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École doctorale “Sciences et Technologies de l’Information, des
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Abstract

Wireless systems are facing an increase in the data demands, and this trend is

expected to continue in the future. This increase is mostly due to demand of

video and data services. The most prominent approaches proposed to deal with

this problem, namely the use of multiple antennas and OFDMA modulations

(already part of the 3GPP LTE standards) and Small Cell Networks have mostly

been analyzed from a pure physical layer perspective, focusing on metrics like

total system throughput. However, the traffic pattern of video and data requests

as well as the individual requests of the users have to be also taken into account

when designing resource allocation algorithms. The objective of this thesis

is, therefore, to study the impact of physical layer resource algorithms (power

control, precoding, scheduling) and CSI feedback on the behaviour of the queues

of the users. In particular, we study the problems of precoding and power

control to regulate the behaviour of the users’ queues in the interference channel,

as well as joint feedback/training and user selection and scheduling in order to

stabilize the queues for a large area of traffic demands in the MISO and OFDMA

broadcast channels. To this end, we use tools from heavy traffic asymptotic

modelling of communication networks and stochastic stability theory.
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Abstract (French)

Les réseaux sans fil sont confrontés à une augmentation croissante en demande

de données, qui devrait continuer à croitre dans les années à venir. La raison

principale de cette croissance est liée à la demande en services vidéo et données.

Les plus importantes approches proposées pour faire face à ce problème, notam-

ment l’utilisation des antennes multiples, le codage OFDMA (qui font déjà partie

des standards 3GPP et LTE), et le déploiement de réseaux à petites cellules,

ont été examinées plutôt d’un point de vue couche physique, en se concentrant

sur des mesures de performance tel que le débit total du système. Cependant,

les caractéristiques du trafic vidéo et des données ainsi que les demandes in-

dividuelles des utilisateurs doivent être prises en compte pour la conception

des algorithmes d’allocation de ressources radio. L’objectif de cette thèse est

d’étudier l’impact des algorithmes d’allocation de ressources radio (contrôle de

puissance, pré-codage, ordonnancement) ainsi que les informations concernant

l’état du canal sur le comportement des files d’attente des utilisateurs. Nous

étudions, en particulier, le problème de pré-codage et de contrôle de puissance

dans le canal d’interférence, dans le but de réguler le comportement des files

d’attente des utilisateurs et conjointement la rétroaction/estimation de canal

et la sélection et ordonnancement des utilisateurs. Ceci afin d’assurer la sta-

bilité des files d’attentes pour une grande partie des demandes de trafic dans

les systèmes de diffusion MISO-OFDMA. Pour assurer cela, nous utilisons des

outils mathématiques de la théorie des modèles asymptotiques ”heavy traffic”

et de la théorie de la stabilité stochastique.
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Résumé en français

Introduction et Problématique

Récemment, les réseaux cellulaires sans fil ont connu une demande croissante en

données par les utilisateurs et cela une devrait continuer durant les prochaines

années. Cette augmentation est due à la prolifération des smartphones et

tablettes qui ont induit une demande élevée en applications données et vidéos.

� Réseaux à petites cellules : Les réseaux à petites cellules sont des

réseaux denses, comportant des petites stations de bases de couverture

limitée, de faible puissance de transmission et réutilisation de fréquence [1].

Le but de ces réseaux est d’assurer une meilleure couverture et réutilisation

des fréquences tout en augmentant la capacité du réseau. Cependant, le

déploiement dense de petite station de bases fonctionnant sur la même

fréquence nécessite des techniques de gestion d’interférences. Dans la

littérature, différents travaux ont prouvé que la coopération entre les sta-

tions de base permet de réduire l’interférence intercellulaire et d’augmenter

l’efficacité spectrale [2], [3]. Hors, en pratique ce n’est pas toujours pos-

sible d’atteindre ces résultats théoriques en raison des limitations de la

capacité des liaisons entre les stations de base. De plus, dans les cas réels,

les utilisateurs soumettent des requêtes, qui arrivent du réseau de base

avec des motifs aléatoires et des exigences élevées de la part des utilisa-

teurs en termes de qualité de service (QdS) tels que : le délai, perte de

données. . . etc. Une meilleure approche serait donc d’allouer les ressources

radio aux stations de base en s’adaptant aux caractéristiques du trafic en

temps réel ainsi que qu’à l’état des files d’attente. A titre d’exemple, une

station de base dont les utilisateurs ont peu ou pas de données en attente

d’envoi peut émettre avec une puissance très faible pendant une certaine

durée et ainsi éviter les problèmes de congestion au niveau des stations

de bases voisines qui eux ont des demandes plus urgentes de la part des

utilisateurs. Cela semble une approche prometteuse au lieu de se concen-
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trer (seulement) sur les paramètres traditionnels de la couverture et de

l’efficacité spectrale.

� Utilisation de plusieurs antennes au niveau des stations de base

: Les avantages de l’utilisation de plusieurs antennes dans les systèmes

sans fil mono- et multi- utilisateurs sont maintenant très bien compris

[4, 5], principalement d’un point de vue efficacité spectrale. Dans les

réseaux à petites cellules, les stations de base peuvent utiliser plusieurs

antennes pour mieux gérer les interférences [3]. Dans les systèmes avec

une cellule unique, l’utilisation d’antennes multiples permet à la station de

base de servir plusieurs utilisateurs dans le même bloc de temps-fréquence,

améliorant ainsi la performance du système. Cependant, afin de bénéficier

pleinement du potentiel du MIMO multi-utilisateur, une connaissance

précise de l’état des canaux des utilisateurs est nécessaire. Le moyen le

plus important de le faire est considéré comme l’estimation, dans le mode

duplex par séparation temporelle (TDD), par les utilisateurs, c’est-a-dire

que les utilisateurs envoient des séquences orthogonales pour que la sta-

tion de base estime leurs canaux. Cette technique exploite la réciprocité

du canal et a l’avantage que la longueur des séquences d’entrâınement est

indépendante du nombre d’antennes de la station de base. Cette observa-

tion a conduit au concept prometteur de ” Massive MIMO”, où les stations

de base sont équipées avec beaucoup plus d’antennes que les utilisateurs

[6, 7]. Cependant, la longueur des séquences de pilotes doit s’adapter

proportionnellement au nombre d’utilisateurs actifs. Étant donné que le

temps de cohérence (ou la longueur de l’intervalle de temps utilisé par le

protocole) est limité, ayant de nombreux utilisateurs actifs dans un inter-

valle signifie que le temps consacré à la transmission des données est faible.

Par conséquence, la sélection des utilisateurs doit être effectuée de manière

dynamique, en prenant en compte cette marge, les caractéristiques du

trafic et l’état actuel des files d’attente de chaque utilisateur.

� Ordonnancement des utilisateurs et utilisation des canaux par-

allèles : Exploiter les variations temporelles des canaux avec évanouissement

(un concept appelé ”la diversité multi-utilisateurs”) pour augmenter l’efficacité

spectrale en sélectionnant les utilisateurs ayant de bonnes conditions canal

[8] est également très bien compris dans les systèmes multi-utilisateurs.

Cette idée, dénommée ”ordonnancement opportuniste”, peut fournir une

haute efficacité spectrale et aussi assurer l’équité entre les utilisateurs [9],

et a été déjà utilisée dans les systèmes 3G [10]. Créer des canaux par-
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allèles en fréquence, en utilisant des modulations OFDMA, ou en espace,

par l’utilisation de plusieurs antennes à formation de faisceau orthonormé,

peut améliorer ce concept. En fait, les deux (OFDMA et MIMO avec la

formation de faisceau orthonormé) font partie des dernières normes LTE et

LTE-A pour les communications cellulaires [11]. Contrairement aux deux

autres cas (c’est-à-dire l’utilisation de plusieurs antennes et la réduction

de la taille des cellules), l’ordonnancement prenant en compte le trafic

et les files d’attente des utilisateurs a été largement étudié [12] et reste

un sujet de recherche très actif, spécialement après le travail séminal [13]

dont les auteurs ont introduit l’ordonnancement de type ”MaxWeight”.

Toutefois, la moitié des travaux supposent que la station de base a une

connaissance parfaite des canaux des utilisateurs. Cela ne peut être ac-

quis que par la rétroaction des récepteurs. Ce qui nécessite des ressources

en temps (dans les systèmes TDD) ou en fréquence (dans les systèmes

FDD), qui sont limités et pourraient être utilisés pour la transmission. La

surcharge de rétroaction est encore plus grande dans le cas des systèmes

utilisant des canaux parallèles, conduisant à un compromis exploration-

exploitation entre l’utilisation des ressources pour obtenir des informations

sur de nombreux utilisateurs (sélectionnant ainsi des utilisateurs avec de

bons canaux pour transmettre) et ayant moins d’utilisateurs renvoyant

l’état de leurs canaux, réduisant ainsi la surcharge et utilisant plus de

ressources pour la transmission des données.

Motivés par les considérations ci-dessus, cette thèse se focalise sur les in-

teractions entre la couche physique et la couche de contrôle d’accès (MAC).

Plus précisément, nous étudions comment la répartition des ressources de la

couche physique (contrôle de puissance, précodage, ordonnancement) et de

rétroaction affectent les performances de la couche MAC du système. Celui-

ci est modélisé par le comportement des files d’attente dans les stations de base,

où les données des utilisateurs sont stockées en attente de transmission. Des

algorithmes d’allocation de ressources radio pour améliorer cette performance

sont proposés. Deux mesures de performance sont examinées : (i) la probabilité

que la longueur de la file d’attente dépasse un certain seuil et (ii) la région de la

stabilité du système, qui signifie en pratique l’ensemble des demandes des util-

isateurs en termes de taux d’arrivée que le système peut supporter tandis que

les utilisateurs connaissent des retards finies. La pertinence du premier objec-

tif est de contrôler la perte de données due aux débordements de file d’attente

et/ou au délai résultant du stockage des données dans la station de base. Le

deuxième objectif est pertinent pour les utilisateurs qui demandent des services

vii



de données, car l’élargissement de la zone de stabilité implique, dans un sens, que

les utilisateurs peuvent demander des téléchargements d’un volume plus élevé.

D’un autre côté, les méthodes utilisées pour l’agrandissement de la région de

stabilité du système peuvent être également utilisées d’une manière simple pour

améliorer les performances du système lorsque celui-ci est mesuré en fonction

du débit moyen par utilisateur [14, 15]. Ces méthodes ont été employées avec

des résultats prometteurs dans des travaux récents [16, 17], qui se sont focalisés

sur le streaming vidéo dans les réseaux sans fil.

Cette thèse aborde les problèmes de contrôle des ressources radio dans les

systèmes sans fil, en considérant le fait que chaque utilisateur demande un pro-

cessus dynamique de trafic. Les deux principaux aspects étudiés dans cette thèse

sont : (i) le contrôle de puissance et précodage pour le canal d’interférence de

telle sorte que la probabilité que la file d’attente de chaque utilisateur dépassant

un seuil est à une valeur désirée et (ii) le feedback et sélection/ordonanncement

des utilisateurs dans les systèmes de liaison descendante de cellules simples TDD

(c’est à dire diffusé canaux avec la rétroaction faite en TDD) afin d’agrandir la

zone de stabilité du système.

Contrôle de Puissance et Précodage dans le canal

d’ Interférence MISO

Dans ce chapitre, nous considérons un système avec K émetteurs, fonctionnant

dans la même bande de fréquence, ayant chacun L antennes et servent un seul

récepteur. Le défi ici est que les liens interfèrent les uns avec les autres de sorte

que la longueur de la file d’attente d’un émetteur dépend aussi sur l’ allocation de

la puissance (et précodeurs) des autres émetteurs. Ce modèle peut correspondre

à un réseau de petites cellules employant la même fréquence porteuse pour

servir les utilisateurs. L’objectif initial est de minimiser la puissance totale

dans un laps de temps infini de telle sorte que la probabilité que la taille de

la file d’attente de chaque émetteur dépassant un seuil est fixé. Cet objectif

peut correspondre à la fixation d’une probabilité de perte de données (pour les

tampons finis aux émetteurs) dans certaines valeurs souhaitées ou une exigence

de retard, ce qui est un aspect crucial pour les applications multimédias. En cas

de retard-contraint le nombre (moyen) de retard est proportionnel à la longueur

de file d’attente en raison de la loi de Little. Par conséquent nous pouvons

avancer que la délimitation du retard inférieur à un seuil désiré est dans un sens

équivalent à la délimitation de la longueur de la file d’attente en dessous d’un

seuil correspondant à la limite du délai. De plus, le trafic entrant et les files
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évoluent de façon aléatoire cependant, une telle contrainte n’est pas possible

a tenir. Nous allons donc considérer la métrique probabiliste suivante pour la

longueur de la file d’attente sur chaque émetteur

P
{
qk(t) > qthrk

}
= δk, (1)

qui signifie fixer une probabilité d’interruption de la mémoire tampon dans

certaines valeurs qui peuvent être tolérées par l’application (ce qui implique

également que le retard sera assez petit la plupart du temps). Nous abordons le

problème en proposant une stratégie de contrôle de puissance de sorte que ces

contraintes soient respectées, en utilisant la modélisation asymptotique ”heavy

traffic”. L’approche est alors de diviser la puissance en deux parties : l’équilibre

et la réserve. Le problème de la puissance d’équilibre consiste à allouer de la

puissance en fonction des états du canal de telle sorte que, en moyenne, la débit

de transmission soit égal au débit d’arrivée. Dans la littérature, ce type de

problèmes a été largement étudié pour les systèmes à unique et multiple an-

tennes (on peut se référer à [18], [19] pour plus de détails). Le principal défi

réside dans la modélisation et l’attribution de la réserve de puissance. Une

approche immédiate pour contrôler de façon optimale la puissance de réserve

serait de formuler le problème en utilisant la théorie de la commande optimale

et des équations Hamilton-Jacobi-Bellman (HJB). Cependant, les contraintes

(1) rendent le problème très difficile et les solutions ne sont pas assurées d’être

faciles. En outre, le système (sous certaines politiques de contrôle) peut ne pas

être ergodique. Même si le système est stationnaire et ergodique, trouver une

expression analytique de la fonction de distribution stationnaire de l’évolution

de la file d’attente n’est pas facile. Cela est dû à l’interaction entre les files

d’attente des différents utilisateurs par l’intermédiaire du brouillage. Dans ce

chapitre, nous abordons le problème ci-dessus comme suit. Nous montrons tout

d’abord que les files d’attente des utilisateurs dans le régime ”heavy traffic”

peuvent être modélisées comme une équation différentielle stochastique multidi-

mensionnelle avec des réflexions. Puis, on profite de la structure spécifique de la

matrice de la réflexion et nous proposons une politique de contrôle qui découple

l’ équation multidimensionnelle en plusieurs équations différentielles stochas-

tiques simples en parallèle et assure une mesure invariante pour chacune de ces

équations. En utilisant des résultats de la théorie des probabilités, nous arrivons

a obtenir une expression analytique de la fonction de distribution stationnaire

de la dynamique de chaque équation, qui permet de trouver une relation en-

tre la puissance de réserve affectée et la probabilité de débordement dans (1).

Notez que la valeur de la réserve de puissance allouée par notre algorithme par

rapport à la puissance d’équilibre est très faible. En d’autres termes, l’écart
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d’optimalité sous notre approche de réserve de puissance et d’autres approches

de contrôle optimales (par exemple en utilisant les équations HJB) est faible

dans de nombreux scénarios.

En ce qui concerne le problème des transmissions simultanées sur des canaux

interférents, des travaux considérables ont été faits dans l’allocation d’énergie

de sorte que le SINR à chaque récepteur soit supérieur à un seuil déterminé.

Dans [20], un tel algorithme, qui est totalement distribué, a été proposé et

dans les années suivantes, des modifications et extensions ont été apportées;

pour une étude approfondie des algorithmes de commande de puissance avec

cible SINR se référer à [18] et références qui y sont. Cette approche n’est

cependant pas adaptée à la nature du trafic des données et les applications de

streaming vidéo, car ils ne s’adaptent pas à la circulation, les états des files

d’attente et/ou les demandes spécifiques de l’application. Dans ce contexte,

dans [21], un ordonnanceur basé sur la théorie de commande H-infini a été

proposé afin de réguler les tampons de petites stations de base de cellules autour

d’une longueur de cible. Dans [22], le problème du contrôle de puissance pour

le streaming vidéo au débit variable sur un réseau cellulaire est concerné, avec

l’hypothèse que les vidéos demandées soient stockées dans les stations de base

(donc la dynamique de la circulation stochastiques ne sont pas prises en compte).

Les auteurs étudient le problème de maximisation du débit sous contraintes

et débordement bas au playout des tampons des récepteurs et proposent une

centralisation optimale et un algorithme décentralisé proche de l’optimal sous

certaines hypothèses de faisabilité pour la SINR.

Les auteurs de [23] proposent de l’ ordonnancement dynamique (à l’intérieur

de la cellule) et l’allocation de puissance (pour gérer les interférences intercel-

lulaires) ainsi que la minimisation du délai moyen dans le système en fonction

de la longueur des files d’attente. Le problème est formulé comme un Pro-

cessus de Décision de Markov, et un algorithme d’apprentissage en ligne est

utilisé pour proposer la solution. L’algorithme proposé est semi-décentralisée

dans le sens qu’ un contrôleur central fixe les niveaux de puissance de trans-

mission, mais la décision d’ordonnancement est prise au niveau de chaque Sta-

tion de Base. Pour une étude de l’utilisation de ces outils dans les problèmes

d’allocation de ressources voir [24] et les références qui y sont. Cependant,

dans ces problèmes, l’objectif est d’optimiser une fonction unique soumis à des

contraintes sur les esperences des files d’attente, qui sont plus faibles que les

probabilités de dépassement que nous considérons ici. En outre, ces techniques

nécessitent la résolution de l’équation de Bellman qui en général peut être résolu

hors ligne que numériquement à un coût de calcul élevé, et des algorithmes
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d’apprentissage pour la mise en œuvre en ligne peuvent converger lentement.

Un autre axe de travail en ce qui concerne l’allocation des ressources dans

les réseaux sans fil se fait en utilisant des techniques de dérivation de Lyapunov

(voir [25], [24] et les références citées). Ces travaux portent sur le problème

de la minimisation d’une fonction de coût pour le réseau tout en gardant les

files d’attente stables. Toutefois, dans notre travail, nous sommes intéressés par

la satisfaction individuelle des contraintes de Qualité de Service pour chaque

utilisateur, sous une forme beaucoup plus puissante par rapport aux travaux où

uniquement la stabilité des files d’attente est exigée.

L’approche suivie dans ce chapitre est basée sur la modélisation asympto-

tique du “”heavy trafic” d’un réseau. Initialement utilisée pour l’analyse des

files d’attente et des réseaux de files d’attente, elle consiste à examiner le com-

portement du système dans le cas ou les taux des arrivées deviennent presque

aussi grand que le débit de service. Il s’avère que les modèles dans ce cas asymp-

totique deviennent plus dociles et leur étude peut révéler des informations utiles

pour le comportement du système, même si cette condition n’est pas satisfaite

en pratique. En outre, en raison de sa docilité, le régime asymptotique du

“heavy trafic” peut être utilisé pour trouver analytiquement une politique de

contrôle dans le réseau (par exemple, la politique de routage, la planification de

la transmission, le réglage du taux de service, ...); cette politique peut ensuite

être appliquée dans les cas où le réseau n’est pas nécessairement très chargé,

avec quelques modifications appropriées (voir [26] et les références qui y sont).

Dans le contexte des communications sans fil, les modèles de ”heavy traffic”

ont été utilisés pour analyser les performances des algorithmes d ’ordonnance-

ment ”maxWeight” et ”Exp” dans [27] et [28], respectivement. En outre, les

auteurs de [29] ont étudié la performance d’une allocation de débit débit opti-

mal dans un système avec plusieurs antennes pour deux utilisateurs (avec un

canal commun pour les utilisateurs) lorsque le trafic entrant est presque égal

au débit de service de chaque utilisateur. Cela a été généralisé dans [30] pour

plusieurs antennes à l’émetteur, chacun desservant un utilisateur. Dans les deux

cas, le comportement des files d’attente se révèle d’être un mouvement brownien

multidimensionnel qui est contraint dans l’orthant positif. En outre, dans [31],

il a été prouvé que pour le dernier cas, et les files d’attentes variables dans le

temps, la politique d’attribution de taux à la limite de la région de capacité est

asymptotiquement optimal dans le sens où elle minimise une somme pondérée

des paquets dans la file d’attente lorsque la circulation est dense; cette quantité

s’est avérée être un mouvement brownien qui reflète le changement de régime.

La première application de l’approche “heavy trafic” au problème de com-
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mande de puissance a été faite par [32], où il a été utilisé pour dériver une

commande de puissance optimale dans le cadre d’une seule station de base

desservant de nombreux utilisateurs mais via des canaux orthogonaux variant

dans le temps. Dans ce travail, chaque utilisateur est préattribué un canal

et les auteurs suppose des contraintes de puissance totale et que la puissance

peut être réaffectée d’un canal à l’autre. La politique de contrôle a été spécifié

numériquement. Les résultats de simulation de cette politique peuvent être

trouvés dans [33]. En outre, dans [34] un contrôle optimal de puissance a été

obtenu pour la liaison point-à-point sur un canal à évanouissement. Il a été

montré que la politique de retard optimal est simple mono-seuil et des résultats

de simulation montrent que le coût qui en résulte est très proche de celui obtenu

par la résolution du problème de commande d’origine. Dans les trois derniers

travaux, l’état du heavy trafic est imposé par la préallocation une quantité ap-

propriée de puissance en fonction de l’état du canal et l’attribution d’un (beau-

coup plus faible) montant ou une réserve de puissance selon des états de canaux

et la longueur des files d’attente. En effet, sans cette allocation de puissance de

réserve supplémentaire, le délai devient infini [34], [35].

Les principales contributions des travaux présentés dans ce chapitre sont:

(i) Dérivation du modèle asymptotique pour un système de K liaisons sans fil

interferentes pour les émetteurs équipés d’antennes uniques et multiples, (ii)

Dérivation de une puissance de forme fermée (et précodage dans le cas des

émetteurs à antennes multiples) contrôler la politique en vertu du canal parfait

et la file d’attente des informations d’état de sorte que les objectifs ( ref obj)

soient atteints et (iii) Modification des algorithmes obtenus dans les modèles

d’information moins exigeants.

Les travaux réalisés dans cette partie de la thèse ont été présentés dans deux

congrés internationaux, une workshop interne d’ Alcatel Lucent Bell Labs et

une revue international:

(J1) A. Destounis, M. Assaad, M. Debbah, B. Sayadi, A. Feki, ”On Queue-

Aware Power Control in Interfering Wireless Links: Heavy Traffic Asymp-

totic Modelling and Application in QoS Provisioning”,IEEE Transactions

on Mobile Computing, 2014, accepte

(C1) A. Destounis, M. Assaad, M. Debbah, B. Sayadi, A. Feki, ”Heavy Traf-

fic Asymptotic Approach for Video Streaming over Small Cell Networks

with Imperfect State Information”, 28th Meeting of the Wireless World

Research Forum, Athens, Greece, Apr. 2012

(C2) A. Destounis, M. Assaad, M. Debbah, B. Sayadi, A. Feki, ”A Heavy Traffic
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Approach for Queue-Aware Power Control in Interfering Wireless Links”,

Proc. 13th IEEE International Workshop on Signal Processing Advances

in Wireless Communications (SPAWC), Cesme, Turkey, 2012

(W1) A. Destounis, B. Sayadi, A. Feki, M. Assaad, M. Debbah, ”A Queue-Aware

Power Control Policy in Dense Wireless Networks with Heavy Traffic: An

Asymptotic Approach”, 2nd Bell Labs Science Workshop, Villarceaux, 6-7

December 2011

Sélection des Utilisateurs Actifs dans les systemes

MISO multi-utilisateurs

L’utilisation de plusieurs antennes [4] a émergé comme l’une des technolo-

gies permettant d’accrôıtre la performance des systèmes sans fil. La capacité

de servir plusieurs utilisateurs dans le même bloc temps-fréquence a fait de

l’utilisation de plusieurs antennes à la Station de Base (BS) une technique

particulièrement intéressante pour les systèmes de liaison descendante multi-

utilisateurs, et les avantages à venir de ce fait sont bien entendus [5]. Dans

le détail, dans un système de liaison descendante où la BS a N antennes, et

la plupart des N utilisateurs peuvent être programmées simultanément. Les

décisions à prendre à chaque intervalle de temps sont alors (i) les utilisateurs

qui devraient être ordonnés et (ii) la façon dont les signaux correspondants

devraient être précodé .

D’un point du vue théorie de l’information, la région de la capacité du Canal

de diffusion MIMO est bien caractérisé [36], en supposant avoir une connais-

sance parfaite des informations sur l’état de canal à l’émetteur. Cependant, la

réalisation de cette région nécessite l’utilisation de ”Dirty Paper Coding”, qui

est complexe à mettre en œuvre, alors que les hypothèses de parfaite informa-

tions d’état de canal et l’utilisation de dictionnaires gaussiennes. Ces hypothèses

sont fortes dans les systèmes pratiques. Des techniques de précodage linéaires

tels que Zero Forcing (ZF), une methode qui annule les interférences entre les

utilisateurs, sont plus souhaitable à utiliser dans la pratique. Il existe de nom-

breux ouvrages sur la question de l’ imparfait CSI, voir par exemple [37] et les

références qui y sont, [38, 39, 40], mais elles se sont focalisées pricipalement

sur des quantités comme le débit total et elles ne prennent pas en compte le

processus de trafic des utilisateurs.

Ill est donc intéressant d’étudier l’impact de l’utilisation des plusieurs an-

tennes sur la performance des couches supérieures [41]. Pour le canal d’accés
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multiple MIMO, une stratégie de pré-codage qui atteint la région de stabilité est

présentée dans [42], selon les hypothèses de parfaite connaissance de l’ état du

canal et de la signalisation Gausienne. Cette politique est basée sur la minimisa-

tion de la dérivé de la fonction Lyapunov quadratique, étant donné les longueurs

des file d’attente des canaux à chaque intervalle de temps et en faisant l’usage

de codage en superposition et de décodage successif. Ceci est difficile à met-

tre en œuvre dans la pratique. En ce qui concerne la Canal de Diffusion (le

système de liaison descendante), les auteurs de [43] ont proposé une technique

basée sur précodage Zero Forcing (ZF), avec une politique d’ordonnancement

des utilisateurs heuristique qui sélectionne les utilisateurs dont les canaux sont

des vecteurs presque orthogonaux et illustrer la région de stabilité par simula-

tions. Les auteurs de [44] prouvent que la politique résultante de la réduction

de la dérivé d’une fonction de Lyapunov est de résoudre un problème de max-

imisation du taux de somme pondérées (avec des poids étant la longueur de

la file d’attente) chaque intervalle de temps et ils proposent un algorithme

du type ”waterfilling” à cet effet. En outre, les auteurs de [45] proposent

d’utiliser les retards des paquets dans la tête de chaque file d’attente comme

les poids dans la fonction objective. Tous ces travaux supposent une connais-

sance précise du CSI est disponible à l’émetteur. Dans le cas d’informations

retardées d’état de canal et canaux ayant une corrélation temporelle, les au-

teurs de [46] comparent la stabilité et les performances de retard opportuniste

de formation de faisceaux et de l’espace temps de codage tout en [47] proposant

un algorithme d’ordonnancement et precodage. En outre, dans [48], les auteurs

étudient l’impact de la quantification de l’ état du canal sur la stabilité du

système où le precodage ZF est utilisé. L’ordonnancement des utilisateurs est

fait de maniere centralsé, où l’emitteur sélectionne les utilisateurs en fonction

des longueurs de files d’attente. Cependant, le fait que les ressources radio -par

exemple le temps et/ou spectre sont nécessaires pour la SB pour obtenir des

informations d’état du canal n’est pas pris en compte dans ces travaux.

Dans ce chapitre, nous considérons un système de liaison descendante MISO

où la BS acquiert le CSI des utilisateurs en mode TDD, afin d’exploiter la

réciprocité du canal. Il ya deux façons pour cela : (i) les utilisateurs estiment

leur état du canal actuelle et transmettent le CSI de manière TDMA et (ii)

les utilisateurs envoient des séquences de formation dans la liaison montante de

sorte que la SB puisse estimer les canaux (les canaux de liaison montantes et

de liaison descendantes sont les mêmes en raison de la réciprocité). Ce dernier

système est mis en œuvre en utilisant des séquences orthogonales entre les util-

isateurs, afin que la SB puisse décoder chaque transmission sans erreur. La
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longueur de ces séquences doit être proportionnelle au nombre d’utilisateurs

qui forment en même temps dans la liaison montante. La formation de la li-

aison montante est considérée comme la stratégie la plus prometteuse pour les

systèmes MIMO, puisque la longueur des séquences de formation ne dépend pas

du nombre d’antennes à la SB. Toutefois, en raison de l’exigence d’orthogonalité,

leur longueur est proportionnelle au nombre d’utilisateurs qui exécutent la for-

mation de la liaison montante. Cela signifie que dans un système avec beau-

coup d’utilisateurs, tous les utilisateurs devraient pas être choisis pour former

en même temps, donc les utilisateurs qui devront former à chaque emplacement

doivent également être sélectionnés. Le modèle de système de la formation en

TDD de liaison montante a également été examiné dans [49], mais ils ne pren-

nent pas en compte cette dernière observation. Dans cette partie de la thèse,

nous nous concentrons sur le compromis entre avoir une formation de nombreux

utilisateurs (afin d’avoir des données transmises aux nombreux utilisateurs en

même temps) et ayant beaucoup de temps de la fente dédiée à la transmission

de données (ce qui signifie avoir peu d’utilisateurs actifs). Pour simplifier les

modèles, nous nous concentrons sur le cas ou l’émetteur utilise du précodage ZF.

En outre, nous supposerons que tous les utilisateurs qui effectuent une formation

de liaison montante dans une fente sont servis. Il s’agit d’une hypothèse utilisée

assez souvent dans la littérature concernant les canaux de diffusion MIMO; dans

ce contexte, la SB doit sélectionner l’ensemble des ” utilisateurs actifs ” à chaque

intervalle de temps.

Une approche naturelle serait de laisser la SB seule décider quels utilisa-

teurs servir dans chaque emplacement. C’est l’approche utilisée dans [48] et

des normes en vigueur (par exemple LTE [11]), où la SB demande explicite-

ment à certains utilisateurs leur CSI . Dans le cadre où les processus trafic/files

d’attente sont considérés, l’ordonnancement des utilisateurs peut être fait sur la

base des statistiques des canaux et de leur état de la longueur de la file d’attente

à chaque emplacement. Malheureusement certains utilisateurs peuvent avoir des

pauvres états de canal actuelles et certains utilisateurs avec de bons cannaux ne

peuvent pas être ordonnés, ce qui réduit les performances du système. D’autre

part, chaque utilisateur connait son état du canal actuel, et donc les politiques de

rétroaction décentralisés où les utilisateurs décident en fonction de leurs états de

canal actuels et peuvent améliorer les performances du système. Cela doit être

fait correctement comme les politiques décentralisées ont besoin d’informations

de signalisation supplémentaire qui peut diminuer considérablement la perfor-

mance.

Il est à noter que il y a des travaux récentes [50], [51] qui ont montré que,
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dans un réseau avec une couche physique simple, des algorithmes décentralisés

comme la récemment proposé ”fast CSMA” [52] peut obtenir de bonnes per-

formances. En outre, il a été montré dans des travaux antérieurs [53, 54] que

des informations mettant à jour l’état du canal, qui est connu aux récepteurs,

est plus important que l’information de longueur de file d’attente précise, au

moins autant que la stabilité est concerné. Le scénario envisagé dans le présent

chapitre est plus compliquée par rapport aux travaux récents sur l’ ordonnance-

ment décentralisé. En fait, dans les problèmes d’ordonnancement classiques

(par exemple OFDMA ou TDMA ), un utilisateur peut directement estimer son

débit en utilisant l’état actuel du canal. Par contre, dans les systèmes MIMO

multi- utilisateur, le débit de chaque utilisateur dépend des états de canal de

tous les utilisateurs et alors l’utilisateur ne peut pas simplement estimer son

débit binaire en utilisant l’état actuel du canal, ce qui complique fortement

l’analyse.

Dans ce chapitre de la thèse, nous examinons trois approches sur le problème

de sélection de l’utilisateur. La première est une approche centralisée, dans le

sens que l’émetteur décide quels utilisateurs seront actives à chaque emplace-

ment. La seconde approche, que nous appelons comme ”décentralisée”, est

de laisser les utilisateurs décider lesquels entre eux devraient être actifs. Plus

précisément, dans ce cas, l’émetteur précise le nombre d’utilisateurs à planifier

et permet aux utilisateurs de décider d’une manière décentralisée qui seront

ceux qui seront effectivement se programmés dans la fente . Combiné avec

certains (rares) informations de signalisation concernant les utilisateurs queue

longueurs de la BS, nous montrons que la combinaison correctement les ap-

proches décentralisées et centralisées conduit à une région de stabilité plus

réalisable que l’utilisation de l’approche centralisée seul .

Les épreuves pour les dérivations des régions de stabilité sont effectuées

sur la base de la méthode de démontrer d’abord que la région indiquée est

réalisable par une règle qui ne tient pas compte de la longueur des files d’attente,

prouver, à l’aide du critère Foster- Lyapunov, que la politique proposée atteint

au moins aussi grande région comme la première règle et prouver qu’il n’y a pas

de politique qui peut fournir une région de stabilité plus grande que la région

indiquée. Cette méthode a été utilisée pour la première fois dans [13] puis dans

de nombreux autres ouvrages traitant des problèmes d’ordonnancement et de

la stabilité. Voir, par exemple , [?] et [55] ,[56], où les asymptotiques fluide du

système sont examinés .

Les traveaux de ce chapitre ont donné lieu à une publication acceptée et une

publication en cours de soumission dans les congrès internationaux
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(C5) A. Destounis, M. Assaad, M. Debbah, B. Sayadi, ”Traffic-Aware Training

and Scheduling for the 2-user MISO Broadcast Channel”, Proc. IEEE

International Symposeum on Information Theory (ISIT), Honolulu, HI,

USA, 2014

(C6) A. Destounis, M. Assaad, M. Debbah, B. Sayadi, ”A Dynamic Threshold-

Based Approach for Active User Selection in Wireless MISO Downlink

Systems”, en cours de soumission

Une publication journal basée sur les traveaux et résultats du chapitre est

egalement soumise

(J2) A. Destounis, M. Assaad, M. Debbah, B. Sayadi, ”Traffic-Aware Training

and Scheduling for Wireless MISO Downlink Systems”, IEEE Transac-

tions on Information Theory, soumise

Feedback et Ordonnancement des Utilisateurs

Dans ce chapitre, nous abordons le problème de la rétroaction et l’ordonnancement

dans les systèmes de liaison descendante multi-utilisateurs utilisant des canaux

parallèles pour servir les utilisateurs. Ce paramètre correspond à des systèmes

simples cellules de OFDMA et/ou les systèmes avec plusieurs antennes aux

stations de base où la formation des faisceaux orthonormale est utilisée. Les

deux régimes sont effectivement mis en œuvre dans les normes LTE [11] et peu-

vent offrir une augmentation substantielle de la performance du système. Afin

d’exploiter pleinement le potentiel de ces techniques, la connaissance des états

de canaux des utilisateurs est nécessaire. Cependant, à la fin, un seul utilisateur

sera prévu dans chaque canal. Partant de cette observation, d’un système à un

seul canal où l’objectif est de maximiser l’efficacité spectrale, les auteurs de [57]

montrent que ce n’est pas vraiment nécessaire que tous les utilisateurs signal-

lent leurs états des canaux, et ils proposent une politique basée sur un seuil qui

peut réduire le montant de rétroaction en atteignant tous les avantages de la

diversité multi-utilisateur. D’autres idées pour limiter le montant de rétroaction

requis comprennent du regroupement des sous-porteuses et envoi d’un seul CQI

(indicateur de la qualité du canal) à ces derniers [58] et/ou déclarer les canaux

les plus forts de chaque utilisateur [58], [59]. En outre, certains régimes fondés

sur l’accès aléatoire en utilisant un canal de collision pour les informations, par

exemple [60], [61], [62] ont été proposés, en réglant les probabilités de transmis-

sion et les seuils d’une manière appropriée. Cependant, l’objectif principal de
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ces travaux est le taux d’efficacité spectrale / somme et ils ne prennent pas en

compte les processus de circulation entrantes des utilisateurs .

