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Abstract 

 

My PhD work consists in using Atomic Force Microscopy (AFM) techniques to study 

pathogenic microorganisms, and to probe their interactions with antimicrobials. During the last 

three decades, microbial resistance has dramatically increased and spread around the world. 

Pathogenic bacteria and yeasts have developed several ways to resist against almost all 

antimicrobials used. These pathogens can cause a wide range of superficial infections, but are 

also the cause of life-threatening infections in some patients. There are therefore two 

emergencies; the first one is to find new antimicrobial molecules, with an innovative mechanism 

of action. To reach this goal, it is mandatory to get further fundamental knowledge on the 

microbial cell wall, in order to identify original targets at the cell surface for new molecules. 

Therefore the second emergency is to develop techniques to explore microbial surfaces from a 

different angle, which requires an original experimental approach. In this context, biophysical 

approaches still remain underexploited in clinical microbiology. In my PhD, we took advantage 

of a technology coming from physics, and adapted to biological conditions, AFM. Its principle 

relies on the measure of a force between a sharp tip and a surface; by keeping this force constant 

while scanning the sample, it is possible to get a three dimensional image of it. An advantage of 

AFM is the possibility to work in liquid on living cells, which allowed us to image the elongation 

of live bacterial cells of P. aeruginosa treated by ticarcillin, a cell wall targeting antibiotic, and 

the removal of capsular polysaccharides from K. pneumoniae upon treatment with colistin, a last 

chance antibiotic. Nevertheless, sample immobilization is often a challenge that must be 

addressed for each kind of microorganisms studied. It represents an entire field of research, and 

led us to engineer a microstructured polydimethylsiloxane (PDMS) stamp to immobilize round 

cells of different sizes such as yeasts. Once this step was accomplished, AFM can be used in 

classic imaging and force spectroscopy modes (contact mode, oscillating mode, force volume 

mode), but also in advanced modes in order to acquire multiparametric sets of data on living 

cells. Indeed, AFM is also a highly sensitive force machine, able to record force distance curves 

that give access to nanomechanical and adhesive properties of living cells. We therefore used the 

multiparametric imaging mode, QI
TM

 from JPK Instruments, to image and quantify the 

nanomechanical/adhesive properties of microorganisms as well as mammalian cells and their 

isolated nucleus. We could then observe the modifications of the adhesive properties of the yeast 

C. albicans, treated or not by caspofungin, a last chance antifungal.  Finally, to get further in the 

architecture of the cell wall of microorganisms, it is possible to functionalize AFM tips with 

biomolecules. A strategy that we have developed has consisted of grafting antibodies targeted 

against a peptide on the AFM tip while tagging proteins with the same peptide at the surface of 

living cells. This allowed mapping the localization of specific proteins at the surface of living 

yeasts and mammalian cells. Another strategy we developed has consisted in directly grafting on 

the AFM tip a biomolecule that naturally interacts with cell wall components. We used this last 

strategy to probe the bacterial cell wall of P. aeruginosa submitted to treatment by an innovative 

antibacterial, Cx1, and better understand the structure of its peptidoglycan. In conclusion, during 

my PhD, we especially addressed the contribution of biophysics in clinical microbiology. We 

developed original techniques to immobilize samples, to functionalize AFM tips, and used 

advanced multiparametric AFM modes to acquire original data on the surface of pathogenic 

microorganisms, in native conditions or in interaction with antimicrobials. 
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This PhD has for subject the “Comprehension of the mechanisms of action of 

antimicrobial molecules thanks to nanobiotechnologies”. Its aim has been to use Atomic Force 

Microscopy (AFM) techniques to study pathogenic microorganisms, and to probe their 

interactions with antimicrobials. During the last three decades, microbial resistance has 

dramatically increased and has spread around the world. Pathogenic bacteria and yeasts have 

developed several ways to resist against almost all antimicrobials used. These pathogens can 

cause a wide range of superficial infections, but are also the cause of life-threatening infections in 

immunocompromised patients. There are therefore two emergencies; the first one is to find new 

antimicrobial molecules, with an innovative chemical structure, and if possible an innovative 

mechanism of action. But to reach this goal, it is mandatory to get further fundamental 

knowledge on the microbial cell wall, in order to identify original targets at the cell surface for 

new molecules. Therefore the second emergency is to develop techniques to explore microbial 

surfaces from a different angle, which requires an original experimental approach. In this context, 

biophysical approaches still remain underexploited in clinical microbiology
1–3

.  

 

During this PhD, we took advantage of AFM, a technology coming from physics, and 

adapted to biological conditions
4
. We used this powerful tool to get new fundamental data on the 

surface properties of yeasts and bacteria, in interactions with antimicrobials. The yeast model 

studied has been Candida albicans, a versatile opportunist pathogen, which is by far the most 

common human fungal pathogen. Because of its plasticity, i.e. its ability to grow both as 

unicellular budding cells or as filamentous hyphae, it can cause a wide range of infections, from 

surface infections to mucosal and blood-stream infections
5,6

.  As for bacterial models, we focused 

on Gram-negative bacteria, and more specifically on the species Pseudomonas aeruginosa and 

Klebsiella pneumoniae. P. aeruginosa is an invasive opportunistic pathogen that causes severe 
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infections including bacteremia, pneumonia, meningitis or urinary tract and wound infections
7
. 

The particularity of this bacterial species is to be naturally resistant to multiple antibiotics, which 

is due to a natural lower outer membrane permeability and to many adaptive resistance 

mechanisms
8,9

. K. pneumoniae is well known as a cause of community-acquired bacterial 

pneumonia. However, its role as a common healthcare-associated pathogen causing infections of 

the urinary tract, bloodstream, pneumonia and intra-abdominal infections has become 

exceedingly common
10,11

. The particularity of K. pneumoniae is to produce extended spectrum β-

lactamases (ESBLs), enzymes capable of hydrolyzing penicillins, cephalosporins of the first, 

second, third and fourth generations, and the monobactam aztreonam
12–14

. The goal of this PhD 

has been to increase the amount of fundamental data on the cell wall of these pathogenic 

microorganisms, but also to probe their interactions with antimicrobials. To this end, we worked 

with antibiotics such as ticarcillin, a β-lactam targeting the synthesis of the cell wall 

peptidoglycan, and tobramycin, an aminoglycoside inhibiting protein synthesis by binding with 

the bacterial ribosome, that we used to treat cells of Pseudomonas aeruginosa
15

. We also studied 

the interactions of last-chance molecules, used only in cases of severe infections when no other 

treatments are efficient with pathogenic microorganisms. In the case of Klebsiella pneumoniae, 

we used colistin (polymyxin E), a polypeptidic bactericidal agent which mechanism of action 

remains poorly characterized
16,17

. In the case of Candida albicans, we focused on the effects of 

caspofungin, a lipopeptide of the echinocandin class, which mechanism of action is to inhibit the 

synthesis of β-1,3-glucans, a major component of the yeast cell wall
18

. Finally the last 

antimicrobial studied during this PhD has been an innovative molecule, a cationic calixarene 

called CX1 that we used to treat a multidrug-resistant strain of the bacterial species P. 

aeruginosa, with the aim of understanding its unknown mechanism of action
19

. Figure 1 shows a 

schematic representation of the three axis developed during this PhD, that are the microorganisms 
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studied, the antimicrobial molecules used to treat them, and AFM, the tool used to explore the 

interactions between them.  

 

Figure 1. Recapitulative schema of the three axis “question”, “biological models” and “tool” of this 

PhD. The effects of antibiotics, of last chance or innovative molecules were evaluated on different 

bacterial and yeast species of medical interest, thanks to Atomic Force Microscopy.  

 

The present document is composed of 3 chapters. The first chapter is a general overview. 

It will first introduce the subject of the PhD, and place it in proper context. Then it will review 

the work performed during the three years of the PhD and discuss the main results obtained. After 

the general conclusions, are presented chapters 2 and 3, composed of my publications. In chapter 

2 are presented 3 reviews focusing on the use of Atomic Force Microscopy for pharmacological 

studies, as well as for the study of yeast cells.  In chapter 3 are presented research articles on the 
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work performed during this PhD. Chapter 3.1 presents the technological developments that were 

realized to adapt AFM techniques to biological samples. The first publication presents a protocol 

that was developed to immobilize round shaped cells such as yeast. The second publication 

describes the use of a multiparametric imaging mode (QI
TM

 from JPK Instruments) to study 

bacteria, yeast and eukaryotic cells. In the third publication is presented a method to localize 

specific proteins at the surface of living cells, by functionalizing AFM tips with antibodies 

targeted against a peptide used to tag proteins in cells. Chapter 3.2 is dedicated to the work 

performed on yeast cells. A first publication studies of the adhesive properties of Candida 

albicans, and shows high resolution and multiparametric data on aggregated proteins at its 

surface. A second publication presents the effects of caspofungin on the same yeast species, and 

how this molecule modulates the adhesive and nanomechanical properties of its cell wall.  In 

chapter 3.3 are presented the results obtained on bacteria. The first publication describes the 

nanoscale effects of ticarcillin and tobramycin on the cell wall of P. aeruginosa. In the second 

publication, colistin is used to treat sensitive and colistin-resistant strains of K. pneumoniae, 

which allowed the unravelling of a new mechanism of resistance to colistin. The third publication 

shows how AFM has been used to understand the mechanism of action of an innovative 

antibacterial molecule, CX1, on the cell wall of a multidrug-resistant strain of P. aeruginosa. The 

appendices at the end of the document are composed of research articles in which I have 

participated, but that are not directly related to the PhD subject.  

 

This PhD has been co-funded by the DGA (Direction Générale de l’Armement) and by 

the ANR (Agence Nationale de la Recherche). It was supervised by Etienne Dague, CNRS 

searcher at LAAS (Laboratoire d’Analyse et d’Architecture des Systèmes), CNRS (Centre 

National de la Recherche Scientifique), Toulouse, France, and Prof. Raphaël E. Duval, professor 
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of clinical microbiology at the University of Lorraine, and searcher at SRSMC (Laboratoire de 

Structure et Réactivité des Systèmes Moléculaires Complexes), CNRS, Nancy, France. Most of 

the experimental work has been performed in LAAS in Toulouse. This PhD is also the result of 

fruitful collaborations with Jean-Marie François and Hélène Martin-Yken, searchers at LISBP 

(Laboratoire d’Ingénierie des Systèmes Biologiques et des Procédés) and specialists of the 

genetics of yeasts cells, with Marion Grare, searcher at CHU Purpan (Centre Hospitalier 

Universitaire), specialist in clinical microbiology and pathogenic bacteria, and with Céline Galés, 

searcher at INSERM (Institut National de la Santé et de la Recherche Médicale), specialist of 

molecular biology and mammalian cell surface receptors. During these three years, I have worked 

with Post-Docs (Flavien Pillet) but also with PhD students (Louise Chopinet, Marion Schiavone, 

Véronique Lachaize), with whom I have exchanged every day, and participated to each other’s 

works. Finally this work has been performed thanks to the work of Sandrine Assié-Souleille and 

Charline Blatché, technicians of the laboratory, responsible of the equipment used.  

 

  







18 

 

Chapter 1 

General Overview 

 

 

Chapter 1.1: General context, the return to the “pre-antibiotic era”                                     

 

 1.1.1 Antimicrobials and pathogens resistance                                                     

 

 1.1.2 How to get out of this situation?                                                                   

 

 1.1.3 Technologies to study pathogens                                                                  

 

 

Chapter 1.2: Review of the PhD work: technological developments and fundamental studies of 

microorganism’s cell walls.                                                         

 

 1.2.1 Introduction                                                                                                  

 

 1.2.2 Technological developments to study the cell wall of microorganisms by AFM                                                                                       

 

1.2.3 A nanoscale view of the yeast cell wall of Candida albicans and  

Saccharomyces cerevisiae     

                                                                          

 1.2.4 Nanoscale behavior of the bacterial cell wall submitted to antibacterials                                                                                                    

 

 1.2.5 AFM to understand the mechanism of action of a new antibacterial molecule                                                                                           

 

 

Chapter 1.3: Discussion: contribution of “nanomicrobiology” to clinical microbiology; does it 

help?                                                                                               

 

 1.3.1 AFM as a useful tool for clinical microbiology                                            

 

 1.3.2 Cell surface properties of Candida albicans                                                

 

1.3.3 Probing the effects of antibiotics on the cell wall of bacteria    
  



19 

 

Chapter 1.1: General context: the return to the “pre-antibiotic era” 

1.1.1 Antimicrobials and pathogens resistance 

Most pathogenic bacteria and yeasts are part of the human natural flora. But in some cases, 

these commensal bacteria become pathogenic, particularly in immunocompromised patients. To 

fight against these bacteria, antibiotics were developed.  An antibiotic is defined as a substance 

that inhibits the growth or destroys microorganisms. The history of antibiotics starts in the early 

1900s, when a man named Ehrlich, a German scientist, decided to find a molecule to cure 

syphilis, a sexually transmitted disease, caused by the spirochete Treponema pallidum that was 

endemic and incurable at that time. To this end, Ehrlich synthesized hundreds of compounds and 

tested them on syphilis infected rabbits. In 1909, the sixth compound in the 600th series tested, 

numbered 606, cured syphilis infected rabbits, and showed significant promise for the treatment 

of patients.  The drug was then marketed in 1910 under the name of Salvarsan, and knew a great 

success by becoming the most-prescribed drug, until the 1940s
20

. Amazingly, the mechanism of 

action of this drug is still unknown, and its chemical structure has been solved only recently
21

. 

This screening approach introduced by Ehrlich then became the cornerstone of the early ages of 

the antibiotic research. It led to the discovery of sulfa drug, namely Prontosil, which was 

synthesized by Bayer chemists in 1935. The active part of Prontosil, sulfanilamide, was then 

produced massively, which led to the broad dissemination of the first bacterial resistances, to 

sulfa drug
20,22

. Penicillin effects were first observed by Ernest Duchesne, a French medicine 

doctor, in 1896. His observation was that Penicillium glaucum could neutralize the bacterial 

proliferation of Escherichia coli cells. However, this discovery remained silent until Alexander 

Fleming observed the same phenomenon in 1928. For 12 years after its observation of the 

antimicrobial activity of Penicillium, Fleming was trying to get chemists to purify the active 
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substance of Penicillium. He finally abandoned this idea in 1940, but in the same year, Florey and 

Chain published a paper describing the purification of penicillin for clinical testing
23

. Their 

protocol led to the massive production and distribution of penicillin in 1945
20,22

, which led to the 

appearance of resistant strains capable to inactivate the molecule. However, the discovery of 

these first three drugs, Salvarsan, Prontosil and penicillin set up the paradigms for drug discovery 

research. These paths led to a number of new antibiotics, between the 1950s and the 1970s, the 

golden era of discovery of novel antibiotics classes.  

As for antifungals, their development was extremely slow since the first antifungal agent, 

Nystatin, (also known as mycostatin) was discovered only in 1949, by two scientists named 

Hazen and Brown
24

. The reasons believed for this slow development is due to the nature of 

fungus: they are eukaryotic species and thus are biologically similar to human hosts
25

.  This 

means that developing a drug to fight fungal disease without affecting the human host is a 

difficult task. However the isolation of Nystatin from the mold Streptomyces nursei set the stage 

for the discovery of amphotericin, in 1955, by Oura et al
26

. This substance was found to be the 

product of Streptomyces nodosus. The two forms of amphotericin, named A and B, were polyene 

antifungals with an in vitro effect on a wide variety of fungi
27

. In 1957, 5-Fluorocytosine, also 

known as flucytosine, was discovered by Duschinski, Pleven and Heidelberger
28

, but its 

antifungal activity was first reported in 1964 by Gruneberg et al
29

. It must be noted that 

nowadays, the gold standard therapy for cryptococcal meningitis, a disease that kills more than 

650 000 per year world-wide, in based on these two last molecules; amphotericin B and 

flucytosine
30

. Then, in the early 1960s however, Griseofulvin, the first orally antifungal was used 

to treat superficial fungal infections of the skin
31,32

. In 1963, the first broad-spectrum antifungal, 

haloprogin, was synthesized by Seki, a Japanese chemist, and used to treat dermatophytic 

infections in humans
33

. The late 1960s heralded the discovery of azoles antifungal agents, with 
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the introduction of clotrimazole (developed by Bayer), miconazole and econazole (developed by 

Janssen Pharmaceutica). But because of their poor response rates, the frequent recurrences of 

major fungal infections, and the toxicity associated with these molecules, scientists started the 

search for a new chemical group of azoles derivates, the triazoles. In general the triazoles 

demonstrated a broader spectrum of antifungal activity and reduced toxicity. However these 

recent years, as a result of the massive use of triazoles in critically ill patients, clear patterns of 

azole resistance have emerged
34

. To date, only these three classes of antifungal drugs have been 

available for systemic fungal infections: polyenes (amphotericin B), azoles and triazoles, and 

flucytosine. Although many of these drugs have advanced the management of fungal infections, 

failure rates remain high, and emergence of intrinsically resistant fungi is a growing problem. In 

this context, a new class of antifungal has been developed, the echinocandins
18

. The lead 

compound anidulafungin was identified in 1974
35

. In 1989, the compound that led to caspofungin 

was reported
36

, and the precursor of micafungin was identified in 1990
37

. It is only in 2002 that 

caspofungin was approved by the FDA (Food and Drug Administration) to be used as an 

antifungal agent. The target of the echinocandins is the cell wall enzyme complex β-1,3-D-glucan 

synthase; this is the only class of antifungal that targets the cell wall of fungi. But even with this 

last class of echinocandins, the repertoire of antifungal agents is still very limited, particularly in 

comparison with the number of agents available for bacterial infections, and the search for new 

antifungals continues
30

.  

However the increased availability and use of antimicrobial agents in the recent years have 

led to the development of resistant strains. Indeed, most of the bacterial pathogens associated 

with epidemics of human disease have evolved into MultiDrug-Resistant (MDR) forms, i.e. into 

forms that are non-susceptible to at least one antimicrobial agent in three or more antimicrobial 

categories. Strains that are non-susceptible to at least one antimicrobial agent in all antimicrobials 
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categories except two or fewer are classified as eXtreme Drug Resistant (XDR) strains
38

. In this 

context, antifungal resistance is no exception; resistance to many antifungal drugs in use has also 

emerged these recent years. Drug resistance not only poses a major threat to public health, it also 

has striking economic consequences. Indeed, drug-resistant infections double the duration of 

hospital stay, double mortality and morbidity, compared with drug-susceptible infections
39

. But 

what is the cause of drug-resistance? The resistance problem is dependent on two components; 

the antimicrobial drug that inhibits susceptible organism and selects resistant ones, and the 

genetic resistance determinants in microorganisms selected by the antimicrobial drug
40

. Drug 

resistance emerges when these two components come together in an environment or host, which 

can lead to a clinical problem. Then, resistance genes and their hosts spread and propagate under 

continued antimicrobial pressure to amplify and extend to other hosts and locations. Indeed, drug 

resistance is mobile, as the genes for resistance can be transferred among microorganisms of 

different taxonomic and ecological groups, by the mean of mobile genetic elements such as 

plasmids, or naked DNA, among others
25,41

. In the absence of mobile genetic elements, a 

progression to drug resistance can occur through sequential mutations in chromosomes, which 

represents less than 20% of the bacterial resistances
42

.  

For bacteria, the mechanisms of resistance can be classified as antibiotic target related or 

antibiotic related (Figure 2). Antibiotic targets can be: (i) protected by modification (mutation in 

RNA polymerase confers resistance to rifampin), (ii) modified by an enzyme (methylation of an 

adenine residue in 23S rRNA makes it insensitive to macrolides), (iii) protected at cellular and 

population levels (formation of protective barriers by secretion of exopolysaccharides, alteration 

or decrease in the number of porins in Gram-negative bacteria). Antibiotics can be: (i) modified 

so the efficiency is lost (modifying enzymes inactivate chloramphenicol and aminoglycosides), 
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(ii) destroyed (β-lactamases destroy penicillin and cephalosporins), (iii) pumped out of the cell 

(via efflux pumps)
20,22,40,43,44

. 

 

Figure 2. Schematic representation of the biological mechanisms of resistance of bacteria. Some 

mechanisms of resistance are directed at the antibiotic, while other target how the drug is transported. A 

third type of mechanism not shown alters the intracellular target of the drug, making the drug unable to 

inhibit a vital function in the microbial cell. Reprinted from
40

.   

 

As for yeast cells, the molecular mechanisms of resistance are also well-known; they are: (i) the 

increased efflux of antifungals (mutation in transcriptional regulators), (ii) alteration of the target 

protein of the antifungal, (iii) overexpression of the protein target (even in the presence of the 

drug, there are enough protein for maintaining a sufficient activity), (iv) alteration of the 

metabolism (loss of the enzyme activity prevents from the accumulation of a toxic product in the 

presence of the drug)
25,45–47

. In both cases, bacteria and fungi, known mechanisms of resistance 

do not explain all the resistances observed. Additional mechanisms are probably waiting for 

discovery.  
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 Reviewing the history of the development of antimicrobial drugs, and of the mechanisms 

of resistance pathogens have developed against these drugs force us to acknowledge the present 

situation, which can be summarized by the sentence “bad bugs, no drugs”
48

. Indeed, the mortality 

rates due to multidrug resistant bacteria are high; each year, 25 000 patients in the European 

Union die from an infection caused by a MDR bacteria (European Center for Disease Prevention 

and Control (ECDC)/ European Medicines Agency (EMEA) Joint working group, 2009). In 

parallel, we can contribute to an “innovation gap” in the pharmaceutical industry (Figure 3). 

Since 2000 only three new classes of antibiotics have been introduced to the market for human 

use, and one of those is limited to topical use
44

. In the case of fungi, the problem is even more 

concerning for the long-term, since the number of fundamentally different types of antifungal 

agents that are available for treatment remains extremely limited, due to the  biological proximity 

between humans and fungal pathogens
25

.  

 

Figure 3. Number of approved antibiotics during the last 30 years. Reprinted from 
44

. 
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1.1.2 How to get out of this situation?   

Bacterial and fungal infections are the cause of an enormous disease and societal burden. The 

increasing number of antimicrobial resistant microorganisms motivates prospective research 

toward discovery of new antimicrobial substances. Indeed, the need for new antimicrobial agents 

is high, and if no new agents are discovered, many of the current therapies will no longer work in 

the future, even for common infections. The two historical lines of antimicrobial drug discovery, 

synthetic chemical efforts versus isolation of new natural product scaffolds are both still in play. 

Since 2000, 22 antibiotics were launched and approved. Among them, 12 were antibiotics 

belonging to two new natural product classes such as daptomycin and retapamulin, and 9 of them 

were of synthetic origin
49–51

. Natural product classes are mainly represented by AntiMicrobial 

Peptides (AMPs) that are antibiotics produced by various organisms such as mammals, 

arthropods, plants and bacteria. Originally, their mechanisms of action were thought to consist 

solely of an increase in the pathogen cell membrane permeability, but it has been showed that 

they also exert their effects by inhibiting processes such as cell wall synthesis or enzyme 

activity
52–54

. However microbial pathogens have evolved different systems to resist to these 

antimicrobials, for example by destruction of the peptides by proteolytic digestion, change of the 

peptide target (modification of the cell envelope), and removal of antimicrobial peptides from 

their site of action via efflux pumps
55

. As for synthetic antimicrobials, there are the results of the 

modification of the molecular characteristics of existing molecules, to make them better in terms 

of reduced side-effects and avoidance of resistance
56

. A good example is the 4H-4-oxoquinolizine 

derivatives, developed in response to growing bacterial resistance to quinolones among Gram-

positive and -negative bacteria and anaerobic pathogens. The modifications brought to these 

quinolones improved the antibacterial efficiency and spectrum, as well as their pharmacokinetic 

properties
57

. But as antimicrobial resistance increases, the race will intensify between microbes 



26 

 

and novel drug discovery and development efforts. Moreover, there are controversies concerning 

the cost-effectiveness of such research. Therefore new strategies have to be developed to 

overcome pathogen resistance.   

One of these strategies developed for bacteria is the analysis of the bacterial genome. The 

resistance of pathogens has been going on in nature before antibiotics were used for 

chemotherapy. Indeed, in addition to the ability of microorganisms to acquire resistance, they are 

also intrinsically resistant to different classes of antimicrobials. This is a trait that is universally 

found within the genome of bacterial species, that is not dependent from the antimicrobial 

selective pressure, and that is not due to gene transfer
58

. The molecular basis of this phenomenon 

is the presence of the Gram-negative outer membrane that is impermeable to many molecules and 

exhibits many efflux pumps.  In addition to this intrinsic resistance, studies have shown that a 

number of additional genes and genetic loci also contribute to the level of intrinsic 

susceptibility
59,60

. Combined, these different elements encompass the intrinsic “resistome”. The 

study of this intrinsic resistome is of relevance for predicting evolution of microorganisms, for 

understanding the linkage between resistance and other virulence processes or metabolisms, and 

for defining novel targets which inactivation makes microorganisms susceptible to antibiotics
61

. 

However, genome-wide analysis of the intrinsic resistome of a given microorganism requires 

using high-throughput technologies.  

 

1.1.3 Technologies to study pathogens 

The study of the resistome of the bacteria is a way to identify new targets, by looking at the 

“inside” of the bacteria, i. e. at their chromosomes and plasmids. However, what about the 

“outside” of bacteria? And what about yeast cells? To combat drug resistance, it is necessary to 

develop new technologies that allow the study of the cell envelope of bacteria and pathogenic 
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yeasts, since this is where components that are unique and essential for the microorganisms, but 

not found in hosts, are. In this work, the type of technology that we have chosen to work with is 

Atomic Force Microscopy
4
, a technology adapted from physics to the field of microbiology. 

Indeed, AFM is particularly well suited to the study of microorganisms because it combines a 

high-resolution imaging capacity with little sample preparation required, compared to other types 

of microscopy such as Scanning Electronic Microscopy
62

. In addition, samples can be imaged in 

fluid environments, which provides possibilities for monitoring live microbes in real-time.  

Nevertheless, the very first prerequisite is the bacterial or fungal cell immobilization. This point 

is critical in the development of AFM in microbiology
63

. The researchers have to deal with the 

paradox of a firm but not denaturing immobilization method. A lot of work is achieved by drying 

the sample, but that unfortunately leads to dead cells. The immobilization of living cells is 

therefore a research area that should not be neglected.  

AFM is not only an imaging technology. It is also a highly sensitive force machine, able to 

measure forces as small as 10 to 20 pN. An AFM is therefore able to record force distance 

curves, where the force experienced by the probe is plotted as a function of the probe-sample 

separation distance, and which give access to the biophysical properties of the living material. 

Nanomechanical properties and nanoadhesive properties of the samples can be measured using 

the AFM as a force machine. The results of such experiments create new paradigms in life 

science, and the interpretations in term of structure functions relationships are promising. This 

technology allows the nanoscale study of the cell envelopes of yeasts and bacteria, and therefore 

will help in getting fundamental knowledge on the cell wall of pathogenic microorganisms, with 

the aim of identifying new targets for antimicrobial drugs at their surface.  The bibliographic 

analysis of the use of AFM technologies for microbiology is presented in Chapter 2, under the 

form of two review articles and of one book chapter.  
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Chapter 1.2: Review of the PhD work: technological developments and 

fundamental studies of microorganism’s cell walls.  

 

1.2.1 Introduction 

This work consists in using Atomic Force Microscopy (AFM) techniques to study the cell 

wall of pathogenic microorganisms, and to probe their interactions with antimicrobials. During 

the last three decades, microbial resistance has increased and propagated around the world. 

Pathogenic microbes have developed different ways to resist almost all antibacterial and 

antifungal available. These pathogens can cause a wide range of superficial infections, but are 

also the cause of life-threatening infections in immunocompromised patients.  There are therefore 

two emergencies; the first one is to discover new antimicrobial molecules, with an innovative 

chemical structure, and mechanism of action. However to reach this goal, it is essential to get 

new fundamental knowledge on the microbial cell wall, in order to identify new targets at the cell 

surface for new cell wall targeting molecules. Therefore the second emergency is to develop 

techniques to explore microbial surfaces, which requires an original experimental approach. In 

this context, biophysical approaches still remain underexploited in clinical microbiology. In my 

PhD, we took advantage of AFM, a technology coming from physics, and adapted to biological 

conditions. Its principle for contact imaging is to maintain the AFM tip in continuous contact 

with the surface when translated over the sample. Recording of the cantilever deflection as the tip 

is scanned over the surface gives access a three dimensional image of the sample
64

 (contact 

mode, Figure 4). AFM can also be used in Force Spectroscopy (FS) mode, where the cantilever 

deflection  is recorded as the AFM tip is pushed towards the sample, and retracted from it (Figure 

4 and 5).  
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Figure 4.  Schema introducing the AFM technology.  A sharp tip is mounted on a cantilever that can be 

moved in the x, y, and z direction thanks to a piezo electric ceramic. The deflection of the cantilever is 

monitored on a 4 square photodiode using the reflection of a laser beam, aligned at the end of the, usually 

gold coated, cantilever. The AFM can be used to produce topographical images (like in contact mode) or 

to measure forces (in the force spectroscopy mode) between a bare or a functionalized tip (with a 

biomolecule or a single cell) and the sample. Reprinted from 
64

. 

 

An advantage of AFM is the possibility to work in liquid on living cells, which allowed us for 

example to image the elongation of live bacterial cells of P. aeruginosa treated by ticarcillin, a 

cell wall targeting antibiotic
65

 (Chapter 3.3.1, p233). We could also image the disappearing of the 

capsule of the bacteria Klebsiella pneumoniae under colistin treatment, a “last chance” 

antibacterial with a poorly known mechanism of action (Chapter 3.3.2, p240). Nevertheless, 

sample immobilization is often a challenge that must be addressed for each kind of 

microorganisms studied. Indeed, samples must be immobilized firmly enough to withstand AFM 

tips lateral forces, but without denaturing them. It represents an entire field of research, and led us 

to engineer a microstructured polydimethylsiloxane (PDMS) stamp, with holes of different sizes, 

to immobilize round cells of different sizes such as yeasts (Chapter 3.1.1, p146). Once this step 

accomplished, AFM can be used in classic imaging and force spectroscopy modes (Figure 4, 

contact mode, oscillating mode, force volume mode), but also in advanced modes in order to 

acquire high resolution or multiparametric set of data on living cells
66

. We have used for example 
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the multiparametric imaging mode, called Quantitative Imaging mode (QI
TM

), from JPK 

Instruments, to image and quantify the nanomechanical/adhesive properties of microorganisms 

(Candida albicans, Escherichia coli, Aspergillus fumigatus), as well as mammalian cells (CHO, 

Chinese Hamster Ovaries) and their isolated nucleus (Chapter 3.1.2, p165).  

 

 

Figure 5. Schematic representation of AFM used in Force Spectroscopy mode. Force spectroscopy 

gives access to force curves that can be analyzed in two different ways. (1) Indentation (δ) is read on the 

force curve and represents the nanomechanical properties of the cell wall of yeasts. (2) single molecule 

force spectroscopy (SMFS) uses functionalized AFM tips with biomolecules or ligand; the interaction 

between a ligand chemically fixed on the AFM tip and the protein at the surface is given by the adhesion 

forces on the retracted force curve (red curve). Reprinted from 
67

 
 

 

But AFM is not only an imaging technology; it is also a highly sensitive force machine. An AFM 

is therefore able to record force distance curves, which give access to the nanomechanical and 

adhesive properties of the living material probed (Figure 5). Thanks to this possibility, we could 

study the adhesive properties of the pathogenic yeast Candida albicans (Chapter 3.2.1, p201) and 

show at its surface the presence of proteins able to aggregate into nanodomains and form amyloid 

plaques. We also could observe the modifications of these adhesive properties under caspofungin 

treatment
68

, an antifungal used only as a last resort in life-threatening infections (Chapter 3.2.2, 

p221).  Finally, to get further into the architecture of microorganisms cell wall, it is possible to 



31 

 

functionalize AFM tips with biomolecules (Figure 4 and 5). We used this strategy to 

functionalize AFM tips with Concanavalin A, a lectin that specifically binds to carbohydrates 

present in the bacterial cell wall
69

. These experiments allowed us to demonstrate the resistance of 

a multidrug-resistant strain of Pseudomonas aeruginosa to classical antibiotics, but also to 

understand the mechanism of action of an innovative molecule, CX1, on this species, thanks to 

the study of its peptidoglycan structure
70

 (Chapter 3.3.3, p260). We then used this same technique 

to localize specific proteins expressed at the tip of the mating projections of Saccharomyces 

cerevisiae. To this end, we created a recognition system based on the antigen-antibody 

interaction, by functionalizing AFM tips with an antibody targeted against a peptide, used to label 

proteins of interest. This system was validated on model surfaces; its versatility was confirmed on 

living mammalian cells CHO (Chapter 3.1.3, p175).  

 

1.2.2 Technological developments to study the cell wall of microorganisms by AFM 

A prerequisite for AFM experiments is the immobilization of the biological samples probed
63

. 

However, immobilizing living microorganisms is often a challenge; samples must be 

immobilized firmly enough to withstand the lateral forces exerted by the AFM tip, but without 

denaturing them. Several techniques have been already used to immobilize living cells. 

Microorganisms can be chemically fixed on a solid substrate using glutaraldehyde or APTES
71

, 

or immobilized on gelatin coated surfaces
72

. However these techniques can respectively modify 

the interface of the biological sample, or pollute the AFM tips, leading to artifacts. Another 

strategy takes advantage of the electrostatic interactions between a positively charged surface, 

such as a PolyEthylenImine (PEI) coated glass slides, and a negatively charged sample, such as 

bacteria
73

. In this work, this strategy has been used to immobilize living Pseudomonas 

aeruginosa and Klebsiella pneumoniae cells. Finally a strategy to immobilize round shaped cells 
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such as bacterial cocci and yeasts cells is to trap them in the pores of polycarbonate membranes
74

. 

This technique has been widely used over the recent years
75–78

, although it is time-consuming and 

cells can be submitted to mechanical forces when trapped in the pores. To circumvent these 

problems, a strategy was developed in our team in 2011, consisting in trapping rounds shaped 

cells such as yeasts or spores of Aspergillus fumigatus in microstructured PDMS stamps
79

. This 

strategy is composed of three different steps. First, a glass/chromium mask harboring 

microstructured patterns is generated, and these patterns are then transferred onto a silicon wafer 

by photolithography and deep reactive ion etching.  Then PDMS stamps are fabricated; for that, a 

PDMS prepolymer solution containing a mixture of PDMS oligomers and a reticular agent in a 

10:1 mass ratio is cured on the silicon master for 1 hour at 80°C. The PDMS polymer can then be 

demolded to obtain a microstructured PDMS stamp. Finally cells are assembled into the 

microstructured PDMS stamp by convective/capillary deposition. This consists in dragging a 

drop of a cell suspension onto the PDMS stamp at a given temperature, humidity and translation 

speed. This procedure can also be performed manually in the case organized arrays of cells are 

not needed. An overview of this technique is presented in figure 6, where the three different steps 

are represented.  
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Figure 6. Schematic representation of the PDMS immobilization protocol. The first step (a) consists 

in generating a silicon master presenting the negative geometry desired for the PDMS stamp. The second 

step (b) is dedicated to the stamp molding. Liquid PDMS is flowed over the silicon master and reticulated 

for 1h at 80°C. Finally (c) cells are assembled in the microstructured PDMS stamp by convective/capillary 

deposition forming cell array. To be published.  
 

In 2011, the first PDMS stamp was developed in our team
79

. It presented square patterns 5 µm 

wide, with a depth of 2.1 µm. However the use of this stamp was limited to microorganisms with 

a diameter of 5 µm approximately. During this PhD, we have developed a new PDMS stamp with 

square patterns ranging from 1.5 to 6 µm wide, with a pitch of 0.5 µm and a depth ranging from 1 

to 4 µm. Characterization by AFM of these patterns on the PDMS stamp is presented in figure 

7b. This new geometry allows immobilizing a wide broad of microorganisms of different sizes, 

without denaturing them as no chemicals are required. This immobilization method, soon to be 

published and presented in Chapter 3.1.1 (p146) , has been used during these three years to image 
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yeasts cells of Candida albicans (Figure 7a and c), and to study their adhesive properties, or their 

behaviors when submitted to an antifungal stress (Chapter 3.2, p200). It has also been used in 

collaborative studies to immobilize yeast cells of Saccharomyces cerevisiae submitted to thermal 

stress (Appendix 1, p272), or to study the effects of a mutation on the adhesive properties of 

spores of Aspergillus fumigatus (Appendix 2, p285). 

 

Figure 7. Immobilization of living yeast cells. (a) Schematic representation of yeast cells in PDMS 

microstructured stamps. (b) Height AFM images and corresponding cross-sections of the microstructured 

PDMS stamps. The structures ranged from 1.5 to 6.0 µm large and 2 to 3 µm deep. (c) S. cerevisiae cells 

trapped in microstructured PDMS stamps as imaged by Atomic Force Microscopy. Reprinted from 
67

 

 

 

 Once this step of immobilizing living round cells was accomplished, the next challenge 

was to find an imaging mode where lateral forces were reduced, that could give high-resolution 

data and ideally also quantitative ones. Given our needs, we interested ourselves in the new 

advanced mode from JPK Instruments, named Quantitative Imaging
TM

 (QI
TM

) mode
66,80,81

. This 

mode is based on force curve acquisition across the sample surface, like a force-volume mode 

(FV), but processed quicker, as the tip, while retracting, moves laterally to the next point before 

Silicon wafer 
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approaching again. In this mode, the time to record a single force curve is up to 1.0 ms, and the 

resolution up to 512 pixel², which is well suited for biological samples and kinetic studies on 

these samples. A comparison of QI
TM 

with contact mode or Force Volume (FV) mode is 

presented in figure 8.  

 

Figure 8. AFM modes comparison. For each mode, contact, Force-Volume (FV) and Quantitative 

Imaging
TM

 (QI
TM

) mode, the movement of the AFM tip is represented. These modes were applied to 

different kinds of samples: loosely immobilized samples and soft samples. QI
TM

 is the best suited for these 

kind of samples. Reprinted from 
66

.  

 

In this mode, during acquisition, a force curve is recorded for each pixel, therefore giving access 

to the “true” surface topography of the sample, by extracting the zero-force contact point from 

each curve. Each extent force curves can also be analyzed individually through theoretical 

models giving therefore access to the nanomechanical properties of the sample, such as elasticity 

or stiffness. Finally, each retract force curve can be extracted to measure the adhesion forces 

between the tip, biofunctionalized or not, and the biological sample. We have demonstrated in 

this work that this AFM mode was useful to image loosely bound samples, as well as soft 
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samples as no lateral forces are exerted by the tip during acquisition (Figure 8). Furthermore, we 

showed that it was possible thanks to this mode to map at high-resolution the nanomechanical 

properties of the samples, as well as their adhesive properties. These results, published in Micron, 

are presented in chapter 3.1.2 (p165). Therefore, during this PhD, we took advantage of this 

technology, and used it to image and quantify the nanomechanical/adhesive properties of 

different microorganisms such as C. albicans
68

 (Chapter 3.2, p200), S. cerevisiae
68

 (Appendix 1, 

p272) A. fumigatus
82

 (Appendix 2, p285), and K. pneumoniae (Chapter 3.3.2, p240).  

 

  In order to access significant adhesive data on living cells, AFM can be used in QI
TM

 or 

FV mode with functionalized AFM tips; this is called Single Molecule Force Spectroscopy 

(SMFS). In this technique, AFM tips interact with biomolecules immobilized on innate substrates 

or artificial biomembranes (in vitro studies), or present at the surface of living cells (in vivo 

studies), to understand the intra- and inter-molecular interactions of biomolecular systems
83,84

. 

Although this technique has been widely used in vitro
85–87

, only few reports have used it on living 

cells; such experiments are often challenging, because of the heterogeneity of the cellular 

surfaces. For example, the yeast cell wall is composed of heterogeneous components (mannans, 

mannoproteins, glucans, chitin), that are structurally organized among the cell wall depth. This 

heterogeneity and complex molecular organization is essential for maintaining a functional cell 

wall that protects the cell from the environment, and allows morphogenic events to take place
88

. 

However, during SMFS experiments, all these different components at the surface of the living 

cells can cause non-specific interactions with the AFM tip (hydrophobic interactions, 

electrostatic…), hiding therefore the interactions of interest. In this context, it is necessary to 

functionalize AFM tips with specific antibodies targeting only one molecule in particular at the 

surface of the cells. But the huge lack of antibodies recognizing native membrane proteins with 
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high specificity largely prevents the use of functionalized AFM tips to explore the behavior of 

these proteins at the cell surface. To bypass these problems, biologists developed a genetic 

strategy consisting in labelling proteins to their amino (N-) or carboxy (C-) terminus with specific 

small tags and then expressing these tagged-proteins in living cells. Several and general epitope 

tags such as Human influenza hemagglutinin (HA) tag (YPYDVPDYA), FLAG tags 

(DYKDDDDK) or myc tags (EQKLISEEDL) and corresponding high specific antibodies 

recognizing these epitopes have been thus developed and are commonly used by the biology 

community, therefore offering the possibility to follow the protein of interest with high accuracy. 

We took advantage of these specific antibodies and functionalized an AFM tip with an antibody 

targeted against the HA epitope-tag. Many strategies to functionalize AFM tips with 

biomolecules have been described so far. Some of them consist in the nonspecific adsorption of 

proteins, for example BSA (Bovine Serum Albumin), to the silicon nitride surface of AFM tips
89

, 

or in the chemical fixation of biomolecules by sulfur-gold bonds to gold-coated AFM tips. This 

last strategy has been successfully used for measuring interactions forces between 

complementary DNA strands
90

, or between fibronectin and bacterial cells
91

. However, in the first 

case, the adsorption is nonspecific, and in the second case, the gold-coating of AFM tips modifies 

the spring constant of the cantilevers where the tips are fixed. To avoid these problems, it is 

possible to covalently link a molecule containing amino groups directly to the silicon nitride 

AFM tip. To this end, AFM tips must be first amino-functionalized either by esterification with 

ethanolamine
92

 or silanization with aminopropyl-triethoxysilane (APTES)
93

. Then, the amino-

functionalized tip has to be bridged to the biomolecule of interest. This can be achieved by 

different ways
94

, for example through the use of heterobifunctionalized PolyEthylene Glycol 

(PEG)
94–96

, or, as we decided in our study, through the use of an aldehyde-phosphorus dendrimer. 

This strategy developed in our team in 2012
69

, has already been used for probing the surface of 
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live bacteria
70

, and consists in making “dendritips” by reacting amino-functionalized AFM tips 

with dendrimers, therefore leading to dendrimer-activated tips. This strategy is described in 

figure 9. Then, the free aldehyde functions at the surface of the dendrimers are available to react 

with amino-functions present on every protein and on many biomolecules. Using this strategy we 

are able to measure specific interactions between a biomolecule immobilized on the AFM tip and 

a biomolecule immobilized on an abiotic surface, or at the surface of living cells, without 

modifying the spring constant of the cantilever.   

 

 

Figure 9. Schematic representation of Dendritip fabrication. Amino groups are introduced on the 

AFM tip and the dendrimer bearing 96-aldehyde en groups is attached via imine bond formation. 

Reprinted from 
69

.  

 

In this work, we have used this strategy and developed AFM tips functionalized with an anti-HA 

(peptide YPYDVPDYA) antibody. At first the designed experiments also consisted in 

functionalizing AFM tips with anti-V5 (peptide GKPIPNPLLGLDST) and anti-Histidine (amino 

acid H) antibodies. However, optimizing the chemistry on the AFM tip and on model surfaces so 

that the antibodies and epitopes are presented with the right orientation for specific recognition, 

optimizing the concentrations in antibodies on the AFM tip to avoid multiple binding events, and 

finally tagging proteins with the right epitopes tags using biomolecular techniques are difficult 

and time-consuming procedures. Therefore we chose to focus on the couple HA-anti HA, and 
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developed biological models with surface proteins exhibiting HA tags. The first step for 

developing the HA-antiHA system was to validate our tip on model surfaces functionalized with 

HA epitopes, as presented in figure 10. For that, we performed blocking experiments (figure 

10b), loading rate experiments (figure 10c), as well as contact time experiments (figure 10d). 

These experiments allowed us to show the specificity of the interaction between the antibody 

grafted on the AFM tip and the HA epitope on the surface model, and to characterize it 

thermodynamically by calculating the dissociation kinetic constant (Koff).   

 
Figure 10. Single Molecule Force Spectroscopy with HA and HA antibody-functionalized AFM tips 

(HA-tip). (a) single molecule interactions between HA peptide immobilized on epoxy glass slide, and 

HA-antibodies immobilized on an AFM tip, at a loading rate of 70 nN/s. (b) blocking of HA specific sites 

by HA-antibodies and single-molecule force spectroscopy with HA antibody AFM tips. (c) Loading-rate 

dependence of interaction forces between HA and HA antibodies, and (d) contact-time dependence of the 

adhesion probability. Results accepted for publication in Journal of Molecular Recognition.  
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Then, after validation, we used this system on yeast cells over-expressing a cell wall 

protein called Ccw12 labelled with the HA epitope. This protein, involved in the remodeling of 

the cell wall, could be mapped only at the surface of cells in a particular morphogenic state 

during mating process. This led us to image for the first time by AFM yeasts cells as “shmoos”, 

i.e. in mating projections. The results obtained with the HA tip on these shmoos open new 

perspectives to study the remodeling of the cell wall in yeasts. Finally to show the versatility of 

our system, we used it on mammalian cells CHO, and unfolded from their surface a G-coupled 

protein receptor, the β2-adrenergic receptor, labelled with HA epitope at its N-terminal. These 

results, soon to be published in Journal of Molecular Recognition, are presented in Chapter 3.1.3 

(p175). 

 

1.2.3 A nanoscale view of the yeast cell wall of Candida albicans and Saccharomyces 

cerevisiae 

The first type of microorganisms studied during my PhD was yeast cells, especially 

Candida albicans, the most common human pathogenic fungal species, and Saccharomyces 

cerevisiae, also known as the baker yeast. Yeast cells are surrounded by a thick, mechanically 

strong cell wall which serves several key physiological functions, namely maintaining cell shape 

and cell integrity, and protecting cell interior from harmful compounds from the environment. 

The cell wall also harbors several proteins that are implicated in molecular recognition and 

adhesion
97

. The chemical composition of the yeast cell wall, presented in figure 11, is well 

known
88

. It consists in a microfibrillar network of -glucans (-1,3 and -1,6-glucans) that 

represents 50 to 60 % of the cell wall mass, overlaid by highly glycosylated proteins decorated by 

long chains of mannose residues representing 40-50 % of the cell wall mass. Chitin, a linear 
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polysaccharide of -linked N-acetylglucosamine, is the third component of the yeast cell wall and 

represents 1 to 3 % of the cell wall mass.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Cell wall composition of yeast cells. Transmission electron micrograph showing a section of 

the C. albicans cell wall, and a cartoon showing the arrangement of the major components of the cell wall. 

Adapted from 
5
.  

 

 

Over the last 15 years, the complexity of the cell wall architecture has emerged from detailed 

genetic, molecular and biochemical studies, which led to the discovery of several 

interconnections among these various wall components to form macromolecular complexes
98,99

. 

In addition, the molecular architecture of the cell wall is not static but constantly remodeled 

depending on growth conditions, morphological development as well as response to cell surface 

stresses
98

. Therefore, AFM, which allows direct visualizing and probing the ultrastructure of the 

cell wall, is perfectly suited for the study of its dynamic structure and its molecular modification 

in different conditions
100,101

. 

 

The yeast Candida albicans has emerged as a major public health problem these last two 

decades. This opportunistic pathogen causes a wide range of infections from skin infections, to 

mucosal and blood-stream infections
5
. Whereas mucosal infections are common and occur in 

healthy organisms, blood-stream infections are observed only in immunocompromised patients 
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and are life-threatening. This type of infections, also known as candidaemia, can develop into 

disseminated candidiasis when the infection spreads to internal organs, leading to high mortality 

rates
6
. But in order to colonize and subsequently to disseminate in the blood stream, C. albicans 

first needs to adhere to different substrates. This first stage of infection
102

 is mediated by adhesins 

that are found on the surface of the yeast cell wall. Many of these adhesins are mannoproteins, 

and among them, the adhesin family identified as having a major role in host cell attachment is 

the Als (Agglutinin-like Sequences) family
103

. The Als were initially reported as having 

homologies with the proteins responsible for auto-agglutination in the baker yeast Saccharomyces 

cerevisiae. Eight Als have been identified, they all are primarily involved in host-pathogen 

interactions
104

. It was found that there were amyloid-forming sequences in the Als adhesins of 

Candida albicans
105

. Amyloids are insoluble fibrillar protein aggregates whose core consists in 

crystalline arrays of identical sequence in many molecules of the amyloid protein
106,107

. Cells 

expressing the Als proteins can rapidly aggregate, and the aggregation has amyloid-like 

properties. Like amyloid formation, aggregation ability propagates through the adherent cell 

population and depends on conformational changes of the Als protein. This transition of the 

conformational state to an aggregative state of the proteins is characterized by the formation of 

hydrophobic nanodomains on the entire surface of the cell
108

. Different techniques can be used to 

visualize these nanodomains at the surface of C. albicans: fluorescence microscopy
105,107,108

, or 

Atomic Force Microscopy. This last technology has been used by Alsteens et al. to image the 

formation and propagation of nanodomains in living yeast cells
109

 and also to unfold amyloid 

proteins from the yeast surface using single molecule force spectroscopy
110–112

. In this work, we 

have used Quantitative Imaging
TM

 mode to image, as showed in figure 12, and quantify at the 

same time the nanomechanical properties, the adhesiveness (force and nature of the interaction), 

the size and the thickness of the nanodomains at high resolution
66,113

.  
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Figure 12. Imaging of the adhesive domains of Candida albicans. (a and e) Height images (z-range = 

2.5 µm) of two C. albicans cells in polydimethylsiloxane (PDMS) stamps, and (b and f) adhesion images 

corresponding to the height images. (c, d, g and h) Adhesion images of small areas on top of the cell, 

represented by the white squares in b and f. Results accepted for publication in Nanomedicine NBM.  

 

The data collected showed that these nanodomains are localized differently at the surface 

of the cell, depending on the structures featured by the cells (bud scars, buds). This illustrates the 

amazing plasticity of this species
6
 able to grow as a commensal or as a pathogen

5,114
, in all the 

parts of the intestinal tract, but also on the vaginal mucosa, as unicellular budding cells or as 

filamentous hyphae. We also showed that there were degrees of adhesiveness, depending on 

whether the amyloid proteins had totally aggregated (hydrophobic nanodomains) or not, and that 

these degrees of aggregation were directly correlated to the stiffness of the yeast cell wall. We 

then went further in the study, using functionalized AFM tips, and were able to determine that the 

less adhesive nanodomains were formed by mannoproteins that can interact specifically with 

Concanavalin A. Using force measurements and amyloid forming or inhibiting peptides, we 

could show that these mannoproteins were able to aggregate to form the adhesive nanodomains, 

because of their amyloid properties. These results, accepted for publication in Nanomedicine 
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NBM (chapter 3.2.1, p201), show the plasticity of C. albicans
25

 and participate to explain its 

remarkable adaptation and pathogenicity. 

 

The yeast cell wall is also the target of choice for antifungal agents since it is a specific 

armor that does not exist in mammalian cells, and its damaging leads to cell death
115,116

. Due to 

the essential function of the cell wall, exposure of yeasts to antifungals such as caspofungin, a 

specific inhibitor of the -glucan synthase
18

, induces activation of cell wall remodeling through 

the Cell Wall Integrity (CWI) pathway
117

, which culminates into transcriptomic and metabolic 

responses aiming at counteracting the disastrous effects caused by this drug on the cell wall. We 

complemented these molecular data using AFM, and studied the effects of caspofungin on the 

yeasts Candida albicans and Saccharomyces cerevisiae, as a model yeast species
68

. Using our 

innovative method to immobilize yeasts cells into PDMS stamps, in combination with the 

Quantitative Imaging
TM

 mode that allows acquiring high-resolution force maps on challenging 

samples, we could collect AFM data on different cells in a reasonable period of time. In parallel 

of these experiments, we quantified the different components of the yeast cell wall (glucans, 

mannans and chitin) in native conditions, and upon treatment, using acid hydrolysis method
118

. 

We found that administration of caspofungin induced a deep cell wall remodeling in both yeast 

species showed by an increase in the elasticity of the cell wall as a function of the caspofungin 

dose. The changes in the cell wall composition, however, were more pronounced for C. albicans, 

with notably a more elevated rise in chitin as a function of the caspofungin dose, concurrent with 

the increase of the elasticity of the cell wall. In addition, at low dose of caspofungin, the cell 

surface of C. albicans exhibited adhesions, that could potentially be due to the presence of 

mannoproteins such as adhesins of the Als family. On the other hand, treatment of S. cerevisiae 
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cells with high doses of caspofungin resulted in an impairment of cytokinesis. Figure 13 shows a 

summary of these results, which are published in Antimicrobial Agents and Chemotherapy and 

presented in Chapter 3.2.2 (p221).  

 

Figure 13. Overview of the effects of caspofungin on Candida albicans and Saccharomyces cerevisiae. 
Young modulus values of the cell wall of probed cells of C. albicans increase with the dose of 

caspofungin, which can be directly correlated to the increase in the chitin content of the cell wall. C. 

albicans cells have modified adhesive properties upon treatment by caspofungin at 0.5 MIC, whereas S. 

cerevisiae morphology is modified at a high dose of caspofungin. Adapted from 
68

.  
 

The use of AFM unraveled unexpected effects of antifungal agents on fungal adhesion properties 

and cell growth of two different species. These results may help in understanding the molecular 

basis of microbes-drugs interactions and opens new avenues for developing new therapeutic 

agents. 

 

Finally we used AFM to probe the cell wall of stressed yeast cells, in order to directly 

visualize the morphological, structural and biophysical changes of the yeast cell wall happening 

during a heat shock.  For these experiments, we used Saccharomyces cerevisiae, and submitted 
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this strain to a biotechnologically relevant stress; thermal stress. The group of G. Walker in 

Scotland has pioneered this research and published several papers where AFM was used to 

evaluate the effects of thermal and osmotic stress
119

, ethanol shock
120

, and oxidative stress
121

, on 

the cell wall of S. cerevisiae and Schizosaccharomyces pombe. However, in these studies, the 

method of immobilization consists in air drying a cell suspension deposited on a glass slide, 

before AFM experiments. This immobilization method can lead to the modification of the 

interface of the cells, leading to different results than in liquid on living cells. In this work, we 

evaluated the effects of thermal stress on the cell wall of Saccharomyces cerevisiae. We showed 

that a shift of temperature from 30 to 42°C induced in less than 1 hour the formation of a circular 

structure, taking its origin on the cell wall, and evolving in concentric rings on the cell surface, as 

showed on the high-resolution image of the S. cerevisiae cell wall presented in Figure 14.  

 

 

Figure 14. Exploring the ultrastructure of yeast cell surface in response to a thermal stress by AFM. 

Exponential growing yeast cells were subjected to a temperature shift from 30 to 42°C. After a 1 h 

exposure, cells were imaged by AFM in contact mode at a very low applied force (0.1 nN). High-

resolution deflection image shows a succession of concentric rings, ended with a major ring (ring with the 

larger diameter, white arrow). Reprinted from 
122

.   
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In parallel, the cell wall Young modulus of heated cells was increased by twofold compared to 

native cells, and this was observed in parallel of a twofold increase in the content level of chitin 

in the cell wall. This morphological process was found to be dependent on genes required for the 

budding process and under the control of the CWI signaling pathway. From these genetic results, 

we came to the suggestion that the formation of these circular rings arose from a defective bud 

scar or bud emergence site during the temperature stress
122

 (Appendix 1, p272). However more 

work has now to be performed, in order to understand the decrease in the cell wall elasticity, and 

to link it with a biological process of cell wall remodeling.  

 

Altogether, these results show how AFM technology can bring new fundamental data on 

the cell wall of yeast cells. We could explore the adhesive and nanomechanical properties of the 

pathogenic yeast species Candida albicans and show the presence of amyloid plaques at its 

surface, that disappeared after the cells were treated with an antifungal drug, caspofungin. We 

then used AFM to probe the effects of thermal stress on the cell wall, and showed that S. 

cerevisiae cells had an increased cell wall elasticity after a temperature shift from 30 to 42°C. 

This reflects the complexity of the molecular mechanisms ensuring maintenance of the cell wall, 

and its assembly.  

 

1.2.4 Nanoscale behavior or the bacterial cell wall submitted to antibacterials 

We then studied a second type of microorganism, bacteria, and specifically Gram-negative 

bacteria. The bacterial cell wall is a complex multilayered structure that (i) serves to protect 

bacteria from their environment, (ii) plays an essential role during cell division, and (iii) forms a 

selective passage for nutrients from the outside and waste products from the inside
123,124

. The cell 

walls of bacteria are divided into two major groups. Gram-negative bacteria, as described in 
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figure 15, are surrounded by a thin peptidoglycan layer, which is surrounded by an outer 

membrane containing lipopolysaccharide. Gram-positive bacteria do not possess an outer 

membrane but are surrounded by layers of peptidoglycan thicker than for Gram-negative.  

 

 

Figure 15. Representative schema of the cell envelope of Gram-negative bacteria. Adapted from 
70

.  

 

The outer membrane is a distinguishing feature of Gram-negative bacteria. It is a lipid bilayer 

composed of proteins and glycolipids, notably the lipopolysaccharide (LPS), that ensures a 

critical role in the barrier function of the outer membrane. The LPS is also known as an 

endotoxin and provokes endotoxic shocks associated with septicemia caused by Gram-negative 

bacteria
125

. The outer membrane is covalently bound to the peptidoglycan layer by lipoproteins 

called Braun’s lipoproteins
126

. The peptidoglycan is made up of repeating units of the 

disaccharide N-acetyl glucosamine-N-acetyl muramic acid, which are cross-linked by penta-

peptide side chains
127

. The peptidoglycan sacculus is a rigid structure that determines the shape of 

bacteria.  The outer membrane and the inner membrane delimit a compartment called the 

periplasm, which contains proteins such as harmful degradative enzymes (RNAse or alkaline 

phosphatase), periplasmic binding proteins (sugar and amino acid transport and chemotaxis), and 

chaperone-like molecules (role in envelope biogenesis)
128,129

. Finally the inner membrane is a 

phospholipidic bilayer that contains all the proteins with roles in the energy production, lipid 
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biosynthesis, protein secretion and transport
123,130

. Because the bacterial cell wall is a unique 

feature of Gram-negative bacteria, with components such as peptidoglycan and LPS that are not 

found in any other cells, and because of its crucial role in the surviving of bacterial cells, it 

represents a perfect target for antibacterials. It is then of first interest to probe the bacterial cell 

wall with AFM, in order to get new fundamental knowledge about this complex dynamic 

structure, to understand its nanoscale behavior in interaction with antimicrobials, and therefore to 

identify new targets for innovative antibacterial molecules in the future.  

The first species we worked on is Pseudomonas aeruginosa. This bacterial species is a 

“superbug”; infections associated with multidrug-resistant P. aeruginosa have a substantial 

impact on mortality rates. P. aeruginosa is an invasive, Gram-negative opportunistic pathogen 

that causes a wide range of infections including bacteraemia, pneumonia, meningitis, urinary tract 

and wound infections. Moreover, P. aeruginosa is naturally resistant to antibiotics due to its 

natural low outer membrane permeability and to many adaptive resistance mechanisms (loss of 

porins, surexpression of efflux pumps, presence of β-lactamase …)
8,9,131–133

. The common way to 

fight against bacteria is to use antibiotics. We therefore studied the effects of two reference 

antibiotics, ticarcillin and tobramycin, that are active on P. aeruginosa, and widely used in 

therapeutics
65

. Ticarcillin is a β-lactam that inhibits the bacterial transpeptidases and 

transglycosylases responsible for the assembly of the cell wall peptidoglycan
134

. The second 

molecule, tobramycin, is an aminoglycoside that works by binding to the 30S and 50S units of 

the bacterial ribosome, preventing formation of the 70S complex. As a result, mRNA cannot be 

translated into protein. Our results showed significant morphology modification of bacteria 

treated by both antibiotics. Bacteria grown in the presence of ticarcillin formed filaments, a 

morphology already observed by Scanning Electron Microscopy
135

, and explained by the fact that 

β-lactamins activate the SOS system of the bacteria, leading to the inhibition of cell division
136

. 
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Tobramycin-treated cells did not elongate but presented a deformed cell wall, due to the fact that 

tobramycin treatment leads to the synthesis of abnormal proteins that are incorporated into the 

cell wall, which therefore loses its integrity. These results, presented in figure 16, are published in 

Nanomedicine NBM and presented in chapter 3.3.1 (p233).  

Figure 16. Morphological modifications of Pseudomonas aeruginosa cells induced by antibiotic 

treatments. Deflection images of cells in native conditions (left panel), under ticarcillin treatment (middle 

panel), and under tobramycin treatment (right panel). Adapted from 
65

.  

 

This first set of data allowed us to demonstrate that looking at the bacterial biophysical properties 

upon antimicrobial treatment was rich in information concerning the mechanism of action of 

these molecules; this method could therefore be used to probe the effects of other antimicrobial 

agents on the cell wall of multidrug resistant species.  

 

 We then probed the effects of another antibacterial molecule, polymyxin E, also known as 

colistin, on the cell wall of multidrug resistant strains of the Gram-negative bacterial species, 

Klebsiella pneumoniae. K. pneumoniae has been recognized over 100 years ago as a cause of 

community-acquired pneumonia
11

. But the vast majority of Klebsiella infections are associated 

with hospitalizations; K. pneumoniae infections of the urinary tract, bloodstream, lungs and 

abdominal cavity have now became common. Numerous virulence factors have been described 

for K. pneumoniae. Among others, extracellular capsules are essential to virulence; indeed, the 
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capsular material forms thick bundles of fibrillous structures that cover the bacterial surface in 

massive layers
10

. This protects the bacteria from phagocytosis and prevents killing by bactericidal 

serum factors
13

. Another important feature of K. pneumoniae is its ability to resist a large number 

of antibiotics. Indeed, within a few years after the introduction of cephalosporins, a type of β-

lactamins, K. pneumoniae strains within hospitals were showed to produce β-lactamases able to 

inactivate these agents. These β-lactamases were in fact ESBL, for Extended-Spectrum β-

Lactamases. ESBLs are plasmid mediated enzymes that hydrolyze oxymino-β-lactamins agents. 

These plasmids also carry resistance genes to other antibiotics, including aminoglycosides, 

chloramphenicol, sulfonamides…. Thus, K. pneumoniae strains containing these plasmids are 

multidrug resistant
10,13,137

. However, ESBLs are readily inhibited by the commercially available 

β-lactamases inhibitors (clavulanic acid, tazobactam and sulbactam)
14

, which serves as an 

important phenotypic test to identify ESBLs.  During this PhD, we have specifically worked on 

the characterized K. pneumoniae ATCC 700603 strain, a clinical isolate obtained from a patient 

in the USA in 1994, which produces an ESBL called SHV-18
12,138

. Because this ESBL is 

sensitive to clavulanic acid, it has been used as a reference strain for quality control in ESBL 

detection.  

 Management and treatment of ESBL-producing K. pneumoniae infections can be 

challenging. Currently, carbapenems are the only class of antibiotics that have consistently been 

effective against ESBL-producing K. pneumoniae. However, bacteria have developed 

carbapenemases (KPC), which are ESBL-like enzymes that confer resistance to extended-

spectrum cephalosporins and carbapenems
11,14

. Therefore, clinicians had to turn back to an old 

antibiotic of the polymyxin class, colistin, as a last resort agent for the treatment of infections 

caused by multidrug resistant Klebsiella pneumoniae. Polymyxins are cyclic lipodecapeptides 

that are strongly cationic. They were discovered as early as 1947
139

, and widely used at that time. 
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But, following reports on nephrotoxicity and neurotoxicity in the 1970s, they were largely 

replaced by other better-tolerated antibiotics
16,140

. Polymyxin B and polymyxin E (colistin) are 

the main antibiotics of this group, and the only ones used clinically.  They are bactericidal, and 

act rapidly and specifically on Gram-negative bacteria. We will focus on colistin, the polymyxin 

used in this work. Its initial target is the lipid A of the LPS of the outer membrane of Gram-

negative bacteria. Thanks to its positive charges, colistin interacts electrostatically with these 

molecules, and competitively displace divalent cations from them, causing disruption of the 

membrane. This results in an increase of the permeability of the cell wall, leakage of cell 

contents, and subsequently, cell death
141,142

. However, some authors argue that interaction with 

membranes is a part of the polymyxin activity, but not actually the lethal event
143

. Therefore the 

precise mechanism of action of colistin still remains contentious
144

. In this study, we have used 

Atomic Force Microscopy to probe the effects of colistin on K. pneumoniae ATCC 700603, and 

on its colistin-resistant derivate named Kpm
145

, with the aim of better understanding the 

mechanism of action of this molecule. The effects of this molecule have already been showed by 

AFM on air-dried cells of Pseudomonas aeruginosa and Acinetobacter baumannii
146–148

, but no 

work have been performed on live cells of Klebsiella pneumoniae.  

