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Abstract

In this PhD thesis, we study properties of transverse magnetic polarized waves in structures composed
of a Kerr-type nonlinear dielectric layer, metal and linear dielectric layers. Although these waves,
called here plasmon–solitons, have been studied for more than 30 years, there is still no experimental
confirmation of their existence. The main reason being that, in all the configurations predicted so far,
the nonlinear index modification required to observe plasmon–solitons corresponds to light intensities
that are orders of magnitude higher than the damage threshold of typical nonlinear materials. The
goal of this PhD thesis is to improve the understanding of plasmon–solitons, so as to design structures
that support these nonlinear waves at low power levels.

Firstly, we study configurations with a semi-infinite nonlinear medium. We have developed two
semi-analytical models based on Maxwell’s equations. The first model treats the Kerr-type nonlinearity
in a simplified way, but allows us to obtain analytical expressions for both the field profiles and the
nonlinear dispersion relation. The second model treats the nonlinearity in an exact way. It allows us
to obtain an analytical expression for the nonlinear dispersion relation, but the field profiles in the
nonlinear medium are found numerically. We have studied for the first time three-layer structures
(nonlinear dielectric/metal/linear dielectric) for which the linear parts of the permittivities of the
dielectric cladding are different on both sides of the metal. In these configurations, we have found
narrow regions of structure opto-geometric parameters in which low-power plasmon–solitons exist.

Because our models are formulated for four-layer structures, they allow us to study configurations
in which an additional dielectric layer is introduced between the nonlinear dielectric and the metal film
for the first time. We have provided dispersion diagrams and field plots for such structures with various
parameters. The semi-analytical formulation of our models allows us to rapidly scan the phase space
of the structure parameters. Using these scans, we have reported possible four-layer configurations
with realistic parameters that support plasmon–solitons for power levels below the material damage
threshold.

Secondly, we study configurations called nonlinear slot waveguides, in which a finite-size nonlinear
dielectric core is sandwiched between two semi-infinite metal cladding layers. We have developed
two models based on Maxwell’s equations to study such structures. The first model uses a simplified
treatment of the Kerr-type nonlinearity, but provides analytical expressions for the field profiles and the
nonlinear dispersion relations expressed in terms of Jacobi elliptic special functions. The second model
treats the Kerr-type nonlinearity in the exact way and allows us to obtain an analytical condition that
reduces the parameter space in which the solutions for a given structure are numerically computed.

We have studied the dispersion diagrams and the mode transformations along their dispersion
curves for the symmetric nonlinear slot waveguides. Except for the first order modes already known in
such structures, we have discovered the existence of higher-order modes. All the modes of the nonlinear
slot waveguide can be divided in two families: a family of symmetric and antisymmetric modes with
nodes that resemble the linear modes of a modified linear slot waveguide; and a family of symmetric
and asymmetric node-less modes that do not have linear counterparts. We report that in the node-less
family, the symmetric modes appear through a fold bifurcation and the asymmetric modes, that are
doubly degenerate, appear from the symmetric modes through a Hopf bifurcation. Using the versatility
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of our models, we have also studied the effects of the core size and of the permittivity contrast between
the core and the metal cladding on the dispersion diagrams. We have shown that a careful choice of
these parameters may lead to nonlinear effects that can be observed at low power levels. We also
studied the properties of asymmetric nonlinear slot waveguide structures (with different permittivities
of the two metal claddings). Finally, using both theoretical arguments and numerical simulations of
the temporal evolution obtained with two different vector methods, we present the first study of the
plasmon–soliton stability in nonlinear slot waveguides.

x



Résumé

Dans cette thèse, nous étudions les propriétés d’ondes transverses magnétiques dans des structures
composées d’une couche de diélectrique nonlinéaire de type Kerr et des couches métalliques et diélectriques
linéaires. Bien que ces ondes, nommées ici plasmons–solitons, ont été étudiées depuis plus que 30 ans,
il n’y a toujours pas de confirmation expérimentale de leurs existences, du fait de l’extrême mod-
ification nonlinéaire de l’indice de réfraction requise pour générer ces ondes dans les configurations
proposées jusqu’ici. Le but de cette thèse est de développer des modèles analytiques et numériques pour
améliorer notre compréhension de ces plasmons–solitons et de concevoir des structures supportant ces
ondes nonlinéaires à basse puissance.

Dans la première partie de cette thèse, nous élaborons différents modèles pour étudier les pro-
priétées de plasmons–solitons stationnaires dans deux types de structures : (i) une région diélectrique
nonlinéaire semi-infinie en contact avec des couches de métal et de diélectrique linéaires et (ii) une
couche de diélectrique nonlinéaire d’épaisseur finie entre deux régions métalliques semi-infinies (guide
d’onde métallique à cœur nonlinéaire). Nos modèles nous permettent de calculer des relations de dis-
persion nonlinéaires et les profils de champ correspondants dans ces structures. Ils généralisent les
approches déjà proposées dans la littérature et nous permettent d’étudier des configurations qui ne
l’avaient jamais été. Les différents modèles développés ont des niveaux de compléxité différents et
font appel à différentes approximations. Par conséquent, ils sont complémentaires dans l’étude des
structures visées.

Dans la seconde partie, nous présentons des résultats obtenus pour les deux types de structures
mentionnées ci-dessus. Pour le premier, nous montrons qu’en utilisant une structure à quatre couches
que nous proposons (avec une couche mince tampon de diélectrique linéaire entre le milieu nonlinéaire
et le film métallique), il est possible d’obtenir des plasmons–solitons à des niveaux de puissance
déjà utilisés pour des solitons spatiaux dans des guides d’onde purement diélectriques. Du fait de
l’efficacité de nos méthodes, nous avons scanné l’espace des paramètres de la structure et nous avons
trouvé les configurations les plus adaptées à la première observation expérimentale des plasmons–
solitons. Puis, nous étudions les guides d’onde métalliques à cœur nonlinéaire. Pour de tels guides
symétriques, nous retrouvons des modes déjà connus dans la littérature et trouvons de nouveaux
modes d’ordres supérieurs. Pour certains des modes symétriques, nous observons une bifurcation par
brisure de symétrie donnant naissance à des modes asymétriques dans une structure symétrique. Nous
étudions les effets du changement de la taille du cœur et du contraste de permittivité sur le seuil
requis pour cette bifurcation. Nous présentons aussi la première étude des guides d’onde métalliques à
cœur nonlinéaire asymétriques. Finallement, en utilisant à la fois des arguments théoriques et des sim-
ulations de l’évolution temporelle réalisées avec deux méthodes numériques différentes, nous réalisons
la première étude de la stabilité de ces plasmons–solitons dans des guides d’onde métalliques à cœur
nonlinéaire.
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1.1 Introduction

T
he field of nonlinear optics [1–3] was born after the appearance of lasers at the beginning of
1960s, when sources of powerful and coherent light required to observe nonlinear effects in
optical materials became available. Light with high intensity induces changes of the material

properties leading to nonlinear phenomena such as second and third harmonic generation, sum and
difference frequency generation, intensity dependent refractive index or two photon absorption and
many more.

Spatial optical solitons are closely related to the intensity dependent refractive index. Spatial
optical solitons are localized nonlinear electromagnetic excitations for which the diffraction is balanced
by the self-focusing nonlinear effect [4]. These waves were extensively studied over the last decades [5–
9]. Due to the extraordinary properties of solitons, such as strong localization and ability to propagate
undisturbed over large distances, these beams are not only interesting physical objects but also offer
a huge application potential in integrated optics and all-optical devices. The field confinement can be
further enhanced by using layered structures, so that the total refractive index modification is not
only due to the self-induced nonlinear effects but also built-in in the structure. The simplest structure
of this type is a single interface between a linear and a nonlinear dielectric.

The first description of optical nonlinear localized surface waves — solitons propagating along a
single interface between a linear and a nonlinear dielectric — was given in 1980 by Tomlinson [10].
The single nonlinear/linear dielectric interface configuration was studied in a number of works in the
following years where both transverse magnetic (TM) and transverse electric (TE) polarized nonlinear
surface waves were studied [11–13]. The nonlinear dispersion relations with more realistic assumptions
on the nonlinear term than those used in Ref. [10] were found [14, 15].

Later on, as a natural generalization of Tomlinson’s work, solitons in dielectric waveguides with
nonlinear cladding were studied. Starting from 1983, configurations with nonlinear cladding on one or
on two sides were considered for both TE [16–18] and TM [19–21] light polarizations. Both the cases
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of focusing and of defocusing third-order local and instantaneous (Kerr-type) nonlinearity were ana-
lyzed. In structures with defocusing nonlinearity, a power cut-off phenomena was observed for guided
waves [22]. A comparison of symmetric and asymmetric cladding (in terms of relative permittivity or
nonlinear parameters) was presented in Refs. [23, 24]. In the case of symmetric dielectric waveguides, a
symmetry-breaking bifurcation was predicted in one-dimensional [24–28] and two-dimensional [29, 30]
structures. At the beginning of the 90s, a method to study nonlinear dielectric waveguides based on
the variational analysis was presented in Ref. [31]. At approximately the same time, scaling rules [32]
and dispersion diagrams in normalized coordinates [33] were introduced to facilitate the comparison
between the results obtained for different physical parameters. The numerical analysis of the evolution
of nonlinear surface waves in dielectric waveguides with nonlinear cladding was presented in Ref. [34]
for a one-dimensional case and in Refs. [35, 36] for the two-dimensional waveguiding structures. For
a comprehensive review on the topic of nonlinear waves propagating in planar structures the reader
may refer to Ref. [37] where also first preliminary experimental results are shown for system using this
type of waves (such as nonlinear guided wave optical limiters, nonlinear coherent directional couplers,
and optical switches using bistability in nonlinear planar configurations).

In all the works mentioned previously on single-interface configuration or on the waveguides with
nonlinear cladding, the nonlinear medium was semi-infinite. Other type of nonlinear dielectric waveg-
uides has a nonlinear core that is surrounded by linear dielectrics. In such type of structures, the
nonlinear medium has a finite size, which requires a more complex treatment of the problem. From
the beginning of 80s, dielectric waveguides with a nonlinear core were studied for TE [38–40] and
TM [41] polarizations. Nonlinear cores with Kerr-type [42] and saturable [43, 44] nonlinearities were
studied. The symmetry-breaking bifurcation was discovered in the dielectric waveguides with a non-
linear dielectric core [38, 39] and a symmetric cladding. Scaling rules for thin-film dielectric optical
waveguides with nonlinear core, similar to those presented in Ref. [32] for a single-interface case,
were developed in Ref. [45]. Studies of nonlinear waveguides with both nonlinear core and cladding
were performed using modal [46], effective-index [27, 47], variational [28, 48–50] and resonant [51]
approaches. These works lead to the analysis of multi-layered nonlinear dielectric structures [52–54].
The multi-layered structures may find applications for nonlinear wave splitting and coupling. All the
works described above were dealing with fully dielectric structures. Below we will describe studies of
structures where nonlinear dielectrics are in contact with metal layers.

Plasmonics is another domain that grew strongly over the last decades [55–64]. Surface plasmon
polaritons (shortly called here plasmons) are surface waves localized at an interface between a metal
and a dielectric. They propagate along this interface but decay rapidly in the direction perpendicular
to the interface. Because of the evanescent nature of the plasmon waves, light is strongly localized
close to the interface which results in high field confinement and can lead to the enhancement of
nonlinear effects near this interface. Combining the fields of plasmonics and nonlinear optics results
in interesting and unusual physical effects [65, 66]. One of the most challenging for observation and at
the same time the most attractive phenomenon in nonlinear photonics is the formation of plasmon–
solitons — nonlinear waves propagating along an interface between a metal and a nonlinear dielectric
that possess both the properties of spatial optical solitons and surface plasmon polaritons. Below we
describe the field of plasmon–solitons starting by its historical development and coming to the most
recent results in this topic.

The first description of the nonlinear surface plasmon polariton waves confined at an interface
between a metal and a nonlinear dielectric was given in 1980. Agranovich et al. in the seminal paper [67]
developed a vector model for a single interface between a metal and a nonlinear dielectric. The method
presented in Ref. [67] is similar to the approaches used for the interface between linear and nonlinear
dielectrics [10, 11]. In Ref. [67], and in the majority of works published on plasmon–solitons, a dielectric
exhibiting a Kerr-type nonlinearity is considered. The model proposed by Agranovich et al. describes
a one-dimensional geometry (the structure is invariant along two directions) what allows for the
polarization separation of Maxwell’s equations. The analytical formulas for the nonlinear dispersion
relation and the field profiles for TM polarized waves are derived in Ref. [67] using strong assumptions
on the nonlinear term. The nonlinearity in this model depends only on the longitudinal component of
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the electric field (that is usually much weaker than the transverse component [68]) and affects only
two of the diagonal permittivity tensor components.1 In reality all the permittivity tensor components
depend on both transverse and longitudinal field components. Additionally, this model results in fields
localized on the metal/nonlinear dielectric interface only for the defocusing type of nonlinearity that
is not an intuitive result.

The model proposed in Ref. [67] was subsequently improved by introducing more realistic assump-
tions on the nonlinear term (e.g., focusing nonlinearity depending only on the transverse component
of the electric field). It was also extended to consider both TE and TM polarized waves as well as
focusing and defocusing Kerr-type nonlinearities [14, 68, 69].

A different approach, based on the first integral treatment of Maxwell’s equations, was developed
in 1987 [15] and allowed for obtaining the exact (under the assumption that Kerr nonlinearity depends
on both components of the electric field) dispersion relations for TM case. However, the price to pay
was that the field profile in the nonlinear medium was not given by an analytic formula as in the
Refs. [68, 69] and had to be calculated numerically. A comparison of the numerical methods treating
the Kerr-type nonlinearity in an exact way with the analytical approaches that use approximated
treatment of nonlinearity is presented in Ref. [70]. Recently, a model for plasmon–soliton waves at a
single metal interface based on the resonant interaction between a linear plasmon and a spatial soliton
was developed [71]. The authors used a heuristic, scalar model to describe the resonant interaction
between plasmon and soliton beams.

In 2009, plasmon–solitons localized in both transverse (plasmonic localization due to index con-
trast at the interface) and lateral (solitonic self-focusing) directions were predicted theoretically and
confirmed numerically in two-dimensional structures [72]. The method presented in Ref. [72] uses the
linear solution of the one-dimensional problem (along the transverse direction) to transform Maxwell’s
equations into a nonlinear Schrödinger equation. Using this method it was shown that the shape of the
solution in the lateral direction was given by the sech function as for the usual one-dimensional soli-
tons. The evolution of the beam during the propagation was studied using the nonlinear Schrödinger
equation and the results were compared with two-dimensional numerical simulations obtained using a
commercial finite-difference time-domain solver. As a result, the authors obtained the two-dimensional
plasmon–soliton beam.

Furthermore, the model of Agranovich et al. [67] was expanded to consider nonlinear waves guided
by a thin metal film sandwiched between two nonlinear dielectrics (nonlinear dielectric/metal/nonlinear
dielectric structure — NMN) [73–75]. In Ref. [73], field profiles of plasmon–solitons on thin metal films
were shown for the first time. Ref. [73] provides the analytical formulas for the dispersion relations
and the field profiles for the NMN structure as well as for the limiting case where the nonlinearity
in one of the dielectrics tends to zero (nonlinear dielectric/metal/linear dielectric structure — NML).
Looking at the field profiles shown in Ref. [73] we can distinguish two types of plasmon–solitons:
(i) the plasmonic type, for which the field profile resembles that of a linear plasmon [symmetric or
antisymmetric plasmon in the linear dielectric/metal/linear (LML) dielectric structure, known also as
insulator/metal/insulator structure (IMI)] slightly modified by the presence of nonlinearity in the di-
electrics and (ii) the solitonic type, for which the features of both soliton (soliton peak in the nonlinear
medium) and plasmon (localization on the metal interface) are visible. There is a smooth transition
between the two types with the change of the beam power. This type of structures will be studied in
more detail in Section 4.2.

Structures with only one nonlinear dielectric as cladding were studied analytically [76, 77] and
numerically [78]. The exact dispersion relation for TM waves in NML structures was found for power-
law Kerr nonlinearity with an arbitrary order of electric field power [77]. The method used in Ref. [77]
is an extension to three-layer structures of the results shown in Ref. [15] for two-layer structures.

1In Ref. [67], x denotes the propagation (longitudinal) direction and z denotes the transverse direction. The structure
is invariant along the x and the y (lateral) direction. The electric field of the TM polarized wave has only two components:
E � rEx, 0, Ezs. The transverse field components Ez is the leading electric field component in the type of structures
studied in this paper [68]. The nonlinearity is assumed to be of the form εx � εy � εl �α|Ex|2, εz � εl where εx, εy, and
εz are the diagonal elements of the relative permittivity tensor and εl is the linear value of the relative permittivity.
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In Ref. [77], the dispersion relation is given in an analytical form, but the field profiles in the semi-
infinite nonlinear layer have to be found numerically by integration of Maxwell’s equations. The authors
propose that plasmon–solitons could find application in a light-controlled metal transmission devices.
The control of the plasmon resonance by the electric field intensity could influence the transmission
of the thin metal film.

Recently, in order to facilitate the nonlinear coupling between soliton and plasmon waves, an
additional linear dielectric layer between the nonlinear dielectric and the metal film was introduced [79–
81]. In Refs [79, 81], we have proposed two complementary approaches based on the modal methods
developed in [73, 77]. A detailed description of these two models is presented in Part I of this PhD
manuscript. In contrast to these modal methods, the model built in Ref. [80] is based on the resonant
approach proposed in Refs. [71, 82]. The models presented in Refs. [71, 80, 82], in contrast to the
modal approaches in which plasmon–solitons are treated as a single wave, treat plasmon and soliton
as separate entities and the coupling is based on the propagation constant matching of these two waves.
In the vicinity of the coupling regime, avoided crossing between the plasmon and soliton dispersion
relations can be observed. The Pointing vector distribution maps prove the energy exchange between
the plasmon and soliton beams. In Refs. [80, 82], the authors show also that some of the solutions
found in modal approaches can be unstable during the propagation.

In Refs. [83, 84], two dimensional plasmonic waveguides were studied numerically in the structures
where the stripe metal waveguide is surrounded by a nonlinear dielectric medium.

The most interesting and probably the most promising configuration where plasmon–solitons can
be observed is the nonlinear slot waveguide configuration. In this thesis, we define the nonlinear slot
waveguide as a structure made of a nonlinear dielectric core sandwiched between two semi-infinite
metal layers. With this type of structure, the interest in plasmon–soliton beams started to grow again
recently. Dispersion relations for nonlinear slot waveguides were obtained using various approaches.
The first attempt to study this type of structures was made in 2007 in Ref. [85], where two dimensional
plasmon–solitons were studied. The method presented in Ref. [85] is based on the linear plasmon profile
along the transverse direction found in the linear MIM structure. This solution is then used to solve
nonlinear Maxwell’s equations for the field profile in the lateral direction. In Ref. [85], the authors
assumed that even though the field is now localized in both transverse and lateral directions, the TM
polarization is still maintained. A method similar to the one used in Ref. [85] was applied later to
study nonlinear plasmon–solitons at a single interface between a metal and a nonlinear dielectric [72].
An interesting feature of the plasmon–solitons found in Ref. [85] is their extreme confinement. The
effective beam size2 can be one order of magnitude lower than the diffraction limit. This property
results from the strong spatial confinement of the field by the metal slot waveguide in the transverse
direction and the solitonic localization in the lateral direction. The results presented in Ref. [85] show
that reducing the width of the nonlinear dielectric core of the nonlinear slot waveguide results in the
decrease of the effective soliton dimension for all range of the widths studied. On the contrary, for
a nonlinear core with dielectric claddings, the effective width of the beam starts to increase below a
certain width of the core, as it is well known in linear guided optics [86].

Later, the nonlinear dispersion relations of one-dimensional nonlinear slot waveguides were found
numerically and the symmetry-breaking bifurcation was observed for the first order symmetric mode [87],
resulting in an appearance of a doubly degenerate asymmetric mode. The approach of Davoyan et
al. [87] is numerical — the solutions of Maxwell’s equations (the effective index of the allowed modes
and the corresponding field profiles) are found using the shooting method [88] and the power is cal-
culated by numerical integration. This method, unlike the one presented in Ref. [85], accounts for the
Kerr-type nonlinearity influence on the transverse field profiles.

The analytical formulas for the nonlinear dispersion relations of the symmetric and antisymmetric
modes of the nonlinear slot waveguides were presented in 2011 in Refs. [89, 90]. In these two references,
the dispersion relations are given in a form of an integral that has to be solved numerically. Study
of the femtosecond pulses in nonlinear slot waveguide configuration was performed using numerical

2The effective beam size Deff is defined as a geometric average of the full-width at half-maximum in the transverse
(∆x) and lateral (∆y) directions (Deff �

?
∆x∆y).
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methods in Ref. [91]. Recently, we have developed two new semi-analytical models, which allowed to
discover higher-order modes in nonlinear slot waveguides and study the size effects in more detail [92].
A detailed description of these models can be found in Part II of this PhD manuscript.

During the last 5 years, formation of plasmonic solitons was also studied in multi-layer structures
with alternating metal and nonlinear dielectric layers [93–95] and plasmonic wire arrays [96–98]. In
Ref. [95], the authors obtained a set of discrete excitations of the nonlinear plasmonic waveguides
with the envelope of the solitonic shape. The surface plasmonic solitons at the interface between a
nonlinear medium and a semi-infinite periodic metal/nonlinear dielectric structure showed higher level
of localization compared to infinitely periodic structure. Nonlinear plasmonic couplers, in which the
symmetry-breaking bifurcation occurs, were also demonstrated in layered structures where nonlinear
metal layers are separated by linear dielectric films [99, 100].

1.2 Aim and structure of the work

As it was stated in the description of the state-of-the-art of the nonlinear plasmon–solitons waves
presented in Section 1.1, studies of nonlinear surface waves at metal interfaces started more than
thirty years ago. Nevertheless, there is no experimental results on plasmon–soliton waves that would
confirm their existence. The main reason is that the nonlinear refractive index change required for the
formation of plasmon–solitons in the structures that were proposed in the already published works, is
too high for the realistic materials used in integrated and nonlinear optics. The nonlinear refractive
index changes at which plasmon–solitons exist in the structures reported until now require the light
intensity I that exceeds the damage threshold of the available materials.

The aim of this PhD thesis is to improve the understanding of interactions between plasmon and
soliton beams in order to facilitate the experimental observation. of plasmon–soliton waves. We want to
provide a direct indication of the types of nonlinear materials and metals involved, their configuration,
and parameters domains where observation of plasmon–solitons will be possible at realistic power
levels. This goal is achieved by the systematic study of the properties of transverse magnetic polarized
light propagating in various structures containing nonlinear and linear dielectric layers, and metal
layers.

In Part I of this PhD manuscript, we study structures with a semi-infinite nonlinear medium and
metal and linear dielectric layers. In Chapter 2, we develop models describing the light propagation
in this type of structures. We derive closed analytical formulas for the dispersion relations and for
the field profiles of plasmon–solitons. Derivation of our two semi-analytical models is presented in
Sections 2.1 and 2.3. In Sections 2.2 and 2.4, one semi-analytical and one numerical model already
known in literature are described because they will be used in order to confirm the validity of our
new models. The validity of our semi-analytical models is confirmed in Chapter 3, by comparison of
their results with results already reported in literature and by a mutual comparison. In Chapter 4, the
results for the dispersion curves and the field profiles of plasmon–solitons obtained using our models
are presented. We study simple structures with a single interface between a metal and a nonlinear
dielectric (Section 4.1), configurations in which a thin metal film is sandwiched between a linear and
a nonlinear dielectric cladding (Section 4.2), and four-layer configurations where an additional linear
dielectric layer is introduced between the metal film and the nonlinear dielectric (Section 4.3). In
Chapter 5, extensions of one of our models to the case of two-dimensional and transverse electric
polarized plasmon–solitons is shown.

In Part II of this PhD manuscript, we focus on the structures where a finite-size nonlinear medium
is sandwiched between two semi-infinite metal layers. In Chapter 6, we present a theoretical derivation
of a semi-analytical model (Section 6.1) which provides closed analytical formulas for the dispersion
relations and the field profiles and a numerical model (Section 6.2) to study plasmon–solitons in non-
linear plasmonic slot waveguide structures. The results obtained using these two models are presented
in Chapter 7. The classification of the modes of symmetric nonlinear slot waveguides, based on the
dispersion curves and the field profiles, is presented in Section 7.1. In this section, the influence on the
dispersion curves of the nonlinear slot waveguide parameters, such as the core width or the permit-
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tivity contrast between the core and the metal cladding, is also studied. In Section 7.2, the properties
of the asymmetric nonlinear slot waveguides are shortly discussed.

At the end of the manuscript, in Chapter 8, our first preliminary results on the stability of the
modes found in Chapters 2 and 6 is made. The stability analysis is performed using a topological
criterion which allows us to read the stability of a mode directly from the dispersion diagrams of the
structure.

In Chapter 9, concluding remarks are made to sum up the results presented in this PhD manuscript.
In Appendix A, details on the intensity dependent refractive index are presented. In Appendices B
and C definition and properties of the elliptic integrals and the Jacobi elliptic functions are described.
Appendix D shows the study of the propagation losses in the nonlinear slot waveguide configurations.
In Appendix E more field profiles obtained using the Jacobi elliptic function based model is presented.
Finally, in Appendix F preliminary studies of plasmon–soliton waves using the finite-difference time-
domain method are described.

1.3 Maxwell’s equations

To study classical electromagnetic problems Maxwell’s equations must be solved [101, 102]. Here we
will use them as a starting point for our calculations. The general form of Maxwell’s equations is:

∇∇∇� EEE � �BBBBBt , (1.3.1a)

∇∇∇�HHH �JJJf � BDDDBt , (1.3.1b)

∇∇∇ �DDD � ρf , (1.3.1c)

∇∇∇ �BBB � 0, (1.3.1d)

where EEE denotes the electric field, DDD denotes the displacement vector, HHH denotes the magnetic field,
and BBB denotes the magnetic induction. Additionally, JJJf denotes the free currents and ρf denotes the
free charges in the system. In our studies, we will set JJJf � 0 because we will look for the solutions in
the systems without external sources and ρf � 0 as no free charges will be considered.

Additionally to Maxwell’s equations, the four vector fields are related by the constitutive rela-
tions [101]:

DDD � ε0EEE �PPP, (1.3.2a)

HHH � 1

µ0
BBB �MMM , (1.3.2b)

where the auxiliary fields of polarization PPP and magnetization MMM appear. Here ε0 denotes the vacuum
permittivity and µ0 denotes the vacuum permeability. In our work we will consider nonmagnetic ma-
terials, therefore we set MMM � 0. Assuming an instantaneous response of the materials, the polarization
vector describes the electronic response of the material to the applied electric field and is given by:

PPP � ε0χ̃EEE , (1.3.3)

where χ̃ � χ � iχ
2

denotes the complex susceptibility tensor of the material, and both χ and χ
2

are
real quantities.

Using the definition of the polarization given by Eq. (1.3.3) we can rewrite the expression for the
displacement vector [Eq. (1.3.2a)] in the form:

DDD � ε0

�
1� χ̃

	
EEE . (1.3.4)

Introducing the relation between the complex susceptibility χ̃ and the relative complex permittivity:3

ε̃ �
�

1� χ̃
	
, (1.3.5)

3In the following, in order to simplify the nomenclature the relative permittivity ε will be shorty called permittivity.
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the displacement vector can be written as

DDD � ε0ε̃EEE . (1.3.6)

The complex permittivity tensor ε̃ in our work is assumed to be diagonal with isotropic losses [68, 72,
73, 81]:

ε̃ � ε� i ε2 �
��εx 0 0

0 εy 0
0 0 εz

�� i
��ε2 0 0

0 ε2 0
0 0 ε2

�. (1.3.7)

Here εj (j P tx, y, zu) and ε2 are real quantities. The refractive index is defined as nj � ?εj . Using all
the assumptions and definitions given above [Eqs. (1.3.2b) and (1.3.4)] Maxwell equations [Eqs. (1.3.1)]
are expressed using the electric field EEE and the magnetic field HHH only

∇∇∇� EEE � �µ0
BHHH
Bt , (1.3.8a)

∇∇∇�HHH � ε0ε̃
BEEE
Bt , (1.3.8b)

∇∇∇ � pε̃EEE q � 0, (1.3.8c)

∇∇∇ �HHH � 0. (1.3.8d)

1.4 Polarization separation in one-dimensional problems

Maxwell’s equations [Eqs. (1.3.8)] hold for the general type of three-dimensional electromagnetic prob-
lems where all three components of electric and magnetic fields are nonzero. Although, in our work
we consider a simpler case of one-dimensional structures in which the refractive index of the struc-
ture is modulated only along one direction and therefore, the structure is invariant in two remaining
directions. Here we choose the refractive index to be structured along the x direction. This direction
will be called the transverse direction. We assume that the light propagates along the z direction,
called here the longitudinal direction. Along the remaining direction (y direction called here the lat-
eral direction) the structure is invariant and therefore we will assume that all the y derivatives are
equal to zero and that the electromagnetic field distribution will be uniform along this direction. In
such configurations, using the scalar component notation of the vector fields, it is possible to split the
six Maxwell’s equations [Eqs. (1.3.8a) and (1.3.8b)] into two sets of three equations corresponding to
the orthogonally polarized electromagnetic fields. This is the well known transverse electric/transverse
magnetic separation [101]. The scalar components of the electromagnetic field are defined by

EEE � rEx,Ey, iEzs, (1.4.1a)

HHH � rHx,Hy, iHzs, (1.4.1b)

where the imaginary unit i is written explicitly in front of the z field components so as all the quantities:
Ex, Ey, Ez, Hx, Hy, and Hz are real. The first set of three equations:

BHx

Bz � iBHz

Bx � ε0ε̃y
BEy
Bt , (1.4.2a)

BEy
Bz � µ0

BHx

Bt , (1.4.2b)

BEy
Bx � iµ0

BHz

Bt , (1.4.2c)

relates only Ey, Hx, and Hz field components. Here we introduced the complex permittivity compo-
nents denoted by ε̃j � εj � iε2 for j P tx, y, zu. The waves possessing only these three nonzero field
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components will be called transverse electric (TE) waves. Three equations building the second set:

i
BEz
Bx �

BEx
Bz � µ0

BHy

Bt , (1.4.3a)

�BHy

Bz � ε0ε̃x
BEx
Bt , (1.4.3b)

BHy

Bx � iε0ε̃z
BEz
Bt , (1.4.3c)

relate only Hy, Ex, and Ez field components. The waves possessing only these three nonzero field
components will be called transverse magnetic (TM) waves.

1.5 Transverse magnetic monochromatic waves

The structures that we consider in our work are build of layers of dielectrics and metals. We are
interested in observing the waves possessing a plasmonic part in the metal region. Previous linear
studies [55–57, 60] have shown that plasmons exist on the metal/dielectric interfaces only for the TM
light polarization. Therefore, we will focus our attention on the TM polarized waves. The problem of
the TE polarized waves will be shortly discussed in Section 5.2.

In the following, we will work with TM polarized waves where the magnetic field has only one
component HHH � r0,Hy, 0s and the electric field has two components EEE � rEx, 0, iEzs. The stationary
solutions in one-dimensional geometry are sought in the form of monochromatic harmonic waves:"

EEE px, z, tq
HHH px, z, tq

*
�
"

Epxq
Hpxq

*
eipk0βz�ωtq. (1.5.1)

Here ω denotes the angular frequency of the wave, k0 � ω{c denotes the wavenumber in vacuum,
c denotes the speed of light in vacuum, and β denotes the effective index of the propagating wave (the
propagation constant is expressed as k0β). We follow here the notation used in Refs. [18, 21, 22, 25, 32,
35, 36, 68, 73–76, 79, 81] The structure is invariant along the y direction and therefore electromagnetic
fields do not carry any y dependency.

The TM approach used here is exact only in case where both the structure and the light distribution
are invariant along the lateral y direction. By invariant light distribution we understand the case
where light intensity is uniform along the y direction. A good approximation of such an invariant light
distribution is obtained if the light intensity varies slowly compared to the scale of the wavelength.
This is often the case in linear optics, where beams with large widths are used. In the case of nonlinear
studies, the light distribution is often not uniform along the y direction. The nonlinear studies require
high light intensities. Experimentally, this is obtained by using powerful lasers and focusing the beam to
a spot of the size comparable to the wavelength. This means that the light intensity of the beam varies
significantly on the wavelength scales. Additionally, in the frame of the nonlinear optics, properties of
the material depend on the impinging light intensity. If the light intensity distribution is not uniform
along the y direction, it induces the nonuniform distribution of the material properties (e.g., refractive
index) along the y direction. In this case, the structure is no longer invariant in the lateral direction.
This explains why the TM approach is only an approximation in the nonlinear case. The quality of
this approximation depends on two factors: how fast is the light modulation along the y direction and
how large is the modulation amplitude of the material parameters (nonlinear induced refractive index
change). To account for this effects, in Section 5.1, we will develop the approximated two-dimensional
approach providing the first approximation of the two-dimensional plasmon–solitons. In the studies of
one-dimensional plasmon–solitons that propagate in one-dimensional structures we will consider that
the light distribution along the y direction is uniform.

In order to solve Maxwell’s equations in our structures we use a supplementary assumption. Only
the real part of the permittivity tensor ε is used to find the dispersion relations and to determine the
field profiles. The imaginary part of permittivity ε2 will be used later to estimate the propagation losses
of the nonlinear waves. Identical way of splitting the problem was already used in Refs. [67–69, 73–77].
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Using Eq. (1.5.1) the z and time derivatives are eliminated from Eqs. (1.4.3) to finally give

k0βEx � dEz
dx

� ωµ0Hy, (1.5.2a)

Ex � β

ε0εxc
Hy, (1.5.2b)

Ez � 1

ε0εzω

dHy

dx
, (1.5.2c)

where the x, z, and time dependencies are skipped in the field components and the permittivity
in order to simplify the notation. In Eqs. (1.5.2), the complex permittivity tensor components were
replaced by their real parts according to the approximation discussed above. Equations (1.5.2) will be
used in Sections 2 and 6 as a starting point of the derivations of all the models.

1.6 Kerr effect

In the definitions of the polarization and the displacement vector [Eqs. (1.3.3) and (1.3.4)], we use

the total complex susceptibility tensor χ̃ � χ � iχ
2
. The imaginary part χ

2
is proportional to the

imaginary part of the permittivity ε
2 � ε0χ

2
. As stated in Section 1.5, the imaginary part of the

permittivity will be omitted in the process of Maxwell’s equation solutions and will be used only in
the losses calculations. In the presentation of the Kerr effect, the imaginary part of the susceptibility
tensor will be omitted in a similar manner. In our studies, losses that originate from the nonlinear
three photon absorption effect will not considered.

In the derivation of the Kerr effect, we will use different notation for the fields than in Sections 1.3–
1.5. As the nonlinear effects can influence the light at frequencies different than the fundamental
(excitation) frequency, we will show the time and frequency dependencies explicitly in the notation.
The electric field and polarization vectors are denoted here as

�EEE ptq � Epωqe�iωt �Epωq�eiωt, (1.6.1a)�PPPptq � Ppωqe�iωt �Ppωq�eiωt, (1.6.1b)

where the complex conjugate fields (denoted by �) are included. The notation used here4 and the
derivation of the Kerr effect follow the lines presented in Ref. [2].

In conventional linear optics, the polarization depends linearly on the electric field strength. In the
linear case and for instantaneous material response, Eq. (1.3.3) reads

�PPPptq � ε0χ
p1q�EEE ptq, (1.6.2)

where the proportionality constant χ
p1q

is known as the linear susceptibility tensor. In nonlinear optics,
when the field intensities become sufficiently high to induce nonlinear effects, the linear description is
no longer accurate [103]. Higher terms of the Taylor expansion of polarization have to be taken into
account: �PPPptq � ε0

�
χ
p1q�EEE ptq � χp2q : �EEE ptq�EEE ptq � χp3q : �EEE ptq�EEE ptq�EEE ptq � . . . � . (1.6.3)

The quantities χ
p2q

and χ
p3q

are known as second- and third-order nonlinear optical susceptibility
tensors, respectively.

In centrosymmetric materials, χ
p2q

is equal to zero [1, 2] and the lowest nonlinear contribution
to the polarization comes from the third-order nonlinear susceptibility. All the materials considered

4In this notation Fpωq is equivalent to Fpxq which appeared in Sections 1.3–1.5 (where F denotes either electric field
E or polarization P). At the beginning of this section we choose to show explicitly only the frequency dependency as we
are primarily interested to study effects for this particular frequency. At the end we will come back to Fpxq notation, as
we will be more interested in a spatial distribution of the Kerr effect.
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in this PhD manuscript will be centrosymmetric. Setting χ
p2q � 0 and inserting Eq. (1.6.1a) into

Eq. (1.6.3) yields�PPPptq � ε0χ
p1q �

Epωqe�iωt �Epωq�eiωt�
� ε0χp3q

!
Epωq3e�3iωt � 3EpωqEpωq� �Epωqe�iωt �Epωq�eiωt�� rEpωq�s3 e3iωt

)
, (1.6.4)

where we limited ourselves to the third-order nonlinear effects. The Kerr effect is induced by a light of
frequency ω and influences the behavior of light beams at the same frequency. Therefore, in Eq. (1.6.4)
we will keep only the part of nonlinear polarization that is proportional to e�iωt and omit the two
terms connected with third harmonic generation [1, 2]. Equation (1.6.4) is rewritten into a form:�PPPptq � ε0

�
χ
p1q � 3χ

p3q|Epωq|2
� �EEE ptq, (1.6.5)

Using Eqs. (1.6.1) to eliminate the time dependency, Eq. (1.6.5) becomes

Ppωq � ε0

�
χ
p1q � 3χ

p3q|Epωq|2
�

Epωq (1.6.6)

Inserting Eq. (1.6.6) into Eq. (1.3.2a) [and using the definitions DDDpx, z, tq � Dpxqeipk0βz�ωtq and
PPPpx, z, tq � Ppxqeipk0βz�ωtq] gives

D � ε0

��
1� χp1q

	
� 3χ

p3q|E|2
�

Epωq � ε0

�
εl � 3χ

p3q|E|2
	

Epωq, (1.6.7)

where the linear part of the permittivity is related to the linear susceptibility by

εl � 1� χp1q (1.6.8)

Regrouping terms in Eq. (1.6.7) we can write

D � ε0

�
εl � 3χ

p3q|E|2
	

E � ε0εE, (1.6.9)

In this work, a nonlinear Kerr type dielectric is considered for which the nonlinear third-order
susceptibility is isotropic and can be expressed as

χ
p3q � α

3
I. (1.6.10)

All the elements of the permittivity tensor depend in identical way on the electric field intensity in
the nonlinear medium (I denotes the identity matrix).

The diagonal elements of the nonlinear Kerr-type permittivity tensor [given by Eq. (1.3.7)] can be
written as

εjpxq � εl,jpxq � εnlpxq, (1.6.11)

where j P tx, y, zu and εl,j denotes the linear real part of the permittivity. The nonlinear part of the
permittivity, limited to the optical Kerr effect that depends on the electric field intensity, is denoted
by

εnlpxq � αpxq|Epxq|2, (1.6.12)

where αpxq denotes the function that takes values of the third-order nonlinear susceptibility associated
with different layers (in linear materials it is null). Finally the expression for the real part of the
permittivity is given by

εjpxq � εl,jpxq � αpxq|Epxq|2. (1.6.13)

In this PhD manuscript, only materials with the focusing Kerr-type nonlinearity (α ¡ 0) are
studied, although all the models can be reformulated in order to study the defocusing nonlinearity

(α   0). In the SI system, the unit of α and χ
p3q

is m2{V2. More about nonlinear coefficients and their
units can be found in Section 1.7 and in Appendix A.

The formulation of the Kerr effect given by Eq. (1.6.13) is used in the majority of the works on
the nonlinear waveguides and nonlinear surface waves [10–12, 15–49, 67–84, 87, 89, 90]. It describes
sufficiently well the nonlinear effects that we will study in this PhD thesis. To describe the physics of
our system we do not need to use the more complex form of the Kerr nonlinear term which was used
in Refs. [104–106].
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1.7. Intensity dependent refractive index

1.7 Intensity dependent refractive index

In the majority of works, a common and intuitive measure of the third-order nonlinear effects is the
second-order nonlinear refractive index5 n2. The intensity dependent refractive index is given by [2]:

n � n0 � nnl � n0 � n2I, (1.7.1)

where n0 denotes the linear (weak field) refractive index that is related with the linear part of isotropic
permittivity by n0 � ?εl. The light intensity is defined [107] as the energy carried by the electric field

U � ε0|ε||E|2
2

(1.7.2)

multiplied by the group wave velocity. For the monochromatic plane waves, the group velocity is given
by

v � c

β
, (1.7.3)

where the effective index β of a monochromatic plane wave is equal to the refractive index n0 of the
medium in which it propagates. Therefore, the light intensity is given by

I � Uv � ε0|ε|c
2β

|E|2. (1.7.4)

The relation between the refractive index and the permittivity is ε � n2. Using this fact, we
compare Eqs. (1.6.13) and (1.7.1) assuming that the permittivity tensor is isotropic (εx � εy � εz �
ε � εl � α|E|2). This comparison yields:

εl � α|E|2 � pn0 � n2Iq2. (1.7.5)

Inserting the definition of intensity given by Eq. (1.7.4) into Eq. (1.7.5) allows us to relate the values
of α and n2. Using the relation εl � n2

0 we obtain

α � ε0|ε|cn2

β
n0 �

�
ε0|ε|c

2β


2

n2
2|E|2 �

ε0|ε|cn2

β
n0 � ε0|ε|cn2

2β
n2I. (1.7.6)

From Eq. (1.7.6), we observe that the value of the nonlinear coefficient α depends on the ma-
terial parameters (εl, nl, n2), the propagation constant β and on the electric field intensity |E|2 (or
equivalently light intensity I). In order to simplify the formulation of our problem, we will assume
that the relation between α and n2 is not dependent on the electric field intensity |E|2. In most of
this manuscript, we will work with the light intensities for which the nonlinear modification of the
refractive index is much lower than the linear part of the refractive index (n2I ! n0). The same is
true for the permittivity α|E|2 ! |εl|. Therefore, we will omit the second term in the sum [Eq. (1.7.6)]
that is important only of high light intensities I. Based on the same argument, we will substitute the
full nonlinear permittivity ε by the linear part of the permittivity εl in the first term of the sum in
Eq. (1.7.6). Finally, for the sake of simplicity, we will substitute the effective index β, in the denom-
inator in the first term of the sum in Eq. (1.7.6), by the linear part of the refractive index n0. This
assumption is well satisfied for the plasmon–solitons waves whose effective index is close to the linear
part of the refractive index of the nonlinear material. Thanks to this assumptions we can relate the
nonlinear coefficient α with n2 by a simple linear relation

α � ε0|εl|cn2. (1.7.7)

Equation (1.7.7) implies that to a given value of n2 and εl of the nonlinear material corresponds only
one value of the nonlinear coefficient α.

5The name ’second-order nonlinear refractive index’ is used following the formalism used in Ref. [2]. In many articles
the n2 coefficient is simply called ’nonlinear coefficient’. Here we use the former, in order to avoid confusions between n2

and other nonlinear coefficients, like α or a, introduced later.
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Chapter 1. Context

In this manuscript, we use Eq. (1.7.7) to relate α with n2, even for the case of high nonlinear index
changes or modes where β � nl. Otherwise we would have to account for the changes of n2 for a given
structure for solutions with different light intensities and effective indices.

Using the notation ε � n2 and Eqs. (1.6.13) and (1.7.1) we can relate the nonlinear refractive index
modification nnl and nonlinear permittivity modification εnl by the following formula

nnl � �nl �
b
n2
l � εnl. (1.7.8)
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Part I

Configurations with semi-infinite
nonlinear medium
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In this part of the PhD manuscript, we focus our attention on the structures in which the nonlinear
medium is semi-infinite. In general, in optical waveguide studies it is easier to model infinite or semi-
infinite structures than structures with finite dimensions. In Part I, simple structures with semi-infinite
nonlinear medium are studied, where the solutions are expressed in a less complicated mathematical
way than is structures with finite dimensions. Simpler mathematical formulation in such structures
facilitates understanding of the physical problem and the nature of the nonlinear plasmon–solitons,
because the reader is not overwhelmed by the mathematical complexity of the problem. Configurations
with the finite-size nonlinear medium, which require more complicated mathematical analysis, will be
addressed in Part II of this PhD thesis.

As mentioned in Section 1.1, configurations with semi-infinite nonlinear medium and a metal layer
were extensively studied since the beginning of 1980s [67]. Many works appeared that addressed the
problem of a single interface between a nonlinear dielectric and a metal [14, 15, 67–72]. Later, structures
where a thin metal film is sandwiched between nonlinear dielectrics were studied [73–78].

Even though there is a number of publications describing plasmon–soliton waves in the structures
with semi-infinite nonlinear medium, there is still no experimental confirmation of the existence of such
nonlinear waves. The main reason for that is that the nonlinear index modification, and therefore the
light intensity, required to observe the plasmon–soliton waves predicted theoretically so far, is orders
of magnitude higher than the values that can be obtained in modern nonlinear optics laboratories.
In Chapter 2, we will develop new models to study transverse magnetic polarized plasmon–soliton
waves in the structures with a semi-infinite nonlinear medium. These models will be based on already
published approaches, but we will improve and extend them. These extensions will allow us to obtain
new results that are interesting both from the theoretical and experimental point of view. The results
of our semi-analytical models will be confirmed numerically using a home-made finite element method.

After having confirmed the validity of our models in Chapter 3, in Chapter 4 we will discuss the
possibility of existence of various types of plasmon–solitons in the structures build of two, three and
four layers, including one semi-infinite nonlinear layer. We will show that in the three-layer structures,
using cladding that is asymmetric in terms of linear permittivity, it is possible to obtain solitonic-type
plasmon–solitons at the power levels below the damage threshold of common nonlinear materials. We
will also show that the use of an additional dielectric layer allows us to obtain low-power solitonic-type
solutions in much larger parameter range than in the case of three-layer structures.

In Chapter 5, we will discuss some paths that were initiated during this PhD thesis but were not
studied in detail. Firstly, the extension of one of our models to two-dimensions will be discussed. This
approach provides a crude approximation on what the two-dimensional plasmon–soliton waves may
look like. Secondly, results for the transverse electric polarized surface waves will be presented.
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Chapter 2
Theory

Contents

2.1 Field based model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Nonlinear wave equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.2 Nonlinear dispersion relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.3 Expressions for the electric field components . . . . . . . . . . . . . . . . . . . 25

2.1.4 Power calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.5 Linear losses estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Wave equation for a simplified field based model . . . . . . . . . . . . . . 29

2.3 Exact model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.1 First integral method for nonlinear medium treatment . . . . . . . . . . . . . . 31

2.3.2 Nonlinear dispersion relation and field profiles . . . . . . . . . . . . . . . . . . . 32

2.4 Finite element method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

I
n this chapter, we present three methods based on Maxwell’s equations, to study the properties of
stationary solutions in one-dimensional structures composed of a semi-infinite nonlinear medium
and layers of metal and linear dielectrics. An example of such a structure is presented in Fig. 2.1.

This is the most complicated structure that will be studied in this part of the manuscript. Simpler
structures will also be considered, however, in all of them, a semi-infinite nonlinear dielectric layer and
a metal layer (finite or semi-infinite) will be present. In all the described approaches, only transverse
magnetic (TM) polarized waves are considered due to the presence of the metal layer. We found no
localized solutions for the transverse electric (TE) polarization, as discussed in Section 5.2.

Figure 2.1: Geometry of the four-layer structure with a semi-infinite nonlinear dielectric medium and
a metal film.

The first model presented here extends and modifies the approach described in Ref. [73] and uses
two assumptions: (i) the nonlinearity depends only on the transverse electric field component and (ii)
the nonlinear permittivity modifications are small compared to the linear part of the permittivity.
These assumptions allow us to write a single nonlinear wave equation for one of the magnetic field
components. This equation is then solved analytically [67], resulting in closed formulas for the nonlinear

17



Chapter 2. Theory

dispersion relation and for the electromagnetic field profiles. This model will be called the field based
model (FBM).

The second model, named in this work the exact model (EM) because it does not require any of
the two above assumptions, is based on the approaches from Refs. [15, 77]. It also provides a closed
formula for the nonlinear dispersion relation but the field profiles in the nonlinear medium are not
given in an analytical form and have to be computed numerically by solving a system of two coupled
first-order nonlinear differential equations derived from Maxwell’s equations.

The third model — in contrast with the two previous semi-analytical approaches — uses a nu-
merical finite element method (FEM) to solve the nonlinear scalar TM problem in layered structures.
This approach finds the solutions using the fixed power algorithm from Refs. [108–110] adapted to
one-dimensional planar metal/nonlinear dielectric structures.

2.1 Field based model

We start by the description of the field based model. At first, the way to transform nonlinear Maxwell’s
equations for the TM polarized waves into a single nonlinear wave equation is described. Then, using
the solution of the nonlinear wave equation, the nonlinear dispersion relations are obtained for four-
layer structures. Afterwards, the way of obtaining exact nonlinear field profiles of all the electromag-
netic field components is presented. Finally, the analytical expressions for the power and approximated
propagation losses of plasmon–solitons are obtained.

2.1.1 Nonlinear wave equation

The derivation of the field based model starts from Maxwell’s equations for the TM polarized light
given by Eqs. (1.5.2). Basing on these equations, the problem of finding stationary solutions using a
nonlinear wave equation is formulated. The derivation presented here is similar to the one proposed
by Agranovich et al. [67], in which the first description of the nonlinear surface plasmon polariton
waves localized at a single interface between a metal and a nonlinear dielectric was given. In this
seminal paper, the analytical expressions for the dispersion relation and for the field profiles of the
nonlinear solutions in such structures were found in the TM case using strong assumptions on the
form of the permittivity tensor components. Later on, this model was improved by introducing more
realistic assumptions on the nonlinear term (e.g., focusing nonlinearity depending only on the trans-
verse component of the electric field). It was also extended to consider TE polarized waves as well
as focusing and defocusing Kerr nonlinearities [14, 68, 69, 75]. Furthermore, the model of Agranovich
et al. was expanded to consider nonlinear waves guided by a thin metal film sandwiched between
nonlinear dielectrics [73–75].

Our FBM improves and extends the previous approaches in three ways: (i) it improves the non-
linearity treatment so that all the diagonal elements of the permittivity tensor depend on the electric
field in a nonlinear manner [Eqs. (1.6.11) and (2.1.5)], (ii) it improves the way the nonlinearity is
taken into account in the dispersion relation derivation [Eqs. (2.1.43)–(2.1.47)] and in the electric field
profiles calculations (Section 2.1.3), and (iii) it extends the existing model from three-layer structures
to four-layer structures (the benefits of using four-layer structures are discussed in Section 4.3). The
derivation given below follows the lines presented in Ref. [73] with the improvements mentioned above.

Taking the derivative of Eq. (1.5.2c) with respect to x and using Eqs. (1.5.2a), (1.5.2b), and (1.6.11)
gives

d2Hy

dx2
� k2

0

�
εz
εx
β2 � εz



Hy � ε0ωdεnl

dx
Ez. (2.1.1)

At this step, we assumed that Maxwell’s equations [Eqs. (1.5.2)] are solved separately in each of the
layers of the structures (see Fig. 2.1). This allows us to neglect the permittivity discontinuities at the
interfaces between the layers that will be treated separately using boundary conditions. Therefore,
the last term is proportional only to the x derivative of the nonlinear part of the permittivity εnl and
the derivative of the linear part of permittivity is equal to zero. Making use of Eq. (1.5.2c) in the last

18



2.1. Field based model

term of Eq. (2.1.1) allows us to eliminate the electric field component Ez from this equation, yielding
an equation for the magnetic field component:

d2Hy

dx2
� k2

0

�
εz
εx
β2 � εz



Hy � 1

εz

dεnl

dx

dHy

dx
. (2.1.2)

We remark that in Eq. (2.1.2), the dependency on the electric field is still present, in an implicit way,
through the nonlinear permittivity tensor components εx and εz [see Eqs. (1.6.11) and (1.6.12)]. This
dependency will be eliminated later in the derivation.

At this point, important assumptions about the FBM are made. It is assumed that (i) the nonlinear
contribution to the permittivity is small compared to the linear part of the permittivity |εnl| ! |εl,j |
for j P tx, zu and (ii) both εnl and Hy in the nonlinear medium vary in x direction on scales larger
than the wavelength. These hypothesis are valid for low-power solutions and are verified a posteriori
by analyzing the field profiles. If these assumptions are fulfilled the last term in Eq. (2.1.2) is small
and it can be omitted. Then the nonlinear wave equation can be written in the simple form:

d2Hy

dx2
� k2

0

�
εz
εx
β2 � εz



Hy. (2.1.3)

Solutions of Eq. (2.1.3) in each of the layers of the structure describe the magnetic field profiles in
these layers. The approximations made above affect the solutions of Eq. (2.1.3) only in the nonlinear
layer. Since they influence the field profile in the nonlinear layer, they will also modify the continuity
conditions at the interfaces of this layer and therefore the dispersion relation of the full nonlinear
waveguides studied here. The field profiles in the linear layers are found in an exact way.

In the following, only isotropic materials for which εl,x � εl,y � εl,z � εl will be considered.1 For
isotropic materials, Eq. (2.1.3) becomes

d2Hy

dx2
� k2

0

�
β2 � ε�Hy. (2.1.4)

The nonlinearity considered in our FBM is of the usual Kerr type, but we assume that only the
transverse electric field component Ex contributes to the nonlinear response (this component is usually
much stronger than the longitudinal component in the photonic structures studied here [68])

εxpxq � εypxq � εzpxq � εpxq � εlpxq � αpxqE2
xpxq. (2.1.5)

Using this form of nonlinearity,2 and Eq. (1.5.2b), we can express the nonlinear permittivity modifi-
cation in terms of the magnetic field Hy

εpxq � εlpxq � β2αpxq
rε0εlcs2

H2
y pxq. (2.1.6)

Here we used again the assumption that |εnl| ! |εl| [this assumption justifies the substitution of
βHy{pε0εcq by βHy{pε0εlcq in the nonlinear term]. Using Eq. (2.1.6) in Eq. (2.1.4), the nonlinear wave
equation can be rewritten into its final form:

d2Hy

dx2
� k2

0q
2pxqHy � k2

0apxqH3
y � 0, (2.1.7a)

where
q2pxq � β2 � εlpxq (2.1.7b)

1Actually, this assumption is stronger than the one required to formulate our model. In our case, it is necessary to
consider materials in which linear parts of only two permittivity tensor elements are equal εl,x � εl,z � εl. The tensor
component εl,y can have arbitrary values as it does not appear in the model derivation.

2As in the case described in Footnote 1 for linear part of permittivity tenor, this assumption is stronger than the
one required to formulate the FBM. Here it is necessary to consider materials in which only two diagonal elements of
the nonlinear permittivity tensor elements are equal εx � εz � ε. The tensor component εy can have arbitrary values as
it does not appear in the model derivation.
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and the function

apxq � β2αpxq
rε0εlpxqcs2

(2.1.7c)

is nonzero only in the nonlinear layer. Here, εlpxq and αpxq are step-wise functions which take the
values indicated in Table 2.1 depending on the layer (see Fig. 2.1 for layer numbers).

Layer Abscissa εlpxq εpxq2 αpxq
1 x   0 εl,1 ε21 ε0cεl,1n

p1q
2 � α1

2 0 ¤ x   L ε2 � εl,2 ε22 0

3 L ¤ x   L� d ε3 � εl,3 ε23 0

4 x ¥ L� d ε4 � εl,4 ε24 0

Table 2.1: Values of the functions describing the properties of the materials in different layers. The

second-order nonlinear refractive index in layer 1 is denoted by n
p1q
2 . All the quantities presented in

this table are real.

Equations (2.1.7) are equivalent to Eqs. (4a) and (4b) in Ref. [73] and to Eq. (14) in Ref. [68] with
a slight difference in the nonlinear term due the to more consistent nonlinearity treatment used here.
The nonlinear function apxq differs by a factor β2{εl between our approach and the approaches from
Refs. [68, 73]. This results in discrepancies between our model and the older models mainly when the
effective index of the nonlinear wave is much higher than the linear part of the nonlinear medium
refractive index. For the purpose of comparison, the approach from Ref. [73] is presented in more
detail in Section 2.2 and the results of the two approaches are directly compared in Section 4.2.1.

2.1.2 Nonlinear dispersion relation

In Section 2.1.1, we derived a single nonlinear wave equation [Eq. (2.1.7a)] for the nonlinear medium
where the Kerr-type nonlinearity is treated in a simplified way. In this section, we will find the solutions
of this equation for the Hy field component. In the frame of the FBM, the solutions of Eq. (2.1.7a) are
studied separately in each layer of the structure. Then the use of boundary and continuity conditions
allows us to obtain the nonlinear dispersion relation for the studied problem.

The solution of Eq. (2.1.7a) is well known in literature [11, 16, 19, 67] and is based on the first inte-
gral treatment of this equation and formula (2.266)3 from Ref. [111]. Below we present the procedure
to find the solutions of Eq. (2.1.7a).

We consider a nonlinear medium where the nonlinear term in Eq. (2.1.7a) is nonzero. We multiply
both sides of Eq. (2.1.7a) by dHy{dx and integrate with respect to x. The integration by parts leads
to the following equation �

dHy

dx


2

� k2
0q

2H2
y �

k2
0a

2
H4
y � c0, (2.1.8)

where a denotes the constant value of the function apxq [see Eq. (2.1.7c)] in the considered nonlinear
medium and c0 denotes an integration constant. Due to the fact that only problems where the nonlinear
region is semi-infinite are considered in this part of the work, we impose the following boundary

3Formula (2.266) from Ref. [111] gives the expression of the integral»
dx

x
?
R
,

where R is in the form R � a � bx � cx2 and ∆ is defined as ∆ � 4ac � b2, for various combinations of signs of the
parameters a and ∆. Here we recall only the case for a ¡ 0 and ∆   0, which it the case in our derivation. For this case
the integral results in »

dx

x
?
R
� � 1?

a
ln

�
2a� bx� 2

?
aR

x



.
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2.1. Field based model

conditions on the magnetic field Hy
xÑ�8ÝÝÝÝÑ 0 and its derivative

dHy
dx

xÑ�8ÝÝÝÝÑ 0. These boundary
conditions allow us to conclude that the integration constant c0 should be set to 0. In this case
Eq. (2.1.8) can be rewritten into a form:

dHy

Hy

b
Q�A�1H2

y

� dx, (2.1.9)

where the reduced parameters Q and A were introduced:

Q � k2
0q

2, (2.1.10a)

A � �
�
k2

0a

2


�1

. (2.1.10b)

The solutions of Eq. (2.1.9) that fulfill the condition that the quantity under the square-root is positive
are sought. This condition, using Eqs. (2.1.10), results in a relation

q2 ¥ a

2
H2
y . (2.1.11)

Using Eq. (2.1.7b), we can find a lower bound of the effective index of the mode for a given mode
profile Hypxq

β2 ¥ εl � a

2
H2
y pxq. (2.1.12)

This equation has to be fulfilled for all the x values in the nonlinear region. As there is only one value
of the effective index β that corresponds to a mode profile Hypxq we find that

β2 ¥ εl � a

2
maxrH2

y pxqs (2.1.13)

which gives us the lower bound of β as a function of the amplitude value of the magnetic field in the
nonlinear region.

Integrating Eq. (2.1.9) results in»
dHy

Hy

b
Q�A�1H2

y

� x� F, (2.1.14)

where F denotes an arbitrary integration constant. From Eq. (2.1.11), we notice that the sign of q2 is
positive for the focusing Kerr effect (a ¡ 0), therefore, with the help of Eq. (2.1.10a), we conclude that
Q ¡ 0. In this work we consider only the self-focusing Kerr-type nonlinearity (a ¡ 0), which together
with Eq. (2.1.10b) implies that A�1   0. The left-hand side of Eq. (2.1.14) is integrated using formula
(2.266) from Ref. [111] for positive Q and negative value of ∆ � 4QA�1 (see Footnote 3 on Page 20):

»
dHy

Hy

b
Q�A�1H2

y

� � 1?
Q

ln

��2Q� 2
b
Q
�
Q�A�1H2

y

�
Hy

�. (2.1.15)

Inserting Eq. (2.1.15) into Eq. (2.1.14) and reorganizing terms under the natural logarithm one obtains

� 1?
Q

ln

�
2Q

Hy
� 2

d
|A�1|Q

�
Q2

|A�1|QH2
y

� 1


�
� x� F, (2.1.16)

where we have substituted A�1 with �|A�1|. Further algebraic transformation leads to

� 1?
Q

ln

�
2
a
|A�1|Q

�
Q

Hy

a|A�1|Q �
d

Q2

|A�1|QH2
y

� 1

��
� x� F. (2.1.17)
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Using the fact that lnprpq � lnprq � lnppq we obtain

� 1?
Q

�
ln
�

2
a
|A�1|Q

	
� ln

�
Q

Hy

a|A�1|Q �
d

Q2

|A�1|QH2
y

� 1

��
� x� F. (2.1.18)

Equation (2.1.18) is transformed using the relation lnpr �?r2 � 1q � arcoshprq

� 1?
Q

�
ln
�

2
a
|A�1|Q

	
� arcosh

�
Q

Hy

a|A�1|Q

��
� x� F. (2.1.19)

The relation lnpr � ?r2 � 1q � arcoshprq is only valid for r ¥ 1. In our case, this condition reads
Q{Hy

a|A�1|Q ¡ 1 and it is fulfilled because it is equivalent to Eq. (2.1.11).
After some algebra where the parity of the cosine hyperbolic function was used, we find the

analytical expression for the magnetic field profile that is the solution of Eq. (2.1.7a):

Hy � |A|1{2
?
Q

cosh
�?
Q px� x0q

� , (2.1.20)

where a new variable was introduced:

x0 � �
��F � ln

�
2
a
Q |A�1|

	
?
Q

�� . (2.1.21)

Because F is an integration constant and its value can be chosen arbitrarily, in further analysis we
use x0 as a new free parameter as it has been done in several already published articles [16, 19, 21–
23, 25, 68, 73–75]. This choice is motivated by the physical meaning of x0 as a center of the soliton
beam. Another possible choice of the free parameter in the solution of Eq. (2.1.7a) is the magnetic
field at x � 0 that is usually chosen to be the interface between the nonlinear medium and other
material [10, 11, 16, 67]

H0 � |A|1{2
?
Q

cosh
�?
Qx0

� . (2.1.22)

Expressing the reduced parameters in their explicit form in Eq. (2.1.20) yields the final formula for
the magnetic field in the nonlinear region4

Hy �
c

2

a

q

coshrk0qpx� x0qs . (2.1.23)

As we have stated at the beginning of this section, the solutions of Eq. (2.1.7a) are sought separately
in each of the layers of the structure depicted in Fig. 2.1. In the nonlinear layer, the solution is in the
form given by Eq. (2.1.23) (the y subscript of the magnetic field is skipped as in our models for the
TM light polarization there is only one magnetic field component, while the subscript 1 indicates the
nonlinear layer, see Fig. 2.1):

H1 �
c

2

a1

q1

coshrk0q1px� x0qs for x   0, (2.1.24a)

where the x0 is a free integration parameter that can be arbitrarily chosen and qk and ak denote
the constant value of the qpxq and apxq functions [see Eqs. (2.1.7b) and (2.1.7c), respectively] in the
k-th layer (k P t1, 2, 3, 4u). If x0 is negative, is has a physical meaning of the soliton peak position in

4In this work the following equivalent notation with secant hyperbolic function will be also used:

1

coshpxq � sechpxq.
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2.1. Field based model

the nonlinear dielectric. If it is positive, there is no maximum of the H1 component in the nonlinear
layer. In linear layers, the nonlinear term in Eq. (2.1.7a) vanishes and the solutions of the linear wave
equation are expressed in a standard form of decreasing and increasing exponentials (for the layer
indices see Fig. 2.1):

H2 � A�e
k0q2x �A�e

�k0q2x for 0 ¤ x   L, (2.1.24b)

H3 � B�e
k0q3px�Lq �B�e

�k0q3px�Lq for L ¤ x   L� d, (2.1.24c)

H4 � Ce�k0q4rx�pL�dqs for x ¥ L� d. (2.1.24d)

The use of the boundary condition Hy
xÑ8ÝÝÝÑ 0 in the layer 4 results in the single term in Eq. (2.1.24d).