En ce qui concerne l’effet de rétroaction sur le rendement de la stabilité, les

auteurs de [56] ont étudié le problème de décision qui permet de définir les sous-

ensemble d’utilisateurs pour acquérir leur information du canal, tandis que les

auteurs de [54] ont enquêté sur la région de stabilité possible dans un système

multi-canal avec mesures de canal peu fréquents. Dans ces travaux les statis-

tiques des canaux sont supposées connues. En outre, dans [52], une stratégie

à la base de CSMA est présentée pour transmettre les informations d’état de

canal et dans [63] les auteurs élaborent un système de rétroaction pour une li-

aison descendante MIMO multi-utilisateur en utilisant la formation de faisceau

orthonormale. Dans ces cas, toutefois, les auteurs ne prennent pas en compte le

fait que la station de base doit attendre une certaine durée dans la fente avant

de pouvoir utiliser la rétroaction. En supposant les statistiques du canal connus,

les auteurs de [64] proposent un système de rétroaction heuristique avec deux

fentes de rétroaction fondées sur l’idée de planification maximale quantile. En

plus, dans [65] il est démontré que pour un système de L transporteurs avec

le mode FDD pour les informations, la station de base doit acquérir au moins

Θ(L) réalisations de canal dans chaque intervalle de temps afin d’obtenir de

très près de la plus grande région de stabilité possible. Dans [66], un mode

de rétroaction TDD est utilisé : la station de base demande aux utilisateurs

d’envoyer les états de leur canal mais chaque procédure est centralisée et prend

une partie de la tranche de temps. Sur la base de la théorie de l’ arrêt optimal

et en supposant que les distributions des gains de canal sont connus dans la

station de base, les auteurs dérivent les propriétés générales de la politique cen-

tralisée de palpage optimale et le caractérisent complètement dans certains cas

particuliers. Enfin , pour le même modèle, les auteurs de [67, 68] ont récemment

proposé un schéma simple de rétroaction pour un système à un seul canal. Ce

système, appelé Ordonnancement et Rétroaction sélective (SFF), fixe comme

seuil le taux d’utilisateur avec une longueur maximale de la file d’attente et ne

nécessitant aucune connaissance de canal et statistique du trafic. Il est montré

à garantir une plus grande région de la stabilité d’un régime où tous les canaux

sont sondés . Dans les systèmes multi-porteuses , le problème de palpage est

plus difficile car un utilisateur peut être prévue sur un sous-ensemble de canaux

et donc chaque utilisateur a besoin pour nourrir le dos CQI d’un sous-ensemble

(aussi petit que possible) de ses châınes . Appliquant directement les régimes

mentionnés ci-dessus pour les systèmes multi-porteuses peut pas aboutir à une

bonne région de stabilité parce que le nombre d’utilisateurs d’alimentation de
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retour sur chaque canal peut être encore grande . Cela pose un problème plus

que le nombre d’utilisateurs dans la cellule augmente .

Dans ce chapitre, nous nous concentrons sur la liaison descendante d’un

système multicanal de la cellule unique avec retour en mode TDD. En fait, dans

le partie précédant nous avons déjà montré que si on suppose qu’un système

de contention peut être réalisée à temps continu avec des signaux de contention

très courts, une très grande partie de la région de la stabilité de l’idéal peut être

obtenue. Cependant, ces hypothèses peuvent être assez fortes en pratique. In

cette partie de la thèse, nous proposons deux politiques à la fois de qui un seuil

pour le taux réalisable du canal est ajusté par la station de base en fonction

des longueurs de file d’attente des utilisateurs, dans un manière similaire à [68].

Nous examinons deux approches : dans la première, un utilisateur dont le taux

réalisable dépasse le seuil nourrit de retour avec une probabilité bien définie et

dans le second de chaque utilisateur dont le taux réalisable est au-dessus du

seuil alimente en arrière, mais la station de base peut décider quand arrêter la

procédure de retour . Nous illustrons à la fois par des simulations et des analyses

que ces systèmes surpassent le régime de SSF de [68] en termes de région de

stabilité possible.

Les traveaux de ce chapitre ont donné lieu à deux publications dans des

congrès internationaux:

(C3) A. Destounis, M. Assaad, M. Debbah, B. Sayadi, ”A Randomized Probing

Scheme for Increasing the Stability Region of Multicarrier Systems”, Proc.

IEEE International Symposeum on Information Theory (ISIT), Istanbul,

Turkey, 2013

(C4) A. Destounis, M. Assaad, M. Debbah, B. Sayadi, ”A traffic aware joint

CQI feedback and scheduling scheme for multichannel downlink systems

in TDD feedback mode”, Proc. 24rth IEEE International Symposeum on

Personal, indoor and Mobile Radio Communications (PIMRC), London,

United Kingdom, 2013

En outre, ils ont lieu à deux applications des brevets Européennes par

Alcatel-Lucent:

(P1) A. Destounis, B. Sayadi, M. Debbah, M. Assaad, ”Method and device for

transmitting buffered data from a base station of a wireless communica-

tion network to user equipments”, 2013, European Patent, 813576, filed

12/04/2013, Alcatel-Lucent

(P2) A. Destounis, B. Sayadi, M. Debbah, M. Assaad, ”Control of a Downlink
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Radio Frequency Transmission from a Multi-Channel base Station”, 2013,

European Patent, 13305852.9, filed 21/06/2013, Alcatel-Lucent

Conclusions et Perspectives

En ce qui concerne le canal d’interférence, nous avons démontré que la modélisation

asymptotique ”heavy traffic” peut être un outil pour obtenir des directives utiles

pour obtenir des algorithmes de contrôle de précodage et puissance. Une ex-

tension immédiate de ces travaux est le cas où les états des canaux sont reçus

avec des erreurs à chaque émetteur: si les statistiques des erreurs sont connus ,

nous pouvons arriver à un modèle similaire où la moyenne sera également être

donné au cours des processus d’estimation de canal (ce qui peut nécessiter des

calculs plus lourdes dans le modèle de système). En outre, le cas où chaque

émetteur sert plusieurs récepteurs dans une manière TDMA, où la séquence des

utilisateurs qui sont servis dans chaque fente est pré- spécifié et reste constante

(ou change très lentement) pendant le fonctionnement du système pourra être

traité en modifiant légèrement notre modèle. Cependant, étendre davantage

les résultats en utilisant ordonnancement opportuniste et/ou en fonction de file

d’attente n’est pas simple et l’analyse doit être plus élaborée. Une autre exten-

sion possible serait de trouver le contrôle de précodage qui minimise la puissance

afin d’atteindre les contraintes de dépassement de capacité des file d’attente. Le

cours de l’action ici serait de (i) trouver la répartition de l’équilibre avec la puis-

sance moyenne minimale et (ii) résoudre le problème du contrôle de l’ équation

différentielle stochastique en essayant de minimiser la puissance de réserve tout

en satisfaisant les contraintes. La théorème de convergence pour la modèle

asymptotique qu’ on a prouvé dans cette thèse est valide aussi dans ce cas, mais

avec des expressions plus complexes. Le problème de contrôle résultant peut être

soluble que numériquement, comme le découplage de l’ équation différentielle

stochastique multidimensionnelle ne sera pas possible. Enfin, on pourrait utiliser

des files d’attente dans les récepteurs à la place des émetteurs, afin de modéliser

le streaming vidéo, et d’utiliser une approche asymptotique similaire pour la

contrôle de precodage. Un travail récent [69] est dans cet esprit .

La conclusion principale des travaux concernant la sélection des utilisateurs

actifs dans les systèmes de diffusion MISO et le feedback et ordonnancement

des utilisateurs est que les utilisateurs peuvent connaitre leur état de canal

instantané, qui ensuite peut être utilisé dans les systèmes de communications

radio futurs pour en tirer profit. Plus précisément, nous avons montré dans

le chapitre 4 que, en supposant que les procédures de contention idéalisées,
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à l’aide d’une politique où la station de base signale le nombre d’utilisateurs

d’être sélectionné et les utilisateurs décident de manière décentralisée à base

de conflit qui va participer à l’ordonnance peut agrandir la zone de stabilité

d’un système MISO par rapport à la sélection des utilisateurs centralisée. En

outre, pour une antenne unique à l’émetteur, une politique décentralisée basée

sur la contention peut atteindre une grande fraction de la région de stabilité

du système idéal (c’est-a-dire la région du stabilité d’un système dans le cas ou

toutes les réalisations des canaux des utilisateurs sont connues a l’émetteur sans

cout). Même dans les cas où minislots doivent être utilisés pour le feedback, la

connaissance des utilisateurs de leurs états de canal peut être exploité par une

stratégie où l’émetteur choisi des seuils dynamiques pour les états des gain de

canaux. Ces seuils sont une fonction de l’état des fils d’attente des utilisateurs.

En plus de l’interprétation que le système peut prendre en charge plus de la

demande de trafic en temps non réel, l’extension de la zone de stabilité implique

la réalisation de plus grande utilité si une approche d’optimisation fondée sur

l’utilité doit être utilisé. Plus précisément, définir une fonction d’utilité

U(r̄) =

K∑
k=1

Uk(r̄k),

ou r̄k est est la moyenne à long terme de taux de l’utilisateur k et Uk(x) est

une fonction concave qui est connue a l’émetteur. Dans ce cas, on démontrer

que le vecteur optimal de taux à long terme réside dans la limite de la zone

de stabilité, voir par exemple [15], donc l’élargissement de la zone de stabilité

conduit à plus grande utilité optimale. En outre, au moins pour les systèmes

de liaison descendante avec une cellule unique, un procédé général de l’ optimi-

sation d’utilité consiste à créer des files d’attente virtuelles qk(t) avec processus

d’arrivée contrôlée de sorte que

a(t) = arg max
x∈[0,A]K

{
V U(x)−

K∑
k=1

xkqk(t)

}
,

ou V > 0 est une constante. L’ordonnancement doit être telle que ces files

d’attente virtuelles sont stables. On peut alors montrer que l’utilité est atteint

dansO(1/V ) de l’ optimal, et la somme moyenne des longueurs des files d’attente

sont O(V ) [15]. Cette théorie générale a été appliquée pour l’ordonnancement

des utilisateurs et l’allocation des ressources dans les réseaux sans fil avec des

résultats prometteurs, voir par exemple [70], [16], [17]. En ce qui concerne

nos résultats, nous pouvons appliquer les mêmes techniques proposées dans les

chapitres 4 et 5 utilisant les files d’attente virtuelles. En outre, sur les travaux

concernant les systèmes de diffusion MISO, on peut utiliser le cadre général de
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l’optimisation des réseaux de [15] et considérer l’aspect de l’énergie consommée

par les utilisateurs pour l’estimation des canaux dans la station de base, et min-

imiser cette énergie avec la contrainte du stabilité du système, ou examiner le

problème de la stabilité/maximisation de l’utilité sous contraintes sur la puis-

sance moyenne dépensés pour l’estimation. Une motivation pour ce genre de

considérations est de prolonger la durée de vie de la batterie des utilisateurs.

Comme la connaissance du canal de l’État devient encore plus important dans ce

cas, notre intuition est que les politiques de sélection d’utilisateurs décentralisés

aient des performance encore meilleures que celles centralisées. Extension des

résultats de la thèse long de ces lignes est l’objet de travaux en cours:

(J3) A. Destounis, M. Assaad, M. Debbah, B. Sayadi, ”On User Selection for

Network Utility Optimization in Wireless MISO Downlink Systems”,en

cours de préparation

Travaux Futurs

Les résultats de la présente thèse concernent essentiellement le comportement

des files d’attente dans le systèmes sans fil. Toutefois, une mesure plus im-

portante dans la pratique est le retard/temps subi par les données en attente

dans les files d’attente jusqu’à ce qu’ils soient transmis. Alors que des retards

et des longueurs de file d’attente sont des quantités liées (par exemple, le délai

moyen est égal à la longueur de la file d’attente moyenne divisé par le taux

d’arrivée par la loi de Little et intuitivement on peut supposer que les paquets

dans une longue file d’attente connâıtront des retards importants), l’analyse

des délais exacte est connu pour être beaucoup plus difficile que l’analyse de

la longueur de la file d’attente. Il serait intéressant de voir comment les algo-

rithmes d’ordonnancement à base de retard effectuent, par exemple, dans l’esprit

des travaux récents [71]. D’un autre coté, on peut regarder dans le régime

des grandes déviations afin d’obtenir plus d’informations sur le comportement

du système. Ce genre de comportement asymptotique a été aussi largement

utilisé dans l’analyse d’algorithmes d’ordonnancement dans les systèmes de files

d’attente en général et dans les systèmes sans fil en particulier (voir par exemple

[72, 73] pour le second), et les travaux récents [74] et [63] étudient la perfor-

mance des algorithmes d’ordonnancement et rétroaction de ce régime. De plus,

on peut combiner ces approches avec la théorie de la bande passante efficace et

la capacité effective [75] pour obtenir une certaine estimation des distributions

de retard dans les fils d’attente.
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Les approches ci-dessus et les schémas proposés dans cette thèse sont con-

traint par la suppression des données dans les files d’attente. Cependant, la

plupart des applications peuvent tolérer une certaine perte de données, mais

ont des contraintes strictes sur les délais. Les travaux récents sur ce sujet sont

notamment [76], [77] pour les réseaux sans fil avec une couche physique rela-

tivement simple et [78] pour les réseaux câblés avec un routage fixe. Il serait

intéressant d’examiner les problèmes de ce genre dans les réseaux à petites cel-

lules et/ou des systèmes MIMO massives. Dans le premier, les théories comme

l’apprentissage de la machine ou des systèmes de contrôle décentralisés/réseau

peut être essentiel pour surmonter la backhaul de contrôle limité reliant les cel-

lules. Dans le dernier, car il y aura de nombreux utilisateurs dans la cellule , la

sélection de l’utilisateur est un problème important ( les durées de tranche de

temps et des temps de cohérence sont donnés ) et il sera intéressant de voir si

on peut tirer utiliser les résultats de cette thèse dans le cas ou les utilisateurs

sont sensibles aux délais.

Enfin, un aspect qui n’est pas pris en compte dans cette thèse est le fait que,

dans un réseau, les utilisateurs arrivent et partent, voir par exemple [79] et les

références qui y sont. Par exemple, un utilisateur peut arriver dans le réseau,

demander un fichier et partir quand ce transfert est achevé. L’ordonnancement

et l’allocation de ressources dans ce cadre posent plus de problèmes, car les

algorithmes du type ”MaxWeight” ne sont plus optimaux [80] dans le cadre de

stabilité du réseau. Ce réglage peut être appliqué pour fournir une évaluation de

la performance robuste des approches récentes dans ordonnancement proactif

[81] et la mise en cache dans les petites stations de base cellulaire [82], est

proposée afin de faire un usage plus efficace de la liaison terrestre limitée. En

outre, ces modèles avec les utilisateurs qui arrivent et partent dans le réseau

peuvent être utilisés pour fournir des lignes directrices sur ce que les fichiers de

prélecture, où et quand.
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Chapter 1

Introduction

1.1 Motivation

Today’s wireless and cellular networks experience an increase in the data de-

mands of their users, and this is expected to be the trend for the next years. It

is a result of more and more demand for data and video streaming applications,

due to the proliferation of devices like smartphones and tablets. The following

three ways of coping with this challenge are seen as the most prominent:

� Small Cell Networks: Small Cell Networks (SCNs) are dense wireless

networks with cells of relatively small radius and low-power Base Stations

(BSs) with aggressive frequency reuse [1]. The main idea is here to cap-

italize on the fact that network densification can provide better coverage

and frequency reuse one can provide overall better capacity. On the other

hand, having many BSs operating in the same frequency very close natu-

rally calls for techniques for interference mitigation. Cooperation between

the base stations of a cellular network has been shown to mitigate the

intercell interference and increase spectral efficiency [2], [3]. However in

practice this is not always feasible due to limitations in backhaul capacity.

In addition, in practical cases user request some traffic from the core net-

work, which arrives with random patterns, and they have requirements in

terms of Quality of Service (QoS) (such as delays, data losses etc.). Thus,

a good approach is to make the resource allocation at the base stations

adapted to the real-time traffic characteristics and queue states. For ex-

ample, a base station whose users have little or no data waiting to be sent

can transmit with very low power for some time and avoid causing inter-

ference to neighbouring base stations with more pressing user demands.
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1.1. Motivation

This seems a more promising approach instead of focusing (only) on the

traditional metrics of coverage and spectral efficiency.

� Multiple antennas at the base stations: The benefits of using mul-

tiple antennas in wireless systems are now very well understood, both in

single- and multi- user systems [4, 5], mainly from a spectral efficiency

point of view. In a SCN , the BS can use multiple antennas to manage in-

terference more effectively [3]. In the single cell setting, the use of multiple

antennas allows the BS to serve multiple users in the same time-frequency

block, thus enhancing the system’s performance. In order to fully realize

the potential of multiuser Multiple-Input Multiple-Output (MIMO) , how-

ever, accurate knowledge of the channel states of the users is necessary.

The most prominent way to do this is considered to be training, in Time-

Division Duplexing (TDD) mode, by the users, meaning that the users

send orthogonal sequences for the base station to estimate their channels.

This technique exploits the channel reciprocity and has the benefit that

the length of the training sequences is independent of the number of an-

tennas. This observation has led to the promising concept of ”Massive

MIMO ” , where the base stations have much more antennas than users

[6, 7]. However, the length of the pilot sequences does scale proportionally

with the number of active users. Since the coherence time (or the length

of the slot used by the protocol) is limited, having many active users in a

slot means that the time devoted to actually transmitting data is small.

Therefore, user selection has to be done dynamically, taking into account

this overhead and the traffic dynamics and current state of the buffers of

each user.

� Scheduling and use of parallel channels: Exploiting the temporal

variations of the fading channels (a concept called ”multiuser diversity”)

to increase the spectral efficiency by selecting users with good channel

conditions [8] is also very well understood in multiuser systems. This

idea, referred to as ”opportunistic scheduling”, can provide high spectral

efficiency and also fairness between the users [9], and has been used in 3G

systems already [10]. Creating parallel channels in frequency, via Orthog-

onal Frequency-Division Multiplexing Access (OFDMA) modulations, or

space, via the use of multiple antennas with orthonormal beamforming,

can further enhance this concept. In fact both OFDMA and MIMO with

orthonormal beamforming are parts of the latest Long Term Evolution

(LTE) and LTE -Advanced standards for cellular communications [11].
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1.2. Overview of the Manuscript

Contrary to the other two cases (namely MIMO and reducing cell size),

traffic/queueing- aware scheduling has been extensively studied [12] and

remains a very active research topic, especially after the seminal work [13]

introducing MaxWeight scheduling. However, most related works assume

perfect Channel State Information (CSI) in the BS . This can be acquired

only by feedback from the receivers. This needs time (in TDD systems)

or frequency (in Frequency-Division Duplexing (FDD) systems) resources,

which are limited and could have been used for transmission. The feed-

back overhead is even bigger in the case of systems with parallel channels,

leading to an exploration-exploitation tradeoff between using resources

to acquire information about many users (thus selecting users with good

channels to transmit to) and having less users feeding back, thus reducing

the overhead and using more resources for actual transmission.

Motivated by the above considerations, the focus of the thesis is on the inter-

actions between the physical layer and Media Access Control (MAC) layer. More

precisely, we study how physical layer resource allocation (power control, pre-

coding, scheduling) and feedback overheads affect the MAC layer performance

of the system. The latter is captured by the behaviour of the queues in the BSs

where data for users are stored while waiting for transmission. Cross-layer radio

resource allocation algorithms to improve this performance are proposed. Two

performance measures are examined, namely (i) the probability that the queue

lengths exceed a certain threshold and (ii)the stability region of the system,

which in practice means the set of users’ demands in terms of traffic arrival

rates that the system can support while the users have bounded delays. The

relevance of the first objective is to control the data loss from queue overflows

and/or the delay resulting from queueing. The second objective is relevant for

data users, since enlarging the stability region implies, in a sense, that the users

can request downloads of a higher volume. On the other hand, the methods used

for enlarging the stability region of the system can be also used in a straight-

forward manner for enhancing the performance of the system when the latter is

measured as a function of the average rate per user [14, 15]. These methods have

been employed in recent works [16, 17] concerning video streaming in wireless

network with promising results.

1.2 Overview of the Manuscript

In Chapter 2 of the thesis, we present an overview of the main mathematical

tools used. More concretely, a brief overview and basic results and concepts on

3



1.2. Overview of the Manuscript

heavy traffic asymptotic models and stochastic stability of queuing networks are

given.

Chapter 3 deals with the problem of power control and precoding in transmitter-

receiver pairs such that the probability of each queue length exceeding a specific

threshold is fixed below a desired value. This model can correspond to satis-

fying QoS requirements of users with dynamic traffic arrivals in a network of

small cells. Due to the complexity of the original problem, we use heavy traffic

asymptotics to obtain an analytically tractable formulation. Informally, these

are obtained by examining the network when the arrival rates are very close

to the service rates. These kind of asymptotics have been extensively used in

queueing theory for analysis and control of networks [26] and can give useful

and relevant results and guidelines for practical systems, even in lower load con-

ditions. One main contribution of Chapter 3 is the derivation of the Stochastic

Differential Equation (SDE) that describes the network with the topology of the

Multiple-Input Single-Output (MISO) or Single-Input Single-Output (SISO) in-

terference channel in the heavy traffic limit. The other contribution is the use

of this asymptotic model to propose algorithms and closed form expressions for

a dynamic precoding and power control policy so that the QoS constraints are

satisfied. Simulation results illustrate that, even obtained under some asymp-

totic model, these policies can indeed be effective in practice, also under the

very relevant cases of each transmitter having access only to local Signal-to-

Interference-plus-Noise Ratio (SINR) information and limited backhaul used

for coordination between transmitters.

Chapter 4 deals with the problem of active user selection in MISO - OFDMA

wireless systems such that the system’s stability region is as big as possible (that

is, the system can satisfy as many traffic demands as possible while keeping

finite delays). We focus on a system in a rich scattering environment (Rayleigh

fading) where Zero-Forcing (ZF) precoding is used to serve all active users in

every slot and the training is used for the base station to acquire the channel

state information of the users. We consider the centralized policy where the

BS selects the users based on their queue lengths and their channel statistics,

and a decentralized one where the BS periodically broadcasts the number of

users to be scheduled and suitable quantized queue lengths of the users. In the

latter, the users contend to get scheduled in a Carrier Sense Multiple Access

(CSMA) - based manner, with waiting times calculated based on their channel

realization and signalling from the BS . We show that combining these two

policies (i.e. dynamically switching between them) can enlarge the stability

region of the system with respect to the centralized policy alone. The stability
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regions are calculated for the general setting and illustrated in the case of the 2-

user system. In addition, we show that, in the case of single antenna transmitter,

using the decentralized policy alone can achieve a very big fraction of the region

achievable in the ideal case with full CSI at no cost, without the need of knowing

the channel statistics and for arbitrary channel distributions. The results here

suggest that letting the users participate more actively in the schedule decision

is something that should be considered in next generation systems.

Chapter 5 deals with the problem of joint feedback and scheduling in down-

link systems employing parallel channels to serve the users. Contrary to the

Section of Chapter 4 for the single - antenna BS , we do not make the assump-

tion of continuous time model for contention. Channel Quality Indicator (CQI)

feedback is done in TDD mode and the focus is in finding a balance between

acquiring feedback from many users and exploiting current feedback to enlarge

the stability region of the system as much as possible. Based on the idea that

a threshold on the supported rate is set dynamically every time slot at each

channel, we propose two schemes: one where a user decides at random with

some properly defined probability to feed back or not and another where the

BS decides when to stop the feedback procedure. These schemes are proven to

outperform existing works and work well in cases where the users and BS do

not have even statistical information of the channels. This chapter also suggests

that the fact that the users know their channels at each slot should be further

leveraged in future wireless system to make more effective use of the available

resources.

Finally, Chapter 6 concludes the thesis and presents possible extensions of

the results and future research directions.
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Chapter 2

Mathematical background

This Chapter presents a short overview of key mathematical concepts and re-

sults that are used throughout the thesis. To begin with, define a discrete time

system of K queues (users), with qk(t) the length of each queue at the begin-

ning of timeslot t, ak(t) the corresponding traffic process (i.e. the amount of

data coming into the queue at timeslot t) and µk(t) the service process, that

is the amount of data that can get transmitted at timeslot t. Note that in

the context of wireless communications, the latter depends on the state of the

wireless channels at t and the scheduling and resource allocation algorithms em-

ployed. In addition, the real amount of data transmitted to user k at timeslot t

is min{qk(t), µk(t)}, since the service offered can be greater than the amount of

data already in the queue (e.g. in the case of a user having a very good chan-

nel). For the rest of the thesis, queues will be measured in bits and arrival and

service processes in bits per timeslot unless specified otherwise. In general, the

arrival processes can be correlated across time but they are independent across

users and ergodic, with a finite mean arrival rate λk and variance σ2
k. Since this

thesis is devoted to study the downlink of wireless systems, traffic to each queue

is single hop, i.e. the data is transmitted from queue k directly to the intended

receiver and no routing/relaying are examined.

2.1 Functional Limit Theorems

In this section we present some basic functional limit theorems, namely the

functional law of large numbers and the functional central limit theorem. They

can be seen as analogues of the law of large numbers and central limit theorem

in stochastic processes. For the first we have:
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2.1. Functional Limit Theorems

Theorem 2.1.1 (Functional Law of Large Numbers). Assume x(τ), τ = 0, 1, 2, ...

is a sequence of i.i.d. random variables with mean µ. Then

1

n

bntc∑
τ=0

x(τ)→ µt

with probability 1.

An important process in the following is the Brownian Motion, or Wiener

process. It is defined as follows:

Definition 2.1.1 (Standard Wiener process). A continuous time stochastic

process w(t) is called Standard Wiener process (or standard Brownian motion)

if it satisfies the following conditions:

� Its sample paths are continuous with probability 1

� w(0) = 0

� Its increments are mutually independent

� w(t)− w(s) ∼ N (0, t− s), ∀0 ≤ s < t <∞

For proof of existence and constructions of such a process refer to e.g.[83].

The Wiener process is used for the analogue of Central Limit Theorem in the

case of stochastic processes:

Theorem 2.1.2 (Functional Central Limit Theorem). Assume x(τ), τ = 0, 1, 2, ...

is a sequence of i.i.d. random variables with mean µ and variance σ2. Then 1

1√
n

bntc∑
τ=0

x(τ)− µ
σ

w−→ w(t),

where w(t) is a standard Wiener process .

The functional laws presented above and their extensions have been used

to derive asymptotic models of queuing networks for performance evaluation

and optimization, see e.g. [84]. More specifically, application of the Functional

Law of Large Numbers usually leads to an asymptotic model that depends on

the first order statistics of the system (i.e. mean arrival and service rates). In

this case an Ordinary Differential Equation describes the evolution of the queue

lengths. This method has been heavily used for stability analysis of networks,

beginning with the work in [85] and applied to wireless networks with scheduling

in many works, e.g. [55], [53]. In addition, control policies for the network can

1The notation
w−→ denotes weak convergence

9



2.2. Stability of Queuing Systems

be derived from such models [86]. On the other hand, asymptotics based on the

Functional Central Limit Theorem lead to the evolutions of the queue lengths

being described by SDEs [83, 87], constrained in the nonnegative orthant. The

advantage of these models is that, in addition to the mean behaviour of the

system, they capture its stochastic behaviour as well, keeping the second order

statistics of the arrival and service (and routing if applicable) processes. The

usual interpretation of these models is that they describe a network where the

arrival rates at the queues 2 are pushed very close to the corresponding service

rates, with the gap closing down as O(1/
√
n) 3, where n → ∞ is the scaling

parameter in the Functional Central Limit Theorem. Due to this interpreta-

tion, they are often referred to as ”Heavy Traffic Approximations”. This kind

of asymptotic models has been extensively used mainly for performance evalu-

ation of queuing networks due to its ability to capture the stochastic behaviour

while actually simplifying the system model; in practice it is shown that the

asymptotic models describe the original systems rather accurately, even in the

case where the system is not very heavily loaded.

2.2 Stability of Queuing Systems

Stability, which is the focus of Chapters 4 and 5, is a very important aspect of

queuing systems. Formally, its definition is as follows:

Definition 2.2.1 (Strong Stability). A system is said to be strongly stable if

lim sup
T→∞

1

T

T−1∑
t=0

E{qk(t)} <∞,∀k ∈ {1, ..,K}

Intuitively stability implies that the mean queue length of every queue in the

system is finite, further implying finite delays in single hop systems. The figure

of interest in this thesis is strong stability, therefore in the remainder of the

manuscript ”stable” will imply ”strongly stable” unless stated otherwise. If the

arrivals and service rate processes are such that the Markov chain is irreducible

and aperiodic with a single communicating class, strong stability is equivalent

to positive recurrence of the chain [15].

The above definition holds for a fixed mean arrival rates and resource allo-

cation policy, and leads to the concept of a stability region.

2Or at the queues with the heaviest load in terms of multi-hop networks
3Another similar interpretation is that the load of the queue grows as ρ = 1− b/

√
n for a

constant b > 0
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2.2. Stability of Queuing Systems

Definition 2.2.2 (Stability Region). The stability region Λ of a resource allo-

cation policy is defined as the set of vectors of mean arrival rates for which the

system is stable under this policy. Furthermore, an algorithm that achieves the

maximum possible stability region is called throughput optimal.

For the rest of the thesis, when describing stability regions we will mean that

the system is stable in the interior of the calculated region. The behaviour on

the boundary is not examined - usually for the boundary points the system is

stable in at least a weaker sense, i.e. mean rate stable [15]. In short, and rather

informally, a system is stable when the mean service rate of each user is bigger

than the mean arrival rate of the corresponding traffic process. In the case of full

channel knowledge, it is known that a throughput optimal algorithm is the so-

called MaxWeight [13], which, in the case of a single-hop system, maximizes the

quantity
∑K
k=1 qk(t)µk(t) (see also [88]). Other throughput optimal algorithms

can be obtained using the same concept but with different weights (appropriate

functions of the queue lengths and/or delays experiences by the data unit at the

head of the queues) in each service rate [12, 55, 27, 28, 53, 89].

One basic tool used to prove stability of a system comes from the general

theory of stability of stochastic systems [90] and it is based on methods including

Lyapunov functions. The following definitions are in order:

Definition 2.2.3 (Lyapunov function). A function V : RK → R is said to be

a Lyapunov function if it has the following properties

� V (x) ≥ 0,∀x ∈ RK

� It is non-decreasing in any of its arguments

� V (x)→ +∞, as ||x|| → +∞

Definition 2.2.4 (Lyapunov drift). The (one-step) drift of a Lyapunov function

V for the system q(t) is defined as

∆V (x) = E {V (q(t+ 1))− V (q(t))|q(t) = x} .

In our context, the expectation is with respect to the arrival processes, chan-

nel processes and possible randomizations of the resource allocation algorithms

(which affect the service processes). A main result of stochastic stability theory

is the so-called Foster-Lyapunov criterion which connects the stability of the

system with the drift of a Lyapunov function:

Theorem 2.2.1 (Foster-Lyapunov criterion). Assume there exists a Lyapunov
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function V (x) and a bounded set B ⊂ RK+ such that

∆V (x) <∞,∀x ∈ B,

∆V (x) < 0,∀x /∈ B.

Then the system is stable.

A Lyapunov function often used in practice is the quadratic function V (x) =
1
2

∑K
k=1 x

2
k

4. In this case another sufficient condition for stability, which follows

from the Foster-Lyapunov criterion, is the following:

Theorem 2.2.2. Set V (x) = 1
2

∑K
k=1 x

2
k. If there exist constants B < +∞ and

ε > 0 such that

∆V (q(t)) ≤ B − ε
K∑
k=1

qk(t),

then the system q(t) is stable.

This sufficient condition was in fact used to prove stability of the MaxWeight

algorithm in [13]. It is also widely used in more general optimization and control

problems in wireless networks, starting with the works of [91] and [14]. The

reader is referred to [15] for a comprehensive treatment of the techniques based

on Lyapunov functions for stochastic network optimization.

4Or V (x) =
∑K

k=1 x
2
k, but the results are the same

12



Chapter 3

Queue-Aware Power

Control and Precoding for

the MISO Interference

Channel

3.1 Introduction

In this Chapter we consider a system with K transmitters, operating in the

same frequency band W , each having L antennas and serving one receiver. The

challenge here is that links interfere with each other so the queue length of one

transmitter depends also on the power (and precoder) allocations of the other

transmitters. This setting can correspond to Small Cells (SCs) employing the

same carrier frequency to serve the users (and in a more general cellular networks

context where each base station serves one user in a given frequency). The

objective is to minimize the total power over an infinite time horizon such that

the probability that the queue size at each transmitter exceeding a threshold

is fixed. This goal may correspond to fixing a data loss probability (for finite

buffers at the transmitters) in some desired values or some delay requirement,

which is a crucial QoS aspect in multimedia applications. In delay-constrained

cases the (average) delay is proportional to the queue length due to Little’s law.

Therefore we can argue that bounding the delay below a desired threshold is in a

sense equivalent to bounding the queue length below a threshold corresponding

to the delay bound. Since the incoming traffic and channels evolve randomly
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3.1. Introduction

however, such a constraint is not possible to hold. We will thus consider the

following probabilistic QoS metric for the queue length at each transmitter k

P
{
qk(t) > qthrk

}
= δk, (3.1)

which means setting a buffer outage probability in some values that can be tol-

erated by the application (this also implies that the delay will be small enough

most of the time). We tackle the problem by proposing a power control strategy

so that these constraints are met, based on heavy traffic asymptotic modelling.

The approach is then to divide the power into two parts: equilibrium and re-

serve powers. The equilibrium power problem consists in allocating the power

according to the channel states so that on average the transmission rate is equal

to the arrival rate. In the literature, this type of problems has been widely

studied for both single and multiple antennas systems (one can refer to [18],[19]

for more details). The main challenge lies in the modelling and allocation of

the reserve power. An immediate approach to optimally control the reserve

power would be to formulate the problem using optimal control theory and

Hamilton-Jacobi-Bellman (HJB) framework. However, constraints (3.1) make

the problem very hard and solutions are not even guaranteed to be tractable.

In addition, the system (under some control policies) may not be ergodic. Even

if the system is stationary and ergodic, finding a closed form expression of the

stationary distribution function of the queue evolution is not easy. This is due

to the interaction between the different users’ queues through the interference.

