Akim Demaille

Clément Démoulins

Daniela Becker

Didier Verna

Edwin Carlinet

Etienne Renault

Guillaume Lazzara

Jonathan Fabrizio

Myriam Robert-Seidowsky

Nicolas Bourtry

Reda Dehak

Roland Levillain

Stefania Calarasanu

Thierry Géraud

Yongchao Xu Many

Denis Poitrenaud

Béa- Trice Bérard

Thierry-Mieg Yann

Soheib Baarir

Laure Millet

Matthieu Sassolas

Maximilien Colange

Raveca Oarga

Ben Yann

Yan Maïssa

Zhang

for their friendship and assistance. Last but certainly not least, I would like to thank deeply all of my family for their infinite support during the difficult time of this thesis and throughout my studies, and for all the good times we spent together.

Existing Work

Different kinds of w-automata have been used in the automata-theoretic approach to explicit model checking. In the most common case, the property to be checked expressed as an LTL formula is converted into a Büchi automaton (BA) [16] with state-based accepting.

 property automaton than BA.

.

, mitigating the benefits of a having a smaller product.

Context

Software and hardware systems have become ubiquitous in our everyday life. These systems replace humans for critical tasks that involve high costs and sometimes human lives. This is the case in many areas such as medical devices, telesurgery, nuclear power plants, aircrafts industry, transportation, . . . The serious consequences caused by the failure of such systems make crucial the use of rigorous methods for system validation.

Methods based on testing and simulation have long been used for the validation of systems. However, these techniques allow to explore only a part of the possible system behaviors. The formal verification techniques are exhaustive, they guarantee that a property is satisfied by all possible system executions.

Model Checking and Automata-theoretic Approach

Formal verification [24] provides mathematical-based methods to ensure the correctness of a system with respect to specified behavioral properties (for example, a typical property to check in concurrent systems is the absence of deadlocks). One of the widely-used formal verification methods is model checking [25,[START_REF] Holzmann | Software model checking[END_REF]8].

Taking as input a high level model describing all possible executions of the system and the property to be checked expressed as a temporal logic formula, a model checker answers if the model satisfies or not the formula. When the property is not satisfied, the model checker returns a counterexample, i.e., an execution of the model invalidating the property. This counterexample is useful to find errors in complex systems. This is an advantage of model checking compared to the other formal methods, such as theorem proving, which can disapprove a property but without providing such a counterexample. Another advantage is the fact that the model checking procedure is completely automatic and easy to use. This automatic procedure is based on the exploration of the system's state-space, i.e., a structure that describes all reachable states of the system and all transitions that the system can make between those states. The main disadvantage of model checking is discussed in Section 1.1.2.

The automata-theoretic approach [START_REF] Vardi | An automata-theoretic approach to linear temporal logic[END_REF][START_REF] Vardi | Automata-theoretic model checking revisited[END_REF] to model checking represents this state-space and the property to check using variants of w-automata [START_REF] Farwer | Automata logics, and infinite games[END_REF], i.e., an extension of the classical finite automata to recognize words having infinite length (called w-words).

The automata-theoretic approach splits the verification process into four operations as shown in figure 1.1: 1. Computation of the state-space for the model M. This state-space can be seen as an wautomaton A M whose language, L (A M), represents all possible infinite executions of M.

2. Translation of the temporal property j into an w-automaton A ¬j whose language, L (A ¬j), is the set of all infinite executions that would invalidate j.

3. Synchronization of these automata. This constructs a product automaton A M ⌦ A ¬j whose language, L (A M) \ L (A ¬j), is the set of executions of M invalidating j.

4. Emptiness check of this product. This operation tells whether A M ⌦ A ¬j accepts an infinite word, and can return such a word (a counterexample) if it does. The model M verifies j iff L (A M ⌦ A ¬j) = / 0.

The State-space Explosion Problem

The main difficulty of model checking is the state-space explosion problem [START_REF] Valmari | The state explosion problem[END_REF] caused by the large size of the state-space of the model. For instance, modeling a system of concurrent pro-

1.1. Context 3
cesses can generate a state-space which grows exponentially in the number of processes. Thus, the obtained state-space contains a very important number of states even if each process of the system has only few states. Consequently, in the automata-theoretic approach, the synchronous product of the model's state-space with the property automaton is often too large to be emptiness checked in a reasonable run time and memory. In the literature, different approaches have been proposed to improve the performance of model checking in order to push away the barrier of the State-space Explosion Problem. The objective of this thesis is to join the fight against this problem, in the context of the verification of stutter-invariant LTL properties. In this work, we consider only finite-state systems (i.e. having a finite number of different configurations). The state-space of these systems have a finite number of states, but possibly infinite number of infinite executions.

Explicit versus Symbolic model checking

There are two main variants of the automata-theoretic approach: explicit and symbolic.

• In the explicit approach [e.g., [START_REF] Courcoubetis | Memoryefficient algorithm for the verification of temporal properties[END_REF][START_REF] Gerth | Simple on-the-fly automatic verification of linear temporal logic[END_REF], the state-space of the model and the product are explicitly constructed by enumerating their states. "On-the-fly" emptiness check algorithms avoid the construction of the entire product and state-space by building them lazily during exploration. These on-the-fly algorithms are more efficient because they stop as soon as they find a counterexample and therefore possibly before building the entire product, thereby reducing the amount of memory and time used by the emptiness check in the case of violated properties.

• The symbolic approach [17] tries to overcome the state-space explosion obstacle by representing the state-space implicitly by means of Binary Decision Diagrams (BDDs). The intersection and union of sets of states are translated into conjunction (^) and disjunction (_) of Boolean functions efficiently performed using BDDs (or any other variants of Decision Diagrams).

LTL and Stutter-invariance

In order to describe behavioral properties of complex systems, in addition to propositional logic, we need to introduce temporal operators. In this work, we focus on the model checking of stutterinvariant [START_REF] Etessami | Stutter-invariant languages, w-automata, and temporal logic[END_REF] LTL properties. Linear Temporal Logic (LTL), introduced by Pnueli in 1977, is a propositional temporal logic widely used to express temporal properties.

The LTL syntax combines standard logical operators (^, _, ¬, !, $) and temporal operators to specify that some property p happens next time "X p", eventually "F p", always "G p",. . . (see Section 2.3.1 for a full definition of LTL syntax and semantics).

Typical examples of LTL properties have the form "G ¬p" (p never happens), " G F p" (p happens infinitely often), and " F G p" (at some point, p will hold forever).

LTL properties are constructed over the set AP of atomic propositions, which represent the properties of individual states. Each state of the system is labeled by a valuation `that assigns a truth value to each atomic proposition of AP (formally, a valuation is a function `: AP 7 ! {?, >}).

A valuation can also be viewed as a set `2 2 AP interpreted as the set of atomic propositions that are true.

An LTL property j is interpreted over each execution of a system, where an execution maps each time instant to a set of atomic propositions that hold at that instant. Formally, an execution is an infinite sequence of valuations `0`1 . . . `i . . . 2 (2 AP) w .

The language of j, denoted L (j) ✓ (2 AP) w , is the set of all sequences of (2 AP) w satisfying j.

Among LTL properties, we want to distinguish those that are stutter-invariant.

An LTL property j is stutter-invariant iff any sequence `0`1`3 . . . 2 L (j) remains in L (j) after repeating any valuation `i or omitting duplicate valuations. Formally, j is stutter-invariant iff

`0`1`2 . . . 2 L (j) () `n0 0 `n1 1 `n2
2 . . . 2 L (j) for any n 0 > 0, n 1 > 0 . . . where `ni i is the concatenation of n i copies of `i

Intuitively, stuttering-transitions correspond to transitions that do not change the valuation of atomic propositions between two successive states. Adding or removing stuttering in the system does not change the truth value of stutter-invariant properties. Thus, sequences that differ only in the amount of stuttering can be considered equivalent when checking stutter-invariant properties.

It is well known that any LTL\ X formula (i.e., an LTL formula that does not use the X operator) describes a stutter-invariant property. Conversely any stutter-invariant property can be expressed as an LTL\ X formula [START_REF] Peled | Stutter-invariant temporal properties are expressible without the next-time operator[END_REF].

According to many research [START_REF] Lamport | What good is temporal logic?[END_REF][START_REF] Etessami | Stutter-invariant languages, w-automata, and temporal logic[END_REF], the restriction to stutter-invariant properties is not a serious disadvantage. In addition, there are many tools that enable specific optimizations for the verification of stutter-invariant properties, such as the partial order reduction [START_REF] Valmari | Stubborn sets for reduced state space generation[END_REF][START_REF] Peled | Combining partial order reductions with on-the-fly model-checking[END_REF][START_REF] Godefroid | Partial-Order Methods for the Verification of Concurrent Systems: An Approach to the State-Explosion Problem[END_REF] in Spin tool [START_REF] Holzmann | The Spin Model Checker: Primer and Reference Manual[END_REF].

Scope of the Thesis

The general objective of this work is to tackle the state-space explosion problem by improving the performance of the model checking of stutter-invariant LTL properties.

To achieve this goal, we propose some contributions to essentially reduce the size of the product automaton and the computation time/memory used in the emptiness check of this product. Firstly, we start by looking for a form of automata that is suitable for the representation of stutterinvariant properties. As solutions, we propose new types of w-automata that represent all the stuttering-transitions using only self-loops. Then, using these new automata, we propose some contributions to improve the performance of model checking in three contexts: explicit, symbolic and hybrid approaches (where hybrid means combining explicit and symbolic approaches). An overview of the existing automata and the new automata proposed in this work is shown in Figure 1.2.

Contributions

On the left of this figure, the white boxes show existing w-automata used to represent the property automaton A ¬j : the traditional Büchi Automata (BA) and its generalized variant Transitionbased Generalized Büchi Automata (TGBA), and (at the center of the figure) the Testing Automata (TA), the alternative kind of automata that represent only stutter-invariant properties. TA is represented by a box with a double line edge because it requires a two-pass emptiness check algorithm (see Section 3.5.2).

The arrows between the different boxes are labeled by the successive steps used to build the different automata.

In the right part of the figure, the yellow boxes show the new kinds of w-automata constructed in this thesis. Firstly, we propose an improvement of TA called Single-pass Testing Automata (STA) (Chapter 4). Secondly, we propose a more efficient new automata (Chapter 5), called Transition-based Generalized Testing Automata (TGTA) that combine the advantages of both STA and TGBA, and without the disadvantages of STA.

Then, using these TGTA, several improvements are proposed in three different contexts: explicit model checking (Chapter 5), symbolic model checking based on the saturation algorithm (Chapter 6) and three hybrid techniques (Chapter 7).

These contributions (yellow boxes) are briefly presented in the following:

Evaluation and improvement of the Testing Automata Approach. In Chapter 3, We experimentally evaluate the TA approach in order to extend the study of Geldenhuys and Hansen [START_REF] Geldenhuys | Larger automata and less work for LTL model checking[END_REF]. We show that while TA are statistically more efficient than BA and TGBA when the property to be verified is violated (i.e., a counterexample is found). This is not the case when the property is satisfied since the entire product has to be visited twice to check for each accepting mode of a TA (Büchi-accepting or livelock-accepting). Then, in Chapter 4 we improve the TA approach in two ways. First, we introduce some optimizations on the emptiness check algorithm in order to detect the cases where the second pass is not required. Second, we propose Single-pass Testing Automata (STA), a transformation of TA into a normal form requiring only a single pass during the emptiness check of the product. Although STA are more constrained than TA, we can automatically translate the latter into the former, by adding an artificial livelock-accepting state in STA.

We have implemented these improvements in Spot library. We are thus able to compare them with the "traditional" algorithms we used on Testing Automata (TA) and Transition-based Generalized Büchi Automata (TGBA). These experiments show that STA compete well on our examples.

Transition-based Generalized Testing Automata: A Single-pass and Generalized New Automata. In Chapter 5, we propose (our main) new type of w-automata for stutter-invariant LTL properties, called Transition-based Generalized Testing Automata (TGTA). TGTA mixes features from both TA and TGBA, without the disadvantage of TA, which is the second pass of the emptiness check, and without adding an artificial state as in STA.

• From TA, TGTA reuses the labeling of transitions with changesets, and the elimination of the useless stuttering-transitions, but without introducing a second mode of acceptance (i.e, livelock-acceptance).

• From TGBA, TGTA inherit the use of transition-based generalized acceptance conditions and reuse the same single-pass emptiness check algorithm. In addition to improving the performance, the removal of the second pass in TGTA approach also eases the implementation of the emptiness check algorithm, not only for the explicit approach, but especially for more complex implementations (such as symbolic or hybrid approaches). More generally, this simplification eases the combination of TGTA with other classical optimizations used in model checking (such as the partial order reduction, or the saturation technique used in the symbolic approach).

Another advantage of TGTA compared to TA is that a TA is built from a BA while a TGTA is built from a TGBA. Therefore, TGTA can take advantage from the fact that TGBA are more concise [START_REF] Giannakopoulou | From states to transitions: Improving translation of LTL formulae to Büchi automata[END_REF][START_REF] Duret | SPOT: an extensible model checking library using transition-based generalized Büchi automata[END_REF] than BA. Compared to TGBA, TGTA represents all stuttering-transitions with only self-loops on all states (thanks to the elimination of the useless stuttering-transitions during the TGTA construction).

Implementation and experimentation of TGTA approach show that in most cases, it reduces the size of the synchronous product and is statistically more efficient than TA and TGBA (BA) approaches, for the explicit model checking of stutter-invariant properties, Using TGTA to improve a Saturation-based Symbolic Model Checking. In symbolic model checking, the product is symbolically encoded by means of decision diagrams [17] and computed as a least fixpoint on its symbolic transition relation. The performance of this fixpoint computation can be improved using the saturation technique [20,[START_REF] Thierry-Mieg | Hierarchical set decision diagrams and regular models[END_REF]. In order to improve the symbolic model checking of stutter-invariant LTL properties, we investigate in Chapter 6 the use of the combination of TGTA with saturation technique. We first show how a TGTA can be symbolically encoded, Then, we show that the saturation algorithm greatly benefits from the presence of stuttering selfloops on all states of TGTA, and we propose a symbolic encoding of stuttering transitions in the product that improve the saturation-based symbolic approach using TGTA.

Implementation and experimentation of this approach confirm that it outperforms the saturation-based symbolic approach using Büchi Automata TGBA, the performance of the saturation algorithm are significantly more enhanced by TGTA than by TGBA.

This improvement was possible only because TGTA represents the stuttering-transitions specifically in a way that helps the saturation technique.

Three hybrid approaches using TGTA The hybrid approaches [START_REF] Sebastiani | Symbolic systems, explicit properties: on hybrid approches for LTL symbolic model checking[END_REF][START_REF] Duret-Lutz | Self-loop aggregation product -a new hybrid approach to on-the-fly LTL model checking[END_REF] combine ideas from both explicit and symbolic approaches in order to benefit from the advantages of the both worlds, i.e., encoding the set of states in a concise way using decision diagrams as in the symbolic approach, and the emptiness check performed on-the-fly as in the explicit approach.

In this work, we focus on three hybrid techniques proposed in [START_REF] Duret-Lutz | Combining explicit and symbolic approaches for better on-the-fly LTL model checking[END_REF]: the Symbolic Observation Graph (SOG), the Symbolic Observation Product (SOP) and the Self-Loop Aggregation Product (SLAP).

As for symbolic model checking, Testing Automata have never been used before for hybrid model checking.

The three hybrid approaches SOG, SOP and SLAP are based on TGBA. In Chapter 7, we define and implement variations of these three approaches using TGTA instead of TGBA. Then, each original approach (SOG, SOP and SLAP) is experimentally compared against its TGTA variant (respectively SOG-TGTA, SOP-TGTA and SLAP-TGTA). The results show that the performance of these new variants depend on the type of the formula to be checked: verified or violated. the possible behaviors of the system. The property to be checked is formally described using a specification language such as branching-time (CTL) or Linear-time Temporal Logic (LTL). In this work we concentrate on LTL. The next step is to run a model checking algorithm that takes as inputs the model M and the LTL formula j. This algorithm exhaustively checks that all the model M behaviors satisfy j.

L (K M ⌦ A ¬j) = L (K M) \ L (A ¬j) Emptiness Check L (K M ⌦ A ¬j) ? = / 0 M |= j or counterexample
There are two major approaches for LTL model checking: explicit and symbolic. The explicit [e.g., [START_REF] Courcoubetis | Memoryefficient algorithm for the verification of temporal properties[END_REF][START_REF] Gerth | Simple on-the-fly automatic verification of linear temporal logic[END_REF] approach converts M and j into explicit graphs before running the model checking algorithm. The symbolic approach [17] encodes M and j implicitly by means of Binary Decision Diagrams (BDDs). This symbolic approach will be presented in Chapter 6, we only consider the explicit approach in this chapter.

The automata-theoretic approach to explicit model checking relies on w-automata, i.e., an extension of finite automata to infinite words.

Figure 2.1 summarizes the successive steps of the automata-theoretic approach. It starts by converting the negation of j into an w-automaton A ¬j , then composing that automaton with the state-space of a model M given as a Kripke structure K M (a variant of w-automaton), and finally checking the language emptiness of the resulting product automaton A ¬j ⌦ K M [START_REF] Vardi | An automata-theoretic approach to linear temporal logic[END_REF].

As for any model checking process, the automata-theoretic approach suffers from the well known state explosion problem [START_REF] Valmari | The state explosion problem[END_REF]. In practice, it is the product automaton that can be very large, its size can reach (|A ¬j | ⇥ |K M |) states, which can make it impossible to be handled using the resources of modern computers.

The w-automaton representing A ¬j is usually a Büchi automaton (BA) or a generalization using multiple acceptance sets, such as Generalized Büchi Automata (GBA) or Transition-based Generalized Büchi Automata (TGBA).

This chapter details the successive phases of the model checking procedure, including the formalization and the different algorithms used in these phases. We also present the different variants of Büchi automata and their use in the automata-theoretic approach to model checking.

Modeling the System

A model checker tool performs verification on a model of the system rather than the system itself. A model is a high-level representation that reproduces the relevant part of the behaviors of the original system, while eliminating irrelevant details that are difficult to reproduce. The advantages are that the model includes only the relevant elements of the entire larger system, and the model is easier to build and to redesign once possible errors are reported by the model checker.

High Level Model

The model of a system can be described using several high-level formalisms such as Petri nets [START_REF] Diaz | Réseaux de Petri, Modèles fondamentaux[END_REF], Promela programs [START_REF] Holzmann | The Spin Model Checker: Primer and Reference Manual[END_REF], communicating finite-state machines [15], or finite transition systems [1]. All these formalisms can be used to generate the state-space of the model, but the difficulty for some formalisms is to prove that the state-space is finite. For example, a state-space generated from a Petri net can be infinite, because it corresponds to the graph of reachable markings [START_REF] Diaz | Réseaux de Petri, Modèles fondamentaux[END_REF]. To ensure that this state-space is finite, it is necessary to check that the Petri net places are bounded.

Whatever the used formalism, a finite state-space can be viewed as a form of finite transition system, called Kripke Structure (its formal definition is given later).

Example: Robot Modeling

Let us consider a robot specification [9] as an illustrative example of System modeling. In the finite transition system of Figure 2.2, the robot can execute only three actions: look, compute, and move. It begins by taking a snapshot of its environment, this action is represented by the transition look executed from the initial state labeled by "Ready to look". Then, from the state "Ready to compute" the robot executes the transition compute to determine its future location and finally it moves to this computed location by executing the transition move from the state "Ready to move". However, if the robot does not find a new location in the current snapshot of its environment, it returns to the initial state to take a new snapshot, hoping that its environment has changed.

Ready to look (l)

Atomic Propositions and System Executions

The atomic propositions allow to describe the different states of the system. The set of atomic propositions is the set of smallest properties defined for individual states of the system (where smallest means that the truth value of each atomic proposition does not depend on the truth value of the other atomic propositions).

For instance, in order to describe the different states of the robot of Figure 2.2, let us define the three following atomic propositions:

• l = The robot is ready to look

• c = The robot is ready to compute

• m = The robot is ready to move {l} (l ^c^m) start {c} (l ^c ^m) {m} (l ^c^m) Each system state is labeled by a valuation, i.e., an assignment of truth value to each atomic proposition of AP.

Definition 1 (Valuation). Let AP a finite set of atomic propositions, a valuation `over AP is represented by a function `: AP 7 ! {?, >}.

We denote by S = 2 AP the set of all valuations over AP, where a valuation `2 S is interpreted either as the set of atomic propositions that are true, or as a Boolean conjunction where:

`is identified to For the robot model, the set of valuations is S = 2 {l,c,m} . The initial state is labeled by the valuation {l} also noted (l ^c ^m) or (l c m), the valuations of the other states are shown in Figure 2 In the following, a sequence s is often represented by the concatenation of its valuations: s = s(0) • s(1) • s(2) • • • . S n = the set of sequences of length n and S ⇤ = S n2N S n the set of finite sequences of valuations from S. S w denotes the set of infinite sequences of valuations from S. Definition 3 (Execution). An execution of a system maps to each time instant, a set of atomic propositions that hold at that instant. This execution is represented by an infinite sequence of valuations s = s(0

) • s(1) • s(2) • • • 2 S w .
The set of all executions of a system is a subset of S w and can be viewed as a language of infinite words over the alphabet S.

An example of an execution of the robot system is the sequence of valuations {l} • {c} • {l} • {c} • {l} • {c} • • • (i.e., the robot execution alternating the valuations {l} and {c}), we can notice that there is a risk that the robot never reaches the state labeled by the valuation {m} and therefore never moves.

In the next section, we present a variant of transition system usually used in model checking process to describe the system executions.

Kripke Structure

The state-space of a system can be represented by a directed graph, called Kripke structure, where vertices represent the states of the system and edges are the transitions between these states. In addition, each vertex is labeled by a valuation that represents the set of atomic propositions that are true in the corresponding state.

Definition 4 (Kripke Structure). A Kripke structure over the set of atomic propositions AP is a tuple K = hS , S 0 , R , li, where:

• S is a finite set of states,

• S 0 ✓ S is the set of initial states,

• R ✓ S ⇥ S is the transition relation,

• l : S ! S is a labeling function that maps each state s to a valuation that represents the set of atomic propositions that are true in s.

An infinite path or a run of a Kripke structure K = hS , S 0 , R , li is an infinite sequence of states r = s 0 • s 1 • s 2 • • • such that s 0 2 S 0 and 8i 2 N, (s i , s i+1) 2 R .

We denote Run(K) the set of infinite paths of K .

Given an infinite path r = s 0 • s 1 • s 2 • • • in Run(K), the infinite sequence of valuations s = l(s 0) • l(s 1) • l(s 2) • • • 2 S w corresponds to an execution of the system represented by K . Thus, s is also called execution of K .

Definition 5. The language of a Kripke structure K is the set L (K) ✓ S w of all executions of K .

L (K) = {s = l(s 0) • l(s 1) • l(s 2) • • • 2 S w | s 0 • s 1 • s 2 • • • 2 Run(K)}
Note that L (K) ✓ S w can be viewed as a language of infinite words over the alphabet S = 2 AP .

Figure 2.3.2 shows the Kripke structure representing the state-space of the robot system (described in section 2.2.2).

Specification of the Property to check

In Model checking, it is necessary to have a precise formal expression of properties to check. Logic can express these properties in a mathematical, unambiguous , and concise way. This enables the automation of the verification.

Linear-Time Temporal Logic (LTL)

In order to express temporal properties, Linear Temporal Logic (LTL) [START_REF] Manna | The Temporal Logic of Reactive and Concurrent Systems[END_REF] adds the notion of causality to the traditional propositional logic. LTL introduces new operators, called temporal operators, interpreted over linear executions. In a linear execution, every time instant has only one immediate successor, unlike the other widely-used temporal logic, called CTL (Computational Tree Logic) [23], for which a time instant can have many immediate successors. This two logics are not really comparable [START_REF] Holzmann | The Spin Model Checker: Primer and Reference Manual[END_REF]. Each logic allows to express properties that the other can not express. For instance, CTL allows to express the reset [START_REF] Holzmann | The Spin Model Checker: Primer and Reference Manual[END_REF] properties and LTL cannot. However, CTL does not allow to express the invariance LTL properties (of the form F G p). In this work, we only focus on LTL model checking.

LTL Formula

An LTL formula is composed of:

• A finite set of atomic propositions AP = {p 1 , p 2 , . . .},

• the Boolean operators ^, _, ¬, !, $,

• the unary temporal operators X (next), G (Globally) and F (Future),

• the binary temporal operator U (Until).

Definition 6. Given a set of atomic propositions AP. The set of LTL formulas over AP is inductively defined as follows:

• For every atomic proposition p 2 AP, p is an LTL formula,

• if j is an LTL formula, then ¬j, X j, G j and F j are also LTL formulas,

• if j 1 and j 2 are two LTL formulas, then (j 1 ^j2), (j 1 _ j 2), (j 1 ! j 2), (j 1 $ j 2) and (j 1 U j 2) are also LTL formulas.

LTL Formula Semantics

An LTL formula over AP is interpreted over an execution s 2 S w (S = 2 AP).

In the following, s(n) denotes the (n + 1) th valuation of the execution s = s(0)s(1)s(2) . . ., and the sequence s i = s(i)s(i + 1) . . . denotes the suffix of s starting at position i (i.e., 8n 2 N, s i (n) = s(i + n)).

Definition 7. The satisfaction of an LTL formula j by an execution s 2 S w , denoted s |= j, is defined inductively as follows:

s |= p iff p 2 s(0) s |= ¬j iff ¬(s |= j) s |= j 1 ^j2 iff s |= j 1 and s |= j 2 s |= j 1 _ j 2 iff s |= j 1 or s |= j 2 s |= X j
iff s 1 |= j (j is true in the next time step) s |= G j iff 8i 0, s i |= j (j is true in every time step) s |= F j iff 9i 0 such that s i |= j (j is true now or at some future time step) s |= j 1 U j 2 iff 9i 0 such that s i |= j 2 and 8 j 2 [[0, i 1]], s j |= j 1 (j 2 is true now or j 1 is true now and j 1 remains true until j 2 holds) Definition 8. Given an LTL formula j over AP. The language of j, denoted L (j), is the set of all executions s 2 S w satisfying j. L (j) = {s 2 S w | s |= j}

LTL Operators Equivalences

In Definition 6, some operators are redundant (i.e., can be expressed using other operators). The following equivalences allow to ignore these operators in the LTL translation algorithm presented in Section 2.4.6.

> = True = p _ p ? = False = p ^p F j = > U j G j = ¬ F ¬j = ¬(> U ¬j) = ? R j 2.
3.1.4 Size of an LTL formula Definition 9. Given an LTL formula j over AP, the size (or the length) of j, denoted |j|, is the total number of symbols of j, i.e., the number of atomic propositions, constants, and operators (logical and temporal) occurring in j.

Chapter 2. The Traditional Approaches to LTL Model Checking

Formally, the size of an LTL formula is defined inductively as follows:

|?| = 1 |>| = 1 |p| = 1, 8p 2 AP |¬j| = 1 + |j| |j 1 ^j2 | = |j 1 _ j 2 | = 1 + |j 1 | + |j 2 | | X j| = | G j| = | F j| = 1 + |j| |j 1 U j 2 | = 1 + |j 1 | + |j 2 |

LTL and Kripke structure

The link between an LTL formula and a Kripke structure is obvious, since we can interpret the LTL formula over the executions of the Kripke structure .

Definition 10. We say that a Kripke structure K over S = 2 AP , satisfies an LTL formula j, denoted K |= j, if all executions in L (K) satisfy j.

K |= j () L (K) ✓ L (j)
In the example of the robot model, the Kripke structure of Figure does not satisfy the LTL formula j = F m: a counterexample (i.e., an execution of the Kripke structure that does not satisfy j) is {l} • {c} • {l} • {c} • {l} • {c} • • • (the robot alternating {l} and {c} and never reaches the state labeled by the valuation {m}; therefore it never moves).

Stutter-Invariant LTL Formulas

Definition 11. An LTL formula j is stutter-invariant [START_REF] Etessami | Stutter-invariant languages, w-automata, and temporal logic[END_REF] iff any sequence s(0)s(1) . . . 2 L (j) remains in L (j) after repeating any valuation s(i) or omitting duplicate valuations. Formally, j is stutter-invariant iff s(0)s(1) . . . 2 L (j) () s(0) . . . s(0)

| {z } n 0 ⇥s(0)
s(1) . . . s(1)

| {z } n 1 ⇥s(1)
. . . 2 L (j), for any n 0 > 0, n 1 > 0 . . .

Intuitively, a property is stutter-invariant if it is insensitive to stuttering transitions i.e., the transitions that do not change the values of atomic propositions between two states of the system.

For example, the LTL formula j = a U b is stutter-invariant because valuations can be repeated or omitted in any sequence that satisfies j (e.g., a b; āb; āb; āb; āb . . .), and the obtained sequences remain satisfying j (e.g., a b; a b; āb; āb . . .). Conversely, the LTL formula j = a ^X b is not stutter-invariant because it is satisfied by the sequence (a b; āb; . . .) but unsatisfied by the sequence (a b; a b; āb; . . .). Theorem 1. Any LTL\ X formula (i.e., an LTL formula that does not use the X (next-time) operator) describes a stutter-invariant property. Conversely, any stutter-invariant property can be expressed as an LTL\ X formula [START_REF] Peled | Stutter-invariant temporal properties are expressible without the next-time operator[END_REF].

From LTL to Büchi Automata

The automata-theoretic approach is based on the transformation of the LTL formula to check into an automaton that accepts the same executions (called infinite words in the context of automata theory).

The following sections present three variants of Büchi automata [16] that can be used to express properties in the automata-theoretic approach to model checking: the standard Büchi Automata (BA), Generalized Büchi Automata (GBA) and Transitions-based Generalized Büchi Automata (TGBA). The main difference between these automata is the way they accept an infinite word of (2 AP) w .

The "Traditional Büchi" Automata (BA)

The Büchi Automata were introduced by J.R Büchi [16] in 1962. They are w-automata [START_REF] Farwer | Automata logics, and infinite games[END_REF] with labels on transitions and acceptance conditions on states. While classical finite automata recognize words having finite length, w-automata (and in particular Büchi Automata) recognize words of infinite length, called w-words. Although they accept infinite words, Büchi Automata have a finite number of states.

In the following, we will use the abbreviation BA for the standard variant of Büchi Automata.

Definition 12 (BA). A Büchi Automaton (BA) over the alphabet S = 2 AP is a tuple B = hQ , I , d, F i where:

• Q is a finite set of states,

• I ✓ Q is a a finite set of initial states,

• F ✓ Q is a finite set of accepting states (F is called the accepting set),

• d ✓ Q ⇥ S ⇥ Q is the transition relation where each transition is labeled by a letter `of S, i.e., each element (q, `, q 0) 2 d represents a transition from state q to state q 0 labeled by a valuation `2 2 AP .

Definition 13 (A BA run). A run of B over an infinite word s = `0`1`2 . . . 2 S w is an infinite sequence of transitions r = (q 0 , `0, q 1)(q 1 , `1, q 2)(q 2 , `2, q 3) . . . 2 d w such that q 0 2 I (i.e., the infinite word is recognized by the run). Such a run is said to be accepting if 8i 2 N, 9 j i, q j 2 F (i.e., at least one accepting state is visited infinitely often).

The infinite word s is accepted by B if there exists an accepting run of B over s. The language accepted by B is the set L (B) ✓ S w of the infinite words it accepts. starting from this state of the automaton: they are shown for the reader's convenience but not used for model checking.

As an illustration of the BA definition, the infinite word ab; a b; āb; ab; āb; ab; . . . is accepted by the BA of Figure 2.4b that recognizes a U G b. A run over such infinite word must start in the initial state labeled by the formula (a U G b) and remains in this state for the first two valuations ab; a b, then it changes the value of a, so it has to take the transition labeled by the valuation āb to move to the second state labeled by the formula (G b). Finally, to be accepted, it must stay on this accepting state by executing infinitely the transitions labeled by { āb, ab}. The obtained accepting run is:

(a U G b) ab ! (a U G b) a b ! (a U G b) āb ! (G b) ab ! (G b) āb ! (G b) ab ! (G b) • • • (G b) • • • 2.4.2 Generalized Büchi Automata (GBA)
In the generalized variant of Büchi Automata (GBA) [START_REF] Gerth | Simple on-the-fly automatic verification of linear temporal logic[END_REF], there are multiple acceptance conditions, in other words, F is a set of accepting sets of states and a run is accepted iff it visits infinitely often each accepting set in F .

Definition 14 (GBA).

A Generalized Büchi Automata (GBA) over the alphabet S = 2 AP is a tuple G = hQ , I , d, F i where:

• Q is a finite set of states, (i.e., each element (q, `, q 0) 2 d represents a transition from state q to state q 0 labeled by a valuation `2 2 AP).

• I ✓ Q is a set of initial states, • F ✓ 2 Q is a set of sets of accepting states (we call accepting set each set F i of F = {F 1 , F 2 , . . . , F k . . .}), • d ✓ Q ⇥ S ⇥ Q is the
Definition 15. A run of G over an infinite word s = `0`1`2 . . . 2 S w is an infinite sequence of transitions r = (q 0 , `0, q 1)(q 1 , `1, q 2)(q 2 , `2, q 3) . . . 2 d w such that q 0 2 I (i.e., the infinite word is recognized by the run).

Such a run is said to be accepting if 8F 2 F , 8i 0, 9 j i, q j 2 F (i.e., at least one accepting state of each accepting set F 2 F is visited infinitely often). The infinite word s is accepted by G iff there exists an accepting run of G over s. The language accepted by G is the set L (G) ✓ S w of infinite words it accepts. GBA are as expressive as BA: any GBA can be converted into an equivalent BA that recognizes the same language (section 2.4.2.1), and vice-versa, a BA hQ , I , d, F i can be viewed as a GBA hQ , I , d, {F }i having a single set of accepting states {F }. Given a GBA G = hQ , I , d, {F 1 , F 2 , . . . , F k }i, the BA B = hQ 0 , Q 00 , d 0 , F 0 i constructed as follows accepts the same language as G.

• Q 0 = Q ⇥ {1, . . . , k} (Q 0 is the states of Q marked by an integer in {1, . . . , k}) • Q 00 = Q ⇥ {1} • F 0 = F 1 ⇥ {1} • 8(q, i) 2 Q 0 , (q, i), `, (q 0 , i 0) 2 d 0 if (q, `, q 0) 2 d and (i 0 = i if q 6 2 F i i 0 = (i mod k) + 1 if q 2 F
i (In the i th copy, the states of F i are connected to its successors in the (i + 1) th copy (the (k + 1) th copy is the first copy) (q 0 , 1) (q 1 , 1) (q 0 , 1) (q 1 , 1)

(q 0 , 2) (q 1 , 2
(q 0 , 2) (q 1 , 2)
a b, āb āb, ab ab, a b āb, āb (c) Computing the transitions of the first copy: i.e., states (q 0 , 1) and (q 1 , 1)

(q 0 , 1) (q 1 , 1) i.e., states (q 0 , 2) and (q 1 , 2) • The degeneralization begin by duplicate k times the GBA, with k = |F | = 2. The obtained BA of Figure 2.6b is composed of two copies of the GBA , the initial states are only in the first copy.

(q 0 , 2) (q 1 , 2
q 0 0 q 0 1 q 0 2 q 0 3 a b,
• In Figure 2.6c, we add the transitions of the first copy of states, the state (q 0 , 1) is connected to its successors in the second copy because q 0 2 F 1 .

• Similarly, in Figure 2.6d, because q 1 2 F 2 , the state (q 1 , 2) of the second copy is connected to its successors in the first copy. In the two copies, we keep unchanged the transitions of the two other states (q 1 , 1) and (q 0 , 2).

• Finally, the obtained BA B is shown in Figure 2.6e, it could be reduced by merging the two bisimilar states q 0 1 and q 0 3 . This optimization is called bisimulation reduction and will be presented in section 2.4.5.

• Each accepting run of CB is also accepted by G:

An accepting run r 1 of the obtained BA B has to visit infinitely often at least one accepting state that is in the first copy. To achieve this, r 1 must visit all the intermediate copies that are only connected through accepting set of the GBA (each F i connects the i th copy to the (i + 1) th copy). Therefore, r 1 has to visit each accepting set F i infinitely often, thus r 1 is also an accepting run for the original GBA G.

• Conversely, each accepting run of CG is also accepted by B:

We can consider, without loss of generality, that an accepting run r 2 of the GBA G visits infinitely often all the accepting set in the order F 1 , F 2 , Therefore, r 2 visits infinitely often at least one state of F 0 = F 1 ⇥ {1} = {(q 0 , 1)} = {q 0 0 } with q 0 0 is an accepting state of B, thus r 2 is also an accepting run for the BA B.

Transition-based Generalized Büchi Automata (TGBA)

A Transition-based Generalized Büchi Automaton (TGBA) [START_REF] Giannakopoulou | From states to transitions: Improving translation of LTL formulae to Büchi automata[END_REF] is a variant of a Büchi automaton that has multiple acceptance conditions on transitions.

Definition 16 (TGBA). A TGBA over the alphabet S = 2 AP is a tuple G 0 = hQ , I , d, F i where:

• Q is a finite set of states,

• I ✓ Q is a set of initial states,
• F is a finite set of acceptance conditions,

• d ✓ Q ⇥ S ⇥ 2 F ⇥ Q is the transition relation,
where each element (q, `, F, q 0) 2 d represents a transition from state q to state q 0 labeled by a valuation `2 2 AP , and a set of acceptance conditions F 2 2 F . Definition 17. A run of G 0 over an infinite word s = `0`1`2 . . . 2 S w is an infinite sequence of transitions r = (q 0 , `0, F 0 , q 1)(q 1 , `1, F 1 , q 2)(q 2 , `2, F 2 , q 3) . . . 2 d w such that q 0 2 I (i.e., the infinite word is recognized by the run). Such a run is said to be accepting if 8 f 2 F , 8i 2 N, 9 j i, f 2 F j (i.e., each acceptance condition is visited infinitely often).

The infinite word s is accepted by G 0 iff there exists an accepting run of G 0 over s. The language of G 0 is the set L (G 0) ✓ S w of infinite words it accepts.

TGBA and BA have the same expressive power: any TGBA can be converted into a languageequivalent BA and vice-versa [START_REF] Couvreur | On-the-fly verification of temporal logic[END_REF][START_REF] Giannakopoulou | From states to transitions: Improving translation of LTL formulae to Büchi automata[END_REF]. The process of converting a TGBA into a BA is also called degeneralization and is similar to the "GBA to BA transformation" presented in section 2.4.2.1. (a) The TGBA of Figure 2.7a recognizes the runs that contain infinitely often a and infinitely often b. An accepting run in this TGBA has to visit infinitely often the two acceptance conditions indicated by and . Therefore, it must explore infinitely often the transitions where a is true (i.e., transitions labeled by ab or a b) and infinitely often the transitions where b is true (i.e., transitions labeled by ab or āb). As an illustration of the degeneralization process, the BA from Figure 2.4a was built by degeneralizing the TGBA from Figure 2.7a. In the worst case, a TGBA with s states and n acceptance conditions will be degeneralized into a BA with s ⇥ (n + 1) states. The worst case of the degeneralization occurred here, since the TGBA with 1 state and n acceptance conditions was degeneralized into a BA with n + 1 states. It is known that no BA with less than n + 1 states can accept the property

V n i=1 G F p i so this BA is optimal [22] in terms of number of states.

(b) The property a U G b is easier to express: the TGBA of Figure 2.7b is the same as the BA of Figure . 2.4b, with the acceptance condition moved on transitions. More generally, a BA can be seen as a TGBA, by simply marking as accepting the transitions leaving the accepting states, without adding states nor transitions. Algorithms that input TGBA can therefore be easily adapted to process BA or GBA.

Determinization of Büchi Automata

Definition 18. A Büchi automaton is deterministic iff each accepted infinite word of S w is recognized by an unique accepting run of d w .

Formally, a Büchi automaton hQ , I , d, F i is deterministic iff |I | = 1 and 8(q, `) 2 Q ⇥ S, {q 0 2 Q | (q, `, q 0) 2 d}  1 (i.e., the outgoing transitions of each state are labeled with different valuations).

As an illustration, the Büchi automaton of Figure 2.4a is a deterministic BA. However, the Büchi automaton of Figure 2.4b is a non-deterministic BA.

The definition 18 of deterministic Büchi Automata is valid for the three variants of Büchi Automata: BA, GBA and TGBA.

The determinization operation consists in the transformation of a non-deterministic Büchi automaton into a deterministic one. However, there are non-deterministic Büchi automata that cannot be determinized. For instance, the non-deterministic Büchi automata of Figure 2.8 that recognize the LTL property j = F G a, cannot be transformed into an equivalent deterministic Büchi automaton.

The classical powerset construction [START_REF] Rabin | Finite automata and their decision problems[END_REF] used to determinize finite automata does not work for any Büchi automata (it works only for a restricted class of Büchi automata [START_REF] Dax | Mechanizing the powerset construction for restricted classes of w-automata[END_REF]).

The powerset construction uses subsets of states of the non-deterministic automaton, as states of the deterministic automaton. The example of Figure 2.9 shows that this construction does not work for the Büchi automata of j = F G a. The constructed automaton of Figure 2.9b accepts the infinite word a; ā; a; ā; . . . (alternating a and ā infinitely) and therefore does not recognize the same language as the original automaton of Figure 2.9a.

Thus, the determinization of Büchi automata requires the use of other types of w-automata, such as Muller or Rabin automata [START_REF] Safra | On the complexity of omega -automata[END_REF].

The history of determinizing Büchi automata began in 1963 with the first attempt of determinization due to Muller [65] that appears to be faulty. In 1966, McNaughton [START_REF] Mcnaughton | Testing and generating infinite sequences by a finite automaton[END_REF] proved that any non-deterministic Büchi automaton can be converted into a deterministic Muller automaton. This conversion involves a doubly exponential blow-up in the size of the original Büchi automaton (2 2 O(n)).

Proposed in 1988, the Safra's construction [START_REF] Safra | On the complexity of omega -automata[END_REF] transforms a non-deterministic Büchi automaton with n states into an equivalent deterministic Muller or Rabin automaton with 2 O(n log(n)) states (optimal for Rabin automata).

To conclude this section, it is important to note that although there are LTL formulas that are not convertible into Büchi automaton and the cost to obtain a deterministic automaton remains very high, we will see in the following that even the use of automata that are not "completely" deterministic but having a high degree of determinism can improve the performance of model checking.

Bisimulation Reduction of Büchi Automata

We say that two states are bisimilar if the automaton can accept the same runs starting from either of these states (this implies that two bisimilar states recognize the same language). Büchi Au- tomata can be simplified by merging bisimilar states. This bisimulation reduction can be achieved using a partition refinement algorithm [e.g., 14,[START_REF] Etessami | Optimizing Büchi automata[END_REF]13,[START_REF] Wimmer | Sigref: a symbolic bisimulation tool box[END_REF][START_REF] Valmari | Bisimilarity minimization in O(m log n) time[END_REF].

F G a G a a ā a a (a) BA/GBA for j = F G a F G a G a a ā a a (b) TGBA for j = F G a
The main idea of this algorithm is to split the set of states of the automaton into equivalence classes according to the equivalence relation of bisimilarity, then the states of each equivalence class are merged into a single state.

One way to compute the equivalence classes is to use the notion of signature [13]. A signature sig(q) can be viewed as a "fingerprint" of each state q that encodes the outgoing transitions of q. Two states q and q 0 having different signatures are not bisimilar and therefore belong to different classes C and C 0 .

• For BA hQ , I , d, F i, the signature of a state q with respect to a partition P, is the set of pairs (valuation, destination class C 2 P) of each outgoing transition from q: i.e., sig P (q) = {(`,C) | 9q 0 2 C 2 P, (q, `, q 0) 2 d}.

• For TGBA, the signature also includes the acceptance conditions of transitions: sig P (q) = {(`, F,C) | 9q 0 2 C 2 P, (q, `, F, q 0) 2 d}.

• In the case of a GBA with F = {F 1 , F 2 , . . . , F n }, the signature must includes the acceptance conditions on states: sig P (q) = {(`, F,C) | 9q 0 2 C 2 P, (q, `, F, q 0) 2 d}, where

F = {i | q 2 F i }.
The sets representing the signatures can be encoded symbolically [START_REF] Wimmer | Sigref: a symbolic bisimulation tool box[END_REF]14], BDDs (Binary Decision Diagrams) are used to implement the signatures of the bisimulation reduction of the different automata used in this work.

The basic idea of the bisimulation algorithm is to build a partition of the equivalence classes by refining an initial partition P 0 . This can be implemented by the following iterative procedure :

• Initialization:

-For a standard Büchi Automaton BA, we set up with two equivalence classes F and

Q \ F : P 0 = {F , Q \ F }.
-For a TGBA or a GBA, P 0 = {Q }.

• Iterate until a fixpoint is reached (i.e., P k = P k+1):

-For each pair of states q and q 0 belonging to the same class C of the partition P k , if sig P k (q) 6 = sig P k (q 0) then q and q 0 are put into two different classes C 0 and C 00 of the new partition P k+1

When this procedure stops, the states of each class have the same signature in the obtained partition. The termination of this algorithm is guaranteed because the number of states is finite and therefore the number of partition too. This naive implementation has a quadratic complexity (due to the comparison of all the pairs of states signatures, for each iteration). The optimization [START_REF] Valmari | Bisimilarity minimization in O(m log n) time[END_REF] reduces this complexity to O(m log(n)), where n is the number of states and m is the number of transitions. • P 0 = {{q 0 , q 1 , q 2 , q 3 , q 4 }, {q 5 }}, because q 5 is the unique accepting state.

q 0 q 1 q 2 q 3 q 4 q 5 a b āb a b āb a bāb a b āb a b āb a b, āb (a) A BA B before bisimulation reduction q 0 q 1 , q 3 q 2 , q 4 q 5 a b,
• P 1 = {{q 0 , q 1 , q 3 }, {q 2 , q 4 }, {q 5 }}, because in P 0 , we have āb, {q 5 } 2 sig P 0 (q 2) = sig P 0 (q 4) and āb, {q 5 } 6 2 sig P 0 (q 0) = sig P 0 (q 1) = sig P 0 (q 2).

• P 2 = {{q 0 }, {q 1 , q 3 }, {q 2 , q 4 }, {q 5 }}, because in P 1 , we have āb, {q 2 , q 4 } 2 sig P 1 (q 1) = sig P 1 (q 3) and āb, {q 2 , q 4 } 6 2 sig P 1 (q 0).

• P 3 = P 2 the procedure stops.

The automaton obtained after this partitions refinement is shown in Figure 2.10b. Simulation [START_REF] Etessami | Optimizing Büchi automata[END_REF][START_REF] Etessami | Fair simulation relations, parity games, and state space reduction for Büchi automata[END_REF][START_REF] Fritz | Constructing Büchi automata from linear temporal logic using simulation relations for alternating Büchi automata[END_REF][START_REF] Somenzi | Efficient Büchi automata for LTL formulae[END_REF]11] reduction is a generalization and an improvement of the bisimulation reduction. Simulation relation between two states q and q 0 is based on the inclusion of the sets of infinite runs starting from q and q 0 , instead of equality between these sets of infinite runs as in bisimulation relation between q and q 0 . Recently, [3] proposed a simulation reduction that improves the determinism of the resulting automaton.

Converting LTL formula into Büchi Automaton

Any LTL formula j can be converted into a Büchi Automaton whose language is the set of executions that satisfy j. This conversion is central to the process of model checking, thus a substantial number of research has been conducted in this area. Several algorithms have been proposed to translate an LTL formula into a BA, GBA or TGBA.

The first translation algorithm was proposed by Wolper [START_REF] Wolper | Reasoning about infinite computation paths[END_REF][START_REF] Wolper | Constructing automata from temporal logic formulas: A tutorial[END_REF], it allows to convert an LTL formula j into an automaton whose size is always equal to 2 O(|j|) states (exponential in the size of j). In [START_REF] Wolper | Constructing automata from temporal logic formulas: A tutorial[END_REF], the algorithm proposed is dedicated to LTL and produces a GBA. Despite its exponential complexity, this algorithm is easier to understand than others. In the following, we present a concise variant of this algorithm proposed in [START_REF] Oddoux | Utilisation des automates alternants pour un model-checking efficace des logiques temporelles linéaires[END_REF].

Using the equivalences between the LTL operators (Section 2.3.1.3), we can assume that the LTL formula j to translate, is only composed of the operators ¬, _, X and U. There are several optimizations based on rewriting rules [START_REF] Somenzi | Efficient Büchi automata for LTL formulae[END_REF][START_REF] Etessami | Optimizing Büchi automata[END_REF]11] that simplify the LTL formula before translating it into an automaton.

We note A j the GBA constructed by the following translation. The computation of the states of A j is based on the set cl(j), the closure of j containing all the subformulas of j and X(f 1 U f 2) for each subformula (f 1 U f 2) of j, it is in addition closed by the operator ¬.

Definition 19 (Closure). Let sub(j) be the set of all subformulas of j. The closure of j is the smallest set cl(j) satisfying:

• sub(j) ✓ cl(j),

• {X(f 1 U f 2) | (f 1 U f 2) 2 sub(j)} ✓ cl(j), • 8f 2 cl(j), (¬f) 2 cl(j) (With reduction of redundancies like f = ¬¬f and ¬ X f = X ¬f). For example, cl(F p) = cl(> U p) = {p, p, (> U p), X(> U p), ¬(> U p), X ¬(> U p)}. It is easy to deduce that |cl(j)| 2 O |j| .
Each state of A j is labeled by an atom, where an atom is a subset of cl(j) that satisfies the following three consistency rules: Definition 20 (Atom). An atom a of j is a subset of cl(j), satisfying the following rules:

• Logical consistency rules (a is maximal and does not contain logical contradictions):

-8f 2 cl(j), f 2 a , ¬f 6 2 a, this rule also implies that a is maximal, i.e., 8f 2 cl(j), either f 2 a or ¬f 2 a,

-8(f 1 _ f 2) 2 cl(j), (f 1 _ f 2) 2 a , (f 1 2 a) or (f 2 2 a),
• Temporal consistency rule:

8(f 1 U f 2) 2 cl(j), (f 1 U f 2) 2 a , (f 2 2 a) or (f 1 2 a) and X(f 1 U f 2) 2 a) .
This temporal consistency rule is deduced from the expansion law stating that:

f 1 U f 2 = f 2 _ (f 1 ^X(f 1 U f 2)).
Let Atoms(j) denotes the set of atoms of j, we have Atoms(j) ✓ 2 cl(j) and the number of states of As an illustration, we use the above rules to compute the atoms for the translation of the LTL formula j = F p = (> U p), we obtain the set Atom(F p) composed of the four atoms labeling the states of the GBA A (F p) shown in Figure 2.11. This set of atoms is obtained by the following reasoning: In order to satisfy the temporal consistency rule, the atoms that contain the sub-formula (> U p) must also contain p or X(> U p). Thus, we obtain three atoms containing (> U p):

A j is |A j | = |Atoms(j)|  |2 cl(j) | 2 O(2 |j|). {(> U p), p, X(> U p)} {(> U p), p, X(> U p)} {(> U p), p, X ¬(> U p)} {¬(> U p), p, X ¬(> U p
• {(> U p), p, X(> U p)} 2 Atom(F p) • {(> U p), p, X(> U p)} 2 Atom(F p) • {(> U p), p, X ¬(> U p)} 2 Atom(F p)
On the other hand, the atoms that do not contain (> U p) must contain ¬(> U p) because they have to be maximal (the first rule), and they can only contain p and ¬ X(> U p) to satisfy the temporal consistency rule. We obtain an unique atom that contain ¬(> U p):

{¬(> U p), p, X ¬(> U p)} 2 Atom(F p).
Once the atoms labeling the states computed, we can build the GBA A j according to the following definition: Definition 21 (From j to A j). Given an LTL formula j over AP, A GBA over the alphabet S = 2 AP that accepts the same language as j, is a tuple A j = hQ , I , d, F i where:

• Q = Atoms(j), • I = {a 2 Atoms(j) | j 2 a}, Chapter 2. The Traditional Approaches to LTL Model Checking • d = {(a, a \ AP, a 0) 2 Q ⇥ S ⇥ Q | 8X f 2 cl(j), (X f 2 a) , (f 2 a 0)}, • F = {F f 1 U f 2 | (f 1 U f 2) 2 cl(j)}, with F f 1 U f 2 = {a 2 Q | f 2 2 a _ (f 1 U f 2) 6 2 a}
This construction of A j is illustrated in Figure 2.11 presenting the GBA A (F p) obtained from the LTL formula j = F p = (> U p). Intuitively, when the constructed automaton A j reads a word s = `0`1`2 . . . by exploring a sequence of states a 0 a 1 a 2 . . ., in each step i, the "sub-"word w i = `i`i +1 `i+1 . . . satisfies all the formulas labeling the state a i . In addition, w i does not satisfy any other state of Q \ a i because w i does not satisfy any formulas of cl(j) \ a i by definition of the atom a i . The formulas of the form X f are verified in the next step by the transition relation d, because d

is constructed according to the equivalence (X f 2 a i) , (f 2 a i+1) where (a i , a i \ AP, a i+1) 2 d (Definition 21).
The automata produced by translation algorithms often contain redundant states, which can be eliminated using the bisimulation/simulation rOneductions presented in Section 2.4.5.

