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Introduction

As summarized by Philip W. Anderson in his famous quote �More is di�erent", the behavior of a

quantum many-body system cannot be reduced to the understanding of its isolated constituents [1].

This idea is already illustrated in the few-body problem. While the two-body problem can be easily

solved, the three-body system proved to be the source of spectacular new phenomena, ranging from

chaos in classical mechanics, to the E�mov e�ect [2], the appearance of three-body bound states

with universal properties, in the quantum-mechanical problem. The four-body problem poses

formidable challenges, let alone the N -body system. The quantum (non-relativistic) many-body

problem is easy to pose. Let us consider a quantum system composed of particles interacting via

a binary interaction potential Vint(ri − rj) immersed in an external potential V (r). One can write

the Hamiltonian of the N -body system:

Ĥ =

N∑
i=1

p2
i

2m
+
∑
i<j

Vint(ri − rj) +

N∑
i=1

V (ri). (1)

The problem then reduces to solving the Schrödinger equation for the many-body wavefunction

Ψ(r1, r2, . . . , rN ):

ĤΨα({ri}) = EαΨα({ri}) (2)

to extract the energy spectrum Eα and the eigenstates Ψα, with the additional constraint of the

(anti)-symmetry of the wavefunction Ψ with respect to the permutation of two particles, depend-

ing if the system is composed of indistinguishable fermions or bosons. Obviously, writing down

the Schrödinger equation (2) doesn't bring us any closer to a solution. Except in very rare cases,

this problem cannot be solved analytically. And even when it can1, it is often di�cult to use

the many-body wavefunction and the energy spectrum to compute quantities that can be directly

compared to experiments.

If the system is composed of weakly interacting particles, mean-�eld approximations or pertur-

bative expansions can provide accurate descriptions. However, these approaches are insu�cient

for many of the major open problems in modern physics that deal with ensembles of strongly

correlated particles such as neutron stars, the quark-gluon plasma, super�uid 3He and 4He, and

high-Tc superconductors. These physical systems are extremely subtle: for instance the electron

gas in cuprate superconductors is immersed in a notoriously daunting lattice structure, while the

neutron-neutron interactions in neutron stars are very complex. However, simple models have been

proposed to encapsulate the most important phenomena. The Fermi-Hubbard model for example

describes particles in a periodic potential with on-site interactions and is thought to be one of the

simplest models to describe high-Tc superconductivity. In a similar fashion, the Hamiltonian (1)

with short-range interactions has been proposed as an elementary description of strongly correlated

1A notable example being the Bethe ansatz to solve exactly some one-dimensional problems.
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neutron matter [3]. Despite their apparent simplicity, there is no generic method to solve these

models to date for large particle numbers and without uncontrolled approximations: it is thus

unknown whether they represent faithful models. For example, though the phase diagram of the

Fermi-Hubbard Hamiltonian has been studied for numerous years, its exact nature is still hotly

debated.

If classical computers are unable to solve these quantum many-body problems, we can turn to

analogic reasoning. If one can prepare a system that is accurately described by one of the above

models, performing a measurement on it would amount to solving analogically the model: this

is the idea of quantum simulation, originally proposed by R. Feynman in 1982 [4]. The advent

of ultracold dilute quantum gases of neutral atoms, starting by the experimental production of

gaseous Bose-Einstein condensates in 1995 [5, 6], followed by degenerate Fermi gases in 1999 [7],

has opened a new era in quantum simulation. These quantum gases can be manipulated with an

unprecedented degree of control. First, the atoms can be placed in well-controlled external poten-

tials of various shapes: harmonic or box-like traps, or multiple wells. Using interfering standing

waves it is possible to subject the atoms to periodic potentials mimicking the potential experienced

by electrons in the ion-crystal lattice structure of solid materials. This analogy [8] resulted in the

experimental implementation of the Bose- and Fermi-Hubbard models using ultracold atoms and

the direct observation of the super�uid-to-Mott insulator phase transition [9,10,11]. Secondly, since

the interactions between neutral atoms are short-ranged, they are usually very well characterized

at low temperature by a single quantity, the scattering length. By means of Feshbach resonances,

it has become possible to tune with great freedom the scattering length, hence the interatomic

interactions. This feature allowed the production of strongly interacting Bose [12], and Fermi

gases [13]. We thus have at our disposal true model-systems that can be used to study many-body

physics [14]. The techniques to manipulate and probe these gases are continually improving and

the �eld has recently reached a major milestone, where it has become possible to image [15, 16]

and address [17] the many-body system at the single atom level.

Fermionic and Bosonic Super�uidity: the BEC-BCS crossover

Super�uidity and superconductivity are two spectacular quantum phenomena that arise on a

macroscopic scale. The former was discovered in 1937 as the disappearance of viscosity in liq-

uid 4He, composed of bosons, below a temperature of 2.2 K. F. London �rst made the link between

the super�uid transition in helium and the Bose-Einstein condensation predicted to occur in an

ideal Bose gas [18]. The link however is only qualitative because of the importance of the inter-

actions in liquid helium. The latter, superconductivity, was unveiled in 1911 in solid materials

as a sudden drop to zero of the electric resistance below a threshold temperature. A critical step

in understanding superconductivity was made by L. Cooper, who discovered that a Fermi sea is

unstable in the presence of an arbitrarily weak attractive interaction, and the fermions will form

bound states, the Cooper pairs [19]. A year later, J. Bardeen, L. Cooper and J. Schrie�er developed

the BCS theory [20], that describes the superconducting state as an ensemble of phase-coherent

Cooper pairs of electrons.

The two phenomena seem at �rst very di�erent, as one occurs in a Bose liquid, the other in

a Fermi system. However, D.M. Eagles and A. Leggett noticed that the BCS wavefunction was

adequate for describing both the BCS super�uid of Cooper pairs in the limit of weak interactions,
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Figure 1: Sketch of the BEC-BCS crossover in a spin-1/2 attractive Fermi gas.

and a Bose-Einstein condensate (BEC) of tightly bound pairs, which are composite bosons, for

strong attractive interactions [21, 22]. This smooth transition between fermionic and bosonic su-

per�uidity is the so-called BEC-BCS crossover (Fig.1). The phase diagram at �nite temperature

was �rst addressed by P. Nozières and S. Schmitt-Rink, who calculated the critical temperature

for the normal-to-super�uid phase transition as a function of the interaction strength [23].

Bose and Fermi gases with Feshbach resonances

However, it was not until the realization of degenerate Fermi gases in the vicinity of a Feshbach

resonance in 2002 that the BEC-BCS crossover could be implemented and investigated experimen-

tally. The tunability of the interactions allowed, for the �rst time, to explore in a single physical

system the transition from bosonic to fermionic super�uidity. Major achievements include the

observation of Bose-Einstein condensation of molecules [24, 25, 26, 27], the study of the super�uid

pairing gap [28, 29], and the demonstration of super�uidity through the appearance of quantized

vortices in a rotating Fermi gas [30]. Since then, theoretical and experimental work has �ourished

on the BEC-BCS crossover [31].

Observation of beyond-mean-�eld e�ects in atomic Bose gases was also long-sought. The early

discovery of Feshbach resonances with bosonic elements in 1998 opened the possibility of increasing

the interaction strength [32,33,34]. However, the �rst experiments showed a dramatic reduction of

the gas lifetime in the vicinity of the resonance [35, 34, 36], due to the enhancement of three-body

recombination losses [37]. While three-body losses are strongly suppressed in Fermi gases because

of Pauli-blocking [38], which prevents two same-spin particles from getting close to each other,

this e�ect is absent in Bose gases. For this reason, the early experiments on bulk Bose-Einstein

condensates had the common trait of being in a regime of very weak interactions, and were thus

quantitatively well explained by mean-�eld theories [39,40].

One is naturally led to wonder to what extent the physics on the molecular side of the BEC-BCS

crossover in a Fermi gas is similar to that of a Bose gas of pointlike bosons. One can for example

investigate the ground state energy density E = E/V of a Bose gas, predicted in 1957 by T.D. Lee,

K. Huang, and C.N. Yang, to follow an expansion in the diluteness parameter na3 [41, 42,43]:

E = EMF

(
1 +

128

15
√
π

√
na3 + . . .

)
, (3)

where n is the boson density and a the scattering length. The �rst term is the result of mean-�eld
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theory (with EMF = gn2/2). In 2004 it was predicted that the mean-�eld energy of a molecular

Bose gas would be identical to that of a pointlike boson gas with a dimer-dimer scattering length

add = 0.6a [38, 44]. The next term in the expansion, the so-called Lee-Huang-Yang correction, is

due to quantum �uctuations, and is also universal in the sense that it depends on the microscopic

detail of the interaction potential only through the scattering length and should be identical for all

Bose gases with short-range interactions. In 2007, it was predicted that this next-order correction

should also be valid for a molecular Bose gas despite the composite nature of the dimers (of

size a) [45]. Signatures of beyond mean-�eld e�ects have been observed on collective modes and

density pro�le studies of molecular Bose gases [46, 47], as well as on Bragg spectroscopy of a

strongly interacting 85Rb Bose gas [48]. Despite its very fundamental nature in quantum many-

body physics, the Lee-Huang-Yang correction, as well as its universality had never been directly

experimentally tested.

Universality and the Unitary Gas

The question of universality can be taken one step further in the expansion (3). While for pointlike

bosons the next term is known to be non-universal because it involves short-range physics from

the quantum-mechanical three-body problem, the equivalent for the molecular gas is currently

unknown. However there is a strong belief that the BEC-BCS crossover is truly universal, in the

sense that the scattering length is the only relevant interaction parameter and that any Fermi

gas with short-range interactions will behave identically. A system of particular interest in the

BEC-BCS crossover is the point where the scattering length diverges, the so-called unitary limit.

If the scattering length a is the only parameter characterizing the interactions and a → ∞, the

system is left with no interaction energy scale. Then the only energy scale that can be built with

~, m and the density n is proportional to the Fermi energy EF = ~2

2m (6π2n)2/3 by dimensional

considerations. For this reason, the Equation of State at T = 0 for the unitary gas should be

identical to that of a free Fermi gas, up to a numerical factor:

µ = ξEF , (4)

and ξ being a universal number (also called the Bertsch parameter) identical to any quantum gas

interacting via resonant short-range interactions [49]. This result is spectacular: while the system

is subjected to strong interactions, its equation of state is formally identical to that of an ideal gas.

All the many-body correlations are encapsulated in the value of ξ. We have now very good theo-

retical and experimental indications (for example measurements performed on di�erent fermions,

such as 6Li and 40K) that the unitary Fermi gas is indeed a universal state [31].

For a gas of bosons at unitarity, the situation is very di�erent from the fermionic case, in

particular because of the presence of the E�mov e�ect. The understanding of the Bose gas in the

regime of strong interactions is in its infancy. The most important open question is whether a well-

de�ned many-body state does exist at unitarity, and whether such a state has universal properties.

While this system has recently generated considerable theoretical interest [50, 51, 52, 53, 54], and

several works have attempted to calculate the value of ξ for the hypothetical unitary Bose gas

[55, 56, 57, 58], there are still no clear indications that this system is actually well-de�ned and

experimentally realizable.
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Outline of this work: Thermodynamics of quantum gases

While the energy spectrum and eigenstates contain the whole information on a quantum many-

body system, thermodynamics provides us with conceptually simple observables to compare to

experiments. From a microscopic point of view, the problem reduces to the computation of the

Equation of State (EoS) of the many-body system from the partition function: for example the en-

ergy E as a function of the entropy S, the number of particle N and the volume V : E = E(S, V,N).

From this fundamental relation it is possible to extract many quantities that are readily probed

in experiments, such as the speci�c heat, the compressibility of the system or its pressure. In

addition, the equation of state also contains information about the occurrence of phase transitions.

In this thesis, we present a general method that we developed to probe the thermodynamics

of homogeneous quantum systems using trapped atomic gases. We applied it to investigate the

Equation of State of Bose and Fermi gases with short-range interactions.

� In chapter 1, we introduce the basic concepts that are used throughout this work, the grand-

canonical equation of state of the ideal quantum gases, the description of low-energy collisions

through the scattering length and the phenomenon of Feshbach resonance that allows us to

tune the scattering length. We will then present the technique that we implemented to

extract the pressure of a homogeneous gas using a trapped sample from the in-situ density

distributions. This technique allows us to directly test advanced theories of the many-body

problem with our measurements.

� We will then turn in chapter 2 to a description of our experimental setup, with which

we produce degenerate Bose and Fermi gases of the two lithium isotopes, 6Li and 7Li. The

experiment involves two major stages: a magnetic trap where fermionic 6Li is sympathetically

cooled with 7Li as a coolant, and an optical trap where the mixture is cooled to quantum

degeneracy. An external magnetic �eld is used to tune the scattering length via a Feshbach

resonance.

� The ground state of the Bose gas with tunable interactions is investigated in chapter 3.

Using a Feshbach resonance of 7Li, we observe the onset of beyond mean-�eld e�ects in a

bulk Bose gas and measure for the �rst time the Lee-Huang-Yang correction in a point-

like Bose gas. The assumption of T = 0 is directly checked by comparing our results to a

Quantum Monte Carlo simulation performed by S. Piatecki and W. Krauth at ENS. These

results have been published in [59] (appendix B.5).

� The thermodynamic measurements on the Bose gas, presented in the chapter 3, rely on the

assumption of thermal equilibrium. Because of the presence of three-body losses close to the

Feshbach resonance as well as the �nite duration of the interaction sweep to the strongly

interacting regime, this assumption is checked via dynamic measurements on the Bose gas

in chapter 4. Using faster sweep rates, we access the regime of strong interactions, and we

infer a lower bound on the value of the universal constant ξB for the hypothetical unitary

Bose gas which is compared to theoretical predictions. Part of these results are the subject

of a publication in preparation.

� We then turn to the spin-1/2 Fermi gas of 6Li. In chapter 5 we focus on the spin-balanced

gas N↑ = N↓. We measure the pressure of the strongly interacting gas of 6Li as a function of

temperature. Thermometry is performed using a trace of 7Li immersed in the Fermi gas. In

addition to the virial expansion at high-temperature, we observe Fermi-liquid type behavior
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at low temperature and the normal-to-super�uid phase transition. We then turn to the T = 0

Fermi gas Equation of State as a function of interactions. In particular, on the molecular

side of the BEC-BCS crossover, we measure the Lee-Huang-Yang correction which, together

with the atomic Bose gas measurement presented in chapter 3, demonstrates the universality

of the �rst beyond-mean-�eld correction. We directly compare our measurements of the

equation of state to theories as well as to other experimental results obtained recently. The

results have been published in [60] (appendix B.1), and partly in [61] (appendix B.4).

� In chapter 6, we present a measurement of the equation of state and phase diagram of

the spin-population imbalanced Fermi gas, where N↑ > N↓. Since fermionic super�uidity

requires the pairing of two fermions, the fate of the spin-balanced super�uid subjected to

spin-imbalance is an important issue, also called the Clogston-Chandrasekhar limit. We

investigate the low-temperature phase diagram of the spin-imbalanced Fermi gas and measure

the critical chemical potential ratio at which the super�uid breaks down to a normal phase.

We show that the normal phase is well described by a weakly interacting gas of quasi-particles,

the Fermi polarons. The results have been published in [62] and [63] (appendix B.2 and B).

� Finally the conclusion presents perspectives of this work. Because of the simplicity and

generality of the technique presented in this work, it could readily be applied to various

ultracold atomic gases currently under investigation and yield valuable information about

the thermodynamics of other quantum many-body systems.