Having found the analytical expressions for the magnetic fields in all the layers, we can proceed with
the derivation of the nonlinear dispersion relation for the four-layer structure depicted in Fig. 2.1. We
will use the continuity conditions for the tangential field components (Hy and Ez) at all the interfaces
between media. The expressions for the Ez fields are obtained using Eq. (1.5.2c) and read

Ez,1 � 1

ε0ε1ω

c
2

a1
k0q

2
1

sinhrk0q1px� x0qs
cosh2rk0q1px� x0qs

for x   0, (2.1.25a)

Ez,2 � 1

ε0ε2ω
k0q2

�
A�e

k0q2x �A�e
�k0q2x

	
for 0 ¤ x   L, (2.1.25b)

Ez,3 � 1

ε0ε3ω
k0q3

�
B�e

k0q3px�Lq �B�e
�k0q3px�Lq

�
for L ¤ x   L� d, (2.1.25c)

Ez,4 � �1

ε0ε4ω
k0q4Ce

�k0q4rx�pL�dqs for x ¥ L� d. (2.1.25d)

The continuity conditions on the interfaces result in the following relations:

1. At the interface x � 0

(a) The continuity condition for the magnetic field component

H1|x�0� � H2|x�0� (2.1.26)

yields

H0 � A� �A�, (2.1.27)

where we introduced the magnetic field intensity at the nonlinear dielectric interface

H0 �
c

2

a1

q1

coshrk0q1x0s . (2.1.28)

(b) The continuity condition for the tangential electric field component

Ez,1|x�0� � Ez,2|x�0� (2.1.29)

gives

H0
�q1,nl|x�0rq2

� A� �A�, (2.1.30)

where

rqk � qk
εk

for k P t1, 2, 3, 4u (2.1.31)

and

�q1,nl � rq1 tanhpk0q1x0q. (2.1.32)
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Taking a sum and a difference of Eqs. (2.1.27) and (2.1.30) allows us to find the expressions for
the field amplitudes A� and A�

A� � H0

2

�
1� �q1,nl|x�0rq2



. (2.1.33)

2. At the interface x � L

(a) The continuity condition for the magnetic field component

H2|x�L� � H3|x�L� (2.1.34)

yields
A�e

k0q2L �A�e
�k0q2L � B� �B�. (2.1.35)

(b) The continuity condition for the tangential electric field component

Ez,2|x�L� � Ez,3|x�L� (2.1.36)

gives rq2rq3

�
A�e

k0q2L �A�e
�k0q2L

	
� B� �B�. (2.1.37)

Taking a sum and a difference of Eqs. (2.1.35) and (2.1.37) allows us to find the expressions for
the field amplitudes B� and B�

B� � H0

2

��
1� �q1,nl|x�0rq3



coshpk0q2Lq �

��q1,nl|x�0rq2
� rq2rq3



sinhpk0q2Lq

�
. (2.1.38)

3. At the interface x � L� d
(a) The continuity condition for the magnetic field component

H3|x�pL�dq� � H4|x�pL�dq� (2.1.39)

yields
B�e

k0q3d �B�e
�k0q3d � C. (2.1.40)

(b) The continuity condition for the tangential electric field component

Ez,3|x�pL�dq� � Ez,4|x�pL�dq� (2.1.41)

gives rq3rq4

�
B�e

k0q2L �B�e
�k0q2L

	
� �C. (2.1.42)

Comparison of Eqs. (2.1.40) and (2.1.42) gives the analytical form of the nonlinear dispersion
relation of the four-layer structure:

Φ�

�rq4 � rq3

	
ep2k0q3dq � Φ�

�rq4 � rq3

	
� 0, (2.1.43a)

where

Φ� �
�

1� �q1,nl|x�0rq3



�
��q1,nl|x�0rq2

� rq2rq3



tanhpk0q2Lq. (2.1.43b)

Some assumptions have to be made in order to obtain a closed form of the expression for �q1,nl|x�0 and
therefore of the nonlinear dispersion relation. The exact expression for rq1 reads

rq1 � q1

ε1
� q1

εl,1 � α1E2
x

(2.1.44)
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2.1. Field based model

At this point, the model presented by Ariyasu et al. [73] is improved once again. In Ref. [73], the
nonlinear term is omitted at this step and rq1 � q1{εl,1. Nevertheless, one can go beyond and find the
first-order approximation for rq1 taking into account the nonlinearity. In our work, rq1 is expressed in
terms of the magnetic field H1. Inserting Eq. (1.5.2b) into Eq. (2.1.44) yields

rq1 � q1

εl,1 � α1

�
k0β

ωε0εl,1

	2
H2

1

, (2.1.45)

where the assumption that ε1 � εl,1 was used in the nonlinear term in the denominator of Eq. (2.1.45).
Use of Eq. (2.1.24a) and the definition of the function apxq [Eq. (2.1.7c)] results in

rq1 � q1

εl,1 � 2q2
1 sech2rk0q1px� x0qs

. (2.1.46)

To obtain the dispersion relation we need to know the value of �q1,nl at the interface x � 0 which is

�q1,nl|x�0 � q1 tanhpk0q1x0q
εl,1 � 2q2

1 sech2pk0q1x0q
. (2.1.47)

After these transformations, the dispersion relation (2.1.43) depends only on the wavenumber k0,
material and structure parameters (εl,1, ε2, ε3, ε4, L, d), the x0 parameter, and the effective index
β. By fixing the values of the material and geometric parameters and x0, one obtains a nonlinear
expression that is satisfied only for a limited set of β values. We are interested only in the solutions
with β ¡ ?εl,1 because the solutions we look for should be localized either in the nonlinear dielectric
or at the metal/nonlinear dielectric interface {see the definition of q [Eq. (2.1.7b)] and the field profiles
[Eqs. (2.1.24)]}. Moreover, from Eq. (2.1.13) we know that using our procedure we can only find the
solutions for which β2 ¥ εl,1 � a1{2Hypxq2 which is coherent with the range of β where the solutions
are sought.

It is worth noting that the dispersion relation (2.1.43) depends neither on the nonlinear parameter
a1 nor on the magnetic field amplitude Hy. This is a consequence of the fact that the nonlinear solutions
depend on the nonlinear permittivity modification εnl9α1E

2
x � a1H

2
y and not on the field amplitude

or nonlinear parameter itself. Changing the nonlinearity coefficient does not result in change of the
effective indices that fulfill the dispersion relation (2.1.43), but only in change of the field amplitude
as it can be seen by rescaling all the fields by a factor

?
α1.

2.1.3 Expressions for the electric field components

In our FBM, the wave equation for the Hy magnetic field component [Eq. (2.1.7a)] is solved and
the analytical expressions for the field profile of this component are provided [Eqs. (2.1.24)]. In the
case of a linear medium, knowing the expression for the magnetic field one can easily calculate the
electric field components using Eqs. (1.5.2b) and (1.5.2c). In the nonlinear case, this problem requires
precautions. If the permittivity depends on the TM wave electric field components, Eqs. (1.5.2b) and
(1.5.2c) form a set of two coupled nonlinear equations:

Ex � β

ε0εxpEx, EzqcHy, (2.1.48a)

Ez � 1

ε0εzpEx, Ezqω
dHy

dx
. (2.1.48b)

However, in the frame of the FBM, a simplified Kerr-type dependency for the permittivity is assumed
through Eq. (2.1.5), where the permittivity depends only on the main electric field component Ex. In
this case the problem reduces to:

Ex � β

ε0εxpExqcHy, (2.1.49a)

Ez � 1

ε0εzpExqω
dHy

dx
. (2.1.49b)
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The first equation is no longer coupled to the second one and it contains only one unknown quantity
(Ex). Therefore, it can be readily solved. Inserting Eq. (2.1.5) into Eq. (2.1.49a) and performing some
simple algebra gives

E3
x �

εl,1
α1
Ex � βHy

ε0cα1
� 0 (2.1.50)

This equation has in general three roots: one real and a pair of complex conjugate solutions. In our
approach the Ex field is assumed to be real so we choose the real root of this equation to be the field
profile. The solution is in the form (see formula 3.8.2 in Ref. [112]):

Ex �
�
w

2
�
c
v3

27
� w2

4

� 1
3

�
�
w

2
�
c
v3

27
� w2

4

� 1
3

, (2.1.51)

with w � βHy{pε0cα1q and v � εl,1{α1. Having found the Ex field profile, the Ez dependency is
calculated directly using Eq. (2.1.49b). In previous approaches [68, 73], the electric field was calculated
using simplified formulas containing only the linear part of the refractive index:

Ex � β

ε0εl,xc
Hy, (2.1.52a)

Ez � 1

ε0εl,zω

dHy

dx
. (2.1.52b)

2.1.4 Power calculations

In the FBM, Eq. (2.1.43) allows us to determine the allowed values of the effective indices β. For
a given β the analytical expressions for the magnetic field profiles are given by Eqs. (2.1.24), where
the coefficients H0, A�, A�, B�, B�, and C are found during the procedure of solving the nonlinear
dispersion relation [Eqs. (2.1.43)] and are given by Eqs. (2.1.28), (2.1.33), (2.1.38), and (2.1.40).

Based on this results, a closed analytical expression for the approximated power density of the
corresponding plasmon–soliton waves can be found. Power density transmitted per unit length along
the y direction is expressed as a longitudinal (z) component of the pointing vector

S � 1

2
<epE�H�q (2.1.53)

integrated over the transverse dimension (x)

Ptot �
» �8

�8
Szdx � 1

2

» �8

�8
ExH

�
y dx. (2.1.54)

Equation (2.1.54) is rewritten using Eq. (1.5.2b) into a form:

Ptot � β

2cε0

» �8

�8

1

εxpxq |Hy|2 dx. (2.1.55)

In this expression, the dependency of the permittivity on the x coordinate is both due to a layered
structure (linear) and due to the field induced changes in the nonlinear layer. Here we use again the
assumption that εnl ! εl which allows us to approximate the nonlinear permittivity profile εxpxq by
the linear permittivity profile εlpxq. Using this assumption the expression for the total approximated
power density Ptot can be rewritten as a sum of four separate integrals

Ptot �
4̧

k�1

Pk, (2.1.56)

where

Pk � β

2cε0εl,k

»
layer k

|Hk|2 dx. (2.1.57)
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Using Eq. (2.1.24) we find the approximate power density in the nonlinear layer

P1 � β

2cε0εl,1k0

H2
0

q1 � q1,nl
, (2.1.58a)

where q1,nl � �q1,nlε1. The expressions for the power densities in the linear layers read:

P2 � β

2cε0ε2

�
A2
�

2k0q2

�
e2k0q2L � 1

	
�2A�A�L� A2

�

2k0q2

�
e�2k0q2L � 1

	�
, (2.1.58b)

P3 � β

2cε0ε3

�
B2
�

2k0q3

�
e2k0q3d � 1

	
�2B�B�d� B2

�

2k0q3

�
e�2k0q3d � 1

	�
, (2.1.58c)

P4 � β

2cε0ε4

C2

2k0q4
. (2.1.58d)

The expressions for the power density in the linear layers are exact. The assumption we made sub-
stituting the εxpxq by εlpxq affects only the nonlinear layer and does not change the values of the
permittivity in the linear layers.

2.1.5 Linear losses estimation

An important part of the study of nonlinear wave propagation is the calculation of losses. In our studies
we will focus only on the linear losses and the nonlinear effects (such as two photon absorption) will
not be taken into account (see Section 1.6). In the FBM, the linear losses are estimated using the
approach based on the imaginary part of permittivity and the field profiles. This method is described
in the case of linear waveguides in Ref. [113] and has already been used for nonlinear plasmon–soliton
studies [68, 69, 79, 81]. The complex permittivity considered here is isotropic and is described by the
function ε̃pxq � εpxq � iε2pxq and it takes values given in Table 2.1.

The derivation of the equation describing losses starts by considering the expression ∇∇∇ ��EEE �HHH b
��

,

where over-lined quantities still carry the oscillatory z dependency ei
rβz:#

EEE pr, tq
HHH pr, tq

+
�
#

EEE prq
HHH prq

+
e�iωt �

#
Eprqeik0βz

Hprqeik0βz

+
e�iωt, (2.1.59)

and the backward propagating waves are considered:#
EEE bpr, tq
HHH bpr, tq

+
�
#

EEE bprq
HHH bprq

+
e�iωt �

#
Ebprqe�ik0βz

Hbprqe�ik0βz

+
e�iωt. (2.1.60)

The relations between the forward and backward propagating field amplitudes are given by [86]:

Eb � �E, (2.1.61a)

Hb � H. (2.1.61b)

Note that this time we consider the effective index to be a complex quantity rβ � β � iβ2, where both
β and β2 are real. Using the standard vector identity we write:

∇∇∇ �
�
EEE �HHH b

�
	
�HHH b

�
�
∇∇∇� EEE

	
� EEE

�
∇∇∇�HHH b

�
	
. (2.1.62)
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Inserting Eqs. (2.1.59) and (2.1.60) into Maxwell’s equations [Eqs. (1.3.8a) and (1.3.8b)] and perform-
ing time derivatives results in:

∇∇∇� EEE � iωµ0HHH , (2.1.63a)

∇∇∇�HHH b � �iωε0ε̃EEE b. (2.1.63b)

Using Eq. (2.1.63a) and the complex conjugate of Eq. (2.1.63b) in Eq. (2.1.62) we obtain:

∇∇∇ �
�
EEE �HHH b

�
	
� iωpµ0HHH HHH b

� � ε0ε̃EEE EEE b
�q. (2.1.64)

Integrating this equation on a planar surface S perpendicular to the direction of wave propagation
results in: »

S
∇∇∇ �

�
EEE �HHH b

�
	

dS � iω

»
S
pµ0HHH HHH b

� � ε0ε̃EEE EEE b
�qdS. (2.1.65)

At this step, we use the two-dimensional form of the divergence theorem [Eq. (37–56) in Ref. [86]]:»
S
∇∇∇ �A dS � B

Bz
»
S

A � ẑ dS �
¾
L

A � n̂ dL, (2.1.66)

where S is a planar surface with a perimeter L, on which n̂ is a unit vector normal to L pointing
outward, and ẑ is a unit vector orthogonal to S and parallel to the increasing z-direction. In our
problem, we use the boundary condition where the field vanishes at infinities. Therefore, we can
further simplify this relation by omitting the line integral term (choice of the contour is arbitrary and
we can choose it to be infinitely large):»

S
∇∇∇ �A dS � B

Bz
»
S

A � ẑ dS. (2.1.67)

Using Eq. (2.1.67) on the left-hand side of Eq. (2.1.65), we obtain:

B
Bz
»
S

�
EEE �HHH b

�
	
� ẑ dS � iω

»
S
pµ0HHH HHH b

� � ε0ε̃EEE EEE b
�q dS. (2.1.68)

We make use of a fact that the over-lined fields still carry the z dependency eik0
rβz and change the

order of integral and derivative on the left-hand side. Performing the derivative results in appearance
of effective index rβ in the expression. Extracting rβ on the left-hand side yields:

rβ � ω

2k0

³
Spµ0H H�

b � ε0ε̃E E�
b q dS³

SpE�H�
b q � ẑ dS

. (2.1.69)

Using Eqs. (2.1.61) to eliminate the fields associated to the backward propagating waves, we obtain

rβ � ω

2k0

³
Spµ0|H|2 � ε0ε̃|E|2q dS³

SpE�H�q � ẑ dS
. (2.1.70)

Taking the imaginary part of this equation we can express the imaginary part of rβ as a function of
field profiles and of the imaginary part of permittivity:

=mprβq � ωε0
2k0

³
S =mpε̃q|E|2 dS³
SpE�H�q � ẑ dS

. (2.1.71)

In our one-dimensional problem, the surface integrals that appear in the above expression can be
replaced by integrals along x-direction due to the spatial invariance of structure and fields along the
y-direction:

=mprβq � ωε0
2k0

³
T =mpε̃q|E|2 dx³
T pE�H�q � ẑ dx

, (2.1.72)
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where T denotes the transverse cross-section of the four layer structure. In the denominator, we
recognize the expression for the power density calculated as the integral of the Pointing vector Ptot �³
T Sz dx � 1

2

³
T <epE�H�q� ẑ dx. Finally, the expression of the imaginary part of effective index reads:

=mprβq � β2 � ε0c

4

³
T ε

2|E|2 dx

Ptot
. (2.1.73)

The imaginary part of the refractive index is connected with the losses in decibel per meter (L) in the
following way [114]:

L � 40π

lnp10qλβ
2, (2.1.74)

where λ it the free-space wavelength expressed in meters.

2.2 Wave equation for a simplified field based model

In this section, we will describe the derivation of the nonlinear wave equation in the case of a simplified
expression for the nonlinear Kerr term. Contrarily to Sec. 2.1, where the nonlinear permittivity tensor
is isotropic, here we will consider anisotropic nonlinearity, as it was done in Refs. [68, 73]. We assume
that only the εx and εy depend on the transverse component of the electric field:5

εxpxq � εlpxq � εnlrx, |Epxq|2s, (2.2.1a)

εypxq � εlpxq � εnlrx, |Epxq|2s, (2.2.1b)

εzpxq � εlpxq (2.2.1c)

This approach was already presented in detail in Refs. [68, 73], but we recall it here shortly, because
it will be useful for us for the purpose of comparison presented in Section 4.2.1. Moreover, the results
of this approach will be used in the derivation and calculations of the two-dimensional profiles of
plasmon–solitons in Section 5.1, where the form of permittivity tensor given by Eq. (2.2.1) is required
to obtain analytical results.

The derivation presented here is based on similar methodology as we used in Section 2.1.1 deriving
the nonlinear wave equation for the isotropic nonlinear Kerr effect. Taking the derivative of Eq. (1.5.2c)
with respect to x and using Eqs. (1.5.2a), (1.5.2b), and the definition of the simplified permittivity
tensor (2.2.1) gives

d2Hy

dx2
� k2

0

�
εz
εx
β2 � εz



Hy. (2.2.2)

Comparing with Eqs. (2.2.2) and (2.1.1), we notice that Eq. (2.2.2) does not contain the term with
the x-derivative of the nonlinear permittivity εnl. This is caused by the fact that, εz does not depend
on the electric field. Using Eq. (2.2.1), we can rewrite Eq. (2.2.2) to a form:

d2Hy

dx2
� εlk

2
0

�
1� β2

εl

1

1� εnl
εl

�
Hy. (2.2.3)

Assuming that the nonlinear correction to the permittivity is small with respect to the linear permit-
tivity εnl{εl ! 1 we can expand the nonlinear term in a Taylor series:

1

1� εnl
εl

�
�

1� εnl

εl



�O

��
εnl

εl


2
�
. (2.2.4)

5There is a difference in notation between our work and Refs. [68, 73]. In our case x is the transverse direction and
z is the longitudinal direction. In Refs. [68, 73] the situation is reversed. There z is the transverse direction and x is
the longitudinal direction. Therefore, the components Ex and Ez are interchanged in the expression presented in this
sections and the original expressions in Refs. [68, 73].
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Keeping just the first-order terms we obtain

1

1� εnl
εl

�
�

1� εnl

εl



. (2.2.5)

Inserting Eq. (2.2.5) into Eq. (2.2.3) yields

d2Hy

dx2
� εlk

2
0

�
1� β2

εl

�
1� εnl

εl


�
Hy. (2.2.6)

Using the definition of the nonlinear correction to the permittivity

εnl � αpxqE2
xpxq (2.2.7)

and Eq. (1.5.2b) one obtains

d2Hy

dx2
� k2

0qpxq2Hy � k2
0

β4αpxq
εzrε0εlpxqcs2H

3
y � 0. (2.2.8)

Using again the approximation εnl{εl ! 1, we can replace now εz by εl in the denominator of the
nonlinear term. Finally, we obtain

d2Hy

dx2
� k2

0qpxq2Hy � k2
0a

psqpxqH3
y � 0, (2.2.9a)

where

apsqpxq � β4αpxq
εlrε0εlpxqcs2 . (2.2.9b)

Equation (2.2.9a) has identical form as Eq. (2.1.7a), but the nonlinear term is different. Function
apxq is replaced by apsqpxq and the ratio between these two quantities is

apsqpxq
apxq � β2

εl
. (2.2.10)

It can be a matter of discussion which of these two formulations is better. In the FBM derived in
Section 2.1, we had to skip one of the nonlinear terms (term containing the derivative of the nonlinear
permittivity). In the simplified field based model (SFBM) presented in this section, we use the Taylor
expansion of the nonlinear term, and omit the higher-order terms. For weakly nonlinear solutions, the
effective index β is close to the refractive index of the nonlinear material. Therefore, the ratio of the
two nonlinear parameters apsqpxq/apxq is close to 1 and both approaches give very similar results. For
higher effective indices β, the discrepancy between the two approaches increases as it will be visible
during the comparison of the results obtained using the two models (FBM and SFBM) in Section 4.2.1.

In order to obtain the dispersion relations and the field profiles in the SFBM one can follow the lines
of the derivation presented in Section 2.1.2. To obtain the formulas for SFBM one has to substitute
function apxq by apsqpxq.

2.3 Exact model

In this section, the derivation of the exact model (EM) will be presented. This model, on the contrary
to the FBM, does not require any additional assumptions on the form of the Kerr-type nonlinearity.
First, we will describe the method of solution of Maxwell’s equations in the nonlinear region that
allows for the exact treatment of the nonlinear Kerr effect. Then the method to obtain the analytical
formulas for the nonlinear dispersion relation in four-layer structures will be presented.
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2.3. Exact model

2.3.1 First integral method for nonlinear medium treatment

Below we present the derivation of the model that allows for the exact treatment of the Kerr non-
linearity. This derivation is based on the approaches presented by Mihalache et al. [15] for a single
interface between a Kerr-type nonlinear material and a linear material, later extended to three-layer
configurations and generalized to the case of power-law Kerr nonlinearity by Yin et al. [77]. Here we
extend the approach from Ref. [77] to a four-layer configuration.

The derivation of the EM starts from Maxwell’s equations [Eqs. (1.5.2)]. In this approach the
magnetic field is eliminated from these equations. The use of Eq. (1.5.2b) in Eqs. (1.5.2a) and (1.5.2c)
gives

dEz
dx

� k0

�
β � εx

β



Ex, (2.3.1a)

dpεxExq
dx

� βk0εzEz. (2.3.1b)

Equation (2.3.1a) is derived with respect to x and the last term is replaced using Eq. (2.3.1b) resulting
in

d2Ez
dx2

� βk0
dEx
dx

� k2
0εzEz. (2.3.2)

Multiplying Eq. (2.3.2) by dEz{dx and using Eq. (2.3.1a) once more, gives

d2Ez
dx2

dEz
dx

� βk2
0

dEx
dx

�
β � εx

β



Ex � k2

0εzEz
dEz
dx

. (2.3.3)

In this approach, a full power-law Kerr dependency of the permittivity of the following form is assumed
in the nonlinear layer [compare with Eqs. (1.6.11) and (2.1.5)]:

εx � εy � εz � ε1 � εl,1 � α1|E|κ � εl,1 � α1

�
E2
x � E2

z

�κ
2 . (2.3.4)

The nonlinear term in the EM depends both on the transverse and the longitudinal components of
electric field. The derivation will be conducted for an arbitrary value of κ resulting in the nonlinear
treatment of Maxwell’s equations in the nonlinear medium with a power-law Kerr nonlinearity. For
κ � 2 we recover results for the standard cubic Kerr-type nonlinearity.

Inserting Eq. (2.3.4) into Eq. (2.3.3) one obtains

d2Ez
dx2

dEz
dx

� pβk0q2ExdEx
dx

� k2
0εl,1

�
Ex

dEx
dx

� Ez dEz
dx



� k2

0α1

�
E2
x � E2

z

�κ
2

�
Ex

dEx
dx

� Ez dEz
dx



. (2.3.5)

Integrating this equation with respect to x gives�
dEz
dx


2

� pβk0q2E2
x � k2

0εl,1
�
E2
x � E2

z

�� k2
0

2α1

κ� 2

�
E2
x � E2

z

�κ
2
�1 � C0, (2.3.6)

where C0 is the integration constant. The first three terms of Eq. (2.3.5) were integrated by parts
using the identity »

fpxqdfpxq
dx

dx � 1

2
f2pxq. (2.3.7)

The last (nonlinear) term was integrated using the following change of variables:

» �
E2
x � E2

z

�κ
2

�
Ex

dEx
dx

� Ez dEz
dx



dx �

�������
Y � E2

x � E2
z

dY � 2

�
Ex

dEx
dx

� Ez dEz
dx



dx

�������
� 1

2

»
Y

κ
2 dY � 1

κ� 2
Y

κ
2
�1 � 1

κ� 2

�
E2
x � E2

z

�κ
2
�1
. (2.3.8)
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Chapter 2. Theory

In Eq. (2.3.6), the integration constant C0 is set to 0 taking into consideration the fact that a
semi-infinite nonlinear medium is studied, where the electric fields Ex, Ez, and their x-derivatives
vanish as x Ñ �8. The final step of this derivation is to compare the right-hand side of Eq. (2.3.6)
with the square of the right-hand side of Eq. (2.3.1a). This comparison yields�

ε21
β2
� 2ε1



E2
x � εl,1

�
E2
x � E2

z

�� 2α1

κ� 2
pE2

x � E2
z q

κ
2
�1 � 0, (2.3.9)

which is the first step in order to obtain the nonlinear dispersion relation in the frame of the EM.

2.3.2 Nonlinear dispersion relation and field profiles

In the previous paragraph, a method that allows for the treatment of the nonlinearity in an exact
manner, without the approximations used in the FBM, was presented. Besides, there is no difficulty
in solving Maxwell’s equations in the linear layers. In these layers, the electric field components are
solutions to the linear wave equations. These wave equations are derived from Maxwell’s equations
[Eqs. (1.5.2)] and read:

d2Ex
dx2

� k2
0q

2pxqEx � 0, (2.3.10a)

d2Ez
dx2

� k2
0q

2pxqEz � 0. (2.3.10b)

The general solution of these wave equations is a combination of decreasing and increasing exponential
functions of the form Aek0qx�Be�k0qx. In the following, the two electric field components in the linear
layers are expressed in this form:

1. in the buffer linear dielectric (0 ¤ x   L — layer 2)

Ex,2 � Axe
k0q2x �Bxe�k0q2x, (2.3.11a)

Ez,2 � Aze
k0q2x �Bze�k0q2x, (2.3.11b)

2. in the metal (L ¤ x   L� d — layer 3)

Ex,3 � Cxe
k0q3px�Lq �Dxe

�k0q3px�Lq, (2.3.12a)

Ez,3 � Cze
k0q3px�Lq �Dze

�k0q3px�Lq, (2.3.12b)

3. in the external linear dielectric (x ¥ L� d — layer 4)

Ex,4 � Fxe
�k0q4rx�pL�dqs, (2.3.13a)

Ez,4 � Fze
�k0q4rx�pL�dqs. (2.3.13b)

In order to derive the nonlinear dispersion relation in the frame of the exact model, several re-
lationships between field amplitudes in the linear layers are needed. Using Eq. (2.3.1b) separately in
each of the linear and uniform layers, relations between the amplitudes of the x and z components
of the fields defined by Eqs. (2.3.11)–(2.3.13) are found. Inserting Eqs. (2.3.11a) and (2.3.11b) into
Eq. (2.3.1b) yields the relation for the field amplitudes in layer 2:

βpAzek0q2x �Bze�k0q2xq � q2pAxek0q2x �Bxe�k0q2xq. (2.3.14)

Because Eq. (2.3.14) has to be fulfilled for each value of x P p0, Lq we separately solve this equations
for the terms proportional to ek0q2x and e�k0q2x. As a result one obtains$''&''%

Ax � β

q2
Az,

Bx � � β

q2
Bz.

(2.3.15)
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Applying a similar procedure to the expressions of the fields in other linear layers leads to$''&''%
Cx � β

q3
Cz,

Dx � � β

q3
Dz,

(2.3.16)

Fx � � β

q4
Fz. (2.3.17)

We will use the continuity conditions for the tangential components of the fields (Ez and Hy) in
order to obtain the analytical expression for the nonlinear dispersion relation. TheHy field components,
according to Eq. (1.5.2b), are proportional to the Ex field multiplied by the permittivity of the medium.

The continuity conditions on the interfaces result in the following:

1. Continuity conditions at x � 0

(a) The continuity condition for the magnetic field component

H1|x�0� � H2|x�0� (2.3.18)

yields
ε1,0Ex,0 � ε2pAx �Bxq, (2.3.19)

where the transverse electric field component in the nonlinear medium at the interface
x � 0 is denoted by Expx � 0�q � Ex,0 and the value of the nonlinear permittivity at this
interface is denoted by ε1,0.

(b) The continuity condition for the tangential electric field component

Ez,1|x�0� � Ez,2|x�0� (2.3.20)

yields
Ez,0 � Az �Bz, (2.3.21)

where the longitudinal electric field component in the nonlinear medium at the interface
x � 0 is denoted by Ezpx � 0�q � Ez,0.

2. Continuity conditions at x � L

(a) The continuity condition for the magnetic field component

H2|x�L� � H3|x�L� (2.3.22)

yields
ε2pAxek0q2L �Bxe�k0q2Lq � ε3pCx �Dxq. (2.3.23)

(b) The continuity condition for the tangential electric field component

Ez,2|x�L� � Ez,3|x�L� (2.3.24)

yields
Aze

k0q2L �Bze�k0q2L � Cz �Dz. (2.3.25)

3. Continuity conditions at x � L� d
(a) The continuity condition for the magnetic field component

H3|x�pL�dq� � H4|x�pL�dq� (2.3.26)

yields
ε3pCxek0q3d �Dxe

�k0q3dq � ε4Fx. (2.3.27)
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(b) The continuity condition for the tangential electric field component

Ez,3|x�pL�dq� � Ez,4|x�pL�dq� (2.3.28)

yields
Cze

k0q3d �Dze
�k0q3d � Fz. (2.3.29)

At first, wherever it is possible, we will eliminate the amplitudes of the transverse field components
Ex in Eqs. (2.3.19), (2.3.21), (2.3.23), (2.3.25), (2.3.27), and (2.3.29). To this end we will use the
relations given by Eqs. (2.3.15)–(2.3.17). Inserting Eqs. (2.3.15) into Eq. (2.3.19) we obtain

ε1,0Ex,0 � βε2
q2
pAz �Bzq. (2.3.30)

Inserting Eqs. (2.3.15) and (2.3.16) into Eq. (2.3.23) we obtain

ε2
q2

�
Aze

k0q2L �Bze�k0q2L
	
� ε3
q3
pCz �Dzq. (2.3.31)

Inserting Eqs. (2.3.16) and (2.3.17) into Eq. (2.3.27) we obtain

ε3
q3

�
Cze

k0q3d �Dze
�k0q3d

	
� � ε4

q4
Fz. (2.3.32)

Inserting Eq. (2.3.29) into Eq. (2.3.32), after some algebra yields

Dz �
ε3
q3
� ε4

q4
ε3
q3
� ε4

q4

Cze
2q3d. (2.3.33)

Taking a sum and a difference of Eq. (2.3.31) and Eq. (2.3.25) multiplied by ε3{q3 gives

2
ε3
q3
Cz � Az

�
ε2
q2
� ε3
q3



ek0q2L �Bz

�
ε3
q3
� ε2
q2



e�k0q2L (2.3.34)

2
ε3
q3
Dz � Az

�
ε3
q3
� ε2
q2



ek0q2L �Bz

�
ε2
q2
� ε3
q3



e�k0q2L (2.3.35)

Inserting Eqs. (2.3.34) and (2.3.35) into Eq. (2.3.33) and performing some lengthy but elementary
algebra results in the relation between Az and Bz

Az � φBz, (2.3.36)

where we introduce the following notation:

φ � Ψ�
�e

�k0q2L�k0q3d �Ψ�
�e

�k0q2L�k0q3d

Ψ�
�e

k0q2L�k0q3d �Ψ�
�e

k0q2L�k0q3d
, (2.3.37a)

and

Ψ
sgnpmq
sgnppq �

ε2{q2 �mε3{q3

ε3{q3 � pε4{q4
, where tm, pu � t1,�1u, (2.3.37b)

Inserting Eq. (2.3.36) into Eqs. (2.3.21) and (2.3.30) results in

Ez,0 � pφ� 1qBz, (2.3.38)

ε1,0Ex,0 � βε2
q2
pφ� 1qBz. (2.3.39)

Eliminating Bz from Eq. (2.3.38) with the help of Eq. (2.3.39), we obtain the relation between the
amplitudes of the electric field components in the nonlinear dielectric at the interface x � 0

Ez,0 � ε1,0q2pφ� 1q
ε2βpφ� 1q Ex,0. (2.3.40)
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2.4. Finite element method

The total electric field amplitude in the nonlinear medium at the interface x � 0, denoted by E0,
is defined by

E2
0 � E2

x,0 � E2
z,0. (2.3.41)

Using Eqs. (2.3.40) and (2.3.41) we can express the electric field amplitude Ex,0 as a function of the
total electric field amplitude

E2
x,0 �

pε2βq2 p1� φq2
pε1,0q2q2 p1� φq2 � pε2βq2 p1� φq2

E2
0 . (2.3.42)

Using Eqs. (2.3.42) and (2.3.41) to eliminate Ex and Ez from Eq. (2.3.9) taken at x � 0� results
in the final form of the nonlinear dispersion relation for the four-layer structure in the frame of the
EM: �

ε1,0ε2
q2


2

� 2ε1,0

�
ε2β

q2


2

�
�
εl,1 � 2α1

κ� 2
Eκ0


�
ε21,0

�
1� φ
1� φ


2

�
�
ε2β

q2


2
�
� 0, (2.3.43)

where φ is defined by Eqs. (2.3.37). For a given set of opto-geometric parameters (εl,1, α1, ε2, ε3, ε4, L,
d) and a given wavelength (λ), it contains as a unique free parameter the total electric field amplitude
at the nonlinear interface E0. Fixing arbitrarily E0 allows for solving this equation for all the possible
values of β.

After obtaining the effective indices of the nonlinear waves propagating in a given structure, the
field profiles corresponding to these values of β are calculated. In the EM, contrarily to the FBM, no
analytical formulas for the field profiles in the nonlinear layer are provided. However, a system of two
coupled first-order differential equations for the electric field components can be derived to allow field
profile computations. Equation (2.3.1b) is written in the form:

dεx
dx

Ex � dEx
dx

εx � βk0εzEz. (2.3.44)

Using Eq. (2.3.4) in the first term and calculating the derivative gives

2α1

�
Ex

dEx
dx

� Ez dEz
dx



Ex � dEx

dx
ε1 � βk0ε1Ez. (2.3.45)

Replacing dEz{dx using Eq. (2.3.1a) and reorganizing the terms result in the first coupled differential
equation

dEx
dx

�
βk0ε1Ez � 2k0α1EzE

2
x

�
β � ε1

β

	
ε1 � 2α1E2

x

. (2.3.46)

The second coupled differential equation used to calculate the field profiles is Eq. (2.3.1a).

2.4 Finite element method

In this section, the finite element method (FEM) based approach used to compute the stationary
solutions propagating in the structure depicted in Fig. 2.1 is described. The FEM [115] has already
been used to study stationary solutions in nonlinear waveguides since at least the end of the eighties
[116–118]. For a general and recent review of FEM in the frame of optical waveguides, the reader can
refer to Ref. [119]. In the present case, the problem is relatively simple since it is both one-dimensional
and is reduced to a scalar case.

The FEM is an approximative method used to solve partial differential equations. In the frame
of the FEM, the physical problem is written in a variational formulation, which is equivalent to
the initial formulation of the problem. In order to obtain the variational formulation also called a
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weak formulation, the initial partial differential equations are multiplied by chosen form functions
that belong to a particular function space depending notably on the used boundary conditions and
the type of partial differential equations. The next step to establish the FEM is the discretization,
in which one shifts from an infinite-dimension functional space to a finite-size one that allow the
numerical resolution. It must be pointed out that, the weak formulation of the scalar problem for
the full structure, deduced from Eq. (2.1.3) or its approximated form given by Eq. (2.1.7a), must
take into account all the continuity relations fulfilled by the electromagnetic field at the structure
interfaces. This implies that the full TM wave equation for Hy component must be used to obtain the
correct weak formulation that deals with both the inhomogeneous permittivity term induced by the
nonlinearity and the structure interfaces. The corresponding weak formulation is given by:

�
»
F

1

k2
0εpxq

∇∇∇φpxq �∇∇∇φ1pxqdx�
»
F
φpxqφ1pxq dx

� β2

»
F

1

εpxqφpxqφ
1pxqdx @φ1 P H1

0pF q and φ P H1
0pF q, (2.4.1)

where H1
0pF q is the Sobolev space of the order 1 with the null Dirichlet boundary conditions on the

domain of integration F (in the present case the full x cross-section of the structure). In the above
equation, φ stands for the Hy component and φ1 denotes the test form functions.

After Eq. (2.4.1) is solved for the Hy field profiles in the four-layer structure, the electric field
components are calculated using Eqs. (1.5.2b) and (1.5.2c) with the method described in Section 2.1.3.
The FEM is implemented using the free softwares Gmsh as a mesh generator and GetDP as a
solver [120–122]. These softwares have already been used to solve both two-dimensional scalar and
vector nonlinear electromagnetic waveguide problems [110, 123]. The nonlinearity considered in these
two references was of the simplified Kerr type given by Eq. (2.1.7a).

The algorithm used for this plasmon–soliton study is the fixed power one [108–110] in which, for a
given structure, the wave power is the input parameter and the outputs are the propagation constant
and the corresponding field profiles. This algorithm involves an iterative process requiring successive
resolutions of generalized linear eigenvalue problems, where the square of the propagation constant
pk0βq2 is the eigenvalue and the field profile Hy is the eigenvector. The iterative process is stopped
when an arbitrary criterion on the convergence of the propagation constant is reached. Typically,
|pβn � βn�1q{βn|   δ, where n denotes the step number in the procedure, and δ � 10�6 is chosen
in the present work. To fulfill this criterion between 10 and 15 steps are needed depending on the
structure parameters and the used initial field. It is worth noticing that, in the frame of the fixed
power algorithm, different initial fields provide at the end of the iterative process the same results
except if the structure exhibits multiple solutions for identical power. In this last case, the obtained
solution at the end of the iterative process depends on the initial field.
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Limiting cases for semi-analytical models
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I
n this chapter, we will present a validation of our models. Their validity will be confirmed on
two levels: formulation and implementation. First, the formulation will be verified by analyzing
the limiting cases that will lead to dispersion formulas for simpler structures already studied in

literature. The validation of the implementation of the models will be done later, together with the
presentation of the results in Chapter 4. The implementation verification will be based on the com-
parison between the results obtained using our codes and the previously published results for identical
structures (see Section 4.2.1) and by a mutual comparison between our models (see Section 4.3.2).

Here the formulations of the semi-analytical models for four-layer structure are verified. The vali-
dation is made by comparison of the analytical formulas obtained in other works for simpler structures
(three- and two- layer) and for the linear case, with the corresponding formulas obtained by taking
limiting cases of the dispersion relations provided by our models. At first, the field based model (FBM)
and later the exact model (EM) will be analyzed.

3.1 Field based model

In order to verify our analytical results for the FBM, several comparisons with the formulas from
previous works for simpler structures are realized in this section. The dispersion relations obtained in
the frame of the FBM are considered in three limiting cases:

3.1.1 Three-layer structure

To consider a three-layer structure, we need to reduce by one the number of linear layers of the
structure presented in Fig. 2.1. One way to do, it is to assume that L Ñ 0. In this case we consider a
structure where the metal film of the thickness d (layer 3) is sandwiched between a nonlinear dielectric
layer 1 and a linear dielectric layer 4. Letting L Ñ 0, one notices immediately that tanhpk0q2Lq Ñ 0
in Eq. (2.1.43b) and this equation simplifies to

Φ� �
�

1� �q1,nl|x�0rq3



. (3.1.1)
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Inserting Eq. (3.1.1) into Eq. (2.1.43a), after some simple algebra, yields

tanhpk0q3dq � � rq3p�q1,nl|x�0 � rq4qrq3
2 � rq4�q1,nl|x�0

. (3.1.2)

If in Eq. (3.1.2), the nonlinear permittivity is approximated by its linear value (see discussion in
Section 2.1.2 on Page 24) then �q1,nl|x�0 becomes q1 tanhpk0q1x0q{εl,1. Upon this assumption, Eq. (3.1.2)
is identical to Eq. (8) in Ref. [73] that gives the nonlinear dispersion relation for the three-layer
structure, where the metal film is sandwiched between linear and nonlinear dielectrics.1

3.1.2 Two-layer structure

An elegant way of finding the dispersion relation for two-layer structures is to infinitely separate
both interfaces of the three-layer structure. This is done by letting d Ñ 8. Upon this assumption
tanhpk0q3dq Ñ 1 in Eq. (3.1.2) and this equation becomes

p�q1,nl|x�0 � rq3qprq3 � rq4q � 0. (3.1.3)

Equation (3.1.3) has two solutions. The first one,

�q1,nl|x�0 � �rq3, (3.1.4)

describes the nonlinear dispersion relation for the waves localized at the interface between the semi-
infinite nonlinear layer 1 and the semi-infinite linear layer 3. This equation has a structure that resem-
bles Eq. (7) in Ref. [67]. The differences between the two expressions result from different assumptions
on the type of the nonlinearity used, as described on Pages 3 and 18. The second solution,

rq3 � �rq4, (3.1.5)

gives the linear dispersion relation for a plasmon at the interface between two linear layers (3 and 4).
Equation (3.1.5) is equivalent to Eq. (2.12) in Ref. [55].

3.1.3 Linear case

Consider a limiting case of a linear structure {α1 Ñ 0 and therefore a1 Ñ 0 [see Eq. (2.1.7c)]}. The
nonlinear dispersion relation (2.1.43a) does not depend on the value of the nonlinear parameter a1

as discussed at the end of Section 2.1.2. The only free parameter on which the dispersion relation
depends is x0. Therefore, we need to find a relation between a1 and x0 in order to be able to formally
calculate the limiting expression for the dispersion relation in the linear case.

In the frame of the FBM the magnetic field profile in the nonlinear medium is given by Eq. (2.1.24a.)
We recall this expression here expressing the cosine hyperbolic using exponential functions:

H1 �
c

2

a1

2q1

ek0q1px�x0q � e�k0q1px�x0q
. (3.1.6)

1Other ways to obtain the three-layer limit of Eq. (2.1.43) also exist. The way presented here (letting L Ñ 0) does
not require a lot of algebra. Another simple way to consider a three layer structure is to assume that ε4 � ε3. In this case,
a four-layer structure from Fig. 2.1 transforms into a structure where a film with the thickness L (layer 2) is sandwiched
between the nonlinear dielectric layer 1 and a linear layer 3 (that is now semi-infinite because of its merging with layer
4). In this case, the dispersion relation for the limiting case of a three layer structure is given by

tanhpk0q2Lq � � rq2p�q1,nl|x�0 � rq3qrq22 � rq3�q1,nl|x�0

,

which is equivalent to Eq. (3.1.2). It is also possible to obtain the limiting case of a three-layer structure either by letting
dÑ 0 or assuming ε2 � ε3. However, these approaches require a bit longer algebraic transformations in order to recover
the dispersion formula in the form given by Eq. (3.1.2).
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3.1. Field based model

We cannot simply set a1 � 0 in this expression because it would lead to infinite values of the magnetic
field, which is an unphysical result. Although, we can find a way to relate a1 parameter and x0

parameter in such a way that setting a1 � 0 and a proper value of x0 will keep the magnetic field
value finite.

At first, we notice that for a linear semi-infinite medium (layer 1), the solution of Maxwell’s
equations in this layer should be given by a single exponential function decaying toward x � �8. We
just keep the second exponential function in the denominator of Eq. (3.1.6) so that the expression for
the magnetic field in layer 1 reads:

H1 � 2q1

c
2

a1
ek0q1px�x0q. (3.1.7)

This approximation is valid only when the values of the first exponential term in the denominator of
Eq. (3.1.6) are much lower than the values of the second exponential term (ek0q1px�x0q ! e�k0q1px�x0q).
At the end of this derivation, we will see that this approximation is satisfied in the limiting case of
the linear structure.

Equation (3.1.6) gives us the exponentially decaying field profile in the linear layer 1. We fix now
the magnetic field intensity at the interface x � 0 to be equal to Hlin:

Hlin � 2q1

c
2

a1
e�k0q1x0 . (3.1.8)

Taking the natural logarithm of Eq. (3.1.8) results in the relation that a1 and x0 have to fulfill in
order to keep the value of the magnetic field at x � 0 equal to Hlin:

x0 � 1

k0q1
ln

�
2
?

2q1?
a1Hlin



. (3.1.9)

From Eq. (3.1.9) it follows that in the FBM, in order to obtain the limiting case where a1 Ñ 0, one
should have x0 Ñ �8. This result is in agreement with the assumption made in order to transform
Eq. (3.1.6) into Eq. (3.1.7). For x0 Ñ �8 the first exponential term in the denominator of Eq. (3.1.6)
tends to zero.

The dispersion relation in the limiting case for three- and two-layer structures in the linear regime
can be now computed. For the case of three-layer structure, we proceed in the following way. Letting
x0 Ñ �8, from Eq. (2.1.32) one obtains that �q1,nl Ñ rq1. In this case, Eq. (3.1.2) becomes

tanhpk0q3dq � � rq3prq1 � rq4qrq3
2 � rq4 rq1

. (3.1.10)

After some algebra, it transforms to

e�2k0q3d � prq3 � rq1qprq3 � rq4q
prq3 � rq1qprq3 � rq4q , (3.1.11)

which is equivalent to Eq. (2.28) in Ref. [55] giving the dispersion relation for linear plasmons on a
metallic film sandwiched between two linear dielectrics (IMI — insulator/metal/insulator structure)
or of a dielectric film sandwiched between two metals (MIM — metal/insulator/metal structure). For
two-layer structure it is now straightforward to see that if �q1,nl Ñ rq1 then Eq. (3.1.4) is reduced to
the dispersion relation of the linear case [Eq. (3.1.5)].

The three limiting cases considered here show that our extended FBM fully recovers already known
dispersion relations, including nonlinear ones, for simpler structures. In the next section, we will present
the verification of the nonlinear dispersion relations obtained using the EM.
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3.2 Exact model

In order to check the agreement between the results of our EM and the previously published results [77]
the limiting case of the nonlinear dispersion relation (2.3.43) for the three-layer structure is considered.
In a similar manner as for the FBM, in order to transform the four-layer structure from Fig. 2.1 into
a three-layer structure, we assume that LÑ 0. Then Eq. (2.3.37a) simplifies to

φ � Ψ�
�e

�k0q3d �Ψ�
�e

k0q3d

Ψ�
�e

k0q3d �Ψ�
�e

�k0q3d
. (3.2.1)

As an intermediate step,on the right-hand side of Eq. (2.3.42) both numerator and denominator are
divided by φ to give

E2
x,0 �

pε2βq2 p 1
φ � 1q2

pε1,0q2q2 p 1
φ � 1q2 � pε2βq2 p 1

φ � 1q2E
2
0 . (3.2.2)

In the next step, the expressions (1{φ� 1) and (1{φ� 1) appearing in Eq. (3.2.2) are expanded. Using
Eqs. (3.2.1) and (2.3.37b), after lengthy but simple algebra one obtains

1

φ
� 1 � 2Mε̄3rε̄3 sinhpk0q3dq � ε̄4 coshpk0q3dqs, (3.2.3a)

1

φ
� 1 � 2Mε̄3rε̄3 coshpk0q3dq � ε̄4 sinhpk0q3dqs, (3.2.3b)

where ε̄k � εk{qk (for k P t2, 3, 4u) and

M � 1

pε̄2 � ε̄3qpε̄3 � ε̄4qek0q3d � pε̄2 � ε̄3qpε̄3 � ε̄4qe�k0q3d
. (3.2.4)

Inserting Eqs. (3.2.3) into Eq. (3.2.2) and defining

R � q4ε3 tanhpk0q3dq � q3ε4, (3.2.5a)

T � q4ε3 � q3ε4 tanhpk0q3dq (3.2.5b)

one obtains

E2
x,0 �

pβε3Rq2
pβε3Rq2 � pq3ε1,0T q2E

2
0 . (3.2.6)

Equation (3.2.6) is identical to formula (11) in Ref. [77], which was obtained for a three-layer structure
with a semi-infinite nonlinear medium. The dispersion relation for the three-layer structure is then
obtained by inserting Eq. (3.2.6) into Eq. (2.3.9) and reads

pε1,0ε3Rq2 � 2ε1,0 pβε3Rq2 �
�
εl,1 � 2α1

κ� 2
Eκ0


�
pβε3Rq2 � pq3ε1T q2

�
� 0 (3.2.7)

Equation (3.2.7) is equivalent to Eq. (12) in Ref. [77], which was obtained for a three-layer structure.
This proves that in the limiting case our EM for four-layer structures reproduces results for simpler
structures. The procedure of transforming Eq. (3.2.7) to obtain two separate dispersion relations, on
a linear/nonlinear interface and a linear/linear interfaces (d Ñ 8), is described in Ref. [77].
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A
s it was already mentioned in Section 1.1, theoretical studies of plasmon–solitons or more
generally nonlinear localized surface waves started more than 30 years ago with the seminal
paper of Agranovich et al. [67]. However, no experimental results confirming the existence

of these nonlinear waves propagating in metal–nonlinear dielectric structures have been provided.
Consequently, from the modeling point of view, the main challenge is to design a feasible structure
that enables the experimental realization of plasmon–soliton coupling.

To reach this goal, several conditions must be satisfied simultaneously. Firstly, a structure that sup-
ports plasmon–solitons of a solitonic type (with a pronounced soliton peak inside a nonlinear dielectric
which facilitates experimentally both its excitation and its discrimination from linear waves) must be
found. Secondly, solutions should appear for physically realistic combinations of material parameters,
beam power, and nonlinear coefficient. The last, more practical and supplementary requirement is to
design a structure in which the plasmon field is accessible both for measurements using the tip of a
scanning near-field optical microscope and for potential applications such as sensing [124–130].

This chapter gives a complete description of nonlinear stationary solutions that can be generated
in planar structures made of a combination of semi-infinite nonlinear dielectric, metal film, and linear
dielectric layers. It starts with the section describing configurations with two layers and finishes with
the results for a four-layer structure, which is shown to be the simplest configuration that fulfills all
the requirements to facilitate the experimental observation of plasmon–solitons defined above.

4.1 Two-layer configuration

In two-layer configurations (single interface between a nonlinear dielectric and a metal), the only
nonlinear solutions that we are able to find using our three models are of the plasmonic type (no
pronounced soliton peak in the nonlinear medium). This results are in agreement with the conclusions
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drawn by looking at the field shapes obtained using the FBM and the continuity conditions for the
tangential electromagnetic field components at the interface. The main results from the FBM for a
single-interface configuration are summarized here:

� the field in the nonlinear material is described by the formula (2.1.24a) with the free parameter
x0,

� the field in the metal is given by the exponential function (2.1.24d) (with L � d � 0) and

decreases to zero as x tends to infinity to satisfy the boundary condition Hy
xÑ�8ÝÝÝÝÑ 0,

� in order to obtain the nonlinear dispersion relation we use the conditions for the continuity of
the fields at the interface x � 0:

1. for the magnetic field H1 � H4, so that in Eq. (2.1.24d) C � H0,

2. for the longitudinal component of the electric field Ez,1 � Ez,4, which using Eq. (1.5.2c) is
expressed in terms of the x-derivative of Hy and the permittivity of the media:

1

ε1

dH1

dx
� 1

ε4

dH4

dx
. (4.1.1)

Because the permittivities of the metal and the nonlinear dielectric have opposite signs (ε1ε4   0),
from the continuity condition 2 we notice that the derivatives of Hy must have opposite signs at both
sides of the interface. From Eq. (2.1.24d), it follows that pdH4{dxq|x�0�   0. This implies that the
derivative on the nonlinear side of the interface has to be positive pdH1{dxq |x�0� ¡ 0. By looking at
Eq. (2.1.24a) one can see that this condition is fulfilled only if x0 ¡ 0. This allows us to conclude that
only the plasmonic-type solutions exist on a single metal/nonlinear dielectric interface.

4.2 Three-layer configuration

In this section, results obtained for three-layer configurations (L is set to 0, see Fig. 2.1) are presented.
Firstly, to confirm the validity of our FBM, its results are compared with the results from Ref. [73].
Then the general classification of nonlinear solution types is described and illustrated. Finally, the
structure parameter scans are performed in order to find configurations supporting low-power plasmon–
solitons.

4.2.1 Comparison between the field based model and older works

In Section 3.1, it was shown that the nonlinear dispersion relation for the four-layer FBM in the
limiting cases reproduces analytically several known analytical results including these for the three-
layer model proposed in Ref. [73]. In order to check the correctness of the implementation of our
FBM, the graphical comparisons between the nonlinear dispersion curves for the three-layer structure
presented in Ref. [73] and the results of our modeling are presented. The parameters used in our
simulations are identical to those in Fig. 1 of Ref. [73]. The linear part of the nonlinear medium
permittivity is ε̃l,1 � 16 � 0.0096i, metal permittivity is ε̃3 � �1000 � 160i, and the linear dielectric
permittivity is ε̃4 � 16. The thickness of the metal film is set to d � 50 nm, the wavelength used is

λ � 5.5 µm, and the second-order nonlinear refractive index is n
p1q
2 � 10�7 m2/W.1

Figures 4.1(a) and (c) show the dispersion relation in which the real part of the effective index
β is plotted as a function of the power density of the nonlinear wave Ptot. The original results from
Ref. [73] are depicted by the red solid curve. The results obtained using our FBM for the three-layer
structure are presented by the green dashed curve. In our approach, the effective index values were
calculated using Eq. (3.1.2) with the definitions given is Section 2.1. The power was calculated using

1The value of the second-order nonlinear refractive index used here and in Ref. [73] is extremely high. Typical values
of n2 for highly nonlinear glasses [131–136] or hydrogenated amorphous silicon [137–142] at the telecommunication
wavelength are of the order of 10�17 m2/W.
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Figure 4.1: Comparison of the original results from the article of Ariyasu et al. [73] (Fig. 1 digitized)
(red solid curve) and results obtained using our FBM (green dashed curve) with some specific approx-
imations (blue dotted curve) (see the text for more details). (a), (c) Real part and (b), (d) imaginary
part of the dispersion relation for the three-layer structure. In panel (c) the green and blue curves
overlap perfectly. The labeled points A–I correspond to the field profiles depicted in Figs. 4.2–4.4.
Point I lays out of the plotting range (see Section 4.2.2 for explanation).

the approximated analytical formulas derived in Section 2.1.4. The blue dashed curves depict the
results obtained using our FBM using some special assumptions discussed later, while commenting on
the results.

The plot presenting dispersion curves is separated into two regions. Figure 4.1(a) shows the high-
index branch of plasmon–solitons and Fig. 4.1(b) shows the low-index branch. Here we will not discuss
in detail the nature and the behavior of the dispersion curves. The detailed discussion will be presented
in Section 4.2.2. Here we are interested only in the agreement between the numerical results of our
FBM and the results presented in Ref. [73].

In Fig. 4.1, we observe that for the low effective index branch the two curves are in relatively
good agreement. On the other hand, for the high effective index branch small discrepancy between
the results appears. Two reasons explain the differences between these curves. Firstly, a different form
of the nonlinear permittivity tensor is used in Ref. [73] as discussed in Sections 2.1.1 and 2.2. As a
consequence, the FBM uses the values of the effective nonlinear function apxq in Eq. (2.1.7), whereas in
Ref. [73], the value apsqpxq is used [see Eq. (2.2.9) and compare with α1 defined in Eq. (4b) in Ref. [73]].
The ratio of the two nonlinear functions is equal to β2{ε1 and is low for the parameter range, where
the effective index is close to the linear refractive index of the nonlinear material and it becomes
larger for higher values of the effective index. For this reason, we observe a good agreement between
the red and green curve for the solutions where β2 Ç ε1 [see Fig. 4.1(c)] and a worse agreement for
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higher values of β [Fig. 4.1(a)]. This is in full agreement with the explanation presented at the end of
Section 2.1.1. Secondly, a closer examination of Eq. (4b) and Eqs. (9)–(11) in Ref. [73] reveals that
to compute the power density Ptot, the authors made the approximation β2 � εl,1. To reproduce the
original results provided in Fig. 1 in Ref. [73] this approximation for power calculations is used in
our model for the test purpose. The corresponding blue dotted curve in Fig. 4.1(a) is closer to the
original results than the green curve obtained using our full FBM that uses the expressions for power
described in Section 2.1.4 without any additional assumptions.

Figures 4.1(b) and (d) show the comparison of the original results from Ref. [73] and our results
for the dependency of the imaginary part of the effective index β2 as a function of the power density.
The results of our FBM were obtained using Eq. (2.1.73) and are presented by a green dashed curve.
This curve lays slightly above the original results from Ref. [73] (red solid curve). The comparison of
the formulas used to calculate losses {Eq. (8) in Ref. [68] and Eq. (2.1.73) for our formulation} shows
that losses are calculated in different ways. In Ref. [73], authors use Eq. (8) from Ref. [68], where
losses are proportional to the product of the imaginary part of permittivity with the power P in each
layer (β29 ³ ε2Pdx). The power is proportional to the Pointing vector and in the frame of a linear
approximation P9E2

x. In our formulation [Eq. (2.1.73)], the losses [green curve in Figs. 4.1(b) and
(d)] depend on both components of the electric field [β29 ³ ε2pE2

x �E2
z qdx]. If a formulation in which

the losses are proportional only to the transverse field component is used in our FBM, a very good
agreement with the original results is reached [see the blue dotted curve in Figs. 4.1(b) and (d)].

Even if small numerical discrepancies between our improved approach and the original results of
Ariyasu et al. appear due to different approximations used, they are fully understood. Our extended
FBM is able to reproduce the results published in Ref. [73] with a good agreement.

4.2.2 Classification of the nonlinear wave types

In this section, a classification of the types of solutions that exist in the three-layer structures is
presented. It is useful for the remaining part of this work to classify and name different types of
solutions as they will be similar in four-layer configurations. In Fig. 4.1, nine points were labeled from
A to I in order to describe the type and the transformation of solutions along the nonlinear dispersion
curves. The magnetic field profiles corresponding to these points are shown in Figs. 4.2–4.4.

Using the analytical considerations presented in Section 3.1.3, we have already concluded that
for x0 Ñ �8, the solutions correspond to the limiting case of the linear structure. In the linear
symmetric three-layer IMI structure, two solutions exist: a symmetric (long range) plasmon and an
antisymmetric (short range) plasmon [55, 60, 64]. Points A and G were obtained for x0 � λ � 5.5 µm
and the corresponding solutions are close to the linear ones. For both solutions the power density is
relatively low Ptot   0.1 W/m (this type of solution is obtained for even lower powers if one selects
larger values of x0). The corresponding field profiles resemble the linear solutions. Figures 4.2(a), (d)
that correspond to point A present electromagnetic field profiles that are very close to the symmetric
linear plasmon. Figures 4.4(a), (d) that correspond to point G show electromagnetic field profile very
similar to the antisymmetric linear plasmon.

In the following, the field transformation along the dispersion curves is described in detail. At
first, the transformation of the symmetric plasmonic-type solutions, located at the lower branch of
the dispersion curve, is studied. For x0 � 5.5 µm field profiles represented in Figs. 4.2(a), (d) and
corresponding to point A in Fig. 4.1 are obtained. Decreasing the value of x0 to 1 µm (all other
parameters being identical) we obtain the field profiles corresponding to the point B [see Figs. 4.2(b),
(e)]. The power density of this nonlinear wave is Ptot � 2 W/m and the field profiles still resemble
the symmetric linear plasmon but the field is now asymmetric and the energy is more localized on the
interface between the metal film and the linear dielectric. Upon further decrease of the value of x0

to 0.1 µm (point C) the power density of the solution increases to � 5.5 W/m and the field profiles
become even more asymmetric. The electromagnetic field profiles corresponding to point C are shown
in Figs. 4.2(c), (f). The solutions described above are referred as symmetric-like nonlinear plasmons.
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Figure 4.2: Profiles of (a)–(c) magnetic field component Hy and (d)–(f) electric field components Ex
and �Ez for symmetric-like nonlinear plasmons in the three-layer structure described in Section 4.2.1
corresponding to points A–C indicated on the dispersion plot in Fig. 4.1. The columns correspond to
different values of x0: the first column to 5.5 µm (point A), the second column to 1 µm (point B),
the third column to 0.1 µm (point C). In all the figures showing field profiles in this chapter, the x
coordinate inside the thin intermediate films are not at the same scale as those used in the other layers
for a better visibility of the field behavior. In this figure, the x coordinate inside the thin metal film
is magnified 100 times.

When x0 becomes negative, a new class of solutions appears, for which the local magnetic field
maxima are located both at the interface between the metal film and the linear dielectric and inside
the nonlinear medium. Upon the decrease of the x0 parameter down to �0.1 µm, the power density
still increases [to around 7.5 W/m corresponding to point F for which the field profiles are presented
in Figs. 4.3(c), (f)] and reaches its maximum at the point E [see Figs. 4.3(b), (e)] for x0 � �1 µm.
Further reduction of x0 leads to the decrease of the total power density (Ptot � 2.5 W/m for point D
corresponding to x0 � �5.5 µm). Point D, for which the field profiles are shown in Figs. 4.3(a), (d),
lays close to the end of the branch corresponding to x0 Ñ �8 associated with the isolated classical
soliton that does not interact with the metal film.

Even though the field profiles corresponding to points C [Figs. 4.2(c), (f)] and F [Figs. 4.3(c), (f)]
at the first glance look almost identical, there is an important qualitative difference between them.
On one hand, profile corresponding to point C (x0 � 0.1 µm) is classified as plasmonic-type solution
because there is no field maximum in the nonlinear layer. On the other hand, profile F (x0 � �0.1 µm)
does have a local maximum in the nonlinear layer (located close to the metal interface) and therefore
it belongs to another class of solutions.

