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approche espérance et maximisation (EM) est utilisée comme approche naturelle. De cette façon, le ltre de Kalman étendu (EKF) et les ltres à particules sont évités.

I oer my heartfelt thanks to my wife, for her intense support, endless patience and great devotion. Indeed, this journey would not have been possible without her encouragement and understanding and I am eternally indebted to her for what she has sacriced during this work. The inuence of my sons, is present in this thesis; they have lled my moments at home with so much joy. I can not complete these acknowledgements without expressing how appreciative I am of all the love and aection that my parents, especially my mother, have provided through my life. I could have never made in this far without them.

Abstract

The aim of this thesis is to study the problem of data detection in wireless communication system, for both case of perfect and imperfect channel state information at the receiver. As well known, the complexity of MLSE being exponential in the channel memory and in the symbol alphabet cardinality is quickly unmanageable and forces to resort to sub-optimal approaches. Therefore, rst we propose a new iterative equalizer when the channel is unknown at the transmitter and perfectly known at the receiver. This receiver is based on continuation approach, and exploits the idea of approaching an original optimization cost function by a sequence of more tractable functions and thus reduce the receiver's computational complexity.

Second, in order to data detection under linear dynamic channel, when the channel is unknown at the receiver, the receiver must be able to perform joint equalization and channel estimation. In this way, we formulate a combined statespace model representation of the communication system. By this representation, we can use the Kalman lter as the best estimator for the channel parameters. The aim in this section is to motivate rigorously the introduction of the Kalman lter in the estimation of Markov sequences through Gaussian dynamical channels. By this we interpret and make clearer the underlying approximations in the heuristic approaches.

Finally, if we consider more general approach for non linear dynamic channel, we can not use the Kalman lter as the best estimator. Here, we use switching state-space model (SSSM) as non linear state-space model. This model combines the hidden Markov model (HMM) and linear state-space model (LSSM). In order to channel estimation and data detection, the expectation and maximization (EM) procedure is used as the natural approach. In this way extended Kalman lter (EKF) and particle lters are avoided. Résumé L'objectif de cette thèse est d'étudier le problème de la détection de données dans le système de communication sans l, à la fois pour le cas de l'information d'état de canal parfaite et imparfaite au niveau du récepteur. Comme on le sait, la complexité de MLSE est exponentielle en la mémoire de canal et la cardinalité de l'alphabet symbole est rapidement ingérable, ce qui force à recourir à des approches sousoptimales. Par conséquent, en premier lieu, nous proposons une nouvelle égalisation itérative lorsque le canal est inconnu à l'émetteur et parfaitement connu au niveau du récepteur. Ce récepteur est basé sur une approche de continuation, et exploite l'idée d'approcher une fonction originale de coût d'optimisation par une suite de fonctions plus dociles et donc de réduire la complexité de calcul au récepteur.

En second lieu, en vue de la détection de données sous un canal dynamique linéaire, lorsque le canal est inconnu au niveau du récepteur, le récepteur doit être en mesure d'eectuer conjointement l'égalisation et l'estimation de canal. De cette manière, on formule une représentation de modèle état-espace combiné du système de communication. Par cette représentation, nous pouvons utiliser le ltre de Kalman comme le meilleur estimateur des paramètres du canal. Le but de cette section est de motiver de façon rigoureuse la mise en place du ltre de Kalman dans l'estimation des sequences de Markov par des canaux dynamiques Gaussien. Par la présente, nous interprétons et explicitons les approximations sous-jacentes dans les approaches heuristiques.

Enn, si nous considérons une approche plus générale pour le canal dynamique non linéaire, nous ne pouvons pas utiliser le ltre de complex circularly Gaussian distribution with parameters m and Σ diag(x) diagonal matrix having the vector x on its diagonal E x [.] expectation with respect to the vector x I n

(n × n) identity matrix 

x (α) * = arg max x∈C N p (α) (y, x) (3) 
où

p (α) (y, x) = p(y|x)p (α) (x) (4) 
xxiv Résumé étendu en Français est une famille de pdfs dans laquelle la probabilité p(y|x) est donnée par :

p(y|x) = (πβ) -N e -1 β y-Hx 2 (5) 
et dans laquelle le support de la pdf p (α) (x) converge vers le support de la fonction de masse de probabilité (pmf ) p(x) comme α → 0 + . Pour plus de commodité de calcul, la pdf p (α) (x) est dénie comme

p (α) (x) = s p (α) (x, s) = s p(s)p (α) (x|s) ∝ s p(s)e -1 α H(x-s) 2 (6) 
où la somme s'étend sur X N . De toute évidence, cette famille de pdfs obéit au critère limitant quand α → 0 + .

La Maximisation Itérative en Utilisant L'Algorithme EM

Nous déclarons une séquence s ∈ X N de symboles de constellation comme une variable aléatoire cachée. La log pdf log p (α) (y, x) peut être réécrite comme log p (α) (y, x) = log p(y|x)

+ log p (α) (x) = log p(y|x) + log s p (α) (x, s) = log p(y|x) + log s p (α) (s|x ) p (α) (x, s) p (α) (s|x ) (7) 
avec x une estimation initiale de la séquence x. Puis, en utilisant l'inégalité de Jensen [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF], elle peut être minorée en

log p (α) (y, x) ≥ χ - 1 β y -Hx 2 + s p (α) (s|x ) log p (α) (x, s)
où χ est un groupe de mots indépendants de x. Enn, la séquence (continue) x est sélectionnée comme celle correspondante à la maximisation de la limite inférieure au dessus, c'est-à dire au zéro de son gradient

1 β {H † y -H † Hx} + E s|x [∇ x log p (α) (x|s)] = 0 (8) 
où l'opérateur E s|x [.] désigne l'espérance sur toutes les séquences s par rapport à la mesure de probabilité p (α) (s|x ). En appliquant la règle de Bayes, cette dernière peut être exprimée comme

p (α) (s|x ) = p(s)p (α) (x |s) s p(s )p (α) (x |s ) (9) 
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De l'équation [START_REF] Pahlavan | Wireless Information Networks[END_REF], nous obtenons la formule de récurrence

x = γ(H † H) -1 H † y + (1 -γ)E s|x [s] (10) 
où γ est le paramètre déni comme

γ = (1 + β α ) -1 ∈]0, 1[ (11) 
qui diminue progressivement à mesure que α → 0 + à chaque itération (et en x β

xes) et où

E s|x [s] = s sp(s)e -1 α H(x -s) 2 s p(s)e -1 α H(x -s) 2 (12) 
Notez que p(s) = |X | -N pour des symboles de constellation indépendants et uniformément distribués.

Approximations

En vue d'atteindre une complexité polynomiale en la mémoire des canaux (et en la cardinalité de l'alphabet), l'évaluation de la somme-sur-états (12) doit être approxomée. Les procédures comme le champ moyen standard [START_REF] Binney | The Theory of Critical Phenomena[END_REF] 

E s|x [s n ] = a ap(s n = a|x ) = a a s |n p(s n = a, s |n |x ) = a ap(s n = a) s |n p (α) (x |s n = a, s |n )p(s |n ) (13) 
La matrice H étant circulaire, G est circulaire et peut être ramenée à la forme diagonale par biais de la matrice DFT : F N . Ce résultat n'est plus valable pour la matrice tronquée

G |n = U n N H † HU n N † (14) 
Néanmoins, G |n étant normale, il existe une matrice unitaire Q n N -1 telle que

Λ n = diag{λ n 1 , ..., λ n N -1 } = Q n N -1 G |n Q n † N -1 (15) 
xxvi Résumé étendu en Français Soient ξ|n , s|n et ḡn|n des vecteurs dénis comme

Q n N -1 ξ |n , Q n N -1 s |n et Q n N -1 g n|n , respectivement. à partir de s |n p (α) (x |s n = a, s |n )p(s |n ) ∝ s |n p(s |n )e 1 α [2Re(ξ * n a+ξ † |n s |n -a * g † n|n s |n )-gnn|a| 2 -s † |n G |n s |n ] (16) 
nous allons d'abord reformuler la somme

s |n p (α) (x |s n = a, s |n )p(s |n ) ∝ e 1 α [2Re(ξ * n a)-gnn|a| 2 ] s |n p(s |n )e 1 α [2Re(ξ † |n s |n -a * g † n|n s |n )-s † |n G |n s |n ] (17) 
ou de manière équivalente, après le changement de variable s|n = Q n N -1 s |n , comme

s |n p (α) (x |s n = a, s |n )p(s |n ) ∝ e 1 α [2Re(ξ * n a)-gnn|a| 2 ] s|n p(s |n )e 1 α [2Re( ξ † |n s|n -a * ḡ † n|n s|n )-s † |n Λ n s|n ] (18) 
Concentrons-nous maintenant sur la somme discrète

s|n p(s |n )e 1 α [2Re( ξ † |n s|n -a * ḡ † n|n s|n )-s † |n Λ n s|n ] (19) 
La théorie (théorème de la limite central) et les simulations numériques montrent que, pour N grand (typiquementN ≥ 64), les composantes de s|n sont des Gaus- siennes de moyenne nulle et de covariance unité. Nous allons donc appliquer une approximation Gaussienne pour approximer davantage [START_REF] Widrow | Adaptive lters, i: Fundamentals[END_REF] :

s|n p(s |n )e 1 α [2Re( ξ † |n s|n -a * ḡ † n|n s|n )-s † |n Λ n s|n ] = π -(N -1) C N -1 e -s|n 2 e 1 α [2Re( ξ † |n s|n -a * ḡ † n|n s|n )-s † |n Λ n s|n ] dV(s |n ) (20) 
Après un peu d'algèbre, le terme de droite peut être réécrit comme

π -(N -1) e 1 α [( ξ|n -aḡ n|n ) † (Λ n +αI N -1 ) -1 ( ξ|n -aḡ n|n )] × (21) 
C N -1 e -1 α [(s |n -(Λ n +αI N -1 ) -1 ( ξ|n -aḡ n|n )) † (Λ n +αI N -1 )(s |n -(Λ n +αI N -1 ) -1 ( ξ|n -aḡ n|n ))] dV(s |n )
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Et enn, la somme initiale s'évalue en :

s |n p (α) (x |s n = a, s |n )p(s |n ) ∝ e 1 α [2Re(ξ * n a)-gnn|a| 2 +( ξ|n -aḡ n|n ) † (Λ n +αI N -1 ) -1 ( ξ|n -aḡ n|n )] (22) 
et

∝ e 1 α [|a| 2 (ḡ † n|n (Λ n +αI N -1 ) -1 ḡn|n -gnn)+2Re(a(ξ * n -ξ † |n (Λ n +αI N -1 ) -1 ḡn|n ))] (23) 
ou, de façon équivalente,

∝ e 1 α [|a| 2 (g † n|n Q n † N -1 (Λ n +αI N -1 ) -1 Q n N -1 g n|n -gnn)+2Re(a(ξ * n -ξ † |n Q n † N -1 (Λ n +αI N -1 ) -1 Q n N -1 g n|n ))] (24) 
Notez que, pour x, l'expression se simplie comme

E s|x [s n ] = tanh 2 α Re(ξ * n -ξ † |n (Λ n + αI N -1 ) -1 ḡn|n ) (25) 
ou

E s|x [s n ] = tanh 2 α Re(ξ * n -ξ † |n Q n † N -1 (Λ n + αI N -1 ) -1 Q n N -1 g n|n ) (26) 
Comme on le voit [START_REF] Altekar | Upper bounds to the error probability of decision feedback equalization[END_REF] 

G |n ≈ F † N -1 Λ n F N -1 (27) c'est à dire, Q n N -1 ≈ F N -1 , ∀n
lorsque α → 0 + où s passe sur X N . Plus explicitement, pour x ∈ C N , p (α) (x, y) = p(y|x)p (α) (x) = (πβ) N e -1 β y-Hx 2 s p(s)(πα) -N e -1 α H(x-s) 2 (28) 
Après un peu d'algèbre, nous arrivons à l'expression équivalente

p (α) (x, y) = s Q α (s)(πβγ) -N e -1 βγ Hx-J (α) (s) 2 (30) 
dans laquelle

Q (α) (s) = p(s)(π(α + β)) -N e -1 (α+β) y-Hs 2 (31) 
et

J (α) (s) = γy + (1 -γ)Hs (32) 
An d'analyser la convergence du processus de recuit vers l'estimation ML x * , nous supposons une diminution continue de la température α. De ces dernières expressions, il est évident que lorsque α → ∞, γ → 1 -, p (α) (., y) possède un unique maximum à x = x ∞ = y. Inversement, lorsque α → 0 + , γ → 0 + , p (α) (., y) possède |X | N maxima situés aux sommets de la maille X N , avec un maximum global arbitrairement proche de l'estimation ML x = x * = arg max s p(s)(πβ) -N e - Proposition 1. Soit x (α 0 ) * = arg max x p (α 0 ) (x, y) pour tout α 0 ∈ I i≥0 . Soit α → x * (α) une courbe continue de telle sorte que x * (α = α 0 ) = x (α 0 ) * et de telle sorte que x * (α) est la solution de l'équation ∇ x p (α) (x, y) = 0 pour tout ᾱi+1 < α < α 0 .

Ensuite, pour la quasi-totalité réalisation de y, x * (α) = arg max x p (α) (x, y) sur l'intervalle (ᾱ i+1 , α 0 ]. Convergence de L'Algorithme Itératif.

Nous nous concentrons maintenant sur ∇ x p (α) (x, y) = 0. En prenant la dérivée partielle de [START_REF] Seymour | Near-optimal symbol-by-symbol detection schemes for at Rayleigh fading[END_REF] nous obtenons l'équation de point xe

x = ϕ(x) = γ(H † H) -1 H † y + (1 -γ)s(x) (33) 
dans lequel

s(x) = s s (s) (34) et (s) = p(s)e -1 α H(x-s) 2 s p(s )e -1 α H(x-s ) 2 (35) 
Proposition 2. L'équation de point xe [START_REF] Duel-Hallen | Delayed decision-feedback sequence estimation[END_REF] a une solution pour tous α > 0.

Rappelez-vous que l'algorithme itératif procède par alternance de deux phases, à savoir la recherche gradient du maximum de ln p (α) (., y) 

x p+1 -x p = (1 -γ) s(x p ) -s(x p-1 ) = (1 -γ) Φ(x)(x p -x p-1 ) (36) 
Ici, x est un point sur le segment joignant x p-1 et x p (à itérations p -

1 et p) et Φ est la Hessian de s(x) exprimé en Φ(x) = 1 α Λ(x)H † H (37) où Λ(x) = s (s)ss † - s (s)s s (s)s † (38) 
a la structure d'une matrice de covariance. Pour que les itérations soient convergents, il faut veiller à ce que le spectre de Φ soit strictement délimité par l'unité. 

c i n = a i N 0 N 0 -1 q=0 cos(2πnf D T cos γ qi + φ qi ) +j sin(2πnf D T sin γ qi + φ qi )] (39) 
où

γ qi = 2πq 4N 0 + 2πi 4N 0 (M + 1) + π 8N 0 (M + 1)
φ qi ,φ qi , pour q = 0, 1, 2, ..., N 0 -1 et i = 0, 1, 2, ..., M , sont 2(M + 1)N 0 phases aléatoires indépendantes, chacun d'entre elles est répartie uniformément dans [0, 2π), aussi nous considérons N 0 > 16.

An de saisir avec précision la dynamique du canal sans l, nous formulons un modèle de canal approprié pour une utilisation dans le système de suivi de canal.

Ce modèle doit être encore mathématiquement docile pour la mise en ÷uvre dans un contexte d'espace d'état en temps discret. Selon le processus de décoloration qui est modélisée comme un processus gaussien complexe, un modèle approprié est donc un modèle autorégressif (AR) . Des résultats de théorie d'informations ont xxxiv Résumé étendu en Français montré qu'un modèle AR premier ordre est susant pour représenter avec précision le comportement local du canal sans l variant dans le temps. Un modèle d'ordre supérieur tout en fournissant des estimations plus précises de canal à long terme, exige nécessairement un ordre de AR de 100 -200 coecients, et est donc très intraitable pour le modèle de l'état. En prenant l'hypothèse de premier ordre, nous réalisons enn l'évolution de l'état à l'instant n comme : 

c i n = ξc i n-1 + v i n i = 0, ..., M (40) 
c n = Fc n-1 + v n (41) 
où c n est un vecteur de longueur M + 1 dont chaque élément est le gain de canal au temps n.

c n = [c 0 n , c 1 n , ..., c M n ] T (42) 
la matrice de transition d'état est donnée par :

F = ξI M +1 (43) 
et le vecteur de bruit de processus proposé par :

v n = [v 0 n , v 1 n , ..., v M n ] T (44) 
avec la matrice de covariance égal à :

Q = (σ 2 v )I M +1 (45) 
An de paramétrer [START_REF] Ungerboeck | Channel coding with multilevel/phase signals[END_REF], nous notons de [START_REF] Stuber | Principles of Mobile Communications[END_REF] que l'auto-corrélation du processus de décoloration de canal est : 

E[c i n c i * n-k ] = a i J 0 (2πkf D T ) (46) 
ξ 2 a i + σ 2 v = a i (48) ξ = J 0 (2πf D T ) (49) 
Par exemple, si le taux d'évanouissement normalisé est f D T = 0.01 (un taux d'évanouissement rapide typique), ensuite ξ = 0.9990.

Si l'on considère le modèle autorégressif approximatif d'ordre un (AR(1)) introduit en [START_REF] Stuber | Principles of Mobile Communications[END_REF](pp. [START_REF] Kschischang | Factor graphs and the sum-product algorithm[END_REF][START_REF] Binney | The Theory of Critical Phenomena[END_REF], nous avons :

ξ = 2 -cos(2πf D T ) -(2 -cos(2πf D T )) 2 -1 (50) 
et

v (i) n N c (0, a i (1 -ξ 2 )) (51) 
L'observation bruitée complexe reçue à l'instant n est de la forme suivante :

y n = M i=0 c i n b n-i + w n (52) 
où w n est bruit additif modélisé comme une Gaussienne centrée avec variance β.

Donc y n = d T n c n + w n (53) 
où

d n = [b n , b n-1 , ..., b n-M ] T
Enn, notre système de communication peut être décrit comme un modèle d'espace d'état linéaire, dont la dynamique est donnée par : 

c n = Fc n-1 + v n y n = d T n c n + w n (54) 
) = f n+1 (d 1:n+1 )p(d n+1 |d n )L n (d 1:n ) (55) 
par conséquent, la séquence estimée est égale à :

d1:n+1 = arg max

d 1:n+1 L n+1 (d 1:n+1 )
Introduisons maintenant le canal comme suit :

f n+1 (d 1:n+1 ) = p(y n+1 , c n+1 = x|d 1:n+1 ; y 1:n )dx = p(y n+1 |c n+1 = x, d n+1 )p(c n+1 = x|d 1:n+1 , y 1:n )dx (56) 
Les relations ( 55), [START_REF] Sayed | A state-space approach to adaptive RLS ltering[END_REF] 

f n+1 (d 1:n+1 ) = N c (y n+1 , d n+1 x, β)N c (x, ĉn+1|n (d 1:n ), P n+1|n (d 1:n ))dx (57) 
où N c (u, µ, R) est la densité normale complexe en u de moyenne µ et de covariance R. et ĉn+1|n (d

1:n ) = E[c n+1 |d 1:n , y 1:n ] (58) 
P n+1|n (d 1:n ) = cov[c n+1 |d 1:n , y 1:n ]
Après avoir groupé les exposants et les avoir factorisés, un calcul standard donne :

f n+1 (d 1:n+1 ) = [πβ|Γ n+1 P n+1|n |] -1 exp[q † n+1 Γ -1 n+1 q n+1 -y * n+1 β -1 y n+1 (59) 
-ĉ † n+1|n P -1 n+1|n ĉn+1|n ]

où q n+1 = d * n+1 β -1 y n+1 + P -1 n+1|n (d 1:n )ĉ n+1|n (d 1:n ) (60) 
Γ n+1 = P -1 n+1|n (d 1:n ) + d * n+1 β -1 d T n+1
Maximisation Récursive Approximative 

d 1:n-1 L n (d 1:n-1 , d n = w) c * n+1|n (w, d n+1 ) = E[c n+1 |d * 1:n-1 (w), d n = w, d n+1 , y 1:n ] (w ∈ Ω)
par conséquent, nous pouvons écrire : L n (w 1:r ) = max

P[c n+1 |d 1:n-1 , d n = w, d n+1 , y 1:n ] = δ(c n+1 -c * n+1|n (w, d n+1 ))
d 1:n-r L n (d 1:n-r , d n-r+1:n = w 1:r ) (63) et d * 1:n-r (w 1:r ) = arg max d 1:n-r L n (d 1:n-r , d n-r+1 = w 1 , ..., d n = w r ) (64) 
xxxix Résumé étendu en Français puis max

d 1:n+1 L n+1 (d 1:n+1 ) = max w 2:r+1 L n+1 (w 2:r+1 ) (65) 
= max

w 2:r+1 max w 1 max d 1:n-r [f n+1 (d 1:n-r , d n-r+1 = w 1 , d n-r+2:n = w 2:r+1 )p(w r+1 |w r ) L n (d 1:n-r , d n-r+1:n = w 1:r )]
Par notre approximation :

f n+1 (d 1:n-r , w 1:r+1 ) f n+1 (d * 1:n-r (w 1:r ), w 1:r+1 )
de sorte que nous avons mis la récurrence suivante :

L n+1 (w 2:r+1 ) max w 1 [f n+1 (d * 1:n-r (w 1:r ), w 1:r+1 )L n (w 1:r )] (66) 
Les dénitions [START_REF] Eweda | Convergence of the RLS and LMS adaptive lters[END_REF], [START_REF] Eweda | Comparison of RLS,LMS and sign algorithms for tracking randomly time-varying channels[END_REF] En plus de ces deux approches, la procédure EM en tant que l'approche naturelle, est une procédure itérative ecace pour calculer l'estimation à maximum de vraisemblance (ML) en présence de données manquantes ou cachées. Sous paramètres de canal inconnus, il n'est pas possible de maximiser la fonction de vraisemblance pour obtenir directement le critère ML. Dans ce cas, l'algorithme EM qui permette d'atteindre le critère ML de manière itérative est idéalement adapté à ce problème. L'algorithme EM comporte deux étapes, l'espérance et la maximisation. La première étape prend l'espérance de la fonction de log-vraisemblance des données complètes compte tenu des paramètres actuels estimés et les données incomplètes. La seconde étape donne une nouvelle estimation des paramètres inconnus en maximisant l'espérance de la fonction de log-vraisemblance sur les paramètres inconnus. Ces étapes sont répétées de façon itérative pour augmenter la probabilité jusqu'à ce que les nouveaux paramètres estimés deviennent égaux à (ou arbitrairement proches de) la même valeur de paramètre estimée à l'itération précédente. L'algorithme EM couple Nous supposons un canal discret Rayleigh de la mémoire M, simulé avec méthode introduite dans [START_REF] Li | The simulation of independent Rayleigh faders[END_REF], où les éléments de la réponse impulsionnelle {c i n } M i=0 sont mo- délisés comme des variables aléatoires complexes de moyenne nulle indépendantes

Gaussiennes avec variance a i (m) :

c i n (m) = a i (m) N 0 N 0 -1 q=0 cos(2πnf D (m)T cos γ qi + φ qi ) +j sin(2πnf D (m)T sin γ qi + φ qi )] m ∈ {1, 2} (67) 
où

γ qi = 2πq 4N 0 + 2πi 4N 0 (M + 1) + π 8N 0 (M + 1)
φ qi ,φ qi , pour q = 0, 1, 2, ..., N 0 -1 et i = 0, 1, 2, ..., M , sont 2(M + 1)N 0 phases aléatoires indépendantes, chacune d'entre elle est répartie uniformément dans [0, 2π), aussi nous considérons N 0 > 16.

