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Abstract

As an introduction, we present the original formulation of the AdS/CFT correspon-
dence, between N = 4 Super Yang-Mills theory with gauge group SU(N) and type IIB
string theory on AdS5⇥S5. In a first part, we show how the ingredients of the AdS/CFT
correspondence can be applied in a phenomenological way to study strongly correlated
systems of fermions and present two fundamental models, the electron star and the holo-
graphic superconductor. We construct a holographic model for the study of Bose-Fermi
systems at finite density and show that the simultaneous presence of bosonic and fermionic
degrees of freedom is favoured at zero temperature. By solving the field equation of a
probe spinor field in these solutions, we show that the system admits a large number of
electron-like and/or hole-like Fermi surfaces and a charged scalar condensate. In a sec-
ond part, we study asymptotically-AdS4 BPS black hole solutions in the N = 2 gauged
supergravity theory. Using the duality transformations in a simple STU model, we find
new static and rotating BPS black hole solutions.

Résumé court

Comme introduction, nous présentons la formulation originale de la correspondance
AdS/CFT, entre la théorie de Yang-Mills supersymétrique N = 4 avec groupe de jauge
SU(N) et la théorie des supercordes de type IIB sur l’espace AdS5 ⇥ S5. Dans une
première partie, nous montrons comment les ingrédients de la correspondance AdS/CFT
peuvent être appliqués de manière phénoménologique à l’étude des systèmes de fermions
fortement corrélés et présentons deux modèles fondamentaux, l’étoile à électrons et le
supraconducteur holographique. Nous construisons un modèle holographique pour l’étude
des systèmes de Bose-Fermi à densité finie et montrons que la présence simultanée de
degrés de liberté bosoniques et fermioniques est favorisée à température nulle. En résolvant
l’équation du mouvement d’un spineur test sur ces solutions, nous montrons que le système
admet un grand nombre de surfaces de Fermi de type électron et/ou trou et un condensat
scalaire chargé. Dans une seconde partie, nous nous intéressons à l’étude des solutions de
trous noirs BPS asymptotiquement AdS4 dans la théorie de supergravité jaugée N = 2
en 4 dimensions. En utilisant les transformations de dualité dans un modèle STU simple,
nous trouvons de nouvelles solutions de trous noirs BPS statiques et en rotation.
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F.2.1 Systèmes de fermions à densité finie . . . . . . . . . . . . . . . . . . 123
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Introduction

Originally proposed to explain the arrangement of mesons in Regge trajectories in the late
1960s, string theory became a candidate to the unification of fundamental forces of nature
in the early 1980s when it was shown that it was a consistent theory of gravity. In string
theory, physics is encoded in a single one-dimensional object, the string, whose vibrations
generate all kinds of matter particles and mediating bosons needed for the description of
fundamental interactions such as abelian and non-abelian gauge theories, and gravity.

String theory determines uniquely the dimension of spacetime, which turns out to be
ten. To recover our four-dimensional spacetime, it is thus necessary to consider string
theory on a six-dimensional compact manifold. There is however an infinite number of
ways to compactify the theory, and recovering for example the Standard Model of particle
physics in the low energy regime is a hard task.

Based on the discovery in 1995 that string theory admits extended objects known as D-
branes, a new era has been born in 1997 when Juan Maldacena conjectured that a certain
formulation of string theory had an equivalent description in terms of an a priori unrelated
four-dimensional conformal field theory. This conjecture has been quickly generalized to
other configurations of string theory and is known as the AdS/CFT correspondence.
It relates specific supersymmetric conformal field theories to string theory on a higher-
dimensional AdS spacetime.

Beyond the beautiful mathematical structure of the correspondence, the AdS/CFT has
proven to be useful for the study of strongly-coupled gauge theories because it provides a
dual description in terms of weakly-coupled string theory, i.e. supergravity.

In the AdS/CFT correspondence, supersymmetry and conformality of the field theory
can be broken by adding relevant perturbations to the string theory setup, however these
models give only qualitative features of realistic field theories such as QCD and quanti-
tative comparison with experiment is di�cult. There are however reasons to believe that
the AdS/CFT correspondence can be applied to a larger range of theories in a more phe-
nomenological way. This approach is known as the gauge/gravity duality and has been
first applied to the study of QCD.

More unexpected, the gauge/gravity duality turns out to be useful to the description
of strongly-coupled systems of fermions. Due to strong coupling, these systems do not
have a classical limit, but the gauge/gravity duality may provide a dual gravitational
description where perturbation theory applies.

In this thesis, we present the applications of the gauge/gravity correspondence both
from a string theory approach and a more phenomenological one. In Chapter 1, we re-
view Maldacena’s formulation of the AdS/CFT correspondence and discuss its possible
generalizations. In Chapter 2, we argue that the ingredients of the AdS/CFT correspon-
dence can be used to study strongly-correlated systems of fermions and we present two
fundamental models, the electron star model and the holographic superconductor. In
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Chapter 3, we present how these two phenomenological models can be combined to the
study of mixture of bosonic and fermionic degrees of freedom in systems at finite density.
In Chapter 4, we take a more stringy approach of the correspondence and study black
hole solutions in a four-dimensional gauged supergravity theory that can be embedded in
M-theory.

Chapters 3 and 4 present the results obtained by the author and collaborators in [1,
2, 3].

2



Chapter 1

The AdS/CFT correspondence

In this chapter we give a brief description of the AdS/CFT correspondence. In its original
formulation by Maldacena [4], this is a duality between N = 4 Super Yang-Mills theory
in 4 dimensions and type IIB string theory on AdS5 ⇥ S5.

1.1 Large N limit of gauge theories

Yang-Mills theories in four dimensions with gauge group U(N) do not have a dimensionless
parameter because the Yang-Mills coupling gY M depends on the Yang-Mills scale ⇤Y M

by dimensional transmutation. It results that no clear perturbative expansion can be
performed. However, one can consider the rank of the gauge group N as a dimensionless
parameter. In the ’t Hooft limit [5]

N !1 , gY M ! 0 , � ⌘ g2
Y MN fixed , (1.1)

where � is the ’t Hooft coupling, correlation functions are given by an expansion in 1/N .
For example, the gluon free energy can be written as

F =
X

g

N2�2gfg(�) (1.2)

where g 2 N and fg are functions of the ’t Hooft coupling. The expansion (1.2) has in
fact a simple geometric interpretation. Each term in the expansion corresponds to the
Feynman diagrams which can be drawn on a genus-g Riemann surface. The contribution
f0 corresponds to planar diagrams, that can be drawn on the sphere which has genus 0,
f1 to the diagrams that can be drawn on the torus, etc. In the large N limit, only planar
diagrams survive.

The expansion (1.2) is very similar to the world-sheet expansion of a string. The
dominant contribution of the loop expansion of a closed string corresponds to the diagrams
having the topology of the sphere and come with a factor g�2

s , where gs is the string
coupling constant. More generally, diagrams of genus g contribute to the sting expansion
with a factor g�2+2g

s . This suggests that the string coupling constant could be identified
with the rank of the gauge group,

gs / 1

N
. (1.3)

The fields in the adjoint representation of the gauge group contribute to the ’t Hooft
expansion (1.2) with even powers of 1/N . One can introduce fields in the fundamental
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representation of the gauge group. They contribute with odd powers of 1/N to the
expansion and are suppressed in the large N limit. The expansion is in this case similar
to the diagrams of an open string which contribute to the world-sheet expansion with odd
powers of gs.

1.2 The two pictures of p-branes

The similitude between the ’t Hooft expansion in Yang-Mills theories and the world-sheet
expansion of a string suggests that these two expansions are related. String theory and the
AdS/CFT correspondence makes this relation explicit in the case of certain non-abelian
conformal field theories and string theory on Anti-de Sitter spacetime. We present here
a particular example, the original Maldacena’s conjecture [4] that states the equivalence
between the N = 4 supersymmetric Yang-Mills theory in 4 dimensions and type IIB
string theory on AdS5 ⇥ S5. The main ingredient of the duality comes from the physics
of Dp-branes, which have two complementary descriptions, in supergravity and string
theory.

1.2.1 p-branes in supergravity

Supergravity theories contain gauge fields of higher rank which generalize the usual poten-
tials of electromagnetism and Yang-Mills theories. These are p-forms Cp, invariant under
generalized gauge transformations. As a particle can be charged under a gauge potential
C1 (which is a one-form), supergravity theories admit massive solitonic extended objects
which are charged under the potentials Cp+1. These solutions are called p-branes and
extend in p space directions plus the time. p-branes interact with the gravitational field
and the potential Cp+1 through

Sp-brane = ⌧

Z

dp+1x
p�g + q

Z

dp+1x Cp+1 , (1.4)

where ⌧ is the tension of the brane, defined as its energy density in spacetime. The second
term generalizes to higher dimensional objets the coupling of a particle to the potential
C1. The charge q of the p-brane is given by

q /
Z

S8�p

?Fp+2 = N (1.5)

where Fp+2 = dCp+1. Due to the Dirac quantization condition, N is an integer.
Let us focus on the example of type IIB supergravity, which corresponds to the e↵ective

description of the massless sector of type IIB string theory. Its bosonic field content is
the metric, an antisymmetric tensor Bµ⌫ , the dilaton � and the Ramond-Ramond fields
C0, C2 and C4. It admits in particular 3-brane solutions which are charged under the
potential C4. When the tension of the brane equals its charge, the 3-brane preserves
half of the supersymmetry of the theory. It is thus a BPS object and called an extremal
3-brane. In this case, the 3-brane solution of IIB supergravity is completely determined
by an harmonic function H(u) which depends on the radial coordinate u of the directions
transverse to the brane. Thanks to supersymmetry, one can also consider a stack of N
coinciding 3-branes which will be again specified by an harmonic function. The charge of

4



each 3-brane under the potential C4 can be taken to be equal to one and the system thus
carries a total charge N . The solution in this case reads

ds2 = H�1/2dxµdxµ + H1/2dy2 ,

(C4)0123 = H�1 ,

e� = gs ,

H(u) = 1 +
4⇡gsN↵02

u4
,

(1.6)

where gs is the string coupling and (2⇡↵0)�1 the string tension. The directions yi (i =
4, . . . , 9), with dy2 = (du2 + u2⌦5) and u2 =

P

i y
2
i , are the directions transverse to the

branes and xµ (µ = 0, . . . , 3) are the directions of the brane world-volume. The Killing
vector @t generating time translations has zero norm at u = 0, which is then a Poincaré
horizon. This solution has a SO(1, 3)⇥ SO(6) isometry. The tension ⌧ of the brane is
related to its charge, the string coupling and the string tension by

⌧ =
N

(2⇡)3gs↵02
, (1.7)

which shows the non-perturbative nature of p-branes.

1.2.2 Dp-branes in string theory

A great progress has been made by Polchinski who showed that in string theory, p-branes
have a perturbative description in terms of open and closed strings [6]. Dp-branes are
defined as objects on which open strings can end. They arise when one imposes mixed
Dirichlet-Neumann conditions on the open strings: their end-points are restricted to move
in a (p+1)-dimensional hypersurface of the 10-dimensional spacetime [7]. In the case of a
D3-brane, the quantization of the open string leads to a massless spectrum corresponding
to a vector multiplet with 16 supercharges. These fields interact with the bulk fields
arising from the quantization of the closed string. The e↵ective action of the massless
modes of the brane/bulk system is

Sbulk/brane = Sbrane + Sint + Sbulk . (1.8)

The brane action Sbrane, which is defined on the (3+1)-dimensional world-volume, is
the action of an abelian gauge theory describing the vector multiplet arising from the
quantization of the open string. Sbulk is the e↵ective action of 10-dimensional supergravity
with higher order derivative corrections. It can be written as

Sbulk ⇠ 1

↵04

Z

d10x
p�g

⇥

e�2�
�

R + 4(r�)2
�

+ · · ·+ h.d.c.
⇤

(1.9)

where R is the Ricci scalar, � the dilaton, the dots correspond to the action for the other
supergravity fields and the ‘h.d.c.’ contain the higher derivative corrections. Sint is the
action describing the interactions between the fields living on the D3-brane and the bulk
fields. Sint and the higher derivative corrections appearing in (1.9) come with positive
powers of ↵0.
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If one stacks N extremal D3-branes together, they do not interact since they are BPS
objects. There are in this case N2 kinds of open strings, leading to N2 vector fields and
a non-abelian gauge theory on the D3-branes world-volume. The world-volume action is

Sbrane =
1

gs

Z

d4x

✓

g2
Y M

4⇡
LY M + h.d.c.

◆

(1.10)

where LY M is the Lagrangian of N = 4 super Yang-Mills (SYM) theory with gauge group
U(N) in 4 dimensions which has 16 real supercharges. The term ‘h.d.c.’ corresponds
to the higher derivative corrections which contribute with positive powers of ↵0. The
field content of N = 4 SYM theory is a U(N) gauge field, 6 scalar fields and 4 Weyl
fermions. In particular, the 6 scalar fields �i parametrize the position of the D3-branes
in the transverse directions, �i = yi/↵0.

1.3 Decoupling limit

We have presented in the previous sections the two interpretations of D3-branes, as solu-
tions of type IIB supergravity and hypersurfaces on which open string can end. We will
see here how the original AdS/CFT correspondence [4] arises when the same decoupling
limit is taken on the world-volume of the D3-branes and the backreacted solution.

1.3.1 Decoupling of the brane/bulk system

In the limit ↵0 ! 0, the action Sint vanishes, the bulk theory becomes free and the world-
volume fields decouple from the bulk fields. To preserve all the dynamics of the gauge
theory living on the world-volume of the branes, it is necessary to keep the ratio yi/↵0

finite. The precise limit to take is

↵0 ! 0 ,

gs fixed ,

N fixed ,

�i =
yi

↵0
fixed .

(1.11)

In this limit, the brane action thus reduces to the action of N = 4 U(N) SYM theory
since all higher order derivatives are suppressed. The comparison of the Lagrangian of
N = 4 U(N) SYM theory with the brane action leads to the identification of the string
coupling with the Yang-Mills gauge coupling through

g2
Y M = 4⇡gs . (1.12)

The limit (1.11) means in particular that we are zooming on the near-brane region.

1.3.2 Near-brane geometry of 3-branes

D3-branes are also solutions of type IIB supergravity, where the metric, the potential C4

and the dilaton are given by (1.6). In the limit ↵0 ! 0 together with the requirement
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that the energy measured by an asymptotic observer is finite, i.e. u/↵0 is kept fixed, the
metric becomes

ds2 =

✓

L2

u2
du2 +

u2

L2
dxµdxµ

◆

+ L2⌦5 , (1.13)

which is the metric of AdS5 ⇥ S5 which both have radius L with

L4 = 4⇡gsN↵02 . (1.14)

The potential C4 is

(C4)0123 =
u4

L4
(1.15)

and we have
Z

S5

F5 = N . (1.16)

On this side, the limit ↵0 ! 0 and u/↵0 fixed is again a decoupling limit, because it
decouples the near-brane geometry from the asymptotically flat spacetime at infinity.

The space AdS5 is the maximally symmetric solution of Einstein equations in 5 di-
mensions with a negative cosmological constant. In Euclidean signature, it corresponds
to a 5-dimensional hyperboloid with isometry SO(1, 5). The AdS5 space can be defined
as an immersed hypersurface in R2,4 with equation

X2
0 + X2

5 �X2
1 �X2

2 �X2
3 �X2

4 = L2 , (1.17)

from which it is evident that the isometry group of AdS5 is O(2, 4). AdS5 spacetime has
a conformal boundary with topology S1 ⇥ R3.

It is useful to consider the universal cover of AdS5 to have not-closed timelike curves.
The term in parentheses in (1.13) corresponds to the metric of AdS5 on the Poincaré
patch (see e.g. [8]). In Poincaré coordinates, for each value of the radius u the spacetime
is isomorphic to 4-dimensional Minkowski space. Moreover, the conformal boundary,
situated at u = 1, is R1,3. The subgroup SO(1, 3) ⇥ SO(1, 1) of the isometry group
O(2, 4) of AdS5 is manifest in Poincaré coordinates, as can be seen from (1.13).

While the decoupling limit on the side of the brane/bulk system decouples completely
the stringy excitations from the world-volume theory, on the bulk side the gravitational
theory admits higher-derivative terms in the action and stringy corrections, which means
that the correspondence is between N = 4 SYM theory and the full type IIB string theory
on AdS5 ⇥ S5.

1.4 Tests and properties of the correspondence

We have obtained two descriptions of the near-brane region. One is N = 4 SYM theory
and the other is type IIB string theory on AdS5 ⇥ S5. Maldacena conjectured that these
two theories were equivalent in the sense that they are di↵erent descriptions of the same
physics. Even if the correspondence is only a conjecture, there are reasons to believe that
it holds.
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1.4.1 Strong/weak duality

The parameters on the two sides match naturally. N = 4 SYM has two dimensionless
parameters, the rank of the gauge group N and the ’t Hooft coupling �, which match to
the parameters of the string theory, the string coupling gs and the inverse string tension
↵0, through

4⇡gs =
�

N
,

L2

↵0
=
p
� .

(1.18)

We see that taking the limit gs ! 0 where the strings are non-interacting on the string
theory side corresponds to taking N ! 1 while keeping � fixed on the field theory. So
indeed, the ’t Hooft limit (1.1) corresponds to the planar limit of string theory. If in
addition the massive string modes are suppressed, i.e.

gs ! 0 ,
↵0

L2
! 0 , (1.19)

type IIB string theory reduces to type IIB supergravity, which corresponds to taking

N !1 , �!1 , (1.20)

in the field theory. We conclude that the AdS/CFT correspondence is a strong-weak
duality.

The 1/N corrections map to gs corrections in the string theory, i.e. considering string
amplitudes beyond the planar limit. On the other hand, the 1/� corrections in the field
theory correspond to considering ↵0 corrections on the gravity side, i.e. taking into account
higher derivative corrections in the supergravity action.

The regime �! 0 and fixed N can be interpreted as a definition for quantum gravity:
in this case the field theory is manageable using perturbative methods.

1.4.2 Matching symmetries

A first hint that we have an equivalence between these two theories is the matching of
symmetries, the symmetry PSU(2, 2|4) is realized on the sides. This pattern will be very
general, global symmetries in the gauge theory map to isometries of the string theory.

It is believed that N = 4 SU(N) SYM theory is conformal to all orders, meaning that
it is a conformal field theory (CFT). The conformal group in 4 dimensions is SO(4, 2) and
contains the Poincaré symmetries together with the dilatations and the special conformal
transformations. By adding the discrete symmetry xa ! xa/x2, dx2 ! x2dx2, it forms
the group O(4, 2). N = 4 SU(N) SYM theory is supersymmetric, thus the conformal
group in 4 dimensions O(4, 2) is enhanced by adding the generators of the R-symmetry
group SU(4)R and the conformal supercharges, which are required to close the algebra.
The resulting superconformal group is PSU(2, 2|4).

The conformal group O(4, 2) ofN = 4 SYM maps to the isometry group of AdS5. Also,
the R-symmetry group SU(4)R is isomorphic to the isometry group SO(6) of the S5. The
field theory contains 16 supercharges plus the 16 conformal supercharges. On the gravity
side, type IIB string theory has 16 supersymmetries, but supersymmetry is enhanced on
the maximal supersymmetric background AdS5 ⇥ S5 leading to 32 supersymmetries.
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For example, the subgroup SO(1, 3) of the isometry group O(4, 2) of AdS5 corresponds
to the Lorentz group of the field theory. Also, the subgroup SO(1, 1) maps to the dilatation
transformations in the field theory. They are realized in the bulk by

u! �u , xµ ! xµ

�
. (1.21)

We can thus roughly identify the radial coordinate u with the energy scale E of the dual
field theory,

u ⇠ E . (1.22)

The near-boundary bulk region u!1 will then be identified with the UV regime of the
field theory while the near-horizon region u! 0 represents the IR regime.

1.4.3 Matching the spectrum

Contrary to usual relativistic theories where particles are identified by their mass and
their Lorentz quantum numbers, as for example their spin, a representation of the (super)
conformal group contains states with arbitrary energy, because the mass is not a Casimir
of the (super) conformal algebra. The observables are the chiral and non-chiral primary
operators, which are specified by their conformal dimension �, their Lorentz quantum
numbers and their R-symmetry quantum numbers when supersymmetry is present. The
chiral primary operators are not renormalized because they are protected by the super-
conformal algebra, and their conformal dimension is given by their canonical dimension.

In the case of N = 4 SU(N) SYM theory, the chiral primaries are composite operators
of the elementary fields of the vector multiplet. These protected operators form chiral
multiplets, also called short multiplets, which are annihilated by half of the supercharges.
A chiral multiplet admits operators with spin up to two, and the lowest state is a scalar
transforming in the symmetric traceless representation of rank k of the R-symmetry group
SU(4)R. It can be shown that the only single-trace chiral multiplets of N = 4 SU(N)
SYM theory are generated by the operator

Tr�i1 . . .�ik . (1.23)

These chiral multiplets are indexed by the integer k and noted Ak. The other operators
belonging to Ak are obtained by applying supersymmetric transformations on the scalar
operator (1.23), which has conformal dimension given by � = k. An important short
multiplet is A2, the supermultiplet of conserved currents which are the stress-energy
tensor, the supercharges and the SU(4)R R-current. They are obtained by applying
supersymmetry transformations on the operator Tr�1�2.

On the other hand, the non-chiral primaries get renormalized and have an anomalous
dimension, the conformal dimension is not protected by supersymmetry. They correspond
to multi-trace operators and form non-chiral multiplets, also called large multiplets. The
lowest state is a multi-trace scalar operator.

Thus, the single-trace operators of N = 4 SYM theory form chiral multiplets Ak,
whose lowest states are scalar with conformal dimension � = k 2 N. In fact, the chiral
multiplets map on the gravity side to the Kaluza-Klein (KK) modes arising from the
dimensional reduction of the 10d string massless modes on the 5-sphere.

The 10d massless bulk fields can be decomposed on the spherical harmonics of S5.
The resulting 5d fields form short multiplets A0

k of the superconformal algebra, labelled
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by an integer k � 2. The lowest state of each short multiplet A0
k is a scalar with mass

m2 = k(k � 4)/L2.
Thus, there exists a short multiplet of the superconformal group both in the field

theory (Ak) and the gravitational theory (A0
k) for all k � 2. For a given k, the two short

multiplets contain fields with the same Casimirs, which are the quantum numbers and
the conformal dimension �. On the string theory side, the Casimir C2 = � is related to
the mass of the KK mode. The relation �(m) is for a single-trace scalar operator

L2m2 = �(�� 4) () � = 2±
p

4 + L2m2 . (1.24)

For a field with di↵erent Lorentz representation than a scalar, the mass-dimension relation
changes, it is given for fields up to spin two in [8].

For example, A0
2 is the graviton multiplet, which contains in particular an SO(6) gauge

field and the 5-dimensional metric. These map respectively to the SU(4)R ' SO(6) R-
current and the stress-energy tensor of the short multiplet A2 in the field theory. This is
coherent with the matching of the isometry of AdS5 and the conformal group O(4, 2).

This mapping also applies to the 5d fields resulting from the dimensional reduction
of the string massive modes on the 5-sphere, which organize in non-chiral multiplets of
the superconformal group. These 5d fields have a mass m2 ⇠ 1/↵0. Again, there is a
one-to-one correspondence between a 5d field and a CFT non-chiral primary which have
the same Casimirs. For a scalar, the mass-dimension relation is given by (1.24).

In the supergravity limit (1.19), the stringy modes are not protected because � ⇠ �1/4

and they decouple from the KK modes. This maps in the field theory to the decoupling
of the non-chiral primaries from the chiral primaries in the limit (1.20).

We should precise that the correspondence is between N = 4 SYM theory with gauge
group SU(N) and type IIB string theory on AdS5 ⇥ S5. Indeed, the gauge group U(N)
is isomorphic to U(1)⇥SU(N). The factor U(1) corresponds to the center of mass of the
N D3-branes and is irrelevant on the gravity side. The duality thus applies for the field
theory gauge group SU(N) corresponding to the dynamics of the D3-branes.

Due to the non-zero curvature of AdS5, there is no scale separation between the KK
modes with k = 2 and k > 2. However, it is possible to write an action for the graviton
multiplet A0

2, which is the N = 8 gauged supergravity in five dimensions. This theory
is believed to be a consistent truncation of type IIB string theory on AdS5 ⇥ S5 in the
sense that every classical solution of the 5d theory can be uplifted to a solution in the
10d theory.

1.5 Partition function and correlation functions

The AdS/CFT correspondence states the equality of the partition functions of the two
theories. Even if it is believed that this equality holds for the whole string theory, it
becomes manageable in the supergravity limit (1.19), where the partition function of
string theory is given in the saddle point approximation by the on-shell supergravity
action. As we shall see, in this limit it is possible to compute correlation functions of
the strongly-coupled boundary field theory by studying physics in the bulk. The equality
of the generating functions was originally stated in Euclidean signature [9] and we shall
present it now1.

1The AdS/CFT correspondence states more generally the equivalence between specific CFTs in d dimensions
and string theory on AdSd+1. For this reason, we will keep the dimension of the CFT arbitrary.
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We make the change of variable u = L2/r such that the metric of AdSd+1 on the
Poincaré patch is now given by

ds2 =
L2

r2

�

dr2 + dt2 + d~x2
�

(1.25)

in Euclidean signature. The conformal boundary of AdSd+1 is now situated at r = 0.
Let us consider a single-trace operator O of the CFTd. One can introduce a source S

for the operator O. The Euclidean action of the field theory becomes

SCFT �! SCFT +

Z

ddxS(x)O(x) . (1.26)

For example, the source of the stress-energy tensor of the CFT is the metric deformation.
It is introduced by adding the term

Z

ddx gCFT
µ⌫ T µ⌫ (1.27)

to the CFT action. Since the CFT stress-energy tensor and the bulk metric have the
same quantum numbers, it is natural to consider the source gCFT

µ⌫ as the value of the bulk
metric on the conformal boundary of AdSd+1. In fact, this applies to all the single-trace
operators as we shall see now.

In the regime (1.20) where the CFT is strongly-coupled, the gravitational theory is
type IIB supergravity on AdS5⇥S5. In this regime, a bulk field  is given by its classical
solution  cl which satisfies in general a second-order di↵erential equation. By imposing
regularity at infinity, close to the UV boundary the bulk field behaves on the background
AdSd+1 geometry as

 cl(x, r) ⇠  �(x) r�� + +(x) r�+ , r ! 0 . (1.28)

The exponents �± verify �+ > �� and depend on the mass and the quantum numbers of
 . The exponent �+ ⌘ � is the conformal dimension of the operator O in the CFT. The
first and second terms in (1.28) correspond to non-normalizable and normalizable modes,
respectively, in the sense that the e↵ective action for  � r�� and  + r�+ is respectively
divergent and finite. There are cases where both terms are normalizable but we leave this
case for later considerations. The leading term  � in (1.28) is identified with the source
of the dual field operator O through

S(x) = lim
r!0

r��� cl(x, r) =  �(x) . (1.29)

The UV boundary condition S =  � can be chosen freely, contrary to the regularity
condition imposed at infinity.

We have now a correspondence between the single-trace operators of CFTd and the
fields living on AdSd+1. The AdS/CFT correspondence goes beyond. Its fundamental
statement is the equality of the partition functions of the two theories which can be
written as

D

e�
R

ddxS(x)O(x)
E

CFT
= Zsugra

⇥

r��� cl(x, r)
�

�

r!0
= S(x)

⇤

. (1.30)
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The left-hand side is the partition function ZCFT of the field theory, where the source S is
arbitrary. The right hand side is the partition function of the supergravity theory, given
by the saddle-point approximation

Zsugra[ ] ' e�S[ cl] , (1.31)

where S[ cl] is the supergravity action evaluated on the classical (on-shell) solution  cl,
which has the asymptotic behaviour (1.28) close to the UV boundary. Because the bulk
spacetime has a boundary and the classical solution expansion (1.28) admits a non-
normalizable mode, the on-shell action is in general divergent and needs to be regularized
and renormalized. All the divergences of the on-shell action can be cancelled by adding co-
variant local boundary counterterms determined by the near-boundary behaviour of bulk
fields. This procedure is called holographic renormalization [10] (see [11] for a review).
Thus, one should replace the classical action in (1.31) by the renormalized, on-shell ac-
tion Sren[ cl]. It is related to the generating functional WCFT = log ZCFT of the connected
correlation functions of the field theory by

WCFT[ �] = �Sren[ �] . (1.32)

One can therefore compute connected correlation functions of the single-trace operators
of the strongly-coupled CFT theory by taking derivatives of the renormalized on-shell
action Sren with respect to the source  �.

The Euclidean connected n-point function is then given by

hO(x1) . . .O(xn)i = � �nSren[ �]

� �(x1) . . . � �(xn)

�

�

�

�

 �=0

. (1.33)

To obtain the correlation functions (1.33), one has to compute first the classical solution
for the field  in the supergravity theory by solving its field equation. This equation
is typically a second order di↵erential equation in the radial coordinate r, the solution
then involves two functions which depend only on the field theory coordinates xµ and
asymptotes to (1.28) close to the boundary. One has therefore to impose two boundary
conditions on  cl. The condition to impose in the near-horizon region is regularity. In
the UV, the boundary condition consists in choosing the leading term in the asymptotic
solution (1.28), which corresponds to fixing the source  � in the dual field theory. In
most cases, one computes the correlation functions at vanishing source, as in (1.33), which
corresponds to choosing the UV boundary condition

 cl(x, r) ⇠  +(x) r�+ , r ! 0 . (1.34)

This gives the spectrum of the field theory. One can also compute the correlation functions
in the presence of a source by choosing (freely) the UV boundary condition.

To compute explicitly the one and two-point functions, one can introduce the renor-
malized canonical momentum conjugate to the classical solution  cl,

⇧ren =
�Sren[ cl]

� cl

. (1.35)

The one-point function for finite source  � is therefore given by

hO(x)i � = ��Sren[ cl]

� �(x)
= � lim

r!0
r��⇧ren(x, r) . (1.36)
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Considering correlation functions at finite source for an operator is also useful to probe
the features of a system. One can indeed compute the response of the system to the
application of an external source. In the linear response theory, the one-point function
hOi � is proportional in momentum space to the external source  �,

hO(!E,~k)iS = GE(!E,~k) �(!E,~k) , (1.37)

where the constant of proportionality is the two-point function GE(!E,~k). Here, !E is
the Euclidean frequency. Using (1.37), we then obtain from (1.36) the two-point function

GE(!E,~k) =
hO(!E,~k)i �
 �(!E,~k)

= � lim
r!0

r2��
⇧ren

 cl

. (1.38)

As we will see on the example of a scalar operator later, the one-point function is in
general proportional to the normalizable mode in the UV expansion (1.28),

hO(x)i � /  +(x) . (1.39)

Consequently, the two-point function is given in momentum space by the ratio between
the normalizable and the non-normalizable modes,

GE(!E,~k) /  +(!E,~k)

 �(!E,~k)
. (1.40)

The two-point function has a pole precisely where the source  � vanishes, that is when we
impose the normalizability condition to the bulk field  . This corresponds to computing
the spectrum of the Euclidean gravitational theory, i.e. the normal modes.

Let us now give the example of a bulk gauge field, which maps to a conserved current
in the field theory.

U(1) current

If the d-dimensional CFT contains a global U(1) symmetry, it admits a conserved U(1)
current Jµ. The dual gravitational theory must then contain a U(1) gauge field A = Aadxa

dual to Jµ. To compute correlation functions of Jµ in the strongly-coupled regime of the
CFT, one shall consider fluctuations of the bulk gauge field Aa. The radial component of
the bulk gauge field Ar can be set to zero by a U(1) gauge transformation. Close to the
UV boundary, the on-shell gauge field behaves as

Aµ ⇠ Bµ + hJµi rd�2 , r ! 0 . (1.41)

Herein, hJµi is the vacuum expectation value of the boundary conserved U(1) current and
Bµ its source. Notice that for p-forms, the subleading term does not give directly the
conformal dimension of the operator. Indeed, if one considers a bulk scale transformation
xµ ! �xµ, r ! �r, the transformed gauge field is

Aa(x, r)! Ãa(x, r) = ��1Aa(x/�, r/�) . (1.42)

Using (1.41), it means that the boundary conserved current and its source transform as
J̃µ(x, r) = �1�dJµ(x/�, r/�) and B̃µ(x, r) = ��1Bµ(x/�, r/�), so the conserved current
has dimension � = d� 1. The U(1) gauge symmetry which acts as

Aa ! Aa + @a⇤(x, r) (1.43)
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in the bulk translates in the boundary CFT to
Z

ddx BµJ
µ =

Z

ddx [Bµ + @µ⇤] Jµ , (1.44)

which means that indeed the boundary U(1) current Jµ is conserved. This is a very
important feature of the AdS/CFT correspondence: global symmetries of the CFT map
to gauge symmetries in the bulk. We have already obtained this result for the original
AdS/CFT correspondence: for example, the SO(6) gauge symmetry in type IIB super-
gravity maps to the SU(4)R R-symmetry group of N = 4 SYM theory.

1.5.1 Free scalar field in AdS

We have given in the previous section the general procedure to compute Euclidean cor-
relation functions of single-trace operators in the strongly-coupled regime of CFTd which
admit a gravitational dual. In this section, we give the explicit example of a single-trace
scalar operator, which is dual to a scalar field in the bulk.

The action for a neutral free scalar field ' in Euclidean AdSd+1 spacetime is

Sgra =
L1�d

2

Z

ddx dr
p

g
�

gab@a'@b'+ m2'2
�

(1.45)

where gab is the metric of Euclidean AdS5 spacetime (1.25) and m is the mass of the scalar
field. In momentum space, the equation of motion for ' is the Klein-Gordon equation

r1+d@r

⇥

r1�d@r'(k, r)
⇤� ⇥m2L2 + k2r2

⇤

'(k, r) = 0 (1.46)

where k2 ⌘ �µ⌫kµk⌫ . Close to the AdS boundary, it reduces to

r2'00(k, r) + (1� d) r '0(k, r)�m2L2'(k, r) = 0 (1.47)

where primes denote derivatives with respect to the radial coordinate r. The asymptotic
behaviour of ' is then

'(k, r) ⇠ '�(k) rd�� + '+(k) r� , r ! 0 , (1.48)

where

� =
d

2
+ ⌫ , ⌫ ⌘

p

m2L2 + d2/4 , (1.49)

and '±(k) are arbitrary functions of k. If m2 < �d2/4L2 the Hamiltonian is not bounded
below and the system is unstable. In the following we will only consider fields which
satisfy the Breitenlohner-Freedman (BF) bound [12, 13]

m2 � � d2

4L2
. (1.50)

One can check that for

m2L2 � �d2

4
+ 1 , (1.51)
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the modes '�(k) rd�� and '+(k) r� are respectively non-normalizable and normalizable
in the sense that the e↵ective action for '�(k) rd�� and '+(k) r� is respectively divergent
and finite. Following the above discussion on the field/operator correspondence, we can
already identify the non-normalizable mode '� as the source of a dual scalar operator O.
We will show below that '+ is indeed the one-point function – vev – of O.

We will now show that � appearing in the UV expansion (1.48) of the bulk field ' is
the conformal dimension of the operator O. Under a scale transformation xµ ! �xµ and
r ! �r, the transformed field is

'̃(�x,�r) = '(x, r) . (1.52)

In terms of the normalizable and non-normalizable modes, we thus have

'̃(x, r) = '�
⇣x

�

⌘

���d rd�� + '+

⇣x

�

⌘

��� r� (1.53)

⌘ '̃�(x) rd�� + '̃+(x) r� , (1.54)

where '̃�(x) = ����'�
�

x
�

�

and '̃+(x) = ���+'+

�

x
�

�

. Then, the dimensions of the fields
'� and '+ are respectively d�� and � and the conformal dimension of the operator O
is equal to �. We recover here the mass-dimension relation (1.24) for a scalar operator.
The scalar operator O is respectively relevant and irrelevant for d/2 + 1  � < d and
� > d. These two cases correspond respectively to �d2/4+1  L2m2 < 0 and L2m2 > 0.
The marginal operator (� = d) is represented by a massless scalar field in the bulk. On
the other hand, when the mass satisfies

�d2

4
 m2L2 < �d2

4
+ 1 , (1.55)

the two modes are normalizable and one can impose the standard (alternative) boundary
condition by choosing the source to be '� ('+, respectively). They correspond respec-
tively to operators with dimension d/2  � < d/2 + 1 and d/2� 1 < �  d/2 [14].

