximum upper bound cardi-
nality set randomly from 1 to 10.

In this experiment, we vary the size of the feature model from 10 to 2000 features which
is, once again, more significant than the cardinality-based feature models we found, includ-
ing ours. Generating random feature models leads to important differences regarding com-

129

Chapter 7. Validation

putation time to detect inconsistency for the same feature model size. This is due to the
randomly generated tree hierarchy and constraints as well as the random edits performed.
To deal with this issue, we performed 200 generation runs for each feature amount and com-
puted the average time. As shown in Figure 7.6, our detection algorithms perform the same
way to detect both local and global range inconsistencies, even if detecting a global range
inconsistency generates a small overhead compared to detecting a local one, e.g., 2,5 seconds
for 1000 features. This overhead results from the additional variables and constraints the
solver has to handle, due to the way we translate the feature model into the configuration
problem textual format as described in Chapter 5, Section 5.5.

Thus, for the same generated feature model, there are more variables and constraints to
take into consideration when checking the global range consistency than when checking the
local one. Moreover, even though the detection time seems important regarding the feature
model size (in particular compared to boolean feature models, e.g., about 1 second to find
an edit for a feature model with 2000 features [TBK09]), it is explained by the amount of
variables the solver has to handle in such cases. Given a feature f with a cardinality range
[0..8], then 9 variables are required to reason on this feature, i.e., one per cardinality value.
For instance, for cardinality-based feature models with 2000 features and 200 constraints,
the solver has to reason on an average model of 15670 variables, 11910 constraints and 16120

variables, 12240 constraints to detect local and global range inconsistencies respectively.
Overall, for cardinality-based feature models with less than 200 features, the computation
time is less than 1 second. This time then increases significantly for larger feature models,
with an average time of 9 seconds for 500 features, 36 seconds for 1000 features and up to 73
seconds for 2000 features.

Experiment 2. For the second experiment, we measure the computation time required
to find an inconsistency with (i) one random edit leading to a local or global range inconsis-
tency, (ii) an increasing value for cardMax and (iii) a fixed number of features, with nbFeatures

= 200. We consider this value is fair for this experiment, as this is larger than the biggest
cardinality-based feature model we found. To generate feature models with features whose
cardinality is the one expected, we modified our algorithm such as a feature is given a cardi-
nality [m..n], with m ∈ {0,1} and n = cardMax. The aim of this experiment is to evaluate how
our approach performs in presence of several features with a high cardinality. We thus vary
cardMax from 10 to 45 and compare the computation time required to detect either a local or
global range inconsistency. We performed 500 generation runs for each cardMax value and
computed the average time. Figure 7.7 depicts the results of this experiment.

As expected, the time required to detect an inconsistency increases as the value of
cardMax does, from less than one second for cardMax = 10 to more than 18 seconds for
cardMax = 45 (18 and 21,8 seconds in average to detect a local or a global range inconsistency
respectively). As in the previous experiment, detecting a global range inconsistency
generates an overhead compared to detect a local one, e.g., one second for cardMax = 25 or
two seconds for cardMax = 35.

130

7.3. Experiments and Evaluation

0

5

10

15

20

25

10 15 20 25 30 35 40 45

T
im

e
 (
s)

cardMax

Global Range Inconsistency

Local Range Inconsistency

Figure 7.7: Detecting inconsistency while varying the maximum upper bound cardinality
(FM size = 200).

Experiment 3. For the third experiment, we measure the computation time required to
find inconsistencies with (i) nbEdits random edits leading to local or global range inconsis-
tencies, with nbEdit ∈ [1..nbFeatures/20], (ii) a random value for cardMax with cardMax ∈

[1..30] and (iii) an increasing number of features nbFeatures, thus varying the size of the fea-
ture model. Our generation algorithm is thus slightly evolved to generate random feature
models whose one feature out of ten has its cardinality upper bound set to cardMax. Other
features are either optional or mandatory features one usually meet in boolean feature mod-
els. The aim of this experiment is to evaluate how our approach performs when checking
cardinality-based feature models whose structure is as close as possible as the one we met in
the literature. Moreover, this is not limited to one edit, but several random ones, as it occurs
in classic feature oriented development, e.g., staged configuration [CHE05b]. We thus gener-
ate random edits and compute the time required to find an inconsistency, if any. Figure 7.8
depicts the results of these experiments, where the time is an average computation time over
200 generation runs.

The resulting trend matches the one depicted in Figure 7.6, but this approach is more
than twice more efficient to detect inconsistencies, e.g., 15 seconds for 1000 features in
this experiment in comparison to 36 seconds for the same features amount in the first
experiment. We would expect such a result, as there are less features with a high cardinality
upper bound value. The time required to detect an inconsistency remains however quite
significant. This is due to the value of cardMax (200 features with a cardinality upper bound
set up to 30 for a feature model with 2000 features) and to the random number of edits, e.g.,
up to 50 for a feature model with 1000 features.

131

Chapter 7. Validation

0

5

10

15

20

25

30

35

40

10 20 50 100 200 500 1000 2000

T
im

e
 (
s)

Nb Features

Global Range Inconsistency

Local Range Inconsistency

Figure 7.8: Detecting an inconsistency in feature models whose one feature out of ten has its
cardinality upper bound greater than one.

Overall, our approach is well-suited to detect inconsistencies in cardinality-based fea-
ture models whose size is lower than 500 features (about 9 seconds in the worst case, 3 sec-
onds otherwise). For larger feature models, the number of features as well as the cardinality
upper bound value as an important impact on the computation time. However, although
we did not define a threshold for this experiment, we can fairly argue that these results are
acceptable, as we did not find in the literature such large cardinality-based feature models.

7.3.3 Practicality

The aim of this last experiment is to evaluate the reliability and efficiency of the SALOON

platform, compared to a manual configuration process. This experiment is divided into two
stages. For the first stage, an experiment is conducted with a group of 10 participants, either
Ph.D. students or developers. Each of these participants is given the same task: Configure an

Heroku environment, upload a web application, then add a PostgreSQL support. The prerequisite
is that Git and Eclipse must be installed on every participant computer, while we provide
the web application (a basic HelloWorld application as a .war file). They are then free to
select the way they proceed, either using Git (G), the Eclipse plugin (P) or the web interface
(W). Participants are asked to time their experiment and define their experience in cloud
configuration and deployment in a range from beginner (1) to expert (5). Table 7.3 describes
the results of this first experiment.

For the second stage, we conducted another experiment with a group of 8 participants, 5
from the first group and 3 persons which were not involved in the first stage, one developer

132

7.3. Experiments and Evaluation

Participant 1 2 3 4 5 6 7 8 9 10

Time (min) 26 19 32 26 48 60 17 - 23 28

Method G G G P P G G G W G

Experience 2 4 2 3 3 1 4 1 3 2

App running X X - X X - - - X -

Table 7.3: Configuring Heroku and deploying the application

and two researchers. They were asked quite the same task: Use SALOON to configure an

Heroku environment, upload a web application and add a PostgreSQL support. Table 7.4 describes
the results of this second experiment.

Participant 1 2 3 4 5 6 7 8

Time (min) 4 6 7 5 8 11 12 7

Method SALOON SALOON

Experience 4 1 4 1 2 2 2 3

App running X X X X X X X X

Table 7.4: Configuring Heroku and deploying the application using SALOON

Result Analysis. The task asked to the first group of participants is rather simple (adding
a PostgreSQL support is straight forward, it is not asked to connect the web application with
the database) but takes at least 19 minutes to be manually completed by an experienced par-
ticipant. One of them (#8) even gave up after several failed attempts. Moreover, the results
show that whatever the way used to deploy, it can be very long to achieve the task, e.g., par-
ticipant #5 with a high level of experience and a dedicated plug-in. The last row of the table
indicates whether the application is running or not at the end of the deployment. Indeed,
an environment can be created and (incorrectly) configured, leading to the application not
to run properly. Overall, 50% of participants failed to get the application running and the
average time among those who succeeded was more than 28 minutes to configure the cloud
environment and get the application running properly.

For the second stage, every participant succeeded. Using SALOON, there is no need
to configure anything manually. Participants (i) select the correct set of requirements in

133

Chapter 7. Validation

the Cloud Knowledge Model (Java and PostgreSQL) then run SALOON, (ii) copy/paste the
generated configuration files in the application root directory and (iii) run the commands
generated in the executable file to automate the configuration. One can observe a difference
in the time required by the five first participants and the three last ones (6 and 10 minutes
in average respectively). This is mainly due to the fact that the first five participants already
knew the task to achieve and experiment to be performed, while the third last discovered
at the same time the tool and the experiment. In average, the time required to achieve this
experiment was 8 minutes using SALOON and 28 minutes with a manual process (for the
latter, we consider the average value for the five successful deployments), leading to a time
reduction of 72%.

Over the five participants from the first stage who did not get their application running,
four of them had a Procfile that was not properly written, leading to a wrong configuration.
This experiment thus highlights the need for an automated support. Indeed, participants are
asked to configure a cloud environment to deploy a basic application, and 50% of them fail.
We argue that this number can be higher, especially if the configuration is more complex and
requires more knowledge. Moreover, we only consider in this experiment one given cloud
provider while there are tens of them to be taken into account when considering deploying
an application.

7.4 Discussion

In this section, we present and discuss several concerns of our evaluation that may form
threats to its validity.

On the Scalability Experiments

For those experiments, we tested our approach on randomly generated feature models. Even
though it seems fair, we did implement the generation algorithm and thus expect the feature
models to conform a certain structure, e.g., with a given number of constraints. Moreover,
those feature models conform to the CardEx metamodel we also defined (more precisely,
to the CardEx metamodel without meta-classes related to attributes for experiments about
detecting cardinality inconsistencies). This might not be representative of the usage of such
feature models, in particular in the industrial domain. Moreover, the algorithm does not
generate completely random feature models, since they are consistent after being generated,
and since we only consider non-void feature models. The generation process is thus guided
to fit once again a certain structure. Regarding our evaluation about detecting cardinality
inconsistencies, one could also argue that our evaluation is not complete as it does not take
into account global range consistency for the whole list of parents, but only one of them.
However, such a result would only serve as comparison, as we did not find any cardinality-
based feature model matching this pattern.

134

7.5. Summary

On the Selected Cloud Environments

The choice of the Cloudcorpus threatens the evaluation validity. We first selected a substan-
tial number of cloud providers from many sources (our knowledge, case studies in cloud
related conference papers, web comparator, etc.). However, the intrinsic nature of cloud
computing, in particular the variability of cloud environments, was a limiting factor. Cloud
environments provide a shared pool of highly configurable computing resources, in several
configuration levels. It was thus impossible for us to fully reify the cloud environments
and we had to limit our feature modeling to features which are explicitly released by cloud
providers, since implicit features and constraints finding and modeling are far more com-
plex. Feature models used in our experiments were thus not exhaustive. Moreover, the
number of cloud environments studied in the Cloudcorpus is relatively low regarding the real
number of existing providers. However, as explained in Section 7.3.1, we try to be as fair as
possible when selecting our case studies for them to be representative of the domain. Finally,
due to the evolutive nature of cloud computing, e.g., cloud providers that appear/disappear
or existing environments evolving, Cloudcorpus case studies might not be valid over the long
term.