 Our results show for the first time the capsule of K. pneumoniae, at the nanometric scale, 

and its nanomechanical properties. On the ATCC strain, we showed that colistin had a detergent-

like effect by removing the mucus off the bacteria. On the Kpm strain, imaging data showed that 

the capsule was different from the ATCC strain, by being tightly bound to the cells, instead of 

being spread on large surfaces around cells, as it is the case for the ATCC strain. Upon treatment 

with colistin, even at high doses (12 µg/mL), the capsule was not removed from the surface of 

Kpm cells. We therefore could hypothesize that this strain had a modified capsule, conferring it 

resistance to colistin. A further analysis of the force curves obtained on both strains showed that 
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in the case of the ATCC strain, the AFM was first pushing through the layer of capsular 

polysaccharide, then through the bacteria, before reaching the glass slide. On the Kpm strain, the 

tip goes first through multiple layers of polysaccharide, before reaching the bacteria, and then the 

glass slide. The colistin-resistant strain therefore presents a capsule’s nanoarchitecture in 

superposed layers. But despite this organization, and the fact that cells resist the colistin effects, 

their capsule is still affected; nanomechanical data showed that the Young modulus of Kpm 

capsule increased with the dose of colistin. In the case of the sensitive strain, the Young modulus 

of the capsule in native conditions is lower (3.6 ± 0.8 kPa) than for the resistant strain (21.3 ± 4.7 

kPa), allowing us to infer between each strain’s capsular polysaccharide organizations. And since 

capsule was removed in presence of colistin from the sensitive strain, no conclusions on the 

effects of colistin on the nanomechanical properties of the cells could be drawn. Figure 17 below 

presents the hypothesis that could made using the overall data, on the architecture of the capsule 

of the sensitive strain (Figure 17a) and of the resistant strain (Figure 17b).  
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Figure 17. Schematic representation of the hypothesis formulated on the capsular architecture of 

Klebsiella pneumoniae. (a) capsule organization of K. pneumoniae ATCC 700603, and  (b) capsule 

organization of K. pneumoniae colistin resistant (Kpm). The graphic in (b) shows an indentation curve 

recorded on top of a Kpm cell in native conditions (grey line), in which each spike has been fitted using 

the Hertz model. To be published in Journal of Antimicrobial Chemotherapy (manuscript in revision).  

 

Altogether, these results allowed us to bring new insights into the mechanism of resistance of 

Kpm to colistin. Indeed, we could hypothesize that Kpm cells were resisting the effects of the 

polymyxin thanks to the particular nanoarchitecture of its capsule, in superposed layers that each 

represent a barrier to colistin. Therefore the molecule cannot reach its target, i. e.  the LPS and 

the cytoplasmic membrane. In the ATCC cells, because of the “leaky” structure of the capsular 
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polysaccharides, colistin can reach LPS and therefore kill cells. These results are to be published 

in Journal of Antimicrobial Chemotherapy and are presented in Chapter 3.3.2 (p240).  

 

1.2.5 AFM to understand the mechanism of action of a new antibacterial molecule 

But colistin being still a toxic molecule for kidneys and neurons, and Gram-negative 

bacteria still gaining resistance mechanisms, there is an urgent need for new antibacterials, with 

an innovative mechanism of action. Among various approaches to develop new antibacterial 

agents is one dedicated to polycationic calixarene-based guanidinium compounds that display an 

intrinsic antimicrobial activity. Calixarenes, first characterized in 1940 by Niederl and Vogel
149

, 

are macrocycle (cycle oligomer) composed of n phenolic units (usually 4 to 8). It has been 

demonstrated that their excellent organizing behavior into rigid structures gives them many 

functionalities. Given the fact that bacteria are negatively charged, and focusing on this 

organizing behavior, the introduction of positive charges on the calixarene core leads to a 

constrained oligomeric polycation. As antimicrobial agents, the guanidinium derivatives have 

been modestly studied these last years, and most of the investigated compounds are poly-

guanidinium species derived from synthalin A
150

. However, a remarkable gain of antibacterial 

properties in the spatial organization of the monomeric para-guanidinoethylphenol into its 

tetrameric calixarenic isomer
151

 was recently observed. Further studies have confirmed and 

expanded the above findings: Grare et al in 2006 showed an important antibacterial activity for 

the calixarene presented in figure 18 in vitro, both on Gram-positive and Gram-negative bacteria, 

to a lesser degree for E. faecalis and P. aeruginosa
152

. In a similar study conducted in 2007, the 

calixarene showed no apparent cytotoxicity on MRC-5 and HaCaT eukaryotic cell lines 

compared to other antibacterial molecules (hexamidine and synthalin A)
19

.  
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Figure 18. Chemical structure of para-guanidinoethylcalix[4]arene (CX1). Reprinted from 
151

 

 

Thus, the para-guanidinoethylcalix[4]arene (CX1) is a new cationic antibacterial drug, with a 

broad spectrum, not toxic, with a possible parietal target, but with an unknown kind of activity 

(i.e. bactericidal or bacteriostatic).  The initial hypothesis concerning its mechanism of action was 

that the introduction of positive charges on the calixarene core could lead to the disorganization 

of the bacterial cell wall. Since P. aeruginosa possesses a highly negatively charged outer 

membrane, it was a good candidate to study the interaction with CX1 using AFM. We therefore 

developed a strategy to evaluate the nanoscale effects of CX1 on the bacterial cell wall, and to 

elucidate its mechanism of action. To this end, we worked with a sensitive strain of P. aeruginosa 

(ATCC 27853), but also with a multidrug resistant one, P. aeruginosa, which is resistant, among 

others, to ticarcillin and tobramycin. Since the mechanisms of action of these two antibiotics are 

well known, by comparing the effects caused by them with the ones caused by CX1, we will be 

able to get a better understanding of the mechanism of action of CX1 and determine its bacterial 

target. This strategy is schematically summarized in figure 19.  
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Figure 19. Schematic representation of the strategy used to study the mechanism of action of CX1. 
(a) cells cultivated in Mueller Hinton broth for 20 hours at 35°C are immobilized on a polyethylenimine 

coated glass slide for AFM experiments. (b) optical image of the surface covered with immobilized 

untreated P. aeruginosa. (c) molecules used in the study and their targets. (d) optical images of  P. 

aeruginosa treated by ticarcillin (4 mg/mL), (e) by tobramycin (0.25 mg/mL) and (f) by CX1 (32 mg/mL). 

Reprinted from 
70

.  

 

 

The results showed that on a multidrug resistant strain of Pseudomonas aeruginosa, CX1 

caused a dramatic decrease of the cell wall Young modulus, which was not the case when cells 

were treated with ticarcillin or tobramycin. These results showed that CX1 was efficient on such 

a bacterial strain, and that its action destabilized the cell wall of the bacteria. To go further into 

the mechanism of action, we probed the cell wall of treated and untreated bacteria with an AFM 

tip functionalized with Concanavalin A, a lectin that binds to carbohydrates. These single 

molecule force spectroscopy experiments revealed that the lectin could unfold a molecule 6 µm 

long only on CX1 treated cells. Experiments performed on phospholipidic bilayers submitted to a 
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treatment by CX1 during one hour showed that the antibacterial caused the creation of holes of 

approximately 0.5 to 1 µm in diameter in the bilayers. Similar holes were also observed at the 

surface of the CX1 treated cells.  At this stage, we had learned that CX1 was causing a deep 

destabilization of the cell wall of bacteria (Young modulus decreased, unfolding of long 

molecules, holes observed at the surface of cells) and was creating holes in bilayers that mimic 

the outer membrane of Gram-negative bacteria. We could therefore make the following 

hypothesis on the mechanism of action of CX1: this molecule interacts with the surface of the 

Gram-negative bacteria and creates holes in the outer membrane. This gives access to the 

functionalized AFM tip to a molecule that is under the outer membrane; this molecule could 

possibly be the peptidoglycan, which was showed to form a super-coiled rope coiled all around 

the cell envelope in Gram-positive cells of Bacillus subtilis
153,154

, explaining perhaps the fact that 

it was unfolded on such long distances. These results are published in Scientific Reports, and can 

be found in Chapter 3.3.3 (p260).  

The next step of such a study is now to understand how this molecule can be used in synergy 

with other antibiotics, and if it can restore the action of the antibiotics on multidrug resistant 

strains.   

 

 

Chapter 1.3: Discussion: contribution of “nanomicrobiology” to clinical 

microbiology; does it help?  

1.3.1 AFM as a useful tool for clinical microbiology  

Microbiology is a scientific field that focuses on microorganisms and the activities that 

characterize them. More specifically, microbiology has a role in the identification and 
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characterization of microorganisms, in the study of their origins and evolution, in the 

understanding of the interactions they have between them and with their natural or artificial 

environment. In comparison, clinical microbiology is a branch of medicine that has the role to 

identify and characterize microorganisms (bacteria, viruses, fungi and parasites) that cause 

human disease, to provide a diagnostic and a therapeutic support for the clinical management of 

patients, and to prevent the transmission of infectious diseases both in the health-care system and 

in the community
155

. Atomic Force Microscopy has long been used for microbiology studies 

now. The yeast and bacteria cell wall probed by AFM has been the subject of many publications, 

that have been reviewed already several times
1–3,156,100,157,101,158–161

. Indeed, AFM is a powerful 

technology that presents different distinguishing features: (i) the physical interaction at the basis 

of AFM is not limited by the light wavelength, and therefore AFM permits the resolution for 

molecular and atomic events imaging, (ii) AFM allows three dimensional imaging, (iii) AFM can 

image samples under physiological conditions, and (iv) the tip of the AFM can be modified 

chemically or biochemically to identify specific structures and the measurement of specific 

interactions. These features make AFM an ideal tool to address microbiological questions, i.e. to 

characterize microorganisms and their interactions with other cells or with their environments.  

What I would like to emphasize in this thesis is the relevance of such a technology in the field 

of clinical microbiology. AFM is a technology that cannot be used to cover all the components of 

clinical microbiology, but it can, however, be a powerful tool to characterize pathogenic 

microorganisms, at the nanoscale level, in order to identify new potential drug targets. AFM can 

also have a role in the “diagnostic and treatment” component of clinical microbiology, since it is 

a way to evaluate the effects of antimicrobial molecules, and therefore their efficiency, on 

medically important microorganisms. This is what this work is about, characterizing pathogenic 

microorganisms, and evaluating the efficiency of different antimicrobial treatments on these 



60 

 

microorganisms. Indeed, AFM was used here to characterize at the nanoscale the morphology, 

the nanomechanical and adhesive properties of the bacterial species Pseudomonas aeruginosa, 

Klebsiella pneumoniae, of multidrug resistant strains of these two species, and of the fungal 

species Candida albicans and Saccharomyces cerevisiae. For each microorganisms, fundamental 

knowledge on their surface properties was acquired, and the effects of antimicrobial drugs, such 

as antibiotics (ticarcillin, tobramycin, colistin), an innovative noncommercial calixarene (CX1) 

and antifungals (caspofungin), were probed. Therefore, this thesis clearly is a brick to the clinical 

microbiology “wall”. But it has needed technological developments; this part constitutes almost 

half of the work, as there are no scientific discoveries without technological developments. AFM 

is not a “push-button” technology; technical details must be considered to ensure the success of 

the experiments, then results must be analyzed with great care. Indeed, it is easy to make results 

show what we want, and a look from “above” must be taken constantly to keep the presented 

results accurate. However, these considerations are the same for all advanced technologies, such 

as the real-time genomics techniques used in clinical microbiology laboratories to characterize 

isolated pathogens from patients. The technological developments made during this PhD allowed 

us to get new fundamental data on bacteria and yeasts, treated or not with antimicrobials. The 

main results will be discussed in detail, in the following paragraphs.  

 

1.3.2 Cell surface properties of Candida albicans 

We have showed, using AFM, the presence of adhesive nanodomains at the surface of round 

cells of the pathogenic yeast Candida albicans. These nanodomains, probably composed of the 

aggregated Als1 or 5 adhesin protein, had already been imaged using AFM, by Alsteens et al. in 

2010
109

. In this pioneering work, the authors show that formation of nanodomains is force-

induced at the surface of S. cerevisiae cells overexpressing the Als5 protein. They use the AFM 
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in the force-volume mode to acquire arrays of 32 by 32 force curves, therefore presenting 

adhesion images of a resolution of 1024 pixels². In our study, C. albicans wild-type cells were 

probed using Quantitative Imaging
TM

 mode. In this fast force volume based mode, we could 

record adhesion images of the surface of cells with a resolution of 16 384 pixels². This resolution 

on this type of measures (adhesion images) on living wild-type cells was never reached before. 

Compared to the results presented by Alsteens et al. in 2010, the aggregation of amyloid proteins 

is observed in both cases; the difference lies in the resolution of the images, and in the 

characterization of the nanodomains (nanomechanical properties, size, and molecular nature) on 

the whole cells. Therefore advanced technologies like QI
TM

, combined with relevant biological 

models such as C. albicans, allow visualizing dynamic events, like the apparition of amyloid 

plaques on a whole cell. Other techniques could be used to visualize such nanodomains at the 

surface of cells. Indeed, Lipke and his team have showed the presence of amyloid nanodomains 

at the surface of yeast cells by fluorescence microscopy, using fluorescent dyes, thioflavin T or 8-

anilino-1-naphtalene-sulfonic acid (ANS)
105,107,108,162

. However the resolution of such images is 

quite poor, even if fluorescence microscopy is a highly sensitive technique. In order to increase 

the resolution using fluorescence, techniques such as super-resolution fluorescence microscopy 

can be used. These techniques achieve spatial resolution not limited by diffraction by modulating 

close-by fluorescent molecules into different states, thus distinguishing their fluorescence signal. 

One approach to achieve this distinction is based on stochastically switching individual 

fluorescent molecules between a fluorescent and a dark state, which was invented under the name 

of stochastic optical reconstruction microscopy (STORM)
163

, or photoactivated localization 

microscopy (PALM)
164

. This approach collects a series of fluorescent images, each containing a 

sparse subset of fluorophores activated into the fluorescent state. A super-resolution image is then 

reconstructed by determining the positions of individual activated fluorophores
165,166

. But since 
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formation and propagation of nanodomains is a dynamic process, single-molecule super-

resolution imaging technique can be used. This approach determines the positions of different 

copies of labelled molecules. If these labelled copies are incorporated into a larger structure, then 

their positions randomly sample this structure and thereby provide information about its overall 

shape and position in the cell. A point-by-point reconstruction can then be assembled by 

combining the localized positions of all detected molecules in a computational post-processing 

step
167,168

. This technique provides information about the precise motion of individual proteins, 

that could be fluorescent labelled Als protein, and therefore is useful for the investigation of 

protein dynamics, like their aggregation into amyloid plaques, in living cells. However these 

techniques are still emerging and only a few papers use them to study microorganisms. In one 

example
169

, the authors have used super-resolution imaging combined with single-molecule 

tracking to visualize single fluorescent labeled DNA polymerase and ligase molecules in live 

cells of Escherichia coli. Their study allowed providing new data of the enzymes reaction rates, 

substrate search times and diffusion coefficients, before and during DNA damage response. This 

led to the description of model DNA repair pathway in vivo
169

. However this technique remains 

an imaging technique, even if the number of fluorescent molecules and their brightness 

distribution can be measured, in comparison, AFM has enabled us to quantitatively characterize 

the nanodomains observed, in terms of adhesiveness, stiffness, and height. A combination of 

these two nanoscopic techniques would allow unravelling the mysteries surrounding the 

formation of amyloid plaque by amyloid proteins at the surface of live C. albicans cells.  

This possibility, to directly image the adhesive properties of C. albicans cells, has also been 

useful to unravel the unsuspected effects of caspofungin on this yeast species. Indeed, 

caspofungin is an echinocandin known for inhibiting the synthesis of glucans of the cell wall of 

yeasts, therefore leading to cell death. Our study, using QI
TM 

mode, allowed us to show that 
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caspofungin had also an effect on the adhesive properties of this yeast that are an important 

feature for its pathogenesis. Indeed, if caspofungin is used at a low dose, the cells answer by 

modifying their adhesive properties i.e. by exhibiting a homogeneously distributed adhesiveness 

all over the cell. However, if the cells are submitted to a treatment with a high dose of 

caspofungin, then the cells display much lower adhesiveness.  A similar study, performed by El-

Kirat-Chatel and coworkers in the same year as our study, showed that the treatment by 

caspofungin induced the massive exposure of the cell adhesion protein Als1 on the cell surface, 

leading to increased hydrophobicity
170

. Their results are therefore in line with our observations, 

and it is likely probable that the adhesiveness that we have witnessed with low doses of 

caspofungin is due to the overexpression of the Als1 protein. The important point to emphasize 

here is that a technology like Atomic Force Microscopy allowed showing that caspofungin not 

only had effects on the cell wall synthesis, but also caused modification of the expression of 

surface adhesins. This is indeed an important point since these surface adhesins are a 

characteristics of pathogenic yeast species, compared to non-pathogenic ones like Saccharomyces 

cerevisiae,  and are essential for the cells to adhere to surfaces, and therefore to infect them. On 

this point further studies could be performed. For example, genetic studies aiming at quantifying 

the expression of each adhesin-coding gene under treatment with different doses of caspofungin 

could complement the results obtained by AFM. Using this type of experiments, we could 

conclude on which genes expression’ is modulated by the drug; indeed, Als1 seems to be 

involved, but perhaps other Als proteins or other surface adhesins could be involved too. Another 

example of experiments that could be performed is to use AFM on mutated C. albicans strains for 

the different Als proteins. With this kind of experiment, the adhesive properties of each strain 

could be visualized under caspofungin treatments; this would help in the understanding of which 

Als are modulated by the antifungal drug. However these experiments would be difficult to 
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interpret since it has been shown that when one Als is missing, others compensate for its 

loss
103,171,172

.  

Altogether, the results obtained on Candida albicans are relevant for clinical microbiology. 

Indeed, even if the dynamics of the nanodomains would need working with different 

technologies, AFM used in a multiparametric mode, QI
TM

, allowed their direct visualization and 

quantifying of their nanomechanical properties. Then, while treating the cells with caspofungin, 

we could show that these surface adhesive properties were modified by the antifungal drug, and 

that this modification was dose-dependent. Therefore, this work has brought significant new 

fundamental knowledge on the cell wall properties of this pathogen that could be used in further 

works to develop new antifungal drugs, targeting for example the expression of the surface 

adhesins. We have showed that their expression could be modulated by an external drug, and 

since their expression is essential for the pathogen to realize the first stages of infections, i.e. 

adhesion to the host’s surface, it then represents a perfect target for an antifungal drug.  

 

1.3.3 Probing the effects of antibiotics on the cell wall of bacteria 

During this PhD, we probed the effects of two well-known antibiotics, ticarcillin, a β-lactam 

that targets the cell wall, and tobramycin, an aminoglycoside that targets the protein synthesis, on 

the cell wall of the Gram-negative bacteria Pseudomonas aeruginosa. The main results from 

these experiments showed spectacular morphology modification of the bacilli treated by 

ticarcillin, with inhibition of the cell morphology and the formation of long filaments. 

Observations of such filaments formed by Gram-negative bacilli, under the presence of 

antibiotics, were reported as long ago as 1964, by Chang and Weinstein
173

. In this study, the 

authors showed the formation of filaments by Proteus vulgaris after 4 hours of treatment by 

cephalotin, an antibiotic of the cephalosporin class. In a later study, Ellis et al., in 1976, used 
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scanning electron microscopy to show the elongation of Pseudomonas aeruginosa cells treated 

by a penicillin and two cephalosporins
174

. Compared to scanning electron microscopy, that 

requires a complicated preparation of the samples, AFM offers the possibility to work in liquid 

on living cells. Our results are the first one showing the cell elongation on P. aeruginosa cells 

treated by a penicillin, on living cells, since the dose of ticarcillin used was of 0.5 × MIC, at the 

nanoscale. But how can be explained this elongation? Antimicrobials can induce the SOS 

response in bacteria, i.e. a conserved regulatory network that is induced in response to DNA 

damage. SOS response activation promotes the transfer and expression of foreign resistance 

genes, but also induces spontaneous chromosomal mutation frequency
175–177

. In the case of 

treatment by β-lactams such as ticarcillin, the defective cell wall synthesis occurring during 

treatment triggers a two-component signal transduction system that induces the SOS response. 

This leads to a temporarily inhibition of the cell division, which has the effect to enable bacteria 

to survive and limit the bactericidal effects of these drugs
178

. Thus we have showed by AFM that 

a low dose of ticarcillin on P. aeruginosa had the effect to activate the SOS response, leading to 

the bacterial tolerance of this drug. In the context of drug resistance, particularly important for P. 

aeruginosa
8
, these results are of great significance, and show how AFM can participate in the 

characterization of the stress-response mechanisms of bacteria submitted to antibiotics, and 

therefore how it can help in the treatment process of these microorganisms. To go further in the 

characterization of this resistance mechanism, the dynamics of it could be studied. For that, 

recent developments of the AFM into High-Speed AFM could be used. HS-AFM was first 

developed in 2008 by Ando’s team
179

 in order to visualize structure dynamics and dynamics of 

biological molecules in physiological conditions at a subsecond to sub-100 ms temporal  

resolution and a 2 nm lateral and a 0.1 nm vertical resolution
180

. This new type of microscopy has 

already been used to study biological processes, such as the dynamic behavior of myosin V 
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molecules translocating along actin filaments
181

, or the crystalline cellulose degradation by 

individual cellulases enzymes
182

. In 2010, Fantner’s team used this technology to investigate the 

kinetic of individual bacterial cell death under treatment by an antimicrobial peptide CM15
183

. 

This pioneering study allowed characterizing the early stages of the action of the antimicrobial 

peptide on the cell surface of living Escherichia coli cells. Such a technology could be used in 

our case, to further characterize the effects of antibiotics on the cell wall of P. aeruginosa, and 

therefore better understand how this bacterial strain withstands antibiotic treatment. Recent 

developments have allowed the implementation of HS-AFM coupled with an optical fluorescence 

microscope
184

, which would be a great tool to visualize the morphological changes induced by 

antibiotics on the surface of individual cells
185

, from a dynamic perspective.  

The second part of the work performed on bacteria has consisted in using AFM to understand 

the mechanism of action of antimicrobial molecules. This strategy was used first with an already 

used molecule, colistin, then with an innovative one, CX1, on two different species of multidrug-

resistant Gram-negative bacteria. Therefore in this last part, a further step was taken, since AFM 

was not used solely to characterize the effects of antimicrobials, but also to decipher the 

mechanism of actions of antimicrobials, which is an important step in the drug discovery process.  

For colistin, an old polymyxin reused nowadays for infections caused by XDR bacteria, AFM 

experiments performed on the bacterial species Klebsiella pneumoniae, allowed us to show that 

one of its action was to remove the capsule off the bacteria. Indeed, with colistin-resistant 

bacteria (strain named Kpm), we observed, for the first time in liquid conditions, a capsule that 

was structured in several layers, compared to the sensitive strain. This particular architecture kept 

colistin from removing the capsule from the bacteria, even at high doses, suggesting that this 

particular structure was a way for the bacteria to resist the entry of colistin into the cell wall, a 

way to keep colistin from reaching its supposed target, in Gram-negative, the lipid A of LPS. 
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This study allowed us to show how Kpm was able to resist the effects of colistin. However, it did 

not lead us to better understand the mechanism of action of the molecule, as it was initially our 

purpose. Indeed, the way colistin kills bacterial cell is still a debated subject. Colistin is known to 

interact with LPS present at the surface of the outer membrane of Gram-negative bacteria, 

leading to outer membrane disruption and therefore cell death
141

. However, some studies have 

showed that colistin was interacting with phospholipids and LPS present on the outer membrane 

of Gram-negative bacteria, which would disturb membrane permeability, to let the molecule bind 

to phospholipids at the surface of the cytoplasmic membrane, leading to cell death
186,187

. Other 

authors argue that interactions of colistin with membranes of Gram-negative bacteria are 

probably not the lethal event, and that colistin may have multiple targets, and also intracellular 

ones
188–190

. It has also been shown that colistin was efficient against Mycobacterium aurum, that 

do not display LPS at its surface, but mycolic acids and phospholipids
191

. However colistin is not 

efficient on Gram-positive bacteria, that do not display LPS nor phospholipids at their surface, 

but peptidoglycans
141

. Following this, we could think that the target of colistin is phospholipids, 

since Mycobacterium aurum presents phospholipids on its surface. However, studies have 

showed that strains modified for their LPS were becoming resistant to colistin
192–194

. What I 

would like to emphasize with this paragraph, is that colistin mechanism is more complicated than 

we could think, as regard of the literature on this subject. The feeling that we can get out of the 

literature is that there might be multiple targets to colistin, and that more work has to be done on 

this subject. Therefore, determining its mechanism of action using AFM was a complicated task 

that we could only contribute to.  

As for CX1, an innovative antibacterial calixarene presenting positively charged groups, we 

probed its effects on the morphology and on the cell wall nanomechanical properties of a 

multidrug-resistant strain of Pseudomonas aeruginosa, and compared them to the ones of 
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ticarcillin and tobramycin. This allowed us to better understand its mechanism of action. But in 

this study, the experiments that really were pertinent to understand the mechanism of action of 

CX1 were of two kinds. In the first kind, we used functionalized AFM tips to probe the molecular 

architecture of the cell wall of treated cells. To this end, the lectin Concanavalin A that 

specifically binds to carbohydrates was covalently linked to the AFM tip. The results obtained 

with this tip on CX1 treated cells showed retract unfoldings on long distances (up to 6 µm). 

Comparison with the literature, and especially with the works of André and Hayhurst on the 

structure of the peptidoglycan of Gram-positive bacilli
153,154

, allowed us to hypothesize that the 

unfolded molecule was in fact the peptidoglycan of the bacteria. But how could this molecule, 

found between the inner and the outer membrane of the cell wall of Gram-negative bacteria, be 

unfolded from the cell wall of CX1 treated cells? To answer this question, a second type of 

experiments, on phospholipidic biomembranes mimicking the outer membrane of Gram-negative 

bacteria, was performed. These experiments realized using an advanced tapping mode, 

HyperDrive
TM

, showed that CX1 could create holes in the membranes. Back to the bacterial 

context, in fact CX1 perforates the outer membrane of the bacteria, and this is why we could then 

access the peptidoglycan with the functionalized AFM tip. Working with functionalized AFM 

tips on bacteria to probe the effects of antimicrobials, or working on the effects of antimicrobials 

molecules on artificial biomembranes are strategies that have already been used before. For 

example, in a study realized by Gilbert et al., AFM tips were functionalized with an antibiotic, 

vancomycin, and used to probe the cell wall of Lactococcus lactis
78

. Their results showed how 

single-molecule force spectroscopy could be used to characterize the binding forces between 

vancomycin and the D-Ala-D-Ala motif of the peptidoglycan, and allowed mapping of the 

distribution of single D-Ala-D-Ala ligands on living bacteria. The authors used AFM in force 

spectroscopy mode with functionalized AFM tips in order to map the target of the antibiotic at 
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the surface of living cells. Then, in another study using AFM technology on supported lipid 

bilayers
195,196

, the authors have probed the effects of oritavancin, a new lipoglycopeptide derived 

from vancomycin, and showed that oritavancin caused a remodeling of the lipid organization of 

phospholipidic bilayers
197

. However, these strategies have never been used in combination, like 

we did in our study, in order to understand the mechanism of action of a new innovative 

antibacterial drug. And this is the originality of our work, to use AFM in different modes 

(imaging and force spectroscopy), with bare and biomodified AFM tips, and on different 

substrates (living bacteria and supported lipid bilayers), to participate in the development of a 

molecule, and bring it closer to clinical use. This study has showed that AFM can be used beyond 

the clinical microbiology, with participating in the drug discovery process, by showing the 

mechanism of action of a promising molecule. The next step is now to understand the activity of 

this molecule in synergy with antibiotics. Indeed, it has been showed in our team (unpublished 

results) that this molecule, used with antibiotics on multidrug-resistant strains, was able to restore 

the activity of the antibiotics. AFM studies of the nanoscale mechanism of this synergetic action 

on MDR bugs will need to be performed, in the near future. And CX1 being efficient also on 

Gram-positive bacteria
19

, studies on a model Gram-positive bacterial species could also be 

performed. Since the two types of bacteria have a different cell wall organization, it is likely 

probable that CX1 has effects different from the ones it has on Gram-negative bacteria. For this 

type of study, Staphylococcus aureus could be a good candidate since it is the Gram-positive 

bacteria that is the most frequently found in infections acquired in the health-care system.  

Taken together, the fundamental data obtained using AFM technology on the cell wall of 

Gram-negative bacteria allowed us to characterize the effects of known antibiotics at the 

nanoscale, but also to better understand the mechanism of action of older and innovative 

antibacterial molecules. This data is of relevance in the field of clinical microbiology, but also in 
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the field of drug discovery, since CX1 is a new molecule that is not used yet in clinics. Therefore, 

the answer to the question asked in the title of this discussion is yes, AFM used for 

nanomicrobiology studies is indeed a useful tool in clinical microbiology.  
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 Using Atomic Force Microscopy, and through technological developments, we have: (i) 

obtained fundamental knowledge on the cell wall of pathogens, (ii) we have evaluated the effects 

of two reference antibiotics on the cell wall of the bacteria Pseudomonas aeruginosa, (iii) we 

have gained comprehension of the mechanisms of action of two last chance molecules, colistin 

and caspofungin, on the cell wall of the fungus Candida albicans and the bacteria Klebsiella 

pneumoniae, and (iv) finally we have better understood the mechanism of action of a new 

innovative antibacterial molecule, CX1, on the cell wall of multidrug resistant strain of 

Pseudomonas aeruginosa. This work, although relevant in the field of clinical microbiology, has 

not been simple to perform. Indeed, someone told me once “the PhD is not a linear way”, and it is 

true.  AFM experiments are complicated because they involve two different scientific fields. The 

technique must be efficient, but the biological model chosen must also be relevant. A good 

technique without a good biological model is useless. The other way around, a good biological 

model is not sufficient to produce significant results; the technique must be adapted too. This is 

why we have made our own technological developments during this PhD, but not without 

difficulties. For example, the anti-HA tip was first sought to be also an anti-His tip. But due to 

time constraint, we focused only on the HA-tip. Indeed, adjusting the antibody and antigen 

concentrations to reach the single molecule scale is a hard and time-consuming work. We also 

developed the same technology with an anti-V5 antibody; however no relevant biological 

questions were answered using this system. Finally, through collaborations, we could work on 

two different and relevant biological models containing the HA tag.   

 

 But collaborations are the intrinsic difficulty of AFM experiments. Because biophysics is 

an interdisciplinary field, good collaborations between AFM specialists and biologists are 

essentials. In this context, I have well-chosen my supervisors, since my entire PhD is 
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collaboration between an AFM specialist and pharmacist, Etienne Dague, and microbiologists, 

Raphaël Duval, Jean-Marie François and Hélène Martin-Yken. Working between these two 

scientific fields and personalities, I have been able to understand the technological requirements 

needed to perform AFM experiments, but also the importance of choosing the right biological 

models, for the right applications. I also had the chance to enlarge this environment, and to use 

different biological models that were not directly linked to my PhD subject, such as spores of 

Aspergillus fumigatus, and higher eukaryotic CHO cells. Then, beyond the choice of the model 

that corresponds to the technology developed, the difficulty of interdisciplinary lies in the 

communication and expectations of the experiments. Communication, first, because a term in 

physics does not mean the same thing in biology. Sometimes, these communication problems can 

lead to misunderstandings, the vocabulary issues have first to be cleared before starting 

experiments. And then, the expectations, because, the biologist does not know what the AFM is 

able to do, and because the AFM specialist does not understand the entire complexity of 

biological models. Indeed, the AFM specialist will know exactly the problems that will be 

encountered during experiments, and thus will know the limits. But the biologist also has limits, 

of “its” model. Therefore, the two partners have to identify these limits, which can sometimes be 

difficult.  

 

 Finally, the last point of this conclusion will be focused on the interest the army has in a 

project like this one. Indeed, this PhD is partially funded by the Direction Générale de 

l’Armement, for particular reasons. These last years, the world has witnessed the rise of 

terrorism, and Chemical, Biological, Radiological and Nuclear (CBRN) weapons have become an 

important threat to the countries security. These weapons are classified as “weapons of mass 

destruction”, because their effects are difficult to control, due to their power and ability to 
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disseminate into the environment. Therefore, in this context, multidrug-resistant bacteria and 

yeasts present a major risk for the security of both soldiers and civilians. In order to anticipate 

this threat, scientific research, already active in the protection, detection, and decontamination, 

has to develop and understand the mechanisms of action of new antimicrobials, with a broad-

spectrum. This PhD being focused on the comprehension of microbial cell wall with the aim of 

identifying new targets for antimicrobials, and on the understanding of mechanisms of action of 

antimicrobials, it then meets the priorities of protection of soldiers and nations confronted to 

CBRN weapons threats.  
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Chapter 2 

 

Bibliographic analysis: the use of AFM in 

microbiology 

 
 

 

 

 

 

 

Chapter 2.1: Atomic Force Microscopy in pharmacology: from microbiology to cancerology 

 

My contribution to this review has focused on the use of AFM in yeast studies and in 

bacteriology.  

 

 

Chapter 2.2: Use of AFM to explore cell wall properties and response to stress in the yeast 

Saccharomyces cerevisiae 

 

My contribution in this second publication has been to review immobilization methods, as well as 

providing figures. 

 

 

Chapter 2.3: Imaging living yeast cells and quantifying their biophysical properties by Atomic 

Force Microscopy 

 

I have written and provided figures for this last book chapter, dedicated to the use of AFM in 

mycology studies.  
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Atomic Force Microscopy and pharmacology: from microbiology to 

cancerology 
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Abstract 

Background: Atomic Force Microscopy (AFM) has been extensively used to study biological 

samples. Researchers take advantage of its ability to image living samples to increase our 

fundamental knowledge (biophysical properties/ biochemical behavior) on living cell surface 

properties, at the nano-scale. 

Scope of review: AFM, in the imaging modes, can probe cells morphological modifications 

induced by drugs. In the force spectroscopy mode, it is possible to follow the nanomechanical 

properties of a cell and to probe the mechanical modifications induced by drugs. AFM can be 

used to map single molecule distribution at the cell surface. We will focus on a collection of 

results aiming at evaluating the nano-scale effects of drugs, by AFM. Studies on yeast, bacteria 

and mammal cells will illustrate our discussion. Especially, we will show how AFM can help in 

getting a better understanding of drug mechanism of action. 

Major conclusions: This review demonstrates that AFM is a versatile tool, useful in 

pharmacology. In microbiology, it has been used to study the drugs fighting Candida albicans or 

Pseudomonas aeruginosa. The major conclusions 

are a better understanding of the microbes' cell wall and of the drugs mechanism of action. In 

cancerology, AFM has been used to explore the effects of cytotoxic drugs or as an innovative 

diagnostic technology. AFM has provided original results on cultured cells, cells extracted from 

patient and directly on patient biopsies. 

General significance: This review enhances the interest of AFM technologies for pharmacology. 

The applications reviewed range from microbiology to cancerology. 
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are a better understanding of the microbes' cell wall and of the drugs mechanism of action. In cancerology, AFM
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vided original results on cultured cells, cells extracted from patient and directly on patient biopsies.
General significance: This review enhances the interest of AFM technologies for pharmacology. The applications
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1. Introduction

Historically, imaging at high resolution is based on the opticalmicro-
scope. However this technique suffers from the limitation of the
photons wavelength, roughly 200 nm. To overcome this limitation the
electronmicroscopes were developed by Ruska and Knoll. Here the res-
olution is limited by the electrons wavelength, which is much lower
than for visible light (100 000 times shorter). Both technologies are
based on lenses that focalize a photon or an electron beam on a sample.
Scanning probe microscopes work in a completely different way. The
principle relies on the measure of a parameter (e.g. the tunneling
current [1] or the force [2]) between a sharp tip and a surface and to
keep this parameter constant while scanning in order to get a three
dimensional image of the sample. As stated by C. Gerber, one of the
Atomic Force Microscope (AFM) pioneer, and P. Lang in a 2006 paper
PS, INSA, INP, ISAE, UT1, UTM,

ights reserved.
in Nature Nanotechnology [3]: the scanning probe microscopes (SPM)
have opened the door to the nanoworld. SPM made it possible to
explore and to manipulate it. Feynman had dreamed of “the room at
the bottom” [4]; SPM had opened the doors (for example, Eigler and
Schweizer wrote the acronym IBM with Xe atoms [5,6]). Particularly,
AFMhas contributed tomajor advances in verydifferentfields from fun-
damental physic and chemistry to information technologies, molecular
electronic and spintronic. Since 25 years [7–9] AFM has emerged as a
first interest characterization technology in life science. The number of
research articles, published each year, in which AFM is used has in-
creased exponentially since 1981. Fig. 1A presents this evolution. It
must be noticed that the increase of studies on living cells is slow. This
is probably due to difficulties inherent to biology and living cells.

AFM can be used in imaging modes like contact mode or oscillation
mode as described in Fig. 1B. In these modes a sharp tip mounted on a
cantilever is scanned over the sample surface. In contact mode, the can-
tilever deflection is kept constant in order to apply a constant force and
to generate isoforce images of the surface. In oscillation mode, the can-
tilever is oscillating near to its resonance frequency and the amplitude

http://crossmark.crossref.org/dialog/?doi=10.1016/j.bbagen.2013.11.019&domain=pdf
http://dx.doi.org/10.1016/j.bbagen.2013.11.019
mailto:edague@laas.fr
http://dx.doi.org/10.1016/j.bbagen.2013.11.019
http://www.sciencedirect.com/science/journal/03044165


Fig. 1. (A) Evolution of the number of paper published each year, pubmed search using AFM or AFM and cell, or AFM and living and cell. (B) Schema introducing the AFM technology. A
sharp tip ismounted on a cantilever that can bemoved in the x, y, and z direction thanks to a piezo electric ceramic. The deflection of the cantilever ismonitored on a 4 squares photodiode
thanks to the reflection of a laser beam, aligned at the end of the, usually gold coated, cantielever. The AFM can be used to produce topographical images (like in contact mode) or tomea-
sure forces (in the force spectroscopy mode) between a bare or a functionnalized tip (with a biomolecule or a single cell) and the sample.
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of the oscillation is kept constant while scanning, which creates
isoamplitude images. However, AFM is not only an imaging technology.
It is a highly sensitive force machine, able to measure forces as small as
10 to 20 pN. An AFM is therefore able to record force distance curves,
which give measures and properties of the living material (this is
sketched in Fig. 1). Nanomechanical properties and nano-adhesive
properties of the samples can be measured using the AFM as a force
machine. To make a link between the adhesive properties and a cell
function it is possible to functionalize the AFM tip with a living cell.
The results of such experiments create new paradigms in life science,
and the interpretations in term of structure–function relationships are
promising for pharmacologists. More andmore articles are indeed deal-
ing with the study of the effects of drugs on cells, studied by AFM.

The aim of our review is to give an overview of the AFM applications
in biology (fungal cells, prokaryotic cells, mammal cells), with a special
focus on the relevance in pharmacology. The first part is dedicated to
fungal cells especially Saccharomyces cerevisiae, Candida albicans and
Aspergillus fumigatus. The second part treats of bacteria. It gives an in-
sight on the fundamental knowledge that AFMhas provided on bacteria
and then emphasizes on studies dedicated to the study of antimicrobial
(antibiotics, antimicrobial peptides, innovative molecules) effects.
Finally, the third part addresses mammal cells, exposed to external
stress, like drugs, but also diseases and cancer.

2. AFM for fungal cell wall analysis, from fundamental knowledge
to pharmacology

Atomic Force Microscopy is a polyvalent tool that allows biological
and mechanical studies of entire living microorganisms, and therefore
the comprehension of molecular mechanisms. This first section intro-
duces the AFM modes, with yeast cells as a eukaryotic model to
illustrate its potentialities, and their implications in pharmacology. We
will first explore morphological and mechanical studies on various
yeast cells. Then, we will present molecular mapping principle on cell-
wall surface and the applications of this technique for biology. Finally,
we will investigate the yeast pathogenicity in cellular invasion and we
will give an overview of AFM pharmacology's studies on yeast.

2.1. Morphological and mechanical studies

Since its first development in 1986 by Binnig et al. [10], there have
been an increasing number of AFM biological applications (Fig. 1). An
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important part of publications corresponds to studies of cellular inner
components and their mechanism of action. For example, different
studies were dedicated to the visualization of nucleic acids like RNA or
DNA with AFM [11,12] or protein oligomerization [13], but also biomo-
lecular interactions such as Protein–DNA [14–16]. However, a major
progress since 1995, made in AFM for biology offered the possibility to
observe cells in liquid environment [17]. This first part will describe
theAFMpotentialities for high resolution imaging andprobing the glob-
al nanomechanical properties of living cells.

2.1.1. Imaging fungal cells
As stated in the introduction, a main challenge is the gentle but firm

immobilization of the biological sample required for any AFM experi-
ment. Yeasts are round shaped cells of around 5 μm in diameter. The
immobilization conditions have to maintain the yeasts in static position
during AFM experiment. A solution described in the literature is to im-
mobilize by drying the yeasts (Fig. 2A–B) [18,19]. This process causes
cell death and the morphological properties of dead cells are different
from living yeasts. To keep cells alive, AFM in liquid condition is re-
quired. And to this end, a rigorous, but non-denaturant immobilization
method has to be used. A first AFM study in liquid condition was
described by Gad and Ikai in 1995 [17]. The authors developed an im-
mobilization method in agar surface to visualize living cells in native
conditions; they observed bud scars for the first time by AFM. This
example demonstrates the possibility to image living yeast, and thus
structures at their surface that are directly linked to yeast-growth.
More recently, porous membranes have been used to immobilize cells
in liquid condition [20]. As shown in Fig. 2C, this method allows obser-
vation of bud scars on individual cells. In another study, the authors
used this method to evaluate, at the nanoscale, the consequences of a
defective cell wall in mutants yeasts, on the cell surface topography
[21]. Finally, immobilization in PDMS stamps was developed. This
Fig. 2. High resolution imaging for yeast morphology studies. (A) Deflection image of drie
cerevisiae. The scan size image is 10 μm × 10 μm and the height scale is 0–4 μm. (C) Three-dim
a single S. cerevisiae cell protruding from a porousmembrane. (D) High-resolution AFM deflecti
with associated sections of single S. cerevisiae yeasts trapped within the patterns of a PDMS sta
respectively.
method allows the immobilization of cells–yeasts (Fig. 2E) but also
spores of Aspergillus fumigatus [22]. The mains advantages of this
method are i) the transparency of the PDMS stamp which is therefore
compatible with an inverted optical microscope, ii) the directed assem-
bly of the cells, which result in predicted patterns of cells (no time is
wasted to search for a cell), iii) the high number of cells trapped in the
PDMS holes. The results presented in Fig. 2D shows the ultrastructure
of the surface of spores of A. fumigatus; similar results were obtained
with spores trapped in porous membranes [23]. Briefly, the spore is
covered by a rodlet layer made of hydrophobins. These proteins self-
organize at the spore surface, each rod being separated from its neigh-
bor by 10 nm. During the spore germination, this nanostructure is
disrupted.

Once immobilized, AFM experiments on yeasts can be conducted in
different modes. The contact mode is an imaging mode. It consists in
bringing a tip into contact with the surface, and scanning horizontally
this surface with a constant applied force. An example of yeast imaged
in contact mode was described in 1996 by Pereira et al. [24]. In this
study, the authors observed different strains of Saccharomyces cerevisiae,
the baker yeast, and showed that morphological aspects were different
among strains. These observations revealed the high potential of contact
mode to observe the morphological differences between yeasts strains.
Another study performed in contact mode was dedicated to the visuali-
zation of different mutant yeasts defective in cell wall components;
this study showed the involvement of cell wall architecture in the
morphology of yeasts [21]. Finally, Kriznik et al. in 2005 characterized
the morphological properties of the pathogen Candida albicans in its
filamentous form but they used the taping mode [25].

In oscillation mode, stiff cantilevers are oscillated near their reso-
nance frequency during the scan. The changes in the amplitude of oscil-
lation report on the surface topography. Consequently, the lateral forces
between the tip and the sample are reduced, which limits damaging of
d Saccharomyces cerevisiae. The scale bar is 3.3 μm. (B) Height image of desiccated S.
ensional AFM height image (6 μm × 6 μm; z-range 1 μm), in aqueous solution, showing

on image of the A. fumigatus spore surface. The scale bar is 100 nm. (E) AFM height images
mp functionalized by ConA. Reprinted with permission from references [18–20] and [22]

image of Fig.�2
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the sample [26]. Several examples of oscillation mode images of yeasts
can be found in the literature, to demonstrate morphological changes
in cell-wall of S. cerevisiae according to various stresses [27] or to
visualize rodlet structures on spores of Aspergillus nidulans [28].

2.1.2. Nanomechanical properties of yeast
In order to probe the nanomechanical properties of yeasts, such as

spring constant, elasticity or turgor pressure, AFM is used in the force
spectroscopy mode. In this mode the tip is continuously approached
and retracted from the surface and force versus distance curves are
recorded with spatial resolution. The approach curve describes the
sample resistance to the applied force [29] and can be analyzed through
theoretical physical models, giving access to mechanical parameters
(Fig. 3A) [30]. When the tip is retracted from the sample, adhesion
forces between the sample and the tip can be recorded, resulting in
the measure of adhesion interactions. This will be described in the
molecular mapping part.

To begin with, the spring constant of the sample can be deduced
from an approach curve. To this end, the approach curve is fitted with
the Hook model [31]. This spring constant describes the stiffness of
the sample in N/m. Karreman et al., have for example measured the
spring constant of yeasts grown with 0.8 Mmannitol [32]. This induces
an 8 time increase of the spring constant. The same behavior has been
reported for yeast mutated for the gene HSP12. The defective cells also
presented a high spring constant which has demonstrated the plasticiz-
er role of the protein Hsp12.

However, thefirst nanometers of indentation, recorded on biological
samples, are usually well fitted by the Hertz law [33]. By analyzing the
datawith this law, one can extract the YoungModulus value of the sam-
ple, meaning its elasticity in Pascal. The elasticity can reflect a cell state
due to growth, environmental conditions or specific phenotype. Among
others, it has been used to estimate the implication of certain genes in
the yeast cell wall elasticity with different defective mutants [21,32],
and to evaluate the influence of somemolecules such as polyelectrolyte
[34] or lithium [35] on the cell wall stiffness. However, it is to be noticed
that living organism creates heterogeneous results. Indeed, differences
can be observed on yeasts of the same strain in the same conditions
Fig. 3. Nanomechanical properties of living S. cerevisiae yeasts. (A) Force-indentation curves fi
modulus of 1.21 MPa, and the cell wall (circles) has a Youngmodulus of 0.54 MPa. (B) Youngm
of each yeast trapped within the patterns of a PDMS stamp (AFM height image). Reprinted wi
(Fig. 3B) [22]. The important variations in YM reported on these five
yeasts demonstrate a significant heterogeneity of cells coming from
the same culture. Furthermore, YM values on the same cell are also
heterogeneous, for example, the stiffness on a bud scar of S. cerevisiae
is superior to the stiffness on another part of the cell wall, presumably
due to an accumulation of chitin on the bud scar [36]. Similarly,
Touhami et al. showed an increase of the stiffness in the regions of the
yeast cell wall involved in the budding process [20]. Thus, one must be
aware that repeatability is the key point to obtain values representing
the whole sample elasticity. However, the resolution given by AFM
allows measuring specific regions of interest and thus gives access to
mechanical description of the surface of the cell.

Moreover, other mechanical properties than cell wall changes dur-
ing growth-process can be described. An original work by Pelling et al.
showed the change in the nanomechanical parameter of the cell-wall
during motion of S. cerevisiae [29]. For this, the tip was put into contact
with the cell wall and the cantilever oscillations were measured, trans-
lating cell-wall changes during motion. The authors were able to prove
that a shift of temperature from 30 °C to 26 °C decreased the frequency
of oscillation motion of cell-wall with similar amplitude. Furthermore,
exposure of the cells to a metabolic inhibitor (sodium azide) caused
the periodic motion to cease.

Altogether, nanomechanical measurements give new insights in the
yeast cell wall organization and function.

2.1.3. Molecular mapping
Specific molecular interactions are the base of many biochemical

processes. Recognition mechanisms involve several types of non-
covalent bonds such as hydrogen bonds, Van der Waals forces, attrac-
tive/repulsive electrostatic and hydrophobic forces. The highly specific
interactions between a ligand and its receptor for example, can be re-
corded by force spectroscopy during the retraction of the tip from the
sample. To avoid the detection of non-specific events, the AFM tip can
be functionalized with one of the actors of the interaction. These exper-
iments, with functionalized AFM tips, are called Single Molecule Force
Spectroscopy experiments, since they allowmeasuring specific interac-
tion forces between only one molecule on the tip and one molecule at
tted by Hertzien model to extract a local Young modulus. The bud scar (triangles) has a
odulus determination on five S. cerevisiae yeasts. The histogram shows the Youngmodulus
th permission from references [29,30] and [22] respectively.

image of Fig.�3
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the surface of the sample. In this part, we will first describe the molecu-
lar mapping principle. Then, different applications of molecular map-
ping on the yeast cell surface will be discussed.
2.1.4. Molecular mapping principle
As mentioned earlier, the tip functionalization is a prerequisite to

measure specific interactions. Reviews of functionalization strategies
can be found here [37–39]. A schematic representation of a tip function-
alized with concanavalin A (protein that interacts with carbohydrates)
is illustrated in Fig. 4A [40]. Adhesion forces were calculated from
AFM retract force curves; an example of a retract force curve recorded
during a single molecule force spectroscopy experiment is shown in
Fig. 4B. The adhesion force was determined by measuring the piezo-
retraction required to break the interaction between the lectin conca-
navalin A and the recognized carbohydrate. This process can be repeat-
ed several times, which enables, bymoving the cantilever between each
measurement, to obtain a map of the interactions. This indicates where
the interaction is occurring, and thus how the probed molecule is dis-
tributed on the cell surface. In Fig. 4C, an adhesion map recorded with
an AFM tip functionalized by concanavalin A, was obtained on a small
region of a native yeast cell as indicated on the height image. Each
pixel on the adhesion map represents a different force curve; the adhe-
sion map gives therefore a global repartition of carbohydrates on the
yeast-cell surface. The authors could conclude from these experiments
that mannans were not uniformly distributed on the studied areas of
the yeast cell wall [40].
Fig. 4.Molecular mapping principle. (A) Model of experimental set-up configuration of molec
during piezo retraction. (C) Typical force volume data frame showing different types of data t
right is a force volume image, and lower right is a force curve display window. Reprinted with
2.1.5. Mapping and nanomechanical properties at the single molecule level
A recent example of molecular mapping study is the localization of

Als3p on the yeast cell wall. Als3p is a protein (adhesin) involved in
adhesion during host invasion. It was observed during the morphogen-
esis of C. albicans from yeast to hyphae [41]. This was performed with a
tip functionalized by an antibody anti-Als3 (Fig. 5A). In the yeast form,
adhesion maps show low rates of Als3 (Fig. 5B). However, during the
hyphae transition, the Als3 rate is increased on the germinating yeast
(Fig. 5C), and more specifically on the germ tube (Fig. 5D).

These changes were accompanied by a major increase of the hydro-
phobicity of the cell surface and confirmed the relationship between
high adhesions in hyphae formand the pathogenicity of this form. In an-
other study, the clustering of Wsc1, a transmembrane protein involved
in stress response via the cell wall integrity pathway [42], was investi-
gated on S. cerevisiae [43]. Molecularmappingwas indirectly performed
betweenWsc1modified by aHistidine tag, expressed by the yeast, and a
tip functionalized by Ni2+-nitriloacetate (NTA) groups. The authors
proved that the clustering ofWsc1was induced by stressing conditions,
which suggested that this processwas intimately connected to CellWall
Integrity signaling pathway. This work confirmed that AFM was then a
useful tool to understand molecular phenomena happening at the cell
surface of yeast. Using the same methodology, another work demon-
strated that cell wall thickness could be determined. To this end, differ-
ent yeast mutants were generated, presenting increasing length of the
Serine Threonine Rich (STR) region of the Wsc1 protein. This protein
is anchored in the plasma membrane and is not detectable at the cell
wall surface if the STR region is too short. The cell wall thickness was
ular mapping by AFM. (B) Theoretical AFM force curve with adhesion force measurement
hat can be collected at the same time with this mode. Upper left is a height image, upper
permission from Gad et al. [40].
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Fig. 5. Single molecular mapping according to Candida albicans morphology. (A) Schematic representation of interactions between Als adhesins (green) and anti-Als3 antibody
immobilized on AFM tip. (B) Typical adhesion force map (1 μm × 1 μm, color scale: 300 pN) to probe Als3 proteins on yeast-form cell. Adhesion force maps for Als3 mapping on germi-
nating yeast (C) and a germ tube (D). Reprinted with permission from Beaussart et al. [41].
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thus deduced from the STR region length leading to the detection of
Wsc1 at the cell wall surface [44]. AFM force spectroscopy measure-
ments can also cause molecular re-organization at the surface of yeasts.
For example, Alsteens et al. [45] demonstrated that the formation and
propagation of the adhesin Als5 nanodomains in C .albicans was the
consequence of localized delivery of piconewton force by the AFM tip
functionalized with antibodies recognizing Als5. The same process
was observed on dead cells, confirming that the process was not meta-
bolic and indeed triggered by the AFM tip. The authors suggested
that the functionalized tip could stretch, unfold Als5 and promote the
aggregation and self-association of Als5. This process could be in-
volved in cellular adhesion, in response to mechanical stimuli. In an-
other study, with a tip functionalized with concanavalin A, difference
in mannoproteins elongation was investigated between the cell wall
surface of S. cerevisiae and S. carlsbergensis [36]. These experiments
showed that only mannan chains were stretched from the surface
of S. carlsbergensiswhereas the entire mannoproteins were stretched
from S. cerevisiae.

2.2. Yeast pathogenicity and pharmacologic studies by AFM

The number of fungal and yeast species on earth is around 611 000
[46]. Among them, only 600 species are human pathogens [47], like A.
fumigatus, Cryptococcus neoformans, Histoplasma capsulatum or C.
albicans. The last is one of the most common cause of hospital-
acquired systemic infections, due to its adhesive and invasive proper-
ties, and its capability to form biofilms [48]. In order to fight against
this pathogen, AFM has been used to study its virulence mechanisms,
and to understand the effects induced by antifungal treatments on its
cell wall [49,50]. This part will first focus on host–pathogen interactions
involving C. albicans, studied by AFM. We will then describe the
most recent studies on the effects of antifungal drugs on the cell wall
of yeast.
2.2.1. Understanding yeast interactive behavior
For pathogens, adhesive properties are fundamental for host-

invasion or biofilm formation. A first study byGötzinger et al. quantified
the yeast S. cerevisiae adhesion to surface of silica particles by AFM [51].
The yeasts were immobilized on an AFM tip functionalized with conca-
navalin A, which interacts with the carbohydrates present at the surface
of yeasts. Authors proved that adhesion of yeast to silica particles was
very variable according to the pH solution and the roughness of silica
particles.

More recently, interactions between S. aureus and C. albicans were
investigated by AFM [52,53]. These pathogens are classically found in
combination during human tissue infection. To understand their rela-
tionship during infection, the authors quantified the interactions
between S. aureus immobilized on an AFM tip, and different regions of
C. albicans, in yeast and hyphae form including three parts, the head,
themiddle and the tip (Fig. 6A). Adhesion forceswere quantified during
piezo retraction at the initial contact (0 s) or after 60 s of bond-
maturation. The results in Fig. 6B demonstrate that S. aureus interacted
preferentially on the hyphae form (tip and middle) and hardly on the
head part or on the yeast form. Furthermore, the authors made the
hypothesis that the 60 s of contact were required for adhesion because
an active reorganization of the hyphae cell wall was used by the yeast to
promote the adhesion of S. aureus. These observations confirmed that
during infection S. aureus was interacting only with the hyphae form
of C. albicans.

A direct AFM observation of the interaction between C. albicans and
macrophages was presented by El Kirat et al. [54]. This study showed by
differential interference contrast (DIC), fluorescence and AFM, themain
steps of macrophage infection by C. albicans, including initial intercellu-
lar contact, internalization of yeast cells, intracellular hyphal growth
and pathogen externalization from the macrophage. An example is
given in Fig. 6C, where we can see yeast internalization into the macro-
phage. The ability to directly visualize these biological processes
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Fig. 6. Yeast–cells interactions. (A) At the top, schematic representation of the different hyphal regions defined for adhesion between Staphylococcus aureus and Candida albicans hyphae.
At the bottom, example of force distance curves between S. aureus upon initial contact (orange curve) and after 60 s bond-maturation (blue curve) with C. albicans hyphal tip region.
(B) Vertical scatter bars adhesion forces between S. aureus and different C. albicans morphologies. (C) Imaging of a single macrophage infected by C. albicans visualized by fluorescence
(a), DIC (b) and AFM deflection images (c,d). Labels Y and H correspond to yeast and hyphal cells. The red and yellow dashed lines in (b) indicate an internalized hyphal cell and a free
yeast cell, respectively. Reprinted with permission from references [52] and [54] respectively.
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demonstrates how AFM can be used to understand infection mecha-
nisms and help in anti-fungal investigation.

2.2.2. Pharmacology studies
AFM is also a promising tool to characterize the antifungalmolecules

effects on the morphology and the nanomechanical properties of the
yeast cell wall. However, AFM pharmacology studies concerning yeast
are very limited and only few studies were performed so far. For
Fig. 7. Anti-fungal effect of allincin. AFM images of dried C. albicans untreated (A) or treated (B
logical change. Reprinted with permission from Kim et al. [50].
example, the ultrastructure alteration of the cell wall of S. cerevisiae by
the tetrapisispora phaffii killer toxin (Kpkt) was characterized by AFM
[55]. The authors demonstrated that Kpkt caused an alteration of the
cell wall with a specific β-glucanase activity. In another study, AFM
was used to evaluate the cell wall roughness of C. albicans after lemon
grass oil (LGO) treatment in vapor phase [56]. The authors observed a
decrease in the roughness of the cell wall. AFMwas also used in another
study to describe the biophysical properties associated with cell death
) during 24 h with allicin and amphotericin B. The arrow indicates a significant morpho-

image of Fig.�6
image of Fig.�7


1035F. Pillet et al. / Biochimica et Biophysica Acta 1840 (2014) 1028–1050
due to flucytosine (an analog of fluorinated pyrimidine, which mainly
acts on RNA and DNA) and amphotericin B (acts on cell walls by an un-
known mechanism). After drug treatment, the cell wall of C. albicans
was perforated, deformed, and shrunken [49]. However, in contrary
with LGO, the roughness of the cell wall was increased. In addition, a
combination between drug treatment, such as allicin (organic com-
pound harmful in yeast cell growth) and amphotericin B decreased
the yeast viability and induced significant cell wall damages (burst or
collapsed membranes) as shown in Fig. 7 [50].

These examples showhowantifungal drugs induce cellular damages
and death of pathogenic yeasts. Furthermore, they confirmed the
potentiality of AFM for pharmacological studies. In addition, the AFM
development during the last decades with others biological systems,
such as bacterial and mammals cells, opens the way in pharmacology
for microbiology and cancerology.

3. Atomic Force Microscopy in bacteriology

Atomic Force Microscopy has proven itself to be a powerful tool for
the study ofmicrobial systems. In this section,wewill explore the appli-
cations of AFM to the bacterial field. In one hand, wewill give an update
of the studies dedicated to the morphology and behavior of bacteria
alone, or interacting with their environment. Then, in another hand,
we will focus on pharmacological studies that have been performed
on bacteria, with antibiotics and antimicrobial peptides, as well as
with innovative molecules.

3.1. Fundamental bacteriology

Bacteria are ubiquitous on earth, and have negative side effects in
many fields such as food industry or human health. They can also be
used to our benefit such as in waste water treatment plans or pharmacy
(production of recombinant drugs). Bacteria interact with their envi-
ronment through their surface and a lot of researches are therefore
focused on the microorganism's surface. In this context, Atomic Force
Microscopy has become more important, and an increasing number of
researchers have exploited both imaging and forcemeasurements capa-
bilities to explore bacterial surface in terms of structure and function.

3.1.1. Imaging bacterial morphology
One of the most common applications of AFM in microbiology is to

visualize the morphology of microorganisms. AFM provides the oppor-
tunity to image single bacterial cells; it can also be used to image several
cells, as it is the case in biofilms for example,where aggregates ofmicro-
organisms adhere to each other on a surface [57]. Many bacteria are
characterized by their shapes (coccus, bacilli or spores) and by their
nanoscale ultrastrucutres, for example S-layers, capsular polysaccha-
rides, flagella or fimbria. Fimbriae, also known as pili, are thin, hairlike
appendages on the surface of gram-negative and gram-positive bacte-
ria, that perform a variety of different functions such as genetic transfer
via conjugation, movement across surfaces, and adherence to a variety
of surfaces [58]. Scanning Electron Microscopy (SEM) has long
been the only tool available for the direct observation of bacterial pili;
however, this technique does not allow any quantitative analysis.
With the recent progress made in biological application, it is then natu-
rally that researchers interested in bacterial pili turned to AFM, such as
for example Schäffer's team that investigated the geometric and elastic
properties of the pili of different Corynebacteriumdiphtheriae strains, the
etiological agent of diphtheria [59]. Their measurements showed that
among mean-visible contour-length of the pili, there were significant
strain-specific differences that could not be correlated to the efficiency
of adhesion to substrates. In another study by Touhami et al., [58], the
morphology of Pseudomonas aeruginosa pili were investigated using
AFM, and the authors also studied the ability of pili to adhere tomica sur-
faces, highlighting the role of pili in bacterial adhesion. Finally in another
study, Dufrêne's team successfully visualized self-assembled nanostruc-
tures that are formed by the pili of Lactobacillus rhamnosus GG [60].

Flagella differ from pili in their proteic composition. The bacterium
flagella is a sophisticated molecular nanomachine composed of three
substructures that provide motility, anchor the structure into the cell
membrane, and a last one that acts as the rotary motor [61]. Flagella
contribute to the virulence of pathogenic bacteria, and AFM imaging is
a powerful tool to analyze the morphology of the flagellum. Different
studies report on the morphology at high resolution of flagella; Gillis
et al. have studied the expression of flagella in relation to its function,
and showed that for different strains of Bacillus thuringiensis exhibiting
different levels of flagellation, the amount of flagella observed at the
nanoscale could be correlated with the motility behavior of the strains
[62]. In another study conducted by Diaz et al., the authors used AFM
imaging to determine if the growth of flagella was oriented during the
early stages of biofilms formation [63]. The authors showed that it is
indeed the case; the flagella are first oriented towards the neighboring
cells, making contact and finally surrounding them. Chang et al. were
more interested in the morphological modifications induced by pH on
the flagella of Escherichia coli; they showed that both acidification and
alkalization of the culture media was affecting the morphology of the
flagella, by reducing theirs diameters [64].

Another nanoscopic ultrastructure that characterizes bacteria is the
capsule, made of polysaccharides. Capsular polysaccharide has impor-
tant functions for bacteria as for example nutrient uptake, protection
against environmental stresses, adhesion to different surfaces, or
survival against phagocytosis or antibiotics. This structure is therefore
a virulence factor of the bacteria able to produce it, and AFM imaging
has enable to study the morphology of this capsule and understand its
surface characteristics. Among the studies dedicated to the capsule of
bacteria [65,66], is thework conducted by Suo et al. in 2007. The authors
show that HEPES, a buffer commonly used in biological experiments
and presumed to have no effects on specimens, stabilizes the capsule
formation of E. coli and Salmonella typhimirium [67]. An example on
S. typhimirium is given in Fig. 8A; we can see on this amplitude image
an aggregate of cells covered by capsular polysaccharide, after the
cells were rinsed in HEPES buffer. Coldren et al. in 2009 worked on
S. aureus capsule and could understand, using AFM, how the capsular
polysaccharide is important for bacterial adhesion to surfaces, and
therefore for biofilm formation [68].

Bacteria that do not display capsular polysaccharide can however
display bacterial surface layers (S-layers). S-layers are 2D-cristalline ar-
rays of glycoproteins; they represent the most common cell surface
structures in bacteria [69]. As for capsular polysaccharide, S-layers are
the frontier between the cell and the environment; they therefore
play several roles such as protecting the cells from environmental
stresses, or for nutrient uptake. Because of the particular self-assembly
of S-layers proteins, it has been a good model for AFM imaging at
high-resolution. S-layers proteins can either be recrystallized on sur-
faces such as silicon [70] or gold surface [71], or directly studied
in vivo as Dupres et al. did [69]. In this study the authors imaged
nanoarrays of S-layers on live Corynebacterium glutamicum and ob-
served hexagonal unit cells with dimensions similar to those reported
on isolated S-layers sheets. Their work also led to the discovering of a
new inner layer composed of periodic nanogrooves, which could prob-
ably reflect the specificity of the C. glutamicum cell wall.