To compute the one and two-point functions of the operator O, we need to evaluate the
bulk action (1.45) on the solution to the field equation (1.46). Performing an integration
by parts and using the field equation for ', the action (1.45) becomes

Sgra =
L1�d

2

Z

ddk

(2⇡)d
dr @r [

p
g grr'(�k, r)@r'(k, r)] . (1.56)

To deal with the UV divergences, we introduce a UV cuto↵ ✏⌧ 1 and send it to zero at
the end of the computation. By imposing regularity at infinity, the action is therefore

Sgra = �1

2

Z

r=✏

ddk

(2⇡)d
r�d+1'(�k, r) @r '(k, r)

= �1

2

Z

r=✏

ddk

(2⇡)d

⇥

(d��)'�(�k)'�(k) r�2⌫ + d'�(�k)'+(k)
⇤

, (1.57)

evaluated at r = ✏. The first term in Eq. (1.57) contains divergences. To cancel these
divergences, we introduce the counter-term

Sct =
1

2

Z

r=✏

ddk

(2⇡)d
(d��)'(�k, r)'(k, r) r�d (1.58)
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and obtain the renormalized action

Sren = Sgra + Sct = �1

2

Z

ddk

(2⇡)d
2⌫ '�(�k)'+(k) . (1.59)

The on-shell renormalized action is then a functional of the two functions '� and '+.
In the standard quantization scheme, the former is the source for the operator O and
will be used to obtain correlation functions. On the other hand, one must impose reg-
ularity at infinity, in the interior of the bulk spacetime. By solving explicitly the field
equation (1.46) for r 2 [0,1[ in Fourier space, the IR boundary condition fixes the ratio
�(k) = '+(k)/'�(k). We finally obtain

S(E)
ren = �1

2

Z

ddk

(2⇡)d
2⌫ �(k)'�(�k)'�(k) . (1.60)

Following the general discussion above, it is now easy to obtain the one-point function

hO(k)i'� = ��S
ren
gra ['�]

�'�(�k)
= 2⌫ '+(k) , (1.61)

and the two-point function

GE(k) = � �2Sren
gra ['�]

�'�(�k) �'�(k)
= 2⌫

'+(k)

'�(k)
, (1.62)

which is consistent with Eq. (1.40). In the present case where the spacetime is pure
AdSd+1, the solution to (1.46) is analytic and given in terms of Bessel functions. One can
then obtain explicitly the function �(k) (see e.g. [15]),

�(k) =
�(�⌫)
�(⌫)

✓

k

2

◆2⌫

. (1.63)

In real space, one recovers the two-point function of a CFT scalar operator,

hO(x)O(x0)i / 1

(x� x0)2�
. (1.64)

1.6 Generalizations

The original AdS/CFT correspondence states the equivalence between a specific 4d CFT
and a string theory on AdS5 spacetime. An other well-established correspondence is the
ABJM theory [16] which states the equivalence between N = 6 Chern-Simons-matter
theories, which are 3d CFTs, and M-theory on AdS4 times a 7-dimensional compact
manifold. More generally, the AdS/CFT correspondence relates d-dimensional CFTs
(CFTd) to physics in AdSd+1 spacetime. The details of each correspondence (spectrum,
symmetries, . . . ) arise from the two interpretations of D-branes and M-branes in string
theory and M-theory.

The correspondence we presented relates physics in AdSd+1 to CFTd at zero tempera-
ture. If we take the example of N = 4 SYM, this is because the D3-branes we considered
were extremal. Non-extremal D3-branes lead on the gravity side to the presence of a
non-extremal black hole. The Euclidean spacetime is regular at the event horizon if the
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Euclidean time is periodically identified with a period equals to 1/T , where T is the
Hawking temperature of the black hole. This is similar to the procedure applied to study
field theories at finite temperature. The Hawking temperature is thus identified with the
temperature of the field theory. In the AdS/CFT correspondence, a non-extremal black
hole maps to a finite temperature state of the dual field theory [9, 17]. Also, from the
equality of the partition functions of the two dual theories, the equilibrium properties of
the field theory states are given by the black hole thermodynamics.

Interesting features of a thermal field theory are the close to equilibrium physics
and dissipative dynamics. To study the linear response of a thermal system using the
AdS/CFT correspondence, it is necessary to be able to compute the Lorentzian Green’s
functions to study the response of the thermal system to the application of an external
source. A prescription to compute correlation functions in Lorentzian signature is known
and shares many features with the one to compute Euclidean correlation functions (see
Section 1.5). One has to solve the field equation of the bulk field dual to the operator that
we want to compute the correlation functions. As for the Euclidean prescription, the UV
boundary condition corresponds to choosing the source of the dual field theory operator.
However, the bulk geometry is not regular anymore in the IR because of the presence
of a black hole event horizon. Two boundary conditions can be imposed: the ‘in-going’
and the ‘out-coming’ wave conditions. They lead respectively to retarded and advanced
Green’s functions. To study dissipation phenomena, one must impose the in-going wave
condition. The procedure to compute Lorentzian correlation functions is presented in
Appendix A.

Also, when the CFT contains a global U(1) symmetry, one can turn on a chemical
potential µ for the associated conserved current Jµ. Since the chemical potential can be
interpreted as a source for the conserved current, it is natural to consider µ as the UV
asymptotic value of the time component of the U(1) gauge field dual to Jµ. It means that
there is a radial electric field in the bulk.

Finite temperature and finite chemical potential are simply implemented in the AdS-
Reissner-Nordström black hole that we will present in Chapter 2. It is a solution of type
IIB supergravity on AdS5 ⇥ S5 and will be essential for the considerations of this thesis.

Conformal invariance of N = 4 SYM means on the gravity side that the metric is
AdS5⇥S5. Considering other embeddings than the simple flat D3-brane setup will deform
the AdS spacetime. This corresponds to turning on relevant operators in the boundary
CFT. Non-extremal D3-brane configurations, which lead to finite temperature in the dual
field theory, also break conformal invariance.

N = 4 SYM contains only fields in the adjoint representation of the gauge group
SU(N). It is possible to introduce matter fields which belong to the fundamental repre-
sentation of SU(N) by considering a stack of D7-branes in addition to the D3-branes [18].
The modes of the strings stretched between a D3-brane and a D7-brane are dual to fields
in the fundamental representation of the gauge group, the ‘quarks’, while strings attached
to D7-branes represent quark-antiquark operators or ‘mesons’.

In the AdS/CFT correspondence, one can see the field theory as living on the (con-
formal) boundary of the AdS spacetime. In this sense, the AdS/CFT correspondence is a
realization of the holographic principle, which states that the entire information of a vol-
ume of space is encoded on its boundary [19, 20]. In the following, we shall sometimes use
the word ‘holography’ to refer to the AdS/CFT correspondence and its generalizations.
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Chapter 2

Holography for condensed matter
physics

In this chapter we show how the AdS/CFT correspondence and its ingredients can be used
in a more phenomenological approach to study strongly-coupled field theories which are
neither supersymmetric nor conformal, with particular emphasis to systems of fermions.
We present two fundamental setups, the electron star and the holographic superconductor
models which are believed to describe a non-Fermi liquid and a non-BCS superconductor,
respectively.

2.1 Systems of fermions at finite density

Many materials can be described by the techniques of quantum field theory. For example,
metals are gapless systems where, in the thermodynamic limit, there are excited states
of arbitrary low energy since an electric current is created by applying an arbitrary small
electric field. The low energy spectrum is insensitive to the details of the short distance
problem, one can thus integrate out the short distance degrees of freedom – forget about
the lattice – and the high energy interactions and obtain by the renormalization group
(RG) procedure an e↵ective quantum field theory describing the low energy physics. The
elementary electrons receive corrections and the low energy degrees of freedom are ‘dressed
electrons’. While the elementary electrons are strongly-coupled in general, for a large
range of metals, it happens that the dressed electrons are not strongly-correlated but
rather behave as almost free particles, due to resummation of the short distance strong
interactions.

These metals are well-described by the Landau’s Fermi liquid theory. This theory
admits that the system of dressed electrons is adiabatically connected to the gas of free
electrons. The distribution of electrons is described by Fermi-Dirac statistics, the ground
state is given by filling all the low energy single-particle states. The highest energy state
filled has momentum k = kF , called the Fermi momentum1. The excitations, which occur
around k = kF , are gapless since they can have arbitrary low energy !. The surface
k = kF is called the ‘Fermi surface’, it is a (d�1)-dimensional sphere in momentum space
for a d-dimensional system. The excitations around the Fermi surface are weakly-coupled
and have a long lifetime.

Near the Fermi surface (k ⌧ kF ), the retarded Green’s function for the dressed electron

1We consider here rotational-invariant systems.
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operator is

GR(!, k) =
Z

! � kF
m?

(k � kF )� i⌃2

(2.1)

where ⌃2 is the imaginary part of the electron self-energy ⌃, kF the Fermi momentum, m?

the renormalized mass of the electrons and Z  1 the spectral weight. The renormalized
mass m? is not equal to the electron mass in general. Particle-like and hole-like excitations
correspond respectively to adding and removing an electron to the system. The spectral
function A(!, k) = Im GR(!, k) is given by

A(!, k) = Z
�k

[! � kF
m?

(k � kF )]2 + �2
k

(2.2)

where the spectral weight Z and the width �k = �Z⌃2 characterize the low energy
excitations (resonances).

For a Fermi liquid, the width behaves as

�k ⇠ 1

kF

(k � kF )2 (2.3)

close to the Fermi surface and the energy of excitation is

✏(k) ⇠ kF

m?

(k � kF ) . (2.4)

So the width �k of the quasiparticle tends to zero much faster that the energy of excitation
✏(k) when one approaches the Fermi surface, i.e. �k ⌧ ✏(k). The excitations have thus a
long lifetime 1/�k. The Green’s function in real space is

GR(t, k) ⇠ Z e�i✏(k)t��kt , (2.5)

which indeed corresponds to an excitation weakly damped. The excitations near the
Fermi surface are thus weakly-coupled and called ‘quasiparticles’. The spectral weight
Z can be smaller than one but remains finite. The rest of the spectral weight 1 � Z
corresponds to high energy incoherent excitations having a short lifetime. Notice that the
quasiparticles carry the same charge as the elementary electrons. Landau’s Fermi liquid
theory and perturbative methods have been successfully applied to describe most metals.
An important feature of Fermi liquids is that their resistivity increases quadratically with
temperature,

⇢ ⇠ T 2 . (2.6)

Fermi liquids are examples of systems at finite density. These systems have a global
U(1) symmetry and one can associate a finite chemical potential to it. In the case of a
Fermi liquid, the chemical potential µ is equal to k2

F /m? and fixes the average number of
particles in the system through the Luttinger theorem, which relates the particle density
to the volume enclosed by the Fermi surface [21, 22]. Since the number of particles in
the system is not fixed – the low energy excitations correspond to adding or removing
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electrons – we work in the grand canonical ensemble, i.e. at fixed chemical potential and
temperature.

The U(1) symmetry can be for instance the electromagnetic gauge symmetry. The
dressed electrons are charged under the U(1) electromagnetic gauge field which can be
considered as non-dynamical at low energy because the electromagnetic coupling is typi-
cally small and the electromagnetic interaction is screened by the charged medium. The
only remaining fields are the dressed electrons, there are no photons. The system has
thus a global – rather than local – U(1) symmetry.

The same approach in terms of quasiparticles has been used to describe the onset of
superconductivity by BCS-type pairing [23, 24]. Close to the Fermi surface, the quasipar-
ticles interact with phonons – the vibrations of the lattice – and an e↵ective attraction
between quasiparticles emerges. This attraction allows the formation of pairs of dressed
electrons, the Cooper pairs. They have spin zero and carry twice the electric charge of the
electrons. The U(1) symmetry is thus spontaneously broken. Even if superconductivity
is strictly speaking explained by the spontaneous breaking of a local U(1) symmetry, as
we discussed above this invariance reduces to a global U(1) group when the electric field
is screened.

Superconductivity can be onset in many materials by modifying their atom structure.
In the field theory approach, it means that we are modifying the chemical potential. The
interaction of the fermions with the phonons translates into the presence of an e↵ective
four-point interaction between the quasiparticles in the action. In the superconducting
phase, the low energy excitations are gapped by an energy equals to the binding energy
of the Cooper pairs.

The Landau’s Fermi liquid theory for the description of metals is based on the existence
of weakly-coupled degrees of freedom at low energy. However, when the system is strongly-
coupled, it can happen that the width �k is not much smaller than the energy of excitation
✏(k) and the low energy excitations have a short lifetime. These systems still admit a Fermi
surface because the low energy excitations are gapless, but the dressed electrons do not
behave as quasiparticles and the Landau’s Fermi liquid description breaks down since the
system is not adiabatically connected to the free gas.

There are systems of fermions which exhibit a quantum phase transition together with
the lack of quasiparticle-like excitations at low energy. A quantum phase transition is a
phase transition which is not driven by temperature as in a thermal phase transition but
by a parameter, as for example doping. At the quantum critical point, one typically ob-
serves that the energy of fluctuations around the ground state vanishes and the coherence
length diverges with scaling properties. The system has consequently an emergent scaling
symmetry

t! �z t , x! � x , (2.7)

where time and space can scale di↵erently. The system is also invariant under rotations,
and space and time translations. All together, this forms the Lifshitz group. The dy-
namical critical exponent z can be equal or larger than one. When z = 1, the system is
also invariant under Lorentz boosts and special conformal transformations and the sym-
metry group is enhanced to the relativistic conformal group [25]. For z > 1, if the system
is also invariant under Galilean boosts, the symmetry in enhanced to the Schrödinger
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group. In this case, the system is e↵ectively described by a non-relativistic conformal
field theory [25].

The quantum critical point, which is at absolute zero temperature, extends to a quan-
tum critical region where quantum fluctuations are negligible compared to thermal fluc-
tuations. In this region, the system is described by a critical field theory at finite tem-
perature.

The boson Hubbard model with filling fraction one is an example of a quantum crit-
ical system [26, 25]. The bosonic particles occupy sites of a squared lattice and can
jump from one site to the nearby ones. There is also a repulsive interaction between
nearest neighbours. By varying the intensity of this interaction, the system exhibits a
superfluid-insulator quantum phase transition which is e↵ectively described by the O(2)
vector model. In the superfluid phase, the SO(2) symmetry is broken and the order
parameter, the bosonic field, acquires a vacuum expectation value, i.e. it condenses.

However, the Landau-Ginzburg-Wilson paradigm does not hold for ‘deconfined’ quan-
tum critical systems. In this case, di↵erent symmetries are broken in each phase and
there is no order parameter which gets a vacuum expectation value in only one of the two
phases. Close to a deconfined quantum critical point, the low energy degrees of freedom
interact with emergent critical bosonic modes which become massless at the quantum
critical point. The critical bosonic modes can be for instance spin density waves or emer-
gent gauge fields. For systems of fermions, an emergent U(1) gauge symmetry can arise
from fractionalization of the dressed electrons which split into a spin and a charge degrees
of freedom [27]. The dressed electrons can thus be seen as bound states invariant under
the emergent U(1) gauge symmetry. When fractionalization occurs in a fermionic system,
the Luttinger count is violated.

From the experimental point of view, an interesting class of materials are the cuprates,
which are based on a two-dimensional lattice of copper anions together with cations.
Cuprates have a rich phase diagram, given in Figure 2.1. They develop in particular high-

Figure 2.1: Phase diagram of a cuprate material. At small doping, the system is in an anti-
ferromagnetic (AF) phase. In the pseudogap regime, the Fermi surface is gapped only in certain
points of momentum space. The non-Fermi liquid phase above the superconducting phase is
believed to result from a quantum critical point hidden by the superconducting dome.

Tc superconductivity as has been shown for the first time in 1986 for the oxyde-based
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cuprate La2�xBaxCuO4 [28]. x represents here hole doping. As can be seen in Figure 2.1,
at small doping cuprates are in an anti-ferromagnetic phase. In the pseudogap phase,
the Fermi surface is gapped in certain points of momentum space. This is due to the
fact that around these points there are very few allowed electronic states. Above the
superconducting phase, the system is metallic but is not described by Landau’s Fermi
liquid theory. It has been found (see e.g. [29] for a review) that in this ‘strange metal’
phase, the resistivity is linear in the temperature,

⇢ ⇠ T , (2.8)

while it is quadratic for Fermi liquids. This suggests that in addition to the electronic low
energy excitations, there are other degrees of freedom which scatter the current-carrying
fermions. They must be bosonic because the fermions cannot scatter e�ciently close to the
Fermi surface [27]. The additional degrees of freedom may come from the fractionalization
of the dressed electrons close to a deconfined quantum critical point. This is a reason to
believe that under the superconducting dome there is a quantum critical point with a
quantum critical region corresponding to the strange metal region.

In cuprates, the onset of superconductivity from the strange metal phase is ill-understood.
This is due to the presence of strong interactions at low energy together with a possible
fractionalization of the charge carriers. Also, because of strong coupling, the e↵ective
action describing the quantum critical system is di�cult to find because perturbative
methods do not apply. The AdS/CFT correspondence and its extensions o↵ers a new
approach to overcome these di�culties. Since many condensed matter systems live e↵ec-
tively in 2+1 dimensions at low energy as it is the case for cuprates, we will be interested
in the study of (2 + 1)-dimensional field theories.

2.2 Bottom/up approach to the AdS/CFT correspondence

We have seen in Chapter 1 that the AdS/CFT correspondence was useful to study
strongly-coupled conformal field theories with a large number of degrees of freedom, i.e.
the rank N of the gauge group is large. The dual string theory reduces in this limit to su-
pergravity. Thus, using the saddle point approximation, one can compute observables in
the CFT using the equality of generating functions and the AdS/CFT dictionary between
bulk field and CFT single-trace operators.

In the previous section we have seen that there exist systems of fermions at finite
density which admit a large number of strongly-coupled degrees of freedom at low en-
ergy. They thus share common features with the CFTs accessible from the AdS/CFT
correspondence. However supersymmetry is not present in these systems and relativis-
tic conformality may emerge at the critical point (for instance for graphene at vanishing
chemical potential, see e.g. [30]) but many quantum critical systems have an emergent
scaling symmetry where space and time scale di↵erently, i.e. the dynamical exponent z
is di↵erent from one (see Eq. (2.7)).

To apply the holographic techniques to the study of strongly-coupled systems of
fermions, we will assume that the AdS/CFT correspondence applies not only to top/down
models arising from string theory, but also to simple gravitational setups which do not
require an UV completion as string theory. Such systems are easier to construct than the
top/down models. They do not involve supersymmetry, and the dual field theory is not
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a conformal field theory in general. Thus, we assume the correspondence:

Large N strongly-coupled
field theory in d dimensions

() Classical gravitational theory
on asymptotically-AdSd+1 space.

In the top/down AdS/CFT setups, finite temperature in the CFT arises naturally when
one considers non-extremal D-branes. On the gravity side, it means that the spacetime
admits an event horizon, i.e. it contains a black hole. Also, because the R-symmetry
group contains in general a U(1) subgroup, the CFT can be put at finite density for
this U(1) by considering supergravity backgrounds involving a radial electric flux. These
two features will be important for the applications of holography to condensed matter.
In particular, they will require the presence of a gauge field in the gravitational theory.
Thus, we will be more particularly interested in Einstein’s gravity coupled to gauge fields
and matter fields.

The simplest gravitational setup to consider for the applications of the gauge/gravity
duality to condensed matter is 4d Einstein-Maxwell theory with a negative cosmological
constant, which has action

S =

Z

d4x
p�g



1

22

✓

R +
6

L2

◆

� 1

4e2
FabF

ab

�

+ Sbdry (2.9)

where F = dA is the field strength of the U(1) gauge field A, R is the Ricci scalar, 
is Newton’s constant, L is the asymptotic AdS4 length and e is the U(1) coupling. The
cosmological constant is given by ⇤ = �3/L2 < 0. The term Sbdry represents the Gibbons-
Hawking term and the counterterms necessary for the holographic renormalization. The
Einstein equations resulting from the action (2.9) are

Rab � 1

2
gabR� 3

L2
gab = 2 TMxwl.

ab (2.10)

where the stress-energy tensor of the gauge field is

TMxwl.
ab =

1

e2

✓

FacF
c

b �
1

4
gabFcdF

cd

◆

. (2.11)

The Maxwell equations are
raF

ba = 0 . (2.12)

We will see in the following that coupling the Einstein-Maxwell theory (2.9) to matter
fields leads to interesting holographic models for the study of condensed matter systems
such as non-Fermi liquids and superconductors. We will focus on field theories which pre-
serve spacetime rotations and translations, we thus make the homogeneous and isotropic
ansatz

ds2 = L2



�f(r)dt2 + g(r)dr2 +
1

r2

�

dx2 + dy2
�

�

, A =
eL


h(r)dt , (2.13)

for the metric and the gauge field. We have fixed the radial dependence of the metric
components gxx and gyy to L2/r2 by a di↵eomorphism transformation and Ar = 0 by a
gauge transformation.
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In Section 1.4.2 we have identified the radial coordinate of AdS spacetime as the
energy scale of the dual field theory. We will be here interested in the low energy regime of
strongly-coupled systems of fermions. For this reason, we will mainly focus on the interior
region of spacetime (IR region) rather than the near-boundary region (UV). However, to
apply the ingredients of the AdS/CFT correspondence, we will demand that the spacetime
is asymptotically AdS close to the boundary.

Thus, we require that in the UV (r ! 0) the metric is that of AdS4,

ds2 =
L2

r2

��dt2 + dr2 + dx2 + dy2
�

, (2.14)

i.e. f(r) ⇠ g(r) ⇠ r�2 for r ! 0. However we will allow the field theory to have a non-
trivial renormalization group flow, the geometry will be deformed from the UV AdS4 in
the interior region of the bulk spacetime. If g(r) 6= r�2, the metric (2.13) breaks the bulk
scale invariance (1.21) and the field theory is not conformal. In addition, if f(r) 6= r�2, the
field theory is non-relativistic, i.e. it breaks Lorentz invariance. The bulk 4-dimensional
theory can thus be seen as a continuous family of 3d field theories. These theories, each
defined at an energy scale, are related by the RG flow, encoded in the metric of the bulk
spacetime.

/RQJ�
GLVWDQFHV

6KRUW�
GLVWDQFHV

Figure 2.2: Geometrization of the RG flow. UV physics of the field theory is controlled by near-
boundary region while IR physics corresponds to the interior region. Figure taken from [27]
with consent of the author.

As discussed in Section 1.6, the chemical potential of the boundary field theory is the
asymptotic value of the time component of the bulk gauge field close to the boundary.
From (1.41) it is also natural to consider the subleading term as related to the conserved
U(1) charge of the field theory. Together with the asymptotic AdS4 spacetime condition,
we will thus consider solutions of the Einstein-Maxwell theory (2.9) coupled to matter
fields which satisfy the UV asymptotics

r ! 0 : f(r) ⇠ 1

r2
, g(r) ⇠ 1

r2
, h(r) ⇠ µ̂� Q̂r , (2.15)

where Q̂ is the density of the boundary conserved U(1) charge and µ̂ the associated
chemical potential.

Using the ingredients of the AdS/CFT correspondence, we will assume that a gauge-
invariant operator of the quantum field theory is dual to a bulk classical field with the
same quantum numbers. Again, the conformal dimension of the field theory operator in
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the UV CFT maps to the mass of the bulk field. We will thus assume the field/operator
correspondence:

Field theory gauge-invariant operator O
with spin s and conformal dimension �

() Gravitational classical field  
with spin s and mass m (�) .

For a given gravitational theory, each solution to the bulk field equations will corre-
spond to a state of the dual field theory. When several bulk solutions exist, one must
compute the free energy by computing the on-shell action to determine which solution is
thermodynamically favoured. We thus have the mapping:

State of the field theory () Solution to the bulk field equations.

The observables of the field theory will be obtained by considering the equality of
the generating functions of the two dual theories and by applying the prescription to
compute correlation functions in Euclidean and Lorentzian signatures (see Section 1.5
and Appendix A).

2.3 The AdS-Reissner-Nordström black hole

Einstein-Maxwell theory (2.9) admits an analytic asymptotically AdS4 solution corre-
sponding to a black hole with charge, the AdS-Reissner-Nordström (RN) black hole. The
metric is

ds2 = L2



�f(r)dt2 +
1

r4f(r)
dr2 +

1

r2

�

dx2 + dy2
�

�

(2.16)

where

f(r) =
1
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
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2r2
+

r4

�

, (2.17)

and the gauge field

h(r) = µ̂

✓

1� r

r+

◆

. (2.18)

At r = r+, the metric component gtt vanishes and the surface r = r+ is infinitely redshifted
for an asymptotic observer, which means that the bulk spacetime contains a black hole
in the interior with an event horizon with topology R3 situated at r = r+. To ensure
regularity of the gauge field at the event horizon, the constant term in At cannot be
chosen arbitrarily and is fixed such that h(r+) = 0.

The Hawking temperature [31] of a black hole is obtained by requiring that the Eu-
clidean metric is regular at the horizon. It is the case if one identifies the Euclidean
time

tE ⇠ tE + 1/T (2.19)
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where the temperature of the RN black hole is

T =
1

4⇡r+

✓

3� r2
+µ̂2

2

◆

. (2.20)

In Euclidean signature, the holographically dual field theory lives on R4 where the
Euclidean time coordinate tE is periodically identified by (2.19). It is therefore natural
to consider the Hawking temperature of the RN black hole as the temperature of the
dual field theory. Also, the parameter µ̂ is identified as the boundary chemical potential
from (2.15). The RN black hole is then dual to a field theory state at finite temperature
and finite chemical potential.

The introduction of scales, the temperature and the chemical potential, in the bound-
ary CFT breaks the conformal invariance: the gravitational theory is not anymore in-
variant under the rescaling (1.21) because the bulk spacetime is AdS4 only when one
approaches the UV boundary. Indeed, the field theory dual to the RN black hole corre-
sponds to a CFT deformed by two scales, the chemical potential µ̂ and the temperature
T . By performing the rescalings

t! r+ t , r ! r+ r , ~x! r+ ~x , µ̂! µ̂

r+

, (2.21)

r+ can be eliminated from the solution (2.16-2.18). However it remains the free parameter
µ̂. This means that a CFT deformed by two scales as a temperature and a chemical
potential can only depend on the ratio of them, T/µ̂. The temperature (2.20) vanishes
continuously for r+ =

p
6/µ̂. This condition corresponds to the extremal limit of the RN

black hole.
The bulk gauge field is dual to the conserved U(1) current Jµ of the field theory. The

leading behaviour µ̂ of the time component of the bulk gauge field in the UV is identified
with the boundary chemical potential. The subleading term in (2.18) is proportional to
the vev of the current operator J t, that is the conserved total charge density of the field
theory, which is simply the charge density of the RN black hole,

Q̂ =


eL

1

V2

Z

V2

?F =
µ̂

r+

, (2.22)

where V2 =
R

dx dy is the spatial volume in field theory units.
It is easy to obtain the equilibrium properties – the thermodynamics – of the field

theory by computing the Euclidean action

S(E) = �
Z

d4x
p

g



1

22

✓

R +
6

L2

◆

+
1

4e2
FabF

ab

�

+
1

22

Z

r=0

d3x
p
�

✓

�2K +
4

L

◆

(2.23)

on the classical solution. The last term is the sum of the Gibbons-Hawking term, nec-
essary for spacetimes with a boundary to have a well-defined variational problem, and a
counterterm for the on-shell action to be finite. Herein, �µ⌫ is the induced metric on the
boundary r = 0 and K the trace of the extrinsic curvature. In the grand canonical ensem-
ble, the grand potential density ⌦ = �(T/V2) log Z(E)

FT (which we will call the free energy)
is obtained from the Euclidean bulk action evaluated on the solution (2.16)-(2.18). The
free energy is then given by

⌦̂ = � 1

2r3
+

✓

1 +
r2
+µ̂2

2

◆

(2.24)
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where we have rescaled the free energy, ⌦ = L2

2 ⌦̂. The thermodynamic quantities are now
easily obtained from the free energy (2.24). In particular, the charge density is2

Q̂ = �@⌦̂
@µ̂

=
µ̂

r+

, (2.25)

as anticipated in (2.22). The entropy density is given by

Ŝ = �@⌦̂
@T

=
2⇡

r2
+

, (2.26)

compatible with the area law since

1

4GN

A2

V2

=
L2

2

2⇡

r2
+

= S , (2.27)

where GN = 2/8⇡ is Newton’s constant, A2 = L2V2/r2
+ is the area of the event horizon

and Ŝ = 2

L2 S the rescaled entropy density. Also, the ADM mass of the black hole is given
by

M̂ =
1

r3
+

✓

1 +
r2
+µ̂2

2

◆

(2.28)

and the first law

⌦̂ = M̂ � T Ŝ � µ̂Q̂ (2.29)

holds.
At zero temperature, the solution reduces to the extremal Reissner-Nordström (ERN)

black hole. In this case it is useful to write the function f appearing in (2.16) and the
gauge field h as

f(r) =
1

r2

 

1� M̂r3 +
Q̂2

2
r4

!

, h(r) = µ̂� Q̂r , (2.30)

where the mass, the charge and the chemical potential are given in terms of r+ by

M =
4

r3
+

, Q̂ =

p
6

r2
+

, µ̂ =

p
6

r+

. (2.31)

The free energy

⌦̂ = M̂ � µ̂Q̂ (2.32)

of the extremal Reissner-Nordström black hole is simply given by

⌦̂ = � 1

3
p

6
µ̂3 . (2.33)

2To compute the thermodynamic quantities, one has to see r+ as a function of the temperature and the
chemical potential through (2.20).
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It is also interesting to notice that the near horizon geometry (r ! r+) of the ERN black
hole is

ds2 ⇠ L2

6⇢2

��dt2 + d⇢2
�

+
L2

r2
+

�

dx2 + dy2
�

, h(⇢) ⇠ 1p
6 ⇢

, (2.34)

where we have introduced the new variable

⇢ ⌘ r2
+

6(r+ � r)
. (2.35)

This is the geometry of AdS2 ⇥ R2 with AdS2 radius equals to L/
p

6. At finite temper-
ature, it can be shown easily (see e.g. [32]) that in the near-horizon region, the metric
becomes a black hole in AdS2 ⇥ R2.

The Einstein-Maxwell theory and the RN black hole solution is the simplest holo-
graphic setup that one can consider to study field theories at finite charge density. The
finite charge density maps to the non-trivial electric flux Frt in the bulk, sourced by the
charged black hole, as shown in Figure 2.3.

&KDUJH�
GHQVLW\(OHFWULF�IOX[�

� ��

�

Figure 2.3: The finite charge density of the field theory is represented in the bulk by an electric
flux sourced by the charged event horizon of the RN black hole. Figure taken from [27] with
consent of the author.

However this model su↵ers from two main issues. First, at zero temperature, the black
hole entropy is non-zero, which suggests that the dual field theory state is degenerate.
Second, the finite density is sourced by the charged black hole, there are no matter fields
in the bulk. It means that the field theory does not exhibit any gauge-invariant operator
and matter is not visible. So where are the low energy fermionic degrees of freedom of
the system ? The point is that the fermions are subject to fractionalization, a common
process in condensed matter that we discussed in Section 2.1. It was suggested in [33]
that the RN black hole could be seen as dual to a totally fractionalized state.

These issues suggest that the RN black hole may be unstable to the formation of
matter in the bulk. It has already been shown that low temperature charged AdS black
holes are unstable towards many processes, including the formation of a fluid of charged
fermions and the condensation of charged scalar fields. This has led to two of the most
important holographic models for condensed matter physics that we present and combine
in this thesis, the electron star and the holographic superconductor.

We end this section by noticing that the AdS-Schwarzschild black hole obtained from
the RN black hole by setting µ̂ = 0 is also a solution to the Einstein-Maxwell theory (2.9).
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In this case the gauge field is trivial and the black hole is neutral. However, the free
energy at fixed temperature of this solution is always larger than that of the RN black
hole, so the latter is always thermodynamically favoured. At zero temperature, pure
AdS4 (2.14), obtained by setting µ̂ = 0 together with the additional condition r+ ! 1,
is also a solution to Einstein-Maxwell theory but it is not favoured because its free energy
vanishes. For these reasons, we will not consider these solutions here.

2.4 The electron star model

To study non-Fermi liquids with the tools of holography, one needs to introduce fermionic
matter in the gravitational theory, which will be dual to the low energy dressed electrons
in the quantum critical system. This requires to go beyond the simple Einstein-Maxwell
theory, since the RN black hole does not exhibit fermionic degrees of freedom.

The simplest way to introduce fermions in the bulk theory is to consider them as probe
fields in the RN black hole (see e.g. [34, 35, 32, 36, 37, 38]). However, to study properties
of quantum critical systems, it would be useful to obtain a completely backreacted holo-
graphic system with fermionic degrees of freedom. This task is very di�cult in principle
since fermions cannot be treated classically. However, it is possible to consider the bulk
fermions in a ‘local Fermi gas approximation’ – or Thomas-Fermi approximation – where
the set of bulk fermions is treated as an ideal fluid. This was done in a seminal paper by
Hartnoll and Tavanfar [39].

2.4.1 Action and field equations

Let us consider Einstein-Maxwell theory (2.9) with a negative cosmological constant cou-
pled to a perfect fluid of charged fermions of mass mf and charge qf under the gauge
group U(1). The fluid contributes to Einstein and Maxwell equations, obtained from the
action (2.9), through its stress tensor

T fluid
ab = (⇢+ p)uaub + pgab (2.36)

and its electromagnetic current

Ja
fluid = qfnua , (2.37)

where ⇢ is the energy density, p the pressure, n the particle density and ua the velocity
of the fluid normalized so that uaua = �1. Einstein equations are

Rab � 1

2
gabR� 3

L2
gab = 2

�

TMxwl.
ab + T fluid

ab

�

(2.38)

where the stress-energy tensor of the gauge field is given by (2.11). Maxwell equations
are

raF
ba = e2Ja

fluid . (2.39)

The fluid is a free gas of relativistic fermions at zero temperature in 3+1 dimensions.
The local chemical potential eµl for particle number is defined as the tangent frame of the
gauge field through the relation

eµl = qfu
aAa , (2.40)

30



it is assumed to be positive for all qf (positive or negative). This relation is valid only if
all the fermionic matter is charged under the U(1) gauge field, which we shall consider
later on.

The fluid quantities satisfy the zero-temperature equation of state

�p(eµl) = ⇢(eµl)� eµl n(eµl) (2.41)

where the pressure, energy density and charge density are obtained from the local chemical
potential eµl by the free gas construction as if the fluid was living in flat space,

⇢(eµl) =

Z eµl

mf

d✏⇥(✏�mf ) ✏ g(✏) , n(eµl) =

Z eµl

mf

d✏⇥(✏�mf ) g(✏) , (2.42)

where the density of states at energy ✏ is

g(✏) = � ✏
q

✏2 �m2
f (2.43)

and ⇥ the Heaviside step function. Notice that ⇢ and n are positive for mf < eµl and vanish
otherwise. The phenomenological parameter � is related to the spin of the constitutive
fermions, for spin half fermions � = ⇡�2. All the physics of the fermions is then controlled
by the local chemical potential. Instead of working with n and eµl, we introduce the charge
density

� = qfn (2.44)

and the chemical potential for charge density

µl =
eµl

qf

, (2.45)

which have the same sign as qf .
As for Einstein-Maxwell theory, we make the homogeneous and isotropic ansatz (2.13).

The velocity has then non-zero component ut = 1/(L
p

f) and the local chemical potential
for charge density is a function of the radial coordinate only and given by

µl(r) =
e



h(r)
p

f(r)
. (2.46)

The classical fluid description, analogous to the Thomas-Fermi approximation, is valid if
the local chemical potential µl varies slowly in the radial direction, @rµl(r)⌧ µl(r)2, such
that the fluid is in local equilibrium at any value of the radial coordinate. This requires
the fermions to be at high enough density and their Compton wavelength to be smaller
than the characteristic scale of the geometry. The fermion physics it then completely
encoded in the metric and the gauge field through the functions f and h.

Since we are working in a semi-classical gravity approximation which takes into account
the backreaction of the matter fields on the geometry, we must have /L ⌧ 1 and the
left-hand side and the right-hand side of Einstein equations (2.38) must be comparable.
It implies that

e2 ⇠ 

L
⌧ 1 . (2.47)
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One can rescale the fields and parameters to eliminate e,  and L from the field
equations. We do so by defining hatted quantities through

mf

|qf | =
e


m̂f , �q4

f =
2

e4L2
�̂ ,

⇢ =
1

2L2
⇢̂ , p =

1

2L2
p̂ , � =

1

eL2
�̂ .

(2.48)

In particular, the rescaled local chemical potential is

µ̂l = h/
p

f . (2.49)

We shall now obtain the rescaled fluid quantities ⇢̂ and �̂. From (2.42) and (2.48) we have

⇢ = �

Z

e
 qf µ̂l

e
 |qf |m̂f

d✏ ⇥
⇣

✏� e


qfm̂f

⌘

✏2
r

✏2 � e2

2
q2
fm̂

2
f ,

� = qf�

Z

e
 qf µ̂l

e
 |qf |m̂f

d✏ ⇥
⇣

✏� e


qfm̂f

⌘

✏

r

✏2 � e2

2
q2
fm̂

2
f .

(2.50)

Since qfµl = eµl > 0, we can replace in the upper bound of the integrals qf µ̂l by |qf ||µ̂l|.
Replacing mf , � and µl by the rescaled quantities (2.48) and performing a simple change
of variable, one obtains

⇢ =
1

2L2
�̂

Z |µ̂l|

m̂f

d✏ ⇥ (✏� m̂f ) ✏
2
q

✏2 � m̂2
f ,

� =
1

eL2

|qf |
qf

�̂

Z |µ̂l|

m̂f

d✏ ⇥ (✏� m̂f ) ✏
q

✏2 � m̂2
f ,

(2.51)

where |qf | arises from the square root. Since qf µ̂l > 0, |qf |/qf = sign(qf ) = sign(µ̂l), using
the last line of (2.48) we obtain the final expressions for the rescaled fluid quantities,

⇢̂ = �̂

Z |µ̂l|

m̂f

d✏ ⇥ (✏� m̂f ) ✏
2
q

✏2 � m̂2
f ,

�̂ = sign(µ̂l) �̂

Z |µ̂l|

m̂f

d✏ ⇥ (✏� m̂f ) ✏
q

✏2 � m̂2
f ,

p̂ = �⇢̂+ µ̂l�̂ .