For all the solutions presented in Fig. 4.3, the peak amplitude of the solitonic part (in the nonlinear
dielectric) remains at approximately the same level and only the maximum of the plasmon field on
the metal/linear dielectric interface changes with the decrease of x0 value. All the solutions shown in
Fig. 4.3 will be called solitonic-type solutions.

It is worth noting that, the solitonic-type solution can not be obtained at any desired power density.
Following the dashed green curve in Fig. 4.1(c) and knowing the field profiles one can see that for power
densities between 6.5 W/m and 10.5 W/m two solitonic-type solutions with different x0 correspond
to one power density. For power densities between 2.5 W/m and 6.5 W/m and for a maximum power
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Figure 4.3: Profiles of (a)–(c) magnetic field componentHy and (d)–(f) electric field components Ex and
�Ez for solitonic-type solutions in the three-layer structure described in Section 4.2.1 corresponding
to points D–F indicated on the dispersion plot in Fig. 4.1. In this figure, the x coordinate inside the
thin metal film is magnified 100 times. The columns correspond to different values of x0: the first
column to �5.5 µm (point D), the second column to �1 µm (point E), the third column to �0.1 µm
(point F).
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Figure 4.4: Profiles of (a)–(c) magnetic field componentHy and (d)–(f) electric field components Ex and
�Ez for antisymmetric-like nonlinear plasmons in the three-layer structure described in Section 4.2.1
corresponding to points G–I indicated on the dispersion plot in Fig. 4.1. In this figure, the x coordinate
inside the thin metal film is magnified 100 times. The columns correspond to different values of x0: the
first column to 5.5 µm (point G), the second column to 1 µm (point H), the third column to 0.1 µm
(point I).
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4.2. Three-layer configuration

density of 10.5 W/m there is only one solitonic-type solution corresponding to each power density.
Below 2.5 W/m and above 10.5 W/m no solitonic-type solution exists.

Finally, the transformation of solutions laying along the upper branch of the dispersion relation
[see Fig. 4.1(a)] is described. The field profiles corresponding to this branch are shown in Fig. 4.4.
The branch starts with the solution described above, very similar to the antisymmetric linear plasmon
[point G, at which the field profiles are presented in Figs. 4.4(a), (d) corresponding to x0 � 5.5 µm].
Decreasing the value of x0 to 1 µm, results in the field profiles corresponding to point H shown in
Figs. 4.4(b), (e). The field profiles of this solution resemble the antisymmetric linear solution but
are distorted. The field distribution is asymmetric and this time the field is more localized at the
metal/nonlinear dielectric interface (contrarily to the case of symmetric type solutions, where the field
tends to localize on the opposite metal interface). Decreasing x0 even further, down to 0.1 µm, we
obtain the field profiles corresponding to point I in Fig. 4.1 presented in Figs. 4.4(c), (f). Here the field
is almost entirely localized at the metal/nonlinear dielectric interface and therefore it is even more
asymmetric. The corresponding power density is 2.5 W/m and the effective index is so high (β � 4.57)
that it is outside of the plotting range in Fig. 4.1(a). The solutions presented in Figs. 4.4 will be called
antisymmetric-like nonlinear plasmons.

4.2.3 Low-power solution search

The simplest structures in which it is possible to obtain the plasmon–solitons of the solitonic type
are three-layer structures, as it has been shown in Sections 4.1 and 4.2.2. The study of solitonic type
plasmon–solitons presented in Ref. [73] deals only with configurations, where the linear parts of the
permittivities of linear and nonlinear dielectrics are equal. Below a more general case is studied, in
which a permittivity contrast between the linear and the nonlinear dielectric is introduced. For this
study the FBM limited to three-layers (L is set to 0 and only layers 1, 3 and 4 are present as described
in Section 3.1) is used. The configurations where εl,1 ¥ ε4 are chosen to guarantee that the solutions are
localized at the interface between layers 3 and 4 as β ¥ ?εl,1 [see Eqs. (2.1.7b), (2.1.13) and (2.1.24d)].
From the practical point of view, this condition can also be justified by looking at the properties of
typical nonlinear materials. For the glasses it is known that, in most cases, the second-order nonlinear
refractive index n2 increases with the increase of the linear refractive index [132, 135]. This justifies
our choice to consider a linear permittivity of the linear layer to be lower than that of the nonlinear
layer.

In order to obtain color maps in this section and in Section 4.3, the scans over parameters were
performed using the FBM in such a way that, only solutions with the effective index β P r?εl,1, 4?εl,1s
were sought. For lower effective indices no localized solution exists as pointed out at the end of Sec-
tion 2.1.2 (see discussion on Page 25) and higher effective indices are not interesting for our purpose,
because the corresponding solutions have extremely high power density and the nonlinear index mod-
ification is too high to be physically meaningful.

Figure 4.5(a) shows the dependency of the total number of solutions on the parameter x0 and on
the linear external dielectric refractive index

?
ε4 (other parameters of the structure are indicated in

the figure caption). For the symmetric structure (
?
ε4 � ?εl,1 � 2.4) (as discussed in Section 4.2.2)

and for quasi-symmetric configurations with low refractive index contrast ∆ε � εl,1 � ε4 À 0.16 one
solitonic-type solution (region A) and two (a symmetric-like and an antisymmetric-like) plasmonic
solutions (region B) exist. Upon the decrease of the linear layer refractive index

?
ε4 (increasing

the index contrast between the nonlinear and the external dielectric) a narrow region (C) with two
solitonic-type solutions appears. These solutions do not exist for negative values of x0 close to zero.
Further decrease of the linear layer refractive index causes both solitonic-type solutions to vanish
around

?
ε4 � 2.22. In the case of plasmonic-type solutions (x0 ¡ 0), the decrease of the linear layer

refractive index causes symmetric-like solution to vanish (at a cut-off index value of
?
ε4 � 2.24) and

only the antisymmetric-like solution remains (region D) (even for
?
ε4 � 1 which is not shown on this

plot).

47



Chapter 4. Numerical results

-30 -15 0 5

x0 [µm]

 2.1

 2.2

 2.3

 2.4

ε
4

1
/2

0

1

2

(a)

A B

C

DNo solution

-30 -15 0 5
 2.2

 2.22

 2.24

 2.26

x0 [µm]

ε4
1/2

 0

 10

 20

 30

(b)

Figure 4.5: (a) Number of solutions as a function of x0 parameter and of the external linear layer
refractive index

?
ε4. (b) Peak power [GW/cm2] for the low-power solutions close to the cut-off value

of
?
ε4. In this and in all the following peak power color maps in this paper, only solutions with peak

power below 30 GW/cm2 are plotted. The existence of solutions with higher peak power is marked
with the gray color. White color denotes regions with no solutions. The parameters of the structure

are: εl,1 � 2.42, n
p1q
2 � 10�17 m2{W, d � 40 nm, ε3 � �20, and λ � 1.55 µm.

Figure 4.5(b) presents the peak power of the solutions in a transition region close to the cut-off
value of the linear layer refractive index. The maximum peak power was set to 30 GW/cm2. This value

of the peak power, taking into account the nonlinearity parameter used n
p1q
2 � 10�17 m2{W, involves

a maximum nonlinear index modification ∆n ¤ 3 � 10�3. The value of n2 used here is typical for
chalcogenide glasses [131–136] or for hydrogenated amorphous silicon which seems to be a promising
material for nonlinear integrated optics [137–142]. In Fig. 4.5(b), it can be observed that the low-power
solutions exist only in a very narrow range of

?
ε4 values. The value of the linear layer refractive index?

ε4 has to be chosen with the precision of 0.01 in order to ensure the peak power below 30 GW/cm2.
The solitonic-type solutions have their lowest peak powers slightly below the cut-off index. On the
contrary, the plasmonic-type solutions have their lowest peak powers above this value, as it is illustrated
in Fig. 4.5(b).

The study presented in Fig. 4.5 confirms and completes the analysis of the number of solutions in
various structures presented in Table I in Ref. [73]. We confirm the result presented in line 5 of table
I in Ref. [73] for symmetric configurations (ε4 � εl,1) and complete the results presented in this table
by including the results for a more general case of asymmetric three-layer structures (ε4 � εl,1).

Figure 4.6 shows the comparison of the magnetic field Hy and of the electric field components
Ex and Ez for the solitonic-type solutions that appear in the three-layer structure for identical value
of x0 [region C in Fig. 4.5(a)]. Here the parameters are ε4 � 2.232 and x0 � �1 µm. The solution
with the lower effective index β has a lower peak amplitude of the solitonic part than the one of the
higher effective index solution. The solitonic part is broader and the plasmonic part peak amplitude
is slightly higher in the former case. Looking at Fig. 4.6 we also conclude that, the ratio between the
electric field components maxp|Ex|q{maxp|Ez|q in the nonlinear dielectric layer is higher for low-power
solutions (with low β values and broad solitonic peaks) than for the solutions with higher power. This
fact confirms the validity of the approximation made in the FEM on the nonlinear Kerr term. In the
frame of the FEM, we have assumed that only transverse electric field component Ex contributes to
the nonlinear permittivity change [see Eq. (2.1.5)]. As it can be inferred from Fig. 4.6, this assumption
is well satisfied for low-power solutions.

Here the influence of the metal permittivity changes on the behavior of the solitonic-type solutions
in three-layer structures is analyzed. The center of the solitonic part is set to be at the distance of 10
wavelengths from the metal film (x0 � �15.5 µm). The number of solutions as a function of the metal
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Figure 4.6: Comparison of the field profiles (a) Hypxq and (b) Ezpxq for the two plasmon–solitons
existing in region C in Fig. 4.5(a) for identical x0 value. The x coordinate inside the thin metal film
is magnified 30 times.

permittivity and of the linear dielectric permittivity is studied. From Fig. 4.7(a) it can be seen that
two effects occur with the increase (decrease of the absolute value) of the metal permittivity. Firstly,
the index contrast between layers 1 and 4 for which solutions can be found increases. Secondly, the
allowed external dielectric permittivity range where two solitonic-type solutions occur for one value
of x0 expands. There is also a cut-off metal permittivity above which no solution exists. This cut-off
occurs when |ε3| � ε4. From Fig. 4.7(b) that shows the peak power for low-power plasmon–solitons,
it can be seen that the low-power solutions lay in a very narrow region close to the line separating
regions with one and two solutions.

Summarizing the result of this section, we observe that asymmetric structures (with εl,1 ¡ ε4)
are able to support the solitonic-type solutions at much lower powers than symmetric structures.
However, in order to obtain really low power densities the index contrast between the two dielectrics
has to be precisely chosen [see Figs. 4.5(b) and 4.7(b)]. The asymmetric three-layer configurations
fulfill two out of three conditions set at the beginning of this section: they support both plasmonic-
and solitonic-type plasmon–solitons and it is possible to obtain low-power solitonic-type solutions.
However, these solutions are obtained for configurations in which the linear medium refractive index
is close to the linear part of the nonlinear material refractive index. Highly nonlinear glasses [131–
136] and hydrogenated amorphous silicon [137–142] that can be used as a nonlinear medium, have
high refractive index

?
εl,1 ¡ 2. Therefore, the linear dielectric has to be also a high-index material.

Consequently, the last goal can not be fulfilled — it is not possible to access or measure directly the
plasmonic part of the solution if the external layer is filled with a solid. In order to reach this goal, a
configuration where the linear refractive index of the external layer is low enough

?
ε4 À 1.3 needs to

be found, so that this external medium can be e.g., water or air. This last problem is solved by the
use of four-layer structures, as shown in Section 4.3.
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Figure 4.7: (a) Number of solitonic-type solutions in a three-layer structure with identical parameters
as in Fig. 4.5 but for a fixed x0 � �15.5 µm, as a function of the metal permittivity ε3 and of the
linear dielectric permittivity ε4. (b) Peak power [GW/cm2] for the low-power solutions.

4.3 Four-layer configuration

In this section, the results obtained using our three models for four-layer configurations are presented.
The four-layer configuration is built by extending a three layer configurations discussed in Section 4.2.
An additional thin layer of a linear dielectric is introduced between the nonlinear medium and the
metal film. This layer will be called a buffer layer. At the beginning, we show and analyze, for the
first time, typical dispersion curves of four-layer configurations. Then the comparison between the
results obtained using our three models is performed. The very good agreement between these results
confirms the validity of our models. Afterwards, the analysis of the structure parameters is performed
and the ranges where low-power plasmon–solitons exist are identified. Later, the advantages of the four-
layer structures over three-layer structures are discussed. Finally, the influence of the two geometric
parameters of the structure (metal thickness d and the buffer layer thickness L — see Fig. 2.1) on the
plasmon–solitons properties is presented.

4.3.1 Nonlinear dispersion diagrams

Here we will present for the first time the dispersion relations for the four-layer structure. The four-

layer structure with parameters ε̃l,1 � 2.472 � 10�5i, n
p1q
2 � 10�17 m2{W (chalcogenide glass) [131–

136], ε̃2 � 1.442 � 10�5i (silica), ε̃3 � �96 � 10i (gold) [143–145], ε̃4 � 2.472 � 10�5i, L � 15 nm,
d � 40 nm, and λ � 1.55 µm is considered. In Fig. 4.8, the dispersion diagrams βpP q and β2pP q for
this configuration are presented.

Firstly, we will analyze the plots of the real part of the effective index presented in the first
column in Fig. 4.8. There are two separate branches on these plots: the low-effective-index branch
build uniquely of the solitonic-type solutions and the high-effective-index branch that has a plasmonic
character in its bottom part and it changes its character to solitonic in its upper part.

At first, we discuss the high-effective-index branch. It starts in the linear regime [point Pa2 in
Fig. 4.8(c)] with the plasmonic-type solution [P-type, red dotted curve in Fig. 4.8(c)]. The corre-

2The names of the pints in Fig. 4.8 are constructed using the following rules. The first capital letter denotes the
type of the solution (P for plasmonic and S for solitonic). For the plasmonic solutions there is only one branch and only
one solution correspond to a given value of x0. Therefore, we second letter denotes the solutions obtained for different
x0 values. There are two solitonic branches. The points laying on the high-effective-index solitonic branch are denoted
by the second letter h. On this branch there is only one solution corresponding to one value of x0. The third letter
denotes solutions obtained for different x0 values. On the low-effective-index solitonic branch (second letter l) there are
two solutions that correspond to one value of x0. They are denoted by a number. The letter on the last position denotes
solutions obtained for different x0 values.
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Figure 4.8: Nonlinear dispersion diagrams for the (a), (c), (e) real and (b), (d), (f) imaginary parts
of the effective index in the four-layer structure with ε4 � εl,1 � 2.472 as a function of power density
Ptot. Plasmonic-type solutions are denoted by a red dotted line and solitonic-type solutions by a blue
dotted line. Full range of effective indices and power densities is presented in panels (a) and (b).
Panels (c) and (d) present zooms on the plasmonic branch and its solitonic continuation. Panels (e)
and (f) present zooms on the low-effective-index solitonic branch. The labeled points indicated on the
dispersion curves correspond to the field profiles presented in Figs. 4.10–4.11.

sponding magnetic field profile is shown in Fig. 4.9(a) and the x0 parameter for this solution in
equal to 5 µm. As the four-layer structures studied in this thesis are asymmetric, we will no longer
distinguish between the symmetric-like and antisymmetric-like plasmonics-type solutions. The field
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Figure 4.9: Magnetic field profiles corresponding to the plasmonic-type solutions marked by points (a)
Pa, (b) Pb, (c) Pc, and (d) Pd in Fig. 4.8(c). The x coordinate inside the thin films is magnified 50
times.

profile presented in Fig. 4.9(a) is qualitatively closer to the antisymmetric-like plasmonic solution.
This fact is in agreement with the observation made in Section 4.2.3 where, upon the increase of the
asymmetry of the three-layer structure, we observed the symmetric-like plasmonic solution to vanish
(only asymmetric-like plasmonic solution remained). With the increase of the power, the propaga-
tion constant of the plasmonic-type solution increases slowly and its magnetic field amplitude on the
metal/external linear dielectric interface increases [see point Pb in Fig. 4.9(a) and the corresponding
field profile in Fig. 4.9(b)]. At point Pb, the value of x0 was set to 400 nm. The highest power density
of the plasmonic-type solution is equal to Ptot � 18 GW/m and is reached at point Pc for x0 � 184 nm.
The corresponding field profiles are shown in Fig. 4.9(c). Further increase of the propagation constant
is accompanied by the decrease of the power density until Ptot � 14 GW/m, where another turning
point occurs. The field profile at the second turning point (denoted as Pd for which x0 � 11 nm) is
presented in Fig. 4.9(d). We notice that during the field transformation between points Pc and Pd
the field amplitude at the nonlinear interface x � 0 increases and the field amplitude at the interface
between the metal and the external linear dielectric x � L � d decreases. The combination of these
two effects accounts for the decrease in the total power of the solution at point Pd.

For effective indices slightly above the second bend denoted by point Pd, the solution changes its
type to solitonic (S-type, blue dotted curve in Fig. 4.8). Field profile corresponding to point Shd is
presented in Fig. 4.10(d) and the soliton peak in the nonlinear medium of this solution is located at
x0 � �11 nm. The solitonic-type solution increases its power density with the increase of β [through
point Shc, see Fig. 4.10(c) for the corresponding field profile] until it reaches the maximum of the power
density at β � 6 and Ptot � 47 GW/m [point Shb for which x0 � �70 nm and the corresponding field
profile is presented in Fig. 4.10(b)]. Above this point, the power decreases again with the increase of
the effective index. The solitonic branch ends at the point where β � 6.5 and Ptot � 45 GW/m which
correspond to a soliton that does not interact with the structured interface (x0 Ñ �8). Point Sha is
located close to the end of the dispersion curve, even if the peak of the solitonic part of this solution
in only at x0 � �150 nm. Because the high effective index branch has very high power densities, the
solutions lying on this branch have very narrow solitonic parts. Therefore, even for x0 � �150 nm,
the interaction with the metal layer is weak and this solution resembles the bulk soliton for which
x0 Ñ �8.
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Figure 4.10: Magnetic field profiles corresponding to the high-index solitonic-type solutions marked
by points (a) Sha, (b) Shb, (c) Shc, and (d) Shd in Fig. 4.8(a). The x coordinate inside the thin films
is magnified 50 times.
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Figure 4.11: Magnetic field profiles corresponding to the low-index solitonic-type solutions marked by
points (a) Sl1a, (b) Sl1b, (c) Sl1c, (d) Sl2a, (e) Sl2b, and (f) Sl2c in Fig. 4.8(e). The x coordinate
inside the thin films is magnified 50 times.

The low-effective-index branch of the dispersion diagram is purely of the solitonic type [see
Figs. 4.8(a) and (e)]. This branch can also be separated in two parts in terms of the x0. To each
value of x0 correspond two different solutions laying on this low-effective-index branch. We start with
the solutions weakly interacting with the metal interface. These solutions are labeled Sl1a and Sl2a
and are shown in Figs. 4.11(a) and (d), respectively. For both of them x0 � �5 µm. We notice that the
solution with low power density Ptot � 3 GW/m and low effective index value (β � 2.475) has much
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broader solitonic peak and therefore interacts more strongly with the metal interface than the high
power density solution Sl2a. Both solutions lay close to the ending points of the low-effective-index
branch that correspond to x0 Ñ �8. Increasing the value of x0 to �770 nm causes the increase of
the power density on both parts of the branch. At x0 � �770 nm we obtain points Sl1b and Sl2b
for which the corresponding field profiles are shown in Figs. 4.11(b) and (e), respectively. Point Sl2b
represents the solution with the highest power density attainable on the low-effective-index solitonic
branch. Increasing x0 even more, to x0 � �530 nm causes the increase of the power density on the
lower part of the solitonic-type branch (transformation from Sl1b to Sl1c) and the decrease of the
power density on the upper part of the solitonic branch (transformation from Sl2b to Sl2c). Field
profiles corresponding to points Sl1c and Sl2c are shown in Figs. 4.11(c) and (f). These field profiles
are very similar to each other, because they correspond the the value of x0 � �530, which is very
close to the point at which these two solutions merge into one solitonic solution (x0 � �525 nm).
For x0 above �525 nm there is no solitonic solutions on the low-effective-index branch (there are only
solutions laying on the high-effective-index branch like those presented in Fig. 4.10)

In the second column in Fig. 4.8, the imaginary part of the effective index β2 is shown. It can be
seen that the low-effective-index solitonic branch is a long range one. It has low losses because the
solutions laying on this branch are mainly localized in the nonlinear dielectric. The level of losses of
this branch is two orders of magnitude lower than that of the plasmonic branch. The high-effective-
index plasmonic branch and its solitonic continuation are short range solutions (the high losses of
these solutions originate from the fact that an important part of the field of these solutions is localized
on the lossy metal film). Only the high-effective-index end of the upper solitonic branch has low losses
as for these solutions most of the field is localized in the nonlinear dielectric.

4.3.2 Comparison between the results of the three models

In Fig. 4.12, the dispersion curve obtained using the FBM for a four-layer structure similar to the one
presented in Section 4.3.1 is shown. Only the permittivity of the external linear layer ε4 is modified.

The parameters of the structure are: ε̃1 � 2.472 � 10�5i, n
p1q
2 � 1017 m2/W (chalcogenide glass),

ε̃2 � 1.44 � 10�5i (silica), ε̃3 � �96 � 10i (gold), ε̃4 � 1 � 10�5i (air), L � 15 nm, d � 40 nm, and
λ � 1.55 µm. The parameters used here are identical to these of the structures that we have studied
in Ref. [79].

This structure supports only solitonic-type solutions. There exist two solutions corresponding to
one x0 value. The solutions for low values of x0 (x0 highly negative) correspond to plasmon–solitons
weakly interacting with the metal interface are located at the low-β and high-β ends of the dispersion
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Figure 4.12: Nonlinear dispersion diagrams for the (a) real and (b) imaginary parts of the effective
index in the four-layer structure with εl,1 � 2.472 and ε4 � 1 as a function of power density Ptot.
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corresponding to the soliton peak is shown.

curve [in Fig. 4.12(a)]. With the increase of x0, the two solutions corresponding to identical value
of x0 become similar and they merge into a single solution at x0 � 0, which corresponds to Ptot �
23 [GW/m].

Figure 4.13 presents a comparison of the results for the four-layer configuration obtained using the
three different models described in section Chapter 2: the field based model (FBM — green line), the
exact model (EM — blue line), and the finite element method based model (FEM — red crosses).
For this comparison only the lowest branch of solitonic-type solutions in this structure is presented
for relatively low powers densities (Ptot   5 GW/m). The dispersion diagram presented in Fig. 4.13
shows the effective index of the mode as a function of the total electric field amplitude at the interface
between the nonlinear dielectric and a linear buffer layer E0 �

a
E2
xp0q � E2

z p0q [see Eq. (2.3.41)].

Firstly, the results provided by the two semi-analytical models are compared. For the low total elec-
tric field amplitudes E0 À 0.75 GV/m, and therefore small maximum nonlinear permittivity changes
(εnl À 0.1), both models are in a very good agreement. For higher values of E0 the discrepancy between
the FBM and the EM appears. This discrepancy can be explained by looking at the assumptions that
were used to built the models. As described in Section 2.1, the FBM was formulated by assuming that
the nonlinear refractive index changes are small. In this case, it is possible to omit one term in the
nonlinear wave equation [see Eq. (2.1.2)] and neglect the longitudinal component of the electric field
(Ez) in the nonlinear contribution to the permittivity [see Eq. (2.1.5)], because it is much lower than
the transverse component (Ex). For higher nonlinear index modifications both fields contribute with a
comparable weight to the nonlinear effects and the assumptions made in the FEM are no longer valid.
For this reason the results of the FBM differ from those obtained using the EM that takes both electric
field components into account. The highest maximum permittivity change shown in Fig. 4.13 is of the
order of 0.3. Even for such high εnl the electric field component ratio is |Ex{Ez| � 10{1. This justifies
the assumption used in the FBM that allowed us to neglect the longitudinal field in the nonlinear
contribution to the permittivity. The maximal relative difference between the results provided by the
two models for the effective index variation β �?εl,1 is of the order of 10% for E0 � 1.4 GV/m.

The results of the FEM based model shown in Fig. 4.13 overlap with the FBM results. This is
due to the choice made for the used FEM algorithm which takes into account only the transverse
component of the electric field while computing the nonlinear effects. The FEM method solves numer-
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Figure 4.14: Comparison of the magnetic field profiles obtained using the EM (red solid curve), the
FBM (black dashed curve), and the FEM based method (green dotted curve) for E0 values: (a)
0.02 GV/m, (b) 0.5 GV/m, (c) and 1 GV/m.

ically the nonlinear wave equation [Eq. (2.1.7a)] which is the heart of the FBM. For these reasons it
is understandable that the FEM based model nicely reproduces the results of the FBM.

In Fig. 4.14, the comparison of the field profiles obtained using our three models is presented.
Only the Hy field component is shown because all the important observations can be made using this
component. The analysis of the electric field components Ex and Ez will be done only in one case
presented in Fig. 4.15. As described in Section 2.3.2, the field profiles in the nonlinear layer in the EM
are not given by an analytical formula but are described by the system of the first-order differential
equations [Eqs. (2.3.1a) and (2.3.46)]. This system is solved using a home-made 4th-order Runge–
Kutta method [88] and confirmed by the built-in ordinary differential equation solver in Scilab called
ode [146]. The boundary conditions, allowing to solve this system of equations, take into account the
values of the electric field components (Ex,0 and Ez,0) at the interface between the nonlinear dielectric
and the buffer linear dielectric film (layer 2 in Fig. 2.1). These values are found for a given value of
E0 using Eqs. (2.3.41) and (2.3.42).

In Fig. 4.14(a), the field profiles for E0 � 0.02 GV/m are presented. Panels (b) and (c) present the
field profiles corresponding to E0 � 0.5 GV/m and E0 � 1 GV/m, respectively. In all the cases, the
fields obtained using the FBM and the FEM based method are in a very good agreement. The fields
obtained using the EM also overlap very well with the previous ones despite the small discrepancies
of the corresponding propagation constants.

In Fig. 4.15, field profiles of a low-power plasmon–soliton is illustrated in more detail. This solution
corresponds to E0 � 0.04 GV/m in Fig. 4.13. In subplots (a) and (b), the profiles of the magnetic field
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Figure 4.15: Profiles of (a) magnetic field Hy, (b) electric field components Ex and Ez, and (c), (d)
light intensity [defined by Eq. (1.7.4)] for a low-power plasmon–soliton in the structure for which the
dispersion diagram is shown in Fig. 4.13. Subplot (d) shows the light intensity in the vicinity of the
metal film in log scale. The x coordinate inside the thin films is magnified 500 times in panels (a), (b),
and (c) and. In panel (d) the x scale is identical in all the layers.

component Hy and the electric field components Ex and Ez are shown. We notice that for low-power
solutions, the assumption made in the FBM, stating that the amplitude of the transverse electric field
component is much larger than the amplitude of the longitudinal field component (|Ex{Ez| " 1) is
fulfilled very well. For that reason, the simplified Kerr-type nonlinearity treatment used in the FBM
[see Eq. (2.1.5)] is not far from the exact description used in the EM [see Eqs. (1.6.13) and (2.3.4)],
and there is a good agreement between the results of the FBM and the EM for low light intensities.

In Figs. 4.15(c) and (d), the light intensity distribution for the low-power plasmon–soliton is shown.
The peak intensity is at the level of 1.5 GW/cm2. Due to high index contrast between the nonlinear
and linear dielectrics there is an intensity jump [(see definition of the intensity given by Eq. (1.7.4)]
and the intensity in the linear dielectric film is comparable to the peak intensity of the solitonic part. In
Fig. 4.15(d), a zoom on the plasmonic part of the low-power plasmon–soliton is shown. The intensity
is shown in log scale. We clearly see exponentially decaying plasmonic field in the external dielectric
layer (x ¡ L� d). The intensity of the plasmonic part in the external layer is approximately two and
a half orders of magnitude lower than the intensity of the solitonic part.

The imaginary part of the effective index β2 of the solution presented in Fig. 4.15 is equal to
β2 � 0.8 � 10�5. Using Eq. (2.1.74), we can express losses of this low-power solution in dB/cm. The
corresponding attenuation L � 2.8 dB/cm. This value of attenuation allows for observation of the
propagation of such waves for tens of micrometers which should be sufficient for experimental purposes.
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4.3.3 Toward low-power solutions

In the summary of Section 4.2.3, we have stated that the three-layer configurations support low-
power solitonic-type plasmon–solitons only for low values of index contras between the nonlinear
medium and the external linear dielectric. Therefore, only two out of three conditions facilitating
experimental observations of plasmon–solitons (listed at the beginning of Chapter 4) were satisfied.
Some exemplary results on low-power solitonic-type plasmon–solitons in four-layer structures have
already been presented in Section 4.3.2. In this section, a systematic study of the properties of four-
layer configurations for various structure parameters is performed, in order to find low-power solitonic-
type solutions for the configurations with a high index contrast between the nonlinear dielectric and
the linear external dielectric. This analysis will help us to find the parameter regions, in which all
three conditions listed at the beginning of Chapter 4 are fulfilled.

In this section, the parameters used to obtain all the color maps (two-parameter scans performed
with the FBM) are identical to these in Ref. [79] and in Section 4.3.2 except if explicitly stated or if the
parameters are on the axes of the plot. We have chosen x0 � �15.5 µm value for all the illustrations. In
all the plots, only the effective indices in the range β P r?εl,1, 4?εl,1s are shown (like in Section 4.2.3).

Firstly, the evolution of the number of solitonic-type solutions as a function of the linear buffer layer
thickness L and of the external layer refractive index

?
ε4 is analyzed. It is seen from Fig. 4.16 that

for low buffer-layer thickness 0   L À 9 nm the four-layer structure presents a similar behavior as the
three-layer structure (see Figs. 4.5 and 4.7). There is one solitonic-type solution for the quasi-symmetric
case

?
ε4cut-off � 2.4   ?

εl,1 and no solitonic-type solutions for higher index contrasts between the
external layer and the nonlinear dielectric. These two cases are separated by a narrow region with
two solutions that becomes broader with the increase of the buffer thickness [see Fig. 4.16(b)]. For
buffer thickness between 9 nm and 30 nm, there is up to three solitonic-type solutions possible for low
index-contrast regime

?
ε4 ¡ ncut-off an even up to four solutions [yellow region in Fig. 4.16(b)] in a

small region for a moderate index contrast configuration. For the buffer thickness above 30 nm, only
a single solitonic-type solution exists in low and moderate index-contrast regimes.

In the region with three or four solitonic-type solutions occurring for identical x0 value, two of the
corresponding field profiles are similar to those presented in Fig. 4.11. The other solutions have even
higher effective indices β and therefore even narrower solitonic parts and higher peak powers than the
two previously mentioned solutions.

In Fig. 4.17(a), we show the total number of solutions as a function of the external layer refractive
index

?
ε4 and of the x0 parameter [in analogy to Fig. 4.5(a) for three-layer structures] for the structure

with L � 15 nm. In this case, we see that in a quasi-symmetric structure (ε4 � εl,1) there are three
(region A) or one (for negative x0 values close to zero — top right corner of region B) solitonic-type
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Figure 4.16: (a) Number of solitonic-type solutions in a four-layer structure as a function of the buffer
layer thickness L and of the external layer refractive index

?
ε4. (b) The zoom on the most complex

part of the plot presented in panel (a).
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Figure 4.17: (a) Number of solutions in a four-layer structure with L � 15 nm as a function of the
external layer refractive index

?
ε4 and of the parameter x0. (b) Peak power [GW/cm2] for the low-

power solutions. The existence of solutions with peak power higher than 30 GW/cm2 is marked with
the gray color.
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Figure 4.18: (a) Number of solutions in a four-layer structure with L � 29 nm as a function of
the external layer refractive index

?
ε4 and of the parameter x0. (b) Peak power [GW/cm2] for the

low-power solutions in the vicinity of the region with four solitonic-type solutions. The existence of
solutions with higher peak power is marked with the gray color.

solutions, and one plasmonic-type solution (top of the region C). For the region with a moderate index
contrast (1.7 À ?

ε4 À 2.4), there is one solitonic-type solution (region B) and one plasmonic-type
solution (region C). Finally for high index contrast (

?
ε4 À 1.7) there exist two solitonic-type solutions

(region D) and no plasmonic-type solution (region E). The value of
?
ε4 � 1.7 is a cut-off limit both

in the case of solitonic and plasmonic-type solutions. One one hand, increasing
?
ε4 for positive x0

values causes the appearance of a plasmonic-type solution. On the other hand, for negative values of
x0 it causes a reduction of the number of solitonic-type solutions from two to one.

Figure 4.17(b) shows the peak power of the solutions in four-layer configurations in the same
coordinates as Fig. 4.17(a). Similar to the three-layer case shown in Fig. 4.5(b), the lowest peak
intensities occur below the cut-off index for solitonic-type solutions and above this value for plasmonic-
type solutions. However, for plasmon–solitons in four-layer structures, the region of low-power solutions
extends to much lower external layer refractive indices than in the case of a three-layer configuration.
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Figure 4.19: (a) Number of solitonic-type solutions as a function of the buffer layer thickness L and
of the refractive index of this layer

?
ε2. (b) Peak power [GW/cm2] for the low-power solutions.

This means that, in a four-layer configuration, we are not only able to find plasmon–solitons for high
index-contrast configurations but also that these solutions have low peak intensities.

It must be pointed out that the maps presented in Fig. 4.17(a) have been obtained for a value
of L � 15 nm which corresponds to a cut in a region of the map provided in Fig. 4.16 where the
maximum number of solitonic-type solutions is equal to three. More complicated maps can be obtained
for specific L values. Figure 4.18 shows a cut at L � 29 nm. For this case, we first discuss the region of
low values of x0 [x0 P p�8,�2q µm]. For low permittivity contrast

?
εl,1 �?ε4, there is one solitonic-

type solution (green region). Around
?
ε4 � 2.37 a region with three solutions appears (red region).

Then, at
?
ε4 � 2.36 a narrow region for which four solitonic-type solutions can be obtained for

identical value of x0 parameter (yellow region). For lower values of
?
ε4 two solitonic-type solution

exist (blue region). For higher values of x0 [x0 P p�2, 0q µm], the region with three solutions expands
to higher and slightly lower values of

?
ε4 and the region with four solitonic-type solutions vanishes.

The behavior of the plasmonic-type solutions remains unchanged with respect to the configuration
presented in Fig. 4.17(a), except for the location of the solution cut-off. For the buffer layer thickness
L � 29 nm, the plasmonic solution exists only for

?
ε4 Ç 2.36.

Figure 4.18(b) shows the peak power of the solutions indicated in Fig. 4.18(a). We see that now
the region where solitonic solutions with low peak power can be obtained is much narrower than in
the case presented in Fig. 4.17. This low peak-power region is located close to the top boundary of
the region with four solutions [yellow region in Fig. 4.18(a)].

Figure 4.19(a) shows the number of solitonic-type solutions as a function of the buffer layer thick-
ness L and of the refractive index of this layer

?
ε2. It can be seen that for low buffer layer refractive

index (
?
ε2 � 1), the range of thicknesses where one or two solutions exist is quite narrow (5–15 nm).

Increasing the buffer layer refractive index, the range of the buffer thicknesses where the solutions
exist expands (it becomes approximately 45–80 nm for

?
ε2 � 1.75).

Figure 4.19(b) shows the plasmon–soliton peak power in the same coordinates as those used in
panel (a). The region where plasmon–solitons have low peak intensities is very narrow and is located
close to the line separating regions with one and two solutions. Increasing the buffer layer refractive
index, allows for an increase of the buffer layer thickness required to obtain solutions with low peak
power, which is interesting from a technological point of view (i.e., it is challenging to fabricate uniform,
high quality thin films on top of chalcogenide glasses [147]).

Figure 4.20(a) presents the number of solitonic-type solutions as a function of the metal layer
permittivity ε3 and of the external medium permittivity ε4 [it can be compared with Fig. 4.7(a) pre-
senting similar dependency for a three-layer structure]. The main advantage of the four-layer structure
compared to the three-layer one is that, even for very low permittivities of the external medium (like
1 for air or 1.32 for water at λ � 1.55 µm), resulting in high index contrast between the nonlinear
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Figure 4.20: (a) Number of solitonic-type solutions as a function of the metal layer permittivity ε3 and
of the external medium permittivity ε4. (b) Peak power [GW/cm2] for the low-power solutions.

and the external linear dielectrics, the solitonic-type solutions exist. There is two of them for low
metal permittivity values and one for higher metal permittivity values. In four-layer structures where
ε4 � εl,1 even three solitonic-type solutions exist for identical value of the x0 parameter [the red region
in Fig. 4.20(a)].

Figure 4.20(b) shows the peak power of the solitonic-type solutions in the same coordinates as
those used in panel (a). Comparing this figure with the corresponding one for a three-layer structure
in Fig. 4.7(b), it can be seen that in the case of four-layer configuration, low-power solutions exist for
wider ranges of both ε3 and ε4 which broadens the choice of possible parameter combinations. This
property may facilitate the fabrication of the structure.

4.3.4 Optimization of the four-layer structure

In this section, a more detailed investigation of the influence of the two geometrical parameters of
the four-layer structure (the metal layer thickness d and the buffer layer thickness L — see Fig. 2.1)
is shown. Figure 4.21(a) shows the number of solitonic-type solutions as a function of these two
parameters. For low values of the thickness of both layers, only one solution is obtained. For higher
values of dielectric buffer thickness L, there exist a region for which two solutions appear. For even
higher values of L, both solutions disappear. The evolution of the solutions can be followed by looking
at Fig. 4.21(b) which corresponds to a cut of Fig. 4.21(a) at d � 20 nm. For low values of L, only
a high effective index solution exists. L � 21 nm is a cut-off buffer thickness for a second solitonic-
type solution. At this thickness, a low effective index solution appears. As the buffer layer thickness
increases, these two solutions become closer to each other and finally merge into one solution for a
particular value of L � 34 nm. Above this value, no solitonic-type solution exists.

In Fig. 4.22(a), the total power density for the solitonic-type solution with the lower β is shown
in the same coordinates as those used in Fig. 4.21(a). The solutions with the lowest power density
are located close to the cut-off buffer thickness [boundary between the green and blue regions in
Fig. 4.21(a)]. In Fig. 4.22(b), the peak power for the low-power solutions is shown. Plasmon–solitons
with the lowest peak intensities are located in a narrow region where the total power density is
the lowest (i.e., close to the cut-off buffer thickness L for the low-power solution). This shows that
in order to obtain solutions with the peak power levels that are attainable by modern high-power
commercial lasers the couple L and d has to be precisely chosen. Even a small deviation of the buffer
film thickness (e.g., 2 nm) may lead to the change of the peak power of the supported solution by one
order of magnitude (e.g., from 3 to 30 GW/cm2).

Figure 4.23(a) shows the peak power of the solitonic part of the solution as a function of the metal
thickness d and x0 parameter for a fixed buffer thickness L � 16 nm. With the increase of the metal
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Figure 4.21: (a) Number of solitonic-type solutions as a function of the metal film thickness d and of
the buffer layer thickness L. (b) The effective index β as a function of the buffer layer thickness L for
a fixed metal thickness d � 20 nm.
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Figure 4.22: (a) Total power density rGW{ms of the low β solitonic-type solution. (b) Peak power
[GW/cm2] for the low-power solutions.
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Figure 4.23: (a) Peak power of the solitonic part [GW/cm2] and (b) decimal logarithm of the peak
power of the plasmonic part Iplas � Ipx � L � dq: log10rIplas/(Wcm�2q] for the low-power solitonic-
type solutions as a function of the metal thickness d and of the parameter x0 for the buffer thickness
fixed at L � 16 nm. Solutions with solitonic part peak power below 30 GW/cm2 are plotted in color.
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thickness or with the increase of the x0 parameter (decrease in absolute value), the peak power of the
solitonic part increases. Besides the peak power of the solitonic part that should be kept low, there
is another important parameter that should be taken into account. It is interesting to have a strong
plasmonic field at the interface between the metal film and the external medium, in order to facilitate
its recording or to use it in some plasmonic devices. Figure 4.23(b) shows the decimal logarithm of the
maximum peak power of the plasmonic part as a function of the metal thickness d and x0 parameter.
The lowest values of plasmonic part peak power are obtained for thick metal film and solitonic peak
located far from the metal interface. On one hand, for large metal thickness values, bringing the
solitonic part closer to the metal interface results in a drastic increase (few orders of magnitude) of
the peak power in the external layer. On the other hand, for thin metal films, the peak power in the
external layer is relatively high and the changes with the x0 parameter are much slower.
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I
n this chapter, two extensions of the field based model (FBM) that was developed in Section 2.1
are presented. The FBM was developed for transverse magnetic (TM) light polarization and it
allowed us to find one-dimensional stationary solutions in structures with a semi-infinite nonlinear

medium. Here we will extend this model to treat a more complicated and general problems. In Sec-
tion 5.1, we will present a method to compute in an approximate way the dispersion relation and the
field profiles of two-dimensional plasmon–solitons in structures with a semi-infinite nonlinear medium.
In Section 5.2, the field based model will be formulated for transverse electric (TE) light polarization.
It will be shown that for TE polarized light, metal/nonlinear dielectric structures studied in Part I of
this PhD manuscript do not support plasmon–soliton waves.

5.1 Model for two-dimensional plasmon–solitons

In this section, we will show how, using Maxwell’s equations, it is possible to find two-dimensional
plasmon–solitons, knowing the solutions of the one-dimensional problem. In Section 5.1.1 the derivation
of the formulas for the dispersion relation and the field profiles of two-dimensional plasmon–solitons will
be presented. The approach presented in Section 5.1.1, uses strong assumptions about the nature of the
electromagnetic field and provides only the first approximation of the results for the two-dimensional
plasmon–solitons. The effective index of the two-dimensional solution will be expressed as the effective
index of the one-dimensional solution found using the FEM modified with a correction term. This
correction term will be calculated numerically using integrals of the one-dimensional solution field
profiles. Furthermore, the lateral1 field profile of the two-dimensional plasmon–soliton will be found and
its width will be expressed using integrals of the one-dimensional solution field profiles. In Section 5.1.2
results for two-dimensional plasmon–solitons will be presented for realistic structure parameters and
power levels.

5.1.1 Model formulation

In the two-dimensional problem, we will assume that the electric field EEE px, y, z, tq depends on all three
spatial coordinates and time. In the one-dimensional approach we skipped the y dependency due to

1In the frame of the FEM, the field profiles in the transverse (x) direction were found. The lateral direction is the
second direction (y) that is perpendicular to the direction of light propagation (z).
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the structure invariance in this direction (see the discussion in Section 1.5). Here the structure is still
invariant in the y direction but the two-dimensional model accounts for the self-focusing of the field
in this direction.

The derivation of the two-dimensional model requires the knowledge of the field profiles Expxq, Ezpxq
and the corresponding effective index β values, which can be found using the one-dimensional models
described above in Sections 2.1 and 2.2. The following derivation is valid only in the case of the specific
assumptions on the form of the nonlinear permittivity. Only two components of the nonlinear permit-
tivity tensor depend on the electric field in the following way [see also Eq. (2.2.1) and Section 1.6]:

εx � εy � εl � α|Ex|2. (5.1.1a)

The third component does not depend on the field intensity

εz � εl. (5.1.1b)

The formulation of the one-dimensional model using assumption expressed by Eq. (5.1.1) on the form
of the nonlinear permittivity tensor is described in Section 2.2.

The derivation of the model for two-dimensional plasmon–solitons starts from Maxwell’s equations
[Eqs. (1.3.1)]. Mixing Eqs. (1.3.1a) and (1.3.1b) we obtain

∇∇∇�∇∇∇� EEE � k2
0εEEE � 0 (5.1.2)

Assuming that the TM fields, found using the one-dimensional FBM, remain TM polarized also in the
two-dimensional case, Eq. (5.1.2) can be rewritten as:��� iB2

xzEz � B2
yyEx � B2

zzEx

iB2
yzEz � B2

xyEx

�iB2
xxEz � iB2

yyEz � B2
xzEx

��� � k2
0

���εxEx0

εzEz

��� , (5.1.3)

where

B2
jk �

B
Bk
� B
Bj



(5.1.4)

and j and k P tx, y, zu. We will use Eq. (1.3.1c) that, due to the form of the permittivity tensor that
we use [given by Eq. (5.1.1)], can be written in the form

BzEz � �BxεxEx
εl

, (5.1.5)

where

Bj � B
Bj , (5.1.6)

for j P tx, y, zu. Inserting Eq. (5.1.5) into the first equation given in Eq. (5.1.3) one obtain the equation
that depends only on the transverse component of the electric field Ex:

B2
xxpεxExq
εl

� B2
yyEx � B2

zzEx � εxk2
0Ex � 0. (5.1.7)

Substituting εx in Eq. (5.1.7) by the expression given by Eq. (5.1.1a), Eq. (5.1.7) can be rewritten into
a form: �

1� 3αE 2
x

εl


 B2Ex
Bx2

� 6
α

εl

�BEx
Bx

2

Ex � B
2Ex
By2

� B
2Ex
Bz2

� k2
0

�
εl � αE 2

x

�
Ex � 0. (5.1.8)

In the following, we will assume that in the dependency of the electric field on the spatial coordi-
nates, we can separate the x dependency in the following way:

Ex � ENLpxqψpy, zqeipβNLk0z�ωtq, (5.1.9)
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where the ENLpxq is the field profile found using the one-dimensional FBM and βNL is the correspond-
ing effective index. Inserting Eq. (5.1.9) into Eq. (5.1.8) yields�

1� 3αE2
NLψ

2

εl



ψ

d2ENL

dx2
� 6

α

εl
ψ3

�
dENL

dx


2

ENL � B
2ψ

By2
ENL��B2ψ

Bz2
� 2iβNLk0

Bψ
Bz � β

2
NLk

2
0ψ



ENL � k2

0

�
εl � αE2

NLψ
2
�
ENLψ � 0,

(5.1.10)

where the x and z dependency in ψ was dropped. Next, we assume that

ψpy, zq � φpyqei∆βk0z, (5.1.11)

where φ is the lateral profile of the two-dimensional plasmon–solitons that we are looking for and ∆β
denotes the unknown correction to the effective index that is introduced when we take into account
the two dimensional profile. Introducing Eq. (5.1.11) into Eq. (5.1.10) yields�

d2ENL

dx2
�k2

0 pβNL �∆βq2ENL � k2
0εlENL

�
φ�#

3αENL

εl

�
ENL

d2ENL

dx2
� 2

�
dENL

dx


2
�
� k2

0αE
3
NL

+
φ3 � ENL

d2φ

dy2
� 0. (5.1.12)

We multiple Eq. (5.1.12) by ENL{k2
0 and integrate with respect to x�

1

k2
0

» 8

�8
ENL

d2ENL

dx2
dx� pβNL �∆βq2

» 8

�8
E2

NL dx�
» 8

�8
εlpxqE2

NL dx

�
φ�#» 8

�8

�
3αE2

NL

k2
0εl

�
ENL

d2ENL

dx2
� 2

�
dENL

dx


2
�
� αE4

NL

�
dx

+
φ3 � 1

k2
0

» 8

�8
E2

NL dx
d2φ

dy2
� 0. (5.1.13)

Dividing Eq. (5.1.13) by
³8
�8E

2
NL dx results in

�
G� pβNL �∆βq2

�
φ� 1

k2
0

d2φ

dy2
�Aφ3 � 0, (5.1.14)

where

G �
³8
�8

�
ENL

k2
0

d2ENL
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NL

	
dx³8

�8E
2
NL dx

, (5.1.15a)
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(5.1.15b)

In Section 2.1.2, we have shown that the solution of the equation of the type: d2φ{dy2�b1φ�b3φ3 �
0 is given by a secant hyperbolic function. Therefore, we solve Eq. (5.1.14) using the test function
φpyq � sechpy{ωyq. Inserting this test function into Eq. (5.1.14) yields�

G� pβNL �∆βq2 � 1

k2
0ω

2
y

�
�
�
A� 2

k2
0ω

2
y

�
sech2

�
y

ωy



� 0. (5.1.16)
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The first term of the sum on the left-hand side of Eq. (5.1.16) is constant (does not depend on y) and
the second term of the sum is a constant multiplied by a function of y. As a result, in order for this
sum to be equal to zero for any value of y, both terms of the sum must be equal to zero. This results
in two conditions:

G� pβNL �∆βq2 � 1

k2
0ω

2
y

� 0 (5.1.17a)

and

A� 2

k2
0ω

2
y

� 0. (5.1.17b)

The second condition provides the expression for the width in the lateral direction ωy of our two-
dimensional plasmon–soliton:

ωy � 1

k0

c
2

A
. (5.1.18)

The first condition gives the expression for the corrected effective index

β2D � βNL �∆β �
c
G� A

2
�
d
G� 1

k2
0ω

2
y

(5.1.19)

As it can be seen from the definitions of parameters A and G given by Eqs. (5.1.15), the parameters
of the two-dimensional plasmon–soliton (ωy and β2D) depend only on the integrals of the field profiles
of the one-dimensional solution and the corresponding effective index βNL.

We stress on the fact that, the model for the two-dimensional plasmon–solitons derived here is not
fully rigorous and gives only approximated results. There are several important assumptions made
during the derivation of this model. We have assumed that the Kerr-type nonlinearity is described
using Eq. (5.1.1) instead of the full expression given by Eq. (1.6.13). Moreover, we assumed that the
electromagnetic field remains TM polarized, even if it is not invariant in the lateral direction. The last
approximation we have made, is the fact that that we have integrated the one-dimensional field profiles
in the transverse direction [see Eq. (5.1.13)] in order to obtain the parameters of the two-dimensional
solution. This integration represents an averaging operation. The validity of this operation in case of
solitonic-type plasmon–solitons was not justified.

Similar models have been developed for two-dimensional plasmon–solitons of the plasmonic type [72]
and for plasmon–solitons in nonlinear slot waveguides (nonlinear dielectric core sandwiched between
two metal claddings) [85]. In Ref. [85], authors state that the averaging operation, similar to the one
used in Eq. (5.1.13), is adequate when the transverse mode cross-section is smaller the the lateral one.
In our case, both cross-sections are comparable.

5.1.2 Results

In Fig. 5.1, dispersion diagrams of the two-dimensional plasmon–solitons are shown for identical pa-
rameters of the structure as used in Section 4.3.2. This time the dispersion curves are represented in
the coordinates of the effective index β and the total power of the beam

P2D �
» �8

�8

» �8

�8
P px, yq dx dy, (5.1.20)

where P px, yq is expressed as a funtion of the transverse component of the electric field Expx, yq �
ENLpxqφpyq with the help of Eqs. (2.1.54) and (1.5.2b):

P px, yq � ε0εpx, yqc
2β

E2
xpx, yq. (5.1.21)
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Figure 5.1: Nonlinear dispersion curve of the two-dimensional plasmon–soliton in a four-layer config-

uration with parameters: ε̃1 � 2.472 � 105i, n
p1q
2 � 1017 m2/W (chalcogenide glass), ε̃2 � 1.44 � 105i

(silica), ε̃3 � �96� 10i (gold), ε̃4 � 1� 105i (air), L � 15 nm, d � 40 nm, and λ � 1.55 µm. (a) Real
and (b) imaginary parts of the effective index are presented as a function of the total power.

The dispersion curves of the two-dimensional plasmon–soliton presented in Fig. 5.1 can be com-
pared with the dispersion curves of the one-dimensional solution obtained for the configuration with
identical material parameters, which is presented in Fig. 4.12. The dispersion curves of the one-
dimensional solution presents the effective index βNL as a function of the power density Ptot expressed
in W/m. In this coordinates, the increase of the effective index of the one-dimensional plasmon–soliton
is accompanied by the monotonous increase of the power density. In case of the two-dimensional solu-
tions, with the increase of the effective index β2D the total power P2D decreases for low values of β2D

until it reaches its minimum at P2D � 7 kW corresponding to β2D � 2.472. Above this value of the
effective index, the total power slowly decreases with the increase of β2D. The imaginary part to the
effective index shows a behavior similar to the real part [see Fig. 5.1(b)].

In Fig. 5.2, a comparison of the dispersion curves obtained using the one-dimensional model (the
FBM) and the two-dimensional model is shown where the effective index is presented as a function of
the peak intensity of the solitonic part of plasmon–soliton. We observe that the effective index of the
two-dimensional solution is lower than the one of the one dimensional plasmon–soliton which means
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Figure 5.2: Nonlinear dispersion curves βpIpeakq for one- and two-dimensional plasmon–solitons. (a)
Full curve and (b) zoom on the region with low peak intensity.
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Figure 5.3: Two-dimensional profiles of plasmon–solitons in a four-layer structure with the parameters
identical to these in Fig. 5.1. Low-power solutions with (a) peak intensity 1.2 GW/cm2 and x0 �
�25 µm; (b) peak intensity 1.5 GW/cm2 and x0 � �15 µm; and (c), (d) a moderate-power solution
with peak intensity 3.5 GW/cm2 and x0 � �5 µm. (d) Zoom on the plasmonic tail in the external
dielectric layer (x ¡ 55 nm) of the profile shown in subplot (c).

that the correction ∆β defined in Eqs. (5.1.11) and (5.1.19) is negative. Both the effective index of
the one-dimensional plasmon–soliton βNL and two-dimensional solution β2D are linear functions of the
solitonic part peak intensity.

In Fig. 5.3, exemplary two-dimensional profiles of the intensity of plasmon–solitons are presented.
In panel (a), the solution with the solitonic peak centered at x0 � �25 µm is shown, for which the
peak intensity is at the level of Ipeak � 1.2 GW/cm2. This solution interacts weakly with the metal
film and the plasmonic part has low intensity. In panel (b), the center of the solitonic part of the
solution is brought closer to the metal film (x0 � �15 µm). This results in the increase of the effective
index of the solution and therefore, the increase of the peak intensity (to Ipeak � 1.5 GW/cm2). The
solution is now more localized in both x and y directions and it interacts strongly with the metal
film. The intensity of the plasmonic part is now equal to the peak intensity of the solitonic part.
Finally, the solution with the solitonic part centered at x0 � �5 µm is presented in panel (c) for which
Ipeak � 3.5 GW/cm2. For this solution, the intensity of the plasmonic part is twice higher than the
peak intensity of the solitonic part. In panel (d) the plasmonic tail in the external dielectric layer is
depicted. The peak intensity in this layer is at the level of Iplas � 0.45 GW/cm2.
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5.2 No solutions in the transverse electric case

Here we present the derivation of the dispersion relation in the frame of the FBM for the four-layer
structure presented in Fig. 2.1 in the case of the transverse electric (TE) polarized waves. For this
light polarization the electromagnetic fields have only three nonzero components EEE � r0,Ey, 0s and
HHH � rHx, 0, iHzs. Following similar method as in the TM case presented in Sec 2.1, we start the
derivation from Maxwell’s equations for the TE case [Eqs. (1.4.2)]. Using the field form given by
Eq. (1.5.1) we obtain

k0βHx � dHz

dx
� �ε0εyωEy, (5.2.1a)

Hx � � β

µ0c
Ey, (5.2.1b)

Hz � 1

µ0ω

dEy
dx

. (5.2.1c)

Taking the derivative with respect to x of Eq. (5.2.1c) and using Eqs. (5.2.1a) and (5.2.1b) we obtain
a single nonlinear wave equation for the Ey component [compare with the nonlinear wave equation
for Hy component derived in the TM case — Eq. (2.1.7a)]:

d2Ey
dx2

� k2
0q

2pxqEy � k2
0αpxqE3

y � 0, (5.2.2)

where the full isotropic Kerr-type nonlinear permittivity is taken into account:

εxpxq � εypxq � εzpxq � εlpxq � αpxqE2pxq � εlpxq � αpxqE2
ypxq. (5.2.3)

For TE polarized waves, only one electric field component Ey is present and the only permittivity
tensor component that plays a role in Maxwell’s equations is εy.

In comparison with the TM case, the derivation of the nonlinear wave equation for TE polarized
light [Eq. (5.2.2)] does not require any additional assumptions. The term with the derivative of the
nonlinear permittivity [see Eq. (2.1.2)] does not appear in course of the derivation. Therefore, this
equation holds even for high nonlinear permittivity changes and for solution that induce permittivity
profiles that vary rapidly in comparison with the wavelength.

The solution of Eq. (5.2.2) is derived in a similar manner as in Sec. 2.1.2. The electric field in each
layer is given by (the y subscript of the electric field is skipped as for the TE polarization there is only
one electric field component, while the subscript indicating the nonlinear layer is added, see Fig. 2.1):

E1 �
c

2

α1

q1

coshrk0q1px� x0qs for x   0, (5.2.4a)

E2 � A�e
k0q2x �A�e

�k0q2x for 0 ¤ x   L, (5.2.4b)

E3 � B�e
k0q3px�Lq

�B�e
�k0q3px�Lq for L ¤ x   L� d, (5.2.4c)

E4 � Ce�k0q4rx�pL�dqs for x ¥ L� d. (5.2.4d)

Use of the boundary condition Ey
xÑ8ÝÝÝÑ 0 in the layer 4 results in the single term in Eq. (5.2.4d).

Finally, using the continuity conditions of the Ey and Hz fields at the interfaces [Hz is calculated
using Eq. (5.2.1c)], the analytical form of the nonlinear dispersion relation the TE polarized light in
four-layer structures is obtained:

Φ�

�
q4 � q3

	
expp2k0q3dq � Φ�

�
q4 � q3

	
� 0, (5.2.5a)

where

Φ� �
�

1� q1,nl

q3



�
�
q1,nl

q2
� q2

q3



tanhpk0q2Lq. (5.2.5b)
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The comparison between the nonlinear dispersion relations for the TE light polarization [Eq. (5.2.5)]
and the dispersion relation in the TM polarized light [Eq. (2.1.43)] shows that the former can be
obtained by the following substitution in the latter:

rqi ÞÑ qi for i P t2, 3, 4u, (5.2.6)�q1,nl|x�0 ÞÑ q1,nl. (5.2.7)

Our studies show that for the structure parameter range studied in Chapter 4 for TM polarized
light, in the TE case no solutions of the dispersion relation [Eq. (5.2.5)] exist. This results are in
agreement with the linear studies of plasmons. Metallic structures do not support TE polarized waves
in the linear regime [55]. We show that, in the nonlinear regime, for the materials studied in this PhD
thesis, TE polarized plasmon–solitons do not exist.
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Configurations with finite-size
nonlinear medium —

Plasmonic nonlinear slot waveguides
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In Part II of this PhD manuscript, we focus on the studies of structures where a finite-size non-
linear dielectric layer is sandwiched between two semi-infinite metal layers. This type of structures
will be called nonlinear slot waveguide and it is schematically presented in Fig. 6.1. There are two
reasons to study the nonlinear slot waveguide structures. From the practical point of view, it is easier
to fabricate high quality thin nonlinear films than bulky layers, like those needed in the configura-
tions with semi-infinite nonlinear medium discussed in Part I (see Fig. 2.1). Moreover, the nonlinear
slot waveguide configurations have more potential applications. Devices based on the nonlinear slot
waveguide configuration can be used for phase matching in higher harmonic generation processes [148]
and for nonlinear plasmonic couplers [93, 99]. Nonlinear switching [149] was theoretically predicted in
nonlinear slot waveguide based structures that is similar to the nonlinear switching in graphene cou-
plers [150]. Tapered nonlinear slot waveguides might be used for nanofocusing and loss compensation
in order to enhance nonlinear effects [151]

Waveguides with a nonlinear dielectric core have already been studied extensively in literature for
many years. The studies started in 1982, with the paper of Fedyanin and Mihalache [41] presenting
TM polarized nonlinear surface waves in a layered fully dielectric structure with a nonlinear core.
The structure studied there was built of a Kerr-type nonlinear dielectric core sandwiched between two
linear dielectrics. A number of studies of such structures followed for both transverse electric (TE)
and transverse magnetic (TM) polarizations using different techniques [38–40, 42–44]. In most of the
works, the solutions of Maxwell’s equations were given in terms of Jacobi elliptic functions [152]. A
symmetry-breaking bifurcation of an asymmetric mode from the fundamental symmetric mode was
predicted [38, 39]. Scaling rules for such nonlinear dielectric waveguides have been developed [45] that
introduced reduced dimensionless parameters to describe the waveguide properties. Various methods
to study waveguides with both nonlinear core and cladding were proposed [27, 28, 46–51].

In 2007, the studies of waveguides with a nonlinear core were expanded from dielectric to metal
cladding. Feigenbaum and Orenstein made the first attempt to study such structures [85]. Their
method describes sub-wavelength confinement of light in two-dimensional plasmon–soliton beams.
Such a strong confinement is ensured by a linear plasmon profile in the transverse direction and by
the self-focusing effect in the lateral direction.

In the works of Rukhlenko et al. [89, 90], analytical formulas for the dispersion relations of slot
waveguides were presented for symmetric and antisymmetric nonlinear modes only. These dispersion
relations were given in a form integral equations that have to solved numerically. Study of Davoyan et
al. [87] showed that in slot waveguides with nonlinear dielectric core and metal cladding, symmetry-
breaking bifurcation also occurs. Moreover, it was shown that plasmonic coupling and symmetry
breaking phenomena can be observed in waveguides built of linear dielectric core sandwiched by
nonlinear metals [99, 100].

In Chapter 6, we build two new models that have never been used before to study the nonlinear
metal slot waveguide configurations. The results obtained using these models are presented in Chap-
ter 7. In order to confirm the validity of these new models, their results are directly compared. Using
our models, we confirm the existence of the already known symmetry-breaking bifurcation and show
that higher-order, not known previously, nonlinear modes exist in such structures. We predict the
nonlinear symmetry-breaking bifurcation for some of these higher-order modes.

Using our models, we study the influence of the size of the nonlinear core and of the permittivity
contrast between the core and the metal cladding on the symmetric nonlinear slot waveguide properties.
We optimize the core size and the permittivity contrast in order to obtain two kind of nonlinear effects
at low power levels. Firstly, to lower the intensity threshold required to observe the symmetry-breaking
bifurcation and the appearance of the nonlinear asymmetric mode. Secondly, to observe at low powers
the appearance of a higher-order symmetric or antisymmetric nonlinear modes in the waveguide.
Finally, we study the properties of asymmetric nonlinear slot waveguides.
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Chapter 6
Theory of nonlinear slot waveguides
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T
his chapter presents a derivation of the dispersion relations for the stationary TM polarized
waves propagating in structures built of a finite-size layer of a positive Kerr-type nonlinear
material sandwiched between two semi-infinite linear media which can in particular be metals

(see Fig. 6.1). The structures presented in Fig. 6.1 with metal cladding are called plasmonic nonlinear
slot waveguides (or shortly ’nonlinear slot waveguides’).

We will propose two models for the nonlinear slot waveguides. The first model is based on the
approach proposed for fully dielectric structures in [40, 41]. This approach uses the approximated
treatment of the nonlinearity in the Kerr medium (only the transverse electric field component is
assumed to cause the nonlinear permittivity changes) and additionally the nonlinear modification of
the permittivity should remain low [81] (the assumptions on the nature of the nonlinear permittivity
used here are identical to these for the FBM presented in Section 2.1). These assumptions allow us to
write and to solve a single nonlinear wave equation in the finite-size nonlinear layer. Using the field
continuity conditions at the core interfaces located at x � 0 and x � d (see Fig. 6.1) the analytical
formulas for the dispersion relations and for the field profiles are obtained and are expressed in terms
of Jacobi elliptic functions [152]. Therefore, this model will be called Jacobi elliptic function based
model (JEM).