In this Chapter, we tackle the above problem as follows. We first show that the

queues of the users in the heavy traffic regime can be modeled as a reflected

multidimensional SDE . Then, taking advantage of the specific structure of the

reflection matrix, we propose a control policy that decouples the multidimen-

sional SDE into several parallel SDEs and ensures that an invariant measure for

each of these SDEs exists. Using results from probability theory, we can obtain

a closed form expression of the stationary distribution function of the dynamics

of each SDE which allows finding a relation between the reserve power allocated

and the overflow probability in (3.1). Notice that the value of the reserve power

allocated by our algorithm compared to the equilibrium power is very small (as

we will show later in this Chapter). In other words, the sub optimality gap

between our reserve power approach and other optimal control approaches (e.g.

using HJB equations) is small in many scenarios.

Regarding the problem of simultaneous transmissions over interfering chan-

nels, substantial work has been done in power allocation so that the SINR at

each receiver is above a specified threshold. In [20] such an algorithm, which

is totally distributed, has been proposed and in subsequent years modifications
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and extensions have been made; for an extensive survey of power control al-

gorithms with target SINR refer to [18] and references therein. This approach

however is not suited for the traffic nature of data and video streaming appli-

cations, as they do not adapt to the traffic, queue states and/or the specific

requirements of the application requested. In this direction, in [21] a scheduler

based on H-infinity control was proposed in order to regulate the buffers of

small cell base stations around a target length. In [22], the problem of power

control for Variable Bit-Rate (VBR) video streaming over a cellular network is

concerned, with the assumption that the videos requested are stored at the base

stations (therefore stochastic traffic dynamics are not taken into account). The

authors investigate the problem of throughput maximization under overflow and

underflow constraints at the receivers’ playout buffers and propose an optimal

centralized and a near optimal decentralized algorithm under some feasibility

assumptions for the SINR .

The authors in [23] consider dynamic scheduling (inside the cell) and power

allocation (for intercell interference mitigation) so that a function of the queue

lengths that corresponds to the average delay in the system is minimized. The

problem is formulated as a Markov Decision Process (MDP), and an online

learning algorithm is used for the solution. The proposed algorithm is semi-

decentralized in the sense that a central controller sets the transmission power

levels but the scheduling decision is taken at each BS . For a survey of the use of

such tools in resource allocation problems see [24] and references therein. How-

ever, in these problems the objective is to optimize a single objective function

subject to constraints on the expected values of the queues, which are weaker

than the overflow probabilities we consider here. In addition, these techniques

require the solution of the Bellman equation which in general can be solved

off-line only numerically at a high computational cost, and learning algorithms

for on-line implementation may converge slowly.

Another line of work regarding resource allocation in wireless networks is

done by using Lyapunov drift techniques (see [25], [24] and references therein).

These works address the problem of minimizing a cost function for the network

while keeping the queues stable. However, in our work we are interested in

satisfying individual QoS constraints for each user, in a form which is much

stronger than requiring just stability of the queues. Finally, another approach is

to convert the delay constraints into equivalent rate constraints, however queue

state information is not taken into account and it works well for relatively large

delays [24].

The approach followed in this chapter is based on the heavy traffic asymp-
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totic modelling of a network. Initially used for the analysis of queues and queue-

ing networks, it consists of examining the system’s behaviour as the arrival rates

become almost as big as the service rates. It turns out that the models in this

asymptotic case become more tractable and their study can reveal useful infor-

mation for the system’s behaviour even when this condition does not hold. Also,

due to its tractability, the heavy traffic asymptotic regime can be used to find

analytically a control policy in the network (e.g. routing policy, transmission

scheduling, service rate adjustment etc.); this policy then can be applied in sit-

uations where the network is not necessarily heavily loaded, with some proper

modifications (see [26] and references therein).

In the context of wireless communications, heavy traffic models have been

used to analyze the performance of the MaxWeight and Exponential scheduling

algorithm in [27] and [28] respectively. Moreover, authors in [29] have studied

the performance of a throughput-optimal rate allocation in a two-user MIMO

system (with a common channel for the users) when the incoming traffic is nearly

equal to the rate of each user. This was generalized in [30] for multiple antennas

at the transmitter, each serving one user. In both cases the behaviour of the

queues turns out to be a multidimensional Brownian motion constrained in the

positive orthant. Also, in [31], it is proved that for the latter case and time-

varying channels the policy of assigning rates at the boundary of the capacity

region is asymptotically optimal in the sense that it minimizes a weighted sum

of packets in the queue in heavy traffic; this quantity is proven to be a reflecting

Brownian motion with regime switching.

The first application of the heavy traffic approach to the power control prob-

lem was made by [32], where it was used to derive an optimal power control in

the setting of a single base station serving many users via time-varying but

orthogonal channels. In that work, each user is preassigned one channel and

the authors assumed total power constraints and that power can be reallocated

from one channel to another. The control policy was specified numerically.

Simulation results of this policy can be found in [33]. Also, in [34] an optimal

power control was derived for the point-to-point link over a fading channel. It

was shown that the delay-optimal policy is a simple single-threshold one and

simulation results show that the resulting cost is very close to the one obtained

by solving the original control problem. In the latter three works, heavy traffic

condition is imposed by preallocating a suitable amount of power according to

the channel state and then allocating a (much smaller) amount or reserve power

according to channel states and queue lengths. Indeed, without this additional

reserve power allocation the delay becomes unbounded [34], [35].
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The main contributions of the work presented in this Chapter are: (i) Deriva-

tion of a heavy traffic asymptotic model for this system of K interfering wireless

links for transmitters equipped with single and multiple antennas, (ii) Deriva-

tion of a closed-form power (and precoding in the case of multiple-antenna

transmitters) control policy under perfect channel and queue state information

so that the objectives (3.1) are met and (iii) Modification of the obtained algo-

rithms in less demanding information patterns. We derive the analytical model

of the system under heavy traffic conditions in Sections 3.2 and 3.3, extending

the results of [32] and [34]. The main issue in our case is that the transmitting

power of each base station affects the rates of all other wireless links, therefore

the queue length processes are coupled. Then, once we obtain the SDE that

models the evolution of queues, we apply a special form of linear control to the

reserve power to actually decouple the evolution of queues and meet the QoS

requirement in Section 3.4. In that Section we also discuss an implementation

of the algorithm in more decentralized settings, where channel states are not

known and the case where queue length information becomes available with

delays. All the analysis up to that point is done for continuous time and an

asymptotic system as a parameter n goes to infinity; in Section 3.5 we examine

the effect of operating in timeslots and how the parameter n can be chosen in

a practical system to actually implement the power control policies. The per-

formance of the control algorithms is then illustrated via simulation of a simple

system in Section 3.6. In this section we also illustrate via simulations the effect

of delayed queue state information. Finally, Section 3.7 concludes the Chapter.

3.2 System Model and Heavy Traffic Conditions

We consider a system of K transmitters each with L antennas serving one

receiver and using bandwidth W . For notational simplicity, we index the trans-

mitters and receivers so that transmitter k serves user k. Let then gij(t) denote

the power gain of the channel between transmitter j and user i at time t and

hij(t) the corresponding channel vector.

Each of these channel gains is assumed to evolve independently of the others

as an ergodic finite state Markov chain (for the case of single antenna this

model is widely used for fading wireless channels [92]). Under this assumption,

the matrix H(t) = [hij(t)] of all channel gains at time t will also evolve as

an ergodic finite state Markov chain with, say, MH possible states, indexed as

SH = {1, ...,MH}. We shall denote the event that the channel gains are in the

m-th state as H(t) = Hm.
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Figure 3.1: Illustration of the system model of the interference channel with

queues at the transmitters

The corresponding ergodic probability distribution for each state will then

be denoted as πm, and let Eπ {} denote the expectation over this probability

distribution. In our setting no transmitter cooperation, e.g. in the form of joint

transmission or space-time coding, is assumed. Therefore, at receiver k, the

received signals from a transmitter other than k are regarded as interference.

In addition, each transmitter will perform a power/precoding control at each

time slot. Notice that time sharing and scheduling are not considered in this

Chapter since they require the existence of a central entity that assigns the users

to time slots. Existence of such entity is not possible in our context since we are

examining a system with distinct transmitters, each of which communicating

only with its own receiver. The interference is treated as Gaussian noise, thus

when transmitter k uses precoder vk , the rate rk(v1(t), ...,vK(t),G(t)) over

the corresponding link will be assumed as the Shannon rate, that is [93]

rk(v1, ...,vK ,H) = W log2

(
1 +

|vHk (t)hkk|2

σ2 +
∑
i 6=k |vHi (t)hik|2

)
. (3.2)

In the above, W is the bandwidth and σ2 is the noise variance. The power of

transmitter k is given by pk(t) = vHk (t)vk(t). In the case of transmitter having

single antenna, each channel can be characterized only by its power gain, gki(t)

and the transmitted power is controlled directly. Thus, the received power in the

channel from transmitter k to receiver i is pk(t)gki(t). The rate rk(p(t),G(t))

is given by rk(p(t),G(t)) = Wlog2

(
1 + pk(t)gkk(t)

σ2+
∑
i6=k pi(t)gik(t)

)
. For each queue

we suppose that the instantaneous arrivals ak(t) at time t are i.i.d., with mean

λk and (finite) variance σ2
a,k, and are independent of the arrivals at the other

queues and the channel process.

In this work the heavy traffic asymptotic modelling will be used. Informally

this means that the average transmission rate at each transmitter will be almost
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equal to the mean rate of the incoming traffic. Formally, as it is fairly standard

in the relevant literature [26], a sequence of systems parametrized by n is created

and the system in the limit as n → ∞ is taken and examined (with time and

state variables scaled appropriately). More specifically, the interpretation of the

parameter n is such that at any time interval ∆t there are O(n∆t) arrivals, thus

n can be seen as the order of magnitude of the arrivals and taking the limit as

it goes to infinity implies that in the heavy traffic situations there are too many

arrivals in the transmitters. Let a
(n)
k (t) denote the arrival process at transmitter

k at the n-th system and ζ
(n)
k (t) the corresponding inter-arrival times. Then,

for every transmitter k we make the following assumptions [34]:

Assumption 3.2.1. The inter-arrival intervals satisfy the following:

1. |ζ(n)
k (l)|2 are uniformly integrable.

2. There exist constants ζ̄
(n)
k , ζ̄k and σk such that

E
{
ζ

(n)
k (l)

}
= ζ̄

(n)
k → ζ̄k and limn→∞ E

{(
1− ζ

(n)
k (l)

ζ̄
(n)
k

)2
}

= σk

3. The inter-arrival processes are independent of the channel processes.

The above assumption is roughly equivalent to saying that, for our case,

a
(n)
k (t)→ ak(t) , where a

(n)
k (t) have mean rate λ

(n)
k → λk and σ

(n)
a,k → σa,k. We

would like to stress that λk and σa,k are finite for every user k. Also, denote

v
(n)
k (t) the precoding vector at time t for transmitter k of the n-th system.

Define v(n)(t) the column vector containing these precoding vectors.

A difference in our case with respect to conventional heavy traffic models in

wireline networks is that the channels are changing, therefore the time scaling

must be done based on the rate on which the channels change rather than the

arrival rates. Following [32] and [34], we also parametrize the number of channel

changes with the integer n and assume that the channels change also fast but

at a slower rate than the incoming traffic. Thus, at a time interval ∆t there will

be O(nν∆t) channel changes, for a 0 < ν < 1. Now, let qk(t) denote the queue

length of transmitter k at time t,and x
(n)
k (t) the scaled version as follows:

x
(n)
k (t) =

1

n
ν
2
qk(nνt). (3.3)

The heavy traffic condition regarding the arrival and departure rates will be

for every k [34]:

lim
n→∞

(
λ

(n)
k − Eπ

{
rk(v(n)(t))

})
n
ν
2 = θk < 0,∀k ∈ {1, ...,K}, (3.4)

19



3.2. System Model and Heavy Traffic Conditions

The meaning of the constant θk in the equation is that this limit is finite.

More specifically, the equation implies that the service rates are bigger than the

respective arrival rates, so that the system is stable, but the gap between them

closes as O
(
1/n

ν
2

)
. As n → ∞, the gap between the arrival and service rates

becomes very small, thus activating the heavy traffic condition. In order for

(3.4) to hold, the precoding vectors appearing inside the limit have to be of the

form

v
(n)
k (t) = v̄k(H(n)(t)) +

1

n
ν
2

v′k(x(n)(t),H(n)(t)). (3.5)

In the above expression v̄k(H(n)(t)) is such that

λk = Eπ
{
rk(v̄(H(n)(t)))

}
,∀k ∈ {1, ...,K}. (3.6)

From the two equations just presented, it follows that the resource allocation

policy consists of two parts: One, denoted v̄a, the column vector of all the pre-

coding vectors of the first part of (3.5), based only on the channel states so that

the average rate equals the average rate of the incoming traffic (therefore in a

sense of equilibrium) and another one, modelled by u = [v′1(t)T , ...,v′K(t)T ]T in

(3.5), based on the queue lengths and probably the channel states. Throughout

this work we assume that the arrival rates belong to the rate region achieved by

precoding/power control only, and the main objective is finding a small reserve

power such that the QoS constraints (3.1) are satisfied. In other words, when a

power control policy following this rule is implemented, the equilibrium power

that corresponds to the realization of the channels at this time is computed

and a much smaller additional reserve power so that the total rate is very close

to the arrival rate is allocated according to a rule based mainly on the queue

lengths. Taking also into account that n → ∞, (3.5) implies that at each time

t the actual precoder used by each transmitter is varying slightly around the

equilibrium according to the queue lengths so that the probabilities that the

queue length exceeds a threshold are indeed the desired ones. In the topology

of interference channels we are examining here, the limiting factor is interference

rather than power constraints so we do not consider such constraints. However,

note that if there are power constraints such that (3.6) cannot hold for some

users, these queues will be unstable. On the other hand, since the reserve power

is very small, a reasonable power restriction would be to add a fraction of the

equilibrium power to the peak power for each user.

Examining (3.6) further, we can see that there are many possible approaches

for the equilibrium power allocation. For example, one may allocate v̄(t) so that

for any possible state of the channels the rate at each link k will be equal to

λk. Another approach is to solve the problem of minimizing the expectation
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3.3. Convergence to an SDE

over the channel states of total power used with the constraint that (3.6) is

satisfied. As a final remark, unlike the networks considered in the classic heavy

traffic literature where the service rates are fixed, in our case the service rates

are controlled, depending on the power allocation. This means that the system

is actually forced to operate in the heavy traffic regime, with its precoder being

as described in (3.5) and (3.6) for some large enough scaling parameter n.

Finally, some comments with respect to notation are in order. The precoding

vectors are all stacked in the column vector v(t) with KL elements. Therefore,

element i of this vectors corresponds to transmitter k′(i) = di/Le and its antenna

indexed by l′(i) = i−(k′(i)−1)L. The same holds for the equilibrium and reserve

precoding vectors.

3.3 Convergence to an SDE

In this section the actual model of the limit system (as n→∞) in heavy traffic

will be obtained as a controlled SDE . The derivations make use of the weak

convergence methods applied in [32] and [34]. We consider the case when the

channel coefficients are real numbers. This is done mainly for mathematical

convenience. A way to use the results and methods of this subsection for this

more realistic model (with complex channel coefficients) is to examine the power

control problem separately for the sine and cosine parts of the signal; then the

problem is reduced to two subproblems with real channel coefficients each, and

each subproblem is solved with the same way presented in the Chapter. Our

main result follows :

Theorem 3.3.1. Consider K interfering links with L antennas at each trans-

mitter. As n→∞ the vector-valued process of the scaled queue lengths of (3.3)

is given as,

x(t) = x(0)−
∫ t

0

f(u(s))ds+ Σw(t) + z(t). (3.7)

In the above, w(t) is a vector of K independent standard Wiener processes, f is

the vector of the functions

fk(u(t)) =

MH∑
m=1

πm

LK∑
j=1

ak,j (Hm)uj(t) (3.8)

where ai,j(Hm) = ∂ri(v̄a(Hm))
∂vj

. The matrix Σ = [σij ] satisfies

ΣΣT = ΣaΣ
T
a + ΣdΣ

T
d (3.9)
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3.3. Convergence to an SDE

with Σa = diag(σa,k) while the elements of the covariance matrix ΣdΣ
T
d = [sij ]

are given as

sij = 2E
{∫ +∞

0

r̂i(0)r̂j(t)dt

}
, (3.10)

where r̂k(t) = (rk (v̄(H(t)))− λk). Finally, the elements of z(t) are given as

zk(t) =

−min
s≤t

xk(0)−
∫ t

0

fk(u(s))ds+

K∑
j=1

σkjwj(t)


+

. (3.11)

Proof. Please refer to the Appendix in 3.8 for the proof.

It is interesting to note that, despite most of the cases discussed in the

literature (e.g. [32], [26]), in our case the queue lengths are not directly coupled

due to the reflection. Generally, the actual reflection term consists of the above

process multiplied from the left by a matrix R, denoted in literature as the

reflection matrix. The diagonal elements of the reflection matrix are ones, while

the off-diagonal elements represent data being routed for transmission to queues

that are empty (in other words, if a queue is empty, then it serves some of the

data from other non-empty queues). In our case no sort of such cooperation

between the transmitters is assumed, so the reflection matrix is the identity.

This property will play an important role in selecting the reserve control policy

in Section 3.4.

From now on we will consider the case with single antenna transmitters in

order to simplify the notation. This case follows from Theorem 2 putting L = 1,

and we have only power control. In this case the channel gains are scalars gij(t)

with G(t) the corresponding channel gain matrix, having MG possible states.

Note that this model can also accommodate the case where the direction of the

precoder in the complex space is fixed at the direction of the equilibrium vector

and the reserve part only changes its magnitude.

An interesting thing to note is that we can further simplify the model by

considering that the reserve power depends only on the queue lengths. This is

reasonable because we can argue that the goal of the reserve power is to regulate

the queue lengths while the equilibrium allocation takes care of the channels.

In this case we have the following result:

Corollary 3.3.1. Consider a reserve control policy that does not depend on the

channel states. Then the asymptotic model reduces to

dx(t) = Bu(x(t))dt+ Σdw(t) + dz(t) (3.12)
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3.3. Convergence to an SDE

Proof. In differential form (with the differentials being in the sense of Ito cal-

culus) we have

dx(t) = −f(u(t))dt+ Σdw(t) + dz(t) (3.13)

with an initial condition x(0) = x0.

If u(t) does not depend on the channel state, we can change the order of the

sums in (3.8), so

fi(u(t)) =

MG∑
m=1

πm

K∑
j=1

ai,j(Gm)uj(x(t)) =

K∑
j=1

uj(x(t))

MG∑
m=1

πmai,j(Gm)

thus, defining

bij = −
MG∑
m=1

ai,j(Gm)πm, (3.14)

we get fi(u(t)) = −
∑K
j=1 bijuj(x(t)). Defining the matrix B = [bij ], we can

write this relation in vector form as f(u(t)) = Bu(x(t)). This implies that (3.13)

takes the form (3.12), essentially completing the proof. Moreover, the elements

of the matrix B, from (3.14) are

bii = −
MG∑
m=1

πmW ln(2)
gii(Gm)∑K

k=1 gki(Gm)p̄k(Gm) + σ2

bij =

MG∑
m=1

πmW ln(2)
gii(Gm)

σ2 +
∑K
k=1 gki(Gm)p̄k(Gm)

×

gji(Gm)p̄i(Gm)(
σ2 +

∑
k 6=i gki(Gm)p̄k(Gm)

) , i 6= j

Note that in this case, the total transmission power takes still into account

both the CSI, through the equilibrium part, and the queue states, through the

reserve part. For the multiple antenna case the model will be similar, just with

B being a K-by-KL matrix.

As a final remark for this Section, let us point out that the whole proce-

dure of rescaling time and queue lengths, taking the limit as this scaling factor

goes to infinity and using central limit theorems implies that the Stochastic Dif-

ferential Equation (3.13) is an averaged model of the system over the random

environment and traffic, where statistics up to second order are used.
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3.4. A Control Policy

3.4 A Control Policy

3.4.1 Defining equilibrium and reserve control policies with

perfect information

As can be seen by (3.5) the resource allocation policy consists of two parts: deter-

mining the equilibrium power allocation according to the state of the channels

and then determining the reserve power allocation according to the channels

and queue lengths in general. In this work, we will set the equilibrium power

allocation such that the rates at each possible state of the channels are equal

to the mean rates of the incoming traffic. This is equivalent to the problem

of maintaining a constant SINRγ̄k for each user k for each channel state such

that λk = W log2 (1 + γ̄k). Therefore, the equilibrium power allocation policy

is obtained by solving the following system of linear equations for each Gm and

∀k ∈ {1, ...,K}:

1

γ̄k
gkk(Gm)p̄k(Gm)−

∑
i 6=k

gik(Gm)p̄i(Gm) = σ2 (3.15)

Here we assume that the channels and incoming traffic characteristics are such

that (3.15) are feasible. If not, then we may still be able to find a suitable

equilibrium power allocation; however the general problem in this case is very

difficult. Also, methods using time-sharing and scheduling would need the exis-

tence of a central authority to schedule transmissions, which is not assumed in

this Chapter. In addition other methods would not be amendable to distributed

implementation, as described in the next subsection. In the case of multiple an-

tennas at the transmitters, the problem of finding an equilibrium beamformer

so that the corresponding rate is λk for each link can be solved by the algorithm

presented in [19].

The reserve power allocation will depend only on the queue lengths, thus

the queue dynamics are governed by a stochastic differential equation of the

form (3.12). Note that because the equilibrium allocation given by (3.15) is

such that the corresponding rates are the same for each channel state, there is

no randomness in the equilibrium rates therefore there must be Σd = 0. In

order to find this reserve power allocation policy we will initially work with the

asymptotic model (as n → ∞) and impose no constraints on uk(x(t)). Having

said that, we have the following;

Proposition 3.4.1. With the equilibrium allocation given as a solution to

(3.15), the overflow requirements for the asymptotic system can be satisfied by
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the following policy:

u(x(t)) = B−1Cx(t), (3.16)

with C = diag (−|ck|) and |ck| = 1
2

(
σa,k
xthrk

erfc−1 (δk)
)2

. In the above, xthrk is

the corresponding threshold in the asymptotic regime.

Proof. Let us first start by establishing the probabilistic framework of the

stochastic differential equation in (3.12). Let (Ω,F , {Ft}t≥0,P) be a complete

probability space satisfying the usual hypotheses, i.e., Fo contains all the P-

null sets of F and {Ft}t≥0 is a right continuous filtration of σ-algebras. The

Wiener Process w(t) = (w1(t), . . . , wK(t))
T
t≥0 is {Ft}t≥0-adapted with station-

ary and independent increments. The Wiener process is also independent of

the initial state x0 which is an Fo-measurable random variable with finite sec-

ond moment. The reflection process z(t) = (z1(t) . . . zK(t))
T
t≥0 is a continuous

non-decreasing {Ft}t≥0-adapted RK+ valued process and each zk(t) increase only

when xk(t) = 0. We define our control policy in the class of Markov feedback

control (i.e. the control depends on x(t)). It is well known that the existence

of Markov control is related to the existence of solution for the corresponding

SDE. First we will examine the effects of the proposed equilibrium policy given

by solving (3.15). Since the corresponding rates are equal to each channel state,

there is no randomness in the equilibrium rates therefore the diffusion matrix

is now just Σ = Σa. Taking that into account and applying the proposed con-

troller, the states are decoupled as

dxk(t) = −|ck|xk(t)dt+ σa,kdwk(t) + dzk(t). (3.17)

Our control policy makes the evolution of the queues decoupled which is very

useful to ensure the existence of a solution to the SDE . Since the states

are decoupled and using the reflection direction in (3.11), we can show that

the controlled process x(t) is positive recurrent. Using the main result of

[94], the controlled process in (3.17) has a unique invariant probability mea-

sure which is absolutely continuous with respect to the Lebesgue measure,

i.e. has a density that can be obtained using the Fokker-Planck equation as

φ(xk) =

√
|ck|
πσ2

a,k
e−|ck|x

2
k/σ

2
a,k . According to the ergodic properties of recurrent

diffusion processes, we can use the above density of the invariant measure to

compute the overflow of the controlled stochastic process x(t)

P
{
xk(t) > xthrk

}
= erfc

(
xthrk

√
2|ck|

σa,k

)
. (3.18)

Replacing the overflow probability with its desired value and solving (3.18)

completes the proof.
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Note that the control policy regarding the reserve power is a closed form

expression of the queue lengths. Given that the equilibrium power allocation is

precomputed and under the assumption of complete queue and CSI knowledge

this implies that at each time the control policy can be implemented in one shot

instead of having an iterative algorithm (as it is done e.g. in [23]). In addition,

let us point out that the above results are in the steady state, i.e. in the sense

that the process is running for an infinite time horizon. Moreover, looking at

(3.8) we can observe that the drift term of the Stochastic Differential Equation

of the limit model is in fact an expectation over the ergodic distribution of the

channel gains process, therefore the overflow probabilities calculated here are

approximations - but quite accurate ones for many cases as we will see in the

simulations section.

Finally, let us point out that the form of the power control policy is heuris-

tic such that the overflow constraints (3.1) are satisfied. Restricting the reserve

power to depend only on the queue lengths and be linear with respect to them

simplified the problem quite substantially. In principle it is possible that an-

other choice of this control may still lead to the desired result with respect to

the individual QoS constraints while minimizing some cost function. However,

the resulting optimal control problem is intractable to solve analytically, and a

solution satisfying the constraints (3.1) is not even guaranteed to exist. Also,

as we will see in the simulations, the reserve power is much smaller than the

equilibrium power so the heuristic performs well in terms of energy efficiency.

For the multiple antenna case the procedure is the same, with the only dif-

ference that in the control policy there needs to be the pseudoinverse of the

corresponding matrix B.

3.4.2 Control policy with local SINR feedback

So far, we have assumed that at each time slot there is full knowledge of the

realizations of all the channels and queue lengths and the calculation of the

transmission powers was done based on that knowledge. However, this assump-

tion is unrealistic in practice. In this subsection we will examine the case where

each receiver can send SINR feedback to its corresponding transmitter but other

than that no information on the channels is available. Taking into account that

the equilibrium power allocation is such that the corresponding rate is constant,

we can use the algorithm proposed in [20] to find the equilibrium power alloca-

tion without the need for knowledge of all channel realizations. More specifically,

for a system adjusting the power in discrete time, in the beginning of each time

slot we can dedicate a time τ where the transmitters find the equilibrium power.
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In order to do that, each transmitter k requires only the SINR feedback from

its corresponding receiver and runs the following iterative process

pk(i+ 1) =
γ̄k
γk(i)

pk(i), (3.19)

where i denotes here the iteration of the algorithm, γ̄k the target SINR of user

k and γk(i) the SINR at this user after the power update of iteration i. It is

shown in [18], [20] that, for a given but unknown realization of the channels,

this algorithm indeed converges to the equilibrium values corresponding to these

channels and moreover this convergence is very fast (the rate of convergence is

exponential). This analysis implies that the only real time information truly

needed to implement the proposed power control policy are the queue lengths

at the beginning of each time slot (they are still required to compute the reserve

power). Also, the statistics of the channels and incoming traffic processes are

still needed in order to find the parameters in the SDE that models the evolution

of the queue lengths.

As a result of the training period, the actual data transfer is taking place for

a duration of (Ts−τ) in a time slot of duration Ts, instead of its whole duration.

A way to take this into account is to adjust the bandwidth in (2) appropriately,

i.e. if W
′

is the physical available bandwidth, the rates and all parameters in

the models are calculated using bandwidth

W =
Ts − τ
Ts

W
′
. (3.20)

In the above, τ is assumed fixed and taken such that it is enough for the algo-

rithm given by (3.19) to converge.

For the case of multiple antenna transmitters, each transmitter can acquire

the channel realization of its respective receiver. See [19] for an algorithm requir-

ing little information exchange between transmitters and [95] for a decentralized

algorithm to achieve the desired equilibrium rates.

3.4.3 Control policy in the case of delayed queue state

information

Another major issue for the practical implementation of our control policy is

the requirement that each transmitter is aware of all the queue lengths instanta-

neously. A more realistic assumption would be that each transmitter knows its

own instantaneous queue state and has access to delayed information about the

queues of the others. For example this can correspond to a SCN setting where

the base stations exchange information using a backhaul of limited capacity. We
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will assume though that each transmitter knows the statistics of the arrivals to

the other transmitters. To simplify the analysis, we will assume that the delay

in sharing the queue length information is the same for any pair of transmitters,

i.e. at time t, transmitter i has access to the queue length of transmitter j at

time t− τd.
Let us define the observation of the queue length of transmitter i at time t

as x̂i(t) = xi(t − τd) and the vector of the observations of the queue states at

transmitter i as x̂k(t). Then the following holds

Proposition 3.4.2. In the case where the queue state information is exchanged

with delay τd and the control of Section 3.4 is applied, the asymptotic model

evolves as

dx(t) = Cx(t)dt+ BDL (x̃(t)− x(t)) dt+ Σdw(t) + dz(t). (3.21)

The matrix DL is given as the matrix L = B−1C with its diagonal elements

replaced by zeros, x̃(t) = xk(t− τd).

Proof. Denoting L = [lij ], the control using the delayed observations is given

by uk(t) = lkkxk(t) +
∑
i 6=k lkixi(t − τd). In a vector form, and using L =

diag{lkk}+DL we get u(t) = diag{lkk}x(t)+DLx̃(t) = Lx(t)+DL (x̃(t)− x(t)).

Replacing in (3.12) and taking into account that L = B−1C we get the stated

result.

An observation that can be made is that in the case of delayed queue length

information, a term proportional to the difference between the vector of ob-

servations (delayed versions) of the queues and the vector of the actual queue

lengths e(t) = x̃(t)−x(t) is added to the original evolution of the queue lengths.

In order to analyze the impact of the delay, consider the case where this delay

in information sharing is infinite. In this case, no information about the queue

lengths is in fact shared among the transmitters so their estimations cannot

be updated. Thus, the estimation vector in (3.21) will be a constant x̃ (which

can correspond for example to an initial estimation). In this case, replacing

x̃(t) = x̃ in (3.21), we get that the state evolves according to the equation

dx(t) = (BDLx̃−Ax(t))dt + Σdw(t) + dz(t), where A = [aij ] = C−BDL.

This case is the worst case scenario, as each transmitter gets no information at

all about the evolution of the queue lengths of the others, and can be used to

find the upper bound of the overflow probabilities for any estimation scheme

(as the general case with a finite delay is very difficult to be analyzed). Denote

φ(t,x) as the density of the joint probability distribution of the queue lengths
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at time t. Then, from the theory of SDEs , it follows the corresponding Fokker

Planck equation

∂

∂t
φ(t,x) = −

K∑
i=1

aiiφ(t,x) +

K∑
i=1

σ2
a,i

2

∂2

∂x2
i

φ(t,x) (3.22)

with the appropriate initial conditions for t = 0 and at the reflecting barrier

(i.e. at all points x with at least one element zero) [96]. This equation can

be solved only numerically and the invariant measure as t → ∞ can be taken.

Then, using the marginal distributions we can obtain numerical results for the

queue overflow probabilities.

A way to use this is to adjust the threshold appropriately: If the over-

flow probability at some transmitters are larger than desired, we can decrease

the corresponding thresholds and derive the control policy for these decreased

thresholds. The overflow probability then for the initial (bigger) thresholds will

be smaller. This procedure can be repeated until we get acceptable overflow

probabilities for the initial desired thresholds.

For the case where the delay in information sharing is not infinite, a simple

heuristic approach is that each transmitter calculates the transmission power

with the queue length vector being replaced with the vector of the most recent

information about the queue states this transmitter has. While there is no in-

formation yet about the queue at a transmitter i, the transmitter k uses the

standard deviation of the incoming traffic at i properly modified taking into ac-

count the time slot duration, i.e.
√
Tsσ2

a,i, as an estimation of the queue length.

This scheme will intuitively perform better than the worst case scenario (with

no queue length information of other transmitters) described earlier, however it

is very difficult to analyze.

3.5 Discrete Time Implementation Issues

So far we worked on continuous time models whereas in the real communications

system time is slotted and power allocation decisions are taken into discrete time

instances. More specifically, let the duration of each timeslot of the unscaled

system be Ts; this implies that at the n-th system of the sequence the timeslot

duration will be T
(n)
s = Tsn

−ν . Then, in the general case where the equilibrium

allocation is such that Σd 6= 0, the departure process converges to a Wiener

process with covariance matrix given as

s′ij = TsEπ {r̂i(0)r̂j(0)}+ 2TsE

{
+∞∑
l=1

r̂i(0)r̂j(l)

}
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see e.g. [32]. The expectations are taken again with respect to the distribution

of the channels and r̂j(l) are the discrete time versions of the corresponding

quantities given by (3.33). The analysis and explanation of the above equation

is the same as in continuous time.

The derivation of the control policy was concerned with an asymptotic sys-

tem model. However, it has to be modified in order to operate on a real system,

so the results obtained for the asymptotic case have to be converted into results

for the unscaled system. This will be done using (3.3) and (3.5), where this scal-

ing parameter n is now a ”big enough” finite number. By the definition that at

a time interval δt there are O(nδt) arrivals, we can argue that in practical cases

n can be the order of magnitude of the average bit rates of the incoming traffic

in the system. Also, as far as the exponent ν is concerned, once n is fixed it

can be obtained using the fact that during a period with duration equal to the

coherence time, Tcoh, there must be only one channel change, thus nνTcoh = 1.

In the specific control policy presented in the previous section, the equilib-

rium rates are the same with the mean rates so the covariance matrix of the

limit Wiener process that corresponds to the departure process will be zero re-

gardless of the fact that the system operates in time slots. Note however that we

have the assumption that the channel changes slower than the arrival process,

so we can assume that the channel stays the same within a timeslot. Based on

the previous analysis, at the ”real” system where the queue lengths are q(l) at

the beginning of timeslot l and the channel gain matrix is at state m, the power

allocated for the duration of this timeslot will become (applying time slotting

and unscaling in the results of Section 3.4)

p(l) = p̄(G(l)) + B−1C
′
q(l),

where C
′

= diag(|c′k|) is obtained by Proposition 4 replacing the scaled queue

length threshold with its real unscaled value, qthrk . Note also that since in (3.18)

both quantities inside the probability are scaled ones, this is also the probability

of the unscaled queue lengths exceeding their respective unscaled thresholds.

From section 3.4 it is implied that it is possible to find a control policy of the

type discussed for any values of the queue thresholds and overflow probabilities,

which intuitively should not be the case. In fact, some limitations are given by

the following proposition:

Proposition 3.5.1. Consider a time slotted system with slots of length Ts for

data transmission that operates updating the power allocation at the start of

each time slot as described in this Section. Then, for each transmitter k, the

achievable queue length thresholds to be exceeded with probability δk are bounded
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as

qthrk ≥ σa,k
2

√
Tserfc

−1 (δk) (3.23)

Proof. The discrete time dynamics of the real system can be approximated

from (3.17) taking into account the form of the expression for the total power

as ( nk(l) is the discrete time White Gaussian process with unitary variance):

qk(l+1) = [(1− |c′k|Ts) qk(l) + Tsσa,knk(l)]
+

. For the above difference equation

not to diverge, there must be |1− |c′k|Ts| ≤ 1 , therefore |c′k| ≤ 2
Ts

. Replacing

|c′k| using the analysis in section 3.4, we get the stated relation.