Bacteria can grow in bulk or form biofilms; some bacteria can also
form endospores. Endospores are the disseminating agent of bacteria;
their formation is triggered by conditions of limited nutrient availability
and environmental stress. They are highly resistant to extreme temper-
atures or chemicals. The transformation of a dormant spore into a
vegetative cell is an important step in the pathogenicity of the bacte-
ria, and can be imaged using AFM. A few studies were dedicated to
the germination of spores of Bacillus anthracis [72], or Bacillus
atrophaeus [73,74]. One is a technical jewel since it shows the com-
plete high-resolution imaging structural dynamics of single spores



Fig. 8.High resolution imaging bacteria. (A) AFM amplitude image of aggregate of three Salmonella typhimirium cells covered by an EPS capsule. Note that part of the EPS is confined by the
flagella. Scale bar = 2 μm. (B) Series of AFM height images showing the emergence of vegetative cells of Bacillus atrophaeus. The images show 60- to 70-nm-deep apertures in the rodlet
layer (indicatedwith arrows in b), and subsequent eroded the entire spore coat (e). Images in a–ewhere recordedon the same spore; elapsed germination time (in hr:min)was as follows:
(a) 3:40, (b) 5:45, (c) 7:05, (d) 7:30 and (e) 7:45. Scale bar = 500 nm. Reprinted with permission from references [67] and [75] respectively.
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of B. atrophaeus [75]. In this study, the authors imaged the emer-
gence of vegetative cells (Fig. 8B) trough rodlets apertures at the sur-
face of the spore. These images are not only impressive for the
phenomena they show, the also give new insights into the structure of na-
tive peptidoglycan; the fibrous network observed on Fig. 8B–C on the
germ cell surface seems to represent nascent peptidoglycan architecture
of newly formed cell wall. The authors then found a good experimental
model for investigating the genesis of the bacterial peptidoglycan
structure.

3.1.2. Nanomechanical properties of bacteria
The mechanical properties of bacterial cells, such as elastic moduli,

spring constant or turgor pressure, can be investigated by AFM, via
nanoindentations measurements. We will focus in this paragraph on
elastic properties of bacterial cells that are expressed by Young's modu-
lus. Understanding the elasticity of cells is important for elucidating the
Fig. 9.Nanomechanical properties of bacterial cells. (A)Nanomechanical properties of alive Esch
single bacteria killed by thermal treatment (20 min, 45 °C). The elasticity maps (z-range = 1
histograms, together with a typical force curve. Reprinted with permission from reference [79
mechanisms underlying cells growth and behavior in different condi-
tions. It is also known that, in many living organisms, the mechanical
properties of the externalmembrane can indicate the state of the under-
lying system. In this frame, many studies using nanoindentations were
used to study the bacterial cell wall. For example, Francius et al. found
that the elastic properties of bacterial cells of E. coli were dependent
on the expression of surface appendages such as fimbriae, and also on
the ionic strength of the medium they are grown in [76]. Schaer-
Zamaretti et al., however, could distinguish between different strains
of Lactobacillus expressing or not S-layers byprobing the elastic properties
of such cells [77]. Gaboriaud et al. used nanoindentations measurements
to understand the influence of a different pH on the nanomechanical
properties of bacterial cells [78]. But a major concern in bacteriology is
to determine whether a bacterium is dead or alive. That is the question
that Cerf et al. answered with the nanoindentations measurements; as
it is shown in Fig. 9A, live cells of E. coli show a Young modulus of
erichia coli cells. AFMdeflection images of single living E. colibacterium and (B) of the same
0 MPa) correspond to the images insets. The elasticity distribution is represented by the
].
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3.0 MPa, whereas heated (dead) cells (Fig. 9B) have a Young modulus
increased to 6.1 MPa [79]. The authors then demonstrated that dead
cells with a damaged membrane exhibit higher Young modulus values.
A recent novel development in analysis of force curves generated in
nanoindentations measurements allow now to extract the elastic modu-
lus at the cell surface, but also in depths under the cell surface [80].
Longo et al. used this new analysis development to probe the nanome-
chanical properties of E. coli cells [81]. In this study, the authors found
stiffer areas at the surface of the cells, and when they go deeper into the
cells, they find these stiffer areas to have a complex form, that changes
during time. This could be correlated to an accumulation of complex
molecules underneath the cell membrane and reorganizing in the cell
cytoplasm over time.

3.1.3. Probing molecules at the interface of bacteria
Besides imaging and probing nanomechanical properties of bacteria,

it is also possible with AFM to studymolecules at the surface of bacteria
with bare or functionalized AFM tip. Understanding how complex
molecules are assembled at the surface of bacteria under physiological
conditions is of fundamental importance to elucidate their functions in
different processes such as cell aggregation, adhesion to substrate, or
interactions with external molecules or organisms. A first example is
the interactions between bacteriophages and bacteria. Dubrovin et al.
proposed two articles where the authors investigate the interactions
between bacterial cells and bacteriophages [82,83]. While the first
study focuses on the characterization of phages, and the effects of
phages interactions with different strains of bacteria, the second study
is dedicated to the investigation of the lytic cycle of the Acinetobacter
baumannii bacteriophage AP22.

The results presented in Fig. 10A present AFM images of A. baumannii
cells infected by AP22 bacteriophage over time. After 1 min of interaction
between bacteria and phages (Fig. 10Aa), the phages have adsorbed on
Fig. 10.Mapping and interactions with molecules at the interface. (A) Bacteriophage interaction
the bacteriophage AP22. Left row: deflection AFM images of A. baumannii cells incubatedwith b
reconstructions of bacterial surfaces depicted on the left (the zoomed regions are indicated by d
by thewhite square. (B) Bacillus subtilis sacculi architectural features revealed by AFM. The imag
a twisted cable. H stands for Height image and P for Phase image. (C) Detecting individual
(n = 1024) together with representative force curves recorded in buffered solution with a C
epithelium, biofilm formation, and exopolysaccharide production). Reprinted with permission
the surface of the cells; the high resolution image (Fig. 10Ab) clearly
shows phage heads. However, after 3 min of incubation (Fig. 10Ac and
d) the phages heads are empty, leading to the supposition that DNA re-
lease from the head takes place quite fast, and probably immediately
upon phages adsorption on the cell's surface. And this phenomenon is
even more visible after 6 min of incubation (Fig.10 Ae and f). Also others
studies dedicated to bacteria/external molecule interactions were per-
formed [84], and among them is one focusing on the interactions of
different strains of Lactococcus lactis with mucins [85,86]. In this study,
the authors, using cell probes, were able to measure the kinetic associa-
tion/dissociation constants between the bacteria and the mucins.

The interactions with other microorganisms are mediated via
surface molecules of bacteria. One of these molecules at the surface of
gram-positive bacteria is peptidoglycan, a complex polymer made up
of glycan strands of repeating disaccharides residues, cross-linked via
peptide side chains. This molecule is a vital molecule for bacteria, as it
is responsible for shape determination and cellular viability, and since
it is a target for a lot of antibacterial treatments, it has been extensively
studied. However few AFM studies report on the structure of peptido-
glycan [87–89], and among them is the one of Hayhurst et al., [90], in
which the authors propose an architecturalmodel for the peptidoglycan
of Bacillus subtilis. As it is shown in Fig. 10B, the authors claim that gly-
can strands form a “rope” that is coiled into a helix; this rope runs then
all over the bacteria.

For gram-negative bacteria, themolecules that can be found on their
surface are polysaccharides and lipopolysaccharides (LPS). Francius
et al. in 2008 studied the localization and conformation of single
polysaccharides at the surface of live Lactobacillus rhamnosus GG using
functionalized AFM tips [91]. Using concanavaline A, a lectin that inter-
acts with carbohydrates, he could pull off the surface individual
mannose. As we can see on Fig. 10C, on a mutant strain impaired in
adherence to epithelium, there is a dramatic decrease in adhesion
s with Acinetobacter baumannii. AFM images of A. baumannii cells infected for 1–6 min by
acteriophages AP22 for 1 (a), 3(c), 6 (e)minutes. Right row: zoomed-in three dimensional
otted circles in the height images). The inset in (a) demonstrates zoomed-in region, shown
es show two cylinder fragments, from a purified sacculi from gently broken cells, joined by
mannose-rich polysaccharides on LGG bacteria. Adhesion force histograms are shown,
on A tip on LGG wild-type and on the mutant CMPG5413 (impaired in adherence to gut
from references [83,90] and [91] respectively.
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frequency compared to the native strain. Therefore, this technique of
Single-Molecule Force Spectroscopy can be used to understand which
molecules interacts with, in this case, the gut epithelium. Another
study by Strauss et al., studied the role of LPS O-antigen on the adhesion
of E. coli cells, using also AFM, with bare AFM tips [92], but there were
also works performed on the coat proteins of spores of Bacillus [93,94],
and on the adhesins at the surface of living mycobacteria [95].

3.2. Evaluating the effects of antibacterials molecules by AFM

Understanding the nanoscale behavior of bacteria under physiologi-
cal conditions, or their interactions with other organisms in their native
state is a first point; we need to know the “enemy” to efficiently fight
against them. However, the common way to fight against bacteria is
to use antibacterials. Among them, there are the antibiotics, used at
home or in hospitals to treat infectious diseases, but there are also
other kind of antibacterials, less used or under development, such as an-
tibacterial peptides, and innovative molecules, that should be known
about. This section will focus on how AFM techniques (imaging, force
spectroscopy, singlemolecule force spectroscopy) can help understand-
ing the nanoscale effects of antibiotics, or understanding the mecha-
nism of action of new molecules not yet fully characterized.

3.2.1. Nanoscale effects of antibiotics on bacteria
Antibiotics have inmost cases a well describedmechanism of action

on bacteria [96]. However, the effects on bacterial surface at the nano-
scale are poorly understood, and for this purpose, the AFM technique
is particularly well suited, since it allows imaging and probing nanome-
chanical properties on single living cells. Among antibiotics investigated
byAFM, examples areβ-lactams [97,98], aminoglycosides and their der-
ivate molecules [99] and fluoroquinolones [100]. The results presented
in Fig. 11A shows morphology modification of P. aeruginosa treated by
ticarcillin (β-lactams) and tobramycin (aminoglycoside) [97]. As we
Fig. 11. Effects of antibiotics on bacteria. (A) Effects of ticarcillin and tobramycin on Pseudomona
image) treated by ticarcillin (middle image) and tobramycin (right image). (B) Imaging individ
Lactococcus lactis cell during the course of the division process. The cell is located at the center o
Themiddle image represents the affinity map (gray scale: 100 pN), together with the adhesion
tip on the septum region (highlighted by the white box in the AFM image), using constant retr
references [97] and [102] respectively.
can see, ticarcillin causes an elongation of the cells, whereas tobramycin
alters the surface of the cell. But antibiotics cause also modifications of
the cell wall nanomechanical properties, such as elasticity and spring
constant. Francius et al. probed on living S. aureus cells the effects of
lysostaphin, an enzyme that cleaves the peptidoglycan, over time
[101]. The authors found that the lysostaphin treatment caused a de-
crease in the elasticity of the cell wall with the time of treatment,
alongwith a decrease of the spring constant of the cells. Thesemodifica-
tions could only be probed with force spectroscopy, and give precious
information on the nanomechanical propertiesmodification that antibi-
otics cause on bacterial cells.

Other authors were interested in vancomycin, a glycopeptide antibi-
otic, used in last chance in hospitals. Thismolecule bindswith high affin-
ity and specificity to the terminal D-Ala-D-Ala peptidoglycan precursors,
leading eventually to cell lysis. In the study of Gilbert et al., AFM tipswere
functionalized with vancomycin, and used to perform single molecule
force spectroscopy experiments on L. lactis during the course of division
[102]. The results obtained (Fig. 11C) show that the D-Ala-D-Ala residues
are located on the division septum of the cell, which suggest that the
newly formedpeptidoglycan is inserted in this region during the division
process. This study demonstrates that AFM with antibiotic-modified
AFM tip is a valuable tool to explore the dynamics of antibiotic–ligand in-
teractions; it also gave new insights on the assembly process of peptido-
glycan in gram-positive bacteria. Antimycobacterials have also been a
subject of interest, and AFM investigations have been performed on
Mycobacterium JLS [103] andMycobacterium bovis BCG [104].

3.2.2. Antimicrobial peptides
However, bacteria becomingmore and more resistant to antibiotics,

new approaches have to be developed to findnewways of killing bacte-
ria. Antimicrobial peptides have been developed for several years, but
for now, theirmechanism of action is not fully understood and need fur-
ther studies. To this aim AFM can be used to evaluate the effects of such
s aeruginosa. Vertical deflection images of native live cells of Pseudomonas aeruginosa (left
ual D-Ala-D-Ala sites on living Lactococcus lactis. The AFM image shows a single wild-type
f the image and trapped into a porous polymermembrane for noninvasive, in-situ imaging.
force histogram (n = 1536), and representative force curves recordedwith a vancomycin
action speed (1000 nm/s) and interaction time (500 ms). Reprinted with permission from
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molecules at the nanoscale, helping to the understanding on how these
peptides interactwith the bacterial cell wall. Themost famous of antimi-
crobial peptide is colistin; this peptide is efficient against gram-negative
bacteria, such as Acinetobacter baumannii, P. aeruginosa or Klebsiella
pneumoniae, bacterial strains that are the cause of many cases of nosoco-
mial infections. Very few AFM studies were dedicated to the study of the
effects of colistin on gram-negative bacteria [105–107]; themain conclu-
sions coming from these reports are that treated bacteria have an in-
creased cell wall elasticity and spring constant, along with a decrease
in the adhesive properties of the cells. These conclusions are consistent
with the hypothesis that colistin acts as a detergent on the bacterial
cell wall and removes the LPS from the surface. In fact, in these studies,
results are also presented with colistin-resistant bacteria, that have cell
wall structural differences compared to susceptible strains.

Research in the antimicrobial peptide field is actually emerging and
many papers treat of the evaluation of the effects of various original
peptides with AFM. The peptides studied have diverse origins; for ex-
ample PGLa peptide comes from frog skin and its secretion and has
been showed to remove the outer membrane of E. coliwhile decreasing
the surface stiffness [108]. Meincken et al. compared the effects of three
different peptides, melittin from the honeybee Apis mellifera, magainin
and PGLa from frogs skin [109] on E. coli. While these peptides are
close in terms of amino sequence, the authors couldmake the difference
between the effects caused by each one of them on bacteria, thanks to
AFM. Finally Li et al. evaluated the effects of sushi peptides S3 on
E. coli cells [110]. The results presented in this paper show that after
1 h of treatment, bacteria are severely damaged and large amounts of
cytoplasmic fluids are exuded. This indicates drastic permeabilization
of the innermembrane,whichwould be the second step of the S3mech-
anism of action. The first one is a damaging of the outer membrane; the
second is the initiation of the permeabilization of the outer membrane,
and finally the release of the cytoplasmic fluid from the bacteria. There-
fore, the authors, thanks to AFM, could get a better understanding of the
mechanismof action of a novel and still unknown antimicrobial peptide.

And since antimicrobial peptides are supposed to have a detergent-
like action on the membranes of bacteria, many studies focused on
characterizing the effects of peptides on phospholipidic layers that
mimic these membranes. Roes et al. used reconstituted monolayers of
LPS from Salmonella enterica to study the effects of polymyxin B;
Francius et al. observed the interactions between supported bilayers of
DOPC/DPPC and surfactins [111]. As a last example, Arseneault et al.
made DPPG mono- and bilayers to understand the interactions with
lactoferricin B, an antimicrobial peptide obtained from the pepsin cleav-
age of lactoferrin [112].

3.2.3. Innovative molecules and nanotechnologies
Whereas antimicrobial peptides have amechanismof action different

from antibiotics, still resistances to colistin, for example, have started to
emerge. The research must therefore explore new possibilities for find-
ing new antibacterial molecules that are different from both antibiotics
and peptides, in order to avoid development of resistances. A new ap-
proach developed is the one of nanoparticles. Metallic nanoparticles
are promising antibacterial agents since they are chemically stable, re-
sistant to heat and have a long life. Currently a broad variety of metals
and their compounds are used in microbiology research for their
potential antimicrobial activity. There are already a few studies
reporting on AFM investigations of the effects of nanoparticles on bacte-
ria [113–115], and one of them is dedicated to copper iodide nanoparti-
cles [116]. In this study, the authors have synthesized and evaluated the
effects of this novel kind of nanoparticles on different bacterial strains,
including multidrug resistant ones. The results of this study show that
for E. coli (K12) cells treated with the nanoparticles, the membrane is
totally disrupted compared to the native cells. In addition, the authors
were also able to prove that copper iodide nanoparticles caused the
generation of reactive oxygen species, therefore damaging the DNA of
the bacterial cells.
Another new approach developed in the recent years is the one
of calixarene molecules. An example of such molecule is the para-
guanidinoethylcalix [4]arene (Cx1), that has been proven to be efficient
on both gram-negative and gram-positive bacteria [117]. However the
mechanism of action of this molecule was still unclear, and AFM tech-
niqueswere used to get a better understanding of thismolecule interac-
tionwith the cell wall of bacteria [118]. The results presented in Fig. 12A
show that on a multidrug resistant strain of P. aeruginosa, Cx1 causes a
dramatic decrease of the cell wall elasticity, from 517 to 75 kPa. This
information shows that Cx1 is efficient on such a bacterial strain, and
that its action destabilizes the cell wall of the gram-negative bacteria.
To go further into the mechanism of actions, the authors probed the
cell wall of treated and untreated bacteria with an AFM tip functional-
izedwith concanavalin A, a lectin that binds to sugars. These singlemol-
ecule force spectroscopy experiments revealed that the lectin could
unfold a molecule only on Cx1 treated cells (Fig. 12B). This molecule
could possibly be the peptidoglycan, which would be accessible
because of the destabilization of the outer membrane caused by the in-
teraction with Cx1. Research is still going on in this field, and new
calixaneric molecules are under development [119–121].

Along with nanoparticles and calixarene, there are also approaches
that involves carbon nanotubes which have been proven to be efficient
against E. coli and B. subtilis [122], and chitosans, that were investigated
using AFM on B. cereus, E. coli and S. aureus [123,124]. Eventually,
emerging area of interest is the use of probiotics to cure infections. As
the use of lactobacilli and staphylococci for the treatment of vaginal
infection, that has been studied by cell–cell interaction [125] or cell–
protein interaction as for lactococcus and mucin in the case of gastro-
intestinal infection [85,86] and probiotic action [126].

To conclude, we show in this section that Atomic Force Microscopy
opens new perspectives for characterizing bacterial species, and under-
standing themolecular and nanomechanical processes underlying their
behavior in physiological conditions. We have also seen that AFM tech-
niques are very useful to study the nanoscale effects of antibiotics that
have a knownmechanismof action. However, since bacteria are becom-
ing more and more resistant to the antibiotics, new approaches involv-
ing innovative molecules are developed and once again, AFM can be
used to get a better understanding of the mechanism of action of
these newmolecules, with the hope that they will be used to treat nos-
ocomial infections caused by multidrug-resistant bacteria.

4. AFM for mammal cells pharmacology's studies

This part focuses on the insights that Atomic Force Microscopy can
give in the field of pharmacology for mammal's cells, from the general
understanding of therapeutics treatment to special cases of diseases,
with a whole part concerning cancer study. Most of the studies in this
field are performed on cells lines or patient isolated cells in vitro, but
recent progress have made possible to study entire biopsies, thus en-
larging the use of AFM. It is to be noted that AFM studies of mammal
cells are increasingly performed in combination with fluorescence
microscopy. Coupling of these two techniques offers a wide range of
possibility in studying biological phenomena. We will concentrate
mainly on AFM results, but keep in mind that fluorescence microscopy
and AFM are complementary in this type of studies.

4.1. General applications

The use of Atomic Force Microscopy for pharmacology's studies on
mammalian cells have been led by 2 types of research field: 1) the un-
derstanding of cell response to an external stress (infection, injury)
characterized by immune and differentiation or gene expression re-
sponse; 2) the investigation of drug effect on cells, from internalization
efficiency to affectation of cellular processes and active effect on patho-
gens. The following section will be then divided in 2 parts related to
these concerns.



Fig. 12. Effects of innovative antibacterial molecules on bacteria. (A) Antibacterial effects of calixarene Cx1 on the elasticity of Pseudomonas aeruginosamultidrug resistant. Elasticity map
(z-range = 1.5 MPa) of several cells of untreated P. aeruginosa, togetherwith distribution of youngmodulus values (top images), and of cells treatedwith Cx1 (bottom images). (B) Effects
of Cx1 on the architecture of the cell wall of Pseudomonas aeruginosamultidrug resistant. Schematic representation of the force curves (retract segment) obtained with ConcanavalinA
functionalized AFM tips on untreated P. aeruginosa cells (left curves) and Cx1 treated cells (right curves). The 4 force curves (n) presented by conditions were chosen out of 3072 curves
recorded on 3 different bacteria coming from 3 independent cultures. Reprinted with permission from reference [118].
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4.1.1. Cell response to external stress
In the complex context of multicellular organisms, the cell response

to an external stress is of interest to accurately target the dysfunction in
case of disease. For example, the study of keratinocyte reaction to sur-
factant by AFM can help in the understanding of chemical stresses on
the skin, showing that despite a morphological effect, no differences in
stiffness are measured at non cytotoxic doses of sodium lauryl sulphate
Fig. 13. AFM in pharmacology. (A) The average roughness and mean height particles of surfac
(PWM) or Staphylococcus aureus Cowan I (SAC). Mean ± SD. (B) AFM imaging of platelet act
of 0–280 nm). (C) Increase in stiffness of human hepatoma cells infected by Plasmodium flacip
[127]. But AFM can also help in immune response characterization.
Immune response is based on first, the detection of pathogen and
then, their elimination. On one hand, lymphocytes B are involved in
the humoral immune response, and recognize molecular component
in extra cellular fluids that directly inform of the pathogen presence in
the organism. These cells are responsible for antibody production.
Their activation is a complex mechanism that appeared to change
e nanostructure of resting and B lymphocytes after their activation by pokeweed mitogen
ivation along time, height image (z-range of 0–1.9 μm) and corrugation images (z-range
arum. (P b 0.05). Reprinted with permission from references [132,152,216].

image of Fig.�12
image of Fig.�13


Fig. 14. Cancer cell characteristics. (A) Increase in cell elasticity of leukemic cells (HL60) leading to leukostasis. (B) Elasticity of cancer cells collected from patients with suspected meta-
static cancer from seven different clinical samples. Grey: measurement for all cells together. Dark blue: cancer cells. Light blue: normal cells. Reprinted with permission from references
[157,158].
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their nanomechanics. Wang et al. have shown, using AFM, that activa-
tion of B cells by pokeweed mitogen (PWM) or S. aureus Cowan I
(SAC) induces the clustering of B cell receptors at the cell surface, re-
sponsible for cytoplasm biochemical activation cascade and improve-
ment of cell adhesion to antigen. This clustering is visible by
topographic analysis such as roughness and particle (cluster) size
(Fig. 14-A). Cell adhesion capacities have also been evaluated by force
spectroscopy [128]. On the other hand, Lymphocyte T cells are respon-
sible for cell-mediated immune response. To achieve their goals, these
cells need to reach the site of infection (inflammation site), and then
to cross endothelial barriers, which involves cell–cell adhesion, namely
lymphocyte T–vascular endothelial cell adhesion. This crossing implies
a change in adhesion protein expression pattern, like integrin and
selectin, by endothelial cells. Zhang et al. have investigated the adhesion
dynamics of the T-cell–endothelial interaction by force spectroscopy
study between a functionalized tip where a lymphocyte cell is attached
and endothelial cell on the substrate [129]. The adhesion forces have
beenmeasured and discriminated using antibodies against major adhe-
sion proteins expressed by endothelial cells. These experiments lead to
the conclusion that these proteins are the ones involved in lymphocyte
B adhesion to endothelial cell. This inflammatory process involves also
the increase of temperature, and thus heat stress. HSP60 protein (heat
shock protein) production by endothelial cells has been studied by single
molecule force spectroscopy and revealed the presence of this protein at
the membrane surface of heat stressed cells and its possible implication
in arthrogenesis [130]. Finally, macrophages phagocytosis plays an im-
portant role in the elimination of pathogens and dead cells following im-
mune response [131].

As another stress that an organism is subjected to, injury is oneof the
most common one. In the process of maintaining blood vessel integrity,
platelet activation is the first and key process. Topographical analysis
of platelets activation has shown cytoskeleton reorganization at a reso-
lution of 50 nm. A redistribution of the platelets granula and vesicles
towards the lamellipodia of the cell has also been observed; this phe-
nomenon leading to increase plasmamembrane surface thus improving
aggregation (Fig. 13B) [132].

We can see through these different examples that most of cellular
responses involving different gene expression pattern are linked to cell
membrane reorganization and changes in nanomechanical properties of
the cell. These processes are observed for other mechanisms like cell
differentiation or pathway activation. Han et al., in 2011 have validated
the IGF-II (insulin-like growth factor) autocrine signaling pathway as a
suitable target for the detection of muscle differentiation using AFM.
They have been able to discriminate differentiated cells from others by
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the detection of IGF-II at the cell surface thanks to anti-mouse IGF-II anti-
body immobilized on theAFMtip [133]. Using the same concept, Qiu et al.
have characterized quantitatively the TRA-1–81 (un-differentiation
marker) expression level on Human Embryonic stem cells surface to
capture the “turn-on” signal and understand the mechanism of their
early differentiation [134]. Another way to discriminate differentiated
cell can be to measure their elasticity, as it is the case for the change
from osteoblast (stiff) to osteocytes (soft) [135]. This stiffness is directly
correlated to the capacity to adhere to substrate, and is accurate to test
the biocompatibility of implant materials [136].

4.1.2. Drug effects and disease studies
Drug effect investigation can be done by the three classical measure-

ments: adhesion force, elasticity or imaging, as for example this study
about the effects of an anti-malaria compound on leukemic cells [137]
or hormonal effects that have been widely studied and well document-
ed by Hillebrand et al. [138]. i) Single molecule force spectroscopy has
resolved at themolecular resolution the dynamics of AMPARneuron re-
ceptors trafficking under NMDA stimulation [139]. ii) Effects of asthma
drugs (aminophylline) on red blood cell elasticity have been correlated
to their reduced capacity to transport oxygen in capillaries by increasing
their stiffness and thus reverse the drug purpose [140]. iii) These elastic-
ity changes are linked to a change in cell shape too. Imaging of cells leads
to the understanding of molecule side effect, as for example chlorprom-
azine. Li et al. have shown that this schizophrenia drug affects endothe-
lial cell morphologically [141]. HgCl2 toxic effects have been also
characterized by imaging cells in contact with the molecule [142].
Fig. 15. Relation between stiffness andmetastatic state. (A) Young'smodulus distribution ofmu
(B) Substrate related elasticity of PC3 and LNCaP cell when culture on collagen (COL1) or fibron
and ovarian cancer (HEY and HEY A8 cells are HEY A8 cells that are more tumorigenic). Reprin
Finally imaging can also be used to study the mechanism of drug inter-
nalization, as for example the study of the direct DNA insertion thanks
to the AFM tip for nanomedicine [143].

We will now focus on the special case of cardio-vascular affections.
Indeed, cardiac cells (cardiomyocytes) present the distinctive feature
of being contractile, and AFM is nevertheless technically of interest to
study them, as shown by Liu et al. This group hasmeasured cell contrac-
tility with or without incubating them with Ibutilide, a classical drug
used to treat arrhythmia, and started to determine its cellular target
and mechanism of action [144]. The last development allows synchro-
nizing AFMmeasurements with the contractility of the cells, providing
the possibility to detect specific events [145]. The evaluation of recovery
after infarct by elasticity measurements showed that stroma cell-
derived factor 1α (SDF-1α) increases the elasticity of peri-infart mice
tissue border zone and stiffening the scar, thus conducting to a better
resistance to ventricular remodeling and infarct expansion [146]. The
importance of the protein Ephrin B1 in the lateral membrane of
cardiomyocytes has also been assessed by AFM. The deletion of Ephrin
B1 makes the cardiomyocytes stiffer and progressively leads to the
cardiac tissue disorganization. This protein is essential for the stability
of cardiac tissue architecture cohesion [147]. Nevertheless, beyond the
whole cell study, AFM can be run on organelles like mitochondria,
which dysfunction is known to be implicated in the pathology of
myocardial infarction. The release of cytochrome C by mitochondria
was correlated to its swelling by fluorescence microscopy, thus not
quantitatively. Lee et al. have shown that mitochondria indeed swell
during apoptosis; the authors also gave quantitative morphological
rinemelanoma cell of decreasingmetastatic potential (B16-F10, B16-BL6 and B16-F1cells).
ectin (FN). (C) Invasion versus average stiffness for ovarian surface epithelial cells (IOSE),
ted with permission from references [161,164,168].
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analysis of rat heart mitochondria ischemic or not in native conditions.
Furthermore, AFM allows them to detect nano-mechanical surface
properties changes of ischemic cell mitochondria that are linked to
their swelling [148].

Vascular diseases are also subjected to investigation by AFM. The
inner part of blood vessel is responsible for blood pressure regulation
through different mechanism like the release of vasoactive substance
namely nitric oxide. The release of nitric oxide by the inner endothelial
cells have been shown to be correlated with (and maybe regulated by)
cell cortex stiffness changes [149]. Artherosclerosis lesions are affecting
arterial cells stiffness too, specifically in branches and curved region of
blood vessel, where endothelial cells appear to be stiffer than others
endothelial cells [150]. Thismay be related to oxidized low-density lipo-
proteins (ox-LDL) cell exposure [151].

Furthermore, AFM can give answers to the questions raised by the
pathogen infection process. For example the Plasmodium falciparum
liver infection can be characterized by an increase in stiffness associated
to a cell response to infection (and not the presence of the microorgan-
ism itself) (Fig. 13C), andmay further enhance the understanding of this
clinically silent step [152].

4.2. A tool for cancer-study development

Considered as the disease of the 20th century, cancer remains one of
the most complicated and unsolved disease, meaning that no recovery
treatment exists and only the eradication of tumor cells shows consis-
tent results. In the following section accent will be put on the progress
AFM allows for understanding this disease and the consequent medical
applications that emerge with this nano-mechanical tool.

4.2.1. Nanomechanic of cancer cell
In 1999, Lekka et al. have for the first time compared the elasticity of

cancerous cells versus “normal” ones [153]. They studied human epithe-
lial bladder cells lines and show that cancerous cells present a lowest
Fig. 16.Direct link between cancerous cell elasticity and their interactionwith environment. (A)
cells and malignant T24 bladder cells. (B) Morphological changes of MCF-7 cells treated withou
[173,174].
young modulus value than normal cells. This article was part of a set
investigating several cancer types : prostate cancer cells [154], breast
cancer cells [155] or cervical ones [156], all showing a decrease in stiff-
ness for cancer cells, except in the case of leukemic cells where cell stiff-
ness increase leading to leukostasis (Fig. 15A) [157]. In 2007, the same
observations were published on cells directly taken from the body
(pleural) fluids of patients with suspected lung, breast and pancreas
cancer [158], validating the decrease of elasticity as a characteristic of
cancerous cells, in vitro and in vivo (Fig. 15B).

These observations lead the authors to wonder why there was this
particular change in elasticity and so to investigate the mechanics of
the cancer cells. Rapidly the idea of the involvement of cytoskeleton in
this measured softness was pointed out [159] and studied [160]. More-
over, the changes in elasticity of melanoma cell lines have shown that
the decrease in stiffnesswas directly correlated to themetastatic poten-
tial of the cells [161], the stiffness being the lowest for melanoma
B16-F10 cells that produce a large number of foci, and the highest
with a reduce number of foci (Fig. 16A). The same relation has been
shown for oesophageal cells lines in different phases of premalignancy
[162].

All together, these data demonstrate that the nanomechanical prop-
erties of cancerous cells are linked to their condition,which enable them
to change their elastic properties (deformability) in order to cross the
cells barriers to create metastasis in the organism (leave the primary
site, pass into circulation, stop at a secondary site and migrate again
across the vascular barrier). Beyond this metastatic state, cancerous
cells must be able to sense their environment to efficiently invade the
right targeted-tissue. Firstly, the Young modulus of cancer cells was
shown to change when cultured on different substrates, indicating a
perception of their environment, and yet different capacities depending
on their “function” [153]. For example elasticity of breast cancer cells
decreases on fibronectin [163], which is related to the cancerous nature
of the cells as shown on prostate cancer cells versus non-cancerous cells
cultured on collagen (Fig. 16B) [164]. The extra cellularmatrix is thus of
Distribution of the unbinding force for N-cadherin–GC4 complex in non-malignant HCV29
t (B, C) or with (F, G) 30 μg/L BMP2 for 24 h. Reprinted with permission from references
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importance in cancer cell phenotypes [165–167]. Secondly, stiffness has
been correlated to the capacity of invasion too as shown in Fig. 16C on
ovarian cancer cells [168] or prostate cancer cells [169]. These invasive
propertieswere also determined by the cells ability to adhere differently
to the substrate depending on its nature [164,169]. Therefore, it was
shown that the rigidity of the substrate influences the invasive cell
response as the invasive mechanism implies the degradation of extra-
cellular matrix: cells are then able to sense their environment and
choose where to invade [170]. Likewise, during their invasion process,
cancer cells can adhere to other cells, and this can bemeasured by direct
cell–cell interactions for example between prostate metastatic cells
known to form bone metastases and bone cells [171]. Reeves et al.
have demonstrated the ability of prostate cancer cells fixed on the
AFM tip to form contact with bone marrow endothelial cells fixed on
the substrate [172]. By blocking extracellular part of trans-membrane
protein such as integrin and selectin using specific antibodies, they
observed a decrease in adhesion events between the two cell types.
This result has demonstrated that cell–cell interaction in invasive
process is performed through these specific proteins. Following the
same idea, N-cadherin levels (calcium adhesion transmembrane
proteins, that are characteristic of various cancers and involved in
cell adhesive properties) have been measured on cancer and normal
bladder cell surface with an antibody fixed on the AFM tip [173]. Re-
sults showed an enhanced level of the protein in cancer cells accom-
panied by higher unbinding forces, meaning that N-cadherin protein
is more stable in cancerous cells (Fig. 17A). Furthermore, the
Fig. 17. Cancer treatment effects. (A) Internalization of small liposomes containing cisplatin in h
top right:fluorescence imagesnucleus in red and liposomes in green, bottom left: height image,
the cytoplasm. (B) Root–mean–square roughness variation of cell Hela cellmembrane along tim
normal mesothelial cells before (ctrl) and after treatment with Green Tea Extract (GTE) for 24
presence of cell referenced as good secondary site for metastasis
may enhance the invasion capacities of the cancer cells, as shown
by Jin et al. on breast cancer cells that change their shape and make
specialized migration structures in presence of the bone morphoge-
netic protein 2 (Fig. 17B) [174].

Cancerous cell changes in gene expression are directly related to the
alteration of their function. The data presented above shows that mor-
phological and force spectroscopy investigation help in resolving and
understanding cancer cell mechanism and behavior.

4.2.2. Cancer treatment
After the determination of cancer cell characteristics and its subse-

quent link to their behavior, the treatment of patient by eradication of
tumor is a second challenge for scientists. We will describe in this
section the benefice of AFM for treatment efficiency andmode of action
studies.

The first step regarding the efficiency of a therapeutic agent is the
targeting of the cancer cells and its delivery. Indeed, most of the current
chemical does not specifically affect the cancerous cells and thus need to
be addressed. AFMcan help in determining this targeting by the study of
nanocarriers: nanoparticle interaction with melanoma cells [175] or
nanoliposomes containing the well-known cisplatin drug intra cellular
delivery in ovarian cancer cells [176]. These nanoliposomes have been
shown to be well internalized in the cytoplasm in the size range
of 100–300 nm (Fig. 18A). Adhesion specificity discrimination of chem-
ical groups to enhance the targeting of cancerous cell by these
uman ovarian cancer cell line (A2780) after 1 h incubation, top left: contrast phase image,
bottom right: error image. Black arrow: pointing at liposomeson cell surface, red arrows: in
e depending on colchicine dose. (C) Young'smodulus of patient lungmetastatic tumor and
h. Reprinted with permission from references [176,184,193].
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nanocarriers can be measured directly on cells by functionalizing the
AFM tip with the chemical itself [177]. The functionalization with
these type of carriers can also be achieved through antibodies, for ex-
ample against MUC-1, a cell surface marker for prostate, breast, and
lung cancer [178]. Some antibodies are able, not only to target the
cancer cells, but also to provoke apoptosis of the cell. This is the
case of antibodies against epidermal growth factor receptor HER2,
namely Trastzumab and Pertuzumab, which inhibit the dimerization
of HER2 with other epidermal growth factor [179]. This method has
also been used to study two cells interaction and helped to solve Zo-
ledronic acid role on prostate cancer that reduced the adhesive inter-
actions between cancer cells and bone marrow endothelial cells
[172].

As stated in the previous section, interactionwith their environment
is of importance for cancerous cells. It is one of the effects of immune
system on cancer cells, as shown by Braet et al. that demonstrated that
natural killer cells affect the adhesion to substrate properties of colon car-
cinoma cells [180]. Asmembrane is the interfacewith cell's environment,
it is one of the key actors that scientist look at when investigating anti-
cancer treatment effects. For example, electropermeabilization treatment
Fig. 18. Detection of cancerous cell from patient. (A) Top view of an oriented, immobilized bio
human breast tissue at different step ofmalignancy. (B) Stiffness distributions in tissues sections
(gray columns) and well differentiated endometrioid carcinoma (black columns) of the uterine
(black columns). (3)Vulvar cancer. Black columnsdenote cancerwhile gray ones, non-neoplasti
permission from references [198,210].
effect can be investigated byAFM [181]. Imaging cell surface after treating
them with new drugs gives access to the way that drugs affect the cell
and can help improving it. Some ex-vivo studies performed on lipid
bilayers helped in defining themechanismof action of anti-cancer com-
pounds by imaging breast cancer cell native membrane rafts [182] or
Latarcin2a peptide lytic activity on model membranes [183]. Several
drug have been studied by imaging membrane on the complete cell:
Colchicine on different organs carcinoma cells (dose dependent in-
crease in roughness, Fig. 1) [184], Celecoxib on human colorectal cells
[185], Paclitaxel on carcinoma cells [186,187], Alterporiol on breast can-
cer cells (dose dependent increase in membrane particule size) [188],
lithium unexpected effect on carcinoma cells [189] and curcumin
anti-cancer effect on liver cells [190]. Membrane is also the site where
interactions with the environment occur, and the drug Celastrol affect-
ing the invading capacity of endothelial cell in angiogenesis has been
shown to reduce adhesion/affinity to fibronectin protein [191]. Ones
must not forget that some drugs are affecting inner cell's components,
like the bacterial protein Azurin that stabilize the p53 protein and
thus enable apoptosis. The molecular details of this interaction have
been assessed by AFM [192].
psy with the cantilever positioned for AFM measurement. Scale bar, 500 μm. Elasticity of
accompanied by the corresponding histological staining. (1) Nonneoplastic endometrium
corpus. (2) Nonneoplastic breast tissue (gray columns) and infiltrating ductal carcinoma

cparts of the tissue section separatedbyblack line in thehistological image. Reprintedwith
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Of course the elasticity of the cell stays a good parameter to judge on
the efficiency of a therapeuticmolecule, as for example green tea extract
that restores selectively the elasticity of cancerous cells thus confirming
its anti-cancer non-destructive activity (Fig. 18C) [193]. However,
depending on the effect or the cell, elasticity can show a different ten-
dency. For example, elasticity can reflect the apoptotic effect of a drug,
then ones must be looking at a decrease in Young modulus values as it
is the case for Paclitaxel [186], and an increase in elasticity can label
the resistance of tumor cells to an apoptotic agent like for the TRAIL
(TNF-related apoptosis inducing ligand) [194].

4.2.3. Futures applications
We have described above the use of AFM for in vitro analysis of

cancer cells, their properties, and their response to treatment. However
the AFM can also be used as a diagnosis tool. In vitro, the discrimination
between cancerous cells and healthy ones can be achieved by several
assays. First, imaging cells can give answers to the question “are these
cells cancerous?”. The down-regulation of tumor suppressor protein as
thematrix associated region protein SMAR1 has been studied by rough-
ness measurement at the surface of cancer cells, and an increase in
roughness was shown on cancer cells allowing the differentiation
between cancer cell and healthy ones [195]. Secondly, adhesion mea-
surements can inform on the glycosylation state of the cell, directly
correlated to their cancer state [196]. As previously mentioned, the
elasticity of the cell is a reliable measurement that undoubtedly makes
the difference between cancer and non-cancer cells. Cross et al. have
been the first to study cells from patients and thus gave the first diagno-
sis on lung, breast, pancreas cells (Fig. 15C) [158], and later adenocarci-
noma [197]. The last improvements are turned to biopsies (Fig. 18)
[173,198,210] and allow the correlation between cancer phenotypes
and stiffness. These studies open up the use of AFM for bio-medical
application of interest for clinical applications, and recent advances in
force-curve analysis may help to finely tune these features [199,200].

5. Conclusion

Imaging cells at high resolution is of first importance in biology. The
atomic force microscope cannot now be ignored because of its advan-
tages. AFM works in liquid, thus potentially on living cells, with a reso-
lution close to the nanometer (depending on the application). But, as
exposed in the review, AFM is more than an imaging tool. It is able to
measure forces, and gives access to the nanomechanical properties of
cells, and/or to the localization of proteins, receptors, at the cell surface.
We have reviewed the main domain of application of AFM on living
cells: fungal cells, bacteria and mammal cells. However, AFM is also
useful to study isolated proteins, DNA, and other biomolecules. We
have shown, by reviewing the literature, that AFM experiments give
an original vision of cells. It is of first interest to combine AFM analysis
with other imaging techniques (MET, SEM, optical microscope, confocal
microscope) to get a better understanding of the structure–function
relationships. For example, by combining force measurements and
transmission electronic microscope, it is possible to make a link be-
tween a stiffer structure and the underlying organelles that are present
in the cell. The combination with chemical analysis like XPS or SIMS
[201] also enlightens the relation between surface structures and chem-
ical composition.

AFM technologies are continuously improving. Among others, we
should cite high speed AFM [202,203], high speed force spectros-
copies [204], multi-harmonic AFM [205], or the use of AFM as a
microelectromechanical system [206]. These developments tend to
increase our ability to track fast events occurring at the cell surface
and contribute to redefine our understanding of the living cell surface.
The next challenge is now to use AFM on living cells, in order to solve
a biological problem, and not only to observe biological phenomena.
This has been achieved, for example, for the early diagnosis of osteoar-
thritis [207], the determination of the cataract molecular mechanism
[208,209], or for making the difference between normal and cancerous
cells [210] (on cell lines, cells coming from patients and biopsis). Classi-
cal AFM has been combinedwith optical, confocal, fluorescencemicros-
copy for several years now [211,212]. The next challenge is to combine
these techniques with advanced AFM technologies as it has been
recently done for optical microscopy and high speed AFM to observe
single membrane proteins on eukaryotic cells [213,214]. The tracking
of single molecules by FRET or TIRFF, on living cells, combined with
AFM, is also an exciting perspective [215].

In this review we specially addressed the contribution of AFM in
pharmacology. We exposed results obtained on fungal cells, bacteria
and mammal cells exposed to drugs or encountering diseases. This
particular point of view demonstrates that AFM is not providing only
fundamental knowledge on cells but is now more and more contribut-
ing to studies with medical relevance.
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Abstract 

0ver the past 20 years, the yeast cell wall has been thoroughly investigated by genetic and 

biochemical methods, leading to remarkable advances in the under- standing of its biogenesis and 

molecular architecture as well as to the mechanisms by which this organelle is remodeled in 

response to environmental stresses. Being a dynamic structure that constitutes the frontier 

between the cell interior and its immediate surroundings, imaging cell surface, measuring 

mechanical properties of cell wall or probing cell surface proteins for localization or interaction 

with external biomolecules are among the most burning questions that biologists wished to 

address in order to better understand the structure–function relationships of yeast cell wall in 

adhesion, flocculation, aggregation, bio- film formation, interaction with antifungal drugs or 

toxins, as well as response to environmental stresses, such as temperature changes, osmotic 

pressure, shearing stress, etc. The atomic force microscopy (AFM) is nowadays the most 

qualified and developed technique that offers the possibilities to address these questions since it 

allows working directly on living cells to explore and manipulate cell surface properties at 

nanometer resolution and to analyze cell wall proteins at the single molecule level. In this 

minireview, we will summarize the most recent contributions made by AFM in the analysis of the 

biomechanical and biochemical properties of the yeast cell wall and illustrate the power of this 

tool to unravel unexpected effects caused by environmental stresses and antifungal agents on the 

surface of living yeast cells. 
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Abstract Over the past 20 years, the yeast cell wall has

been thoroughly investigated by genetic and biochemical

methods, leading to remarkable advances in the under-

standing of its biogenesis and molecular architecture as

well as to the mechanisms by which this organelle is

remodeled in response to environmental stresses. Being a

dynamic structure that constitutes the frontier between the

cell interior and its immediate surroundings, imaging cell

surface, measuring mechanical properties of cell wall or

probing cell surface proteins for localization or interaction

with external biomolecules are among the most burning

questions that biologists wished to address in order to

better understand the structure–function relationships of

yeast cell wall in adhesion, flocculation, aggregation, bio-

film formation, interaction with antifungal drugs or toxins,

as well as response to environmental stresses, such as

temperature changes, osmotic pressure, shearing stress, etc.

The atomic force microscopy (AFM) is nowadays the most

qualified and developed technique that offers the possibil-

ities to address these questions since it allows working

directly on living cells to explore and manipulate cell

surface properties at nanometer resolution and to analyze

cell wall proteins at the single molecule level. In this

minireview, we will summarize the most recent contribu-

tions made by AFM in the analysis of the biomechanical

and biochemical properties of the yeast cell wall and

illustrate the power of this tool to unravel unexpected

effects caused by environmental stresses and antifungal

agents on the surface of living yeast cells.

Keywords Atomic force microscopy (AFM) �
Saccharomyces cerevisiae � Cell surface � Cell wall �
Stress � Cellular sensors � Antifungal agents

Introduction

The yeast Saccharomyces cerevisiae has been used for

millenniums in traditional biotechnology purposes such as

making bread and ferment alcoholic beverages (Walker

1998). This yeast is nowadays employed as a microbial

factory for the production of low-value/high-volume

chemicals such as bioethanol (van Zyl et al. 2007) or high-

value/low-volume chemicals such as artemisinin (Ro et al.

2006). During these biotechnological processes, yeast cells
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have to cope with various environmental stresses that can be

either physical (e.g. temperature and osmotic shock, dehy-

dration, desiccation, shear/gravity stress, etc.); chemicals

(e.g. ethanol toxicity, nutrient limitation, oxidation, pH

shock) or biological (e.g. genotypic variation, cellular

aging, competition with other microbes, etc.). The mecha-

nisms involved in sensing these stresses and the resulting

changes in cell physiology are crucial to understand how

cells adapt and survive under these conditions. Investigation

of these mechanisms has mainly relied on the use of

molecular and biochemical approaches, which allowed

demonstrating that cells can react to external cues by

detecting environmental changes through cell sensors,

embedded in the plasma membrane and then engaging

signal transduction systems that trigger the appropriate

intracellular responses (Zaman et al. 2008; Fuchs and My-

lonakis 2009). A direct visualization and physical quanti-

fication of the response to these stresses would be quite

relevant and complementary to these molecular and genetic

studies. In particular, it would be interesting to visualize

what is occurring at the cell surface and how much stresses

impact on the biophysical properties of the cell wall. In

addition, the cell surface of yeast cells is decorated with

proteins that have a pivotal role in adhesion, communica-

tion and microbial infection (Jendretzki et al. 2011). How

these cell surface proteins cope with the external cues and

communicate the signal into the cell interior is still poorly

understood. Answering these challenging questions is

highly relevant for understanding several physiological and

biotechnological processes, such as molecular recognition

and cell adhesion, aggregation and flocculation, biofilm

formation (Verstrepen and Klis 2006; Bauer et al. 2010),

resistance to antifungal drugs (Mishra et al. 2007; Heinisch

2008) and barrier for mycotoxins compounds (Yiannikouris

et al. 2006; Schatzmayr et al. 2006). In this context, atomic

force microscopy (AFM) appears to be the complementary

tool to tackle these crucial problems, because it allows

manipulating at the single molecule or cell level and

observing the cell surface at the nanometer resolution

directly on living cells, which cannot be achieved with any

other microscopy technologies including thin-section

transmission electron microscopy (TEM). In this minire-

view, we will briefly explain the basic principles of AFM,

discuss on the different methods that are employed to

immobilize cells and provide an update of current works

carried out using this tool to investigate biomechanical and

biological properties of yeast cell wall. Finally, we will

present an account of our recent works related to biophys-

ical responses of yeast cells to some environmental stresses

and antifungals. Due to limited space, this review will focus

on researches carried out on the yeast S. cerevisiae, and

when useful, other yeast species such as Candida albicans

will be evoked.

Atomic force microscopy technology adapted

to biological systems

Atomic force microscopy has been introduced as a high-

resolution imaging technique in the eighties by Binnig and

Quate (1986). Because this technique is based on the

measure of the interaction force between a sharp tip and the

sample, AFM belongs to the scanning probe microscopes

family. These microscopes work by scanning a sample,

while maintaining constant a given parameter. To achieve

this goal, a cantilever terminated by a tip is mounted on a

piezo-electric ceramic that is regulated by a control loop.

AFM can operate in liquid, at a chosen temperature, pro-

viding high-resolution images of molecules or cells in a

buffered solution by scanning the tip over the sample

surface, which allows exploring the dynamic of cellular

process under physiological conditions (Dufrene 2010). In

addition this technology is also a force machine able to

measure forces in the range of pico-Newtons. When the tip

is approached to the surface sample and then retracted in

the Z direction, forces versus distance (F-D) curves are

recorded. On biological samples, the F-D curve consists in

a non-contact and a deformation component (Fig. 1). Both

the cantilever and the cell are deflected, and the true

indentation of the cantilever in the soft sample can be

obtained by subtracting this value to the one of cantilever

deflection on a glass slide. This strategy has been used to

investigate the nanomechanical properties of a large variety

of microbial and mammals cells (Muller and Dufrene

2011). Moreover, the measure can be spatially resolved,

Fig. 1 Schematic representation of atomic force microscopy used in

force spectroscopy mode. Force spectroscopy gives access to force

curves that can be analyzed in two different ways. (1) Indentation (d)

is read on the force curve and represents the nanomechanical

properties of the cell wall of yeasts. (2) single molecule force

spectroscopy (SMFS) uses functionalized AFM tips with biomole-

cules or ligand; the interaction between a ligand chemically fixed on

the AFM tip and the protein at the surface is given by the adhesion

forces on the retracted force curve (red curve)
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resulting in an elasticity map that can be related to some

structural information about the cell surface. The retraction

curve is also entailed of some relevant quantitative infor-

mation on adhesion or interaction events. Indeed, when the

AFM tip is in contact with a biological sample, a higher

force is necessary to disrupt the interaction during the

retraction of the tip from the sample, which results in the

measurement of an adhesion force. In addition, the AFM

tips can be functionalized with chemical groups, proteins or

even with whole cells (Hinterdorfer and Dufrene 2006;

Ebner et al. 2007; Jauvert et al. 2012), which allow to

measure specific interactions or to manipulate single bio-

molecules. Accordingly, several force-distance curves,

have to be recorded, giving rise to key insights into

hydrophobicity of the surface when using CH3-function-

alized tips (Dague et al. 2007; Alsteens et al. 2007), or to

the localization and/or the binding strength of single pro-

teins using functionalized tips with its corresponding

antibody (Ebner et al. 2007).

Tools for immobilizing biological systems

A main advantage of AFM, compared to the scanning elec-

tron microscope (SEM), is the possibility to work in the

buffer solution in which the biological systems like to be.

Therefore, a major concern of AFM with these systems is to

immobilize the cells, keeping them fully alive. The tip

actually scans the surface and, therefore, induces lateral

frictions that can move the biological sample. The paradox to

be solved is to achieve a firm immobilization that does not

damage this sample, while keeping it physiologically active.

The quality of the results highly depends on the way to solve

this paradox. Microbial cells immobilization on gel surface

and on glass slides have been reviewed and criticized by Gad

and Ikai 1995 and Dufrêne and coworkers (El Kirat et al.

2005). Briefly, these methods, as applied to yeast cells were

(1) air drying or chemical fixation of a cells suspension on

glass slide; (2) trapping yeast cells on soft material such agar

or gelatin and (3) mechanical trapping in porous polycar-

bonate membranes. Air drying and chemical fixation are

methods that very likely alter cell wall and cell vitality, while

the use of soft material may contaminate the tips and thus can

lead to erroneous results on the biophysical properties of the

biological samples. Immobilization of yeast cells in a porous

membrane requires a filtration through a polycarbonate

membrane with pores of the size of the diameter of the cells.

This is a very simple and very clean process. However, due to

the low ratio between filled and unfilled pores, finding one

cell under the AFM tip may take more than 15–30 min, even

if the microscope is equipped with an inverted optical

microscope because the membranes are impervious to light.

Recently, we have proposed an alternative method that

overcomes this limitation. It consists in a direct trapping of

cells in micrometer-size chambers produced by soft lithog-

raphy technology using an elastomer, such as polydimeth-

ylsulfoxane (PDMS) as the stamp (Whitesides et al. 2001)

(Fig. 2). In this method, the filling rate can reach 80 %, using

convective capillary deposition (Dague et al. 2011). This

method allows the collection of data on several cells of dif-

ferent size in a reasonable time lapse. Using this technique,

we showed heterogeneity of the Young’s modulus (i.e. a

measure of the elasticity) of yeast cells at the stationary phase

on glucose (Dague et al. 2011). To summarize, trapping

methods in porous membranes or in holes of PDMS stamps

are the recommended immobilizing methods of biological

cells as they are the best to preserve integrity and viability of

the cells.

Biomechanical properties of cell wall

The yeast S.cerevisiae is surrounded by a thick, mechani-

cally strong wall that is endowed of several key

Fig. 2 Immobilization of living

Saccharomyces cerevisiae cells.

a Schematic representation of

yeast cells in PDMS

microstructured stamps.

b Height AFM images and

corresponding cross-sections of

microstructured PDMS stamps.

The structures ranged from 1.5

to 6.0 lm large and 2–3 lm

depth. c S. cerevisiae cells

trapped in the microstructured

PDMS stamps as imaged by

atomic force microscopy
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physiological functions including maintaining cell shape,

cell integrity and protecting cell interior of potentially

harmful compounds from the environment. The cell wall

also harbors several proteins that are implicated in

molecular recognition and adhesion (Klis et al. 2006, 2009;

Levin 2005). The chemical composition of yeast cell wall

is well known. It consists in a microfibrillar network of b-

glucans (b-1,3 and b-1,6-glucans) that represent 50–60 %

of the cell wall mass, overlaid by highly glycosylated

proteins decorated by long chains of mannose residues

representing 40–50 % of the cell wall mass. Chitin, a linear

polysaccharide of b-linked N-acetylglucosamine, is the

third component of yeast cell wall. Though it is a minor

component in term of quantity (1–3 %), it is indispensable

for the yeast cell (Cabib et al. 2001). Over the last 15 years,

the complexity of the cell wall architecture has emerged

from detailed genetic, molecular and biochemical studies,

which led to the discovery of several interconnections

among these various wall components to form macromo-

lecular complexes (see (Free 2013) and (Orlean 2012) for

excellent and recent reviews on this subject). Although the

precise assembly processes and proteins involved in these

interconnections are not yet completely resolved, a mod-

ular concept of the cell wall has been proposed to account

for its structural organization (Kollar et al. 1997; Smits

et al. 1999; Klis et al. 2006). In addition, the molecular

architecture of cell wall is not static but is constantly

remodeled depending on growth conditions, morphological

development as well as in response to cell surface stresses.

This cell wall remodeling process is principally under the

control of the cell wall integrity (CWI) signaling pathway

that transmits the signals from the cell surface sensors to a

MAP kinases cascade (Levin 2011), with the main conse-

quence to reorganize cell wall architecture through changes

in carbohydrate polymers of the cell wall, in the cross-links

between these polymers and in a transient redistribution of

the cell wall repair machinery to the site of the cell wall

injuries (Klis et al. 2006; Lesage and Bussey 2006). These

remarkable molecular and biochemical works have raised

several new questions on the essential function of cell wall

that requires innovative approaches and methods. Among

them, AFM which allows directly visualizing and probing

the ultrastructure of the cell wall is well dedicated to

provide answers to several burning questions such as to

know whether the mechanical strength of the cell that is

largely attributed to its cell wall, is dependent on a specific

component of this wall or not. In this context, and using

various cell wall mutants altered in levels of b-glucan,

mannans and chitin or in the cross-links between chitin and

b-glucan, we found that the nanomechanical properties of

the yeast cell wall could not be ascribed to a specific cell

wall component but were mainly dependent on the intrinsic

molecular organization of the cell wall, with cross-links of

chitin to b-glucan playing an important role in the cell wall

elasticity (Dague et al. 2010). These results were in frame

with another report showing that the mechanical properties

of the filamentous fungi A. nidulans were dependent on the

change in the molecular structure of the hyphae cell walls

rather than on the mere chemical composition of the wall

(Zhao et al. 2005). However, this conclusion must be bal-

anced by the fact that the elasticity, quantified by the

Young’s modulus in MPa units, is apparently 3–5 times

higher at the bud scar than elsewhere on the mother cell

(Touhami et al. 2003;Alsteens et al. 2008), suggesting that

chitin, which is more abundant at this site, has a valuable

role in the elasticity of the cell. A similar conclusion was

recently reached from the study of the yeast C. albicans

exposed to the antifungal drug caspofungin. It was found

that chitin levels increased proportionally with the increase

of caspofungin dose administrated to C. albicans cells, and

this proportionality was reflected in an increase of the

Young’s modulus of this yeast cell (Formosa et al. 2013).

This result corroborated an earlier AFM analysis of

immobilized Candida parapsilosis on a glass slide that

showed higher adhesion forces at the incipient bud, and

also illustrated the heterogeneity at the cell surface that

might have an impact on adhesion of these yeast cells

(Mendez-Vilas et al. 2006). However, the importance of

chitin in elasticity of a microbial cell is still an open

question based on the finding that a S. carlsbergensis

strain, which belongs to the S. cerevisiae species (Dunn

and Sherlock 2008) and divides like this yeast species,

shows comparable elasticity at the bud scar and on the rest

of the mother cell surface (Alsteens et al. 2008).

Not solely cell wall remodeling but also cell wall

thickness may vary depending on growth conditions, stress,

mutations, etc., as indicated by the fact that the wall mass

can fluctuate from 10 to 25 % of the total cell mass (Ag-

uilar-Uscanga and Francois 2003; Backhaus et al. 2010).

Thin-section transmission electron microscopy (TEM) has

been the current method to determine cell wall thickness,

but this method requires fixation and vacuum condition,

precluding a dynamic investigation of wall thickness in

living cells. An exquisite method to reach this goal was

recently developed by Dupres et al. 2010. It is based on the

genetic construction and expression of a molecular ruler

from the His-tagged mechanosensor Wsc1, and its detec-

tion at the cell surface using AFM tips functionalized with

Ni2?-nitriloacetate groups. The rational of this idea came

from a previous work of the same researchers, which

showed that the Wsc1 membrane sensor that is required for

sensing temperature, antifungal and pH stresses (Lodder

et al. 1999; Reinoso-Martin et al. 2003; Serrano et al.

2006), is embedded in the plasma membrane by a single

transmembrane domain and extends to 80-nm long in the

cell wall by a large external serine/threonine domain
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(STR). To reach the outermost cell surface, the Wsc1

sensor was elongated with a stepwise lengthening of a

chimeric outer STR region of another sensor Mid2 and

terminated with a His-tag. Plotting the amount of engi-

neered Wsc1 sensors detected by the Ni2?-NTA tip of

AFM as a function of the sensor length resulted in a sharp

increase of the curve at around 115 nm. This value of the

cell wall thickness was about 10 % above the one deter-

mined by TEM (Backhaus et al. 2010). In addition, this

molecular ruler method allows measuring the change in

wall thickness in response to genetic intervention or envi-

ronmental effects. For instance, these authors showed that

the thickness of the cell wall was increased by 20 % in

strains expressing mutant versions of the Wsc1 that prevent

its endocytosis and internalization (Dupres et al. 2010).

This result was explained by the generation of a permanent

signal due to increased concentration of this sensor at the

plasma membrane, which in turn triggers a more pro-

nounced cell wall synthesis (Wilk et al. 2010). More

intriguingly, the same authors found that the thickness of

cell wall was hard to evaluate in yeast cells treated with the

oxidative agent diamide, suggesting either that this stress

strongly damaged the cell wall structure or that the

expression and/or secretion of the Wsc1 sensor was

impaired by the oxidative stress (Dupres et al. 2010).

Exploration of biochemical properties of cell surface

using AFM

As already stated above, the yeast cell wall is a dynamic

organelle that has to adapt to the changing environment. In

respect to this dynamic notion, Pelling et al. (2004)

reported nanomechanical motions of the S. cerevisiae cell

wall with a periodicity in the range of 0.8–1.6 kHz and

amplitudes of approximately 3 nm. These observations

were obtained using AFM in a contact mode bearing can-

tilevers with a spring constant (k) much lower than that of

the cell wall (kcell) and by recording cantilever motion in

contact with the cell as a function of time in an acoustically

isolated environment with extremely low noise level. The

fact that these nanomechanical motions were found to be

temperature dependent, were inhibited by metabolic

inhibitors known to impair ATP production, and that the

force generated by the amplitude of these motions was in

the range of 10 nN, led these authors to suggest that these

nanoscale movements were of biological origins and could

be driven by molecular motors, such as dynein, kinesin or

myosin in a concerted and cooperative manner. It is thus

tempting to associate these cell wall movements with the

motion of the yeast actin cytoskeleton. This system is

essential in critical processes such as endocytosis, cytoki-

nesis, cell polarity, and cell morphogenesis that very likely

have an impact on the remodeling of the cell surface (Guo

et al. 2009; Lottersberger et al. 2006). Yeast cytoskeleton

motility is driven by the coordinated activities of a set of

20–30 highly conserved actin-associated proteins. This

actin network is known to rapidly assemble into patches,

cables and rings, and disassemble in a spatially and tem-

porally regulated manner in response to internal and

external cues (reviewed in (Moseley and Goode 2006)).

Investigating the cell wall motion using mutants of the

actin skeleton or drugs such as latrunculine that inhibits

actin polymerization should bring light into this potential

role in the cell wall motion.

The outer layer of the yeast cell wall is made of highly

mannosylated proteins decorated with large polysaccha-

rides complex of 150 or more D-mannose units (mannan

layers). Chemical and genetic studies pioneered by Ballou

and collaborators have largely elucidated the structure of

these polysaccharides attached to cell wall proteins (Bal-

lou 1990). This mannoproteins coat bears important bio-

chemical and biotechnological properties, such as

adhesion, aggregation and flocculation (Caridi 2006;

Verstrepen and Klis 2006) as well as virulence (de Groot

et al. 2005; de Groot et al. 2008). Expression of these

properties can be exerted through various types of inter-

actions that can involve hydrophobic or electrostatic for-

ces, or specific receptor-ligand binding forces. These

forces can be measured using AFM tips that have been

chemically or biochemically functionalized. For instance,

Dague et al. (2007) showed that the hydrophobicity of

bacterial surfaces could be quantified using hydrophobic,

methyl-terminated tips. Using the same chemically-modi-

fied AFM tip, local hydrophobic character of two medi-

cally important microorganisms, Aspergillus fumigatus

and Mycobacterium bovis were probed, revealing uniform

distribution of hydrophobicity on the surface due to

hydrophobin proteins for the filamentous fungus, and to

the mycolic acid layer for the second microorganism

(Dague et al. 2008). Conversely, Gotzinger et al. (2007)

measured the adhesion force of S. cerevisiae to different

types of silica surface using a single immobilized yeast

cell at the apex of the AFM cantilever. Probing manno-

proteins layer was made possible by functionalizing AFM

tip with concanavalin A, a tetrameric protein of

102,300 kDa that shows strong affinity to mannose resi-

dues, with an unbinding force estimated around 60 pN

(e.g. the force reflecting the rupture of a single ConA-

mannose complex Alsteens et al. 2008). This technique

was initiated by Gad et al. (1997) which have shown that

the binding force between mannans and the ConA was

comprised between 75 and 200 pN. More interestingly,

they showed that the retraction curve of the functionalized

tip with ConA could be very long, suggesting that the

mannoproteins could be pulled out by the AFM tip via its
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binding to the ligand. Recently, Alsteens et al. (2008)

compared mannans properties of S. carlsbergensis and S.

cerevisiae using a functionalized AFM tip with ConA.

They showed that the polysaccharides were homoge-

neously distributed on both strains, but only the yeast S.

cerevisiae species exhibited an adhesion force over a

range of 0–400 nm, suggesting difference in the stretching

of these macromolecules between the two yeast species.

