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Abstract

Complex Networks constitute a convenient tool to model real-world complex systems. For this reason,
they have become very popular in the last decade. It is possible to encode various types of information
in a complex network, depending on the studied system and modeling objectives and needs. In its most
basic form, a complex network contains only nodes and links (plain network). But it is also possible to
enrich it by setting link directions (directed network), associating attributes to nodes (attributed network)
or links, or introducing a temporal dimension (dynamic networks).

Many tools exist to study complex networks. Among them, community detection is one of the most
important. A community is roughly defined as a group of nodes more connected internally than to the rest
of the network. In the literature, this intuitive definition has been formalized in many ways, leading to
countless different methods and variants to detect communities. In the large majority of cases, the result
of these methods is set of node groups in which each node group corresponds to a community. From
the applicative point of view, the meaning of these groups is as important as their detection. However,
although the task of detecting communities in itself took a lot of attraction, the problem of interpreting
them has not been properly tackled until now.

In this thesis, we see the interpretation of communities as a problem independent from the com-
munity detection process, consisting in identifying the most characteristic features of communities. We
break it down into two sub-problems: 1) finding an appropriate way to represent a community and 2) ob-
jectively selecting the most characteristic parts of this representation. To solve them, we take advantage
of the information encoded in dynamic attributed networks. We propose a new representation of com-
munities under the form of temporal sequences of topological measures and attribute values associated
to individual nodes. We then look for emergent sequential patterns in this dataset, in order to identify the
most characteristic community features.

Our solution to the interpretation problem takes the form of a five-stepped framework. First, we
detect the communities and process the nodal topological measures. Second, we create a database of
nodal sequences, thanks to these measures as well as the nodal attributes originating from the studied
real-world system. Third, we identify the sequential patterns contained in this database. Fourth, we filter
them using some objective criteria related to the notions of prevalence (support measure), emergence
(growth rate) and closeness. Fifth, we finally select the most characteristic patterns covering each com-
munity. Our framework produces the characteristic sequential patterns and also allows identifying outlier
nodes.

We perform a validation of our framework on artificially generated dynamic attributed networks. At
this occasion, we study its behavior relatively to changes in the temporal evolution of the communities,
and to the distribution and evolution of nodal features. We also apply our framework to real-world
systems: a DBLP network of scientific collaborations, and a LastFM network of social and musical
interactions. Our results show that the detected communities are not completely homogeneous, in the
sense several node topic or interests can be identified for a given community. Some communities are
composed of smaller groups of nodes which tend to evolve together as time goes by, be it in terms of
individual (attributes, topological measures) or relational (community migration) features. The detected
anomalies generally fit some generic profiles: nodes misplaced by the community detection tool, nodes
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relatively similar to their communities, but also significantly different on certain features and/or not
synchronized with their community evolution, and finally nodes with completely different interests.
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Résumé

Les réseaux complexes constituent un outil pratique pour modéliser les systèmes complexes réels. Pour
cette raison, ils sont devenus très populaires au cours de la dernière décennie. Il est possible d’encoder
différents types d’informations dans un réseau complexe, en fonction du système étudié, ainsi que de
l’objectif et des besoins de la modélisation. Dans sa forme la plus basique, un réseau complexe contient
uniquement des nœuds et de liens (réseau basique). Mais il est également possible de l’enrichir en
mettant des directions aux liens (réseau orienté), en associant des attributs aux nœuds du réseau (réseau
attribué) ou des liens, ou en introduisant une dimension temporelle (réseaux dynamiques).

De nombreux outils existent pour étudier les réseaux complexes. Parmi ceux-ci, la détection de la
communauté est l’un des plus importants. Une communauté est grossièrement définie comme un groupe
de nœuds plus densément connectés entre eux qu’avec le reste du réseau. Dans la littérature, cette
définition intuitive a été formalisée de plusieurs différentes façons, ce qui a conduit à d’innombrables
méthodes et variantes permettant de les détecter. Dans la grande majorité des cas, le résultat de ces
algorithmes prend la forme d’un ensemble de groupes de nœuds, comme par exemple une partition de
l’ensemble des nœuds du réseau, dans lequel chaque groupe de nœuds correspond à une communauté.
Du point de vue applicatif, le sens de ces groupes est aussi important que leur détection. Cependant, bien
que la tâche de détection de communautés en elle-même ait attiré énormément d’attention, le problème
de leur interprétation n’a pas été sérieusement abordé jusqu’à présent.

Dans cette thèse, nous voyons l’interprétation des communautés comme un problème indépendant du
processus de leur détection, consistant à identifier les éléments leurs caractéristiques les plus typiques.
Nous le décomposons en deux sous-problèmes : 1) trouver un moyen approprié pour représenter une
communauté ; et 2) sélectionner de façon objective les parties les plus caractéristiques de cette représen-
tation. Pour résoudre ces deux sous-problèmes, nous exploitons l’information encodée dans les réseaux
dynamiques attribués. Nous proposons une nouvelle représentation des communautés sous la forme de
séquences temporelles de descripteurs associés à chaque nœud individuellement. Ces descripteurs peu-
vent être des mesures topologiques et des attributs nodaux. Nous détectons ensuite les motifs séquentiels
émergents dans cet ensemble de données, afin d’identifier les ceux qui sont les plus caractéristiques de
la communauté.

Notre solution au problème d’interprétation prend la forme d’un procédé en cinq étapes. Tout
d’abord, nous détectons les communautés et calculons les descripteurs . Deuxièmement, nous créons
une base de données de séquences nodales, grâce à ces descripteurs. Troisièmement, nous identifions les
motifs séquentiels fréquents contenus dans cette base de données. Quatrièmement, nous les filtrons en
utilisant certains critères objectifs liés aux notions de prévalence (mesure de soutien), émergence (taux
de croissance) et de la spécificité (fermeture). Cinquièmement et dernièrement, nous sélectionnons les
motifs les plus caractéristiques couvrant chaque communauté. Notre procédé permet à la fois d’identifier
les motifs séquentiels caractéristiques de la communauté et les nœuds déviants qui ne les respectent pas.

Nous effectuons une validation de notre procédé sur des réseaux attribués dynamiques générés arti-
ficiellement. A cette occasion, nous étudions son comportement relativement à des changements struc-
turels de la structure de communautés, à des modifications des valeurs des attributs. Nous appliquons
également notre procédé à deux systèmes du monde réel : un réseau de collaborations scientifiques issu

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0072/these.pdf 
© [K. Orman], [2014], INSA de Lyon, tous droits réservés



8

de DBLP, et un réseau d’interactions sociales et musicales tiré du service LastFM. Nos résultats mon-
trent que les communautés détectées ne sont pas complètement homogènes, dans le sens où plusieurs
sujets ou intérêts peuvent être identifiés pour une communauté donnée. Certaines communautés sont
composées de petits groupes de nœuds qui ont tendance à évoluer ensemble au cours du temps, que ce
soit en termes de propriétés individuelles (attributs, mesures topologiques) ou collectives (migration de
la communauté). Les anomalies détectées correspondent généralement à des profils typiques : nœuds
mal placés par l’outil de détection de communautés, ou nœuds différant des tendances de leur commu-
nautés sur certains points, et/ou non-synchrones avec l’évolution de leur communauté, ou encore nœuds
complètement différents.
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Chapter 1

Introduction

1.1 Context

A complex system is a system possessing some emergent properties, due to the interactions of its consti-
tuting objects. They can be encountered in many different domains such as biology, physics, computer
science, sociology, etc. Network modeling consists in representing such systems through graphs, using
nodes to represent the objects and links for their interactions [94]. The use of complex networks eases
the understanding of the emergent properties and thus helps analyzing the dynamics and functioning of
the system of interest. For this reason, this modeling paradigm is now very popular in a wide range of
areas [10, 94]. In its most basic form, such a complex network contains only nodes and links, and can
be qualified of plain. However, one can introduce a richer information in this model, depending on the
considered system and modeling needs and constraints, which makes it a very flexible tool. The network
can be directed if the relations between objects are asymmetric, some attributes can be added to nodes or
links in order to get a more complete model, time can be introduced in various ways, leading to dynamic
networks, etc.

The research works conducted on complex networks modeling systems from different domains re-
vealed the existence of common topological properties. One of the most famous is the small-world
property, which states the average distance between two nodes increases logarithmically with the net-
work number of nodes, due to the presence of shortcuts connecting different areas of the network [94].
Many networks are also scale-free, which means the degree distribution of their nodes follows a power
law [9], which causes the presence of many nodes of very law degree and only a few nodes of very
large degree. One of the most studied and important properties is the presence of a community structure,
which reflects the existence of a modular structure in the interconnection of nodes [94]. A community is
roughly defined as a group of nodes densely interconnected, compared to the rest of the network [32, 43].
In [137], the importance of the detection of community structures highlighted to discover functionally re-
lated objects, study interactions between modules, infer missing attribute values and predict unobserved
connections in the network. Because finding the community structure facilitates the analysis of the net-
work and also helps to summarize it, it has been studied widely by network science scholars. Hundreds
of different algorithms were developed for the task of identifying the community structure of a network,
an operation generally called community detection [43].

1.2 Problem

Community detection is an important task in the domain of complex network analysis. However, what-
ever the considered algorithm, its output can always be basically described as a list of node groups. From
an applicative point of view, the question is then to make sense of these groups relatively to the studied
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system. In other terms, for the community structure to be useful, it is necessary to interpret the detected
communities. Yet, although the community interpretation problem is extremely important from the end
user’s perspective, only a very few works tried to tackle the problem of characterizing and interpreting
the communities, up to now.

In the early stage, some authors interpreted the detected communities manually [111, 115, 116],
which was possible only because the considered data were very small. Some authors then proposed to
interpret the data based on some topological information only. For example, in [77], the authors conduct
a visual analysis of the community size distributions, of how certain community-related measures evolve
in function of the community size, and of the distribution of certain nodal measures. However, the
topological information alone is not satisfying in terms of how the network can be comprehensively
described. Some authors then proposed to take advantage of the attributes associated to nodes in certain
networks, in order to improve this point. They used statistical tools such as logistic regression and linear
discriminant analysis to characterize the communities in terms of their most distinctive attributes [73,
133]. However, those methods ignore all or most of the available topological information. Topological
and attribute information are used together in attribute-based community detection methods [22, 137,
140], but the way they are combined is generally not explicitly described. To summarize, those works
suffer from the fact they use a limited information compared to what the network can provide, or do
not precisely identify which information they use. This leads to potentially inappropriate or incomplete
results and interpretation.

In this thesis, we focus on the community interpretation problem. We view this problem as inde-
pendent from the approach used for community detection. Separating them allow more flexibility in the
way we can solve them. Consequently, the interpretation does not depend on the limits of the detection
algorithm. For instance, we can use more information than that used during community detection. We
see this problem as identifying the most characteristic features of the communities. To perform such
task, we distinguish two sub-problems: first, finding an appropriate way to represent a community; and
second, defining an objective method to decide which parts of this representation are characteristic.

We aim to use all possible information proposed by network models, in order to be able to retrieve the
most characteristic features of the communities. For this reason, we want to take advantage not only of
the structure of the network and values of its attributes, but also of its temporal dimension. We propose a
new representation of communities for such attributed dynamic networks. It relies on temporal sequences
of topological measures and attributes values associated to individual nodes. We then look for emergent
sequential patterns in this dataset, in order to identify the most characteristic community features. To
solve the problems we identified, we propose a five-stepped framework. At the first step, we detect the
communities. It is indeed needed to have a community structure to interpret them. Nevertheless, one can
use any community detection method at this first step. At the second step, we create a sequence database,
in which each node sequence carries the topological, attributed- and community-related information
describing the considered node. At the third step, we identify the sequential patterns present in the
database, thanks to sequential pattern mining. At the fourth step, we filter these patterns thanks to some
objective criteria related to the notions of prevalence (support measure), emergence (growth rate) and
closeness. At the last step, we choose the most characteristic patterns covering each community among
the ones selected at the previous step. As a result, our framework extracts the characteristic patterns of
each community and the outliers nodes which are different from typical nodes of the same community.

1.3 Contribution

This thesis contributes to the research related to community structure in complex networks in several
different ways. We order the contributions by their importance. The most prominent three contributions
are:
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1.4 Organization 3

• Interpretation Problem. We consider community interpretation as an independent problem and
we state it formally. Two sub-problems arise from it: how to represent communities and how to
extract the characteristic parts of this representation. To our knowledge, this definition is the first
attempt in the domain.

• Community Representation. We represent communities as a set of sequences. It is a compact
representation including all possible information related to a community (attributes, topology, evo-
lution).

• Community Characterization Framework. We propose a five-stepped framework to solve the
community interpretation problem. It relies on the extraction of sequential patterns from the repre-
sentation of each community, while respecting certain criteria related to their frequency, emergence
and closeness. Our framework also allows identifying outlier nodes. Among the output charac-
teristic patterns, there are not only patterns of attributes and topological measures, but also the
patterns including only community information. Thus, it provides a way to track the evolution of
communities over time, in terms of community events.

Beside these prominent contributions, there are two secondary contributions of this thesis:

• Validation of the Framework. To study the behavior of our framework, we test it on some
artificially generated networks. For this matter, we propose an extension of an existing generative
model, able to produce attributed dynamic networks. We use the artificial data to see how our
framework behaves depending on the nature and evolution of the attributes.

• Application to Real-World Network. We apply our framework to two real-world networks. The
first one is a DBLP network reflecting the co-authorship relations of scientists. It is commonly
used in network researches. The second network was specifically extracted from the LastFM web
site for this thesis, by considering Jazz music listeners. It shows the connections between users
listening to the same artist on the same time interval. We both detect the community evolution and
interpret the communities for these two networks.

On the side, this thesis contributes also for :

• Comparison of Detection Algorithms. Our framework is independent from the community de-
tection methods. Nevertheless, we still need a community structure to interpret. Thus, we present
an experimental evaluation of four community detection methods developed for dynamic net-
works. We then select the most appropriate one to use on our further experiments.

1.4 Organization

This thesis is organized in 7 chapters. The second one is dedicated to explaining the fundamental con-
cepts about complex networks and community structure. We also describe in detail the topological
measures we use in our framework. In the third chapter, we propose a state-of-the-art of community
detection methods. It is directed according to the theme of the thesis. We first describe different detec-
tion methods for plain network, before tackling attributed and then dynamic networks. We also indicate
some of the existing methods for artificial network generation and performance assessments in the per-
spective of algorithm evaluation. We then concentrate on some existing works related to the community
interpretation problem, by emphasizing their strong and weak points.

In the fourth chapter, we focus on the community interpretation problem itself. We first give some
preliminary definitions in order to introduce formal concepts required to describe the framework. Then
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we define formally the community interpretation problem and both related sub-problems. After this, we
describe our framework, giving the details for each step. We illustrate how to use by applying it to a
small example. Finally, we study the algorithmic complexity of our framework and give some precisions
concerning its implementation.

In the fifth chapter, we study the behavior of our framework. We first describe the tools available
for artificial network generation, and more specifically the extension we propose to take node attributes
into account. We compare the performance of four community detection algorithm on some networks
specifically generated to follow particular evolutions. We discuss how these considered type of evolution
affects the algorithm performance. We use this occasion to give some examples of how to track major
community evolution events thanks to the detection of sequential patterns. Finally, we study the behavior
of our framework for some networks generated by using attributes of different natures. In the sixth
chapter, we present the results obtained for the DBLP and LastFM networks. For each network, we first
present the data we use in more details, and the major community evolution events we detected. Then,
we describe the most supported patterns and their meanings for some prominent communities. Finally,
we comment the characteristic patterns and interpret them relatively to the concerned communities.

Finally, in the seventh chapter, we summarize and criticize our work, propose some leads to solve
the existing limitations, and identify our major perspectives.
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Chapter 2

Complex Networks

Complex networks constitute a powerful modeling tool, able to represent most real-world systems. The
objects composing the system are represented under the form of nodes while their relationships cor-
respond to links. Thanks to this versatility, they have become very popular during the last decades,
attracting the attention of scientists from many different domains. They are now used to model and ana-
lyze complex systems in areas like physics, biology, social sciences or computer science [10, 94]. In this
chapter, we explain the notions of complex system and complex network. We describe some prominent
topological properties of complex networks and define some of their topological measures, with a focus
on the nodal ones.

2.1 A Modeling Tool

2.1.1 Notion of Complex System

The term of system is used for describing a set of interacting objects relatively isolated from their envi-
ronment. Complex system refers to a system having at least one emergent property. A property is said
to be emergent when it arises from the interactions between the system objects. Such a property appears
only at the level of the system, and not when considering isolated objects. For example; let us consider
society as a system constituted of communicating (the interactions) persons (the objects). Then, one can
consider language as an emergent property, because it arises from the need for one person to commu-
nicate with others, in order to express his or her mind/feelings in a particular way. One can suppose
language would not exist in the absence of interactions. Moreover, if enough speakers start using the
same expressions, the language changes accordingly. Some examples of other complex systems, from
different domains, include the brain including millions of neurons (objects) and axons (interactions), the
immune system including different organs (object) and their coordination (interactions), biological cells
which have many different functional organelles (objects) involved in various metabolic processes (inter-
actions), ant colonies constituted of many ants (objects) communicating with each other (interactions),
and the World Wide Web with its many web pages (objects) and hyperlinks (interactions).

Emergence is central in the notion of complex systems, because it can itself cause other, secondary,
properties. Those are not necessary present simultaneously in a given system, but several of them are
generally observed. One can mention heterogeneity (relationships between objects are not distributed
homogeneously), locality (the system is not centralized), feedback (an object can affect itself indirectly at
a later time, through a loop of other objects), segmentation (substructures can exist in the system), fractal
(substructures can be complex themselves and they can include other complex substructure and so on),
hierarchy (the system might be structured on different levels), non-linear (the behavior of the system is
different than the sum of the individual behaviors of its objects). Certain authors put these secondary
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6 Complex Networks

properties at the core of the notion of complex system. For instance, in [16, 89, 94], a complex system
must not only have emergent properties, but also have no centralized control and display a non-linear
behavior.

It is also good to underline that complex system is not equal to complicated system. A system is
generally considered to be complicated when it is huge, or because its behavior is chaotic or random.
Here, complicated means difficult to understand: size can be an obstacle to a good understanding, as
well as the fact a small change on an object has a huge effect at the whole system, or the fact its behavior
cannot be predicted with certainty. By comparison, a complex system can also be complicated, but this
is not a necessary condition to being complex. To summarize, both notions are independent: a system
can be only complex, or only complicated, or both.

Fig. 2.1 Network Representation of high school friendship used in [91] (image courtesy of [75])

It is not possible to understand the dynamics of a complex system by reducing it to its elementary
objects: because of the presence of some emergent properties, it is necessary to consider the relationships
between them. For this purpose, graphs constitute a very efficient modeling tool, because they allow
representing both object, using nodes, and relationships, using links. Such a representation of a complex
system is called a complex network [10, 16, 94]. The existence of emergent properties in the modeled
systems, as well as certain secondary properties mentioned earlier, cause the presence of non-trivial
topological properties in the corresponding networks. Here, the term non-trivial means it is difficult to
characterize the structure of the network using the traditional models of graph theory. On the one hand,
a complex network is not a regular graph, since its links are heterogeneously distributed. It is therefore
hardly comparable to a lattice [12], for instance. On the other hand, this heterogeneity is not completely
random, since a complex network is characterized by certain substructures. So, it does not fit random
graph models such as that of Erdos-Renyi [40]. The model proposed by Watts and Strogatz [38] is very
illustrative of this situation. In the goal of replicating some property observed in real-world complex
networks, they proposed a model whose randomness is controlled by a parameter. It can generate a
continuum of graphs ranging from purely regular to completely random. It turns out mimicking the
property of complex networks requires generating graph both partially regular and random.

Because complex networks are used in different areas, many different vocabularies exist in the lit-
erature to refer to the same concepts. For example, the objects in interaction are called vertex, node or
actor and the relationships between them are called edge, arc, link, tie, bond or connection. In this work,
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2.1 A Modeling Tool 7

we use the terms of node for the objects and link for the relationship between them. One can visualize
a graphical representation of a complex network modeling of the friendship of US high schools in Fig-
ure 2.1. In the network representation, besides the friendships, the ethnicity of the students is also shown
by the different node colors. We formally define a network G = (V,E) as a couple of the set of nodes
(V ) and the set of links (E). Let the total link number be l and total node number n for the rest of the
document. In the next section, we describe briefly different types of networks.

2.1.2 Types of Complex Networks

The graph representation is so flexible that it can include different types of information, depending on the
modeling needs. The simplest networks represent the system objects with nodes and their relationships
with simple links, they are called plain networks. Plain networks are as simple as possible that they
include only nodes and links but no additional information. The existence of a link between nodes repre-
sents only the existence of a relationship. For example; we can model friendship between the students of
a university with plain networks where the nodes are the students and links are their friendship. Richer
networks can be obtained by adding other forms of information.

First, it is possible to add loops and multiple links. A loop corresponds to a self-relationship, i.e. a
relationship between an object and itself. Links are called multiple when there are several links between
the same two nodes. The resulting networks are called multiple networks. As an example, the activity in
a company could be modeled with such a network. Suppose the nodes are the employees and the links
are the tasks that should be performed together. Two employees can work on more than one task together
(multiple links) and one employee can work on a task individually (loop).

It is possible to add link direction to a network, in order to represent the asymmetry of a relationship,
leading to so-called directed networks [94]. For example; emailing between the employees of a company
can be modeled with such a network, in which the nodes are the people who send or receive emails, and
the links symbolize the emailing. Links would be directed from the person who sends to the person who
receives the mails.

In some systems, the relationships between objects have different intensities, i.e. some objects are
connected more strongly than others. To model this feature, it is possible to use link weights [94], i.e.
numeric values assigned to each link to model the power of the connection. These types of networks are
called weighted networks. For instance; consider a collaboration network, in which nodes are authors
and links are co-authorship: one can weigh the links to represent the number of common publications of
the co-authors.

Besides, the various properties of the objects or connections can be also added to network under the
form of node or link attributes [94]. For example; age, gender or as shown in Figure 2.1, ethnicity can
be added as attributes of the nodes from any human interaction network. We can see the visualization of
the different information that a network may hold in Figure 2.2. Here, from left to right; the consecutive
networks correspond to plain, directed, multiple, weighted connections respectively. In the third network
from the left, one node also has a self-connection. The last network from the left contains nodal attributes
representing the gender of the person.

If the nodes all represent the same type of objects, i.e. the system is constituted of homogeneous
objects, the network is called unipartite. This was the case for all the types of networks presented before
this point. In some complex systems however, there are different types of objects, with possibly different
types of interactions between them. To represent this kind of systems, we use multipartite networks. A
network is said to be multipartite when it contains several different types of nodes, with links present
only between nodes of different types. In other words, there can be no links between two nodes of the
same type. One of the most common subcategory of multipartite networks is bipartite networks [56],
i.e. networks with two types of nodes. For example, the Wikipedia edit system can be modeled as a
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8 Complex Networks

Fig. 2.2 Visual representation of different informations related to network representation. From left to
right, the networks are plain, directed, multiple, weighted and attributed, respectively

bipartite network, in which some nodes represent users whereas the other are Wikipedia pages, and a
link between a user and a page represents the fact the user edited this page [72]. In this representation,
there is no link between two users or between two pages. Similarly, social tagging systems are often
modeled with tripartite networks (i.e. multipartite networks with 3 types of nodes). For example, in the
del.icio.us network, nodes can be either users, tags or URLs, and there can be links only between users
and tags (a user utilizes a tag) and between tags and URLs (a URL is associated to a tag).

The heterogeneity described for nodes can alternatively be observed for links, i.e. the system contains
different types of relationships, which is possible even if the nodes themselves are all of the same type.
In order to represent such a system, one will use multiplex. For instance, let us consider a social network
aiming at studying the effect of friendship on business. We can use a multiplex network with two types
of links: one to represent friendship relationships, and the other to stand for trade ties.

A complex system is, by nature evolving, in the sense its objects and/or organization change over
time. However, authors originally modeled them in a static way, for simplicity purposes. The resulting
networks represent connections between objects and their properties, but they ignore the time-dependent
changes over objects and connections. These types of networks which show a summary, or a single
snapshot of the system, are called static networks. Some examples of static networks can be found
in the resources of Newman [96]. Later, the researcher started modeling the evolving attributes of the
modeled systems [19, 79, 104]. In [19], the authors point out different methods to study the evolution
of a network. One of these methods is modeling the complex systems as a sequence of static networks
such that consecutive static networks correspond to the representation of the consecutive snapshots of the
same system. These types of networks are called time evolving or dynamic networks (in this document,
we use the latter term).

As mentioned before, the various enhancements presented in this section can be combined depending
on the modeling needs. In our study, we focus on a specific combination: dynamic attributed networks,
i.e. sequence of snapshots, each one being a unipartite network without link weight or direction, but with
nodal attributes. We describe them formally in Chapter 4.

2.2 Topological Properties

The modeling various systems like WWW, the Internet, telephone calls, Web-based social friendship
sites, metabolic systems, protein-protein interactions, food webs, etc. from different disciplines like
physics, biology, information technologies, gave birth to the science of complex networks. The study
of these different systems revealed there exist some very widespread topological properties. In this
subsection, we present the most prominent ones.
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2.2 Topological Properties 9

2.2.1 Small-Worldness, Scale-Freeness and Transitivity

The small world phenomenon is typical of many networks representing real-world systems, in which
shortcuts connecting different areas of the networks allow reducing the average distance between any
two nodes of the network. In the context of social networks, it has been popularized by the famous six
degrees of separation experiment [132]. It refers to the idea that everyone is at most six steps away from
any other person on earth, so that a chain of "a friend of a friend" relationships can be made to connect
any two people in six steps or less. This property can be interpreted as propagation efficiency: spreading
on the network remains relatively fast even if the network grows. Specifically, small world networks
have a low average distance (i.e. the length of the shortest path between pair of nodes). Furthermore, in
growing networks, it increases logarithmically with the number of nodes [94].

Most networks have a highly heterogeneous degree distribution, where the degree is the number of
connections of a node. In such networks, a few nodes are linked to many other ones, and there is a large
number of poorly connected nodes. Nodes with high degree are informally called hubs, because they are
supposed to have a more central role in the network. Note the notion of hub can be defined in various
other ways, such as the community-based one presented in section 2.3.7. This heterogeneous distribution
is well described by a power-law. In other words, the probability for a node to have a degree k is pk ∼ k−γ .
Such networks are called scale-free, because the exponent of the distribution does not depend on their
size. Experimental studies showed that the γ coefficient usually ranges from 2 to 3 [10, 16, 94]. In [9],
an explanation for this property is proposed under the form of the preferential attachment principle: in
a growing network, the new nodes are more likely to get connected to popular existing nodes, i.e. those
already well-connected. This principle is also known as Rich get Richer [11]. So, the fact a system is
scale-free reveals some relevant information regarding both its structure and its dynamics. In a network,
the average and maximal degrees generally depend on the number of nodes it contains. For a scale-free
network, it is estimated to be ⟨k⟩ ∼ k−γ+2

max [10, 16] and kmax ∼ n1/(γ−1) [94], respectively.

Apart from these properties, some networks are also known as having a hierarchical structure: we
observe less links between the nodes of different hierarchical levels, and we see denser links between
the nodes of the same level [28]. Another common topological property of networks is having a high
transitivity, compared to purely random networks with the same number of nodes and links. A high
transitivity means the way the links are distributed over the network results in a large number of triangles.
We explain in detail what the transitivity measures in section 2.3.3, including its formal definition. The
fact real-world networks exhibit a high transitivity means nodes tend to form small tightly connected
subgroups. For instance, in a social network, it is related to how well the friends of a person know each
other. If none of them relates together, the transitivity is minimal, whereas if they are all friends, it is
maximal. Social networks are known to be highly transitive [38].

The properties we mentioned here give an idea of the topology of complex systems. They come
out of observations and statistical studies performed on static networks. Indeed, as mentioned before,
early works tried to explain the evolving mechanism of complex network [9, 10, 108, 128] based only
on static representations. The model proposed to explain the scale-free property highlighted the need for
a dynamic approach to perform better analyses. Moreover, as highlighted in [42], knowing a network
is scale-free is not enough for explaining its structure and dynamics: it might describe just a single
aspect. Using richer representations of the complex systems could be helpful to improve their analysis,
and therefore broaden the knowledge we have of them. Modeling the evolving systems with dynamic
networks by also considering the individual attributes of the objects can constitute a more appropriate
platform for further analyses. Of course considering time evolution and attributes leads to a specific type
of network, for which it is necessary to develop appropriate analysis tools.
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2.2.2 Community Structure

The notion of community originally is coming from social sciences. Traditionally, the two major uses
of the term refer to groups of people sharing a common territory (neighborhood, town, city, etc.) or
having common relationships (human relationship, family, etc.) [60]. However, more recently, the
word community has been used to point out at groups of persons sharing emotions, having the feeling of
belonging together [86]. In network science, a community roughly corresponds to a group of nodes more
densely interconnected, relatively to the rest of the network [97]. The expression community structure
refers to a network topological property, in which the heterogeneous distribution of links results in a
segmentation of the network into a set of communities. Having a community structure is a common
feature in biological and social networks [94]. In [137], the importance of the detection of community
structure highlighted to discover functionally related objects, study interactions between modules, infer
missing attribute values and predict unobserved connections in the network. When a community structure
is present, the community size distribution seems to follow a power-law distribution pk ∼ k−β with β

ranging from 1 to 2 [94]. Dense networks (where the number of links is significantly higher than the
number of nodes) cannot have communities: only sparse networks (where the number of links is at the
order of the number of nodes) can [43]. Indeed, the network must be sparse enough so that links are less
numerous between communities.

Fig. 2.3 Networks with (left) and without (right) a community structure

Community structure is one of the most studied network properties. There are several different
terms referring to communities, like modules, partitions, clusters or cohesive subgroups. Naturally,
several alternate definitions also exist. However, community detection-related works are often focused
on designing new methods to detect communities, and less on what a community exactly is. For this
reason, the notion of community is very frequently implicitly defined as the result of the considered
community detection method. However, a few authors tried to give a proper definition of the concept.

Radicchi et al. [111] distinguish strong and weak communities. A strong community is a node set
such that the internal degree of each node (i.e. number of neighbors inside its community) is greater than
its external degree (number of neighbors outside the community), and a weak community is a structure
such that its total internal degree exceeds its total external degree.

For Fortunato [43], there are three different families of definitions: local, global and similarity-
based. The local definitions are based on the exploitation of an information concerning a node and its
close neighborhood (the nodes to which it is connected relatively directly), and neglecting the rest of the
network. One of the most common approach is clique-based. A clique is a group of nodes all connected
together. A community can be defined as a maximal clique, or as a group of tightly connected cliques
[34]. In a global definition, the network as a whole is considered. In this case, a community refers to a
group of node with remarkable properties relatively to the rest of the network. This type of definition is
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2.3 Topological Measures 11

often expressed under the form of a measure, which is then optimized to detect the communities [43].
The most popular one is the modularity [93], which is described in chapter 3. Finally, a community
can also be defined in terms of node similarity. Nodes belonging to the same community must be more
structurally similar to each other than to other nodes. The basic way of estimating the structural similarity
of two nodes consists in measuring how much their neighborhoods (direct neighbors) overlap. Once
the notion of node similarity has been defined, a classic clustering method can be applied to identify
the community structure [43]. It is worth noticing these three families of definitions are not mutually
exclusive: for instance, the similarity used to define what a community can be based on global and/or
local information. This highlights the difficulty of defining a relevant typology of community definitions.

Besides the information used to define what a community is, one can also consider the form a com-
munity take. Historically, the first type of community structure studied in the literature were disjoint, i.e.
each node belongs to exactly one community [50]. The community structure is therefore a set partition,
each community being a part. Later works allowed one node to belong to more than one community
at same time, leading to overlapping communities [105]. In this case, the community structure can be
seen as set cover. It is also possible to define the communities as hierarchical, such that every high level
community can be split into several lower level ones. The nodes in the sub communities have denser
inner links. This hierarchical structure can be represented under the form of a dendrogram, as in classic
hierarchical clustering.

The notions of communities presented above focus on plain network. But, as mentioned before,
network representation can be enhanced with more information. In this case, it is necessary to adapt
the definition of what a community is. Here, we focus on the two specific enhancements we use in the
rest of our work; dynamic networks and nodal attributes. For attributed networks, authors generally
rely on the implicit assumption of homophily: they suppose that similar nodes tend to connect more
frequently [87]. From this point of view, a community corresponds to a group of nodes which are not
only densely interconnected, but also similar in terms of attributes. To the best of our knowledge, there is
no systematic study showing a relation between attributes and topological features. So, the assumption
that attributes and structure are dependent can be criticized, in the sense its veracity is certainly dependent
on the modeled system.

In dynamic networks, the definition of a community structure is similar to what is used for static net-
works, and the focus is rather on the evolution of the communities. In [2, 52, 104], several community
events are identified and studied: birth, death, split, merge and continue. Moreover, continuing commu-
nities can expand or shrink. In [104], the authors analyzed the community evolution in co-authorship
and phone-call networks. They state that small communities, if they are stable (i.e. not expanding or
shrinking very much), can survive for a long time. But instable ones have a very short lifespan. The
opposite is observed for large communities: stable ones do not last a long time, whereas expanding ones
do.

The task of defining the concept of community is highly related to that of detecting communities in
networks. As mentioned before, many works in the literature do not define explicitly what a community
is, but rather propose a way of detecting a structure, which is considered, a posteriori, as a community. In
chapter 3, we describe community detection methods for plain networks, and then focus on our networks
of interest for this work: dynamic attributed networks.

2.3 Topological Measures

In the literature, real-world networks have been characterized by their non-trivial topological properties.
We described some of them in the previous section. Authors used topological measures to quantify these
properties. In this subsection, we describe these measures in further details. We first propose a new
typology to categorize them, and we then focus on those used later in this thesis. The measures are first
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introduced theoretically, and the very last subsection is an example illustrating them.

2.3.1 Typology of Topological Measures

A topological measure allows to quantify a specific feature of network structure. The terminology and
typology used in the literature to describe and classify them are not uniform, which is why we present
our own here, in an effort of standardization. We distinguish two aspects of a measure, the type of entity
and the information used to calculate the measure. First, a topological measure can be calculated for
entities of different scales: node, substructure or whole network. Due to the topic of this work, we chose
the community as the entity corresponding to the substructure level. Second, the information used for its
calculation can characterize the entity with different scopes: local (a node and its direct neighborhood),
intermediate (a substructure and the local information it contains), and the global (the whole network
and the intermediate and local information it contains).

Let us consider a few examples to illustrate our typology. We consider degree as a measure defined
at node scale with a local scope, because it describes a single node (scale) and relies on the number
of its connections, which is local information (scope). We consider hub dominance to be a community
scale and local scope measure. For a given community (scale), hub dominance is the ratio of the max-
imal internal degree (amongst the nodes it contains) to the size of the community (number of nodes it
contains). Like the degree, the internal degree is based on local information (scope). For the sake of
comprehensibility, we summarize our categorization for the topological measures in the table 2.1, with
brief explanations and examples for each category. For the detailed explanation of each measure listed
in the table, consult [48, 77, 94]. In this thesis, we focus on nodal measures, because we interpret the
communities by their nodes topological and attribute evolution. One can find the detailed description of
these measures in the next subsections.

2.3.2 Degrees

The degree, a.k.a order, of a node is the number of links attached to it. More formally, we note
N(v) = {w ∈ V : (v,w) ∈ E} the neighborhood of node v, i.e. the set of nodes connected to v in G.
The degree d(v) = |N(v)| of a node is the cardinality of its neighborhood, i.e. its number of neighbors.
Similarly we can define the internal neighborhood of a node v as the subset of its neighborhood located
in its community: Nint(v) = N(v)

⋂
C(v). Then, the internal degree dint(v) = |Nint(v)| is defined as the

cardinality of the internal neighborhood, i.e. the number of neighbors the node v has in its community.
The calculation of total degree requires a local information, thus, its scope is local. However, the internal
degree scope is intermediate, because we need to know the community structure.

Degree is a simple but important measure determining the popularity of a node. The higher its value,
the more a node is important. As we explained in previous section, in most of the real-world networks,
node degrees are distributed according to power-laws. Processing the degrees of all nodes in a network
can be done by performing a single pass over its entire links. Suppose the degrees are represented by an
integer array of size n, initially containing only zeros. For each link, we increment the values of the two
cells corresponding to both nodes it connects. This process leads to a complexity in O(l), where l is the
number of links in the network.

2.3.3 Local Transitivity

The local transitivity, a.k.a. clustering coefficient, of a given node depends on how its neighbors are
interconnected [38]. It is defined as the number of links present between these neighbors, divided by the
number of links one would get if they were all interconnected. In other words, it represents the proportion
of existing to possible links in the node neighborhood. We can formalize it as equation 2.1 , i.e. the ratio
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Scale Scope Example Description Information
Used

Node Local Degree Number of connec-
tions of a node

Connections
of the node
of interest

Node Intermediate Embeddedness Ratio of internal
(community-wise)
to total connections
of the node

Community
and its con-
nections
to other
communities

Node Global Betweenness Number of short-
est paths in the
network passing
through that node

Network
paths

Community Local Hub Dominance Ratio of the maxi-
mal internal degree
to the number of
nodes in the com-
munity

Connections
around each
node

Community Intermediate Community Diam-
eter

Longest distance
between any two
nodes of the
community

Community
paths

Community Global Average Between-
ness

Mean betweenness
over all the nodes
in the community

Network
paths

Network Local Average Degree Mean degree over
all the nodes in the
network

Connections
around the
node of
interest

Network Intermediate Modularity Quality measure
of community
structure

Communities
and their
connections

Network Global Diameter Longest distance
between any
two nodes in the
network

Network
paths

Table 2.1 Typology of Topological Measures according to Scope and Scale
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14 Complex Networks

of existing to possible triangles containing v in G. Transitivity scales between 0, for nodes which are not
contained in any triangle, and 1, for nodes associated only to triangles. The scope of transitivity is local
because one only needs the direct connections of the node and those of its direct neighbors.