(2.52)

These expressions are non-zero for 0 < m̂f < |µ̂l|. The charge density �̂ is positive for
0 < m̂f < µ̂l and negative for µ̂l < �m̂f < 0. The energy density is positive in both
cases.

With the ansatz (2.13), the field equations (2.38-2.39) reduce to

1

r

✓

f 0

f
+

g0

g
+

4

r

◆

+
gh�̂p

f
= 0 , (2.53a)

f 0

rf
� h02

2f
+ g(3 + p̂)� 1

r2
= 0 , (2.53b)

h00 +
g�̂p

f

✓

rhh0

2
� f

◆

= 0 . (2.53c)
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2.4.2 Lifshitz symmetry and perturbations towards the boundary region

The field equations (2.53) admit the exact solution

f =
1

r2z
, g =

g1
r2

, h =
h1
rz

, (2.54)

where the constants g1 and h1 are given in terms of the (rescaled) mass of the fermions
m̂f and the parameter �̂ through

h2
1 =

z � 1

z
, g1 =

6z2
p

z � 1

[(1� m̂2
f )z � 1]3/2�̂

, (2.55)

where the parameter z(m̂f , �̂) is solution to a complicated equation involving m̂f and
�̂. The local chemical potential is constant for this solution and given by µ̂l = ±h1.
For simplicity, we will assume that the fermions are positively charged, i.e. qf > 0.
From (2.52), we see that having non-trivial (constant in fact) fluid quantities in the
Lifshitz solution requires

µ̂l = h1 =

r

z � 1

z
. (2.56)

The system (2.53) is invariant under charge conjugation which acts on the gauge field as

h(r)! �h(r) , (2.57)

from which the case h1 < 0 is easily obtained. It corresponds to a fluid made of negatively
charged fermions as can be seen from (2.52) since the local chemical potential becomes
negative under (2.57). The geometry (2.54) is a solution to the field equations (2.53) for

0  m̂f < 1 , z � 1

1� m̂2
f

� 1 . (2.58)

The solution (2.54) is invariant under the scaling symmetry

t! �z t , x! � x , r ! � r , (2.59)

and is a gravitational realization of the Lifshitz symmetry group [25]. Lifshitz solutions
have been studied extensively since the pioneer work [40]. Indeed, we recover here the
emergent symmetry of a quantum critical system (see Section 2.1) where z is the dynamical
critical exponent, as appearing in the scaling transformation (2.7). Lifshitz symmetry
arises typically when massive vector fields become e↵ectively massive [41]. Here, the
fermionic charge density screens the electric field which becomes massive and cannot
support a near-horizon AdS2 geometry as for the extremal Reissner-Nordström black
hole.

We should notice that the Lifshitz spacetime (2.54) is a singular spacetime. Even if
the scalar curvature invariants are constant for any z � 1, Lifshitz spacetime admits a
curvature singularity for r !1 if z 6= 1 which can be seen by computing the tidal forces
between infalling observers. It means that Lifshitz spacetime is geodesically incomplete
and should be used with caution. The singularity is however expected to be removed
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at finite temperature and this spacetime receives strong corrections when embedded in
string theory [42].

From the field theory point of view, it is natural to consider the exact Lifshitz so-
lution (2.54) as the holographic low energy description of a quantum critical system of
fermions. At low energy, the fermions interact with critical bosonic modes, represented
in the gravitational theory by the metric and the gauge field. The scale-invariant low
energy theory needs to be connected to the microscopic observables of the system, such
as the charge density. This is done in the holographic framework by connecting the
Lifshitz-invariant solution (2.54) to a near-boundary AdS4 geometry.

We will then consider the Lifshitz solution as valid in the near-horizon region r !
1. To connect this asymptotic IR solution to the near-boundary AdS4 geometry, it is
necessary to perturb the exact solution (2.54). We write the metric components and the
gauge field as

f =
1

r2z
(1 + f1r

↵ + . . . ) , g =
g1
r2

(1 + g1r
↵ + . . . ) , h =

h1
rz

(1 + h1r
↵ + . . . ) .

(2.60)

Plugging these perturbations in the field equations (2.53), one obtains the three possible
exponents

↵0 = 2 + z , ↵± =
2 + z

2
±
q

9z3 � 21z2 + 40z � 28� m̂2
fz(4� 3z)2

2
q

(1� m̂2
f )z � 1

. (2.61)

The constants g1 and h1 are solved in terms of ↵ and f1, which remains arbitrary. The
exponents ↵0 and ↵+ correspond to relevant deformations of the Lifshitz geometry (2.54).
Since we want to match this asymptotic IR solution to AdS4, we consider the irrelevant
deformation ↵�. If we want the fluid density not to diverge in the UV region, i.e. if
we want the local chemical potential (2.46) to be an increasing function of the radial
coordinate r, we must have f1 < 0.

By imposing the initial conditions (2.60) on the functions f , g, h and the derivative
h0 at a large IR cuto↵, it is easy to integrate numerically the field equations (2.53) up to
the radius r = rs where

µ̂l(rs) = m̂f . (2.62)

The fluid quantities (2.52) vanish at r = rs, which defines the electron ‘star’ boundary.
For r < rs, the fluid quantities are vanishing and the solution looks like the extremal

AdS-Reissner-Nordström, where

f =
c2

r2
� M̂r +

Q̂2

2
r2 , g =

c2

r4f
, h = c

⇣

µ̂� Q̂r
⌘

. (2.63)

The constants c, M̂ , Q̂ and µ̂ are obtained by matching the exterior solution (2.63) with
the numerical solution in the interior region. In general, the constant c > 0 is di↵erent
from one. This is because the constant f1 in (2.60) can be chosen arbitrary. One could
choose f1 such that c = 1, however it is not necessary, because one can perform a change
of time coordinate t ! t̃ = c t, such that the near-boundary geometry is given by the
AdS4 metric (2.14) with t̃ the time coordinate. It means that t̃ is the time coordinate
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Figure 2.4: Profiles of (a) the local chemical potential and (b) the fluid charge density for an
electron star solution.

of the dual field theory. In terms of this variable, the (rescaled) gauge field is given by
Â = (µ̂� Q̂r)dt̃. The constant µ̂ is thus identified with the chemical potential of the field
theory and Q̂ is the total charge of the system. It is easy to verify that the total charge
Q̂ is given by the integral

Q̂ =

Z 1

rs

dr

p

g(r)

r2
�̂ . (2.64)

The electron star solution is displayed in Figure 2.4. In the following, we will refer to the
electron star solution at zero temperature by ‘ES’.

As for the RN black hole, the electron star model admits a radial electric flux pointing
to the UV boundary and responsible for the finite charge density of the boundary field
theory. However, in the electron star solution, the electric flux is not sourced by a charged
event horizon but by the charged bulk fermions, which occupy the interior region of the
bulk spacetime, as shown in Figure 2.5.
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Figure 2.5: In the electron star solution, the boundary charge density is sourced by the charged
bulk fermions. Figure taken from [27] with consent of the author.
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2.4.3 Solution-generating symmetries and physical parameters

The field equations (2.53) are invariant under the two independent symmetries

(r, x, y)! a(r, x, y) , f ! a�2f , g ! a�2g , h! a�1h , (2.65a)

f ! b�2f , h! b�1h . (2.65b)

These symmetries do not leave the ansatz (2.13) invariant. For fixed values of m̂f and
�̂, the electron star solution is parametrized by the coe�cient f1 appearing in (2.60).
Changing f1 can be achieved by a symmetry transformation of the kind (2.65a). The
constant c can be eliminated from the solution by a transformation of the kind (2.65b).
This is equivalent to the rescaling of the time coordinate t! c t as discussed above.

The transformations (2.65a) act on the chemical potential, the charge and the mass
of the field theory as

(µ̂, Q̂, M̂)! (�µ̂,�2Q̂,�3M̂) . (2.66)

Thus, they are solution-generating symmetries, which take one solution of the field equa-
tions to a physically di↵erent one with di↵erent chemical potential, charge and mass.

2.4.4 Thermodynamics

Since the solution outside the star is given by the AdS-Reissner-Nordström black hole,
the computation of the free energy reduces to the case of Section 2.3. The free energy of
the dual field theory state is then given by

⌦̂(µ̂) = M̂(µ̂)� µ̂Q̂(µ̂) . (2.67)

A solution depends only on one physical parameter. In the grand canonical ensemble, at
zero temperature all other physical quantities as the mass or the charge are functions of
the chemical potential µ̂. One can check the validity of (2.67) by computing separately
the Euclidean on-shell action, the ADM mass and the total charge of the solution. To do
so, one needs an action describing the fluid physics. This action and the derivation of the
stress-energy tensor (2.36) and the electromagnetic current (2.37) has been given in [39].
We will present an action principle for the fluid in Chapter 3 when we will consider the
coupling of the electron star model to a charged scalar field.

Since µ̂ is the only independent variable at zero temperature, the electron star solutions
satisfy an equation of state Q̂(µ̂). From the scaling (2.66), we see that the charge must
be quadratic in µ̂,

Q̂(µ̂) = cES µ̂2 , (2.68)

where cES is a constant. By integrating out the thermodynamic relation

Q̂ = �d⌦̂

dµ̂
, (2.69)

one obtains the free energy as an explicit function of µ̂,

⌦̂ = �1

3
cES µ̂3 . (2.70)
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In this expression, the constant of integration has been eliminated by requiring that the
free energy at zero chemical potential vanishes. This case corresponds to the pure AdS4

solution. Inserting (2.70) into the first law (2.67) leads to ⌦̂ = �2M̂ , which is the equation
of state of a (2+1)-dimensional conformal field theory. This result is expected since the
field theory we are describing is a conformal field theory perturbed by a chemical potential.

For given values of the parameters appearing in the Lagrangian, the constant cES does
not depend on the boundary chemical potential µ̂. In other words, it depends only on
the parameters of the theory, which are the fermion mass m̂f and the phenomenological
parameter �̂. Its knowledge is su�cient to compare the free energy with other solu-
tions. This can be seen from (2.68), which shows that the constant cES is invariant under
the solution-generating transformation (2.66). The constant cES can be easily obtained
from (2.68) using the matching conditions at the star boundary.

In addition to the electron star, the field equations (2.53) also admit the extremal
Reissner-Nordström black hole as a solution. Indeed, one recovers the Einstein-Maxwell
equations in vacuum for vanishing fluid quantities (�̂ = ⇢̂ = p̂ = 0). The free energy of
this solution is given by (2.33), so the constant cERN, which plays the role of cES for the
extremal charged black hole, is

cERN =
1p
6

. (2.71)

For the extremal black hole solution, the parameter which plays the role of f1 is the value
of the event horizon r+, which can be changed using the transformations (2.65b). In this
case the scaling (2.66) is still valid.

In Figure 2.6, we display the constant ci (i = ERN, ES) for the extremal black hole and
the electron star solutions as a function of the fermion mass m̂f at fixed �̂. We see that
the electron star solution is always thermodynamically favoured at zero temperature.
In the limit where m̂f ! 1, the near-horizon geometry of the electron star solution is
AdS2 ⇥ R2 and one recovers the ERN black hole solution. Indeed, the free energies of
the two solutions match in this limit, as shown in Figure 2.6. The limit m̂f ! 1 means
that the dynamical critical exponent z !1 which corresponds to the decoupling of the
time and space directions of the field theory, as can be seen from (2.59). This is indeed
what happens in the extremal black hole, where the near-horizon geometry describes a
(0+1)-dimensional CFT.

Since the electron star solution does not admit an event horizon, the entropy is vanish-
ing, which means that the electron star solution is dual to a non-degenerate state of the
field theory. This solution being thermodynamically favoured at zero temperature com-
pared to the extremal Reissner-Nordström black hole, we observe a removal of degeneracy
by the presence of fermionic degrees of freedom.

2.4.5 Discussion and extensions

The electron star model presented above describes a system of strongly-correlated fermions
in the vicinity of a quantum critical point at zero temperature. It exhibits an infinite
number of closely spaced Fermi surfaces as will be shown in Section 3.5 (see also [43, 44]),
each corresponding to the quasiparticle-like excitations of a (fermionic) ‘generalized free
field’ [45]. It is interpreted as the decomposition of the fermionic operator into ‘bound
states’ which behave almost freely, similarly to the hadrons in QCD. Thus one e↵ectively
sees a continuum of zero-energy excitations at fixed momentum, instead of a unique
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excitation in the case of a Fermi liquid. It can be shown that the system satisfies the
Luttinger theorem [44]. However, the application of an external magnetic field to the
system shows that it admits Kosevich-Lifshitz quantum oscillations but only fermions at
a given radius contribute to them. It results that the Fermi surface extracted by quantum
oscillations does not satisfy the Luttinger theorem [43]. For this reason the electron star
solution is dual to a non-Fermi liquid.

The electron star model can be easily generalized to finite temperature [46]. The
interior region of the spacetime is occupied by a charged event horizon, responsible for the
non-zero temperature of the dual field theory state. The perfect fluid of charged fermions
is located in a compact region of spacetime (in the radial direction). In the classical
limit, the black hole does not radiate and the zero-temperature construction of the fluid
used above applies. The Reissner-Nordström black hole is also a solution to the system,
when the fluid quantities vanish identically in the whole spacetime. A continuous phase
transition occurs at a critical temperature Tc between the finite-temperature electron
star solution and the Reissner-Nordström black hole [46]. This model shows that the
Reissner-Nordström black hole is unstable to the formation of fermionic matter at low
temperature.

In the electron star model, fermions are treated semi-classically. A procedure to con-
struct backreacted solutions of Einstein-Maxwell theory with fermions treated quantum
mechanically has been proposed in [47, 48].

2.5 Holographic superconductors

We have seen in Section 2.4 that the Reissner-Nordström black hole is unstable to the
formation of fermionic degrees of freedom. It results in the electron star model which de-
scribes a non-Fermi liquid. It has also been found that the Reissner-Nordström black hole
is unstable to the formation of scalar hair. This has been used to construct gravitational
models with non-trivial bosonic degrees of freedom. These models o↵er a new approach
to the study of superconductivity and are called holographic superconductors.
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2.5.1 Instability of the extremal AdS-Reissner-Nordström black hole

The history of holographic superconductors has started with the discovery by Gubser [49]
that charged black holes in AdS have an instability to the formation of charged scalar
hair.

Let us consider Einstein-Maxwell theory with a negative cosmological constant coupled
to a free scalar field  . The action is

S =

Z

d4x
p�g



1

22

✓

R +
6

L2

◆

� 1

4e2
FabF

ab � 1

2

�|r � iqA |2 + m2
s| |2

�

�

+ Sbdry

(2.72)

where ms is the mass of the scalar field and q its coupling to the U(1) gauge field. The
action Sbdry includes the Gibbons-Hawking term and the counterterms necessary for the
holographic renormalization procedure. The Klein-Gordon equation for the scalar field  
is

� (ra � iqAa) (ra � iqAa) + m2
s = 0 . (2.73)

In an electrically charged black hole background, the charged scalar field acquires an
e↵ective mass squared

m2
e↵ = m2

s + q2gttA2
t , (2.74)

where we recall that the inverse metric component gtt is negative. Close to the event
horizon, |gtt| is very large, so the e↵ective mass squared m2

e↵ may become su�ciently
negative to destabilize the scalar field. When the scalar field becomes unstable on the
black hole background, it means that one has to take into account the backreaction of
the scalar field on the geometry, leading to hairy black hole solutions. This instability is
favoured when the black hole is close to extremality. Indeed in this case, in addition to
gtt, also its first derivative is close to vanish at the event horizon, so |gtt| diverges faster.
It means that the formation of haired black holes is favoured at low temperature. There
is typically a critical temperature above which the scalar field is not unstable. The fact
that the black hole lives in an asymptotically-AdS spacetime is crucial for the formation
of hairy black holes. The gravitational potential of AdS prevents the particles created by
the Hawking radiation close to the event horizon to escape to infinity. They stay in the
near-horizon region and are represented classically by the hair [50].

Let us consider the example of a probe charged scalar field  in the extremal Reissner-
Nordström black hole. For convenience, we rescale the scalar field, its mass and elementary
charge through

 =
1


 ̂ , ms =

1

L
m̂s , q =



eL
q̂ . (2.75)

Imposing the homogeneous and isotropic ansatz (2.13) together with  ̂ =  ̂(r), the field
equation for  ̂ becomes

 ̂00 +
✓

f 0

2f
� g0

2g
� 2

r

◆

 ̂0 + g

✓

q̂2h2

f
� m̂2

s

◆

 ̂ = 0 . (2.76)

In the near-horizon geometry (2.34) of the extremal Reissner-Nordström black hole, the
scalar field  satisfies the Klein-Gordon equation

⇢2@2
⇢ ̂ �

m̂2
s � q̂2

6
 ̂ = 0 . (2.77)
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Notice that ⇢! +1 at the horizon. From (1.47), we see that we recover the field equation
in AdS2 of a scalar field with e↵ective mass

m̂2
e↵ =

m̂2
s � q̂2

6
. (2.78)

If this mass violates the BF bound m̂2
AdS2

= �1/4 of AdS2, that is if

m̂s � q̂2

6
< �1

4
, (2.79)

the black hole is unstable or, equivalently, when q̂2 > q̂2
min where

q̂st ⌘
r

3

2
+ m̂2

s . (2.80)

When the scalar field is unstable in the near-horizon region of a black hole solution,
its backreaction on the geometry has to be taken into account. It means one has to find
a solution to the field equation with a non-trivial profile for the scalar field. This task
is not easy in general, however one can first find a near-horizon solution and integrate
out numerically the field equations to the UV boundary region, where the charged scalar
field behaves as in (1.48). The subleading term in this expansion is generically non-zero,
which leads to the concept of holographic superconductors as we shall present below.

2.5.2 Holographic superconductor at zero temperature

As we discussed in Section 2.3, the extremal Reissner-Nordström black hole has a finite
entropy, essentially because it admits an event horizon with finite area. There should exist
other holographic states at finite charge density which have zero entropy at zero temper-
ature. We expect them to be thermodynamically favoured to remove the degeneracy of
the extremal Reissner-Nordström black hole. We have already seen that the entropy of
the state dual to the electron star solution vanishes. We present here an other solution
that exhibits a non-trivial profile for a charged scalar field.

Let us go back to the Einstein-Maxwell-scalar theory (2.72). The metric, the gauge
field and the scalar field satisfy the Einstein equations

Rab � 1

2
gabR� 3

L2
gab = 2

�

TMxwl.
ab + T scalar

ab

�

, (2.81)

the Maxwell equations
raF

ba = e2
�

J b
fluid + J b

scalar + J b
int

�

(2.82)

and the Klein-Gordon equation (2.73), where the stress-energy tensor of the scalar field
is

T scalar
ab =

1

2

�

gc
ag

d
b + gc

bg
d
a � gabg

cd
�

(rc � iqAc ) (rd 
⇤ + iqAd 

⇤)� 1

2
m2

sgab  
⇤ (2.83)

and its electromagnetic current

Ja
scalar = �i

q

2
gab [ ⇤ (ra � iqAa) �  (ra + iqAa) 

⇤] . (2.84)

The electromagnetic stress-energy tensor was already defined in (2.11).
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By making the isotropic and homogeneous ansatz (2.13) together with  =  (r), and
rescaling quantities as in (2.75), the r-component of Maxwell equations is

q
⇣

 ̂⇤ ̂0 �  ̂ ̂⇤0
⌘

= 0 , (2.85)

which implies that when  ̂ is non-trivial, its phase is constant. We fix it to zero in the
whole spacetime by a global U(1) transformation. The field  ̂ can now be considered as
a real scalar field. The field equations thus reduce to the system

 ̂00 +
✓

f 0

2f
� g0

2g
� 2

r

◆

 ̂0 + g

✓

q̂2h2

f
� m̂2

s

◆

 ̂ = 0 , (2.86a)
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In the near-boundary region (r ! 0), in addition to the metric and the gauge field
which are given by (2.15), the scalar field behaves as

 ̂ ⇠  ̂�r3�� +  ̂+ r� , � =
3

2
+

3

2

r

1 +
4m̂2

s

9
. (2.87)

While the scalar field can be considered as a probe field in the near-boundary region,
if it satisfies the instability condition (2.79) it must modify substantially the interior
geometry of the extremal Reissner-Nordström black hole. It means that it is dual to a
relevant operator of the field theory. For this reason, we choose the mass squared of the
scalar field to be negative, m̂2

s < 0.
Horowitz and Roberts [51] found an asymptotic solution in the IR (r ! 1) to the

field equations (2.86) with a non-trivial scalar. This solution is

f(r) ⇠ 1

r2
, g(r) ⇠ � 3

2m̂2
s

1

r2 log r
,

h(r) ⇠ h0 r� (log r)1/2 ,  ̂(r) ⇠ 2 (log r)1/2 ,

(2.88)

where

� =
1

2
� 1

2

✓

1� 24q̂2

m̂2
s

◆1/2

(2.89)

must satisfy � < �1, which means that

q̂2 > �m̂2
s

3
. (2.90)

At this point the constant h0 appearing in (2.88) is arbitrary. The asymptotic metric in
the interior region is then

ds2 ⇠ L2

r2

��dt2 + d~x2
�

+
L2

2|m̂2
s|

dr2

r2 log r
, r !1 . (2.91)
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One can easily see that the temperature and the entropy associated to the horizon r =1
vanish. However, the curvature invariants diverge logarithmically at r =1. For example,
the Ricci scalar behaves as

R ⇠ 8m̂2
s

L2
log r , (2.92)

so the solution (2.88) has a mild singularity at r =1. However, from a field theory point
of view, one can consider to put an IR cuto↵ and study physics close to the horizon but at
finite distance from the singularity. It is also possible that this singularity disappears by
turning on a small temperature. We see from (2.91) that Poincaré invariance is restored
near the horizon and almost (presence of a logarithmic factor) conformal invariance.

The integration of the field equations (2.86) towards the UV boundary r = 0 can be
achieved numerically by imposing the initial conditions (2.88) at an IR cuto↵ rIR � 1.
Close to the UV boundary, the solution is

r ! 0 :
f(r)

c2
⇠ g(r) ⇠ 1

r2
, h(r) ⇠ c

⇣

µ̂� Q̂r
⌘

,  ̂(r) ⇠  ̂�r3�� +  ̂+r� ,

(2.93)
where � is the conformal dimension of the operator dual to  , defined in (2.87). The
constants µ̂ and Q̂ are respectively the chemical potential and the total charge of the dual
field theory.

The field equations (2.86) are invariant under the transformations (2.65) while the
scalar remains invariant. As for the electron star system, the constant c in (2.93) can be
eliminated by a transformation of the type (2.65b). The transformations (2.65a) generate
new physical solutions, we shall come back to this point later.

The bulk field  ̂ is dual to a charged scalar operator O in the dual field theory. In
the standard quantization scheme, the non-normalizable mode  ̂� in the asymptotic UV
expansion (2.93) of the scalar field is the source of the boundary operator O and  ̂+ its
vev. When  ̂+ / hOi 6= 0, the scalar operator O condenses and the global U(1) symmetry
is broken. The field theory state is then interpreted as superfluid. As we have discussed
in Section 2.1, in many condensed matter systems the photons are non-dynamical and
the local U(1) symmetry reduces to a global U(1) symmetry. We can then interpret the
condensation of the scalar operator O as the sign of the onset of superconductivity. The
charged condensate hOi should be thought of as the strong-coupling analogue of a Cooper
pair. However it is possible that the condensate is not made of pairs of dressed electrons:
the scalar operator O could be a more complicated operator of the fermionic operator.
The U(1) symmetry is spontaneously broken if the scalar operator is not coupled to an
external source. Thus we must require that  ̂� = 0. This can be done by choosing
correctly the constant h0 appearing in the IR asymptotic solution (2.88). When this is
done, the constant  + is generically non-zero. In the following, we denote this holographic
superconductor solution by ‘HSC’.

The constant h0, which is now chosen such that  ̂� = 0 can be positive or negative.
The transformation relating these two constants is charge conjugation, which acts on the
gauge field and the elementary charge of the scalar field as

h(r)! �h(r) , q ! �q . (2.94)

Charge conjugation is a symmetry of the field equations (2.86). Each solution is related
to a solution with opposite chemical potential and total charge by the charge conjugation
transformation (2.94).
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Figure 2.7: In the holographic superconductor models the presence of a charged scalar field
is interpreted as the formation of a charged scalar condensate and the breaking of the U(1)
symmetry in the field theory. Figure taken from [27] with consent of the author.

As for the electron star solution, the transformations (2.65a) generate solutions with
di↵erent physical quantities. This can be seen as follows. The free parameter in the IR
asymptotic solution (2.88) is not h0 which has to be chosen to ensure the spontaneous
breaking of the U(1) symmetry. We can identify a deformation parameter by noticing
that if one replaces

log r ! log r/r0 (2.95)

for an arbitrary r0, (2.88) is still an asymptotic solution to the field equations (2.86). Then,
the transformations (2.65a) relate solutions by the same rescaling as for the electron star
solution together with the rescaling of the condensate, that is

(µ̂, Q̂, M̂ ,  ̂+)! (�µ̂,�2Q̂,�3M̂,�� ̂+) . (2.96)

It is useful to have a handle of the asymptotics of the metric and the gauge field
beyond the leading order (2.93), in particular to understand the corrections due to the
condensate. At  ̂+ = 0 we know the exact solution, i.e. the extremal Reissner-Nordström
geometry (2.16-2.18). When the scalar field is non-trivial, it will backreact on the solution,
but since we are taking the scalar field to be a purely normalizable mode as r ! 0, we can
compute the backreaction perturbatively in (2.86). The resulting deformed UV solution
with the condensate turned on behaves, as r ! 0, as
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2
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,
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q̂2 ̂2

+

2�(2�� 1)
r2� + . . . ,

 ̂(r) =  ̂+r� + . . . ,

(2.97)

where the dots denote terms which are subleading with respect to those we have included,
and whose exact order is unimportant.

Equations (2.97) solve the field equations (2.86) for arbitrary values of µ̂, M̂ , Q̂,  ̂+.
This is because the relations (2.31) are imposed at the event horizon where the gauge
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field must vanish for regularity and the metric component gtt vanishes. The UV does not
know about these relations if it is not connected to a regular IR solution. Remarkably,
f(r) receives no corrections to leading order, and h(r) and the relation between g(r) and
f(r) are corrected only by terms which are subleading with respect to all terms appearing
in the exact black hole solution (2.30). This means that the condensate enters into the
metric and gauge field at subleading order in r ! 0 with respect to the charge and mass
parameters of the solution.

To compute the free energy of the holographic superconductor solution, it is possible to
apply the same procedure as for the electron star, presented in Section 2.4.4. The reason
is that the scalar field deforms the extremal black hole solution in the UV only by terms
which are subleading, and do not contribute at all to any of the quantities in (2.32). For
the electron star, this was obvious since the solution outside the star coincides with the
extremal RN black hole; for the holographic superconductor, this is a consequence of the
asymptotic behaviour (2.97) and in particular the fact that f(r) and h(r) are unchanged
to the order that gives finite contributions to (2.32). The free energy of the holographic
superconductor solution is then simply given by the coe�cient cHSC appearing in the
expression of the free energy

⌦̂ = �1

3
cHSC µ̂3 . (2.98)

In Fig 2.8, we display the free energy of the ERN and the HSC as a function of the
elementary charge q̂. The point q̂ = q̂min, with

q̂2
min ⌘ �

m̂2
s

3
, (2.99)

is the minimal elementary charge for which the IR geometry in (2.91) is an asymptotic
solution to the field equations. Although it is expected, the phase transition between
the extremal black hole and the holographic superconductor is not visible in Figure 2.8
because we could not compute the free energy su�ciently close to the possible transition.
Another possibility is that another phase emerges between the ERN and the HSC phases.

2.5.3 Other holographic models for superconductivity

We have seen that Einstein-Maxwell gravity coupled to a free charged scalar field provides
a solution describing a superconducting dual ground state. In this solution, the Poincaré
invariance is restored at low energy. It is possible to consider other emergent symmetries.
For example, by adding a quartic interaction for the scalar field to the Einstein-Maxwell-
scalar action (2.72), the model admits a Lifshitz solution where the metric and the gauge
field behave as in (2.54) and the scalar field is constant [52]. Since this solution is a
fixed point of the holographic renormalization group (i.e. it is an exact solution of the
field equations), one must consider irrelevant perturbations, as in the electron star model,
to connect the Lifshitz solution to the near-boundary AdS4 asymptotics. As for the
Horowitz-Roberts holographic superconductor, the solution with a non-trivial scalar field
is thermodynamically favoured.

Holographic superconductor models were originally discovered at finite temperature
by Hartnoll, Herzog and Horowitz in the seminal works [53, 54]. They used the discovery
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of Gubser that charged black holes are unstable to the creation of charged scalar hair (see
Section 2.5.1) to construct the first holographic superconductor. They considered in [53]
the Einstein-Maxwell-scalar action (2.72) and treated the gauge field and the scalar field
as probe fields on top of the AdS-Schwarzschild black hole. In the second paper [54], they
considered the backreaction of these fields on the geometry and found hairy black hole
solutions. Both in the probe and the backreacted cases, the scalar field can be non-trivial
in the bulk only below a critical temperature Tc and the solution exhibits a non-trivial
vev for the dual field theory operator. In this case, the solution is a hairy black hole
and it is thermodynamically favoured. The phase transition at the critical temperature
Tc between the Reissner-Nordström black hole and the hairy black hole is second order
and interpreted as the onset of superconductivity. It is then natural to expect a solution
with a non-trivial scalar field to be favoured at zero temperature, which is the case for
the models of [52, 51].

The appellation ‘holographic superconductor’ is not only justified by the condensation
of a charged scalar operator, but also by the features of the response of the system to the
application of external electric and magnetic fields. The electrical conductivity can be
computed by considering the perturbation of the component Ax of the gauge field. It also
involves the perturbation of the metric component gtx, but it can be eliminated to end
up with an ordinary second order equation for the gauge field perturbation �Ax. Close to
the UV boundary r = 0, �Ax = �A(0)

x + r �A(1)
x + . . ., where �A(0)

x is the applied electric
field in the field theory and �Â(1)

x the resulting current. From linear response theory,
the ‘constant’ of proportionality between these two quantities is the frequency-dependent
conductivity �(!) = �(i/!)(�A(1)

x /�A(0)
x ). In the probe approximation [53], one observes

the opening of a gap in energy in the real part of the conductivity for temperatures below
the critical temperature. In a metal the conductivity does not admit a gap: for arbitrarily
small external electric field, the system is conducting and the induced current is non-zero.
The gap observed in the holographic superconductor corresponds to the binding energy
of the scalar condensate, which is a composite operator of the fermionic operator. To
generate a current in the dual field theory, one must apply a su�ciently large electric field
to break the condensate and free the fermionic degrees of freedom. This ‘hard gap’ is not
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present anymore when one considers the backreaction of the gauge field and the scalar
field [54]. It is replaced by a ‘soft gap’: at small frequency, the conductivity becomes very
small. The real part of the conductivity also admits a delta function at zero frequency.
This is not the infinite DC conductivity observed in superconductivity because it is also
present in the normal phase for T > Tc. This delta function appears because the system
is translationally-invariant: in the presence of an electric field, a finite charge is infinitely
accelerated because of the absence of dissipation. However, the coe�cient of the delta
function grows as the temperature is lowered below Tc [50].

The second interesting characteristic of holographic superconductors is their capacity
to expel magnetic fields. In normal superconductors, it is known as the Meissner e↵ect.
However, above a critical value the magnetic field can penetrate in the material and it
is not superconducting anymore. The phase transition between the superconducting and
the normal phases as function of the applied magnetic field can be first order or second
order. In holography, the simplest model to consider to study this phase transition is a
probe charged scalar field in a black hole with both electric and magnetic charges [55]. It
turns out that the phase transition is second order, so the holographic superconductor is
type II, as observed in high-Tc superconductors [50].
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Chapter 3

Holographic Bose-Fermi systems

In this chapter, using holography we study the ground state of a system with interacting
bosonic and fermionic degrees of freedom at finite density. The model is based on the
combination of the ingredients of the holographic superconductor and the electron star.
We show that the system admits solutions which exhibit both fermionic and bosonic
degrees of freedom. When they exist, these solutions are thermodynamically favoured.
We construct the phase diagrams describing the phase transitions between the di↵erent
solutions and compute the low energy fermionic excitations of the system.

This chapter presents the results obtained by the author and collaborators in [1, 2].

3.1 Motivations

We have seen in Sections 2.4 and 2.5 that a charged black hole in AdS spacetime can su↵er
from two unrelated instabilities. They allow the creation of bosonic or fermionic matter,
whose presence is favoured at low temperature, and lead to pioneering holographic models
for the study of non-Fermi liquids and high-Tc superconductors.

It was suggested by Sachdev [33] that the presence of a charged black hole in the
bulk could be interpreted as dual to a totally fractionalized state. When the charge is
sourced by matter fields in the bulk, it corresponds to matter operators in the boundary
field theory. By coupling the electron star model at zero temperature to a neutral scalar
field, it was shown in [56] that the presence of the fermionic fluid and/or the extremal
charged black hole depends on the UV boundary condition imposed to the scalar field. On
the boundary side, this leads to phase transitions between cohesive (presence of the fluid
only), partially fractionalized (presence of both the extremal black hole and the fluid) and
fully fractionalized (presence of the extremal black hole only) phases as a function of the
source for a neutral scalar operator. In the partially fractionalized phase, part of the low
energy fermionic degrees of freedom are subject to fractionalization, and the Luttinger
theorem is violated: the charge contained in the Fermi surfaces does not account for the
total charge of the system. In [57], a similar analysis was done for charged bosonic matter,
leading to analogous results (see also [58]). However, the interpretation is di↵erent in this
case: when the charged scalar field is non-trivial, the U(1) symmetry of the field theory
is broken and the system undergoes a phase transition to a superconducting state.

The creation/destruction of Fermi surfaces and the onset of superconductivity have
thus been studied independently in holography. In the holographic superconductor mod-
els, the boundary bosonic operator that develops a vacuum expectation value is interpreted
as a bound state of fermions. However, in these models, there are no fermionic degrees
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of freedom, so the competition between those and the condensate is not accessible. The
study of such a competition would be interesting for instance to understand the phase
diagram of cuprate superconductors, in particular the onset of superconductivity from
the strange metal phase (see Figure 2.1).

The competition between fermionic and bosonic degrees of freedom has been first
studied in holography in [59]. This was done in the context of a bulk BCS theory in the
near-horizon region of the RN black hole. In this approach, the bosonic field, representa-
tive of Cooper pairs, interacts with the fermionic field via a Yukawa interaction. However,
this approach requires dealing with microscopic fermions and going away from the fluid
approximation. In addition, the coupling can only be there in the case where the bosons
have twice the charge of the fermions.

An interacting description in the fluid approximation was given in [60], where the
scalar is a BCS-like fermion bilinear. The presence of the condensate modifies the equation
of state of the fermionic fluid. It was shown that the resulting ‘BCS star’ solution was
favoured at zero temperature and that a pseudo-gap appears in the Fermi spectral function
of the boundary theory. However, this model too arises at the microscopic level from a
Yukawa interaction when the charge of the scalar is twice that of the fermions.

However, we have seen in Section 2.1 that in the vicinity of a deconfined quantum
critical point, the dressed electrons are subject to fractionalization. In strongly-coupled
systems of fermions, it is possible that the fermions that condense in the superconduct-
ing state are not the elementary fermions but other fermionic excitations which may be
fractionalized. For this reason, we would like to keep the ratio of the charges of the bulk
bosonic and fermionic degrees of freedom arbitrary.

The bosonic degrees of freedom in the bulk will consist of a charged scalar operator.
As for the electron star model (see Section 2.4), we will treat the fermions in the fluid
approximation. In the dual field theory, the scalar operator will be interpreted as a
bound state of fermions, so bosons and fermions are expected to couple directly. To
keep the fluid approximation valid, we will consider in the bulk a simple current-current
interaction between the electromagnetic currents of the scalar field and the fermionic fluid.
This interaction has the virtue of leaving arbitrary the ratio between the charges.

We will first see in Section 3.2 that there are reasons to believe that bulk solutions
exhibiting both bosonic and fermionic degrees of freedom exist. In Section 3.3, we will
consider a fully backreacted system, find the homogeneous and isotropic solutions and
study the resulting phase diagram. In Section 3.5, we compute the low energy fermionic
excitations.

3.2 Beyond the electron star and the holographic superconduc-
tor

We show in this section why one should expect the combination of the holographic super-
conductor and the electron star models to lead to bulk solutions with both bosonic and
fermionic degrees of freedom.