Based on these data, these authors suggested that the

much longer rupture distances on S. cerevisiae may reflect

the stretching of both mannans and the polypeptide chains

of the mannoproteins. According to these authors, the

different physical properties of the mannoproteins between

the two species may explain why the surface of S cere-

visiae is more hydrophobic than that of S. carlsbergensis,

and hence why this former yeast species associated with

CO2 bubble and rise to the top of the fermented suspen-

sions, whereas S. carlsbergensis is a bottom-fermenting

brewing strain (Alsteens et al. 2008).

Exploring cell surface in response to stresses

Atomic force microscopy is the appropriate tool to directly

visualize and quantify the physical, morphological and

structural changes that can take place at the cell surface of

yeast in response to various types of stresses. These bio-

physical data shall be pertinent for better understanding

how cells adapt and survive to these adverse conditions,

and also for many industrial processes under which yeasts

are subjected to extreme culture conditions (high sugars or

high ethanol concentration, high shearing force, high cell

density, etc.). The group of Graeme Walker in Dundee

(Scotland) has pioneered this research and published sev-

eral papers on AFM study of the yeast S. cerevisiae and S.

pombe in response to thermal and osmotic stresses (Adya

et al. 2006), ethanol shock (Canetta et al. 2006) and oxi-

dative stress (Canetta et al. 2009). In these studies, the

mode of immobilizing cells was to spread a yeast suspen-

sion before and at different times after the stress on a glass

slide and allow them to dry at room temperature for 5 h

before AFM analysis. The obtained AFM images showed

highly dense and compacted cells, the viability and cellular

activity of which were uncertain, even though the authors

evaluated these parameters before immobilizing cells.

Roughness of the surface of yeast cells subjected to these

different stresses as determined from the height images was

shown to be dramatically increased with both the intensity

(i.e. 40, 50 or 60��C) and the duration of the stress.

Eventually, these stresses caused shrinkage of the cells,

likely by loss of cell turgor pressure, and causing rapid loss

of cytoplasmic water. On the other hand, treatment of yeast

cells with 1 % H2O2 for 10 min led to the formation of

cavities, the size of which was much larger for S. pombe

than S. cerevisiae. Upon longer incubation, this treatment

caused a deterioration of the cell surface with appearance

of very deep wrinkles. Altogether, these data, although

only descriptive and subject to caution due to the immo-

bilization techniques, were indicative that the cell wall

structure is altered in response to harmful environmental

stresses.

We have recently revisited the effects of heat stress and

ethanol shock on the nanomechanical properties of S. ce-

revisiae cells by applying the method of immobilization

described above and which consists in trapping the yeasts

in micrometer square PDMS chambers by convective/

capillarity method (Dague et al. 2011). The AFM images

showed that a temperature shift of the yeast culture from 30

to 42 �C induced in less than 1 h the formation of a circular

structure that takes its origin at a particular location on the

cell surface and evolved as concentric rings at the cell

surface (Fig. 3). These circular rings reached 2–3 lm

diameter, which are larger than that of a normal bud scar.

Concomitantly, the cell wall elasticity increased by two-

fold, which was accompanied by a twofold increase of

chitin content of the heat stressed cells. This morphological

process taking place at the cell surface was found to be

dependent on genes required for the budding process such

as BNI1 and CHS3, and under the control of the CWI

signaling pathway. From these genetic results, we came to

the suggestion that the formation of these circular rings

Fig. 3 Exploring the ultrastructure of yeast cell surface in response to

a thermal stress by AFM Exponential growing yeast cells on YPD

were subjected to temperature shift from 30 to 42 �C. After 1 h

exposure, cells were immobilized in polycarbonate porous mem-

branes and imaged by AFM in contact mode at very low applied force

(\0.1 nN). High-resolution deflection image shows a succession of

concentric rings, ended with a major ring (white arrow)
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arise from a defective bud scar or bud emergence site

during the temperature stress (Pillet et al. submitted for

publication).

The other biotechnological relevant stress we recently

explored was the response of yeast cells to ethanol shock.

The tolerance of the yeast S. cerevisiae to its main fer-

mentation product ethanol has been the concern of exten-

sive researches for many years, with the aim to understand

the mechanism of its toxicity (reviewed in Stanley et al.

2010; Ma and Liu 2010). In spite of a wealth of bio-

chemical and molecular data on the response of yeast to

ethanol stress, there is almost no physical data describing

the biophysical effect that ethanol may exert at the single

cell level. Using the same methodology as described above

for heat shock, we explored the nanomechanical properties

of the yeast BY4741 strain cultivated on a glucose medium

exposed to 9 % ethanol for 0.5–5 h. This treatment resulted

in a fivefold drop in the cell wall elasticity, in spite of the

fact that the cell wall polysaccharides composition of the

ethanol-treated yeast cells remained almost unchanged.

These data suggested that one of the immediate effects of

ethanol on the yeast cells is to inhibit cross-linking and

remodeling systems that are essential in the construction of

the molecular architecture of the yeast cell wall (Elzstein

et al. submitted for publication).

Exploring cell surface in response to antifungal drugs

Cell wall is the target of choice for antifungal agents since

it is a specific armor that does not exist in mammalian cells

and its damaging leads to cell lysis and cell death (Heinisch

2005; Carrillo-Munoz et al. 2006). Due to the essential

function of this organelle, exposure of yeast cells to anti-

fungal agents such as caspofungin, a potent and specific

inhibitor of b-glucan synthase (Deresinski and Stevens

2003) induces activation of the cell wall integrity pathway

that eventually culminates into transcriptomic and meta-

bolic responses aiming at counteracting the disastrous

effects caused by this drug on cell wall (Lesage et al. 2004;

Reinoso-Martin et al. 2003). These molecular data were

recently complemented by two independent AFM studies

of the caspofungin effects on the yeasts C. albicans and S.

cerevisiae (Kirat-Chatel et al. 2013; Formosa et al. 2013).

It was found that administration of this antifungal drug

induced a deep cell wall remodeling in both yeast species,

but quantitatively, the changes in cell wall composition

were more pronounced in C. albicans cells, with notably a

remarkable rise in chitin as a function of the caspofungin

dose administrated to the C. albicans cells and with a

concurrent increase in cell elasticity (Formosa et al. 2013).

In addition, at low doses of caspofungin (i.e. at around

50 ng/ml or 0.5 MIC) the cell surface of C. albicans

exhibited dramatic morphological changes that were

accompanied by strong induction of cell surface adhesin

Als1 and increased cell surface hydrophobicity (Kirat-

Chatel et al. 2013). On the other hand, treatment of S.

cerevisiae cells with high doses of caspofungin resulted in

an impairment of cytokinesis (Formosa et al. 2013). Kim

et al. (2011, 2012) also used AFM to investigate the effects

of three other antifungal agents, namely flucytosine,

amphotericin B and allicin on the changes of morphology

and biophysics properties of C. albicans. Although the

immobilizing technique may have impaired their analysis

since the cells were fixed on glass slides using 0.5 %

glutaraldehyde, these authors showed clearly that these

drugs caused dramatic changes at the cell surface, which

ended up by strong deformation and shrinkage. However,

because of the mode of immobilization, it is difficult to

further conclude on the effects of these drugs on the

nanomechanical properties of the C. albicans wall. Not-

withstanding these problems, AFM clearly unravels unex-

pected effects of antifungal agents on fungal adhesion and

cell growth, which may help understanding the molecular

basis of microbes–drugs interactions and opens new ave-

nues for finding novel cellular targets and developing new

therapeutic agents.

Concluding remarks and perspectives

The main purpose of this minireview was to emphasize

how much the AFM technology can bring to the biologist

for better understanding the cell wall biogenesis, for

monitoring the cell surface dynamic in response to external

cues and for answering some cell biology questions that

cannot be seized by any other technical means. A typical

example of these biological questions is illustrated by the

discovery that the cell surface Wsc1 sensor protein behaves

like a linear nanospring able to withstand high mechanical

force and to respond to cell wall stress by modifying the

spring constant (Dupres et al. 2009). As schematically

illustrated in Fig. 4, combination of AFM with genetic and

molecular manipulations is a powerful mean to address

many cell biology questions of both fundamental and

applied relevance, such as the precise role of cell wall

remodeling enzymes in the nanomechanical properties of

the yeast cell, the mechanism that is at the onset of cell

adhesion, how cell surface proteins localize, assemble, and

interact on the surface of living cells, as well as to extend

the study of the budding process (Cabib and Arroyo 2013).

These two latter questions are particularly relevant for

understanding cell wall molecular organization and

remodeling, since yeast has evolved by developing three

different ways of attaching proteins to the polysaccharide

moiety. A first class are proteins bound non covalently to
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the b-1,3-glucan network (the SCWs family), a second

category are proteins attached covalently through a rem-

nant of the GPI anchor to b-1,6-glucans (the GPI-CWPs),

while a third class are cell wall mannoproteins character-

ized by Protein Internal Repeat regions (PIR-CWPs or

CCWs family) that are directly linked to b-1,3-glucans

(Klis et al. 2006).

Despite its remarkable benefits in cell biology, AFM is

still a technology under development that mainly suffers

from a poor temporal resolution (typically registering an

image takes 10–20 min), and bears artifacts linked to cell

fixation, tips geometry and alteration, etc. (see (Heinisch

et al. 2012) for a recent update on the advantages and

limitations of AFM in cell biology). However, major

breakthroughs in developing new quantitative-AFM based

imaging techniques are appearing at a good pace. This

includes the development of high-speed AFM, which

allows operating at millisecond timescale and thus offers

possibilities for exploring cellular dynamics (Casuso et al.

2011). Also, with the peak force tapping (PFT) or quanti-

tative (Q) modes, the researcher is able to image the

structure and physical properties of cells at high resolution

(nm scale) and high speed. In addition, PFT using func-

tionalized tips with biomolecules affords unprecedented

possibilities for mapping biological sites on living cells at

near molecular resolution in the range of 5 nm (Chopinet

et al. 2013). This technology has been used to map the

mechanosensor Mid2 at the yeast cell surface showing a

higher density of this protein at the bud scar area than

elsewhere on the mother cell (Alsteens et al. 2012).

Combined with near-field scanning optical microscopy

(NSOM) in which the tip is replaced by an optical fiber

with a nanoscale aperture, topographic and optical images

are simultaneously generated, revealing the spatial distri-

bution of fluorescently labeled molecules at unprecedented

nanometer spatial resolution (Hinterdorfer et al. 2012).

Deciphering the nanoscale architecture of yeast cell walls,

understanding how cell surface receptor assemble into

nanodomains, modulate their functional state and com-

municate to confer efficient functional responses upon cell

wall stress are some of the fundamental questions that can

be addressed today by combining single-molecule imaging

AFM with genetic tools, and thereby helping to answer

several unresolved cell biology issues.
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Abstract 

As most of the studies performed on yeast cells focus on seeing the yeast from the “inside”, the 

aim of Atomic Force Microscopy (AFM) is to discover the yeast cell wall from the “outside”. 

This powerful technology has allowed researchers to ask new questions about yeasts cells, and to 

give new insights on the cell wall of yeasts, with not only a morphological point of view, but also 

a nanomechanical and functional point of view. Recent advances in AFM have made it possible 

to image yeast cells and to quantify their biophysical properties at the same time. In this chapter, 

we will first introduce the prerequisites needed for using AFM on yeast cells (i. e. immobilization 

methods). Then we will focus on the insights AFM has given on the morphology of the cell wall 

of yeasts. In a third part we will show how nanomechanical studies of the yeast cell wall can 

enlighten and give elements of response to complex biological phenomena. Finally we will 

discuss the possibility to functionalize the AFM tip in order to preform single molecule 

experiments or to measure cell-cell-surface interactions. 
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1. Introduction 

Yeasts, like Saccharomyces cerevisiae, were used for thousands of years by humans to 

produce food and beverages and humans have also cohabited with harmful yeasts like Candida 

albicans for thousands of years. Both are surrounded by a thick, mechanically strong cell wall 

that plays several key physiological roles, such as maintaining cell shape and cell integrity, 

protecting the cell interior from harmful compounds in the environment. The cell wall also 

harbors several proteins that are implicated in molecular recognition and adhesion
1
. The chemical 

composition of the yeast cell wall is well known
2
. It consists in a microfibrillar network of β-

glucans (β-1,3 and β-1,6-glucans) that represent 50 to 60 % of the cell wall mass, overlaid by 

highly glycosylated proteins decorated by long chains of mannose residues representing 40-50 % 

of the cell wall mass. Chitin, a linear polysaccharide of β-linked N-acetylglucosamine, is the third 

component of yeast cell wall and represents 1 to 3 % of the cell wall mass. The yeast cell wall is 

an essential organelle for the cell viability as it preserves the cell from osmotic pressure, heat 

shock, and it serves as a barrier and a filter against harmful molecules. Interestingly, amongst 

eukaryotes this cell wall is unique to fungi, and as it is essential for yeast viability, it represents 

an excellent target for antifungal drugs targeted against pathogenic yeasts. In addition, the 

molecular architecture of the yeast cell wall is not static, but constantly remodeled as a function 

of growth conditions, morphological development as well as in response to cell surface stresses
3
. 

Therefore, AFM, which visualizes and probes the ultrastructure of the cell wall, is perfectly 

suited for the study of its dynamic structure and its molecular modification under different 

conditions. 

Since its invention in 1986
4
, AFM has been used more and more to explore living cells at 

the nanoscale. AFM provides the unique opportunity to measure topography, nanomechanical 

properties and/or single molecule interactions, on living cells, with a nanoscale resolution. In the 
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basic contact imaging mode, a sharp tip, mounted on a flexible cantilever, is scanned, by a 

piezoelectric ceramic, over the sample surface (figure 1). The deflection of the cantilever is 

continuously monitored through a laser and photodiode system that records vertical and lateral 

deflection. In the constant force mode, a feedback loop acts on the piezoelectric ceramic to 

maintain a constant cantilever height and thus the applied force on the sample is kept constant. In 

tapping mode, the cantilever is oscillated near its resonant frequency while scanning over the 

surface. In this mode, the contact between the tip and the sample is defined as a decrease in the 

resonance amplitude, and the feedback loop adjusts the cantilever height in order to keep the 

amplitude constant. These two basic imaging modes result in topographic images of the samples 

recorded line by line, while raster scanning the sample with the tip. However, AFM is much more 

than a simple imaging tool as it is also able to detect forces as small as a few pN. In the force 

spectroscopy (FS) mode (figure 1), the tip is no longer scanned over the surface, but rather 

approaches and retracts from the surface. FS results in force versus distance curves that can be 

analyzed in terms of contact point, nanomechanical properties and adhesion forces. Moreover, it 

is also possible to record force curves according to a predefined matrix, resulting in height maps, 

nanomechanical maps or adhesion maps acquired point by point or force curve by force curve. 

This latter mode is named force volume and has now evolved towards modes that record force 

distance curves at a very high speed
5,6

. 
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Figure 1. Schema introducing the AFM technology. A sharp tip is mounted on a cantilever that can be 

moved in the x, y, and z direction thanks to a piezo electric ceramic. The deflection of the cantilever is 

monitored on a 4 quadrant photodiode as the reflection of a laser beam, aligned at the end of the, usually 

gold coated, cantilever. The AFM can be used to produce topographical images (i.e. contact and tapping 

modes with raster scanning) or to measure forces (force spectroscopy mode) between a bare or a 

functionalized tip (with a biomolecule or a single cell) and the sample. Reprinted with permission from 
7
.  

 

In this chapter we will see how AFM can refine our understanding of the yeast cell wall. 

First we will examine immobilization methods. Indeed, yeasts have to be immobilized in order to 

withstand the tip lateral forces induced during scanning but in such a way as not to modify the 

yeast cell wall. This was an essential question that needed to be solved properly before any AFM 

experiments could be pursued. Next we will focus on imaging data to demonstrate interest in live 

cell AFM. In particular, we will show that AFM is capable of recording cell growth, at the single 

cell level, as it can work in liquid (culture broth) and at a controlled temperature (microorganism 

growth temperature). Then we will examine the measurement of nanomechanical properties of 

the yeast cell wall, and attempt to make the link between the biochemical composition of the cell 

wall and its nanomechanical properties. We will also see how drugs modify the nanomechanical 

properties of the yeast cell wall. Finally, we will look at single molecule and single cell 

experiments. The prerequisite for such experiments is functionalization of the AFM tip with a 

molecule of interest, or with a cell. We will describe these functionalization methods followed by 

some interesting results of single molecule or cell force spectroscopy experiments. 
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2. Immobilization of yeasts cells  

Atomic force microscopy is a scanning probe technique and therefore the tip, while 

scanning, induces lateral forces on the sample. If the sample, in our case, yeast cells, is not 

properly immobilized, no images and no force curves can be recorded. The first attempt to 

achieve a firm immobilization of microorganisms in general was to fix the cells by air drying
8
 or 

by chemical fixation
9
. However these methods surely induce cell wall modifications. Other 

strategies were developed to overcome this difficulty: cells were immobilized in gelatin
10

 or 

trapped into the pores of polycarbonate filters
11

. These techniques have been widely used over the 

recent years
12–15

, although they can lead to tip pollution in the case of gelatin trapping, or it can 

submit cells to mechanical forces in the case of cells trapped in pores. Also both techniques are 

time-consuming since cells are spread all over the sample and can be quite difficult to find. To 

circumvent these problems, recent developments were dedicated to the fabrication of 

PolyDiMethylSiloxane (PDMS) stamps structured at the micro scale with wells of different sizes 

adapted to yeast cell diameter
16

. Then the cells are assembled into the micro wells using the 

convective/capillary deposition technique, as showed in figure 2a. This results in arrays of living 

cells, immobilized in a defined place. Figure 2b shows an arrangement of 16 cells organized in 16 

holes. This innovative immobilization method makes it possible to analyze many more cells than 

in the past, which will result in an increase in the statistical meaning of the AFM results. 
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Figure 2. Assembling yeast cells in a PDMS stamp using convective capillary deposition. (a) Principle 

of convective capillary deposition used to organize the yeast cells in the holes of a PDMS stamp. A 

meniscus is created between a glass slide and the micro structured stamp. Evaporation at the meniscus 

creates a convective flux in the liquid that concentrates the cells in the meniscus. The slide is then pulled 

over the surface. When encountering a hole, the meniscus is caught and a single cell is immobilized in the 

hole. (b) AFM 3D height image of an array of 16 cells organized in a PDMS stamp. 

 

 

3. Imaging living yeast cells by Atomic Force Microscopy 

Having overcome the immobilization issue, live, unmodified cells could be imaged at 

high resolution using AFM. Imaging living microorganisms at high resolution is clearly a 

challenge. Light microscopy is diffraction limited, while electron microscopies usually require 

working in vacuum, and thus not live cells. In this context AFM provides the unique opportunity 

to observe yeasts, neither with photons nor electrons, but with a sharp tip in growth media with 

temperature control
17

 and at high resolution imaging 
18

. The first images of living Saccharomyces 

cerevisiae cells, immobilized in gelatin, showed bud and birth scars
19

. Figure 3a presents an 

example of a mother cell of S. cerevisiae with multiple bud scars, one of which is surrounded by 
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a dashed square
20

. Such features at the surface of yeasts cells have been described in multiple 

studies
11,21,22,23

, by different authors. In figure 3b a bud scar (BS) can be seen next to a different 

larger structure, named by the authors of this study a circular structure (CS)
20

, that appears on the 

S. cerevisiae surface after a 1 hour of heat shock at 42°C. This circular ring reaches 3 µm in 

diameter and is initiated on a bud scar. The authors showed that the formation of this structure 

required a functional budding process, as no CS were observed on yeasts in which genes involved 

in the budding process were deleted.  

  At the surface of fungal spores, such as spores of Aspergillus fumigatus, proteins named 

hydrophobins are auto-organized and confer hydrophobicity to the conidia (figure 3c). These 

proteins create a rodlet layer
24,25

 that can be imaged by AFM at high resolution
26,27,2829

. 

Hydrophobins are amyloids proteins that are assembled into fibrils spaced from each other’s with 

10 nm. This rodlet layer is also described on spores of bacteria like Bacillus atropheus
30

or 

Clostridium novyi
31

. The disruption of this layer during spore germination has been followed in 

real-time
17

, and demonstrated that AFM was able to image dynamic processes such as 

germination, on living cells. After 1 hour of germination, the rodlet layer is slightly disrupted. 

After 2 hours, the spore surface is heterogeneous; some regions still have an altered rodlet layer, 

whereas other regions are presenting an amorphous surface. Finally, after 3 hours the whole 

surface of the spore is amorphous. Unfortunately, it was impossible to image the emission of a 

germinative tube, probably because of the immobilization of the conidia in the pore of a 

polycarbonate filter made that impossible.  
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Figure 3. AFM high resolution imaging of (a) Saccharomyces cerevisiae. a ring made of 8 bud scars 

surrounded the cell. The dotted line square is centered on a BS, (b) the circular structure (CS) induced by 

heat shock on S. cerevisiae, next to a bud scar (BS) and (c) the rodlet layer made of hydrophobins of 

Aspergillus fumigatus.  

 

Atomic Force Microscopy also allowed the direct imaging of of Candida albicans hyphal 

growth, as shown in figure 4a (Formosa et al., personal communication). The hyphae growth 

were previously imaged, but in air after fixation and thus not on living cells
3229

. On figure 4a, the 

ramifications of the fungal hyphae are clearly observed. Another phenomenon that can be 

imaged, thanks this time to the immobilization method in PDMS stamps is the emission of 

matting projection by S. cerevisiae exposed to the α-factor (figure 4b). The α-factor, a yeast 

sexual hormone, triggers the formation of characteristic mating projections, also named 

“shmoos”, by haploid yeast strains of a mating type
33

. This is an important processfacilitates 

contact between two partner cells so they can fuse to form a diploid zygote. The study of yeast 

mating has many implications for example in understanding analogous fundamental biological 

processes in higher eukaryotes, and its study by AFM could give new insights into the 

mechanisms underlying this process.  

Finally it is also possible to image by AFM, the changes surface morphology induced by 

drugs, such as antifungals. Figure 4c and d shows a Saccharomyces cerevisiae cell treated with a 

high dose (4 × Minimal Inhibiting Concentration) of caspofungin, an antifungal drug used for 

fungal infections
34,35

. Upon treatment, the cell is no longer spherical but is elongated, resembling 
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Schizosaccharomyces pombe cells. The antifungal treated cell also presents a surprising feature 

on its surface, (figure 3d), with rings up to 15 nm high, indicating altered cell division likely 

associated with impairment of cytokinesis.  

 

Figure 4. Imaging morphological changes in yeasts cells. High resolution imaging of (a) a 

Candida albicans hyphae immobilized on PDMS, (b) of a mating projection of Saccharomyces 

cerevisiae immobilized in a PDMS stamp, and (c) of a Saccharomyces cerevisiae cell submitted 

to a caspofungin treatment at 4 × MIC. The white square on (c) is imaged at higher resolution in 

(d).  

 

Taken together, these examples show the importance of AFM, which offers the possibility 

to work in liquid conditions on live yeast cells. Indeed, AFM can be used to image at the 

nanoscale yeast cell morphologies, such as hyphae or shmoos, the ultrastructures naturally 

present at their surface (bud and birth scars, or those induced by a stress, such as the circular 

structure induced by thermal stress and rings induced by an antifungal treatment.  
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4. Probing the nanomechanical properties of yeasts cells 

 To probe the nanomechanical properties of living yeasts, such as elasticity, spring 

constant, or turgor pressure, AFM is used in the force spectroscopy mode. The nanomechanical 

property the most often used to describe the cell wall of yeasts is elasticity; therefore we will 

focus on this parameter in this chapter. The elasticity can be deduced from the approach force-

distance curves obtained in the force spectroscopy mode. Force-distance curves can be converted 

into indentation curves, which are then fitted through the Hertz model, to extract the Young 

modulus value, meaning the elasticity, expressed in Pascals
36

.  The elasticity of the cell wall 

reflects its composition, but also its molecular organization. In 2003, Touhami and coworkers
37

 

mapped the nanoscale elasticity of S. cerevisiae. Specifically, they compared the nanomechanical 

properties of a bud scar with the rest of the cell wall. They mapped a higher resistance on the bud 

scar than on the rest of the cell and correlated this result with the increased amount of chitin in 

the bud scar. A few years later, this result was reproduced on S. cerevisiae but not for another 

yeast species: Saccharomyces carlbergensis
22

. This result demonstrated that the correlation 

between nanomechanical data and the cell wall composition is not always straightforward.  

Indeed, different components of the yeast cell wall are interconnected to form 

macromolecular complexes
3,38

, that can be modified upon stress, or if genes involved in the cell 

wall synthesis are missing. A recent study showing the differences that can take place in the 

nanomechanical properties of yeasts cells focused on yeasts mutants of Saccharomyces cerevisiae 

defective in cell wall architecture
21

.  In this work, the authors showed that native wild-type cells 

of S. cerevisiae had a global cell wall elasticity of 1.6 MPa, whereas its isogenic mutants 

defective in enzymes involved in cell wall crosslinking and assembly (gas1, chr1chr2 mutants), 

or with a reduction of their chitin content (chs3 mutant) had a Young’s modulus reduced 

compared to wild-type cells. However, mutants with reduced contents of β-glucans (fks1), 
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mannans (mnn9), or defective in the regulation of the cell wall biosynthesis (knr4) presented 

higher Young’s modulus values compared to wild-type cells. These results therefore show that 

the nanomechanical properties of yeasts cells are dependent not only on the composition of the 

cell wall, but also on the intrinsic molecular organization of the cell wall.  

 This relation between elasticity of the yeast cell wall and its composition/molecular 

organization has also been observed in a different context; thermal stress
20

. In this study, the 

authors showed that thermal stress induced an increase in the chitin content of the cell wall, 

which was accompanied by an increase in the Young’s modulus values. When yeast cells are 

submitted to a parietal stress, one of the first defense mechanisms is the overproduction of 

chitin
39

. Chitin being a rigid polymer increases the elasticity of the cell wall when it is 

overproduced.  Finally, previous studies on the effects of caspofungin on the yeast cell wall of 

Saccharomyces cerevisiae and Candida albicans also showed modification of the viscoelastic 

properties of cells upon treatment with this antifungal
35,40

.  Figure 5 presents nanoindentation 

measurements performed on cells of C. albicans in native conditions, or treated by two different 

doses of caspofungin (0.5 and 4 × MIC). Figure 5a, b and c are elasticity maps of the whole cells 

immobilized in PDMS stamps, figure 5d, e and f are elasticity maps recorded on small areas of 1 

µm² on top of the corresponding cells, and finally, figure 4g, h and i are the distributions of the 

young modulus values obtained for each pixel on the local elasticity maps. In these elasticity 

maps, the redder the pixel, the higher the Young’s modulus. We can clearly see from this figure 

that treatment with caspofungin results in an increase of the Young’s moduli. Remarkably, the 

higher the caspofungin dose, the higher the Young’s moduli, which was correlated with higher 

chitin content in  the cell wall of caspofungin treated yeasts. This work allowed correlating the 

elasticity of the yeast cell wall to its composition.  
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Figure 5. Mapping of C. albicans cell surface elasticity. (a to c) Elasticity maps (z range=0.5 MPa) of a 

native cell (a), of a cell treated with caspofungin at 0.5 × MIC (0.047 µg/ml) (b), and of a cell treated with 

caspofungin at 4 × MIC (0.376 µg/ml) (c). (d, e, and f) Local elasticity maps (z range=0.5 MPa) recorded 

on a 1 µm area (white dashed squares) on the tops of the cells in panels a to c, respectively. (g, h, and i) 

Distributions of Young’s moduli (n=1024) corresponding to the local elasticity maps in panels d to f, 

respectively. Reprinted with permissions from 
35

.  

 

  

These results therefore show how AFM can be used as a force machine, to probe the cell 

wall of yeasts cells, in their native state, submitted to genetic stress (mutants) or external stresses 

(heat shock and caspofungin treatment). Altogether, these nanomechanical data give new insights 

into the yeast cell wall organization and remodeling in response to different types of stresses.  
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5. Single cell and Molecule Force spectroscopy 

 Another property that can be probed by AFM is adhesion. Indeed, specific molecular 

interactions are the basis of various biochemical and biological processes. In order to gain 

significant data on these interactions, AFM tips can be functionalized with molecules that will 

interact specifically with target molecules at the surface of the cells. These experiments, 

performed with functionalized AFM tips, are called Single Molecule Force Spectroscopy (SMFS) 

experiments. Of the various strategies to functionalize AFM tips with biomolecules, some consist 

of nonspecific adsorption of proteins, for example BSA (Bovine Serum Albumin), to the silicon 

nitride surface of AFM tips
41

, or the chemical fixation of biomolecules by sulfur-gold bonds to 

gold-coated AFM tips. This last strategy has been successfully used to functionalize AFM tips 

with methyl groups, CH3, to probe the hydrophobic characteristics of the rodlet layer of 

Aspergillus fumigatus
42,43

. In this study, the authors showed that hydrophobic tips enable 

quantification of surface hydrophobicity on live cell surfaces, and how this hydrophobicity 

relatesd to a function such as surface adhesion or drug interaction.  

 It is also possible to covalently link a molecule containing amino groups directly to the 

silicon nitride AFM tip. Towards this end, AFM tips must be first amino-functionalized either by 

esterification with ethanolamine
44

 or silanization with aminopropyl-triethoxysilane (APTES)
45

. 

Then, the amino-functionalized tip must be bridged to the biomolecule of interest, achieved 

through the use of heterobifunctionalized PolyEthylene Glycol (PEG)
46–48

 or  an aldehyde-

phosphorus dendrimer as we previously described
49

. This second strategy has been used to map 

the polysaccharides at the surface of living yeast cells, with AFM tips functionalized with 

Concanavalin A, a protein that interacts specifically with carbohydrates
50

. In this study, the 

adhesive forces were calculated from the AFM retract portion of force curves, by measuring the 

piezoelectric retraction force required to break the interaction between the lectin and the 
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recognized carbohydrate. Such measurements allowed the authors to conclude that mannans were 

uniformly distributed on the cell wall surface.  

 This functionalization strategy has also been used to map the surface properties of the 

pathogenic yeast Candida albicans. This pathogenic yeast species has emerged as a major public 

health problem in the last two decades. This opportunistic pathogen causes a wide range of 

infections from surface, to mucosal and blood-stream infections
51

. In order to colonize and 

subsequently to disseminate in the blood stream, C. albicans first needs to adhere to different 

biotic substrates. This first stage of infection
52

 is mediated by adhesins that are found on the 

surface of the yeast cell wall. Many of these adhesins are mannoproteins, and among them, the 

that identified as having a major role in host cell attachment is the Als (Agglutinin-like 

Sequences) family
53

. The Als were initially reported as having homology to the proteins 

responsible for auto-agglutination in the baker yeast Saccharomyces cerevisiae. Eight ALS have 

been identified, and they all are primarily involved in host-pathogen interactions
54

. In a recent 

study by Beaussart et al., the authors have used SMFS experiments to map the localization of one 

of the proteins, Als3, on the surface of Candida albicans hyphae
55

. These experiments were 

performed with a tip functionalized with an anti-Als3 antibody, on different parts of the 

germinating tube; i. e. on the germinating yeast (figure 6a, b and c) and on the germ tube (figure 

6d, e and f). The authors found the distribution of the Als3 proteins to be very different on the 

distinct hyphal regions. Indeed, the number and length of unfolding events was higher on the 

germ tube, indicating that the adhesin Als3 is much more exposed on the germ tube than on the 

germinating yeast. These results are consistent with the fact that the ALS3 gene is specifically 

expressed during the yeast-hyphae transition
56

.  
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Figure 6. Cellular morphogenesis leads to a major increase in the distribution and extension of Als3 

proteins. (a, d) Adhesion force maps (1 µm², z-range=300 pN) recorded in buffer on the yeast (a) and 

germ tube (d) of a germinating cell using an anti-Als3 tip. Insets: deflection images in which the * symbol 

indicate where the force maps were recorded. The dashed lines in (a) emphasize Als3 clusters. (b, e) 

Corresponding adhesion force histograms (n=1024) together with representative force curves. (c, f) 

Histograms of rupture distances (n=1024) and 3-D reconstructed polymer maps (false colors, adhesion 

forces in green). Similar data were obtained in several independent experiments using different tip 

preparations and cell cultures.  Reprinted with permissions from 
55

.  

 

    

Another characteristic of the Als proteins is that they contain an amyloid forming 

sequence, meaning that they are able to aggregate, under certain conditions, into amyloids at the 

surface of Candida albicans cells. A recent study by Alsteens et al. showed that the formation 

and propagation of nanodomains of the Als5 protein at the surface of Saccharomyces cerevisiae 

yeast cells overexpressing these proteins, was force-induced
57

. This study using functionalized 

AFM tips with an anti-Als5 antibodydemonstrated that a localized delivery of piconewton forces 

by the AFM tip could initiate the formation and propagation of the Als5 nanodomains over the 

cell. The authors therefore suggested that this process could be involved in cellular adhesion, in 
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response to mechanical stimuli, important processes for the early stages of infections by Candida 

albicans. With these two last examples, we show that FS in conjunction with functionalized AFM 

tips is a powerful tool to gain a better understanding of the molecular adhesive properties of 

living pathogenic yeasts cells. Such studies contribute to understanding how to prevent Candida 

albicans infections, as well as in the identification of new parietal targets for antifungal drugs.  

As it is possible to functionalize an AFM tip with a molecule, it is also possible to 

functionalize an AFM tip with a living cell. This type of experiments is called Single Cell Force 

Spectroscopy experiments (SCFS). The principle is the same as for SMFS, but this time a living 

cell is immobilized onto the cantilever becoming the AFM tip which is engaged to interact with 

the surface or with another cell
58,59

. This strategy is re-emerging, and there are only few papers in 

which it is used for the study of living yeasts cells 
58,59

. However, the Dufrêne lab has recently 

resurrected this idea, and published a study that aims to measure the adhesive forces between a 

yeast cell immobilized on a cantilever, and a hyphae of the same yeast species, Candida 

albicans
60

. This study allowed the authors to show that the C. albicans adhesin, Als3, present at 

the surface of hyphae, was responsible for adhesion between yeast cells. In the context of biofilm 

formation, these new data are of interest as they give new insights into the interactions between 

two morphotypes of the same yeast species. The same team also used SCFS to quantify adhesion 

between cells of C. albicans, and another type of pathogenic microorganism, Staphylococcus 

epidermis
61

. Indeed, these two types of microorganisms are often found together in the case of 

human infections
62

. The results of this study showed that the fungal molecules involved in the 

interactions with S. epidermis were adhesins, once again, as well as 0-mannosylations. It is 

interesting to note that, using the same cell probe strategy, the interactions between vaginal 

Staphylococci and Lactococci were probed
63

. This work, pioneering in the field of microbiology, 

opens doors to new questions about fungal adhesion, an important process involved in the first 



140 

 

stages of human yeast infections. Such studies could lead, for example, to the identification of 

anti-adhesion drugs that would prevent co-infections by C. albicans and S. epidermis. The lack of 

statistical data has been recently addressed and promising perspectives are evolving from the 

work of Potthoff
64

 which aims at the serial quantification of adhesive forces using yeast probes. 

 

6. Conclusions 

AFM has emerged as a significant technology in the life sciences over the last 20 years. The 

number of publications utilizing AFM has grown exponentially 
7
 even if the number of studies 

dedicated to live cells is still slowly increasing. The latter is likely due to the difficulties 

associated with properly  immobilizing live cells, which avoid damage to the cell membrane. For 

yeast cells, physical trapping in pores of polycarbonate membranes or in holes of microstructured 

PDMS stamps has solved this problem. As an imaging technology, AFM contributes to refine our 

understanding of the structures exposed on the yeast cell wall, such as, among others, bud scars 

and rodlet layers. Interestingly, AFM is also able to track morphological modifications occurring 

during cell growth in real time. More than an imaging technology, AFM probes the cell 

nanomechanical and adhesive properties. The data collected from force spectroscopy experiments 

have broadened our perception of the yeast cell wall. The well-known biochemical composition 

of the cell wall covers up the extremely complex and dynamic interplay of its organization and 

architecture. Therefore much more work is required to build a fully comprehensive description of 

the yeast cell wall and to fully understand these microorganisms. 
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Abstract 

Atomic Force Microscopy (AFM) is a useful tool to study the morphology, or the 

nanomechanical and adhesive properties of live microorganisms under physiological conditions. 

However, in order to perform AFM imaging, living cells must be immobilized; firmly enough to 

withstand the lateral forces exerted by the scanning tip, but without denaturing them. This 

protocol describes how to immobilize living cells, ranging from spores of bacteria to yeast cells, 

into polydimethylsiloxane (PDMS) stamps, with no chemical or physical denaturation. This 

protocol generates arrays of living cells, allowing statistically relevant measurements to be 

obtained from AFM measurements, which can increase the relevance of results. The first step of 

the protocol is to generate a microstructured silicon master, from which many microstructured 

PDMS stamps can be replicated. Living cells are finally assembled into the microstructures of 

these PDMS stamps using convective/capillary assembly. The complete procedure can be 

performed in one week, although the first step is done only once, thus repeats can be completed 

within one day.  
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INTRODUCTION 

Since its first development in 1986
1
, Atomic Force Microscopy has developed into a 

powerful tool that has opened the doors to the nanoworld
2
. AFM is particularly well suited for 

biology since it allows multiple characterizations (topography, mechanical and adhesive 

properties) of living cells in their physiological environment. However a prerequisite for such 

AFM experiments is the immobilization of the biological samples probed. This crucial step is 

often a challenge however as samples have to be immobilized individually and firmly enough to 

withstand the lateral forces exerted by the AFM tip, but without altering their cellular integrity.  

 

Immobilizing cells for AFM experiments 

Several techniques have been used to immobilize living cells. Living cells such as 

microorganisms can be chemically fixed on a solid substrate using glutaraldehyde or APTES
3
, or 

immobilized on gelatin coated surfaces
4
. However these techniques can, respectively, modify the 

interface of the biological sample, or pollute the AFM tips, leading to artifacts. Another strategy 

is to trap round shaped cells such as bacterial coccus and yeast cells in the pores of polycarbonate 

membranes by filtration
5
 or in lithographically patterned substrates by gentle drying

6
. The 

filtration technique has been widely used over recent years
7–10

, although it is time-consuming and 

cells can be exposed to mechanical forces when trapped in the pores.  

We therefore developed a new and versatile strategy in 2011
11–13

, that consists in 

immobilizing round single living cells in microstructured polydimethylsiloxane (PDMS) stamps 

by convective/capillary deposition. We have demonstrated that this generic protocol can be used 

to immobilize different types of round shaped cells, ranging from small coccus bacteria, to yeasts 

cells and even algae, by tuning the geometry of the PDMS stamp patterns (supplementary data 1). 
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This approach was also exploited to immobilize yeasts cells of different species, Saccharomyces 

cerevisiae and Candida albicans
14–16

, as well as spores of Aspergillus fumigatus
17

.  

 

Statistical significance of results obtained from AFM: the new challenge  

Statistical analysis of results is desirable.  As AFM is a tool adapted for single cell 

analysis, the significance of the data obtained with this technology requires analysis of multiple 

cells in order to achieve statistical confidence. This cannot be performed using techniques such as 

immobilization in pore filter, as the deposition of the cells on the surface is random and the rate 

of filled pores is low and not controlled. Using our method of immobilization, it is possible to 

generate arrays of cells; therefore, AFM results on an array of 100 cells can be performed using 

different AFM modes, such as multiparametric imaging, chemical force microscopy, single-

molecule force spectroscopy, and single-cell force spectroscopy
18,14,19–21

. Such setups are 

effectively “lab chips” for AFM analysis. With the progress made in AFM data processing 

software
22

, it is thus possible to take all the data acquired to analyze in a reasonable time lapse, so 

to generate relevant and significant results for biological studies.  

 

Overview of the procedure  

Immobilization of living cells in PDMS stamps involves 3 sequential stages. The first 

stage is the generation of a glass/chromium mask harboring microstructured patterns, and the 

transfer of these patterns onto a silicon wafer.  The second stage consists of preparation of a 

corresponding PDMS stamp.  Finally the third stage is the assembly of the living cells into the 

PDMS microstructured stamps. The generation of a silicon master is achieved by 

photolithography, followed by pattern transfer using deep reactive ion etching. The patterns of 

the silicon master are squares, ranging from 1.5 to 6 µm wide, with a pitch of 0.5 µm and a depth 
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ranging from 1 µm to 4 µm. The measurements of the silicon master should be verified using 

profilometry. These pattern geometries allow immobilization of a wide range of microorganisms 

of different sizes (Figure 1a). For example patterns with a width of 4 to 5 µm and a depth of 4 µm 

are best suited for yeast cells such as Candida albicans or Saccharomyces cerevisiae, whereas 

patterns 1.5 to 2 µm wide with a depth of 2 µm can be used to image smaller cells such as spores 

of fungi or round shaped bacteria. For the second stage of fabricating a PDMS stamp, a PDMS 

prepolymer solution is cured on the silicon master produced in stage one, and then demolded to 

obtain the microstructured PDMS stamps (Figure 1b). The deposition of cells into the 

microstructured PDMS stamps is accomplished using convective/capillary deposition. 

Adjustment of parameters such as  temperature, humidity, translation speed and contact angle 

will ensure a high rate of cell trapping, and do not affect the cell interface since cells are put back 

into liquid right after the procedure. This stage can also be done manually if highly organized 

arrays of cells are not mandatory for the AFM experiments. The filling rate and the quality of the 

PDMS stamp can easily be verified by optical microscopy. PDMS, being a biocompatible and 

transparent polymer 
23,24

, does not induce any chemical modification of the cells in contact with 

it, and can be used with straight or inverted optical/fluorescence microscopes that are combined 

with AFMs.   

Technical details of the procedure to generate a patterned glass/chromium mask and 

transfer the patterns to a silicon master, to fabricate PDMS stamps molded on the silicon master, 

and to assemble arrays of living cells into the microstructured PDMS stamps are described below. 

We demonstrate the type of AFM results obtained on living cells by showing results obtained 

from the medically important yeast pathogen Candida albicans, immobilized into PDMS 

microstructures. The versatility of this protocol has been demonstrated for other 

microorganisms
14–17

. We anticipate that this approach will be useful for researchers interested in 
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studying microorganisms with AFM at a population scale, as well as for biophysicists interested 

in generating cell arrays for applications in diagnostic or biodetection.  

 

MATERIALS 

REAGENTS 

 AZ ECI 3012 photoresist (Microchemicals) CAUTION this reagent is flammable liquid and 

vapor, causes serious eye damage and may cause respiratory irritation. When handling, wear 

protective gloves, protective clothing, eye protection and face protection. Avoid breathing 

vapors or mists.  

 Hexamethyldisilazane (Sigma-Aldrich) CAUTION this reagent is highly flammable liquid 

and vapor, harmful if inhaled or swallowed, and toxic in contact with skin. It also causes 

severe eye damage. When handling, wear protective gloves, protective clothing, eye 

protection and face protection.  

 Microposit® MF® CD-26 developer (Shipley) CAUTION this reagent is toxic in contact 

with skin, causes eye damage and may cause respiratory irritation. When handling, wear 

protective gloves, protective clothing, eye protection and face protection. Avoid breathing 

vapor or mists.  

 Octadecyltrichlorosilane (OTS) in liquid phase (Sigma-Aldrich) CAUTION this reagent 

causes severe skin burns and eye damage. When handling, wear protective gloves, protective 

clothing, eye protection and face protection. 

 Polydimethylsiloxane elastomer Sylgard® 184 Silicone Elastomer (Dow Corning) 

 Candida albicans (strain from ABC Platform®) or other cells of interest 

 Yeast Peptone Dextrose (YPD) broth (Difco) 
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 Sodium acetate (Sigma-Aldrich) 

 CaCl2; MnCl2 (Sigma-Aldrich) 

 Glacial acetic acid (Sigma-Aldrich) CAUTION this reagent is flammable liquid and vapor, 

and causes skin burns and eye damage. When handling, wear protective gloves, protective 

clothing, eye protection and face protection. 

 

EQUIPMENT 

 CleWin Software for mask designing 

 Mask writing Heidelberg DWL 200 (Heidelberg Instruments) 

 Oxygen plasma Tepla 300 (PVA TePla America) 

 Coating/Developing machine EVG 120 (EVG Group) 

 Production mask aligner MA 150 (Suss Microtech) 

 Inductively Coupled Plasma (ICP)-Reactive Ion Etching (RIE) Multiplex Alcatel AMS4200 

(Alcatel Micro Machining Systems) 

 Incubator (Memmert) 

 Autoclave  

 Incubator-shaker MAXQ4000 (Fisher scientific) 

 Centrifuge Sorvall ST16R (Fisher Scientific) 

 Shaker Vortex Top-Mix 1 (Fisher scientific) 

 Nanowizard III BioScience atomic force microscope (JPK Instruments) mounted on an 

inverted optical microscope (Zeiss Axio Observer) equipped with FireWire CCD color 

camera (Imaging Source), with a 20×, 40× and 50× objectives.  
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REAGENT SETUP 

Cell culture and cell treatment 

From freshly plated cells, grow C. albicans yeasts cells in YPD broth at 30°C with agitation (180 

rpm) for 18-20 hours. Collect the cells by centrifugation at 4500g, and rinse them two times in 

acetate buffer. CRITICAL Cell culture and cell treatment vary according to the type of 

microorganisms studied. Cell solutions should be prepared fresh prior to AFM experiments.  

Sodium acetate buffer 

For AFM experiments, prepare a sodium acetate buffer solution containing 18 mM sodium 

acetate, 1 mM CaCl2, and 1 mM MnCl2. Adjust the pH of the solution to 5.2 with glacial acetic 

acid. The solution can be stored at 4°C for two months.  

 

PROCEDURE 

Generation of the silicon wafer | TIMING ~ one week 

1| Design the desired micropatterns of the silicon master using the CleWin software (See 

supplementary information for a CleWin file of the design used). 

2| Write the patterns using laser lithography (Heidelberg DWL 200) to make a glass/chromium 

mask 

PAUSE POINT The glass/chromium can be stored at room temperature (20°C) for several 

months in ambient conditions at 20°C and 40 % of humidity (no degradation with time).  

3| Clean a virgin silicon wafer under oxygen (pressure of 1.7 mBar) plasma for 15 min at 800 W, 

using the Oxygen plasma Tepla 300. The temperature of the substrate during this step is 20°C at 

the beginning of the procedure, and 80°C at the end. 

4| Deposit hexamethyldisilazane in solution on the clean silicon master to promote adherence of 

the photoresist 
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5| Deposit the photoresist AZ ECI 3012 on the silicon master using EVG 120 automatic 

coating/developing machine (5 seconds of deposition and 30 seconds of spinning), and bake it for 

60 s at 90°C on a hot plate (baking is included in the EVG 120 coating recipe) 

6| Expose the silicon master covered by the photoresist through the glass/chromium using the 

mask aligner MA 150 for 10 seconds 

CRITICAL STEP During exposition, a critical parameter is the type of contact between the 

glass/chromium mask and the silicon master. This parameter is chosen on the mask aligner MA 

150. The stronger the contact between the mask and the wafer is, the weaker the diffraction of the 

UV during exposition is, and better the resolution of the patterns is. For small patterns (under 5 

µm), it is necessary to use the strongest mode of contact between the mask and the wafer, called 

Vacuum contact. In this mode, the wafer is pushed towards the mask, a joint is applied around the 

wafer, and the air between the mask and the wafer is pumped out to generate vacuum.  

7| Post-Exposure-Bake the silicon master for 60 s at 110°C on a standard hot plate in ambient air 

(20°C and 40% of humidity) to complete polymerization of the exposed photoresist 

8| Shape the patterns by dissolving the exposed photoresist in a solution of MF CD-26 developer 

for 20 s 

CRITICAL STEP During development, a critical parameter is the time. Indeed, if the 

development is too long, the MF CD-26 solution starts to attack the photoresist patterns leading 

to the entire removal of the smallest ones.  

9| Rinse both faces of the silicon master using DI H2O, and dry under nitrogen 

10| Perform Reactive Ion Etching on the silicon master using Multiplex Alcatel AMS 4200. This 

step must be realized under a plasma of sulfur hexafluoride (SF6, 200 sccm) and 

octafluorocyclobutane (C4F8, 400 sccm) at a pressure of 0.07 mBar and a power of 2800 W 

(Inductive Coupled Plasma). 
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11| Remove remaining photoresist from the silicon master under oxygen (pressure of 1.7 mBar) 

plasma for 15 min at 800 W, using the Oxygen plasma Tepla 300. The temperature of the 

substrate during this step is 20°C at the beginning of the procedure, and 80°C at the end. 

12| Put the silicon master in octadecyltrichlorosilane in liquid phase in order to render the silicon 

wafer anti-adhesive 

PAUSE POINT The silicon master is generated only once, and can be used hundreds of times. It 

can be stored in ambient air (20°C and 40% of humidity) for several years when protected in an 

adapted plastic container.  

 

Fabrication of the microstructured PDMS stamp | TIMING ~3 h 

13| Prepare a PDMS prepolymer solution containing a mixture in a 10:1 mass ration of PDMS 

oligomers and a reticular agent (Sylgart® kit 184).  

14| Degas the prepared solution under vacuum 

15| Deposit the degased PDMS solution on the silicon master 

CRITICAL STEP During this step, bubbles can form and may thus cause problem in the 

microstructures in the PDMS stamp. To avoid this, the silicon master with the PDMS can be 

degased again under vacuum.  

16| Cure the PDMS solution on the silicon master for 1 h at 80°C, in ambient air (40% of 

humidity).  

PAUSE POINT The PDMS cured on the silicon master can be stored at room temperature for 

several months. It is recommended to store the PDMS stamps, at room temperature, in ambient 

air, molded on the silicon master to avoid any contamination of it. 

17| Cut with a scalpel and demold the microstructured PDMS motif  
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CRITICAL STEP Cutting a PDMS motif off the silicon master can be critical; the scalpel must 

be used gently in order to avoid scratching or splitting the silicon master.  

 

Assembly of living cells in the microstructured PDMS stamps | TIMING ~20 min 

18| Deposit a PDMS stamp bearing the microstructured motif on a freshly cleaned glass slide 

19| Deposit a 60 µL droplet of the cell suspension on the PDMS stamp 

CRITICAL STEP The PDMS stamp is hydrophobic, and the droplet of cells sometimes does 

not cover up the entire PDMS stamp. To avoid this problem, it is possible to render it hydrophilic 

by briefly activating it under oxygen plasma for 30 s at 200 W.  

20| Assemble cells into the PDMS microstructure.  This can be performed in two different ways: 

on a convective/capillary set up (option A) or manually (option B).   

(A) On a capillary/convective setup 

i) drag a droplet of the C. albicans cells onto the PDMS stamp at a given 

temperature (30°C), humidity (45%) and translation speed (2 µm/s) using a 

motorized linear stage.  

(B) Manually. 

i) Use a cover slip to drag the droplet of cells several times onto the PDMS stamp.  

21| Use an atomic force microscope with an inverted optical microscope to verify the filling of 

the wells. If the filling is good, proceed to performing an AFM experiment with the whole PDMS 

stamp under liquid. Use an AFM procedure adapted to the  types of measurements needed on the 

samples (imaging, probing of nanomechanical/adhesive properties, multiparametric imaging)
18,25

.   

If the wells are not filled, repeat steps 19 to 21.  
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TIMING 

Steps 1-12, generation of the silicon wafer: ~1 week 

Steps 13-17, fabrication of a microstructured PDMS stamp: ~3 h 

Steps 18-21, assembly of living cells in the microstructured PDMS stamps: ~20 min 

 

TROUBLESHOOTING 

Cells have not filled the PDMS microstructures (step 20) 

Filling of the microstructured wells is a crucial step, the success of which depends on the 

convective/capillary parameters, or on the type of microorganisms used. If after the 

convective/capillary assembly no cells or very few have filled the PDMS microstructured wells, 

it is possible that the convective/capillary assembly was too fast; hence reducing the speed can 

lead to better results. It can also be caused by too low concentration of cells in the droplet. In this 

case, the cell suspension can be concentrated by centrifugation, and resuspended in a smaller 

volume of the buffer used, in order to increase the probability of filling the wells. Finally, another 

possible reason is the surface hydrophobicity of cells. In the case of C. albicans cells, which are 

very adhesive, working with hydrophobic PDMS stamps is better. However, in the case of other 

yeast strains, such as Saccharomyces cerevisiae, that present less adhesins at their surface, a 

hydrophobic surface will keep them from filling the wells. In this case, we advise to work with 

hydrophilic stamps. Making the stamp hydrophilic can easily be achieved by UV-O3 or O2 

plasma treatment.  

 

ANTICIPATED RESULTS 

The immobilization protocol described here (Figure 1) represents a versatile and non-

denaturing method to immobilize living cells of different sizes (Figure 2), and therefore of 
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different types, without modifying their interfaces. Figure 2 shows PDMS stamps that have been 

characterized using AFM; cross-sections indicate the different sizes that can be obtained on the 

PDMS stamp. A key advantage of this protocol is that it allows the generation of cell arrays, 

which enables an increased sample size and hence statistical and gives access to population 

heterogeneity data.  

 Figure 3 shows results obtained using this protocol to generate a cell array of Candida 

albicans, with AFM imaging using Quantitative Imaging
TM

 mode from JPK Instruments
14,26

. 

These data demonstrate that this protocol generates cell arrays, since all the 16 wells of 4.5 x 4.5 

µm² (830 pixel per well), were filled with cells. It also shows the heterogeneity that exists 

between cells. Indeed, as we can see on this figure, some cells are higher than others, or present a 

bigger diameter, or are in a budding process. Force measurements can be performed on each of 

the cells present in this array, thus giving access to their mechanical or adhesive properties. Using 

multiparametric imaging (Quantitative Imaging
TM

 mode in this case), one image of an entire cell 

array can lead to the quantification at the same time of the nanomechanical properties (i.e. Young 

modulus) and the adhesive properties of several cells. Figure 4 shows the result of such an 

experiment. Figure 4a shows a height image of a cell array of 10 × 10 wells of 5 x 5 µm² (165 

pixels per well), presenting a filling rate of 85%. Figure 4b shows the elasticity map 

corresponding to the height image, and figure 3c presents the adhesion image corresponding to 

the height image. This set of data clearly demonstrates the power of such a protocol, used in 

combination with advanced AFM modes such as multiparametric imaging. Indeed, in one 

acquisition performed (165 pixels per well, 2.64 s of acquisition per wells), 85 cells were imaged, 

probed for their nanomechanical properties and for their surface adhesive properties. It is clearly 

visible on figure 4b and c that the same population of cells exhibits heterogeneity; this point was 

first evoked in our study in 2011
11

. Thus cells of C. albicans that have grown in the same culture 
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medium present different surface adhesive properties and cell wall Young modulus. If needed, 

high magnification and high resolution multiparametric data (height, adhesion, stiffness) can be 

recorded on single cells
27

.  Due to the versatility of this protocol, similar results can be obtained 

for microorganisms of different sizes, such as coccus bacteria, other yeasts species, or algae.  

 This protocol opens the avenue to further developments that could lead to great advances 

in the field of microbiology. Indeed, the PDMS stamp could be coupled with a microfluidic 

system to add different substances (such as antifungals) to each well,. By probing at the same 

time the nanoscale characteristics of the cells present in these two wells, a direct comparison of 

the effects of the two different substances could be performed.  
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FIGURES 

 

 
 

Figure 1. Schematics of the protocol of living cell immobilization. (A)The first stage consists 

of generation of a microstructured silicon master presenting the negative geometry desired for the 

PDMS stamps. (B) The second stage is dedicated to the PDMS stamp molding. Liquid PDMS is 

flowed over the silicon master and reticulated for 1h at 80°C. (C) Living cells are finally 

assembled inside the micro-patterns of the PDMS stamp by convective/capillary deposition 

forming a cell array. 
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Figure 2. Characterization of the PDMS stamps obtained. AFM 2D Height images (scan-size 

= 20 µm, z-range = 0.5 µm) and corresponding cross-sections taken along the white lines on the 

height images. The structure sizes range from 1.5 µm (A), to 6 µm (J) with a pitch of 0.5 µm.  
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Figure 3. Imaging of a C. albicans cell array. AFM 3D height image (scan size = 40 µm, z-

range = 2 µm) of an array of 4 × 4 microstructured PDMS wells, exhibiting a filling rate of 

100%, in sodium acetate buffer.  
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Figure 4. Multiparametric imaging of a C. albicans array. (A) AFM 2D height image (scan 

size = 100 µm) of an array of 10 × 10 microstructured PDMS wells, exhibiting a filling rate of 

85%. (B) elasticity map and (C) adhesion map corresponding to the height image presented in 

(A).  
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Chapter 3.1: Technological developments to study the cell wall of 

microorganisms by AFM 

 

 
 

 

 

 

 

 

 

3.1.2 Imaging living cells surface and quantifying its properties at high 

resolution using AFM in QI
TM

 mode.  
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Abstract 

Since the last 10 years, AFM has become a powerful tool to study biological samples. 

However, the classical modes offered (imaging or tapping mode) often damage sample that are 

too soft or loosely immobilized. If imaging and mechanical properties are required, it requests 

long recording time as two different experiments must be conducted independently. In this study 

we compare the new QITM mode against contact imaging mode and force volume mode, and we 

point out its benefit in the new challenges in biology on six different models: Escherichia coli, 

Candida albicans, Aspergillus fumigatus, Chinese hamster ovary cells and their isolated nuclei, 

and human colorectal tumor cells. 
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anomechanical properties

. Introduction

Since 25 years, Atomic Force Microscopy has emerged as a valu-
ble tool in biology, to study the morphology of living cells, their
urface roughness, and theirs nanomechanical properties (elastic-
ty through Young modulus (YM) values, Single molecule force
pectroscopy) (Müller and Dufrêne, 2011). Technological improve-
ents were required to make this jump from physics to biology.
Classically, AFM provides two imaging modes to probe biolog-

cal sample known as contact mode and tapping mode. In contact
ode, the AFM tip raster scans over the sample to obtain high res-

lution images of sample surface in terms of height, the sample
opography being measured by detecting changes in the deflec-
ion of the tip as a function of position on the surface (Liu and
ang, 2010). However, when applied to deformable soft samples,
he resulting topographic images are poorly correlated with the
ariations in height across the sample since the AFM tip deforms
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the surface during the raster scan. As a second imaging mode, taping
mode allows to image soft sample and with a very good resolution
(Milhiet et al., 2011). In this mode, very stiff cantilever is used, and
is oscillating near its resonance frequency during the scan, with-
out being in contact with the sample. Change in the amplitude
of oscillation during raster scanning report on the surface topog-
raphy. Consequently, the lateral forces between the tip and the
sample can be significantly reduced, which, in principle, avoid the
deformation artifacts associated with contact-mode imaging. How-
ever, in a biological system where the electrolyte concentration is
high, interactions with low-range surface forces affect the vibrating
tip during its trajectory. These forces can influence the oscillation
amplitude; therefore the contact between the tip and the sample
becomes unavoidable, leading to a deformation of the sample.

Recent developments have conducted to high speed AFM
(Kodera et al., 2010) or multi-frequency force spectroscopy (Garcia
and Herruzo, 2012) in order to image sample faster. Those two
modes overcome the time limitation by increasing the scan rate.
However no biophysical properties can be extracted from the data,
since these two  advanced modes functions with oscillating tips.

Indeed, besides topography imaging, AFM can also be used in force
spectroscopy mode to measure biophysical properties of samples
(such as elasticity and molecular organization of the sample sur-
face) (Formosa et al., 2012b; Heinisch and Dufrene, 2010). A major

dx.doi.org/10.1016/j.micron.2013.02.003
http://www.sciencedirect.com/science/journal/09684328
http://www.elsevier.com/locate/micron
mailto:edague@laas.fr
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Fig. 1. Schematic outline representation. Contact, force volume (FV) and quantitative imagingTM (QITM) modes were applied to 3 different kinds of sample: loosely
i nd sof

i
o
2

p
t
e
w
m
i
f
o
c
f
p
A
z
z
f
t
t
l
o
t
g
m
a
i
i

t
t
m
W
v
b
T
a
2
l

mmobilized sample on PEI charged surface or on microstructured PDMS stamps, a

nterest of AFM is to combine imaging and force spectroscopy in
rder to make a link between structures and functions (Dufrene,
004).

It was therefore needed to find a way to measure mechanical
roperties and image cells in liquid conditions, without altering
heir cell surface, or removing them from the substrate by lat-
ral forces exerted by the scanning tip. A solution to this problem
as to use a force-volume (FV) (also known as force mapping)
ode. This mode, originally proposed by Radmacher et al. (1994),

nvolves collecting a matrix of force curves across the sample sur-
ace that are individually analyzed, allowing spatial reconstruction
f topographic maps. This avoids the problem of lateral forces asso-
iated with contact-imaging of soft surfaces, since the tip moves
rom point to point across the surface, the AFM tip being com-
letely detached from the surface before moving to the next point.

 particular interest of this mode is the possibility to extract the
ero-force contact point from the fit to each force curve. From the
ero-force contact points, an image that approximates the under-
ormed (“true”) sample topography can be reconstructed. However,
here is still the main problem of using a FV mode: the time needed
o acquire each force curve being too long, acquiring high reso-
ution arrays can take hours, which is a problem while working
n short term effects with living cells under physiological condi-
ions. Moreover, the FV, because of its low resolution, does not
ive accurately precise images (Gaboriaud et al., 2008), leading to
isinterpretations of the data collected. Therefore, if imaging data

nd mechanical properties want to be recorded, each will ask an
ndividual acquisition with two different modes (contact/tapping
maging and FV), requiring for more and more time.

We  present in this study a new advanced mode called quanti-
ative imagingTM (QITM, (“QITM mode-quantitative imaging with
he NanoWizard 3 AFM”)), which allows acquiring high-resolution

aps on challenging samples such as soft or loosely bound ones.
e present a comparison of the mode with contact mode and force

olume mode. In this quantitative imaging mode, force curves can
e collected at the same speed and resolution as normal imaging.

hanks to the software OpenFovea developed by Kasas’ team that
nalyzes the elasticity as a function of the indentation (Longo et al.,
012; Roduit et al., 2012b), we overcame the data treatment prob-

em caused by the acquisition of thousands of force curves. The
t sample.

data can then be interpreted to provide information on elasticity or
adhesion. This mode is based on force curve acquisition, processed
quicker than a FV as the tip move laterally when retracted to be
positioned above the next point measurement before approaching.
The time to record a single force curve is up to 1.000 �m/s, and
the resolution up to 512 px2. As one force curve is recorded for
each pixel, it allows having in a single acquisition both mechanical
properties and topography data of the sample. We  will demonstrate
in this study that imaging and measuring soft sample or loosely
immobilized ones in liquid is possible.

We  applied this new imaging mode on four different biological
samples (Fig. 1):

- living adherent mammalians cells (Chinese hamster ovary and
human colorectal tumor cells), that are very soft and thus do not
withstand forces exerted by a scanning tip,

- Chinese hamster ovary cell nuclei on PDMS without any fixation
or PEI coated glass slides,

- yeasts cells and Aspergillus fumigatus spores immobilized in PDMS
micro-structured stamps with no chemical fixation and are thus
loosely bound to the substrate,

- Escherichia coli cells, immobilized on PEI coated glass slides under
physiological conditions, meaning imaged in an ionic buffer that
weaken the electrostatic interactions and make the bacterial cells
loosely attached to the sample.

Through these different biological models and the data acquired
with QITM mode, we show how this imaging/spectroscopy mode
is of interest for the challenges in biological sample characteri-
zation, and allows imaging of unexplored types of eukaryotic and
prokaryotic cells.

2. Materials and methods

2.1. Atomic force microscopy
JPK NanoWizard 3 (JPK instrument, Berlin, Germany) coupled
with an axiovert microscope from Zeiss was  used for most of the
experiment, with contact mode, force volume or QITM mode and
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ells imaging was done using the Petri Dish Heater. catalyst AFM
rom Bruker (Bruker, USA), coupled with Nikon fluorescence micro-
cope was used for contact imaging of CHO cells with the Perfusing
tage Incubator. We  used MLCT cantilevers (Bruker probes) with
pring constant ranging from 0.028 to 0.042 N/m for mammals
ells and from 0.011 to 0.019 for yeast and bacterial samples. QITM

nd force mapping settings used are the following on mammals
ells: Z-length: 5 �m;  applied force: 4 nN; speed: 166 �m/s  for QITM

maging for slow imaging, 1000 �m/s  for fast imaging; 24.98 �m/s
or force mapping. QITM mode has been described in this technical
eport (“QITM mode-quantitative imaging with the NanoWizard 3
FM”).

