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Résumé

Cette thèse est divisée en trois parties. Dans la première partie, nous commençons
par décrire des résultats très connus en théorie du contrôle géométrique tels que le
théorème de Chow-Rashevsky, la condition de rang de Kalman, l’application Entrée-
Sortie et le test linéaire. De plus, nous définissons et nous étudions brièvement la
contrôlabilité locale au voisinage d’un contrôle de référence au premier et au se-
cond ordre. Dans la deuxième partie, nous donnons une preuve élémentaire du
lemme de Franks linéaire pour les flots géodésiques qui utilise des techniques ba-
siques de théorie du contrôle géométrique. Dans la dernière partie, étant donnée
une variété Riemanienne compacte, nous prouvons un lemme de Franks uniforme
au second ordre pour les flots géodésiques et on applique le résultat à la théorie de
la persistance. Dans cette partie, nous introduisons avec plus de détails les notions
de contrôlabilité locale au premier et au second ordre. En effet, nous donnons un
résultat de contrôlabilité au second ordre dont la preuve est longue et technique.
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Abstract

This thesis is devided into three parts. In the first part we begin by describing
some well known results in geometric control theory such as the Chow-Rashevsky
Theorem, the Kalman rank condition, the End-Point Mapping and the linear test.
Moreover, we define and study briefly local controllability around a reference control
at first and second order. In the second part we provide an elementary proof of the
Franks lemma for geodesic flows using basic tools of geometric control theory. In
the last part, given a compact Riemannian manifold, we prove a uniform Franks’
lemma at second order for geodesic flows and apply the result in persistence theory.
In this part we introduce with more details notions of local controllability at first
and second order. In fact, we provide a second order controllability result whose
proof is long and technical.

2



Remerciements
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Je remercie les rapporteurs de cette thèse Anthony Bloch et Yacine Chitour pour
l’intérêt qu’ils ont porté à mon travail.
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Chapitre 1

Introduction

A classical subject of the theory of dynamical systems is the stability conjec-
ture [67]. Let us recall some main definitions required to state this conjecture.
Let M be a closed smooth manifold. Denote by Diff(M) the space of C1 diffeomor-
phisms ofM endowed with the C1 topology. First, we define the structural stability.

Definition 1.0.1 We say that f ∈ Diff(M) is structurally stable if it has a neigh-
borhood V in Diff(M) such that for every g ∈ V there exists a homeomorphism
h :M →M such that g = hfh−1.

Hyperbolic sets play an important role in the description of dynamical properties of
orbits.

Definition 1.0.2 A set Λ ⊂ M is a hyperbolic set of f ∈ Diff(M) if it is compact,
f -invariant (i.e f(Λ) = Λ) and there exists a continuous splitting TM|Λ = Es ⊕Eu

invariant under the derivative of f such that there exist K > 0, 0 < λ < 1, satisfying
∥

∥(Dxf
n)|Es

x

∥

∥

X
≤ kλn and

∥

∥(Dxf
−n)|Eu

x

∥

∥

X
≤ kλn

for every x ∈ Λ and n ≥ 0.

A more general notion than the periodic points are nonwandering points.

Definition 1.0.3 x ∈ M is a nonwandering point of f ∈ Diff(M) if for every
neighborhood U of x in M there exists n 6= 0 such that fn(U) ∩U 6= ∅.

Denote by Ω(f) the set of nonwandering points of f and Per(f) the set of periodic
points of f . Ω(f) is a closed subset of M . A less general notion than the structural
stability is the Ω-stability.
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Definition 1.0.4 A diffeomorphism f is Ω-stable if for every g near f there exists a
homeomorphism h : Ω(f) → Ω(g) such that g|Ω(g) = hfh−1

|Ω(g).

Let us now define a specific type of diffeomorphisms namely the Axiom A diffeo-
morphism.

Definition 1.0.5 We say that f ∈ Diff(M) satisfies Axiom A if Ω(f) is hyperbolic
and Per(f) = Ω(f).

The stable manifold of a given point x is given by

W s(x) =
{

y| lim
n→+∞

(fn(x), fn(y)) = 0
}

and its unstable manifold is given by

W u(x) =
{

y| lim
n→+∞

(f−n(x), f−n(y)) = 0
}

.

If f is an Axiom A diffeomorphism, Ω(f) has a unique decomposition Ω(f) = Ω1∪...∪
Ωl in disjoint, compact and transitive sets (transitive meaning that each Ωi contains
a point whose orbit is dense in Ωi). These sets are called basic sets. The stable
(unstable) manifold of a basic set is defined as the union of the stable (unstable)
manifolds of its points. Now we define the no cycles condition.

Definition 1.0.6 We say that f satisfies the no cycles condition if for every family
Ωi1 , ...,Ωin of basic sets such that the stable manifold of Ωij has nonempty intersec-
tion with the unstable manifold of Ωij+1

for every 1 ≤ j < n, the stable manifold of
Ωin does not intersect the unstable manifold of Ωi1.

In [67], Smale provides sufficients conditions of Ω-stability.

Theorem 1.0.7 An Axiom A diffeomorphism which satisfy the no cycles condition
is Ω-stable.

Now, we are ready to state the stability conjecture due to Smale [67].

Conjecture 1.0.8 (The Stability Conjecture)
Ω-stable diffeomorphisms satisfy axiom A and the no cycles condition.

In the early of the 70’s years, mathematicians began to reflect how prove or disprove
this conjecture. In fact, in 1970 Palis ([54]) proved that an Ω-stable diffeomorphism
that satisfies Axiom A also satisfies the no cycles condition. Moreover, in 1971 Franks



8 Introduction

([23]) proved that an Ω-stable diffeomorphism has only hyperbolic periodic points (a
periodic point x of a diffeomorphism g is said to be hyperbolic if the eigenvalues of
Dxg

m : TxM → TxM have modulus 6= 1 where m is the period of x). To prove this,
Franks used his well known lemma (The Franks lemma) showing how to perturb
the derivative of a diffeomorphism along a periodic orbit by small perturbation of
the diffeomorphism on a neighborhood of the orbit. This constitutes a remarquable
successful step used to prove the stability conjecture for surfaces. Let F(M) be the
set of diffeomorphisms f ∈ Diff(M) that have a neighborhood V such that for all
g ∈ V every periodic point x of g is hyperbolic. So thanks to Franks, if f is Ω-
stable then f ∈ F(M). But in [48, Lemma 3.1] Mañé proved that if f ∈ F(M) then
Per(f) = Ω(f). So to finish the proof of the stability conjecture, it remains to show
that if f ∈ F(M) then Ω(f) is a hyperbolic set. The last statement was proved by
Mañé (see [46]) in the case of surfaces (dim(M) = 2).
Concepts that we have described above concern only C1 diffeomorphisms. An inter-
essant subject is describing stability and hyperbolicity properties of geodesic flows.
Let M be a closed riemannian manifold endowed with a C∞ riemannian metric g
and let φt = φgt be the geodesic flow of g on the unit tangent bundle SgM . Given a
point (p, v) ∈ SgM, φt(p, v) = (γ(t), γ̇(t)), where γ(t) is the unit geodesic ofM such
that γ(0) = p and γ̇(0) = v. Let [gij] be the inverse matrix of [gij]. The geodesic
flow is conjugate to the hamiltonian flow of the function

H(x, y) =
1

2

∑

i,j

gi,j(x)yiyj.

Hamilton’s equations are
d

dt
xi =

∑

j

gi,j(x)yj ,

d

dt
yk = −1

2

∑

i,j

∂

∂xk
gi,j(x)yiyj.

An invariant set Λ of a smooth flow ψt : Q −→ Q acting without singularities on a
complete manifold Q is called hyperbolic if there exist constants, C > 0, λ ∈ (0, 1),
and a direct sum decomposition TpQ = Es(p)⊕Eu(p)⊕X(p) for every p ∈ Λ, where
X(p) is the subspace tangent to the orbits of ψt, such that

1. ‖ Dψt(W ) ‖≤ Cλt ‖W ‖ for every W ∈ Es(p) and t ≥ 0,

2. ‖ Dψt(W ) ‖≤ Cλ−t ‖ W ‖ for every W ∈ Eu(p) and t ≤ 0.

When the set Λ is the whole Q the flow is called Anosov. Denote by A(M) the set
of Anosov geodesic flows of the manifold M . A closely related with hyperbolicity of
dynamical systems is the concept of expansivity.
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Definition 1.0.9 A non-singular smooth flow φt : Q −→ Q acting on a complete
Riemannian manifold Q is ǫ-expansive if given x ∈ Q we have that for each y ∈ Q
such that there exists a continuous surjective function ρ : R −→ R with ρ(0) = 0
satisfying

d(φt(x), φρ(t)(y)) ≤ ǫ,

for every t ∈ R then there exists t(y), | t(y) |< ǫ such that φt(y)(x) = y.

A smooth non-singular flow is called expansive if it is expansive for some ǫ > 0.
The number of closed orbits of an expansive geodesic flow is finite. Let Ek(M) be
the set of expansive geodesic flows of riemannian metric of M endowed with the
Ck topology. First interessant results describing hyperbolicity properties of geodesic
flows have been provided by Ruggiero (see [64]).

Theorem 1.0.10 Let (M, g) be a compact Riemannian manifold of dimension n.
If the geodesic flow φt belongs to int(E1) the set P (φ) -the closure of the set P (φ)
of periodic orbits of φt- is a hyperbolic set.

Using this result, Ruggiero caracterised Anosov flows in surfaces. Recall that A(M)
is the set of Anosov geodesic flows of the manifold M .

Theorem 1.0.11 LetM be a compact manifold of dimension 2. Then intC1(E1(M)) =
A(M).

One of the aims of this thesis is to describe similar properties in the C2 topology. As
we stated before, the Franks lemma (for diffeomorphisms) has a crucial role in the
proof of the stability conjecture. The Franks lemma has since been proven in other
interesting contexts such as geodesic flows (see [15] and [12]) and more generally
Hamiltonians flows (see [79]). In this thesis, we focus on the Franks lemma for
geodesic flows. This problem was first studied in the particular case of surfaces by
Contreras and Paternain (see [15, Theorem 4.1]). They proved that on any surface,
the linearized Poincaré map along any geodesic segment of length 1 can be freely
perturbed in a neighborhood inside Sp(1) by a C2-small perturbation of the metric,
where for every m ∈ N∗, the symplectic group Sp(m) is defined by

Sp(m) :=
{

A ∈M2m(R) |A∗
JA = J

}

,

with

J =

[

0 Im
−Im 0

]

.

In 2010, Contreras studied the higher-dimensional analogue (see [12, Theorem 7.1]).
He generalized the previous result for a special set of metrics : those such that
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every geodesic segment of length 1
2
has a point whose curvature matrix has all its

eigenvalues distinct and separated by a uniform bound.
Given a geodesic arc of length 1

γ : [0, 1] −→ SgM,

with unit speed and Σ0 and Σ1 transverse sections at γ(0) and γ(1) respectively.
Let Pg(Σ0,Σ1, γ) be a Poincaré map going from Σ0 to Σ1. One can choose Σ0 and
Σ1 such that the linearized Poincaré map

Pg(γ)(1) := dγ(0)Pg(Σ0,Σ1, γ)

is a symplectic endomorphism of Rn−1× (Rn−1)∗ (in local coordinates). Let Rk(M),
k ∈ N∪{+∞} be the set of all Ck Riemannian metrics g on M . If n ≥ 3, we denote
by G1 the set of Riemannian metrics on M such that every unit geodesic segment
of lenght 1 admits a point where the curvature matrix has distinct eigenvalues.
Denote by Rk(M,G1) the set of all Riemannian metrics g on M such that if n = 2,
g ∈ Rk(M) and for n ≥ 3, g ∈ Rk(M) ∩ G1. For every k ≥ 2, Rk(M,G1) is an
open and dense subset of Rk(M). Consider the map S : Rk(M,G1) −→ Sp(n − 1)
given by S(ḡ) = Pḡ(γ)(1). The following theorem summarizes the Franks lemma for
geodesic flows on surfaces and its higher-dimensional analogue (under the Contreras
assumption on the spectrum of the curvature matrix) with estimates on the size of
perturbation in terms of the radius of the ball of Sp(n− 1).

Theorem 1.0.12 Let g0 ∈ Rk(M,G1), 2 ≤ k ≤ ∞. There exists r̄, K > 0 such that
for any geodesic arc γ of g0 of lenght 1 and any r ∈ (0, r̄),

B
(

S(g0), Kr
)

∩ Sp(n− 1) ⊂ S
(

BCk(g0, r)
)

.

In [12], Contreras used the Franks lemma to prove that a C2 generic Riemannian
metric has a non-trivial hyperbolic basic set in its geodesic flow. Recall that a non-
trivial hyperbolic basic set is a locally maximal compact invariant subset Λ ⊂ SgM
which is hyperbolic, has a dense orbit and which is not a single periodic orbit. Recall
that a closed geodesic is said to be hyperbolic if its linearized Poincaré map has no
eigenvalue of modulus 1. Given a set A ⊂ SgM , define

P(g) :=
{

γ | γ periodic orbit for g
}

,

P(g, A) :=
{

γ ∈ P(g) |γ(R) ⊂ A
}

,

Per(g, A) := ∪γ∈P(g,A)γ(R),
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H(A) :=
{

g | ∀γ ∈ P(g, A), γ is hyperbolic
}

,

F2(A) := intC2H(A).

To prove the previous result, Contreras shows a result similar to Theorem 1.0.10.

Theorem 1.0.13 ([12, Theorem E]) If g ∈ G1 ∩ F2(A), then Λ = Per(g, A) is a
hyperbolic set.

This theorem is proved by adapting R. Mañé’s theory of stable hyperbolicity, deve-
loped for the stability conjecture in [46], to the case of geodesic flows. Let us explain
why the Franks lemma plays here also a crucial role to prove this theorem but before
this let us recall some definitions.
We say that a linear map T : R2n → R2n is hyperbolic if it has no igenvalue of
modulus 1. Equivalenty, T is hyperbolic if there is a splitting R2n = Es ⊕ Eu and
an iterate M ∈ Z+ such that T (Es) = Es, T (Eu) = Eu and

‖ TM|Es ‖< 1

2
and ‖ (T|Eu)−M ‖< 1

2
.

The subspaces Es and Eu are called the stable subspace and unstable subspace of
T . Let ψ : Z −→ GL(n) be a sequence of such isomorphisms. Fix j ∈ Z and denote
by Es

j (ψ) the set of vectors v ∈ Rn such that

sup
n≥0

{

∥

∥(Πn
i=0ψj+i) v

∥

∥

}

<∞,

and by Eu
j (ψ) the set of vectors v ∈ Rn such that

sup
n≥0

{

∥

∥(Πn
i=0ψj−1−i)

−1 v
∥

∥

}

<∞.

Let us say that the sequence ψ is hyperbolic if Es
j (ψ)

⊕

Eu
j (ψ) = Rn for every j ∈ Z.

Actually, this definition is equivalent to require the above direct sum decomposition
for some j. A periodic sequence ψ is characterized by the existence of n0 > 0 such
that ψj+n0 = ψj for every j. It is easy to check that the hyperbolicity of a periodic
sequence ψ is equivalent to the classical hyperbolicity of the linear map

∏n0−1
j=0 ψj .

Now, let
{

ψα, α ∈ Λ
}

be a family of periodic sequences of linear maps indexed in a set Λ. Let us define
the distance d(ψ, η) between two families of periodic sequences indexed in Λ by

d(ψ, η) = sup
n∈Z,α∈Λ

{

‖ ψαn − ηαn ‖
}

.
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We say that the family {ψα, α ∈ Λ} is hyperbolic if every sequence in the family
is hyperbolic. Let us call by periodically equivalent two families ψα, ηα for which
given any α, the minimum periods of ψα and ηα coincide. Following Mañé, we say
that the family {ψα, α ∈ Λ} is uniformly hyperbolic if there exists ǫ > 0 such that
every periodically equivalent family ηα such that d(ψ, η) < ǫ is also hyperbolic.
The geodesic flow of a Riemannian manifold (M, g) will be denoted by φt, the flow
acts on the unit tangent bundle SgM , a point θ ∈ SgM has canonical coordinates
θ = (p, v) where p ∈ M , v ∈ TpM , and γθ denotes the unit speed geodesic with
initial conditions γθ(0) = p, γ′θ(0) = v. Let Nθ ⊂ TθS

gM be the plane of vectors
which are perpendicular to the geodesic flow with respect to the Sasaki metric (see
for example [66]). The collection of these planes is preserved by the action of the
differential of the geodesic flow :Dθφt(Nθ) = Nφt(θ) for every θ and t ∈ R. Let us
consider a geodesic arc, of length T

γθ : [0, T ] −→M,

and let Σ0 and ΣT be local transverse sections for the geodesic flow which are tangent
to Nθ and NφT (θ) respectively. Let Pg(Σ0,ΣT , γ) be a Poincaré map going from Σ0

to ΣT . In horizontal-vertical coordinates of Nθ, the differential DθφT that is the
linearized Poincaré map

Pg(γ)(T ) := DθPg(Σ0,ΣT , γ)

is a symplectic endomorphism of R(2n−2) × R(2n−2). This endomorphism can be ex-
pressed in terms of the Jacobi fields of γθ which are perpendicular to γ′θ(t) for every
t :

Pg(γ)(T )(J(0), J̇(0)) = (J(T ), J̇(T )),

where J̇ denotes the covariant derivative along the geodesic. We can identify the set
of all symplectic endomorphisms of R2n−2 × R2n−2 with the symplectic group

Sp(n− 1) :=
{

X ∈ R
(2n−2)×(2n−2);X∗

JX = J

}

,

where X∗ denotes the transpose of X and

J =

[

0 In−1

−In−1 0

]

.

Let l be the injectivity radius of g. For each α ∈ P(g, A) let T = T (α) be the period
of α and choose 0 = t0 < t1 < t2 < ... < tm = T such that ti+1 − ti ∈ [1

4
l, 1

2
l].

For every i = 0, ..., m, denote by Σti the transverse section for α at α(ti) which is
tangent to Nα(ti) . Let ψ

α : Z → Sp(n) be the periodic sequence of period m such
that for every i = 0, ..., m−1, ψαi is the matrix of Dα(ti)φ

g
ti+1−ti = Pg(α)(ti+1− ti) :=
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Dα(ti)Pg(Σti ,Σti+1
, α) where Pg(Σti ,Σti+1

, α) is the Poincaré map going from Σti to
Σti+1

. The Franks lemma is necessary to show the following lemma proved in the
case of surfaces by Contreras and Paternain in [15, Lemma 5.6]. In the case of
general Riemannian manifold under an additional assumption on the curvatures, it
is showed by Contreras in [12, Lemma 9.1].

Lemma 1.0.14 If g ∈ G1 ∩ F2(A), then the family ψ = {ψα}α∈P(g,A) is uniformly
hyperbolic.

These interessant results obtained thanks to the Franks lemma motivate us to focus
carefully on this lemma. In [12], the author says that this perturbation lemma is ”the
main technical difficulty of the paper”. In fact, its proof was very long and technical.
In this thesis, we provide a simple proof of the Franks lemma using geometric control
tools. Such techniques have been initially introduced by Rifford and Ruggiero in
[62]. Moreover, we obtained a Franks lemma at lower order (r < K

√
δ) without the

Contreras assumption and we apply this to extend some results (similar to Theorem
1.0.13) concerning the characterization of hyperbolic geodesic flows.

Given a geodesic γθ : [0, T ] → M , an interval [t1, t2] ⊂ [0, T ] and ρ > 0, we
denote by Cg

(

γθ
(

[t1, t2]
)

; ρ
)

the open geodesic cylinder along γθ
(

[t1, t2]
)

of radius ρ,
that is the open set defined by

Cg
(

γθ
(

[t1, t2]
)

; ρ
)

:=
{

p ∈M | ∃t ∈ (t1, t2) with dg
(

p, γθ(t)
)

< ρ and dg
(

p, γθ([t1, t2])
)

= dg
(

p, γθ(t)
)

}

,

where dg denotes the geodesic distance with respect to g. Our main result is the
following.

Theorem 1.0.15 (Franks’ Lemma) Let (M, g) be a smooth compact Riemannian
manifold of dimension ≥ 2. For every T > 0 there exist δT , τT , KT > 0 such that the
following property holds :
For every geodesic γθ : [0, T ] →M , there are t̄ ∈ [0, T − τT ] and ρ̄ > 0 with

Cg
(

γθ
([

t̄, t̄+ τT
])

; ρ̄
)

∩ γθ([0, T ]) = γθ
((

t̄, t̄+ τT
))

,

such that for every δ ∈ (0, δT ), for each symplectic map A in the open ball (in
Sp(n − 1)) centered at Pg(γ)(T ) of radius δ and for every ρ ∈ (0, ρ̄), there exists a
C∞ metric h in M that is conformal to g, hp(v, w) = (1+ σ(p))gp(v, w), such that :

1. the geodesic γθ : [0, T ] −→M is still a geodesic of (M,h),

2. Supp(σ) ⊂ Cg
(

γθ
([

t̄, t̄+ τT
])

; ρ
)

,

3. Ph(γθ)(T ) = A,
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4. the C2 norm of the function σ is less than KT

√
δ.

Theorem 1.0.15 improves a previous result by Contreras [12, Theorem 7.1] which
gives a controllability result at first order under an additional assumption on the
curvatures along the initial geodesic. Other proofs of Contreras Theorem can also
be found in [78] and [42]. The Lazrag proof follows already the ideas from geome-
tric control introduced in [62] to study controllability properties at first order. Our
new Theorem 1.0.15 shows that controllability holds at second order without any
assumption on curvatures along the geodesic. Its proof amounts to study how small
conformal perturbations of the metric g along Γ := γ([0, T ]) affect the differential of
Pg(Σ0,ΣT , γ). This can be seen as a problem of local controllability along a reference
trajectory in the symplectic group. As in [62], The idea is to see the Hessian of the
conformal factor along the initial geodesic as a control and to obtain Theorem 1.0.15
as a uniform controllability result at second order for a control system of the form

Ẋ(t) = A(t)X(t) +
k
∑

i=1

ui(t)BiX(t), for a.e. t,

in the symplectic group Sp(n− 1).
We apply Franks’ Lemma to extend some results concerning the characterization of
hyperbolic geodesic flows in terms of the persistence of some C1 generic properties
of the dynamics. These results are based on well known steps towards the proof
of the C1 structural stability conjecture for diffeomorphisms. Let us first introduce
some notations. Given a smooth compact Riemannian manifold (M, g), we say that
a property P of the geodesic flow of (M, g) is ǫ-Ck-persistent from Mañé’s viewpoint
if for every C∞ function f :M −→ R whose Ck norm is less than ǫ we have that the
geodesic flow of the metric (M, (1 + f)g) has property P as well. By Maupertuis’
principle, this is equivalent to the existence of an open Ck-ball of radius ǫ′ > 0 of
functions q :M −→ R such that for every C∞ function in this open ball the Euler-
Lagrange flow of the Lagrangian L(p, v) = 1

2
gp(v, v) − q(p) in the level of energy

equal to 1 has property P . This definition is inspired by the definition of Ck−1

persistence for diffeomorphisms : a property P of a diffeomorphism f :M −→M is
called ǫ-Ck−1 persistent if the property holds for every diffeomorphism in the ǫ-Ck−1

neighborhood of f . It is clear that if a property P is ǫ-C1 persistent for a geodesic
flow then the property P is ǫ′-C2 persistent from Mañé’s viewpoint for some ǫ′.

Theorem 1.0.16 Let (M, g) be a smooth compact Riemannian manifold of dimen-
sion ≥ 2 such that the periodic orbits of the geodesic flow are C2-persistently hy-
perbolic from Mañé’s viewpoint. Then the closure of the set of periodic orbits of the
geodesic flow is a hyperbolic set.
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An interesting application of Theorem 1.0.16 is the following extension of Theorem
A in [64] : C1 persistently expansive geodesic flows in the set of Hamiltonian flows
of SgM are Anosov flows.

Theorem 1.0.17 Let (M, g) be a smooth compact Riemannian manifold, suppose
that eitherM is a surface or dimM ≥ 3 and (M, g) has no conjugate points. Assume
that the geodesic flow is C2 persistently expansive from Mañé’s viewpoint, then the
geodesic flow is Anosov.

Having completed the presentation and the explanation of the most part of our
research work, we now proceed to an inventory, chapter by chapter, of the present
results of this thesis.

In the next chapter we describe some well known results in geometric control
theory such as the Chow-Rashevsky Theorem, the Kalman rank condition, the End-
Point Mapping and the linear test. Moreover, we define and study briefly local
controllability around a reference control at first and second order.

In chapter 3, we provide an elementary proof of the Franks lemma for geodesic
flows using basic tools of geometric control theory. This chapter is the subject of an
article to be published ([42]).

The last chapter is devoted to the proofs of Theorem 1.0.15, Theorem 1.0.16
and Theorem 1.0.17. In this chapter, we introduce with more details notions of
local controllability at first and second order. In fact, we provide a second order
controllability result whose proof is long and technical. This chapter is the subject
of an article written in collaboration with Ludovic Rifford and Raphael Ruggiero
([43]).
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Chapitre 2

Geometric control methods in
finite dimension

2.1 Introduction

Let M be a smooth (C∞) n-dimensional manifold with tangent space at x
denoted TxM . A general control system has the form

ẋ = f(x, u), (2.1)

where
- x is the state in M ;
- u is the control in Rm ;
- f(·, u) is a vector field on M ∀u.

Proposition 2.1.1 Suppose that f is locally Lipschitz relative to the second va-
riable. For every x ∈M and every control u ∈ L2([0, T ],Rm), the Cauchy problem

{

ẋ(t) = f(x(t), u(t)) a.e t ∈ [0, T ],
x(0) = x

admits a unique solution

x(·) = x(·; x, u) : [0, T ′] −→M,

with T ′ ≤ T .

17
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Controllability is the ability to steer a system from an initial state to a final state
using the available controls. In fact, studying the controllability of a control system
returns to focus on the following question :
Given two points x1, x2 in the state space M and T > 0, can we find a control
u ∈ L2([0, T ],Rm) such that the solution of

{

ẋ(t) = f(x(t), u(t)) a.e t ∈ [0, T ],
x(0) = x1

(2.2)

satisfies
x(T ) = x2?

There are three main types of controllability : global controllability, local controlla-
bility at an equilibrium point and local controllability along a reference trajectory
(see [16]). In this chapter we define and study local controllability around a reference
control. Before this, we recall some well known results about global controllability
and small time local controllability at an equilibrium point.

2.2 A global controllability result : the Rashevsky-

Chow Theorem

Definition 2.2.1 A general control system (2.1) is said to be globally controllable
on M if for any x1, x2 ∈ M and T > 0, there exists a control u ∈ L2([0, T ],Rm)
such that the solution of the Cauchy problem (2.2) starting at x1 satisfies x(T ) = x2.

Given a family F of smooth vector fields on M , we denote by Lie {F} the Lie
algebra generated by F . It is the smallest vector subspace S of smooth vector fields
containing F that also satisfies

[X, Y ] ∈ S ∀X ∈ F , ∀Y ∈ S.

The following theorem provides sufficient conditions of global controllability for a
driftless affine control system. It was proved independently by Peter Rashevsky in
[59] and by Wei-Liang Chow in [10]. Other proofs are given by Rifford in [61] and
Jean in [37].

Theorem 2.2.2 (Chow 1939, Rashevsky 1938)
Let M be a smooth connected manifold and f1, ..., fm be m smooth vector fields on
M . Assume that

Lie {f1, ..., fm} (x) = TxM ∀x ∈M
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Then the control system

ẋ =

m
∑

i=1

uifi(x)

is globally controllable on M .

Remark 2.2.3 The converse of the Chow-Rashevsky Theorem is false in general.
It is true when M and the vector fields f1, ..., fm are in the analytic category.

An application of the previous theorem is the classical example of the car.

Example 2.2.4 The state of the car is given by the position of its center of mass
(x1, x2) ∈ R2 and the orientation angle θ ∈ S1 which is relative to the position
direction of the axix x1.
So the state space is

M =
{

x = (x1, x2, θ)|x1, x2 ∈ R, θ ∈ S
1
}

= R
2 × S

1.

x2

x1

v

b b b b b b b b b b b b b b b b b

θ

ω

Figure 2.1 – Model of the car
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There are two possible kinds of motion :
• Linear motion : drive the car forward and backward with some fixed linear velocity
v =

√

ẋ21 + ẋ22 , that is






ẋ1 = v cosθ,
ẋ2 = v sinθ,

θ̇ = 0.

• Rotational motion : turn the car around its center of mass with some fixed angular
velocity ω = θ̇ :







ẋ1 = 0,
ẋ2 = 0,

θ̇ = ω.

In vector form we have

x =





x1
x2
θ



 , g1(x) =





cosθ
sinθ
0



 and g2(x) =





0
0
1



 .

Combining both kinds of motion, we obtain

ẋ = vg1(x) + ωg2(x).

It is a driftless affine control system.
We have

[g1, g2](x) =





sinθ
−cosθ

0



 .

So

Lie
{

g1, g2

}

(x) = Span
{

g1(x), g2(x), [g1, g2](x)
}

= R
3 ∀x = (x1, x2, θ).

Hence the system is globally controllable.

The next section focuses on the controllability of linear control systems.