7.5 Summary

In this chapter, we have presented a validation for the SALOON framework. We presented
the implementation details of various elements of the platform, and then evaluated different
concerns of our approach. Overall, as our empirical evaluation shows, we observe that SA-
LOON is well-suited to handle the configuration of cloud environments. Relying on CardEx
feature models to describe these environments is not a threat to practicality nor scalabil-
ity as complex constraint expressions can be defined, and finding a related configuration is
achieved with a negligible overhead. Moreover, our approach is well-suited to detect incon-
sistencies in cardinality-based feature models whose size is lower than 500 features (about
9 seconds in the worst case, 3 seconds otherwise). For larger feature models, the number
of features as well as the cardinality upper bound value have an important impact on the
computation time. When handling a significant amount of modeled cloud environments,
SALOON is still performing and the computation time required to find a valid configura-
tion from a set of requirements remains fairly low, thus not hindering its usability. Finally,
automating the feature model configuration files generation improve the reliability of the
deployment process compared to manual and error-prone process.

This chapter concludes the third part of this document, which was dedicated to the val-
idation of our approach. In the following chapter, we summarize the main contributions of
this dissertation, present the conclusions of the research work, and define a set of perspec-
tives for future work.

135

Part V

Conclusion

137

Chapter 8

Conclusion and Perspectives

Contents

8.1 Summary of the Dissertation . 139

8.2 Contributions . 140

8.3 Perspectives . 142

8.3.1 Short-term Perspectives . 142

8.3.2 Long-term Perspectives . 143

In this chapter, we summarize our thesis dissertation by discussing the challenges and
goals addressed, and we outline our contributions. Then, we discuss our short-term and
long-term perspectives related to the work presented in this dissertation.

8.1 Summary of the Dissertation

Modern software and computer configurations are increasingly distributed, and use a vari-
ety of software services, in particular with the adoption of the cloud computing. Cloud com-
puting represents a promising paradigm to achieve the utility computing vision, where de-
velopers access services on-demand, based on their requirements, without regard to where
the services are hosted or how they are delivered. Those resources include computational
and memory blocks, as well as virtual machines, application servers, databases, or any re-
quired library. Developers thus take advantage of the flexibility of this provisioning model
and rely on cloud environments to host their applications. In these new usages, dealing with
the variety of available cloud environments and services they provide requires a significant
knowledge. Developers thus need to be supported in their cloud selection and configuration
choices.

However, offering an approach for helping developers selecting and configuring cloud
environments is not straightforward. Numerous clouds environment are available, each one

139

Chapter 8. Conclusion and Perspectives

providing several functionalities with different non-functional properties. Moreover, there
is no consensus on how these environments are documented, nor how their services can be
configured. In addition, these environments evolve over time, making their knowledge, and
therefore their configuration, difficult to manage without a dedicated support. In this thesis,
we addressed these challenges and provided cloud models relying on a well-known formal-
ism, together with a set of approaches and tools to help the developer face these issues.

The solution we propose is based on well accepted and defined technologies and stan-
dards. In particular, our platform, called SALOON, relies on the principles of software prod-
uct line engineering. We leverage these principles to provide an automated support for cloud
selection and configuration. In SALOON, cloud environment commonalities and variabilities
are described using feature models. Feature models enable the definition of both coarse-
grained and fine-grained cloud functionalities, and provide a reasoning support dedicated
to configuration analysis. As one feature model describes one cloud environment, it would
be tedious and error-prone to select features manually for each feature model. We thus pro-
pose in SALOON a model reifying all cloud elements present in each feature model, together
with mapping relationships from these elements to the related features. This model, called
the Cloud Knowledge Model, is also used by the developer to specify its functional and non-
functional requirements. To cope with the evolution of cloud environments, and therefore
of their related feature models, we provide means to make them evolve properly, by check-
ing their consistency and explaining, when necessary, why the evolution edit introduced an
inconsistency. Finally, SALOON exploits the software product line derivation process to gen-
erate configuration files and scripts related to a valid configuration established in a given
feature model.

Thus, from the developer’s perspective, SALOON acts as a black-box: the developer de-
fines the requirements using the Cloud Knowledge Model as entry point of the platform,
and retrieves the configuration files according to these requirements. In the next section, we
present an overview of the contributions associated with our SALOON platform.

8.2 Contributions

The contributions of this thesis, made as part of our work around the SALOON platform, are
summarized as follows:

Support for CardEx Feature Models

In Chapter 4, we introduced our CardEx metamodel. This metamodel provides an abstract
syntax to define feature models with attributes and cardinalities, together with constraints
over them. These extensions are required to describe the variability of cloud environments,
and existing feature modeling approaches only provide a partial support for such exten-
sions. In particular, we introduce new constraint expressions regarding cardinalities, and

140

8.2. Contributions

describe their semantics. This metamodel reifies relevant concepts and elements from ex-
isting feature modeling approaches so that existing feature models, even without extension,
are natively managed by SALOON. The metamodel is simple and easy to use, and through
our experimentation we have demonstrated that it is expressive enough to model different
kinds of relationships required when describing cloud environments. In addition, we de-
scribe translation rules for mapping a CardEx feature model into a Constraint Satisfaction
Problem (CSP). Thus, reasoning on CardEx feature models e.g., search for a valid configu-
ration, can be automated relying on any existing CSP solver. Compare to Boolean feature
models, the addition of our CardEx expressions generates a small increase in the required
time to perform such a reasoning, which remains negligible.

An evolution support

As cloud environments evolve over time, their feature models have to evolve as well to be
kept up-to-date. However, extending feature models with cardinalities make their evolu-
tion complex, as inconsistencies may arise regarding those cardinalities. In Chapter 5, we
thus describe atomic edits that can be performed while evolving those feature models, and
distinguish two kinds of possible cardinality inconsistencies. We then show how such incon-
sistencies can be related to the recently defined notion of global inverse consistency in the
area of CSP. The benefit of relating our approach to the one on global inverse consistency is
to allow us reusing existing CSP tools to detect inconsistencies in cardinality-based feature
models. We thus provide an automated support for both detecting and explaining where, how

and why did an inconsistency arise when evolving the feature model. Even though the time
required to detect an inconsistency is quite significant, SALOON is the first approach address-
ing this support. With such a support, SALOON helps developers evolving cardinality-based
feature models and thus, makes cloud feature models edition more reliable.

An automated support

SALOON encapsulates the CardEx metamodel and the evolution support, and provide in
addition several automated supports to help developers selecting and configuring cloud
environments. Developers specify their requirements using the Cloud Knowledge Model,
to finally retrieve configuration files corresponding to these requirements and the selected
cloud. In between, all processes are automated, as explained in Chapter 6. First, from the set
of requirements and thanks to mapping relationships, features are selected in the different
cloud feature models, feature cardinalities are computed and defined, and attributes are
given a certain value, avoiding a tedious an error-prone manual definition. Then, SALOON

determines whether the selected features represent a valid configuration or not in those
feature models, relying on a CSP solver. When a valid configuration is found, SALOON

estimates the cost of such a configuration using the cost estimation engine, which relies
on defined cost models. Finally, by using configuration files and executable commands as

141

Chapter 8. Conclusion and Perspectives

assets of cloud feature models, SALOON automates the generation of fulfilled configuration
files, together with an executable script specific to the targeted cloud. We showed that using
such an automated support lead to a time reduction of 73% and improve the configuration
success rate of 50%, even for a simple Java application deployment.

8.3 Perspectives

Although the work presented in this dissertation covers the needs of selecting and configur-
ing cloud environments, there is still some work that could be done to improve our research.
In this section, we thus discuss some short-term and long-term perspectives that should be
considered in the continuation of this work.

8.3.1 Short-term Perspectives

Improve SALOON Practicality

As explained in Chapter 7, feature models are defined within SALOON using the Eclipse
Modeling Framework (EMF). Even though EMF is a powerful dedicated modeling tool, it
provides limited support for defining feature models, either graphically or textually. Feature
models are thus defined in a tree view way, or using an XML-based textual format. The
practicality of SALOON regarding feature model description would benefit from a dedicated
Graphical User Interface (GUI) or a DSL, since textual variability modeling approaches seem
to be a well-suited alternative, as explained in Section 3.4, Chapter 3. Moreover, the GUI
could be used when evolving cardinality-based feature models to improve the inconsistency
understanding, e.g., by propagating the explanations given by the solver to the feature model
graphical editor and highlighting model elements leading to the inconsistency.

Improve Interoperability

Currently, the definition of feature models is done within SALOON using EMF. An interest-
ing improvement would be to provide means to import existing feature models defined with
state-of-the-art approaches, and thus support different formats. Such feature models would
thus benefit from the CardEx expressions we support e.g., by improving their semantics or
enabling the search for a valid configuration regarding a given property defined using at-
tributes. A translation engine would be required, to parse the existing feature model and
generate one conforming to the CardEx metamodel. A close-related idea is to generate con-
figurations that conform to the Open Virtualization Format (OVF), an open-source standard
for packaging and distributing software and applications for virtual machines. Numerous
cloud environments use or are about to use OVF, thus improving the portability of an appli-
cation from a cloud to another one.

142

8.3. Perspectives

Deal with Cardinalities at Solution Space Level

We propose in this dissertation an approach for modeling and reasoning on cardinality-
based feature models. Those processes are done at problem space level, but issues may
arise at solution space level, i.e., when managing concrete software artifacts (see Section 2.3,
Chapter 2). For example, when deriving several instances of the same feature, one may need
to explicitly refer to a precise instance, e.g., one which has a particular property and which
differs from the other. A possible solution is to represent the children of a feature by a set
of arrays of instances, as proposed by Cordy et al. [CSHL13]. The current implementation of
SALOON does not provide such a capability, as it is not required. Indeed, in our approach
dedicated to cloud environments, cardinalities are used to get the final value required in the
configuration e.g., 2 Dynos, but not for referring to a specific element. However, it could be
required if SALOON was used for another domain of study.

8.3.2 Long-term Perspectives

Consider Multi-Cloud Configurations

In our approach, we address the configuration of cloud environments regarding a given
set of requirements. In the current version of the SALOON platform, a cloud environment
is not considered anymore if it does not provide the whole set of services matching those
requirements. However, a multi-cloud configuration may be better suited regarding those
requirements [PHM+12]. We believe that our approach could also be relevant to address a
multi-cloud configuration i.e., a subset of the application deployed on one cloud, and an-
other one on another cloud. A multi-cloud configuration is useful in several cases e.g., data
stored on a private cloud while computing processes run on a public one. The main issue to
cope with when considering such configurations while relying on feature models is to know
how and where these feature models can be sliced, to get partial configurations [ACLF11b].
However, such a challenge has only be faced for Boolean feature models until now.

Towards a DSPL Approach

Another domain of extension of the SALOON platform is to leverage Dynamic Software Prod-

uct Lines (DSPL), thus adding support for product adaptation at runtime [HHPS08]. Indeed,
changes can occur in the application context requiring the cloud environment to be recon-
figured, e.g., non-functional requirements such as response-time, availability or pricing are
violated or new cloud providers, which better meet these non-functional requirements, are
now available. In such cases, the software product line has to be well-suited to handle this
adaptation, e.g., defining a feedback control loop [KC03] that monitors the metrics, detects
adaptation situations and execute the required actions in order to search for a better suited
configuration. Traceability links would also be useful to support this kind of reconfiguration,
as we need to store a trace of the history of previous configurations as well as to store the set

143

Chapter 8. Conclusion and Perspectives

of requirements. Such links could also be used to update the cloud feature model regarding
the running environment e.g., update an attribute related to a non-functional property, such
as the cost of a feature.