An de saisir avec précision la dynamique du canal sans l, nous formulons un modèle de canal approprié pour une utilisation dans le système de suivi de canal.

Ce modèle doit être encore mathématiquement docile pour la mise en ÷uvre dans un contexte d'espace d'état en temps discret. Selon le processus de décoloration qui est modélisé comme un processus gaussien complexe, un modèle approprié est donc un modèle autorégressif (AR). Des résultats de théorie de l'informations ont montré qu'un modèle AR du premier ordre est susant pour représenter avec précision le comportement local du canal sans l variant dans le temps. Un modèle d'ordre supérieur tout en fournissant des estimations plus précises de canal à long terme, exige nécessairement un ordre de AR de 100 -200 coecients, et est donc très xlii Résumé étendu en Français intraitable pour le modèle de l'état. En prenant l'hypothèse de premier ordre, nous réalisons enn l'évolution de l'état à l'instant n comme :

c i n (m) = ξ(m)c i n-1 (m) + v i n (m) i = 0, ..., M m ∈ {1, 2} (68) 
où ξ(m) st le coecient d'AR statique à l'état de commutation

m et v i n (m) ∼ N C (0, σ 2 v (m)
) est le bruit de conduite complexe du modèle. Donc sous la forme de modèle d'état, nous avons :

c (m) n = F(m)c (m) n-1 + v n (m) (69) 
où c

(m) n est un vecteur de longueur M + 1 dont chaque élément est le gain de canal au temps n.

c (m) n = [c 0 n (m), c 1 n (m), ..., c M n (m)] T (70) 
la matrice de transition d'état est donnée par :

F(m) = ξ(m)I M +1 (71) 
et le vecteur de bruit de processus proposé par :

v n (m) = [v 0 n (m), v 1 n (m), ..., v M n (m)] T (72) 
avec la matrice de covariance égale à :

Q(m) = (σ 2 v (m))I M +1 (73) 
An de paramétrer [START_REF] Ortega | Iterative solution of nonlinear equations in several variables[END_REF], nous notons de [START_REF] Stuber | Principles of Mobile Communications[END_REF] que l'auto-corrélation du processus de décoloration de canal est : 

E[c i n (m)c i n-k (m) * ] = a i (m)J 0 (2πkf D (m)T ) m ∈ {1, 2} (74) 
f D (m) = v(m) c f c (75) 
xliii Résumé étendu en Français où v(m) est la vitesse de mobile, à l'état de commutation m, c est la vitesse de la lumière, et f c est la fréquence de la porteuse. Assimilant (68) à l'auto-corrélation de (74) pour l'instant n = {0,1}, nous avons respectivement

ξ(m) 2 a i (m) + σ v (m) 2 = a i (m) (76) 
ξ(m) = J 0 (2πf D (m)T ) (77) 
Par exemple, si le taux d'évanouissement normalisé est f D T = 0.01 (un taux d'évanouissement rapide typique), alors ξ = 0.9990.

L'observation bruitée complexe reçue à l'instant n est de la forme suivante :

y n = M i=0 c i n (α n = m)b n-i + w n (78) 
où w n est bruit additif modélisé comme une Gaussienne centrée avec variance β, aussi α n est la variable de commutation et m est l'état de commutation m ∈ {1, 2}.

Donc y n = d T n c (αn=m) n + w n (79) 
où

d n = [b n , b n-1 , ..., b n-M ] T
Enn, notre système de communication peut être décrit comme un modèle d'espace d'état à commutation, dont la dynamique est donnée par : 

c (1) n = F(1)c (1) 
n-1 + v n (1) c (2) n = F(2)c (2) n-1 + v n (2) y n = d T n c (αn=m) n + w n m ∈ {1, 2} (80) 
L(θ N ) > L(θ N ) (82) 
De manière équivalente, nous voulons maximiser la diérence 

L(θ N ) -L(θ N ) = ln p(y 0:N |θ N ) -ln p(y 0:N |θ N ) (83) 
0:N , c (1) 
0:N ) forment un ensemble complet à condition que la famille de densité p(y 0:N , d 0:N , α 0:N , c (2) 0:N sera traitée comme une variable cachée. La probabilité totale p(y 0:N |θ N ) peut être rédigée en terme des variables cachées c

(1)

0:N , c (2) 0:N p(y 0:N |θ N ) = p(y 0:N |c (1) 0:N , c (2) 0:N , θ N )p(c (1) 0:N , c (2) 0:N |θ N )dc (1) 0:N dc (2) 0:N Nous pouvons alors réécrire l'équation (83) comme, L(θ N ) -L(θ N ) = ln p(y 0:N |c (1) 0:N , c (2) 0:N , θ N ) × p(c (1) 0:N , c (2) 
0:N |θ N )dc (1) 0:N dc (2) 0:N -ln p(y 0:N |θ N ) Si nous introduisons les constantes p(c (1) 0:N , c (2) 
0:N |y 0:N , θ N ) dans l'équation, nous avons :

L(θ N ) -L(θ N ) = ln p(y 0:N |c (1) 0:N , c (2) 0:N , θ N ) × p(c (1) 0:N , c (2) 0:N |θ N ) p(c (1) 0:N , c (2) 0:N |y 0:N , θ N ) p(c (1) 0:N , c (2) 0:N |y 0:N , θ N ) dc (1) 0:N dc (2) 0:N -ln p(y 0:N |θ N )
En utilisant l'inégalité de Jensen comme d'habitude la limite inférieure, la logvraisemblance de ces paramètres est comme suit :

L(θ N ) -L(θ N ) ≥ p(c (1) 0:N , c (2) 0:N |y 0:N , θ N ) ln p(y 0:N |c (1) 0:N , c (2) 
0:N , θ N )p(c (1) 
0:N , c (2) 
0:N |θ N ) p(c (1) 0:N , c (2) 0:N |y 0:N , θ N )p(y 0:N |θ N ) dc (1) 0:N dc (2) 0:N = ∆(θ N |θ N ) (84)
Nous ecrivons ensuite :

L(θ N ) ≥ L(θ N ) + ∆(θ N |θ N ) (85) et pour plus de commodité dénissons l(θ N |θ N ) = L(θ N ) + ∆(θ N |θ N ) (86) de sorte que L(θ N ) ≥ l(θ N |θ N ) (87)
xlvi Résumé étendu en Français Notre objectif est de choisir une valeur de θ N an que L(θ N ) soit maximisée. An d'atteindre la plus grande augmentation possible de la valeur de L(θ N ), l'algorithme EM est appliuée pour sélectionner θ N telle que l(θ N |θ N ) soit maximisée. On note cette valeur mise à jour comme θ N formellement, nous avons :

θ N = arg max θ N {l(θ N |θ N )} (88)
Si nous laissons tomber les termes qui sont constants par rapport à θ N nous avons (1) n |c

θ N = arg max θ N { p(c (1) 0:N , c (2) 0:N |y 0:N , θ N ) ln p(y 0:N , c (1) 0:N , c (2) 0:N |θ N )dc (1) 0:N dc (2) 0:N } = arg max θ N {E c (1) ,c (2) |y,θ {ln p(y 0:N , c (1) 0:N , c (2 
E c (1) ,c (2) |y,θ {ln p(y 0:N , c (1) 0:N , c (2) 0:N |θ N )} = p(c (1) 0:N , c (2) 0:N |y 0:N , θ N ) ln p(y 0:N , c (1) 0:N , c (2) 0:N |θ N ) dc (1) 0:N dc (2) 0:N = p(c (1) 0:N , c (2) 0:N |y 0:N , θ N ) ln p(y 0:N |c (1) 0:N , c (2) 0:N , θ N )dc (1) 0:N dc (2) 0:N + p(c (1) 0:N , c (2) 0:N |y 0:N , θ N ) ln p(c (1) 0:N , c (2) 0:N |θ N )dc (1) 0:N dc (2) 0:N = E c (1) ,c (2) |y,θ [ln p(y 0:N |c (1) 0:N , c (2) 0:N , θ N )] + E c (1) ,c (2) |y,θ [ln p(c (1) 0:N , c (2) 0:N |θ N )] (90) Si l'on considère J(n, d n , α n ) = E n [ln p(y n |c (m) n , d n , α n = m)] H 1 (n) = E n [ln p(c
(1)

n-1 )] H 2 (n) = E n [ln p(c (2) n |c (2) n-1 )] (91) 
xlvii Résumé étendu en Français où E n [.], dénote l'espérance par rapport á la densité

p n (t , t, x , x) = p(c (1) 
n-1 = t , c (1) n = t, c (2) 
n-1 = x , c (2) n = x|y 0:N , θ N ) n = 1 : N (92) et p n (t, x) = p(c (1) n = t, c (2) n = x|y 0:N , θ N ) n = 0
alors nous avons :

E c (1) ,c (2) |y,θ {ln p(y 0:N , c (1) 
0:N , c (2) 
0:N |θ N )} = N n=0 J(n, d n , α n ) + N n=1 H 1 (n) + N n=1 H 2 (n) + E 0 [ln p(c (1) 0 )] + E 0 [ln p(c (2) 0 )] (93) 
La partie la plus laborieuse est bien sûr la génération de conditionnelle marginale.

Ainsi, grâce au caractère Markovien et au caractère normal conditionnel , d'abord, nous calculons les densités p n (t , t, x , x) en utilisant une variante de la procédure générale avant-arrière qui est très ecace. Ensuite, nous calculons les quantités attendues J(n,

d n , α n ) , H 1 (n) , H 2 (n), E 0 [ln p(c (1) 0 )] et E 0 [ln p(c (2) 0 )].
Calcul des Densités p n (t , t, x , x)

p n (t , t, x , x) = p(c (1) 
n-1 = t , c (1) n = t, c (2) 
n-1 = x , c (2) n = x|y 0:N , θ N ) = p(c (1) 
0:N , c (2) 
0:N , y 0:N |θ N ) p(y 0:N |θ N ) dc (1) 0:n-2 dc (2) 0:n-2 dc (1) 
n+1:N dc

(2) n+1:N (94) par division p(c

(1) 0:N , c (2) 
0:N , y 0:N |θ N ) = p(y 0:N |c (1) 0:N , c (2) 
0:N , θ N )p(c (1) 
0:N , c (2) 
0:N |θ N ) = p(y 0:n |c (1) 0:n , c (2) 0:n , θ N )p(c (1) 0:n , c (2) 0:n |θ N )p(y n+1:N |c (1) n+1:N , c (2) n+1:N , θ N ) × p(c (1) n+1:N , c (2) 
n+1:N |c (1) n , c (2) n , θ N ) (95) 
où l'on a utilisé l'indépendance du bruit et de la propriété de Markov pour c 0:N , on constate que :

p n (t , t, x , x) = Λ (a) n (t , t, x , x)Λ (b) n (t, x) p(y 0:N |θ N ) (96)
xlviii Résumé étendu en Français avec : 

Λ (a) n (t , t, x , x) = C n-2 p(y 0:n |c (1) 0:n-2 , c (2) 
0:n-2 , c (1) 
n-1 = t , c (1) n = t, c (2) 
n-1 = x , c (2) n = x, θ N ) p(c (1) 
0:n-2 , c (2) 
0:n-2 , c (1) 
n-1 = t , c (1) n = t, c (2) 
n-1 = x , c (2) n = x|θ N )dc (1) 0:n-2 dc (2) 0:n-2 Λ (b) n (t, x) = C N -n p(y n+1:N |c (1) n+1:N , c (2) 
n+1:N , θ N )p(c (1) 
n+1:N |c (1) n = t, θ N ) p(c (2) 
n+1:N |c (2) n = x, θ N )dc (1 
pour n = 1 : N p n (t , t, x , x) = γ (a) n γ (b) n p(y 0:N |θ N ) exp[-z † Γ (zb) n z + 2Re(z † ϕ (zb) n ) -l † Γ (lb) n l + 2Re(l † ϕ (lb) n )] (97) où z † = [t † , t † ] l † = [x † , x † ] ϕ (zb) † n = [ϕ (z) † n,1 , ϕ (z) † n,2 + ϕ (b) † n,1 ] ϕ (lb) † n = [ϕ (l) † n,1 , ϕ (l) † n,2 + ϕ (b) † n,2 ] Γ (zb) n =   Γ (z) n (11) Γ (z) n (12) Γ (z) † n (12) Γ (z) n (22) + Γ (b) n,1   Γ (lb) n =   Γ (l) n (11) Γ (l) n (12) Γ (l) † n (12) Γ (l) n (22) + Γ (b) n,2   pour n = 0 p n (t, x) = γ (a) n γ (b) n p(y 1:N |θ N ) exp[-t † (Γ (t) n + Γ (b) n,1 )t + 2Re(t † (ϕ (t) n + ϕ (b) n,1 )) -x † (Γ (x) n + Γ (b) n,2 )x + 2Re(x † (ϕ (x) n + ϕ (b) n,2 ))]
xlix

Résumé étendu en Français

Les valeurs d'éléments de vecteurs ϕ

(zb) n , ϕ (lb) n , ϕ (x) 
n et les éléments des matrices Γ

(zb) n , Γ (lb) n , Γ (x) n gurent en Annexe E. Calculer Les Quantités Attendues J(n, d n , α n ), H 1 (n), H 2 (n), E 0 [ln p(c (1) 0 )] et E 0 [ln p(c (2) 
0 )]

Nous pouvons maintenant exprimer les quantités gurant dans E c (1) ,c (2) |y,θ {ln p(y 0:N , c

0:N , c (1) 
0:N |θ N )} (2) 
en fonction de ces moments.

Nous avons pris :

z † n = [c (1) † n-1 , c (1) † n ] l † n = [c (2) † n-1 , c (2) † n ] V = [0 (M +1)×(M +1) , I M +1 ] ψ (1) = [-F(1), I M +1 ] ψ (2) = [-F(2), I M +1 ]
à partir des équations de rappel qui ont été montrées en Annexe E, pour 1 ≤ n ≤ N , nous avons :

E n [z n ] = Γ (zb) -1 n ϕ (zb) n E n [z n z † n ] = Γ (zb) -1 n + Γ (zb) -1 n ϕ (zb) n ϕ (zb) † n Γ (zb) -1 n E n [l n ] = Γ (lb) -1 n ϕ (lb) n E n [l n l † n ] = Γ (lb) -1 n + Γ (lb) -1 n ϕ (lb) n ϕ (lb) † n Γ (lb) -1 n et E n [c (1) n ] = VE n [z n ] E n [c (1) n c (1) † n ] = VE n [z n z † n ]V T E n [c (2) n ] = VE n [l n ] E n [c (2) n c (2) † n ] = VE n [l n l † n ]V T l
Résumé étendu en Français quand n = 0, nous avons :

E n [c (1) 0 ] = (Γ (t) n + Γ (b) n,1 ) -1 (ϕ (t) 0 + ϕ (b) 0,1 ) E n [c (1) 0 c (1) † 0 ] = (Γ (t) n + Γ (b) n,1 ) -1 + (Γ (t) n + Γ (b) n,1 ) -1 (ϕ (t) 0 + ϕ (b) 0,1 )(ϕ (t) 0 + ϕ (b) 0,1 ) † (Γ (t) n + Γ (b) n,1 ) -1 E n [c (2) 0 ] = (Γ (x) n + Γ (b) n,2 ) -1 (ϕ (x) 0 + ϕ (b) 0,2 ) E n [c (2) 0 c (2) † 0 ] = (Γ (x) n + Γ (b) n,2 ) -1 + (Γ (x) n + Γ (b) n,2 ) -1 (ϕ (x) 0 + ϕ (b) 0,2 )(ϕ (x) 0 + ϕ (b) 0,2 ) † (Γ (x) n + Γ (b) n,2 ) -1
Par dénition :

J(n, d n , α n ) = E n [ln p(y n |c (αn) n , d n ] = -ln[πβ] -E n [ y n -d T n c (αn) n 2 β -1 ] = -ln[πβ] -y n 2 /β + 2Re[y * n β -1 d T n E n [c (αn) n ]] -trd * n β -1 d T n E n [c (αn) n c (αn) † n ]
de manière similaire :

H 1 (n) = E n [ln p(c (1) n |c (1) n-1 )] = -ln[π M +1 |Q(1)|] -E n [ c (1) n -F(1)c (1) n-1 2 
Q -1 (1) ] = -ln[π M +1 |Q(1)|] -trψ † (1)Q -1 (1)ψ(1)E n [z n z † n ] H 2 (n) = E n [log p(c (2) n |c (2) n-1 )] = -ln[π M +1 |Q(2)|] -E n [ c (2) n -F(2)c (2) n-1 2 
Q -1 (2) ] = -ln[π M +1 |Q(2)|] -trψ † (2)Q -1 (2)ψ(2)E n [l n l † n ] E 0 [ln p(c (1) 0 )] = -ln[π M +1 |P (1) 0 |] -E 0 [ c (1) 
0 -ĉ(1)

0 2 P (1) -1 0 ] = -ln[π M +1 |P (1) 0 |] + 2Re[ĉ (1) † 0 P (1) -1 0 E 0 [c (1) 0 ]] -trP (1) -1 0 E 0 [c (1) 0 c (1) † 0 ] E 0 [ln p(c (2) 0 )] = -ln[π M +1 |P (2) 0 |] -E 0 [ c (2) 0 - ĉ(2) 0 2 P (2) -1 0 ] = -ln[π M +1 |P (2) 0 |] + 2Re[ĉ (2) † 0 P (2) -1 0 E 0 [c (2) 0 ]] -trP (2) -1 0 E 0 [c (2) 0 c (2) † 0 ]

Détermination de L'Espérance Conditionnelle Finale

En utilisant les résultats de calcul de la section précédente, nous sommes en mesure de déterminer l'espérance conditionnelle E c (1) ,c (2) |y,θ {ln p(y 0:N , c

(1) 

0:N , c (2 
0:N , c (1) 
0:N |θ N )} = N n=0 J(n, d n , α n ) + N n=1 H 1 (n) + N n=1 H 2 (n) + E n [ln p(c (1) 0 )] + E n [ln p(c (2) 0 )] = N n=0 (-ln[πβ] -y n 2 /β + 2Re[y * n β -1 d T n E n [c (αn) n ]] -trd * n β -1 d T n E n [c (αn) n c (αn) † n ]) + N n=1 -ln[π M +1 |Q(1)|] -trψ † (1)Q -1 (1)ψ(1)E n [z n z † n ] + N n=1 -ln[π M +1 |Q(2)|]-trψ † (2)Q -1 (2)ψ(2)E n [l n l † n ]-ln[π M +1 |P (1) 0 |]+2Re[ĉ (1) † 0 P (1) -1 0 E 0 [c (1) 0 ]] -trP (1) -1 0 E 0 [c (1) 0 c (1) † 0 ]-ln[π M +1 |P (2) 0 |]+2Re[ĉ (2) † 0 P (2) -1 0 E 0 [c (2) 0 ]]-trP (2) -1 0 E 0 [c (2) 0 c (2) † 0 ] (2) 

Étape de Maximisation

An de maximiser l'ésperance en (98) par rapport à θ N , nous laissons tomber les termes qui sont constants à l'égard de θ N et maintenons les autres termes.

E c (1) ,c (2) |y,θ {ln p(y 0:N , c

0:N , c (1) 
0:N |θ N )} = I N (θ N |θ N ) + const. ( (2) 
) 99 
où The dispersive and time varying nature of the propagation environment is a fundamental limiting factor in the performance of mobile wireless systems. In order to represent the signal distortion under practical situations, suitable models of the channel are required [START_REF] Proakis | Digital Communications[END_REF][START_REF] Parsons | The Mobile Radio Propagation Channel[END_REF]. In the multipath propagation each path delay may be conceptually divided into two parts: the cluster delay, which is on the order of a symbol interval and can be preserved in the channel model, and the ne delay, which is on the order of the carrier period and can be represented together with the path attenuation as a time-varying complex gain. In addition, each path undergoes a 1. Introduction nels, equalization consists of estimating the CIR and then using this information to regulate the parameters of some form of linear or nonlinear lter to compensate for the frequency-selective eects. The linear lter can be in form of a transversal equalizer [START_REF] Qureshi | Adaptive Equalization. chapt.12 in Advanced Digital Communications: Systems and Signal Processing Techniques[END_REF], and the nonlinear lter can be a decision feedback equalizer (DFE) [START_REF] Qureshi | Adaptive Equalization. chapt.12 in Advanced Digital Communications: Systems and Signal Processing Techniques[END_REF][START_REF] Lee | Digital Communications[END_REF], a maximum likelihood sequence detector (MLSD) [START_REF] Forney | Maximum-likelihood sequence estimation of digital sequence in the presence of intersymbol interference[END_REF][START_REF] Forney | The Viterbi algorithm[END_REF], or a maximum a posteriori (MAP) type of detector [START_REF] Lee | Digital Communications[END_REF][START_REF] Haeb | A systematic approach to carrier recovery and detection of digitally phase modulated signals on fading channels[END_REF]. to shift the frequency spectrum of the bandlimited signal to some higher frequency centered at f c called the carrier frequency. To shift the frequency spectrum to a higher frequency, the bandlimited signal is multiplied by the high frequency sinusoidal signal of frequency f c [START_REF] Proakis | Digital Communications[END_REF]. The output signal is termed as the passband and the mapping of the baseband signal into the passband signal is called modulation.

I N (θ N |θ N ) = N n=0 (2Re[y * n β -1 d T n E n [c (αn) n ]] -trd * n β -1 d T n E n [c (αn) n c (αn) † n ]) (100 
The transmitted signal passes through the channel that can be considered as a nite impulse response (FIR) lter and then arrives at the receiver. The received signal is again passed through a lter called the receive lter matched to the frequency band of the transmitter. In general, the eects of the transmit lter, the transmission medium and the receive lter are included in the channel model h(n)

with nite time support. Therefore, if the support of the modelled channel is L and the sampling rate at the receiver is equal to the symbol transmission rate then the received signal can be written as

y(n) = L-1 l=0 h(l)x(n -l) + w(n). (1.1)
Before proceeding, we consider the following assumptions:

The transmitted symbols {x(n)} are independently and identically distributed (i.i.d).

The additive noise samples {w(n)} are zero mean white circularly Gaussian distributed with variance β.

The channel is an FIR lter of support L.