.2. Bacterial sample preparation

E. coli (strain ATCC 22925; American type culture collection
ATCC]) were stocked at −80 ◦C, revivified on Mueller Hinton agar
Difco, 225250–500 g) and grown in Mueller Hinton broth (Difco,
75730–500 g) for 24 h at 35 ◦C under static conditions. E. coli cells
ere immobilized on polyethylenimine (PEI, Fluka P3124-100 mL)

oated glass slides as described previously. Briefly, freshly oxygen
lasma activated glass slides were covered by a 0.2% PEI solu-
ion in deionized water and left for incubation overnight. Then
lass slides were rinsed with 20 mL  of Milli-Q water and nitrogen
ried. Bacterial cultures were harvested by centrifugation, washed
wo times in Milli-Q water, and resuspended to a concentration
f ∼108 cells/mL in phosphate buffered-saline 1X (10 mM)  (PBS,
igma, P2194-10PAK). A total of 1 mL  of the suspension was  applied
o the PEI coated glass slide, allowed to stand for 1 h and rinsed with
BS 1X. AFM images and force-distance curves were recorded in PBS
X in quantitative imaging mode with an AFM NanoWizard III (JPK
nstruments, Berlin, Germany).

.3. Yeast sample preparation

Candida albicans (from ABC© platform, Nancy, France) were
tocked at −80 ◦C, revivified on standard YPD Agar (Difco,
25250–500 g) and grown in YPD Broth (Difco, 275730–500 g) for
4 h at 30 ◦C under static conditions. C. albicans cells were immo-
ilized on microstructured PDMS stamps fabricated as described
reviously (Dague et al., 2011). Yeasts cultures were harvested by
entrifugation, washed two times in acetate buffer (18 mM sodium
cetate, 1 mM MnCl2, 1 mM CaCl2), and resuspended to a con-
entration of ∼108 cells/mL in acetate buffer. A total of 100 �L
f the suspension was deposited on the PDMS stamps by con-
ective/capillary assembly. AFM images and force-distance curves
ere recorded in acetate buffer in quantitative imaging mode with

n AFM Nanowizard III (JPK Instruments, Berlin, Germany).

.4. Mammalian cell sample preparation

Chinese Hamster Ovary cells (wild type Toronto from
TCC) were grown in Minimum Eagle’s Medium (MEM) sup-
lemented with 8% fetal calf serum (Gibco), 1% peniciline
100 �mL−1)(Gibco)and 1% streptomycine (100 mg  mL−1) (Sigma),
nd incubated at 37 ◦C in humidified atmosphere with a 5% CO2
ncubator. Human Colorectal Tumor cells from ATCC, were grown
n Dubelco modified Eagle’s medium (DMEM; Gibco) without pyru-
ate supplemented with 8% fetal calf serum and 1% same antibiotics
ixture as CHO cells. 75,000 cells for each type were grown in Petri

ish during 24 h before measurement, and classical medium was

eplaced by MEM-HEPES medium (CM1MEM46-6U, Eurobio) sup-
lemented with 8% fetal calf serum and cells were placed in the
etriDishHeater (JPK instrument, Berlin Germany) that maintained
7 ◦C during all the experiment. For experiment on catalyst (Bruker,
 48 (2013) 26–33

USA), classical medium was used and 5% CO2 gas was exposed
trough the perfusing stage incubator.

2.5. Nucleus extraction

All the extraction process was  run at 4 ◦C. 1 mL  extraction buffer
(15 mM Tris–HCl, pH 7.5, 0.15 M NaCl, 5 mM  MgCl2, 10 mM CaCl2,
0.1% Tween 20, and a mixture of protease inhibitors (Roche Applied
Science), 1 mM AEBSF (Euromedex 50985), 0.5% NP10) was added
to −80 ◦C frozen culot of cells previously harvested and centrifu-
gated in PBS (10 min  4 ◦C 500 × g). Cells were resuspended and
homogeneizated gently by pipette 15 times. Then 3 × 15 s with
5 min  between each at minimal speed of Thurax T25 basic homoge-
nieizer were applied, and fractions were centrifuged 10 min  at
800 × g, washed in PBS and centrifuged 3 min  at 500 × g to obtain
70% extracted nuclei.

2.6. Data analysis

JPK data processing (JPK Instrument, Berlin, Germany) soft-
ware was used for image processing. Images are flattened (order
1). OpenFovea 0.1a152 software was used for force curve analysis
with the following settings: Model: cone; tip size: 0.62 rad; Pois-
son ratio: 0.5; method: raw: F = ((2E tan ˛)/(�(1 − �2))ı2. This Hertz
model gives the force F as a function of the indentation (ı) and of
the Young modulus (E). The opening angle (˛) of this sort of tip
is 35◦ and we  arbitrary choose a Poisson ratio (�) of 0.5. Size of
indentation segment where Hertz fit was  done is specified in figure
legend.

3. Results

3.1. Imaging

3.1.1. Loosely immobilized micro-organisms and organelle
E. coli and C. albicans cells were scanned, both in contact mode

and QITM mode (Fig. 2a–d) under physiological conditions.
E. coli, a gram-negative bacterium, is the model bacteria. More-

over it is the bacteria the most frequently found in nosocomial
infections (23%) and should therefore be highly investigated by
AFM in order to explore therapeutic targets at the nanoscale
(Formosa et al., 2012a).  Nevertheless, few AFM studies are ded-
icated to E coli (Abu-Lail and Camesano, 2006; Cerf et al., 2009,
2008; Fantner et al., 2010; “Quantitative imaging of living biological
samples by PeakForce QNM atomic force microscopy”), because of
immobilization difficulties. The classical method using electrostatic
interactions works poorly with this weakly negatively charged (De
Kerchove and Elimelech, 2005) bacterium. The electrostatic inter-
actions between the cell and the polycationic surface are not strong
enough to immobilize the cell. When imaged in contact mode, we
can see in Fig. 2a that the bacteria do not withstand the lateral
forces exerted by the scanning tip, and are removed from the sur-
face, even with the lowest applied force (0.5 nN). Any images of this
microorganism are therefore impossible to record. Recent works by
Longo et al. (2012) present nanoindentation images of E. coli cells.
This is also a way  to image this bacterial species, however, the lat-
eral resolution shown by the authors is of 32 px2, which is very low
and does not allow a detailed observation of the bacterial cell wall.
Here, we  show height image (Fig. 2b) of E. coli cells, at a resolution
of 256 px2. Its dimensions can therefore be precisely determined
since the height image obtained was calculated from the point of
contact on each force curve recorded.
Candida albicans is also a dangerous microorganism. It is respon-
sible for nosocomial infections, and causes a range of conditions
including painful superficial infections, severe surface infections,
and life-threatening blood-stream infections (Sudbery et al., 2004).
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t is therefore a need to be able to image this yeast, in order to
tudy its morphology, or the effects of antifungal molecules on its
ell wall. Teams are already working on round cells of C. albicans
ith atomic force microscopy using porous membrane to trap them

Alsteens et al., 2008; Beaussart et al., 2012). But this technique
auses mechanical stress on the cells. Here, we chose to refine

 recent immobilizing method based on microstructured PDMS
tamps (Dague et al., 2011). PDMS is a biocompatible polymer
hat does not affect the viability or the morphology of the yeasts
ells. For these cells, we also used contact mode; as we  can see on

ig. 2c, the beginning of the cell can be scanned, but very soon the
canning tip removes the cell from its hole, even with a very low
pplied force, as for E. coli samples. In QITM mode, however, high

ig. 2. Imaging of loosely immobilized samples. Contact height image (resolution: 512
nd  (e) of a CHO nucleus (z-range = 1.8 �m).  QITM height image (256 px2) of (b) a E. coli 

z-range  = 2 �m).  The QITM height images correspond to the contact height images. Scale 
 48 (2013) 26–33 29

resolution “zero-force” height image of the entire cells can be
obtained (Fig. 2d).

As a last example of non-immobilized sample, we  took iso-
lated mammalian cell nuclei. Nucleus is one of the most important
organelle of the mammalian cells as it contains genetic informa-
tion. AFM on nuclei or other organelles studies are using flattened
nuclear envelope on glass slide (Oberleithner et al., 1994), dried
sample (Layton and Boyd, 2011) or only elasticity measurement
through plasma membrane (McKee et al., 2011). As for bacteria
and yeast, imaging isolated whole nucleus required its immobi-

lization. We can see that contact image deformed nucleus, even
if immobilized thanks to positive charge interaction on PEI glass
slide with negative charge of nucleus envelope (Fig. 2e) (Layton and

 lines) of (a) an E. coli cell (z-range = 1.2 �m,  (c) a C. albicans cell (z-range = 2 �m)
cell (z-range = 20 nm), (d) a C. albicans cell (z-range = 2 �m)  and (f) a CHO nucleus
bar a–d: 0.5 �m;  e and f: 2 �m.
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oyd, 2011). With QITM mode, imaging of nucleus can be achieved
hen nucleus is on PDMS without any electrostatic immobilization

Fig. 2f). Thanks to the non-destructive interaction between tip and
ample, direct mechanical measurements in correlation with image
cquisition can now be achieved on cells organelles.

.1.2. Mammalian cells
Mammalian cell plasma membrane is very sensitive to tip when

maged in contact. Most of the time, their ability to adhere to
he substrate they grow on allows the cells no to be removed by
he scanning tip (Schulze et al., 2009). Though, this may  not be
ufficient, and different glass coating like poly-lysine, fibronectin
r laminin must be used to enhance cell adhesion on substrate
Yokokawa et al., 2008). Despite these several immobilization tech-
iques, the membrane/wall composition of eukaryotic cells is often

 reason of unsuccessful AFM trials on living cells and incites to
ork on fixed cells. We  studied living CHO cells that are a regular
odel for in vitro studies (Gamper et al., 2005) or, for example,
embrane protein production (as ions channels) (Che Abdullah

t al., 2011) and living HCT116 cells that are of interest for in vitro
tudies of cancer cell behavior and cancer treatment (Brattain et al.,
981). As shown in Fig. 3, one can managed to obtain good image
f CHO or HCT116 cells after several try changing orientation of
canning not to disturb the cell (Fig. 3a and b), but most of the time
ome extensions related to tip/membrane interactions are visible
Fig. 3b) and do not give a good representation of the cell surface.

ig. 3c and d gives a good example of the quality obtained when
maging with QITM mode at the same speed than classical contact
maging (Fig. 3c and d, 45 min  required, 166 �m/s  tip speed), or
maging faster (Fig. 3e, 15 min  required, 1000 �m/s  tip speed). QITM

ig. 3. Imaging of soft samples: mammals cells. Contact height image (resolution: 512 l
he  arrow point membrane extensions related to tip/membrane interactions. QITM height
ell  (256 px2, speed = 45 min). (e) QITM height image of (c) another CHO cell (256 px2, spee
nd.  Scale bar: 10 �m.  z-range for c–f: 7 �m.
 48 (2013) 26–33

mode images, because of their higher resolution, give more defined
images of the cell surface (Fig. 3d), than FV image (Fig. 3f).

3.2. Mechanical properties

QITM mode is not only useful for imaging difficult samples; it is
also useful for nanomechanical measurements on those samples.
Mechanical properties recording require a very well defined local-
ization and thus a high resolution and correlation with the image
of the sample. The correlation can be lost when switching from a
mode to another. Here we present the direct correlation between
height images (Fig. 4a and d) and elasticity maps for HCT116 (Fig. 4b
and c) and C. albicans cells (Fig. 4e and f) showing the distribu-
tion of YM values on the sample. In each case, the same data were
recorded using QITM mode (Fig. 4c and e) and FV mode (Fig. 4d and
f). When comparing the two methods using Fovea software (Roduit
et al., 2012a, 2012b), we show that QITM mode is more resolutive,
due to the number of recorded force curves (n = 65 536 at a res-
olution of 256 px2) and allow a detailed view of the sample. For
HCT116 cells, even if images show part of cytoskeleton network at
cells membrane extremities either with QITM mode or FV (Fig. 3d
and f) by high YM value represented in yellow–red colors; in FV
mode, the YM values seem to be homogeneously distributed all
over the cell (Fig. 4b). When seen in QITM, cytoskeleton fibers stiff-
ness (most likely actin fibers) at cells extremities are well detected
as a higher YM is displayed (red lines underlying stress fiber under-
neath the membrane) (Fig. 4c). Beyond the abilities to record a well

resolved map, a QITM force measurement has a better intrinsic res-
olution too. We  can clearly follow the stress fiber along the cell
structure. On C. albicans, the curvature of the cell induces artificially
soft force curves at the edge that must not be analyzed (outside of

ines) of (a) a CHO cell (z-range = 4.5 �m) and (b) an HTC116 cell (z-range = 4.5 �m),
 image of (c) another CHO cell (256 px2, speed = 45 min), and (d) the same HCT116
d = 15 min). (f) Force volume height image (128 px2, speed = 15 min) of an HTC cell
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Fig. 4. Mechanical properties. QITM height image (256 px2) of (a) an HCT116 cell (z-range = 7 �m).  (b) Force volume elasticity map (128 px2) of the same HTC116 cell (YM-
scale  = 0–10 kPa). (c) QITM elasticity map  (256 px2) of the same HTC116 cell (YM-colorscale = 0–10 kPa). Arrows show the stress fibers revealed by QITM measurement. (d) QITM
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eight image (256 px ) of a C. albicans cell (z-range = 2 �m).  (e) Force volume elasti
ine  circles the region of interest. (f) QITM elasticity map  (256 px2) of the same C. alb
0  �m, scale bar d–f: 1 �m.

he white region of interest drawn). In the FV mode only a small
mount of force curves should finally be interpreted to extract rel-
vant YM (250 force curves). As QITM record more force curves, the
mount of force curves that is not affected by C. albicans curvature
s higher (4500 force curves) and the region of interest can be more
ccurately defined, which results in a better analysis.

If extent QITM force curves can be analyzed for extracting YM
alues, retract force curves can also be analyzed. This gives access
o nano-adhesive properties of entire cells, in the same time as
ecording the height image of the sample. This is indeed a powerful
ool that can allow probing with high resolution, for example, the
ydrophobic properties of cells (Alsteens et al., 2007). We present
ere, on Fig. 5a and d, images of spores of A. fumigatus trapped in
DMS microstructured stamps. On the adhesion image recorded
n QITM mode, we can directly see that the spores of the wild-
ype strain of A. fumigatus (KU strain) are adhesive, whereas the

pores of the mutant strain (5T) do not show adhesion at all (Fig. 5b
nd e). This can be explained by the fact that wild-type spores
resent auto-organized hydrophobic proteins (rodlets) on their
urface (Fig. 5c), whereas the mutant strain do not express these

able 1
omparative table of quantitative imagingTM mode (QITM), force volume mode (FV) and c

QITM

Sample damage ++ (None) 

Speed ++ (1000 �m/s) 

Z-lenght ++ (8 �m) 

x–y  resolution ++ (512 px2) 

Force  resolution 10 pN 

Analysis ++ (Any model) 
ap  (64 px ) of the same C. albicans cell (YM-colorscale = 0–500 kPa). White dashed
cell (YM-colorscale = 500 kPa). White dashed line circles the region of interest. a–c:

proteins (Fig. 5f), but present an hydrophilic polysaccharidic sur-
face (Dague et al., 2008). So simply by imaging a sample, QITM mode
offers the possibility to directly visualize the adhesive properties of
this sample. This gives the opportunity to ask new questions con-
cerning the samples observed, questions that would not have been
asked in the first place.

4. Discussion

This study of QITM mode has been conducted in order to test
the potentialities of this mode for biology (Table 1). (i) The first
advantage of QITM is to allow high resolution force measurements
in the meantime of imaging. This point reduces drastically the
time needed for each experiment and allows the direct correlation
of image and mechanical/adhesion data on the same cell/sample
(Fig. 4). (ii) Speed of recording can be increased to obtain images

in short time; this allows accessing short time effect of component
of interest (Fig. 3c). (iii) This mode allows imaging loosely bound
samples; therefore there is no need to use chemical or denaturing
immobilization in order to image the samples. The experiments can

ontact imaging mode.

FV Contact

++ (None) −− Constant force is applied
− (2498 �m/s) −− (≈10 �m/s, but large range)
++ (8 �m)  /
− (128 px2) ++ (1024 px2)
10 pN No force measurement
++ (Any model) No force measurement
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Fig. 5. Adhesive properties. QITM height image (resolution: 256 px2) of (a) an A. fumigatus spore strain Ayg (wild-type) (z-range = 0.5 �m)  and (d) an A. fumigatus strain
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T  (z-range = 0.5 �m).  (b and e) Adhesion image (z-range = 2 nN) corresponding to t
quares  on b and d. Scale bar: 0.25 �m.

hen be performed in conditions of controlled temperature and in
iquid, which is closer to the physiological reality of biology. (iv)
he ramp size of the force curves benefit of half of the piezo length
7.5 �m).  For adhesive samples like A. fumigatus spores, without a
ong enough ramp size, the interactions between the tip and the
amples are never broken and prevent imaging of the spore. Such

 ramp is accessible with QITM mode, without any impact on the
can speed. (v) For mechanical/adhesive properties, the number of
ecorded force curves can be up to 512 × 512. For each pixel, a force
urve is recorded and saved, allowing an analysis of each individual
orce curve (Fig. 4).

Other AFM constructers have designed modes similar to QITM

or imaging/mechanical/adhesive properties measurements at high
peed and resolution. A few years ago Bruker proposed a solution
amed PeakForce QNM (Adamcik et al., 2012; Heu et al., 2012;
ittenger et al., 2010; Sweers et al., 2011). This mode is also a FV
ased mode, with a force exerted on the sample maintained con-
tant. The force curves are recorded at a maximum speed of 2 kHz,
ith a maximum force curve ramp size of 300 nm.  This produces

 paradox: to image adhesive samples hard cantilevers must be
sed (and it works (Heu et al., 2012)). But in order to measure
he nanomechanical properties of soft samples, soft cantilevers
hould be used. However, PeakForce QNM technique is able to
easure YM of materials ranging from soft gels (1 MPa) to rigid

olymers (20 GPa) (Young et al., 2011). In an application note the
upplier claims that PeakForce QNM provides quantitative mod-
lus results over the range of 700 kPa–700 GPa (Pittenger et al.,
010). In another application note (“Quantitative imaging of living
iological samples by PeakForce QNM atomic force microscopy”),

he authors were able to measure low Young modulus (ranging
rom 75 to 250 kPa) using softer cantilevers (Berquand, 2011). A
ecent study demonstrated that PFQNM is suitable for high resolu-
ion chemical force spectroscopy (Alsteens et al., 2012). The three
ight images. (c and f) Contact mode vertical deflection images of the white dashed

different samples that we  present in this study all have a low Young
modulus; CHO cells are approximately of 30 kPa (Kuznetsova et al.,
2007).

QITM mode can also be used in Single Molecule Force Spec-
troscopy (SMFS), with functionalized AFM tips. It will then be
possible to map  the whole surface of the cell at high speed and
resolution. Thus, complete cartography of proteins at the surface
of cells will be possible, which is of great interest for the biologist
community. Recent works by Alsteens et al. (2010) have showed the
localization of Als5 at the surface of yeast over-expressing Als5p,
using AFM tips functionalized by an antibody anti-Als5p. Their pio-
neering results are nevertheless of low resolution (roughly 16 nm),
because of the limitations in terms of speed and resolution of the
AFM they used. With QITM, the same kind of experiments could be
performed at a higher resolution, and at the scale of the whole cell.
Also QITM retract force curves are real precise, so for example, an
interaction of 50 pN can be measured, as well as in any other FV
mode.

5. Conclusion

In conclusion, QITM mode gives the opportunity to simulta-
neously image and measure soft or loosely immobilized samples,
fast, at a good resolution, resulting in force-curve data that can be
analyzed by any model. The versatility of this mode makes it the
most appropriate for kinetic studies on difficult biological samples,
if image data are required, or mechanical/adhesive properties, or
both.
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Chapter 3.1: Technological developments to study the cell wall of 

microorganisms by AFM 

 

 

 

 

 

 

 

 

3.1.3 Mapping HA-tagged protein at the surface of living cells by Atomic 

Force Microscopy 
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Abstract 

Single Molecule Force Spectroscopy (SMFS) using Atomic Force Microscopy (AFM) is more 

and more used to map and describe receptors, enzymes, adhesins, or other proteins at living cells 

surface. Nevertheless, this technique requires, to be specific, antibodies or other molecules 

directed against the protein of interest at the cell surface. Unfortunately, specific antibodies are 

usually lacking and/or are extremely expensive. To overcome this problem, a strategy is to tag the 

protein of interest with a small peptide against which specific antibodies exist. In this context, we 

chose to work with the Human influenza hemagglutinin (HA) tag (YPYDVPDYA), and labeled 2 

proteins: Ccw12 responsible for cell wall remodeling in the yeast Saccharomyces cerevisiae and 

the β2 Adrenergic Receptor (β2AR), a G-protein coupled receptor (GPCR) in higher eukaryotes. 

We first described the interaction between HA antibodies, immobilized on AFM tips via 

dendrimers, and HA epitopes, immobilized on epoxy glass slides. Using our system we then 

investigated the distribution of Ccw12 proteins over the cell wall surface of the yeast S. 

cerevisiae. We were able to find the tagged protein on the surface of mating yeasts, at the tip of 

the mating projections. Finally, we were able to unfold multimers of β2AR from the membrane 

of living transfected Chinese Hamster Ovaries (CHO) cells. This result confirms that GPCR are 

oligomerized in cell membranes and opens the door to the study of the influences of 

agonist/antagonist on the receptor conformation, and of the influence of the cell membrane lipidic 

composition on the receptor organization. 
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Introduction 

 

Since its invention in 1986 by Binnig et al. [1], Atomic Force Microscopy (AFM) has 

developed into a multifunctional toolbox that opened the door to the nanoworld [2].  The basic 

principle of this technique relies on the measurement of a force between a sharp tip and a surface 

sample, and to keep this force constant while scanning in order to get a three dimensional image 

of the sample. An advantage of AFM is the possibility to work with living cells in their 

physiological environment.  However, AFM is not only an imaging technology; it is also a highly 

sensitive force machine. Indeed, AFM is also able to record force distance curves, thus giving 

access to nanomechanical and adhesive properties of the living material probed. In this context, 

an AFM-based technique, Single Molecule Force Spectroscopy (SMFS), has recently emerged in 

the field. In this technique, AFM tips interact with biomolecules immobilized on innate substrates 

or artificial biomembranes (in vitro studies), or present at the surface of living cells so to 

understand the intra- and inter-molecular interactions of biomolecular systems [3,4]. SMFS 

techniques have been widely used in vitro, to monitor, for example, the interaction of cellular 

adhesion molecules, such as cadherins [5] or oligosaccharides [6], or to characterize the 

anchoring forces of peptides in lipid membranes [7]. These in vitro studies generally do not need 

specific probes as they involve only one molecule, inserted in a membrane or linked to a surface, 

that can be picked up by the AFM tip [8,9]. However, they use purified biological molecules that 

have been removed from their native biological context, and the results obtained cannot be 

directly linked to biological processes happening in vivo [10]. Nevertheless, it is possible to study 

more accurately molecular interactions and recognition as they happen in their natural 

environment, by performing SMFS experiments directly on living cells [11,12].  

However such experiments are often challenging, because of the heterogeneity of the 

cellular surfaces. In lower eukaryotic cells, such as yeast cells, the cell wall is composed of 
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heterogeneous components (mannans, mannoproteins, glucans, chitin), that are structurally 

organized among the cell wall depth. This heterogeneity and complex molecular organization is 

essential for maintaining a functional cell wall that protects the cells from the environment, and 

allows morphogenic events to take place [13,14]. In the case of higher eukaryotes, the key feature 

of cell surface heterogeneity refers to the spatiotemporal confinement of proteins and lipids in 

defined and dynamic microscale regions of the plasma membrane [15,16]. Association between 

lipids and proteins can modulate their biological functions, and therefore cellular bioprocesses 

such as cell adhesion, or cell-cell interactions [17,18]. During SMFS experiments, all these 

different components at the surface of living cells can cause non-specific interactions with the 

AFM tip (hydrophobic interactions, electrostatic…).  

In this context, it is necessary to functionalize AFM tips with specific antibodies targeting 

only one specific protein at the surface of the cells. However, the difficulty to obtain antibodies 

recognizing native membrane proteins with high specificity and affinity prevents the use of 

functionalized AFM tips to explore the behavior of these proteins at the cell surface. As an 

alternative strategy, biologists have developed a genetic strategy consisting in labelling proteins 

to their amino (N-) or carboxy (C-) terminus with specific small tags and then expressing these 

tagged-proteins in living cells. Several and general epitope tags such as Human influenza 

hemagglutinin (HA) tag (YPYDVPDYA), FLAG tags (DYKDDDDK) or myc tags 

(EQKLISEEDL) and corresponding high specific and affine antibodies recognizing these 

epitopes have been thus developed and are commonly used by the biology community, therefore 

offering the possibility to follow the protein of interest with high accuracy with a specific 

antibody against the epitope tag. We took advantage of these specific antibodies and decided to 

functionalize an AFM tip with an antibody targeted against the HA epitope-tag. Different 

strategies to functionalize AFM tips with biomolecules have been described so far. Some of them 
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consist in the nonspecific adsorption of proteins, for example BSA (Bovine Serum Albumin), to 

the silicon nitride surface of AFM tips [19], or in the chemical fixation of biomolecules by sulfur-

gold bonds to gold-coated AFM tips. This last strategy has been successfully used for measuring 

interactions forces between complementary DNA strands [20], or between fibronectin and 

bacterial cells [21]. However, in the first case, the adsorption is nonspecific, and in the second 

case, the gold-coating of AFM tips modifies the spring constant of the cantilevers where the tips 

are fixed. To avoid these problems, it is possible to covalently link a molecule containing amino 

groups directly to the silicon nitride AFM tip. To this end, AFM tips must be first amino-

functionalized either by esterification with ethanolamine [22] or silanization with aminopropyl-

triethoxysilane (APTES) [23]. Then, the amino-functionalized tip has to be bridged to the 

biomolecule of interest. This can be achieved through the use of heterobifunctionalized 

PolyEthylene Glycol (PEG) [24–26], or, as we decided in our study, through the use of an 

aldehyde-phosphorus dendrimer, as we previously described [27]. This strategy developed in our 

team in 2012, and already used for probing the surface of live bacteria [28], consists in making 

“dendritips” by reacting amino-functionalized AFM tips with dendrimers, therefore leading to 

dendrimer-activated tips. Then, the free aldehydes functions at the surface of the dendrimers are 

available to react with amino-functions present on every protein and on many biomolecules. 

Using this strategy we are able to measure specific interactions between a biomolecule 

immobilized on the AFM tip and a biomolecule immobilized on an abiotic surface, or at the 

surface of living cells, without modifying the spring constant of the cantilever.  Single molecule 

events can be detected using this strategy using appropriate concentrations in the biomolecules 

grafted on the AFM tip. Finally, another advantage of this strategy, compared to PEG linkers for 

example, is that the interaction detected takes place at the exact position of the AFM tip, which 

allows precise mapping of proteins.  
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In this study, we developed an AFM tip functionalized with an anti-HA (peptide 

YPYDVPDYA) antibody, and validated our system on model surfaces functionalized with HA 

epitopes. Our system was used to probe two transmembrane proteins of two different biological 

models. The yeast S. cerevisiae Ccw12 protein is a covalently linked mannoprotein, and is 

considered as a crucial structural cell wall component, as mutant strains deleted for this protein 

present cell wall damages [29]. The other investigated protein is the β2-adrenergic receptor (β2-

AR) which is the hallmark of the mammalian G-protein-coupled receptor (GPCR). These proteins 

constitute the largest class of cell-surface receptors that are involved in signal transduction [30], 

and mediate complex cellular responses to highly diverse extracellular signals [31]. To probe 

these proteins at the surface of the corresponding model systems, a HA-epitope tag was fused at 

their N-terminus. These fusion proteins were then transiently over-expressed in yeast and 

mammalian cells and probed using functionalized AFM tips with anti-HA antibodies. Although 

this strategy has been used in recent papers with HA tagged bacterial proteins, of V5 tagged yeast 

proteins [32–34], via the use of heterobifunctionalized PEG linkers, we show here for the first 

time that such experiments are possible using a dendrimer-based functionalization strategy, with 

yeasts proteins but also with human molecules, such as β2-AR, at the surface of mammalian 

cells.  

 

Material and Methods 

Yeast growth conditions and transformation 

Saccharomyces cerevisiae strain BY4741 (MATa his3Δ1 leu2Δ10 met15Δ0 ura3Δ0) ΔCCW12 

was stocked at -80°C, revivified on Yeast Peptone Dextrose agar (Difco, 242720-500g) and 

grown in Yeast Peptone Dextrose broth (Difco, 242820-500g) for 20 hours at 30°C under 

agitation (180 rpm).  Yeast transformation were conducted using LiAc, according to [35]. Strain 



 

185 

 

Δccw12 + pCCW12-GFP-HA was grown in YNB Leu- for 20 hours at 30°C under agitation (180 

rpm). For mating projections, strain Δccw12 + pCCW12-GFP-HA was put into fresh media for 2 

hours at 30°C under agitation (180 rpm), and α-factor (Sigma T6901) was added at a 

concentration of 0.01 mg/mL for another 2 hours at 30°C under agitation (180 rpm) before AFM 

experiments.  

CHO cells growth conditions and transfection 

Chinese Hamster Ovary cells (Wild Type Toronto, WTT, from ATCC) were grown in Minimum 

Eagle’s Medium (MEM) supplemented with 10% fetal calf serum (Gibco), 1% 

Peniciline/Streptomycine mixture (100 u.mL
-1

) (Gibco), and incubated at 37°C in humidified 

atmosphere with a 5% CO2 incubator. Transient transfections were performed 24 h after cell 

seeding using X-tremeGENE 9 DNA transfection reagent (Roche) according to the 

manufacturer’s protocol. In all cases, cells were co-transfected with a fluorescent marker 

encoding vector (pGFP2-N1, Perkin Elmer) so to identify transfected cells. 

Sample preparation and AFM experiments 

Yeast cells were concentrated by centrifugation, washed two times in acetate buffer (18 mM 

CH3COONa, 1 mM CaCl2, 1 mM MnCl2, pH = 5.2), resuspended in acetate buffer, and 

immobilized on polydimethylsiloxane (PDMS) stamps prepared as described by Dague et al [36]. 

Briefly, freshly oxygen activated microstructured PDMS stamps were covered by a total of 100 

µL of the solution of cells and allowed to stand for 15 minutes at room temperature. The cells 

were deposited into the microstructures of the stamp by convective/capillary assembly. The 

stamp was then immerged in a Petri dish containing acetate buffer (+ α-factor at 0.01 mg/mL for 

mating projection experiments), and placed in the PetriDishHeater (JPK) that maintained the device 

at 30°C during the whole experiment. For CHO cells, 75,000 cells for each conditions were grown in 

Petri dishes during 24h before measurement, and classical medium was replaced by DMEM-HEPES 
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medium (HEPES 15 mM) and cells were placed in the PetriDishHeater (JPK) that maintained the 

Petri dish at 37°C during the whole experiment. Images were recorded in acetate buffer in 

Quantitative Imaging
TM

 mode [37], with MLCT AUWH cantilevers (nominal spring constant of 

0.01 N/m). For Single Molecule Force Spectroscopy (SFMS) experiments, the applied force was 

kept constant at 0.5 nN, for all experiments.  

AFM tip functionalization 

Functionalized tips were produced according to a French patent [38] of the authors described in 

sensors and actuators [27]. Briefly, AFM tips were functionalized with dendrimers presenting 

CHO functions able to covalently link with NH2 functions of proteins. Those dendritips were then 

incubated with the HA antibody at a concentration of 0.01 mg/mL (LifeProTein, LT0422, HA.C5 

clone monoclonal antibody) for 1 hour, before being used for force spectroscopy experiments. 

Glass slides functionalization 

A drop of HA epitopes YPYDVPDYA (synthesized, LifeProTein) at a concentration of 5 mg/mL 

was deposited on epoxy glass slides and incubated overnight. The following day, glass slides 

were rinsed with acetate buffer (18 mM CH3COONa, 1 mM CaCl2, 1 mM MnCl2, pH = 5.2) and 

further used for SMFS experiments.  

 

Results 

In order to probe HA-tagged protein at the surface of living cells, the first step was to 

functionalize AFM tips with HA antibodies, and verify that they can specifically interact with 

synthetic HA peptides immobilized on epoxy glass slides. The results presented in figure 1a show 

interaction forces at a loading rate of 70 000 pN/s. The forces measured are of 61.7 ± 18.9 pN, 

which is in the range of specific molecular interactions such as antigen-antibody interactions 

[39]. We also fixed the non-adhesive curves percentage to 80%, by adjusting the antibody and 



 

187 

 

epitope concentrations, with the aim of measuring only single molecule interactions. To examine 

whether these interactions were specific, we performed blocking experiments by saturating the 

epitopes on the glass slide with anti-HA antibodies (figure 1b). The resulting measures indicated 

that the tip was not able anymore to interact with the epitopes at the surface thus confirming the 

specificity of the interaction. Next, we characterized the interactions between HA epitopes and 

HA-tip, by performing force spectroscopy experiments with varying loading rates and contact 

time. The rupture force for a specific biological interaction is expected to be a function of the 

loading rate [5,40]. This loading rate dependence comes from the molecular link that exists in 

biological interactions such as antigen-antibody. Figure 1c shows the variation of the adhesion 

force for loading rates between 10 000 and 100 000 pN/s. The direct relation between the 

adhesion force and the loading rate is clear, with an increase from 30.6 ± 4.8 pN for a loading 

rate of 20 000 pN/s, to 62.5 ± 24.8 pN/s for a loading rate of 100 000 pN/s. Based on these 

results, we have been able to estimate the kinetic dissociation constant (𝐾𝑜𝑓𝑓) on the HA-HA 

antibody interaction according to the following equation 1 [40]:  

𝐹 = 𝑓𝛽 × ln(
𝑟

𝑓𝛽𝐾𝑜𝑓𝑓
) 

where F is the measured adhesion force, 𝑓𝛽 is defined as the ratio between the thermal energy 

scale (KBT, where KB is Boltzmann’s constant and T is temperature) and the length of the 

interaction at a transition state, and r the loading rate. At zero force, equation 1 can be rewritten 

as follows (equation 2):  

𝐾𝑜𝑓𝑓 =
𝑟0

𝑓𝛽
 

The values 𝑓𝛽 (slope) and r0 (loading rate at zero force) were deduced from data presented in 

Figure 1b. The Koff parameter, estimated using the second equation, was equal to 1.4×10
-5

 s
-1

.  
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In parallel, we studied the variation of the adhesion probability with the contact time between the 

HA epitopes and the HA-tip, while keeping the loading rate (LR) constant to 70 000 pN/s. As 

showed in Figure 1d, the adhesion probability increased with the contact time, from 20% to 80% 

for a contact time ranging from 0 to 2 s, until reaching a plateau. This dependence of the 

probability of adhesion to the contact time confirms that we are probing a specific recognition 

that could be described by an association kinetic constant (Kon). The calculation needed to 

provide a Kon, would nevertheless require many approximations. Especially, the number of 

binding partners and the effective volume they’re in. We therefore decided not to estimate the 

Kon, but to provide t0.5 (contact time needed to reach 50 % of adhesive events) = 0.05 s. All 

together, we have an adhesion force (61.7 ± 18.9 pN; LR = 70 000 pN.s
-1

) typical for epitope-

antibody recognition, the adhesion force is a function of the loading rate (Koff  = 1.4×10
-5

 s
-1

) and 

the adhesion probability increases with the contact time according to a log (t0.5 = 0.05 s, plateau 

80%).  

 Once this validation step with our anti-HA tip on a model surface bearing HA epitopes 

accomplished, we then further used our HA functionalized AFM tip first on living yeast cells, 

immobilized in microstructured PDMS stamps [41,42]. To this end, we labeled the plasmidic 

Ccw12 parietal yeast protein to HA-tag, and transformed yeast cells Δccw12 deleted for the 

genomic allele of the gene encoding this protein with this plasmid. The first experiments 

consisted in probing the surface of Δccw12 (control strain, figure 2a) so to control that no 

unspecific interactions were observed between the surface and the HA tip. Figure 2b presents the 

adhesion map obtained while representative force curves and histogram of the adhesion forces are 

presented in figure 2c and d. In this case, 78.1% of the force curves presented no retract 

adhesions, and the few adhesions measured (Figure 1d) were not specific as their distance on the 
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force curve is far from the contact point (more than 100 nm). Then we probed the surface of the 

same strain but overexpressing HA-tagged Ccw12 protein (Figure 2e). Unexpectedly, the results 

showed that there were no interactions between the tip and the sample, with a percentage of force 

curves with no retract adhesions reaching 96.7%. Since Ccw12 is a protein expressed at the tip of 

mating projections [43], we then incubated this same strain in the presence of α-factor, a yeast 

sexual pheromone triggering the formation of these characteristic mating projections by haploid 

yeast strains of a mating type [44]. We were able to image the formation of mating projections or 

“shmoos”, for the first time (to our knowledge) under liquid conditions with an AFM (figure 2i).  

When we probed the surface of these shmoos using the anti-HA tip, we could clearly see 

interactions between the tip and the sample on the adhesion map (figure 2j); 67.4% of the force 

curves in this case exhibited retract adhesions, with adhesion forces of 69.3 ± 31.4 pN at a 

loading rate of 70 000 pN/s (figure 2k and l). This adhesion force value is consistent with similar 

data obtained on yeasts cells using anti-V5 functionalized AFM tips and V5-tagged protein [32]. 

Therefore we can conclude that in this particular morphogenic state, the cell wall is modified so 

that the protein becomes accessible to the AFM tip, at the surface of the cells.  

 To show the versatility of our system, we used the anti-HA tips on a different biological 

system, so to extend the versatility and power of the functionalized tip. For that purpose, we used 

mammalian CHO cells overexpressing the human G-protein-coupled receptor β2-AR. In these 

experiments, cells were transiently co-transfected with a GFP encoding vector (Green 

Fluorescent Protein) together with a plasmid coding for the HA-β2-AR, thus allowing us to probe 

only transfected cells. Figure 3a and b present optical images of the cells under the AFM tips; on 

the dark-field image white arrows indicate fluorescent cells, i. e. transfected cells. Cells were 

maintained at 37°C during all experiments in a 15 mM HEPES buffer, in order to keep them alive 

during the AFM experiment. Figure 3c presents a height image of a CHO cell imaged under these 



 

190 

 

conditions. As we did for yeast cells, we first used anti-HA tips to probe the surface of 

untransfected cells (control cells) to control for unspecific interactions that would mask/interfere 

with the specific ones on transfected cells. The adhesion map and representative force curves 

(Figure 3d and g) showed that such interactions were indeed undetectable; 83.8 % of the recorded 

force curves presented no retract adhesions (n=1024 on 4 cells coming from two independent 

cultures) A second control consisted in probing the surface of cells transfected with a non-coding 

vector, so to verify that the transfection process would not destabilize the plasma membrane, 

which could lead to unspecific interactions. Figures 3e and h show comparable results as the one 

obtained on untransfected cells, since we did not detect retract adhesions on 86.8 % of the force 

curves recorded (n=1280 on 5 cells coming from 2 independent cultures). However, when cells 

were transfected with the HA-β2-AR encoding plasmid, the receptors were expressed at the 

surface of the cells, and could be unfolded using the anti-HA tip, as showed in figure 3f and i. In 

these conditions, we found 65.2% of adhesive force curves, the average in adhesion force being 

of 63.4 +/- 25.7 pN (n=1280, on five different cells coming from 2 independent cultures), at a 

loading rats of 100 000 pN/s. A detailed analysis of the force curves obtained on this sample is 

presented in figure 4. On this figure, we presented 26 force curves obtained on different cells 

transfected with the plasmid coding for the HA-β2-AR, with a functionalized AFM tip. We can 

clearly see on this figure that the unfoldings are of different sizes, and are distributed in a range 

going from 170 nm to 3.5 µm.  The β2-AR is composed of 413 amino acids (protein database, 

GenBank: AAN01267.1) organized in 7 transmembrane (TM) domains [45]. Assuming that 1 

amino acid is, on average, 0.4 nm long [8], we expect a single β2-AR receptor unfolding around 

413 × 0.4 = 165.2 nm. Based on our AFM results, it thus follows that we did not stretch a single 

β2-AR receptor unit, or maybe in the case of the top force curve presented in figure 4, but this is 

too much uncertain to be confirmed. The more general force curves patterns obtained in these 
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experiments, with long unfoldings, could thus represent the stretching of several receptors. In 

agreement with this hypothesis, the β2-AR is well-known to oligomerize at the cell surface 

[46,47]. In our conditions of receptor overexpression, it is likely possible that several receptors 

oligomerized at different orders were stretched at the cell surface by the functionalized AFM tip 

over varying lengths. If we take a closer look at the force curves, we can see that some of them 

present two distinct unfolding patterns (last one from the bottom for example on figure 4), i.e. 

with a return to the base line between two unfoldings on the same force curve. This can be 

explained by the fact that the AFM tip starts stretching one group of oligomerized receptors, then 

the interaction is broken, but since the tip is still close to the surface, it interacts with a second 

group of oligomerized receptors.   

 

Discussion 

 Loading rate experiments allowed us to determine the dissociation kinetic constant𝐾𝑜𝑓𝑓 

for the couple HA-antiHA, equal, in our case, to 1.4 × 10
-5

 s
-1

. Such constants were previously 

determined with the same technic for other antigen-antibody couples; for example Hinterdorfer’s 

team found a 𝐾𝑜𝑓𝑓 of 6.7 × 10
-4

 s
-1

 for the couple HSA-antiHSA (Human Serum Albumin) [22].  

Our result is consistent with this literature data, as our 𝐾𝑜𝑓𝑓 is in the same range of values. When 

varying the contact time during force spectroscopy experiments, we reached a plateau at 80% of 

probability of adhesion. This dependence of the probability of adhesion to the contact time is a 

proof that the interaction probed is specific, and that the HA-antiHA complex formed via 

multiple bonds [48]. However, the Kon (association kinetic constant) was not calculated in this 

study, due to uncertainties in the effective concentration (number of binding partners and 

effective volume) in epitopes at the surface of the area probed. These approximations are 
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probably responsible for the large heterogeneity in the Kon values that can be found in the 

literature [49]. However, it is important to measure the relationship between the adhesion 

probability and the contact time for at least 2 reasons; firstly, it is a proof that a specific 

recognition is probed; secondly, it gives an idea of a reasonable contact time that could be used 

on living cells.  

 We then used our HA-antiHA system to probe the protein Ccw12 at the surface of living 

cells of the budding yeast S. cerevisiae. Yeast cells are surrounded by a thick cell wall, composed 

of β1,3- and β1,6-glucans, chitin, mannans and proteins [13]. Cell wall proteins are 

mannoproteins that play important roles, both as structural components and as enzymes involved 

in cell-cell interaction and cell wall assembly [50]. The Ccw12p, the protein studied, is one of 

these Covalently linked Cell Wall proteins (CCW proteins) that belongs to the family of cell wall 

protein attached by a modified GPI (GlycosylPhosphatidylInositol) anchor to -glucans [14] and 

that can be released by -1,3-glucanases [51]. Loss of Ccw12p results in reduced growth rate, 

increased sensitivity to cell wall perturbing agents Calcofluor White (CW) and Congo Red (CR), 

and increased amount of cell wall chitin, suggesting that Ccw12p is required for the maintenance 

of the cell wall stability [29,51]. Furthermore, it has been showed by electron microscopy that 

Ccw12p is playing a role in the formation of a tightly packed outer mannan layer protecting the 

inner glucans networks [29]. The results that we obtained on the ccw12 mutant are consistent 

with these data. Indeed, retract adhesions obtained on the force curves recorded on this mutant 

are not specific, as they occur far away from the contact point. These retract adhesions can be 

compared to sugar adhesions, as it has been previously seen at the surface of live yeasts cells 

[52,53]. This would be consistent with the role of Ccw12p in maintaining cell wall stability by 

forming a tight mannan layer; when the protein is not present the cell wall architecture is 
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modified so that polysaccharides can be stretched off the surface. We then probed the surface of 

the same strain, but complemented with a plasmid expressing the HA- Ccw12 protein. In this 

case, there were no more retract adhesions on force curves, suggesting that in this strain, the 

protein has been reintroduced, and has played its native function in the remodeling of the cell 

wall, as no polysaccharides were stretched. However, it was expected in this case to probe Ccw12 

protein thanks to our functionalized AFM tip. We could not stretch it, meaning that the protein 

was either not there, or not accessible to the functionalized probe. The first hypothesis could be 

quickly evacuated. Compared to the mutant ΔCcw12, the outer layer of polysaccharides could not 

be stretched, meaning that the phenotype caused by the loss of Ccw12 was restored upon 

expression of the HA-Ccw12 protein. Therefore the fusion protein exerted the same function as 

the wild-type protein. To test the second hypothesis and knowing that Ccw12 role is also to 

preserve the cell wall integrity at sites of active growth [54], we decided to look for Ccw12 on 

mating projections (shmoos) where active cell wall synthesis occurs. Indeed, it has been 

previously showed that GPI-anchored proteins in Candida albicans, another yeast species, could 

be embedded into the glucan layers deep enough to be hidden from the surface of round cells 

[55]. However the same proteins have been shown to be exposed on hyphal forms of C. albicans 

[56], meaning that changes in the cell wall organization between two morphological types of the 

same species could expose the proteins. Such a phenomenon could happen in S. cerevisiae, since 

Ccw12p is also embedded in the glucans layer of the cell wall, and could be exposed on a 

different morphological type, such as mating projections. When we probed the surface of a 

mating projection of this strain complemented, at the tip of the shmoo, the anti-HA tip could, 

indeed, interact specifically with HA epitopes, meaning that the protein, accumulated at this 

particular area on the shmoo tip, was accessible. The results are in agreement with different 

studies [43,54] and especially the one of Ragni et al. in which the genetic interaction network of 
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CCW12 is studied. The authors demonstrate that Ccw12 is required for cell wall integrity during 

active cell wall synthesis (budding and shmoos formation) and accumulate in these regions. 

Indeed, they use Ccw12 protein marked with GFP (Green Fluorescent Protein) in order to 

localize it in the cell; their results show that this protein strongly accumulates in areas of active 

cell wall synthesis, meaning at the budding site on the cell surface of mother cells, at the 

periphery of small buds, at the septum after cytokinesis, and at the tip of mating projections. This 

would explain why we could not unfold it from exponential phase yeasts cells; the protein is 

perhaps embedded into the cell wall of round cells, and therefore not accessible with the AFM 

tip. This localization of the protein confirms an essential function of this protein in ensuring cell 

wall stability during mating processes.   

 Finally in the last part of our study, we used the anti-HA tip on CHO cells over-

expressing the human β2 adrenergic G protein-coupled receptor. Only one study, by Zocher et 

al., has focused on the unfolding of this specific receptor [9]. In this pioneering work, the authors 

have reconstituted single units of the β2-AR into phospholipid bilayers and used SMFS to 

characterize it. For that, an AFM tip was pushed onto the membrane at a force of 0.7 nN, which 

promotes the adhesion of single proteins polypeptides to the bare AFM tip, and retracted while 

recording the cantilever deflection (force). This allows therefore the unfolding of only one 

receptor, out of a membrane containing only this receptor, in 0.5 % of the force curves recorded. 

They found that the force required to unfold the different domains of the β2-AR was ranging 

between 30 and 220 pN, depending on the domain considered, the loading rate but also the lipidic 

environment (presence or absence of cholesteryl hemisuccinate mimicking cholesterol). In our 

experiments, CHO cells not only expressed β2-AR receptors, but also other plasma membrane 

components. This is why we needed to find a way to specifically probe the β2-AR, and thus we 

tagged the receptor with an extracellular HA epitope. This allowed the specific unfolding of β2-
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AR receptors at the surface of living cells, which is, as far as we know, the first time this 

phenomenon was recorded in living cells. However, unlike Zocher’s work, we were not able to 

measure single receptor unfolding. Indeed, it has been showed that G-coupled proteins receptors, 

like other transmembrane receptors, can form dimers and higher-order oligomers at the surface of 

living cells [57]. Indeed, despite fully functional GPCRs monomers were described in 

reconstituted nanodiscs [58,59], large amounts of studies reported GPCRs oligomers can 

spontaneously form in living cells (GPCR Oligomerization Knowledge Base, http://www.gpcr-

okb.org, [60]). More recently, the receptor oligomer size was directly correlated with the receptor 

expression level [61]. Consistent with this notion, in our conditions, the β2-ARs are 

overexpressed, meaning that number of them is expressed at the cell surface, which could this 

force the oligomerization process and lead to subsequent formation of higher order oligomers. It 

seems therefore difficult to conclude directly from our results whether β2-AR monomers are 

really a rare event in living cells which could explain why we could not unfold single receptors, 

or if high order oligomers is a general feature of this receptor in agreement with our results 

showing that we were more generally able to unfold only oligomerized receptors at different 

orders. These unfoldings represented in figure 4, are ranging from 170 nm for the smallest 

(estimation of one 2-AR protomer), to 3.5 µm for the longest (~ 20 receptor clusters). The size 

of GPCR oligomer complexes is really a matter of debate and its estimation seems most likely 

relying on the technological approach [62]. However, AFM analysis of native disk membranes 

isolated from mice led to the visualization of rhodopsin arrangement in arrays of dimers [63], 

which could be consistent with large unfoldings presented in our study. Despite the fact that our 

data strongly support the concept of GPCR oligomerization at the plasma membrane of cultured 

cells [47], we cannot however completely rule out that longer receptor unfoldings could also 

http://www.gpcr-okb.org/
http://www.gpcr-okb.org/
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reflect heterodimerization of the 2-AR with other transmembrane proteins (other endogenously 

expressed GPCRs, tyrosine kinases receptors or accessory proteins), as previously described [64]. 

These data are of first interest and will allow, in the future, answering new questions about the 

organization of GPCRs at the surface of living cells or about their behavior to different stimuli in 

their native environment. 

 

Conclusions 

In this study we developed a functionalized AFM tip with antibodies targeting the widely 

used HA epitope. The anti-HA tips, first validated on a model surface, was used on two 

biological systems, the yeast Saccharomyces cerevisiae and higher eukaryotic CHO cells. In the 

first case, we mapped the Ccw12 protein, essential for maintaining of the cell wall stability, only 

at the tip of mating projections. In the second case, the anti-HA tip allowed us for the first time to 

unfold the β2-AR receptor from the surface of living cells. Our anti-HA tip is therefore a versatile 

tool, that can be used in all types of molecular systems as long as they involve an HA epitope tag, 

at the surface of living cells, both microorganisms and mammalian cells.  
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Figures 

 

 

 

Figure 1. Single Molecule Force Spectroscopy with HA and HA antibody-functionalized 

AFM tips (HA-tip). (a) single molecule interactions between HA peptide immobilized on epoxy 

glass slide, and HA-antibodies immobilized on an AFM tip, at a loading rate of 70 000 pN/s. (b) 

blocking of HA specific sites by HA-antibodies and single-molecule force spectroscopy with HA 

antibody AFM tips. (c) Loading-rate dependence of interaction forces between HA and HA 

antibodies, and (d) contact-time dependence of the adhesion probability.  
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Figure 2. Mapping of HA-tagged protein CCW12 at the surface of living Saccharomyces 

cerevisiae cells immobilized in PDMS stamps. (a) AFM height image of a S. cerevisiae cell 

lacking CCW12 protein (strain ΔCCW12), (b) of a S. cerevisiae cell lacking CCW12 protein and 

complemented by a plasmid coding for CCW12-HA (strain ΔCCW12+p), and (c) of the same 

strain during mating projection process. (b, f and j) adhesions maps recorded with HA-tips on 

small areas on top of the cells, delimited by whites squares on a, e and i. (c, g, and k) 

Representative histograms of interaction forces and (d, h and l) representative force curves 

recorded on top of the cells.  
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Figure 3. Mapping of HA-tagged β2-adrenergic receptors at the surface of living CHO cells. 

(a) Optical image of CHO cells immobilized on TPP coated petri dishes during AFM 

experiments, and (b) fluorescent CHO cells (transfected cells). (c) AFM height image of a single 

CHO cell. (d) Adhesion map of a small area recorded with HA-tips on top of a control CHO cell, 

(e) of a CHO cell transfected with an empty plasmid, and (f) of a CHO cell transfected with a 

plasmid coding for HA-tagged β2-adrenergic receptors. (g, h and i) Representative force curves 

on top of the cells.  
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Figure 4. Detail of the force curves obtained on CHO cells transfected with a plasmid 

coding for HA-tagged β2-adrenergic receptors.  
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Chapter 3.2: A nanoscale view of the yeast cell wall of Candida albicans and 

Saccharomyces cerevisiae 
 

 

 

 

 

 

 

 

3.2.1 Multiparametric imaging of adhesive nanodomains at the surface of     
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Abstract 

Candida albicans is an opportunistic pathogen. It adheres to mammalian cells through a variety 

of adhesins that interact with hosts ligands. The spatial organization of these adhesins on the 

cellular interface is however poorly understood, mainly because of the lack of instrument able to 

tract single molecules on single cells. In this context, the Atomic Force Microscope (AFM) 

makes it possible to analyze the force signature of single proteins on single cells. The present 

study is dedicated to the mapping of the adhesive properties of C. albicans cells. We observed 

that the adhesins at the cell surface were organized in nanodomains composed of free or 

aggregated mannoproteins. This was demonstrated by the use of functionalized AFM tips and 

synthetic amyloid forming/disrupting peptides. This direct visualization of amyloids 

nanodomains will help in understanding the virulence factors of C. albicans. 
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Abstract

Candida albicans is an opportunistic pathogen. It adheres to mammalian cells through a variety of adhesins that interact with host ligands.
The spatial organization of these adhesins on the cellular interface is however poorly understood, mainly because of the lack of an instrument
able to track single molecules on single cells. In this context, the atomic force microscope (AFM) makes it possible to analyze the force
signature of single proteins on single cells. The present study is dedicated to the mapping of the adhesive properties of C. albicans cells. We
observed that the adhesins at the cell surface were organized in nanodomains composed of free or aggregated mannoproteins. This was
demonstrated by the use of functionalized AFM tips and synthetic amyloid forming/disrupting peptides. This direct visualization of amyloids
nanodomains will help in understanding the virulence factors of C. albicans.
© 2014 Elsevier Inc. All rights reserved.
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Background

The yeast Candida albicans has emerged as a major public
health problem these last two decades. This opportunistic
pathogen causes a wide range of infections from surface
infections, to mucosal and blood-stream infections.1 Whereas
mucosal infections are common and occur in healthy organisms,
blood-stream infections are observed only in immunocompro-
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mised patients and are life-threatening. This type of infection,
also known as candidaemia, can develop into disseminated
candidiasis when the infection spreads to internal organs, leading
to high mortality rates.2 In order to colonize and subsequently to
disseminate in the blood stream C. albicans needs to adhere to
different substrates. This first stage of infection3 is mediated by
adhesins that are found on the surface of the yeast cell wall.
Many of these adhesins are mannoproteins, and among them, the
adhesin family identified as having a major role in host cell
attachment is the Als (agglutinin-like sequences) family.4

The Als were initially reported as having homologies with the
proteins responsible for auto-agglutination in the baker yeast
Saccharomyces cerevisiae. Eight Als have been identified, they
all are primarily involved in host–pathogen interactions.5 It was
found that there were amyloid-forming sequences in the Als
adhesins of Candida albicans.6 Amyloids are insoluble fibrillar
protein aggregates whose core consists in crystalline arrays of
identical sequence in many molecules of the amyloid protein.7,8
hesive nanodomains at the surface of Candida albicans by atomic force
no.2014.07.008
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Cells expressing the Als proteins can rapidly aggregate, and the
aggregation has amyloid-like properties. Like amyloid forma-
tion, aggregation ability propagates through the adherent cell
population and depends on conformational changes of the Als
protein. This transition of the conformational state to an
aggregative state of the proteins is characterized by the formation
of hydrophobic nanodomains on the entire surface of the cell.9

A few papers written by Lipke’s team were dedicated to the
direct visualization of these nanodomains using fluorescent dyes
such as thioflavin T or 8-anilino-1-naphtalene-sulfonic acid
(ANS).6,8,9 Another technique that can be used to visualize these
nanodomains is atomic force microscopy (AFM). AFM has
recently emerged as a valuable tool to study the surface of living
cells,10 and especially pathogenic cells.11 This technology has
been used by Alsteens et al to image the formation and
propagation of nanodomains in living yeast cells12 and also to
unfold amyloid proteins from the yeasts surface using single
molecule force spectroscopy.13-15 To this end, the authors
functionalized AFM tips with antibodies targeted against the Als
protein directly or against an epitope tag present in the Als
protein. These studies allowed the authors to localize the
adhesive nanodomains caused by the aggregation of Als proteins
at the surface of living yeast cells, and to unravel the structure of
the Als proteins studied by stretching.

In our study, we used AFM as an imaging tool to visualize and
localize adhesins nanodomains at the surface of living wild-type
Candida albicans cells. Using recent developments in the AFM
technology, we and others have imaged and quantified at the same
time the nanomechanical properties, the adhesiveness (force and
nature of the interaction), the size and the thickness of the
nanodomains,16,17 at high resolution. The data collected showed
that these nanodomains are localized differently at the surface of
the cell, depending on the structures featured by the cells (bud
scars, buds). We also showed that there were degrees of
adhesiveness, depending on whether the amyloid proteins had
totally aggregated (hydrophobic nanodomains) or not, and that
these degrees of aggregation were directly correlated to the
stiffness of the yeast cell wall. Finally, using force measurements
and amyloid forming or inhibiting peptides, we showed that
Als proteins (probably among others) were participating to
these nanodomains.
Methods

Yeasts growth conditions

Candida albicans (from ABC Platform® Bugs Bank, Nancy,
France) was stocked at −80 °C, revivified on Yeast Peptone
Dextrose agar (Difco, 242720-500g) and grown in Yeast Peptone
Dextrose broth (Difco, 242820-500g) for 20 hours at 30 °C
under static conditions.

Sample preparation for AFM experiments

Yeast cells were concentrated by centrifugation, washed two
times in acetate buffer (18 mM CH3COONa, 1 mM CaCl2,
1 mM MnCl2, pH = 5.2), resuspended in acetate buffer, and
immobilized on polydimethylsiloxane (PDMS) stamps prepared
as described by Dague et al.18 Briefly, freshly oxygen activated
microstructured PDMS stamps were covered by a total of
100 μL of the solution of cells and allowed to stand for 15 min at
room temperature. The cells were then deposited into the
microstructures of the stamp by convective/capillary assembly.
Images were recorded in acetate buffer in Quantitative Imaging
™ mode with MLCT AUWH (Bruker) cantilevers (nominal
spring constant of 0.01 N/m). The applied force was kept at 1.5
nN for imaging and at 0.5 nN for force spectroscopy
experiments. The loading rate for imaging was of 2 500 000
pN/s (acquisition frequency of the force curves is of 25 Hz) and
for force spectroscopy of 75 000 pN/s (acquisition frequency of
the force curves is of 1.25 Hz). For imaging and force
spectroscopy, we used an AFM Nanowizard III (JPK Instru-
ments, Berlin, Germany). The cantilevers spring constants were
determined by the thermal noise method.19 For all the results
presented in this study, silicon nitride AFM tips were bare,
except in the case of Figure 4, G (lower panel), where a
functionalized AFM tip has been used.

AFM tips functionalization

The functionalized tips were produced according to a French
patent of the authors described later in sensors and actuators.20

Briefly, AFM tips were functionalized with dendrimers present-
ing CHO functions able to covalently link with NH2 functions of
proteins. These dendritips were then incubated with the lectin
Concanavalin A (Sigma, L7647-100MG, 100 μg/mL) for
1 hour, before being used for force spectroscopy experiments.

Results analysis

All results were analyzed using the data processing software
from JPK Instruments. The stiffness values measured on cells
were determined from the slope of the linear portion of the raw
deflections versus piezo displacement curves, according to:

kcell ¼ k
s

1−s

� �

with s the experimentally accessible slope of the compliance
region reached for sufficient loading forces. In this model, the
experimental setup can be represented by two linear springs, one
is the AFM’s cantilever, and the other is the cell envelope
exhibiting an effective spring constant. It is then possible to
calculate the effective spring constant kcell of the cell envelope
from the observed slope s of the force curve and the known
spring constant k of the cantilever.21
Results

Candida albicans cells display localized adhesiveness

Thanks to our innovative method to immobilize cells into
PDMS stamps,18 and using Quantitative Imaging™ mode,16

we were able to image and quantify the adhesive properties of
single C. albicans cells at the same time. Figure 1, A, shows a
budding yeast cell; on the corresponding adhesion image
(Figure 1, B), we can see that only the bud, and not the
mother-cell, presents adhesives patches. This original result is



Figure 1. Localization of the adhesive properties of C. albicans cells. (A) Height image (z-range, 1.5 μm) of a budding C. albicans cell in a PDMS stamp, and
(B) adhesion image corresponding to the height image. On (A), MC stands for mother cell, BC stands for budding cell, and the red dotted line represents the
demarcation between the two different cells. (C) Height image (z-range, 3.5 μm) of a single C. albicans cell exhibiting two bud scars, and (D) adhesion image
corresponding to the height image.
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surprising as non-budding cells are highly adhesive (see
below). This result seems to indicate that the mother-cell cell
wall changes during the budding process. As for the cell in
Figure 1, C, this cell displays two bud scars, a common feature
at the surface of yeast cells, which are not adhesive whereas the
rest of the cell is. This type of distribution of the adhesion on
yeast cells has already been seen using immunofluorescence
with antibodies targeted against surface proteins of C.
albicans. Coleman et al for example showed that the Als1
protein was expressed all over C. albicans cells, with the
exception of bud scars.22 The comparison of our results to
these data suggests then that the adhesions probed by
AFM might be due to surface proteins, such as Als1 in the
case of the cell presenting bud scars, but perhaps also
others adhesins.

C. albicans cellwall adhesins are able to aggregate into nanodomains

As showed before,9,12 the proteins expressed at the surface of
C. albicans cell wall are able to aggregate, and to form
nanodomains. However, these nanodomains have not been yet
characterized at the nanoscale, nor were imaged at high resolution.
In fact, these nanodomains have specific adhesive properties that
can be mapped using AFM in the Quantitative Imaging™ mode.
High resolution (256 pixels2) adhesive images are presented in
Figure 2. It shows adhesive nanodomains, at the surface of a living
wild-type C. albicans cell. On the cell presented in this figure
(Figure 2, A), the corresponding adhesion image shows very
distinct adhesive nanodomains that were probed with bare AFM
tips. These nanodomains are homogeneously distributed all over
the cell here, which does not present any morphological features
such as buds or bud scars.When zooming into small areas on top of
the cell (white squares on Figure 2, B), we could measure the area
of each nanodomain. On this cell and on another one showed in
Figure 3, A, 60 nanodomain areas were measured; the values
obtained plotted on Figure 2, E shows that nanodomains have an
average area of 0.09 ± 0.03 μm2. This corresponds to an average
diameter of 170 nm, which confirms the nanoscale of these
nanodomains. Some of the nanodomains are also higher than the
rest of the cell wall.When the whole cell is imaged, it is not visible;
however, specific analysis of the Figure 3, D and the graphic
Figure 3, H representing the topography of the cell surface
revealed nanodomains that had a different height compared to the
rest of the cell. The cross-sections taken along the blue line showed
the height of a nanodomain of 20 nm. Once again, this confirmed
the nanoscale of the nanodomains at the surface of C. albicans.



Figure 2. Imaging of the adhesive domains of C. albicans cells in acetate buffer, at 25 °C for 2 hours. (A) Height image (z-range, 2.5 μm) of a single C.
albicans cell in a polydimethylsiloxane (PDMS) stamp, and (B) adhesion images corresponding to the height images. (C and D)Adhesion images of small areas
on top of the cell, represented by the white squares in (B). (E) Distribution of the areas values of the domains in (C) and (D).
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Different nanodomains have different nanomechanical properties

Adhesion is measured as the rupture force recorded when
retracting the tip from the surface, when approaching and pulling
with the tip on the cell wall, thus AFMmakes it possible to measure
nanomechanical properties of living cells. Here we choose to use an
analysis based on the Hooke model which considers the coupled
cantilever/cell wall as a spring. The stiffness values measured on
cells were determined from the slope of the linear portion of the raw
deflections versus piezo displacement curves, according to:

kcell ¼ k
s

1−s

� �

with s the experimentally accessible slope of the compliance region
reached for sufficient loading forces. Indeed, the most interesting



Figure 3. Nanomechanics of the adhesive domains of C. albicans cells. (A) Height image (z-range, 2.5 μm) of a C. albicans cell in a PDMS stamp, (B)
corresponding adhesion image, and (C) corresponding stiffness image. (D) Height image (z-range, 100 nm) of a small area on top of the cell, represented by the
white square on (A), (E) corresponding adhesion image and (F) corresponding stiffness image. Note that the adhesive nanodomains circled in red on (E) are
also found on the stiffness image (black circles on F). (G) is a 3D-image of the adhesion mapped with the stiffness. (H) Cross-section taken along the blue line
on (D), and (I), distribution of the stiffness values corresponding to the yeast cell wall and the less adhesive domains (blue columns) or to the most adhesive
domains (yellow columns).
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result in this study is the correlation that can be directly made
between the adhesiveness of the nanodomain, and its stiffness.
Nanodomains on Figure 3, E (adhesion map), circled in red were
found on the stiffness image (Figure 3, F) circled in black; they
correspond to the zones where the stiffness of the cell wall is
increased, to 13.4 ± 0.3 nN/μm. As for less adhesive nanodomains,
they do not present any difference in stiffness from the rest of the cell,
and are 12.4 ± 0.2 nN/μm. The 3D-view of the adhesion, mapped
with the stiffness (Figure 3, G) illustrates this clear correlation; the
more adhesive the nanodomain is, the stiffer it is.