T (v) =
|{(q,w) ∈ E : q ∈ N(v)

∧
w ∈ N(v)}|

d(v)(d(v)−1)/2
(2.1)

The name transitivity comes from the fact this measure quantifies how transitive the modeled relation
is. If the relation exists between the node of interest and two other nodes, it corresponds to the probability
it also exists between these two nodes. Suppose we model friendship between persons, then this measure
is the formalization of the saying: "the friend of my friend is my friend". Thus, for a node, it measures
if it belongs to close friendship groups. In real-world networks, the distribution of the local transitivity
varies, as described in [71].

There are different methods to process the local transitivity: the best available exact method is in
O(l3/2) [121], to treat all nodes in the network. Note an approximate method exists too, which runs in
O(n) instead of O(l3/2) [121].

2.3.4 Eccentricity

The eccentricity of a node is its furthest distance to any other node in the network [61]. More formally,
we can define it as equation 2.2.

ecc(v) = maxu∈V (dist(v,u)) (2.2)

Here dist(v,u) is the geodesic distance between nodes u and v. The geodesic distance corresponds
to the length of the shortest path between two nodes. Eccentricity measures the distance of a node to the
rest of the network. Its scope is global, since we need to use paths spanning the whole network. In [129],
it is stated the time complexity for calculating the eccentricity of a node is in O(l) when using Dijkstra’s
algorithm. Hence, for the whole networks, the total complexity is in O(nl).

2.3.5 Node Centralities

Centrality determines how influential a node is within a network. Among the various ways of defining
formally such a characteristic, the most widely used are: closeness, betweenness and eigenvector cen-
trality [10]. The scope of all the centralities described here is global, because they rely on the notion of
path or distance.

Closeness centrality of a node v is defined as equation 2.3. Here dist(v,u) is the distance between
nodes u and v. It is the inverse of the sum of the distances between this node and all the other nodes
[119]. The closeness centrality measures how close a node is to the all the other nodes. If a node has a
high closeness centrality, it is able to get and to spread information efficiently [48]. The time complexity
of the calculation of closeness centrality depends on that of shortest paths.

Cc(v) =
1

∑u∈V dist(v,u)
(2.3)

For calculating a shortest path between two nodes, one generally uses a breath-first search, whose
complexity is in O(n+ l), since every node and every link have to be scanned once. Since the same
process must be repeated for each other node in the network, the complexity to process the closeness
centrality of a node is in O(n(n+ l)). Hence, for the whole network, the total time complexity is in
O(n2(n+ l)).
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Betweenness centrality is defined as equation 2.4. Here σi j is the total number of shortest paths from
node i to node j, and σi j(v) is the number of shortest paths from i to j running through node v, is a
measure of accessibility [48].

Cb(v) = ∑
i< j

σi j(v)
σi j

(2.4)

The betweenness centrality asserts the ability of a node to play a ’broker’ role in the network by
measuring how well it lies on the shortest paths connecting other nodes. A more central node has more
importance in terms of information flow. Removing nodes with high betweenness centrality may corrupt
the information flow and cause an important information loss or slow down its spread. Several algorithms
have been proposed to calculate this centrality. The complexity of the method from [20] is the most
efficient one which calculates in O(nl) for the whole network.

Eigenvector centrality measures the influence of a node in the network based on its spectral proper-
ties. The eigenvector centrality of each node is proportional to the sum of the centrality of its neighbors
[17]. We can formalize it as equation 2.5

Ce(v) =
1
λ

∑
i∈N(v)

Ce(i) (2.5)

Here λ is a constant and N(v) is the neighborhood of node v. Nodes with high eigenvector centrality
are associated to many other nodes which are also associated to many other nodes, and so on. In the
literature, there are different centrality measures related to neighborhoods of the first, second or higher
orders, i.e. neighbors of neighbors (of neighbors, etc.), such as: Katz centrality [68], alpha centrality
[18], hub and authority scores [70]. The time complexity to calculate the Eigenvector centrality depends
on the number of neighbors of the node. In the worst case, a node may be associated to all the nodes in
the network, leading to a complexity of O(n). Hence, for the whole network, the time complexity is in
O(n2) [70].

2.3.6 Embeddedness

The embeddedness measure assesses how much the neighbors of a node belong to its own community. It
is defined as the ratio of the internal degree dint(v) to the total degree d(v) of the considered node [77].
It can be formalized as equation 2.6

e(v) =
dint(v)
d(v)

(2.6)

This internal degree is the number of links the node has with other nodes from the same community,
by opposition to its external degree dext(v), which corresponds to connections with nodes located in other
communities. The maximal embeddedness of 1 is reached when all the neighbors are in its community
(dint(v) = d(v)) whereas the minimal value of 0 corresponds to the case where all neighbors belong to
different communities (dint(v) = 0 ).

The scope of embeddedness is intermediate, because it requires both local and community-related
information. In real-world networks, a majority of nodes, usually with low degree, have a very high
embeddedness (so almost no links outside their community). For the remaining nodes, the embeddedness
distribution depends on the considered system. Communication, Internet and biological networks exhibit
a peak around e = 0.5, whereas social and information networks have a more uniform distribution. In
all cases, the whole range of e is significantly represented, even small values [77]. Its processing only
requires to combine the internal and total degrees, thus its time complexity is in O(l), like for the degree.
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2.3.7 Community Role Measures

Amaral and Guimerà [59] developed two measures, within module degree and participation coefficient,
in order to characterize the role of nodes at the community level. Their scopes are intermediate, because
they are based on community-related information. The within module degree is defined as the z-score of
the internal degree, i.e. equation 2.7.

z(v) =
dint(v)−µ(dint(v),C(v))

σ(dint(v),C(v))
(2.7)

Here µ(dint(v),C(v)) and σ(dint(v),C(v)) denote the mean and standard deviation of dint over all
nodes belonging to C(v), respectively. It expresses how much a node is well connected to other nodes in
its community, relatively to this community. To process the z values, we need first to compute dint for
all nodes, which is in O(l) as explained before. The mean and standard deviation of the internal degree
must then be processed for each community, both operations being linear in the number of nodes of the
considered community. Overall, both are consequently in O(n). In total, when considering time, the
complexity to process z is therefore in O(l +2n) = O(l +n).

The participation coefficient, introduced in the same study [59], is based on the notion of community
degree dc(v) = |N(v)

⋂
Cc|, which represents the number of links a node v has with nodes belonging to

community Cc. Incidentally, one can see the internal degree is a specific case of community degree, for
which Cc =C(v). This measure is formally defined as equation 2.8.

P(v) = 1− ∑
1≤c≤λ

(
dc(v)
d(v)

)2 (2.8)

Here λ is the number of communities in G. P characterizes the distribution of the neighbors of a
node over all communities. More precisely, it measures the heterogeneity of this distribution. It gets
close to 1 if all the neighbors are uniformly distributed among all the communities and 0 if they are all
gathered in the same community. The processing of P requires first computing the total and community
degrees of all nodes for all communities. As explained before, the total degree can be processed in
O(l). By proceeding like for the internal degree, one can process the community degree relatively to a
given community also in O(l). Therefore, dealing with all communities amounts to O(lλ ). The total
complexity to process P is eventually in O((λ +1)l) = O(λ l).

Amaral & Guimerà determined 7 distinct community node roles, based on a cartography of within
module degree and participation coefficient [57]. The regions of these node roles are shown in Figure 2.4
on the within module degree and participation coefficient space.

The authors firstly distinguish nodes depending on whether their z is above or below a limit of 2.5. If
z ≥ 2.5, the node is considered to be a community hub, because it is significantly more connected to its
community than the other members of the same community. If z< 2.5, the node is said to be a community
non-hub. Note this notion of hub is different from the degree-based one introduced in section 2.2.1. A
community-hub is relative to the structure of the community. A node may have high degree but all its
neighbors in different communities, in which case it is not a community-hub. For community non-hub
nodes, Amaral & Guimerà determined 4 roles by considering their participation coefficient values. The
regions shown as R1, R2, R3 and R4 in figure 2.4 correspond to ultra-peripheral (i.e. all their links are
in their community), peripheral (i.e. most of their links are in their community), non-hub connector
(i.e. many links are in other community), and non-hub kinless (i.e. all their links are homogeneously
distributed among all existing communities) nodes, respectively. For the community-hub nodes, they
determined 3 roles shown as R5, R6 and R7 in the same figure. These roles correspond to provincial
hubs (i.e. hub nodes with most of their links are in their community), connector hubs (i.e. hub nodes
with many links to most of the other communities) and kinless hubs (i.e. hub nodes with all their links
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2.3 Topological Measures 17

Fig. 2.4 Zones of Node Roles Inside of a community in z−P space. (image courtesy of [57])

are homogeneously distributed among all existing communities) respectively.

2.3.8 Example

We explain the topological differences between the nodes of the same network with a small example. One
can see a small network with 21 nodes separated into 3 disjoint communities and 41 links at Figure 2.5.
The nodes A and C belong to first community; B and D belong to second community and finally node E
belongs to third community. For this network, we listed the topological measures of nodes A,B,C,D and
E in Table 2.2.

Fig. 2.5 Small network with 21 nodes and 3 communities

Node A is located at the center of the network, connecting three smaller components that can be
seen distinctly on the figure. That is why, the betweenness centrality of this node is significantly higher
than those of all the other nodes. Because node A does not belong to any triangle connection, its local
transitivity is 0, as well as node C. The most transitive node is D. We can observe that node D and E
both belong to well-connected neighborhood. The most popular node among the nodes we examine is E
because its degree is the highest while node C is the least popular one. Regarding their eccentricity, we
can say that node D is the furthest one. Although it is situated inside of a well-connected neighborhood,
its access from other parts of the network is more difficult than the other nodes we analyze. As being the
most in-between, node A is also the closest, as shown by having the highest score for closeness centrality.
However, the highest score of Eigenvector centrality belongs to node E, because it is connected to many
nodes that are connected to many others and so on.
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Node A Node B Node C Node D Node E
Degree 3.000 3.000 1.000 4.000 5.000
Internal Degree 1.000 2.000 1.000 4.000 5.000
Transitivity 0.000 0.300 0.000 0.830 0.700
Eccentricity 3.000 4.000 5.000 6.000 5.000
Closeness Centrality 0.023 0.020 0.013 0.013 0.016
Betweenness Centrality 127.000 84.000 0.0000 0.250 0.910
Eigenvector Centrality 0.219 0.055 0.009 0.018 0.786
Embeddedness 0.330 0.660 1. 000 1. 000 1. 000
Within Module Degree -0.450 1.780 -1.540 0.000 0.250
Participation Coefficient 0.660 0.440 0.000 0.000 0.000

Table 2.2 Topological Measures Values for the Nodes

According to these measures, one can determine some node roles. For example, being a hub means
having a degree above the network average. A bottleneck is a node which controls the flow from one part
of the network to another part , and whose deletion increases the number of unconnected sub networks
[33]. A bridge is a link which is connected to bottlenecks [33]. The removal of a bridge also causes to
partition the network into several disconnected sub-networks. Here, node B is a hub and a bottleneck,
node A is not a hub but is a bottleneck, node E is a hub but not a bottleneck and node C is neither a hub
nor a bottleneck.

The embeddedness score of nodes C, D and E shows these nodes completely belong to their com-
munities. They do not have connections with nodes from other communities. On the contrary, node A
has 2 connections with other communities, and its embeddedness is consequently lower. Moreover, the
fact this node A is connected to two different communities affects its participation coefficient. For node
B, the participation coefficient is also larger than 0, meaning that it has connections to other commu-
nities. Regarding the within module degree scores, no node hold a community hub-role, according to
the threshold determined by Amaral & Guimerà [59]. If we consider the Amaral-Guimerà roles, A is a
non-hub connector, node B is peripheral and node C, D and E are ultra-peripheral.
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Chapter 3

Community Detection

We now focus on the notion of community structure, which was introduced in the previous section. As
mentioned before, a community can be intuitively defined as a group of nodes densely interconnected
compared to the other nodes [32, 43]. We already highlighted the fact many real-world networks possess
a community structure. Moreover, identifying the community structure of a system is crucial to improve
its understanding. Indeed, it summarizes the complex structure of the network, and nodes belonging to
the same community are often functionally related. The interactions between communities, the hierarchy
inside a community, the central nodes of a community, or the nodes lying in-between communities, also
give us important information about the dynamics of the system. For these reasons, the community
structure constitutes an important topic, which is studied widely, in many very different domains.

Because of this popularity, hundreds of different algorithms were developed for the task consisting
in identifying the community structure of a network, an operation generally called community detection
[43]. However, although a lot of work has been performed regarding this detection problem, the task of
interpreting the detected communities has been ignored almost completely until now. Yet, a community
structure is not more than a partition of the node set: it has no meaning by itself. It must undergo an
additional processing in order to reveal some information which would be meaningful relatively to the
studied system. In other words, interpretation of community is complementary to their detection, and
crucial to their exploitation.

In most of the community detection studies, the interpretation phase is skipped or manually done
by some expert of the domain [50, 93, 111, 115, 116]. However, manual interpretation is somewhat
subjective and does not scale well when considering larger networks. Moreover, it might be considered
as a subjective approach. A few methods were defined to propose more objective tools [73, 77, 133],
but they only partially handle the available information. For instance, some of them concentrate on
nodal attributes [29, 137] while some others use only topological information [77]. As a result, such an
interpretation is incomplete, and can lead to limited observations regarding the studied system.

In this chapter, we try to give a global view of the community detection task, by describing not
only community detection methods, but also evaluation and interpretation methods. Our goal is not to
be exhaustive: this description is driven by the objective of this work, which is to handle dynamic and
attributed networks. For this reason, we first describe community detection in plain networks, in order
to introduce some basic concepts. We then explain how they can be extended to handle the two network
enhancements which interest us: attributed networks, then dynamic networks. For each network type,
we try to distinguish several general families of methods, before describing one specific method in more
details. We then describe a related problem, which is to evaluate community detection methods in terms
of quality of the detected communities. Finally, in the last part of this chapter, we review the existing
approaches for community interpretation.
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3.1 Plain Networks

There are hundreds of different community detection methods using only the topological information
present in plain networks. Although it is important to understand how community detection works, the
point of this thesis is community interpretation, so we do not make an exhaustive review here. It is
worth noticing more detailed reviews exist in the literature, see [25, 43, 110, 120]. In this subsection,
we first summarize briefly some popular methods by explaining their detection strategies. We then focus
on modularity, which is the most widely used quality measure for community structure, and the Louvain
algorithm, which optimize modularity. We chose to focus on Louvain, because it is one of the most
popular community detection methods, and extensions exist to deal with attributed or dynamic network.
In our experiments, we also use Louvain and its variants.

3.1.1 Short Review of Existing Approaches

Centrality-based. In the early stage of community detection studies, the strategy for identifying the
communities was to find the most central links, which are supposed to connect different dense node
groups. We call this approach link-centrality based. The algorithms using link-centrality measures rely
on a hierarchical divisive approach. Initially, the whole network is seen as a single community, i.e. all
nodes are in the same community. The most central links are then repeatedly removed. The underlying
assumption is that these particular links are located between the communities. After a few steps, the
network is split into several components which can be considered as communities in the initial network.
By iterating the process, one can split each discovered community again, resulting in a finer community
structure. Algorithms of this category differ in the way they select the links to be removed. The first
and most known algorithm using this approach was proposed by Newman [50], and relies on the edge-
betweenness (a link-based variant of the betweenness centrality presented in Section 2.3.5). Radicchi
et al. [111] propose a variant called Radetal, based on link transitivity (a link-based version of the local
transitivity presented in Section 2.3.3), i.e. using a local measure instead of the global edge-betweenness.

Distance-based. Another category of approaches is based on node distance measures. Such a mea-
sure allows translating the topological information encoded in the network into a numerical value repre-
senting how far two nodes are. A community is then viewed as a group of nodes which are close to each
other, but distant from the rest of the network. Once all node-to-node distances are known, detecting a
community structure can be performed by applying a classic similarity-based cluster analysis algorithm
[49]. There are many ways to express the distance between two nodes. The most basic one, for instance,
is the geodesic distance, which considers the length of the shortest path between the nodes. In the pop-
ular Walktrap algorithm, the node distance is expressed in terms of random walks. Then, a hierarchical
agglomerative clustering approach is applied [109] by using this measure.

Compression-based. The approaches based on data compression consider the community structure
as a set of regularities in the network topology, which can be used to represent the network in a more
compact way (than using the whole network itself). The best community structure is supposed to be the
one maximizing compactness while minimizing information loss. The quality of the representation is
assessed through measures derived from information theory. Algorithms essentially differ in the way they
represent the community structure and how they assess the quality of this representation. Two popular
approaches from this category are InfoMod [115] and InfoMap [116]. In the former, the simplified
representation of the network is based on a community matrix representing the community structure
and a vector representing the community membership of nodes. The latter uses a random walk as a
proxy. Each node is assigned a unique code taking its community into account, and one tries to define
communities so that the quantity of information needed to representation a walk is minimal.

Significance-based. A completely different approach consists in considering the statistical signifi-
cance of the whole community structure, or of the individual communities. Indeed, in a complex net-
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3.1 Plain Networks 21

work, a community structure can be expected under certain circumstances, but groups of densely con-
nected nodes can also appear only by chance. For instance, even a generative model not supposed to
create any community structure can produce clusters of nodes due to random fluctuations. Statistical
significance allows distinguish them from actual communities. An example from this category is Order
Statistics Local Optimization Method (OSLOM), which is a local optimization method applied to a score
measuring the statistical significance of individual communities [78].

Diffusion-based. Such approaches tackle the problem of community detection using a communi-
cation paradigm. They rely on the assumption that information is more efficiently exchanged between
nodes of the same community. Therefore, communities can be detected by considering how information
is propagated in the network. The most well-known method from this category is the Label Propagation
algorithm [112]. The considered information takes the form of a label, and the propagation mecha-
nism relies on a vote mechanism occurring between neighbors. The Community Overlap Propagation
Algorithm (COPRA) is an extended version of Label Propagation, proposed by Gregory [53] to detect
overlapping communities. MarkovCluster is also very popular among diffusion-based methods. By
repeating a set of algebraic operations on the network transfer matrix, which describes the transition
probabilities for random walker evolving in this network, it simulates a long-term diffusion process to
detect communities [134].

Optimization-based. Finally, community detection can be seen as an optimization problem, pro-
vided one can define a measure of the quality of a community structure. There are several such measures
[43], amongst which the most widespread is certainly the modularity. This chance-corrected measure
assesses how much cohesive and separated the communities are, through their numbers of intra- and
inter-community links [93]. The algorithms based on modularity optimization constitute the majority of
the community detection algorithms. They differ in the way they perform this optimization. FastGreedy
is the earliest method using this strategy. It applies a basic greedy approach [95]. The Louvain algorithm
[15] can be considered as an improvement of Fast Greedy, relying on a hierarchical approach to handle
much larger networks. It is very fast, and identifies highly modular community structures. For these rea-
sons, it might be the most widespread algorithm for community detection, not only for pure applications,
both also as a basis to build methods able to handle enhanced networks. We consequently decided to
use this algorithm for our work. In the next subsection, we describe the modularity measure in further
details, and then explain the functioning of Louvain.

3.1.2 Modularity Measure

The modularity measure has been introduced by Newman and Girvan [97] to assess the quality of a net-
work partition. They first define what could be called a community contingency matrix, whose elements
pi j represent the fraction of total links from nodes in community i towards nodes in community j. The
fraction of links inside community i is therefore pii. In the case of undirected networks, we have pi j = p ji

and the matrix is symmetric; however, note that for normalization purposes, the off-diagonal terms cor-
respond to half the fraction of links between communities i and j. In this matrix, let pi+ and p+ j be
the sums over row i and column j, respectively. If the network has no community structure, or if the
considered communities are not defined accordingly to the network structure, then one can suppose the
links are randomly distributed. Under this hypothesis, the expected fraction of links inside community
i can be estimated as the probability for a link to start in community i, which is pi+, multiplied by the
probability to end in community i, which is p+i. The matrix being symmetric, we have pi+p+i = (pi+)

2.
The modularity measure is defined as the difference between the observed and expected fractions of links
in each community, summed over all communities:

Q = ∑
i

pii−∑
i
(pi+)

2 (3.1)
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When the communities are not better than a random partition, or when the network does not exhibit
any community structure, Q is negative or zero. Its upper bound is 1, but it can be approached only if
the network has a strong community structure and if the communities have been perfectly detected. A
network with a well-separated community structure is known to have a modularity between 0.3 and 0.7
[93, 131]. In Figure 3.1, one can distinguish two networks with different modularity values.

Fig. 3.1 Two plain networks with different modularity values. For the left one, Q = 0.8499, and for the
right one, Q = 0.0545 (image courtesy of [141]).

The modularity measure is known to have some flaws. First, it has a so-called resolution limit [44],
which affects the size of the communities it allows detecting. This is due to the fact the modularity
compares the distribution of links over communities with its expected counterpart for a random network
possessing the same number of nodes and degree distribution (but randomly attached links). This as-
sumption implies the expected number of links between communities decreases when the network size
increases. Thus, if the network is large enough, the expected number of links between communities in
this null model may be smaller than one. In this case, a single link between two otherwise well-separated
communities is interpreted as a sign of strong inter-community connection by the modularity. Thus,
maximal modularity is obtained for a community structure including less communities than in the ac-
tual community structure. Second, there is a relevance problem, since it is possible to find partitions
with relatively high modularity values even in completely random networks, not supposed to possess
this property, such as Poisson random networks [58]. Finally, the modularity is also known to lead
to degenerated results [51]. For one network, one can identify an exponential number of significantly
different community structures with a near-maximal modularity. This means even an excellent optimiza-
tion algorithm can lead to very different communities when applied several times (provided it is at least
partially random, which is generally the case), which in turns causes an instability. However, despite
those limitations, an overwhelming majority of community detection algorithms use modularity as an
optimization criterion, because it proved to be very efficient in practice. For this reason, in this work we
use modularity-based approaches.

3.1.3 Louvain Algorithm

Louvain is a modularity optimization algorithm proposed by Blondel et al. [15]. It is an improvement of
Fast Greedy, introducing a two-phase hierarchical agglomerative approach. During the first phase, the
algorithm applies a greedy optimization to identify the communities. In the initial state, a community
corresponds to a single node. In other words, there are as many communities as nodes. The algorithm
then applies the same process to each node: it considers all possible moves from its current community
to those of its neighbors. The move leading to the highest modularity gain is performed, provided this
gain is positive. If no positive gain is possible, the node stays in its original community. Louvain repeats
this procedure until no further improvement can be achieved.

During the second phase, the algorithm builds a new network whose nodes are the communities found
during the first phase. The links located inside the original communities are represented by loops in the
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new network, and the links located between them become links between the corresponding nodes of the
new network. These new links are weighted in order to represent the number of original links. Once the
new network has been created, the first phase is applied again, this time on this new network. The time
consuming phase is clearly the first one. The authors call the combination of these two phases a pass.
Passes are repeated until there are no more changes during the first phase (i.e. the modularity cannot
be increased by moving a node), and a (local) maximum is reached. Louvain naturally incorporates a
notion of hierarchy, as communities of communities are built during the process. The pseudo-code of
this algorithm is given below.

Algorithm 1 Louvain

Require: G = (V,E)
Ensure: C

repeat
n = |V |
∀vi ∈V, C(vi)←i, with i∈ {1, · · · ,n}
C = {C1, · · · ,Cn}
Qinit ← modularity(C )
for vi ∈V do
(C ,Q)← rebuildCommStr(vi,C ,Q)

end for
while some nodes are moved do

if Q > Qinit then
G← rebuildGraph(G,C )

end if
end while

until C and Q do not change

Here, the function rebuildCommStr(· · ·) moves the node vi, if necessary, to that of the neigh-
bors communities which maximizes the modularity gain. The function rebuildGraph(· · ·) updates the
graph by taking each community as a node and total weight of the links between communities as the link
weight. Although the exact computational complexity of the method is not known, in [14], it is indicated
that the method seems to run in time O(nlogn) with most of the computational effort spent on the opti-
mization at the rebuildCommStr(· · ·). In fact, the algorithm is limited not by the computational time
but by the storage capacity for very large networks. The authors tested it on 118 million nodes network
and observed it worked very fast (compared to alternative approaches).

3.2 Attributed Networks

The works taking advantage of attributes during the community detection are relatively recent, and there-
fore much less numerous than for plain networks. This sub domain can therefore be considered as an
emerging topic. Indeed, until recently, there were only a few publicly available datasets containing both
structure and attributes. There are several reasons for that. First, storing these extra data (attributes)
leads to technical difficulties. Second, many systems are composed of very simple objects which do not
require to be individually described. However, with the apparition and growing popularity of Internet-
based social networking services, it became easier to access this type of data. In this section, we try to
categorize and summarize the main existing approaches, by describing their key points. We identified
four categories: Model-Based, Integration-Based, Similarity-Based and Optimization-Based methods.
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After having presented the main approaches, we expose their main limitation, at least regarding the topic
of this work: they all rely on the assumption of homophily.

3.2.1 Model-Based Methods

We regroup under the name model-based approaches a set of probabilistic methods using some genera-
tive model to represent the relationships between the network structure (including its communities) and
the node attributes. It allows to explicitly model the dependence between link distribution and nodal
attributes. Their basic idea is to describe the communities as latent objects depending on the random
mixture of link and attributes distribution in the network. The links and nodal attributes are then treated
by a single statistical model. Communities are found by fitting the parameters of this statistical model.
The model-based methods are usually inspired by Latent Dirichlet Allocation (LDA) [13]. LDA is a
generative model for collections of discrete data, originally used for identifying topics in collections of
documents. In that context, each document is supposed to be related to a mixture of various predefined
topics. A document is considered as a set of words, each one characteristic of a specific topic. The
name of the model comes from the assumption the topics follow a Dirichlet distribution over the docu-
ments. For this model, the parameters are estimated using statistical inference methods such as Gibbs
sampling, Expectation Maximization, etc. In the case of community detection, the topics (latent variable)
correspond to the communities. Most of those community detection algorithms from this category have
originally been developed to handle text-related networks, such as networks of blogs where the nodes
are the authors, the links are their friendship and the attributes describe the documents the authors wrote.

In [8], the authors propose a method named Block-LDA, which is a joint model of latent topics and
stochastic block models. In this model, link structure helps to improve attribute inference and vice-
versa. Similarly, in [22], the membership of the nodes to the communities is modeled with a mixture
model based on LDA. This algorithm is called relational topic model. The probability of existence of a
link between two nodes is determined by a binomial distribution whose parameters depend on both topic
similarity and community. In [83], the algorithm Topic-Link LDA is proposed as a relational topic model
based on LDA, such that the links are modeled as a binary random variable conditioned to the attributes
of nodes. Yang et al. [137] propose the algorithm Community Detection in Networks with Node attributes
(CESNA), also inspired by LDA. Unlike the other methods, CESNA is capable of finding overlapping,
non-overlapping or hierarchical communities if they appear in the same network.

3.2.2 Integration-Based Methods

In the second category, we gathered algorithms which modify the network, in order to embed the attribute
information inside the structure. The advantage of this method is that a classic community detection
method (i.e. one developed for plain networks) can then be applied to the augmented network. In other
words, these algorithms apply a pre-processing to generate a new network including attribute information
embedded in structure, and then only perform the actual community detection.

SA-Cluster, proposed by Zhou et al. [140], is particularly representative of this category. The authors
define an augmented network based on the original one, by adding new nodes and links in an attempt to
re-encode attribute values under a purely structural form. In this augmented network, an attribute node
corresponds to one of the possible original attribute values while an original node represents a structural
node. An attribute link is then placed between an original node and an attribute node if the original node
takes the corresponding value for the considered attribute in the original network. An original link is
representing a topological link of the original network. Different weights are assigned to both attribute
and original links, in order to discriminate their importance. The value is constant for original links (1.0),
whereas for attribute links, it is adjusted during the optimization process. This optimization process is
based on using a random-walk distance between nodes as the distance measure. To find the communities,
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the k-medoid clustering method is applied on the augmented network. At each iteration, the weights of
the attribute links are adjusted until the clustering method converges.

This CODICIL algorithm presented by Ruan et al. [118] uses a similar approach. First, it creates
attribute links such that, for each node, there is a new attribute link between this node and its neighbors
having the most similar attributes. Attribute similarity is measured using the cosine method. Second,
CODICIL samples the most meaningful links among the union of content and topological links, in order
to reduce the network. The criterion of retaining the links is the relevancy of links properties with its
neighbors. Then the algorithm applies a classic community detection method on this new network.

3.2.3 Similarity-Based Methods

The third category contains methods relying on classic clustering techniques, through the use of simi-
larity measures combining attributes and structure. By classic, we mean here that those algorithms were
designed for tabular data, not networks. Many of these tools rely on distance (or similarity) matrices,
in which objects are compared pairwise. The idea is that if one can define such a measure to compare
nodes, then he can directly apply a classic clustering method on the obtained similarity matrix.

Combe et al. [24] propose a method handling networks whose nodes represent texts and links repre-
sent connection between them. It is based on hierarchical clustering and uses a hybrid distance measure,
corresponding to the weighted sum of a structural and an attribute-related distance. For the structural
part, the authors use the geodesic distance (length of the shortest path between two nodes). For textual
attributes, each text is described by a vector whose members correspond to the weight of the terms of
that text. The attribute distance is described as the Euclid distance between the two vectors expressing
the attributes of each node. The method is specific to this type of network, in the sense not all nodal
attributes take this form, depending on the considered system.

Steinhaeuser and Chawla [127] propose three different link weights assessing the similarity of two
nodes. The first weight is the difference of local transitivity between the two nodes. However, there is a
hint here. The difference is calculated twice: once normally, and once by considering the two nodes are
not connected. Then those two differences are summed to get the final weight. The second weight is the
Jaccard’s coefficient [67] processed over the nodes neighborhoods, i.e. ratio of the number of common
neighbor to the total number of neighbors. The third link weight is a node attribute similarity. For two
neighbor nodes, in the case of a nominal attribute, the weight of the link between them increases by
one if they have the same attribute value. For continuous attributes, the attribute is normalized to range
from 0 to 1 and then the arithmetic difference between them is used as the weight. Once the weights are
calculated for all attributes, they are normalized to range from 0 to 1. The community detection criterion
is then very simple: if a link weight is above a certain threshold, then the two connected nodes are put in
the same community. The authors find the communities according to each weight separately.

Finally, Moser et al. [92] proposed the algorithm NetScan, as a modified version of the k-means
algorithm. They apply k-mean with two additional criteria while assigning the nodes to the communities.
At each iteration of k-mean, apart from the rules of k-mean: (1) the nodes of the same community must
be mutually reachable and (2) there must be a central node such that the attribute distance of each other
nodes in the same community is less or equal to a predefined radius. Thus, they consider link structure
and attribute similarity as two independent criteria.

3.2.4 Optimization-Based Methods

The forth category includes the algorithms using optimization techniques. They rely on a fitness function
combining both structural and attribute-related information. This function represents the quality of the
partition, in terms of connections and attributes. Many different methods can then be applied to optimize
it. In the literature, most fitness functions are variants of the modularity, or use it in some way.
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Cruz et al. [27] use on the one hand the modularity to measure the quality of a node partition from a
structural perspective, and on the other hand data entropy to consider if from the attribute point of view.
Their optimization method is an extension of Louvain (described in section 3.1.3), which tries to max-
imize the modularity and minimize the entropy. At first, an initial partition is detected structurally, by
a single modularity optimization step. Then, new partitions are defined according to entropy minimiza-
tion, by using a Monte-Carlo method. Finally, the community aggregation step of Louvain is performed.
After the aggregation, another step of modularity optimization is performed. This process is repeated
iteratively until no modularity improvement can be achieved.

Dang and Viennet [29] propose an algorithm which is also directly inspired by Louvain. However,
unlike Cruz et al. [27], they introduce a composite modularity as a weighted combination of a structure
modularity (classic modularity) and an attribute modularity (specifically defined to handle attributes).
The equation of this modularity is given in Eq. 3.2.

Q = ∑
C

∑
i,i∈C

(α.S(i, j)+(1−α).simA(i, j)) (3.2)

Here ∑C ∑i,i∈C S(i, j) corresponds to the structure modularity and ∑C ∑i,i∈C simA(i, j) is attribute
modularity and α is a user defined coefficient. The authors used the Euclidean distance as the simi-
larity measure in their attribute modularity.

Akoglu et al. [1] use a matrix-based approach. They consider the structure through the network
binary n× n adjacency matrix A, and the attributes through a binary n× f feature matrix F . Here n is
node number and f is the feature number. If there is a link between two nodes i and j, then A[i, j] = 1. If
node i possesses feature k, then F [i,k] = 1. For other cases, both matrix takes value 0. The main idea is to
find clusters in these two matrices simultaneously, by applying the Minimum Description Length (MDL)
principle. They apply a greedy iterative heuristic in order to minimize their information theory-based
fitness function.

3.2.5 Assumption of Homophily

It is important to note all the attribute-based community detection methods rely on the assumption of
homophily at the community level. A node set has the property of homophily, also called attribute assor-
tativity, when similar nodes (in terms of the considered attribute) tend to connect more [87]. The opposite
property is called heterophily (different nodes tend to connect more), or attribute disassortativity. The
reason behind this assumption is that those community detection methods are designed to solve specific
problems, and handle certain types of networks. They correspond to cases were the user is specifically
looking for communities whose nodes are both simultaneously tightly connected and similar in terms of
attributes.

This is hardly generalizable to all systems, though. Homophily is a common property, observed at
the global level in many networks [94]. However, heterophily, although rare, is also observed. Especially
in the case where several attributes are defined, it is not uncommon to observe homophily for only some
of them. Moreover, to the best of our knowledge, there is no study showing that, in real-world networks,
nodes located in the same community are similar in terms of attributes. Even if this could be observed
in certain networks, it is also possible to find, in the same network, certain communities which do not
respect this rule. The study from [74] is a good example of this situation. While studying an attributed
social network of university students, they partition the node set first by using the structure only, second
by using the attributes only, and then compare the resulting groups. For these data, it turns out both types
of information (relational vs. individual) partially overlap, but are still significantly different. Moreover,
attribute homogeneity varies from one community to the other.

In conclusion, our point here is that community detection methods using attributes are appropriate
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under certain, non-general, conditions only. Moreover, contrary to what one could intuitively believe,
they do not necessarily make the task of interpreting the identified communities easier, as we will see in
section 3.5.

3.3 Dynamic Networks

Community detection in dynamic networks is also an emerging topic, for the same reasons than attributed
networks. However, in the case of dynamic networks, community detection is more complicated than
the one for static networks because of maintaining time information as well. Although the domain is
quite new, an explicative summary of the existing algorithms is given in [3, 130]. Here, we will give
an overview of the existing methods by distinguishing two different categories. First, we have two-
stage approaches, also called static approaches, which consist in performing a static detection on each
time slice, and then matching the communities from one time slice to the next. Second, there are the
evolutionary approaches, which directly use the available temporal information to find the community
structure. They can be separated into two categories again: online and offline methods. The former are
also called incremental methods, and they consist in using the temporal information of the previous time
slice to find the community structure of the next one. The latter include the methods using the complete
available temporal information (all time slices together) to find one community structure supposed to be
relevant for the while time line.

Figure 3.2 illustrates the difference between the two main categories, i.e. using the temporal in-
formation, or not, for the detection. Its left side explains the idea of two-stage detection. The vertical
solid arrows show how the network structure of each time slice is used separately, to perform static com-
munity detection. The dashed horizontal arrows between the time slices indicate the use the temporal
information to match the communities detected in consecutive time slices. The right side of the figure
represents the evolutionary approach. The lower horizontal arrows represent the dynamic update of the
community structure based on the previous time slice(s), and the vertical dashed arrows show how the
evolution of the network structure is taken into account during this update. With this method, the detec-
tion at a time slice is done by using the community structure of the previous time slice. Unlike two-stage
methods, evolutionary methods do not treat each time slice separately, but instead use overall temporal
information together.

Fig. 3.2 Illustration of two different community detection strategies for dynamic networks. (Image cour-
tesy of Tanja et al. [130]).

3.3.1 Two-Stage Approaches

As indicated by their name, the process performed by these approaches is composed of two distinct steps:
first communities are detected in each time slice independently, and second they are matched from one
time slice to the other, in order to track their evolution. For the first step, static community detection
methods can be applied, therefore the second stage is more interesting, here. One way of finding such a
match is using set theory. For example, Hopcroft et al. [64] look at the maximum common node numbers
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in the communities from consecutive time slices. However; because of the instability of the community
detection method used, many communities can disappear or change between consecutive time slices. It
is not possible to decide if these communities are really dying (or changing too much) or if they do not
appear in the following time slice because of the community detection method. So, the match is done
only between stable communities, which are very few in reality.

Spiliopoulou et al. [124] propose a framework called MONIC. In MONIC, the match of a community
C in the following time slice is the community whose intersection with C is the largest, provided this
intersection passes a given threshold. If there is no such community, then there is no match at all. In
MONIC, the community is tracked based on some rules to determine merge, split, disappear or appear.
If there is one match for C, the community C is a natural community. For split, the match is searched as
more than one community whose union is a subset of C. A merge event is detected by looking if there
are several matches for C in the same time slice. An appearing event is detected if there is no match at
the previous time slice. If none of these events occurs, it means C disappears. The matching method
proposed by Asur et al. [2] is quite similar to MONIC. However, for each event, they use a threshold for
a more stable matching. Greene et al. [52] also use a similar approach but they use Jaccard’s index [67]
as the matching criterion, rather than the simple intersection size.

Another way to find the match is using a community detection algorithm to match the communities
between two time slices. In [104], the communities at each time slice are detected by clique percolation
[34] (a method for finding overlapping communities by regarding adjacent k-cliques sharing k−1 nodes).
Then, for each pair of consecutive time slices, a union network including all the links of time slice t and
t + 1 is created. Finally, the clique percolation method is applied again on this union network. The
communities of time slice t + 1 that are grouped with communities at time t of the union network are
considered as their evolution. The limitation of this approach is that it can miss merge, birth or split
events if the modifications (appearing or disappearing links) are not radical enough.