As we mentioned earlier, the algorithm presented above is not optimal, it produces a GBA composed of 4 states (Figure 2.11) for j = F p, while this LTL formula can be converted into a GBA having only 2 states.

Many other more efficient algorithms are proposed to translate an LTL formula into the different variants of Büchi Automata. One common way to obtain a BA from an LTL formula is to first translate the formula into some Generalized Büchi Automata with multiple acceptance conditions (GBA, TGBA,. . .) and then to degeneralize this automaton to obtain a single acceptance condition. Alternatives include the translation of the property into a state-based [START_REF] Gerth | Simple on-the-fly automatic verification of linear temporal logic[END_REF] generalized automaton which can then also be degeneralized, or the translation of the property into an alternating Büchi automaton that is then converted into a BA using the construction proposed by [START_REF] Gastin | Fast LTL to Büchi automata translation[END_REF].

The degeneralization process can increase the size of the Büchi automaton (see Section 2.4.2.1). In addition, several model checking procedures supports generalized (i.e., multiple) acceptance conditions, making such degeneralization unnecessary and even costly [START_REF] Couvreur | On-the-fly emptiness checks for generalized Büchi automata[END_REF]. Moving the acceptance conditions from the states (GBA) to the transitions (TGBA) also reduces the size of the property automaton [START_REF] Couvreur | On-the-fly verification of temporal logic[END_REF][START_REF] Giannakopoulou | From states to transitions: Improving translation of LTL formulae to Büchi automata[END_REF].

Several algorithms exist to translate an LTL formula into a TGBA [START_REF] Giannakopoulou | From states to transitions: Improving translation of LTL formulae to Büchi automata[END_REF][START_REF] Couvreur | On-the-fly verification of temporal logic[END_REF][START_REF] Couvreur | Un point de vue symbolique sur la logique temporelle linéaire[END_REF][START_REF] Tauriainen | Automata and Linear Temporal Logic: Translation with Transition-based Acceptance[END_REF][START_REF] Gastin | Fast LTL to Büchi automata translation[END_REF]2]. The one we use in the experimentations presented in this thesis is based on Couvreur's LTL translation algorithm [START_REF] Couvreur | On-the-fly verification of temporal logic[END_REF]. The next chapter presents the results of an experimentation that compares different model checking approaches, including those using BA and TGBA.

Most of the works that tried to improve model checking, have focused on translating the LTL formula into the smallest possible automaton. However, [START_REF] Sebastiani | more deterministic" vs. "smaller" Büchi automata for efficient LTL model checking[END_REF] claims (without giving evidence) that model checking can be improved by generating more deterministic automata (determinization of Büchi automata was discussed in section 2.4.4). According to [3,10], it is not yet clear when "more deterministic" automaton should be preferred to a small one.

Explicit LTL Model checking using Büchi Automata

The explicit model checking enumerates the states of the state-spaces of both the model and the LTL formula. These explicit state-spaces and their synchronous product are traditionally repre-sented using variants of w-automata. In this automata-based approach to model checking of an LTL formula j on the model M, there are two important algorithms (represented in Figure 2.1):

1. The translation of the negation of the LTL formula ¬j into (one variant of) a Büchi Automaton A ¬j (Translation of LTL properties into automata has already been presented in the previous section).

2. The emptiness check of the product K M ⌦A ¬j where K M is the Kripke structure representing the state-space of the model M. The language of this product automaton

L (K M ⌦ A ¬j) is equal to L (K M) \ L (A ¬j), i.e.
, the set of executions of K M invalidating j.

The goal of the emptiness check algorithm is to determine if the product automaton K M ⌦ A ¬j accepts an execution or not.

In other words, it checks if the language of the product automaton is empty or not. If it is empty, then there is no execution of the model M that invalidates the property j and therefore M |= j. Otherwise, there is an execution of M that invalidates j and this execution is reported as a counterexample.

More formally, the automata-theoretic approach is based on the following equivalences:

L (K M ⌦ A ¬j) = / 0 () L (K M) \ L (A ¬j) = / 0 () L (K M) \ L (A j) = / 0
() L (K M) ✓ L (A j) () M |= j
The emptiness check algorithms dealing with TGBA also work for GBA and BA, because a GBA or a BA can be seen as a TGBA by pushing the acceptance conditions on the transitions leaving accepting states (with multiple acceptance conditions in the case of GBA). For this reason, this section only focuses on TGBA.

Synchronous Product

The product of a TGBA with a Kripke structure is a TGBA whose language is the intersection of both languages.

Definition 22 (Synchronous Product of a Kripke structure and a Büchi automaton). For a Kripke structure K = hS , S 0 , R , li and a TGBA Because the set of all states of the product is defined as S ⌦ = S ⇥ Q , the maximum size (in term of number of reachable states) of the product automaton is equal to

A = hQ , I , d, F i the product K ⌦ A is the TGBA hS ⌦ , I ⌦ , d ⌦ , F i where • S ⌦ = S ⇥ Q , • I ⌦ = S 0 ⇥ I , • d ⌦ = {((s, q), `, F, (s 0 , q 0)) | (s, s 0) 2 R , (q, `, F, q 0) 2 d, l(s) = `} Property 1. We have L (K ⌦ A) = L (K) \ L (A) by construction.
|S | ⇥ |Q |. Figure 2.
12 shows an example of a Synchronous Product between a Kripke structure K and a TGBA (BA) A recognizing the LTL formula F G p. Each state of K is numbered and labeled with the set of atomic propositions (of S = {p}) that hold in this state. In the TGBA representing the product K ⌦ A, the states are labeled with a pairs of the form "(K state, A state)".

Let us recall that since a BA or a GBA can be seen as a TGBA with accepting conditions moved from accepting states onto their outgoing transitions, the above product construction using TGBA can easily be adapted to a product between a Kripke structure and a BA or a GBA.

On-the-fly Emptiness check algorithms

Testing a TGBA for emptiness amounts to the search of an accepting cycle that contains at least one occurrence of each acceptance condition. This can be done in different ways: either with a variation of Tarjan or Dijkstra algorithm [START_REF] Couvreur | On-the-fly verification of temporal logic[END_REF] or using several Nested Depth-First Searches (NDFS) to save some memory [START_REF] Tauriainen | Automata and Linear Temporal Logic: Translation with Transition-based Acceptance[END_REF]. In NDFS algorithms, a first Depth-First Search (DFS) is performed until it reaches an accepting state s, then a second DFS is performed from s trying to return to s. [START_REF] Couvreur | On-the-fly emptiness checks for generalized Büchi automata[END_REF][START_REF] Geldenhuys | Larger automata and less work for LTL model checking[END_REF] argued that NDFS algorithms are slower than SCC-based algorithms, so in the following, we will use in our experiments Couvreur's SCC-based emptiness check algorithm [START_REF] Couvreur | On-the-fly verification of temporal logic[END_REF] because it only performs a single DFS, and its complexity does not depend on the number of acceptance conditions (while NDFS may need to perform many nested DFS in the case of multiple acceptance conditions (GBA or TGBA)). This Couvreur's algorithm will be described in detail below. The comparison of the different emptiness check algorithms has raised many studies [START_REF] Geldenhuys | Tarjan's algorithm makes on-the-fly LTL verification more efficient[END_REF][START_REF] Schwoon | A note on on-the-fly verification algorithms[END_REF][START_REF] Couvreur | On-the-fly emptiness checks for generalized Büchi automata[END_REF][START_REF] Renault | Three SCCbased emptiness checks for generalized Büchi automata[END_REF].

The product automaton that has to be explored during the emptiness check is generally very large, its size can reach the value obtained by multiplying the the sizes of the model and formula automata, which are synchronized to build this product. Therefore, building the entire product must be avoided. "On-the-fly" emptiness check algorithms allow the product automaton to be constructed lazily during its exploration. These on-the-fly algorithms are more efficient because they stop as soon as they find a counterexample and therefore possibly before building the entire product, thereby reducing the amount of memory and time used by the emptiness check.

In this work, we focus on SCC-based "On-the-fly" emptiness checks. Algorithm 1 presented below is an iterative version of the Couvreur's SCC-based algorithm [START_REF] Couvreur | On-the-fly verification of temporal logic[END_REF].

Algorithm. DFS: DFS:

s 1 s 2 s 3 s 4 s 3 s 1 s 2 s 3 s 4 s 5 (b) 0 1 2 0 Roots: 1 2 DFS: s 1 s 2 s 1 s 2 s 3 s 4 s 5 (c)
s 1 s 2 s 1 s 1 s 2 s 3 s 4 s 5 (f)
Figure 2.14: Six intermediate steps in a run of algorithm 1. The states s 1 , . . . , s 5 are labeled by their value in H. The stack of roots of SCCs (the root stack in the algorithm) and the DFS search stack (induced by the recursive calls to DFSpush()) are displayed on the side. An interpretation of the SCC stack in term of SCCs is given as yellow blobs on the automaton. (a) Initially the algorithm performs a DFS search by declaring each newly encountered state as a trivial SCC. (b) When the transition from s 4 to s 3 is processed, the algorithm detects that H[s 3] 6 = 0 which means the transition creates a cycle and all SCCs between s 4 and s 3 are merged. (c) When the DFS exits the non-accepting {s 3 , s 4 } SCC, it marks all its states as dead (H[s] = 0). (d) When the DFS attempt to visit a dead state, it ignores it. (e) Visiting the transition from s 5 to s 1 will merge three SCCs into one, but it does not yet appear to be accepting because the white accepting condition ()has not been seen. (f) Finally visiting the transition from s 2 back to s 1 will add the white acceptance condition to the current SCC, and the algorithm will stop immediately because it has found an SCC labeled by all acceptance conditions. root is the DFS rank (H) of the first state of the SCC, acc is the set of all acceptance conditions belonging to the SCC, la is the acceptance conditions of the transition between the previous and the current SCC, and rem contains the fully explored states of the SCC. Figure 2. 13

Complexity

In the automata-theoretic approach to model checking of a Kripke structure K M against an LTL formula j, the upper bound of the time (and space) complexity is in O(|K M | ⇥ 2 |j|), because j can be converted into Büchi automaton A ¬j whose size and time of construction is in O(2 |j|), and the emptiness check is linear with respect to the size of the product automaton K M ⌦ A ¬j . This linear complexity is for instance the complexity of Algorithm 1, which has the same complexity as the algorithm for finding the maximum strong components in a directed graph of Dijkstra [START_REF] Wybe | EWD 376: Finding the maximum strong components in a directed graph[END_REF][START_REF] Wybe | Finding the maximal strong components in a directed graph[END_REF]. Thus, the upper bound of the model checking complexity is directly deduced from the inequality:

|K M ⌦ A ¬j |  |K M | ⇥ |A ¬j |.

Conclusion

Automata-theoretic approach is traditionally used for the explicit LTL model checking. In this approach, a Kripke structure K M is used to represent the state-space of the model M, and the property to be checked is expressed as an LTL formula j, then its negation is converted into a Büchi automaton A ¬j . The third operation is the synchronization between K M and A ¬j . This constructs a product automaton K M ⌦ A ¬j whose language, L (K M) \ L (A ¬j), is the set of executions of M invalidating j. The last operation is the emptiness check algorithm that explores the product to tell whether it accepts or not an infinite word, i.e., a counterexample. The model M satisfies j iff

L (A M ⌦ A ¬j) = / 0.
The main problem of model checking is the well known state-space explosion problem. In particular, the performance of the automata-theoretic approach depends (in practice) on the size of the explored part during the emptiness check of the product automaton. This explored part itself depends on three parameters: the automaton A ¬j obtained from the LTL formula j to be checked, the Kripke structure K M representing the state-space of the model M, and the emptiness check algorithm. The fact that this algorithm is performed on-the-fly, potentially avoids building the entire product automaton. Indeed, the states of this product that are not visited by the emptiness check are not generated at all.

In order to reduce the size of the product K M ⌦ A ¬j , many works have attempted to reduce the size of A ¬j , either by improving the LTL translation (Section 2.4.6), or by proposing several reductions for the automaton produced by this translation (examples of these reductions are the bisimulation/simulation based reductions presented in Section 2.4.5). However, [START_REF] Sebastiani | more deterministic" vs. "smaller" Büchi automata for efficient LTL model checking[END_REF] claims that the size of the product automaton depends more on the "determinism degree" of A ¬j rather than its size.

Another optimization that can reduce the size of A ¬j is to simplify the LTL formula ¬j before translating it into an automaton, several rewriting rules have been proposed [START_REF] Somenzi | Efficient Büchi automata for LTL formulae[END_REF][START_REF] Etessami | Optimizing Büchi automata[END_REF]11] to perform LTL simplifications.

According to [START_REF] Couvreur | On-the-fly verification of temporal logic[END_REF][START_REF] Giannakopoulou | From states to transitions: Improving translation of LTL formulae to Büchi automata[END_REF], moving the accepting conditions from the states (as in GBA) to the transitions (TGBA) also reduces the size A ¬j . In addition, any algorithm that translates LTL into a Büchi automaton has to deal with generalized Büchi acceptance conditions at some point, for instance the obtained automaton is a GBA or a TGBA, and the process of degeneralizing this generalized automaton to obtain a BA often increases its size (see Section 2.4.2.1). Several emptiness-check algorithms can deal with generalized Büchi acceptance conditions, making such a degeneralization unnecessary and even costly [START_REF] Couvreur | On-the-fly emptiness checks for generalized Büchi automata[END_REF].

It is important to note that in this thesis, we only focus on optimizing the property automaton A ¬j . We do not consider the techniques whose aim is to reduce the model's state-space K M , such as the partial order reduction implemented in Spin tool [START_REF] Holzmann | The Spin Model Checker: Primer and Reference Manual[END_REF]. Several partial order reduction techniques have been proposed, as the stubborn sets of Valmari [START_REF] Valmari | Stubborn sets for reduced state space generation[END_REF], the persistent sets of Godefroid [START_REF] Godefroid | Partial-Order Methods for the Verification of Concurrent Systems: An Approach to the State-Explosion Problem[END_REF] and the ample sets of Peled [START_REF] Peled | Combining partial order reductions with on-the-fly model-checking[END_REF]. However, these techniques require additional knowledge about the model. In addition, the state-space of the model is more difficult to manipulate than the property automaton, which is generally smaller.

In the next chapter, we will present the results of an experimentation that compares the performance of different automata-based approaches to model checking, including those using BA versus TGBA, and another kind of w-automaton, called Testing Automata (TA), that is specific to represent stutter-invariant LTL formulas. CHAPTER

Introduction

The previous chapter presented the classical automata-theoretic approach to model checking based on Büchi automata. The main limitation of this approach is the large size of the product automaton (K M ⌦ A ¬j) obtained by synchronizing the Kripke structure of the model K M with the Büchi automaton A ¬j , which represents the negation of the LTL property to be checked. Different variants of Büchi automata have been used with the automata-theoretic approach. In Spot [START_REF] Move | The Spot home page[END_REF][START_REF] Duret-Lutz | LTL translation improvements in Spot 1.0[END_REF], the model checking library we used in the experiments presented in this thesis, LTL properties are represented using TGBA (i.e., the variant of Büchi automata with generalized Büchi acceptance conditions on transitions rather on states). Indeed, according to [START_REF] Duret | SPOT: an extensible model checking library using transition-based generalized Büchi automata[END_REF], it is preferable to use TGBA for their conciseness. Unfortunately, having a smaller property automaton A ¬j does not always imply a smaller product automaton K M ⌦ A ¬j . Instead of targeting smaller property automata, some people have attempted to build more deterministic [START_REF] Sebastiani | more deterministic" vs. "smaller" Büchi automata for efficient LTL model checking[END_REF] ones; however even this does not guarantee the product to be smaller [3,10].

This chapter focuses on another kind of w-automaton called Testing Automaton (TA). TA are a variant of an "extended" Büchi automata introduced by Hansen et al. [START_REF] Hansen | Stuttering-insensitive automata for on-the-fly detection of livelock properties[END_REF]. Instead of observing the valuations on states or transitions, the TA transitions only record the changes between these valuations. In addition, TA are less expressive than Büchi automata since they are able to represent only stutter-invariant LTL properties. Also they are often a lot larger than their equivalent Büchi automaton, but their high degree of determinism [START_REF] Hansen | Stuttering-insensitive automata for on-the-fly detection of livelock properties[END_REF] often leads to a smaller product size [START_REF] Geldenhuys | Larger automata and less work for LTL model checking[END_REF].

We first provide a detailed presentation of TA and their associated operations for model checking. Then, in order to evaluate the efficiency of LTL model checking using TA, we report and discuss the results of an experimental comparison of three kinds of w-automata: classical Büchi Automata (BA), Transition-based Generalized Büchi automata (TGBA), and Testing Automata (TA) (this part completes our experiment presented in [5]). Our main motivation is to find the technique that seems the most suitable to check a given stutter-invariant property on a given model. This is of interest when a tool offers the choice of several techniques, which is the case for the Spot [START_REF] Move | The Spot home page[END_REF] tool in which I implemented the TA approach.

Stutter-invariant Languages

For any w-automaton A, we say that a language L (A) is stutter-invariant if the number of the successive repetitions of any letter of a word s 2 L (A) does not affect the membership of s to L (A) [START_REF] Etessami | Stutter-invariant languages, w-automata, and temporal logic[END_REF]. In other words, L (A) is stutter-invariant iff for any finite sequence u 2 S ⇤ , any element `2 S, and any infinite sequence v 2 S w we have u`v 2 L (A) () u``v 2 L (A).

Two infinite words w 1 and w 2 are stuttering equivalent iff they are equal after removing all repeated letters. Two languages L (A) and L (B) are stuttering equivalent iff any word of L (A) is stuttering equivalent to a word of L (B) and vice versa.

Given a stutter-invariant LTL formula j (Definition 2.3.3) and an w-automaton A j such that L (A j) = L (j), then L (A j) is a stutter-invariant language (we also say that A j is a stutterinvariant automaton).

Testing Automata (TA): a natural way to monitor the stuttering

Testing Automata were introduced by Hansen et al. [START_REF] Hansen | Stuttering-insensitive automata for on-the-fly detection of livelock properties[END_REF] to represent stutter-invariant properties. While a Büchi automaton observes the value of the atomic propositions AP, the basic idea of TA is to only detect the changes in these values, making TA particularly suitable for stutterinvariant properties; if a valuation of AP does not change between two consecutive valuations of an execution, the TA can stay in the same state, this kind of transitions are called stuttering transitions. To detect infinite executions that end stuck in the same TA state because they are stuttering, a new kind of accepting states is introduced: livelock-accepting states.

If A and B are two valuations, A B denotes the symmetric set difference, i.e., the set of atomic propositions that differ (e.g., a b ab = {b}). Technically, this is implemented with an XOR operation (also denoted by the symbol).

Definition 23 (TA). A TA over the alphabet S = 2 AP is a tuple T = hQ , I ,U, d, F , Gi, where:

• Q is a finite set of states,

• I ✓ Q is the set of initial states,

• U : I ! 2 S is a function mapping each initial state to a set of valuations (set of possible initial configurations), • F ✓ Q is a set of Büchi-accepting states,

• d ✓ Q ⇥ (S \ / 0) ⇥ Q is the
• G ✓ Q is a set of livelock-accepting states. An infinite word s = `0`1`2 . . . 2 S w is accepted by T iff there exists an infinite sequence r = (q 0 , `0 `1, q 1)(q 1 , `1 `2, q 2) . . . (q i , `i `i+1 , q i+1) . . . 2 (Q ⇥ S ⇥ Q) w such that:

• q 0 2 I with `0 2 U(q 0),

• 8i 2 N, either (q i , `i `i+1 , q i+1) 2 d (the execution progresses in the TA), or `i = `i+1 ^qi = q i+1 (the execution is stuttering and the TA does not progress),

• Either, 8i 2 N, (9 j i, `j 6 = `j+1) ^(9l i, q l 2 F) (the TA is progressing in a Büchiaccepting way), or, 9n 2 N, (q n 2 G ^(8i n, q i = q n ^`i = `n)) (the sequence reaches a livelock-accepting state and then stays on that state because the execution is stuttering).

The language accepted by T is the set L (T) ✓ S w of executions it accepts.

To illustrate this definition, let us consider Property 2. The language accepted by a testing automaton is stutter-invariant.

Proof. This follows from definition of accepted infinite words: a TA may not change its state when an infinite word stutters, so stuttering is always possible. A TA is constructed from a BA in two steps as illustrated in Figure 3.2. The first step constructs an intermediate form of TA, called / 0-TA (for "empty-changesets" TA), which can contain stuttering transitions between two distinct states (i.e., d ✓ Q ⇥ S ⇥ Q in / 0-TA). The second step allows to eliminate these useless stuttering transitions and thus to obtain a TA that satisfies the Definition 23 (i.e., d

TA Construction

✓ Q ⇥ (S \ / 0) ⇥ Q in TA).
We begin by formally defining an / 0-TA automaton and how it accepts infinite words:

Definition 24 (/ 0-TA). An / 0-TA over the alphabet S = 2 AP is a tuple T = hQ , I ,U, d, F , Gi, where:

• Q is a finite set of states, • I ✓ Q is the set of initial states,
• U : I ! 2 S is a function mapping each initial state to a set of valuations, An infinite word s = `0`1`2 . . . 2 S w is accepted by T iff there exists an infinite sequence r = (q 0 , `0 `1, q 1)(q 1 , `1 `2, q 2) . . . (q i , `i `i+1 , q i+1) . . . 2 (Q ⇥ S ⇥ Q) w such that:

• d ✓ Q ⇥ S ⇥ Q is the
• q 0 2 I with `0 2 U(q 0),

• 8i 2 N, either (q i , `i `i+1 , q i+1) 2 d (we are always progressing in / 0-TA),

• Either, 8i 2 N, (9 j i, q j 2 F) (the / 0-TA is progressing in a Büchi-accepting way), or, 9n 2 N, 8i n, (`i = `n) ^(q i 2 G) (a suffix of the infinite word stutters in G). The language accepted by T is the set L (T) ✓ S w of infinite words it accepts. 3.4.1 From BA to / 0-TA: Construction of an intermediate / 0-TA from a Büchi Automaton BA Geldenhuys and Hansen [START_REF] Geldenhuys | Larger automata and less work for LTL model checking[END_REF] have shown how to convert a BA into a TA by first converting the BA into an automaton with valuations on the states (called state-labeled Büchi automaton (SLBA)), and then converting this SLBA into an intermediate form of TA (i.e., an / 0-TA) by computing the difference between the labels of the source and destination states of each transition. The next proposition implements these first steps.

Property 3 (Converting a BA into an / 0-TA (an intermediate form of TA) [START_REF] Geldenhuys | Larger automata and less work for LTL model checking[END_REF]). For any BA B = hQ B , I B , d B , F B i over the alphabet S = 2 AP and such that L (B) is stutter-invariant, let us define the / 0-TA T = hQ T , I T ,U T , d T , F T , / 0i with:

• Q T = Q B ⇥ S, • I T = I B ⇥ S, • 8(s, `) 2 I T , U T ((s, `)) = {`}, • 8(s, `) 2 Q T , 8(s 0 , `0) 2 Q T , ((s, `), ` `0, (s 0 , `0)) 2 d T () ((s, `, s 0) 2 d B), • F T = F B ⇥ S. Then L (B) = L (T).
The proof of Property 3 is similar to the proof of Property 8, which will be given in Section 5.3.1.

Figure 3.3b shows the result of applying this construction to the example of Büchi automaton

shown for a U G b. This testing automaton does not yet use livelock-accepting states (the G set). The next property, again from Geldenhuys and Hansen [START_REF] Geldenhuys | Larger automata and less work for LTL model checking[END_REF], shows how filling G allows to remove all stuttering transitions (i.e., transitions labeled by / 0) and therefore build the final form of the TA.

q q 0 • • • q n q 0 q k / 0 / 0 / 0 / 0 / 0
(a) Before stuttering transitions (/ 0) reduction. q 0 is a Büchi accepting state q q 0 q n . . .

. . . k

(b) After reduction, q 0 and q n are livelockaccepting states.

Figure 3.4: Elimination of useless stuttering transitions. The states q 0 and q n are added to the set of livelock-accepting states G. The second step consists in filling G to simplify T , the intuition of this second step is illustrated by Figure 3.4. For that, we compute all strongly connected components using only stuttering transitions (i.e., transitions labeled by / 0). If such a SCC is not trivial (i.e., it contains a cycle) and contains a Büchi-accepting state, then add all its states to G. Then, add to G any state that can reach G using only stuttering transitions. Finally remove all stuttering transitions from d. The following property formalizes this second step.

Property 4 (Filling G to obtain a TA [START_REF] Geldenhuys | Larger automata and less work for LTL model checking[END_REF]). Let T = hQ , I ,U, d, F , Gi be / 0-TA such that L (T)

is stutter-invariant. By combining the first three of the following operations we can remove all stuttering transitions (q, / 0, q 0) from T and thus obtain a TA. The fourth simplification can be performed along the way.

1. If Q 0 ✓ Q is a Strongly Connected Component (SCC) such that Q 0 \ F 6 = / 0 (it is Büchi-
accepting), and any two states q, q 0 2 Q 0 can be connected using a non-empty sequence of stuttering transitions (q, / 0, q 1) • (q 1 , / 0, q 2) • • • (q n , / 0, q 0) 2 d ⇤ , then the automaton

T 0 = hQ , I ,U, d, F , G [Q 0 i is such that L (T 0) = L (T). Such a component Q 0 is called an accepting Stuttering-SCC. 2.
If there exists a transition (q, / 0, q 0) 2 d such that q 0 2 G, then the / 0-TA T 00 = hQ , I ,U, d, F , G [{q}i is such that L (T 00) = L (T).

3. Let T † = hQ , I ,U, d, F , G † i be the / 0-TA obtained after repeating the previous two operations as much as possible (i.e., G † contains all states that can be added by the above two operations (Figure 3.4b)). Then, because L (T) and thus L (T †) are stutter-invariant, we can remove all stuttering transitions form T † to obtain a TA (since stuttering can be captured by the implicit stuttering of TA and the livelock-accepting states of G † after the previous two operations). After this last reduction of stuttering transitions, we obtain the final TA T 000 . Formally, the TA T 000 = hQ , I ,U,

d 000 , F , G † i with d 000 = {(q, k, q 0) 2 d | k 6 = / 0} is such that L (T 000) = L (T †) = L (T).

4.

Any state from which one cannot reach a Büchi-accepting cycle nor a livelock-accepting state can be removed without changing the automaton's language.

The proof of Property4 is similar to the proof of Property 9, which will be given in Section 5.3.2.

The resulting TA can be further simplified by merging bisimilar states (two states are bisimilar if the automaton can accept the same infinite words starting for either of these states). This can be achieved using any algorithm based on partition refinement, the same as for Büchi automata presented in section 2.4.5, taking A TA for G F a ^GF b is too big to be shown: even after simplifications it has 11 states and 64 transitions.

{F \ G,F \ G,G \ F , Q \ (F [G)} as initial partition.

TA Optimizations (that are not yet implemented)

Looking at Figure 3.3 inspires two optimizations. The first one is based on the fact that the construction of testing automata, described in the previous section, generates a lot of bisimilar states such as the two states labeled with (G b, āb) and (G b, ab). This is because the construction considers all the elements of S that are compatible with G b. Had the LTL formula been over AP = {a, b, c}, e.g., (a _ c) U G b, then we would have had four bisimilar states: (G b, āb c), (G b, ābc), (G b, ab c), and (G b, abc). These states are necessarily isomorphic, because they only differ in a and c, some propositions that the formula G b does not observe.

A more efficient way to construct the testing automaton (and to construct the automaton from Figure 3.3d directly) would be to consider only the subset of atomic propositions that are observed by the corresponding state of the Büchi automaton or its descendants (if the state is labeled by an LTL formula, the atomic propositions occurring in this formula give an over-approximation of that set).

A second optimization relies on the fact any state that does not belong to an SCC can be added to F without changing the language of the automaton (this is also true for Büchi automata). For instance on Figure 3. Note that putting any trivial SCC x in F before performing bisimulation could hinder the reduction if x was isomorphic to some state not in F . However if x has only successors in F , as in our example, then it can be put safely in F : indeed, it can only be isomorphic to an F -state, or to another trivial SCC that will be added to F . This condition is similar to the one used by Löding before minimizing deterministic weak w-automata [START_REF] Löding | Efficient minimization of deterministic weak w-automata[END_REF].

Unfortunately, these optimizations have not been implemented for this work and we had no time to implement the simulation [START_REF] Etessami | Optimizing Büchi automata[END_REF][START_REF] Fritz | Constructing Büchi automata from linear temporal logic using simulation relations for alternating Büchi automata[END_REF] reduction.

However, the bisimulation reduction (section 2.4.5) was implemented for the three approaches BA, TGBA and TA, and used in the experimental comparisons presented later in this thesis.

Explicit Model checking using TA

A first difference between the BA and TA approaches resides in the computation of the synchronous product. Indeed, during the computation of the product between a TA T and a Kripke structure K , T remains in the same state when K executes a stuttering step.

The emptiness check also requires a dedicated algorithm because there are two ways to accept an infinite word: Büchi accepting or livelock accepting. In the algorithm sketched by Geldenhuys and Hansen [START_REF] Geldenhuys | Larger automata and less work for LTL model checking[END_REF], a first pass is used with an heuristic to detect both Büchi and livelock accepting cycles. Unfortunately, in certain cases, this first pass fails to report existent livelock accepting cycles. This implies that when no counterexample is found by the first pass, a second one is required to double-check for possible livelock accepting cycles. Thus, when there is no counterexample (i.e., the property is satisfied), the entire state-space has to be explored twice.

Synchronous Product of a TA with a Kripke structure

For traditional Büchi automata, the product of a BA or a TGBA with a Kripke structure, is also respectively a BA or a TGBA. In the case of testing automata, the product of a Kripke structure and a TA is not a TA. Indeed, while an execution in a TA is allowed to stutter on any state, the execution in a product must execute an explicit stuttering transition [START_REF] Geldenhuys | Larger automata and less work for LTL model checking[END_REF]. This product automaton can be seen as an / 0-TA but with a small difference in the way of recognizing Büchi-accepting runs. Indeed, a Büchi-accepting run of the product must visit at least a non-stuttering transition infinitely often. Chapter 5 will introduce a new type of w-automata that improve the TA, called TGTA [6], which simplifies the definition of the product and improves its emptiness check (by proposing a single-pass algorithm). Indeed, the / 0-TGTA used as an intermediate form in the construction of a TGTA will also serve to represent the product between a TGTA and a Kripke structure. In addition, the emptiness check of this product using TGTA will be done in a single pass (in the next section, we will show that the product using TA requires two passes for its emptiness check).

Definition 25. For a Kripke structure K = hS , S 0 , R , li and a TA T = hQ , I ,U, d, F , Gi, the product

K ⌦ T is a tuple hS ⌦ , I ⌦ ,U ⌦ , d ⌦ , F ⌦ , G ⌦ i where • S ⌦ = S ⇥ Q , • I ⌦ = {(s, q) 2 S 0 ⇥ I | l(s) 2 U(q)}, • 8(s, q) 2 I ⌦ , U ⌦ ((s, q)) = {l(s)}, • d ⌦ = {((s, q), k, (s 0 , q 0)) | (s, s 0) 2 R , (q, k, q 0) 2 d, k = l(s) l(s 0)} [{((s, q), / 0, (s 0 , q 0)) | (s, s 0) 2 R , q = q 0 , l(s) = l(s 0)} , • F ⌦ = S ⇥ F ,
• and G ⌦ = S ⇥ G. An execution s = `0`1`2 . . . 2 S w is accepted by K ⌦ T if there exists an infinite sequence r = (s 0 , `0 `1, s 1)(s 1 , `1 `2, s 2) . . . (s i , `i `i+1 , s i+1) . . . 2 (S ⌦ ⇥ S ⇥ S ⌦) w such that:

• s 0 2 S 0 ⌦ with `0 2 U ⌦ (s 0),
• 8i 2 N, (s i , `i `i+1 , s i+1) 2 d ⌦ (we are always progressing in the product)

• Either, 8i 2 N, (9 j i, `j 6 = `j+1) ^(9l i, s l 2 F ⌦) (the automaton is progressing in a Büchi-accepting way), or, 9n 2 N, 8i n, (`i = `n) ^(s i 2 G ⌦) (a suffix of the execution stutters in G ⌦). We have L (K ⌦ T) = L (K) \ L (T) by construction. T recognizing the LTL formula F G p. Each state of K is numbered and labeled with a valuation of atomic propositions (over AP = {p}) that hold in this state. In the product K ⌦ T , states are labeled with a pairs of the form (s, q) with s is a state of K and q of T , and the livelock accepting states are denoted by a double dashed circle (as in T). We can notice that this product using TA is smaller than the product of Figure 2.12 using Büchi automata, i.e., the product between the same Kripke structure K and the TGBA (or BA) recognizing the LTL formula F G p.

A two-pass emptiness check algorithm

In this section, we present a two-pass algorithm for the emptiness check of the synchronous product between a TA and a Kripke structure. While the emptiness check proposed by Geldenhuys and Hansen [START_REF] Geldenhuys | Larger automata and less work for LTL model checking[END_REF] is based on the Tarjan algorithm [82, 83], the emptiness check proposed in this section, consists of Algorithm 2 (first-pass) and Algorithm 3 (second-pass), which are based on the Dijkstra algorithm for SCCs detection [START_REF] Wybe | EWD 376: Finding the maximum strong components in a directed graph[END_REF][START_REF] Wybe | Finding the maximal strong components in a directed graph[END_REF].

In model checking approach using TA, the emptiness check requires a dedicated algorithm because according to the Definition 25 (of the different ways to accept a sequence) , there are two ways to detect an accepting cycle in the product:

• Büchi accepting: a cycle containing at least one Büchi-accepting state (F) and at least one non-stuttering transition (i.e., a transition (s, k, s 0) with k 6 = / 0),

• livelock accepting: a cycle composed only by stuttering transitions and livelock accepting states (G). A straightforward emptiness check would have the following two passes: • a second pass presented in Algorithm 3 to detect livelock accepting cycles. It is not possible to merge these two passes into a single DFS: the first DFS requires the exploration of every transition of the product while the second one must consider only stuttering transitions.

Input: A product K ⌦ T = hS ⌦ , I ⌦ ,U ⌦ , d ⌦ , F ⌦ , G ⌦ i Result: > if and only if L (K ⌦ T) = /
The first-pass of Algorithm 2 detects all Büchi-accepting cycles, and with line 17 included in this algorithm, it detects also some livelock-accepting cycles. Since in certain cases it may fail to report some livelock-accepting cycles, a second pass is required to look for possible livelockaccepting cycles.

This first-pass is based on the TGBA emptiness check algorithm presented in Algorithm 1 (page 34) with the following changes:

• In each item scc of the SCC stack: the field scc.acc contains the Büchi-accepting states detected in scc, scc.lk is analogous to la in Figure 2.13 but it stores the change-set labeling the transition coming from the previous SCC, and scc.k contains the union of all change-sets in scc (lines 33 and 37).

• After each merge, SCC.top() is checked for Büchi-acceptance (line 16) or livelockacceptance (line 17) depending on the emptiness of SCC.top().k. However, the first-pass may miss this livelock-accepting cycle depending on the order in which it processes the outgoing transitions of (3, 1). If the transition t 1 = ((3, 1), {p}, (0, 0)) is processed before t 2 = ((3, 1), / 0, (2, 1)), then the cycle

C 1 = [(0, 0) ! (1, 0) ! (2, 1) ! (3, 1) ! (0, 0)
] is detected and the four states are merged in the same SCC before exploring t 2 . After this merge (line 16), this SCC is at the top of the SCC stack. Subsequently, when the DFS explores t 2 , the merge caused by the cycle C 2 does not add any new state to the SCC, and the SCC stack remains unchanged. Therefore, the test line 17 still return false because the union SCC.top().k of all change-sets labeling the transitions of the SCC is not empty (it includes for example t 1 's label: {p}). Finally, first-pass algorithm terminates without reporting any accepting cycle, missing C 2 .

On the other side, if the first-pass had processed t 2 before t 1 , it would have merged the states (3, 1) and (2, 1) in an SCC, and would have detected it to be livelock-accepting.

In general, to report a livelock-accepting cycle, the first-pass computes the union of all changesets of the SCC containing this cycle. However, this union may include non-stuttering transitions belonging to other cycles of the SCC. In this case, the second-pass is required to search for livelock-accepting cycles, ignoring the non-stuttering transitions that may belong to the same SCC.

In the next chapter, we propose a Single-pass Testing Automata STA, which allows to obtain a synchronous product in which such mixing of non-stuttering and stuttering transitions will never occur in SCCs containing livelock-accepting cycles, making the second-pass unnecessary.

The second-pass (Algorithm 3) is a DFS exploring only stuttering transitions (line 18). To report a livelock-accepting cycle, it detects "stuttering-SCCs" and tests if they contain a livelockaccepting state (line 12).

Ignoring the non-stuttering transitions during the DFS, may lead to miss some parts of the product so any destination of a non stuttering transition is stored in init for later exploration (line 19).

In the algorithm proposed by Geldenhuys and Hansen [START_REF] Geldenhuys | Larger automata and less work for LTL model checking[END_REF], the first pass uses a heuristic to detect livelock-accepting cycles when possible. This heuristic detects more livelock-accepting cycles than Algorithm 2. In certain cases this first pass may still fail to report some livelockaccepting cycles. Yet, this heuristic is very efficient: when counterexamples exist, they are usually caught by the first pass, and the second is rarely needed. However, when properties are satisfied, the second pass is always required.

Note. It is important to say that in the experiments presented in the sequel, we implement Algorithm 2 including the heuristic proposed by Geldenhuys and Hansen [START_REF] Geldenhuys | Larger automata and less work for LTL model checking[END_REF] to detect more livelockaccepting cycles during the first pass of the TA approach. We don't present the details of this heuristic because we show in the next chapters other solutions that allow to detect all the livelockaccepting cycles during the first pass and therefore remove the second pass.

Experimental Comparison of TA versus TGBA and BA

This section presents our experimentation of the various types of automata within our tool Spot [START_REF] Move | The Spot home page[END_REF]. We first present the Spot architecture and the way the variation on the model checking algorithm was introduced. Then we present our benchmarks (formulas and models) prior to the description of our experiments.

Implementation on top of Spot

Spot is a model-checking library offering several algorithms that can be combined to build a model checker [START_REF] Duret | SPOT: an extensible model checking library using transition-based generalized Büchi automata[END_REF].

Figure 3.7 shows the building blocks we used to implement the three approaches:

• the TGBA and BA approaches that share the same synchronous product construction and emptiness check, • the dedicated algorithms required by the TA approach. The construction of TGBA and BA already exists in Spot. In addition, we have implemented all algorithms used in the TA approach (TA construction and TA product and its emptiness check). We have also implemented the bisimulation reduction (section 2.4.5) for three approaches BA, TGBA and TA.

In order to evaluate our approach on "realistic" models, we decided to couple the Spot library with the CheckPN tool [START_REF] Duret | SPOT: an extensible model checking library using transition-based generalized Büchi automata[END_REF]. CheckPN implements Spot's Kripke structure interface in order to build on-the-fly a state-space of a Petri net. This Kripke structure is then synchronized with an w-automaton (TGBA, BA, or TA), and fed to the suitable emptiness check algorithm. The latter algorithm drives the on-the-fly construction: only the explored part of the product (and the associated states of the Kripke structure) will be constructed.

Constructing the state-space on-the-fly is a double-edged optimization. Firstly, it saves memory, because the state-space is computed as it is explored and thus, does not need be stored. Secondly, it also saves time when a property is violated because the emptiness check can stop as soon as it has found a counterexample. However, on-the-fly exploration is costlier than browsing an explicit graph: an emptiness check algorithm such as the one for TA [START_REF] Hansen | Stuttering-insensitive automata for on-the-fly detection of livelock properties[END_REF] that does two traversals of the full state-space in the worst case (e.g. when the property holds) will pay twice the price of that construction.

In the CheckPN implementation of the Kripke structure, the Petri Net marking are compressed to save memory. The marking of a state has to be uncompressed every time we compute its successors, or when we compute the value of the atomic properties on this state. These two operations often occur together, so there is a one-entry cache that prevents the marking from being uncompressed twice in a row.

Benchmark Inputs

We selected some Petri net models and formulas to compare these approaches.

Case Studies

The following two bigger models, were taken from actual case studies. They come with some dedicated properties to check.

PolyORB models the core of the µbroker component of a middleware [START_REF] Hugues | On the formal verification of middleware behavioral properties[END_REF] in an implementation using a Leader/Followers policy [START_REF] Pyarali | Evaluating and optimizing thread pool strategies for RT-CORBA[END_REF]. It is a Symmetric Net and, since CheckPN processes P/T nets only, it was unfolded into a P/T net. The resulting net, for a configuration involving three sources of data, three simultaneous jobs and two threads (one leader, one follower) is composed of 189 places and 461 transitions. Its state space contains 61 662 states. The authors propose to check that once a job is issued from a source, it must be processed by a thread (no starvation). It corresponds to:

F 1 = G(MSrc 1 ! F(DOSrc 1)) ^G(MSrc 2 ! F(DOSrc 2)) ^G(MSrc 3 ! F(DOSrc 3))
MAPK models a biochemical reaction: Mitogen-activated protein kinase cascade [START_REF] Heiner | Petri nets for systems and synthetic biology[END_REF]. For a scaling value of 8 (that influences the number of tokens in the initial marking), it contains 22 places and 30 transitions. Its state-space contains 6.11 ⇥ 10 6 states. The authors propose to check that from the initial state, it is necessary to pass through states RafP, MEKP, MEKPP and ERKP in order to reach ERKPP. In LTL:

F 2 = ¬((¬RafP) U MEKP) ^¬((¬MEKP) U MEKPP)¬ ((¬MEKPP) U ERKP) ^¬((¬ERKP) U ERKPP)
Toy Examples A second class of models were selected from the Petri net literature [19,[START_REF] Kordon | Report on the model checking contest at petri nets 2011[END_REF]: the flexible manufacturing system (FMS), the Kanban system, the Peterson algorithm, the slottedring system, the dining philosophers and the Round-robin mutex [21]. All these models have a parameter n. For the dining philosophers, the Peterson algorithm, the Round-robin, and the slottedring, the models are composed of n 1-safe subnets. For FMS and Kanban, n only influences the number of tokens in the initial marking. In our experiments, we selected the following 12 models instances:

• n = 4 and n = 5 for Peterson, FMS and Kanban,

• n = 6 and n = 5 for slotted-ring,

• n = 9 and n = 10 for dining philosophers,

• n = 14 and n = 15 for Round-robin. Types of Formulas As suggested by Geldenhuys and Hansen [START_REF] Geldenhuys | Larger automata and less work for LTL model checking[END_REF], the type of formula may affect the performances of the various algorithms. In addition to the formulas F 1 and F 2 above, we consider two classes of formulas:

• RND: randomly generated LTL formulas (without X operator). Since random formulas are very often trivial to verify (the emptiness check needs to explore only a handful of states), we selected for each model only those formulas requiring more than one second of CPU for the emptiness check in all approaches.

• WFair: properties of the form (

V n i=1 G F p i) ! j,
where j is a randomly generated LTL formula. This represents the verification of j under the weak-fairness hypothesis

V n i=1 G F p i .
The automaton representing such a formula has at least n acceptance conditions which means that the BA will in the worst case be n + 1 times bigger than the TGBA. For the formulas we generated for our experiments we have n = 3.51 on the average. All formulas were translated into automata using Spot, which was shown experimentally to be very good at this job [START_REF] Rozier | LTL satisfiability checking[END_REF][START_REF] Duret-Lutz | LTL translation improvements in Spot[END_REF].

For each selected model instance, we generated:

• Verified formulas (i.e., no counterexample in the product): 100 random and 100 weakfairness,

• Violated formulas (i.e., a counterexample exists): 100 random and 100 weak-fairness. We consequently have a total 5600 pairs of (model, formula): 2800 violated formulas and 2800 verified formulas. 3.4 show toy models against weak-fairness formulas. Table 3.5 and Table 3.6 show the results of the two cases studies against random, weakfairness, and dedicated formulas issued from the studies.

Results

These tables separate cases where formulas are verified from cases where they are violated. In the former (Table 3.1, 3.3 and 3.5), no counterexample are found and the full state-space had to be explored; in the latter (Table 3.2, 3.4 and3.6) the on-the-fly exploration of the state-space stops as soon as the existence of a counterexample is computed.

All values shown in all tables are averaged over 100 different formulas (except for the lines F 1 and F 2 in Table 3.5, where only one formula is used). For instance we checked Peterson5 against 100 random formulas that had no counterexample, and against 100 random formulas that had a counterexample. The average and maximum are computed separately on these two sets of formulas.

Column-wise, these tables show the average and maximum sizes (states and transitions) of:

(1) the automata A ¬j i expressing the properties j i ; (2) the products A ¬j i ⌦ K of the property with the model; and (3) the subset of this product that was actually explored by the emptiness check.

For verified properties, the emptiness check of TGBA and BA always explores the full product so these sizes are equal, while the emptiness check of TA always performs two passes on the full product so it shows double values. On violated properties, the emptiness check aborts as soon as it finds a counterexample, so the explored size is usually significantly smaller than the full product.

The emptiness check values show a third column labeled "T": this is the time in 1 100 e of seconds (a.k.a. centiseconds) spent doing that emptiness check, including the on-the-fly computation of the subset of the product that is explored. The time spent constructing the property automata A ¬j i is shown in column "T j " (it is negligible compared to that of the emptiness check "T").

Figure 3.8 compares the number of visited transitions when running the emptiness check; plotting TA against BA and TGBA. This gives an idea of their relative performance. Each point corresponds to one of the 5600 evaluated formulas (2800 violated with counterexample as black circles, and 2800 verified having no counterexample as green crosses). Each point below the diagonal is in favor of TA while others are in favor of the other approach. Axes are displayed using a logarithmic scale.

Figure 3.9 compares the number of visited transitions between BA and TGBA. Each point below the diagonal is in favor of TGBA (this clearly shows that BA are less efficient than TGBA).

All these experiments were run on a 64bit Linux system running on an Intel(R) 64-bit Xeon(R) @2.00GHz, with 10GB of RAM.

Discussion (TA two-pass emptiness check problem)

Although the state-space of cases studies can be very different from those of random statespaces [START_REF] Pelánek | Properties of state spaces and their applications[END_REF], a first look at our results confirms two facts already observed by Geldenhuys and Hansen using random state-spaces [START_REF] Geldenhuys | Larger automata and less work for LTL model checking[END_REF]: (1) although the TA constructed from properties are usually a lot larger than BA, the average size of the full product is smaller thanks to the more deterministic nature of the TA. (2) For violated properties, the TA approach explores less states and transitions on the average than the BA. We complete this picture by showing execution times, by separating verified properties from violated properties, and by also evaluating the TGBA approach.

On verified properties, the results are very straightforward to interpret: the BA are slightly worse than the TGBA because the degeneralization increases the size of the property automaton. In fact, the average number of acceptance conditions needed in random formulas (Table 3.1 and 3.5) is so close to 1 that the degeneralization barely changes the sizes of the automata. With weak-fairness formulas (Table 3.3 and 3.5), the number of acceptance conditions is greater, so TGBA are favored over BA. Surprisingly, both TGBA and BA, although they are not tailored to stutter-invariant properties like TA, appear more effective to prove that a stutter-invariant property is verified. In the three tables, although the full product of the TA approach is smaller than the other approaches, it has to be explored twice (as explained in section 3.4): the emptiness-check consequently explores more states and transitions. This double exploration is not enough to explain the big runtime differences. Two other subtle implementation details of the synchronous products contribute to the time difference:

• To synchronize a transition of a Kripke structure with a transition (or a state in case of stuttering) of a TA, we must compute the symmetric difference (i.e., the changeset) l(s) l(d) between the labels of the source and destination states. The same synchronization in the TGBA and BA approaches requires to know only the source label.

Computing these labels is a costly operation in CheckPN because Petri net marking are compressed in memory to save space. Although we implemented some (limited) cache to alleviate the number of such label computation, profiling measures revealed the TA approach was 3 times slower than the TGBA and BA approaches, but that labels where computed 9 times more.

• A second implementation difference is that the transitions of testing automata are labeled by elements of S, while in the Spot implementation of TGBA and BA, the transitions are labeled by elements of 2 S . That means that once l(s) l(d) 2 S has been computed, we can use a hash table to immediately find matching transitions of the testing automaton. In the TGBA and BA implementations, we linearly scan the list of transitions of the property automaton until we find one compatible with l(s). In order to protect the results against the influence of various optimizations, implementation tricks, and the central processor and memory architecture, Geldenhuys and Hansen [START_REF] Geldenhuys | Larger automata and less work for LTL model checking[END_REF] have decided (in their work about TA) to report only the number of explored states and transitions, and not the number of bytes and milliseconds consumed by their implementations. They found that the number of states gives a reliable indication of the memory required, and, similarly, the number of transitions a reliable indication of the time consumption. That is why in our discussion (in this chapter and in the next chapters), we focus on the number of explored states and transitions more than time consumption.

On violated properties, it is harder to interpret these tables because the emptiness check returns as soon as it finds a counterexample. Changing the order in which non-deterministic transitions of the property automaton are iterated is enough to change the number of states and transitions to be explored before a counterexample is found: in the best case the transition order leads the emptiness check straight to an accepting cycle; in the worst case, the algorithm explores the whole product until it finally finds an accepting cycle. Although the emptiness check algorithms for the three approaches share the same routines to explore the automaton, they are all applied to different kinds of property automata, and thus provide different transition orders.

This ordering luckiness explains why the BA approach sometimes outperforms the TGBA one. We believe that the TA, since they are more deterministic, are less sensible to this ordering. They also explore a smaller state-space on the average. This smaller exploration is not always tied to a good runtime because of the extra computation of labels discussed in this section. Again, looking at the average number of transitions explored by the emptiness check indicates that the TA approach would outperform the others if labels computation would have been cheap.

Conclusion

Geldenhuys and Hansen evaluated the performance of the BA and TA approaches with small random Kripke structures checked against LTL formulas taken from the literature [START_REF] Geldenhuys | Larger automata and less work for LTL model checking[END_REF]. In this work, we have completed their experiments by using actual models and different kinds of formulas (random formulas not trivially verifiable, random formulas expressing weak-fairness formulas, and a couple of real formulas), by evaluating the TGBA approach, and by distinguishing violated formulas and verified formulas in the benchmark.

In TA approach, an unfortunate consequence of having two different ways of accepting infinite words (livelock or Büchi), is that the emptiness-check algorithm required during model checking must perform two passes on the whole state-space in the worst case.

For verified formulas, we found that the state-space reduction achieved by the TA approach was not enough to compensate for the two-pass emptiness check this approach requires. It is therefore better to use the TGBA approach to prove that a stutter-invariant formula is verified and TA approach in an earlier "debugging phase".