SaaS: SALOON-as-a-Service

As described in Chapter 6, SALOON distinguishes between two roles: domain architects and
developers. Domain architects define cloud feature models, while developers use SALOON

to configure a cloud environment regarding a set of requirements. In this dissertation, we
played the role of the architects by defining feature models ourselves. By providing SALOON

as a service with two entry points, we allow architects in real life to come and define their
own cloud environments. Thus, it can be targeted by SALOON and bring more customers to
the cloud provider. Another possibility is to reverse engineering feature models from exist-
ing cloud environments, even if such an approach still needs some improvement [AAHC14].
On the other hand, the second entry point is used by developers, who benefit from this new
delivery model since the platform now proposes more cloud environments. Therefore, there
is a greater chance to find a suitable configuration. It can be seen as a virtuous circle, since if
there is a more cloud environment described and therefore a greater chance to find a proper
configuration, then there will be more developers interested in using SALOON. If there are
more developers using SALOON, then more cloud providers will be interested in getting
their cloud environment described within SALOON.

144

Appendices

145

Appendix A

SALOON models

We report here the models used in the current version of the SALOON platform, i.e., the
Cloud Knowledge Model and the cloud environment feature models.

147

Appendix A. SALOON models

Thing

Technical
Element

Provisioning

Countable
Concept

Application
Server

Database

Language

Framework

Countable
Concept

Tomcat

Jetty

GlassFish

Tomcat 6.0

Tomcat 7.0

Jetty 6.1

GlassFish
3.1

SQL

NoSQL

MySQL

PostgreSQL

MariaDB

MongoDB

CouchDB

Java

Ruby

PHP

Resource

Countable
Concept

MongoDB
2.2

MongoDB
2.2.X

MongoDB
2.4.X

Database Size
Quantifiable

Concept

Cloudant

Database Size

MongoDB
2.0.2

IronCache

RedisGreen

CouchDB
1.2

Database Size

MongoHQ

MongoLab

MongoDB
2.2.X

MongoDB
2.4.X

MongoDB
2.0.2

Quantifiable
Concept

MariaDB
10

MariaDB
5.5

PostgreSQL
8.4

PostgreSQL
9.2

MySQL 5.5

Treasure
Data

PG Backups ClearDB
MySQL

Amazon RDS
Windows

Azure SQL
SQL

Premium

SQL Web
and Business

DatabaseSize

Java 6

Java 7

Ruby 2.0.0

Python Python 2.7

Python
2.7.5

Python
3.3.2

PHP 5.3

PHP 5.4

Clojure
Clojure
1.5.1

Tomcat
7.0.X

JavaScript

Scala

TomEE+

Spring

Node.js

Rails

Play

Play 1.2.3

Rails 3.X

Rails 4.X

Noje.js
0.4.7

Noje.js
0.6.17

Noje.js
0.6.20

Noje.js
0.84

Unit
Frequency

Unit
MHz

GHz

Stockage
Unit MB

GB

TB

Memory

CPU Cores

Bandwidth

Transfer
Rate Unit

BitPerSecond

KBPerSecond

MBPerSecond

GBPerSecond

Storage

Cache

Search
Engine

Cache
Cache
Service

IronCache

Cachely

MemCachier

MemCached

Search
Engine

Web Solr

Flying
Sphinx

Bonsai Elastic
Search

Found Elastic
SearchThing

Quantifiable
Concept

Quantifiable
Concept

Provider

Provider Heroku

Google App
Engine

Windows
Azure

PostgreSQL
9.3

Heroku
Postgres 2.0

PostgreSQL

ElasticHosts

AmazonEC2

Virtual
Machine

OS
Ubuntu
Server

Virtual
Machine

OS

Windows
Server

Legend

Concept

Is a

Uses

Figure A.1: The Cloud Knowledge Model.

148

Amazon
EC2

Virtual
Machine

[1..*]

(Virtual Machine).vmSize= m3.medium → CPU Cores = 1

(Virtual Machine).vmSize= m3.medium → (Virtual Machine).vmMemorySize=3.75

(Virtual Machine).vmSize= m3.medium → (Virtual Machine).vmStorage=4

(Virtual Machine).vmSize= m3.large → CPU Cores = 2

(Virtual Machine).vmSize= m3.large → (Virtual Machine).vmMemorySize=7.5

(Virtual Machine).vmSize= m3.large → (Virtual Machine).vmStorage=32

(Virtual Machine).vmSize= m3.xlarge → CPU Cores = 4

(Virtual Machine).vmSize= m3.xlarge → (Virtual Machine).vmMemorySize=15

(Virtual Machine).vmSize= m3.xlarge → (Virtual Machine).vmStorage=80

(Virtual Machine).vmSize= m3.2xlarge → CPU Cores = 8

(Virtual Machine).vmSize= m3.2xlarge → (Virtual Machine).vmMemorySize=30

(Virtual Machine).vmSize= m3.2xlarge → (Virtual Machine).vmStorage=160

(Virtual Machine).vmSize= c3.large → CPU Cores = 2

(Virtual Machine).vmSize= c3.large → (Virtual Machine).vmMemorySize=3.75

(Virtual Machine).vmSize= c3.large → (Virtual Machine).vmStorage=32

(Virtual Machine).vmSize= c3.xlarge → CPU Cores = 4

(Virtual Machine).vmSize= c3.xlarge → (Virtual Machine).vmMemorySize=7.5

(Virtual Machine).vmSize= c3.xlarge → (Virtual Machine).vmStorage=80

(Virtual Machine).vmSize= c3.2xlarge → CPU Cores = 8

(Virtual Machine).vmSize= c3.2xlarge → (Virtual Machine).vmMemorySize=15

(Virtual Machine).vmSize= c3.2xlarge → (Virtual Machine).vmStorage=160

(Virtual Machine).vmSize= c3.4xlarge → CPU Cores = 16

(Virtual Machine).vmSize= c3.4xlarge → (Virtual Machine).vmMemorySize=30

(Virtual Machine).vmSize= c3.4xlarge → (Virtual Machine).vmStorage=320

(Virtual Machine).vmSize= c3.8xlarge → CPU Cores = 32

(Virtual Machine).vmSize= c3.8xlarge → (Virtual Machine).vmMemorySize=60

(Virtual Machine).vmSize= c3.8xlarge → (Virtual Machine).vmStorage=640

Auto Scaling → Amazon CloudWatch

Name: serviceModel
Type: string
Value: IaaS

Name: vmSize
Type: int
DomainType: enumerate
Domain: {m3.medium, m3.large, m3.xlarge, m3.2xlarge, c3.large,
c3.xlarge, c3.2xlarge, c3.4xlarge, c3.8xlarge}

Name: vmMemorySize (GB)
Type: int
DomainType:list
Domain: {3.75,7.5,15,30}

Name: deploymentModel
Type: string
Value: Public

Location

Name: vmStorage (GB)
Type: int
DomainType:list
Value: {4,32,80,160}

Pricing
Model

EU
US

East

Per
Hour

Services

[0..5]

VPN
Connection

Amazon
VPC

US West
(Oregon)

US West (Northern
California)

Amazon
CloudWatch

Detailed Basic Custom

Auto Scaling

Ubuntu CentOS

Red Hat
EL

Windows
Server

Operating
System

CPU
Cores

[1..32]

Figu
re

A
.2:T

he
A

m
azon

E
C

2
featu

re
m

od
el.

149

A
p

p
en

d
ix

A
.

S
A

L
O

O
N

m
o

d
els

Cloudbees

Language

PHPJava

JavaScript Scala

Service

Database

SQL NoSQL

MySQL ClearDB CouchDB MongoDB

Virtual
Machine

[1..*]

(Virtual Machine).vmMemorySize=1.7 → (Virtual Machine).app-cell=8

(Virtual Machine).vmMemorySize=3.75 → (Virtual Machine).app-cell=30

(Virtual Machine).vmMemorySize=7.5 → (Virtual Machine).app-cell=60

(Virtual Machine).vmSize= m1.small → CPU Cores=1

(Virtual Machine).vmSize= m1.small → (Virtual Machine).vmMemorySize=1.7

(Virtual Machine).vmSize= m1.small → (Virtual Machine).vmStorage=160

(Virtual Machine).vmSize= m1.medium → CPU Cores=1

(Virtual Machine).vmSize= m1.medium → (Virtual Machine).vmMemorySize=3.75

(Virtual Machine).vmSize= m1.medium → (Virtual Machine).vmStorage=410

(Virtual Machine).vmSize= m1.large → CPU Cores=2

(Virtual Machine).vmSize= m1.large → (Virtual Machine).vmMemorySize=7.5

(Virtual Machine).vmSize= m1.large → (Virtual Machine).vmStorage=420

Application
Server

Name: vmSize
Type: int
DomainType: enumerate
Domain: {m1.small, m1.medium, m1.large}

Name: app-cell
Type: int
DomainType:list
Domain: {30,60,120,240}

Name: vmMemorySize (GB)
Type: double
DomainType:list
Domain: {1.7,3.75,7.5}

Name: vmStorage (GB)
Type: int
DomainType:list
Value: {60,410,840}

PostgreSQL

Ubuntu CentOS

Red Hat
EL

Windows
Server

Operating
System

CPU
Cores

[1..2]

Figu
re

A
.3:T

he
C

lou
d

bees
featu

re
m

od
el.

150

dotCloud

Language

PHPJava

Python Perl

Ruby Opa

Node.js

Framework

[1..5]

Service

Database

Server

Search
Server

[1..5]

Static Jetty

Nginx

[0..5]

SQL

NoSQL

MySQL PostgreSQL

[0..5]

Solr

Document
Store

MongoDB

Key-Value
Store

Redis

SMTP SSL

Protocol

Resource

Memory Disk

[1024,2047] Memory.memorySize → Disk.diskSpace >= 10

[2048,2560] Memory.memorySize → Disk.diskSpace >= 20

PHP → Nginx

Perl → Nginx

Python → Nginx

Java → Jetty

PHP → Memory.memorySize >= 64

Ruby → Memory.memorySize >= 64

Python → Memory.memorySize >= 128

Perl → Memory.memorySize >= 64

Java → Memory.memorySize >= 128

Opa → Memory.memorySize >= 64

Node.js → Memory.memorySize >= 64

MySQL' → +64 Memory.memorySize

PostgreSQL' → +64 Memory.memorySize

MongoDB' → +64 Memory.memorySize

Redis' → +64 Memory.memorySize

Static' → +64 Memory.memorySize

Solr' → +128 Memory.memorySize

SSL → Memory.memorySize >= 160

SMTP → Memory.memorySize >= 32

Name: memorySize
Type: integer
Values: [32…2560]

Name: memoryUnitType
Type: string
Value: MB

Name: diskSize
Type: integer
Values: [0…20]

Name: diskUnitType
Type: string
Value: GB

Name: serviceModel
Type: string
Value: PaaS

Name: deploymentModel
Type: string
Value: Public

Location

US East

Figu
re

A
.4:T

he
D

otclou
d

featu
re

m
od

el.

151

A
p

p
en

d
ix

A
.