Another way of using community detection is searching the matches of the community ID’s of con-
secutive time slices. For such a matching, of course specified algorithms should be invoked. In [122],
authors proposes a method as an extension of LabelPropagation [112] which finds the communities of
different time slices with relevant community ID’s. This algorithm changes the labels locally if a new
node added or removed at the incremental time slice.

3.3.2 Evolutionary Approaches

Chakrabarti et al. [21] introduced the concept of evolutionary clustering, which was initially defined
for non-network data. However, the idea can be adapted to network science as well. It consists in
considering a part (or all) of the sequence of networks to detect communities, by opposition to using
each time slice separately. A method based on the evolutionary clustering principle should respect two
criteria. First, the community structure of any time slice should be as good as possible for that time
slice. Second, the community structure should not shift dramatically from one time slice to another. In
the same article, Chakrabati et al. introduced the notion of temporal smoothness for their evolutionary
clustering. It expresses the assumption that when a real community shifts over time, this should be view
as a smooth of transition. Thus it is necessary to update the existing information from the previous time
slice(s) to get the community structure of the current one. They define a general quality function as
Q = Qsnapshot +αQstability, where Qsnapshot is the fitness value of the considered time slice, Qstability is the
difference between the previous and considered time slices, and α is a user-defined constant to regulate
the fitness value. There are two ways of applying the evolutionary principle: in online methods, only the
last, of the few last time slices are considered; whereas in offline methods, the whole time line is used.
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3.3.2.1 Online Methods

These methods are called online because they allow detecting communities on the fly, since they only use
the past state of the network. They are also sometimes called incremental methods, because they build
the community structure of the current time slice upon that of the previous one. Community detection is
performed by analyzing at least two consecutive time slices. Because they use less information than the
whole dynamic network, these methods are faster and useful for real-time monitoring.

Görke et al. [54] propose two modularity-based methods: a modification of Louvain and a modifica-
tion of FastGreedy [95] , obtained by adapting the Modularity to take temporal smoothness into account.
The authors apply similar heuristics with the original methods of FastGreedy and Louvain on the previ-
ously found communities, in a way such that nodes will not be affected by the changes of the network in
their previous community.

Aynaud and Guillaume [5] propose Incremental Louvain which is also a modified version of Louvain
taking into account temporal smoothness. The first phase of the Louvain algorithm (as explained in
section 3.1.3) is modified: rather than initially putting each node in a separate community, it starts with
the community structure of the previous time slice, and optimizes the modularity according to the current
time slice.

3.3.2.2 Offline Methods

Some methods use the whole time line of the dynamic network rather than a subset of its time slices.
They are consequently called offline, since they can be applied only after the studied process has been
completely measured. The idea is finding one community structure which would be relevant for all time
slices. In [4, 6], the authors propose a modified version of the Louvain algorithm which optimizes the
average quality over all time slices, inspired by the modularity. The first phase of the classic Louvain
method consists in repeatedly performing the best node move (i.e. moving a node from one community
to the other) in terms of modularity gain. Here, a move is considered for each time separately, and
the corresponding gains are averaged. The move effectively performed corresponds to the one with
the highest average gain. The community structure is therefore always the same for all time slices:
only the network structure can be different. During the second Louvain phase, a network of higher
hierarchical level is created by considering each community as a node in the new network, and links
between communities as weighted links in the new network. Here, the same process is applied to each
time slice. As in the original Louvain algorithm, these 2 steps are repeated until modularity cannot be
improved anymore.

3.3.3 Conclusion

Researches related to community structure in dynamic networks are quite new when we compare to
static networks. That is why, there are many open questions as how to validate the algorithms, which
type of matching is more pertinent, how to model the network for community detection; considering
the new comers as added nodes may cause problems for detection methods, and so on. Only in few
works, authors give some experimental results for validation of their methods. For example, Aynaud
and Guillaume [5] find that using the Incremental Louvain method give a more stable result for dynamic
networks than applying classic Louvain. However, we should underline that the authors do not use a
ground truth for their comparison but the arXiv network dataset of Newman [96], which is originally
a static network. Aynaud and Guillaume randomly remove one node for creating an evolution event.
Their assumption is that removing one node should not affect the community structure, thus, result
community structures on each time slice should be rather stable. They measured the stability of some
static community detection algorithms (Static Louvain, Walktrap and Fastgreedy) and their Incremental
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Louvain algorithm by regarding mutual information and number of necessary transformation to have the
community structure before removing a node. Obviously, there are many paths to walk at this domain.
One of them is certainly taking into account the attribute information for dynamic community detection.
To the best of our knowledge, none of the existing methods of dynamic community detection uses the
attribute information and their evolving with the topological structure.

3.4 Evaluation of the Algorithms

Community detection algorithms can be evaluated on various criteria such as time or spatial complexity.
However, the most important aspect is the quality of the detected community structure. Authors tradi-
tionally validate their community detection algorithms on real-world networks [41, 50, 63, 84, 95, 112].
But in real-world networks, actual communities are not always defined objectively, or even known. Ad-
ditionally, it is not possible to control the topological properties of the networks to see the limits of the
algorithms. Consequently, the algorithms are tested on a very specific and limited set of features. Ar-
tificial networks overcome these limitations, by allowing to control the network structure, to define the
communities a priori and to generate many networks randomly. This is the reason why many authors
also use them to validate their algorithms [50, 95, 97, 109, 114].

The classic method for evaluating algorithms with artificial networks consists in creating a bench-
mark by using an artificial generative network model with a community structure, applying the algorithm
on this benchmark and assessing its performance. This leads us to the second point of interest in the eval-
uation of community detection algorithms: which tool to use to measure the performance of an algorithm.
This task is performed by comparing the community structure estimated by the algorithm with the pre-
defined one. In this section, we first review the main methods to generate artificial networks possessing
a community structure, and then describe the measure used for performance assessment.

3.4.1 Network Generation

As the rising interest on community detection algorithms, the interest to develop models generating ar-
tificial networks with community structure also increased. In the early stage, a simple model proposed
by Newman [50] was used. It relies on the principle of the Erdős-Rényi model, the model generating
networks with Poisson degree distribution [40]. It starts with 128 unconnected nodes, which are assigned
to 4 communities such that each of them has same the number of nodes. Then, links are placed between
the nodes with a probability pin if the nodes are in same community, and pout otherwise. These proba-
bilities are chosen in a way which keeps an average degree close to 16 and pout < pin. This model was
used by many authors to validate their community detection algorithms [23, 36, 50, 115]. However, the
model has some drawback as all nodes have roughly the same degree, the community sizes are all the
same, and the network is very small. Danon et al. [30] proposed a modified version generating networks
with heterogeneous community sizes, which is more realistic. They also showed that the performance of
community detection algorithms is affected when applied to those more realistic artificial networks.

Bagrow [7] propose a model which at first creates networks by using the Barabási-Albert preferential
attachment model [9] which generates network with power-law degree distribution, and containing 512
nodes. Then, the network is split into 4 equal sized communities. The amount of links between the
communities is controlled by a rewiring process which consists in moving the extra links lying between
the communities into the communities, in order to reach the desired degree distribution. This model
allows generating networks with a more realistic degree distribution, and to control the level of separation
of the communities.

A more realistic model was proposed by Lancichinetti et al. [76], allowing to control the number of
nodes, degree distribution, maximal and average degrees, community size distribution and separation of
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the communities. This model at first generates networks with power-law degree distribution by using
configuration model [90]. Then, it determines the communities whose sizes are distributed in power-law.
At last, it rewires the links between the communities by respecting the degree distribution and a sep-
aration threshold specified under the form of a parameter. This model creates relatively more realistic
networks. However, we have shown [101] that certain important topological properties depend on the
value of the separation parameter. As a side effect, when one wants to change the difficulty of the prob-
lem by making the communities less clearly separated, he also affects the network realism, and therefore
the community detection algorithms. To overcome this drawback, we proposed a modification to LFR by
using the Barabási-Albert preferential attachment model [9] and one of its variants called Evolutionary
preferential attachment [108], rather than configuration model, in the first step of the generating pro-
cess. The results of this study showed that using Barabási-Albert model in LFR produces more stable
networks, in terms of level of realism relatively to changes in the separation parameter. Our experi-
ments showed changes in the level of realism affects the performance of certain community detection
algorithms, which confirms previous studies such as [30].

For the algorithms using attribute information or dynamic networks, there is not yet a mature valida-
tion platform. In [69], the authors propose a dynamic network generator model to test their algorithm.
This model is a modified version of Newman’s model that we explain in the beginning of this section.
They generate 10 networks to represent 10 different time slices. Then, to introduce the dynamics of
time evolution, for every community, they randomly choose three nodes at a given time slice and change
their position at the following time slice. This model indeed carries the same drawbacks than Newman’s.
Moreover, its time evolution dynamic is not realistic either. Greene et al. [52] propose another dynamic
network generator model which is an inspiration of Lancichinetti et al.’s model. This model is more
realistic than the previously explained one. We can directly adjust the number of time slices, the number
of nodes whose position change, the number of communities undergoing events, and the nature of these
events (birth, death, merge, split, expand, contract, hide, switch) thanks to model the parameters. We use
this model in our experiments thus, we explain it in more details in Chapter 5. Although these models
are proposed for dynamic networks, they are not used widely yet in the domain.

In fact, showing the consistency of an algorithm is rather subjective. That is why, it is important to
compare the algorithms on an objective platform. The more the generative model is realistic, the more
relevant the comparison. Furthermore, one should consider the widest information related to result set for
the validation of the algorithms. Thus, the most appropriate validation method should take into account
topological, attribute and evolutionary information of the found community structure.

3.4.2 Performance Assessment

The traditional method to assess the performance of community detection methods consists in consider-
ing a community structure as a partition of the node set. From this, the performance can be quantified
by measuring the distance between the partition estimated by the considered algorithm and the reference
partition (the one defined bu the generative model, if we consider artificial data, or the ground truth if we
consider a real-world network). Several different measures exist for this purpose, most of them already
used in the context of clustering on classic, tabular data (i.e. not graphs). The most commonly used
are the Fraction of Correctly Classified [50], the Rand Index [113] and its chance-corrected version, the
Adjusted Rand Index [65] , and the Normalized Mutual Information [31, 47].

The Fraction of Correctly Classified nodes (FCC) has been used by several authors in the context
of community detection, the first seeming to be Girvan and Newman [50]. According to this measure,
a node is correctly classified if its estimated community is the same than for the majority of nodes
present in its reference community. Moreover, if an estimated community corresponds to a fusion of
several reference communities, all the concerned nodes are considered as misclassified [31, 95]. The
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total number of correctly classified nodes is divided by n to normalize the measure, which results in a
value between 0 and 1.

The Rand Index (RI) [113] corresponds to the proportion of node pairs for which both the estimated
and reference community structures agree. For a given pair, there is agreement when both nodes belong
to the same community, or to different communities, for both community structures. Consequently,
there is disagreement if the nodes are in the same community for one community structure, whereas they
belong to two different ones for the other. The Rand Index ranges from 0 (the algorithm completely failed
to estimate the community structure), to 1 (the algorithm perfectly estimated the community structure).
The Adjusted Rand Index (ARI) is a corrected for chance version of the RI [65] ranging from −1 (less
than chance agreement) to 1 (complete agreement). Zero corresponds to a pure chance agreement.

The Normalized Mutual Information measure (NMI) was defined in the context of classic clustering
[47] to compare two different partitions of one data set, by measuring how much information they have in
common.Danon et al. [31] used it to assess the performance of community detection algorithms, and the
measure was subsequently used by various other authors [76]. If the estimated communities correspond
perfectly to the reference ones, the measure takes the value 1 , whereas it is 0 when they are independent.
NMI is the most widely used measure in performance evaluation in community detection algorithms. We
give the formula of this measure in equation 3.3.

I =
−2∑i ∑ j mi j log(nmi j/mi+m+ j)

∑i mi+ log(mi+/n)+∑ j m+ j log(m+ j/n)
(3.3)

Let us now consider the case of richer networks. Works dealing with attributed networks, such as
[27], use the same measures than those presented above, especially NMI and RI. Indeed, even when using
attributes, it is possible to consider community structures as partitions, so the same principle applies. In
the case of dynamic networks, the temporal dimension introduces an additional difficulty: communities
evolve, so the performance of the algorithm might also evolve through time. The standard approach to
deal with this case consists in considering the evolution of one of the cited measures. In [69, 138], for
instance, each the community structure detected at each time slice is compared with the corresponding
reference one by using the NMI. On the contrary, Aynaud and Guillaume [5] define a sort of edit distance
they use as an alternative to the NMI . It corresponds to the minimum number of nodes whose community
must be changed in order to convert one community structure into the other.

It is worth noticing all those measures have a limitation, though. Indeed, by considering commu-
nity structures as partitions, they completely ignore the topological nature of the communities. As a
consequence, as we showed empirically in our previous studies [102, 103], two community detection
tools can reach the exact same level of performance, but still estimate community structures with very
different link distributions. To solve this problem, we proposed to compare the estimated and reference
community structures not only in terms of partitions, but also in terms of the topological properties of the
communities. For this matter, we used some community-oriented topological measures recently defined
in the literature [77, 80]: community-wise density, average distance and transitivity, hub dominance,
and embeddedness. Our experiments showed using this approach in addition to a traditional perfor-
mance measure allows to get a more relevant view of the relative quality of the considered algorithms.
However, considering several measures also introduces more complexity in the evaluation process, and
difficulties when interpreting the results and ranking the algorithms. In this thesis, we will need to per-
form such a comparison later, however it is not our main purpose. For this reason, we decided to stick to
the standard approach, i.e. a single partition-oriented measure, for matters of simplicity. We selected the
NMI, which is now the most widespread such tool.
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3.5 Interpretation of the Communities

As mentioned in the previous sections, there are many community detection algorithms, which differ
in terms of type of the processed network, nature of the detected communities, algorithmic complexity,
result quality and other aspects [43]. Whatever the algorithm, though, its output can always be basically
described as a list of node groups. More specifically, in the case of disjoint communities, it is a partition
of the set of nodes. From an applicative point of view, the question is then to make sense of these groups
relatively to the studied system. In other terms, for the community structure to be useful, it is necessary
to interpret the detected communities. In this thesis, we view this problem as independent from the
approach used for community detection: we suppose a partition of the node set has been identified, and
one wants to take advantage of this information to improve his understanding of the system. Considering
the interpretation problem is independent from detection problem lets us treat any community structure,
which can be outputted by any detection algorithm. This is an important, point because if interpretation
occurs during detection, the characterization of the communities might be limited by the nature of the
detection algorithm. Moreover, the interpretation process does not necessarily have to use the same
information than the detection process, nor use it in the same way. After all, the interpretation is supposed
to be complementary of the detection itself.

This interpretation problem is extremely important from the end user’s perspective. And yet, almost
all works in the field of community detection concern the definition of detection tools, and their evalu-
ation in terms of performance. Only a very few works try to tackle the problem of characterizing and
interpreting the communities. In the rest of this section, we review and discuss the existing approaches.
We distinguish five categories: manual methods, which are historically the first ones, methods based only
on the network structure, methods relying on attributes and standard statistical tools, methods coupled
with an attribute-based community detection process, and finally methods relying on frequent pattern
mining principles.

3.5.1 Manual Interpretation

In early community detection works, the studied networks were very small compared to today’s standard.
The interpretation of the communities could therefore be done manually, i.e. by studying subjectively
the individuals composing some community of interest, and trying to identify some relevant patterns
or regularities in order to reach some observations considered useful to understand the studied system
[50, 93]. When the scale of the networks increased from tens to hundreds, it was still possible to consult
domain experts to perform interpretation in a similar fashion [111, 115, 116].

However, this method shows its limit on larger networks. Blondel et al. [15] applied their Louvain
algorithm on a network of Belgian mobile phone communications, including 2.6 million nodes represent-
ing persons. Interpreting such a large network obviously requires a more automatic approach. Blondel
et al. verified the accuracy of the top level of their hierarchical community structure by considering the
homogeneity of the nodes on an attribute representing the language people speak. This highlights the
difficulty of interpreting communities in networks of this size, and also shows one solution can be to
consider some additional information, such as nodal attributes.

3.5.2 Community Topology

Sometimes, the only available data is the network structure, and a purely topological interpretation
method is required, such as the one proposed by Lancichinetti et al. [77]. The authors made a valuable
empirical analysis on a wide range of real-world networks from several domains, including information,
communication, technological, biological, and social networks. Their approach is based on a visual anal-
ysis of the community size distributions, of how certain community-related measures evolve in function
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of the community size, and of the distribution of certain nodal measures. Note those measures are the
same we use in our previously mentioned work (cf. section 3.4), when evaluating community detec-
tion methods from a topological perspective: scaled link density, community-wise average distance, hub
dominance and embeddedness. They take advantage of these observations to comment the size, density
and possible shapes of the communities, e.g. star-like, tree-like, clique-like, etc. They conclude that
networks from the same domain have similar community structure. For social networks, some important
topological properties are that "they are denser than trees but sparser than cliques, with the exception
of small communities which appear more tree-like, hubs play the least dominant role in social networks
and there are few or no dominant hubs in large communities".

Leskovec et al. [80] proposed another purely topological method, but their focus is more on the
community structure in general, than on the communities taken individually. It is based on the notion
of network community plot, which requires a specific process regarding how communities are detected,
unlike the approach of Lancichinetti et al. Leskovec et al. use the conductance measure [123] to assess
the quality of a single community. They select a community detection algorithm able of identifying the
best communities (in terms of conductance) of a given size. They apply this tool repeatedly, for various
community sizes. They then plot the obtained conductance in function of the community size, to get the
network community plot. This plot is then visually examined to characterize the community structure of
the network. Using this method, they made experimental analysis on 70 social and information networks.
As a result, they observed that, as the communities grow in size, they blend in the network.

These two studies are important, because they allow studying the community structure of plain net-
works. However, it should be noted the resulting observations are quite general, in the sense communities
are studied and characterized collectively, in order to identify trends in a network, or even a collection of
networks.

3.5.3 Classic Statistical Tools

Certain works try to take advantage of the extra information available in attributed networks to help un-
derstanding the communities. Let us focus first in those where communities are detected on a purely
topological basis, and attributes are used later to characterize them, using various statistical tools. La-
batut and Balasque [73] study an attributed social network of university students. They first detect
communities using FastGreedy [95], and then use some relatively standard purely topological measures
such as embeddedness and Amaral&Guimerà’s roles [59], but also attribute-based measures such as
homophily. More interestingly, they also use statistical tools like regression and linear discriminant anal-
ysis to characterize the communities by their most distinctive attributes. They use their results to describe
communities in general, but also to identify outlier students of particular interest. However, they make
the assumption that the most discriminant attributes are the same for all communities.

Tumminello et al. [133] introduced a characterization method based on the identification of the com-
munities most significant attributes. They use a quantitative statistical method to detect attributes which
are not statistically consistent with a null hypothesis of random occurrence over all the elements of the
system. They called them over-expressed attributes. According to this method, over-expressed attributes
are not necessarily the most frequent ones, but their frequency in the community should be significantly
larger than the frequency over the whole network. They experiment their analysis on two networks. The
first one is the IMDB network, where nodes are movies, with attributes production country and language,
and links connect two nodes if at least one actor played in both corresponding movies. The second net-
work is a co-authorship network, where nodes are academic articles, with attributes journal and topic,
and links connect two nodes if at least one author is an author for both of them. Communities are de-
tected with the InfoMap (c.f. Section 3.1) algorithm, which uses only the topological information. The
results show that both medium and large communities can be characterized by over-expressed attributes.
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3.5.4 Attribute-Based Community Detection

As explained in section 3.2, certain community detection methods are specifically designed to use nodal
attributes (and topological information), so it seems natural to suppose some by-product of their process-
ing can be used in some way to easy the interpretation of communities.

With certain approaches, it is possible to obtain the most characteristic attribute values of a com-
munity. For instance, the works of [8, 22, 83] are dedicated to find out the topics of documents. This
methods output not only a community structure, but also some keywords corresponding to the main top-
ics of the communities. Zhou et al. [140] find communities in a DBLP network of co-authors, using
two attributes representing how prolific an author is and his primary topic of interest. The interpreta-
tion is then done using the same two attributes, in particular with the most common primary topic of the
community. It is worth noticing that the methods presented in the previous subsection are aiming at iden-
tifying the most relevant attributes to describe communities, whereas here the focus is on characteristic
attribute values. Indeed these works, there are only a few attributes, which makes the attribute selection
question irrelevant. They would not apply on datasets containing many attributes, though.

On the contrary, in [137], the focus is on attribute selection. The authors define a model in which
a weight is assigned to each attribute. During the detection process, a weight is increased if the corre-
sponding attribute allows to improve the detection. Thus, for each community, their tool measures the
most important attributes.

Attribute based methods propose more advantages than purely topological methods for the interpre-
tation. But, the drawback of this type of interpretation is the lack of coordination of found thematic
attributes with the topology of the communities. Only few authors make effort to comment the signif-
icant attributes of each community with very restricted information related to topology. For example;
in [1], authors contribute to the interpretation by commenting the found attributes with the sizes of the
communities.

3.5.5 Frequent Patterns

A method was recently defined based on frequent pattern mining, which can be used for community
interpretation. Stattner and Collard [125] introduced the notion of frequent conceptual link. A conceptual
link corresponds to set of links connecting nodes sharing similar attributes. A frequent conceptual link
is a conceptual link whose frequency among all links of the network is above a given threshold. This
method can be seen as a generalization of the notion of homophily, and was initially used to simplify the
network and help understanding it. Finding frequent conceptual links corresponds to detect groups of
nodes sharing common attributes, with a pattern mining point of view. Stattner and Collard [126] detect
communities by applying the Louvain algorithm (cf. section 3.1.3), and independently mine frequent
conceptual links in the same network. They then propose a set of homogeneity measures to quantify the
similarity between these two node groupings. The approach is not unlike that adopted in [74] to compare
communities and clusters. They interpret the structural communities by studying how the conceptual
links are distributed among them. Their results show that some communities are homogeneous in their
attributes while some others are not, which is consistent with the finding from [73]. It also supports
the argument we made against attribute-based community detection methods, regarding their homophily
assumption not being valid for all real-world systems.

3.5.6 Conclusion

As mentioned before, although the interpretation of communities is an important problem and a task
complementary to community detection itself, only a few works tried to address it. Authors historically
interpreted their data manually, but this subjective approach cannot be applied on large networks. Some
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methods focus on the structural information only, but they are limited in the observations they allow
to make. When nodal attributes are available in the considered data, using them seems to improve the
quality of the interpretation. Some authors used classic statistical tools such as discriminant analysis to
characterize the communities, but they considered only the attributes: the only topological information
used is community membership itself. Certain attribute-based community detection tools output some
results one can use to characterize communities. Since both the network structure and the node attributes
are used when detecting such communities, this interpretation method can be considered as using both
types of information. However, it is not always clear which topological information is used exactly,
because the notion of community is not clearly defined in this context. Moreover, we consider the
interpretation problem as separated from the community detection task. Finally, some authors proposed
to use data mining methods and characterize communities in terms of frequent patterns, considering both
links and attributes. However, the fact they use only direct connections can be considered as a limitation.

In the rest of this thesis, we propose a method to improve community interpretation by focusing on
two points. First, we consider time. This means our method will be appropriate for static networks.
However, we hope the additional information corresponding to this temporal dimension will allow us
to enhance the description of the communities the same way attributes did when compared to purely
topological methods. Moreover, a complex network represent by definition an evolving system, so it
is relevant to take into consideration the evolution of both topology and attributes in a systematic way.
Second, we take advantage of both individual (attributes) and relational (structure) information in our
method. Moreover, we want to allow considering more general structural data than the plain direct
connections, and more advanced measures than the simple homophily. We also want the used topological
information to be clearly and explicitly identified, in order to ease interpretation. In the next chapter, we
describe in details how we combined those different elements to define our community interpretation
method.
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Chapter 4

Community Interpretation

As explained in the previous chapter, a community structure by itself is just a partition of the node set.
One cannot take advantage of it without first interpreting its communities. This allows, for instance,
identifying differences or similarities between them, or understanding their role in the network. Some
authors tried to deal with the problem, but their approaches suffer from various limitations: some are
subjective, others focus on nodal attributes only, or on topological properties only, or mix these data
in an unclear way. Moreover, in most of these works, the problem of community interpretation is not
defined as a problem in itself. We dedicate this chapter to the definition and formalization of the problem
of community interpretation, and to the proposition of a solution for this problem.

We see this problem as, on the one hand, representing a community in an appropriate way, and on the
other hand, finding the most characterizing elements from this representation. We propose to represent
the communities under the form of sequences of nodal attributes and topological measures, therefore
using the richest information available. It is then possible to detect common changes in attributes and
topological features over time periods, through the identification of frequent and emerging sequential
patterns of node attribute values and topological measures. These patterns can be used for both in-
terpreting the communities, and identify their outliers (i.e. nodes with non-standard behavior). The
frequent/emerging patterns represent the general trend of nodes in the considered community, whereas
the outliers correspond to nodes with a specific role in the community, or located at the fringe of the
community.

In the following section, we first define the fundamental concepts required to give our explanations.
Second, we state and formalize the problem. Third, we describe a framework implementing our solution.
It is constituted of different steps related to constituting the community structure representation, and
taking advantage of it to extract valuable knowledge. Fourth, we explain how the result characteristic
patterns are interpreted for the communities. Fifth, we give an example of how our framework is working
on a toy problem, and explain the obtained results. Finally, we study the algorithmic complexity of our
method.

4.1 Definitions

We dedicate this section to explaining the preliminary concepts necessary for the statement of our prob-
lem and the description of our framework. The main idea we use is to represent the community-related
information under the form of sequences. Thus, we separate the definitions in two parts. The first one
gathers all network-related concepts, whereas the second part includes all the notions we need concerning
pattern mining.
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4.1.1 Network-Related Concepts

We formally define a dynamic attributed network as G= ⟨G1, . . . ,Gθ ⟩, i.e. a sequence of chronologically
ordered graphs Gt(1≤ t ≤ θ), which we call time slices. A time slice Gt = (V,Et ,A) is a triple such that
V is the set of nodes, Et ⊆V ×V is the set of links and A is the set of node attributes. The nodes are the
same for all time slices, and we can consequently note |V |= n the size of each time slice, as well as the

dynamic network. Let us define ft(w,v) =

{
1, if (w,v) ∈ Et

0, if (w,v) /∈ Et
the adjacency function, which determines

if there is a link between nodes w and v at time t. We only deal with undirected graphs, so we consider
all pairs (w,v) to be unordered.

What we call the integrated weighted network G = (V ,E ) associated to a dynamic network G, is
a pair such that E =

⋃
θ
t=1 Et . Moreover, the weight of a link (w,v) of E is defined with the following

weight function: f (w,v) = ∑1≤t≤θ ft(w,v) Suppose the links of each time slice are represented under the
form of lists, as it is often the case, and the links of the integrated network are represented using a hash
table associating an integer to a link (representing its weight). The hash table is originally empty. Then,
for a given time slice t, we update the hash table by considering iteratively all l links of Gt : if the link is
already in the hash table, then its associated integer is incremented, otherwise it is inserted with value 1.
The same process must be repeated for all θ time slices. In the worst case, the access time for a list or
hash table is linear to the number of elements it contains. So, the total complexity for the processing of
G is in O(l2θ).

A topological measure quantifies the structural properties of the network or its components. Here,
we focus on nine nodal measures: internal degree, local transitivity, eccentricity, betweenness centrality,
closeness centrality, eigenvector centrality, within module degree, participation coefficient and embed-
dedness. The detailed description of these measures is given in chapter 2. Each one is processed for each
node, at each time slice.

A node descriptor is either a topological measure or a node attribute from A. Let D= {D1,D2, · · · ,Dk}
be the set of all descriptors. Each descriptor from D can take one of several discrete values, defined in
its domain Di(1 ≤ i ≤ k). All our topological measures are real-valued, so we have to discrete them to
fit this definition. Moreover, the same apply to real-valued attributes. This case is considered in section
4.3.3.

We consider a consensual community structure C of a dynamic attributed network G to be a single
partition of its node set. We call it consensual, because the same community structure is supposed to be
(relatively) relevant for all time slices of the dynamic network. A community corresponds to a part of
this partition. We note the communities Cc(1≤ c≤ λ ), for λ distinct communities. Let us define C(v),
a function associating a node v to its community in C . The community size of a given community Cc is
|Cc|, i.e. the number of nodes it contains.

An evolving community structure C s = ⟨C1, · · · ,Cθ ⟩ of a dynamic attributed network G is a se-
quence of chronologically ordered community structures Ct(1 ≤ t ≤ θ), where each Ct corresponds to
the community structure of time slice Gt . In this context, Ct(v) is the function associating a node v to its
community in Ct ; and the size of a given community Cc

t is its number of nodes |Cc
t |.

4.1.2 Pattern-Related Concepts

An item (Di,x) ∈D×Di is a couple constituted of a descriptor Di and a value x from its domain Di. The
set of all items is noted I. An itemset h is any subset of I. Although an itemset is a set, in the rest of this
thesis we represent them between parentheses, e.g. (l1, l3, l4) because it is the standard notation in the
literature.

A sequence s = ⟨h1, · · · ,hm⟩ is a chronologically ordered list of itemsets. Two itemsets can be
consecutive in the sequence while not correspond to consecutive time slices: the important point is that
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the first to appear must be associated to a time slice preceding that of the second one. In other words, ht

occurs before ht+1 and after ht−1. The size of a sequence is the number of itemsets it contains.
A sequence α = ⟨a1, . . . ,aµ⟩ is a sub-sequence of another sequence β = ⟨b1, . . . ,bν⟩ iff ∃i1, i2, . . . , iµ

such that 1 ≤ i1 < i2 < .. . < iµ ≤ ν and a1 ⊆ bi1 ,a2 ⊆ bi2 , . . . ,aµ ⊆ biµ . This is noted α ⊑ β . It is also
said that β is a super-sequence of α ,which is noted β ⊒ α .

The node sequence for a node v is a specific type of sequence of size θ . We use the notation u(v) to
represent node sequence of node v. u(v) = ⟨(l11, · · · , lk1) · · ·(l1θ , · · · , lkθ )⟩ where lit is the item containing
the value of descriptor Di for v at time t. A node sequence u(v) includes θ itemsets, i.e. it represents
all time slices. Each one of these itemsets contains all k descriptor values for the considered node at the
considered time. In other words, u(v) contains all the available descriptor-related data for node v.

The extended node sequence uext(v) of a node v is its node sequence including also the ID of the
community or communities containing v. We define two different such extensions, to match the cases of
consensual and evolving community structures. Let us consider first the case of a consensual community
structure C . We use the approach described in [107] to handle the case where classes are assigned
to item sequences. Indeed, in our case, we can consider communities as classes. Let us note α •F
the concatenation of a sequence α = ⟨a1, . . . ,aµ⟩ and a symbol F , such that α •F = ⟨a1, . . . ,aµ ,{F}⟩.
We define the concatenated node sequence of a node v as the concatenation of its node sequence and
of its community ID, i.e. ucon(v) = u(v) •C(v) = ⟨(l11, · · · , lk1) · · ·(l1θ , · · · , lkθ ),C(v)⟩, where ht is the
itemset of u(v) at time t. By abusing the notation, the C(v) represent here the communities ID, and not
the communities themselves. This remark holds for the rest of this section. Let us now consider the
case of evolving community structures, i.e. community structures represented as sequences C s. This
time, we add the community IDs of a node v, for each time t, to the itemset ht describing v.However,
depending on how the community structure was detected, the same ID can appear at different time
slices to refer to different communities. For instance, community #1 at t=1 and community #1 at t=2
might be the same. Yet, it is important to be able to distinguish them. To overcome this problem,
we concatenate the corresponding time slice index to the community ID, using @ as a separator. For
example, community #2 found at t=3 will be represented by C2@3. Thus, the extended sequence of v
is uenl(v) = ⟨(l11, · · · , lk1,C1(v)@1) · · ·(l1θ , · · · , lkθ ,Cθ (v)@θ)⟩. We call this type of extension enlarged
node sequence. In the rest of this thesis, ucon(v) will be used to denote the concatenated node sequence
of node v and uenl(v) will be used to denote its enlarged node sequence.

What we call raw database M is the collection of the node sequences u(v) of all the nodes in the
considered network. An extended database Mext , for a dynamic attributed network G, is the collection
of extended node sequences (either concatenated node sequences or enlarged node sequence, depending
on the considered community structure). We note Mcon the collection of concatenated node sequences,
and Menl that of enlarged node sequences.

The set of supporting nodes S(s) of a sequence s is defined as S(s) = {v∈V : u(v)⊒ s}. The support
of a sequence s, Sup(s) = |S(s)|

n , is the proportion of nodes, in G, whose node sequences are equal to s,
or super-sequences of s.

The set of supporting nodes of a sequence s relatively to a node group X is defined as S(s,X) = {v ∈
X : u(v) ⊒ s}. Its support relatively to the same node group, Sup(s,X) = |S(s,X)|

|X | , is the proportion of
nodes, in X , whose node sequences are equal to s, or super-sequence of s.

The growth rate of a pattern s relatively to a node group X is Gr(s,X) = Sup(s,X)

Sup(s,X)
. Here X is the

complement of X in V , i.e. X =V \X . The growth rate measures the emergence of s. It is the ratio of the
support of s in X to the support of s in X . Thus, a value larger than 1 means s is particularly frequent (i.e.
emerging) in X , when compared to the rest of the network. Note that here, a node group might directly
correspond to a community (in the case of a consensual community structure), or to the nodes belonging
to the same community over several time slices (in the case of an evolving community structure).

We say a sequence is community-related if there is at least one community ID among its items.
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If its items contain only community IDs, then we say it is a community sequence ⟨Cc1
t1 ,C

c2
t2 , · · · ,C

cm
tm ⟩.

On the contrary, we call it community-independent if there is no community ID at all among its items.
For a community-related sequence s, we define its community-wise sub-sequence swise as its maximal
community subsequence. In other words, it is a sequence swise ⊑ s such that swise is a community se-
quence and there is no other community sequence b fulfilling both conditions b ⊑ s and swise @ b .
Similarly, for a community-related sequence s, we define its community-less sub-sequence sless as its
maximal community-independent subsequence. In other words, it is a sequence sless ⊑ s such that sless is
a community-independent sequence and there is no other community-independent sequence b fulfilling
both conditions b⊑ s and sless @ b.

Given a minimum support threshold noted minsup , a frequent sequential pattern (FS) is a sequence
whose support is greater or equal to minsup. A closed frequent sequential pattern (CFS) is a FS which
has no super-sequence possessing the same support.

4.2 Problem Statement

In this section, we state our problem in details and give its formalization. We see the problem of commu-
nity interpretation as the operation consisting in identifying the most characteristic features of certain
groups of nodes. But what is a feature? And how can we know if it is a characteristic one? To be able
to solve the interpretation problem, we need first to answer these two questions. In other words, our
problem of interest can be broken down to two sub-problems:

1. Finding an appropriate way to represent a community;

2. Defining an objective method to decide which parts of this representation are characteristic.

In this section, we consider separately these two sub-problems and formalize them.

4.2.1 Appropriate Community Representation

It is obviously not possible to know in advance which pieces of the information describing the considered
community will be the most characteristic. Therefore, we need to be able to represent all the available
information, in a computationally efficient way. A community can be described only in terms of its
constituting elements, since it is by definition a set, so its representation must be defined at the nodal
level. Moreover, as mentioned in chapter 3, a community can be defined in terms of node similarity,
interconnection, or coevolution, so it is necessary to use a representation able to handle these different
types of information. More formally, this means a community must be represented through its nodes
attributes, topological properties and temporal evolution. The attributes correspond to the individual
characteristic of the objects composing the modeled complex system; the topological properties describe
how these objects interact; and the temporal evolution is the consequence of the system dynamics.

In the context of community interpretation, the problem of finding an appropriate commu-
nity representation, for a dynamic attributed network and its community structure, is equiv-
alent to that of encoding all information describing the evolution of each node from each
community. This encoding should be compact enough to avoid redundancies, but complete
enough to describe the evolution of the community.

To fulfill these constraints, we propose to represent each node using the sequence of its attribute and
topological measures, taken at different discrete times of the system evolution. We could use the extended
database Mext described in the previous section, which is the collection of extended node sequences
uext(v)∀v ∈V . However, this representation would not be very compact, because several nodes could be
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described (totally or partially) by similar sequences. To avoid this, we instead represent a community
through the sequential patterns present among the sequences describing the nodes it contains.

For a node v, we note Pv the set of all possible sub-sequences of its extended node sequence, i.e.
Pv = {s ⊑ uext(v)}. Let P be the union of all the Pv over all nodes, i.e. P =

⋃
v∈V Pv , and B be the

subset of its community sequences. Let mi denote such a community sequence and µ be the cardinality
of B, then we have B = {m1, · · · ,mµ}. We state the problem of community representation is finding a
set Γ = {γ1, · · · ,γµ} such that γi = {s ∈ P : s ⊒ mi} with i ∈ [1,µ]. In other words, for each community
sequence found in the extended database, we want to identify the set of all its super-sequences present in
the same database. Those, by definition, are themselves community-related sequences. Note that, when
using the concatenated node sequences ucon(v), the mi terms are singletons {Ci}, and the cardinality of Γ

therefore corresponds to the number of communities in the consensual community structure, i.e. |Γ|= λ .
The set Γ includes all the necessary information related to each community sequence. It represents

the sub-sequences common to more than one node only once, and therefore eliminates the redundancies.
Consequently, it fulfills our requirements of being both a complete and compact representation.

4.2.2 Identifying Characteristic Features

Let us now go back to the second problem, which is to find, in an objective way, which parts of the
community description are characteristic. The criteria used to identify this relevance must be compatible
with our representation of a community, which takes the form of sets of sequential patterns.