This threshold bound is an approximation and it illustrates the effect of

the discrete time operation in an actual system. The same results hold for the

multiple antenna case. The results in this Section are based on heuristics and

are approximate. Obtaining exact results for the initial discrete time system

is, as far as we are aware of, generally an open issue in the area of analysing

and designing systems via traffic approximations. However, these approximate

results provide useful insights.

3.6 Simulation Results

In order to illustrate the results of the power control method presented in sec-

tions 3.4 and 3.5, let us consider a simple scenario with 3 interfering transmitter

- receiver pairs, using the same spectrum with bandwidth 5MHz. For simplic-

ity, consider that each channel gain has only two possible values. Also, the

arrivals at each transmitter were set as Poisson processes with mean rates 1, 1.5

and 2 Mbps. The overflow thresholds are 500, 750, 1000 bits at each transmitter

respectively and the overflow probability is 0.01 for all transmitters. The coher-

ence time of the channels is set to 20ms, corresponding to slow fading channels

like in indoor and low mobility environments. The time slot duration is 2ms,

motivated by the shortest scheduling interval in High Speed Downlink Packet

Access (HSDPA) , thus the channel stays the same for 10 consecutive power

configurations. The noise variance was set to 0.01 at each receiver.

Based on the above settings and the analysis in Section 3.5, for the simulated

system a reasonable value of n can be n = 106, the order of magnitude of the

incoming traffic at all users, and ν can be such that nνTcoh = 1 , thus ν = 0.283.

The maximum equilibrium power is 83mW , while all the equilibrium powers

are in the order of magnitude of mW . The expected values of the equilibrium

powers over the ergodic distribution of the channel gains matrix were found

to be 43mW, 62mW, 81mW for transmitters 1, 2 and 3 respectively. The av-
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erage reserve powers used where found (by simulations) to be around 0.7 ×
10−2mW, 0.7× 10−2mW, 0.8× 10−2mW .

Our proposed method is compared with the policy where all powers take their

equilibrium values according to the channel states, and the following heuristic

power allocation strategies: One with the power at each transmitter being con-

stant for every queue length and channel state and equal to the expectation of

the equilibrium power over the ergodic distribution of the channel gain matrix

plus the average reserve power presented above and one with the power being

the one given adding the equilibrium allocation. In the presentation of the re-

sults, the former will be denoted as ”Static power allocation” and the latter as

”Channel-aware power allocation”. These configurations were made to ensure

that the amount of power available in the heuristic schemes is approximately

the same as the power used in our proposed method, thus making a fair com-

parison. We will show the results concerning the queue of one transmitter, the

one for Link 1, as all the results are very similar.

The performance of the aforementioned power allocation policies for each

queue are shown in Figure 3.2.
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Figure 3.2: Overflow ratios for the queue at link 1 in the three links setting.

The static power allocation performs rather bad as it does not take into

account at all the channel states and the queue lengths. As far as the equilibrium

power allocation is concerned, the bad performance is because the traffic and
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3.6. Simulation Results

the queue lengths are not taken into account. Analyzing this policy further,

(3.12) implies that putting the vector of the reserve powers u equal to zero, the

queue lengths behave like reflecting Wiener processes. This is illustrated in our

simulation setting in Figure 3.3.
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Figure 3.3: Evolution of the queue lengths at transmitter 1 in the three-links

setting in one simulation run, using the equilibrium and the proposed power

allocation method.

In Figure 3.2 it is clearly illustrated that assigning slightly more power in

the equilibrium power for each channel state, as it is done in the channel-aware

power allocation scheme defined earlier, leads to a much better performance,

even if this extra power is very small. This was also expected as an increase in

all the powers leads to an increase in the average rates. The equilibrium power

allocation is exactly the point where the mean arrival rates equal the mean

service rates thus even a small increase of the mean service rates is enough

to stabilize the system. Achieving a better performance than the static power

allocation case was also expected due to the transmission powers adapting to the

channel conditions. Finally, we can observe that our proposed method of power

allocation does even better, illustrating the additional advantage of taking the

queue lengths into account when allocating the reserve power. Moreover, the

overflow ratio is very close to the desired one, which implies the validity of the

asymptotic model in a practical system operating under heavy load.

In Figure 3.3 we can also see the evolution of the queue length over time

for a simulation run. We can observe that the queue length under the proposed

power control method behaves in a much more controlled manner compared to
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the equilibrium power allocation (which indeed behaves like a Wiener process,

thus validating the system model) and is below its respective threshold for most

of the time.

Finally, Figure 3.4 depicts the power allocated using our proposed policy

and the equilibrium power allocation for the transmitter of Link 1 for the first

100 instances of a simulation run. We can see that the total allocated power
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Figure 3.4: Evolution of the equilibrium and allocated power using our method

for Link 1 for the first 100 timeslots of a simulation

varies slightly around the equilibrium power level in each channel state, which

clearly demonstrates the effect of allocating some extra power according to the

queue lengths. We can see that this variation around the equilibrium power is

indeed very small, thus confirming the assumption of very small reserve power.

As a next step, a simple system with transmitters with multiple antennas is

simulated in order to verify the theoretical results and illustrate the impact of

multiple antennas in the operation of the system. For computational purposes,

we consider a network of two links for the cases where the transmitters have

one, two and three antennas. The channels from each antenna to each receiver

are assumed independent and identically distributed (i.i.d.) two state Markov

chains and the incoming traffic processes are again Poisson distributed with

mean rates 1 and 2 Mbps for links 1 and 2 respectively. We set the respective

thresholds to 500 and 1000 bits and the desired overflow probability to 0.01.

For any given number of antennas, both precoding control methods (i.e. fixed

direction for a given realization of channel states and direction of the reserve

vector depending on the queue length) are considered, operating both for the

same instances of incoming traffic and channel realizations.

A result from these simulations is that for each simulation run and a given
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number of antennas (that is the same traffic and channel realizations) the over-

flow ratios were the same for each precoding method used. Indeed, from the

theoretical analysis it holds that for any precoding method presented here, the

control is such that evolution of the queues follows the same equation (3.17).

Moreover, Figure 3.5 shows the Cumulative Distribution Function (CDF) of the

overflow probabilities over the simulation runs; that is for each curve the y axis

shows the ratio of simulation runs where the overflow ratio was smaller than the

corresponding point of the curve at x axis. We can see that the overflow ratio
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Figure 3.5: CDF over the 200 simulation runs of the overflow ratios for 2

transmitter-receiver pairs and 3 antennas per transmitter.

was indeed very close to the desired one. These results illustrate the validity of

the asymptotic approach in a practical system. Regarding the evolution over

time, it is similar as in the case with 3 links and one antenna (see Figure 3.3).

Fig. 3.6 depicts the average total power consumption of the system in each

simulation run for each of the cases examined. In the cases of multiple antennas,

the average power used was almost the same for the two precoding methods, so

we present just one plot for each number of antennas. These results imply that

adding more antennas at the transmitters, under the assumption that the cor-

responding paths are independent, increases the energy efficiency of the system

for the same requirements in terms of buffer overflows.

Finally, we study through simulations the effect of delayed queue state in-

formation in our algorithm. For simplicity, all the delays in information sharing

between the transmitters are set to be the same. Performance in terms of over-

flow ratios are given in Fig. 3.7 as the CDFs over the simulation runs (in the

35



3.7. Conclusions

20 40 60 80 100 120 140 160 180 200
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5
x 10

−3

Simulation Index

P
o

w
e
r 

(W
)

 

 

1 antenna

2 antennas

3 antennas

Figure 3.6: Average power usage for the 2 transmitter-receiver pair scenario and

different number of antennas at the tansmitters

same sense as in Fig. 3.5).

As we can see in this figure, as the delay in information sharing increases

the overflow ratios tend to be higher. However, especially for small delays,

the differences are still relatively small. Also, even for relatively high delay in

information sharing the overflow ratios tend to be not very far from the desired

one. Thus we can argue that knowing the incoming traffic statistics at each

base station, our proposed scheme seems to be quite robust in cases of delayed

information sharing.

3.7 Conclusions

In this Chapter we have used the heavy traffic approximation in order to model

and propose algorithms for the power allocation problem for interfering wireless

links, which results in an asymptotic but tractable way to analyze the problem

and derive some control strategies. The objective was to keep desired overflow

probabilities at each queue assuming that the channels change according to an

ergodic finite state Markov chain. The allocated power is split into two: a part

that is allocated according to the channels and a much smaller part that is al-

located according to the backlogs at the queues at each time, for which closed

form expression as a function of the queue lengths was derived. The advantage

of the algorithm is that it can be implemented in one shot at the beginning of

each time slot. This work was also extended for the case when the transmitters

have multiple antennas, where precoding methods were proposed following the
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Figure 3.7: CDFs over the 200 simulation runs of the overflow ratios for the

proposed algorithm implemented with delayed information or Link 1

same approach. Even though the model derived and used is an approximation,

simulation results have shown that for reasonable thresholds and overflow prob-

abilities, direct application of the policy derived from the asymptotic system

can give quite accurate results. In addition, simulation results imply that the

algorithm is quite robust in the case of delayed queue state information.

3.8 Appendix for Chapter 3: Proof of Theorem

3.3.1

In order to prove the convergence of the scaled queue to an SDE , we adopt an

approach similar to the one used in [32, 34]. Recall that [32] deals with central-

ized power control in a multiuser downlink system with orthogonal transmissions

among users (no interference) and single antenna system while [34] deals with

power control for a point-to-point single antenna and single user wireless chan-

nel. Given the form of the precoding vectors, we can write the rates at the

n−th system as r
(n)
k (va(t),m) = rk(v̄(Hm) + 1

n
ν
2

u(x(t),m)) and expand it in

a Taylor series around v̄(Gm) as n→∞. We will then get

r
(n)
k (t) = rk(v̄(Hm)) +

1

n
ν
2

LK∑
i=1

∂

∂vi
(rk(w̄a(Hm)))ui(x(t),Hm) +O (n−

ν
2 )

(3.24)
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Denoting rk(w̄(Hm)) = r̄k(Hm) (as in fact these rates depend only on the

channel state), we can write the rate (3.24) as

r
(n)
k (t) = r̄k(Hm) +

1

n
ν
2

LK∑
i=1

ak,i(Hm)ui(x
(n)(t),Hm). (3.25)

If dk(l) are the amounts of data transmitted from transmitter k at timeslot

l, we have qk(l + 1) = [qk(l) + ak(l) − dk(l)]+. Denoting now Ak(t) , Dk(t)

the arrivals and total bits that could have been transmitted (if the queue was

always full) up to time t respectively, we get

qk(t) = [qk(0) +Ak(t)−Dk(t)]+. (3.26)

Now let us construct the sequence of systems whose limit will be eventually

the heavy traffic model of the system. Recall that x
(n)
k (t) = 1

n
ν
2
qk(nνt) and also

let us define the centred around the mean rates versions of the total arrival and

data transmission processes as :

Ā
(n)
k (t) =

1

n
ν
2

∫ nνt

0

(a
(n)
k (s)− λk)ds (3.27)

and

D̄
(n)
k (t) =

1

n
ν
2

∫ nνt

0

(
r̄k(H(n)(s))− λk

)
ds (3.28)

respectively. Also define the scaled amount of data transmitted due to only the

reserve allocation up to time t (assuming always full queue) as

F
(n)
k (t) =

1

nν

∫ nνt

0

MH∑
m=1

I{H(n)(s)=Hm}

LK∑
i=1

ak,i(Hm)ui(x(s),Hm))ds. (3.29)

In this case, we can rewrite (3.26) as

x
(n)
k (t) = x

(n)
k (0)− F (n)

k (t)− D̄(n)
k (t) + Ā

(n)
k (t) + z

(n)
k (t). (3.30)

In the above, z
(n)
k (t) are processes to satisfy the physical constraint that each

of the scaled queue lengths x
(n)
k (t) is nonnegative.

We will now, similar to [20, 22], examine the convergence as n→∞ of each

one of the terms in the above equation separately.

3.8.1 Arrival Process

Given that a
(n)
k (s) are i.i.d. in time and that a

(n)
k (s) → ak(s) where ak(s) has

finite mean λk and variance σ2
a,k, from an extension of the Functional Central
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Limit Theorem [32] it holds that as n → ∞, Ā
(n)
k (t) converges weakly to a

Wiener process with zero drift and variance σ2
a,k:

Ā
(n)
k (t)

w−→ σa,kwa,k(t). (3.31)

In the above, wa,k(t) denotes the standard Wiener process.

The above convergence happens for every k and recalling that incoming

traffic flows are independent, the vector containing these arrival processes as

elements converges weakly as

a(n)(t)
w−→ Σawa(t) (3.32)

where Σa = diag (σa,k) and wa(t) is a vector of independent standard Wiener

processes.

3.8.2 Service Process

In order to find the limit of the departure process, we will follow a method

similar as before. More specifically, we can write (3.28) as

D̄
(n)
k (t) =

1

n
ν
2

∫ nνt

0

MH∑
m=1

I{H(s)=m}r̄k(m)ds− λkn
ν
2 t.

We define now r̃k(t) =
∑MH

m=1 I{H(t)=Gm}r̄k(Hm) ; then by the definition of the

indicator function the vector r̃(t) is a finite state Markov chain evolving as the

channels with values r̄(Hm) when the channel processes are at state m. Denote

now also

r̂(t) = r̃(t)− λ. (3.33)

Taking into account the equilibrium power allocation, we have λk = E {r̂k(t)}
and following [32] we have that the above converges weakly to a K-dimentional

Wiener process with covariance matrix Sd = [sij ] such that

sij = 2E
{∫ +∞

0

r̂i(0)r̂j(t)dt

}
.

By comparison, this process is exactly the multidimentional process that has

D̄
(n)
k (t) as its k-th element. So denoting Σd = [σij ] such that ΣdΣ

T
d = Sd, we

have for each k

D̄
(n)
k (t)

w−→
K∑
j=1

σkjwd,j(t) (3.34)

where wd,j(t) independent standard Wiener processes.

It has to be noted here that, unlike the centred arrival processes, the centred

transmission processes are not independent in the limit. That was expected
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because essentially they depend upon the same process (the one that governs

the channel gain matrix). The elements of the covariance matrix of the limiting

Wiener process are actually integrals of the temporal correlation between the

centred processes at the queues and actually depend on the temporal correlation

of the Markov chain modelling the channel gains. In the case that channel gains

were i.i.d. over time, only the correlation at the same time instance (t= 0) would

appear. However, as the Markov chain is ergodic, from some time onwards will

have reached its invariant distribution and the correlations with the initial time

would be zero. Finally, for the special case where the equilibrium allocation is

such that r̄k(m) = λk for every k and m, the centered departure process is just

the zero process.

As far as the reserve power is concerned, in the limit as n → ∞ , applying

the Functional Law of Large Numbers we obtain

F
(n)
k (t)

w−→
∫ t

0

MH∑
m=1

πm

LK∑
i=1

ak,i(Hm)ui(x(s),Hm)ds.

With fk(u(s)) given as in (3.8), this implies

F
(n)
k (t)

w−→
∫ t

0

fk(u(s))ds. (3.35)

For completeness, we present the expressions for the coefficients ak,i(Hm):

a′k,i(Hm) = W ln (2)
2h

(l′(i))
k′(i)k(Hm)|w̄H

k (Hm)hk′(i)k(Hm)|

σ2 +
∑K
j=1 |w̄H

j (Hm)hjk(Hm)|2
, k′(i) = k

and, for k′(i) 6= k :

a′k,i(Hm) = −W ln (2)
2h

(l′(i))
k′(i)k(Hm)|w̄H

k (Hm)hkk(Hm)|2

σ2 +
∑K
j=1 |w̄H

j (Hm)hjk(Hm)|2

×
|w̄H

k′(i)(Hm)hk′(i)k(Hm)|
σ2 +

∑
j 6=k |w̄H

j (Hm)hjk(Hm)|2
.

3.8.3 Reflection Process

In order to complete the model, we have to examine the processes z
(n)
k (t). As

mentioned earlier, z
(n)
k (t) must be such that the queue lengths remain nonneg-

ative, thus defining what exactly happens at the time instance when the queue

of transmitter k is empty (i.e. there are no data to send to its receiver). In our

system setting each transmitter serves only its own receiver and the equilibrium

power is assigned even if the queue is empty at the power allocation instance.

Therefore, when a base station is allocated power when its queue is empty,
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the power is wasted and the process z
(n)
k (t) corresponds to just the amount of

data that could have been sent during this transmission; this amount has to be

subtracted from the result of the other terms in (3.30):

z
(n)
k (t) =

1

nν/2

∫ nνt

0

(r
(n)
k (s)− a(n)

k (s))I{x(n)
k (s)=0}ds.

The above implies that this process increases only when x
(n)
k (t) hits zero. The

reflection process that satisfies these requirements is [21]

z
(n)
k (t) = max

{
0,−min

s≤t

{
x

(n)
k (0) +A

(n)
k (s)−D(n)

k (s)
}}

. (3.36)

Indeed, note that

max{0,−min
s≤t
{x(n)

k (0)−D(n)
k (t)+A

(n)
k (t)}} ≥ −

(
x

(n)
k (0)−D(n)

k (t) +A
(n)
k (t)

)
.

Replacing in (3.30), we get that

x
(n)
k (t) ≥ x(n)

k (0)−D(n)
k (t) +A

(n)
k (t)−

(
x

(n)
k (0)−D(n)

k (t) +A
(n)
k (t)

)
= 0,

therefore the scaled queue lengths are kept nonnegative. We now focus on

the cases where x
(n)
k (t) tends to become negative if no reflection was present.

Let t1 the smallest time instance where x
(n)
k (t−) = 0 such that x

(n)
k (t1) < 0,

that is when the process of scaled queue lengths hits zero with a direction to

get negative. Therefore x
(n)
k (0) + A

(n)
k (t1) − D(n)

k (t1) < 0. Then, for t < t1,

z
(n)
k (t) = 0 and for t = t1 we have z

(n)
k (t1) = −(x

(n)
k (0)+A

(n)
k (t1)−D(n)

k (t1)) > 0,

therefore the process increases the first time x
(n)
k (t) hits zero with a direc-

tion to get negative. Now consider some time instance ti > t1. Then we will

have z
(n)
k (t) = −mint1≤s≤t

{
x

(n)
k (0) +A

(n)
k (s)−D(n)

k (s)
}

. If x
(n)
k (ti) > 0 then

x
(n)
k (0)−D(n)

k (ti)+A
(n)
k (ti) > mint1≤s≤ti

{
x

(n)
k (0) +A

(n)
k (s)−D(n)

k (s)
}

, there-

fore z
(n)
k (.) does not increase. On the other hand, if at ti the scaled queue length

process (with reflection term up to but not including ti tends to become negative

there is x
(n)
k (0)−D(n)

k (ti)+A
(n)
k (ti) < mint1≤s<ti

{
x

(n)
k (0) +A

(n)
k (s)−D(n)

k (s)
}

,

therefore z
(n)
k (.) increases to −(x

(n)
k (0) −D(n)

k (ti) + A
(n)
k (ti)) (it is an increase

because in this case the expression inside the minimization is negative). For

the cases where x
(n)
k (t) hits the barrier at zero but immediately after it turns

positive, the reflection does not change. We have thus shown that the reflection

term (3.36) keeps indeed the queue lengths nonnegative and can increase only

when the queue length hits zero.

Following the discussion in subsections 3.8.1 and 3.8.2, as all terms in the

above expression converge weakly as n → ∞, z
(n)
k (t)

w−→ zk(t) accordingly, and

actually becomes the amount of data that could have been transmitted in the

asymptotic system if the queue was not empty at time t.
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3.8.4 Further Analysis of the Equation

So far we have shown that under heavy traffic conditions a properly scaled

version of the queue lengths converges weakly to

x(t) = x(0)−
∫ t

0

f(u(s))ds+ Σawa(t) + Σdwd(t) + z(t).

By assumption, the arrival processes are independent of the channel processes

so the corresponding Wiener processes are independent. Therefore, we have

Σawa(t) + Σdwd(t) = Σw(t), where w(t) is a standard K-dimensional Wiener

process and Σ satisfying (3.9).
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Chapter 4

Traffic Aware User

Selection in MISO-OFDMA

Downlink Systems with ZF

precoding and TDD

training

4.1 Introduction

The use of multiple antennas [4] has emerged as one of the enabling technologies

to increase the performance of wireless systems. The ability to serve multiple

users in the same time-frequency block has made the use of multiple antennas at

the BSs particularly attractive for multiuser downlink systems, and the benefits

coming from this fact are well understood [5]. In detail, in a downlink system

where the BS has N antennas, at most N users can be scheduled simultane-

ously. The decision to be taken every timeslot then is (i) which users should be

scheduled and (ii) how the corresponding signals should be precoded.

From an information theoretic point of view, the capacity region of the

MIMO Broadcast Channel (BC) is well characterized [36], assuming perfect

channel state information at the transmitter. However, achieving this region

requires Dirty Paper Coding, which is complex to implement, while the as-

sumptions of perfect channel state information and use of Gaussian codebooks

43



4.1. Introduction

are strong in practical systems. Linear precoding schemes such as ZF , a scheme

that cancels the interference among the scheduled users, are more desirable to

use in practice. There are many works on the issue of imperfect CSI , see for

example [37] and references therein, [38, 39, 40], however the focus is mainly

on quantities like sum throughput and they do not take into account the traffic

processes of the users.

Since in practice the users of a wireless system request actual data, it is of

interest to study the impact of MIMO in the higher layers [41]. For the MIMO

MAC , a precoding strategy that achieves the stability region is presented in

[42], under the assumptions of perfect CSI and use of Gaussian codebooks.

This policy is based on Lyapunov drift minimization given the queue lengths

and channels every timeslot and makes use of superposition coding and suc-

cessive decoding. This is hard to implement in practice. Regarding the BC

(i.e.the downlink system), authors in [43] have proposed a technique based on

ZF precoding, with a heuristic user scheduling scheme that selects users whose

channel states are nearly orthogonal vectors and illustrate the stability region

this policy achieves via simulations. Authors in [44] notice that the policy re-

sulting from the minimization of the drift of a quadratic Lyapunov function is to

solve a weighted sum rate maximization problem (with weights being the queue

lengths) each timeslot and they propose an iterative water-filling algorithm for

this purpose. In addition, authors in [45] propose to use the delays of the pack-

ets in the head of each queue along with the queue lengths as weights. All these

works assume accurate CSI available at the transmitter. In the case of delayed

channel state information and channels having a correlation in time, authors in

[46] compare the stability and delay performance of opportunistic beamforming

and space time coding while in [47] they propose a user scheduling and pre-

coding algorithm. In addition, in [48], the authors study the impact of channel

state quantization in the stability of a system using ZF precoding under a cen-

tralized scheme where the transmitter selects the users to be scheduled based

only on the queue lengths. However, the fact that radio resources i.e. time

and/or spectrum are needed for the BS to acquire channel state information is

not accounted for in these works.

In this chapter we consider a MISO downlink system where the BS acquires

CSI from the users in TDD mode, in order to exploit the channel reciprocity.

There are two ways for this: (i) users estimate their channel and then feeds back

the CSI in a Time-Division Multiple Access (TDMA) manner and (ii) users send

(pre-assigned) training sequences in the uplink so that the BS can estimate the

channels (uplink and downlink channels are the same due to reciprocity). The
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latter scheme is implemented using orthogonal sequences among the users, so

that the BS can decode every transmission without errors. Orthogonal sequences

are produced e.g. by Walsh-Hadamard on pseudonoise sequences, and their

length should be proportional to the number of users that simultaneously train

in the uplink. Uplink training is considered the most promising for MIMO

systems, since the length of the training sequences does not depend on the

number of antennas at the BS . However, due to the orthogonality requirement,

their length is proportional to the number of users that perform uplink training
1. That means that in a system with many users, not all users should be

selected to train at the same time, therefore the users that should train at every

slot must also be selected. The TDD system model with uplink training has

been also examined in [49], however they do not take into account that last

observation, that is not all users should participate in the training at every slot.

In this Chapter we focus on the tradeoff between having many users training (so

having data transmitted to many users simultaneously) and having much time

of the slot devoted to data transmission (which means having few users train).

In order to simplify things, we focus on ZF precoding used at the transmitter.

This scheme is widely used in the literature because it is simple to implement

while capturing the fundamental tradeoffs arising from using multiple antennas

and performing well in some scenarios of interest (e.g. in systems with many

users [97] and/or with BSs with large antenna arrays). In addition, we will

assume that all users that perform uplink training in a slot get scheduled. This

is an assumption used fairly often in the literature concerning MIMO broadcast

channels; in this context, the BS should select the set of ”active users” at each

timeslot and then transmit to them.

One natural approach would be to let the BS alone decide which users to

schedule in every slot. This is the approach used in [48] and in current stan-

dards (e.g. LTE [11]), where the BS explicitly requests some users for their CSI

. In the setting where traffic/queueing processes are considered, user selection

can be done based on the statistics of the channels of the users and the state of

their queue lengths at each slot. Unfortunately, using such centralized schemes,

some scheduled users may have poor current channel states and some users with

good channels may not be scheduled (i.e. may not feed back), which reduces

the system performance. On the other hand, each user knows its own current

channel state, and therefore decentralized feedback policies where the users de-

cide based on their current channel states may improve the system performance.

1In the case where CSI acquisition is done by feedback in TDMA manner, then the time

needed for CSI acquisition is also proportional to the number users that feed back.
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This must be done properly as the decentralized policies require additional sig-

nalling information that may decrease drastically the improvement.

It is worth noting that recent works [50], [51] have shown that, in a network

with simple physical layer (e.g. on-off channel, finite discrete channel states,...),

decentralized algorithms like the recently proposed Fast CSMA [52] can achieve

good performance. In addition, it has been shown in earlier works [53, 54] that

up-to-date channel state information, which is known at the receivers, is more

crucial than accurate queue length information, at least as far as stability is

concerned. The scenario considered in this Chapter is more complicated as

compared to the recent work on decentralized scheduling. In fact, in scheduling

problems (e.g. OFDMA or TDMA ), a user can directly estimate its bit rate

using the current channel state. In multi-user MIMO systems, the bit rate of

each user depends on the channel states of all users and the user cannot simply

estimate its bit rate using its current channel state, which highly complicates

the analysis.

In this Chapter, we examine three approaches to the user selection problem.

The first one is centralized, in the sense that the transmitter decides which user

will be scheduled (i.e. will train) at every slot. The second approach, which we

term as ”decentralized”, is to let the users decide which of them should actually

feed back via some contention/coordination scheme. The main idea behind this

approach is that every user can know its channel state, therefore a user with a

very bad channel state will choose not to feed back (contrary to what can happen

in the centralized approach). More specifically, in this case, the transmitter

specifies the number of users to be scheduled and lets the users decide in a

decentralized manner who will be the ones that will actually get scheduled

in the slot. Combined with some (infrequent) signalling regarding the users

queue lengths from the BS , we prove that properly combining the decentralized

and centralized approaches leads to a bigger achievable stability region than

using the centralized approach alone. Detailed description of these policies is

given in Section 4.3, after a presentation of the system model in Section 4.2.

Section 4.4 presents some calculations regarding the rate distributions and some

general intermediate results regarding stability, that will be used for the proofs

in subsequent Sections. In Section 4.5 we examine in detail a special case,

namely the 2−user system with i.i.d. channels and single rate level. This is

a case where the stability regions can be expressed in close form and plotted,

and helps illustrate why combining a decentralized and a centralized approach

helps in enlarging the stability region of the system. After that, Section 4.6

contains stability analysis in the general case of K users, while extensions to

46



4.2. System Model

the case where multiple channels are used (e.g. via OFDMA modulation) is

covered in Section 4.7. In the latter Section, we also prove that in the case of

a transmitter with a single antenna, the decentralized policy can achieve a very

large fraction of the stability region achieved in the ideal case with full channel

state information at no cost at the transmitter, with no need of the channel

statistics. Finally, in Section 4.8 we discuss an alternative implementation where

extra signalling bandwidth instead of time is used for the control signals required

to be broadcasted for the decentralized/mixed policies and Section 4.9 presents

a threshold-based policy in the cases where continuous time for contention is

not possible. The proofs for the derivations of the stability regions are done

based on the method of first proving that the stated region is achievable by a

rule that does not take into account the queue lengths, prove, using the Foster-

Lyapunov criterion, that the proposed policy achieves at least as big region as

the first rule and then prove that there is no policy achievng more than the

stated region. This method was first used in [13] and then in many other works

dealing with scheduling and stability. See, for example, [15] (where the rule to

prove the converse is termed ω− only policy) and [55], [56] (where the scheduling

rule to prove the converse is referred to as Static Service Split rule), where the

fluid asymtotics of the system are examined. Finally, Section 4.10 concludes the

Chapter.

4.2 System Model

4.2.1 Physical Layer Model

We consider a single cell wireless system serving K users with N antennas at the

BS . The users are equipped with a single antenna each. Time is slotted. Each

channel is i.i.d. Rayleigh block fading, i.e. the channels stay constant in a slot of

Ts channel uses and change independently in the next slot. The channel of user

k can be written as an N -dimensional complex vector hk(t) =
√
ḡkĥk(t) where

ĥk(t) ∼ CN (0, IN ) and ḡk represents the channel gain due to large scale fading

and is assumed to be constant (e.g. following a path loss model depending on

the distance from the BS ). In this case, the channel vector can be also written as

hk(t) =
√
gk(t)uk(t), where uk(t) is an isotropically distributed unitary vector

and gk(t) = ||hk(t)||2 is the channel magnitude. We have the following:

Lemma 4.2.1. The channel magnitude of user k is distributed with CDF :

P {gk(t) < x} =
γ
(
N, x

2ḡk

)
Γ (N)

. (4.1)
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Proof. We can write gk(t) = ḡk

∣∣∣∣∣∣ĥk(t)
∣∣∣∣∣∣2, therefore the second term has the

chi-squared distribution with 2N degrees of freedom. We thus have

P {gk(t) < x} = P
{∣∣∣∣∣∣ĥk(t)

∣∣∣∣∣∣2 < x

ḡk

}
=
γ
(
N, x

2ḡk

)
Γ (N)

, (4.2)

which is the stated result.

Since the BS is equipped with multiple antennas, multiple users can be

served simultaneously by precoding the corresponding transmit signals. In this

Chapter, we consider ZF precoding, i.e. a linear precoder such that the intracell

interference caused to any user that is served is zero. The choice is motivated

by the relatively low complexity of linear precoders (and ZF in particular) with

respect to the non-linear ones and by the fact that Zero Forcing is a simple

scheme to analyze, that however captures the fundamental tradeoffs in multi-

ple antenna transmission and has very good performance in many scenarios of

interest (as, for example, in the case where large antenna arrays are used).

As for any linear precoder W(t) = [w1(t), ...,wK(t)], the signal received by

user k at slot t is

yk(t) = hHk (t)wk(t)sk(t) +
∑
j 6=k

hHk (t)wj(t)sj(t) + nk(t) (4.3)

where sj(t) is the data symbol intended to user j, assumed complex Gaus-

sian with zero mean and unit power, nk(t) ∼ CN
(
0, σ2

)
is the white noise at

the receiver or user k. The BS has available transmission power P , that is

tr(WWH) ≤ P . The achievable rate of user k at slot t is rk(t) (bits/chan-

nel use), which depends on the corresponding Signal-to-Noise Ratio (SNR) at

time t. We will assume that the achievable rates can take values from the set

R = {R1, ..., Rl, .., RL}, with R1 = 0, Rl−1 < Rl and RL < ∞; this is the case

in practice as a finite number of modulation and coding schemes are used for

transmission. In addition, we assume that the possible rate levels are known to

the BS and mobiles, which is rather reasonable since they are specified by the

communications protocol used. Also we assume that rate Rl can be supported

if the SINR at the receiver is above some appropriately defined threshold Sl.

Under this model, let F(t) be the set of users that are scheduled at slot

t, F (t) = |F(t)| and k(1), .., k(i), ..., k(F (t)) the corresponding permutation of

user indices. Also, define

Hk(i)(t,F) = [hk(1)(t), ...,hk(i−1)(t),hk(i+1)(t), ...,hi(F (t))(t)].

To further reduce the complexity of the transmission scheme, the total transmit

power is split equally to each of the users scheduled. Then, the precoding vector
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for user k(i),∀i ∈ {1, .., F (t)} is given as the projection of the channel of this

user on the nullspace generated by the channels of the other users:

wk(i)(t) =√
P

F

(
IN −Hk(i)(t,F)(HH

k(i)(t,F)Hk(i)(t,F))−1HH
k(i)(t,F)

)
∣∣∣∣∣∣(IN −Hk(i)(t,F)(HH

k(i)(t,F)Hk(i)(t,F))−1HH
k(i)(t,F)

)
hk(i)(t)

∣∣∣∣∣∣hk(i)(t).

(4.4)

The corresponding SNR (since interference is suppressed) for this user will then

be

SNRk(i)(t) =
P
∣∣∣∣hk(i)(t)

∣∣∣∣2
σ2F (t)

uHk(i)(t)

(
IN

−Hk(i)(t,F(t))(HH
k(i)(t,F(t))Hk(i)(t,F(t)))−1HH

k(i)(t,F(t))

)
uk(i)(t).

(4.5)

From the above, it can be seen that in order to transmit using Zero Forcing,

accurate channel state information of the channels of the users that are scheduled

is needed. This information is not available to the BS and must be acquired by

using feedback or training from the receivers. For consistency, we will consider

the case where CSI is acquired by uplink training from the users. This means

that channel estimation is done in TDD mode, exploiting reciprocity; this is a

promising approach, especially for large antenna arrays at the BS , since the

feedback overhead does not scale with the number of antennas. It does scale

with the number of users that train however, meaning that when CSI is acquired

by too many users there will be little time left to transmit in the timeslot before

the channels change again: This problem is exactly the focus of the Chapter.

On the other hand, even if CSI is acquired by feedback in FDD mode, the BS

must wait for the feedback from the users to be received before precoding [38].

Also under our model of i.i.d. block fading channels, outdated feedback is not

useful. The above imply that the main ideas and results of the analysis presented

can be useful even in systems with feedback in FDD mode, assuming accurate

channel estimation from the users’ side, enough bit rate in the reverse link for

perfect CSI in the BS after the feedback procedure and that the bandwidth in

the uplink is not enough for all users to feed back simultaneously in parallel

channels. In addition, we will assume throughout this Chapter that there are

no errors in the channel estimation, in order to focus on the impact of time

needed for training in our system. In practice this assumption can hold if pilot

sequences of very high power are used.
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4.2.2 Queuing model and impact of training

Each of the K users in the cell has an incoming traffic process ak(t), which is an

integer-valued process, measured in bits, i.i.d. in time and independent across

users with ak(t) < Amax almost surely for some finite constant Amax. This

quantity is assumed to be known to the scheduler and users. The mean rate of

this process is E{ak(t)} = λk. Data for user k is stored in a respective buffer

until transmission and let qk(t) denote its size in bits at the beginning of slot t.