When the formulas are violated, the TA approach usually processes less transitions than the BA approach and TGBA to find a counterexample. This approach should therefore be a valuable help to debug models (i.e. when counterexamples are expected). This is especially true on random formulas. With weak-fairness formulas, generalized automata are advantaged and are able to beat the TA on the average in 4 of our 8 examples (Peterson5, Philo10, Ring6, PolyORB 3/2/2).

In the next chapter, we propose some optimizations in order to omit the second pass in TA approach, in particular when no livelock-accepting states is encountered during the first pass. We also propose STA (Single-pass Testing Automata), a transformation of TA that never requires such a second pass.

In Chapter 5, we propose a single-pass and generalized testing automata, called TGTA (Transition-based Generalized Testing Automata). TGTA combines ideas from TA and TGBA. The basic idea is to have a form of testing automata with transition-based generalized acceptance conditions, which allows us to modify the automata construction in order to remove the second pass of the emptiness check of the product.

We also noted that making a product between a TA and a Kripke structure is not a good idea when computing the label of the Kripke structure is expensive. A more efficient model checker using testing automata should probably represent the model using labeled Kripke structure in which the transition labels represent the symmetric difference (i.e., the changeset) between the label of the source and destination state. This optimization is exploited in the chapter 6 concerning the symbolic model checking using TGTA.

Part

Introduction

In the previous chapter, we evaluated the use of Testing Automata (TA) for the model checking of stutter-invariant properties. We have shown that the TA approach is efficient when the formula to be verified is violated (i.e., a counterexample exists). This is not the case when the property is verified since the entire state-space has to be visited twice to check for each acceptance mode of a TA (Büchi-acceptance or livelock-acceptance).

In this chapter we improve the TA approach in two ways. First, we propose optimizations of the emptiness check algorithm that avoid the second pass when it is possible. Second, we propose a transformation of TA into a normal form that never requires such a second pass, called Single-pass Testing Automata (STA).

Although STA are more constrained than TA, we provide a transformation that automatically translates the latter into the former. Then we prove the correctness of the single pass emptiness check for STA. We also present an optimization that allows to build a smaller STA.

We have implemented the algorithms of STA approach in Spot, our model checking library. We are thus able to compare them with the "traditional" algorithms we used on Testing Automata (TA) and Transition-based Generalized Büchi Automata (TGBA). These experiments show that STA compete well on our examples.

Improving the Emptiness check by avoiding the second pass in particular cases

In the evaluation of TA approach presented in the previous chapter, we have implemented the heuristic for livelock detection proposed by Geldenhuys and Hansen [START_REF] Geldenhuys | Larger automata and less work for LTL model checking[END_REF] to avoid the second pass of the emptiness check algorithm. Unfortunately, this heuristic fails in certain cases to detect livelock cycles. In addition to this heuristic, we add the following improvements to the first pass in order to avoid the second pass in the following particular cases:

1. In the previous chapter, we have shown that the second pass is only used to detect livelockaccepting cycles. Therefore, if no livelock-accepting state is visited during the first pass (i.e., the product does not contain livelock-accepting states), then the second pass can be disabled: this can be done by simply adding a variable Gseen in Algorithm 2 (page 49), where Gseen is a flag that records if a livelock-accepting state is detected during the exploration of the product by the first pass. In the experiments presented at the end of this chapter, this optimization greatly improves the performance of the TA approach in the cases where the formula is verified.

2. A cycle detected in the product during the first pass is also accepted if it contains a livelockaccepting state (s, q) of the product such that q has no successor in the TA. Indeed, from this state, a run of the product can only execute stuttering transitions. Therefore, a cycle containing this state, is composed only by stuttering transitions: it is a livelock-accepting cycle.

This second optimization may detect some livelock-accepting cycles, but it misses livelockaccepting cycles that are mixed with non-stuttering transitions in the same SCC, as discussed in section 3.5.2 (page 48) of the previous chapter.

We now introduce a class of TA where the second optimization will always detect any livelockaccepting cycle during the first-pass.

Converting a TA into a Single-pass Testing Automaton (STA)

In this section, we introduce STA, a transformation of TA into a normal form such that livelockaccepting states have no successors, and therefore STA approach does not need the second pass of the emptiness check of TA approach. This contribution improves the efficiency of the model checking (this will be experimentally evaluated in section 4.4). In addition, STA simplify the implementation (and the optimization) of the emptiness check algorithm as it renders unnecessary the implementation of the second pass. Property 5 formalizes the construction of an STA from a TA. We can transform a TA into an STA by adding an unique livelock-accepting state g (i.e., in STA, G = {g}), and adding a transition (q, k, g) for any transition (q, k, q 0) that goes into a livelock-accepting state q 0 2 G of the original automaton. In addition, if q 0 has no successors then q 0 can be removed, since it is bisimilar to the new state g. Property 5. Let T = hQ , I ,U, d, F , Gi be a TA, the equivalent STA is T 0 = hQ 0 , I 0 ,U 0 , d 0 , F , {g}i where

• Q 0 = (Q \ G / 0) [{g} where G / 0 = {q 2 G | ({q} ⇥ S ⇥ Q) \ d = /
0} is the set of states of G that have no successors, and g 6 2 Q is a new state,

• I 0 = I [{g} if G \ I 6 = / 0, I 0 = I otherwise, • d 0 = (d \ (Q ⇥ S ⇥ G / 0)) [{(q, k, g) | (q, k, q 0) 2 d, q 0 2 G}, • 8q 2 I , U 0 (q) = U(q) and U 0 (g) = S q2(G\I) U(q).
is such that L (T 0) = L (T). The idea behind this transformation is that any livelock-accepting execution of T will be mapped to an execution of T + that is captured by the new state g. The new g state has an impact on the size of the product (Figure 4.2b), but the strongly connected components of this new product no longer mix non-stuttering transitions and livelock-accepting cycles: this renders the second-pass of Algorithm 3 useless. However, adding an artificial state in STA will increase the size of the product automaton to be explored by the emptiness check (i.e. the first-pass of Algorithm 2) . In the next chapter, we present a new improvement of TA, called TGTA that removes the second-pass without adding an artificial state.

The objective of STA is to isolate in the product the exploration of the parts that are composed only by livelock-accepting states and stuttering transitions, like the bold part of the product represented in the Figure 4.2b. In this kind of sub-products, it is easy to find all livelock accepting cycles.

The STA emptiness check algorithm is the first-pass of the TA emptiness check algorithm without the second-pass procedure. In other words, in STA approach, the emptiness check is only Algorithm. 2 (page 49) without line 6.

Correctness of the one-pass emptiness check using STA

In the following lemmas, K , T , T + denote respectively a Kripke structure, a TA and an STA.

The first-pass is an SCC-based algorithm, it computes the set of all MSCCs (i.e., Maximal SCCs) of the product automaton. Therefore, in order to prove that the first-pass is sufficient to detect all livelock-accepting cycles, we prove that in K ⌦ T + , searching for all livelock-accepting cycles is equivalent to searching for all MSCCs that are only composed of stuttering transitions and livelock-accepting states. In Algorithm. 2, line 17 allows to detect this kind of MSCCs.

Lemma 1. In a product automaton K ⌦ T : if one MSCC M contains a product state (s, q) such that q is a livelock-accepting state that has no successors in T , then M is only composed of stuttering transitions and livelock-accepting states.

Proof. q has no successors in the TA T , therefore from q, a run of T can only execute stuttering transitions: it stays in the same livelock-accepting state q. Consequently, all product states of M are connected by stuttering transitions. In addition, they have the same livelock-accepting state as TA component (q), therefore by Definition 25 all states of M are livelock-accepting.

Lemma 2. In a product automaton K ⌦ T + : one MSCC M contains a livelock-accepting state if and only if M is only composed of stuttering transitions and livelock-accepting states.

Proof. (=)) If an MSCC M contains a livelock-accepting state (s, q) of K ⌦ T + , then q is a livelock-accepting state that has no successors in T + because in an STA every livelock-accepting state has no successors. The proof follows from Lemma 1 applied to K ⌦ T + .

((=) Any state of M is livelock-accepting.

The difference between lemma 1 and lemma 2 is that the livelock-accepting states of STA have no successors, while those of a TA can. Therefore, the following lemma is true only for STA. Lemma 3. In the product automaton K ⌦ T + : there exists at least one livelock-acceptance cycle C if and only if there exists at least one non trivial MSCC M such that M is only composed of stuttering transitions and livelock-accepting states.

Proof. (=)): C contains at least one livelock-accepting state, therefore applying Lemma 2 with M is the MSCC containing C allows us to conclude. ((=): M is non-trivial (it contains at least two states or a single state with a self-loop), therefore M contains at least one non-trivial cycle only composed of stuttering transitions and livelockaccepting states. This cycle is the livelock-accepting cycle C.

In Algorithm. 2, the first-pass computes all MSCCs and line 17 allows to detect only the MSCCs satisfying Lemma 3. Therefore the STA emptiness check algorithm reports one cycle if and only if this cycle is a livelock-accepting cycle or a Büchi-accepting cycle.

Emptiness check optimizations According to Lemma 2, it is sufficient to verify that an MSCC contains a livelock-accepting state at line 17 of Algorithm. 2. Therefore, computing SCC.top().k is not necessary for detecting livelock-accepting cycles.

STA optimization

The goal of this optimization is to reduce the number of transitions in STA, by exploiting a special property of livelock-accepting states that are also Büchi-accepting. We begin by introducing a definition to distinguish these particular states: Definition 27 (Fully-accepting state). In a TA (or in a product of a TA with a Kripke structure), a state that is both livelock-accepting and Büchi-accepting, is called fully-accepting state.

Definition 26 previously proposed for STA introduces a constraint on livelock-accepting states. This constraint (which we call in the following "livelock-constraint") allowed us to remove the second-pass of the emptiness check. However, in order to transform a TA into an STA that satisfies this "livelock-constraint", we have to add an artificial state g and artificial transitions having g as destination (Property 5).

In this optimization, we start by introducing Property 6 that allows us to deduce that the fullyaccepting states do not require the second pass of the emptiness check. Then, we propose a new STA definition that removes the "livelock-constraint" for the fully-accepting states and therefore reduces the number of artificial transitions added during the transformation of a TA into an STA.

The goal of the following Lemma 4 and Property 6 is is to prove that every cycle C that contains a fully-accepting state s f is an accepting cycle . In addition, C is necessarily included in an MSCC M detected by the first-pass of the emptiness check.

We remind that in a product of a TA with a Kripke structure, the definition of an accepting cycle does not depend only on its states but also on its transitions:

• On the one hand, any cycle that contains a livelock-accepting state, is considered as an accepting cycle if it is only composed of stuttering transitions.

• On the other hand, a cycle that contains a Büchi-accepting state, must contains a nonstuttering transition, to be considered an accepting cycle. In the following lemma 4, we distinguish a particular kind of cycles that can be reported as accepting without checking if they contain or not non-stuttering transitions: Lemma 4. In a product automaton K ⌦ T : if a cycle C contains a fully-accepting state s f , then C is an accepting cycle.

Proof. There are two cases depending on the transitions composing the cycle C:

• If C contains at least one non-stuttering transition, then using the fact that s f is Büchiaccepting, we deduce that C is a Büchi-accepting cycle.

• Otherwise, if C contains only stuttering transitions, in this case we exploit the fact that s f is a livelock-accepting state to deduce that C is a livelock-accepting cycle.

In addition, these particular accepting cycles also verify the following property: Property 6. In a product automaton K ⌦ T : for every accepting cycle C containing a fullyaccepting state s f , the MSCC M that includes C is detected by the first-pass of Algorithm. 2.

Proof. There are two cases depending on the transitions of the MSCC M:

• If M includes C and contains at least one non-stuttering transition, then M is detected by the line 16 of the first-pass, because M contains a Büchi-accepting state s f and M contains non-stuttering transitions.

• Otherwise, if M includes C and is only composed of stuttering transitions, then M is detected by the line 17 of the first-pass, because M contains a livelock-accepting state s f and M is only composed of stuttering transitions).

We deduce from Property 6 that the "livelock-constraint" is not necessary for fully-accepting states. This leads us to propose the following optimized definition of STA:

Definition 28. A Single-pass Testing Automaton (STA) is a TA T = hQ , I ,U, d, F , Gi over S such that d \ ((G \ F) ⇥ 2 S ⇥ Q) = / 0.
In other words, an STA is a TA in which every state in G \ F has no successors.

Consequently, during the TA to STA transformation described by Property 5, it was unnecessary to add artificial transitions (q, k, g) for any transition (q, k, q 0) where q 0 2 (G \ F) (i.e., q 0 is a fully-accepting state). This optimization of Property 5 is formalized by the following Property 7:

Property 7. Let T = hQ , I ,U, d, F , Gi be a TA, the equivalent STA is T 0 = hQ 0 , I 0 ,U 0 , d 0 , F , G 0 i
where

• G 0 = (G \ F) [{g} where g 6 2 Q is a new state, • Q 0 = (Q \ G / 0) [{g} where G / 0 = {q 2 G | ({q} ⇥ S ⇥ Q) \ d = / 0} is the set of states of G that have no successors,
• I 0 = I [{g} if G \ I 6 = / 0, I 0 = I otherwise, • d 0 = (d \ (Q ⇥ S ⇥ G / 0)) [{(q, k, g) | (q, k, q 0) 2 d, q 0 2 ((G \ F) [G / 0)}, • 8q 2 I , U 0 (q) = U(q) and U 0 (g) = S q2(G\I) U(q).
is such that L (T 0) = L (T).

Property 7 is illustrated by figure 4.3 that shows the transformation of a TA into an STA satisfying Definition 28. The state 4 is a fully-accepting state in the TA, therefore in the STA we don't add an artificial transition from state 4 to g.

Experimental evaluation of the TA improved emptiness check and of STA

This section presents our experimentation conducted under the same conditions as the previous chapter (see section 3.6), i.e., within the same tools Spot and CheckPN and using the same benchmark inputs (formulas and models).

Implementation

Figure 4.4 shows the building blocks we used to implement the different approaches. The TGBA and BA approaches share the same synchronous product and emptiness check, while a dedicated algorithms are required by the TA and STA approaches.

For TA approach, we have implemented the first-pass improvements of section 4.2 that allow to avoid the second-pass in more cases than the implementation of the previous chapter.

For STA approach, our STA emptiness check implementation shares the same first-pass with the TA algorithm and then disables the second-pass. We also disable the heuristic [START_REF] Geldenhuys | Larger automata and less work for LTL model checking[END_REF] livelock detection for the STA because it is useless.

Results

Table 4.1 and Table 4.2 shows how the TGBA, TA and STA approaches deal with the toy models and random formulas already presented in Section 3.6.2. We omit data for BA since they are outperformed by TGBA (see Section 3.6.3). Table 4.5 and Table 4.6 show toy models against weak-fairness formulas.

Table 4.3 and Table 4.4 show the results of the two cases studies against random, weakfairness, and dedicated formulas issued from the studies.

All values shown in tables are averaged over 100 different formulas: we checked each model against 100 random and 100 weak-fairness formulas that had no counterexample, and against 100 random and 100 weak-fairness formulas that had a counterexample. The average and maximum are computed separately on each model against each set of formulas.

The cases with formulas verified are separated from cases with violated ones. For verified formulas (Table 4.1, 4.5 and 4.3), no counterexample is found and the full state-space has to be explored. For violated formulas (Table 4.2, 4.6 and 4.4) the on-the-fly exploration of the statespace stopped as soon as the existence of a counterexample could be computed.

Column-wise, these tables show the average and maximum sizes (states and transitions) of: (1) the automata A ¬j i expressing the properties j i ; (2) the products A ¬j i ⌦ K of the property with the model; and (3) the subset of this product that was actually explored by the emptiness check. For verified properties, the emptiness check of TGBA and STA always explores the full product, so the sizes shown in the columns of the product and the emptiness check are equal, while the emptiness check of TA must in many cases perform two passes on the full product (see the linear cloud of green crosses below the diagonal of Figure 4.5a), so the columns of the product and the emptiness check in TA approach show different values. On violated properties, the emptiness check aborts as soon as it finds a counterexample, so the explored size is usually significantly smaller than the full product.

The emptiness check values show a third column labeled "T": this is the time in 1 100 e of seconds (a.k.a. centiseconds) spent doing that emptiness check, including the on-the-fly computation of the subset of the product that is explored. The time spent constructing the property automata from the formulas, shown in column "T j " (in centiseconds), is negligible compared to that of the emptiness check. Figure 4.5 compares the number of visited transitions when running the emptiness check; plotting STA against TA and TGBA. This gives an idea of their relative performance. Each point corresponds to one of the 5600 evaluated formulas (2800 violated with counterexample as black circles, and 2800 verified having no counterexample as green crosses). Each point below the diagonal is in favor of STA while others are in favor of the other approach. Axes are displayed using a logarithmic scale.

No comparison is presented with BA since they are less efficient than TGBA (see the experimental evaluation presented in section 3.6.3).

All these experiments were run on a 64bit Linux system running on an Intel(R) 64-bit Xeon(R) @2.00GHz, with 10GB of RAM.

Discussion

Before discussing the performance of different approaches, we recall that in our implementation using CheckPN tool, the cost of computing labels in the Kripke structure is higher (despite the fact that we use a cache). This increases the computing time of products in TA and STA approaches (more than in the approaches TGBA and BA), because TA and STA approaches query two labels by transition of the Kripke structure (to compute an xor between source label and destination label) while other approaches query only one label.

In an implementation where computing labels is cheap, the execution time should be proportional to the number of transitions explored by the emptiness check, so it is important to not consider only the execution time provided by our experiments.

On verified properties, the results are very straightforward to interpret when looking at the number of states and transitions explored by the emptiness check.

The emptiness check optimizations proposed in Section 4.2 improve the performance of the TA approach. This can be observed by comparing the results in this chapter and the results of TA approach in the previous chapter (see Section 3.6.3: for verified properties, the number of transitions visited by the emptiness check was always twice the number of transitions in the product).

TA outperform TGBA except for both Random and weak-fairness properties against Peterson, Ring, Robin and PolyORB.

STA significantly improve TA in all cases where a second pass was necessary. In these cases, the STA approach, with its single-pass emptiness check, is a clear improvement over TA. These cases where the STA approach is twice faster than TA's, appear as a linear cloud of green crosses below the diagonal in the scatter plot of Figure 4.5a (we recall that the axes are displayed using a logarithmic scale) Otherwise, they have the same performance because if no livelock-acceptance states are detected in the product then the TA and STA approaches explore exactly the same product (these cases correspond to the green crosses on the diagonal).

In the scatter plot comparing STA against TGBA, the green crosses appear on both side of the diagonal, with much more points where STA is better. Furthermore, in the results tables, if we observe in more details the average number of states/transitions explored during the emptiness check, STA outperform TGBA in all cases except for weak-fairness formulas against Ring and PolyORB. In this cases, TGBA benefits from the large number of acceptance conditions generated when translating weak-fairness formulas.

On violated properties, it is harder to interpret the results because they depend on the order in which non-deterministic transitions of the property automaton are explored. In the best case, the order of transitions leads the emptiness check straight to a counterexample; in the worst case, the algorithm explores the whole product until it finally finds a counterexample.

The different kinds of property automata TGBA, TA and STA provide different orders of transitions and therefore change the number of states and transitions to be explored by the emptiness check before a counterexample is found.

If we analyze in more details the results tables, we observe that:

• For the (full) product size, TA and STA produce a smaller product on the average than TGBA for random formulas. However, for weak-fairness formulas, TGBA produces the smallest product on the average.

• For the emptiness check, looking at the average number of transitions explored by the emptiness check (and taking into account the extra computation of labels discussed previously), indicates that TA and STA approaches outperform the TGBA approach except for weakfairness formulas against Peterson, Philo and PolyORB. Even for STA where an artificial state and non-deterministic transitions are added, no significant overhead is noticed.

Conclusion

In a preliminary work presented in the previous chapter, we experiment LTL model checking of stuttering-insensitive properties with various techniques: Büchi automata (BA), Transitionbased Generalized Büchi Automata and Testing Automata [START_REF] Geldenhuys | Larger automata and less work for LTL model checking[END_REF]. At this time, conclusions were that TA has good performance for violated properties (i.e. when a counterexample was found). However, this was not the case when no counterexample was computed since the entire product had to be visited twice to check for each acceptance mode of a TA (Büchi acceptance or livelockacceptance). This chapter extends the above work in two ways. First, it introduces a modified emptiness check algorithm that avoids the second pass when it is useless (i.e., no livelock-acceptance state is detected in the product). Second, it proposes a transformation of TA into STA that avoids the need for a second pass (in all cases).

Both new algorithms have been implemented in Spot, our model checking library and used on several benchmark models including large models issued from case studies. Experimentation with Spot reported that, STA remain good for violated properties, and also beat TA and TGBA in most cases when properties exhibit no counterexample.

In the next chapter, we introduce a new kind of automata that combines ideas from TGBA and STA. The goal is to have a form of single-pass testing automata without adding any artificial state and with generalized acceptance conditions on transitions like a TGBA. These generalized acceptance conditions allow to improve the performance when checking weak-fairness formulas, as observed in the experimentation with better performance of TGBA for this kind of formulas.

CHAPTER 5

Transition-based Generalized Testing Automata (TGTA): A Single-pass and Generalized New Automata

Introduction

In Chapter 3, we have shown that Testing Automata (TA) are better than Büchi Automata when the formula to be verified is violated (i.e., a counterexample is found), but this is not the case when the property is verified since the entire product have to be visited twice to check for each acceptance mode of a TA. Then, in order to improve the TA approach, we proposed STA in Chapter 4. STA is a transformation of TA into a normal form that does not need the second pass of the emptiness check. Unfortunately, STA can increase the size of the product automaton, because in order to remove the second pass, the transformation from TA into STA adds an artificial state. This chapter introduces a new type of w-automata for stutter-invariant properties, called Transition-based Generalized Testing Automata (TGTA) [6], that mixes features from both TA and TGBA.

The basic idea of TGTA is to build an improved form of testing automata with generalized acceptance conditions on transitions, which allows us to modify the automata construction in order to remove the second pass of the emptiness check of the product. The constructed TGTA represents all the stuttering-transitions using only self-loops.

TGTA combines the advantages of TA and TGBA and it is better than STA because TGTA allows to remove the second pass without adding an artificial state.

In addition, as seen in Figure 5.1, a TA is built from a BA while a TGTA is built directly from a TGBA. Therefore, compared to TA, TGTA can benefit from the fact that TGBA are smaller than BA. Indeed, TGBA are more concise [START_REF] Giannakopoulou | From states to transitions: Improving translation of LTL formulae to Büchi automata[END_REF][START_REF] Duret | SPOT: an extensible model checking library using transition-based generalized Büchi automata[END_REF] because they use generalized acceptance conditions on transitions, especially for weak-fairness formulas, as was already observed in Section 3.6.3 page 54.

Another advantage of TGTA compared to TA, is that the implementation of TGTA approach does not require a dedicated emptiness check, it reuses the same algorithm used for TGBA (and BA), and the counterexample constructed by this algorithm is also reported as a counterexample for the TGTA approach. We are thus able to compare TGTA with the "traditional" algorithms we used on TA, BA and TGBA. The results of these experimental comparisons show that TGTA compete well on our examples: the TGTA approach is statistically more efficient than the other evaluated approaches, especially when no counterexample is found (i.e., the property is verified) because it does not require a second pass.

Transition-based Generalized Testing Automata (TGTA)

The following definition of TGTA combines features from both TGBA and TA. From TGBA, we inherit the use of transition-based generalized acceptance conditions. From TA, we take the idea of labeling transitions with changesets, however we remove the use of livelock-acceptance (because it may require a two-pass emptiness check), and we remove the implicit stuttering (in TGTA, d explicitly represents the stuttering transitions, but we will see in the following that our constructed TGTA satisfies a stuttering-normalization constraint that optimizes the representation of these stuttering transitions).

The resulting Chimera, accepts only stuttering-insensitive languages like TA, and inherits advantages from both TA and TGBA: it has a simple one-pass emptiness-check procedure (the same as the one for TGBA), and can benefit from reductions based on the stuttering of the properties pretty much like a TA. Livelock acceptance states, which are no longer supported, can be emulated using states with stuttering self-loops labeled by the set of all acceptance conditions F (these particular self-loops are called "accepting stuttering self-loops" in the following).

/ 0-TGTA

Before defining TGTA, we begin by defining an intermediate form called / 0-TGTA ("emptychangesets" TGTA). This intermediate form is a generalized Testing Automaton that allows to represent any LTL property. Then, we define TGTA as a normal form of / 0-TGTA used to only represent stutter-invariant properties (LTL\ X). In Section 5.3 we will show that a TGTA is constructed in two steps as illustrated in Figure 5.2. The first step transforms a TGBA into an / 0-TGTA by labeling transitions with changesets. The second step transforms an / 0-TGTA into a TGTA by normalizing the representation of stuttering transitions. This normalization benefits from the hypothesis that the LTL property is stutter-invariant to remove all stuttering transitions that are not self-loops in TGTA.

In addition to being used in the construction of TGTA, / 0-TGTA will also be used to represent the product between a TGTA and a Kripke structure in Section 5.4.1.

Definition 29 (/ 0-TGTA). An / 0-TGTA over the alphabet S is a tuple T = hQ , I ,U, d, F i where:

• Q is a finite set of states, • I ✓ Q is a set of initial states,
• U : I ! 2 S is a function mapping each initial state to a set of symbols of S,

• F is a finite set of acceptance conditions,

• d ✓ Q ⇥ S ⇥ 2 F ⇥ Q is the
transition relation, where each element (q, k, F, q 0) represents a transition from state q to state q 0 labeled by a changeset k interpreted as a (possibly empty) set of atomic propositions whose values change between q and q 0 , and the set of acceptance conditions F 2 2 F , An infinite word s = `0`1`2 . . . 2 S w is accepted by T if there exists an infinite path r = (q 0 , `0 `1, F 0 , q 1)(q 1 , `1 `2, F 1 , q 2)(q 2 , `2 `3, F 2 , q 3) . . . 2 d w where:

• q 0 2 I with `0 2 U(q 0) (the infinite word is recognized by the path),

• 8 f 2 F , 8i 2 N, 9 j i, f 2 F j (each acceptance condition is visited infinitely often). The language accepted by T is the set L (T) ✓ S w of infinite words it accepts. Indeed, a run recognizing such an infinite word must start in state 0 (because only U(0) = { p}), then it changes the value of p, so it has to move to state 1 because from state 0 only the transition (0, {p}, 1) is labeled by {p}. In the next step, the value of p does not change and the run must execute a stuttering transition among (1, / 0, 1) or (1, / 0, 2). To be accepted, it must eventually move to state 2 (rather than remain in state 1), and finally stay on state 2 by executing infinitely the accepting stuttering self-loop (2, / 0, , 2).

TGTA

A TGTA is a normal form of / 0-TGTA satisfying a structural constraint on stuttering transitions, called "stuttering-normalization constraint", its objective is to force the TGTA to represent the stuttering transitions using only stuttering self-loops.

Definition 30 (TGTA). A TGTA is an / 0-TGTA T = hQ , I ,U, d, F i such that L (T) is stutterinvariant and the transition relation d has to satisfy the following stuttering-normalization constraint:

1. All stuttering transitions are self-loops, and 2. and every state has a stuttering self-loop. Formally, the stuttering-normalization constraint can be expressed by the following equivalence: 8(q, q 0) 2 Q 2 : 9F 2 2 F , (q, / 0, F, q 0) 2 d () (q = q 0) Figure 5.3b shows a TGTA recognizing the LTL formula F G p. We note that this TGTA satisfies the stuttering-normalization constraint. Indeed, we have that the set of stuttering transitions is {(0, / 0, / 0, 0), (1, / 0, / 0, 1), (2, / 0, , 2)}, i.e., a stuttering self-loop on each state. In this TGTA, the infinite word p; p; p; p; . . . is accepted by the run 0 2 2 2 . . .

{p} / 0 / 0
because the value p only changes between the first two steps. Indeed, a run recognizing such an infinite word must start in state 0 (because only U(0) = { p}), then it changes the value of p, so it has to take transitions labeled by {p}, i.e., (0, {p}, 1) or (0, {p}, 2). To be accepted, it must move to state 2 (rather than state 1), and finally stay on state 2 by executing infinitely the accepting stuttering self-loop (2, / 0, , 2).

In this work, we define and use TGTA only for stutter-invariant LTL properties. Indeed, we need this restriction to build a TGTA that satisfies the stuttering-normalization constraint (in particular , we will show in section 5.3.2 how we exploited this restriction to remove all the stuttering transitions that are not self-loops).

In the next section, we present in detail the formalization of the different steps used to build a TGTA that satisfies Definition 30.

TGTA Construction

Let us now describe how to build a TGTA starting from a TGBA of a stutter-invariant LTL property. The construction is inspired by the one presented in Section 3.4 (page 42) that constructs a TA from a BA.

Similar to TA construction, a TGTA is built in two steps as illustrated in Figure 5.2, the first one builds an intermediate / 0-TGTA from a TGBA. Then, the second step builds the final form of TGTA by removing the useless stuttering transitions of the / 0-TGTA. This simplification of stuttering transitions does not introduce livelock-accepting states in TGTA (this represents a crucial difference between TA and TGTA because livelock-accepting states require a second pass in the emptiness check of the product using TA). Figure 5.4d shows a TGTA constructed for a U G b in the same way as we did for Figure 3.3d (page 43) . The only accepting runs are those that see infinitely often. The reader can verify that all the infinite words taken as example in section 3.4 are still accepted, but not always with the same runs (for instance ab; āb; āb; āb; . . . is accepted by the run 2, 4, 4, 4, . . ., but not by the run 2, 3, 3, 3, . . .). This difference is due to the way we emulate livelock-accepting states, as we will describe later (in Property 9 page 93).

T , I T ,U T , d T , F i with Q T = Q G ⇥ S, I T = I G ⇥ S and
(i) 8(q, `) 2 I T , U T ((q, `)) = {`} (ii) 8(q, `) 2 Q T , 8(q 0 , `0) 2 Q T , (q, `), ` `0, F, (q 0 , `0) 2 d T () ((q, `, F, q 0) 2 d G)

Then L (G) = L (T).

Proof of property 8.

(((✓ ✓ ✓))) Let s 1 = `0`1`2 . . . 2 L (G)
be an infinite word accepted by G.

By Definition 16, s 1 is recognized by a path (q 0 , `0, F 0 , q 2)(q 2 , `1,

F 1 , q 2) . . . 2 d w
G of G, such that q 0 2 I , and 8 f 2 F , 8i 2 N, 9 j i, f 2 F j . By applying (ii) and (i), we can see that there exists a corresponding path ((q 0 , `0), `0 `1, F 0 , (q 1 , `1))((q 1 , `1), `1 `2, F 1 , (q 2 , `2)) . . . 2 d w T of T such that (q 0 , `0) 2 I T , `0 2 U T ((q 0 , `0)), and still 8 f 2 F , 8i 2 N, 9 j i, f 2 F j . By Definition 30 we therefore have s 1 2 L (T).

(((◆ ◆ ◆))) Let s 2 = w 0 w 1 w 2 . . . 2 L (T) be an infinite word accepted by T . By Definition 30, s 2 is recognized by a path ((q 0 , `0), w 0 w 1 , F 0 , (q 1 , `1))((q 1 , `1),

w 1 w 2 , F 1 , (q 2 , `2)) . . . 2 d w
T of T such that (q 0 , `0) 2 I T , w 0 2 U T ((q 0 , `0)), and 8 f 2 F , 8i 2 N, 9 j i, f 2 F j . Of course we have w i w i+1 = `i `i+1 but this does not suffice to imply that `i = w i . However (i) tells us that w 0 2 U T ((q 0 , `0)) = {`0} so w 0 = `0, and since w i w i+1 = `i `i+1 it follows that w i = `i. By applying (ii) can now find a corresponding path (q 0 , `0, F 0 , q 2)(q 2 , `1,

F 1 , q 2) . . . 2 d w

G

of G, such that q 0 2 I , 8i 2 N, (w i = `i), and 8 f 2 F , 8i 2 N, 9 j i, f 2 F j . By Definition 16 we therefore have s 2 2 L (G).

From /

0-TGTA to TGTA: Elimination of useless stuttering-transitions (/ 0) without introducing livelock-acceptance

The next property is the pendent of Property 4 (page 45) to simplify the automaton by removing stuttering transitions and thus obtain the final form of the TGTA. Here we cannot remove self-loop transitions labeled by / 0 (i.e., stuttering self-loops), but we can remove all others. The intuition behind this simplification is illustrated in Figure 5.5a: q 0 is reachable from state q by a non-stuttering transition, but q 0 can reach an accepting stuttering-cycle by following only stuttering transitions. In the context of TA we would have to declare q 0 as being a livelock-accepting state. For TGTA, we replace the accepting stuttering-cycle by adding a self-loop labeled by all acceptance conditions on q n , then the predecessors of q 0 are connected to q n as in Figure 5.5b.

In the last step of the following construction, in order to maintain the same accepted (stuttering) language, we add a stuttering self-loop to each state before removing all stuttering transitions between every two distinct states.

Property 9 (Elimination of useless stuttering transitions of / 0-TGTA to build a TGTA). Let T = hQ , I ,U, d, F i be a / 0-TGTA such that L (T) is stutter-invariant. By combining the first three of the following operations, we can remove all stuttering transitions that are not self-loop (see Figure 5.5) and therefore obtain a TGTA. The fourth operation can be performed along the way for further (classical) simplifications.

Chapter 5. Transition-based Generalized Testing Automata (TGTA): A Single-pass and Generalized New Automata

q q 0 • • • q n q q 0 k / 0 / 0 / 0 / 0 / 0 / 0 (a) /
0-TGTA: Before reduction of stuttering transitions (/ 0). 1. If Q ✓ Q is a SCC such that any two states q, q 0 2 Q can be connected using a sequence of stuttering transitions (q, / 0,

q q 0 q n k k / 0 / 0 (b) After reduction of stuttering transitions (/ 0). q q 0 q n • • • . . . k k / 0 / 0 / 0 (
F 0 , r 1)(r 1 , / 0, F 1 , r 2) • • • (r n , / 0, F n , q 0) 2 d ⇤ with F 0 [F 1 [••• [F n =
F , then we can add an accepting stuttering self-loop (q, / 0, F , q) on each state q 2 Q. I.e., the / 0-TGTA T 0 = hQ , I ,U, d [{(q, / 0, F , q) | q 2 Q}, F i is such that L (T 0) = L (T). Let us call such a component Q an accepting Stuttering-SCC.

2. If there exists an accepting Stuttering-SCC Q and a sequence of stuttering-transitions: (q 0 , / 0, F 1 , q 1)(q 1 , / 0, F 2 , q 2) • • • (q n 1 , / 0, F n , q n) 2 d ⇤ such that q n 2 Q and q 0 , q 1 , ... q n 1 6 2 Q (as shown in Figure 5.5a), then:

• For any non-stuttering transition, (q, k, F, q 0) 2 d going to q 0 and such that k 6 = / 0 (and (q, k, F, q n) 6 2 d), the / 0-TGTA T 00 = hQ , I ,U, d [{(q, k, F, q n)}, F i is such that L (T 00) = L (T).

• If q 0 2 I , the / 0-TGTA T 00 = hQ , I [{q n },U 00 , d, F i with 8q 6 = q n , U 00 (q) = U(q) and

U 00 (q n) = U(q n) [U(q 0), is such that L (T 00) = L (T).
3. Let T † = hQ , I † ,U † , d † , F i be the / 0-TGTA obtained after repeating the previous two operations as much as possible (i.e., T † contains all the transitions and initial states that can be added by the above two operations (Figure 5.5b)). Then, we can add non-accepting stuttering self-loops (q, / 0, / 0, q) to all states that did not have an accepting stuttering selfloop (Figure 5.5c), because T describes a stuttering invariant property. Also we can remove all stuttering transitions that are not self-loops since stuttering can be captured by self-loops after the previous two operations. After this last reduction of stuttering transitions, we obtain the final TGTA. More formally, the TGTA T 000 = hQ , I † ,U † , d 000 , F i with

d 000 = {(q, k, F, q 0) 2 d † | k 6 = / 0 _ (q = q 0 ^F = F)} [{(q, / 0, / 0, q) | (q, / 0, F , q) 6 2 d † } is such that L (T 000) = L (T †) = L (T).

4.

Any state from which one cannot reach a Büchi-accepting cycle can be removed from the automaton without changing its language.

Here again, an additional optimization is to merge bisimilar states, this can be achieved using the same algorithm used to simplify a TA, taking Q as initial partition and taking into account the acceptance conditions of the outgoing transitions. All these steps are shown in Figure 5.4.

Proof of property 9.

1. (((T 0 0 0 ◆ ◆ ◆ T))) Obvious because we are only adding transitions. (((T

0 0 0 ✓ ✓ ✓ T))) Let d 0 = d [{(q, / 0, F , q) | q 2 Q}.
Consider an accepting infinite word s = `0`1`2 . . . 2 L (T 0) recognized by an accepting path p 0 on T 0 . Any transition of p 0 that is not in d is a selfloop (q, / 0, F , q) that has been added to d 0 because an accepting stuttering-SCC exists in d around q: so any (q, / 0, F , q) 2 d 0 can be replaced by a sequence of stuttering transitions

(q, / 0, G 0 , r 1)(r 1 , / 0, G 1 , r 2) . . . (r n , / 0, G n , q) 2 d ⇤ such that G 0 [G 1 [. . . G n = F .
The path p 2 d w obtained by replacing all such transitions is an accepting path of T that recognizes a word that is stuttering equivalent to s. Since L (T) is stuttering-insensitive, it must also contain s.

2. (((T 0 0 00 0 0 ◆ ◆ ◆ T))) Obvious for the same reason. (((T 0 0 00 0 0 ✓ ✓ ✓ T))) We consider the case where q 0 is non initial (the initial case is similar). Let d 00 = d [{(s, k, F, q n)}. Consider an accepting infinite word s = `0`1`2 . . . 2 L (T 00) recognized by a path p 00 on T 00 . Let p be the path on T obtained by replacing in p 00 any occurrence of (s, k, F, q n) 2 (d 00 \ d) by the sequence (s, k, F, q 0)(q 0 , / 0, F 1 , q 1)(q 1 , / 0, F 2 , q 2) • • • (q n 1 , / 0, F n , q n) 2 d ⇤ . The path p 2 d w is also an accepting path of T that recognizes a word that is stuttering equivalent to s. Since L (T) is stuttering-insensitive, it must also contain s.

3. L (T †) = L (T) by application of the previous two properties, therefore L (T †) is a stuttering-insensitive language. L (T 000) is also a stuttering-insensitive language because

T 000 is obtained from T † that recognizes a stuttering-insensitive language, by adding stuttering self-loops on all its states before removing all stuttering transitions that are not selfloops.

To prove that two stuttering-insensitive languages are equal, it is sufficient to verify that they contain the same words of the following two forms:

• s = `0`1`2 . . . with 8i 2 N, `i `i+1 6 = / 0 (non-stuttering words), or

• s = `0`1`2 . . . (`n) w with 8i < n, `i `i+1 6 = / 0 (terminal stuttering words)
All other accepted words can be generated by duplicating letters in the above words.

Since we have only touched stuttering transitions, it is clear that the non-stuttering words of L (T) are the non-stuttering words of L (T 000).

We now consider the case of a terminal stuttering word s = `0`1`2 . . . (`n) w with 8i < n, `i `i+1 6 = / 0.

(((T 0 0 00 0 00 0 0 ✓ ✓ ✓ T †))) The path p 000 that recognizes s in T 000 has the form (q 0 , `0 `1, F 0 , q 1) (q 1 , `1 `2, F 1 , q 2) . . . (q n , / 0, F , q n) w where all transitions are necessarily from T † because 96 Chapter 5. Transition-based Generalized Testing Automata (TGTA): A Single-pass and Generalized New Automata we have only added in T 000 transitions of the form (q, / 0, / 0, q). p 000 is thus also an accepting path of T † and s 2 L (T †).

(((T 0 0 00 0 00 0 0 ◆ ◆ ◆ T †))) The path p † that recognizes s in T † does only stutter after `n. Because this is an accepting path, it has a lasso-shape (i.e., a finite path starting from an initial state with a cycle at the end), where the cyclic part is only stuttering and accepting. Let us denote it p † = (q 0 , `0 `1, F 0 , q 1)(q 1 , `1 `2, F 1 , q 2) . . . (q n 1 , `n 1 `n, F n 1 , q n)(q n , / 0, F n , q n+1) . . . [(q m , / 0, F m , q m+1) . . . (q l , / 0, F l , q m)] w , with 8i < n, `i `i+1 6 = / 0.

Thanks to property 9.1, the accepting cycle [(q m , / 0, F m , q m+1) . . . (q l , / 0, F l , q m)] of p † can be replaced by an accepting self-loop (q m , / 0, F , q m). And thanks to property9.2, the transitions from q n 1 to q m can be replaced by a single transition (q n 1 , `n 1 `n, F n 1 , q m). The resulting path p 000 = (q 0 , `0 `1, F 0 , q 1)(q 1 , `1 `2, F 1 , q 2) . . . (q n 1 , `n 1 `n, F n 1 , q m)(q m , / 0, F , q m) w is an accepting path of T 000 that accepts s, so s 2

L (T 000).
4. This is a classical optimization on Büchi automata.

Explicit Model checking using TGTA

As for the other variants of w-automata, the automata-theoretic approach using TGTA has two important operations: the construction of a TGTA T recognizing the negation of the stutter-invariant LTL property j and the emptiness check of the product (K ⌦ T) of the Kripke structure K with T . Currently, the TGTA T is built from a TGBA obtained from the translation of j. In future work we plan to implement a direct translation from LTL\ X to TGTA, but the construction presented above is enough to show the benefits of using TGTAs, and makes it easier to understand how TGTAs relates to TGBAs.

Synchronous Product of a TGTA with a Kripke Structure

The product of a TGTA T with a Kripke structure K is an / 0-TGTA (K ⌦ T) whose language is the intersection of both languages, i.e, L (K ⌦ T) = L (K) \ L (T).

Comparing this definition with the previous two products (for TGBA and TA) shows the double inheritance of TGTA. This product is similar to the product between a TA and a Kripke structure (Definition 25 page 47), except that it does not deal with livelock acceptance states and implicit stuttering. It is also similar to the product of a TGBA with a Kripke structure (Definition 22 page 31), except for the use of changesets on transitions, and the initial labels (U).

Definition 31. For a Kripke structure K = hS , S 0 , R , li and a TGTA T = hQ , I ,U, d, F i, the product

K ⌦ T is a / 0-TGTA hS ⌦ , I ⌦ ,U ⌦ , d ⌦ , F ⌦ i where • S ⌦ = S ⇥ Q , • I ⌦ = {(s, q) 2 S 0 ⇥ I | l(s) 2 U(q)}, • 8(s, q) 2 I ⌦ , U ⌦ ((s, q)) = {l(s)},

Explicit Model checking using TGTA

97

• d ⌦ = {((s, q), k, F, (s 0 , q 0)) | (s, s 0) 2 R , (q, k, F, q 0) 2 d, k = (l(s) l(s 0))},

• F ⌦ = F . Property 10. We have L (K ⌦ T) = L (K) \ L (T) by construction. shows an example of a Synchronous Product between a Kripke structure K and a TGTA T recognizing the LTL formula F G p. Each state of K is numbered and labeled with the set of atomic propositions (of S = {p}) that hold in this state. In the TGTA representing the product K ⌦ T , the states are labeled with pairs of the form (s, q) where s 2 K and q 2 T .

In this example, we can notice that this product using TGTA is smaller than the product using Büchi automata presented in Figure 2.12 (page 32) ,i.e., the product between the same Kripke structure K and the TGBA A recognizing the LTL formula F G p. Indeed, the synchronization of the TGTA T with the stuttering parts of K produces a smaller product than in the case of TGBA A (compare the (sub-)product of T and A with the stuttering cycle of K , i.e, the cycle between the states 2 and 3).

Emptiness check (the same as TGBA)

Since a product of a TGTA with a Kripke structure is an / 0-TGTA, we only need an emptiness check algorithm for an / 0-TGTA automaton. An / 0-TGTA can be seen as a TGBA whose transitions are labeled by changesets instead of valuations of atomic propositions. When checking a TGBA for Chapter 5. Transition-based Generalized Testing Automata (TGTA): A Single-pass and Generalized New Automata emptiness, we are looking for an accepting cycle that is reachable from an initial state. When checking an / 0-TGTA for emptiness, we are looking exactly for the same thing. Therefore, because emptiness check algorithms do not look at transitions labels, the same emptiness check algorithm used for the product using TGBA (Algorithm 1) can also be used for the product using TGTA. This is a nice feature of TGTA, not only because it gives us a one-pass emptiness check, but also because it eases the implementation of the TGTA approach in our tool Spot or in any other TGBA-based model checker. We only need to implement the conversion of TGBA to TGTA and the product between a TGTA and a Kripke structure. We discuss our implementation in the next section.

Experimental evaluation of TGTA

In order to evaluate the TGTA approach against the TGBA (BA) and TA approaches, an experimentation was conducted under the same conditions as Section 3.6, i.e., within the same CheckPN tool on top of Spot and using the same benchmark Inputs (formulas and models) used in the experimental comparison of BA, TGBA, TA and STA, see Section 3.6.2 page 53. Figure 5.7 shows the building blocks we used to implement the three approaches. The automaton used to represent the property to check has to be synchronized with a Kripke structure representing the model. Depending on the kind of automaton (TGBA, BA, TA, TGTA), this synchronous product is implemented differently. Only the TGBA and BA approaches can share the same product implementation. Approaches TA and TGTA require a dedicated product computation.

Implementation

The TGBA, BA, and TGTA approaches share the same emptiness check, while a dedicated algorithm is required by the TA approach. In Figure 5.7, no direct translation is provided from LTL to TGTA (this is also true for BA and TA). This could be investigated in future work, the need being, so far, to assess their effectiveness before optimizing the translation process.

The time spent doing the conversion from LTL to TGBA and then to TGTA (bisimulation included) is measured in the benchmark of the next section (see tables column "T j " in centiseconds). This translation process is almost instantaneous, and even if its runtime could be improved (for instance with a direct translation from LTL to TGTA) it is clearly a non significant part of the run time of the different model checking approaches, where all the time is spent performing the emptiness check of the product (built on-the-fly) between the Kripke structure and the property automaton.

Results

Table 5.1 and Table 5.2 shows how for TGBA, TA and TGTA approaches deal with toy models and random formulas. We omit data for BA since they are always outperformed by TGBA. Table 5.5 and Table 5.6 show toy models against weak-fairness formulas. Table 5.3 and Table 5.4 show the results of the two cases studies against random, weakfairness, and dedicated formulas issued from the studies. These tables separate cases where formulas are verified from cases where they are violated. In the former (Tables 5.1, 5.5 and 5.3), no counterexample are found and the full state-space had to be explored; in the latter (Tables 5.2, 5.6 and 5.4) the on-the-fly exploration of the state-space stopped as soon as the existence of a counterexample could be computed.

All values shown in all tables are averaged over 100 different formulas. Indeed, we checked each model against 100 random and 100 weak-fairness formulas that had no counterexample, and against 100 random and 100 weak-fairness formulas that had a counterexample. The average and maximum are computed separately on each model against each set of formulas.

Column-wise, these tables show the average and maximum sizes (states and transitions) of: (1) the automata A ¬j i expressing the properties j i ; (2) the products A ¬j i ⌦ K of the property with the model; and (3) the subset of this product that was actually explored by the emptiness check. The emptiness check values show a third column labeled "T": this is the time (in hundredth of seconds, a.k.a. centiseconds) spent doing that emptiness check, including the on-the-fly computation of the subset of the product that is explored. In the same way, the column "T j " shows the time (in centiseconds) spent constructing the property automata A ¬j i from the formulas (this time is negligible compared to that of the emptiness check). Figure 5.8 compares the number of visited transitions when running the emptiness check; plotting TGTA against TA and TGBA. This gives an idea of their relative performance. Each point corresponds to one of the 5600 evaluated formulas (2800 violated with counterexample as black circles, and 2800 verified having no counterexample as green crosses). Each point below the diagonal is in favor of TGTA while others are in favor of the other approach. Axes are displayed using a logarithmic scale. No comparison is presented with BA since they are less efficient than TGBA, according to the experimental evaluation presented in section 3.6.3 page 54.

All these experiments were run on a 64bit Linux system running on an Intel(R) 64-bit Xeon(R) @2.00GHz, with 10GB of RAM.

Discussion

On verified properties the results are very straightforward to interpret when looking at the number of transitions explored by the emptiness check. TA outperform TGBA except for both Random and weak-fairness properties against Peterson, Ring, Robin and PolyORB. These are typical cases where the TA emptiness check has to perform two passes: this can be observed in the tables 5.1, 5.3 and 5.5 when the number of transitions visited by the emptiness check is on the average twice the number of transitions of the product. In these three cases, the TGTA approach, with its single-pass emptiness check, is a clear improvement over TA. On the scatter plots of Figure 5.8a, these cases where the TGTA approach is twice faster than TA's, appear as a linear cloud of green crosses below the diagonal (we recall that the axes are displayed using a logarithmic scale).

In the other cases where TA need only one pass on the average (e.g. Kanban, MAPK, Philo), TGTA and TA have similar performance, with a slight advantage for TGTA because the products are smaller, especially for weak-fairness formulas because TGTA represent more concisely this kind of formulas using a large number of generalized acceptance conditions (similar to TGBA).

To summarize, the TGTA approach outperforms TGBA and TA approaches in all cases on verified properties.

On violated properties, we recall that it is difficult to interpret the scatter plots of results because the emptiness check is an on-the-fly algorithm. It stops as soon as it finds a counterexample. Thus, the exploration order of non-deterministic transitions of TGBA, TA and TGTA changes the number of states and transitions to be explored in the product before a counterexample is found.

However, if we analyze more precisely tables 5.2, 5.4 and 5.6, we observe that the TGTA approach produces the smallest products on the average. This allows the TGTA approach to seek a counterexample in a smaller product and therefore have a better chance to find it faster. Thus, we observe that in the majority of cases the emptiness check of TGTA approach explores less states and transitions on the average than TGBA or TA.

In the tables of results, we generally observe for both verified and violated properties that:

• Although the TGTA constructed from properties are usually larger than TGBA (and even larger than BA), the average sizes of the products in TGTA approach are smaller than the average sizes of the products in TGBA approach (and BA approach, see section 3.6.3 page 54). We believe this is due to the elimination of useless stuttering-transitions in TGTA (see Section 5.3.2). specificity.

• In addition, if we compare the automata sizes for TA versus TGTA, we observe that TGTA are smaller than TA in all tables in terms of average numbers of states, and in terms of average numbers of states and transitions for weak-fairness formulas (in Tables 5.2, 5.6, 5.3 and 5.4). We believe this is due to the fact that TGTA represent more concisely the LTL formulas using (multiple) generalized acceptance conditions, especially for weak-fairness formulas (for which the number of acceptance conditions is greater, in our experiments we have |F | = 3.51 on the average for weak-fairness formulas, while |F | = 1.32 on the average for random formulas). This is the consequence of the fact that a TA is built from a BA while a TGTA is built from a TGBA. Thus, TGTA can take advantage from the fact that Chapter 5. Transition-based Generalized Testing Automata (TGTA): A Single-pass and Generalized New Automata TGBA are more concise than BA. TGBA are smaller [START_REF] Giannakopoulou | From states to transitions: Improving translation of LTL formulae to Büchi automata[END_REF][START_REF] Duret | SPOT: an extensible model checking library using transition-based generalized Büchi automata[END_REF] because they use generalized acceptance conditions. For example, the BA of j = G F a ^GF b (Figure 2.4a) contains 3 states and it is transformed1 into a TA that contains 10 states (30 transitions); the TGBA of j = G F a^GF b (Figure 2.7a) is only composed by one state and it is therefore transformed 1 into a TGTA that only contains 4 states (16 transitions).