Part I

Methods to Probe the

Thermodynamics of Quantum

Gases





Chapter 1

Thermodynamics of quantum

gases

In this chapter, we will present the basic concepts and tools that will be necessary throughout this

thesis. First, we will review the simple thermodynamics of non-interacting Bose and Fermi gases.

Then we will recall how ultracold collisions are characterized by a simple quantity, the scattering

length, and how it can be tuned in dilute gases via Feshbach resonances. Finally, we will turn to

the main topic of this work, the methods to measure the equation of state of quantum gases.

1.1 Ideal Quantum gases

Because of their fundamental character and central role in this work, we will �rst review basic facts

of non-interacting gases and focus on deriving the equation of state of the ideal quantum gases that

will be important for the rest of the work. In particular, we will emphasize the grand-canonical

approach because of its use in this work.

1.1.1 Quantum Statistics

Quantum theory predicts that there are two categories of particle in nature: fermions and bosons.

This duality stems from the principle of indistinguishability of identical quantum particles. If one

writes the wavefunction of two particles Ψ(r1, r2), the e�ect of permuting the two particles must

leave the modulus square unchanged: |Ψ(r1, r2|2 = |Ψ(r2, r1)|2. As a result, we can write the

wavefunction as:

Ψ(r1, r2) = eiθΨ(r2, r1) (1.1)

If θ = 0, the wavefunction is symmetric and the particles obeying this condition are the bosons. If

θ = π, the wavefunction is antisymmetric, and the particles are fermions1.

The thermodynamical properties of an ensemble of N fermions or bosons can be deduced from

the canonical partition function:

ZN (T, V ) =
∑
n

e−βEn , (1.2)

1The class of particles for arbitrary θ are called anyons, and play a central role as excitations in fractional

quantum hall physics. They will not be considered in this work.
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where the sum goes over all eigenstates n of the system, with energy En and β = 1/kBT . For an

interacting system, this sum in general cannot be performed analytically since its spectrum En is

usually unknown. However, in some simple cases this can be done. We consider an ensemble of

non-relativistic non-interacting particles of a mass m in a box, for which the Hamiltonian reads:

Ĥ =

N∑
i=1

~2k2
i

2m
. (1.3)

Since the system is non-interacting, the many-body states can be readily built from the one-body

states. In a box of size L, the momentum states available are quantized and we refer to a many-

body state by the number of particles nk occupying the state of momentum k (we consider here

spinless particles for simplicity). For bosons, the occupation number can take any positive integer

value. For fermions however, nk can only be equal to 0 or 1, because the Pauli exclusion principle

forbids two fermions to be in the same quantum state. We can calculate the partition function.

However, the constraint on the total particle number makes the sum (1.2) di�cult to evaluate.

This constraint can be relaxed by calculating instead the partition function in the grand-canonical

ensemble. In this ensemble, the atom number is �xed only in average value and the chemical

potential is a new thermodynamic variable. The grand partition function is:

Z(µ, T, V ) =

∞∑
N=0

eNβµZN (T, V ) (1.4)

The sum can be easily calculated for an ideal gas, by summing on each occupation number inde-

pendently [64] and one �nds:

Z(µ, T, V ) =


∏

k
1

1−e−β(εk−µ) Bosons∏
k(1 + e−β(εk−µ)) Fermions

(1.5)

The mean occupation number in the state of momentum k can be computed from the partition

function:

〈nk〉 = −kBT
∂

∂εk
logZ(µ, T, V ) =

1

eβ(εk−µ) ± 1
, (1.6)

where the + is applicable for fermions and gives the Fermi-Dirac distribution. For bosons (-), we

recover the Bose-Einstein statistics.

1.1.2 Bose-Einstein Condensation

We will now separate the analysis for the Bose and Fermi gases. For a Bose gas, the total atom

number is:

N = kBT
∂

∂µ
logZ =

∑
k

1

eβ(εk−µ) − 1
. (1.7)

In the limit V →∞, we can replace the sum
∑

k by an integral V
(2π)3

∫
d3k if each term of the sum

is small compared to N , and Eq.(1.7) then yields:

nλ3
dB = Li3/2(eβµ) (1.8)

where n = N/V is the density, λdB =
√

2π~2

mkBT
is the thermal de Broglie wavelength, eβµ is the

fugacity, and Lis is the polylogarithm of order2 s. The right-hand side of Eq.(1.8) has an upper-

bound of Li3/2(0) = ζ(3/2) (where ζ is the Riemann ζ-function, and the maximum is reached when

2The polylogarithm Lis of order s is de�ned as:

Lis(x) =
1

Γ(s)

∫ ∞
0

us−1

x−1eu − 1
du =

∞∑
u=1

xu

us
,

where Γ is the Euler function.
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µ = 0). This upper limit on phase-space density is a result of the assumption that each term of

the sum (1.7) is small and thus the sum can be replaced by an integral. This is the expression

of the saturation of the excited states. If additional particles are added to the system, they will

accumulate in the one-body ground state (here k = 0) and a macroscopic number of particles will

share the same wavefunction, resulting in what is called a Bose-Einstein condensate. The textbook

picture of the saturation of the excited states has recently been tested experimentally using 39K

with tunable interactions and it was seen that even very weak interactions dramatically change

the Einstein picture of saturation but that it is recovered in the non-interacting limit [65]. Bose-

Einstein condensation is a remarkable phase transition as it occurs in a non-interacting system and

is solely driven by the quantum correlation due to indistinguishability of the particles.
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Figure 1.1: Grand-canonical equation of state of the ideal quantum gases. (a): phase space density

nλ3
dB and (b) pressure Pβλ3

dB of the Bose (blue), Fermi (red), and classical gas (dashed black).

The blue circle corresponds to the Bose-Einstein transition point.

In order to describe the condensed state, it is necessary to single-out the term corresponding

to k = 0 in the sum (1.7) and the integral will describe the excited states. Instead of Eq.(1.8), we

�nd:

nλ3
dB = Li3/2(eβµ) +

λ3
dB

V

eβµ

1− eβµ . (1.9)

For a non-condensed gas the second term vanishes in the thermodynamic limit, but if a Bose-

condensed fraction is present (µ = 0), this term remains. Solving Eq.(1.9) for µ at �xed V , and

taking the limit V →∞ one �nds the density of the ideal Bose gas:nλ3
dB = Li3/2(eβµ) if µ < 0

nλ3
dB > ζ(3/2) if µ = 0

(1.10)

Integrating the density over µ, one deduces the pressure of the ideal Bose gas:

Pλ3
dB

kBT
=

Li5/2(eβµ) (n < nc)

Li5/2(1) (n > nc),
(1.11)

where Li5/2(1) = ζ(5/2) ≈ 1.34. In the grand-canonical ensemble, the equation of state P (µ) of the

ideal Bose gas is peculiar because the thermodynamic variable µ cannot take any positive value.

From the EoS (1.11) one can compute all the thermodynamic quantities of the Bose gas, such as

the entropy, the internal energy or the speci�c heat.
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Low and High-temperature limits

In the limit of high-temperature kBT � µ (or low fugacity), the pressure can be expanded in

powers of the fugacity, an expansion called the virial expansion:

P =
kBT

λ3
dB

∞∑
k=1

b̃ke
kβµ (1.12)

The �rst virial coe�cient b̃1 must be equal to unity, in order to recover the pressure of the non-

interacting classical gas in the limit eβµ → 0:

Pcl =
kBT

λ3
dB

eβµ (1.13)

There is a physical interpretation to the virial expansion in term of clusters [64]. Indeed one starts

with the grand-partition function (see Eq.1.4) and the expression of the pressure in term of Z:

PV = kBT log(Z), (1.14)

Then the pressure can be written as3:

PV = kBTZ1(eβµ + b̃2e
2βµ + b̃3e

3βµ + . . .) (1.15)

and the virial coe�cients can be expressed in term of the cluster partition functions of n particles

Zn:

b̃2 =
(
Z2 − Z2

1/2
)
/Z1 (1.16)

b̃3 =
(
Z3 − Z1Z2 + Z3

1/3
)
/Z1 (1.17)

and so on. One thus sees that in order to compute the nth virial coe�cient, one has to solve the

n-body problem. All but the lowest virial coe�cient vanish for the Boltzmann gas, because of

the absence of correlations. In the case of quantum gases, this is no longer true because of the

quantum correlations introduced by the indistinguishability of the particles. The virial coe�cients

for the ideal quantum gases can be readily obtained by Taylor-expanding the equation of state in

Eq.(1.11), and we �nd b̃k = k−5/2.

The low-temperature limit is obtained from Eq.(1.11), and the pressure goes to zero as T 5/2.

It is easy to show that this results in a speci�c heat that vanishes as T 3/2. For a linear dispersion

law εk = ~ck instead of the quadratic of Eq.(1.3), the same calculation leads to the Debye model

for phonons where CV ∝ T 3 at low temperature.

1.1.3 Fermi Degeneracy

We now turn to the ideal Fermi gas. Starting from the total atom number expression Eq.(1.7) and

using instead the Fermi-Dirac distribution, we �nd:

nλ3
dB = −Li3/2(−eβµ). (1.18)

In contrast to the case of the gas of bosons, Eq.(1.18) provides a value of the fermionic density

n for all values of µ. There is no phase transition and the transition from a classical gas to the

quantum degeneracy is a smooth crossover for an ideal Fermi gas. Integrating Eq.(1.18) over

chemical potential, we compute the EoS:

Pλ3
dB

kBT
= −Li5/2(−eβµ). (1.19)

3The validity of such an expansion is not obvious since the convergence radius of the virial expansion depends

on the system studied (and is in general unknown).
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Low and High-temperature limits

Let us look at the low-temperature limit of the fermionic EoS (1.18). Using the Sommerfeld ex-

pansion, we �nd the asymptotic expansion of the polygarithm for large values of the fugacity4, and

we recover to lowest order µ = ~2

2m (6π2n)2/3 ≡ EF . Integrating the next term in the Sommerfeld

expansion provides the expansion for the pressure:

P (µ) = P0(µ)

(
1 +

5π2

8

(
kBT

µ

)2

+ . . .

)
(1.20)

where P0(µ) = 1
15π2

(
2m
~2

)3/2
µ5/2 is the T = 0 Fermi pressure. The virial expansion equally applies

to the ideal Fermi gas, and we immediately �nd b̃k = (−1)k+1k−5/2.

1.2 Short-Range Interactions

The theory of non-interacting quantum gases is straightforward and all thermodynamic quantities

can be readily computed. Obviously, most systems of interest are composed of interacting particles,

to which we now turn. Usually, interacting systems are described with a binary interaction potential

Vint(ri − rj) so that the Hamiltonian of the N -body system is:

Ĥ =

N∑
i=1

~2k2
i

2m
+
∑
i<j

Vint(ri − rj). (1.21)

In general the properties of the many-body system will depend on the speci�c form of the interaction

potential V . For neutral alkali atoms, this potential has a 1/r6 tail (where r is the interatomic

spacing) due to the electric dipole-dipole interactions (the van der Waals interaction), and a hard-

core repulsion at short range when the valence electronic clouds start to overlap. The typical

range of the interaction, on the order of hundreds of a0 (where a0 = 0.0529 nm is the Bohr

radius), is much smaller than the typical interparticle spacing in dilute gases. For lithium for

example, the van der Waals range is rvdW ∼ 65 a0 while for densities of 1013 cm−3 (which are

typically obtained in quantum degenerate gases only), the ratio of the range to the interparticle

spacing n1/3rvdW ∼ 0.007 is indeed much smaller than unity. Intuitively, one would thus expect

the system to be nearly non-interacting, which is correct only in the classical limit. However

the quantum-mechanical picture is very di�erent because a short-range (even a zero-range, as we

shall see) potential can scatter matter waves. As a result, even very dilute quantum systems

can be strongly altered by weak interactions, while their classical counterpart remain only barely

perturbed.

1.2.1 Reminder of scattering theory: s-wave scattering

Ultracold atomic systems o�er in this respect a signi�cant simpli�cation of scattering processes

because of the very low energies of the colliding particles. To characterize the elastic collisions

at low temperatures, we have to look at the scattering of two particles, which in the frame of

the center of mass is equivalent to the scattering of one particle of reduced mass in the potential

4 In the limit βµ→∞, we have:

−Li3/2(−eβµ) =
4

3
√
π

(
(βµ)3/2 +

π2

8

√
βµ+ . . .

)
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Vint(r) = Vint(|r1 − r2|) (assumed to be isotropic). One has to solve the Schrödinger equation5:

(∆ + k2)ψ(r) =
mVint(r)

~2
ψ(r), (1.22)

where k2 = 2mE/~ is the square of the relative momentum of the two atoms (of mass m), with

the following asymptotic behavior (for r much larger than the range of the potential):

ψ(r) ≈ eikz + f(k, θ)
eikr

r
(1.23)

where θ is the angle between the relative momentum of the two atoms before (here assumed along

the z-axis) and after the scattering. The quantity f(k, θ) is called the scattering amplitude. The

di�erential cross-section can be deduced from it, dσ
dΩ = |f(k, θ)|2. The assumption of the isotropy

of the interaction potential can be used to expand the wavefunction in Legendre polynomials of

cos θ, thanks to the axial symmetry of the problem around the z-axis of the incoming plane wave.

This expansion decouples the problem of the scattering to solving a radial equation for each partial

wave of order l, under the e�ective potential:

Ve� = Vint(r) +
~2

2m

l(l + 1)

r2
, (1.24)

where the second term is the centrifugal barrier. For su�ciently low energies of the incoming

particles (or equivalently low temperatures), the barrier will prevent scattering for partial waves

l > 0, and only the isotropic l = 0 wave (or s-wave) will be scattered. A quick estimate for Li

shows that the height of the barrier for the l = 1 (or p-wave) will be ∼ kB× mK (and larger for

higher partial-waves) and the particles will not explore the short-ranged part of the interaction

potential (see Fig.1.2). Thus, except in the case of resonantly enhanced high-order partial wave

scattering, these are strongly suppressed at the typical (∼ µK) temperatures of ultracold gases.

HaLHaL

rr

V
ef

fHrL VcVc

HbLHbL

rr

V
ef

fHrL

Figure 1.2: E�ective interaction potential Ve�(r) as a function of the interatomic distance r.

(a): Typical interaction potential between two alkali atoms in the s-wave channel. (b): e�ective

potential with a centrifugal barrier Vc (second term of Eq.(1.24)).

5For a detailed presentation, we refer the interested reader to [66]
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1.2.2 The Scattering Length a and Universality

The low-energy limit of ultracold collisions can be further exploited to simplify the problem as the

scattering amplitude for s-wave scattering can be expanded for low values of k [67]:

fl=0(k) = − 1

a−1 + ik − 1
2k

2re + . . .
, (1.25)

where

a = − lim
k→0

fl=0(k) (1.26)

is the s-wave scattering length, and re is the so-called e�ective range of the interaction. If k is

su�ciently small such that the e�ective range is negligible (k2re � a−1) the collisions are char-

acterized by the scattering length a only. This result has far-reaching consequences: if systems

consisting of di�erent types of particles (neutrons, 6Li, 40K for fermionic systems for example) with

di�erent interaction potentials have the same scattering length, they will share the same physics,

a property we will refer to as universality. In some cases that we will also encounter in this work,

the short-range physics can play a role, and di�erent many-body systems might di�er from one

to another. For large values of a, the scattering amplitude is limited to f = i/k and the elastic

cross-section, to σ = 4π/k2, the unitary limit.