Denote now zk(t) as the schedule in timeslot t, that is zk(t) = 1 if user k

is scheduled for this timeslot (i.e. if user k has actually reported its channel to

the BS ). We are under the constraints that (i) F (t) users are scheduled at each

timeslot, with F (t) ≤ N (ii) for every channel the BS schedules a user whose

channel state is known at the maximum possible rate it can support (that is

ensuring transmission without errors). In addition, we will denote here τ(t) the

number of channel uses used for training and signalling in the slot t. This means

that data is transmitted for a scheduled user for (Ts− τ(t)) channel uses, there-

fore, if the rate supported to user k at timeslot t is rk(W(t),H(t)) ∈ R bits per

channel use, the corresponding service process will be (Ts−τ(t))rk(W(t),H(t))

bits 2. The queues then evolve as follows, ∀k ∈ {1, ..,K}:

qk(t+ 1) = [qk(t)− b(Ts − τ(t))rk(W(t),H(t))czk(t)]
+

+ ak(t), t ≥ 0

qk(0) = ak(−1).
(4.6)

In the above, ak(−1) is defined as a random variable drawn from the distribution

of ak(t), t ≥ 0. This constraint actually means that we start measuring time

after the first arrivals in the queues so that the queues do not start empty (and

the broadcast of the queue lengths at time t = 0 not to be the zero queue). This

is done for more convenience in analysing the proposed algorithm, however,

since we are interested in the case when the system is left running for too long

(i.e. t → ∞) and the arrival processes are bounded, the choice of the initial

condition does not really affect our results.

We are interested in the stability of the system, in the sense discussed in

Section 2.2.2 (i.e. strong stability). Equation (4.6), thus, implies that training

affects essentially the service rate, and thus the stability region, in two ways:

First, more time devoted to training leads to lower service rate for the users

actually scheduled in the timeslot. On the other hand, if more users participate

in the training, more users can get scheduled in a timeslot, thus overall a user

can get higher mean service rate. The focus of this Chapter is, then, this tradeoff

2the arguments in the rate stress that it depends on the channel state and precoder at

timeslot t
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and how to efficiently design user selection strategies to achieve large stability

regions.

For simplicity, we only consider schemes where all users whose CSI is ac-

quired get scheduled. Also, as mentioned before, transmit power is allocated

equally to scheduled users. The first assumption is common in the literature

concerning MIMO broadcast systems, where all ”active users” are scheduled, see

e.g. [38]. In addition, even in the case of full CSI without any cost, the high-

est stability region would be given from solving a weighted sum maximization

problem in each timeslot (in accordance to the MaxWeight rule [13, 27]). Joint

scheduling and power control even in this ideal case is a hard problem, especially

in our model with finite rate set (some algorithms like iterative waterfilling [44]

have been proposed but using the information theoretic capacity for the service

rates). Adding the cost of feedback on top of it would make the problem more

complicated and result in a solution of high computational complexity (see e.g.

[66] for the problem in the single antenna case, where only approximations of

the optimal solution are implementable in practice). The problem then reduces

to finding strategies to choose the ”active” users at each time slot.

4.3 Proposed Policies for User Scheduling

In this section we present in detail the scheduling and training policies to be

analyzed in the present work. Before proceeding in the descriptions, we define

R0 (bits per channel use) the rate at which the control information from the

BS to the users can be broadcasted. Further, we assume that when F users

perform the uplink training, they use orthogonal pilot of length βF channel

uses each. β is an integer system parameter, not smaller than 1 (for the pilots

to be indeed orthogonal). Greater length of training sequences implies that the

training symbols should have less power (for the same quality of estimation)

so this parameter can be tuned according to the power capabilities of the user

terminals. Finally, downlink pilots are assumed of a length of βp channel uses.

Since at least a downlink pilot and the uplink pilots must be used, the maximum

number of users to be scheduled is the maximum number of users that can

participate in training within the duration of the timeslot, that is

Fmax = min

{
N,

⌊
Ts − βp

β

⌋}
. (4.7)

In practice this number may be actually lower, for example it is usually desirable

that at least half of the timeslot is used for data transmission [6].
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4.3.1 Centralized policy

Since the channel statistics are known, one approach is to let the BS decide which

users to acquire CSI from and schedule based on the expectation of the rate they

receive. Each expectation is found over the joint probability distribution of the

channel realizations of all users and its expression is given in Section 4.4.1. For

this scheme, the BS sends a downlink pilot to allow the users to estimate their

channel and decode the control messages. After the pilot, there is a control

phase, where the BS broadcasts the Identification Numbers (IDs) of the users

that will get scheduled at this timeslot. For each user selected

βc =
log2K

R0

channel uses are needed. In addition, there must be a way for the users to know

that the control part is over and that those among them that are scheduled

should start training. Here we propose that the signal for that is theBS staying

silent for one channel use. An alternative, and perhaps more robust, way would

be to assign a corresponding sequence. However we chose the one channel use

of staying silent scheme for simplicity and because it will give an upper bound

on the performance of the centralized scheme 3, thus the worst case for the

improvement achieved with the decentralized and mixed schemes that follow.

Notice that it is a function of the total number of users admitted in the cell

and the rate for the control signalling. It can thus pose some limitation in the

number of users admitted in the cell (the time used for signalling in each slot

should not be too big). The users that are selected then perform uplink training

and then theBS serves then using ZF precoding with equal power among users,

as explained in the previous Section. This procedure is illustrated in Fig. 4.1.

Timeslot Ts

DL pilot

βp

Control

βcF + 1

UL training

βF

Data transmission

Ts − (βp + βcF + βF )

Figure 4.1: Operation of the centralized scheme in a timeslot where F users

have been scheduled

Alternatively, if the control phase is to remain constant irrespective of the

number of scheduled users, the control phase will last for K
R0

channel uses instead

of βcF , because a codeword of K bits, one for every user indicating if he is

3Since the control channel must be decoded successfully at all times, a lower rate of one

bit per channel use may be needed.
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scheduled or not, should be used. This poses more severe restrictions to how

many users the cell can support but having a control region of fixed duration

may be desirable in practice e.g. for synchronization purposes.

The BS selects the set of users to be scheduled at every slot as the solution

to the following problem:

F(t) = arg max
F∈2K

{
(Ts − (1 + βp + βcF + βF ))

∑
k∈F

qk(t)E {rk(t)|F}

}
, (4.8)

where the expectation is taken with respect to the joint probability distribution

of the channels, as presented in detail in Section 4.4.

The advantage of this scheme is its (relative) simplicity. Indeed, the expec-

tations of the rate for every user k given that F−1 other users are scheduled can

be computed in advance and used at every slot. Furthermore, if the channels are

i.i.d. among the users, it can be implemented by having F run from 1 to Fmax,

sort the users according to the values of qk(t)E {rk(t)|F} and select the F biggest

every time. In the end select the configuration that gave the biggest expected

weight. The overall computational complexity here is O(FmaxK log2(K)).

The downside is that the actual realizations of the channels are ignored; for

instance, a user chosen to be scheduled may actually have a very bad channel

(i.e. channel with such a bad magnitude that cannot even support the smallest

rate). This is a bigger problem when OFDMA is employed (as is actually done in

modern systems e.g. LTE and Worldwide Interoperability for Microwave Access

(WiMax) ) because according to this scheme the same users will be scheduled

for every carrier, so the frequency diversity in the fading is not exploited.

4.3.2 Decentralized policy with periodic signalling

To overcome the shortcomings of the centralized scheme, we first note that each

user can know its actual channel realization, namely via downlink training. In

this case, if each user knew its queue length (or the ranking of users based on

the queue length) as well, we could exploit this knowledge and use, for example,

techniques inspired by queue-based CSMA [98] or Fast CSMA [52] to find a

schedule. Indeed, it has been recently shown that performing a CSMA with the

backoff timer being a function of the product of the queue length times the actual

rate supported by the channel realization can achieve throughput optimality

in uplink systems with single carrier and single antenna fading channels [51]

(under the assumption of continuous time for backoff). However, in our case

the system model is more complicated because the users do not know their

queue lengths and because of multiple antennas in the BS , more than one
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user can be scheduled simultaneously. Our proposed schemes, detailed in the

next paragraph, are based on two ideas: (i) the BS periodically broadcasts the

(suitably quantized) values of the queue lengths and (ii) the BS decides on the

number of users to be scheduled and based on that lets the users contend using

the queue length information they have and an estimate of their achievable rate

based on channel state realization.

4.3.2.1 Algorithm description

To begin with, every T timeslots, that is at time 0, T, 2T, ...,mT, ... the BS

broadcasts quantized versions of the queue lengths of the users at the beginning

of this slot, i.e. broadcasts a quantization of the vector q(mT ),m = 0, 1, ...,

the restriction being that T is a finite number. The quantization of the queue

lengths is discussed in detail in Section 4.3.2.2. In addition, the BS broadcasts

the number F (mT ) of users to report the channel each timeslot for the next

T − 1 consecutive timeslots. No data transmission at this timeslot takes place

in order to make broadcasting this information possible (with the BS adopting

e.g. uniform precoding for transmission).

Denote now by q̂(t) := q̃(T b tT c) to be the most recent information about

their queue state that the users have. At each timeslot the BS sends a downlink

pilot with duration βp channel uses so that the users can estimate their channels

and lets a period of τ channel uses for the users to contend for channel access.

Assuming that contention can be done in continuous time and with signals of

negligible duration (this assumption has been implicitly used in recent works

dealing with Fast CSMA over fading channels [52], [50]), user k waits until time

τ ′k =
τ ′c

q̂k(t)E{rk(t)|gk(t), F (t)}
. (4.9)

In the above equations, the times are expressed in time units (i.e. ms or µs). The

denominator is the latest broadcasted value of the queue length of this user times

the expectation of the rate the user will get if it is scheduled, given its own chan-

nel realization (we have defined here gk(t) = ||hk(t)||2). This computation is de-

tailed in the Section 4.4.1, and for an environment with Rayleigh fading (the case

we examine here) can be done in a totally decentralized manner. Note that un-

der this scheme, the F users with the biggest values of q̂k(t)E{rk(t)|gk(t), F (t)}
are the ones that get actually scheduled.

Once the contention period is over, the F first users to have a signal broad-

casted feed back their IDs in a TDMA manner, e.g. in the sequence in which

they sent the contention signals (under the assumptions on continuous time con-

tention and very short signals the users can know their place in the sequence).
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These users then perform uplink training and the BS transmits to them using

Zero Forcing. The total time for transmission is then (Ts − βp − τ − (β + βc)F (m))

channel uses. Illustration of a timeslot under this policy is given in Fig. 4.2.

Timeslot Ts

DL pilot

βp

Cont.
τc

IDs UL

βcF

UL training

βF

Data transmission

Ts − (βp + τc + βcF + βF )

Figure 4.2: Operation of the decentralized scheme in a data timeslot where the

Base Station has signalled that F users are to be scheduled

What remains to be specified is the number of users to feed back in every

period {mT + 1, ..., (m − 1)T}. As stated before, this decision is taken in the

beginning of timeslot mT , based on the corresponding queue length informa-

tion and channel statistics. Here we consider that the number of users to get

scheduled is given as the solution of the following problem.

F ∗(m) =arg max
F=1,..,Fmax

{
(Ts − βp − τc − (β + βc)F )

Eg(t)

{
max
F :|F|=F

∑
k∈F

q̂k(mT )E {rk(mT )|gk(t), F}

}}
.

(4.10)

In the above, the outer expectation is with respect to the joint distribution

of the channel magnitudes while the inner expectation is with respect to the

joint distributions of the channel directions (for the channels of all users in

the system). A way to do these calculations is to use the recently proposed

framework in [99], [100] for partial sums of order statistics of non-identically

distributed ransom variables.

4.3.2.2 Queue length quantization scheme

As noted in the description of the algorithm, the BS broadcasts quantized ver-

sions of the queue lengths of the users. This quantization is essential because,

as noted in the beginning of the Section the rate at which the BS can broadcast

signalling information is R0 bits per channel use; this means that if a slot is

used for signalling, at most TsR0 bits can be sent to the users. Given that the

BS should broadcast K queue lengths and how many users are to feed back,

the number of bits bq used for quantization of each queue should satisfy the

following:

Kbq + log2 Fmax ≤ TsR0. (4.11)
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The above inequality poses one limitations as to how many users can be sup-

ported by the system if it operates under this scheduling policy and a limitation

to the accuracy of the queue length feedback for a given number of users in the

cell. However, if multiple antennas and carriers are used, this limitation is not

very severe.

We now detail the way the queue lengths are actually quantized for a given

number of bits per user, bq. To this end, we define

Q = max {TRL, TAmax} (4.12)

and the intervals [0, Q], [Q, 2Q], ..., [(p− 1)Q, pQ], .... Note that Q is the biggest

change that can possibly happen to a queue length after T slots (the queue will

decrease by at most TRL-if at every slot is served at the maximum rate with no

further arrivals- and increase by at most by TAmax-if it s not served at all and

has the maximum possible arrivals at each slot). Therefore, every T slots each

queue length will be in one of the aforementioned intervals, and furthermore,

given that at mT a queue length was at the p-th interval, at (m+ 1)T it will be

at intervals p−1, p or p+ 1. The idea is then to set the quantization interval to

[0, Q] at the beginning and inform each user every T slots if it stays in the same

interval of one of the neighbouring intervals (this can be done at a signalling as

low as 2 bits per user or even 1.5K bits in total). Then, the quantized queue

length is sent, assuming uniform quantization within each interval using the rest

of the signalling bits available. More concretely, if bq bits per user are used for

quantization 2 bits are used to denote the quantization interval and the rest are

used to point to one of the 2bq−2 levels within the interval. If bq = 2, then the

middle value of the interval is used as an estimation of the queue length. Note

that this way, the difference between each of the broadcasted queue lengths,

denoted by q̃(mT ) and the corresponding real queue length from q(mT ) is at

most Q .

Finally, some remarks are in order. First, we have assumed that the control

information broadcasted by the BS are always decodable at the user terminals.

This is a rather frequent and reasonable assumption in the literature (i.e. that

signalling and control data are transmitted without errors). In practice, control

data are transmitted using low rate modulations and strong coding schemes.

We can also always assume that we do downlink power control for the signalling

information. In addition, if the number of carriers and antennas are high, the

diversity of the system is so big that control data can always be received success-

fully even if some channels of the users are in deep fade (also, users with very

bad average channel conditions should not be admitted into the cell). Accurate
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estimation of the users channel can be similarly argued by using high power

pilots.

4.3.3 Mixed Policy: Combining Centralized and Decen-

tralized Schemes

The decentralized approach to the user selection problem should lead to users

with better channel conditions being selected in general, however it requires

some extra time overhead for the contention period. In some cases, some queues

may be empty or a few queues may be much bigger than others. If this happens

it may be better for the users with the much bigger queues to be scheduled

for the T − 1 timeslots without any additional signalling overhead. Note that

since the same users get scheduled every T −1 consecutive slots, no overhead for

their IDs must be used either. The operation of this scheme in a data timeslot

is illustrated in Fig. 4.3 4. We will refer to this scheme as ”periodic centralized

policy” for the rest of the Chapter.

Timeslot Ts

DL pilot

βp

UL training

βF

Data transmission

Ts − (βp + βF )

Figure 4.3: Operation of centralized scheme with periodic user selection in a data

timeslot where the Base Station has signalled a set of F users to be scheduled

The set of users to schedule according to this periodic centralized policy is

set as

F∗(m) = arg max
F∈2K

{
(Ts − (βp + βF ))

∑
k∈F

q̂k(mT )E {rk(t)|F}

}
. (4.13)

The mixed policy here is, therefore, that the BS at every slot t = mT,m =

0, 1, ... decides that, for the next T − 1 slots, either the decentralized policy will

be used, with the optimal number of users to get scheduled as given by eq. (4.10)

or select a set F(m) of users to schedule according to the maximization in eq.

(4.13). This decision is made based on which of the two policies will maximize

the quantity E
{∑K

k=1 q̂k(mT )(Ts − τ(t))rk(t)

∣∣∣∣q(mT )

}
, with the expectation

taken over the channel distributions (which affect the outcomes of the policies).

More concretely, let F ∗(m) be given by (4.10) and F∗(m) be given by (4.13).

4The DL pilot is still needed for the users to set the power of their training sequences such

that the SNR in the reverse link suffices for perfect estimation
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Then, the BS selects the decentralized scheme with F ∗(m) users to get scheduled

if

(Ts − βp − τc − (β + βc))Eg(t)

{
max

F :|F|=F∗(m)

∑
k∈F

q̂k(mT )E {rk(mT )|gk(t), F}

}
≤ (Ts − (βp + βF ))

∑
k∈F∗(m)

q̂k(mT )E {rk(t)||F∗(m)|}

and the centralized scheme with the users in F ∗(m) otherwise.

This policy has a bigger stability region than either of the two policies men-

tioned before in this Section, since it essentially combines both. It needs 1 ad-

ditional bit of signalling compared to the other policies, in order to inform the

users if the centralized or decentralized scheme will be employed. In addition,

the BS needs to broadcast the number F of users to be scheduled in the decen-

tralized policy if used (log2(Fmax) bits) or the users to get scheduled in case the

centralized policy is used (min {K,Fmax log2K} bits). Since Fmax ≤ K, there

must hold

Kbq + min {K,Fmax log2K} ≤ TsR0, (4.14)

which gives a bound on the number of users to be admitted to the cell in order

to operate under the mixed policy.

4.4 Calculation of Parameters and Stability Re-

sults

In this Section we give the expressions for the SNR (and subsequently rate)

distributions. Also, we give some useful lemmas about stability of systems

where control decisions are done periodically and not in a slot-per-slot basis.

4.4.1 Calculation of average rates

The decentralized scheme requires that every user should calculate their average

rate given their current channel state realization, as seen by eq. (4.9). Indeed,

since the system operates under isotropic fading directions, we can calculate the

probability distribution over the other users’ channels and zero forcing precoding

of a user’s SNR given its channel. We have:

Proposition 4.4.1. The probability that the received SNR at user k exceeds s

given its channel strength and that this user and other F −1 users are scheduled
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is given by

P {SNRk(t) > s|gk(t), F} = P {SNRk(t) > s|hk(t), F}

= 1− IB
(

Fσ2

Pgk(t)
s;N − F + 1, F − 1

)
.

(4.15)

This distribution is with respect to the direction of the channel of user k and the

channels of the other users that get scheduled.

Proof. Please refer to Section 4.11.1 in the Appendix for this Chapter for the

proof.

From the above result and the proof we can see that only the magnitude

and not the direction of the channel realization comes into the equation. In

addition, the long-term statistics of the other users do not play any part in the

computation either. Intuitively these remarks are due to the isotropic direction

of the channel vectors. Indeed, since we are considering ZF precoding, the loss

of SNR comes due to the fact that the channels are not orthogonal, therefore

the demand of causing zero interference can constrain a lot the precoder selec-

tion. Since the directions are isotropic, knowledge of one channel direction does

not imply anything about how nullspace of the other users should behave. A

consequence of these remarks is that a user can actually calculate this distri-

bution (and hence the average rate he will get given its channel) with only the

knowledge that the whole system operates under Rayleigh fading.

In the centralized scheme, where the BS does not have knowledge of the

magnitude realization of the channels, the probability that the SNR of user k

exceeds S when F − 1 other users are scheduled is the following [48, 101]5

Proposition 4.4.2. Given a number of users to be scheduled, F , the probability

that the SNR of user k exceeds S is given as

P {SNRk(t) > s|F} = 1−
γ
(
Fσ2

ḡkP
s;N − F + 1

)
Γ(N − F + 1)

.

From the results of Propositions 4.4.1 and 4.4.2 we can find the average rates

conditioned on the channel realization of user k and the expected rate of this

user without knowing the channel realization, respectively. More concretely, if

we define

L0,k(t, F ) = max

{
l ∈ 1, ..., L : Sl ≤

gk(t)P

Fσ2

}
, (4.16)

5It can also be calculated by integrating (4.15) for gk(t) from zero to infinity. Although

we could not obtain the exact form given in Proposition 4.4.2, numerical results indicate that

the numerical values are the same with either method. We will use the latter expression since

it is in a closed form
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i.e. the index of the highest rate that could be supported by user k if he is

scheduled and his channel is orthogonal to the channels of the other F − 1

scheduled users, we have:

E {rk(t)|F, gk(t)} =

L0,k(t,F )∑
l=1

RlP {Sl ≤ SNRk(t) < Sl+1|F, gk(t)}

=

L0,k(t,F )∑
l=1

Rl (P {SNRk(t) ≥ Sl|F, gk(t)} − P {SNRk(t) ≥ Sl+1|F, gk(t)}) .

(4.17)

and

E {rk(t)|F} =

L∑
l=1

Rl (P {SNRk(t) ≥ Sl|F} − P {SNRk(t) ≥ Sl+1|F}) . (4.18)

Notice that, since the statistics are assumed known, the rates in (4.18) can be

calculated only once and used by the BS for the centralized scheme.

4.4.2 Stability results

In this subsection we are interested in deriving some stability results for the

system under the policies where slots {0, T, T+1, ..,mT, ..} are used for signalling

and/or broacasting of the queue lengths. First, we define the queueing system

that results when examining the original system at time instances 0, T, ..., i.e.

at the beginning of the slot in which the broadcasting takes place. Formally:

q̃(m) := q(mT ),m = 0, 1, 2, .... (4.19)

The equations regarding the evolution of this system are, thus ∀k ∈ {1, ...,K}:

q̃k(m+1) = q̃k(m)+

T−1∑
t=0

ak(mT+t)−
T−1∑
t=1

zk(mT+t)µk(mT+t)+

T−1∑
t=1

yk(mT+t)

(4.20)

where zk(t) is the indicator function, set to 1 if user k is scheduled in timeslot t

and zero otherwise, µk(t) is the total number of bits assigned for transmission

to user k at timeslot t (that is µk(t) = rk(t)(Ts − τ(t)) (recall that τ(t) is the

total time of the slot used for pilot transmission, coordination and training), and

yk(mT + t) = [zk(mT + t)µk(mT + t)− qk(mT + t)]
+

the number of ”wasted”

bits if the offered rate at one timeslot is bigger than the available bits in the

buffer. Note that the process q̃(m) is a discrete time Markov chain evolving on

a countable state space. The following result holds:

Lemma 4.4.1. The system q(t) is strongly stable if and only if the system q̃(m)

is strongly stable.
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Proof. Assume first that q(t) is strongly stable. We have 1
M

∑M−1
m=0 E{q̃k(m)} ≤

T 1
MT

∑T (M−1)
τ=0 E{qk(τ)} therefore

lim
M→∞

sup
1

M

M−1∑
m=0

E{q̃k(m)} ≤ T lim
M→∞

sup
1

MT

T (M−1)∑
τ=0

E{qk(τ)} < +∞,

where the second inequality follows from the assumption. Therefore q̃(m) is

indeed strongly stable. Assume now that q̃(m) is strongly stable. We can write

lim
t→+∞

sup
1

t

t−1∑
τ=0

E{qk(τ)} = lim
M→+∞

sup
1

MT

MT−1∑
τ=0

E{qk(τ)}

= lim
M→∞

sup

(
1

MT

M−1∑
m=0

E{qk(mT )}+
1

MT

M−1∑
m=0

T−1∑
τ ′=1

E{qk(mT + τ ′)}

)
.

(4.21)

Since q̃(m) is strongly stable and q̃(m) = q(mT ), there exists some 0 < C0 <∞
such that ∀k ∈ {1, ..,K} :

lim
M→∞

sup
1

MT

M−1∑
m=0

E{qk(mT )} ≤ C0

T
. (4.22)

Also, note that ∀τ ′ ∈ {1, .., T−1}, ∀m = 0, 1, .... it holds qk(mT+τ ′) ≤ qk(mT )+

τ ′Amax. This implies that, ∀m = 0, 1, 2, ... we have
∑T−1
τ ′=1 E{qk(mT + τ ′)} ≤

E{qk(mT )}+ (T−1)T
2 Amax. Replacing we get

lim
t→+∞

sup
1

t

t−1∑
τ=0

E{qk(τ)} ≤ lim
M→∞

sup

(
2

MT

M−1∑
m=0

E{qk(mT )}+
T (T − 1)

2
Amax

)

≤ 2C0

T
+
T (T − 1)

2
Amax <∞,

which implies that q(t) is stable.

The above Lemma implies that a throughput optimal policy for the process

q̃(m) should be also throughput optimal for the original system.

Define now V (x) = 1
2

∑K
k=1 x

2
k a Lyapunov function and ∆V (x) its drift, i.e.

∆V (x) = E {V (q̃(m+ 1))− V (q̃(m))|q̃(m) = x} . (4.23)

The expectation is over the arrival and channel processes as well as the possibly

randomized feedback policy (i.e. the set of F users that feed back). Then the

following holds for the drift of the sampled system:

Lemma 4.4.2. The drift of the quadratic Lyapunov function for the system

q̃(m) under a scheduling policy π is upper bounded as follows (note that the

61



4.5. A Special Case: The 2-User MISO BC With Single Rate

number of users to feed back, F is included in the policy):

∆Vπ(q̃(m)) ≤ B̃ + T

K∑
k=1

q̃k(m)λk − (T − 1)

K∑
k=1

q̃k(m)E {µ̃πk (m)|q̃(m)} (4.24)

where µ̃πk (m) is the rate of user k in any of the slots mT +1, ...,mT +(T −1) for

a given channel state realization and outcome of the policy π (i.e. set of users

actually fed back), B̃ is a constant depending only on the system parameters.

The expectation is taken over the joint distribution of the channels and possible

randomization of the policy.

Proof. Please refer to Section 4.11.2 in the Appendix of this Chapter for the

proof.

As a final remark, we note that the same stability results with Lemma 4.4.1

hold for the system operating under the centralized policy as well. That is, the

system operating under the centralized policy is stable if and only if the system

that results from sampling the queue lengths of the original at timeslots mT is

strongly stable;the proof is essentially the same as the proof of Lemma 4.4.1.

4.5 A Special Case: The 2-User MISO BC With

Single Rate

In this Section we will consider a simple case, namely a system with K = 2

users with identical channel statistics (i.i.d. Rayleigh with mean power gain ḡ)

where a user gets rate R bits per channel use if SNR exceeds the threshold Ŝ

and zero otherwise. This setting is of interest as the stability regions admit easy

mathematical expressions and can be plotted, thus giving some insight on the

outcomes of the policies.

To begin with, we define some parameters to be used frequently in the sequel.

Define the probabilities that a user’s SNR exceeds the threshold if only one or

both users are scheduled as p̄(1) and p̄(2), respectively. Since the channels are

statistically identical for both users, these probabilities are the same for any of

them. The numerical values of these probabilities are given by

p̄(1) = 1−
γ
(
Ŝ
ḡ

)
;N

Γ (N)

p̄(2) = 1−
γ
(

2σ2

ḡP Ŝ;N − F + 1
)

Γ(N − F + 1)
.

(4.25)

These expressions are derived by specializing the results in Sections 4.2 and

4.4 for F = 2 and ḡk = ḡ. The system parameters are the same as in the
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original description: Downlink training requires βp channel uses and uplink

training requires pilots of length β channel uses for each user.

We now turn to characterizing the form and stability region of each policy.

4.5.1 Centralized policy

In this policy, in every slot t the transmitter selects either one or both the

receivers to be scheduled. In the latter case, there is an overhead of 2βc channel

uses to broadcast the IDs of the two users and in the former, of βc + 1 to

broadcast the ID of the scheduled user and a signal that the control period is

over.

The expected rate that a user gets if both users are scheduled or if this user

only is scheduled at timeslot t is given by

µ̄c(2) = (Ts − (βp + 2βc + 2β))p̄(2)R (4.26)

and by

µ̄c(1) = (Ts − (1 + βp + βc + β))p̄(1)R, (4.27)

respectively. The set to be scheduled at slot t is then chosen at the beginning

of this slot by the rule that follows:

Fc(t) =

{1, 2}, if (q1(t) + q2(t))µ̄c(2) ≥ max{q1(t), q2(t)}µ̄c(1)

Fc(t) = {arg max{q1(t), q2(t)}}, otherwise

The stability region of the system under this policy is characterized as follows:

Theorem 4.5.1. The stability region of the centralized policy in the 2 i.i.d. user

case with one rate level is

Λ(2)
c = CH

{
(0, µ̄c(1)), (µ̄c(2), µ̄c(2)), (µ̄c(1), 0)

}
. (4.28)

Proof. First we will prove that the region in the statement of the Theorem is

indeed achievable by the centralized policy. To this end, consider a randomized

policy that at the beginning of timeslot t selects the set F . of users to serve

with probability πF . In our setting the set F can be one of {1}, {2}, {1, 2}. The

achievable stability region by this policy is

λ1 < π{1}µ̄c(1) + π{1,2}µ̄c(2) := µ̂1

λ1 < π{2}µ̄c(1) + π{1,2}µ̄c(2) := µ̂2

, (4.29)

with π{1} + π{2} + π{1,2} ≤ 1 and 0 ≤ πF ≤ 1. This is exactly the algebraic

characterization of the set (4.28).
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Define now the quadratic Lyapunov function V (x) = x2
1 + x2

2. Its drift

∆V (q) = E {V (q(t+ 1))− V (q(t))|q(t) = q} can be shown to be bounded as

(with some positive constant B)

∆V (q) ≤ B −
2∑
k=1

(qk(t)E{µk(t)} − qk(t)λk) ≤ B −
2∑
k=1

qk(t)(µ̂k − λk).

The second inequality follows by the definition of our centralized policy. From

(4.29) it follows that ∀λ ∈ Λ
(2)
c ,∃ε > 0 such that ∆V (q) ≤ B − ε

∑2
k=1 qk(t),

hence the system under the centralized policy is indeed stable for all mean arrival

rates in the asserted region.

We then need to prove the converse, that is, if a centralized policy achieves

stability, then the mean arrival rate lies in (the interior of) the region given by

(4.28). Indeed, assume that the system is stable for a mean arrival rate vector

λ. The centralized policy depends only on the queue lengths at the beginning

of slot t, which we denote by F(q). The assumptions, thus, on the channel and

arrival processes make the system a discrete time Markov chain with a single

communicating class. In this case, stability implies the existence of an invariant

distribution π(q). The mean service rate user k gets is then equal to

lim
t→∞

1

t

t−1∑
τ=0

µk(τ) = µ̄c(1)
∑

q∈Z2
+:F(q)={k}

π(q) + µ̄c(2)
∑

q∈Z2
+:F(q)={1,2}

π(q).

Since the sums are probabilities themselves, we can see that the service rate

have the same form as in (4.29). Also, since the system is assumed stable, there

should be λk < limt→∞
1
t

∑t−1
τ=0 µk(τ). From these we conclude that λ ∈ Λ

(2)
c ,

completing the proof.

The stability region for the centralized scheduling algorithm looks like a

trapeze with corner points (0, 0), (0, µ̄c(1)), (µ̄c(2), µ̄c(2)), (µ̄c(1), 0) if it holds

that µ̄c(1) < 2µ̄c(2) and like a triangle with corners at (0, 0), (0, µ̄c(1)), (µ̄c(1), 0)

otherwise. This follows from the fact that in the latter case only one user will

get scheduled. The region for the former case is illustrated in Fig. 4.4.

4.5.2 Decentralized Policy

Let the time for contention be τc channel uses. For consistency, the contention

period will be present even if F = 2, i.e. when both users are to be scheduled

(this will be improved by the mixed policy). From the results of Section 4.4.2 it

suffices to look at the stability of the system examined in the beginning of each

signalling slot mT,m = 0, 1, ....
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λ10 µ̄c(2) µ̄c(1)

λ2

0

µ̄c(2)

µ̄c(1)

Figure 4.4: Stability region of the centralized policy for a system with 2 users

with i.i.d. channels and a single rate level

As described in Section 4.3.2, the BS broadcasts the quantized queue lengths

q̂1(mT ), q̂2(mT ) at time mT . In the particular case with 2 users, the decision

taken by the BS is to either select both users (F (m) = 2) or signal that one

user will be selected (F (m) = 1) and the user who will be scheduled is the one

with the lowest timer from eq. (4.9).

1) Contention procedure: If F (m) = 1, in each of these slots the receivers

are given a contention period of τc channel uses to decide which one is to be

scheduled based on the (quantized and outdated) queue length information they

have and the realization of their channels. This can be done using a contention

scheme, assuming contention in continuous time e.g. like [52], where each user

waits until time τc
q̂k(m)rk(t) : if both have the same timer, e.g. the user with the

smallest ID is scheduled. Another alternative, that can be used thanks to our

model, is to divide the contention period into minislots (TDMA manner) where

each receiver sends a signal in its corresponding minislot if its SNR is above the

threshold Ŝ. If both receivers send a signal, in their corresponding minislots,

then the receiver with the largest broadcasted queue length gets scheduled for

training (this analysis/comparison can be done independently by each receiver

since the queue lengths of all receivers are broadcasted). Otherwise, if only one

user sends a signal in a minislot, then this user will be scheduled for training.

Then, the user to be scheduled sends its ID to the BS , taking βc channel
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4.5. A Special Case: The 2-User MISO BC With Single Rate

uses, and trains. Using the above ”decentralized” procedure, the user that will

eventually get served in the slot will be the one with the maximum product of

quantized queue length at mT times achievable rate. Due to our model here,

denoting SNR
(1)
k (t) = Pgk(t)

σ2 , the user to be scheduled will be

� If ∀k = 1, 2 holds SNR
(1)
k (t) > Ŝ, then k∗(t) = arg max[q̂1(mT ), q̂2(mT )]

� The user for which SNR
(1)
k (t) > Ŝ otherwise

The scheduled receiver will always be given rate of R bits per channel use,

except in the case where no one has sufficiently high SNR, in which no re-

ceiver can be scheduled anyway. Defining the permutation k(1), k(2), where

q̂k(1)(mT ) ≥ q̂k(2)(mT ), the average service rates of these users under F = 1 for

the next T − 1 slots are

µ̄
d,(1)
k(1) (t) = (Ts − (βp + τc + β))p̄(1)R := µ̄d(1)

µ̄
d,(1)
k(2) (t) = (Ts − (βp + τc + β))p̄(1)(1− p̄(1))R.

(4.30)

2) F(m)=2:Both users train just after the coordination period. The average

rate per slot for each user in this case will be

µ̄d(2) = (Ts − (βp + τc + 2β))p̄(2)R (4.31)

Based on the above, the transmitter decides at t = mT the number of users

to get scheduled for the next T − 1 slots by:

F (m) =


2, if q̂k(1)(m) + q̂k(2)(m))µ̄

d,(1)
k(1) (t) ≥

(q̂k(1)(m) + q̂k(2)(t)(1− p̄(1)))µ̄
d,(1)
k(1) (t)

1, otherwise

In the case of F (m) = 1, the contention procedure is followed.

The stability region of this policy is described as follows :

Theorem 4.5.2. The stability region of the decentralized scheme for the 2 user

MISO broadcast system with a single rate level is

Λ
(2)
d =

(
1− 1

T

)
CH
{

(0, µ̄d(1)), (µ̄d(1)(1− p̄(1)), µ̄d(1)),

(µ̄d(2), µ̄d(2)), (µ̄d(1), µ̄d(1)(1− p̄(1))), (µ̄d(1), 0)

}
Proof. The proof consists in four parts. For the first two parts we compute the

stability region for policies that select all the time F = 2 and F = 1. Then

we prove the convex combination of the two is achievable by the decentralized
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policy and we finish by proving the converse. In the proof we examine the system

q̃(m) = q(mT ), since from Lemma 4.4.1 stability of this system is sufficient for

stability of the original queueing system.

Step 1: We first find the stability region if F = 2 for every signalling slot mT .

In this case, the mean rate a user gets for each data slot is µ̄d(2). Thus, for the

system q̃(m), the mean arrival rate for user k is Tλk and the mean service rate

is (T − 1)µ̄d(2), thus the stability region here is λk <
T−1
T µ̄d(2),∀k = 1, 2.