S
A

L
O

O
N

m
o

d
els

GoGrid

Resource

Bandwidth

[0.. 20]

Service

Load Balancer Cloud Storage

[0.. 20]

(Cloud Server).cloudServerSize= x-small → (Cloud Server). cloudServerMemorySize = 512

(Cloud Server).cloudServerSize= x-small → (Cloud Server). cloudServerDiskSize = 25

(Cloud Server).cloudServerSize= x-small → CPU Cores = 1

(Cloud Server).cloudServerSize= small → (Cloud Server). cloudServerMemorySize = 1

(Cloud Server).cloudServerSize= small → (Cloud Server). cloudServerDiskSize = 50

(Cloud Server).cloudServerSize= small → CPU Cores = 1

(Cloud Server).cloudServerSize= medium → (Cloud Server). cloudServerMemorySize = 2

(Cloud Server).cloudServerSize= medium → (Cloud Server). cloudServerDiskSize = 100

(Cloud Server).cloudServerSize= medium → CPU Cores = 2

(Cloud Server).cloudServerSize= large → (Cloud Server). cloudServerMemorySize = 4

(Cloud Server).cloudServerSize= large → (Cloud Server). cloudServerDiskSize = 200

(Cloud Server).cloudServerSize= large → CPU Cores = 4

(Cloud Server).cloudServerSize= x-large → (Cloud Server). cloudServerMemorySize = 8

(Cloud Server).cloudServerSize= x-large → (Cloud Server). cloudServerDiskSize = 400

(Cloud Server).cloudServerSize= x-large → CPU Cores = 8

(Cloud Server).cloudServerSize= xx-large → (Cloud Server). cloudServerMemorySize = 16

(Cloud Server).cloudServerSize= xx-large → (Cloud Server). cloudServerDiskSize = 800

(Cloud Server).cloudServerSize= xx-large → CPU Cores = 16

(Cloud Server).cloudServerSize= xxx-large → (Cloud Server). cloudServerMemorySize = 24

(Cloud Server).cloudServerSize= xxx-large → (Cloud Server). cloudServerDiskSize = 1200

(Cloud Server).cloudServerSize= xxx-large → CPU Cores = 24

Name: cloudServerSize
Type: enumeration
Value: {x-small,small,medium,large,x-large,xx-large,xxx-large}

Cloud
Server

Name: cloudServerMemorySize
Type: enumeration
Value: {512,1024,2048, 4096, 8192, 16384,24478}

Name:cloudServerMemoryDataUnitType
Type: string
Value: MB

Name: cloudServerDiskSize
Type: enumeration
Value: {25,50,100,200,400,800, 1200}

Name: cloudServerDiskDataUnitType
Type: string
Value: GB

Name: cloudStorageDiskSize
Type: range
Value: [0,1024000]

Name: rate
Type: integer
Values: [0…204800]

Name: bandwidthUnitType
Type: string
Value: GB

Name: serviceModel
Type: string
Value: PaaS

Name: deploymentModel
Type: string
Value: Public

Location

US-West-1 Eu-West-1US-East-1

Linux Windows

Operating
System

CPU
Cores

[1..24]

Figu
re

A
.5:T

he
G

oG
rid

featu
re

m
od

el.

152

(Backend Instance).biSize=B1→ (Backend Instance).biMemorySize= 128

(Backend Instance).biSize=B1 → (Backend Instance).biCpuFrequencyValue=0.6

(Backend Instance).biSize=B2→ (Backend Instance).biMemorySize=256

(Backend Instance).biSize=B2 → (Backend Instance).biCpuFrequencyValue=1.2

(Backend Instance).biSize=B4→ (Backend Instance).biMemorySize=512

(Backend Instance).biSize=B4 → (Backend Instance).biCpuFrequencyValue=2.4

(Backend Instance).biSize=B4_1G→ (Backend Instance).biMemorySize= 1024

(Backend Instance).biSize=B4_1G → (Backend Instance).biCpuFrequencyValue=2.4

(Backend Instance).biSize=B8→ (Backend Instance).biMemorySize=1024

(Backend Instance).biSize=B8→ (Backend Instance).biCpuFrequencyValue=4.8

Google App
Engine

PHP

Java

Python

Ruby

Javascript

Language

Service

Log Caching

Memcache

Protocol

XMPP

Instance

Resource

Disk
Space

Bandwidth

Incoming
Bandwidth

Outgoing
Bandwidth

[0..5]

Backend
Instance

Name: biSize
Type: enumeration
Values: {B1, B2, B4_1G, B4, B8}

Name: transferRateType
Type: string
Value: GBPerSecond

Name: transferRate
Type: range
Value: [1..14400]

Name: transferRateType
Type: string
Value: GBPerSecond

Name: transferRate
Type: range
Value: [1..14400]

Name: diskSize
Type: integer
Value: [1..*]

Name: dataUnitType
Type: string
Value: MB

Name: biMemorySize
Type: enumeration
Value:
[128,256,512,1024]

Name: biDataUnitType
Type: string
Value: MB

Name: biCpuFrequencyType
Type: string
Value: GHz

Name:
biCPufrequencyValue
Type: enumeration
Value: {0.6, 2.4, 4.8, 1.2}

Database

SQL

CloudSQL

Name: serviceModel
Type: string
Value: PaaS

Name: deploymentModel
Type: string
Value: Public

Figu
re

A
.6:T

he
G

oogle
A

p
p

E
ngine

featu
re

m
od

el.

153

A
p

p
en

d
ix

A
.

S
A

L
O

O
N

m
o

d
els

Heroku

Clojure Javascript

Java Python

Ruby Scala

Language

Node.js

Framework

Spring

Rails Play

Dyno

[0..150]

Database

SQL

NoSQL

Heroku
Postgres

Amazon
RDS

Document
Store

Cloudant

Key-Value
Store

RedisGreenIronCache

ClearDB
Treasure

Data

MongoLab MongoHQ

Caching

IronCacheCachely

Web Solr
Found Elastic

Search

Flying Sphinx
Bonsai

Elasticsearch
MemCachier

Service

Spring → Java

Play → Java

Node.js → Javascript

Rails → Ruby

Dyno.dynoSize= 1X → Dyno.dynoMemorySize= 512

Dyno.dynoSize= 2X → Dyno.dynoMemorySize=1024

Dyno.dynoSize= PerformanceDyno → Dyno.dynoMemorySize=6144

Name: dynoSize
Type: enumerate
Values: {1X,
2X,PerformanceDyno}

Name: dynoKind
Type: enumerate
Values: {Web, Worker}

Name: dynoMemorySize
Type: enumerate
Value: [512, 1024, 6144]

Name: dynoCpuFrequency
Type: float
Value: 2.67

Name: dynoMemoryDataUnitType
Type: string
Value: MB

Name: dynoCpuFrequencyType
Type: string
Value: GHz

Name: slugSize
Type: integer
Value: 200

Name:
slugDataUnitType
Type: string
Value: MB

Name: hpDiskSize
Type: enumerate
Value: {1048576,
524888, 262144,
65536}

Name:
hpDataUnitType
Type: string
Value: MB

Name:
tdDiskSize
Type: integer

Value: 153600

Name: rgDiskSize
Type: integer

Value: 750

Name: pgDiskSize
Type: integer

Value: 20480

PG Backups

Name: mhqDiskSize
Type: integer

Value: 512

Name: cDBDiskSize
Type: enumerate
Value: {10240,5120,

1024, 5}

Name: mlDiskSize
Type: enumerate
Value: {61440, 8192,

2048, 496}

Name: cloudantDiskSize
Type: enumerate
Value: {25600, 15360,

10240, 5120, 2048, 1024}

Name: icDiskSize
Type: enumerate
Value: {20480, 5120,

1024, 100}

Name: serviceModel
Type: string
Value: PaaS

Name: deploymentModel
Type: string
Value: Public

Location

US EU

Search
Engine

Figu
re

A
.7:T

he
H

eroku
featu

re
m

od
el.

154

Application
Server

Jelastic

Database

SQL NoSQL

MySQL
5.5

MariaDB

PostgreSQL

MongoDB
2.2

CouchDB
1.2

GlassFish
3.1

Jetty
6.1

[1..8]

Nginx HA

[0..2]

Language

PHP

TomEE+
1.5

Tomcat

7.0 6.0

Cloudlet

[1..64]

Java

7 6

8.4 9.2

10 5.5

SSL BuildVDS

Name: RAM
Type: int
Value: 128

Name: CPU
Type: int
Value: 200

Application Server >= 2 ⟶ Nginx

Tomcat 7.0' ⟶ Java 7

Tomcat 6.0' ⟶ Java 6

GlassFish' ⟶ +5 Cloudlet
TomEE' ⟶ +1 Cloudlet
Jetty' ⟶ +1 Cloudlet
Tomcat' ⟶ +1 Cloudlet
MySQL 5.5' ⟶ +1 Cloudlet
MariaDB' ⟶ +1 Cloudlet
PostgreSQL' ⟶ +1 Cloudlet
MongoDB 2.2' ⟶ +1 Cloudlet
CouchDB 1.2' ⟶ +1 Cloudlet

Figu
re

A
.8:T

he
Jelastic

featu
re

m
od

el.

155

A
p

p
en

d
ix

A
.

S
A

L
O

O
N

m
o

d
els

Openshift

Gear

[1..16]

PHP Perl

Java PythonRuby

Language

Service

Database

SQL MongoDB

MySQL PostgreSQL

SSL

Protocol

Shared Customized

Application
Server

JBoss Zend

Tomcat

Log
System

Gear.gearSize=small → Gear. gearMemorySize=512

Gear.gearSize=small → Gear. gearDiskSize =1

Gear.gearSize=medium → Gear. gearMemorySize=1024

Gear.gearSize=medium → Gear. gearDiskSize =1

Gear.gearSize=large → Gear. gearMemorySize=2048

Gear.gearSize=large → Gear. gearDiskSize =6

Database' → +1 Gear

[2,16] Gear → HAProxy

Zend → PHP

PHP → Gear.gearSize=small

Perl → Gear.gearSize=small

Python → Gear.gearSize=small

Ruby → Gear.gearSize=small

Node.js → Gear.gearSize=small

MySQL→ Gear.gearSize=small

Java → Gear.gearSize >= medium

PostgreSQL → Gear.gearSize >= medium

MongoDB → Gear.gearSize >= medium

HAProxy

Name: gearSize
Type: enumeration
Value: {small,medium,large}

Name: gearMemorySize
Type: enumeration
Value: {512,1024,2048}

Name:gearMemoryDataUnitType
Type: string
Value: MB

Name: gearDiskSize
Type: enumeration
Value: {1,6}

Name: gearDiskDataUnitType
Type: String
Value: GB

Name: serviceModel
Type: string
Value: PaaS

Name: deploymentModel
Type: enumerate
Value: {Public,Private}

Location

US EU

Framework

Node.js

Figu
re

A
.9:T

he
O

p
enShiftfeatu

re
m

od
el.

156

Pagoda
Box

PHP

Language

Service

Database

SQL NoSQL

MySQL MongoDB

Web
Process

Cloud

[1..25]

Resource

Memory Disk

[0..25]

Caching

MemcachedRedis

Worker

[0..25]

CPU CoreProtocol

SSL

Piggy
Back

Self
Signed

Third
Party

Kind

Web Process' → +200 Memory.memorySize

Cloud.dbServiceModel=Private → CPU.cpuCores > 1

Cloud.dbServiceMode=Private → Disk.diskSize >= 100

Cloud.dbServiceModel=Private → Memory.memorySize >= 1024

Cloud.dbServiceMode=Public → Memory.memorySize >= 10

Caching' → +10 Memory.memorySize

Worker' → +200 Memory.memorySize

Web Process' → +1 Bandwidth.rate

Name: memorySize
Type: integer
Values: [200…
385850]

Name: memoryUnitType
Type: string
Value: MB

Name: diskSize
Type: integer
Values: [10…*]

Name: diskUnitType
Type: string
Value: GB

Name: dberviceModel
Type: enumerate
Values: {Private, Public}

Name: rate
Type: integer
Values: [1…25]

Name: bandwidthUnitType
Type: string
Value: GB

Name: serviceModel
Type: string
Value: PaaS

Name: deploymentModel
Type: string
Value: Public

Location

US

Bandwidth
[0..25] [1..25]

Figu
re

A
.10:T

he
P

agod
a

B
ox

featu
re

m
od

el.

157

A
p

p
en

d
ix

A
.