3.2.1 Scalar instability of the electron star

In Section 2.5.1 we discussed the instability of the extremal Reissner-Nordström black hole
to the formation of scalar hair. One can wonder if such an instability can also happen
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to the electron star. Let us consider a probe charged scalar field  with negative mass
squared m2

s satisfying the AdS4 BF bound, with action

S = �1

2

Z

d4x
p�g

�|r � iqA |2 + m2
s| |2

�

, (3.1)

in the electron star background. In the near-horizon region (r ! 1), where the metric
and the gauge field are given by the Lifshitz-like solution (2.54), the scalar field behaves
as [1]

 ⇠ A+ r(z+2)��IR + A� r�IR , r !1 , (3.2)

where

�IR =
1

2

h

(z + 2)�
p

(z + 2)2 � 4g1(h21q̂2 � m̂2
s)
i

. (3.3)

At infinity, the first term is dominant. We have rescaled the parameters according to (2.48)
and (2.75). If the condition

m̂2
s < m̂2

c , m̂2
c ⌘ �

(z + 2)2

4g1
+ h2

1q̂2 , (3.4)

is satisfied, the electron star solution becomes unstable to the formation of scalar hair [1].
This is equivalent to the condition q̂2 > (q̂?

st)
2 where we have defined the stability bound

q̂?
st =

1

h1

s

m̂2
s +

(z + 2)2

4g1
. (3.5)

If the elementary charge q̂ of the scalar field vanishes, for z > 1 the condition for the
instability reduces to

� 9

4
< m̂2

s < �(z + 2)2

4g1
(3.6)

where the first inequality is simply the AdS4 BF bound for a scalar field. This has led
to ‘hairy electron star’ solutions where the neutral scalar field is non-trivial [61]. In this
thesis, we focus on the case where q̂ is non-zero. In Figure 3.1 is displayed the critical
line above which the condition (3.4) is satisfied and the electron star is unstable.

3.2.2 An analysis from the holographic superconductor

In the holographic superconductor model of Section 2.5.2, it is possible to define a local
chemical potential which controls the formation of the fluid of charged fermions, in the
same manner as for the electron star model. This local chemical potential is given by
µ̂l = h/

p

f(r) and vanishes both in the UV and in the IR, as can be seen from Eq. (2.88)
and (2.93). It also has a maximum, and if this maximum value happens to be larger than
the mass of the fermions m̂f , there exist two solutions r1 and r2 to the Eq. (2.62) which
define the star edges. Thus, one can start from the IR with the asymptotic solution (2.88)
of the holographic superconductor solution. The local chemical potential will increase
towards the UV and then at the point r2 we can match the solution with an interior
with non-trivial fluid quantities given by (2.52). The density will reach a maximum, then
decrease again until it becomes zero at r1. At this point, the solution is matched with a
new holographic superconductor solution up to the UV boundary.

49



0.88 0.9 0.92
q!

0.2

0.4

0.6

0.8

m! f

!m! s
2"#3"4, Β

!
"1#

Figure 3.1: The boundary of the stability region for the scalar in the ES background. Above
the critical line, the electron star is unstable to the formation of charged scalar hair.

Thus one expects such solution with both non-trivial scalar field and fluid to exist if
the condition

m̂f < µ̂max(q̂, m̂s) (3.7)

is satisfied, where µ̂max(q̂, m̂s) is the maximum value for a HSC solution with parameters
(q̂, m̂s). It is very hard to have an analytic handle of the condition (3.7) as a function of
the parameters. One can however compute µ̂max(q̂, m̂s) for a HSC solution numerically [1].
It is displayed in Figure 3.2. The point q̂ = q̂min was defined in (2.99). We also define the
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Figure 3.2: Maximum value µ̂max of the local chemical potential µ̂l = h/
p

f reached in the HSC
solution, as a function of q̂, for (a) m̂2

s = �2 and (b) m̂2
s = �3/4.

critical elementary charge q̂c at fixed m̂f by

µ̂max(q̂c, m̂s) = m̂f . (3.8)

When the condition (3.7) is satisfied, in the region of spacetime where the fluid is non-
trivial, i.e. for r1 < r < r2, one has to take into account the contribution of the fluid to
Einstein-Maxwell equations to get a totally backreacted solution. The fluid will contribute
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and modify the boundary quantities, as the mass, the total charge of the system or the
value of the condensate. This has been done first in [1] and [62]. In these models, the
action is

S =

Z

d4x
p�g



1

22

✓

R +
6

L2

◆

� 1

4e2
FabF

ab

�

+ Smatter + Sbdry (3.9)

where

Smatter = Sscalar + Sfluid (3.10)

is the action for a charged scalar field and a perfect fluid of charged fermions (see Sec-
tion 2.4). In particular, the action for the scalar field is

Sscalar = �1

2

Z

d4x
p�g

⇥|@a � iqAa |2 + m2
s| |2 + u| |4⇤ . (3.11)

The work of [62] considered the case u 6= 0, leading to new Lifshitz solutions involving
both non-trivial scalar field and fluid, while the work of [1] focused on the case u = 0.

3.3 A holographic Bose-Fermi model

In the model (3.9-3.11), the fluid of fermions and the scalar field are not directly coupled
and only interact through the exchange of photons. However, as we discussed in Sec-
tion 3.1, we expect them to interact directly. This will be implemented in the following
model.

Let us consider Einstein-Maxwell theory coupled to matter fields consisting of a charged
scalar field and a perfect fluid of charged fermions with an action given by (3.9) where
the action for the matter fields is

Smatter =

Z

d4x
p�g (Lscalar + Lfluid + Lint) . (3.12)

The scalar field and the fluid interact through the Lagrangian Lint. We focus the analysis
on the case where u = 0 in (3.11), so the Lagrangian density of the scalar field  is

Lscalar = �1

2

�|r � iqA |2 + m2
s| |2

�

. (3.13)

As before, we will take the scalar field to be dual to a relevant operator such that �9/4 <
m̂2

s < 0. When the Lagrangian of interaction Lint vanishes, the system reduces to the one
studied in [1]. We will come back regularly to the results of this particular case.

3.3.1 An action for the fluid

In the electron star model, an action for the fluid was not necessary to compute the
solution. The local chemical potential and the fluid quantities were naturally defined in
terms of the metric and the gauge field. Here, however, we will need to define an action
for the fluid to describe correctly its coupling to the scalar field. Such an action can be
defined by introducing Clebsch potentials (see e.g. [39]).

The action for a perfect fluid of particles of elementary charge qf is

Lfluid = �⇢(n) + nua (@a�+ qfAa) + �(uaua + 1) , (3.14)
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where ⇢ is the energy density, n > 0 the particle number density, ua the velocity, � a
Clebsch coe�cient, � a Lagrange multiplier and qf the elementary charge of the fermions.
To keep the fluid approximation valid for the fermions, we consider a direct coupling

Lint = ⌘Jfluid
a Ja

scalar (3.15)

between the scalar field and the fluid through their respective electromagnetic currents,
given by (2.37) and (2.84), where ⌘ parametrizes the intensity of the coupling and can
have either sign.

The fluid quantities are encoded in the field equations of n, ua, � and � resulting from
the Lagrangian Lfluid + Lint. The field equation for � gives the normalizability condition
uaua = �1 for the fluid velocity. The equation for the particle number density n is

⇢0(n) = ua
�

@a�+ qfAa + ⌘qfJ
scalar
a

�

. (3.16)

On physical grounds, ⇢0(n) is identified with the chemical potential for particle number
which is then given by

eµl(n) = ⇢0(n) = ua
�

@a�+ qfAa + qf⌘J
scalar
a

�

. (3.17)

We see that when ⌘ 6= 0, the local chemical potential depends explicitly on the scalar
field. The field equation of � gives the continuity equation

raJ
a
fluid = 0 (3.18)

of the fluid current. We define the pressure p through the thermodynamical relation

p(n) ⌘ �⇢(n) + neµl(n) . (3.19)

Finally, notice that the field equation for the velocity ua,

n
�

@a�+ qfAa + ⌘qfJ
scalar
a

�

+ 2�ua = 0 , (3.20)

allows to determine the Lagrange multiplier as

� =
1

2
eµln . (3.21)

In what follows we set @a� = 0, so the chemical potential is given by

eµl(n) = qfu
a(Aa + ⌘J scalar

a ) . (3.22)

This is a choice for the model, since we could in principle allow for a non-zero ‘intrinsic’
chemical potential for particle number not related to the fermion charge qf . However our
choice avoids possible singularities, as discussed in [39].

The fluid is made of non-interacting fermionic particles. Consequently, the energy
density ⇢(n) is an increasing function of the particle number density n and the chemical
potential for particle number eµl is positive for all qf (positive or negative). As for the
electron star model, the particle number density n and the energy density ⇢ are functions
of the local chemical potential (3.22) through the integrals (2.42). We will work instead
with the chemical potential for charge density µl defined by (2.45) and the charge density
� given by (2.44). Notice in particular that µl has the same sign as qf since eµl > 0.
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3.3.2 Field equations

We now give the field equations of the system. Einstein equations are

Rab � 1

2
gabR� 3

L2
gab = 2

�

TMxwl.
ab + T fluid

ab + T scalar
ab

�

(3.23)

where the stress-energy tensors of the gauge field and the scalar field are given by (2.11)
and (2.83), and T fluid

ab is the stress-tensor of the perfect fluid, given by (2.36). The field
equation for the scalar field  is the Klein-Gordon equation

� �ra � iqAa � 2iq⌘Jfluid
a

�

(ra � iqAa) + m2
s = 0 (3.24)

and Maxwell equations are written as

raF
ba = e2

�

J b
fluid + J b

scalar + J b
int

�

. (3.25)

Herein we have defined

Ja
int ⌘

�Lint

�Aa

= �⌘q2| |2�ua . (3.26)

Notice that for ⌘ = 0 and  = 0, the field equations reduce to those of the electron
star model, while for vanishing fluid quantities, one recovers the field equations of the
holographic superconductor model.

As for the models presented in Chapter 2, we will make the homogeneous and isotropic
ansatz

ds2 = L2



�f(r)dt2 + g(r)dr2 +
1

r2

�

dx2 + dy2
�

�

,

A =
eL


h(r)dt ,  =  (r) , ua = (ut(r), 0, 0, 0) .

(3.27)

From the normalizability condition uaua = �1, the only non-zero component of the fluid
velocity is ut = 1/(L

p
f). Also, in order to simplify the notation and reduce the number

of parameters, we perform the following parameter and field redefinitions,

Aa =
eL


Âa ,  =

1


 ̂ , ms =

1

L
m̂s , q =



eL
q̂ ,

⌘ = e2L2⌘̂ , µl =
e


µ̂l ,

mf

|qf | =
e


m̂f , �q4

f =
2

e4L2
�̂ ,

⇢ =
1

2L2
⇢̂ , p =

1

2L2
p̂ , � =

1

eL2
�̂ .

(3.28)

These rescalings are similar to these performed for the electron star and the holographic
superconductor models with in addition the rescaling of the current-current coupling
constant ⌘. In particular, the rescaled fluid quantities are given by

⇢̂ = �̂

Z |µ̂l|

m̂f

d✏ ⇥ (✏� m̂f ) ✏
2
q

✏2 � m̂2
f ,

�̂ = sign(µ̂l) �̂

Z |µ̂l|

m̂f

d✏ ⇥ (✏� m̂f ) ✏
q

✏2 � m̂2
f ,

p̂ = �⇢̂+ µ̂l�̂ .

(3.29)
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This is because since eµl > 0 for all qf , we can still apply the computation of Section 2.4.1
to get the rescaled fluid quantities ⇢̂ and �̂. We allow for both signs of qf , i.e. we allow for
the possibility of the fluid to be made up of particles (electrons, qf > 0) and antiparticles
(holes, or positrons, qf < 0). For |µ̂l| < mf , ⇢̂ = �̂ = p̂ = 0 due to the Heaviside step
functions, and there is no fluid.

With the ansatz (3.27) and the rescalings (3.28), the constants e, L and  disappear
from the field equations. The r-component of Maxwell equations is given by (2.85), so we
now consider  ̂ as a real scalar field. The field equations are then [2]

 ̂00 +
✓

f 0

2f
� g0

2g
� 2

r

◆

 ̂0 + g

✓

q̂2h2

f
� m̂2

s � 2q̂2⌘̂
hp
f
�̂

◆

 ̂ = 0 , (3.30a)

h00 � 1
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✓
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+

g0
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+

4

r

◆

h0 � g
⇣

p
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p

f �̂ ̂2
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◆
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rg(p̂ + 3)� 1
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+

1

2
r ̂02 +
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g

✓

q̂2h2

f
� m̂2

s

◆

 ̂2

�

f � 1

2
rh02 = 0 . (3.30d)

They are invariant under the transformations (2.65). Notice that the fluid quantities are
functions of the local chemical potential, given by

µ̂l =
hp
f

⇣

1� ⌘̂q̂2 ̂2
⌘

. (3.31)

The fluid parameters mf , qf and � appear in the field equations (3.30) only through the
rescaled quantities m̂f and �̂. When working with these rescaled quantities, the fermionic
charge qf drops out of the equations, and its sign is encoded in the sign of µ̂l.

The bulk fluid is made up of 4d Dirac fermions, thus we can have physical states with
either sign of the charge. In our conventions, Dirac particles (which we call electrons)
have qf > 0, antiparticles (or holes, or positrons) have qf < 0. Thus, a positive chemical
potential will fill particle-like states, and a negative one hole-like states.

For the electron star mode (see Section 2.4), the sign of the local chemical potential
µ̂l is dictated by the sign of the electric potential and it is the same throughout the bulk
(for example, it is non-negative if the boundary value of the electric potential is positive).
On the other hand, we will see that for the system (3.30), it happens that the sign of the
chemical potential is not determined and there can be cases in which µ̂l(r) has di↵erent
signs in di↵erent bulk regions.

From Eqs. (3.29), we see that the fluid density is non-zero for |µ̂l| > m̂f . The case
µ̂l(r) > mf corresponds to a fluid made out of positively charged particles (electrons),
whereas a negative µ̂l(r) < �m̂f leads to a fluid of negatively charged particles (positrons).
Notice that, in Eqs. (3.29), the energy density ⇢̂(r) and the pressure p̂(r) are positive in
both cases, whereas the charge density �̂ is positive or negative for the electrons and
positrons fluids, respectively.

We will see in the next sections that, depending on the parameters, bulk solutions
with various arrangements of di↵erently charged fluids are possible (electrons, positrons,
or both).

The relevant parameters of the model are thus:

scalar: (q̂, m̂s) , fluid: (m̂f , �̂) , interaction: ⌘̂ , (3.32)
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where the scalar field mass satisfies the AdS4 BF bound �9/4 < m̂2
s < 0 (i.e. the operator

dual to  is relevant). We restrict the analysis to the case where the scalar parameters
satisfy (2.90) and the fermion mass satisfies 0 < m̂f < 1. Then, the holographic super-
conductor of Section 2.5.2) and the electron star 2.4 are solutions of the system when
there is no fluid and the scalar field is trivial, respectively.

3.3.3 UV asymptotics

We are looking for solutions dual to field theory states at finite density, so the metric and
the gauge field must behave close to r = 0 as

r ! 0 :
f(r)

c2
⇠ g(r) ⇠ 1

r2
, h(r) ⇠ c

⇣

µ̂� Q̂r
⌘

. (3.33)

It means in particular that the local chemical potential vanishes close to the UV boundary
as

µ̂l ⇠ µ̂ r, r ! 0 , (3.34)

so the fluid quantities vanish in the near-boundary region. Thus, if the fluid is present
in part of the bulk spacetime, it contributes to the UV asymptotics only through the
total charge Q̂ (and the chemical potential) appearing in (3.33). As for the holographic
superconductor model, we will take the scalar field to be a purely normalizable mode to
exhibit a possible spontaneous breaking of the boundary U(1) symmetry. In this case
one can compute perturbatively the solution in the UV region and obtains the same
asymptotics (2.97) as for the holographic superconductor solution.

3.3.4 Solutions at finite density

Given that the UV is fixed to be AdS4 with a non-vanishing electric flux, we already know
three solutions to the field equations (3.30) at zero temperature. These are:

• ERN: The Extremal Reissner-Nordström black hole (see Section 2.3), which is a
solution with trivial scalar field and fluid,  ̂ = 0 and �̂ = ⇢̂ = 0. The electric charge
is all carried by the black hole, corresponding to a completely fractionalized phase,
there are no (gauge-invariant) charge carriers in the dual field theory state.

• ES: The Electron Star (see Section2.4), where the scalar field is trivial,  ̂ = 0. The
charge is completely carried by the fluid of electrons. In the dual field theory state,
the charge is carried by fermionic degrees of freedom.

• HSC: The Holographic Superconductor (see Section2.5.2), where the fluid is trivial,
�̂ = ⇢̂ = 0. In this case, the charge is carried by the scalar field and has the dual
field theory interpretation of a superconducting state.

In addition to these known branches, the discussion of Section 3.2 suggests that there
may be other solutions where the charge would be carried both by the scalar field and
the fluid of fermions. In particular, as discussed in Section 3.2.2, one can start from the
HSC solution in the near-horizon region and take into account the backreaction of the fluid
when it can form, that is when the condition (3.7) is satisfied. The analysis of Section 3.2.2
is applicable only when the scalar field and the fluid do not interact directly, that is when
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⌘̂ = 0 in which case the local chemical potential is given by µ̂l = h/
p

f . This has been
used in [1] to obtain new holographic solutions dual to field theory states exhibiting both
a charged scalar condensate and fermionic degrees of freedom. The gravitational solutions
consists of a fluid of electrons confined in a shell r1 < r < r2 together with a non-trivial
scalar field everywhere in the bulk spacetime and have been called ‘compact stars’ [1]. For
r > r2, the solution is the same as for the HSC, given by (2.88). The solution for r < r1

is modified compared to the case of the HSC, however the asymptotic solution close to
the UV boundary is still given by (2.97) as discussed in Section 3.3.3.

The compact star solutions of [1] have been obtained by considering that the fluid
quantities vanish in the near-horizon geometry. One can imagine that there could exist
solutions for which the scalar field and the fluid coexist in this region. This would require
that the local chemical potential – and consequently the fluid quantities – become constant
for r ! 1. Another possibility is that the fluid quantities diverge at infinity, but this
is hardly acceptable. The authors of [1] have tried to obtain solutions where the fluid
quantities become constant at infinity in the presence of the scalar field, but it appears
that such solutions do not seem to exist for m̂2

s < 0. In fact, for m̂2
s > 0, the model

admits exact Lifshitz-like solutions (given in Appendix B) where the fluid quantities and
the scalar field are constant [1]. However these solutions, taken to be the near-horizon
solution, are not expected to connect to the UV AdS4 geometry (3.33) because the field
theory scalar operator dual to  ̂ is an irrelevant operator which does not permit to ‘escape’
from the near-boundary geometry.

Lifshitz-like solutions with non-trivial scalar field and fluid can be obtained for m̂2
s < 0

when the scalar field admits a quartic interaction, i.e. u 6= 0 in (3.11). These solutions
have been found in [62] and do connect to the near-boundary AdS4 geometry. In this
case the fluid quantities vanish at a point of the bulk spacetime which defines the star
boundary. Solutions similar to the compact star solutions of [1] have also been found
in [62]. In this case the near-horizon geometry is given by the Lifshitz-invariant holo-
graphic superconductor solution of [52], and the fluid of electrons is confined in a shell of
the bulk spacetime.

Let us now come back to the system (3.30). By using the same arguments that we gave
in Section 3.2.2 and [1], one can also construct new solutions in the case where the bulk
bosonic and fermionic degrees of freedom interact directly, i.e. for ⌘̂ 6= 0. The first step
is to look at the behaviour of the local chemical potential (3.31) in the HSC solution. It
vanishes asymptotically both in the UV and in the IR and admits at least one extremum
value in the bulk. In the UV, the behaviour of µ̂l is given by (3.34). In the IR, it is given
by

µ̂l ⇠ h0 r�+1 (log r)1/2 ⇥�4⌘̂q̂2 log r + 1
⇤

+ . . . , r !1 . (3.35)

Again, the system is invariant under charge conjugation which acts on the gauge field and
the scalar elementary charge by (2.94). We thus choose h0 to be positive, i.e. h(r) > 0 in
the whole spacetime, such that the boundary chemical potential µ̂ and the total charge
Q̂ are positive.

For ⌘̂ > 0 the local chemical potential µ̂l is negative in the IR, so µ̂l has both a negative
minimum value and a positive maximum value at finite radii rmin and rmax in the bulk,
with rmin > rmax. For ⌘̂  0, the behaviour of µ̂l is similar to what happens in the compact
star solutions of [1], where it is always positive and admits a maximum. We recall that
the IR free parameter h0 is chosen such that the scalar field is a pure normalizable mode
in the near-boundary region.
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Therefore, in addition to the ERN, ES and HSC, we have found in [2] three kinds of
new solutions dual to field theory states at finite density:

• Compact electron star (eCS) : a fluid density is confined in a shell whose bound-
aries re

1 and re
2 satisfy µ̂l(re

i ) = m̂f , i = 1, 2. The charge density of the fluid is positive,
then the fluid is made of electrons. This situation is displayed in Figure 3.3.
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Figure 3.3: Profiles of (a) the local chemical potential and (b) the fluid charge density for
eCS solutions.

• Compact positron star (pCS) : a fluid density is confined in a shell whose bound-
aries rp

1 and rp
2 satisfy µ̂l(r

p
i ) = �m̂f , i = 1, 2. The charge density of the fluid is

negative, thus the fluid is made of positrons. This situation is displayed in Figure 3.4.
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Figure 3.4: Profiles of (a) the local chemical potential and (b) the fluid charge density for
pCS solutions.

• Compact positron/electron stars (peCS) : In this case, the solution exhibits
charge polarization in the bulk: two fluid shells of opposite charges are confined in
distinct regions of spacetime, bounded respectively by (re

1, r
e
2) and (rp

1, r
p
2) determined
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by the equations

µ̂l(r
e
1) = µ̂l(r

e
2) = m̂f , µ̂l(r

p
1) = µ̂l(r

p
2) = �m̂f . (3.36)

The fluid in one region is made of electrons, the one in the other region of positrons.
Clearly, for this solutions to exist, the chemical potential must change sign in the
bulk. Due to fixed UV asymptotics of the local chemical potential, the fluid of
electrons is situated closer to the UV boundary than the fluid of positrons. This
situation is displayed in Figure 3.5.
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Figure 3.5: Profiles of (a) the local chemical potential, (b), (c) the fluid charge densities
for peCS solutions.

The kind of compact star(s) (CS) solutions that may exist depends on the maximum
and minimum values of the local chemical potential,

µ̂max(m̂
2
s, q̂, m̂f , �̂, ⌘̂) ⌘ max

0<r<1
µ̂l(r) , µ̂min(m̂

2
s, q̂, m̂f , �̂, ⌘̂) ⌘ min

0<r<1
µ̂l(r) . (3.37)

The possible outcomes are summarized in Table 3.1. We denote the case where no compact
star(s) exists by ‘noCS’. Notice that µ̂max > 0 for all ⌘̂; µ̂min is negative when ⌘̂ > 0 and
vanishes for ⌘̂  0. When ⌘̂  0, the local chemical potential is positive in the whole
spacetime and only compact star solutions of the eCS kind can form.
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µ̂min < �m̂f µ̂min > �m̂f

µ̂max > m̂f peCS, pCS, eCS eCS
µ̂max < m̂f pCS noCS

Table 3.1: Conditions on the minimal and maximal values of the local chemical potential for the
existence of the compact star(s) solutions. For given parameters, if the peCS solution exists, the
pCS and eCS are also solutions to the system. ‘noCS’ means that no compact star(s) solution
exists, because |µ̂l(r)| < m̂f everywhere in the bulk.

3.4 Phase diagrams of charged solutions

In Section 3.3.4 we have seen that di↵erent arrangements of fermionic fluids are possible
at zero temperature. Depending on the parameter values, we can go from the pure
condensate with no fermions (HSC), purely positive or purely negative confined fluid
shells (eCS and pCS respectively), and polarized shells of positive/negative charged fluid
regions (peCS). In all these configurations, the fermionic charges are surrounded by the
scalar condensate, which dominates the UV and IR geometry and confines the fluid in
finite regions of the bulk.

Here we determine which is the solution that has the lowest free energy and dominates
the grand-canonical ensemble for a given choice of parameter. We work at zero tempera-
ture and fixed (boundary) chemical potential µ̂. Thus, di↵erent solutions will in general
have di↵erent charges.

We already know that, when they exist, the ES and the HSC solutions are thermo-
dynamically favoured with respect to ERN black hole (see Figures 2.6 and 2.8). To see
whether the CS solutions are favoured or not, we shall compare their free energy, which is
obtained by computing the on-shell Euclidean action, with the one of the other solutions.
But it turns out that as for the ES and HSC solutions, the free energy for the CS solutions
can be put in the form (see Section 2.4.4)

⌦̂ = �1

3
cCSµ̂

3 . (3.38)

The constant cCS and the corresponding constant for the other branches ERN, HSC and
ES, are given by

ci =
Q̂i(µ̂)

µ̂2
, i = peCS, pCS, eCS, HSC, ES, ERN, (3.39)

where the charge Q̂i and the chemical potential µ̂ are read o↵ from the UV asymptotics
for each type of solution. Thus, to determine which solution has the smallest free energy,
we must compare the values of the constants cERN, cHSC, cES and cCS.

We performed this analysis numerically on the solutions described in Section 3.3.4. We
checked the relation (3.39) numerically on the various branches, it is obeyed with great
accuracy on a large range of values of µ̂ and Q̂. This both confirms the validity of (3.39),
and constitutes a check of our numerical procedure. The results of the numerical analysis
reveal a rich phase diagram, with the interplay of various phase transitions as we shall
see now.
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Figure 3.6: Free energy (normalized to the chemical potential) of the four competing solutions,
for fixed scalar mass m̂2

s = �2 and ⌘̂ = 0. In (a) and (b) ⌦̂ is plotted as a function of q̂ for two
fixed values of the fermionic mass m̂f . The HSC and the eCS solution are unknown for q̂ < q̂min,
whereas the ES and the ERN continue past this point. In (c) and (d) ⌦̂ is a function of m̂f for
two fixed values of the scalar field charge . The eCS solution exists only for m̂f < µ̂max, where
it merges with the HSC. The ES merges with the ERN solution as m̂f ! 1.

3.4.1 Free energy and phase diagrams for ⌘̂ = 0

The free energy in the case where the scalar field and the fluid are not coupled directly,
i.e. ⌘̂ = 0, has been obtained in [1]. It is displayed in Figures 3.6 and 3.7. In this
case the local chemical potential is defined positive and only eCS solutions can form (see
Table 3.1). The figures show that the eCS solution is favoured in the region where it
exists. There is a crossing of the HSC and ES branches but, as far as we could determine,
it is always in the region where the eCS solution is favoured so it does not correspond to
a phase transition.

There is instead a phase transition at the point where the eCS branch ceases to exist
and it connects to the HSC solution (at q̂ = q̂c for fixed m̂f , where q̂c is defined by (3.8)).
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Figure 3.7: Free energy (normalized to the chemical potential) of the four competing solutions,
for fixed scalar mass m̂2

s = �3/4, (a) as a function of q̂ for a fixed value of m̂f , (b) as a function
of m̂f for a fixed value of q̂. The lines are again merely for visual aid. The point q̂st =

p
3/2

is the stability bound of the ERN defined in (2.80). The stability bound of the ES q̂?
st, defined

in (3.5), is not displayed because it is very close to q̂st.

The transition appears to be of continuous type as a function of both m̂f and q̂, as can
be seen from the figures. This is natural to expect if, as it seems to be the case, the
eCS starts dominating at the point where it is allowed as a solution, i.e. on the curve
µ̂max = m̂f , where it has the same free energy as the HSC solution. As a result we obtain
the phase diagram of the system shown in Figure 3.8.

3.4.2 Free energy and phase diagrams for ⌘̂ 6= 0

When the scalar field and the fermionic fluid couple directly, new solutions can arise in the
system: a star made of negatively charged fermions can form, a positron star. The phase
diagram thus becomes richer. We will focus in this section on the CS/HSC transitions
obtained in [2]. In Section 3.4.4, we will analyse the transitions CS/ES and HSC/ERN.

We will first analyze what happens if we vary ⌘̂ keeping other parameters fixed (Fig-
ures 3.9a and 3.9b). As we have seen in Section 3.4.1, for ⌘̂ = 0, whenever eCS solutions
exist, they dominate the ensemble. Otherwise, the preferred solution is the HSC.

Let us first choose the parameters so that, for ⌘̂ = 0, eCS is the preferred solution
(Figure 3.9a): if we dial up a positive interaction term ⌘̂, eventually the e↵ect of the
condensate polarizes the star and, at a critical value ⌘̂⇤ > 0, we find a continuous transition
to the peCS solution, which now is the one dominating the ensemble. The eCS keeps
existing beyond the critical point ⌘̂⇤, where we also see the emergence of a new pCS
solution which starts dominating over the HSC solution but not over the peCS solution.

On the other hand, if we start from a point where, for ⌘̂ = 0, there is no eCS solution
(Figure 3.9b), we see that dialing up ⌘̂ either way one gets to a critical point where either a
positive or a negative charged star will be formed, and dominate the ensemble henceforth.

For a given (positive) value of ⌘̂, the type of solution depends on the fermion mass
m̂f , as shown in Figure 3.9c. At small mass, the polarized peCS solution dominates over
the eCS and pCS solutions. As the mass is increased, one first encounters a continuous
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Figure 3.8: Phase diagram showing the transition between the HSC and the eCS solutions at
vanishing coupling constant.

transition from the peCS to the pCS solution at the critical value m̂(1)
f⇤

. At this point, the
(subdominant) eCS solution merges into the (subdominant) HSC solution. Then, at the

second critical point m̂(2)
f⇤

the charged fluid disappears and the solution merges into the
HCS solution.

We have also analyzed the phase diagram as a function of the scalar charge q̂. Phase
diagrams of the system are displayed in Figure 3.10, in the plane (m̂f , ⌘̂) at fixed scalar
charge q̂ (Figure 3.10a) and in the plane (m̂f , q̂) at fixed ⌘̂ (Figures 3.10b-3.10d). The
critical lines separating the various phases correspond to the points where the maxima and
minima of the local chemical potential are equal in absolute value to m̂f . The di↵erent
colors correspond to the dominant phase in each region. Thus, all of these transitions are
continuous and take place at the points where it is possible to fill the charged fermion
states: whenever a fluid solution is possible by the condition |µ̂l| > m̂f , that solution
will form. Furthermore, solutions in which the charge is distributed between more fluid
components are preferred.

3.4.3 Charge distribution and screening

In the CS solutions, the electric charge

Q̂ =


eL

1

V2

Z

V2

?F (3.40)

of the system, where V2 is the spatial volume of the field theory, is shared between the
scalar field and the fluid(s). With the ansatz (3.27), the electric charge carried by the
scalar field in the bulk is

Q̂scalar =

Z

dr
p�g J t

scalar = q̂2

Z 1

0

dr

p
g

r2
p

f
h ̂2 (3.41)
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Figure 3.9: Free energy (normalized to the chemical potential). (a) displays the free energy as a
function of ⌘̂ in the transition between eCS and peCS solutions, where ⌘̂⇤ ' 0.17 is the critical
coupling constant. (b) displays the free energy as a function of ⌘̂ in the transition between eCS,
HSC and pCS solutions; ⌘̂(1)

⇤ ' �0.24 and ⌘̂(2)
⇤ ' 0.51 are the critical coupling constants between

the eCS and HSC solutions, and the HSC and pCS solutions, respectively. (c) displays the free
energy as a function of m̂f in the transition between peCS, pCS and HSC solutions; m̂(1)

f⇤ ' 0.24

and m̂(2)
f⇤ ' 0.74 are the critical coupling constants between the peCS and pCS solutions, and

the pCS and HSC solutions, respectively. To avoid clutter, in (a), (b) and (c) we did not display
the (normalized) free energy of the ES and the ERN solutions. They are much smaller than the
free energy of the CS and HSC solutions: in (a) and (b), the free energy of the ES solution is
equal to 0.49 and 0.42, respectively. In (c), it is between 0.41 and 0.49 depending on m̂f . In all
cases, the free energy of the ERN solution is 1/

p
6 ' 0.41.

and the electric charges of the electron and positron fluids are respectively

Q̂e =

Z

dr
p�g J t

fluid =

Z re
2

re
1

dr

p
g

r2
�̂e ,

Q̂p =

Z

dr
p�g J t

fluid =

Z rp
2

rp
1

dr

p
g

r2
�̂p ,

(3.42)
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Figure 3.10: Phase diagrams of the CS/HSC transitions. The critical lines (solid black lines)
correspond to the minimum and maximum values of the local chemical potential in the HSC
solution, which can be seen from the plots the free energy of the di↵erent solutions (see Fig-
ure 3.9).

where re
1 and re

2 are the boundaries of the electron star, and similarly for the positron
star. The charge densities of the electron fluid �̂e and the positron fluid �̂p are respectively
positive and negative, and given by (3.29) with µ̂l respectively positive and negative.

Additionally, due to the current-current interaction term (3.15) and the fact that by
Eq. (3.26) the scalar current is linear in the gauge field, there are screening electric charges,
given by

Q̂int,e = �⌘̂
Z re

2

re
1

dr

p
g

r2
q̂2 ̂2 �̂e , Q̂int,p = �⌘̂

Z rp
2

rp
1

dr

p
g

r2
q̂2 ̂2 �̂p , (3.43)

which reflect the interaction between the scalar and the fluid made of electrons and
positrons, respectively, and it gets contributions from the regions where the fluid den-
sity is non-vanishing.
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The total electric charge of the system1

Q̂ = Q̂scalar +
⇣

Q̂e + Q̂int,e

⌘

+
⇣

Q̂p + Q̂int,p

⌘

(3.44)

matches the UV asymptotic behaviour of the gauge field (3.33),

Q̂ = �1

c
h0(0) (3.45)

where c > 0 satisfies

c2 = lim
r!0

r2f(r) (3.46)

as can be seen from (3.33). This has been verified numerically in all solutions we have
constructed.

In Eq. (3.44), the second and third terms represent the total contributions from each
charged fluid. Despite the possible presence of local negative charge components, we
will show below that all three terms in Eq. (3.44) are positive for all solutions under
considerations. This is consistent with our choice µ̂ > 0 for the boundary chemical
potential in the UV asymptotics (3.33), which implies that the boundary charge Q̂ must
be positive in all solutions.

To be compared, the physical quantities of di↵erent solutions must be given at fixed
chemical potential µ̂. The field equations are invariant under (2.65). In particular, the
transformations (2.65a) generate physically di↵erent solutions through (2.96) and can be
used to obtain the di↵erent solutions at fixed chemical. Equivalently, one can compare
quantities invariant under (2.65a). For the charges, the ratio Q̂i/Q̂ is obviously invariant.
For the condensate, the ratio hOi/µ̂� is invariant.

Let us first consider the scalar field condensate contribution to the total charge. As
a consequence of the choice µ̂ > 0 in the UV, the electric potential h(r) is positive
throughout the bulk2. Thus, from Eq. (3.41), one can see that the electric charge of the
scalar field Q̂scalar is positive.

Due to the signs of the local charge densities in (3.42), Q̂e is positive, and Q̂p is
negative. However, the latter is over-screened by the scalar field through the charge of

interaction Q̂int,p, so that
⇣

Q̂p + Q̂int,p

⌘

> 0. This can be seen from Eq. (3.42-3.43) and

the fact that, inside the positron fluid, (1 � ⌘̂q̂2) < 0, since by Eq. (3.31) this quantity
determines the sign of the chemical potential.

By a similar reasoning, Q̂int,e is positive (negative) for ⌘̂ < 0 (⌘̂ > 0), but
⇣

Q̂e + Q̂int,e

⌘

is always positive. Thus, for electrons, there may be charge screening or anti-screening,
but never over-screening.

The previous discussion gives a qualitative understanding of why the polarized electron-
positron compact stars are stable configurations: although the positron and electron parts
of the fluid are made up of positive and negative charge fermionic constituents, respec-
tively, the screening of the negative electric charge by the scalar condensate renders the
total charge positive in both fluids. In particular, for peCS solutions, the two charged
shells experience electromagnetic repulsion, rather than attraction. Gravitational and
electromagnetic forces balance each other, which makes the solution stable.

1In all our solutions except the extremal Reissner-Nordström black hole, there is no charged event horizon and
the electric charge is shared between the fluid(s) and the scalar field.

2There can be, in principle, solutions with HSC IR and UV asymptotics in which h(r) changes sign, but these
are expected to have larger free energy [51].
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Figure 3.11: (a) Distribution of the electric charge components and (b) value of the condensate
in the compact star(s) solutions corresponding to the choice of parameters in Figure 3.9a. To
avoid cluttering of the figures, the electric charge of the scalar field Q̂scalar is not displayed.
The dashed line at the critical value ⌘̂⇤ ' 0.17 marks the transition between the eCS and peCS
solutions visible in Figure 3.9a.
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Figure 3.12: (a) Distribution of the electric charge and (b) value of the condensate in the
compact star(s) solutions corresponding to Figure 3.9b. The vertical dashed lines indicate the
phase transitions visible in Figure 3.9b. The values ⌘̂(1)

⇤ ' �0.24 and ⌘̂(2)
⇤ ' 0.51 are the critical

coupling constants marking the transition between the eCS and HSC solutions, and the HSC
and pCS solutions, respectively.

In Figures 3.11-3.13 (left) we present the distribution of the total electric charge of the
system between the scalar field, the fluids of electrons and positrons and the charges of
interaction for di↵erent values of the parameters (the same that were used in Figures 3.9).
The boundary condensate hOi is also shown in those figures (right). It is interesting to
note that it is lower in the CS solutions than in the HSC solution. In Section 3.5 we will
show that the presence of fermions in the bulk maps to the formation of Fermi surfaces
in the dual field theory. If one interprets the scalar operator O as being a composite
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Figure 3.13: (a) Distribution of the electric charge and (b) value of the condensate in the
compact star(s) solutions corresponding to Figure 3.9c. The dashed lines at the critical values
m̂(1)

f⇤ ' 0.24 and m̂(2)
f⇤ ' 0.74 mark the transitions between the peCS and pCS solutions and the

pCS and HSC solutions, respectively. The same value m̂(1)
f⇤ corresponds to the (subdominant)

transition between the eCS and HSC solutions

operator of the fermionic operator, the suppression of part of the condensate in the CS
solutions compared to the HSC solution can be thought of as coming from the breaking
of part of the scalar operator excitations.