Figure 6.1: Geometry of the plasmonic nonlinear slot waveguide with the parameters of the structure.
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The second model is based on the approaches from Refs. [15, 77] for a single interface between
a nonlinear dielectric and a metal, and therefore it is named the interface model (IM). This model
allows for obtaining separate dispersion relations on the two interfaces of the nonlinear slot waveguide
in analytical forms. Comparing the dispersion equations for left interface and for the right interface,
results in an analytical condition that reduces the parameter space in which the solutions of Maxwell’s
equations in nonlinear slot waveguides are sought. The solutions are found by the numerical integration
of Maxwell’s equation in the core which allows then to relate the two interfaces. Maxwell’s equations
in the core are solved using the shooting method [88]. If the result of integration is consistent with the
previously assumed values of the field and its derivatives at the slot interfaces then the corresponding
β is accepted as a genuine solution in our problem.

6.1 Jacobi elliptic function based model

We start the presentation of the models for nonlinear slot waveguides with the approach that uses
strong assumptions on the form of the nonlinear Kerr term but it provides the dispersion relations
and the field profiles in analytical forms. This model provides more insight and understanding of the
nature of the problem of finding stationary solutions in nonlinear slot waveguides than the second, more
numerical model. First, we will solve the nonlinear wave equation inside the waveguide core and find
the nonlinear field profiles. Knowing the field profiles, we will be able to derive the dispersion relations
for the nonlinear slot waveguide using the continuity conditions on the nonlinear core interfaces.

6.1.1 Nonlinear field profiles

In the frame of the JEM, the Kerr-type nonlinearity is not treated in an exact manner. Similar to the
FBM presented in Section 2.1, we assume that the nonlinear response of the material depends only
on the transverse component of the electric field Ex in the following way [compare with Eq. (2.1.5)]:

εxpx,Exq � εzpx,Exq � εpx,Exq � εlpxq � αpxqE2
xpxq. (6.1.1)

Functions εlpxq and αpxq are step-wise functions which take the values indicated in Table 6.1 depending
on the layer (see Fig. 6.1 for layer number).

Layer Abscissa εlpxq αpxq
1 x   0 ε1 � εl,1 0

2 0 ¤ x   L εl,2 ε0cεl,2n
p2q
2 � α2

3 L ¤ x   L� d ε3 � εl,3 0

Table 6.1: Values of the functions εlpxq and αpxq describing the properties of the materials in different

layers. The second-order nonlinear refractive index (see Page 11) in layer 2 is denoted by n
p2q
2 .

The derivation of the JEM starts from Maxwell’s equations [Eqs. (1.5.2)]. These equations are
combined together with Eq. (6.1.1) and with the help of the approximations about small nonlinear
permittivity change and using the assumption that |Ex| " |Ez| we obtain the nonlinear wave equation
[Eq. (2.1.7a)] which is recalled here:

d2Hy

dx2
� k2

0q
2pxqHy � k2

0apxqH3
y � 0. (6.1.2)

A detailed derivation of Eq. (6.1.2) and the definitions of the functions qpxq [see Eq. (2.1.7b)] and apxq
[see Eq. (2.1.7c)] are presented in Section 2.1.1.

At this point, it is worth commenting on the validity of the two assumptions that were made on the
nonlinear term, in order to derive Eq. (6.1.2). Even in the case of linear metal slot waveguides (linear
dielectric core sandwiched between two semi-infinite linear metals), the two components of the electric
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6.1. Jacobi elliptic function based model

field Ex and Ez can have comparable amplitudes. The narrower the waveguide the faster the spatial
(in the transverse x direction) variation of the magnetic field Hy (especially in the case of higher-order
modes). Therefore the longitudinal electric field component Ez that is proportional to the derivative
of the Hy [see Eqs. (1.5.2)] will have high amplitude. In the case of the semi-infinite nonlinear medium
studied in Part I, the spatial variations of the magnetic field were slower than in slot waveguides,
and therefore the assumption that |Ex| " |Ez| was better fulfilled. In the case of slot waveguides,
this assumption will not be satisfied by all the solutions. A more detailed analysis of the validity of
this assumption will be presented in Chapter 7 (see Fig. 7.5). The second assumption states that
the nonlinear permittivity change remains small compared to the linear part of the permittivity. This
assumption also will not be satisfied for most of the solutions obtained in the nonlinear slot waveguides.
It is known in the nonlinear optics that, interesting nonlinear effects occur when the nonlinear induced
permittivity modification is comparable with the linear permittivity contrast in the structure [153].
In nonlinear slot waveguides, due to the presence of metal layers, the linear permittivity contrast
is large. Therefore, as we will be able to observe later (in Chapter 7 presenting the results), most
of the interesting effects in slot waveguides occur for high values of nonlinear permittivity change.
Nevertheless, we will see that, although those assumptions are not fully satisfied, the JEM described
in this section correctly predicts all the qualitative features of the dispersion curves.

Coming back to the derivation of the JEM, we use the first integral treatment approach and
integrate Eq. (6.1.2) with respect to x. The result reads�

dHy

dx


2

� k2
0qpxq2H2

y � k2
0

apxq
2
H4
y � c0. (6.1.3)

The left-hand side of this equation gives us a formula for a quantity that is conserved along the
transverse profile of the core of our one-dimensional nonlinear waveguide. Regardless of at which
x position we calculate it, the result will always be equal to the integration constant c0. In the
derivation of the FBM (see Section 2.1.2) the integration constant was set to zero, because a semi-
infinite nonlinear medium was analyzed.

In semi-infinite cladding layers, we can set the integration constant c0 � 0 because both the
magnetic field Hy and its derivative dHy{dx tend to zero as x Ñ �8. Additionally, in these linear
layers apxq is equal to zero. Therefore, in the cladding, Eq. (6.1.2) reduces to a standard linear wave
equation whose solutions are given by:

H1 � H0e
k0q1x for �8 ¤ x   0, (6.1.4a)

H3 � Hde
�k0q3px�dq for d ¤ x   �8, (6.1.4b)

where the magnetic field amplitudes at the interfaces x � 0 and x � d are denoted by H0 and Hd,
respectively and qk denotes a constant value of the qpxq function [see Eq. (2.1.7b)] in k-th layer (for
k P t1, 2, 3u).Because both of these layers are semi-infinite, only the appropriate exponential solutions
that decay at minus or plus infinity are considered in layers 1 and 3. As Hy is the only component of
the magnetic field, in the following derivation we omit the y subscript and instead we use a subscript
that enumerates the layer in which the field profile is defined (see Fig. 6.1).

The integration constant c0 can be expressed using the magnetic field amplitude at the core
interfaces. The continuity conditions for the tangential electromagnetic field components (Hy, Ez)
at x � 0 yield:

1. For the magnetic field:

H2|x�0� � H0, (6.1.5)

where H2pxq denotes the magnetic field profile in the nonlinear core that is the solution of
Eq. (6.1.3). This profile is yet unknown and will be found by solving Eq. (6.1.3) at the end of
this section.
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Chapter 6. Theory of nonlinear slot waveguides

2. For the longitudinal component of the electric field, using Eq. (1.5.2c):

dH2

dx

����
x�0�

� εl,2
ε1
k0q1H0, (6.1.6)

where, based on the assumption that the nonlinear permittivity change is small, we have sub-
stituted ε2|x�0� by εl,2 in the numerator on the right-hand side.

Using Eqs. (6.1.5) and (6.1.6), we rewrite Eq. (6.1.3) taken at the point x � 0�:

c0 � k2
0

��
εl,2
ε1


2

q2
1 � q2

2 �
a2

2
H2

0

�
H2

0 , (6.1.7)

where a2 denotes a constant value of apxq function in the nonlinear core (layer 2). Using continuity
conditions at the right core interface x � d, a similar expression for c0 can be obtained. Consequently,
Eq. (6.1.3) taken at the point x � d� yields:

c0 � k2
0

��
εl,2
ε3


2

q2
3 � q2

2 �
a2

2
H2
d

�
H2
d . (6.1.8)

Equations (6.1.7) and (6.1.8) together with Eq. (6.1.3) will be helpful later to find the sign of the
integration constant c0. Looking at Eq. (6.1.3) we notice that for Hy field profiles that cross zero, at
the point where Hy � 0, the only nonzero term on the left-hand side of this equation is pdHy{dxq2,
which is strictly positive. Therefore, for this type of solutions, c0 can only be positive.

In Section 2.1.2, we have stated that in case of a semi-infinite nonlinear medium the integration
constant in Eq. (2.1.8) should be set to zero as both the magnetic field Hy and its derivative tend to
zero at infinity. Using identical argument, the integration constant c0 in Eq. (6.1.3) must be equal to
zero c0 � 0 if we consider a semi-infinite nonlinear medium and therefore a single interface between
a metal and a nonlinear dielectric. Using Eq. (6.1.7), we can find an approximated analytical formula
for the effective indices of nonlinear waves propagating at this interface. Setting c0 � 0 in Eq. (6.1.7)
we obtain �

εl,2
ε1


2

q2
1 � q2

2 �
a2

2
H2

0 � 0. (6.1.9)

Using definitions of qk and a2 [see Eqs. (2.1.7b) and (2.1.7c)] in Eq. (6.1.9), we find the approximated
expression for the effective index of a nonlinear wave at a single interface between a metal and a
nonlinear dielectric in an explicit form:

β �
gffe ε1εl,2pεl,2 � ε1q
ε2l,2 � ε21 � n

p2q
2 ε21H

2
0

2ε0cεl,2

. (6.1.10)

Equation (6.1.10) gives also an approximated expression for the effective index of highly asymmetric
solutions in slot waveguide configurations, as it will be proven by numerical results in Section 7.1.4.
Highly asymmetric solutions are strongly localized on one of the interfaces and therefore the problem
can be simplified to a single-interface problem. A comparison of the approximated solution given
by Eq. (6.1.10) with the exact solutions of the JEM will be given in Section 7.1.4. More details on
the limiting case for a single interface between a metal and a nonlinear dielectric are presented in
Section 6.1.4, where we discuss the results for the symmetric nonlinear slot waveguide configuration.

It is worth noting that using Eq. (6.1.10) in the linear case (H0 Ñ 0 or n
p2q
2 Ñ 0), we recover the

dispersion relation for a linear surface plasmon propagating along a single interface (see Eq. (2.14) in
Ref. [55])

β �
c

ε1εl,2
ε1 � εl,2 . (6.1.11)
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6.1. Jacobi elliptic function based model

After this digression we come back to the derivation of the exact solution of the JEM model. We
are looking for guided waves in three-layer structures. Looking at Eqs. (6.1.4), we notice that the
condition for the waves to be localized at the waveguide core is satisfied when both q1 and q3 are
real and positive quantities. In order to satisfy this condition, we will look only for the solutions with
β ¡ maxtε1, ε3u [see the definition of qpxq and qk given by Eq. (2.1.7b)]. The quantity q2 can be either
real or imaginary leading to positive or negative values of q2

2.

In order to find the solutions of the nonlinear wave equation [Eq. (6.1.2)] in the nonlinear core, we
rewrite its first integral [Eq. (6.1.3)] in the form:

dH2b
c0 � k2

0q
2
2H

2
2 � k2

0
a2
2 H

4
2

� �dx. (6.1.12)

We introduce the reduced parameters Q and A [compare with the definitions of the reduced parameters
given by Eqs. (2.1.10) in Part I where the semi-infinite nonlinear medium was analyzed]:

Q � k2
0q

2
2, (6.1.13a)

A � pk2
0a2{2q�1. (6.1.13b)

Equation (6.1.12) expressed using the reduced parameters reads:

dH2a
Ac0 �AQH2

2 �H4
2

� �
c

1

A
dx. (6.1.14)

In our studies, we deal only with the focusing Kerr-type dielectrics, therefore A is always positive.
Parameter Q can be either positive or negative depending on the sign of q2

2. In the case of negative
values of q2

2 we can use Eq. (6.1.7) to determine the sign of c0. For q2
2   0, Eq. (6.1.7) can be written

as:

c0 � k2
0

��
εl,2
ε1


2

q2
1 � |q2

2| �
a2

2
H2

0

�
H2

0 . (6.1.15)

All the terms in the sum inside of a square bracket are positive or nonnegative. Therefore this sum is
positive. It is multiplied by k2

0H
2
0 which takes only nonnegative values. Thus, one concludes that for

q2
2   0 and H0 ¡ 0 the integration constant c0 is positive (c0 ¡ 0). In the opposite case (q2

2 ¡ 0), the
sign of c0 remains indeterminate and for a given structure it depends both on β and H0.

Here we summarize the remarks about the sign of the integration constant c0 depending on the
type of solution and the sign of q2

2. The following logical dependencies hold:

1. From Eq. (6.1.3), we notice that for solutions with nodes (for which at one or more points in
the core H2pxq � 0) the integration constant is positive c0 ¡ 0.

2. From Eqs. (6.1.7) and (6.1.15), we see that

q2
2   0 ùñ c0 ¡ 0. (6.1.16)

Using the logical contraposition [(p ùñ qq ðñ p q ùñ  pq] of the relation given by Eq. (6.1.16),
we deduce that

c0   0 ùñ q2
2 ¡ 0. (6.1.17)

3. Using the contraposition of the statement in point 1 we deduce that for the integration constant
c0   0 only node-less solutions exist.

Solutions of Eq. (6.1.14) take different forms depending on the sign of parameters c0 and Q (and
therefore q2

2). We will solve this equation in four cases depending on the sign of q2
2 and c0.
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Chapter 6. Theory of nonlinear slot waveguides

I. The case q2
2 ¡ 0

First, we will consider the case where q2
2 ¡ 0. As stated above, in this case, the sign of c0 can not

be determined a priori using analytical expression and reasoning. Therefore we will consider two
sub-cases: c2

0 ¡ 0 and c2
0   0.

I.a The subcase c0 ¡ 0

At first, we consider the case where c0 ¡ 0 and find the solutions of the nonlinear wave equation
[Eq. (6.1.3)] for this case. Equation (6.1.3) was transformed into Eq. (6.1.14) and its left-hand side
can be expressed in the form of the integrand of an elliptic integral (see Ref. [154] or Appendix B):

dH2a
pγ2 �H2

2 qpδ2 �H2
2 q
� �

c
1

A
dx, (6.1.18)

where the parameters γ and δ were introduced. In order to relate the newly introduced parameters
with parameters A, Q, and c0, we compare the expressions under the square-root on the left-hand
sides of Eqs. (6.1.14) and (6.1.18). This comparison results in

γ2 � �
a
A2Q2 � 4Ac0 �AQ

2
, (6.1.19a)

δ2 � γ2 �AQ � �
a
A2Q2 � 4Ac0 �AQ

2
. (6.1.19b)

The proper choice for the sign in front of the square-roots is dictated by the fact that we have
assumed that the magnetic field component Hy is a real quantity. Solutions of Eq. (6.1.18) are real
on condition that both γ and δ are real quantities. From the fact that q2

2 and c0 in the subcase I.a
are positive and the fact that we consider a positive Kerr effect a2 ¡ 0, we deduce that both Q and
A are positive quantities. Therefore, all the quantities appearing in the definitions of γ and δ are
positive. Keeping that in mind, we write bounds on the expressions for γ and δ. Using the fact that
x ¤

a
x2 � y2 ¤ x� y for x, y P R�, we find bonds on γ2:

�AQ�AQ
2

¤ γ2 ¤ �pAQ� 2
?
Ac0q �AQ

2
. (6.1.20)

For γ to be real γ2 must be positive. This is ensured by the choice of the top plus sign in front of
the square-root in the definition [Eqs. (6.1.19)]. Finally, in the subcase I.a the quantities γ and δ are
defined by

γ2 �
a
A2Q2 � 4Ac0 �AQ

2
, (6.1.21a)

δ2 �
a
A2Q2 � 4Ac0 �AQ

2
. (6.1.21b)

After having determined the correct sign in expressions for γ and δ, we continue our derivation.
Integrating Eq. (6.1.18), we obtain» H2pxq

H2p0q

dH2a
pγ2 �H2

2 qpδ2 �H2
2 q
� �

c
1

A
x. (6.1.22)

The integral on the left-hand side of Eq. (6.1.22) can be separated into two integrals:» H2pxq

H2p0q

dH2a
pγ2 �H2

2 qpδ2 �H2
2 q
�
» δ
H2p0q

dH2a
pγ2 �H2

2 qpδ2 �H2
2 q
�» δ

H2pxq

dH2a
pγ2 �H2

2 qpδ2 �H2
2 q
. (6.1.23)
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6.1. Jacobi elliptic function based model

Inserting Eq. (6.1.23) into Eq. (6.1.22), yields» δ
H2p0q

dH2a
pγ2 �H2

2 qpδ2 �H2
2 q
�
» δ
H2pxq

dH2a
pγ2 �H2

2 qpδ2 �H2
2 q
� �

c
1

A
x. (6.1.24)

Multiplying Eq. (6.1.24) by
a
γ2 � δ2 and using formula 17.4.52 from Ref. [112] (see also Appendix B),

gives

cn�1

�
H2p0q
δ

���� δ2

γ2 � δ2

�
� cn�1

�
H2pxq
δ

���� δ2

γ2 � δ2

�
� �

c
γ2 � δ2

A
x, (6.1.25)

where cn�1pu|mq is the inverse of the Jacobi elliptic function cnpu|mq. Jacobi elliptic functions are
defined with the argument u and the parameter m. For a review of the necessary properties of these
special functions see Appendix C. Reorganizing the terms and applying the Jacobi elliptic function cn
to both sides of Eq. (6.1.25), results in the expression for the magnetic field in the core of a nonlinear
slot waveguide in the case where both c0 and q2

2 are positive:

H2pxq � δ cn

#
	
c
γ2 � δ2

A
x� cn�1

�
H2p0q
δ

���� δ2

γ2 � δ2

� ���� δ2

γ2 � δ2

+
, (6.1.26)

We are still left with the uncertainty about the sign in front of the square-root in the argument of
the cn function in Eq. (6.1.26). From the properties of the Jacobi elliptic function cn, we conclude that
H2pxq give by Eq. (6.1.22) takes values only from the interval r�δ, δs. Knowing this and looking at
Eq. (6.1.22), we notice that the expression under the square-root in the denominator of the left-hand
side takes only values from the interval r0,�8q. In our case, the nonlinear core occupies the space
x P r0, ds therefore we consider only x ¥ 0. In the following, the argument for the case where the right
interface of the core is located at d ¡ 0 is presented. For the opposite case (d   0), the reasoning is
similar but the result is opposite. In order to choose the sign on the right-hand side of Eq. (6.1.22),
we need to investigate the sign of dH2 under the integral on the left-hand side of this equation. If
we consider the vicinity of the interface x � 0 and take into account the continuity conditions for
the tangential electromagnetic field components at this interface, we notice that in the case of metal
cladding (ε1   0), the magnetic field derivative changes sign at this interface [continuity conditions
for Ez electric field component given by Eq. (1.5.2c)]. In the case where the field in the left metal
cladding is positive (H0 ¡ 0) its derivative is also positive [field described by Eq. (6.1.4a)]. Therefore,
at x � 0�, the magnetic field derivative is negative. This means that the infinitesimal changes dH2

are negative. This brings us to the conclusion that for H0 ¡ 0, the correct choice of the sign on the
right-hand side of Eq. (6.1.22) is the bottom minus sign. In the case where H0   0, the derivative of
the magnetic field in the core close to the left interface pdH2{dxq|x�0� is positive and therefore the
infinitesimal changes dH2 are positive. In this case (H0   0), the correct choice of the sign on the
right-hand side of Eq. (6.1.22) is the top plus sign. The same conclusion can be drawn by looking at
Eq. (6.1.51) in Section 6.1.3.

Without loss of generality of the obtained results, in the following we choose the convention that
H0 ¡ 0. Therefore, in Eq. (6.1.26), we chose the bottom plus sign in front of the square-root. Finally,
the field profile in the nonlinear core for the subcase I.a is given by

H2pxq � δ cn

#c
γ2 � δ2

A
x� cn�1

�
H2p0q
δ

���� δ2

γ2 � δ2

� ���� δ2

γ2 � δ2

+
. (6.1.27)

I.b The subcase c0   0

Here we consider the case where c0   0. In order to work with positive quantities only, we substitute
c0 by �|c0| in Eq. (6.1.14) and obtain

dH2a
�A|c0| �AQH2

2 �H4
2

� �
c

1

A
dx. (6.1.28)
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The left-hand side of Eq. (6.1.28) is then expressed in the form of the integrand of an elliptic integral
(see Ref. [154] or Appendix B):

dH2a
pγ2 �H2

2 qpH2
2 � δ2q � �

c
1

A
dx. (6.1.29)

Comparing the expressions under the square-root on the left-hand sides of Eqs. (6.1.28) and (6.1.29)
allows us to find the relations between the new parameters γ and δ and the parameters A, Q, and c0:

γ2 � AQ	aA2Q2 � 4A|c0|
2

, (6.1.30a)

δ2 � AQ� γ2 � AQ�aA2Q2 � 4A|c0|
2

. (6.1.30b)

The expression that appears under the square-root in Eqs. (6.1.30) is a difference of two positive
quantities. In order for γ and δ to be real, the quantity under the square-root must be positive or equal
to zero. Writing expression under the square-root explicitly using the definitions of A, Q [Eqs. (6.1.13)],
and c0 [Eq. (6.1.7)] we obtain

A2Q2 � 4Ac0 �
�
q2

2 � a2H
2
0

�2 � 2a2H
2
0

�
ε2|x�0�

ε1


2

q2
1, (6.1.31)

which is greater or equal to zero because both terms in the sum are greater or equal to zero. This
proves that γ and δ are real quantities.

The choice of the signs in front of the square-roots is Eqs. (6.1.30) is arbitrary. For both the top
and the bottom signs the quantities γ2 and δ2 are positive. If we choose the top signs, we obtain a
couple denoted by (γ� and δ�). If we choose the bottom signs, we obtain a couple denoted by (γ�
and δ�). We notice that γ� � δ� and γ� � δ�. Therefore, the two couples are composed of identical
values that are only denoted differently. Moreover, the left-hand side of Eq. (6.1.29) has two equivalent
forms:

dH2a
pγ2 �H2

2 qpH2
2 � δ2q �

dH2a
pδ2 �H2

2 qpH2
2 � γ2q . (6.1.32)

Based on all the facts stated above, we conclude that it is just a matter of convention which signs to
choose. Here, we decide to use the lower signs so that γ ¡ δ. The final expressions for γ and δ in the
subcase I.b read:

γ2 � AQ�aA2Q2 � 4A|c0|
2

, (6.1.33a)

δ2 � AQ�aA2Q2 � 4A|c0|
2

. (6.1.33b)

Having found the expressions for γ and δ, we proceed with the derivation process. Integrating
Eq. (6.1.29) gives » H2pxq

H2p0q

dH2a
pγ2 �H2

2 qpH2
2 � δ2q � �

c
1

A
x. (6.1.34)

The integral on the left-hand side of Eq. (6.1.34) can be separated into two integrals:» H2pxq

H2p0q

dH2a
pγ2 �H2

2 qpH2
2 � δ2q �

» γ
H2p0q

dH2a
pγ2 �H2

2 qpH2
2 � δ2q�» γ

H2pxq

dH2a
pγ2 �H2

2 qpH2
2 � δ2q . (6.1.35)

Inserting Eq. (6.1.35) into Eq. (6.1.34), we obtain» γ
H2p0q

dH2a
pγ2 �H2

2 qpH2
2 � δ2q �

» γ
H2pxq

dH2a
pγ2 �H2

2 qpH2
2 � δ2q � �

c
1

A
x. (6.1.36)
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Multiplying Eq. (6.1.36) by γ and using formula 17.4.44 from Ref. [112] (see also Appendix B) yields

dn�1

�
H2p0q
γ

����γ2 � δ2

γ2

�
� dn�1

�
H2pxq
γ

����γ2 � δ2

γ2

�
� �

c
γ2

A
x, (6.1.37)

where dn�1 is the inverse of the Jacobi elliptic function dn (see Appendix C). Reorganizing the terms
and applying the Jacobi elliptic function dn to both sides of Eq. (6.1.37) results in the expression for
the magnetic field in the core of a nonlinear slot waveguide for positive q2

2 and negative c0:

H2pxq � γ dn

#
	
c
γ2

A
x� dn�1

�
H2p0q
γ

����γ2 � δ2

γ2

� ����γ2 � δ2

γ2

+
. (6.1.38)

We are still left with the ambiguity about the sign in front of the square-root in the argument
of the sd function in Eq. (6.1.38). Analyzing this equation it turns out that H2pxq takes values only
from the interval rδ, γs. Using the same arguments as for the case c0 ¡ 0, we conclude that the proper
choice for the sign in front of the square-root in Eqs. (6.1.34) and (6.1.36)–(6.1.38) is the bottom sign.
The final expression for field profile in the nonlinear core for the subcase I.b is given by

H2pxq � γ dn

#c
γ2

A
x� dn�1

�
H2p0q
γ

����γ2 � δ2

γ2

� ����γ2 � δ2

γ2

+
. (6.1.39)

II. The case q2
2   0

Here we consider the case of q2
2   0. As stated at the beginning of this section, in this case, the

integration constant c0 takes only positive values [see Eq. (6.1.16)]. In the following, we find solutions
of the nonlinear wave equation [Eq. (6.1.2)] for this case.

In order to work only with positive quantities in Eq. (6.1.12), in the case of negative q2
2, we will

substitute q2
2 by its negative absolute value �|q2

2|. This substitution transforms Eq. (6.1.12) into

dH2b
c0 � k2

0|q2
2|H2

2 � k2
0
a2
2 H

4
2

� �dx. (6.1.40)

We redefine Q given by Eq. (6.1.13a) to be positive. In the case II Q is defined by

Q � k0|q2
2| (6.1.41)

and A is still defined by Eq. (6.1.13b). Using this definition, Eq. (6.1.40) can be written in the form:

dH2a
Ac0 �AQH2

2 �H4
2

� �
c

1

A
dx. (6.1.42)

We rewrite Eq. (6.1.42) in the form of the elliptic integral:

dH2a
pγ2 �H2

2 qpδ2 �H2
2 q
� �

c
1

A
dx, (6.1.43)

Comparing the expressions under the square-root on left-hand sides of Eqs. (6.1.42) and (6.1.43) allows
us to find the relations between the new parameters γ and δ and the parameters A, Q, and c0:

δ2 � �
a
A2Q2 � 4Ac0 �AQ

2
(6.1.44a)

γ2 � δ2 �AQ � �
a
A2Q2 � 4Ac0 �AQ

2
(6.1.44b)
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The correct choice for the sign in front of the square-roots is again dictated by the fact that we
have assumed that the magnetic field Hy is a real quantity. The solution of Eq. (6.1.43) is real if both
γ and δ are real quantities. Using a similar reasoning as in the case I.a (see Page 82), by checking the
bounding values for δ2, we conclude that the proper choice of the sign in front of the square-root is
the top plus sign. The final expressions for γ and δ in this case are:

γ2 �
a
A2Q2 � 4Ac0 �AQ

2
, (6.1.45a)

δ2 �
a
A2Q2 � 4Ac0 �AQ

2
. (6.1.45b)

The following derivation is exactly the same as in the case I.a but we have to keep in mind that
the definitions of γ and δ are reversed [compare Eqs. (6.1.21) and (6.1.45)] and that Q is defined by
Eq. (6.1.41). Equation (6.1.43) is integrated and yields a formula that is identical to Eq. (6.1.22):» H2pxq

H2p0q

dH2b
pγ2 �H2

2 qpδ2 �H2
y q
� �

c
1

A
x. (6.1.46)

By an analogy to the case presented in I.a, the final expression for the field profile in the nonlinear
core for q2

2   0 has the form:

H2pxq � δ cn

#c
γ2 � δ2

A
x� cn�1

�
H2p0q
δ

���� δ2

γ2 � δ2

� ���� δ2

γ2 � δ2

+
. (6.1.47)

6.1.2 Summary and unification of the expressions for field profiles in the nonlinear
core

Before proceeding to the derivation of the analytical expressions for the nonlinear dispersion relations
for the metal slot waveguide, we present the summary of the expressions for field profiles in the slot
waveguide core in the form of a table.

The first column of Table 6.2 presents the results obtained for the subcase I.a, where q2
2 and c0

are greater than zero. The second column summarizes the subcase I.b, for which q2
2 ¡ 0 and c0   0

and the third column shows the results in the case II, where q2
2   0, in which we have shown that the

only possibility is c0 ¡ 0 [see Eq. (6.1.16)]. A new quantity m was introduced that denotes the elliptic
function parameter and is equal to the square of the elliptic modulus k. For more details on elliptic
integrals and Jacobi elliptic functions see Appendices B and C. In Table 6.2, auxiliary parameter s
and x0 are introduced in order to simplify the notation.
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During the field profile derivation, it was convenient to consider the case c0 ¡ 0 for positive and negative values of q2
2. By distinguishing these two

cases, we were able to define all the quantities that appeared during the derivation (in particular Q) in such a way that they are positive. Working
with positive quantities only facilitated the choice of the plus or minus signs whenever it was ambiguous. Actually, cases I.a and II can be merged
into one case using the definition Q � k2

0q
2
2. In this case, Q is no longer a strictly positive quantity and can be both positive and negative. Merging

cases I.a and II together allows for reducing Table 6.2 to only two cases presented in Table 6.3.

Quantity \ Case I.a q2
2 ¡ 0 and c0 ¡ 0 I.b q2

2 ¡ 0 and c0   0 II q2
2   0 therefore the only possibility c0 ¡ 0

c0 k2
0

��
εl,2
ε1

	2
q2

1 � q2
2 � a2

2 H
2
0

�
H2

0

A 2
k2

0a2

Q k2
0q

2
2 k2

0|q2
2|

γ2

?
A2Q2�4Ac0�AQ

2

AQ�
?
A2Q2�4A|c0|

2

?
A2Q2�4Ac0�AQ

2

δ2

?
A2Q2�4Ac0�AQ

2

AQ�
?
A2Q2�4A|c0|

2

?
A2Q2�4Ac0�AQ

2

s γ2 � δ2 — γ2 � δ2

m δ2

s
γ2�δ2

γ2
δ2

s

x0 �
b

A
s cn�1

�
H2p0q
δ

���m� �
b

A
γ2 dn�1

�
H2p0q
γ

���m� �
b

A
s cn�1

�
H2p0q
δ

���m�
H2pxq δ cn

�a
s
A px� x0q

���m� γ dn

�b
γ2

A px� x0q
���m� δ cn

�a
s
A px� x0q

���m�
Table 6.2: Comparison of the parameters used in the functions describing the magnetic field profile in the nonlinear core of the slot waveguide, in case
of metal claddings for the three cases considered in Section 6.1.1.
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Table 6.3 gives the expressions for the magnetic field profiles in the nonlinear core of the slot
waveguides for c0 ¡ 0 and c0   0. Based on these expressions and on the profiles of the Jacobi elliptic
functions cn and dn shown in Appendix C, we can verify the agreement between the nature of the
field profiles obtained analytically and deduced from conditions 1 and 3 on Page 81. For c0 ¡ 0,
the magnetic field profile in the core is given analytically in Table 6.3 in terms of the Jacobi elliptic
function cn. From Fig. C.1(a) we see that the continuous function cn, for values of the parameter
m P r0, 1q, takes values between �1 and 1 and therefore crosses zero. This means that the magnetic
field profile for the case c0 ¡ 0 may possess nodes. This is coherent with the conclusion drawn in
point 1 on Page 81. The case of m � 1, for which the function cn does not cross zero will be discussed
in Section 6.1.4, where the limiting case of the dispersion relations obtained using the JEM for a single
interface between a metal and a nonlinear dielectric is discussed.

For the case of c0   0, the magnetic field profile in the core is given by Jacobi elliptic function dn.
From Fig. C.1(b), we see that the function dn, takes values from the interval (0, 1] and therefore never
crosses zero. This means that the magnetic field profile for the case c0   0 can not possess nodes. This
is coherent with the conclusion drawn in point 3 on Page 81.

In Section 6.1.3, without loss of generality, we present the derivation of the dispersion relations for
the nonlinear slot waveguide using in the reduced number of cases following Table 6.3.

Quantity \ Case I c0 ¡ 0 II c0   0

q2
2 � β2 � εl,2 positive or negative positive

c0 k2
0

��
εl,2
ε1

	2
q2

1 � q2
2 � a2

2 H
2
0

�
H2

0

A 2
k2

0a2

Q k2
0q

2
2

γ2

?
A2Q2�4Ac0�AQ

2

AQ�
?
A2Q2�4A|c0|

2

δ2

?
A2Q2�4Ac0�AQ

2

AQ�
?
A2Q2�4A|c0|

2

s γ2 � δ2 —

m δ2

s
γ2�δ2

γ2

x0 �
b

A
s cn�1

�
H2p0q
δ

���m� �
b

A
γ2 dn�1

�
H2p0q
γ

���m�
H2pxq δ cn

�a
s
A px� x0q

���m� γ dn

�b
γ2

A px� x0q
���m�

Table 6.3: Simplified version of Table 6.2, where the number of cases was reduced to two. Here the
distinction between cases is based on the sign of the integration constant c0. The sign of q2

2 in case II
(c0   0) is deduced from Eq. (6.1.17).
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6.1. Jacobi elliptic function based model

6.1.3 Nonlinear dispersion relations

I. The case c0 ¡ 0

At first, we derive the dispersion relation for nonlinear slot waveguides when c0 ¡ 0. Using the
analytical formula for the field profile in the nonlinear core provided in Table 6.3, the field profiles in
metal claddings given by Eqs. (6.1.4), and Maxwell’s equations [Eqs. (1.5.2)], we write the continuity
conditions for the tangential electromagnetic field components Hy and Ez at both interfaces between
the nonlinear core and the metal cladding:

1. Continuity conditions at x � 0:

(a) The continuity condition for the magnetic field component

H1|x�0� � H2|x�0� (6.1.48)

yields
H0 � H2p0q. (6.1.49)

(b) The continuity condition for the tangential electric field component

Ez,1|x�0� � Ez,2|x�0� (6.1.50)

transformed with the use of Eq. (1.5.2c) gives

k0εl,2q1

ε1
H0 � dH2

dx

����
x�0�

, (6.1.51)

where, based on the assumption that the nonlinear permittivity change is small, we substi-
tuted ε2|x�0� by εl,2 in the numerator on the left-hand side.

Equation (6.1.51) allows us to determine the sign of the magnetic field derivative inside the
nonlinear core in the vicinity of its interface (at x � 0�). Knowing that we look only for the
solutions where q1 ¡ 0 (see Eq. (6.1.4a) and Page 81), the metal cladding permittivity is negative
(ε1   0), and the core permittivity is positive (εl,2 ¡ 0) and using the convention that H0 is
positive (see Page 83), we conclude that the sign of the derivative pdH2{dxq|x�0� is negative.
This reasoning was used to determine the sign of the argument of the Jacobi elliptic function in
Section 6.1.1 on Page 83.

Equations (6.1.48) and (6.1.51) have already been used in Section 6.1.1 in the derivation of the
expression for the integration constant c0 [see Eqs. (6.1.5) and (6.1.6)]. Therefore, we do not need
to take them again into account because they do not bring any new information and do not result
in a new constraint. Nevertheless, now we know the analytical expression for the magnetic field
profile in the nonlinear core that is given in the first column of Table 6.3. Using this expression,
the formulas for the Jacobi elliptic function derivatives, and the symmetry properties of Jacobi
elliptic functions (for both derivatives and symmetry properties see Ref. [152] and Appendix C)
we can express Eq. (6.1.51) explicitly:

k0q1

ε1
H0 � δ

εl,2

c
s

A
sn

�c
s

A
x0

���� m� dn

�c
s

A
x0

���� m� , (6.1.52)

where the parameters m, s, γ, and δ are defined in Table 6.3. We have checked numerically that
this equation is an identity for all values of β which confirms the validity of our JEM formulation.
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2. Continuity conditions at x � d:

(a) The continuity condition for the magnetic field component

H2|x�d� � H3|x�d� (6.1.53)

yields

δ cn

�c
s

A
pd� x0q

���� m� � Hd. (6.1.54)

(b) The continuity condition for the tangential electric field component

Ez,2|x�d� � Ez,3|x�d� (6.1.55)

transformed with the use of Eq. (1.5.2c), the formulas for the Jacobi elliptic function deriva-
tives, and the symmetry properties of Jacobi elliptic functions (see Appendix C) gives

δε3
k0q3εl,2

c
s

A
sn

�c
s

A
pd� x0q

���� m� dn

�c
s

A
pd� x0q

���� m� � Hd, (6.1.56)

where, based on the assumption that the nonlinear permittivity change is small, we substi-
tuted ε2|x�0� by εl,2 in the denominator on the left-hand side.

Comparing the two expressions for Hd given by Eqs. (6.1.54) and (6.1.56), we obtain the nonlinear
dispersion relation in its final form for the case of c0 ¡ 0

cn

�c
s

A
pd� x0q

���� m� � ε3
k0q3εl,2

c
s

A
sn

�c
s

A
pd� x0q

���� m� dn

�c
s

A
pd� x0q

���� m� . (6.1.57)

In order to obtain the dispersion curves for the case c0 ¡ 0, Eqs. (6.1.57) has to be solved nu-

merically for β for a given set of opto-geometric parameters of the structure (ε1, εl,2, n
p2q
2 , ε3, d) and

parameters of light (λ, H0). The values of β that satisfy this equation and the corresponding field
profiles are solutions of our modal problem in the plasmonic nonlinear slot waveguide configuration.

II. The case c0   0

Here we derive the dispersion relation for nonlinear slot waveguides when c0   0. The method used
here is exactly the same as in the previous case (for c0 ¡ 0). Using the analytical formula for the
field profile in the nonlinear core provided in the second column of Table 6.3, the field profiles in
metal claddings given by Eqs. (6.1.4), and Maxwell’s equations [Eqs. (1.5.2)], we write the continuity
conditions for the tangential electromagnetic field components Hy and Ez at both interfaces between
the nonlinear core and the metal cladding:

1. Continuity conditions at x � 0:

(a) The continuity condition for the magnetic field component

H1|x�0� � H2|x�0� (6.1.58)

yields
H0 � H2p0q. (6.1.59)

(b) The continuity condition for the tangential electric field component

Ez,1|x�0� � Ez,2|x�0� (6.1.60)

transformed with the use of Eq. (1.5.2c) gives

k0εl,2q1

ε1
H0 � dH2

dx

����
x�0�

, (6.1.61)

where, based on the assumption that the nonlinear permittivity change is small, we substi-
tuted ε2|x�0� by εl,2 in the numerator on the left-hand side.
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6.1. Jacobi elliptic function based model

In the general form [in the case where the H2pxq profile is not specified by any particular
expression], Eqs. (6.1.58) and (6.1.61) are identical to Eqs. (6.1.48) and (6.1.51). In this general
form they have already been used in Section 6.1.1 in the derivation of the expression for the
integration constant c0 [see Eqs. (6.1.5) and (6.1.6)]. Therefore, we do not need to take them
again into account.

Although, if we consider Eq. (6.1.61) for the specific case of c0   0 with the field profile given
by formula Eq. (6.1.39) (corresponding to the second column of Table 6.3), then Eq. (6.1.61)
is different form Eq. (6.1.51) that was written for the case c0 ¡ 0 and where the field profile
H2 is represented by Eq. (6.1.47) (corresponding to the first column of Table 6.3). We can
express Eq. (6.1.61) explicitly using Eq. (6.1.39), the formulas for the Jacobi elliptic function
derivatives, and the symmetry properties of Jacobi elliptic functions (see Appendix C). After
these operations, Eq. (6.1.61) becomes

k0q1

ε1
H0 � γ2m

εl,2

c
1

A
sn

�c
γ2

A
x0

���� m
�

cn

�c
γ2

A
x0

���� m
�
. (6.1.62)

We have checked numerically that this equation is an identity for all values of β which confirms
the validity of our JEM formulation.

2. Continuity conditions at x � d:

(a) The continuity condition for the magnetic field component

H2|x�d� � H3|x�d� (6.1.63)

yields

γ dn

�c
γ2

A
pd� x0q

���� m
�
� Hd. (6.1.64)

(b) The continuity condition for the tangential electric field component

Ez,2|x�d� � Ez,3|x�d� (6.1.65)

transformed with the use of Eq. (1.5.2c), the formulas for the Jacobi elliptic function deriva-
tives, and the symmetry properties of Jacobi elliptic functions (see Appendix C) gives

γ2ε3m

k0q3εl,2

c
1

A
sn

�c
γ2

A
pd� x0q

���� m
�

cn

�c
γ2

A
pd� x0q

���� m
�
� Hd, (6.1.66)

where, based on the assumption that the nonlinear permittivity change is small, we substi-
tuted ε2|x�0� by εl,2 in the denominator on the left-hand side.

Comparing the two expressions for Hd given by Eqs. (6.1.64) and (6.1.66), we obtain the nonlinear
dispersion relation in its final form for the case of c0   0

dn

�c
γ2

A
pd� x0q

���� m
�
� ε3m

k0q3εl,2

c
γ2

A
sn

�c
γ2

A
pd� x0q

���� m
�

cn

�c
γ2

A
pd� x0q

���� m
�
. (6.1.67)

In order to obtain the dispersion relations for the case c0   0, Eq. (6.1.67) has to be solved
numerically for β for a given set of opto-geometric parameters of the structure (ε1, εl,2, n2, ε3, d) and
parameters of light (λ, H0). The values of β that satisfy this equation and the corresponding field
profiles are solutions of our modal problem in the plasmonic nonlinear slot waveguide configuration.
The solutions of Eq. (6.1.67) together with solutions of Eq. (6.1.57) build the full dispersion diagram
for the nonlinear slot waveguide.
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III. Summary of the dispersion relation results

To sum up the results of the Jacobi elliptic function based model we gather the expressions for the
dispersion relations and field profiles in form of two tables. Table 6.4 presents the definitions of the
auxiliary parameters used in the derivation for both cases: c0 ¡ 0 and c0   0. Table 6.5 presents the
expressions for the dispersion relations and the field profiles in these two cases.

Quantity \ Case I c0 ¡ 0 II c0   0

q2
2 � β2 � εl,2 positive or negative positive

c0 k2
0

��
εl,2
ε1

	2
q2

1 � q2
2 � a2

2 H
2
0

�
H2

0

A 2
k2

0a2

Q k2
0q

2
2

γ2

?
A2Q2�4Ac0�AQ

2

AQ�
?
A2Q2�4A|c0|

2

δ2

?
A2Q2�4Ac0�AQ

2

AQ�
?
A2Q2�4A|c0|

2

s γ2 � δ2 —

m δ2

s
γ2�δ2

γ2

Table 6.4: Auxiliary parameters used in the derivation of the formulas for the magnetic field profiles
and for the dispersion relations in the nonlinear slot waveguide in the frame of the JEM. The sign of
q2

2 in case II (c0   0) is deduced from Eq. (6.1.17).
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Case c0 H2pxq and x0 Dispersion relation

I c0 ¡ 0
x0 � �

b
A
s cn�1

�
H2p0q
δ

���m�
cn

�a
s
A pd� x0q

���� m� � ε3
k0q3εl,2

a
s
A sn

�a
s
A pd� x0q

���� m� dn

�a
s
A pd� x0q

���� m�
H2 � δ cn

�a
s
A px� x0q

���m�

II c0   0
x0 � �

b
A
γ2 dn�1

�
H2p0q
γ

���m�
dn

�b
γ2

A pd� x0q
���� m� � ε3m

k0q3εl,2

b
γ2

A sn

�b
γ2

A pd� x0q
���� m� cn

�b
γ2

A pd� x0q
���� m�

H2 � γ dn

�b
γ2

A px� x0q
���m�

Table 6.5: Formulas for the magnetic field profiles in the nonlinear core of the slot waveguide and dispersion relations obtained using JEM for the
cases of positive and negative values of the integration constant c0.
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6.1.4 Single-interface limiting cases for fields and dispersion relations in Jacobi
elliptic function based model

In Sections 6.1.1–6.1.3, we have developed the nonlinear dispersion relations for the plasmonic slot
waveguide configuration. In course of the derivation, it was mentioned (see Page 80) that for the
integration constant c0 equal to zero, the problem of a nonlinear slot waveguide is reduced to a single
interface between a metal and a semi-infinite nonlinear dielectric.

In this section, we will study the nonlinear dispersion relations given in Table 6.5 in the limiting
case c0 � 0 to show that they reduce to the dispersion relations of plasmon–solitons on a single
interface between a metal and a nonlinear dielectric. The results obtained here for the limiting case
c0 � 0 will be compared with the results for the single interface between a metal and a nonlinear
dielectric derived in Chapter 3.

First, we simplify the auxiliary parameters (given in Table 6.4) used in the nonlinear dispersion
relations for the cases c0 ¡ 0 and c0   0. Expressions for the parameters from Table 6.4 in the limiting
case c0 � 0 are presented in Table 6.6.

Case I Case II

Quantity c0 � 0

q2
2 � β2 � εl,2 positive or negative positive

A 2
k2

0a2

Q k2
0q

2
2

γ2 0 AQ

δ2 AQ 0

s δ2 —

m 1 1

Table 6.6: Auxiliary parameters used in the derivation of the formulas for the magnetic field profiles
and for the dispersion relations in the nonlinear slot waveguide in the frame of the JEM for the
single-interface limiting case (c0 � 0).
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Here we will analyze the dispersion relations for the two cases (c0 ¡ 0 and c0   0) in the limiting
case c0 � 0.

1. Case I

We start the analysis by case I from Table 6.5. First, we will rewrite the expressions for x0 and
H2 for c0 � 0 using the parameters given in Table 6.6:

x0 � �
c

1

Q
cn�1

�
H2p0q?
AQ

��� 1� , (6.1.68a)

H2 �
a
AQ cn

�a
Q px� x0q

��� 1� . (6.1.68b)

We see that for c0 � 0 the parameter m of Jacobi elliptic functions describing the magnetic
field is equal to 1. For this value of the parameter, Jacobi elliptic functions become hyperbolic
functions (see Table 16.6 in Ref. [112] and Appendix C). Using Table C.1, Eqs. (6.1.68) become

x0 � � 1

k0q2
sech�1

�?
a2H2p0q?

2q2



, (6.1.69a)

H2 �
c

2

a2
q2 sech rk0q2px� x0qs , (6.1.69b)

where we used the physical parameters a2, k0, and q2. Since for the configurations with a semi-
infinite nonlinear medium we considered only q2

2 ¡ 0 (see discussion on Page 21) we substituteda
q2

2 by q2. Equations (6.1.69), describing the magnetic field profile H2 in the limiting case for the
single interface, becomes identical to Eq. (2.1.23) which was obtained by solving the nonlinear
wave equation [Eq. (2.1.7a) or (6.1.2)] for the case of a semi-infinite nonlinear medium in the
frame of the FBM.

The nonlinear dispersion relation for the case I given in Table 6.5 can be simplified in a similar
manner as the expression for the magnetic field profile. Using Tables 6.6 and C.1, the nonlinear
dispersion equation becomes

sech rk0q2pd� x0qs � ε3q2

εl,2q3
tanh rk0q2pd� x0qs sech rk0q2pd� x0qs (6.1.70)

Canceling the common term with the sech function on both sides of Eq. (6.1.70) transforms this
equation to

tanh rk0q2pd� x0qs � εl,2q3

ε3q2
(6.1.71)

Equation (6.1.71) describes the nonlinear dispersion relation for plasmon–solitons on a single
interface (at x � d) between a metal and a nonlinear dielectric. Equation (6.1.71) is equivalent
to Eq. (3.1.4), which gives the dispersion relation for a single metal/nonlinear dielectric interface
obtained using the FBM, taking into account that: (i) in the frame of the JEM we used the
assumption that ε2 � εl,2 in the continuity conditions used to derive the nonlinear dispersion
relations (see Section 6.1.3), (ii) in the frame of the FBM the interface is located at x � 0.

2. Case II

The derivation of the limiting case c0 � 0 in the case II is very similar to the one presented for
the case I. Likewise, using Tables 6.6 and C.1, the expressions for the magnetic field profile in
the case II presented in Table 6.5 becomes identical to Eq. (6.1.69). Taking the limiting case of
the nonlinear dispersion relation in case II presented in Table 6.5 yields and equation identical
to Eq. (6.1.71).

The analysis presented in this section proves that the results of the JEM for the limiting case of a
single interface between a metal and a nonlinear dielectric are compatible with the results of the FBM
that was derived for structures with a semi-infinite nonlinear medium.
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6.2 Interface model

In Section 6.1, we have derived the Jacobi elliptic function based model (JEM) model that treats the
Kerr nonlinearity present in the core of the nonlinear slot waveguide in a simplified way. In the frame
of the JEM, only the transverse electric field component contributed to the Kerr-type nonlinearity
[see Eq. (6.1.1)] and the nonlinear permittivity change was assumed to be small (αE2

x ! εl). These
assumptions allowed us to obtain analytical formulas (expressed in terms of Jacobi elliptic functions)
for the nonlinear dispersion relations and the field profiles of the nonlinear modes of the nonlinear slot
waveguide structure (see Table 6.5).

In this section, we will present the derivation of a model that is more numerical than the JEM but
treats the Kerr-type nonlinearity in a more precise way. The permittivity of the nonlinear core in the
frame of the interface model (IM) is described by [compare with Eqs. (1.6.13) and (2.3.4)]1

εxpxq � εzpxq � εypxq � ε2 � εl,2pxq � α2

�
E2
xpxq � E2

z pxq
�
. (6.2.1)

Moreover, there is no theoretical limitation of the values of the nonlinear permittivity change.
In the IM, the solutions of Maxwell’s equations are sought numerically, as explained in the following.

The field profiles inside the nonlinear core are found by numerical integration of Maxwell’s equations
that couple the Ex and Ez field components. The novelty of our numerical method lays in the fact
that, the phase space where the solutions are being sought is reduced by a constraint that is expressed
in an analytical form. Below the derivation of this constraint is presented and the numerical procedure
of finding the nonlinear dispersion relations using the IM is described.

6.2.1 Analytical constraint

The derivation of the IM starts with Eq. (2.3.6) derived in Section 2.3.1 during the discussion of
the nonlinear medium properties in the frame of the exact model (EM). In the frame of the IM, we
will study only standard cubic Kerr-type nonlinearity described by Eq. (6.2.1). Therefore, we set the
parameter κ of the power-law Kerr nonlinearity considered in Section 2.3.1 to be equal to two. For
κ � 2 and for the slot waveguide configuration, with the parameters given in Fig. 6.1, Eq. (2.3.6) takes
the following form:�

dEz
dx


2

� pβk0q2E2
x � k2

0εl,2
�
E2
x � E2

z

�� k2
0

α2

2

�
E2
x � E2

z

�2 � C0, (6.2.2)

where the linear permittivity εl,2 and the nonlinear parameter α2 of the nonlinear core of the slot
waveguide appear.

In Section 2.3.1, we considered a semi-infinite nonlinear medium for which the magnetic field
Hy and its x-derivative vanish when x Ñ �8. We have used these boundary conditions to set the
integration constant C0 in Eq. (2.3.6) to zero. Here we deal with a problem in which the nonlinear
medium is sandwiched between two linear (metal) layers, and therefore the nonlinear medium has a
finite size. In this case, the integration constant can not be set automatically to zero.

Similar to Section 2.3.1, we compare the right-hand side of Eq. (6.2.2) with the square of the
right-hand side of Eq. (2.3.1a). This time, the comparison gives an equation similar to Eq. (2.3.9), but
with an additional term being the integration constant C0:�

ε22
β2
� 2ε2



E2
z � εl,2

�
E2
x � E2

z

�� α2

2

�
E2
x � E2

z

�2 � C0. (6.2.3)

Equation (6.2.3) together with continuity conditions for the tangential components of the electromag-
netic field will be helpful in finding the constraints reducing the phase space where the solutions of

1As in the case of the exact model described in Footnote 1 in Section 2.1.1 (Page 19), this assumption is stronger
than the one required to formulate the IM. In our case, it is necessary to consider materials in which only two diagonal
elements of the nonlinear permittivity tensor elements are equal εx � εz � ε. The tensor component εy can have arbitrary
values because it does not appear in the model derivation.
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6.2. Interface model

Maxwell’s equations are sought, in order to find the dispersion curves for the nonlinear slot waveguide
configuration.

The left-hand side of Eq. (6.2.3) represents a quantity that is conserved across the transverse (along
the x direction) cross-section of the core of the nonlinear slot waveguide. Similar to Eq. (6.1.3) in the
case of the JEM, the expression on the left-hand side of Eq. (6.2.3) is always equal to the integration
constant C0, regardless of the position in the nonlinear core.

We use the continuity conditions for the tangential components of the electromagnetic field in
order to relate the values of the electric field components Ex and Ez at the nonlinear interfaces to the
values of the total electric field amplitude, defined as E � aE2

x � E2
z , at these interfaces. The field

distributions for the electric field components in the semi-infinite linear metal regions are found by
solving linear wave equations for these components. These wave equations are derived from Maxwell’s
equations [Eqs. (1.5.2)] and read:

d2Ex
dx2

� k2
0q

2
kEx � 0, (6.2.4a)

d2Ez
dx2

� k2
0q

2
kEz � 0, (6.2.4b)

where qk denotes a constant value of the qpxq function [defined by Eq. (2.1.7b)] in k-th layer (for
k P t1, 3u). The general solution of these wave equations is a combination of decreasing and increasing
exponential functions of the form Aek0qkx � Be�k0qkx. The components of the electric field in the
cladding metal layers are given by:

1. In the left metal region (x   0 — layer 1 in Fig. 6.1):

Ex,1 � Axe
k0q1x, (6.2.5a)

Ez,1 � Aze
k0q1x (6.2.5b)

2. In the right metal region (x ¡ d — layer 3 in Fig. 6.1):

Ex,3 � Bxe
�k0q3px�dq, (6.2.6a)

Ez,3 � Bze
�k0q3px�dq. (6.2.6b)

Only one exponential term is present in each of the expressions so that the electric field decays
exponentially for xÑ �8.

The amplitudes of the electric field components at the nonlinear medium interfaces are defined as
follows:

1. At the left interface (x � 0�)

Expx � 0�q � Ex,0, (6.2.7a)

Ezpx � 0�q � Ez,0 (6.2.7b)

2. At the right interface (x � d�)

Expx � d�q � Ex,d, (6.2.8a)

Ezpx � d�q � Ez,d. (6.2.8b)

The total electric field amplitudes on the left E0 and right Ed interfaces are defined by

E0 �
b
E2
x,0 � E2

z,0, (6.2.9a)

Ed �
b
E2
x,d � E2

z,d. (6.2.9b)

We define E0 and Ed to be positive quantities and therefore, in Eqs. (6.2.9), only the positive square-
roots are considered.

Using the boundary conditions for the tangential electromagnetic field components Hy and Ez, we
relate the amplitudes of the electric field components Ex and Ez on both sides of each of the interfaces.
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1. At the left interface (x � 0):

(a) The continuity condition for the magnetic field Hy reads

Hy,1|x�0� � Hy,2|x�0� . (6.2.10)

Inserting Eqs. (1.5.2b), (6.2.5a), and (6.2.7a) into Eq. (6.2.10), we obtain the relation be-
tween the Ex amplitudes on both sides of the left interface:

ε1Ax � ε2,0Ex,0, (6.2.11)

where ε2,0 denotes the value of the nonlinear permittivity at the left interface of the core
and is equal to ε2|x�0� � εl,2 � α2E

2
0 .

(b) The continuity condition for the longitudinal electric field component Ez reads

Ez,1|x�0� � Ez,2|x�0� (6.2.12)

Using Eqs. (6.2.5b) and (6.2.7b) in Eq. (6.2.12), we obtain the relation between the Ez
amplitudes on both sides of the left interface:

Az � Ez,0. (6.2.13)

2. Similar relations are obtained using the continuity conditions at the right interface (x � d):

(a) From the continuity condition for the magnetic field Hy

Hy,2|x�d� � Hy,3|x�d� (6.2.14)

using Eqs. (1.5.2b), (6.2.6a), and (6.2.8a), we obtain the relation between the Ex amplitudes
on both sides of the right interface:

ε3Bx � ε2,dEx,d, (6.2.15)

where ε2,d denotes the value of the nonlinear permittivity at the right interface of the core
and is equal to ε2|x�d� � εl,2 � α2E

2
d .

(b) From the continuity condition for longitudinal electric field component Ez

Ez,2|x�d� � Ez,3|x�d� (6.2.16)

using Eq. (6.2.6b) and (6.2.8b) in Eq. (6.2.16) we obtain the relation between the Ez
amplitudes on both sides of the right interface:

Bz � Ez,d. (6.2.17)

In order to relate Ax with Az and Bx with Bz, we will use Eqs. (1.5.2b) and (1.5.2c) assuming that
we deal with isotropic materials (εx � εy � εz � ε). In the linear layers, these two equations allow us
to relate Ex and Ez components in the following way:

dEx
dx

� k0βEz. (6.2.18)

Using Eqs. (6.2.18), (6.2.5a), and (6.2.5b) in layer 1 (see Fig. 6.1 for layer numbers), we obtain

Ax � β

q1
Az. (6.2.19)
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Inserting Eqs. (6.2.11) and (6.2.13) into Eq. (6.2.19), we obtain a relation between the amplitudes of
the electric field components at the left interface of the nonlinear medium (x � 0�):

Ex,0 � ε1β

q1ε2,0
Ez,0. (6.2.20)

Likewise, using Eqs. (6.2.18), (6.2.6a), and (6.2.6b) in layer 3, we obtain

Bx � � β

q3
Bz. (6.2.21)

Inserting Eqs. (6.2.15) and (6.2.17) into Eq. (6.2.21), we obtain the relation between the amplitudes
of the electric field components at the right interface of the nonlinear dielectric (x � d�):

Ex,d � � ε3β

q3ε2,d
Ez,d. (6.2.22)

Using Eqs. (6.2.9a) and (6.2.20), we can express the electric field components at the left interface
(Ex,0, Ez,0) as a function of the total electric field amplitude at this interface E0:2

E2
x,0 �

pε1βq2
pε2,0q1q2 � pε1βq2E

2
0 , (6.2.24a)

E2
z,0 �

pε2,0q1q2
pε2,0q1q2 � pε1βq2E

2
0 . (6.2.24b)

Similarly, using Eqs. (6.2.9b) and (6.2.22), we can express the electric field components at the right
interface (Ex,d, Ez,d) as a function of a total electric field amplitude at this interface Ed:

E2
x,d �

pε3βq2
pε2,dq3q2 � pε3βq2E

2
d , (6.2.25a)

E2
z,d �

pε2,dq3q2
pε2,dq3q2 � pε3βq2E

2
d . (6.2.25b)

Equation (6.2.3) can now be rewritten on each interface in such a way that, it depends only on
the total electric field amplitude at this interface (as a parameter), effective index β as an unknown
and opto-geometric material parameters which are known and fixed for a given structure. Inserting
Eqs. (6.2.24a) and (6.2.24b) into Eq. (6.2.3) taken at x � 0�, we obtain the nonlinear dispersion
relation at the left interface (x � 0):#��

ε2,0
β


2

� 2ε2,0

�
pε1βq2

pε2,0q1q2 � pε1βq2 � εl,2 �
α2

2
E2

0

+
E2

0 � C0. (6.2.26)

2Equation (6.2.24a) relates the values of Ex,0 and E0 in the case of a single interface between a nonlinear dielectric
and a metal (two-layer structure). In Section 3.2 we have derived a similar equation [Eq. (3.2.6)] for the case of a three-
layer structure, where the film with the permittivity ε3 and thickness d is sandwiched between a semi-infinite nonlinear
cladding with permittivity ε1 and a semi-infinite linear cladding with permittivity ε4. Here we recall Eq. (3.2.6):

E2
x,0 � pβε3Rq2

pβε3Rq2 � pq3ε1,0T q2E
2
0 ,

where the parameters R and T are given by

R � q4ε3 tanhpk0q3dq � q3ε4,

T � q4ε3 � q3ε4 tanhpk0q3dq
and ε1,0 denotes the value of the nonlinear permittivity at the interface x � 0. Taking the limiting case d Ñ 0, one
reduces the problem to a single interface between the nonlinear dielectric with permittivity ε1 and the linear layer with
permittivity ε4. Using d Ñ 0 in expressions for R and T [tanhpk0q3dq Ñ 0], one obtains the expression for the Ex field
amplitude at the interface x � 0

E2
x,0 � pβε4q2

pβε4q2 � pq4ε1,0q2E
2
0 .

This expression is equivalent to Eq. (6.2.24a).
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Inserting Eqs. (6.2.25a) and (6.2.25b) into Eq. (6.2.3) taken at x � d�, we obtain the dispersion
relation at the right interface (x � d):#��

ε2,d
β


2

� 2ε2,d

�
pε3βq2

pε2,dq3q2 � pε3βq2 � εl,2 �
α2

2
E2
d

+
E2
d � C0. (6.2.27)

Equations (6.2.26) and (6.2.27) considered separately give the dispersion relation for a single
interface between a metal and a nonlinear dielectric. In this case, the nonlinear medium is semi-infinite
which means that C0 must be set to zero (see discussion at Page 96; for semi-infinite medium both
Ex and Ez components tend to zero infinitely far from the interface). Setting C0 � 0 in Eq. (6.2.26)
yields #��

ε2,0
β


2

� 2ε2,0

�
pε1βq2

pε2,0q1q2 � pε1βq2 � εl,2 �
α2

2
E2

0

+
E2

0 � 0. (6.2.28)

This equation can be solved analytically for β. The solution depends on the parameters of the structure
(ε1, εl,2, α2, ε3) and the electric field amplitude at the interface E0 and is given by

β �
d

ε1ε22,0pεl,2 � ε1 � α2
2 E

2
0q

pε22,0 � ε21qpεl,2 � α2
2 E

2
0q � 2ε21ε2,0

. (6.2.29)

Only the positive root is considered because we are interested here in forward propagating waves only.
Equation (6.2.29) can be compared to Eq. (11) in Ref. [70] and Eq. (14) in Ref. [77] derived for the
case of a single metal/nonlinear dielectric interface.3

The solution for a single-interface problem provides a good approximation (in terms of effective
index β and the field profiles) for first-order highly asymmetric modes in the nonlinear slot waveguides
whose field profiles are mostly localized on one interface of the core (see also the discussion on Page 80).
These solutions are invariant with respect to the waveguide width as they interact strongly only with
one of the core interfaces. More comments and illustrations of this property will be presented in
Section 7.1.4, where we discuss the results for the symmetric nonlinear slot waveguide configuration.