2.3 Controllability of linear control systems

Let T0, T1 be two real numbers such that T0 < T1 and let A : (T0, T1) →Mn(R)
and B : (T0, T1) → Mn,m(R) be two maps of class C∞ on [T0, T1], where Mn,m(R)
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denote the set of real n×m-matrices.
Consider the time-varying linear control system

ẋ = A(t)x+B(t)u, t ∈ [T0, T1], (2.3)

where, at time t ∈ [T0, T1], the state is x(t) ∈ Rn and the control is u(t) ∈ Rm.

Definition 2.3.1 The linear time-varying control system (2.3) is controllable on
[T0, T1] if for any x0, x1 ∈ Rn, there exists a control u ∈ L2((T0, T1),R

m) such that
the solution of the Cauchy problem

ẋ(t) = A(t)x(t) +B(t)u(t), x(T0) = x0

satisfies x(T1) = x1.

Let us define the controllability Gramian of the control system (2.3).

Definition 2.3.2 The controllability Gramian of the control system

ẋ = A(t)x+B(t)u, t ∈ [T0, T1]

is the symmetric n× n-matrix

G :=

∫ T1

T0

R(T1, τ)B(τ)B(τ)trR(T1, τ)
tr dτ,

where R is the resolvent of the time-varying linear system ẋ = A(t)x andM tr denotes
the transpose of such matrix M .

The following theorem provides a necessary and sufficient condition of the time-
varying linear system (2.3) (see [39, Theorem 5] and [16, Theorem 1.11]).

Theorem 2.3.3 The linear time varying control system ẋ = A(t)x + B(t)u is
controllable if and only if its controllability Gramian is invertible.

Although the previous theorem gives a necessary and sufficient condition to charac-
terize the controllability of the linear system (2.3), in general it is difficult to verify
whether that condition is satisfied or not because the controllability Gramian matrix
is expressed in terms of the resolvent of a time-varying linear system, such resolvent
can be computed only for a very little number of systems. So it is interessant to
provide a simpler sufficient condition of controllability for the linear control system
(2.3).
Let us define, by induction on i a sequence of maps Bi ∈ C∞((T0, T1),Mn,m(R)) in
the following way :

B0(t) := B(t), Bi(t) := Ḃi−1(t)− A(t)Bi−1(t), ∀t ∈ [T0, T1].
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Theorem 2.3.4 (see [16, Theorem 1.18])
Assume that, for some t̄ ∈ [T0, T1],

Span {Bi(t̄)u; u ∈ R
m, i ∈ N} = R

n.

Then the linear control system (2.3) is controllable on [T0, T1].

Remark 2.3.5 In general, the sufficient condition given by the previous theorem is
not necessary (unless n = 1, or A and B are assumed to be analytic).

Let us now provide two examples of controllable and non controllable time-varying
linear control system.

Example 2.3.6 Consider the linear control system

ẋ(t) = A(t)x(t) +B(t)u(t),

where

x(t) ∈ R
3, u(t) ∈ R, A(t) =





t 1 0
0 t3 0
0 0 t2



 and B(t) =





0
1
1



 .

We have

B0(t) =





0
1
1



 , B1(t) =





−1
−t3
−t2



 ,

B2(t) =





t+ t3

−3t2 + t6

−2t+ t4



 and B3(t) =





1 + 5t2 − t4 − t6

−6t + 9t5 − t9

−2 + 6t3 − t6



 .

It is clear that
Span {Bi(0)u; u ∈ R, i = 0, 1, 2, 3} = R

3.

So our system is controllable.

Example 2.3.7 Consider the linear control system

ẋ(t) = A(t)x(t) +B(t)u(t),

where

x(t) ∈ R
2, u(t) ∈ R, A(t) =

(

0 −1
1 0

)

and B(t) =

(

cost
sint

)

.
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We have

B0(t) =

(

cost
sint

)

and Bi(t) =

(

0
0

)

∀i ∈ N
∗.

It is clear that for every t

Span {Bi(t)u; u ∈ R, i ∈ N} 6= R
2

So our system is not controllable.

Suppose now that A(t) and B(t) do not depend on time. We have the famous Kalman
rank condition for controllability (see the proofs given by Trélat in [74, Théorème
2.2], Jean in [35, Corollaire 6.1] and Coron in [16, Theorem 1.16]).

Theorem 2.3.8 The two following assertions are equivalent :
(i) The time invariant linear control system ẋ = Ax+Bu is controllable on [T0, T1].
(ii) The Kalman rank condition is satisfied :

rk
(

B,AB,A2B, ..., An−1B
)

= n.

Let us now study two examples of controllable and non controllable invariant linear
control systems.

Example 2.3.9 The position of a train on the track is identified by its position x(t).
Its acceleration is controlled by

ẍ = u.

Let X = (x, ẋ) ∈ R2 be the state of the system, we obtain

Ẋ(t) =

(

0 1
0 0

)

X(t) +

(

0
1

)

u(t).

It is an invariant linear control system of the form ẋ(t) = Ax(t) +Bu(t), where

A =

(

0 1
0 0

)

and B =

(

0
1

)

.

Moreover, it holds that

rk
(

B,AB
)

= rk

(

0 1
1 0

)

= 2.

So the Kalman rank condition is satisfied and the system is controllable.
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Example 2.3.10 Consider the linear control system

ẋ(t) = Ax(t) +Bu(t),

where

x(t) ∈ R
3, u(t) ∈ R, A =





1 −3 1
1 0 0
−2 3 −2



 and B =





1
0
−1



 .

We have

rk
(

B,AB,A2B
)

= rk





1 0 −3
0 1 0
−1 0 3



 = 2 6= 3.

So the Kalman rank condition is not satisfied and the system is not controllable.

In the next section, we study briefly local controllability at an equilibrium
point.

2.4 Local controllability at an equilibrium point

Throughout this section, we consider the nonlinear control system

ẋ = f(x, u), (2.4)

where x ∈ Rn is the state, u ∈ Rm is the control, with (x, u) ∈ O where O is a
nonempty open subset of Rn × Rm. We assume that f ∈ C∞(O,Rn).
First, let us recall the definition of an equilibrium of a control system.

Definition 2.4.1 An equilibrium of the control system ẋ = f(x, u) is a pair (xe, ue) ∈
O such that

f(xe, ue) = 0.

In [16], Coron defines small-time local controllability (with controls close to ue).

Definition 2.4.2 Let (xe, ue) ∈ O be an equilibrium of the control system ẋ =
f(x, u). The control system ẋ = f(x, u) is small-time locally controllable at the
equilibrium (xe, ue) if, for every real number ǫ > 0, there exists a real number µ > 0
such that, for every x0 ∈ Bµ(xe) :=

{

x ∈ Rn;
∥

∥x− xe
∥

∥ < µ
}

and for every x1 ∈
Bµ(xe), there exists a mesurable function u ∈ L2([0, ǫ],Rm) such that

∥

∥u(t)− ue
∥

∥ ≤ ǫ, ∀t ∈ [0, ǫ],
(

ẋ = f(x, u(t)), x(0) = x0
)

⇒
(

x(ǫ) = x1
)

.
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Usually, to decide whether such a general control system is small-time locally control-
lable at an equilibrium or not, we begin by studying the controllability of the linea-
rised control system at the equilibrium point.

Definition 2.4.3 The linearised control system at an equilibrium (xe, ue) of the
control system ẋ = f(x, u) is the linear control system

ẋ =
∂f

∂x
(xe, ue)x+

∂f

∂u
(xe, ue)u,

where, at time t, the state is x(t) ∈ Rn and the control is u(t) ∈ Rm.

The following important theorem (see [16, Theorem 3.8]) provides a sufficient condi-
tion of small-time local controllability at an equilibrium point.

Theorem 2.4.4 (The linear test)
Let (xe, ue) ∈ O be an equilibrium of the control system ẋ = f(x, u). Let us assume
that the linearized control system of the control system ẋ = f(x, u) at (xe, ue) is
controllable. Then the nonlinear control system ẋ = f(x, u) is small-time locally
controllable at (xe, ue).

Let us study the example of the inverted pendulum.

Example 2.4.5 Consider an inverted pendulum with massm, attached to a carriage
of mass M . We shall control its acceleration.

M

x1 x2

y2 b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

θ l

m

Fext

Figure 2.2 – an inverted pendulum
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The kinetic energy and potential energy are given by

Ek =
1

2
Mẋ21 +

1

2
m(ẋ22 + ẏ22) and Ep = mglcosθ.

Moreover, we have y2 = lcosθ and x2 = x1 + lsinθ. So the Lagrangian of the system
is

L = Ek − Ep =
1

2
(M +m)ẋ21 +mlẋ21θ̇cosθ +

1

2
ml2θ̇2 −mglcosθ.

According to the Euler-Lagrange equations (x = (x1, θ)),

d

dt

∂L

∂ẋ
=
∂L

∂x
+ Fext.

Assume that Fext = (u, 0), we obtain

{

(M +m)ẍ1 +mlθ̈cosθ −mlθ̇2sinθ = u,

mlẍ1cosθ +ml2θ̈ −mglsinθ = 0,

which gives that






ẍ1 =
mlθ̇2sinθ−mgcosθsinθ+u

M+msin2θ
,

θ̈ = −mlθ̇2sinθcosθ+(M+m)gsinθ−ucosθ
l(M+msin2θ)

.
(2.5)

Let X = (x1, ẋ1, θ, θ̇) be the state of the system, we obtain a control system of the
form

Ẋ = f(X, u),

where

f(X, u) =
(

ẋ1,
mlθ̇2sinθ −mgcosθsinθ + u

M +msin2θ
, θ̇,

−mlθ̇2sinθcosθ + (M +m)gsinθ − ucosθ

l(M +msin2θ)

)

.

Fix x̄1 > 0, notice that (Xe, ue) :=
(

(x̄1, 0, 0, 0), 0
)

is an equilibrium of the control

system Ẋ = f(X, u). The linearised control system at the equilibrium (Xe, ue) can
be written as

Ẋ = AX +Bu,

with

A =









0 1 0 0
0 0 −mg

M
0

0 0 0 1

0 0 (M+m)g
Ml

0









and B =









0
1
M

0

− 1
Ml









.
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The Kalman matrix (B,AB,A2B,A3B) equals










0 1
M

0 mg
M2l

1
M

0 mg
M2l

0

0 − 1
Ml

0 − (M+m)g
M2l2

− 1
Ml

0 − (M+m)g
M2l2

0











.

Its determinant equals
g2

M4l4
6= 0.

In conclusion, the inverted pendulum is small-time locally controllable at (Xe, ue).

Let us now define the strong jet accessibility subspace of a control system at an
equilibrium point.

Definition 2.4.6 The strong jet accessibility subspace of the control system ẋ =
f(x, u) at an equilibrium (xe, ue) is the linear subspace of Rn, denoted by A(xe, ue),
defined by

A(xe, ue) :=

{

g(xe); g ∈ Lie
(∂|α|f

∂uα
(·, ue), α ∈ N

m
)

}

.

In the case of a driftless affine control system, we obtain a local version of the
Chow-Rashevsky Theorem (see [16]).

Theorem 2.4.7 Let us assume that Ω is a nonempty open subset of Rn, that Ω ×
0} ⊂ O and that, for some f1, ..., fm ∈ C∞(Ω;Rn),

f(x, u) =

m
∑

i=1

uifi(x), ∀(x, u) ∈ O

Let xe ∈ Ω be such that

A(xe, 0) :=
{

g(xe); g ∈ Lie {f1, ..., fm}
}

= R
n.

Then the control system ẋ = f(x, u) is small-time locally controllable at (xe, 0) ∈ O.

The following theorem provides necessary conditions of small-time local controlla-
bility around an equilibrium point.

Theorem 2.4.8 (see [16]) Assume that the control system ẋ = f(x, u) is small-time
locally controllable at the equilibrium point (xe, ue) and that f is analytic. Then the
control system ẋ = f(x, u) satisfies A(xe, ue) = Rn.

The remaining of this chapter is devoted to the study of local controllability
around a reference control at fixed time.
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2.5 Local controllability around a reference control

Our aim here is to provide sufficient conditions for first and second order local
controllability result.

2.5.1 The End-Point Mapping

Let us consider a nonlinear control system on Rn (with n,m ≥ 1), of the form

γ̇(t) = X0(γ(t)) +

m
∑

i=1

ui(t)X
i(γ(t)), for a.e. t, (2.6)

where the state γ(t) belongs to Rn, the control u(t) to Rm, and the functions
X0, X1, ..., Xm are smooth functions on Rn. Given γ̄ ∈ Rn and ū ∈ L2([0, T ];Rm)
(T > 0), the Cauchy problem

{

γ̇(t) = X0(γ(t)) +
∑m

i=1 ūi(t)X
i(γ(t)) for a.e. t ∈ [0, T ],

γ(0) = γ̄,

possesses a unique solution γγ̄,ū(·) that we suppose to be defined on [0, T ]. The
End-Point mapping associated with γ̄ in time T is defined as

Eγ,T : L2
(

[0, T ];Rm
)

−→ Rn

u 7−→ γγ̄,u(T ).

We are interested in local controllability properties of (2.6) around ū. The control
system (2.6) is called controllable around ū in (in time T ) if for every final state
γ ∈ Rn close to γγ̄,u(T ) there is a control u ∈ L2

(

[0, T ];Rm
)

which steers γ̄ to γ,
that is such that E ,̄T (u) = γ. Such a property is satisfied as soon as E γ̄,T is locally
open at ū. Our aim in the next sections is to give an estimate from above on the
size of ‖u‖L2 in terms of ‖γ − γγ̄,ū(T )‖.

2.5.2 First-order controllability results

The End-Point mapping is a smooth mapping. Given γ̄ ∈ Rn, ū ∈ L2
(

[0, T ];Rm
)

,
and setting γ̄(·) := γγ̄,ū(·), the differential of E γ̄,T at ū is given by the linear operator

DūE
γ̄,T : L2

(

[0, T ];Rm
)

−→ Rm

v 7−→ φ(T ),
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where φ(·) is the unique solution to the Cauchy problem

{

φ̇(t) = A(t)φ(t) +B(t)v(t) for a.e. t ∈ [0, T ],
φ(0) = 0,

(2.7)

where the matrices A(t) ∈Mn(R) and B(t) ∈Mn,m(R) are defined by

A(t) := dX0(γ̄(t)) +
m
∑

i=1

ūi(t)dX
i(γ̄(t))

and

B(t) :=
(

X1(γ̄(t)), ..., Xm(γ̄(t))
)

,

where γ̄(t) = γγ̄,ū(t) for a.e. t ∈ [0, T ].
Note that if we denote by S(·) the solution to the Cauchy problem

{

Ṡ(t) = A(t)S(t),
S(0) = In,

(2.8)

then there holds

DūE
γ̄,T (v) =

m
∑

i=1

S(T )

∫ T

0

vi(t)S(t)
−1X i(γ̄(t)) dt, (2.9)

for every v ∈ L2([0, T ];Rm).
We say that the control system (2.6) is controllable at first order around ū if the
mapping E γ̄,T : L2

(

[0, T ];Rm
)

→ Rn is a submersion at ū, that is if the linear
operator

DūE
γ̄,T : L2

(

[0, T ];Rm
)

−→ R
n,

is surjective.
Let us introduce the definition of the linearised control system along a trajectory.

Definition 2.5.1 The linearised control system along the trajectory (γ̄, ū) : [0, T ] →
Rn × Rm is the linear time-varying control system

φ̇(t) = A(t)φ(t) +B(t)v(t) for a.e. t ∈ [0, T ], (2.10)

where, at time t, the state is φ(t) ∈ Rn and the control is v(t) ∈ Rm.

The following theorem describes a first order controllability result.
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Theorem 2.5.2 Let us assume that the linearised control system along the trajec-
tory (γ̄, ū) is controllable. Then, the control system 2.6 is controllable at first order
around ū. Moreover, for every γ̄ ∈ Rn and T > 0, there are µ, ν > 0, n smooth
controls u1, · · · , un : [0, T ] → Rm with Supp(uj) ⊂ (0, T ) for j = 1, ..., n and a
smooth mapping

U = (U1, · · · , Un) : B
(

γ̄(T ), µ
)

−→ B(0, ν)

with U
(

γ̄(T )
)

= 0 such that for every γ ∈ B
(

γ̄(T ), µ
)

,

E γ̄,T

(

n
∑

j=1

Uj(γ)u
j

)

= γ.

Proof of Theorem 2.5.2 : From the definition of the controllability of the li-
nearised control system along the trajectory (γ̄, ū) we deduce that the map E γ̄,T :
L2
(

[0, T ];Rm
)

→ Rn is a smooth submersion at ū ≡ 0. Thus, remembering that the
set of controls u ∈ C∞([0, T ],Rm) with supp(u) ⊂ (0, T ) is dense in L2([0, T ],Rm),
there are n smooth controls u1, ..., un : [0, T ] → Rk with Supp(uj) ⊂ (0, T ) for
j = 1, ..., n such that

Span
{

DE γ̄,T (ū)(uj) | j = 1, ..., n
}

= R
n. (2.11)

Define F : Rn → Rn by

F (λ) := E γ̄,T
(

ū+
n
∑

j=1

λju
j
)

∀λ = (λ1, ..., λn) ∈ R
n.

The function F is well-defined, smooth, and satisfies F (0) = E γ̄,T (ū) = γ̄(T ). Its
differential at λ = 0 is given by

DF (0)(λ) =

n
∑

j=1

λjDE
γ̄,T (ū)(uj) ∀λ ∈ R

n,

hence it is invertible By (3.10). By the Inverse Function Theorem, we conclude the
proof. �

The result below follows easily from the previous theorem.

Proposition 2.5.3 Assume that assumptions of Theorem 2.5.2 hold. Then there
are µ, C > 0 such that for every γ ∈ Rn with ‖γ − γ̄(T )‖ < µ, there is a C∞

function u : [0, T ] −→ Rm such that

Supp(u) ⊂ (0, T ), ‖u‖Ck < C ‖γ − γ̄(T )‖
and

γγ̄,u(T ) = γ.
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Let us now provide an example of first order controllable control system.

Example 2.5.4 Let us consider a nonlinear control system on R2, of the form

γ̇(t) = X0(γ(t)) + u(t)X1(γ(t)), for a.e. t, (2.12)

where the state γ(t) :=
(

x(t), y(t)
)

belongs to R2, the control u(t) to R, and the

functions X0 and X1 are two smooth functions on R2 given by

X0(x, y) := (y,−x) and X1(x, y) := (0, x).

Given γ̄ := (1, 0) ∈ R2 and ū ≡ 0, the Cauchy problem

{

γ̇(t) = X0(γ(t)) for a.e. t ∈ [0, 1],
γ(0) = γ̄,

possesses the unique solution γγ̄,ū(t) := (cost,−sint). The linearised control system
along the trajectory (γ̄, ū) : [0, 1] → R2×R is the linear time-varying control system

φ̇(t) = A(t)φ(t) +B(t)v(t) for a.e. t ∈ [0, 1], (2.13)

where

A(t) :=

(

0 1
−1 0

)

and B(t) :=

(

0
cost

)

.

An easy computation yields

B0(t) := B(t) =

(

0
cost

)

and B1(t) := Ḃ0(t)− A(t)B0(t) =

(

−cost
−sint

)

.

It is clear that
Span {Bi(0)u; u ∈ R, i = 0, 1} = R

2.

Then by Theorem 2.3.4, the linearised control system (2.13) is controllable on [0, 1].
Therefore the control system (2.12) is controllable at first order around ū ≡ 0.

2.5.3 Some sufficient condition for local openness

Here we are interested in the study of mappings F : U → RN of class C2 in
an open set U in some Banach space X . We call critical point of F any u ∈ U such
that DuF : U → RN is not surjective. We call corank of u, the quantity

corank(u) := N − dim
(

Im
(

DuF
))

.
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If Q : U → R is a quadratic form, its negative index is defined by

ind−(Q) := max
{

dim(L) | Q|L\{0} < 0
}

.

The following non-quantitative result provides a sufficient condition at second order
for local openness. For sake of completness, we provide its proof (see [61]).

Theorem 2.5.5 Let F : U → RN be a mapping of class C2 on an open set U ⊂ X
and ū ∈ U be a critical point of F of corank r. If

ind−

(

λ∗
(

D2
ūF
)

|Ker(DūF )

)

≥ r ∀λ ∈
(

Im
(

DūF
))⊥ \ {0}, (2.14)

then the mapping F is locally open at ū, that is the image of any neighborhood of ū
is a neighborhood of F (ū).

Proof of Theorem 4.2.5 : We need two preliminary lemmas.

Lemma 2.5.6 Let G : Rk → Rl be a mapping of class C2 with G(0) = 0. Assume
that there is

v̄ ∈ Ker(D0G) with D2
0G ·

(

v̄, v̄
)

∈ Im
(

D0G
)

, (2.15)

such that the linear mapping

w ∈ Ker(D0G) 7−→ ProjK
[

D2
0G ·

(

v̄, w
)]

∈ K (2.16)

is surjective, where K := Im(D0G)
⊥ and ProjK : Rl → K denotes the orthogonal

projection onto K. Then there is a sequence {ui}i converging to 0 in Rk such that
G(ui) = 0 and DuiG is surjective for any i.

Proof of lemma 2.15 : Let E a vector space in Rk such that Rk = E⊕Ker(D0G).
Since D2

0G ·
(

v̄, v̄
)

belongs to Im
(

D0G
)

there is v̂ ∈ E such that

D0G
(

v̂
)

= −1

2
D2

0G ·
(

v̄, v̄
)

.

Define the family of mappings {Φǫ}ǫ>0 : E ×Ker(D0G) → Rl by

Φǫ(z, t) :=
1

ǫ5
G
(

ǫ2v̄ + ǫ3t + ǫ4v̂ + ǫ5z
)

∀(z, t) ∈ E ×Ker(D0G), ∀ǫ > 0.

For every ǫ > 0, Φǫ is of class C2 on E × Ker(D0G) → Rl and its derivative at
(z, t) = (0, 0) is given by

D(0,0)Φǫ(Z, T ) = Dǫ2v̄+ǫ4v̂G(Z) +
1

ǫ2
Dǫ2v̄+ǫ4v̂G(T ),
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for any (Z, T ) ∈ E×Ker(D0G). For every (Z, T ) ∈ E×Ker(D0G), the first term of
the right-hand side Dǫ2v̄+ǫ4v̂G(Z) tends to D0G(Z) as ǫ tends to 0 and since

1

ǫ2
Dǫ2v̄+ǫ4v̂G(T ) =

1

ǫ2

[

D0G(T ) +D2
0G ·

(

ǫ2v̄ + ǫ4v̂, T
)

+
∣

∣ǫ2v̄ + ǫ4v̂
∣

∣ o(1)
]

=
1

ǫ2

[

D2
0G ·

(

ǫ2v̄ + ǫ4v̂, T
)

+
∣

∣ǫ2v̄ + ǫ4v̂
∣

∣ o(1)
]

,

the second term tends to D2
0G(v̄, T ) as ǫ tends to 0. By (2.16), the linear mapping

(Z, T ) ∈ E ×Ker(D0G) 7−→ D0G(Z) +D2
0G ·

(

v̄, T
)

∈ R
l

is surjective. Then there is ǭ > 0 such that D0Φǫ is surjective for all ǫ ∈ (0, ǭ).
Therefore for every ǫ ∈ (0, ǭ) the set

{

(z, t) ∈ E ×Ker(D0G) | Φ̂ǫ(z, t) = 0
}

is a submanifold of class C2 of dimension k− l > 0 which contains the origin. Then
there is a sequence {(zi, ti)}i converging to the origin such that Ψ1/i(zi, ti) = 0 and
D(zi,ti)Ψ1/i is surjective for all i large enough. Thus setting

ui :=
1

i2
v̄ +

1

i3
ti +

1

i4
v̂ +

zi
i

5

∀i,

we get G(ui) = 0 and DuiG surjective for all i large enough. This proves the lemma.
�

Lemma 2.5.7 Let Q : Rk → Rm be a quadratic mapping such that

ind− (λ∗Q) ≥ m, ∀λ ∈ (Rm) \ {0}. (2.17)

Then the mapping Q has a regular zero, that is there is v ∈ Rk such that Q(v) = 0
and DvQ is surjective.

Proof of lemma 2.5.7 : Since Q is a quadratic mapping, there is a symmetric
bilinear map B : Rk × Rk → Rm such that

Q(v) = B(v, v) ∀v ∈ R
k.

The kernel of Q, denoted by Ker(Q) is the set of v ∈ Rk such that

B(v, w) = 0 ∀w ∈ R
k.



34 Geometric control methods in finite dimension

It is a vector subpace of Rk. Up to considering the restriction of Q to a vector space
E satisfying E⊕Ker(Q) = Rk, we may assume that Ker(Q) = 0. We now prove the
result by induction on m.
In the case m = 1, we need to prove that there is v ∈ Rk with Q(v) = 0 and
DvQ 6= 0. By (2.17), we know that ind− (Q) ≥ 1 and ind− (−Q) ≥ 1, which means
that there are two vector lines L+, L− in Rk such that Q|L+\{0} < 0 and Q|L−\{0} > 0.
Then the restriction of Q to L+ ⊕ L− is a quadratic form which is sign-indefinite.
Such a form has regular zeros.
Let us now prove the statement of the lemma for a fixed m > 1 under the assumption
that it has been proven for all values less thanm. So we consider a quadratic mapping
Q : Rk → Rm satisfying (2.17) and such that Ker(Q) = {0}. We distinguish two
cases :
First case : Q−1(0) 6= {0}.
Take any v 6= 0 such that Q(v) = 0. If v is a regular point, then the statement of
the lemma follows. Thus we assume that v is a critical point of Q. Since DvQ(w) =
2B(v, w) for all w ∈ Rk and Ker(Q) = {0}, the derivative DvQ : Rk → Rm cannot
be zero. Then its kernel E = Ker(DvQ) has dimension k− r with r := rank(DvQ) ∈
[1, m− 1]. Set F := Im(DvQ)

⊥ and define the quadratic form

Q̃ : E ≃ R
k−r −→ F ≃ R

m−r

by
Q̃(w) := ProjF

(

Q(w)
)

∀w ∈ E,

where ProjF : Rm → F denotes the orthogonal projection to F . We have for every
λ ∈ F and every w ∈ E,

λ∗Q̃(w) = λ∗Q(w).

We claim that ind− (λ∗Q) ≥ m − r, for every λ ∈ F \ {0}. As a matter of fact, by
assumption, for every λ ∈ F \{0} there is a vector space L of dimension m such that
(λ∗Q)|L\{0} < 0. The space L ∩ E has dimension at least m − k as the intersection

of L of dimension m and E of dimension k− r in Rk. By induction, we infer that Q̃
has a regular zero w̃ ∈ E = Ker(DvQ), that is Q(w̃) ∈ Im(DvQ) and

w ∈ E = Ker(DvQ) 7−→ ProjF
(

B(
(

w̃, w
))

∈ F

is surjective. Define F : Rk → Rm by

F (u) := Q
(

v + u
)

∀u ∈ R
k.

The function F is of class C2 verifies D0F = DvQ,D
2
0F = B and the assumptions

of Lemma 2.5.6 are satisfied with v̄ = w̃. We deduce that Q has a regular zero as
well.
Second case : Q−1(0) = {0}.
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In fact, we are going to prove that this case cannot appear. First we claim that Q
is surjective. Since Q is homogeneous (Q(rv) = r2Q(v) for all v ∈ Rk and r ∈ R),
we have

Q(Rk) =
{

rQ(v) | r ≥ 0, v ∈ S
k−1
}

.

The set Q(Sk−1) is compact, hence Q(Rk) is closed. Assume that Q(Rk) 6= Rm and
take x = Q(v) on the boundary of Q(Rk). Then x is necessarily a critical point for Q.
Proceeding as in the first case, we infer that x = Q(w) for some non-critical point.
This gives a contradiction. Then we have Q(Rk) = Rm. Consequently the mapping

Q := Q
|Q|

: Sk−1 −→ Sm−1

v 7−→ Q(v)
|Q(v)|

is surjective. By Sard’s Theorem (see [24]), it has a regular value x, that is x ∈ Sm−1

such that DvQ is surjective for all v ∈ Sk−1 satisfying Q(v) = x for all v ∈ Sk−1.
Among the set of v ∈ Sk−1 such that Q(v) = x take v̄ for which |Q(v)| is minimal,
that is such that

Q(v̄) = āx

and

∀a > 0, ∀v ∈ S
k−1, Q(v) = ax =⇒ a ≥ ā.

In other terms, if we define the smooth function Ψ : (0,+∞)× Sk−1 → Rm as,

Ψ(a, v) := Q(v)− ax, ∀a > 0, ∀v ∈ S
k−1,

then the pair (ā, v̄) satisfies

ā ≤ a for every (a, v) ∈ (0,+∞)× S
k−1 with Ψ(a, v) = 0.

By the Lagrange Multiplier Theorem, there is λ0 ∈ R and λ ∈ Rm with (λ0, λ) 6=
(0, 0) such that

λ∗Dv̄Q = 0 and − λ∗x = λ0.