3.4.4 Comments on the CS/ES and HSC/ERN phase transitions

The small q̂ region, where the HSC and the eCS approach the ERN and the ES respec-
tively, deserves some further analysis. For simplicity, we will focus on the case ⌘̂ = 0,
studied in [1]. As we have mentioned earlier, the branches with non-zero condensate are
only known for q̂2 > q̂2

min, where q̂min is defined by (2.99), and this is the range in which our
ansatz gives a solution. Additional special values of q̂ are given by the stability bounds q̂st

and q̂?
st of the ERN and the ES to the formation of scalar hair, given respectively by (2.80)

and (3.5). Thus one can distinguish two cases, depending on whether q̂st and q̂?
st are larger

or smaller than q̂min [1]:

i q̂st (q̂?
st) < q̂min

For large charge q̂ > q̂min the HSC (eCS) dominates over the ERN (ES, respectively).
However there is an intermediate region q̂st (q̂?

st) < q̂ < q̂min in which a non-trivial
solution for the HSC (eCS) should exist but its form is not known. Thus, this region
is outside the reach of our investigation, as well as the region of even smaller q̂ below
the stability bound3.

ii q̂st (q̂?
st) > q̂min

In this case, for large q̂ again one expects the HSC (eCS) to dominate. For interme-
diate values of the charge, q̂min < q̂ < q̂st (q̂?

st), the HSC (eCS) IR geometry is still

3In [51] two putative additional branches of solutions with condensate were found in the region 0 < q̂2 <
�2m̂2

s/5 but these authors were not able to determine whether such solutions have free tunable parameters to
allow them to connect to the UV asymptotics. At any rate one of the two branches seemed to connect smoothly
onto the region q̂ > q̂min.
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allowed, but since the IR of the ERN (ES) is stable, the latter should now dominate
the ensemble. Either the HSC and the eCS merge smoothly with the ERN and ES,
respectively at q̂st at q̂?

st, or there is a crossing over (first order phase transition) at
a larger critical q̂, and then the HSC and eCS disappear into some other subleading
solutions at q̂min.

The two values of m̂2
s we considered fall in the two di↵erent cases above:

• For m̂2
s = �2 we have q̂2

min = 2/3, and we are always above the stability bound of
the ERN since any q̂2 > 0 satisfies (2.79). The same can be said for the ES stability
bound for the parameters we have chosen. Thus, we are in case i. We see from
Figure 3.6 that the eCS and HSC dominate at any q̂ above q̂min, but unfortunately
our level of numerical precision does not allow us to determine whether the HSC
(eCS) solution reaches the boundary of this region, or if it stops at some larger q̂.
In either case, there must be a new solution dominating the ensemble down to q̂st

and q̂?
st. It would be very interesting to find solutions in the region q̂2 < �m̂2

s/3.

• For m̂2
s = �3/4 we have q̂2

min = 1/4 and q̂2
st = 3/4, thus we are in case ii. In

Figure 3.7a and 3.8b we have marked the point q̂ = q̂st where the scalar mode around
the ERN becomes unstable; the point q̂?

st falls very close to q̂st (see Figure 3.1) and it
is not displayed. From Figure 3.7a, we cannot determine whether the eCS solution is
merging with the ES at q̂st before reaching q̂min, or whether the two branches cross.
If there is a crossing at some q̂ between q̂min and q̂st, then there is a phase transition
between eCS and ES; if instead the crossing happens for q̂ > q̂st then there would
be a region where neither the ES nor the eCS is the dominant solution.

3.5 Low energy fermionic spectrum of holographic Bose-Fermi
systems

In Section 3.3, we have shown that there exist asymptotically AdS4 solutions with both
charged fermionic and bosonic matter. By computing the free energy in Section 3.4, we
found that the presence of both is favoured. When this happens, the dual field theory
state exhibits a non-vanishing vacuum expectation value for a scalar charged operator,
interpreted as a sign of the onset of superconductivity. Also, in the electron star model, the
presence of a charged fluid of fermions in the bulk has been interpreted as the formation of
Fermi surfaces in the dual field theory [43, 44]. Thus, in addition to the scalar condensate,
one expects that the Bose-Fermi state allows for gapless low energy fermionic excitations.

The aim of this section is to determine the fermionic spectrum at low energy follow-
ing the work [44] and to study in more details the transition between the ES and the
CS solutions. To do so, we will compute the two-point Green’s function – the fermionic
propagator – of the Bose-Fermi state of the field theory. This can be done, using the
AdS/CFT dictionary, by solving the Dirac equation of a probe spinor field in the back-
ground solution [44]. The fluid approximation will allow us to solve this equation in the
WKB approximation. The probe spinor field that we will consider is chosen to be the
representative field for electrons and will correspond to the electronic excitations of the
bulk background. Since the probe field is supposed to be an electron of the electron star,
it will carry a positive electromagnetic elementary charge |qf |.

For convenience, we rescale the time coordinate t ! t̃ = c t to remove the constant c
from the solutions (it appears for example in (3.33)). We recall that this is equivalent to
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apply a transformation (2.65b) with b = c. In the following, we simply denote the new
time coordinate t̃ by t.

3.5.1 Probe fermion and the Dirac equation

The electromagnetic current of bulk elementary fermions � with charge |qf | is given by

Ja
ferm = �|qf |h�̄�a�i . (3.47)

To take into account the current-current interaction between the fermions and the bosons,
it is natural to add to the action for free probe fermions � the interaction

Sint = ⌘

Z

d4x
p�gJ ferm

a Ja
scal (3.48)

where Ja
ferm and Ja

scal are given by (C.2).
In Appendix C, we obtain in details the Schrödinger-like equation, but we give here

the key steps. By choosing correctly the basis of Gamma matrices, the Dirac equation for
a probe spinor field � in the background solution can be written as an equation for the
two-component spinor � = r�1f�1/4�1,

�

@r + �m̂fg
1/2�3

�

� = g1/2
n

i��2
⇥

!̂f�1/2 + µ̂l

⇤� �k̂r�1
o

� (3.49)

where we have rescaled the momentum and frequency,

!̂ =
!

�
, k̂ =

k

�
(3.50)

by the parameter

� ⌘ |qf |eL


� 1 (3.51)

which is large in the Thomas-Fermi approximation applied to the bulk fermions. In this
limit, the Dirac equation (3.49) is equivalent to the Schrödinger-like equation

�002 = �2V (r)�2 (3.52)

together with the expression

�1 =
1

!̂p
f

+ µ̂l + k̂r

✓

m̂f�2 � 1

�

1p
g
�02

◆

(3.53)

for the components �1 and �2 of the spinor

� =

✓

�1

�2

◆

. (3.54)

The potential V (r) can be expressed as

V (r) = g(r)

⇢

r2
h

k̂2 � k̂2
F (r)

i

� !̂

f(r)

h

!̂ + 2
p

f(r)µ̂l(r)
i

�

+O(��1) (3.55)
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Figure 3.14: Local Fermi momentum squared k̂2
F (r) for (a) an eCS solution and (b) a peCS

solution. It is positive inside the star(s) and negative outside. The points r(1)
s,e , r(2)

s,e , r(1)
s,p and r(2)

s,p

are the boundaries of the electron and the positron stars.

where the local Fermi momentum k̂F is defined as [44]

k̂2
F (r) ⌘ 1

r2

�

µ̂2
l � m̂2

f

�

. (3.56)

Notice that k̂2
F > 0 inside the stars only; these are the regions where k̂F is relevant for our

considerations. The local Fermi momentum is displayed in Figure 3.14 for an eCS solution
and a peCS solution. The momentum k̂ appears only through k̂2 in the potential (3.55),
so we can restrict the analysis to k̂ > 0 without loss of generality.

The Schrödinger equation in a standard form

The potential (3.55) depends on the momentum k̂. In order to see the physical interpre-
tation of Eq. (3.52), we put it in a Schrödinger form where k̂ plays the role of the energy
by introducing the new coordinate y, defined by

dy

dr
= r
p

g(r) . (3.57)

We then obtain the equation

�@2
y'+ �2Ṽ (y)' = ��2k̂2' (3.58)

for the rescaled field ' ⌘ r1/2g1/4�2, where

Ṽ (y) = �k̂2
F (y)� !̂

r(y)2f(y)

⇣

!̂ + 2
p

f(y)µ̂l(y)
⌘

+O ���2
�

(3.59)

in the large-� limit. Herein and in the following, r(y) is the inverse map of

y(r) =

Z r

dr0r0
p

g(r0) . (3.60)
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Figure 3.15: Profile of the potential of the Schrödinger equation for an eCS or a pCS solution
at (a) zero frequency, (b) small frequency 0 < |!̂| ⌧ µ̂. The points ys,1 and ys,2 are the star
boundaries.

Notice that y ! 1 when r ! 1. The equation (3.58) has to be seen as a Schrödinger
equation with negative eigenvalue of the energy E = ��2k̂2. The potential (3.59) is now
independent of the momentum k̂.

At zero frequency, the potential Ṽ is, up to a minus sign, given by the local Fermi
momentum squared (3.56). It is negative inside the star and positive outside, and the
zero-energy turning points are the star boundaries where |µ̂l(y)| = m̂f . Since the local
chemical potential µ̂l vanishes in the IR as in (3.35), the local Fermi momentum behaves
in this region as k̂2

F (y) ⇠ �m̂2
f/r(y)2 where in the IR, the inverse map of r(y) is

y(r) ⇠
s

3

2|m̂2
s|

rp
log r

, r !1 , (3.61)

and the potential Ṽ (y)! 0+ at infinity. The potential Ṽ for !̂ = 0 is displayed schemat-
ically in Figure 3.15a for a compact star solution involving one star (eCS or pCS).

A non-zero frequency 0 < |!̂|⌧ µ̂ a↵ects the behaviour of the potential (3.59) in the
near-horizon region. Indeed,

Ṽ (y) ⇠ �!̂2 +
m̂2

f

r(y)2
, r !1 , (3.62)

so the zero-frequency limit and the near-horizon limit do not commute. This is also
observed in the electron star phase [44] but with a di↵erent asymptotic behaviour with
respect to the potential (3.59), leading to a di↵erent conclusion as we shall see below.
Outside the near-horizon region, the e↵ects of small frequency are small and do not a↵ect
much the shape of the potential. In particular, the zero-energy turning points of the
potential Ṽ are close to the star boundaries. In the UV, the potential (3.59) behaves as

Ṽ (y) ⇠ m̂2
f

y2
, y ! 0 , (3.63)

and e↵ects of !̂ are subleading. The potential for 0 < |!̂|⌧ µ̂ is displayed in Figure 3.15b
for a compact star solution involving one star (eCS or pCS).
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Our aim is to solve the Schrödinger equation (3.58) for the field ' to compute the
poles of the retarded two-point Green’s function of the gauge-invariant field operator dual
to the bulk fermionic particles. To do so, we shall impose the Dirichlet condition on '
at the UV boundary and the in-falling condition in the near-horizon region. This second
condition can be applied when the solution to Eq. (3.58) is oscillating in the IR, that is
when Ṽ (y = 1) = �!̂2 < �k̂2, i.e. for |!̂| > k̂. The dispersion relation of the Green’s
function corresponds in this case to quasinormal modes of the wave equation (3.58). For
|!̂| < k̂, the solution is exponential in the near-horizon region and one shall impose the
regularity condition, leading to normal modes of the equation (3.58).

The discussion of the previous paragraph allows us to distinguish three di↵erent
regimes for the spectrum of the Schrödinger equation (3.58). Let us define the extremal
local Fermi momentum k̂?

F by

k̂?
F ⌘ max

ys,1<y<ys,2

k̂F (y) (3.64)

For k̂ > k̂?
F , the ‘energy’ �k2 lies everywhere below the Schrödinger potential, and there

are no eigenstates. In the intermediate region |!̂| < k̂ < k̂?
F , we expect to have a discrete

spectrum of bound states, which are normal modes of the Schrödinger equation (3.58).
Since the region of spacetime where Ṽ < E is compact for any frequency, the number
of bound states is finite at fixed frequency and is almost independent of the frequency
since !̂ ⌧ µ̂ only a↵ects the near-horizon region. For k̂ < |!̂| ⌧ µ̂, the spectrum of the
Schrödinger equation (3.58) is continuous but there is a discrete set of quasinormal modes,
which dissipate in the IR region by quantum tunnelling. The number of quasinormal
modes is finite at fixed frequency for the same reasons as for the intermediate region.
By setting !̂ = 0, one can count the number of Fermi surfaces. From the qualitative
behaviour of the Schrödinger potential in Figure 3.15a, the number of boundary Fermi
momenta is finite.

In certain parameter regions, although the fluid density is non-zero, there may be no
negative energy bound states (thus no Fermi surfaces): this happens for ‘small stars’, for
which the potential Ṽ is not deep enough inside the star to allow any bound state.

We then expect to obtain a finite number of boundary Fermi momenta k̂n (n =
0, . . . , N � 1) satisfying k̂n < k̂?

F in the large-� limit. Each boundary Fermi surface
admits particle excitations which are stable at low energy |!̂| < k̂. At larger frequency
|!̂| > k̂ with |!̂|⌧ µ̂, the excitations are resonances, they can dissipate. This dissipation
maps in the bulk to the possible quantum tunnelling of the modes into the near-horizon
region. The modes dissipate only at su�ciently large frequency due to the fact that the
compact star does not occupy the inner region of the bulk spacetime. From the field
theory point of view, the bosonic modes, represented in the bulk by the scalar field, the
metric and the gauge field, do not interact with the fermions at su�ciently low energy
and the excitations around the n-th Fermi surface are stable up to |!̂| ⇠ k̂n.

Let us compare the situation to the electron star phase, studied in detail in [44].
At zero frequency the potential is negative for y > ys, where ys is the star boundary,
and Ṽ (y) ! 0� for y ! 1. For !̂ 6= 0, the potential diverges to �1 in the IR so
dissipation occurs for any non-zero frequency. This is because the fluid does occupy the
inner region of spacetime and the boundary fermions interact with the bosonic modes at
low energy. For !̂ > 0, the potential admits a local maximum at a point4 y? / !̂�1/z where

4The corresponding point in the original r variable has been computed by Hartnoll et al. in [44].
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Figure 3.16: Profile of the potential of the Schrödinger equation in the electron star phase at,
(a) zero frequency, (b) negative frequency and (c) positive frequency. The point ys is the star
boundary and y? is the point where Ṽ admits a local maximum in the Lifshitz region for !̂ < 0.

Ṽ (y?) / �!̂2/z < 0. The constant of proportionality can be easily computed analytically.
From the Schrödinger equation (3.58), it means that for positive frequency, the modes
are unstable for !̂ > k̂z because, as explained in [44], the fermionic excitations strongly
interact with the critical modes of the Lifshitz sector. On the other hand, for !̂ < 0, the
potential admits two turning points in the Lifshitz region, so there is a region where it
is positive. The conclusion is that there is no strong dissipation and one finds a set of
quasinormal modes for all k̂ . k̂?

F [44]. These situations are displayed in Figure 3.16.
We should notice that for the compact star solutions, Ṽ also admits a local maximum,

as shown in Figure 3.15. However, this local maximum is positive at zero frequency and
not modified at small frequency |!̂|⌧ µ̂ because it does not belong to the asymptotic IR
region. At larger frequencies, the e↵ects of !̂ are also relevant outside the near-horizon
region. It may happen that for su�ciently large frequencies, this local maximum becomes
negative. In this case, the potential would be negative for all y larger than the first turning
point, leading to unstable states at small momentum.

We have argued above that the number of boundary Fermi momenta dual to the
compact star solutions is finite. In the electron star phase on the other hand, at zero
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frequency we see from (2.54) that the potential asymptotes to zero in the IR as

Ṽ (y) ⇠ �g1
�

h2
1 � m̂2

f

�

y2
, y !1 . (3.65)

It means that there is accumulation of levels at small momentum and, as we will explicitly
show in Section3.5.6, the number of Fermi surfaces turns out to be infinite [63].

Here, we focus on the regime |!̂| < k̂ with |!̂| ⌧ µ̂. In this case, all the modes are
bound states.

Bound states for |!̂|⌧ k̂

In the electron star phase, the dispersion relation of the fermionic excitations around the
Fermi surfaces was found to be linear, up to a (imaginary) dissipative term [44]. We will
see later that this is also what we obtain for the compact star phases. In the rest of this
paper, we will be interested in the behaviour of the particle excitations close to the Fermi
surfaces, that is for |!̂| ⇠ |k̂n � k̂|⌧ k̂n. In this case, |!̂|⌧ k̂ and the dependence on !̂
of the potential (3.59) can be neglected everywhere, in particular in the IR region, and
one can consistently set !̂ = 0. The potential is then simply given by

Ṽ (y) = �k̂2
F (y) . (3.66)

It is easy to generalize the above discussion to peCS solutions. In Figure 3.14, we display
the local Fermi momentum for an eCS solution and a peCS solution. For convenience, we
plot it in the original variable r. Doing so does not a↵ect the analysis as it only changes
the shape of the local Fermi momentum in the radial direction and does not modify the
extremal values of it. It is clear from (3.58) that for k̂ > k̂F (r), the solution is exponential
while it is oscillating for k̂ < k̂F (r). There can exist zero, one or two regions where
k̂ < k̂F (r) depending on the background solution and the value of k̂ compared to the local
maxima of k̂F . For eCS and pCS solutions, the extremal local Fermi momentum is

k̂?
F ⌘ max

r
(1)
s <r<r

(2)
s

k̂F (r) (3.67)

and for peCS solutions, there exist two local extrema

k̂?,p
F ⌘ max

r
(1)
s,p<r<r

(2)
s,p

k̂F (r) and k̂?,e
F ⌘ max

r
(1)
s,e<r<r

(2)
s,e

k̂F (r) . (3.68)

The bounds in the maxima are the star boundaries of the star(s) of the di↵erent solutions.
The conditions for oscillations are detailed in Table 3.2. When oscillations can occur, as
discussed above we expect in the large-� limit that we are considering to obtain a finite
number of eigenvalues kn, bounded above by the extremal local Fermi momenta. They
correspond to oscillations which are localized in the star for pCS and eCS solutions. For
peCS solutions, for min(k̂?,p

F , k̂?,e
F ) < k̂ < max(k̂?,p

F , k̂?,e
F ) these oscillations are localized

in one of the two stars while for smaller momentum there can be quantum tunnelling
between the two stars.
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eCS/pCS peCS
k̂ < k̂?

F oscillations ⇥
k̂?

F < k̂ no oscillations ⇥
k̂ < k̂?,e

F and k̂ < k̂?,p
F ⇥ oscillations in electron and positron stars

k̂?,e
F < k̂ < k̂?,p

F ⇥ oscillations in positron star
k̂?,p

F < k̂ < k̂?,e
F ⇥ oscillations in electron star

k̂?,p
F < k̂ and k̂?,e

F < k̂ ⇥ no oscillations

Table 3.2: Conditions on the momentum for oscillations. When possible, oscillations occur in
the region(s), located in the star(s), where k̂ < k̂F (r).

3.5.2 The WKB analysis for |!̂|⌧ k̂ < k̂?
F

Even if the Schrödinger problem in the standard form allows to have a clear analysis
of the spectrum, we can equivalently obtain the Green’s function for5 k̂ < k̂?

F from the
original Schrödinger-like equation (3.52) with potential (3.55) by looking for zero-energy
solutions. As noticed above, the parameter � defined by (3.51) is large,

� � 1 . (3.69)

This allows us to solve Eq. (3.52) for k̂ < k̂?
F by applying the WKB approximation if the

conditions [44]

|V 0(r)|⌧ �|V (r)|3/2 and |V 00(r)|⌧ �2|V (r)|2 (3.70)

are satisfied. This is the case if the momentum k̂ is not too close to the local extremal
Fermi momenta (3.67) and (3.68). This means in particular that the potential vanishes
linearly at the turning points.

The potential (3.55) is positive both in the UV and the IR, where it behaves as

V ⇠ m̂2
f

r2
, r ⇠ 0 , (3.71)

and

V ⇠ 3

2|m̂2
s|

k̂2

log r
, r ⇠ 1 , (3.72)

where we have used the fact that |!̂| ⌧ k̂. As explained in the previous section, for
k̂ < k̂?

F there can be one or two regions where V < 0; in these regions, the solution
is oscillating and we expect to observe bound states. In Figure 3.17, we display these
possible situations by plotting the potential (3.55) for the compact star(s) solutions at
zero frequency and several values of the momentum.

To get the Green’s function of the gauge-invariant fermionic operators dual to the
probe bulk fermion �, we shall relate the UV asymptotics of � with the normalizable and
non-normalizable modes of �. In the UV (r ! 0), the asymptotic solution to the bulk
Dirac equation (3.49) is [32]

� ' A(k̂, !̂) r��m̂f

✓

1
0

◆

+ . . .

�

+ B(k̂, !̂) r�m̂f

✓

0
1

◆

+ . . .

�

(3.73)

5From now on, we also denote by k̂?
F the maximum of k̂?,e

F and k̂?,p
F for peCS solutions.
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Figure 3.17: Profiles of the potential (3.55) at zero frequency. (a) The potential for an eCS
solutions. The extremal Fermi momentum is in this case k̂?

F ' 24.3. (b) The potential for a
peCS solution. The extremal Fermi momenta are k̂?,e

F ' 17.0 and k̂?,p
F ' 19.6. In (a) and (b),

the points r(1)
s,e , r(2)

s,e , r(1)
s,p and r(2)

s,p are the boundaries of the electron and the positron stars.

where A and B are independent of the radial coordinate. The Green’s function of the
fermionic operator dual to the bulk spinor � is then given by

GR(k̂, !̂) =
B(k̂, !̂)

A(k̂, !̂)
. (3.74)

As shown in Appendix D, �2 behaves in the UV as

�2(r) ' a✏
+(k̂, !̂)

⇣r

✏

⌘�m̂f

+ a✏
�(k̂, !̂)

⇣r

✏

⌘��m̂f+1

, (3.75)

where ✏ ⌧ 1 is a UV cut-o↵. Matching this solution with (3.73), the Green’s function is
fully expressed in terms of the UV asymptotics of the scalar field �2 as

GR(k̂, !̂) =
µ̂ + !̂ + k̂

2m̂f

lim
✏!0

a✏
+(k̂, !̂)

a✏�(k̂, !̂)
✏�2�m̂f . (3.76)

Notice that the functions a✏
+(k̂, !̂) and a✏

�(k̂, !̂) depend on the UV cuto↵ ✏.

To obtain the ratio a✏
+(k̂, !̂)/a✏

�(k̂, !̂) in Eq. (3.76), we must impose normalizability
of the wave function in the IR and integrate out Eq. (3.52) from IR to UV. This can be
done in the WKB approximation with large parameter �. The details of the computation
are given in Appendix D. The general form of the Green’s function is

GR(k̂, !̂) =
µ̂ + !̂ + k̂

2m̂f

G(k̂, !̂) lim
r!0

r�2�m̂f exp



�2�

Z r1

r

ds
p

V (s)

�

. (3.77)

Here, r1 is the turning point of the potential V the closest to the UV boundary. The
exponential suppression is due to the fact that the potential is large close to the boundary;
the fermion has to tunnel into the spacetime. The function G(k̂, !̂) depends on the
behaviour of the potential V at momentum k̂ and frequency !̂.
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3.5.3 The Green’s function for eCS and pCS solutions

For eCS and pCS solutions, the Green’s function has poles when V < 0 in one region. In
this case, we find in Appendix D that

G(k̂, !̂) =
1

2
tan W (k̂, !̂) (3.78)

where

W (k̂, !̂) = �

Z r2

r1

dr
p

|V (r)| . (3.79)

The two points r1 and r2 (r1 < r2) are the turning points of the potential V .
The poles of the Green’s function are situated at

W (k̂, !̂) =
⇡

2
+ n⇡ , n 2 N . (3.80)

This equation defines N boundary Fermi momenta k̂ = k̂n, where n = 0, . . . , N � 1,
satisfying

0 < k̂N�1 < · · · < k̂0 < k̂?
F . (3.81)

Since � � 1, the number N of boundary Fermi momenta is large and the WKB analysis is
reliable for large n. By computing explicitly the normal modes of the equation (3.52), we
have verified that the poles of the Green’s function are well-approximated by the WKB
analysis. Expanding (3.78) around the poles (3.80), we obtain the Green’s function

GR(k̂, !̂) =
µ̂ + !̂ + k̂

2m̂f

X

0<k̂n<k̂?
F

��1cne�2�an

!̂ � vn(k̂ � k̂n)
(3.82)

where

vn = �@k̂ W (k̂n, 0)

@!̂ W (k̂n, 0)
, cn = ��

2

h

@!̂W (k̂n, 0)
i�1

, (3.83)

an =

Z r1

0

dr
q

V (k̂n, 0) + m̂f log r1 . (3.84)

Notice that vn > 0 for eCS and vn < 0 for pCS which means that, as expected, the electron
star and the positron star form respectively electronic and positronic Fermi surfaces in
the dual field theory6.

3.5.4 The Green’s function for peCS solutions

For peCS solutions, the Green’s function has poles of the same kind as for the eCS and
the pCS solutions for intermediate momentum. Indeed, these boundary Fermi momenta
k̂n are bounded as

k̂?,e
F < k̂N�1 < · · · < k̂0 < k̂?,p

F (3.85)

6The electronic excitations have positive energy !̂. For them to be particle-like excitations (k̂ > k̂n), one must
have vn > 0. Thus Fermi momenta with vn > 0 (vn < 0) correspond to electron-like (hole-like) Fermi surfaces.
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where the oscillations happen in the positron star and vice-versa when they happen in
the electron star. Moreover, for small momentum, V < 0 in two regions and, as shown in
Appendix D, the Green’s function reads

G(k̂, !̂) =
4e2X sin Y cos Z + cos Y sin Z

8e2X cos Y cos Z � 2 sin Y sin Z
(3.86)

where

X(k̂, !̂) = �

Z r3

r2

dr
p

V (r) , Y (k̂, !̂) = �

Z r2

r1

dr
p

|V (r)| , (3.87)

Z(k̂, !̂) = �

Z r4

r3

dr
p

|V (r)| . (3.88)

The potential V vanishes linearly at the turning points r1 < r2 < r3 < r4. From (3.86)
we see that the conditions for G to have a pole are

(Y, Z) =
⇣⇡

2
+ n⇡, m⇡

⌘

and (Y, Z) =
⇣

n⇡,
⇡

2
+ m⇡

⌘

, n,m 2 N (3.89)

for all X, and

e2X =
1

4
tan Y tan Z , tan Y tan Z � 0 . (3.90)

However the conditions (3.89) are generically not satisfied for any pair {k̂, !̂} and so they
do not give rise to poles.

The boundary Fermi momenta k̂n̄ are then found by solving (3.90) at zero frequency.
Around k̂ = k̂n̄ and !̂ = 0, (3.86) becomes

G(k̂, !̂) ' ��1cn̄

!̂ � vn̄(k̂ � k̂n̄)
(3.91)

where

vn̄ = � 8 e2Xn̄ @k̂Xn̄ � tan Zn̄
cos2 Yn̄

@k̂Yn̄ � tan Yn̄
cos2 Zn̄

@k̂Zn̄

8 e2Xn̄ @!̂Xn̄ � tan Zn̄
cos2 Yn̄

@!̂Yn̄ � tan Yn̄
cos2 Zn̄

@!̂Zn̄

(3.92)

and

cn̄ = � tan Zn̄

�

1 + tan2 Yn̄

�



16 e2Xn̄ @!̂Xn̄ � 2
tan Zn̄

cos2 Yn̄

@!̂Yn̄ � 2
tan Yn̄

cos2 Zn̄

@!̂Zn̄

��1

(3.93)

with

Xn̄ ⌘ X(k̂n̄, 0) (3.94)

and similarly for Y and Z.
The Green’s function for peCS solutions with k̂?,e

F < k̂?,p
F can therefore be written as

GR(k̂, !̂) =
µ̂ + !̂ + k̂

2m̂f

0

@

X

k̂?,e
F <k̂Z

n <k̂?,p
F

��1cZ
n e�2�aZ

n

!̂ � vZ
n (k̂ � k̂Z

n )
+

X

0<k̂n̄<k̂?,e
F

��1cn̄e�2�an̄

!̂ � vn̄(k̂ � k̂n̄)

1

A (3.95)
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Figure 3.18: Poles of G for peCS solutions in the (Y-Z)-plan for di↵erent values of X.

where

vZ
n = �@k̂ Z(k̂Z

n , 0)

@!̂ Z(k̂Z
n , 0)

, cZ
n = ��

2

h

@!̂Z(k̂Z
n , 0)

i�1

, (3.96a)

aZ
n =

Z r1

0

dr
q

V (k̂Z
n , 0) + m̂f log r1 . (3.96b)

We have denoted by k̂Z
n the boundary Fermi momenta obtained when the potential V is

negative in one region; in this case we have Z(k̂Z
n , 0) = ⇡/2 + n⇡. When k̂?,p

F < k̂?,e
F , the

Green’s function for peCS solutions is

GR(k̂, !̂) =
µ̂ + !̂ + k̂

2m̂f

0

@

X

k̂?,p
F <k̂Y

n <k̂?,e
F

��1cY
n e�2�aY

n

!̂ � vY
n (k̂ � k̂Y

n )
+

X

0<k̂n̄<k̂?,p
F

��1cn̄e�2�an̄

!̂ � vn̄(k̂ � k̂n̄)

1

A (3.97)

where vY
n , cY

n and aY
n are defined by (3.96) where one has to replace Z by Y .

In Figure 3.18, we display the poles of (3.86) in the (Y, Z)-plan for constant values of X.
We see that in the large-� limit, the location of the poles of (3.86) are well-approximated
by

(Y, Z) '
⇣⇡

2
+ n⇡, Z

⌘

and (Y, Z) '
⇣

Y,
⇡

2
+ m⇡

⌘

, n, m 2 N , (3.98)
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Figure 3.19: Boundary Fermi momenta for a peCS solution. The k̂Y
n̄ ’s and the k̂Z

m̄’s are the Fermi
momenta of electron-like and hole-like Fermi surfaces in the dual field theory, respectively.

as suggested by Figure 3.18d. We denote by k̂Y
n̄ and k̂Z

m̄ the boundary Fermi momenta cor-
responding to the poles (3.98) and computed in the WKB approximation. In Figure 3.19
we give them for a peCS solution. These poles match with a high accuracy to the normal
modes of the Schrödinger-like equation (3.52) that we have computed explicitly.

3.5.5 The Luttinger count

The Luttinger theorem relates the total charge of a Fermi liquid to the volume enclosed
in the Fermi surface. For spin-1/2 particles with charge |qf | in two spatial dimensions,
the Luttinger count is [64]

QFS = |qf |
X

i

2

(2⇡)2
Vi , (3.99)

where Vi are the volumes of the Fermi surfaces, given by Vi = ⇡p2
i where pi is the Fermi

momentum of the i-th Fermi surface. In the WKB approximation, one can approximate
the discrete sum in (3.99) by an integral [44]; for eCS and pCS solutions we have

X

i

1

2⇡
p2

i =
X

n

1

2⇡
k2

n =
1

2⇡

Z k?
F

2

0

dE E

Z r2

r1

dr r
p

g
1

p

k2
F � E

(3.100)

where the Fermi momenta kn appear (with hats) in the Green’s function (3.82). This
leads to the relations [44]

|qf |
X

n

1

2⇡
k2

n = Qe , (3.101a)

�|qf |
X

n

1

2⇡
k2

n = Qp , (3.101b)

for eCS and pCS solutions, respectively, where the charges Qe and Qp are defined in
Section 3.4.3. It means that as expected, the eCS and pCS solutions admit respectively
boundary electronic and positronic Fermi surfaces. This is consistent with the fact that

80



the particle excitations are electronic in the field theory dual to the eCS solution and
positronic in the field theory dual to the pCS solution. The Luttinger relation is

|qf |
X

i

1

2⇡
p2

i = Q�Qscalar �Qint,e (3.102)

for eCS solutions and

�|qf |
X

i

1

2⇡
p2

i = Q�Qscalar �Qint,p (3.103)

for pCS solutions. These situations are similar to the fractionalized phases of [56]; here
the bosonic field takes the role of the charged event horizon, and there is also screening
of the fermionic charge by the condensate.

For peCS solutions, the Luttinger count is

Qe
FS = |qf |

X

i

1

2⇡
(pe

i )
2 + |qf |

X

j

1

2⇡
(qe

j )
2 (3.104)

for electronic Fermi surfaces and

Qp
FS = �|qf |

X

i

1

2⇡
(pp

i )
2 � |qf |

X

j

1

2⇡
(qp

j )
2 (3.105)

for positronic Fermi surfaces. Here, pe
i and qe

j denote the boundary Fermi momenta of
electronic Fermi surfaces corresponding to the cases where the potential V is negative in
one and two regions respectively in the bulk, and similarly for positrons. For k̂?,e

F < k̂?,p
F ,

we have

|qf |
X

i

1

2⇡
(pe

i )
2 = 0 , (3.106a)

|qf |
X

j

1

2⇡
(qe

j )
2 = |qf |

X

n̄

1

2⇡
(kY

n̄ )2 =
|qf |
2⇡

Z (k?,e
F )2

0

dE E

Z r2

r1

dr r
p

g
1

p

k2
F � E

,

(3.106b)

�|qf |
X

i

1

2⇡
(pp

i )
2 = �|qf |

X

n

1

2⇡
(kZ

n )2 = � |qf |
2⇡

Z (k?,p
F )

2

(k?,e
F )

2
dE E

Z r4

r3

dr r
p

g
1

p

k2
F � E

,

(3.106c)

�|qf |
X

j

1

2⇡
(qp

j )
2 = �|qf |

X

n̄

1

2⇡
(kZ

n̄ )2 = � |qf |
2⇡

Z (k?,e
F )2

0

dE E

Z r4

r3

dr r
p

g
1

p

k2
F � E

.

(3.106d)

We conclude that

Qe
FS = Qe and Qp

FS = Qp . (3.107)

This result is also valid when k̂?,p
F < k̂?,e

F . So we have

Qe
FS + Qp

FS = Q�Qscalar �Qint,e �Qint,p . (3.108)

Thus, we have shown that the charge that one can assign to fermionic fluid components
(which does not include the e↵ect of screening due to the scalar field) is reproduced by
the total volume of particle-like and hole-like Fermi surfaces via the Luttinger count.
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3.5.6 Fermi surfaces and phase transitions

We have shown in the previous sections that the compact star solutions exhibit a large
number of boundary Fermi surfaces when the WKB approximation is applicable. Since
the field theory is rotationally invariant, they are circular and each of them is specified
by a Fermi momentum k̂n, which lie between zero and the maximal value k̂?

F .
In the WKB approximation, the number of Fermi surfaces with Fermi momentum

in the interval (k̂, k̂?
F ) of a solution with one star – eCS, pCS or ES – is given by the

integral [63]:

N(k̂, k̂?
F ) / �

Z y2

y1

dy
q

k̂2
F (y)� k̂2 (3.109)

where y1 and y2 are boundaries of the region where k̂2
F (y) > k̂2. The total number of

Fermi surfaces N is then

N / �

Z ys,2

ys,1

dy k̂F (y) (3.110)

where ys,1 and ys,2 are the star boundaries. This formula is in fact not exact, because for
k̂ close to k̂?

F , the WKB approximation is not valid. However, the contribution of such
momenta to the total number of levels is small, and non-vanishing, for eCS, pCS and ES
solutions. For the eCS and pCS solutions, the star boundaries ys,1 and ys,2 are finite,
so the total number of Fermi surfaces is finite; this also applies to the peCS solutions.
The corresponding Fermi momenta are bounded by zero and the extremal local Fermi
momenta.

For the (unbounded) electron star solution, the total number of Fermi surfaces (3.110)
can be written as

N / �

Z y0

ys

dy k̂F (y) + �

Z 1

y0

dy

q

g1(h21 � m̂2
f )

y
(3.111)

where ys is the star boundary and y0 is an arbitrary point which belongs to the Lifshitz
region. The first term is finite since the boundaries are finite and the integrand is a regular
function. However, the second term is logarithmically divergent. Then the electron star
solution is dual to a field theory state admitting an infinite number of Fermi surfaces
N = 1. Indeed, it can be deduced from (3.109) that the density of levels at small
momentum k̂ is

⇢(k̂) ⇠ �

k̂
, k̂ ! 0 , (3.112)

so the number of Fermi surfaces in the interval (k̂, k̂0) is

N(k̂, k̂0) ⇠ � log
k̂0

k̂
, k̂ ! 0 , (3.113)

where k̂0 ⌧ 1 is a cuto↵ such that k̂ < k̂0. It means that the Fermi surfaces are accumu-
lating exponentially at small momentum,

k̂ ⇠ k̂0 e�N(k̂,k̂0)/� . (3.114)
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Notice that even if this computation of the total number of Fermi surfaces for the compact
star solutions and the electron star applies only in the WKB approximation, the result is
also valid when this approximation is not valid, as discussed in Section 3.5.1.