In the context of community interpretation, the problem of identifying characteristic fea-
tures amongst the sequences representing a community consists in selecting some objective
criteria to assess the representative power of these sequences, and a method to select the
most representative ones.

The fact our data takes the form of sequential patterns is pointing us to the task of mining sequential
patterns, which is a specialization of pattern mining. Such approach is generally used to identify the
most frequent and/or emergent behaviors in a whole dataset, and interpret them as domain knowledge.
It has been used for the analysis of non-network data before [85], but not for networks, at least to our
knowledge. However, it is appropriate for our representation and goals, provided we apply it on single
communities (by opposition to the whole network).

The representation defined in the previous section takes the form of a set Γ = {γ1, · · · ,γµ}, where
each γi represents the set of community-related super-sequences of a community sequence mi (as of the
considered extended database). We put one condition and two criteria for a member of γi to be charac-
teristic of mi. The condition is that it must be informative. We consider a sequence to be informative if
it is closed. The two criteria are that the sequence must be both prevalent and distinctive. We measure
the prevalence of a sequence s in γi with its support Sup(s,S(mi)), where S(mi) is the supporting node
set of the reference community sequence mi. We measure the distinctiveness through the growth rate
Gr(s,S(mi)).

Then, the problem of identifying the characteristic features of a community sequence mi consists in
selecting a subset γ

′
i ⊆ γi such that γ

′
i = {s ∈ γi : s is closed ∧ Sup(s,S(mi)) ≥ minsup ∧Gr(s,S(mi)) ≥

mingr}, where minsup and mingr are lower limits for the support and growth rate, respectively. Note that in
the case of a consensual community structure, Sup(s,S(mi)) = Sup(s,Ci) and Gr(s,S(mi)) = Gr(s,Ci).
We note Γ

′
= {γ ′1, · · · ,γ

′
µ} the set containing the sets of characteristic patterns for each community se-

quence in the network.
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4.3 Framework

We propose a framework to solve the problems we defined in section 4.2. We start describing our
framework by first giving an overall description of its structure, and then we detail its constituting steps.
For clarity matters, we assigned a number (1, 5, 5-A, etc.) to the different steps and sub-steps of the
process. In the subsequent parts, we will use these codes when referring to a specific part of the process.

4.3.1 General Description

Our framework includes five steps to interpret the communities. We give a schematic description of the
framework in Figure 4.1. In this diagram, we can notice the relation between the different steps: each
step uses the output of the previous one(s).

DynamicM
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Fig. 4.1 Flow Diagram of the Community Characterization Framework

In the first step; we detect the communities of the dynamic attributed network. Our method is flexible
enough to be applied to any community structure taking the form of a partition (consensual community
structure), or a series of partitions (evolving community structure) of the node set. In other words, it is
possible to use classic methods presented in section 3.1, attribute-based methods from section 3.2 and
dynamic methods from section 3.3. In this work, we decided to use four different modularity-based
algorithms differing by the way they consider the network dynamics.

In the second step, we prepare the data that we use for further analysis and for the creation of the
sequence database. This data includes the attributes, topological measures and community ID of all the
nodes.

In the third step, we find the frequent sequential patterns in the network. For this purpose, we use the
CloSpan algorithm [136], which was originally designed for raw data (i.e. not for networks). We use the
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community sequences and community-related sequences for further analysis.
In the fourth step, we measure the relevance of the community-related patterns. The most relevant

patterns are the ones we use to interpret the community sequence. This step requires a post-processing
in order to measure the relevance of each pattern.

In the fifth (and last) step, we look at the cover of the significant pattern(s) in terms of their supporting
nodes, in order to cover a maximum number of the community nodes. Thus, we choose the patterns best
covering the community. Moreover, we also identify anomaly nodes that are significantly different from
their communities.

The first two steps can be considered as pre-processing, relatively to our two sub-problems (commu-
nity representation and characteristic features identification). The last three steps are directly related to
solving these problems. It is important to highlight the fact the method we use in step 3 (CloSpan) al-
lows us to bypass several of the intermediary points we developed in the problem statement. Indeed, this
tool takes the extended database Mext as an input, and directly outputs the frequent and closed patterns.
Therefore, it is not necessary to explicitly handle the compact representation Γ.

4.3.2 Step 1: Detecting Communities

We interpret the communities independently from the method used for their detection. But of course, we
need a reference community structure to work with it. Here, we propose to use four different community
detection methods to deal with the dynamic network. They are all different versions of the Louvain algo-
rithm [15]. Two of these methods result in a consensual community structure defined for the whole time
range, whereas the two others identify an evolving community structure, i.e. a sequence of community
structures, each one describing a single time slice in a chronological order.

We call the first method Classic Louvain [15]. We apply the regular Louvain method, without any
change, to each time slice independently. This approach produces an evolving community structure,
but it does not consider temporal smoothness (cf. section 3.3). Note this naïve approach has been used
before as a baseline in [5].

The second method is Incremental Louvain [5]. It takes into account temporal smoothness for time
evolution. For the first time slice, the original version of Louvain is applied. For the following time
slices, the algorithm starts with the community structure found at the previous time slice (rather than
putting each node in its own community), and the rest of the detection is the same than with the original
Louvain.

The third method is Multistep Louvain [6]. It considers temporal smoothness by trying to maximizing
the modularity averaged over all time slices. As a result, it produces a consensual community structure
which is supposed to be relevant for all time slices.

Finally, the last method is Integrated Louvain. This time, we apply the original Louvain method on
the integrated weighted network G created from the dynamic network G= ⟨G1, . . . ,Gθ ⟩. Here, we use the
weight of the links as the power of the connection depending on time. The longer two nodes are linked,
the stronger the connection between them in the integrated network. Thus, they should more probably be
in the same community than the ones which do not have such powerful connections. Integrated Louvain
produces one community structure, supposedly relevant for all time slices. It was our hypothesis to use
an integrated network. However, when we surveyed the literature, we realized Aynaud and Guillaume
[6] also used the same approach (but calling it sum-method).

4.3.3 Step 2: Data Preparation

As mentioned before, the descriptors used to fill our sequence database are nodal attributes and topo-
logical measures. Topological measures are numerical by definition (either real like local transitivity, or
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integer like degree). Attributes can be of any data type, including numerical values as well. It is not pos-
sible to directly use real values for sequential pattern mining, because this method handles only discrete
data. So, it is necessary to discretize this type of descriptor. Moreover, even for integer descriptors, it can
be interesting to bin their domains (i.e. to decrease the cardinality of the domain), for several reasons.
First, having too many distinct values in the domain of a descriptor tends to significantly increase the
number of detected patterns while decreasing their support, thereby preventing to uncover results which
would be sufficiently general to be informative. Second, due to the increase in the number of patterns,
both processing time and memory occupation also significantly increase during pattern mining. Three,
two distinct descriptor values can have meaning so close that they can be considered as similar without
significant information loss. Finally, also for computational reasons, it can be appropriate to go beyond
discretization and binning, and to combine several descriptors into one. This is particularly true for
descriptors representing distinct aspects of the same features, such as centrality measures.

Whatever the preparation method (discretizing or binning), it is necessary to define thresholds. There
are two ways of determining these thresholds: either using some expertise regarding the system or mea-
sures, or using an automatic approach, for instance when no expertise is available, or the expertise is
not reliable enough. Various automatic approaches exist. Let us first consider the case where we want
to keep each descriptor separated (i.e. we do not want to combine them or reduce their number). One
method then consists in studying the distribution of the values for the descriptor of interest. The thresh-
olds for discretization or binning can then be decided by considering the zones of the domain where the
values are denser. If the values fit a known distribution, such as power-law or normal, the thresholds can
also be selected depending on the properties of this distribution.

Another method consists in applying a clustering algorithm. This approach allows determining auto-
matically the thresholds, but also combining descriptors; which in turn might decrease the computational
load, as explained before. This approach was used before in the context of complex networks analysis
by Dugué et al. [37], to study the topological roles of nodes. Duguè et al. defined some variants of
Amaral & Guimera’s measures (the original versions are described in section 2.3. They then applied the
k-means algorithm [62] to group nodes and automatically identify the different community roles present
in the network. We propose to generalize this idea to all descriptors, if necessary, including attributes.
Of course, it is possible to combine certain descriptors while keeping the other as they are, or to consider
several groups of measures to be combined. Therefore, the first step of this preparation consists in deter-
mining which groups of measures one wants to combine. The clustering method can then be applied on
each group separately. The descriptors constituting a group are then replaced by a single, new, composite
descriptor, whose values correspond to the identified clusters.

In our case, we selected the k-means algorithm too (like Duguè et al.), because it is a well-known and
fast method. It partitions the considered data into k groups, such that the sum of the distances between
each instance and the closest cluster center is minimized. In order to decide the number of clusters
(parameter k), several measures exist to quantify the quality of the clusters, in terms of internal cohesion
and external separation. We chose to use average Silhouette width [117], whose interpretation is clearly
defined. It ranges from −1 to 1: the higher the average Silhouette width, the better the clustering.
Moreover, this measure offers a visual support helping the decision making process. In this graphical
representation, each cluster is represented in a way to show which instances are located between the
clusters or clearly inside a cluster.

Some general remarks can be drawn regarding the topological measures we selected for this work.
It is possible to distinguish three groups of thematically related measures. First, we propose to cluster
together all three measures aiming at describing the position of nodes relatively to their community:
embeddedness, z-score and participation coefficient. This means one single descriptor will represent all
three measures at once. Here, the clustering allows both discretizing those real-valued measures, but
also combining them. Second, we consider all three centrality measures (c.f. section 2.3) as well as the
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eccentricity to be different aspects of the same concept regarding the position of the node in the whole
network, so it seems relevant to also group them to apply the clustering process. Third, if necessary, we
propose to group the two remaining measures (degree and local transitivity) together, since they both
describe the local connectivity of the nodes.

4.3.4 Step 3: Mining Frequent Sequences

In this study, we used the algorithm CloSpan (Closed Sequential Pattern Mining), developed by Yan et al.
[136], to find out all possible CFS for a given minsup. CloSpan is an efficient algorithm which is able
to mine long sequences in practical time for real-world data. It relies on the mining strategy introduced
in PrefixSpan (Prefix-Projected Sequential pattern mining) [106]. However, unlike PrefixSpan, CloSpan
mines closed sequences and it applies some extra pruning techniques to decrease the size of the search
space. In the beginning, the algorithm preprocesses the sequence database by sorting every itemset
and removing infrequent items or empty sequences. Then, a two-stepped main procedure is recursively
applied to perform depth-first search, starting from the sequences with one item.

At the first step, the algorithm creates the candidate set, which is a super-set of closed frequent
sequences. These candidates are stored into the so-called prefix sequence lattice. This lattice is a data
structure designed to reduce the pruning space. It is based on the notion of prefix sequence tree: a tree
representing the sequences in incremental lexicographic order, from its root to its leaves. The prefix
sequence lattice is a modified version of this tree, which has shortcut links between different nodes of
the tree Here, for every sequence s to be treated, it checks if there is any sequence s

′
already treated

which is a sub- or a super-sequence of s with the same support. If so, it is not necessary to create a new
node in the prefix sequence lattice for s. Only the links of the lattice are modified. If not, s is integrated
to the lattice. As the output of first step, all possible candidates are produced and registered in the prefix
sequence lattice.

At the second step, the non-closed sequences are eliminated. A naïve approach consists in checking,
for all candidate sequences in the prefix sequence lattice, if there is any super-sequence with the same
support. But it is a costly operation. Thus, Yan et al. adopt the fast subsumption checking algorithm
introduced by Zaki and Hsiao [139]. It is designed to manage a hash table in which, for each sequence
s, the associated hash key is the sum of the corresponding sequences ids. Here, the corresponding
sequences of a sequence s refer to all sequences with prefix s, i.e. the members of its projected database
(c.f. [106, 136] for explication and formalization of projected database of a sequence).

In [82], the authors claim the time complexity of the last step of CloSpan (pruning prefix sequence
lattice) is in O(n2) where n is the size of the data (in our case, it is the number of nodes), if the maximum
length of the frequent sequences is constrained by a constant. It outputs both the sequences and their
supports, but not the supporting node sets, so an additional processing is required to identify them.

4.3.5 Step 4: Emergence and Post-Processing

In our case, we want to characterize communities in terms of CFS. Thus, we need to identify the most
distinctive sequential pattern(s). For this purpose, we turn to the notion of emerging pattern, i.e. a pattern
more frequent in a part of the network than in the rest of it. We measure the emergence of a pattern with
its Growth Rate. The higher the growth rate, and the more representative a sequence for a community.

In order to calculate the growth rate, it would be necessary to search CFS for all community se-
quences separately, which can be a costly operation. But a more efficient way exist, which we will
describe in this section. As mentioned before (section 4.3.2), we can detect two kinds of community
structure in a dynamic network: a consensual community structure (using the Integrated and Multistep
versions of Louvain) or an evolving community structure (Classic and Incremental versions of Louvain).
For a consensual community structure, it is possible to associate a node to a single community for all
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time slices; however, it is not the case for an evolving community structure. Thus, this leads to two dif-
ferent processes. We consider the case of consensual community structures first, as it is simpler. Then,
we address the case of the evolving ones.

4.3.5.1 Step 4.A: Consensual Community Structure

As mentioned before, we use the method originally designed to process classes of non-network data in
[107]. It relies on the extended database presented in section 4.1.2. After having identified the frequent
sequences by applying CloSpan to Mcon, the patterns concerning a community of interest Cc can be
obtained simply by selecting all the CFS ending with Cc. The support of such CFS (of the form •Cc) in
Mcon corresponds to the support one would have obtained on the original database M. Thus, applying
CloSpan only once on Mcon is enough to find the patterns related to each community. We do not need
to search CFS for each community separately. Once we find out the patterns related to each community,
we can process their support on the whole network through a simple request. Hence, all the information
needed to calculate Gr is provided when applying CloSpan to Mcon.

Processing the growth rate of all CFS relatively to the communities then requires separating the CFS
depending on how they end: with or without a community ID. In other words, for a given community-
independent pattern (i.e. it contains only descriptors), we can have several community-related patterns
(i.e. containing at least a community ID) corresponding to the same sequence, with an additional com-
munity ID at the end. The support of a community-related pattern gives us the support of the corre-
sponding community-independent pattern in the considered community. The support of the community-
independent pattern gives us its support for the whole network. The network and community sizes are
already known. It is possible to the CFS do not contain the community-independent pattern associated to
certain community-related patterns. But in this case, this means the community-independent pattern is
not closed, and has the same support than the community-related ones. Thus, we have all the necessary
information to process the growth rate. The pseudo code of this procedure is given in 2. In the 6th
line, the function processSupport(· · ·) searches again the CFS to find the support of the community-
independent patterns.

Algorithm 2 Extraction of Emerging Sequences from Mcon

Require: CFSset, n, communitySizes[· · · ]
Ensure: ConcatenatedCFS, theirSup, theirCommunity, theirGr

for all s ∈CFSset do
if isCommunityRelated(s) then
(sless, swise)← separate(s)
Sup[sless]← processSupport(sless)
Gr← processGrowthRate(s, Sup[s], Sup[sless], n, communitySizes[swise])

end if
end for

Let us note r the number of CFS found for the whole network. We process each one of the r pat-
terns to keep only the community-related patterns and retrieve their supports. First, we identify the
community-related patterns by the help of the function isCommunityRelated(· · ·). This requires pro-
cessing each one of the r CFS and examining its very last item. Indeed, in the case of concatenated node
sequences, if a community ID is present in a CFS, it can only be at the end of the sequence. This test is
done in constant time. Second, the function separate(· · ·) processes the CFS to identify its community
ID, which is given directly by its community-wise subsequence and community-less subsequence. This
operation can also be done in constant time, for the same reason than before. Third, we obtain the sup-
port of this subsequence thanks to the function processSupport(· · ·). For this purpose, we scan once
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more the detected CFS: two cases are possible. First case: the community-less subsequence appears
among the CFS as a community-independent pattern. In that case, its supports was already processed
by CloSpan and we just need to retrieve it. Second case: the sequence is not one of the detected CFS,
which means its not closed, and the corresponding community-independent pattern consequently has the
same support than its community-related counterpart. Thus, in this case too, we can retrieve the support
instead of calculating it. Comparing two sequences can be done in O(θ), where θ is the size of the
longest possible sequence. In the worst case, we need to do this comparison once for each of the r CFS,
so processSupport(· · ·) has a complexity in O(rθ). Fourth, once the supports are known, processing
the growth rate with processGrowthRate(· · ·) can be done in constant time. For a single CFS, we get
a total processing in O(rθ) for all these 4 steps. Finally, we need to repeat this process for all r CFS,
leading to a grand total of O(r2θ).

4.3.5.2 Step 4.B: Evolving Community Structure

Let us now consider the case of the evolving community structures, where the community detection
method outputs a sequence of community structures (instead of a single one for the whole time range).
We use the enlarged node sequence and create the database Menl . We then apply CloSpan on Menl . If
enough nodes undergo the same evolution while staying in the same relative community (i.e. they all
keep on belonging to a single community, even if this community can be different at each time slice),
then we can catch their common evolution under the form of a frequent sequential pattern. However,
small sets of nodes migrating frequently from one community to another will stay unnoticed with this
method, since it relies on the constraint of being frequent. If the nodes of a community appearing in a
specific time slice support a sequential pattern, we can also concentrate to this community.

In order to process the growth rate of all CFS relatively to all communities, we do not separate CFS
depending on how they end, like we did for the consensual community structure case Instead, we separate
the CFS community-related patterns from the community-independent patterns. For the community-
related patterns, we apply a parsing procedure similar to the one we explained for the case of consensual
community structures (previous subsection). Like before, we parse the pattern to find its community-
wise subsequence; however, this time we additionally also look for its community-less subsequence.
The reason for retrieving this community-wise subsequence is to determine the size of that community
(or community sequence): in order to calculate the growth rate, we need that information. In case of
evolving communities, it is not possible to have this information directly from the community structure.
We give the pseudo-code of this procedure in 3. The function processSupport(· · ·) appearing in lines
6 and 7 at first scans the CFS to find out if the parameter pattern was already identified as a direct output
of CloSpan. If it is not, the function queries the sequence database to find its support.

Algorithm 3 Extraction of Emerging Sequences from Menl

Require: CFSset, Menl
Ensure: CommunityRelatedCFS, theirSup, theirGr

for all s ∈CFSset do
if isCommunityRelated(s) then
(sless, swise)← separate(s)
Sup[swise]← processSupport(swise,Menl)
Sup[sless]← processSupport(sless,Menl)
Gr← processGrowthRate(s, Sup[s], Sup[swise], Sup[sless], n)

end if
end for

Here, the processing is less straightforward than for the consensual community structures, because
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the community ID is not necessarily at the end of the sequence. We first use isCommunityRelated(· · ·)
to check if the sequence contains at least one community ID, which has a complexity in O(θ), where θ

is the size of the longest possible sequence. Second, and like before, the function separate( · · ·) is
applied to split the sequence into its corresponding community-less and community-wise subsequences.
This operation also has a complexity in O(θ). Third, we need to process the supports of these sub-
sequences, thanks to the function processSupport(· · ·). However, unlike for consensual community
structures, this time it is possible that these subsequences are not in the CFS, because they are not nec-
essarily closed. Finding their supports requires to scan the whole extended database Menl . In the worst
case, we need to compare both community-less and community-wise subsequences with each of the n
sequences Menl contains. Each time, it is necessary to check if the considered node sequence is a super-
sequence of the pattern of interest. In the worst case, such an operation has a complexity in O(θ 2). So,
this third step has a total complexity in O(θ 2n). Fourth, like before, the growth rate is processed in
constant time thanks to the function processGrowthRate( · · ·). The total processing for these 4 steps
is in O(θ 2n). It must be repeated for all r CFS, so we get a grand total in O(rθ 2n).

The last point is common to both types of community structures (consensual and evolving). Once
the emerging CFS have been identified, we need to extract their supporting nodes, which are not directly
outputted by CloSpan. Doing so through a post-processing would be computationally very costly. In-
stead, to accelerate our post-processing, we modified the original source code of CloSpan, so that it now
extracts the supporting nodes and outputs them directly while mining the CFS.

4.3.6 Step 5: Selecting the Characteristic Patterns

After the fourth step, we have the community-related closed patterns related to communities whose
support is greater than a given minsup. We also calculated their growth rate for the concerned community
(or community sequence). In this fifth step, we select the most characteristic patterns according to their
growth rates and coverage of the community, in order to obtain the γ

′
i (1≤ i≤ µ) described in the problem

statement, i.e. the sets of characteristic patterns for each community or community sequence mi. In this
section, we first explain our pattern selection method, then we describe how we also detect anomalies
simultaneously.

4.3.6.1 Step 5.A: Pattern Selection

At this point, all the considered patterns have a support larger than the threshold minsup and are all CFS.
To complete the process, we must eliminate all patterns whose growth rate is smaller than the mingr

threshold. Recall that for Gr > 1, the pattern is considered as emerging for the given set. The higher
the growth rate, the more emerging the pattern. So, mingr = 1 is a minimal value to use as a threshold.
Of course, depending on the data and objectives, it is also possible to use a higher threshold, in order to
make a stricter selection.

After this elimination of non-emerging patterns, we have our characteristic patterns, taking the form
of the γ

′
i sets. However, there can still remain too many of them to perform a relevant interpretation. In

this case, we propose an additional post-processing allowing to select the most interesting and character-
istic ones to ease the interpretation. We note γ

′′
i ⊆ γ

′
i the resulting subset of patterns. First, we propose

to either consider the pattern with highest growth rate, or with highest support. The complementary se-
lection procedure we propose is generic, and can be applied in both case. In the rest of our explanations,
we refer to the criterion of interest (growth rate or support) as the pattern score. Once the pattern with
highest score has been selected, there is no guarantee for it to cover a sufficient part of the community.
And indeed, in practice it appears to be the opposite (especially for the growth rate). It is thus needed
to identify other complementary patterns, allowing us to obtain a more complete coverage of the com-
munity. Intuitively, we want to find a small number of patterns, such that they cover a significant part
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of the community, and are different in terms of supporting nodes. Note that, in any case, we consider
the pattern with the highest score as the most relevant, and search for additional ones to complete the
coverage.

Let us defineγ
′′
i by refining our criteria, for the reasons we explained earlier. For a community

sequence mi, the set of characteristic patterns γ
′
i is already known. Note that ∀s ∈ γ

′
i , s is closed,

Sup(s) > minsup and Gr(s, i) > mingr The characteristics of s are also given as Sup and Gr. We also
know the supporting nodes of s in mi, which is given by S(s,mi). Then, we define γ

′′
i ⊆ γ

′
i as the subset

of sequences from γ
′
i such that ∀s ∈ γ

′′
i , the following criteria should be ensured:

• The cardinality of
⋂

s∈γ
′′
i

S(s, i) must be minimal;

• The cardinality of
⋃

s∈γ
′′
i

S(s, i) must be maximal (if possible: the whole community);

• The cardinality of |γ ′′i | must be minimal.

This problem is equivalent to a specific case of the set covering problem. In this classic problem, one
considers a set called universe, as well as a finite number of subsets whose union is the universe. The
goal is to find the minimum number of subsets such that their union is the universe. In our case, the
problem of community interpretation is to cover a significant part of the community (universe) with a
minimum number of supporting node sets (subsets). Additionally, we also want the intersection of the
selected supporting node sets to be as small as possible. Thus, among the constraint we listed above, (2)
and (3) correspond to conditions of the set cover problem, whereas (1) is an extra condition.

In order to solve our problem, we perform an iterative procedure. At each iteration, we select the
pattern whose supporting nodes are the most different possible (in terms of set intersection) from those
already chosen. At the same time, we want the nodes supporting the chosen pattern to be the most
similar possible to the part of the community not yet covered. Here, we consider Jaccard’s coefficient as
the similarity measure between the supporting node sets of the patterns. In case of equality, the pattern
score is considered as a secondary criterion. We perform the choice based on two Jaccard’s coefficient
values noted sim1 and sim2 , which measure the similarity between a pattern s and the uncovered part
U and the covered part E of the community, respectively. The overall measure for the pattern is then
sim = sim1− sim2. At each iteration, we choose a pattern which maximizes sim. This iteration continues
until convergence. After convergence, if there are still some uncovered nodes, we mark them as having
no patterns. We give the pseudo code of the pattern selection procedure in 4.

Algorithm 4 Choosing Patterns for all Community Sequences

Require: CFSset, Gr[· · · ],S[· · · ],B,mingr

Ensure: Γ
′′

CFS
′ ← f ilter(CFS,Gr[· · · ],mingr)

Γ
′ ← group(CFS

′
,B)

for i in{1 · · ·µ} do
remainingPatterns← γ

′
i

U ← S(mi)
E←∅
repeat

γ
′′
i ← choose(remainingPatterns,U,E)

update(U)
update(E)

until Udoesnotchange
end for
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First, the function filter(· · ·) just removes the patterns whose Gr is smaller than given mingr it
requires to scan all the remaining CFS once, so it can be done in O(r), in the worst case. Second,
the function group(· · ·) gathers the patterns according to their community-wise subsequences. Thus,
for each community sequence mi, (1 ≤ i ≤ µ) we can later treat γ

′
i . In the worst case, this grouping

requires checking if each one of the r patterns is a super-sequence of each one of the µ community
sequences. Such a sequence comparison can be performed in O(θ 2), so because of the repetitions, we
get a time complexity in O(θ 2µr) for this first operation, where r is the total number of chosen CFS and
µ the number of community sequences. Then, for each community sequence mi, we at first access all its
related patterns, which are contained in γ

′
i . We then look for the most characteristic ones. Note that we do

not treat every community sequence appearing in the community structure, but only those outputted by
CloSpan. There are several reasons for this. First, in the case of a consensual community structure, it is
not necessary to characterize very small communities because the notion of being frequent is not relevant,
and it is possible to interpret these communities manually. Second, in the case of an evolving community
structure, it does not make any sense to interpret every possible community sequence. We already catch
the most prominent events and remarkable community sequences through sequence mining. Thus, the
points of interest are limited by the communities (or their sequences) which appear as patterns.

For each community sequence, we at first define the uncovered and covered nodes sets with the
patterns that we treat for the initial iteration. Then, the repeat loop continues until the uncovered node
set does not change. We process the function choose(· · ·) at each iteration. It calculates the similarity
sim= sim1−sim2, and returns the most suitable pattern, according to the criteria we previously described.
For this matter, it must process Jaccard’s coefficient twice, to compare on the one side the supporting set
of the pattern, and on the other side, successively, the covered node set then the uncovered node set. The
covered node set corresponds to nodes from the community sequence which are already covered by the
previously selected patterns. On the contrary, the uncovered node set contains nodes not already covered
by these patterns. If the sets are presented by ordered lists, processing Jaccard’s coefficient can be done
in a time linear to the cardinality of the smallest set. For us, the worst case happens when the community
sequence and the supporting set of the pattern we treat include all the n nodes of the network. In practice,
the sizes of these sets are much smaller though, since the communities are significantly smaller than the
whole network. Then, at the first iteration, the uncovered node sets contains all the n nodes from the
community sequence, and it takes O(n) to process Jaccard’s coefficient. Therefore, it also takes O(n)
to process sim, which is the difference between both calculated Jaccard’s coefficient values. The same
operation must be repeated for all the patterns associated to the considered community sequence, in order
to identify the most appropriate one depending on its sim value. The number of patterns in a community
sequence is approximately r/µ , so processing all of them is in O(nr/µ). This includes identifying the
pattern with optimal sim (this process can be conducted at the same time).

Once the choose(· · ·) function has returned its results, all three working sets (currently selected
patterns, covered nodes and uncovered nodes) must be updated. If a set is represented as an ordered list,
this operation can be done in a time linear to its cardinality. So in our situation, O(n) in the worst case.
The repeat loop is processed again until all the nodes concerned by the considered community sequence
are covered. In the worst case, all r/µ patterns must be used. However, in practice, only a few iterations
are required. Moreover, in the case where many patterns are required, the whole process loses its interest,
since its goal is to select only a small number of patterns in order to ease human interpretation. So, when
the number patterns needed to complete the coverage is too large, it is not worth continuing the process.
For these reasons, in the rest of our explanations, we consider the number of repetitions of this loop of
constant order. So, the total complexity for the repeat loop, and therefore function choose( · · ·) , is
in O(nr/µ). Since the for loop of must be repeated µ times in the worst case, we get a complexity of
O(nr). Thus, when considering functions group(· · ·) and filter(· · ·), the grand total complexity for
the whole algorithm is in O(r(θ 2µ +n+1)). It can be simplified in O(r(θ 2µ +n)).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0072/these.pdf 
© [K. Orman], [2014], INSA de Lyon, tous droits réservés



4.4 Interpretation 51

Note that in certain situations, some problems might arise when looking for the characteristic pat-
terns. First, it is possible that CloSpan does not find any frequent pattern for a given community, because
the minimum support is too high. In this case, the user must either conclude there is no characteristic
pattern for the community (since none of them manage to gather a sufficient support), or adjust the value
of this parameter. Second, there cannot be any pattern having a growth rate larger than giving minimum
growth rate threshold. In this case, there is no emerging pattern for the communities. Thus our frame-
work cannot find any of them. Third, for a given community, it is possible that our selection procedure
outputs too many supplementary patterns to cover the whole community. In this case, the user can either
focus on the first few best patterns while keeping their support in mind, or conclude that the community
cannot be characterized by some specific patterns, because of its heterogeneity.

4.3.6.2 Step 5.B: Anomalies

Once the most characteristic patterns of a community sequences have been identified (the most emerging
one, the one with highest support and the supplementary patterns), it is possible to use them to detect
anomalies, i.e. nodes not following those patterns. Let mi be a community sequence, then S(mi) is its
supporting node set, and S(s,S(mi)) is the supporting node set of pattern s in community sequence mi. We
define the characterized supporting node set of mi as S+(mi) =

⋃
s∈γ

′′
i

S(s,S(mi)) as the nodes described
by characteristic patterns. It is the union of the supporting node sets for all the characteristic patterns of
the considered community sequence. Then, we define the anomaly node set S−(mi) = S(mi)\S+(mi) as
the set of nodes not following any characteristic pattern. These nodes are different in the sense they do
not follow the general trends observed in their communities. We detect anomalies automatically when
finding representative patterns.

4.4 Interpretation

Our framework outputs the characteristic patterns of communities or community sequences. Addition-
ally, in the case of evolving communities, it is also interesting to study community sequence patterns
(i.e. patterns containing only community IDs), in order to have an idea of the way the community struc-
ture evolves, and more particularly of the changes occurring in the communities. In this section, we
explain how we can detect and understand such community evolution events, and how the patterns can
be interpreted to understand the communities.

4.4.1 Community Evolution Events

When using a consensual community structure, the community sequences that CloSpan outputs are all
of size 1: each one represents a particular community, valid for all time slices. Interpreting them is not
relevant, because these is no related evolutionary events. However, when using an evolving community
structure, sequential pattern mining gives us the opportunity of following the major events regarding
community evolution, by focusing on the patterns outputted by CloSpan and including only community
IDs. The interpretation of these patterns gives us some information about the major events in the com-
munity life, like: birth, death, merge, split, hide, switch, expansion, contraction or stability. The patterns
including only community IDs and whose size is equal to k points to group of nodes which are always
together in the same community during k time slices. Specifically, if k = 1, then by definition the node
group corresponds to a while community, considered at a certain time. Here, we present an interpretation
method taking advantage of this type of patterns to detect community events.

We first find out all patterns including the ID of a community of interest C , among the community
sequences outputted by CloSpan. We then order these patterns chronologically. This is possible thanks
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to the encoding we defined to represent the community IDs in the sequence database. If there is a pattern
of size 1 including only C, and not any other community ID, at time slice t, then its support shows the
size of community C at time t. The form of this pattern is < (C@t) >. This pattern is our reference in
terms of temporal order: we will now consider other patterns relatively to this time. The patterns starting
with (C@t), and whose size is greater than 1, show the future of C, i.e. how it is going to evolve later on.
Their form is < (C@t)(· · ·) · · ·(· · ·) >. Each such pattern represents a node group of C@t following a
specific evolution. Similarly, the patterns ending with (C@t), and whose size is greater than 1, show the
past of C, i.e. how it reached its state at time t. Their form is < (· · ·) · · ·(· · ·)(C@t) >. The third type
of pattern shows both future and past together: their size is greater than 2 and they contain (C@t), but
neither as the starting nor ending item. Their form is therefore < (· · ·) · · ·(C@t) · · ·(· · ·)>.

Once the patterns related to the community of interest have been ordered, we evaluate them together.
If there are more than one future-related patterns, they show how different node groups constituting C
leave the community to either join different communities, or start a new community, after t. Similarly,
if there are more than one past-related patterns, they represent different node groups leaving different
communities before t and joining C at time t. We must underline here that the patterns of size greater
than 1 represent node groups which are together at different time slices. Most of the time, they might
not represent the whole community to which they belong, but only a part of it. In order to determine if
a pattern of size longer than 1 describes an event related to a whole community, one needs to compare
the support of the node groups of each community ID appearing in the pattern, with that of the pattern
itself. This matching operation is not really in the scope of this thesis, so we do not develop this point
further. Here, we only want to reveal how different node groups get separated or merged around the
community of interest. Our aim is to direct the interpretation process by finding out first the behavior of
different node groups in the community we study. This analysis allows us to know if the trend emerging
in a community covers most of its nodes over different time slices.

4.4.2 Community Interpretation

For a consensual community structure, the output of our framework directly leads us to the emerging
trends inside the communities. However, in the case of an evolving community structure, the interpreta-
tion of the final characteristic patterns requires some additional work. The main reason for this is that the
focus shifts from the community as a whole to groups of nodes generally smaller than the community.
For this reason, the type of preliminary study based on community sequences described in the previous
subsection can help identifying important or interesting communities on which one can then focus.

Suppose we want to study some community of interest C@t. Our first step consists in identifying all
patterns containing C@t. At this point, two types of patterns can be found: those containing only one
community ID (C@t) and those containing several of them (C@t and some other ones). Let us consider
the former case first, as it is simpler. Such a pattern can be interpreted as the description of a group of
nodes which, at a given time t, happens to all belong to community C@t. For interpretation purposes, we
consider the community-less subsequence of the pattern. It indicates how some characteristic descrip-
tors of this node group evolve over time. Here, only the relative order of the descriptor-based items is
important to us: we ignore their position relatively to the community ID in the sequence.

In the case of a pattern containing several community IDs, we do not consider it as a whole com-
munity but we consider as a node group which supports the community sequences of interest. The
interpretation of the community-less subsequence of the pattern is same with previous case. However,
this interpretation is valid only for the nodes which are together at several communities (represented
by different community ID’s in community sequence) of different time slices. When we comment the
meaning of the pattern, we mention that the trend represented in pattern is valid for specific node group
but not the whole communities.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0072/these.pdf 
© [K. Orman], [2014], INSA de Lyon, tous droits réservés



4.5 Example 53

4.5 Example

In order to better understand how our framework runs on a dynamic attributed network, we give an
example on the tiny network shown in Figure 4.2. It contains 7 nodes whose interconnections change
over three time slices. The node is V = {v1,v2,v3,v4,v5,v6,v7} (the figure shows only their indices).
There is only one attribute a assigned to these nodes. Their values are shown in the figure, and they can
change from one time slice to the other. We consider the degree as the only topological measure, for the
sake of simplicity (rather than using all nine measures previously presented). In the rest of the section,
we at first consider consensual community structure, and then evolving community structures. In our
explanation, we refer to the code of each step of our framework as defined in its description.

4.5.1 First Case: Consensual Community Structure

Fig. 4.2 A small dynamic attributed network with consensual community structure fitting all time slices

For this example, we suppose the community structure has already been detected, i.e., Step 1 has
already been performed. There are two communities C1 and C2, shown with the grey borders in Figure
4.2. The domain of attribute a is {1,2,3,4,5,6}, while the possible degree values (for this network) are
{1,2,3,4}. In this example, we skip the Step 2 of our framework, and do not bin the values of these
integer-valued descriptors. Thus, the set of all possible items over all time slices is: {a = 1,a = 2,a =
3,a = 4,a = 5,a = 6,d = 1,d = 2,d = 3,d = 4}, where d is the degree. Let us consider v3 in Figure
4.2: the itemset describing this node at t = 1 is: (a = 1,d = 4). The sequence describing the same
node for t = 1 and t = 2 is: < (a = 1,d = 2)(a = 3,d = 3) >. The node sequence of the same node
is: u(v3) =< (a = 1,d = 2)(a = 3,d = 3)(a = 4,d = 3) >. We perform the concatenation operation as
indicated in Step 4.A, to create the concatenated sequence database Mcon for further analysis. For the
same node v3, we obtain the concatenated node sequence: u(v3) •C(v3) =< (a = 1,d = 2)(a = 3,d =
3)(a = 4,d = 3)(C1)>. The database Mcon, which will be used in Step 3, is given in the table 4.1.

Node ID ucon

1 <(a=2,d=1)(a=2,d=1)(a=6,d=2)(C1)>
2 <(a=3,d=2)(a=4,d=1)(a=1,d=2)(C1)>
3 <(a=1,d=2)(a=3,d=3)(a=4,d=3)(C1)>
4 <(a=4,d=4)(a=2,d=4)(a=4,d=4)(C2)>
5 <(a=2,d=2)(a=5,d=1)(a=6,d=3)(C2)>
6 <(a=1,d=2)(a=3,d=2)(a=3,d=3)(C2)>
7 <(a=4,d=3)(a=5,d=2)(a=5,d=3)(C2)>

Table 4.1 Concatenated Node Sequence Database for Network of Figure 4.2

During Step 3, we apply CloSpan with minsup = 0.1, and find all the CFS listed in table 4.2. After
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having found the CFS, we post-process these patterns as explained in Step 4.A, to calculate the growth
rate. In table 4.3, we display the Gr of the community-related patterns from table 4.2.