Note that we have for every h ∈ Tv̄S
k−1 ⊂ Rk, we have

Dv̄Q(h) =
1

∣

∣Q
(

v̄
)∣

∣

Dv̄Q(h) + [Dv̄|Q|(h)] Q
(

v̄
)

=
1

ā
Dv̄Q(h) + ā [Dv̄|Q|(h)] x. (2.18)

Consequently, if λ0 = 0 (that is if (ā, v̄) is a critical point of ψ), then λ∗Dv̄Q = 0
which contradicts the fact Dv̄Q is surjective (because λ cannot be collinear with



36 Geometric control methods in finite dimension

x by 2-homogeneity of Q). In conclusion, we can assume without loss of generality
that λ0 = −1. Since (ā, v̄) is not a critical point of ψ, the set

C =
{

(a, v) ∈ (0,+∞)× S
k−1 |Ψ(a, v) = 0

}

is a smooth submanifold of (0,+∞)× Sk−1 of dimension k −m in a neighborhood
of
(

ā, v̄
)

. Then for every (ha, hv) ∈ Ker(Dā,v̄Ψ), which is equivalent to ha = 0 and
Dv̄Q(hv) = 0 with hv ∈ Tv̄S

k−1, there is a smooth curve γ = (γa, γv) : (−ǫ, ǫ) → C
such that γ(0) = (ā, v̄) and γ̇(0) = (ha, hv). Then differentiating two times the
equality Ψ(γ(t)) = 0 and using that ∂2Ψ

∂a2
= 0 and λ∗ ∂Ψ

∂v
(ā, v̄) = λ∗Dv̄Q = 0, we get

λ∗
∂2Ψ

∂v2
(

ā, v̄
)

= λ∗γ̈(0)
∂Ψ

∂a

(

ā, v̄
)

= γ̈(0)λ∗x = γ̈(0).

Note that ∂2Ψ
∂v2

= Q. Furthermore, since (ā, v̄) is solution to our minimization problem
with constraine, we have γa(t) ≥ ā = γa(0) for all t ∈ (−ǫ, ǫ). Then we have

λ∗Q(h) ≥ 0 ∀h ∈ Ker
(

Dv̄Q
)

∩ Tv̄Sk−1.

Since Q(v̄) = ā > 0 we have indeed

λ∗Q(h) ≥ 0 ∀h ∈
(

Ker
(

Dv̄Q
)

∩ Tv̄Sk−1
)

⊕ Rv̄ =: L. (2.19)

Let us compute the dimension of the non-negative subspace L of the quadratic form
λ∗Q. Since Dv̄Q is surjective, we have

dim
(

Im
(

Dv̄Q
))

= m− 1.

Which means (remember (2.18)) that Im
(

Dv̄Q|Sk−1

)

has dimension m or m−1. But
λ∗Dv̄Q = 0 with λ 6= 0, thus we have necessarily

dim
(

Im
(

Dv̄Q|Sk−1

))

= m− 1

and

dim
(

Ker
(

Dv̄Q
)

∩ Tv̄Sk−1
)

= dim
(

Ker
(

Dv̄Q|Sk−1

))

= k − 1− (m− 1)

= k −m.

Consequently, dim(L) = k−m+1, thus ind− (λ∗Q) has to be ≤ m−1, which contra-
dicts the hypothesis of the lemma. This shows that Q−1(0) = {0} is impossible and
concludes the proof of the lemma. �

We are ready to prove Theorem 4.2.5. Set

S :=
{

λ ∈
(

Im
(

DūF
))⊥ | |λ| = 1

}

⊂ R
N .
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By assumption (4.14), for every λ ∈ S, there is a subspace Eλ ⊂ Ker (DūF ) of
dimension r such that

λ∗
(

D2
ūF
)

|Eλ\{0}
< 0.

By continuity of the mapping ν 7→ ν∗ (D2
ūF )|Eλ

, there is an open set Oλ ⊂ S such
that

ν∗
(

D2
ūF
)

|Eλ\{0}
< 0 ∀ν ∈ Oλ.

Choose a finite covering

S =

I
⋃

i=1

Oλi

and a finite dimensional space E ⊂ X such that

Im
(

DūF|E

)

= Im
(

DūF
)

.

Then the restriction F̃ of F to the finite dimensional subspace E +
∑I

i=1Eλi ⊂ X
satisfies

ind−

(

λ∗
(

D2
ūF̃
)

|Ker(DūF̃ )

)

≥ r ∀λ ∈
(

Im
(

DūF̃
)

)⊥

\ {0},

with

r = corankF
(

ū
)

:= N − dim
(

Im
(

DūF
))

= N − dim
(

Im
(

DūF̃
)

)

.

Set K :=
(

Im
(

DūF̃
))⊥

and define the quadratic mapping Q : Ker(DūF̃ ) → K by

Q(v) := ProjK

[(

D2
ūF̃
)

· (v, v)
]

∀v ∈ Ker
(

DūF̃
)

,

where ProjK : RN → K denotes the orthogonal projection onto K. The assumption
(2.17) of Lemma 2.5.7 is satisfied. Then by Lemma 2.5.7, Q has a regular zero, that
is v̄ ∈ Ker(DūF̃ ) such that

Q
(

v̄
)

= 0 ⇐⇒ D2
ūF̃ ·

(

v̄, v̄
)

∈ K = Im
(

DūF̃
)

and

Dv̄Q surjective

⇐⇒ w ∈ Ker
(

DūF̃
)

7→ ProjK

[

D2
ūF̃ ·

(

v̄, w
)

]

∈ K surjective.
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Setting G(v) := F̃ (ū+v)− F̃ (ū) and applying Lemma 2.5.6, we get a sequence {ui}i
converging to ū such that F (ui) = F (ū) and DuiF̃ is surjective for any i. By the
Inverse Function Theorem, this implies that F is locally open at ū. �

In the above statement, (D2
ūF )|Ker(DūF )

refers to the quadratic mapping from

Ker(DūF ) to RN defined by

(

D2
ūF
)

|Ker(DūF )
(v) := D2

ūF · (v, v) ∀v ∈ Ker(DūF ).

The following result is a quantitative version of the previous theorem. (We denote
by BX(·, ·) the balls in X with respect to the norm ‖ · ‖X .)

Theorem 2.5.8 Let F : U → RN be a mapping of class C2 on an open set U ⊂ X
and ū ∈ U be a critical point of F of corank r. Assume that (4.14) holds. Then there
exist ǭ, c ∈ (0, 1) such that for every ǫ ∈ (0, ǭ) the following property holds : For
every u ∈ U , z ∈ RN with

‖u− ū‖X < ǫ, |z − F (u)| < c ǫ2, (2.20)

there are w1, w2 ∈ X such that u+ w1 + w2 ∈ U ,

z = F
(

u+ w1 + w2

)

, (2.21)

and

w1 ∈ Ker (DuF ) ,
∥

∥w1

∥

∥

X
< ǫ,

∥

∥w2

∥

∥

X
< ǫ2. (2.22)

Proof of Theorem 4.2.6 : Proceeding as in the proof of Theorem 4.2.5, we may
assume that X is finite dimensional. We may also assume that ū = 0 and F (ū) = 0.
As before, set K := (Im (DūF ))

⊥ and define the quadratic mapping Q : Ker(D0F ) →
K by

Q(v) := ProjK
[(

D2
0F
)

· (v, v)
]

∀v ∈ Ker (D0F ) ,

where ProjK : RN → K denotes the orthogonal projection onto K. By (4.14) and
Lemma 2.5.7, Q has a regular zero v̄ ∈ Ker(D0F ). Let E be a vector space in Rk

such that X = E ⊕Ker(D0F ). Define G : E ×Ker(D0F ) → RN by

G(z, t) := D0F (z) +
1

2

(

D2
0F
)

· (t, t) ∀(z, t) ∈ E ×Ker(D0F ).

Then assumptions of Lemma 2.5.6 are satisfied and there is a sequence {(zi, ti)}i
converging to 0 such that G(zi, ti) = 0 and D(zi,ti)G is surjective for all i.
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Lemma 2.5.9 There are µ, c > 0 such that the image of any continuous mapping
G̃ : B(0, 1) → RN with

sup
{∣

∣

∣
G̃(u)−G(u)

∣

∣

∣
| u = (z, t) ∈ BX(0, 1)

}

≤ µ (2.23)

contains the ball B̄(0, c).

Proof of lemma 2.5.9 : This is a consequence of the Brouwer Theorem which
asserts that any continuous mapping from B̄(0, 1) ⊂ Rn into itself has a fixed point,
see [7]. Let i large enough such that ui := (ti, zi) belongs to B(0, 1/4). Since DuiG
is surjective, there is a affine space V of dimension N which contains ui and such
that DuiG|V is invertible. Then by the Inverse Function Theorem, there is a open
ball B = BX(ui, ρ) ∩ V of ui in V such that the mapping

G|V : B −→ G|V (B) ⊂ R
N

is a smooth diffeomophism. We denote by G : G|V (B) → B its inverse. The set
G|V (B) contains some closed ball B̄(0, c). Taking c > 0 sufficiently small we may
assume that

G(y) ∈ BX

(

ui, ρ/4
)

∀y ∈ B̄(0, c).

There is µ > 0 such that any continuous mapping G̃ : BX(0, 1) → RN verifying
(2.23) satisfies

G̃(u) ∈ G|V (B) ∀u ∈ BX(ui, ρ/2) ∩ V
and

∣

∣

∣

(

G ◦ G̃
)

(u)− u
∣

∣

∣
≤ ρ

4
∀u ∈ BX(ui, ρ/2) ∩ V.

Let G̃ : BX(0, 1) → RN be a continuous mapping verifying (2.23) and y ∈ B̄(0, c)
be fixed. By the above construction, the function

Ψ : BX(G(y), ρ/4) −→ BX(G(y), ρ/4)

defined by

Ψ(u) := u−
(

G ◦ G̃
)

(u) + G(y) ∀u ∈ BX(G(y), ρ/4),

is continuous from BX(G(y), ρ/4) into itself. Thus by Brouwer’s Theorem, it has a
fixed point, that is there is u ∈ BX(G(y), ρ/4) such that

Ψ(u) = u ⇐⇒ G̃(u) = y.

This concludes the proof of the lemma. �
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Define the family of mappings {Φǫ}ǫ>0 : E ×Ker(D0F ) → RN by

Φǫ(z, t) :=
1

ǫ2
F
(

ǫ2z + ǫt
)

∀(z, t) ∈ E ×Ker(D0F ), ∀ǫ > 0.

By Taylor’s formula at second order for F at 0, we have

Φǫ(z, t) = G(z, t) + o(1),

as ǫ tends to 0. Then there is ǭ > 0 (with |(ǭ2, ǭ)| ≤ 1/2) such that for every ǫ ∈ (0, ǭ),

|Φǫ(z, t)−G(z, t)| ≤ µ

2
∀(z, t) ∈

(

E ×Ker(D0F )
)

∩B(0, 1).

By Lemma 2.5.9 applied to G̃ = Φǫ, we infer that B̄(0, c) is contained in Φǫ
(

B(0, 1)
)

,
which in turn implies that for every z ∈ RN such that |z| = |z − F (ū)| < cǫ2, there
are w1, w2 in X such that

z = w1 + w2, w1 ∈ Ker(DūF ), ‖w1‖X < ǫ, ‖w2‖X < ǫ2.

Let us now show that the above result holds uniformly for u close to ū = 0. Since F
is C1, the vector space Ker(DuF ) is transverse to E for u close to ū. Moreover, again
by C1 regularity, for every δ > 0, there is ν > 0 such that for every u ∈ BX(ū, ν),

Ker(DuF ) ∩ B(0, 1) ⊂
{

y + z ∈ X | y ∈ Ker(DūF ) ∩B(0, 1), ‖z‖X < δ
}

.

Therefore, there is ν > 0, such that for every u ∈ BX(ū, ν), there is a vector space
Wu ⊂ X such that (Wu could be reduced to {0})

X = E ⊕Wu ⊕Ker
(

DuF
)

,

and there are linear mappings

π1 : Ker(D0F ) →Wu, π2 : Ker(D0F ) → Ker
(

DuF
)

such that for every t ∈ Ker(D0F ), we have

t = π1(t) + π2(t),
∣

∣π1(t)
∣

∣

X
≤ K|t|,

∣

∣π1(t)
∣

∣

X
≤ K|t|,

for some constant K > 0 (which depends on Ker(D0F ), E, and ‖ · ‖X). Given
u ∈ BX(ū, ν) and ǫ ∈ (0, ǭ) we define G̃ :

(

E ×Ker(D0F )
)

∩ B(0, 1) → RN by

G̃(z, t) :=
1

ǫ2

(

F
(

u+ ǫ2z + ǫ2π1(t) + ǫπ2(t)
)

− F (u)
)

,

for every (z, t) ∈
(

E×Ker(D0F )
)

∩B(0, 1). Taking ν and ǭ > 0 smaller if necessary,
by Taylor’s formula for F at u at second order, by the above construction and by the
fact thatDuF andD2

uF are respectively close to D0F and D2
0F , we may assume that

(2.23) is satisfied. We conclude easily. �

We provide now a parametric version of the previous theorem.
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Theorem 2.5.10 Let θ ∈ Θ, Θ a compact set of parameter and let F θ : U → RN

be a mapping of class C2 on an open set U ⊂ X such that the mapping θ → F θ

is continuous and ū ∈ U be a critical point of F θ of corank r. Assume that (4.14)
holds. Then there exist ǭ, c ∈ (0, 1) such that for every ǫ ∈ (0, ǭ) the following
property holds : For every θ ∈ Θ, u ∈ U , z ∈ RN with

‖u− ū‖X < ǫ,
∣

∣z − F θ(u)
∣

∣ < c ǫ2, (2.24)

there are w1, w2 ∈ X such that u+ w1 + w2 ∈ U ,

z = F θ
(

u+ w1 + w2

)

, (2.25)

and

w1 ∈ Ker
(

DuF
θ
)

,
∥

∥w1

∥

∥

X
< ǫ,

∥

∥w2

∥

∥

X
< ǫ2. (2.26)

Proof of Theorem 2.5.10 : Fix θ̄ ∈ Θ. We may also assume that ū = 0 and

F θ̄(ū) = 0. As before, set K :=
(

Im
(

DūF
θ̄
))⊥

and define the quadratic mapping

Qθ̄ : Ker(D0F
θ̄) → K by

Qθ̄(v) := ProjK

[(

D2
0F

θ̄
)

· (v, v)
]

∀v ∈ Ker
(

D0F
θ̄
)

,

where ProjK : RN → K denotes the orthogonal projection onto K. By (4.14) and
Lemma 2.5.7, Qθ̄ has a regular zero v̄ ∈ Ker(D0F

θ̄). Let E be a vector space in Rk

such that X = E ⊕Ker(D0F
θ̄). Define G : E ×Ker(D0F

θ̄) → RN by

Gθ̄(z, t) := D0F
θ̄(z) +

1

2

(

D2
0F

θ̄
)

· (t, t) ∀(z, t) ∈ E ×Ker(D0F
θ̄).

Then assumptions of Lemma 2.5.6 are satisfied and there is a sequence {(zθ̄i , tθ̄i )}i
converging to 0 such that G(zθ̄i , t

θ̄
i ) = 0 and D(zθ̄i ,t

θ̄
i )
Gθ̄ is surjective for all i.

Define the family of mappings {Φθ̄ǫ}ǫ>0 : E ×Ker(D0F
θ̄) → RN by

Φθ̄ǫ(z, t) :=
1

ǫ2
F θ̄
(

ǫ2z + ǫt
)

∀(z, t) ∈ E ×Ker(D0F
θ̄), ∀ǫ > 0.

By Taylor’s formula at second order for F θ̄ at 0, we have

Φθ̄ǫ(z, t) = Gθ̄(z, t) + o(1),

as ǫ tends to 0. Then there is ǭ > 0 (with |(ǭ2, ǭ)| ≤ 1/2) such that for every ǫ ∈ (0, ǭ),

∣

∣

∣
Φθ̄ǫ (z, t)−Gθ̄(z, t)

∣

∣

∣
≤ µ

2
∀(z, t) ∈

(

E ×Ker(D0F
θ̄)
)

∩B(0, 1).
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Take now θ near θ̄. By the continuity of the mapping θ → Φθǫ , we have

∣

∣

∣
Φθǫ (z, t)−Gθ̄(z, t)

∣

∣

∣
≤ µ ∀(z, t) ∈

(

E ×Ker(D0F
θ̄)
)

∩B(0, 1).

By Lemma 2.5.9 applied to G̃ = Φθǫ , we infer that B̄(0, cθ̄) is contained in Φθǫ
(

B(0, 1)
)

,

which in turn implies that for every z ∈ RN such that |z| = |z−F θ̄(ū)| < cθ̄ǫ2, there
are w1, w2 in X such that

z = F θ(w1 + w2), w1 ∈ Ker(DūF
θ), ‖w1‖X < ǫ, ‖w2‖X < ǫ2.

We conclude easily as in the proof of Theorem 4.2.6. �

The control system which is relevant in the present section is not always
controllable at first order. We need sufficient condition for controllability at second
order.

2.5.4 Second-order controllability results

Using the same notations as above, we say that the control system (2.6) is
controllable at second order around ū in Rm if there are µ,K > 0 such that for every

γ ∈ B
(

γ̄(T ), µ
)

, there is u ∈ L2
(

[0, T ];Rm
)

satisfying

E γ̄,T (u) = γ and ‖u‖L2 ≤ K |γ − γ̄(T )|1/2 .

Obtaining such a property requires a study of the End-Point mapping at second
order. For every v ∈ L2([0, T ],Rm), the second derivative of E γ̄,T at ū is given by
(see [61])

D2E γ̄,T (ū).(v, v) = 2S(T )

∫ T

0

S(t)−1
(

C(t) +D(t)
)

dt,

where

C(t) =

m
∑

i=1

vi(t)DX
i(γ̄(t)).(ϕ(t)),

D(t) =
1

2

(

D2X0(γ̄(t)) +
m
∑

i=1

ūi(t)D
2X i(γ̄(t))

)

.(ϕ(t), ϕ(t)),

and

ϕ(t) = S(t)

∫ t

0

S(s)−1B(s)v(s)ds.

The following theorem describes a second order controllability result.
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Theorem 2.5.11 Let us assume that the End-Point mapping E γ̄,T : L2
(

[0, T ];Rm
)

→
Rn verify the condition (4.14). There are µ,K > 0 such that for every γ̄ ∈ Rn and

every γ ∈ B
(

γ̄(T ), µ
)

, there is u ∈ C∞([0, T ],Rk) with support in [0, T ] satisfying

E γ̄,T (u) = γ and ‖u‖C∞ ≤ K |γ − γ̄(T )|1/2 .

Proof of Theorem 2.5.11 : The End-Point mapping E γ̄,T : L2
(

[0, T ];Rm
)

→ Rn

verify the condition (4.14), so there exists a vector subspace L of KerD0E
γ̄,T with

p := dimL ≥ r such that

λ∗D2
ūE

γ̄,T (v) < 0 ∀v ∈ L ∀λ ∈
(

Im
(

DūE
γ̄,T
))⊥ \ {0}. (2.27)

Remember that the set of controls u ∈ C∞([0, T ],Rm) with supp(u) ⊂ (0, T ) is
dense in L2([0, T ],Rm), then there are p smooth controls u1, ..., up : [0, T ] → Rk

with Supp(uj) ⊂ (0, T ) ∀j = 1, . . . , p, such that

λ∗D2
ūE

γ̄,T (u) < 0 ∀u :=

p
∑

j=1

λju
j ∈ L ∀λ ∈

(

Im
(

DūE
γ̄,T
))⊥ \ {0}. (2.28)

Define F : Rp → Rn by

F (λ) := E γ̄,T
(

p
∑

j=1

λju
j
)

∀λ = (λ1, ..., λp) ∈ R
p.

The function F is well-defined, smooth, and satisfies F (0) = E γ̄,T (0) = γ̄(T ). Its
second differential at λ = 0 is given by

D2F (0)(λ, ξ) = D2E γ̄,T (0)
(

p
∑

j=1

λju
j,

p
∑

j=1

ξju
j
)

.

So thanks to (2.28), the map F verify the assumption (4.14). Hence thanks to
Theorem 4.2.6, there exist ǭ, c ∈ (0, 1) such that for every ǫ ∈ (0, ǭ) the following
property holds : For every λ ∈ Rp, γ ∈ Rn with

‖λ− 0‖
Rp < ǫ, |γ − F (λ)| < c ǫ2, (2.29)

there are w1, w2 ∈ Rp such that

γ = F
(

λ+ w1 + w2

)

, (2.30)

and

w1 ∈ Ker (DλF ) ,
∥

∥w1

∥

∥

Rp < ǫ,
∥

∥w2

∥

∥

Rp < ǫ2. (2.31)
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Apply the above property with λ = 0 and γ ∈ Rn such that

∣

∣γ − γ̄(T )
∣

∣ =:
cǫ2

2
with ǫ < ǭ.

Therefore by the above property, there are w1, w2 ∈ Rp such that

γ = F
(

w1 + w2

)

,

and

w1 ∈ Ker (DλF ) ,
∣

∣w1

∣

∣ < ǫ,
∣

∣w2

∣

∣ < ǫ2.

Note that any

u =

p
∑

b=1

λbu
b with λ = (λ1, ..., λp) ∈ R

p

is a smooth control whose support is strictly contained in [0, T ] and there exists
L > 0 such that

∥

∥u
∥

∥

C∞
≤ L

(

∣

∣w1

∣

∣+
∣

∣w2

∣

∣

)

≤ L(ǫ+ ǫ2).

We infer that (for ǫ > 0 small enough)

γ = E γ̄,T
(

u
)

and
∥

∥u
∥

∥

C∞
≤ 2Lǫ = 2L

√

2

c
|γ − γ̄(T )|1/2 .

�



Chapitre 3

A geometric control proof of
Franks’ lemma for Geodesic Flows

Summary : We provide an elementary proof of the Franks lemma for geodesic flows
that uses basic tools of geometric control theory.

3.1 Introduction

In 1971, John Franks stated and proved an elegant lemma (see [23, lemma 1.1])
showing how to perturb the derivative of a diffeomorphism along a periodic orbit by
small perturbations of the diffeomorphism on a neighbourhood of the orbit. Since
the original Franks’ lemma concerns diffeomorphisms, its proof is quite simple. The
Franks lemma has since been proven in other interesting contexts such as geodesic
flows (see [15] and [12]) and more generally Hamiltonians flows (see [79]). In this
work, we focus on the Franks lemma for geodesic flows. This problem was first stu-
died in the particular case of surfaces by Contreras and Paternain (see [15, Theorem
4.1]). They proved that on any surface, the linearized Poincaré map along any geo-
desic segment of length 1 can be freely perturbed in a neighborhood inside Sp(1)
by a C2-small perturbation of the metric, where for every m ∈ N∗, the symplectic
group Sp(m) is defined by

Sp(m) :=
{

A ∈M2m(R) |A∗
JA = J

}

,

with

J =

[

0 Im
−Im 0

]

.

In 2010, Contreras studied the higher-dimensional analogue (see [12, Theorem 7.1]).
He generalized the previous result for a special set of metrics : those such that every

45
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geodesic segment of length 1
2
has a point whose curvature matrix has all its eigen-

values distinct and separated by a uniform bound. The proof was long and technical.

Let M be a closed manifold of dimension n ≥ 2 endowed with a Riemannian
metric g and SgM be the unit tangent bundle. Given a geodesic arc of length 1

γ : [0, 1] −→ SgM,

with unit speed and Σ0 and Σ1 transverse sections at γ(0) and γ(1) respectively.
Let Pg(Σ0,Σ1, γ) be a Poincaré map going from Σ0 to Σ1. One can choose Σ0 and
Σ1 such that the linearized Poincaré map

Pg(γ)(1) := dγ(0)Pg(Σ0,Σ1, γ)

is a symplectic endomorphism of Rn−1× (Rn−1)∗ (in local coordinates). Let Rk(M),
k ∈ N∪{+∞} be the set of all Ck Riemannian metrics g on M . If n ≥ 3, we denote
by G1 the set of Riemannian metrics on M such that every unit geodesic segment
of lenght 1 admits a point where the curvature matrix has distinct eigenvalues.
Denote by Rk(M,G1) the set of all Riemannian metrics g on M such that if n = 2,
g ∈ Rk(M) and for n ≥ 3, g ∈ Rk(M) ∩ G1. For every k ≥ 2, Rk(M,G1) is an
open and dense subset of Rk(M). Consider the map S : Rk(M,G1) −→ Sp(n − 1)
given by S(ḡ) = Pḡ(γ)(1). The following theorem summarizes the Franks lemma for
geodesic flows on surfaces and its higher-dimensional analogue (under the Contreras
assumption on the spectrum of the curvature matrix) with estimates on the size of
perturbation in terms of the radius of the ball of Sp(n− 1).

Theorem 3.1.1 Let g0 ∈ Rk(M,G1), 2 ≤ k ≤ ∞. There exists r̄, K > 0 such that
for any geodesic arc γ of g0 of lenght 1 and any r ∈ (0, r̄),

B
(

S(g0), Kr
)

∩ Sp(n− 1) ⊂ S
(

BCk(g0, r)
)

.

Let F := {ξ1, ..., ξN} be a finite set of geodesic segments that are transverse to γ.
We have the following result.

Proposition 3.1.2 For any tubular neighborhood W of γ and any finite set F of
transverse geodesics, the support of the C2 perturbation can be contained in W \ V
for some neighborhood V of the transverse geodesics F .

Franks’ Lemma type results has many interesting applications. For instance, in [15]
Contreras and Paternain used it to show that the set of C∞ Riemannian metrics on
S2 or RP2 whose geodesic flow has positive topological entropy is open and dense in
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the C2 topology. In [12] Contreras used the Franks lemma to prove that a C2 generic
Riemannian metric has a non-trivial hyperbolic basic set in its geodesic flow. The
author says that this perturbation lemma is ”the main technical difficulty of the
paper”. Recently, Visscher (see [78]) gave a shorter and less technical proof for the
two cases.

The purpose of the present chapter is to provide a simple proof of the Franks
lemma using geometric control tools. Such techniques have been initially introduced
by Rifford and Ruggiero in [62]. We mention that recently in a joint work with Rif-
ford and Ruggiero, we obtained a Franks lemma at lower order (r < K

√
δ) without

the Contreras assumption (see [43]).

The chapter is organized as follows. In the next section, we introduce some
preliminaries in geometric control theory. We describe the relationship between local
controllability and the properties of the End-Point mapping. In Section 3.3, we
provide the proof of Theorem 3.1.1. Then, in Section 3.4, we provide the proof of
Proposition 3.1.2.

3.2 Preliminaries in geometric control theory

Our aim here is to provide sufficient conditions for first order local controllabi-
lity results. This kind of results could be developed for nonlinear control systems on
smooth manifolds. For sake of simplicity, we restrict our attention here to the case
of affine control systems on the set of (symplectic) matrices. We refer the interested
reader to [1, 16, 61] for a further study in control theory.

3.2.1 The End-Point mapping

Let us a consider a bilinear control system on M2m(R) (with m, k ≥ 1), of the
form

Ẋ(t) = A(t)X(t) +

k
∑

i=1

ui(t)BiX(t), for a.e. t, (3.1)

where the state X(t) belongs toM2m(R), the control u(t) belongs to R
k, t ∈ [0, T ] 7→

A(t) (with T > 0) is a smooth map valued inM2m(R), and B1, . . . , Bk are k matrices
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in M2m(R). Given X̄ ∈M2m(R) and ū ∈ L2
(

[0, T ];Rk
)

, the Cauchy problem

Ẋ(t) = A(t)X(t) +

k
∑

i=1

ūi(t)BiX(t), for a.e. t ∈ [0, T ], X(0) = X̄, (3.2)

possesses a unique solution XX̄,ū(·). The End-Point mapping associated with X̄ in
time T > 0 is defined as

EX̄,T : L2
(

[0, T ];Rk
)

−→ M2m(R)

u 7−→ XX̄,u(T ).

It is a smooth mapping. Given X̄ ∈M2m(R), ū ∈ L2
(

[0, T ];Rk
)

, and setting X̄(·) :=
XX̄,ū(·), the differential of EX̄,T at ū is given by the linear operator

DūE
X̄,T : L2

(

[0, T ];Rk
)

−→ M2m(R)

v 7−→ Y (T ),

where Y (·) is the unique solution to the Cauchy problem

{

Ẏ (t) = A(t)Y (t) +
∑k

i=1 vi(t)BiX̄(t) for a.e. t ∈ [0, T ],
Y (0) = 0.

(3.3)

Note that if we denote by S(·) the solution to the Cauchy problem

{

Ṡ(t) = A(t)S(t),
S(0) = I2m,

(3.4)

then there holds

DūE
X̄,T (v) =

k
∑

i=1

S(T )

∫ T

0

vi(t)S(t)
−1BiX̄(t) dt, (3.5)

for every v ∈ L2([0, T ];Rk).

Let Sp(m) be the symplectic group in M2m(R) (m ≥ 1), that is the smooth
submanifold of matrices X ∈M2m(R) satisfying

X∗
JX = J where J =

[

0 Im
−Im 0

]

.

Sp(m) has dimension p := 2m(2m + 1)/2. Denote by S(2m) the set of symmetric
matrices in M2m(R). The tangent space to Sp(m) at the identity matrix is given by

TI2mSp(m) =
{

Y ∈M2m(R) | JY ∈ S(2m)
}

.
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Therefore, if there holds

JA(t), JB1, . . . , JBk ∈ S(2m) ∀t ∈ [0, T ], (3.6)

then Sp(m) is invariant with respect to (4.1), that is for every X̄ ∈ Sp(m) and
ū ∈ L2

(

[0, T ];Rk
)

,
XX̄,u(t) ∈ Sp(m) ∀t ∈ [0, T ].