Experimental Results once the TGBA is improved by simulation-reduction

Recently, a new TGBA optimization was added to SPOT including the simulation-reduction [3] of TGBA. Unfortunately, we did not have the time to implement this simulation-reduction for TA and TGTA. However, since the construction of TA and TGTA depend on TGBA (we recall that TA is constructed from BA, which is obtained from TGBA by degeneralization), then the reduction of TGBA can also reduce both TA and TGTA sizes. The tables and scatter plots presented in the Appendix A show the impact of this optimization on the experimental results presented in the previous Section 5.5.2. This impact is positive for the three approaches. Indeed, if we compare the results of the previous Section 5.5.2 against the tables of Appendix A, we observe that the simulation-reduction of TGBA also reduces the TA and TGTA sizes.

These reductions produce smaller products on average and thus improve the performance of the three approaches. However, this does not change the result of the comparison of the three approaches: for verified formulas, TGTA remains more efficient than the other approaches; for violated formulas, the results are still difficult to interpret.

Conclusion

In the previous chapters, we have shown that TA outperformed BA and sometimes TGBA for unverified properties (i.e., when a counterexample was found). However, this was not the case when no counterexample was computed since the entire product had to be visited twice to check for each acceptance mode of a TA (Büchi acceptance or livelock-acceptance).

In this chapter, we propose a new type of w-automaton for stutter-invariant properties, called Transition-based Generalized Testing Automata (TGTA).

TGTA combines advantages observed on both TA and TGBA:

• From TA, it reuses the labeling of transitions with changesets, and the elimination of the useless stuttering-transitions, but without requiring a second pass in the emptiness check of the product.

• From TGBA, it inherits the use of generalized acceptance conditions on transitions. TGTA have been implemented in Spot easily, because only two new algorithms are required: the conversion of a TGBA into a TGTA, and a new definition of a product between a TGTA and a Kripke structure.

We have run benchmarks to compare TGTA against TA and TGBA (BA). Experiments reported that, in most cases, TGTA produce the smallest products on the average and they outper-form TA and TGBA when no counterexample is found in the system, but they are comparable when the property is violated, because in this case the on-the-fly algorithm stops as soon as it finds a counterexample without exploring the entire product.

We conclude that there is nothing to lose by using TGTA to verify stuttering-insensitive properties, since they are always at least as good as TA and TGBA.

We believe that TGTA is better than TA because TGTA does not require a second pass during the emptiness check and because TGTA represent more concisely the LTL formulas using (multiple) generalized acceptance conditions, as observed in our experiments for weak-fairness formulas (for which the number of acceptance conditions is greater than random formulas).

Compared to TGBA, we believe that TGTA is better thanks to the elimination of the useless stuttering-transitions during the TGTA construction (Section 5.3.2). This elimination exploits the fact that the TGTA are specific to stutter-invariant formulas, while the TGBA does not exploit at all this specificity.

After this elimination of useless stuttering-transitions, the obtained TGTA represents all the stuttering-transitions with only self-loops on all states (see the "stuttering-normalization constraint" of the TGTA Definition 30). This advantage of TGTA will be more clearly exploited in the symbolic approach presented in the next chapter. This symbolic model checking approach using TGTA allows us to tackle much larger state-spaces than in explicit model checking.

Part

Introduction

In the previous chapter, we showed how to generalize the Testing Automata (TA) using several acceptance sets, and allowing a single-pass efficient emptiness check. Our experimental comparison showed these Transition-based Generalized Testing Automata (TGTA) to be superior to Büchi Automata in the explicit approach for model-checking of stutter-invariant properties. In this explicit approach, the automata and their products were represented as explicit graphs. Another implementation of this procedure is the symbolic approach where the automata and their products are represented by means of decision diagrams (a concise way to represent large sets or relations) [17]. Encoding generalized Büchi automata is pretty common [START_REF] Rozier | A multi-encoding approach for LTL symbolic satisfiability checking[END_REF]. With such encoding, we can compute, in one step, the sets of all direct successors (PostImage) or predecessors (PreImage) of any set of states. Using this technique, there have been a lot of propositions for symbolic emptiness-check algorithms [START_REF] Fisler | Is there a best symbolic cycle-detection algorithm[END_REF][START_REF] Somenzi | Analysis of symbolic SCC hull algorithms[END_REF][START_REF] Kesten | Algorithmic verification of linear temporal logic specifications[END_REF]. These symbolic algorithms manipulate standard BFS-based fixed-points on the transition relation of the product which can be optimized using saturation techniques [20,[START_REF] Thierry-Mieg | Hierarchical set decision diagrams and regular models[END_REF].

To the best of our knowledge, these algorithms do not provide efficient optimizations specific to stutter-invariant properties, and Testing Automata have never been used in symbolic model checking. In this chapter, we propose and evaluate a symbolic approach for model checking using TGTA [7], and compare it to the symbolic approach using TGBA. In particular, we show that the computation of fixpoints on the transition relation of the product can be sped up with a dedicated evaluation of stuttering transitions. The implementation uses the saturation technique introduced by [20] that departs from standard BFS-based approaches for the symbolic fixed-point computation. Saturation nicely fits well with TGTA. Indeed, we exploit a separation of the transition relation into two terms, one of which greatly benefits from saturation techniques.

This chapter is organized as follows. Section 6.2 presents the symbolic model-checking approach for TGBA. For generality we define our symbolic structures using predicates over state variables in order to remain independent of the variant of Decision Diagrams used to actually implement the approach. Section 6.3 focuses on the encoding of TGTA in the same framework. We first show how a TGTA can be encoded, then we show how to improve the encoding of the Kripke structure and the product to benefit from saturation in the encoding of stuttering transitions in the TGTA. Finally, Section 6.4 compares the two approaches experimentally with an implementation that uses hierarchical Set Decision Diagrams (SDD) [START_REF] Thierry-Mieg | Hierarchical set decision diagrams and regular models[END_REF] (a particular type of Decision Diagrams on integer variables, on which we can apply user-defined operations). We concentrate on a comparison of TGBA versus TGTA and on the impact of the saturation technique. On our large, BEEM-based benchmark (presented in Section 6.4.3) and huge set of LTL formulas, our symbolic encoding of TGTA appears to be superior to TGBA.

Symbolic LTL Model Checking

We first present how to perform the automata-theoretic approach to LTL model checking using symbolic encodings of TGBA and Kripke structures. This setup will serve as a baseline to measure our improvements from later sections.

Symbolic Kripke Structure

In symbolic model checking we encode such a Kripke structure with predicates that represent sets of states or transitions [START_REF] Sebastiani | Symbolic systems, explicit properties: on hybrid approches for LTL symbolic model checking[END_REF]. These predicates are then implemented using decision diagrams [17].

Definition 32 (Symbolic Kripke Structure). A Kripke structure K = hS , S 0 , R , li can be encoded by the following predicates where s, s 0 2 S and `2 S:

• P S 0 (s) is true iff s 2 S 0 ,

• P R (s, s 0) is true iff (s, s 0) 2 R , • P l (s, `) is true iff l(s) = `.
In the sequel, we use the notations S 0 (s), R(s, s 0) and L(s, `) instead of P S 0 (s), P R (s, s 0) and P l (s, `). A Symbolic Kripke structure is therefore a triplet of predicates K = hS 0 , R, Li on state variables.

Variables s and s 0 used above are typically implemented using decision diagrams to represent either a state or a set of states. In a typical encoding [17], states are represented by conjunctions of Boolean variables. For instance if S = {0, 1} 3 , a state s = (1, 0, 1) would be encoded as s 1 s2 s 3 .

Similarly, s 1 s 3 would encode the set of states {(1, 0, 1), (1, 1, 1)}. With this encoding, S 0 , R and L are propositional formulas which can be implemented with BDDs or other kind of decision diagrams. In our implementation, we used SDDs on integer variables [START_REF] Thierry-Mieg | Hierarchical set decision diagrams and regular models[END_REF].

Symbolic Büchi Automata TGBA

We chose the TGBA to represent the negation of the LTL property to verify, because generalized acceptance is classically used in symbolic model checking [START_REF] Fisler | Is there a best symbolic cycle-detection algorithm[END_REF] and using transition-based acceptance is not a problem [START_REF] Rozier | A multi-encoding approach for LTL symbolic satisfiability checking[END_REF]. People working with Generalized Büchi automata (GBA) can adjust to our definitions by "pushing" the acceptance of states to their outgoing transitions [START_REF] Duret | SPOT: an extensible model checking library using transition-based generalized Büchi automata[END_REF].

Like Kripke structures, a TGBA can be encoded by predicates [START_REF] Sebastiani | Symbolic systems, explicit properties: on hybrid approches for LTL symbolic model checking[END_REF] on state variables.

Definition 33 (Symbolic TGBA). A TGBA hQ , I , d, F i is symbolically encoded by a the predicates hI , D, {D f } f 2F i where:

• I(q) is true iff q 2 I ,

• D(q, `, q 0) is true iff 9F 2 2 F , (q, `, F, q 0) 2 d ,

• For every f 2 F , the predicate D f is defined by: D f (q, `, q 0) is true iff 9(q, `, F, q 0) 2 d, f 2 F .

Symbolic Product of a TGBA with a Kripke structure

We now show how to build a synchronous product by composing the symbolic representations of a TGBA with that of a Kripke structure, inspired from Sebastian et al. [START_REF] Sebastiani | Symbolic systems, explicit properties: on hybrid approches for LTL symbolic model checking[END_REF].

Definition 34 (Symbolic Product for TGBA). Given a Symbolic Kripke structure K = hS 0 , R, Li and a Symbolic TGBA A = hI, D, {D f } f 2F i sharing a set AP of atomic propositions, the Symbolic Product K ⌦ A = hP 0 , T, {T f } f 2F i is defined by the predicates P 0 , T and T f encoding respectively the set of initial states, the transition relation and the acceptance transitions of the product:

• (s, q) denotes the state variables of the product (s for the Kripke structure and q for TGBA),

• P 0 (s, q) = S 0 (s) ^I(q),

• T ((s, q), (s 0 , q 0)) = 9`⇥R(s, s 0) ^L(s, `) ^D(q, `, q 0) ⇤ , where (s 0 , q 0) encodes the next state variables,

• 8 f 2 F , T f ((s, q), (s 0 , q 0)) = 9`⇥R(s, s 0) ^L(s, `) ^D f (q, `, q 0) ⇤ .

The labels `are used to ensure that a transition (q, `, q 0) of A is synchronized with a state s of K such that L(s, `). This way, we ensure that the product recognizes only the executions of K that are also recognized by A. However we do not need to remember how product transitions are labeled to check K ⌦ A for emptiness. Therefore, a product can be seen as a TGBA without labels on transitions. This explains why the predicate T ((s, q), (s 0 , q 0)) does not take as an argument a variable (`) to encode the labels of transitions (as in D(q, `, q 0)).

In symbolic model checkers, the exploration of the product is based on the following PostImage operation [START_REF] Sebastiani | Symbolic systems, explicit properties: on hybrid approches for LTL symbolic model checking[END_REF]. For any set of states encoded by a predicate P, PostImage(P) (s 0 , q 0) = 9(s, q) ⇥ P(s, q) ^T ((s, q), (s 0 , q 0)) ⇤ returns a predicate on state variables (s 0 , q 0) encoding the set of states reachable in one step from the set of states encoded by P.

Because in TGBA the acceptance conditions are based on transitions, we also define PostImage(P, f) to compute the successors of P reached using the transitions labeled with the acceptance condition f 2 F : PostImage(P, f)(s 0 , q 0) = 9(s, q) ⇥ P(s, q) ^Tf ((s, q), (s 0 , q 0)) ⇤ . These two operations are at the heart of the symbolic emptiness check presented in the next section. One way to check if a product is not empty is to find a reachable Strongly Connected Component that contains transitions from all acceptance sets (we call it an accepting SCC). Figure 6.1 shows such an algorithm implemented using symbolic operations. It mimics the algorithm FEASI-BLE of Kesten et al. [START_REF] Kesten | Algorithmic verification of linear temporal logic specifications[END_REF] and can be seen as a forward variant of OWCTY (One Way Catch Them Young [START_REF] Fisler | Is there a best symbolic cycle-detection algorithm[END_REF]) that uses PostImage computations instead of PreImage. Line 3 computes the set P of all reachable states of the product. The main loop on lines 4-8 refines P at each iteration. Lines 5-6 keep only the states of P that can be reached from a cycle in P. Lines 7-8 then remove all cycles that never visit some acceptance set f 2 F . Eventually the main loop will reach a fixpoint where P contains all states that are reachable from an accepting SCC. The product is empty iff that set is empty.

Symbolic Emptiness Check algorithm

There are many variants of such symbolic emptiness checks [START_REF] Fisler | Is there a best symbolic cycle-detection algorithm[END_REF][START_REF] Somenzi | Analysis of symbolic SCC hull algorithms[END_REF][START_REF] Kesten | Algorithmic verification of linear temporal logic specifications[END_REF]. We selected this variant mainly for its simplicity, as our contributions are mostly independent of the chosen algorithm: essentially, we will improve the cost of computing Reach(P) (used lines 3 and8).

TGTA-based Symbolic LTL Model Checking

In this section, we show how to encode a TGTA and a product for symbolic model checking using TGTA instead of TGBA.

Symbolic TGTA

A TGTA can be encoded symbolically in a similar way as we encoded a TGBA.

Definition 35 (Symbolic TGTA).

A TGTA T = hQ , I ,U, d, F i is symbolically encoded by the predicates hU 0 , D , {D f } f 2F i where:

• U 0 (q, `) is true iff (q 2 I) ^(U(q) = `) • D (q, k, q 0) is true iff 9F 2 2 F , (q, k, F, q 0) 2 d ,
• For every f 2 F , the predicate D f is defined by:

D f (q, k, q 0) is true iff 9(q, k, F, q 0) 2 d, f 2 F .
The predicates encoding the symbolic TGTA are the same as those encoding the symbolic TGBA, but they are based on changesets (encoded by the variable k) instead of valuations (variable `).

The predicate U 0 (q, `) encodes the set of initial states and their valuations. The predicate D (q, k, q 0) encodes the set of transitions of the TGTA, with the variable k encodes the changeset between q and q 0 . For each f 2 F , a predicate D f (q, k, q 0) encodes the transitions labeled with the acceptance condition f .

Naive Symbolic Product of TGTA with a Kripke structure

The product between a TGTA and a Kripke structure is similar to the TGBA case, except that we have to deal with changesets. The transitions (s, s 0) of a Kripke structure that must be synchronized with a transition (q, k, q 0) of a TGTA are all the transitions such that the label of s and s 0 differs by the changeset k: in the definition below, this is encoded by the terms L(s, `) ^L(s 0 , `0), with (` `0) = k. Definition 36 (Naive Symbolic Product for TGTA). Given a Symbolic Kripke structure K = hS 0 , R, Li and a Symbolic TGTA A = hU 0 , D , {D f } f 2F i sharing the same set of atomic propositions AP, the Symbolic Product K ⌦ A = hP 0 , T, {T f } f 2F i is defined by the following predicates:

• The set of initial states is encoded by: P 0 (s, q) = 9`⇥S 0 (s) ^L(s, `) ^U0 (q, `)⇤ .

• A naive encoding of the transition relation of the product is: T (s, q, s 0 , q 0) = 9k ⇥ R(s, s 0) ^ 9`, `0[L(s, `) ^L(s 0 , `0) ^xor(`, k, `0)] ^D (q, k, q 0) ⇤ , with the predicate xor(`, k, `0) is true iff (` `0) = k

• The definition of T f is similar to T by replacing D with D f . The formulas of PostImage(P) and PostImage(P, f) in TGTA approach are the same as in the TGBA approach, with the new expressions of T and T f defined above for K ⌦ A .

This naive definition of T contains the term 9`, `0[L(s, `) ^L(s 0 , `0) ^xor(`, k, `0)] which requires several symbolic operations. In the next section, we show how to re-encode the transition relation of Kripke structures to remove this term.

Adjusting the Symbolic Transition Relation of the Kripke Structure to TGTA

In order to reduce the number of symbolic operations in T and T f , we introduce a changeset-based encoding of a Kripke structure (only the transition relation changes).

Definition 37 (Changeset-based symbolic Kripke structure). A Kripke structure K = hS , S 0 , R , li, can be encoded by a changeset-based symbolic Kripke structure K = hS 0 , R , Li, where:

• the predicate R (s, k, s 0) is true iff ((s, s 0) 2 R ^(l(s) l(s 0)) = k),
• the predicates S 0 and L have the same definition as for a symbolic Kripke structure K of Definition 32.

The changeset-based symbolic transition relation R (s, k, s 0) of a Kripke structure is similar to the symbolic transition relation D (q, k, q 0) of a TGTA. It encodes the transitions ((s, s 0) 2 R with the variable k encodes the changeset between the two valuations l(s) and l(s 0).

In practice, the (changeset-based or not) symbolic transition relation of a Kripke structure should be constructed directly from the model and atomic propositions of the formula to check. In Section 6.4.2, we discuss how we build such changeset-based Kripke structures in our setup.

Adjusting the symbolic encoding of the Kripke structure to TGTA, allows us to obtain the following natural definition of the symbolic product using TGTA: Definition 38 (Symbolic Product for TGTA). Given a changeset-based Symbolic Kripke structure K = hS 0 , R , Li and a Symbolic TGTA A = hU 0 , D , {D f } f 2F i sharing the same set of atomic propositions AP, the Symbolic Product K ⌦ A = hP 0 , T, {T f } f 2F i is defined by the following predicates:

• The set of initial states is encoded by: P 0 (s, q) = 9`⇥S 0 (s) ^L(s, `) ^U0 (q, `)⇤

• The transition relation of the product is: T ((s, q), (s 0 , q 0)) = 9k ⇥ R (s, k, s 0) ^D (q, k, q 0) ⇤

• The definition of T f is similar to T by replacing D with D f .

The definitions of PostImage(P) and PostImage(P, f) are the same as in the TGBA approach, with the new expressions of T and T f above.

As for the product in TGBA approach, the product in TGTA approach is a TGBA (or a TGTA) without labels on transitions, and the same emptiness check algorithm (Figure 6.1) can be used for the two products.

Exploiting stuttering transitions to Improve Saturation in the TGTA Approach

Among symbolic approaches for evaluating a fixpoint on a transition relation, the saturation algorithm offers gains of one to three orders of magnitude [20] in both time and memory, especially when applied to asynchronous systems [18]. The saturation algorithm does not use a breadth-first exploration of the product, i.e., each iteration in the function Reach (Figure 6.1) is not a "global" PostImage() computation. Saturation instead recursively repeats "local" fixed-points by recognizing and exploiting transitions locality and identity transformations on state variables [18]. This algorithm considers that the system state consists of n discrete variables encoded by a Decision Diagram, and that the transition relation is expressed as a disjunction of terms called transition clusters. Each cluster typically only reads or writes a limited subset consisting of n 0  n variables, called the support of the cluster. During the least fixpoint computing the reachable states, the saturation technique consists in reordering [START_REF] Hamez | Hierarchical set decision diagrams and automatic saturation[END_REF] the evaluation of ("local" fixed-points on) clusters in order to avoid the construction of (useless) intermediate decision diagram nodes.

The algorithm to determine an ordering for saturation is based on the support of each cluster. We now show how to decompose the transition relation of the product (K ⌦ A) to exhibit clusters having a smaller support, favoring the saturation technique.

We base our decomposition on the fact that in a TGTA, all stuttering transitions are self-loops and every state has a stuttering self-loop (see the stuttering-normalization constraint in Definition 30 of TGTA). Therefore, stuttering transitions in the Kripke structure can be mapped to stuttering transitions in the product regardless of the TGTA state.

Let us separate stuttering and non-stuttering transitions in the transition relation T of the symbolic product K ⌦ A (Definition 38): T ((s, q), (s 0 , q 0)) = R (s, / 0, s 0) ^D (q, / 0, q 0) _ 9k ⇥ R ⇤ (s, k, s 0) ^D ⇤ (q, k, q 0) ⇤ where R ⇤ and D ⇤ encode respectively the non-stuttering transitions of the model and of the TGTA:

• D ⇤ (q, k, q 0) is true iff D (q, k, q 0) ^(k 6 = / 0) • R ⇤ (s, k, s 0) is true iff R (s, k, s 0) ^(k 6 = / 0)
On the one hand, according to Definition 35, the predicate D (q, / 0, q 0) is defined by the following equivalence:

8(q, q 0) 2 Q 2 : ⇥ D (q, / 0, q 0) () 9F 2 2 F , (q, / 0, F, q 0) 2 d ⇤ (6.1)
On the other hand, according to the stuttering-normalization constraint of Definition 30 of TGTA (i.e., all stuttering transitions are self-loops and every state has a stuttering self-loop):

8(q, q 0) 2 Q 2 : ⇥ 9F 2 2 F , (q, / 0, F, q 0) 2 d () (q = q 0) ⇤ (6.2)
Combining the two equations (6.1) and (6.2), we obtained the following third equivalence: 120 Chapter 6. Symbolic LTL Model Checking using TGTA 8(q, q 0) 2 Q 2 : ⇥ D (q, / 0, q 0) () (q = q 0) ⇤ (6.3)

In the other words, the predicate D (q, / 0, q 0) encodes the set of all self-loops of the TGTA and can be replaced by the identity predicate: equal(q, q 0), simplifying T as:

T ((s, q), (s 0 , q 0)) = R (s, / 0, s 0) ^equal(q, q 0) | {z }
T / 0 ((s,q),(s 0 ,q 0))

_ 9k ⇥ R ⇤ (s, k, s 0) ^D ⇤ (q, k, q 0) ⇤ | {z }
T ⇤ ((s,q),(s 0 ,q 0)) (6.4) The transition relation of equation (6.4) is a disjunction of T ⇤ , synchronizing updates of both TGTA and Kripke structure, and T / 0 , corresponding to the stuttering transitions of the Kripke structure. Since all states in the TGTA have a stuttering self-loop, T / 0 does not depend on the TGTA state. In practice, the predicate equal(q, q 0) is an identity relation for variable q [18] and is simplified away (i.e., the term T / 0 can be applied to a decision diagram without consulting or updating the variable q [51]). Hence q is not part of the clusters supports in T / 0 (while q is part of the clusters supports in T ⇤). This gives more freedom to the saturation technique for reordering the application of clusters in T / 0 . Note that in the product of TGBA with Kripke structure (Definition 34) there is no T / 0 that could be extracted since there is no stuttering hypothesis in general. This severely limits the possibilities of the saturation algorithm in the TGBA approach.

In the symbolic emptiness check presented in Figure 6.1, the function Reach corresponds to a least fixpoint performed using saturation. As we shall see experimentally in the next section, the better encoding of T / 0 (without q in its support) in the product of TGTA with Kripke structure, greatly favors the saturation technique, leading to gains of roughly one order of magnitude.

The improvement of T proposed in this section is not applicable to T f because the term D f (q, / 0, q 0) encodes only a subset of self-loops of the TGTA (not the all self-loops as D (q, / 0, q 0)), hence the expressions of T f and Postimage(P, f) are the same as the previous section. Table 6.1 summarizes all our definitions for the predicates encoding the automaton, the Kripke structure, and their product, in the four approaches presented in Sections 6.2 and 6.3.

The results of the TGTA based symbolic approach will be showed in the next section presenting our experimentation.

Experimental evaluation

We now compare the symbolic approaches presented in this chapter. The symbolic modelchecking approach using TGBA, presented in Section 6.2 serves as our baseline. We first describe our implementation and selected benchmarks, prior to discussing the results.

Q 0 (q) U 0 (q,`) Transitions D(q,`,q 0) D (q, k, q 0) Acceptance 8 f 2 F, D f (q,`,q 0) 8 f 2 F, D f (q, k, q 0)
Kripke struct.

Initial states

S 0 (s) Transitions R(s, s 0) R (s, k, s 0) (encoding (s, s 0) 2 R ^(L(s) L(s 0)) = k)
State labels L(s,`)

Synchr. Product Initial states P 0 (s, q) = S 0 (s) ^Q0 (q) 9`[S 0 (s) ^L(s,`) ^U0 (q,`)] Transitions T (s, q, s 0 , q 0) = 9`[R(s, s 0) ^L(s,`) 9k,`,`0 ⇥ R(s, s 0) ^D (q, k, q 0)^9 k[R (s, k, s 0) ^D (q, k, q 0)] [R (s, / 0, s 0)
^equal(q, q 0)]_ ^D(q,`,q 0)]

L(s,`) ^L(s 0 ,`0) ^ (`, k,`0) ⇤ (9k[R ⇤ (s, k, s 0) ^D ⇤ (q, k, q 0)]) Acceptance T f (s, q, s 0 , q 0) = 9`[R(s, s 0) ^L(s,`) 9k,`,`0 ⇥ R(s, s 0) ^D f (q, k, q 0)^9 k[R (s, k, s 0) ^D f (q, k, q 0)] ^D f (q,`,q 0)] L(s,`) ^L(s 0 ,`0) ^ (`,
k,`0) ⇤ Table 6.1: Predicates encoding the automata, the Kripke structures and their synchronous product in the different symbolic approaches.

Implementation

We have implemented the symbolic approach based on TGTA, Changeset-based symbolic Kripke structure and Saturation in LTL-ITS 1 tool, which already provides an implementation of the symbolic approach based on TGBA and Saturation. This tool is built on top of three libraries 2 : SDD/ITS, Spot, and LTSmin.

Spot is a model-checking library providing several bricks that can be combined to build model checkers [START_REF] Duret | SPOT: an extensible model checking library using transition-based generalized Büchi automata[END_REF]. In our implementation, we reused the modules providing a translation from an LTL formula into a TGBA and into a TGTA [6].

SDD/ITS is a library for symbolic representation of state-spaces in the form of Instantiable Transition Systems (ITS): an abstract interface for symbolic Labeled Transition Systems (LTS).

The symbolic encoding of ITS is based on Hierarchical Set Decision Diagrams (SDD) [START_REF] Thierry-Mieg | Hierarchical set decision diagrams and regular models[END_REF]. SDDs allow a compact symbolic representation of states and transition relation.

The algorithms presented in this paper can be implemented using any kind of decision diagram (such as OBDD), but use of the SDD software library allows to easily benefit from the automatic saturation mechanism described in [START_REF] Hamez | Hierarchical set decision diagrams and automatic saturation[END_REF].

LTSmin [12] can generate state spaces from various input formalisms (µCRL, DVE, GNA, MAPLE, PROMELA, ...) and store the obtained LTS in a concise symbolic format, called Extended Table Format (ETF). We used LTSmin to convert DVE models into ETF for our experiments. This approach offers good generality for our tool, since it can process any formalism supported by LTSmin tool.

Our symbolic model checker inputs an ETF file and an LTL formula. The LTL formula is converted into TGBA or TGTA which is then encoded using an ITS. The ETF model is also symbolically encoded using an ITS (see Section 6.4.2). The two obtained ITSs are then composed to build a symbolic product, which is also an ITS. Finally, the OWCTY emptiness check is applied to this product.

In all the approaches evaluated in this experimentation, the symbolic products are encoded using the same variables ordering: we used the top ordering proposed by Sebastiani et al. [START_REF] Sebastiani | Symbolic systems, explicit properties: on hybrid approches for LTL symbolic model checking[END_REF]. In top ordering, the variables that encode the property automaton (TGBA or TGTA) are at the top of the variable ordering, they precede the variables encoding the model in the decision diagram of the product.

Using ETF to build the transition relation of a changeset-based symbolic

Kripke structure

An ETF file 3 where each column correspond to a variable, and each line describes the effect of a symbolic transition on the corresponding variables. The notation "in/out" means that the variable must have the value "in" for the transition to fire, and the value is then updated to "out". A "*" means that the variable is not consulted or updated by the transition. Each line may consequently encode a set of explicit transitions that differ only by the values of the starred variables: the support of a transition is the set of unstarred variables.

A changeset-based symbolic Kripke structure, as defined in Section 6.3.3, can be easily obtained from such a description. To obtain a changeset associated to a line in the file, it is enough to compute the difference between values of atomic propositions associated to the in variables and the values associated to the out variables. Because they do not change, starred variables have no influence on the changeset.

Note that an empty changeset does not necessarily correspond to a line where all variables are starred. Even when in and out values are different, they may have no influence on the atomic propositions, and the resulting changeset may be empty. For instance if the only atomic proposition considered is p = (v 1 > 1) (where v 1 denotes the first-column variable), then the changeset associated to the first line is / 0, and the changeset for the second line is {p}.

ETF example for the Dining philosophers model: In the dining philosophers problem, n philosophers spend their lives just thinking and easting. In the dining room, there are n chairsa around a table with a big plate of spaghetti and only n forks available. Each philosopher starts by thinking and when he gets hungry, he sits down and try to pick up the two forks that are closest to him. A philosopher can eat only if he pick up both forks. Then, when a philosopher finishes eating, he puts down the forks and returns to think.

The table below shows a part of the ETF file describing the Dining philosophers model with n = 2: In columns, we have the four variables of the state vector. The first line gives the variables values in the initial state and the rest of the table lists the transitions. Each line describe one ETF transition and each cell of this line indicate the change in the value of the column variable: For example in the first ETF transition, the notation "0/1" in the first column means that the first philosopher phil_0 changes from "0:think" to "1:one" (i.e picks up one fork); the "*" in the last column means that the value of the second philosopher phil_1 does not change in this transition. This compressed format of transitions allowed us to easily compute the transition relation of changeset-based symbolic Kripke structure (i.e. computing the predicate R (s, k, s 0) introduced in section. 6.3.3). To illustrate the computing of the predicate R (s, k, s 0) (section. 6.3.3) in the Dining philosophers example, we assume that the set of observed atomic propositions AP = {p 0 , p 1 } where p 0 = "phil_0 = eat" and p 1 = "phil_1 = eat". The changeset of the first ETF transition is equal to / 0 because phil_0 does not take the value "2:eat" (i.e p 0 is false) before and after the transition, p 1 also does not change because the value of phil_1 does not change in this transition. Similarly, it is easy to compute the changeset of the second ETF transition equal to {p 0 }. We evaluated the TGBA and TGTA approaches on the following models and formulas:

• Our models come from the BEEM benchmark [START_REF] Pelánek | BEEM: benchmarks for explicit model checkers[END_REF], a suite of models for explicit model checking, which contains some models that are considered difficult for symbolic model checkers [12]. Table 6.2 summarizes the 20 models we used to evaluate our approaches. These models represent various controllers, communication protocols, mutual exclusion and leader election algorithms.

• BEEM provides a few LTL formulas, but they mostly represent safety properties and can thus be checked without building a product. Therefore, for each model, we randomly generated 200 stutter-invariant LTL formulas: 100 verified formulas (empty product) and 100 violated formulas (non-empty product). We consequently have a total 4000 pairs of (model, formula). All tests were run on a 64bit Linux system running on an Intel(R) 64-bit Xeon(R) @2.00GHz with 64GB of RAM. Executions that exceeded 60 minutes or 6GB of RAM were aborted and are reported with time and memory above these thresholds in our graphics.

Results

The results of our experimental comparisons are presented by the two scatter plot matrices of Figure 6.2 and Figure 6.3. Figure 6.2 compares the time-performance of the TGTA-approach against the reference TGBA approach. In order to show the influence of the saturation technique, we also ran the TGBA or disabled "(nosat)", on a set of 4000 pairs (model, formula). Timeouts and Out-of-memory errors are plotted on separate lines on the top or right edges of the scatter plots. Each plot also displays the number of cases that are above or below the main diagonal (including timeouts and out-of-memory errors), i.e., the number of (model, formula) for which one approach was better than the other. Additional diagonals show the location of ⇥10 and /10 ratios. Points are plotted with transparency to better highlight dense areas, and lessen the importance of outliers. and TGTA approaches with saturation disabled. In our comparison matrix, the labels "(sat)" and "(nosat)" indicate whether saturation was enabled or not. Each point of the scatter plots represents a measurement for a pair (model, formula). Axes use a logarithmic scale. The colors distinguish violated formulas (non-empty products) from verified formulas (empty products).

In each scatter plot, each point below the diagonal is in favor of the approach displayed on the right, while each point above the diagonal is in favor of the approach displayed in the top of the scatter plot. For instance, the highlighted scatter plot (bottom of Figure 6.2) compares the time-performance between TGBA and TGTA approaches where the saturation is enabled (sat), the x-axis represents the "TGBA (sat)" approach and the y-axis represents the "TGTA (sat)" approach, so 3424 points below the diagonal correspond to cases where the "TGTA (sat)" approach is better, and the 548 points above the diagonal corresponds to points were the "TGBA (sat)" approach is better. As shown by the highlighted scatter plots in Figure 6.2 and 6.3, the TGTA approach clearly outperforms the traditional TGBA-based scenario by one order of magnitude. This is due to the combination of two factors: saturation and exploration of stuttering.

The saturation technique does not significantly improve the model checking using TGBA (compare "TGBA (sat)" against "TGBA (nosat)" at the top of Figure 6.2 and 6.3). In fact, the saturation technique is limited on the TGBA approach, because in the transition relation of Definition 34 each conjunction must consult the variable q representing the state of the TGBA, therefore q impacts the supports and the reordering of clusters evaluated by the saturation. This situation is different in the case of TGTA approach, where the T / 0 term of the transition-relation of the product (equation (6.4)) does not involve the state q of the TGTA: here, saturation strongly improves performances (compare "TGTA (sat)" against "TGTA (nosat)").

Overall the improvement to this symbolic technique was only made possible because the TGTA representation makes it easy to process the stuttering behaviors separately from the rest. These stuttering transitions represent a large part of the models transitions, as shown by the stuttering-ratios of Table 6.2. Using these stuttering-ratios, we can estimate in our Benchmark the importance of the term T / 0 compared to T ⇤ in equation (6.4). Figures 6.4 and 6.5 show more clearly the most important scatter plots of the two matrices. Figure 6.4 shows the scatter plots (for time and memory performance) comparing TGBA and TGTA approaches with saturation disabled (nosat). Figure 6.5 displays the same comparison but with saturation enabled (sat). Table 6.3 gives an overview of the performance of the TGBA and TGTA approach, model by model. The average run-time and memory consumption is computed over the 3797 cases where all methods terminated normally (without timeout or out-of-memory error). Table 6.4 shows the best and the worst approach among the four possible combinations, i.e., TGBA and TGTA approaches with saturation disabled (no saturation) or with saturation enabled. The verified formulas are separated from violated formulas. The Tables 6.3 and 6.4 confirm the above observations deduced from the scatter plots: i.e., the TGTA approach with saturation outperform the TGBA approach (with or without saturation).

Conclusion

Testing automata are a way to improve the explicit model checking approach when verifying stutter-invariant properties, but they had not been used for symbolic model checking.

In the previous chapters, we introduced a generalization of these testing automata, called TGTA, and we evaluated their use for explicit model checking.

In this chapter, we have shown how to use TGTA in a symbolic approach. We compare this new TGTA approach to a more classical symbolic approach (using TGBA).

On our benchmark, using TGTA and saturation technique, we were able to gain one order of magnitude over the TGBA-based approach.

Three versions of this TGTA approach, including a basic version and two improvements were implemented. The first improvement was to use a new encoding of a Kripke structure inspired by the TGTA transition relation, i.e., based on the labeling of transitions by changesets. The second improvement is based on the exploration of stuttering transitions during the emptiness check of the symbolic product.

The latter optimization is based on the property of TGTA that all stuttering transitions are self-loops and every state has a stuttering self-loop. Consequently, the exploration of stuttering transitions in the product is equivalent to explore stuttering transitions in the model (remaining in the same TGTA states).

Using this property, we have shown that fixpoints over the transition relation of a product between a Kripke structure and a TGTA can benefit from the saturation technique, especially because part of their expression is only dependent on the model, and can be evaluated without consulting the transition relation of the property automaton. This allows to the saturation algorithm to ignore the symbolic variables encoding the TGTA in the product, and therefore effectively saturate the symbolic product nodes of the variables encoding the model. This improvement was possible only because TGTA makes it possible to process stuttering behaviors specifically, in a way that helps the saturation technique.

In the next chapter, we evaluate the use of TGTA in the context of hybrid approaches, which combines the use of both explicit and symbolic approaches [START_REF] Sebastiani | Symbolic systems, explicit properties: on hybrid approches for LTL symbolic model checking[END_REF][START_REF] Duret-Lutz | Self-loop aggregation product -a new hybrid approach to on-the-fly LTL model checking[END_REF]. These hybrid approaches use an On-the-Fly exploration unlike the symbolic approaches presented in this chapter.

CHAPTER 7

Hybrid LTL Model Checking using TGTA

Introduction

In the previous chapter, we have shown that the symbolic approach to model checking allows to encode the product automaton in a concise way, but its emptiness check can not be performed on-the-fly as in the explicit approach.

In order to take advantage of the best of the both worlds, Hybrid approaches [START_REF] Sebastiani | Symbolic systems, explicit properties: on hybrid approches for LTL symbolic model checking[END_REF][START_REF] Duret-Lutz | Self-loop aggregation product -a new hybrid approach to on-the-fly LTL model checking[END_REF] to model checking are proposed as combinations of explicit and symbolic approaches.

In these hybrid approaches, the property automaton is described explicilty because its size is not large in most cases (and can be reduced by means of several explicit optimizations). However, the state-space of the model is typically very large and must be encoded symbolically. An hybrid approach is generally based on an on-the-fly construction of an explicit graph of symbolic nodes, called aggregates. Each aggregate symbolically encodes a set of states of the Kripke structure or of the product. In this work, we focused on three hybrid techniques [START_REF] Duret-Lutz | Combining explicit and symbolic approaches for better on-the-fly LTL model checking[END_REF]: SOG, SOP and SLAP. The Symbolic Observation Graph (SOG) approach exploits the fact that only a subset of the atomic propositions of the model are observed by the LTL property to check. A SOG is an abstraction of a Kripke structure where consecutive states are aggregated if they share the same values of the observed atomic propositions. The Symbolic Observation Product (SOP) approach tries to allow further aggregation than SOG by exploiting the fact that the number of observed atomic propositions decreases as we progress in the property automaton. A Self-Loop Aggregation Product (SLAP) is similar to a SOP, an aggregation graph alternative to the traditional product automaton. In SLAP, the Kripke structure states are aggregated according to the valuations of the self-loops in the property automaton.

As for symbolic model checking, Testing Automata (and their variants) have never been used before for hybrid model checking.

The goal of this chapter is to show how the traditional hybrid approaches based on TGBA can be adapted to obtain TGTA-based approaches.

In this chapter, we present three existing hybrid approaches SOG, SOP and SLAP that are based on TGBA. Then, we define and implement variations of these three approaches using TGTA instead of TGBA. We then experimentally compare the performance of each hybrid approach (SOG, SOP and SLAP) against its TGTA-based variant (SOG-TGTA, SOP-TGTA and SLAP-TGTA).

Preliminaries

The formalization of hybrid approaches requires the following definitions and notations introduced by Duret-Lutz et al. [START_REF] Duret-Lutz | Self-loop aggregation product -a new hybrid approach to on-the-fly LTL model checking[END_REF].

We firstly remind the formalization of propositional formula , then we present alternative definitions of TGBA Duret-Lutz et al. [START_REF] Duret-Lutz | Self-loop aggregation product -a new hybrid approach to on-the-fly LTL model checking[END_REF] and TGTA that use these propositional formulas as labels.

• B = {?, >} represents the Boolean values.

• B(AP) is the set of all propositional formulas over AP. The formulas of B(AP) are built inductively from the propositions AP, B, and the logical operators ^, _, and ¬.

• Using this definition of B(AP), AP 0 ✓ AP implies that B(AP 0) ✓ B(AP).

• FV (f) (Free Variables) Duret-Lutz et al. [START_REF] Duret-Lutz | Self-loop aggregation product -a new hybrid approach to on-the-fly LTL model checking[END_REF] is the set of atomic propositions observed in the formula f, e.g., FV (ab _ a b) = {a} because f = (ab _ a b) can be simplified into f = a (we say that b is a silent (or a "don't care") atomic proposition in f).

• The notation `AP 0 = `0 is equivalent to `|AP 0 = `0 |AP 0 , where `|AP 0 denotes the restriction of the valuation `to the subset of atomic propositions AP 0 . In other words, `AP 0 = `0 means that the valuations `and `0 match on the atomic propositions of AP 0 .

Duret-Lutz et al. [START_REF] Duret-Lutz | Self-loop aggregation product -a new hybrid approach to on-the-fly LTL model checking[END_REF] use an alternative definition of TGBA more suited than Definition 16 to define and implement the hybrid approaches SOP and SLAP. In these TGBA, each transition is labeled with a propositional formula f over AP (the resulting transition relation is of the form

d ✓ Q ⇥ B(AP) ⇥ 2 F ⇥ Q).
In the following, we will see that this labeling of transitions with propositional formula simplifies the formalization of the different hybrid approaches presented in this work. For instance, in SOP and SOP-TGTA approaches, it allows to simplify the definition (and the implementation) of the concept of observed alphabet from a state of an automaton (TGBA or TGTA).

TGBA labeled with propositional formulas

In a TGBA labeled with propositional formulas, each transition is labeled with a propositional formula f 2 B(AP) instead of a valuation `2 2 AP . This formulas f represents the maximal set of valuations {`0, `1, . . . , `n} ✓ 2 AP such that 8i  n, `i |= f. In other words, the set of valuations {`0, `1, . . . , `n} is the set of all models of f (it can be represented by f = W in `i)). For example, in Figure 7.1a, the formula f = b labeling the transition q 0 b ! q 1 represents the set of valuations { āb, ab}.

In order to obtain this form of TGBA, we merge into a single transition all transitions between each pair of states (q, q 0), when these transitions are labelled with the same acceptance conditions F. Formally, for a pair of states (q, q 0) 2 Q 2 and a set of acceptance conditions F 2 F , the set of transitions (q, `0, F, q 0), . . . , (q, `n, F, q 0) 2 d are merged into a single transition (q, f, F, q 0) where f = W in `i .

Definition 39 (TGBA (labeled with propositional formulas)). A Transition-based Generalized

Büchi Automata (TGBA) over the alphabet S = 2 AP is a tuple G = hQ , I , d, F i where

• Q is a finite set of states,

• I is a finite set of initial states,

• F 6 = / 0 is a finite and non-empty set of acceptance conditions,

• d ✓ Q ⇥ B(AP) ⇥ 2 F ⇥ Q is a transition relation, where each element (q, f, F, q 0) 2 d rep-
resents a transition from state q to state q 0 labeled by a propositional formula f 2 B(AP), and a set of acceptance conditions F 2 2 F . In the following, an element (q, f, F, q 0) 2 d will be denoted q f,F ! q 0 An infinite word s = `0`1`2 . . . 2 S w is accepted by G if there exists an infinite sequence of transitions p = (q 0 , f 0 , F 0 , q 1)(q

1 , f 1 , F 1 , q 2) • • • (q i , f i , F i , q i+1) • • • 2 d w (p is called a run of G)
where:

• q 0 2 I , and 8i 2 N, `i |= f i (i.e., the infinite word s is recognized by the run p)

• 8 f 2 F , 8i 2 N, 9 j i, f 2 F j (i.e., the run p is accepting iff it visits each acceptance condition infinitely often).

The language accepted by G is the set L (G) ✓ S w of infinite words it accepts. Using this variant of TGBA, we obtain a new definition of the synchronous product between a TGBA G and a Kripke structure K . We remind that this synchronous product is also a TGBA, which only accepts the words accepted by both G and K (Formally,

L (K ⌦ G) = L (K) \ L (G)).
Definition 40 (Synchronous product of a TGBA with a Kripke structure). For a TGBA G = hQ , I , d, F i over the alphabet S = 2 AP and a Kripke structure K = hS , S 0 , R , li, the product

G ⌦ K is the TGBA hQ ⌦ , I ⌦ , d ⌦ , F i over the alphabet S = 2 AP where • Q ⌦ = Q ⇥ S, • I ⌦ = I ⇥ S 0 , • d ⌦ ✓ Q ⌦ ⇥ B(AP) ⇥ 2 F ⇥ Q ⌦ where d ⌦ = 8 < : (q 1 , s 1) l(s 1),F ! (q 2 , s 2) (s 1 , s 2) 2 R and 9f 2 B(AP) s.t. q 1 f,F ! q 2 2 d and l(s 1) |= f 9 = ; Figure 7
.1c (taken from [START_REF] Duret-Lutz | Combining explicit and symbolic approaches for better on-the-fly LTL model checking[END_REF]) is an illustration of Definition 40. It shows an example of a synchronous product G ⌦ K between a TGBA G of a U b (Figure 7.1a) and an example of Kripke structure K over AP 0 = {a, b, c} shown in Figure 7.1b. The initial state of the product is (q 0 , s 0). Then, the successors {s 1 , s 4 } of s 0 in K are synchronized with the state q 0 of G, because the TGBA self-loop q 0 a b ! q 0 is labeled by the formula f = a b and l(s 0) = a bc |= f. From state (q 0 , s 4), the product move to state (q 1 , s 5) through the TGBA transition q 0 b ! q 1 because l(s 4) = ab c |= b. From the product state (q 1 , s 5), the TGBA state q 1 only requires to verify > (i.e, any valuation) to explore the self-loop labeled with the acceptance condition . Therefore, any cycle of K starting in s 5 corresponds to an accepting cycle in the product.

TGTA labeled with propositional formulas

Similar to TGBA, we present in this section a definition of a TGTA labeled with propositional formulas, and for the same reasons as for TGBA, we will see that this alternative definition of TGTA is more suited than Definition 30 to define and implement the TGTA-based hybrid approaches presented later in this chapter.

The difference between TGBA and TGTA is mainly in the interpretation of the transition

relation d ✓ Q ⇥ B(AP) ⇥ 2 F ⇥ Q . Indeed
, in TGTA labeled with propositional formulas, for each transition (q, f, F, q 0) 2 d, the formula f encodes a set of changesets {k 0 , k 1 , . . . , k n } ✓ 2 AP , where 8i  n, each changeset k i |= f. As for TGBA, in order to obtain the TGTA labeled with propositional formulas, we merge into a single transition all transitions between each pair of states (q, q 0), when these transitions are

q 0 q 1 a b b > (a) TGBA G for a U b s 0 s 1 s 2 s 3 s 4 s 5 s 6 s 7 a bc a b c a bc a b c ab c a bc āb c ābc (b) Kripke structure K q 0 , s 0 q 0 , s 1 q 0 , s 2 q 0 , s 3 q 0 , s 4 q 1 , s 5 q 1 , s 6 q 1 , s 7 q 1 , s 4 a bc a b c a bc a b c a bc ab ca bc āb c ābc ab c (c) TGBA of product G ⌦ K { s 0 s 1 s 2 s 3 } a b {s 4 } {s 5 } {s 6 s 7 } a b a b ab a b āb (d) Aggregated Kripke structure SOG b K {a,b} q 0 , { s 0 s 1 s 2 s 3 } q 0 , a b q 0 , {s 4 } q 1 , {s 5 } q 1 , {s 6 s 7 } q 1 , {s 4 } a b a b a b ab a b āb ab (e) TGBA of the product G ⌦ b K {a,b} q 0 , { s 0 s 1 s 2 s 3 } q 0 , a b q 0 , {s 4 } q 1 , { s 4 s 5 s 6 s 7 } q 1 , > a b a b a b ab > > (f) TGBA of the SOP G b ⌦ K q 0 , n s 0 s 1 s 2 s 3 s 4 o q 1 , { s 4 s 5 s 6 s 7 } > > (g) TGBA of the SLAP G ⇥ K Figure 7.1: Examples [37] Using TGBA q 0 a b q 1 b āb (/ 0) ({b}, {a, b}) b > (a) TGTA T for a U b.
The formula āb labeling the self-loop on q 0 represents the empty changeset / 0. The formula b labeling the transition q 0 b ! q 1 represents the set of changesets {{b}, {a, b}}. The label > of the self-loop on q 1 encodes the set of all changesets { / 0, {a}, {b}, {a, b}}.

s 0

s 1 s 2 s 3 s 4 s 5 s 6 s 7 a bc a b c a bc a b c ab c a bc āb c ābc (b) Kripke structure K q 0 , s 0 q 0 , s 1 q 0 , s 2 q 0 , s 3 q 1 , s 4 q 1 , s 5 q 1 , s 6 q 1 , s 7 / 0 / 0 / 0 / 0 {b} {a, b} / 0 {a} {b} (c) / 0-TGTA of product T ⌦ K { s 0 s 1 s 2 s 3 } {s 4 } {s 5 } {s 6 s 7 } a b ab a b āb (d) Symbolic Observation Graph for TGTA: a SOG-TGTA b K 0 {a,b} q 0 , { s 0 s 1 s 2 s 3 } q 1 , {s 4 } q 1 , {s 5 } q 1 , {s 6 s 7 } {b} / 0 {b} {a, b} {a} (e) / 0-TGTA of the product T ⌦ b K 0 {a,b} q 0 , { s 0 s 1 s 2 s 3 } q 0 , a b q 1 , { s 4 s 5 s 6 s 7 } q 1 , > / 0 {b} / 0 / 0 / 0 (f) / 0-TGTA of the SOP T b ⌦ K q 0 , { s 0 s 1 s 2 s 3 } q 1 , { s 4 s 5 s 6 s 7 } > > (g) / 0-TGTA of the SLAP T ⇥ K Figure 7.2:
Examples Using TGTA labelled with the same acceptance conditions F. Formally, , for a pair of states (q, q 0) 2 Q 2 and a set of acceptance conditions F 2 F , the set of transitions (q, k 0 , F, q 0), . . . , (q, k n , F, q 0) 2 d are merged into a single transition (q, f, F, q 0) where the set of changesets {k 0 , . . . , k n } is the set of all models of f. In the following, we will use (q, f, F, q 0) and (q, {k 0 , . . . , k n }, F, q 0) interchangeably as transitions of d. For example, in Figure 7.2a, the formula f = b labeling the transition q 0 b ! q 1 represents the set of changesets {{b}, {a, b}} (meaning that the value of b changes between q 0 and q 1 and we "do not care" about a).

The following definition formalizes this form of TGTA and how it changes the way an infinite word is accepted.

Definition 41 (TGTA (labeled with propositional formulas)). A Transition-based Generalized

Testing Automata (TGTA) over the alphabet S = 2 AP is a tuple T = hQ , I ,U, d, F i where

• Q is a finite set of states,

• I is a finite set of initial states,

• U : I ! B(AP) is a function mapping each initial state to a propositional formula f 2 B(AP),

• F 6 = / 0 is a finite and non-empty set of acceptance conditions,

• d ✓ Q ⇥ B(AP) ⇥ 2 F ⇥ Q is a transition relation, where each element (q, f, F, q 0) 2 d rep-
resents a transition from state q to state q 0 labeled by a propositional formula f 2 B(AP), and a set of acceptance conditions F 2 2 F .

• d has to satisfy the following stuttering-normalization constraint:

8(q, q 0) 2 Q 2 : 9(f, F) 2 B(AP) ⇥ 2 F , / 0 |= f ^(q, f, F, q 0) 2 d () (q = q 0)
An infinite word s = `0`1`2 . . . 2 S w is accepted by T iff there exists an infinite sequence of transitions p = (q 0 , f 0 , F 0 , q 1)(q

1 , f 1 , F 1 , q 2) • • • (q i , f i , F i , q i+1) • • • 2 d w (p is called a run of T)
where:

• q 0 2 I , and `0 |= U(q 0) • 8i 2 N, (`i `i+1) |= f i (i.e., the infinite word s is recognized by the run p)

• 8 f 2 F , 8i 2 N, 9 j i, f 2 F j (i.e., the run p is accepting). The language accepted by T is the set L (T) ✓ S w of infinite words it accepts.

Figure 7.2a shows the TGTA of the LTL formula a U b. The valuations of the initial states are U(q 0) = a b and U(q 1) = b = {ab, āb}. The transitions are labeled with the propositional formulas. The formula āb labeling the stuttering self-loop on q 0 is the empty changeset / 0. The formula b labeling the transition q 0 b ! q 1 is obtained by merging the two changesets of the transitions q 0 {b} ! q 1 and q 0 {a,b} ! q 1 (because {{b}, {a, b}} |= b). On the self-loop q 1 >,{ } ! q 1 , the formula > is obtained by merging the set of all changesets over AP = {a, b}, and the acceptance condition is indicated by the black dot (F = { }).

Using this alternative definition of TGTA, we obtain the following definition of the synchronous product between a TGTA and a Kripke structure. We remind that this synchronous product is an / 0-TGTA (Definition 29).