We discussed so far the case of distinguishable particles. Indistinguishability in quantum me-

chanics plays an important role in the scattering process. In Fig.1.3, we show a cartoon of two

possible scattering paths. Since particles 1 and 2 are indistinguishable, so are these two paths and

their probability amplitude must be summed and lead to an interference. Depending on the (anti)-

symmetry imposed to the wavefunction for (fermions) bosons, one can show that the di�erential

elastic cross-section reads:
dσ

dΩ
= |f(k, θ) + εf(k, π − θ)| (1.27)

where ε = 1 (-1) for identical bosons (fermions). Since we have assumed s-wave scattering only,

the scattering amplitude is independent of θ and as a result, in the low-energy limit the elastic

cross-section is σ = 8πa2 for bosons, and σ = 0 for fermions. The absence of s-wave collisions for

polarized fermions is a consequence of the antisymmetry constraint: while the spin and radial part

of the wavefunction are symmetric, the angular part must be antisymmetric, which is incompatible

with isotropic scattering.

1

2
1

2θ

π-θ

Figure 1.3: Scattering of two particles. For indistinguishable particles, the two paths drawn

interfere in the calculation of the elastic cross-section, leading to a di�erent behavior for bosons

and fermions.
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1.2.3 Feshbach Resonances

Scattering Resonances

One of the most attractive aspects with ultracold quantum gases is the possibility of tuning the

scattering length. This is due to the existence of Feshbach resonances, which are a type of scatter-

ing resonance. In order to illustrate the concept of a scattering resonance as well as the zero-range

limit and universal Feshbach bound states, we will take a look at simple textbook examples, the

square-well, and the square-barrier potential of range b and amplitude V0. These two models will

be important with respect to Monte Carlo simulations presented in this work.
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Figure 1.4: Scattering length for (a): square well potential and (b): square-barrier. The height

(depth) of the barrier (well) is V0 and its range, b. The insets represent the model potentials.

Solving the Schrödinger equation for a single-particle in the square-well by computing the zero

energy solution k → 0 which has the asymptotic form 1− a/r for large values of the coordinate r,
one �nds:

a = b

(
1− tan k0b

k0b

)
, (1.28)

where k2
0 = 2mV0/~2. There are periodic resonant enhancements of the scattering when k0b =

π
2 (1 + 2n) (where n is an integer). This condition corresponds to the appearance of a new bound

state in the square-well. For the barrier potential, the expression providing the scattering length

is very similar to that of the square well potential Eq.(1.28):

a = b

(
1− tanh k0b

k0b

)
. (1.29)

The result is very di�erent: the scattering length is always smaller than the range b (the equality

is achieved in the limit of a hard-sphere repulsion V0 = ∞). The results obtained for these two

basic examples are more general: for a purely repulsive potential, the scattering length will always

be on the order of the range of the potential. Thus one cannot realize a system with purely

repulsive binary interactions that would be both strongly interacting and dilute (in the sense that

the interparticle spacing is much larger than the potential range n−1/3 � b). In contrast, a
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potential with an attractive part can have a scattering length much larger than the range so that

the strongly interacting limit na3 � 1 is compatible with the diluteness condition nb3 � 1. Such

a system can be expected to have universal properties. However, having an attractive part in the

interaction potential is delicate for numerical simulations as the system might sustain many-body

bound states (clusters) that do not correspond to the metastable gaseous phase observed in the

experiments.

The Zero-Range Limit

If the details of the microscopic potential do not matter, we are in principle free in our choice of

model interaction potential that provides the desired scattering length. This idea constitutes a

considerable theoretical simpli�cation because inter-atomic interaction potentials are notoriously

complex and accurate determination of their shape is a di�cult task. This di�culty cannot be

circumvented in general with dense quantum liquids such as 4He where accurate knowledge of the

interaction potential is important to obtain quantitatively satisfactory results (see for example [68]).

Since in our dilute quantum gases the range of the interaction potential is usually irrelevant, it

is natural to choose a model potential with no characteristic length scale and the zero-ranged 3D

pseudo-potential6 is widely used to model the interactions Vpseudo(r1 − r2) = gδ(|r1 − r2|), where
the coupling constant is g = 4π~2a/m. An interesting property of the pseudo-potential is that it

scatters only in the s-wave channel and its scattering amplitude is equal to the expansion (1.25)

with re = 0.

To understand the meaning of the zero-range limit, we can take the square-well model presented

above. We take the limit V0 →∞ and b → 0 such that the scattering length in Eq.(1.28) is �xed

and much larger than the range b (so that a ≈ − tan(k0b)/k0). We �nd that the shallowest bound

state (in the limit where the depth V0 is much larger than the energy E of this state) has an energy

E → −~2/(ma2) (where m is the mass of one particle) and a wavefunction ψ(x) ∝ e−|x|/a. These
results are important: this bound state is universal, its size and energy depend on the potential

only through its scattering length, not on its range. This bound state, which we will refer to as a

Feshbach molecule will be the same for any short-ranged potential possessing a shallow bound state.

In contrast, the deeply bound states will extend over a range on the order of b: they thus depend

on the short-range characteristics of the potential. The zero-range pseudo-potential supports a

single bound state, which is the Feshbach molecule, provided a > 0.

Feshbach Resonances

We have seen that by manipulating the depth of the interaction potential, we can change the scat-

tering length. For interatomic interactions, the shape of the potential is given by the interactions

between the electrons and the nuclei and cannot be modi�ed. However, a di�erent type of scat-

tering resonance exists in atomic systems, called Feshbach resonance. The detailed mechanism of

these resonances is rather subtle and we will only give the idea as the mechanism itself will not be

6Writing the pseudo-potential as a delta function is a common shortcut, but it is valid only in the Born ap-

proximation. Beyond that approximation, the delta function leads to ultraviolet divergences (for example in the

calculation of the ground state energy of a BEC). A solution is to use the regularized pseudo-potential:

Vpseudo(ψ) =
4π~2a

m
δ(r)

∂

∂r
(rψ(r)). (1.30)

Equivalently, the zero-range potential can also be replaced by contact boundary conditions (called the Bethe-Peierls

conditions) on the many-body wavefunction obeying a free Schrödinger equation (see [69]).
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Figure 1.5: Principle of a Feshbach resonance. (a): The incoming atoms are in the open channel

(full red line). Due to the coupling to the closed channel (dashed blue line), the scattering properties

of the former are modi�ed. A Feshbach resonance occurs at a magnetic �eld B0 when a bound

state in the closed channel is resonant with the energy in the continuum, or δ = 0. (b): The energy

detuning between the two potentials can be changed via a magnetic �eld (same color code).

relevant for the rest of this work, and extended explanations can be found elsewhere (for instance

in [70]). A Feshbach resonance involves two potentials (called channels in this context). For alkali

atoms, the two potentials are the singlet (S = 0) and triplet (S = 1) of electronic spin con�g-

uration (of the two valence electrons), see Fig.1.5a. Because of the hyper�ne interaction, these

two potentials are coupled and the scattering properties in the entrance channel can be modi�ed.

Since the magnetic moment is not the same for the two potentials (noted ∆µ in Fig.1.5b), they

can be shifted with respect to each other via an external magnetic �eld. A Feshbach resonance

occurs at a magnetic �eld B0 when a bound state in the closed channel matches the energy of the

continuum in the open channel (δ = 0 in Fig.1.5). In the vicinity of a s-wave Feshbach resonance,

the scattering length depends dispersively on the magnetic �eld [71]:

a(B) = abg

(
1 +

∆

B −B0

)
, (1.31)

where abg is the background scattering length, B0 is the resonance position and ∆, its width, is

de�ned as the separation between the resonance position and the zero-crossing.

Feshbach Resonances in Lithium

Feshbach resonance were observed in cold atoms in the late '90 [33, 32, 34] and since then a large

number of resonances have been identi�ed with di�erent elements [70]. We will focus on our system,

namely 7Li-6Li for which resonances had been predicted back in 1995 [71]. For fermionic 6Li, s-

wave Feshbach resonances have been found in mixtures of all the three lowest Zeeman sub-states

|1〉,|2〉 and |3〉 (see Fig.2.1 for the states labeling). The position and width of the three broad

resonances have been determined by spectroscopic means [72] and are shown in Table 1.1.
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Table 1.1: broad s-wave Feshbach resonances in 6Li [72]

Mixture abg/a0 B0(G) ∆B(G)

|1〉 − |2〉 -1405 834.1(1.5) 300

|1〉 − |3〉 -1727 690.4(5) 122.3

|2〉 − |3〉 -1490 811.2(1.0) 222.3

A narrow resonance in the |1〉− |2〉 mixture has also been found around 543 G (width of about

400 mG) [73, 74] as well as three p-wave resonances in polarized |1〉, |2〉 and in the |1〉 − |2〉 mix-

ture [75,76].
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Figure 1.6: The Feshbach resonances used in this work. (a): Feshbach resonance of 6Li in the

spin-mixture |1〉 and |2〉. Inset: Zoom around the resonance: (a/a0)−1 × 106 as a function of B.

(b): Resonance of 7Li in spin state |1〉.

Bosonic 7Li also possesses various resonances. The lowest energy state |1〉 (see Fig.2.1) has a
wide Feshbach resonance at 737.8 G [77, 78, 79, 59]. This is the Feshbach resonance that we used

in our experiments. There are two additional resonances in the state |2〉 that have been recently

discovered: a broad one, with a width of 34 G located at 884+4
−13 G, and a narrow one (width

of 7 G) at 831(4) G [80]. There are also several heteronuclear Feshbach resonances in the 6Li-
7Li system [81, 82, 83, 84], which makes this system very suitable for isotopic strongly interacting

Bose-Fermi gas experiments, similarly to the 39K-40K mixture [85].

1.3 Probing the Equation of State of Quantum Gases

We have shown that interactions between two particles in dilute quantum gases can in general be

accurately described by a single parameter, the scattering length, characterizing the short-range

interactions7. Now we are in position to ask the driving question behind this work: what are the

macroscopic thermodynamic properties and the phase diagram of homogeneous quantum gases

7It is important to note that several ultracold systems currently studied do not fall in this category such as

dipolar gases, with long-range anisotropic interactions (see [86] and references therein), or quantum gases in the

vicinity of narrow resonances, where the e�ective range is not negligible (see for example [87,88,89]).
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with short-range interactions ?

The Equation of State contains all the thermodynamic information about the macroscopic

properties of a physical system, and many experimentally relevant quantities can be extracted

from it, such as the speci�c heat, the compressibility or the magnetic susceptibility. In general,

a phase transition will manifest itself as a singularity in the EoS. Depending on the statistical

ensemble we are working with, the EoS has di�erent expressions. Because of their use in this work,

we will restrict ourselves to the canonical and grand-canonical ensembles. The canonical EoS is

the equation relating the canonical thermodynamic potential, i.e. the energy E, to the entropy S

(for a given volume V and particle number N)8:

E = E(S, V,N). (1.32)

In the grand-canonical ensemble the EoS reads:

Ω = Ω(T, V, µ), (1.33)

relating the grand-potential Ω to the temperature T , the chemical potential µ, and the volume

V . In the thermodynamic limit, these two formulations are equivalent [64] and they are related

through a Legendre transform:

Ω = E − TS − µN. (1.34)

From the Gibbs-Duhem formula Ndµ = −SdT + V dP , we relate the grand-potential to the pres-

sure: Ω = −PV . The density can be deduced from the Gibbs-Duhem relation at �xed temperature:

n =
(
∂P
∂µ

)
T,V

. The entropy is given by S = −
(
∂Ω
∂T

)
µ,V

.

1.3.1 Dealing with the Trapping Potential: Local Density Approximation

The ultracold atom experiments usually display an additional important feature: the atoms are

con�ned in an external trapping potential V (r). Even though box potentials have been realized

experimentally [91] (but they require delicate tunings), most experiments are achieved in harmonic

traps (or gaussian traps corresponding to the potential created by an optical dipole trap), and the

gas is spatially inhomogeneous, with a local density n(r). The relation between the properties of

the trapped gas and the corresponding homogeneous system is not simple. In principle, one has

to solve the many-body Hamiltonian with the additional external trapping potential, which is a

di�erent problem than the Hamiltonian of the homogeneous system alone.

The Local Density Approximation

However, the picture is considerably simpli�ed if the trapping potential and the density of the

gas are su�ciently slowly varying so that one can assume that the inhomogeneous gas can be

decomposed into small volumes in which the gas can be locally considered as homogeneous, with

the same properties as a uniform gas with a density n(r). Within this approximation, called the

8Note that the de�nition of the equation of state here is di�erent from the textbook de�nition [90], where the

EoS are de�ned as the set of relationships expressing the intensive parameters in terms of the independent extensive

parameters, for example P = P (S, V,N), T = T (S, V,N), etc. In this case, all equations of state are in general

required to recover the fundamental equation E = E(S, V,N). We will rather de�ne the last expression as the

equation of state in the canonical ensemble.
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Figure 1.7: Sketch of the local density approximation. The system can be subdivided in mesoscopic

volumes (dotted vertical lines) where the system has the properties of the homogeneous gas with

a local chemical potential µr = µ0 − V (r), where µ0 is the global chemical potential and V (r) the

trapping potential (blue solid line).

local density approximation (LDA), the trapping potential acts as an o�set to the local chemical

potential µ[n(r)] compared to the global chemical potential of the gas µ0:

µ[n(r)] = µ0 − V (r). (1.35)

This approximation is equivalent to the mechanical equilibrium condition in hydrostatics: ∇P (r)+

n(r)∇V (r) = 0. From the Gibbs-Duhem relation at �xed temperature, we have ∇P = n(r)∇µ
and we indeed recover Eq.(1.35). In some simple cases such as the T = 0 weakly interacting Bose-

Einstein condensate describable by the Gross-Pitaevskii equation (see section 3.1.2), the validity

of the LDA can be readily veri�ed. While it is easy to formulate necessary conditions, such as the

level spacing in the trap being much smaller than the other energy scales, ~ω � kBT, µ in order

for the LDA to be applicable, it is di�cult to assess a priori the validity of the LDA for a strongly

interacting many-body system. For instance the presence of vortices, or phase transitions can lead

to sharp boundaries inside the gas, where the LDA can be locally violated.

How to measure the Equation of State within the LDA

The Local Density Approximation has very powerful consequences. Given the knowledge of the

trapping potential V (r), the LDA implies that the equation of state can be directly extracted from

the in-situ density distribution. Starting from Eq.(1.35), measuring the EoS requires two steps: 1)

The determination of the global chemical potential µ0 (and possibly other variables, such as the

chemical potential of other species present, the temperature T or the scattering length a, depend-

ing on the system studied). 2) The measurement of the local density n(r), which then gives at

each point r, a value of the equation of state µ[n(r)]. Each of these two steps presents signi�cant

challenges.

� The determination of the global chemical potential µ0 from the shape of the cloud seems

at �rst sight to require the knowledge of the EoS n[µ(r)] because within the LDA, µ0 is
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implicitly �xed by the total atom number N normalization:∫
n[µ(r)]d3r =

∫
n[µ0 − V (r)]d3r = N (1.36)

We have implemented throughout this work various techniques to determine µ0 in a model-

independent way depending on the system investigated.

� The measurement of the local density n(r) presents di�erent issues. For low-dimensional

systems, absorption imaging in principle gives direct access to the surface density n2D(x, y)

or the linear density n1D(z)9 making the measurement of the EoS rather direct (see section

1.3.2). In 3D, the probe laser beam propagates along one direction in the cloud10. The

integration along this line-of-sight thus gives access to the 2D-projection n̄′(x, z) of the three-

dimensional density n(x, y, z):

n̄′(x, z) =

∫
dy n(x, y, z). (1.37)

This issue can be overcome in di�erent ways, either by performing the measurement of

the global EoS for the trapped gas, or by reconstructing through numerical methods the

real density from n̄′(x, z) (section 1.3.3). Finally, we will present the method that we have

developed which actually bene�ts from the line-of-sight integration to extract directly the

pressure from the density pro�les (section 1.3.4).