In particular, this means that for every X̄ ∈ Sp(m), the End-Point mapping EX̄,T

is valued in Sp(m). Given X̄ ∈ Sp(m) and ū ∈ L2
(

[0, T ];Rk
)

, we are interested in
local controllability properties of (4.1) around ū. The control system (4.1) is called
controllable around ū in Sp(m) (in time T ) if for every final state X ∈ Sp(m) close
to XX̄,u(T ) there is a control u ∈ L2

(

[0, T ];Rk
)

which steers X̄ to X , that is such

that EX̄,T (u) = X . Such a property is satisfied as soon as EX̄,T is locally open at ū.

3.2.2 First order controllability results

Given T > 0, X̄ ∈ Sp(m), a mapping t ∈ [0, T ] 7→ A(t) ∈ M2m(R) and
k matrices B1, . . . , Bk ∈ M2m(R) satisfying (4.5), and ū ∈ L2

(

[0, T ];Rk
)

, we say
that the control system (4.1) is controllable at first order around ū in Sp(m) if the
mapping EX̄,T : L2

(

[0, T ];Rk
)

→ Sp(m) is a submersion at ū, that is if the linear
operator

DūE
X̄,T : L2

(

[0, T ];Rk
)

−→ TX̄(T )Sp(m),

is surjective (with X̄(T ) := XX̄,u(T )). The following sufficient condition for first
order controllability is given in [62, Proposition 2.1]. For sake of completeness, we
provide its proof.

Proposition 3.2.1 Let T > 0, t ∈ [0, T ] 7→ A(t) a smooth mapping and B1, . . . , Bk ∈
M2m(R) be matrices in M2m(R) satisfying (4.5). Define the k sequences of smooth
mappings

{Bj
1}, . . . , {Bj

k} : [0, T ] → TI2mSp(m)

by
{

B0
i (t) = Bi

Bj
i (t) = Ḃj−1

i (t) +Bj−1
i (t)A(t)−A(t)Bj−1

i (t),
(3.7)

for every t ∈ [0, T ] and every i ∈ {1, . . . , k}. Assume that there exists some t̄ ∈ [0, T ]
such that

Span
{

Bj
i (t̄) | i ∈ {1, . . . , k}, j ∈ N

}

= TI2mSp(m). (3.8)

Then for every X̄ ∈ Sp(m), the control system (4.1) is controllable at first order
around ū ≡ 0.
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Proof of Proposition 4.2.1 : If DūE
X̄,T is not onto, there is a nonzero matrix

Y ∈M2m(R) such that

X̄(T )∗JY ∈ S(2m)

and

Tr
(

Y ∗DūE
X̄,T (v)

)

= 0 v ∈ L2
(

[0, T ];Rk
)

.

By (4.4), this can be written as

k
∑

i=1

∫ T

0

vi(t)Tr(Y
∗S(T )S(t)−1BiX̄(t)) dt = 0 ∀v ∈ L2

(

[0, T ];Rk
)

.

Taking for every i ∈ {1, ..., k},

vi(t) := Tr(Y ∗S(T )S(t)−1BiX̄(t)) t ∈ [0, T ],

we obtain that

Tr
(

Y ∗S(T )S(t)−1BiX̄(t)
)

= 0 ∀t ∈ [0, T ]. (3.9)

The above equality at t = t̄ yields

Tr
(

Y ∗S(T )S(t̄)−1B0
i (t̄)X̄(t̄)

)

= 0.

Using that d
dt
(S(t)−1) = −S(t)−1A(t), ˙̄X(t) = A(t)X̄(t) and differentiating (3.9) at

t = t̄ again and again gives

Tr
(

Y ∗S(T )S(t̄)−1Bj
i (t̄)X̄(t̄)

)

= 0 ∀j ∈ N, ∀i ∈ {1, ..., k} .

By (4.5), we have

X̄(T )∗J
(

S(T )S(t̄)−1Bj
i (t̄)X̄(t̄)

)

∈ S(2m).

So all the matrices S(T )S(t̄)−1Bj
i (t̄)X̄(t̄) belong to TX̄(T )Sp(m). Since the matrix

S(T )S(t̄)−1 is invertible and (4.7) holds, we infer that

Tr(Y ∗H) = 0 ∀H ∈ TX̄(T )Sp(m)

which yields a contradiction. �

As a corollary, we deduce a local controllability property on Sp(m).
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Proposition 3.2.2 Assume that assumptions of Proposition 4.2.1 hold. Then, for
every X̄ ∈ Sp(m) and T > 0, there are µ, ν > 0, p smooth controls u1, · · · , up :
[0, T ] → Rk with Supp(uj) ⊂ (0, T ) for j = 1, ..., p and a smooth mapping

U = (U1, · · · , Up) : B
(

X̄(T ), µ
)

∩ Sp(m) −→ B(0, ν)

with U
(

X̄(T )
)

= 0 such that for every X ∈ B
(

X̄(T ), µ
)

∩ Sp(m),

EX̄,T

(

p
∑

j=1

Uj(X)uj

)

= X.

Proof of Proposition 3.2.2 : Remember that the set of controls u ∈ C∞([0, T ],Rk)
with supp(u) ⊂ (0, T ) is dense in L2([0, T ],Rk) and from Proposition 4.2.1, we know
that the mapping EX̄,T : L2

(

[0, T ];Rk
)

→ Sp(m) is a smooth submersion at ū ≡ 0.
Then there are p smooth controls u1, ..., up : [0, T ] → Rk with Supp(uj) ⊂ (0, T ) for
j = 1, ..., p such that

Span
{

DEX̄,T (ū)(uj) | j = 1, ..., p
}

= TX̄(T )Sp(m). (3.10)

Define F : Rp → Sp(m) by

F (λ) := EX̄,T
(

ū+

p
∑

j=1

λju
j
)

∀λ = (λ1, ..., λp) ∈ R
p.

The function F is well-defined, smooth, and satisfies F (0) = EX̄,T (ū) = X̄(T ). Its
differential at λ = 0 is given by

DF (0)(λ) =

p
∑

j=1

λjDE
X̄,T (ū)(uj) ∀λ ∈ R

p,

hence it is invertible By (3.10). By the Inverse Function Theorem, we conclude the
proof. �

Remark 3.2.3 The radii depend on the size of the datas (see [61, Theorem B.1.4]).

The result below follows easily from Proposition 3.2.2.

Proposition 3.2.4 Assume that there exists t̄ ∈ [0, T ] such that (4.7) holds. Then
there are µ, C > 0 such that for every X ∈ Sp(m) with

∥

∥X − X̄(T )
∥

∥ < µ, there is a

C∞ function u : [0, T ] −→ R
m(m+1)

2 such that

Supp(u) ⊂ (0, T ), ‖u‖Ck < C
∥

∥X − X̄(T )
∥

∥

and
Xu(T ) = X.
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3.3 Proof of Theorem 1.1

Since M is compact, there exists τ > 0 such that

γ
(

(1− τ, 1)
)

∩ γ
(

[0, 1− τ ]
)

= ∅,

for every geodesic γ arc of g0. Let γ : [0, 1] −→ SgM be a geodesic arc of g0 of length
1 (this can be obtained by scaling).

b

b

b

b

b

b

b

b

b

b

b

b

b

b

γ(1)γ(0) γ(1− τ) τ > 0

ũ = u
ũ = 0 X

bb
b

b

Figure 3.1 – Avoiding self-intersection

Fix a set of Fermi coordinates {(t, x)} along γ. The linearized Poincaré map
Pg0(γ)(t) satisfies a first order system of the form (see [62, Section 3])

Ẇ0(t) =

(

0 In−1

−K(t) 0

)

W0(t) t ∈ [1− τ, 1],

where K(t) represents the matrix of the sectional curvature of the metric g0. In fact,
if g0 := (gkl0 )k,l=0,...,n−1, we have for any i, j = 1, ..., n− 1,

K(t)ij = −1

2

∂2

∂xi∂xj
g000 (t, 0).

Let f : M −→ R be a C2 function with f(t, 0) = 0 and ∂
∂xk

f(t, 0) = 0 ∀k =
1, ..., n− 1. Let u := (uij)i,j=1,...,n−1 be the function defined by

uij(t) = −1

2

∂2

∂xixj
f(t, 0), ∀i, j = 1, ..., n− 1 and t ∈ [1− τ, 1].

Consider the metric gu := efg0. The linearized Poincaré map Pgu(γ)(t) is given by

Ẇu(t) =

(

0 In−1

−Kgu 0

)

Wu(t) t ∈ [1− τ, 1], (3.11)
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where

Kgu(t) = K(t) +

m
∑

i=1

uii(t)E(ii) +

m
∑

1≤i<j

uij(t)E(ij), (3.12)

with E(ij), 1 ≤ i ≤ j ≤ m are the symmetric n− 1× n− 1 matrices defined by

(E(ij))k,l = δikδjl + δilδjk ∀i, j = 1, . . . , n− 1.

Set m = n − 1, k := m(m + 1)/2. The formulas (3.11)-(3.12) giving Pgu(γ)(t) can
be viewed as a control system of the form

Ẋ(t) = A(t)X(t) +

m
∑

i≤j=1

uij(t)E(ij)X(t), (3.13)

where the 2m× 2m matrices A(t), E(ij) are defined by

A(t) :=

(

0 Im
−K(t) 0

)

∀t ∈ [1− τ, 1]

and

E(ij) :=
(

0 0
E(ij) 0

)

.

To avoid eventually self-intersection at γ(1), we assume that the support of u is
included in (1− τ + δ, 1− δ), with 0 < δ < τ .
It is clear that if for every final state X ∈ Sp(m) close to γ(1) there is a control
u ∈ L2

(

[1− τ, 1];Rk
)

which steers γ(1− τ) to X (see Figure 1), then the control ũ
defined by

ũ(t) :=

{

0 if t ∈ [0, 1− τ ]
u(t) otherwise.

for a.e. t ∈ [0, 1].

steers γ(0) to X . For sake of simplicity assume from now that [1− τ, 1] = [0, 1].

Let us first prove the higher-dimensional (n ≥ 3) Franks’ lemma for geodesic
flows.
The Jacobi matrix K(t) is real and symmetric, so it is diagonalisable and there are

λ1(t), ..., λm(t) ∈ R, P (t) ∈ GLm(R) such thatK(t) = P (t)−1diag
(

λ1(t), ..., λm(t)
)

P (t).

Recall that by hypothesis,

∃ t̄ ∈ [0, 1] / λi(t̄) 6= λj(t̄), ∀i 6= j. (3.14)

Hence if we change our coordinates, we can suppose thatK(t̄) = diag
(

λ1(t̄), ..., λm(t̄)
)

.

Since our control system has the form (4.1), all the results gathered in Section 4.2
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apply. Since the E(ij) do not depend on time, we check easily that the matrices
B0
ij , B

1
ij, B

2
ij, B

3
ij associated to our system are given by



















B0
ij(t) = E(ij)

B1
ij(t) = [E(ij), A(t)]

B2
ij(t) = [[E(ij), A(t)] , A(t)]

B3
ij(t) = Ḃ2

ij(t) + [[[E(ij), A(t)] , A(t)] , A(t)] ,

for every t ∈ [0, 1]. An easy computation yields for any i, j = 1, . . . , m with i ≤ j
and any t ∈ [0, 1],

[E(ij), A(t)] =
(

−E(ij) 0
0 E(ij)

)

,

[[E(ij), A(t)] , A(t)] =
(

0 −2E(ij)
−E(ij)K(t)−K(t)E(ij) 0

)

,

[[[E(ij), A(t)] , A(t)] , A(t)] =
(

3E(ij)K(t) +K(t)E(ij) 0
0 −E(ij)K(t)− 3K(t)E(ij)

)

.

We need to show that S = Span
{

Bl
ij(t̄) | 1 ≤ i ≤ j ≤ m and l = 0, 1, 2, 3

}

has

dimension d = 2m(2m+ 1)/2. For all 1 ≤ i ≤ j ≤ k we have

(

3E(ij)K(t̄) +K(t̄)E(ij) 0
0 −E(ij)K(t̄)− 3K(t̄)E(ij)

)

=

2

(

E(ij)K(t̄) +K(t̄)E(ij) 0
0 −E(ij)K(t̄)−K(t̄)E(ij)

)

+

(

[E(ij), K(t̄)] 0
0 [E(ij), K(t̄)]

)

.

Moreover, it holds that

(

0 0

−E(ij)K̇(t̄)− K̇(t̄)E(ij) 0

)

∈ Span
{

B0
ij(t̄) | 1 ≤ i ≤ j ≤ m

}

,

and
(

E(ij)K(t̄) +K(t̄)E(ij) 0
0 −E(ij)K(t̄)−K(t̄)E(ij)

)

∈ Span
{

B1
ij(t̄) | 1 ≤ i ≤ j ≤ m

}

.

Let’s now compute the m×m matrices [E(ij), K(t̄)] for all 1 ≤ i < j ≤ m :

[E(ij), K(t̄)] := (crs)r,s with







crs = 0 if (r, s) 6= (i, j) or (r, s) 6= (j, i),
cij = λj(t̄)− λi(t̄),
cji = λi(t̄)− λj(t̄).
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Hence, using the condition (3.14) we obtain

span

{(

[E(ij), K(t̄)] 0
0 [E(ij), K(t̄)]

)

| i ≤ j

}

= Span

{(

F (pq) 0
0 F (pq)

)

| p < q

}

,

where F (pq) is the skew-symmetric matrix defined by

(F (pq))rs := δrpδsq − δrqδsp.

Therefore we have

S = Span

{

Bl
ij(t̄),

(

F (pq) 0
0 F (pq)

)

| 1 ≤ i ≤ j ≤ m, l = 0, 1, 2 and 1 ≤ p < q ≤ m

}

.

This allow us to compute the dimension of S. In fact, since the matrices E(ij) form
a basis of the vector space of symmetric matrices S(m), we check easily that the
vector space

Span
{

E(ij), [[E(kl), A(t)] , A(t)] | i, j, k, l
}

has dimension m(m+1). It remains to check that the rest spans a space of dimension
d−m(m+ 1) = m2. The spaces respectively spanned by

{

[E(ij), A(t)] | i, j
}

and
{(

F (pq) 0
0 F (pq)

)

| p, q
}

are orthogonal with respect to the scalar product tr(P ∗Q). The first has dimension
m(m + 1)/2. It remains to show that the second one has dimension m(m − 1)/2.
The second space is generated by the matrices of the form

(

F (pq) 0
0 F (pq)

)

with 1 ≤ p < q ≤ m. Finally, the condition (4.7) is satisfied and we conclude easily
using Propositions 4.2.1, 3.2.4 and a compactness argument (see Remark 3.2.3).

Let us now provide the proof of Franks’ lemma for geodesic flows on surfaces.
Set m = 1, the control system (3.13) becomes

Ẋ(t) = A(t)X(t) + u11(t)E(11)X(t),

where the 2× 2 matrices A(t), E(11) are defined by

A(t) :=

(

0 1
−K(t) 0

)

∀t ∈ [0, 1]
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and

E(11) :=
(

0 0
1 0

)

.

Since our control system has the form (4.1), all the results gathered in Section 4.2
apply. Since the E(11) do not depend on time, we check easily that the matrices
B0

11, B
1
11, B

2
11 associated to our system are given by







B0
11(t) = E(11)

B1
11(t) = [E(11), A(t)]

B2
11(t) = [[E(11), A(t)] , A(t)] ,

for every t ∈ [0, T ]. An easy computation yields for any t ∈ [0, T ],

[E(11), A(t)] =
(

−1 0
0 1

)

,

[[E(11), A(t)] , A(t)] =
(

0 −2
−2K(t) 0

)

.

We check easily that dim
(

Span
{

B0
11(0), B

1
11(0), B

2
11(0)

})

= 3 = dim
(

TI2Sp(1)
)

.

So the condition (4.7) is satisfied and the result follows from Propositions 4.2.1, 3.2.4
and a compactness argument.

3.4 Proof of Proposition 1.2

γ(1)γ(0) γ(t1) γ(t2) γ(tN)

ξ1 ξ2 ξN

bb
b b b

b b b

Figure 3.2 – Avoiding a finite number of transverse geodesics
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Let F := {ξ1, ..., ξN} be a finite set of geodesic segments that are transverse to
γ, with for every i = 1, ..., N , ξi intersect γ at the point γ(ti), where ti ∈ [0, 1]. From
Proposition 3.2.2, we know that there are p smooth controls u1, · · · , up : [0, T ] → Rk

with Supp(uj) ⊂ (0, 1) for j = 1, ..., p, such that the following End-Point mapping
(associated to the control system (3.13))

EI2m,1 : Span {u1, · · · , up} −→ Sp(m)
∑p

i=1 λiu
i 7−→ XI2m,

∑p
i=1 λiu

i(1)

is a local diffeomorphism. Take now p C∞-functions ũ1, · · · , ũp : [0, T ] → Rk such
that for every j = 1, ..., p, Supp(ũj) ⊂ (0, 1), ũj vanishes in a neighborhood Ni of ti
and ũj is a equal to uj outside of Ni. By C

1 regularity of the End-Point mapping
EI2m,1, it holds that the map

ẼI2m,1 : Span {ũ1, · · · , ũp} −→ Sp(m)
∑p

i=1 λiũ
i 7−→ XI2m,

∑p
i=1 λiũ

i(1)

remains a local diffeomorphism, which concludes the proof.



Chapitre 4

Franks’ lemma for C2-Mañé
perturbations of Riemannian

metrics

Summary : Given a compact Riemannian manifold, we prove a uniform Franks’
lemma at second order for geodesic flows and apply the result in persistence theory.

4.1 Introduction

One of the most important tools of C1 generic and stability theories of dyna-
mical systems is the celebrated Franks Lemma [23] :

Let M be a smooth (i.e. of class C∞) compact manifold of dimension n ≥ 2
and let f : M −→ M be a C1 diffeomorphism. Consider a finite set of points
S = {p1, p2, .., pm}, let Π =

⊕m
i=1 TpiM , Π′ =

⊕m
i=1 Tf(pi)M . Then there exist ǫ0 > 0

such that for every 0 < ǫ ≤ ǫ0 there exists δ = δ(ǫ) > 0 such that the following holds :

Let L = (L1, L2, .., Lm) : Π −→ Π′ be an isomorphism such that

∥

∥Li −Dpif
∥

∥ < δ ∀i = 1, . . . , m,

then there exists a C1 diffeomorphism g :M −→ M satisfying

1. g(pi) = f(pi) for every i = 1, . . . , m,

2. Dpig = Li for each i = 1, . . . , m,

3. the diffeomorphim g is in the ǫ neighborhood of f in the C1 topology.

58
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In a few words, the lemma asserts that given a collection S of m points pi
in the manifold M , any isomorphism from Π to Π′ can be the collection of the
differentials of a diffeomorphism g, C1 close to f , at each point of S provided that
the isomorphism is sufficiently close to the direct sum of the mapsDpif , i = 1, . . . , m.
The sequence of points is particularly interesting for applications in dynamics when
the collection S is a subset of a periodic orbit. The idea of the proof of the lemma
is quite elementary : we conjugate the isomorphisms Li by the exponential map of
M in suitably small neighborhoods of the points pi’s and then glue (smoothly) the
diffeomorphism f outside the union of such neighborhoods with these collection of
conjugate-to-linear maps. So the proof strongly resembles an elementary calculus
exercise : we can glue a C1 function h : R −→ R outside a small neighborhood U
of a point x with the linear function in U whose graph is the line through (x, h(x))
with slope h′(x) and get a new function that is C1 close to h.

The Franks lemma admits a natural extension to flows, and its important
applications in the study of stable dynamics gave rise to versions for more specific
families of systems, like symplectic diffeomorphisms and Hamiltonian flows [63, 79].
It is clear that for specific families of systems the proof of the lemma should be more
difficult that just gluing conjugates of linear maps by the exponential map since this
surgery procedure in general does not preserve specific properties of systems, like
preserving symplectic forms in the case of symplectic maps. The Frank’s Lemma was
extensively used by R. Mañé in his proof of the C1 structural stability conjecture
[47], and we could claim with no doubts that it is one of the pillars of the proof
together with C. Pugh’s C1 closing lemma [56, 57] (see Newhouse [52] for the proof
of the C1 structural stability conjecture for symplectic diffeomorphisms).

A particularly challenging problem is to obtain a version of Frank’s Lemma
for geodesic flows. First of all, a typical perturbation of the geodesic flow of a Rie-
mannian metric in the family of smooth flows is not the geodesic flow of another
Riemannian metric. To ensure that perturbations of a geodesic flow are geodesic
flows as well the most natural way to proceed is to perturb the Riemannian me-
tric in the manifold itself. But then, since a local perturbation of a Riemannian
metric changes all geodesics through a neighborhood, the geodesic flow of the per-
turbed metric changes in tubular neighborhoods of vertical fibers in the unit tangent
bundle. So local perturbations of the metric are not quite local for the geodesic flow,
the usual strategy applied in generic dynamics of perturbing a flow in a flowbox
without changing the dynamics outside the box does not work. This poses many
interesting, technical problems in the theory of local perturbations of dynamical
systems of geometric origin, the famous works of Klingenberg-Takens [40] and Ano-
sov [3] (the bumpy metric theorem) about generic properties of closed geodesics are
perhaps the two best known examples. Moreover, geodesics in general have many
self-intersections so the effect of a local perturbation of the metric on the global
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dynamics of perturbed orbits is unpredictable unless we know a priori that the geo-
desic flow enjoys some sort of stability (negative sectional curvatures, Anosov flows
for instance).

The family of metric perturbations which preserves a compact piece of a given
geodesic is the most used to study generic theory of periodic geodesics. This family
of perturbations is relatively easy to characterize analytically when we restrict our-
selves to the category of conformal perturbations or more generally, to the set of
perturbations of Lagrangians by small potentials. Recall that a Riemannian metric
h in a manifold M is conformally equivalent to a Riemannian metric g in M if there
exists a positive, C∞ function b : M −→ R such that hx(v, w) = b(x)gx(v, w) for
every x ∈M and v, w ∈ TxM . Given a C∞, Tonelli Lagrangian L : TM×TM −→ R

defined in a compact manifold M , and a C∞ function u : M −→ R, the function
Lu(p, v) = L(p, v)+u(p) gives another Tonelli Lagrangian. The function u is usually
called a potential because of the analogy between this kind of Lagrangian and me-
chanical Lagrangians.

By Maupertuis principle (see for example [19]), the Lagrangian associated
to a metric h in M that is conformally equivalent to g is of the form L(p, v) =
1
2
gp(v, v) + u(p) for some function u. Since the Lagrangian of a metric g is given by

the formula Lg(p, v) = 1
2
gp(v, v), we get Lh(p, v) = Lg(p, v) + u(p). Now, given a

compact part γ : [0, T ] −→ M of a geodesic of (M, g), the collection of potentials
u : M → R such that γ[0, T ] is still a geodesic of L(p, v) = Lg(p, v) + u(p) contains
the functions whose gradients vanish along the subset of Tγ(t)M which are perpen-
dicular to γ′(t) for every t ∈ [0, T ] (see for instance [65, Lemma 2.1]). Lagrangian
perturbations of Tonelli Lagrangians of the type Lh(p, v) = Lg(p, v)+u(p) were used
extensively by R. Mañé to study generic properties of Tonelli Lagrangians and appli-
cations to Aubry-Mather theory (see for instance [49, 50]). Mañé’s idea proved to be
very fruitful and insightful in Lagrangian generic theory, and opened a new branch
of generic theory that is usually called Mañé’s genericity. Recently, Rifford-Ruggiero
[62] gave a proof of Klingenberg-Takens and Anosov C1 genericity results for closed
geodesics using control theory techniques applied to the class of Mañé type per-
turbations of Lagrangians. Control theory ideas simplify a great deal the technical
problems involved in metric perturbations and at the same time show that Mañé
type perturbations attain full Hamiltonian genericity. This result, combined with
a previous theorem by Oliveira [53] led to the Kupka-Smale Theorem for geodesic
flows in the family of conformal perturbations of metrics.

These promissing applications of control theory to the generic theory of geo-
desic flows motivate us to study Frank’s Lemma for conformal perturbations of
Riemannian metrics or equivalently, for Mañé type perturbations of Riemannian
Lagrangians. Before stating our main theorem, let us recall first some notations
and basic results about geodesic flows. The geodesic flow of a Riemannian manifold
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(M, g) will be denoted by φt, the flow acts on the unit tangent bundle T1M , a point
θ ∈ T1M has canonical coordinates θ = (p, v) where p ∈M , v ∈ TpM , and γθ denotes
the unit speed geodesic with initial conditions γθ(0) = p, γ′θ(0) = v. Let Nθ ⊂ TθT1M
be the plane of vectors which are perpendicular to the geodesic flow with respect to
the Sasaki metric (see for example [66]). The collection of these planes is preserved
by the action of the differential of the geodesic flow :Dθφt(Nθ) = Nφt(θ) for every θ
and t ∈ R.

Let us consider a geodesic arc, of length T

γθ : [0, T ] −→M,

and let Σ0 and ΣT be local transverse sections for the geodesic flow which are tangent
to Nθ and NφT (θ) respectively. Let Pg(Σ0,ΣT , γ) be a Poincaré map going from Σ0

to ΣT . In horizontal-vertical coordinates of Nθ, the differential DθφT that is the
linearized Poincaré map

Pg(γ)(T ) := DθPg(Σ0,ΣT , γ)

is a symplectic endomorphism of R(2n−2) × R(2n−2). This endomorphism can be ex-
pressed in terms of the Jacobi fields of γθ which are perpendicular to γ′θ(t) for every
t :

Pg(γ)(T )(J(0), J̇(0)) = (J(T ), J̇(T )),

where J̇ denotes the covariant derivative along the geodesic. We can identify the set
of all symplectic endomorphisms of R2n−2 × R2n−2 with the symplectic group

Sp(n− 1) :=
{

X ∈ R
(2n−2)×(2n−2);X∗

JX = J

}

,

where X∗ denotes the transpose of X and

J =

[

0 In−1

−In−1 0

]

.

Given a geodesic γθ : [0, T ] → M , an interval [t1, t2] ⊂ [0, T ] and ρ > 0, we denote
by Cg

(

γθ
(

[t1, t2]
)

; ρ
)

the open geodesic cylinder along γθ
(

[t1, t2]
)

of radius ρ, that is
the open set defined by

Cg
(

γθ
(

[t1, t2]
)

; ρ
)

:=
{

p ∈M | ∃t ∈ (t1, t2) with dg
(

p, γθ(t)
)

< ρ and dg
(

p, γθ([t1, t2])
)

= dg
(

p, γθ(t)
)

}

,

where dg denotes the geodesic distance with respect to g. Our main result is the
following.
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Theorem 4.1.1 (Franks’ Lemma) Let (M, g) be a smooth compact Riemannian
manifold of dimension ≥ 2. For every T > 0 there exist δT , τT , KT > 0 such that the
following property holds :
For every geodesic γθ : [0, T ] →M , there are t̄ ∈ [0, T − τT ] and ρ̄ > 0 with

Cg
(

γθ
([

t̄, t̄+ τT
])

; ρ̄
)

∩ γθ([0, T ]) = γθ
((

t̄, t̄+ τT
))

,

such that for every δ ∈ (0, δT ), for each symplectic map A in the open ball (in
Sp(n − 1)) centered at Pg(γ)(T ) of radius δ and for every ρ ∈ (0, ρ̄), there exists a
C∞ metric h in M that is conformal to g, hp(v, w) = (1+ σ(p))gp(v, w), such that :

1. the geodesic γθ : [0, T ] −→M is still a geodesic of (M,h),

2. Supp(σ) ⊂ Cg
(

γθ
([

t̄, t̄+ τT
])

; ρ
)

,

3. Ph(γθ)(T ) = A,

4. the C2 norm of the function σ is less than KT

√
δ.

Theorem 4.1.1 improves a previous result by Contreras [12, Theorem 7.1] which
gives a controllability result at first order under an additional assumption on the
curvatures along the initial geodesic. Other proofs of Contreras Theorem can also
be found in [78] and [42]. The Lazrag proof follows already the ideas from geome-
tric control introduced in [62] to study controllability properties at first order. Our
new Theorem 4.1.1 shows that controllability holds at second order without any
assumption on curvatures along the geodesic. Its proof amounts to study how small
conformal perturbations of the metric g along Γ := γ([0, T ]) affect the differential of
Pg(Σ0,ΣT , γ). This can be seen as a problem of local controllability along a reference
trajectory in the symplectic group. As in [62], The idea is to see the Hessian of the
conformal factor along the initial geodesic as a control and to obtain Theorem 4.1.1
as a uniform controllability result at second order for a control system of the form

Ẋ(t) = A(t)X(t) +
k
∑

i=1

ui(t)BiX(t), for a.e. t,

in the symplectic group Sp(n− 1).

We apply Franks’ Lemma to extend some results concerning the characteri-
zation of hyperbolic geodesic flows in terms of the persistence of some C1 generic
properties of the dynamics. These results are based on well known steps towards the
proof of the C1 structural stability conjecture for diffeomorphisms.