Definition 42 (Synchronous product of a TGTA with a Kripke structure). For a TGTA T = hQ , I ,U, d, F i over the alphabet S = 2 AP and a Kripke structure K = hS , S 0 , R , li, the product T ⌦K between the TGTA T of a U b of Figure 7.2a and the Kripke structure K of Figure 7.1b. The initial state of the product is (q 0 , s 0) because l(s 0) = a bc |= U(q 0) = a b. Then, (q 0 , s 0) have two successors: the first successor is (q 0 , s 1) because K has a transition s 0 ! s 1 with l(s 0) l(s 1) = / 0 |= āb and T have a stuttering self-loop q 0 āb ! q 0 ; the second successor is (q 1 , s 4) because in K we have s 0 ! s 4 with l(s 0) l(s 4) = {b, c} |= b and the TGTA have a transition q 0 b ! q 1 labeled with f = b. From the product state (q 1 , s 4), the TGTA can explore any changeset through the self-loop labeled with > and the acceptance condition . Therefore, the TGTA state q 1 can be synchronized with any reachable state from s 4 in K and the cycle (q 1 , s 4) ! (q 1 , s 5) ! (q 1 , s 6) ! (q 1 , s 7) ! (q 1 , s 4) is an accepting cycle in the product. In the obtained product T ⌦ K , each transition is labeled with the changeset ((l(s 1) l(s 2)) |AP) between the states of K . These changesets are computed according to the set of atomic propositions AP = {a, b} observed by T . The product transitions also bear the acceptance conditions coming from the TGTA T .

T ⌦ K is the / 0-TGTA hQ ⌦ , I ⌦ ,U ⌦ , d ⌦ , F i over the alphabet S = 2 AP where • Q ⌦ = Q ⇥ S, • I ⌦ = {(q, s) 2 I ⇥ S 0 | l(s) |= U(q)} • 8(q, s) 2 I ⌦ , U ⌦ ((q, s)) = l(s), • d ⌦ ✓ Q ⌦ ⇥ B(AP) ⇥ 2 F ⇥ Q ⌦ where d ⌦ = 8 > > < > > : (q 1 , s 1) (l(s 1) l(s 2)) |AP ,F ! (q 2 , s 2) (s 1 , s 2) 2 R and 9f 2 B(AP) s.t. q 1 f,F ! q 2 2 d and (l(s 1) l(s 2)) |= f 9 > > = > > ;

Symbolic Observation Graph (SOG)

In this section, we propose an adaptation of the SOG hybrid approach for use with TGTA instead of TGBA. We start by presenting a variant of SOG [START_REF] Klai | An LTL model checker based on symbolic observation graphs[END_REF][START_REF] Duret-Lutz | Combining explicit and symbolic approaches for better on-the-fly LTL model checking[END_REF] used in a TGBA-based approach [START_REF] Duret-Lutz | Combining explicit and symbolic approaches for better on-the-fly LTL model checking[END_REF], then we present another variant of SOG proposed in Klai and Poitrenaud [START_REF] Klai | An LTL model checker based on symbolic observation graphs[END_REF], this variant is called SOG-TGTA in this work because it is more suited to be used in a TGTA-based approach. In Section 7.6.3, we will show the results of an experimental comparison between the original approach based on SOG and TGBA and our approach based on TGTA and SOG-TGTA.

A SOG is a transformation of a Kripke structure allowing to aggregate states according to the set AP of atomic propostions observed in the property automaton. This transformation only preserves stutter-invariant properties. The constructed SOG is an explicit graph where each node is a symbolic set of states. Theses states are aggregated because they share the same values for the atomic propositions of AP (they may have different values for the other atomic propositions of the model that are not in AP).

In hybrid approaches, symbolic data structure are used to represent sets of states of the Kripke structure. The following symbolic operations are introduced in [START_REF] Duret-Lutz | Self-loop aggregation product -a new hybrid approach to on-the-fly LTL model checking[END_REF] to manipulate this symbolic aggregate of states.

Let K = hS , S 0 , R , li a Kripke structure, encoded by a Symbolic Kripke structure K = hS 0 , R, Li (Definition 32). For a set of states a ✓ S and a propositional formula f 2 B(AP), the symbolic operations SuccF(a, f) and ReachF(a, f) are defined as follows:

• SuccF(a, f) = {s 0 2 S | 9s 2 a, R(s, s 0) ^9`, [`|= f ^L(s 0 , `)]}, i.e., the set of the Successors of states of aggregate a, Filtered to keep only those satisfying f.

• ReachF(a, f) computes the least subset of S satisfying:

-a ✓ ReachF(a, f), -SuccF(ReachF(a, f), f) ✓ ReachF(a, f).
ReachF(a, f) is implemented using symbolic least fixed-points on Decision Diagrams.

Definition 43 (Homogeneous aggregate [START_REF] Duret-Lutz | Combining explicit and symbolic approaches for better on-the-fly LTL model checking[END_REF]). Let a 2 2 S \ {/ 0} be a subset of states of K . We say that a is a homogeneous aggregate w.r.t. (with respect to) a given set of atomic propositions AP iff 8s, s 0 2 a, l(s) AP = l(s 0). In other words, all the states of the aggregate a have the same valuation for all the atomic propositions in AP.

For a homogeneous aggregate a w.r.t. AP, we write l AP (a) = l(s) |AP for any state s 2 a (i.e., the valuation of a is the valuation of any one of its states).

For any AP 0 ✓ AP, a homogeneous aggregate a w.r.t. AP is also homogeneous w.r.t. AP 0 .

SOG

Definition 44 (Symbolic Observation Graph [START_REF] Klai | An LTL model checker based on symbolic observation graphs[END_REF][START_REF] Duret-Lutz | Combining explicit and symbolic approaches for better on-the-fly LTL model checking[END_REF]). Let K = hS , S 0 , R , li be a Kripke structure over the set of atomic propositions AP K . A symbolic observation graph over AP ✓ AP K is defined as b K AP = hS 0 , S 0 0 , R 0 , l 0 i a Kripke structure over AP satisfying :

1. S 0 = G 0 [2 AP with G 0 = (a 2 2 S \ {/ 0} a is homogeneous w.r.t. AP a = ReachF(a, l AP (a))
)

Elements of G 0 are called aggregates and elements of 2 AP are divergent states.

2. 8a 2 S 0 , l 0 (a) = (l AP (a) if a 2 G 0 a if a 2 2 AP 3. R 0 = {a ! a 0 2 G 0 ⇥ G 0 | a 0 = ReachF(SuccF(a, l 0 (a 0)) \ a, l 0 (a 0))} [{a ! `2 G 0 ⇥ 2 AP | a contains a cycle and `= l 0 (a)} [{` ! `| `2 2 AP } 4. S 0 0 = {a s 0 = ReachF({s 0 }, l(s 0) |AP) | s 0 2 S 0 }.
The above Definition details how to build a SOG b K AP . The set S 0 0 of initial states of b K AP is composed by the set of homogenous aggregates a s 0 satisfying a s 0 = ReachF({s 0 }, l(s 0) |AP), i.e., for each initial state s 0 of K , a s 0 is the set of reachable states s 0 from s 0 in K such that l(s 0) AP = l(s 0).

The set S 0 of states of b K AP is composed of two kinds of nodes:

1. homogenous aggregates a satisfying a = ReachF(a, l AP (a))

2. divergent states `2 2 AP labeled with subsets of atomic propositions of AP. For the transition relation of b K AP , R 0 is composed of three kinds of edges: 1. case a and a 0 are two aggregates of G 0 : a ! a 0 2 R 0 iff l AP (a) 6 = l AP (a 0) and a 0 contains every state s 0 2 G satisfying l(s 0) |AP = l 0 (a 0) and s ! s 0 2 R with s 2 (a [a 0).

2. case a is an aggregates of G 0 and `is a divergent state: a ! `iff a contains a cycle and l 0 (a) = `.

3. each divergent state `2 2 AP has a self-loop ` ! `. Figure 7.1d shows the SOG b K {a,b} built from the Kripke structure K of Figure 7.1b according to AP = {a, b} (ignoring the atomic proposition c of K).

The initial state of b K {a,b} is an aggregate {s 0 , s 1 , s 2 , s 3 } because they agree on the value of atomic propositions observed in AP = {a, b}: l(s 0) |{a,b} = l(s 1) |{a,b} = l(s 2) |{a,b} = l(s 3) |{a,b} = a b. This initial aggregate contains a cycle so one of its successors is a divergent state labeled by a b.

The constructed SOG b K {a,b} is also a Kripke structure, that allows to check any stutterinvariant property over the alphabet 2 {a,b} . As example, Figure 7.1e represents G ⌦ b K {a,b} , the synchronous product between the TGBA G of a U b and the SOG b K {a,b} .

Theorem 2 ([58]

). Given a Kripke Structure K defined on AP K , then the SOG b K AP of K built over AP ✓ AP K preserves any stuttering-invariant property A on AP. In other words:

L (A ⌦ K) 6 = / 0 () L (A ⌦ b K AP) 6 = / 0.

SOG for TGTA (SOG-TGTA)

Klai and Poitrenaud [START_REF] Klai | An LTL model checker based on symbolic observation graphs[END_REF] proposed another variant of SOG that does not use divergent states. In a TGTA-based approach, we chose to use this variant of SOG, and we call it SOG-TGTA in this work. Instead of using divergent states, this SOG-TGTA has a self-loop on each aggregate that contains a cycle [START_REF] Klai | An LTL model checker based on symbolic observation graphs[END_REF]. In addition, in TGTA all stuttering transitions are self-loops. Therefore, the synchronization between this stuttering self-loops and the self-loops of SOG-TGTA only produces self-loops in the product automaton, and therefore does not generate new states in this product.

Definition 45 (Symbolic Observation Graph [START_REF] Duret-Lutz | Combining explicit and symbolic approaches for better on-the-fly LTL model checking[END_REF] (SOG-TGTA)). Let K = hS , S 0 , R , li be a Kripke structure over AP K . A SOG-TGTA over AP ✓ AP K of K is defined as b K 0 AP = hS 0 , S 0 0 , R 0 , l 0 i a Kripke structure over AP satisfying :

1. S 0 = (a 2 2 S \ {/ 0} a is homogeneous w.r.t. AP a = ReachF(a, l AP (a))) 2. 8a 2 S 0 , l 0 (a) = l AP (a) 3. R 0 = {a ! a 0 2 S 0 ⇥ S 0 | a 0 = ReachF(SuccF(a, l 0 (a 0)) \ a, l 0 (a 0))} [{a ! a 2 G 0 ⇥ G 0 | a contains a cycle } 4. S 0 0 = {ReachF({s 0 }, l(s 0) |AP) | s 0 2 S 0 }.
The only difference between the above Definition 45 and the Definition 44 of SOG is the fact that SOG-TGTA does not use the divergent states labeled with the elements of 2 AP . These divergent states are replaced in SOG-TGTA by adding a self-loop on each aggregate that contains a cycle (see point 3 of Definition 45). The obtained SOG-TGTA contains only one kind of nodes: homogenous aggregates.

Theorem 3 ([58]

). Given a Kripke Structure K defined on AP K , then the SOG-TGTA b K 0 AP of K built over AP ✓ AP K preserves any stuttering-invariant property A on AP. In other words:

L (A ⌦ K) 6 = / 0 () L (A ⌦ b K 0 AP) 6 = / 0.
T ⌦ b K 0 {a,b} of K 0 {a,b} with the TGTA T of a U b. b K 0
{a,b} is similar to the SOG b K {a,b} of Figure 7.1d, but without the divergent state labeled with a b. In addition, the initial aggregate of K 0 {a,b} has a self-loop because it contains a cycle.

We can notice that T ⌦ b K 0 {a,b} is smaller than the product G ⌦ b K {a,b} (Figure 7.1e) using the TGBA G (recognizing the same formula a U b as the TGTA T). We will present in Section 7.6 an experimental comparison that will confirm this observation.

Symbolic Observation Product (SOP)

The Symbolic Observation Product (SOP) [START_REF] Duret-Lutz | Combining explicit and symbolic approaches for better on-the-fly LTL model checking[END_REF] is a dynamic extension of SOG that exploits the fact that the number of observed atomic propositions decreases as we progress in the property automaton. The goal of this extension is to allow further aggregation than SOG. However, contrary to SOG, which is an abstraction of a Kripke structure, SOP is an hybrid synchronous product between a Kripke structure and the TGBA of a stutter-invariant property. In this section, we start by giving the definition and an illustrative example of SOP. Then, we present SOP-TGTA, an adaptation of SOP that uses TGTA instead of TGBA to represent the property automaton.

In Section 7.6.4, we will present the results of an experimental comparison between the original SOP approach based on TGBA and our SOP-TGTA approach based on TGTA.

Given a TGBA G = hQ , I , d, F i or a TGTA G = hQ , I ,U, d, F i, the alphabet FV(q) of a state q 2 Q is defined as the union of the atomic propositions which can be observed from q.

Formally, FV(q) = S q 1 f,F !q 2 2d ? (q)
FV(f) with d ? (q) is the set of transitions reachable from a state q. From this definition of FV(q), we can easily deduce that for any q 1 f,F ! q 2 2 d, we have FV(q 1) ◆ FV(q 2). In other words, the set of observed atomic propositions decreases as we progress through the successive states of the property automaton (TGBA or TGTA).

SOP

SOP [START_REF] Duret-Lutz | Self-loop aggregation product -a new hybrid approach to on-the-fly LTL model checking[END_REF] is an hybrid product that is constructed over a dynamic alphabet (FV) which decreases as the constrcution of the product progresses. This allows to obtain larger aggregates and therefore fewer number of states than in SOG approach.

Definition 46 (SOP of a TGBA and a Kripke structure). Given a stutter-invariant TGBA G = hQ , I , d, F i over AP and a Kripke structure K = hS , S 0 , R , li, the Symbolic Observation Product of G and K is the TGBA denoted

G b ⌦ K = hQ b ⌦ , I b ⌦ , d b ⌦ , F i where: 1. Q b ⌦ = Q 0 [D 0
where states constructed from aggregates are in Q 0 and divergent states are in D 0 :

Q 0 = ((q, a) 2 Q ⇥ (2 G \ {/ 0}) a is homogeneous w.r.t. FV(q) a = ReachF(a, l FV(q) (a))) D 0 = {(q, `) | q 2 Q and `2 2 FV(q) } 2. d b ⌦ = 8 > > < > > : (q 1 , a 1) `,F ! (q 2 , a 2) (q 1 , a 1) 2 Q 0 , (q 2 , a 2) 2 Q 0 , `= l FV(q 1) (a 1), 9f 2 B(AP) s.t. q 1 f,F ! q 2 2 d, and `|= f, 9`0 2 2 FV(q 2) s.t. a 2 = ReachF(SuccF(a 1 , `0) \ a 1 , `0) 9 > > = > > ; [8 > > < > > : (q 1 , a) `1,F ! (q 2 , `2) (q 1 , a) 2 Q 0 , (q 2 , `2) 2 D 0 , `1 = l FV(q 1) (a), a contains a cycle, `2 = `1|FV(q 2) , 9f 2 B(AP) s.t. q 1 f,F ! q 2 2 d, and `1 |= f 9 > > = > > ; [8 < : (q 1 , `1) `1,F ! (q 2 , `2) (q 1 , `1) 2 D 0 , (q 2 , `2) 2 D 0 , `2 = `1|FV(q 2) , 9f 2 B(AP) s.t. q 1 f,F ! q 2 2 d, and `1 |= f 9 = ; 3. I b ⌦ = {(q 0 , ReachF({s 0 }, l(s 0) |FV(q 0))) | (q 0 , s 0) 2 I ⇥ S 0 } We have L (G ⌦ K) 6 = / 0 () L (G b ⌦ K) 6 = / 0 by construction.
As in SOG, the set of states Q b ⌦ of a SOP is composed of two kinds of states in Q 0 and D 0 . The states of Q 0 are pairs of the form (q, a), where q is a state of TGBA and a is an aggregate of states from the Kripke structure. a is similar to an aggregate in a SOG but computed according to the alphabet FV(q) instead of all AP. The states of D 0 are the divergent states of the SOP.

The SOP transition relation d b ⌦ is composed of three parts. The first part contains the transitions of the form (q 1 , a 1) ! (q 2 , a 2), where q 1 , q 2 are two successive states of the TGBA, and a 1 , a 2 are two aggregates of states from the Kripke structure. The aggregate a 2 contains the successors of states of a 1 and its computation is similar to SOG, except that a 2 is homogeneous w.r.t. the set FV(q 2) instead of all AP. The second and third parts of the SOP transition relation d K {a,b} using the SOG (Figure 7.1e), is mainly when the TGBA G reaches the state q 1 . Indeed, from this state, the alphabet FV(q 1) becomes empty. This allows the SOP to aggregate the states {s 4 , s 5 , s 6 , s 7 }. In addition, these states form a cycle in K , and therefore implies to add a divergent state (q 1 , >) in the SOP.

SOP Using TGTA (SOP-TGTA)

In this section, we propose a TGTA-based SOP, called SOP-TGTA. The main difference between SOP and SOP-TGTA is related to the changesets labeling the TGTA and their synchronization with the states of the Kripke structure.

Definition 47 (SOP of a TGTA and a Kripke structure). Given a TGTA T = hQ , I ,U, d, F i over AP and a Kripke structure K = hS , S 0 , R , li, the SOP-TGTA of T and K is the TGTA denoted

T b ⌦ K = hQ b ⌦ , I b ⌦ ,U b ⌦ , d b ⌦ , F i where: 1. Q b ⌦ = Q 0 [D 0
where states of the automaton are synchronized with aggregates in Q 0 and with divergent states in D 0 :

Q 0 = ((q, a) 2 Q ⇥ (2 S \ {/ 0})
a is homogeneous w.r.t. FV(q) a = ReachF(a, l FV(q) (a))

) D 0 = {(q, `) | q 2 Q and `2 2 FV(q) } 2. d b ⌦ = 8 > > > > > < > > > > > : (q 1 , a 1) (` `0),F ! (q 2 , a 2) (q 1 , a 1) 2 Q 0 , (q 2 , a 2) 2 Q 0 , `= l FV(q 1) (a 1), 9f 2 B(AP) s.t. q 1 f,F ! q 2 2 d,
9`0 2 2 FV(q 1) s.t. (` `0) |= f, and

a 2 = ReachF(SuccF(a 1 , `0 |FV(q 2)) \ a 1 , `0 |FV(q 2)) 9 > > > > > = > > > > > ; [8 > > < > > : (q 1 , a) / 0,F ! (q 2 , `2) (q 1 , a) 2 Q 0 , (q 2 , `2) 2 D 0 , `1 = l FV(q 1) (a), a contains a cycle, `2 = `1|FV(q 2) , 9f 2 B(AP) s.t. q 1 f,F ! q 2 2 d, and / 0 |= f 9 > > = > > ; [8 <
:

(q 1 , `1)
/ 0,F ! (q 2 , `2) = {(q 0 , ReachF({s 0 }, l(s 0) |FV(q 0))) | (q 0 , s 0) 2 I ⇥ S 0 and l(s 0) |= U(q 0)}, 4. 8(q 0 , a 0) 2 I b ⌦ , U b ⌦ ((q 0 , a 0)) = l FV(q 0) (a 0). The transitions between aggregates are of the form (q 1 , a 1) ! (q 2 , a 2), where q 1 , q 2 are two successive states of the TGTA, and a 1 , a 2 are two aggregates of states from the Kripke structure. Each aggregate a 2 contains the successors of states of a 1 , filtered to keep only those satisfying a valuation `0 |FV(q 2) , where `0 satisfies (` `0) |= f with `= l FV(q 1) (a 1) and q 1 f,F ! q 2 . In other words, `0 is obtained from `= l FV(q 1) (a 1) by applying one changeset from the set of changesets encoded by f. In addition, each aggregate a 2 is homogeneous w.r.t. the set of atomic prpositions of FV(q 2). In the second and third parts of d b ⌦ of SOP-TGTA, all the transitions between aggregates and divergent states and all the self-loops on divergent states are labeled with an empty changeset / 0. K 0 {a,b} using SOG-TGTA (Figure 7.2e), is the divergent state labeled with (q 0 , a b). This divergent state is added to the SOP-TGTA because the aggregate {s 0 , s 1 , s 2 , s 3 } of the initial state contains a cycle. The second difference between T b ⌦ K and T ⌦ b K 0 {a,b} comes from the fact that the alphabet FV(q 1) becomes empty when the TGTA T reaches the state q 1 . This allow the SOP-TGTA to aggregate the states {s 4 , s 5 , s 6 , s 7 } of K . In addition, this aggregate contains a cycle, and therefore allows to add in T b ⌦ K a divergent state labeled with (q 1 , >). In our example of verification of the LTL property a U b on the Kripke structure K , we observe that the SOP-TGTA T b ⌦ K of Figure 7.2f is smaller than the original SOP G b ⌦ K of Figure 7.1f.

(q 1 , `1) 2 D 0 , (q 2 , `2) 2 D 0 , `2 = `1|FV(q 2) , 9f 2 B(AP) s.t. q 1 f,F ! q 2 2 d,

Self-Loop Aggregation Product (SLAP)

SLAP [START_REF] Duret-Lutz | Self-loop aggregation product -a new hybrid approach to on-the-fly LTL model checking[END_REF] is an hybrid synchronous product, in which the aggregation of Kripke structure states is based on the self-loops of the property automaton. This section presents the original SLAP based on TGBA and SLAP-TGTA, a variant of SLAP based on TGTA. In Section 7.6.5, we will show the results of an experiment comparing the performance of SLAP and SLAP-TGTA.

Definition 48. Given a TGBA G = hQ , I , d, F i or a TGTA T = hQ , I ,U, d, F i, for a state q 2 Q , SF(q) encodes the Self-loop Formulas labeling edges q ! q. Formally,

SF(q) = _ q f,F !q2d f .
Similar to the symbolic operations SuccF and ReachF defined in Section 7.3, for SLAP approach, we define two other operations FReach(a, f) and Succ (a, f) with a ✓ S is a set of states of K and f 2 B(AP) is a propositional formula, such that:

• FSucc(a, f) = {s 0 2 S | 9s 2 a, R(s, s 0) ^9`, [`|= f ^L(s, `)]}, i.e, Filter a to only keep states satisfying f, then produce their Successors. The difference between SuccF and FSucc is whether the filter is applied on the source or destination states.

• FReach(a, f) computes the least subset of S satisfying:

a ✓ FReach(a, f),

-FSucc(FReach(a, f), f) ✓ FReach(a, f).

SLAP

A SLAP is an hybrid product between a Kripke structure K and a TGBA G. The states of the SLAP are pairs of the form (q, a) composed of a state q of G and an aggregate a containing successive states of K aggregated as long as they model SF(q). These aggregates are computed as symbolic least fixed-points using the operations FSucc and FReach defined in Section 7.2.

Definition 49 (SLAP of a TGBA and a Kripke structure). Given a TGBA G = hQ , I , d, F i over AP and a Kripke structure K = hS , S 0 , R , li, the Self-Loop Aggregation Product of G and K is the TGBA denoted G ⇥ K = hQ ⇥ , I ⇥ , d ⇥ , F i where:

• Q ⇥ = Q ⇥ (2 S \ {/ 0})
7.5. Self-Loop Aggregation Product (SLAP) 147

• d ⇥ = 8 > > < > > :
(q 1 , a 1)

>,F ! (q 2 , a 2) 9f 2 B(AP) s.t. q 1 f,F
! q 2 2 d, q 1 = q 2) F 6 = / 0, and a 2 = FReach(FSucc(a 1 , f), SF(q 2))

9 > > = > > ;
• I ⇥ = {(q 0 , FReach({s 0 }, SF(q 0))) | (q 0 , s 0) 2

I ⇥ S 0 } We have L (G ⌦ K) 6 = / 0 () L (G ⇥ K) 6 = / 0 by construction.
All transitions of the constructed SLAP are labeled with the formula >, because these labels are irrelevant when checking language emptiness of SLAP.

⇣ q 0 , n s 0 s 1 s 2 s 3 s 4 o⌘
, where q 0 is the initial state of G and the aggregate a 1 =

n s 0 s 1 s 2 s 3 s 4
o is obtained by iteratively aggregating the successors of the states that satisfy SF(q 0) = a b. Then, from the initial state (q 0 , a 1), we explore the transition q 0 b ! q 1 of TGBA and we obtain only one successor (q 1 , a 2) with the aggregate a 2 = FReach(FSucc(a 1 , b), SF(q 1)) computed as follows:

• The set FSucc(a 1 , b) contains only the successors of {s 4 } because only the state s 4 in a 1 satisfies b, thus FSucc(a 1 , b) = {s 5 };

• SF(q 1) = > because q 1 > ! q 1

• We deduce that a 2 = FReach({s 5 }, >). a 2 contains all the reachable states from s 5 (satisfying >), thus a 2 = {s 4 , s 5 , s 6 , s 7 }.

Finally, we explore the TGBA transition q 1 >,

! q 1 and we obtain an accepting self-loop on (q 1 , a 2) because the successor aggregate of a 2 is a 2 (i.e, FReach(FSucc(a 2 , >), SF(q 1)) = a 2).

SLAP Using TGTA (SLAP-TGTA)

The SLAP-TGTA is a variant of SLAP based on TGTA instead of TGBA. In SLAP-TGTA, the states of the Kripke structure are aggregated according to the changesets labelling the TGTA transitions. In particular, each SF(q) represents the set of changesets encoded by the Self-loop Formulas labeling edges q ! q of the TGTA. Therefore, in SLAP-TGTA the successive states of the Kripke structure are aggregated as long as they change according to the changesets encoded by SF(q). These aggregates are computed as least fixed-points based on changesets using the symbolic operations Succ and Reach defined as follows:

Let K = hS , S 0 , R , li a Kripke structure, encoded by a changeset-based symbolic Kripke structure K = hS 0 , R , Li (Definition 37 in page 118). For a set of states a ✓ S and a propositional formula f 2 B(AP), we define the following symbolic operations:

• Succ (a, f) = {s 0 2 S | 9s 2 a, 9k, [k |= f ^R (s, k, s 0)]}, i.e, the set of the Successors states of a Filtered to keep only those satisfying k |= f where k = l(s) l(s 0) is a changeset between l(s) and l(s 0).

• Reach (a, f) computes the least subset of S satisfying:

-a ✓ Reach (a, f), -Succ (Reach (a, f), f) ✓ Reach (a, f).
Definition 50 (SLAP of a TGTA and a Kripke structure). Given a TGTA T = hQ , I ,U, d, F i over AP and a Kripke structure K = hS , S 0 , R , li, the SLAP-TGTA of T and K is the TGTA denoted T ⇥ K = hQ ⇥ , I ⇥ , d ⇥ , F i where:

• Q ⇥ = Q ⇥ (2 S \ {/ 0}) • d ⇥ = 8 > > < > > :
(q 1 , a 1)

>,F ! (q 2 , a 2) 9f 2 B(AP) s.t. q 1 f,F
! q 2 2 d,

q 1 = q 2) F 6 = / 0, and
a 2 = Reach (Succ (a 1 , f), SF(q 2)) 9 > > = > > ;
• q 0 ⇥ = {(q 0 , Reach ({s 0 }, SF(q 0))) | (q 0 , s 0) 2 I ⇥ S 0 and l(s 0) |= U(q 0)} We have L (T ⌦ K) 6 = / 0 () L (T ⇥ K) 6 = / 0 by construction.

For the same reason as in SLAP, the SLAP-TGTA transitions are only labeled with >. The reachable states of a SLAP-TGTA are of the form (q, a) where q is a state of the TGTA and a is an aggregate of states of the Kripke structure such that: For each state s 2 a, if s 0 is a successor of s in the Kripke structure with l(s) l(s 0) |= SF(q), then s 0 2 a. Figure 7.2g presents T ⇥ K , an example of SLAP-TGTA computed from the Kripke structure K and the TGTA T of a U b. Because l(s 0) = a bc |= U(q 0) = a b, the initial state of T ⇥ K is the pair (q 0 , a 1), where a 1 is computed from s 0 by iteratively aggregates successors that change according to a changeset belonging to (the set of changesets encoded by) SF(q 0). Formally, a 1 = Reach ({s 0 }, SF(q 0)) = { s 0 s 1 s 2 s 3 } (because l(s 0) l(s 1) = l(s 1) l(s 2) = l(s 2) l(s 3) = / 0 |= SF(q 0) = āb). Then, in order to compute the successors of (q 0 , a 1), we explore the transition q 0 b ! q 1 of TGTA. We obtain only one successor (q 1 , a 2) with the aggregate a 2 = Reach (Succ (a 1 , b), SF(q 1)) is computed as follows:

• Succ (a 1 , b) = {s 4 } because s 4 is a successor of s 0 2 a 1 and it is the unique successor of states of a 1 that satisfies l(s 0) l(s 4) |= b (l(s 0) l(s 4) = {b, c}),

• SF(q 1) = > because q 1 > ! q 1

• Thus, a 2 = Reach ({s 4 }, >) = {s 4 , s 5 , s 6 , s 7 } because a 2 contains all the reachable states from s 4 through any changesets.

Finally, we compute the successors of (q 1 , a 2) by exploring the TGTA transition q 1 >, ! q 1 . This TGTA accepting self-loop also generates an accepting self-loop on state (q 1 , a 2) of the SLAP-TGTA. Indeed, the unique successor of (q 1 , a 2) is itself because: Reach (Succ (a 2 , >), >) = a 2 (the states of a 2 are in a cycle).

Experimental Comparison of Hybrid Approaches using TGBA vs. TGTA

In the previous sections, we presented three hybrid approaches based on TGBA (SOG, SOP and SLAP) and their variants based on TGTA (SOG-TGTA, SOP-TGTA and SLAP-TGTA). This section presents an experimental evaluation conducted to compare each hybrid approach with its variant based on TGTA.

This experimentation is based on BEEM benchmark [START_REF] Pelánek | BEEM: benchmarks for explicit model checkers[END_REF]. It reuses the same benchmark inputs, formulas and models used to evaluate the fully symbolic approaches in Section 6.4.3 page 124.

Implementation

We have implemented SOG-TGTA, SOP-TGTA and SLAP-TGTA in the same tool LTL-ITS1 that already contains SOG, SOP, SLAP and the fully symbolic approaches (using TGBA/TGTA). LTL-ITS tool is built on top of libraries2 : SDD/ITS, Spot, and LTSmin. These three libraries were already presented in the previous chapter, Section 6.4.1, page 122.

The DVE variant of LTSmin [12] is used to produce an ETF file representing the transition relation of each BEEM model. These ETF files are loaded by the SDD/ITS [START_REF] Thierry-Mieg | Hierarchical set decision diagrams and regular models[END_REF] library to encode the symbolic transition relations (R(s, s 0)) of the Kripke structures, used to implement the symbolic operations ReachF and FReach. For SLAP-TGTA, it is a changeset-based symbolic transition relations R (s, s 0) (Definition 37) that are built from the ETF files. It is used to implement the symbolic operation Reach for the SLAP-TGTA aggregates computation.

The Spot library [START_REF] Duret | SPOT: an extensible model checking library using transition-based generalized Büchi automata[END_REF] is used to translate the LTL properties into TGBA or TGTA. It is also used to perform the emptiness check of explicit graphs, such as the synchronous products TGBA/SOG and TGTA/SOG-TGTA. In addition, the hybrid synchronous products SOP, SLAP, SOP-TGTA and SLAP-TGTA are also handled by the emptiness check of Spot. Indeed, they are explicit graphs in which each node stores a set of states encoded as a Decision Diagram. These sets of states are computed using least fixed-points (ReachF, FReach or Reach).

A SOG-TGTA is implemented in the same way as a SOG, as a concrete class of the Kripke structure interface provided by Spot. During the the emptiness check of the products TGBA/SOG and TGTA/SOG-TGTA, the SOG and the SOG-TGTA nodes are constructed on-the-fly using the implementation of the symbolic operation ReachF.

Similar to SOP and SLAP, we have implemented SOP-TGTA and SLAP-TGTA as concrete classes of the synchronous product interface of Spot. During the the emptiness check, the nodes of these four hybrid products are built on-the-fly from the states of the property automaton (TGBA or TGTA) and using the symbolic operations: ReachF for SOP and SOP-TGTA, FReach for SLAP and Reach for SLAP-TGTA.

Results

The results of our experimentations are presented as scatter plots using logarithmic scale. Each scatter plot compares an hybrid approach against its variant based on TGTA. Each point represents the comparison of the performance of the model checking for a model and formula pair. Any process that exceeded 60 minutes of runtime or 6GB of RAM was aborted (thus, the answer of the model checker was not reported for some cases). In our scatter plots, these aborted experiments are plotted as being three times higher than the maximum of the other values. Thus, these points appear separately (by the wide white band) from the other experiments that succeed. Table 7.1: On all successful experiments, we count the number of cases a specific method has (Win) the best time. The Fail line shows the cases were an approach failed to solve an experiment solved by the other approach.

The scatter plots of Figure 7.3 compare the performance of two hybrid approaches: the first is based on TGBA and SOG (called just SOG approach in the following); the second is based on TGTA and SOG-TGTA (called SOG-TGTA approach). Each point of the left and right scatter plots compares respectively the time and memory used in the model checking of each pair (formula, model). The x-axis represents the performance of SOG approach and the y-axis shows the performance of SOG-TGTA approach, so the points below the diagonal correspond to cases where the SOG-TGTA approach is better. Symmetrically, the points above the diagonal corresponds to points were the SOG approach is better. The points represented by green squares correspond to verified formulas (empty products), and the black crosses correspond to violated formulas (nonempty products).

In the two scatter plots, we observe that for verified formulas (green points), the SOG-TGTA approach outperforms the SOG approach (in time and memory). This result is similar to the comparison between the explicit approaches based on TGBA versus TGTA, presented in Chapter 5 (Section 5.5.2 page 99). This similarity is justified by the fact that these approaches are based on traditional explicit synchronous products.

For violated formulas, the SOG approach outperforms the SOG-TGTA approach in the cases where the execution time is less than one second. On the contrary, for hard cases, there are more cases that failed using SOG than using SOG-TGTA (compare the "aligned" black points at top and on right of scatter plots, or for more details see Table 7.1).

In total in these scatter plots, SOG failed in 53 cases solved by SOG-TGTA, while SOG-TGTA approach failed for only 9 cases solved by SOG. In addition, 875 cases are not solved by the two approaches within the time and memory limits. In the experiments that have not failed, SOG-TGTA was at least a ten times faster than SOG in 20 cases, and twice times faster in 287 cases. A contrario, SOG was at least a ten times faster than SOG-TGTA in 4 cases, and twice times faster in 144 cases.

Table 7.1 presents the best and the failed approach for each experiment where at least one approach succeeded. This table does not take into account cases where the two approaches failed. The scatter plots of Figure 7.4 compares the performance of SOP against SOP-TGTA. Each point compare the time (left scatter plot) and memory (right scatter plot) used to perform the model checking of each pair (formula, model) of our benchmark. The points below the diagonal correspond to cases where the SOP-TGTA approach is better, and for the other points the SOP approach is better.

On the one hand, the results of the scatter plots are very difficult to interpret, because there are many points where SOP is better and many others with SOP-TGTA which is the best (SOP-TGTA was at least a hundred times faster than SOP in 36 cases, ten times faster in 160 cases, and twice times faster in 579 cases. A contrario, SOP was at least one hundred times faster than SOP-TGTA in 38 cases, ten times faster in 169 cases, and twice times faster in 511 cases).

On the other hand, if we look at the scatter plots in more detail, we can observe that there are more cases of failure for SOP-TGTA (represented by the linear cloud at the top of the scatter plots) than the SOP approach (linear cloud on the right of the scatter plots). Indeed, SOP-TGTA failed for 335 experiments where SOP reached the result, while SOP only failed for 62 cases solved by SOP-TGTA. Table 7.2 gives more details for these failed cases by distinguishing verified and violated formulas (without taking into account the cases where the two approaches failed). This table also shows the number of cases in which each approach is better.

SLAP versus SLAP-TGTA

The scatter plots of Figure 7.5 compares the performance of SLAP against SLAP-TGTA. The left scatter plot compares the time performance and the right concerns the memory consumption. The points below the diagonal correspond to the cases where SLAP-TGTA is better.

The interpretation of the scatter plots results depends on the colors of the points. For black crosses that correpond to violated formulas, SLAP-TGTA is more efficient than SLAP in most cases. For the green squares representing the verified formulas, the scatter plots are difficult to interpret, there are many cases on both sides of the diagonal. In addition, according to Table 7.3, there are roughly the same number of cases where each approach is better than the other. However, Table 7.3 shows that SLAP is clearly better for failed cases. In total, SLAP-TGTA failed in 277 experiments solved by SLAP, while SLAP failed for only 85 cases solved by SLAP-TGTA. In the other cases where the two approaches were successful, we observe a relative advantage for SLAP-TGTA. Indeed, on the one hand, SLAP-TGTA was at least a hundred times faster than SLAP in 85 cases, ten times faster in 646 cases, and twice times faster in 1605 cases. On the other hand, SLAP was at least one hundred times faster than SLAP-TGTA in 12 cases, ten times faster in 95 cases, and twice times faster in 434 cases only.

We believe that the two approaches SLAP and SLAP-TGTA are complementary and very different because of the fact that SLAP-TGTA aggregates are based on changesets and therefore are very different from SLAP aggregates that are based on valuations. Thus, these two approaches can be considered complementary and can be launched in parallel in order to retrieve the result of the fastest approach.

Conclusion

In this chapter, we proposed three hybrid approaches variants using TGTA: SOG-TGTA, SOP-TGTA and SLAP-TGTA.

SOG-TGTA is a variant of SOG without divergent states. They are replaced in SOG-TGTA by adding a self-loop on each aggregate that contains a cycle. Adding these self-loop is better than adding divergent states for SOG-TGTA because in TGTA all stuttering transitions are selfloops, and therefore adding self-loops in SOG-TGTA does not generate new states in the product between TGTA and SOG-TGTA.

SOP-TGTA is an adaptation of SOP to TGTA. The difference between SOP and SOP-TGTA appears when computing the transitions of the hybrid product. Indeed, the synchronisation of the transitions between the Kripke structure aggregates and the TGTA transitions is based on changesets.

SLAP-TGTA is also a adaptation of SLAP to use TGTA instead of TGBA. The two variants (SLPA and SLAP-TGTA) are based on the aggregation of the states of a Kripke structure according to the self-loops of the formula automaton (i.e., TGBA for SLAP and TGTA for SLAP-TGTA). However, the obtained aggregates are very different between the two variants. In a SLAP-TGTA, the states of an aggregate change according to the changesets of the TGTA self-loops (instead of satisfying the valuations labeling the TGBA self-loops in the case of SLAP).

We implemented and experimentally compared the performance of each TGTA based hybrid approach (SOG-TGTA, SOP-TGTA and SLAP-TGTA) against its reference variant (SOG, SOP and SLAP). The obtained results show that SOG-TGTA is better than SOG to check verified properties but it is worse for the violated properties. For SOP versus SOP-TGTA, the results are harder to interpret. The results seem balanced with a slight advantage for SOP, especially because we have more cases solved by SOP and failed for SOP-TGTA than otherwise. Finally, for SLAP versus SLAP-TGTA, although we can observe an advantage for SLAP-TGTA for violated formulas, the results remain difficult to interpret. There are many cases where SLAP-TGTA is better and vice versa in many cases SLAP is better. In addition, for verified properties, there are many cases that failed for SLAP-TGTA but successful for SLAP. This large difference in performance between SLAP and SLAP-TGTA can be explained by the fact that the aggregates computed using TGBA and TGTA are very different (in SLAP-TGTA, the aggregates are based on changesets instead of valuations as in SLAP).

More generally, for the three hybrid approachs, we believe that the two variants (using TGBA versus TGTA) are complementary, and the best solution is to run the two variants in parallel, then take the result of the faster one.

Our work presented in this chapter about hybrid approaches using TGTA is not finished. In particular, we must look for an optimization that exploits the fact that TGTA is specific to stutterinvariant properties, as we did in the previous chapter about symbolic approaches, in which we have proposed an optimization based on the "stuttering-normalization constraint" of TGTA.

CHAPTER 8

Conclusion and Perspectives

Context

The automata-theoretic approach [START_REF] Vardi | An automata-theoretic approach to linear temporal logic[END_REF][START_REF] Vardi | Automata-theoretic model checking revisited[END_REF] is traditionally used for the model checking of LTL properties. In this approach, a Kripke structure K M is used to represent the state-space of the model M. The property to check is expressed as an LTL formula j, then its negation is converted into an w-automaton A ¬j . The third operation is the synchronization between K M and A ¬j . This constructs a product automaton K M ⌦ A ¬j whose language, L (K M) \ L (A ¬j), is the set of executions of M invalidating j. The last operation is the emptiness check algorithm that explores the product to tell whether it accepts or not an infinite word, i.e., a counterexample. The model

M verifies j iff L (A M ⌦ A ¬j) = / 0.
Problem. The performance of the emptiness check suffers from the well known state-space explosion problem [START_REF] Valmari | The state explosion problem[END_REF]. The product automaton is often too large to be emptiness checked in a reasonable run time and memory (the size of the product can reach (|A ¬j | ⇥ |K M |) with |K M | often very large).

Existing Work

In order to improve the performance of the LTL model checking, many works have attempted to build optimized property automaton A ¬j , either by improving the LTL translation, or by proposing several reductions for the automaton produced by this translation such as bisimulation/simulation reductions. In most of this works, A ¬j is represented using the traditional variant of Büchi Automata with state-based accepting (BA). However, according to [START_REF] Couvreur | On-the-fly verification of temporal logic[END_REF][START_REF] Giannakopoulou | From states to transitions: Improving translation of LTL formulae to Büchi automata[END_REF], moving the accepting conditions from the states to the transitions reduces the size of A ¬j . For instance, Transition-based Generalized Büchi Automata (TGBA) is another variant of Büchi Automata that represent the LTL properties more concisely [START_REF] Giannakopoulou | From states to transitions: Improving translation of LTL formulae to Büchi automata[END_REF][START_REF] Duret | SPOT: an extensible model checking library using transition-based generalized Büchi automata[END_REF] than BA, because TGBA use generalized (i.e., multiple) Büchi acceptance conditions on transitions rather than on states.

Testing Automata (TA). Hansen et al. [START_REF] Hansen | Stuttering-insensitive automata for on-the-fly detection of livelock properties[END_REF] propose an alternative to Büchi automata, called Testing Automata (TA), that only represent stutter-invariant properties. According to Geldenhuys and Hansen [START_REF] Geldenhuys | Larger automata and less work for LTL model checking[END_REF], thanks to their high degree of determinism, the TA allow during the model checking to obtain a smaller product than BA. However, TA have two different ways to accept infinite words (livelock or Büchi), an unfortunate consequence is that the emptiness-check algorithm required must perform two passes on the whole product in the worst case.

Chapter 8. Conclusion and Perspectives

Evaluation of the Testing Automata Approach. We experimentally evaluated the performance of the model checking approach using TA against two variants of Büchi automata BA and TGBA.

In the benchmark results, we distinguished violated formulas (i.e., when a counterexample is found) from verified formulas (i.e., exhibit no counterexample).

For verified formulas, we found that the product reduction achieved by the TA approach was not enough to compensate for the two-pass emptiness check this approach requires. It is therefore better to use the TGBA approach, which is more efficient than TA and BA to prove that a stutterinvariant formula is verified.

For violated formulas, the TA approach usually processes less transitions in the product than the BA approach to find a counterexample. This is especially true on random formulas. With weak-fairness formulas, TGBA are advantaged by their generalized acceptance conditions and are able to beat the TA on the average in half of examples.

Contributions

The general objective of this work is to fight against the state-space explosion problem, by reducing the size of the product automaton and/or by decreasing the amount of time and memory used in the emptiness check of this product.

To achieve this goal, we focus on improving the performance of the model checking for stutterinvariant LTL properties. We firstly extend the work of Geldenhuys and Hansen [START_REF] Geldenhuys | Larger automata and less work for LTL model checking[END_REF] about Testing Automata (TA), by proposing new types of w-autamata optimized for stutter-invariant LTL properties. These new automata represent all the stuttering-transitions using only self-loops, and (unlike TA) only require a single-pass emptiness check algorithm. Secondly, using our main new type of automata, called Transition-based Generalized Testing Automata (TGTA), we propose contributions to improve the performance of three different approaches, i.e., explicit, symbolic and hybrid model checking approaches, where hybrid means combining explicit and symbolic approaches.

The contributions of this thesis could be summarized as follows:

Single-pass Testing Automata (STA). After improving the emptiness check of TA approach to avoid the second pass in particular cases, we propose STA (Single-pass Testing Automata), a transformation of TA in a normal form that never requires such a second pass. An experimental evaluation shows that these improvements compete well on our benchmarks. Especially, STA remain good for violated properties, and also beat TA and TGBA (and BA) in most cases when properties are verified. Unfortunately, we observe in certain cases that the STA increases the size of the product automaton, because the transformation from TA into STA adds an artificial livelock-accepting state in order to remove the second pass.

Transition-based Generalized Testing Automata (TGTA): A Single-pass and Generalized New Automata. We propose another type of w-automata for stutter-invariant properties, better than STA, called TGTA (Transition-based Generalized Testing Automata). TGTA combine advantages observed on both TA and TGBA, without the second pass of TA, and without adding an artificial state as in STA.

TGTA inherits from TA the elimination of useless stuttering-transitions, but without introducing a second mode of acceptance (i.e, livelock-accepting states). From TGBA, it inherits the use of generalized acceptance conditions on transitions.

We have run benchmarks to evaluate the performance of the TGTA approach against the TA and TGBA (BA) approaches. The experiments report that, in most cases, TGTA lead to smaller products on the average, and the TGTA approach outperforms the TA and TGBA approaches when the property is verified. However, when the property is violated, the results are difficult to interpret because in this case, the on-the-fly algorithm can stop as soon as it finds a counterexample before exploring the entire product. Changing the order in which non-deterministic transitions of the property automaton are iterated is enough to change the number of states and transitions to be explored before a counterexample is found.

Beyond this ordering luckiness in the case of violated formula, we believe that TGTA is better than TA firstly because TGTA does not require a second pass during the emptiness check . Secondly, in our experiments, we observed that TGTA represent more concisely the LTL formulas using (multiple) generalized acceptance conditions, especially for weak-fairness formulas, for which the number of acceptance conditions is greater than other random formulas.

We also believe that TGTA is better than TGBA because the TGTA construction exploits the fact that it is specific to stutter-invariant properties to remove the useless stuttering-transitions, while the TGBA does not exploit at all this specificity. The constructed TGTA represents all the stuttering-transitions using only self-loops, which can reduce the multiplication of stuttering steps in the product. This advantage of TGTA is better exploited in the following symbolic approach.

Using TGTA to improve Symbolic Model Checking. We also use TGTA to improve the symbolic approach.

After showing how to encode a symbolic TGTA, we introduce a new symbolic Kripke structure labeled with changesets on transitions as in TGTA. This changeset-based symbolic Kripke structure simplifies the symbolic transition relation of the product.

The main improvement proposed in this approach is based on the combination of TGTA with saturation technique proposed by Ciardo et al. [20]. We show that the performance of the saturation algorithm greatly benefits from the property of TGTA that all stuttering transitions are self-loops and every state has a stuttering self-loop. In other words, the exploration of stuttering transitions in the product is equivalent to only explore stuttering transitions in the model (remaining in the same TGTA states). This property allowed us to improve the stuttering part in the transition relation of the product, this part is only dependent on the model, and can be evaluated without consulting the transition relation of the TGTA. This allows the saturation algorithm to ignore the symbolic variables encoding the TGTA in this stuttering part of product, and therefore efficiently computes (i.e. saturates) the product nodes corresponding to the variables encoding the model.

We experimentally compared this TGTA-based approach to a symbolic approach based on TGBA and saturation. On our benchmark, using TGTA, we were able to gain one order of magnitude over the TGBA-based approach, for both verified and violated properties.

Using TGTA in three Hybrid Model Checking Approaches. In addition of the explicit and symbolic approaches, we evaluate the use of TGTA in the context of hybrid [START_REF] Sebastiani | Symbolic systems, explicit properties: on hybrid approches for LTL symbolic model checking[END_REF][START_REF] Duret-Lutz | Self-loop aggregation product -a new hybrid approach to on-the-fly LTL model checking[END_REF] model check-ing that combines the use of both explicit and symbolic techniques.

We focus on three hybrid techniques proposed in [START_REF] Duret-Lutz | Combining explicit and symbolic approaches for better on-the-fly LTL model checking[END_REF]: the Symbolic Observation Graph (SOG), the Symbolic Observation Product (SOP) and the Self-Loop Aggregation Product (SLAP), and for each of them we propose a variant using TGTA: SOG-TGTA, SOP-TGTA and SLAP-TGTA.

Implementation and experimental evaluation of each TGTA-based variant against the corresponding original approach show that the obtained results depend on whether the formula is verified or violated:

• SOG vs. SOG-TGTA: For verified properties, SOG-TGTA outperforms SOG. For violated properties, the SOG approach outperforms the SOG-TGTA approach in the cases where the execution time is low (less than one second). On the contrary, for hard cases, there are more cases that failed using SOG than using SOG-TGTA.

• SOP vs. SOP-TGTA (the results are harder to interpret): SOP and SOP-TGTA are comparable with a slight advantage for SOP, because we have more cases solved by SOP and failed for SOP-TGTA than otherwise.

• SLAP vs. SLAP-TGTA: For violated properties, SLAP-TGTA outperforms SLAP. For verified properties, the results are more difficult to interpret. There are many cases where SLAP-TGTA is better and vice versa in many cases SLAP is better. We believe that SLAP and SLAP-TGTA are complementary, and the best solution is to run the two variants in parallel, then take the result of the faster one.

Perspectives

Improving TGTA-based approaches

Several optimizations can be added to TGTA and TA, such as the simulation-reduction [3], which it is currently only implemented for TGBA in Spot. In addition, the optimizations presented in Section 3.4.3 (page 46) for TA can be easily adapted to TGTA. Another important optimization is to build on-the-fly the TA and the TGTA during the construction of the synchronous product. Especially when the number of atomic propositions (AP) is very large, because this may lead to build a TA or a TGTA with a large number of unnecessary initial states, that are not synchronized with the initial state(s) of the Kripke structure, see for example the product K ⌦ T presented in Section 5.6 (page 97). In this example, a TGTA T contains 3 initial states and only one of them is synchronized with the initial state the Kripke structure K .

In addition, the optimizations of Section 3.4.3 (already mentioned above) can be easily integrated in a on-the-fly construction of a TA or a TGTA.

As a future work, an idea would be to provide a direct conversion of LTL\ X to TGTA, without the intermediate TGBA step. We believe a tableau construction such as the one of Couvreur [START_REF] Couvreur | On-the-fly verification of temporal logic[END_REF] could be easily adapted to produce TGTA. We can also translate an LTL\ X formula into an itermediate / 0-TGTA then we apply the stuttering reduction of Property 9 (page 93) to transform the obtained / 0-TGTA into TGTA.

Another idea is to investigate the use of / 0-TGTA to improve the model checking of LTL properties (stutter-invariant or not). Indeed, unlike TGTA, the / 0-TGTA can represent any LTL formula. Furthermore, the procedure proposed in Chapter 5 to build an / 0-TGTA from a TGBA does not exploit the restriction to stutter-invariant properties and therefore can be used to build an / 0-TGTA for any LTL formula.

Finally, our work presented in the last chapter about hybrid approaches using TGTA is not finished. In particular, we must look for an optimization that exploits the fact that TGTA is specific to stutter-invariant properties, as we did in the chapter about the symbolic approach, in which we have proposed an optimization based on the stuttering self-loops of TGTA.

Finding sub-classes of LTL formulas for which TGTA is always efficient

An interesting study for TGTA would be to look for a subclass of LTL formulas for which the product of their TGTA with any model will always be smaller than the product with a TGBA or a BA.