1.3.2 Direct measurement of the EoS in low dimensions

The equation of state of a two-dimensional Bose gas has been extracted in C. Chin's group in

Chicago [94] and J. Dalibard's group at ENS [92,95] from an analysis of the in-situ density pro�les

(Fig.1.8). In this case, the EoS can be written as:

nλ2
dB = F

(
µ

kBT
, g̃

)
, (1.38)

relating the phase space density nλ2
dB to the chemical potential µ/kBT and to the 2D coupling

constant g̃ =
√

8πa/lz. Here, collisions are assumed to be three-dimensional (with a scattering

length a) and the harmonic oscillator length in the tightly con�ning direction z is lz =
√

~/mωz.
The particularity that in 2D g̃ is dimensionless results in a scale invariance11: at a given value of

a, all density distribution obtained for any N and T should collapse in a single curve depending on

µ/kBT only (and g̃ as a parameter). This approximate scale invariance was checked on 2D gases of
133Cs [94] and 87Rb [95]. The global chemical potential and temperature were obtained by �tting

the wings of the each density pro�le with the EoS obtained from a mean-�eld Hartree-Fock theory.

Even though Bose-Einstein condensation does not occur in the thermodynamic limit for a

homogeneous two-dimensional Bose gas because long-range order is prohibited in 2D [97, 98], a

transition to super�uidity characterized by a topological order was predicted in 1973 by Berezin-

skii and by Kosterlitz and Thouless (BKT) [99, 100]. The entrance in the super�uid regime was

9Optical depth issues can make the relation between the optical density and the density less obvious than Eq.(2.8),

see for example [92].
10It is however possible to image slices of a 3D cloud, using radio-frequency transitions that are locally selective

by the additional presence of a magnetic-�eld gradient. This technique was used to image the Mott plateaus of a

Bose gas in an optical lattice [93].
11The scale invariance is only approximate because g̃ also has logarithmic density-dependent corrections [96].
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Figure 1.8: Equation of State of a 2D Bose gas. (a): Chicago group measurement of the phase

space density nλ2
dB versus the chemical potential µ̃ = µ/kBT for a coupling strength g̃ = 0.26 [94].

(b): ENS group measurement of nλ2
dB and the entropy per particle S/NkB versus µ/kBT [95] for

g̃ ≈ 0.1.

interpreted by the pairing of free vortices of opposite circulation. This transition was observed

as a jump in the super�uid density in a thin �lm of 4He (through moment of inertia measure-

ment) [101] and recently with ultracold atoms by interferometric measurement of the proliferation

of free vortices [102] across the BKT transition. We remark that BKT transition is not followed

by a sharp feature in the EoS, even though we see that the entropy drops rapidly to a value close

to zero (Fig.1.8), characteristic of super�uids.

In-situ density pro�les have also been measured in single one-dimensional Bose gases. Even

though the equation of state has not been explicitly extracted from these, the results have been

compared to the exact solution obtained from the Bethe ansatz, called the Yang-Yang thermody-

namics, and the agreement is excellent [103,104].

1.3.3 In 3D: Trapped Gas EoS and Inverse-Abel Transform

Equation of State of a Trapped Gas

In 3D, it is not possible to measure directly n(x, y, z) because of the line-of-sight integration of

the probe. The �rst thermodynamic measurements both on Fermi and Bose gases were global

and resulted in quantities averaged over the trap. For example, the energy of a weakly inter-
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acting trapped Bose gas was measured versus temperature T using expanding clouds showing

good agreement with the thermodynamics of the ideal gas [105]. More precise measurements have

shown systematic deviations due to the weak mean-�eld interactions [106, 107]. For Bose gases

with stronger interactions, there have been no measurements of the EoS, either at zero- or �nite

temperature, both for the trapped or the uniform gas.

Figure 1.9: Equation of State of the trapped unitary Fermi gas. Left panel: the JILA group

measured the potential energy Epot of a unitary gas of 40K [108]. The superscript 0 refers to the

quantity measured on the non-interacting Fermi gas with the same entropy. Right panel: Duke

group measured the energy E/NEF versus entropy S/NkB on a unitary gas of 6Li [109].

On the other hand, extensive thermodynamic studies on trapped Fermi gases have been per-

formed at JILA and Duke University (see Fig.1.9). The energy could be measured in a model-

independent fashion using the virial theorem veri�ed by the unitary gas [110]. An additional

di�culty with Fermi gases is that the thermometry techniques used for Bose gases, such as �tting

the wings with the pro�les corresponding to the weakly interacting limit, or using time-of-�ight

methods, are invalid because even the wings are usually strongly interacting and the expansion is

strongly hydrodynamic because of the very large collision rate. Adiabatic sweeps to the weakly

interacting regime were used for thermometry, measuring either the entropy [109] or the tempera-

ture [108] of the weakly interacting gas. Let us also mention that the Innsbruck group measured

collective modes frequencies in the BEC-BCS crossover and that these frequencies can be related

to the EoS of the trapped gas via the hydrodynamic equations [46]. The comparison between

the resulting equations of state, shown in Fig.1.9, to theories of the many-body problem is rather

indirect because of the e�ect of the trap averaging. Indeed, the energy of the trapped system (5.39)

can be deduced from the energy of the uniform gas:

Et =

∫
e[n(r)]d3r (1.39)

where e[n(r)] is the energy density of the uniform gas with a density n(r) (a similar expression for

the entropy holds). Many numerical methods that are used to tackle the many-body problem such

as the Monte-Carlo methods only calculate discrete points of the EoS (and in general few of them as

it is a very time consuming task). Therefore in order to perform numerical integration of Eq.(1.39),
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an additional interpolation step is required which makes the comparison with experiments less

direct. In addition, the averaging will smear out sharp features (such as phase transitions) and

diminish di�erence between theories and/or experiments.

Equation of State of a Uniform Gas

Obtaining the EoS of the uniform system instead of the trapped one is obviously more interesting

because the former is a more fundamental quantity than the latter, and because it is the one

that is directly computed with the various theories. Before presenting the method that we have

developed to measure the EoS of a homogeneous gas, let us mention another important technique,

namely the inverse Abel transform. The problem is to recover the density n(x, y, z) from the 2D

projection n̄′(x, z) of Eq.(1.37). If one assumes cylindrical symmetry for the density pro�le (which

is usually well veri�ed in practice) one can tomographically reconstruct n(r) with one projection,

as all projections are equivalent. This is achieved via the inverse Abel transform:

n(r, z) = − 1

π

∫ ∞
r

dx
dn̄′(x, z)

dx

1√
x2 − r2

. (1.40)

The integrand of Eq.(1.40) shows the principal drawbacks of this method: one must take the

derivative of an experimental signal n̄′(x, z) and the other term in the integrand is singular at

the lower bound of the integral. This procedure requires very low-noise data to begin with as

the reconstructed density has a lower signal-to-noise that the integrated pro�le n′(x, z). This

technique to obtain the EoS was pioneered at MIT by Y. Shin, who extracted the equation of

state of a homogeneous spin-polarized Fermi gas using the in-situ density pro�les of a trapped

system [111], following a proposal by A. Bulgac and M. Forbes [112]. A similar method was used

in T. Mukaiyama's group in Tokyo to measure the EoS of the homogeneous unitary gas [113], and

is currently used in M. Zwierlein's group at MIT to extract the EoS n(µ, T ) of the unitary Fermi

gas [114,115].

1.3.4 Our Method: the Direct Measurement of the Local Pressure

The equation of state of the uniform gas can be obtained from the trapped density pro�le without

relying on the inverse Abel transform, measuring the local pressure directly. The derivation of the

formula is simple and starts with the doubly-integrated density pro�le:

n̄(z) =

∫
dxdy n(x, y, z) (1.41)

= 2π

∫ ∞
0

rdr n(r, z) (cylindric symmetry) (1.42)

=
2π

mω2
r

∫ µz

−∞
dµ nhom(µ) (LDA + harmonic trapping) (1.43)

=
2π

mω2
r

∫ µz

−∞
dµ

∂P

∂µ
(µ) (Gibbs-Duhem) (1.44)

=
2π

mω2
r

P (µz). (1.45)

where µ = µz − 1
2mω

2
rr

2 is the local chemical potential, and µz = µ0 − V (z) is the chemical

potential on the z-axis. Inverting this last expression we �nd the pressure formula, stating that

the local pressure along the z-axis is simply proportional to the doubly-integrated density pro�le.

This formula was derived independently in [116, 117, 118, 119] and in our group [60]. It can be
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Figure 1.10: Measurement of the pressure of a three-dimensional quantum gas. The absorption

imaging along the y-axis gives the 2D projected density n′(x, z) (grey area). An integration along

x provides the doubly-integrated density pro�le n̄(z) (in red line) which is proportional to the

pressure at each point along the z-axis.

readily generalized to an arbitrary mixture of M species, each of mass mi harmonically trapped

radially with a frequency ωri:

P ({µiz}, λ) =

M∑
i=1

miω
2
ri

2π
n̄i(z), (1.46)

where µiz = µi0 − V (z) is the local chemical potential of species i, and λ being additional param-

eters such as temperature or interaction strength.

This relation is remarkable on several grounds. Few assumptions are necessary: the local den-

sity approximation and a transverse harmonic con�nement12. Its applicability is very wide: it can

be used for a gas of bosons, fermions or arbitrary mixtures of the two; it is valid at �nite tempera-

ture, for any value of the scattering length, or even for long-range interactions. Most importantly,

it allows the direct probing of the pressure of the locally homogeneous gas. The trapping potential

is now turned into an advantage: because of the dependence of the local chemical potential with

V (z), the trapping scans the value of the chemical potentials and a single image provides many

local samples of homogeneous systems with di�erent chemical potentials and thus many points of

the equation of state. Finally, the measurement of n̄ is experimentally easy and the additional

integration compared to the 2D density increases the signal-to-noise for the pressure, allowing for

12It is easy to compute the �rst correction to the transverse harmonic assumption. In practice, the trapping

potential are done with optical traps which have a gaussian shape: V (r, z) = 1
2
mω2

zz
2 + U0

(
1− exp

(
−r2
σ2

))
≈

1
2
mω2

zz
2 + 1

2
mω2

rr
2
(

1− 1
2
r2

σ2

)
. We insert this expression in Eq.(1.42), retain the lowest order term in r2/σ2 and

integrate by part the resulting integral to obtain:

mω2
r

2π
n̄(z) = P (µz) +

2

mω2
rσ

2

∫ ∞
0

du P (µz − u). (1.47)

The pressure is then related to the integrated density pro�le through an integral equation. This equation is useful

to estimate a posteriori the systematic error due to the anharmonicities of the trap.
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high precision measurements.

In this work, we have applied the method of the local pressure measurement in a quantum

gas to deduce the equation of state of various systems of fermions and bosons. These systems are

summarized in Tab. 1.2. Each of these systems required speci�c methods to determine the ther-

modynamic variables such as the chemical potentials or the temperature, as well as the calibration

of the pressure. We will present in Part II the work related to the atomic Bose gas, while Part III

will be dedicated to the two-component Fermi gas.

Table 1.2: Measurement of Equations of State presented in this work.

System Thermodynamic variables and parameters

Bose gas at T ≈ 0 (chapter 3) µ, a

Unitary Fermi gas with n↑ = n↓ (chapter 5) µ, T

Fermi gas with n↑ = n↓ at T ≈ 0 µ, a

in the BEC-BCS crossover (chapter 5)

Imbalanced Fermi gas at T ≈ 0 µ1, µ2, a

in the BEC-BCS crossover (chapter 6)
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Chapter 2

The Lithium Machine

In this chapter, we will present the experimental setup that allow us to produce quantum degenerate

Bose and Fermi gases. Many technical aspects of the experiment have been described in great

detail in the thesis of F. Schreck [120], L. Tarruell [84], or S. Nascimbène [121], to which we refer

the interested reader. Therefore, we will deliberately focus here on a simple description of the

experimental sequence and emphasize the optical trapping stage.

2.1 Trapping and Cooling the Lithium Isotopes

Lithium is the third element of the periodic table, and is a commonly used element for quantum

gas experiments, with two stable isotopes, fermionic 6Li, and bosonic 7Li. The natural abundance

is 92.5 % (7.5 %) for 7Li (6Li). Lithium is a soft metal, with a melting point at 181 °C, the highest

of all alkali elements. The mass of 7Li is 1.165 10−26 kg, while 6Li is 0.999 10−26 kg. Lithium is

an alkali element (second lightest to hydrogen), which means that a single electron occupies the

outer shell (the 2s shell for Li). The excitation of this electron to the 2p is an optical transition at

671 nm, corresponding to red light (Fig.2.1).

2.1.1 The Laser System

Several sources are available to produce, and amplify the red light at 671 nm: dye lasers, laser

diodes or tapered ampli�ers. Recently a solid-state laser was developed at ENS by frequency-

doubling a 1342 nm laser [122]. When the experiment was rebuilt in 2005, tapered ampli�er at

lithium wavelength were not available and the laser system was constructed out of laser diodes

alone. We use high power laser diodes (Hitachi HL6545MG), with an output power of 130 mW.

Their wavelength at room temperature is 660 nm: they thus need to be heated up to 60− 80 °C to

reach the wavelength corresponding to the Li transitions. This in turn requires thermally isolated

laser mounts.

As shown in Fig.2.1, hyper�ne levels are not resolved in the excited state for lithium (the

natural linewidth of the optical transitions is Γ = 5.9 MHz). Therefore, the cooling lines are

poor cycling transitions, and lithium, in opposition to other alkali atoms (such as 87Rb), requires

powerful repumping light (in practice as much as cooling light). Because of the small hyper�ne

splitting in the ground state, it would be possible in principle to derive both cooling and repumping

frequencies from a single master laser for each isotope. However, there is a coincidence between

the D2 line for repumping of 6Li and the D1 line of 7Li. We thus repump 6Li on the D1 line and
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Figure 2.1: Energy levels of 7Li and 6Li. The cooling and repumping transitions used for the MOT

are also shown.

it requires an additional master laser (because of the 10 GHz di�erence). We have three master

lasers: one for 7Li and two for 6Li.

The master lasers are installed on a separate breadboard and are stabilized using an external

cavity in Littrow con�guration, from which we get about 30 mW. Their frequency is locked using

Doppler-free spectroscopy on vapor lithium cells. The beams are then �ber-coupled to the main

experiment breadboard and used to injection lock slave lasers. Using acousto-optic modulators

(AOM) in double-pass we derive the four frequencies for the MOT (cooling and repumping laser

for each isotope). Additional AOMs are used to red-detune the master light by 400 MHz in order

to inject the four Zeeman slower slaves.

Operating many laser diodes at the edge of their temperature range is delicate. In particular

the stability of the injection-locks is di�cult to maintain over hours and appears to be the limiting

factor to the automatization of an otherwise very stable experiment. We have generalized the use

of �ber coupling, both acting as spatial mode �lters and alignment decoupling. All master lasers

are immediately �ber-coupled after going through an optical isolator. Changing the grating angle

or the diode does not require to realign the spectroscopy setup. The same idea was applied to the

MOT and Zeeman slaves. Even though it reduces the available power due to �ber-coupling losses,

this improvement was necessary as our diodes have a short lifetime1. We typically end up with 40

mW of light for each frequency in a TEM00 mode.

1One diode has to be replaced every month at least. Changing a slave diode takes less than 30 min and has

negligible e�ect on the experiment.
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Figure 2.2: Sketch of the Experimental Apparatus. The atomic beam coming out of the oven is

slowed down by a Zeeman slower (not depicted) and captured in the cell by the MOT coils (in

orange), and the associated laser beams (not depicted). The cloud is then magnetically transported

to the small appendage with the Feshbach (blue) coils. The gas is then loaded a Io�e-Pritchard

trap consisted by four (brown) Io�e bars and the (green) curvature coils. After radio-frequency

evaporative cooling, the gas is transferred in a far-detuned optical dipole trap (red), the Feshbach

�eld is ramped to tune the value of the scattering length a and quantum degeneracy is achieved

by a �nal evaporation in the optical trap.