After this digression on the single-interface case, we come back to the derivation of the constraint
limiting the phase space of the solutions of Maxwell’s equations in nonlinear slot waveguide structures.
Comparing the dispersion relations for the single interfaces given by Eqs. (6.2.26) and (6.2.27), we
eliminate the integration constant C0 and obtain the final equation of the IM:#��

ε2,0
β


2

� 2ε2,0

�
pε1βq2

pε2,0q1q2 � pε1βq2 � εl,2 �
α2

2
E2

0

*
E2

0 �#��
ε2,d
β


2

� 2ε2,d

�
pε3βq2

pε2,dq3q2 � pε3βq2 � εl,2 �
α2

2
E2
d

+
E2
d . (6.2.30)

Equation (6.2.30) represents the constraint that will be used in the numerical algorithm computing
the dispersion curves presented in Section 6.2.2, in order to reduce the dimension of the parameter
space where the solutions of Maxwell’s equations in nonlinear slot waveguide structures are sought.

It is worth noticing that, in Eq. (6.2.30), neither the wavelength of light λ nor the width of the
waveguide core d appear. This means that the condition given by Eq. (6.2.30) is identical, regardless
of the values of λ and d. This condition depends only on the material parameters (ε1, εl,2, α2, and ε3)
and the field intensities at both nonlinear core interfaces (E0 and Ed). The size of the core and the
wavelength will appear in our next step — the numerical integration of Maxwell’s equations leading to
the field profiles in the core of the waveguide and to the dispersion curves of the plasmonic nonlinear
slot waveguide.

3Note that in the linear limiting case (α2E
2
0 Ñ 0 and therefore ε2,0 Ñ εl,2), Eq. (6.2.29) transforms into the dispersion

relation for linear plasmons on a single metal/dielectric interface given by β �
a
ε1εl,2{pε1 � εl,2q (see Eq. (2.14) in

Ref. [55]).
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As stated before, Eq. (6.2.30) is not a dispersion relation for the slot waveguide modes but only
a constraint that limits the phase space where the solutions in the frame of the IM can be found. In
order to obtain the dispersion relations in the nonlinear slot waveguide, the field profiles in the core
are found by numerical integration of Maxwell’s equations. Maxwell’s equations are written as a set
of coupled equations relating both electric field components Ex and Ez [Eqs. (2.3.1a) and (2.3.46)].
These equations are recalled here with the notation adapted for the nonlinear slot waveguide, where
the quantities related to the nonlinear layer have a subscript 2:

dEx
dx

� k0

βε2Ez � 2α2EzE
2
x

�
β � ε2

β

	
ε2 � 2α2E2

x

,

dEz
dx

� k0

�
β � ε2

β



Ex.

(6.2.31a)

(6.2.31b)

In order to prove the scaling properties of the solutions in the nonlinear slot waveguide configuration
we introduce here a normalized transverse coordinate ξ � k0x. Rewriting Eqs. (6.2.31) using the
normalized transverse coordinate yields:

dEx
dξ

�
βε2Ez � 2α2EzE

2
x

�
β � ε2

β

	
ε2 � 2α2E2

x

, (6.2.32a)

dEz
dξ

�
�
β � ε2

β



Ex. (6.2.32b)

To find the field profiles in the core and the dispersion relations for the nonlinear slot waveguide,
Eqs. (6.2.32) are integrated in the core of the waveguide:

» Epρq
Ep0q

dExpξq �
» ρ

0

βε2pξqEzpξq � 2α2EzpξqE2
xpξq

�
β � ε2pξq

β

	
ε2pξq � 2α2E2

xpξq
dξ, (6.2.33a)» Epρq

Ep0q
dExpξq �

» ρ
0

�
β � ε2pξq

β



Expξq dξ, (6.2.33b)

where the ξ dependency of all the quantities in explicitly denoted. From Eqs. (6.2.33), we notice that
the field profiles (and therefore the dispersion curves, as it can be seen in Section 6.2.2) for identical
values of the reduced waveguide thickness ρ � k0d � 2πd{λ will be identical. Therefore, we conclude
that the dispersion relations for a nonlinear slot waveguide with given material parameters (ε1, εl,2,
α2, and ε3) will depend only on the ratio d{λ and not on the wavelength or the core thickness itself.
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6.2.2 Numerical algorithm and nonlinear dispersion relations

In this section, we present the description of the numerical algorithm that is used to find the dispersion
relation for the modes of a nonlinear slot waveguide in the frame of the IM. This algorithm uses the
shooting method [88] to find solutions of Maxwell’s equations in the waveguide core and finally the
nonlinear dispersion relation for the plasmonic slot waveguide.

In a general case, the numerical procedure would be the following. First, for a given structure, we
fix the parameters E0, Ed, and β and integrate Maxwell’s equations [Eqs. (6.2.31)] in the waveguide
core with the values E0 and β as initial parameters. The results of the integration are the field profiles
Expxq and Ezpxq inside the nonlinear core and, in particular, the total electric field amplitude at the

interface x � d denoted by E
(num)
d . Next, we verify if the result of the numerical integration fulfills

the conditions resulting from the problem formulation:

1. If E
(num)
d is equal to the initially fixed value Ed?

2. If the x-derivative of the product of the permittivity and the transverse electric field ε2Ex at the
interface x � d� has the correct sign? The condition for the correct sign of the product of the
permittivity and the transverse electric field ε2Ex at the right nonlinear core interface (x � d�)
was not derived yet in course of presentation of our IM. This derivation is presented here. We
start from Eq. (6.2.16):

Ez,2|x�d� � Ez,3|x�d� . (6.2.34)

The longitudinal field component Ez can be expressed with the help of Eq. (2.3.1b) as

Ez � 1

k0βε

dpεExq
dx

, (6.2.35)

where we consider isotropic medium for which εx � εz � ε. In the case of the uniform linear
medium (as it is the case for layer 3), Eq. (6.2.35) simplifies to [compare with Eq. (6.2.18)]

Ez � 1

k0β

dEx
dx

. (6.2.36)

In the nonlinear medium (layer 2) Eq. (6.2.35) is written in the form

Ez � 1

k0βε2

dpε2Exq
dx

. (6.2.37)

Inserting Eqs. (6.2.36) and (6.2.37) into Eq. (6.2.34) yields

1

ε2,d

dpε2Exq
dx

����
x�d�

� dEx
dx

����
x�d�

. (6.2.38)

Equation (6.2.38) is now multiplied by Eq. (6.2.15) to give

Ex,d
dpε2Exq

dx

����
x�d�

� ε3Bx
dEx
dx

����
x�d�

. (6.2.39)

Computing the derivative on the right-hand side of Eq. (6.2.39) using Eq. (6.2.6a) gives

Ex,d
dpε2Exq

dx

����
x�d�

� �k0q3ε3B
2
x. (6.2.40)

The right-hand side of Eq. (6.2.40) is positive as ε3 of the metal is negative and all the other
quantities there are positive. Therefore, the sign of the derivative rdpε2Exq{dxs|x�d� must be
identical to the sign of Ex,d. This is the condition that is checked in the numerical algorithm.
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3. If the components of electric field at x � d fulfill the conditions given by Eqs. (6.2.25a) and
(6.2.25b)?4

If these three conditions are fulfilled then the triplet (E0, Ed, and β) and the corresponding field
profiles are accepted as a genuine solution of our problem.

In the general case described above, the phase space where the solutions are sought is three-
dimensional and it is spanned by E0, Ed, and β. However, we can separate the problem into two cases,
where we will be able to simplify it and look for the solutions in only two dimensional spaces. The
two cases are :

1. The case of symmetric (Ex,0 � Ex,d) or antisymmetric solutions (Ex,0 � �Ex,d) (for both
symmetric and antisymmetric solutions E0 � Ed) in a symmetric structure (ε1 � ε3). In this
case, we look for the solutions of Maxwell’s equations in a two-dimensional space spanned by
E0 and β for each of the cases Ex,0 � �Ex,d. For E0 � Ed in symmetric structures, Eq. (6.2.30)
represents an identity and it is satisfied for all values of β. Therefore, Eq. (6.2.30) will not provide
any help in further reducing the parameter space where the solutions are sought.

2. The case of either the asymmetric solutions (E0 � Ed) in a symmetric nonlinear slot waveguide
structure (ε1 � ε3) or any solution in an asymmetric structure (ε1 � ε3). For these type of
solutions, Eq. (6.2.30) is not an identity and results in a constraint on the three-dimensional
space where the solutions are sought. Equation (6.2.30) is transformed to the form:

p4β
4 � p2β

2 � p0 � 0, (6.2.41)

where

p4 � 2ε2,dε
2
3E

2
dpε22,0 � ε21q � 2ε2,0ε

2
1E

2
0pε22,d � ε23q � fpε22,0 � ε21qpε22,d � ε23q, (6.2.42a)

p2 � ε22,0ε
2
1E

2
0pε22,d � ε23q � ε22,dε23E2

dpε22,0 � ε21q�
2ε2,0ε2,dε1ε3pε2,dε1E2

0 � ε2,0ε3E2
dq � f rε22,0ε1pε22,d � ε23q � ε22,dε3pε22,0 � ε21qs, (6.2.42b)

p0 � ε22,0ε
2
2,dε1ε3pε3E2

d � ε1E2
0 � fq, (6.2.42c)

with
f � εl,2pE2

0 � E2
dq �

α2

2
pE4

0 � E4
dq. (6.2.42d)

This shows that Eq. (6.2.30) is satisfied only by a finite set of β values. Because we look for
forward propagating nonlinear modes and material losses are neglected, the only physically
meaningful solutions of Eq. (6.2.41) are the ones where β is real and positive. Therefore, the two
possible roots are:

β� �
d
�p2 �

a
p2

2 � 4p4p0

2p4
, (6.2.43)

Only the real solutions among β� are used further in the process of resolution of the nonlinear
problem.

Using Eq. (6.2.30), the three-dimensional space from the general case is now reduced to a two-
dimensional space [one for each of the real effective indices given by Eq. (6.2.43)] spanned by E0

and Ed. Therefore, instead of scanning a full three-dimensional space spanned by E0 and Ed,
and β we need to scan only few two-dimensional spaces spanned by E0 and Ed corresponding to
the physically meaningful β values given by Eq. (6.2.43). In other words, for a pair (E0, Ed) we
just need to check if the field integration gives good results (i.e., if conditions 1–3 on Page 102
are fulfilled) for real values among β�. If all the conditions are fulfilled then the triplet (E0, Ed,
and β) and the corresponding field profiles are accepted as a genuine solution of our problem.

4Actually, it is necessary to verify only one of the conditions given by Eqs. (6.2.25a) and (6.2.25b) because the
amplitudes Ex,d and Ez,d are related by Eq. (6.2.9b).
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Note that here we reduce the phase space of possible solutions in terms of the effective index β.
Another option would be to try to solve Eq. (6.2.30) with respect to E0 or Ed. However, this
way of proceeding would be more cumbersome. It turns out that Eq. (6.2.30) can be written as
a polynomial of E0 (or Ed) in a form E8

0 � r6E
6
0 � r4E

4
0 � r0 � 0. This equation can be reduced

to a fourth-order polynomial in E2
0 , for which finding solutions is more difficult than in the case

of Eq. (6.2.41) that is reducible to a second-order polynomial equation in β2.

START

set structure parameters: ε1, ε2, ε3, n2, d

set physical parameters: λ, E
(ini)
0 , E

(end)
0 , E

(ini)
d , E

(end)
d , β(ini), β(end)
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is ε1 = ε3?

symmetric or antisymmetric solutions E0 = Ed

set E0 = E
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(end)
0 − E(ini)

0 )
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ACCEPT the solution

is β = β(end)? is E0 = E
(end)
0 ?

asymmetric solutions E0 6= Ed

set E0 = E
(ini)
0 + i/NE0(E

(end)
0 − E(ini)

0 )
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(ini)
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(end)
d − E(ini)

d )

solve p4β
4 + p2β

2 + p0 = 0

integrate Maxwell’s equations inside NSW

refine the solution
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Figure 6.2: Block scheme representing the numerical procedure that finds the dispersion relations for
the plasmon–solitons in the nonlinear slot waveguides (NSW) in the frame of the IM. The indices i
and j denote the computational step in the scans over E0, Ed, or β parameters.
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The numerical procedure used to find the dispersion relations in the frame of the IM is presented
schematically in the block scheme in Fig. 6.2. The procedure starts by setting general parameters of
the structure and of the simulation (top of Fig. 6.2). The left part of Fig. 6.2 presents the details of
the solution procedure described in the case 1 on Page 103 and the right part of Fig. 6.2 presents the
details of the solution procedure described in the case 2 on Page 103.

First, we set the opto-geometric parameters of the structure. Then the physical parameters and
the scanning intervals for E0, Ed, and β are chosen. Solutions with values of any of these three
parameters outside of the boundaries set by initial values (denoted by superscript ’ini’) and the final
values (denoted by the superscript ’end’) will not be found by the procedure.

Next, the number of steps for the scans in E0, Ed, and β, denoted byNE0 ,NEd , andNβ, respectively,
is set. The numbers of steps and the scanned interval define the resolution of our algorithm. For
instance, the resolution in the effective index β is given by ∆β � rβpendq � βpiniqs{Nβ. If there exist
two modes that are separated by a distance smaller than ∆β, those modes will generally not be found
by the scanning procedure for the symmetric or antisymmetric modes.

There are two other parameters to be set. Nrefine denotes the number of iterations with which
the solution found by the scan is refined using the bisection method. After the solution was prelim-
inary localized by the scanning procedure, another Nrefine bisection steps are performed its vicinity.
Therefore, the precision with witch the solutions are found, is 2Nrefine times better than the resolution
(for the effective index, the precision is given by ∆β{2Nrefine). The last parameter is Nintegrate, which
defines the maximum number of steps that can be taken in the procedure of integration of Maxwell’s
equations in the nonlinear slot waveguide core. The procedure we use to integrate Eqs. (6.2.31) is the
built-in ordinary differential equation solver in Scilab called ode [146].

After having set all the parameters, we check if the structure is symmetric or asymmetric in terms of
metal cladding permittivity. For the symmetric cladding we look first for symmetric and antisymmetric
modes (the case 1 on Page 103) and then search for the asymmetric modes (the case 2 on Page 103).
In the case of asymmetric cladding only the procedure to find asymmetric modes is used (the case 2
on Page 103). In the following we present the details of both procedures.

First, we will describe the procedure of finding the symmetric and antisymmetric modes presented
in the left part of the scheme in Fig. 6.2:

1. We set the value of the total electric field amplitude at the left metal/nonlinear dielectric interface
E0. For the symmetric and antisymmetric modes Ed � E0.

2. We set the value of the trial effective index β.

3. We integrate Maxwell’s equations [Eq. (6.2.31)] and find the field profiles inside of the nonlinear
slot waveguide core. The initial value of the x-component of the electric field Ex,0 is computed
using Eq. (6.2.24a). The initial value of the z-component of the electric field Ez,0 is calculated
using Eq. (6.2.24b) [or equivalently Eq. (6.2.9a)]. This however leaves us with the ambiguity
about the choice of the sign of the initial value of the z-component of the electric field Ez,0 �
�
b
E2

0 � E2
x,0. This ambiguity is resolved by looking at the boundary condition for the tangential

components of the electromagnetic field at the interface located at x � 0. This condition is
expressed in the form of Eq. (6.2.20). The IM is formulated for positive values of β (forward
propagating waves), q1 (see discussion on Page 81), and ε2,0 (dielectric permittivity) and for
negative value of ε1 (metal permittivity). Having this in mind, and using Eq. (6.2.20), we conclude
that the electric field components at x � 0� have opposite signs [sgnpEx,0q � sgnpEz,0q].
Therefore, if we choose positive Ex,0 then Ez,0 has to be negative and the sign in front of the
square-root in the expression defining it is a minus sign. We must choose a plus, in case of a
choice of negative Ex,0. Without loss of generality, in all the results presented for the IM in
Chapter 7, we chose the convention Ex,0 ¡ 0.

4. We check if the solution obtained from the integration procedure is coherent with the condi-
tions 1–3 on Page 102
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To verify the Condition 1, we check if the value of the field at the right metal/nonlinear dielectric

interface found in the numerical integration process E
(num)
d is equal to the value assumed at the

beginning Ed. This can be done only up to some numerical accuracy. Actually, in order to avoid

finding minima of ∆Ed � |E(num)
d � Ed|, we compare the values of �∆Ed � E

(num)
d � Ed from

the present computational step (step j) and from the previous computational step (step j � 1)

(corresponding to βj and βj�1). We accept the solution only if �∆Ed changes its sign. This means
that the solution βsol for this E0 is located somewhere in between βj and βj�1. Having found
the interval where the solution βsol is located we repeat steps 2 and 3 inside of the interval [βj ,

βj�1] using the bisection method [88] with the condition of the change of the sign of �∆Ed. The
bisection procedure is repeated Nrefine times.

After having refined the precision of our solution we proceed to the verification of the two
physical conditions (conditions 2 and 3 on Page 102) that have to be satisfied by our solution.
Condition 2 relates the sign of the electric field component at the interface x � d� (Ex,d) and
the sign of the x-derivative of the product of the permittivity and the transverse electric field
at this interface rdpε2Exq{dxs|x�d� and it is given by Eq. (6.2.40). It states that for negative
cladding permittivity ε3 (as it is for the metal cladding studied in this PhD thesis), the signs
of Ex,d and rdpε2Exq{dxs|x�d� must be identical. We check if this condition is fulfilled for the
fields computed numerically. If it is not fulfilled, we discard the solution. Otherwise, we proceed
to the second physical condition (condition 3).

To verify the condition 3 we check if the absolute values of the amplitudes of the field components

|E(num)
x,d | and |E(num)

z,d | are coherent with the ones computed using Eqs. (6.2.25). As a matter of
fact, it is enough to check the condition for only one of the components, because they are related
by Eq. (6.2.9b).

5. If all the conditions from the step 4 are fulfilled we accept the solution and proceed to the next
steps in the loops over β and E0.

After finishing all the steps in E0 and β scan in the procedure finding symmetric and antisymmetric
solutions, we proceed to the second part of the code that finds asymmetric solutions. Here we will
describe the details of this procedure (case 2 on Page 103) that is presented right part of the scheme
in Fig. 6.2):

1. We set the value of the electric field at the left metal/nonlinear dielectric interface E0.

2. We set the value of the electric field at the right metal/nonlinear dielectric interface Ed.

3. We solve Eq. (6.2.30) written in the form given by Eq. (6.2.41) for the possible values of the
effective index β. For each of the β values found [see Eq. (6.2.43)], we integrate Maxwell’s
equations [Eqs. (6.2.31)] and find the field profiles inside of the nonlinear slot waveguide core.
The integration procedure is identical to the one described in Step 3 for the left part of the
scheme.

4. We check if the solution obtained from the integration procedure is coherent with conditions 1–3
on Page 102 (in identical way it is done in the step 4 for the left part of the scheme).

5. If all the conditions from the step 4 are fulfilled, we accept the solution and proceed to the next
steps in the loops over E0 and Ed.
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T
his chapter presents the results obtained using the two models we have developed for the
nonlinear slot waveguide configuration described in Chapter 6. We will start by Section 7.1 that
presents the results for symmetric structures, in which a nonlinear dielectric core is sandwiched

between two semi-infinite metal regions with identical values of the metal permittivity on both sides.
For these structures, in Section 7.1.1, we will discuss the obtained nonlinear dispersion diagrams and
classify the modes according to the type of the field profile Hypxq. These symmetric structures show
very rich dispersion curves. Fundamental and higher-order modes can be classified according to their
symmetry into: symmetric, antisymmetric and asymmetric modes. Classification can be done also
using a different criterion: according to the number of nodes. We will distinguish two families: node-
less modes and modes with nodes. In the node-less family, the asymmetric modes appear from the
symmetric modes through the symmetry-breaking Hopf bifurcation [155]. The symmetry breaking of
the lowest-order modes in nonlinear slot waveguides was reported in Ref. [87]. This type of symmetry
breaking was also observed in dielectric waveguides with nonlinear cladding [24, 25, 27, 29, 30] or
core [38, 39] and in plasmonic structures with metal nonlinareities [99, 100]. It is worth noting that
the higher-order modes of nonlinear slot waveguides found in our work were not predicted before. The
symmetry breaking for the higher-order modes of the node-less family is described in this PhD thesis
for the first time. The mutual comparison between the results obtained using the two models will
prove their validity.

In Sections 7.1.2 and 7.1.3, we will discuss in more detail the field profiles of the modes existing in
nonlinear slot waveguides. The field profiles for the higher-order modes are presented for the first time.
We will present the field transformation along the dispersion curves. We will mutually compare the
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field profiles obtained using our two models and discuss the similarities and the differences between
the two approaches.

In Section 7.1.4, guided by the knowledge of the field profiles and the theoretical derivation pre-
sented in Chapter 6, we will present and justify the case in which the first-order asymmetric mode
dispersion curves are approximated by the results obtained using single-interface models developed
in Chapter 2. In Section 7.1.5, we will show a close relationship between higher-order modes of a
nonlinear waveguide that belong to the family with nodes and their linear counterparts that exist in
a similar linear slot waveguide.

Section 7.1.6 will present the study of the influence of the nonlinear core width on the behavior of
the dispersion curves for the symmetric nonlinear slot waveguide. The size effect on the bifurcation
threshold power and mode asymmetry will also be studied. Furthermore, an interesting behavior of the
dispersion curve of the first-order asymmetric mode will be observed while changing the core width.
In Section 7.1.7, we will discus the influence of the permittivity contrast between the nonlinear core
and the metal cladding on the dispersion curves. A precise choice of either the core width or its linear
permittivity turn out to be crucial in order to be able to obtain low-power nonlinear solutions in the
nonlinear slot waveguide.

Finally, in Section 7.2, the asymmetric slot waveguides will be studied where the asymmetry is
introduced by sandwiching the nonlinear core between metals with different permittivities on each side
of the core. No studies of asymmetric nonlinear slot waveguides have yet been presented in literature.
We show that the asymmetry of the waveguide lifts the degeneracy of the asymmetric modes. We also
compare the dispersion curves and the field profiles of asymmetric structures with these obtained for
symmetric structures.

7.1 Symmetric structures

Here we will discuss in detail the dispersion diagrams of symmetric nonlinear slot waveguide structures.
We will start by a comparison of the dispersion plots obtained using the two models that we have
developed: the Jacobi elliptic function based model (JEM) and the interface model (IM). First, we
present the dispersion relations in which the effective index of the mode β is plotted as a function of
the nonlinear refractive index change ∆n averaged over the width of the waveguide

x∆ny � 1

d

» d
0

∆n dx � 1

d

» d
0
n
p2q
2 I dx, (7.1.1)

where the intensity I is defined by Eq. (1.7.4). Here we also present a typical field profile for each of
the dispersion curves and classify the modes according to their symmetry and the number of nodes in
their magnetic field profile.

Later, we will present the dispersion relations using various coordinates in order to get a better
understanding of both the properties of nonlinear slot waveguides and the nature of our models.

In this section, we will focus on one particular symmetric configuration. We will study a 0.4-
µm-wide hydrogenated amorphous silicon core with permittivity εl,2 � 3.462 and the second-order

nonlinear refractive index n
p2q
2 � 2 � 10�17 m2/W [137–142]. This core is embedded between two semi-

infinite gold layers with permittivities ε1 � ε3 � �90 [143–145]. The parameters of this configuration
are summarized in Table 7.1. The light propagating in the structure has a free-space wavelength
λ � 1.55 µm. In our modal studies, losses in metals and dielectric core are neglected. An attempt to
estimate the propagation losses in nonlinear slot waveguide structures is presented in Appendix D. A
study of the losses using the method presented in Section 2.1.5 adapted to nonlinear slot waveguides
is presented there.
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Quantity \ Layer 1 2 3

Material gold hydrogenated amorphous silicon gold

Permittivity ε1 � �90 εl,2 � 3.462 ε3 � �90

Second-order nonlinear refractive index — n
p2q
2 � 2 � 10�17 m2/W —

Thickness — d � 400 nm —

Table 7.1: Parameters of the symmetric nonlinear slot waveguide structure studied in this section.

7.1.1 Nonlinear dispersion diagrams

Jacobi elliptic function based model

Figure 7.1 presents the dispersion curves βpx∆nyq of the nonlinear slot waveguide obtained using the
JEM. The horizontal axis is presented in the log scale. The dispersion curves corresponding to each
mode are labeled by symbols denoting the symmetry and the order of the mode. Typical field profiles
corresponding to each of the labeled modes are shown in Fig. 7.2. We will discuss the character of the
dispersion curves and classify the modes using these two figures.

For small values of nonlinear index modification x∆ny (which is equivalent to low light intensity
and low power), a symmetric mode S0 and an antisymmetric mode AN0 are supported by the nonlinear
slot waveguide structure. These modes are denoted by ‘0’ because they are the lowest-order modes for
a given symmetry. Moreover, these modes are the only modes that have their low-power counterparts
(similar modes exist in linear slot waveguide with identical opto-geometric parameters as the nonlinear
slot waveguide studied here). Modes of nonlinear slot waveguides that exist in the low-power limit will
be called the low-power modes (even if they also exist for elevated power levels). Figures 7.2(a) and (b)
show the magnetic field profiles for the modes S0 and AN0, respectively. Even if the average nonlinear
index modification for the profiles presented in Figs. 7.2(a) and (b) is quite elevated (� 0.1), they have
an effective index close to their linear counterparts and the field profiles still resemble those of the
linear modes. The effective index change of these modes (β-βL, where βL denotes the effective index of
the linear counterpart of the mode) is approximately proportional to the nonlinear index modification
x∆ny. Because of that, β changes slightly for the average index modification lower then 0.2. For higher
x∆ny, the increase of the effective index is clearly visible. Together with the growth of the effective
index of both S0 and AN0 modes, we observe that, with the increase of x∆ny these modes become
closer in terms of β. The symmetric mode S0 is the mode with the highest effective index (at low
powers) and do not possess nodes. Therefore, it will be called the fundamental mode.

At x∆ny � 0.1 an asymmetric mode AS1 bifurcates from the symmetric mode S0.1 This type of
behavior is well known in nonlinear slot waveguides and was described in Ref. [87]. The dispersion curve
corresponding to this asymmetric mode is doubly degenerate. To each point on the curve correspond
two asymmetric field profile: one localized on the left metal/nonlinear dielectric interface (x � 0) and
the second one localized at the right metal/nonlinear dielectric interface (x � d). Typical profiles
corresponding to this dispersion curve are shown in Fig. 7.2(c). The two asymmetric field profiles are
related by a mirror symmetry with respect to the center of the core (x � d{2). The effective index β of
the asymmetric mode AS1 grows rapidly with the increase of x∆ny and is always above the effective
index of the symmetric mode S0. For high values of effective index (β ¡ 7) the dispersion curve of the
AS1 mode is no longer smooth. Several last points of this curve are not calculated precisely with the
numerical algorithm used in the JEM. This behavior is a numerical artifact and is not connected to
the physical properties of the nonlinear slot waveguide studied here.

1This type of bifurcation is called the Hopf bifurcation [155].
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Figure 7.1: (a) Nonlinear dispersion curves of the first and the higher-order symmetric (S — blue),
antisymmetric (AN — red), and asymmetric (AS — green) modes for the symmetric nonlinear slot
waveguide obtained using the JEM. (b) Zoom on the region with bifurcations of the second- and
the third-order asymmetric modes. Each curve is labeled with the name of the corresponding mode.
Structure parameters are listed in Table 7.1.

For larger average nonlinear index modifications (x∆ny ¡ 1) two groups of higher-order modes
appear. The modes belonging to these groups have not been reported yet in literature. Their dispersion
curves and their field profiles are presented in this PhD manuscript for the first time.

The first group consists of modes that possess nodes in the magnetic field profile Hypxq. The first
mode of this group (S1) appears for x∆ny Á 1.1 at the effective index β � 1. For higher x∆ny, higher-
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Figure 7.2: Typical magnetic field profiles Hypxq, obtained using the JEM, corresponding to different
dispersion curves indicated in Fig. 7.1. Abbreviations next to the subfigure labels indicate the disper-
sion curve to which a given profile corresponds. The color of the profile allows us to distinguish the
mode symmetry: symmetric (S — blue), antisymmetric (AN — red), and asymmetric (AS — green).
For asymmetric doubly degenerate modes the second profile is shown in gray.
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order modes of this group appear and each of them has one node more than its predecessor. Therefore,
the symmetry of these modes alternates between symmetric and antisymmetric with the increase of
the order of the mode. The first mode that appears in this group of higher-order modes, is a symmetric
mode S1. A typical magnetic field profile of this mode is presented in Fig. 7.2(d) and it possesses two
nodes. For higher x∆ny an antisymmetric mode AN1 with three nodes appears. A typical magnetic
field profile of this antisymmetric mode is presented in Fig. 7.2(f). With the further increase of x∆ny,
a symmetric mode S2 with four nodes and an antisymmetric mode AN2 with five nodes appear (not
visible on the dispersion diagram shown in Fig. 7.1). Typical field plots for these modes are shown in
Figs. 7.2(e) and (g). The higher-order nonlinear modes belonging to the family with nodes, discussed
here [see Fig. 7.2(d)–(g)] are presented in this PhD manuscript for the first time in the frame of the
study of nonlinear slot waveguides.

In the dispersion plots in Fig. 7.1, modes AN1 and S2 do not appear for β � 1. It is caused
by the range of H0 [field intensity at the left metal/nonlinear dielectric interface, see Eqs. (6.1.4)]
scanned in order to obtain this plot. Scanning even higher values of H0 would allow us to see that,
the dispersion curves of the modes AN1 and S2 curves actually start at β � 1 (see also Fig. 7.27 for
better understanding).

The number of nodes Nnode in the magnetic field profiles of the symmetric modes SΩ and the
antisymmetric modes ANΩ (here Ω denotes the order of the mode and Ω P t0, 1, 2, . . . u) can be
calculated using the formula

Nnode � 2Ω� p, (7.1.2a)

where p denotes the parity of the mode

p �
"

0 for symmetric modes,
1 for antisymmetric modes.

(7.1.2b)

The field profiles of the modes with nodes are similar to the field profiles of a linear slot waveguide
with identical parameters as the nonlinear slot waveguide studied here, except for the permittivity of
the core. The comparison of the dispersion curves and the field profiles obtained for the linear slot
waveguide with core permittivity higher than εl,2 is presented in Section 7.1.5.

The second group of the modes that exists only for elevated nonlinear index modifications (for
x∆ny ¡ 1 in the example presented in Fig. 7.1), is a group consisting of the modes that do not possess
any nodes in the Hypxq field profile. Moreover, the modes in this group have only very high effective
indices β Á 5. Neither the dispersion curves nor the field plots of the modes of this group have already
been presented in literature. We are the first to report their existence and present their dispersion
curves and field profiles.

At x∆ny � 1.5, a higher-order symmetric node-less mode SI2 appears. A typical field profile of the
SI mode is presented in Fig. 7.2(h). The field profile of this symmetric mode does not resemble any
of the modes found in symmetric linear slot waveguides. It can be seen as a soliton propagating in
the nonlinear core of the slot waveguide. The dispersion curve of the SI mode resembles a tilted letter
’V ’. It starts at one extremity at low power and then two branches emerge from this extremity and
continue toward higher values of x∆ny and β.3

Slightly above the appearance of the SI mode, an asymmetric node-less mode AS2 bifurcates
from the symmetric SI mode. The dispersion curve of this mode starts at the bottom branch of the
SI dispersion curve. For 1.9   x∆ny   2.7, the AS2 dispersion curve lays slightly below the bottom
branch of the SI dispersion curve. For x∆ny ¡ 2.7 it lays between the two branches of the SI dispersion
curve. A typical field profile for the AS2 mode is presented in Fig. 7.2(j). This curve, similar to AS1

2Notice that there is a difference in notation between modes S1 and SI. Symbol S1 (with the Arabic digit one) denotes
the first-order symmetric mode that belongs to the family of the modes with nodes. Symbol SI (with the Roman digit
one) denotes a first-order symmetric modes that belongs to the family of the modes without nodes. This nomenclature
is used also for higher-order symmetric modes in both families.

3The appearance of the modes for which the dispersion curves that have parabolic shape is associated with so-called
fold bifurcation [155].
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curve, is doubly degenerate. The soliton peak of the green (gray) profile in Fig. 7.2(j) is located close
to left (right) metal/nonlinear dielectric interface. The Hy field amplitude of the right (left) side-lobe
is larger than of the left (right) side-lobe.

At x∆ny � 3.8 another higher-order symmetric node-less mode appears through the fold bifurca-
tion. It is denoted by SII and its dispersion curve resembles a tilted letter ’U ’. A typical field profile
for this branch is presented in Fig. 7.2(i) and can be seen as two solitons propagating in the nonlinear
waveguide core. This dispersion curve, similar to the one of SI mode, starts at one extremity at low
power and then two branches emerge from this extremity and continue toward higher values of x∆ny
and β.

The asymmetric node-less mode AS3 appears through a symmetry Hopf bifurcation from the SII
mode. This time, in contrast with the SI-AS2 couple, AS3 bifurcates from the top branch of SII
dispersion curve. The dispersion curve of the AS3 mode lays between the two branches of the SII
dispersion curve. A typical field profile for this branch is presented in Fig. 7.2(k). Similar to the case
of SI-AS2 couple, the profile of the AS3 mode presented in Fig. 7.2 in green (gray) resembles the one
from which it bifurcates but is shifted to the right (left) metal/nonlinear dielectric interface.

Interface model

In Fig. 7.3, the dispersion diagram for the nonlinear slot waveguide with the parameters presented
in Table 7.1, obtained using the IM are presented. Typical field profiles corresponding to each of the
dispersion curves labeled in Fig. 7.3 are presented in Fig. 7.4.

The analysis of the dispersion plot obtained using the IM will be done by comparison with the
results discussed above for the JEM. Comparing Figs. 7.1 and 7.3, one can see that qualitatively
the dispersion curves obtained using both models are very similar. The number of the modes and
the character of the dispersion curves agree between the two models. The same conclusion can be
drawn comparing the field plots presented in Figs. 7.2 and 7.4, corresponding to the same modes. The
magnetic field profiles obtained using both models are qualitatively the same. This proves that both
models correctly describe the physical phenomena occurring in the nonlinear slot waveguides. However,
the quantitative description differs between the two models. These discrepancies can be explained by
the fact that the JEM was built using strong assumptions about the nature and the amplitude of the
nonlinear term in Maxwell’s equations (see Pages 78 and 79). The differences between the JEM and
the IM will be discussed in more detail in Section 7.1.3, where we compare the transformation of the
magnetic and the electric field profiles along the dispersion curves obtained using the two models.

From the quantitative point of view there is several differences between the dispersion curves
obtained using the JEM (Fig. 7.1) and the IM (Fig. 7.3). In the IM, the first bifurcation (appearance
of the AS1 mode) occurs at x∆ny � 0.067 which is slightly lower than the value predicted using the
JEM. The bifurcation of the AS2 mode occurs at x∆ny � 3 and β � 7 which is higher than in the
results of the JEM (there x∆ny � 1.5 and β � 5.2). Similarly, the AS3 mode appears in the IM for
both higher x∆ny and β compared to the JEM. Moreover, the separation between the two branches
of the dispersion curves corresponding to the symmetric node-less modes SI and SII is smaller in the
case of the IM than for the JEM.

On the contrary, for the family of the modes with nodes, the situation is reversed. In the frame
of the IM, all these modes appear for lower values of averaged nonlinear index modification x∆ny.
As a result, for identical range of x∆ny, we observe more higher-order symmetric and antisymmetric
modes with nodes using the IM than predicted by the JEM. In Fig. 7.4, two additional field profiles
are presented for the S3 and AN3 modes. The scanning parameter range in case of the IM [in the
IM the input parameters are E0 and Ed (see Section 6.2.2); in the JEM the input parameter was H0]
allows for observing the appearance of all the modes of the family with nodes at β � 1 (unlike in the
JEM where higher-order modes of this family appeared for higher β values, see Fig. 7.1).

In Fig. 7.3, the dispersion curves of the AN0 and S0 modes terminate at β � 8. This is the result
of our numerical procedure that was no longer able to resolve the two solutions and therefore we were
not capable of observing the continuation of these curves. Using the scanning algorithm with a higher
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Figure 7.3: (a) Nonlinear dispersion curves of the first and the higher-order symmetric (S — blue),
antisymmetric (AN — red), and asymmetric (AS — green) modes for the symmetric nonlinear slot
waveguide obtained using the IM. (b) Zoom on the region with bifurcations of the second- and the
third-order asymmetric modes. Each curve is labeled with the name of the corresponding mode.
Structure parameters are listed in Table 7.1.

resolution (more scanning steps in β used in the numerical algorithm presented in Section 6.2.2) would
allow us to compute the continuation of these two curves (see Section 6.2.2 for more details on the
numerical procedure used in the IM and parameters influencing the resolution).4

4By resolution, we understand here the ability of the numerical algorithm to find two solutions that lay close to each
other in terms of β. The algorithm that is able to find solutions that are separated by a smaller interval ∆β has higher
resolution.
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Figure 7.4: Typical magnetic field profiles Hypxq, obtained using the IM, corresponding to different
dispersion curves indicated in Fig. 7.3. Abbreviations next to the subfigure labels indicate the disper-
sion curve to which a given profile corresponds. The color of the profile allows us to distinguish the
mode symmetry: symmetric (S — blue), antisymmetric (AN — red), and asymmetric (AS — green).
For asymmetric doubly degenerate modes the second profile is shown in gray.
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to the dispersion curves is indicated using a color code (see plot legend).

In Fig. 7.5, a direct comparison between the nonlinear dispersion curves obtained using the JEM
(Fig. 7.1) and the IM (Fig. 7.3) is presented. Additionally, for the IM, the ratio of maxt|E2

x|u{maxt|E2
z |u

for the field profiles corresponding to the dispersion curves is shown. From this plot we can
see that there is a good quantitative agreement between the two models in the case where
maxt|E2

x|u{maxt|E2
z |u ¡ 6. This is coherent with the assumptions that we have made while build-

ing the JEM. To derive the nonlinear wave equation used in this model [Eq. (6.1.2)], we assumed that
in this model the ratio maxt|E2

x|u{maxt|E2
z |u " 1. Only in this case we were able to omit the E2

z

term in the calculations of the Kerr nonlinearity. This fact helps us to understand the discrepancies
between the results of our two models and shows that the approximations we made are coherent with
the interpretation of the results. We notice that the assumption maxt|E2

x|u{maxt|E2
z |u " 1 is valid

only for the two first modes (S0 and AN0) of the nonlinear slot waveguide at small nonlinear index
modifications (x∆ny À 0.1). Nevertheless, the simple JEM is able to qualitatively predict the complex
behavior of the rich nonlinear dispersion relations for the nonlinear slot waveguides even for elevated
values of x∆ny.

The second assumption that we have made in the JEM was that the nonlinear index modification
x∆ny is much lower than the linear part of the refractive index

?
εl,2. We see that, for the range of x∆ny

where this assumption is fulfilled (x∆ny   0.1), the results of our two models are in good agreement.

Nonlinear dispersion curves in various coordinates

We have thoroughly analyzed the nonlinear dispersion relations obtained using our two models in
the case where the averaged nonlinear index modification x∆ny was used as abscissa. It is interesting
to analyze the dispersion diagrams of the nonlinear slot waveguide (with the parameters listed in
Table 7.1), when other quantities (such as light intensity, power or electric field amplitude at one of
the interfaces between metal and nonlinear dielectric) are used as abscissa.
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From the definition of x∆ny given by Eq. (7.1.1) we notice that this quantity is strictly proportional

to the intensity density in the core (the proportionality constant is n
p2q
2 {d)

Ic �
» d

0
I dx. (7.1.3)

Therefore, we will not discuss in detail the dispersion diagrams plotted as a function of Ic because
they will have exactly the same character as the dispersion plots presented in Figs. 7.1 and 7.3.

Another important quantity in electrodynamics is the Poynting vector, which describes the en-
ergy flow. The power density in the core is given as the Poynting vector component parallel to the
propagation direction (z component) integrated over the core cross-section:

Pc �
» d

0
Sz dx, (7.1.4)

where the Poynting vector is defined as

S � 1

2
<epE�H�q (7.1.5)

[compare with definitions given by Eqs. (2.1.53) and (2.1.54)].
The nonlinear dispersion curves obtained using both the JEM and the IM, in which the power

density in the core Pc is used as abscissa, are presented in Fig. 7.6. At the first glance we notice
two facts. First of all, the dispersion curves have different characters than in the dispersion diagrams
presented using x∆ny as abscissa. Secondly, the dispersion curves obtained using both models changed
their characters in identical way. Both model still provide qualitatively the same results.

The most striking difference between the dispersion diagrams plotted using x∆ny (Figs. 7.1 and
7.3) and Pc (Fig. 7.6) as abscissa is the change of the inclination of the dispersion curves. When x∆ny
was used as abscissa, the increase of the effective index β was accompanied by a monotonous increase
of the average nonlinear index modification and therefore the intensity density in the core for all the
modes. In the case of Pc used as abscissa, the behavior is no longer monotonous and is different for
different dispersion curves. For modes AN0, S0, AS1, S1, AN1, and S2, at low effective indices, the
power density in the core increases with the increase of β [see Fig. 7.6(b)]. At a particular value of the
effective index (different for each mode), Pc reaches its maximum and above this β value, Pc decreases
with the increase of β.5 For modes AN2, S3, and AN3 that belong to the family with nodes and for the
asymmetric node-less modes AS2 and AS3, the power density in the core decreases with the increase
of β in all the range of effective indices. Higher-order symmetric modes from the node-less family (SI
and SII) present a more complex behavior (see Fig. 7.6).

It is also worth noting that in the dispersion diagrams where x∆ny was used as abscissa (Figs. 7.1
and 7.3), modes of the family with nodes were well separated in terms of x∆ny for all values of β. In
the case where Pc is used as abscissa (Fig. 7.6) we can observe that these modes become closer to each
other in terms of Pc with the increase of the effective index β.

In Fig. 7.7, a dispersion diagram obtained using the IM is shown, where the total power density
Ptot in the slot waveguide was used as abscissa. The total power density is defined as

Ptot �
» �8

�8
Sz dx, (7.1.6)

and can be seen as a sum of the power density in the core and in the two metal regions

Ptot � Pc � P1 � P3 (7.1.7)

5Similar behavior is observed for the dispersion diagram where the total power Ptot (see Fig. 7.7) or the total intensity
Itot (see Fig. 8.2) of the mode is used as abscissa. The change of inclination of the βpItotq curves may influence the stability
of the mode (see Chapter 8).
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Figure 7.6: Dispersion curves for the symmetric nonlinear slot waveguide presenting the effective index
β as a function of the power density in the core Pc obtained using (a) the JEM and (b) the IM. For
clarity of the plots and to facilitate mutual comparison the case of the IM the range of the effective
indices shown was reduced and is now identical to these in the case of JEM (β P r1, 8s). Structure
parameters are listed in Table 7.1.

[compare with definition given by Eq. (2.1.56)]. Here P1 and P3 denote the power density in left
and right semi-infinite cladding metal layers, respectively (see Fig. 6.1) and can be calculated using
formulas similar to Eq. (7.1.4). As it can be seen from the definition given by Eq. (2.1.55), the power
density in metal layers is negative due to the negative value of the metal permittivity. Therefore, the
total power density Ptot is lower than the power density in the core Pc. However, this difference is small
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Figure 7.7: Dispersion curves for the symmetric nonlinear slot waveguide obtained using the IM.
Dependency of effective index β presented as a function of the total power density Ptot. Structure
parameters are listed in Table 7.1.

for two reasons. Firstly, the field in the metal decays exponentially very quickly, with a penetration
depth of the order of 0.05 µm. Secondly, even for identical magnetic field amplitude in the metal and
in the dielectric, the absolute value of the power density in the metal is |εmetal|{εdielectric times lower
(in our case |ε3|{εl,2 � 90{12 � 7.5). These theoretical considerations are confirmed, if we compare
the plots in Figs. 7.6(b) and 7.7. These two plots are practically identical and it is difficult to spot a
difference between them. The only visible change occurs for the first-order asymmetric curve AS1, for
very high effective indices. For β � 8, the total power density of this mode is Ptot � 7 � 108 W/m and
the power density in the core is Pc � 8 � 108 W/m, which accounts to about 15 % difference between
the two powers densities. A detailed analysis shows that for low β region the ratio Pc{Ptot is less that
1.05. For modes S0, AN0, and AS1 this ratio reaches 1.3 for very high values of mode effective indices.
For the rest of the modes it stays at the level 1.05 for all the range of effective indices β.

The situation is similar if we compare the dispersion curves plotted in the coordinates of the
intensity density in the core Ic and the total intensity density Itot in the waveguide.6 The comparison
of these two dispersion diagrams is presented in Fig. 7.8. Here, the total intensity density Itot is slightly
higher than the intensity density in the core Ic due to the fact that we have defined the light intensity
to be positive regardless of the sign of the material permittivity [see Eq. (1.7.4)]. The ratio Itot{Ic is
below 1.05 for the region of low β values. For the S0, AN0, and AS1 modes, this ratio increases to 1.5
for high values of β. For all the other modes, it decreases toward 1 with the increase of β.

To conclude this part, we can observe that for the opto-geometric parameters we use in Figs. 7.6(b)
and 7.7, there is no qualitative difference between the dispersion curves plotted in the coordinates of
the total power density Ptot and the power density in the core Pc. Similarly, there is no qualitative
difference between the dispersion diagrams plotted in the coordinates of the intensity density in the

6The total intensity density in the nonlinear slot waveguide is defined by

Itot �
» �8
�8

I dx,

in a similar manner to the total power density [see Eq. (7.1.6)].
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Figure 7.8: Dispersion curves for the symmetric nonlinear slot waveguide obtained using the IM.
Dependency of effective index β presented as a function of (a) the intensity density in the core Ic and
(b) the total intensity density in the waveguides Itot. Structure parameters are listed in Table 7.1.

core Ic [Fig. 7.8(a)] and the total intensity density Itot [Fig. 7.8(b)]. For the configurations where the
core width is much smaller than in our case and it is comparable with the field penetration depth in
the metal, the differences between such plots are more pronounced [87].

It is equally interesting to look at the dispersion diagrams where the effective index β is presented
as a function of the total electric field amplitude at one of the interfaces between the metal and
the nonlinear dielectric core. Figure 7.9 shows such plots obtained using both the JEM and the IM.
This time, the quantity used as abscissa is not a global quantity as in the cases of x∆ny, or power
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Figure 7.9: Dispersion curves for the symmetric nonlinear slot waveguide presented as the dependency
of the effective index β on the total electric field amplitude on the left interface between metal and
nonlinear dielectric E0. Results obtained using (a) the JEM and (b) the IM. Structure parameters are
listed in Table 7.1.

and intensity densities. Here we use a local quantity E0 [defined by Eq. (6.2.9a)], which denotes the
total electric field amplitude at the left metal/nonlinear dielectric interface. The dispersion diagrams
plotted using a local quantity as abscissa look drastically different from the dispersion curves presented
using global quantities as abscissa. The most interesting is the fact that, the asymmetric dispersion
curves are no longer degenerate in this coordinate frame. The pairs of asymmetric field profiles with
identical β value that corresponded to one point in the dispersion curves drawn in the coordinates
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Figure 7.10: Dependency of Ed on E0 for the symmetric nonlinear slot waveguide, with parameters
are listed in Table 7.1, obtained using (a) the JEM and (b) the IM.

of a global quantity [green and gray field profiles in Figs. 7.2(c), (j), (k) and Figs. 7.4(c), (l), (m)],
are now represented by different points on the dispersion diagrams. The field profile localized at the
left core interface (E0 ¡ Ed — gray profile) corresponds to a point located at the right branch (high
E0) of the dispersion curves of asymmetric modes in Fig. 7.9. The profile localized at the right core
interface (E0   Ed — green profile) corresponds to a point located at the left branch (low E0) of these
dispersion curves for identical β value.
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At the end of this section, we analyze the plots presenting the dependency of the total electric
field amplitude at the right metal/dielectric interface Ed [defined by Eq. (6.2.9b)] as a function of the
total electric field amplitude at the left interface E0. These plots, obtained using the JEM and the
IM, are presented in Fig. 7.10. They resemble Fig. 3 in Ref. [38] presenting the nonlinear permittivity
modification on the left and right interface of the nonlinear core in a fully dielectric waveguide with
the nonlinear core. These plots show that in both our models the assumption about the symmetry
of the modes is well satisfied. As expected, for the symmetric and antisymmetric field profiles the
values of the electric field amplitudes on both core interfaces are identical (Ed � E0). For asymmetric
profiles, the green curves in Fig. 7.10 are symmetric with respect to the line Ed � E0, which reflects
the mirror symmetry of the green and gray field plots of asymmetric modes [see Figs. 7.2(c), (j), (k)
and Figs. 7.4(c), (l), (m)]. Parts of the asymmetric curves for low values of Ed and high values of E0

(bottom right corner) are missing due to the asymmetric scanning range used in our simulations.

7.1.2 Field profiles obtained using the interface model

In Section 7.1.1, we have described in detail the nonlinear dispersion relations obtained using the JEM
and the IM for the symmetric nonlinear slot waveguide with the parameters shown in Table 7.1. We
have shown that there is a very good qualitative agreement between the dispersion diagrams and the
magnetic field profiles of the modes obtained using the two models. We have also presented a typical
magnetic field profiles for each of the mode in the dispersion plots. This helped us to classify the
modes according to their symmetry and the number of nodes.

In this section and in Section 7.1.3, we will study the field profiles in more detail. We will present
not only magnetic field, but also electric field components, intensity, power (z component of the
Poynting vector), and distribution of the nonlinear index modification in the core of the nonlinear slot
waveguide. Furthermore, we will analyze the transformation of the field profiles along all the dispersion
curves. This study will help us to get a better understanding of the behavior of the nonlinear dispersion
curves. It will also help us to further understand the differences and discrepancies between the JEM
and the IM.

As we have discussed on Page 116, the theoretical assumptions used to derive the JEM are not
fulfilled by my most of the solutions found in the nonlinear slot waveguide structure. Therefore, we
will present first the field profiles obtained using the IM, as this model is more suited for nonlinear
slot waveguide studies. Because the IM does not use any limiting assumptions, we use its results
as a reference. In Section 7.1.3 the field profiles obtained using the JEM will be discussed and the
comparison between the results of the two models will be presented.

In Figs. 7.11 and 7.12, the dispersion curves βpE0q obtained using the IM are presented. These
dispersion diagrams show the same dispersion plots as Fig. 7.9(b) but are more detailed. On the
dispersion curves presented in Figs. 7.11 and 7.12 points were marked and labeled. The field profiles
corresponding to these points are presented in the following and will help us to understand the mode
transformation along the dispersion curves.
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Modes with linear counterparts (low-power modes)

We start by discussing the transformation of the field profiles along the nonlinear dispersion curves
corresponding to the first symmetric mode S0 and the first antisymmetric mode AN0 that originate for
low powers and resemble the linear modes of the slot waveguide. These modes are called the low-power
modes even if they exist also in the high power regime. Figure 7.13 presents the magnetic and electric
field components, total electric field amplitude, intensity and power distribution in the nonlinear slot

waveguide with the parameters given in Table 7.1 for the limiting case n
p2q
2 � 0. In this limiting case

two modes are supported by the studied structure: a symmetric mode S0L and and antisymmetric
mode AN0L (see Figs. 7.11 and 7.12 for the point labels).

The profiles presented in Fig. 7.13 and all the following plots in this section are computed using the
following scheme. In the frame of the IM, the quantities that are obtained directly at the output of the
numerical procedure are Ex and Ez field components (see Section 6.2.2). Based on these quantities the
magnetic field is calculated using Eq. (1.5.2b), where the full nonlinear expression for the refractive
index given by Eq. (6.2.1) is used. The total electric field amplitude is simply E � a

E2
x � E2

z (as
defined on Page 97). The intensity distribution7 I is calculated using Eq. (1.7.4) and the power
distribution P (equivqlent to the longitudinal component of the Poynting vector Sz) is computed
using Eq. (7.1.5).

In Fig. 7.14, the transformation of the modes S0 and AN0 along their respective dispersion curves
is presented. In the first two columns, the effect of the increase of E0 (and therefore the total intensity
density defined in Footnote 6 on Page 119) on the S0 mode is presented and in the last two columns
the same effect is presented for the AN0 mode. In addition to the profiles presented in Fig. 7.13, the
distribution of the nonlinear index modification is presented in the last row of Fig. 7.14. The nonlinear
index modification in the nonlinear dielectric is calculated using the following formula:

∆n � n
p2q
2 I � n0, (7.1.8)

where n0 denotes the linear part of the refractive index and in our case is equal to
?
εl,2. In the linear

materials (metal cladding) ∆n � 0.
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Figure 7.13: Profiles of (a), (e) magnetic field component Hy; (b), (f) electric field components Ex
(red or blue) and �Ez (black); (c), (g) total electric field amplitude E; (d), (h) intensity I (red or
blue) and power P (black). Plots in the top row corresponds to for the linear fundamental symmetric
mode of the slot waveguide (S0L) and in the bottom row to the linear antisymmetric mode of the slot
waveguide (AN0L) (see Figs. 7.11 and 7.12 for the point labels).

7Here we stress on the fact that, the discontinuity that is observed in the intensity distribution at the metal/nonlinear
dielectric interfaces in plots presented in this section, is a physical effect and not a numerical artifact.
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Figure 7.14: Profiles of (a)–(d) magnetic field component Hy, (e)–(h) electric field components Ex (red
or blue) and �Ez (black), (i)–(l) total electric field amplitude E, (m)–(p) intensity I (red or blue) and
power P (black), (q)–(t) and nonlinear index modification ∆n corresponding to points (first column)
S0c, (second column) S0f, (third column) AN0c, and (fourth column) AN0f in Figs. 7.11 and 7.12.

We can see from Fig. 7.14 that, with the increase of the total intensity density, the amplitudes of
the magnetic field, electric field components and the related quantities that are presented increase.
However, there is no qualitative change in the field profiles and all the profiles (except for the nonlinear
index modification) resemble their linear counterparts presented in Fig. 7.13.
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Chapter 7. Numerical results

Modes without nodes (node-less modes)

In Fig. 7.15, the transformation of the nonlinear first-order asymmetric node-less mode AS1 along its
dispersion curve is presented, in a way similar to modes S0 and AN0 shown Fig. 7.14. The total intensity
density increases from column one to column three. It is interesting to observe that the field profiles
become more and more asymmetric with the increase of the total intensity density. In the first column,
the ratio between the total electric field amplitude on the two interfaces Ed{E0 is approximately equal
to 2. With the increase of the mode energy, the intensity on one interface decreases and on the other
one increases. Therefore, the Ed{E0 ratio increases to � 4 in the second column and � 10 in the
third column. As a result of the increased asymmetry of the field distribution, the mode tends to be
located at one of the interfaces only. Because the light intensity at the other interface is very weak
[see Fig. 7.15(o)], it is justified to assume that strongly asymmetric modes interact mainly with only
one interface. This fact is used in Section 7.1.4 to approximate the dispersion relation of the AS1
mode by the dispersion relation for a single metal/nonlinear dielectric interface. This approximation
is practical, because the dispersion relations for single-interface problems are given in an analytical
way.

It is interesting to compare the field profiles of the three nonlinear modes AN0, S0, and AS1 for
points at which the total electric field amplitude at the left metal/nonlinear dielectric interface E0

is identical for all three modes (see Figs. 7.11 and 7.12). This comparison is presented in Fig. 7.16.
We observe that for the bifurcation point, to which corresponds Fig. 7.16(d), the field profiles of the
symmetric and asymmetric modes are identical. Moving away from the bifurcation point causes the
increase of the asymmetric field profile asymmetry. At the bifurcation point, the ratio Ed{E0 for the
AS1 mode is equal to 1. Moving toward lower values of E0, this ratio increases and is approximately
equal to 2 for subplot (c), 4 for subplot (b), and 10 for subplot (a). On the contrary, moving to the
higher values of E0, this ratio decreases and is approximately equal to 1{2 for subplot (e), 1{4 for
subplot (f), 1{20 for subplot (g). Both effects evidence the increase of the AS1 mode asymmetry.

Then we analyze the transformation of the light intensity profiles Ipxq for the three nonlinear
modes (AN0, S0, and AS1) along their dispersion curves. The intensity profiles, corresponding to the
magnetic field profiles presented in Fig. 7.16, are shown in Fig. 7.17. Here we can observe that for
low E0 values [see Figs. 7.17(a)–(c)] the total intensity density of the mode is much lower for the
symmetric and antisymmetric modes than for the asymmetric mode. At the value of E0 where the
bifurcation occurs, the total intensity density of the three modes is comparable [see Fig. 7.17(d)].
With further increase of E0, the total intensity density of the symmetric and antisymmetric modes
becomes larger than the total intensity density of the asymmetric mode [see Figs. 7.17(e)–(g)]. In
Fig. 7.17(g), the total intensity density of the symmetric or antisymmetric mode is twice larger than
the one of the asymmetric mode. This can be also seen from the dispersion diagrams presented in
Section 7.1.1. For high values of β in the dispersion plot βpItotq [see Fig. 7.8(b)], the symmetric S0
mode and antisymmetric AN0 mode have total intensity density that is two times larger than the
total intensity density of the asymmetric AS1 mode with identical value of effective index. Similar
observation can be made for the dispersion curves βpx∆nyq or βpPtotq (see Figs. 7.5 and 7.7).

From Fig. 7.17 it can also be seen that the intensity distributions of the symmetric S0 and anti-
symmetric AN0 modes become more similar with the increase of E0 (and therefore with the increase
of the total intensity density) accompanied by the increase of the effective index β. This explains the
fact that in the dispersion diagrams presented in Section 7.1.1, the dispersion curves of the S0 and
AN0 modes become close to each other for high values of β.

The three modes described above (AN0 that belongs to the family with nodes and S0 and AS0 be-
longing to the node-less family) have been already reported in nonlinear slot waveguide structures [87].
However, no exhaustive study of their properties has been presented yet. The analysis presented above
is the first that describes in detail the mode transformations along the dispersion curves.

Below we present a detailed description of the higher-order modes from the node-less family. The
existence of these modes has not been reported previously in literature. The analysis presented in the
following provides the first description of the properties of these modes.
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Figure 7.15: Profiles of (a)–(c) magnetic field component Hy, (d)–(f) electric field components Ex (red
or blue) and �Ez (black), (g)–(i) total electric field amplitude E, (j)–(l) intensity I (red or blue) and
power P (black), (m)–(o) and nonlinear index modification ∆n corresponding to points (first column)
AS1c, (second column) AS1b, and (third column) AS1a in Figs. 7.11 and 7.12.
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Figure 7.16: Profiles of magnetic field Hy for the symmetric S0 mode (blue), antisymmetric AN0 mode
(red), and the first-order asymmetric AS1 mode (green). The subplots present the transformation of
the field profiles at the points labeled by a, b, c, d, e, f, and g indicated in Figs. 7.11 and 7.12. In all
the subplots, the scale was kept identical to see the relative change of the magnetic field amplitude
between the points. In each of the subplots, the total electric field amplitude at the left metal/nonlinear
dielectric interface (E0) is identical for all three modes.

In Fig. 7.18, the transformation of the field profiles of the higher-order symmetric node-less mode
SI along its dispersion curve is presented. Columns are ordered by increasing values of total intensity
density of the mode, which correspond to the decrease of E0. The field profile of the SI mode resembles
a soliton trapped inside of the core of the nonlinear slot waveguide. With the increase of the total
intensity density, we first observe a slight decrease of the peak amplitude in the center of the waveguide
(columns one to two) and then the increase of that amplitude (columns two to four). Moreover,
we notice that with the increase of the total mode intensity density the amplitudes close to both
metal interfaces decrease and therefore the side-lobes of the mode become less pronounced. The mode
presented in the second column is the one with the lowest values of β and the lowest total intensity;
it corresponds to the point SIc in Figs. 7.11 and 7.12.

In Fig. 7.19, the transformation of the field profiles of the second-order asymmetric node-less mode
AS2 along its dispersion curve is presented. The mode profile resembles a soliton propagating in the
core of the nonlinear waveguide, similar to the SI mode. The soliton peak of the AS2 mode is not
located at the center of the waveguide, but is shifted to one side of the waveguide. Columns in Fig. 7.19
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Figure 7.17: Profiles of light intensity I for the symmetric S0 mode (blue), antisymmetric AN0 mode
(red), and the first-order asymmetric AS1 mode (green). Each subplot corresponds to the respective
subplot in Fig. 7.16. The scale on the vertical axis is not kept identical in all the subplots in order to
be able to observe the features of the intensity profiles.

are ordered by increasing values of the total intensity density of the mode, which correspond to the
decrease of E0 and the increase of Ed. The ratio between the total electric field amplitudes Ed{E0 is
approximately equal to 2 in the first column, 4 in the second column, and 10 in the third column.
This means that the asymmetry of the mode increases with the increase of its total intensity density.
The increase of the asymmetry is also accompanied by the change of the position of the soliton peak.
The higher the mode asymmetry, the more off-center the soliton peak is located.

The effect of the soliton peak location shift is better visible in Fig. 7.20, where a comparison of
the magnetic field profiles of the symmetric SI mode and the asymmetric AS2 mode is presented.
In each subplot magnetic field profiles are compared for the modes with identical value of E0 (see
Figs. 7.11 and 7.12). In Fig. 7.20, the shift of the soliton peak is clearly visible, because its position
can be directly compared with the position of the soliton peak of the symmetric mode, which is always
located in the center of the waveguide. Figure 7.20(d) corresponds to the bifurcation point of the
asymmetric AS2 mode. At this point, the total intensity density of the AS2 mode is the lowest and it
is identical to the total intensity density of the symmetric SI mode. Additionally, the Ed{E0 ratio is
equal to 1. With the decrease of the E0 values [moving from the subplot (d) toward the subplot (a)],
the soliton peak of the AS2 mode shifts toward the left metal/nonlinear dielectric interface. At the
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Figure 7.18: Profiles of (a)–(d) magnetic field component Hy, (e)–(h) electric field components Ex (red
or blue) and �Ez (black), (i)–(l) total electric field amplitude E, (m)–(p) intensity I (red or blue) and
power P (black), and (s)–(t) nonlinear index modification ∆n corresponding to points (first column)
SId, (second column) SIc, (third column) SIb, (fourth column) and SIa in Figs. 7.11 and 7.12.

same time, the total electric field amplitude at the right interface Ed increases. The Ed{E0 ratio is
approximately equal to 20 in for the subplot (a), 4 for the subplot (b), and 2 for the subplot (c). On
the contrary, increasing the E0 values [moving from the subplot (d) toward the subplot (g)], causes
the shift of the soliton peak of the AS2 mode toward the right metal/nonlinear dielectric interface.
We conclude that the soliton peak always shifts toward the interface at which the total electric field
amplitude is lower. The Ed{E0 ratio is approximately equal to 1{2 in for the subplot (e), 1{4 for the
subplot (f), and 1{25 for the subplot (g).
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Figure 7.19: Profiles of (a)–(c) magnetic field component Hy, (d)–(f) electric field components Ex (red
or blue) and �Ez (black), (g)–(i) total electric field amplitude E, (j)–(l) intensity I (red or blue) and
power P (black), and (m)–(o) nonlinear index modification ∆n corresponding to points (first column)
AS2c, (second column) AS2b, and (third column) AS2a in Figs. 7.11 and 7.12.
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Figure 7.20: Profiles of magnetic field Hy for the symmetric SI mode (blue) and the second-order
asymmetric AS2 mode (green). The subplots present the transformation of the field profiles at the
points labeled a, b, c, d, e, f, and g indicated in Figs. 7.11 and 7.12. In all the subplots the scale is
kept identical to see the relative change of the magnetic field amplitude between the points. In each
subplot the value of E0 is identical for both modes.