S
A

L
O

O
N

m
o

d
els

Windows
Azure

Virtual
Machine

[0..40]

Resource

Service

Bandwidth

Worker
Instance

[0..20]

Mobile
Service

MS
Standard

MS Free

MS
Premium

[0..10]

Storage

Geo
Redundant

Locally
Redundant

Transactions

Backup

Database

SQL
Premium

[0..10]

Traffic
Manager

[0..100]

(Virtual Machine).vmSize= XS → (Virtual Machine).vmCpuFrequencyValue= 1 (Virtual Machine).vmSize= XS →(Virtual Machine).vmMemorySize= 768

(Virtual Machine). vmSize= S → (Virtual Machine). vmCpuFrequencyValue= 1.6 (Virtual Machine).vmSize= S → (Virtual Machine).vmMemorySize= 1792

(Virtual Machine).vmSize= M → (Virtual Machine).vmCpuFrequencyValue= 1.6 (Virtual Machine).vmSize= M → (Virtual Machine).vmMemorySize= 3584

(Virtual Machine).vmSize= L → (Virtual Machine). vmCpuFrequencyValue= 1.6 (Virtual Machine).vmSize= L → (Virtual Machine).vmMemorySize= 7168

(Virtual Machine).vmSize= XL → (Virtual Machine).vmCpuFrequencyValue= 1.6 (Virtual Machine).vmSize= XL → (Virtual Machine).vmMemorySize= 14336

(Virtual Machine).vmSize= A6 → (Virtual Machine).vmCpuFrequencyValue= 1.6 (Virtual Machine).vmSize= A6 → (Virtual Machine).vmMemorySize= 28672

(Virtual Machine).vmSize= A7 → (Virtual Machine).vmCpuFrequencyValue= 1.6 (Virtual Machine).vmSize= A7 → (Virtual Machine).vmMemorySize= 57344

Server.serverSize= XS → Server.serverCpuFrequencyValue=1 Server.serverSize= XS → Server.serverMemorySize=768

Server.serverSize= S → Server.serverCpuFrequencyValue=1.6 Server.serverSize= S → Server.serverMemorySize=1792

Server.serverSize= M → Server.serverCpuFrequencyValue=1.6 Server.serverSize= M → Server.serverMemorySize=3584

Server.serverSize= L → Server.serverCpuFrequencyValue=1.6 Server.serverSize= L → Server.serverMemorySize=7168

Server.serverSize= XL → Server.serverCpuFrequencyValue=1.6 Server.serverSize= XL → Server.serverMemorySize=14336

Server.serverSize= A6 → Server.serverCpuFrequencyValue=1.6 Server.serverSize= A6 → Server.serverMemorySize=28672

Server.serverSize= A7 → Server.serverCpuFrequencyValue=1.6 Server.serverSize= A7 → Server.serverMemorySize=57344

WorkerInstance.wiSize= XS → WorkerInstance.wiCpufrequencyValue=1 WorkerInstance.wiSize= XS → WorkerInstance.wiMemorySize=768

WorkerInstance.wiSize= S → WorkerInstance.wiCpufrequencyValue=1.6 WorkerInstance.wiSize= S → WorkerInstance.wiMemorySize=1792

WorkerInstance.wiSize= M → WorkerInstance.wiCpufrequencyValue=1.6 WorkerInstance.wiSize= M → WorkerInstance.wiMemorySize=3584

WorkerInstance.wiSize= L → WorkerInstance.wiCpufrequencyValue=1.6 WorkerInstance.wiSize= L → WorkerInstance.wiMemorySize=7168

WorkerInstance.wiSize= XL → WorkerInstance.wiCpufrequencyValue=1.6 WorkerInstance.wiSize= XL → WorkerInstance.wiMemorySize=14336

WorkerInstance.wiSize= A6 → WorkerInstance.wiCpufrequencyValue=1.6 WorkerInstance.wiSize= A6 → WorkerInstance.wiMemorySize=28672

WorkerInstance.wiSize= A7 → WorkerInstance.wiCpufrequencyValue=1.6 WorkerInstance.wiSize= A7 → WorkerInstance.wiMemorySize=57344

WorkerInstance.wiSize= A8 → WorkerInstance.wiCpufrequencyValue=2.6 WorkerInstance.wiSize= A8 → WorkerInstance.wiMemorySize=57344

WorkerInstance.wiSize= A9 →WorkerInstance.wiCpufrequencyValue=2.6 WorkerInstance.wiSize= A9 → WorkerInstance.wiMemorySize=114688

Name: os
Type: enumerate
Values: {Linux, Windows}

Name: vmSize
Type: enumerate
Values: {XS, S, M, L, XL, A6, A7, A8, A9}

Name: transferRateType
Type: string
Value: GBPerSecond

Name: transferRate
Type: range
Value: [1..4000]

Name: wiSize
Type: enumerate
Value: {XS, S, M, L, XL, A6, A7, A8,A9}

Name: serverSize
Type: enumerate
Value: {XS, S, M, L, XL, A6, A7}

Server

Name: vmMemorySize
Type: enumerate
Value: {768,1792,3584,7168,14336,28672,57344}

Name: vmMemoryDataUnitType
Type: string
Value: MB

Name: vmCpuFrequencyValue
Type: enumerate
Value: {1, 1.6}

Name: vmCpuFrequencyType
Type: string
Value: GHz

Name: serverMemorySize
Type: enumerate
Value: {768,1792,3584,7168,14336,28672,57344}

Name:
serverMemoryDataUnitType
Type: string
Value: MB

Name:
serverCpuFrequencyValue
Type: enumerate
Value: {1, 1.6}

Name:
serverCpuFrequencyType
Type: string
Value: GHz

Name: wiMemorySize
Type: enumerate
Value:
{768,1792,3584,7168,14336,28672,57344,114688}

Name:
wiMemoryDataUnitType
Type: string
Value: MB

Name:
wiCpuFrequencyValue
Type: enumerate
Value: {1, 1.6, 2.6}

Name:
wiCpuFrequencyType
Type: string
Value: GHz

SQL Web and
Business

[0..150]

Name:
businessDataUnitType
Type: string
Value: GB

Name: premiumDiskSize
Type: integer
Value: 15

Name: businessDiskSize
Type: integer
Value: 150

Name: geoRDiskSize
Type: range
Value: [0..100000]

Name: backupDiskSize
Type: integer
Value: 500000

Name: locallyRDiskSize
Type: range
Value: [0..100000]

Name: numberOfTransactions
Type: range
Value: [0..1000000000]

Name: serviceModel
Type: string
Value: IaaS

Name: deploymentModel
Type: string
Value: Public

Location

US East
US West

US North
Central US South

Central

Europe
West

Europe
Noth

Name: serverProfile
Type: enumerate
Value: {SP_WEB, SP_STANDARD,
SP_ENTERPRISE}

Name: serverType
Type: enumerate
Value: {SQL_SERVER,
BIZTALK_SERVER}

Price
Modeling

Per hour
Per 6

month
Per yearFigu

re
A

.11:T
he

W
ind

ow
s

A
zu

re
featu

re
m

od
el.

158

Bibliography

[AAHC14] Ebrahim Khalil Abbasi, Mathieu Acher, Patrick Heymans, and Anthony Cleve.
Reverse Engineering Web Configurators. In Proceedings of the IEEE Conference on

Software Maintenance, Reengineering and Reverse Engineering, CSMR-WCRE’14,
pages 264–273, Feb 2014. 107, 144

[ABKS13] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. Feature-Oriented

Software Product Lines: Concepts and Implementation. Springer Publishing Com-
pany, Incorporated, 2013. 4

[AC04] Michal Antkiewicz and Krzysztof Czarnecki. FeaturePlugin: Feature Modeling
Plug-in for Eclipse. In Proceedings of the OOPSLA Workshop on Eclipse Technology

eXchange, Eclipse’04, pages 67–72, New York, NY, USA, 2004. ACM. 41

[acc] Acceleo. http://www.eclipse.org/acceleo. 121

[Ach11] Mathieu Acher. Managing Multiple Feature Models: Foundations, Language, and

Applications. PhD thesis, University of Nice Sophia Antipolis, Nice, France, sep
2011. 38, 64, 70

[ACLF11a] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B. France. A
Domain-specific Language for Managing Feature Models. In Proceedings of the

ACM Symposium on Applied Computing, SAC’11, pages 1333–1340, New York,
NY, USA, 2011. ACM. 40

[ACLF11b] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B. France. Slicing
Feature Models. In Proceedings of the 2011 26th IEEE/ACM International Confer-

ence on Automated Software Engineering, ASE ’11, pages 424–427, Washington,
DC, USA, 2011. IEEE Computer Society. 143

[ADM14] ADM. Architecture-Driven Modernization (ADM). http://adm.omg.org,
2014. 32

[Aeo13] Aeolus. Aeolus: Mastering the Complexity of the Cloud. http://www.

aeolus-project.org, 2013. 30, 35, 36, 37

159

http://www.eclipse.org/acceleo
http://adm.omg.org
http://www.aeolus-project.org
http://www.aeolus-project.org

Bibliography

[AFG+09] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy H.
Katz, Andrew Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, Ion
Stoica, and Matei Zaharia. Above the Clouds: A Berkeley View of Cloud Com-
puting. Technical Report UCB/EECS-2009-28, EECS Department, University
of California, Berkeley, Feb 2009. 92

[AGM+06] Vander Alves, Rohit Gheyi, Tiago Massoni, Uirá Kulesza, Paulo Borba, and
Carlos Lucena. Refactoring Product Lines. In Proceedings of the 5th International

Conference on Generative Programming and Component Engineering, GPCE’06,
pages 201–210, New York, NY, USA, 2006. ACM. 45, 48

[ama] Amazon EC2. http://aws.amazon.com/ec2. 18, 19

[APS+10] Andreas Abele, Yiannis Papadopoulos, David Servat, Martin Törngren, and
Matthias Weber. The CVM Framework - A Prototype Tool for Compositional
Variability Management. In Proceedings of the 4th International Workshop on Vari-

ability Modeling of Software-Intensive Systems, VaMoS’10, pages 101–105. Univer-
sität Duisburg-Essen, 2010. 42

[Bat05] Don Batory. Feature Models, Grammars, and Propositional Formulas. In Pro-

ceedings of the 9th International Conference on Software Product Lines, SPLC’05,
pages 7–20, Berlin, Heidelberg, 2005. Springer-Verlag. 39, 64

[BB01] Felix Bachmann and Len Bass. Managing Variability in Software Architectures.
In Proceedings of the 2001 Symposium on Software Reusability: Putting Software

Reuse in Context, SSR’01, pages 126–132, New York, NY, USA, 2001. ACM. 24

[BB10] Barry Boehm and Kent Beck. Perspectives [The changing nature of software
evolution; The inevitability of evolution]. Software, IEEE, 27(4):26–29, July 2010.
69

[BCM+03] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider, editors. The Description Logic Handbook: Theory, Imple-

mentation, and Applications. Cambridge University Press, New York, NY, USA,
2003. 65

[BCW11] Kacper Bak, Krzysztof Czarnecki, and Andrzej Wasowski. Feature and Meta-
models in Clafer: Mixed, Specialized, and Coupled. In Proceedings of the Third

International Conference on Software Language Engineering, SLE’10, pages 102–
122, Berlin, Heidelberg, 2011. Springer-Verlag. 39

[BFG+02] Jan Bosch, Gert Florijn, Danny Greefhorst, Juha Kuusela, J. Henk Obbink, and
Klaus Pohl. Variability Issues in Software Product Lines. In Revised Papers from

the 4th International Workshop on Software Product-Family Engineering, PFE ’01,
pages 13–21, London, UK, UK, 2002. Springer-Verlag. 23