2.1.2 The Dual Species 7Li-6Li Magneto-Optical Trap

The Oven - the Zeeman Slower

Our source is a few grams of lithium heated up to 510 °C in an oven constituted by a stainless steel

cylinder acting as a reservoir. A collimation tube, perpendicular to the cylinder, allows the lithium

vapor to exit in the form of a collimated atomic beam. The beam has a thermal speed
√
kBT/m

of about 1000 m/s. It must be �rst slowed down in order to be captured in the magneto-optical

trap, using the pressure radiation in a 1m long Zeeman slower. The Zeeman slower compensates

the Doppler shift due to the decreasing speed of the atoms using the Zeeman e�ect. The exit speed

of the atoms is about 50 m/s, within the MOT capture velocity.
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The Magneto-Optical Trap

After being slowed down, the atomic beam arrives in the lower part of the science glass cell, where

it is magneto-optically trapped (Fig.2.2), centered on the MOT coils. The four frequencies (cooling

and repumping transition for each isotope) are mixed on four non-polarizing beamsplitters. Three

outputs provide the three pairs of trapping beams and are expanded with telescopes to a diameter

of 2.5 cm. The remaining output is directed towards a Fabry-Pérot cavity. The cavity allows us

to check the injection locks and also provide a spatial reference, to adjust the superposition of the

trapping beams. Each beam has an intensity of about 2 mW/cm2, slightly below the saturation

intensity of the D2 lines Isat = 2.4 mW/cm2. The beam are red-detuned by 6.7 Γ and 5.9 Γ for

the cooling and repumper beam of 7Li, and 5.4 Γ and 2.0 Γ for 6Li. In about 40 seconds, we can

load 1010 bosons and 3 109 fermions at a temperature of 2.7 mK.

Afterwards, we compress the MOT (the so-called CMOT) by ramping the frequency of the

lasers in 8 ms closer to resonance, to 3.5 Γ for both cooler and repumper of 7Li (2 Γ and 1.5 Γ

for 6Li). In addition, the repumping intensities are reduced to zero which leads to an almost total

pumping of the atoms in the F = 1 and F = 1/2 states. After the CMOT stage, the cloud's

temperature has been reduced to less than 1 mK, with 40 % of the atoms remaining. Because of

the small splitting in the excited states (see Fig.2.1), there is no sub-Doppler cooling mechanisms

in lithium and explains the high-temperatures observed. In order to further increase the phase

space density, we load the atoms in a magnetic trap to perform evaporative cooling.

2.2 Magnetic Trapping

2.2.1 Quadrupole Trap and Magnetic Transport

The principle of magnetic trapping relies on the coupling of the magnetic moment of the atom with

an external magnetic �eld B(r), leading to a potential U(r) = −µ ·B(r), assuming that the mag-

netic moment µ follows adiabatically the direction of B(r). Depending on the relative alignment

of µ and B, atoms are attracted to the low-B (µ · B < 0) or high-B regions (µ · B > 0). Since

Wing's theorem forbids maxima of a static B-�eld, we have to prepare the atoms in a low-�eld

seeking state. In addition, only stretched states are stable versus spin-relaxation. To increase the

number of atoms in the |F = 2,mF = 2〉 state of 7Li, we use both hyper�ne (or F -) and Zeeman

(mF -) pumping on 7Li. As atom number is not critical for 6Li, we use only hyper�ne pumping.

The pumping is done immediately after switching o� the MOT �eld and turning on a small guiding

�eld. After 300 µs, the expanding cloud is recaptured in a quadrupole trap created by the MOT

coils in anti-Helmholtz con�guration. The overall e�ciency of the loading is slightly less than 50

% for 7Li, and about 30 % for 6Li.

After the quadrupole trap is loaded, the gas is magnetically transported into the upper part

of the glass cell (also called the appendage, Fig.2.2). The transport is realized by simultaneously

ramping up the Feshbach coils, while ramping down the MOT coils, resulting in a vertical shift of

2.5 cm of the cloud's position. Due to the limited size of the appendage 60 % of the atoms are

truncated during the transport.
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2.2.2 The Io�e-Pritchard Trap

In order to proceed to radio-frequency evaporation, we need to transfer the atoms in a trap without

cancellation of the B-�eld. Indeed, around these regions spin-�ip (also called Majorana-) losses

are likely to occur, when the spin of the atom doesn't adiabatically follow the direction of B

anymore and �ips to an untrapped state. Our Io�e-Pritchard trap is realized with four Io�e bars

and two small curvature coils (Fig.2.2). The bars produce a quadrupole trap in the radial direction

while the curvature coils (in Helmholtz con�guration), the axial con�nement. The appendage was

designed such that the Io�e bars can be brought very close to the atoms, leading to large gradients,

which is a crucial ingredient to e�ciently evaporate 7Li. Because 7Li in the |F = 2,mF = 2〉 state
has a negative scattering length of a77 = −27 a0, the scattering cross section strongly depends on

the relative momentum of the two colliding atoms [120]. This results in a strong decrease of the

elastic collision rate (typically by a factor of 3 at a temperature of 1.5 mK) and, due to the small

scattering length, inhibits the runaway forced evaporation.

Doppler cooling

In order to overcome this issue and increase the collision rate before initiating the evaporative

cooling, we proceed to a Doppler cooling stage in the magnetic trap. A single horizontal beam is

su�cient because the cloud is already magnetically trapped and the axial con�nement compensates

for the radiation pressure. The cooling is initially 1D, and the other directions are cooled through

thermalization of the gas due to collisions. Moreover, the bias is set to a large value of 505 G

so that the σ+ beam drives the closed transition |F = 2,mF = 2〉 → |F ′ = 3,mF ′ = 3〉. To avoid

exciting the axial center of mass oscillation, we ramp up (and down) the beam intensity in 100 ms.

We empirically found that it is more e�cient to proceed to the Doppler cooling in two stages. A

�rst cooling of 1.5s in a shallow trap (ωr/2π = 198 Hz, ωz/2π = 66 Hz) reduces the temperature

from 1.5 mK to 370 µK. We then proceed to a second 1s cooling in a more tightly-con�ned trap

(ωr/2π = 353 Hz, ωz/2π = 122 Hz), which further reduces T to about 200 µK. At this point the

phase space density has increased by 50 and the elastic collision rate by 16, with about 30 % atom

loss. The conditions are ful�lled to initiate a successful forced evaporation.

Radio-frequency Evaporation

Evaporative cooling relies on the removal of the most energetic particles from the trap and rether-

malization of the remaining atoms. The elastic collision rate must therefore be signi�cantly larger

than the inelastic processes. After Doppler cooling, the trap is compressed by reducing the bias

�eld. The Feshbach coils are designed to cancel exactly the large bias due to the curvature coils

(B′0 = 2.28 G/A) when both are supplied in series. A residual bias of 5 G is provided by indepen-

dent o�set coils (yellow coils on Fig.2.2). The evaporation trap frequencies are then ωr/2π = 3.1

kHz and ωz/2π = 70 Hz at the almost harmonic bottom of the Io�e trap.

In the Io�e trap, selective removal of atoms is easily done by �ipping the spin of the atoms.

Because there are no s-wave collisions in a polarized Fermi gas (and higher-order partial wave col-

lisions are inhibited at low temperature except close to scattering resonances), it is not possible to

cool a spin-polarized 6Li gas alone. Therefore, we evaporatively cool 7Li, which in turn cools down
6Li via boson-fermion collisions2, also known as sympathetic cooling. Sympathetic cooling is a very

suitable method to obtain cold, large-number Fermi gases because no fermions need to be lost.

2The boson-fermion scattering length between states |2, 2〉 and |3/2, 3/2〉 is a6,7 = 40 a0.
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Figure 2.3: Energy levels as a function of the magnetic �eld for the hyper�ne ground states of 7Li

and 6Li. For simplicity, energy states are labeled in the Paschen-Back limit.

Evaporation of 7Li is done by driving the transition from |F = 2,mF = 2〉 to |F = 1,mF = 1〉, this
latter state being magnetically expelled.

The last cooling steps in the Io�e trap are dependent on the experiments carried out in the

dipole trap. If we want to prepare an ultracold Fermi gas, we completely evaporate 7Li. The lowest

temperature of 6Li in the Io�e trap is achieved in this way. If we want to transfer a trace of 7Li as a

thermometer of the Fermi gas, the 7Li evaporation is stopped slightly before the RF-knife reaches

the bottom of the trap. For the Bose gas experiments the �nal temperature has been optimized

to maximize loading into the dipole trap. The conditions at the end of the Io�e-Pritchard trap

stage3 are summarized in Tab.2.1.

Table 2.1: Atom numbers and temperature at the end of the radio-frequency evaporation in the

Io�e-Pritchard trap. The �rst column refers to the experiment on 6Li, 7Li being completely evap-

orated, and the second one refers to the evaporation of 7Li without 6Li. Timag is the temperature

measured in the �imaging" trap (ωr/2π ∼ 340 kHz and ωz/2π ∼ 30 Hz), while Tin-situ is the

temperature in the Io�e trap where evaporation is done (ωr/2π = 3.1 kHz and ωz/2π = 70 Hz).

6Li 7Li

N (× 106) 3 1.7

Timag (µK) 2.5 0.8

Tin-situ (µK) 13.3 4.1

The control of inter-atomic interaction strength via a magnetic Feshbach resonance requires an

3The tightest possible Io�e trap is used for evaporation, with maximum current of 500 A in the curvature and

Feshbach coils (acting as compensation for the bias �eld created by the former). The latter have a very large

inductance and it is not possible to switch o� 500 A fast enough for time-of-�ight measurements without creating

dangerous overvoltages. We thus decompress in the �imaging" trap for taking the pictures.



2.3 The Hybrid Magnetic-Optical Trap 43

adjustable bias �eld. The Io�e-Pritchard trap is not suitable in this respect as the con�nement

crucially depends on the value of the bias �eld. Moreover, many states possessing Feshbach reso-

nances are high-�eld seekers and thus cannot be magnetically trapped. For these reasons, we have

to load the atoms in an optical trap.

2.3 The Hybrid Magnetic-Optical Trap

While magnetic trapping relies on the coupling of the magnetic moment of the atom with an ex-

ternal magnetic �eld, optical trapping couples the electric �eld of the laser to the induced dipole

moment of the atom. Far from resonance, the dipolar interaction energy reads Udipole = −α2
〈
E2
〉
,

where
〈
E2
〉
is the time-average of the oscillating electric �eld and α is the atomic polarizability.

If the light intensity is spatially inhomogeneous, the atoms will experience a position-dependent

potential. For far-detuned optical traps, the atoms will be attracted to the maxima of intensity if

the oscillation frequency of the electric �eld ωOT is red-detuned compared to the atomic transition

ω, and to the minima otherwise.

In the experiment, we use a 120 W�ber laser, red-detuned to the lithium transition (λOT = 1073

nm). The gaussian beam in the TEM00 produces a trapping potential that, near the focus of the

laser beam can be approximated by a harmonic potential:

U(r, z) = −|U0|+
m

2

(
ω2
rr

2 + ω2
||z

2
)
, (2.1)

where U0 =
~Γ2P

4Isatδπw2
0

, ωr =
2

w0

√
U0

m
, and ω|| =

λOT√
2πw0

ωr. (2.2)

where P , w0, and δ are respectively the power, waist and detuning of the optical dipole trap. The

intensity of the beam on the atoms is controlled by an acousto-optic modulator.

2.3.1 Loading the Optical Trap

The loading of the dipole trap is done in two steps. First, a small current of 10 A is ramped in

500 ms in the curvature coils by the independent power supply P4. Second, the current provided

by P1 (in series in the Feshbach and curvature coils) is reduced to zero (step 0 in Fig.2.4). This

results in a decompression of the trap, with a bias increase from 5G to 23 G.

The radial con�nement is then switched from magnetic to optical. We ramp down the current

in the Io�e bars in 50 ms (200 ms for 6Li experiments) while simultaneously increasing the power

in the optical trap (step 1 in Fig.2.4). The optimal power for the loading depends on the isotope

used. The peak density of a classical gas in a trap scales as n0 ∝
(
ω̄2

T

)3/2

, where ω̄ = (ω2
rωz)

1/3

is the geometric mean trap frequency. If the tightness of a trap is adiabatically changed, the tem-

perature varies so that T/ω̄ is constant. The peak density thus increases with the power of the

dipole trap. At high power, the lifetime of the gas of 7Li is reduced because of dipolar losses in

the state |F = 2,mF = 2〉 [123]. For this reason, the trap loading power is limited to P = 5 W.

On the contrary, the gas of 6Li behaves like an ideal gas: the transfer in the dipole trap is thus

a single-particle adiabatic process. Consequently, we can load 6Li into a high power optical trap

(P = 65 W) and we observe no heating on a hundred-of-ms timescale. In both cases, we observe

nearly unit transfer e�ciency.
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Figure 2.4: Summary of the sequence in the hybrid magnetic-optic trap (time and current not to

scale). (0): At the end of the evaporation in the Io�e-Pritchard Trap, the current in the Feshbach

coils (acting as compensation of the bias produced by the curvature coils) and in the curvature coils

is reduced. (1): The radial con�nement is switched from the 2D quadrupolar �eld of the Io�e bars

to the Optical Trap. (2): O�set �eld is ramped up prior to the hyper�ne transfer. (3): curvature

coils is set to zero, the only bias remaining comes from the O�set coils. The RF is turned on and

the O�set current is lowered, resulting in a transfer of the atoms in the lowest hyper�ne state.

(4): The bias �eld is �ipped by rapidly increasing the current in the Feshbach coils. (5): The �nal

curvature is set, while increasing current in the Feshbach coils (so that they always dominate the

bias �eld). (6): The Feshbach �eld is ramped to tune a to its desired value prior to evaporation.

(7): Forced evaporation cooling in the optical trap. (8): Final interaction ramp. For Fermi (Bose)

gas experiments, this ramp is done on the Feshbach (O�set) coils.
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Since all spin states are equally trapped in the optical trap, it is usually not possible to transfer

the atoms in an untrapped state. In a dipole trap, the simplest method to force the evaporation is

to decrease the optical trap power. This strategy has a drawback since the decreasing power leads

to a decompression of the trap (see Eq.(2.2)), hence a reduced collision rate, which in turn a�ects

the e�ciency of the evaporation. In a single-beam dipole trap, this problem is exacerbated as the

axial frequency is low (several Hz) even at high power (see Eq.(2.2)), and this generally forbids a

runaway evaporation. A solution commonly implemented to reduce this e�ect is to intersect two

beams, creating a tighter, crossed dipole trap. In our experiment we turned to a simpler solution:

we use the curvature coils to provide with a magnetic axial curvature, while radial con�nement is

provided by the laser light.

2.3.2 Bias Flip and Magnetic Axial Curvature

The states that we use to prepare quantum gases are in the lowest hyper�ne manifold F = 1/2 and

F = 1, which are high-�eld seekers. Even though these states are not trappable in 3D by magnetic

means only, we just need to produce an axial magnetic con�nement. The curvature coils used in

the Io�e trap produce a saddle point that would either trap radially and anti-trap axially or the

opposite, depending on the relative projection of the magnetic moment of the atom compared to

the bias �eld direction.
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Figure 2.5: Sketch of the bias �eld �ip. States |+〉 refer to the magnetically trappable states

(magnetic moment anti-aligned to the bias �eld) |F = 2,mF = 2〉 and |3/2, 3/2〉, while |−〉 refer
to the ground states |1, 1〉 and |1/2, 1/2〉.