Let us first introduce some notations. Given a smooth compact Riemannian
manifold (M, g), we say that a property P of the geodesic flow of (M, g) is ǫ-Ck-
persistent from Mañé’s viewpoint if for every C∞ function f : M −→ R whose Ck
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norm is less than ǫ we have that the geodesic flow of the metric (M, (1 + f)g) has
property P as well. By Maupertuis’ principle, this is equivalent to the existence of
an open Ck-ball of radius ǫ′ > 0 of functions q : M −→ R such that for every
C∞ function in this open ball the Euler-Lagrange flow of the Lagrangian L(p, v) =
1
2
gp(v, v)− q(p) in the level of energy equal to 1 has property P . This definition is

inspired by the definition of Ck−1 persistence for diffeomorphisms : a property P of
a diffeomorphism f : M −→ M is called ǫ-Ck−1 persistent if the property holds for
every diffeomorphism in the ǫ-Ck−1 neighborhood of f . It is clear that if a property
P is ǫ-C1 persistent for a geodesic flow then the property P is ǫ′-C2 persistent from
Mañé’s viewpoint for some ǫ′.

Theorem 4.1.2 Let (M, g) be a smooth compact Riemannian manifold of dimen-
sion ≥ 2 such that the periodic orbits of the geodesic flow are C2-persistently hy-
perbolic from Mañé’s viewpoint. Then the closure of the set of periodic orbits of the
geodesic flow is a hyperbolic set.

An interesting application of Theorem 4.1.2 is the following extension of Theo-
rem A in [64] : C1 persistently expansive geodesic flows in the set of Hamilto-
nian flows of T1M are Anosov flows. We recall that a non-singular smooth flow
φt : Q −→ Q acting on a complete Riemannian manifold Q is ǫ-expansive if given
x ∈ Q we have that for each y ∈ Q such that there exists a continuous surjective
function ρ : R −→ R with ρ(0) = 0 satisfying

d
(

φt(x), φρ(t)(y)
)

≤ ǫ ∀t ∈ R,

then there exists t(y), | t(y) |< ǫ such that φt(y)(x) = y. A smooth non-singular flow
is called expansive if it is expansive for some ǫ > 0. Anosov flows are expansive, and
it is not difficult to get examples which show that the converse of this statement is
not true. Theorem 4.1.2 yields the following.

Theorem 4.1.3 Let (M, g) be a smooth compact Riemannian manifold, suppose
that eitherM is a surface or dimM ≥ 3 and (M, g) has no conjugate points. Assume
that the geodesic flow is C2 persistently expansive from Mañé’s viewpoint, then the
geodesic flow is Anosov.

The proof of the above result requires the set of periodic orbits to be dense.
Such a result follows from expansiveness on surfaces [64] and from the absence
of conjugate points in any dimension. If we drop the assumption of the absence of
conjugate points we do not know whether periodic orbits of expansive geodesic flows
are dense (and so if the geodesic flow in Theorem 4.1.3 is Anosov). This is a difficult,
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challenging problem.

The chapter is organized as follows. In the next section, we introduce some
preliminaries which describe the relationship between local controllability and some
properties of the End-Point mapping and we introduce the notions of local control-
lability at first and second order. We recall a result of controllability at first order
(Proposition 4.2.1) already used in [62] and state results (Propositions 4.2.2 and
4.2.4) at second order whose long and technical proofs are given in Sections 4.2.5
and 4.2.6. In Section 4.3, we provide the proof of Theorem 4.1.1 and the proof of
theorems 4.1.2, 4.1.3 are given in Section 4.4.

4.2 Preliminaries in control theory

Our aim here is to provide sufficient conditions for first and second order local
controllability results. This kind of results could be developed for nonlinear control
systems on smooth manifolds. For sake of simplicity, we restrict our attention here
to the case of affine control systems on the set of (symplectic) matrices. We refer
the interested reader to [1, 16, 44, 38, 61] for a further study in control theory.

4.2.1 The End-Point mapping

Let us a consider a bilinear control system on M2m(R) (with m, k ≥ 1), of the
form

Ẋ(t) = A(t)X(t) +
k
∑

i=1

ui(t)BiX(t), for a.e. t, (4.1)

where the state X(t) belongs toM2m(R), the control u(t) belongs to R
k, t ∈ [0, T ] 7→

A(t) (with T > 0) is a smooth map valued inM2m(R), and B1, . . . , Bk are k matrices
in M2m(R). Given X̄ ∈M2m(R) and ū ∈ L2

(

[0, T ];Rk
)

, the Cauchy problem

Ẋ(t) = A(t)X(t) +
k
∑

i=1

ūi(t)BiX(t) for a.e. t ∈ [0, T ], X(0) = X̄, (4.2)

possesses a unique solution XX̄,ū(·). The End-Point mapping associated with X̄ in
time T > 0 is defined as

EX̄,T : L2
(

[0, T ];Rk
)

−→ M2m(R)

u 7−→ XX̄,u(T ).
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It is a smooth mapping whose differential can be expressed in terms of the linearized
control system (see [61]). Given X̄ ∈M2m(R), ū ∈ L2

(

[0, T ];Rk
)

, and setting X̄(·) :=
XX̄,ū(·), the differential of EX̄ at ū is given by the linear operator

DūE
X̄,T : L2

(

[0, T ];Rk
)

−→ M2m(R)

v 7−→ Y (T ),

where Y (·) is the unique solution to the linearized Cauchy problem

{

Ẏ (t) = A(t)Y (t) +
∑k

i=1 vi(t)Bi(t)X̄(t) for a.e. t ∈ [0, T ],
Y (0) = 0.

Note that if we denote by S(·) the solution to the Cauchy problem

{

Ṡ(t) = A(t)S(t)
S(0) = I2m

∀t ∈ [0, T ], (4.3)

then there holds

DūE
X̄,T (v) =

k
∑

i=1

S(T )

∫ T

0

vi(t)S(t)
−1BiX̄(t) dt, (4.4)

for every v ∈ L2([0, T ];Rk).

Let Sp(m) be the symplectic group in M2m(R) (m ≥ 1), that is the smooth
submanifold of matrices X ∈M2m(R) satisfying

X∗
JX = J where J :=

[

0 Im
−Im 0

]

.

Denote by S(2m) the set of symmetric matrices in M2m(R). The tangent space to
Sp(m) at the identity matrix is given by

TI2mSp(m) =
{

Y ∈M2m(R) | JY ∈ S(2m)
}

.

Therefore, if there holds

JA(t), JB1, . . . , JBk ∈ S(2m) ∀t ∈ [0, T ], (4.5)

then Sp(m) is invariant with respect to (4.1), that is for every X̄ ∈ Sp(m) and
ū ∈ L2

(

[0, T ];Rk
)

,
XX̄,u(t) ∈ Sp(m) ∀t ∈ [0, T ].
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In particular, this means that for every X̄ ∈ Sp(m), the End-Point mapping EX̄,T

is valued in Sp(m). Given X̄ ∈ Sp(m) and ū ∈ L2
(

[0, T ];Rk
)

, we are interested in
local controllability properties of (4.1) around ū. The control system (4.1) is called
controllable around ū in Sp(m) (in time T ) if for every final state X ∈ Sp(m) close
to XX̄,ū(T ) there is a control u ∈ L2

(

[0, T ];Rk
)

which steers X̄ to X , that is such

that EX̄,T (u) = X . Such a property is satisfied as soon as EX̄,T is locally open at ū.
Our aim in the next sections is to give an estimate from above on the size of ‖u‖L2

in terms of ‖X −XX̄,u(T )‖.

4.2.2 First order controllability results

Given T > 0, X̄ ∈ Sp(m), a mapping t ∈ [0, T ] 7→ A(t) ∈M2m(R), k matrices
B1, . . . , Bk ∈M2m(R) satisfying (4.5), and ū ∈ L2

(

[0, T ];Rk
)

, we say that the control

system (4.1) is controllable at first order around ū in Sp(m) if the mapping EX̄,T :
L2
(

[0, T ];Rk
)

→ Sp(m) is a submersion at ū, that is if the linear operator

DūE
X̄,T : L2

(

[0, T ];Rk
)

−→ TX̄(T )Sp(m),

is surjective (with X̄(T ) := XX̄,ū(T )). The following sufficient condition for first
order controllability is given in [62, Proposition 2.1] (see also [42, 44]).

Proposition 4.2.1 Let T > 0, t ∈ [0, T ] 7→ A(t) a smooth mapping and B1, . . . , Bk ∈
M2m(R) be matrices in M2m(R) satisfying (4.5). Define the k sequences of smooth
mappings

{Bj
1}, . . . , {Bj

k} : [0, T ] → TI2mSp(m)

by

{

B0
i (t) := Bi

Bj
i (t) := Ḃj−1

i (t) +Bj−1
i (t)A(t)− A(t)Bj−1

i (t),
(4.6)

for every t ∈ [0, T ] and every i ∈ {1, . . . , k}. Assume that there exists some t̄ ∈ [0, T ]
such that

Span
{

Bj
i (t̄) | i ∈ {1, . . . , k}, j ∈ N

}

= TI2mSp(m). (4.7)

Then for every X̄ ∈ Sp(m), the control system (4.1) is controllable at first order
around ū ≡ 0.

The control system which is relevant in the present paper is not always control-
lable at first order. We need sufficient condition for controllability at second order.
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4.2.3 Second-order controllability results

Using the same notations as above, we say that the control system (4.1) is
controllable at second order around ū in Sp(m) if there are µ,K > 0 such that for

every X ∈ B
(

X̄(T ), µ
)

∩ Sp(m), there is u ∈ L2
(

[0, T ];Rk
)

satisfying

EX̄,T (u) = X and ‖u‖L2 ≤ K
∣

∣X − X̄(T )
∣

∣

1/2
.

Obtaining such a property requires a study of the End-Point mapping at second
order. Recall that given two matrices B,B′ ∈ M2m(R), the bracket [B,B′] is the
matrix of M2m(R) defined as

[B,B′] := BB′ − B′B.

The following results are the key points in the proof of our main theorem. Their
proofs will be given respectively in Sections 4.2.5 and 4.2.6.

Proposition 4.2.2 Let T > 0, t ∈ [0, T ] 7→ A(t) a smooth mapping and B1, . . . , Bk ∈
M2m(R) be matrices in M2m(R) satisfying (4.5) such that

BiBj = 0 ∀i, j = 1, . . . , k. (4.8)

Define the k sequences of smooth mappings {Bj
1}, . . . , {Bj

k} : [0, T ] → TI2mSp(m) by
(4.6) and assume that the following properties are satisfied with t̄ = 0 :

[

Bj
i (t̄), Bi

]

∈ Span
{

Bs
r(t̄) | r = 1, .., k, s ≥ 0

}

∀i = 1, . . . , k, ∀j = 1, 2, (4.9)

and

Span
{

Bj
i (t̄), [B

1
i (t̄), B

1
l (t̄)] | i, l = 1, .., k and j = 0, 1, 2

}

= TI2mSp(m). (4.10)

Then, for every X̄ ∈ Sp(m), the control system (4.1) is controllable at second order
around ū ≡ 0.

Remark 4.2.3 For sake of simplicity we restrict here our attention to control sys-
tems of the form (4.1) satisfying (4.8)-(4.9). More general results can be found in
[44].

To prove Theorem 4.1.1, we will need the following parametrized version of
Proposition 4.2.2 which will follow from the fact that smooth controls with support
in (0, T ) are dense in L2([0, T ];Rk) and compactness.
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Proposition 4.2.4 Let T > 0, and for every θ in some set of parameters Θ let
t ∈ [0, T ] 7→ Aθ(t) be a smooth mapping and Bθ

1 , . . . , B
θ
k ∈ M2m(R) be matrices in

M2m(R) satisfying (4.5) (with A(t) = Aθ) such that

Bθ
iB

θ
j = 0 ∀i, j = 1, . . . , k. (4.11)

Define for every θ ∈ Θ the k sequences of smooth mappings {Bθ,j
1 }, . . . , {Bθ,j

k } :
[0, T ] → TI2mSp(m) as in (4.6) and assume that the following properties are satisfied
with t̄ = 0 for every θ ∈ Θ :

[

Bθ,j
i (t̄), Bθ

i

]

∈ Span
{

Bθ,s
r (t̄) | r = 1, .., k, s ≥ 0

}

∀i = 1, . . . , k, ∀j = 1, 2,(4.12)

and

Span
{

Bθ,j
i (t̄), [Bθ,1

i (t̄), Bθ,1
l (t̄)] | i, l = 1, .., k and j = 0, 1, 2

}

= TI2mSp(m). (4.13)

Assume moreover, that the sets
{

Bθ
i | i = 1, . . . , k, θ ∈ Θ

}

⊂M2m(R)

and
{

t ∈ [0, T ] 7→ Aθ(t) | θ ∈ Θ
}

⊂ C2
(

[0, T ];M2m(R)
)

are compact. Then, there are µ,K > 0 such that for every θ ∈ Θ, every X̄ ∈ Sp(m)

and every X ∈ B
(

X̄θ(T ), µ
)

∩ Sp(m) (X̄θ(T ) denotes the solution at time T of the

control system (4.1) with parameter θ starting from X̄), there is u ∈ C∞
(

[0, T ];Rk
)

with support in [0, T ] satisfying

EX̄,T
θ (u) = X and ‖u‖C2 ≤ K

∣

∣X − X̄(T )
∣

∣

1/2

(EX̄,T
θ denotes the End-Point mapping associated with the control system (4.1) with

parameter θ).

Our proof is based on a series of results on openness properties of C2 mappings
near critical points in Banach spaces which was developed by Agrachev and his co-
authors, see [1].

4.2.4 Some sufficient condition for local openness

Here we are interested in the study of mappings F : U → RN of class C2 in
an open set U in some Banach space X . We call critical point of F any u ∈ U such
that DuF : U → RN is not surjective. We call corank of u, the quantity

corank(u) := N − dim
(

Im
(

DuF
))

.
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If Q : U → R is a quadratic form, its negative index is defined by

ind−(Q) := max
{

dim(L) | Q|L\{0} < 0
}

.

The following non-quantitative result whose proof can be found in [1, 44, 61] provides
a sufficient condition at second order for local openness.

Theorem 4.2.5 Let F : U → RN be a mapping of class C2 on an open set U ⊂ X
and ū ∈ U be a critical point of F of corank r. If

ind−

(

λ∗
(

D2
ūF
)

|Ker(DūF )

)

≥ r ∀λ ∈
(

Im
(

DūF
))⊥ \ {0}, (4.14)

then the mapping F is locally open at ū, that is the image of any neighborhood of ū
is an neighborhood of F (ū).

In the above statement, (D2
ūF )|Ker(DūF ) refers to the quadratic mapping from

Ker(DūF ) to RN defined by

(

D2
ūF
)

|Ker(DūF )
(v) := D2

ūF · (v, v) ∀v ∈ Ker(DūF ).

The following result is a quantitative version of the previous theorem. (We denote
by BX(·, ·) the balls in X with respect to the norm ‖ · ‖X .)

Theorem 4.2.6 Let F : U → RN be a mapping of class C2 on an open set U ⊂ X
and ū ∈ U be a critical point of F of corank r. Assume that (4.14) holds. Then there
exist ǭ, c ∈ (0, 1) such that for every ǫ ∈ (0, ǭ) the following property holds : For
every u ∈ U , z ∈ RN with

‖u− ū‖X < ǫ, |z − F (u)| < c ǫ2, (4.15)

there are w1, w2 ∈ X such that u+ w1 + w2 ∈ U ,

z = F
(

u+ w1 + w2

)

, (4.16)

and

w1 ∈ Ker (DuF ) ,
∥

∥w1

∥

∥

X
< ǫ,

∥

∥w2

∥

∥

X
< ǫ2. (4.17)

Again, the proof of Theorem 4.2.6 which follows from previous results by
Agrachev-Sachkov [1] and Agrachev-Lee [2] can be found in [44, 61]. A parame-
tric version of Theorem 4.2.6 that will be useful in the proof of Proposition 4.2.4 is
provided in [44].
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4.2.5 Proof of Proposition 4.2.2

Without loss of generality, we may assume that X̄ = I2m. As a matter of fact,
if Xu : [0, T ] → Sp(m) ⊂M2m(R) is solution to the Cauchy problem

Ẋu(t) = A(t)Xu(t) +

k
∑

i=1

ui(t)BiXu(t) for a.e. t ∈ [0, T ], Xu(0) = I2m, (4.18)

then for every X̄ ∈ Sp(m), the trajectory
(

XuX̄
)

: [0, T ] → M2m(R) starts at X̄
and satisfies

d

dt

(

Xu(t)X̄
)

= A(t)
(

Xu(t)X̄
)

+

k
∑

i=1

ui(t)Bi

(

Xu(t)X̄
)

for a.e. t ∈ [0, T ].

So any trajectory of (4.1), that is any control, steering I2m to some X ∈ Sp(m)
gives rise to a trajectory, with the same control, steering X̄ ∈ Sp(m) to XX̄ ∈
Sp(m). Since right-translations in Sp(m) are diffeomorphisms, we infer that local
controllability at second order around ū ≡ 0 from X̄ = I2m implies controllability
at second order around ū ≡ 0 for any X̄ ∈ Sp(m). So from now we assume that
X̄ = I2m (in the sequel we omit the lower index and simply write I). We recall
that X̄ : [0, T ] → Sp(m) ⊂ M2m(R) denotes the solution of (4.18) associated with
u = ū ≡ 0 while Xu : [0, T ] → Sp(m) ⊂ M2m(R) stands for a solution of (4.18)
associated with some control u ∈ L2

(

[0, T ];Rk
)

. Furthermore, we may also assume
that the End-Point mapping EI,T : L2

(

[0, T ];Rk
)

→ Sp(m) is not a submersion at
ū because it would imply controllability at first order around ū and so at second
order, as desired.

We equip the vector space M2m(R) with the scalar product defined by

P ·Q = tr (P ∗Q) ∀P,Q ∈M2m(R).

Let us fix P ∈ TX̄(T )Sp(m) such that P belongs to
(

Im
(

D0E
I,T
))⊥ \ {0} with

respect to our scalar product (note that
(

Im
(

D0E
I,T
))⊥ \ {0} is nonempty since

D0E
I,T : L2

(

[0, T ];Rk
)

→ TX̄(T )Sp(m) is assumed to be not surjective).

Lemma 4.2.7 For every t ∈ [0, T ], we have

tr
[

P ∗S(T )S(t)−1Bj
i (t)S(t)

]

= 0 ∀j ≥ 0, ∀i = 1, ..., k.

Proof of Lemma 4.2.7 : Recall (remember (4.4)) that for every u ∈ L2([0, T ];Rk),

D0E
I,T (u) = S(T )

∫ T

0

S(t)−1
k
∑

i=1

ui(t)BiX̄(t) dt,
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where S(·) denotes the solution of the Cauchy problem (4.3). Thus if P belongs to
(

ImD0E
I,T
)⊥

, we have

tr

[

P ∗S(T )

∫ T

0

S(t)−1
k
∑

i=1

ui(t)BiX̄(t) dt

]

= 0 ∀u ∈ L1([0, T ];Rk).

This can be written as

k
∑

i=1

∫ T

0

ui(t) tr
[

P ∗S(T )S(t)−1BiS(t)
]

dt = 0 ∀u ∈ L1([0, T ];Rk).

We infer that

tr
[

P ∗S(T )S(t)−1BiS(t)
]

= 0 ∀i ∈ {1, . . . , k}, ∀t ∈ [0, T ].

We conclude by noticing that

dj

dtj
(

S(t)−1BiS(t)
)

= S(t)−1Bj
i (t)S(t) ∀t ∈ [0, T ].

�

Let u ∈ L2
(

[0, T ];Rk
)

be fixed, for every ǫ ∈ R small we define δǫ : [0, T ] →
M2m(R) by

δǫ(t) := EI,t(ǫu) ∀t ∈ [0, T ].

By regularity of the End-Point mapping (see [61]), we have formally for every t ∈
[0, T ],

δǫ(t) = X̄(t) + δ1ǫ (t) + δ2ǫ (t) + o(ǫ2),

where δ1ǫ is linear in ǫ and δ2ǫ quadratic. Then we have for every t ∈ [0, T ],

δǫ(t) = X̄(t) + δ1ǫ (t) + δ2ǫ (t) + o(ǫ2)

= I +

∫ t

0

A(s)δǫ(s) +
k
∑

i=1

ǫ ui(s)Biδǫ(s) ds

= X̄(t) +

∫ t

0

A(s)δ1ǫ (s) +

k
∑

i=1

ǫ ui(s)BiX̄(s) ds

+

∫ t

0

A(s)δ2ǫ (s) +

k
∑

i=1

ǫ ui(s)Biδ
1
ǫ (s) ds+ o(ǫ2).

Consequently, the second derivative of EI,T at 0 is given by the solution (times 2)
at time T of the Cauchy problem

{

Ż(t) = A(t)Z(t) +
∑k

i=1 ui(t)BiY (t),
Z(0) = 0,
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where Y : [0, T ] → M2m(R) is solution to the linearized Cauchy problem (4.3).
Therefore we have

D2
0E

I,T (u) = 2S(T )

∫ T

0

S(t)−1

k
∑

i=1

ui(t)Biϕ(t) dt,

where

ϕ(t) :=

k
∑

i=1

S(T )

∫ T

0

S(t)−1ui(t)BiX̄(t) dt.

Then we infer that for every u ∈ L2([0, T ];Rk),

P ·D2
0E

I,T (u) =

2
k
∑

i,j=1

∫ T

0

∫ t

0

ui(t)uj(s)tr
[

P ∗S(T )S(t)−1BiS(t)S(s)
−1BjS(s)

]

ds dt. (4.19)

It is useful to work with an approximation of the quadratic form P · D2
0E

I,T . For
every δ > 0, we see the space L2([0, δ];Rk) as a subspace of L2([0, T ];Rk) by the
canonical immersion

u ∈ L2([0, δ];Rk) 7−→ ũ ∈ L2([0, T ];Rk),

with

ũ(t) :=

{

u(t) if t ∈ [0, δ]
0 otherwise.

for a.e. t ∈ [0, T ].

For sake of simplicity, we keep the same notation for ũ and u.

Lemma 4.2.8 There is C > 0 such that for every δ ∈ (0, T ), we have
∣

∣

∣
P ·D2

0E
I,T (u)−Qδ(u)

∣

∣

∣
≤ Cδ4 ‖u‖2L2 ∀u ∈ L2([0, δ];Rk) ⊂ L2([0, T ];Rk),

where Qδ : L
2([0, δ];Rk) → R is defined by

Qδ(u) := 2
k
∑

i,j=1

∫ δ

0

∫ t

0

ui(t)uj(s)Pi,j(t, s) ds dt ∀u ∈ L2([0, δ];Rk),

with

Pi,j(t, s) = tr

[

P ∗S(T )

(

sBiB
1
j (0) + tB1

i (0)Bj +
s2

2
BiB

2
j (0)

+
t2

2
B2
i (0)Bj + tsB1

i (0)B
1
j (0)

)]

,

for any t, s ∈ [0, T ].
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Proof of Lemma 4.2.8 : Setting for every i, j = 1, . . . , k,

Bi(t) := Bi + t B1
i (0) +

t2

2
B2
i (0) ∀t ∈ [0, T ]

and using (4.8), we check that for any t, s ∈ [0, T ],

Bi(t)Bj(s) = Pi,j(t, s) + ∆i,j(t, s),

with

∆i,j(t, s) :=
t2s

2
B2
i (0)B

1
j (0) +

ts2

2
B1
i (0)B

2
j (0) +

t2s2

4
B2
i (0)B

2
j (0).

Moreover, remembering that

dj

dtj
(

S(t)−1BiS(t)
)

= S(t)−1Bj
i (t)S(t) ∀t ∈ [0, T ],

we have
S(t)−1BiS(t) = Bi(t) +O

(

t3
)

.

Then by (4.19) we infer that for any δ ∈ (0, T ) and any u ∈ L2([0, δ];Rk),

P ·D2
0E

I,T (u)−Qδ(u)

= 2

k
∑

i,j=1

∫ δ

0

∫ t

0

ui(t)uj(s)tr
[

P ∗S(T )
(

Bi(t) +O
(

t3
)) (

Bj(s) +O
(

s3
))

−Pi,j(t, s)
]

ds dt

= 2
k
∑

i,j=1

∫ δ

0

∫ t

0

ui(t)uj(s)tr
[

P ∗S(T )
(

O
(

t3
)

Bj(s) +Bi(t)O
(

s3
)

+O
(

t3
)

O
(

s3
)

+∆i,j(t, s)
)]

ds dt.

But for every nonnegative integers p, q with p + q ≥ 3, we have
∣

∣

∣

∣

∣

k
∑

i,j=1

∫ δ

0

∫ t

0

ui(t)uj(s)t
psq ds dt

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ δ

0

(

k
∑

i=1

ui(t)t
p

) (

∫ t

0

k
∑

j=1

uj(s))s
q ds

)

dt

∣

∣

∣

∣

∣

≤
∫ δ

0

(

k
∑

i=1

|ui(t)| tp
) (

∫ t

0

k
∑

j=1

|uj(s)| sq ds
)

dt

≤
∫ δ

0

(

k
∑

i=1

|ui(t)| tp+q
) (

∫ t

0

k
∑

j=1

|uj(s)| ds
)

dt,
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which by Cauchy-Schwarz inequality yields

∣

∣

∣

∣

∣

k
∑

i,j=1

∫ δ

0

∫ t

0

ui(t)uj(s)t
psq ds dt

∣

∣

∣

∣

∣

≤

√

√

√

√

∫ δ

0

(

k
∑

i=1

|ui(t)| tp+q
)2

dt

√

√

√

√

∫ δ

0

(

∫ t

0

k
∑

j=1

|uj(s)| ds
)2

dt

≤

√

√

√

√k

∫ δ

0

t2(p+q)
k
∑

i=1

|ui(t)|2 dt

√

√

√

√

∫ δ

0

t

∫ t

0

(

k
∑

j=1

|uj(s)|
)2

ds dt

≤

√

√

√

√kδ2(p+q)
∫ δ

0

k
∑

i=1

|ui(t)|2 dt

√

√

√

√

∫ δ

0

t

∫ δ

0

(

k
∑

j=1

|uj(s)|
)2

ds dt

≤
√
k δ3‖u‖L2

√

k‖u‖2L2

∫ δ

0

t dt =
k√
2
δ4‖u‖2L2.

We conclude easily. �

Returning to the proof of Proposition 4.2.2, we now want to show that the
assumption (4.14) of Theorems 4.2.5-4.2.6 is satisfied. We are indeed going to show
that a stronger property holds, namely that the index of the quadratic form in (4.14)
goes to infinity as δ tends to zero.

Lemma 4.2.9 For every integer N > 0, there are δ > 0 and a subspace Lδ ⊂
L2
(

[0, δ];Rk
)

of dimension larger than N such that the restriction of Qδ to Lδ sa-
tisfies

Qδ(u) ≤ −2C‖u‖2L2δ4 ∀u ∈ Lδ.

Proof of Lemma 4.2.9 : Using the notation

h1 ⊙ h2 = h1(t)⊙ h2(s) :=

∫ δ

0

∫ t

0

h1(t)h2(s) ds dt,

for any pair of continuous functions h1, h2 : [0, δ] → R, we check that for every
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u ∈ L2
(

[0, δ];Rk
)

,

1

2
Qδ(u) =

k
∑

i,j=1

(ui ⊙ (suj)) tr
[

P ∗S(T )BiB
1
j (0)

]

(4.20)

+

k
∑

i,j=1

((tui)⊙ uj) tr
[

P ∗S(T )B1
i (0)Bj

]

+

k
∑

i,j=1

(

ui ⊙
(

s2uj
2

))

tr
[

P ∗S(T )BiB
2
j (0)

]

+

k
∑

i,j=1

((

t2ui
2

)

⊙ uj

)

tr
[

P ∗S(T )B2
i (0)Bj

]

+

k
∑

i,j=1

((tui)⊙ (suj)) tr
[

P ∗S(T )B1
i (0)B

1
j (0)

]

.

Fix ī, j̄ ∈ {1, . . . , k} with ī 6= j̄ and take v =
(

v1, . . . , vk
)

∈ L2([0, δ];Rk) such that

vi(t) = 0 ∀t ∈ [0, δ], ∀i ∈ {1, . . . , k} \ {̄i, j̄}.
The sum of the first two terms in the right-hand side of (4.20) is given by

k
∑

i,j=1

{

(vi ⊙ (svj)) tr
[

P ∗S(T )BiB
1
j (0)

]

+ ((tvi)⊙ vj) tr
[

P ∗S(T )B1
i (0)Bj

]}

=
(

vī ⊙ (svj̄)
)

tr
[

P ∗S(T )BīB
1
j̄ (0)

]

+
(

vj̄ ⊙ (svī)
)

tr
[

P ∗S(T )Bj̄B
1
ī (0)

]

+ (vī ⊙ (svī)) tr
[

P ∗S(T )BīB
1
ī (0)

]

+
(

vj̄ ⊙ (svj̄)
)

tr
[

P ∗S(T )Bj̄B
1
j̄ (0)

]

+
(

(tvī)⊙ vj̄
)

tr
[

P ∗S(T )B1
ī (0)Bj̄

]

+
(

(tvj̄)⊙ vī
)

tr
[

P ∗S(T )B1
j̄ (0)Bī

]

+ ((tvī)⊙ vī) tr
[

P ∗S(T )B1
ī (0)Bī

]

+
(

(tvj̄)⊙ vj̄
)

tr
[

P ∗S(T )B1
j̄ (0)Bj̄

]

.

By integration by parts, we have

vī ⊙ (svī) =

(
∫ δ

0

vī(s) ds

)(
∫ δ

0

svī(s) ds

)

− (tvī)⊙ vī).