CFS |S| sup
<(a=1 d=2)(C1)> 2 0.29
<(a=1 d=2)(a=3 d=2)(a=3 d=3)(C2)> 1 0.14
<(a=1 d=2)(a=3 d=3)(a=4 d=3)(C1)> 1 0.14
<(a=1 d=2)(a=3 d=3)> 2 0.29
<(a=1 d=2)(a=3)(d=3)> 2 0.29
<(a=1 d=2)> 3 0.43
<(a=2 d=1)(a=2 d=1)(a=6 d=2)(C1)> 1 0.14
<(a=2 d=3)(a=5 d=2)(a=6 d=3)(C2)> 1 0.14
<(a=2)(a=6)> 2 0.29
<(a=2)(C2)> 2 0.29
<(a=2)(d=2)> 2 0.29
<(a=2)> 3 0.43
<(a=3 d=2)(a=4 d=1)(a=1 d=2)(C1)> 1 0.14
<(a=3 d=2)> 2 0.29
<(a=3)(a=4)(C1)> 2 0.29
<(a=3)> 3 0.43
<(a=4 d=2)(a=5 d=1)(a=5 d=3)(C2)> 1 0.14
<(a=4 d=4)(a=2 d=2)(a=4 d=4)(C2)> 1 0.14
<(a=4)(C2)> 2 0.29
<(a=4)(d=2)> 2 0.29
<(a=4)> 4 0.57
<(a=5)(d=3)(C2)> 2 0.29
<(d=1)(d=2)(C1)> 2 0.29
<(d=1)> 3 0.43
<(d=2)(C1)> 3 0.43
<(d=2)(a=4)(C1)> 2 0.29
<(d=2)(a=4)> 3 0.43
<(d=2)(C2)> 4 0.57
<(d=2)(d=1)> 2 0.29
<(d=2)(d=2)> 2 0.29
<(d=2)(d=3)(C2)> 3 0.43
<(d=2)(d=3)> 4 0.57
<(d=2)> 7 1.00
<(d=3)(d=3)> 2 0.29

Table 4.2 Closed Frequent Patterns for minimum support 0.1 of Network from Figure 4.2

Most of the patterns growth rates are infinite. It means those patterns appear only in the indicated
communities but never in the rest of the network. In the rest of the procedure, we consider these patterns
as the most significant and characteristic of the community in which they appear. However, there are
still too many of them for human interpretation. Thus, we need to apply our pattern selection method, as
explained in Step 5.A.

The input data for Step 5.A is given in table 4.4. In this table, the patterns are ordered by community
ID. We apply our selection method first on C1. At the first iteration, the uncovered node set is {v1,v2,v3}
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and the covered node set is /0. The similarity results of the patterns #1, 2, 3, 4 and 5 are 0.33, 0.33,
0.33, 0.66 and 0.66 respectively. We choose randomly one of the patterns among #4 and 5 because
their similarity all reaches the maximum. Say we pick pattern #4. At the second iteration, the updated
uncovered node set is {v1}, and the updated covered node set is {v2,v3}. The similarity results of patterns
#1, 2, 3 and 5 are -0.5, 1, -0.5 and 0, respectively. The pattern the most similar to the uncovered set, and
at same time the most dissimilar to the covered set is pattern #2. So, in two iterations, we covered all
the nodes of this community. The characteristic patterns of C1 therefore are <(a=2 d=1)(a=2 d=1)(a=6
d=2)> and <(a=3)(a=4)>. Note that there is no anomaly in this community.

sless C |S(sless,C)| |S(sless)| Gr(sless,C)

<(a=1 d=2)> C1 2 3 2.67
<(a=1 d=2)(a=3 d=2)(a=3 d=3)> C2 1 1 ∞

<(a=1 d=2)(a=3 d=3)(a=4 d=3)> C1 1 1 ∞

<(a=2 d=1)(a=2 d=1)(a=6 d=2)> C1 1 1 ∞

<(a=2 d=3)(a=5 d=2)(a=6 d=3)> C2 1 1 ∞

<(a=2)> C2 2 3 1.50
<(a=3 d=2)(a=4 d=1)(a=1 d=2)> C1 1 1 ∞

<(a=3)(a=4)> C1 2 2 ∞

<(a=4 d=2)(a=5 d=1)(a=5 d=3)> C2 1 1 ∞

<(a=4 d=4)(a=2 d=2)(a=4 d=4)> C2 1 1 ∞

<(a=4)> C2 2 4 0.75
<(a=5)(d=3)> C2 2 2 ∞

<(d=1)(d=2)> C1 2 2 ∞

<(d=2)> C1 3 7 1.00
<(d=2)(a=4)> C1 2 3 2.67
<(d=2)> C2 4 7 1.00
<(d=2)(d=3)> C2 3 4 2.25

Table 4.3 Community-less subsequences of Closed Frequent Patterns with Communities, the length of
the Supporting Nodes in their communities, the length of the Supporting nodes in the Network and their
Growth Rates

Pattern ID sless C |S(sless,C)|
1 <(a=1 d=2)(a=3 d=3)(a=4 d=3)> C1 { v3 }
2 <(a=2 d=1)(a=2 d=1)(a=6 d=2)> C1 {v1 }
3 <(a=3 d=2)(a=4 d=1)(a=1 d=2)> C1 {v2 }
4 <(a=3)(a=4)> C1 {v2,v3 }
5 <(d=1)(d=2)> C1 {v1,v2 }
6 <(a=1 d=2)(a=3 d=2)(a=3 d=3)> C2 {v6 }
7 <(a=2 d=3)(a=5 d=2)(a=6 d=3)> C2 {v7 }
8 <(a=4 d=2)(a=5 d=1)(a=5 d=3)> C2 {v5 }
9 <(a=4 d=4)(a=2 d=2)(a=4 d=4)> C2 {v4 }
10 <(a=5)(d=3)> C2 {v5,v7 }

Table 4.4 Chosen community-less subsequences of CFS, their communities and their supporting nodes
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For C2, at the first iteration, the uncovered node set is {v4,v5,v6,v7} and the covered node set is /0.
The similarities for patterns #6,7, 8, 9 and 10 are 0.25, 0.25, 0.25, 0.25 and 0.50, respectively. We choose
pattern #10 at the end of the first iteration. Then, the updated uncovered set is {v4,v6} and the updated
covered set is {v5,v7}. The similarities at the second iteration for patterns #6,7, 8 and 9 are 0.50, -0.50,
-0.50 and 0.50 respectively. We choose one of the patterns among #6 and 9. Say we pick pattern #6.
Then, at the third iteration, the updated uncovered set is {v4} and the updated covered set is {v5,v6,v7}.
The similarities at the third iteration, for patterns #7, 8 and 9 are -0.66, -0.66 and 1 respectively. Say we
then select pattern #9. Thus, this community is characterized by three patterns : <(a=5)(d=3)>, <(a=1
d=2)(a=3 d=2)(a=3 d=3)> and <(a=4 d=4)(a=2 d=2)(a=4 d=4)> and has no anomaly.

4.5.2 Second Case: Evolving Community Structure

Let us now consider evolving community structures. In this case, we do not need performing the con-
catenation operation to calculate the growth rates. However, we take into account the community IDs
of each time slice as a descriptor. We use the same network than in the previous example, but with an
evolving community structure, in which v4 changes its community from C2 to community C1 at t=2,
before going back to C1 at t=3.

Fig. 4.3 A small dynamic attributed network with evolving community structure

The enlarged database Menl is given in table 4.5. We apply at first CloSpan as described in Step
3, with minsup = 0.1 and find the CFS. Then, we process Step 4.B and extract all community-related
patterns.

ID uenl

1 <(a=2,d=1, C1@1)(a=2,d=1,C1@2)(a=6,d=2,C1@3)>
2 <(a=3,d=2,C1@1)(a=4,d=1,C1@2)(a=1,d=2,C1@3)>
3 <(a=1,d=2,C1@1)(a=3,d=3,C1@2)(a=4,d=3,C1@3)>
4 <(a=4,d=4,C2@1)(a=2,d=2,C1@2)(a=4,d=4,C2@3)>
5 <(a=4,d=2,C2@1)(a=5,d=1,C2@2)(a=5,d=3,C2@3)>
6 <(a=1,d=2,C2@1)(a=3,d=2,C2@2)(a=3,d=3,C2@3)>
7 <(a=2,d=3,C2@1)(a=5,d=2,C2@2)(a=6,d=3,C2@3)>

Table 4.5 Enlarged Node Sequence Database for Network of Figure 4.3

We also parse these patterns to find their community-wise and community-less subsequences, as
explained at Step 4.B. The patterns resulting from this step are listed in table 4.6. Each row corre-
sponds to a community-related pattern, its community-less and its community-wise subsequences, and
finally the growth rate of the considered community-related pattern. The table is sorted according to the
community-wise subsequences. Note that the growth rates correspond here to the ratio of the support of
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the community-less subsequence in the supporting nodes of community-wise subsequence to the same
community-less subsequence in the rest of the network.

s sless swise Gr(sless,S(swise))

<(a=1 d=2 C1@1)(a=3 d=3
C1@2)(a=4 d=3 C1@3)>

<(C1@1)(C1@2)
(C1@3)>

<(a=1 d=2)(a=3 d=3)
(a=4 d=3)>

∞

<(a=2 d=1 C1@1)(a=2 d=1
C1@2)(a=6 d=2 C1@3)>

<(C1@1)(C1@2)
(C1@3)>

<(a=2 d=1)(a=2 d=1)
(a=6 d=2)>

∞

<(a=2 d=3 C2@1)(a=5 d=2
C2@2)(a=6 d=3 C2@3)>

<(C2@1)(C2@2)
(C2@3)>

<(a=2 d=3)(a=5 d=2)
(a=6 d=3)>

∞

<(a=2 C1@2)> <(C1@2)> <(a=2)> 1.50
<(a=2)(C2@3)> <(C2@3)> <(a=2)> 1.50
<(a=3 d=2 C1@1)(a=4 d=1
C1@2)(a=1 d=2 C1@3)>

<(C1@1)(C1@2)
(C1@3)>

<(a=3 d=2)(a=4 d=1)
(a=1 d=2)>

∞

<(a=3)(C1@3)> <(C1@3)> <(a=3)> 2.67
<(a=4 d=2 C2@1)(a=5 d=1
C2@2)(a=5 d=3 C2@3)>

<(C2@1)(C2@2)
(C2@3)>

<(a=4 d=2)(a=5 d=1)
(a=5 d=3)>

∞

<(a=4 d=4 C2@1)(a=2 d=2
C1@2)(a=4 d=4 C2@3)>

<(C2@1)(C1@2)
(C2@3)>

<(a=4 d=4)(a=2 d=2)
(a=4 d=4)>

∞

<(a=4 C2@1)(C2@3)> <(C2@1)(C2@3)> <(a=4)> 0.75
<(d=2
C1@1)(C1@2)(C1@3)>

<(C1@1)(C1@2)
(C1@3)>

<(d=2)> 0.53

<(d=2 C2@1)(C2@2)(d=3
C2@3)>

<(C2@1)(C2@2)
(C2@3)>

<(d=2)(d=3)> 1.33

<(d=2 C1@1)(a=4)> <(C1@1)> <(d=2)(a=4)> 2.67
<(d=2)(d=3 C2@3)> <(C2@3)> <(d=2)(d=3)> 2.25
<(d=2)(C2@3)> <(C2@3)> <(d=2)> 1.00
<(C1@1)(d=1 C1@2)(d=2
C1@3)>

<(C1@1)(C1@2)
(C1@3)>

<(d=1)(d=2)> ∞

<(C1@1)(C1@2)(C1@3)> <(C1@1)(C1@2)
(C1@3)>

<> 1.00

<(C2@1)(a=5 C2@2)(d=3
C2@3)>

<(C2@1)(C2@2)
(C2@3)>

<(a=5)(d=3)> ∞

<(C2@1)(d=2 C2@2)(d=3
C2@3)>

<(C2@1)(C2@2)
(C2@3)>

<(d=2)(d=3)> 1.33

<(C2@1)(d=2)(C2@3)> <(C2@1)(C2@3)> <(d=2)> 0.56
<(C2@1)(C2@2)(d=3
C2@3)>

<(C2@1)(C2@2)
(C2@3)>

<(d=3)> 4.00

<(C2@1)(C2@3)> <(C2@1)(C2@3)> <> 1.00
<(C1@2)(a=4)> <(C1@2)> <(a=4)> 0.75
<(C1@2)> <(C1@2)> <> 1.00

Table 4.6 Community Related CFS, their community-less and community-wise subsequence and their
Growth Rate

Before explaining the selection phase, let us look at the community sequences describing the com-
munity evolution. All possible community-sequences showing community evolution are given in table
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4.7. Among them, the size of patterns #1, 2 and 2 are all 3. Thus they explain a trend spanning all time
slices. Observing them in detail reveals events in the evolution of the communities. Patterns #1 and 3
show there are 2 groups of 3 nodes staying in C1 and C2, respectively, for all time slices. Pattern #2
highlights the behavior of single node, which moved from C2 to C1, and then goes back to C2. Thus, C1
expands at time slice 2, but then shrinks at time slice 3. Patterns #4 and 5 are showing the trend of two
different node groups including 4 nodes. The first group (#4) is in C2 at first and last time slices. The
second group (#5) represents the nodes which are at C1 at second time slice.

Pattern ID s |S(s)| Size
1 <(C1@1)(C1@2)(C1@3)> 3 3
2 <(C2@1)(C1@2)(C2@3)> 1 3
3 <(C2@1)(C2@2)(C2@3)> 3 3
4 <(C2@1)(C2@3)> 4 2
5 <(C1@2)> 4 1

Table 4.7 All possible community sequences for minimum support 0.1

s swise S(sless,S(swise)) Gr
1 <(a=1 d=2)(a=3 d=3)(a=4 d=3)> <(C1@1)(C1@2)(C1@3)> {v3} ∞

2 <(a=2 d=1)(a=2 d=1)(a=6 d=2)> <(C1@1)(C1@2)(C1@3)> {v1} ∞

3 <(a=3 d=2)(a=4 d=1)(a=1 d=2)> <(C1@1)(C1@2)(C1@3)> {v2} ∞

4 <(d=1)(d=2)> <(C1@1)(C1@2)(C1@3)> {v1,v2} 1.5
5 <(d=2)(a=4)> <(C1@1)> {v2,v3} 1.5
6 <(a=2)> <(C1@2)> {v1,v4} ∞

7 <(a=3)> <(C1@3)> {v2,v3} 2.67
8 <(a=2 d=3)(a=5 d=2)(a=6 d=3)> <(C2@1)(C2@2)(C2@3)> {v7} ∞

9 <(a=4 d=2)(a=5 d=1)(a=5 d=3)> <(C2@1)(C2@2)(C2@3)> {v5} ∞

10 <(a=4 d=4)(a=2 d=2)(a=4 d=4)> <(C2@1)(C1@2)(C2@3)> {v4} ∞

11 <(d=2)(d=3)> <(C2@1)(C2@2)(C2@3)> {v6,v7} 2.67
12 <(a=5)(d=3)> <(C2@1)(C2@2)(C2@3)> {v5,v6,v7} 2.25
13 <(d=2)(d=3)> <(C2@1)(C2@2)(C2@3)> {v5,v6,v7} 1
14 <(d=3)> <(C2@1)(C2@2)(C2@3)> {v5,v6,v7} ∞

15 <(a=2)> <(C2@3)> {v4,v7} ∞

16 <(d=2)(d=3)> <(C2@3)> {v5,v6,v7} 1.33
17 <(d=2)> <(C2@3)> {v5,v6,v7} 4

Table 4.8 Patterns (s), their community-wise sequences (swise), supporting nodes (S(sless,S(swise))) and
growth rates (Gr)

The input data of the pattern selection process performed in Step 5.A is given in table 4.8. We make
the selection here manually, as we did for previous example. But this time, rather than searching charac-
teristic sequences for communities, we must do it for each community sequence. In table 4.8, the patterns
are ordered according to their community sequences. Let us start with sequence < (C1)(C1)(C1)>. At
the first iteration, the uncovered node set is {v1,v2,v3}, and the covered node set is /0. We start with the
most emerging pattern. However, here, there are three patterns with Gr = ∞. Thus, we make the selec-
tion according to their similarity. The similarity results of patterns #1, 2 and 3 are 0.33, 0.33 and 0.33,
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respectively. Remark that we did not consider pattern #4 yet because its growth rate is not the highest
one. For the first iteration, we favor the most emerging ones, but not for the following iterations. We
choose pattern #1 for the first iteration. At the second iteration, the uncovered node set is {v1,v2}, and
the covered node set is {v3}. The similarity of patterns #2, 3 and 4 are 0.5, 0.5 and 1, respectively. We
select pattern #4 and the coverage is complete. Community sequence < (C1)(C1)(C1)> is characterized
by patterns <(a=1 d=2)(a=3 d=3)(a=4 d=3)> and <(d=1)(d=2)>. There is no anomaly for this community
sequence. We do not give the details of the procedure for the rest of the community sequences, because
they do not illustrate any particular new point.

4.6 Algorithmic Complexity

The overall complexity of our method includes calculating all topological measures, applying the Lou-
vain algorithm, then the CloSpan algorithm, processing the growth rates, and finally selecting the most
representative patterns.

Topological Measures. In section 2.3, we described the complexity of all topological measures:

• Degree : O(l)

• Local transitivity : O(l3/2)

• Eccentricity : O(nl)

• Closeness centrality : O(n2(n+ l))

• Betweenness centrality : O(nl)

• Eigenvector centrality : O(n2)

• Embeddeness : O(l)

• z-score : O(l +n)

• Participation Coefficient : O(λ l)

The total complexity is therefore in O(l)+O(l3/2)+O(nl)+O(n2(n+ l))+O(nl)+O(n2)+O(l)+
O(l + n)+O(λ l). In the case of real-world complex networks, it is common to have sparse graphs, in
which case the number of links l is considered to be of the same order than the number of nodes n (for
a large n) [95]. So, these complexities can be simplified in O(n)+O(n3/2)+O(n2)+O(n3)+O(n2)+
O(n2)+O(n)+O(n)+O(λn). Furthermore, we can consider the number of communities is negligible
compared to the number of nodes. Thus, after simplification, the overall complexity for processing the
topological measures is in O(n3). Since we need to process each one of the θ time slices, we get O(n3θ)
in total. Obviously, this complexity can change if one use other measures instead of those selected for
this work.

Community Detection. The complexity of Incremental and Classic Louvain, as explained in Step
1, is in O(n logn) [14] for one time slice. It is applied for θ time slices, so the total complexity of
these methods is in O(θn logn). For Integrated Louvain, we at first create the integrated network, which
requires a time in O(l2θ). Then, we apply Louvain on this network once. Thus, the total complexity is
in O(l2θ + n logn) . For Multistep Louvain, although the exact complexity is not given in the original
reference, we assume that it is in O(θn logn) because the optimization step of the original Louvain is
applied to each time slice. Finally, comparing O(l2θ +n logn) and O(θn logn), the total complexity of
the community detection step is in O(l2θ +n logn) because l2≫ n logn. Of course, it would be possible
to use other community detection algorithms, with possibly different complexities.
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Frequent Sequence Mining. As we explained in Step 3, the last step of CloSpan is in O(n2),
according to [82].

Post-Processing. As explained in Step 4, the processing of the growth rate is in O(r2θ) for consen-
sual community structures and O(nrθ 2) for evolving community structures, where r is the number of
patterns found in the network, θ is the number of time slices, and n is the size of network (number of
nodes).

Pattern Selection.The selection of the most representative sequence is in O(r(θ 2µ + n)), as ex-
plained in Step 5, where µ is the number of communities (or community sequences) to be treated.

Overall Complexity. The overall complexity of our method is then in O((n3 + l2 +nrθ + rµθ)θ +
n2 + nr+ n logn) for evolving community structures, and O((n3 + l2 + r2 + rµθ)θ + n2 + nr+ n logn)
for consensual community structures. We can simplify both expressions by simply removing the terms
of lower order, i.e. the 3 last ones, which leads to (n3 + l2 +nrθ + rµθ)θ and O((n3 + l2 + r2 + rµθ)θ ,
respectively. As mentioned before, for sparse networks we consider l ∼ n, so we can remove both l2

terms, since n3 > l2. By definition, r > µ , since the the considered community sequences (cardinality
µ) constitute a subset of the detected CFS (cardinality r), so we have r2θ > rµθ . In practice, CloSpan
detects many more CFS (cardinality r) than there are nodes in the network (cardinality n), so r > n, and
consequently r2θ > nrθ . After these simplifications, the overall complexity for both consensual and
evolving community structures is in O(n3θ + r2θ 2). It relies on the number of nodes n in the network,
the number of patterns r outputted by CloSpan and the number of time slices θ we study. The value of
θ depends on the application. In the data we study in the rest of the thesis, it is negligible compared to
both other variables. However, in general, it can be very high, like for example if the studied system is
observed every minute for one year.

4.7 Implementation Platforms

We perform the implementation of our framework by using different platforms. We work on a server with
32 GB RAM, 16 cores 2.67 GHz Intel(R) Xeon(R) CPU, and Ubuntu Operating system version 10.04.
We used the updated C++ source code of the Classic Louvain algorithm given in [55]. We took advantage
of a feature of this implementation, which allows to start the process on an existing community structure.
This way, we could base the community structure estimated at a given time on that of the previous time,
which is the principle of Incremental Louvain algorithm. We used all 9 topological measures defined
in 2.3. The topological measures are calculated for each node at each time slice by using the iGraph
library [66] version 0.6.5 hosted on CRAN (Comprehensive R Archive Network). Most of the measures
are already predefined in the iGraph library, as parametric functions. For the embeddedness, within
module degree and participation coefficient, we implemented the functions using the R language. We
discretized the topological measures, and grouped them using a k-means. We implemented this part
in R, too, because we took advantage of some existing R libraries: cluster, stats. Regarding CloSpan,
the original C++ source code is publicly available by Yan [135]. However, we decided to use an open-
source implementation written in Java by Fournier-Viger [46], because it allows to modify the source
code in a more convenient way. This modification was required to extract the supporting node set while
mining the closed patterns. All the other procedures related to finding the Growth Rate and selecting the
characteristic patterns of a community for interpretation were written in R and bash script .
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Chapter 5

Behavior of Community Interpretation
Framework

In the previous chapter, we proposed a framework to interpret the communities in dynamic attributed
networks. Here, we study how this framework behaves on some controlled data, representing different
types of networks. More precisely, we want to answer the following questions:

• How does the community detection method affect the results?

• Do community sequences efficiently capture major community events?

• What are the limits of our framework in terms of applicability? Can we find characteristic patterns
for the communities in a reasonable time?

• How does the descriptors distribution affect the results?

To answer these questions, we take advantage of random models allowing to generate artificially
networks, which we already mentioned in section 3.4. At first, in section 5.1, we describe the models
we used in our experiments, including some modifications we proposed. In section 5.2, we compare the
results of the four community detection algorithms selected in the previous chapter for our Step 1, in
order to identify the most appropriate one. In section 5.3, we explain how one can interpret and detect
the community evolution events and track a community thanks to the community patterns. In the last part
(section 5.4), we present the experiments we conducted to study the behavior of our framework when
applied to different types of nodal attributes.

5.1 Generation of Artificial Networks

As already explained in chapter 3, using artificially generated networks is a common approach to com-
pare different community detection algorithms designed for static networks [43, 76, 98, 101–103]. They
rely on some models allowing to generate networks possessing a community structure, in a partially
random way. It was shown that the level of realism of the generated topology has an effect on the per-
formance of certain community detection algorithms [101]. In chapter 3, we briefly presented the main
models, including the most realistic one to date, which was proposed by Lancichinetti et al. [76] (LFR).
In this section, we explain in further details how the LFR model works (subsection 5.1.1). However,
this model was developed for generating static networks only. Recently, an extension to this LFR model
was proposed by Greene et al. [52] to generate dynamic networks with predefined evolving community
structure. In subsection 5.1.2, we describe how Greene et al. modified LFR to handle time. But for this
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work, we also need the network nodes to possess attributes. So, in subsection 5.1.3, we present how
to extend the same model even further, in order to generate attributed dynamic networks, with both a
predefined evolving community structure and nodal attributes.

5.1.1 Original LFR Model

The method proposed by Lancichinetti et al. [76] (LFR) randomly generates plain networks with mu-
tually exclusive communities. Nodes degrees and community sizes are both distributed according to a
power law. The model was subsequently extended to generate weighted and/or directed networks, with
possibly overlapping communities [45]. This model allows to control directly the following parameters:
number of nodes n, desired average ⟨k⟩ and maximum kmax degrees, exponent γ for the degree distri-
bution, exponent β for the community size distribution, minc and maxc for minimum and maximum
community sizes, respectively, and mixing coefficient µ representing the desired average proportion of
links between a node and nodes located outside its community, called inter-community links.

There are two steps in LFR. First, a scale-free network is created by using a random model. Second,
a community structure is randomly drawn, and the network is rewired to control the proportion of inter-
community links. In the first step, the configuration model [90] is used in order to generate a network
containing n nodes, with average degree ⟨k⟩ , maximum degree kmax and a power law-distributed degree,
with exponent γ . Then, the second step is applied in two phases. First, the communities are randomly
drawn, so that their distribution size follows a power law with exponent β . These are just virtual com-
munities, i.e. groups of nodes, and the topology of the network does not reflect them for now. Second,
an iterative process takes place to rewire certain links without changing the node degrees. The rewiring
aims to control the proportion of inter-community links of each node according to a user defined param-
eter called the mixing coefficient µ . It is generally not possible to meet this constraint exactly, and the
mixing coefficient is therefore only approximated in practice. Its value determines how clearly the com-
munities are defined. For small µ values, the communities are distinctly separated because they share
only a few links, whereas when µ increases, the proportion of inter-community links becomes higher,
making community identification a difficult task. The network has no community structure for a limit
value of the mixing coefficient given by Equation 5.1:

µ <
(n−nmax

c )

n
(5.1)

Here n and nmax
c are the number of nodes in the network and in the biggest community, respectively

[45]. By construction, the LFR method guaranties to obtain values considered as realistic [26, 94] for
several properties: size of the network, power law distributed degrees and community sizes. Other
properties are not directly controlled, so we studied them empirically in our previous work [98]. It turns
out LFR generates small-world networks, with relatively high transitivity. This is realistic [94], but holds
only under certain circumstances. In particular, transitivity is dramatically affected by changes in µ , and
becomes clearly unrealistic the closer it gets to 1. These properties are directly related to the network
structure, which is an important information used by community detection algorithms. Moreover, the
sensitivity to µ is also a concern: by increasing its value, not only do the communities become less
separated, which is the desired behavior, but the network additionally becomes less realistic.

5.1.2 Extension for Dynamic Networks

The LFR model is designed to generate static networks. Greene et al. [52] propose an extension allowing
to generate dynamic artificial networks, with evolving community structures. We call this model LFR-
D in the rest of this work. The number of time slices is directly controlled through a parameter s. The
method starts with the generation of a static network for the first time slice, using the original LFR model,

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0072/these.pdf 
© [K. Orman], [2014], INSA de Lyon, tous droits réservés



5.1 Generation of Artificial Networks 63

with the parameters we previously described. For the following time slices, LFR-D alters the community
structure by modifiying the network topology through 5 different types of community-related events.

We can separate these events into two categories. First, the events causing direct changes in the
community structure, which we call large-scale events. They include the birth of a new community,
the death of an existing one, the split of a community into several others, the merge of several existing
communities into a single one, and the temporary disappearance of a community. Second, the events
corresponding to local modifications, not likely to cause important changes in the community structure;
which we call small-scale events. These include the expansion or contraction of an existing community,
and the switch of a few nodes from one community to another. Depending on the type of event, one
needs to set up different parameters. Let us list and explain the event types and their parameters, in more
details:

• Switch: For each time slice, a set of randomly selected nodes are moved into other communities.
A parameter p allows to control the proportion of nodes concerned by the switch at each time slice:
0 for no nodes at all, and 1 to switch all nodes in the network. It is possible to combine switch
events with other events.

• Birth-Death: These events allow to create new communities (birth), or to remove some existing
ones (death). They are controlled by two parameters: birth and death determine the number of
communities to be created and to be removed, respectively, at each time slice. For a creation, a
group of randomly selected nodes from existing communities are moved to the newly created one.
For a removal, the nodes of the concerned community are randomly distributed over the existing
ones.

• Merge-Split: This event combines two communities into a single one (merge) or separate one
community into two smaller ones (split). Two parameters merge and split allow determining the
number of communities to combine and to separate, respectively at each time slice. The commu-
nities to merge or split are selected randomly.

• Expansion-Contraction: These events increase (expansion) or decrease (contraction) the size of
some communities. There are three parameters r, expand and contract, controlling the rate of
expansion/contraction (proportion of nodes joining/leaving the community) and the numbers of
communities whose size must be increased/decreased, respectively at each time slice.

• Hide-Appear: This event makes a community disappear by turning each of its nodes into a
new, separate community. Then, at the following time slice, these nodes gather again to form
the original community. The number of communities to hide is determined by a parameter hide.
Unlike other events, hide events do not occurs at each time slice, but only at a limited number.
Both the number of events and the concerned slices are drawn randomly.

Except for the switch type, all those events are considered independent. For instance, LFR-D does
not allow to generate a network using both birth-death and merge-split events. Each event, except hide-
appear, occurs at each time slice.

5.1.3 Extension for Nodal Attributes

Neither the original LFR model nor extension LFR-D are able to generate networks with nodal attributes.
Moreover, we could not find any study focusing on the generation of attributed networks in the literature.
This might be due to the fact that the number of attributes, their domains and distribution over the
network and the communities could be very system-specific. In order to fill this absence, we propose a
relatively simple yet flexible model extending that of Greene et al., able to associate attributes to nodes.
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Our goal here is not to deliver a realistic model, but rather to produce some controlled data which we
will use to evaluate the performances of our framework. In the rest of the thesis, we call our model LFR-
DA, and this subsection is dedicated to its description. We control the number of attributes and their
values through different parameters. Let us describe our model by explaining their role in the generative
process. We note A the attribute set we want to generate. We have five parameters:

• Number of attributes |A|. An integer value stating the number of attributes to be generated for
each node.

• Attributes Domain Da.The domain corresponds to the different values that an attribute can take.
We state the domain through two integer values representing its upper and lower bounds, noted
mina and maxa, respectively. For instance, if mina = 2 and maxa = 5, the attribute a can take the
values Da = {2,3,4,5}.

• Distribution type h. A categorical value controlling how the attribute is distributed over nodes of
the same community. We propose 4 different distributions:

– Homogeneous: For a given attribute, all nodes of the same community take the same value
from its domain. In other term, the attribute follows a degenerate distribution over the com-
munity, for a value randomly selected in its domain. In a given communities, the selected
value can therefore be different for each one of the considered attributes.

– Binomial: For a given attribute, we first randomly pick a value in its domain, called char-
acteristic value. The values assigned to the nodes are then randomly drawn following a
binomial distribution centered on the characteristic value. In other words, a significant pro-
portion of the nodes from the same community take the characteristic value, but there also
some nodes taking slightly different values.

– Power: For a given attribute, there is a significant number of nodes taking small values, but
there are also a non-negligible number of nodes taking high values. The values are distributed
over the community nodes according to a power law.

– Uniform: For a given attribute, all values of its domain are evenly represented in the consid-
ered community. The attribute values are drawn according to the uniform distribution.

• Evolution Percentage q. This percentage represents the proportion of nodes whose attribute val-
ues will change at each time slice.

The procedure to generate the attributes is very simple and flexible. For each attribute a, we first
generate its domain by respecting the specified bounds mina and maxa. Then, for each community of
the first time slice, we generate the specified number |A| of attribute values for each node, by respecting
the specified distribution h. For the following time slices, for each community, we randomly select q
nodes and change all their attribute values randomly, by respecting the domains and distribution of each
attribute.

5.1.4 Summary of the Parameters

The LFR model and the two successive extensions we use in this work end up relying on a number of
parameters. In order to be more comprehensible, we list and group these parameters here in table 5.1.
In the dynamic extension, there are many different parameters, but most of them have the same role for
different types of events. Thus, we summarize them in a more comprehensible way.
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Parameter
Symbol

Meaning Generation Role

n Node number Static Network Generation
⟨k⟩ Average Degree Static Network Generation
kmax Maximum Degree Static Network Generation
γ Degree Distribution Exponent Static Network Generation
[minc,maxc] Community Size Range Community Structure Generation
β Community Size Distribution Exponent Community Structure Generation
µ Inter-Community Links Proportion Community Structure Generation
s Number of Time Slice Dynamic Network Generation
e Community Evolution Type Community Evolution Event
C Number of Communities to Evolve Community Evolution Event
p Fraction of Nodes in the Network to Change

Position
Community Evolution Event

r Fraction of Expansion-Contraction Community Evolution Event
|A| Attribute Number Attribute Generation
[mina,maxa] Upper and Lower Bounds of the Attribute Do-

main
Attribute Generation

h Distribution type Attribute Generation
q Percentage of Nodes in Each Community

whose Attributes will evolve
Attribute Generation

Table 5.1 Summary of Generation Parameters
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5.2 Comparing Community Detection Algorithms in Dynamic Networks

Although our community interpretation framework is independent from the community detection method,
it is still necessary to have a reliable community structure for the relevancy of the analysis. And, as men-
tioned in chapter 3 there are several community detection algorithms for dynamic networks, differing in
various ways. Noticeably, some produce consensual community structures (relevant for all time slices)
while some others produce different community structures for each time slice. Some authors [69, 138]
used artificial networks to test their own algorithms, but the generative models they use are rather un-
realistic compared to LFR-D, i.e. the dynamic extension of the LFR model presented in the previous
section. Moreover, none of these works compare several algorithms: instead, they are dedicated to an-
alyzing the performance of the sole proposed algorithm. In chapter 4, we selected four methods for
community detection in dynamic networks: Classic Louvain, Incremental Louvain, MultiStep Louvain
and Integrated Louvain. Here, we want to analyze their partitioning performance on some data generated
through LFR-D.

The method of our analysis is simple: we generate networks with LFR-D (so without any attributes,
since they are not needed by the considered community detection algorithms). Thus, we have an evolv-
ing community structure considered as the ground truth. We then apply these four algorithms on the
generated dynamic networks and evaluate their partitioning quality by using the NMI as a performance
measure. Classic Louvain and Incremental Louvain produce evolving community structure for each time
slice. We compare their result of each time slice with the reference community structure at each time
slice. However, MultiStep Louvain and Integrated Louvain estimate consensual community structures
over all time slices. We compare their result with each time slice reference structure. In the following
part, we at first explain which parameter values we use for network generation in section 5.2.1, and then
we describe and comment our results in section 5.2.2.

5.2.1 Parameter Values

Due to the high number of parameters and the size of their domains, it would not be possible to generate
data for all possible combinations of parameters, so we had to make some choices. We decided to
examine the behavior of the four considered algorithms on two scenarios: first, when changing the
community mixing (controlled by the mixing parameter µ of LFR), i.e. when considering more or less
clearly separated communities; and second, when changing the nature and magnitude of the community
evolution (controlled through the parameters of LFR-D). For both scenarios, some of the parameters
are fixed: those are listed in Table 5.2. We decided the values of those related to static network and
community structure generation in the light of our previous experiments [98, 101–103]. For the number
of time slices, we fixed the value s = 10.

Parameter Symbol Value
n 10000
⟨k⟩ 10
kmax 1000
γ 3
[minc,maxc] [3,1000]
β 2
s 10
e {switch, birth-death, merge-split, expansion-contraction, hide-appear}

Table 5.2 Common Parameter Values for All Network Generations
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For the first scenario, we use the parameter values given in table 5.2 with 3 different values of µ cor-
responding to networks with 3 levels of community structure separation: separated (µ = 0.3), medium
(µ = 0.6) and mixed (µ = 0.9). The value 0.9 corresponds to the limit of existence of a community
structure, according to equation 5.1. Thus, we do not expect good performances for this value of µ .
Considering the evolution of communities, we use the default values of LFR-D parameters, which are
C = 1, p = 0.1 and r = 0.1.

For the second scenario, we use again the values from table 5.2. We additionally fix µ = 0.3 (equiv-
alent to the separated level) and adjust the parameters related to community evolution events. Our aim
is to observe the behavior of the four algorithms at four different levels of evolution: low, medium,
medium-high and high. The parameter values for these 4 types of networks are given in table 5.3. We
should indicate that the number of evolving communities, given in table 5.3, is chosen according to the
total number of communities in the generated networks, according to the parameters of table 5.2, which
is 554. Note that the evolution of the attributes in this experiment is at the low level. For this reason,
the results we present in this subsection also are used in the next section 5.4 when comparing evolution
levels.

low medium medium-high high
C 1 20 100 400
p 0.1 0.2 0.5 0.9
r 0.1 0.1 0.1 0.1

Table 5.3 Community Evolution Parameter Values for Different Network Types

5.2.2 Results

We evaluate first the algorithms performance according to the scenario focusing on community sepa-
ration, as described in subsection 5.2.2.1. We then discuss the performance obtained with the second
scenario, when we change the nature of community evolution, as explained in section 5.2.2.2. For all
experiments, in order to achieve a certain statistical stability, we generate 10 networks for considered
set of parameter values. We then apply the four algorithms on each generated network. We process the
NMI values to compare the reference and estimated community structures at each time slice, for each
algorithm, and for all 10 iterations. In order to get an overall performance score, we average the NMI
over the 10 iterations. Plots of the obtained results show the NMI means and standard deviations for each
algorithm.

5.2.2.1 Effect of Community Separation

Figure 5.1 shows the NMI results on the networks generated with five different community evolution
events, when the communities are separated. In the plot, the x axis represents time, the y axis represents
the mean NMI, and the colors represent the algorithms.