The infiniteness of fermionic modes in the electron star phase is removed at finite
frequency. For !̂ > 0, the number of resonances has to be counted between the extremal
local Fermi momentum and k̂ ⇠ !̂1/z. For smaller momentum, the modes are unstable.
The total number of resonances is in this case

N(!̂ > 0) ⇠ �

Z y?

y1

dy
q

k̂2
F (y)� !̂2/z , (3.115)

where y1 is the first turning point of Ṽ and Ṽ 0(y?) = 0 at y = y?, which belongs to the
Lifshitz region. Since y? ⇠ !̂�1/z, we conclude that the total number of resonances for
small and positive frequency is N(!̂ > 0) ⇠ � log !̂�1/z. An analogous computation can
be done for !̂ < 0 where the integration is taken up to k̂ = 0. The result is similar and
we conclude that at small non-zero frequency, the total number of resonances is

N(!̂ 6= 0) ⇠ � log |!̂|�1/z , !̂ ! 0 . (3.116)

This can be seen as the number of Fermi surfaces that admit quasi-particle excitations
with frequency up to !̂. This increases indefinitely as !̂ is decreased, and as !̂ ! 0, we
recover the infinite number of Fermi surfaces of the unbounded Electron star.

On the other hand, for the compact star solutions, the number of resonances does not
depend on the frequency because the e↵ects of finite and small !̂ do not modify the two
first turning points of the potential Ṽ , which are still well approximated by the edges of
the star: one finds the same finite number of stable excitations for !̂ = 0 and small !̂.
More precisely, a small frequency |!̂| < k̂N (where k̂N is the smallest eigenstate of the
!̂ = 0 potential) does not change the number of bound states.

A Fermi surface is defined when a system of fermions exhibits gapless low energy
excitations around a Fermi momentum k̂n. A Fermi surface is not only defined by the
existence of a Fermi momentum but also by a dispersion relation for the low energy
excitations around it. For this reason, the result that the number of Fermi surfaces is
infinite in the field theory state dual to the electron star needs to be clarified. This result
was obtained by setting !̂ = 0. From (3.116), what we should rather say is that in the
field theory state dual to the electron star, the number of fermionic excitations at fixed
energy and fixed momentum diverges when the energy goes to zero. In other words, at
fixed energy the number of fermionic excitations of the system is arbitrarily large when
the energy tends to zero.

The above discussion suggests that some of the Fermi surfaces disappear between the
electron star phase where it is infinite and the compact stars where it is finite. Let us
consider the case where the coupling constant ⌘̂ vanishes, corresponding to the compact
star solutions found in [1]. By increasing the elementary charge of the scalar field, one is
expected to move from the electron star phase to the compact star phase7. Some of the
Fermi surfaces are destroyed, they are the Fermi surfaces of the flavours of fermions which
become superconducting. These Fermi surfaces have small Fermi momentum, which goes

7In fact, although it is expected, a phase transition between the electron star and the compact star was not
found explicitly in [1], due to the di�culties in solving the system numerically for parameter values close to the
possible transition. Thus, we cannot exclude the possibility of the existence of another phase between the electron
star and the compact star phases.
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in the opposite direction of what was found in [65] for the Cooper pair creation in the
Reissner-Nordström black hole. This suggests that the mechanism leading to supercon-
ductivity is here far from being described by the BCS theory and the formation of Cooper
pairs. The scalar condensate can rather be though as being a very complicated operator
made out of many fermions, which does not have integer charge in elementary fermion
charge unit. Indeed, in the bulk we have in general q 6= 2qf .

3.6 Discussion

We have considered in this chapter Einstein-Maxwell gravity with a negative cosmological
constant coupled to both charged bosonic and fermionic degrees of freedom, represented
by a complex scalar field and a perfect fluid of fermionic particles, respectively. They
interact directly through a current-current coupling which leaves the fluid approximation
for the fermions valid. This system admits already know solutions holographically dual
to field theory states at zero temperature and finite density, the extremal charged black
hole, the electron star and the holographic superconductor.

In Section 3.2, by studying the field equation of a probe charged scalar field in the near-
horizon geometry of the electron star, we have argued that the electron star background
is unstable to the formation of scalar hair when the elementary charge of the scalar
field is su�ciently large. Also, by studying the shape of the local chemical potential
in the holographic superconductor solution, we gave reasons to believe that solutions
with both a non-trivial scalar field and a non-zero fluid density could be constructed
from the holographic superconductor solution found in [51]: when the maximum value of
the local chemical potential exceeds the mass of the fermions, a probe fluid of fermions
can exist on the holographic superconductor solution. This approach had already been
used in [46] to construct electron star solutions at finite temperature. In this case, the
Reissner-Nordström black hole plays the role of the holographic superconductor.

By using the arguments of Section 3.2, we found in Section 3.3 new backreacted solu-
tions to the considered model which exhibit both a scalar field and a fluid density. While
the scalar field is non-zero in the whole spacetime, the fluid density is confined in a shell
and the charge density of the fluid can be positive or negative, leading to compact electron
star solutions and compact positron star solutions, respectively. In our choice where the
boundary total charge is positive8, the formation of a positron star is made possible when
the fluid and the scalar field interact directly through the current-current coupling. It
exists in this case a charge of interaction between the scalar field and the fluid which is
responsible for the screening of the negative charge density of the positron star.

We have also found solutions where a non-trivial scalar field coexists with both an
electron star and a positron star, confined in distinct shells of the bulk spacetime. In
this case we have a polarized charged system, where the separated shells of positively
and negatively charged components of the fluid are immersed in a non-zero scalar field.
Due to the screening of the negative electric charge by the scalar field, the two fluid
densities are repelled instead of being attracted. The system is kept together by the
gravitational attraction, which balances the electromagnetic repulsion. We called these
solutions compact electron-positron star solutions.

By computing the free energy of the charged solutions of the system, we have shown
in Section 3.4 that when it is possible, the presence in the bulk of both bosonic and

8The case where the boundary charge is negative is accessible by charge conjugation.
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fermionic degrees of freedom is favoured thermodynamically. In particular, the electron-
positron compact star solution is favoured when it exists. These results confirm previous
works on the competition of several orders in holography [66, 67, 68, 69, 62, 70, 71, 72, 73].

The interpretation of the bulk charged scalar field in the compact star solutions is clear
from the UV asymptotics. The field/operator correspondence presented in Chapter 1 tells
us that it represents, in the dual field theory state, a charged scalar condensate which
breaks the global U(1) symmetry.

Even if it is natural to believe that the bulk fermionic fluid density is a sign of the
presence of fermionic degrees of freedom in the dual field theory state, this is not as simple
as for the scalar field. In the fluid approximation, the interpretation of the bulk fermions
is not directly obtained from the UV asymptotics as for the scalar field. This is because
the boundary fermionic operator is hidden in the fluid approximation of the bulk fermions.

For this reason and to characterize the states dual to the compact star solutions,
we computed in Section 3.5 the (quasi-) normal modes of a probe spinor field in these
bulk backgrounds. The probe spinor has the dual interpretation of a fluctuation of the
fermionic operator of the field theory. The holographic procedure to compute correlation
functions can thus be applied and we obtained the propagator, i.e. the retarded two-point
Green’s function, of the fermionic low energy excitations of the system. It results that the
fluid of electrons and the fluid of positrons are dual to electron-like and hole-like Fermi
surfaces, respectively. The formation of the Fermi surfaces is controlled by the scalar
condensate and the current-current interaction.

As for the electron star, the Luttinger count reproduces the charge carried by the
bulk fermions. However it does not correspond to the total charge of the system, which
is shared in the boundary field theory by the fermionic and bosonic degrees of freedom;
there is also a charge of interaction responsible for the screening of the fermions by the
scalar condensate.

On the field theory side, one can interpret the positron-electron compact star solutions
in the following way. The field theory state exhibits a scalar condensate and a large number
of fermions with di↵erent flavours. Each flavour of fermions has a certain band structure
but with the zero energy level having an o↵set that is di↵erent for each flavour. It results
that a given chemical potential intersects the valence band for some fermions and the
conductance band for the others, leading to hole-like and electron-like Fermi surfaces,
respectively. A schematic illustration is given in Figure 3.20.

The study of the low energy fermionic spectrum of the mixed Bose-Fermi states has
also led to an interesting result. By putting the field equation of the probe spinor in a
Schrödinger form, we found that the number of Fermi surfaces in the field theory state
dual to the electron star is infinite while it is finite in the compact star solutions. In
the ES/CS phase transition between the electron star solution and the compact star
solution, part of the boundary Fermi surfaces are gapped and the corresponding fermions
condense. The Fermi surfaces which become gapped are the ones with smallest Fermi
momenta. As discussed above, this is not expected from the BCS theory point of view
where the Fermi surfaces with smallest momenta are the most stable. What happens in
our holographic model agrees with the suggestion of [74] that the order the Fermi surfaces
are filled in holographic models is characterized by a IR/UV duality: states with lowest
Fermi momentum are filled later than the ones with smaller Fermi momentum. They are
thus the first to condense at the ES/CS transition.

We also found that for small frequency, the fermionic excitations are stable. Dissipa-
tion of excitations around a given Fermi surface occurs only after an energy threshold is

85



+

Figure 3.20: Schematic band structure of (dual of) the compact polarized stars solutions.

reached, meaning that the Fermi system does not interact with the bosons at arbitrarily
low energy. On the other hand, for the non-compact electron star, the quasi-particle states
can decay into the critical bosonic Lifshitz modes in the IR. When the scalar field has
a W-shaped potential, hairy electron star solutions with constant fluid quantities in the
IR can be constructed [62]. It would be interesting to compute the boundary fermionic
Green’s function in this case and study the dissipation properties at low energy.

As was shown in [74], the fact that the number of constituent fermions is infinite in the
non-compact electron star can be seen as a consequence of working in the regime where
the constituent charge eqf is very small compared to the total charge of the system. As
its value is increased, the number of Fermi surfaces decreases until finally one arrives at
the Dirac hair solution with only one species of fermions. It would be interesting to study
the e↵ect of turning on a scalar condensate in the finite qf regime, where already for zero
condensate there is a finite number of Fermi surfaces.

Notice that the WKB analysis we applied is valid when a large number of hole-like
and/or electron-like Fermi surfaces is present and for Fermi momenta not comparable to
the extremal local Fermi momentum. Since the WKB approximation is valid for small
Fermi momenta and those correspond to the first Fermi surfaces being gapped, one can
study the formation and destruction of Fermi surfaces in these regions of the phase dia-
gram which are far from the critical lines. Also, for larger momenta close to the extremal
local Fermi momentum, the Schrödinger potential does not vanish linearly at the turning
points. Matching at these turning points with Airy functions is not possible anymore.
However, following the study done in this situation for the electron star model [44], we
also expect Fermi surfaces to form.

It would be interesting to characterize better the properties of the excitations around
the Fermi surfaces, determining the Fermi velocity and the residues as done for the electron
star in [44]. It would also be interesting to compute the electrical conductivity and
especially the Hall conductivity, which would determine the global nature of the fermionic
system. One could also study the temperature dependence of the system. Finally, the
onset of superconductivity and the ES/CS transition would deserve further analysis. This
requires to find a holographic superconductor solution for small elementary charge of the
scalar field. One IR asymptotic solution was found in [51], but there is no free parameter
that can be fixed such that the source of the dual scalar operator vanishes.
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Chapter 4

AdS black holes from duality in
gauged supergravity

In this chapter, we study a STU model of N = 2 gauged supergravity that is a truncation
of the 4d N = 8 gauged supergravity [75] and as such has a lift to eleven-dimensional
supergravity on the seven-sphere. By using duality transformations, we obtain new static
and rotating BPS black holes.

The new solutions were obtained by the author and a collaborator in [3].

4.1 Introduction

Black branes in gauged supergravity are of particular interest due to their ability to
possess AdS asymptotics and they have numerous applications to holography. Somewhat
recently [76] an exact analytic solution for static quarter-BPS black holes was found as
well as an analytic quarter-BPS rotating black hole in [77]. This work was performed in
an N = 2 truncation of the four dimensional N = 8 gauged supergravity theory of de
Wit-Nicolai [75] and as such these black holes can be lifted to M-theory. Generalizing
these solutions to new analytic families of supersymmetric AdS4 black holes is the focus
of our current work.

The static black holes of [76] can be understood within the context of the far-reaching
work of Maldacena and Nunez [78]; in M-theory they correspond to a stack of M2-branes
wrapped on a Riemann surface ⌃g of genus g � 0. The initial work [78] found AdSp⇥⌃g

geometries in (p+2)-dimensional gauged supergravity only when g > 1 and p = 1, 3 but the
method was clearly universal and there has since been much work establishing the phase
space of solutions for arbitrary genus and various p1. The work of Cacciatori and Klemm
(CK) should be singled out for special mention since this is the only example with non-
trivial scalar field profiles where the entire black-brane geometry is known analytically2. In
addition, from a purely general relativistic point of view, four dimensional black holes with
spherical horizons are traditionally of substantial interest as compared to black branes in
higher dimensions.

In this work we apply a tried and true method of generating solutions in supergravity
theories: the awful power of the Geroch group [89]. In Section 4.3 we find by explicit
computation that the bosonic sector of our gauged STU model has a G = U(1)3 invariance

1See for example [79, 80, 76, 81, 82, 83, 84, 85] and some aspects are nicely reviews in [86].
2We should mention the constant scalar black branes which exist for p = 2, 3 and g > 1 [87, 88].
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and one can use this group to act on any solution of the theory. We denote the diagonal
U(1) subgroup of G by U(1)g and find reason to conjecture that G/U(1)g is in addition
a symmetry of the fermionic sector of the theory.

In Section 4.4 we look at the CK solutions. They depend on three charges; there are
initially four charges but one BPS condition enforces a Dirac quantization condition and
reduces this to a three dimensional parameter space. We act on the CK solutions with
the two generators of G/U(1)g and generate static BPS black holes with two additional
charges. In the symplectic frame adapted to the M-theory lift, the CK solution has purely
magnetic charges whereas our two additional parameters are electric charges. Another
point of comparison is that our new solutions have non-trivial axions whereas in the CK
solutions the axions are trivial. Acting on the CK solutions with U(1)g ⇢ G breaks
the supersymmetry of the solutions and also appears to violate the Dirac quantization
condition, as a result we focus on the generators of G/U(1)g. We also act on the CK
solutions with equal magnetic charges and generate a new parameter.

In Section 4.5 we perform a similar action of G/U(1)g on the BPS rotating black holes
of [77]. The solutions of [77] have equal magnetic charges which are inversely proportional
to the gauge coupling and they depend on two parameters. One parameter corresponds
to angular momentum the other represents a deformation of the boundary M2-brane
theory. The static limit is a solution from [76] with a single parameter corresponding
to a deformation of the boundary M2-brane theory. Another limit sets the deformation
parameter to zero and corresponds to the constant scalar black hole with rotation. While
this constant scalar black hole is a fixed point of our duality group, from the solutions of
[77] we generate one additional parameter. The full solution space of BPS rotating black
holes now has three parameters; angular momentum, one deformation parameter and our
new parameter.

When lifted to M-theory the charges of the CK solutions correspond to twists of the S7

bundle over ⌃g [78]. From another point of view one can view these solutions as the near
horizon limit of a stack of M2-branes wrapping a Riemann surface inside a local Calabi-
Yau fivefold X5 which is the product of four line bundle over ⌃g. The magnetic charges of
the CK solution are proportional to the Chern numbers of these four line bundles. In this
same duality frame, the electric charges we find correspond to the spin of the M2-branes
along a pair of circles: U(1)2 ⇢ S7.

4.2 N = 2 gauged supergravity

Let us consider N = 2 Fayet-Iliopoulos-gauged supergravity coupled to nV vector mul-
tiplets. We use the N = 2 supergravity conventions of [90] except we use the mostly
plus signature (�+ ++). The theory contains the gravitational multiplet and nV vector
multiplets. The bosonic content is the metric gµ⌫ , the graviphoton A0, nV gauge bosons
Ai (i = 1, . . . , nV ) and nV complex scalars zi. The scalars parametrize a special Kähler
manifold MV of complex dimension nV .

The bosonic part of the supergravity action is given by

S4d =

Z

d4x
p�g



1

2
R� gi|@µz

i@µz̄| + I⇤⌃F⇤µ⌫F
⌃µ⌫ +R⇤⌃F⇤µ⌫

✓

1

2
✏µ⌫⇢�F⌃⇢�

◆

� Vg

�

,(4.1)

where µ, ⌫, ⇢,� = 0, . . . , 3 are spacetime indices, gi| is the metric on the scalar manifold
MV , F⇤µ⌫ (⇤ = 0, . . . , nV ) are the field strenghts of the graviphoton and the gauge bosons.
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The only di↵erence of the gauged supergravity action (4.1) compared to the ungauged
case is that the potential for the scalars Vg is non-vanishing.

The scalar manifold MV is a special Kähler manifold that describes the self-interac-
tions of the vector multiplets. We will assume that there exists a prepotential that de-
termines in particular the metric on MV , the scalar potential Vg and the matrices I⇤⌃,
R⇤⌃ that appear in the action (4.1).

The prepotential F is determined in terms of a symmetric tensor dijk and given by

F = �dijk
X iXjXk

X0
(4.2)

where the special coordinates are given in terms of the complex scalar fields,

X⇤ =

✓

1
zi

◆

, zi = xi + iyi . (4.3)

We define the dual sections F⇤ = @⇤F by

F⇤ =

✓

dijkzizjzk

�3dz,i

◆

(4.4)

and the Kähler potential K and metric gij̄ are

e�K = 8dy , gi| = @i@|K . (4.5)

The rescaled sections are defined as

V =

✓

L⇤

M⇤

◆

= eK/2

✓

X⇤

F⇤

◆

. (4.6)

The kinetic and topological terms for the vector fields in (4.1) come from the tensor

N⇤⌃ = R⇤⌃ + i I⇤⌃ = F⇤⌃ + 2i
ImF⇤�ImF⌃⌥X�X⌥

ImF�⌥X�X⌥
(4.7)

where F⇤⌃ = @⇤@⌃F . The dual gauge-field strength is

G⇤ = R⇤⌃F⌃ � I⇤⌃ ⇤ F⌃ . (4.8)

We define the tensor3

bdijk =
gilgjmgkndijk

d2
y

(4.9)

which has the crucial property that it is constant whenever MV is a homogeneous space.
We use the following shorthand for contraction of objects with the symmetric tensors dijk

and bdijk:

dg = dijkg
igjgk , dg,i = dijkg

jgk , dg,ij = dijkg
k ,

bdg = bdijkgigjgk , bdi
g = bdijkgjgk , bdij

g = bdijkgk . (4.10)

3The hat index here does not refer to any particular duality frame, hopefully this does not cause confusion on
the part of the reader.
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The theory is ‘covariant’ under the symplectic group Sp(2nV +2, R) which acts on the
scalar fields, the gauge fields and the gaugings of the theory. It means that the action (4.1)
is not invariant under such a transformation but the field equations are.

The scalar potential Vg is defined in terms of the symplectic invariant quantities

L = hG,Vi , Li = hG, DiVi , (4.11)

where h., .i is the symplectic product of two symplectic vectors and

G =

✓

g⇤

g⇤

◆

(4.12)

is the symplectic vector for gaugings. The scalar potential is given in terms of these
quantities by

Vg = gi|DiLD|L� 3|L|2 . (4.13)

We will be interested here in black hole solutions which satisfy the BPS equations.
These black holes have electric charges q⇤ and magnetic charges p⇤ defined by

q⇤ =
1

vol(⌃g)

Z

⌃g

G⇤ , p⇤ =
1

vol(⌃g)

Z

⌃g

F⇤ , (4.14)

where ⌃g is the event horizon space and vol(⌃g) its volume. BPS equations depend only
on the gauge fields through the symplectic vector

Q =

✓

p⇤

q⇤

◆

, (4.15)

on the scalar fields through the sections V and on the gaugings G. The action of a
symplectic transformation on these symplectic vectors leads to a physically equivalent
BPS black hole solution but in a di↵erent symplectic frame where V , Q and G have a
di↵erent form.

In the following we focus the analysis on a simple STU model of N=2 FI-gauged
supergravity which contains three vector multiplets (nV = 3).

4.3 STU-model

We start in the symplectic duality frame where the STU-model of four dimensional su-
pergravity has the prepotential

F = �X1X2X3

X0
. (4.16)

This implies that d123 = 1
6

and bd123 = 32
3
. This model has the vector-multiplet scalar

manifold

MV =
⇣SL(2, R)

U(1)

⌘3

(4.17)

and thus the global symmetry
⇥

SL(2, R)
⇤3

. We include a very specific dyonic gauging,
namely we take

G =

✓

g⇤

g⇤

◆

, g⇤ =

0

B

B

@

0
g1

g2

g3

1

C

C

A

, g⇤ =

0

B

B

@

g0

0
0
0

1

C

C

A

(4.18)
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and using a duality symmetry from Appendix E with

� = log
hg0

g

i

, Bi
i = � log

h

� gi(g0)1/3

g4/3

i

,

ai = bj = 0 , Bi
j = 0 , for i 6= j (4.19)

we set the magnitudes of the gauge couplings equal

g⇤ = �

0

B

B

@

0
g
g
g

1

C

C

A

, g⇤ =

0

B

B

@

g
0
0
0

1

C

C

A

. (4.20)

There is a simple reason for choosing this seemingly obscure gauging: this model is
known to be a truncation of N = 8, de Wit-Nicolai theory [91, 92, 93] with nV = 3 and
can thus be uplifted to M-theory4. The model given by (4.16) and (4.20) is related by a
symplectic transformation

S =

✓

A B
C D

◆

, A = D = diag{1, 0, 0, 0} , B = �C = diag{0, 1, 1, 1} (4.21)

to the perhaps more familiar model with prepotential, gaugings and sections given by

F̆ = �2i
p

X̆0X̆1X̆2X̆3 , ğ⇤ = 0 , ğ⇤ = g , (4.22)

X̆⇤ =

0

B

B

@

1
�z2z3

�z3z1

�z1z2

1

C

C

A

, F̆⇤ =

0

B

B

@

z1z2z3

�z1

�z2

�z3

1

C

C

A

(4.23)

but we are particularly fond of the frame (4.16) because it makes the action of the sym-
plectic group Sp(2nV + 2, R) manifest and thus is the natural frame to understand the
unbroken symmetries. Of course both frames are physically indistinguishable.

With dyonic gaugings such as (4.20) it is convenient to use the formalism of [96] which
is a natural symplectic completion of the electrically gauged theory. For the STU model
with gaugings given by (4.20), from (4.13) the scalar potential has the following explicit
form:

Vg = �g2

3
X

i=1

h 1

yi
+ yi +

(xi)2

yi

i

. (4.24)

Our first goal is to analyze the subgroup of
⇥

SL(2, R)
⇤3

which remains unbroken in the
bosonic sector of the gauged theory to do so it is su�cient to analyze the invariances of
Vg.

4.3.1 The basics of SL(2, R)/U(1)

This section contains some details about the coset SL(2, R)/U(1). We are aware that this
material is quite elementary but see no reason not to spell out our steps in modest detail.

4There has been recent work [94] refining the explicit uplift [95] of this N = 8 theory to eleven dimensional
supergravity and thus proving that it is a consistent truncation.
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Indeed, the symmetries of this particularly interesting STU-model of gauged supergravity
are remarkably straightforward, nonetheless to the best of our knowledge have never been
worked out or utilized.

The coset representative is

V = eH �
2 eE � (4.25)

where the generators of sl(2, R) are

H =

✓

1 0
0 �1

◆

, E =

✓

0 1
0 0

◆

, F =

✓

0 0
1 0

◆

. (4.26)

To construct the metric on the coset, one takes

M = V T V (4.27)

and under the right action of ⇤ 2 SL(2, R) these transform as

V ! V ⇤ , M ! ⇤T M⇤ . (4.28)

The transformation (4.28) ruins the parametrization (4.25) but one uses a compensating,
local, left acting SO(2) transformation to bring V back to the form (4.25). From (4.28)
we see that TrM is invariant under ⇤ 2 SO(2). The kinetic terms for the coset are then
given by

Lkin = �1

4
Tr(@µM@µM�1) (4.29)

and are invariant under (4.28) for ⇤ 2 SL(2, R).
Explicitly, using (4.25) and (4.27) we have

M =

✓

e� e��
e�� e�� + e��2

◆

(4.30)

and using the standard coordinate redefinition

z = x + iy = �+ ie�� (4.31)

we find that

TrM =
1

y
+ y +

x2

y
. (4.32)

So we see that the scalar potential of our gauged supergravity theory (4.24) is given by
canonical objects from the coset:

Vg = �g2

3
X

i=1

TrMi (4.33)

where Mi is (4.27) for the i-th SL(2, R)/U(1) coset. Thus we have demonstrated that the
scalar potential and thus the bosonic sector of the STU model of Section 4.3 is invariant
under

SO(2)3 ⇢ SL(2, R)3 . (4.34)
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4.3.2 Embedding SO(2)3 into Sp(2nV + 2, R)

We now embed this symmetry group SO(2)3 into Sp(8, R) using the work of [97, 98], key
aspects of this work are summarized in Appendix E. The three rotations corresponding
to (4.34) are given by the exponentiation of the elements S 2 sp(8, R) from (E.3) with

� = Bi
j = 0 , ai = �bi . (4.35)

We find that these are given by

Oi(↵) =

✓

Qi(↵) Ri(↵)
Si(↵) Ti(↵)

◆

(4.36)

where

Q1(↵) = T1(↵) =

0

B

B

@

c↵ s↵ 0 0
�s↵ c↵ 0 0
0 0 c↵ 0
0 0 0 c↵

1

C

C

A

, R1(↵) = �S1(↵) =

0

B

B

@

0 0 0 0
0 0 0 0
0 0 0 �s↵

0 0 �s↵ 0

1

C

C

A

,

Q2(↵) = T2(↵) =

0

B

B

@

c↵ 0 s↵ 0
0 c↵ 0 0
�s↵ 0 c↵ 0
0 0 0 c↵

1

C

C

A

, R2(↵) = �S2(↵) =

0

B

B

@

0 0 0 0
0 0 0 �s↵

0 0 0 0
0 �s↵ 0 0

1

C

C

A

,

Q3(↵) = T3(↵) =

0

B

B

@

c↵ 0 0 s↵

0 c↵ 0 0
0 0 c↵ 0
�s↵ 0 0 c↵

1

C

C

A

, R3(↵) = �S3(↵) =

0

B

B

@

0 0 0 0
0 0 �s↵ 0
0 �s↵ 0 0
0 0 0 0

1

C

C

A

and we use the notation s↵ = sin↵ and c↵ = cos↵.
We know from Section 4.3.1 that simultaneously acting with Oi on both the sections

V and the vector fields is a symmetry of the Lagrangian. Now by construction the theory
is invariant under the simultaneous action of any symplectic matrix T on the gaugings G,
charges Q and the sections V :

(G,Q,V)! (T G, T Q, T V) , T 2 Sp(2nV + 2, R) (4.37)

and so we can surmise that for our particular theory we could equally well just act on the
gaugings

G ! Oi(↵)G (4.38)

and this should be a symmetry of the Lagrangian. Indeed explicit calculation shows this
to be true.

4.3.3 Two simple generators

For two of these transformations we can see this quite explicitly since for the particular
gaugings (4.20) something even stronger is true, the gaugings themselves are invariant:

O12(↵)G = G , O23(↵)G = G (4.39)

where
Oij(↵) = Oi(↵)O�1

j (↵) . (4.40)
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This leads us to conclude that the generators O12(↵) and O23(↵) commute with the
gauge group. In particular this means that solutions generated using O12 and O23 from a
supersymmetric seed solution will preserve the same amount of supersymmetry.

4.3.4 The third generator

The final generator can be taken to be

Og(↵) = O1(↵/3)O2(↵/3)O3(↵/3) (4.41)

and we find that the gaugings are not invariant:

g⇤ ! �g

0

B

B

@

s↵

c↵

c↵

c↵

1

C

C

A

, g⇤ ! �g

0

B

B

@

�c↵

s↵

s↵

s↵

1

C

C

A

. (4.42)

Nonetheless the whole bosonic Lagrangian is invariant; the kinetic terms are invariant
because this transformation is a duality transformation of the underlying ungauged su-
pergravity theory and we have shown explicitly that the scalar potential is invariant. Note
however that the two terms in (4.13) are not separately invariant, only the sum is. As a
result we can freely generate solutions to the bosonic equations using O123.

In [96] a comment was made regarding a particular SO(2) ⇢ SL(2, R)3 which is identi-
fied with the gauging of the graviphoton and thus what we referred to in the introduction
as U(1)g. We understand this generator to be Og. In fact we find it di�cult to make the
Dirac quantization condition (4.44) compatible with this generator, it is the generators
O12 and O23 which are particularly useful for our purposes. In a di↵erent context [99], it
was emphasized to great utility that the duality group of a gauged theory is the commu-
tant of the gauge group inside the duality group of the ungauged theory. In our particular
example we understand that the gauge group is identified with the SO(2) generated by5

Og and the commutant of the gauge group to be the SO(2)2 generated by O12 and O23.
Solutions generated with Og will typically break the supersymmetry of the seed solution
and Og will not appear in the following sections.

4.4 BPS static black holes

We now analyze the action of Oi(↵) on the supersymmetric static black holes of [76],
which we will first review. The metric ansatz is

ds2
BH = �e2Udt2 + e�2Udr2 + e2(V�U)d⌃2

g (4.43)

where d⌃2
g is the constant curvature metric on (S2, R2, H2) and the scalar fields depend

only on the radial coordinate. The BPS equations can be found in [96] but we will not
utilize them here. It is however worth mentioning in general there is a Dirac quantization
condition hG,Qi 2 Z which for supersymmetric solutions is strengthened to

hG,Qi = � , (4.44)

where  = (1, 0,�1) for ⌃g = (S2, R2, H2) respectively.

5One should note however that before gauging, the scalar fields are neutral under the global U(1) which is
gauged. In the gauged theory the scalars are not minimally coupled to any gauge fields.
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4.4.1 The supersymmetric static black holes

The black holes of [76] require the charges

Q =

✓

p⇤

q⇤

◆

, p⇤ =

0

B

B

@

p0

0
0
0

1

C

C

A

, q⇤ =

0

B

B

@

0
q1

q2

q3

1

C

C

A

(4.45)

and we define some rescaled sections

eL⇤ = eV�UL⇤ , fM⇤ = eV�UM⇤ . (4.46)

In the duality frame given by (4.23) the charges would be purely magnetic:

(p̆⇤)T = (p0, q1, q2, q3) , q̆⇤ = 0 . (4.47)

The solution is mildly cumbersome but completely explicit, it has recently been extended
in [100] to a large class of N = 2 U(1)-gauged supergravity theories and a covariant form
of the solution is presented there. It is given by

eV =
r2

R
� v0 , (4.48)

eL0 =
r

4gR
+ �0 , (4.49)

fMi =
r

4gR
+ �i , (4.50)

where R is the AdS4 radius

R =
1p
2 g

(4.51)

and6

�0 =
✏

2
p

2 g

r

v0

2R
� gp0 , (4.52)

�i = � ✏

2
p

2 g

r

v0

2R
� gqi , (4.53)

v0 = 2R
h

gp0 +
27(dijkgi⇧j⇧k)2

32d⇧

i

, (4.54)

where ✏ = ±1 and ⇧i is a certain function of the charges:

⇧i = � 4

3g
(2qi + p0 � q1 � q2 � q3) . (4.55)

From these expressions one obtains the other metric function eU and the scalars yi from
(4.48)-(4.50) and (4.52)-(4.54):

e4U =
1

64

e4V

eL0
fM1
fM2
fM3

, yi =
3

64

bdijk
fMj
fMk

q

eL0
fM1
fM2
fM3

, i = 1, 2, 3 . (4.56)

6To maintain covariance in the expression for v0 we have left gi which should be set gi = �g.
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This CK solution has vanishing axions and is specified by three independent charges;
there are four charges (4.45) with one constraint (4.44). One would typically not refer to
the CK solutions as dyonic since in the symplectic frame (4.23) the gaugings are electric
and the charges are purely magnetic. There are regular CK black holes for horizons ⌃g

for all g � 0 but still regularity places bounds on the values of the magnetic charges.

Equal charges

When the charges are all equal then from the above analysis we arrive at the well known
flow with constant scalar fields for which  = �1 as well as

⇧i = 0 , v0 = 2Rgp , �0 = �i = 0 . (4.57)

Taking into account the Dirac quantization condition (4.44) the charges are fixed (they
do not give an independent parameter)

p0 = qi =
1

4g
(4.58)

and the horizon is at

r = rh =
Rp
2

(4.59)

which is positive and thus the black hole is regular.
There is a whole family of solutions which satisfy (4.58) and are missed by the above

analysis because of some degeneracy in the BPS equations, this solution has a free pa-
rameter � corresponding. The metric and sections have

v0 =
R

2
+ 16Rg2�2 , (4.60)

�0 = �1 = � , (4.61)

�2 = �3 = �� (4.62)

and the resulting scalar fields are purely imaginary (the axions vanish)

z1 = i
r +�

r �� , z2 = z3 = i , (4.63)

where with a view towards the next section we have defined a new parameter

� = 4gR� = 2
p

2 � . (4.64)

This solution was originally found in [76] from the model with bF = �i bX0
bX1 and we

elaborate in the next section on how this is related to the STU model. This gives the
metric

ds2
BH = �

�

r2 � R2

2
��2

�2

R2(r2 ��2)
dt2 +

R2(r2 ��2)
�

r2 � R2

2
��2

�2dr2 +
�

r2 ��2
�

d⌃2
g (4.65)

where the metric on ⌃g = H2/� is

d⌃2
g = d✓2 + sinh2 ✓d�2 . (4.66)
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The horizon is at

rh =

r

R2

2
+�2 , (4.67)

while the scalar field z1 is singular when

r = rs ⌘ � . (4.68)

but rh > rs so the singularity is cloaked by a horizon and the black hole is regular. The
conserved charges are independent of� but the metric and scalar field depend nontrivially
on �. The �! 0 limit gives the constant scalar black hole.

The UV behaviour of the � dependence scales as O(1
r
) and in principle there is a

choice of quantization schemes [14] which allows us to interpret this as a source or a vev
in the boundary M2-brane theory. To clarify this it is instructive to study the horizon
geometry. We find the radius of the horizon to be independent of �

R2
⌃g

=
R2

2
(4.69)

which is comforting since the Bekenstein-Hawking entropy should not depend on contin-
uous parameters. However the AdS2 radius does depend on �:

R2
AdS2

=
R2

4
�

1 + 2�2

R2

� . (4.70)

By general principles of holography the e↵ective AdS2 radius is a measure of the degrees of
freedom in boundary superconformal quantum mechanics. This should not depend on the
expectation value of any operator and as such we interpret the � dependence to represent
an explicit deformation of the boundary M2-brane theory by a dimension one operator.
This is on top of the mass terms induced from the curvature of ⌃g when twisting of the
world-volume M2-brane theory [78].

4.4.2 Duality transformations on the CK black holes

Our new solutions with non-trivial axions and genuinely dyonic charges are given by

eV = eV |CK

eU = eU |CK

V↵ = O12(↵1)O23(↵2)VCK (4.71)

Q↵ = O12(↵1)O23(↵2)QCK

G↵ = G ,

where QCK refers to (4.45) and G refers to (4.20). The scalar fields transform by fractional
linear transformations:

z1
↵ =

c↵1z
1 � s↵1

s↵1z
1 + c↵1

, (4.72)

z2
↵ =

c↵21z
2 � s↵21

s↵21z
2 + c↵21

, (4.73)

z3
↵ =

c↵2z
3 + s↵2

�s↵2z
3 + c↵2

, (4.74)
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where ↵21 = ↵2 � ↵1 and one can observe that non-trivial axions are generated. Impor-
tantly, one can check that the Dirac quantization condition is invariant:

hG,O12(↵1)O23(↵2)QCKi = hG,QCKi . (4.75)

This space of supersymmetric static black holes now depends on five charges; three ini-
tial charges from the CK solutions and the parameters (↵1,↵2) generate two new charges.
As such there is no duality frame where the charges of the entire family are purely mag-
netic; they are genuinely dyonic black holes. In [101] a complete solution was found for
BPS horizon geometries of the form AdS2⇥⌃g in FI-gauged supergravity. It was found in
[101] that the space of BPS horizon geometries should be 2nV -dimensional. The counting
works as follows: the gaugings G define the theory and therefore are fixed. There are
nV +1 electric charges and nV +1 magnetic charges. Then there is the Dirac quantization
condition (4.44) and in [101] one additional constraint was found leaving 2nV parameters.
For the model at hand nV = 3 and this space is six dimensional. Assuming that every
BPS solution of the form AdS2⇥⌃g can be completed in the UV to a genuine AdS4 black
hole, it would seem there is still one dimension of the black hole solution space missing.
We will comment on this further in the conclusions.

For equal charge solutions with (4.58), there is an additional branch of solutions. The
charges are invariant under (4.71) but with � 6= 0 the scalar fields (z2, z3) are invariant
while z1 transforms according to (4.72):

z1
↵ =

2r�s2↵ + i(r2 ��2)

r2 +�2 � 2r�c2↵

, (4.76)

z2
↵ = z3

↵ = i . (4.77)

The metric is invariant and given by (4.65). When � = 0 the whole solution is invariant.
The regularity of the black hole can be easily analyzed, when ↵ = 0 the scalar z1 diverges
at r = � while for ↵ 6= 0 the imaginary part Im(z1) vanishes at r = �. Nonetheless
this is still shielded by the horizon whose position is independent of ↵. So for the fixed
charges (4.58) the full solution space is now a family of solutions with two parameters
(�,↵). Since the metric does not depend on ↵ the e↵ective AdS2 radius does not depend
on ↵ and we interpret this mode as an expectation value.