Let the multipath component h(m) possess the highest relative amplitude in the sequence {h(n)}, this multipath is termed as main multipath, multipaths before and after the main multipath are respectively called pre-and post-cursors. The energy of the wanted signal is conveyed mainly by the contribution of the main path. In addition to that the received signal is also contributed to by the convolution of pre and post-cursors. Therefore, the received signal in (1.1) can be written as

y(n) = h(m)x(n -m) + L-1 l=0,l =m h(l)x(n -l) + w(n) (1.2)
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where the term L-1 l=0,l =m h(l)x(n -l) is the interference from the other symbols due to pre-and post-cursers and is called ISI. In the noiseless case, if h(m) is known then the decision device at the receiver may reconstruct the transmitted signal x(n

) i |h(m)| > L-1 l=0,l =m |h(l)| (1.3)
However, if this condition is not satised an error may occur. The ISI eects can be cancelled by employing an equalizer that accumulates the energy transmitted for x(n), reduces the energy from other transmitted symbols and produces a decision variable, x(n). Ideally,

x(n) = x(n) + ϑ(n) (1.4)
where ϑ(n) is additive colored noise with the same variance as w(n). If equalization is eective, a decision device can determine x(n) with the same reliability as if the channel did not introduce any ISI. If {f (n)} is the impulse response sequence of the equalizer, then ideally, in the absence of additive noise the following identity will hold

h(n) * f (n) = δ(n) (1.5) =    1 n = 0 0 n = 0
Although in practice a non zero delay and complex amplitude scaling can be tolerated.

Equalization Techniques

Equalization techniques have been developed since the 1960s/70s, [1315], and the research in this area is continuously evolving to provide better performance.

One of the reasons for this on going research is due to the ever increasing demands for higher capacity and ecient bandwidth utilization of the channel. In the sense of minimizing the probability of sequence error, channel equalization techniques to mitigate the eects of bandlimited time dispersive channel may be subdivided into two general types optimal and suboptimal equalization. In this section, the most commonly used equalizers in practice are briey reviewed. Here we assume that channel state information is known at the receiver.

1. Introduction

ML per Sequence

Maximum likelihood sequence estimator (MLSE) was rst proposed by Forney [START_REF] Forney | The Viterbi algorithm[END_REF] in 1973. It is an optimal equalizer in the sense that it minimizes the probability of sequence error. In MLSE a dynamic programming algorithm known as the Viterbi algorithm is used to determine in a computationally ecient manner the most likely transmitted sequence from the received noisy and ISI-corrupted sequence [START_REF] Proakis | Digital Communications[END_REF][START_REF] Chen | On MLSE algorithms for unknown fast time-varying channels[END_REF].

Because the Viterbi decoding algorithm is the way in which the MLSE equalizer is implemented, the equalizer is often referred to as the Viterbi equalizer. The MLSE equalizer tests all possible data sequences, rather than decoding each received symbol by itself, and chooses the data sequence that is the most probable in all combinations.

Therefore, for a memoryless channel, p(y|x) denotes the conditional probability of receiving y, when code vector x corresponding to sequence {x(n)} is transmitted.

Then, the likelihood function, p(y|x), can be written as

p(y|x) = 1 (πβ) N N n=1 e -y(n)-x(n) 2 β (1.6)
For channels with memory the likelihood function to maximize can be written as p(y|c;

d n ) = 1 (πβ) N N n=1 e -y(n)-d T n c 2 β (1.7) where d n = [x(n), x(n -1), ..., x(n -L + 1)] T and c = [h(0), h(1), ..., h(L -1)] T .
The main drawback of the MLSE is its search complexity, measured in number of states, which increases exponentially with the channel support and large constellation points in the modulation, such as 8PSK or 16PSK schemes. Let M be the order of modulation and L the support of the channel then the number of equalizer states will be M L .

MAP per Symbol

The advent of "turbo processing", has revitalized interest in MAP equalization in preference to MLSE. The MAP algorithm is a symbol-by-symbol estimator which accepts observations (in the form of matched lter outputs) together with a priori symbol probabilities (soft inputs) and produces a posteriori symbol probabilities.
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The decoded symbol is declared to be that with the maximum a posteriori probability which minimizes the bit error rate (BER). When the probabilities are retained as soft outputs, the MAP equalizer is suited to receiver structures in which subsequent stages (e.g., outer decoding) utilize soft decisions. The BCJR algorithm [START_REF] Bahl | Optimal decoding of linear codes for minimizing symbol error rate[END_REF] is an ecient algorithm for MAP estimation. This algorithm calculates the a posteriori probability of each transmitted symbol, i.e., p(x(n) = q|y N -1 0 ), for each of the Q-ary symbols, q, where y k 2 k 1 is the set of observations {y(k 1 ), ..., y(k 2 )}. When soft outputs are required (e.g., in turbo processing), the a posteriori probabilities (APP) are retained, and the algorithm may be referred to as the APP algorithm.

The jth state of the trellis at time n is labeled S n,j , which represents one of the Q L-1 possible values for {x(n -L + 2), ..., x(n)}. We denote the particular value by {x(n -L + 2, j), ..., x(n, j)}, where tilde indicates a hypothesized value. For ISI channels more than one S n,j will correspond to a particular x(n) = q, therefore:

p(x(n) = q|y N -1 0 ) = j:x(n)=q p(S n,j |y N -1 0 ) (1.8)
The a posteriori state probabilities, γ n,j = p(S n,j |y N -1 0 ), can be calculated using the forward backward recursion procedure. The forward variable is α n,j = p(S n,j , y n 0 ) and the backward variable is β n,j = p(y N -1 n+1 |S n,j , ). Denoting the a priori transition probability from state S n-1,i to state S n,j by a n,ij , and the probability of observations y n on that transition by b n,ij , the recursions for the forward and backward variables are

α n,j = Q * i=1 b n,ij a n,ij α n-1,j (1.9) β n,j = Q * i=1 b n+1,ij a n+1,ij β n+1,j (1.10)
where Q * is the number of states in the trellis and the a priori state transition probabilities are derived from the a priori information provided to the equalizer (soft inputs)

a n,ij = p(S n,j |S n-1,i ) = p(x(n -L + 2, j), ..., x(n, j)|x(n -L + 1, i), ..., x(n -1, i).
(1.11) also the observation probabilities b n,ij are then given by:

b n,ij = p(y(n)|S n-1,i , S n,j ) = 1 πβ e -1 β y(n)-dT n c 2 (1.12)
1. Introduction The initial values may be chosen to be equal (i.e.,1/Q * ), or alternatively(without aecting any result) α -1,1 = 1 and α -1,j = 0 for j = 2, ..., Q * . At the end of the block, β N,j = 1/Q * for j = 1, ..., Q * should be chosen, unless zero-tailing is used to ensure that β N,1 = 1 and β N,j = 0 for j = 2, ..., Q * . It has been shown that the impact of zero-tailing on performance is not signicant, especially for a large block size. The a posteriori state probabilities are then given by:

γ n,j = p(S n,j |y N -1 0 ) = α n,j β n,j Q * j=1 α n,j β n,j (1.13) 

Linear Equalization

A basic structure of a linear transversal equalizer (LTE) is shown in Figure 1.3.

The computational complexity of this lter structure is a linear function of the channel dispersion length L. In such equalizers the current and past values of the received signal are linearly weighted by equalizer coecients, f (l), and assumed to produce the estimate of the transmitted signal as an output that can be written
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as [START_REF] Proakis | Digital Communications[END_REF] x

(n) = M -1 l=0 f * (l)y(n -l) = f † y(n) (1.14)
where (.) † denotes the conjugate transpose operation, M is the length of equalizer taps, f = [f (0), f (1), ..., f (M -1)] T is the tap weight vector and y n = [y(n), y(n -1), ..., y(n -M + 1)] T is the received signal vector to estimate x(n).

Considerable research has been performed on the criterion for optimizing the equalizer coecients, f (l). Since the most meaningful measure of performance for a digital communications system is the average probability of error, it is desirable to choose the coecients to minimize this performance index. However, the probability of error is a highly nonlinear function of {f l }. Consequently, the probability of error as a performance index for optimizing the tap weight coecients of the equalizer is impractical. Two criteria have found widespread use in optimizing the equalizer coecients {f l }. One is the peak distortion criterion which was introduced by Lucky [START_REF] Lucky | Automatic equalization for digital communication[END_REF][START_REF] Lucky | Techniques for adaptive equalization of digital communication[END_REF] and the other is the mean square error criterion which was proposed by Widrow [START_REF] Widrow | Adaptive lters, i: Fundamentals[END_REF] and developed by Godard [START_REF] Godard | Channel equalization using a Kalman lter for fast data transmission[END_REF].

Peak Distortion Criterion: The peak distortion is simply dened as the worst-case intersymbol interference at the output of the equalizer. The minimization of this performance index is called the peak distortion criterion. If we consider

d(k) = M -1 j=0 f * (j)h(k -j), (1.15) 
then

x(n) = d(0)x(n) + M +L-2 k=0,k =n x(k)d(n -k) + M -1 j=0 
f * (j)w(n -j).

(1.16)

The peak value of this interference, which is called the peak distortion is

D(f ) = M +L-2 k=0,k =n |d(k)| = M +L-2 k=0,k =n | M -1 j=0 f * (j)h(k -j)|.
(1.17)

From above equation we can see that there are M + L -1 non zero values in the response while the equalizer has M coecient, therefore there is always some residual interference when the optimum coecient are used.

Introduction

For one special case, the solution for the minimization of D(f ) is known. This is the case in which the distortion at the input to the equalizer, dened as Mean Square Error (MSE) Criterion: A more robust criterion called the minimum mean square error (MMSE) is very commonly used. Here, the equalizer tap weights are chosen to minimize the mean squared error between the transmitted symbol and the output, the sum of all squares of all terms plus the power of the noise [START_REF] Lucky | Automatic equalization for digital communication[END_REF][START_REF] Qureshi | Adaptive equalization[END_REF]. The cost function for this criterion can be written as

D 0 = 1 |f (0)| L n=1 |f (n)| (1.
J(f ) = E{ x(n) -x(n -d) 2 } = E{ f † y(n) -x(n -d) 2 }. (1.19)
To nd the lter tap weights, minimization of this cost function with respect to f yields the equalizer tap weight vector

f = (HH † + βI M ) -1 Hi d (1.20) where H =           h 0 0 • • • 0 0 h 1 h 0 0 0 0 . . . . . . . . . 0 0 h L-1 • • • h 1 h 0 0 0 • • • h L-1 • • • h 0           , M × (M + L -2)
and i d is the dth column vector of an identity matrix of size (M + L -2) 

× (M + L -2)
r(n) = N f -1 k=0 f * (k)y(n -k) - N b l=1 q * (l)x(n -l) = f † y(n) -q † x(n) (1.21)
which is quantized into a hard decision by a nonlinear decision device

x(n) = sign[r(n)] (1.22) 
where f = [f (0), f (1), ..., f (N f -1)] T is the forward lter tap weight vector and q = [q(1), q(2), ..., q(N b )] T is the feedback tap weight vector. The vectors f and q are chosen to minimize jointly the minimum mean square error

J(f , q) = E{ r(n) -x(n) 2 } = E{ f † y(n) -q † x(n) -x(n) 2 } (1.23)
If the channel convolution matrix (CCM) is dened by

H = H u + H c (1.24)
where H u = [h 1 h 2 ...h k |0...0] and H c = [0...0|h k+1 ...h N -1 ] are respectively referred to uncancelled and cancelled symbols and h k is the kth column of CCM H. Then the expression for forward and feedback tap weights can be written as [START_REF] Trajkovic | Turbo DFE algorithm with imperfect decision feedback[END_REF] [28]

f = R -1 u h k (1.25) q = H † c f (1.26)
where R u = (H u H † u + βI). The drawback of the DFE is that, at low SNR ratios, the already detected symbols may have higher probability of errors and when a particular incorrect decision is fed back, the DFE output reects this error during the next few symbols due to incorrect decision on the feedback delay line. This phenomenon is called error propagation. It has been shown that the DFE always outperforms an LTE of equivalent complexity and oers ISI cancellation with reduced noise enhancement [START_REF] Qureshi | Adaptive equalization[END_REF], hence it provides better BER performance as compared to an LTE [START_REF] Belore | Decision feedback equalization[END_REF].
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Reduced-State Sequence Estimation

Computational complexity of the MLSE receiver increases exponentially when channel memory is increased. Some suggestions were proposed in the literature

[3034] in order to reduction of computational complexity. One group by using an equalizer as a pre-lter, reduces the time-duration of the channel impulse response [START_REF] Falconer | Adaptive channel memory truncation for maximum likelihood sequence estimation[END_REF]3538]. Another group decreases the number of states by using Ungerboeck set partitioning to fuse some states permanently [START_REF] Forney | Ecient modulation for band-limited channels, Selected Areas in Communications[END_REF][START_REF] Ungerboeck | Channel coding with multilevel/phase signals[END_REF]. Important methods from this latter group are reduced-state sequence estimation (RSSE) [START_REF] Eyuboglu | Reduced state sequence estimation with set partitioning and decision feedback[END_REF] and decisionfeedback sequence estimation (DFSE) [START_REF] Duel-Hallen | Delayed decision-feedback sequence estimation[END_REF].

In MLSE, the Viterbi algorithm searches a trellis with M K states (K is the length of the overall channel impulse response and M is the size of the signal set), and therefore has to keep track of M K paths. For large value of M , the complexity can be large, even for very small K. RSSE can achieve nearly the performance of MLSE at signicantly reduced complexity. The primary idea is the construction of trellises with a reduced number of states. These states are formed by combining the state of the ML trellis using Ungerboeck-like set partitioning principles [START_REF] Forney | Ecient modulation for band-limited channels, Selected Areas in Communications[END_REF][START_REF] Ungerboeck | Channel coding with multilevel/phase signals[END_REF]. The RSSE is then implemented using the Viterbi algorithm to search this reduced state trellis. Suppose p n = [x n-1 , x n-2 , ..., x n-K ] are trellis states which each element in the state vector can take one of M values, therefore the ML trellis has M K states and there are M transitions to and from each state. In order to reduce the number of states, for each element x n-k in the vector p n , a two dimensional set partitioning denoted as Ω(k) are dened. Specically, for the kth element x n-k , the signal set is partitioned into J k subsets where J k can range anywhere from 1 to M . The index of the subset of a symbol x i in the partitioning Ω(k) is, in general denoted as a i (k), which can be taken as an integer between 0 and J k-1 . The set partitioning is constrained such that the numbers J k are nonincreasing.

the partitioning Ω(k) is a further partition of the subsets of Ω(k + 1) for each k between 1 and K -1.

Therefore the subset state of a sequence at time n is dened as :

t n = [a n-1 (1), a n-2 (2), ..., a n-K (K)]
(1.27)
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Since in (1.27), a n-k (k) can take one of J k values, the total number of states in the subset trellis is given by product of the J k . If J k = 1 for all k, the RSSE degenerates into a zero-forcing DFE. If J k = M for all k, the RSSE becomes an MLSE. Then by choice of the J k , a tradeo of performance versus complexity between a DFE and MLSE can be obtained. In order to optimize the performance/complexity tradeo for the RSSE, J k must be a power of two [START_REF] Ungerboeck | Channel coding with multilevel/phase signals[END_REF].

In Practice, there are still many applications where the principal source of MLSE complexity is the length of channel memory. In this case, a reduced-state trellis can be formed by simply truncating the ML state vector to some suitable length K < K and dening the reduced state vector as

p n = [x n-1 , x n-2 , ..., x n-K ]. In RSSE subset
formulation, this is equivalent to choosing J k = M for k between 1 and K and J k = 1

for k between K +1 and K. This is a special case of the RSSE which called a DFSE.

Channel Estimation Techniques

It is well known that in any wireless communication system, reliable coherent data detection is not possible unless an accurate channel estimate is available at the receiver. Using an estimator, the CIR of the mobile channel (time-variant) needs to be recognized. Typically, channel estimation techniques can be classied into two dierent families:

1. Techniques based on the transmission of training sequences [4143].

2. Blind channel estimation methods (or joint data detection and channel estimation [START_REF] Lin | Joint data and channel estimation for TDMA mobile channels[END_REF][START_REF] Omidi | Joint data and Kalman estimation for Rayleigh fading channels[END_REF]).

Blind methods are based on the statistics of the unknown data symbols and the statistical properties of the channel and do not require any pilot symbol. Between these two extremes, there exists semi-blind methods which require a small number of pilots, usually used for the algorithm initialization.

First families consists of pilot-only based channel estimation techniques and decision-directed techniques. Pilot-only based channel estimation techniques which are also called pilot symbol assisted modulation (PSAM), were introduced for single carrier systems by Moher and Lodge [START_REF] Mclachlan | The EM Algorithm and Extensions[END_REF] and later analyzed by Cavers [START_REF] Cavers | Analysis of the error performance of trellis-Coded modulations in Rayleigh-fading channels[END_REF]. The main drawback of pilot-only based channel estimation techniques is the loss of spectral 1.2. State-of-The-Art in Equalization and Estimation eciency due to the pilot overhead. The simple idea of decision-directed method [START_REF] Lee | Digital Communications[END_REF] is that in the absence of transmission errors, one can use the detected symbols as a posteriori reference signals for channel estimation instead of pilot symbols. A pioneering work in this area is that initiated by Frenger and Svensson [START_REF] Frenger | Decision-directed coherent detection in multicarrier systems on Rayleigh fading channels[END_REF] where a decision directed coherent detector for single carrier and multicarrier systems based on an MMSE channel estimation is proposed. However, the latter technique assumes that at each instant, all the previous decisions are correct. Obviously, this is not a realistic assumption in practical situations.

The increasing need for high data rates motivated the search for "blind" channel identication and equalization methods as they save bandwidth by avoiding the use of training sequences. Numerous blind algorithms have been developed in the literature [START_REF] Liu | Recent developments in blind channel equalization: From cyclostationnarity to subspaces[END_REF], where several works have focused specically on multicarrier systems.

Blind methods can also be used in cooperation with training data in order to better track channel variations and to enable faster convergence. In that case, they are referred to as "semi-blind" methods [START_REF] Carvalho | Cramer-Rao bounds for semi-blind, blind and training sequence based channel estimation[END_REF]. Usually, one or two pilot symbols are transmitted at the beginning of each frame for synchronization and initial channel estimation purposes. Most of blind algorithms can be extended to a semi-blind method. An ecient and extensively used method for semi-blind channel estimation is that based on the EM algorithm. The EM algorithm is an iterative algorithm that can be used to approximate an ML or MAP solution of the unknown channel when the transmitted symbols are unknown at the channel estimator (blind situation).

For a more detailed and general exposition of the EM algorithm, the reader is urged to read [START_REF] Mclachlan | The EM Algorithm and Extensions[END_REF][START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF]. Several papers have addressed ML channel estimation without using any a priori information for the unknown channel. In [START_REF] Wautelet | Comparison of EM-Based algorithms for MIMO channel estimation[END_REF] (see also [START_REF] Wautelet | MMSE-based and EM iterative channel estimation methods[END_REF]), the authors proposed several improvements to the EM algorithm for MIMO channel estimation.

In particular, they proposed an unbiased EM channel estimator that outperforms the classical EM estimator.

In all of the above methods the overall bit error rate of the receiver depends on the quality of the channel estimation method. Therefore, the estimation of the fading channel with high accuracy plays a key role in the receiver design [START_REF] Proakis | Digital Communications[END_REF].

The process of channel estimation can be performed using of a linear lter [START_REF] Anderson | Optimal Filtering[END_REF] [55]. Channel information at time n is obtained by using received date up to and 1. Introduction including time n. The channel is modelled as a system with unknown parameters and the received data is considered as a noisy measurement of these parameters. Certain statistics, such as mean and covariance matrix, of the channel random parameters can be available to the estimator. The linear lter process the received data as a noisy measurement of the channel states and according to some statistical criterion minimize the eect of noise at the lter output. Considerable research has been performed on the criterion for optimizing the lter coecient. Two criteria have found common use in optimizing the lter coecients. One is the peak distortion criterion and the other is the mean square error criterion. The peak distortion is simply dened as the worst-case at the output of the lter. The minimization of this performance index is called the peak distortion criterion. In the MSE criterion, the lter coecient are adjusted to minimize the mean square value of the estimation error. The estimation error is the dierence between the true parameter value and the output of the estimator (the estimate).

The Kalman lter is a solution to minimize the mean square of the estimation error and it has been successfully used in many applications [START_REF] Proakis | Digital Communications[END_REF]5457]. The output of the Kalman lter is computed recursively, and each state update is computed from the new input data and the previous estimate. The mathematical formulation of the Kalman ltering problem can be described based on a state space model. The model itself is assumed to be known to the Kalman lter. The information is in the form of state space model parameters and the statistical knowledge of the system variables.

An input random process can be used to determine the inner states of the model.

The Kalman lter is an optimum estimator which receives a noisy measurement of the inner states and provides the minimum mean-squared estimation of the state values based on its knowledge of the system model and the received signal.

For implementation of the Kalman lter, the state space model of the channel must be known. When the system model information is not available sub-optimal methods such as the RLS family of adaptive lters can be employed. In [START_REF] Sayed | A state-space approach to adaptive RLS ltering[END_REF] Sayed and Kailath showed that several dierent variants of the RLS algorithm can be directly related to the Kalman ltering problem. The optimum Kalman lter requires the exact parameters of the state space model and the second order statistics of the random model-parameters. The RLS algorithm is a special case of the Kalman lter
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where the required information about the state space model are simply replaced by constant values [START_REF] Sayed | A state-space approach to adaptive RLS ltering[END_REF].

Another sub-optimal solution when the channel state space model is not available is the LMS algorithm [START_REF] Widrow | Adaptive Signal Processing[END_REF]. The LMS algorithm has been widely used in practice due to its simplicity. The LMS algorithm uses a special estimate of the error surface gradient to update its state estimate. The performance of the receiver strongly depends on how well the estimator can track the rapid changes of the CIR in the fast fading conditions. In this section we present the Kalman ltering algorithm for the estimation of channel impulse response, and also the RLS and LMS algorithms as channel estimation methods.

The Kalman Filter

In 1960, R. E. Kalman introduce the Kalman lter [START_REF] Kalman | A new approach to linear ltering and prediction problems[END_REF] as an optimal linear minimum variance estimator. Since then, it has been widely applied in many areas in particular signal processing and communication. The Kalman lter provides linear, unbiased and minimum variance estimates for unknown state vectors of a linear state space model therefore it is considered as an optimal estimator.

In order to employ the Kalman lter to estimate the impulse response of the mobile fading channel, a linear state space model is introduced: Let c n be a complex vector valued Gauss-Markov process, channel process obeying the dynamics

c n = Fc n-1 + v n , (1.28) 
where F is a deterministic matrix sequence, this channel is probed through the observation law

y n = d T n c n + w n , (1.29) 
where d n is a vector-valued nite one-step Markov sequence data process independent of c n , w n , v n . v n ,w n are independent normal zero-mean white noises of covariance matrix Q and variance β. The set of values of d n is Ω.