In Fig.2.5, we schematized the idea of the bias �ip. First, atoms are in the magnetically trap-

pable states (referred as |+〉) |F = 2,mF = 2〉 and |3/2, 3/2〉. When the bias �eld is dominated

by the curvature coils, the potential displays a minimum for |+〉, and a maximum for |−〉 (|−〉
being the ground states, |1, 1〉 and |1/2, 1/2〉). The potential can trap the |−〉 if the bias is �ipped,
which means that the bias �eld has to be dominated by the Feshbach coils. This implies that

the curvature coils create an antitrapping in the radial direction, but the latter is only a small
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perturbation to the optical trap con�nement.

The experimental sequence is slightly more complex than the principle presented above. After

the optical trap is turned on and the curvature coils set to 10 A, we ramp the o�set coils current

to 15 A (corresponding to 13 G bias) to prepare the bias for the transfer into the lowest hyper�ne

states (step 2 in Fig.2.4). Let us recall that the bias �eld of the o�set coil points in the same direc-

tion as the curvature �eld. To avoid a transient axial antitrapping (the dotted potential on the left

side of Fig.2.5), we ramp down the current in the curvature coils to zero (step 3 in Fig.2.4). The

axial trapping is at that point completely provided by the powerful optical trap. A radio-frequency

knife is switched on, at 827 MHz and 240 MHz. The o�set coil bias is ramped down in 100 ms to

4 G, which results in an adiabatic passage of the 7Li atoms (6Li) from state |2, 2〉 (|3/2, 3/2〉) to
the absolute ground state |1, 1〉 (|1/2, 1/2〉) (end of step 3 in Fig.2.4).

Now that the atoms are in the appropriate states, we �ip the bias �eld by abruptly setting the

Feshbach coils' bias to 11 G (step 4 in Fig.2.4). The o�set coils can then safely be switched o�. In

a second step, we turn on the axial magnetic curvature by increasing the current in the curvature

coils, while simultaneously doing so in the Feshbach coils (step 5 in Fig.2.4). Let us recall that

at all times the bias �eld direction must be dominated by the Feshbach coils. The value of the

current in the two sets of coils allow us to adjust the trap that we need to initiate the evaporation.

Icurv will �x the axial frequency of the trap4. IFesh can then be chosen to produce the desired bias

�eld (step 6 in Fig.2.4).

2.3.3 Spin-mixture preparation in a Fermi gas
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Figure 2.6: Polarization of the sample P = N1−N2

N1+N2
as a function of the RF sweep time. The red line

corresponds to a �t of the Landau-Zener probability. The spin-mixture was prepared at a magnetic

�eld of B = 928 G. The RF is swept in a window of 100 kHz around the resonance located at 76.3

MHz.

In the case of a Fermi gas, we need to prepare a spin-population mixture before starting the

evaporation. We prepare it at a magnetic �eld of 834 G, corresponding to the Feshbach resonance in

4The contribution to the curvature of the Feshbach coils is about 20 smaller than the curvature coils. Though

small, it can be important for very weak axial traps.
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the two lowest energy states |1〉 and |2〉 (see Fig.2.3). This can easily be done by a radio-frequency

Landau-Zener sweep. The Landau-Zener transition probability is given by:

P|1〉→|2〉 = 1− e−2π
Ω2
R
ω̇ , (2.3)

where ΩR is the Rabi frequency (proportional to the square root of the RF power) and ω̇ = ∂ω/∂t

is the sweep rate. In the limit of fast ramp ω̇ → ∞, no atoms are transferred while in the other

limit ω̇ → 0, the process results in an adiabatic passage and P|1〉→|2〉 → 1. The rate is adjusted

to prepare the desired spin-mixture, with very good reproducibility. In Fig.2.6, we plotted the

polarization of the sample P = N1−N2

N1+N2
as a function of the sweep time. Fitting the data points

with Eq.2.3, we �nd a Rabi frequency of ΩR = 2π × 0.53 kHz. It is worthwhile to note that a

Landau-Zener sweep is a coherent one-body process, thus creating a superposition of states, in this

case α |1〉 + β |2〉. As two fermions in this state still share the same spin wavefunction, there are

still no s-wave collisions. In practical, the coherence of the sample is lost within a few tens of ms

because of the magnetic �eld inhomogeneities and the coherent superposition becomes a statistical

mixture of |1〉's and |2〉's [124] and evaporation can be initiated.

2.3.4 Evaporation in the dipole trap

The dynamics of the forced evaporation realized by lowering the trap depth is di�erent for the

Bose and Fermi gases. Because collisions can be brought to the unitarity-limited regime in a Fermi

gas (and not in a Bose gas), the dependence of the elastic cross-section σcoll(k) on the relative mo-

mentum of the two colliding atoms k (or equivalently the energy) will lead to a di�erent behavior

of the evaporation of the two isotopes.

The trapping potential can be written as V (r, t) = U(t)v(r), where U(t) is the time-dependent

trap depth (and v(r) its spatial shape). The evaporation e�ciency is characterized by the ratio

η = U
kBT

of the trap depth to the thermal energy. The higher η is, the more e�cient the evaporation.

Energetic atoms leave the trap after two-body collisions. If the depth is large, the escaping atom

has an energy much larger that the average energy per particle, hence the temperature is strongly

reduced. From simple energy considerations, it is possible to derive scaling laws for the atom

number N(t), phase space density nλ3
dB(t) assuming η is large (so that the potential can be

assumed harmonic) and neglecting all loss processes [125]:

N

N0
=

(
U

U0

) 3
2

1
η′−3

(2.4)

nλ3
dB

nλ3
dB(0)

=

(
N

N0

)4−η′

, (2.5)

where η′ = η + (η − 5)/(η − 4). We see that for η′ > 4 the evaporation increases the phase-space

density. One can also write the scaling for the elastic collision rate Γcoll = nσcollv:

Γcoll
Γ0
coll

=

(
U

U0

)α′
. (2.6)

For an energy-independent elastic cross-section, Γcoll ∝ Nω̄3/T (thermal speed scales as U1/2) and

one �nds: α′ = η′/2
η′−3 . If σcoll is unitarity limited (∝ 1/k2), σcoll scales as 1/U and the scaling

law will be modi�ed: α′ = 6−η′
2(η′−3) . It is interesting to note that, in contrast to the constant

cross-section case of the Bose gas (for which α′ < 1), for η′ > 6 the unitary collision rate increases
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(α′ > 1) as the trap depth is lowered [126], a condition called runaway evaporation. The increase

of collision rate is important as it allows one to accelerate the evaporation, an important condition

because loss processes (either with the residual background gas or two-, or three-body losses) will

ultimately limit the timescale for the evaporation. By means of additional optical [127] or mag-

netic potentials [128], it is possible to reach runaway evaporation in an optical trap, even without

a unitarity limited cross-section.

Evaporation of a Bose Gas with variable interactions
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Figure 2.7: E�ciency of the evaporation of 7Li in the dipole trap. (a): Elastic collision rate Γcoll

(solid blue line) and three-body loss rate Γ3 at the beginning of the evaporation. The form of

Γ3 (including the dip at a/a0 ∼ 50) will be discussed in detail in section 4.1.3. (b): Phase space

density at the center of the trap nλ3
dB versus the atom number N . The dashed red line corresponds

to the Bose-Einstein condensation threshold nλ3
dB = ζ(3/2) ≈ 2.6. The solid blue line is a power

law �t to extract η (see text).

Evaporation of 7Li can be made much more e�cient in the dipole trap, in comparison with the

magnetic trap. The use of optical trapping allows us to tune freely the scattering length using a

Feshbach resonance. This tuning must meet two opposite criteria. First, for dilute gases ka � 1,

Γcoll scales as a
2, which favors high values of a. However, the three-body loss rate Γ3 dramatically

increases with a as well, typically a4 [37], and is strongly density-dependent Γ3 = K3(a)n2, where

K3(a) is the three-body loss coe�cient. In Fig.2.7a, we show the increase of Γcoll and Γ3 versus the

scattering length for our typical starting conditions in the center of the trap (where n ∼ 2× 1012

cm−3). In practice we perform the evaporation using piece-wise linear ramps of the optical trap

laser intensity. The optimized value of a in our conditions is ∼ 200 a0. We see in Fig.2.7a that a

small increase in a leads to a large increase of Γ3 and at 500 a0 it is already on the order of 1 s−1.

The value of degeneracy parameter nλ3
dB is plotted versus the atom number in Fig.2.7. Using
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Eq.(2.3.4), we �nd η = 6.8, an e�cient evaporation5. Starting from nλ3
dB ∼ 0.01 we reach the

Bose-Einstein condensation threshold nλ3
dB = ζ

(
3
2

)
with about 2× 105 atoms (dashed red line in

Fig.2.7b). Continuing the evaporation, we produce a Bose-Einstein condensate with no discernible

thermal part with ∼ 5× 104 atoms.

Evaporation of a strongly interacting Fermi gas
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Figure 2.8: Evolution of the polarization of a Fermi gas after evaporation cooling. The polarization

is plotted versus initial polarization of the gas.

A strongly interacting Fermi gas can be highly e�ciently evaporated (η ≈ 10 [126]) owing to the

very large unitarity limited collision rate. In practice we start with about 2×106 atoms at T/TF = 3

and exponentially lower the laser power to the �nal desired value with a time constant of 500 ms.

We reach the deeply degenerate regime (T/TF ≈ 0.03) with about 105 atoms per spin state [121].

Evaporative cooling of a spin-imbalanced Fermi gas displays another subtlety. In addition to total

atom number and temperature, the polarization P of the cloud is also a dynamical quantity, that

varies during the cooling process. The variation P is highly non-monotonic and displays two

opposite trends, depending on the regime:

� In the classical regime, evaporation is the result of binary collisions between spin ↑ and spin

↓ particles. If one particle leaves the trap, the probability is the same for each species. This

means that the minority species population will, in relative value, decrease faster than the

majority. Consequently, the evaporation tends to further imbalance the spin-mixture.

� In the quantum regime, the picture is di�erent. In the case of the far BEC region, the

dimers have a polarizability twice as large as that of single atoms. They thus feel a trap that

is twice deeper and evaporation will selectively remove single atoms [129]. For the weakly

interacting gas in the BCS regime, the minority Thomas-Fermi radius is smaller than that

of the majority, and equilibration of the spin-mixture should also occur.

5This value is signi�cantly higher than the one extracted from the data in the Io�e trap [84], where η ≈ 5.5.
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The complexity of the dynamics of P (t) comes from the fact that these two opposite trends

will occur sequentially during the evaporation. In Fig.2.8, we have plotted the polarization of the

gas cooled down to 1.5 µK as a function of the initial spin-mixture polarization. The large slope

shows that the system is very sensitive to the initial mixture and shot-to-shot reproducibility of

accurate polarizations is di�cult6. This e�ect is severely ampli�ed for the preparation of highly

imbalanced mixture. In order to prepare highly imbalanced quantum gases, one has to transiently

go through a state with an even higher imbalance. Of course, the gas is not allowed at any moment

to become fully polarized P = 1, otherwise the evaporation ends. Starting the evaporation with a

degenerate gas makes it simpler to prepare deterministic spin-imbalance [132], as one can already

start with an almost pure Fermi sea and transfer a small amount of spin ↓ particles. If one wants
to prepare a balanced mixture, a very simple solution is to perform multiple Landau-Zener sweeps

with intermediate sweep rate. In the limit of large number of sweep (in practice we do 10 sweeps),

the population will tend to a 50/50 mixture.

When 7Li is used as a thermometer of the Fermi gas, the number of bosons is much smaller than

the number of fermions. Owing to this di�erence, the evaporation of 6Li is only slightly degraded

by the presence of 7Li. It is interesting to note at this stage that it is 6Li that sympathetically

cools down 7Li.

2.3.5 The Feshbach Field

After a degenerate quantum gas is obtained, and before an image is recorded, we sweep the magnetic

�eld bias to the desired value. For the Fermi gas experiments, the system is not subjected to

signi�cant three-body losses in the range of magnetic �eld studied. The magnetic �eld is slowly

swept, in 500 ms, and a further wait time of 1 to 1.5s is applied to let the gas thermalize. The last

wait time is particularly important for the experiments involving the 7Li as a thermometer. Indeed

the boson-fermion scattering length is equal to 40 a0 [133], a rough estimate of the elastic collision

rate for 7Li (assuming N7 � N6 without taking into account Pauli blocking) is n6σ6,7vth ≈ 10 s−1.

This rate requires a wait time in order to ensure complete thermalization of 7Li in contact with
6Li.

Feshbach Field Sweeps for the Bose gas experiments

In contrast to the experiments involving fermions, three-body losses are not suppressed for bosons

and hence the lifetime is increasingly shorter as one approaches the Feshbach resonance. For this

reason, it is crucial to spend as little time as possible at high values of a before taking the absorp-

tion image. The Feshbach coils which are usually used for the interaction sweeps are not suitable

to quickly change the bias because they have a large inductance combined with a slow response

time of the current servo of the precision power supply we use. The inductance of the Feshbach

coils results in a measured response time of 7 ms, while the servomechanism responds in about 20

ms. Using the Feshbach coils alone, it is di�cult to sweep the �eld to an accurate value without

having to wait at least 50 ms. For high values of a, this time can already lead to signi�cant losses.

We solved this problem by using the O�set coils (see Fig.A.2) to �nely tune the magnetic �eld.

There are several advantages to this con�guration:

6Together with the sensitivity to initial imbalance, the dynamics of the spin-polarized Fermi gas evaporation has

also shown the possibility of creating metastable many-body states [130,131]. These dynamic issues would certainly

deserve further experimental investigations.
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Figure 2.9: Shape of the interaction sweep. (a): O�set + Feshbach current ramp to resonance.

The dashed green line is a linear ramp while the red solid line includes the e�ect of the induction

in the Feshbach coils when current is ramped in the O�set coils. Inset: Induction in the Feshbach

coils. (b): Measured amplitude of induction in the Feshbach coils as a function of the sweep rate

in the O�set coils (see text).

� The largest contribution to the bias, from the Feshbach coils, is maintained constant. The

power supply has an absolute stability of 5 × 10−5, leading to �uctuations less than 40 mG

at a bias of 720 G, which is su�ciently small owing to the ∼ 170 G width of the bosonic

Feshbach resonance.

� The absolute value of the current that needs to be stabilized in the O�set coils is about

20 A, much smaller than the bias �eld contribution of the Feshbach coils. Moreover, the

contribution to the bias of the O�set is much lower as well (0.86 G/A compared to 2.28 G/A

for the Feshbach), which results in a superior control of the magnetic �eld sweeps.

� Both inductance and response time of the servo for the O�set coils circuit are smaller (less

than 3 ms). This allows us to realize ramps of tens of ms without a wait time and with �nal

current values still being controlled to better than 10−4. It is of critical importance when

absorption images are taken immediately after the ramp.