4.5 Rotating black holes

We now apply our duality transformations to rotating black holes. We focus on the BPS
rotating black holes in AdS4 are those of [77], these solutions were originally found in the
gauged supergravity model with prepotential and sections given by7

bF = �i bX0
bX1 , bX⇤ =

✓

1
⌧

◆

, bF⇤ =

✓�i⌧
�i

◆

, ⌧ = x + iy . (4.78)

This model does not have a frame where it is given by a cubic prepotential but one
can embed it into the STU-model in the frame (4.22) and (4.23). We now describe this

7To be clear, the hatted variables refer to the model of (4.78), the variables with a breve “ ˘ ” refer to the
STU-model in the frame given by (4.22) and (4.23) while the un-hatted, un-breved variables refer to STU model
obtained from the cubic prepotential (4.16). The duality rotations (4.36) act in the frame of (4.16).
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embedding in some detail and then the resulting action of the duality group. To do so we
take the scalar fields

z1 = i⌧ , (4.79)

z2 = z3 = i (4.80)

and sections

X̆0 = X̆1 = bX0 , X̆2 = X̆3 = bX1 , F̆0 = F̆1 = bF0 , F̆2 = F̆3 = bF1 . (4.81)

The scalar potential of this model is

bVg = �bg
2

2

h

4 +
1

x
+ x +

y2

x

i

. (4.82)

The gauge fields and couplings between the models are related by bg⇤ = ğ⇤ = 0 and

1p
2
bg0 = ğ0 = ğ1 ,

1p
2
bg1 = ğ2 = ğ3 , Ă0 = Ă1 =

1p
2
bA0 , Ă2 = Ă3 =

1p
2
bA1 .

For this embedding the dual sections are cM0 = �ibL1 and cM1 = �ibL0 so that in total we
have the following symplectic vector of sections

V̆T =
1p
2
(bL0, bL0, bL1, bL1,�ibL1,�ibL1,�ibL0,�ibL0) . (4.83)

The duality transformation O23(↵) acts trivially while O12(↵) acts on the sections as
follows:

V̆↵ = S O12(↵)S�1V̆ (4.84)

where S is given in (4.21). From (4.84) one can work out that after the transformation
we retain the identity z2 = z3 = i but this is also clear since they are fixed points of the
fractional linear transformations (4.72-4.74). The scalar field z1 transforms by a fractional
linear transformation

z1
↵ =

c↵z1 � s↵

s↵z1 + c↵

. (4.85)

The new gauge field strengths are obtained from
✓

F̆⇤

Ğ⇤

◆

↵

= S O12(↵)S�1

✓

F̆⇤

Ğ⇤

◆

where we have used the dual field strength defined in (4.8) and one finds that this too is
invariant. As a result O12 acts directly on the model of (4.78).

Now we can act on a particular solution such as the black hole of [77] in a straight-
forward manner. This seed solution can be found explicitly in [77, 102] which we briefly
review and add a few comments regarding the parameter space of this solution.

The space-time metric for this rotating solution is given by

ds2 =
⇢2 ��2

�r

dr2 +
⇢2 ��2

�✓

d✓2 +
�✓ sinh2 ✓

⇢2 ��2

�

jdt� (r2 + j2 ��2)d�
�2

� �r

⇢2 ��2

�

dt + j sinh2 ✓d�
�2

(4.86)
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and the complex scalar fields are

z1 = � 2j� cosh ✓

j2 cosh2 ✓ + (r ��)2
+ i

j2 cosh2 ✓ + r2 ��2

j2 cosh2 ✓ + (r ��)2
, (4.87)

z2 = z3 = i (4.88)

where

⇢2 = r2 + j2 cosh2 ✓ , �r =
1

R2

⇣

r2 +
j2 �R2

2
��2

⌘2

, �✓ = 1 +
j2

R2
cosh2 ✓ .

The gauge field is given by

Ă⇤ =
1

8ğ

cosh ✓

(⇢2 ��2)

�

jdt� (r2 + j2 ��2)d�
�

, ⇤ = 0, 1, 2, 3 . (4.89)

This is a rotating generalization of the solution in Section (4.4.1). The parameter ⌅ which
appears in [77] is unphysical and in our expression has been absorbed by a rescaling of
the coordinates which appear there. As with the static solution in Section (4.4.1) all
charges are equal as in (4.58). The parameter j is the rotation parameter, � represents
a deformation of the boundary theory by a source.

After setting up these pieces, it is completely straightforward to utilize a non-trivial
action of O12(↵) on this solution under which the metric, gauge fields and (z2, z3) are
invariant while z1 transforms exactly as (4.85):

z1 ! c↵

⇥� 2j� cosh ✓ + i(j2 cosh2 ✓ + r2 ��2)
⇤� s↵

⇥

j2 cosh2 ✓ + (r ��)2
⇤

s↵

⇥� 2j� cosh ✓ + i(j2 cosh2 ✓ + r2 ��2)
⇤

+ c↵

⇥

j2 cosh2 ✓ + (r ��)2
⇤ . (4.90)

This results in a family of rotating solutions with rotation parameter j and two additional
parameters (�,↵). The discussion below (4.76) is equally valid for this black hole. When
� = ↵ = 0 we recover the constant scalar rotating solution of [87].

4.6 Conclusions

We have demonstrated that a well-known and simple STU-model of four dimensional
gauged supergravity has a powerful and previously un-utilized duality group. The duality
group is a property of the theory itself and as such can be used to act on any given
solution, we have used this group to generate new classes of supersymmetric AdS4 black
holes.

When acting on the generic supersymmetric static black holes of [76] we have gener-
ated two additional directions in the solution space, both supersymmetric. In the sym-
plectic duality frame in which this directly embeds into the de Wit-Nicolai N = 8 theory,
these new directions include two additional electric charges and have non-trivial profiles
for the axions. One particular representative of our new solutions had been previously
constructed numerically in [101]. Using the results of [101] for the static BPS horizon
geometries in N = 2 U(1)-gauged supergravity theories, we have conjectured that with
the new results of this paper in hand, the known solution space of supersymmetric static
black holes in the STU-model is now co-dimension one within the full space of solutions.
The sixth and final dimension of the solution space remains undiscovered and we predict
that it should involve a non-trivial profile for the phase of the supersymmetry parameter,
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much like the quite complicated supersymmetric static black holes with hypermultiplets
found in [103]. We have not presented a strategy by which one could use duality to
generate this final branch but one could surely use numerics to confirm its existence.

When acting on the black holes of [76] with equal charges, we have generated a new
parameter in the solution space. This black hole now has two free parameters, one is dual
to an explicit mass term in the world-volume M2-brane theory, this is in addition to the
mass terms induced from twisting of the theory and the curvature couplings [78]. The
new parameter we have generated must then correspond to a vev.

We have also used the duality group to generate supersymmetric rotating black holes
by using the rotating black hole of Klemm [77] as a seed solution. This family remains
within the bF = �i bX0

bX1 model but to generate this family we had to first embed this
model into the STU-model. Our new solutions have one additional parameter with respect
to the Klemm black hole. In the recent work [104] a new family of rotating AdS4 black
holes was found by explicitly solving the second order field equations, generalizing the
work of [105, 106]. The Killing spinor conditions were not checked in that work and they
do not reference [77] but it would certainly be interesting to establish whether there is
overlap between our results in Section 4.5 and the results of [104]. The supersymmetric
black hole of [105] and its generalizations have a lower bound on the angular momentum
whereas the rotating black holes of Section 4.5 have a regular static limit. There is
clearly more work to be done regarding supersymmetric AdS4 black holes even in the
STU model; there remains the open problem of constructing a supersymmetric rotating
black hole which has a regular CK black hole with S2 horizon as its zero-rotation limit.

There has been much recent work developing non-BPS black holes in gauged super-
gravity [102, 104, 107, 108, 109, 110, 111, 112] and one can straightforwardly use our
duality group on these as well. For non-BPS black holes which are finite temperature
generalizations of the CK black holes, one would expect to find qualitatively similar re-
sults to ours. The space of static non-BPS solutions discussed in [104] has no overlap with
our solution space of supersymmetric black holes in Section 4.4 but it would appear that
our duality transformations would not generate new solutions in the class of static black
holes found in [104] since in that class all charges are already accounted for. Nonetheless
it would be interesting to check this in detail.

Our solution generating technique is reminiscent of the TST duality [113] used in the
study of AdS solutions of IIB and eleven-dimensional supergravity. In that work, families
of AdS solutions were generated which correspond to the gravity dual of the deformation
of the superconformal field theory by exactly marginal operators. This is clearly not
directly related to our duality group since the de Wit-Nicolai theory (of which our STU-
model is a truncation) contains the AdS4 scalars dual to relevant operators, nonetheless
we find it an interesting point of comparison. While Lunin-Maldacena focused on BPS
solutions, using the techniques of [113] one can find additional non-BPS directions in
the solution space [114]. Like the generator Og(✓) in Section 4.3.4, these resulted from
dualizing along directions where the bosonic fields are neutral but the Killing spinor is
charged. For solutions of IIB supergravity which are topologically of the form AdS5⇥S5,
the solution space is conjectured to admit an additional direction8 [116] than that found
in [113]. This is the dual of the so-called cubic deformation of N = 4 SYM and cannot be
obtained in any known way through duality. If finding the exact supergravity solution for
the final direction of our conjectured solution space of static BPS black holes is a problem

8This search for the resulting supergravity solution remains a long-standing open problem, the state of the art
in perturbation theory can be found in [115].
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of comparable di�culty, one should note that this would be quite a formidable problem.
Duality in gauged supergravity has rarely been employed in the literature. An attempt

to use the Geroch group in reductions to three dimensions was carried out in [117] but
such a method has not yet proved as useful for generating rotating black holes as it
is for ungauged supergravity. It is possible that our results for these N = 2 U(1)-
gauged supergravity theories could help in this regard, certainly it should be possibly to
understand duality for black holes with hypermultiplets [103]. More generally we hope
and expect that the synthesis of our new duality techniques with the numerous recents
works on black holes in gauged supergravity will result in much further progress in the
study of asymptotically AdS black holes.
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Conclusion

In this thesis, we have seen that the AdS/CFT correspondence and its generalizations
provide a new tool to study strongly-coupled field theories. The dual gravitational theory
is weakly-coupled and perturbative methods apply. The correspondence is particularly
powerful to compute the equilibrium properties and the close to equilibrium correlation
functions. Thermodynamic quantities of the field theory are obtained by computing the
on-shell gravitational action. The procedure to compute correlation functions is well-
defined and consists basically in solving second-order di↵erential equations.

The top/down approach to the AdS/CFT correspondence provides an equivalent de-
scription of certain strongly-coupled supersymmetric conformal field theories in terms of
supergravity. In this approach, the supergravity theory is the low energy description of
string theory or M-theory and the equivalence is believed to hold due to the two descrip-
tions of D-branes and M-branes.

The e↵ective supergravity theory arising from the backreaction of the branes is gauged.
It admits a non-vanishing potential for the scalars that behaves as an e↵ective negative
cosmological constant in the classical limit. Gauged supergravities thus admit asymp-
totically AdS solutions. The top/down approach has developed the study of BPS and
non-BPS black holes in gauged supergravity. In Chapter 4, we have seen how new BPS
black hole solutions could be constructed from duality transformations in 4-dimensional
N = 2 gauged supergravity with Fayet-Iliopoulos gaugings.

We have also shown in this thesis how the AdS/CFT correspondence can be used in a
more phenomenological way. In this bottom/up approach, minimal gravitational models
are constructed to describe strongly-coupled field theories. We have focused the analy-
sis on the study of strongly-correlated fermionic systems at finite density. Surprisingly,
simple models such as the electron star model and the holographic superconductor have
features related to the physics of non-Fermi liquids and high-Tc cuprate superconductors,
as discussed in Chapter 2.

By combining these two models, we have constructed in Chapter 3 new gravitational
solutions, dual to field theory states at finite density and zero temperature, which exhibit
both bosonic and fermionic degrees of freedom. The study of the low energy fermionic
spectrum has led to interesting conclusions about the onset of superconductivity in the
model.

The holographic study of systems of fermions is also possible in the D-brane ap-
proach to the AdS/CFT correspondence. In particular, the D3-D7’ model, obtained by
T-dualizing the D4-D8 system, has been used as a model of strongly-interacting fermionic
matter in 2+1 dimensions. This model exhibits several familiar phenomena appearing in
condensed matter, for example the quantum Hall e↵ect and the zero sound (see e.g. [118]).

The bottom/up holographic models that we presented describe translationally-inva-
riant field theories. One consequence is that the system has an infinite DC conductivity
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(the real part of the electrical conductivity admits a delta peak at zero frequency) due to
the absence of a lattice. This limitation can be overcome by considering models involving
a spatially periodic deformation. The lattice can be for example modulated on the gravity
side by a neutral scalar field whose leading behaviour near the boundary is oscillating in
the field theory spatial directions [119]. Breaking of the translational invariance can also
be realized by considering an oscillating boundary chemical potential [120]. Holographic
models with broken translational symmetry have also been considered in the context of
massive gravity (see e.g. [121]).

As we have seen on the examples of the electron star and the holographic superconduc-
tor models, Lifshitz solutions, which geometrize the Lifshitz invariance of finite density
systems at quantum criticality, can be realized as solutions of Einstein-Maxwell gravity
coupled to matter fields. However, in the context of the AdS/CFT correspondence, these
solutions must connect to an asymptotically AdS solution. Thus, even if one observes
an emergent scaling invariance in the near-horizon region, the dual field theory verifies
the thermodynamics of a relativistic theory, and the properties of quantum critical points
with dynamical critical exponent di↵erent from one are not all accessible. Non-relativistic
holographic dualities beyond AdS/CFT are thus being constructed.

Gravity duals for systems realizing the Lifshitz symmetry have been proposed in [122]
where the relativistic gravitational theory consists in the massive vector model in d + 1
dimensions where d is the dimension of the field theory (see also [41]). Other models
for Lifshitz holography are based on (non-relativistic) Hořava-Lifshitz gravity, proposed
in [123, 124] as a renormalizable theory of quantum gravity, which admits Lifshitz space-
time as a vacuum solution [125]. The Schrödinger group can also be realized geometri-
cally, as first proposed almost simultaneously by Son [126] and Balasubramanian and Mc
Greevy [127]. The gravitational theory must live in d + 2 dimensions to realize the full
algebra of the Schrödinger group.

Lifshitz and Schrödinger geometries also arise as solutions of string theory. Embedding
of the Schrödinger and Lifshitz solutions have first been realized in [128, 129, 130] and [131,
132, 133, 134], respectively. Lifshitz solutions can also be found in the context of four-
dimensional N = 2 gauge supergravity [135, 136].

The gauge/gravity correspondence has many other applications. The quark-gluon
plasma that forms after ion-ion collisions has been studied in the context of the D3/D7
system (see e.g. [137, 138]) and from a bottom/up perspective (see e.g. [139]). Another in-
teresting application is the fluid/gravity correspondence, which maps black hole solutions
to fluid dynamics in strongly-coupled field theories. In this context, Navier-Stokes equa-
tions are recovered from Einstein equations in suitable near-boundary and near-horizon
limits (see e.g. [140, 141, 142]). From the dynamics of the gravitational theory, one can
extract the hydrodynamic transport coe�cients.
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Appendix A

Correlation functions in Lorentzian
signature

In this appendix, we present the prescription to compute field theory correlation functions
in Lorentzian signature.

Since the Euclidean Green’s function can be obtained holographically following the
prescription of Section 1.5, the retarded Green’s function GR is given by the analytic
continuation

GR(!,~k) = GE(�i(! + i✏),~k) . (A.1)

However in most interesting examples, the Euclidean Green’s function is not known ex-
actly and it becomes di�cult to perform the analytic continuation to the Lorentz sig-
nature. It is then important to be able to compute directly the correlation functions
in Lorentzian signature. One could think of applying the procedure developed in Sec-
tion 1.5 to compute the Lorentzian Green’s function. However at finite temperature the
Lorentzian bulk spacetime contains a black hole in the interior region so the regular-
ity condition imposed previously is not applicable. A procedure to compute Lorentzian
Green’s functions has then be proposed in [143] and justified in [144]. We present below
the procedure, based on the analytic continuation of the Euclidean asymptotic solution
close to the event horizon.

The Euclidean bulk field  satisfies in general a second order di↵erential equation.
The asymptotic solution close to the horizon is typically

 (t, x, r) ⇠ A e!E [t�f(r)] + B e!E [t+f(r)] , r ! rH , (A.2)

where f(r) is a positive and increasing function of r which diverges at the event horizon
r = rH . The regularity condition is then B = 0. The asymptotic solution in Lorentzian
signature, obtained by analytic continuation from (A.1) by setting !E = �i!, is

 (t, x, r) ⇠ Ain e�i![t�f(r)] + Bout e�i![t+f(r)] , r ! rH , (A.3)

i.e. the superposition of two propagating modes: an ‘in-going’ wave and an ‘out-coming’
wave. The former propagates from the UV to the IR and the latter in the opposite
direction. The regularity condition in Euclidean signature translates into the ‘in-falling’
boundary condition Bout = 0. The in-falling boundary condition turns out to be very
natural since classical information can fall into the black hole but cannot come out.
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To give an example, let us consider a probe scalar field ' in the AdS-Schwarzschild
black hole obtained by setting µ̂ = 0 in the AdS-Reissner-Nordström black hole presented
in Section 2.3. In Lorentzian signature, the bulk action for ' is given by

Sgra = �L1�d

2

Z

ddx dr
p�g

�

gab@a'@b'+ m2'2
�

(A.4)

where gab is the metric of the AdS-Schwarzschild black hole. In the near-horizon region,
the Klein-Gordon equation for ' is simply, in momentum space,

@2
u'+ !2' = 0 (A.5)

where u(r) is a new variable defined by

u =

Z r dr0

f(r0)
. (A.6)

Since u(r) ! 1 for r ! rH , the regular asymptotic solution in Euclidean signature is
' ⇠ e!E(t�u) which indeed corresponds, by analytic continuation, to the in-falling wave
mode

' ⇠ e�i!(t�u) . (A.7)

In the saddle-point approximation, the equivalence of the generating functions of the
two theories in Lorentzian signature can then be written as

D

ei
R

ddx �(x)O(x)
E

FT
' eiScl[ �] , (A.8)

where the bulk field  dual to the operator O has the classical UV expansion

 cl(x, r) ⇠  �(x) r�� + +(x) r�+ , r ! 0 . (A.9)

The procedure to compute the one and two-point correlation functions then consists first in
finding the action to quadratic order of the bulk field  dual to O and in finding a solution
to the field equation which satisfies both the in-falling condition in the near-horizon region
and the UV asymptotics (A.9). As for the Euclidean version of the field/operator corre-
spondence,  � is the source for the operator O (in the standard quantization scheme),
the renormalized on-shell action Sren[ cl] is related to the generating functional of the
connected correlation functions WFT = �i log ZFT by

WFT[ �] = Sren[ �] (A.10)

and the connected correlation functions are obtained by taking derivatives of the renor-
malized on-shell action Sren[ cl]. One can also introduce the renormalized canonical mo-
mentum conjugate to the classical solution  cl,

⇧ren =
�Sren[ cl]

� cl

, (A.11)

in terms of which the one-point function is

hO(!,~k)i � = lim
r!0

r��⇧ren . (A.12)
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The in-falling boundary condition is the analogue to the regularity condition imposed
in Euclidean signature following the analytic continuation (A.1). It is also possible to
consider the analytic continuation ! = i!E instead of ! = �i!E, which leads to the
advanced Green’s function. However we focus here on the retarded Green’s function as it
has an important role in the close to equilibrium physics. In the linear response theory,
the response of the system to the application of an external source �S for an operator O
is proportional to the applied source and given by the Kubo formula [145]

�hO(!,~k)iS = GR(!,~k) �S(!,~k) , (A.13)

where the ‘constant’ of proportionality is the retarded Green’s function which character-
izes the response of the system. This allows to compute the retarded Green’s function in
momentum space, from (A.12) we get

GR(!,~k) = lim
r!0

r2��
⇧ren

 cl

. (A.14)
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Appendix B

Irrelevant operators and IR Lifshitz
solutions

In this Appendix,we are looking for Lifshitz-like solutions to the field equations (3.30) in
the case where ⌘̂ = 0. One can verify that such solutions do not arise if the scalar field
mass squared is negative, i.e. the dual boundary operator is a relevant one. However,
for m̂2

s > 0, solutions with Lifshitz symmetry with both non-trivial scalar field and fluid
exist.

We assume that the metric, the gauge field and the scalar field are of the form

f(r) =
1

r2z
, g(r) =

g1
r2

, h(r) =
h1
rz

,  ̂(r) =  ̂1 , (B.1)

where g1 and h1 are positive constants and z > 1. In particular, the scalar field is
assumed to be constant. On such backgrounds the local chemical potential is constant
and equals to h1, so the fluid quantities are also constant and we denote the charge
density, the energy density and the pressure of the fluid by �̂1, ⇢̂1 and p̂1.

These geometries arise both as exact solutions (for ⌘̂ = 0) to the system (3.30) for
trivial scalar field and trivial fluid, separately. We present here Lifshitz-like solutions
where both the fluid and the scalar field are turned on. It is useful to rescale the scalar
field by

 ̂ !  ̃ = q̂ ̂ . (B.2)

After this rescaling, (B.1) is a solution of the system if the constants satisfy

h1 =

r

z � 1

z
, (B.3a)

g1 =
2z
p

z � 1p
z�̂1 +

p
z � 1 ̃21

, (B.3b)

 ̃1 =

✓

z

z � 1

◆1/4
�

�

�

�

�

4
p

z
p

z � 1(3 + p̂1)� (z + 1)(z + 2)�̂1
2z m̂2

s
q̂2 + (4 + z + z2)

�

�

�

�

�

1/2

, (B.3c)

together with the constraint
(m̂2

s � q̂2h2
1) ̃1 = 0 . (B.4)

Notice that after the rescaling (B.2) the system depends only on the ratio m̂s/q̂, and not
on m̂s or q̂ independently.

There are three di↵erent possibilities:
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Figure B.1: The condensate  ̃1 as a function of h1 = m̂s/|q̂| for the Lifshitz solution at
m̂f = 0.36 and �̂ = 20. The blue and purple lines represent the condensate with and without
the star respectively. When there is no star forming, for h1 = 1, which corresponds to z = 1,
the condensate vanishes while it tends to a constant for h1 = 0 (z ! 1). When the star forms
for h1 > m̂f , there is a particular point h1 = h⇤1 where the condensate vanishes. At this point,
we recover the electron star solution.

1. Fluid phase: If the scalar field is trivial, Einstein-Maxwell equations impose the
constraint

4
p

z
p

z � 1(3 + p̂1)� (z + 1)(z + 2)�̂1 = 0 ,  ̃1 = 0 , (B.5)

which gives a non-trivial relation between z and the fluid parameters m̂f and �̂.
This is the zero temperature electron star solution [39].

2. Scalar field phase: If the scalar field is non-trivial, the constraint (B.4) implies that
m̂2

s > 0 since q̂2h2
1 > 0, and the local chemical potential and dynamical exponents

are

h1 =
m̂s

|q̂| , z =
1

1� m̂2
s/q̂

2
. (B.6)

When the fluid is trivial, i.e. �̂1 = p̂1 = 0, the condensate is given by

 ̃1 =
2
p

3z
p

(z + 1)(z + 2)
. (B.7)

This is the solution found in [51].

3. Coexistence phase: The fluid and the scalar field can coexist. In this case,
Eq. (B.4) for  ̃1 6= 0 implies that the chemical potential is again h1 = m̂s/|q̂|,
related to the dynamical exponent by (B.3a). The value of the condensate is given
in terms of m̂f , �̂ and the ratio m̂s/q̂ by Eq. (B.3c).

The space of solutions is depicted in Figure B.1, where we display  ̃1 as a function of
h1 for m̂f = 0.36 and �̂ = 20. Notice that for h1 < m̂f the star cannot form, and only
the solution with the scalar field alone exists. At h1 = m̂f the star can start forming, so
we have two branches. The special point h1 = h⇤1, which coincides with the vanishing
of the right hand side of (B.3c), admits both a pure star and a pure condensate with the
same Lifshitz exponent.
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Although the phase structure of these solutions is interesting, one does not expect
that these IR Lifshitz solutions will connect to the UV asymptotically AdS4 space: the
squared mass of the scalar field is positive, and the operator dual to the scalar field is an
irrelevant operator in the UV. Thus, it is unlikely that one could find an RG flow from a
UV AdS region to these IR solutions.
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Appendix C

The Dirac equation

Let us consider the action

S� =

Z

d4x
p�g

⇥�i (�̄�aDa��mf �̄�) + ⌘J ferm
a Ja

scal

⇤

(C.1)

of a probe spinor field � representing an electronic excitation of charge |qf |, in a back-
ground solution of the form (3.27) of the theory of Section 3.3, where

Ja
scal = �i

q

2
gab
⇥

 ̄(@b � iqAb) �  (@b + iqAb) ̄
⇤

, (C.2a)

J ferm
a = �|qf |�̄�a� , (C.2b)

and

Da = @a +
1

4
!ija�

ij � i|qf |Aa , (C.3)

�̄ = �†�0 . (C.4)

Notice that the field � has positive electric coupling |qf | consistent with our background
conventions. The Dirac equation is

i�aDa�� imf�+ ⌘|qf |Ja
scal�a� = 0 . (C.5)

By setting � = rf 1/4⇠(r)eikx�i!t, it becomes

r�1g�1/2
�

�1@r � Lmfg
1/2
�

⇠(r) + iKi�
i⇠(r) = 0 (C.6)

where

K0 = �r�1f�1/2



! +
eL


|qf |h

�

1� ⌘q2 ̄ 
�

�

, K2 = k , K1 = K3 = 0 . (C.7)

The Dirac equation does not depend on �3. We choose the following basis for Gamma-
matrices,

�0 =

✓

i�1 0
0 i�1

◆

, �1 =

✓��3 0
0 ��3

◆

, �2 =

✓��2 0
0 �2

◆

, �3 =

✓

0 �2

�2 0

◆

,

(C.8)
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where �l, l = 1, 2, 3, are Pauli matrices. By writing ⇠ = (�, �̃), we obtain two decoupled
first order equations for the Dirac spinors � and �̃ which di↵er only by the momentum
k ! �k. The equation for � is [32]

�

@r + �m̂fg
1/2�3

�

� = g1/2
n

i��2
⇥

!̂f�1/2 + µ̂l

⇤� �k̂r�1
o

� , (C.9)

or in components,

1p
g
@r�1 + �m̂f�1 � �

✓

!̂p
f

+ µ̂l � k̂r

◆

�2 = 0 , (C.10a)

1p
g
@r�2 � �m̂f�2 + �

✓

!̂p
f

+ µ̂l + k̂r

◆

�1 = 0 . (C.10b)

In the above equations, we have rescaled the momentum and the frequency by

! = �!̂ , k = �k̂ , (C.11)

where � is given by (3.51). The equations (C.10) can be written in the form

�002 =

hp
g
⇣

!̂p
f

+ µ̂l + k̂r
⌘i0

p
g
⇣

!̂p
f

+ µ̂l + k̂r
⌘ �02

+

8

>

<

>

:

�2g

"

m̂2
f + k̂2r2 �

✓

!̂p
f

+ µ̂l

◆2
#

� �m̂f
p

g

⇣

!̂p
f

+ µ̂l + k̂r
⌘0

!̂p
f

+ µ̂l + k̂r

9

>

=

>

;

�2 , (C.12a)

�1 =
1

!̂p
f

+ µ̂l + k̂r

✓

m̂f�2 � 1

�

1p
g
�02

◆

, (C.12b)

where primes denote derivatives with respect to the radial coordinate r. In the large-
� limit, it can be shown that the �02 term in (C.12a) is negligible by putting it in a
Schrödinger form. In this limit, the system (C.12) can be written as

�002 =

8

>

<

>

:

�2g

"

m̂2
f + k̂2r2 �

✓

!̂p
f

+ µ̂l

◆2
#

� �m̂f
p

g

⇣

!̂p
f

+ µ̂l + k̂r
⌘0

!̂p
f

+ µ̂l + k̂r

9

>

=

>

;

�2 , (C.13)

�1 =
1

!̂p
f

+ µ̂l � k̂r

✓

m̂f�2 � 1

�

1p
g
�02

◆

. (C.14)
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Appendix D

Solving the Schrödinger-like equation

We will solve the Schrödinger equation (3.52) in the WKB approximation. We focus here
on the case where there is a region of the bulk where the Schrödinger potential is negative.
This region is bounded by the turning points r = r1 and r = r2, with r1 < r2, where the
potential vanishes. We recall that in the WKB approximation, the formal solution to the
equation (3.52) is

�2 'C+ exp



�

Z r

r0

ds
p

V (s)�
Z r

r0

ds
V 0(s)
4V (s)

�

+C� exp



��
Z r

r0

ds
p

V (s)�
Z r

r0

ds
V 0(s)
4V (s)

�

(D.1)

where r0 is an arbitrary (fixed) point.
Close to a turning point r = r?, we have

�

Z r

r?

ds
p

|V (s)| ⇠ ±'(r) , r ! r±? , (D.2)

where

'(r) =
2

3
�
p

|V 0(r?)| · |r � r?|3/2 . (D.3)

The matching conditions around a turning point where V (r) vanishes linearly are

1

2
e�' $ sin('+ ⇡/4) , (D.4a)

e' $ cos('+ ⇡/4) . (D.4b)

D.1 The WKB solution for one V < 0 region

We consider first the case where the potential V is negative in one region bounded by
r1 and r2 with r1 < r2. By imposing normalizability on the wave function, in the inner
region r > r2 we have

�in
2 ⇠ Cin e��

R r
r2

ds
p

V (s) . (D.5)

115



In the intermediate region r1 < r < r2, the wave function is

�inter
2 ⇠ Cinter

+ ei�
R r

r1
ds
p

|V (s)| + Cinter
� e�i�

R r
r1

ds
p

|V (s)| (D.6)

⇠ Cinter
+ e✓12 ei�

R r
r2

ds
p

|V (s)| + Cinter
� e�✓12 e�i�

R r
r2

ds
p

|V (s)| (D.7)

where

✓ij = �

Z rj

ri

dr
p

|V (r)| . (D.8)

Finally, in the UV region, we have

�out
2 ⇠ Cout

+ e�
R r

r1
ds
p

V (s) + Cout
� e��

R r
r1

ds
p

V (s) (D.9)

⇠ Cout
+ e�✓✏ e�

R r
✏ ds
p

V (s) + Cout
� e✓✏ e��

R r
✏ ds
p

V (s) (D.10)

where

✓✏ = �

Z r1

✏

dr
p

V (r) (D.11)

and ✏⌧ 1 is a UV cuto↵. Close to the UV boundary, the WKB solution is

�UV
2 ⇠ CUV

+ e�✓✏

⇣r

✏

⌘�m̂f

+ CUV
� e✓✏

⇣r

✏

⌘��m̂f+1

. (D.12)

Notice that we have taken into account the O(��1)-correction

���1m̂f
p

g

⇣

!̂p
f

+ µ̂l + k̂r
⌘0

!̂p
f

+ µ̂l + k̂r
(D.13)

to the Schrödinger-like potential (3.55) to obtain the subleading power r1 in the second
term in (D.12). Applying the matching conditions (D.4) and using (3.75) and (3.76), we
obtain the Green’s function (3.77) with

G =
1

2
tan W (D.14)

where

W = �

Z r2

r1

dr
p

|V (r)| . (D.15)

D.2 The WKB solution for two V < 0 regions

Now we consider the case where V is negative in two regions bounded by r1, r2 and r3,
r4 respectively, with r1 < r2 < r3 < r4. We impose regularity on the wave function at
infinity, so in the inner region r > r4, �2 is given by (D.5) where r2 is replaced by r4. The
UV expansion is again given by (D.12). By matching the solution in the di↵erent regions
at the turning points, the constant G in the Green’s function (3.77) is now given by

G =
4e2X sin Y cos Z + cos Y sin Z

8e2X cos Y cos Z � 2 sin Y sin Z
(D.16)

where

X = �

Z r3

r2

dr
p

V (r) , Y = �

Z r2

r1

dr
p

|V (r)| , Z = �

Z r4

r3

dr
p

|V (r)| . (D.17)
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Appendix E

Duality symmetries and Very Special
Kähler Geometry

We now summarize some key aspects of duality symmetries for very special Kähler geome-
try following [97, 98, 146]. Under the action of Sp(2nV +2, R), the prepotential transforms
according to

S =

✓

A B
C D

◆

2 Sp(2nV + 2, R) , (E.1)

eF ( eX) = F (X) + X⇤(CtB) ⌃⇤ F⌃ +
1

2
X⇤(CtA)⇤⌃X

⌃ +
1

2
F⇤(D

tB)⇤⌃F⌃ . (E.2)

The elements of Sp(2nV + 2, R) which leave the prepotential invariant correspond to
isometries of MV and these have been classified by de Wit and Van-Proeyen. Working
at the level of the Lie algebra we have an element

S =

✓

Q R
S T

◆

2 sp(2nV + 2, R) (E.3)

with components

Q = �T t =

✓

� ai

bj Bi
j + 1

3
��i

j

◆

, (E.4)

R =

✓

0 0

0 � 3
32
bdijkak

◆

, (E.5)

S =

✓

0 0
0 �6dijkbk

◆

. (E.6)

The scalar fields transform infinitesimally as

�zi = bi � 2

3
�zi + Bi

jz
j � 1

2
Ri l

jk zjzkal . (E.7)

where Ri l
jk is the Riemann tensor on MV :

Ri l
jk = 2�i

(j�
l
k) �

9

16
bdilmdmjk . (E.8)
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In general these symmetries are constrained

Bi
(jdkl)i = 0 , (E.9)

aiE
i
jklm = 0 (E.10)

where the E-tensor is given by

Ei
jklm = bdinpdn(jkdlm)p � 64

27
�i
(jdklm) . (E.11)

When MV is a homogeneous space, the case of most interest to us, Ei
jklm vanishes and

thus the constraint (E.10) is identically zero. As a consequence the ai and bj parameters
are unconstrained.

To get a feeling for these symmetries, consider the fractional linear transformation of
zi under SL(2, R). To work out the infinitesimal transformation we take the standard
generators of sl(2, R)

E =

✓

0 1
0 0

◆

, F =

✓

0 0
1 0

◆

, H =

✓

1 0
0 �1

◆

(E.12)

then we have

�Ezi ! ↵ , �F zi ! �↵(zi)2 , �Hzi ! 2↵zi . (E.13)

So one can interpret the matrix S in (E.4)-(E.6) with bi 6= 0 as raising operators and
when MV is a homogeneous space, the Riemann tensor is constant and one can interpret
the matrix with ai 6= 0 as lowering operators. The (�, Bi

j) are then the Cartan elements.
The full commutation relations can be easily worked out or found in [97, 98, 146].
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Appendix F

Résumé long en français

Nous présentons dans cette thèse les applications de la correspondance AdS/CFT à l’étude
des théories des champs fortement corrélées en adoptant deux approches, l’approche ‘top-
down’ en termes de théorie des cordes et supergravité, et l’approche ‘bottom-up’, plus
phénoménologique.

F.1 La correspondance AdS/CFT

La correspondance AdS/CFT repose sur les deux descriptions des D-branes (M-branes)
en théorie des cordes (théorie M, respectivement).

F.1.1 Supergravité et p-branes

Les théories de supergravité contiennent des champs de jauge de rang supérieur qui
généralisent les potentiels de l’électromagnétisme et des théories de Yang-Mills. Ces
champs de jauge sont des p-formes Cp invariantes sous des transformations de jauge
généralisées. Les théories de supergravité admettent des objets massifs qui s’étendent
dans p directions spatiales et sont chargés sous le potentiel Cp. Ces objets sont connus
sous le nom de p-branes.

Prenons l’exemple de la théorie de supergravité de type IIB, qui décrit le secteur des
excitations non-massives de la théorie des cordes de type IIB. Cette théorie admet comme
champs bosoniques la métrique dix-dimensionnelle, un tenseur antisymétrique de rang
deux, le dilaton et les potentiels C0, C2 et C4. Cette théorie admet en particulier des
3-branes où le potentiel de jauge C4 est non-trivial. Les 3-branes préservent une partie de
la supersymétrie de la théorie. Lorsque leur masse et leur charge sont égales, les 3-branes
sont extrémales et peuvent être empilées. Une telle solution de la théorie est spécifiée par
une unique fonction harmonique qui ne dépend que du nombre de branes.

La tension des p-branes est inversement proportionnelle à la constant de couplage de
la corde gs, ce qui traduit la nature non-perturbative des p-branes.

F.1.2 Théorie des cordes et Dp-branes

Il a été découvert dans les années 1990 qu’en théorie des cordes, les p-branes ont une
description perturbative en termes de cordes ouvertes et fermées. Dans ce contexte ces
objets sont appelés Dp-branes et définis comme hypersurfaces (p+1)-dimensionnelles dans
l’espace-temps dix-dimensionnel sur lesquelles les cordes ouvertes peuvent se rattacher.
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Considérons l’exemple d’une D3-brane plane. Dans la limite de basse énergie, la
quantification de la corde ouverte mène à un spectre non-massif constitué d’un multiplet
vectoriel avec 16 supercharges vivant sur la D3-brane, menant à une théorie de jauge
abélienne à 4 dimensions. Ce multiplet interagit avec les champs non-massifs issus de la
corde fermée, qui vivent eux dans l’ensemble de l’espace-temps.