The Kalman lter is composed of two parts: the measurement update and the time update. In the measurement update stage the optimal Kalman lter uses its latest measurement of the channel output and minimizes mean squared error conditioned on the received data up to time n. The measurement update estimate 1. Introduction of the channel state at time n, is computed given observation {y 0 , y 1 , ..., y n } and will be denoted as ĉn|n . The estimation error is dened as the dierence between the true value of the channel state c n and the estimate ĉn|n . The task of the Kalman lter is to minimize

E[(c n -ĉn|n ) † (c n -ĉn|n )|y 0:n ] (1.30)
The measurement update estimation is called a ltering process since it is performed by using data measured up to and including time n. The next step is a prediction process and is called time update estimation, in which the Kalman lter predicts the channel estimates at time n + 1 based on the measurement up to and including time n. In this part the Kalman lter takes advantage of its information about the state space model and employs the state transition matrix to predict the channel at time n + 1. This estimate can be presented as ĉn+1|n .

From the above discussion, the basic computation to perform the Kalman ltering algorithm involves an estimation of the states based on the current observation and a prediction for the next time instant. The prediction is independent of the observation sample and can be computed without waiting for the future observation.

Therefore, the computations involved in the estimation and prediction can be done recursively and separated in two dierent groups called the measurement update equations and the time update equations as follows [START_REF] Anderson | Optimal Filtering[END_REF]:

Measurement update equations:

ĉn|n = ĉn|n-1 + k n (y n -d T n ĉn|n-1 ) (1.31) k n = P n|n-1 d * n (d T n P n|n-1 d * n + β) -1
(1.32) 

P n|n = P n|n-1 -k n d T n P n|n-1 ( 
P n+1|n = FP n|n F † + Q (1.35)
The covariance matrix for the measurement update estimation error, P n|n is dened as

P n|n = E[(c n -ĉn|n )(c n -ĉn|n ) † ]
(1.36)
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and the covariance matrix for the time update estimation error, P n|n-1 is

P n|n-1 = E[(c n -ĉn|n-1 )(c n -ĉn|n-1 ) † ]
(1.37)

The error covariance matrix is positive denite with Hermitian symmetry and provides a statistical description of the error in the estimates. It can be noticed that the error covariance matrix is computed in a recursive form and is independent of the measurements from the channels , y n . This means that any set of measurements have the same eect in eliminating the uncertainty about c n . The Kalman gain, k n , shows the inuence of the new measurement, y n , in modifying the estimate ĉn|n-1 .

The Kalman gain is also independent of the input measurement. In general case, P n|n-1 and k n can be precomputed before the lter is actually run. The initial conditions for the state estimate, ĉ0|-1 , and for the error covariance matrix, P 0|-1 , are required to start the recursive loop. In the absence of observed data at time n = 0, we may choose the initial estimate as [START_REF] Haykin | Adaptive Filter Theory[END_REF] ĉ0|

-1 = E[c 0 ] (1.38) 
and the initial error covariance matrix as

P 0|-1 = E[(c 0 -E[c 0 ])(c 0 -E[c 0 ]) † ]
(1.39)

If the state vector size is assumed to be m, then the approximate number of multiplications/additions needs for the kalman lter is O(m 3 ). Using the measurement update equations, the Kalman lter estimates the next state vector of the linear system or the CIR based on a noisy measurement which is the input signal at the receiver. In this part of the estimation only the received signal and the information about the measurement matrix, d n , and the noise variance, β, are used. In the next stage using the time update equations, the Kalman lter yields its estimate of the next state vector according to its knowledge of the linear system parameters such as F and Q. To obtain the matrices F and Q the receiver has to estimate the maximum Doppler frequency shift, and calculate the fading lter parameters based on this estimation. Sometimes it is not practical to obtain the parameters of the channel state space model at the receiver. Therefore, with the lack of this information we may just perform the measurement update estimation and eliminate the state prediction stage of the Kalman lter. This results in the sub-optimal RLS estimator which is described in sequence.

1. Introduction

The RLS Algorithm

The RLS algorithm [START_REF] Proakis | Digital Communications[END_REF][START_REF] Haykin | Adaptive Filter Theory[END_REF] is a least square method to estimate the states of a system based on the noisy observation inputs. When the parameters of the state space model are unknown to the estimator the RLS algorithm can replace the Kalman lter. As mentioned before the Kalman lter minimized the estimation mean square error, which is a statistical average. In the RLS algorithm we deal directly with received data to minimize a weighted time average of y n -d T n ĉn|n-1 . We receive the signal y n and we wish to minimize the cost function

ξ(i) = i n=1 λ i-n y n -d T n ĉn|n-1 2 (1.40)
which is a time average squared error with exponential weighting. The parameter λ is a forgetting factor and we have 0 < λ < 1. y n -d T n ĉn|n-1 is the noise component at the receiver according to the estimates of the channel impulse response. Using this cost function the estimator tries to estimate ĉn|n-1 so that d T n ĉn|n-1 is as close as possible to the received signal noise.

The RLS algorithm to minimize the above cost function is given as

ĉn|n = ĉn|n-1 + k n (y n -d T n ĉn|n-1 ) (1.41) k n = P n|n-1 d * n (d T n P n|n-1 d * n + λ) -1
(1.42)

P n|n = λ -1 (P n|n-1 -k n d T n P n|n-1 ) (1.43) 
By comparing the Kalman lter and the RLS algorithm, we observe that the RLS algorithm is basically the same as the measurement update equations of the Kalman lter. The RLS estimator uses the information of the received signal to update its state estimates and the estimation is performed in one stage similar to the measurement update equations of the Kalman lter. The Kalman lter performs extra computations for predicting the states at the next time step using the time update equation. To do so, the Kalman lter uses its knowledge about the linear system, obtained from the matrix F, and updates the estimated values once more.

If the state vector size is assumed to be m, then the computational complexity of the RLS algorithm is O(m 2 ), while the computational complexity of the Kalman lter is O(m 3 ).
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The LMS Algorithm

The LMS algorithm is a classical tracking method and is important because of its simplicity and ease of computation [START_REF] Widrow | Adaptive Signal Processing[END_REF]. If the state vector size is assumed to be m, then the computational complexity of the LMS algorithm is O(m). The state update formula is given as:

ĉn+1 = ĉn + µ(y n -d T n ĉn )d n (1.44)
where µ is a constant step-size and regulates the speed and stability of the tracking method. Evans [START_REF] Evans | Variable step size methods for the LMS adaptive algorithm[END_REF], proposed a variable step-size method for the LMS adaptive algorithm. The step-size factor used in the LMS algorithm for all the survivor paths is the same and xed. The variable step-size LMS (VS-LMS) algorithm can be expressed as:

ĉn+1 = ĉn + µ n (y n -d T n ĉn )d n (1.45)
and error is:

e n = (y n -d T n ĉn ) (1.46)
Notice the step-size parameter µ n becomes a vector indexed by each survivor path and is adjustable individually with time. This parameter can be updated using the VS algorithms when the survivor paths progress. The variable step-size LMS algorithm [START_REF] Evans | Variable step size methods for the LMS adaptive algorithm[END_REF] updates the step size by multiplying (adding) or dividing (subtracting) the previous step size by a factor in the adaptation process

if µ n+1 < µ max then µ n+1 = µ n × α if µ n+1 > µ min then µ n+1 = µ n /α (1.47)
where α is the step-size updating factor and α > 1

or if µ n+1 < µ max then µ n+1 = µ n + α if µ n+1 > µ min then µ n+1 = µ n -α (1.48)
where α is the step-size updating factor and α > 0. The above step-size parameter updating occurs based on the sign changes of the error vector. If its sign changes consecutively for a specied number m 0 of times, the step size is decreased. On the other hand, if its sign stays the same for another specied number m 1 of times, 1. Introduction the step size is increased. This VS algorithm proposed in [START_REF] Evans | Variable step size methods for the LMS adaptive algorithm[END_REF], showed signicant improvement over the conventional xed step-size LMS with faster convergence and higher accuracy. Unfortunately, the above VS-LMS suers from another drawback, i.e., the performance is very sensitive to the selection of another parameter α. The algorithm transfers the performance dependency on step size µ into the dependency on step-size updating factor α. Zhu [START_REF] Zhu | An adaptive per-survivor processing algorithm[END_REF] proposed a new step-size update scheme to eliminate the dependency on any selection of parameters. The new variable step-size algorithm is based on the absolute estimation error. In this approach, a variable step-size factor was chosen for each path based on the estimated data sequence related to the survivor path. This approach essentially breaks and separate all possible dependencies between dierent paths to estimate the CIR, and for a fast time-varying system, this can improve the performance considerably. The step-size updating scheme is given by

µ n+1 = min(µ n + |e n+1 |, µ max ) µ n+1 = max(µ n -|e n+1 |, µ min ) (1.49)
where e n+1 is the estimation error on the last survivor path. The µ max and µ min are chosen to constrain the step size so that the mean square errors remain bounded while minimal tracking ability is obtained.

The performance of the RLS algorithm has been compared to that of LMS algorithm in the literature extensively [START_REF] Kalman | A new approach to linear ltering and prediction problems[END_REF]6264]. The RLS algorithm has a faster rate of convergence than the LMS algorithm, while the LMS algorithm exhibits better tracking behavior than the RLS algorithm.

Joint Data Detection and Channel Estimation

MLSE is the optimum detection technique for data transmitted over selective fading channels. The channel impulse response (CIR) must be known, to do the task of MLSE. Using an estimator, the CIR of the mobile channel (time-variant) needs to be recognized. On the other hand in order to perform of channel estimation the channel input data must be known, while, the channel input data are not exactly known. e n = y n -d T n ĉn , is used for adaption of the channel estimator and to update the current estimate of CIR, used by the detector in branch metric generation. All of the estimation algorithms require the vector d n , which depends on the transmitted data sequence. However, the transmitted data is not available at the receiver in practical situations. This problem is sometimes called state estimation with model uncertainty, where the channel estimator has to estimate the states of the linear system and the d n is unknown.

State-of-The-Art in Equalization and Estimation

One solution in this situation is to use the tentative decisions instead of the actual transmitted data to construct d n . This can be viewed as incorporating the decision feedback mechanism within the Viterbi decoder. It is clear that the quality of the channel estimation will depend on the quality of the tentative decisions fed to the estimator. In low SNR there will be a degenerative loop of poor estimates and poor decisions in the receiver. However, if the detector's decisions are highly reliable, then the decision-directed adaption of the channel estimates can be a successful method. There is normally a decision delay involved in this process which leaves the estimator with outdated information about the channel for adaption of its estimates.
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This can be tolerable in slowly time varying channels and for fast fading channels it can results in a poor performance [START_REF] Lee | Digital Communications[END_REF].

The other solution proposed in the literature [6567] is to implement the channel estimation and the Viterbi algorithm in a per-survivor processing (PSP) fashion.

In this case, to overcome the problem of uncertainty in d n , on each branch of the trellis a hypothesized data vector,d n , will be chosen according to the state transition corresponding to that branch. Then a separate estimator is required for any of the hypothesized d n , on each branch.

Contribution

The objective of this thesis is to propose new iterative detection schemes for both case of perfect and imperfect channel state information at the receiver. First, in order to reduce computational complexity of MLSE, we propose a new iterative detector based on continuation approach which used the EM algorithm [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF]. In this scheme we take the general form of a continuation [START_REF] Ortega | Iterative solution of nonlinear equations in several variables[END_REF] or deterministic annealing process [START_REF] Rose | Deterministic annealing[END_REF]. Starting from an exact formulation of the algorithm, we derive a series of approximation, leading to a nal structure which has some similarities with the conventional block-iterated minimum mean square error (MMSE) equalizer [START_REF] Kaleh | Channel equalization for block transmission systems[END_REF][START_REF] Tarköy | MMSE-Optimal feedback and its applications[END_REF].

Second, under linear dynamic channel, in order to deal with channel uncertainty, we propose a combined state-space model which represent communication system.

Rely on this representation we can use the Kalman lter as the best estimator.

Finally, if we consider non linear dynamic channel we can not use the Kalman lter as the best estimator. Here we use switching state-space model (SSSM) as non linear state-space model. This model combines the hidden Markov model (HMM)

and linear state-space model (LSSM). In order to channel estimation and data detection, the EM procedure is used as the natural approach. In this way EKF and particle lters are avoided.

The main questions motivating our research can be summarized as follows:

1. How can the continuation approach be exploited to reduce the complexity of MLSE (treated in Chapter 2).

2. How to design an improved receiver in order to use Kalman lter as the best 1.4. Thesis Outline estimator when the channel is unknown at the receiver (treated in Chapter 3).

3. How to perform the estimation of non-linear time-varying channels jointly with data detection (treated in Chapter 4).

In the following, we give an overview on how these questions have been addressed in this thesis.

Thesis Outline

This dissertation is organized in three main chapters:

In Chapter 2, under the assumption of unknown channel at the transmitter and perfectly known channel at the receiver, we propose a new iterative equalizer based on continuation approach. We formulate the sequence estimation problem in a precise setting. We obtain the main iteration formula using EM. Then we discuss about complexity and convergence issues. The use of a cyclic preamble allows carrying out the summation contained in the so-called main iteration formula into the frequency domain, while resort to a Gaussian approximation enables to simplify its evaluation. Finally, the numerical results proving the interest of the method and the validity of our successive approximation are presented, as well as the main feature of our approach are summed up in the conclusion.

In Chapter 3, we consider block transmission over a SISO doubly selective channel which is a linear dynamic channel. In order to accurately capture the dynamics of the channels, we formulate a rst-order auto-regressive (AR) model and based on this representation of channel we use the Kalman lter as the best estimator of the channel parameters. Then, by joint use of Kalman lter and Viterbi algorithm, we propose our method. Finally we perform some simulation and give some conclusions.

In chapter 4, data detection under switching doubly selective channel (SDSC) as a nonlinear dynamic channel is considered. A rst-order AR model is used to accurately represent the local behavior of the channel. Then we propose new iterative method based on EM approach. After determining the conditional expectation, the maximization is performed by dynamic programming (Viterbi) procedure. We
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nally perform some simulation results and conclude remarks on our assumptions.

Chapter 2

A Continuation Approach to

Iterative Sequence Estimation

Introduction

Maximum likelihood sequence estimation (MLSE) of discrete symbols from the noisy output of a convolutional channel has always motivated quite an intensive research. As well known, the complexity of MLSE being exponential in the channel memory and in the symbol alphabet cardinality is quickly unmanageable and forces to resort to sub-optimal approaches. This old issue begins in the seventies [START_REF] Belore | Decision feedback equalization[END_REF][START_REF] Taylor | The estimate feedback equalizer: A suboptimum nonlinear solution[END_REF].

Per-block minimum mean square estimation (MMSE) interference cancelation idea explicitly appears in [START_REF] Kaleh | Channel equalization for block transmission systems[END_REF][START_REF] Tarköy | MMSE-Optimal feedback and its applications[END_REF]. Noteworthy advances in block iterative MMSE equalization are later found in [START_REF] Chan | A class of block-iterative equalizers for intersymbol interference channels: Fixed channel results[END_REF]. The structure we derive in this chapter is primarily based on the conversion of the original discrete search problem into a continuous parameter estimation problem. In general, the idea of approaching an original optimization cost function by a sequence of more tractable functions is known as continuation [START_REF] Ortega | Iterative solution of nonlinear equations in several variables[END_REF] or deterministic annealing [START_REF] Rose | Deterministic annealing[END_REF]. In our context, such a process can be formulated as follows: the joint Dirac measures centered on the constellation symbols are replaced by a sequence of mixtures of Gaussian probability density functions (pdfs) converging towards the former. Also, the original a posteriori probability (APP) of symbols (discrete in nature) is set as the limit of a sequence of continuous ones. At the beginning of the deterministic annealing process, the pa-
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rameter variance (or 'temperature') of Gaussian is chosen high enough so as to ensure a unique maximum for the transformed APP. This optimum is reached via a few iterations of an expectation-maximization (EM) procedure [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF] with an appropriate choice of hidden variables. The variance is then decreased slowly enough to ensure that the last estimate of the data block remains within the attraction basin of the new absolute maximum. A new estimate is computed and the whole process is iterated until a suciently small value of the variance is reached. In this way, a sequence of posterior estimates is constructed converging towards the maximizer of the discrete posterior probability distribution. This chapter expounds the construction and implementation of this process. It is organized as follows. First the system model and problem formulation are introduced in section 2.2. Then, in section 2.3, we formulate the sequence estimation problem in a precise setting and the main iteration formula is derived in subsection 2.3.2. The use of a cyclic preamble allows carrying out the summation contained in the so-called main iteration formula into the frequency domain, while the resort to a Gaussian approximation enables to simplify its evaluation. The suboptimal resulting algorithm has an interesting structure detailed in section 2.4. Also complexity and convergence issues are discussed in section 2.5. Numerical results proving the interest of the method and the validity of our successive approximations are presented in section 2.6. Finally, the main features of our approach are summed up in the conclusion.

System Model and Problem Formulation

Let x be an N -dimensional vector whose components belong to a nite alphabet X . Components (sometimes referred to as constellation symbols) of x are independent and uniformly distributed (i.i.d.). We consider the block transmission of

x over a single-input single-output convolutional channel with memory M . The discrete-time baseband-equivalent N -dimensional received vector y is given by

y = Hx + w (2.1)
where H is the N × N Toeplitz channel matrix and w is a vector of additive noise modeled as an N-dimensional zero-mean circularly symmetric Gaussian random vector with covariance matrix E{ww † } = βI N . We assume that the channel is unknown
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at the transmitter and perfectly known at the receiver. The objective function to maximize is the joint conditional probability p(x|y, H), i.e., we want to nd out

x * = arg max x∈X N p(x|y, H) (2.2)
This is a discrete optimization problem, whose brute force resolution is intractable for large X and N . In the sequel, conditioning by H is implicit and omitted in probability expressions for the sake of notation simplicity.

2.3

A Continuation Approach

Principle

We propose to reformulate the original discrete optimization problem as follows

x (α) * = arg max

x∈C N p (α) (y, x) (2.3)
where

p (α) (y, x) = p(y|x)p (α) (x) (2.4)
is a family of pdfs in which the likelihood p(y|x) is given by

p(y|x) = (πβ) -N e -1 β y-Hx 2 (2.5)
and in which the support of the pdf p (α) (x) converges towards the support of the probability mass function (pmf ) p(x) as α → 0 + . For computation convenience, the pdf p (α) (x) is dened as

p (α) (x) = s p (α) (x, s) = s p(s)p (α) (x|s) ∝ s p(s)e -1 α H(x-s) 2 (2.6)
where the sum extends on X N . Clearly, this family of pdfs obeys the limiting criterion when α → 0 + .

A Continuation Approach to Iterative Sequence Estimation 2.3.2

Iterative Maximization of P (α) (y, x) Using EM

We declare a sequence s ∈ X N of constellation symbols as a hidden random variable. The log pdf log p (α) (y, x) can be rewritten as

log p (α) (y, x) = log p(y|x) + log p (α) (x) = log p(y|x) + log s p (α) (x, s) = log p(y|x) + log s p (α) (s|x ) p (α) (x, s) p (α) (s|x ) (2.7)
with x an initial estimate of the (continuous) sequence x. Then, using Jensen's inequality [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF], it can be lower bounded as

log p (α) (y, x) ≥ χ - 1 β y -Hx 2 + s p (α) (s|x ) log p (α) (x, s)
where χ is a group of terms independent of x. Finally, the (continuous) sequence x is selected as the one maximizing the above lower bound, i.e., corresponding to the zero of its gradient

2 β {H † y -H † Hx} + E s|x [∇ x log p (α) (x|s)] = 0 (2.8)
where the operator E s|x [.] refers to the expectation over all sequences s with respect to the probability measure p (α) (s|x ). Applying Bayes rule, the latter can be expressed as

p (α) (s|x ) = p(s)p (α) (x |s) s p(s )p (α) (x |s ) (2.9)
From equation (2.8), we obtain the recursive formula

x = γ(H † H) -1 H † y + (1 -γ)E s|x [s] (2.10)
where γ is the parameter dened as [START_REF] Forney | The Viterbi algorithm[END_REF] which gradually decreases as α → 0 + at each iteration (for xed β) and where

γ = (1 + β α ) -1 ∈]0, 1[ (2.
E s|x [s] = s sp(s)e -1 α H(x -s) 2 s p(s)e -1 α H(x -s) 2
(2.12)
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Note that p(s) = |X | -N for independent uniformly distributed constellation symbols.

Remark 1. The sum-over-states term can be easily viewed as some kind of soft decision in the classical terminology of block-iterative MMSE equalization. To make it clearer, let us consider the case of i.i.d. discrete symbols belonging to X = {-1, +1}.

We obtain

E s|x [s n ] = s:sn=+1 e -1 α H(x -s) 2 -s:sn=-1 e -1 α H(x -s) 2 s e -1 α H(x -s) 2 = tanh 1 2 log s:sn=+1 e -1 α H(x -s) 2 s:sn=-1 e -1 α H(x -s) 2
(2.13)

Interpretation from Statistical Mechanics

In statistical mechanics, the quantity dened by (2.12) is called a sum-over-states and the parameter γ plays the role of a (normalized) temperature. The iteration formula (2.10) tells us that, at each iteration, the estimate x results from a dynamical balance between the unconstrained ML estimate (H † H) -1 H † y and the term E s|x [s] referred to as the mean-state (sequence) in the canonical ensemble with free energy 1 α H(xs) 2 -ln p(s).

2.3.4

Exact Implementation of The Algorithm.