160

http://aws.amazon.com/ec2

[BFL13] Christian Bessiere, Hélène Fargier, and Christophe Lecoutre. Global Inverse
Consistency for Interactive Constraint Satisfaction. In Christian Schulte, editor,
Principles and Practice of Constraint Programming, volume 8124 of Lecture Notes

in Computer Science, pages 159–174. Springer Berlin Heidelberg, 2013. 80, 84, 89

[Big14] BigLever. BigLever Software Gears. http://www.biglever.com/solution/
product.htm, 2014. 41

[BLMS12] Anton Belov, Inês Lynce, and João Marques-Silva. Towards efficient MUS ex-
traction. AI Communications, 25(2):97–116, 2012. 85

[BP10] Daniel Le Berre and Anne Parrain. The Sat4j library, release 2.2. Journal on

Satisfiability, Boolean Modeling and Computation, 7(2-3):59–64, 2010. 84

[BP14] Goetz Botterweck and Andreas Pleuss. Evolution of software product lines. In
Tom Mens, Alexander Serebrenik, and Anthony Cleve, editors, Evolving Soft-

ware Systems, pages 265–295. Springer Berlin Heidelberg, 2014. 45, 70

[BR4] BR4CP. www.irit.fr/~Helene.Fargier/BR4CP/BR4CP.html. 83, 118

[BSR03] Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling Step-wise Re-
finement. In Proceedings of the 25th International Conference on Software Engi-

neering, ICSE ’03, pages 187–197, Washington, DC, USA, 2003. IEEE Computer
Society. 39

[BSRC10] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. Automated Analy-
sis of Feature Models 20 Years Later: A Literature Review. Inf. Syst., 35(6):615–
636, September 2010. 27, 38, 64, 65, 72

[BSTC07] David Benavides, Sergio Segura, Pablo Trinidad, and Antonio Ruiz Cortés.
FAMA: Tooling a Framework for the Automated Analysis of Feature Models.
In Proceedings of the 1st International Workshop on Variability Modelling of Software-

Intensive Systems, VaMoS’07, pages 129–134, 2007. 40, 65

[BSTRC06] David Benavides, Sergio Segura, Pablo Trinidad, and Antonio Ruiz-Cortés. Us-
ing Java CSP Solvers in the Automated Analyses of Feature Models. In Proceed-

ings of the 2005 International Conference on Generative and Transformational Tech-

niques in Software Engineering, GTTSE’05, pages 399–408, Berlin, Heidelberg,
2006. Springer-Verlag. 45, 57, 65

[BTC05] David Benavides, Pablo Trinidad, and Antonio Ruiz Cortés. Using Constraint
Programming to Reason on Feature Models. In Proceedings of the 17th Interna-

tional Conference on Software Engineering and Knowledge Engineering, SEKE’2005,
pages 677–682, 2005. 65

[BTRC05] David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortés. Automated Rea-
soning on Feature Models. In Proceedings of the 17th International Conference

161

http://www.biglever.com/solution/product.htm
http://www.biglever.com/solution/product.htm
www.irit.fr/~Helene.Fargier/BR4CP/BR4CP.html

Bibliography

on Advanced Information Systems Engineering, CAiSE’05, pages 491–503, Berlin,
Heidelberg, 2005. Springer-Verlag. 27, 54

[Buy09] Rajkumar Buyya. Market-Oriented Cloud Computing: Vision, Hype, and Re-
ality of Delivering Computing As the 5th Utility. In Proceedings of the 9th

IEEE/ACM International Symposium on Cluster Computing and the Grid, CCGRID
’09, pages 1–1, Washington, DC, USA, 2009. IEEE Computer Society. 3, 16

[BYV+09] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and
Ivona Brandic. Cloud Computing and Emerging IT Platforms: Vision, Hype,
and Reality for Delivering Computing as the 5th Utility. Future Gener. Comput.

Syst., 25:599–616, June 2009. 3, 92

[CABA09] Lianping Chen, Muhammad Ali Babar, and Nour Ali. Variability Management
in Software Product Lines: A Systematic Review. In Proceedings of the 13th

International Software Product Line Conference, SPLC’09, pages 81–90, Pittsburgh,
PA, USA, 2009. Carnegie Mellon University. 24

[CBH11] Andreas Classen, Quentin Boucher, and Patrick Heymans. A Text-based Ap-
proach to Feature Modelling: Syntax and Semantics of TVL. Science of Computer

Programming, 76(12):1130–1143, December 2011. 42, 44

[CBK13] Rafael Capilla, Jan Bosch, and Kyo Chul Kang, editors. Systems and Software

Variability Management, Concepts, Tools and Experiences. Springer, 2013, 2013. 23

[CBUE02] Krzysztof Czarnecki, Thomas Bednasch, Peter Unger, and Ulrich Eisenecker.
Generative Programming for Embedded Software: An Industrial Experience
Report. In Don Batory, Charles Consel, and Walid Taha, editors, Generative Pro-

gramming and Component Engineering, volume 2487 of Lecture Notes in Computer

Science, pages 156–172. Springer Berlin Heidelberg, 2002. 26, 54

[CE00] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming: Meth-

ods, Tools, and Applications. ACM Press/Addison-Wesley Publishing Co., New
York, NY, USA, 2000. 23, 25

[CFLGP06] Oscar Corcho, Mariano Fernández-López, and Asunción Gómez-Pérez. On-
tological Engineering: Principles, Methods, Tools and Languages. In Coral
Calero, Francisco Ruiz, and Mario Piattini, editors, Ontologies for Software En-

gineering and Software Technology, pages 1–48. Springer Berlin Heidelberg, 2006.
98

[CHE05a] Krzysztof Czarnecki, Simon Helsen, and Ulrich W. Eisenecker. Formalizing
Cardinality-based Feature Models and their Specialization. Software Process:

Improvement and Practice, 10(1):7–29, 2005. 27, 53, 57, 75

[CHE05b] Krzysztof Czarnecki, Simon Helsen, and Ulrich W. Eisenecker. Staged Configu-
ration through Specialization and Multilevel Configuration of Feature Models.
Software Process: Improvement and Practice, 10(2):143–169, 2005. 27, 131

162

[CK05] Krzysztof Czarnecki and Chang Hwan Peter Kim. Cardinality-Based Feature
Modeling and Constraints: A Progress Report. In International Workshop on

Software Factories at OOPSLA’05. ACM, San Diego, California, USA, 2005. 27,
53

[Cla14] Clafer. Clafer, Lightweight Modeling Language. http://www.clafer.org,
2014. 39

[CN01] Paul Clements and Linda M. Northrop. Software Product Lines: Practices and

Patterns. Addison-Wesley Longman Publishing Co., Inc., 2001. 4, 20, 21, 23

[CODA+11] Joanna Dobroslawa Chimiak-Opoka, Birgit Demuth, Andreas Awenius, Dan
Chiorean, Sebastien Gabel, Lars Hamann, and Edward D. Willink. OCL Tools
Report based on the IDE4OCL Feature Model. ECEASST, 44, 2011. 68

[Con14a] ConPaaS. ConPaaS: Integrated Runtime Environment for Elastic Cloud Appli-
cations. http://www.conpaas.eu, 2014. 30, 35

[Con14b] Contrail. Contrail: Open Computing Infrastructures for Elastic Services. http:
//contrail-project.eu, 2014. 30

[CSHL13] Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans, and Axel Legay. Be-
yond Boolean Product-line Model Checking: Dealing with Feature Attributes
and Multi-features. In Proceedings of the International Conference on Software En-

gineering, ICSE ’13, pages 472–481, Piscataway, NJ, USA, 2013. IEEE Press. 27,
143

[CVM14] CVM. CVM, Compositional Variability Management. http://www.

cvm-framework.org, 2014. 42

[Dav87] Stanley M. Davis. Future Perfect. Addison-Wesley Reading, Mass, 1987. 20

[DCLT+13] Roberto Di Cosmo, Michaël Lienhardt, Ralf Treinen, Stefano Zacchiroli, and
Jakub Zwolakowski. Optimal Provisioning in the Cloud. Technical report of
the Aeolus project. Technical report, Preuves, Programmes et Systèmes - PPS ,
FOCUS - INRIA Sophia Antipolis, March 2013. 30

[DCZZ12] Roberto Di Cosmo, Stefano Zacchiroli, and Gianluigi Zavattaro. Towards a
Formal Component Model for the Cloud. In Proceedings of the 10th International

Conference on Software Engineering and Formal Methods, SEFM’12, pages 156–171,
Berlin, Heidelberg, 2012. Springer-Verlag. 30, 33, 34

[DHTCB14] Johan Den Haan, Mark Thiele, Nicholas Chase, and Matt Butcher. The 2014
Cloud Platform Research Report. Technical report, DZone, 2014. 102

[Don08] Don Batory. The GUIDSL Tool. http://www.cs.utexas.edu/~schwartz/

ATS/fopdocs/guidsl.html, 2008. 39

163

http://www.clafer.org
http://www.conpaas.eu
http://contrail-project.eu
http://contrail-project.eu
http://www.cvm-framework.org
http://www.cvm-framework.org
http://www.cs.utexas.edu/~schwartz/ATS/fopdocs/guidsl.html
http://www.cs.utexas.edu/~schwartz/ATS/fopdocs/guidsl.html

Bibliography

[dot] DotCloud. https://www.dotcloud.com. 60

[DR97] Yves Dutuit and Antoine Rauzy. Exact and Truncated Computations of Prime
Implicants of Coherent and non-Coherent Fault Trees within Aralia. Reliability

Engineering and System Safety, 58(2):127–144, 1997. 83

[DSB05] Sybren Deelstra, Marco Sinnema, and Jan Bosch. Product Derivation in Soft-
ware Product Families: A Case Study. Journal of Systems and Software, 74(2):173–
194, January 2005. 22

[DWS12] Brian Dougherty, Jules White, and Douglas C. Schmidt. Model-driven Auto-
scaling of Green Cloud Computing Infrastructure. Future Gener. Comput. Syst.,
28(2):371–378, February 2012. 44

[ES13] Holger Eichelberger and Klaus Schmid. A Systematic Analysis of Textual Vari-
ability Modeling Languages. In Proceedings of the 17th International Software

Product Line Conference, SPLC ’13, pages 12–21, New York, NY, USA, 2013.
ACM. 39

[euc] Eucalyptus. https://www.eucalyptus.com. 19

[FAM14] FAMA. FaMa Tool Suite. http://www.isa.us.es/fama, 2014. 40

[Fea14] FeatureIDE. FeatureIDE, An Eclipse plug-in for Feature-Oriented Software
Development. http://wwwiti.cs.uni-magdeburg.de/iti_db/research/

featureide, 2014. 40

[FFH13] Sören Frey, Florian Fittkau, and Wilhelm Hasselbring. Search-based Genetic
Optimization for Deployment and Reconfiguration of Software in the Cloud.
In Proceedings of the International Conference on Software Engineering, ICSE ’13,
pages 512–521, Piscataway, NJ, USA, 2013. IEEE Press. 32, 35

[FHS13] Sören Frey, Wilhelm Hasselbring, and Benjamin Schnoor. Automatic confor-
mance checking for migrating software systems to cloud infrastructures and
platforms. Journal of Software: Evolution and Process, 25(10):1089–1115, 2013. 30,
32, 34, 35, 36, 37

[FMP14] FMP. fmp: Feature Modeling Plug-in. http://gsd.uwaterloo.ca/fmp, 2014.
41