We have already started to look for this type of formulas by analyzing the results of our experiments presented in this work. We believe that the subclass of formulas of the form j = F G p is a good candidate. In the following, for j = F G p we illustrate the advantage of TGTA compared to TGBA, in the case of a product with the stuttering parts of a Kripke structure. In order to compare the products, we analyze the two possible cases of stuttering parts of a Kripke structure, represented in Figure 8.2. The first case of Figure 8.4a is a subpart of Kripke structure that stutters with p true. The products of this subpart with the TGBA A and the TGTA T are respectively represented in Figure 8.3 and Figure 8.4. In this case, we can observe that the product using TGTA is smaller than the one using TGBA: the (diagonal) transitions from (0, s n) to (1, s n+1) and from (0, s n+2) to (0, s n+2) in the product using TGBA does not exist in the product using TGTA.

In the second case where the Kripke structure stutters with p false (see Figure 8.4b), the products using TGBA and TGTA are the same. So overall, for the subclass of formulas of the form j = F G p, the stuttering parts of a Kripke structure lead to a smaller parts of product using TGTA than TGBA. Finally, another future work is to combine the TGTA with other techniques that propose statespace optimizations specific to stutter-invariant properties, such as the partial order reduction implemented in Spin tool [START_REF] Holzmann | The Spin Model Checker: Primer and Reference Manual[END_REF]. Several partial order reduction techniques have been proposed, as the stubborn sets of Valmari [START_REF] Valmari | Stubborn sets for reduced state space generation[END_REF], the persistent sets of Godefroid [START_REF] Godefroid | Partial-Order Methods for the Verification of Concurrent Systems: An Approach to the State-Explosion Problem[END_REF] and the ample sets of Peled [START_REF] Peled | Combining partial order reductions with on-the-fly model-checking[END_REF]. The basic idea of these reductions is to prune the state-space K M by identifying equivalent interleaving sequences that only differ by the order of concurrent transitions.

. (0, s n) (0, s n+1) (0, s n+2) (1, s n) (1, s n+1) (1, s n+2
TGTA and partial order reduction are complementary. Indeed, while the TGTA-based approaches focus on optimizing the property automata, the partial order techniques try to reduce the state-space of the model. nombre d'états très élevée, même si chaque composant (processus) du système ne peut avoir qu'un petit nombre d'états. Le produit entre l'automate de la formule et l'espace d'états du modèle est encore plus grand puisque il introduit un deuxième niveau de combinatoire. En effet, pour générer les états du produit, chaque état du modèle peut être combiné avec plusieurs états de l'automate de la formule. Ainsi, la taille et surtout le déterminisme de l'automate de la formule est très important pour remédier au problème d'explosion combinatoire du produit, notamment dans l'approche explicite de model-checking qui nécessite l'exploration de l'automate produit. L'objectif principal de ce travail de thèse est d'améliorer les performances du model checking, dans le cas de la vérification des propriétés insensibles au bégaiement. Afin d'atteindre cet objectif, nous avons apporté quelques contributions, permettant essentiellement de réduire la taille du produit K M ⌦ A ¬j et de diminuer le temps d'exécution et la quantité de mémoire utilisés au cours de l'emptiness check de ce produit.

(K M ⌦ A ¬j) = L (K M) \ L (A ¬j) Test de vacuité L (K M ⌦ A ¬j) ? = / 0 M |= j ou contre-exemple
Dans ce rapport, après un bref état de l'art des approches classiques, nous détaillons nos contributions, ainsi que les résultats des évaluations expérimentales de ces contributions.

État de l'art

Cette section fournit un bref résumé de deux techniques classiques de model checking, basées respectivement sur deux variantes des automates de Büchi TGBA [17] et BA [5] et une troisième approche alternative basée sur les automates testeurs TA [19].

Préliminaires

Notons AP l'ensemble des propositions atomiques permettant de décrire les propriétés du modèle. Ainsi, la propriété LTL à vérifier est composée des propositions appartenant à AP, des connecteurs booléens ^et ¬, et des opérateurs temporels X (next), U (until), . . . Chaque état du modèle est étiqueté par une valuation, représentant l'ensemble des propositions atomiques prenant la valeur booléenne vraie dans cet état. Nous désignons par S = 2 AP l'ensemble de ces valuations, que nous interprétons soit comme un ensemble, soit en tant que conjonctions booléennes. Par exemple, si AP = {a, b}, alors S = 2 AP = {{a, b}, {a}, {b}, / 0}, ou nous pouvons l'interpréter comme S = {ab, a b, āb, āb }. Une exécution du modèle est tout simplement une séquence infinie de telles valuations, c'est-à-dire un élément de S w . De même, une propriété P peut être vu comme un sous-ensemble de S w , contenant les séquences de valuations satisfaisant P . Parmi ces propriétés, nous voulons distinguer celles qui sont insensibles au bégaiement: inversement après suppression de n'importe quelle répétition. Formellement, P est insensible au bégaiement si et seulement si:

k 0 k 1 k 2 .. . 2 P () k i 0 0 k i 1 1 k i 2 2 .. . 2 P pour tous i 0 > 0, i 1 > 0 .. .
(s 0 , K 0 , F 0 , s 1)(s 1 , K 1 , F 1 , s 2)(s 2 , K 2 , F 2 , s 3) .. . 2 d w tel que :
• s 0 2 I , and 8i 2 N, k i 2 K i (l'exécution est reconnue par le chemin), • 8 f 2 F , 8i 2 N, 9 j i, f 2 F j (le chemin visite infiniment souvent chaque condition d'acceptation de F) Le langage L (G) ✓ S w est l'ensemble des exécutions acceptées par G.

Toute formule LTL j peut être converti en un TGBA dont le langage est l'ensemble des exécutions qui valident j. Il existe plusieurs algorithmes de traduction de formule LTL en TGBA [9,14,17,1].

La figure 2 montre deux exemples de TGBA: un TGBA déterministe dérivé de la formule LTL G F a ^GFb, et un TGBA non-déterministe dérivé de a U G b. L'étiquette à l'intérieur de chaque état est une formule LTL représentant la propriété acceptée à partir de cet état de l'automate: ces étiquettes servent uniquement à faciliter la compréhension de l'automate mais ne sont pas utilisés par l'algorithme de model checking. Comme on peut le voir sur la figure 2.(a), une formule LTL de la forme V n i=1 G F p i peut être représentée par un TGBA déterministe composé d'un seul état et de n conditions d'acceptation. Dans ces deux TGBA, tout chemin infini est acceptée s'il visite infiniment souvent toutes les conditions d'acceptation (représentées sur les transitions par des disques de couleurs différentes, ici noir et blanc).

Dans l'approche TGBA, l'emptiness check consiste à rechercher les SCCs (Strongly Connected Components) contenant au moins une occurrence de chaque condition d'acceptation. Cette recherche peut s'effectuer de différentes façons [10]. Dans Spot, l'implémentation de l'emptiness check est basée sur l'algorithme de Couvreur [9]. Ce dernier utilise la méthode de Dijkstra pour la détection des SCCs dans un graphe. Les détails des algorithmes de chaque approche seront publiés dans un numéro de ToPNoC [2]. Une exécution w = k 0 k 1 k 2 .. . 2 S w est acceptée par B s'il existe un chemin infini :

Approche BA

(s 0 , K 0 , s 1)(s 1 , K 1 , s 2)(s 2 , K 2 , s 3) .. . 2 d w tel que :
• s 0 2 I , and 8i 2 N, k i 2 K i (l'exécution est reconnue par le chemin),

• 8i 2 N, 9 j i, s j 2 F (le chemin visite infiniment souvent au moins un état de F) Le langage L (B) ✓ S w est l'ensemble des exécutions acceptées par B. Un BA peut être considéré comme un TGBA, en ajoutant une unique condition d'acceptation sur toutes les transitions sortant des états acceptants. Ainsi, les algorithmes qui prennent en entrée un TGBA peuvent être adaptés pour traiter un BA. Notamment, l'emptiness check TGBA est aussi utilisé dans l'approche BA.

Approche TA

Les automates Testeur TA (Testing Automata) ont été introduits par Hansen et al. [19] pour représenter les propriétés insensibles au bégaiement. À la différence des automates de Büchi qui eux observent les valeurs des propositions atomiques (AP), l'idée de base des TA est de détecter les changements de ces valeurs. En effet, si les valeurs des propositions atomiques ne changent pas entre deux valuations consécutives d'une exécution (i.e. l'exécution bégaye), alors le TA reste dans le même état. Par conséquent, pour pouvoir accepter les exécutions qui restent à l'infini sur le même état, un nouveau type d'états acceptants a été introduit nommé état livelock-acceptant. Une exécution w = k 0 k 1 k 2 .. . 2 S w est acceptée par T s'il existe un chemin infini: Enfin, le TA obtenu, peut être minimisé en fusionnant les états bisimilaires (deux états sont bisimilaires si les mêmes chemins sont accepté par l'automate, à partir de l'un ou l'autre de ces deux états) [e.g., 25].

(s 0 , k 0 k 1 , s 1)(s 1 , k 1 k 2 , s 2) .. .(s i , k i k i+1 , s i+1) .. . 2 (Q ⇥ S ⇥ Q) w tels que: • s 0 2 I avec k 0 2 U(s 0), • 8i 2 N, soit (s i , k i k i+1 , s i+1) 2
Figure . 4 montre les deux étape pour transformer le BA de la formule a U G b en TA, et enfin la fusion des états bisimilaires (figure 4d).

Malheureusement, dans l'approche TA, les deux manières différentes pour accepter une exécution (livelock ou Büchi), impliquent un algorithme d'emptiness check en deux passes:

• Une première passe pour détecter les cycles Büchi-acceptants, contenant au moins un état de F et au moins une transition non bégayante.

• Une deuxième passe pour les cycles livelock-acceptants, composés uniquement d'états de G et de transitions bégayantes.

Contributions

Après avoir implémenté l'approche basée sur les TA, décrite dans la section précédente, nous l'avons améliorée de plusieurs façons:

• Amélioration de l'algorithme de vérification en deux-passes de l'approche TA.

• Proposition d'une méthode permettant de transformer un TA en un automate vérifiable en une seule passe, qu'on a appelé STA (Single-pass Testing Automata).

La contribution la plus significative est un nouveau type d'automate baptisé TGTA (Transition-based Generalized Testing Automata). L'apport principale de cette nouvelle approche consiste à proposer une méthode permettant de supprimer les transitions bégayantes dans un TGTA sans avoir besoin, ni d'ajouter une seconde passe comme c'est le cas dans l'approche TA, ni d'ajouter un état artificiel comme c'est le cas dans l'approche STA.

Par la suite, en s'appuyant sur l'observation que les TGTA sont plus efficaces que les autres automates évalués dans le contexte de l'approche explicite, on a utilisé les TGTA pour proposer d'autres améliorations du model checking dans deux autres contextes: les approches symbolique et hybride. En particulier, nous avons significativement amélioré les permformances du model checking symbolique en combinant les TGTA avec la technique de saturation [7].

Toutes ces contributions ont été implémentées en C++ et intégrées à SPOT [13], la bibliothèque de model checking développée au LRDE. Ensuite, à l'aide de cette bibliothèque, des expérimentations ont été menés afin d'évaluer l'apport de la nouvelle approche TGTA par rapport aux autres approches dans les trois contextes: explicite, symbolique et hybride. Les résultats de ces évaluations sont présentés à la fin de chaque partie.

Ces travaux ont donné lieu à trois publications: deux articles de conférences [22,4] et un article de revue [3].

Amélioration de l'emptiness check dans l'approche TA

Lors du développement de l'approche TA dans Spot, nous avons implémenté l'algorithme d'emptiness check proposé par Geldenhuys et Hansen [15] et nous avons ajouté les optimisations suivantes à la première passe: Afin de transformer un TA T en un STA T 0 équivalent, il faut d'abord ne pas considérer les états livelock-acceptants purs de T comme livelock-acceptant dans T 0 (cela change le langage). Ensuite, pour obtenir un T 0 acceptant le même langage que T , on commence par ajouter un nouveau état livelock-acceptant sans successeurs à T 0 qu'on note g, puis pour chaque transition dont la destination est un état livelock-acceptant pur dans T , on ajoute dans T 0 une transition équivalente vers l'état artificiel g. Cette transformation est illustrée par la figure 5 L'ensemble G 0 obtenu contient un unique état livelock-acceptant pur g (tous les états livelock-acceptants purs dans T ne le sont plus dans T 0). Ainsi, comme g n'a pas de successeurs, l'automate T 0 respecte bien la définition d'un STA.

L'automate T 0 est équivalent à T . En effet, par définition de l'état g, chaque exécution livelock-acceptante dans T est associée à une exécution livelock-acceptante dans T 0 captée par l'état g, et vice versa.

Apport d'une approche de Model Checking basée sur les STA

Dans un automate STA, tous les états livelock-acceptants purs sont des états sans successeurs, c'est-à-dire, à partir de tels états l'automate ne peut exécuter que des transitions bégayantes. Par conséquent, dans le produit, toute SCC contenant un état livelock-acceptant pur est forcement composée uniquement de transitions bégayantes. Ainsi, au cours de l'emptiness check, si la première passe détecte une SCC non-triviale contenant un état livelock-acceptant pur, alors elle répond que le produit contient un cycle livelock-acceptant sans effectuer une deuxième passe. De la même manière, la première passe est aussi capable de détecter le reste de cycles livelock-acceptants ne contenant pas d'états livelock-accpetants purs. En effet, si une SCC contient un état à la fois livelock et Büchi acceptant alors elle contient un cycle acceptant indépendamment des transitions qui le composent.

Malgré que l'ajout d'un état artificiel augmente légèrement la taille de produit, un algorithme en une seul passe (STA) est plus performant qu'un algorithme explorant un produit plus petit deux fois (TA).

TGTA un nouveau type d'automate pour la vérification des propriétés insensibles au bégaiement

Les résultats de nos expérimentations ont montré que malgré les différentes améliorations apportées à l'approche TA, l'approche TGBA reste meilleure dans certain cas. Cette section présente un nouveau type d'automate qui combine à la fois les avantages des TA et des TGBA. L'automate obtenu est un automate Testeur généralisé étiqueté sur les Transitions, que nous appelons TGTA (Transitionbased Generalized Testing Automaton) :

• Des TA, nous avons repris l'idée de l'étiquetage des transitions par des 'changesets', mais nous avons supprimé le bégaiement implicite sur le même état. En effet, dans un TGTA, le bégaiement est explicitement représenté par des boucles bégayantes.

• Des TGBA, nous avons repris l'utilisation des conditions d'acceptation généralisées étiquetées sur les transitions. Grâce à l'utilisation de ces conditions d'acceptation généralisées, et en s'inspirant de la technique de réduction utilisée pour les TA, nous proposons une méthode permettant de supprimer les transitions bégayantes (entre deux états distincts) dans un TGTA, sans avoir besoin d'ajouter une seconde passe lors de l'emptiness check (voir figure 6). En effet, la réduction qu'on propose permet d'éviter de définir la notion d'état livelock-acceptant dans un TGTA, car nous avons déjà vu que l'utilisation de ce type d'états implique un algorithme d'emptiness check en deux passes dans l'approche TA ou l'ajout d'un état artificiel dans l'approche STA. Cette réduction étant basée sur l'élimination de transitions bégayantes, l'automate TGTA obtenu reconnaît uniquement les langages insensibles au bégaiement. Un autre avantage de l'utilisation dans les TGTA, des conditions d'acceptation généralisées sur les transitions peut être déduit de la comparaison entre les TGBA et les BA. En effet, dans la section 2 on a déjà vu que les TGBA sont généralement plus petits que les BA, et comme les TA sont construits à partir des BA alors que les TGTA sont eux obtenus à partir des TGBA, on peut donc s'attendre à ce que les TGTA soit généralement plus petits que les TA. Formellement, cette contrainte de normalisation est exprimée par l'équivalence suivante: 8(q, q 0) 2 Q 2 : 9F 2 2 F , (q, / 0, F, q 0) 2 d () (q = q 0) Une exécution w = k 0 k 1 k 2 .. . 2 S w est acceptée par T s'il existe un chemin infini : (s 0 , k 0 k 1 , F 0 , s 1)(s 1 , k 1 k 2 , F 1 , s 2)(s 2 , k 2 k 3 , F 2 , s 3) .. . 2 d w tel que :

• s 0 2 I with k 0 2 U(s 0) (l'exécution est reconnue par le chemin),

• 8 f 2 F , 8i 2 N, 9 j i, f 2 F j (le chemin visite infiniment souvent chaque condition d'acceptation de F) Le lanagage L (T) ✓ S w est l'ensemble des exécutions acceptées par T . La figure 7 montre les étapes de construction d'un TGTA reconnaissant la formule a U G b (comme nous l'avons déjà fait pour un TA dans la figure 4d). Les exécutions acceptées sont ceux qui visitent l'unique condition d'acceptation infiniment souvent. Il est possible de vérifier que toutes les exécutions prises comme exemple dans la section 2.4 (TA) sont aussi acceptées par le TGTA construit, mais pas toujours avec les mêmes exécutions (par exemple ab; āb; āb; āb; .. . est acceptée par l'exécution 2, 4, 4, 4,. .. dans le TGTA alors qu'il accepté par l'exécution 2, 3, 3, 3,. .. dans le TA). Cette différence est due à la façon dont nous émulons les états livelock-acceptants, comme nous allons le voir dans la Propriété 4.

Construction d'un TGTA à partir d'un TGBA

Dans cette section, nous présentons deux propriétés définissant les étapes de la transformation d'un TGBA en TGTA. Cette transformation est inspirée de la construction d'un TA à partir d'un BA présentée dans la section 2.4. La propriété qui suit est inspirée de la section 2.4.1, elle présente la première étape de construction d'un TGTA à partir d'un TGBA, en poussant les étiquettes des transitions vers les états, et en étiquetant chaque transition par la différence (changeset) entre les étiquettes des deux états source et destination de la transition. Ces transformations des étiquettes sont effectuées en gardons les conditions d'acceptation généralisées sur les transitions. La figure 7b présente un exemple de TGTA obtenu à la suite de cette première étape de la transformation. La deuxième propriété est inspirée de la section 2.4.2, elle permet de supprimer les transitions bégayantes à l'exception des boucles. L'intuition derrière cette simplification est illustrée par la figure 6a: un état s 0 est accessible à partir d'un état s par une transition non-bégayante (k 6 = / 0). En plus, s 0 peut atteindre, à travers une suite de transitions bégayantes, un cycle bégayant et acceptant (autour de s n). Dans le cas des TA, il fallait déclarer s 0 et s n comme étant des états livelock-acceptants. Pour les TGTA, nous remplaçons le cycle bégayant et acceptant par l'ajout d'une boucle étiquetée par toutes les conditions d'acceptation sur s n , puis les prédécesseurs de s 0 sont connectés à s n comme c'est le cas pour l'état s sur la figure 6b.

Propriété 4 (Réduction des transitions bégayantes dans un TGTA) Soit T = hQ , I ,U, d, F i un TGTA tel que L (T) est insensible au bégaiement. En combinant les trois premières opérations suivantes, nous pouvons supprimer toutes les transitions bégayantes qui ne sont pas des boucles (voir figure. 6). À la suite de ces modifications, une quatrième opération est proposée pour nettoyer le TGTA obtenu en supprimant les états qui sont devenus inutile.

1. Soit Q ✓ Q une SCC tel que pour tout couple d'états q, q 0 2 Q, il existe une séquence de transitions bégayantes (q, / 0, F 0 , q 1)(q 1 , / 0, F 1 , q 2) •• •(q n , / 0, F n , q 0) 2 d ⇤ avec F 0 [F 1 [••• [F n = F . Alors on peut ajouter une boucle bégayante et acceptante (q, / 0, F , q) sur chaque état q 2 Q. Ainsi, le TGTA T 0 = hQ , I ,U, d [{(q, / 0, F , q) | q 2 Q}, F i est tel que L (T 0) = L (T). Dans la suite, on appelle une telle composante Q une SCC bégayante et acceptante. 2. S'il existe une SCC bégayante et acceptante Q et une séquence de transitions bégayantes (s 0 , / 0, F 1 , s 1)(s 1 , / 0, F 2 , s 2) •• •(s n 1 , / 0, F n , s n) 2 d ⇤ tels que s n 2 Q et s 0 , s 1 ,... s n 1 6 2 Q (Fig. 6a), Alors:

• Pour toute transition non-bégayante (s, k, f , s 0) 2 d tel que k 6 = / 0, le TGTA T 00 = hQ , I ,U, d[{(s, k, f , s n)}, F i est tel que L (T 00) = L (T).

• Si s 0 2 I , le TGTA T 00 = hQ , I [{s n },U 00 , d, F i avec 8s 6 = s n , U 00 (s) = U(s) et U 00 (s n) = U(s n) [U(s 0), est tel que L (T 00) = L (T). Une simplification supplémentaire des TGTA consiste à fusionner les états bi-similaires, cela peut être réalisé en utilisant le même algorithme utilisé pour minimiser un TA, en prenant en compte les conditions d'acceptation sur les transitions. Toutes les étapes de construction et de simplification d'un TGTA sont illustrées sur la figure 7.

On peut voir un TGTA comme un TGBA dont les transitions sont étiquetées par des changesets au lieu de valuations de propositions atomiques. Dans l'approche TGBA, l'algorithme d'emptiness check recherche un cycle contenant toutes les conditions d'acceptation, et accessible à partir d'un état initial. L'emptiness check de l'approche TGTA recherche exactement la même chose. Ainsi, Le même algorithme d'emptiness check peut être utilisé dans les deux approches, car cet algorithme ignore les étiquettes des transitions. Il s'agit d'une propriété intéressante des TGTA, car non seulement elle implique un emptiness check en une seul passe, mais aussi parce qu'elle facilite l'implémentation de l'approche TGTA en réutilisant un model checker basé sur les TGBA.

Comparaison expérimentale des approches explicites TGBA, BA, TA et TGTA

Cette section présente les résultats de l'expérimentation menée afin de comparer les différents types d'approches, implémentées dans notre outil Spot [20].

Les deux scatter-plots de la figure 8 affichent les résultats de la vérification d'un total de 4100 formules sur différents modèles (Peterson, Ring, FMS, Kanban,...). Pour chaque formule, un point donne le nombre de transitions explorées lors de l'emptiness check dans l'approche TGTA, comparé à deux autres approches: TA (figure 8 à gauche) et TGBA (Figure 8 à droite); 2050 points sous la forme de croix vertes correspond à des formules vérifiées, et 2050 formules non vérifiées représentées par des cercles noirs. Chaque point en dessous de la diagonale est en faveur de l'approche TGTA, et inversement. Les axes utilisent une échelle logarithmique. La comparaison avec l'approche BA n'est présentée, car elle moins efficace que TGBA [22].

Pour les propriétés vérifiées, les résultats sont faciles à interpréter, l'approche TGTA est meilleure que TGBA et TA dans la majorité des cas. Notamment, dans la figure 8(gauche), le nuage linéaire de croix vertes au dessous de la diagonale, représente les cas où l'emptiness check de l'approche TA s'effectue en deux passes.

Les résultas sont plus difficiles à interpréter pour les propriétés non vérifiées. En effet, pour ces derniers, l'emptiness check s'arrête dès qu'il trouve un contre-exemple. Ainsi, la modification de l'ordre dans lequel les transitions non-déterministes sont explorées, est suffisante pour changer le nombre total des transitions explorées: dans le cas le plus favorable, l'ordre des transitions conduira directement à un cycle acceptant; dans le pire des cas, l'algorithme va explorer l'ensemble du produit jusqu'à ce qu'il trouve enfin un cycle acceptant. Cependant, comme les automates de la famille automates Testeurs (TGTA et TA) sont plus déterministes [15], elles sont généralement meilleures que les BA et TGBA.

Utilisation des TGTA pour améliorer l'approche Symbolique

Dans cette partie, nous avons combiné les TGTA avec la technique de saturation [7] dans le but d'améliorer les performances de l'approche symbolique du model checking, ceci nous a permis de vérifier des espaces d'états plus grands et d'obtenir des résultats nettement meilleures que dans le cas du model checking explicite. En particulier, l'approche TGTA nous a permis d'obtenir des résultats meilleures que l'approche TGBA pour les deux types de formules: les formules satisfaites et les formules non satisfaites.

Cette partie commence par une présentation de l'approche symbolique traditionnelle, basée sur les automates de Büchi TGBA. Ensuite, nous présentons nos encodages symboliques des TGTA et d'une structure de Kripke adapté aux TGTA, appelée Changeset-based symbolic Kripke structure. En utilisant ces deux encodages, nous montrons ensuite comment encoder les transitions bégayantes dans le produit synchronisé pour améliorer les performances de la technique de saturation. Finalement, nous présentons les résultats de notre comparaison expérimentale entre les deux approches TGBA et TGTA, notamment l'effet de chaque approche sur les performances de la saturation.

Model Checking Symbolique

Nous commençons par présenter l'encodage symbolique de l'approche automate de model checking, basée sur un produit synchronisé entre une structure de Kripke et un TGBA symboliques.

Dans une approche symbolique, on réprésente la structure de Kripke à l'aide de prédicats [23] encodant des ensembles d'états et de transitions. L'implémentation de ces prédicats utilise des diagrammes de décision (BDDs) [6].

Définition 6 (Structure de Kripke Symbolique) Une structure de Kripke K M = hS , S 0 , R , li est symboliquement représentée par les prédicats P S 0 , P R et P l encodant respectivement l'ensemble des états initiaux, la relation de transition et les valuations des états. Ces prédicats portent sur les variables d'états s, s 0 2 S et `2 S tels que:

• P S 0 (s) est vrai ssi s 2 S 0 ,

• P R (s, s 0) est vrai ssi (s, s 0) 2 R ,

• P l (s,`) est vrai ssi l(s) = `. Dans la suite, nous utilisons les notations S 0 (s), R(s, s 0) et L(s,`) à la place de P S 0 (s), P R (s, s 0) et P l (s,`). Ainsi, une structure de Kripke symbolique est un triplet de prédicats K = hS 0 , R, Li.

Typiquement, les ensembles d'états de la structure de Kripke représentés symboliquement par les variables s et s 0 sont encodés par des conjonctions de variables booléennes. Par exemple, supposons S = {0, 1} 3 , l'état s = (1, 0, 1) est encodée par la conjonction s 1 s2 s 3 et l'ensemble d'états {(1, 0, 1), (1, 1, 1)} est encodé par la conjonction s 1 s 3 . En utilisant ce type d'encodage, S 0 , R et L sont exprimés à l'aide de formules propositionnelles et peuvent donc être implémentées à l'aide de BDDs ou d'autres types de diagrammes de décision (comme les SDDs [24] utilisés dans notre implémentation).

Un TGBA peut lui aussi être encodé symboliquement par des prédicats [23].

Définition 7 (TGBA Symbolique) Un TGBA hQ , I , d, F i est symboliquement encodé par les prédicats hI, D, {D f } f 2F i tels que:

• I(q) est vrai ssi q 2 I ,

• D(q,`,q 0) est vrai ssi 9F 2 2 F , (q,`,F, q 0) 2 d ,

• Pour tout f 2 F , le prédicat D f est défini par: D f (q,`,q 0) est vrai ssi 9(q,`,F, q 0) 2 d, f 2 F .

En composant les représentations symboliques de la structure de Kripke et du TGBA, on obtient la définition suivante de leur produit synchronisé symbolique : Définition 8 (Produit Synchronisé Symbolique) Soit une structure de Kripke symbolique K = hS 0 , R, Li et un TGBA symbolique A = hI, D, {D f } f 2F i, leur produit synchronisé symbolique K ⌦ A = hP 0 , T, {T f } f 2F i est défini par les prédicats P 0 , T et T f encodant respectivement l'ensemble des états initiaux, la relation de transition et les transitions acceptantes, tels que:

• (s, q) encode les variables d'état du produit (s pour la Kripke et q pour le TGBA),

• P 0 (s, q) = S 0 (s) ^I(q),

• T ((s, q), (s 0 , q 0)) = 9`⇥R(s, s 0) ^L(s,`) ^D(q,`,q 0) ⇤ , avec (s 0 , q 0) encode les variables de l'état successeur,

• 8 f 2 F , T f ((s, q), (s 0 , q 0)) = 9`⇥R(s, s 0) ^L(s,`) ^D f (q,`,q 0) ⇤ .

Dans cet définition du produit symbolique, la valuation `est utilisé pour synchroniser la transition (q,`,q 0) du TGBA avec l'état s de la kripke K telle que L(s,`). Ceci permet de garantir que le produit symbolique reconnaît uniquement les exécutions de K acceptées par A.

Model Checking Symbolique basée sur TGTA

Dans cette section, nous proposons une approche symbolique basée sur les TGTA. nous commençons par présenter notre encodage symbolique des TGTA. Ensuite, nous proposons une adaptation de la structure de Kripke à l'approche TGTA et enfin nous montrons comment améliorer l'encodage du produit symbolique en exploitant les transitions bégayantes des TGTA.

L'encodage symbolique des TGTA est similaire à celui des TGBA, avec une différence dans l'encodage des transitions qui sont basées sur des changesets dans le cas des TGTA: Définition 9 (TGTA Symbolique) Un TGTA T = hQ , I ,U, d, F i est encodé par les prédicats hU 0 , D , {D f } f 2F i tels que:

• U 0 (q,`) est vrai ssi (q 2 I) ^(U(q) = `)

• D (q, k, q 0) est vrai ssi 9F 2 2 F , (q, k, F, q 0) 2 d ,

• Pour chaque f 2 F , le predicat D f est défini par: D f (q, k, q 0) est vrai ssi 9(q, k, F, q 0) 2 d, f 2 F .

Le prédicat U 0 (q,`) encode l'ensemble des états initiaux et leur valuations. Le prédicat D (q, k, q 0) encode l'ensemble des transitions du TGTA, avec la variable k encodant les changesets entre les pairs d'états successives q et q 0 . Enfin, pour chaque condition d'acceptation f 2 F , un prédicat D f (q, k, q 0) encode l'ensemble des transitions étiquetées par f . Avant de définir le produit symbolique basé sur les TGTA, nous proposons une nouvelle variante de la structure de Kripke mieux adaptée à l'encodage de ce produit. Cette nouvelle variante est étiquetée par des changesets sur les transitions comme les TGTA.

Définition 10 (Structure de Kripke Symbolique basée sur les Changesets) Une structure de Kripke K = hS , S 0 , R , li peut être encoder une structure de kripke symbolique basée sur les changesets K = hS 0 , R , Li, telle que:

• Le prédicat R (s, k, s 0) est vrai ssi ((s, s 0) 2 R ^(l(s) l(s 0)) = k),

• Les prédicats S 0 et L sont définis de la même façon que la structure de kripke symbolique K de la Définition 6.

Le produit symbolique entre un TGTA et une structure de Kripke est basé sur la synchronisation des changesets. Les transitions (q, k, q 0) d'un TGTA sont synchronisées avec les transitions entre les états s et s 0 d'une structure de Kripke tels que les valuations de s et s 0 diffèrent par le changeset k (i.e., R (s, k, s 0) est vrai). Formellement, on obtient la définition suivante: Définition 11 (Produit Symbolique utilisant TGTA) Soit une structure de Kripke symbolique basée sur les changesets K = hS 0 , R , Li et un TGTA symbolique A = hU 0 , D , {D f } f 2F i, leur produit symbolique K ⌦ A = hP 0 , T, {T f } f 2F i est défini par les prédicats suivants:

• L'ensemble des états initiaux est encodé par: P 0 (s, q) = 9`⇥S 0 (s) ^L(s,`) ^U0 (q,`) ⇤

• La relation de transition symbolique du produit est: T ((s, q), (s 0 , q 0)) = 9k ⇥ R (s, k, s 0) ^D (q, k, q 0) ⇤

• La définition des T f est similaire à T en remplaçant D par D f .

Utilisation des transitions bégayantes des TGTA pour améliorer les performances de la Saturation symbolique

Dans ce section, nous proposons une amélioration des performances du model checking symbolique en exploitant la normalisation des transitions bégayantes dans un TGTA. Parmi les techniques symboliques classiques, l'algorithme de saturation [7] permet d'obtenir des gains de plusieurs ordres de grandeur à la fois pour le temps d'exécution et la quantité de mémoire, en particulier lors de la vérification des systèmes asynchrones [8].

Nous montrons dans la suite que les performances de cette technique de saturation bénéficient grandement d'une séparation de la relation de transition du produit en deux termes, dont l'un d'eux exploite la normalisation des transitons bégayantes des TGTA.

Trois approches Hybrides basées sur les TGTA

Dans le dernier chapitre, nous avons combiné les TGTA avec trois approches hybrides de model checking.

Le model checking hybride [23,12] combine des idées des deux approches explicite et symbolique. Dans une approche hybride, l'automate de la propriété est généralement représenté par un graphe explicite car dans la plupart des cas sa taille n'est pas très grande (et en plus il existe dans l'état de l'art plusieurs optimisations efficaces de ces automates explicites). Cependant, l'espace d'état du modèle est en générale très grand et doit donc être encodé symboliquement.

Dans ce travail, nous nous intéressons aux trois techniques [11] hybrides suivantes : SOG, SOP et SLAP. La technique SOG (Symbolic Observation Graph) exploite le fait qu'uniquement une partie des propositions atomiques du modèle sont observées par la propriété LTL à vérifier. Une structure SOG est une abstraction d'une structure de Kripke dans laquelle les états successives sont agrégés tant qu'ils partagent les mêmes valeurs des propositions atomiques observées (par la propriété LTL).

SOP (Symbolic Observation Product) permet d'agréger dynamiquement plus d'états que SOG, ceci en exploitant le fait que le nombre de propositions atomiques observées décroit en progression dans l'exploration de l'automate de la propriété LTL.

Similairement à SOP, SLAP (Self-Loop Aggregation Product) est un graphe d'agrégats alternatif au produit synchronisé traditionnel. Dans un SLAP, les états de la structure de Kripke sont agrégés en fonction des valuations des boucles (self-loops) de l'automate de la propriété LTL.

Les trois approches SOG, SOP et SLAP sont basées [11] sur TGBA. Dans ce travail, nous avons défini et implémenté des variantes de ces trois approches en se basant sur TGTA (à la place de TGBA). Ensuite, nous avons expérimentalement comparé les performances de chaque approche hybride (SOG, SOP et SLAP) contre sa variante basée sur TGTA (SOG-TGTA, SOP-TGTA et SLAP-TGTA). Les nuages de points de la Figure 11 comparent les performances des deux approches hybrides SOG et SOG-TGTA. Chaque point du nuage à gauche et à droite compare respectivement le temps d'exécution et la quantité de mémoire utilisés pour le model checking de chaque paire "(formule, modéle)". Les points au dessous de la diagonale correspondent aux cas où l'approche SOG-TGTA est meilleure. Les points représentés par des carrés verts correspondent aux formules satisfaites et les croix noires aux formules non satisfaites. Cependant, pour les formules non satisfaites, l'approche SOG est meilleure mais uniquement dans les cas où le temps d'exécution est faible (inférieur à une seconde). Pour les cas difficiles, il y a plus d'échec pour l'approche SOG. Les nuages de points de la Figure 12 comparent les performances entre SOP et SOP-TGTA. Les résultats sont difficiles à interpréter, car il y a beaucoup de points où SOP est meilleure et beaucoup d'autres points où c'est SOP-TGTA qui est le meilleur. Cependant, si nous analysons plus en détail les nuages de points, nous pouvons observer qu'il y a plus de cas d'échec pour SOP-TGTA, ces cas sont représentés par le nuage linéaire en haut. La Figure 13 présente les nuages de points comparant SLAP et SLAP-TGTA. Les points au dessous de la diagonale correspondent aux cas où l'approche SLAP-TGTA est meilleure.

L'interprétation des résultats dépends des couleurs des points. Pour les croix noires correspondant aux formules non satisfaites, l'approche SLAP-TGTA est plus efficace que l'approche SLAP dans la majorité des cas. Pour les points carrés verts, les résultats sont plus difficiles à interpréter, il y a beaucoup de points des deux cotés de la diagonale. Globalement, les deux approches SLAP et SLAP-TGTA sont complémentaires, et peuvent donc être exécutés en parallèle dans le but de récupérer le résultat de l'approche la plus rapide des deux.

Conclusion

L'approche par automates du model-checking est la plus classique des approches de vérification automatique. Elle prend en entrée un modèle du système et une propriété, et permet de savoir si cette dernière est vérifiée. Pour cela un model-checker traduit la négation de la propriété en un automate et vérifie si le produit du système et de cet automate est vide. Hélas, bien qu'automatique, cette approche souffre d'une explosion combinatoire du nombre d'états du produit obtenu.

Afin de combattre ce problème, en particulier lors de la vérification de formules insensibles au bégaiement, nous proposons la première évaluation d'automates testeur (TA) sur des modèles réalistes, une amélioration de l'algorithme de vérification pour ces automates et une méthode permettant de transformer un TA en un automate (STA) permettant une vérification en une seule passe. Nous proposons aussi une nouvelle classe d'automates: les TGTA. Ces automates permettent une vérification en une seule passe sans ajouter d'états artificiels. Cette classe combine les avantages des TA et des TGBA. Les TGTA permettent d'améliorer les approches explicite et symbolique de model-checking. Notamment, en combinant les TGTA avec la technique de saturation, les performances de l'approche symbolique sont améliorées d'un ordre de grandeur par rapport aux TGBA. Utilisés dans l'approche hybride les TGTA se révèlent complémentaires aux TGBA.

Une piste pour améliorer l'approche TGTA serait de la combiner avec la technique d'ordre partiel.

Figure 1 . 1 :

 11 Figure 1.1: Automata-theoretic approach to model checking.

Figure 1 . 2 :

 12 Figure 1.2: Yellow colored boxes are original contributions: the new types of w-automata constructed in this work, with the references to the chapters that describe how to use these new automata to improve the model checking of stutter-invariant LTL properties, in three contexts: explicit, symbolic and hybrid approaches.

Chapter 2 .

 2 The Traditional Approaches to LTL Model Checking

Figure 2 . 1 :

 21 Figure 2.1: Automata-theoretic Approach to model checking.

Figure 2 . 2 :

 22 Figure 2.2: A model for robot behavior

Figure 2 . 3 :

 23 Figure 2.3: A Kripke structure for the robot model presented in Figure 2.2.

.

 For instance if AP = {a, b}, then S = 2 AP = {{a, b}, {a}, {b}, / 0} or equivalently S = {ab, a b, āb, āb } such that:{a, b} $ a ^b (ab) {a} $ a ^b (a b) {b} $ ā ^b (āb) / 0 $ ā ^b (āb)

 .

3 . 2 (

 32 Definition Sequence of Valuations). Let n 2 N [{w} where w is the lowest transfinite ordinal number defined by Cantor. A sequence s of n valuations of S is a function s : [[0, n[[7 ! S mapping each index from [[0, n[[to a valuation of S.

Figure 2 .Figure 2 . 4 :

 224 Figure 2.4 shows two examples of BA: (a) Figure 2.4a is a BA recognizing the runs where a is true infinitely often and b is true infinitely often, i.e., recognizing the LTL formula (GF a ^GF b), (b) Figure 2.4b is a BA recognizing the LTL formula (a U G b). In these BA, the initial states are indicated by an arrow without source state " ". The Boolean conjunctions labeling each transition are valuations over AP = {a, b}. The accepting states are indicated by a double circle. The LTL formulas labeling each state represent the property accepted

 transition relation where each transition is labeled by a letter `2 S

Figure 2 . 5 :

 25 Figure 2.5: Two examples of GBA: (a) A GBA for j = G F a ^GF b with two accepting sets of states indicated by and . (b) A GBA for a U G b with a single accepting set indicated by .

Figure 2 .

 2 Figure 2.5 shows two examples of GBA that are equivalent to the two BA of Figure 2.4 such that: (a) The GBA of Figure 2.5a recognizes (GF a ^GF b). An accepting run in this GBA has to visit the two accepting states indicated by and infinitely often. Therefore, it must explore infinitely often, the transition labeled by {ab, a b} (a is true) and the transition { āb, ab} (b is true). (b) The GBA of Figure 2.5b is the same as the BA of Figure 2.4b, with the accepting state is indicated by the single acceptance condition { }. More generally, a BA hQ , I , d, F i can be viewed as a GBA with a single set of accepting states hQ , I , d, {F }i.

Figure 2 .

 2 Figure 2.6 illustrates the successive steps to degeneralize the GBA G of G F a ^GF b:• The GBA G is presented in Figure2.6a with F = {F 1 , F 2 } = {{q 0 }, {q 1 }} respectively indicated by and .

 Duplicate the GBA (two copies)

 Computing the transitions of the second copy:

Figure 2 . 6 :

 26 Figure 2.6: The successive steps to degeneralize a GBA into BA.

Chapter 2 .Figure 2 . 7 :

 227 Figure 2.7: (a) A TGBA with acceptance conditions F = { , } recognizing the LTL property j = G F a ^GF b. (b) A TGBA with F = { } recognizing the LTL property a U G b.

Figure 2 .

 2 Figure 2.7 shows the same properties as Figure 2.4 and Figure 2.5, but expressed as TGBA. A run in these examples is accepted if it visits infinitely often all acceptance conditions (represented by colored dots and on transitions).

Figure 2 . 8 :Figure 2 . 9 :

 2829 Figure 2.8: Examples of non-deterministic Büchi Automata: BA/GBA and TGBA for the LTL property j = F G a. Acceptance states/transitions are indicated by .

Figure 2 . 10 :

 210 Figure 2.10: An example of Bisimulation Reduction of BA

Figure 2 .

 2 Figure 2.11: A GBA A j constructed form (j = F p) by the algorithm of Definition 21.

Figure 2 . 12 :

 212 Figure 2.12: Example of a Synchronous Product K ⌦ A between a Kripke structure K and a TGBA A recognizing the LTL formula F G p, with acceptance conditions indicated by the black dot .

Figure 2 . 13 :

 213 Figure 2.13: SCC stack: the use of the SCCs fields la and acc.

Figure 3 . 1 :

 31 Figure 3.1: A TA T recognizing the LTL formula a U G b.

 transition relation where each transition (s, k, d) is labeled by a changeset: k 2 S is interpreted as a non empty set of atomic propositions whose value must change between states s and d,

Figure 3 . 1 ,

 31 figure, the initial states 1, 2 and 3 are labeled respectively by the set of valuations U(1) = {a b}, U(2) = {ab} and U(3) = { āb}. Each transition of T is labeled with a changeset over the set of atomic propositions AP = {a, b}. In a TA, states with a double enclosure belong to either F or G: states in F \ G have a double plain line, states in G \ F have a double dashed line (states 2 and 3 of T), and states in F \ G use a mixed dashed/plain style (state 4).

Figure 3 . 2 :

 32 Figure 3.2: The two steps of the construction of a TA from a BA.

 transition relation where each transition (s, k, d) is labeled by a changeset k 2 S interpreted as a set of atomic propositions whose value must change between states s and d, • F ✓ Q is a set of Büchi-accepting states, • G ✓ Q is a set of livelock-accepting states. a U G b G b ab, a b āb, ab āb, ab (a) Initial BA for a U G b. a U G b, a b a b a U G b, ab ab a U G b, āb āb G

Figure 3 . 3 :

 33 Figure 3.3: Steps of the construction of a TA from a BA. States with a double enclosure belong to either F or G: states in F \ G have a double plain line, states in G \ F have a double dashed line, and states in F \ G use a mixed dashed/plain style.

Figure 3 .

 3 Figure 3.3b shows an example of an / 0-TA. The / 0-TA does not respect the constraint of TA that prohibits having stuttering transitions between two distinct states. The second difference is that the stuttering transitions are explicitly represented in an / 0-TA. In other words, an / 0-TA does not use the implicit stuttering of TA (which consists of having an implicit stuttering self-loop on each state of TA).

3. 4 . 2

 42 From / 0-TA to TA: Elimination of useless stuttering transitions (/ 0) and introducing livelock-acceptance

Figure 3 .

 3 Figure 3.3 shows how a BA denoting the LTL formula a U G b is transformed into a TA by applying prop. 3, prop. 4, and finally merging bisimilar states.A TA for G F a ^GF b is too big to be shown: even after simplifications it has 11 states and 64 transitions.

Figure 3 . 5 :

 35 Figure 3.5: Reduced TA for a U G b.

Figure 3 .

 3 5 shows the resulting automaton.

Figure 3 . 6 :

 36 Figure 3.6: Example of a synchronous product between a Kripke structure K and a TA T recognizing the LTL formula F G p. The bold cycle of K ⌦ T is livelock-accepting.

Figure 3 .

 3 Figure 3.6 shows an example of a synchronous product between a Kripke structure K and a TA T recognizing the LTL formula F G p. Each state of K is numbered and labeled with a valuation of atomic propositions (over AP = {p}) that hold in this state. In the product K ⌦ T , states are labeled with a pairs of the form (s, q) with s is a state of K and q of T , and the livelock accepting states are denoted by a double dashed circle (as in T). We can notice that this product using TA is

Figure 3 .

 3 Figure 3.6 illustrates how the first-pass of Algorithm 2 can fail to detect the livelock accepting cycle in a product K ⌦ T as defined in Definition 25. In this example, G T = {1} therefore (3, 1) and (2, 1) are livelock-accepting states, and C 2 = [(3, 1) ! (2, 1) ! (3, 1)] is a livelockaccepting cycle.However, the first-pass may miss this livelock-accepting cycle depending on the order in which it processes the outgoing transitions of (3, 1). If the transition t 1 = ((3, 1), {p}, (0, 0)) is processed before t 2 = ((3, 1), / 0, (2, 1)), then the cycle C 1 = [(0, 0) ! (1, 0) ! (2, 1) ! (3, 1) !

Figure 3 . 7 :

 37 Figure 3.7: The experiment's architecture. Two command-line switches control which one of the three approaches is used to verify an LTL formula on a Kripke structure.

Figure 3 . 8 :Figure 3 . 9 :

 3839 Figure 3.8: Performance (number of transitions explored by the emptiness check) of TA against BA and TGBA.

4. 3 . 1

 31 Single-pass Testing Automata (STA) Definition 26 (STA). A Single-pass Testing Automaton (STA) is a TA T = hQ , I ,U, d, F , Gi over S such that d \ (G ⇥ 2 S ⇥ Q) = / 0. In other words, an STA is a TA in which every livelock-accepting state has no successors.

4. 3 . 2 Figure 4 . 1 :Figure 4 . 2 :

 324142 Figure 4.1: Example of a product between a Kripke structure K and a TA T of F G p. The bold cycle of K ⌦ T is livelock-accepting.

Figure 4 .

 4 Figure 4.2a shows how the TA from Figure 4.1b was transformed into an STA using Property 5.

Figure 4 . 3 :

 43 Figure 4.3: Transformation of a TA recognizing a U G b into an optimized STA (according to Property 7). The state 4 is a fully-accepting state

Figure 4 . 5 :

 45 Figure 4.5: Performance (number of transitions explored by the emptiness check) of STA against TA and TGBA.

Contents 5 . 1 93 5. 4

 51934 Introduction . 87 5.2 Transition-based Generalized Testing Automata (TGTA) 88 5.2.1 / 0-TGTA . 89 5.2.2 TGTA . 90 5.3 TGTA Construction . 91 5.3.1 From TGBA to / 0-TGTA: Construction of an intermediate / 0-TGTA from a TGBA . 91 5.3.2 From / 0-TGTA to TGTA: Elimination of useless stuttering-transitions (/ 0) without introducing livelock-acceptance Explicit Model checking using TGTA . 96 5.4.1 Synchronous Product of a TGTA with a Kripke Structure 96 5.4.2 Emptiness check (the same as TGBA) . 97 5.5 Experimental evaluation of TGTA . 98 5.5.1 Implementation . 98 5.5.2 Results . 99 5.5.3 Discussion . 107 5.5.4 Experimental Results once the TGBA is improved by simulation-reduction 108 5.6 Conclusion . 108

Chapter 5 .Figure 5 . 1 :

 551 Figure 5.1: An overview of the relations between the different variants of w-automata presented in this thesis.

Figure 5 . 2 :

 52 Figure 5.2: The two steps of the construction of a TGTA from a TGBA.

Chapter 5 .Figure 5 . 3 :

 553 Figure 5.3: An / 0-TGTA (left) and a TGTA (right) for the LTL property j = F G p, with acceptance conditions indicated by the black dot .

Figure 5 .

 5 Figure 5.3a shows an / 0-TGTA recognizing the LTL formula F G p. Acceptance sets are represented using dots as in TGBAs. Transitions are labeled by changesets: e.g., the transition (0, {p}, 1) means that the value of p changes between states 0 and 1. Initial valuations are shown above initial arrows: U(0) = { p}, U(1) = {p} and U(2) = {p}. Any infinite path in this example is accepted if it visits infinitely often, the acceptance transition indicated by the black dot : i.e., the stuttering self-loop (2, / 0, , 2). As an illustration, the infinite word p; p; p; p; . . . is accepted by the run 0 1 2 2 . . . {p} / 0 / 0

5. 3 . 1 92 Chapter 5 .

 31925 From TGBA to / 0-TGTA: Construction of an intermediate / 0-TGTA from a TGBA This first step is similar to the first step of the TA construction and the following first property is the counterpart of Property 3 (i.e., transforming a BA into an / 0-TA presented in Section 3.4 page 42). We construct an / 0-TGTA from a TGBA by moving labels to states, and labeling each transition by the set difference between the labels of its source and destination states. While doing so, we keep the generalized acceptance conditions on the transitions. An example of a constructed / 0-TGTA is shown on Figure 5.4b. Property 8 (Converting TGBA into / 0-TGTA). For any TGBA G = hQ G , I G , d G , F i over the alphabet S = 2 AP and such that L (G) is stutter-invariant, let us define the / 0-TGTA T = Transition-based Generalized Testing Automata (TGTA): A Single-pass and Generalized New Automata a U G b G b ab, a b ab, āb ab, āb (a) Initial TGBA for a U G b. a U G b, a b a b a U G b, ab ab a U G b, āb āb G b, ab G b, āb {b}

Figure 5 . 4 :

 54 Figure 5.4: TGTA obtained after various steps while translating the TGBA representing a U G b, into a TGTA with F = { }.

 hQ

 c) TGTA: After removing all stuttering transitions and adding stuttering self-loops on all states.

Figure 5 . 5 :

 55 Figure 5.5: Elimination of useless stuttering transitions of / 0-TGTA to obtain a TGTA.

Figure 5 . 6 :

 56 Figure 5.6: Example of a Synchronous Product K ⌦ T between a Kripke structure K and a TGTA T recognizing the LTL formula F G p, with acceptance conditions indicated by the black dot .

Figure 5 . 6

 56 Figure 5.6 shows an example of a Synchronous Product between a Kripke structure K and a TGTA T recognizing the LTL formula F G p. Each state of K is numbered and labeled with the set

Figure 5 . 7 :

 57 Figure 5.7: The experiment's architecture in SPOT. Three command-line switches control which one of the approaches is used to verify an LTL formula on a Kripke structure. The new components required by the TGTA approach are outlined in Gray.

Figure 5 . 8 :

 58 Figure 5.8: Performance (number of transitions explored by the emptiness check) of TGTA against TA and TGBA.

1 3 P 4 while P changes do 5 while P changes do 6 P 7 for f in F do 8 PFigure 6 . 1 :

 34567861 Figure 6.1: Forward-variant of OWCTY, a symbolic emptiness check.

Figure 6 . 2 :

 62 Figure 6.2: Time-comparison of the TGBA and TGTA approaches, with saturation enabled "(sat)" or disabled "(nosat)", on a set of 4000 pairs (model, formula). Timeouts and Out-of-memory errors are plotted on separate lines on the top or right edges of the scatter plots. Each plot also displays the number of cases that are above or below the main diagonal (including timeouts and out-of-memory errors), i.e., the number of (model, formula) for which one approach was better than the other. Additional diagonals show the location of ⇥10 and /10 ratios. Points are plotted with transparency to better highlight dense areas, and lessen the importance of outliers.

Figure 6 . 3 :Figure 6 . 4 :

 6364 Figure 6.3: Comparison of the memory-consumption of the TGBA and TGTA approaches, with or without saturation, on the same set of problems.

Figure 6 . 5 :

 65 Figure 6.5: Comparison of TGBA and TGTA approaches, with saturation enabled "(sat)". Timeouts and Out-of-memory errors are plotted on the top or right edges of the scatter plots.

Figure 6 .