Step 2: We then find the stability region if F = 1 in every signalling slot. We

define a hypothetical policy where a the BS knows from the start of a data slot

the achievable rates for both users and, based on this knowledge, chooses one

of the two users to train and get scheduled, probably at random (while keeping

the same time for data transmission in the slot as the corresponding in the

decentralized policy). More concretely, only one user can support the rate R

then this user should be scheduled, otherwise if both support the rate R then

user 1 gets scheduled with some probability π1 and user 2 with a probability

π2. In this case, taking into account the model for the system q̃(m) the mean

arrival rates λ1, λ2 that can be supported by the system are the one for which

there exist probabilities π1, π2 such that (the quantities in the right hand side

are the mean rates given to each user):

Tλ1 < (T − 1) ((1− p̄(1))µ̄d(1) + π1p̄(1)µ̄d(1)) := (T − 1)µ̂d,1

Tλ2 < (T − 1) ((1− p̄(1))µ̄d(1) + π2p̄(1)µ̄d(1)) := (T − 1)µ̂d,2

0 ≤ π1 + π2 ≤ 1.

(4.32)

This is (for λ) the algebraic representation of the convex hull of the points

(0, T−1
T µ̄d(1)), (T−1

T (1− p̄(1))µ̄d(1), T−1
T µ̄d(1)), (T−1

T µ̄d(1), T−1
T (1− p̄(1))µ̄d(1)),

(T−1
T µ̄d(1), 0). Now assume a vector λ inside this region denoting µ̂k the mean

rate of user k under a hypothetical policy such that the system is stable. From

Lemma 4.4.2 we have that the drift of the quadratic Lyapunov function here is

∆Vπ(q̃(m)) ≤ B̃ + T

K∑
k=1

q̃k(m)λk − (T − 1)

K∑
k=1

q̃k(m)E {µ̃πk (m)|q̃(m)}

Recall that q̂(m) is vector containing the quantized versions of the queue lengths

at the beginning of the signalling slot, therefore q̃k(m)−Q ≤ q̂k(m) ≤ q̃k(m) +

Q. Also that the decentralized policy here selects the user with the maximum
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product of rate times quantized queue length, thus we get

∆Vπ(q̃(m)) ≤ B̃ + T

K∑
k=1

q̃k(m)λk − (T − 1)

K∑
k=1

q̃k(m)E
{
µ̃dk(m)|q̃(m)

}
≤ B̃ + TQ

2∑
k=1

λk + (T − 1)KRmaxQ+ T

K∑
k=1

q̂k(m)λk

− (T − 1)

K∑
k=1

q̂k(m)E
{
µ̃dk(m)|q̃(m)

}
≤ C̃ +

2∑
k=1

q̂k(m) (λk − µ̂k)

≤ C̃ − ε
2∑
k=1

q̂d,k(m).

The drift is negative for
∑2
k=1 q̂k(m) > C̃/ε =⇒

∑2
k=1 q̂k(m) > 2Q+C̃/ε, thus

the system under the decentralized policy achieves indeed the stability region

given by (4.32).

Step 3: Here we prove that Λ
(2)
d is achievable by the decentralized policy. Con-

sider a randomized policy between F = 1 and F = 2 with probabilities π(F = 1)

and π(F = 2) (independent on anything), respectively and the randomized hy-

pothetical policy for the case of F = 1 given in the above paragraph. The mean

arrival rates supported under this policy should then be such that there exist

these probabilities while satisfying the conditions

Tλk < (T − 1) (π(F = 1) ((1− p̄(1))µ̄d(1) + πkp̄(1)µ̄d(1)) + π(F = 2)µ̄d(2))

:= (T − 1)µ̂d,k, k = 1, 2

0 ≤ π(F = 1) + π(F = 2) ≤ 1

0 ≤ π1 + π2 ≤ 1.

(4.33)

The region defined by the above equations is the convex hull of the two regions

defined by (4.32) and (4.30), thus the set in the statement of the theorem.

Under the proposed policy, using the same calculations as above, the drift of

the quadratic Lyapunov function becomes

∆Vπ(q̃(m)) ≤ C̃ + T

2∑
k=1

q̂k(m)λk − (T − 1)

2∑
k=1

q̂k(m)E{µπk (m)}

≤ C̃ +

2∑
k=1

q̂k(m)(Tλk − (T − 1)µ̂d,k),

where the second inequality follows from the fact that by definition of the policy

the quantity
∑2
k=1 q̂k(m)E{µπk (m)} is maximized. Then, by (4.33) we get that
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for some ε > 0, ∆Vπ(q̃(m)) < C̃−ε
∑2
k=1 q̂k(m), which is negative for (as above)∑2

k=1 q̃k(m) ≥ 2Q+ C̃
ε , therefore the decentralized policy can support any rate

of the (interior of the) set in the statement of the Theorem.

Step 4: To finish, we prove the converse, that is any mean arrival rate vector λ

for which the system under the decentralized policy is stable lies in the interior of

the set Λ
(2)
d . We have that (i) the number of users scheduled by the decentralized

policy depends on the quantized queue lengths and that the user scheduled for

F = 1 depends on the quantized queue length and the channel state realizations

and (ii) the quantized queue lengths are functions of the actual queue lengths

at the start of slot mT , the system is an aperiodic markov chain with countable

state space (Z2
+) and a single communicating class, thus strong stability implies

ergodicity of the chain, therefore existence of an invariant distribution π(q).

The mean service rate a user 1 gets is therefore

lim
M→∞

1

M

M−1∑
m=0

mT+T−1∑
t=mT+1

µ1(t) = (T − 1)

(
µ̄d(1)

∑
q∈Z2

+:F (q)=1,q̂1≥q̂2

π(q)

+ (1− p̄(1))µ̄d(1)
∑

q∈Z2
+:F (q)=1,q̂1<q̂2

π(q) + µ̄d(2)
∑

q∈Z2
+:F (q)=2

π(q)

)

and similar for user 2. By assumption the system is stable therefore Tλk <

limM→∞
1
M

∑M−1
m=0

∑mT+T−1
t=mT+1 µk(t) for both users. Combining the above, and

since the summations in the right hand side of the mean rate expression are

probabilities, we get that λ ∈ Λ
(2)
d .

Illustration of the stability region achieved by the decentralized policy is

shown in Fig. 4.5.

In the special case of K = 2 we consider here, if the overhead for the con-

tention τc is 2 channel uses then the scheme can be implemented even dropping

the assumption of continuous time for contention. Indeed, the first of the two

channel uses can be dedicated for the user with the biggest quantized queue

length and the second for the other user (since the queue lengths are broad-

casted, each users knows the queue length of the other), with the ranking be

based on the user ID in case of a tie. Then, for F = 1, the first user in the rank-

ing sends a signal if its SNR exceeds the threshold and remains silent otherwise,

same for the second user. Note that based on the same idea, we can have even

τc = 1 channel use: the first user in the ranking only signals if its channel can

support the rate, if yes the user is scheduled, if not the other user is scheduled

(though this would consume extra power from the BS if the channel of other

user is also bad).
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Figure 4.5: Stability region of the decentralized policy for a system with 2 users

with i.i.d. channels and a single rate level.

4.5.3 Mixed Policy

The mixed policy is a combination of both the ideas behind the centralized

and decentralized policies. As in the decentralized policy, slot mT is used to

broadcast signalling regarding the quantized queue lengths and the action that

specifies how scheduling will be done in the next T − 1 slots.

In the signalling slot, the BS there can choose one of the following actions:

F = {1}, F = {2}, F = {1, 2} and F = 1. In the first three actions the user(s)

specified train directly in the uplink for the T − 1 slots after the signalling slot,

without any control or contention/uplink of the IDs phase. In the case of F = 1

one user is scheduled according to the contention procedure explained in Section

4.5.2. In detail, for the rates at a slot t corresponding to each of the BS actions
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and assuming q̂k(1)(m) ≥ q̂k(2)(m) we have for t ∈ {mT + 1, ...,mT + T − 1}:

E {µ1(t)} = (Ts − (βp + β))p̄(1)R,µ2(t) = 0,F = 1

E {µ1(t)} = 0, µ2(t) = (Ts − (βp + β))p̄(1)R,F = 2

E {µ1(t)} = E {µ2(t)} = (Ts − (βp + 2β))p̄(1)R,F = {1, 2}

E
{
µk(1)(t)

}
= µ̄d(1)

E
{
µk(2)(t)

}
= (1− p̄(1))µ̄d(1), F = 1.

(4.34)

We define further µ̄m({k}) = (Ts− (βp+β))p̄(1)R and µ̄m({1, 2}) = (Ts− (βp+

2β))p̄(2)R. The mixed policy selects, at every slot mT , the following action:

� F = {k(1)}, if

q̂k(1)(mT )µ̄m({k}) >

max

{
(q̂1(mT ) + q̂2(mT ))µ̄m({1, 2}), (q̂1(mT ) + (1− p̄(1))q̂2(mT ))µ̄d(1)

}
� F = {1, 2}, if

(q̂1(mT ) + q̂2(mT ))µ̄m({1, 2}) ≤

max

{
q̂k(1)(mT )µ̄m({k}), (q̂1(mT ) + (1− p̄(1))q̂2(mT ))µ̄d(1)

}
� F = 1 if

(q̂1(mT ) + (1− p̄(1))q̂2(mT ))µ̄d(1) >

max
{
q̂k(1)(mT )µ̄m({k}), (q̂1(mT ) + q̂2(mT ))µ̄m({1, 2})

}
The main result here is summarized in the following

Theorem 4.5.3. The stability region of the mixed scheme in the 2 user case

with i.i.d. channels and one rate level is

Λ(2)
m =

(
1− 1

T

)
CH
{

(0, µ̄m({k})), (µ̄d(1), (1− p̄(1))µ̄d(1)), (µ̄m({1, 2}), µ̄m({1, 2})),

((1− p̄(1))µ̄d(1), µ̄d(1)), (µ̄m({k}), 0)

}
.

(4.35)

Proof. The proof is in the same spirit as the proof of Theorem 4.5.2, that is

deriving the stability region of every action first. Due to the high similarity

for the proofs of Theorems 4.5.1 and 4.5.2, only the outline is given to avoid

repetition.

The stability region for the action F = 1 for every signalling slot has already

been derived in the proof of Theorem 4.5.2. In addition, if the action F = {1, 2}
is chosen all the time, the mean arrival rates that can be supported must satisfy

Tλk < (T − 1)µ̄m({1, 2}),∀k ∈ {1, 2}.
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Finally, if only the user with the biggest (quantized) queue length at the begin-

ning of slot mT is scheduled in the slots t ∈ {mT +1, ..,mT +T −1}, the region

with mean arrival rates such that there exist probabilities π{1}, π{2} so that

Tλ1 < (T − 1)π{1}µ̄m({k})

Tλ2 < (T − 1)π{2}µ̄m({k})

0 ≤ π{1} + π{2} ≤ 1

(4.36)

is satisfied. The proof uses the same ideas with Theorem 4.5.1 (i.e. the ran-

domized policy) and the bound of the Lyapunov drift including the quantized

queue lengths seen in theorem Theorem 4.5.2. Same arguments as the ones of

Theorem 4.5.1 give that the mixed policy achieves the stability region of this

Theorem and the converse, i.e. that every mean arrival rate vector for which

the mixed policy stabilizes the system is in the stability region given in the

Theorem.

In short, as with the centralized and decentralized policies, the mixed policy

aims to maximize the quantity E
{∑2

k=1] q̂k(mT )µk(t)|q̂(mT )
}

over all allowed

actions. An illustration of the stability region achieved by the mixed policy is

given in Fig. 4.6.

4.5.4 Comparison and Discussion

In all three cases the main idea of the policies is to try to maximize the negative

part of the drift of the quadratic Lyapunov function. The difference between

them lies in the fact that different constraints on the policy are assumed. In the

centralized policy the BS is based on the queue lengths on the beginning of each

slot. This has the benefit of knowing the ”priority” a user has to get scheduled

in real time but the drawback that it can lead to many rate outages in slots. By

broadcasting the queue lengths (even in quantized versions) periodically and

by being based on the queue lengths every slot mT it is more possible that

some rate may be wasted, i.e. a user may be scheduled even if the queue length

at the current slot is empty. In addition, for the decentralized case, since one

every T slots must be used for signalling and some overhead for contention and

uplink of the ID of the user who won the contention should be used in each data

slot, there is some penalty on the overall rate. On the other hand, letting the

users decide according to their instantaneous channel states leads to scheduling

eventually a user with good channel condition (in the case where the BS selects

F = 1).
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Figure 4.6: Stability region of the mixed policy for a system with 2 users with

i.i.d. channels and single rate level.

Proposition 4.5.1. A sufficient condition for the mixed policy to achieves a

bigger stability region than the centralized policy is

T > max

[
Tc − βp − β

1 + βc
,
Tc − βp − 2β

2βc

]
. (4.37)

In addition, this increase is with a factor at least equal to

ρ(T ) =
T

T − 1
min

[
Tc − βp − β

Tc − (βp + βc + 1 + β)
,

Tc − βp − 2β

Tc − (βp + 2βc + 2β)

]
(4.38)

that is Λ
(2)
m ⊇ ρ(T )Λ

(2)
c .

Proof. We will take the points on the axes and on the line λ1 = λ2; from the

shapes of the stability regions, if the mixed policy expands the region along

these directions, then it will expand it anywhere. For expansion, we should

then have (
1− 1

T

)
µ̄m({k}) > µ̄c(1)

and (
1− 1

T

)
µ̄m({1, 2}) > µ̄c(2).
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Replacing and after come calculations we get that

T >
Tc − βp − β

1 + βc

from the first equation and

T >
Tc − βp − 2β

2βc

from the second. Since both must be correct we get the stated condition for T .

In addition, from the shape of the regions we get that for all other directions we

get a bigger increase than the increase on the axes and the like λ1 = λ2. The

increase in any of the two axes is given as ρ′ = (1−1/T )µ̄m({k})
µ̄c(1) and the increase

in the direction of equal arrival rates is ρ′′ = (1−1/T )µ̄m({1,2})
µ̄c(2) . Replacing we get

the stated result.

We can note that the proof of the above proposition uses only points achieved

by the periodic centralized policy. That is, the increase comes from the fact that

a smaller overhead for training and signalling in the data slots is needed and

the necessary overhead for scheduling is in the slots mT instead. The use of de-

centralized scheme in the mixed policy helps enlarge the stability region outside

the lines connecting the point ((1− 1/T )µ̄m({1, 2}), (1− 1/T )µ̄m({1, 2})) with

the points on the axes thus yielding more gains with respect to the centralized

region for traffic demands in these directions6. Illustration of both regions and

the comparison is given in Fig. 4.7.

As T → ∞, this increase is bounded and the bound depends only on the

parameters of the system (i.e. total channel uses available in one timeslot,

lengths of pilot sequences and rates for control signals); this limit is the highest

stability region the mixed scheme can achieve. Finally, note that increasing T

leads to a bigger stability region, however it may also lead to bigger delays and

slower convergence of the system to its stationary behaviour.

4.6 General case

In this Section we consider the general case with K users and L possible trans-

mission rates, as described in Section 4.2.

6If the overhead for contention and user ID uplink of the decentralized policy is smaller

than the control overhead of the centralized one, then a result similar to Proposition 4.5.1

holds even if only the decentralized policy is used; however this may not be the case in general.
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Figure 4.7: Comparing the stability regions of the centralized (dashed line) and

mixed (continuous line) policies in the 2 user system with single rate level

4.6.1 Centralized Policy

We begin by considering the centralized policy and characterizing its stability

region. We denote by µ
(c)
k (t) the service in bits given to user k at slot t under

the centralized policy.

Theorem 4.6.1. The stability region Λc of the centralized policy consists in all

rate vectors λ = [λ1, .., λK ] for which there exist 0 ≤ p(F) ≤ 1,F ∈ 2K with∑
F∈2K p(F) = 1 such that

λk <
∑
F∈2K

p(F)I{k∈F}(Ts − (1 + βp + (β + βc)|F|))E {rk||F|} ,∀k ∈ K. (4.39)

Proof. First we prove that the centralized policy achieves the region character-

ized above. Note that this stability region is achieved by a randomized policy

that every time slot schedules users in the set F randomly with probability p(F)

such that for every user (4.39) is satisfied. Denoting µ∗k the mean rate user k

gets under this policy, satisfaction of the aforementioned condition implies that

for some ε > 0 there is µ∗k − λk ≥ ε. Defining the quadratic Lyapunov function

V (x) = 1
2

∑K
k=1 x

2
k, we have under the centralized policy (the expectation is
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over the arrival, channel and scheduling policies):

∆V (q) = E {V (q(t+ 1))− V (q(t))|q(t) = q}

≤ B +

K∑
k=1

qk(t)λk −
K∑
k=1

qk(t)E
{
µ

(c)
k (t)|q(t) = q

}
≤ B +

K∑
k=1

qk(t)(λk − µ∗k) ≤ B − ε
K∑
k=1

qk(t),

which implies that the system under the centralized policy is stable. The second

inequality holds because the centralized policy chooses F to maximize the second

sum; under the randomized policy the expectation of the rate of user k in every

slot is µ∗k, since this schedule is chosen independent of everything.

Conversely, assume that the centralized policy renders the system stable for

a mean arrival rate vector λ in the interior of Λc. Then, the system is a Markov

chain and since it is strongly stable it has a unique invariant distribution π(q).

In addition, since it is stable, there must hold λk < limt→∞
1
t

∑t−1
τ=0 µ

(c)
k (τ). On

the other hand, the scheduling decision depends on the queue length only, this

dependency denoted below by F(q), therefore the mean service rate for user k

under the centralized policy is given as

lim
t→∞

1

t

t−1∑
τ=0

µ
(c)
k (τ) =

∑
q∈ZK+

π(q)E
{
µ

(c)
k (t)|F(q)

}
=
∑
F

E
{
µ

(c)
k (t)|F

} ∑
q∈ZK+ :F(q)=F

π(q) > λk.

Replacing for the service, the above can be written indeed as (4.39) by setting

p(F) =
∑

q∈ZK+ :F(q)=F π(q).

Geometrically the stability region of the centralized policy is the convex hull

generated by the points
(
E
{
µ

(c)
1 (t)|F

}
, ...,E

{
µ

(c)
K (t)|F

})
for every F subset

of {1, ...,K}. The expectation is over the channel state distributions.

4.6.2 Decentralized Policy

Denoting as Λd(F ) the stability region of the decentralized policy for a fixed

number of users to feed back every timeslot, i.e. setting F (m) = F,∀m ≥ 0. In

this case, from the description of the contention scheme, the users with the F

maximum values of q̂k(t)E {µk(t)|gk(t), F} will eventually get scheduled in every

data slot t, where the channel state realizations are such that the magnitudes

are gk(t). This observation leads to the following:
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Lemma 4.6.1. The region Λd(F ) consists in all mean arrival rate vectors λ ∈
RK+ for which there exist φF (g) ≥ 0 such that

Tλk < (T − 1)

∫ ∞
0

p1(g1)dg1...

∫ ∞
0

pK(gK)dgK
∑

F :|F|=F

φF (g)E {µk(t)|gk,F}

:= (T − 1)µ∗k(F )∑
F :|F|=F

φF (g) ≤ 1,∀g ∈ RK+

.

(4.40)

The expectation is with respect to the directions of the channel vectors and g is

the vector containing a realization of the channel magnitudes.

Proof. The region above is achieved by a hypothetical policy where the BS at

each slot t knows the realizations of all the channel magnitudes and, based on

this knowledge, selects each set F with a probability φF (g), while not transmit-

ting any data on slot mT,m = 0, 1, 2, .... We will show that the decentralized

policy stabilized the system when it is can be stabilized by the aforementioned

hypothetical policy. By Lemma 4.4.1, it suffices to prove that the decentralized

policy stabilizes the system defined by q̃(m) = q(mT ) if the hypothetical policy

renders it stable. Assume a mean arrival rate vector λ such that the system is

stable under the hypothetical policy. Every timeslot t ∈ {mT+1, ...,mT+T−1},
the outcome of the decentralized policy is the F users with the greatest values

of q̂k(m)E {rk(t)|gk(t), F}. The drift of the quadratic Lyapunov function for

the decentralized policy for the system q̃(m) is then (the inner expectations are

with respect to the channel directions and the outer with respect to the channel

magnitudes):

∆V(d)(q) ≤ B̃ + T

K∑
k=1

q̃k(m)λk − (T − 1)E

{
K∑
k=1

q̃k(m)E
{
µ̃

(d)
k (m)|gk, F

}
|q̂(m)

}

≤ (B̃ + TKQλk + (T − 1)KRLQ) + T

K∑
k=1

q̂k(m)λk

− (T − 1)E

{
K∑
k=1

q̂k(m)E
{
µ̃

(d)
k (m)|gk, F

}
|q̂(m)

}

≤ C̃ + T

K∑
k=1

q̂k(m)λk

− (T − 1)E


K∑
k=1

q̂k(m)
∑

F :|F=F |

φF (g1, ..gK)I{k∈F}E
{
µ̃

(d)
k (m)|gk, F

}
q̂(m)


≤ C̃ +

K∑
k=1

(q̂k(m)(Tλk − (T − 1)µ∗k(F )) ≤ C̃ − ε
K∑
k=1

q̂k(m),
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for some ε > 0, with C̃ = B̃ + TKQλk + (T − 1)KRLQ and the last inequality

stems from the fact that λ is inside the stability region of the hypothetical policy.

The drift gets negative for ||q̂||1 > C̃/ε. Since ||q̃||1 > KQ+ ||q̂||1, the drift is

negative for ||q̃||1 ≥ KQ+ C̃
ε . From the Lyapunov-Foster criterion this implies

that the system q̂(m), therefore q(t), is stable under the decentralized policy

if it is stable under a hypothetical policy that can achieve the stability region

in the statement of this Lemma; therefore, this stability region is achievable by

the decentralized policy.

We now proceed to show the converse, that is, if the system is stable under

the decentralized policy for a mean arrival rate vector λ then this vector belongs

in the set Λd(F ). Indeed, the set of users that are served at each timeslot

t = mT + 1, ...,mT + T − 1 is a function on the realizations of the channel

magnitude at slot t and the queue lengths q(mT ). Denote this as F(q,g). Since

the channels are i.i.d. in time, the system q̃(m) is Markovian on a countable

state space with a single communicating class. Stability then implies positive

recurrence of the chain q̃(m), which further implies that there exist a (unique)

stationary distribution, π(q). The mean service rate (in bits per slot) user k

gets is:

lim
M→∞

1

M

M−1∑
m=0

(m+1)T−1∑
t=mT+1

µk(t) = (T − 1)
∑

q∈ZK+

π(q)E {µk|q}

= (T − 1)
∑

q∈ZK+

π(q)

∫ ∞
0

p1(g1)dg1...

∫ ∞
0

pK(gK)dgKE {µk|F(q,g),g}

= (T − 1)

∫ ∞
0

p1(g1)dg1...

∫ ∞
0

pK(gK)dgK
∑

q∈ZK+

π(q)E {µk|F(q,g),g}

= (T − 1)

∫ ∞
0

p1(g1)dg1...

∫ ∞
0

pK(gK)dgK
∑

F :|F|=F

∑
q∈ZK+

π(q)I{F=F(q,g)}E {µk|F ,g} .

Denote φF (g)′ =
∑

q∈ZK+
π(q)I{F=F(q,g)}. For every g this is a probability

distribution over the sets F . In addition, since the system is stable, the mean

arrival rate should be less that the mean service rate for each user [15], therefore

Tλk < (T − 1)

∫ ∞
0

p1(g1)dg1...

∫ ∞
0

pK(gK)dgKφF (g)′E {µk|g} ,

which implies that the vector of mean arrival rates λ indeed belongs to the set

Λd(F ).

Based on the above Lemma and the fact that according to the decentralized

policy the BS selects every signalling slot mT the number of users to be scheduled
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in the next T − 1 slots based on the state of the queue lengths at the beginning

of slot mT and the channel statistics, the main result of this subsection follows:

Theorem 4.6.2. The stability region of the decentralized policy is the convex

combination of the regions given by Lemma 4.6.1 for every F , i.e.

Λd = CH{Λd(1), ...,Λd(F ), ...,Λd(Fmax)} .

Proof. To begin with, note that this region is achievable by a randomized pol-

icy that selects a number of users F to get scheduled according to a properly

defined probability distribution π(F (m) = F ) 7 and the exact set of users to

be scheduled is determined by the contention procedure of the decentralized

scheme. Assume any vector λ ∈ Λd. In this case, the re exist a probability

distribution π(F (m) = F ) and ε > 0 such that, for the mean service rate each

user gets in each slot it holds

(T − 1)µ̄k − Tλk ≥ ε. (4.41)

We will show that the system under the decentralized policy is stable for this

vector of mean arrival rates, meaning that Λd is achievable under the decen-

tralized policy. Noticing that according to the decentralized policy the number

F (m) is selected in order to maximize the sum
∑K
k=1 q̂(m)E {µk|F (m)}, we get

for the Lyapunov drift of the system q̃(m):

∆V(d)(q) ≤ B̃ − T
K∑
k=1

q̃k(m)λk + (T − 1)

K∑
k=1

q̃(m)E
{
µ

(d)
k |F (m)

}
≤ C̃ −

K∑
k=1

q̂k(m)(Tλk − (T − 1)E
{
µ

(d)
k |F (m)

}
) ≤ C̃ − ε ||q̂(m)||1 .

Following the same reasoning as in the proof of Lemma 4.6.1, this implies that

the system is indeed stable under the decentralized policy for λ ∈ Λd.

To prove the converse, i.e. that every mean arrival rate vector λ for which

the decentralized policy renders the system stable belongs to the set λd, we

proceed in the same way as in the proof of Lemma 4.6.1. Since the system is

stable for this vector, there exists a unique stationary distribution π(q) of the

markov chain that describes q̃(m). We have that F (m) is in fact function of

the queue lengths q̃(m) only, and we denote it by F (q). Also, the mean service

every user gets in a timeslot should be greater than the mean arrival rate. Based

on that, and denoting µ̄
(d)
k (F ) the mean service (in bits per slot) user k gets

7Knowledge of the statistics of the arrival processes is needed along with the statistics of

the channels to select this probability distribution
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under the decentralized policy when F (m) = F we have

Tλk < (T − 1)
∑

q∈ZK+

π(q)µ̄
(d)
k (F (q)),

which is indeed the convex hull of the sets Λd(F ).

The stability region of the system under the decentralized policy is thus the

same as the biggest one achieved in the hypothetical case where all channel

magnitude realizations were available to the scheduler, keeping the same timing

overheads as in the decentralized policy. This shows why in the decentralized

policy the users scheduled get high rates in bits per channel use. This is an

advantage compared to the centralized policy, since in the latter a user with a

bad channel realization may be scheduled. On the other hand, the decentralized

policy comes with the disadvantage of spending one every T slots for signalling

rather than data transmission and needing more time for exchange of control

information in the data slot in order to implement the contention phase (though

if the contention period can be made small and the decentralized policy tends

to schedule fewer users than the centralized the additional overhead for the

contention period may not pose a problem - however this is not guaranteed to

happen in practice).

4.6.3 Mixed Policy

The mixed policy uses the same signalling structure as the centralized policy,

however essentially switches between using the centralized and decentralized

schemes every slot mT for the T − 1 slots that follow. Note that if the mixed

scheme operates in centralized mode selecting a set F(m), T−1 slots are used for

data transmission, however only (βp+βF (m)) channel uses are devoted to over-

head for pilots and control signalling (since the IDs of the users to participate

are fixed from the information at slot mT ). Denote

Λ′c =

(
1− 1

T

)
CH

{
Ts − (βp + βF )

Ts − (1 + βp + βF + βcF )
Λc(F)

}
, (4.42)

where

Λc(F) =
{
λ ∈ R+

K : λk < E {(Ts − (βp + βF + βcF ))rk(t)|F} I{k∈F}
}
, (4.43)

i.e. the stability region if the set of users F was scheduled all the time according

to the mixed policy. Then we have the following:

Theorem 4.6.3. The stability region of the mixed policy is

Λm = CH{Λ′c,Λd} .
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The proof can be done in the same way as the ones in the previous subsections

and is thus omitted to avoid repetition.

4.6.4 Comparison and Discussion

By selecting a high enough value of T , we can guarantee that the mixed scheme

increases the stability region of the system. Denote

m̂ = min
1≤F≤Fmax

{
Ts − (βp + βF )

Ts − (βp + βF + βcF + 1)

}
. (4.44)

Then the following result holds:

Proposition 4.6.1. A sufficient condition for the mixed scheme to have greater

stability region than the centralized scheme is

T >
1

1− m̂−1
. (4.45)

In this case, Λm ⊇ ρ(T )Λc with ρ(T ) =
(
1− 1

T

)
m̂.

Proof. An immediate corollary of Theorem 4.6.3 is that Λm ⊇ Λ′c. Note that,

by the definition of this region, the signalling overhead required in a data slot

is smaller than the one of the centralized policy. A sufficient condition, thus for

Λ′c ⊃ Λc is (
1− 1

T

)
min

1≤F≤Fmax

{
Ts − (βp + βF )

Ts − (βp + βF + βcF + 1)

}
> 1. (4.46)

Replacing from (4.44), we get the stated result.

For proving the expansion of the stability region by using the mixed policy,

only the centralized mode of the mixed policy was used: The proof uses the

fact that if the set of users to get scheduled is broadcasted periodically then, in

each of the data slots, the signalling overhead is reduced (no control section is

needed). Having the mixed policy select the same users as a centralized policy

for most of the time can happen, for example, when the traffic patterns are such

that a few users request very high rate or (in the extreme case) only one user

requests nonzero rate. In these cases, it may be better to directly serve the

users with the heavy traffic demands most of the time, in order to avoid the

extra overhead for implementing the contention of the decentralized policy. In

fact, in these cases the centralized policy might even perform better than the

decentralized due to reduced overhead. On the other hand, the decentralized

policy can get used in cases with more uniformly distributed traffic load. As

seen in the system with the two users, using the decentralized policy along
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4.7. The case of OFDMA systems

with the centralized one for the mixed policy can satisfy rate demands that

the centralized policy alone could not. The result of Proposition 4.6.1 is thus

a sufficient condition and expansion of the region in some directions of mean

arrival rate vectors can be much higher than ρ(T ).

A last thing to note is that increasing the time T between two signalling

slots enlarges the stability region, however this expansion is eventually bounded

by system parameters. In addition, selecting a very big value of T can have

a negative impact in terms of delays experienced by the users and can lead to

slow convergence of the queueing system to its stationary distribution.

4.7 The case of OFDMA systems

In this Section we extend the analysis to systems using multiple orthogonal

channels in frequency, i.e. OFDMA , on top of multiple antennas. We consider

a system with Nc channels in frequency. Transmit power P is used for each

channel, that is the total transmit power of the BS here is NcP . The other

parameters are the same as in the general description of Section 4.2 (i.e. N

antennas, L rate levels). Channels are assumed to be independent in frequency

and time, the channel state of user k on channel ν given as hkν(t) =
√
ḡkĥkν(t),

where ĥkν(t) ∼ CN (0, IN ). On each channel, Zero-Forcing precoding is em-

ployed to serve (potenitially) multiple users per time-frequency slot. Let Fν(t)

the set of users that are scheduled at channel ν at timeslot t.

4.7.1 Single-antenna transmitter

We consider the case when the BS uses Nc frequency channels and one antenna

first. Then, only one user is scheduled on each channel and each channel is

characterized by its gain, gkν(t) for user k on channel ν at slot t only. For this

subsection we relax the assumptions on the system model, considering channel

gains that have arbitrary distributions, which is unknown to the BS and users.

The BS here broadcasts, at slot mT , the quantized queue lengths q̂(mT ), as

described in Section 4.3.2. At timeslot t ∈ {mT + 1, ..., (m + 1)T − 1}, the BS

broadcasts pilot signals of duration βp channel uses to allow the users estimate

their channels. Depending on the realization of the channel gains, the maximum

rate user k can support on channel ν is rkν(gkν(t)). A contention period with

duration of τc channel uses (and τ ′c µs) follows, where user k waits on every

channel ν till time τ ′kν(t) =
τ ′c

q̂k(m)rkν(gkν(t)) and transmits a signal for the rest of

the contention period if no user has sent anything before in this channel. This is

followed by a phase where every user that has sent a signal in every channel to
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send its ID and its achievable rate at each channel to the BS is used, consisting

in βc = log2(K)
R0

and β′ = log2(L)
R0

channel uses, respectively. Then the BS serves

the user that has gained the contention at each channel with rate rkν(gkν(t)).

An illustration of the operation of the scheme is provided in Fig. 4.8.

Timeslot Ts

DL pilot

βp

Cont.
τc

IDs UL

βc

CQIs UL

β′
Data transmission

Ts − (βp + τc + βc + β′)

Figure 4.8: Operation of the decentralized scheme in a timeslot and channel

when one antenna is used at the Base Station

The intuition behind the policy in the single-antenna transmitter case is

that for every slot only one user will eventually get scheduled at each channel.

Denoting Λ∗ the stability region of the system under a policy where all channel

realizations are assumed known to the BS at no cost in the beginning of every

slot, we have the following result.

Theorem 4.7.1. The stability region of the multi-user broadcast system with

Nc channels and single antenna at the transmitter under the decentralized policy

is

Λ =

(
1− 1

T

)
Ts − (βp + τc + β′)

Ts
Λ∗.

Proof. In the ideal case where the BS knows all channel state realizations at

no cost, the region Λ∗ is achievable using the MaxWeight policy, that is, for

each channel ν, schedule the user whose quantity qk(t)rkν(t) is maximized [27].

Since we consider i.i.d. block fading channel with finite rate levels, we can

denote pkl = P
{
Sl ≤ gkν(t)P

σ2 < Sl+1

}
, that is the probability that rate Rl bits

per channel use is achievable for user k at timeslot t in channel ν (the channels of

the same user are identically distributed). For the rest part of the proof, we will

denote as ”channel state” the realizations of the achievable rates in all channels

of all users (instead of the realizations of the channel gains themselves). Denote

L the set of all possible channel states. This set is finite since the possible

rates at each channel are finite, and we will index its elements by l′. Under this

notation, a necessary8 and sufficient condition for λ ∈ Λ∗ is that there exist

8since we consider only the interiors of the regions
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0 ≤ φl′kν ≤ 1 such that

λk <
∑
l′∈L

pl′
Nc∑
ν=1

φl
′

kνr
l′

kνTs,∀k ∈ K := µ̄SSSk ,

0 <

K∑
k=1

φl
′

kν ≤ 1,∀l′, ν.

(4.47)

In the above, pl′ is the probability the channels are in state l′, rl
′

kν is the (maxi-

mum) rate user k can get on channel ν if the channels are in state l′. This is an

application of the so-called Static Service Split Rule in [27] to our setting and

implies that a hypothetical policy that properly scheduled user k on channel ν

when the channel states are l′ with a probability φl
′

kν achieves the maximum

possible stability region.

We now show that the region in the statement of the theorem is indeed

achievable by the decentralized policy. We will prove stability for the system

q̃(m) = q(mT ). From eq. (4.47), since one slot every T the BS does not

transmit data, the channel and traffic processes are i.i.d. in time and not all

channel uses are used for data transmission in a slot, it follows that for any

vector λ ∈ Λ there exist 0 ≤ φl′kν ≤ 1 such that

Tλk < (T − 1)
Ts − (βp + τc + β′)

Ts
µ̄SSSk ,∀k ∈ K. (4.48)

In addition, the Lyapunov drift for the system q̃(m) can be bounded as (refer

to earlier Sections for details)

∆V (q(m)) ≤ C̃ + T

K∑
k=1

q̂k(m)λk − (T − 1)

K∑
k=1

q̂k(m)E {µk|q̂(m)} .