In order to implement the algorithm (2.10)-(2.12) it is necessary to evaluate the discrete sums contained in (2.12). This can be done exactly via the sum-product algorithm [START_REF] Kschischang | Factor graphs and the sum-product algorithm[END_REF] or approximately as shown in section 2.4. Equation (2.10)-(2.12)

were implemented with the sum-product algorithm and the convergence of the algorithm towards ML performance checked with several channel models and appropriate choices of the sequence of temperatures, thus conrming the correctness of the theory. In this case, the complexity of our algorithm turns out to be the same as the conventional Viterbi algorithm (i.e., exponential in the channel memory). However, an advantage of our algorithm is its direct applicability to multidimensional signals (e.g., Markov random elds).
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In order to attain a polynomial complexity in the channel memory (and in the alphabet cardinality), the evaluation of the sum-over-states (2.12) has to be approximated. Procedures like standard Mean-Field [START_REF] Binney | The Theory of Critical Phenomena[END_REF] were attempted and abandoned for results are rather poor. In the sequel, we slightly modify the original problem by assuming that a cyclic preamble has been sequentially inserted into the emitted sequence x. This makes the square Toeplitz matrix H circular. Let us introduce the Gram matrix G = H † H and the vector ξ = Gx . We have

E s|x [s n ] = a∈X ap(s n = a|x ) = a∈X a s |n p(s n = a, s |n |x ) = a∈X ap(s n = a) s |n p (α) (x |s n = a, s |n )p(s |n ) (2.14)
Matrix H being circular, G is circular and can be reduced to diagonal form via the N-dimensional DFT matrix F N . This result is no more valid for the truncated matrix

G |n = U n N H † HU n N † (2.15)
Nevertheless, G |n being normal, there exists a unitary matrix

Q n N -1 such that Λ n = diag{λ n 1 , ..., λ n N -1 } = Q n N -1 G |n Q n † N -1 (2.16)
Let ξ|n , s|n and ḡn|n the vectors dened as

Q n N -1 ξ |n , Q n N -1 s |n and Q n N -1 g n|n , respec- tively. Starting from s |n p (α) (x |s n = a, s |n )p(s |n ) ∝ s |n p(s |n )e 1 α [2Re(ξ * n a+ξ † |n s |n -a * g † n|n s |n )-gnn|a| 2 -s † |n G |n s |n ] (2.17)
we rst reformulate the sum as

s |n p (α) (x |s n = a, s |n )p(s |n ) ∝ e 1 α [2Re(ξ * n a)-gnn|a| 2 ] s |n p(s |n )e 1 α [2Re(ξ † |n s |n -a * g † n|n s |n )-s † |n G |n s |n ] (2.18)

Approximations

or equivalently, after the change of variable s|n = Q n N -1 s |n , as

s |n p (α) (x |s n = a, s |n )p(s |n ) ∝ e 1 α [2Re(ξ * n a)-gnn|a| 2 ] s|n p(s |n )e 1 α [2Re( ξ † |n s|n -a * ḡ † n|n s|n )-s † |n Λ n s|n ] (2.19) 
Let us now focus on the discrete sum

s|n p(s |n )e 1 α [2Re( ξ † |n s|n -a * ḡ † n|n s|n )-s † |n Λ n s|n ] (2.20) 
Both theory (central limit theorem) and numerical simulations show that, for large N (typically N ≥ 64), the components of s|n are zero-mean Gaussian distributed with unit covariance. We thus apply a Gaussian approximation to further approximate

(2.20) by s|n p(s |n )e 1 α [2Re( ξ † |n s|n -a * ḡ † n|n s|n )-s † |n Λ n s|n ] = π -(N -1) C N -1 e -s|n 2 e 1 α [2Re( ξ † |n s|n -a * ḡ † n|n s|n )-s † |n Λ n s|n ] dV(s |n ) (2.21) 
After some algebra, the RHS can be rewritten as

π -(N -1) e 1 α [( ξ|n -aḡ n|n ) † (Λ n +αI N -1 ) -1 ( ξ|n -aḡ n|n )] × (2.22) 
C N -1 e -1 α [(s |n -(Λ n +αI N -1 ) -1 ( ξ|n -aḡ n|n )) † (Λ n +αI N -1 )(s |n -(Λ n +αI N -1 ) -1 ( ξ|n -aḡ n|n ))] dV(s |n )
and nally, the initial sum amounts to

s |n p (α) (x |s n = a, s |n )p(s |n ) ∝ e 1 α [2Re(ξ * n a)-gnn|a| 2 +( ξ|n -aḡ n|n ) † (Λ n +αI N -1 ) -1 ( ξ|n -aḡ n|n )] (2.23) 
and, by only saving terms involving a

∝ e 1 α [|a| 2 (ḡ † n|n (Λ n +αI N -1 ) -1 ḡn|n -gnn)+2Re(a(ξ * n -ξ † |n (Λ n +αI N -1 ) -1 ḡn|n ))] (2.24) 
or, equivalently,

∝ e 1 α [|a| 2 (g † n|n Q n † N -1 (Λ n +αI N -1 ) -1 Q n N -1 g n|n -gnn)+2Re(a(ξ * n -ξ † |n Q n † N -1 (Λ n +αI N -1 ) -1 Q n N -1 g n|n ))]
(2.25)
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Note that, for X = {-1, +1}, the expression simplies as

E s|x [s n ] = tanh 2 α Re(ξ * n -ξ † |n (Λ n + αI N -1 ) -1 ḡn|n ) (2.26) or E s|x [s n ] = tanh 2 α Re(ξ * n -ξ † |n Q n † N -1 (Λ n + αI N -1 ) -1 Q n N -1 g n|n ) (2.27) 
As we see it has the structure of a soft decision feedback converging to a hard limiter as α → 0 + . This is equivalent to the Wiener interpolator for the MMSE estimation of the n th sample of the channel response from the N -1 others in the ctitious noise of variance α. Hence, the term in between parentheses essentially consists of a rened MMSE interference canceler. For xed α, the N impulse responses ξ † |n are deduced by cyclic permutation of the components of one (e.g., the rst) of them.

2.4.1

Choice of An Appropriate Basis.

Numerical simulations show that for large N and for M N , the truncated matrices G |n can be quasi-diagonalized in the (N -1)-dimensional Fourier basis F N -1 . This statement justies the second approximation

G |n ≈ F † N -1 Λ n F N -1 (2.28) 
i.e., Q n N -1 ≈ F N -1 , ∀n(stationarity assumption).

Convergence and Stability Issues

This section aims at discussing various convergence and stability issues of the proposed algorithm. For this, it is necessary to develop a complete formula of the joint probability.

2.5.1

Convergence of the Annealing Process.

Recall that p (α) (x) is a family of normal distribution converging to s p(s)δ(x -s)

(2.29)

Convergence and Stability Issues

As α → 0 + where s runs over X N . More explicitly, for x ∈ C N ,

p (α) (x, y) = p(y|x)p (α) (x) = (πβ) -N e -1 β y-Hx 2 s p(s)(πα) -N e -1 α H(x-s) 2 (2.30) 
After some algebra, we come up to the equivalent expression

p (α) (x, y) = s Q α (s)(πβγ) -N e -1 βγ Hx-J (α) (s) 2 (2.31)
in which

Q (α) (s) = p(s)(π(α + β)) -N e -1 (α+β) y-Hs 2 (2.32) 
and

J (α) (s) = γy + (1 -γ)Hs (2.33) 
In order to analyze the convergence of the annealing process towards the ML estimate x * , we assume a continuous decreasing of the temperature α. From the last expressions, it is obvious that as α → ∞, γ → 1 -, p (α) (., y) has a unique maximum at x = x ∞ = y. Conversely, as α → 0 + , γ → 0 + , p (α) (., y) has |X | N maxima located at the vertices of the lattice X N , with a global maximum arbitrarily close to the ML estimate x = x * = arg max s p(s)(πβ) -N e -1 β y-Hs 2

. So the density p (α) (x, y) behaves correctly at the limits. This also implies the existence of a decreasing sequence of singular temperatures ∞ > ᾱ0 > ᾱ1 > ... such that the number of maxima is constant in each open interval I i = (ᾱ i+1 , ᾱi ) and undergoes variation (phase transition or bifurcation) between two successive intervals. The following claim concerns the behavior of the annealing process in the regular domain of temperatures A = i I i .

Proposition 1. Let x (α 0 ) * = arg max x p (α 0 ) (x, y) for any α 0 ∈ I i≥0 . Let α → x * (α) be a continuous curve such that x * (α = α 0 ) = x (α 0 ) * and such that x * (α) is the solution of the equation ∇ x p (α) (x, y) = 0 for all ᾱi+1 < α < α 0 . Then, for almost all realization of y, x * (α) = arg max x p (α) (x, y) on the interval (ᾱ i+1 , α 0 ].

Proof. We prove that the set of values of y for which the proposition is not true is exceptional in some sense. In fact, the left member of the equation ∇ x p (α) (x, y) = 0 is continuously dierentiable w.r.t. α, x and y, so that, by the classical implicit 2. A Continuation Approach to Iterative Sequence Estimation function theorem, the curves α → x * (α, y) and α → p (α) (x * (α, y), y). Now, assume that the proposition fails for some y, i.e., there exists α 1 < α 0 such that x * (α 1 , y) is no longer the global maximum. By a continuity argument, this implies the existence of a temperature α in the considered range for which there are two distinct local maxima x * 1 (α, y) and x * 2 (α, y) with equal amplitudes. Observation vector y would then belong to the (possibly empty) intersection of 2N + 1 dierentiable hyper surfaces of C N determined by the independent implicit equations:

∇ x p (α) (x * 1 (α, y), y) = 0 ∇ x p (α) (x * 2 (α, y), y) = 0 (2.34) p (α) (x * 1 (α, y), y) -p (α) (x * 2 (α, y), y) = 0
where is a nowhere dense subset of C N and the claim is proved.

Roughly, this proposition means that if x * (α) is initialized on the locus of the global maximum for some value of the temperature and locked on the displacement of this maximum as α decreases, no accident can occur at least between two successive singular temperatures, i.e., the possibility that the tracked maximum becomes suboptimum for some subsequent α is ruled out. Note again that this proposition is valid for an idealized process where the temperature is continuously decreased. Since (for obvious complexity issues) the proposed iterative algorithm only considers a nite number of drops in temperature, there exists a possibility to loose track of the global maximum if the decrements are not small enough.

Convergence of the Iterative Algorithm.

We now focus on ∇ x p (α) (x, y) = 0. Taking partial derivative of (2.31) yields the xed-point equation

x = ϕ(x) = γ(H † H) -1 H † y + (1 -γ)s(x) (2.35) in which s(x) = s s (s) (2.36) 
and

(s) = p(s)e -1 α H(x-s) 2 s p(s )e -1 α H(x-s ) 2
(2.37)

Convergence and Stability Issues

Proposition 2. The xed-point equation (2.35) has a solution for all α > 0.

Proof. For every x, s(x) is in the lattice X N and ϕ(x) ∈ K, where K is the closed cone with vertex (H † H) -1 H † y and basis X N . Restricted to K, ϕ is a continuous mapping of a closed convex of R N into itself. The conclusion directly follows from the Bohl-Brouwer theorem in topology which asserts that such a mapping has a xed point inside K.

Remember that the iterative algorithm proceeds by alternation of two phases, namely gradient search of the max of ln p (α) (., y) and cooling. The rate of the convergence is conditioned by the Hessian of s(x). Indeed, with xed α, we obtain from (2.35) and the mean value theorem

x p+1 -x p = (1 -γ) s(x p ) -s(x p-1 ) = (1 -γ) Φ(x)(x p -x p-1 ) (2.38) 
Here, x is a point on the segment joining x p-1 and x p (at iterations p -1 and p)

and Φ is the Hessian of s(x) expressed as

Φ(x) = 1 α Λ(x)H † H (2.39)
where

Λ(x) = s (s)ss † - s (s)s s (s)s † (2.40) 
has the structure of a covariance matrix. For the iterations to be convergent, one must ensure that the spectrum of Φ is strictly bounded by unity.

Proposition 3. The spectrum of Φ is strictly bounded by unity for the intermediate range of temperatures.

Proof. Dene the moment-generating (partition) function of the vector variable

λ as Z(λ) = s e -1 α H(x-s) 2 +λ † s (2.41)
and observe that Λ(x) = ∇ 2 λ ln Z(λ)| λ=0 . Since s is zero-mean with unit covariance (i.i.d. assumption) and since H † H obeys the spectral decomposition Q † DQ where
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D is diagonal and Q is unitary, ζ = Qs is asymptotically (N → ∞) normal, with zero mean and unit covariance and the discrete sum Z(λ) can be approximated by the integral

Z(λ) ∝ C N e -ζ 2 e -1 α ζ-Qx 2 D +2Re(λ † Q † ζ) dV(ζ) (2.42)
where ∝ means equality up to a multiplicative constant in λ. Let us introduce ∆ = I N + α -1 D and η = Q(λ + α -1 Dx). The total exponent in the integrand can be cast as

-ζ -∆ -1 η 2 + η 2 (2.43)
After integrating and developing the last term in η, it is found that the second order

term in λ is Qλ 2 ∆ -1 . Hence, ∇ 2 λ lnZ(λ)| λ=0 = α(H † H + αI N ) -1 (2.44) and, from (2.39) 
, we get

Φ(x) = (H † H + αI N ) -1 H † H (2.45)
which is clearly strictly inferior to unity. This concludes the proof.

This result does not hold for very high and very low α because of the non validity of the central limit theorem. Nevertheless, the next proposition allows to get a global picture of the convergence rate in all ranges. Denote λ max the largest eigenvalue of Λ(x). Due to the dissipative character of the channel, the spectrum of Φ is bounded by λ max /α.

Proposition 4. For almost all x, the following limits lim α→0 λmax α = lim α→∞ λmax α = 0 hold with exponential rate.

Proof. From (2.39), we have

λ max < tr(Λ(x)) = s (s) s 2 - s (s)s 2 = N -s(x) 2 (2.46)
Organizing the sequences s in order of decreasing as

e -1 α H(x-s l ) 2 ≥ e -1 α H(x-s l+1 ) 2 : l = 0, ..., |X | N -1 (2.47)
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yields the following inequality

s(x) 2 = l≥0 l s l 2 ≥ N 2 0 + 2 0 s † 0 l≥1 l s l (2.48)
Using the fact that

s † 0 s l ≥ -s 0 2 = -N (2.49)
the trace is upper bounded as

tr(Λ(x)) ≤ N (1 + 2 0 -3 2 0 ) (2.50) 
The RHS of this inequality is convex upward and bounded by its tangent at the abscissa 0 = 1. This yiels

λ max < tr(Λ(x)) ≤ 4N (1 -0 ) (2.51) 
We now introduce the increasing sequence of r l (x) dened as

r l (x) = H(x -s l ) 2 -H(x -s 0 ) 2 : l = 0, ..., |X | N -1 (2.52) 
Bound above and below by linear sequences such that

lr b (x) ≤ r l (x) ≤ lr a (x) : l = 0, ..., |X | N -1 (2.53) 
Up to an exceptional (zero-measure) set of values of x, r b (x) > 0, so that

λ max α < 4N α l≥1 e -r l (x) α l≥0 e -r l (x) α ≤ 4N α l≥1 e -lr b (x) α l≥0 e -lra(x) α ≤ 4N α e -r b (x) α 1 -e -r b (x) α 1 -e -ra(x) α 1 -e -2 N ra(x) α (2.54)
This last bound concludes the proof.

Numerical Results

We implemented the algorithm (2.10)-(2.12) using an exact sum-product procedure or the Gaussian approximation (2.27) for the evaluation of the sum-over-states. 
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2.6.1

Performance on a Stanford University Interim (SUI)

Channel

First, numerical simulations were carried out with i.i.d. BPSK data symbols and a SUI channel with 3 taps with normalized powers 0 dB, -12 dB, -15 dB and delays 0µs, 0.4µs, 1.1µs [START_REF] Falconer | Frequency domain equalization for single-carrier broadband wireless access systems)[END_REF]. For each value of SNR, convergence was attained after 8 iterations with the following values of the normalized temperature γ = {0.9999; 0.6990; 0.3979; 0.3010; 0.2218; 0.1549; 0.0969; 0.00458}. A unique pass of EM (2.10)-(2.12) was needed for each iteration (or γ value). We also implemented the turbo equalizer proposed in [START_REF] Benvenuto | Block iterative DFE for single carrier modulation[END_REF] over the same channel for comparison purpose.

The BER versus SNR performance of all those algorithms is depicted in Fig 2 .1. We observe that the proposed algorithm (even in its simplied form, i.e., GA) performs very close to the optimal Viterbi algorithm (especially in the low SNR region) and outperforms the algorithm in [START_REF] Benvenuto | Block iterative DFE for single carrier modulation[END_REF] by approximately 1 dB. 3. We observe that the proposed algorithm (even in its simplied form, i.e., GA) performs very close to the optimal Viterbi algorithm (especially in the low SNR region). 
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Conclusion

In this chapter, a novel approach was presented to solve the problem of MLSE of discrete symbols from the noisy output of a convolutional channel. One feature of our method is its theoretical attractiveness, namely the fact that its iterative structure naturally emerges from the successive continuous approximations of the targeted exact discrete APP on symbols and thus comes without any ad hoc assumption on its nal form by opposition to [73] [77]. We have shown that, under certain circumstances, an approximated version of the algorithm yields the form of a block-iterative MMSE interference canceler with soft decision feedback. Resorting to computation in the Fourier domain turns out to be crucial for lowering the complexity. Given its intrinsically probabilistic nature and its close to optimal performance at low SNR, we believe that the proposed equalizer is perfectly suitable for block turbo-equalization of coded symbols.

System Model

performance of the PSP algorithm. The tracking performance of this approach was showed in [START_REF] Chugg | MLSE for an unknown channel-part 2: Tracking performance[END_REF][START_REF] Chugg | MLSE for an unknown channel-Part 1:optimality considerations[END_REF]. In the PSP decoder, the LMS, RLS and Kalman This chapter is organized as follows: First the system model is introduced in section 3.2. Then proposed method based on joint Kalman and Viterbi algorithms is presented in section 3.3. The simulation results of the proposed algorithm are presented in section 3.4. Finally, the main features of our approach are summed up in the conclusion.

System Model

We consider block transmission over a single-input single-output (SISO) doubly selective channel (DSC) (block length: N, channel memory: M, maximum Doppler frequency shift: f D , symbol duration: T ) and binary phase shift keying (BPSK) modulation, so that the bit is transmitted at instant n , b n ∈ {-1, +1}.

We assume a discrete Rayleigh fading channel of memory M, simulated with method introduced in [START_REF] Li | The simulation of independent Rayleigh faders[END_REF], which the elements of the impulse response {c i n } M i=0 are modeled as independent zero-mean complex Gaussian random variables with variance a i :

c i n = a i N 0 N 0 -1 q=0 cos(2πnf D T cos γ qi + φ qi ) +j sin(2πnf D T sin γ qi + φ qi )] (3.1) 
where

γ qi = 2πq 4N 0 + 2πi 4N 0 (M + 1) + π 8N 0 (M + 1)

Estimation of Linear Dynamic Channels based on Kalman Filtering

φ qi ,φ qi , for q = 0, 1, 2, ..., N 0 -1 and i = 0, 1, 2, ..., M , are 2(M + 1)N 0 independent random phases, each of which is uniformly distributed in [0, 2π), also we consider N 0 > 16.

In order to accurately capture the dynamics of the wireless channel, we formulate a channel model suitable for use in the channel tracker. This model must be remaining mathematically tractable for implementation in a discrete-time state-space context. According to fading process which is modelled as a complex Gaussian process, a suitable model is thus an auto-regressive (AR) model. Information theoretic results have shown that a rst-order AR model is sucient to accurately represent the local behavior of the time-varying wireless channel [START_REF] Wang | On verifying the rst order Markovian assumption for a Rayleigh fading channel model[END_REF]. A higher order model while providing more accurate long-term channel estimates, necessarily requires an AR order of 100 -200 coecients [START_REF] Baddour | Autoregressive models for fading channel simulation[END_REF], and is thus highly intractable for the state model. Using the rst-order assumption, we nally realize the state evolution at time n as:

c i n = ξc i n-1 + v i n i = 0, ..., M (3.2) 
where ξ is the static AR coecient and v i n ∼ N C (0, σ 2 v ) is the complex driving noise of the model. Therefore in the form of state model we have:

c n = Fc n-1 + v n (3.3)
where c n is a vector of length M + 1 which each element is the channel gain at time n.

c n = [c 0 n , c 1 n , ..., c M n ] T (3.4)
the state transition matrix is given by:

F = ξI M +1 (3.5)
and the process noise vector given by:

v n = [v 0 n , v 1 n , ..., v M n ] T (3.6) 
with covariance matrix equal to:

Q = (σ 2 v )I M +1 (3.7)
Additional advantages of using the AR model for describing the evolution of the channel state include:

1. The model is simple and mathematically tractable.

2. The true channel impulse response tends to revert to zero; the behavior of (3.2) also tends to revert to zero.

3. Like the wireless channel, the AR model is a Markov process. This implies that the pdf for the current estimate is not dependent upon all previous estimates but only on the most recent estimate. Owing to the Markovian property, the AR model greatly simplies the complexity of the recurrence relations used in our algorithm.

In order to parameterize (3.2), we note from [START_REF] Stuber | Principles of Mobile Communications[END_REF] that the autocorrelation of the channel fading process is:

E[c i n c i * n-k ] = a i J 0 (2πkf D T ) (3.8) 
where J 0 () is the zeroth-order Bessel function, T is symbol duration, and f D denotes the Doppler frequency resulting from relative motion between the transmitter and receiver. The Doppler shift itself is given by

f D = v c f c (3.9)
where v is the mobile speed, c is the speed of light, and f c is the carrier frequency.

Equating (3.2) to the autocorrelation of (3.8) for time n = {0,1}, we respectively have

ξ 2 a i + σ 2 v = a i (3.10) ξ = J 0 (2πf D T ) (3.11)
For example, if the normalized desired fading rate is f D T = 0.01 (a typical fast fading rate), then ξ = 0.9990.

If we consider approximate autoregressive model of order one (AR(1)) introduced in [START_REF] Stuber | Principles of Mobile Communications[END_REF](pp.74-75), we have:

ξ = 2 -cos(2πf D T ) -(2 -cos(2πf D T )) 2 -1 (3.12)
and

v (i) n N c (0, a i (1 -ξ 2 )) (3.13)
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The received complex noisy observation at instant n has the following form:

y n = M i=0 c i n b n-i + w n (3.14)
where w n is the additive noise as zero mean complex random with variance β.

Therefore

y n = d T n c n + w n (3.15)
where

d n = [b n , b n-1 , ..., b n-M ] T
Finally our communication system can be described as Linear state space model, whose dynamics are given by:

c n = Fc n-1 + v n y n = d T n c n + w n (3.16) 
where d n is independent of c n , w n , v n , and v n ,w n are independent normal zero-mean white noises with covariance matrix Q and variance β. The set of values of d n is Ω .

Proposed Method based on Joint Kalman and

Viterbi Algorithm

The aim in this section is to motivate rigorously the introduction of the Kalman lter in the estimation of Markov sequences through Gaussian dynamical channels.

By this we interpret and make clearer the underlying approximations in the heuristic approaches of [START_REF] Omidi | Joint data and Kalman estimation for Rayleigh fading channels[END_REF][START_REF] Haykin | Adaptive Filter Theory[END_REF][START_REF] Omidi | Parallel structures for joint channel estimation and data detection over fading channels[END_REF].

Start with the problem of the maximum posterior probability estimation of a nite data block d 1:n+1 (in this and the sequel we use Matlab notation for concatenating indexed objects). Note that unlike many contributors, we do not attempt to estimate the current realization of the channel process.

The likelihood function of a sequence d 1:n+1 of data decomposes as follows: 

) = f n+1 (d 1:n+1 )p(d n+1 |d n )L n (d 1:n ) (3.17)
therefore the estimated sequence equals to:

d1:n+1 = arg max

d 1:n+1 L n+1 (d 1:n+1 )
Let us now introduce the channel as follows:

f n+1 (d 1:n+1 ) = p(y n+1 , c n+1 = x|d 1:n+1 ; y 1:n )dx = p(y n+1 |c n+1 = x, d n+1 )p(c n+1 = x|d 1:n+1 , y 1:n )dx (3.18) 
Relations (3.17), (3.18) are all that is needed for building approximate recursive maximization for L n .

Normal Density Assumption

First under the assumption that the terms in the integral are normals, we can write:

f n+1 (d 1:n+1 ) = N c (y n+1 , d n+1 x, β)N c (x, ĉn+1|n (d 1:n ), P n+1|n (d 1:n ))dx (3.19)
where N c (u, µ, R) is the complex normal density in u with mean µ and covariance R, and ĉn+1|n (d

1:n ) = E[c n+1 |d 1:n , y 1:n ] (3.20) P n+1|n (d 1:n ) = cov[c n+1 |d 1:n , y 1:n ]
After grouping exponents and factors, standard calculation leads to:

f n+1 (d 1:n+1 ) = [πβ|Γ n+1 P n+1|n |] -1 exp[q † n+1 Γ -1 n+1 q n+1 -y * n+1 β -1 y n+1 (3.21) -ĉ † n+1|n P -1 n+1|n ĉn+1|n ]
where 

q n+1 = d * n+1 β -1 y n+1 + P -1 n+1|n (d 1:n )ĉ n+1|n (d 1:n ) (3.22) Γ n+1 = P -1 n+1|n (d 1:n ) + d * n+1 β -1 d T n+1 3.