We can notice that for all evolutionary events except hide-appear, Classic Louvain and Incremental
Louvain both exhibit a stable performance to the community evolutions, with NMI values ranging from
0.85 to 0.90. These results are high enough to conclude these two algorithms find community structures
similar to the reference ones for each time slice. However, for the hide-appear, we see the performances
of both algorithms are less stable than for other events. Moreover, Classic Louvain undergoes a perfor-
mance drop at time t = 8, associated to a high standard deviation, which highlights the weakness of this
algorithm. Let us remind the difference between Classic Louvain and Incremental Louvain: the latter
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applies the temporal smoothness principle, and uses the community structure of the previous time slice as
the base to find the community structure of the following time slice. But the former, finds the community
structure from scratch, independently at each time slice. It seems when the Louvain algorithm does not
use the evolutionary information, it cannot catch hide type communities, even if these communities are
separated in terms of their separation. In contrast, when the algorithm uses the information of previous
time slices, it is more stable.

2 4 6 8 10

0.
60

0.
70

0.
80

0.
90

timeCslices

N
M

I

birth−death

2 4 6 8 10

0.
60

0.
70

0.
80

0.
90

timeCslices

N
M

I

expansion−contraction

2 4 6 8 10

0.
60

0.
70

0.
80

0.
90

timeCslices

N
M

I

hide−appear

2 4 6 8 10

0.
60

0.
70

0.
80

0.
90

timeCslices

N
M

I

merge−split

2 4 6 8 10

0.
60

0.
70

0.
80

0.
90

timeCslices

N
M

I

switch

ClassicCLouvain
IncrementalCLouvain
IntegratedCLouvain
MultistepCLouvain

Fig. 5.1 NMI results on networks generated with different community evolution events, when µ = 0.3.

As it can be seen in Figure 5.1, the NMI results of Multistep and Integrated Louvain appears as curved
lines, which at first increase until t = 5 and then decrease with time. The values range from 0.65 to 0.75.
These NMI values are still good, but show that estimated communities are not as close from the reference
ones as with the other algorithms. These two algorithms find a consensual community structure, which
is supposedly relevant for all time slices. Multistep Louvain tries to optimize average modularity while
Integrated Louvain is original Louvain applied to the integrated network. It seems that, in terms of
partitioning performance, these two approaches do not differ very much. While the community structure
they find is less similar to the reference structure at beginning and end of the considered time period, it
is more similar in the middle of this period. Due to the way the generative model works, the community
structure at time t is likely to be similar to those of the previous (t−1) and following times (t+1). Thus,
those located in the middle of the time range are similar to more of them, which means they have more
weight in the temporal integration processes these algorithms rely upon. Because of this higher weight,
they affect more the consensual community structures outputted by these tools.

In Figure 5.2, we represent the NMI results when the community separation level is medium, i.e.
µ = 0.6. This means the proportion of links inside communities is approximately 0.4. The communities
have more links outside, but they can still be detected, in theory. In terms of algorithm results, the
general trend is the same than what was observed for separated community structures. Classic Louvain
is stable except for hide-appear events. Incremental Louvain stays stable for all event types. Multistep
and Integrated Louvain exhibit the same curved type of performance than before. However, this time,
the NMI values for Classic and Incremental Louvain are much lower, ranging from 0.45 to 0.50 for the
different event types. These values tell us these two algorithms cannot find a good community structure
when they are not well separated.

When the community separation level is mixed, in general, the performance trends of the algorithms
do not change. Figure 5.3 shows the NMI values obtained for these data. However, we remark that
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Fig. 5.2 NMI results on networks generated with different community evolution events, when µ = 0.6.

Classic Louvain becomes very unstable for all event types. Incremental Louvain is also very unstable
for the hide-appear. The differences between Integrated and Multistep Louvain become more separated.
But, here, there is a more important point to comment: the NMI values for all algorithms are much lower
than before: smaller than 0.20. Thus, the estimated community structures are very different from the
reference ones. Note that, in these networks, the community separation level is mixed. We expect the
algorithms to perform reasonably well. However, it is still interesting to see that the algorithms keep
their general trend.
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Fig. 5.3 NMI results on networks generated with different community evolution events, when µ = 0.9.

5.2.2.2 Effect of Community Evolution

Here, we present the performance of the four algorithms when we change the community evolution
parameters. As declared in section 5.2.1 we defined four levels of community evolution: low, medium,
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medium-high and high. The first value was already illustrated by the plots from the previous section
(low evolution level). For the other three values, we present the performance of the four algorithms one
by one, on the networks generated with the different community evolution events.
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Fig. 5.4 NMI results on networks generated with evolution event type birth-death when µ = 0.3. Evolu-
tion levels for plots (a), (b) and (c) are medium, medium-high and high respectively

Figure 5.4 shows the performances for birth-death. When the level of community evolution is
medium (figure (a)), we see that the performance of Incremental Louvain decreases almost linearly while
Classic Louvain exhibits a sudden drop at t = 4. The higher the number of changing communities, the
faster the performance of two algorithms decreases. Although using the temporal information improves
Incremental Louvain stability over time, it is still not enough to find a good community structure for all
time slices. One reason for this performance decrease can be that the birth-death affects other properties
of the network. A more detailed review based on the properties of the generated networks shows us that
we have more isolated nodes not belonging to any community as time goes by. This is probably due to
the death event. It might be a cause for the decreasing performance of these two algorithms. For the two
other algorithms, Multistep and Integrated Louvain, the NMI performance values are not good for any
case of birth-death events. As the number of evolving communities increases, the performance of these
two algorithms becomes more stable, but the NMI values decrease. These two algorithms do not seem
to be able of finding good community structure in birth-death networks.
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Fig. 5.5 NMI results on networks generated with evolution event type expansion-contraction when µ =
0.3. Evolution levels for plots (a), (b) and (c) are medium, medium-high and high respectively

We can observe the performance of the four algorithms on networks generated with expansion-
contraction, in Figure 5.5. Classic and Incremental Louvain seem to be affected neither by time nor
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the number of nodes expanding or contracting. We can assume that when the communities already exist,
it does not matter whether they grow up or shrink with time, for these two algorithms. Their performance
is stable and good. For Integrated and Multistep Louvain, we see again a curved line, with clearly lower
NMI values than for both other algorithms.
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Fig. 5.6 NMI results on networks generated with evolution event type hide-appear when µ = 0.3. Evo-
lution levels for plots (a), (b) and (c) are medium, medium-high and high respectively

The performances obtained for hide-appear are represented in Figure 5.6. As it seems, none of the
algorithms display a stable performance. This instability becomes more separated when the number of
hiding communities increases. When C = 20, almost 4% of the communities hide-appear at randomly
selected time slices. Incremental Louvain seems to get higher NMI and more stable performances in this
case. But, it is still not completely stable, with a sudden drop at t = 6. The stability is the lowest with
C = 400 for all algorithms. A more detailed study of the result sets shows us that at the drop points, in
the reference structure, there are many communities of size 1. Thus, when a community hides, some
of its nodes create their own community without any other member. However, their nodes are placed in
some of the other existing communities by all four algorithms. It naturally causes a drop in NMI.
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Fig. 5.7 NMI results on networks generated with evolution event type merge-split when µ = 0.3. Evolu-
tion levels for plots (a), (b) and (c) are medium, medium-high and high respectively

We present the performances obtained with merge-split in Figure 5.7. All the algorithms exhibit a
trend similar to that of the expansion-contraction networks, until the number of merging/splitting com-
munities reaches 400. In this case, at each time slice, the majority of communities merge/split, and the
community structure completely changes. A detailed review on the properties of communities and net-
work at consecutive time slices shows us that both degree distribution and community size distribution
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change dramatically. It can be the reason for the instability and drop in performance of Classic and
Incremental Louvain.

Finally, for switch, we show the results in Figure 5.8. Incremental and Classic Louvain are not
affected by the number of switching nodes, while the performance of Multistep and Integrated Louvain
decreases. An overall observation of our results gives us a general idea of the performance of algorithms.
The Multistep and Integrated Louvain are not producing a good community structure, for any event
type. Moreover, they are very sensitive to large-scale events. Their performance is in general lower, and
decreases when the number of evolving communities increases. Incremental and Classic Louvain obtain
better performances than the other two algorithms. They seem to not be affected by small-scale events
although they are affected by large-scale ones.
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Fig. 5.8 NMI results on networks generated with evolution event type switch when µ = 0.3. Evolution
levels for plots (a), (b) and (c) are medium, medium-high and high respectively

5.2.2.3 Summary

Overall, our results show that one method (consensual vs. evolving community structures) does not
completely dominate the other. In some cases, the algorithms finding evolving community structures
(Classic and Incremental Louvain) obtain better results, whereas in some other cases those looking for
consensual community structures (Multistep and Integrated Louvain) obtains better results. Among the
former, Incremental Louvain is less sensitive to community events when the network is stable. The most
difficult events for both these algorithms are hide-appear, birth-death and merge-split, in decreasing
order of difficulty. For switch and expansion-contraction, both Incremental and Classic Louvain get
good performances. Both other algorithms results are not good enough to conclude they are able to find
a reliable community structure in general.

We observe a general decrease in performance when the level of community separation decreases.
Algorithms finding evolving community structure seem to get good performances when the communities
are well separated. However, algorithms finding consensual community structure seem less sensitive to
the different levels of community separation. Among the algorithms detecting evolving community
structures, here again, Incremental Louvain is more stable to the different evolution events. Its difference
with Classic Louvain shows that taking advantage of the temporal information indeed improves the
results. However, this information must be used in an appropriate way: the aggregation processes used
by Integrated and MultiStep Louvain lead to poor performances. From our results, we can conclude that
for the considered dynamic networks, communities should be detected though the use of local temporal
information, which shows the relation between consecutive time slices.

Of course, these observations are not generalizable, because we considered only a reduced number
of algorithms, and very basic generated data. But the point of this work was not to identify the best
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community detection algorithm for dynamic networks, at task which would not even be theoretically
sound. Instead, we wanted to evaluate the difference between a small numbers of selected algorithms, in
order to pick the most appropriate one for testing our framework.

5.3 Finding Community Evolution Events

In subsection 4.4.1, we explained that our framework can also be used to follow major community
evolution events. We want to show the relevance and the reliability of this approach here. For this
reason, we at first generate networks with LFR-D, using the parameter values from table 5.2, as well
as C = 20 and p = 0.2. Thus, we have a ground truth community structure for each time slice. Then,
we create a database including only the community sequences. In this database, every node sequence
has 10 itemsets, corresponding to 10 time slices. We apply CloSpan on this data set with minimum
support 0.001. Here, we present only a few examples to show how to interpret this kind of results.
However, it confirms that, by using closed pattern mining, we are able to catch all types of events for
the communities representing a proportion of the network node greater or equal to the minimum support.
Moreover, it is also possible to catch the important times t corresponding to remarkable evolution points.
In the following subsection, we first present some of the interesting results for each type of considered
evolution event, then we concentrate on how we can track the evolution of one community in particular.

5.3.1 Detecting Evolution Events

5.3.1.1 Birth-Death Evolution

After the application of CloSpan on the data set of birth-death event types networks generated with the
parameter values indicated before, we have found 6649 patterns. Among them, we focused on patterns
of size 10, which correspond to the considered time period, and are shown in Table 5.4. Pattern #1 in the
table shows a group of nodes whose community ID changes at each time slice. All 793 of these nodes
stay together, i.e. in the same community, for the whole time period of 10 time slices. By manually
comparing the nodes of each one of the communities appearing at different time slices, with the nodes
supporting this pattern, we see that these nodes correspond to the core part of an evolving community.

ID CFS Support Size
1 <(C224@1)(C216@2)(C208@3)(C201@4)(C190@5)(C182@6)(C175@7)

(C168@8)(C163@9)(C155@10)>
793/10000 10

2 <(C435@1)(C420@2)(C404@3)(C391@4)(C0@5)(C0@6)(C0@7)(C0@8)
(C0@9)(C0@10)>

598/10000 10

3 <(C121@1)(C116@2)(C0@3)(C0@4)(C0@5)(C0@6)(C0@7)(C0@8)
(C0@9)(C0@10)>

189/10000 10

Table 5.4 Some Interesting Patterns Showing Birth-Death Events

For pattern #2, we see that, starting from t = 5, the community ID becomes 0. All 598 nodes
sharing the same community until t = 5 become alone (i.e. each node constitutes its own community)
afterwards, until the end. We understand that they were a part of a group of nodes all belonging to the
same community from t = 1 till t = 4. Then, this group died at t = 5 (become community-less). Pattern
#3 represents a group of 189 nodes staying together until t = 3. Then, they all get alone, too.
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5.3.1.2 Expansion-Contraction Evolution

ID CFS Support Size
1 <(C224@1)(C224@2)(C224@3)(C224@4)(C224@5)(C224@6)(C224@7)

(C224@8)(C224@9)(C224@10)>
795/10000 10

2 <(C227@1)(C227@2)(C227@3)(C227@4)(C227@5)(C227@6)(C227@7)
(C227@8)(C227@9)(C227@10)>

156/10000 10

Table 5.5 Some Interesting Patterns Showing Expansion-Contaction Events

For the networks generated using the expansion-contraction event types, we have 6814 patterns. For
this specific type of events, the communities generated by LFR-D keep their ID over the while time
period, which ease our study. As mentioned before, we consider expansion-contraction as small-scale.
They are not related to whole communities appearing or disappearing, but rather to increases or decreases
in their sizes. Thus, to interpret these patterns, we at first find out the patterns showing the core of the
communities. These patterns are the ones lasting over the whole time period, i.e. 10 time slices in our
case. In table 5.5, we list two patterns of this type (constant community ID). Note that this manipulation
is relevant only for the expansion-contraction type of evolution. It seems 795 nodes of C224 and 156
nodes of C227 stay together during all time slices. To find out if any of those communities are expanded
or contracted, we track their evolution in detail by studying these community IDs at each time slice alone.
More clearly, we check if there is any closed pattern of size 1 containing these community IDs.

Community ID CFS Support Size Event
C224 <(C224@1)> 814/10000 1 stable
C224 <(C224@2)> 813/10000 1 stable
C224 <(C224@3)> 888/10000 1 expand
C224 <(C224@4)> 888/10000 1 stable
C227 <(C227@2)> 182/10000 1 stable
C227 <(C227@3)> 183/10000 1 stable
C227 <(C227@4)> 183/10000 1 stable
C227 <(C227@4)(C227@5)> 178/10000 2 contract
C227 <(C227@6)> 177/10000 1 stable
C227 <(C227@8)> 169/10000 1 contract

Table 5.6 Track Results of Community ID 224 and 227

We list the result of this tracking in Table 5.6. We see that there are 814 nodes in C224 at t = 1. At
t = 2, one node leaves this community. One node is not enough to conclude there was a contraction event
(it could be a simple switch), so we consider the community stayed stable. However, there are 888 nodes
in C224 at t = 3. This means at least 75 new nodes joined this community between t = 2 and t = 3.
Thus, we can say that C224 undergoes an expansion event at t = 3. Note that these 75 joining nodes
might belong to one community from previous time slices or different node groups from 75 nodes might
belong to many different communities. Thus, this expansion can be a conclusion of a merge event as well.
To understand such details about evolution, one needs to observe all related CFS and their supporting
nodes. When we observe C227, we see that from t = 1 to t = 4, there is no remarkable event. In the
closed patterns, we do not find any pattern containing C227 with at t = 5. There can be two possibilities
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for this: first, the support of the pattern <(C227@5)> does not exceeds the minimum support; second,
there is a super sequence of <(C227@5)> with the same (or higher) support. We see that the second
possibility occurs in our dataset, because the pattern <(C227@4)(C227@5)> is supported by 178 nodes.
According to these support values, we can conclude that from t = 4 to t = 5, at least 5 nodes left C227.
Thus, this community underwent a contraction event at time slice 5.

5.3.1.3 Hide-Appear Evolution

ID CFS Support Size
1 <(C224@1)(C180@2)(C165@3)(C128@4)(C105@5)(C0@6)(C425@7)

(C349@8)(C287@9)(C240@10)>
782/10000 10

2 <(C435@1)(C346@2)(C302@3)(C245@4)(C209@5)(C0@6)(C433@7)
(C356@8)(C293@9)(C0@10)>

736/10000 10

3 <(C222@1)(C178@2)(C163@3)(C126@4)(C103@5)(C0@6)(C0@7)
(C457@8)(C381@9)(C320@10)>

444/10000 10

4 <(C121@1)(C0@2)(C442@3)(C0@4)(C439@5)(C360@6)(C308@7)
(C258@8)(C211@9)(C178@10)>

272/10000 10

5 <(C542@1)(C433@2)(C371@3)(C306@4)(C260@5)(C220@6)(C0@7)
(C393@8)(C326@9)(C274@10)>

224/10000 10

Table 5.7 Some Interesting Patterns Showing Hide-Appear Events

We mined 6079 patterns on the networks generated based on the hide-appear event type. We list
some patterns showing the communities that hide-appear at certain times, in table 5.7. For instance,
pattern #1 corresponds to a group of 782 nodes which all belong the same community for the whole time
period. A manual comparison of these nodes and of the communities whose IDs are contained in the
pattern showed these 782 nodes constitute the core of an evolving community. This core, and therefore
the community itself, disappears at t = 6 (the ID becomes 0) at t = 6. The core (and the community) is
back starting from t = 7 until the end. Similar hide events van be observed for the other communities
listed in table 5.7.

5.3.1.4 Merge-Split Evolution

For the networks based on merge-split event types, we find 6993 patterns. We list some examples in Table
5.8: let us start with the first three ones. They all contain the same community IDs until t = 4, which
means they form a single group. At this point, the first pattern shows a first separation into two distinct
groups: one is contained in community C533, while the other (patterns #2 and #3 ) belongs to community
C534. This group again splits at t = 9, as shown by the second and third patterns.When considering the
last two rows of the same table, we can observe a merge event. The two groups supporting these patterns
are in two distinct communities until t = 4. At this point, they enter the same community until the end
of the time period.

5.3.2 Tracking a Specific Community

One may want to focus on a specific community of interest, in which case he would want to follow its
life cycle. Here, we present how we can track one community evolution by studying its related patterns.
The principle is simple: we first select the most frequent pattern of size 1 and whose item corresponds
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ID CFS Support Event
1 <(C222@1)(C397@2)(C367@3)(C533@4)(C497@5)(C461@6)

(C425@7)(C391@8)(C364@9)(C340@10)>
215/10000

2 <(C222@1)(C397@2)(C367@3)(C534@4)(C498@5)(C462@6)
(C138@7)(C128@8)(C517@9)(C480@10)>

113/10000 Split

3 <(C222@1)(C397@2)(C367@3)(C534@4)(C498@5)(C462@6)
(C138@7)(C128@8)(C518@9)(C481@10)>

103/10000

4 <(C19@1)(C14@2)(C517@3)(C211@4)(C200@5)(C181@6)
(C164@7)(C151@8)(C142@9)(C133@10)>

12/10000 Merge

5 <(C276@1)(C252@2)(C232@3)(C211@4)(C200@5)(C181@6)
(C164@7)(C151@8)(C142@9)(C133@10)>

65/10000

Table 5.8 Some Interesting Patterns Showing Merge-Split Events

to the community of interest. To identify the ID of the community in the second time slice, we just need
to select the most frequent pattern of size 2 whose first item is the ID of the community of interest. The
second item is then the ID of the same community at t = 2. By repeating the same process for the next
time slices, we can efficiently track the community until the end of the time period.

ID CFS Support Size
1 <(C224@1)(C216@2)(C208@3)(C201@4)(C190@5)(C182@6)(C175@7)

(C168@8)(C163@9)(C155@10)>
793/10000 10

2 <(C224@1)(C216@2)(C208@3)(C201@4)(C190@5)(C182@6)(C175@7)
(C168@8)(C163@9)>

795/10000 9

3 <(C224@1)(C216@2)(C208@3)(C201@4)(C190@5)(C182@6)(C175@7)
(C168@8)>

796/10000 8

4 <(C224@1)(C216@2)(C208@3)(C201@4)(C190@5)(C182@6)(C175@7)> 801/10000 7
5 <(C224@1)(C216@2)(C208@3)(C201@4)(C190@5)> 802/10000 5
6 <(C224@1)(C216@2)(C208@3)(C201@4)> 804/10000 4
7 <(C224@1)(C216@2)(C208@3)> 810/10000 3
8 <(C224@1)(C216@2)> 811/10000 2
9 <(C224@1)> 814/10000 1

Table 5.9 Full Tracking of a Community with Related Patterns

In table 5.9, we present some patterns showing the life cycle of a community from a network gener-
ated using the birth-death evolution type. In the first row, we see the longest pattern has a size of 10 (full
time period). On the last row, we see that there are 814 nodes in the same community at t = 1. Then, the
number of supporting nodes, i.e. the number of nodes staying together, decreases from 811 to 793 be-
tween t = 2 and t = 10. Note that 810 of the initial nodes stay together until t = 4. But from t = 4 to t = 5
(rows #6 and 5 in the table), 6 nodes leave the community. Similarly, from t = 7 to t = 8 (rows #4 and 3
in the table), 5 nodes leave the same community. Although this network was generated with a birth-death
type of evolution, we still observe a contraction for this community (probably due to switches). Another
remark we want to underline is that from t = 6 to t = 7, this community does not change because there is
no closed pattern like <(C224@1)(C216@2)(C208@3)(C201@4)(C190@5)(C182@6)> in the results.
This means that the support of this pattern is the same than for pattern #4. Because pattern #4 is one of
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its super-sequence, the pattern is not detected as a closed one.
Briefly, we can infer that this community contracts as time goes by. Here, we present only one exam-

ple, however, it is possible to track any communities with this interpretation method. Although this way
seems exhaustive, one can always increase or decrease the rate of detail to be observed. Finding Closed
Patterns on Community IDs by using time slice numbers shows us all existing community events. We
can adjust the range of these events in terms of node number, thanks to the minimum support parameter
used when mining patterns.

5.4 Descriptor-Related Effects on Community Interpretation

In this section, we focus on the effect of descriptors on our method, especially in terms of scalability.
Without loss of generality, we focus only on the attributes, but our conclusions are still valid for the
topological measures. We perform three different experiments to analyze the behavior of Steps 3 and 4
of our framework, on networks including nodal attributes. We first generate networks using the LFR-DA
extension, with the parameters values given in Table 5.10. During the attribute generation process, in
first time slice, we respect the same distribution type for all attributes. Thus, it is not possible to generate
one attribute in binomial distribution and another one in power law distribution. We made this choice for
simplicity matters.

The values of the attribute-related parameters are described in table 5.11. For all three experiments,
we used the same range for the attributes, i.e. integers between 0 and 9.

Parameter Symbol Value
n 5000
⟨k⟩ 10
kmax 500
γ 3
[minc,maxc] [3,500]
β 2
µ 0.3
s 10
e {switch, birth-death, merge-split, expansion-contraction, hide-appear}
C 20
p 0.2
r 0.1

Table 5.10 LFR-DA Generation Parameter values

In the first experiment, we study the effect of the number of attributes. The attribute values are
generated so that they are completely homogeneous inside of each community (degenerate distribution).
Moreover, these values are not affected by time. In the second experiment, our aim is to see how our
framework is affected by changes in the evolution percentage of attributes. For this reason, we fix the
attribute number at three, again with a degenerate distribution, and modify only the percentage of nodes
whose attributes evolve (q). Finally, in the third experiment, we change the distribution type of the
attribute values (h), whereas the number of attributes and the attribute evolution are fixed at 3 and 5,
respectively.

For each experiment, we create the node sequences, including the generated attribute values and
ground truth community IDs, at each time of the considered period. We then apply CloSpan (Step 3 of

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2014ISAL0072/these.pdf 
© [K. Orman], [2014], INSA de Lyon, tous droits réservés



78 Behavior of Community Interpretation Framework

Experiment 1 Experiment 2 Experiment 3
|A| {1,3,5} {3} {3}
[mina,maxa] [0,9] [0,9] [0,9]
h {degenerate} {degenerate} {degenerate,binomial,uniform,power law}
q {0} {5,20,50,100} {5}

Table 5.11 Attribute Generation Parameter Values for Different Experiments

our framework) with minsup = 0.002, which means the identified patterns should be supported by at least
10 nodes. Then, we process the growth rate by applying Step 4.B of our framework. In the following
part, we show and discuss the results and performance of our tool.

5.4.1 Effect of the Number of Attributes

We represent the results of Experiment #1 with four plots in Figure 5.9.Plot (a) shows the execution
times of Step 3 (application of CloSpan). The execution times of CloSpan on these networks increase
dramatically when |A| = 10: it does not produce any result after having run for 3 days. For this reason,
we did not use more than 5 attributes. When we increase the number of attributes from 1 to 5, the
execution time of CloSpan also increases, for all types of events. In Chapter 4, we indicate that the
complexity of the second step of CloSpan depends on the size of the dataset expressed in nodes. In
practice, here, we see that overall complexity is also affected by the number of descriptors that we
treat. The highest the number of descriptors, the longer the CloSpan process. The number of descriptor
obviously affects the number of candidate sequences, thus, it naturally impacts the execution time. If we
order the execution times in function of the type of evolution used for network generation, we get (in
descending order): birth-death, hide-appear, merge-split, expansion-contraction and switch. So, when
the community evolution undergoes small-scale events (i.e. communities do not appear or disappear,
but they see their sizes change, or nodes switch between communities), mining the patterns requires less
computation.

On the same figure, the plots (b) and (c) display the number of patterns found by CloSpan and the
proportion of community-related patterns among them, respectively. Let us discuss them together. For
experiment #1, the number of patterns increases with the number of attributes, which could be expected.
Indeed, the number of possible non-closed sequences increases exponentially with the number of de-
scriptors. We remark that most of those patterns (at least 93 %) are community-related. This could
also be expected, because in this experiment, all the nodes of the same community have the same at-
tribute values (degenerate distribution). So, a community-independent sequence is rarely closed, because
there often exists a community-related super-sequence with the same numbers of nodes. The percent-
age of community-related patterns decreases when the number of attributes increases, though. This
actually means that the number of community-related patterns increases slower than that of community-
independent patterns. Indeed, when multiplying the number of attributes, the chance to see frequent
patterns appearing in the whole network (without regards for community) is higher than that of having
frequent patterns in specific communities. If we order the numbers of patterns identified, in function of
the type of event used to generate the networks, we get (in ascending order): hide-appear, birth-death,
merge-split, switch and expansion-contraction. Here, the most interesting point is about hide-appear
events, for which the number of community-related patterns is clearly higher than for other events. When
a network hides a community, all its nodes become their own community. For all of these communities
of size is 1, we use the common ID 0, instead of giving them distinct community IDs. After hide events,
this causes many nodes to have the same ID, and constitute a very large pseudo-community. This in turns
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Fig. 5.9 Results of Experiment 1. Each plot shows the results for a different number of attributes.
(a),(b),(c) and (d) show the execution time of CloSpan (Step 3), the total number of patterns found
by CloSpan, the percentage of community-related patterns among all detected patterns and the execution
time for post-processing (Step 4.B) respectively

causes CloSpan to extract numerous additional community-related patterns. This could be avoided by
using distinct community IDs , but it would cause other practical problems.

The plot (d) shows the execution times of Step 4.B, i.e. the post-processing and the calculation of
the growth rates. We can say that it clearly increases with the number of attributes, like for CloSpan, and
even faster. This confirms our analytical estimation of the algorithmic complexity of this Step 4.B, which
depends on the number of nodes, the number of time slices and, most of all, the total number of patterns
fetched by CloSpan (c.f Chapter 4.). The longest computation times are obtained for the hide-appear
event types. When we also observe the percentage of community-related patterns and the total number
of patterns, we see that the values are higher for hide-appear event type, especially for large numbers
of attributes. In the post-processing, we check each pattern. If they are community-related, we treat
them. Checking a pattern does not consume too much time comparing to its treatment. For hide-appear
events, there are more community-related patterns. Thus, this is naturally more costly in terms of post-
processing. As a result, its post-processing is also higher than the other types of events. Note that none
of those post-processing takes more than 400 seconds. Nevertheless, as mentioned before, we were not
able to produce results for 10 attributes.

5.4.2 Effect of the Attribute Stability

The results of Experiment #2 are shown in Figure 5.10, with a plot placement similar to that of figure 5.9.
We see that the fastest CloSpan processing is obtained for q = 5, i.e. when the attribute values of 5% of
the nodes change at each time slice: it takes less than 20 seconds to identify the CFS. The computation
time increases very irregularly for higher values of q. When q = 20, the execution time is the highest
for large-scale events, whereas it is q = 100 for small-scale events. Note that changing q not only
causes a change in the attribute evolution, but as a side effect, it also affects the distribution of attribute
values inside the communities. The higher q, the earlier the communities become heterogeneous, in
terms of attribute distribution. When q ≥ 50, more than half the nodes see their attributes randomly
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changed at each time slice. The attribute distribution therefore becomes more and more uniform (hence
heterogeneous). A higher heterogeneity in the distribution of the attribute values should affect CloSpan
negatively in terms of computational time. Indeed, if all the nodes have different values for one attribute,
there is naturally more candidate patterns to generate. However, in our experiments, it is not clearly the
case: the computational time even decreases, at some point: CloSpan works faster for q= 50 than for q=
20. This comes from our generative model. We have a limit on the number of values an attribute can take:
the domains contain 10 different values. This has two consequences. First, in small communities (less
than 10 nodes), it is impossible that all the nodes take a different value for a given attribute. Second, in
large communities (more than 100 nodes), smaller homogeneous groups appear inside the communities,
so we cannot say the community becomes more heterogeneous after a certain limit. In the latter case,
the number of candidate patterns stays relatively stable, which explains how the performance of CloSpan
evolves. Then, when q = 100, the computation time increases again compared to q = 50. This is due
to an increase in the number of community-independent candidate patterns over the whole network, as
shown by the plots of total number of patterns and percentage of community-related patterns. When
the evolution percentage q increases, the number of patterns increases fast (seemingly exponentially),
especially for q ≥ 50. However, the percentage of community-related patterns decreases clearly. When
q = 100, only 20% of the final patterns are community-related.
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Fig. 5.10 Results of Experiment 2. Each plot shows the results for a different number of attributes.
(a),(b),(c) and (d) show the execution time of CloSpan (Step 3), the total number of patterns found by
CloSpan, the percentage of community-related patterns among all detected patterns and the execution
time for post-processing (Step 4.B) respectively

When comparing the different types of evolution, we see that networks based on birth-death, hide-
appear and merge-split event types are more difficult to process for CloSpan when q≤ 50, compared to
switch and expansion-contraction. However, for q > 50, switch, expansion-contraction and merge-split
event types are harder to process than birth-death and hide-appear. We can explain this with our previous
assumption: when q increases, the communities get more heterogeneous in terms of attributes, but after
a limit, smaller groups of homogeneous nodes appear. This causes fewer candidate patterns for switch
and expansion-contraction event types. However, after the heterogeneity exceeds a limit, there are more
candidate patterns (probably showing network trends and not community trends) for switch, expansion-
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contraction and merge-split. Indeed, we see clearly the total number of patterns for merge-split is higher
than for all the other event types when q > 50, followed by switch and expansion-contraction. At the
same time, the percentage of community-related patterns of those three event types for q > 50 is lower
than for other events.

When considering the execution time of our post-processing step, we see that the most difficult event
type is hide-appear, which is consistent with the fact it also leads to more community-related patterns.
It is followed by the birth-death, merge-split, expansion-contraction and switch. The time necessary
to handle the community-related patterns for expansion-contraction and switch networks are very low
when compared to the three other event types. It seems also stable, thus not affected by the increase in
the percentage of modified nodes. Of course, regarding the percentage plot, we can say that there are
fewer community-related patterns for these two events. Thus, the post-processing of small-scale events
is not affected by the increase of the proportion of modified nodes. However, it increases for large-scale
events.

5.4.3 Effect of the Attribute Distribution

Figure 5.11 presents our results in function of the different types of attribute distribution used during the
network generation. The plots are organized similarly to the previous figures. CloSpan is the fastest when
the attributes are completely homogeneous (i.e. degenerate distribution). For the most heterogeneous
distribution (i.e. uniform distribution), it is also fast. This situation is similar to that exposed in the
previous subsection: because of the finite size of the attribute domains, a uniform distribution leads to
communities containing groups of nodes of approximately the same size and similar attributes. If the
community is large enough, the trends of these node groups will be represented as different patterns of
same community. However, if the community is small, because it is more risky that the size of these
node groups cannot reach to the minsup limit, their trend will not be identified as community-related
patterns. However, because we use the same attribute values for all communities, the total size of these
small node groups over the whole network is large enough to pass the minsup threshold. Thus, their
trend is represented as community-independent patterns. However, when the attributes are relatively
homogeneous (binomial distribution), the execution time is at its highest. In this case, there are many
nodes having the same value for a given attribute, and a few numbers of nodes with different values.
It seems these few numbers of nodes with different values are causing the identification of many extra
candidate patterns (cf. plot (b) of Figure 5.11). Here again, the reason can be explained by the usage of
limited numbers of values for an attribute. For big communities, a large numbers of its nodes will have
the same value for a given attribute. In average, the attribute values of %5 of those nodes will change.
However, the sequences representing the trend of the remaining nodes (the ones which do not change)
will be seen as closed patterns. For the remaining nodes, there are 9 more possible values to take. If the
community is large enough, it is then possible for some of these remaining nodes to take the same values
for an attribute. It naturally causes to have an enough support value for their trend to be a community-
related pattern. Even if the community is not large enough, remaining nodes of different communities
which have the same attribute value cause to the generation of community-independent patterns. It might
be the reason why extra candidates and result patterns are identified. Our minsup limit ensures to extract
the closed patterns whose supporting node numbers are more than 10.

We see a distinction between the performance on small-scale and large-scale community events for
binomial distributed attributes. Small-scale events are easier than large-scale ones. This distinction
becomes clearer, especially for different events, on large-scale ones, when the attributes are power law
distributed. In general, the execution time is less than binomial distribution for power law distribution.
It seems the hide-appear type of evolution is the most difficult one for mining the patterns. The second
and third most difficult evolution types are merge-split and birth-death respectively. The easiest events
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are small-scale events.
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Fig. 5.11 Results of Experiment 3. Each plot shows the results for a different number of attributes.
(a),(b),(c) and (d) show the execution time of CloSpan (Step 3), the total number of patterns found by
CloSpan, the percentage of community-related patterns among all detected patterns and the execution
time for post-processing (Step 4.B) respectively

The number of patterns obtained for Experiment #3 show that when the attributes are completely ho-
mogeneous, there are fewer patterns and a very high percentage of them (∼ 90%) are community-related.
For the other three distribution type, the descending order of pattern numbers is binomial, uniform and
power law distribution. Regarding the percentage of community-related patterns, we see remarkable
differences for the different event types. Hide-appear and birth-death events seem less affected by the
distribution type. More than 85% of the patterns are community-related for every distribution type.
Merge-split results show that around 75% of the patterns are community-related for binomial and uni-
form distributions. It is around 90% for power law distribution. For the other two types of events, we
see the lowest percentage (∼ 40%) at the uniform distribution. For power law distribution, there are
∼ 70% of the patterns are community-related. Indeed we observe the effect of these percentages on the
execution time of post-processing. For all events, when the communities are completely homogeneous,
execution time of post-processing is very few. For small-scale events, execution time is fast and not
affected by distribution type. However, for large-scale events, it seems affected by distribution type. Es-
pecially for hide-appear event, when the attribute values are in binomial distribution, the execution time
clearly higher than all the other cases. For both birth-death and merge-split events, binomially distributed
attribute values take more time for post-processing. When the attribute distribution follows a power law,
it also seems difficult for post-processing on these events. Indeed, the execution time of post-processing
directly related to community-related pattern number.

5.4.4 Summary

Briefly, we can conclude that increasing the number of attributes makes the processing harder for our
framework. The higher this number, the higher the number of candidate patterns, and therefore the longer
the execution time for both CloSpan and our post-processing of Step 4-B. Although the algorithmic time
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complexity of CloSpan in not known exactly, we showed that, in practice, the number of descriptors
affects the performance. When there are more descriptors, there are more possible subsequences of
nodes sequences to treat, and more patterns are eventually treated. The number of patterns outputted by
CloSpan directly affects the computation time of our post-processing step.

The distribution of the attribute values is also an important factor. The easiest case corresponds to a
completely homogeneous distribution of values in each community. The opposite extreme case, where
attribute values are heterogeneously distributed, using a uniform distribution, leads to slightly longer
computation times, but clearly not as much as we expected. The worst case occurs for intermediary
levels of homogeneity, i.e. binomial and power-law distributions. This is confirmed when considering
the computation time in function of the proportion of nodes whose attribute values change over time.
Indeed, due to the nature of this evolution, the distribution of attribute values tend to become more and
more heterogeneous, until it reaches a limit caused by our use of finite attribute domains. For an initially
homogeneous distribution, the computation times are the lowest, then they increase when the distribution
becomes more heterogeneous, and they decrease once the limit is crossed, which corresponds to reaching
a uniform distribution.

An overall observation shows that we have the longest execution times when the attribute values
evolve often. The shortest execution time is obtained when changing the number of attributes. Thus, we
can conclude that if the network is very dynamic, in the sense it changes a lot between two time slice, our
framework works slower. It is more difficult to find the CFS and calculate their growth-rates. Our post-
processing step is directly affected by the number of patterns found by CloSpan, as well as the proportion
of community-related patterns they include. Another observation is that, among the different types of
evolution considered in our evaluation, the large-scale ones (i.e. modification of whole communities)
lead to the longest execution times, for both steps of the processing.