So

(vī ⊙ (svī)) tr
[

P ∗S(T )BīB
1
ī (0)

]

+ ((tvī)⊙ vī) tr
[

P ∗S(T )B1
ī (0)Bī

]

=

(
∫ δ

0

vī(s) ds

)(
∫ δ

0

svī(s) ds

)

tr
[

P ∗S(T )BīB
1
ī (0)

]

+ (tvī)⊙ vī)tr
[

P ∗S(T )
[

B1
ī (0), Bī

]

]

.
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But according to (4.9) with i = ī (remember that t̄ = 0), we have

[

B1
ī (0), Bī

]

∈ Span
{

Bs
r(0) | r = 1, .., k, s ≥ 0

}

,

then by Lemma 4.2.7 we obtain

tr
[

P ∗S(T )
[

B1
ī (0), Bī

]

]

= 0,

and consequently,

(vī ⊙ (svī)) tr
[

P ∗S(T )BīB
1
ī (0)

]

+ ((tvī)⊙ vī) tr
[

P ∗S(T )B1
ī (0)Bī

]

=

(∫ δ

0

vī(s) ds

)(∫ δ

0

svī(s) ds

)

tr
[

P ∗S(T )BīB
1
ī (0)

]

.

Similarly, we obtain

(

vj̄ ⊙ (svj̄)
)

tr
[

P ∗S(T )Bj̄B
1
j̄ (0)

]

+
(

(tvj̄)⊙ vj̄
)

tr
[

P ∗S(T )B1
j̄ (0)Bj̄

]

=

(
∫ δ

0

vj̄(s) ds

)(
∫ δ

0

svj̄(s) ds

)

tr
[

P ∗S(T )Bj̄B
1
j̄ (0)

]

.

In conclusion, the sum of the first two terms in the right-hand side of (4.20) can be
written as

k
∑

i,j=1

{

(vi ⊙ (svj)) tr
[

P ∗S(T )BiB
1
j (0)

]

+ ((tvi)⊙ vj) tr
[

P ∗S(T )B1
i (0)Bj

]}

=
(

vī ⊙ (svj̄)
)

tr
[

P ∗S(T )BīB
1
j̄ (0)

]

+
(

vj̄ ⊙ (svī)
)

tr
[

P ∗S(T )Bj̄B
1
ī (0)

]

+

(
∫ δ

0

vī(s) ds

)(
∫ δ

0

svī(s) ds

)

tr
[

P ∗S(T )BīB
1
ī (0)

]

+
(

(tvī)⊙ vj̄
)

tr
[

P ∗S(T )B1
ī (0)Bj̄

]

+
(

(tvj̄)⊙ vī
)

tr
[

P ∗S(T )B1
j̄ (0)Bī

]

+

(
∫ δ

0

vj̄(s) ds

)(
∫ δ

0

svj̄(s) ds

)

tr
[

P ∗S(T )Bj̄B
1
j̄ (0)

]

.

By the same arguments as above, the sum of the third and fourth terms in the
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right-hand side of (4.20) can be written as

k
∑

i,j=1

{(

vi ⊙
(

s2vj
2

))

tr
[

P ∗S(T )BiB
2
j (0)

]

+

((

t2vi
2

)

⊙ vj

)

tr
[

P ∗S(T )B2
i (0)Bj

]

}

=

(

vī ⊙
(

s2vj̄
2

))

tr
[

P ∗S(T )BīB
2
j̄ (0)

]

+

(

vj̄ ⊙
(

s2vī
2

))

tr
[

P ∗S(T )Bj̄B
2
ī (0)

]

+

(
∫ δ

0

vī(s) ds

)(
∫ δ

0

s2vī(s)

2
ds

)

tr
[

P ∗S(T )BīB
2
ī (0)

]

+

((

t2vī
2

)

⊙ vj̄

)

tr
[

P ∗S(T )B2
ī (0)Bj̄

]

+

((

t2vj̄
2

)

⊙ vī

)

tr
[

P ∗S(T )B2
j̄ (0)Bī

]

+

(
∫ δ

0

vj̄(s) ds

)(
∫ δ

0

s2vj̄(s)

2
ds

)

tr
[

P ∗S(T )Bj̄B
2
j̄ (0)

]

,

the fifth (and last) part of 1
2
Qδ(v) is given by

k
∑

i,j=1

{

((tvi)⊙ (svj)) tr
[

P ∗S(T )B1
i (0)B

1
j (0)

]}

=

(

(tvī)⊙ (svj̄)
)

tr
[

P ∗S(T )B1
ī (0)B

1
j̄ (0)

]

+
(

(tvj̄)⊙ (svī)
)

tr
[

P ∗S(T )B1
j̄ (0)B

1
ī (0)

]

+ ((tvī)⊙ (svī)) tr
[

P ∗S(T )(B1
ī (0))

2
]

+
(

(tvj̄)⊙ vj̄)
)

tr
[

P ∗S(T )(B1
j̄ (0))

2
]

.

By integration by parts, we have

(tvī)⊙ (svī) =
1

2

(
∫ δ

0

svī(s) ds

)2

, (tvj̄)⊙ (svj̄) =
1

2

(
∫ δ

0

svj̄(s) ds

)2

,

and (tvj̄)⊙ (svī) =

(
∫ δ

0

svī(s) ds

)(
∫ δ

0

svj̄(s) ds

)

− (tvī)⊙ (svj̄).
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Therefore the last part of 1
2
Qδ(v) can be written as

k
∑

i,j=1

{

((tvi)⊙ (svj)) tr
[

P ∗S(T )B1
i (0)B

1
j (0)

]}

=

(

(tvī)⊙ (svj̄)
)

tr
[

P ∗S(T )
[

B1
ī (0), B

1
j̄ (0)

]

]

+

(
∫ δ

0

svī(s) ds

)(
∫ δ

0

svj̄(s) ds

)

tr
[

P ∗S(T )B1
j̄ (0)B

1
ī (0)

]

+
1

2

(
∫ δ

0

svī(s) ds

)2

tr
[

P ∗S(T )(B1
ī (0))

2
]

+
1

2

(
∫ δ

0

svj̄(s) ds

)2

tr
[

P ∗S(T )(B1
j̄ (0))

2
]

.

To summarize, we have

1

2
Qδ(v) =

(

vī ⊙ (svj̄)
)

tr
[

P ∗S(T )BīB
1
j̄ (0)

]

+
(

vj̄ ⊙ (svī)
)

tr
[

P ∗S(T )Bj̄B
1
ī (0)

]

+

(
∫ δ

0

vī(s) ds

)(
∫ δ

0

svī(s) ds

)

tr
[

P ∗S(T )BīB
1
ī (0)

]

+
(

(tvī)⊙ vj̄
)

tr
[

P ∗S(T )B1
ī (0)Bj̄

]

+
(

(tvj̄)⊙ vī
)

tr
[

P ∗S(T )B1
j̄ (0)Bī

]

+

(
∫ δ

0

vj̄(s) ds

)(
∫ δ

0

svj̄(s) ds

)

tr
[

P ∗S(T )Bj̄B
1
j̄ (0)

]

+

(

vī ⊙
(

s2vj̄
2

))

tr
[

P ∗S(T )BīB
2
j̄ (0)

]

+

(

vj̄ ⊙
(

s2vī
2

))

tr
[

P ∗S(T )Bj̄B
2
ī (0)

]

+

(
∫ δ

0

vī(s) ds

)(
∫ δ

0

s2vī(s)

2
ds

)

tr
[

P ∗S(T )BīB
2
ī (0)

]

+

((

t2vī
2

)

⊙ vj̄

)

tr
[

P ∗S(T )B2
ī (0)Bj̄

]

+

((

t2vj̄
2

)

⊙ vī

)

tr
[

P ∗S(T )B2
j̄ (0)Bī

]

+

(
∫ δ

0

vj̄(s) ds

)(
∫ δ

0

s2vj̄(s)

2
ds

)

tr
[

P ∗S(T )Bj̄B
2
j̄ (0)

]
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+

(
∫ δ

0

svī(s) ds

)(
∫ δ

0

svj̄(s) ds

)

tr
[

P ∗S(T )B1
j̄ (0)B

1
ī (0)

]

+
1

2

(
∫ 1

0

svī(s) ds

)2

tr
[

P ∗S(T )(B1
ī (0))

2
]

+
1

2

(
∫ 1

0

svj̄(s) ds

)2

tr
[

P ∗S(T )(B1
j̄ (0))

2
]

+
(

(tvī)⊙ (svj̄)
)

tr
[

P ∗S(T )
[

B1
ī (0), B

1
j̄ (0)

]

]

.

We now need the following technical result whose proof is given in Appendix.

Lemma 4.2.10 Denote by Lī,j̄ the set of

v =
(

v1, . . . , vk
)

∈ L2([0, 1];Rk)

such that

vi(t) = 0 ∀t ∈ [0, 1], ∀i ∈ {1, . . . , k} \ {̄i, j̄},

∫ 1

0

vī(s) ds =

∫ 1

0

svī(s) ds =

∫ 1

0

vj̄(s) ds =

∫ 1

0

svj̄(s) ds = 0,

vī ⊙ (svj̄) = vj̄ ⊙ (svī) = vī ⊙ (s2vj̄) = vj̄ ⊙ (s2vī) = 0,

and

(tvī)⊙ (svj̄) > 0.

Then, for every integer N > 0, there are a vector space LN
ī,j̄

⊂ Lī,j̄∪{0} of dimension

N and a constant K(N) > 0 such that

(

tvī
)

⊙
(

svj̄
)

≥ 1

K(N)
‖v‖2L2 ∀v ∈ LNī,j̄ .

Let us now show how to conclude the proof of Lemma 4.2.9. Recall that P ∈
TX̄(T )Sp(m) was fixed such that P belongs to

(

Im
(

D0E
I,T
))⊥ \ {0} and that by

Lemma 4.2.7, we know that (taking t = 0)

P · S(T )Bj
i (0) = 0 ∀j ≥ 0, ∀i ∈ 1, .., k.

By (4.10) (t̄ = 0), we also have

Span
{

S(T )Bj
i (0), S(T )[B

1
i (0), B

1
s (0)] | i, s ∈ 1, .., k, j = 0, 1, 2

}

= TX̄(T )Sp(m).
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Consequently, we infer that there are ī, j̄ ∈ {1, . . . , k} with ī 6= j̄ such that

tr
(

P ∗S(T )
[

B1
ī (0), B

1
j̄ (0)

]

)

< 0.

Let N > 0 an integer be fixed, LNī,j̄ ⊂ Lī,j̄ ∪ {0} of dimension N and the constant

K(N) > 0 given by Lemma 4.2.10, for every δ ∈ (0, t) denote by LNδ the vector
space of u ∈ L2

(

[0, δ];Rk
)

⊂ L2
(

[0, T ];Rk
)

such that there is v ∈ Lī,j̄ satisfying

u(t) = v(t/δ) ∀t ∈ [0, δ].

For every v ∈ Lī,j̄, the control uδ : [0, T ] → Rk defined by

uδ(t) := v(t/δ) t ∈ [0, δ]

belongs to LNδ and by an easy change of variables,

∥

∥uδ
∥

∥

2
=

∫ T

0

∣

∣uδ(t)
∣

∣

2
dt =

∫ δ

0

∣

∣uδ(t)
∣

∣

2
dt = δ

∫ 1

0

|v(t)|2 dt = δ‖v‖2.

Moreover it satisfies

Qδ(uδ) = 2
((

tvī
)

⊙
(

svj̄
))

δ4 tr
(

P ∗S(T )
[

B1
ī (0), B

1
j̄ (0)

]

)

.

Then we infer that

Qδ(uδ)

‖uδ‖2L2δ4
=

2
((

tvī
)

⊙
(

svj̄
))

δ‖v‖2L2

tr
(

P ∗S(T )
[

B1
ī (0), B

1
j̄ (0)

]

)

≤ 2

δK(N)
tr
(

P ∗S(T )
[

B1
ī (0), B

1
j̄ (0)

]

)

.

We get the result for δ > 0 small enough. �

We can now conclude the proof of Proposition 4.2.2. First we note that given
N ∈ N strictly larger than m(2m + 1), if L ⊂ L2

(

[0, T ];Rk
)

is a vector space of
dimension N , then the linear operator

(

D0E
I,T
)

|L
: L→ TX̄(T )Sp(m) ⊂ M2m(R)

has a kernel of dimension at least N −m(2m+ 1), which means that

Ker
(

D0E
I,T
)

∩ L

has dimension at least N−m(2m+1). Then, thanks to Lemma 4.2.9, for every integer
N > 0, there are δ > 0 and a subspace Lδ ⊂ L2

(

[0, δ];Rk
)

⊂ L2
(

[0, T ];Rk
)

such
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that the dimension of L̃δ := Lδ ∩Ker
(

D0E
I,T
)

is larger than N and the restriction

of Qδ to L̃δ satisfies
Qδ(u) ≤ −2C‖u‖2L2δ4 ∀u ∈ L̃δ.

By Lemma 4.2.8, we have

P ·D2
0E

I,T (u) ≤ Qδ(u) + Cδ4 ‖u‖2L2 ∀u ∈ L̃δ.

Then we infer that

P ·D2
0E

I,T (u) ≤ −Cδ4 ‖u‖2L2 < 0 ∀u ∈ L̃δ. (4.21)

Note that since EI,T is valued in Sp(m) which is a submanifold ofM2m(R), assump-
tion (4.14) is not satisfied and Theorems 4.2.5 and 4.2.6 do not apply.

Let Π :M2m(R) → TX̄(T )Sp(m) be the orthogonal projection onto TX̄(T )Sp(m).
Its restriction to Sp(m), Π̄ := Π

|Sp(m)
, is a smooth mapping whose differential at

X̄(T ) is equal to the identity of TX̄(T )Sp(m) so it is an isomorphism. Thanks to the
Inverse Function Theorem (for submanifolds), Π̄ is a local C∞-diffeomorphism at

X̄(T ). Hence there exist µ > 0 such that the restriction of Π̄ to B
(

X̄(T ), µ
)

∩Sp(m)

Π̄|B(X̄(T ),µ)∩Sp(m) : B
(

X̄(T ), µ
)

∩ Sp(m) → Π̄
(

B
(

X̄(T ), µ
)

∩ Sp(m)
)

is a smooth diffeomorphism. The map EI,T is continuous so

U := (EI,T )−1
(

B
(

X̄(T ), µ
)

∩ Sp(m)
)

is an open set of L2([0, T ];Rk) containing ū = 0. Define the function F : U →
TX̄(T )Sp(m) by F := Π̄ ◦ EI,T = Π ◦ EI,T . The mapping F is C2 and we have

F (ū) = X̄(T ), DūF = DūE
I,T and D2

ūF = Π ◦D2
ūE

I,T .

Let us check that F satisfies assumption (4.14). For every P ∈ TX̄(T )Sp(m) such

that P belongs to
(

Im
(

DūF
))⊥ \ {0} and every v ∈ L2([0, T ];Rk), we have

P ·D2
ūE

I,T (v) = P · Π ◦D2
ūE

I,T (u) + P ·
(

D2
ūE

I,T (u)− Π ◦D2
ūE

I,T (u)
)

.

But

D2
ūE

I,T (u)− Π ◦D2
ūE

I,T (u) ∈
(

TX̄(T )Sp(m)
)⊥

,

hence
P ·D2

ūE
I,T (u) = P ·D2

ūF (u).
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Therefore, by (4.21), assumption (4.14) is satisfied. Consequently, thanks to Theorem
4.2.6 there exist ǭ, c ∈ (0, 1) such that for every ǫ ∈ (0, ǭ) the following property
holds : For every u ∈ U , Z ∈ TX̄(T )Sp(m) with

‖u− ū‖L2 < ǫ, |Z − F (u)| < c ǫ2,

there are w1, w2 ∈ L2
(

[0, T ];Rk
)

such that u+ w1 + w2 ∈ U ,

Z = F
(

u+ w1 + w2

)

,

and

w1 ∈ Ker (DuF ) ,
∥

∥w1

∥

∥

L2 < ǫ,
∥

∥w2

∥

∥

L2 < ǫ2.

Apply the above property with u = ū and X ∈ Sp(m) such that

∣

∣X − X̄(T )
∣

∣ =:
cǫ2

2
with ǫ < ǭ.

Set Z := Π(X), then we have (Π is an orthogonal projection so it is 1-lipschitz)

|Z − F (ū)| =
∣

∣Π(X)−Π(X̄(T ))
∣

∣ ≤
∣

∣X − X̄(T )
∣

∣ =
cǫ2

2
< cǫ2.

Therefore by the above property, there are w1, w2 ∈ L2
(

[0, T ];Rk
)

such that ũ :=
ū+ w1 + w2 ∈ U satisfies

Z = F
(

ũ
)

,

and

∥

∥ũ
∥

∥

L2 ≤ ‖w1‖L2 + ‖w2‖L2 ≤ ǫ+ ǫ2.

Since Π̄|B(X̄(T ),µ)∩Sp(m) is a local diffeomorphism, taking ǫ > 0 small enough, we infer
that

X = EI,T
(

ũ
)

and
∥

∥ũ
∥

∥

L2 ≤ 2ǫ = 2

√

2

c

∣

∣X − X̄(T )
∣

∣

1/2
.

In conclusion, the control system (4.1) is controllable at second order around ū ≡ 0,
which concludes the proof of Proposition 2.2.

4.2.6 Proof of Proposition 4.2.4

As in the proof of Proposition 4.2.2, we may assume without loss of generality
that X̄ = I2m. Recall that for every θ ∈ Θ, EI,T

θ : L2
(

[0, T ];Rk
)

→ Sp(m) ⊂M2m(R)
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denotes the End-Point mapping associated with (4.1) with parameter θ starting at
I = I2m. Given θ ∈ Θ two cases may appear, either EI,T

θ is a submersion at ū ≡ 0 or
is not submersion at ū ≡ 0. Let us denote by Θ1 ⊂ Θ the set of parameters θ where
EI,T
θ is submersion at ū ≡ 0 and by Θ2 its complement in Θ. By continuity of the

mapping θ 7→ D0E
I,T
θ the set Θ1 is open in Θ while Θ2 is compact.

For every θ ∈ Θ1, since E
I,T
θ is submersion at ū, we have uniform controllability

at first order around ū for a set of parameters close to θ̄. So we need to show
that we have controllability at second order around ū for any parameter in some
neighborhood of Θ2.

By the proof of Proposition 4.2.2 (see (4.21)), for every θ ∈ Θ2, every P in the

nonempty set
(

Im
(

D0E
I,T
θ

)

)⊥

\ {0} and every integer N > 0 there exists a finite

dimensional subspace Lθ,P,N ⊂ L2([0, T ];Rk) with

D := dim (Lθ,P,N) > N,

such that
P ·D2

0E
I,T
θ (u) < 0 ∀u ∈ Lθ,P,N \ {0}

and
dim

(

Lθ,P,N ∩Ker
(

D0E
I,T
θ

))

≥ N −m(2m+ 1).

By bilinearity of u 7→ P ·D2
0E

I,T
θ (u) and compactness of the sphere in Lθ,P,N , there

is Cθ,P,N > 0 such that

P ·D2
0E

I,T
θ (u) ≤ −Cθ,P,N ‖u‖2L2 ∀u ∈ Lθ,P,N .

Let u1, . . . , uD ∈ L2([0, T ];Rk) be a basis of Lθ,P,N such that

‖ui‖L2 = 1 ∀i = 1, . . . , D.

Since the set of controls u ∈ C∞([0, T ],Rk) with Supp(u) ⊂ (0, T ) is dense in
L2([0, T ],Rk), there is a linearly independent family ũ1, . . . , ũD in C∞([0, T ],Rk) with
Supp(u) ⊂ (0, T ) (from now we will denote by C∞

0 ([0, T ],Rk) the set of functions in
C∞([0, T ],Rk) with support in (0, T )) such that

P ·D2
0E

I,T
θ (u) ≤ −Cθ,P,N

2
‖u‖2L2 ∀u ∈ L̃θ,P,N := Span

{

ũi | i = 1, . . . , D
}

.

Moreover by continuity of the mapping (P, θ) 7→ P · D2
0E

I,T
θ , we may also assume

that the above inequality holds for any θ̃ close to θ and P̃ close to P . Let an integer
N > 0 be fixed, we check easily that the set

A :=
{

(θ, P ) ∈ Θ×M2m(R) | ‖P‖ = 1, P ∈
(

Im
(

D0E
I,T
θ

)

)⊥}
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is compact. Therefore, by the above discussion there is a finite family {(θa, Pa)}a=1,...,A

in A together with a finite family of open neighborhoods {Va}a=1,...,A of the pairs
(θa, Pa) (a = 1, . . . , A) in A such that

A =

A
⋃

a=1

Va

and there is a finite family of {L̃a}a=1,...,A of finite dimensional subspaces in C∞
0 ([0, T ],Rk)

such that
P ·D2

0E
I,T
θ (u) < 0 ∀u ∈ L̃a \ {0},

for every a ∈ {1, . . . , A} and any (θ, P ) in Va. Then set

L̃(N) :=

A
⋃

a=1

L̃a ⊂ C∞
0 ([0, T ],Rk),

pick a basis ũ1, . . . , ũB of L̃(N) and define FN : Θ× RB → Sp(m) by

FN
θ (λ) := EI,T

θ

(

B
∑

b=1

λbũ
b

)

∀λ = (λ1, ..., λB) ∈ R
B, ∀θ ∈ Θ.

By construction, FN is at least C2 and for every θ ∈ Θ2 and every P ∈
(

Im
(

D0F
N
θ

))⊥\
{0}, there is a subspace LNθ,P ⊂ L̃(N) such that

dim
(

LNθ,P
)

> N,

P ·D2
0F

N
θ (u) < 0 ∀u ∈ LNθ,P \ {0}

and
dim

(

LNθ,P ∩Ker
(

D0F
N
θ

))

≥ N −m(2m+ 1).

As in the proof of Proposition 4.2.2, we need to be careful because FN is valued
in Sp(m). Given θ̄, we denote by Πθ̄ : M2m(R) → TX̄θ̄(T )

Sp(m) the orthogonal
projection onto TX̄θ̄(T )

Sp(m) and observe that the restriction of Π to TX̄θ(T )Sp(m)

is an isomorphism for θ ∈ Wθ̄ an open neighborhood of θ̄. Then we define GN,θ̄ :
Θ× RB → TX̄θ̄(T )

Sp(m) by

GN,θ̄
θ (λ) := Πθ̄

(

FN
θ (λ)

)

∀λ ∈ R
B, ∀θ ∈ Wθ̄.

Taking N large enough, by compactness of Θ2, a parametric version of Theorem
4.2.6 (see [44]) yields ǭ, c ∈ (0, 1) such that for every ǫ ∈ (0, ǭ) and for any θ̄ ∈ Θ2

the following property holds : For every θ ∈ Wθ̄, λ ∈ RB, Z ∈ TX̄θ(T )Sp(m) with

|λ|L2 < ǫ,
∣

∣

∣
Z −GN,θ̄

θ (λ)
∣

∣

∣
< c ǫ2,
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there are β1, β2 ∈ RB such that

Z = GN,θ̄
θ

(

λ+ β1 + β2
)

,

and

β1 ∈ Ker
(

DλG
N,θ̄
θ

)

,
∣

∣β1
∣

∣ < ǫ,
∣

∣β2
∣

∣ < ǫ2.

Note that any
B
∑

b=1

λbũ
b with λ = (λ1, ..., λB) ∈ R

B

is a smooth control whose support is strictly contained in [0, T ]. Then proceeding
as in the proof of Proposition 4.2.2 we conclude easily.

4.3 Proof of Theorem 4.1.1

We recall that given a geodesic γθ : [0, T ] →M , an interval [t1, t2] ⊂ [0, T ] and
ρ > 0, Cg

(

γθ
(

[t1, t2]
)

; ρ
)

stands for the open geodesic cylinder along γθ
(

[t1, t2]
)

of
radius ρ, that is the open set defined by

Cg
(

γθ
(

[t1, t2]
)

; ρ
)

:=
{

p ∈M | ∃t ∈ (t1, t2) with dg
(

p, γθ(t)
)

< ρ and dg
(

p, γθ([t1, t2])
)

= dg
(

p, γθ(t)
)

}

.

The following holds :

Lemma 4.3.1 Let (M, g) be a compact Riemannian manifold of dimension ≥ 2.
Then for every T > 0, there exists τT ∈ (0, T ) such that for every θ ∈ T1M , there
are t̄ ∈ [0, T − τT ] and ρ̄ > 0 such that

Cg
(

γθ
([

t̄, t̄+ τT
])

; ρ̄
)

∩ γθ([0, T ]) = γθ
((

t̄, t̄+ τT
))

.

Proof of Lemma 4.3.1 : Let rg > 0 be the injectivity radius of (M, g), that is the
supremum of r > 0 such that any geodesic arc of length r is minimizing between its
end-points. We call self-intersection of the geodesic curve γθ([0, T ]) any p ∈ M such
that there are t 6= t′ in [0, T ] such that γθ(t) = γθ(t

′) = p. We claim that for every
integer k > 0 the number of self-intersection of a (non-periodic) geodesic of length
k rg is bounded by

N(k) :=
k−1
∑

i=0

i =
k(k − 1)

2
.



86 Franks’ lemma for C2-Mañé perturbations of Riemannian metrics

We prove it by induction. Since any geodesic of length rg has no self-intersection, the
result holds for k = 1. Assume that we proved the result for k and prove it for (k+1).
Let γ : [0, (k+1)rg] → M be a unit speed geodesic of length (k+1)rg. The geodesic
segment γ([krg, (k+1)rg]) has no self-intersection but it could intersect the segment
γ([0, krg]). If the number of intersection of γ([krg, (k+1)rg]) with γ([0, krg]) is greater
or equal than (k + 1), then there are t1 6= t2 ∈ [krg, (k + 1)rg], i ∈ {0, . . . , k − 1},
and s1, s2 ∈ [irg, (i+ 1)rg] such that

γ(t1) = γ(s1) and γ(t2) = γ(s2).

Since γ is not periodic, this means that two geodesic arcs of length ≤ rg join γ(t1) to
γ(t2), a contradiction. We infer that the number of self-intersection of γ is bounded
by N(k) + k, and in turn that it is bounded by N(k + 1). We deduce that for every
integer k ≥ 2, all the disjoint open intervals

Ii :=

(

i
krg
N(k)

, (i+ 1)
krg
N(k)

)

i = 0, . . . , N(k)− 1

can not contain a point of self-intersection of a unit speed geodesic γ : [0, krg] → M .
Hence for every unit speed geodesic γ : [0, krg] → M there is i ∈ {0, . . . , N(k)− 1}
such that no self-intersection of γ is contained in the closed interval

[

i
krg
N(k)

, (i+ 1)
krg
N(k)

]

.

We conclude easily. �

Let T > 0 be fixed, τT ∈ (0, T ) given by Lemma 4.3.1 and γθ : [0, T ] → M be
a unit speed geodesic of length T . Then there are t̄ ∈ [0, T −τT ] and ρ > 0 such that

Cg
(

γθ
([

t̄, t̄+ τT
])

; ρ
)

∩ γθ([0, T ]) = γθ
((

t̄, t̄+ τT
))

.

Set
θ̄ = (p̄, v̄) := (γθ(t̄), γ̇θ(t̄)) θ̃ = (p̃, ṽ) := (γθ(t̄), γ̇θ(t̄+ τT )) ,

θT = (pT , vT ) := (γθ(T ), γ̇θ(T )) ,

and consider local transverse sections Σ0, Σ̄, Σ̃,ΣT ⊂ T1M respectively tangent to
Nθ, Nθ̄, Nθ̃, NθT . Then we have

Pg(γ)(T ) = DθPg(Σ0,ΣT , γ) = Dθ̃Pg
(

Σ̃,ΣT , γ
)

◦Dθ̄Pg
(

Σ̄, Σ̃, γ
)

◦DθPg
(

Σ0, Σ̄, γ
)

.

Since the sets of symplectic endomorphism of Sp(n− 1) of the form Dθ̃Pg
(

Σ̃,ΣT , γ
)

and DθPg
(

Σ0, Σ̄, γ
)

(that is the differential of Poincaré maps associated with geode-
sics of lengths T − t̄− τT and t̄) are compact and the left and right translations in
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Sp(n− 1) are diffeomorphisms, it is sufficient to prove Theorem 4.1.1 with τT = T .
More exactly, it is sufficient to show that there are δT , KT > 0 such that for every
δ ∈ (0, δT ) and every ρ > 0, the following property holds :
Let γθ : [0, τT ] → M be a geodesic in M , U be the open ball centered at Pg(γ)(τT )
of radius δ in Sp(n − 1). Then for each symplectic map A ⊂ U there exists a C∞

metric h in M that is conformal to g, hp(v, w) = (1 + σ(p))gp(v, w), such that

1. The geodesic γθ : [0, τT ] −→M is still a geodesic of (M,h),

2. Supp(σ) ⊂ Cg (γθ ([0, τT ]) ; ρ),
3. Ph(γθ)(τT ) = A,

4. the C2 norm of the function σ is less than KT

√
δ.