In Fig. 7.21, the transformation of the intensity profiles of the symmetric mode SI, asymmetric
mode AS2 and the symmetric mode S18 along their respective dispersion curves are presented. The
subplots are ordered by increasing values of E0. In each of the subplots the value of E0 for all the
three modes is identical. From the intensity profiles presented in Fig. 7.21, we can observe that the
intensity distributions of the symmetric modes SI and S1 become more similar with the increase of E0.
Additionally, the intensity profile of the asymmetric mode AS2 for high values of E0 also resembles the
intensity profiles of the symmetric modes [see Fig. 7.21(g)]. The AS2 profile has exactly the same main
peak of the soliton as the SI mode, but it has only one instead of two side-lobes at the metal/nonlinear
dielectric interfaces. This explains why the three dispersion curves (SI, AS2 and S1) become very close
to each other for high values of E0 in the dispersion plot presented in Figs. 7.11 and 7.12. Because
the three field profiles corresponding to the points SIg, AS2g, and S1h have very similar values of the
total intensity density [see Fig. 7.21(g)], the dispersion curves of these modes lay close to each other

8We remind the reader that the symmetric mode SI belongs to the node-less family, whereas the symmetric mode
S1 belongs to the family with nodes (see Footnote 2 on Page 112).

134



7.1. Symmetric structures

 0

 3

 6

 9

 12

-0.2  0  0.2  0.4  0.6

I 
[1

0
1
8
 W

/m
2
]

x [µm]

(a) S1b
SIa

AS2a

 0

 1

 2

 3

 4

-0.2  0  0.2  0.4  0.6

I 
[1

0
1
8
 W

/m
2
]

x [µm]

(b) S1c
SIb

AS2b

 0

 1

 2

 3

-0.2  0  0.2  0.4  0.6

I 
[1

0
1
8
 W

/m
2
]

x [µm]

(c) S1d
SIc

AS2c

 0

 1

 2

-0.2  0  0.2  0.4  0.6

I 
[1

0
1
8
 W

/m
2
]

x [µm]

(d) S1e
SId

AS2d

 0

 1

 2

 3

-0.2  0  0.2  0.4  0.6

I 
[1

0
1
8
 W

/m
2
]

x [µm]

(e)S1f
SIe

AS2e

 0

 1

 2

 3

 4

-0.2  0  0.2  0.4  0.6

I 
[1

0
1
8
 W

/m
2
]

x [µm]

(f)S1g
SIf

AS2f

 0

 3

 6

 9

 12

-0.2  0  0.2  0.4  0.6

I 
[1

0
1
8
 W

/m
2
]

x [µm]

(g)S1h
SIg

AS2g

Figure 7.21: Profiles of light intensity I for the symmetric SI mode (blue), the second-order asym-
metric AS2 mode (green), and the higher-order symmetric S1 mode with nodes (black). Each subplot
corresponds to the respective subplot in Fig. 7.20 where the Hy profiles for the node-less modes are
presented. The additional plots for the S1 mode presented in the subplots (a)–(g) correspond to the
points on the S1 nonlinear dispersion curve with identical value of E0 as for the respective SI and AS2
modes. For the S1 mode the field profiles corresponding to the points labeled b, c, d, e, f, g, and h in
Figs. 7.11 and 7.12 are shown. The scale on the vertical axis is not kept identical in all the subplots
in order to be able to observe more easily the features of the intensity profiles. In subplot (d) the
intensity profiles of the SI and AS2 modes are identical. In subplot (g) the intensity profiles of the SI
and S1 modes overlap.

also on the dispersion diagrams where x∆ny or Itot is used as abscissa (see high β regions of Figs. 7.3
and 7.8).

In Fig. 7.22, the transformation of the symmetric node-less mode SII along its dispersion curve is
presented. The field profile of this mode resembles two solitons trapped in the core of the nonlinear
slot waveguide. The columns are ordered by the increase of the total electric field amplitude at the
left core interface E0. With the increase of E0, the total intensity density of this mode first decreases
(column one to three). In the third column, the mode profiles at the lowest point of the SII dispersion
curve (lowest β and Itot for the SII mode — see point SIIc in Fig 7.12) are presented. With further
increase of E0, the total intensity density of the SII mode starts to grow again (column three to four
in Fig. 7.22).
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Figure 7.22: Profiles of (a)–(d) magnetic field component Hy, (e)–(h) electric field components Ex (red
or blue) and �Ez (black), (i)–(l) total electric field amplitude E, (m)–(p) intensity I (red or blue) and
power P (black), and (s)–(t) nonlinear index modification ∆n corresponding to points (first column)
SIIa, (second column) SIIb, (third column) SIIc, and (fourth column) SIId in Figs. 7.11 and 7.12.
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Figure 7.23: Profiles of (a)–(c) magnetic field component Hy, (d)–(f) electric field components Ex (red
or blue) and �Ez (black), (g)–(i) total electric field amplitude E, (j)–(l) intensity I (red or blue) and
power P (black), and (m)–(o) nonlinear index modification ∆n corresponding to points (first column)
AS3a, (second column) AS3b, and (third column) AS3c in Figs. 7.11 and 7.12.
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Figure 7.24: Profiles of magnetic field component Hy for the symmetric mode SII (blue) and the third-
order asymmetric mode AS3 (green). The subplots present the transformation of the field profiles
corresponding to the points indicated on the dispersion curve in Figs. 7.11 and 7.12. The labels of the
points are given in the subplot legends.

In Fig. 7.23, the transformation of the third-order asymmetric node-less mode AS3 along its dis-
persion curve is presented. The field profile of this mode resembles two solitons propagating in the
core of the nonlinear slot waveguide, similar to the SII mode. The field profiles of the AS3 mode are
not symmetric and the solitons are shifted toward one of the core interfaces. The columns in Fig. 7.23
are ordered by increasing values of E0. The second column shows the field profiles at the bifurcation
point, at which the mode is symmetric and the total electric field amplitude ratio Ed{E0 is equal to 1.
In the first column the asymmetric mode AS3 is shown for which Ed{E0 � 2. In this case, the peaks of
the two solitons present in the core are shifted toward the left interface. In the third column, a mode
that is a mirror image (symmetry with respect to x � d{2) of the mode shown if the first column is
presented. Here, similar to the case of the asymmetric mode AS2, we conclude that the soliton peaks
shift toward the interface where the total electric field amplitude is lower (both soliton peaks shift in
the same direction). It is worth noting that, the asymmetry of the field profiles is introduced only by
the shift of the positions of the two solitons. There is no visible asymmetry in the amplitude or the
width of the two solitons.

Figure 7.24 shows the comparison of the magnetic field profiles of the symmetric SII mode and
the asymmetric AS3 mode. In each subplot, the value of E0 for both modes is identical. Subplot (b)
corresponds to the bifurcation point at which the two mode profiles are identical. With the increase
[subplot (c)] or the decrease [subplot (a)] of E0 it is clearly visible that the soliton peaks of the
asymmetric mode shift with respect to their positions in the profile obtained at the bifurcation point
[Fig. 7.24(b)].

All the modes described above (except for the antisymmetric low-power mode AN0) belonged to
the node-less family. The analysis of the higher-order modes of this family (SI, AS2, SII, and AS3)
was presented here for the first time. In the next section we will discuss the properties of the modes
that possess nodes in their magnetic field profile Hypxq.

Modes with nodes

Above we have presented a first detailed description of the higher-order node-less modes. Here we
will proceed to the description of the modes belonging to the family with nodes. The modes of this
family (except for the lowest-order AN0 mode [87]) have not been reported before in nonlinear slot
waveguides. We present here the first detailed analysis of their properties and transformation along
their dispersion curves.
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Figure 7.25: Profiles of (a)–(c) magnetic field component Hy, (d)–(f) electric field components Ex (red
or blue) and �Ez (black), (g)–(i) total electric field amplitude E, (j)–(l) intensity I (red or blue) and
power P (black), and (m)–(o) nonlinear index modification ∆n corresponding to points (first column)
S1a, (second column) S1c, and (third column) S1e in Figs. 7.11 and 7.12. The scale in the subplots
presenting the same quantity is not kept identical for different points in order to improve the visibility
of profile features.
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Figure 7.26: Profiles of (a)–(c) magnetic field component Hy, (d)–(f) electric field components Ex (red
or blue) and �Ez (black), (g)–(i) total electric field amplitude E, (j)–(l) intensity I (red or blue) and
power P (black), and (m)–(o) nonlinear index modification ∆n corresponding to points (first column)
AN1a, (second column) AN1b, and (third column) AN1c in Figs. 7.11 and 7.12. The scale in the
subplots presenting the same quantity is not kept identical for different points in order to improve the
visibility of profile features.
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7.1. Symmetric structures

At first, we discuss the symmetric mode that possesses two nodes in the magnetic field profile and
is denoted by S1. The transformation of the field profiles of this mode along its dispersion curve is
presented in Fig. 7.25. Columns are ordered by increasing values of E0 and at the same time with the
increasing total intensity density of the mode. The magnetic field profile of this mode resembles the
magnetic field profile of a higher-order linear mode of a linear slot waveguide with identical parameters
as the nonlinear slot waveguide considered here but with higher core refractive index. The connection
between these two modes (and also between the antisymmetric higher-order modes described later in
this section) will be discussed in Section 7.1.5.

For all the modes of the node-less family, the transverse electric field component Ex had a higher
amplitude than the longitudinal component Ez (see second rows of Figs. 7.15, 7.18, 7.19, 7.22, and
7.23). Therefore, the profile of the total electric field amplitude E resembled the field profile of the
|Ex| component. Because Ex is proportional to Hy [see Eq. (1.5.2b)], for the node-less modes the
profiles of |Hy| and E were similar. For the modes with nodes [S1 (see Fig. 7.25), AN1 (see Fig. 7.26),
and higher-order modes with nodes (data not shown)] at low power, the longitudinal component of
the electric field Ez has higher amplitude than the transverse component Ex [see Figs. 7.25(d) and
7.26(d)], contrary to the node-less modes. This implies that the total electric field amplitude E has
a profile that is closer to the |Ez| profile than to the |Hy| profile. For higher powers [see subplots (e)
and (f) in Figs. 7.25 and 7.26] the amplitudes of the two electric field components become close to
each other (for graphical illustration of the Ex{Ez ratio see also Fig. 7.5).

It is interesting to notice that, for the S1 mode for high intensities (the third column in Fig. 7.25),
the profile of the electric field component Ez changes its character. A single maximum or minimum in
the field profile splits for high E0 into two maxima or minima, respectively.

Connected to the ratio of Ex and Ez, and equally interesting, is the behavior of the Epxq, Ipxq,
P pxq, and ∆npxq profiles. For low intensities (corresponding to point S1a in Fig. 7.11 — first column in
Fig. 7.25), the Epxq profile has a shape that is close to the absolute value of the transverse component of
the electric |Ez|, because the amplitude of the longitudinal Ez component is higher than the amplitude
of the transverse component Ex. With the increase of the light intensity, the ratio between the two
components becomes closer to one, and at a certain point (S1c — second column in Fig. 7.25) these
component have equal amplitudes. In this case [as it can be seen from Fig. 7.25(h)], the total electric
field amplitude E, the light intensity I, and the nonlinear refractive index modification ∆n have
flat profiles. This explains a close relation between these field profiles and those of the linear slot
waveguide with identical parameters as the nonlinear slot waveguide considered here, but with higher
core refractive index.9 Increasing E0 (and therefore the total intensity density) even more, we observe
a change of shape of the total electric field amplitude profile and the related quantities (intensity
and nonlinear index modification). In the place where for low intensities there was a maximum in the
profile, now a minimum appears (compare columns one and three in Fig. 7.25). In other words, the
positions of minima and maxima switch.

Only the power profile of the symmetric S1 mode does not change qualitatively with the increase
of the light intensity. It always has a maximum in the center of the waveguide and side-lobes at the
metal/nonlinear dielectric interfaces (see the fourth row in Fig. 7.25). Comparing the intensity profile
with the power profile we may say that the intensity profile for low E0 values is ’out of phase’ with
respect to power profile [see Fig. 7.25(j)] and becomes ’in phase’ for high E0 values [see Fig. 7.25(l)].

Figure 7.26 presents the field profiles corresponding to three different points on the nonlinear
dispersion curve of the antisymmetric AN1 mode (see Figs. 7.11 and 7.12 for the location of these
points). Columns in Fig. 7.26 are ordered by increasing values of E0 and at the same time with the
increasing total intensity density of the mode. Because this mode belongs to the same nonlinear family
(modes with nodes) as the S1 mode, their behaviors are very similar. As in the case of the S1 mode,
in the profile of the electric field component Ez of the AN1 mode, the maxima and minima split into

9For more detailed analysis of this problem refer to Section 7.1.5. The fact that the mode with a flat ∆n profile is
similar to the mode of a linear waveguide with a higher refractive index of the core is not surprising and can be explained
using the self-coherent definition of the nonlinear modes [4]. According to this definition, the nonlinear mode is a linear
mode of a linear (graded refractive index) waveguide that is induced by the light distribution of this mode.
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Chapter 7. Numerical results

two peaks for high light intensities [see Fig. 7.26(f)]. With the increase of E0 we also observe flattening
of the profile of the total electric field amplitude E (and related quantities) (see rows three to five in
Fig. 7.26). The flattening occurs at higher value of E0 and x∆ny than in the case of the S1 mode. For
very high E0 positions of minima and maxima in the E profile switch [compare Figs. 7.26(g) and (i)].
The intensity I is ’out of phase’ with the power P for low E0 values [see Fig. 7.26(j)] and ’in phase’
for high E0 values [see Fig. 7.26(l)], similar to the case of the S1 mode.

The magnetic field profiles of higher-order modes of the family with nodes (S2, AS2, S3, AS3) are
presented in Figs. 7.4(e), (f), (h), and (i). All the modes are presented for the values of E0 at which
their respective effective indices β � 4. We observe that the increase of the mode order causes an
increase of the number of nodes in the magnetic field profile, according to Eq. (7.1.2). The symmetric
and antisymmetric modes appear in the alternating order with the increase of E0. The behavior of
these modes with the increase of E0 value is similar to the behavior observed for the S1 and AN1
modes in Figs. 7.25 and 7.26. Therefore, these modes will not be described in detail in this PhD
manuscript.

7.1.3 Field profiles obtained using the Jacobi elliptic function based model

In Section 7.1.2, we have discussed in detail the field profiles obtained using the IM for all the modes
supported by the nonlinear slot waveguide structure with parameters indicated in Table 7.1. In this
section, we present the field profiles obtained using the JEM. We will not describe them as thoughtfully
as it was done in the case of the IM to avoid repetitions. The study will be done in a comparative way.
The similarities and differences between the field profiles obtained using the JEM and using the IM
will be described and explained, in order to get a better understanding of the nature of our models.

For all the modes in this section, only the field profiles of the magnetic field Hypxq, electric field
components Expxq and Ezpxq and the total electric field amplitude Epxq are shown. We do not present
the profiles that are functions of these basic quantities. The light intensity is proportional to E2,
the power is proportional to H2

y and the nonlinear index modification in the frame of the JEM is
proportional to E2

x [see Eq. (6.1.1)].
The field profiles presented in this section correspond to the labeled points indicated on the non-

linear dispersion curves βpH0q shown in Fig. 7.27, where the magnetic field amplitude at the left
metal/nonlinear dielectric interface (x � 0, see Fig. 6.1) H0, defined by Eq. (6.1.4a), is used as ab-
scissa. The dispersion diagram βpH0q shown in Fig. 7.27 has a similar character to the dispersion
diagram βpE0q that is presented in Fig. 7.9(a). We choose here to use H0 as abscissa because in the
JEM, it is a free parameter that is varied in order to obtain the nonlinear dispersion curves.

Looking at the dispersion relation presented in Fig. 7.27, we notice that if H0 is used as abscissa,
then the dispersion curves AN1, S2 and of the higher-order modes from the family with nodes have
negative slope: β deceases with the increase of H0. Because in the scanning procedure we did not look
for solutions with H0 higher than 108 A/m, parts of the dispersion curves AN1 and S2 with low values
of β were not found. This explains why, in other coordinates, it seems that these dispersion curves do
not start from β � 1 [compare with Figs. 7.1(a), 7.6(a), and 7.9(a)]. Increasing the scanning range of
H0 would allow us to find the missing parts of these curves. After this digression, we come back to
the discussion of the field profiles obtained using the JEM.

142



7.1.
S

y
m

m
etric

stru
ctu

res

1

3

5

7

9

10
6

10
7

10
8

H0 [A/m]

AN0L

S0L

AN0a AN0b AN0c AN0d AN0e
AN0f

AN0gS0a

S0b S0c S0d

S0e
S0f

S0g

AS1a
AS1b

AS1c AS1d AS1e
AS1f

AS1g

SIa

SIb

SIc
SId

SIe

AS2a

AS2b

AS2c

AS2d

AS2e

AS2f

AS2g

SIf

SIg

SIIa AS3a

SIIb

SIIc

SIId

SIIe

AS3b AS3c

AS3d

S1a

S2

AN1

S1b

S1c

AN2
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Modes with linear counterparts (low-power modes)

In Fig. 7.28, the profiles of the linear symmetric mode S0L and the linear antisymmetric mode AN0L
are shown in the limiting linear case. These profiles are identical to the corresponding profiles obtained
using the IM presented in Fig. 7.13.

In Fig. 7.29, the field plots of the symmetric mode S0 and the antisymmetric mode AN0 are shown
for higher values of the magnetic field on the left interface H0 and therefore higher total intensity
densities. For moderate values of H0, the profiles are presented in the first and the third column in
Fig. 7.29 and they resemble well the corresponding profiles obtained using the IM shown in the first
and the third columns of Fig. 7.14. On the contrary, for very high H0 values (the second and the fourth
column in Fig. 7.29) the field profiles obtained using the JEM differ qualitatively from the profiles
obtained using the IM. We observe that the profiles of both components of the electric field close to
the metal/nonlinear dielectric interfaces, where the magnetic field is high, become less steep than the
corresponding profiles obtained using the IM. The x-derivative of the Ez component in the nonlinear
core, close to the metal/nonlinear dielectric interfaces changes its sign with the increase of H0. For low
values of H0, it has opposite sign to the x-derivative of Ez in the metal cladding. On the contrary, for
high values of H0, the signs of the x-derivative of Ez on both sides of the metal/nonlinear dielectric
interfaces are identical [compare for example Figs. 7.28(e) and 7.29(h)].

 0

 5

 10

 15

 20

 25

 30

-0.2  0  0.2  0.4  0.6

H
y
 [

A
/m

]

x [µm]

(a) - S0L

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-0.2  0  0.2  0.4  0.6

[k
V

/m
]

x [µm]

(b) - S0L

Ex
-Ez

 0

 0.5

 1

 1.5

-0.2  0  0.2  0.4  0.6

E
 [

k
V

/m
]

x [µm]

(c) - S0L

-15

-10

-5

 0

 5

 10

 15

-0.2  0  0.2  0.4  0.6

H
y
 [

A
/m

]

x [µm]

(d) - AN0L

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-0.2  0  0.2  0.4  0.6

[k
V

/m
]

x [µm]

(e) - AN0L

Ex
-Ez

 0

 0.5

 1

 1.5

-0.2  0  0.2  0.4  0.6

E
 [

k
V

/m
]

x [µm]

(f) - AN0L

Figure 7.28: Profiles of (a), (d) magnetic field component Hy; (b), (e) electric field components Ex
(red or blue) and �Ez (black); and (c), (f) total electric field amplitude E. Plots in the top row
corresponds to the linear symmetric mode of the slot waveguide (S0L) and in the bottom row to the
linear antisymmetric mode of the slot waveguide (AN0L) (see Fig. 7.27 for the point labels).
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Figure 7.29: Profiles of (a)–(d) magnetic field component Hy, (e)–(h) electric field components Ex (red
or blue) and �Ez (black), and (i)–(l) total electric field amplitude E corresponding to points (first
column) S0c, (second column) S0f, (third column) AN0c, and (fourth column) AN0f in Fig. 7.27.

Modes without nodes (node-less modes)

The transformation of the profiles of the asymmetric AS1 mode is shown in Fig. 7.30. The comparison
between the results of the JEM and the IM (Fig. 7.15) for this mode results in conclusions similar to
these drawn in for the low-power modes. Close to the bifurcation point (solution at low power level
shown in the first column in Fig. 7.30), the field profiles resemble those obtained using the IM and
shown in the first column in Fig. 7.15. For higher values of the mode energy (the second and the third
column in Fig. 7.30) the magnetic field behaves in the same way as for the IM but the electric fields in
the regions with high magnetic field intensity have lower amplitudes than for the corresponding profiles
in Fig. 7.15. Additionally, the sign of the x-derivative of Ez close to the metal/nonlinear dielectric
interfaces inside of the nonlinear core changes with the increase of H0 [compare Figs. 7.30(d) and
7.30(f)].

There are two reasons for the different behavior of the electric field predicted by our two models.
The fundamental reason is the fact that, in the formulation of the models we did not use the same
expressions for the Kerr nonlinear term. The full Kerr-type nonlinearity used in the IM [see Eq. (6.2.1)]
was approximated by the Eq. (6.1.1) in the JEM. Additionally, in order to derive the JEM, we have
assumed that the nonlinear permittivity change is small compared to the linear permittivity. These
two assumptions are not fulfilled for the modes presented here, for which Ez is comparable with Ex
and the nonlinear permittivity change is high.

The second reason for the discrepancies between the IM and the JEM is the fact that the field
profiles and the related quantities are computed in a different way. In the IM, the main parameter
in the dispersion relations is the total electric field intensity at one of the metal/nonlinear dielectric
interfaces and at the output of the dispersion procedure, we obtain the profiles of both electric field
components Ex and Ez (see Section 6.2.2). Then, employing Eq. (1.5.2b), the magnetic field in the
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Figure 7.30: Profiles of (a)–(c) magnetic field component Hy, (d)–(f) electric field components Ex
(green) and �Ez (black), and (g)–(i) total electric field amplitude E corresponding to points (first
column) AS1c, (second column) AS1b, (third column) AS1a in Fig. 7.27. The total electric amplitude
ratio Ed{E0 is approximately equal to 2 for ASc, 4 for ASb and 10 for ASa.

waveguide core is calculated using the formula:

Hy � ε0ε2c

β
Ex �

ε0
�
εl,2 � α2

�
E2
x � E2

z

��
c

β
Ex. (7.1.9)

In the nonlinear case, the magnetic field is not a linear function of Ex but depends also on the nonlinear
permittivity. For very high nonlinear permittivity modification, with which we deal in this work, the
magnetic field profile will be strongly affected by the nonlinear term. In regions where the nonlinear
permittivity modification is high compared to the linear part, the magnetic field profile amplitude will
be larger than in the case of the linear HypExq dependency.

In the JEM, we proceed in the reverse way. In the formulation of JEM, the only field component
present in the final formulation of the model is the magnetic field component Hy. Therefore, the
quantity that is a direct output of the JEM numerical procedure is the magnetic field profile Hypxq.
Based on the magnetic field profile, the electric field components are calculated using Eqs. (1.5.2b) and
(1.5.2c) and the simplified treatment of the Kerr nonlinear term [Eq. (6.1.1)]. The resulting expressions
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Figure 7.31: Profiles of the magnetic field component Hy for the symmetric S0 mode (blue), antisym-
metric AN0 mode (red), and the first-order asymmetric AS1 mode (green). The subplots present the
transformation of the field profiles at the points a, b, c, d, e, f, and g indicated in Fig. 7.27. In all
the subplots, the scale was kept identical to see the relative change of the magnetic field amplitude
between the points. In each of the subplots, the magnetic field amplitude at the left metal/nonlinear
dielectric interface (H0) is identical for all three modes.

for the electric field components are:

Ex � β

ε0
�
εl,2 � a2H2

y

�
c
Hy, (7.1.10a)

Ez � 1

ε0
�
εl,2 � a2H2

y

�
ω

dHy

dx
. (7.1.10b)

In this case, due to the presence of the nonlinear permittivity in the denominator, in the regions of
high nonlinear permittivity change, the electric field component amplitudes are lower than in the case
of a linear dependency of Ex and Ez on Hy. This is one of the reasons why the magnetic fields obtained
using both models are qualitatively the same, while there are qualitative differences in the behavior of
the electric field components. This effect will be even more visible for higher-order modes, where the
nonlinear permittivity change is of the same order of magnitude as the linear part of the nonlinear
dielectric permittivity.
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Figure 7.32: Profiles of (a)–(c) magnetic field component Hy, (d)–(f) electric field components Ex
(blue) and �Ez (black), and (g)–(i) total electric field amplitude E corresponding to points (first
column) SIc, (second column) SIb, and (third column) SIa in Fig. 7.27.

In Fig. 7.31, a direct comparison of the magnetic field plots is presented for the three modes S0,
AN0, and AS1. In each of the subplots in Fig. 7.31, the values of H0 for all the modes are identical.
The subplots are ordered by increasing values of H0. The transformation of the magnetic field profiles
connected with the increase of H0 that is illustrated in Fig. 7.31, is the same as in the case of the IM
shown in Fig. 7.16, where the field transformation connected with the increase of E0 was presented.

Figure 7.32 presents the transformation of the higher-order symmetric node-less SI mode asso-
ciated with the increase of the mode energy. The field intensity H0 decreases in columns from left
to right, whereas the total intensity density increases. The magnetic field profiles predicted by the
JEM are in qualitative agreement with those of the IM presented in Fig. 7.18. However, there is a
quantitative difference between the ratio of the soliton peak Hpeak and the magnetic field intensity at
the metal/nonlinear dielectric interfaces (H0 � Hd) obtained using two models. In the magnetic field
profiles obtained using the JEM, the ratio H0{Hpeak is higher than in case of the IM. The profiles of
the Ez field component are also in good agreement with the results of the IM. The agreement between
the Ez profiles for the higher-order node-less modes, obtained using our two modes results from the
fact that in the region where the nonlinear permittivity change (proportional to H2

y ) is the largest (in
the center of the waveguide core), the Ez component has its minimum. Therefore, in the case of the
Ez profile the limitation of the JEM discussed on Page 147 is not visible. On the contrary, the Ex
component computed using the IM has a maximum in the center of the core, just like the magnetic
field (see Fig. 7.18). In the frame of the JEM, due to the way of computing the values of Ex [see
Eq. (7.1.10a)] the transverse electric field component Ex has a minimum in the center of the waveg-
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Figure 7.33: Profiles of (a)–(c) magnetic field component Hy, (d)–(f) electric field components Ex
(green) and �Ez (black), and (g)–(i) total electric field amplitude E corresponding to points (first
column) AS2c, (second column) AS2b, and (third column) AS2a in Fig. 7.27.

uide core [see Figs. 7.32(d)–(f)]. The Ex and E profiles obtained using the JEM, instead of a single
maximum in the center of the waveguide, as predicted by the IM, have two maxima and separated by
a local minimum in the core center.

In Fig. 7.33, the transformation of the second-order asymmetric node-less mode AS2 along its
dispersion curve is presented. The columns are ordered from left to right by increasing total intensity
density (decrease of H0 but increase of Hd). In case of the AS2 mode, we see a qualitative difference of
all the field profiles between the results of the JEM (Fig. 7.33) and the IM presented in Fig. 7.19. The
magnetic field profiles obtained with both models can be interpreted as a soliton trapped in the core
of the nonlinear slot waveguide and shifted toward one of the interfaces. The intensity on the other
interface is high due to the presence of a side-lobe. Comparing the result of the JEM and the IM, we
notice that in case of the JEM, the magnetic field amplitude of the right side-lobe Hd is almost equal
to the peak amplitude of the soliton Hpeak. On the contrary, in case of the IM, the value of Hd was
much lower than Hpeak. The electric field component Ex in case of the JEM has a complex behavior
resulting from Eq. (7.1.10a) and is drastically different than in case of the IM. Also the Ez component
of the electric field changes its behavior. The x-derivative of this component at the right core interface
has different signs between the JEM and the IM (compare the second row in Figs. 7.33 and 7.19).
Consequently, the profiles of the total electric field amplitude also differ between the two models.

To finish the description of the profiles of the modes belonging to the node-less family, in Fig. 7.34
we present a direct comparison of the transformation of the symmetric SI mode and the asymmetric
AS2 mode. The subplots are ordered by increasing values of H0. In each of the subplots, both modes
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Figure 7.34: Profiles of the magnetic field Hy for the symmetric SI mode (blue) and the second-order
asymmetric AS2 mode (green). The subplots present the transformation of the field profiles at the
points a, b, c, d, e, f, and g indicated in Fig. 7.27. In all the subplots the scale was kept identical to
see the relative change of the magnetic field amplitude between the points.

have identical values of H0. Generally speaking, the transformation has the same character as in case
of the IM model (see Fig. 7.20), where the field transformation connected with the increase of E0

was presented. At the bifurcation point [Fig. 7.34(d)], the modes SI and AS2 are identical. With the
decrease of the magnetic field amplitude at the left interface H0, the soliton of the asymmetric mode
becomes more localized at the left interface [subplots (a), (b), and (c)]. Increase of H0 causes the
shift of the soliton peak position toward the right interface [subplots (e), (f), and (g)]. The difference
between the two models is visible looking at the ratio of the peak amplitude of the soliton Hpeak and
the higher of the two amplitudes at the core interfaces maxpH0, Hdq. In the JEM, this ratio is very
close to one for all the asymmetric profiles and also for the symmetric profiles with H0 above the
bifurcation point. In case of the IM, ratio Hpeak{maxpH0, Hdq is always much higher than one.

The description of the node-less modes obtained using the JEM ends here. For the IM, we have
described also higher-order node-less modes. The comparison between the two models for this profiles
gives the same conclusions as these drawn above. Nevertheless, to present a complete study, the
profiles of the higher-order modes from the node-less family obtained using the JEM are presented
and compared with the results of the IM in Appendix E.
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Modes with nodes

The comparison of the field profiles that belong to the family with nodes will be done only on one
example of the symmetric S1 mode. The transformation of this mode along its dispersion curve is
presented in Fig. 7.35. The comparison of the results of the JEM with the corresponding field profiles
obtained using the IM (presented in Fig. 7.25) shows that for low mode energy (the first column
in Fig. 7.35) all the field profiles are in good agreement. With the increase of the mode energy the
agreement of the field profiles deteriorates. First, we observe that in the profile of the electric field
component Ex, the single minimum in the center of the waveguide splits into two minima separated by
a local maximum [see Fig. 7.35(e)]. The profile of the total intensity is also different than in the case of
the IM and does not become flat [see Fig. 7.25(h) for the results obtained with the IM]. For very high
total intensity density Itot and effective index β (the third column in Fig. 7.35) all the field profiles
(except for the Ez) are qualitatively different. For the magnetic field profile, the ratio |Hpeak|{H0 is
much closer to one in case of the JEM than for the IM. In case of the JEM, the maxima and minima
of Ex profiles split into two. In the profile of the total electric field amplitude, each of the two maxima
also splits into two with the increase of H0. The maxima and minima of the Ez profile presented in
Fig. 7.35(f) split into two. This behavior is the same as observed in the corresponding figure obtained
using the IM [Fig. 7.25(f)].
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Figure 7.35: Profiles of (a)–(c) magnetic field component Hy, (d)–(f) electric field components Ex
(blue) and �Ez (black), and (g)–(i) total electric field amplitude E corresponding to points (first
column) AS2c, (second column) AS2b, and (third column) AS2a in Fig. 7.27.
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The behavior of the higher-order modes of the family with nodes is similar to the S1 mode and will
not be discussed in detail. The magnetic field plots for the AN1, S2, and AN2 modes are presented in
Figs. 7.2(e), (f), and (g).

Summary

Summarizing the results of this section, we observe that the general features of the magnetic field
profiles obtained using the IM and the JEM are similar and lead to the same conclusions about
the nature of the modes of the nonlinear slot waveguide. A closer examination of the electric field
profiles reveals qualitative differences between the the two models. They do not have any impact
on the dispersion plots, because in the frame of the JEM the dispersion relations depend only on
the magnetic field. These differences reflect the fact that the JEM was built using assumption about
the weak nonlinearity and the weak longitudinal electric field component compared to the transverse
one. Therefore, it could be expected that, in the highly nonlinear regime and for the slot waveguide
modes for which both electric field components have comparable amplitudes, the simpler Jacobi elliptic
function based model fails to correctly predict profiles of all the field components. Because of that
in Sections 7.1.5–7.2 we will use only the results of the interface model that describes the physics of
nonlinear slot waveguides more accurately.

7.1.4 Single-interface limit

In Chapter 6, describing the theoretical derivation of the models for nonlinear plasmonic slot waveg-
uides, we mentioned that in the limiting case, where the integration constants c0 in Eqs. (6.1.3) and
(6.1.7) or C0 in Eqs. (6.2.2) and (6.2.26) are equal to zero, we recover the case of a single interface
between a metal and a nonlinear dielectric. Looking at the field profiles of highly asymmetric modes
AS1 (see Fig. 7.15), we see that this mode is mostly localized at one interface only. Therefore, it can
be well approximated by a solution of the single-interface problem.

In Fig. 7.36, we present the dispersion curves βpPcq for the nonlinear slot waveguide obtained
using the JEM and the IM (compare with Fig. 7.6). Additionally to the antisymmetric (red), symmet-
ric (blue), and asymmetric (green) dispersion curves, black dispersion curves obtained using single-
interface models are presented. In the case of the JEM, the single-interface approximation was obtained
using the FBM for configurations with semi-infinite nonlinear medium described in Section 2.1. Ef-
fectively, Eq. (3.1.4) for a single interface between a metal and a nonlinear dielectric was solved using
the parameters of our nonlinear slot waveguide (see Table 7.1). In case of the IM, the corresponding
single-interface approximation was obtained using the EM for configurations with semi-infinite non-
linear medium described in Section 2.3. The dispersion relation in this case is given by Eq. (6.2.29).

In both cases presented in Fig. 7.36, we see that the single-interface dispersion curves for low
effective indices and low values of Pc are located between the antisymmetric AN0 and symmetric S0
dispersion curves. They intersect with the S0 curves slightly below the bifurcation points of asymmetric
modes AS1. For the values of β above the bifurcation points, the curves obtained using single-interface
models follow the AS1 asymmetric dispersion curves. The fact that the black curves overlap with the
green AS1 curves confirms that the highly asymmetric AS1 modes (for high effective index β) are well
approximated using the single-interface approach.

In Fig. 7.37, the dispersion curves βpE0q obtained using the JEM and the IM are presented (com-
pare with Fig. 7.9). Additionally, dispersion curves for the single-interface configuration calculated
using the FBM (in case of the JEM) and the EM (in case of the IM) are depicted in black. In these
coordinates, both for the JEM and for the IM, the single-interface dispersion curve always lays between
the antisymmetric AN0 curve and the symmetric S0 curve. For high values of E0, the asymmetric AS1
curve becomes very close to the black curve, but remains slightly above it.

Looking at Fig. 7.37(a), we observe that indeed, as predicted in Section 6.1 (see Page 88), the
black curve corresponding to the integration constant c0 equal to zero (single-interface dispersion
curve) separates the dispersion plot in two parts. Above the c0 � 0 curve, only node-less solutions
exist (for negative values of the integration constant c0). Below this curve, only solutions with nodes
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Figure 7.36: Dispersion diagram for the nonlinear slot waveguide presenting the effective index β as
a function of the power density in the core Pc [defined by Eq. (7.1.4)] obtained using (a) the JEM
and (b) the IM. On both plots dispersion curves presenting single-interface approximations (computed
using the FBM and the EM) are shown in black. For clarity of the plots, the range of the effective
indices shown was reduced to β P r3, 8s.

appear (for positive values of c0). The same conclusion can be drawn looking at Fig. 7.37(b). In case
of the IM, the numerical results also show that the dispersion curves are divided in two families: with
nodes and node-less. The regions of the dispersion diagram corresponding to these two families are
separated by the curve described by the equation C0 � 0 (black curve for the single-interface problem).

153



Chapter 7. Numerical results

 3

 4

 5

 6

 7

 8

10
8

10
9

10
10

β

E0 [V/m]

(a)

AN
S

AS
single interface

 3

 4

 5

 6

 7

 8

10
8

10
9

10
10

β

E0 [V/m]

(b)

AN
S

AS
single interface

analytical

Figure 7.37: Dispersion diagram for the nonlinear slot waveguide presenting the effective index β as a
function of the total electric field amplitude on the left interface between the metal and the nonlinear
dielectric E0. Results obtained using (a) the JEM and (b) the IM. In both plots, dispersion curves
presenting single-interface approximation (computed using the FBM and the EM) are shown in black.
Additionally, in the figure presenting the dispersion relation for the IM, the curve corresponding to
the analytical expression for the single-interface dispersion relation [Eq. (6.2.29)] is shown in yellow.

In the frame of the IM, we could not prove this property analytically because the field plots in the IM
are calculated numerically.

Finally, instead of using the models for configurations with a semi-infinite nonlinear medium devel-
oped in Section 2.1 (the FBM) and Section 2.3 (the EM), we will use the formulas found in Sections 6.1
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Figure 7.38: Dispersion diagram obtained using the JEM for the nonlinear slot waveguide presenting
the effective index β as a function of the magnetic field amplitude on the left interface between the
metal and the nonlinear dielectric H0. Dispersion curves presenting single-interface approximation
obtained using FBM are shown in black. Additionally, the curve corresponding to the analytical
expression for the single-interface dispersion relation [Eq. (6.1.10)] is shown in yellow.

and 6.2 that give us the dispersion relations for the single-interface problem. In case of the IM, the
analytical formula for the dispersion relation for the single-interface problem is given by Eq. (6.2.29).
The effective index of the mode expressed as a function of the material parameters of the structure
and the total electric field intensity at the interface E0. The curve described by Eq. (6.2.29) is plotted
in yellow in Fig. 7.37(b) and it overlaps well with the black curve obtained using the EM.

In the case of the JEM, the analytical formula for the dispersion relation of a single metal/nonlinear
dielectric interface problem is given by Eq. (6.1.10). In this equation, as in the entire formulation of
the JEM, the primary parameter is the magnetic field amplitude at the interface H0. Therefore, to
be able to show the dependency described by Eq. (6.1.10), we need to use the coordinates where
the effective index is presented as a function of the magnetic field amplitude at the interface H0.
This plot is presented in Fig. 7.38 (compare with Fig. 7.27). We observe that in these coordinates
the dispersion relations calculated using the FBM (balck curve) and the yellow curve described by
Eq. (6.1.10) overlap perfectly. The single-interface dispersion curve, which corresponds to the limiting
case c0 � 0 divides the dispersion plot βpH0q into the regions corresponding to the node-less family
and the family with nodes.

In all the plots presented in this section, in the region of high effective indices, the dispersion
curves of the AS1 mode overlap with the curves obtained using single-interface approximations. This
confirms our hypothesis (formulated on Pages 80 and 100) that highly asymmetric modes AS1 can be
approximated by solutions obtained using the corresponding single-interface models.

7.1.5 Relation between nonlinear modes with nodes and their linear counterparts

In Section 7.1.2, while discussing the field profiles of the modes belonging to the family with nodes,
we noticed that they resemble higher-order modes of linear slot waveguides with parameters similar
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Figure 7.39: Nonlinear dispersion diagram for the symmetric nonlinear slot waveguide showing the
effective index of the mode β as a function of the averaged nonlinear refractive index modification
x∆ny defined by Eq. (7.1.1). Small portions of dispersion curves of spurious modes are shown in yellow
and help to locate the point at which modes with nodes induce a flat refractive index distribution.

to the nonlinear slot waveguide studied in Section 7.1.2. In this section, we will explain the origin of
the similarities between these nonlinear and linear modes.

In Fig. 7.39, we remind the nonlinear dispersion curves obtained using the IM for our nonlinear slot
waveguide with the following parameters: core thickness d � 0.4 µm, core permittivity εl,2 � 3.462,

second-order nonlinear refractive index n
p2q
2 � 2 � 10�17 m2/W, metal permittivities ε1 � ε3 � �90 at

a free-space wavelength λ � 1.55 µm (parameters identical to these used in Sections 7.1.1 and 7.1.2
and presented in Table 7.1). This plot is a part of a previously presented plot in Fig. 7.3.

From the analysis of the dispersion curves of the symmetric mode S1 and the antisymmetric
mode AN1 belonging to the family with nodes presented in Section 7.1.2 at Page 141, we know that
there is one point on each of these curves where the nonlinear index modification profiles induced
by these modes are flat [see Figs. 7.25(h) and 7.26(h) obtained using the IM]. These points can be
easily found using the numerical procedure to obtain the dispersion curves in the frame of the IM,
which is described in Section 6.2.2. If we relax the physical condition that requires the amplitudes
of the electric field component obtained by the numerical integration of Maxwell’s equations Enum

x,d

and Enum
z,d to be in agreement with the values given by Eqs. (6.2.25) (see condition 3 on Page 103),

then spurious modes are found by the numerical procedure (unphysical modes, not fulfilling all the
assumptions). These spurious modes have flat nonlinear index modification distributions all along
their dispersion curves and they intersect with the modes of the family with nodes in the points
where the index distribution corresponding to the genuine nonlinear modes is flat (this property is
found empirically). Small portions of the dispersion curves of these spurious modes are shown in
Fig. 7.39 (yellow curves) in order to locate the points corresponding to the genuine nonlinear modes
that induce a flat nonlinear index distribution. At these points, we expect the field profiles of the
modes of the nonlinear slot waveguide to be the most similar to the profiles of the modes of the linear
slot waveguide with identical parameters but higher core refractive index. We base this expectation
on the self-coherent definition of nonlinear modes. This definition was introduced by Townes and co-
workers in Ref. [4] and was used later in other works (e.g., Ref [153]). It defines a nonlinear mode as
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Figure 7.40: Dispersion curves for the linear slot waveguide with identical parameters as our nonlinear
slot waveguide showing the effective index of the mode as a function of the linear refractive index
increase ∆nlin. See the text for more details.

a linear mode of a linear (graded refractive index) waveguide that is induced by the light distribution
of this mode. According to this definition, there is no difference between the nonlinear modes of the
nonlinear slot waveguide for which the nonlinear index modification has a flat distribution and the
linear modes of the waveguide with higher refractive index of the linear core. In the following, we will
verify the validity of this definition for modes of the nonlinear slot waveguide.

To this end, we analyze another type of dispersion relations. Consider a linear slot waveguide: a
linear dielectric core sandwiched between two metal regions. The parameters of this waveguide are
given by: metal permittivities ε1 � ε3 � �90 and the core refractive index is given by n � n0�∆nlin �
3.46 � ∆nlin and the core thickness d � 0.4 µm. The parameters ε1, ε3 and n0 � ?εl,2 are identical
to these in the case of the nonlinear waveguide studied here (see Table 7.1). Figure 7.40 presents the
dispersion diagram of the linear slot waveguide with core index n � n0 � ∆nlin where the effective
index β is plotted as a function of ∆nlin. We notice that this linear dispersion diagram is similar to
the dispersion plot of the nonlinear slot waveguide shown in Fig. 7.39. For the core with index n � n0

only two modes are present and they are the linear counterparts of the modes S0 and AN0. With the
increase of the core index n, the effective index of these modes increases and they become closer to each
other. At ∆nlin � 0.1, a higher-order linear mode appears that is a counterpart of the S1 mode. For
∆nlin � 2 and ∆nlin � 3.5, another two higher-order modes appear. They are the linear counterparts
of the AN1 and S2 modes. The effective index of these modes increases rapidly with the increase of
∆nlin. The only modes not present in the linear dispersion curves are the asymmetric modes AS1,
AS2, . . . and the symmetric node-less modes SI, SII, etc. The asymmetric modes can not be observed
in the linear case because nothing breaks the symmetry in the symmetric linear slot waveguide. The
node-less symmetric modes are not supported by the linear slot waveguide because they have purely
nonlinear solitonic character (see Figs. 7.18 and 7.22 in Section 7.1.2).

A direct comparison between the nonlinear and the linear dispersion diagrams presented in Figs. 7.39
and 7.40, respectively, is shown in Fig. 7.41. The dispersion curves of the nonlinear modes AN0 and
S0 overlap with the corresponding linear dispersion curves only for small x∆ny values. The nonlinear
modes increase their effective indices β faster than the linear modes. In case of higher-order modes S1,
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Figure 7.41: A comparison of the nonlinear (red, blue and green curves) and the linear dispersion
plots (black curves) of the symmetric slot waveguides from Figs. 7.39 and 7.40. In case of the linear
waveguide x∆ny is equivalent to ∆nlin. Small portions of dispersion curves of spurious modes are
shown in yellow and help to locate the point at which modes with nodes generate flat refractive index
distribution. See the text for more details.
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Figure 7.42: A comparison of (a), (d) Hypxq; (b), (e) Expxq; and (c), (f) Ezpxq for the nonlinear modes
S1 (blue curve) (first row) and AN1 (red curve) (second row) at the points where the refractive index
distribution is flat (intersection of yellow and blue or red dispersion curves in Figs. 7.39 and 7.41) and
the normalized profiles of their linear counterparts (black curves).
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AN1 and S2, the dispersion curves of the linear modes lay below the corresponding nonlinear modes.
There is only one common point between these curves and it is, as expected, the point where the index
distribution in the nonlinear core is flat.

The comparison of the field profiles Hypxq, Expxq, and Ezpxq for nonlinear S1 and AN1 modes
at the point where the nonlinear index distribution is flat (intersection of yellow and blue or red
dispersion curves in Figs. 7.39 and 7.41) and the corresponding linear modes (for identical β value) is
presented in Fig. 7.42. We observe that the nonlinear profiles overlap perfectly with the profiles of the
linear modes normalized to the same amplitude as the nonlinear modes.

The results presented in this section prove that the modes with nodes found in the nonlinear slot
waveguides are close to the modes of the linear slot waveguide with similar opto-geometric parameters.
We have explained the similarities between these nonlinear and linear modes using the self-coherent
definition of nonlinear modes introduced in Ref. [4].

7.1.6 Core width study

In this section, we study the influence of the core width on the behavior of the dispersion curves of the
nonlinear slot waveguides. The material parameters used here will be identical to these in the previous

section: core permittivity εl,2 � 3.462, second-order nonlinear refractive index n
p2q
2 � 2 � 10�17 m2/W,

metal permittivities ε1 � ε3 � �90 at a free-space wavelength λ � 1.55 µm (see also Table 7.1). The
core width will be varied here.

In Figs. 7.43–7.46, we present the nonlinear dispersion diagrams for the nonlinear slot waveguide
with the core widths d equal to 100 nm, 200 nm, 400 nm, and 800 nm obtained using the IM. The
comparison of these curves illustrates the influence of the core width on the dispersion curves of all
the modes. In order to facilitate the mutual comparison of the dispersion curves, all the plots were
drawn using identical x∆ny range and β range (except for Fig. 7.46 where the range of β is reduced).

At first, we analyze the low-power modes of the nonlinear waveguides (modes which start from the
limiting linear case for very low levels of x∆ny). For d � 100 nm (Fig. 7.43), there is only one such
mode. It is the fundamental symmetric node-less mode that exists in metal slot waveguides regardless
of the core thickness. With the increase of the thickness to 200 nm (Fig. 7.44), a second low-power
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Figure 7.43: Dispersion relations for the nonlinear slot waveguide with the core thickness d � 100 nm.

159



Chapter 7. Numerical results

 1

 3

 5

 7

 9

 11

 13

 15

10
-3

10
-2

10
-1

10
0

10
1

β

<∆n>

AN

S

AS

Figure 7.44: Dispersion relations for the nonlinear slot waveguide with the core thickness d � 200 nm.
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Figure 7.45: Dispersion relations for the nonlinear slot waveguide with the core thickness d � 400 nm.

mode appears. It is the antisymmetric mode with one node in the Hy profile. It is interesting to
notice that in the case of d � 100 nm, the first nonlinear mode of the family with nodes was the
antisymmetric mode with one node. In the case of d � 200 nm, the first mode of this nonlinear family
is the symmetric mode with two nodes. We observe that with the increase of the waveguide thickness,
the nonlinear modes of the waveguide with a thin core become low-power modes that start in the
linear limit for the waveguides with thicker cores.

160



7.1. Symmetric structures

 1

 2

 3

 4

 5

 6

 7

 8

10
-3

10
-2

10
-1

10
0

10
1

β

<∆n>

AN

S

AS

Figure 7.46: Dispersion relations for the nonlinear slot waveguide with the core thickness d � 800 nm.
The range of β presented here is smaller than in the previous plots in this section in order to present
the results more clearly.

With further increase of the thickness (to 400 nm, see Fig. 7.45), we notice that the two low-
power modes of the nonlinear slot waveguide become much closer in terms of the effective index
β. Additionally we observe that the x∆ny threshold for the appearance of the first and higher-order
nonlinear modes with nodes becomes lower. For instance, the symmetric mode with two nodes appears
for x∆ny � 2.5 for the nonlinear slot waveguide with 200-nm-thick core and at x∆ny � 0.08 for the
waveguide with 400-nm-thick core.

The nonlinear slot waveguide with an 800-nm-thick core supports 4 modes present at low levels
of x∆ny (see Fig. 7.46). Two of them (symmetric node-less mode and antisymmetric mode with one
node) are located very close to each other in terms of β (in the vicinity of β � 3.75). A low-power
symmetric mode with two nodes and a low-power antisymmetric mode with three nodes also exist.
The first nonlinear mode of the family with nodes is the symmetric mode with four nodes. Because the
appearance of the modes of the family with nodes occurs at lower values of x∆ny with the increase of
the core thickness, the waveguide with the 800-nm-thick core supports many of these modes for high
values of x∆ny.

Moreover, we notice that the first fundamental node-less symmetric mode has quite elevated ef-
fective index in the waveguides with a thin core [for d � 100 nm (see Fig. 7.43) its effective index is
β � 4.4]. With the increase of the core thickness, the effective index of this fundamental mode de-
creases [for d � 800 nm (see Fig. 7.46) its effective index is β � 3.76] and converges for high thicknesses
to the value of the effective index of a plasmon on a single metal/dielectric interface. On the contrary,
the first antisymmetric mode with one node appears for very low values of β for waveguides with a
thin core (d � 200 nm, see Fig. 7.44) and its effective index increases with the increase of the core
thickness to reach the single-interface limit in the waveguides with a very thick core [for d � 800 nm
(see Fig. 7.46) its effective index is β � 3.75] (these observations are confirmed later in this section;
see Fig. 7.50).

Here we will discuss the influence of the core thickness on the modes of the node-less family. For
these modes with the increase of the waveguide thickness we also observe the decrease of the x∆ny
threshold values for their appearance. The decrease of the threshold values can be very large for these
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Figure 7.47: Average nonlinear index change x∆ny at the appearance of the asymmetric modes AS1
(bifurcation) (red �) and for ∆β � 0.1 (green ) as a function of the core width d. All the other
parameters of the nonlinear slot waveguides are identical to these in Table 7.1.

modes. The first asymmetric AS1 mode bifurcates at x∆ny � 1.5 for the waveguide with d � 100 nm
and at x∆ny � 0.004 for the case of d � 800 nm. Similarly, the appearance of the higher-order modes SI
and AS2 occurs for very high values of x∆ny and β for thin waveguides (not in the range of Fig. 7.43).
Mode SI appears at β � 14 and x∆ny � 9 for the waveguide with a 200-nm-thick core (top right corner
in Fig. 7.44). In the case of d � 800 nm, modes SI and AS2 appear at x∆ny � 0.8 which approximately
ten times lower than for the waveguides with a core thickness d � 200 nm.

In order to sum up the observations made on the bifurcation threshold of the first asymmetric AS1
nonlinear mode, we present Fig. 7.47 that shows the dependency of the nonlinear index change x∆ny at
which the first bifurcation occurs (red curve) on the width of the nonlinear slot waveguide core d. We
notice that the thicker the core the lower the value of x∆ny where the bifurcation occurs. For d � 1 µm
the bifurcation occurs at x∆ny � 10�3. For even thicker cores, the bifurcation occurs at x∆ny values
as low as 10�5 which are realistic values for hydrogenated silicon [139]. The proper choice of the core
thickness is important in order to obtain asymmetric solutions at low x∆ny values. Modifying the core
thickness is a very effective way to lower the bifurcation threshold. In the structure studied here, the
increase of the core thickness by a factor 20 allows us to reduce the bifurcation threshold by 5 orders
of magnitude.

From the experimental point of view, it is also important to control the number of modes supported
by the waveguide. In waveguides supporting a low number of modes the interpretation of the results
may be simpler than in multi-mode waveguides. With the increase of the nonlinear core thickness, the
number of modes supported be the nonlinear slot waveguides presented in Figs. 7.43–7.46 increases.
Therefore, it is important to find a thickness that results in a good balance between the bifurcation
threshold and the number of modes supported by the waveguide. These two parameters can be also
tuned changing the permittivities of the core and the cladding (see Section. 7.1.7).

In experiments, it is important to be able to distinguish between the symmetric and asymmetric
modes. The higher the asymmetry of the mode the easier it is to distinguish it from the symmetric
one. Therefore, we look for the values of x∆ny for which the asymmetric modes becomes strongly
asymmetric (here we assume that the mode is strongly asymmetric when the light intensity at one
metal/dielectric interface is five times larger than at the second interface). Our study shows that it
happens for x∆ny values approximately two times higher than the bifurcation threshold.

In Fig. 7.47, the value of x∆ny at which the difference between the propagation constants of the
asymmetric AS1 mode and the symmetric S0 mode (∆β � βAS1 � βS0) is equal to 0.1 is shown in
green. This curve for low core thickness values follows the red curve for bifurcation point but for high
thickness values decreases more slowly than the red curve.
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power density in the core [defined by Eq. (7.1.4)] as abscissa. Only the first symmetric (thin curve)
and asymmetric modes (thick curves, except for the case of d � 800 nm) are shown using one color
per width. Both axes are in log scale.

163



Chapter 7. Numerical results

1

2

3

4

5

100 200 300 400 500 600 700 800

β

d [nm]

S0L

AN0L S1L AN1L

Figure 7.50: Dispersion diagram for the linear slot waveguide with identical parameters as our nonlinear
slot waveguide showing the effective index of the mode as a function of the core thickness.

In Figs. 7.48 and 7.49, a direct comparison between the dispersion curves of the nonlinear slot
waveguides with core thickness values 100 nm, 200 nm, 400 nm, and 800 nm is presented. Only the
curves corresponding to the fundamental symmetric S0 mode and the first antisymmetric AS1 mode
are shown. In Fig. 7.48, the total intensity density is used as abscissa and in Fig. 7.49, the power
density in the core is used as abscissa. In both coordinates, we observe that for high values of the
effective index of the asymmetric mode AS1, the dispersion curves of this mode in waveguides with
different core thickness overlap. This is a consequence of the fact discussed in Section 7.1.4. For high
values of the effective index β, the asymmetric modes AS1 are strongly localized on one of the core
interfaces (see the third column in Fig. 7.15). Therefore, they resemble the modes obtained on a
single metal/nonlinear dielectric interface and their dispersion relations can be approximated by the
curve corresponding to the single-interface problem. As a result, the waveguide thickness does not
have a strong influence on the dispersion curves of highly asymmetric modes. For all the values of
the core thickness d, the dispersion curves of the asymmetric AS1 mode follow the dispersion curve
for the single-interface case in the limit of high β values. For this reason the dispersion curves of the
asymmetric AS1 modes in waveguides with different widths have a single locus for high β values.

In Figs. 7.43–7.46, the evolution of the nonlinear slot waveguide dispersion curves with the increase
of the core thickness from 100 nm to 800 nm was shown. We observed that with the increase of the
core thickness, the number of low-power modes (modes that exist in the low x∆ny limit) increases. The
number of the low-power modes can be inferred from the linear studies of the metal slot waveguides. We
consider a linear metal slot waveguide with the following parameters: metal permittivities ε1 � ε3 �
�90 and the core refractive index is given by n � n0 � 3.46 (compare with the parameters used for the
nonlinear sot waveguides studied here presented in Table. 7.1 on Page 109). In Fig. 7.50, the dispersion
relation for this waveguide is presented. The effective index of the modes β is shown as a function of
the core thickness d. For low values of the core thickness, only the fundamental symmetric node-less
linear mode of the slot waveguide exists. With the increase of the core thickness (around d � 160 nm),
a second mode appears (antisymmetric mode with one node). Further increase of the thickness causes
higher-order linear modes to appear with alternating symmetry and increased by one number of nodes.
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Figure 7.51: Dispersion diagram for the nonlinear slot waveguide with the core thickness d � 412 nm.
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Figure 7.52: Dispersion diagram for the nonlinear slot waveguide with the core thickness d � 646 nm.

With the increase of the thickness, the two first modes become closer in terms of the effective index
and converge to the effective index of a linear plasmon on a single metal/dielectric interface. From
this plot, we can easily read how many low-power modes will the nonlinear slot waveguide support for
a given thickness and what will be their effective index in the low x∆ny limit.

In Figs. 7.43–7.46, we have seen that with the increase of the waveguide thickness, the nonlinear
modes of the nonlinear family with nodes were appearing at lower x∆ny and finally became low-power
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modes, if the core thickness was large enough. Using this effect, we can tune the core thickness in
such a way that a nonlinear mode with nodes will appear for very low x∆ny values. If we choose
the thickness of the nonlinear core slightly below the cut-off of the third mode (dcut-off � 413 nm)
in the linear case, this mode will appear for low value of x∆ny in the nonlinear slot waveguide. The
dispersion relation for the nonlinear slot waveguide with the core thickness d � 412 nm is presented in
Fig. 7.51. In this case, the nonlinear symmetric mode with two nodes appears for x∆ny � 0.003 which
is approximately twenty times lower than in the case of the core thickness d � 400 nm (see Fig. 7.45)

Figure 7.52 presents the dispersion curves obtained for the nonlinear slot waveguide with the
thickness of 646 nm which is sightly below the cut-off thickness for the linear antisymmetric mode
with three nodes (the fourth mode in Fig. 7.50). In this case the nonlinear antisymmetric mode with
three nodes appear for x∆ny � 0.0015.

Summarizing this section, we have observed that the core thickness is one of the parameters of
the nonlinear slot waveguide that can be tuned to obtain low-power nonlinear solutions. Figure 7.47
shows that the bifurcation threshold for the node-less symmetric mode AS1 can be efficiently reduced
by a proper choice of the core thickness. The results presented in Figs. 7.51 and 7.52 prove that fine
tuning of the core thickness allows us to observe the genuine nonlinear modes of the family with nodes
at low x∆ny levels (x∆ny   0.005).

7.1.7 Permittivity contrast study

In Section 7.1.6, we have studied the influence of the width of the nonlinear slot waveguide core on
the dispersion for this this structure. Here we will discuss the influence of the permittivity contrast
between the dielectric core and the metal cladding on the nonlinear dispersion diagrams of symmetric
nonlinear slot waveguides.
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Figure 7.53: Dispersion diagram for the nonlinear slot waveguide with the metal cladding permittivities
ε1 � ε3 � �40. All the other parameters are identical to these in Table 7.1.
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Figure 7.54: Dispersion relations for the nonlinear slot waveguide with the metal cladding permittivities
ε1 � ε3 � �20. All the other parameters are identical to these in Table 7.1. The dispersion curve of
the low-power AN0 mode (red curve for low x∆ny) lays slightly below the curve corresponding to the
low-power S0 mode (top blue curve starting at low x∆ny).

Influence of the cladding permittivity

First, we will discuss the influence of the metal cladding permittivity on the nonlinear dispersion
diagrams of nonlinear slot waveguides. The dispersion plots for the nonlinear slot waveguides with
identical parameters as these used in Section 7.1.1 (see Table 7.1) but with increased values of the metal
cladding permittivity will be studied. Figures 7.53 and 7.54 show the dispersion relations obtained
using the IM for the waveguides with metal cladding permittivity ε1 � ε3 equal to �40 and �20,
respectively (for comparison with the case of ε1 � ε3 � �90 studied in Section 7.1.1 see Fig. 7.3). In
the dispersion curves for both configurations presented in Figs. 7.53 and 7.54, we observe three low-
power modes, whereas the configuration with ε1 � ε3 � �90 supported only two low-power modes.
The separation between the two first (with highest β values) low-power modes decreases with the
increase of the metal cladding permittivity values.

Moreover, we observe that the cladding with higher permittivity allows us to reduce the x∆ny
threshold values where the bifurcation of the AS1 mode occurs. For metals with permittivity equal
to �40, the bifurcation occurs at x∆ny � 0.02, which is 4 times lower than in the case of ε1 � ε3 �
�90. For metals with permittivity equal to �20, the bifurcation occurs at x∆ny � 8 � 10�4, which
corresponds to the reduction of the bifurcation threshold by two orders of magnitude with respect to
the configuration with ε1 � ε3 � �90. The dependency of the AS1 mode bifurcation threshold x∆nyth
on the metal cladding permittivity is illustrated in Fig. 7.55. Looking at this plot, we conclude that
with the increase of the metal cladding permittivity (decrease of its absolute value) the bifurcation
threshold of the AS1 mode decreases. This decrease is slow in the range of high index contrast between
the metal and the nonlinear dielectric permittivity. Although, for |ε1| � |ε3| close to εl,2 the decrease
of the bifurcation threshold is more rapid. Changing the metal permittivity from �20 to �15 allows
us to decrease the bifurcation threshold by almost two order of magnitudes. For the metal cladding
permittivity ε1 � ε3 � �15 the bifurcation threshold is at the level of x∆ny � 10�5. This is four orders
of magnitude lower than for the ε1 � ε3 from the range r�400,�90s, for which the bifurcation occurs
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at x∆ny � 0.1. For telecommunication wavelengths, it is difficult to find a metal with a permittivity
equal to �15. Such high permittivity values might be obtain with hybrid metal/dielectric materials.

Influence of the core refractive index

Next, we will study the influence of the change of the core refractive index on the dispersion diagram
of the symmetric nonlinear slot waveguide. From the analysis presented in Section 7.1.5, we have seen
that there is a direct link between the nonlinear modes from the family with nodes and the linear
modes of the waveguides with higher refractive indices of the core. For the nonlinear waveguide with
parameters presented in Table 7.1, the first nonlinear mode from this family (S1) appeared for the
nonlinear index modification x∆ny � 0.08 [see Figs. 7.3(a) or 7.39]. Moreover, from the analysis of
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Figure 7.55: Average nonlinear index change at the appearance of the asymmetric AS1 modes x∆nyth
as a function of the absolute value of the metal cladding permittivity of the symmetric waveguide
|ε1| � |ε3|. All the other parameters of the nonlinear slot waveguide are identical to these in Table 7.1.
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Figure 7.56: Dispersion relations for the nonlinear slot waveguide with the core linear refractive index?
εl,2 � 3.556. All the other parameters are identical to these in Fig. 7.39.
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Figure 7.57: Dispersion curves of the fundamental symmetric node-less mode S0 (thin curve) and the
first-order asymmetric node-less mode AS1 (thick curves) for symmetric nonlinear slot waveguides
with parameters presented in Table 7.1, but varied linear part of the permittivity of the nonlinear core?
εl,2. The effective indices normalized with the effective index of the linear fundamental mode S0L

(β � βS0L) are presented as a function of total power density Ptot [defined by Eq. (7.1.6)].

the linear structure, we have seen that the linear counterpart of the S1 mode appears at the value of
∆nlin � 0.097 (see Fig. 7.40). Here we will study a nonlinear slot waveguide with the linear part of the
refractive index of the core

?
εl,2 � 3.556. This value of the linear part of the refractive index of the

nonlinear core is 0.096 higher than linear part of the core refractive index of the nonlinear waveguide
studied in Sections 7.1.1–7.1.5. This value is chosen in such a way that in the linear regime (low
intensity and low x∆ny) only two low-power modes are supported by the nonlinear slot waveguide.
This means that we still operate below the cut-off refractive index at which the symmetric mode with
two nodes appears in the linear waveguide (see Fig. 7.40).