Finally, note that the model we used here is a very raw approximation of what a real-world system
could be. It generates attributes according to some very simple rules. In a real-world system, we can
suppose the value of the nodal attributes, as well as their evolution, are very domain-dependent. It is
difficult, maybe impossible, to model them in a generic way. This is why our model should not be seen
as a tentative to realistically mimic such a system, but rather as a plain evaluation tool. Our goal here was
to have a general idea about the behavior of our framework when considering different types of data. In
Chapter 6, we apply our framework to actual real-world data, taking the form of two dynamic attributed
networks.
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Chapter 6

Application on Real-World Data

We apply the framework we described in Chapter 4 to two dynamic attributed networks modeling real-
world systems. The first one is based on data coming from the website DBLP, we treat it in section
6.2. The experiments related to DBLP by using consensual community structure are published in [100]
and submitted in [99]. The second one is based on novel data we extracted from the website LastFM,
we describe our analysis in Section 6.3. For both networks, we apply the same treatments to create the
sequences databases. We detect the communities of both networks by using Incremental Louvain [5].
The modularity of the community structure of each time slice for both networks are higher than 0.6,
which is a sign of well-separated communities. Incremental Louvain produces an evolving community
structure, so we worked with an enlarged database. For the descriptors of the enlarged database, we use
either attributes related to network of interest or topological measures. The treatments about attributes
are explained in the sections related to each network when we explain. However, for the topological
measures, we apply the same treatment for both networks. We explain these treatments in section 6.1.

We interpret the significant community sequences rather than the communities themselves, using the
method described in section 4.4.2. Note that we interpret for both network, all the result patterns of
our framework. Nevertheless, we choose some representative ones to present here. The communities or
community sequences we characterized here present an example of how our framework can be used and
how to comment the result patterns. Our aim is not making an exhaustive interpretation but presenting
some examples which reveal the usage of the framework. In section 6.4, our conclusion & discussion is
valid not only for the results of this section but also for all the results outputted of our framework.

6.1 Topological Situations and Their Meanings

We cluster the topological measures by using k-means. There are three types of topological situations
for a node: general topological situation, centrality-based topological situation and situation in the
community. The cluster numbers of different types of situation for different networks are different.
Each cluster corresponds to an item of enlarged database. In order to be represented in Menl and used
by CloSpan, we encoded all the resulting items as integers. The item list and meaning is indicated
in Appendix, Chapter 8 separately for DBLP and LastFM. Note that while creating items, we did not
consider the isolated nodes, since they do not have any link to the other nodes, and are therefore of little
interest to us.

Each cluster corresponds to the combination of different valued different topological measures. We
represent in the patterns their item codes. But, we explain them in the sections with their meanings
reflecting different values of measures. When we explain them, we use the words like average, high,
non- or low to describe the value interval of the topological descriptor. These words represent the relative
value of each descriptor. For example, average betweenness means a topological situation of the nodes
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whose betweenness value is at the mean among the betweennes values for all the nodes of the network.
When we say non-between, it means, the betwenness value is very low for the node compared to the rest
of the network.

6.2 DBLP Network

6.2.1 Presentation of the Data

We selected the dynamic co-authorship network from [35], which was extracted from the DBLP database.
It is a subset of the DBLP dataset [81]. In this network, each one of the 2145 nodes represents an author.
Two nodes are connected if the corresponding authors published an article together at the considered
time. Only authors who had at least 10 publications (in a selected set of 43 conferences/journals) from
1990 to 2012 are considered. Each time slice corresponds to a period of five years. There are totally
10 time slices ranging from 1990 to 2012. The consecutive periods have a three year overlap for the
sake of stability. For each author, at each time slice, the database provides the number of publications
in 43 conferences and journals. The conference/journals we use are related to the subjects of database,
data mining, knowledge discovery, information retrieval or artificial intelligence. We use the number of
publications to define 43 corresponding node attributes values, and we add two more: the total number
of conference and journal publications, respectively. Finally we have a total of 45 integer attributes.

To lighten the computational load, we decided to bin these attribute values. For a journal/conference
publication, we determined 5 categories, corresponding to the number of publications 1,2,3,4 and greater
or equal to 5. For both attributes representing total conference and journal publications, we defined
5 categories as well, but they correspond to different ranges: [1;5], ]5;10], ]10;20], ]20;50] and ]50;∞[.
These thresholds were determined according to our knowledge of the domain. In our analysis on DBLP,
we want to learn the answer of some questions. Is there a clear separation between the communities
in terms of their journal/conference publications? Are the communities homogeneous about their jour-
nal/conference publications or they are homogeneous about their research theme? What are the anomaly
types?

6.2.2 Node Group Evolution

At first, we focus on community sequences, with a minimal support of minsup = 0.0045, in order to study
the evolution of node groups. As a reminder, what we call a node group here corresponds to a set of nodes
jointly belonging to all the communities appearing in a given community sequence. The low minsup we
use allows us to catch patterns supported by ten nodes or more. We present visually evolving community
structure by alluvial diagram at first. It is a type of flow diagram to represent the changes on community
structure for dynamic networks. Let us at first have a look at the alluvial diagram given in Figure 6.1.
It was generated by Edler & Rosvall’s MapEquation tool [39]. It shows the major structural changes
the community structure undergoes through time. Each point located on a time slice corresponds to a
community, while the lines connecting them correspond to node groups evolving. The thickness of these
lines is proportional to the size of the corresponding node group. To better understand these changes,
one need to match the communities through time, i.e. to determine, for a given community ID at time t,
what are the corresponding community IDs at times t− 1 and t + 1 . However, as explained in chapter
4, we can use our framework for the same purpose, by simply focusing on the mining of community
sequences, which allows to identify the most significant events around some communities of interest.
Thus, here, we use the alluvial diagram not for tracking, but only for visualizing the general evolution
of the community structure. There are a lot of nodes switching between the communities from one
time slice to another. One reason of these switches is that we do not apply matching, and this prevents
MapEquation to efficiently place the communities on the diagram. Another reason is that communities
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are mixing. We also observe both the merge and split of some communities at almost all time slices.
At t = 3, we see one dying community, while at t = 4, one of them is born. After t = 6, communities
are getting larger than before. This diagram allows us to intuitively form an opinion about the major
changes undergone by the community structure. However, this must be completed by a more detailed
and objective analysis. For this matter, we study the identified community sequences.
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Fig. 6.1 Alluvial Diagram of DBLP evolving Community Structure. Diagram is generated by Edler and
Rosvall’s application [39]

It turns out the size of all community sequences supported by at least 100 nodes is 1. In other
words, such patterns contain only one community ID, i.e. they span one single time slice. This means
groups of more than 100 nodes are not lasting more than 1 time slice in this network. Therefore, in this
specific case, we can say the node groups supporting these patterns correspond to communities (and not
only parts of communities, as it the case for longer community sequences). Moreover, we notice that
these larger communities mostly appear after t = 7. This confirms our observation made on the alluvial
diagram, relatively to communities getting larger. We present the 5 most supported patterns in table 6.1.

s |S(s)|
<(C161@9)> 183
<(C154@8)> 182
<(C389@7)> 148
<(C169@9)> 141
<(C201@9)> 140

Table 6.1 Community Sequences with Highest Supports for DBLP

We studied most of the communities and their related community sequences, which reveal the behav-
ior of the different node groups composing the communities. Here, we present only a few of them just
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to describe how our interpretation is done. When we evaluate one community, as explained in Section
4.4.2, we organize all related patterns in temporal order. We present the previous and next positions of
the nodes belonging to the community of interest at the time of interest. If there is any related commu-
nity sequence representing further past or further future situations for these same node groups, we also
mention them.

6.2.2.1 Events Related to a Community of Interest

We first focus on community C161@9, which contains 183 nodes as indicated in table 6.1. We list the
most frequent community sequences including C161@9 in table 6.2. We present the pattern, its sup-
porting node size and the time order it presents (future, past,further future, further past or past-future
together) in the table. Patterns #1, 2, 3 and 4 show that 43, 44, 17 and 16 nodes from C161@9 go to
4 different communities at the next time slice: C367@10, C189@10, C108@10 and C197@10, respec-
tively. Some nodes of C161@9 are not supporting any of these patterns #1, 2, 3 and 4, and do not appear
in other frequent patterns. This means they do not constitute node groups. We can suppose they are
distributed over many different communities, or they stay alone at t = 10. In a sense, we can say that
community C161@9 splits at t = 10, because none of the 4 considered node groups largely dominates
the others in terms of size. However, note this split is not exactly similar to the events described for
the LFR-D model in chapter 5. Indeed, in the model, the results of a community split are new smaller
communities. Here, on the contrary, it is possible that the node groups resulting from the split joins
existing communities at t = 10. Here, our community of interest is C161@9, which is why we limit our
interpretation to the events directly related to it, and do not describe in detail the situation of each of the
communities from t = 10. Maybe the node groups coming from C161@9 create the majority of these
communities of t = 10 or maybe, they present only a small part of each of one these communities.

We now turn to patterns showing the past of C161@9, i.e. patterns #5, 6 and 7. We understand that
three different node groups which belong to different communities at t = 8 get together at t = 9, joining
C161@9. They only constitute a part of the community though (118 of its 183 nodes). Patterns #8 and
9 show the further past of two of these node groups. It seems a node group from C198@7 splits in two
smaller node groups at t = 9 (belonging to C346@8 and C374@8) before reuniting at t = 9, in C161@9.

When we look in detail at the other related patterns showing both future and past, we see that a part
of our community of interest is coming from C508@7. There are 11 nodes which continue to be in the
same community from t = 7 to t = 10 (c.f. Pattern #10). Pattern #11 indicates the existence of a group
of 24 nodes which are together in C374@8, then in C161@9 and in C189@10. The last two patterns
show a node group existing at t = 8 and t = 9 split at t = 10: a part joined C197@10 and another joined
C367@10.

6.2.2.2 Other Important Events

We also want to mention about some other community sequences although they do not have high
supports. They show interesting trends about the evolution events. For example, the sequence <
(C471@1)(C3@2)(C1308@3) > is supported by 10 nodes. We cannot find any related patterns in-
cluding any of those community IDs showing their situation after t = 3. It seems there is not any large
node group belonging to these communities and staying together after this point. They might split in
many small groups and join different other communities, or maybe become isolated.

Another sequence of interest is < (C1165@4) >, which is supported by 15 nodes. The interesting
thing about this sequence is that there is no other sequence related to this community. Thus, there is no
description of the past or future of this community. It appears at t = 4, and then disappears right away. In
our pattern results, we do not have many sequences like this. Usually, community IDS appear in many
patterns, which allows to study their past and future.
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ID s |S(s)| Time Order
1 <(C161@9)(C367@10)> 43 Future
2 <(C161@9)(C189@10)> 44
3 <(C161@9)(C108@10)> 17
4 <(C161@9)(C197@10)> 16
5 <(C346@8)(C161@9)> 53 Past
6 <(C60@8)(C161@9)> 19
7 <(C374@8)(C161@9)> 46
8 <(C198@7)(C346@8)(C161@9)> 22 Further Past
9 <(C198@7)(C374@8)(C161@9)> 12
10 <(C508@7)(C374@8)(C161@9)(C189@10)> 11 Past-Future
11 <(C374@8)(C161@9)(C189@10)> 24 Past-Future
12 <(C346@8)(C161@9)(C197@10)> 13 Past-Future
13 <(C346@8)(C161@9)(C367@10)> 18 Past-Future

Table 6.2 Some major events related to C161@9

The sequence < (C561@4) > is also interesting. It is supported by 39 nodes. It means community
561 appears at t = 4, because there is no past history about this community. Although it might be
constituted of smaller node groups existing before t = 4, they are not large enough to appear in the
pattern list. When we track the future of this community, we see that one third of its nodes join C483@5.
However, there is no other pattern representing the rest of its nodes, which means they disperse.

6.2.2.3 General Remarks

An overall observation to the community sequences of the DBLP network confirms us that the com-
munities of this network are very dynamic and change very much. In the beginning of the considered
time period, the communities are in general smaller. As time goes by, there is a trend of merging small
communities to create larger ones. Moreover, we very often see that node groups coming from several
communities of a given time slice get together and join other communities at the next time slice. We
observe the apparition of large communities around t = 7−9, which tend to contract at t = 10.

No node group spans all 10 time slices constituting the considered time period: the longest life time
is 5 time slices. The supports of these longest sequences show us that they do not represent the majority
of the communities they successively belong to. Large communities of the last time slices generally
contain a node group coming from t = 5 or t = 6. However, although it is not common, there are some
relatively stable communities containing node group which were already formed at t = 1 or t = 2. These
communities usually undergo small-scale events (expansion or contraction).

We see some small communities appearing suddenly at a given time slice, and getting later assimi-
lated by other communities. More generally, we observe the disappearance of small communities espe-
cially during the first time slices. On the contrary, this is not the case for large communities. In the next
section, we examine in detail the patterns of some large communities appearing at different time slices,
in order to better understand their characteristic.

6.2.3 Community Interpretation

We create the enlarged sequence database and apply our framework on it. For CloSpan, we used minsup =
0.01. Given the size of the network, this means patterns must be supported by at least 21 nodes to be
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considered frequent. We determine mingr = 1.00 for the limit of emergence. For the interpretation, we
present the characteristic patterns found by our method in the tables, using numeric codes to display the
items. These items and their meanings, as well as the attribute codes, are given in Appendix, Chapter
8. We at first focus on the most supported patterns at subsection 6.2.3.1. Then we have a detailed look
at the most emerging patterns for some communities and community sequences at section 6.2.3.2 and
section 6.2.3.3 respectively.

6.2.3.1 Most Supported Patterns

We show some communities from different time slices in table 6.3. Their ID appear in our result CFS
set. We choose the largest ones to present here. We list the most supported patterns of each community,
the support of these patterns and the size of these communities in the same table. We remark that the
supports of all of these patterns are larger than 0.90 inside of the communities of interest. It shows that,
for each of these communities, there is a consensus among their nodes, about the descriptor appearing
in these patterns. Most of these patterns concern topological situations (topological descriptor), whereas
few of them are related to the total number of conference publications (attribute descriptor).

The most supported pattern for C992@2 is related to the position of nodes in their community. Most
of the nodes of this community have, at some point, many connections to other communities. Among
them, there are mostly non-hub community nodes. When we looked at the future/past events of this
community, we saw there is no node group lasting for a long time. The most supported pattern indicates
that the majority of nodes have external connections, this can be the reason why the authors from the
C992@2 do not stay together, since they already have connections and other interests related to other
communities.

C s Sup(s,C) |C|
C992@2 <(32)> 0.92 57
C1153@3 <(23)> 0.93 90
C1057@4 <(23)> 0.95 84
C262@6 <(23)> 0.94 102
C311@6 <(23)> 0.97 120
C389@7 <(31)> 0.91 148
C1@8 <(31)> 0.93 114
C8@8 <(31)> 0.95 113
C154@8 <(481)> 0.93 182
C161@9 <(31)> 0.95 183
C201@9 <(481)> 0.97 140
C383@9 <(482)> 0.90 105
C281@10 <(482)> 0.92 126

Table 6.3 Communities from different time slices (C), the most supported patterns of these communities
(s), the support of these patterns (Sup(s,C)) and the size of these communities (|C|)

For C1153@3, C1057@4, C262@6 and C311@6, the most supported pattern is related to the central-
ity of their nodes. Most of the nodes in these communities have an average betweenness and eccentricity.
It means the betweenness and eccentricity values are neither high nor low. The reason why a significant
part of these communities has this situation is not only because of the position of their nodes in the
community, but mostly because of the position of these communities in the network.
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For C389@7, C1@8, C4@8 and C161@9, the most supported pattern signifies that the more than
90% of the nodes of these communities have a high embeddedness at some point of time period. Thus,
they mostly have internal connections. It is an important sign, because it shows that the members of
these communities tend to stay together, or even if they leave their community, they might do it together
(at least subset of the community). Indeed, when we study the community sequences related to these
communities, we see that a large node group from C389@7 (78 nodes) is staying together at C1@8.

For C154@8 and C201@9, the most supported pattern reflects that, for most nodes, the total number
of conference publications, at some time slice, is between 1 and 5. For C383@9 and C281@10, the most
supported pattern means the total number of conference publications number is between 5 and 10.

6.2.3.2 Trend of Communities Appearing in One Time Slice

In table 6.4, we present the trends appearing for the community sequences at size 1. Thus, these emerging
patterns represent the trend of one community appearing at one time slice. In the table, each row presents
the community, its characteristic pattern, growth rate and support of this pattern. The communities are
indicated with the community sequences of size 1 in the first column of the table. For C311@6, we find
5 characteristic patterns. Three of them are shown as pattern #1, 2 and 3 in table 6.4. The most emerging
one is pattern #1. It represents the existence of a node group in this community, which mostly belongs
to their community and have no or very few external connections. Afterwards, they publish in the SDM
once. Then, they are characterized by their belonging to tightly connected groups of nodes, having a
high betweenness and having external connections. This topological situation continues in the future
once more as well. Pattern #2 is an interesting supplementary pattern one this community. It describes
nodes having average betweenness and closeness, then belonging mostly to their community, with very
few external connections, while publishing in ICDM once. They then have a total number of journal
publications between 1 and 5. Another interesting pattern of the same community shown as pattern
#3 is referring to the existence of a node group having average betweenness, closeness and belonging
mostly to its community with very few external connections. It is continued by having one publication in
TKDE and a total number of conference publications between 1 and 5. It is continued by being mostly
embedded in its community and still having a total number of conference publications between 1 and
5. The sequence follows with the same number of conference publications for two more time slices in
the future. It seems the members of this community are interested in data mining mostly. They publish
once in data mining events (SDM, ICDM and TKDE). In general, the community is not having too much
external connection. However, the part which publishes in SDM starts to have external connections. We
do not have an interesting pattern about the past or future of this community.

We have 4 characteristic patterns for the C8@8. We present here the most emerging one, which is
also the most interesting one, and appears as pattern #4 in table 6.4. It has a growth rate of 59.08, which
is very high. Thus, we can assume that it is very characteristic of this community. It refers to a node
group having two publications in ILP, then having a high betwenness, low closeness and none or very
few external connections. This community therefore includes a node group which has active internal
connections but is only weakly connected to the rest of the network. There are two anomalies in this
community: Jesse Davis and Deepak P. We notice that these authors do not have any publication in ILP
in our database. We manually searched for more information regarding these people, and noticed Jesse
Davis has published in ILP in 2012 and 2013; our database contains records only from 1990 to 2012.
So, the anomalies outputted from our framework might have the possibility of being similar to their
communities in the future.

Regarding C154@8, the most emerging pattern is presented as pattern #5 in table 6.4. It corresponds
to a trend consisting in publishing in EDBT, then having high local transitivity while having a high be-
twenness, low closeness and some external connections. Nodes following this trend also have a total
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swise |S(swise)| sless Gr sup
1 <(C311@6)> 120 <(23 31)(261)(11 22 32)(11 22 32)> 6.86 0.2
2 <(C311@6)> 120 <(23)(31 61)(481)> 6.00 0.2
3 <(C311@6)> 120 <(23 31)(81 471)(31 471)(471)(471)> 4.00 0.2
4 <(C8@8)> 113 <(462)(22 31)> 59.08 0.20
5 <(C154@8)> 182 <(221)(11 22 32 472)> 9.28 0.17
6 <(C161@9)> 183 <(241)(203)> 11.07 0.17
7 <(C201@9)> 140 <(21 471)(471)(11 22 32 471) (11 22

32)(11 22 32)>
15.03 0.17

8 <(C201@9)> 140 <(11 22 32 81)(11 22 32 221)> 6.53 0.15
9 <(C201@9)> 140 <(222 482)> 3.06 0.15

Table 6.4 List of community sequences and their most emerging patterns related to C31@6, C8@8,
C154@8, C161@9 and C201@9. From left to right, the columns correspond to a community sequence
swise, the number of nodes |S(swise)| supporting it, a characteristic pattern of this sequences sless, the
growth rate Gr(sless,S(swise)) and support sup(sless,S(swise)) of this pattern relatively to the supporting
node set of the community sequence.

number of conference publications between 5 and 10. The anomaly from this community is Muham-
mad Aamir Cheema. This author does not have any EDBT publication according to our database. We
manually searched for additional information regarding this author as well. We noticed that he started
publishing in EDBT after 2013. So, this anomaly also confirms our previous remark. Some of the
anomalies might be similar with their communities in the future. Community C161@9 has 6 character-
istic patterns. The most emerging and interesting one is shown as pattern #6 in table 6.4. It refers to a
node group who publishes at first in ICML once, and then have three KDD publications. This community
is rather large. It is difficult to cover it with only one pattern. However, it seems there is not a significant
trend among the other nodes of this community except the ones who supports this pattern. The anomaly
of this community is Yang Song. He has no publication in ICML or in KDD.

We find 7 characteristic patterns for C201@9. The most emerging and two interesting supplementary
patterns are shown as pattern #7, 8 and 9 in table 6.4. Pattern #7 mostly indicates the topological situation
of the nodes. A significant group in this community has a high eigenvector centrality, and they are close
to the other nodes. Meanwhile, they have between 1 and 5 journal publications. Later, they have between
1 and 5 journal publications, again. Then, this group is connected to other communities, by having high
betwenness and high local transitivity and low closeness. This topological situation continues two more
time slices. One of the supplementary patterns, shown as pattern #8 in the table 6.4, tells us there is a node
group which has external connections while having high betwenness and high local transitivity and low
closeness. They meanwhile publish once in TKDE. Afterwards, the same topological situation continues
and they publish once in EDBT. The last interesting supplementary pattern indicates the existence of a
node group which publishes two times in EDBT and their total conference publication number is between
5 and 10. We do not find any anomaly in this community.

6.2.3.3 Trends of C992@2 and Related Node Groups

Let us have a look at C992@2. Because C1153@3 also appears in the same community sequence than
C992@2, we comment them together. In table 6.5, we list the patterns related to these communities. We
see that the most emerging one for C992@2 has a very high growth rate of 586.10. Thus, it is highly
representative of this community. It represents a node group which have high eigenvector centrality and
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who are close to other nodes. Meanwhile, they have 1 publication in VLDBJ and their total number of
journal publication is between 1 and 5. Afterwards, these nodes have high local transitivity, more than
average degree and they have high betweenness. Moreover, they have external connections. Then, these
nodes have one publication in PODS. We have found 5 patterns to cover this community. One of the
interesting supplementary patterns is shown as pattern #2 in Table 6.5. This pattern tells us that there is
another node group having 1 publication in Commun ACM and a total number of journal publications
between 1 and 5. They then have a total number of journal publications between 1 and 5 again in a
subsequent time slice.

When we focus on pattern #3 in table 6.5, we have an idea about the node group of C992@2 which
keep being together at t = 3. The trend they follow is quite similar to the characteristic patterns of
C992@2, with some additional items. It seems, the nodes which keep being together have high eigen-
vector and close to other nodes and have more than 4 publications in VLDB conference and their total
journal publication number is between 1 and 5. Afterwards, still their total journal publication number
is between 1 and 5. It is followed by having high transitivity and more than average degree and having
external connections. Then, again their total journal publication number is between 1 and 5.

swise |S(swise)| sless Gr sup
1 <(C992@2)> 57 <(21 301 471)(11 32) (291)> 586.10 0.28
2 <(C992@2)> 57 <(71 471)(471) (471)> 5.00 0.28
3 <(C992@2)(C1153@3)> 40 <(21 215 471)(471)(11 32)(471) > 64.76 0.40
4 <(C1153@3)> 90 <(21 301 471)(21 301 471)(32)> 77.06 0.30
5 <(C1153@3)> 90 <(21)(215 471)(471)> 10.74 0.17

Table 6.5 List of community sequences and their most emerging patterns related to C992@2 and
C1153@3. From left to right, the columns correspond to a community sequence swise, the num-
ber of nodes |S(swise)| supporting it, a characteristic pattern of this sequences sless, the growth rate
Gr(sless,S(swise)) and support sup(sless,S(swise)) of this pattern relatively to the supporting node set of
the community sequence.

We see a similar trend for C1153@3, as illustrated by pattern #4 in table 6.5. We found 5 character-
istic patterns for C1153@3, but we discuss only the most emerging and interesting ones. A node group
of this community have a high eigenvector centrality and they are close to other nodes. Meanwhile, they
have one publication in VLDBJ and a total number of publications between 1 and 5. The same situation
is reproduced at a later time slice. Later, these nodes are connected with other communities. The pattern
#5 in table 6.5 represents a trend which is similar enough. It points out the nodes which have high eigen-
vector centrality, then have more than 4 publications in VLDB and a total number of journal publications
between 1 and 5. Then, their total number of journal publications is again between 1 and 5. To sum up,
we remark that the core part of C992@2 publishes in VLDB and VLDBJ. These nodes stay together at
t = 3. Although there are new comers (the size of C1153@3 is 90 while the size of C992@2 is 57), it
seems they follow a similar trend, in the sense they also publish in VLDB or VLDBJ. Afterwards, this
core part starts to have external connections. Although there is another part of C992@2 who publishes
in CommunACM, it seems they disappear, or the nodes of this part do not continue being together.

6.2.4 Conclusion

In general, DBLP communities are getting crowded as time goes by. In the beginning we have asked
some questions about DBLP communities. Our framework helped us to reply these questions. Is there
a clear separation between the communities in terms of their journal/conference publications? We have
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seen that the communities of DBLP do not constituted around one interest but they have different node
groups having common interests in terms of their attributes. These node groups tend to keep being to-
gether as time goes by. Are the communities homogeneous about their journal/conference publications
or they are homogeneous about their research theme? For this question, we see that in general com-
munities are not completely homogeneous. However, although there might be different node groups
publishing at different conferences/journals, the theme of these activities can be same for some com-
munities. The other question was What are the anomaly types? We can group the anomalies into three
groups. The first ones are authors not publishing in the same conferences than the other authors from the
same community. Our manual verifications showed that some of these authors have started to publish in
the same conferences recently that we do not have these records in our database. The second anomalies
are nodes which are topologically different from their communities, although they publish in the same
conferences. The third anomalies are nodes which are much more active or passive relatively to the rest
of their community.

6.3 LastFM Network

6.3.1 Presentation of the Data

LastFM is a music website that allows its members to register and listen to music online [88]. It is also a
social network platform, because the members can declare friendship relationships. In LastFM, members
can join a predefined groups related to their music tastes, and participate in music-related events such
as concerts. Using the LastFM API, One can retrieve the information of the artist and track a user has
listened to, with the exact timestamp. Moreover, it is also possible to get some information regarding the
music-related events the users joined, including the exact timestamps.

We extracted a network by focusing on the members of the group Jazz, which is supposed to include
users appreciating this type of music. We took advantage of the LastFM API to retrieve the members
of this group and the existing friendship connection between them. In the end, our network contains
3478 nodes representing the Jazz users. The friendship relationships between them is static, though, in
the sense the LastFM API does not give access to any temporal information regarding their beginning or
end. So, we decided to take advantage of some additional information to get a dynamic structure. We put
a link between two nodes if two conditions were simultaneously true: 1) both considered users listened to
at least one common artist for a specific period of time, and 2) they are friends on the LastFM platform.
For the mentioned period of time, we decided to use 1 month, after having analyzed the dynamics of the
platform. In other words, we extracted a dynamic network in which each time slice represents one month
of LastFM usage for our 3478 users of interest. We define 37 nodal attributes based on the users’ music
tastes: 21 of them represent the most popular artists in the Jazz group, and the 16 others correspond to
the types of music-related events the members can joined. The popularity of the artists is determined
depending on their numbers of listeners in the Jazz group. For each time slice, the attribute values
correspond to the total numbers of times a given user listed to a given artist, and the number of times he
joined an event of a given type, respectively. The complete list of these attributes is given in Appendix,
Chapter 8. For this work, we focused on the data describing only the year 2013, and separated it into 12
time slices of one month each.

It is interesting noticing that, although all our nodes are from the Jazz group, the selection of most
popular artists include acts from music types very different from Jazz, such as the Beatles or Pink Floyd.
We nevertheless kept these artists, because their playing rate is very high in the Jazz group. But most
of the popular artists we evaluate play Jazz-related music. Event types also span a wide range of music
types, from jazz to folk. Our aim while analyzing this network is to get an idea about the trends among
the jazz listeners. Some questions we want to answer are: Is there a clear separation among the listeners
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of different jazz types? Do jazz listeners follow jazz events as well? What are the communities of jazz
listeners? Do jazz listeners from same communities have similar tastes of music?

Once the network was created, we processed the required topological measures and clustered them
like we did for the DBLP network in the previous section. The attribute values were binned. For artist
attributes, we determined 5 intervals to group the numbers of listenings: [1;5], ]5;30], ]30;90], ]90;200]
and ]200;∞[. Regarding the event types, we defined 4 intervals: [1;4], ]4;7], ]7;11] and ]11;∞[. The
intervals and their meanings are listed in Appendix, Chapter 8.

6.3.2 Node Group Evolution

As we did for the DBLP network, we first apply CloSpan on a sequence database including only com-
munity sequences, in order to see how the communities evolve. We used minsup = 0.001, which allows
us to obtain community sequences supported by at least 4 nodes. Here, we follow for LastFM the same
interpretation method than the one used for DBLP. Like in the DBLP network, the most supported com-
munity sequences have of size 1. They represent one community appearing at one time slice. We present
the alluvial diagram of the evolving community structure of LastFM in Figure 6.2. Differently from
DBLP, there are not death or birth events in LastFM. Moreover, we notice that the sizes of the communi-
ties of different time slices are almost similar. In DBLP, the communities were getting larger with time.
However, in LastFM, there is not a significant difference between the first and last time slices.
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Fig. 6.2 Alluvial Diagram of LastFM evolving Community Structure. Diagram is generated by Edler and
Rosvall’s application [39]

Let us now have a look in detail at the evolution of the main communities. The community sequences
whose sizes are larger than 100 are all of size 1. We list the first five community sequences with the
highest support in table 6.8. Some of these sequences are the continuation of each other. More clearly,
we obtain community sequences including some of the listed communities together. Here, we present
an evaluation around one community to show a sample of community evolution events of LastFM. In
the subsection which concludes this section, we try to express our general observations of community
evolution in LastFM.
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s |S(s)|
<( C593@5)> 161
<(C4@4)> 159
<(C668@7)> 151
<(C11@6)> 150
<( C19@7)> 140

Table 6.6 Community Sequences with highest supports for LastFM

6.3.2.1 Events Related to a Community of Interest

We show some important community sequences related to C593@5 in table 6.7. We see that three node
groups leave C593@5 and join three communities at the next time slice (C11@6, C12@6 and C22@6).
Two of these new node groups are smaller (patterns #4 and 5: 13 nodes each) while one of them is
clearly larger (pattern #3: 62 nodes). Moreover, at a longer term, we see that some parts of this larger
node group stay together at t = 7 (c.f. pattern #2) and at t = 8 (c.f. pattern #1). Regarding the past, we
observe that three node groups from different communities of t = 4 get together in C593@5. Among
them, C4@4 have the highest intersection with C593@5 (c.f. pattern #8, 48 supporting node). When we
look at the further past, we see that there is a node group coming from C68@1 which end up in C593@5
(c.f. pattern #9 with 41 nodes), even if these nodes do not all stay together in the meantime. Some of
them do, though, in C4@4, as shown in pattern #11 (28 nodes). Similarly, when we regard patterns #10
and 12, we understand that there is a node group of C16@2 which are also together in C593@5. Some
of those nodes were also together in C4@4.

ID s |S(s)| Time Order
1 <(C593@5)(C11@6)(C13@8)> 20 Further Future
2 <(C593@5))(C11@6)(C668@7)> 20
3 <(C593@5))(C11@6)> 62 Future
4 <(C593@5))(C22@6)> 13
5 <(C593@5))(C12@6)> 13
6 <(C586@4)(C593@5))> 19 Past
7 <(C547@4)(C593@5))> 12
8 <(C4@4)(C593@5))> 48
9 <(C68@1)(C593@5))> 41 Further Past
10 <(C16@2)(C593@5))> 37 Further Past
11 <(C68@1)(C4@4)(C593@5))> 28 Further Past
12 <(C16@2)(C4@4)(C593@5))> 20
13 <(C237@3)(C4@4)(C593@5))> 19

Table 6.7 Some major events related to C593@5

6.3.2.2 General Remarks

Considering all community evolution events occurring in LastFM, we can say that although the evolution
is very dynamic, it is not as eventful as for DBLP. We do not observe major large-scale events like birth
or death. However, we observe frequent separations or joining of different node groups. In general, two
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communities of a previous time slices do not merge completely to create a larger one in the time slice
of interest: the general trend is more for some parts of communities to get together with some parts of
other communities. They then create a part of another community at the following time slice. It is the
same for the groups leaving existing communities as well. Differently from DBLP, communities are not
getting larger with time. We even observe dense communities at the 1st and 2nd time slices. Moreover,
community C68@1 affects many major communities of the next time slices. Different node groups of
this community later appear in many other communities from t = 4 or t = 5, which keep surviving until
t = 9.

Regarding the size of the community sequences, we notice that we have very long sequences (repre-
senting an evolution during 10 to 12 time slices) supported by up to 6 nodes. This means some groups
of 6 nodes stay together in the same community during the whole considered period of time. For the
sequences supported by more than 10 nodes, there are many shorter sequences representing an evolution
included between t = 1 and t = 12 (but not spanning the whole period of time). Although the size of
these sequences is not longer than 6 (which means they do not include each time slice), they still repre-
sent a continuation for a long time. In general, we can say that the evolution of the LastFM communities
is smoother than that of the DBLP communities, mainly because of the absence of large-scale events,
meaning the communities evolve most of all in terms of increasing or decreasing size. We want to re-
mind the reader that this LastFM network describes an evolution over one year, while the DBLP network
represents a 18 years evolution. So not only the systems, but also the temporal scales are different.

6.3.3 Community Interpretation

We create the enlarged sequence database of LastFM and apply our framework on it. For CloSpan, we
used minsup = 0.005. Thus, we get patterns supported by at least 20 nodes. As we did for DBLP, we
at first present the most supported patterns at section 6.3.3.1 and then, we also explains the interesting
emerging patterns for some communities in section 6.3.3.2. We present the interesting emerging patterns
related to some community sequences at sections 6.3.3.3 and 6.3.3.4.

6.3.3.1 Most Supported Patterns

We show a selection of most interesting communities from different time slices in table 6.8. Each row
displays a community that we choose according to its size (larger than 80 nodes), together with its most
supported pattern, the support of this pattern and the community size. We want to underline here that
supports are not as high as with the DBLP network. For most of the communities, the highest support is
between 0.60 and 0.70, which is still high. This shows that these communities are not as homogeneous
as the DBLP ones, in terms of similarity of their descriptor values.

The most part of the most supported patterns expresses a topological situation. We see that for com-
munities C68@1, C602@1, C301@1,C593@5, C11@6, C668@7, C551@8 and C12@9, the most sup-
ported pattern represents node groups which do not have a central position especially about betweenness
and eigenvector centralities. They can be close to other nodes, but they do not have a high eigenvec-
tor centrality. They do not have a high degree or transitivity. They mostly are embedded in their own
communities. Even if they have some external connections, these are very few. Moreover, they do not
hold a community hub role. This does not appear in this specific table, but among these communities,
C68@1 is the root of many other communities of the next time slices: C593@5, C11@6, C668@7
and C12@9.It means, we obtain many community sequences starting with C68@1 and including also
C593@5, C11@6, C668@7 and C12@9. The trend of belonging mostly to its community for the nodes
of C68@1 can be a sign of that this node group keep being together in following time slices C593@5,
C11@6, C668@7 and C12@9. For being sure, we need to check the characteristic patterns related to
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community sequences including both C68@1 and other community ID’s. We examine in detail the trends
related to C68@1 in section 6.3.3.3.

C s Sup(s,C) |C|
C68@1 <(11 24 32)> 0.68 124
C602@1 <(11 24 32)> 0.87 81
C301@1 <(11 24 32)> 0.77 105
C16@2 <(131)> 0.62 116
C237@3 <(131)> 0.66 98
C4@4 <(12)> 0.63 159
C593@5 <(11 24 32)> 0.68 161
C11@6 <(11 24 32)> 0.69 150
C668@7 <(11 24 32)> 0.64 151
C551@8 <(11 24 32)> 0.75 111
C12@9 <(11 24 32)> 0.71 91
C123@10 <(12)> 0.69 119
C57@11 <(12)> 0.65 129
C1256@12 <(12)> 0.65 107
C38@12 <(131)> 0.68 85

Table 6.8 Communities from different time slices (C), the most supported patterns of these communities
(s), the support of these patterns (Sup(s,C)) and the size of these communities (|C|)

For communities C4@4, C123@10, C57@11 and C1256@12, the most supported pattern shows that
the majority of the nodes of these communities have at least once a central position. At least at one time
slice, they might be have a high degree and a high local transitivity. They might have a high eigenvector
centrality. For communities C16@2, C237@3 and C38@12, we see that the majority of the users listen
to John Coltrane between one to five times, at least at one time slice. It is indeed very interesting that
there is a consensus among the nodes of these communities about listening to the same artist. We discuss
in detail the emerging trends of some of these communities representing the common evolution of their
nodes.