[FRC+13] Nicolas Ferry, Alessandro Rossini, Franck Chauvel, Brice Morin, and Arnor
Solberg. Towards Model-Driven Provisioning, Deployment, Monitoring, and
Adaptation of Multi-cloud Systems. In Proceedings of the IEEE Sixth International

Conference on Cloud Computing, CLOUD ’13, pages 887–894, Washington, DC,
USA, 2013. IEEE Computer Society. 31, 34, 35, 37

[GAE] Google App Engine. https://appengine.google.com. 18

164

https://www.dotcloud.com
https://www.eucalyptus.com
http://www.isa.us.es/fama
http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide
http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide
http://gsd.uwaterloo.ca/fmp
https://appengine.google.com

[GDD09] Dragan Gasevic, Dragan Djuric, and Vladan Devedzic. Model Driven Engineer-

ing and Ontology Development (2. ed.). Springer, 2009. 98

[Gla] GlassFish support in Jelastic. http://docs.jelastic.com/glassfish. 62, 71

[Gla01] Robert L. Glass. Frequently Forgotten Fundamental Facts About Software En-
gineering. IEEE Software, 18(3):111–112, May 2001. 20

[GR10] Abel Gómez and Isidro Ramos. Cardinality-Based Feature Modeling and
Model-Driven Engineering: Fitting them Together. In Proceedings of the 4th

International Workshop on Variability Modeling of Software-Intensive Systems, Va-
MoS’10, pages 61–68. Universität Duisburg-Essen, 2010. 27

[GSK13] Alexander Gunka, Stepan Seycek, and Harald Kühn. Moving an Application to
the Cloud: An Evolutionary Approach. In Proceedings of the International Work-

shop on Multi-cloud Applications and Federated Clouds, MultiCloud ’13, pages 35–
42, New York, NY, USA, 2013. ACM. 31

[GWTB12] Jianmei Guo, Yinglin Wang, Pablo Trinidad, and David Benavides. Consistency
Maintenance for Evolving Feature Models. Expert Systems with Applications,
39(5):4987–4998, April 2012. 46, 48, 70

[her] Heroku. https://www.heroku.com. 18

[HHPS08] Svein Hallsteinsen, Mike Hinchey, Sooyong Park, and Klaus Schmid. Dynamic
Software Product Lines. Computer, 41(4):93–95, April 2008. 143

[HP03] Günter Halmans and Klaus Pohl. Communicating the variability of a software-
product family to customers. Software and Systems Modeling, 2(1):15–36, 2003.
23

[jel] Jelastic. http://jelastic.com. 18, 26, 54

[JO01] Narendra Jussien and Samir Ouis. User-friendly explanations for constraint
programming. In Proceedings of the Eleventh Workshop on Logic Programming

Environments, WLPE’01, 2001. 84

[jqu] The jQuery library. http://jquery.com. 116

[JRL08] Narendra Jussien, Guillaume Rochart, and Xavier Lorca. Choco: an Open
Source Java Constraint Programming Library. In CPAIOR’08 Workshop on Open-

Source Software for Integer and Contraint Programming (OSSICP’08), pages 1–10,
Paris, France, France, 2008. 119

[jso] JavaScript Object Notation. http://www.json.org. 121

[KC03] Jeffrey O. Kephart and David M. Chess. The Vision of Autonomic Computing.
Computer, 36(1):41–50, January 2003. 143

165

http://docs.jelastic.com/glassfish
https://www.heroku.com
http://jelastic.com
http://jquery.com
http://www.json.org

Bibliography

[KC12] Filip Křikava and Philippe Collet. On the use of an internal dsl for enriching
emf models. In Proceedings of the 12th Workshop on OCL and Textual Modelling,
OCL ’12, pages 25–30, New York, NY, USA, 2012. ACM. 68

[KC13] Charles Krueger and Paul Clements. Systems and software product line engi-
neering with biglever software gears. In Proceedings of the 17th International Soft-

ware Product Line Conference Co-located Workshops, SPLC ’13 Workshops, pages
136–140, New York, NY, USA, 2013. ACM. 41

[KCH+90] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and
A. Spencer Peterson. Feature-Oriented Domain Analysis (FODA) - Feasibil-
ity Study. Technical report, The Software Engineering Institute, 1990. 4, 24, 27,
53

[Kle03] Leonard Kleinrock. An internet vision: the invisible global infrastructure. Ad

Hoc Networks, 1(1):3–11, 2003. 3

[Kru92] Charles W. Krueger. Software Reuse. ACM Computing Surveys, 24(2):131–183,
June 1992. 20

[Leh80] Manny Lehman. Programs, Life Cycles, and Laws of Software Evolution. Pro-

ceedings of the IEEE, 68(9):1060–1076, Sept 1980. 69

[LMZ13] Tudor A. Lascu, Jacopo Mauro, and Gianluigi Zavattaro. A Planning Tool Sup-
porting the Deployment of Cloud Applications. In Proceedings of the IEEE 25th

International Conference on Tools with Artificial Intelligence, ICTAI ’13, pages 213–
220, Washington, DC, USA, 2013. IEEE Computer Society. 30

[LSB+10] Rafael Lotufo, Steven She, Thorsten Berger, Krzysztof Czarnecki, and Andrzej
Wąsowski. Evolution of the Linux Kernel Variability Model. In Proceedings of the

14th International Conference on Software Product Lines: Going Beyond, SPLC’10,
pages 136–150, Berlin, Heidelberg, 2010. Springer-Verlag. 46, 48, 70

[Man02] Mike Mannion. Using First-Order Logic for Product Line Model Validation.
In Proceedings of the Second International Conference on Software Product Lines,
SPLC’02, pages 176–187, London, UK, UK, 2002. Springer-Verlag. 64

[Mat14] Mathieu Acher. FAMILIAR Project. http://familiar-project.github.io,
2014. 40

[MBC09] Marcilio Mendonca, Moises Branco, and Donald Cowan. S.P.L.O.T.: Software
Product Lines Online Tools. In Proceedings of the 24th ACM SIGPLAN Conference

Companion on Object Oriented Programming Systems Languages and Applications,
OOPSLA ’09, pages 761–762, New York, NY, USA, 2009. ACM. 42

166

http://familiar-project.github.io

[MCHB11] Raphael Michel, Andreas Classen, Arnaud Hubaux, and Quentin Boucher. A
Formal Semantics for Feature Cardinalities in Feature Diagrams. In Proceed-

ings of the 5th Workshop on Variability Modeling of Software-Intensive Systems, Va-
MoS’11, pages 82–89, New York, NY, USA, 2011. ACM. 27, 53, 63, 67, 75

[MG11] Peter M. Mell and Timothy Grance. The NIST Definition of Cloud Computing.
Technical report, National Institute of Standards & Technology, Gaithersburg,
MD, United States, 2011. 16, 17, 92

[MOD14] MODAClouds. MODAClouds: MOdel-Driven Approach for design and exe-
cution of applications on multiple Clouds. http://www.modaclouds.eu, 2014.
30, 31, 35

[MOF] MOF. http://www.omg.org/mof. 121

[Mos13] Mosaic. Mosaic: Open Source API and Platform for Multiple Clouds. http:

//www.mosaic-cloud.eu, 2013. 30, 31, 36

[MP14] Andreas Metzger and Klaus Pohl. Software Product Line Engineering and Vari-
ability Management: Achievements and Challenges. In Proceedings of the Future

of Software Engineering, FOSE 2014, pages 70–84, New York, NY, USA, 2014.
ACM. 23

[MPH+07] Andreas. Metzger, Klaus Pohl, Patrick Heymans, Pierre-Yves Schobbens, and
Germain Saval. Disambiguating the Documentation of Variability in Software
Product Lines: A Separation of Concerns, Formalization and Automated Anal-
ysis. In 15th IEEE International Requirements Engineering Conference, RE ’07,
pages 243–253, Oct 2007. 23

[MR12] Michael Menzel and Rajiv Ranjan. CloudGenius: Decision Support for Web
Server Cloud Migration. In Proceedings of the 21st International Conference on

World Wide Web, WWW ’12, pages 979–988, New York, NY, USA, 2012. ACM.
30, 32, 35, 36

[MS11] Parastoo Mohagheghi and Thor Sæther. Software Engineering Challenges
for Migration to the Service Cloud Paradigm: Ongoing Work in the REMICS
Project. In Proceedings of the IEEE World Congress on Services, SERVICES ’11,
pages 507–514, Washington, DC, USA, 2011. IEEE Computer Society. 32, 34, 35,
36

[MSDLM11] Raúl Mazo, Camille Salinesi, Daniel Diaz, and Alberto Lora-Michiels. Trans-
forming Attribute and Clone-enabled Feature Models into Constraint Pro-
grams over Finite Domains. In Proceedings of the 6th International Conference

on Evaluation of Novel Approaches to Software Engineering, ENASE’11, pages 188–
199. SciTePress, 2011. 65

167

http://www.modaclouds.eu
http://www.omg.org/mof
http://www.mosaic-cloud.eu
http://www.mosaic-cloud.eu

Bibliography

[MSNT11] Michael Menzel, Marten Schönherr, Jens Nimis, and Stefan Tai. (MC2)2: A
Generic Decision-Making Framework and its Application to Cloud Comput-
ing. CoRR, abs/1112.1851, 2011. 32, 34, 35

[NTS+11] Laís Neves, Leopoldo Teixeira, Demóstenes Sena, Vander Alves, Uirá Kulezsa,
and Paulo Borba. Investigating the Safe Evolution of Software Product Lines. In
Proceedings of the 10th ACM International Conference on Generative Programming

and Component Engineering, GPCE’11, pages 33–42, New York, NY, USA, 2011.
ACM. 46, 48

[ope] OpenStack. https://www.openstack.org/. 19

[Paa13] PaaSage. PaaSage: Model-based Cloud Platform Upperware. http://www.

paasage.eu, 2013. 4, 62, 92

[Par76] David Lorge Parnas. On the Design and Development of Program Families.
IEEE Transactions on Software Engineering, 2(1):1–9, 1976. 20

[Par11] Carlos Parra. Towards Dynamic Software Product Lines: Unifying Design and Run-

time Adaptations. These, Université des Sciences et Technologie de Lille - Lille I,
March 2011. 57

[PBD+12] Andreas Pleuss, Goetz Botterweck, Deepak Dhungana, Andreas Polzer, and
Stefan Kowalewski. Model-driven Support for Product Line Evolution on Fea-
ture Level. Journal of Systems and Software, 85(10):2261–2274, October 2012. 47,
48

[PBL05] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Product Line

Engineering: Foundations, Principles and Techniques. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2005. 4, 20, 21, 22, 23, 24, 57

[PCN+11] Dana Petcu, Ciprian Crăciun, Marian Neagul, Silviu Panica, Beniamino
Di Martino, Salvatore Venticinque, Massimiliano Rak, and Rocco Aversa. Ar-
chitecturing a Sky Computing Platform. In Proceedings of the International Con-

ference on Towards a Service-based Internet, ServiceWave’10, pages 1–13, Berlin,
Heidelberg, 2011. Springer-Verlag. 31, 35

[PCW12] Leonardo Passos, Krzysztof Czarnecki, and Andrzej Wąsowski. Towards a
Catalog of Variability Evolution Patterns: The Linux Kernel Case. In Proceed-

ings of the 4th International Workshop on Feature-Oriented Software Development,
FOSD’12, pages 62–69, New York, NY, USA, 2012. ACM. 46, 70

[PDv12] Paulius Paskevicius, Robertas Damasevicius, and Vytautas Štuikys. Change
Impact Analysis of Feature Models. In Tomas Skersys, Rimantas Butleris, and
Rita Butkiene, editors, Information and Software Technologies, volume 319 of Com-

munications in Computer and Information Science, pages 108–122. Springer Berlin
Heidelberg, 2012. 70