 6 Figure 6.3 gives the memory view of this experiment.

Contents 7 . 1

 71 Introduction . 133 7.2 Preliminaries . 134 7.2.1 TGBA labeled with propositional formulas 135 7.2.2 TGTA labeled with propositional formulas 136 7.3 Symbolic Observation Graph (SOG) . 140 7.3.1 SOG . 141 7.3.2 SOG for TGTA (SOG-TGTA) . 142 7.4 Symbolic Observation Product (SOP) . 143 7.4.1 SOP . 143 7.4.2 SOP Using TGTA (SOP-TGTA) . 144 7.5 Self-Loop Aggregation Product (SLAP) . 146 7.5.1 SLAP . 146 7.5.2 SLAP Using TGTA (SLAP-TGTA) . 147 7.6 Experimental Comparison of Hybrid Approaches using TGBA vs. TGTA . . . 148 7.6.1 Implementation . 149 7.6.2 Results . 149 7.6.3 SOG versus SOG-TGTA . 150 7.6.4 SOP versus SOP-TGTA . 151 7.6.5 SLAP versus SLAP-TGTA . 152 7.7 Conclusion . 153

Figure 7 .

 7 Figure 7.1a shows the TGBA of the LTL formula a U b. The transitions are labeled with the propositional formulas a b, b and > (which encodes all the valuations over AP = {a, b}).Using this variant of TGBA, we obtain a new definition of the synchronous product between

Figure 7 .

 7 Figure 7.2c is an illustration of Definition 42. It shows an example of a synchronous product

Figure 7 .

 7 Figure 7.2d shows an example of a SOG-TGTA K 0 {a,b} and Figure 7.2e presents the product

b

 ⌦ are also similar to the SOG transition relation parts for cycle detection.

Figure 7 .

 7 1f shows an example of a SOP G b ⌦ K computed from the Kripke structure K and the TGBA G of a U b. The difference between the SOP and the product G ⌦ b

 We have L (T ⌦ K) 6 = / 0 () L (T b ⌦ K) 6 = / 0 by construction. The set of states Q b ⌦ of a SOP-TGTA is the same as in SOP. But, the transition relation is a little different because it is based on changesets. As in SOP, the transition relation d b ⌦ of SOP-TGTA is composed of three rules. The first rule defines the transitions between aggregates, the second rule is about transitions between aggregates and divergent states, and the third rule is for transitions between divergent states.

Figure 7 .

 7 2f shows an example of a SOP-TGTA T b ⌦ K computed from the Kripke structure K and the TGTA T of a U b. The first difference between the SOP-TGTA T b ⌦ K and the product T ⌦ b

Figure 7 .

 7 Figure 7.1g shows an example of SLAP G ⇥ K obtained from the Kripke structure K and the TGBA G of a U b. The initial state of G ⇥ K is the pair

Figure 7 . 3 :

 73 Figure 7.3: Performance comparison of SOG against SOG-TGTA. Left: time (in seconds); Right: memory (in kilobytes).

Figure 7 . 4 :

 74 Figure 7.4: Performance comparison of SOP against SOP-TGTA. Left: time (in seconds); Right: memory (in kilobytes).

Figure 7 . 5 :

 75 Figure 7.5: Performance comparison of SLAP against SLAP-TGTA. Left: time (in seconds); Right: memory (in kilobytes).

Figure 8 .

 8 1 shows the TGBA and the TGTA for the LTL property j = F G p. A TGTA T for F G p

Figure 8 . 1 :

 81 Figure 8.1: A TGBA (left) and a TGTA (right) for the LTL property j = F G p.

.

Figure 8 . 2 :

 82 Figure 8.2: The two possible cases of stuttering parts of a Kripke structure.

Figure 1 :

 1 Figure 1: L'approche par automates du model checking de formules LTL.

Définition 1 Figure 2 :

 12 Figure 2: (a) TGBA de la propriété LTL j = G F a ^GFb avec conditions d'acceptation F = { , }. (b) Un TGBA de la propriété LTL a U G b avec F = { }.

Figure 3 :

 3 Figure 3: Deux exemples de BA, avec les états acceptants représentés par des doubles cercles. (a) BA de la propriété j = G F a ^GFb obtenu par dégénéralisation du TGBA de la figure 2(a). (b) BA de la propriété a U G b.

 Dans le pire des cas, la dégénéralisation d'un TGBA contenant s états et n conditions d'acceptation permettra d'obtenir un BA avec s ⇥ (n + 1) états. La figure 3 représente les mêmes propriétés que la figure 2, mais exprimées en automates de Büchi. L'automate de la figure 3(a) a été construit par dégénéralisation du TGBA de la figure 2(a), le pire cas de la dégénéralisation a eu lieu ici: en effet, un TGBA contenant 1 état et 2 conditions d'acceptation a été dégénéralisé en un BA contenant 2 + 1 états. La propriété a U G b est plus facile à exprimer: le BA (figure 2(b)) a la même taille que le TGBA.

Définition 4

 4 Soit A et B deux valuations de S, on désigne par A B la différence symétrique (A \ B) [(B \ A), c'est-à-dire l'ensemble des propositions atomiques qui changent (de valeur de vérité) entre A et B (par exemple, a b ab = {b}). Un TA sur l'alphabet S = 2 AP est un sextuplet T = hQ , I ,U, d, F , Gi tels que: • Q est un ensemble fini d'états, BA de a U G b à transformer en TA a U G b, a b a b a U G b, ab ab a U G b, āb āb G Première étape de la construction d'un TA. a U G b, a b a b a U G b, ab ab a U G b, āb āb G b, ab G b,

Figure 4 :

 4 Figure 4: Les étapes de la construction d'un TA à partir d'un BA. Les états de F \ G sont dessinés avec une bordure en double traits pleins, les états de G \ F bordure en double traits pointillés, et les états de F \ G bordure mixte 'trait plein/trait pointillé'. • I ✓ Q est un ensemble d'états initiaux, • U : I ! 2 S est une fonction associant à chaque état initial, un sous-ensemble de valuations de S, • d ✓ Q ⇥ S ⇥ Q est la relation de transition de l'automate, tel que chaque transition (s, k, d) 2 d partant de l'état s vers d est étiquetée par un changeset: k 2 S interprété comme l'ensemble des propositions atomiques qui changent entre s et d. • F ✓ Q est un ensemble d'états Büchi-acceptants, • G ✓ Q est un ensemble d'états livelock-acceptants.On appelle transition bégayante, toute transition étiquetée par un changeset égal à l'ensemble vide ((s, / 0, d) 2 d). Par défaut dans un TA, on a implicitement une boucle bégayante sur chaque état.

 d (le TA exécute une transition explicite), soit k i = k i+1 ^si = s i+1 (l'exécution bégaye et le TA reste dans le même état),• 8i 2 N, (9 j i, k j 6 = k j+1) ^(9l i, s l 2 F) (le chemin visite infiniment souvent des états Büchi-acceptants et des transitions non bégayantes), ou, 9n 2 N, (s n 2 G ^(8i n, s i = s n ^ki = k n)) (le chemin atteint un état livelock-acceptant et reste bloqué dans cet état car l'exécution bégaye à l'infini).Le langage L (T) ✓ S w est l'ensemble des exécutions acceptées par T .Pour illustrer cette définition, considérons la figure4d, représentant le TA de la formule a U G b.

2. 4 . 2

 42 Deuxième étape de la construction d'un TA Afin d'obtenir la forme finale du TA, il faut d'abord calculer toutes les SCCs bégayantes, c'est-à-dire les SCCs composées de transitions étiquetées par / 0. Si une SCC bégayante est aussi acceptante (contenant un état de F), alors tous ses états sont ajoutés à G. En plus, chaque état pouvant atteindre par une séquence de transitions bégayantes un état de G (resp. I) est lui aussi ajouté à G (resp. I). Enfin, on supprime toutes les transitions bégayantes et ensuite tous les état inutiles (à partir desquels on ne peut pas atteindre, ni un cycle Büchi-acceptant, ni un cycle livelock-acceptant). La figure 4c montre le résultat de cette deuxième étape.

Figure 5 :

 5 Figure 5: Transformation du TA de a U G b en STA. Formellement, un automate de type STA est un sextuplet hQ , I ,U, d, F , Gi respectant la définition d'un TA et satisfaisant en plus la contrainte suivante : d\ ((G \ F) ⇥ 2 K ⇥ Q) = / 0.

3. 2 . 2

 22 Construction d'un STA à partir d'un TA (figure 5)

 et elle est formellement définie par la propriété suivante:Propriété 2 A partir d'un automate de type TA T = hQ , I ,U, d, F , Gi, l'automate T 0 = hQ 0 , I 0 ,U 0 , d 0 , F , G 0 i défini ci-après est un STA tel que L (T 0) = L (T), avec: • G 0 = (G \ F) [{g} avec g 6 2 Q est un nouveau état (qui n'a pas de successeurs), • Q 0 = (Q \ G / 0) [{g} avec G / 0 = {s 2 G | ({s} ⇥ K ⇥ Q) \ d = /0} est l'ensemble des états de G qui n'ont pas de successeurs dans d.• I 0 = I [{g} si G \ I 6 = / 0, sinon I 0 = I , • d 0 = (d \ (Q ⇥ K ⇥ G / 0)) [{(s, k, G) | (s, k, d) 2 d, d 2 (G \ F) [G / 0 }, •8s2 I , U 0 (s) = U(s) et si g 2 I 0 ,U 0 (g) = S s2(G\I) U(s).

 Réduction des transitions bégayantes.

Figure 6 :

 6 Figure 6: L'intuition de la réduction des transitions bégayantes dans un TGTA.

3. 2 . 4

 24 Construction d'un STA contenant moins de transitions (plus déterministe) Afin d'obtenir un STA contenant moins de transitions, il est possible de réduire le nombre des états livelockacceptants purs. En effet, lors de la construction d'un TA, les états appartenant à une SCC bégayante et acceptante, sont ajouté à G. Cependant, il est aussi possible d'ajouter ces états à la fois à G et à F car un cycle contenant l'un de ces états est acceptant indépendamment des transitions qui le composent. L'idée de cette optimisation sera formalisé de façon plus claire lors de la section suivante décrivant la construction d'un nouveau type d'automates (TGTA) permettant d'avoir un algorithme d'emptiness check en une seule passe sans l'ajout d'un état artificiel.

Définition 5

 5 Un automate Testeur généralisé sur les transitions (TGTA) est un automate Testeur (sans états livelockacceptants) dans lequel les conditions d'acceptation de Büchi généralisées portent sur les transitions. C'est-à-dire un quintuplet T = hQ , I ,U, d, F i où : • Q est un ensemble fini d'états, • I ✓ Q est un ensemble d'états initiaux, • U : I ! 2 S est une fonction associant à chaque état initial, un sous-ensemble de valuations de S, • F est un ensemble fini d'éléments appelés conditions d'acceptation, • d ✓ Q ⇥ S ⇥ 2 F ⇥ Q est la relation de transition de l'automate (chaque transition (s, k, F, d) partant de l' état s vers d est étiquetée par un «changeset» k ainsi qu'un ensemble de conditions d'acceptation F ✓ F). TGBA de a U G b à transformer en TGTA a U G b, a b a b a U G b, ab ab a U G b, āb āb G TGTA obtenu par la propriété 3. a U G b, a b a b a U G b, ab ab a U G b, āb āb G TGTA obtenu après les simplifications de la propriété 4.

 TGTA après minimisation par bisimulation.

Figure 7 :

 7 Figure 7: Les différentes étapes de la construction d'un TGTA à partir du TGBA représentant a U G b, avec F = { }. • En plus, d doit satisfaire une contrainte de normalisation des transitions bégayantes suivantes: 1. Toutes les transitions bégayantes sont des boucles (self-loops), 2. et tous les états ont une boucle bégayante.

Propriété 3 (

 3 Transformation d'un TGBA en TGTA) À partir d'un TGBA G = hS G , I G , R G , F i sur l'alphabet S = 2 AP tel que L (G) est insensible au bégaiement, on construit un TGTA T = hS T , I T ,U T , R T , F i tels que:S T = S G ⇥ S, I T = I G ⇥ S and (i) 8(s, k) 2 I T , U T ((s, k)) = {k} (ii) 8(s, k) 2 S T , 8(s 0 , k 0) 2 S T , ((s, k), k k 0 , F, (s 0 , k 0)) 2 R T () 9K 2 2 S , ((s, K, F, s 0) 2 R G) ^(k 2 K) Alors L (G) = L (T).

3 .

 3 Soit T † = hQ , I † ,U † , d † , F i le TGTA obtenu après répétition des deux opérations précédentes autant que possible (c'est à dire jusqu'à obtenir un T † contenant toutes les transitions et tous les états initiaux qui peuvent être ajoutés par les deux opérations ci-dessus). Ensuite, on ajoute une boucle bégayante non-acceptante (s, / 0, / 0, s) à chaque état qui ne dispose pas de boucle bégayante (acceptante ou pas), cette opération ne change pas L (T †) car il est insensible au bégaiement. Ainsi, nous pouvons supprimer toutes les transitions bégayantes qui ne sont pas des boucles, car toutes les exécutions acceptantes et bégayantes peuvent être capturées par des boucles bégayantes à la suite de toutes les opérations précédentes. Plus formelement, si on posed 000 = {(s, k, F, d) 2 d † | k 6 = / 0 _ (s = d ^F = F)} [{(s, / 0, / 0, s) | (s, / 0, F , s) 6 2 d † }, alors le TGTA T 000 = hQ , I † ,U † , d 000 , F i est tel que L (T 000) = L (T †) = L (T).

4 .Figure 8 :

 48 Figure 8: Evaluation des performances (en nombre de transitions explorées au cours de l'emptiness check) des TGTA par rapport aux TA et TGBA.

Figure 9 :

 9 Figure 9: Comparaison des approches TGBA et TGTA, avec la saturation désactivée "(nosat)".

Figure 10 :

 10 Figure 10: Comparaison des approches TGBA et TGTA, avec la saturation activée "(sat)".

Figure 11 :

 11 Figure 11: Comparaison des performances de SOG contre SOG-TGTA. À gauche: le temps d'exécution (en secondes); À droite: la quantité de mémoire (en kilobytes).

Figure 12 :

 12 Figure 12: Comparaison des performances de SOP contre SOP-TGTA. À gauche: le temps d'exécution (en secondes); À droite: la quantité de mémoire (en kilobytes).

Figure 13 :

 13 Figure 13: Comparaison des performances de SLAP contre SLAP-TGTA. À gauche: le temps d'exécution (en secondes); À droite: la quantité de mémoire (en kilobytes).

 shows how acc and la are used in the SCC search stack.

	1. The algorithm begins by pushing in SCC each state visited for the first time (line 4), as a
	trivial SCC with an empty acc set (line 22).
	2. Then, when the DFS explores a transition t between two states s and d, if d is in the SCC
	stack (line 11), therefore t closes a cycle passing through s and d in the product automa-
	ton. This cycle "strongly connects" all SCCs pushed in the SCC stack between SCC[i] and
	SCC[n]: the two SCCs that respectively contains the states d and s (SCC[n] is the top of the
	SCC stack).
	3. All the SCCs between SCC[i] and SCC[n] are merged (line 15) into SCC[i]. The merge of
	acceptance conditions is illustrated by Figure 2.13: a "back" transition t is found between
	SCC[n] and SCC[i], therefore the latest SCCs (from i to n) are merged.
	4. The acceptance conditions of the merged SCC is equal to the union of SCC[i].acc [SCC[i + 1].la [SCC[i + 1].acc [••• [SCC[n].la [SCC[n].acc [t.la. If this union is equal to F , then the merged SCC is accepting and the algorithm return false (line 16): the product is not
	empty.
	Figure 2.14 illustrates the successive steps of a run of algorithm 1.

 3

	Evaluation of the Testing Automata
	Approach
	Contents
	3.1 Introduction . 39
	3.2 Stutter-invariant Languages . 40
	3.3 Testing Automata (TA): a natural way to monitor the stuttering 40
	3.4 TA Construction . 42
	3.4.1 From BA to / 0-TA: Construction of an intermediate / 0-TA from a Büchi Au-
	tomaton BA . 44
	3.4.2 From / 0-TA to TA: Elimination of useless stuttering transitions (/ 0) and in-
	troducing livelock-acceptance . 45
	3.4.3 TA Optimizations (that are not yet implemented) 46
	3.5 Explicit Model checking using TA . 47
	3.5.1 Synchronous Product of a TA with a Kripke structure 47
	3.5.2 A two-pass emptiness check algorithm . 48
	3.6 Experimental Comparison of TA versus TGBA and BA 52
	3.6.1 Implementation on top of Spot . 52
	3.6.2 Benchmark Inputs . 53
	3.6.3 Results . 54
	3.6.4 Discussion (TA two-pass emptiness check problem) 61
	3.7 Conclusion . 64

 T is labeled with a changeset over the set of atomic propositions AP = {a, b}. In a TA, states with a double enclosure belong to either F or G: states in F \ G have a double plain line, states in G \ F have a double dashed line (states 2 and 3 of T), and states in F \ G use a mixed dashed/plain style (state 4).• The infinite word ab; āb; ab; āb; ab; āb; ab; . . . is accepted by a Büchi accepting run of T .

	Indeed, a run recognizing such word must start in state 2, then it always changes the value
	of a, so it has to take transitions labeled by {a}. For instance it could be the run 2 4 {a} ! 4 • • • or the run 2 {a} ! 3 {a} ! 4 {a} ! 4 • • • Both visit the state 4 2 F infinitely often, so {a} ! 4 {a} ! they are Büchi accepting.
	• The infinite word ab; āb; āb; āb; . . . is accepted by a livelock accepting run of T . An accept-ing run starts in state 2, then moves to state 4, and stutters on this livelock-accepting state.
	Another possible accepting run goes from state 2 to state 3 and stutters in 3 2 G. • The infinite word ab; a b; ab; a b; ab; a b; . . . is not accepted. It would correspond to a run alternating between states 2 and 1, but such a run is neither Büchi accepting (does not visit
	any F state) nor livelock-accepting (it passes through state 2 2 G, but does not stay into this state continuously).

0

 Data: todo: stack of hstate 2 S ⌦ , succ ✓ d ⌦ i SCC: stack of hroot 2 N, lk 2 2 AP , k 2 2 AP , acc ✓ F ⌦ , rem ✓ S ⌦ i H: map of S ⌦ 7 ! N

	Chapter 3. Evaluation of the Testing Automata Approach 3.5. Explicit Model checking using TA	51
	• a first pass to detect Büchi accepting cycles, it corresponds to Algorithm 2 without the test at line 17,
	max 0
	begin	
	if ¬ first-pass() then return ? ; return second-pass() first-pass() foreach s 0 2 I ⌦ do DFSpush1(/ 0, s 0 Data: todo: stack of hstate 2 S ⌦ , succ ✓ S ⌦ i SCC: stack of hroot 2 N, rem ✓ S ⌦ i H: map of S ⌦ 7 ! N max 0; init I ⌦)while ¬todo.empty() do if todo.top().succ = / second-pass() 0 then DFSpop() else pick one hs, k, di off todo.top().succif d 6 2 H then DFSpush1(k, d) while ¬init.empty() do 0, s 0) ; pick one s 0 off init if s 0 6 2 H then DFSpush2(/ while ¬todo.empty() do if todo.top().succ = / 0 then
	else	DFSpop() else if H[d] > 0 then merge1(k, H[d])if (SCC.top().acc 6 = / 0) (SCC.top().k 6 = / 0) then return ?; if (d 2 G ⌦) ^(SCC.top().k = / pick one d off todo.top().succ if d 6 2 H then DFSpush2(d) 0) then return ? ; else if H[d] > 0 then
	merge2(H[d]) if (d 2 G ⌦) then return ? ; DFSpush1(lk 2 2 AP , s 2 S ⌦) return > max max + 1 H[s] max return > DFSpush2(s 2 S ⌦) max max + 1 if s 2 F ⌦ then SCC.push(hmax, lk, / 0, {s}, / H[s] max 0i) SSCC.push(hmax, / 0i) else SCC.push(hmax, lk, / 0, / 0, / 0i) todo.push(hs, {d 2 S ⌦ | (s, / 0, d) 2 d ⌦ }i) init init [{d 2 S ⌦ | (s, k, d) 2 d ⌦ ^k 6 = / 0} todo.push(hs, {hq, k, di 2 d ⌦ | q = s}i) merge1(lk 2 2 AP , t 2 N) acc / merge2(t 2 N) r / 0 0 r / while t < SCC.top().root do 0 k lk r r [SCC.top().rem SCC.pop() while t < SCC.top().root do acc acc [SCC.top().acc SCC.pop() r r [SCC.top().rem k k [SCC.top().k [SCC.top().lk SCC.top().rem SCC.top().rem [r Algorithm 3: The second-pass of the TA emptiness check algorithm.
	SCC.top().acc SCC.top().acc [acc SCC.top().k SCC.top().k [k SCC.top().rem SCC.top().rem [r
	Algorithm 2: The first-pass of the Emptiness check algorithm for TA products, see Algorithm 3
	for the second-pass.

Table 3 .

 3 1 and Table 3.2 show how BA, TGBA and TA approaches deal with toy models and random formulas.

						Verified properties (no counterexample)	
				Automaton		Full product	Emptiness check
			st.	tr.	T j	st.	tr.	st.	tr.	T
	Peterson5	BA TGBA TA	avg max 82 13 avg 12 max 54 avg 83 max 509 37 096 242 9 384 663 502 0 2 791 685 2 827 7 11 010 896 108 553 439 11 010 896 108 553 439 14 311 851 2 791 685 14 311 851 460 1 2 753 024 14 166 594 2 753 024 14 166 594 2 816 6 11 010 896 108 553 439 11 010 896 108 553 439 4 324 12 2 600 539 10 293 714 5 201 077 20 587 428 42 614 845 18 769 326 85 229 690	656
	Ring6	BA TGBA	avg max 49 13 avg 12 max 49	448 3 788 411 3 788	0 1 467 181 4 4 272 666 0 1 398 021 4 4 269 384	10 533 598 50 547 840 10 139 043 50 547 840	1 467 181 4 272 666 1 398 021 4 269 384	10 533 598 50 547 840 10 139 043 50 547 840	325
		TA	avg max 509 25 773 151 2 851 152 69 3 118 9 1 097 667	6 606 130 19 625 864	2 195 333 5 702 304	13 212 259 39 251 728
	FMS5	BA TGBA	avg max 31 10 avg 9 max 28	267 2 612 245 2 612	0 2 077 187 4 9 132 417 0 2 038 054 4 9 132 417	15 144 149 89 397 363 15 037 218 89 397 363	2 077 187 9 132 417 2 038 054 9 132 417	15 144 149 89 397 363 15 037 218 89 397 363	017
		TA	avg max 282 11 007 100 6 109 887 48 1 643 5 1 401 286	11 000 449 54 324 903 12 219 774 108 649 806 2 802 572 22 000 898
	Kanban5	BA TGBA TA	avg max 94 9 avg 8 max 60 avg 44 max 277 21 251 185 1 994 166 1 994 1 659	0 3 494 358 4 22 360 464 282 849 140 22 360 464 282 849 140 33 955 856 3 494 358 33 955 856 0 3 356 053 32 800 737 3 356 053 32 800 737 4 20 253 072 258 315 134 20 253 072 258 315 134 3 2 433 853 23 389 805 4 867 707 46 779 609 82 15 272 712 161 364 553 30 545 424 322 729 106	253
	Philo10	BA TGBA	avg max 81 16 avg 14 max 81	705 5 995 636 5 397	1 4 952 039 7 18 399 098 121 269 824 18 399 098 121 269 824 29 080 163 4 952 039 29 080 163 1 4 668 178 27 564 474 4 668 178 27 564 474 6 17 947 837 119 545 256 17 947 837 119 545 256	352
		TA	avg max 412 55 321 232 8 378 151 71 4 092 20 2 334 154	19 893 200 74 240 975 16 756 302 148 481 950 4 668 308 39 786 400
	Robin15	BA TGBA	avg max 100 16 avg 15 max 82	717 7 680 664 5 792	1 2 776 200 4 15 198 075 238 617 470 15 198 075 238 617 470 31 544 574 2 776 200 31 544 574 0 2 682 881 30 981 263 2 682 881 30 981 263 4 13 129 644 225 905 117 13 129 644 225 905 117	192
		TA	avg max 481 43 547 143 8 169 472 95 6 048 15 2 027 251	17 168 855 68 645 888 16 338 944 137 291 776 4 054 503 34 337 710

Table 3 .

 3 1: Comparison of the three approaches on toy examples with random formulae, when counterexamples do not exist.

						Violated properties (a counterexample exists)
				Automaton		Full product	Emptiness check
			st.	tr.	T j	st.	tr.	st.	tr.	T
	Peterson5	BA TGBA TA	avg max 70 17 avg 14 max 47 avg 90 max 656 62 947 132 56 166 663 224 108 070 3 178 506 738 1 8 591 425 45 706 072 608 443 3 568 5 50 366 303 365 239 596 3 599 887 646 0 8 118 953 42 865 329 600 828 3 392 5 50 297 469 364 396 821 3 632 979 5 683 15 8 592 222 33 972 863 546 562	2 310 272 21 728 436 2 325 266 22 095 045 1 886 028 11 478 152	667
	Ring6	BA TGBA	avg max 64 20 avg 17 max 51	832 4 460 713 3 788	1 3 11 012 779 123 266 244 6 792 681 3 378 684 28 026 221 876 552 1 3 163 763 26 260 802 854 229 4 9 855 589 108 310 156 5 914 415	5 897 370 70 374 257 5 805 080 65 020 741
		TA	avg 125 max 472 41 068 162 7 462 14	2 846 468 8 960 960	18 131 253 62 840 996 4 923 301 650 592	3 881 701 36 659 892	170
	FMS5	BA TGBA	avg max 104 16 avg 14 max 96	553 4 524 496 4 200	1 10 949 858 101 710 172 1 765 510 3 42 512 695 432 252 072 14 455 789 120 456 128 11 843 265 1 10 174 866 95 061 682 1 602 719 10 636 471 3 40 672 843 404 072 123 11 075 871 110 774 947
		TA	avg max 390 22 702 90 4 112	9 79 31 864 749 267 656 316 8 518 894 8 418 689 70 784 299 1 051 522	7 742 600 63 178 516	956
	Kanban5	BA TGBA TA	avg max 87 15 avg 13 max 87 avg 75 max 473 30 375 391 2 696 355 2 184 2 870	1 11 646 608 127 363 073 1 204 137 4 43 038 083 587 543 197 13 023 468 185 410 581 9 094 855 0 10 952 627 119 272 618 1 153 850 8 728 297 3 43 038 083 587 543 197 13 023 468 185 410 581 6 8 429 948 83 120 910 670 472 5 873 480 92 31 602 068 331 833 407 7 673 335 77 364 100	224
	Philo10	BA TGBA	avg max 74 14 avg 13 max 74	641 5 928 590 5 928	0 20 491 935 206 666 412 1 551 357 4 84 068 722 1 377 479 362 9 032 250 0 19 118 012 195 258 228 1 518 296 3 84 068 722 1 377 479 362 9 032 250	7 673 496 53 881 112 7 522 623 53 881 112
		TA	avg max 356 46 498 170 66 535 322 696 331 784 7 342 016 92 5 690 14 16 012 398 148 019 289 900 840	6 499 314 64 470 840	545
	Robin15	BA TGBA	avg max 84 24 avg 21 max 74	1 113 5 928 965 5 928	1 6 17 192 350 282 229 101 13 627 374 191 356 248 5 866 595 71 526 501 1 719 685 18 722 554 1 5 514 573 67 871 153 1 676 314 18 343 280 7 15 127 431 281 880 971 13 627 374 191 356 248
		TA	avg 164 11 366 max 854 62 419 107 11 791 872 104 488 704 7 767 216 21 4 869 334 41 343 229 1 249 161	10 420 582 74 241 202	052

Table 3 .

 3 2: Comparison of the three approaches on toy examples with random formulae, when counterexamples exist.

						Verified properties (no counterexample)	
				Automaton		Full product	Emptiness check
			st.	tr.	T j	st.	tr.	st.	tr.	T
	Peterson5	BA TGBA TA	avg max 32 9 avg 4 max 17 avg 50 max 184	93 494 52 357 564 3 362	0 3 530 202 2 14 572 104 105 106 990 14 572 104 105 106 990 17 259 383 3 530 202 17 259 383 0 3 071 854 15 745 483 3 071 854 15 745 483 2 9 551 018 87 453 872 9 551 018 87 453 872 1 3 018 533 11 771 410 6 037 065 23 542 820 3 10 750 205 42 228 050 21 500 410 84 456 100	163
	Ring6	BA TGBA	avg 1 0 max 34 avg 5 max 25	104 494 64 357	0 1 565 890 2 4 945 096 0 1 121 590 2 3 873 576	9 845 113 44 945 800 7 920 270 38 047 692	1 565 890 4 945 096 1 121 590 3 873 576	9 845 113 44 945 800 7 920 270 38 047 692	903
		TA	avg max 183 58	682 3 353	1 1 118 511 3 3 383 372	6 494 556 22 481 284	2 237 021 6 766 744	12 989 111 44 962 568
	FMS5	BA TGBA	avg max 25 9 avg 4 max 12	84 340 41 212	1 3 966 306 2 14 865 917 130 390 060 14 865 917 130 390 060 28 568 464 3 966 306 28 568 464 0 3 030 750 23 589 355 3 030 750 23 589 355 2 11 882 973 114 787 553 11 882 973 114 787 553	674
		TA	avg max 171 48	515 4 256	1 2 259 230 3 9 764 223	17 600 147 79 707 273 19 528 446 159 414 546 4 518 460 35 200 294
	Kanban5	BA TGBA TA	avg max 32 8 avg 4 max 21 avg 36 max 140	62 221 33 168 306 2 049	0 3 784 743 2 15 768 592 198 359 739 15 768 592 198 359 739 33 114 074 3 784 743 33 114 074 1 3 098 615 29 435 137 3 098 615 29 435 137 2 13 014 212 187 004 177 13 014 212 187 004 177 1 2 083 777 19 156 589 4 167 555 38 313 178 2 11 039 112 106 534 190 22 078 224 213 068 380	712
	Philo10	BA TGBA	avg max 31 9 avg 4 max 21	80 547 35 216	0 5 478 383 1 16 695 369 140 088 618 16 695 369 140 088 618 33 455 338 5 478 383 33 455 338 0 4 255 979 26 793 678 4 255 979 26 793 678 2 12 974 557 112 561 242 12 974 557 112 561 242	064
		TA	avg max 289 47	501 8 199	1 3 229 690 6 10 987 384	27 631 036 94 141 317 21 974 768 188 282 634 6 459 379 55 262 071
	Robin15	BA TGBA	avg max 38 9 avg 5 max 16	98 608 59 337	0 2 262 431 1 5 849 069 0 1 782 133 1 5 029 881	20 634 259 76 754 676 17 996 764 70 344 648	2 262 431 5 849 069 1 782 133 5 029 881	20 634 259 76 754 676 17 996 764 70 344 648	749
		TA	avg max 239 54	618 3 706	1 1 508 082 4 3 944 448	12 171 559 32 391 168	3 016 163 7 888 896	24 343 119 64 782 336

Table 3 .

 3 3: Comparison of the three approaches on toy examples with weak-fairness formulae, when counterexamples do not exist.

						Violated properties (a counterexample exists)	
				Automaton		Full product	Emptiness check
			st.	tr.	T j	st.	tr.	st.	tr.	T
	Peterson5	BA TGBA TA	avg max 74 12 avg 5 max 18 avg 95 max 350	184 1 338 78 351 1 400 5 968	1 2 34 771 276 235 328 943 7 043 181 9 604 699 42 508 151 654 497 0 3 731 947 17 751 951 522 414 2 13 508 730 79 589 415 3 696 481 1 10 950 499 42 790 086 641 997 8 30 354 888 120 985 972 7 637 347	2 230 146 27 266 804 1 759 041 16 733 420 2 123 401 29 621 420	438
	Ring6	BA TGBA	avg max 70 18 avg 7 max 38	291 2 248 123 1 168	1 3 1 3	4 076 877 6 924 114 2 000 787 4 670 124	30 760 035 1 312 236 96 086 800 3 706 323 15 868 857 890 567 53 246 768 2 766 283	7 496 631 34 372 404 5 736 568 26 917 302	410
		TA	avg 128 max 388 12 783 2 009	2 13	3 456 785 6 152 232	21 069 783 43 283 696 2 747 578 905 280	5 156 350 17 464 827
	FMS5	BA TGBA	avg max 46 12 avg 5 max 23	139 550 68 370	0 13 634 313 123 924 884 1 623 286 2 38 283 058 436 545 323 11 138 596 0 7 978 129 75 701 408 1 372 877 2 27 570 312 293 219 919 6 676 584	8 873 430 82 531 874 7 544 397 53 451 994
		TA	avg max 245 71	871 3 766	1 10 007 988 5 27 733 464 249 573 778 6 425 987 81 736 556 845 087	5 687 307 51 962 113	471
	Kanban5	BA TGBA TA	avg max 34 12 avg 5 max 17 avg 69 max 237	133 501 66 305 849 3 655	1 11 528 567 115 461 763 1 541 122 2 34 735 366 497 454 792 12 460 358 113 423 964 10 510 834 0 7 040 236 73 867 374 1 344 870 9 279 129 2 25 423 161 388 961 954 7 950 633 80 041 971 1 8 102 548 77 515 606 809 384 6 986 502 5 32 732 392 329 125 090 5 501 242 53 375 472	440
	Philo10	BA TGBA	avg max 44 12 avg 5 max 25	148 688 69 392	0 20 724 516 190 232 774 1 144 023 3 52 231 021 996 567 139 7 775 968 0 10 515 366 102 622 810 833 663 3 24 496 745 402 197 001 5 017 174	5 417 407 45 330 784 3 762 217 32 273 634	357
		TA	avg max 267 81	1 027 4 339	1 16 779 360 150 030 607 6 43 186 049 394 172 486 6 703 064 743 065	5 019 598 55 546 036
	Robin15	BA TGBA	avg max 73 21 avg 9 max 44	356 2 248 157 1 168	1 2 23 830 436 327 588 082 8 911 386 101 808 220 7 007 406 78 083 493 1 916 523 16 640 621 1 4 006 015 46 910 526 1 486 839 14 360 747 2 14 802 883 195 152 925 5 666 009 78 112 291
		TA	avg 143 max 466 12 783 2 467	2 12 18 204 684 151 155 748 6 486 142 5 832 674 48 201 707 1 347 956	10 786 002 53 115 008	257

Table 3 .

 3 4: Comparison of the three approaches on toy examples with weak-fairness formulae, when counterexamples exist.

								Verified properties (no counterexample)
						Automaton		Full product	Emptiness check
					st.	tr.	T j	st.	tr.	st.	tr.	T
			BA	avg max 136 18	781 7 680	1 5	111 714 373 039	337 573 2 138 028	111 714 373 039	337 573 2 138 028	612 2 097
		RND	TGBA	avg max 136 16	715 5 792	1 4	109 158 373 039	328 976 2 138 028	109 158 373 039	328 976 2 138 028	601 2 207
	PolyORB 3/3/2	WFair	TA BA TGBA	avg max 481 43 547 196 94 5 768 17 avg 11 157 0 max 71 1 294 2 avg 5 72 0 max 18 337 2	94 283 261 318 132 102 799 355 96 435 368 898	205 464 604 061 369 787 2 630 204 277 426 1 450 005	188 566 522 636 132 102 799 355 96 435 368 898	410 928 1 208 122 369 787 2 630 204 277 426 1 450 005	1 037 2 847 713 4 339 524 2 049
			TA	avg max 351 79	1 106 5 920	1 9	120 479 633 208	262 456 1 408 943 1 266 416 240 958	524 913 2 817 886	1 302 6 806
			BA	-	7	576	1	345 241	760 491	345 241	760 491	1 675
		F 1	TGBA -	7	576	1	345 241	760 491	345 241	760 491	1 688
			TA	-	80 14 590	8	342 613	742 815	685 226	1 485 630	3 391
			BA	avg max 79 12	374 3 813	1 2 894 799 5 13 636 352 147 555 158 13 636 352 147 555 158 29 292 25 769 242 2 894 799 25 769 242 5 477
		RND	TGBA	avg max 64 10	333 3 813	1 2 808 973 5 13 636 352 147 555 158 13 636 352 147 555 158 28 979 25 212 509 2 808 973 25 212 509 5 325
			TA	avg max 336 22 614 146 8 469 258 108 847 708 16 938 516 217 695 416 53 824 50 2 239 9 1 724 291 20 203 618 3 448 582 40 407 237 9 591
	MAPK 8	WFair	BA TGBA	avg 1 0 max 46 avg 5 max 21	82 437 39 198	0 4 290 714 2 17 600 440 177 748 756 17 600 440 177 748 756 33 063 38 013 034 4 290 714 38 013 034 7 887 0 3 898 645 34 822 961 3 898 645 34 822 961 7 344 2 14 452 198 162 156 912 14 452 198 162 156 912 31 117
			TA	avg max 171 44	407 1 920	1 2 112 810 3 6 110 748	24 492 299 4 225 619 75 624 744 12 221 496 151 249 488 40 347 48 984 598 12 092
			BA	-	6	165	0	46 494	302 350	46 494	302 350	45
		F 2	TGBA -	6	165	1	46 494	302 350	46 494	302 350	50
			TA	-	9	293	2	33 376	289 235	66 752	578 470	95

Table 3 .

 3 5: Comparison of the three approaches for the case studies when counterexamples do not exist.

							Violated properties (a counterexample exists)	
					Automaton		Full product	Emptiness check
				st.	tr.	T j	st.	tr.	st.	tr.	T
			BA	avg max 74 15	839 7 004	1 11	137 958 1 520 649	397 495 5 898 222	54 412 192 692	130 427 514 905	294 1 088
		RND	TGBA	avg max 65 14	760 7 004	1 9	132 232 1 295 661	380 305 5 045 814	53 901 192 692	128 960 514 905	291 1 049
	PolyORB 3/3/2	WFair	TA BA TGBA	avg max 540 59 971 631 81 6 223 29 avg 11 150 0 max 43 788 2 avg 5 66 0 max 22 516 2	135 237 1 377 784 190 987 604 611 96 849 432 240	296 081 2 976 709 472 205 1 951 062 258 704 1 584 372	56 518 243 950 112 918 328 442 69 053 193 264	126 300 547 459 279 490 1 419 816 177 391 1 031 898	310 1 324 600 1 794 372 1 110
			TA	avg max 262 82	1 157 4 636	1 6	201 879 560 685	434 747 1 194 198	113 705 254 328	250 573 594 751	612 1 330
			BA	avg max 61 15	578 4 398	1 29 980 338 454 492 066 1 939 885 2 141 058 746 2 921 365 220 13 284 206 120 933 281 24 053 13 406 649 2 890
		RND	TGBA	avg max 59 13	513 4 298	1 27 266 223 405 363 157 1 850 695 2 91 059 214 1 963 331 216 13 284 206 111 916 150 21 771 12 575 125 2 702
			TA	avg max 334 35 401 164 90 049 281 1 300 904 178 5 241 327 88 4 818 13 22 458 466 298 950 743 967 363	9 259 668 61 655 512 13 808 2 346
	MAPK 8	WFair	BA TGBA	avg max 46 13 avg 6 max 23	176 541 81 414	0 34 857 814 493 530 217 2 249 726 2 111 139 060 1 700 666 096 15 349 474 123 057 668 26 758 16 186 296 3 515 0 20 904 101 300 416 331 1 962 765 13 896 236 3 129 2 101 813 441 1 681 905 871 9 463 562 72 266 873 16 928
			TA	avg max 245 88	1 212 3 749	1 27 535 941 358 622 897 1 112 324 4 93 441 682 1 258 076 980 5 203 746	11 462 361 59 642 346 14 489 2 869

Table 3 .

 3 6: Comparison of the three approaches for the case studies when counterexamples exist.3.6. Experimental Comparison of TA versus TGBA and BATable 3.3 and Table

 Figure 4.4: The experiment's architecture. The transformation of TA into STA is represented by the block "TA2TA + ". Two command-line switches control which one of the different approaches is used to verify an LTL formula on a Kripke structure.

	Kripke Structure			LTL2TGBA	LTL Formula
				TGBA2BA
	Synchr.		Synchr.	
	Product		Product 2	
				BA2TA
	Emptiness Check	TRUE or counterexample	Emptiness Check 2	TA2TA +

Table 4 .

 4 1: Comparison of the three approaches on toy examples with random formulae, when counterexamples do not exist.

						Violated properties (a counterexample exists)
				Automaton		Full product	Emptiness check
			st.	tr.	T j	st.	tr.	st.	tr.	T
	Peterson5	TGBA TA STA	avg max 47 14 avg 90 max 656 62 947 134 56 166 663 224 108 070 3 178 506 646 0 8 118 953 42 865 329 600 828 3 392 5 50 297 469 364 396 821 3 632 979 5 683 15 8 592 222 33 972 863 546 562 avg 91 6 824 17 9 035 627 35 735 598 590 613 max 657 69 867 146 56 483 288 225 386 395 3 644 229	2 325 266 22 095 045 1 886 029 11 478 151 2 053 508 13 374 186	683
	Ring6	TGBA TA	avg max 51 17 avg 125 max 472 41 068 162 713 1 3 788 4 7 462 15	3 163 763 9 855 589 108 310 156 5 914 415 26 260 802 854 229 2 846 468 18 131 253 646 844 8 960 960 62 840 996 4 923 301	5 805 080 65 020 741 3 858 721 36 659 892	198
		STA	avg 126 max 473 52 838 180 8 960 17	3 160 137 9 204 480	20 284 936 67 482 964 5 041 865 728 890	4 365 527 38 542 138
	FMS5	TGBA TA	avg max 96 14 avg 90 max 390 22 702 496 4 200 4 112	1 10 174 866 3 40 672 843 404 072 123 11 075 871 110 774 947 95 061 682 1 602 719 10 636 471 9 8 418 689 70 784 299 1 044 896 7 693 244 78 31 864 749 267 656 316 8 518 894 63 178 516
		STA	avg max 391 26 803 91 4 855	11 84 34 082 475 286 582 247 7 336 271 9 021 110 75 667 584 1 033 999	7 665 018 61 123 648	979
	Kanban5	TGBA TA STA	avg max 87 13 avg 75 max 473 30 375 355 2 184 2 870 avg 76 3 353 max 474 38 397	0 10 952 627 119 272 618 1 153 850 3 43 038 083 587 543 197 13 023 468 185 410 581 8 728 297 6 8 429 948 83 120 910 670 172 5 871 206 94 31 602 068 331 833 407 7 673 335 77 363 942 7 9 248 939 90 946 642 670 376 5 873 036 99 34 070 884 364 831 218 7 673 335 77 363 941	260
	Philo10	TGBA TA	avg max 74 13 avg 92 max 356 46 498 164 66 535 322 696 331 784 7 342 016 590 0 19 118 012 195 258 228 1 518 296 5 928 3 84 068 722 1 377 479 362 9 032 250 5 690 14 16 012 398 148 019 289 900 960	7 522 623 53 881 112 6 499 587 64 470 840
		STA	avg max 357 55 042 187 70 986 407 759 461 806 7 340 801 93 6 676 16 17 277 606 159 696 150 870 692	6 437 341 64 469 273	528
	Robin15	TGBA TA	avg max 74 21 avg 164 11 366 965 5 928 max 854 62 419 115 11 791 872 104 488 704 7 767 216 1 5 514 573 67 871 153 1 676 314 7 15 127 431 281 880 971 13 627 374 191 356 248 18 343 280 21 4 869 334 41 343 229 1 248 873 10 418 682 74 241 202	110
		STA	avg 165 13 727 max 855 80 513 134 12 072 448 108 812 032 8 860 848 23 5 452 751 46 556 753 1 497 531	12 536 773 85 541 043

Table 4 .

 4 2: Comparison of the three approaches on toy examples with random formulae, when counterexamples exist.

								Verified properties (no counterexample)	
						Automaton		Full product	Emptiness check
					st.	tr.	T j	st.	tr.	st.	tr.	T
			TGBA	avg max 136 16	715 5 792	1 4	109 158 373 039	328 976 2 138 028	109 158 373 039	328 976 2 138 028	601 2 207
		RND	TA	avg max 481 43 547 183 94 5 768 17	94 283 261 318	205 464 604 061	158 401 522 636	346 203 1 208 122	867 2 753
	PolyORB 3/3/2	WFair	STA TGBA TA	avg max 482 47 171 248 95 6 854 20 avg 5 72 0 max 18 337 2 avg 79 1 106 1 max 351 5 920 8	103 955 279 251 96 435 368 898 120 479 633 208	227 203 687 246 277 426 1 450 005 262 456 1 408 943	103 955 279 251 96 435 368 898 121 096 633 208	227 203 687 246 277 426 1 450 005 263 776 1 408 943	570 1 534 524 2 049 652 3 359
			STA	avg max 352 80	1 145 6 072	1 8	120 483 633 208	262 464 1 408 943	120 483 633 208	262 464 1 408 943	651 3 373
			TGBA -	7	576	1	345 241	760 491	345 241	760 491	1 688
		F 1	TA	-	80 14 590	8	342 613	742 815	685 226	1 485 630	3 374
			STA -	81 17 110	12	348 499	760 788	348 499	760 788	1 716
			TGBA	avg max 64 10	333 3 813	1 2 808 973 5 13 636 352 147 555 158 13 636 352 147 555 158 28 979 25 212 509 2 808 973 25 212 509 5 325
		RND	TA	avg max 336 22 614 149 8 469 258 108 847 708 8 469 258 108 847 708 25 029 50 2 239 9 1 724 291 20 203 618 1 724 291 20 203 618 4 852
			STA	avg max 337 26 522 170 8 469 258 108 847 708 8 469 258 108 847 708 25 445 51 2 702 10 1 724 291 20 203 618 1 724 291 20 203 618 4 813
	MAPK 8	WFair	TGBA TA	avg max 21 5 avg 44 max 171	39 198 407 1 920	0 3 898 645 2 14 452 198 162 156 912 14 452 198 162 156 912 31 117 34 822 961 3 898 645 34 822 961 7 344 1 2 112 810 24 492 299 2 112 810 24 492 299 6 126 3 6 110 748 75 624 744 6 110 748 75 624 744 20 653
			STA	avg max 172 44	422 2 012	1 2 112 810 3 6 110 748	24 492 299 2 112 810 75 624 744 6 110 748	24 492 299 75 624 744 18 566 6 067
			TGBA -	6	165	1	46 494	302 350	46 494	302 350	50
		F 2	TA	-	9	293	2	33 376	289 235	33 376	289 235	50
			STA -	10	415	1	33 376	289 235	33 376	289 235	51

Table 4 .

 4 3: Comparison of the three approaches for the case studies when counterexamples do not exist.

							Violated properties (a counterexample exists)
					Automaton		Full product	Emptiness check
				st.	tr.	T j	st.	tr.	st.	tr.	T
			TGBA	avg max 65 14	760 7 004	1 9	132 232 1 295 661	380 305 5 045 814	53 901 192 692	128 960 514 905	291 1 049
		RND	TA	avg max 540 59 971 574 81 6 223 29	135 237 1 377 784	296 081 2 976 709	56 518 243 950	126 300 547 459	311 1 284
	PolyORB 3/3/2	WFair	STA TGBA TA	avg max 541 72 599 759 82 7 771 33 avg 5 66 0 max 22 516 2 avg 82 1 157 1 max 262 4 636 5	148 699 1 438 600 96 849 432 240 201 879 560 685	325 993 3 109 093 258 704 1 584 372 434 747 1 194 198	58 989 253 761 69 053 193 264 113 705 254 328	131 829 570 216 177 391 1 031 898 250 573 594 751	324 1 373 372 1 110 615 1 358
			STA	avg max 263 83	1 197 4 674	1 5	202 820 560 685	436 769 1 194 198	114 335 254 328	251 969 594 751	617 1 392
			TGBA	avg max 59 13	513 4 298	1 27 266 223 405 363 157 1 850 695 2 91 059 214 1 963 331 216 13 284 206 111 916 150 21 771 12 575 125 2 702
		RND	TA	avg max 334 35 401 165 90 049 281 1 300 904 178 5 241 327 88 4 818 13 22 458 466 298 950 743 965 567	9 245 311 61 655 512 14 227 2 392
			STA	avg max 335 42 297 184 91 186 725 1 328 333 534 5 241 327 89 5 658 15 23 784 395 315 527 818 967 140	9 251 558 61 655 512 14 256 2 389
	MAPK 8	WFair	TGBA TA	avg max 23 6 avg 88 max 245	81 414 1 212 3 749	0 20 904 101 300 416 331 1 962 765 2 101 813 441 1 681 905 871 9 463 562 1 27 535 941 358 622 897 1 112 324 5 93 441 682 1 258 076 980 5 203 746	13 896 236 72 266 873 16 928 3 129 11 462 361 3 002 59 642 346 16 992
			STA	avg max 246 89	1 252 3 796	1 28 387 255 372 261 767 1 110 154 4 94 454 379 1 279 166 220 5 203 741	11 456 800 59 642 337 15 180 3 007

Table 4 .

 4 4: Comparison of the three approaches for the case studies when counterexamples exist. 4.4. Experimental evaluation of the TA improved emptiness check and of STA 81

						Verified properties (no counterexample)	
				Automaton		Full product	Emptiness check
			st.	tr.	T j	st.	tr.	st.	tr.	T
	Peterson5	TGBA TA STA	avg max 17 4 avg 50 max 184 avg 51 max 185	52 357 564 3 362 589 3 456	0 3 071 854 2 9 551 018 1 3 018 533 4 10 750 205 1 3 018 776 4 10 750 205	15 745 483 87 453 872 11 771 410 42 228 050 11 867 218 3 071 854 9 551 018 3 436 223 11 772 694 3 018 776 42 228 050 10 750 205	15 745 483 87 453 872 13 401 691 47 116 180 11 772 694 42 228 050	870
	Ring6	TGBA TA	avg max 25 5 avg 58 max 183	64 357 682 3 353	0 1 121 590 2 3 873 576 1 1 118 511 3 3 383 372	7 920 270 38 047 692 6 494 556 22 481 284	1 121 590 3 873 576 1 774 991 6 766 744	7 920 270 38 047 692 10 328 239 44 962 568	903
		STA	avg max 184 59	712 3 447	1 1 126 059 4 3 386 972	6 547 031 22 595 612	1 126 059 3 386 972	6 547 031 22 595 612
	FMS5	TGBA TA	avg max 12 4 avg 48 max 171	41 212 515 4 256	0 3 030 750 2 11 882 973 114 787 553 11 882 973 114 787 553 23 589 355 3 030 750 23 589 355 1 2 259 230 17 600 147 2 259 230 17 600 147 3 9 764 223 79 707 273 9 764 223 79 707 273
		STA	avg max 172 49	534 4 367	1 2 259 230 4 9 764 223	17 600 147 79 707 273	2 259 230 9 764 223	17 600 147 79 707 273	561
	Kanban5	TGBA TA STA	avg max 21 4 avg 36 max 140 avg 36 max 141	33 168 306 2 049 315 2 120	1 3 098 615 2 13 014 212 187 004 177 13 014 212 187 004 177 29 435 137 3 098 615 29 435 137 1 2 083 777 19 156 589 2 083 777 19 156 589 3 11 039 112 106 534 190 11 039 112 106 534 190 1 2 083 777 19 156 589 2 083 777 19 156 589 3 11 039 112 106 534 190 11 039 112 106 534 190	059
	Philo10	TGBA TA	avg max 21 4 avg 47 max 289	35 216 501 8 199	0 4 255 979 2 12 974 557 112 561 242 12 974 557 112 561 242 26 793 678 4 255 979 26 793 678 1 3 229 690 27 631 036 3 229 690 27 631 036 6 10 987 384 94 141 317 10 987 384 94 141 317	439
		STA	avg max 290 48	524 8 346	1 3 229 690 6 10 987 384	27 631 036 94 141 317 10 987 384 3 229 690	27 631 036 94 141 317
	Robin15	TGBA TA	avg max 16 5 avg 54 max 239	59 337 618 3 706	0 1 782 133 1 5 029 881 1 1 508 082 4 3 944 448	17 996 764 70 344 648 12 171 559 32 391 168	1 782 133 5 029 881 1 802 576 7 098 368	17 996 764 70 344 648 14 591 484 61 216 768
		STA	avg max 240 54	642 3 763	1 1 520 057 4 3 944 448	12 265 094 32 391 168	1 520 057 3 944 448	12 265 094 32 391 168	897

Table 4 .