Notice that under the proposed contention scheme the user with the maximum

value of q̂k(t)rkν(t) gets scheduled in each channel ν for every realization of the

channel states, therefore we have

∆V (q(m)) ≤ C̃ −
K∑
k=1

q̂k(m)

(
(T − 1)

Ts − (βp + τc + β′)

Ts
µ̄SSSk − Tλk

)

≤ C̃ − ε
K∑
k=1

q̂k(m)

for some ε > 0, where the last inequality follows from (4.48). This implies

that the system is stable, thus the decentralized policy achieves any arrival rate

vector in the interior of Λ.

To finish we need to show that Λ is also an outer bound on the stability

region of the decentralized policy. Indeed, condition (4.47) is also necessary,
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and we have that traffic arrives for all slots while the queues get service T − 1

every T slots. This implies that the condition (4.48) is necessary for stability,

therefore Λ is indeed an outer bound of the region.

The theorem implies that in the case of one transmit antenna, the decentral-

ized policy can achieve very close to the maximum possible stability region of

the system. Note also that the result follows for any distribution of the channel

states (and also for correlated channels among users and frequencies) and there

is no need for the users and/or BS to know the channel statistics. This comes

from the fact that in this setting only one user can be scheduled per channel.

4.7.2 Multiple-antenna transmitter

We now turn to the more general case with N antennas at the BS , assuming

that the channel states are i.i.d. among different frequency channels of the

same user. In this case, the policies of Section 4.3 can be carried over, running

in parallel for each channel ν. Since the channels are assumed i.i.d. among

frequencies for the same user, the parameters set by each policy (e.g. the sets

F in the centralized policy and centralized mode of the mixed policy and the

number of users F to get scheduled) are the same for every carrier. For the

stability region of any policy π in the multiple channel case given its stability

region in each carrier ν (i.e. if only this carrier was used to serve the users in

the system) we have the following general result:

Theorem 4.7.2. Let Λπν the stability region of the system using only carrier ν

and Λπ the region of the system using all carriers. Then the following holds:

Λπ = ⊕Ncν=1Λπν . (4.49)

Moreover, if channels in different frequencies are i.i.d. for the same user, the

above reduces to

Λπ = NcΛ
π
ν , (4.50)

where Λν is the stability region of one carrier.

Proof. The second part from the theorem follows directly from the first, so we

will prove the first part only. We begin by showing that Λπ is indeed achievable

by policy π modified for the multicarrier case. Assume λ ∈ Λπ. Then, we can

write

λ =

Nc∑
ν=1

λν ,with λν ∈ Λπν ,∀ν = 1, ..., Nc, (4.51)

for some proper λν . In other words, there exist 0 ≤ φνk ≤ 1 such that∑Nc
ν=1 φνk = 1,∀k ∈ K such that ∀ν = 1, .., Nc, [aν1λ1, ..., aνKλK ]

T ∈ Λπν .
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This implies that a policy achieving this capacity region is a policy that creates

a queue for every user at each channel ν, qνk(t) and routes the traffic arriving

at time t for user k at queue ν with probability φνk. These queues otherwise

operate independently under the policy π applied to each channel ν. In this

case, the system qνk(t) is stable and therefore every queue q′k(t) =
∑Nc
ν=1 qνk(t)

is stable. Letting the average rate of user k at channel ν in this case be µ̄νk, we

have then

µ̄νk > λνk = φνkλk,∀ν, k. (4.52)

On the other hand, every policy π from the ones presented in Section 4.3 tries

to minimize some kind of Lyapunov drift based on the available information.

For the mixed and decentralized policies, for the system q̃(m) = q(mT ), the

above relationship becomes

(T − 1)µ̄νk > Tλνk = Tφνkλk,∀ν, k, (4.53)

therefore

∆Vπ(q(m)) ≤ C̃ + T

K∑
k=1

λkq̂k(m)− (T − 1)

K∑
k=1

q̂k(m)

Nc∑
ν=1

E {µ̃πνk(m)|q̂(m)}

≤ C̃ + T

K∑
k=1

λkq̂k(m)− (T − 1)

K∑
k=1

q̂k(m)

Nc∑
ν=1

µ̄νk

≤ C̃ −
K∑
k=1

q̂k(m)

(
ε+ T

Nc∑
ν=1

φνkλk − Tλk

)
= C̃ − ε

K∑
k=1

q̂k(m),

for some ε > 0, due to (4.53). This implies that the system is stable under the

policy π, thus π can achieve Λπ.

For the centralized policy the achievability proof is essentially the same, just

taking the system every slot t instead every slot mT and taking the actual queue

lengths in the drift expressions.

To finish we need to prove the converse, that is that if the system is stable

under π for a mean arrival rate vector λ then λ ∈ Λπ. Then the system is an

ergodic Markov chain, and since the service rates actually allocated to each user

in each timeslot at each subcarrier depend on the queue lengths and the channel

states, the limit limT→∞
1
T

∑T−1
t=0 µπνk(t) exists, for every user and carrier and

it is equal to µ̄πνk such that (since the system is assumed stable)

λk <

Nc∑
ν=1

µ̄πνk,∀k ∈ K.

This means that, for some εk > 0 we have ∀k: λk =
∑Nc
ν=1(µ̄πνk−

εk
Nc

). However,

at each carrier ν there should be µ̄πν ∈ Λπν (if not, these rates are not achievable
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in this carrier), therefore µ̄πν − 1
Nc
ε ∈ Λπν . Setting λνk = µ̄πνk −

εk
Nc

, the mean

arrival rate vector can be written as an element of Λπ, therefore the converse is

proved.

An application of the theorem above gives that, in the case of Nc carriers

used, the stability regions of the centralized, decentralized and mixed policies

are NcΛc, NcΛd, NcΛm, respectively.

4.8 Trading signalling time for signalling band-

width

In the above analysis we focused on the case where the quantized queue lengths

and the number of users to be scheduled once every T timeslots, occupying the

whole slot with this information. An alternative approach is to use an additional

(low rate) control channel on which to broadcast this information.

More in detail, we add a downlink control channel of rate, say TsRc bits

per time slot. Denote b the quantization bits per user; then the total number

of signalling bits is Kb+ log2(K), transmission of which can be done in a time

of T = Kb+log2(K)
TsRc

timeslots. The scheme here is to start broadcasting the

signalling information of time mT at this slot and the users should use the most

recent broadcasted information, i.e. at time mT ≤ t ≤ (m + 1)T − 1 the users

will use the broadcasted queue lengths and F of time (m − 1)T . The error

in the queue length estimation remains bounded and in addition all slots are

now used for data transmission. It follows then that the stability region of this

schemes will be the same as the corresponding schemes that take one slot for

broadcast without the factor of
(
1− 1

T

)
. This statement can be proven using

the same steps as the preceding analysis. For stability purposes, the rate of the

added control channel can be arbitrarily low, with lower rate however probably

deteriorating the delay performance of the scheme.

4.9 A dynamic threshold scheme for discrete time

contention

In this Section we present a scheme to still leverage the fact that the receivers

know their channel states (channel gain in the particular) for the case where

contention is done in discrete time. We will assume throughout the Section that

the channels of the users are i.i.d. with hk(t) ∼ CN (0, IN ),∀k ∈ {1, ..,K}. In
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practice (where the users are in different distances from the BS ), this can be

achieved by appropriate power control.

More in detail, in slot mT the BS broadcasts an ordering of the users, a

threshold g∗ for the channel gain and a number of users to be scheduled, F (m).

In each of the next T − 1 timeslots, after the downlink pilot, users access the

channel in a TDMA manner on minislots of duration βc channel uses each

according to the ordering broadcasted at slot mT . When it is his turn to access

the channel, each user sends a specified signal in the case its channel magnitude

is above the threshold and does nothing otherwise. This phase ends when F (m)

users have signalled that they want to get included in the schedule or when

all K users have accessed the channel. In the latter case, only the users that

have signalled get scheduled and power is split only among them. Note that the

duration of this control phase is generally variable, and the minislot for each

user can have a duration of even one channel use. When this phase is over, the

users that will be included in the schedule perform uplink training and the BS

serves then using ZF precoding as described in Section 4.2.

The parameters to be optimized here are (i) the ordering of the users, (ii) the

number of users, F (m), to get scheduled and (iii) the threshold for the channel

magnitudes, g∗, which should be in general a function of the queue lengths and

F .

Under the setting of i.i.d. channels for the users, they will be ordered ac-

cording to their queue lengths at (the beginning of) timeslot mT , with the user

with the largest queue first.

We now turn to the impact of the threshold g∗. The probability that the

channel magnitude of a user is above this threshold is given as

p(g∗) = P{gk(t) > g∗} = 1− γ(g∗;N)

Γ(N)
=

∫ +∞

g∗

xN−1e−x

Γ(N)
dx. (4.54)

The above follows from the fact that since hk(t) ∼ CN (0, IN ), the magnitude

follows a chi-squared distribution with 2N degrees of freedom. In addition, let

E
{
rk(t)

∣∣∣∣F, gk(t) > g∗
}

be the mean rate in bits per channel use that user k

gets if his channel magnitude is above the threshold and F users are scheduled

in total. These can be calculated using the results of Section 4.4.1.

Intuitively, smaller threshold will cause the signalling phase to end faster,

however users will worse channel condition will be selected. Assume a user or-

dering {k(1), k(2)..., k(K)} such that qk(1)(mT ) ≥ qk(2)(mT ) ≥ ... ≥ qk(K)(mT ).

Then we have the following

Proposition 4.9.1. The mean rate, µ̄k(i)(F, g
∗) the i-th user in the ordering
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gets if the threshold is g∗ and the BS signalled for F users to be scheduled is:

µ̄k(i)(1, g
∗) =

[Ts − (βp + βci+ β)]+p(g∗)(1− p(g∗))i−1E
{
rk(i)(t)

∣∣∣∣1, gk(i)(t) > g∗
} (4.55)

for F (m) = 1 and

µ̄k(i)(F, g
∗) = E

{
rk(i)(t)

∣∣∣∣F, gk(i)(t) > g∗
}
pF (g∗)

K∑
m=max[F,i]

(1− p(g∗))m−F

[Ts − (βp +mβc + Fβ)]+
min{F,i}−1∑

f=max {0,F−1−m+i}

(
i− 1

f

)(
m− i

F − (f + 1)

)

+

F−1∑
F ′=1

(
K − 1

F ′ − 1

)
[Ts − βp − βcK − βF ′]

+
pF
′
(g∗)(1− p(g∗))K−F

′

E
{
rk(t)

∣∣∣∣F ′, gk(i)(t) > g∗
}

,

(4.56)

for 2 ≤ F (m) ≤ Fmax.

Proof. Please refer to Section 4.11.3 in the Appendix of this Chapter for the

proof.

The expected weight for F (m) = F and threshold for the channel gain set

to g∗ then is given as

E

{
K∑
k=1

qk(mT )µk(t)zk(t)

∣∣∣∣F, g∗
}

=
K∑
i=1

qk(i)(mT )µ̄k(i)(F, g
∗).

From the above, the BS sets at slot mT the parameters F (m), g∗(m) to be

used in slots mT + 1, ...,mT + T − 1 as a solution to the following optimization

problem:

{F (m), g∗(m)} = arg max
g>0,1≤F≤Fmax

{
K∑
i=1

qk(i)(mT )µ̄k(i)(F, g
∗)

}
(4.57)

Denoting G the set of possible thresholds for the channel magnitude, the stability

region achieved by this protocol is the following:

Theorem 4.9.1. The stability region achieved under the dynamic threshold

selection scheme is

Λthd =

(
1− 1

T

)
CH{F∈{1,..,Fmax},g∗∈G} {µ̄(F, g∗)} .
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4.10. Conclusions

The proof of the theorem is along the lines of the other proofs in this Chapter

and omitted. Mixing this decentralized policy with a centralized one every T

timeslots in the same way as the mixed policy described previously, we can

achieve a stability region of CH
{

Λ′c,Λ
th
d

}
.

4.10 Conclusions

In this Chapter we addressed the problem of user selection in a system were

CSI is acquired by the BS via uplink training from the intended receivers. We

have demonstrated that a feedback/training policy that combines decentralized

schemes for user selection along with a centralized one can achieve greater stabil-

ity region in the case of a MISO broadcast system. In addition, in the case of a

SISO system the scheme can achieve an big fraction of the ideal stability region.

These results suggest that, in future systems, decentralized methods should be

considered for feedback and user scheduling along with the traditional central-

ized ones, at least for data-oriented services. We have also proposed a scheme

based on a threshold for the channel magnitude in the case where contention is

implemented in a slotted manner.

4.11 Appendix for Chapter 4

4.11.1 Proof of Proposition 4.4.1:

To begin with, we denote k = k(i) for some 1 ≤ i ≤ F and define {k(j)}j=1,..,F

the set of users that reported their CSI . For notational convenience we will

drop the notation for dependence on t and F . For all other users except i, de-

fine the matrix of the vector of the respective channel corresponding to fast

fading as Ĥk(i) =
[
ĥk(1), ..., ĥk(i−1), ĥk(i+1), .., ĥk(F )

]
, the matrix of the re-

spective directions, Uk(i) =
[
uk(1), ...,uk(i−1),uk(i+1), ..,uk(F )

]
, the matrix of

large scale channel gains Ḡk(i) = diag
{
ḡk(1), .., ḡk(i−1), ḡk(i+1), ..., ḡk(F )

}
and fi-

nally the diagonal matrix containing the instantaneous channel gains, Gk(i) =

diag
{
gk(1), .., gk(i−1), gk(i+1), ..., gk(F )

}
. Using these notations we can write:

Hk(i) = Ĥk(i)Ḡk(i) = Uk(i)Gk(i). (4.58)

Replacing the above in (4.5), we get that the SNR at user k(i) then can be

written as

SNRk(i) =
gk(i)P

σ2F
uHk(i)

(
IN −Uk(i)

(
UH
k(i)Uk(i)

)−1

UH
k(i)

)
uk(i). (4.59)
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However, we have from (4.58) that

Uk(i) = Ĥk(i)Ḡk(i)G
−1
k(i) = Ĥk(i)Dk(i), (4.60)

where we have defined Dk(i) = Ḡk(i)G
−1
k(i) = diag

{
ḡk(1)
gk(1)

, ..,
ḡk(i−1)

gk(i−1)
,
ḡk(i+1)

gk(i+1)
, ...,

ḡk(F )

gk(F )

}
.

In addition, since Ĥk(i) is a matrix with F − 1 i.i.d. CN (0, IN ) random vectors

as columns, we can write its Singular Value Decomposition as [102]

Ĥk(i) = VΣ∆, (4.61)

where V ∈ CN×N and ∆ ∈ C(F−1)×(F−1) are isotropically distributed unitary

matrices (i.e. Haar matrices) and Σ ∈ CN×(F−1) is the matrix containing the

singular values of Ĥk(i). Replacing in the SNR expression (4.59) and noting

that VVH = IN we eventually get

SNRk(i) =
gk(i)P

σ2F
uHk(i)

(
VVH −VΣ

(
ΣHΣ

)−1
ΣHVH

)
uk(i)

=
gk(i)P

σ2F
uHk(i)V

(
IN −Σ

(
ΣHΣ

)−1
ΣH

)
VHuk(i).

(4.62)

Defining now

v = VHuk(i),

A =

[
0F−1,F−1 0F−1,N−F+1

0N−F+1,F−1 IN−F+1

]
we have eventually

SNRk(i) =
gk(i)P

σ2F
vHAv =

gk(i)P

σ2F

N∑
j=F+1

|uj |2. (4.63)

Note that the summation is over the squared magnitudes of the N − F + 1 last

components of the vector v. Since V is a Haar matrix and uk(i) is unitary,

v ∈ CN×1 is a random unitary isotropic vector with distribution [103]

p(v) =
Γ(N)

πN
δ
(
||v||2 − 1

)
, (4.64)

where δ(.) denotes the Dirac function. We now define the vectors ψ1 ∈ C(F−1)×1

and ψ2 ∈ C(N−F+1)×1 such that ψ2 = [vF+1, ..., vN ]T and v = [ψT1 , ψ
T
2 ]T . In

this case, we can write the SNR as

SNRk(i) =
gk(i)P

σ2F
ψH2 ψ2. (4.65)

In addition, note that ||v||2 = ||ψ1||2 + ||ψ2||2 and the channel coefficient cor-

responding to each antenna is independent of the coefficients corresponding to

the other antennas.
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We will deal with the probability distribution function of the SNR (4.63)

first. From the aforementioned expression, if follows that

pSNRk(i)(s|gk(i), F ) =
Fσ2

gk(i)P
pψH2 ψ2

(
Fσ2

gk(i)P
s

)
(4.66)

To proceed further, we note that the p.d.f. of ψH2 ψ2 is in fact the probability

that a vector is drawn from the distribution of unitary isotropic vectors with

the sums of the squared magnitudes of its N − F + 1 last elements equal to

ψH2 ψ2, thus:

pψH2 ψ2
(x) =

∫
v∈CN :||v||=1,

∑N
k=F |vk|2=x

p(v)dv =

∫
v∈CN :

∑N
k=F |vk|2=x

Γ(N)

πN
δ
(
vHv − 1

)
dv

=
Γ(N)

πN

∫
ψ2∈CN−F+1

dψ2δ
(
ψH2 ψ2 − x

) ∫
ψ1∈CF−1

dψ1δ
(
ψH1 ψ1 + ψH2 ψ2 − 1

)
=

Γ(N)

πN

(∫
ψ2∈CN−F+1

δ
(
ψH2 ψ2 − x

)
dψ2

)(∫
ψ1∈CF−1

δ
(
ψH1 ψ1 − (1− x)

)
dψ1

)
(4.67)

In order to calculate the integrals we make use the Fourier transform of the

Dirac function, a method used also in [104]. We have the following general result

(it is similar to a result in [104] but we present its proof here for completeness)

:

Lemma 4.11.1. For M ∈ Z+ and r > 0 it holds∫
u∈CM

δ
(
uHu− r

)
du =

πM

Γ(M)
rM−1.

Proof. For this proof, i will denote the imaginary unit (i.e. i2 = −1). We

begin by replacing the Dirac function with its Fourier representation, that is

δ(x) = 1
2π

∫ +∞
−∞ dωeiωx and we get, for (any) α > 0,∫

u∈CM
δ
(
uHu− r

)
du =

∫
u∈CM

du
1

2π

∫ +∞

−∞
dωeiω(uHu−r)

=
1

2π

∫
u∈CM

due−αuHue+αuHu

∫ +∞

−∞
dωeiω(uHu−r)

=
eαr

2π

∫
u∈CM

due−αuHu

∫ +∞

−∞
dωeiω(uHu−r) (4.68)

=
eαr

2π

∫ +∞

−∞
dωe−iωr

∫
u∈CM

due−uHu(α−iω)

=
eαr

2π

∫ +∞

−∞
dωe−iωr

πM

(α− iω)M

= eαrπM
(

1

2π

∫ +∞

−∞
dωeiωr

1

(α+ iω)M

)
. (4.69)
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Line (4.68) is obtained by noting that the integrand with respect to u is nonzero

only for uHu = r. The term in the parenthesis in (4.69) is the inverse Fourier

transform of the function 1
(α+iω)M

. Noting that the Fourier transform of e−αrIr≥0

is 1
α+iω and using the properties of Fourier transforms (mainly the properties

about their derivatives and linearity) we get, for r > 0∫
u∈CM

δ
(
uHu− r

)
du = eαrπM

rM−1e−αr

(M − 1)!
=

πM−1

(M − 1)!
rM−1,

which, since for any positive integer M there is (M − 1)! = Γ(M), completes

the proof.

Applying Lemma 4.11.1 in equation (4.67) we get eventually

pψH2 ψ2
(x) =

Γ(N)

Γ(F − 1)Γ(N − F + 1)
(1− x)N−FxF−2 =

(1− x)N−FxF−2

B(N − F + 1, F − 1)
.

(4.70)

Using (4.66) and replacing with (4.70) we have

P
{
SNRk(i) > S|gk(i), F

}
=

∫ Pgk(i)

σ2F

S

pSNRk(i)(s|gk(i), F )ds

=

∫ Pgk(i)

σ2F

S

Fσ2

gk(i)P
pψH2 ψ2

(
Fσ2

gk(i)P
s

)
ds

=

∫ 1

Fσ2

Pgk(i)
S

pψH2 ψ2
(x)dx

=
1

B(N − F + 1, F − 1)

∫ 1

Fσ2

Pgk(i)
S

(1− x)N−FxF−2dx,

which is the stated result.
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4.11.2 Proof of Lemma 4.4.2:

From the evolution equation for the sampled queue lengths we have

q̃2
k(m+ 1) =

(
q̃k(m) +

T−1∑
t=0

ak(mT + t)−
T−1∑
t=1

zk(mT + t)µk(mT + t)+

T−1∑
t=1

yk(mT + t)

)2

≤

(
q̃k(m) +

T−1∑
t=0

ak(mT + t)−
T−1∑
t=1

zk(mT + t)µk(mT + t)

)2

= q̃2
k(m) +

(
T−1∑
t=0

ak(mT + t)

)2

+

(
T−1∑
t=1

zk(mT + t)µk(mT + t)

)2

+ 2q̃k(m)

T−1∑
t=0

ak(mT + t)− 2q̃k(m)

T−1∑
t=1

zk(mT + t)µk(mT + t)

≤ q̃2
k(m) + T 2A2

max + (T − 1)2R2
L

− 2q̃k(m)

T−1∑
t=0

ak(mT + t) + 2q̃k(m)

T−1∑
t=1

zk(mT + t)µk(mT + t).

From the above, setting B̃ = K(T 2A2
max+(T −1)2R2

L) and taking expectations

it follows that

∆V (q̃(m)) ≤ B̃ + E

{
K∑
k=1

2q̃k(m)

T−1∑
t=0

ak(mT + t)|q̃k(m)

}

− E

{
K∑
k=1

2q̃k(m)

T−1∑
t=1

zk(mT + t)µk(mT + t)|q̃k(m)

}

= B̃ + 2

K∑
k=1

q̃k(m)

T−1∑
t=0

E{ak(mT + t)}

− 2

K∑
k=1

q̃k(m)

T−1∑
t=1

E{zk(mT + t)µk(mT + t)|q̃(m)}

= B̃ + 2T

K∑
k=1

q̃k(m)λk

− 2

K∑
k=1

q̃k(m)

T−1∑
t=1

E{zk(mT + t)µk(mT + t)|q̃(m)}

Where the last equality follows from the fact that the arrival processes are i.i.d.

in time and independent of anything else. Moreover, we have that the schedule

zk(mT + t) and the rate of the user in the slot µk(mT + t) depend only on the

queue length vector q̃(m) and the realizations of the channels and not on the
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time index. This implies that the product zk(mT + t)µk(mT + t) has the same

distribution for every slot between mT + 1 ≤ τ ≤ m(T + 1). Defining µ̃k(m)

as this final rate (including the scheduling decision) user k gets, for a given

scheme it is as if we have (T − 1) independent copies of this random variable

(with probability distribution over the probability distribution of the channels),

hence the statement follows.

4.11.3 Proof of Proposition 4.9.1:

Proof of equation (4.55): Notice that here only one user is to be scheduled

(since F (m) = 1). This means that the i-th user in the ordering gets scheduled if

(i) his channel magnitude is above the threshold and (ii) the channel magnitudes

of the i− 1 users before him are below the threshold. In addition, if this user is

scheduled the contention period stops right after, i.e. lasts for i minislots.

Proof of equation (4.56): We now deal with the case where 2 ≤ F (m) =

F ≤ Fmax. The mean rate of the i-th user in the ordering can be written as

follows:

µ̄k(i)(F, g
∗) = P {F users above threshold, k(i) ∈ F}E

{
µ̄k(i)|F above, k(i) ∈ F

}
+

F−1∑
F ′=1

P {F ′ users above threshold, k(i) ∈ F}E
{
µ̄k(i)|F ′ above, k(i) ∈ F

}
:= µ̂i(F ) +

F−1∑
F ′=1

µ̂i(F
′).

(4.71)

For the rest of the proof, we will denote the event that user k(i) is scheduled

as k(i) ∈ F . For the first term of the above equation, which corresponds to the

event that F (m) = F users get scheduled in the end, we have

µ̂i(F ) =

K∑
m=F

P {M = m, k(i) ∈ F , |F| = F} [Ts − (βp + βF + βcm)]+

E
{
rk(i)(t)

∣∣∣∣F, gk(i)(t) > g∗
}
,

(4.72)

where M denotes the duration of the contention period (i.e. how many minislots

are used till F users are found with the channel magnitude above the threshold).

Since k(i) should be in the set of users that are scheduled, the contention period

should not stop before his minislot, that is

P {M = m, k(i) ∈ F , |F| = F} = 0,∀0 ≤ m < i. (4.73)

To proceed further, we note that the event in the probability in equation (4.72)

is equivalent to the union of events where (i) the channel magnitude of user k(i)
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is above the threshold and (ii) f users with lower order than i, that is between

and including k(1) and k(i− 1) and F − (f + 1) between and including k(i+ 1)

and k(m) have channel magnitudes above the threshold, for all values of f . The

values f is allowed to take should satisfy the following properties:

0 ≤ f ≤ i− 1

f ≤ F − 1

F − (1 + f) ≤ m− i =⇒ f ≥ F − 1− (m− i).

(4.74)

The first condition in (4.74) comes from the fact that the number of users

before the i-th user is i − 1, the second from the fact that in order for k(i)

to be scheduled, less than F users higher in the ranking should have channel

magnitudes above the threshold and the third because there are left m− i users

in the ranking after user k(i). We thus have

P {M = m, k(i) ∈ F , |F| = F} =

p(g∗)

min{F,i}−1∑
f=max{0,F−1−m+i}

P
{
f in {k(1), ..., k(i− 1) above threshold ,

F − (f + 1) in {k(i+ 1), ..., k(m) above threshold

}
,

which, since the channels are i.i.d. among users reduces to

P {M = m, k(i) ∈ F , |F| = F} =

p(g∗)

min{F,i}−1∑
f=max{0,F−1−m+i}

P
{
f out of i− 1 above threshold

}

P
{
F − (f + 1) out of m− i above threshold

}
.

The event in the first term inside the sum happens in
(
i−1
f

)
possible ways with

probability pf (g∗)(1−p(g∗))i−1−f each, while the event in the second term hap-

pens in
(

m−i
F−(f+1)

)
ways, with probability pF−(f+1)(g∗)(1−p(g∗))m−i−(F−(f+1))

each. Replacing and taking into account that F ≤ m (all F users should get

scheduled) and eq. (4.73) we get eventually

P {M = m, k(i) ∈ F , |F| = F} =
∑min{F,i}−1
f=max{0,F−1−m+i}

(
i−1
f

)(
m−i

F−(f+1)

)
p(g∗)F (1− p(g∗))m−F ,max{F, i} ≤ m ≤ K

0, 0 ≤ m < max{F, i}

(4.75)

We now turn to the second term, i.e. the sum
∑F−1
F ′=1 µ̂i(F

′). This is in

fact due to the probability that less than F (m) users can have channel magni-

tude above the threshold. The event that exactly F ′ < F users have channel
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magnitude above the threshold and user k(i) is scheduled is the same as user

k(i) having channel magnitude over the threshold and exactly F ′− 1 out of the

remaining K − 1 users do. This event can happen in
(
K−1
F ′−1

)
combinations, each

having a probability of p(g∗)pF
′−1(g∗)(1 − p(g∗))K−F ′ . On the other hand, if

less than F (m) users are above the threshold then all K minislots are used,

therefore the contention period lasts for βcK channel uses. Finally, F ′ users

participate in the uplink training. We then have

µ̂i(F
′) =

(
K − 1

F ′ − 1

)
pF
′
(g∗)(1− p(g∗))K−F

′

[Ts − (βp + βcK + βF ′)]+E
{
rk(i)(t)

∣∣∣∣F ′, gk(i)(t) > g∗
}
.

(4.76)

The result in eq. (4.56) follows combining (4.71) with (4.75), (4.72) and (4.76).
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Chapter 5

Joint Feedback and

Scheduling in TDD

Multichannel Downlink

Systems

5.1 Introduction

In this Chapter we address the problem of joint feedback and scheduling in

multiuser downlink systems employing parallel channels to serve the users. This

setting corresponds to single cell OFDMA systems and/or systems with multiple

antennas at the base stations where orthonormal beamforming is used. Both

schemes are actually implemented in the LTE standards [11] and can offer a

substantial increase in the system’s performance. In order to fully exploit the

potential of these techniques, knowledge of the user’s channel states is needed,

thus resulting in a big overhead. However, at the end, only one user will be

scheduled in each channel. Based on this observation, for a single channel

system where the goal is to maximize spectral efficiency, the authors in [57]

show that having all users feeding back their channel state is not really needed

and propose a threshold-based policy that reduced feedback load while still

achieving the benefits of multiuser diversity. This scheme is further enhanced in

[105]. Other ideas to limit the feedback needed include grouping subcarriers and

sending a single CQI for them [58] and/or reporting only the strongest channels

of each user [58], [59]. In addition, some schemes based on random access using
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a collision channel for feedback e.g. [60], [61], [62] have been proposed, by tuning

the transmission probabilities and thresholds appropriately. However, the main

focus of these works is spectral efficiency/sum rate and they do not take into

account the incoming traffic processes of the users.

Regarding the effect of feedback on stability performance, the authors in

[56] study the problem of deciding which subset of users to collect feedback

from, while the authors in [54] investigate the achievable stability region in

a multichannel system with infrequent channel measurements. In these works

channel statistics are assumed known. Moreover, in [52], a CSMA -based scheme

is presented for channel state feedback and in [63] the authors devise a feedback

scheme for a multiuser MIMO downlink employing orthonormal beamforming.

In these cases however the authors do not take into account the fact that the

base station must wait for some time in the slot before the feedback can be used.

Assuming channel statistics are known, the authors in [64] propose a heuristic

feedback scheme with two feedback slots based on the idea of maximum quantile

scheduling. Furthermore, in [65] it is shown that for a system of L carriers with

FDD mode for feedback, the base station needs to acquire at least Θ(L) channel

realizations each time slot to obtain very close to the biggest achievable stability

region. In [66], a TDD mode of feedback is used: the base station requests the

users to feed back their channel states but each procedure is centralized and

takes up a portion of the time slot. Based on optimal stopping theory and

assuming that the distributions of the channel gains are known to the base

station, the authors derive the general properties of the centralized optimal

probing policy and completely characterize it in some special cases. Finally, for

the same model, the authors in [67, 68] have recently proposed a simple feedback

scheme for a single channel system. This scheme, termed Selective Scheduling

and Feedback (SFF), sets as threshold the rate of the user with the maximum

queue length and requires no knowledge of channel and traffic statistic. It is

shown to guarantee greater stability region than a scheme where all channels

are probed. In multi-carrier systems, the probing problem is more challenging

since a user may be scheduled on a subset of channels and therefore each user

needs to feed back the CQIs of a subset (as small as possible) of its channels.

Applying directly the aforementioned schemes to multi-carrier systems may not

result in a good stability region because the number of users feeding back on

each channel might be still big. This poses more of a problem as the number of

users in the cell increases.

In this Chapter, we focus on the downlink of a multichannel single cell system

with feedback in TDD mode. In fact, in Section 4.7.1 we have shown that if
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we assume that a contention scheme working on continuous time with very

short contention signals is used, a very big fraction of the stability region of

the ideal case (channel realizations known to the base station at no cost) can

be achieved. However, these assumptions can be rather strong in practical

systems.In this chapter, we propose two schemes for both of which a threshold

for the achievable rate of the channel is adjusted by the base station according

to the queue lengths of the users, in a way similar to [68]. We examine two

approaches: in the first one, a user whose achievable rate exceeds the threshold

feeds back with a properly defined probability and in the second one each user

whose achievable rate is above the threshold feeds back, but the base station can

decide when to stop the feedback procedure. We illustrate both by simulations

and analysis that these schemes outperform the SSF scheme of [68] in terms of

achievable stability region.

The rest of the chapter is organized as follows: In Section 5.2 we present the

system model. The randomized and stopping-based algorithms are presented in

Sections 5.3 and 5.4, respectively. These Sections include the descriptions and

analysis of these algorithms. Finally, Section 5.5 concludes the chapter.

5.2 Preliminaries

We consider a single cell system where a base station serves K users using N

channels, assumed to be randomly time varying, i.i.d. across time. This can

model the case of OFDMA downlink schemes with N carriers or the case where

the base station is equipped with N antennas and orthonormal beamforming is

used (in the latter case a ”channel” is a beamforming vector). Time is slotted.

Let rkn(t) be the achievable rate for user k at channel n at timeslot t (in bits

per timeslot duration). This rate is assumed to belong to a set of finite values,

{R1, .., RL}, R1 = 0, Rl+1 > Rl, which is the case in practical systems, as a

finite number of modulation and coding schemes is used. Also the rates are

independent from each other and across users, but not necessarily identically

distributed. Each user i ∈ {1, ...,K} is associated with a randomly incoming

traffic process ai(t) with mean rate λi. Incoming traffic processes are i.i.d. across

time, independent across users and independent with respect to the channel

processes. For the MAC layer, the base station maintains a different queue for

each user, whose queue length at time slot t is denoted qi(t).

Define now the weight of user k at channel n as Wkn(t) = qt(t)rkn(t) . As

explained in Chapter 2, if all channel realizations are known, the MaxWeight

scheduler, where at each channel n the user with the maximum weight is sched-
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uled achieves the biggest stability region possible. However, we consider feed-

back in TDD mode and the slot divided in minislots of duration βTs. At each

minislot, at each channel the base station can either request a user to feed back

on this channel, broadcast information or let users feed back in a decentralized

way. In channel n, let Mn(t) be the number of minislots used by the feed-

back procedure at time slot t; then, if user k∗(n) is scheduled, it will receive

(1− βMn(t))rk∗(n)n(t) bits at timeslot t. Define zkn(t) the scheduling decision

at time slot t (i.e. zkn(t) = 1 if user k is scheduled on channel n at time slot

t and zero otherwise). As mentioned in the introduction of this Section, we

will compare our scheme with the scheme of [68] applied in multiple carriers

(will be referred to as ”SSF” in the rest of the paper, standing for ”Selective

Scheduling and Feedback” [67, 68]). Variables with a tilde will be the quantities

corresponding to the proposed schemes, while variables denoted with normal

letters will correspond to the SSF scheme. Note then that zkn(t) is the same

schedule as MaxWeight scheduling when all the channels were known [68].

Define the following quantities under the SSF and any of the two scheduling

and feedback schemes, respectively:

f(q(t)) = E

{
N∑
n=1

[1− βMn(t)]+
K∑
i=1

qi(t)rin(t)zin(t)

∣∣∣∣q(t)

}
(5.1)

f̃(q(t)) = E

{
N∑
n=1

[1− βM̃n(t)]+
K∑
i=1

qi(t)rin(t)z̃in(t)

∣∣∣∣q(t)

}
. (5.2)

Note that these quantities correspond to the negative part of the drift of the

quadratic Lyapunov function under the aforementioned schemes. Our proposed

schemes are based on the following result [53] (see also [65, 68, 106]).

Theorem 5.2.1. If there exists an ε > 0 such that for every queue length vector

q(t)

f̃(q(t))

f(q(t))
≥ 1 + ε, (5.3)

where the expectations are over the distributions of the arrival and channel state

processes, then Λ̃ ⊇ (1 + ε)Λ .