Another fascinating point is that for the more adhesive
nanodomains, the retract force curves present typical hydropho-
bic adhesions,23-25 with adhesions occurring when the tip is
retracted from the surface, i. e. 26.7 ± 9.7 nm far from the
contact point (Figure S1, values measured on 300 force curves
recorded on 3 different cells). Force curves from the other, less
adhesive, nanodomains presented retract adhesions resembling
to proteins unfolding, occurring 520.0 ± 153.9 nm after the tip
withdrawal (Figure S1, values measured on 300 force curves
recorded on 3 different cells). Therefore it seems that the
nanodomains are of 2 different natures. There is a class of
nanodomains, hydrophobic, higher and stiff, and another class
displaying proteins unfolding properties, as soft as the rest of the
cell wall. What is the molecular nature of these 2 types of
nanodomains, and are they correlated?
Understanding the adhesive properties of the 2 nanodomains classes

To answer the previous question, wemonitored the retract force
curves recorded on the nanodomains (Figure 4). We found the
same correlation as in Figure 3; the force curves recorded on an
adhesive nanodomains presented hydrophobic retract adhesions,
whereas the force curves recorded on a less adhesive nanodomain
presented protein, unfolding like, profiles. In order to determine the
nature of these last unfoldings, we probed the surface of C.
albicans cells with an AFM tip functionalized with Concanavalin
A (ConA), a protein that interacts with yeast mannoproteins, such
as surface adhesins.26 The resulting force curves (Figure 4, I)
showed retract adhesions displaying unfoldings of different
lengths, but with a similar profile. We also observed condensed
spikes with adhesion forces of 40.9 ± 12.1 pN (Figure S1, values
measured on 300 force curves recorded on 3 different cells). This
value was measured on force curves thanks to the worm-like-chain
(WLC) model using the highest point of each individual small
spikes to adjust the baseline.



Figure 4. Adhesion force curves of C. albicans adhesive domains. (A) Height image (z-range, 4.0 μm) of a C. albicans cell in a PDMS stamp. (B) Adhesion
image of a small area on top of the cell, represented by the white square on (A). (C and D) representative force curves obtained on the zones indicated by the
arrows on (B). (E) Height image (z-range, 2.5 μm) of a C. albicans cell in a PDMS stamp, (F) corresponding adhesion image recorded with a bare tip, and (G)
adhesion image of a 2 μm2 area on top of the cell, represented by the white square on (F), recorded with the Con A tip. (H) Representative force curves obtained
in (G) with the Con A tip.
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In a previous study conducted in 200914 by Alsteens et al,
adhesins (Als5) were unfolded from the surface of live S.
cerevisiae cells overexpressing this protein. The retract force
curves obtained in this study show high similarity with the ones we
obtain here with functionalized AFM tips, with the presence of
serin-threonin rich segments unfolded with a force consistent with
the one obtained in our case, i. e. 40.9 ± 12.1 pN, (condensed
pikes on Figure 4,H). We can therefore, based on this comparison
with the data of the literature, conclude that the less adhesive
nanodomains at the surface of live C. albicans are composed of



Figure 5. Imaging of the adhesive domains of C. albicans cells treated with Als1, 3, 5p amyloid disrupting peptide (V326N peptide) or Als1, 3, 5p amyloid forming
peptide (Als peptide). (A) Height image of a single C. albicans cell in a PDMS stamp, (B) corresponding adhesion image, and (C) corresponding adhesion image
after adding V326N peptide. (D)Adhesion image of small area on top of aC. albicans cell before adding the Als peptide, and (E-G) adhesion images of small areas
on top of the sameC. albicans cell after adding the Als peptide. For (D-G) histograms represent the distribution of the adhesion forces measured on the force curves
obtained on the corresponding images. (H) representative force curves obtained on (D) and (I) representative force curves obtained on (E-G).
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free adhesins, and maybe of Als proteins. However, since all
adhesins (like Als, Hwp1, Eap1, Rbt1 etc) are mannoproteins, we
cannot, at this stage, make a statement on which adhesins are
unfolded here.

As for the second type of nanodomains, the hydrophobic
ones, our hypothesis is that they are composed of the same
proteins as the less adhesive ones. In fact, adhesins (like Als)
display amyloid sequences located on a domain of the protein
called T, that enable them to change their conformation6 and to
aggregate into amyloid nanodomains. And when this phenom-
enon is started, it propagates to the whole cell.9 We therefore
made the hypothesis that the adhesive nanodomains are in fact
amyloid nanodomains, made of Als proteins.
From adhesins to amyloid nanodomains: the role of Als proteins

To verify this hypothesis, and according to the literature on
Als proteins, we synthesized a peptide exhibiting the same
sequence as the one of the T domain of the Als1/3/5 proteins.We
then put this peptide in the presence of the cells in order to
trigger the amyloid formation. We also synthesized the same
peptide, but with a mutation on one amino acid (V326N
peptide), in order to obtain a peptide that inhibits the formation
of the amyloid nanodomains.8 Since Als3 is only expressed on
the surface of hyphae, we will only be able to generate or destroy
the amyloid formation of Als1 and Als5. The results presented in
Figure 5 showed a cell before and after adding the mutated
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peptide. We can clearly see on these adhesion images the loss of
general adhesion and of two nanodomains at the center of the
cell. It seems like the mutated peptide disrupted the amyloids at
the surface of the cell. And the other way around, when cells
were incubated with the amyloid forming peptide, we could
observe the formation of the nanodomains at the surface of the
cells, as it is showed on the adhesion images on local areas on
top of C. albicans cells in Figure 5, E, F and G. Indeed, 98.5%
of the force curves recorded on cells without treatment with the
Als peptide presented no retract adhesions (Figure 5, H)
whereas on treated cells, ~ 50% of the force curves presented
hydrophobic retract adhesions (Figure 5, I). These results allow
us to conclude that the proteins at the origin of the nanodomains
are then mannoproteins, more specifically Als1 or Als5, or both,
that form amyloids.
Discussion

We show in this study that wild-type live C. albicans cells
exhibit extraordinary adhesive properties. In the case of budding
cells, placed in acetate buffer at 25 °C for 2 hours, we observed
that the mother cell is not adhesive and that only the bud presents
adhesive nanodomains. On the contrary, we show that non
budding cells are covered by adhesive nanodomains, in the same
experimental conditions. This illustrates the amazing plasticity of
this species2,27 able to grow as a commensal or as a pathogen,1,28

in all the parts of the intestinal track, but also on the vaginal
mucosa, as unicellular budding cells or as filamentous hyphae.
Moreover its cell wall is permanently remodeled as a reaction to
its environment (temperature, pH, dissolved O2, ions, interacting
surface/cells/bacteria) what makes it challenging to reproduce
the experimental conditions inducing a certain cell wall
phenotype. We then demonstrate that the molecules at the origin
of these adhesions could aggregate into nanodomains, which can
be probed at high resolution using a suited AFM mode, QI™.
These nanodomains are different in terms of level of adhesive-
ness, which is a property directly correlated to their stiffness and
to the hydrophobic state or not of the molecule at the origin of
these nanodomains. We then went further in the study, using
functionalized AFM tips, and were able to determine that the less
adhesive nanodomains were formed by mannoproteins that can
interact specifically with Concanavalin A. These mannoproteins
are able to aggregate to form the adhesive nanodomains because
they have amyloid properties as we showed in Figure 5.

Amyloid aggregation is a primitive29 and very stable30

protein folding and a common structural motif. It is a cross
β-sheet quaternary structure that usually auto-aggregates as
fibrils. It has been, first, associated with neurodegenerative
diseases like Alzheimer, Parkinson, or Creutzfeldt-Jakob
diseases. However it is more and more unclear if the amyloid
lesions are the cause or a consequence of the disease. Amyloid
aggregates are now described as functional proteins assembly
and can be found from bacteria to humans.31 In microorganisms,
amyloid has been described as a functional coat.32 It consists in
curli (E. coli), chaperons (Streptomyces) or hydrophobins
(Aspergillus etc); all of these proteins are implicated in adhesion
to the host and in the invasion, infection process. It is now well
known that adhesins (and especially Als) of C. albicans have
amyloid-forming sequences6,33 and that these proteins form
domains involved in cell aggregation or biofilm formation.8

Nevertheless the characterization, structure and properties of the
amyloids adhesive nanodomains remain unclear.

In this work we measured for the first time the nanoscale size
of amyloid domains (average area of 0.09 μm2) at the surface of
live C. albicans cells. The domains are of 2 different classes.
Some present the characteristic of individual proteins whereas
the others are hydrophobic, stiffer than the rest of the cell
(13.4 ± 0.3 nN/μm compared to 12.4 ± 0.2 nN/μm), and are
slightly protruding. It means that there is a state modification
from soluble proteins into insoluble proteins, which is a
characteristic of amyloid structures. This transformation is
dependent on the proteins concentration and can only occur
when the protein density exceeds a threshold. The roles of the
two classes of domains are probably different. On one hand we
could hypothesize that the hydrophobic nanodomains were
involved in the cell adhesion to abiotic hydrophobic surfaces or
to cell membrane as it is known that membrane binding is an
inherent property of amyloid aggregates.34,35 Amyloid aggrega-
tion is also a way to store proteins, in a limited space and to sort
them when required. This has been demonstrated for hormones
in secretory granules.36,37 Thus C. albicans may store some
adhesins for the subsequent invasion phases. On the other hand
the protein like domains may be responsible for specific
adhesion to fibronectin and other extra cellular proteins of the
matrix. It seems rational that several adhesins, brought together,
would be more efficient in a binding process than a
single adhesion. This finding has to be added to C. albicans
plasticity2 and participate to explain its remarkable adaptation
and pathogenicity.

However, there are still many things to explore on the cell
wall of C. albicans, and future work will be dedicated to
exploring the changes appearing on the mother cell during the
budding process.
Appendix A. Supplementary data

Supplementary data to this article can be found online at
http://dx.doi.org/10.1016/j.nano.2014.07.008.
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Chapter 3.2: A nanoscale view of the yeast cell wall of Candida albicans and 

Saccharomyces cerevisiae 

 
 

 

 

 

 

 

 

 

3.3.2 Nanoscale effects of caspofungin against two yeasts species,         
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Abstract 

Saccharomyces cerevisiae and Candida albicans are model yeasts for biotechnology and human 

health, respectively. We used atomic force microscopy (AFM) to explore the effects of 

caspofungin, an antifungal drug used in hospitals, on these two species. Our nanoscale 

investigation revealed similar, but also different, behaviors of the two yeasts in response to 

treatment with the drug. While administration of caspofungin induced deep cell wall remodeling 

in both yeast species, as evidenced by a dramatic increase in chitin and decrease in β-glucan 

content, changes in cell wall composition were more pronounced with C. albicans cells. Notably, 

the increase of chitin was proportional to the increase in the caspofungin dose. In addition, the 

Young modulus of the cell was three times lower for C. albicans cells than for S. cerevisiae cells 

and increased proportionally with the increase of chitin, suggesting differences in the molecular 

organization of the cell wall between the two yeast species. Also, at a low dose of caspofungin 

(i.e., 0.5×MIC), the cell surface of C. albicans exhibited a morphology that was reminiscent of 

cells expressing adhesion proteins. Interestingly, this morphology was lost at high doses of the 

drug (i.e., 4×MIC). However, the treatment of S. cerevisiae cells with high doses of caspofungin 

resulted in impairment of cytokinesis. Altogether, the use of AFM for investigating the effects of 

antifungal drugs is relevant in nanomedicine, as it should help in understanding their mechanisms 

of action on fungal cells, as well as unraveling unexpected effects on cell division and fungal 

adhesion. 
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Nanoscale Effects of Caspofungin against Two Yeast Species,
Saccharomyces cerevisiae and Candida albicans

C. Formosa,a,b,c,d M. Schiavone,a,b,e H. Martin-Yken,b,e J. M. François,b,e R. E. Duval,c,d,f E. Daguea,b

CNRS, LAAS, Toulouse, Francea; Université de Toulouse, LAAS, Toulouse, Franceb; CNRS, SRSMC, UMR 7565, Vandœuvre-lès-Nancy, Francec; Université de Lorraine, SRSMC,
UMR 7565, Nancy, Franced; INRA, UMR 972 LISBP, Toulouse, Francee; ABC Platform, Nancy, Francef

Saccharomyces cerevisiae and Candida albicans are model yeasts for biotechnology and human health, respectively. We used
atomic force microscopy (AFM) to explore the effects of caspofungin, an antifungal drug used in hospitals, on these two species.
Our nanoscale investigation revealed similar, but also different, behaviors of the two yeasts in response to treatment with the
drug. While administration of caspofungin induced deep cell wall remodeling in both yeast species, as evidenced by a dramatic
increase in chitin and decrease in �-glucan content, changes in cell wall composition were more pronounced with C. albicans
cells. Notably, the increase of chitin was proportional to the increase in the caspofungin dose. In addition, the Young modulus of
the cell was three times lower for C. albicans cells than for S. cerevisiae cells and increased proportionally with the increase of
chitin, suggesting differences in the molecular organization of the cell wall between the two yeast species. Also, at a low dose of
caspofungin (i.e., 0.5� MIC), the cell surface of C. albicans exhibited a morphology that was reminiscent of cells expressing ad-
hesion proteins. Interestingly, this morphology was lost at high doses of the drug (i.e., 4� MIC). However, the treatment of S.
cerevisiae cells with high doses of caspofungin resulted in impairment of cytokinesis. Altogether, the use of AFM for investigat-
ing the effects of antifungal drugs is relevant in nanomedicine, as it should help in understanding their mechanisms of action on
fungal cells, as well as unraveling unexpected effects on cell division and fungal adhesion.

The yeast cell wall is composed of 50 to 60% �-glucans (glucose
residues attached by 1,3-�- and 1,6-�-linkages), 40 to 50%

mannoproteins (highly glycosylated polypeptides), and 1 to 3%
chitin (1, 2). It is an essential dynamic structure playing roles in
maintaining cell shape and integrity, sensing the surrounding en-
vironment, and interacting with surfaces and other cells (3). The
cell wall represents 15 to 25% of the cell dry mass, the chemical
composition of which is well established. Saccharomyces cerevisiae,
also called baker’s yeast, is the best-characterized eukaryotic
model for scientific and biomedical research. Although the chem-
ical composition of the yeast cell wall is well known, its molecular
ultrastructure (organization or assembly) has not been extensively
studied at nanoscale (4, 5), although there are a few reports on the
nanomechanical and adhesive properties of the yeast cell wall un-
der native conditions or under stress conditions (6–8). As for Can-
dida albicans, it is by far the most common human-pathogenic
fungal species. It can cause a range of pathogenic effects, including
painful superficial infections, severe surface infections, and life-
threatening bloodstream infections (9). It is a major cause of mor-
bidity and mortality in immunocompromised patients as a result
of AIDS, cancer chemotherapy, or organ transplantation (10).

Given its medical relevance, C. albicans has been the subject of
extensive research to find new antifungal drugs to fight it. To date,
only three classes of antifungal drugs are available for systemic C.
albicans infections: the polyenes (such as amphotericin B), the
azoles (ketoconazole, itraconazole, fluconazole, and voricona-
zole), and flucytosine. Although many of these drugs have ad-
vanced the management of fungal infections, failure rates remain
high (11), and the emergence of resistant fungal strains is a grow-
ing problem (12). In this context, a new class of antifungal drugs,
the echinocandins, was very welcome in the biomedical domain
(13). There are currently three drugs belonging to the class that are
available for clinical use: caspofungin, micafungin, and anidula-
fungin. The echinocandins are large polypeptide molecules that

inhibit �-1,3-glucan synthase, an enzyme involved in cell wall
synthesis. The disruption of this polysaccharide results in the loss
of cell wall integrity. The activity of echinocandins is generally
opposite to that of the azoles in that they are fungicidal against
yeasts and fungistatic against molds (13). As echinocandins have
been used only recently in the clinic, the mechanism of resistance
to the drugs is still poorly documented, although a few cases of
resistant isolates from patients treated with the antifungal impli-
cating mutations in the FKS1 gene encoding �1,3-glucan synthase
(14–17) have been reported.

Whereas the target of echinocandins (i.e., �-1,3-glucan syn-
thase) is well characterized, the global effects of this antifungal
drug class on the cell wall of yeasts at nanoscale have not been
studied. Such a study is now becoming feasible with the recent
advances in atomic force microscopy (AFM) under liquid condi-
tions. Since its invention in 1986 (18), AFM has proven to be a
powerful tool in biology (19) for evaluating the effects of antimi-
crobial drugs against live bacteria or fungi (20, 21). In this study,
we used AFM under liquid conditions to investigate nanome-
chanical effects caused by caspofungin on S. cerevisiae and C. al-
bicans. Furthermore, we used biochemical methods to determine
the cell wall composition in order to evaluate a potential correla-
tion between these biophysical properties and cell wall modifica-
tions in response to caspofungin for the two yeast species.
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MATERIALS AND METHODS
Yeast growth conditions. S. cerevisiae strain BY4741 (MATa his3�1
leu2�10 met15�0 ura3�0) (22) and C. albicans (from ABC Platform Bugs
Bank, Nancy, France) were stocked at �80°C, revivified on yeast extract-
peptone-dextrose (YPD) agar (Difco; 242720-500g), and grown in yeast
extract-peptone-dextrose broth (Difco; 242820-500g) for 20 h at 30°C
under static conditions. For caspofungin treatment, caspofungin was
added for 20 h before the experiments. Before AFM experiments were
conducted, the yeasts were grown in yeast extract-peptone-dextrose broth
containing caspofungin at a concentration of 0.063 �g/ml (0.5� MIC)
and 0.5 �g/ml (4� MIC) for S. cerevisiae and 0.047 �g/ml (0.5� MIC)
and 0.37 �g/ml (4� MIC) for C. albicans.

MIC determination for caspofungin. The MIC values for caspofun-
gin were determined using commercially available Etest strips containing
a gradient of caspofungin (bioMérieux; 532400). For the diffusion test, a
yeast solution (optical density at 590 nm [OD590] � 0.150) was applied to
the yeast extract-peptone-dextrose agar plates. The plates were allowed to
dry for 15 min before the Etest stripes were applied in a radial fashion onto
the agar surface. The MIC was determined after 24 h at 30°C by the inter-
section of the lower part of the elliptical growth inhibition area with the
Etest strip.

We chose to use Etest from bioMérieux, as it gave repeatable results
compared to the EUCAST (23) or CLSI (24) method. It must be noted that
EUCAST does not publish clinical breakpoints for caspofungin for C.
albicans “due to significant interlaboratory variation in MIC ranges for
caspofungin.”

We used yeast extract-peptone-dextrose agar (Difco; 242720-500g)
and incubation at 30°C in order to determine the caspofungin MIC for the
conditions under which we performed the AFM and biochemical experi-
ments of the study. However, we also performed the Etest at 35°C for 24 h,
and we found the same results for both S. cerevisiae and C. albicans as with
incubation at 30°C. The common applications for the caspofungin Etest
would be to use agar containing RPMI 1640, glucose, and MOPS (mor-
pholinepropanesulfonic acid). However, under these conditions in liquid,
the cells of C. albicans behave differently, since they form hyphae. In our
study, we focused on cells with a spherical shape, the one that C. albicans
assumes in bloodstream infections. This is why we performed all the ex-
periments in YPD, and thus, we made the choice to determine the MICs in
YPD also.

Sample preparation for AFM experiments. Yeast cells were concen-
trated by centrifugation, washed two times in acetate buffer (18 mM
CH3COONa, 1 mM CaCl2, 1 mM MnCl2, pH 5.2), resuspended in acetate
buffer, and immobilized on polydimethylsiloxane (PDMS) stamps pre-
pared as described by Dague et al. (25). Briefly, freshly oxygen-activated
microstructured PDMS stamps were covered with a total of 100 �l of the
solution of cells and allowed to stand for 15 min at room temperature. The
cells were then deposited into the microstructures of the stamp by con-
vective/capillary assembly. For S. cerevisiae cells treated with caspofungin
at 4.0� MIC, polyethylenimine (PEI)-coated glass slides were used to
immobilize the cells, as described previously (26). Briefly, freshly oxygen-
activated glass slides were covered with a 0.2% PEI solution in deionized
water and left for incubation overnight. Then, the glass slides were rinsed
with 20 ml of Milli-Q water and nitrogen dried. A total of 1 ml of the yeast
suspension was then applied to the PEI-coated glass slide, allowed to stand
for 1 h, and rinsed with acetate buffer. Images were recorded in acetate
buffer in quantitative-imaging mode (27, 28) with MLCT AUWH canti-
levers (nominal spring constants, 0.01, 0.1, and 0.5 N/m). For imaging,
cantilevers with a spring constant of 0.01 N/m were used. For force spec-
troscopy experiments, cantilevers with spring constants of 0.1 and 0.5
N/m were used. The applied force was kept at 0.5 nN for both imaging and
force spectroscopy. For imaging and force spectroscopy, we used an AFM
Nanowizard III (JPK Instruments, Berlin, Germany). The cantilevers’
spring constants were determined by the thermal-noise method (29). For
elasticity measurements, force maps of 32-by-32 force curves were re-
corded on a small area on top of the cells. The force-distance curves re-

corded were transformed into force-indentation curves by subtracting the
cantilever deflection on a solid surface. The indentation curves were then
fitted to the Hertz model, which links force (F) as a function of the Young
modulus (E) and the square of the indentation (�) for a conical indenter
according to the following equation: F � [2E tan�/	(1 � 
2)]�2, where �
is the tip opening angle (17.5°) and 
 is the Poisson ratio, assumed to be
0.5.

Isolation of cell walls for acid hydrolysis and chitinase assays. Cells
from three independent cultures were collected at the exponential phase,
harvested by centrifugation (5 min; 4,500 � g; 4°C), and washed two times
with sterilized water. The pellet was resuspended in 0.5 ml of cold water
and transferred to lysing matrix tubes (MPBio; 6960-500) containing
0.5-mm glass beads. The cells were disrupted by 8 cycles of 20 s at 6.5 m/s
using a Fastprep system (Mp Biomedicals). Cell walls were isolated by
centrifugation and extensive washing, as described by Francois (2), and
then lyophilized.

Determination of cell wall polysaccharides by acid hydrolysis and
quantification by HPAEC-pulsed amperometric detection. Sulfuric acid
hydrolysis of the cell wall and quantification of glucosamine, glucose, and
mannose residues released after chitin, �-glucan, and mannan hydrolysis
were determined as described by Dallies et al. (30) with modifications
according to the method of Francois (2). High-performance anionic chro-
matography (HPAEC) was carried out on an ICS 5000 system (Thermo-
fisher Scientific, Courtaboeuf, France). Separation and quantification of
the released monosaccharides were performed on a CarboPac PA10 ana-
lytical column (250 by 4 mm), with a CarboPac PA10 guard column, by
isocratic elution of 18 mM NaOH at 25°C and a flow rate of 1 ml/min.
Detection was performed on a pulsed amperometric system equipped
with a gold electrode.

Chitin determination. A solution of 200 �l of 50 mM potassium ac-
etate, pH 5.0, was added to purify cell walls (10 mg dry mass). After
incubation at 65°C for 5 min, 1 U of chitinase from Streptomyces griseus
(Sigma-Aldrich; C6137) was added. The enzymatic mixture was then in-
cubated for 16 h at 37°C. Chitin levels from yeast cell walls were deter-
mined by the colorimetric method, as described by Reissig et al. (31) and
adapted for the micromethod (a method performed in a microtiter plate,
i.e., 96-well plate), using N-acetylglucosamine (Sigma-Aldrich; A8625) as
a standard. A volume of 125 �l of the enzymatic mixture was heated with
25 �l of 0.8 M potassium tetraborate, pH 9.0 (Sigma-Aldrich; P1463), at
100°C for 8 min. After cooling at room temperature, 750 �l of Reissig
reagent diluted 10 times was added, and tubes were incubated for 40 min
at 37°C. The absorbance was read at 585 nm.

RESULTS
Caspofungin affects the morphology and cell division of S.
cerevisiae. Our innovative method of cell trapping and immobi-
lization in microstructured PDMS stamps (25) allowed us to im-
age yeast cells and obtain morphological and mechanical proper-
ties at nanoscale (Fig. 1a and b). For each condition, five cells from
three independent cultures were analyzed. The MIC determined
with the Etest was 0.125 �g · ml�1. As shown in Fig. 1c, native cells
of S. cerevisiae are roughly ovoid, with a mean diameter of 4.5 �
0.2 �m (Fig. 1e). Upon treatment for 16 h with caspofungin at
0.5� MIC, the cells keep their round shape (Fig. 1b and d), and
their mean size is decreased by about 25% � 2.5% (Fig. 1f). A
small dose of caspofungin, therefore, reduces the size of cells, ap-
parently without any other modifications. When yeast cells were
treated for 16 h with a high dose of caspofungin (4� MIC), the S.
cerevisiae cells were no longer spherical but elongated, resembling
Schizosaccharomyces pombe cells. The cross section taken along the
line in Fig. 2b indicated a length of about 2.3 �m (Fig. 2f), which
is 50% shorter than the untreated cells. However, two cells that
remained connected are distinctly seen in Fig. 2d; they present a
surprising feature on their surfaces, at the center of each one.

Nanoeffects of Caspo on C. albicans and S. cerevisiae

August 2013 Volume 57 Number 8 aac.asm.org 3499

 on A
pril 7, 2014 by guest

http://aac.asm
.org/

D
ow

nloaded from
 

http://aac.asm.org
http://aac.asm.org/
http://aac.asm.org/


When we took a closer look at this feature (Fig. 2e and g), we could
visualize two rings that were 15 nm high and that were separated
by a groove of approximately 200 nm. These results suggest that
the morphology and cell division process of S. cerevisiae are altered
at high doses of caspofungin. How can we explain such an effect?

It is known that caspofungin is an inhibitor of �-1,3-glucan
synthase (13). Thus, cells treated with this antifungal drug should

present a reduced percentage of the cell wall polysaccharide. Ac-
cordingly, we found a reduction in the �-glucan content, from
54% of cell dry mass in untreated S. cerevisiae cells to 49 and 45%
in cells treated with caspofungin concentrations of 0.5� and 4�
MIC, respectively (Table 1). The reduction of glucans was com-
pensated for by an increase of mannans, from 45% of dry mass in
untreated cells to 50 and 53% in cells treated at 0.5� and 4� MIC,

FIG 1 Images of S. cerevisiae cells (strain BY4147) trapped in microstructured PDMS stamps. (a and b) Optical images of live native cells (a) and of cells treated
with caspofungin at 0.5� MIC (0.063 �g/ml) (b). (c and d) AFM height images of a native cell (c) and of a cell treated with caspofungin at 0.5� MIC (0.063
�g/ml) (d). (e and f) Cross sections taken along the lines on the height images.
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respectively (Table 1). This cell wall remodeling in response to
caspofungin treatment was also accompanied by changes in chi-
tin. However, only at high doses of caspofungin (4� MIC) was an
increase in chitin content found, from 5% in untreated cells or
cells treated with 0.5� MIC of caspofungin to 14% of cell wall
mass with a caspofungin dose of 4� MIC (Table 1). These results

are in agreement with previous works of Juchimiuk et al. (32), who
showed that S. cerevisiae cells treated with 3.0 �g/ml caspofungin
had their contents of �-1,3-glucans reduced by 50% and their
chitin contents increased by 3- to 5-fold. These data are in agree-
ment with the general view that the response of S. cerevisiae cells to
cell wall stress results in a deep reorganization of the cell wall as a

FIG 2 Images of S. cerevisiae (strain BY4741) cells treated with caspofungin at 4� MIC (0.5 �g/ml). (a) Optical image of living cells immobilized on a PEI-coated
glass slide. (b) AFM height image (z range � 1.2 �m) of two cells. (c) Vertical-deflection image corresponding to the height image in panel b. (d) AFM height
image of a single cell (z range � 1.2 �m). (e) Height image of the boxed area in panel d (z range � 20 nm). (f and g) Cross-sections taken along the lines in panels
b (f) and e (g).

TABLE 1 Biochemical analysis of glucans and mannans of the cell wall of yeasts by acid hydrolysis and of chitin by the Reissig methoda

Component

Content (% dry mass � SD) in cells treated with caspofungin at:

S. cerevisiae C. albicans

0� MIC 0.5� MIC 4� MIC 0� MIC 0.5� MIC 4� MIC

Glucans 54.1 � 4.9 48.5 � 6.5 45.0 � 7.6 52.0 � 3.2 48.5 � 5.5 30.9 � 8.6
Mannans 45.3 � 2.9 50.4 � 6.2 53.7 � 7.1 46.5 � 3.3 44.2 � 3.0 59.3 � 7.5
Chitin 4.8 � 0.2 5.1 � 0.8 13.8 � 5.2 6.6 � 2.6 12.8 � 4.1 17.9 � 5.3
a For each species and set of conditions, cells from 3 independent cultures were analyzed.
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means to rescue cell wall integrity (33) and, in the case of antifun-
gal stress, in the overproduction of mannans and reduction of
�-glucans.

Nanomechanical properties of S. cerevisiae. In view of the
role of the cell wall in conferring rigidity and protection on the
yeast cell, we next addressed the pertinent question of whether
the observed changes in cell morphology and chitin content were
correlated with modifications in cell wall mechanical properties.
To this end, S. cerevisiae cells exposed to two different concentra-
tions of caspofungin were probed using nanoindentation mea-
surements. The results of this experiment are shown in Fig. 3. The
images of the cells recorded in quantitative-imaging mode (27, 28)
allow analysis of all the force curves recorded in a single image
(n � 65,536). By applying a mask, thanks to the analysis software
(OpenFovea [34, 35]), only the force curves corresponding to the

cells are extracted, leading to the elasticity maps presented in Fig.
3a, b, and c. In all the elasticity maps presented in this study, each
pixel corresponds to a force curve that has been converted into an
indentation curve and fitted with a Hertz model, from which a
Young modulus (YM) value was extracted. The redder the pixel,
the higher the YM value. These elasticity maps showed artifacts
due to the spherical shape of the cells; the edges of the cells seem to
have decreased YM values compared to the centers of the cells.
However, these elasticity maps give a global view of the elasticity of
the whole cells, with untreated cells that appear to be softer than
caspofungin-treated cells. These observations were confirmed by
local nanoindentation measurements performed on a 1-�m2 area
on the surface of each cell (Fig. 3d, e, and f). These areas on the
tops of the cells are flatter, so the YM artifacts are avoided. Un-
treated cells had a YM value of 529 � 265 kPa (Fig. 3g), whereas

FIG 3 Mapping of S. cerevisiae (strain BY4741) cell surface elasticity. (a to c) Elasticity maps (z range � 1.5 MPa) of a native cell (a), of a cell treated with
caspofungin at 0.5� MIC (0.063 �g/ml) (b), and of a cell treated with caspofungin at 4� MIC (0.5 �g/ml) (c). (d, e, and f) Local elasticity maps (z range � 1.5
MPa) recorded on a 1-�m area (white dashed squares) on the tops of cells in panels a to c, respectively. (g, h, and i) Distributions of Young modulus values (n �
1,024) corresponding to the local elasticity maps in panels d to f, respectively.
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cells treated with caspofungin at 0.5� MIC and 4� MIC (Fig. 3h
and i) had YM values that increased to 1,264 � 567 and to 1,125 �
468 kPa, respectively.

Effects of caspofungin treatment on C. albicans. Using the
Etest assay, we determined a MIC of about 0.094 �g · ml�1. The
doses that were used in this study (0.5� MIC and 4� MIC) were
therefore lower than the one reported to induce paradoxical
growth effects (36). Caspofungin treatment does not cause mor-
phology modification in C. albicans; the cells are spherical, with a
mean diameter of 4.1 � 0.2 �m, as shown in Fig. 4a, b, and c.
However, caspofungin treatment induced other modifications of
the surfaces of C. albicans cells. The results presented in Fig. 4g, h,
and i are adhesion images of the cells. Native cells are not adhesive,
whereas cells treated with caspofungin at 0.5� MIC present adhe-
sions homogeneously distributed over the surface of the cell, as
indicated in the adhesion map presented Fig. 4h. However, cells
treated with caspofungin at 4� MIC do not show adhesion at all,
like native cells.

Probing the cell surface of C. albicans using nanoindentation
measurements (Fig. 5), we unexpectedly found a YM value for the
untreated C. albicans cells of 186 � 89 kPa, which is three times
lower than that of S. cerevisiae cells. Taking into account that the
proportions of mannans, �-glucans, and chitin in the cell wall are
very similar for the two yeast species (1, 37), a likely explanation
for the difference in YM values may reside in a difference in the
molecular architectures of the cell wall between the two yeast spe-
cies, notably in cross-linking between the components. Treatment
of C. albicans cells with caspofungin at 0.5� MIC or 4� MIC for
16 h resulted in an increase of the YM value to 399 � 147 kPa and
1,326 � 340 kPa, respectively (Fig. 5h and i). Quite remarkably,
this increase in YM values was correlated with the increase in the
chitin level in C. albicans cells upon treatment with caspofungin
(Fig. 6b and Table 1). In addition, the rise of chitin in the walls of
C. albicans cells treated with caspofungin was accompanied by a
decrease in �-glucans and an increase of mannans, as already no-
ticed for S. cerevisiae cells, but the effects of caspofungin were

FIG 4 Imaging of C. albicans cells trapped in microstructured PDMS stamps. (a to c) AFM height images of a native cell (a), of a cell treated with caspofungin
at 0.5� MIC (0.047 �g/ml) (b), and of a cell treated with caspofungin at 4� MIC (0.376 �g/ml) (c). (d, e, and f) Cross sections taken along the lines on the images
in panels a to c, respectively. (g, h, and i) adhesion images corresponding to the height images in panels a to c, respectively.
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apparently more prominent. Notably, untreated cells displayed a
�-glucan content of 52% of the cell wall mass. This proportion
was reduced to 49% upon treatment with 0.5� MIC and to 31%
when the cells were treated with 4� MIC of caspofungin. As for
mannans, the proportion in untreated cells was close to 46% and
increased to 59% when the cells were cultivated in the presence of
a dose of 4� MIC of caspofungin.

DISCUSSION

We used AFM to investigate the effects of caspofungin on the
morphology and nanomechanical properties of two yeast species,
S. cerevisiae and C. albicans. With respect to S. cerevisiae, our re-
sults indicated that caspofungin at high doses alters the cell divi-
sion process by perturbing cytokinesis. These modifications were
observed along with a diminution of the �-1,3-glucan content and

an increase in the chitin content. Studies by Cabib and coworkers
have shown the importance of chitin and �-1,3-glucans during the
cell division of yeasts (38–40). Their work focused on the remod-
eling of the cell wall during cell division, and particularly on the
neck at the mother-bud interface. This crucial region is the site
where cytokinesis and septation take place (41). Cabib et al.
showed that control of growth at the neck is exerted by a septin
ring and a chitin ring present at the location. A defect in either one
of the rings leads to only minor morphological abnormalities.
However, when both are faulty, control of growth is lost, the neck
widens, and cytokinesis does not take place (38). They also showed
that the chitin ring at the neck is specifically bound to �-1,3-
glucans (42) and that this linkage is necessary for the control of
growth at the mother-daughter neck. As indicated in Fig. 2, the
apparent impairment in cytokinesis in yeast treated with a high

FIG 5 Mapping of C. albicans cell surface elasticity. (a to c) Elasticity maps (z range � 0.5 MPa) of a native cell (a), of a cell treated with caspofungin at 0.5� MIC
(0.047 �g/ml) (b), and of a cell treated with caspofungin at 4� MIC (0.376 �g/ml) (c). (d, e, and f) Local elasticity maps (z range � 0.5 MPa) recorded on a 1-�m
area (white dashed squares) on the tops of the cells in panels a to c, respectively. (g, h, and i) Distributions of Young modulus values (n � 1,024) corresponding
to the local elasticity maps in panels d to f, respectively.
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dose of caspofungin might be due to excess chitin that is present at
the bud neck and that is not linked to �-1,3-glucans, as the content
of the latter is reduced.

While the increase in the YM value of the cell wall of S. cerevi-
siae could be correlated with the increase in chitin induced at a
high dose of caspofungin, this was not the case for a lower dose of
caspofungin, for which the YM value was already the same as at the
higher dose of the antifungal drug. These results suggest that the
force measurements performed with atomic force microscopy are
not solely linked to changes in the cell wall composition but may
unravel deep reorganization of the cell wall architecture without
significant change in its cell wall components (43). A recent study
conducted by our team (43) focused on S. cerevisiae mutants de-
fective in, among other things, �-glucan elongation (gas1�), chi-
tin synthesis (chs3�), and cross-linkages between chitin and
�-glucans (chr1chr2�). This AFM study showed that cell wall elas-
ticity was mainly dependent on the architecture and molecular
composition of the cell wall. Moreover, chitin was identified as
playing an important role in the nanomechanical properties of the
cell wall. Our results are therefore in line with this previous study,
and the amount of chitin in the cell wall could be directly corre-
lated with the increase in the YM values. The difference in the
nanomechanical properties of the two yeast species suggests a dif-
ference in the molecular architectures of their cell walls, even
though the cell wall compositions were seemingly comparable.

With respect to C. albicans cells, global morphology and cell
division do not appear to be affected, even at high doses of caspo-
fungin. The modifications induced by the treatment concern the
adhesive properties of the cells. As we saw, cells treated with a low
dose of caspofungin present adhesions on their surfaces. C. albi-
cans cells display adhesion proteins on their surfaces when culti-
vated under particular conditions (44). A key adhesin family iden-
tified is the Als (for agglutinin-like sequence) family (45, 46),
which includes eight large cell surface glycoproteins. Als proteins
play major roles in the processes of infection and colonization of
the host. Since their discovery, many studies have been dedicated
to understanding their functions and localization on the surfaces
of cells. A recent study by Alsteens et al. (47) has characterized the
localization of Als5 at the surface of mutant strains of S. cerevisiae
using atomic force microcopy; in 2012, Beaussart et al. (48) char-
acterized the localization of Als3 on the surfaces of C. albicans cells
during morphogenesis. Their work provides confirmation that
Als proteins can be mapped at the surfaces of living cells. Among
these proteins is Als1p, which is involved in different processes,
such as adherence to endothelial cells, flocculation, and filamen-
tation (49). Gregori et al. (50) showed that Als1 is a critical factor
required for caspofungin-induced flocculation. The authors show
that cells treated by caspofungin present levels of ALS1 mRNA that
are strongly upregulated. Following these sets of data, we could
hypothesize that the adhesion shown in Fig. 3h is due to expres-
sion of Als1. However, at high doses, the expression of the gene
could be inhibited, leading us to think that the expression of Als1
under antifungal stress is a complex dynamic process that needs
further study. Perhaps, at high doses of caspofungin, either the
cells are dying or the transcriptional and translational machinery
at this level of drug is strongly impaired, so that synthesis of new
components at the cell wall, such as adhesion proteins, is inhib-
ited. This hypothesis awaits further work, for instance, by measur-
ing the expression of genes encoding some of these adhesion pro-
teins in C. albicans cells challenged at different concentrations of
caspofungin. These results were recorded on living cells of wild-
type C. albicans, which gives us an insight into the physiological
localization of the protein. Further work must be done to probe
these adhesions with functionalized AFM tips under different
conditions of growth and stress.
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Abstract 

 
Studying living bacteria at the nanoscale in their native liquid environment opens an unexplored 

landscape. We focus on Pseudomonas aeruginosa and demonstrate how the cell wall is 

biophysically affected at the nanoscale by two reference antibiotics (ticarcillin and tobramycin). 

The elasticity of the cells drops dramatically after treatment (from 263 ± 70 kPa to 50 ± 18 and 

24 ± 4 kPa, respectively on ticarcillin- and tobramycin-treated bacteria) and major micro- and 

nano-morphological modifications are observed (the surface roughness of native, ticarcillin- and 

tobramycin-treated bacteria are respectively 2.5, 0.8, and 4.4 nm for a surface area of 40,000 

nm²). Thus the nanoscale approach in liquid is valid and can be extended. 
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Abstract

Studying living bacteria at the nanoscale in their native liquid environment opens an unexplored landscape. We focus on Pseudomonas
aeruginosa and demonstrate how the cell wall is biophysically affected at the nanoscale by two reference antibiotics (ticarcillin and
tobramycin). The elasticity of the cells drops dramatically after treatment (from 263 ± 70 kPa to 50 ± 18 and 24 ± 4 kPa, respectively on
ticarcillin- and tobramycin-treated bacteria) and major micro- and nano-morphological modifications are observed (the surface roughness of
native, ticarcillin- and tobramycin-treated bacteria are respectively 2.5, 0.8, and 4.4 nm for a surface area of 40,000 nm²). Thus the nanoscale
approach in liquid is valid and can be extended.

From the Clinical Editor: Pseudomonas aeruginosa cell wall was demonstrated to be biophysically affected at the nanoscale by two
reference antibiotics, ticarcillin, and tobramycin, with the elasticity dropping dramatically after treatment.
© 2012 Elsevier Inc. All rights reserved.

Key words: Pseudomonas aeruginosa; Atomic Force Microscopy; Ticarcillin; Tobramycin; Elasticity; Bacterial cell wall
For 25 years, Atomic Force Microscopy (AFM) has emerged
as a valuable tool in microbiology.1 Recently it has been used
to study the effects of antimicrobial drugs on living micro-
organisms.2 An advantage of AFM is the possibility to work in
liquid on living cells. Nevertheless, sample immobilization is a
challenge3 and explains why in most publications the bacteria
were air dried. Here, we focused on the dreadful bacteria
Pseudomonas aeruginosa4 and overcome the immobilization
problem by taking advantage of electrostatic interactions
between a positively charged surface and the negatively charged
bacteria. P. aeruginosa, is implicated in 10% of nosocomial
infections in France. This pathogen, resistant to several anti-
biotics and antiseptics, has a great capacity for acquiring new
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resistance mechanisms under selective antibiotic pressure.5

Therefore, understanding the effects of antibiotics on these
bacteria has become a necessity. We studied two reference
antibiotics, ticarcillin and tobramycin, which are highly active
on P. aeruginosa. They have known action mechanisms and are
widely used in terapeutics, unlike other molecules, e.g. colistin
wihch effects were recently studied.6 Ticarcillin is a β-lactamin
which inhibits the bacterial transpeptidases and transglyco-
sylases responsible for the assembly of the cell wall pep-
tidoglycan.6 Tobramycin is an aminoglycoside that works by
binding to the 30S and 50S bacterial ribosome to prevent
formation of the 70S complex. As a result, mRNA cannot
be translated into protein.7 These two different mechanisms
of action should therefore produce different effects on the
bacterial cells. In this study, our purpose was to understand
better the antibiotics' effects on the cell wall of P. aeruginosa
at the nanoscale.

We chose to explore the effects of tobramycin and ticarcillin
on P. aeruginosa ATCC 27853. We used AFM (details appear in
Supplementary Material 1) to explore bacterial cell wall
modifications. We recorded images of single bacteria (Figure 1)
and images at higher resolution on the top of the cells to
qualitatively explore the impact of tobramycin and ticarcillin on
anoscale effects of antibiotics on P. aeruginosa. Nanomedicine: NBM

mailto:edague@laas.fr
http://dx.doi.org/10.1016/j.nano.2011.09.009
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Figure 1. Imaging of bacteria. Height images (z range = 1μm) recorded on (A) native, (C) ticarcillin- and (E) tobramycin- treated cell. (B, D and F) Vertical
deflection images correspond to the height images. (G) Vertical cross-sections taken along the solid lines of native (blue), ticarcillin- (green) and tobramycin-
treated cell (red). (H) Horizontal cross-sections taken along the dashed lines.

Figure 2. Mechanical properties of native (blue), ticarcillin- (green) and tobramycin-treated (red) bacteria. (A) Representative force-displacement curves
recorded on the glass slide (dashed line) and on single cells. The lines between the dashed lines and the colored lines represent the indentation (δ). (B) Force-
indentation curves obtained from the curves showed in panel A. Colored lines show the data, whereas the black lines show the theoretical fits (Hertz model) used
to extract Young modulus values.
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P. aeruginosa surface topology. We then recorded force maps of
20 × 20 force curves on the same area of the cells. The force
curves were recorded in the same conditions with calibrated
cantilevers. The force-distance curves recorded on the bacteria
were treated to subtract the cantilever deflection on a solid surface
(see Figure 2). The distance difference, at a given force, between a
curve recorded on glass and on the bacteria is called indentation
(δ). The indentation curves were then fitted to the Hertz model,

image of Figure 2


Figure 3. Mapping of bacteria surface elasticity. (A) elasticity map (z-range = 600 kPa) recorded on a native, (C) ticarcillin- and (E) tobramycin-treated
cell. (B, D and F) Distribution of Young Modulus values (n = 399 force curves) corresponding to the elasticity maps. In F the insert presents more clearly
the E repartition.
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which links force (F) as a function of the elastic modulus (E) and
the square of the indentation (δ) for a conical indenter.

F =
2E tan a
p 1 − v2ð Þ d

2 ð1Þ

In equation (1), α is the tip opening angle (36°) and ν the
Poisson ratio assumed to be 0.5.
Figure 1 presents height and deflection AFM images of P.
aeruginosa in (A) native condition, after (C) ticarcillin and (E)
tobramycin treatment. The native cell shows a smooth surface.
The cells are 2 μm long (blue line, Figure 1, G), 1.2 μm large
(blue dashed line, Figure 1, H) and 450 nm high (blue lines,
Figure 1, G and H). Due to this relatively higher height,
convolution artifacts can be seen on the deflection image in
Figure 1, B (white dashed lines). Figure 2 is a comparison of the

image of Figure 3


Figure 4. Imaging of bacteria cells. Height images recorded on (A) native, (B) ticarcillin- (C) tobramycin-treated cell. D shows the roughness measured on the
height images of native (blue), ticarcillin- (green) and tobramycin-treated cells (red).
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elastic properties of native and treated cells. Figure 2, A shows
representative raw data, whereas Figure 2, B shows the force
versus indentation curve. In Figure 2 the plain black lines are the
Hertz model fitted to the indentation curves. On those curves it is
clear that both ticarcillin and tobramycin induce a dramatic
decrease of the bacterial cell wall elasticity. In Figure 3 this
obvious observation is quantified with force volume. Native cells
have a Young modulus of 261 ± 70 kPa (Figure 3, B), whereas
for ticarcillin- and tobramycin-treated cells, the histograms
(Figure 3, D and F) show that the modulus drops, respectively,
to 24 ± 4 kPa and 50 ± 18 kPa (for statistic see Supplementary
Material 2). On the elasticity maps in Figure 3, A, C and E, each
pixel represents an elastic modulus. The brighter the pixel is, the
higher the Young modulus is. The maps are homogeneous and
confirm that the elasticity decreases between the native and
treated cells. From Figure 4, high-resolution height images of the
cells' surface and a roughness analysis, we learn that the native
cells are smooth, homogeneous, and bulging whereas the
tobramycin-treated cells are rougher. Surprisingly, the Power
Spectral Density (PSD) analysis of ticarcillin-treated cells show a
decrease of the surface roughness. Moreover, bacteria growing in
presence of ticarcillin form filaments. This morphology, already
observed by Scanning Electron Microscopy,8 can be explained
by the fact that β-lactamins, like ticarcillin, activates the SOS
system of the bacteria, therefore inhibiting the cell division.9,10

The Young modulus of ticarcillin-treated cells is reduced to 50 ±
18 kPa (Figure 3), which indicates that ticarcillin affects the
bacterial cell wall. This observation is consistent with the
mechanism of action of the antibiotic that inhibits the
biosynthesis of the peptidoglycan. Therefore the bacteria are
not able to yield a rigid cell wall, leading to the decrease of the
Young modulus.

Tobramycin binds to the bacterial ribosome, which leads to
the synthesis of abnormal proteins. These proteins are then
incorporated to the bacterial cell wall, which loses its integrity.
We show that tobramycin-treated cells have a deformed cell wall
(Figure 1), and a Young modulus highly reduced in comparison
with native cells (Figure 3).

This set of data demonstrates that looking at the
nanobiophysical properties of bacteria treated by antibiotics
is rich in information. A straightforward extension of this study
will be (i) to work with P. aeruginosa strains resistant to
ticarcillin or/and tobramycin; and (ii) to analyze the effects of
innovative antimicrobial agents. Because of the method and
data presented here, we are confident that real and major
advances in both fundamental and applied microbiology could
be done.
Appendix A. Supplementary data

Supplementary data to this article can be found online at
doi:10.1016/j.nano.2011.09.009.

http://dx.doi.org/10.1016/j.nano.2011.09.009
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Abstract 

Objectives: We focused on polymyxin E (colistin), and studied its effects at the nanoscale on the 

morphology and nanomechanical properties of Klebsiella pneumoniae ATCC 700603, and of its 

colistin resistant derivate called Kp ATCCm, using Atomic Force Microscopy (AFM).  

 

Methods: Klebsiella pneumoniae cells were immobilized on polyethylenimine coated glass slides. 

All images and force curves were recorded in Phosphate Buffered Saline, with calibrated 

cantilevers and controlled applied force, on an AFM Nanowizard III (JPK Instruments, Berlin, 

Germany). Young modulus was extracted from force curves fitted through the Hertz model, and 

stiffness values were extracted from force curves fitted through the Hooke model. In each case, 

bacteria coming from three independent cultures were analyzed.  

 

Results: Morphology results showed that colistin removed the capsule from the sensitive strain, 

but not from the resistant strain.  Nanomechanical data on the resistant strain showed that colistin 

increased the Young modulus of the capsule. Extend force curves recorded on top of the cells 

allowed to hypothesize on the nanoarchitecture of the capsule of the two strains: Kp ATCC 

700603 has a soft capsule in one layer whereas Kp ATCCm capsule is harder and organized in 

several layers.  

 

Conclusions: In this study, we could show for the first time the effects of colistin at the nanoscale 

on the cell wall of K. pneumoniae using AFM in liquid conditions. This led us to hypothesize a 

new mechanism of resistance to colistin based on a multilayered organization of the capsular 

polysaccharides.  
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Introduction 

K. pneumoniae, a member of the Enterobacteriaceae family, has been recognized over 

100 years ago as a cause of community-acquired pneumonia
1
. However, the vast majority of 

Klebsiella infections are associated with hospitalizations; urinary tract, bloodstream, lungs as 

well as abdominal cavity infections have now became common. Numerous virulence factors have 

been described for K. pneumoniae, such as extracellular capsules. These are essential for the 

species’ virulence, since the capsular material forms thick bundles of fibrillous structures that 

cover the bacterial surface in massive layers
2
. This protects the bacteria from phagocytosis and 

prevents killing by bactericidal serum factors
3
. Another important feature of K. pneumoniae is its 

ability to resist to a large number of antibiotics, through multiple mechanisms (efflux pumps, lack 

of permeability, and production of enzymes). For example, within a few years after the 

introduction of cephalosporins, K. pneumoniae strains within hospitals were showed to produce 

β-lactamases able to inactivate these agents. These β-lactamases were in fact ESBL (Extended-

Spectrum β-Lactamases), and are plasmid mediated enzymes that hydrolyze oxymino-β-

lactamins agents. Because these plasmids are mobile genetic elements, they spread and evolve 

rapidly
4
; they now also carry resistance genes to other antibiotics, including aminoglycosides, 

chloramphenicol and sulfonamides. Therefore, K. pneumoniae strains containing these plasmids 

are multidrug resistant
2,3,5

. However, many ESBLs are readily inhibited by the commercially 

available β-lactamases inhibitors (clavulanic acid, tazobactam and sulbactam)
6
, which serve as an 

important phenotypic test to identify ESBLs. In this study, we have specifically worked on the 

well-characterized K. pneumoniae ATCC 700603 strain, a clinical isolate obtained from a patient 

in the USA in 1994, which produces an ESBL called SHV-18
7–9

. Because this ESBL is sensitive 

to clavulanic acid, it has been used as a reference strain for quality control in ESBL detection.  
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 Management and treatment of ESBL-producing K. pneumoniae infections can be 

challenging. Currently, carbapenems are the only class of antibiotics that have consistently been 

effective against ESBL-producing K. pneumoniae. However, bacteria have developed 

cabapenemases (KPC), which are ESBL-like enzymes that confer resistance to extended-

spectrum cephalosporins and carbapenems
1,6,10

. Therefore, clinicians had to turn back to an old 

antibiotic of the polymyxin class, colistin, as a last resort agent for the treatment of infections 

caused by multidrug resistant Klebsiella pneumoniae
11

. Polymyxins are cyclic lipodecapeptides 

that are strongly cationic. They were discovered as early as 1947
12

, and widely used at that time. 

But, following reports on nephrotoxicity and neurotoxicity in the 1970s, they were largely 

replaced by other less-toxic antibiotics
13,14

. Polymyxin B and polymyxin E (colistin) are the main 

antibiotics of this group, and the only ones used clinically. They are bactericidal, and act rapidly 

and specifically on Gram-negative bacteria. Here we have focused on colistin that, as for 

polymyxin B, has for initial target, the LPS (LipoPolySaccharide) of the outer membrane of 

Gram-negative bacteria. Thanks to its positive charges, colistin interacts electrostatically with 

LPS, and competitively displaces divalent cations from the phosphate groups of lipid A of LPS
15

. 

This results in a change in the permeability of the cell wall, leakage of cell contents, and 

subsequently, cell death
15,16

. However, some authors argue that interaction with membranes is a 

part of the polymyxin activity, but not actually the lethal event
17

. Therefore the precise 

mechanism of action of colistin still remains contentious
18

, and especially on capsulated bacterial 

species such as Klebsiella pneumoniae. In a similar way, mechanisms resulting in a decreased 

susceptibility to colistin are also unclear, and only two mechanisms of resistance, involving the 

extracellular capsule, or the modification of the initial target of colistin, LPS, are currently 

recognized
11

.  
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In this study, we have used a technology coming from physics, and adapted to biological 

conditions, Atomic Force Microscopy (AFM), to probe the effects at the nanoscale of colistin on 

K. pneumoniae ATCC 700603, and on its colistin-resistant derivate named Kp ATCCm
19

, in 

order to better understand the mechanism of resistance to colistin. Since its invention in 1986
20

, 

AFM has developed into a powerful technology in biology
21

 and especially to probe the effects of 

antimicrobial drugs against live bacteria or fungi
22–25

. Although the effects of colistin have 

already been showed by AFM on cells of Pseudomonas aeruginosa and Acinetobacter 

baumannii
26–28

, no work have been performed on live cells of Klebsiella pneumoniae, using AFM 

in liquid conditions. The results of this original study enlighten the mechanism of resistance of 

Kp ATCCm to colistin. 

 

Materials and Methods 

Bacteria growth conditions 

The bacteria Klebsiella pneumoniae ATCC 700603 and Kp ATCCm (resistant derivative of K. 

pneumoniae ATCC 700603, ABC Platform
®
 Bugs Bank) were stocked at -80 °C, revivified on 

Mueller Hinton Agar (Difco, 225250-500 g) and grown in Mueller Hinton Broth (Difco, 275730-

500 g) for 24 hours at 37°C under static conditions. Antibiograms of the two strains are presented 

in Supplementary data 1 and 2.  

Antibiotic treatments 

Minimal Inhibitory Concentrations (MICs) of colistin sulfate salt (Sigma Aldrich, C4461-1G) 

were calculated for each strain according to the macro-dilution method provided by the Clinical 

and Laboratory Standards Institute
29

 (CLSI). For Kp ATCC 700603, the MIC of colistin was 

found to be 0.5 mg/L, and for Kp ATCCm, it was found to be 16 mg/L. These results were 

confirmed by antibiograms performed with automated Vitek2 system, BioMérieux, France 
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(Supplementary data 1 and 2). Then, before AFM experiments, bacteria were grown in Mueller 

Hinton broth containing colistin at a concentration of 0.5×MIC (0.25 mg/L for Kp ATCC 700603 

and 8 mg/mL for Kp ATCCm) or 0.75×MIC (0.375 mg/L for Kp ATCC 700603 and 12 mg/L for 

Kp ATCCm), during 18 to 20 hours, at 37°C under static conditions. 

Sample preparation for AFM experiments 

Bacterial cells were concentrated by centrifugation (4500g, 3 min), washed 2 times in PBS 

(Phosphate Buffered Saline) 1X (Sigma, P3813-10PAK, filtered on 0.22 µm filters), re-

suspended in PBS 1X to a concentration of ~ 10
8
 cells/mL, and immobilized on 

PolyEthylenImine (PEI, Fluka P3142-100 mL) coated glass slides (prepared as described 

elsewhere
30

). Briefly, freshly oxygen activated glass slides were covered by a 0.2% PEI solution 

in deionized water and left for incubation overnight. Then the glass slides were rinsed with 20 

mL of Milli-Q water and nitrogen dried. A total of 1 mL of the bacterial suspension was then 

applied to the PEI coated glass slide, allowed to stand for one hour and rinsed with PBS 1X. 

AFM experiments 

Images were recorded in PBS 1X, in Quantitative Imaging
TM

 mode available on a Nanowizard III 

AFM (JPK Instruments, Berlin, Germany), with MLCT AUWH cantilevers (nominal spring 

constant of 0.01 N/m, Bruker, USA) at an applied force of 1 nN, with a z-length between 2 and 3 

µm and an approach-retract speed between 130 and 250 µm/s. Cantilevers spring constant were 

measured prior to each experiments using the thermal noise method
31

. Force curves were 

recorded in Force Volume mode at an applied force of 2.0 nN. Data were processed using the 

JPK Data processing software (JPK Instruments, berlin, Germany). For nanomechanical data, 

Hertz model was used to extract Young modulus values, and Hooke model to extract stiffness 

values. The Hertz model gives the force F as a function of the indentation (δ), and of the Young 

modulus (E) according to the equation F = ((2.E.tanα)/(π.(1-ν²).δ², where α is the tip opening 
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angle (35°) and v the Poisson ratio (arbitrarily assumed to be 0.5)
32

. The Hooke model considers 

the couple cantilever/cell wall as a spring. The stiffness of the cell wall (kcell) is therefore 

determined from the slope of the linear portion of the raw force curves, according to kcell = k(s/1-

s), where s is the experimentally accessible slope of the compliance region reached for sufficient 

loading forces, and k the cantilever spring constant
33

.  

 

Results 

Colistin removes the capsule from the sensitive strain 

K. pneumoniae ATCC 700603 was first probed in native conditions or under colistin treatment, 

thanks to AFM used in the Quantitative Imaging
TM

 mode
34

. Figure 1 presents the morphology 

modifications of the bacteria submitted to colistin treatment. The height image in Figure 1a 

shows two bacterial cells surrounded by their capsule in absence of colistin; the cross-sections 

data show that bacteria are 0.88 ± 0.11 µm high and 1.12 ± 0.15 µm large, whereas the capsule is 

0.56 ± 0.09 µm high but covers a surface of 3.46 ± 0.28 µm in width (Figure 1b, values measured 

on five cells coming from three independent cultures). As for the extend force curves obtained on 

untreated cells, at a high applied force (2 nN), 81.3% of them (n = 5120) show a spike that could 

correspond to the moment where the tip touches the capsule and moves through it, then through 

the bacterial cell, before reaching the glass slide (linear portion of the force curve) (Figure 1c). 

When cells are treated with colistin, at either 0.5×MIC (0.25 mg/L, Figure 1d, e, and f), or 

0.75×MIC (0.375 mg/L, Figure 1g, h and i), the capsule is no longer visible around the cells, 

which is confirmed by the cross-sections showing only the bacterial profile, with a height of 0.88 

± 0.06 µm and a width of 1.13 ± 0.11 µm (values measured on ten cells coming from six 

independent cultures). As for the extend force curves recorded on these cells, they do not display 
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a spike anymore, allowing us to hypothesize that these spikes correspond indeed to the rupture of 

the capsule by the AFM tip.  

 

Colistin resistant strain Kp ATCCm displays a different capsular organization  

In the case of the colistin resistant derivative of K. pneumoniae ATCC 700603 (i.e. Kp ATCCm), 

as it can be seen on the height images in Figure 2a, d and g, this strain does not morphologically 

suffer from the colistin treatment. Indeed, the cross-sections in Figure 2b, e and h, show the same 

profile in the three different conditions, native, or colistin treatment at 0.5×MIC (8 mg/L) or at 

0.75×MIC (12 mg/L).. The bacteria are 0.83 ± 0.06 µm high and 1.50 ± 0.11 µm large, thus 

larger than the sensitive strain (values measured on fifteen cells coming from nine independent 

cultures). At this stage, first differences can be observed between the two strains. Even in native 

conditions, Kp ATCCm does not have a capsule covering a large surface like Kp ATCC. 

However since Kp ATCCm cells are wider than sensitive strains cells, we can conclude that its 

capsule has a different morphology, and is tightly bound to the bacterial cell wall. But the most 

interesting data obtained on Kp ATCCm cells are the extend force curves, presented in Figure 2c, 

f and i. In native conditions, force curves display two spikes. After the first one on the left of the 

force curve (the further away from the contact point), small condensed spikes are visible, 

suggesting that successive layers are ruptured by the AFM tip. When cells are treated by colistin, 

the force curves present the same profile, except that the small condensed spikes are not observed 

anymore after the first spike, meaning that the several layers observed in native conditions are not 

present anymore. In the three cases, the linear portions of the force curves correspond to the 

contact of the tip with the glass slide, as force curves recorded on the glass slide with the same tip 

present the same slope (data not shown). At this stage, the morphology data and the extend force 

curves recorded on cells of the sensitive and resistant strains of K. pneumoniae, demonstrate that 
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colistin is able to remove the capsule from the bacteria only in the case of the sensitive strain, and 

that the two strains present a different capsular organization that can be probed thanks to force 

spectroscopy. However the force curves of treated Kp ATCCm cells indicate that this capsular 

organization is lost upon treatment. The next question is then: what are the effects of colistin on 

the nanomechanical properties of the cells?  

 

Colistin modifies the nanomechanical properties of Kp ATCC and Kp ATCCm  

Figure 3 presents the nanomechanical results obtained on the sensitive strain of K. 

pneumoniae. In native conditions, extend force curves obtained on cells, converted into 

indentation curves (Figure 3b, grey line), and fitted through the Hertz model (Figure 3b, empty 

circles) give access, according a first interpretation of the force curves, to the stiffness of the 

capsule. Stiffness values measured on five cells coming from 3 independent cultures are in 

average of 3.6 ± 1.0 kPa (Figure 3a). However, when cells are treated with colistin, whatever the 

dose, force curves present only a few nanometers of indentation, and cannot be fitted through the 

Hertz model anymore. After verifying that the slope of these force curves was different from the 

ones of force curves recorded on glass slides (Supplementary data 3), we chose to analyze them 

with the Hooke model, which considers the couple cantilever/cell wall as a spring. This model 

gives access to the bacterial spring constant, expressed in N/m. Figure 3c shows the force curves 

obtained for cells treated with colistin at 0.5×MIC (0.25 mg/L, blue line) and at 0.75×MIC (0.375 

mg/L, orange line), fitted with the Hooke model (empty circles). The results obtained on five 

cells coming from three independent cultures in each case, are of 12.6 ± 0.7 nN/µm for a 

treatment at 0.5×MIC, and of 11.5 ± 0.6 nN/µm at 0.75×MIC. The difference between these two 

conditions is therefore not significant. These results allow us to conclude that in native 

conditions, cells are covered by the capsule, and only the stiffness of this capsule can be 
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measured. However, when cells are treated with colistin, the capsule is removed from the surface, 

giving access to the tip to the bacterial cell wall. The cell wall is not soft enough for the tip to 

indent into it; as we cannot compare spring constant values with the untreated cells, where the 

cell wall is not accessible, it is impossible to conclude whether the cell wall is naturally stiff, or if 

it is a result of the colistin treatment.  

In the case of the colistin resistant strain, Kp ATCCm, the situation is different, since 

colistin seems to have no effect on the morphology of the cells (Figure 2). However, extend force 

curves acquired on cells treated with colistin suggested that the organization of the capsule 

visible in native conditions, was lost upon treatment. In native conditions, we could fit the first 

spike of the indentation curve, likely corresponding to the capsule of the cells, through the Hertz 

model (Figure 4b). The values obtained on five cells coming from three independent cultures 

were of 21.3 ± 4.2 kPa (Figure 4a). This value, 5 times higher than the one measured on the 

capsule of the sensitive strain, confirms the previous observation in the differences of the 

capsular organization between the two strains. Then, since the capsule is still present when cells 

are treated with colistin, we could fit the indentation curves obtained on treated cells also through 

the Hertz model (Figure 4b), and found an increase in the average stiffness values to 74.4 ± 19.7 

kPa when cells are treated by colistin at 0.5×MIC (8 mg/L), and to 88.5 ± 19.4 kPa when cells are 

treated by colistin at 0.75×MIC (12 mg/L, Figure 4a). Therefore, along with the apparent loss of 

the capsule organization on the force extend force curves (Figure 2) recorded on treated Kp 

ATCCm cells, the nanomechanical data also show that the stiffness of the capsule of the colistin 

resistant strain increases upon treatment by colistin.  
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Discussion 

As it has been introduced earlier, the described mechanism of action of colistin is to 

interact thanks to its strong positive charge to LPS molecules present on the outer membrane of 

Gram-negative bacteria, inducing changes in the membrane permeability, therefore leading to cell 

death
15,35

. However, the exact mechanism by which colistin induces bacterial death is still 

unknown. Some studies have showed that multiple cell targets might be involved, as the 

polymyxin-mediated killing takes place prior to an increase in the membrane permeability
36,37

. 