 4 5: Comparison of the three approaches on toy examples with weak-fairness formulae, when counterexamples do not exist.

						Violated properties (a counterexample exists)
				Automaton		Full product	Emptiness check
			st.	tr.	T j	st.	tr.	st.	tr.	T
	Peterson5	TGBA TA STA	avg max 18 5 avg 95 max 350 avg 95 max 351	78 351 1 400 5 968 1 448 6 120	0 2 13 508 730 3 731 947 2 10 950 499 13 30 354 888 120 985 972 7 637 347 17 751 951 522 414 79 589 415 3 696 481 42 790 086 641 997 1 10 951 464 42 793 386 642 215 9 30 354 888 120 985 972 7 637 348	1 759 041 16 733 420 2 123 401 29 621 420 2 124 081 29 621 421	438
	Ring6	TGBA TA	avg max 38 7 avg 128 max 388 12 783 123 1 168 2 009	1 3 2 14	2 000 787 4 670 124 3 456 785 6 152 232	15 868 857 53 246 768 2 766 283 890 567 21 069 783 905 265 43 283 696 2 747 578	5 736 568 26 917 302 5 156 327 17 464 827	410
		STA	avg 129 max 389 12 873 2 063	2 14	3 459 344 6 160 248	21 101 063 43 438 480 2 747 578 907 368	5 174 029 17 464 827
	FMS5	TGBA TA	avg max 23 5 avg 71 max 245	68 370 871 3 766	0 2 27 570 312 293 219 919 6 676 584 7 978 129 75 701 408 1 372 877 1 10 007 988 81 736 556 848 557 5 27 733 464 249 573 778 6 425 987	7 544 397 53 451 994 5 707 348 51 962 113
		STA	avg max 246 71	900 3 766	1 10 128 248 4 27 733 464 249 573 778 6 425 987 82 964 077 841 164	5 667 421 51 962 113	511
	Kanban5	TGBA TA STA	avg max 17 5 avg 69 max 237 avg 70 max 238	66 305 849 3 655 875 3 710	0 2 25 423 161 388 961 954 7 950 633 7 040 236 73 867 374 1 344 870 1 8 102 548 77 515 606 809 467 3 32 732 392 329 125 090 5 501 242 1 8 355 726 80 541 627 788 150 3 33 147 912 335 772 570 5 498 955	9 279 129 80 041 971 6 987 095 53 375 472 6 773 391 53 371 193	442
	Philo10	TGBA TA	avg max 25 5 avg 81 max 267	69 392 1 027 4 339	0 10 515 366 102 622 810 3 24 496 745 402 197 001 5 017 174 833 663 1 16 779 360 150 030 607 742 819 5 43 186 049 394 172 486 6 703 064	3 762 217 32 273 634 5 019 286 55 546 036	357
		STA	avg max 268 81	1 068 4 386	1 16 801 072 150 313 327 6 43 194 029 394 299 774 6 703 064 727 226	4 926 991 55 546 036
	Robin15	TGBA TA	avg max 44 9 avg 143 max 466 12 783 157 1 168 2 467	1 2 14 802 883 195 152 925 5 666 009 4 006 015 46 910 526 1 486 839 2 5 832 674 48 201 707 1 348 406 14 18 204 684 151 155 748 6 486 142	14 360 747 78 112 291 10 788 993 53 115 008	327
		STA	avg 144 max 467 12 873 2 529	2 13 18 204 684 151 155 748 6 486 142 5 841 364 48 285 515 1 354 923	10 843 123 53 115 008

Table 4 .

 4 6: Comparison of the three approaches on toy examples with weak-fairness formulae, when counterexamples exist.

	1E+08	violated verified		
	1E+07			
	STA			
	1E+06			
	1E+05			
	1 E + 0 5	1 E + 0 6	1 E + 0 7	1 E + 0 8
			TA	
	(a) STA against TA approaches
	1E+08	violated verified		
	1E+07			
	STA			
	1E+06			
	1E+05			
	1		1	1	1
	E	E	E	E
		+ 0	+ 0	+ 0	+ 0
		5	6	7	8
			TGBA	
	(b) STA against TGBA approaches

 Chapter 5. Transition-based Generalized Testing Automata (TGTA): A Single-pass and Generalized New Automata

						Verified properties (no counterexample)
				Automaton		Full product	Emptiness check
			st.	tr.	T j	st.	tr.	st.	tr.	T
	Peterson5	TGBA TA TGTA	avg max 54 12 avg 83 max 509 37 096 240 9 384 663 460 1 2 753 024 2 816 6 11 010 896 108 553 439 11 010 896 108 553 439 14 166 594 2 753 024 14 166 594 4 324 12 2 600 539 10 293 714 4 498 653 17 832 896 42 614 845 18 769 326 85 229 690 avg 67 4 584 14 2 474 307 9 810 328 2 474 307 9 810 328 max 349 49 259 290 9 596 713 43 944 762 9 596 713 43 944 762	630
	Ring6	TGBA TA	avg max 49 12 avg 69 max 509 25 773 150 2 851 152 411 0 1 398 021 3 788 4 4 269 384 3 118 9 1 097 667	10 139 043 50 547 840 6 606 130 19 625 864	1 398 021 4 269 384 2 155 839 5 702 304	10 139 043 50 547 840 12 981 954 39 251 728
		TGTA	avg max 349 31 401 182 2 853 568 57 3 283 10 1 075 198	6 646 513 20 290 856	1 075 198 2 853 568	6 646 513 20 290 856	884
	FMS5	TGBA TA	avg max 28 9 avg 48 max 282 11 007 245 2 612 1 643	0 2 038 054 4 9 132 417 5 1 401 286 98 6 109 887	15 037 218 89 397 363 11 000 449 54 324 903	2 038 054 9 132 417 1 496 882 6 368 802	15 037 218 89 397 363 11 732 337 54 324 903
		TGTA	avg max 247 13 150 125 6 109 887 38 1 713 6 1 338 609	10 551 757 54 324 903	1 338 609 6 109 887	10 551 757 54 324 903	621
	Kanban5	TGBA TA TGTA	avg max 60 8 avg 44 max 277 21 251 166 1 994 1 659 avg 36 1 779 max 210 21 896	0 3 356 053 4 20 253 072 258 315 134 20 253 072 258 315 134 32 800 737 3 356 053 32 800 737 3 2 433 853 23 389 805 2 433 853 23 389 805 80 15 272 712 161 364 553 15 272 712 161 364 553 4 2 285 091 22 038 994 2 285 091 22 038 994 89 14 059 472 149 569 931 14 059 472 149 569 931	385
	Philo10	TGBA TA	avg max 81 14 avg 71 max 412 55 321 235 8 378 151 636 1 4 668 178 5 397 6 17 947 837 119 545 256 17 947 837 119 545 256 27 564 474 4 668 178 27 564 474 4 092 20 2 334 154 19 893 200 2 334 154 19 893 200 74 240 975 8 378 151 74 240 975
		TGTA	avg max 269 49 089 256 7 381 980 55 4 221 23 2 047 915	17 440 829 61 901 565	2 047 915 7 381 980	17 440 829 61 901 565	650
	Robin15	TGBA TA	avg max 82 15 avg 95 max 481 43 547 149 8 169 472 664 0 2 682 881 5 792 4 13 129 644 225 905 117 13 129 644 225 905 117 30 981 263 2 682 881 30 981 263 6 048 15 2 027 251 17 168 855 3 928 111 33 295 175 68 645 888 16 338 944 137 291 776
		TGTA	avg max 414 46 843 137 8 097 792 85 6 725 17 2 042 586	17 645 326 70 340 609	2 042 586 8 097 792	17 645 326 70 340 609	370

Table 5 .

 5 1: Comparison of the three approaches on toy examples with random formulae, when counterexamples do not exist.

						Violated properties (a counterexample exists)
				Automaton		Full product	Emptiness check
			st.	tr.	T j	st.	tr.	st.	tr.	T
	Peterson5	TGBA TA TGTA	avg max 47 14 avg 90 max 656 62 947 134 56 166 663 224 108 070 3 178 506 646 0 8 118 953 42 865 329 600 828 3 392 5 50 297 469 364 396 821 3 632 979 5 683 15 8 592 222 33 972 863 546 562 avg 68 5 389 16 7 915 691 31 411 013 535 126 max 321 40 978 142 55 395 527 221 326 872 3 385 859	2 325 266 22 095 045 24 665 3 892 1 886 029 3 683 11 478 151 22 221 1 850 064 3 540 12 455 412 22 971
	Ring6	TGBA TA	avg max 51 17 avg 125 max 472 41 068 162 713 1 3 788 4 7 462 15	3 163 763 9 855 589 108 310 156 5 914 415 26 260 802 854 229 2 846 468 18 131 253 646 844 8 960 960 62 840 996 4 923 301	5 805 080 65 020 741 13 999 1 329 3 858 721 1 198 36 659 892 10 659
		TGTA	avg max 383 39 636 156 99 7 247 15	2 605 476 8 712 424	17 026 945 65 764 753 5 438 836 640 074	3 911 536 40 403 912 10 615 1 085
	FMS5	TGBA TA	avg max 96 14 avg 90 max 390 22 702 496 4 200 4 112	1 10 174 866 3 40 672 843 404 072 123 11 075 871 110 774 947 18 644 95 061 682 1 602 719 10 636 471 2 148 9 8 418 689 70 784 299 1 044 896 7 693 244 1 968 78 31 864 749 267 656 316 8 518 894 63 178 516 16 437
		TGTA	avg max 325 23 548 72 4 005	10 82 29 733 270 247 258 461 7 193 693 7 629 575 64 829 082 934 129	6 888 487 60 083 469 14 726 1 709
	Kanban5	TGBA TA TGTA	avg max 87 13 avg 75 max 473 30 375 355 2 184 2 870 avg 63 2 986 max 321 25 589 104 31 771 853 346 223 237 7 673 335 0 10 952 627 119 272 618 1 153 850 3 43 038 083 587 543 197 13 023 468 185 410 581 26 750 8 728 297 1 473 6 8 429 948 83 120 910 670 172 5 871 206 1 260 94 31 602 068 331 833 407 7 673 335 77 363 942 15 562 7 7 919 885 79 262 186 631 528 5 523 476 1 113 77 364 390 15 411
	Philo10	TGBA TA	avg max 74 13 avg 92 max 356 46 498 164 66 535 322 696 331 784 7 342 016 590 0 19 118 012 195 258 228 1 518 296 5 928 3 84 068 722 1 377 479 362 9 032 250 5 690 14 16 012 398 148 019 289 900 960	7 522 623 53 881 112 15 880 2 651 6 499 587 2 558 64 470 840 23 509
		TGTA	avg max 352 37 193 147 66 964 226 712 347 867 6 062 800 76 5 797 16 14 738 127 138 827 585 804 739	5 945 101 52 054 854 18 939 2 273
	Robin15	TGBA TA	avg max 74 21 avg 164 11 366 965 5 928 max 854 62 419 115 11 791 872 104 488 704 7 767 216 1 5 514 573 67 871 153 1 676 314 7 15 127 431 281 880 971 13 627 374 191 356 248 52 962 18 343 280 5 475 21 4 869 334 41 343 229 1 248 873 10 418 682 4 110 74 241 202 27 244
		TGTA	avg 133 11 564 max 485 77 546 140 11 726 848 22 4 637 571	40 182 518 1 283 417 97 390 592 8 539 312	10 882 928 82 390 194 27 829 3 999
	Table 5.2: Comparison of the three approaches on toy examples with random formulae, when
	counterexamples exist.				

Table 5 .

 5 3: Comparison of the three approaches for the case studies when counterexamples do not exist.

							Violated properties (a counterexample exists)
					Automaton		Full product	Emptiness check
				st.	tr.	T j	st.	tr.	st.	tr.	T
			TGBA	avg max 65 14	760 7 004	1 9	132 232 1 295 661	380 305 5 045 814	53 901 192 692	128 960 514 905	291 1 049
		RND	TA	avg max 540 59 971 574 81 6 223 29	135 237 1 377 784	296 081 2 976 709	56 518 243 950	126 300 547 459	311 1 284
	PolyORB 3/3/2	WFair	TGTA TGBA TA	avg max 368 67 215 821 68 6 815 33 avg 5 66 0 max 22 516 2 avg 82 1 157 1 max 262 4 636 5	131 544 1 106 728 96 849 432 240 201 879 560 685	289 575 2 391 169 258 704 1 584 372 434 747 1 194 198	52 399 250 279 69 053 193 264 113 705 254 328	116 656 561 571 177 391 1 031 898 250 573 594 751	289 1 351 372 1 110 615 1 358
			TGTA	avg max 142 32	520 3 266	1 5	91 642 393 006	197 811 836 499	66 987 153 963	147 418 372 478	361 840
			TGBA	avg max 59 13	513 4 298	1 27 266 223 405 363 157 1 850 695 2 91 059 214 1 963 331 216 13 284 206 111 916 150 21 771 12 575 125 2 702
		RND	TA	avg max 334 35 401 165 90 049 281 1 300 904 178 5 241 327 88 4 818 13 22 458 466 298 950 743 965 567	9 245 311 61 655 512 14 227 2 392
			TGTA	avg max 283 38 342 196 52 079 530 722 041 705 5 265 831 71 4 822 14 19 806 355 264 723 502 954 582	9 085 179 61 724 760 13 674 2 243
	MAPK 8	WFair	TGBA TA	avg max 23 6 avg 88 max 245	81 414 1 212 3 749	0 20 904 101 300 416 331 1 962 765 2 101 813 441 1 681 905 871 9 463 562 1 27 535 941 358 622 897 1 112 324 5 93 441 682 1 258 076 980 5 203 746	13 896 236 72 266 873 16 928 3 129 11 462 361 3 002 59 642 346 16 992
			TGTA	avg max 106 38	598 2 437	1 16 051 206 211 401 085 3 91 711 581 1 302 884 523 4 279 478 964 009	9 865 703 53 059 472 11 687 2 462

Table 5 .

 5 4: Comparison of the three approaches for the case studies when counterexamples exist.

		Chapter 5. Transition-based Generalized Testing Automata (TGTA): A Single-pass and
	104						Generalized New Automata
						Verified properties (no counterexample)
				Automaton		Full product	Emptiness check
			st.	tr.	T j	st.	tr.	st.	tr.	T
	Peterson5	TGBA TA TGTA	avg max 17 4 avg 50 max 184 avg 25 max 127	52 357 564 3 362 368 2 998	0 3 071 854 2 9 551 018 1 3 018 533 4 10 750 205 1 2 576 578 3 6 567 277	15 745 483 87 453 872 11 771 410 42 228 050 11 867 218 3 071 854 9 551 018 3 436 223 10 081 563 2 576 578 26 641 077 6 567 277	15 745 483 87 453 872 13 401 691 47 116 180 10 081 563 26 641 077	572
	Ring6	TGBA TA	avg max 25 5 avg 58 max 183	64 357 682 3 353	0 1 121 590 2 3 873 576 1 1 118 511 3 3 383 372	7 920 270 38 047 692 6 494 556 22 481 284	1 121 590 3 873 576 1 774 991 6 766 744	7 920 270 38 047 692 10 328 239 44 962 568
		TGTA	avg max 127 31	476 2 998	1 3 2 700 824 878 913	5 232 410 18 878 992	878 913 2 700 824	5 232 410 18 878 992	567
	FMS5	TGBA TA	avg max 12 4 avg 48 max 171	41 212 515 4 256	0 3 030 750 2 11 882 973 114 787 553 11 882 973 114 787 553 23 589 355 3 030 750 23 589 355 1 2 259 230 17 600 147 2 259 230 17 600 147 3 9 764 223 79 707 273 9 764 223 79 707 273
		TGTA	avg max 71 20	258 1 295	1 1 908 957 3 7 100 604	15 050 447 58 423 901	1 908 957 7 100 604	15 050 447 58 423 901	711
	Kanban5	TGBA TA TGTA	avg max 21 4 avg 36 max 140 avg 16 max 60	33 168 306 2 049 182 1 185	1 3 098 615 2 13 014 212 187 004 177 13 014 212 187 004 177 29 435 137 3 098 615 29 435 137 1 2 083 777 19 156 589 2 083 777 19 156 589 3 11 039 112 106 534 190 11 039 112 106 534 190 1 1 876 505 17 440 799 1 876 505 17 440 799 2 10 017 560 98 020 083 10 017 560 98 020 083	512
	Philo10	TGBA TA	avg max 21 4 avg 47 max 289	35 216 501 8 199	0 4 255 979 2 12 974 557 112 561 242 12 974 557 112 561 242 26 793 678 4 255 979 26 793 678 1 3 229 690 27 631 036 3 229 690 27 631 036 6 10 987 384 94 141 317 10 987 384 94 141 317
		TGTA	avg max 85 18	216 2 393	0 2 278 597 3 9 026 746	19 552 345 81 612 913	2 278 597 9 026 746	19 552 345 81 612 913	184
	Robin15	TGBA TA	avg max 16 5 avg 54 max 239	59 337 618 3 706	0 1 782 133 1 5 029 881 1 1 508 082 4 3 944 448	17 996 764 70 344 648 12 171 559 32 391 168	1 782 133 5 029 881 1 802 576 7 098 368	17 996 764 70 344 648 14 591 484 61 216 768
		TGTA	avg max 120 28	420 2 591	1 1 363 362 4 3 649 536	11 099 030 30 605 312	1 363 362 3 649 536	11 099 030 30 605 312	345

Table 5 .

 5 5: Comparison of the three approaches on toy examples with weak-fairness formulae, when counterexamples do not exist.

						Violated properties (a counterexample exists)
				Automaton		Full product	Emptiness check
			st.	tr.	T j	st.	tr.	st.	tr.	T
	Peterson5	TGBA TA TGTA	avg max 18 5 avg 95 max 350 avg 36 max 139	78 351 1 400 5 968 598 2 666	0 2 13 508 730 3 731 947 2 10 950 499 13 30 354 888 120 985 972 7 637 347 17 751 951 522 414 79 589 415 3 696 481 42 790 086 641 997 1 3 563 419 14 000 819 506 574 4 11 920 402 47 292 924 3 611 716	1 759 041 16 733 420 24 769 3 438 2 123 401 4 370 29 621 420 51 473 1 641 570 3 400 14 056 752 24 606
	Ring6	TGBA TA	avg max 38 7 avg 128 max 388 12 783 123 1 168 2 009	1 3 2 14	2 000 787 4 670 124 3 456 785 6 152 232	15 868 857 53 246 768 2 766 283 890 567 21 069 783 905 265 43 283 696 2 747 578	5 736 568 26 917 302 5 156 327 17 464 827	1 410 6 101 1 621 4 793
		TGTA	avg max 220 55	997 7 174	1 8	1 640 027 4 234 800	10 134 116 28 442 432 2 317 315 677 559	3 974 017 14 895 284	1 183 4 336
	FMS5	TGBA TA	avg max 23 5 avg 71 max 245	68 370 871 3 766	0 2 27 570 312 293 219 919 6 676 584 7 978 129 75 701 408 1 372 877 1 10 007 988 81 736 556 848 557 5 27 733 464 249 573 778 6 425 987	7 544 397 53 451 994 5 707 348 51 962 113 12 307 1 607 9 961 1 522
		TGTA	avg max 131 33	474 2 214	1 3 19 497 180 165 240 528 5 062 934 5 682 339 46 813 094 709 810	4 738 120 41 766 785 10 619 1 223
	Kanban5	TGBA TA TGTA	avg max 17 5 avg 69 max 237 avg 31 max 128	66 305 849 3 655 459 2 446	0 2 25 423 161 388 961 954 7 950 633 7 040 236 73 867 374 1 344 870 1 8 102 548 77 515 606 809 467 3 32 732 392 329 125 090 5 501 242 1 4 837 392 46 966 950 718 473 3 21 299 320 218 268 197 4 580 718	9 279 129 80 041 971 11 336 1 562 6 987 095 1 474 53 375 472 10 218 6 247 954 1 262 46 290 149 8 953
	Philo10	TGBA TA	avg max 25 5 avg 81 max 267	69 392 1 027 4 339	0 10 515 366 102 622 810 3 24 496 745 402 197 001 5 017 174 833 663 1 16 779 360 150 030 607 742 819 5 43 186 049 394 172 486 6 703 064	3 762 217 32 273 634 5 019 286 55 546 036 20 284 1 357 9 802 1 943
		TGTA	avg max 116 35	525 3 004	1 4 20 986 825 203 614 146 3 405 659 7 800 504 70 806 206 442 830	2 727 715 28 381 991	1 103 9 712
	Robin15	TGBA TA	avg max 44 9 avg 143 max 466 12 783 157 1 168 2 467	1 2 14 802 883 195 152 925 5 666 009 4 006 015 46 910 526 1 486 839 2 5 832 674 48 201 707 1 348 406 14 18 204 684 151 155 748 6 486 142	14 360 747 78 112 291 21 619 4 691 10 788 993 4 327 53 115 008 18 844
		TGTA	avg max 228 65	1 272 7 174	1 7 12 249 088 102 016 000 4 618 329 3 428 985 28 693 985 1 188 348	9 648 116 38 837 339 13 884 3 825
	Table 5.6: Comparison of the three approaches on toy examples with weak-fairness formulae,
	when counterexamples exist.			

 produced by LTSmin is a text-based serialization of the symbolic representation of the transition relation of a model whose states consist in n integer variables. Transitions are described in the following tabular form:

	6.4. Experimental evaluation	123
	1/2 *	0/1 *
	...	
	0/1 0/1 *	*

1 http://ddd.lip6.fr 2 Respectively http://ddd.lip6.fr, http://spot.lip6.fr, and http://fmt.cs.utwente.nl/tools/ ltsmin. 3 http://fmt.cs.utwente.nl/tools/ltsmin/doc/etf.html

Table 6 .

 6

	6.4.3 Benchmark					
	BEEM model	states 10 3 ⇥	stut. ratio	BEEM model	states 10 3 ⇥	stut. ratio
	at.5	31 999 96%	lann.6	144 151 44%
	bakery.4	157 76%	lann.7	160 025 52%
	bakery.7	29 047 80%	lifts.7	5 126 85%
	bopdp.3	1 040 86%	lifts.8	12 359 85%
	brp2.3	40 73%	mcs.5	60 556 81%
	elevator.4	888 63%	peterson.5	131 064 73%
	fischer.5	101 028 82%	pgm_protocol.8	3 069 88%
	iprotocol.7	59 794 81%	phils.7	71 934 89%
	lamport_nonatomic.5	95 118 86%	production_cell.6	14 520 78%
	lamport.7	38 717 91%	reader_writer.3	604 81%

2: Characteristics of our selected benchmark models. The stuttering-ratio represents the percentage of stuttering transitions in the model. Since the definition of stuttering depends on the atomic propositions of the formula, we give an average over the 200 properties checked against each model.

Table 6 . 3 :

 63 Comparison of the performances of the symbolic approaches TGBA versus TGTA , presented model by model. The average run-time and memory consumption is computed over the 3797 cases where all methods terminated normally (without timeout or out-of-memory error).

	all models	reader_writer.3	production_cell.6	phils.7	pgm_protocol.8	peterson.5	mcs.5	lifts.8	lifts.7	lann.7	lann.6	lamport.7	lamport_nonatomic.5	iprotocol.7	fischer.5	elevator.4	brp2.3	bopdp.3	bakery.7	bakery.4	at.5	
	3797	200	197	200	194	199	187	173	200	196	129	196	200	145	190	199	200		192	200	200	
	487.65 530.94 612.79 158.04	0.67 0.71 1.12 0.63	663.13 702.71 862.59 375.44	6.79 12.33 15.58 1.64	935.45 982.70 1118.97 658.58	196.12 283.39 309.68 55.40	1659.96 1889.17 2208.65 460.33	1804.29 1858.65 1910.90 283.42	541.09 579.36 643.38 152.58	161.05 208.84 379.38 99.07	504.95 576.05 793.42 148.53	479.56 570.71 696.13 63.61	111.24 147.24 191.97 17.00	1790.41 1776.72 1987.39 290.30	300.82 372.75 418.96 187.41	154.02 169.32 204.15 81.40	5.05 5.20 6.31 2.65	18.89 19.36 28.65 9.44	634.79 632.04 593.24 168.80	14.07 14.74 17.90 7.43	391.86 446.56 590.44 182.95	(nosat) (sat)
	1204 1201 1232 866	52 53 63 48	1367 1388 1515 1457	181 200 330 74	1419 1423 1437 1336	1105 1156 1145 789	4155 3890 3718 2085	1903 1891 1919 1151	1302 1318 1349 951	944 960 1027 901	1073 1048 1021 631	1523 1547 1620 838	917 935 1108 380	2271 2302 2148 1297	1455 1486 1496 1590	1142 1144 1165 969	147 149 170 90		1353 1361 1330 1160	331 341 388 197	1668 1649 1760 1376	(nosat) (sat) (nosat) (sat)

Table 6 .

 6 4: On all experiments (grouped by verified versus violated formulas), we count the number of cases a specific method has (Win) the best time or (Lose) it has either run out of time/memory or it has the worst time amongst successful methods. The Fail line shows how much of the Lost cases failed (because of timeout or out-of-memory). The sum of a line may exceed 100% if several methods are equally placed.

		no saturation	saturation
		TGBA	TGTA	TGBA	TGTA
	Verified Win 297 (14%)	13 (0%)	222 (11%) 1613 (81%)
	Lose 204 (10%) 1359 (68%)	464 (23%)	67 (3%)
	Fail	29 (1%)	43 (2%)	30 (1%)	2 (0%)
	Violated Win 150 (7%)	1 (0%)	97 (4%)	1795 (89%)
	Lose 118 (5%)	1594 (79%)	297 (14%)	26 (1%)
	Fail	12 (0%)	89 (4%)	32 (1%)	7 (0%)

Table 7 .

 7). 2: On all successful experiments, we count the number of cases a specific method has (Win) the best time. The Fail line shows the cases were each approach failed to compute the result of an experiment solved by the other approach.

		SOP	SOP-TGTA
	Verified Formulas Win 915 (61%)	593 (39%)
	Fail	44 (2%)	327 (21%)
	Violated Formulas Win 957 (47%) 1061 (52%)
	Fail	18 (0%)	8 (0%)

Table 7 .

 7 3: On all successful experiments, we count the number of cases a specific method has (Win) the best time. The Fail line shows the cases were each approach failed to compute the result of an experiment solved by the other approach.

		SLAP	SLAP-TGTA
	Verified Formulas Win 981 (50%)	964 (50%)
	Fail	57 (2%)	261 (13%)
	Violated Formulas Win 644 (31%) 1374 (68%)
	Fail	28 (1%)	16 (0%)

) . . . Product of TGTA T and Kripke Structure K 2 that stutters with p false Figure 8.4: The two products of TGTA T with the two possible cases of stuttering parts of a

	8.4. Perspectives					161
	8.4.3 Combining TGTA with Partial Order Reductions
			p		p		. . .
			p		p	
			p		p	
	. . . (1, s n)	/ 0	(1, s n+1)	/ 0	(1, s n+2)	. . .
	. . .	(2, s n)	/ 0	(2, s n+1)	/ 0	(2, s n+2) . . .
		(a) Product of TGTA T and Kripke Structure K 1 that stutters with p true
	. . . (0, s k)	/ 0	(0, s k+1)	/ 0	(0, s k+2) . . .
	(b) Kripke structure.				

(a) Product of TGBA A and Kripke Structure K 1 that stutters with p true . . . (0, s k) (0, s k+1) (0, s k+2) . . . p p (b) Product of TGBA A and Kripke Structure K 2 that stutters with p false Figure 8.3: The two products of the TGBA A with the two possible cases of stuttering parts of a Kripke structure.

Table A .

 A 3: Comparison of the three approaches for the case studies when counterexamples do not exist.

							Violated properties (a counterexample exists)
					Automaton		Full product	Emptiness check
				st.	tr.	T j	st.	tr.	st.	tr.	T
	PolyORB 3/3/2	RND WFair	Peterson5 TGBA TGBA TA TGTA avg 1 0 avg max 47 11 avg 77 Automaton 470 2 630 132 35 221 089 164 860 104 3 266 077 4 6 875 386 29 707 327 556 882 Verified properties (no counterexample) 4 616 15 7 311 696 28 594 154 531 367 Full product Emptiness check 2 059 495 13 122 565 19 494 3 308 1 847 946 3 303 max 688 62 540 151 33 610 951 130 319 612 3 034 231 st. tr. T j st. tr. st. tr. T 10 910 727 18 973 avg 58 4 529 16 6 724 275 26 406 241 519 338 1 814 387 3 171 max 377 39 300 156 32 323 597 126 519 495 3 241 584 429 20 85 195 207 750 85 195 207 750 425 Violated properties (a counterexample exists) max 50 3 284 1 098 238 118 1 127 918 238 118 1 127 918 1 248 Automaton Full product Emptiness check 11 733 133 19 719 Ring6 TGBA avg 12 443 28 2 366 645 15 175 961 423 272 2 286 638 536 max 51 2 636 2 038 7 710 378 56 195 862 2 543 904 14 240 224 3 351 TA avg 96 5 312 37 2 181 104 13 018 794 316 826 1 785 138 546 max 435 36 434 2 069 7 791 264 47 132 088 1 813 390 10 805 447 3 150 TGTA avg 76 5 389 38 1 962 430 12 050 193 304 280 1 732 216 476 max 419 39 766 2 063 6 516 704 40 390 528 1 709 454 10 552 980 2 790 FMS5 TGBA avg 1 0 321 5 7 030 618 54 559 769 648 095 2 887 241 649 max 84 3 034 236 28 022 123 252 921 593 9 048 245 63 249 152 13 067 TA avg 68 2 903 11 6 336 121 51 452 459 523 842 3 433 001 894 max 396 20 095 281 24 916 116 214 008 832 7 336 262 61 123 574 14 439 avg 67 3 787 29 78 382 168 410 128 674 276 738 655 st. tr. T j st. tr. st. tr. T TA max 435 34 568 1 137 202 874 436 381 405 748 872 762 2 017 avg 55 4 045 31 81 656 176 671 81 656 176 671 413 avg 10 503 6 113 778 281 259 57 622 148 161 289 TGBA max 56 4 470 224 772 777 1 787 484 279 266 851 459 1 406 TGTA max 323 30 547 1 160 221 779 485 262 221 779 485 262 1 090 avg 3 42 1 73 879 168 772 73 879 168 772 386 RND avg 60 4 350 24 118 209 256 484 56 406 126 308 289 TA max 472 46 228 368 1 005 017 2 159 320 208 726 487 016 1 037 TGBA max 18 292 5 181 518 619 068 181 518 619 068 968 TA avg 67 850 1 95 006 204 347 95 623 205 667 508 max 353 5 953 11 287 185 630 231 287 185 630 231 1 499 TGTA avg 29 420 1 70 158 150 547 70 158 150 547 370 max 99 1 700 4 132 396 286 698 132 396 286 698 698 TGBA -4 208 2 221 916 496 626 221 916 496 626 1 070 avg 50 5 072 27 114 499 249 711 47 468 105 349 242 TGTA max 310 55 353 520 758 720 1 627 829 105 707 240 336 532 PolyORB 3/3/2 avg 3 41 1 78 931 177 210 63 721 144 633 333 TGBA max 13 203 6 187 020 533 673 169 655 476 766 885 WFair avg 71 948 1 180 036 386 413 107 127 234 966 566 TA max 204 3 205 6 483 707 1 034 329 245 740 539 608 1 274
		F 1	TGTA TA -TGTA -TGTA avg max 337 20 595 301 23 351 734 205 586 222 6 594 559 55 2 963 11 5 726 926 47 023 062 389 889 68 5 677 3 219 288 478 950 438 576 67 7 556 5 221 952 488 136 221 952 avg 30 452 1 78 297 167 718 63 504 957 900 2 490 868 54 402 238 12 704 633 2 088 488 136 1 052 138 717 334 max 102 1 719 5 186 891 399 306 169 407 366 693 876
		RND	TGBA TA TGBA avg max 64 avg max 25 8 avg 50 max 271 15 866 169 1 254 1 655 9 246 3 551 TA avg 42 1 651 max 336 18 971 157 8 036 021 100 718 455 8 036 021 100 718 455 23 124 3 7 389 200 65 265 886 398 291 2 413 326 73 20 380 864 249 816 728 4 154 893 40 027 194 6 6 099 926 58 043 214 279 149 2 293 392 81 20 138 608 208 914 286 2 877 959 27 297 928 2 2 598 503 22 108 346 2 598 503 22 108 346 4 833 16 11 272 599 120 406 938 11 272 599 120 406 938 22 707 8 1 608 896 18 824 425 1 608 896 18 824 425 4 583 RND avg 9 321 3 20 240 822 245 726 563 730 667 3 534 127 TGBA max 41 3 012 68 77 833 929 1 306 979 302 6 547 219 51 103 385 12 377 403 6 514 467 5 585 894 TA avg 62 3 294 12 17 057 208 219 712 950 425 966 2 967 248 872 max 314 26 248 163 81 988 164 1 146 895 628 4 859 218 31 565 707 8 378 Kanban5 TGTA avg 41 1 754 7 5 664 045 54 798 536 255 545 2 095 285 410 max 228 18 303 80 15 816 808 170 535 764 2 877 959 27 297 927 5 294 TGTA avg 35 1 876 9 1 519 337 17 816 286 1 519 337 17 816 286 4 227 max 317 25 595 211 8 036 021 100 718 455 8 036 021 100 718 455 21 791 avg 50 3 376 14 15 139 419 196 274 725 424 117 2 957 187 829 TGTA max 229 29 261 195 47 574 695 644 775 125 4 859 218 31 565 707 8 192
	MAPK 8	WFair	TGBA TA TGBA avg max 21 avg max 52 9 avg 71 max 272 34 438 103 53 294 292 530 498 041 7 342 016 389 2 14 648 744 127 225 739 746 849 3 832 20 67 346 113 944 250 350 9 032 250 3 877 11 12 807 603 115 165 982 514 894 4 31 1 3 461 837 28 114 156 3 461 837 28 114 156 3 135 235 43 945 324 14 928 1 108 3 437 571 1 324 64 470 778 22 435 5 572 160 3 10 871 182 104 579 823 10 871 182 104 579 823 20 539 TA avg 42 386 1 1 961 055 22 640 584 1 961 055 22 640 584 5 129 max 167 1 902 4 6 110 748 75 624 744 6 110 748 75 624 744 17 114 MAPK 8 WFair avg 4 52 1 15 189 697 191 231 582 1 049 014 6 622 077 1 405 TGBA max 13 221 3 53 575 313 764 671 391 7 387 837 64 113 702 12 094 TA avg 76 986 2 22 798 869 291 635 140 638 187 5 996 662 1 444 max 245 3 322 5 64 763 487 858 891 872 5 203 746 59 642 224 13 725 Philo10 TGTA avg 58 4 118 12 11 611 005 105 837 118 434 875 2 948 356 1 098 max 268 35 598 112 55 198 542 558 520 250 3 622 345 30 490 183 11 529 TGTA avg 19 203 1 1 777 295 20 615 811 1 777 295 20 615 811 4 550 max 80 1 052 3 9 523 917 118 607 814 9 523 917 118 607 814 26 652 avg 34 503 1 12 475 839 160 851 874 545 160 5 000 866 1 183 TGTA max 87 1 536 4 47 723 696 662 295 506 4 859 666 47 087 918 10 019
		F 2	Robin15 TGBA -TGBA TA -TA TGTA -	avg max 50 14 5 7 max 799 55 662 548 543 16 152 0 210 2 3 832 529 12 193 720 166 810 859 10 485 865 153 206 175 41 271 4 072 114 37 723 236 514 761 5 099 096 46 493 325 442 46 493 325 442 51 1 506 33 376 291 602 33 376 291 602 58 8 984 576 81 599 488 7 108 784 66 618 546 22 451 avg 122 7 708 28 3 606 864 29 540 049 473 503 3 870 325 1 446 6 343 3 33 376 291 602 33 376 291 602 55
			TGTA	avg max 485 64 827 561 98 8 057 29	3 390 389 9 922 560	28 308 511 91 222 016 8 046 768 489 600	4 058 013 76 224 690 24 848 1 406
			Table A.2: Comparison of the three approaches on toy examples with random formulae, when
			counterexamples exist.			

Table A .

 A 4: Comparison of the three approaches for the case studies when counterexamples exist.

								Model checker
					Génération de	
	Modèle M		l'espace d'états	
					K M		
					Produit synchronisé verified verified construit à la volée
					L		
	Propriété LTL j	TGTA	1E+07 1E+07 TGTA Traduction LTL	Automate de la propriété niée A ¬j
					1E+06 1E+06		
						1		1
						E + 0 6	1 E + 0 6 TGBA	E + 0 7 TA	1 E + 0 7
		TGTA	max 87 avg 22	1 430 265 (a) TGTA against TGBA approaches for verified properties 4 6 949 551 56 088 708 6 949 551 56 088 708 1 1 769 028 13 854 565 1 769 028 13 854 565 (a) TGTA against TA approaches for verified properties	291
	Kanban5	TA TGTA TGBA	avg max 136 33 avg 17 max 62 avg 3 max 21	277 1 901 177 912 1E+06 1E+06 1 1 887 122 3 8 429 960 1 1 711 068 3 6 965 000 1E+07 1E+07 27 1 2 679 040 168 3 9 183 294 1E+08 violated 1E+08 violated 17 126 840 80 660 846 15 682 969 65 796 520 22 247 651 87 988 390	1 887 122 8 429 960 1 711 068 6 965 000 2 679 040 9 183 294	17 126 840 80 660 846 15 682 969 65 796 520 22 247 651 87 988 390	072
	Philo10	TGBA TA	avg max 11 3 avg 45 max 289 TGTA	28 154 474 8 154 1E+04 1E+05 1E+04 1 3 980 003 2 12 974 557 112 561 242 12 974 557 112 561 242 23 939 240 3 980 003 23 939 240 1 3 072 870 26 224 843 3 072 870 26 224 843 6 10 987 384 94 141 317 10 987 384 94 141 317 1E+05 TGTA
		TGTA	avg max 116 20	239 3 303 1E+03 1E+03 1 2 291 618 3 9 571 804	19 611 203 85 885 107	2 291 618 9 571 804	19 611 203 85 885 107	750
	Robin15	TGBA TA TGTA	avg max 10 3 avg 46 max 185 avg 24 max 92	35 150 1E+02 1E+02 1 1 362 987 4 3 059 706 489 1 1 235 467 2 558 5 2 684 928 323 1E+01 1 1 1E+01 1 1 126 156 1 334 5 2 211 840 E + 0 1 E + 0 2 1 E + 11 158 101 28 950 456 9 824 773 21 341 184 1 9 031 138 17 928 192 0 3 E + 0 4 1 E + 1 362 987 3 059 706 1 453 687 4 696 064 1 1 126 156 2 211 840 0 5 E + 0 6 1 E 11 158 101 28 950 456 11 553 559 37 017 600 1 9 031 138 17 928 192 + 0 7 E 1 1 1 1 1 1 1 + E E E E E E E 0 8 + 0 + 0 + 0 + 0 + 0 + 0 + 0	450 0 + E 1
	Table A.5: Comparison of the three approaches on toy examples with weak-fairness formulae, 1 2 3 4 5 6 7 8 TGBA TA
	when counterexamples do not exist. (b) TGTA against TGBA approaches for violated properties (b) TGTA against TA approaches for violated properties
	Figure A.1: Performance of TGTA against TGBA, with TGBA improved using simulation-
	reduction.				

Figure A.2: Performance of TGTA against TA (with TGBA improved using simulation-reduction).

 Théorème 1 Toute formule LTL\ X (i.e. une formule LTL qui n'utilise pas l'opérateur X) décrit une propriété insensible au bégaiement. Inversement, toute propriété insensible au bégaiement peut être exprimée comme une formule LTL\ X[21].Nous commençons par définir les automates de Büchi généralisé étiqueté sur les transitions (TGBA)[17], utilisés dans notre contexte pour représenter la négation de la propriété LTL à vérifier. TGBA est une généralisation des automates de Büchi classiques (BA). Un TGBA sur l'alphabet S = 2 AP est un quadruplet G = hQ , I , d, F i avec:• Q est un ensemble fini d'états, Une exécution w = k 0 k 1 k 2 .. . 2 S w est acceptée par G s'il existe un chemin infini :

	2.2 Approche TGBA
	Définition 2

• I ✓ Q est l'ensemble des états initiaux,

• F est un ensemble fini d'éléments appelés conditions d'acceptation,

• d ✓ Q ⇥ 2 S ⇥ 2 F ⇥ Q est la

relation de transition de l'automate (chaque transition (s, K, F, d) 2 d partant de l' état s vers d est étiquetée par un ensemble de valuations K ainsi qu'un ensemble de conditions d'acceptation F ✓ F).

 Un automate de Büchi (BA) peut être vu comme un TGBA avec une seule condition d'acceptation portée par les états au lieu des transitions. Le processus de conversion d'un TGBA en BA est appelé dégénéralisation. Une technique courante permettant d'obtenir un BA à partir d'une formule LTL est de traduire d'abord la formule en automate de Büchi généralisée avec plusieurs conditions d'acceptation (ce pourrait être un TGBA[17, 14] ou un GBA étiquetée sur les états[16]), ensuite dégénéraliser cet automate pour obtenir un BA avec une seule condition d'acceptation.Définition 3 Un BA sur l'alphabet S = 2 AP est un quadruplet B = hQ , I , d, F i avec:• Q est un ensemble fini d'états,• I ✓ Q est l'ensemble des états initiaux,• F est un ensemble fini d'états acceptants,• d ✓ Q ⇥ 2

S ⇥ Q est la relation de transition de l'automate (chaque transition (s, K, d) 2 d partant de l' état 's' vers 'd' est étiquetée par un ensemble de valuations K ✓ S).

1 Première étape de la construction d'un TA Geldenhuys

 • L'exécution ab; āb; ab; āb; ab; āb; ab; .. . est Büchi-acceptante. En effet, un chemin reconnaissant cette exécution, doit commencer à partir de l'état initial 2, puis changer la valeur de a à chaque transition (i.e. ne franchir que les transitions étiqueté par {a}) jusqu'à atteindre et boucler à l'infini dans le cycle (4, {a}, 4) autour de l'état 4 2 F . Par exemple, le chemin 2 •• •, les deux visitent l'état 4 2 F infiniment souvent, ils sont donc Büchi-acceptants. • L'exécution ab; āb; āb; āb; .. . est livelock-acceptante: un chemin acceptant commence dans l'état 2, puis change la valeur de a pour se déplacer à l'état 4, et y reste pour bégayer à l'infini dans cet état livelockacceptant. Un autre chemin acceptant passe de l'état 2 à l'état 3 et reste à l'infini dans 3 2 G. • L'exécution ab; a b; ab; a b; ab; a b; .. . n'est pas acceptée. Elle peut correspondre à un chemin contenant le cycle alternant entre les états 2 et 1, mais ce cycle n'est ni Büchi acceptant (ne visite pas d'états de F), ni livelock-acceptant (il passe par l'état 2 2 G, mais ne reste pas définitivement dans cet état). Le langage accepté par un TA est insensible au bégaiement. Démonstration 1 D'après la définition d'une exécution acceptée, un TA peut rester dans le même état quand l'exécution bégaye. Ainsi, le bégaiement est toujours possible dans un TA. et Hansen [15] ont proposé une transformation permettant de convertir un BA en un TA équivalent, en plusieurs étapes. D'abord, le BA est converti en un automate étiqueté par des valuations sur les états (State-Labelled Büchi Automaton). Ensuite, ce dernier est converti dans une forme intermédiaire d'un TA, en calculant la différence symétrique entre les étiquettes de la source et de la destination de chaque transition. Ces deux étapes sont regroupées en une seule première étape représentée par la figure 4b.

	Propriété 1

{a} ! 4 {a} ! 4 {a} ! 4 •• • ou le chemin 2 {a} ! 3 {a} ! 4 {a} ! 4

2.4.L'automate obtenu n'utilise pas encore les états livelock-acceptants de G. L'étape suivante explique comment l'ajout de certains états à l'ensemble G permet de supprimer les transitions étiquetées par / 0 (i.e. les transitions bégayantes).

http://spot.lip6.fr/ltl2tgba.html

http://ddd.lip6.fr

Respectively http://ddd.lip6.fr, http://spot.lip6.fr, and http://fmt.cs.utwente.nl/tools/ ltsmin.

Si aucun état livelock-acceptant n'est visité au cours de la première passe, alors la seconde passe est désactivée. Les résultats de l'expérimentation montrent que cette optimisation améliore considérablement les performances de l'approche TA, notamment dans les cas où la formule est vérifiée.

2. Lors de la première passe, si l'on détecte un cycle contenant un état qui est à la fois Büchi et livelock acceptant, alors ce cycle est considéré comme acceptant sans vérifier s'il contient ou pas des transitions bégayantes. En effet, si le cycle détecté contient une transition non bégayante, alors il est Büchi-acceptant, sinon il est livelock-

acceptant.3. Un cycle détecté lors de la première passe est considéré comme acceptant dès qu'il contient un état livelockacceptant (k,t) tel que l'état t n'a pas de successeur dans l'automate TA (ici k est un état du modèle). En effet, à partir de cet état, le produit ne peut exécuter que des transitions bégayantes. Par conséquent, le cycle détecté est livelock-acceptant car il est composé uniquement de transitions bégayantes et d'états livelock-acceptants.Les deux dernières optimisations permettent de détecter une partie des cycles livelock-acceptants, mais peuvent aussi manquer certains cycles livelock-acceptants qui appartiennent à une SCC mélangeant des transitions bégayantes et non-bégayantes. Dans la section suivante, nous introduisons une transformation de TA permettant d'obtenir un automate où les deux dernières optimisations permettront de détecter tous les cycles livelock-acceptants dès la première passe.

Acknowledgments

Firstly, I would like to express my sincerest gratitude to my supervisors Fabrice KORDON and Alexandre DURET-LUTZ, for their continuous support and guidance during my PhD work, and for their patience and encouragement that greatly helped me to realize this thesis work.

I also would like to express my warm thanks to the jury members: Radu MATEESCU and Stefan SCHWOON for accepting to review my thesis, Béatrice BÉRARD and Didier BUCHS for their interest in my work.

I am especially grateful to Joël COURTOIS (director of EPITA) and Olivier RICOU (director

APPENDIX A

Experimental Comparison of Explicit approaches using TGBA, TA and TGTA, with TGBA improved using simulation-reduction

Recently, several TGBA optimizations was added to SPOT, especially to apply the simulationreduction [3] to TGBA. The following tables and scatter plots show the impact of this optimization on the results of our experimental comparison (between TGBA, TA and TGTA) presented in Chapter 5. Table A.1 and Table A.2 shows how for TGBA, TA and TGTA approaches deal with toy models and random formulas. We omit data for BA since they are always outperformed by TGBA. Table A.5 and Table A. 6 show toy models against weak-fairness formulas.

Table A.3 and Table A. 4 show the results of the two cases studies against random, weakfairness, and dedicated formulas issued from the case studies (see Section 3.6.2).

These tables separate cases where formulas are verified from cases where they are violated. In the former (Tables A.1, A.5 and A.3), no counterexample are found and the full state-space had to be explored; in the latter (Tables A.2, A.6 and 5.4) the on-the-fly exploration of the state-space stopped as soon as the existence of a counterexample could be computed.

The column "T j " shows the time (in 1 100 e of seconds) spent constructing the property automata A ¬j i from the formulas, this time includes the cost of the simulation-reduction of TGBA. This cost impacts all the other approaches because TGTA, BA and TA (through a BA) are constructed from TGBA.

Model checking explicite

Cette approche est basée sur l'exploration explicite de l'espace des états accessibles. Pour cela, le modèle et la propriété à vérifier sont transformés en automates, en respectant les étapes suivantes (figure 1) :

1. Génération de l'espace d'états du modèle M sous la forme d'une structure de Kripke (une variante d'wautomate) K M dont le langage L (K M) décrit toutes les exécutions possibles de M.

2. Traduction de la propriété j à vérifier en formule de logique temporelle LTL, puis construction de l' wautomate A ¬j représentant la négation de la formule LTL obtenue. Le langage L (A ¬j) de cet automate représente l'ensemble des exécutions qui invalident j.

3. Calcul du produit synchronisé K M ⌦ A ¬j entre les deux automates K M et A ¬j obtenus lors des deux étapes précédentes. Ce produit est également un automate dont le langage L (K M ⌦ A ¬j) est égal à l'intersection L (K M) \ L (A ¬j). Ainsi, cette opération nous permet d'obtenir l'ensemble des exécutions de M qui invalident j.

4. Enfin, pour conclure que le modèle M vérifie j, il suffit de tester si le langage de l'automate du produit est vide (i.e. L (K M ⌦ A ¬j) = / 0). Ce test de vacuité (emptiness check) est traditionnellement ramené à une exploration explicite du produit afin de vérifier s'il accepte ou non un mot infini. Dans le cas où un mot est accepté, l'algorithme d'emptiness check le retourne comme un contre-exemple.

Model checking symbolique

Cette seconde approche représente à la fois le modèle et la propriété sous la forme de diagrammes de décisions binaire (BDD). Le but est de ne pas représenter explicitement tous les états du système, mais de calculer des représentations symboliques plus compactes et ainsi réduire l'espace d'état à analyser. En effet, grâce à la représentation du modèle à l'aide de BDD, les états sont explorés de façon ensembliste, par groupe d'états plutôt qu'individuellement.

Problématique et objectif de la thèse

Le problème principal du model-checking est l'explosion combinatoire de l'espace d'états du modèle à vérifier, notamment pour les systèmes complexes. Par exemple, la modélisation d'un système concurrent peut générer un Nous commençons par séparer les transitions bégayantes et les transitions non-bégayantes dans la relation de transition T du produit symbolique K ⌦ A (Définition 11): T ((s, q), (s 0 , q 0)) = R (s, / 0, s 0) ^D (q, / 0, q 0) _ 9k ⇥ R ⇤ (s, k, s 0) ^D ⇤ (q, k, q 0) ⇤ avec R ⇤ et D ⇤ encodent respectivement les transitions non-bégayantes de la structure de Kripke et du TGTA:

• D ⇤ (q, k, q 0) est vrai ssi D (q, k, q 0) ^(k 6 = / 0)

• R ⇤ (s, k, s 0) est vrai ssi R (s, k, s 0) ^(k 6 = / 0) D'après la Définition 9, le prédicat D (q, / 0, q 0) est définie par l'équivalence:

En plus, d'après la normalisation des transitions bégayantes de la Définition 5 de TGTA:

En combinant les deux équations (1) et (2), on obtient l'équivalence suivante :

En d'autres termes, le prédicat D (q, / 0, q 0) encode l'ensemble de tous les boucles (self-loops) du TGTA et peut donc être remplacé par le prédicat identité: equal(q, q 0). Nous obtenons ainsi la simplification suivante de l'expression de T :

Dans la relation de transition de l'équation (4), le terme T / 0 correspondant à la synchronisation des transitions bégayantes ne dépend pas de l'état du TGTA. En effet, dans ce terme, le prédicat identité equal(q, q 0) sera ignoré [8] par l'algorithme de saturation (i.e., le terme T / 0 est appliqué sans modifier la variable q [18]). Cette simplification favorise grandement les performances de la saturation comme nous allons le voir dans l'évaluation expérimentale de la section suivante. Chaque point des figures représente une mesure pour une paire (modle, formule). Les axes sont affichés en échelle logarithmique. Les couleurs distinguent les formules satisfaites (carrés verts) et non-satisfaites (croix noires).

Les Figure 9 et 10 montrent que grâce à la combinaison de la saturation et de l'optimisation basée sur les transitions bégayantes (Section 3.6.3), l'approche TGTA est clairement meilleure que l'approche traditionnelle TGBA par au moins un ordre de grandeur.