168

https://www.openstack.org/
http://www.paasage.eu
http://www.paasage.eu

[PGT+13] Leonardo Passos, Jianmei Guo, Leopoldo Teixeira, Krzysztof Czarnecki, An-
drzej Wąsowski, and Paulo Borba. Coevolution of Variability Models and
Related Artifacts: A Case Study from the Linux Kernel. In Proceedings of the

17th International Software Product Line Conference, SPLC’13, pages 91–100, New
York, NY, USA, 2013. ACM. 46, 48, 70

[PHM+12] F. Paraiso, N. Haderer, P. Merle, R. Rouvoy, and L. Seinturier. A Federated
Multi-cloud PaaS Infrastructure. In IEEE 5th International Conference on Cloud

Computing, CLOUD’12, pages 392–399, June 2012. 143

[PS12] Guillaume Pierre and Corina Stratan. ConPaaS: A Platform for Hosting Elastic
Cloud Applications. IEEE Internet Computing, 16(5):88–92, 2012. 31, 34, 35

[pur14a] pure::systems. pure::variants: Variant Management. http://www.

pure-systems.com/pure_variants.49.0.html, 2014. 41

[pur14b] pure::systems. Variant Management with pure::variants. http:

//www.pure-systems.com/fileadmin/downloads/pure-variants/doc/

pv-user-manual.pdf, 2014. 41

[RBSP02] M. Riebisch, K. Böllert, D. Streitferdt, and I. Philippow. Extending Feature
Diagrams with UML Multiplicities. In 6th World Conference on Integrated Design

& Process Technology, IDPT’02, June 2002. 27, 53, 61

[REM13] REMICS. REMICS: Reuse and Migration of legacy applications to Interoperable
Cloud Services. http://www.remics.eu, 2013. 30, 32, 35, 37

[RGD10] Rick Rabiser, Paul Grünbacher, and Deepak Dhungana. Requirements for
Product Derivation Support: Results from a Systematic Literature Review and
an Expert Survey. Inf. Softw. Technol., 52(3):324–346, March 2010. 70

[RSTS11] Marko Rosenmüller, Norbert Siegmund, Thomas Thüm, and Gunter Saake.
Multi-dimensional Variability Modeling. In Proceedings of the 5th Workshop on

Variability Modelling of Software-Intensive Systems, VaMoS ’11, pages 11–20, New
York, NY, USA, 2011. ACM. 42

[SBPM09] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF:

Eclipse Modeling Framework 2.0. Addison-Wesley Professional, 2nd edition,
2009. 115

[SHA12] Christoph Seidl, Florian Heidenreich, and Uwe Aßmann. Co-evolution of
Models and Feature Mapping in Software Product Lines. In Proceedings of the

16th International Software Product Line Conference - Volume 1, SPLC’12, pages
76–85, New York, NY, USA, 2012. ACM. 47, 48, 70

[SJP12] Vlado Stankovski, Jernej Juzna, and Dana Petcu. Enabling Legacy Engineer-
ing Applications for Cloud Computing: Experience with the mOSAIC API and

169

http://www.pure-systems.com/pure_variants.49.0.html
http://www.pure-systems.com/pure_variants.49.0.html
http://www.pure-systems.com/fileadmin/downloads/pure-variants/doc/pv-user-manual.pdf
http://www.pure-systems.com/fileadmin/downloads/pure-variants/doc/pv-user-manual.pdf
http://www.pure-systems.com/fileadmin/downloads/pure-variants/doc/pv-user-manual.pdf
http://www.remics.eu

Bibliography

Platform. In Proceedings of the Third International Conference on Emerging Intel-

ligent Data and Web Technologies, EIDWT ’12, pages 281–286, Washington, DC,
USA, 2012. IEEE Computer Society. 31, 34

[SLB+11] Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wasowski, and Krzysztof
Czarnecki. Reverse engineering feature models. In Proceedings of the 33rd Inter-

national Conference on Software Engineering, ICSE ’11, pages 461–470, New York,
NY, USA, 2011. ACM. 127

[spl] S.P.L.O.T. http://www.splot-research.org/. 41, 127

[SRG11] Klaus Schmid, Rick Rabiser, and Paul Grünbacher. A Comparison of Deci-
sion Modeling Approaches in Product Lines. In Proceedings of the 5th Workshop

on Variability Modelling of Software-Intensive Systems, VaMoS’11, pages 119–126,
New York, NY, USA, 2011. ACM. 24

[SRP03] Detlef Streitferdt, Matthias Riebisch, and Ilka Philippow. Details of formalized
relations in feature models using OCL. In Proceedings of the 10th IEEE Inter-

national Conference and Workshop on the Engineering of Computer-Based Systems,
pages 297–304, April 2003. 27

[SSA13] Christoph Seidl, Ina Schaefer, and Uwe Assmann. Capturing Variability in
Space and Time with Hyper Feature Models. In Proceedings of the Eighth Interna-

tional Workshop on Variability Modelling of Software-Intensive Systems, VaMoS’14,
pages 6:1–6:8, New York, NY, USA, 2013. ACM. 24

[SvGB05] Mikael Svahnberg, Jilles van Gurp, and Jan Bosch. A Taxonomy of Variability
Realization Techniques: Research Articles. Softw. Pract. Exper., 35(8):705–754,
July 2005. 24

[TBK09] Thomas Thüm, Don Batory, and Christian Kästner. Reasoning About Edits to
Feature Models. In Proceedings of the 31st International Conference on Software

Engineering, ICSE ’09, pages 254–264, Washington, DC, USA, 2009. IEEE Com-
puter Society. 47, 48, 68, 70, 128, 130

[TBRC+08] Pablo Trinidad, David Benavides, Antonio Ruiz-Cortés, Sergio Segura, and Al-
berto Jimenez. FAMA Framework. In Proceedings of the 12th International Soft-

ware Product Line Conference, SPLC’08, pages 359–359, Washington, DC, USA,
2008. IEEE Computer Society. 40

[TKB+14] Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke, Gunter
Saake, and Thomas Leich. FeatureIDE: An Extensible Framework for Feature-
oriented Software Development. Science of Computer Programming, 79:70–85,
January 2014. 40

170

http://www.splot-research.org/

[TR09] P. Trinidad and A. Ruiz–Cortés. Abductive Reasoning and Automated Analy-
sis of Feature Models: How are they connected? In Proceedings of the Third In-

ternational Workshop on Variability Modelling of Software-Intensive Systems., pages
145–153, 2009. 49, 72

[TVL14] TVL. TVL - A Text-based Variability Language. https://staff.info.

unamur.be/acs/tvl, 2014. 42

[VDA10] Wil M. P. Van Der Aalst. Configurable Services in the Cloud: Supporting Vari-
ability While Enabling Cross-organizational Process Mining. In Proceedings of

the International Conference on On the Move to Meaningful Internet Systems - Vol-

ume Part I, OTM’10, pages 8–25, Berlin, Heidelberg, 2010. Springer-Verlag. 38

[vDK02] Arie van Deursen and Paul Klint. Domain-Specific Language Design Requires
Feature Descriptions. Journal of Computing and Information Technology, 10(1):1–
17, 2002. 40

[VEL14] VELVET. The VELVET Modeling Language. http://wwwiti.cs.

uni-magdeburg.de/iti_db/research/multiple/modeling.php, 2014. 42

[VRMCL08] Luis M. Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner. A
Break in the Clouds: Towards a Cloud Definition. SIGCOMM Comput. Commun.

Rev., 39(1):50–55, December 2008. 16

[WDS09] Jules White, Brian Dougherty, and Douglas C. Schmidt. Selecting Highly Opti-
mal Architectural Feature Sets with Filtered Cartesian Flattening. J. Syst. Softw.,
82(8):1268–1284, August 2009. 27

[Win] Windows Azure. http://azure.microsoft.com. 18, 19

[WKM12] Erik Wittern, Jörn Kuhlenkamp, and Michael Menzel. Cloud Service Selection
Based on Variability Modeling. In Proceedings of the 10th International Conference

on Service-Oriented Computing, ICSOC’12, pages 127–141, Berlin, Heidelberg,
2012. Springer-Verlag. 44

[WL99] David M. Weiss and Chi Tau Robert Lai. Software Product-line Engineering: A

Family-based Software Development Process. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, 1999. 21, 24

[WLS+05] Hai Wang, Yuan Fang Li, Jing Sun, Hongyu Zhang, and Jeff Pan. A Semantic
Web Approach to Feature Modeling and Verification. In In Workshop on Seman-

tic Web Enabled Software Engineering, SWESE’05, 2005. 65

[WSH+12] Peter Wright, YihLeong Sun, Terence Harmer, Anthony Keenan, Alan Stewart,
and Ronald Perrott. A constraints-based resource discovery model for multi-
provider cloud environments. Journal of Cloud Computing, 1(1), 2012. 30, 33, 34,
35, 36

171

https://staff.info.unamur.be/acs/tvl
https://staff.info.unamur.be/acs/tvl
http://wwwiti.cs.uni-magdeburg.de/iti_db/research/multiple/modeling.php
http://wwwiti.cs.uni-magdeburg.de/iti_db/research/multiple/modeling.php
http://azure.microsoft.com

	Couverture
	Dédicace
	Acknowledgement
	Abstract
	Résumé
	Contents
	List of Tables
	Part I Motivation and Context
	Chapter 1 Introduction
	1.1 Problem Statement
	1.2 Research Goals
	1.3 Contribution
	1.4 Dissertation Roadmap
	1.5 Publications

	Part II State of the Art
	Chapter 2 Background and Concepts
	2.1 Introduction
	2.2 Cloud Computing
	2.3 Software Product Lines
	2.4 Feature Models
	2.5 Summary

	Chapter 3 Modeling, Selecting and Configuring Cloud Environments
	3.1 Introduction
	3.2 Cloud Environments Selection and Configuration Approaches
	3.3 Software Product Lines for Cloud Environments Configuration
	3.4 Variability Modeling Approaches
	3.5 Approaches for Evolving Feature Models
	3.6 Summary

	Part III Contribution
	Chapter 4 Cardinality and Attribute-based Feature Models
	4.1 Introduction
	4.2 Motivation and Challenges
	4.3 Variability Modeling with CardEx Feature Models
	4.4 Reasoning on CardEx Feature Models
	4.5 Challenges Revisited and Discussion
	4.6 Summary

	Chapter 5 Evolution and Consistency Checking of Cardinality-based Feature Models
	5.1 Introduction
	5.2 Motivation and Challenges
	5.3 Edits to Cardinality-Based Feature Models
	5.4 Cardinality-based Feature Model Consistency
	5.5 Implementing Local Range Consistency
	5.6 Improving the Encoding
	5.7 Challenges Revisited
	5.8 Summary

	Chapter 6 Saloon, a Model-based Approach for Selecting and Configuring Cloud Environments
	6.1 Introduction
	6.2 Challenges
	6.3 Saloon in a Nutshell
	6.4 From Requirements Specification to Features Selection
	6.5 Automated Configuration and Product Derivation
	6.6 Challenges Revisited and Discussion
	6.7 Summary

	Part IV Validation
	Chapter 7 Validation
	7.1 Introduction
	7.2 Tool Support
	7.3 Experiments and Evaluation
	7.4 Discussion
	7.5 Summary

	Part V Conclusion
	Chapter 8 Conclusion and Perspectives
	8.1 Summary of the Dissertation
	8.2 Contributions
	8.3 Perspectives

	Appendices
	Appendix A Saloon models

	Bibliography