Set τ := τT and let γ : [0, τ ] → M a geodesic in M be fixed, we consider a
Fermi coordinate system Φ(t, x1, x2, .., xn−1), t ∈ (0, τ), (x1, x2, .., xn−1) ∈ (−δ, δ)n−1

along γ([0, τ ]), where t is the arc length of γ, and the coordinate vector fields
e1(t), . . . , en−1(t) of the system are orthonormal and parallel along γ. Let us consider
the family of smooth functions {Pij}i,j=1,...,n−1 : R

n−1 → R defined by

Pij
(

y1, y2, .., yn−1

)

:= yiyj Q
(

|y|
)

∀i 6= j ∈ {1, . . . , n− 1}

and

Pii(y1, y2, .., yn−1) :=
y2i
2
Q
(

|y|
)

∀i ∈ {1, . . . , n− 1},

for every y = (y1, y2, .., yn−1) ∈ Rn−1 where Q : [0,+∞) → [0,+∞) is a smooth
cutoff function satisfying

{

Q(λ) = 1 if λ ≤ 1/3
Q(λ) = 0 if λ ≥ 2/3.

Given a radius ρ > 0 with Cg (γ ([0, τ ]) ; ρ) ⊂ Φ((0, τ)× (−δ, δ)n−1) and a family of
smooth function u = (uij)i≤j=1,...,n−1 : [0, τ ] → R such that

Supp
(

uij
)

⊂ (0, τ) ∀i ≤ j ∈ {1, . . . , n− 1},

we define a family of smooth perturbations

{

σρ,uij
}

i≤j=1,...,n−1
: M −→ R

with support in Φ((0, τ)× (−δ, δ)n−1) by

σρ,uij
(

Φ
(

t, x1, x2, .., xn−1

))

:= ρ2 uij(t)Pij

(

x1
ρ
,
x2
ρ
, ..,

xn−1

ρ

)

,
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for every p = Φ
(

t, x1, x2, .., xn−1

)

∈ Φ ((0, τ)× (−δ, δ)n−1) and we define σρ,u :M →
R by

σρ,u :=

n−1
∑

i,j=1,i≤j

σρ,uij .

The following result follows by construction, its proof is left to the reader. The
notation ∂l with l = 0, 1, . . . , n − 1 stands for the partial derivative in coordinates
x0 = t, x1, . . . , xn−1 and Hσρ,u denotes the Hessian of σρ,u with respect to g.

Lemma 4.3.2 The following properties hold :

1. Supp(σρ,u) ⊂ Cg (γ ([0, τ ]) ; ρ),
2. σρ,u(γ(t)) = 0 for every t ∈ (0, τ),

3. ∂lσ
ρ,u(γ(t)) = 0 for every t ∈ (0, τ) and l = 0, 1, . . . , n− 1,

4. (Hσρ,u)i,0 (γ(t)) = 0 for every t ∈ (0, τ) and i = 1, . . . , n− 1,

5. (Hσρ,u)i,j (γ(t)) = uij(t) for every t ∈ (0, τ) and i, j = 1, . . . , n− 1,

6. ‖σρ,u‖C2 ≤ C‖u‖C2 for some universal constant C > 0.

Set m = n − 1 and k := m(m + 1)/2. Let u = (uij)i≤j=1,...,n−1 : [0, τ ] → R be a
family of smooth functions with support strictly contained in (0, τ) and ρ ∈ (0, ρ̄)
be fixed, using the previous notations we set the conformal metric

h := (1 + σρ,u)2 g.

We denote by 〈·, ·〉,∇,Γ,H,Rm respectively the scalar product, gradient, Christoffel
symbols, Hessian and curvature tensor associated with g. With the usual notational
conventions of Riemannian geometry (as in [18]), in components we have







Γkij = 1
2

(

∂igjm + ∂jgim − ∂mgij

)

gmk

(Hf)ij = ∂ijf − Γkij∂kf,

where (gkℓ) stands for the inverse of (gkℓ), and we use Einstein’s convention of
summation over repeated indices. We shall use a superscript h to denote the same
objects when they are associated with the metric h. As usual δij = δij = δji will be
1 if i = j, and 0 otherwise. The Christoffel symbols are modified as follows by a
conformal change of metrics : if h = e2fg then (see for example [41])

(Γh)kij = Γkij +
(

∂ifδ
k
j + ∂jfδ

k
i − ∂mfgijg

mk
)

.

Thus, since f = ln(1 + σρ,u) and its derivatives ∂0f, ∂1f, . . . , ∂n−1f vanish along
γ([0, τ ]) (by Lemma 4.3.2 (2)-(3)), the Christoffel symbols of h and g coincide along
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γ. Then the family of tangent vectors e0(t) = γ̇(t), e1(t), . . . , en−1(t) is still a family
which is orthonormal and parallel along γ([0, τ ]). Moreover, if h = e2fg then the
curvature tensor Rmh,Rm respectively of h and g satisfy

e−2f
〈

Rmh(u, v) v, w
〉h

= 〈Rm(u, v) v, w〉 −Hf(u, w),

at any p ∈ M where ∇f vanishes and any tangent vectors u, v, w ∈ TpM such that
u, w ⊥ v and Hf(v, ·) = 0. By Lemma 4.3.2 (2)-(5), we infer that along γ([0, τ ]), we
have for every i, j ∈ {1, . . . , n− 1} and every t ∈ [0, τ ],

Rh
ij(t) :=

〈

Rmh
γ(t) (ei(t), γ̇(t)) γ̇(t), ej(t)

〉h

γ(t)
(4.22)

=
〈

Rmγ(t) (ei(t), γ̇(t)) γ̇(t), ej(t)
〉

γ(t)
− uij(t)

= Rij(t)− uij(t),

with

Rij(t) :=
〈

Rmγ(t) (ei(t), γ̇(t)) γ̇(t), ej(t)
〉

γ(t)
. (4.23)

By the above discussion, γ is still a geodesic with respect to h and by construction
(Lemma 4.3.2 (1)) the support of σρ,u is contained in a cylinder of radius ρ, so
properties (1) and (2) above are satisfied. it remains to study the effect of σρ,u on
the symplectic mapping Ph(γ)(τ). By the Jacobi equation, we have

Ph(γ)(τ)(J(0), J̇(0)) = (J(τ), J̇(τ)),

where J : [0, τ ] → Rm is solution to the Jacobi equation

J̈(t) +Rh(t)J(t) = 0 ∀t ∈ [0, τ ],

where Rh(t) is the m×m symmetric matrix whose coefficients are given by (4.22).
In other terms, Ph(γ)(τ) is equal to the 2m× 2m symplectic matrix X(τ) given by
the solution X : [0, τ ] → Sp(m) at time τ of the following Cauchy problem (compare
[62, Sect. 3.2] and [42]) :

Ẋ(t) = A(t)X(t) +
m
∑

i≤j=1

uij(t)E(ij)X(t) ∀t ∈ [0, τ ], X(0) = I2m, (4.24)

where the 2m×2m matrices A(t), E(ij) are defined by (R(t) is the m×m symmetric
matrix whose coefficients are given by (4.23))

A(t) :=

(

0 Im
−R(t) 0

)

∀t ∈ [0, τ ]
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and

E(ij) :=
(

0 0
E(ij) 0

)

,

where the E(ij), 1 ≤ i ≤ j ≤ m are the symmetric m×m matrices defined by

and (E(ij))k,l = δikδjl + δilδjk ∀i, j = 1, . . . , m.

Since our control system has the form (4.1), all the results gathered in Section 4.2
apply. So, Theorem 4.1.1 will follow from Proposition 4.2.4. First by compactness of
M and regularity of the geodesic flow, the compactness assumptions in Proposition
4.2.4 are satisfied. It remains to check that assumptions (4.11), (4.12) and (4.13)
hold. First we check immediately that

E(ij)E(kl) = 0 ∀i, j, k, l ∈ {1, . . . , m} with i ≤ j, k ≤ l.

So, assumption (4.11) is satisfied. Since the E(ij) do not depend on time, we check
easily that the matrices B0

ij , B
1
ij, B

2
ij associated to our system are given by (remember

that we use the notation [B,B′] := BB′ − B′B)











B0
ij(t) = Bij := E(ij)

B1
ij(t) = [E(ij), A(t)]

B2
ij(t) = [[E(ij), A(t)] , A(t)] ,

for every t ∈ [0, τ ] and any i, j = 1, . . . , m with i ≤ j. An easy computation yields
for any i, j = 1, . . . , m with i ≤ j and any t ∈ [0, τ ],

B1
ij(t) = [E(ij), A(t)] =

(

−E(ij) 0
0 E(ij)

)

and

B2
ij(t) = [[E(ij), A(t)] , A(t)] =

(

0 −2E(ij)
−E(ij)R(t)−R(t)E(ij) 0

)

.

Then we get for any i, j = 1, . . . , m with i ≤ j,

[

B1
ij(0), Bij

]

= 2

(

0 0
(E(ij))2 0

)

∈ Span
{

B0
rs(0) | r ≤ s

}

and
[

B2
ij(0), Bij

]

= 2

(

−(E(ij))2 0
0 (E(ij))2

)

∈ Span
{

B1
rs(0) | r ≤ s

}

.
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So assumption (4.12) is satisfied. It remains to show that (4.13) holds. We first notice
that for any i, j, k, l = 1, . . . , m with i ≤ j, k ≤ l, we have

[

B1
ij(0), B

1
kl(0)

]

=
[

[E(ij), A(0)] , [E(kl), A(0)]
]

=

(

[E(ij), E(kl)] 0
0 [E(ij), E(kl)]

)

,

with
[E(ij), E(kl)] = δilF (jk) + δjkF (il) + δikF (jl) + δjlF (ik), (4.25)

where F (pq) is the m×m skew-symmetric matrix defined by

(F (pq))rs := δrpδsq − δrqδsp.

It is sufficient to show that the space S ⊂M2m(R) given by

S := Span
{

B0
ij(0), B

1
ij(0), B

2
ij(0), [B

1
kl(0), B

1
rr′(0)] | i, j, k, l, r, r′

}

⊂ TI2mSp(m)

has dimension p := 2m(2m + 1)/2. First since the set matrices E(ij) with i, j =
1, . . . , m and i ≤ j forms a basis of the vector space of m ×m symmetric matrices
S(m) we check easily by the above formulas that the vector space

S1 := Span
{

B0
ij , B

2
ij(0) | i, j

}

= Span
{

E(ij), [[E(ij), A(t)] , A(t)] | i, j
}

has dimension 2(m(m+ 1)/2) = m(m+ 1). We check easily that the vector spaces

S2 := Span
{

B1
ij(0) | i, j

}

= Span
{

[E(ij), A(0)] | i, j
}

and

S3 := Span
{

[

B1
ij(0), B

1
kl(0)

]

| i, j, k, l
}

=

Span
{[

[E(ij), A(0)] , [E(kl), A(0)]
]

| i, j, k, l
}

are orthogonal to S1 with respect to the scalar product P ·Q = tr(P ∗Q). So, we need
to show that S2 + S3 has dimension p−m(m+1) = m2. By the above formulas, we
have

S2 := Span

{(

−E(ij) 0
0 E(ij)

)

| i, j
}

and

S3 := Span

{(

[E(ij), E(kl)] 0
0 [E(ij), E(kl)]

)

| i, j, k, l
}

,
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and in addition S2 and S3 are orthogonal. The first space S2 has the same dimension
as S(m), that ism(m+1)/2. Moreover, by (4.25) for every i 6= j, k = i, and l /∈ {i, j},
we have

[E(ij), E(kl)] = F (jl).

The space spanned by the matrices of the form
(

F (jl) 0
0 F (jl)

)

,

with 1 ≤ j < l ≤ m has dimension m(m− 1)/2. This shows that S3 has dimension
at least m(m− 1)/2 and so S2 ⊕ S3 has dimension m2. This concludes the proof of
Theorem 4.1.1.

4.4 Proofs of Theorems 4.1.2 and 4.1.3

Let us start with the proof of Theorem 4.1.2, namely, if the periodic orbits of
the geodesic flow of a smooth compact manifold (M, g) of dimension ≥ 2 are C2-
persistently hyperbolic from Mañé’s viewpoint then the closure of the set of periodic
orbits is a hyperbolic set. Recall that an invariant set Λ of a smooth flow ψt : Q −→ Q
acting without singularities on a complete manifold Q is called hyperbolic if there
exist constants, C > 0, λ ∈ (0, 1), and a direct sum decomposition TpQ = Es(p)⊕
Eu(p)⊕X(p) for every p ∈ Λ, where X(p) is the subspace tangent to the orbits of
ψt, such that

1. ‖ Dψt(W ) ‖≤ Cλt ‖W ‖ for every W ∈ Es(p) and t ≥ 0,

2. ‖ Dψt(W ) ‖≤ Cλ−t ‖ W ‖ for every W ∈ Eu(p) and t ≤ 0.

In particular, when the set Λ is the whole Q the flow is called Anosov. The proof
follows the same steps of the proof of Theorem B in [64] where the same conclusion is
obtained supposing that the geodesic flow is C1 persistently expansive in the family
of Hamiltonian flows.

4.4.1 Dominated splittings and hyperbolicity

Let F 2(M, g) be the set of Riemannian metrics in M conformal to (M, g)
endowed with the C2 topology such that all closed orbits of their geodesic flows are
hyperbolic. The first step of the proof of Theorem 4.1.2 is closely related with the
notion of dominated splitting introduced by Mañé.

Definition 4.4.1 Let φt : Q −→ Q be a smooth non-singular flow acting on a
complete Riemannian manifold Q and let Ω ⊂ Q be an invariant set. We say that
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Ω has a dominated splitting in Ω if there exist constants δ ∈ (0, 1), m > 0, and
invariant subspaces S(θ), U(θ) in TθΩ such that for every θ ∈ Ω,

1. If X(θ) is the unit vector tangent to the flow then S(θ)⊕U(θ)⊕X(θ) = TθQ,

2. ‖ Dθφm|S(θ) ‖ · ‖ Dφm(θ)φ−m|U(φm(θ) ‖≤ δ.

The invariant splitting of an Anosov flow is always dominated, but the converse may
not be true in general. However, for geodesic flows the following statement holds

Theorem 4.4.2 Any continuous, Lagrangian, invariant, dominated splitting in a
compact invariant set for the geodesic flow of a smooth compact Riemannian ma-
nifold is a hyperbolic splitting. Therefore, the existence of a continuous Lagrangian
invariant dominated splitting in the whole unit tangent bundle is equivalent to the
Anosov property in the family of geodesic flows.

This statement is proved in [64] not only for geodesic flows but for symplectic dif-
feomorphisms. Actually, the statement extends easily to a Hamiltonian flow in a
nonsingular energy level (see also Contreras [11]). The following step of the proof of
Theorem 4.1.2 relies on the connection between persistent hyperbolicity of periodic
orbits and the existence of invariant dominated splittings. One of the most remar-
kable facts about Mañé’s work about the stability conjecture (see Proposition II.1 in
[46]) is to show that persistent hyperbolicity of families of linear maps is connected
to dominated splittings, the proof is pure generic linear algebra (see Lemma II.3
in [46]). Then Mañé observes that Franks’ Lemma allows to reduce the study of
persistently hyperbolic families of periodic orbits of diffeomorphisms to persistently
hyperbolic families of linear maps. Let us explain briefly Mañé’s result and see how
its combination with Franks’ Lemma for geodesic flows implies Theorem 4.1.2. Let
GL(n) be the group of linear isomorphisms of Rn. Let ψ : Z −→ GL(n) be a se-
quence of such isomorphisms, we denote by Es

j (ψ) the set of vectors v ∈ Rn such
that

sup
n≥0

{

∥

∥(Πn
i=0ψj+i) v

∥

∥

}

<∞,

and by Eu
j (ψ) the set of vectors v ∈ Rn such that

sup
n≥0

{

∥

∥(Πn
i=0ψj−1−i)

−1 v
∥

∥

}

<∞.

Let us say that the sequence ψ is hyperbolic if Es
j (ψ)

⊕

Eu
j (ψ) = Rn for every j ∈ Z.

Actually, this definition is equivalent to require the above direct sum decomposition
for some j. A periodic sequence ψ is characterized by the existence of n0 > 0 such
that ψj+n0 = ψj for every j. It is easy to check that the hyperbolicity of a periodic
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sequence ψ is equivalent to the classical hyperbolicity of the linear map
∏n0−1

j=0 ψj .
Now, let

{

ψα, α ∈ Λ
}

be a family of periodic sequences of linear maps indexed in a set Λ. Let us define
the distance d(ψ, η) between two families of periodic sequences indexed in Λ by

d(ψ, η) = sup
n∈Z,α∈Λ

{

‖ ψαn − ηαn ‖
}

.

We say that the family {ψα, α ∈ Λ} is hyperbolic if every sequence in the family
is hyperbolic. Let us call by periodically equivalent two families ψα, ηα for which
given any α, the minimum periods of ψα and ηα coincide. Following Mañé, we say
that the family {ψα, α ∈ Λ} is uniformly hyperbolic if there exists ǫ > 0 such that
every periodically equivalent family ηα such that d(ψ, η) < ǫ is also hyperbolic. The
main result concerning uniformly hyperbolic families of linear maps is the following
symplectic version of Lemma II.3 in [46].

Theorem 4.4.3 Let {ψα, α ∈ Λ} be a uniformly hyperbolic family of periodic
linear sequences of symplectic isomorphisms of Rn. Then there exist constants K >
0, m ∈ N, and λ ∈ (0, 1) such that :

1. If α ∈ Λ and ψα has minimum period n ≥ m, then

k−1
∏

j=0

∥

∥(Πm−1
i=0 ψ

α
mj+i)|Es

mj(ψ
α)

∥

∥ ≤ Kλk,

and
k−1
∏

j=0

∥

∥(Πm−1
i=0 ψ

α
mj+i)

−1|Eu
mj(ψ

α)

∥

∥ ≤ Kλk,

where k is the integer part of n
m
.

2. For all α ∈ Λ, j ∈ Z,
∥

∥(Πm−1
i=0 ψ

α
j+i)|Es

j (ψ
α)

∥

∥ ·
∥

∥(Πm−1
i=0 ψ

α
j+i)

−1|Eu
j (ψ

α)

∥

∥ ≤ λ.

3. For every α ∈ Λ

lim sup
n→+∞

1

n

n−1
∑

j=0

ln
(

∥

∥(Πm−1
i=0 ψ

α
mj+i)|Es

mj(ψ
α)

∥

∥

)

< 0

and

lim sup
n→+∞

1

n

n−1
∑

j=0

ln
(

∥

∥(Πm−1
i=0 ψ

α
mj+i)

−1|Eu
m(j+1)

(ψα)

∥

∥

)

< 0.



4.4 Proofs of Theorems 4.1.2 and 4.1.3 95

At the end of the section we shall give an outline of the proof of Theorem 4.4.3 based
on Mañé’s Lemma II.3 in [46] which is proved for linear isomorphisms without the
symplectic assumption. Now, we are ready to combine Franks’ Lemma from Mañé’s
viewpoint and Theorem 4.4.3 to get a geodesic flow version of Theorem 4.4.3.

Lemma 4.4.4 Let (M, g) be a compact Riemannian manifold. Then there exists
Tg > 0 such that every closed geodesic has period greater than Tg.

The proof is more or less obvious from the flowbox lemma since the geodesic flow
has no singularities and the unit tangent bundle of (M, g) is compact.
Let Per(g) be the set of periodic points of the geodesic flow of (M, g). Given a
periodic point θ ∈ Per(g) with period T (θ), consider a family of local sections Σθi ,

i = 0, 1, .., kθ = [T (θ)
Tg

], where [T (θ)
Tg

] is the integer part of T (θ)
Tg

, with the following
properties :

1. Σθi contains the point φiTg(θ) for every i = 0, 1, .., kθ − 1,

2. Σθi is perpendicular to the geodesic flow at φiTg(θ) for every i.

Let us consider the sequence of symplectic isomorphisms

ψθ,g =
{

Aθ,i,g, i ∈ Z

}

1. For i = nkθ + s, where n ∈ Z, 0 ≤ s < kθ − 1, let

Aθ,i,g = DφsTg (θ)
φTg : TφsTg (θ)Σ

θ
s −→ Tφ(s+1)Tg (θ)

Σθs+1,

2. For i = nkθ − 1, where n ∈ Z, let

Aθ,i,g = Dφ(kθ−1)Tg (θ)
φTg+rθ : Tφ(kθ−1)Tg (θ)

Σθ(kθ−1) −→ TθΣ
θ
0

where T (θ) = kθTg + rθ.

Notice that the sequence ψθ,g is periodic and let

ψg =
{

ψθ,g, θ ∈ Per(g)
}

.

The family ψg is a collection of periodic sequences, and by Franks’ Lemma from
Mañé’s viewpoint (Theorem 4.1.1) we have

Lemma 4.4.5 Let (M, g) be a compact Riemannian manifold. If (M, g) is in the
interior of F 2(M, g) then the family ψg is uniformly hyperbolic.



96 Franks’ lemma for C2-Mañé perturbations of Riemannian metrics

Proof of lemma 4.4.5 : Let δTg > 0, KTg , be given in Franks’ Lemma, Theorem
4.1.1. If (M, g) is in the interior of F 2(M, g) then there exists an open C2 neighbo-
rhood U of (M, g) in the set of metrics which are conformally equivalent to (M, g)
such that every closed orbit of the geodesic flow of (M,h) ∈ U is hyperbolic. In
particular, given a periodic point θ ∈ T1M for the geodesic flow of (M, g), the set
of metrics (M,hθ) ∈ U for which the orbit of θ is still a periodic orbit for the
geodesic flow of (M,hθ) have the property that this orbit is hyperbolic as well for
the hθ-geodesic flow. By Theorem 4.1.1, for any δ ∈ (0, δTg), the (KTg

√
δ)-C2 open

neighborhood of the metric (M, g) in the set of its conformally equivalent metrics
covers a δ-open neighborhood of symplectic linear transformations of the derivatives
of the Poincaré maps between the sections Σθs, Σ

θ
s+1 defined above. Then consider

δ > 0 such that the (KTg

√
δ)-C2 open neighborhood of the metric (M, g) is contai-

ned in U , and we get that the family Aθ,i,g is uniformly hyperbolic. Since this holds
for every periodic point θ for the geodesic flow of (M, g) the family ψg is uniformly
hyperbolic. �

Therefore, applying Theorem 4.4.3 to the sequence ψg we obtain,

Theorem 4.4.6 Suppose that there exists an open neighborhood V (ǫ) of (M, g) in
F 2(M, g). Then there exist constants K > 0, D ≥ Tg, λ ∈ (0, 1) such that :

1. For every periodic point θ with minimum period ω ≥ D, we have

k−1
∏

i=0

‖ DφD|Es(φiD(θ) ‖≤ Kλk

and
k−1
∏

i=0

‖ Dφ−D|Eu(φ−iD(θ) ‖≤ Kλk,

where Es(τ) ⊕ Eu(τ) = Nτ is the hyperbolic splitting of the geodesic flow of
(M, g) at a periodic point τ and k = [ ω

D
].

2. There exists a continuous Lagrangian, invariant, dominated splitting

TθT1M = Gs(θ)⊕Gu(θ)⊕X(θ)

in the closure of the set of periodic orbits of φt which extends the hyperbolic
splitting of periodic orbits : if θ is periodic then Gs(θ) = Es(θ), Gu(θ) = Eu(θ).

Theorem 4.4.6 improves Theorem 2.1 in [64] where the same conclusions are claimed
assuming that the geodesic flow of (M, g) is in the C1 interior of the set of Hamilto-
nian flows all of whose periodic orbits are hyperbolic. Hence, the proof of Theorem
4.1.2 follows from the combination of Theorems 4.4.2 and Theorem 4.4.6.
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4.4.2 Proof of Theorem 4.1.3

Let E2(M, g) be the set of Riemannian metrics in M conformally equivalent
to (M, g), endowed with the C2 topology, whose geodesic flows are expansive. The
main result of the subsection is an improved version of Proposition 1.1 in [64].

Theorem 4.4.7 The interior of E2(M, g) is contained in F 2(M, g).

We just give an outline of the proof based on [64]. The argument is by contradiction.
Suppose that there exists (M,h) in the interior of E2(M, g) whose geodesic flow has
a nonhyperbolic periodic point θ. Let Σ be a cross section of the geodesic flow at θ
tangent toNθ. The derivative of the Poincaré return map has some eigenvalues in the
unit circle. By the results of Rifford-Ruggiero [62] DP every generic property in the
symplectic group is attained by C2 perturbations by potentials of (M,h) preserving
the orbit of θ. This means that there exists (M, h̄) C2-close to (M,h) and conformally
equivalent to it such that the orbit of θ is still a periodic orbit of the geodesic flow
of (M, h̄) and the derivative of the Poincaré map P̄ : Σ −→ Σ has generic unit circle
eigenvalues. By the central manifold Theorem of Hirsch-Pugh-Shub [34] there exists
a central invariant submanifold Σ0 ⊂ Σ such that the return map P0 of the geodesic
flow of (M, h̄) is tangent to the invariant subspace associated to the eigenvalues of
DP̄ in the unit circle. Moreover, we can suppose by the Ck Mañé-generic version of
the Klingenberg-Takens Theorem due to Carballo-Gonçalves [9] that the Birkhoff
normal form of the Poincaré map at the periodic point θ is generic. So we can apply
the Birkhoff-Lewis fixed point Theorem due to Moser [51] to deduce that given
δ > 0 there exists infinitely many closed orbits of the geodesic flow of (M, h̄) in the
δ-tubular neighborhood of the orbit of θ. This clearly contradicts the expansiveness
of the geodesic flow of (M, h̄) ∈ E2(M, g).
In the case where (M, g) is a closed surface, we know that the expansiveness of the
geodesic flow implies the density of the set of periodic orbits in the unit tangent
bundle (see [64] for instance). So if (M, g) is in the interior of E2(M, g) the closure
of the set of periodic orbits is a hyperbolic set by Theorem 4.1.2, and since this
set is dense its closure is the unit tangent bundle and therefore, the geodesic flow
is Anosov. If the dimension of M is arbitrary, then we know that if (M, g) has
no conjugate points, the expansiveness of the geodesic flow implies the density of
periodic orbits as well, so we can extend the above result for surfaces.

4.4.3 Main ideas to show Theorem 4.4.3

As mentioned before, Theorem 4.4.3 is a symplectic version of Lemma II.3 in
[46] that is proved for general families of periodic sequences of linear isomorphisms
of Rn. Theorem 4.4.3 has been already used in [64], and since there is no written
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proof in the literature we would like to give a sketch of proof for the sake of comple-
teness. We shall not repeat all the steps of the proof of Lemma II.3 in [46] because
the arguments extend quite forwardly, we shall just point out where the symplectic
assumption matters. The proof of Lemma II.3 in [46] has two main parts. The first
part is based on the generic linear algebra of what Mañé calls uniformly contracting
families of periodic sequences of linear isomorphisms, namely, uniformly hyperbolic
families of periodic sequences where the unstable part of each sequence is trivial
(see [46] from pages 527 to 532). Since the restriction of the dynamics of a uni-
formly hyperbolic periodic sequence to the stable subspace gives rise to a uniformly
contracting periodic sequence the argument consists in proving separatedly uniform
contraction properties for the stable part of the dynamics and then uniform ex-
pansion properties for the unstable part of the dynamics. In the case of hyperbolic
symplectic matrices, the invariant subspaces of the dynamics are always Lagrangian,
so we have the following elementary result of symplectic linear algebra :

Lemma 4.4.8 Given a symplectic matrix S and a Lagrangian invariant subspace L
there exists an unitary matrix U such that

1. S = UTY U where Y is a 2n× 2n symplectic matrix formed by n× n blocks of
the form

Y =

(

A B

0 (AT )−1

)

,

where AT is the adjoint of A.

2. The matrix A represents the restriction of S to L.

Now, symplectic matrices in n × n blocks can be characterized in terms of certain
algebraic properties of their blocks.

Lemma 4.4.9 Let

S =

(

A B
C D

)

be a 2n× 2n matrix where A,B,C,D are n× n blocks. The matrix S is symplectic
if and only if

1. ATD − CTB = I

2. The matrices BTD and ATC are symmetric.

So any matrix

M =

(

A B
0 D

)

formed by n× n blocks A,B, 0, D is symplectic if and only if D = (AT )−1 and BTD
is symmetric .
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Hence, to extend to the symplectic case Mañé’s generic linear algebra arguments
for uniformly contracting families of periodic isomorphisms one can consider the
family of restrictions of hyperbolic symplectic matrices to their stable subspaces.
This family is represented by a family of uniformly contracting periodic n×n linear
isomorphisms ψ = {Aα, α ∈ Λ} placed in the upper left block of the differentials of
Poincaré maps according to Lemma 4.4.8. Then observe that any open neighborhood
of the family ψ according to the distance d(ψ, η) can be embedded in a neighborhood
of a family of symplectic isomorphisms just by applying Lemma 4.4.9. We can build
a symplectic family of symplectic isomorphisms from a perturbation Ãα of Aα taking
D̃ = (ÃT )−1 and finding B̃ close to B such that B̃T D̃ is symmetric. Such matrix B̃
exists because the set of symmetric matrices is a submanifold of the set of matrices,
and BT D̃ is close to the symmetric matrix BTD. So there exists ǫ > 0 such that the
ball Vǫ of radius ǫ of matrices centered at BT D̃ meets the submanifold of symmetric
matrices in an open (relative) neighborhood of BTD . But the multiplication of an
open neighborhood V (BT ) of BT by D̃ gives an open neighborhood of BT D̃ in the
set of matrices. Then for a suitable choice of V (BT ) we have that V (BT )D contains
a matrix B̃T D̃ that is symmetric.
Therefore, Mañé’s arguments for uniformly contracting families can be extended
to the symplectic category. Finally, let us remark that the symplectic nature of
the family implies that contraction properties of the norm of the restriction to the
stable part under the action of the dynamics already give expansion properties for
the action of the dynamics on the norm of the restriction to the unstable part.
This yields that it is enough to consider the contracting part of the dynamics of
a symplectic family of periodic linear isomorphisms to extend the first part of the
proof of Lemma II.3 in [46] to such families.
The second part of the proof deals with the angle between the invariant subspaces
of uniformly hyperbolic families (see [46] pages 532-540).