For the experiments presented in chapter 3, especially for the dynamical measurements, it is

very important to know the shape of the scattering length sweeps. For this purpose, we have mon-

itored the currents using Hall-e�ect transducers in both Feshbach and O�set coils. The command

of the current control of the O�set coils is linear, but we observed two e�ects that we have to take

into account in order to properly model the interaction sweep. First, when the sweep is initiated in

the O�set coils, an induction is observed in the Feshbach coils (see the inset of Fig.2.9). The total

current sweep is not linear: in Fig.2.9a we plot the weighted sum of the current in the current in

Feshbach and O�set coils, IO�set + α.IFeshbach, where α = 2.28
0.86 is the ratio of the bias contribution

of the two sets of coils (the bias magnetic �eld is proportional to this quantity). The expected

linear ramp is plotted in dashed green does not describe our interaction sweep. The overshoot

current7 is well �tted by a function8 A(İ) t×eτF exp(−t/τF), with τF = 17 ms and the amplitude

7The overshoot in the inset of Fig.2.9a is initially due to the induction because of the varying �ux due to the O�set

coils. It is damped because the servomechanism of the Feshbach stabilize this change after a time corresponding

approximately to its response time τF.
8e = exp(1).
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Figure 2.10: Delay of the response of the O�set Coils. Measured current I(T ) at the end of the

ramp as a function of the sweep duration T divided by the set current Icom(T ) (measured for a

ramp to I = 19.5 A (corresponding to a/a0 = 2300). This measurement is weakly dependent on the

sweep rate within the range of �nal currents I = 18 A (a/a0 = 1450) to I = 21 A (a/a0 = −14400),

where this correction needs to be taken into account. The solid red line is an empirical �t to the

data with a function fs(T ), see text. Inset: example of an O�set sweep of 75 ms (in blue) to a

value of 19.5 A. When the camera is trigged for imaging (green pulse), the current reached is 19.1

A. After the trigger, the image is taken in less than 100 µs.

A(İ) depends on the sweep rate İ in the O�set coils. In Fig.2.9b, we plot A as a function of İ and

we observe an approximately linear behavior.

Note that when the O�set sweep is �nished, the magnetic �ux in the Feshbach coils is reduced

and the same overshoot as in the inset of Fig.2.9) in the opposite direction occurs. This e�ect is

dramatic when one ramps the interaction close to the Feshbach resonance as the magnetic �eld

transiently explores values even closer to the resonance. This overshoot is damped in only 50 ms,

and losses have the time to take place. We thus need to take the images right after the ramp and it

is very important to know exactly the value of the O�set current when imaging is done. In the inset

of Fig.2.10, we plot the end of an O�set ramp (in blue, 75 ms to 19.5 A (dotted black line). When

the camera is trigged for imaging (green pulse), the current reached is 19.1 A (dashed red line).

The image is taken in less than 100 µs after the positive slope of the trigger. This measurement was

repeated for various values of ramp times T and we plot in Fig.2.10 the ratio of the �nal measured

current in the O�set coils I(T ) to the expected value Icom(T ). In practice, this e�ect needs to be

taken into account only close to the resonance (typically for a/a0 & 1500) because the value of the

scattering length is then increasingly sensitive to the magnetic �eld. Finally, we use an empirical

�t to the �nal value of the current (red solid line in Fig.2.10). In summary, the interaction sweep

ramps are shown to be well described by the following approximately linear current sweep:

I(t) =
fs(T )Icom

T
t+A(İ)

t× e
τF

exp(−t/τF), (2.7)
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where the empirical �t function is fs(T ) = 1− e−c0T c1 (with c0 = 0.234 and c1 = 0.649, see solid

red line in Fig.2.10). The �rst term takes into account a small shift in the �nal value of the current

ramp due to the response time of the O�set coil servo, and the second term, the initial induction

in the Feshbach coils.

Calibration of the magnetic �eld
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Figure 2.11: Calibration of the magnetic �eld using 7Li. (a): Remaining atoms in |1〉 after 50 ms

of radio-frequency at a magnetic �eld of 730.6 G. (b): Magnetic �eld (determined by the position

of the maximum of loss) as a function of the current in the O�set coils (with 361 A in the Feshbach

coils, and 45 A in the curvature coils).

The precise knowledge of the magnetic �eld is of crucial importance for Feshbach resonance

experiments. The calibration can simply be done by driving optical or radio-frequency transitions.

Optical transitions are very convenient as they are used for absorption imaging as well. But due

to the natural linewidth, their accuracy is within the MHz range which leads to ∼ 1 G precision.

Radio-frequency transitions are not plagued by this limitation, and much narrower linewidth can

be achieved. We thus proceed by driving the 7Li transition from state |1〉 to state |8〉 (see Fig.2.3),
whose sensitivity to B is 2µB in the Paschen-Back limit. This limit correspond to the high magnetic

�elds where the Zeeman e�ect is much larger than the hyper�ne splitting and electronic and nuclear

spins become decoupled. In Fig.2.11a, we plot the number of remaining atoms in state |1〉 after a
radio-frequency is applied for 50 ms. As this time is comparable to the axial trapping period, atoms

in |8〉 have the time to leave the trap in the axial direction. By driving transitions between two

trapped states (|1〉 and |2〉 of 7Li), we have observed RF-lines as narrow as 2 kHz, compatible with

a magnetic �eld stability better than 50 mG. Because of the large width of 7Li and 6Li Feshbach

resonances used in this work, we do not need an additional current stabilization. In Fig.2.11b, we

gather the position of the maxima of losses of various values of the O�set coils' current, from which

we deduce a bias �eld of 0.86 G/A. A calibration of the 834 G resonance of 6Li by optical means

was shown to be consistent to a gauss with the 7Li 730.6 G calibration.
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2.4 Imaging

2.4.1 Resonant Absorption Imaging

In our experiment, we detect the atoms via resonant absorption imaging. The principle is to send

a resonant probe beam (along the y-axis for example) on the atomic cloud, that will absorb part

of it. We record on a CCD camera the intensity pro�le of the probe I(x, z) after absorption by

the atomic cloud. Due to the �nite extent of the beam (and various imperfections on the imaging

optics), the intensity pro�le of the beam is not perfectly uniform. In order to get rid of this

inhomogeneity, we take a second image, this time without atoms, I0(x, z), to measure the intensity

pro�le of the probe beam. The net absorption can then clearly be seen by computing the optical

density OD(x, z):

OD(x, z) = − ln

(
I(x, z)

I0(x, z)

)
= σ

∫
dy n(x, y, z), (2.8)

where σ is the absorption cross section. The last equality in Eq.(2.8) holds if the Beer-Lambert

absorption law is applicable. In several cases, Eq.(2.8) does not apply. If the intensity of the probe

is comparable to the saturation intensity Isat, the dependence of σ in intensity cannot be neglected.

The absorption cross section is lowered at high intensities, a property that has been exploited to

image dense atomic clouds [134]. In dense clouds, interactions between neighboring atoms can

also lead to multiple scattering, and σ becomes density-dependent. This e�ect has been observed

in the study of quasi-2D Bose gases and deducing the density pro�les from the optical density

becomes a challenging task [92]. A recurring issue in ultracold atom experiments is the accurate

determination of σ and hence, the atomic density. Due to imperfections of the optical system,

polarization of the probe beam, or other, it is di�cult to accurately determine σ a priori. For the

thermodynamic measurements presented in this work, the absolute calibration of the density is

necessary to measure the pressure and we needed to implement di�erent schemes in order to solve

this problem.
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Figure 2.12: Imaging spin-balanced Fermi gases: (a) Absorption Images of the spin states |1〉 and
|2〉. Up: Absorption image of spin state |1〉. Middle: Di�erence image with I/Isat = 0.1. Down:

Di�erence image with I/Isat = 0.01. (b): vertical cuts of the absorption images of the up (dotted

line), middle (solid line) and down (dashed red) images.

For our Bose gas imaging, we use two resonant pulses, one for absorption and one for reference.

The intensity of the probe is reduced until further lowering does not increase the number of de-

tected atoms, so that we reach about I/Isat ≈ 0.01. The exposure time is adjusted to see no radial

broadening of the cloud due to heating from the probe. Between 50 and 100 µs the density pro�le
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remains unchanged and the photon shot-noise (∝
√
Nphotons) is reduced by

√
2. Our optimum is

thus at 100 µs exposure time. At 200 µs however, we observe that the gas is signi�cantly broadened

due to heating.

Imaging spin-imbalanced Fermi gases is more involved as we need to take pictures of both spin

states. Two methods have been applied for this purpose: phase-contrast imaging [135, 136] and

sequential absorption imaging [137].

The �rst technique involves non-destructive dispersive imaging of the phase shift imprinted on

the beam by the cloud. Detuning the probe in between the transition for spin states |1〉 and |2〉
allows to image directly the di�erence of the density pro�les of the two spin states [138], a very

important quantity for the phase diagram of spin-imbalanced Fermi gases. However, this technique

only measures the imbalance and not the absolute populations in the two spin states.

The second technique relies on the sequential absorption imaging of the two spin states. This

technique is very easy to implement experimentally but one must be very careful about heating

issues. Indeed, in the BEC-BCS crossover, spin ↓ and ↑ atoms form strongly interacting pairs.

Imaging one spin-species will rapidly disturb the other species and density pro�les will be distorted

[137]. Hence, it is required to have the shortest pulse duration and shortest delay between the two

images. We use an externally triggered pulse generator that produces two pulses of 10 µs (for the

probe beams of each spin species) separated by 10 µs. Our CCD camera (PixelFly QE) works in

interframing mode, allowing a separation as short as 3 µs between two subsequent images. The

two reference images for each spin states are updated every ∼ 10 runs. If one is interested only in

the density di�erence, it is simply obtained via the two absorption pictures as:

δOD(x, z) = OD(1) −OD(2) = − ln

(
I(1)

I
(1)
0

)
+ ln

(
I(2)

I
(2)
0

)
= − ln

(
I(1)

I(2)

)
+ c, (2.9)

where I(i) (I
(i)
0 ) is the absorption (reference) image of spin state |i〉. Two simple tests can be

performed to check the proper functioning of the sequential imaging.

� Perform the sequential imaging on a spin-balanced Fermi gas as shown in Fig.2.12. The

optical density of spin state |1〉 (upper image in 2.12a and dotted line in 2.12b). The optical

density di�erence should be null (lower image in 2.12a and corresponding dashed red line in

2.12b). Probe heating will lead to a residual signal due to the broadening of the second cloud

imaged (middle image in 2.12a, and black solid line 2.12b). An intensity mismatch between

the two probes will be identi�ed as an o�set in optical density.

� Prepare an imbalanced spin-mixture and check that the order of the pulses for the two spin-

species does not a�ect the density pro�les.

2.4.2 Probe Beams Setup

For diagnostics as well as for science purposes, we want to be able to probe the gas in two spatially

separate regions (the MOT area and the center of the Io�e trap in the appendage). Moreover,

depending on whether we probe 6Li or 7Li, at low or high bias �elds, we need various probe beams

at di�erent frequencies. To satisfy these requirements, we have built a simple 4× 4 beam splitter

(displayed in Fig.2.13). The input beams are:

�
6Li|F=3/2〉 and

7Li|F=2〉 are the probes for
7Li and 6Li at low �eld (several G's bias), probing

the transitions from |F = 2〉 to |F ′ = 3〉 and from |F = 3/2〉 to |F ′ = 5/2〉. They are used

for the imaging of the MOT, lower quadrupole trap and the Io�e-Pritchard trap.
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6Li|F=3/2> 

(or 7Li|1>) 
Z-axis 

Y-axis 

Vertical

MOT

Figure 2.13: A Probe Beams splitter (left panel) distributes all frequencies used in the MOT region

and along the three directions in the appendage (right panel).

�
6Li|1〉 and

6Li|2〉 are the probe beams of spin states |1〉 and |2〉 of 6Li in the vicinity of the

834 G Feshbach resonance. They are used in the optical dipole trap.

�
7Li|1〉 is used to probe 7Li around the 740 G Feshbach resonance of 7Li or at 834 G when

used as a thermometer for strongly interacting 6Li gases. In practice, we replaced the probe

of one of 6Li spin state by the high-�eld probe of 7Li.

The four non-polarizing 50/50 cubes combine these probe beams and direct them into four

outputs (see Fig.2.13):

� the MOT region.

� the Z-axis along the long direction of the gas. This direction has a small numeric aperture

(limited by the curvature coils) and the optical resolution is about 10 µm. However, this axis

is very convenient for time-of-�ight measurements, since the line-of-sight integration along

the long axis allows for the detection of relatively low atom numbers. This direction was

used to probe the small clouds of 7Li in time-of-�ight for thermometry. It is also used to

probe large clouds during RF-evaporation in the Io�e trap.

� the Y-axis is the �science" direction. We have access to the density pro�les along the z-

direction that are used to measure the equation of state. The resolution is 5 µm standard

deviation of a gaussian �t on the pro�le of a point object9.

� the Vertical direction for imaging was installed but not used. In the present setup, the

radio-frequency antennas limit the aperture but with minor changes, this direction could be

exploited to install a high-resolution imaging setup.

2.4.3 Probe Frequencies

The probe beams at low-�elds are readily derived from the injection light to the MOT slaves. Their

frequency is close to the zero-�eld transition from |F = 1〉 to |F ′ = 2〉 and |F = 1/2〉 to |F ′ = 3/2〉
9In this case, we prepare a quantum gas and compress the dipole trap so that the radial size of the gas becomes

much smaller than the estimated optical resolution.
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(on the D2 line). Additional AOMs are used for fast switching and further attenuation of possible

stray light.

High-�eld probes require slightly more work. The probing transition (leading to the excited

state (mJ′ = −3/2) is red-detuned by µBB for both 6Li and 7Li in the Paschen-Back regime. This

results in about 1.2 GHz detuning compared to the zero-�eld repumping transitions (on the D2

lines). Producing the probe for 7Li is easy as the cooling transition light is already about 800

MHz red-detuned. An additional AOM in double-pass con�guration is then su�cient to reach the

desired frequency (either 110 or 200 MHz depending on whether experiments are done around 740

or 834 G). For 6Li, the hyper�ne splitting provides us only with 230 MHz red-detuning and we use

a high-frequency AOM in double-pass (centered around 460 MHz). Due to the poor e�ciency of

this AOM (less than 10 %), we need to injection-lock a slave laser from which both imaging beams

for |1〉 and |2〉 states are derived.
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Part II

Bosons





Chapter 3

The Ground State of an

Interacting Bose Gas

The production of gaseous Bose-Einstein condensates in 1995 allowed for the �rst time to test

in experiments the theory of weakly interacting bosons. Because of their diluteness, they can in

general be well described by mean-�eld theory [40]. This is in contrast with the other previously

known example of Bose condensate, super�uid 4He, which is a strongly interacting quantum liquid.

Reaching a regime where many-body e�ects become important in ultracold bulk Bose gases has

been a considerable challenge, because of the increasing role of losses with interactions. In 1957, it

was predicted that the ground state energy density E = E/V of a Bose gas follows an expansion

in the diluteness parameter na3 [41, 42,43]:

E = EMF

(
1 +

128

15
√
π

√
na3 + . . .

)
, (3.1)

While the �rst term is the mean-�eld energy (with EMF = gn2/2), the second term, also called the

Lee-Huang-Yang correction, is due to the quantum �uctuations. Despite its fundamental nature in

quantum many-body physics, this prediction had not been tested experimentally in dilute atomic

Bose gases. In this chapter we will report on our studies of this �rst beyond mean-�eld using

a low-temperature Bose gas with tunable interactions. The �rst section will be devoted to the

preparation of the Bose condensate, and the control of interactions. The second section will present

a careful characterization of the Feshbach resonance, critical for the thermodynamic study that

will follow. We will then turn to our method of determining the global chemical potential of the

trapped gas which is a central problem in the measurement of the equation of state. In the fourth

section we will compare our experimental results with Quantum Monte Carlo calculations and in

particular verify the T = 0 assumption made throughout this chapter. The discussions regarding

the quasi-equilibrium hypothesis, including the three-body losses, and the dynamical aspect of the

interaction sweep will be discussed in the next chapter.