Also, colistin has been shown to be efficient on mycobacterial species, which have mycolic acid-

based cell wall instead of LPS
38

. Thus LPS might not be the only target of colistin; phospholipids 

might also be a target of colistin. But in the case of capsulated bacteria, colistin has to interact 

first with capsular polysaccharides, before it can go through the capsule, to reach LPS on the 

outer membrane, and then the phospholipids of the cytoplasmic membrane. Finally the killing of 

bacteria occurs either because of the formation of ions channels, transmembrane pores or 

membrane ruptures of the cytoplasmic membrane
36,39

.  

In our case, we have worked with Klebsiella pneumoniae, a capsulated bacterial species. 

It has been postulated that polymyxin triggers in vivo the release of capsular polysaccharides 

from the bacteria
40

. This is in line with the results we obtained on the colistin sensitive strain, 

since the capsule was removed from the bacteria upon colistin treatment (Figure 1). The same 

authors have also showed that capsular polysaccharides in Klebsiella pneumoniae were involved 

in polymyxin resistance, providing a protective shield against polymyxin interactions with the 

cell surface
41

, or by binding colistin therefore reducing the amount of colistin reaching the cell 

surface
40

. However, the amount of capsule polysaccharides must reach a certain threshold in 

order to confer the resistance to colistin. Other colistin resistance mechanisms have also been 
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described, such as modification of the LPS, changes in the negative charge of the outer 

membrane, or efflux pumps systems
42

.  

In this study, we observe an undescribed resistance mechanism to colistin. Indeed, as it 

can be seen on Figure 5, force curves recorded on the sensitive strain present a spike, 

corresponding to the contact and indentation of the AFM tip into the capsular polysaccharide. As 

the applied force is high, the AFM tip goes through the capsule (0.5 µm), then the bacterial core 

(0.5 µm), before reaching the PEI layer coated on the glass slide. Similar experiments conducted 

on bacteria and eukaryotic cells have proved the possibility to read from the force curves 

obtained from such experiments the architecture of the different compartments of the cells 

traversed
43–45

. In the case of the colistin resistant strain, the extend force curves present a first 

spike followed by several condensed spikes on a distance of 0.6 µm, before reaching a second 

spike. Figure 5b presents the interpretation that we made of such force curves. The tip first 

touches and indent into the capsule, but soon meets another layer of polysaccharides, that is 

broken with a less important force (small spike), and another layer, and so on before reaching the 

bacterial cell. Then the bacterial core is traversed on 0.5 µm by the AFM tip before it reaches the 

glass slide again. The fact that we obtained on the force curves these several ruptures after the 

first spike allowed us to hypothesize that the capsule was in fact multilayered. To reinforce this 

hypothesis, an indentation curve recorded on top of a single live cell in native conditions was 

analyzed (graphic in Figure 5b). Every spikes observed on this indentation curve have been fitted 

through the Hertz model (empty circles). For every fit, approximately the same stiffness values 

are extracted (20 kPa), letting us postulate that each small spikes corresponds to the rupture of a 

layer of polysaccharide. Since Kp ATCCm is resistant to colistin (MIC = 16 mg/L) compared to 

Kp ATCC 700603 (MIC = 0.5 mg/L), then this multilayered structure of the capsule could be a 

key for colistin resistance in Kp ATCCm. But colistin still interacts with the capsular 
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polysaccharides of the Kp ATCCm strain. Indeed, studies have showed that capsular 

polysaccharides could be of different chemical composition. Colistin being positively charged, it 

binds to anionic capsule, but not with cationic or uncharged ones
40

. In our case, the 

nanomechanical data indicate that the capsule of Kp ATCCm becomes harder (the stiffness 

increases), along with the dose of colistin and loses its organization in several superposed layers. 

Therefore, colistin has an effect on the nanomechanical properties of the capsule, leading us to 

think that colistin still interacts with the capsule, but because of its organization, cannot go 

through it to reach the cytoplasmic membrane of the bacteria.  

 To conclude, this study allowed imaging by Atomic Force Microscopy the capsule of 

living cells of Klebsiella pneumoniae, which is, as far as we know, a first time happening. It also 

allowed us to show that colistin was able to remove the capsule of a sensitive-colistin strain, but 

not of a resistant strain. We finally hypothesized, thanks to force spectroscopy experiments, a 

model for colistin resistance, which is based on the nanoarchitecture of the capsule. Indeed, the 

colistin resistant strain presents a well-organized multilayered capsule that interacts with colistin 

but without letting the molecule go through to the cell wall to reach its targets. Now, additional 

AFM experiments on clinical isolates of colistin susceptible and resistant K. pneumoniae are 

needed to further investigate the morphology of the capsule, the impact of colistin exposure on 

these isolates, and ultimately, the mechanisms of colistin resistance during therapy.   
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Figures 

 
 

Figure 1. Imaging of K. pneumoniae ATCC 700603 cells. (a) Height image of K. pneumoniae 

ATCC 700603 cells under native conditions, (d) treated with colistin at 0.5×MIC (0.25 mg/L) or 

(g) treated with colistin at 0.75×MIC (0.375 mg/L). (b, e and h) cross-sections recorded along the 

dashed lines respectively on a, d and g. (c, f and i) representative extend force curves recorded on 

small areas on top of cells presented respectively in a, d and g. In each condition, force curves 

were recorded on 5 cells coming from 3 independent cultures (total of 5120 force curves per 

condition).  
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Figure 2. Imaging of K. pneumoniae colistin resistant (Kpm) cells. (a) Height image of Kpm 

cells under native conditions, (d) treated with colistin at 0.5×MIC (8 mg/L) or (g) treated with 

colistin at 0.75×MIC (12 mg/L). (b, e and h) cross-sections recorded along the dashed lines 

respectively on a, d and g. (c, f and i) representative extend force curves recorded on small areas 

on top of cells presented respectively in a, d and g. In each condition, force curves were recorded 

on 5 cells coming from 3 independent cultures (total of 5120 force curves per condition).  
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Figure 3. Nanomechanical properties of K. pneumoniae ATCC 700603 cells. (a) Histogram 

presenting the stiffness values measured on cells in native conditions (grey bar) or the bacterial 

spring constants measured on cells treated with colistin at 0.5×MIC (0.25 mg/L, blue bar) or 

treated with colistin at 0.75×MIC (0.375 mg/L, orange bar). In each case, values were measured 

on three cells coming from three independent cultures. (b) Representative indentation curve 

obtained on top of a cell in native conditions (grey line), fitted through the Hertz model (empty 

circles). (c) Representative force curves obtained on cells treated with colistin at 0.5×MIC (0.25 

mg/L, blue line) or treated with colistin at 0.75×MIC (0.375 mg/L, orange line), fitted through the 

Hooke model (empty circles).  
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Figure 4. Nanomechanical properties of K. pneumoniae colistin resistant (Kpm) cells. (a) 

Histogram presenting the stiffness values measured on cells in native conditions (grey bar), 

treated with colistin at 0.5×MIC (8 mg/L, blue bar) or treated with colistin at 0.75×MIC (12 

mg/L, orange bar). In each case, values were measured on three cells coming from three 

independent cultures. (b) Representative indentation curves obtained on top of a cell in native 

conditions (grey line), treated with colistin at 0.5×MIC (8 mg/L, blue line) or treated with colistin 

at 0.75×MIC (12 mg/L, orange line), fitted through the Hertz model (empty circles).  
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Figure 5. Schematic representation of the hypothesis formulated on the capsular 

architecture. (a) capsule organization of K. pneumoniae ATCC 700603, and  (b) capsule 

organization of K. pneumoniae colistin resistant (Kpm). The graphic in (b) shows an indentation 

curve recorded on top of a Kpm cell in native conditions (grey line), which each spikes have been 

fitted through the Hertz model.  
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Abstract 

Drug resistance is a challenge that can be addressed using nanotechnology. We focused on the 

resistance of the bacteria Pseudomonas aeruginosa and investigated, using Atomic Force 

Microscopy (AFM), the behavior of a reference strain and of a multidrug resistant clinical strain, 

submitted to two antibiotics and to an innovative antibacterial drug (CX1). We measured the 

morphology, surface roughness and elasticity of the bacteria under physiological conditions and 

exposed to the antibacterial molecules. To go further in the molecules action mechanism, we 

explored the bacterial cell wall nanoscale organization using functionalized AFM tips. We have 

demonstrated that affected cells have a molecularly disorganized cell wall; surprisingly long 

molecules being pulled off from the cell wall by a lectin probe. Finally, we have elucidated the 

mechanism of action of CX1: it destroys the outer membrane of the bacteria as demonstrated by 

the results on artificial phospholipidic membranes and on the resistant strain. 

 

  



Nanoscale analysis of the effects of
antibiotics and CX1 on a Pseudomonas
aeruginosa multidrug-resistant strain
C. Formosa1,2,3,4, M. Grare6, E. Jauvert1,2,3, A. Coutable1,2,3, J. B. Regnouf-de-Vains4, M. Mourer4,
R. E. Duval4,5 & E. Dague1,2,3

1Centre National de la Recherche Scientifique, Laboratoire d’Analyse et d’Architecture des systèmes (LAAS), Toulouse, France,
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Drug resistance is a challenge that can be addressed using nanotechnology. We focused on the resistance of
the bacteria Pseudomonas aeruginosa and investigated, using Atomic Force Microscopy (AFM), the
behavior of a reference strain and of a multidrug resistant clinical strain, submitted to two antibiotics and to
an innovative antibacterial drug (CX1). We measured the morphology, surface roughness and elasticity of
the bacteria under physiological conditions and exposed to the antibacterial molecules. To go further in the
molecules action mechanism, we explored the bacterial cell wall nanoscale organization using functionalized
AFM tips. We have demonstrated that affected cells have a molecularly disorganized cell wall; surprisingly
long molecules being pulled off from the cell wall by a lectin probe. Finally, we have elucidated the
mechanism of action of CX1: it destroys the outer membrane of the bacteria as demonstrated by the results
on artificial phospholipidic membranes and on the resistant strain.

D
uring the last three decades, the resistance to antibiotics has increased and disseminated all over the world.
Bacteria have developed several ways to resist against almost all antibiotics used and few new effective
antibiotics have been discovered so far1,2. The return in the pre-antibiotic era3 seems to be a reality for some

infections with multidrug-resistant (MDR) or extremely-drug resistant (XDR) bacteria4. Pseudomonas aerugi-
nosa is one of these ‘‘superbugs’’; and infections associated with multidrug-resistant P. aeruginosa are having a
substantial impact on hospital costs and mortality rates. P. aeruginosa is an invasive, Gram negative opportunistic
pathogen that causes a wide range of severe infections including bacteraemia, pneumonia, meningitis, urinary
tract and wound infections5. Moreover, P. aeruginosa is naturally resistant to multiple antibiotics; this is due to its
natural low outer membrane permeability and to many adaptive resistance mechanisms (loss of porins, surex-
pression of efflux pumps, presence of many beta-lactamases or carbapenemases…)5–9. Most frequently pandrug-
resistant P. aeruginosa are isolated from wound or respiratory tract infections: resistance including third-
generation cephalosporin, carbapenems, fluoroquinolones and aminosides. The last effective antibiotic was often
colistin, an old and highly toxic molecule10,11. There is therefore, an urgent need for new antibacterials, with an
innovative mechanism of action.

Among various approaches to develop new antibacterial agents is one dedicated to cationic compounds12. In
this work we focused on a polycationic calixarene-based guanidinium compound. Calixarenes are rigid oligo-
meric phenol macrocycles spatially organized, purely synthetic, with a structure completely different from
antibiotics currently used in therapy13. Pioneer works demonstrated that our lead compound, the tetra para-
guanidinoethylcalix[4]arene13 (named CX1) has a real antibacterial activity with a broad spectrum, including
MDR bacteria14. The main interest of this new drug is that because of an innovative structure, it will take bacteria
some time to find a mechanism of resistance. Moreover we have demonstrated in vitro that this compound is not
able to select resistant mutant15. However the mechanism of action of this new cationic antibacterial drug has not
yet been extensively studied. The initial hypothesis is that the introduction of positive charges on the calixarene
core (i.e. guanidinium functions) leads to a constrained tetra cation able to disorganize the bacterial cell wall. P.
aeruginosa possesses a highly negatively charged outer membrane and so is a good candidate to study the
interaction with CX1.

SUBJECT AREAS:
ANTIMICROBIALS

NANOBIOTECHNOLOGY

BIOPHYSICS

CHEMISTRY

Received
8 June 2012

Accepted
30 July 2012

Published
14 August 2012

Correspondence and
requests for materials

should be addressed to
E.D. (edague@laas.fr)

SCIENTIFIC REPORTS | 2 : 575 | DOI: 10.1038/srep00575 1



Since it’s invention in 1986, Atomic Force Microscopy (AFM)16,17

has created new paradigms in life nanoscience. It gives access to
the ultrastructural (imaging, Single Molecule Force Spectroscopy
(SMFS)) and nanomechanical (force spectroscopy) properties of sin-
gle living cells18–22. For the study of live bacteria, AFM provides the
opportunity to investigate the surface nanostructure under con-
trolled aqueous conditions23,24. Therefore it is ideal to study the
nanoscale effects of anti-infective drugs on bacteria25,26.

Results
The approach that we have developed includes several technical
aspects of the AFM (imaging living cells, supported bilayers, SMFS,
nanomechanical measurements). The experimental components and
principle of our approach are described in Fig. 1. P. aeruginosa cells
were immobilized27 by taking advantage of the electrostatic interaction
between the bacteria’s negative charges and a positively charged sur-
face. To this end, glass slides were coated with PolyEthylenImine
(PEI), a polycation. Bacteria were then incubated on the PEI coated
glass slides for an hour at room temperature28.

In the first part of this study, we characterized the effects of ticar-
cillin and tobramycin on the structure and the nanomechanical

properties of P. aeruginosa ATCC 27853 (reference strain) and
PaR3 (clinical strain resistant to almost all antibiotics, antibiogram
in Supplemantary data 1). In a second part, by comparing the nano-
effects (cell shape alteration, elasticity modifications, cell wall dis-
organization) caused by them with the ones caused by CX1, we get a
better understanding of the mechanism of action of CX1 (Fig.1).

Morphology and surface roughness. The morphological effects, of
ticarcillin and tobramycin on the reference strain are presented
in Table 1. Supplementary data 2 and 3 present the raw data of
respectively morphology and surface roughness. The results show
only one analysis, these features were observed on at least 5
bacteria coming from 3 independent cultures. Bacteria in native
conditions (without treatment) show a smooth surface. They are
2.2 mm long, 1.1 mm large and 453.5 nm high. We confirmed at
the nanoscale, that bacteria growing in the presence of ticarcillin
formed filaments of 6 to 18 mm long. For tobramycin, we showed
that treated bacteria have a deformed cell wall. These effects of the
antibiotics are not observed on the multidrug resistant strain PaR3,
demonstrating that these two molecules have no effect on the
morphology of the bacteria. Concerning our lead compound, CX1,

Figure 1 | Schematic representation of the strategy used. (a) cells cultivated in Mueller Hinton broth for 20 hours at 35uC are immobilized on a

polyethylenimine coated glass slide for AFM experiments. (b) optical image of the surface covered with immobilized untreated P. aeruginosa ATCC

27853. (c) molecules used in the study and their targets. (d) optical images of P. aeruginosa ATCC 27853 treated by ticarcillin (4mg/mL), (e) by tobramycin

(0.25 mg/mL) and (f) by CX1 (32 mg/mL).
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we showed that it causes an alteration of the bacterial cell wall on the
two different strains, without size modifications. We also focused on
the surface roughness as it is a feature that characterizes a bacterial
species25,26,29 (Table 1 and Supplementary Data 3) and showed that
the surface of the reference strain was modified by the three
molecules: the roughness is increased from 0.2 nm to 0.6 nm in
presence of ticarcillin or tobramycin, and to 1.0 nm in presence of
CX1. PaR3 presented a smooth surface with no modification of the
roughness when grown with antibiotics. When treated by CX1, the
surface aspect is modified, showing perforations, and the roughness
is increased from 0.6 to 1.5 nm.

Nanomechanical properties. In view of the role of the bacterial
cell wall conferring rigidity and protection, we then addressed the
pertinent question as to whether the observed structural changes
were correlated with differences in the cell wall mechanical pro-
perties. To this end, PaR3 treated with ticarcillin, tobramycin or
CX1 were probed using nanoindentation measurements (Fig. 2).
Several bacteria were probed (global effect) and then local measure-
ments (surface elasticity) were performed on each bacterium present
on the global force map (n55). These experiments were also
conducted on P. aeruginosa ATCC 27853 (Supplementary data 4).
To this end, arrays of 32 by 32 force curves were recorded on each
bacterium. All the force curves were then converted into indentation
curves and fitted with the Hertz model F 5 ((2.E.tana)/(p.(1-n2)).d2,
where F is the force (experimentally measured), E the Young
modulus, a the opening angle of the tip (measured using MEB 35u,
data not shown), n the Poisson ratio (arbitrarily assumed to be 0.5)
and d the indentation (experimentally measured). This procedure
gives access to the Young Modulus values that are represented on the
histograms on Fig. 2. For each experiment, AFM tips were calibrated
using the thermal noise method30, the spring constant values ranged
from 0.012 to 0.019 N/m. The global force maps give information
about the multidrug resistant bacterial population behavior towards
the different molecules; it seems that only CX1 treated cells have an
affected cell wall with a global decreased elasticity compared to
antibiotics treated cells. These information were then confirmed
with the local nanoindentation measurements that show that
untreated PaR3 cells have a Young Modulus of 520 6 100 kPa,
whereas ticarcillin or tobramycin-treated bacteria had a Young
Modulus respectively of 300 6 66 kPa and 252 6 61 kPa. After
treatment by CX1, bacteria presented a Young modulus that drops
to 76 6 28 kPa. These results showed that interestingly, treatment by
ticarcillin and tobramycin decreases the cell wall elasticity, but in a
reasonable range. CX1, however, dramatically decreases the cell wall
elasticity.

Single molecule force spectroscopy. At this stage of the work, we
know that CX1 disorganizes the cell wall of P. aeruginosa, but we still
do not know how. To go further, dendritips31,32 were functionalized
with lectin ConcanavalinA (ConA). ConA binding structure and
specificity have been well determined for mannose-containing
structures33–35, including recognition of biantennary, complex N-
glycans36, and for terminal glucose35. These lectin tips were then
used to perform adhesion force maps on bacteria in their native
environment, or after treatment by the three molecules. Fig. 3
shows the force curves recorded on the two strains in the different
conditions. We can see that force curves recorded on both untreated
strains showed no adhesions (Fig. 3b). After ticarcillin or tobramycin
treatment, the reference strain showed force curves presenting many
adhesions, and PaR3 showed nothing but flat curves (Fig. 3c and 3e).
In Fig. 4, the distributions of the breaking forces and the ruptures
distances (as sketched in Fig. 4g) were represented in histograms, for
the conditions for which force curves showed adhesions. First, for the
reference strain, with ticarcillin (Fig. 4a and 4b), the adhesion forces
reached 98 6 56 pN. Only a small fraction of these adhesions
happened between 0 and 1 mm (3%), the major part ranging from
2 to 6 mm. With tobramycin (Fig. 4c) the force curves showed multi-
ple adhesions. The adhesion force histogram (Fig. 4d) shows that
forces only reach 37 6 1 pN which is more or less three times less
than with ticarcillin. Similar results were obtained with CX1; adhe-
sions were ranging from 0 to 5mm (Fig. 4e), and forces reached 186 6

206 pN (Fig. 4f). For PaR3, we have previously showed that only CX1
conducted to a decrease in the elasticity of the cell wall. On the force
curves recorded on PaR3 with a lectin probe, we observed adhesions
ranging from 0 to 6 mm (Fig. 4j), and that reached 135 6127 pN
(Fig. 4k). The pulled out molecules are surprisingly long (up to 6mm),
much longer than the bacteria itself.

Effects of CX1 on supported bilayers. In order to mimic the effect
of CX1 on the outer membrane of P. aeruginosa, we created
phospholipidic bilayers supported on mica leaves with lipids wide-
ly found in bacterial outer membranes; POPE (1-Palmitoyl-2-oleoyl-
sn-glycero-3-phosophoethanolamine) and POPG (1-Palmitoyl-2-
oleoyl-sn-glycero-3-phosphatidylglycerol) (2:1)37. The method was
previously described and has proven useful for the understanding of
surfactin effect on lipid bilayer38. The results showed in Fig. 5 pre-
sent these bilayers treated by CX1 at a concentration of 10 mg/mL.
We have seen that in 1 hour, holes were created in the synthetic
membrane. Those holes could be compared to the one observed in
the cell wall of PaR3 treated by CX1 (Fig. 5e and 5f), which allowed us
to think that CX1, with its spatial organization and its charges, is able
to create perforations in the bacterial outer membrane.

Table 1 | Recapitulative table of the morphology and roughness results obtained on P. aeruginosa ATCC 27853 and PaR3. L stands for
length, W stands for width and H stands for height. The analyses were performed on at least 5 different bacteria coming from 3
independent cultures

ATCC 27853 PaR3

Size Aspect Roughness Size Aspect Roughness

Native L: 2.2 6 0.3 mm Smooth 0.2 6 0.04 nm L: 1.6 6 0.2 mm Smooth 0.6 6 0.1 nm
W:1.1 6 0.1 mm W: 0.6 6 0.1 mm
H: 453.5 6 9.5 nm H: 350.4 6 14.4 nm

Ticarcillin L: Variable Filament 0.6 6 0.1 nm L: 1.6 6 0.1 mm Smooth 0.6 6 0.1 nm
W: 1.0 6 0.3 mm W: 0.6 6 0.1 mm
H: 251.1 6 17.9 nm H: 352.8 6 33.3 nm

Tobramycin L: 3.2 6 0.8 mm Altered surface 0.6 6 0.1 nm L: 1.6 6 0.1 mm Smooth 0.6 6 0.1 nm
W: 1.1 6 0.2 mm W: 0.6 6 0.1 mm
H: 205.2 6 30.6 nm H: 355.4 6 37.2 nm

CX1 L: 2.0 6 0.2 mm Altered surface 1.0 6 0.2 nm L: 1.8 6 0.1 mm Altered surface 1.5 6 0.2 nm
W: 1.3 6 0.2 mm W: 0.6 6 0.1 mm
H: 458.6 6 51.5 nm H: 355.9 6 36.9 nm
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Discussion
We choose to work with two strains of P. aeruginosa; a reference
strain susceptible to antibiotics (ATCC 27853), and a clinical
isolate (PaR3, ABC PlatformH Bugs Bank) collected from a res-
piratory sample, resistant to almost all antibiotics (antibiotic sus-
ceptibility profile is given in Supplementary data 1). This isolate is
resistant to ticarcillin and tobramycin, two antibiotics widely used
in P. aeruginosa infections. The first one belongs to the b-lactams
family, and inhibits the peptidoglycan synthesis by interacting
with the Penicillin Binding Proteins (PBP). After treatment by
ticarcillin, filamentous forms of P. aeruginosa are described28,39.
This is caused by the fact that b-lactams like ticarcillin activate
the SOS system of bacteria, therefore inhibiting the cell division39.
Tobramycin belongs to the aminoglycosides family and interacts
with the 30S ribosomal sub-unit. This leads to the synthesis of

abnormal proteins which are then incorporated to the cell wall,
which loses its integrity.

The results of surface roughness, consistent with the morphology
analysis, showed that only CX1 is able to alter the cell wall of PaR3
and this is our first clue; thus, we have originally emphasized the fact
that PaR3 is resistant to ticarcillin and tobramycin. However, we can
hypothesize that the resistance mechanism must either have an
energy cost, or result in a cell wall modification since the elasticity
is a little decreased by classical antibiotics. So after 24 hours of grow-
ing in the presence of the antibiotics, PaR3 cell wall seems to be
affected in an insignificant way. With CX1, the elasticity decreased,
indicating that the integrity of the wall is compromised. PaR3 is
unable to resist to the disorganization of the cell wall induced by
CX1, whereas it resists to the one induced by ticarcillin and tobra-
mycin. So, we showed that an innovative molecule, like CX1, is able

Figure 2 | Mapping of P. aeruginosa R3 cell surface elasticity. (a) vertical deflection image of native cells, (e) ticarcillin-treated cells (4 mg/mL),

(i) tobramycin-treated cells (0.25 mg/mL). (m) height image (z-range 5 800 nm) of CX1-treated cells (32 mg/mL). (b), (f), (j) and (n), elasticity maps

(z-range 5 1.5 MPa) corresponding to the vertical deflection images. (c), (g), (k) and (o), local elasticity maps (z-range 5 800 kPa) recorded on one

bacterium from the corresponding vertical deflection images. (d), (h), (l) and (p), distributions of Young Modulus values corresponding to the local

elasticity maps.
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to disorganize the cell wall of a MDR P. aeruginosa. The bacterial cell
wall plays several roles, it is a barrier that withstands the osmotic
pressure, it gives shape to the cells, ensures communication with the
environment. Thus the cell wall disorganization is another proof
showing that CX1 is an efficient antimicrobial molecule against a
resistant strain of P. aeruginosa.

The next step in this investigation has been to explore at the
molecular level, the effects of the antibiotics and of CX1. To this
end we used lectin functionalized AFM probes and looked at what
could be pulled out from the surface (fig. 3 and 4). PaR3 showed
nothing but flat curves with ticarcillin and tobramycin. This can be
explained by the fact that PaR3 cell wall was not disorganized and no
molecules could be pulled out from the surface by the functionalized
AFM tip. But interestingly, when CX1 was used to treat the different
bacterial strains, multiple adhesions could be seen on the force curves

(Fig. 3d). These new results are consistent with the nanomechanical
evidence. CX1 disorganizes the bacterial cell at the molecular level.
On the reference strain, antibiotics and CX1 disorganized the cell
wall leading to a dramatic decrease of the elasticity (Supplementary
data 4) and to the stretching of surprisingly long glycans (lectin
recognition) molecules. We must, therefore, have unfolded a super
coiled molecule. Recently, Andre et al studied the architecture of
peptidoglycan in Bacillus subtilis40, and showed that glycan strands
could be polymerized and crosslinked to form a peptidoglycan rope,
which would then be coiled into a helical cable. Hayhurst et al41

worked on the same bacteria and showed that glycan strands were
up to 5 mm, so way longer than the cell itself. The authors also
proposed a coiled-coil model for peptidoglycan architecture.
Following these ideas, our AFM tips could pull the peptidoglycan
and uncoil it on large distances, consistently with the force curves

Figure 3 | Force spectroscopy of the ConA-tip interactions. Schematic representation of the force curves (retract segment) obtained with

ConcanavalinA functionalized tips on P. aeruginosa ATCC 27853 and PaR3 in native conditions, treated by ticarcillin (4 mg/mL), tobramycin

(0.25mg/mL) and CX1 (32 mg/mL). The 4 force curves (n) presented by conditions were chosen out of 3072 curves recorded on 3 different bacteria coming

from 3 independent cultures.
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observed in Fig. 3. In Gram-negative bacteria, a thin peptidoglycan
layer is overlaid by a bilayers of phospholipids and lipopolysacchar-
ids containing membrane proteins (for example porins, Braun
lipoproteins)40. When bacteria are in native conditions, the peptido-
glycan is very well organized and covered by the outer membrane,
thus inaccessible for the lectin probe, resulting in no adhesive beha-
vior when probed with a lectin tip. But when the ATCC strain is
treated by ticarcillin, the landscape is different. Ticarcillin binds
to transmembrane enzymes: carboxypeptidase and transpeptidase
respectively responsible for the cleavage of the DAla-DAla motif
and the assembly of the cleaved pentapeptides. The bacteria are thus
unable to grow normally which leads to the activation of their SOS
system. This results in extraordinary long bacteria (sometimes longer
than 10 mm). Nevertheless, at the extremity of these ‘‘spaghetti’’-like
bacteria, a 2 mm long part of normal peptidoglycan remains. So when
pulling with the lectin probe on the first 2 mm at the extremity of the
bacteria, nothing happens. Then, new abnormal peptidoglycan is
pulled out, which results in the force curves presented in Fig. 3.

With tobramycin, it is the protein synthesis of the ATCC 27853
strain that is altered. Braun lipoproteins and porins are essential
components of the outer membrane structure. It is therefore not
surprising that we can access to the peptidoglycan through the
altered membrane. As the Young modulus is highly affected by
tobramycin, it is also straight that the peptidoglycan is affected, but
this is not yet described. However tobramycin inhibits the synthesis
of all proteins among which the enzymes involved in the peptidogly-
can synthesis. It is therefore not surprising that the peptidoglycan of
tobramycin treated cells is abnormal and could lead to the force
curves profile presented in Fig. 3c.

Finally, with CX1, it is even clearer that the peptidoglycan is affec-
ted for both the ATCC and the multidrug resistant strain PaR3; the
Young modulus drops, indeed, dramatically. However, it must be

noticed that for the ATCC strain; the force curves in Fig. 3d show
less adhesive events with CX1 treatment than with ticarcillin or
tobramycin treatment. This is not true with PaR3 which seems very
affected by CX1.

A keen analyze conducted on the force curves presented on Fig. 3
shows that the distance between each adhesive event, when occur-
ring, is of 280 6 155 nm (277. n . 290 according to the condition).
As Vollmer et al.42 proposed in a recent work, the glycan strands of P.
aeruginosa are 17 nm long. In line with this data, and consistently
with the architectural model of the peptidoglycan proposed by
Dufrêne and Foster’s teams, it seems like our functionalized AFM
tip pulls out from the damaged bacteria the peptidoglycan by ‘‘packs’’
of glycans strands. In Gram-negative bacteria, the peptidoglycan
layer is encored to the outer membrane by the Braun lipoproteins.
These ‘‘packs’’ of glycan strands could then correspond to the
distances between the Braun lipoproteins all along the bacteria.
Ticarcillin, tobramycin and CX1 treatments induce, indeed, the same
distance rupture between the adhesive events. This means that
although the 3 molecules have completely different mechanism of
action, they induce somehow the same disorder. Therefore the hypo-
thesis of the distance between the Braun lipoproteins is consolidated.
Braun lipoproteins synthesis is inhibited by tobramycin and they
make the link between the peptidoglycan (ticarcillin inhibits its syn-
thesis) and the outer membrane (CX1 deeply alter phospholipid
bilayers as it will be demonstrated in the next paragraph). If these
new data gives light on the architecture of Gram negative bacteria cell
wall, the fundamental mechanism of action of CX1 still remains
unclear. We suppose that, when the positively charged calixarene,
interacts with the negatively charged ultrastructures of the bacterial
surface (i.e. phospholipids and lipopolysaccharides), its particular
three-dimensional organization causes disruptions of the outer
membrane of the cell wall as suggested by the increased surface

Figure 4 | Force spectroscopy of the ConA-tips interactions. (a), adhesion force histograms (n 5 1024 force curves) obtained on P. aeruginosa ATCC

27853 ticarcillin-treated cells (4 mg/mL), (c), tobramycin-treated cells (0.25 mg/mL) and (e), CX1-treated cells (32 mg/mL). (b), (d) and (f), corresponding

rupture distance histograms. (g), schematic representation of how the retract segment of the force curves were analyzed. (h), adhesion force histograms

(n 5 1024 force curves) obtained on P. aeruginosa R3 tobramycin-treated cells (0.25 mg/mL) and (j), CX1-treated cells (32 mg/mL). (i) and (k),

corresponding rupture distance histograms.
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roughness (Supplementary data 4) which is in line with the mech-
anism of action described for cationic antimicrobial peptides43–46.

These AFM experiments, conducted on two P. aeruginosa strains,
a susceptible one (ATCC 27853) and a resistant one (PaR3), has
allowed us to evaluate the effects of three different antibacterial
molecules. The in depth analysis of AFM raw data collected on
treated bacteria is an original way to get fundamental knowledge
on the bacterial cell wall organization. These results confirm that
CX1 is efficient on resistant bacteria and has a different mechanism
of action as tobramycin and or ticarcillin. Also, these very new results

allowed us to make an hypothesis on the potential mechanism of
action of the CX1; it interacts with the surface of the Gram-negative
bacteria and creates holes in the outer membrane. This hypothesis
was then confirmed by the experiments conducted on the supported
biomembranes that showed destruction by creation of holes.
Interestingly it has been demonstrated that CX1 has no side effects
on eukaryotic HaCaT cells14 or on membranes made of zwiterrionic
phospholipids (DMPC, DMPS)47.

It is also obvious that CX1 damage the peptidoglycan as we saw on
the nanoindentations results, and therefore there is no reason why

Figure 5 | POPE:POPG (2:1) supported bilayers. (a), height images (z-range 5 1.5 nm) of POPE:POPG (2:1) supported bilayers at t50 minutes after

treatment by CX1 (0.01 mg/mL), and (c), 1 hour after treatment. (e), height images (z-range 5 600 nm) of PaR3 treated by CX1 (32 mg/mL). (b), (d) and

(f), cross sections taken along the colored lines on the images.
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CX1 could not reach and damage the inner membrane. The next step
is now to determine if CX1 has also an intracellular target, which has
not been explored yet.

Methods
Bacteria growth conditions. The bacteria (ATCC 27853) (reference strain for the
Comité de l’Antibiogramme de la Société Française de Microbiologie, CA-SFM, the
European Committee on Antimicrobial Susceptibility Testing, EUCAST, and the
Clinical and Laboratory Standards Institute, CLSI) and Pa R3 (isolated from a
respiratory sample, ABC platformH Bugs Bank ) were stocked at 280 uC, revivified on
Mueller Hinton Agar (Difco, 225250-500 g) and grown in Mueller Hinton Broth
(Difco, 275730-500 g) for 24 hours at 35uC under static conditions.

Antibiotic treatments. The antibiotics were added during the 18 to 24 hours before
the experiments.

Before AFM measurements were conducted, bacteria were grown in Mueller
Hinton broth containing the antibiotics at a concentration of 4 mg/mL for ticarcillin
(Sigma, T5639-1 g), 0.25 mg/mL for tobramycin (Sigma, T4014-100 mg), and
32 mg/mL for CX1 for 24 hours at 35uC.

Sample preparation for AFM experiments. Cells were concentrated by
centrifugation, washed 2 times in Milli-Q water, re-suspended in PBS 1X (Sigma,
P2194-10PAK) to a concentration of , 108 cells/mL, and immobilized on PEI (Fluka
P3142-100 mL) coated glass slides (prepared as described elsewhere e.g.48). Briefly,
freshly oxygen activated glass slides were covered by a 0.2% PEI solution in deionized
water and left for incubation overnight. Then the glass slides were rinsed with 20 mL
of Milli-Q water and nitrogen dried. A total of 1 mL of the bacterial suspension was
then applied to the PEI coated glass slide, allowed to stand for one hour and rinsed
with PBS 1X. Images were recorded in PBS 1x in contact mode with MLCT AUHW
cantilever (nominal spring constant 0.01 N/m). The applied force was kept as low as
possible around 200 pN. For imaging and force spectroscopy we used an AFM
Nanowizard II and III (JPK instruments, Berlin, Germany). The cantilevers spring
constant were measured by the thermal noise methods30,49 ranging 14.56 to
15.20 mN/m. The functionalized tips were produced according to a french patent of
the authors31 described later in sensors and actuators32. Briefly, AFM tips are
functionalized with dendrimers presenting CHO functions able to covalently link
with NH2 functions of proteins. Those dendritips are then incubated with the lectin
concanavalin A (Sigma, L7647-100MG, 100mg/mL) for 1 hour, before being used for
force spectroscopy experiments.

Phospholipid bilayers. POPE (1-Palmitoyl-2-oleoyl-sn-glycero-3-
phosophoethanolamine) and POPG (1-Palmitoyl-2-oleoyl-sn-glycero-3-
phosphatidylglycerol) (Avanti Polar Lipids) were dissolved in CHCl3 (2:1) and mixed
in glass tubes to obtain the desired concentration. The solvent was evaporated with
nitrogen and dried in a dessicator. Dried films were maintained under reduced
pressure overnight and thereafter rehydrated using PBS 10 mM, 1 mM CaCl2, 1 mM
MnCl2, pH 7.4. To obtain small unilamellar vesicles (SUVs), the suspension was
sonicated to clarity (3 cycles of 3 min) using a 500W probe sonicator (Fisher Bioblock
Scientific, France; 35% of the maximal power) while keeping the suspension in an ice
bath. The suspension was finally centrifuged (5 min, 15000 g). The SUV solution was
then put into contact with freshly cleaved mica substrates for 45 min at room
temperature. Then samples were imaged using hyperdrive mode from Nanowizard
III JPK instrument and PPP-NCHAuD-10 probes provided by Nanosensors.
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Appendix 1: Uncovering by Atomic Force Microscopy of an original circular structure at the 

yeast cell surface in response to heat shock 

 

I have contributed in this publication in AFM experiments on yeasts cells, along with Flavien 

Pillet and Marion Schiavone 

 

 

 

Appendix 2: Deletion of the α-(1,3)-glucan synthase genes induces a restructuring of the conidial 

cell wall responsible for the avirulence of Aspergillus fumigatus 

 

In this publication I have, with Etienne Dague, performed AFM experiments to show the adhesive 

properties of spores of Aspergillus fumigatus.  
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Abstract 

Background: Atomic Force Microscopy (AFM) is a polyvalent tool that allows biological and 

mechanical studies of full living microorganisms, and therefore the comprehension of molecular 

mechanisms at the nanoscale level. By combining AFM with genetical and biochemical methods, 

we explored the biophysical response of the yeast Saccharomyces cerevisiae to a temperature 

stress from 30°C to 42°C during 1 h. 

 

Results: We report for the first time the formation of an unprecedented circular structure at the 

cell surface that takes its origin at a single punctuate source and propagates in a concentric 

manner to reach a diameter of 2–3 μm at least, thus significantly greater than a bud scar. 

Concomitantly, the cell wall stiffness determined by the Young’s Modulus of heat stressed cells 

increased two fold with a concurrent increase of chitin. This heat-induced circular structure was 

not found either in wsc1Δ or bck1Δ mutants that are defective in the CWI signaling pathway, nor 

in chs1Δ, chs3Δ and bni1Δ mutant cells, reported to be deficient in the proper budding process. It 

was also abolished in the presence of latrunculin A, a toxin known to destabilize actin 

cytoskeleton. 

 

Conclusions: Our results suggest that this singular morphological event occurring at the cell 

surface is due to a dysfunction in the budding machinery caused by the heat shock and that this 

phenomenon is under the control of the CWI pathway.   
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Uncovering by Atomic Force Microscopy of an
original circular structure at the yeast cell surface
in response to heat shock
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Abstract

Background: Atomic Force Microscopy (AFM) is a polyvalent tool that allows biological and mechanical studies of
full living microorganisms, and therefore the comprehension of molecular mechanisms at the nanoscale level.
By combining AFM with genetical and biochemical methods, we explored the biophysical response of the yeast
Saccharomyces cerevisiae to a temperature stress from 30°C to 42°C during 1 h.

Results: We report for the first time the formation of an unprecedented circular structure at the cell surface that
takes its origin at a single punctuate source and propagates in a concentric manner to reach a diameter of 2–3 μm
at least, thus significantly greater than a bud scar. Concomitantly, the cell wall stiffness determined by the Young’s
Modulus of heat stressed cells increased two fold with a concurrent increase of chitin. This heat-induced circular
structure was not found either in wsc1Δ or bck1Δ mutants that are defective in the CWI signaling pathway, nor in
chs1Δ, chs3Δ and bni1Δ mutant cells, reported to be deficient in the proper budding process. It was also abolished
in the presence of latrunculin A, a toxin known to destabilize actin cytoskeleton.

Conclusions: Our results suggest that this singular morphological event occurring at the cell surface is due to a
dysfunction in the budding machinery caused by the heat shock and that this phenomenon is under the control of
the CWI pathway.

Keywords: Atomic Force Microscopy (AFM), Saccharomyces cerevisiae, Heat-shock, Cell wall, Chitin, Budding
Background
The yeast Saccharomyces cerevisiae is a unicellular
eukaryotic microorganism surrounded by a 100–120 nm
thick cell wall [1]. The fungal cell wall is an essential
structure that maintains cell shape and cell integrity,
ensures resistance to internal turgor pressure and
thereby prevents cell lysis [2]. The cell wall of
Saccharomyces cerevisiae, which represents 10 - 25%
of the cell dry mass according to the culture and
process conditions [3], consists of three types of poly-
mers that are interconnected to produce a modular
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complex structure [4]. The inner layer of the cell wall
is composed of a β-1,3-glucan network (80 - 90% of
the total β-glucan) branched with chitin (1–2% of
the cell wall). Together, they form a structure that is
largely responsible for the mechanical strength of the
whole cell wall [5,6]. In addition, β-1,6-linked glucans
(8 - 18% of total β-glucans) are branched on the β-
1,3-glucan network, and also linked to the mannopro-
teins that compose the outer layer [7,8]. The yeast cell
wall is a dynamic structure, the molecular architecture
of which is continuously remodeled during morpho-
genetic processes and growth [9]. It also undergoes re-
modeling in response to environmental stresses, such
as ethanol and oxidative stress [10,11], thermal and os-
motic stress [12-14], and in response to antifungal
drugs such as allicin or caspofungin [15,16]. These
d. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited. The Creative Commons Public Domain Dedication
ain/zero/1.0/) applies to the data made available in this article, unless otherwise
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remodeling processes are organized by a “cell wall
rescue-mechanism” that relies on a combination of
several signaling pathways, with a major role played by
the PKC1-dependent cell wall integrity (CWI) pathway
(reviewed in [9,17]). Important biochemical modifica-
tions identified so far during stresses were i) massive
deposition of chitin that takes place in the lateral walls
of both the mother cells and the growing buds, ii) an
increased cross-linkage between chitin and β-1,3-glu-
can and iii) the appearance of novel linkages between
cell wall proteins and chitin through β-1,6-glucan
[18,19]. Altogether, these cell wall repair mechanisms
have been considered as a mean to combat cell wall
weakening caused by these stresses [4,20]. However, a
direct visualization of the topography and nanome-
chanical changes associated to these biochemical
and molecular changes induced by stresses was still
missing to better understand the cell wall biogenesis
and remodeling mechanism. The remarkable develop-
ment of the Atomic Force Microscopy (AFM) technol-
ogy, combined with genetical and molecular tools,
is therefore powerful to fulfil this gap and investigate
the dynamics of microbial cell surfaces in response to
external cues [21,22].
In this study, we have investigated the effects of heat

shock on the nanomechanical properties of the yeast cell
wall. We chose this stress condition because of the large
body of data available on the heat shock response in the
yeast Saccharomyces cerevisiae (reviewed in [23]). In
brief, this response is characterized at the genome level
by an intense program of changes in gene expression
leading to repression of protein biosynthetic machinery
and the induction of a battery of genes encoding heat
shock proteins (HSPs). The main metabolic and physio-
logical changes reported in response to heat stress
are an accumulation of trehalose and an inhibition of
glycolysis [24,25], associated with a transient arrest of
cell division. Heat shock also triggers the activation of the
CWI pathway, resulting in a global transcriptomic change
including the overexpression of genes encoding cell
wall remodeling enzymes [26]. Although AFM analysis
of temperature stress on yeast cells has been previously
addressed by Adya et al. [27], we have revisited this stress
because of two major technical concerns in the study re-
ported by the latter authors. Firstly, the immobilization
procedure they used could likely alter the cell viability and
integrity since yeast cells were immobilized on glass slides
by air-drying for more than 5 hr. Secondly, the stress was
carried out at temperature ranging from 50 to 90°C, which
is incompatible with yeast life and irrelevant in a biotech-
nological viewpoint.
Using a recent immobilization method that ensures

the viability and integrity of the yeast cells [28], we
showed that a temperature shift from 30 to 42°C
induced the singular formation of circular rings that
initiate at a single point on the yeast cell surface and
expanded in a concentric manner to reach a diameter
of 2 to 3 μm after 1 h of incubation. Appearance of
this circular structure was accompanied by a twofold
increase of chitin and by a raise of the cell wall stiffness.
Furthermore, we showed that the formation of this
unique circular structure was dependent on the budding
process and was regulated by the CWI pathway.

Results
Heat shock induces the formation of a circular structure
at the yeast cell surface
To explore the heat shock effects on the yeast cell sur-
face by AFM, a culture sample from exponentially grow-
ing yeast cells on YPD cultivated at 30°C was shifted at
42°C for 1 h. Both unstressed and heat shocked cells
were then trapped in polycarbonate porous membrane
(Figure 1, top panel) or immobilized in holes of a PDMS
stamp (Figure 1; lower panel). The presence of two
typical bud scars on the unstressed yeast cell was clearly
identified on AFM deflection images (Figure 1A & A’).
In contrast, the heat-shocked yeast cell presented beside
a bud scar, a circular structure (CS) that had a size larger
than the bud scar on its cell surface. This CS was not an
epiphenomenon since it was observed over 20–25 indi-
vidual heat shocked cells analyzed from three independ-
ent experiments. In addition, the formation of this
unique CS was time dependent, since small concentric
rings started to be observed after 20 min incubation at
42°C, and their number and size increased with time to
finally covered the whole observable cell surface after
2 hr (data not shown). Also, we always observed only
one CS per cell, although it could not be excluded that
another circular structure was formed underside, since
this side of the cells was not accessible to AFM study.
This singular event was clearly associated with the heat
shock response as witnessed by a rapid and huge accu-
mulation of trehalose (Additional file 1: Figure S1), a key
marker of the response of yeast to a thermal stress
[24,29]. Also, the viability of heat shocked yeast cells
after 1 h of treatment at 42°C was more than 99% as
evaluated by methylene blue staining method (Additional
file 2: Table S1).

Ultrastructure of the cell surface CS using high resolution
AFM imaging
To show that bud scar and CS were morphologically
different, we carried out a detailed analysis of AFM
height images on unstressed and heat shocked cells. A
first difference was in the diameter of the two features,
which was around 1 μm maximum for the bud scar but
exceeded 2.5 μm for the cell surface CS (Figure 2). Also,
the cross section taken on the AFM height image of the



Figure 1 Heat-shock exposition of yeast cells leads to the formation of an unexpected circular structure. AFM deflection images of
surface topology of a living yeast cell at 30°C (unstressed) (A, A’) or exposed to heat shock during 1 h at 42°C (heat-shocked) (B, B’). Yeast cells
were trapped in polycarbonate porous membrane (top panel) or within the patterns of a PDMS stamp (back panel). Bud scar (BS) and circular
structure (CS) are indicated on AFM images.
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unstressed yeast cell confirmed the typical convex struc-
ture of the bud scar (Figure 2B & C), followed by a de-
pression and terminated by an apparent rigid ring which
corresponds to a local accumulation of chitin [30]. In
contrast, the cell surface CS identified on the heat
shocked cells showed a different morphology, being rela-
tively smooth inside the structure and terminated by a
sharp ring. At a higher resolution, the AFM deflection
image allowed identifying a succession of circular rings that
originated from a single point and expanded in a concentric
manner to end up by one last sharp ring (Figure 3).

Heat shock increases the yeast cell wall stiffness
Quantitative data on the effects of heat shock were ob-
tained by scanning a given area of the cell surface with
the AFM tip. To this end, we choose an area on the cell
that was elsewhere from bud and CS. Thousands of
Force Volume (FV) measurements were recorded, trans-
lated into pixel units to yield an elasticity map from
which Young’s Modulus (YM) values (expression of cell
wall stiffness) could be calculated (Figure 4A & B).
Qualitatively, the elasticity map of an unstressed yeast
cell was homogeneous, while for the heat shocked cells,
there was clearly a central region on the chosen area
exhibiting higher pixel intensities, suggesting a difference
in the elasticity or stiffness between the unstressed and
the heat shocked cells. The YM values were extracted
from all the force curves (e.g. 19443 FV curves from 19
unstressed cells, and 15307 FV curves from 15 heat-
shocked yeast cells) and expressed as histograms that
followed a Gauss distribution (Figure 4C and C’). The
median values of the Gauss model fitting curve were
used to determine YM from unstressed and heat-
shocked cells. An unpaired t-test applied on the obtained
YMs data (Additional file 3: Figure S2) allowed conclud-
ing that the YM from heat shocked was statistically two-
fold higher than that of unstressed yeast cells (p value <
0.0001). The same methodology was used to evaluate
the YM at the CS vicinity of the heat shocked cells. As
shown in Figure 5, the YM was even higher at the CS,
reaching more than 2 MPa inside this structure. Taking
into account that cell wall stiffness is generally corre-
lated with changes in chitin level, this finding raised the
question whether this increase of stiffness at the CS is
linked to increase of chitin or to some other cell wall
remodeling events.



Figure 2 Morphological differences between a bud scar (BS) and circular structure (CS) at the cell surface. In (A, A’), AFM deflection
image of an unstressed and of a heat-shocked yeast cell after 1 hr at 42°C at a z range of 2.5 μm. The white dotted squares indicated AFM height
image analysis for the BS (A) and for part of the CS (A’). In (B & B’) are zoomed height images of these squares area (at z range of 200 nm). In
(C & C’) are cross sections taken across the red lines, respectively in B and B’ respectively.

Figure 3 Exploring the ultrastructure of a CS by AFM. High-
resolution deflection image shows a succession of concentric rings,
followed by 1 major ring (white arrow).
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Chitin content in cell wall and link with cell wall stiffness
The formation of a cell surface CS and the increased
stiffness suggested that the biochemical composition of
the cell wall could have been modified in response to
heat shock. To explore this hypothesis, we performed
biochemical measurements of carbohydrate composition
of the cell wall. As reported in Table 1, levels of β-
glucan and mannans were not different between un-
stressed yeast cells and cells incubated at 42°C for 1 h.
In contrast, the heat shock treatment clearly induced a
45% increase in the chitin content (from 46.2 μg/mg in
unstressed cells to 68.3 μg/mg in cells after 1 h incuba-
tion at 42°C). To verify that this increase of chitin was
preferentially associated with the formation of the CS,
we visualized this polymer after staining it with calco-
fluor white (CFW). As expected, the presence of bud
scars with a diameter around 1 μm was clearly visible on
a yeast cell cultivated at 30°C (Figure 6A). However, it
was interesting to notice that a ring of chitin with a
diameter above 2 μm roughly co-localized with the CS
in a heat shocked cell for 1 hr at 42°C (Figure 6B & C).
Taken together, these result suggested that the increase
of cells stiffness in response to heat shock may be linked
to chitin levels.



Figure 4 Yeast stiffness is increased by heat-shock at 42 °C. Young’s Modulus (YM) determinations on an unstressed (A–C) and a heat-
shocked cells (A’-C’). The white squares showed in the height images, (z range = 2 μm) (A, A’), indicate the localization of the elasticity maps
shown in (B, B’). Histograms of the YM distributions (C, C’) associated with the elasticity maps. YM medians were calculated by fitting a Gauss
model (indicated by the black curves).

Figure 5 Stiffness map of a heat-shocked yeast cell. Height image (z range of 2.5 μm) (A), with the corresponding elasticity map in
quantitative mode, (B) at the z range of 2 MPa. A higher young modulus was characterized in the central part of CS (white arrow).

Pillet et al. BMC Biology 2014, 12:6 Page 5 of 11
http://www.biomedcentral.com/1741-7007/12/6



Table 1 The chitin content in cell wall is increased upon
heat-shock

Chitin β-glucans Mannans

30°C 46.2 ± 9.5 440 ± 115 293 ± 24

42°C 68.3 ± 3.3 408 ± 99 301 ± 17

Carbohydrate composition of cell wall from unstressed (30°C) and heat-
shocked cells during 1 h at 42°C were determined by acid hydrolysis for β-
glucans and mannans and by enzymatic digestion for chitin. Values reported
in μg per mg of dry cell wall are the mean ± SD of 3 biological independent
experiments technically repeated 2 times.
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The formation of the cellular surface CS is dependent on
the budding process
The finding that this singular CS was found on about
40% of the heat-shocked cells, showing some morpho-
logical signs of a bud, and produced at the vicinity of a
previous bud, raised the hypothesis that this structure
might be dependent upon the budding machinery sys-
tem. The process of budding has been thoroughly inves-
tigated at the biological, genetic and molecular levels,
and showed the implication of many genes and many
structural and regulatory networks that encompass cell
polarity, cytoskeleton, secretory pathway, cell signaling,
etc. [31]. To provide a first biological evidence that the
CS formation is dependent on the budding process, we
used latrunculin A (LatA), a toxin known to destabilize
the actin cytoskeleton [32] that is implicated in the bud-
ding process. Exponentially growing cells were subjected
to a heat shock at 42°C for 1 hr in the presence of
200 μM LatA. On a sampling of 10 independent yeast
cells, we were unable to observe any CS at the cell sur-
face, as compared to results with heat-shocked cells not
treated with LatA (Additional file 4: Figure S3A). Fur-
thermore, in the absence of heat shock, the perturbation
of the actin cytoskeleton by LatA did not lead to the
formation of CS (Additional file 4: Figure S3BC). To get
additional biological evidence that the CS involves the
budding process, we performed heat shock experiments
with exponentially growing yeast cells that were
Figure 6 Fluorescence images of calcofluor white stained yeast cells.
BY4741 cells after 1 h of heat shock showing the circular structure B and C
incubated in a nitrogen-depleted medium for 72 hr. This
condition results in growth arrest in G1 phase of the cell
cycle with virtually all the cells unbudded [33] They
were then subjected to heat shock at 42°C for one hour
and AFM analysis was carried out on 10 starved cells be-
fore and 1 hr after heat-shock. In none of the heat-
shocked cells, could we find any CS at the cell surface
(Additional file 5: Figure S4). This result can be taken as
indirect evidence that CS is depending on the budding
process, because of the inability of the nitrogen-starved
yeast cells to bud both at 30 and 42°C. Thus, the circular
structure only forms during active cell growth and this
cannot be separated from a cell-cycle phase specific
defect.
At the genetic level, we addressed this question using

targeted mutants such as chs3Δ that is defective in chitin
ring formation during bud emergence [34], chs1Δ since
the loss of this gene impairs septum reparation during
cytokinesis [35] as well as a mutant deleted for BNI1 be-
cause this gene encodes a formin protein that is required
for the proper initiation of bud growth and the proper
shape of vegetative buds through formation of actin
cables [36]. High resolution AFM imaging carried out
on 15 cells from 3 independent experiments did not re-
veal any formation of singular cell surface CS in these
different mutants after a heat shock at 42°C for 1 h
(Additional file 6: Figure S5).

The formation of the cellular surface CS is regulated by
CWI pathway
Heat shock is known to activate the CWI pathway, and
the surface sensor Wsc1 is one of the sensors that detect
and transmit this cell wall stress to the signaling cascade
[37]. To evaluate whether the formation of the cell sur-
face CS was under the control of the CWI signaling and
whether Wsc1 could be implicated in this response, both
bck1Δ mutant defective in the MAP kinase of the CWI
pathway [38] and wsc1Δ mutant cells were analyzed by
In (A), BY4741 cells cultivated at 30 °C showing bud scars. (B & C),
.
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AFM before and after 1 hr heat shock at 42°C. As com-
pared to the wild type cells, which under this heat stress
condition exhibited a large cell surface CS, neither the
bck1Δ nor wsc1Δ cells imaged by AFM presented this
singular structure (Additional file 7: Figure S6). The fail-
ure to identify any CS formation on these mutants upon
1 hr incubation at 42°C could not be due to cell death
nor loss of heat shock response, since loss of viability of
wsc1Δ and bck1Δ mutants was only 1 and 25% respect-
ively (Additional file 2: Table S1), and both mutants
readily accumulated trehalose in response to the thermal
stress as wild type cells (Additional file 1: Figure S1). In
addition, we failed to identify this structure on more
than 20 independent analyzed wsc1Δ and bck1Δ mutant
cells. Therefore, these results support an implication of
CWI pathway in the formation of the cell surface CS.
We also noticed that the YM of the unstressed wsc1Δ
was comparable to the one determined on heat-shocked
wild type cells (Additional file 8: Figure S7). Also, these
unstressed wsc1Δ cells exhibited a chitin content twofold
higher than the wild type cells (Additional file 9: Table
S2), arguing in favor of a correlation between chitin con-
tent and stiffness of the cell wall. After exposure to 42°C
for 1 h, the YM values and the chitin content in the
wsc1Δ mutant were not significantly affected (Additional
files 8 and 9: Figure S7 and Table S2).

Discussion
The Atomic Force Microscopy (AFM) is nowadays the
most powerful scanning microscopy tool used to
visualize and to explore the dynamics of living cells at
the nanometer resolution under physiological condi-
tions. Being also a force machine, it allows force spec-
troscopy measurements of the cell mechanics [39].
Therefore, it is a superb method for investigating the
biomechanical consequences of a heat shock on the
yeast cell, with the eventual aim to correlate the putative
biophysical changes observed using this methodology to
the largely documented molecular and metabolic re-
sponses to heat shock [23]. In this study, we reported for
the first time the formation of a circular structure (CS)
that is induced upon exposure of yeast cell to 42°C. The
high resolution AFM imaging clearly indicated that this
singular feature takes its origin from a single point and
propagates in concentric rings during the time of incu-
bation at 42°C. In addition, this singular CS was ob-
served in yeast cells immobilized by two different
methods, which further supports the idea that the for-
mation of this feature is a true morphological event in-
duced by heat shock. The reason why Adya et al. [27]
did not find this morphological event in their heat shock
study by AFM could be explained by the immobilisation
technique these authors used, which likely destroyed the
integrity of the cell surface.
The discovery of only one singular CS per cell (al-
though we could not preclude that another one was
formed underside of the cell since this was not access-
ible to the AFM analysis), together with the close vicin-
ity of this structure to a previous bud and with the fact
that it appeared on about 40% of the heat shocked cells
were indications that this amazing structure may be
related to a failure in the budding emergence and/or in
the budding process. This suggestion is supported by the
inability of a mutant defective in BNI1 encoding a for-
min protein that is needed for proper bud pattern for-
mation to produce the CS in response to heat shock.
The function of this protein is to assemble linear actin
cables along the mother daughter axis and at the bud
neck [40]. The polarization of the actin cytoskeleton is
an essential process for cell expansion and budding in
the yeast S. cerevisiae, and a defect in this process results
in abnormal morphology characterized either by elon-
gated buds or spherical buds [36]. Delley & Hall [41]
have reported that a mild heat shock from 24 to 37°C in-
duces a transient depolarization of the actin cytoskeleton
that is accompanied by a transient depolarized distribu-
tion of the β-glucan synthase complex, composed of the
catalytic subunits Fks1 or Fks2 and the regulatory sub-
unit Rho1. They further showed that this depolarization
of the actin cytoskeleton and β-glucan synthase was me-
diated by the plasma membrane protein Wsc1. Interest-
ingly, we found that heat-induced formation of CS was
abolished when latrunculin A, a toxin molecule known
to disrupt actin cystokeleton [32], was added prior to the
thermal stress, as well as in wsc1Δ mutant cells. In
addition, the use of Calcofluor white staining method
highlighted the presence of chitin rings at the vicinity of
the CS outer ring. This finding is reminiscent of the
presence of the chitin ring that delimitate the bud scars
on the yeast cell surface [30]. Taken together, these
results support the idea that the heat-induced formation
of CS is a morphological consequence at the cell surface
of a defective budding process due to perturbation of
the actin cytoskeleton depolarization process.
It is known that the CWI pathway is activated under

heat stress and although the cell surface mechanosensor
Wsc1 is important in detecting this cell wall stress and
to transmit the signal to the Pkc1 MAP kinase cascade
[42], it is not the sole sensor implicated in the heat stress
response [43]. Therefore, the finding that bck1Δ mutant
cells, defective in the MAP kinase of the CWI pathway,
could not produce this structure in response to the ther-
mal stress indicates that the morphological process that
leads to CS formation is indeed under the control of the
CWI pathway.
The nanomechanical properties of yeast cells obtained

from the AFM force volume curves showed that the heat
stress caused a twofold increase in the Young’s Modulus
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values, indicating that the stiffness of the cell wall was
increased (or its elasticity decreased). Interestingly, the
measurement of cell wall β-glucans, mannans and chitin
in yeast cells exposed to 42°C only showed an increase
of approximately twofold of the chitin content. More-
over, the loss of WSC1 resulted also in a twofold
increase of both the chitin content and the Young’s
Modulus. Taken together, these results suggest that the
cell wall elasticity is mainly linked to the relative changes
in the chitin content as described recently by Formosa et
al. [44]. This result does not contradict our previous
work showing that the cell wall elasticity was merely
dependent on cross-linkages between chitin and β-
glucans rather than on a particular cell wall component
[6], since chitin content is in fact the most critical com-
ponent that ensures strength of the cell wall through the
covalent connection that it makes with the other cell
wall components.

Conclusions
The powerful technology AFM allowed identifying and
precisely describing an unexpected morphological
phenomenon occurring at the cell surface, which may
explain physically how yeast cells are damaged by
temperature stress and could eventually lead to cell
death. Our results are also relevant in regards to the
rough industrial growth conditions and processes which
the yeast S. cerevisiae has to cope with, and which may
cause comparable morphological defects at the cell
surface.

Materials and methods
Yeast strains and growth conditions
Yeast strain BY4741 (MATa his3Δ1 leu2Δ10 met15Δ0
ura3Δ0) [45] and its isogenic deletion mutants wsc1Δ,
bck1Δ, chs1Δ, chs3Δ and bni1Δ obtained from Open Bio-
system (USA) were used in this study. Yeast cells were
routinely cultivated at 30°C in a standard rich YEPD
(Yeast Extract Peptone Dextrose) medium containing
10 g/l of yeast extract, 20 g/l of peptone and 20 g/l of
dextrose. Heat shock experiments were carried out with
exponentially growing cells (OD600 at 1–2 unit) by put-
ting part of the yeast culture (10 mL in 50 mL Erlen
flask) in a water bath set at 42°C during 1 h.

Latrunculin A and nitrogen starvation experiments
Latrunculin [32] was added at 200 μM to exponentially
growing cells cultivated at 30°C or just before transfer-
ring yeast culture cells at 42°C. For nitrogen starvation
experiment, exponentially growing cells in YEPD (col-
lected at OD600 at 1.0 unit) were washed 3 times in
nitrogen-depleted medium (50 mM of phosphate with-
out nitrogen, 2% of glucose, pH 6.2) and resuspended at
OD600 of 1.0 unit in this medium for 72 h at 30°C before
heat shock as described above.

AFM sample preparation
Yeast cells were immobilized according to two different
protocols. The first method consisted in filtering a small
volume of yeast culture (1 to 5 mL) through a polycar-
bonate membrane pore sizes of 5 μm in order to trap
cells into the micrometer size pores of the nylon filter
(Merck Millipore, Darmstadt, Germany). After filtration,
the filter was washed once with 4 mL of acetate buffer
20 mM, pH 5.5. In the second method, the cells were
captured in microstructured polydimethylsiloxane
(PDMS) stamps according to [28]. Briefly, 1 mL of the
cell culture were washed quickly 3 times with 1 mL of
AFM buffer (18 mM CH3COONa, 1 mM CaCl2 and
1 mM MnCl2, pH 5.2), resuspended in 1 mL of the same
buffer, and 100 μl of this cell suspension was deposited
on a freshly oxygen activated microstructured PDMS
stamp. The cells were allowed to stand for 15 min at
room temperature and then forced to enter the micro-
structures of the stamp by convective/capillary assembly
[28]. A typical example of cells immobilized in holes of a
PDMS stamp is given in Additional file 10: Figure S8. To
get statistical significance of the AFM data, about 10–12
cells have been analyzed from three independent experi-
ments. In addition, three independent investigators per-
formed AFM experiments. Each investigator has
analyzed 10–12 cells.

AFM imaging and Force spectroscopy experiments
AFM images of yeast cells trapped in polycarbonate
membrane were recorded with a Nanowizard II form
JPK (JPK Instruments, Berlin, Germany), in contact
mode, using OTR4 (Olympus provided by Bruker) canti-
levers. AFM experiments on yeasts immobilized on
PDMS stamps were performed with a Nanowizard III
form JPK (JPK Instruments, Berlin, Germany) in contact
mode, Quantitative Imaging mode (QI) [46] and Force
Volume mode (FV). The cantilevers used (OTR4 and
MLCT) had a spring constant measured by the thermal
noise method [47] ranging from 0.01 to 0.5 N/m. Cell
wall elasticity was deduced from the Young’s modulus
which was calculated from FV measurement using the
Hertz model [48].