Based on this theorem, the idea of the proposed methods is to try to maxi-

mize the quantity given by (5.2), which is the negative part of the drift of the

quadratic Lyapunov function for the system under a proposed scheme.

Since at most one user can be scheduled on a channel, zkn(t) = 1 only for

the user with the maximum weight at channel n.

Unless stated otherwise, all expectations in the remainder of the paper are

taken over the stationary distribution of the channel states and the decisions

taken.
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5.3 Randomized scheme

5.3.1 Algorithm Description

First we will examine the feedback scheme where a user whose rate supported

by the channel is above the threshold feeds back at random. We will denote as

Un(t) the number of users that feed back in channel n at timeslot t and Un(t)

the corresponding set. In addition, the set of users that have not fed back will

be denoted as Nn(t), with Nn(t) its cardinality. In detail, this scheme works as

follows:

1. At the beginning of the slot, the base station broadcasts pilot signals (of

duration that is assumed negligible).

2. The base station requests the user with maximum queue length, say user

k∗, to report its channels. After this is done, it broadcasts the channel

states at the corresponding channels. This implies that if Un(t) users in

total (that is including the user with the maximum queue whose channel

states have been requested by the base station) feed back on channel n,

transmission will be done for the remaining duration of (1−β(1+Un(t)))Ts

3. At each channel n, each user k compares its current achievable rate with

the broadcasted channel state rk∗n(t). If rkn(t) < rk∗n(t), the user does

not report its channel state for channel n. Otherwise, he reports the

channel state with some probability p.

4. At each channel n, as soon as users have finished reporting, the base

station selects the user to schedule using a MaxWeight type of criterion,

i.e. is scheduled the user that maximizes the quantity qk(t)(1 − β(1 +

Un(t)))rkn(t).

The intuition of introducing this feedback probability in the scheme in [68]

is that it can be tuned in a way so that fewer users will feed back while still

scheduling good users for transmission on each channel. In the remainder of

the paper, the proposed scheme will be denoted as ”randomized”. Also, we will

refer to the quantity qi(t)rin(t) as ”weight” of user i in channel n.
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5.3.2 Increasing the Stability Region with the randomized

scheme

In this section we work on the case where there is enough time in the slot for

each user to probe every channel, i.e. (1− βK) > 0. Denoting

Wn(q(t)) = E
{

max
k∈{1,..,K}

[qk(t)rkn(t)]

}
and W (q(t)) =

∑N
n=1Wn(q(t)), we have:

Lemma 5.3.1. For any vector of queue lengths, the following holds:

f̃(q(t))

f(q(t))
≥ 1 + r(q(t), p)ε

1 + ε
(5.4)

where ε > 0 is the increase of the stability region guaranteed by SSF with respect

to full probing (i.e. a scheme where every user feeds back on every channel) and

r(q(t), p) = (1− (K − 2)S(q(t))) p2 +
1− 2β

β
S(q(t))p− 1− βK

β
S(q(t)). (5.5)

In the above,

S(q(t)) =
W (q(t))∑N

n=1 (E(Nn(t)|q(t))− 1)Wn(q(t))
. (5.6)

Proof. We will denote the quantities corresponding to the full probing algo-

rithm with a hat over the symbols. The schedules decided in SSF and full

probing schemes (after feedback has been done) is the same, picking the user

with the maximum product rin(t)qi(t) in every channel n [68]. Note also

that this value does not depend on the number of users probing each chan-

nel in the SSF algorithm, which implies that its expectation is independent

of the expectation of the number of users probing. Then, we have f(q(t)) =

f̂(q(t)) + β
∑N
n=1(E {Nn(t)|q(t)} − 1)Wn(q(t)), therefore

f(q(t))

f̂(q(t))
= 1 +

β
∑N
n=1(E {Nn(t)|q(t)} − 1)Wn(q(t))

f̂(q(t))
:= 1 + ε (5.7)

with ε > 0.

Now we will do the same procedure for the quantities in the randomized

scheme. Since now the user with the maximum weight is not guaranteed to

feed back, we cannot proceed as above. However, a lower bound can be found

considering the following: For every channel n, if the user with the maximum

weight has probed then is scheduled, otherwise no user is scheduled. This is

a lower bound since even if the user with the maximum weight is not probed
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there will be some other user with nonzero rate scheduled with some probability.

Denoting Ũn(t) the set of the users that have fed back at channel n at slot t and

by Ñn(t) the set of users that have not, we have

f̃(q(t)) ≥ E


N∑
n=1

(1− β(Ũn(t) + 1))
∑

i∈Ũn(t)

qi(t)rin(t)zin(t)|q(t)


=

N∑
n=1

E

{
(1− β(Ũn(t) + 1))

K∑
i=1

qi(t)rin(t)zin(t)|q(t)

}
−

N∑
n=1

E

(1− β(Ũn(t) + 1))
∑

i∈Ñn(t)

qi(t)rin(t)zin(t)|q(t)

−
N∑
n=1

E

(1− β(Ũn(t) + 1))
∑

i∈Ñn(t)

qi(t)(t)rin(t)zin(t)|q(t)


≥ f̂(q(t)) + β

N∑
n=1

(
E
{
Ñn(t)|q(t)

}
− 1
)
Wn(q(t))−

N∑
n=1

E

(1− β(Ũn(t) + 1))
∑

i∈Ñn(t)

qi(t)rin(t)zin(t)|q(t)



(5.8)

To proceed further, we use that in the randomized scheme a user among the

Un(t) − 1 (i.e. excluding the user polled by the base station) whose channel

is better than the broadcasted feeds back with probability p independently of

anything else. This implies that the average number of users that feed back

after the threshold has been set will be pE {Un(t)− 1|q(t)}. So there is

E
{
Ũn(t)|q(t)

}
= 1 + p(K − 1− E {Nn(t)|q(t)}). (5.9)

Now consider the third term in (5.8) and denote Xn the event that the

user with the maximum queue is not the user with the maximum weight in

channel n. This is the event for which the user with the maximum weight at

channel n has a probability of not feeding back, thus the event under which the

sum
∑
i∈Ñn(t) qi(t)rin(t)zin(t)|q(t) can be nonzero. In this case, the probability

that the sum over i ∈ Ñn(t) being nonzero is 1 − p, since the user with the

maximum weight will not feed back with this probability. Denote thus X ′n the

event where the user with the maximum weight does not feed back. There is
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P{X ′n|Xn} = 1− p. Then we have

N∑
n=1

E

(1− β(Ũn(t) + 1))
∑

i∈Ñn(t)

qi(t)rin(t)zin(t)|q(t)

 =

N∑
n=1

P(Xn)P(X ′n|Xn)E

(1− β(Ũn(t) + 1)
) ∑
i∈Ñn(t)

qi(t)rin(t)zin(t)|q(t),Xn,X ′n


=

N∑
n=1

(1− p)P(Xn)
(

1− β
(
E
{
Ũn(t)

}
+ 1
))

Wn(q(t))

≤ (1− p)
N∑
n=1

(
1− β

(
E
{
Ũn(t)

}
+ 1
))

Wn(q(t)).

Here, we have used that the expectation is conditioned on the fact that the user

with the maximum weight does not feed back, therefore is contained in the set

M̃n(t) and that each user feeds back independently.

Therefore, applying the above in (5.8) and using (5.9), we obtain

f̃(q(t)) ≥ f̂(q(t)) +

(
N∑
n=1

(E {Nn(t)|q(t)} − 1)Wn(q(t))− (K − 2)W (q(t))

)
βp2

+ p(1− 2β)W (q(t))− (1− βK)W (q(t)).

(5.10)

The stated result follows combining the above with (5.7).

Using Lemma 5.3.1 and Theorem 5.2.1 we get the following:

Theorem 5.3.1. If r(q(t), p) > 1,∀q(t) then the stability region is guaranteed

to increase with respect to the SSF algorithm. Moreover, this guaranteed increase

is the biggest for feedback probability

p∗ = min

{
1,

1− 2β

2β

S(q(t))

(K − 2)S(q(t))− 1

}
. (5.11)

Proof. Assume that for every q(t), r(q(t), p) ≥ 1 + δ(p) > 1. Then, denoting

ε′ = εδ(p)
1+ε , from Lemma 1 it follows that f̃(q(t))

f(q(t)) > 1 + ε′, and using Theorem

5.2.1 we conclude that the stability region of the randomized scheme is at least

(1 + ε′) times bigger the stability region of SSF. Also, note that the ratio (5.4)

is increasing in r(q(t), p), which in turn is concave in p. Therefore optimizing

over it we get the stated result.

It is worth noting that optimizing according to the above result implies

that S(q(t)) is known at every time slot. This assumes that the probability

distributions of the channels are known and requires some complex computations
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since this quantity S(q(t)) should be frequently updated. Therefore, we will

present in the next section a simple version of our algorithm that guarantees

the expansion of the stability region in the worst case scenario. The interest in

this case is that the probability p will be independent of S(q(t)).

In the above analysis we have implicitly assumed that E{Nn(t)|q(t)} > 1

for each channel. Recall that K, being the number of users, can take only

positive integer values. From [68] we have that for every channel, E{Nn(t)} ≥
1
2 (1+ 1

L )(K−1). Therefore, the assumption holds for every K ≥ 3, i.e. whenever

there are at least three users in the system. This is the case where it actually

makes sense to use this kind of schemes. Indeed, for the case where K = 1 there

is essentially no scheduling problem. For K = 2, a scheme where every user

feeds back is always better than the randomized one and SSF since both require

a fraction of timeslot for the base station to broadcast the channel states of the

user with maximum queue.

5.3.3 Approximate Randomized Scheme

In order to simplify the implementation of our feedback algorithm, we provide in

this section an algorithm where the probability to feed back, p, does not depend

on quantity S(q(t)). For that, let us consider the case where the guaranteed

region expansion (i.e. the lower bound of region increase given by Lemma 5.3.1

and Theorem 5.3.1) is minimal. We can show that this happens when all channel

rates are uniformly distributed. This can be proven as follows. Let us denote by

Nuni := E {Nn(t)|q(t),uniform channel distribution} = (1/2 + 1/(2L))(K − 1)

(relation given in [68]). By (5.10), (5.11) and (5.6), it follows that the increase

in the stability region guaranteed by the randomized scheme with respect to

the full probing case is increasing as ENn(t)|q(t) increases. For each channel,

we can prove that Nuni ≤ E {Nn(t)|q(t)} for any possible distribution of the

channel states, in other words the case with uniform channel distribution has

the worst lower bound gain with respect to the full probing case. The detailed

proof of this result is not provided here since it can be obtained directly from

the results in [68]. Therefore, examining this case gives a lower bound on the

guaranteed achievable improvement with respect to full probing.

From the analysis in the previous subsection it follows:

Corollary 5.3.1. When channel rates are uniformly distributed the feedback

probability that maximizes the guaranteed enlargement of the stability region is

given as p∗uni = min
{

1, 1−2β
2β

2L
2KL+K−3L−1

}
.

Proof. Since the achievable rates are now identically distributed among sub-
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carriers and users, it will also hold that Wn(t) = W ′(t), therefore W (t) =∑N
n=1Wn(t) = NW ′(t). So in the uniform distribution case we have S(t) =
NW ′(t)

W ′(t)N(Nuni−1) = 1

(K−1)(L+1
2L −1)

. Replacing in (5.11) we get the stated re-

sult.

An attractive property of the feedback probability in this case is that it

reduces the implementation complexity of the randomized version of SSF in

practice. Therefore, and even if the distributions of the channel states are not

homogeneous, we propose in this section to simplify the implementation by using

p∗uni given above instead of p∗ given by (8). We call this algorithm ”approxi-

mate randomized SSF”. Also, note that for channel distribution other than the

uniform there will be p∗ > p∗uni, which implies that a user implementing the

approximate method will feed back on fewer channels. It is worth noting also

that the uniform distribution represents the worst case in terms of guaranteed

enlargement of the stability region given by the lower bound of f̃(Q(t))/f̂(Q(t)).

However, this lower bound may not be tight which means that the real increase

of the stability region is higher than the lower bound developed here. In other

words, using p∗uni will not necessarily mean that the region expansion is mini-

mum. In fact, p∗uni ensures that we still have an improvement when the lower

bound of the region increase is in its worst case (thus there is a guarantee of

minimum region expansion).

5.3.4 Simulation Results and Discussion

In order to illustrate the gains and operation of the randomized feedback scheme

we will consider a single cell downlink with N = 15 channels. The channels are

assumed to be i.i.d. across users, frequencies, and time slots and the achievable

rates (in bits per time slot) are as in Table 5.1 (the rates are calculated according

to the LTE specifications, with Ts = 1ms ).

Rate (bits/slot): 0 25 39 63 101 147 197 248

Probability: 0.03 0.04 0.05 0.05 0.06 0.06 0.09 0.09

Rate (bits/slot): 321 404 458 558 655 759 859 933

Probability: 0.1 0.1 0.09 0.06 0.06 0.05 0.04 0.03

Table 5.1: Achievable rates and probabilities used for the simulations

We set the traffic patterns to be i.i.d. Poisson, with the same arrival rate, λ

bits per slot for each user. We run simulations lasting 10000 time slots each for

different arrival rates and plot the average total queue length at each simulation

for SSF, randomized SSF with probing probability as derived in Theorem 5.3.1
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Figure 5.1: Average Total Queue Length for Different Mean Arrival Rates for 9

users and β = 0.1

(denoted ”Optimized randomized SSF”) and the approximate probability as set

in Section 5.3.3.

At first we simulate the system with β = 0.1 and K = 9 users. In this case

full probing is possible. The results are plotted in Fig. 5.1. We can see that the

randomized version of the algorithm obtained via optimizing the upper bound

is the same as SSF here, while the probability of probing in the approximate

algorithm is smaller. Also, the performance of the approximate algorithm is

better from the other two.

In Fig. 5.2 we present the results of a scenario with K = 25 users and two

different values of β, namely 0.05 and 0.01. Note that in both of these cases full

probing is not possible.

Again, the approximate version of the algorithm results in a lower probability

to feed back than the version that optimizes the upper bound and performs

better. In turn, the latter version performs better than SSF. Also, from Figures

5.1 and 5.2 we can see that the stability region of the system shrinks under all

algorithms as β and/or the number of users K grow larger. In the case of SSF

this happens because as these parameters grow larger, more time needs to be

devoted to channel feedback, leaving fewer time for transmission. However, in

the randomized versions the main reason for the rate decrease is that it becomes

more possible that the user with maximum weight will not feed back his channel

state and subsequently another user will be scheduled instead. As we can see

in the figures, the decrease in the stability region is slower in the case of the

randomized algorithms. This demonstrates that there is a gain with respect

to SSF algorithm and moreover that the relative gains of randomizing the SSF
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Figure 5.2: Average Total Queue Length for Different Mean Arrival Rates for

25 users and different values of β

algorithm are bigger when there are more users and/or channel probing is more

costly.

The main reason why the approximate algorithm outperforms the one op-

timizing the probability so that the increase guaranteed by Theorem 5.3.1 is

that the bound to which the optimized probability corresponds to is not tight.

In fact, the theoretical analysis in this paper has been done in terms of region

increase guarantee and this has been studied using the lower bounds developed

in the previous sections. These bounds are not necessarily tight which means

that the real expansion is higher than the lower bound. Recall that in the course

of derivation of equation (5.5), the quantity was bounded assuming implicitly

that (i) if the user with the maximum weight has not probed a channel then no

user is scheduled in the channel and (ii) the user polled by the base station is

never the user with the maximum weight. As seen previously the approximate

probability p∗uni is less or equal than the one obtained through full optimization.

5.4 Scheme based on stopping

The randomized scheme discussed in Section 5.3 does provide an increase in

the stability region of the system with respect to the SSF algorithm, however

its main drawback is that the derivation of the probability with which a user

should feed back is based on a loose upper bound on this increase. In addition,

this probability depends in general on the channel statistics and queue lenghts

every slot (the approximate version seems to yield good performance but it is

still an approximation). In this Section we propose an alternative scheme, again
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based on the SSF rule and with no need of the channel statistics, where the base

station decides when to stop the feedback procedure and schedule a user, in an

attempt to make the quantity of (5.2) as big as possible.

5.4.1 Description of the scheme

We assume that at the beginning of each timeslot the base station broadcasts

a pilot signal of negligible duration, so that the users can know their current

channel states. Denote Un(m, t) the set of users that have fed back at control

slot m of timeslot t. The proposed algorithm actually considers every channel in

isolation and consists in the following steps for every time slot t at each channel

n:

1. The base station requests the CQI of the user with the biggest queue

length, k∗.

2. If after receiving feedback in the first minislot it holds that

1− β
1− 3β

qk∗(t)

qk(t)
rk∗n(t) ≥ RL,∀k 6= k∗,

then the base station transmits at user k∗ at its achievable rate for the rest

of the timeslot (and so the algorithm terminates). Otherwise, it broadcasts

rthr,n(t) := rk∗n(t) during the second feedback minislot.

3. For each minislot m > 2, at the beginning the base station chooses k∗ =

arg maxk∈Un(m,t){rkn(t)qk(t)}. If it holds that

1−mβ
1− (m+ 1)β

qk∗(t)

qk(t)
rk∗n(t) ≥ RL,∀k /∈ Un(m, t), (5.12)

then the base station transmits to user r∗and the algorithm terminates.

Otherwise, user i /∈ Un(m, t) with rate rin(t) > rthr,n(t) feeds back ac-

cording to a decentralized rule.

4. The algorithm stops when there is no user to feed back on channel n (that

is all remaining users not yet fed back have worse channel state than the

one broadcasted) or when m = b 1
β c. The latter means that this is the

last minislot; in this case, the base station transmits to the user with the

maximum weight among the ones that fed back.

The main idea behind the algorithm is to transmit when there is no possibil-

ity that receiving further feedback will increase the weight of the user scheduled

in the channel, thus increasing (5.2). For example, if the user with the maxi-

mum queue length has the maximum possible rate allowed by the standard on
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channel n, then it is useless to continue receiving feedback from other users.

Formally we can show the following:

Proposition 5.4.1. Under the algorithm described in this section, Λ̃ ⊃ Λ,

where Λ is the stability region when the algorithm in [68] is used.

Proof. We consider the beginning of minislot m at channel n at timeslot t and

denote k∗n(m, t) = argmaxk∈Un(m,t) {rkn(t)qk(t)}, that is the user with the max-

imum weight at this channel so far. If m > 2, then if user i /∈ Un(m, t) feeds

back, the maximum weight of the channel in minislot m + 1 will increase if

(1 + β(m + 1))rin(t)qi(t) > (1 − βm) maxk∈Un(m,t){rkn(t)qk(t)}. This implies

that, since the queue lengths vector is known to the base station, the weight in

this channel gets bigger if i /∈ Un(m, t) feeds back at minislot m if

rin(t) > r̂in(m, t) :=
1− βm

1− β(m+ 1)

maxk∈Un(m,t){rkn(t)qk(t)}
qi(t)

. (5.13)

Consider now the case where

r̂in(m, t) ≥ RL,∀i /∈ Un(m, t). (5.14)

Since 1−βm
1−β(m+1) is increasing in m, r̂in(m+1, t) > r̂in(m, t) > RL,∀i /∈ Un(m, t).

This analysis implies that if (5.14) holds in the beginning of minislot m then the

weight of the user scheduled at channel n will not increase any further. Similar

analysis holds for m = 1 as well, taking though into account that if the base

station decides not to transmit and at least one user is above the threshold, then

it can transmit again after minislot m = 3 the earliest due to the second minislot

used for broadcasting (thus the denominator of Step 2 in the algorithm).

The above implies that, given any (possibly randomized) rule for the de-

centralized feedback scheme, for any realization of this rule under any realiza-

tion of the channel states and any fixed queue length vector we have that if

rk∗(n)n(t) < RL, it holds

[
1− βM̃n(t)

]+ K∑
i=1

qi(t)rin(t)z̃in ≥ [1− βMn(t)]
+

K∑
i=1

qi(t)rin(t)zin (5.15)

with probability 1. In the case where the rk∗(n)n(t) = RL, the user with the

maximum queue length is the user with the maximum weight already. This

user is scheduled right after the first minislot in our algorithm while under SSF

the second minislot is also used for the broadcasting of this rate, so the weight

under our algorithm in this case is stricly bigger than SSF with probability one.
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This analysis implies that for every channel n = 1, ..., N

E

{[
1− βM̃n(t)

]+ K∑
i=1

qi(t)rin(t)z̃in

∣∣∣∣∣q(t)

}
>

E

{
[1− βMn(t)]

+
K∑
i=1

qi(t)rin(t)zin

∣∣∣∣∣q(t)

}
.

(5.16)

Summing over all channels and using the fact that they are independent we

get f̃ (q(t)) > f (q(t)), and combining this with Theorem 5.2.1 completes the

proof.

A further issue is how exactly the users that have better rate than the

broadcasted one can be coordinated to feed back. This can be done for example

if the base station ranks the users and communicates this ranking with them (e.g.

it can be a ranking according to their IDs communicated at the beginning of the

systems’ operation reflecting a priority of each user), and divides the portion

of the second minislot that remains after the threshold broadcast among the

users (in a TDMA manner in each channel). In this case, when it is the turn

of each user, they can send a signal if their rate at the channel is above the

threshold and send nothing otherwise. In any case, the number of minislots

used for the feedback phase for the SSF algorithm does not depend on the way

the users above the threshold feed back, our algorithm outperforms SSF under

any user ordering scheme. However, the actual ordering scheme will affect the

stability region of the stopping-based algorithm. For the threshold broadcast

step to make sense, we must have β < 1/3 and K > 2 users. However, note our

result holds for β and K having any value respecting the mentioned conditions,

so there may be βK > 1, case in which there is not enough time for every user

to feed back in every channel.

5.4.2 Analysis of the time spent for feedback for i.i.d.

channels

Here we will provide some mathematical analysis on the number of minislots

taken up by our proposed policy. In order to simplify the model, we will assume

that all channels are identically distributed with P{rkn(t) = Rl} = ql. In

addition, we will assume that the users feed back according to a ranking based

on the queue lengths. This can be implemented as follows: The base station can

broadcast a ranking of the users according to the queue lengths with the user

with the highest queue length first at the beginning of the timeslot (e.g.at the

beginning of the first minislot and then in the remaining time of this minislot
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the first user in the ranking feeds back in all channels). Then, the procedure

described in the previous subsection for determining the sequence at which

users will feed back is followed. Note that, since we are actually interested in

maximizing the quantity (5.2) and the channels are i.i.d. , this method will give

the biggest stability region (biggest value of (5.2)) over any feedback sequence

under the proposed scheme.

Given the stopping condition at each minislot and the above mentioned

feedback scheme, we can further see that the expected number of minislots used

is the biggest when the queue lengths are equal since it leads to qk∗ (t)
qk(t) = 1

in the stopping condition. Therefore we will examine this setting in order to

obtain a worst case analysis of the scheme. Since all queues are equal, without

loss of generality, ranking will be assumed to be according to the user IDs in

ascending order (i.e. user 1 feeds back first etc.). Denote p̃n(m) the probability

that exactly m minislots are used at carrier n under our scheme and pn(m) the

corresponding quantity for the SSF algorithm. Note that when m > b 1
β c, more

time than the duration of the timeslot needs to be used. So, eventually the

base station does not transmit at all in the slot (this goes for the SSF algorithm

as our proposed one stops at most after the minislot just before the last that

can fit in the timeslot duration). Also denote Fl = P{Rkn ≥ rl} =
∑L
l=l ql,

so FL+1 = 0. For the SSF algorithm, the number of minislots needed is the

number of users out of the remaining K − 1 that have rates over the threshold

plus the two minislots in the beginning, so we have for

pn(m) =

L∑
l=1

ql

(
K − 1

m− 2

)
Fm−2
l+1 (1− Fl+1)K−m+1,m ≥ 2

and zero for m=1.

For the proposed scheme, note that we have for m = 1

p̃n(1) =

L∑
l=1

qlI{rl≥ 1−3β
1−β rL}

.

For m = 2, it corresponds to the case when the stopping condition is not fulfilled

after the user with the maximum queue lengths feeds back but no user among

the remaining K − 1 has greater rate, thus we have

p̃n(2) =

L∑
l=1

qlI{rl< 1−3β
1−β rL}

(1− Fl+1)K−1.

For m = 3, the corresponding event, given the threshold rate (the rate of the

user with the maximum queue length) is that the stopping condition did not hold

for the first minislot and that either only one of the K − 1 users has rate above
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the threshold or this happens for more than one user but the stopping condition

holds after a user feeds back in this minislot. Replacing the probabilities we get

p̃n(3) =

L∑
l=1

qlI{rl< 1−3β
1−β rL}(

(K − 1)Fl+1(1− Fl+1)K−2 +
(
1− (K − 1)Fl+1(1− Fl+1)K−2 − (1− Fl+1)K−1

)
L∑

l′=l+1

ql′I{rl′<
1−4β
1−3β rL}

)
.

For m > 3, getting closed form expressions like the above becomes more difficult,

since for every m this probability depends on which users have fed back and

their channel realizations, thus boiling down to a combinatorial problem. Define

for m > 2 the outcome of the feedback process until and including the m-th

minislot as

π(m) =

(
(i1(π), Ri1(π)n(t)), (0, 0), (i3(π), Ri3(π)n(t)), ..., (im(π), im(π)(t))

)
.

More specifically ij(π) is the user that fed back at minislot j ≤ m and Rij(π)n(t)

the corresponding achievable rate. A realization

π(m) = ((i1, r
(1)), (0, 0), ..., (ij , r

(j), .., (im, r
(m))) is possible if the following con-

ditions are met: (i)r(j) > r(1),∀j = 3, ..,m, (ii)(1 − β)r(1) < (1 − 3β)rL

(iii)(1 − βj) max {r(1), r(3), ..., r(j−1), r(j)} < (1 − β(1 + j))rL,∀j = 1, ..,m − 1

and (iv) either m − 1 exactly user have rates above the threshold or (1 −
βm) max {r(1), r(3), ..., r(m−1), r(m)} ≥ (1−β(1+m))rL. Let Π(m, (1, rl)) be the

set containing all possible realizations of the feedback algorithm lasting exactly

m minislots when the user requested to feed back first has rate rl. Then we

have that for m > 2:

p̃n(m) =

L∑
l=1

ql
∑

π∈Π(m,(1,rl))

m∏
j=3

P{Rij(π)n(t) = r(j)(π)}(1− Fl+1)ij(π)−ij−1(π).

The above equation comes from the fact that since users are ranked using

their IDs, if after user ij−1, user ij feeds back, it implies that the users with IDs

from ij−1+1 till and including ij−1 have achievable rates below the broadcasted

threshold at channel n.

The results in this subsection can be used to numerically obtain an estimate

of the mean amount of time needed in each timeslot for the feedback procedure

to be executed under our algorithm.
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Figure 5.3: Average Total Queue Length for Different Mean Arrival Rates for

β = 0.1 and different number of users

5.4.3 Simulation Results

In order to illustrate the gains from our proposed feedback and scheduling al-

gorithm, we will consider for convenience a downlink system with N = 15

channels which identically distributed among them and among users, and i.i.d.

in time. The possible rates and corresponding probability distributions are the

ones shown in Table 5.1. In addition, the traffic processes are Poisson with the

same rate for each user and i.i.d. in time. What we are showing here, therefore,

is stability behaviour on the line λ1 = λ2 = ... = λK in a system with identi-

cal channels for each user. The point where the system is becoming unstable

is the point where the total average queue length plotted in the figures that

follow starts increasing very steeply. We are comparing the performance of our

algorithm with the one in [68] applied directly in multichannel systems.

In Fig. 5.3 we present the simulation results for different numbers of users

and β = 0.1. As the number of users grows, the stability region of both algo-

rithms shrinks, and the region under our algorithm is bigger than the region

under [68]. However, we can observe that the absolute difference between the

two algorithms is very similar for each of the cases shown, which suggests that

the absolute difference in the stability regions between the two algorithms does

not change much with the number of users. An explanation for this is that the

proposed stopping rule does not take at all into account the number of users, so

(unless the number of users is so large that there is not enough time for everyone

to feed back even in the SSF scheme) the degradation on the stability region of

both algorithms is similar.

In Fig. 5.4, we present the results for different values of the fraction of time,
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β for one user to feed back on a channel in a system with 10 users.

Unlike the previous case, we observe that relatively small changes to the pa-

rameter β result to different absolute differences, and more precisely the bigger

this parameter is, the bigger is the gain, with respect to the algorithm in [68], of

using the proposed algorithm (and again, the stability region of both algorithms

shrinks as β increases).

5.5 Conclusions

In this chapter we presented two feedback and scheduling algorithms for enlarg-

ing the stability region in multichannel systems when a fraction of the timeslot

must be taken for each user to feed back. These algorithms extend the main

idea of [68] where the achievable rate of the user with the maximum queue is set

as the threshold for other users to feed back. We showed that properly random-

izing the feedback decision and/or having the base station stop the feedback

process can enlarge the stability region achieved by the system. Especially in

the case of the scheme based on stopping, no need to know the statistics of the

channel and arrival processes is required, and the scheme can be implemented

even in cases with correlated arrivals/channels. This is a very desirable property

for practical systems.
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Chapter 6

Conclusions & Perspectives

This thesis addressed problems of allocation and control of radio resources in

wireless systems, taking into account that each user requests a dynamic traffic

process. The two main aspects studied were power/precoding control for the

interference channel such that the probability of the queue of each user exceeding

a threshold is at a desired value and joint scheduling/user selection and feedback

in TDD single cell downlink systems (i.e. broadcast channels with feedback in

TDD) in order to enlarge the stability region of the system. In this Chapter,

we summarize the main results and illustrate possible extensions.

6.1 Conclusions and Extensions of the Thesis

Results

As far as the interference channel was concerned, we have demonstrated that the

heavy traffic approximation can be a tool to obtain useful guidelines to design

power and precoding control algorithms. An immediate extension of the results

of Chapter 3 is the case where the channel states are received with errors at each

transmitter: if the statistics of the errors are known, then we can arrive at a

similar model where the averaging will also be given over the channel estimation

processes (this may require more cumbersome calculations in the system model

though). In addition, the case where tranmitter serves multiple receivers in

a TDMA manner, where the sequence of which user is served in each slot is

pre-specified and remains constant (or changes very slowly) during the system’s

operation can be treated by slightly modifying our model. However, further

extending the results using opportunistic and/or queue-based scheduling is not

straightforward and needs more elaborate analysis. Another possible extension
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would be to find the beamforming control that minimizes the power in order to

achieve the queue overflow constraints. The course of action here would be to (i)

find the equilibrium allocation with the minimum average power and then (ii)

for the resulting SDE , solve the problem trying to minimize the reserve power

while satisfying the constraints. Theorem (3.3.1) holds also in this case but with

more complicated expressions and with a resulting control problem that may

be solvable only numerically, as decoupling of the multidimensional SDE will

not be possible. Finally, one could use buffers in the receivers instead of the

transmitters, in order to model video streaming, and use a similar asymptotic

approach for beamforming control. A recent work [69] is in this spirit.

The main conclusion drawn from Chapters 4 and 5 is that the fact that the

users can know their instantaneous channel state should be leveraged. More

specifically, we have shown in Chapter 4 that, assuming idealized contention

procedures, using a policy where the base station signals the number of users

to get selected and the users decide in a contention-based decentralized manner

who is going to participate in the schedule can enlarge the stability region of

a MISO system with respect to centralized user selection. In addition, for a

single antenna at the transmitter, a contention-based decentralized policy can

achieve a big fraction of the ideal stability region of the system. Even in cases

where minislots are to be used for control, users’ knowledge of their channel

states can be leveraged via a proper threshold-based schemes. Apart from the

interpretation that the system can support more non-real time traffic demands,

extension of the stability region implies achieving higher utility if a utility-based

optimization approach is to be used. More specifically, define a utility function

U(r̄) =

K∑
k=1

Uk(r̄k),

where r̄k is the long term average of the rate user k gets and Uk(x) is a concave

function. In this case, it can be shown that the optimal long term rate vector lies

in the boundary of the stability region, see for example [15], therefore enlarging

the stability region leads to higher optimal utility. In addition, at least for the

setting of a single cell downlink system, a general method of utility optimization

consists in creating virtual queues qk(t) with controlled arrival processes such

that

a(t) = arg max
x∈[0,A]K

{
V U(x)−

K∑
k=1

xkqk(t)

}
,

with V > 0 a constant. The scheduling should be such that these virtual queues

are stable. one can then show that the achieved utility is within O(1/V ) from

the optimal, with the mean sum of queue lengths growing as O(V ) [15]. This
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general theory has been applied in scheduling and resource allocation in wireless

networks with promising results, see for example [70], [16], [17]. With respect

to our results, we can apply the same techniques proposed in Chapters 4 and

5 using the virtual queues. In addition, on Chapter 4 one can use the general

network optimization framework of [15] and consider the aspect of energy con-

sumed by the users for uplink training, and minimize it subject to stability of

the system or examine the stability/utility maximization problem under con-

straints on the average power spent for training. A motivation for this kind

of considerations is to prolong the users’ battery life. Since the channel state

knowledge becomes even more important in that case, our intuition is that de-

centralized user selection policies will be have even better performance than the

centralized ones. Extension of the results in the thesis along these lines is the

subject of ongoing work.

6.2 Future Work

The results of the present thesis concern basically the behaviour of the queue

lengths in the system. However, a more important metric in practice is the

delay/waiting time experienced by the data in the queues until they get trans-

mitted. While delays and queue lengths are related quantities (for example the

average delay is equal to the average queue length divided by the arrival rate

by Little’s law and intuitively we can expect that packets in a long queue will

experience big delays), exact delay analysis is known to be much harder than

queue length analysis. It would be interesting to see how delay-based scheduling

algorithms perform, for example in the spirit of the recent work [71]. On the

other hand, we can look in the large deviations regime in order to obtain addi-

tional information about the behaviour of the system. This kind of asymptotics

have been also widely used in analysis of scheduling algorithms in queueing

systems in general and wireless systems in particular (see e.g. [72, 73] for the

latter), and recent works [74] and [63] study the performance of scheduling and

feedback algorithms in this regime. Moreover, combining with the theory of

effective bandwidth and effective capacity [75] to get some estimation of the tail

of the delay distributions.

The approaches above and the schemes proposed in this thesis have the

constraint that data are not dropped in the queues. On the other hand, most

applications can tolerate a certain loss of data but have hard delay require-

ments. Recent works on this topic include [76], [77] for wireless networks with

relatively simple physical layer and [78] for wired networks. It would be inter-
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esting to examine problems of these kind in the settings of small cell networks

and/or massive MIMO systems. In the former, looking into theories like ma-

chine learning or decentralized/networked control systems may be essential in

order to overcome the limited control backhaul connecting the cells. In the lat-

ter, since there will be many users in the cell, user selection is an important

problem (the timeslot durations and coherence times are given) and it will be

interesting to see if we can leverage our results to deal in the delay-sensitive

case.

Finally, an aspect not taken into account in this thesis is the fact that, in

a network, users arrive and depart, see e.g. [79] and references therein. For

example, a user can arrive in the network, request a file and depart when this

transfer has been completed. Scheduling and resource allocation in this setting

posed more challenges, since MaxWeight is no longer throughput optimal [80].

This setting can be applied to provide robust performance evaluation of the

recent approaches in proactive scheduling [81] and caching in the small cell

base stations [82], proposed in order to make more efficient use of the limited

backhaul. In addition these flow level models can be used to provide guidances

on what files to prefetch, where and when.
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