Evaluation of Dependency

To obtain approximations in a systematic way, it is necessary to evaluate the dependency of f n+1 vs d 1:n+1 . By (3.16), for any r ≥ 1 one has

c n+1 = F r c n-r+1 + v n+1 (3.23)
where v n+1 is (statistically) independent of (d 1:n-r , y 1:n-r ). 

Numerical Results

Regarding the wireless channel model, we consider a memory-2 Rayleigh fading channel simulated with the method introduced in [START_REF] Li | The simulation of independent Rayleigh faders[END_REF]. The standard deviations of the resulting three complex processes [c 0 n , c 1 n , c 2 n ] are set at (0.407, 0.815, 0.407). we assume that the initial channel c 0 = [c 0 0 , c 1 0 , c 2 0 ] T is known (with using pilot symbols) at the receiver and the block length is N = 100.

Fixed Step Size PSP

The BER performance for dierent fading rate is depicted in and not equal for dierent fading rate. This factor regulated the speed and stability of the tracking method.

PSP via RLS Algorithm

As mentioned before, the RLS algorithm is a least square method, and the forgetting factor very important in this method. As has been shown, the optimal forgetting factor is depend on fading rate.

Proposed Method

The BER performance of our proposed method scheme for r = 1 and dierent fading rate is shown in Fig 3 .7,3.8. We observe that the proposed algorithm (for slow fading rate) performs near to the optimal Viterbi algorithm . We compare our algorithm with xed step size PSP with optimal step size. Our algorithm outperforms the xed step size PSP with optimal step size and this is we expected from the Kalman lter as the optimum estimator.

Conclusion

This chapter was devoted to our proposed data detection method under linear dynamic channel. We started by a review of dierent data detection technique under linear dynamic channel. First, we presented xed step-size method which is the classical tracking method and is important because of its simplicity and ease of computation. The step-size factor depends on fading rate and regulates the speed and stability of the tracking method. Then, we presented PSP via RLS algorithm which is a least square method. As discussed, the RLS algorithm has a faster rate of convergence than the LMS algorithm, while the LMS algorithm exhibits better tracking behavior than the RLS algorithm. The RLS and LMS algorithms oer similar performance which highly depends on the value of their parameters (i.e., λ and µ). We introduced a state space model for linear dynamic channel and based on this representation, we applied the Kalman lter as the best estimator in the channel estimation. Unlike many contributors, we do not attempt to estimate the current realization of the channel process for joint channel and data detection. Numerical simulations showed that the proposed method outperforms the xed step size PSP with optimal step size and PSP via RLS algorithm with optimal forgetting factor.

System Model

binary phase shift keying (BPSK) modulation, so that the bit is transmitted at instant n , b n ∈ {-1, +1}.

We assume a discrete Rayleigh fading channel of memory M, simulated with method introduced in [START_REF] Li | The simulation of independent Rayleigh faders[END_REF], which the elements of the impulse response {c i n (m)} M i=0 are modeled as independent zero-mean complex Gaussian random variables with variance a i (m):

c i n (m) = a i (m) N 0 N 0 -1 q=0 cos(2πnf D (m)T cos γ qi + φ qi ) +j sin(2πnf D (m)T sin γ qi + φ qi )] m ∈ {1, 2} (4.1) 
where

γ qi = 2πq 4N 0 + 2πi 4N 0 (M + 1) + π 8N 0 (M + 1)
φ qi ,φ qi , for q = 0, 1, 2, ..., N 0 -1 and i = 0, 1, 2, ..., M , are 2(M + 1)N 0 independent random phases, each of which is uniformly distributed in [0, 2π), also we consider N 0 > 16.

In order to accurately capture the dynamics of the wireless channel, we formulate a channel model suitable for use in the channel tracker. This model must be remaining mathematically tractable for implementation in a discrete-time state-space context. According to fading process which is modelled as a complex Gaussian process, a suitable model is thus an auto-regressive (AR) model. Information theoretic results have shown that a rst-order AR model is sucient to accurately represent the local behavior of the time-varying wireless channel [START_REF] Wang | On verifying the rst order Markovian assumption for a Rayleigh fading channel model[END_REF]. A higher order model while providing more accurate long-term channel estimates, necessarily requires an AR order of 100 -200 coecients [START_REF] Baddour | Autoregressive models for fading channel simulation[END_REF], and is thus highly intractable for the state model. Using the rst-order assumption, we nally realize the state evolution at time n as:

c i n (m) = ξ(m)c i n-1 (m) + v i n (m) i = 0, ..., M m ∈ {1, 2} (4.2) 
where ξ(m) is the static AR coecient at switch state m and v i n (m) ∼ N C (0, σ 2 v (m))

is the complex driving noise of the model. Therefore in the form of state model we have: 

c (m) n = F(m)c (m) n-1 + v n (m) (4.3)
c (m) n = [c 0 n (m), c 1 n (m), ..., c M n (m)] T (4.4)
the state transition matrix is given by:

F(m) = ξ(m)I M +1 (4.5)
and the process noise vector given by:

v n (m) = [v 0 n (m), v 1 n (m), ..., v M n (m)] T (4.6) 
with covariance matrix equal to:

Q(m) = (σ 2 v (m))I M +1 (4.7) 
Additional advantages of using the AR model for describing the evolution of the channel state include:

1. The model is simple and mathematically tractable.

2. The true channel impulse response tends to revert to zero; the behavior of (4.2) also tends to revert to zero.

3. Like the wireless channel, the AR model is a Markov process. This implies that the pdf for the current estimate is not dependent upon all previous estimates but only on the most recent estimate. Owing to the Markovian property, the AR model greatly simplies the complexity of the recurrence relations used in the EM algorithm.

In order to parameterize (4.2), we note from [START_REF] Stuber | Principles of Mobile Communications[END_REF] that the autocorrelation of the channel fading process is:

E[c i n (m)c i n-k (m) * ] = a i (m)J 0 (2πkf D (m)T ) m ∈ {1, 2} (4.8) 
where J 0 () is the zeroth-order Bessel function, T is symbol duration, and f D (m)

denotes the Doppler frequency at switch state m resulting from relative motion between the transmitter and receiver. The Doppler shift itself is given by

f D (m) = v(m) c f c (4.9)
where v(m) is the mobile speed at switch state m, c is the speed of light, and f c is the carrier frequency. Equating (4.2) to the autocorrelation of (4.8) for time n = {0,1}, we respectively have

ξ(m) 2 a i (m) + σ v (m) 2 = a i (m) (4.10) ξ(m) = J 0 (2πf D (m)T ) (4.11)
For example, if the normalized desired fading rate is f D T = 0.01 (a typical fast fading rate), then ξ = 0.999.

The received complex noisy observation at instant n has the following form:

y n = M i=0 c i n (α n = m)b n-i + w n (4.12)
where w n is the additive noise as zero mean complex random with variance β, also α n is the switch variable and m is switch state m ∈ {1, 2}. Therefore Finally our communication system can be described as switching state space model, whose dynamics are given by: c

= F(1)c (1) n 
n-1 + v n (1) c (2) n = F(2)c (2) n-1 + v n (2) y n = d T n c (αn=m) n + w n m ∈ {1, 2} (1) 
The graphical models representation for switching state-space models and HMM of switch variable α n are shown in α n is the discrete switch variable and c n (1), c n (2) are the complex-valued state vectors. since ln(x) is a strictly increasing function, the value of θ N which maximize p(y 0:N |θ N ) also maximize L(θ N ). The conditional normality of the model suggests the EM procedure [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF] as the natural approach, at least algorithmically. In this way EKF and particle lters are avoided. The EM algorithm is an iterative procedure for maximizing L(θ N ). Assume that the current estimate for θ N is given by θ N = (d 0:N , α 0:N ).

Since the objective is to maximize L(θ N ), we wish to compute an updated estimate θ N such that,

L(θ N ) > L(θ N ) (4.16) 
Equivalently we want to maximize the dierence

L(θ N ) -L(θ N ) = ln p(y 0:N |θ N ) -ln p(y 0:N |θ N ) (4.17)
4. EM-based Estimation of Discrete-Data Transmitted over Non-Linear Dynamic Wireless Channels when n = 0, we have:

E n [c (1) 0 ] = (Γ (t) n + Γ (b) n,1 ) -1 (ϕ (t) 0 + ϕ (b) 0,1 ) E n [c (1) 0 c (1) † 0 ] = (Γ (t) n + Γ (b) n,1 ) -1 + (Γ (t) n + Γ (b) n,1 ) -1 (ϕ (t) 0 + ϕ (b) 0,1 )(ϕ (t) 0 + ϕ (b) 0,1 ) † (Γ (t) n + Γ (b) n,1 ) -1 E n [c (2) 0 ] = (Γ (x) n + Γ (b) n,2 ) -1 (ϕ (x) 0 + ϕ (b) 0,2 ) E n [c (2) 0 c (2) † 0 ] = (Γ (x) n + Γ (b) n,2 ) -1 + (Γ (x) n + Γ (b) n,2 ) -1 (ϕ (x) 0 + ϕ (b) 0,2 )(ϕ (x) 0 + ϕ (b) 0,2 ) † (Γ (x) n + Γ (b) n,2 ) -1
By denition: ) 0 -ĉ(1)

J(n, d n , α n ) = E n [ln p(y n |c (αn) n , d n ] = -ln[πβ] -E n [ y n -d T n c (αn) n 2 β -1 ] = -ln[πβ] -y n 2 /β + 2Re[y * n β -1 d T n E n [c (αn) n ]] -trd * n β -1 d T n E n [c (αn) n c (αn) † n ] similarly: H 1 (n) = E n [ln p(c (1) n |c (1) n-1 )] = -ln[π M +1 |Q(1)|] -E n [ c (1) n -F(1)c (1) n-1 2 
Q -1 (1) ] = -ln[π M +1 |Q(1)|] -trψ † (1)Q -1 (1)ψ(1)E n [z n z † n ] H 2 (n) = E n [log p(c (2) n |c (2) n-1 )] = -ln[π M +1 |Q(2)|] -E n [ c (2) n -F(2)c (2) n-1 2 
Q -1 (2) ] = -ln[π M +1 |Q(2)|] -trψ † (2)Q -1 (2)ψ(2)E n [l n l † n ] E 0 [ln p(c (1) 0 )] = -ln[π M +1 |P (1) 0 |] -E 0 [ c (1 
0 2 P (1) -1 0 ] = -ln[π M +1 |P (1) 0 |] + 2Re[ĉ (1) † 0 P (1) -1 0 E 0 [c (1) 0 ]] -trP (1) -1 0 E 0 [c (1) 0 c (1) † 0 ] E 0 [ln p(c (2) 0 )] = -ln[π M +1 |P (2) 0 |] -E 0 [ c (2) 0 - ĉ(2) 0 2 P (2) -1 0 ] = -ln[π M +1 |P (2) 0 |] + 2Re[ĉ (2) † 0 P (2) -1 0 E 0 [c (2) 0 ]] -trP (2) -1 0 E 0 [c (2) 0 c (2) † 0 ]
4.4. Numerical Results

Determining The Final Conditional Expectation

By using calculating results from previous section, we are able to determine the conditional expectation E c (1) ,c (2) |y,θ {ln p(y 0:N , c

:N , c (1) 0 
0:N |θ N )} as follow:

E c (1) ,c (2) |y,θ {ln p(y 0:N , c (1) 0 
:N , c (2) 
0:N |θ N )} = N n=0 J(n, d n , α n ) + N n=1 H 1 (n) + N n=1 H 2 (n) + E n [ln p(c (1) 0 
)] + E n [ln p(c (2) 0 )] = N n=0 (-ln[πβ] -y n 2 /β + 2Re[y * n β -1 d T n E n [c (αn) n ]] -trd * n β -1 d T n E n [c (αn) n c (αn) † n ]) + N n=1 -ln[π M +1 |Q(1)|] -trψ † (1)Q -1 (1)ψ(1)E n [z n z † n ] + N n=1 -ln[π M +1 |Q(2)|]-trψ † (2)Q -1 (2)ψ(2)E n [l n l † n ]-ln[π M +1 |P (1) 0 |]+2Re[ĉ (1) † 0 P (1) -1 0 E 0 [c (1) 0 ]] -trP (1) -1 0 E 0 [c (1) 0 c (1) 
† 0 ]-ln[π M +1 |P (2) 0 |]+2Re[ĉ (2) † 0 P (2) -1 0 E 0 [c (2) 
0 ]]-trP

(2) -1 0 E 0 [c (2) 0 c (2) † 0 ] (4.32) 

Maximization Step

In order to maximize expectation (4.32) with respect to θ N , we drop terms which are constant with respect to θ N and maintain other terms.

E c (1) ,c (2) |y,θ {ln p(y 0:N , c

:N , c (1) 0 
:N |θ N )} = I N (θ N |θ N ) + const. (2) 0 
where

I N (θ N |θ N ) = N n=0 (2Re[y * n β -1 d T n E n [c (αn) n ]] -tr{d * n β -1 d T n E n [c (αn) n c (αn) † n ])} (4.34)
and const. is the terms are independent of θ N . Therefore in order to maximize Equation (4.33) with respect to θ N , it is sucient to maximize I N (θ N |θ N ). The maximization is performed by dynamic programming (Viterbi) procedure.

Numerical Results

In this section, we present some simulation results to compare the performance of 

Conclusion

In this chapter, the problem of data detection under non linear dynamic channel was investigated. In order to perform joint channel estimation and data detection, a new iterative approach based on the EM algorithm, was proposed. After determining the conditional expectation, the maximization was performed by dynamic programming (Viterbi) procedure. Numerical simulations showed that the proposed method outperforms of PSP approach. is quickly unmanageable and forces to resort to sub-optimal approaches. So reducing computational complexity is one of our favorite topic. In time-varying channels the estimation of channel parameters becomes a challenging problem. Therefore, in this thesis the parameter estimation and equalization techniques for doubly selective channels have been considered.

Conclusion

In Chapter 2, in order to reduce computational complexity of maximum likelihood sequence estimation (MLSE), we proposed a novel equalization structure with manageable complexity. By adopting a continuation approach, we proposed a new iterative equalizer. We formulated the sequence estimation problem in a precise setting to obtain the main iteration formula using EM. Then, we discussed about

Conclusion and Future Research Perspectives

complexity and convergence issues. The use of a cyclic preamble allows carrying out the summation contained in the so-called main iteration formula into the frequency domain, while resort to a Gaussian approximation enables to simplify its evaluation.

Finally, the numerical results proving the interest of the method and the validity of our successive approximation were presented.

Data detection under linear dynamic channel was considered in Chapter 3. We introduced linear state space model in order to use the Kalman lter as the best estimator of the channel parameters. Then proposed method based on joint Kalman and Viterbi algorithms was presented. The aim in this chapter was to motivate rigorously the introduction of the Kalman lter in the estimation of Markov sequences through Gaussian dynamical channels. In this way we interpreted and quantied the underlying approximations in the heuristic approaches. Finally, we performed numerical results and conclusion.

Chapter 4 focused on the issue of data detection under non linear dynamic channel. Switching state-space model (SSSM) was considered as non linear state-space model in this chapter. This model combines the hidden Markov model (HMM) and linear state-space model (LSSM). In order to perform joint channel estimation and data detection, a new approach based on EM algorithm was presented. After determining the conditional expectation, the maximization was performed by dynamic programming (Viterbi) procedure. Finally, some simulation results and concluded remarks on assumptions were presented.

Research Perspectives

There are several interesting areas for future works on proposed algorithms and their application. First by considering the advantages of MIMO system such as signicant increasing in data throughput and link rang without additional bandwidth or increased transmiting power, extending proposed algorithms for this system would be interesting to investigate in future research.

Second, application of proposed algorithms to higher-order modulation can be considered for future work.

Third, because of intrinsically probabilistic nature of proposed algorithm in

Research Perspectives

Chapter 2 and its close to optimal performance at low SNR, we believe that the proposed equalizer is perfectly suitable for block turbo-equalization of coded symbols.

Finally, in Chapter 4, if we consider an exponential basis expansion with L bases (EBE(L)) [START_REF] Giannakis | Basis expansion models and diversity techniques for blind identication and equalization of timevarying channels[END_REF] as an alternative model for mobile Rayleigh fading channels, we can derive a new method which has an important feature that is independent from fading rate. This feature is useful since the velocity of the receiver is usually unknown. Introduction

The EM algorithm is a broadly applicable approach to the iterative computation of ML estimates, useful in a variety of incomplete-data problems, where other iterative algorithms may turn out to be more complicated. At each iteration of the EM algorithm, there are two processing steps called the expectation step (or the E-step) and the maximization step or (the M-step). That is why the algorithm is called EM. This name was given by Dempster, Laird, and Rubin (1977), referred usually as DLR, in their fundamental paper [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF]. However, the EM algorithm was discovered and employed independently by several dierent researchers until DLR brought their ideas together, proved its convergence and coined the term "EM algorithm". The idea behind the EM algorithm being intuitive and natural, algorithms like EM had already been formulated and applied to a variety of problems.

In signal processing applications, the largest area of interest for the EM algorithm is in ML estimation/detection problems with incomplete-data, where there are missing data, truncated distributions, censored and grouped observations which result in complicated likelihood functions. However, the EM principle can be applied to a variety of situations where the incompleteness of data is not so natural or evident.

These include statistical models such as random eects, mixtures, convolutions, log linear models, etc. A large list of references is found in [START_REF] Moon | The expectatio maximization algorithm[END_REF].

The basic idea behind the EM algorithm is to associate with the given incomplete- data problem, a complete-data problem for which ML estimation is computationally more tractable. The methodology of the EM algorithm then consists in reformulating the problem in terms of this more easily solved complete-data problem. The E-step consists in manufacturing data for the complete-data problem using the incomplete observed data set and the current value of the unknown parameters, so that a simpler M-step computation can be applied to this "completed" data set.

More precisely, it is the log-likelihood of the complete-data problem that is computed in the E-step. As it is partly based on unobservable (or hidden) data, it is replaced by its conditional expectation given the observed data, where this E-step is aected using the current estimate of the unknown parameters. Starting from suitable initial parameter values, the E and M-steps are repeated until convergence.

Appendix C A Review of EKF

The Kalman lter is based on the assumption of a linear state space model(LSSM).

In this section, in order to address nonlinear systems we introduce the extended Kalman lter [START_REF] Simon | Optimal State Estimation[END_REF]. We keep only the rst two terms in the expansions. The resulting expressions create rst-order approximations of φ and γ and provide linear function of c n .

We now have a linearized SSM that is given by: where N > n. All the information about c n regarding ltering, prediction, or smoothing is captured by these distributions, respectively, and so the main goal is their tracking, which is obtaining p(c n |y 0:n ) from p(c n-1 |y 0:n-1 ), p(c n+l |y 0:n ) from p(c n+l-1 |y 0:n ), or p(c n |y 0:N ) from p(c n+1 |y 0:N ). The algorithms that exactly track these distributions are known as optimal algorithms. In many practical situations, however, the optimal algorithms are impossible to implement, primarily because the distribution updates require integrations that can not be performed analytically or summations that are impossible to carry out due to the number of terms in the summations. The sequential importance sampling algorithm can thus be implemented by performing the following two steps for every n: The importance function plays a very important role in the performance of the particle lter. This function must have the same support as the probability distribution that is being approximated. In general, the closer the importance function to that distribution, the better the approximation is. In the literature, the two most frequently used importance functions are the prior and the optimal importance function. The prior importance function is given by p(c n |c A major problem with particle ltering is that the discrete random measure degenerates quickly. In other words, all the particles except for a very few are Resampling is a scheme that eliminates particles with small weights and replicates particles with large weights. In principle, it is implemented as follows: 
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  Kalman comme le meilleur estimateur. Ici, nous utilisons des modèles commutation d'espace-état (SSSM) comme modèles espace-état non linéaires. Ce modèle combine le modèle de Markov caché (HMM) et le modèle espace-état linéaire (LSSM). Pour l'estimation de canal et la Notations Mathematical Notations N c (m, Σ)

1 √

 1 numbersA ∝ B equality between A and B up to a multiplicative factor M m×n(F) the set of m × n matrices over F M n (F) the set of n-square matrices over F a l the l th column of A and A ∈ M m×n (F) a kl or[A] kl the (k, l) entry of A M m×1 (F) the set of m-dimensional column vectors over F 0 m all-zero m-dimensional column vectors 1 m all-one m-dimensional column vectors U n m U n m ∈ M m-1,m (F) is the matrix dened as:U n m =   I n-1 0 n-1 0 (n-1)×(m-n) 0 (m-n)×(n-1) 0 m-n I m-n   xviiNotationsx |n the vector x with n th component removed and x ∈ M m×1 (F). Reindexed components of x |n are denoted {x |n;k : k = 0, ..., m -2} and x |n = U n m x. A |n the matrix A with n th row and n th column removed and A ∈ M m (F). Reindexed entries of A |n are denoted by {a |n;kl : k, l = 0, ..., m -2} and A |n = U n m AU n m † . F N ∈ M N (C) the discrete Fourier transform (DFT) matrix for N-point complex signals with entries [F N ] kl = N w kl , w = e -2iπ/N , k, l = 0, ..., N -1. x if x ∈ M N ×1 (C) represents an N-point complex signal, then x = F N x denotes the Fourier transform of x. xviii Résumé Étendu en Français Chapitre 1 : Introduction Contexte de La Recherche Au cours des dernières années, les télécommunications sans l ont changé de manière signicative de nombreux aspects de notre monde. Il y'a dix ans, les services de télécommunications mobiles étaient, pour la plupart, dédiés à la communication vocale. Aujourd'hui, cependant, nous comptons sur eux, non seulement pour la communication vocale, mais aussi pour la communication des données. Considérons, par exemple, les e-mails et les services de recherche d'information, ainsi que les nombreux services à usage spécial pour le divertissement, le commerce électronique, l'éducation et la santé. La révolution du sans l engendre une demande sans cesse croissante de débit de données plus élevé et d'une plus grande mobilité. Les utilisateurs sans l veulent avoir accès à tout, partout et n'importe quand. Ainsi, les appareils sans l doivent envoyer et recevoir des ux d'information à haut débit par le biais de canaux variables rapidement dans le temps. Grosso modo, les réexions de signaux sur des structures telles que des bâtiments, des montagnes, et les véhicules provoquent la sélectivité dans le signal de réception. Les réexions provoquées par des objets physiques entre l'émetteur et le récepteur créent de la dispersion dans le temps et ces signaux rééchis sont parfois additionnés de manière destructive, provoquant ce que l'on appelle "multipath fading". Dans ce cas, l'énergie de chaque symbole se disperse et se répand sur les symboles adjacents, que nous appelons intersymboles-interférence (ISI). Ce canal se comporte comme un ltre, dont la réponse fréquentielle présente une sélectivité de fréquence. Ainsi, il est aussi appelé canal sélectif en fréquence. Quand l'émetteur, le réecteur et / ou le récepteur sont en Résumé étendu en Français mouvement, les signaux rééchis se déplacent à travers diérents canaux à chaque instant. Ainsi, le signal reçu subit l'eet de canal variant dans le temps, c'est-à-dire sélectif en temps. Dans le domaine de fréquence, le spectre du signal reçu subit un phénomène appelé étalement Doppler. Des canaux sélectifs à la fois en temps et en fréquence sont dits doublement sélectifs. An de pallier le comportement du canal et de maintenir une communication able avec un taux d'erreurs binaire (BER) acceptable, il faut utiliser des techniques d'égalisation. L'égalisation en général consiste à estimer la réponse, ou l'état, du canal et utiliser l'estimation pour compenser les eets de canal an d'améliorer les performances du système de transmission. L'égalisation pour le canal doublement sélectif est un problème dicile. Au lieu d'estimer un seul processus aléatoire, comme dans le cas du canal à évanouissement plat variant dans le temps, il y'a de nombreux paramètres à estimer. Ce peut être sous la forme de l'estimation de la réponse impulsionnelle de canal (CIR) vecteur, ou l'estimation des poids adaptatifs pour robinets dans le modèle de ligne à retard. Dans les canaux sélectifs en fréquence, l'égalisation consiste à estimer le CIR, puis à utiliser ces informations pour régler les paramètres d'une forme de ltre linéaire ou non linèaire pour compenser les eets sélectifs en fréquence. Le ltre linéaire peut être sous forme d'un égaliseur transversal, et le ltre non linéaire peut être un égaliseur à décision rétroactive (DFE), un détecteur de séquence de vraisemblance maximale (MLSD), ou un détecteur de type maximum a posteriori (MAP). La détection able de données cohérentes n'est possible que si une estimation de canal précise est disponible à la réception. L'utilisation d'un estimateur, le CIR du canal mobile (variant dans le temps) doit être reconnue. Le ltre de Kalman est l'algorithme d'estimation optimal et peut être utilisé pour le suivi des canaux sans l à évanouissement. Les techniques d'estimation sous-optimales telles que least mean square (LMS) ou les moindres carrés récursifs (RLS) dans de nombreux systèmes pratiques sont choisies à la place du ltre de Kalman pour réduire les coûts de mise en ÷uvre. Tous les algorithmes d'estimation nécessitent la séquence de données transmise en tant que données d'entrée de canal.