The dispersion diagram for the nonlinear slot waveguide with
?
εl,2 � 3.556 is presented in Fig. 7.56.

We see that now the first nonlinear mode of the family with nodes (S1) appears at a very low value
of the nonlinear index modification (x∆ny � 7 � 104). This result shows that a precise choice of the
nonlinear core refractive index allows us to obtain nonlinear effects in nonlinear slot waveguides at
low power levels. In Fig. 7.56, we observe also a slight decrease of the bifurcation threshold of the first
asymmetric mode AS1. The AS1 mode bifurcates here at x∆ny � 0.061, whereas for waveguides with
the core index

?
εl,2 � 3.46 [see Figs. 7.3(a) or 7.39] this bifurcation occurs at x∆ny � 0.067.

It is interesting to remind that, in the case of changing the permittivity contrast by varying the
metal cladding permittivity, we observed a decrease of the bifurcation threshold for the AS1 mode
with the decrease of the permittivity contrast between the cladding and the core permittivity (see
Fig. 7.55). The example presented in Fig. 7.56 illustrates a different type of behavior. Here, with the
increase of the permittivity contrast between the cladding and the core, the bifurcation threshold of
the AS1 mode decreased. This type of behavior is studied in more detail in Fig. 7.57. In this figure,
the plots of the dispersion curves for the nonlinear slot waveguides with different linear parts of the
core refractive index

?
εl,2 are presented. All the other parameters are identical to these in Table 7.1.

The dispersion diagrams presented in Fig. 7.57 show only the two modes of interest: the fundamental
symmetric mode S0 and the first-order asymmetric mode AS1. The effective index of the modes in
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Figure 7.58: Bifurcation threshold for the AS1 mode expressed as the average nonlinear index change
x∆nyth (red curve, left vertical axis) and as the total intensity density Itot (green curve, right vertical
axis), both shown as a function of the linear part of the nonlinear core permittivity εl,2. All the other
parameters of the symmetric nonlinear slot waveguide are identical to these in Table 7.1.

each of the waveguides is normalized in the following way. The value of the effective index of the
fundamental linear symmetric mode S0L is subtracted from the effective indices of the nonlinear
modes. This normalization causes all the flat low-power parts of the dispersion curves to overlap at
β � βS0L � 0. In Fig. 7.57, the total power density of the mode Ptot [defined by Eq. (7.1.6)] is used as
abscissa.

From Fig. 7.57 we obtain the total power density Ptot at which the bifurcation of the asymmetric
mode AS1 occurs. For core indices

?
εl,2 between 1 and 2, the bifurcation threshold (expressed as the

total power density) increases with the increase of
?
εl,2.10 For higher values of

?
εl,2 (from 2 to 5) the

bifurcation threshold decreases with the increase of
?
εl,2. The behavior of the bifurcation threshold

expressed as the averaged nonlinear index modification x∆ny and as the total intensity density Itot is
presented in Fig. 7.58. In these coordinates the increase of the linear part of the core permittivity εl,2
(and therefore the linear part of the core index

?
εl,2) is accompanied by a monotonous decrease of

the bifurcation threshold.
From Fig. 7.58 we notice that the increase of εl,2 from 1 to 25 results in the decrease of the

bifurcation threshold by approximately three orders of magnitude (both when the bifurcation threshold
is expressed as x∆ny and Itot).

11 From Fig. 7.57, we notice that the same change of εl,2 results in the
decrease of the bifurcation threshold expressed as Ptot by less than two orders of magnitude. This is
connected with the non-monotonous behavior of the bifurcation threshold in the βpPtotq dispersion
diagram.

We conclude that changing the permittivity contrast by varying the linear part of the nonlinear
core permittivity, has opposite effect than changing the permittivity contrast by varying the metal
cladding permittivity. In the former case, the bifurcation threshold decreases with the increase of the
permittivity contrast (see Fig. 7.58). In the latter case, as seen in Fig. 7.55, the bifurcation threshold
increases with the increase of the permittivity contrast.

It is interesting to discuss the relative positions of the bifurcation points visible in Fig. 7.57. In the
previous considerations we were mainly interested in the bifurcation points associated with the birth of

10This conclusion is confirmed by the study of the nonlinear waveguide with
?
εl,2 � 1.5 (data not shown in Fig. 7.57

for the clarity of the plot). The total power density threshold increases form � 3.5 GW/m for
?
εl,2 � 1 to � 4.8 GW/m

for
?
εl,2 � 1.5. The points corresponding to this configuration are shown in Fig. 7.58.

11The intensity threshold for the appearance of higher-order node-less modes (modes SI and AS2) also decreases with
the increase of the linear part of the nonlinear core permittivity εl,2 (data not shown). The decrease in this case is slower.
The bifurcation threshold for the SI and AS2 modes decreases from x∆ny � 5 for εl,2 � 1 to x∆ny � 1.5 for εl,2 � 52.
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the asymmetric AS1 modes. This type of bifurcation (where a new doubly degenerate branch appears)
is called Hopf bifurcation [155]. Another type of bifurcation occurs at the points on the dispersion
curves corresponding to a local maximum or minimum of the total power density of the modes (for
example at point β � 1 and Ptot � 6 GW/m in Fig. 7.57). In the vicinity of such bifurcation points
dispersion curves have parabolic shape. This type of bifurcation is called fold bifurcation [155]. In
Fig. 7.57 we observe that for εl,2 � 1 (green curves) the Hopf bifurcation lays above (in terms of β)
the fold bifurcation. For higher values of εl,2, the Hopf bifurcation point is located below the fold
bifurcation. The change of the order of bifurcations may influence the mode stability, as it is discussed
in Chapter 8.

7.2 Asymmetric structures

In Section 7.1, we have comprehensively discussed dispersion diagrams and mode profiles in symmetric
nonlinear slot waveguide structures. In this section, we will discuss the influence of the nonlinear slot
waveguide asymmetry on the dispersion curves. The asymmetry is introduced by sandwiching the
nonlinear core by metals with different values of the permittivity on both sides. Asymmetric nonlinear
slot waveguide structures have not been studied before in literature. Here we present the analysis of
these structures for the first time.

7.2.1 Dispersion diagrams

Figure 7.59 presents the nonlinear dispersion diagram obtained using the IM for the structure with
the following parameters: core permittivity εl,2 � 3.462, the second-order nonlinear refractive index

(see Page 11 for its definition) n
p2q
2 � 2 � 10�17 m2/W, core with d � 400 nm, metal permittivities

ε1 � �110, ε3 � �90 at a free-space wavelength λ � 1.55 µm. These parameters are identical to these
for the structure studied in Section 7.1 except for the metal permittivities (compare with Table 7.1).
Here the permittivity of the left metal layer is decreased to �110 making the structure asymmetric.
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Figure 7.59: Dispersion diagram βpx∆nyq obtained using the IM for the asymmetric structure with
ε1 � �110 and ε3 � �90 (for the scheme of the structure see Fig. 6.1). Blue curves correspond to
the modes for which sgnrE0s � sgnrEds and red curves correspond to the modes for which sgnrE0s �
sgnrEds. Compare this dispersion diagram for the asymmetric structure with the dispersion diagram
for the symmetric structure presented in Fig. 7.3.
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In the asymmetric structure only asymmetric modes are present. However, in the dispersion diagram shown in Fig. 7.59, we divide the modes in two
groups: modes that resemble the antisymmetric modes of the symmetric structure for which sgnrE0s � sgnrEds (red curve labeled AN-like) and modes
that resemble the symmetric or asymmetric modes of the symmetric structure for which sgnrE0s � sgnrEds (blue curve labeled S-like).
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Figure 7.60: Dispersion curves βpE0q for the asymmetric structure with ε1 � �110 and ε3 � �90. Labeled points on each of the dispersion curves
are used in the following to analyze mode transformation along the dispersion curves. Compare this dispersion diagram for the asymmetric structure
with the dispersion diagram for the symmetric structure presented in Figs. 7.11 and 7.12.

172



7.2. Asymmetric structures

We compare the nonlinear dispersion curves for the asymmetric structure presented in Fig. 7.59
with the dispersion curves obtained for the symmetric structure shown in Fig. 7.3. We notice that
the dispersion curves for the symmetric and antisymmetric modes from the family with nodes did not
change much. The number of modes and the character of their dispersion curves is conserved. The main
difference between the dispersion curves of the asymmetric and symmetric structures can be observed
for the symmetric and asymmetric modes of the node-less family. The asymmetry of the structure lifts
the double degeneracy of the asymmetric branch AS1 (see green curve in in Fig. 7.3). This branch
splits into two branches (see Fig. 7.59). One of them (the branch with higher effective indices β) is
a continuation of the symmetric-like fundamental mode (blue curve) that starts for small averaged
nonlinear index modification x∆ny levels. The second branch lays along the first one but has slightly
higher power levels (branch with lower β values). The degeneracy of the higher-order asymmetric
modes is also lifted by the asymmetry of the structure. These branches also split into two separate
branches, similar to the case the AS1 mode. It is difficult to observe this effect in Fig. 7.59, where
the averaged nonlinear index modification is used as abscissa (even enlarging the region of interest),
because the two dispersion curves into which dispersion curves of the higher-order asymmetric mode
split lay very close to each other. The degeneracy lift of the AS2 mode can be however observed from
the dispersion curve βpE0q presented in Fig. 7.60, where the effective index is shown as a function of
the field intensity at the left core interface. As discussed later in this section, in these coordinates the
separation of the SI and AS2 curves reflects the degeneracy lift of the AS2 mode.

In Fig. 7.60, the nonlinear dispersion curves βpE0q for the asymmetric structure are shown [for
comparison with the dispersion curve of the symmetric nonlinear slot waveguide see Fig. 7.9(b) or
Figs. 7.11 and 7.12]. The points indicated on these curves correspond to the field plots presented
in Figs. 7.61 and 7.63–7.65. The points are labeled with analogy to the names of the modes of the
symmetric structure. For example, point S0e in Fig. 7.60 lays on the dispersion curve that corresponds
to the curve named S0 in the case of the symmetric structure (see Figs. 7.11 and 7.12). It does not
mean that the S0 mode of the asymmetric structure is symmetric (it is asymmetric). This asymmetric
mode is denoted by S0, because its field profiles and their transformation along the dispersion curve
are similar to the S0 mode of the symmetric structure.

7.2.2 Field profiles

At first, we discuss the transformation of the field profiles along the nonlinear dispersion curves labeled
AN0, S0 and AS1 in Fig. 7.60. The magnetic field profiles corresponding to the points with these labels
are presented in Fig. 7.61. The field profiles are ordered by increasing E0 values and in each subplot,
the value of E0 is identical for all the three modes [except in subplot (d) where only one mode exists].
The AN0 branch is continuous and we find points of this branch for every used value of E0. The
S0 and AS1 dispersion curves are discontinuous. There is a gap separating the two branches of each
of these curves. For the E0 values inside this gap, the modes S0 and AS1 do not exist. Moreover,
this gap becomes broader with the increase of the metal permittivity contrast |ε1 � ε3|. This gap is
visible only in the dispersion curves where the effective index of the modes is plotted as a function
of the total electric field intensity on the interface with the lower permittivity [here E0 is taken at
the interface between the nonlinear core and the metal with lower permittivity (equal to �110)]. For
comparison, the dispersion diagram βpEdq for this structure is presented in Fig 7.62. In dispersion
diagrams where the total electric field amplitude at the interface between the core and the metal with
higher permittivity [here Ed is taken at the interface with the metal with ε3 � �90, which is higher
than ε1 � �110], there is no gap in the S0 and AS1 dispersion curves. In the dispersion plot βpEdq
presented in Fig. 7.62, we can observe that in these coordinates, the dispersion curves of the two
symmetric-like modes (blue curves) starting at low values of Ed do not intersect. The corresponding
curves in the symmetric structure (S0 and AS1 curves) shown in Figs. 7.9(b) or 7.11 intersect at
the bifurcation point of the AS1 mode. In Fig. 7.62, the fact that these two curves do not intersect
indicates that the degeneracy of the AS1 mode is lifted.
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Figure 7.61: Profiles of magnetic field component Hy for the symmetric-like modes S0 (blue) and AS1
(green) and the antisymmetric-like AN0 (red) mode. The subplots present the transformation of the
field profiles with the increase of the E0 values. The label of the point corresponding to each profile
is indicated in the subplot legend. The labeled points are indicated in Fig. 7.60. The scale in all the
subplots is not kept identical in order to facilitate the observation of the field profile changes. In
subplots (a) and (b) the AS1 mode is plotted using a second y axis (the right one). The E0 value of
all the modes in each of the subplots is identical.

Due to the presence of the gap in the dispersion curves S0 and AS1 presented in Fig. 7.60, both the
S0 and AS1 dispersion curves are separated into two branches. At low values of E0, the low β branch
(S0) with the increase of the E0 value becomes closer (in terms of β) to the high β branch (AS1).
These branches finally merge into one point and vanish (directly above the points S0c and AS1c). The
second branches of S0 and AS1 dispersion curves reappear for higher values of E0. These branches
start at one point (directly below the points S0d and AS1d), and with the increase of E0, they first
separate and then become close again for very high values of E0. In the high E0 range (above the
gap), the dispersion curve S0 mode lays above the curve corresponding to the AS1 mode.

In Fig. 7.61(a)–(c), the transformation of the AN0, S0, and AS1 modes is presented for the branches
laying below the gap. For low E0 values, the AS1 mode is highly asymmetric and localized mainly on
the right interface (between the core and the metal with higher permittivity ε3 � �90). The S0 mode
is slightly asymmetric and localized more on the same interface as the AS1 mode. The AN0 mode is
also slightly asymmetric but its asymmetry is so small that it is difficult to notice in the plot. With
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Figure 7.62: Dispersion curves βpEdq for the asymmetric structure with ε1 � �110 and ε3 � �90.

the increase of E0 the AS1 mode becomes more symmetric. On the contrary, the asymmetry of the S0
mode increases with the increase of E0. In Fig. 7.61(c), the profiles of these modes are shown for the
value of E0, where two branches almost merged to one point. We observe that for this value of E0,
the magnetic field profiles of S0 and AS1 modes are very similar.

In the gap only, the AN0 mode exists and its magnetic field profile is shown in Fig. 7.61(d). At
the beginning of the high E0 branches, the profiles of S0 and AS1 modes are similar again. They
are asymmetric and localized on the left interface (between the core and the metal with the lower
permittivity ε1 � �110). For the region above the gap, with the increase of the E0 values, the AS1
field profile becomes more asymmetric and the S0 mode becomes more symmetric. The AN0 mode
transforms its field profile slightly with the increase of E0 but does not change its asymmetry. For
AN0 mode, the total electric field amplitude at the interface with the metal with lower permittivity
E0 is always slightly higher than Ed. For very high E0 values, the profiles of AN0, S0, and AN1 modes
in the left half of the waveguide become very similar [see Fig. 7.61(g)]. The intensity profiles (data
not shown) of AN0 and S0 mode also become very similar. These two facts explain why the dispersion
curves of these three modes become close to each other for high values of E0 (see Fig. 7.60).

Here we discuss the dispersion curves of the symmetric-like modes SI and AS2. From the dispersion
diagram βpE0q presented in Fig. 7.60, we notice that here there is a gap separating left and right parts
of these curves. For the values of E0 below the gap (E0   5 �109 V/m), the SI curve lays below the AS2
curve. With the increase of E0, the separation between these two curves decreases and directly above
points SIc and AS2c these curves merge into one point and vanish. Above the gap (E0 ¡ 7 �109 V/m),
the SI dispersion curve lays above the AS2 curve.

The appearance of the gap between the SI and AS2 dispersion curves [on the plots where effective
index β is plotted as a function of the total electric field amplitude at the interface between the core
and the metal with lower permittivity (in our case E0)] is the indication of the degeneracy lift of the
asymmetric AS2 mode. In symmetric structures (where the dispersion curves of the asymmetric mode
AS2 are doubly degenerate, see Figs. 7.11 and 7.12) the AS2 and SI curves intersect at the point of
the bifurcation of the AS2 mode.

The magnetic field profiles corresponding to the transformation of the SI and AS2 modes along
their nonlinear dispersion curves are presented in Fig. 7.63. The subplots are ordered by increasing
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Figure 7.63: Profiles of magnetic field component Hy for the symmetric-like SI (blue) and AS2 (green)
modes. The subplots present the transformation of the field profiles with the increase of the E0 values.
The labels of points corresponding to each profile is indicated in subplots legends. The labeled points
are indicated in Fig. 7.60. The scale in all the subplots is kept identical. The E0 value of all the modes
in each of the subplots is identical.

values of E0 and in each of the subplots, the value of E0 for both modes is identical. The field profiles
corresponding to the points laying on the left branch of the SI dispersion curve (the first row in
Fig. 7.63) are only slightly asymmetric and the field is slightly higher on the right core interface
than on the left one. The asymmetry of the SI mode increases with the increase of E0 value. On
the contrary, the asymmetry of the AS2 modes laying on the left branch of the AS2 dispersion curve
decreases with the increase of E0. In subplot (c), the field profiles corresponding to points SIc and
AS2c are shown. These points lay close to the place where the two dispersion curves merge into to
one point and disappear. At this point, the field profiles of the SI and AS2 modes are identical. On
the right branches of the SI and AS2 dispersion curves, the asymmetry of the SI mode decreases with
the increase of E0 and the asymmetry of the AS2 mode increases (see the second row in Fig. 7.63).
The left side-lobe of these modes has higher amplitude than the right one. Figure 7.63(d) shows the
field profiles corresponding to the points SId and AS2d. These points lay close to the point there the
right branches of the SI and AS2 curves appear. The field profiles corresponding to the SId and AS2d
points are very similar.

From the transformation presented in Fig. 7.63, we observe that the soliton peak of the SI mode is
located very close to the core center in all the subplots. The soliton peak of the AS2 mode shifts from
left interface [between the core and the metal with lower permittivity (ε1 � �110)] to right interface
[between the core and the metal with higher permittivity (ε3 � �90)] with the increase of the E0.

In Fig. 7.62, where the effective index β is plotted as a function of the total electric field amplitude
at the interface between the core and the metal with higher permittivity (in our case Ed), the dispersion
curves of the SI and AS2 modes do not intersect at any point (see top right corner of Fig. 7.62). In
these coordinates, this is the indication of the degeneracy lift of the AS2 mode [compare with the
degenerate symmetric case where the SI and AS2 dispersion curves intersect (Figs. 7.11 and 7.12)].
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Figure 7.64: Profiles of (a)–(d) magnetic field component Hy and (e)–(h) nonlinear index modification
for the symmetric-like S1 mode. The subplots present the transformation of the field profiles with the
increase of the E0 values. The labels of points corresponding to each profile is indicated in subplots
legends. The labeled points are indicated in Fig. 7.60. The scale in each of the subplots presenting the
magnetic field is different. In all the subplots presenting the nonlinear index modification the scale is
kept identical.

In Fig. 7.64, the transformation of the S1 mode12 along its dispersion curve is presented. The
columns are ordered by increasing E0 values. We observe that the field profile of the S1 mode is
almost symmetric even if the structure is asymmetric. The magnetic field profile does not change
much except for the increase of the amplitude. However, even these small changes in the magnetic
field profile induce qualitative changes in profiles of the electric field components (data not shown)
and in the nonlinear index modification profiles. The minima and maxima of the nonlinear index
modification profiles switch positions with the increase of E0, similar to the case of the S1 mode in
symmetric nonlinear slot waveguides (see Fig. 7.25). In the second and the third column in Fig. 7.64,
the field plots corresponding to the points located below and above the point where the nonlinear
index modification has a flat profile. Below this point, there are two local maxima in the profile of
∆n. Above this point these maxima transform into local minima.
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Figure 7.65: Profiles of magnetic field component Hy corresponding to points (a) AN1, (b) S2, and (c)
AN2 in Fig. 7.60.

12We remind the reader that the S1 mode belongs to the family with nodes, whereas SI modes belongs to the node-less
family.
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Figure 7.66: Comparison of the dispersion diagrams for the asymmetric nonlinear slot waveguide (with
identical parameters as in Fig. 7.59 — blue and red curves) and the asymmetric linear slot waveguide
(black curves). Both waveguides have cladding metals with ε1 � �110 and ε3 � �90. The value used as
abscissa (x∆ny) represents the averaged nonlinear index modification for the nonlinear slot waveguide
and ∆nlin for the linear slot waveguide.

Figure 7.65 presents typical field profiles of the AN1, S2, and AN2 modes. We see that these modes
resemble the respective modes in the symmetric structures discussed at the end of Section 7.1.2. Even
if the structure discussed here is asymmetric, the asymmetry of these modes is very small and difficult
to notice from the field plots. The transformation of the AN1, S2, and AN2 modes of the asymmetric
nonlinear slot waveguide is very similar to the transformation of the corresponding modes in symmetric
structures and therefore will not be described in this PhD manuscript.

Figure 7.66 presents a direct comparison of the dispersion curves of the asymmetric nonlinear slot
waveguide (with identical parameters as in Fig. 7.59 — blue and red curves) and a corresponding linear
asymmetric slot waveguide (black curves). The linear slot waveguide has the following parameters:
ε1 � �110, ε3 � �90, and the linear core permittivity

?
εl,2 � 3.46 � ∆nlin. Figure 7.66 can be

compared with Fig. 7.41, presenting a similar comparison for the symmetric nonlinear slot waveguide.

The comparison between the nonlinear and linear asymmetric slot waveguides presented in Fig. 7.66,
shows that the nonlinear and linear dispersion curves of the higher-order modes from the family with
nodes are alike. For asymmetric nonlinear slot waveguides, similar to the case of symmetric struc-
tures, there is one common point between the linear and the nonlinear dispersion curves for each of
these modes. This point corresponds to the nonlinear mode with a flat nonlinear index modification
distribution. All the nonlinear dispersion curves lay above their linear counterparts. Purely nonlinear
modes of the node-less family (AS1, SI, and AS2) are not supported by the linear slot waveguide.

7.2.3 Permittivity contrast study

To finish our discussion of the asymmetric nonlinear slot waveguide properties, we compare the dis-
persion diagrams βpx∆nyq of the symmetric structure with these of the asymmetric structures. In
Fig. 7.67, the dispersion plot of the symmetric structure (ε1 � ε3 � �90, see Fig. 7.3) is directly
compared with the dispersion plot for the asymmetric structure (ε1 � �110, ε3 � �90, see Fig. 7.59).
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Figure 7.67: Dispersion curves of the asymmetric nonlinear slot waveguide with ε1 � �110, ε3 � �90
(blue curve) and the symmetric structure ε1 � ε3 � �90 (green curve).
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Figure 7.68: Dispersion curves of the asymmetric nonlinear slot waveguides with ε1 � �70 and ε3 �
�90 (blue curve), ε1 � �50 and ε3 � �90 (red curve), and the symmetric structure ε1 � ε3 � �90
(green curve).
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Only a vicinity of the bifurcation point of the AS1 mode is presented. We observe that for small
averaged index modifications the dispersion curves of the two low-power modes are slightly modified
due to the waveguide asymmetry. For higher values of x∆ny, the dispersion curve of the fundamental
mode (upper blue curve) exactly overlaps with the dispersion curve of the asymmetric mode of the
symmetric structure. This is a consequence of the fact that, on this upper blue curve the field profiles
are strongly localized on the interface with the metal with higher value of the permittivity [in this
case ε3 � �90, see Figs. 7.61(a) and (b) for the field profiles]. These profiles resemble the profiles of
the highly asymmetric modes of the symmetric structure [see Figs. 7.16(a) and (b)]. Therefore, we
are not surprised that these two dispersion curves overlap. The second curve that results from the
degeneracy lift of the asymmetric mode lays below (in terms of β) the dispersion curve (green curve)
of the asymmetric mode AS1.

In Fig. 7.68, we present a comparison of the dispersion curves of the symmetric structure (ε1 �
ε3 � �90, see Fig. 7.3) and the asymmetric structures, where one of the metal permittivity values is
higher than in the case of the symmetric structure. The dispersion curves of the symmetric structure
(green curves) are compared with these of the asymmetric structures with ε1 � �70, ε3 � �90 (blue
curves), and ε1 � �50, ε3 � �90 (red curves).

In the case illustrated in Fig. 7.68, contrary to the one presented in Fig. 7.67, it is the lower
(in terms of β) of the two curves that result from the lift of the degeneracy that overlap with the
dispersion curve of the asymmetric modes of the symmetric structure. This lower curve corresponds to
the modes that are localized on the interface between the core and the metal with permittivity equal
to �90. For the structures studied in Fig. 7.68, ε � �90 is the lowest cladding permittivity. For that
reason, the dispersion curves corresponding to the mode localized on the interface with metal with
lower permittivity, overlap with the dispersion curves of the symmetric structure.

Another effect that can be observed in Fig. 7.68, is that with the increase of the structure asym-
metry |ε1�ε3| the separation of the two curves that appear as a result of the degeneracy lift, increases,
as expected. In the limiting case ε1 Ñ ε3, these two curves merge into one doubly degenerate curve.

180



Chapter 8
Stability analysis

I
n Chapters 2 and 6, we have studied plasmon–soliton waves using different modal approaches.
From both theoretical and practical points of view, the issue of the stability of these waves arises.
In several works, the general problem of the stability of nonlinear waves was studied [6, 156, 157].

Despite an enormous interest in the stability properties of nonlinear waves over the last decades, there
in no universal condition on the stability of nonlinear waves [153]. In most of the cases, the stability
is studied numerically for each of the cases separately. Stability of nonlinear guided waves in fully
dielectric structures was studied numerically in Refs. [26, 28, 35–37, 50, 158–160].

In structures made of metals and nonlinear dielectrics, due to the presence of media with nega-
tive permittivity, the problem of stability of plasmon–solitons is difficult to study even numerically.
Only in Refs. [72, 82] the stability of plasmon–solitons at a single metal/nonlinear dielectric interface
was analyzed, using numerical algorithms (like finite-difference time-domain — FDTD [161, 162]).
The propagation of light in plasmonic couplers was studied using Fourier methods based on mode
decomposition in linear [163] and nonlinear [164] regimes.

In this chapter, we make a first attempt to estimate the stability of the plasmon–soliton waves
described in Chapters 2 and 6. In Section 8.1, we use the topological criterion presented in Ref. [153]
that is based on the linear stability analysis [165] and the Vakhitov–Kolokolov criterion [166]. In
Section 8.2, the stability properties of the fundamental symmetric mode and the first asymmetric
mode of the nonlinear slot waveguide predicted theoretically will be confirmed by vector nonlinear
propagation simulations from two different methods.

8.1 Theoretical arguments

The stability criterion presented in Ref. [153], is based only on the topology of the dispersion curves and
the stability of the modes can be read by analyzing βpItotq diagrams (where Itot is the total intensity
of the light in the waveguide defined in Footnote 6 on Page 119). This approach was confirmed in
multiple settings dealing with purely dielectric structures, and there is a strong indication that it
should be also effective in systems including metallic layers due to similar behavior of soliton families
and similar structure of Itot diagrams. First, we will recall the principle used to estimate the stability
of nonlinear modes using the criterion from Ref. [153]. Then we will use this criterion to analyze the
stability of the plasmon–solitons found in nonlinear slot waveguides.

The stability criterion derived in Ref. [153] uses several assumptions. It provides stability for the
fundamental nonlinear modes1 in structures composed of arbitrary nonlinear material distributed
nonuniformly in the transverse direction. The derivation of the stability criterion from Ref. [153] is

1A nonlinear mode is defined as a linear mode of a linear (graded refractive index) waveguide that is induced by
the light distribution of this mode. This self-coherent definition of nonlinear modes was first introduced in Ref. [4]. The
fundamental mode of a linear waveguide is the one with the largest propagation constant and fields profiles that are
nonzero at any finite distance (node-less mode).
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Figure 8.1: Rules of assigning the stability of the modes for (a), (d) the fold bifurcations (open circles)
and (b), (c), (e), and (f) the Hopf bifurcations (open squares). Thick lines indicate a doubly degenerate
branch (existence of two modes), whereas thin lines indicate non-degenerate dispersion curves.

conducted for scalar waves in the weak guiding approximation2 for which the electric field satisfies the
scalar wave equation. In our case, for the TM polarized waves, we will consider the approximation in
which it is the magnetic field component that satisfies the scalar wave equation [Eq. (2.1.7a)]. We are
fully aware of the fact that the metal/nonlinear dielectric structures studied here, in which plasmon–
soliton waves propagate, do not fulfill the weak guiding approximation due to high permittivity contrast
between the metal and the nonlinear dielectric. This means that the interesting nonlinear effect will
occur for quite high nonlinear permittivity modifications. Despite that fact, we use here the criterion
from Ref. [153], because the dispersion diagrams obtained for our structures have similar character to
the dispersion plots of the fully dielectric structures where the criterion is applicable.

In Fig. 8.1, the rules to determine the stability of the modes derived in Ref. [153] are schemati-
cally shown. Consider an exemplary dispersion relation presented in Fig. 8.2. The stability of modes
changes only at the bifurcation points [153]. To determine the stability, first we have to identify all
the bifurcation points on the dispersion diagram βpItotq. In Fig. 8.2, the bifurcation points are lo-
cated at the points where power has its local minima or maxima (points indicated by open circles —
so-called fold bifurcation [155]) or where another branch appears [point indicated by an open square
— so-called Hopf bifurcation associated with the birth of a doubly degenerate branch (to a single
point on this branch correspond two asymmetric field profiles)]. Modes appear from or disappear at
the points of bifurcation. The next step is to label the sections between the bifurcation points with
numbers. The numbers are assigned in the following way. At first, we arbitrarily choose one section
and label it with any number (in Fig. 8.2 we labeled the most bottom section with a number 0). The
numbers of all the other sections of dispersion curves are assigned using the geometric rules given in
Fig. 8.1. For the smooth parts of the dispersion curves (characterized by fold bifurcations, also called
generic bifurcations) which are locally parabolic we use the rules presented in Figs. 8.1(a) and (d).
For the parts of the dispersion curves that are not smooth (characterized by Hopf bifurcation, which
is degenerate), where new modes are born, we use rules presented in Figs. 8.1(b), (c), (e), and (f).

2In the weak guiding approximation the refractive index contrast of the waveguiding structure is assumed to be low
[maxpnq � minpnq] and therefore interesting nonlinear effects can occur when the magnitude of the nonlinear induced
refractive index change is comparable with the linear index contrast of the structure [153].
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Finally, after having numbered all the sections of the dispersion curves, we can read the stability
of the modes directly from the βpItotq dispersion curves. The topological stability criterion presented
in Ref. [153] tells us that the modes corresponding to the parts of the curves with the largest number
are possibly stable. In Fig. 8.1, only the modes labeled by 1 are possibly stable. All the other modes
are unstable. The stability of all the possibly stable modes can be specified at once, as soon as the
stability of one of them is determined. The stability can be determined either using numerical methods
or using the physical intuition and theoretical arguments. For example, if a nonlinear mode has its
counterpart in the linear limit, then we know that this nonlinear mode is stable in the limit Itot Ñ 0.

Here we will analyze the stability of some of the plasmon–soliton waves described in Chapters 2
and 6 using the stability criterion described above. As it was mentioned at the beginning of this
section, the stability criterion presented in Ref. [153] can be used only for the fundamental modes
of the structure. The fundamental mode of the structure is the one with the highest effective index
and a node-less field profile (in our case magnetic field profile) [153]. Therefore, we can only analyze
the stability of such modes among all the types of solutions found in Chapters 2 and 6. In this PhD
manuscript we have found such solutions only in nonlinear slot waveguide configurations presented in
Chapter 6, for which the permittivity of the core is higher than the cladding metal permittivity. In
the structures with a semi-infinity nonlinear medium studied in Chapter 2, where the low-permittivity
metal film is sandwiched between high-permittivity dielectrics, we find node-less modes, but they do
not possess the highest effective index. The modes with the highest effective index possess nodes in
their magnetic field profiles. Therefore, none of these modes fulfill the definition of the fundamental
mode given here and the stability criterion can not be applied to the solutions found in Chapter 2

We will analyze the stability of the plasmon–solitons in the nonlinear slot waveguide configuration
presented in Chapter 6. We consider here the configuration discussed in Section 7.1. At first, the
stability of the modes in the vicinity of the bifurcation that gives birth to a first-order asymmetric
mode is studied. The dispersion curves of interest are presented in Fig. 8.3 (for the corresponding
field plots see Fig. 7.16). The bifurcation points divide these dispersion curves into four sections.
We arbitrarily choose the low-power section and label it with number 0. The numbers for the two
sections above the Hopf bifurcation point (open square) are assigned according to the rule presented
in Fig. 8.1(b). On the asymmetric branch (at β � 10) another bifurcation occurs (fold type bifurcation
indicated by an open circle). The number for the section above this bifurcation point is assigned using
the rule presented in Fig. 8.1(d). After assigning numbers to all the sections, we can determine the
stability of the solutions corresponding to each of the sections. The sections with the highest number
(0) correspond to possibly stable (ps) solutions and all the other sections correspond to unstable (u)

Itot

0

0

1

1

-1

0 -1

0

Figure 8.2: Exemplary dispersion curve illustrating the use of the rules presented in Fig. 8.1. The
thick line indicates a doubly degenerate branch. Bifurcation points are indicated by open circles (fold
bifurcation) or open square (Hopf bifurcation) and the numbers of the dispersion curves sections are
assigned using the rules presented in Fig. 8.1. For a detailed description see text below.
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modes. The stability of the sections indexed by number 0 can be inferred from the linear limiting case.
The low-power section of the symmetric branch in the linear limit corresponds to a linear plasmon in
metal/insulator/metal (MIM) configurations, which is stable. Therefore, the solutions corresponding
to this section of the nonlinear dispersion curves are stable. Because the stability of the sections with
the same number is the same, we conclude that also the section of the asymmetric branch indexed
by number 0 corresponds to stable modes. The high power (and high effective index) sections of the
symmetric and asymmetric branches (above the Hopf and the fold bifurcation points, respectively),
labeled with �1, are unstable.

In Fig. 8.4, the stability of the higher-order node-less modes of the structure discussed in Section 7.1
is analyzed (see Fig. 7.20 for the field plots of interest). There are two bifurcation points on the
dispersion curves for the higher-order symmetric mode SI and the second-order asymmetric mode
AS2. These points divide the dispersion curves into four sections. We start by assigning number 0
to the upper section of the symmetric branch. Then, using the rule presented in Fig. 8.1(a), number
�1 is assigned to the section between the two bifurcation points. The numbers for the sections above
the Hopf bifurcation point (indicated by an open square) are assigned using the rule presented in
Fig. 8.1(b). According to the stability criterion from Ref. [153], only the section with the highest
number corresponds to possibly stable nonlinear modes. In the case presented in Fig. 8.4, it is the
upper section of the symmetric dispersion curve. All the other modes are unstable. According to
Ref. [153], the stability of the upper section of the symmetric branch can be deduced from the high-
intensity limit (Itot Ñ 8). As it can be seen from Fig. 7.18 in Section 7.1, with the increase of the
total intensity, the higher-order solution (SI) becomes narrower and interacts weaker with the metal
cladding. In the limit Itot Ñ 8, the soliton in the nonlinear core becomes very narrow and does not
interact with the cladding at all. Therefore, it can be regarded as a one-dimensional soliton in an
infinite Kerr-type dielectric. Such solitons are stable for any intensity (see the beginning of Section 5
in Ref. [153] and Refs. [5, 21] therein). Hence, we expect the upper section of the symmetric branch to
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Figure 8.3: Zoom on the region with the birth of the first-order asymmetric mode of the dispersion
curves of the symmetric slot waveguide presented in Fig. 7.8(b). Bifurcation points are marked with
open circle (fold bifurcation) and open square (Hopf bifurcation). The numbers facilitating the stability
analysis are assigned to the sections of the dispersion curves according to the rules presented in Fig. 8.1.
Labels ps and u denote possibly stable and unstable modes, respectively.
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Figure 8.4: Zoom on the region with the birth of higher-order node-less symmetric and asymmetric
modes of the dispersion curves of the symmetric slot waveguide presented in Fig. 7.8(b). The bifur-
cation points are marked with open circle (fold bifurcation) and open square (Hopf bifurcation). The
numbers facilitating the stability analysis are assigned to the sections of the dispersion curves accord-
ing to the rules presented in Fig. 8.1. Labels ps and u denote possibly stable and unstable modes,
respectively.

correspond to stable solutions. The asymmetric mode AS2 and the modes corresponding to the lower
part of the symmetric curve (labeled with �1 and �2) are unstable.

In this section, we have presented the first attempt to determine the stability of the plasmon–soliton
waves that were described in this PhD thesis. We used the stability criterion proposed in Ref. [153]
which was proposed for the fundamental modes of the structures in the weak guiding approximation.
We use this criterion here being fully aware of its limited applicability for the configurations with metal
layers, where the permittivity contrast is high. The criterion from Ref. [153] is easy to use, because
it allows us to read the stability directly from the dispersion curves βpItotq, and it is general (can
be applied to various structures). Another approach to determine the stability of plasmon–solitons
waves is to use numerical methods. In this case, the study has to be done case by case for each of the
studied configurations and modes. Our first attempts to study the stability of plasmon–solitons in the
structures build of metal and nonlinear dielectrics, using numerical methods, are described below.

8.2 Numerical simulations of nonlinear propagations

In the previous section we have found the stability of the plasmon–solitons of the low orders using
the topological criterion derived in Ref. [153]. In the slot waveguides studied here the weak guiding
approximation, used in the derivation of this topological criterion, is not fulfilled. This fact makes the
conclusions drawn using the criterion not definitive. For this reason we verify the predicted stability
using two different vector numerical propagation methods.

At first, the stability of plasmon–solitons in nonlinear slot waveguides is verified using the nonlin-
ear propagation scheme implemented in COMSOL [167]. This approach, developed and implemented
in the group of Fangwei Ye, was successfully used to study the stability of solitons in nonlinear
metallic structures [168–170]. The numerical simulations in COMSOL were performed for the sym-
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Figure 8.5: Evolution of the electric field norm during the propagation of the symmetric mode located
below the Hopf bifurcation threshold. The average nonlinear index change in the core induced by
this mode is equal to x∆ny � 10�4 and the propagation distance is approximately 13 free-space
wavelengths.

metric nonlinear slot waveguide structure with the following parameters: ε1 � ε3 � �20, εl,2 � 3.462,

n
p2q
2 � 2 � 10�17 m2/W, and d � 400 nm at λ � 1.55 µm. This configuration has different metal

permittivity value compared to the structure studied in Section 8.1 (see parameters in Table. 7.1).
The choice of the configuration with a higher metal permittivity is dictated by the fact that, in this
new structure the threshold of the first bifurcation is lower (see Fig. 7.55). Low bifurcation threshold
is required for numerical simulation because the numerical algorithms might have troubles dealing
with the high nonlinear index modifications (see the study of highly nonlinear regime presented in
Appendix F). The bifurcation threshold of the AS1 mode in the configuration studied here is equal to
x∆nyth � 7 � 10�4. Even though the structure studied here differs from the configuration investigated
in Section 8.1, the qualitative stability properties of the nonlinear modes in both structures are the
same.

Firstly, we confirm the stability of the symmetric nonlinear mode corresponding to the low-power
section (below the Hopf bifurcation point) of the blue dispersion curve labeled ’0: ps’ in Fig. 8.3.
Figure 8.5 presents the evolution of the electric field norm over 13 free-space wavelengths of propagation
for the symmetric mode below the bifurcation point in the structure with metal cladding permittivity
ε1 � ε3 � �20. The average nonlinear index modification in the core for this mode is equal to
x∆ny � 10�4, that is below the computed bifurcation threshold x∆nyth. We observe no change of the
filed profiles during the propagation. Therefore, the stability of this mode predicted by the topological
criterion is confirmed by the field evolution presented in Fig. 8.5.

Secondly, we confirm the stability of the asymmetric nonlinear modes laying on the section of the
green dispersion curve labeled ’0: ps’ (between the Hopf and the fold bifurcation points) in Fig. 8.3. In
Fig. 8.6, we present the evolution of the electric field norm of three different asymmetric modes laying
between the two bifurcation points on the dispersion diagram of the structure with metal cladding
permittivity ε1 � ε3 � �20. All these modes are stable during the propagation, which confirms the
conclusion drawn from the topological criterion.

Figure 8.7 shows the transverse field profiles of symmetric and asymmetric plasmon–solitons in
the nonlinear slot waveguides. For each symmetry, the comparison between the profiles obtained using
the IM (see Section 6.2, that are the input profiles for the COMSOL based propagation simulations)
and the cuts of the evolution profiles presented in Figs. 8.5 and 8.6(b). We observe that the profiles
obtained after 6 and 12 free-space wavelengths of propagation are in a very good agreement with the
input field profiles.
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Figure 8.6: Evolution of the electric field norm during the propagation of asymmetric modes located
between the Hopf bifurcation and the fold bifurcation. The average nonlinear index change in the core
x∆ny induced by these modes is equal to (a) 2 � 10�3, (b) 3 � 10�3, and (c) 4 � 10�3. The propagation
distance is approximately 12 wavelengths.
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Figure 8.7: Comparison of the |E| profiles obtained using the IM (the input profiles in the COMSOL
based simulations) and cuts of the field evolution in the middle of the propagation range (z � 9 µm —
6 free-space wavelengths) and at the end of the propagation (z � 18 µm — 12 free-space wavelengths)
for (a) the symmetric nonlinear plasmon–soliton (see Fig. 8.5) and (b) the asymmetric nonlinear
plasmon–soliton [see Fig. 8.6(b)].

Figure 8.8 presents the evolution of the transverse component of the electric field Ex corresponding
to the solution presented in Fig. 8.6(b). The evolution is presented only on the distance of 9 µm
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Figure 8.8: Evolution of the Ex field profile during the propagation of the solution presented in
Fig. 8.6(b).

for better visibility of the changes in the field profile at the wavelength scale. In the plot of a single
component of the electric field, contrary to the norm of the electric field, we see the sinusoidal harmonics
evolution. Nevertheless, the envelope of the field profile does not change, which indicates the stability
of the solution.

We have studied the stability of nonlinear asymmetric plasmon–solitons using a second numerical
method. To this end we have used the nonlinear capabilities of the FDTD method implemented in
meep software [171]. A short description of the FDTD method, the meep software, and the preliminary
simulations on plasmons and solitons is presented in Appendix. F. It is important to point out that
this method is fully different from the one used by COMSOL. In this study we simulated the light
propagation in symmetric nonlinear slot waveguide structure with the following parameters: ε1 � ε3 �
�6, εl,2 � 3.8, n

p2q
2 � 2 � 10�17 m2/W, and d � 500 nm at λ � 2 µm.

The evolution of transverse component of the electric field Ex during the propagation is presented
in Fig. 8.9 for the asymmetric nonlinear plasmon–soliton above the Hopf bifurcation threshold (for
which E0{Ed � 6). Here, similar to the evolution presented in Fig. 8.8, we see the harmonic oscillation
of the field, but the shape of the envelope remind the same during the propagation, which indicates
the stability of the mode.

In Fig. 8.10, we present the comparison of the field profile of the asymmetric mode obtained using
the IM and the FDTD simulations. The FDTD profiles are obtained by taking cuts of the color map
presented in Fig. 8.9 in the middle and close to the end of the observation window. The comparison
presented in Fig. 8.10 reveals small changes of the envelope during the propagation in the FDTD
simulations. Such changes were not present in the simulations performed in COMSOL (see Fig. 8.7).
The different behavior of the two simulation methods is probably caused by different way of exciting of
the input field profile. In the COMSOL based simulations, the input field profile corresponds exactly
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Figure 8.9: Evolution of the Ex field profile during the propagation of the asymmetric plasmon–soliton
simulated using the FDTD method implemented in the meep software.
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Figure 8.10: Comparison of the Ex profiles obtained using the IM and cuts of the field evolution in
the middle of the propagation range (z � 3 µm) and at the end of the propagation (z � 7 µm) for the
asymmetric nonlinear plasmon–soliton [see Fig. 8.9].

to the stationary solution found using the IM. In the simulations performed in meep, the input field
is generated by a current source (see Appendix F). This source generates a field profile similar to the
one of the IM but differs from it. This difference in the input profile might be the reason for small
changes of the envelope of the field during the propagation.

To sum up, we have studied the stability of the nonlinear plasmon–soliton waves in nonlinear
slot waveguides using three independent methods. The theoretical predictions based on the topolog-
ical criterion were confirmed by the propagation simulations obtained using two numerical methods.
Therefore, the stability of the low-order asymmetric solutions in nonlinear slot waveguides was con-
firmed.
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Chapter 9
Conclusions and perspectives

9.1 General conclusion

T
he theoretical studies of nonlinear surface waves on interfaces between metals and nonlinear
dielectrics, referred here as plasmon–solitons, represent an important but not fully explored
branch of nonlinear optics. Plasmon–solitons merge the properties of spatial optical solitons

and surface plasmons in a single nonlinear wave. Even though this type of nonlinear waves has been
studied for more than thirty years, there are still no experimental results confirming their existence. In
this PhD thesis, we have developed new and efficient models to study the properties of plasmon–solitons
and we have provided results that may facilitate the experimental observation of these nonlinear states.

In the first part of this manuscript, we have studied configurations where a semi-infinite Kerr-type
nonlinear medium was in contact with metal or linear dielectric layers. For this type of structures, we
have developed two independent models based on Maxwell’s equations that allow us to find nonlinear
stationary transverse magnetic polarized states in these structures. The models we have developed
are semi-analytical and they provide closed expressions for the dispersion relations and for the field
profiles of the modes. This fact allows us to rapidly scan multi-dimensional space of opto-geometric
parameters of studied structures, which is essential in the process of structure optimization and allows
us to efficiently find the configuration with desired physical properties (for example configurations
supporting low-power plasmon–solitons).

The validity of the two models that we have developed, has been confirmed analytically and
numerically. The analytical validation is based on the fact that, in the limiting cases (for simpler
structures with lower number of layers or linear structures) our models reproduce the results that are
already known from literature. The numerical validation of our models has been done in three stages.
The results obtained using our models have been: (i) compared with the results published in other
works for the same type of structures, (ii) mutually compared with each other, (iii) compared with the
results of a home-made finite element method that uses a fixed power algorithm to find self-coherent
solutions in the metal/nonlinear dielectric planar structures. In all the three cases, the results are in
accord.

After having confirmed the validity of our models, we have presented the results for the dispersion
diagrams and the mode profiles in various multilayer configurations with a semi-infinite nonlinear
medium and a metal layer. We started with the simplest configuration: a single interface between a
metal and a nonlinear dielectric. We have proven analytically that in such structures, only plasmonic-
type nonlinear surface waves exist (waves whose field profile resembles that of a linear plasmon, but
is slightly modified due to the presence of the nonlinearity). In case of a more complicated structure
that is composed of a thin metal film sandwiched between a nonlinear and a linear medium (NML
structure), another type of solutions is found. At first, we studied a symmetric NML configuration
in which the linear parts of the permittivity of the dielectric claddings are equal on both sides.
Based on this example, we introduced a general classification of nonlinear surface waves in structures
with a nonlinear dielectric layer, a metal layer and linear dielectric layers. There exist two types of
plasmon–solitons: the plasmonic type and the solitonic type. In the field profiles of the solitonic-type
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plasmon–solitons, a soliton peak is visible in the nonlinear medium and a plasmon peak is visible at
one of the metal interfaces. Studying the asymmetric NML structures, we have demonstrated that
there exists a range of precisely chosen parameters, for which solitonic-type plasmon–solitons can be
observed at realistic intensity levels. Thus, we can conclude that, for asymmetric NML structures the
permittivity of the linear material has to be fine-tuned in order to find low-power solutions in the
structure. In the configuration that we have studied, for a fixed geometry, the change in the linear
refractive index by 0.01 resulted in the change of plasmon–soliton peak power from 1 to 30 GW/cm2.

Studies of low-power plasmon–solitons are crucial from a practical point of view. The absence of
experimental confirmation of the existence of plasmon–soliton waves results from the fact that, all the
nonlinear surface waves of this type predicted before require extremely high refractive index change,
which is equivalent to the high power levels that exceed the damage threshold of the conventional
materials used in integrated optics. The discovery of the low-power solitonic-type plasmon–solitons
indicates the direction toward which the experimental investigations should be focused. Low-power
solitonic-type plasmon–solitons can be easily excited in structures proposed by us with a Gaussian laser
beam and could be unmistakably distinguished from any linear modes propagating in the structure.

Subsequently, the four-layer structures were also studied, in which an additional low-refractive
index dielectric layer was introduced between the nonlinear dielectric and the metal film. We have
found the dispersion diagrams for such four-layer structures for first time. Depending on the choice of
the structure’s opto-geometric parameters, we obtained rich or simple dispersion diagrams. We have
demonstrated that, the introduction of an additional dielectric layer can greatly enlarge the region of
parameters in which low-power solitonic-type plasmon–solitons exist (e.g., the refractive index interval
in which solutions with peak intensity below 30 GW/cm2 exist is enlarged from 0.01 in the case of a
three-layer structure to 1.7 in a four-layer structure with similar opto-geometric parameters). Using
this fact, we have optimized the four-layer structure in order to facilitate the experimental observation
of such nonlinear waves. We have found configurations that support plasmon–solitons with the peak
intensity around 1 GW/cm2. This level of light intensity was already used experimentally in 2009 to
generate spatial solitons in fully dielectric waveguides with a chalcogenide core.

Nonlinear plasmon–solitons in structures with a semi-infinite nonlinear medium may find potential
applications in sensing (for example in surface plasmon resonance based detectors), because they offer
an additional free parameter (the light intensity) that influences the resonance condition and can be
tuned by adjusting the power level of the incident light. However, in structures with a semi-infinite
nonlinear medium that support low-power plasmon–solitons, the solitonic part is weakly localized.
Typical full width at half maximum, of a plasmon–soliton with 1 GW/cm2 peak intensity, is of the
order of few tens of microns. This creates the need for thick nonlinear layers. From the fabrication
point of view, it is problematic to obtain uniform, high quality, nonlinear layers of such thickness.

In the second part of this PhD manuscript, we have studied nonlinear plasmonic slot waveguide
configurations in which the nonlinear Kerr-type dielectric film is sandwiched between two semi-infinite
metal cladding layers. This configuration has some advantages over the structures with semi-infinite
nonlinear media. Stationary solutions in nonlinear slot waveguides are strongly confined, primarily
due to the high permittivity contrast between the nonlinear dielectric core and the metal cladding
and secondarily due to the self-focusing nonlinear effect. Moreover, as stated above, from the practical
point of view it is easier to fabricate high quality thin films of nonlinear materials than bulky samples.

For nonlinear plasmonic slot waveguides, we have developed two models based on Maxwell’s equa-
tions for the transverse magnetic polarized light. One of them is semi-analytical and provides closed
formulas for the dispersion relations and the field profiles of the modes in terms of special Jacobi
elliptic functions. The limitation of this model is the fact that it uses a simplified treatment of the
Kerr-type nonlinearity. The second model, that accounts for the full nonlinear Kerr term, is based on
the shooting method, which is a common numerical way to solve Maxwell’s equations in nonlinear
structures. The novelty of the second model lays in the fact that we have found an analytical con-
dition that allows us to reduce the dimension of the parameter space in which nonlinear solutions
of Maxwell’s equations are sought. The validity of both our models has been validated by a mutual
comparison of their results. Because interesting nonlinear effects occur for the nonlinear permittiv-
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ity contrast comparable to the built-in permittivity contrast in the structure, in the nonlinear slot
waveguide configuration, built of metals and dielectrics, interesting nonlinear effects occur for elevated
nonlinear permittivity changes. Some of these effects occur outside of the validity range of the first
model, which treats the Kerr-type nonlinearity in a simplified and approximated way. For this reason,
the two models agree quantitatively only for low intensity levels. Nevertheless, the results of both our
models are in excellent qualitative agreement for the whole range of intensities.

Using these two models that we developed, we have studied the dispersion relations and mode
profiles of nonlinear plasmonic slot waveguides. First, we have analyzed very rich dispersion diagrams
for the symmetric nonlinear slot waveguides (in which the permittivities of the two metal claddings
are equal). We have found the zero-order modes (symmetric and antisymmetric modes that exist in
the linear limit) and the first-order asymmetric nonlinear mode that have already been studied in
literature. The asymmetric mode appears from the symmetric one in the nonlinear regime through a
symmetry-breaking Hopf bifurcation. Apart from these modes, due to the completeness of our models,
we have found new symmetric, antisymmetric and asymmetric higher-order modes in nonlinear slot
waveguides. Among these higher-order modes, the asymmetric modes bifurcate from the symmetric
ones. All the dispersion curves of the asymmetric modes in the symmetric nonlinear slot waveguide
are doubly degenerate.

We have classified all the modes of the nonlinear slot waveguide according to the symmetry of the
magnetic field profile and to the presence of the nodes in the magnetic field profile. The nonlinear
dispersion diagrams can be divided into two parts: one containing only dispersion curves of the modes
with nodes and the second one containing the dispersion curves corresponding to the node-less modes.
The limit between the two regions is given by the dispersion curve corresponding to a single interface
between the metal and the nonlinear dielectric. We have found the analytical expressions for this curve
using the formulation of each of our models. The family of the modes with nodes has been studied
in more detail. We have shown that at a certain point (one for each of the higher-order modes with
nodes), the nonlinear refractive index distribution induced by this mode is flat. This fact allowed us
to find a direct relationship between these modes and their linear counterparts that exist in linear slot
waveguides.

For the symmetric nonlinear slot waveguide structure, we have studied the influence of the width of
the core on the dispersion curves. We concluded that the increase of the waveguide core width allows
for a drastic decrease of the intensity threshold at which the birth of new nonlinear modes is observed.
We have reported that the increase of the waveguide thickness by a factor of 20 allows us to decrease
the intensity required to observe the first asymmetric mode bifurcation by 5 orders of magnitude.
Moreover, studying waveguides with different core widths, we observed that a part of the dispersion
curve of the first asymmetric mode for high effective index values is invariant with respect to the
waveguide core width. For high effective index values, the dispersion curves of the first asymmetric
mode in waveguides with different thickness overlap. This behavior is explained by the fact that the
high-effective index asymmetric solutions are strongly localized at one of the nonlinear slot waveguide
interfaces and interact very weakly with the second interface. Therefore, the problem can be simplified
to a single-interface situation, where the thickness of the waveguide does not play any role.

Furthermore, the influence of the permittivity index contrast between the dielectric core and the
metal cladding on the dispersion curves has been studied. We have noticed two types of behavior.
Decreasing the permittivity contrast by changing the permittivity of the metal cladding allows us to
decrease the intensity threshold for the bifurcation points for the asymmetric modes. In the studied
structure, we have managed to reduce the intensity threshold for the first bifurcation by four orders
of magnitude by changing the metal cladding permittivity from �200 to �15 while the linear part of
the core permittivity was kept equal to 3.462. On the contrary, increasing the permittivity contrast
by changing the permittivity of the core allows us to decrease the intensity threshold for the first
bifurcation. We have reduced the intensity threshold by three orders of magnitude by changing the
core permittivity from 1 to 25 while the cladding permittivity was kept equal to �90.

Moreover, the properties of asymmetric nonlinear slot waveguides were studied. We have shown
that, in agreement with the group theory, the double degeneracy of the dispersion curves corresponding
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to the asymmetric modes is lifted when the asymmetry of the structure is introduced (different metal
permittivity values for the two cladding regions). Additionally, we have observed that the separation
between the two branches into which the doubly degenerate branch splits, grows with the increase
of the structure asymmetry, as expected. For high effective indices, one of these branches overlaps
with the dispersion curve of the asymmetric mode in the symmetric structure. This behavior was
explained using the fact that for highly asymmetric modes that are strongly localized at one interface,
the problem can be reduced to a single-interface situation.

Last but not least, the stability of the nonlinear plasmon-solitons in nonlinear slot waveguides
was studied. We have confirmed the stability of the low-order asymmetric modes using three different
methods. The conclusions about the stability drawn using the general topological criterion for nonlinear
structures were confirmed using two independent numerical methods.

Nonlinear plasmonic slot waveguides may find potential applications in integrated optics, as they of-
fer the possibility of extreme light confinement required to miniaturize devices and reduce the cross-talk
between separate channels. Applications in nonlinear plasmonic couplers have already been proposed
in literature.

9.2 Perspectives

9.2.1 Theoretical studies

Even though plasmon–solitons in metal/nonlinear dielectric structures have been studied for more
than thirty years, there are still a lot of questions that remain unanswered. One of the most important
issues is the stability of these waves. The stability of low-order plasmon–solitons in nonlinear slot
waveguide configurations has been demonstrated in Chapter 8. However, the theoretical method used
there was not fully suited for the structures with high refractive index contrast as the ones studied
in this PhD manuscript. It has not been rigorously proven that the framework we used, developed
in Ref. [153], is applicable to the structures studied in our study. It is desirable to find an analytical
criterion for plasmon–soliton stability, similar to the one presented in Ref. [153] for weak contrast
dielectric waveguides. Since this might be a difficult task, in the short term it might be more efficient
to study the stability of nonlinear surface waves using numerical tools. Methods such as split-step
Fourier or finite-difference time-domain (FDTD) can be used to study the propagation and stability
of plasmon–solitons. Some results connected with our FDTD studies of plasmon–soliton propagation
are shown in Section. 8.2 and in Appendix F. Numerical FDTD method seems to fail in the case of
high nonlinear refractive index modifications (comparable with the linear refractive index). Therefore,
it is important to improve the numerical methods and to develop new algorithms that will be able to
tackle this difficulty. This would enable us to study numerically the stability of higher order modes in
nonlinear slot waveguides, that require high nonlinear index modifications.

Apart from the stability issue, more complicated structures in which plasmon–solitons can propa-
gate should be considered in the future. The models presented in this work can be extended to treat
structures with higher number of layers. Combining the results from Sections 2.3 and 6.2, allows us to
readily analyze nonlinear waveguides with multiple cladding layers. As an extension of this idea, peri-
odic structures with metal and nonlinear dielectric layers may be studied. Moreover, analysis of more
realistic two-dimensional solutions in both one- and two-dimensional waveguide geometries should be
continued. The two-dimensional nonlinear dielectric waveguides embedded in metal/dielectric struc-
tures may offer further flexibility in the structure design and plasmon-soliton properties control. Addi-
tionally, the waveguides in which the interface between a nonlinear dielectric and a metal is structured
may result in new properties of plasmon–soliton waves.

9.2.2 Experiment

In this PhD thesis, we have presented several results that should facilitate experimental observation
of plasmon–soliton waves. We have designed realistic structures (both for the configuration with semi-
infinite nonlinear medium and for the nonlinear slot waveguide configuration) in which purely nonlinear
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states can be observed at the level of induced nonlinear permittivity change reachable in materials
used for integrated optics. We have used realistic parameters of the materials at the telecommunication
wavelength and optimized the structures in order to observe nonlinear effect at the levels of intensity
that can be provided by modern high power lasers and that do not destroy the material. These
designs have been made in close collaboration with groups working on the experimental observation
of plasmon–solitons. There are still a lot of difficulties that have to be overcome from the fabrication
point of view. Proper materials have to be chosen in order to maximize their nonlinear response
and minimize parasitic effects, such as linear losses, three-photon absorption or permanent material
degradation upon long exposure to high-intensity laser light.
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Appendix A
Intensity dependent refractive index

In literature, we can find various definitions of the intensity dependent (Kerr) refractive index. Here
we present in detail the relations between various nonlinear parameters.

In the case of many materials the refractive index can be described by the relation [172]:

n � n0 � n2x�EEE 2ptqyt, (A.1)

where n0 represents the usual, weak-field refractive index and n2 is the constant describing the rate

of index change with the increase of the time averaged electric field x�EEE 2ptqyt. We put a bar over
this coefficient to avoid confusion with the second-order nonlinear refractive index n2 introduced in
Section 1.7. The time dependent electric field is defined by Eq. (1.6.1a) as:

�EEE ptq � Epωqe�iωt � c.c. (A.2)

The time average of �EEE 2ptq can be written as

x�EEE 2ptqyt � xEpωqe�iωt � 2EpωqE�pωq �E�pωqeiωtyt. (A.3)

The averaging of the oscillating terms gives zero and Eq. (A.3) reads:

x�EEE 2ptqyt � 2|Epωq|2. (A.4)

Using this result we can rewrite Eq. (A.1) to obtain the dependency of refractive index on the field
amplitude:

n � n0 � 2n2|E|2. (A.5)

An alternative, more common way of defining the Kerr-type refractive index is to connect the
index changes with the light intensity [see Eq. (1.7.1)]:

n � n0 � n2I. (A.6)

Comparing Eqs. (A.5) and (A.6) and using the definition of the light intensity given by Eq. (1.7.4),
we relate the two nonlinear coefficients:

n2 � 4βn2

ε0|ε|c . (A.7)

In Section 1.7, we have obtained a simplified relation between the nonlinear coefficient α (appearing
in the definition ε � εl � α|E|2) using several assumptions. We assumed there that the nonlinear
modification of the permittivity is much lower than the linear part of permittivity (α|E|2 ! εl) and
that the effective index of the modes can be approximated by the value of the linear refractive index
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(β � n0, which is true for low-power solitonic waves). Using the same assumptions in Eq. (A.7), we
rewrite it in the form:

n2 � 4n2

ε0n0c
. (A.8)

Equation (A.8) differs by a factor 4 from Eq. (4.1.18) in Ref. [2] due to a different definition of the
light intensity used {compare Eq. (1.7.4) in this manuscript and Eq. (4.1.16) in Ref. [2]}.

Here we recall the simplified relation between n2 and α given by Eq. (1.7.7):

α � ε0n
2
0cn2, (A.9)

where we used the identity |εl| � n2
0. Using the fact that χp3q � α{3 [see Eq. (1.6.10)] we relate n2

with χp3q:

n2 � 3χp3q

ε0n2
0c
. (A.10)

Equation (A.10) can be numerically expressed as:

n2

�
m2

W

�
� 1128

n2
0

χp3q
�

m2

V2

�
, (A.11)

where again the difference by factor 4 with Eq. (4.1.20) in Ref. [2] is due to different definitions of the
light intensity used here and in Ref. [2]. In some older works, the third-order nonlinear susceptibility
values are given in the Gaussian system. In this case, the conversion procedure is the following:

n2

�
m2

W

�
� 1.56 � 10�5

n2
0

χp3q
�
esu
�
. (A.12)
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Appendix B
Elliptic integrals

During the derivation of the expressions for the field profiles in the frame of the Jacobi elliptic function
based model in Section 6.1.1, we have encountered the elliptic integrals. By definition, an integral of
the type »

Rpx, yqdx, (B.1)

where Rpx, yq is a rational function of x and y, y2 is equal to a cubic or quartic polynomial in x, Rpx, yq
contains at least one odd power of y, and y2 has no repeated factors is called an elliptic integral. More
details on the elliptic integrals can be found in Ref. [154].