Definition 4.4.10 Given two subspaces E, S ⊂ Rn such that E
⊕

S = Rn, let
∡(E, S) be defined by

∡(E, S) =‖ L ‖−1

where L : E⊥ −→ E is such that S = {v+L(v), v ∈ E⊥}. In particular, ∡(E,E⊥) =
∞.

The main goal of this part of the proof of Lemma II.3 in [46] is to show that
the invariant splitting of a uniformly hyperbolic family is a continuous dominated
splitting. The general idea of the proof of this second part is to ”move” one of the
invariant subspaces of the dynamics with perturbations of the map L while keeping
the other subspace unchanged.
The proof of the continuous domination has two steps. First of all, so show that the
angle between the invariant subspaces must be bounded below by a positive constant
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(Lemma II.9 in [46] pages 532 to 534). This is the content of the following result
whose proof we present in detail to give a sample of how the arguments extend to
symplectic matrices. We just follow step by step Mañé’s proof, we even respect the
notations in his paper.

Lemma 4.4.11 Let {ψα, α ∈ Λ} be a uniformly hyperbolic family of periodic se-
quences of symplectic isomorphisms of R2n. Then, there exist ǫ > 0, γ > 0, and
n0 ∈ Z− such that if {ηα, α ∈ Λ} is a periodically equivalent family with d(ψ, η) < ǫ
then {ηα, α ∈ Λ} is hyperbolic and the angle between stable and unstable subspaces
satisfies

∡(Es
0(η

α), Eu
0 (η

α)) > γ

for every α ∈ Λ such that the minimum period of ηα is greater than n0.

Proof of lemma 4.4.11 : Suppose by contradiction that the statement is false.
Then there would exist hyperbolic periodic sequences η : Z −→ Sp(2n,R) with
arbitrarily large period n, such that

1. ∡(Es
0(η

α), Eu
0 (η

α)) is arbitrarily small,

2. For some α ∈ Λ the periods of ψα and η coincide,

3. supi ‖ ηi − ψαi ) ‖ is arbitrarily small.

Suppose that in the coordinates of the base Es
0(η)

⊥
⊕

Es
0(η) the matrix of

∏n−1
j=0 ηj

is

M =

(

A 0
P B

)

where A, P,B are n×n matrices. By the uniform contraction property of the stable
part of the dynamics of the family there exist K > 0, λ ∈ (0, 1) such that

‖ A−1 ‖≤ Kλn

and
‖ B ‖≤ Kλn.

Since we can choose an orthogonal change of coordinates Q, we have that the matrix
M = QA is a symplectic matrix and thus, by Lemma 4.4.8 we get B = (AT )−1.

Let L : Es
0(η)

⊥ −→ Es
0(η) be such that {v+L(v), v ∈ Es

0(η)
⊥} = Eu

0 (η). Since
∏n−1

j=0 ηj(E
u
0 (η)) = Eu

0 (η) we get

LA = P +BL,

and therefore,
L = PA−1 +BLA−1
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and by the previous inequalities

‖ L ‖≤‖ PA−1 ‖ +K2λ2n ‖ L ‖ .

For n large enough, K2λ2n ≤ 1
2
, so we have

1

2
‖ PA−1 ‖−1≤‖ L ‖−1= ∡(Es

0(η
α), Eu

0 (η
α)),

and hence the number ‖ PA−1 ‖−1 assumes arbitrarily small values by the contra-
diction assumption.

Next, define a sequence ξ : Z −→ Sp(2n,R) with minimum period n, where

1. ξi = ηi for every 0 < i ≤ n− 1,

2. ξ0 = η0

(

I C
0 I

)

.

The matrix

(

I C
0 I

)

is symplectic for every C such that C is symmetric by Lemma

4.4.9. Then,

n−1
∏

i=0

ξi =

(

A 0
P B

)(

I C
0 I

)

=

(

A AC
P B + PC

)

.

So the goal is to find a symmetric matrix C with small norm such that the above
matrix has an eigenvalue equal to 1. In this way we get a contradiction because we
are supposing that the family {ψα, α ∈ Λ} is uniformly hyperbolic so any sufficiently
close family would have to be as well.

To find the matrix C let us consider the system
{

Ax+ ACy = x
Px+ (PC +B)y = y.

For a solution (x, y) of the system we would have

x = (I − A)−1ACy = −(I − A−1)−1Cy

and
(I − B)−1P (I − (I − A−1)−1)Cy = y.

Notice that I − (I − A−1)−1 = −A−1(I −A−1)−1, so we get

−(I −B)−1PA−1(I −A−1)−1Cy = y.

Take a vector v such that ‖ v ‖=‖ PA−1 ‖−1, and ‖ PA−1v ‖= 1. Let

y = −(I − B)−1PA−1v.
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Since ‖ B ‖≤ Kλn we can assume that ‖ I − B ‖≤ 2. Hence ‖ y ‖−1≤ 2. Now take
a vector w such that

(I −A−1)−1w = v.

Since the norm of A−1 is small the matrix (I − A−1) is close to the identity, so we
can suppose that ‖ w ‖≤ 2 ‖ v ‖. Next, consider a matrix C such that

Cy = w, ‖ C ‖= ‖ w ‖
‖ y ‖ .

Observe that

‖ C ‖≤ 4 ‖ v ‖= 4 ‖ PA−1 ‖−1≤ 2∡(Es
0(η

α), Eu
0 (η

α))

that can be made arbitrarily small. Thus, the matrix C and the vector y defined

above give a fixed point (x, y) for the matrix

(

A AC
P B + PC

)

which shows that

the sequence ξi is not hyperbolic.

Notice that the conditions defining C are quite loose, there are many possible
candidates. In particular, the matrix C can be taken symmetric. Indeed, symmetric
matrices are linear maps which send the unit sphere to ellipsoids centered at 0. Mo-
reover, the norm of such a map is the length of the largest axis of the corresponding
ellipsoid. So let us consider a linear map T such that T (y) = w as the linear map C
does, and take T such that

1. The image of the unit vector y
‖y‖

by T is w
‖y‖

.

2. The image of the unit sphere by T is an ellipsoid whose largest axis is contained
in the line tw, t ∈ R, and whose length is ‖w‖

‖y‖
.

If we take C = T we have a symmetric matrix solving the above system of equations.
�

The final step of the second part of the proof is to show that the uniform
hyperbolicity of families combined with the existence of a lower bound for the angle
between invariant subspaces implies the domination condition ([46] pages 534-540).
The argument is by contradiction : if the domination condition is not satisfied then
it is possible to find a small perturbation of the family such that the invariant
subspaces of the perturbed one are very close to each other, which is impossible
by Lemma 4.4.11. The proof is involved but again, the tools of the proof are quite
general and elementary in linear algebra, they can be adapted straighforwardly to
symplectic matrices.
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4.5 Appendix : Proof of Lemma 4.2.10

First of all, we observe that given LN
ī,j̄
, the existence of K(N) follows by ho-

mogeneity and continuity of the mapping

v ∈ LNī,j̄ 7−→
(

tvī
)

⊙
(

svj̄
)

∈ R.

Let us now demonstrate the existence of LN
ī,j̄

by induction over N . In fact, setting

f = vī, g = vj̄ , it is sufficient to show that the set L of w = (f, g) ∈ L2([0, 1];R2)
with f and g polynomials satisfying























































∫ 1

0
f(s)ds = 0

∫ 1

0
sf(s)ds = 0
∫ 1

0
g(s)ds = 0

∫ 1

0
sg(s)ds = 0

f ⊙ (sg) = 0
g ⊙ (sf) = 0
f ⊙ (s2g) = 0
g ⊙ (s2f) = 0

(4.26)

and

(tf)⊙ (sg) 6= 0 (4.27)

contains (adding the origin) vector spaces LN of any dimension. When f, g are
polynomials, that is of the form

f(t) =
∑

p∈Z

apt
p and g(t) =

∑

q∈Z

bqt
q

with ap = bq = 0 for any p, q < 0 and ap = bq = 0 for large p, q, we check easily that
(from now on, we omit to write the set Z containing p and q)

f ⊙ g =
∑

p,q

αp,qap bq,



104 Franks’ lemma for C2-Mañé perturbations of Riemannian metrics

with 1/αp,q = (q + 1)(p+ q + 2). Then we have































































∫ 1

0
f(s)ds =

∑

p
1
p+1

ap
∫ 1

0
sf(s)ds =

∑

p
1
p+2

ap
∫ 1

0
g(s)ds =

∑

q
1
q+1

bq
∫ 1

0
sg(s)ds =

∑

q
1
q+2

bq

f ⊙ (sg) =
∑

p,q αp,qap bq−1

f ⊙ (s2g) =
∑

p,q αp,qap bq−2

g ⊙ (sf) =
∑

p,q αq,pap−1 bq
g ⊙ (s2f) =

∑

p,q αq,pap−2 bq,

and

(tf)⊙ (sg) =
∑

p,q

αp,qap−1 bq−1.

We can now show that the set L ∪ {0} contains a vector line. As a matter of fact,
taking f(t) = 1− 6t+6t2 and taking g in the set of polynomial of degree ≤ d, leads
to the system











































∑

q
1
q+1

bq = 0
∑

q
1
q+2

bq = 0
∑

q(α0,q − 6α1,q + 6α2,q) bq−1 =
∑

q
q+1

(q+3)(q+4)(q+5)
bq = 0

∑

q(α0,q − 6α1,q + 6α2,q) bq−2 =
∑

q
q+2

(q+4)(q+5)(q+6)
bq = 0

∑

q(αq,1 − 6αq,2 + 6αq,3) bq = −∑q
q+2

(q+3)(q+4)(q+5)
bq = 0

∑

q(αq,2 − 6αq,3 + 6αq,4) bq =
1
30

∑

q
q2−16q−60

(q+4)(q+5)(q+6)
bq = 0,

(4.28)

which is the system of equations of the intersection of 6 hyperplans H1, H2, H3, H4,
H5 and H6 respectively, that we denote by

V := ∩6
i=1Hi ⊂ Rd[X ].

Then V has dimension at least d−5. We can check with Maple that there is a d̄ ∈ N

sufficiently large such that V is not contained in the kernel of the linear form

φ : (bq) ∈ Rd̄[X ] 7→
∑

q

q + 3

(q + 4)(q + 5)(q + 6)
bq.

For every i = 1, ..., 6, let φi be the linear form correspoding to the i-th line in
(4.28) and denote by A(d) the 7× (d+1) matrix whose seven lines are given by the
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coeficients of φ1, φ2, φ3, φ4, φ5, φ6 and φ respectively, that is

A(d) :=





























1 1
2

· · · 1
d

1
d+1

1
2

1
3

· · · 1
d+1

1
d+2

1
60

1
60

· · · d
(d+2)(d+3)(d+4)

d+1
(d+3)(d+4)(d+5)

1
60

1
70

· · · d+1
(d+3)(d+4)(d+5)

d+2
(d+4)(d+5)(d+6)

1
30

1
40

· · · d+1
(d+2)(d+3)(d+4)

d+2
(d+3)(d+4)(d+5)

−1
2

−5
14

· · · (d−1)2−16(d−1)−60
(d+3)(d+4)(d+5)

d2−16d−60
(d+4)(d+5)(d+6)

1
40

2
105

· · · d+2
(d+3)(d+4)(d+5)

d+3
(d+4)(d+5)(d+6)





























.

We check with Maple that rank
(

A(50)
)

= 7, which shows that φ /∈ Span (φ1, ..., φ6) ,
and in turn that V 6⊂ Ker(φ). Therefore there is a solution (bq) ∈ R50[X ] of the
above system which satisfies

(

f(t) = 1− 6t+ 6t2
)

⊙
(

g(t) =
∑

q

bqt
q

)

=
∑

q

q + 3

(q + 4)(q + 5)(q + 6)
bq = 1.

Assume now that we proved the existence of a vector space LN ⊂ L ∪ {0} of
dimension N ≥ 1. Let {(f1, g1), . . . , (fN , gN)} be a basis of LN . We need to find a
pair (f, g) such that for any α = (α1, . . . , αN) ∈ RN and β ∈ R, the pair

(

βf +

N
∑

l=1

αlfl, βg +

N
∑

l=1

αlgl

)

satisfies (4.26) and (4.27). By bilinearity of the ⊙ product, this amounts to say that


















β2 f ⊙ (sg) + β
∑N

l=1 αl f ⊙ (sgl) + β
∑N

l=1 αl fl ⊙ (sg) = 0

β2 f ⊙ (s2g) + β
∑N

l=1 αl f ⊙ (s2gl) + β
∑N

l=1 αl fl ⊙ (s2g) = 0

β2 g ⊙ (sf) + β
∑N

l=1 αl g ⊙ (sfl) + β
∑N

l=1 αl gl ⊙ (sf) = 0

β2 g ⊙ (s2f) + β
∑N

l=1 αl g ⊙ (s2fl) + β
∑N

l=1 αl gl ⊙ (s2f) = 0,

(4.29)

{

∫ 1

0
f(s) ds = 0

∫ 1

0
sf(s) ds = 0,

{

∫ 1

0
g(s) ds = 0

∫ 1

0
sg(s) ds = 0,

(4.30)

and

β2 (tf)⊙ (sg) + β
N
∑

l=1

αl (tf)⊙ (sgl) + β
N
∑

l=1

αl (tfl)⊙ (sg) +
N
∑

l=1

α2
l (tfl)⊙ (sgl)

6= 0. (4.31)
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In fact, any pair (f, g) satisfying (4.26)-(4.27) and the systems






















f ⊙ (sgl) = 0
f ⊙ (s2gl) = 0
gl ⊙ (sf) = 0
gl ⊙ (s2f) = 0

(tf)⊙ (sgl) = 0























fl ⊙ (sg) = 0
fl ⊙ (s2g) = 0
g ⊙ (sfl) = 0
g ⊙ (s2fl) = 0

(tfl)⊙ (sg) = 0

(4.32)

provides a solution. First we claim that there is a polynomial f0 satisfying the left
systems in (4.30) and (4.32). As a matter of fact, f0 has to belong to the intersection
of 2+5N hyperplanes in Rd[X ]. Such an intersection is not trivial if d is large enough.
The function f = f0 being fixed, we need now to find a polynomial g solution to
the four last equations of system (4.26), to (4.27), and to the right systems in (4.30)
and (4.32). Thus g needs to belong to the intersection of 6 + 5N hyperplanes and
to satisfies (4.27). Let

fl(t) =
P
∑

p=0

alpt
p and gl(t) =

P
∑

q=0

blqt
q,

f0(t) =
d
∑

p=0

a0pt
p and g(t) =

∑

q∈Z

bqt
q,

where P is the maximum of the degrees of f1, . . . , fN , g1, . . . , gN and d is the degree
of f0. We have

{
∫ 1

0
g(s)ds =

∑

q
1
q+1

bq
∫ 1

0
sg(s)ds =

∑

q
1
q+2

bq,
(4.33)



































fl ⊙ (sg) =
∑

q

(

∑

p αp,q+1 a
l
p

)

bq

fl ⊙ (s2g) =
∑

q

(

∑

p αp,q+2 a
l
p

)

bq

g ⊙ (sfl) =
∑

q

(

∑

p αq,p+1 a
l
p

)

bq

g ⊙ (s2fl) =
∑

q

(

∑

p αq,p+2 a
l
p

)

bq,

(4.34)

and

(tfl)⊙ (sg) =
∑

q

(

∑

p

αp+1,q+1 a
l
p

)

bq (4.35)

for every l = 1, ..., N, and moreover

(tf0)⊙ (sg) =
∑

q

(

∑

p

αp+1,q+1 a
0
p

)

bq. (4.36)
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We need to show that the kernel of the linear form (given by (4.36))

Φf0 : (bq) ∈ Rd[X ] 7−→
∑

q

(

∑

p

αp+1,q+1 a
0
p

)

bq

does not contain the intersection of the kernels of the 2 + 4(N + 1) +N = 5N + 6
linear forms given by (4.33)-(4.35). If this is the case, for every integer d ≥ 0, any
choice of f0 in Rd[X ], and any integer d′ ≥ 0, there are C = 5N + 6 real numbers
(not all zero)

λl,d
′

1 , . . . , λl,d
′

5 , λ0,d
′

6 , λ0,d
′

7 , λ0,d
′

8 , λ0,d
′

9 , λd
′

10, λ
d′

11,

such that for every integer q ∈ {0, . . . , d′},

d
∑

p=0

αp+1,q+1 a
0
p =

N
∑

l=1

λl,d
′

1

(

P
∑

p=0

αp,q+1 a
l
p

)

+
N
∑

l=1

λl,d
′

2

(

P
∑

p=0

αp,q+2 a
l
p

)

+

N
∑

l=1

λl,d
′

3

(

P
∑

p=0

αq,p+1 a
l
p

)

+

N
∑

l=1

λl,d
′

4

(

P
∑

p=0

αq,p+2 a
l
p

)

+
N
∑

l=1

λl,d
′

5

(

d
∑

p=0

αp+1,q+1 a
l
p

)

+ λ0,d
′

6

(

d
∑

p=0

αp,q+1 a
0
p

)

+λ0,d
′

7

(

d
∑

p=0

αp,q+2 a
0
p

)

+ λ0,d
′

8

(

d
∑

p=0

αq,p+1 a
0
p

)

+λ0,d
′

9

(

d
∑

p=0

αq,p+2 a
0
p

)

+
λd

′

10

q + 1
+

λd
′

11

q + 2
.
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Observe that the above equality can be written as

0 =
d
∑

p=0

[(

N
∑

l=1

λl,d
′

5 alp

)

− a0p

]

αp+1,q+1

+

d
∑

p=0

[(

N
∑

l=1

λl,d
′

1 alp

)

+ λ0,d
′

6 a0p

]

αp,q+1

+

d
∑

p=0

[(

N
∑

l=1

λl,d
′

2 alp

)

+ λ0,d
′

7 a0p

]

αp,q+2

+
d
∑

p=0

[(

N
∑

l=1

λl,d
′

3 alp

)

+ λ0,d
′

8 a0p

]

αq,p+1

+
d
∑

p=0

[(

N
∑

l=1

λl,d
′

4 alp

)

+ λ0,d
′

9 a0p

]

αq,p+2

+
λd

′

10

q + 1
+

λd
′

11

q + 2
.

For every q, let

V (q) =
(

V 1(q), . . . , V 7(q)
)

∈ R
7(d+1)

with

V i(q) =
(

V i
0 (q), . . . , V

i
d (q)

)

∈ R
d+1 ∀i = 1, . . . , 7,

defined by















































V 1
p (q) = αp+1,q+1

V 2
p (q) = αp,q+1

V 3
p (q) = αp,q+2

V 4
p (q) = αq,p+1

V 5
p (q) = αq,p+2

V 6
p (q) = 1

(d+1)(q+1)

V 7
p (q) = 1

(d+1)(q+2)

for every p = 0, . . . , d. The above equality means that for every d′ ≥ 0, there is a
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linear form Ψd′ on R7(d+1) of the form

Ψd′(V ) =

d
∑

p=0

[

Γ1,d′

p − a0p

]

V 1
p +

d
∑

p=0

[

Γ2,d′

p + λ0,d
′

6 a0p

]

V 2
p

+
d
∑

p=0

[

Γ3,d′

p + λ0,d
′

7 a0p

]

V 3
p +

d
∑

p=0

[

Γ4,d′

p + λ0,d
′

8 a0p

]

V 4
p

+

d
∑

p=0

[

Γ5,d′

p + λ0,d
′

9 a0p

]

V 5
p +

d
∑

p=0

λd
′

10 V
6
p +

d
∑

p=0

λd
′

11 V
7
p

for every V =
(

V 1, . . . , V 7
)

∈ (R(d+1))7 such that

Ψd′
(

V (q)
)

= 0 ∀q ∈ {0, . . . , d′}.

For every integer d′ ≥ 0, let dim(d′) be the dimension of the vector space which is
generated by V (0), . . . , V (d′). The function d′ 7→ dim(d′) is nondecreasing and valued
in the positive integers. Moreover it is bounded by 7(d+ 1). Thus it is stationnary
and in consequence there is d̄′ ≥ 0 such that for every q > d̄′,

V (q) ∈ Span
{

V (0), . . . , V
(

d̄′
)

}

.

Therefore there is a linear form Ψ : R7(d+1) → R of the form

Ψ(V ) =
d
∑

p=0

[

Γ1
p − a0p

]

V 1
p +

d
∑

p=0

[

Γ2
p + λ06 a

0
p

]

V 2
p

+
d
∑

p=0

[

Γ3
p + λ07 a

0
p

]

V 3
p +

d
∑

p=0

[

Γ4
p + λ08 a

0
p

]

V 4
p

+

d
∑

p=0

[

Γ5
p + λ09 a

0
p

]

V 5
p +

d
∑

p=0

λ10 V
6
p +

d
∑

p=0

λ11 V
7
p ,

for every V =
(

V 1, . . . , V 7
)

∈ (R(d+1))7 such that

Ψ
(

V (q)
)

= 0 ∀q ∈ N.

We observe that for any integers p, q ≥ 0,

αp,q =
1

(q + 1)(p+ q + 2)
=

1

p+ 1

[

1

q + 1
− 1

q + p + 2

]

,
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then we have for all q ∈ N,

0 = Ψ
(

V (q)
)

=
d
∑

p=0

[

Γ1
p − a0p
p + 2

] (

1

q + 2

)

−
d
∑

p=0

[

Γ1
p − a0p
p+ 2

] (

1

q + p+ 4

)

+

d
∑

p=0

[

Γ2
p + λ06 a

0
p

p+ 1

] (

1

q + 2

)

−
d
∑

p=0

[

Γ2
p + λ06 a

0
p

p+ 1

] (

1

q + p+ 3

)

+

d
∑

p=0

[

Γ3
p + λ07 a

0
p

p+ 1

] (

1

q + 3

)

−
d
∑

p=0

[

Γ3
p + λ07 a

0
p

p+ 1

] (

1

q + p+ 4

)

+
d
∑

p=0

[

Γ7
p + λ08 a

0
p

p+ 2

] (

1

q + p+ 3

)

+
d
∑

p=0

[

Γ5
p + λ09 a

0
p

p+ 3

] (

1

q + p + 4

)

+
d
∑

p=0

λ10
d+ 1

(

1

q + 1

)

+
d
∑

p=0

λ11
d+ 1

(

1

q + 2

)

.

This can be written as

0 = Ψ
(

V (q)
)

=

d
∑

p=0

λ10
d+ 1

(

1

q + 1

)

+

d
∑

p=0

[

Γ1
p − a0p
p+ 2

+
Γ2
p + λ06 a

0
p

p+ 1
+

λ11
d+ 1

] (

1

q + 2

)

+
d
∑

p=0

([

Γ3
p + λ07 a

0
p

p+ 1

]

+

[

Γ7
0 + λ08 a

0
0

2

]

−
[

Γ2
0 + λ06 a

0
0

]

) (

1

q + 3

)

−
d+3
∑

r=4

∆r ·
(

1

q + r

)

−
([

Γ3
d + λ07 a

0
d

d+ 1

]

−
[

Γ5
d + λ09 a

0
d

d+ 3

]

+

[

Γ1
d − a0d
d+ 2

])(

1

q + d+ 4

)

,

where for any r ∈ {4, . . . , d+ 3},

∆r :=
Γ7
r−3 + λ08 a

0
r−3 + Γ5

r−4 + λ09a
0
r−4

r − 1

− Γ2
r−3 + Γ1

r−4 + λ06 a
0
r−3 − a0r−4

r − 2
− Γ3

r−4 + λ07 a
0
r−4

r − 3

=
Γ7
r−3 + Γ5

r−4

r − 1
− Γ1

r−4 + Γ2
r−3

r − 2
− Γ3

r−4

r − 3
+

(

λ08
r − 1

− λ06
r − 2

)

a0r−3

+

(

λ09
r − 1

− λ07
r − 3

− 1

r − 2

)

a0r−4.



4.5 Appendix : Proof of Lemma 4.2.10 111

The function Ψ is a rational function with infinitely many zeros, so it vanishes
everywhere and in consequence all its coefficients vanish. Remember in addition
that by construction,

Γlp = 0 ∀p ∈ {P + 1, . . . , d}, ∀l ∈ {1, . . . , N}.
Then we have ∆r = 0 for any r ∈ {P + 5, . . . , d+ 3}, that is

(

λ08
r − 1

− λ06
r − 2

)

a0r−3 +

(

λ09
r − 1

− λ07
r − 3

− 1

r − 2

)

a0r−4 = 0,

and in addition the coefficient in front of 1
q+d+4

vanishes, that is
(

λ07
d+ 1

− λ09
d+ 3

)

a0d =
a0d

d+ 2
.

In conclusion, if there is no vector space of dimension N+1 in L∪{0}, then for every
polynomial f0 ∈ Rd[X ] of degree d (that is a0d 6= 0) the linear form Φf0 contains the
intersection of the kernels of the 5N + 6 linear forms given by (4.33)-(4.35). By the
above discussion, this implies that there are four reals numbers A,B,C,D not all
zero (because a0d 6= 0) such that

(

A

r − 1
+

B

r − 2

)

a0r−3 +

(

C

r − 1
− 1

r − 2
+

D

r − 3

)

a0r−4 = 0,

for any r ∈ {P + 5, . . . , d+ 3} and in addition
(

D

d+ 1
+

C

d+ 3

)

a0d = − a0d
d+ 2

=⇒ D = −(d+ 1)

(

1

d+ 2
+

C

d+ 3

)

.

Note that for every p ∈ {P + 2, . . . , d},
C

p+ 2
− 1

p+ 1
+
D

p

=
C

p+ 2
− 1

p+ 1
− d+ 1

p

(

1

d+ 2
+

C

d+ 3

)

=
2C(d+ 2)(p− d− 1)(p+ 1)− (d+ 3)((2d+ 3)p+ d+ 1)(p+ 2)

p(p+ 1)(p+ 2)(d+ 2)(d+ 3)

This means that the set of coefficients (a0p)p∈{P+1,d} belongs to the algebraic set S
of (d− P )-tuples (ap)p∈{P+1,d} ∈ Rd−N for which there is (A,B,C) ∈ R3 such that

(

2C(d+ 2)(p− d− 1)(p+ 1)− (d+ 3)((2d+ 3)p+ d+ 1)(p+ 2)

p(p+ 1)(p+ 2)(d+ 2)(d+ 3)

)

ap−1

+

(

A

p+ 2
+

B

p+ 1

)

ap = 0 ∀p ∈ {P + 2, . . . , d}. (4.37)
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For every triple (A,B,C) ∈ R3, denote by S(A,B,C) the algebraic set of (d − P )-
tuples (ap)p∈{P+1,d} ∈ Rd−N satisfying (4.37). Notice that for every (A,B,C) ∈ R3,
the function

p ∈ {P + 2, . . . , d} 7−→ A

p+ 2
+

B

p+ 1
=

(A+B)p+ (A + 2B)

(p + 1)(p+ 2)

vanishes for at most one p in {P + 2, . . . , d}. This means that given (A,B,C) ∈ R3

either we have
ap = Cd

p ap−1 ∀p ∈ {P + 2, . . . , d},
with

Cd
p :=

(

2C(d+ 2)(p− d− 1)(p+ 1)− (d+ 3)((2d+ 3)p+ d+ 1)(p+ 2)

p(p+ 1)(p+ 2)(d+ 2)(d+ 3)

)

/

(

(A+B)p+ (A+ 2B)

(p+ 1)(p+ 2)

)

∀p ∈ {P + 2, . . . , d},

or there is p̄ = p̄(A,B,C) ∈ {P + 2, . . . , d} such that

ap = Cd
p ap−1 ∀p ∈ {P + 2, . . . , d} \

{

p̄
}

and
(

2C(d+ 2)(p̄− d− 1)(p̄+ 1)− (d+ 3)((2d+ 3)p̄+ d+ 1)(p̄+ 2)

p̄(p̄+ 1)(p̄+ 2)(d+ 2)(d+ 3)

)

ap̄−1 = 0.

Since the sets we are dealing with are algebraic (see [5, 17]), we infer that given
(A,B,C) ∈ R3, the algebraic set S(A,B,C) ⊂ Rd−N has at most dimension three,
which means that S ⊂ Rd−N has at most dimension six.

In conclusion, the coefficients (a0p)p∈{0,d} of f0 have to belong to the intersection
of 2 + 5N hyperplanes in Rd[X ], and if in addition if there is no vector space of
dimension N + 1 in L ∪ {0}, then the (d − P )-tuples (a0p)p∈{P+1,d} must belong to
S ⊂ Rd−N of dimension ≤ 6. But, for d large enough, the intersection of 2 + 5N
hyperplanes in Rd[X ] with the complement of an algebraic set of dimension at most
6 + P + 1 is non empty. This concludes the proof of Lemma 4.2.10.
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