  l'estimation et la détection et utilise intrinsèquement le retour de décision ; ainsi EM peut être utilisé dans le problème d'estimation du canal conjointement à la détection xli Résumé étendu en Français de données. Modèle de Système Nous considérons la transmission de bloc sur une single-input single-output (SISO) switching doubly selective channel (SDSC) (longueur de bloc : N, la mémoire de canal : M, décalage de fréquence Doppler maximale à l'état de commutation m : f D (m), durée de symbole : T ) et binary phase shift keying (BPSK) modulation, de sorte que le bit est transmis à l'instant n , b n ∈ {-1, +1}.

où J 0

 0 (.) est la fonction de Bessel d'ordre zéro, T est la durée de symbole, et f D (m) désigne la fréquence Doppler à l'état de commutation m résultant du déplacement relatif entre l'émetteur et le récepteur. Le décalage Doppler est donné par
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  Jusqu'à présent, nous n'avons pas tenu compte des variables non observées ou manquantes. Dans les problèmes où de telles données existent, l'algorithme EM fournit un cadre naturel pour leur inclusion. Alternativement, les variables cachées peuvent xlv Résumé étendu en Français être introduites uniquement comme un artice pour eectuer l'estimation du maximum de vraisemblance θ N docile. Dans ce cas, on suppose que la connaissance des variables cachées rendra la maximisation de la fonction de vraisemblance plus facile. Les paramètres (d 0:N , α 0:N , c

  ) 0:N |θ N )}} (89) Dans l'équation (89) les étapes d'espérance et maximisation sont évidentes. L'algorithme EM consiste donc à itérer les : 1. Étape-E : Déterminer l'espérance conditionnelle E c (1) ,c (2) |y,θ {ln p(y 0:N , c |θ N )} 2. Étape-M : Maximiser cette expression par rapport à θ N Étape d'Espérance An de déterminer l'espérance conditionnelle E c (1) ,c (2) |y,θ {ln p(y 0:N , c |θ N )}, nous décomposons d'abord l'intégrale (à l'aide d'indépendance et caractères de Markov) comme :

  ) 0:N |θ N )} li Résumé étendu en Français comme suit : E c (1) ,c (2) |y,θ {ln p(y 0:N , c
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 1112 Figure 1.1: Time-varying channel occurs by mobility of transmitter, reector and/or receiver.
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 13 Figure 1.3: Linear Transversal Equalizer.

  [START_REF] Lucky | Techniques for adaptive equalization of digital communication[END_REF] is less than unity. Under this condition, the peak distortion D(f ) is minimized by selecting the equalizer coecients, to force d(n) = 0 for 1 ≤ n ≤ M -1 and d(0) = 1.In other words, the general solution to the minimization of D(f ), when D 0 < 1, is the zero-forcing solution for {d(n)} in the rang 1 ≤ n ≤ M -1. However, the values of {d(n)} for M ≤ n ≤ M + L -2 are nonzero which constitute the residual ISI at the output of equalizer.

  Figure 1.4: A basic structure of a DFE with forward and feedback lters.
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 15 Figure 1.5: The adaptive receiver model for joint data detection and channel estimation.
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 15 Figure 1.5. illustrate the model of the adaptive receiver in which a channel estimator is employed to provide an estimate of the channel parameters for the detector. The estimator assesses the validity of its current estimate of CIR, ĉn , by constructing ŷn = d T n ĉn , and comparing it against y n . This is the convolution sum of the estimated CIR and the transmitted signal. The error signal dened as,
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 21 Figure 2.1: BER versus SNR performance.

  i.d symbols,N=64,Rayleigh fading multipath,EXP m=9, a=1 Gaussian approximation it0 Gaussian approximation it3 Gaussian approximation it7 Exact algorithm Optimal Viterbi algorithm
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 22 Figure 2.2: BER versus SNR performance (Binary i.i.d symbols, N = 64, Rayleigh fading multipath, EXP M = 9, a = 1).

  2 and Fig 2.

  i.d symbols,N=64,Rayleigh fading multipath,EXP m=9, a=0.5 Gaussian approximation it0 Gaussian approximation it3 Gaussian approximation it7 Exact algorithm Optimal Viterbi algorithm
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 23 Figure 2.3: BER versus SNR performance (Binary i.i.d symbols, N = 64, Rayleigh fading multipath, EXP M = 9, a = 0.5).

  Filter algorithms can be used to estimate the channel parameters [8991]. It will be shown that the state space model parameters can be easily obtained at the receiver by estimating the maximum Doppler frequency shift or equivalently nding the AR spectral estimation of CIR. This enables us to use the optimal Kalman lter for channel estimation. The aim in this chapter is to motivate rigorously the introduction of the Kalman lter in the estimation of Markov sequences through Gaussian dynamical channels. By this we interpret and make clearer the underlying approximations in the heuristic approaches.

d 1 :n- 1 L

 11 n (d 1:n-1 , d n = w) c * n+1|n (w, d n+1 ) = E[c n+1 |d * 1:n-1 (w), d n = w, d n+1 , y 1:n ] (w ∈ Ω) therefore we can write : p[c n+1 |d 1:n-1 , d n = w, d n+1 , y 1:n ] = δ(c n+1 -c * n+1|n (w, d n+1 ))

Now, f n+1 (d 1 :

 1 n+1 ) = p(y n+1 |d 1:n+1 , y 1:n ) as a normal density is entirely characterized by its rst and second moments. By(3.16) and (3.23) we thus get:E[y n+1 |d 1:n+1 , y 1:n ] = d T n+1 F r E[c n-r+1 |d 1:n+1 , y 1:n ] +d T n+1 E[v n+1 |d n-r+1:n+1 , y n-r+1:n ] (3.24)Hence, the dependency of LHS in d 1:n-r is only through the rst term of RHS. For a large class of stable dynamical models the matrices F have spectra strictly bounded 3.3. Proposed Method based on Joint Kalman and Viterbi Algorithm by 0 ≤ λ 0 < 1. Assuming this in the sequel, it is seen that the dependency of LHS on d 1:n-r decays at least exponentially in r (provided the sequence E[c n-r+1 |d 1:n+1 , y 1:n ] remains bounded by a constant in quadratic mean, which is the case by the same assumptions on F). A straightforward calculation shows that the same cohesion holds for the second moment E[y n+1 y * n+1 |d 1:n+1 , y 1:n ]. In conclusion, one can consider that in a sense the coupling between f n+1 (d 1:n+1 ) and L n (d 1:n ) in the range d 1:n-r decreases at least exponentially in r. This is what renders possible the introduction of the Kalman estimator in the approximate recursive maximization of L n (d 1:n ).

3. 3 . 4 FinalL 1 [

 341 Form of Approximate Recursive MaximizationConsidering that the dependency of f n+1 on d 1:n-r is weak, for d n-r+1:n+1 xed, the locus of the components d 1:n-r of the maximum of L n+1 (d 1:n+1 ) is not much aected by f n+1 . More precisely, for w 1:r ∈ Ω r and any n dene:L n (w 1:r ) = max d 1:n-r L n (d 1:n-r , d n-r+1:n = w 1:r ) -r (w 1:r ) = arg max d 1:n-r L n (d 1:n-r , d n-r+1 = w 1 , ..., d n = w r ) n+1 (d 1:n+1 ) = max w 2:r+1 L n+1 (w 2:r+1 ) (d 1:n-r , d n-r+1 = w 1 , d n-r+2:n = w 2:r+1 )p(w r+1 |w r ) L n (d 1:n-r , d n-r+1:n = w 1:r )]By our approximation:f n+1 (d 1:n-r , w 1:r+1 ) f n+1 (d * 1:n-r (w 1:r ),w 1:r+1 ) so that we set the following recursion: L n+1 (w 2:r+1 ) max w f n+1 (d * 1:n-r (w 1:r ), w 1:r+1 )L n (w 1:r )] (3.28) The denitions (3.25),(3.26) and relations (3.27),(3.28) are the dynamic programming solution to our approximate recursive likelihood maximization problem.
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 3 Estimation of Linear Dynamic Channels based on Kalman Filtering fading rate=0.0001 Fixed step size PSP(step size=0.21) Fixed step size PSP(step size=0.1) Fixed step size PSP(step size=0.05) Viterbi-known channel
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 31 Figure 3.1: BER performance of xed step size PSP at fading rate f D T = 0.0001.

  Fig 3.1,3.2,3.3. At fading rate f D T = 0.0001, the optimal step equal to µ = 0.05, at the other hand the optimal step size is µ = 0.1 and µ = 0.21 for fading rate f D T = 0fading rate=0.001 Fixed step size PSP(step size=0.05) Fixed step size PSP(step size=0.21) Fixed step size PSP(step size=0.1) Viterbi-known channel
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 3233 Figure 3.2: BER performance of xed step size PSP at fading rate f D T = 0.001.

  fading rate =0.0001 PSP+RLS(forgetting factor=0.85) PSP+RLS(forgetting factor=0.9) PSP+RLS(forgetting factor=0.95) Viterbi-known channel
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 34 Figure 3.4: BER performance of PSP via RLS algorithm at fading rate f D T = 0.0001.

Fig 3 . 4 ,

 34 shows the bit error rate performance for fading rate f D T = 0.0001, while Fig 3.5 and Fig 3.6, shows the bit error rate performance for fading rate f D T = 0.001 and f D T = 0.01 respectively.

  fading rate=0.001 PSP+RLS(forgetting factor=0.85) PSP+RLS(forgetting factor=0.95) PSP+RLS(forgetting factor=0.9) Viterbi-known channel
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 3536 Figure 3.5: BER performance of PSP via RLS algorithm at fading rate f D T = 0.001.

  fading rate=0.0001 Fixed step size PSP(optimal step size) Proposed method when r=1 Viterbi-known channel
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 37 Figure 3.7: BER performance at fading rate f D T = 0.0001.

  Fading Rate fDT=0.01 Fixed step size PSP(optimal step=0.21) Proposed method when r=1 Viterbi-Known channel
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 38 Figure 3.8: BER performance at fading rate f D T = 0.01.

  [b n , b n-1 , ..., b n-M ] T
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 41 Figure 4.2 respectively. 4.3 Proposed EM-based Approach to Data Detection We consider the problem of the maximum likelihood (ML) estimation of the sequence θ N = (d 0:N , α 0:N ) given y 0:N . In order to estimate θ N , it is typical to 4. EM-based Estimation of Discrete-Data Transmitted over Non-Linear Dynamic Wireless Channels

Figure 4 . 1 :

 41 Figure 4.1: Graphical model representation for switching state-space model (SSSM).
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 42 Figure 4.2: HMM of switch variable α n .

  our proposed method in comparison to the conventional xed step size PSP. Regarding the wireless channel model, we consider a memory-2 Rayleigh fading channel simulated with the method introduced in[START_REF] Li | The simulation of independent Rayleigh faders[END_REF]. The standard deviations of the resulting 4. EM-based Estimation of Discrete-Data Transmitted over Non-Linear Dynamic Wireless Channels three complex processes [c 0 n (m), c 1 n (m), c 2 n (m)] are set at (0.407, 0.815, 0.407). We assume that the initial channel c T is known (with using pilot symbols) at the receiver and the block length is N = 100.The switch state m was chosen using priors π 1 = π 2 = 1/2 and transition probabilities Φ 11 = Φ 22 = 0.95; and Φ 12 = Φ 21 = 0.05. For initializing of EM procedure we consider α 0:N = α 0 * 1 N (where α 0 = m is initial state which is known for the receiver) and d 0:N obtained from xed step size PSP. For each value of SNR, con- vergence was attained after 3 iterations. The BER performance for dierent fading rate is depicted in Fig 4.3, Fig 4.4 and Fig 4.5. Results for switching state space model (SSSM) with fading rate 0.0001 for rst LSSM and fading rate 0.0003 for second LSSM showed in Fig 4.3. We observe that for dierent transition probabilities Φ 11 = Φ 22 , we have the same result and the proposed algorithm performs near the optimal Viterbi algorithm, and outperforms the performance of PSP. Fig 4.4 shows result for SSSM with fading rate 0.0001 for rst LSSM and fading rate 0.001 for second LSSM. We observe that the proposed algorithm has better result when transition probabilities Φ 11 = Φ 22 decreased and performs near the optimal Viterbi algorithm, and outperforms the performance of PSP. Results for SSSM with fading rate 0.0001 for rst LSSM and fading rate 0.003 for second LSSM showed in Fig 4.5.

  fading rate fmT(1)=0.0001 and fmT(2)=0.0003 Fixed step size PSP Proposed method when p11=p22= 0.95 Proposed method when p11=p22= 0.75 Proposed method when p11=p22=0.5 Viterbi-known channel
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 1 Figure A.1: An illustration of the complete-and incomplete-data sets of the EM algorithm.
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 1 The Nonlinear State Space Model (NSSM)Let us now consider a general nonlinear state space model of the formc n+1 = φ(c n ) + v n (C.1) y n = γ(c n ) + w n (C.2)where v n and w n are uncorrelated, zero-mean, white noise processes with covariance matrices Q n and R n , respectively. The operators φ(x) and γ(x) represent nonlinear vector-valued functions of x and n. Let x consist of m states; then φ has the form φ(x) = Since the measurement y n are p-vectors, γ consists of p nonlinear scaler-valued C. A Review of EKF function γ i (x), i.e., assumes a linear state space model (LSSM), so the next step involves linearization of the original SSM. We assume φ and γ are suciently smooth in x so that each has a valid Taylor series expansion. Then, we expend φ into a Taylor series about ĉn|n :φ(c n ) = φ(ĉ n|n ) + J φ (ĉ n|n )[c n -ĉn|n ] + • • • , (C.3)where J φ (x) is the Jacobian of φ evaluated at x. Recall that if β(x) is a vector valued function consisting of k scalar-valued functions β i (x) and x is an N-vector, J β (x) = ∂β/∂x denoted the k × N Jacobian matrix of β(x) with respect to x: expand γ about the realization ĉn|n-1 γ(c n ) = γ(ĉ n|n-1 ) + J γ (ĉ n|n-1 )[c n -ĉn|n-1 ] + • • • , (C.[START_REF] Qureshi | Adaptive Equalization. chapt.12 in Advanced Digital Communications: Systems and Signal Processing Techniques[END_REF] 
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 1 Figure D.1: A schematic description of resampling
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 291 Figure D.2: A pictorial description of particle ltering

1 ,

 1 y 0:n ), where m = 1, 2, ..., M.

2 .

 2 Compute the weights of w (m) n according to (D.14).

  p(y n |c (m) n ).(D.[START_REF] Qureshi | Adaptive equalization[END_REF] The optimal importance function minimizes the variance of the importance weights conditional on the trajectory c (m) 0:n-1 and the observations y 0:n and is given by p(c n |c (m) 0:n-1 , y 0:n )[START_REF] Doucet | On sequential Monte Carlo sampling methods for Bayesian ltering[END_REF]. When the optimal function is used, the update of the weights is carried out according to w

(D. 16 )

 16 Note that implementations of particle lters with prior importance functions are much easier than those with optimal importance functions. The reason is that the computation of p(y n |c (m) n-1 ) requires integration.
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 3 Figure D.3: A block diagram of particle ltering

1 . 1 (

 11 Draw M particles, c * (m) n from the discrete distribution C n 2. Let c (m) n = c * (m) n and assign equal weights (1/M ) to the particles. The idea of resampling is depicted in Figure D.1 with M = 10 particles. There, the left column of circles represents particles before resampling, where the diameters of the circles are proportional to the weights of the particles. The right column of circles are the particles after resampling.In general the large particles are replicated and the small particles are removed. For example, the "blue" particle with the largest weight is replicated three times and the "yellow" particle, two times, whereas the green particles, which have small weights, are removed. Also, after resampling all the circles have equal diameters, that is, all the weights are set to 1/M .In Figure D.2, we represent pictorially the random measures and the actual probability distributions of interest as well as the three steps of particle ltering: particle E.1 Recall:C M +1 exp[-x † Mx + 2Re(x † ϕ)]dx = [ (π) M +1 |M| ]e ϕ † M -1 ϕ = c 1 c C M +1 x. exp[-x † Mx + 2Re(x † ϕ)]dx = M -1 ϕ C M +1 xx † . exp[-x † Mx + 2Re(x † ϕ)]dx = M -1 + M -1 ϕϕ † M -n (t , t, x , x)For n = 0 we have:

  

  de canal doit estimer les états du système linéaire alors que et la séquence de données transmise est inconnue. Le ltre de Kalman est une approche optimale lorsque les équations sont linéaires et les bruits sont indépendants, additifs et Gaussiens. Pour les scénarios où les modèles sont non linéaires ou le bruit est non Gaussien, diverses méthodes approchées ont été proposées dont le ltre de Kalman étendu est peut-être le plus important. La méthode de ltrage particulaire est devenue une alternative importante au ltre de Kalman étendu. En plus de ces deux approches, la procédure EM en tant qu'ap-interprétons et explicitons les approximations sous-jacentes dans les approches heuristique. Finalement, si l'on considère un canal dynamique non linéaire nous ne pouvons pas utiliser le ltre de Kalman comme un meilleur estimateur. Ici, nous utilisons des modèles à commutation d'espace à état (SSSM) comme les modèles espace-état non linéaires. Ce modèle combine le modèle de Markov caché (HMM) et le modèle espace-état linéaire (LSSM). An d'estimer le canal et de détecter les données, la procédure EM est utilisée comme méthode naturelle. De cette façon EKF et les ltres à particules sont évités. dans la dite formule d'itération principale dans le domaine des fréquences, alors que le recours à une approximation Gaussienne permet de simplier son évax un vecteur de dimension N dont les composantes appartiennent à un alphabet ni X . Les composantes (parfois appelés symboles de constellation) de x

	luation. Enn, les principales caractéristiques de notre approche sont résumées dans
	la conclusion.
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	discrets issus de la sortie bruyante d'un canal convolutif a toujours motivé une re-
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(1)

où H est la matrice de Toeplitz du canal de dimension N × N et w est un vecteur de bruit additif modélisé comme une Gaussienne circulaire symétrique centrée de dimension N, avec matrice de covariance E{ww † } = βI N . Nous supposons que le canal est inconnu à l'émetteur et parfaitement connu au récepteur. La fonction objectif à maximiser est la probabilité conjointe conditionnelle p(x|y, H), c'est à dire, nous voulons savoir : x * = arg max x∈X N p(x|y, H) (2) Il s'agit d'un problème d'optimisation discrète, dont la résolution exhaustive est intraitable pour des X et N grands. Dans la suite, le conditionnement par H est implicite et omis dans les expressions de probabilités pour des raisons de simplicité de notation. L'Approche Poursuite : Nous proposons de reformuler le problème d'optimisation discrète d'origine comme suit

  En gros, cette proposition signie que si x

* (α) est initialisé sur le lieu du maximum global pour une certaine valeur de la température et verrouillé sur le déplacement de ce maximum quand α diminue, aucun accident ne peut se produire entre au moins deux températures singulières successives, à savoir, la possibilité que le maximum suivi devienne sous-optimal pour certains α ultérieurs est exclue. Notez de nouveau que cette proposition est valable pour un processus idéalisé où la température est diminuée de façon continue. Comme (pour les problèmes de complexité évidentes) l'algorithme itératif proposé ne considère un nombre ni de chutes de température, il existe une possibilité de perdre la trace de maximum global si les diminutions ne sont pas assez petit.

  complexité. Compte tenu de sa nature intrinsèquement probabiliste et son rapprochement de la performance optimale à faible SNR, nous pensons que l'égaliseur proposé est parfaitement adapté pour les turbo-égalisations des symboles codés.