Table B.1 presents the formulas used to integrate the elliptic integrals that were used in Sec-
tion 6.1.1. The results of the integrations of the elliptic integrals are expressed as the inverse Jacobi
elliptic functions. The Jacobi elliptic functions are discussed in Ref. [152] and in Appendix C.

Condition
Formula number

Elliptic integral
Equivalent inverse

in Ref. [112] Jacobi elliptic function

γ ¡ δ 17.4.43 γ
³x
δ

dt?
pγ2�t2qpt2�δ2q

nd�1
�
x
δ

���γ2�δ2

γ2

	
γ ¡ δ 17.4.44 γ

³γ
x

dt?
pγ2�t2qpt2�δ2q

dn�1
�
x
γ

���γ2�δ2

γ2

	
— 17.4.51

a
γ2 � δ2

³x
0

dt?
pt2�γ2qpδ2�t2q

sd�1

�
x
?
γ2�δ2

γδ

��� δ2

γ2�δ2



— 17.4.52

a
γ2 � δ2

³δ
x

dt?
pt2�γ2qpδ2�t2q

cn�1
�
x
δ

��� δ2

γ2�δ2

	
Table B.1: Elliptic integrals and the equivalent inverse Jacobi elliptic functions. This table is part of
the table presented on Page 596 in Ref. [112].
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Appendix C
Jacobi elliptic functions

The field profiles and the dispersion relations in the frame of the Jacobi elliptic function based model
derived in Section 6.1 are expressed in terms of Jacobi elliptic functions. This appendix presents the
necessary informations about these functions and their basic properties. More details on the Jacobi
elliptic functions can be found in Ref. [152].

C.1 Definitions and plots

The Jacobi elliptic functions can be defined with respect to some integrals. Consider an integral

u �
» ϕ

0

dθa
1�m sin2 θ

, (C.1)

where the angle ϕ is called the amplitude.

ϕ � ampu|mq (C.2)

and m is called the parameter. The parameter m takes values from the interval r0, 1s, We define the
three first Jacobi elliptic functions as

cnpu|mq � cosϕ, (C.3a)

dnpu|mq �
b

1�m sin2 ϕ, (C.3b)

snpu|mq � sinϕ, (C.3c)

The remaining nine Jacobi elliptic functions can be expressed using the three functions given by
Eqs. (C.3) using the following rules. For p, q, and r being any of the four letters s, c, d, and n the
following relations hold:

pqpu|mq � 1

qppu|mq , (C.4)

pqpu|mq � prpu|mq
qrpu|mq . (C.5)

Two equivalent notations are used for the Jacobi elliptic functions. In this PhD manuscript, we use
the notation with the parameter m, as it is done for instance in Ref. [112] and in the computer algebra
software Maxima [173] that was used for a part of the numerical implementation of the Jacobi elliptic
function based model. The second notation for the Jacobi elliptic functions uses the modulus k2 � m
instead of the parameter m. This notation is used for example in Ref. [111] and in the computer
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algebra software Maple [174], in which the main code of the Jacobi elliptic function based model was
written. These two notations are equivalent in the sense

�pqpu|kq � pqpu|mq, (C.6)

where the Jacobi elliptic function denoted by �pq uses the second notation.
In Figs. C.1 and C.2, we present plots of the six Jacobi elliptic functions used in Section 6.1. The

plots illustrate the behavior of these Jacobi elliptic functions for different values of the parameter m.
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Figure C.1: Jacobi elliptic functions (a) cnpu|mq, (b) dnpu|mq, and (c) snpu|mq for five different values
of the parameter m.
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Figure C.2: Jacobi elliptic functions (a) cdpu|mq, (b) ndpu|mq, and (c) sdpu|mq for five different values
of the parameter m.
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C.2 Properties

Here we present some of the basic properties of the six Jacobi elliptic functions that were used in
Section 6.1.

Limiting cases

The expressions for the Jacobi elliptic functions in the limiting case m � 1 are used in Section 6.1.4,
where the derivation of the field profiles and the nonlinear dispersion relations for the limiting case
of a single interface between a metal and a nonlinear dielectric is presented. Table C.1 presents the
expression for the Jacobi elliptic functions for the limiting cases of the parameter m � 0 and m � 1.

Function \ Case m � 0 m � 1

cnpu|mq cosu sechu

dnpu|mq 1 sechu

snpu|mq sinu tanhu

cdpu|mq cosu 1

ndpu|mq 1 coshu

sdpu|mq sinu sinhu

Table C.1: Expression for the Jacobi elliptic functions for the limiting values of the parameter m � 0
or m � 1. This table is part of Table 16.6 presented on Page 571 in Ref. [112].

Symmetry

The symmetry properties of the Jacobi elliptic functions were used in Section 6.1 to simplify the
expressions for the field profiles and the nonlinear dispersion relations. Table C.2 presents the symmetry
properties of the Jacobi elliptic functions.

Function \ Argument u �u
cn cnpu|mq cnpu|mq
dn dnpu|mq dnpu|mq
sn snpu|mq � snpu|mq
cd cdpu|mq cdpu|mq
nd ndpu|mq ndpu|mq
sd sdpu|mq � sdpu|mq

Table C.2: The symmetry properties of the Jacobi elliptic functions. This table is part of Table 16.8
presented on Page 572 in Ref. [112] that presents more general relations between Jacobi elliptic func-
tions upon the change of the argument.
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Derivatives

The expressions for the Jacobi elliptic function derivatives were used in Section 6.1 to obtain the
formulas for the field profiles and the nonlinear dispersion relations. Table C.3 present expressions for
the derivatives of the Jacobi elliptic functions used in Section 6.1.

Function Derivative

snpu|mq cnpu|mq dnpu|mq
cnpu|mq � snpu|mq dnpu|mq
dnpu|mq �m snpu|mq cnpu|mq
sdpu|mq cdpu|mq ndpu|mq
cdpu|mq pm� 1q sdpu|mq ndpu|mq
ndpu|mq m sdpu|mq cdpu|mq

Table C.3: Expressions for the derivatives with respect to the argument u of the Jacobi elliptic func-
tions. This table is part of Table 16.16 presented on Page 574 in Ref. [112].
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Appendix D
Study of the losses in nonlinear slot waveguide
structures

In this appendix we present an estimation of the propagation losses for the modes of a nonlinear slot
waveguide. The losses will be evaluated using the method proposed in Section 2.1.5. The imaginary
part of the effective index is calculated using the expression [compare with Eq. (2.1.73)]:

β2 � ε0c

4

³
T ε

2pxq|Epxq|2 dx

Ptot
, (D.1)

where Ptot denotes the total power density of the mode [defined by Eq. (7.1.6)], ε2pxq denotes distribu-
tion of the imaginary part of the permittivity, and T is the transverse cross-section of the waveguide.

The waveguides studied here have parameters similar to these given in Table 7.1, but now the
imaginary part of the permittivity of the materials is nonzero. In this appendix, waveguides with two
thicknesses of the core are studied: 400 nm and 800 nm.

Quantity \ Layer 1 2 3

Material gold hydrogenated amorphous silicon gold

Permittivity ε1 � �90� 10i εl,2 � 3.462 � 10�4i ε3 � �90� 10i

n
p2q
2 — 2 � 10�17 m2/W —

Table D.1: Parameters of the symmetric nonlinear slot waveguide structures with losses studied in this
section.

Figure D.1 presents the dispersion diagram for the nonlinear slot waveguide with a 400-nm-thick
core obtained using the interface model. The real and the imaginary parts of the effective index
are plotted as a function of the averaged nonlinear index modification in the core x∆ny defined by
Eq. (7.1.1). In the description of the dispersion curves, the names of the modes introduced in Sec-
tion 7.1.1 are used. Figure D.1(a) shows the real part of the dispersion curves βpx∆nyq (it is a part
of Fig. 7.3). The behavior of these dispersion curves is discussed in Section. 7.1.1. Here we will focus
on the description of Fig. D.1(b) that presents the dispersion curves for the imaginary part of the
effective index β2px∆nyq.

Form Fig. D.1(b), we notice that the imaginary part of the effective index of the fundamental
symmetric mode S0 (blue curve that starts at low x∆ny values) are lower than β2 for the low-power
antisymmetric AN0 mode (red curve starting at low x∆ny). The lowest value of the imaginary part of
the effective index for the S0 mode is β2 � 3 � 10�2 and for the AN0 mode β2 � 5 � 10�2. These values
are equal to the imaginary part of the effective indices of the first symmetric and antisymmetric modes
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Figure D.1: Nonlinear dispersion diagrams for (a) the real part and (b) for the imaginary part of
the effective index as a function of the averaged nonlinear index modification in the nonlinear slot
waveguide with the parameters indicated in Table D.1 and a 400-nm-thick core.

of the corresponding linear slot waveguide. The imaginary part of the effective index of the S0 and
AN1 modes increases with the increase of x∆ny. Similarly, the imaginary part of the effective index of
the AS1 mode increases with the increase of x∆ny.

The lowest values of β2 for the low-power modes of the slot waveguide correspond to the attenuation
of the mode L � 1 dB/µm [the relation between the imaginary part of the effective index and the
attenuation is given by Eq. (2.1.74)].
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Figure D.2: Nonlinear dispersion diagrams for (a) the real part and (b) for the imaginary part of
the effective index as a function of the averaged nonlinear index modification in the nonlinear slot
waveguide with the parameters indicated in Table D.1 and an 800-nm-thick core.

The nonlinear dispersion curves for β2 of the higher-order modes from the family with nodes (modes
S1 and AN1) have a parabolic shape. These curves start at a certain level of losses corresponding to
the appearance of the mode at β � 1. With the increase of x∆ny, the imaginary part of the effective
index first decreases and then increases rapidly. With the increase of the order of the mode, the values
of β2 at the beginning of the curve and at the minimum increase.

The most interesting is the behavior of the β2px∆nyq curve for the higher-order node-less symmetric
mode SI. This mode appears through a fold bifurcation [155] at x∆ny � 3. At the bifurcation point,
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two branches are born and their effective index β increases with the increase of x∆ny [see Figs. D.1(a)
and 7.3(b)]. The imaginary part of the effective index for one of these branches increases with the
increase of x∆ny. On the contrary, for the second branch, the values of β2 decrease with the increase
of x∆ny. This behavior can be understood looking at the field profiles of the SI mode presented in
Fig. 7.18. There, we observe that the field profiles laying on the upper SI branch have large side-
lobes [see Fig. 7.18(a) and (b)] and therefore they interact strongly with the metal cladding. The field
profiles corresponding to the lower branch have low side-lobes [see Fig. 7.18(c) and(d)] and therefore
they interact weakly with the metal cladding.

The interaction with the metal cladding is crucial in the studies of losses, because the imaginary
part of the metal permittivity is orders of magnitude higher than ε2 of the dielectric core (in terms of
absolute value — see Table D.1). Looking at Eq. (D.1) we see that, the higher the fraction of the field
localized in the metal layers, the higher is the value of β2. Consequently, solutions that interact with
the metal cladding weakly (that are mainly localized in the dielectric core) have low β2 values. The
lowest value of β2 of the SI mode that we compute is β2 � 2 � 10�3. It corresponds to the attenuation
of L � 0.07 dB/µm. Unfortunately, this low vale of losses occurs for extremely large nonlinear index
modifications x∆ny � 4.

The imaginary part of the effective index of the asymmetric mode AS2 grows with the increase of
x∆ny. This is caused be the fact that, with the increase of x∆ny, the asymmetry of this mode increases.
With the increase of the asymmetry, the amplitude of one of the side-lobes grows and the amplitude
of the other one decreases. However, the net effect gives the increase of the fraction of the light that
is confined in the metal cladding.

In Fig. D.2 the dispersion diagram for a nonlinear slot waveguide with the parameters shown in
Table D.1 and the core thickness d � 800 nm is shown. Figure D.2(a) shows the real part of the
dispersion curves βpx∆nyq (the same plot is shown inf Fig. 7.46). The behavior of these dispersion
curves is discussed in Section. 7.1.1. Here we will focus on the comparison between Fig. D.2(b) that
presents the dispersion curves for the imaginary part of the effective index β2px∆nyq for the waveguide
with an 800-nm-thick core, and Fig. D.1(b) showing the same dependency for the waveguide with a
400-nm-thick core.

Qualitatively, the behavior of the nonlinear dispersion curves β2px∆nyq of the corresponding modes
of the waveguides with a thin core and with a thick core is the same. However, here are some qualitative
differences. In Fig. D.2(b), we see four low-power modes. The imaginary part of the effective index for
the fundamental symmetric mode (blue curve form which the asymmetric AS1 mode bifurcates) is at
the same level as for the waveguide with the thin core (β2 � 3 � 10�2). However, for the waveguide
with the thick core, two additional higher-order low-power modes with nodes exist, for which β2 can
be as low as 10�2.

The lowest value of the imaginary part of the effective index is obtained for the higher-order
symmetric node-less modes. One branch of the SI dispersion curve corresponds to β2 � 10�4. The
lowest β2 for the SII mode is at the level of 10�3. Comparing Figs. D.1 and D.2, we notice that with
the increase of the core thickness, the lowest value of β2 for the SI mode decreases (from 2 � 10�3 to
10�4) and that it occurs for lower value of the nonlinear index modification x∆ny. For the waveguide
with the thick core it occurs at x∆ny � 1.5 which is two times lower than for the waveguide with the
thin core.

The lowest attenuation obtained for the SI mode in the nonlinear slot waveguide with the 800-nm-
thick core is L � 3.5 dB/mm. We notice that by changing the nonlinear core thickness, we are able to
lower the level of the losses of the modes propagating in the nonlinear slot waveguide.
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Appendix E
Field profiles of higher-order node-less modes
obtained using the Jacobi elliptic function based
model

In this appendix, field profiles of higher-order node-less modes obtained using the Jacobi elliptic
function based model (JEM) are presented. These profiles have similar features to the profiles of the
node-less modes discussed in Section 7.1.3 and their analysis does not bring any new information about
the nature of the JEM. Nevertheless, we present these profiles here to prove that the JEM is able to
find the corresponding higher-order modes, to point out similarities and differences between the results
of the JEM and the interface model (IM), and to complete the study presented in Section 7.1.3.

Figure E.1 presents the transformation of the field profiles of the magnetic field Hy, electric field
components Ex and Ez and the total electric field amplitude E for the second-order symmetric node-
less mode SII along its dispersion curve (see Fig. 7.27). The columns are ordered by increasing values
of the magnetic field amplitude on the left metal/nonlinear dielectric interface H0. The differences
between the field profiles for SII mode obtained using the JEM (Fig. E.1) and the IM (presented
in Fig. 7.22) are the same as for the SI mode (discussed on Page 148). The qualitative agreement
between the magnetic field profiles obtained using the two models is good. Quantitatively, the ratio
between the magnetic field intensity at the metal/nonlinear dielectric interface and the soliton peak
(H0{Hpeak) is much higher for the JEM than for the IM. The profiles of the electric field component Ez
obtained using the two models are very similar. On the contrary, the electric field component Ex differ
drastically between the results of two models. In the IM, the Ex profile has the shape similar to the
magnetic field profile Hy (positions of minima and maxima are identical for Ex and Hy in Fig. 7.22).
In the case of the JEM, in Fig. E.1(a) we see that the positions of minima and maxima are switched
in the Ex profile. At the positions of the two solitonic peaks in the Hy profile, there are two minima in
the Ex profile. The Ex profiles presented in Fig. E.1(d) possesses three maxima (one in the center of
the nonlinear core and two close to the core interfaces). For higher total intensity densities of the mode
[Figs. E.1(e) and (f)], the maximum in the center splits into two maxima, and the maxima close to the
core interfaces change their shape. The profiles of the total electric field amplitude [Figs. E.1(g)–(i)]
have complicated shapes and do not resemble the profiles obtained using the IM [Figs. 7.22(i)–(l)],
which resemble two solitons trapped in the waveguide core.

Figure E.2 presents the transformation of field profiles of the third-order asymmetric node-less
mode AS3 along its dispersion curve (see Fig. 7.27). The columns are ordered by increasing values of
H0. Comparison of the field profiles obtained using the JEM and the field profiles of the AS3 mode
obtained using the IM (see Fig. 7.23) leads to similar conclusions as for the SII mode. Here also, the
Hy and Ez profiles agree relatively well between the two models. The comparison of the Ex and E
profiles reveals big differences between the two models.
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Figure E.1: Profiles of (a)–(c) magnetic field component Hy, (d)–(f) electric field components Ex (blue)
and �Ez (black), and (g)–(i) total electric field amplitude E corresponding to points (first column)
SIIa, (second column) SIIb, and (third column) SIIc in Fig. 7.27.

Figure E.3 presents a direct comparison of the transformation of the SII and AS3 modes along
their respective dispersion curves (see Fig. 7.27) with the increase of the magnetic field at the left
metal/nonlinear dielectric H0. This transformation has a similar character to the transformation ob-
served in the frame of the IM (see Fig. 7.24). We observe that the two soliton peaks of the asymmetric
mode shift toward the interface with lower value of H0 [to the left in Fig. E.3(a) and to the right in
Fig. E.3(b)].
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Figure E.2: Profiles of (a)–(c) magnetic field component Hy, (d)–(f) electric field components Ex
(green) and �Ez (black), and (g)–(i) total electric field amplitude E corresponding to points (first
column) AS3a, (second column) AS3c, and (third column) AS3d in Fig. 7.27.

 0

 20

 40

 60

-0.2  0  0.2  0.4  0.6

H
y
 [
M

A
/m

]

x [µm]

(a) SIIc
AS3b

 0

 20

 40

 60

-0.2  0  0.2  0.4  0.6

H
y
 [
M

A
/m

]

x [µm]

(b) SIId
AS3c

 0

 20

 40

 60

-0.2  0  0.2  0.4  0.6

H
y
 [
M

A
/m

]

x [µm]

(c) SIIe
AS3d

Figure E.3: Profiles of the magnetic field Hy for the symmetric SII mode (blue) and the second-
order asymmetric AS3 mode (green). The subplots present the transformation of the field profiles
corresponding to the points indicated on the dispersion curve in Fig. 7.27. The labels of the points are
given in the subplot legends.
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Appendix F
Finite-difference time-domain studies

Studies of the temporal evolution of plasmon–solitons provide a way to confirm the results obtained
using modal methods and are crucial in the studies of the stability of these waves. This appendix
presents our first and preliminary results on the propagation of plasmon and soliton waves. These
results show the capabilities and limitations of the finite-difference time-domain (FDTD) methods to
study strongly confined fields in nonlinear structures.

Firstly, we shortly describe the FDTD method and the software package used for the simulations.
Next, we present results obtained for the propagation of linear plasmons in slot waveguide configu-
rations. Finally, we discuss the soliton formation in uniform bulk media: in vacuum and in a high
refractive index medium (e.g., chalcogenide glass). The studies of the plasmon and soliton propaga-
tion reveal the difficulties that can be encountered during the FDTD simulations, in particular for the
waves generating high nonlinear index modifications.

F.1 Finite-difference time-domain method

The FDTD method [161, 162] is a numerical technique used for the modeling of electrodynamic
phenomena. This method allows one to numerically solve Maxwell’s equations [system of six coupled
partial differential equations given by Eqs. (1.3.8a) and (1.3.8b)]. Because the FDTD method is a
time-domain method, it enables us to find solutions in a wide frequency range in a single simulation
run. Moreover, this method allows for the treatment of some nonlinearities. The FDTD method offers
an alternative and complementary approach to the modal methods. It allows us to obtain results that
illustrate the situation more similar to the experimental conditions (e.g., launching and propagation
of picosecond pulses).

The FDTD method is a grid-based method. The values of the electric and magnetic field com-
ponents are found at the nodes of a uniform grid. In Fig. F.1, we present a simple Yee grid [for a
one-dimensional problem where only two electromagnetic field components are nonzero (Ez and Hy)]
and indicate the points at which the electromagnetic field amplitudes are evaluated. In order to solve
the system of coupled differential equations [Eqs. (1.3.8a) and (1.3.8b)], the FDTD method uses the
central difference scheme which results in a leapfrog algorithm. The electric and magnetic fields are
computed at different space and time coordinates. In the example shown in Fig. F.1, the electric field
is calculated for integer values of the space and time steps, and the magnetic field is calculated at the
half-integer space and time steps.
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Figure F.1: Schematic representation of the Yee lattice in a one-dimensional problem. The lattice sites
in which the electric (open points) and magnetic (arrows) field components are calculated in various
instances of time are marked. The symbols filled with black denote the initial conditions. The color
squares denote the points at which the derivatives are written using the central difference scheme. The
field values indicated by light green (blue) symbols used to calculate the new (in the next time step)
value of the electric (magnetic) field at the point marked by the dark color.

F.2 Finite-difference time-domain simulation software package meep

In our FDTD studies we have used the meep software package [171, 175] that was developed at
Massachusetts Institute of Technology. This is a free software distributed on the GNU General Public
License. The capabilities of the software are listed in Refs. [171, 175]. Among the most important
feature we can cite:

� Simulations of one-, two-, and three-dimensional problems in Cartesian and cylindrical coordi-
nates.

� Anisotropic, dispersive and nonlinear material. The dispersion of the material is described by
the Drude-Lorentz model of N different oscillators:

εl �
�

1� iσD
2πf


�
ε8 �

Ņ

n

σnf
2
n

f2
n � f2 � iγnf2π

�
, (F.1)

where ε8 denotes the infinite frequency permittivity (instantaneous dielectric function), σD
denotes the dielectric conductivity, σn denotes the strength on the n-th resonance, and fn denotes
the central frequency of this resonance. The parameter γn is responsible for the losses associated
with the n-th resonance.

The nonlinearity is described by:
ε � εl � χp3q|E|2. (F.2)

The comparison of Eqs. (F.2) and (1.6.13) reveals that, in the notation used in meep χp3q is
identical to the parameter α used in our modal approaches developed in Chapters 2 and 6.

� Various types of boundary conditions including the Perfectly Matched Layers (PML).

� Reduction of the computational domain taking into account the symmetries of the problem.
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F.3. Linear plasmons is slot waveguide configuration

� Study of an arbitrary material distribution.

� Parallel computations.

It is important to mention that, meep uses dimensionless units to express all the quantities that
appear in the simulations. In all our simulations, the speed of light is set to be dimensionless: c � 1.
Therefore the free-space wavelength is defined as the inverse of the light frequency f :

λ0 � c

f
� 1

f
, (F.3)

The wavelength is expressed in a dimensionless meep unit of length [L]. Therefore, the frequency is
expressed in the [1/L]. Because Maxwell’s equations are scale invariant, the unit of wavelength can be
chosen arbitrarily. We can assume that the vacuum wavelength λ0 � 1 corresponds to 1 µm in order
to simulate infrared light propagation. However, the same simulation can be interpreted as a study
of microwaves, if we assume that λ0 � 1 corresponds to 1 mm. All the physical dimensions have to
be scaled accordingly. In the following, all the quantities will be expressed in the dimensionless meep
units.

Using meep for nonlinear studies requires special care concerning the units. Here we discuss the
way of the physical interpretation of the meep results on an example of the third-order nonlinear Kerr
effect. The Kerr effect is described by Eq. (1.7.1) (see Sec. 1.7) which is recalled here:

n � n0 � n2I. (F.4)

For the nonlinear effects, the only significant quantity is the product n2I and not the second-order
nonlinear refractive index n2 or the intensity density I separately. Therefore, the important thing is to
recover numerically the correct value of this product. In meep, the second-order nonlinear refractive
index n2 is defined through the third-order susceptibility χp3q in the following way:

n2 � 3χp3q

4n2
0

. (F.5)

The unit of the second-order nonlinear refractive index n2 [NL] is expressed as a unit of length square
[L]2 divided by a unit of intensity [P]: rNLs � rLs2{rPs. Only two of these units can be chosen
independently. The remaining one is fixed be the choice of the other two. For example, if we choose
a unit of length [L] to be a µm and the unit of intensity to be W, then the unit of the second-order
nonlinear refractive index n2 is fixed to be µm2{W.

In meep simulations, it is impossible to fix the power density or the total power transmitted by the
studied structure as an input parameter in the code. In order to obtain the right value of the product
n2I, we have to fix the n2 value and then monitor the power inside the waveguide (see Ref. [176]).
We need to obtain the power that results in the desired value of the product n2I. The power in the
waveguide can be controlled by adjusting the amplitude of the current sources that generate the wave.

F.3 Linear plasmons is slot waveguide configuration

The first simulations performed using the FDTD method was a study of linear plasmons propagating
in the slot waveguide. During this simple linear study we encountered several problems connected with
the FDTD simulations (such as the choice of an optimal spatial resolution, a proper configuration of
the sources or the behavior of the field on the metal interfaces in the PMLs).

To study the evolution of plasmons in the linear slot waveguide we choose the following configura-
tion. A linear dielectric of thickness 0.5 and refractive index n � ?εl,2 � 2 is sandwiched between two
identical metal layers of thickness 2 and permittivity εm � �80� 0.03i.1 The center of the structure

1In order to obtain negative values of permittivity in meep, we need to use the Drude-Lorentz model for the permit-
tivity described by Eq. (F.1) with the appropriate parameters. The parameters used here were σD � 0, ε8 � 5, N � 1,
σ1 � 2000, f1 � 0.1, and γ1 � 0.001.
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is located at the point (0,0) in the meep coordinate frame. The structure length in the propagation
(z) direction is equal to L � 40. In both x and z directions, a layer of thickness 1 at the extremities of
the computational region is used to create the PMLs. The scheme of the computation cell is presented
in Fig. F.2. The light frequency f � 0.5 is used for the simulations. The spatial resolution2 used here
is R � 80.

z

x
PML

Metal

LIN

Source

Figure F.2: Scheme of the computational domain where the linear plasmon propagation in the slot
waveguide configuration was studied using the FDTD method. The blue region depicts the linear
dielectric core, the green region represents the metal cladding. The PML layers, depicted in yellow,
surround the slot waveguide structure. The location of the line source is depicted by the pink line and
the domain in which the results are output is enclosed in the red rectangle.

In the FDTD method, the light is generated using electric and magnetic current sources. In our
case, in order to generate TM polarized light, we use an electric current source polarized along the
x direction in order to excite transverse magnetic waves.3 We have tested several configurations of
the current sources. We have started by point sources localized in the dielectric core close to the
metal interfaces. The relative phase difference between the two point sources allowed us to excite
symmetric plasmons (for the phase difference equal to 0) and antisymmetric plasmons (for the phase
difference equal to π). The plasmon profiles obtained using point sources were in good agreement
with the profiles found analytically. However, the point sources generate spherical waves that cause
an important reflection from the metal surfaces close to the source location.

Another source current used by us was a line source in the full cross-section of the slot waveguide
core. Because the field profiles inside of the waveguide core of the plasmons resemble simple analytical
functions, plasmons can be excited using simple expressions for the line current distribution {flat profile
Hy � const for the symmetric plasmon and linear function Hy � �x for the antisymmetric plasmon
[see Figs. 7.13(a), (e), and Fig. F.4(a)]}. For the antisymmetric plasmon, the agreement between
the Hy � �x function and the field profile is very good. For the case of the symmetric plasmon,
the field profile differs slightly from the flat function Hy � const. To check if this approximation
is sufficient, we have tested the current source that had a profiled closer to the symmetric plasmon
profile (a sum of two exponential functions or a parabolic function). The final field profiles (after the
propagation) obtained using all these forms of the current source gave similar results. For the sake
of the simplicity we decided to use a flat profile to excite symmetric plasmons. This allows us to use
one simple form of the excitation regardless of the waveguide parameters and the expected plasmon
profile (found analytically). There is no need of fitting the parabolic function parameters to overlap
with the expected symmetric plasmon field profile for a given configuration. Our studies show that,
the field profile generated by the flat current source reaches the expected profile after approximately
one wavelength of propagation (one oscillation period).

2The spatial resolution of the FDTD method is defined by the number of computational points (pixels) in which a
unit of length is divided. The field values are computed at these points.

3In our simulations we study two dimensional problems where the materials are isotropic (except in th PMLs). In this
case we observe that, the FDTD method does not mix the polarizations excited by the source. The electric current source
polarized along the x direction (Ex) excites the waves that have only three nonzero electromagnetic field components
(Ex, Ez, and Hy). This polarization is maintained throughout the simulation. Other components of the electromagnetic
field remain zero in the whole simulation domain at every instant of the simulation.
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(a)

(b)

Figure F.3: Color maps of the magnetic field component Hypx, zq for the (a) symmetric and (b)
antisymmetric linear plasmons in the slot waveguide for the simulation time step 200. See the text for
the configuration parameters.

Another critical issue concerns the distance between the current source and the metal surface. If
the line source occupies the full width of the core and therefore is in contact with the metal surface,
spurious waves are generated on the surface of the metal. In order to avoid the appearance of these
parasitic waves, we have used line sources with the width slightly smaller than the core width. Our
analysis shows that, in order to avoid the spurious wave generation it is sufficient to use sources that
are 8 pixels smaller than the core width (distance of 4 pixels from the metal layer on each side; see
the pink line in Fig. F.2).

In Fig. F.3, we present the distribution of the magnetic field component Hypx, zq in a part of the
computational domain for symmetric and antisymmetric plasmons in the linear slot waveguide (see
the red rectangle in Fig. F.2). The size of the computational domain shown is 10� 1.5 and is located
far (10λ, where λ � 1{pfnq denotes the wavelength in the medium) from the source. The choice of the
part of the computational domain in which the results are output was dictated by the fact that, we
have encountered difficulties with the behavior of the field at the metal interface in the PMLs. When
the wave front reaches the PML, a standing wave localized at the metal interface is generated inside
the PMLs. The amplitude of this wave grows rapidly. In the normalized color maps, this high intensity
artifact was overshadowing the light propagating in the rest of the computational domain. We have
found two partial solutions for this problem:

� We output the fields only in the small region that does not contain the PML’s (see the red
rectangle in Fig. F.2). This does not solve the problem of the generation of the standing wave in
the PMLs, but allows us to observe the solution in the region that is not affected by this artifact.

� We locate the current source in the middle of the computational domain and study the propaga-
tion until the wave front reaches the PMLs. This prevents the generation of the standing wave in
the PMLs. The drawback of this solutions is the fact that, we need to study large computational
domains in order to be able to study long time of propagation. Long propagation times are
required for the stabilization of some of the plasmon modes.

From Fig. F.3, we observe that both symmetric and antisymmetric plasmons are stable during
the propagation and possess the desired symmetry.4 These observations based on the color maps are
confirmed using the cuts of the field profiles. We analyzed the profiles of the magnetic field component

4The symmetry of the solutions depends on the symmetry of the structure and sources. In the symmetric structures
studied here, we obtained symmetric and antisymmetric solutions depending on the symmetry of the source. The sym-
metry of the solution was conserved during the propagation. The results were confirmed forcing the symmetry of the
solution (simulations performed only in one half of the computational domain with the appropriate boundary conditions).
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Figure F.4: Magnetic field profiles obtained by cuts of the field maps computed for different resolutions.
(a) The full field profile, (b) the zoom of the region inside the dielectric core, and (c) zoom of the left
cladding region. The cut is realized at the z coordinate corresponding to one of the maxima of the
field intensity in the propagation direction.

along the waveguide cross-section for a few values of z. The profile of the antisymmetric plasmon is in
a full agreement with the result of the analytical solution for the same structure (data not shown). The
symmetric field profile obtained at the resolution R � 80 is quite different form the profile obtained
using the analytical method [see the pink dots (for FDTD) and the red curve (for analytical solution)
in Fig. F.4].

In order to improve the agreement between the analytically computed field profile and the results
of the FDTD, we have increased the resolution of our simulations. It is important to notice that, the
increase of the spatial resolution is accompanied by a rapid increase of the computational time and
memory requirements. For the simulations in D spatial dimensions, the memory required scales like RD

and the computational time scales like RD�1 because the time step has to be reduced together with the
space step in order for the FDTD method to be stable (non-diverging fields). In our two-dimensional
problem, doubling the resolution results in the increase of the time simulation by a factor eight. The
comparison of the results obtained using different resolutions is presented in Fig. F.4. From this figure,
we notice that, the increase of the resolution improves the resemblance between the analytical and
the FDTD results. For low resolution, the field profile in the waveguide core is much flatter than the
analytical solution. Increasing the resolution, the curvature of the field profile obtained numerically
becomes more similar to the curvature of the analytical solution.

To illustrate the effect of the field propagation, in Fig. F.5 we present the cut of the color map
presenting the field profile of the symmetric plasmon at the z coordinate different from the one in
Fig. F.4. We observe that the general character of the field profiles did not change. The field profiles
obtained for high resolution resemble the analytical profile better than the field profiles obtained at
low resolution. However this time, contrary to the situation presented in Fig. F.4, the profile obtained
for the resolution 120 is closer to the analytical solution than the field profile computed with resolution
140. This shows that, even for high resolution, the field profiles evolve during the propagation.
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Figure F.5: Cuts of the magnetic field maps resulting in field profiles for different resolutions obtained
using FDTD method. Cut taken at different position than in Fig. F.4. (a) Thee full field profile, (b)
the zoom on the region inside the dielectric core, and (c) the zoom on field in the left cladding regions.
The cut is realized at the z coordinate corresponding to one of the maxima of the field intensity in
the propagation direction.

In order to confirm the improvement of the quality of the numerical solution with the increase of
the resolution, we analyze the effective index β of the symmetric plasmon as a function of resolution.
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Figure F.6: Effective index of the symmetric plasmon in the linear slot waveguide as a function of the
resolution of the FDTD method. The red line represents the effective index value obtained using the
analytical model.
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Figure F.7: Dispersion curves presenting the dependency of the effective index β of the antisymmetric
linear plasmon as a function of the light frequency f . The red curve represents the analytic solution
with the �5% error bars. Blue, green, and black curves represent the FDTD solutions obtained using
resolutions of 40, 80, and 120, respectively. The error bars denote the standard deviation of the effective
index obtained numerically. Two points indicate the effective index obtained for resolutions 160 and
200 for the light frequency f � 0.7.

The effective index is calculated in the following way. We study the cut Hpxc, zq of the color map
Hpx, zq presented in Fig. F.3 along the z direction (at a constant x value). The position of the cut is
chosen in such a way that the field amplitude along the cut is high. We choose xc � 0.45d, so that
the field amplitude for the cut is high both for symmetric and antisymmetric plasmons.5 This cut
represents a sinusoidal evolution of the wave during the propagation. We locate the position of all the

zeros in this profile z
pnq
0 , where n denotes the number of the zero found. The differences of the zero

positions are calculated Λn � z
pn�1q
0 � z

pnq
0 . These differences are then averaged in order to give the

average period of the wave Λ � 1{N °N
1 Λn. The ratio between the free-space wavelength and the

average period gives us the effective index β � λ0{Λ.
Figure F.6 presents the dependency of the effective index of the symmetric plasmon as a function

of the resolution. We notice that with the increase of the resolution, the effective index values obtained
using the FDTD become closer to the analytical value of the effective index for the symmetric plasmon
in the studied structure. Even if the convergence is not monotonous, it confirms the conclusion drawn
by analyzing the field profiles.

To verify if we correctly define the metal permittivity using the Drude-Lorentz permittivity dis-
persion given by Eq. (F.1) we perform two supplementary studies. We study the dispersion of the
linear antisymmetric plasmons for different frequencies of the light. The dispersion curve obtained
using the analytical model is compared with the numerical results in Fig. F.7. The parameters used
for the Drude-Lorentz model are listed in Footnote 1 on Page 219 and correspond to the change in
the real part of the metal permittivity from �55 at f � 0.6 to �15 at f � 1.

5For the symmetric plasmons we could choose the position close to the center of the waveguide as the field amplitude
there is nonzero. However, for the antisymmetric plasmons, the amplitude in the center of the waveguide is equal to
zero. Therefore the choice xc � 0.45d is more universal and can be used for studies of the propagation constant of both
symmetric and antisymmetric plasmons. We also do not choose xc � 0.5d, because the value of the derivative of the
magnetic field at this point is not continuous.
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Figure F.8: Dispersion curves presenting the effective index β of the antisymmetric linear plasmon as
a function of the slot waveguide core thickness d. The analytical results are show by the red curve with
the �3% error bars. The blue curve represents the FDTD results obtained at the resolution R � 160.
The blue error bars denote the standard deviation of the effective index obtained numerically.

We see that even for the lowest resolution used (R � 40) the dispersion curve follows the analytical
curve but is located below this curve. Increasing the resolution brings the numerical curve closer to
the analytical one. The relative difference of the dispersion curves obtained at R � 120 and the one
obtained analytically is less than 5% (the red error bars denote the 5% deviation from the analytical
value). The resolutions above 120 were studied only for a single frequency f � 0.7. The increase of
the resolution monotonously improves the quality of the numerical solution but it still remains below
the analytical curve.

Moreover, we have studied the dependency of the effective index of the symmetric plasmon in the
linear slot waveguide for different values of the thickness of the core. The comparison of the analytical
and numerical results obtained for the resolution R � 160 is shown in Fig. F.8. We notice that the
result obtained using the two methods are in agreement. The results obtained numerically using the
FDTD method do not differ more than 3% from the analytical values (red error bars).

In conclusions, it is possible to study linear plasmons in the slot waveguide configurations using
the FDTD method. However, one has to pay attention to several factors: (i) a proper choice of the
source in order to avoid spurious excitations on the metal surfaces, (ii) careful choice of the output
region, to avoid observation of the standing waves (whose amplitude grows exponentially in time) in
the PML regions containing interfaces between metal and the nonlinear dielectric core, (iii) the choice
of the spatial resolution that allows to reproduce plasmon features with sufficient accuracy, keeping
the simulation time reasonably short.

F.4 Vacuum solitons

The second study that we have performed using the FDTD method is the analysis of the soliton
propagation in a uniform bulk media with the refractive index n � ?εl � 1 (vacuum solitons). The
aim of this study is to verify if the known relation between the soliton amplitude and its width is
fulfilled in the numerical FDTD studies. The relation between the soliton amplitude and its width
can be obtained from Eq. (2.1.23) [compare with Eqs. (23) and (24) from Ref. [5], Eq. (1.2.21) from
Ref. [6], and Eq. (2.4) from Ref. [7] which give the expressions for a solitonic solution of a general
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nonlinear Schrödinger equation]. Here we recall Eq. (2.1.23):

Hy �
c

2

a

q

coshrk0qpx� x0qs . (F.1)

Equation (F.1) and be rewritten in the form:

?
aHy �

?
2q sechrx{σs, (F.2)

where x0 was set to zero (the center of the beam can be chosen arbitrary in bulk medium) and k0 was
set to one, as in meep we work with dimensionless units that can be scaled arbitrarily. Here σ � 1{q
denotes the width of the beam. From Eq. (F.2), we observe that the normalized amplitude of the bulk
solitons

?
aHy is proportional to q and therefore inversely proportional to the beam width σ:

?
aHy9 1

σ
. (F.3)

Similar equation can be obtained for the electric field amplitude:b
χp3q|E|9 1

σ
. (F.4)

We want to verify if the law described by Eq. (F.4) is fulfilled by the bulk solitons obtained using
the FDTD method. To this end we study a bulk nonlinear dielectric with permittivity ε � χp3q|E|2.6

To study vacuum solitons we set ε � n2 � 1. We consider a system of the dimension 50 � 150. The
frequency of the source used is f � 1, which corresponds to the free-space wavelength λ0 � 1. The
PMLs are set around the whole simulation domain. The scheme of the simulation domain is presented
in Fig. F.9. In the simulations of this fully dielectric system we did not encounter problems with the
behavior of the fields in the PML layers.

The source is placed close to the left extremity of the simulation domain. The current source is
a line source with the Gaussian profile. We use Gaussian excitation profile because it resembles the
expected secant hyperbolic profile of the soliton. In the case of the dielectric with the refractive index
n � 1, the wavelength in the material λ � λ0{n is equal to the free-space wavelength.

Figure F.10 presents the results of the propagation of the beam with the initial (input) width
σ � 1.5λ in the nonlinear medium for different values of the nonlinear parameter χp3q. In panel (a),

z

x
PML

Source

NL

Figure F.9: Scheme of the computational domain where bulk solitons were studied using the FDTD
method. The blue region depicts the nonlinear dielectric and the yellow region represents the PML
layers. The location of the Gaussian current source is depicted by the pink line and the domain in
which the results are output is enclosed in the red rectangle. The green rectangle encloses the region
in which the fields are analyzed in order to calculate average width of the beam and the standard
deviation of the width.

6In order to avoid the third harmonic generation in the Kerr medium studied numerically, we introduce a strong
dispersion εpfq in the nonlinear dielectric [using the Drude-Lorentz model described by Eq. (F.1)]. The parameters used
here are σD � 0, ε8 � 0.8, N � 1, σ1 � 0.2, f1 � 4, and γ1 � 0.005. The losses were kept on a low level =mpεq � 10�5.
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we present the propagation of the Gaussian beam in the medium for which the nonlinearity is not
strong enough to be able to preserve the initial width of the beam (χp3q � 0.1). We observe that at the
beginning of the propagation (left part of the color map), the beam diffracts. After the propagation
distance approximately equal to 50 (1/3 of the simulation domain length), the beam width is stabilized
at a value greater than the initial beam width.

In Fig. F.10(b), the propagation of the beam in the medium with χp3q � 0.2 is shown. This value of
the nonlinear parameter is optimal to balance the diffraction of the beam. In this figure we notice that,
the beam width does not change during the propagation. This means that the value of the parameter
χp3q � 0.2 is appropriate to generate solitons with the beam width σ � 1.5λ.

In Fig. F.10(c), the propagation of the beam in the medium with χp3q � 0.3 is shown. This value
of the nonlinearity allows to focus the input beam below its initial beam width. The resulting soliton
has lower beam width than the initial Gaussian beam.

Based on the methodology described in the example of Fig. F.10 for the beam width σ � 1.5λ, we
analyze the formation of the solitons with various widths. The values of the nonlinear parameter χp3q

required to find solitons of different widths is found analyzing the maps presenting the propagation.
As we have seen in Fig. F.10, the optimal value of χp3q corresponds to the smallest variation in the
beam width during the propagation. Therefore, the color maps Eypx, zq are analyzed numerically in
the following way. First, we study the cut of the color map at x � 0. This results in a sinusoidal profile
of the propagation along the z direction Eypx � 0, zq. We find the positions of the maxima of this

profile z
pnq
max. At the position of each of the maxima we take a cut along the x direction, which gives us

the transverse profile of the soliton Eypx, z � z
pnq
maxq (the transverse profile resembles the well known

secant hyperbolic field profile of the soliton). At each position, we measure the width σn (full width
at half maximum - FWHM) of the soliton beam. The widths σn are then averaged and the standard
deviation is calculated. This process is repeated for each value of the χp3q parameter studied. The χp3q

for which the standard deviation of the width is the smallest is selected to be the optimum χp3q for
the propagation of the soliton with a given width (equal to the initial width of the Gaussian beam).

The results of this analysis are presented in Fig. F.11. From this figure we notice that, the depen-
dency given by Eq. (F.4) is well fulfilled by the simulation points obtained using the FDTD method.

The data points were fit with a linear function
a
χp3q � b{σ which has the same form as Eq. (F.4)

for a constant |E| value. The largest beam width that is studied is equal to 3.5λ. It is difficult to
study wider beams because they diffract weakly. Study of wider beams requires large computational
domains (both in the x direction due to the large beam width and in the z direction due to the slow
diffraction) and long propagation times, that results in time and memory consuming simulations. The
narrowest vacuum solitons studied here were 1.5λ wide. For this beam width the dependency given
by Eq. (F.4) is well fulfilled. Narrower beams are studied in the next section, where the behavior of
highly confined solitons is discussed.

F.5 Solitons in media

In this section, we present a study of the soliton formation in dielectric media, similar to the study of
the vacuum solitons presented in Section F.4. Additionally to wide soliton beams, we analyze solitons
confined to sub-wavelength widths. A nonlinear dielectric medium with the permittivity ε � n2 � 4 is
considered.7 The current source is generating waves at the frequency f � 0.3. The wavelength in the
medium is λ � 1{pfnq � 1.67. The simulation domain has dimension 40� 100.

Figure F.12 presents the propagation of the beam with the input width σ � λ for different values of
the nonlinear parameter χp3q. Panel (a) shows the propagation of the Gaussian beam in the linear case
(χp3q � 0), where we can observe a strong diffraction of the beam. Panel (b) presents the propagation

7In order to avoid the third harmonic generation in the Kerr medium, we introduce a strong dispersion εpfq in the
nonlinear dielectric [using the Drude-Lorentz model described by Eq. (F.1)], similar to the case of vacuum solitons. The
parameters used here are σD � 0, ε8 � 1.35, N � 1, σ1 � 2.59, f1 � 2, and γ1 � 0.001. The losses were at the level
=mpεq � 3 � 10�5.
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(a)

(b)

(c)

Figure F.10: Map of the electric field component Eypx, zq for the vacuum soliton propagation. The
input beam width is σ � 1.5λ and the snapshot is taken at the time step 200. The yellow borders
at the extremities of the computational borders show the location of the PML layers. The nonlinear
parameter χp3q is equal to (a) 0.1, (b) 0.2, and (c) 0.3. The peak amplitude is equal in each subplot.
The output domain is marked in red in the scheme presented in Fig. F.9.

of the stationary soliton with the width equal to the initial width of the Gaussian beam. The stationary
soliton is obtained for χp3q � 9. In Fig. F.12(c), the nonlinear parameter is twice higher than for the
stationary soliton with the width σ � λ (χp3q � 20). In this subfigure we observe that the input
Gaussian beam is focused slightly stronger and the resulting soliton has the width smaller than λ.
Figure F.12(d) shows the propagation of the beam for the nonlinear parameter five times higher than in
panel (c) (χp3q � 100). Surprisingly, we do not observe further focusing of the beam. The width of the
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Figure F.11: Dependency of the optimal value of the nonlinear parameter
a
χp3qpσq yielding a vacuum

soliton with the width equal to the input width σ. The electric field amplitude |E| of the input beam
is the same for each of the input widths σ studied.

beam is the same or even slightly larger than the width obtained for χp3q � 20. These results indicate
that the FDTD implementation used in meep may not be able to deal with high nonlinearities.

To verify the existence of this problem, we study even narrower input Gaussian beams. Figure F.13
presents the propagation results for the beam with the initial width σ � 0.5λ. We analyze here the
values of the nonlinear parameter χp3q from 0 to 1600. For this very narrow input beam, we are not
able to find the value of the χp3q parameter for which the diffraction would be fully balanced by the
self-focusing nonlinear effects. The optimal value of the nonlinearity found by our method (finding the
minimum of the beam width standard deviation) is χp3q � 70 [panel (c)]. Nevertheless, it is clearly
seen from the color map that the beam width is not constant during the propagation and therefore the
solution is not stable. We notice that the solution width is oscillating (breathing soliton). The increase
of the nonlinear parameter above 200 results in the field maps that become less focused during the
propagation. This indicates that the meep implementation of the FDTD method is not capable of
treating high nonlinearities. Moreover, the field profiles presented in Figs. F.13(d), (f), and (h) do not
resemble a simple soliton for large propagation distances (right part of the computational domain).
For high nonlinear parameters χp3q, the Gaussian beam separated into two beams (for χp3q � 400)
or three beams (χp3q � 800 and 1600). In the latter case, two side beams propagate at a certain
angle with respect to the x � 0 axis. The field maps obtained for high nonlinearities are difficult to
analyze with our method (finding the minimum of the beam width standard deviation) because it is
difficult to define the half width of the beam with multiple lobes. Therefore, the optimal value of χp3q

parameter for narrow input beams is not found correctly. The results presented here show that, using
the excitation by a Gaussian beam we are not able to generate stationary solitons with a width equal
or below σ � 0.5λ.

We have estimated the value of the nonlinear index modification corresponding to the formation
of the beam with the width of 1λ. The soliton with the width of 1λ induces the nonlinear dielectric
index change at the level ∆n � 0.1. We conclude that this is the highest nonlinear index change that
is correctly simulated using the meep implementation of the FDTD method.

To confirm the conclusion drawn from the visual analysis of the field maps, we have analyzed the
field maps numerically. For a given input beam width σ we have analyzed the field maps for different
values of the χp3q parameter. We have analyzed the value of the beam width averaged along the
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(a)

(b)

(c)

(d)

Figure F.12: Map of the electric field component Eypx, zq for the soliton propagation in media. The
input beam width is σ � 1λ and the snapshot is taken at the time step 305. The nonlinear parameter
χp3q is equal to (a) 0, (b) 9, (c) 20, and (d) 100. The peak amplitude is equal in each subplot.
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propagation xFWHMy (in the right part of the simulation domain in order not to take into account
the beam formation close to the source; see the green rectangle in Fig. F.9). Our study, presented in
Fig. F.14, shows the the dependency of the averaged width of the beam xFWHMy for different values
of the χp3q parameter. This study was performed for four different values of the propagation length L
(L denotes the computational domain size in the z direction).

The results for the linear case (χp3q � 0) are not precise due to the finite size of the computational
domain (in the x direction). As it can be seen in Fig. F.13(a), the field map there is influenced by the
reflection from the computational domain boundaries resulting in the interference fringes. The large
beam width for χp3q � 0 confirms qualitatively the fact of the beam diffraction. For longer propagation
lengths L, the beam diffracts more, which implies larger averaged beam width for long propagation
lengths. In Fig. F.14, we observe a strong decrease of the averaged beam width for the values of the χp3q

parameter between 25 and 100. Above χp3q � 100 The averaged beam width remains at the constant
level of 2 (meep units). This level is constant regardless of the length of the propagation studied.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure F.13: Map of the electric field component Eypx, zq for the soliton propagation in media. The
input beam width is σ � 0.5λ and the snapshot is taken at the time step 305. The nonlinear parameter
χp3q is equal to (a) 0, (c) 35, (e) 70, (g) 100, (b) 200, (d) 400, (f) 800, and (h) 1600. The peak amplitude
is equal in each subplot.
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Similar behavior is observed for beams with the initial width σ � 0.5λ (see Fig. F.15). The strong
focusing of the narrow beam occurs for higher values of the χp3q parameter that in the case of the
broader beam. For σ � 0.5λ the focusing occurs for the χp3q values around 250. For the values of the
χp3q parameter above 450 the averaged with of the beam is equal to 2. This value is the same regardless
of the propagation length studied and is identical to the value obtained for the broader beam (for the
initial width σ � 0.85λ).

The propagation of the beam with the initial width σ � 0.85 was studied for various resolutions.
The study presented in Fig. F.14 for R � 16 is compared with the simulation at higher resolution.
The comparison of the results obtained for the propagation length L � 100 is shown in Fig. F.16.
We observe an excellent agreement between the curves obtained for different resolutions. This proves
that the resolution R � 16 is sufficient for the studies of solitons with the parameters we have chosen.
Moreover, the results presented in Fig. F.16 confirm the fact that, for high nonlinearities the averaged
beam width in our system can not be lower than 2. This means that the resolution have no influence
on the way high third-order nonlinearities are treated in meep.

To sum up the results obtained in this section for the soliton propagation in high index media,
the values of the χp3q parameter for which the standard deviation of beam width is the lowest for a
given with of the input beam are presented in Fig. F.17. This figure presents the same dependency
for the solitons in a high index medium, as the dependency presented in Fig. F.11 in the case of
vacuum solitons. From Fig. F.17 we observe that, the linear relation given by Eq. F.4 is fulfilled for
the beams with the initial width σ ¥ λ. For narrower input beam, the optimal value of the χp3q

parameter lays far from the dotted curve that represents the fit of the points obtained for σ ¥ λ.
This behavior results from the fact that, for the narrow input beams the diffraction can not be fully
balanced by the nonlinearity. Therefore their field profiles do not resemble the profile of a soliton. The
study presented in Fig. F.17 confirms our conclusions drawn by analyzing the field maps presented
in Fig. F.13 stating that, the FDTD implementation used in meep has difficulties in treating high
third-order nonlinearities.

One of the reasons for these difficulties is that the nonlinearity treatment implemented in meep
uses a Padé approximation {see Eq. (20.4) in Ref. [162] or Eq. (4) in Ref. [175]}. This approximation
describes well the Kerr nonlinearity for low light intensity and fails in the cases where the nonlinear
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Figure F.14: Dependency of the average width of the beam on the square root of the nonlinear
parameter χp3q for the beam with the initial width σ � 0.85λ. Results obtained at the resolution
R � 16 for various propagation length are compared.
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Figure F.15: Dependency of the average width of the beam on the square root of the nonlinear
parameter χp3q for the beam with the initial width σ � 0.5λ. Results obtained at the resolution
R � 16 obtained for various propagation length are compared.
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Figure F.16: Dependency of the average width of the beam xFWHMy on the square root of the
nonlinear parameter χp3q for a beam with an initial width σ � 0.85λ. Results obtained obtained for
the propagation length L � 100 for various resolutions are compared. The results for the resolution
R � 38 (yellow curve) are obtained only for the χp3q values lower than 300.

index modification is of the same order of magnitude as the linear part of the refractive index. One of
the ways to avoid these problem could be the use of the general vector auxiliary differential equation
(GVADE) method in the FDTD simulations. This method permits to model light propagation in
complex media (also nonlinear) from first principles — the full-vector Maxwell’s equations — and it
is described in Ref. [177]. In this reference, the results of the GVADE FDTD simulations for narrow
soliton beams (FWHM � 1.25λ) are also presented. These results are obtained for a beam width where
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Figure F.17: Dependency of the optimal value of the nonlinear parameter
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with the width equal to the input width σ. The electric field amplitude |E| of the input beam is the
same for each of the input widths σ studied.

our simulations also result in stable solitons. It would be interesting to use the GVADE FDTD for the
solitons with lower beam widths to see if this method performs better in the case of high third-order
nonlinearities than the standard FDTD approach implemented in meep.

234



Bibliography

[1] Y. R. Shen, The principles of Nonlinear Optics (Wiley, New York, 2003).

[2] R. W. Boyd, Nonlinear Optics (Academic, New York, 2007).

[3] G. I. Stegeman and R. A. Stegeman, Nonlinear Optics: Phenomena, Materials and Devices
(Wiley, New York, 2012).

[4] R. Y. Chiao, E. Garmire, and C. H. Townes, “Self-trapping of optical beams,” Phys. Rev. Lett.
13, 479–482 (1964).

[5] S. Trillo and W. Torruellas, eds., Spatial Solitons (Springer, Berlin, 2001).

[6] Y. S. Kivshar and G. P. Agrawal, Optical Solitons, From Fibres to Photonic Crystals (Academic,
New York, 2003).

[7] N. N. Akhmediev and A. Ankiewicz, Solitons, Nonlinear Pulses and Beams (Chapman & Hall,
London, 1997).

[8] N. N. Akhmediev, “Spatial solitons in Kerr and Kerr-like media,” Opt. Quant. Electron. 30,
535–569 (1998).

[9] Z. Chen, M. Segev, and D. Christodoulides, “Optical spatial solitons: historical overview and
recent advances,” Rep. Prog. Phys. 75, 086401 (2012).

[10] W. J. Tomlinson, “Surface wave at a nonlinear interface,” Opt. Lett. 5, 323–325 (1980).

[11] A. A. Maradudin, “s-polarized nonlinear surface polaritons,” Z. Phys. B – Condensed Matter
41, 341–344 (1981).

[12] K. M. Leung, “Propagation of nonlinear surface polaritons,” Phys. Rev. A 31, 1189–1192 (1985).

[13] H. E. Ponath and G. I. Stegeman, eds., Modern Problems in Condensed Matter Sciences, Volume
29 (Elsevier, Amsterdam, 1991).

[14] A. D. Boardman, A. A. Maradudin, G. I. Stegeman, T. Twardowski, and E. M. Wright, “Exact
theory of nonlinear p-polarized optical waves,” Phys. Rev. A 35, 1159–1164 (1987).

[15] D. Mihalache, G. I. Stegeman, C. T. Seaton, E. M. Wright, R. Zanoni, A. D. Boardman, and
T. Twardowski, “Exact dispersion relations for transverse magnetic polarized guided waves at a
nonlinear interface,” Opt. Lett. 12, 187–189 (1987).

[16] F. Lederer, U. Langbein, and H.-E. Ponath, “Nonlinear waves guided by a dielectric slab: I TE
polarization,” Appl. Phys. B 31, 69–73 (1983).

[17] G. J. Robbins, “TE modes in a slab waveguide bounded by nonlinear media,” Opt. Commun.
47, 309–312 (1983).

235



Bibliography

[18] G. I. Stegeman, C. T. Seaton, J. Chilwell, and S. D. Smith, “Nonlinear waves guided by thin
films,” Appl. Phys. Lett. 44, 830–832 (1984).

[19] F. Lederer, U. Langbein, and H.-E. Ponath, “Nonlinear waves guided by a dielectric slab: II TM
polarization,” Appl. Phys. B 31, 187–190 (1983).

[20] D. Mihalache and D. Mazilu, “TM-polarized nonlinear waves guided by asymmetric dielectric
layered structures,” Appl. Phys. B 37, 107–113 (1985).

[21] C. T. Seaton, J. D. Valera, B. Svenson, and G. I. Stegeman, “Comparison of solutions for TM-
polarized nonlinear guided waves,” Opt. Lett. 10, 149–150 (1985).

[22] C. T. Seaton, J. D. Valera, R. L. Shoemaker, and G. I. Stegeman, “Anomalous nonlinear guided
wave cut-off phenomena,” Appl. Phys. Lett. 45, 1162–1163 (1984).

[23] U. Langbein, F. Lederer, H.-E. Ponath, and U. Trutschel, “Analysis of the dispersion relations
of nonlinear slab-guided waves. Part I: Asymmetrical configuration,” Appl. Phys. B 36, 187–193
(1985).

[24] U. Langbein, F. Lederer, H.-E. Ponath, and U. Trutschel, “Analysis of the dispersion relations
of nonlinear slab-guided waves. Part II: Symmetrical configuration,” Appl. Phys. B 38, 263–268
(1985).

[25] N. N. Akhmediev, “Novel class of nonlinear surface waves: asymmetric modes in a symmetric
layered structure,” Sov. Phys. JETP 56, 299–303 (1982).

[26] J. V. Moloney, J. Ariyasu, C. T. Seaton, and G. I. Stegeman, “Stability of nonlinear stationary
waves guided by a thin film bounded by nonlinear media,” Appl. Phys. Lett. 48, 826–828 (1986).

[27] K. S. Chiang and R. A. Sammut, “Effective index-method for spatial solitons in planar waveg-
uides with Kerr-type nonlinearity,” J. Opt. Soc. Am. B 10, 704–708 (1993).

[28] K. S. Chiang and R. A. Sammut, “Iterative methods and stability of TE modes of nonlinear
planar waveguides,” Opt. Commun. 109, 59–64 (1994).

[29] N. N. Akhmediev, R. F. Nabiev, and Y. M. Popov, “Three-dimensional models of a symmetric
nonlinear plane waveguide,” Opt. Commun. 69, 247–252 (1989).

[30] R. W. Micallef, Y. S. Kivshar, J. D. Love, D. Burak, and R. Binder, “Generation of spatial
solitons using non-linear guided modes,” Opt. Quant. Electron. 90, 751–770 (1998).

[31] R. A. Sammut, Q. Y. Li, and C. Pask, “Variational approximation and mode stability in planar
nonlinear waveguides,” J. Opt. Soc. Am. B 9, 884–890 (1992).

[32] S. Chelkowski and J. Chrostowski, “Scaling rules for slab waveguides with nonlinear substrate,”
Appl. Opt. 26, 3681–3686 (1987).

[33] J. P. Torres and L. Torner, “Diagramatic analysis of nonlinear planar waveguides,” J. Opt. Soc.
Am. B 11, 45–52 (1994).
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figure-of-merit amorphous silicon waveguides,” Opt. Express 21, 3932–3940 (2012).

[140] C. Grillet, L. Carletti, C. Montat, P. Grosse, B. B. Bakir, S. Menezo, J. M. Fedeli, and D. J.
Moss, “Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability,”
Opt. Express 20, 22609–22615 (2012).

[141] K.-Y. Wang and A. C. Foster, “Ultralow power continuous-wave frequency conversion in hydro-
genated amorphous silicon waveguides,” Opt. Lett. 37, 1331–1333 (2012).

[142] C. Lacava, P. Minzioni, E. Baldini, L. Tartara, J. M. Fedeli, and I. Cristiani, “Nonlinear char-
acterization of hydrogenated amorphous silicon waveguides and analysis of carrier dynamics,”
Appl. Phys. Lett. 103, 141103 (2013).

[143] E. D. Palik, ed., Handbook of Optical Constants of Solids Vol. 1 (Academic, New York, 1985).

[144] P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6,
4370–4379 (1972).

[145] A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic
films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271 (1998).

[146] “Scilab,” http://www.scilab.org.

[147] V. Nazabal, M. Cathelinaud, W. Shen, P. Nemec, F. Charpentier, H. Lhermite, M.-L. Anne,
J. Capoulade, F. Grasset, A. Moreac, S. Inoue, M. Frumar, J.-L. Adam, M. Lequime, and
C. Amra, “Chalcogenide coatings of Ge15Sb20S65 and Te20As30Se50,” Appl. Opt. 47, C114–
C123 (2008).

[148] A. R. Davoyan, I. V. Shadrivov, and Y. S. Kivshar, “Quadratic phase matching in nonlinear
plasmonic nanoscale waveguides,” Opt. Express 17, 20063–20068 (2009).

[149] N. Nozhat and N. Granpayeh, “Switching power reduction in the ultra-compact kerr nonlinear
plasmonic directional coupler,” Opt. Commun. 285, 1555–1559 (2012).

[150] D. A. Smirnova, A. V. Gorbach, I. V. Iorsh, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear
switchiung with graphene coupler,” Phys. Rev. B 88, 045443 (2013).

[151] A. R. Davoyan, I. V. Shadrivov, A. A. Zharov, D. K. Gramotnev, and Y. S. Kivshar, “Nonlinear
nanofocusinf in tapered plasmonic waveguides,” Phys. Rev. Lett. 105, 116804 (2010).

[152] M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions With Formulas,
Graphs, and Mathematical Tables (Dover, New York, 1964), chap. Jacobian Elliptic Functions
and Theta Functions, pp. 569–588.

242

http://www.scilab.org


Bibliography

[153] D. J. Mitchell and A. W. Snyder, “Stability of fundamental nonlinear guided waves,” J. Opt.
Soc. Am. B 10, 1572–1580 (1993).

[154] M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions With Formulas,
Graphs, and Mathematical Tables (Dover, New York, 1964), chap. Elliptic Integrals, pp. 589–626.

[155] J. M. T. Thompson and H. B. Stewart, Nonlinear dynamics and chaos, 2nd ed. (Wiley, New
York, 2002).

[156] Y. Kivshar and A. A. Sukhorukov, “Stability of spatial optical solitons,” in “Spatial Solitons,”
, S. Trillo and W. Torruellas, eds. (Springer, 2001), pp. 211–245.
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