Extraction of cell wall and determination of β-glucan and
mannan polysaccharides
Yeast cells (about 50 mg dry mass or 109 cells) were col-
lected by centrifugation (5 min, 3000 g), washed once
with 10 mL of cold sterilized water, and after a second
centrifugation, cell pellet was resuspended in cold water.
The cell walls (about 10 mg dry mass) obtained from
control and heat shocked yeast cells were extracted
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according to the protocol described by Dallies et al. [49].
The content of β-glucans and mannans in the S. cerevi-
siae cell walls were determined by acid sulfuric hydroly-
sis method as described by François [50]. The released
monosaccharides (glucose and mannose) were quantified
by HPAEC-PAD on a Dionex-ICS 5000 system (Ther-
mofisher Scientific, France). Separation was performed
on a CarboPac PA10 analytical column (250 × 4 mm)
with a guard column CarboPac PA10, by an isocratic
elution of NaOH 18 mM at 25°C and a flow rate of
1 mL/min. Detection was performed by pulsed ampero-
metric system equipped with a gold electrode.
Analytical methods
Intracellular trehalose level was determined as previously
described [51]. For accurate chitin determination in the
yeast cell wall, an enzyme assay has been used as follows.
Lyophilized cell walls (about 10 mg) were suspended in
200 μl of 50 mM potassium acetate buffer, pH 5.0 and
boiled at 65°C for 5 min. After mixing and cooling to
ambient temperature, the cell wall suspension was
treated with 1U of chitinase from Streptomyces griseus
(Sigma-Aldrich, France) for 24 h at 37°C. The N-acetyl
glucosamine released by the chitinase action was then
determined using a colorimetric method as described by
Reissig et al. [52] and adapted for a micro method.
Briefly, 125 μl of the enzymatic mixture was heated with
25 μl of 0.8 M potassium tetraborate pH 9.0 at 100°C for
8 minutes. After cooling at room temperature, 750 μl of
Reissig reagent (10 g of 4-dimethylaminobenzaydedyde
dissolve in 12.5 mL 10 N HCl and 87.5 mL of glacial
acetic acid) diluted ten times in deionized water was
added, and the tubes were incubated 40 minutes at 37°C.
The absorbance was read at 585 nm. The chitin content
was obtained from N-acetylglucosamine standard curve
(from 0 to 100 μg/mL) made in the same condition.
Miscellaneous methods
Calcofluor white treatment of yeast cells before and 1 hr
after heat shock was carried out as following the proced-
ure described in [53]. Cell viability was performed using
methylene blue according to [54].
Additional files

Additional file 1: Figure S1. The accumulation of trehalose is
correlated with survival of cells under heat stress condition. Comparison
of trehalose accumulation in the wild-type yeast BY4741 and the defective
mutants wsc1Δ and bck1Δ. Control (full bar) and heat-shocked condition
(hachured bar) are represented.

Additional file 2: Table S1. Evaluation of viability by blue methylene
test. The percentage of mortality was evaluated before and after heat
shock with the defective mutants wsc1 and bck1, and the wild-type yeast
with or without nitrogen starvation during 72 h.
Additional file 3: Figure S2. Young modulus increase with heat-shock.
Distribution of Young modulus values calculate with 19 elasticity maps
(ncurves = 19443) from individual yeasts unstressed (A), in comparison with
15 elasticity maps (ncurves = 15307) from individual yeasts heat-shocked at
42°C (B). YM medians were indicated on diagrams and calculated from
fits in gauss model (red curves). (C) Statistic unpaired t test between aver-
ages and standard deviations calculated from young modulus values. The
3 asterisks shown significant differences between elasticity of unstressed
yeasts (full bar) and heat-shock yeasts (hachured bar) at the P value < 0.0001.

Additional file 4: Figure S3. The absence of F-Actin prevent the forma-
tion CS. AFM high resolution images of wild-type cells after heat shock in
absence (A) or in presence of 200 μM Latrunculin A (B). Cells incubated
1 hr at 30°C with 200 μM of Latrunculin A (C).

Additional file 5: Figure S4. The formation of CS require budding process.
High-resolution deflection images of wild-type incubate 72 h at 30°C in nitrogen
starvation, without (A) or with heat shock 1 hr at 42°C (B).

Additional file 6: Figure S5. The heat-induced formation of the cell
surface circular structure is abolished in mutants defective in the budding
process. High-resolution AFM deflection images of bni1Δ (A), chs3Δ (B)
and chs1Δ (C) mutants after heat shock.

Additional file 7: Figure S6. The CWI controls the stiffness of the cell
wall and the formation of the cell surface circular structure in response to
heat shock. High-resolution AFM deflection images of wild-type cell (A),
wsc1Δ (B) and bck1Δ (C) cell defective in the CWI pathway imaged after
1 hr of incubation at 42°C.

Additional file 8: Figure S7. The stiffness of wsc1Δ unstressed was
similar to wild-type yeast exposed at 42°C during 1 h. Distribution of
Young modulus values calculate with 4 elasticity maps (n = 4096) from
individual wsc1Δ yeasts unstressed.

Additional file 9: Table S2. Chitin rate was similar in wsc1Δ mutant
with or without heat-shock at 42°C. Carbohydrate composition of wsc1Δ
mutant was determinated by acid hydrolysis and enzymatic method and
expressed in μg/mg of cell wall dry mass.

Additional file 10: Figure S8. Yeast immobilization on PDMS stamp.
(A) AFM height image of a PDMS stamp containing some immobilized
yeasts. The z range is 2.5 μm. (B) 3D projection associated to the height
image.
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Abstract 

α-(1,3)-Glucan is a major component of the cell wall of Aspergillus fumigatus, an opportunistic 

human fungal pathogen. There are three genes (AGS1, AGS2 and AGS3) controlling the 

biosynthesis of α-(1,3)-glucan in this fungal species. Deletion of all the three AGS genes resulted 

in a triple mutant that was devoid of α-(1,3)-glucan in its cell wall; however, its growth and 

germination was identical to that of the parental strain in vitro. In the experimental murine 

aspergillosis model, this mutant was less pathogenic than the parental strain. The AGS deletion 

resulted in an extensive structural modification of the conidial cell wall, especially conidial 

surface where the rodlet layer was covered by an amorphous glycoprotein matrix. This surface 

modification was responsible for viability reduction of conidia in vivo, which explains decrease 

in the virulence of triple agsD mutant. 
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Introduction

a-(1,3)-Glucan is a major cell wall component of most

ascomycetous and basidiomycetous fungi, including the human

pathogens that establish their disease upon inhalation of their

infective morphotypes (e.g., Paracoccidioides brasilisensis, Histoplasma

capsulatum, Blastomyces dermatitidis, Cryptococcus neoformans Aspergillus

fumigatus). The role of this polysaccharide during infection has been

demonstrated and the mechanisms of its involvement in establish-

ing virulence have been forwarded [1,2]. In C. neoformans, a-(1,3)-

glucan anchors the capsule, a well known virulence factor of this

fungus, to the yeast cell wall and has been shown to be indirectly

associated with virulence since a mutant devoid of a- (1,3)-glucan

did not have any capsule and, most importantly, was unable to

grow at 37uC [2]. In the yeast H. capsulatum, a-(1,3)-glucan was

suggested to be essential for virulence because it masked

immunogenic molecules: in the a-(1,3)-glucan synthase mutant,

b-(1,3)-glucan that is recognized by Dectin-1, is exposed at the

surface of the cell wall, whereas in the parental strain yeast cells, b-

(1,3)-glucan is covered by a-(1,3)-glucan, preventing Dectin1-

dependent immune response [1].

In A. fumigatus, a-(1,3)-glucan accounts for 40% and 19% of the

mycelial and conidial cell wall polysaccharides, respectively [3]. It

is a major adhesive involved in the aggregation of germinating

conidia and in biofilm formation [4,5]. Moreover, it has been

shown in experimental murine aspergillosis models that a-(1,3)-

glucan has a prominent immunological function conferring a long-

term survival [6]. This immune protection was associated with a

reduced neutrophil recruitment in the lungs and reduced

inflammatory pathology [6]. a-(1,3)-glucan, like conidia, confers

a Th1/Treg protection and concomitant Th2 inhibition. These in

vivo data were confirmed by in vitro experiments where dendritic

cells pulsed with a-(1,3)-glucan induced Il12p70 production, a

classical Th1 promoting cytokine [6]. However, the physiological

role of a-(1,3)-glucan could not be further investigated in absence

of the mutants devoid of a-(1,3)-glucan. In A. fumigatus, this

polysaccharide is synthesized by three a-(1,3)-glucan synthases

(Agsp) [3,7]. A triple deletion of the AGS1, AGS2 and AGS3 genes

was recently generated in our lab that resulted in an A. fumigatus

mutant lacking a-(1,3)-glucan in the cell wall. In contrast to other

fungal pathogens, this triple AGS A. fumigatus deletion mutant did

not show a distinct growth phenotype in vitro [8].

In the present study, three independently constructed triple

ags1Dags2Dags3D (agsD) mutants devoid of a-(1,3)-glucan were used

to investigate the role of a-(1,3)-glucan in A. fumigatus infection. As

shown here, the virulence of these A. fumigatus triple agsD mutants

was extremely attenuated in both immunocompetent and immu-

nocompromised murine models of experimental aspergillosis

tested. The defect in virulence correlated with a lack of vegetative

fungal dissemination in the lungs, associated with a highly reduced
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inflammation following conidial inoculation. Analysis of the

conidia of the triple mutants showed that the lack of virulence of

the mutants in vivo was associated to major changes occurring on

the cell wall, especially on the surface of the resting and swollen

conidia, which resulted in an increased killing by phagocytes.

Results

The ags1Dags2Dags3D (agsD) mutants are less virulent
than the parental strain in murine model of aspergillosis

In the immunocompetent mice after four days of infection, the

number of CFUs of the agsD mutants per lung was much lower

than the CFUs per lung of the parental ku80 strain (Fig. 1A; Fig.

S1A). The reduced fungal burden of agsD was correlated to an

absence of inflammation whereas a huge inflammatory response

was observed with the parental strain (Fig. 1B, Fig. S1B). This was

confirmed by the broncho-alveolar lavage (BAL) analysis, which

showed a higher PMN recruitment after infection with ku80

conidia compared with agsD (Fig. 1C, Fig. S1C). The reduced

growth and inflammation in agsD infections was associated with an

increase in the expression of the gene coding for the anti-

inflammatory IL10 and a decreased expression of the gene coding

for the pro-inflammatory TNFa in the lungs (Fig. 1D, Fig. S1D).

In contrast, ku80 infection was characterized by higher and lower

expressions of TNFa and IL10, respectively.

The increased susceptibility of the agsD mutants was confirmed

in vitro with murine alveolar macrophages isolated from BAL. After

phagocytosis by the isolated macrophages, the killing of the agsD
conidia was much higher than the parental strain. The resting

conidia of agsD mutants were killed twice more than the parental

strain after 2 h incubation with the macrophages (Fig. 1E).

Further, after 6 h of incubation, the killing of the mutant reached

60–80% whereas a maximum of 30% of the parental strain

conidia were killed at this time point (data not shown). Similar

difference in the killing ratio between the mutant and parental

strains was obtained when the conidia were pre-germinated

(swollen conidia; after 6K h incubation of the conidia in RPMI

medium, at 37uC), suggesting that both resting and swollen

conidia of the agsD mutants were more susceptible to conidial

killing than the parental strain. This twofold increased killing

susceptibility of the agsD mutants compared to parental strain did

not change in the germinating morphotypes.

In the experimental model of aspergillosis using immunocom-

promised mice, the virulence of the agsD mutants was also

significantly reduced. In a cyclophosphamide model of immuno-

suppression, infection with the ku80 strain resulted in the mortality

of all the mice within 4 days with a high inflammatory response,

large foci of pneumonia and exudative bronchiolitis with

destruction of bronchi and alveoli, whereas 60 to 80% mice

infected by the agsD mutants survived and did not develop any

inflammatory response (Fig. 2A–C, Fig. S2). Similar results were

obtained when mice were immunocompromised by the injection

of the RB6-8C5 MAb, which depletes circulating PMNs.

Inhalation of the ku80 conidia resulted in an extensive pulmonary

fungal invasion with high inflammation (Fig. 2D–E). In contrast, in

the RB6-8C5 MAb-treated mice lungs, only resting and swollen

agsD conidia were observed and their incapability to grow

vegetatively culminated in low inflammation (Fig. 2D–E). These

results showed that the reduced virulence of the agsD mutant was

due to a defect in their conidial survival or vegetative growth in the

lung of the infected mice.

Susceptibility of the agsD and parental strain conidia to
antifungal molecules is similar

To investigate the mechanisms responsible for the in vivo growth

defect, the germination of agsD mutant conidia was tested in vitro

under stress conditions mimicking the in vivo environment, such as,

in the presence of reactive oxidants (ROS), cationic peptides,

hypoxia and depletion of iron. The agsD mutants showed similar

growth rates as their parental strain in the presence of Menadione,

hydrogen peroxide and LuperoxH101 with minimum inhibitory

concentrations (MIC) of 30 mM, 10 mM and 2 mM, respectively

(data not shown) irrespective of the pH of the medium (pH 7 or 4).

The killing of resting conidia after 2–6 h of incubation with

macrophages purified from uninfected p47phox2/2 mice (depleted

in ROS production) were similar to the killing by purified

macrophages from uninfected wild type mice (C57BL6 H-2b)

(Fig. 2B, data not shown for 6 h and Fig. 3). These results

suggested that the agsD mutant conidia were not more susceptible

than the parental strain conidia to reactive oxidants in vitro as well

as in vivo. Interestingly, these results also suggested that in our

experimental models, conidia from both mutant and parental

strains were efficiently killed by ROS-independent mechanisms.

Moreover, the absence of iron or the presence of a hypoxic

environment did not modify the survival and conidial germination

of agsD mutants compared to their parental strain (data not

shown). In vitro, the agsD conidia germinated like parental strain

conidia in culture medium without supplementation with iron as

well as under hypoxic conditions (,1% (v/v) O2 and 9–13% (v/v)

CO2). The agsD mutants were not more susceptible than the

parental strain to cationic peptides. At doses of 230, 100, 40 and

230 mg/ml of Cathelicidin LL-37, a HNP2 and b hBD2 defensins

and lactoferrin, respectively, no germination differences were seen

between parental and mutant strains (data not shown). Similarly,

both mutant and parental strain conidial killing was comparable

with 0.05% SDS (data not shown). In addition, no increase in the

intracellular labeling of the agsD mutant conidia was seen after

incubation with Calcofluor White or FITC (data not shown).

These results suggested that the agsD conidia were not more

permeable to extracellular toxic molecules than the parental strain.

Testing of these different inhibitors in combination (such as H2O2

or SDS, with Lactoferrin or LL-37) did not result in a differential

sensitivity between the parental and mutant strains (data not

shown).

These results suggested that, in vitro, the triple agsD mutants were

not more susceptible to environmental stresses and antifungal

molecules compared to the parental strain. To further investigate

the differences in virulence between the mutant and parental

Author Summary

Aspergillus fumigatus is the predominant mold pathogen
of humans, responsible for life-threatening systemic
infections in patients with depressed immunity. Because
of its external localization and specific composition, the
fungal cell wall represents a target for recognition by and
interaction with the host immune cells. In A. fumigatus, a-
(1,3)-glucan is a key component of the extracellular matrix,
which encloses the cell wall b-(1,3)-glucan-chitin fibrillar
core. Interestingly, the deletion of the genes responsible
for a-(1,3)-glucan synthesis resulted in a mutant that
exhibited wild type phenotype in vitro; while the altered
cell wall organization resulted in this fungus being
avirulent in vivo. This study confirms that any modification
in the cell wall components is associated with compensa-
tory reactions developed by the fungus to counteract
stress on the cell wall that may result in unexpected fungal
response when challenged with the host immune system.

a-(1,3)-Glucan and Avirulence in A. fumigatus
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strains in vivo, we hypothesize that the killing of the agsD mutant

conidia could be due to the induction of an early and strong host

immune response towards the mutant conidial morphotypes.

The resting conidia of the agsD mutants are immediately
recognized by the innate immune system because the
surface rodlet layer is masked by a layer of glycoproteins

Resting conidia of the agsD mutant were more efficiently

phagocytosed by mouse alveolar macrophages than that of the

parental ku80 strain. After 1 h incubation, an average of 3.4 and

1.4 conidia of agsD mutants and ku80 were engulfed per

macrophage, respectively (Fig. 4, Fig. S3). This result suggested

that the agsD mutant and parental strain conidial surfaces are

different. To investigate such structural modifications, conidial

surfaces were imaged by atomic force microscopy (AFM). In

contrast to the ku80 conidia that are covered with a crystalline-like

array of rodlets [9], the agsD mutant conidial surface was

amorphous without any organized structure (Fig. 5A). The

presence of an amorphous material covering the surface of the

agsD conidia was further confirmed by TEM (Fig. 5B).

To investigate if the rodlet layer is still present on the agsD
mutant conidial surface but masked by this amorphous material,

ku80 and agsD resting conidia were treated with hydrofluoric acid

(HF) to extract the rodlet protein. Similar amount of the

hydrophobic RodA protein, which constitutes the rodlet layer,

could be extracted from the agsD and parental strain conidia

(26.764.9 mg and 26.563.0 mg per 109 conidia, respectively).

Figure 5C shows that the two bands, 16 kDa and 14.5 kDa of

RodAp classically seen from HF treatment of the conidia [10]

were present in the SDS-PAGE profiles of agsD and ku80 resting

conidial HF-extracts. These data confirmed AFM and TEM

observations that on the agsD mutant conidial surface the rodlets

were present but hidden by an amorphous material.

Because of the presence of this amorphous material covering the

hydrophobic rodlets, we asked whether the observed surface

changes correlated with differences in conidial adhesive properties.

To understand this, we mapped and quantified the nanoscale

adhesion properties of ku80 and agsD mutant conidia by AFM

using bare Si3N4 tip. Figure 6 (and Fig. S4) showed that the

presence of this unorganized material on the agsD mutant conidial

surface was associated with a dramatic reduction in their conidial

surface adhesive properties. For the parental strain, force-distance

curves recorded across the cell surface revealed large adhesion

forces, with a magnitude of 0.660.039 nN as shown by the

Figure 1. Immunocompetent mice infected with resting conidia of agsD_5T and parental (ku80) strains. Observations and analysis on
mice were done four days post-infection. (A) Fungal load was expressed as log10 CFU/lung. (B) Lung histology (periodic acid-Schiff-staining). Note the
polymorphonuclear cells and mononuclear infiltrates surrounding the bronchi in ku80 infected lung. (C) After infection, percentages of monocytes
and polymorphonuclear cells found in the lungs alveolar lavage (BAL). (D) Relative expression of TNFa and IL10 assessed by real time RT-PCR on lung
total RNA from naı̈ve and infected mice. (E) Conidiocidal activity by purified macrophages from uninfected mice expressed in percentage of CFU
inhibition after 2 h incubation of the conidia with macrophages. Data are representative of at least three independent experiments. Ctl, naı̈ve mice; *,
P,0.05.
doi:10.1371/journal.ppat.1003716.g001
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adhesion force histogram (Fig. 6A–C). In contrast, structural

changes in agsD conidia caused profound modifications of the cell

surface physico-chemical properties (Fig. 6D–F, Fig. S4). Force-

distance curves showed the absence of adhesion forces over the

entire surface of the mutant conidia. This decrease in the agsD
conidial adhesion capacities indicated a modification of the cell

surface hydrophobicity that could have influenced conidial

phagocytosis.

Further, chemical nature of the amorphous layer present on the

agsD mutant conidial surface was investigated. It was not

composed of polysaccharides since the labeling of b-(1,3)-glucan

with the b-(1,3)-glucan receptor GNBP3, chitin with WGA,

galactomannan (GM) with an anti-GM monoclonal antibody and

galactosaminogalactan (GAG) with an anti-GAG monoclonal

antibody were negative (data not shown). In contrast, a strong

labeling of the resting agsD conidium with ConA was observed

suggesting that the surface layer was rich in glyco-conjugates

(Fig. 7).

To extract these amorphous surface materials, agsD resting

conidia were incubated in 0.5 M NaCl for 2 h and the extracted

materials were positive for protein assay. As shown in the Figure 8

(and Fig. S5), incubation with NaCl did not release any proteins

from the parental ku80 strain whereas the extracts from agsD
mutant conidia contained 160 mg proteins per 1010 conidia. It was

verified that the amorphous glycoprotein layer was removed after

NaCl treatment because ConA labeling on the conidia after NaCl

treatment was negative (data not shown). Further, extracted

protein mixture was subjected to proteomic analysis. Thirty-four

proteins were identified and in-silico analysis of these proteins by

SigPred (http://www.cbs.dtu.dk/services/SignalP/) and CADRE

(http://www.cadre-genomes.org.uk/Aspergillus_fumigatus/) re-

vealed that all of them had a signal peptide except Sod1

(AFUA_5G09240, [11]) (Table 1, Table S1). Most of these

proteins were hydrolases and the most abundant protein was a

putative b-(1,4)-glucan hydrolase (AFUA_7G06140). Other glyco-

sylhydrolases were hexosidases or N-acetylhexosaminidases

(AFUA_1G05770; AFUA_1G14560, AFUA_1G10790,

AFUA_8G05020, AFUA_6G10730). A unique aspartic phospha-

tase was identified that was different from the one previously

identified as a major mycelial cell wall protein [12]. Three

Figure 2. Cyclophosphamide immunosuppressed mice and anti-Ly6G treated neutropenic mice infected with resting conidia of
agsD_5T and parental (ku80) strains. (A–C) Cyclophosphamide immunosuppressed mice; (D–E) anti-Ly6G treated neutropenic mice; (A) Survival
(%) and (B) fungal growth estimated as CFUs in lung. (C and E) lung histology (periodic acid-Schiff-staining). Note the polymorphonuclear cells and
mononuclear infiltrates surrounding the bronchi in ku80 infected lung. (D) Histological appearance of lungs of anti-Ly6G neutropenic mice infected
with conidia of agsD_5T and ku80 (Gomori’s methanamine silver-staining). Note the absence of mycelial development of agsD_5T conidia in
neutropenic mice. Data are representative of at least three independent experiments. *: p,0.05.
doi:10.1371/journal.ppat.1003716.g002
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peptidases (AFUA_2G03510, AFUA_4G03490, AFUA_8G04120)

and the two aspartic proteases, Pep1p and Pep2p

(AFUA_5G13300, AFUA_3G11400), known to be associated

with the conidial cell wall were found [13]. Two well known

allergens of A. fumigatus were also detected (Aspf1

(AFUA_5G02330) and Aspf13 (AFUA_2G12630) [14]). Other

protein such as oxidoreductases and enzymes of sugar metabolism

(pyruvate dehydrogenase kinase AFUA_2G11900 and isopropyl-

malate dehydrogenase AFUA_1G15780) were present in lower

amount as they were identified only once or twice in the proteomic

survey. Interestingly, Sod1p and RodAp (AFUA_5G09580),

known to be highly expressed in resting conidia [11], were also

found in this NaCl extract. A similar SDS-PAGE profile was

obtained when urea/thiourea buffer was used to extract agsD
conidial surface material, indicating that the proteins recovered

were not depending on the extraction buffer (data not shown). The

fact that many proteins were present above the surface rodlet layer

suggested that in contrast to the parental strain, the lack of a1,3

glucan has led to a different cell wall retainment of these

glycoproteins in the agsD mutant conidia.

In vitro analysis of the cytokines produced during the first 5 h of

incubation with alveolar macrophages showed that high amounts

of pro-inflammatory TNFa cytokine were produced upon

interaction with agsD mutant conidia whereas no TNFa was

produced when the parental strain was incubated with macro-

phages under the same incubation conditions (Fig. 9A, Fig. S6A).

Stimulation of the macrophages with the agsD conidial NaCl

extract also induced TNFa expression (Fig. 9B; Fig. S6B). These

results suggested that the surface glycoprotein layer on the resting

agsD conidia was responsible for the induction of pro-inflammatory

cytokine production immediately after conidial phagocytosis.

Thus, the deletion of the AGS genes resulted in an unexpected

modification of the mutant conidial surface with the emergence of

an amorphous layer on the resting conidial surface over the rodlet

layer, which altered biophysical properties, consequently affecting

conidial interaction with the host immune system.

Polysaccharide PAMPS are exposed on the surface of the
swollen conidia of the triple agsD mutants

Increased cytokine production seen in the macrophages over a

5 h-time period could also come from changes occurring at the

surface of germinating conidia since it has been shown previously

that conidia starts germinating intracellularly in the macrophage

lysosome after the first 2 h of phagocytosis [15]. In addition,

Figure 2 shows that agsD conidia undergo swelling in the infected

lungs before being killed. The structural changes of the early germ

tubes resulting from the AGS deletion were investigated by

cytochemistry. The swollen conidia of the triple agsD mutants

presented an increased labeling by WGA compared to the

parental strain (Fig. 10A and data not shown). In addition,

swollen agsD conidia were positive with the b-(1,3)-glucan receptor

GNBP3, whereas both resting and swollen conidia of the parent

strain were negative (Fig. 10B and data not shown). In contrast,

there were no differences in the immunolabeling of the swollen

conidia of parental and agsD mutants with anti-GAG and anti-GM

monoclonal antibodies (Fig. S7). These results suggest that the

absence of a-(1,3)-glucan that normally hides b-(1,3)-glucan and

chitin, exposes these PAMPs at the surface of the swollen agsD
conidia. These results were also in agreement with the chemical

analysis of the cell wall: the mycelium cell wall of the agsD
contained 1.7 and 2 times more chitin and b-(1,3)-glucan,

respectively, than the cell wall of the parental strain [8].

Figure 3. Conidiocidal activity of macrophages isolated from
uninfected p47phox2/2 mice against resting conidia of agsD_5T
and parental (ku80) strains. Conidiocidal activity is expressed in
percentage of CFU inhibition after 2 and 6 h incubation of the conidia
with macrophages. Data are representative from at least three
independent experiments. *, P,0.05.
doi:10.1371/journal.ppat.1003716.g003

Figure 4. Phagocytosis activity by isolated macrophages from
uninfected mice against resting conidia of agsD_5T and
parental (ku80) strains. Index of phagocytosis is expressed in
number of conidia per alveolar macrophage after 1 h incubation of
conidia with macrophages. Data are representative of at least 3
independent experiments. *, P,0.05.
doi:10.1371/journal.ppat.1003716.g004
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Figure 11 represents a model to explain the sequential immune

events upon inhalation of the agsD mutant and parental strain

conidia and their differential impact/in vivo fate based on our in

vitro assays as well as in vivo experiments using murine aspergillosis

models. The presence of glycoproteins hiding the rodlet layer

increases the phagocytic rate and promotes an immediate host

immunological response towards the triple agsD mutants during

phagocytosis. Once the mutant conidium is internalized, the

conidial swelling results in an increased exposure of PAMPs on the

swollen agsD conidial surface. Such surface modifications further

boosts pre-existing host defense induced by the resting agsD
conidia. In contrast, the resting conidium of the parental strain are

not recognized by the phagocytes and do not display major

PAMPs on the surface of the conidium during the intracellular

swelling. Since agsD conidia did not seem more sensitive to host

antifungal molecules compared to the parental strain, we

hypothesize that differences in the killing in the later growth

stages resulted from an early and enhanced host response induced

by the modified surface of the resting agsD conidia. This early

stimulation will be responsible for the killing of the germinating

agsD conidia. On the contrary, in the partially immunosuppressed

experimental murine models, limited and delayed killing of the

parental strain conidia enables their further vegetative growth.

Discussion

In this study we showed that the agsD mutants displayed a

reduced virulence associated with an inhibition of germination in

vivo and a reduction of the inflammatory response after 24 h

infection (decreased TNFa and increased IL10 expressions and

reduced recruitment of PMNs). The low level of TNFa seen with

the triple agsD mutants fits with the lack of recruitment of

neutrophils seen with this mutant after 24 h infection. However,

during our in vitro experiments with macrophages incubated during

5 h with agsD or ku80 conidia, we observed the induction of pro-

inflammatory cytokines. This indicated that the lack of inflam-

mation seen at later stages of infection in mice was due to the

inhibition of vegetative growth of the agsD mutants rather than a

failure to stimulate inflammation. This was in agreement with the

fact that agsD conidia were killed before their hyphal development.

The primary phenotype of the resting conidia of the agsD
mutants was the absence of visible rodlet layer on the conidial

surface. Even though the rodlets were present in the mutant

conidia, their masking by a (glyco-)protein layer restored the

immune sensing that is usually silenced when the rodlets are

present on the surface of the wild type conidia [10,16]. The agsD
conidia were covered by proteins, which are usually secreted

during vegetative growth. Most hydrolases found in the additional

amorphous surface layer of the resting agsD conidia were usually

identified during mycelial growth in a protein-based medium

[14,17]. How these proteins are able to cross the conidial cell wall

remains an open question. Their presence on the surface is

certainly due to the modifications of the cell wall integrity resulting

from the three AGS deletions. Interestingly, in three independent

HF extractions, the amount of 14.5 kDa RodAp was slightly

higher than the 16 kDa RodAp (20–23% 16 kDa RodA in agsD
mutants compared to 40–50% in the parental strain; Fig. 5C)

suggesting that the rodlet structure of the mutant was less

organized than the rodlet of the parental strain, which putatively

modified the ionic strength of the hydrophobin layer in the agsD
mutants [18]. Such structural modifications may affect the

adherence of the hydrophilic glycoproteins to rodlets through

Figure 5. Surface analysis of resting conidia of agsD_5T mutant and parental (ku80) strains. (A): height images (z-range = 1 mm; recorded
in water with silicon nitride tips). Atomic Force Microscopy (AFM) images showing the amorphous surface without the rodlet layer on the triple
agsD_5T mutant conidia whereas the rodlet are observed on the parental strain conidial surface. (B): TEM observations. Note the presence of an
extracellular material on the surface of the agsD_5T conidia (arrow); CW: cell wall. (C): SDS-PAGE (15% gel) of Hydrofluoric acid (HF) extracts of rodlets
from resting conidia showing the two bands, 16 kDa and 14.5 kDa of RodAp classically seen from HF treatment of the conidia [10]. Data are
representative of at least three independent experiments.
doi:10.1371/journal.ppat.1003716.g005
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electrostatic binding, since these proteins were easily extracted by

salt. How these glycoproteins reached the surface of the cell wall is

still not understood. This should not be related to changes in cell

wall permeability since the agsD mutants were not more permeable

to FITC or drugs that affect viability such as ROS, cationic

peptides or Calcofluor White than the parental strain (data not

shown). Alternatively, the hydrolases, because of their enzymatic

activity, may harm the cell wall structure itself and this would help

the proteins to cross the cell wall barrier. The stimulation of the

expression of TNFa after incubation with macrophages (isolated

from naive mice BAL) with agsD mutant conidial NaCl extract

showed that these proteins located on the conidial surface were

sensed first by the immune system and were able to induce an

immediate immune response towards agsD conidia. It was

previously shown that some of these surface proteins are

recognized by T cells and can induce a Th1 protective response

[6]. In particular, the secreted aspartic protease Pep1 that has

been found in NaCl extract from agsD conidia conferred

protection against infection, associated with a reduced neutrophil

recruitment in BAL and a reduced inflammatory pathology in the

lung. Hiding of the rodlet layer by an amorphous glycoprotein

layer that stimulates the host response is not exclusively specific to

Figure 6. Imaging and adhesive properties of A. fumigatus resting conidia of the parental strain and agsD_5T mutant. Structural
changes of agsD_5T correlate with a loss of cell surface adhesive properties. (A–C) parental strain; (D–F) agsD_5T mutant; (A, D) height images (z-
range = 1 mm; recorded in water with silicon nitride tips); (B, E) adhesion force maps (z-range: 5 nN) corresponding to the height image; (C, F)
Representative force-distance curves and adhesion force histograms (n = 1024) recorded on the surface of parental strain (C) and agsD_5T (F).
doi:10.1371/journal.ppat.1003716.g006

Figure 7. ConA-FITC labeling of agsD_5T mutant and parental strain (ku80) resting conidia. Note the increase in the ConA labeling on the
agsD_5T mutant conidial surface. Histograms represent the calculated fluorescence intensity of the corresponding images, expressed in Einstein per
seconds.
doi:10.1371/journal.ppat.1003716.g007
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the agsD deletion, since a similar conidial phenotype was observed

on chitin synthase mutants [19,20]. Similarly, in B. dermatitidis, the

absence of a-(1,3)-glucan at the surface of the yeast increased the

expression of W1-1 adhesin/antigen that were bound to phago-

cytic cells and suppressed the generation of the pro-inflammatory

cytokine TNFa [21,22].

The exposure of polysaccharide PAMPs on the surface of

germinating conidia consecutively to triple AGS deletions also plays

a role in stimulating the host innate immune response and

inducing the production of antifungal molecules by the innate

immune cells. The exposure of b-(1,3)-glucan at the surface of

germinating agsD conidia will favor a Dectin-1-mediated host

response [23]. Similarly, increased b-(1,3)-glucan exposure due to

caspofungin treatment stimulated the host defense reaction against

A. fumigatus [24,25]. In addition, the positive binding of WGA and

ConA also suggested that other receptors such as the mannose or/

and chitin/N-acetylglucosamine, which are known to stimulate an

antifungal response, can also be involved in this modified immune

response [26]. Similar to the situation with the agsD mutants, it was

shown that the lack of a-(1,3)-glucan in H. capsulatum also led to the

unmasking of PAMPs [1]. The protective role of a-(1,3)-glucan has

been also shown in B. dermatitidis and P. brasiliensis where the

absence of a-(1,3)-glucan at the surface of the yeast and/or its

replacement by b-(1,3)-glucan stimulated the host defense reaction

[21,27]. Recently, the masking of chitin by a-(1,3)-glucan has been

shown to be essential for the virulence of the plant pathogen

Magnaporthe grisea [28].

The molecules responsible for the killing of the agsD conidia

remain unknown. However, it is clear that ROS were not

responsible for the differences in killing between the agsD mutants

and the parental strain conidia since the agsD mutants did not

display a higher sensitivity to ROS in vitro and the killing of agsD
conidia was similar in p47phox2/2 mice compared to C57BL/6

(Fig. 3). Although a link between increased oxidative response and

enhanced damage to A. fumigatus has been repeatedly demonstrat-

ed in the past [29,30], recent studies, especially with chronic

granulomatous disease (CGD) patients, have shown that NADPH-

independent mechanisms can contribute to Aspergillus killing as

much as ROS [31,32]. Among possible mechanisms of NADPH-

independent activity, D’Angelo et al. [33] have suggested that

defensins and cathelicidins, known for their role in host defense,

could be responsible for A. fumigatus killing in CGD mice. This

seems however not the case for the agsD mutants as our in vitro

studies indicated that the agsD mutants did not show a higher

susceptibility to cathelicidin LL-37 or HNP2 and hBD2 defensins.

Modification of the conidial surface may also lead to an increased

binding of Surfactant Proteins A and D, Mannose Binding Lectin

C or Penthraxin 3 that are known to be associated to an increased

phagocytosis and an activation of the complement pathway known

to play a major role in the killing of A. fumigatus [21,34,35,36,37].

Based on our data, it remains impossible to infer the killing of the

agsD mutant conidia to currently known antifungal immune

defense mechanisms. It can also be postulated that the killing may

be due to an early burst of unknown toxic molecules or that the

killing is the result of several antifungal molecules acting

synergistically [38]. Our cell wall analysis suggested also that the

cell wall architecture is perturbed in the inner as well as in the

outer layer and that this perturbation may result in modifications

of the cell wall permeability to specific antifungal molecules [8].

These could be responsible for an increased susceptibility of the

agsD mutant to the host defense molecules.

The story of A. fumigatus a-(1,3)-glucan remains a two-sided coin.

In the wild type strain, a-(1,3)-glucan induces an anti-A. fumigatus

response as the injection of this polysaccharide into mice was

immunoprotective and obviously responsible for the production of

a Th1 response that is directed against A. fumigatus [6]. It could be

expected that their removal favors the virulence of the mutant. In

reality, the opposite happens due to the reorganization of the cell

wall of the resting and germinating conidia upon triple AGS

deletions. The presence of glycoproteins hiding the rodlet layer

and the exposure of PAMPs in the germinating conidia modified

the immunological response of the host, which increased

phagocytosis and killing of the agsD mutants, and induced pro-

inflammatory cytokine production. It is the structural modification

of the entire cell wall consecutive to the AGS deletions that is

responsible for an early stimulation of the host defense reactions.

Interestingly, these structural modifications did not modify the

survival of the fungus in vitro but are essential for the in vivo survival.

The difference in the surface composition of the resting and

swollen conidia of the agsD mutants led to an immediate sensing of

the immunogenic molecules resulting in an early response of the

phagocyte towards the agsD conidia. The deleterious effect of a

delayed immune response on the microbial virulence is well

known.

The a-(1,3)-glucan study tells us that the deletion of one cell wall

gene does not lead only to the disappearance of the product of the

encoded gene but results in a complete restructuration of the

fungal cell wall. This has been shown with the deletion of the AGS

genes in this study but also with other cell wall genes or

consecutively to the use of antifungals acting on the cell wall in

several fungal species [39]. Such structural and chemical

Figure 8. NaCl extracted proteins from the surface of agsD_5T
resting conidia. SDS-PAGE (10% gel) of proteins extracted after 2 h
incubation of agsD_5T and ku80 resting conidia in 0.5 M NaCl.
doi:10.1371/journal.ppat.1003716.g008
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modifications in the cell wall will have an obvious impact on the

immune response of the host towards the corresponding mutant.

Our study also suggests, any interpretation stating that the

immune response towards a cell wall mutant is only due to the

lack of the product of the deleted gene should be considered with

care [40,41].

Materials and Methods

Strains and culture conditions
All strains were grown in 2% (w/v) malt agar slants and 1 week-

old conidia were recovered from the slants by vortexing with

0.05% (v/v) Tween 20 aqueous solution. Swollen conidia and

germ tubes were produced after 5 h and 10 h, respectively, after

incubation at 37uC in Brian’s medium (Brian) [42]

The A. fumigatus parental strain AkuBku80DpyrG (ku80, [43]) and

three agsD mutant strains independently obtained: ags1Dags2-

Dags3D_5T (agsD_5T) obtained previously [8] and two new ones,

ags1Dags2Dags3Dn8and ags1Dags2Dags3D_n6.2 (agsD_n8 and

agsD_n6.2), were used in this study. Since it had been impossible

to complement agsD mutant for reasons explained previously [8],

two new triple agsD mutants were constructed independently using

the strategy described previously to exclude the possibility that

undesired mutations had occurred during the deletion process.

The lack of a-(1,3)-glucan in the cell wall of mutant strains was

confirmed by both chemical and immunolabeling assays (Fig. S8).

Chemical analysis of the cell wall was performed as previously

described [44]. For immunolabeling assays, 5–10 h germinated

conidia were labeled using the MOPC 104E monoclonal antibody,

which binds specifically to a-(1,3)-glucan [45] (Beauvais A. Institut

Table 1. Proteins identified in the NaCl extract of agsD_5T and agsD_n8 conidia.

AFUA number Common Name of Target Known Gene MW (Kd)

AFUA_7G06140 Putative secreted 1,4-b-D-glucan glucanhydrolase 78.38

AFUA_6G10130 Putative N,O-diacetyl muramidase 24.64

AFUA_1G05770 b-glucosidase ExoG2 EXOG2 94.75

AFUA_3G07520 Exo b-1,3-glucanase 86.72

AFUA_2G01240 Putativeb-fructofuranosidase 57.26

AFUA_1G14560 Putative a-1,2-mannosidase, MsdS 53.84

AFUA_1G10790 Putativea-1,2-mannosidase 92.7

AFUA_8G05020 Putative secreted a-N-acetylhexosaminidase NagA 57.4

AFUA_4G01290 Glycosyl hydrolase family 75 chitosanase 25.1

AFUA_5G13300 Secreted aspartic endopeptidase Pep1 PEP1 41.6

AFUA_3G11400 Secreted aspartic endopeptidase Pep2 PEP2 43.3

AFUA_4G03490 Putative secreted tripeptidyl-peptidase TppA, SedB SEDB 65.83

AFUA_2G03380 Putative alkaline serine protease 13.4

AFUA_2G03510 Putative pheromone processing carboxypeptidase Sxa2 49.75

AFUA_8G04120 Secreted serine carboxypeptidase S1 SCP1 61.28

AFUA_3G07030 Putative secreted glutaminase GtaA 76.15

AFUA_2G12630 allergenic cerato-platanin Aspf13, serine alkaline protease ASPF13 15.94

AFUA_5G02330 allergenic restrictocin, mitogilin Aspf1 ASPF1 19.59

AFUA_4G03660 Putative acid phosphatase, PhoB regulated 46.1

AFUA_5G09240 Cu,Zn superoxide dismutase Sod1 SOD1 16.36

AFUA_3G03450 Putative oxidoreductase 58.58

AFUA_3G08070 GMC oxidoreductase 67.61

AFUA_2G04200 4-hydroxyphenylpyruvate dioxygenase, HppD HPPD 45.53

AFUA_4G13000 Putative amine oxidase 119

AFUA_4G07690 Putative phosphoribosylaminoimidazolecarboxamide formyltransferase 65

AFUA_1G16420 Uncharacterized protein 58.55

AFUA_5G09580 hydrophobin RodA RODA 16.17

AFUA_1G15780 Putative 3-isopropylmalate dehydrogenase Leu2A 39

AFUA_2G11900 Putative pyruvate dehydrogenase kinase 49.43

AFUA_6G07980 Putative cyclin-dependent protein kinase 36.65

AFUA_4G03630 Putative sterol 24-c-methyltransferase 42.57

AFUA_1G11000 Putative C6 transcription factor 82.26

AFUA_1G00700 hypothetical protein 150.55

AFUA_3G06520 conserved hypothetical protein 65.71

Identification was done by MS/MS and MS with a mascot score above a threshold of 54. Details are showed in Table S1.
doi:10.1371/journal.ppat.1003716.t001
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Pasteur, Paris, France, unpublished results). Paraformaldehyde

(PFA) fixed swollen and germinating conidia were permeabilized

prior to immunolabeling as previously described [46]. MOPC

104E (Sigma) and control mouse IgM (Sigma) were used at a

dilution of 1:25 and the goat antimouse IgG-TRITC (H+L,

Sigma) was used as the secondary antibody at a dilution of 1:50.

The three triple mutants used in this study germinated, sporulated

and conidiated like the parental strain in vitro (data not shown, [8]).

Analysis of the conidial surface
Conidial surface was analyzed by Atomic Force Microscopy

(AFM). The sample immobilization is achieved by assembling the

living conidia within the patterns of microstructured, functiona-

lized poly-dimethylsiloxane (PDMS, Sylgard 184) stamps using

convective/capillary deposition [47]. Images and force measure-

ments were performed in deionised water, respectively in contact

mode and in Quantitative Imaging (QI) mode and Force Volume

(FV) mode. For both experiments we used bare MLCT AUWH

cantilever (nominal spring constant 0.01 N/m) (Bruker). Single

cells were first localized and imaged and then switched over to QI

and FV modes to record adhesion force maps. AFM Nanowizard

II and III (JPK Instruments, Berlin, Germany) were used to

capture the images. The cantilevers spring constants were

measured by the thermal noise method [48] ranging from

0.0160 to 0.0190 N/m. Force curves were analyzed in order to

determine the adhesion force between the conidia and the AFM

tip. These adhesions were plotted as bright pixels, brighter colors

indicating larger adhesion values. For each strain, images that

were obtained for at least three conidia from independent cultures

and analyzed with different tips, were representative of the entire

conidial population inside each mutant and parental strain. The

results acquired on the spores were analyzed on JPK Data

Processing software.

The rodlet layer was extracted from the spore surface by

incubating 109 dry conidia with 48% (v/v) hydrofluoric acid (HF)

for 72 h at 4uC. The contents were centrifuged (10,000 rpm,

10 min) and the supernatant obtained was dried under N2. The

dried material was reconstituted in H2O and an aliquot was

subjected to 15% (w/v) SDS-PAGE analysis and visualized by

silver nitrate staining. Bands were quantified using Image lab

software (BioRad).

Figure 9. TNFa production or expression by macrophages
(isolated from uninfected immunocompetent mice) upon
interaction with resting conidia of parental (ku80) and agsD_5T
strains or agsD_5T conidial NaCl extract (3.2 mg proteins)
respectively. (A) TNFa was quantified after 5 h incubation of the
conidia with macrophages; (B) Relative expression of TNFa assessed by
real time RT-PCR in total RNA from macrophages after 5 h incubation of
the agsD_5T conidial NaCl extract with macrophages. NaCl supernatant
from ku80 resting conidia incubated for 2 h in 0.5M NaCl was used as a
control. NS: Non-stimulated. *, P,0.05.
doi:10.1371/journal.ppat.1003716.g009

Figure 10. Labeling of the surfaces of agsD_5T and parental strain swollen conidia by WGA and the b(1,3)-glucan receptor GNBP3.
The surfaces of the swollen conidia were labeled by WGA-FITC (A) and GNBP3 (B) as described in material and methods. (C, D) Histograms
represented the calculated fluorescence intensity of the corresponding images (A, B respectively), expressed in Einstein per seconds.
doi:10.1371/journal.ppat.1003716.g010
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Figure 11. Working model explaining sequential and differential immune events upon inhalation of the agsD mutant and the
parental (ku80) strain conidia. The presence of the glycoprotein layer on the triple agsD mutant conidial surface hides the rodlet layer. Increased
exposure of PAMPs (WGA and ConA positive molecules and b-(1,3)-glucans) during vegetative growth in the triple agsD mutant modifies the host
immunological response. This facilitates phagocytosis and killing of the triple agsD mutant and stimulates pro-inflammatory immune responses.
doi:10.1371/journal.ppat.1003716.g011
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To analyze the components present on the surface, conidia were

incubated in 0.5 M NaCl solution for 2 h at room temperature at a

ratio of 1010 conidia per ml. The NaCl supernatant was recovered

after centrifugation and directly subjected to 10% SDS-PAGE (w/

v). The protein concentrations in the extracts were determined by

the Coomassie brilliant blue method [49], using BioRad kit and

BSA as the standard. Proteomic analysis of the NaCl extract was

carried out as described previously with slight modifications [50].

A total amount of 50–100 mg protein was loaded onto IPG strips

(11 cm, pH 3–7; GE Healthcare Life Sciences) by in-gel rehydra-

tion. After equilibration of the IPG strips, SDS-gel electrophoresis

was carried out using Criterion AnykD TGX gels (Bio-RAD).

Proteins were visualised by colloidal Coomassie staining [51].

After scanning, gel images were analysed with the software Delta

2D 4.3. (Decodon). Protein spots were excised and analysed by

mass spectrometry using an ultrafleXtreme MALDI-TOF/TOF

device (Bruker Daltonics).

Fluorescence microscopy
Resting and swollen conidia were PFA-fixed (2.5% (v/v) PFA in

PBS) for one night at 4uC, washed three times with 0.1 M NH4Cl

in PBS, once with PBS and then incubated with different

antibodies or lectins as described previously [52].

Galactosaminogalactan (GAG) was labeled with a monoclonal

mouse antibody as described previously [53] (20 mg/ml) and a

mock monoclonal antibody was used as a control. The secondary

goat anti-mouse IgG-TRITC (Sigma) antibody was used at a

dilution of 1:200.

Galactomannan was labeled with a rat anti-Galactofuranose

(Galf) monoclonal antibody (EBA2, diluted 1:1000, a kind gift of

M. Tabouret from BioRad, Steenvorde [54]). Control Rat

monoclonal antibody of the same isotype and the secondary goat

anti-rat FITC (Sigma-Aldrich) antibody were used at a dilution of

1:1000 and 1:500, respectively.

b-(1,3)-glucan was labeled with the N-terminal b-(1,3)-glucan

binding domain of Drosophila pattern recognition receptor, GNBP3

(homologous to Mammalian Dectin 1) at a concentration of 3 mg/

ml and a polyclonal mouse antiserum against GNBP3 at 1:200

dilution (kind gifts from A. Roussel, CNRS, Orleans and D.

Ferrandon, CNRS, Strasbourg, France [55]). Goat anti-mouse

IgG FITC 1:200 diluted (Sigma) was used as secondary antibodies.

The glucosamine moiety of chitin/chitosan and mannose/

glucose moieties of glycoproteins and glucans were labeled

respectively with WGA-FITC and ConA-FITC (Sigma) at

0.1 mg/ml concentrations upon incubating the conidia for

15 min at lab temperature.

Susceptibility to oxidative stress conditions, Lactoferrin,
Cathelicidin LL-37, HNP2 and hBD2 defensins, absence of
iron and hypoxia

Stress conditions induced by Menadione (0 to 30 mM) and 2,5-

Bis(tert-butylperoxy)-2,5-dimethylhexane (LuperoxH101) (0 to

2 mM) were tested on both parental and mutant A. fumigatus

strains grown on agar-RPMI (RPMI 1640, Sigma without

glutamine) supplemented with 1% agar (Difco), 0.3 g/1 L-

glutamine and 0.1 M MOPS or MES (to obtain a pH of 7 or 4,

respectively) at 37uC for 24–48 h.

Stress conditions induced by Lactoferrin 0.45–231 mg/ml

(Sigma) or Cathelicidin LL-37 0.45–231 mg/ml (Sigma), SDS

(0.006–0.2%; Merck) and H2O2 (0.003–0.1%; Fluka) were tested

on A. fumigatus strains grown on Brian medium without supple-

mentation with iron or RPMI-glutamine-MOPS medium (de-

scribed above) [38]. Combinations of 0.05% SDS or 0.012%

H2O2 and Lactoferrin or Cathelicidin LL37 at concentrations of

231 mg/ml were tested in the same media, as described in Clavaud

et al [38].

Stress condition induced by HNP2 (100 mg/ml; Sigma) and

hBD2 (25 mg/ml; Sigma) defensins were also tested by incubating

106 conidia/ml with the defensins for 10–16 h at 37uC in RPMI-

glutamine-MOPS medium.

The growth of A. fumigatus strains was tested in Brian medium

without supplementation with iron at 37uC and under hypoxia

conditions using AnaeroGen sachet (Oxoid), which reduces the

oxygen level in a jar to below 1% that results to a CO2 level

between 9–13%.

Transmission electron microscopy (TEM)
Aliquots (20 ml) of concentrated conidia were placed onto a

Formvar-coated nickel or gold mesh grids, which were then placed

between the flat sides of two B-type brass planchets (Ted Pella Inc.,

Redding, CA). The grids were used as spacer creating a thin layer

of cells that allows higher yields of well-frozen cells. The samples

were immediately frozen with liquid nitrogen under high pressure

(2,100 bar) using a Bal-Tec HPM 010 high pressure freezing

machine (Bal-Tec Products, Middlebury, CT, USA). Following

cryofixation, the samples were freeze-substituted at 285uC in 1%

glutaraldehyde (Electron Microscopy Sciences, Washington, PA,

USA) and 1% tannic acid in acetone for 72 h. After, the samples

were rinsed thoroughly with three changes of fresh acetone at

285uC for a total of 45 min. Cells were infiltrated with 1% OsO4

in acetone for 1 h at 285uC before being slowly warmed to room

temperature over 5 h. The cells were then rinsed in acetone and

slowly infiltrated with and polymerized in Spurr’s resin. Embed-

ded cells were cut into serial 70 nm thick sections with an Ultracut

R Microtome (Leica, Vienna, Austria) and collected on Formvar-

coated copper slot grids. Sections were post-stained with 2%

uranyl acetate in 50% ethanol for 5 min followed by 5 min with

Sato’s lead citrate [56]. The grids were carbon-coated and viewed

at 80 kV using a JEOL 1200EX transmission electron microscope

(JEOL USA, Inc., Pleasanton, CA, USA).

Analysis of agsD mutant virulence
Female 8- to 10-week-old inbred C57BL6 (H-2b) mice were

obtained from Charles River Breeding Laboratories (Calco, Italy).

Experiments were performed according to the Italian Approved

Animal Welfare Assurance A-3143-01. Breeding pairs of homo-

zygous p47phox2/2mice, raised on C57BL6 background, were

purchased from Harlan Laboratories and bred under specific-

pathogen free conditions at the breeding facilities of the University

of Perugia, Perugia, Italy [33]. Infections were performed on one

model of immunocompetent mice and in two different models of

invasive pulmonary aspergillosis as previously described [6]. In the

first immunosuppressed model, mice were subjected to intra-

peritoneal administration of cyclophosphamide (150 mg/kg body

weight) one day before infection as described previously [6]. In the

second immunosuppressed model, mice were treated with anti-

Ly6G monoclonal antibody (clone RB6-8C5 MAb; eBienscience;

100 mg/mouse) administered intra-peritoneally one day before

infection. Rat anti-E. coli b-galactosidase (clone GLL 113) was used

as a control IgG. Treatment with the anti-Ly6G MAb is known to

selectively deplete mature neutrophils, eosinophils and dendritic

cells [57] and at 24 h after administration, the number of

circulating neutrophils dropped to 20612/mm3 compared to

11206227/mm3 in controls, and the treated mice continued to be

low for circulating neutrophils counts up to 5-days. Mice were

monitored for survival and fungal growth (determined as colony

forming unit (CFU) per organ) four days post-infection as
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described previously [58]. All mice underwent necropsy for

histopathological observation of fungal burden in the lungs four

days post-infection. For histology, sections (3–4 mm) of paraffin-

embedded lungs were stained following periodic acid-Schiff (PAS)

protocol. Collection of the bronchoalveolar lavage (BAL) fluid and

the morphometry [% monocytes (MNC) or polymorphonuclear

(PMN) cells] was performed after four days infection as previously

described [6]. Total and differential cell counts were performed

after staining BAL smears with May-Grünwald Giemsa reagents

(Sigma) before analysis. At least 200 cells per cytospin preparation

were counted and the absolute number of each cell type was

calculated. Cytospin preparations were observed using a BX51

microscope (Olympus, Milan, Italy). Histology images were

captured using a high-resolution DP71 camera (Olympus).

For phagocytosis and conidiocidal activity, alveolar macro-

phages from uninfected mice were isolated from BAL as described

[15]. For phagocytosis, macrophages were incubated at 37uC with

unopsonized FITC (Sigma) labeled conidia [59] at an effector to

conidial ratio of 5:1, for 1 h in RPMI medium in micro-chambers

(Ibitreat). Unbound conidia were removed by washing with RPMI

and cells were fixed with 3% (v/v) PFA for 1 h in PBS. After

fixation, the cells were incubated with a rabbit polyclonal anti-

FITC antibody (Invitrogen) diluted 1:2000 and a secondary rabbit

antibody conjugated to Alexafluor 568 (dilution, 1:2000) (Invitro-

gen). This last procedure labels only cell surface-associated conidia

and the ingested conidia remained unlabeled. The number of

ingested conidia per macrophage was determined on 200

macrophages. For conidiocidal activity, macrophages isolated

from uninfected C57BL6 (H-2b) and p47phox2/2 mice were

incubated at 37uC with unopsonized resting or swollen conidia

(6K h in RPMI at 37uC), at an effector to fungal cell ratio of 1:10,

for 2–6 hours in an ELISA plate wells. After removing the

supernatant, Triton X100 (1%) was added to the wells and

incubated at 37uC for 10 min to lyse the macrophages and to

collect phagocytized conidia. The percentage of phagocytized

conidia capable of further germination was determined by spotting

phagocytized conidia (at suitable dilution) on a nutritive agar

medium and counting those conidia capable of forming germ tube

among spotted conidial population. We verified that the use of

Triton X100 to lyse macrophage did not affect conidial

germination as the percentage of germinations were similar

(9761%) for the agsD_5T, agsD_n6.2, agsD_n8 mutants and the

parental strain with or without Triton-treatment. The differences

in the germination of the conidia from the stock solution used for

macrophage conidicidal activity study permitted the calculation of

conidiocidal activity.

For cytokine quantification, total RNA was extracted from

lungs of immunocompetent mice four days post-infection, or

from macrophages isolated from BAL fluid of uninfected mice

and incubating with agsD NaCl extracts containing 3.2 mg

proteins, for 5 h. The cytokines expressed and productions were

quantified by Real-time PCR and ELISA, respectively as

described previously [6].

Statistical significance was analyzed by one- or two-way

ANOVA or paired t-test with Prism software (GraphPad software,

San Diego, CA) and p-values#0.05 were considered to be

significant. Data were representative of at least two independent

experiments or pooled from three to five experiments. The in vivo

groups consisted of six mice/group and experiments were repeated

at least three times. Macrophage experiments were done three

times with three different batches of macrophages and conidia.

All experiments were performed using the agsD_5T(Figs. 1–10,

Table 1, Table S1). Virulence and proteomic analyses were

performed also using agsD_n8 (Figs. S1, S2, S3, S4, S5, S6, S7, S8,

Table 1 and Table S1). Major phenotypes and virulence data were

verified with agsD_n6.2 (Figs. S1, S5, S6, S7, S8).

Ethics statement
Mouse experiments were performed according to the Italian

Approved Animal Welfare Assurance 245/2011-B. Legislative

decree 157/2008-B regarding the animal license was obtained by

the Italian Ministry of Health lasting for three years (2008–2011).

Infections were performed under avertin anesthesia and all efforts

were made to minimize suffering.

Supporting Information

Figure S1 Immunocompetent mice infected with rest-
ing conidia of agsD triple mutants and parental ku80
strain. Observations and analysis on mice were done four days

post-infection. (A) Fungal CFUs in lungs infected with conidia

of agsD_5T, agsD_n6.2, agsD_n8 and ku80. (B) lung histology

(periodic acid-Schiff-staining) and (C) Percentages of monocytes

and polymorphonuclear cells found in the lung alveolar lavage

(BAL) of mice infected with conidia of agsD_n6.2 and agsD_n8

mutants (periodic acid-Schiff-staining and Gomori’s methana-

mine silver-staining) (D) Relative expression of TNFa and IL10

assessed by real time RT-PCR of the total RNA extracted from

the lungs of naı̈ve and mice infected with conidia of agsD_n6.2

and agsD_n8 mutants and ku80. Data are representative of at

least three independent experiments. Ctl, naı̈ve mice; *,

P,0.05.

(TIF)

Figure S2 Survival of Cyclophosphamide immunosup-
pressed mice infected with resting conidia of agsD_n8
mutant and parental ku80 strains. The survival is expressed

in percentage. Data are representative of at least three indepen-

dent experiments.

(TIF)

Figure S3 Phagocytosis after 1 h incubation of agsD_n8
and parental ku80 resting conidia by the macrophages
isolated from uninfected mice. Results expressed in number

of conidia per macrophages. Data are representative of at least

three independent experiments. *, P,0.05.

(TIF)

Figure S4 Imaging and adhesive properties of resting
conidia of agsD_n8 mutant. Structural changes correlate with

a loss of cell surface adhesive properties. (A) Height images (z-

range = 1 mm; recorded in water with silicon nitride tips); (B)

adhesion force maps (z-range: 5 nN) corresponding to the height

image; (C) Representative force-distance curves and adhesion

force histograms (n = 1024) recorded on the surface of agsD_n8

mutant conidia.

(TIF)

Figure S5 NaCl extracted proteins from the surface of
the resting agsD triple mutant conidia. SDS-PAGE (10% gel)

of proteins extracted after 2 h incubation of the resting conidia in

0.5M NaCl showing that the three triple agsD mutants (agsD_5T,

agsD_n8, agsD_n6.2) displayed the similar protein patterns.

(TIF)

Figure S6 TNFa production or expression by macro-
phages (isolated from uninfected immunocompetent
mice) upon interaction with the parental strain ku80,
agsD_n6.2 and agsD_n8 resting conidia, or the agsD_n8
and agsD_n6.2 conidial NaCl extract (3.2 mg
proteins) respectively. (A) TNFa was quantified after 5 h
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macrophage-conidial interaction. (B) Relative expression of TNFa
assessed by real time RT-PCR in total RNA from macrophages

after 5 h incubation of the agsD_n8 and agsD_n6.2 conidial NaCl

extract with macrophages. NaCl supernatant from ku80 resting

conidia incubated for 2 h in 0.5M NaCl was used as a control. NS:

Non-stimulated. *, P,0.05.

(TIF)

Figure S7 Immunolabeling of Galactosaminogalactan
(GAG) and galactomannan (GM) on the swollen conidial
surface of the triple agsD mutants and parental ku80
strains. Note that there is no differences in the amount of GAG

(A) (labeled by an anti-GAG monoclonal antibody) and GM (B)

(labeled by an anti-galf monoclonal antibody) in the triple agsD
mutant and parental strains.

(TIF)

Figure S8 Immunolabeling of a-(1,3)-glucan. Germinating

conidia were labeled with MOPC that recognises a-(1,3)-glucan,

and mouse TRITC conjugated anti-IgG was used as the

secondary antibody. Note the absence of labeling on the triple

agsD mutants - agsD_5T, agsD_n6.2 and agsD_n8.

(TIF)

Table S1 Identification of NaCl extracted conidial
surface proteins from the agsD_5T and agsD_n8 mutants
by MALDI-TOF/TOF. (1)Number of peptide peaks identified

per protein.

(DOCX)
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Résumé 

Mon travail de thèse consiste à utiliser les techniques de Microscopie à Force Atomique 

(AFM) pour étudier les microorganisms pathogènes, et leurs interactions avec des antimicrobiens. 

Ces dernières décennies, la résistance microbienne a augmenté de façon dramatique et s’est 

répandue dans le monde. Les bactéries et levures pathogènes ont développé différents moyens 

pour résister à presque tous les antimicrobiens utilisés. Ces pathogènes peuvent être la cause 

d’une large gamme d’infections superficielles ; ils sont aussi à l’origine d’infections mettant en 

jeu la vie de patients. Il y a donc deux urgences : la première est de trouver de nouvelles 

molécules antimicrobiennes, avec un mécanisme d’action innovant. Mais pour atteindre cet 

objectif, il est nécessaire d’acquérir des données fondamentales sur la paroi des microorganismes, 

afin d’identifier des cibles originales à leur surface pour de nouvelles molécules. La deuxième 

urgence est donc de développer des techniques pour explorer la paroi des microorganismes d’un 

point de vue différent, ce qui nécessite une approche expérimentale originale. Dans ce contexte, 

les approches biophysiques restent sous-exploitées en microbiologie clinique. Durant cette thèse, 

nous avons utilisé une technologie provenant de la physique, l’AFM, adapté aux conditions 

biologiques. Le principe de l’AFM est basé sur la mesure d’une force entre une pointe et un 

échantillon ; en gardant cette force constante pendant le scan de l’échantillon il est possible d’en 

obtenir une image tridimensionnelle. Un avantage de l’AFM est la possibilité de travailler en 

liquide, ce qui nous a permis d’imager l’élongation de cellules bactériennes P. aeruginosa traité 

avec de la ticarcilline, un antibiotique à cible pariétale,  ainsi que la disparition des 

polysaccharides capsulaires de la bactérie K. pneumoniae traitée avec de la colistine. Cependant,  

l’immobilisation des échantillons est souvent un challenge, différent pour chaque type de 

microorganismes. L’immobilisation d’échantillons biologiques représente un domaine de 

recherche à part entière, qui nous a conduit à développer un timbre de polydiméthylsiloxane 

(PDMS) microstructuré, pour immobiliser des cellules rondes de différentes tailles, comme des 

levures. Une fois cette étape d’immobilisation franchie, l’AFM peut être utilisé dans les modes 

classiques d’imagerie et de spectroscopie de force (mode contact, mode oscillant, mode force 

volume), mais aussi dans des modes avancés afin d’obtenir des données à haute résolution ou 

multiparamétriques. En effet, l’AFM est aussi une machine de force très sensible capable 

d’enregistrer des courbes de force qui permettent d’accéder aux propriétés nanomécaniques et 

d’adhésion des cellules. Ainsi nous avons pu imager et quantifier les propriétés nanomécaniques 

et adhésives de microorganisms, mais aussi de cellules de mammifères vivantes et de leurs 

noyaux isolés. Nous avons ainsi observé les modifications des propriétés adhésives de la levure 

C. albicans traité avec de la caspofongine. Enfin pour aller plus loin dans l’étude de l’architecture 

des parois des microorganismes, il est possible de fonctionnaliser des pointes AFM avec des 

biomolécules. Une stratégie développée a consisté à lier des anticorps dirigés contre un peptide 

sur la pointe, et de tagguer des protéines avec ce même peptide à la surface des cellules, Ainsi 

nous avons localisé des protéines spécifiques à la surface de levures et cellules de mammifères 

vivantes. Une autre stratégie développée consiste à directement lier une biomolécule sur la 

pointe, qui interagit naturellement avec un composé pariétal. Nous avons utilisé cette stratégie 

pour étudier la paroi de la bactérie P. aeruginosa traité par un antibactérien innovant, le Cx1, et 

ainsi mieux comprendre l’architecture de son peptidoglycane. Pour conclure, cette thèse a permis 

d’adresser spécifiquement la contribution de la biophysique en microbiologie clinique.  
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