6.3.3.2 Trend of Communities Appearing in One Time Slice

We start with the emerging patterns containing a single community ID. These communities and their
characteristic patterns are shown in table 6.9 and 6.10. We find 8 characteristic patterns mentioning
C301@1. The most emerging one is shown as pattern #1 in table 6.9 . It represents a node group which
listens to Miles Davis between one and five times in a time slice. Then, they take a central situation
and high local transitivity. Meanwhile they have some external connections. However, these external
connections are not distributed over many different communities, but rather concentrated in a few ones.
In the future, these nodes keep this topological position, while also having a low betweenness and lis-
tening to Miles Davis between one and five times. We want to indicate that there are other communities
characterized also by listening Miles Davis. For C301@1, having external connection but especially to
few number of other communities can be a sign that Miles Davis listeners of different communities are
highly connected with each other. Thus, there might be overlapping between different communities. Two
other interesting patterns among the supplementary ones are shown as pattern #2 and 3. Pattern #2 refers
to a node group which have a central position with average degree, while listening to Ella Fitzgerald
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and Chet Baker between one and five times. It is continued by keeping the same topological position.
Here listening Ella Fitzgerald and Chet Baker at same time might be explained by the fact that these two
artists are vocal. Chet Baker is famous with his virtuosity on Trumpet but he also sings. Indeed, when
we search in detail the data of LastFM, we see that there are users listening several times My Funny
Valentine from Chet Baker and also from Elle Fitzgerald. Pattern #3 describes a node group listening to
Miles Davis between one and five times, followed by having some external connections and having a low
betweenness. Then, these nodes keep their topological position and also listen to John Coltrane between
once and five times. It is followed by having the same topological position. For C301@1, we see a
common topological situation referring to the nodes which have some external connections. Their exter-
nal connections are usually to one community. They have a non-hub role in their community. It seems
there are Miles Davis lovers in this community. The two different node group of C301@1 represented in
patterns #1 and #3 refers them. However these two groups differs in terms of their topological situations.
There are also Ella Fitzgerald, Chet Baker and John Coltrane lovers in this community. The interesting
thing is some of these artists represents very different Jazz types. Elle Fitzgerald is a singer of Classic
Jazz while John Coltrane or Miles Davis are the most important representatives of modal jazz. Thus,
there is a consensus in this community neither about the artist nor the jazz type they listen. Nevertheless,
we cannot say that the nodes of this community is very dispersed in terms of their interest. There is two
major group : Miles Davis-John Coltrane fans and Ella Fitzgerald-Chet Baker fans.

swise |S(swise)| sless Gr sup
1 <(C301@1)> 105 <(41)(12 34)(12 22 34 41)> 20.36 0.18
2 <(C301@1)> 105 <(12 81 101)(12)> 8.84 0.18
3 <(C301@1)> 105 <(41)(12 22 34)(12 131)(12)> 16.49 0.18
4 <(C593@5)> 161 <(22)(22 42)(22 172)(22) > 37.34 0.18
5 <(C593@5)> 161 <(61)> 2.06 0.13
6 <(C11@6)> 150 <(12 22)(12 22 34)(12 34)(22)(22

42)(22)>
35.03 0.20

7 <(C11@6)> 150 <(151)(151)> 6.93 0.20
Table 6.9 List of community sequences and their most emerging patterns related to C301@1, C593@5
and C11@6. From left to right, the columns correspond to a community sequence swise, the num-
ber of nodes |S(swise)| supporting it, a characteristic pattern of this sequences sless, the growth rate
Gr(sless,S(swise)) and support sup(sless,S(swise)) of this pattern relatively to the supporting node set of
the community sequence.

Regarding C593@5, we find 5 characteristic patterns. The most emerging one is shown in pattern
#4 in Table 6.9. This pattern refers to nodes in this community which are non-between and have average
eigenvector centrality. They keep their topological position in the future, while also listening to Mile
Davis 5-10 times. The same topological situation continues in the future and they listen to Charles
Mingus 5-10 times. They then keep the same topological position. The supplementary pattern is shown
as pattern #5. It refers to a node group listening to Keith Jarrett at least at one time slice from once to five
times. We have 11 anomaly nodes in this community, which do not follow any of the detected patterns.
We check in detail these nodes. They do neither have a listening activity nor participate to any event
at any time slice. Moreover, we see that these nodes are isolated (i.e. their degree is 0). So, we can
conclude they were misplaced by the community detection algorithm. Indeed, they should not be placed
in any community, because they are not connected to other nodes.

When we look at community C11@6, we find 5 characteristic patterns. The most emerging one is
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shown as pattern #6 in table 6.9. It mostly refers to a topological position. The nodes supporting this
pattern have a low betweenness and average closeness. They have high local transitivity. They keep
this position while also having some external connections and they are non-hub in their communities.
Indeed this topological position continues in the future. Then, they listen to Miles Davis 5-10 times.
One interesting supplementary pattern of this community is shown as pattern #7. It refers to the nodes
which listen to Thelonious Monk 1-5 times. Afterwards, they again listen to same artist 1-5 times. We
detected four anomalies in this community, which are also nodes misplaced by the community detection
algorithm, like for the previous community. These nodes do not have any activity at any time slice.

There are 6 characteristic patterns mentioning C668@7. The most emerging one is pattern #1 in
Table 6.10. It is referring to a node group listening to Miles Davis 1-5 times. Meanwhile, these nodes
are central, especially in terms of their closeness. They have high transitivity. They then have a low
betweenness and are mostly connected to their community, while being community non-hubs. Two
interesting supplementary patterns are shown as patterns #1 and 2. The former one corresponds to a
node group having high local transitivity and which are central, especially in terms of closeness. These
nodes meanwhile listen to Charlie Parker 1-5 times. Afterwards, they listen to Herbie Hancock 1-5 times.
The latter pattern describes a node group listening 1-5 times to the Beatles and then to Pink Floyd. We
again detect the misplaced nodes as anomalies for this community. It is very interesting that in C668@7,
three patterns refer to three different node groups that seem having different music tastes. One of them
listens to Miles Davis, the other listens to Charlie Parker and Herbie Hancock and the last one listens to
the Beatles and Pink Floyd. Here, we notice a clear separation of non-jazz listeners. It can be expected
that the Beatles and Pink Floyd fans stay apart from other listeners because of their taste of music.

swise |S(swise)| sless Gr sup
1 <(C668@7)> 151 <(12 42)(22 32)> 26.82 0.18
2 <(C668@7)> 151 <(12 91)(51)> 8.22 0.18
3 <(C668@7)> 151 <(221)(241)> 2.44 0.18
4 <(C551@8)> 111 <(12 34)(12 34)(111)(171)> 13.67 0.20
5 <(C551@8)> 111 <(191)> 1.55 0.20
6 <(C1256@12)> 107 <(12)(12 42)(22)(41)(12 34)(12 34) > 34.82 0.19
7 <(C1256@12)> 107 <(281) > 1.46 0.21
8 <(C1256@12)> 107 <(251) > 2.15 0.20

Table 6.10 List of community sequences and their most emerging patterns related to C668@7, C551@8
and C1256@12. From left to right, the columns correspond to a community sequence swise, the num-
ber of nodes |S(swise)| supporting it, a characteristic pattern of this sequences sless, the growth rate
Gr(sless,S(swise)) and support sup(sless,S(swise)) of this pattern relatively to the supporting node set of
the community sequence.

For C551@8, there are 6 characteristic patterns. The most emerging one is shown as pattern #4
in table 6.10. It refers to a node group which are community non-hubs, have a few external links, but
are mainly connected internally, and are central especially in term of their closeness. This topological
position continues once in the future again. Then, they listen to Nina Simone 1-5 times. Afterwards,
they listen to Charles Mingus 1-5 times. One interesting supplementary pattern is given as pattern #5 in
the same table. It refers to a node group once belonging to C551@8, which listens to Norah Jones 1-5
times, at least at one time slice. Here again we see a separation between the node groups which listens
different artists. However, we can identify this community as soul, blues female vocal lovers. Norah
Jones is vocal of 2000s. She is singing soul, blues etc. Nina Simone and Charles Mingus represent an
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older age. Nevertheless, Nina Simone also sings blues, soul, etc.
For community C1256@12, we find 10 characteristic patterns. The most emerging one is given as

pattern #6 in table 6.10. It mostly refers to the continuation of a topological situation. In the beginning,
the concerned nodes have a high closeness centrality high local transitivity. This situation continues while
also listening to Miles Davis 5-10 times. Afterwards, these nodes have a high eigenvector centrality and
a have low betweenness. Then, they again listen to Miles Davis, but this time 1-5 times. It is followed by
having high closeness centrality, high local transitivity and also having some external connections. Two
supplementary patterns refer to the existence of two different node groups. The first and second groups
participate to rock and jazz events, respectively, at least at one time slice, 1-4 times. The four anomalies
of this community have the same property than the other anomalies we indicated before: they seem to be
misplaced by the community detection algorithm, because they have no activity and they are isolated.

After an overall observation together these characteristic patterns related to one community appearing
at one time slice, we can say that they usually refer to a continuation of a topological situation at least
twice. This topological situation indicates the existence of nodes which have some external connections,
generally focusing only on one or a few communities. Moreover, they do not have a high betweenness,
but they seem have a high closeness and a high local transitivity. We find at least one attribute-related
descriptor during the characterization. However, usually the most emerging and supplementary patterns
refer to different attributes. Thus, we can assume that the communities are not completely homogeneous,
but there are different homogeneous groups inside of the same community. We notice that many different
communities are characterized by Miles Davis. He is a great artist who is the creator of different types
of Jazz. Thus, it can be expected that we find his lovers in many different communities. For some
communities, it is possible to distinguish them from the rest of the network by their interest (c.f. C551@8
- soul, blues female vocal lovers). For some other communities, there is not one interest but few of them
(c.f. C668@7 - rock lovers and jazz lovers). Regarding the anomalies, we notice that all the anomalies we
find for these communities are misplaced. So, our framework helps us to correct the defect of community
detection algorithm. Now, let us look in detail to the patterns appearing in more than one community of
different time slices. These patterns help us to understand the characteristic of switching nodes from one
community to another at different time slices.

6.3.3.3 Trends of C68@1 and Related Node Groups

In the section 6.3.3.1, we underlined that there are different node groups of C68@1 appearing in different
communities of the next time slices. That is why, we want to interpret this community. Indeed, we find
many emerging patterns showing the trend of switching nodes from this community. In table 6.11, we
present the most emerging and most interesting patterns related to C68@1. We find 8 characteristic
patterns for C68@1.

Pattern #1 in table 6.11 is the most emerging one. It represents the nodes listening to Thelonious
Monk 5-10 times. Then, they hold a topological situation of having high eigenvector and low between-
ness. This topological situation continues for a long time in the future. The three interesting supple-
mentary patterns are shown as patterns #2, 3 and 4. Pattern #2 refers to the same situation than before,
but these nodes listen to Charles Mingus. Pattern #3 represents the nodes listening to Miles Davis 5-10
times and Nina Simone 1-5 times. Then, these nodes have a high closeness but low betweenness. They
also have a high eigenvector centrality. We see the continuation of these nodes in patterns #5, 6, 9, 10,
14 and 15. It seems these nodes listening to Miles Davis migrate to C237@3, then C4@4 , C459@5
, C11@6, C12@9 and C38@12 respectively. We make out this result by comparing the supporting
nodes sets of patterns #5, 6, 9, 10, 14 and 15. Their supporting nodes are almost the same, although
there are some small differences for each community. An interesting remark for community sequence
<(C68@1)(C4@4)(C593@5)(C38@12)> is that the support of the most emerging pattern is 1.00 (c.f.
pattern #15 in table 6.11). Thus all the nodes which belong to C68@1, then 4@4, then C593@5 and
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then 38@12 listens to Miles Davis in at least at one time slice. We obtain one anomaly for pattern #9. It
is user bentelhaj, which listens very routinely to Miles Davis: 1-5 times at almost at all time slices. The
general trend of this community sequence includes listening to Miles Davis 5-10 times.

Regarding pattern #4, we understand that there are nodes which have a central position in terms
of their closeness and a high local transitivity. Afterwards, these nodes listen to John Coltrane 5-10
times, and in the future they again listen to the same artist 5-10 times. Focusing on the nodes belonging
to C68@1 and then C4@4, we find three interesting trends. They are shown by patterns #6, 7 and 8.
Pattern #7 represents a node group belonging to these two communities, respectively, and which at least
once have a high closeness, a high local transitivity and listen to Charles Mingus 1-5 times. Pattern #8
represents a group among the nodes switching from C68@1 to C4@4, which have a low betweenness
and have average eigenvector centrality. This topological situation continues once more, while also
listening to John Coltrane. We find one anomaly for community sequence <(C68@1)(C4@4)>: it is
user JazzyFJuice, which mostly listens to the Beatles, Radiohead and Django Reinhardt. He does not
follow any of the patterns we detected for the community sequence he belongs to. For community
sequence <(C68@1)(C38@12)>, the related characteristic patterns are shown as patterns #11 and 12.
They represent two nodes groups of this community sequence. The first ones have some connection
from outside of their community. These friends belong usually to one community. The nodes have a
high closeness, then listen to John Coltrane, then to Miles Davis. The second one indicates a similar
topological situation but the external connections of the nodes are distributed over many communities.
Afterwards, these nodes listen to Charles Mingus.

swise |S(swise)| sless Gr sup
1 <(C68@1))> 124 <(152)(22) (22) (22) (22) (22)

(22)>
36.59 0.18

2 <(C68@1))> 124 <(22) (22 172)> 7.53 0.13
3 <(C68@1))> 124 <(42 111) (12 22)> 14.81 0.18
4 <(C68@1))> 124 <(12) (132) (132) (22) > 8.21 0.13
5 <(C68@1))(C237@3)> 30 <(42)(12)> 7.91 0.63
6 <(C68@1))(C4@4)> 59 <(12 22) (22 42)(22)(22)(12) > 22.43 0.40
7 <(C68@1))(C4@4)> 59 <(12 171)> 6.17 0.38
8 <(C68@1))(C4@4)> 59 <(22)(22 131)> 7.75 0.28
9 <(C68@1))(C593@5)> 41 <(42)(22)> 12.76 0.56
10 <(C68@1))(C11@6)> 46 < (22) (42)> 12.52 0.50
11 <(C68@1))(C38@12)> 43 < (12 34)(132)(42)(42)> 21.55 0.39
12 <(C68@1))(C38@12)> 43 < (12 33)(172) > 19.97 0.39
13 <(C68@1))(C4@4)

(C38@12)>
31 <(12 22)(12)(131)> 13.79 0.54

14 <(C68@1))(C12@9)
(C38@12)>

31 <(12 42)> 8.92 0.68

15 <(C68@1))(C4@4)
(C593@5)(C38@12)>

17 <(42)> 5.91 1.00

Table 6.11 List of community sequences and their most emerging patterns related to C68@1, C237@3,
C4@4, C11@6, C12@9 and C38@12. From left to right, the columns correspond to a community
sequence swise, the number of nodes |S(swise)| supporting it, a characteristic pattern of this sequences
sless, the growth rate Gr(sless,S(swise)) and support sup(sless,S(swise)) of this pattern relatively to the
supporting node set of the community sequence.
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6.3.3.4 Trends of C602@1 and Related Node Groups

We obtain 5 characteristic patterns for community C602@1. The interesting ones, as well as the com-
munity sequences including them, are listed in table 6.12. The most emerging one is pattern #1. It shows
a specific topological position of having no central situation, few connections, low centrality, being a
community non-hub and being mostly connected to its own community. This situation continues in the
future. Then, the users corresponding to these nodes listen to Pink Floyd 5-10 times. Afterwards, they
keep their topological situation while also listening to the Beatles 5-10 times, and then they again hold
the same topological situation. Although the artist they listen to changes, their structural features do not
change at all.

One interesting supplementary pattern is shown as pattern #2. It refers to an emerging node group
which listen at first to the Beatles 5-10 times, then to the Beatles again in the same amount, and then to
Frank Sinatra 1-5 times too. A part of C602@1 seems to not be interested in Jazz at all. The emerging
group of this community is mostly connected with the nodes of their community. In fact, intuitively, it
makes sense that the people not interested in jazz too much but which are still a part of a jazz listeners
network stay close to each other and do not interact much with other users. A very interesting fact
concerning these users is that some of these groups keep surviving at t = 10. Pattern #4 shows that the
nodes supporting the community sequence <(C602@1)(C246@10)> have the same topological situation
and listen to Pink Floyd. It is very similar for pattern #3 as well. When we compare the supporting
nodes of these two patterns (patterns #3 and 4), we notice they have a large intersection. Two anomalies
of community sequence given #3 are users Negozio Fama and Absurd_Maers. We checked their node
sequences and observed that these nodes are listening to Pink Floyd much. Although the common trend
of this community sequences includes also listening to Pink Floyd, the difference of these anomalies is
that they listen to this band more than 100 times per month.

swise |S(swise)| sless Gr sup
1 <(C602@1)> 81 <(11 24 32)(11 24 32)(242)(11 24 32

222)(11 24 32)>
14.97 0.18

2 <(C602@1)> 81 <(222)(222)(121)> 7.23 0.18
3 <(C602@1)(C188@4)> 22 <(11 24 32)(242)> 6.21 0.68
4 <(C602@1)(C246@10)> 24 <(11 24 32)(242)(11 24 32)> 10.74 0.625

Table 6.12 List of community sequences and their most emerging patterns related to C602@1, C188@4
and C246@10. From left to right, the columns correspond to a community sequence swise, the num-
ber of nodes |S(swise)| supporting it, a characteristic pattern of this sequences sless, the growth rate
Gr(sless,S(swise)) and support sup(sless,S(swise)) of this pattern relatively to the supporting node set of
the community sequence.

6.3.4 Conclusion

In section 6.3, we asked some questions related to the analysis of the LastFM network. Our framework
helps us replying to these questions. We asked the question Is there a clear separation among the
listeners of different jazz types? We see that there are well separated communities at each time slice.
Some of those communities are associated to different jazz artists. However, each community does not
correspond to a different artist, but it corresponds to the combination of artists. Moreover, we also notice
by the help of emerging topological situations that one community including non-jazz listeners (fans of
the Beatles or Pink Floyd) are less connected with the rest of the network but keep being well-connected
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with each other as time goes by. Another question was Do jazz listeners follow jazz events as well? We
did not see any trend showing a relation between the artists and events. In general, the most followed
events are related to rock or metal. We also asked the question if jazz listeners from same communities
have similar taste of music. In general, we can say that Miles Davis listeners appear in most of the
communities. For some communities, we notice some common points about the different artists that
different node groups listen. For those communities, we can say that their nodes have similar taste of
music. But for some other communities, we notice very different trends inside of same community.

The anomalies we detected for LastFM can be grouped into three groups. The first ones are the
anomalies appearing for one community. These are misplaced nodes which should be isolated but placed
in one community via detection algorithm. The second and third types of anomalies are appearing at
community sequences. The second type is the nodes listening to different artists than their communities.
The third type is the nodes which listen same artist but much more times than the rest of their node
groups following same community sequence.

6.4 Conclusion & Discussion

In this section, after having analyzed the communities in both networks, we want to summarize some
common and different properties of DBLP and LastFM. Our results also show some facts about the
evolution of communities in time. We also want to discuss them.

Both of the networks have a very dynamic community structure, changing very much at each time
slice. We have seen that the communities of DBLP network are getting larger as time goes by, whereas
it is not the case for LastFM. In LastFM, we can have large communities even at t = 1 or t = 2. This
difference between the two networks might be due not only to differences in the modeled systems, but
also in the considered durations of both the whole considered time period and the time slices. The DBLP
network represents an evolution of 18 years, while the LastFM one corresponds to 1 single year. We also
notice that characteristic topological situations of the communities of DBLP are changing with time.
Thus, tracking these changes helps us to better understand common evolution in the communities. These
evolutions of topological situations help us for reasoning on the changes of attributes as well. We benefit
from both types of descriptors during the interpretation. For example, we see that node groups which are
more embedded in their communities keep publishing in the same conferences. However, in LastFM,
although we observe topological situations in a characteristic pattern more than once, they do not change
very much.

For both DBLP and LastFM, we cannot claim that the communities are created around one interest.
The characteristic patterns show us that there are some node groups having the same interest (publishing
in same conference of listening same artist) inside of the communities, but they do not constitute entire
communities. On the contrary, these groups leave and join different communities, or even disperse.
Regarding the trends on community sequences at size larger than 1, we see that the node groups having
same interest stay together. This means temporal communities are not completely homogenous. Their
homogeneous parts have a trend of keep being together as time goes by. Nevertheless, we also want to
remark that here, we use the term homogeneous just for the context of having same attribute values. We
notice that some communities for both networks can be interpreted by a common theme although they
include different interest. For example, we characterized a community of DBLP with the interest of Data
Mining although it has more than one node group that each of them publishes at different conference or
journal. Thus, here, our comments about homogeneity reflect only the similarity of attributes although
there might be different homogeneity levels. We do not use attributes in our experiments representing
more common features of the nodes like the subject of the conference/journal (data mining, data base,
etc.) for DBLP or jazz-type of the artists ( cool, modal, classic, fusion etc. ), we might have different
patterns showing more homogeneity for each community.
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Regarding the homophily of the topological positions, we notice that the communities of DBLP
can be characterized by topological situations (the most supported patterns are representing specific
topological situations and the supports are all larger than 0.90). But LastFM communities do not have
such a consensus about the topological situations because the most supported patterns’ supports are
mostly around 0.70.

The communities of one time slice include different homogeneous node groups. The characteristic
patterns detected for the community sequences show that homogeneous node groups tend to stay to-
gether as time goes by. They either migrate to other communities together, or stay together in the same
community. Especially, for LastFM, we had high supports for the most emerging patterns of community
sequences. It shows that the nodes which are together at different time slices are highly similar. Here,
if we recall the definition of community in social science (c.f Chapter 2), it expresses groups of persons
sharing emotions, having the feeling of belonging together. Our experiments on these two networks
reveal that not the structural temporal communities but the node groups having same interest inside of
them tend to have the feeling of belonging together. Thus, maybe these node groups should be named as
community.

Community evolution events are limited with merge, split, birth, death, hide, expand, contract and
switch. We also had these events in our networks. The most common events we had are small-scale
events. We want to underline that neither merge nor split occurs purely in our experiments. The general
descriptions of these events are like two (or more) communities are getting together to create a new one
or one community splits to create new ones. However, in our case, we see that not two (or more) com-
munities completely merges but homogeneous node groups of different communities are getting together
to be a part of another community in the next time slices. Thus, one community of a previous time slice
can be the root of many other communities at the next time slices. It is same trend for split event. When
communities are splitting, different homogeneous node groups are separating to different communities.
We do not observe an expansion or contraction at the communities in terms of only increasing/decreasing
their node number. However, in our experiments, it is mostly like that different parts of different commu-
nities are getting together in the next time slices and their size is thus increasing or decreasing. Briefly,
in our experiments, we have seen that communities are including different homogeneous node groups
such that some of them might move together in the next time slices. It would be interesting to analyze
if there is a hierarchy between the different node groups of same community or if some trends coming
from the homogeneity of one node group is absorbing some other trends. Empirically, we notice that
these different homogeneous groups are linked to each other with bridges inside of the community. It
would also be interesting to analyze deeper these bridge nodes.

Regarding the anomalies, we can say that our framework is capable of detecting the nodes which
are different from than their communities. This difference can be both topologically or about attributes
evolution. The anomalies can also be misplaced nodes by community detection algorithm. We have seen
that some anomalies which are different in terms of their attributes may have same attribute in the future.
Thus, our framework can be used for prediction.
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Chapter 7

Conclusion

In this thesis, we worked on community structures in complex networks. A community is roughly defined
as node group which has more links inside of the group relatively to the rest of the network. The presence
of a community structure is a common property appearing in networks modeling many real-world com-
plex systems of different domains. They constitute a rich part of complex network analysis. Naturally,
there are many different studies performed in a wide range of areas ranging from biology to sociology.
Most of these studies tackle the problem of community detection in different types of networks. There
are right now hundreds of algorithms using different formal definitions of communities, developed for
plain, attributed or dynamic networks. Some of the studies are oriented to the evaluation of the per-
formance of community detection algorithms or generation realistic artificial network with predefined
community structures. Although these studies are not directly related to the development of a commu-
nity detection algorithm, they still serve the partitioning performance evaluation of these algorithms. We
see that community detection is an important part of community structure studies. However, unless we
do not interpret the communities, they are not more than a node group. Thus, they stay meaningless. For
this reason, in this thesis, we specifically concentrate on community interpretation.

To the best of our knowledge, there is neither a formal definition nor a dedicated work for the com-
munity interpretation problem. The first and most prominent contribution of this thesis is proposing a
formal definition of the problem of community interpretation. For us, it consists of two sub-problems:
finding an appropriate representation of the communities and choosing the most characteristic part of
this representation. Our second contribution is proposing a solution for these problems. We represent
each community under the form of chronologically ordered sequences modeling the evolution of the
topological measures and attribute values describing the nodes. Thus, we consider three important types
of information presented in the network modeling: (1) the network topology reflecting node-to-node
connections, (2) the attributes corresponding to an individual description of nodes and (3) the temporal
information representing the network dynamics. For the characterization, we select the sequences ful-
filling two criteria, prevalence and distinctiveness, and one condition, being informative. We propose a
framework to tackle these problems. The different steps of our framework are: detecting the communities
in the dynamic attributed network, creating a sequential database containing all the mentioned informa-
tion, finding the frequent closed sequential patterns among this database thanks to the algorithm CloSpan
[136], processing the growth rates of the sequential patterns, select the most characteristic patterns able
to best cover the community.

Our third contribution is to perform an empirical analysis of the behavior of our framework. For
this purpose, we used artificial network produced by two generative models. The first one is the LFR-
D model by Greene et al. [52], which is based on the model developed by Lancichinetti et al. [76] to
produce realistic static networks. LFR-D generates dynamic networks which have a predefined commu-
nity structure evolving from one time slice to another. The evolution can be controlled through different
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types of community-related events: birth-death, merge-split, expansion-contraction,hide-appear, switch.
In the first part of our evaluation, we focused on the community detection step. We performed an em-
pirical comparison of a selection of community detection algorithms based on the Louvain approach
developped by Blondel et al. [15]. Some of these algorithms output what we call a consensual commu-
nity structure, which is supposedly valid for the whole considered time period. Some others output what
we call a sequence of community structures (one for each time slice), which we call evolving community
structure. The algorithms we selected are called Classic, Incremental, MultiStep and Integrated Louvain.
The MultiStep and Integrated methods produce consensual community structures, whereas the Classic
and Incremental methods find evolving ones. We evaluated them by comparing the community structures
they estimated, with the reference community ones, generated by the model. Our performance analysis
reveals that when the reference communities are well separated, the algorithms producing evolving com-
munity structure estimate better communities than the others. Among them, Incremental Louvain gets
more stable results. Another observation is that large-scale community events (merge-split, birth-death
and hide-appear) introduce more difficulty in the community detection process than small-scale ones
(expansion-contraction and switch).

In the second part of our evaluation, we focused on the pattern mining steps. We needed attributed
dynamic networks, so we proposed LFR-DA, an extension of LFR-D able to add nodal attributes to an
existing dynamic network. These attributes are controlled through three parameters: number, evolution
percentage and distribution type. The first parameter determines the number of attributes defined for
each node. The second controls the proportion of nodes whose attribute values change at each time slice.
The third specifies how the values of each attribute are distributed over the nodes of a community. Our
results show that the higher the number of attribute, the longer it takes for the framework to extract the
patterns. Moreover, when the attributes values are completely homogeneous (community-wise), it is
easier to extract the patterns. Nevertheless, when the attributes are heterogeneous, the execution times
are not as long as expected. The longest execution times are obtained when the attribute values change
very often. Thus, if a network is very dynamic, it is more difficult to extract its patterns. Regarding the
different steps of our framework, mining the closed patterns is faster than calculating their growth rate
procedure. The performance of the growth rate calculation directly depends on the number of patterns
outputted by CloSpan.

Our last contribution is to have applied our framework to two real-worlds networks. The first is
a DBLP network showing the evolution of co-authorship connections over 18 years . The second is
a LastFM network, whose nodes represent users of this service, and links represent a combination of
declared friendship and observed listening behavior, for the members of the Jazz user group. The total
time span for the LastFM network is 1 year. Using our method, we interpret the communities of these two
networks. For DBLP, we can say that the communities get larger with time. The most supported patterns
involve mainly topological descriptors. Inside a given community, the majority of the nodes (∼ 90%)
have the same topological situation. Moreover, the topological situation of the nodes of a community
are changing over time. Communities are characterized by more than one emerging pattern, each one
involving attribute descriptor, and related to the publication of articles in specific conferences or journals.
The community growth noticed for DBLP is not observed for LastFM. In this network, some of the most
supported patterns represent topological roles, while some others reflect an interest towards a specific
Jazz artist. The proportion of nodes following the most supported patterns are not as high as for DBLP
(∼ 70%), which means, the nodes of LastFM communities are less homogeneous about than the DBLP
ones. The communities are covered by more than one emerging pattern. Thus as for DBLP, there are
several node groups with different interests in a given community.

For both networks, the most interesting result is that the communities are not completely homoge-
neous. There are constituted of different node groups, which are homogeneous, but only in terms of
certain descriptors. We notice that some of these node groups are staying together, in the sense they keep
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on belonging to the same community over time, sometimes for a large number of time slices. Regarding
the community evolution, we reveal that as time goes by, different homogeneous node groups of different
communities of previous time slices are getting together in the next time slices. Additionally, our frame-
work is able to detect the outlier nodes, i.e. those different from the rest of their community. We detect
three types of outliers in DBLP. The first ones are not publishing at the same conferences/journals than
their community-mate. The second outliers are those which are topologically different, although they
publish at the same conferences/journals. The third outliers are those which are much more active or
passive. The outliers detected for LastFM can be grouped into three groups, too. The first ones are mis-
placed nodes, in the sense the community detection algorithm wrongly assigned them to the considered
community. These nodes are isolated, they should not belong to any community. The second outliers
represent users listening to artists different from the community general habits. The third outliers are
the nodes listening to the same artists than the rest of their community, but much more often. We also
notice that some outliers outputted from our framework might have the possibility of being similar to
their communities in the future. So, it can be used for prediction.

Our framework includes different steps. For each step, we choose some algorithms or methods. It
is possible to replace these algorithms/methods with different ones. For the first step, we evaluate only
the detection algorithms finding community structure under the form of partition. It would be very in-
teresting to interpret the overlapping communities. In our study, we find out that homogeneous groups
of different communities get together in next time slice. These node groups might be the overlapping
parts of the communities. Making a comparative interpretation on both overlapping and non-overlapping
communities can be very interesting to have a deepen knowledge about the community structures. More-
over, to have an idea about the sensitivity of our framework to the community detection methods, it can
be complementary to interpret the result community structure of many different algorithms. In our sec-
ond step, we use some specific attributes related to studied system. Finally, the characteristic patterns
of communities are not around one attribute but some of them. For some communities, although there
are different characteristic attributes, their theme are common. Thus, while choosing the attributes, one
can determine different levels of attributes which reflect the features of the nodes at different level. For
example, in DBLP application, it can very interesting not only using different conference/journal publi-
cation but also their theme. At the data preparation step (step 2), we try to determine different topological
situations over the network by consider all the time slices together. However, for the networks like DBLP
which shows a connection of more than 15 years, topological positions can vary too much. Thus, one
can consider each time slice independently when preparing the data.

Our third and fourth step is related to pattern mining and determining emergence. From the ap-
plicative point of view, these steps consume the most time and resource. Depending on network and
descriptor size, this time increases too much. In some experiments on Chapter 5, we cannot extract the
results because of this drawback. The slowness of our framework makes its field of application limited.
For instance, our framework can be used for offline analysis. It is not compatible for online systems.
In our fifth step, we select the most representative characteristic patterns. Here, we define some crite-
ria for the similarity of patterns. For different criteria from ours, the framework can output different
results. We extract anomalies according to our selection criteria. For other criteria, these anomalies
cannot be outputted either. Thus, it would be very interesting to extend this step in the way to order
the nodes of communities according to the patterns they follow. More clearly, one can extend pattern
selection with also a hierarchical order of the nodes. For example, the nodes which follow the most
emerging/supported patterns can be at the higher level of the hierarchy. It could ensure more flexibility
and robustness of anomaly extraction. Rather than outputting one or few nodes, the weakest level and its
nodes can be outputted as anomaly.

Regarding the artificial network generator LFR-DA we propose, it is right now depending on three
parameters we determined just to see the limits of our framework. This model can be extended in some
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ways. Attributes are very system depended. It makes their simulation difficult. However, it would be
very interesting to experimentally analyze different networks and determine some common points about
structure+attribute relation. Then, these common points can be reflected to the generator model. More-
over, we take into account only node attributes. It can also be interesting to tackle with link attributes as
well in the generator model.

Our experiments here are limited with the functioning of our framework. Nevertheless, it can be com-
plementary to have a statistical analysis for different tasks. For example, when we follow the community
evolution events, we notice that some node groups survive during long time while some others disappear.
It might be because some powerful trends are absorbing the weak ones. So, a detailed statistical analysis
on the different homogeneous node groups and their evolution can be useful to have an idea about why
they survive or they disappear. Another perspective to our study is regarding the matches of the nodes
of communities of different time slices and node groups which stay together at those communities over
time. A detailed analysis on these matches can give us an idea about the proportions of the nodes of
communities which join or leave from them. It is also necessary and could be very interesting to see the
results of our framework on the networks from different domains. Here, the two networks we use have a
size smaller than 5000. They are not very big. Both of them are social networks. Thus, we want to see
the performance of our framework on larger networks having different types of attributes.
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Chapter 8

Appendix1

When we prepare the enlarged database, we use 9 topological measures explained in Chapter 2. As
explained in Chapter 4, we clustered the values of these measures to determine final items of database.
We detect 3 topological field. Each node takes a value for all of those fields. We present those fields
and the role inside of the topological fields by integer codes because CloSpan algorithm accepts integer
items. Coding is very simple. It is two digit integer numbers. The first digit represents the order of
topological field and the second digit represents the role in this field. Here, we present these codes for
not only topological situation but also attribute values. In section 8.1, we present the codes of DBLP
network and in section 8.2,we present the ones for LastFM network.

8.1 DBLP Network

All related item codes to topological situations are given in Table 8.1. We not only use topological
measures but also node attributes. These attributes are the number of conference/journal publications.
We determine 5 ranges: 1,2,3,4 and [5;∞[ for each conference/journal publications and 5 ranges :
[1;5], ]5;10], ]10;20], ]20;50] and ]50;∞[ for total journal/conference publication. Each of them is coded
by 1,2,3,4 and 5 respectively. We list the attributes names and the codes we give for them in Table 8.2.
The items related to attributes are created by the same coding method we explained for topological roles.
We use two digit integers. The first one is attribute field code and second one is the code representing its
range. For example, code 72 means the number of publication in CommunACM is 2.

8.2 LastFM Network

All related item codes to topological situations are given in Table 8.3. We use two types of attributes of
nodes. First one is the artist they listen and second one is event types that they attend. We determine
5 categories that the intervals of the numbers of artist listening are [1;5], ]5;30], ]30;90], ]90;200] and
]200;∞[. Each of them is coded with 1,2,3,4 and 5 respectively. For the number of the events types,
we have 4 categories with the intervals [1;4], ]4;7], ]7;11] and ]11;∞[. They are coded with 1,2,3 and 4
respectively. The names of the all attributes are listed in Table 8.4. We apply same coding method with
DBLP. So, for example item code 224 means that the number of listening The Beatles is between 90 and
200. Or, 401 means the number of attending a different event not listed in the Table 8.4 (other events) is
between 1 and 4.
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Item code Meaning
General
Topological
Role

11 Having especially high betweenness, high local tran-
sitivity, average to high degree

12 Having average local transitivity, average degree,
high betweenness

13 Having no or very few degree, no centrality, highly
belong to its community, no connections from other
communities

Centrality
Oriented
Role

21 having high eigenvector and closeness centrality

22 Having high betweenness, low closeness and high
eccentricity

23 Having average betweenness and average closeness
24 Not central at all

Community
Oriented
Role

31 Belonging completely to its community with no or
few external connections, mostly non-hub but still
there are some hubs

32 Connections from other communities, connections
distributed among other communities, mostly non-
hub but still there are some hubs

Table 8.1 Items Related to Topological Roles and Their Meanings for DBLP
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Field Code Field Name
4 DMKD
5 SAC
6 ICDM
7 CommunACM
8 IEEE Transaction Knowledge and Data Engineering
9 IEEE Intelligent Systems
10 SIGKDD Explorations
11 DASFAA
12 IJCAI
13 IDA
14 ICDE
15 PAKDD
16 AAAI
17 PVLDB
18 CIKM
19 ECML_PKDD
20 KDD
21 VLDB
22 EDBT
23 Intelligent Data Analysis
24 ICML
25 ICDT
26 SDM
27 Knowledge Information Systems
28 TKDD
29 PODS
30 VLDBJ
31 Statistical Analysis and Data Mining
32 SIGMOD
33 Machine Learning
34 ACM Transactions on Database Systems
35 JMLR
36 ACM Transactions on Information Systems
37 Journal of Intelligent Information Systems
38 Information Systems
39 Data Knowledge Engineering
40 Pattern Recognition
41 BioInfo
42 BMC Biology
43 ECAI
44 WWW
45 DEXA
46 ILP
47 TOTAL JOURNAL
48 TOTAL CONFERENCE

Table 8.2 Attribute Field Codes and Their Names for DBLP
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Item code Meaning
General
Topological
Role

11 Having no central position, average degree, high
within module degree (hub), low participation co-
efficient

12 Having central position, high degree, high local tran-
sitivity

Centrality
Oriented
Role

21 Having high eigenvector, betweenness and closeness
centrality

22 Having average eigenvector and average closeness
centrality, non-between

23 Not central at all
24 Having high closeness but other centralities are not

very low
Community
Oriented
Role

31 Community Hub with some external connections, its
connections are distributed uniformly

32 Community Non-hub with very few external con-
nections, mostly belong to its community

33 Community Non-hub with some external connec-
tions, its connections are distributed uniformly

34 Community Non-hub with some external connec-
tions, but its connections to other communities are
mostly to one community

Table 8.3 Items Related to Topological Roles and Their Meanings for LastFM
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Field Code Field Name Field Type
4 Miles Davis Artist
5 Herbie Hancock Artist
6 Keith Jarrett Artist
7 Louis Armstrong Artist
8 Ella Fitzgerald Artist
9 Charlie Parker Artist
10 Chet Baker Artist
11 Nina Simone Artist
12 Frank Sinatra Artist
13 John Coltrane Artist
14 Django Reinhardt Artist
15 Thelonious Monk Artist
16 Count Basie Artist
17 Charles Mingus Artist
18 Amy Winehouse Artist
19 Norah Jones Artist
20 The Rolling Stones Artist
21 Daft Punk Artist
22 The Beatles Artist
23 Radiohead Artist
24 Pink Floyd Artist
25 jazz Event
26 bebop Event
27 swing Event
28 rock Event
29 punk Event
30 classic Event
31 pop Event
32 fusion Event
33 hip-hop Event
34 funk Event
35 blues Event
36 metal Event
37 folk Event
38 R&B Event
39 soul Event
40 other Event

Table 8.4 Attribute Field Codes and Their Names for LastFM
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