Lorsque l’on considère un empilement de plusieurs D3-branes, les cordes ouvertes peu-
vent être rattachées à des branes di↵érentes, ce qui mène à une théorie de jauge non-
abélienne sur les D3-branes. Les champs de cette théorie interagissent avec les champs
du spectre de la corde fermée.

F.1.3 Limite de découplage

Les branes ont donc deux interprétations, comme solutions non-perturbatives en super-
gravité, et comme hypersurfaces sur lesquelles les cordes ouvertes peuvent se rattacher en
théorie des cordes. Nous allons maintenant voir comment la correspondance AdS/CFT
émerge en considérant la même limite de découplage dans les deux cas.

Dans la description en termes de théorie des cordes, lorsque l’on zoome sur la région
proche des D3-branes, le multiplet vectoriel issu de la quantification de la corde ouverte
se découple des autres champs. La théorie se réduit dans ce cas à la théorie de Yang-
Mills supersymétrique (SYM) N = 4 à 4 dimensions avec groupe de jauge U(N). Cela
correspond à prendre la limite où l’inverse de la tension de la corde ↵0 ! 0.

Du côté de la supergravité, cette même limite mène à l’espace-temps AdS5 ⇥ S5, où
AdS5 est l’espace Anti-de Sitter à 5 dimensions. Le potentiel C4 reste lui aussi non-trivial.

La limite ↵0 ! 0 mène à penser qu’il y a équivalence entre la théorie SYM N = 4 et
la théorie des cordes de type IIB sur l’espace AdS5 ⇥ S5. Nous donnons ci-dessous des
raisons de croire en cette dualité.

F.1.4 Tests et propriétés de la correspondance

Chacune des deux théories admet deux paramètres. Ces paramètres sont pour la théorie
des champs le rang du groupe de jauge U(N), égal à N , et le couplage de ’t Hooft
� = g2

Y MN , où gY M est la constante de couplage du champ de jauge non-abélien. Du
côté de la théorie de gravité, ces paramètres sont le couplage de la corde gs et l’inverse de
la tension de la corde ↵0. Les relations entre les paramètres des deux théories sont très
simples, et mènent à d’intéressantes conclusions. En particulier, la limite de basse énergie
de la théorie des cordes, c’est-à-dire la supergravité de type IIB sur l’espace AdS5 ⇥ S5

obtenue en prenant ↵0 ⌧ 1 et gs ! 0, correspond du côté de la théorie des champs à
prendre N ! 1 et � ! 1. La théorie des champs est donc dans ce cas fortement
couplée.

Les mêmes symétries sont réalisées des deux côtés de la correspondance. En e↵et,
on pense que la théorie SYM N = 4 est conforme à tous les ordres, ce qui signifie que
c’est une théorie conforme des champs (CFT). Le groupe conforme en 4 dimensions est
SO(4, 2). A cela s’ajoute la R-symétrie et les supercharges conformes nécessaires pour
fermer l’algèbre. Toutes ces symétries forment le groupe superconforme PSU(2, 2|4) sous
l’action duquel la théorie SYM N = 4 est invariante. Notons que la théorie des champs
contient 16 supercharges et 16 supercharges conformes.

La symétrie PSU(2, 2|4) est aussi réalisée dans la théorie des cordes duale. Les groupes
O(4, 2) et SO(6) ' SU(4) sont les groupes d’isométrie de AdS5 et S5, respectivement.
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Aussi, la théorie des cordes de type IIB contient 16 supercharges. Sur l’espace-temps
maximalement supersymétrique AdS5 ⇥ S5, la supersymétrie est élargie menant à 32
supercharges.

Par exemple, le sous-groupe SO(1, 3) du groupe d’isométrie O(4, 2) de AdS5 corre-
spond au groupe de Lorentz de la théorie des champs. Aussi, le sous-groupe SO(1, 1) est
dual aux dilatations dans la théorie des champs. Du côté de la gravité, ces transformations
agissent sur les coordonnées de l’espace AdS5, qui sont les coordonnées spatio-temporelles
de la théorie des champs, ainsi que la coordonnée radiale, qui peut être assimilée à l’échelle
d’énergie de la théorie des champs.

Le spectre de chacune des deux théories duales est aussi clairement relié. Les ob-
servables de la CFT sont les opérateurs primaires chiraux et non-chiraux. Les premiers
sont des opérateurs composites ‘single-trace’ des opérateurs fondamentaux de la théorie
et sont protégés sous renormalisation, ce qui signifie que leur dimension conforme est leur
dimension canonique. Les seconds sont des opérateurs composites ‘multi-trace’ et ne sont
pas protégés sous renormalisation. Ces opérateurs forment respectivement des multiplets
courts (opérateurs chiraux) et longs (opérateurs non-chiraux). Dans la limite de ’t Hooft
N !1, � fixé, les opérateurs chiraux et non-chiraux se découplent.

Du coté de la gravité, cette limite correspond à la limite de supergravité avec correc-
tions dans l’action de dérives d’ordres supérieurs. Les champs 10-dimensionnels peuvent
être réduits dimensionnellement sur la 5-sphère. Les champs résultant à 5 dimensions
s’organisent en les mêmes multiplets chiraux du groupe superconforme que du côté de la
théorie des champs. Chaque champ à 5 dimensions est dual à un opérateur de la CFT
appartenant au même multiplet chiral. Ils ont les mêmes Casimirs que sont les nombres
quantiques du groupe de Lorentz ainsi que la dimension conforme. Celle-ci est donné du
côté de la gravité en termes de la masse du champ.

F.1.5 Thermodynamique et fonctions de corrélation

La correspondance AdS/CFT établit l’égalité des fonctions de partitions des deux théories.
Dans la limite où la théorie des champs est fortement couplée, la théorie des cordes se
réduit à la supergravité et la fonction de partition est simplement donnée par l’action ‘on-
shell’. Les propriétés d’équilibre de la théorie des champs sont ainsi simplement obtenues
en calculant l’action on-shell de la théorie de gravité.

La correspondance AdS/CFT permet aussi de calculer les fonctions de corrélations de
la CFT fortement couplée. Celles-ci sont définies en théorie des champs comme dérivées
de la fonction de partition par rapport à la source à laquelle se couple l’opérateur. Dans
la correspondance AdS/CFT, elles peuvent être calculées en étudiant les perturbations du
champ de la théorie de gravité dual à l’opérateur de la CFT. Ce champ obéit généralement
à une équation di↵érentielle du second ordre. Deux conditions aux bords doivent donc
lui être imposées. La première a lieu dans l’IR, c’est-à-dire loin du bord conforme, où
on doit imposer la régularité si on travaille en signature euclidienne. Si on travaille en
signature lorentzienne, plusieurs conditions au bord peuvent être imposées: les conditions
‘in-going’ et ‘out-coming’, qui mènent, pour les fonctions de corrélation à deux points,
aux fonctions de Green retardée et avancée, respectivement. Dans le cadre de l’étude des
propriétés proche de l’équilibre de la théorie des champs, il est naturel de considérer la
condition in-going pour laquelle l’onde se propage vers l’infini. Dans l’UV, c’est-à-dire
proche du bord conforme d’AdS, la solution est donnée comme combinaison linéaire d’un
mode normalisable et d’un autre non-normalisable. Le mode non-normalisable donne la
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source de l’opérateur dual. En calculant l’action on-shell, il est alors possible d’obtenir
les fonctions de corrélation de la théorie des champs en prenant des dérivées de celle-ci
par rapport à cette source.

F.1.6 Généralisations

Bien que la formulation originelle de la correspondance AdS/CFT proposée par Maldacena
conjecture l’équivalence entre la théorie des cordes de type IIB sur AdS5⇥S5 et la théorie
N = 4 SYM, d’autres dualités ont été établies. Citons par exemple l’équivalence entre
les théories de Chern-Simons couplées à de la matière en 3 dimensions et la théorie M
sur AdS4 fois une variété compacte à 7 dimensions. Plus généralement, la correspondance
relie des CFT à d dimensions à la physique sur l’espace AdSd+1. Les détails de chaque
dualité provient des deux descriptions des D-branes et M-branes en théorie des cordes et
théorie M.

Il est aussi possible de considérer la théorie des champs à température non-nulle. Dans
ce cas, les branes ne sont pas extrémales, et dans la description en termes de supergravité,
cela se traduit par la présence d’un trou noir. La température de la théorie des champs
n’est autre que la température de Hawking du trou noir, et les propriétés d’équilibre sont
données par la thermodynamique du trou noir. La correspondance s’avère très utile pour
l’étude de la dynamique proche de l’équilibre et des phénomènes de dissipation dans les
théories des champs fortement couplées.

Dans la correspondance AdS/CFT, une symétrie globale de la théorie des champs est
duale à une symétrie de jauge dans la théorie de gravité. Par exemple, si la CFT contient
une symétrie globale U(1) cela signifie que la théorie de gravité contient un champ de
jauge U(1). On peut alors considérer la théorie des champs à potentiel chimique non-nul
pour cette symétrie. Puisque le potentiel chimique peut être vu comme une source pour la
charge U(1) conservée, du côté de la gravité cela correspond à changer le comportement
asymptotique du champ de jauge proche du bord d’AdS. Plus spécifiquement, le mode
non-normalisable devient dans ce cas non-nul.

Nous allons par la suite notamment nous intéresser à des théories des champs fortement
couplées à la fois à température finie et à densité finie. La théorie de gravité va donc
contenir un trou noir et un champ de jauge.

Dans la dualité AdS/CFT, on peut voir la théorie des champs comme vivant sur le
bord conforme de l’espace AdS. La correspondance AdS/CFT est donc une réalisation du
principe holographique, qui stipule que toute l’information contenue dans un volume est
encodée dans son bord.

F.2 AdS/CFT pour la matière condensée

La correspondance AdS/CFT est utile pour l’étude de certaines théories des champs
supersymétriques qui ont une description duale en termes de supergravité. On peut
élargir le domaine d’application de la correspondance et assumer qu’elle s’applique aussi
à des modèles plus phénoménologiques.

Nous allons assumer l’équivalence entre une théorie des champs fortement couplée avec
un grand nombre de degrés de liberté (similaire au rang N du groupe de jauge SU(N) dans
la formulation de Maldacena de la dualité) vivant en d dimensions, et une théorie classique
de gravité sur un espace asymptotiquement AdSd+1 (dans l’UV, proche du bord d’AdS).
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Cela permet d’appliquer le dictionnaire de la correspondance qui relie les observables des
deux théories et de calculer les fonctions de corrélation.

Du côté de la gravité, le fait de considérer un espace-temps non pas AdS mais seule-
ment asymptotiquement AdS brise l’invariance conforme de la théorie des champs. Cela
est réalisé en considérant des opérateurs relevants dans la théorie des champs ou en la
considérant à température finie. Puisque l’invariance conforme est brisée, le groupe de
renormalisation est non-trivial pour la théorie des champs.

F.2.1 Systèmes de fermions à densité finie

Nous allons nous intéresser tout particulièrement aux applications possibles de la corre-
spondance AdS/CFT aux systèmes de fermions fortement couplés. Ces systèmes sont à
densité finie.

La plupart des métaux sont très bien décrits par la théorie de Landau des liquides de
Fermi. Même si les électrons sont fortement couplés, dans de tels systèmes les excitations
de basse énergie sont faiblement couplées et les méthodes perturbatives de la mécanique
quantique et de la théorie des champs peuvent être appliquées. Ces excitations sont
des ‘électrons habillés’ qui se comportent comme des particules quasi-libres grâce à la
resommation des interactions fortes de courte distance. Le système à basse énergie est
adiabatiquement connecté au gaz libre d’électrons. L’état de vide est symétrique sous la
symétrie U(1) et les excitations de basse énergie consistent en des paires électrons-trous.

Cette approche en termes de quasiparticules a aussi été utilisée pour décrire le mécani-
sme menant à l’état supraconducteur par formation de paires de Cooper rendue possible
par l’interaction des électrons habillés avec les vibrations du réseau (les phonons). Dans
ce cas la symétrie U(1) est spontanément brisée.

Certains systèmes de fermions ne sont cependant pas décrits par la théorie de Landau.
Cela se produit lorsque les excitations de basse énergie sont fortement couplées. Dans ce
cas on ne parle plus de quasiparticules car les excitations ont un temps de vie court.

Certains systèmes de fermions qui ne sont pas décrits par la théorie de Landau ad-
mettent une transition de phase quantique, que l’on peut définir comme une transition
de phase à température nulle qui n’est pas controlée par la température mais par un
paramètre tel que le dopage. Au point critique, la longueur de cohérence diverge et le
système est invariant sous une symétrie d’échelle émergente sous laquelle le temps et
l’espace se transforment di↵éremment: t ! �z t, x ! � x. Le système est aussi invariant
sous rotations et translations spatiales et temporelles. Cela forme le groupe de Lifshitz.
La symétrie émergente est aussi présente à des températures non-nulles pour lesquelles les
fluctuations quantiques sont négligeables par rapport aux fluctuations thermiques. Dans
cette région critique quantique, le système est en principe décrit par une théorie critique
à température finie.

Les cuprates sont des matériaux qui deviennent supraconducteurs en dessous d’une
température critique anormalement haute d’un point de vue de la théorie BCS. A des
températures supérieures à la température critique, ces matériaux sont conducteurs mais
non décrits par la théorie de Landau à cause des fortes interactions et de l’absence de
quasiparticules. On pense que cet état de ‘métal étrange’ appartient à la région critique
quantique d’un point critique quantique qui se trouverait dans la phase supraconductrice
du diagramme de phase. Pour comprendre le mécanisme menant à l’état supraconducteur
dans de tels matériaux, il est intéressant de comprendre l’état de métal étrange. Cet
état est cependant di�cilement accessible en utilisant les méthodes perturbatives de la
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mécanique quantique et de la théorie des champs puisqu’il est fortement corrélé à basse
énergie. La dualité AdS/CFT fournit une nouvelle approche et de nouveaux outils pour
l’étude de tels systèmes.

F.2.2 La théorie d’Einstein-Maxwell

Nous souhaitons étudier les systèmes de fermions fortement corrélés en utilisant la cor-
respondance AdS/CFT dans une approche phénoménologique. Puisque de nombreux
matériaux se comportent à basse énergie comme s’ils vivaient dans un espace à 2+1 di-
mensions, nous allons considérer un espace-temps asymptotiquement AdS4. Un tel espace
peut être obtenu en considérant la théorie de gravité d’Einstein avec une constante cos-
mologique négative. De plus, les systèmes de fermions qui nous intéressent sont à densité
finie, la théorie de gravité duale doit donc contenir un champ de jauge U(1) responsable
du potentiel chimique non-nul. Nous considérons donc la théorie d’Einstein-Maxwell en
4 dimensions.

Cette théorie admet une solution exacte, le trou noir de Reissner-Nordström, qui est un
trou noir chargé. La charge totale de cette solution est aussi la charge U(1) de la théorie
des champs duale. Cette solution pose cependant quelques problèmes pour l’étude des
systèmes de fermions. Il est facile de montrer que l’entropie de cette solution est non-
nulle à température nulle, ce qui veut dire que l’état de la théorie des champs duale est
dégénéré. Aussi, aucun champ de matière n’est présent dans cette solution, ce qui signifie
que la matière est inaccessible dans la théorie des champs duale. Il est donc nécessaire
d’introduire des champs de matière dans la théorie d’Einstein-Maxwell pour modéliser
holographiquement plus précisément un système de fermions.

F.2.3 Le modèle de l’étoile à électrons

Un premier modèle holographique important pour l’étude des systèmes de fermions forte-
ment couplés est l’étoile à électrons. Ce modèle consiste en la théorie d’Einstein-Maxwell
couplée à un fluide parfait de fermions chargés à température nulle. Dans ce modèle,
les fermions sont traités semi-classiquement et les quantités du fluide fermionique, telles
que la pression, la densité de charge et la densité d’énergie, sont fonctions d’un potentiel
chimique local, lui-même fonction de la composante temporelle du champ de jauge (et de
la métrique). Lorsque le potentiel chimique local est supérieur à la masse des fermions,
les quantités du fluide sont non-nulles. Lorsqu’il est inférieur à la masse, ces quantités
sont nulles et le fluide n’est pas présent.

Ce système admet une solution exacte qui reproduit l’invariance d’échelle émergente
observée au point critique dans les systèmes critiques quantiques. Dans cette solution,
le potentiel chimique local est constant, le fluide est non-trivial et ses quantités sont
constantes. Cette solution est considérée comme la solution dans l’IR (loin du bord de
l’espace AdS). En perturbant cette solution, il est possible de connecter cette géométrie
de basse énergie à un espace-temps AdS proche du bord. La valeur du potentiel chimique
local décroit lorsqu’on s’éloigne de la région IR jusqu’à un point où il est égal à la masse
des fermions. A ce point les quantités du fluide deviennent nulles, ce qui définit le bord de
l’étoile. En dehors de l’étoile, l’espace-temps est celui du trou noir de Reissner-Nordström.

En calculant l’action on-shell de cette solution, il peut être montré que l’énergie libre de
la solution de l’étoile à électrons est inférieure à celle du trou noir de Reissner-Nordström
extrémal, ce qui signifie que l’étoile à électrons est favorisée thermodynamiquement à
température nulle.
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En étudiant l’équation du mouvement d’un champ spinoriel test sur cette solution, il
peut être montré que la théorie des champs duale admet un grand nombre de surfaces de
Fermi. Aussi, il est possible d’étudier la réaction du système à l’application d’un champ
magnétique. On trouve que celui-ci ne se comporte pas exactement comme un liquide de
Fermi.

La solution de l’étoile à électrons est interprétée comme décrivant un système de
fermions fortement couplé proche d’un point critique et qui n’est pas décrit par la théorie
de Landau.

F.2.4 Le supraconducteur holographique

On peut aussi coupler la théorie d’Einstein-Maxwell à un champ scalaire chargé. Cela a
mené au concept de supraconducteur holographique.

Des solutions pour de telles théories ont été trouvées où un trou noir chargé coexiste
avec un champ scalaire. Le champ scalaire est non-trivial dans tout l’espace-temps. En
particulier, proche du bord d’AdS le mode non-normalisable, proportionnel à la vev de
l’opérateur scalaire chargé dual, est non-nul. L’opérateur scalaire dual condense et la
symétrie U(1) est spontanément brisée. En interprétant cet opérateur comme l’équivalent
à couplage fort des paires de Cooper, on en déduit que l’état est supraconducteur.

En dessous d’une certaine température critique, la solution où le champ scalaire est
non-trivial est favorisée thermodynamiquement par rapport au trou noir chargé seul.
Cependant, au dessus de cette température, seule la solution du trou noir chargé seul
existe. On peut montrer qu’il y a une transition de phase du second ordre à la température
critique interprétée comme le passage à l’état supraconducteur dans la théorie des champs
duale.

Les supraconducteurs holographiques ont été découverts tout d’abord à température
finie par Hartnoll, Herzog et Horowitz en 2008. L’année suivante une solution à tempéra-
ture nulle a été trouvée par Horowitz et Roberts (voir aussi Gubser et Nellore). Dans ce
cas le trou noir n’est plus présent et l’état supraconducteur dual est non-dégénéré. Cette
solution est un des ingrédients majeurs de cette thèse.

L’appellation ‘supraconducteurs holographiques’ pour ces solutions n’est pas seulement
justifiée par la condensation d’un opérateur scalaire chargé. En e↵et, il est possible de car-
actériser l’état supraconducteur en étudiant le comportement du système à l’application
de champs électrique et magnétique. Dans le contexte de l’holographie, cela peut être fait
en étudiant les perturbations du champ de jauge de la théorie de gravité. En appliquant
le dictionnaire de la dualité AdS/CFT et la théorie de la réponse linéaire, on peut par
exemple obtenir la conductivité électrique, dépendante de la fréquence, du système. Dans
l’état supraconducteur, on observe un gap en énergie dans la partie réelle de la conduc-
tivité. Dans un métal, la conductivité n’a pas de gap: pour un champ électrique appliqué
arbitrairement faible, le système est conducteur et le courant électrique induit est non-
nul. Dans un supraconducteur BCS, un tel gap est présent et correspond à l’énergie de
liaison des paires de Cooper. Dans les supraconducteurs holographiques, le gap observé
est interprété comme l’énergie de liaison du condensat scalaire, qui est un opérateur com-
posite de l’opérateur fermionique. Il est aussi possible d’étudier la réaction du système
à l’application d’un champ magnétique. Il a été montré que les supraconducteurs holo-
graphiques réalisent l’e↵et Meissner: le supraconducteur expulse tout champ magnétique.
Cependant, l’application d’un champ magnétique assez fort brise l’état supraconducteur.
La transition de phase entre état supraconducteur et non-supraconducteur en fonction du
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champ magnétique appliqué a été étudié dans le contexte holographique. Il est partic-
ulièrement intéressant de noter que les supraconducteurs holographiques sont de type II,
tout comme les supraconducteurs à haute température critique tels que les cuprates (les
supraconducteurs décrits par la théorie BCS sont de type I).

F.3 Systèmes de Bose-Fermi holographiques

Comme nous l’avons vu ci-dessus, le trou noir de Reissner-Nordström admet deux in-
stabilités, une fermionique et l’autre bosonique, qui sont a priori indépendantes. Ces
instabilités ont mené à deux modèles importants pour l’étude des systèmes fortement
couplés en matière condensée, l’étoile à électrons et le supraconducteur holographique.

Du point de vue de la matière condensée, l’étude de systèmes holographiques où à la fois
des degrés de liberté fermioniques et bosoniques sont présents est intéressante. En e↵et,
reprenons le diagramme de phase des cuprates. A basse température, ces systèmes sont
supraconducteurs. A plus haute température, l’état est conducteur mais non décrit par la
théorie de Landau des liquides de Fermi à cause des fortes interactions entre excitations
fermioniques de basse énergie. Comme nous l’avons suggéré plus haut, cela pourrait
signifier qu’il y a un point critique quantique dans la phase supraconductrice. L’étude
de systèmes holographiques de Bose-Fermi pourrait permettre de décrire la transition de
phase entre l’état conducteur et supraconducteur dans ce type de matériaux.

Certains modèles holographiques ont étudié le passage à l’état supraconducteur en
considérant la formation de paires de Cooper dans le trou noir de Reissner-Nordström.
Ces modèles sont toutefois limités car ils requièrent que la charge du condensat soit le
double de celle des électrons. Cependant, il est possible que le condensat qui se forme dans
l’état supraconducteur soit un opérateur scalaire composite de l’opérateur fermionique
plus compliqué. Aussi, à cause de la possible existence d’un point critique quantique, le
phénomène de fractionalisation peut avoir lieu. Dans ce cas, les excitations fermioniques
de basse énergie ne portent pas la même charge que les électrons élémentaires.

Pour ces raisons, il est intéressant de considérer un modèle holographique où le rapport
des charges des degrés de liberté bosoniques et fermioniques n’est pas fixé. Le modèle
que nous proposons de considérer dans cette thèse est basé sur les modèles de l’étoile à
électrons et du supraconducteur holographique. Nous allons nous focaliser sur le cas où
la température du système est nulle.

F.3.1 Modèle

Nous considérons la théorie d’Einstein-Maxwell couplée à la fois à un champ scalaire
chargé libre et à un fluide parfait de fermions chargés. Du point de vue de la théorie des
champs, on s’attend à ce que les degrés de liberté fermioniques et bosoniques interagissent
directement. Nous choisissons de les faire interagir dans la théorie de gravité par un
couplage courant-courant, entre les courants électromagnétiques du fluide et du champ
scalaire. Cela permet de garder l’approximation semi-classique du fluide valide pour le
traitement des fermions.

Ce modèle admet comme solutions connues le trou noir de Reissner-Nordström (solu-
tion pour laquelle le champ scalaire est trivial et le fluide n’est pas présent), le supracon-
ducteur holographique (le fluide n’est pas présent) et l’étoile à électrons (le champ scalaire
est trivial). Il est cependant possible d’imaginer qu’il existe d’autres solutions au système
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où le champ scalaire et le fluide coexistent. Nous montrons dans cette thèse que de telles
solutions existent.

F.3.2 Solutions d’étoiles compactes

Nous commençons par étudier l’équation du mouvement d’un champ scalaire test dans
l’étoile à électrons. Il peut être facilement montré que si la charge élémentaire du champ
scalaire est su�samment grande ou si sa masse est su�samment petite, cette solution est
instable et la contribution du champ scalaire aux équations d’Einstein et de Maxwell doit
être prise en compte. Il faut alors résoudre le système d’équations du mouvement données
par les équations d’Einstein, de Maxwell et de Klein-Gordon.

Il n’est pas possible de résoudre ces équations di↵érentielles analytiquement. La
méthode alors employée est de tout d’abord trouver une solution asymptotique dans
l’IR et d’intégrer numériquement les équations jusqu’à la région asymptotiquement AdS
dans l’UV. Deux types de solutions sont possibles dans l’IR. Premièrement, cette région
peut être occupé à la fois par le champ scalaire et le fluide. Cependant dans ce cas les
contraintes sont trop fortes sur le système et il n’existe pas de solutions. Deuxièmement, il
est possible que la région IR ne soit occupée que par le champ scalaire et que les quantités
de fluide soient non-nulles dans une région compacte de l’espace-temps (dans la direction
radiale). Dans ce cas, la solution dans l’IR est la même que celle pour le supraconducteur
holographique, le potentiel chimique local tend vers zéro.

En intégrant numériquement les équations du mouvement depuis l’IR jusqu’à l’UV et
en considérant, comme pour le modèle de l’étoile à électrons, que le potentiel chimique
local contrôle la présence du fluide, on peut montrer qu’il existe trois types de nouvelles
solutions. Les solutions d’étoiles d’électrons compactes (eCS) correspondent à une densité
de fluide confinée dans une région aux bords de laquelle le potentiel chimique local est égal
à la masse des fermions. Dans ce cas, la densité de charge du fluide est positive et dans
nos conventions, le fluide est constitué d’électrons. Les solutions d’étoiles de positrons
compactes (pCS) correspondent de façon similaire à une densité de fluide confinée dans
une région compacte de l’espace-temps (dans la direction radiale) pour laquelle la densité
de charge est négative. Aux bords de cette région, le potentiel chimique local est égal
à l’opposé de la masse des fermions et est négatif. Le troisième type de solutions sont
les étoiles compactes de positrons et électrons (peCS) pour lesquelles le champ scalaire
coexiste avec un fluide d’électrons et un fluide de positrons, qui sont confinés dans des
régions distinctes de l’espace-temps.

Dans nos conventions, le champ de jauge est positif, ce qui détermine le signe de la
charge électrique du champ scalaire, qui est aussi positive. La formation d’un fluide de
positrons, de charge électrique négative, est rendue possible par l’écrantage de cette charge
par le champ scalaire. Cela vient du fait que les deux entités interagissent directement
à travers le couplage courant-courant. Dans le cas des solutions peCS, le système est
polarisé où les fluides chargés positivement et négativement occupent des régions distinctes
et sont immergées dans le champ scalaire non-nul. Du fait de l’écrantage de la charge
électrique négative par le champ scalaire, les deux fluides se repoussent au lieu de s’attirer.
Le système est maintenu stable par la force gravitationnelle qui annihile la répulsion
électromagnétique.
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F.3.3 Energie libre

L’existence de ces nouvelles solutions d’étoiles compactes dépend des paramètres du
système, que sont la masse et la charge élémentaire du champ scalaire ainsi que la masse
et un paramètre lié au spin des fermions. Lorsque plusieurs solutions existent, il est
nécessaire de calculer l’énergie libre de chacune des solutions pour déterminer celle qui est
favorisée thermodynamiquement. Pour ce faire, il faut en théorie calculer l’action on-shell
pour ces solutions. Cependant, il est possible de calculer l’énergie libre de chaque solution
à partir de la solution asymptotique proche du bord de l’espace AdS.

Lorsqu’une solution d’étoile compacte existe à paramètres fixés, elle est favorisée ther-
modynamiquement par rapport au trou noir chargé, au supraconducteur holographique et
à l’étoile à électrons. Lorsque la solutions peCS existe, les solutions eCS et pCS existent
aussi, mais ne sont pas favorisées.

Lorsque les valeurs extrémales du potentiel chimique sont trop petites (en valeur ab-
solue), les solutions d’étoiles compactes ne peuvent se former. Cela se produit par ex-
emple lorsque la masse des fermions est su�samment grande, à autres paramètres fixés.
L’étude de l’énergie libre des di↵érentes solutions comme fonction des paramètres du
système tels que la masse des fermions ou la charge élémentaire du champ scalaire mène
à d’intéressantes conclusions.

Nous avons trouvé des transitions de phase continues entre le supraconducteur holo-
graphique et les solutions d’étoiles compactes (eCS, pCS et peCS) comme fonction de
la masse des fermions et de la charge élémentaire du champ scalaire. Les transitions de
phase ont lieu aux points dans l’espace des paramètres où la valeur maximale ou minimale
du potentiel chimique local dans la solution du supraconducteur holographique est égale
à la masse des fermions (en valeur absolue).

Nous supposons qu’il existe aussi une transition de phase entre les solutions d’étoiles
compactes et l’étoile à électrons. Cependant la précision de nos calculs numériques ne
nous permet pas de calculer l’énergie libre proche du possible point critique dans l’espace
des paramètres. Il est aussi possible qu’une autre phase inconnue existe entre ces deux
solutions. Pour éclairer ce point, il serait intéressant d’obtenir une solution de supracon-
ducteur holographique pour une charge élémentaire plus petite du champ scalaire. A ce
jour, une telle solution n’est pas connue.

F.3.4 Excitations fermioniques de basse énergie

Nous avons vu plus haut qu’il existait des solutions asymptotiquement AdS4 contenant
à la fois des degrés de liberté bosoniques et fermioniques, respectivement représentés par
un champ scalaire chargé et un fluide parfait de fermions chargé. Nous nous posons
maintenant la question de l’interprétation à donner à ces solutions du point de vue de la
théorie des champs duale.

En utilisant le dictionnaire de la dualité AdS/CFT, l’interprétation du champ scalaire
est claire. Tout comme pour le supraconducteur holographique, le champ scalaire dans
les solutions d’étoiles compactes se traduit par la présence d’un condensat scalaire chargé
dans la théorie des champs duale qui brise la symétrie U(1) globale.

Même s’il est naturel de penser que la densité de fluide fermionique est un signe de la
présence de degrés de liberté fermioniques dans la théorie des champs duale, cela n’est pas
aussi simple que pour le champ scalaire. Dans l’approximation du fluide, l’interprétation
des fermions de la théorie de gravité n’est pas obtenue directement à partir de la solution
asymptotique dans l’UV comme pour le champ scalaire. Cela est dû au fait que l’opérateur
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fermionique de la théorie des champs est ‘caché’ par l’approximation semi-classique ap-
pliquée aux fermions de la théorie de gravité.

Dans le but de caractériser l’état dual aux solutions d’étoiles compactes et en par-
ticulier ses propriétés fermioniques, nous avons étudié les modes (quasi)-normaux d’un
champ spinoriel test dans ces solutions. Ces modes sont obtenus en résolvant l’équation
de Dirac en imposant les conditions aux bords suivantes: dans l’IR, on impose la régularité
ou la condition in-going, dans l’UV on impose la condition de Dirichlet faible où le terme
dominant est nul. Du point de vue de la théorie des champs, cela correspond à con-
sidérer l’opérateur fermionique comme n’étant pas couplé à une source extérieure. Le
champ spinoriel a l’interprétation duale d’une fluctuation de l’opérateur fermionique de la
théorie des champs. La procédure holographique pour calculer les fonctions de corrélation
peut être appliquée et on obtient le propagateur, c’est-à-dire la fonction de Green retardée
à deux points, des excitations fermioniques de basse énergie. Les pôles de cette fonction
de corrélation donnent la relation de dispersion des excitations fermioniques.

Nous avons trouvé que la présence du fluide d’électrons (positrons, respectivement)
correspondait dans la théorie des champs duale à la formation d’un grand nombre de
surfaces de Fermi de type électron (trou). Pour les solutions peCS, la théorie des champs
duale contient ces deux types de surfaces de Fermi. Ces solutions peuvent être interprétées
de la manière suivante. Le système contient un grand nombre de fermions avec di↵érentes
saveurs et un condensat scalaire chargé. Chaque saveur de fermions a une certaine struc-
ture de bandes mais avec un niveau d’énergie nulle des excitations qui est di↵érent pour
chaque saveur. Par conséquent, un potentiel chimique donné intersecte la bande de va-
lence pour certains fermions et la bande de conduction pour d’autres, menant aux surfaces
de Fermi de type trou et électron, respectivement.

L’étude des excitations de basse énergie dans les états de Bose-Fermi holographiques
nous a aussi mené à des conclusions intéressantes dans l’étude de la transition entre l’état
métallique (représenté holographiquement par la solution de l’étoile à électrons) et l’état
de Bose-Fermi caractérisé par la présence de surfaces de Fermi et du condensat scalaire
(représenté holographiquement par la solution eCS). En étudiant l’équation de Dirac du
champ spinoriel test sous la forme d’une équation de Schrödinger, nous avons montré
que le nombre de surfaces de Fermi de type électron dans l’état dual à la solution de
l’étoile à électrons est infini alors que ce nombre est fini pour l’état dual à la solution
eCS. Dans la transition de phase ES/eCS entre les solutions de l’étoile à électrons (ES)
et de l’étoile compacte d’électrons (eCS), un gap s’ouvre pour une partie des surfaces de
Fermi. Les fermions correspondants sont interprétés comme étant ceux qui condensent
et forment le condensat scalaire. Les surfaces de Fermi pour lesquelles un gap s’ouvre en
premier sont celles avec un moment de Fermi petit. Dans la théorie BCS, c’est l’inverse
qui se produit puisque les surfaces de Fermi avec un moment de Fermi plus petit sont
plus stables. Rappelons de plus que le condensat scalaire est un opérateur composite de
l’opérateur fermionique plus compliqué que dans le cas de la théorie BCS. Cela suggère
que le mécanisme qui gouverne le passage à l’état supraconducteur dans notre modèle
holographique n’est pas décrit par la théorie BCS.

F.4 Trous noirs asymptotiquement AdS en supergravité jaugée

La correspondance AdS/CFT est utile pour l’étude des théories des champs fortement
couplées. Comme nous l’avons vu plus haut, on peut admettre que cette dualité s’applique
à une classe de théories plus larges que celles données par la théorie des cordes et la
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physique des D-branes. Cela nous a permis de construire des modèles holographiques
simples basés sur la théorie d’Einstein-Maxwell. La correspondance AdS/CFT a cepen-
dant aussi été fortement étudiée dans une approche plus mathématique, dans le contexte
de la théorie des cordes.

Dans l’exemple de la théorie des cordes de type IIB sur l’espace AdS5 ⇥ S5, il n’y a
pas de séparation d’échelle entre les di↵érents multiplets chiraux résultants de la com-
pactification des champs dix-dimensionnels sur la sphère S5. Ceci est dû à la courbure
non-nulle de l’espace AdS. Il est cependant possible d’écrire une action pour le multiplet
gravitationnel, qui contient notamment la métrique 5-dimensionnelle et les champs duaux
aux courants conservés de la théorie des champs duale. Cette action à 5 dimensions cor-
respond à la théorie de supergravité N = 8 à 5 dimensions. On pense que cette théorie
est une troncation consistante de la théorie des cordes de type IIB sur AdS5⇥ S5 dans le
sens où chaque solution classique de cette théorie à 5 dimensions correspond (peut être
‘upliftée’) à une solution dans la théorie 10-dimensionnelle.

Les théories de supergravité jaugée sont intéressantes pour l’holographie car elles ad-
mettent des solutions asymptotiquement AdS. Ceci est dû au fait que le potentiel pour les
champs scalaires est non-nul, celui-ci joue le rôle d’une constante cosmologique négative.

Dans cette thèse nous nous sommes particulièrement intéressés à la théorie de super-
gravité jaugée N = 2 en 4 dimensions, qui est une troncation consistante de la théorie
de supergravité jaugée N = 8 obtenue par de Wit et Nicolai. Cette dernière est une
troncation consistante de la théorie M sur la sphère S7.

Nous nous sommes intéressés à un modèle STU simple de la supergravité jaugée N = 2
en 4 dimensions. Cette théorie contient le multiplet gravitationnel et trois multiplets
vectoriels. Lorsque les couplages au champ de jauge sont de type Fayet-Iliopoulos, le
lagrangien est donné par le lagrangien de la théorie non-jaugée auquel s’ajoute un potentiel
pour les champs scalaires. Nous avons considéré le cas où l’espace des modules est le coset
(aussi appelé espace homogène) [SL(2, R)/U(1)]3.

Nous avons montré que cette théorie admet un groupe de dualité U(1)3 dont les trans-
formations du sous-groupe U(1)2 préservent les équations BPS. Nous avons appliqué les
transformations de ce sous-groupe de dualité pour générer de nouvelles solutions de trous
noirs supersymétriques analytiques à partir des solutions connues. Pour les trous noirs
statiques, nous avons généralisé les solutions analytiques de Cacciatori et Klemm qui
comportent trois charges magnétiques. En plus de ces trois charges magnétiques, nos so-
lutions admettent aussi deux charges électriques et correspondent donc à des trous noirs
dyoniques. Pour les trous noirs en rotation, nous avons généralisé les solutions connues
à deux paramètres en y ajoutant un paramètre supplémentaire qui représente un mode
normalisable scalaire.
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