	Résumé étendu en Français	Résumé étendu en Français
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	pour tous les états dans le diagramme en treillis. Cet algorithme a été utilisé par l'instant n , b n ∈ {-1, +1}.
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Proposition 3. Le spectre de Φ est strictement délimité par l'unité pour la gamme intermédiaire des températures. Ce résultat ne tient pas pour α très haut et α très bas en raison de la non validité du théorème de limite centrale. Néanmoins, la proposition suivante permet d'obtenir une image globale de la vitesse de convergence dans toutes les gammes. Notons λ max la plus grande valeur propre de Λ(x). En raison du caractére dissipatif du canal, le spectre de Φ est délimité par λ max /α. Proposition 4. Pour presque tous les x, les limites suivantes lim α→0 λmax α = lim α→∞ λmax α = 0 sont atteintes avec un taux exponentiel. Conclusion Dans ce chapitre, une nouvelle approche a été présentée pour résoudre le problème de MLSE de symboles discrets de la sortie bruyante d'un canal convolutif. Une caractéristique de notre méthode est son attrait théorique, à savoir le fait que sa structure itérative émerge naturellement des approximations successives continues de l'APP ciblée discrète exacte sur les symboles et donc ne nécessite aucune hypothèse ad hoc sur sa forme dénitive par opposition à [73] [77]. Nous avons montré que, dans certaines circonstances, une version approchée de l'algorithme donne la forme d'un annulateur d'interférence itératif par blocs MMSE avec retour de décision souple. Le recours au calcul dans le domaine de Fourier s'avère crucial pour réduire xxxi Résumé étendu en Français la

  où J 0 () est la fonction de Bessel d'ordre zéro, T est la durée de symbole, et f D
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	où v est la vitesse de mobile, c est la vitesse de la lumière, et f c est la fréquence
	de la porteuse. assimilant (40) à l'auto-corrélation de (46) pour l'instant n = {0,1},
	Nous avons respectivement			
	désigne la fréquence Doppler résultant du déplacement relatif entre l'émetteur et le
	récepteur. Le décalage Doppler est donné par	
	f D =	v c	f c	(47)
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le couplage entre f n+1 (d 1:n+1 ) et L n (d 1:n ) dans la gamme d 1:n-r diminue au

  moins de façon exponentielle en r. C'est ce qui rend possible l'introduction de l'estimateur de Kalman dans la maximisation récursive approximative de L n (d 1:n ). n+1 . Plus précisément, pour w 1:r ∈ Ω r et tout n dénir :
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	L'Évaluation de La Dépendance	
	Pour générer des approximations d'une manière systématique, il est nécessaire
	d'évaluer la dépendance de f n+1 vs d 1:n+1 . Par (54), pour tout r ≥ 1 on a	
	c n+1 = F r c n-r+1 + v n+1	(61)
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	Maintenant, f n+1 (d 1:n+1 ) = p(y n+1 |d 1:n+1 , y 1:n ) en tant que densité normale est
	entiérement caractérisé par les premier et second moments. Par (54) et (61) nous
	obtenons ainsi :	
	E[y n+1 |d 1:n+1 , y 1:n ] = d T n+1 F r E[c n-r+1 |d 1:n+1 , y 1:n ]	
	+d T n+1 E[v n+1 |d n-r+1:n+1 , y n-r+1:n ]	(62)
	Par conséquent, la dépendance du côté gauche en d 1:n-r n'est que par le premier
	terme du côté droit. Pour une large classe de modèles dynamiques stables les matrices
	F ont des spectres strictement délimités par 0 ≤ λ 0 < 1. En supposant cela dans
	la suite, on voit que la dépendance du côté gauche en d 1:n-r se désintègre au moins
	de façon exponentielle en r (à condition que la séquence E[c n-r+1 |d 1:n+1 , y 1:n ] reste
	limitée par une constante en moyenne quadratique, ce qui est le cas par les mêmes
	hypothèses sur F). Un calcul simple montre que la même cohésion est valable pour le
	second moment E[y n+1 y * n+1 |d 1:n+1 , y 1:n ]. En conclusion, on peut considérer que dans
	un sens, Forme Dénitive de La Maximisation Récursive Approximative	
	Considérant que la dépendance de f n+1 à d 1:n-r est faible, pour d n-r+1:n+1 xé,
	le lieu géométrique des composants d 1:n-r du maximum de L n+1 (d 1:n+1 ) n'est pas
	très aecté par f	
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  modèle de Markov caché, et du modèle de l'espace d'états linéaire, nous devons utiliser l'approche EM comme l'approche naturelle. Des simulations numériques ont montré que la méthode proposée était meilleure que l'approche PSP.

	Chapter 1
	Introduction
	1.1	Research Context

) et const. contient les termes qui sont indépendants de θ N . Par conséquent, an de maximiser l'équation (99) par rapport à θ N , il sut de maximiser I N (θ N |θ N ). La maximisation est eectuée par une procédure de programmation dynamique (Viterbi). Conclusion Le problème de la détection de données via un canal dynamique non linéaire a été étudié. Nous avons proposé une nouvelle approche pour la détection des données via un canal dynamique non linéaire. Lorsque nous travaillons sur le modèle de l'espace d'états linéaire, le ltre de Kalman comme le meilleur estimateur peut être utilisé. Mais pour le modèle à commutation d'espace-état (SSSM) qui est l'hybride lii Résumé étendu en Français du

  with a lter called a transmit lter. Usually the binary signals contain low frequencies, which are dicult to propagate. Hence, signals centered around higher frequencies are preferred. The second function of the transmitter is therefore

	1.2	State-of-The-Art in Equalization and Estima-
		tion
	1.2.1	Basic Baseband Model of a Communication System

Almost all baseband digital communication systems consist of three basic building blocks, the transmitter, the channel and the equalizer (receiver) as shown in Figure 1.2. In the gure, x(n) is the transmitted symbol, {h(n)} is the multipath gains (MGs) sequence, w(n) is the additive noise sample, y(n) is the received sample, {f (n)} are the equalizer coecients, x(n) is the estimated signal after equalization and n is the discrete time index. The transmitter is one of the most important parts of a digital communication system. The main function of the transmitter is to convert the raw data into an appropriate form suitable for transmission, e.g., the voice signal is sampled and encoded into binary signals to transmit. The original band of frequencies occupied by the encoded binary signals is called a baseband signal. The baseband signal has wide frequency spectrum centered at zero frequency, which is bandlimited before 1. Introduction transmission

  3.3. Proposed Method based on Joint Kalman and Viterbi Algorithm

	L n+1 (d 1:n+1 ) = p(d 1:n+1 ; y 1:n+1 )
	= p(y n+1 |d 1:n+1 , y 1:n )p(d n+1 |d n )p(d 1:n ; y 1:n

  3.2 Approximate Recursive MaximizationIt is obvious from (3.17) that the exact recursive maximization of L n+1 (d 1:n+1 ) is very dicult due to coupling between f n+1 (d 1:n+1 ) and L n (d 1:n ) i.e. the fact that these terms share the entire range of their variables from n down to 1. In last analysis this coupling reects the non-Gaussian characters of the joint (c n , d n )

	model. To build Approximate recursive maximization, it is desirable to bound this
	coupling. Notice that the heuristically derived algorithms in [96] can be interpreted
	as follows. Let
	d * 1:n-1 (w) = arg max

Doppler shift, due to the relative movement of the transmitter and receiver. Thus, the received signal is the sum of many Doppler shifted, scaled and delayed versions of transmitted signal. The complex envelope of this signal usually obeys a Rayleigh distribution, which is widely used in modeling the channel[START_REF] Salz | Optimum mean-square decision feedback equalization[END_REF]. For low signaling rates, the channel shows more time selectivity and it is more at in the frequency domain over the signal bandwidth. This channel is called at fading, where the received signal is scaled by a complex gain. In the at fading case, the multipath delay spread is small and the equalization consists of estimating the complex gain of the channel due to the ne delay and compensating for its eect. At higher signaling rates, the channel is typically-selective, but usually the channel characteristics changes very slowly compared to the symbol rate. Equalizers have been historically
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Chapter 3

Estimation of Linear Dynamic Channels based on Kalman Filtering

Introduction

Modern portable and mobile digital communication systems require reliable signaling methods over multipath fading channels in the presence of ISI and additive white Gaussian noise (AWGN). To defeat the signal distortion caused by the time varying characteristics of the channel, dierent classes of equalization techniques have been suggested in the literature for dierent practical situation. The mobile digital wireless channel needs high performance equalizers, because of dierent challenging facts such as the mobility of the transmitter and receiver with respect to each other, and the multipath nature of propagation environment. Usually we divide equalization in two classes; linear and nonlinear. In linear equalization using structures such as transversal and lattice equalizers the received signal is delayed and weighted by equalizer coecients and summed to produce the output. Nonlinear equalizers are able to combat sever channel distortion which cannot be handled by linear equalizers.

For channel estimation a training sequence is often transmitted and the detected symbols are compared to the known training sequence. The result is used to estimate the unknown channel coecients and obtain the tap weights, then the channel is continually tracked in a decision-directed mode [START_REF] Qureshi | Adaptive Equalization. chapt.12 in Advanced Digital Communications: Systems and Signal Processing Techniques[END_REF]. The decisions should be highly
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reliable, otherwise a string of decision errors might happen during a deep fade and cause the detector to fail. For the adaption of channel parameters, dierent estimation algorithms such as the Kalman lter, the RLS algorithm, and the LMS algorithm can be used. The Kalman lter is the optimum estimation algorithm and can be used for the tracking of wireless fading channels [START_REF] Anderson | Optimal Filtering[END_REF][START_REF] Haykin | Adaptive Filter Theory[END_REF][START_REF] Grewal | Kalman Filtering: Theory and Practice[END_REF]. Sub optimal estimation techniques such as least mean square (LMS) algorithm [START_REF] Widrow | Adaptive Signal Processing[END_REF], or recursive least square (RLS) algorithm [START_REF] Sayed | A state-space approach to adaptive RLS ltering[END_REF] in many practical systems are chosen instead of the Kalman lter to reduce the implementation costs.

MLSE as an optimal receiver which was rst proposed by Forney [START_REF] Forney | Maximum-likelihood sequence estimation of digital sequence in the presence of intersymbol interference[END_REF] for ISI channels can be practically implemented by Viterbi algorithm based on a known channel impulse response (CIR) [START_REF] Forney | The Viterbi algorithm[END_REF]. The Viterbi algorithm originally proposed by

Viterbi [START_REF] Viterbi | Error bounds for convolutional codes and an asymptotically optimum decoding algorithm[END_REF] for maximum likelihood decoding of convolutional codes is a special case of forward dynamic programming [START_REF] Omura | On the Viterbi decoding algorithm[END_REF]. The Viterbi algorithm nds optimal trajectories (survivor paths) at each stage for all states in the trellis diagram. This algorithm was used by Forney in the MLSE receiver to detect a digital signal transmitted through the ISI channel corrupted by an additive Gaussian noise [START_REF] Forney | The Viterbi algorithm[END_REF]. The MLSE algorithm computes the cost (probability of error) through all trajectories from each state to the next stage for all possible states (computing the branch metrics) and then nds the minimum cost trajectory (survivor path) for each state.

Therefore at the nal stage we have the best survivor path corresponds to the data sequence with minimum probability of sequence error. The MLSE receiver for fading channels whose statistical parameters are known was considered in [8083]. In order to implement MLSE using the Viterbi algorithm, we need the knowledge of the channel which is practically unknown at the receiver and should be estimated.

To solve this problem, joint channel estimation and data detection methods were proposed in [START_REF] Qureshi | An adaptive receiver for data transmission over time-dispersive channels[END_REF][START_REF] Dai | Detection of bandlimited signals over frequency selective Rayleigh fading channels[END_REF]8486]. Some estimation algorithms such as least mean square 

Introduction

The Kalman lter is an optimal approach when the equations are linear and the noises are independent, additive, and Gaussian. In this situation, the distributions of interest are also Gaussian and the Kalman lter can compute them exactly without approximations. For scenarios where the models are nonlinear or the noise is non-Gaussian, two major approaches in the literature are considered. First approach is the extended Kalman lter (EKF) [START_REF] Julier | Unscented ltering and nonlinear estimation[END_REF] and the other is called particle ltering [START_REF] Djuric | Particle ltering[END_REF].

The EKF is the nonlinear version of the Kalman lter which linearizes about an estimate of the current mean and covariance. The particle ltering as an important alternative method to the EKF is a sequential Monte Carlo methodology where the basic idea is the recursive computation of relevant probability distributions using the concepts of importance sampling and approximation of probability distributions with discrete random measures. The underlying principle of the methodology is the approximation of relevant distributions with random measures composed of particles 4. EM-based Estimation of Discrete-Data Transmitted over Non-Linear Dynamic Wireless Channels (samples from the space of the unknowns) and their associated weights [START_REF] Simon | Optimal State Estimation[END_REF].

In addition to these two approaches, the EM procedure as the natural approach, is an ecient iterative procedure to compute the maximum likelihood (ML) estimate in the presence of missing or hidden data. Under unknown channel parameters, it is not possible to maximize the likelihood function directly to obtain the ML criterion. In this situation, the EM algorithm which achieves the ML criterion in an iterative manner is ideally suited to this problem. The EM algorithm has two steps, expectation and maximization [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF]. The rst step takes the expectation of the loglikelihood function of the complete data given the current estimated parameters and the incomplete data (e.g. received signal where such data exist, the EM algorithm provides a natural framework for their inclusion. Alternately, hidden variables may be introduced purely as an artice for making the maximum likelihood estimation of θ N tractable. In this case, it is assumed that knowledge of the hidden variables will make the maximization of the likelihood function easier. Parameters (d 0:N , α 0:N , c

0:N ) form a complete set respecting that the density family p(y 0:N , d 0:N , α 0:N , c (2) 0:N will be treated as hidden variables. The total probability p(y 0:N |θ N ) may be written in term of the hidden variables c We may then rewrite Equation (4.17), as: Using Jensen's inequality as usual lower-bound, the log-likelihood with these parameters are as:

We continue by writing

and for convenience dene

EM-based Estimation of Discrete-Data Transmitted over Non-Linear

Dynamic Wireless Channels so that

Our objective is to choose a value of θ N so that L(θ N ) is maximized. In order to achieve the greatest possible increase in the value of L(θ N ), the EM algorithm calls for selecting θ N such that l(θ N |θ N ) is maximized. We denote this updated value as θ N , formally, we have:

If we drop terms which are constant with respect to θ N , we have

In Equation (4.23) the expectation and maximization steps are apparent. The EM algorithm thus consists of iterating the:

1. E-step: Determine the conditional expectation E c (1) ,c (2) |y,θ {ln p(y 0:N , c

2. M-step: Maximize this expression with respect to θ N

Expectation Step

In order to determine the conditional expectation E c (1) ,c (2) |y,θ {ln p(y 0:N , c

rst we decompose the integral (using independence and Markovian characters) as:

If we consider (1) n |c

(1)

where E n [.] denotes expectation with respect to the density

and

then we have:

The most consuming part is of course the generation of conditional marginal.

Therefore, thanks to the Markov and conditionally normal character, rst we compute densities p n (t , t, x , x) by using a variant of the general forward-backward procedure which is very ecient. Then we calculate expected quantities J(n,

0 )] and E 0 [ln p(c

Computing Densities

by splitting p(c

n+1:N |c (1) n , c (2) n , θ N )

where one has used independence for the noise and Markov property for c 0:N , one nds that:

EM-based Estimation of Discrete-Data Transmitted over Non-Linear

Dynamic Wireless Channels with: 

where

Proposed EM-based Approach to Data Detection

The quantities of elements of vectors ϕ

n and the elements of matrices

and E 0 [ln p(c (2) 0 )]

We can now express the quantities guring in E c (1) ,c (2) |y,θ {ln p(y 0:N , c

in terms of these moments.

We set:

from the recall equations that has been shown in Appendix E, for 1 ≤ n ≤ N , we have: Let Y denote the sample space of the observations, and let y ∈ R m denote an observation from Y of size m. Let X denote an underlying space and let x ∈ R n be an outcome from X with m < n.

The data vector x is referred to as the complete-data. The complete data x is not observed directly but only by means of y where y = y(x), and y(x) is a many-to-one mapping from X to Y. As shown in Fig A .1, an observation y determines a subset of X , which is denoted as X (y). The pdf of the complete-data vector is f (x|θ),

where θ ∈ Θ ⊂ R r is the set of unknown parameters that we have to estimate (we will refer to the density of the random variables for convenience, even for discrete random variables for which probability mass functions (pmf ) would be appropriate).

Moreover, the pdf f is assumed to be a continuous function of θ and appropriately dierentiable. The ML estimate of θ is assumed to lie within the region Θ. The pdf of the incomplete-data is

and denotes the incomplete-data likelihood function. Let L i (θ) = log g(y|θ) and L c (θ) = log f (x|θ) denote respectively the incomplete-and complete-data log-likelihood.

The integral operation in (A.1) may render very dicult the estimation of the parameter θ which maximizes the likelihood function g(y|θ), even if the function logf (x|θ)

is easy to maximize. This remark justies the idea of the EM algorithm.

As stated before, the basic idea behind the EM algorithm is that we would like to nd θ to maximize L c (θ) = log f (x|θ), but we do not have the data x to compute the log-likelihood. So instead, we maximize the expectation of log f (x|θ) given the data y and our current estimate of θ. This can be expressed in two steps.

More specically, let θ (0) be some initial value for θ. Then at the rst iteration, the E-step requires the calculation of

where Q(., .) is called the auxiliary function. It is important to distinguish between the rst and the second arguments of the auxiliary function. The second argument A. A Review of The EM Algorithm is a conditioning argument to the expectation and is regarded as xed and known at every E-step. The rst argument conditions the likelihood of the complete-data. The M-step requires the maximization of Q(θ, θ (0) ) with respect to θ over the parameter space Θ. That is, we choose θ (1) such that Q(θ (1) , θ (0) ) ≥ Q(θ, θ (0) ).

For all θ ∈ Θ, the E-and M-steps are then carried out again, but this time with θ (0) replaced by the current estimate θ (1) . On the (t + 1)-th iteration, the E-and M-steps are dened as follows.

E-step: Calculate Q(θ, θ (t) ) where

M-step: Choose θ (t+1) to be any value of θ ∈ Θ that maximizes Q(θ, θ (t) ) as θ (t+1) = arg max θ Q(θ, θ (t) ).

(A.5)

We mention that the expectation in the E-step is with respect to all unobserved (or hidden) variables in the complete-data set X . We also note that the maximization in the M-step is with respect to the rst argument of the Q function, i.e., the conditioner of the complete-data likelihood.

After initialization, the E-and M-steps are alternated repeatedly until convergence. Convergence may be determined by examining when the parameters remain almost unchange, i.e., stop when

) < , for some small value of and some appropriate distance measure . .

A.2.2 Monotonicity of The EM Algorithm

DLR showed that the incomplete-data likelihood function g(y|θ) is not decreased after an EM iteration. This is formulated in the following theorem proved in [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF].

Theorem1.

A.3. Extension of the EM Algorithm to MAP Parameter Estimation

A.2.3 Convergence to a Stationary Value

As shown in the last section, for a sequence of likelihood values {g(y|θ (t) )}, g(y|θ (t) ) converges monotonically to some stationary value g * . The stationary point may be a local maximum or a saddle point of the likelihood function. In general, if g(y|θ) has several stationary points, convergence of the EM sequence to either type (global or local maximum, saddle points) depends on the choice of the starting point θ 0 . Obviously, when the likelihood function is unimodal in θ (and a certain dierentiability is satised), any EM sequence converges to the unique global maximum irrespective of its starting. In what follows, we state without proof the main convergence theorem given by Wu in [START_REF] Wu | On the convergence properties of the EM algorithm[END_REF].

Theorem2. Let {θ (t) } be a sequence of parameters obtained from successive maximization of the auxiliary function Q(θ, θ (t) ) at the M-step. Then all the limit points of {θ (t) } are stationary points of g(y|θ (t) ) and g(y|θ (t) ) converges monotonically to g * = g(y|θ * ) for some stationary point θ * .

A.3 Extension of the EM Algorithm to MAP Parameter Estimation

Up to now, we addressed the EM algorithm for ML estimation. Let us now consider a MAP criterion for the estimation of the unknown parameter θ of which ML estimation is a particular case. Considering some prior distribution π(θ) for the unknown parameter, the MAP estimate is given by

When the likelihood function g(y|θ) is hard to maximize, the EM algorithm is a mean for obtaining MAP estimates of a parameter θ. The EM algorithm for MAP estimation can be summarized as follows.

E-step: Calculate Q map (θ, θ (t) ) where

M-step: Choose θ (t+1) to be any value of θ ∈ Θ that maximizes Q map (θ, θ (t) )

A. A Review of The EM Algorithm as

).

(A.9)

We note that the E-step of MAP estimation diers from the E-step of ML estimation by the additive term log π(θ). The presence of the term log π(θ) can also be exploited to render the auxiliary function concave. The M-step is also dierent since the maximization is performed over a modied auxiliary function.

The aforementioned convergence properties of the ML based EM are also valid for MAP estimation [51] [46]. Thus, each iteration of the EM algorithm is guaranteed to increase the logarithm of the incomplete-data a posteriori probability, that is log g(y|θ (t+1) ) + log π(θ (t+1) ) ≥ log g(y|θ (t) ) + log π(θ (t) )

Detailed Algorithm. See Chapter 3.

Here we give detailed algorithm for single input single output (SISO) system with r = 1. By using standard Kalman lter we have:

Outline of the algorithm:

2. For any s ∈ Ω compute:

5. d1 , ..., dT is the approximate ML estimate.

C.2. Linearization of NSSM

and we use this model for implementing the EKF.

Given initial conditions ĉ0|-1 and P 0|-1 , the recursion proceeds as Measurement update:

(C.9)

Time update:

Time increment. Increment n and repeat.

In 1996 Bellaire [START_REF] Tinsson | Nonlinear estimation with applications to target tracking[END_REF] developed an alternative measurment update that can yield much better estimates in general than those provided by the EKF formulation.

If we consider

then, the measurment update equation are:

The equations for the time update are the same as in the EKF formulation. We note that the expressions reduce to the EKF measurement update in the case when µ = 0 (µ is Levenberg-Marquardt parameter)).

Appendix D A Review of Particle Filtering

Particle ltering is a sequential Monte Carlo methodology where the basic idea is the recursive computation of relevant probability distributions using the concepts of importance sampling and approximation of probability distributions with discrete random measures. A large portion of the theory on sequential signal processing is about signals and systems that are represented by state-space and observation equations, that is, equations of the form

where y n is a vector of observations, c n is a state vector, g n (.) is a measurement function, f n (.) is a system transition function, v n and w n are noise vectors, and the subscript n denotes time index. The rst equation is known as state equation, and the second, as measurement equation. The standard assumptions are that the analytical forms of the functions and the distributions of the two noises are known.

Based on the observations y n and the assumptions, the objective is to estimate c n recursively.

For scenarios where the models are nonlinear or the noise is non-Gaussian, the particle ltering method has become an important alternative to the extended Kalman lter. With particle ltering, continuous distributions are approximated by discrete random measures, which are composed of weighted particles, where the particles are samples of the unknown states from the state space, and the particle weights are probability masses computed by using Bayes theory. In the implemen-

D. A Review of Particle Filtering

For the joint a posteriori distribution of c 0 , c 1 , ..., c n , in case of independent noise samples which are assumed throughout the article, we can write ). If the eective particle size is below a predened threshold, resampling takes place; otherwise we proceed with the regular steps of new particle generation and weight computation [START_REF] Djuric | Particle ltering[END_REF].

Appendix E Proofs of The Main Equations. See Chapter 4.

p n (t , t, x , x) = Λ where:

n-1 = t , c (1) For n = 1 we have:

n-2 = t , c

n

n-2 = t , c

n

0:n-3 dc

(2) 0:n-3 so that: 

where

where Computing densities p n (t , t, x , x)

By using results that are presented in previous section, we have:

for n = 1 : N p n (t , t, x , x) = γ 

n and p(y 1:N |θ N ), do not need to be iterated, as they do not enter the recursion on quantities of interest via rst and second moments.