3.1 A Bose-Einstein Condensate with Tunable Interactions

3.1.1 Obtaining a Bose-Einstein Condensate of 7Li

Tunability of interactions in an optical trap has been exploited to reach Bose condensation with

several elements: 7Li [78, 77], 133Cs [140] and 39K [141]. In the case of 133Cs, the attainment of

BEC in a magnetic trap was prevented by large two-body losses [142] and changing the scattering
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Figure 3.1: Bose-Einstein Condensation of 7Li. In-situ density pro�les of a gas of 7Li at various

stages of the evaporative cooling in the optical trap, where P is the dipole trap power (from left

to right) : P = 190 mW, 110 mW and 55 mW. The purple dashed line is a �t using a simple

semi-ideal model [139]. The temperature is (from left to right): T/Tc = 0.95, 0.77 and 0.35.

properties in a dipole trap, involving an elaborate evaporation scheme was required to reach Bose-

Einstein condensation [140]. For 7Li, the use of Feshbach resonances allows for fast production of

BECs [80].

We prepare a Bose-Einstein Condensate of 7Li through evaporative cooling in the optical dipole

trap with a waist of 35 µm (see section 2.3.4). The evaporation is done at a magnetic �eld of about

720 G, where a ∼ 200 a0, found empirically to be best trade-o� between a high collision rate and

acceptable three-body recombination loss rate. The trap depth is reduced by a factor of about 100

in four linear steps, lasting a total of 5 s. In-situ absorption images are recorded along the Y -axis

(Fig.2.13) at various stages of evaporation and are shown in Fig.3.1. The bias magnetic �eld is left

at 720 G. At a power of 200 mW, we observe the appearance of a sharp, dense feature at the center

of the cloud, corresponding to the Bose-Einstein phase transition. If the optical trap is further

lowered, the number of particles in the BEC grows, the thermal wings shrink and ultimately a

quasi-pure Bose-Einstein condensate is formed.

In the ideal gas picture, the Bose condensation is the collapse of a macroscopic number of

particles in the one-body ground state of the system. In a harmonic trap, this corresponds to the

familiar gaussian wavefunction of size aho =
√

~
mω , the oscillator length, where ω is the frequency

of the trap. For the trap used in Fig.3.1 along the z direction the frequency is ωz = 2π 18.5 Hz

and the oscillator length in this direction is aho ≈ 9 µm. It is obvious that the BEC extension is

much larger than the ground state wavefunction. This is due to the repulsive interactions between

the atoms. To understand this, we will now recall the most elementary description of the quantum

many-body Bose system with contact interactions, the mean-�eld approximation.

3.1.2 Mean-Field Equation of State of a Bose-Einstein Condensate

We begin with the Hamiltonian of the Bose gas with a binary interaction potential Vint(r) written

in the second quantization formalism:

Ĥ =

∫
d3r Ψ̂†(r)

(
− ~2

2m
∆

)
Ψ̂(r) +

1

2

∫
d3rd3r′ Ψ̂†(r)Ψ̂†(r′)Vint(r− r′)Ψ̂(r′)Ψ̂(r), (3.2)

where Ψ̂(r) (Ψ̂†(r)) is the bosonic destruction (creation) operator at point r. The operators

Ψ̂ and Ψ̂† obey the bosonic commutation relations: [Ψ̂(r),Ψ̂(r′)] = 0, [Ψ̂†(r),Ψ̂†(r′)] = 0 and
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[Ψ̂(r),Ψ̂†(r′)] = δ(r− r′). The mean-�eld approximation consists of assuming that all particles are

in the same one-particle quantum state (the condensate). The �eld operator is written as:

Ψ̂(r) ≈ √n0 (3.3)

where n0 = N0/V is the condensate density. If we use the contact potential Vint(r−r′) = gδ(r−r′),
the energy of the system is:

E0 =
g

2

N2
0

V
(3.4)

and the equation of state:

µ =
∂E

∂N
= gn0. (3.5)

This classic result was already obtained by Bogoliubov in 1947 [143]. The prescription used above is

simplistic, and in particular we did not explicit yet the small parameter that controls the magnitude

of the quantum �uctuations that are not included in Eq.(3.3) and to what conditions the mean-

�eld approach is valid. However this is su�cient to understand the density pro�le shape in the

weakly interacting regime such as in the right panel of Fig.3.1. Using the LDA prescription, we

replace µ with µ0 − V (r) in Eq.(3.5), and �nd the density distribution of a trapped Bose-Einstein

condensate:

n(r) =
µ0 − V (r)

g
(3.6)

In the following, we assume a cylindrically symmetric trap corresponding to our physical situation:

V (r) = 1
2mω

2
zz

2 + 1
2mω

2
rr

2. The density pro�le has thus the shape of an inverted parabola. The

quantity that we have access to is rather the doubly-integrated density as a function of the axial

position z: n̄(z) =
∫
dxdy n(x, y, z). It can be obtained by direct integration of the 3D density

n(r) but it can also be readily obtained using the pressure formula. Indeed, from Gibbs-Duhem

relation at �xed temperature ∂P/∂µ = n, we integrate the mean-�eld EoS µ = gn over µ, get the

mean-�eld pressure

PMF =
µ2

2g
(3.7)

Using LDA prescription and n̄(z) = 2π
mω2

r
P (µ(z)), we �nd:

n̄MF(z) =
15N

16RTF

(
1− z2

R2
TF

)2

, (3.8)

The global chemical potential is µ0 = 1
2mω

2
zR

2
TF, where the Thomas-Fermi radius RTF along the

z direction is

RTF = aho

(
15λ2N

a

aho

)1/5

, (3.9)

where aho =
√

~
mωz

is the axial oscillator length, and λ = ωr/ωz is the aspect ratio of the trap. In

the mean-�eld regime, the radius of the cloud is a weakly increasing function of the interactions

RTF ∝ (Na)1/5.

Beyond the Local Density Approximation: the Gross-Pitaevskii Equation

For trapped Bose-Einstein condensates in the mean-�eld regime, it is easy to go beyond the local

density approximation and understand its applicability. First, we add a trapping potential V (r) to

the single-particle (kinetic) term of the Hamiltonian (3.2). We write the �eld operator in a similar

fashion as Eq.(3.3), assuming all particles occupy the same one-particle wavefunction φ(r):

Ψ̂(r) ≈ φ(r), (3.10)
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Figure 3.2: Correction to the Local Density Approximation for a weakly interacting BEC. (a):

The radius predicted by the Gross-Piatevskii equation RGP is compared to the Thomas-Fermi

limit RTF as a function of the scattering length in a trap with ωr/2π = 345 Hz, ωz/2π = 18.5

Hz, and 4 × 104 particles. (b): Doubly integrated density distribution for N = 4 × 104 obtained

for the GP equation (for a/a0 = 20 in red, a/a0 = 1000 in blue) and the predicted Thomas-Fermi

pro�le as solid lines. The stationary 3D GP equation is solved using a Fourier split-step method

using imaginary-time propagation. Note that beyond-mean-�eld e�ects are not taken into account

in these simulations.

where the wavefunction φ is normalized to the total atom number:
∫
d3r φ(r) = N . Plugging this

expression in the Hamiltonian (3.2), we obtain the energy functional E[φ]. The minimization of

this functional with respect to φ leads to the stationary Gross-Pitaevskii equation [39]:

µφ(r) =

(
− ~2

2m
∆ + V (r) + g|φ|2

)
φ(r) (3.11)

The local density approximation (3.6) (often called in this context the Thomas-Fermi (TF) limit) is

recovered if the kinetic term can be neglected compared to the potential (and interaction) energy.

Writing this equation dimensionlessly, it is easy to see that the ratio of the interaction to the

kinetic energy is given by the parameter Na/āho (where āho =
√

~/mω̄ is the geometric mean of

the oscillator lengths, and ω̄ = (ω2
rωz)

1/3 the geometric mean of the trap frequencies) [40] that

controls the validity of the Thomas-Fermi approximation. We can test the validity of the LDA in

our trapping conditions by solving numerically the stationary 3D GP equation1. The simulated

density pro�le along the z-axis is �tted with a Thomas-Fermi function, giving a radius RGP that

is compared to the expected value in the TF limit RTF (3.9). In Fig.3.2b, we show two examples

of simulated density distributions (red points for a/a0 = 20, blue points for a/a0 = 1000) and the

expected Thomas-Fermi pro�le for the same value of a (solid lines). The ratio of the two radii as

a function of scattering length is shown in Fig.3.2a and shows that a must be large enough (∼ 600

a0) to have the LDA veri�ed to better than 1 %. This will be an important detail for the pressure

calibration.

3.1.3 Increasing the interactions in a Bose-Einstein Condensate

The mean-�eld regime is understood, and after the pure weakly interacting BEC is formed, we

ramp linearly in 150 ms (corresponding to 3 axial periods) the bias �eld to the desired value of the

1The code was written by B. Rem and I. Ferrier-Barbut.
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Figure 3.3: Increasing the repulsive interactions in a Bose condensate of 7Li. In-situ doubly-

integrated density pro�les of a gas of 7Li for various values of the scattering length: a/a0 = 110

(blue), 515 (green), 1450 (orange), and 3250 (red). The atom number is respectively 4.0,4.6,4.1

and 3.8× 104.

scattering length. The absorption image is recorded immediately after the ramp. The resulting

density pro�les at di�erent values of a are displayed in Fig.3.3. In qualitative agreement with

the mean-�eld picture, we see that for increasing values of a, the radius of the Bose condensate

increases. However, the quantitative analysis of these density pro�les to extract the equation of

state critically requires a precise knowledge of the scattering length, to which we now turn.

3.2 The Feshbach Resonance

The position of a Feshbach resonance is hard to predict accurately because the calculation of

the scattering length dramatically depends on the details of the complex atom-atom interaction

potentials [70]. In practice, precision measurements around a Feshbach resonance require an ex-

perimental determination of its width and position. Interestingly, before our study was done,

there were two accurate, and incompatible characterizations of the Feshbach resonance in the state

|F = 1,mF = 1〉 of 7Li, done in R. Hulet's group at Rice University and in L. Khaykovich group

at Bar-Ilan University for the purpose of measuring three-body recombination rates. We thus had

to proceed to an independent measurement of the Feshbach resonance properties.

In recent years, Feshbach resonances have become an essential tool to tune the interatomic in-

teractions in ultracold gases [70]. Several methods have been devised to characterize Feshbach res-

onances. Inelastic loss spectroscopy is the most popular method as it is usually easy to implement.

Resonant enhancement of atom number loss is observed when the scattering length is increased,

due to two-body (or three-body) losses (see for example [34, 35, 144, 145]). Another possibility is

to detect resonances via the elastic scattering, through thermalization rate measurements [146],

collision shifts [147], mean-�eld interaction energy of a Bose-Einstein condensate [34,12] or through

the BEC radius measurements [148].

It is also possible to directly probe the Feshbach molecules, via radio-frequency spectroscopy.

This method can lead to high precision measurements as in the universal regime, the relation
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between the binding energy and the scattering length is known and model-independent. In the

case of Fermi gases, molecules are long-lived and dissociation spectra are easy to measure [149,72].

For Bose gases, where the lifetime of molecules is shorter, it is more convenient to associate them

via microwave transition [150,151] or oscillating magnetic �elds [152,79]. This method can be used

in the case of narrow/broad or overlapping resonances [153].

3.2.1 A rough localization of the resonance

We have �rst used loss spectroscopy to provide a rough localization of the Feshbach resonance

position in the |F = 1,mF = 1〉 state of 7Li. A thermal gas is prepared slightly above Tc and the

magnetic �eld is swept in 5 ms to the desired value (using the Feshbach coils). After a wait time

of 200 ms, we sweep back the magnetic �eld to 719 G and wait for 100 ms before we image the

remaining atoms. The curvature is left unchanged by these interaction sweeps.
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Figure 3.4: Inelastic losses around the Feshbach Resonance. (a) Remaining fraction of atoms and

(b) temperature after 200 ms waiting time as a function of the magnetic �eld (error bars represent

the �tting uncertainty only).

In Fig.3.4a, we plot the remaining fraction of atoms as a function of the magnetic �eld. A

loss feature is readily identi�ed for B ∼ 738 G, in agreement with previous works [78, 77, 148, 79],

even though its smoothness does not allow for an accurate localization of the resonance position (or

width). It is interesting to measure the temperature of the cloud (Fig.3.4b), and we see that within

our precision no signi�cant temperature increase is observed. The inelastic loss spectroscopy is a

reliable method mostly for narrow resonances, where the magnetic �eld sweep rate can be made

fast enough. In the case of wide resonances, it is di�cult to relate the properties of the Feshbach

resonances to the loss features.

3.2.2 Radio-frequency association of Feshbach molecules

In order to improve our characterization of the resonance, we performed radio-frequency spec-

troscopy of Feshbach molecules. We stimulate formation of 7Li2 molecules from an atomic cloud

of 7Li by modulating the bias �eld. When the modulation of B0 matches the binding energy of the

dimers, they are resonantly associated and rapidly lost through collisional relaxation into deeper

bound states. We create the oscillating �eld with a linear wire positioned 3 cm above the atoms,

producing a �eld collinear with the ∼ 700 G o�set. The modulation signal is generated by a

synthesizer and ampli�ed before being fed to the wire. The excitation lasts for 50 to 200 ms after
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Figure 3.5: Radio-frequency association spectra of 7Li2 molecules taken at magnetic �elds of 728.4

G (circles) and 730.8 G (squares).

which the remaining atoms are imaged.

Typical association spectra are displayed in Fig.3.5 for two values of the bias �eld, B0 = 728.4

G (circles) and 730.8 G (squares). The loss features are symmetric and we �t them with a gaussian

function to locate the minimum of the feature, interpreted as the binding energy of the molecule.

Gathering the binding energy measurements as a function of magnetic �eld, we determine the

points in Fig.3.6. The sweep to the �nal magnetic �eld value is achieved either with the Feshbach

coils (blue diamonds) or with the O�set coils (red squares), requiring separate magnetic �eld cali-

brations.

The last step remaining is to relate the binding energy to the scattering length. Close to the

resonance the bound state energy of Feshbach molecules obeys the simple universal law (see section

1.2.3):

|Eb| =
~2

ma2
. (3.12)

This equation assumes the zero-range limit for the interactions and a wide Feshbach resonance.

Finite-range correction and width correction can be taken into account to modify Eq.(3.12)2.

However, in order to avoid input from theoretical calculations, the scattering length extracted

from the binding energy measurement will be limited to the range where the universal law applies,

where a is much larger than the non-universal corrections. As |B − B0| � ∆, our measurement

is not sensitive to abg and ∆ separately but to the product Γ = abg∆, and Eq.(1.31) will be

approximated by:

a(B) ≈ Γ

B −B0
. (3.13)

Fitting our data with Eqs.(3.12) and (3.13), we �nd: B0 = 737.8(2) G and Γ = 3550(100) a0.G.

2The binding energy law then becomes [70] |Eb| = ~2

m(a−ā+R∗)2
, where ā is a mean scattering length associated

to the �nite-range of the interaction potential [154], while R∗ takes into account correction to the �nite width of

the resonance [87]. The universal law is applicable when a� ā and a� R∗.
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Figure 3.6: Binding energy of 7Li2 Feshbach molecules. The �nal magnetic �eld is ramped with the

Feshbach coils (blue diamond) or the O�set coils (red squares). The dashed red line is a parabolic

�t of the data to the universal law Eq.(3.12) from which the scattering length is deduced. In

black dots the Bar-Ilan measurement [79], in solid green line the binding energy deduced from the

Feshbach resonance measurement of the Rice group [155].

For comparison, we plotted two other determinations of this Feshbach resonance: in black dots,

the Bar-Ilan group RF-association measurement [79] and in solid green line, the binding energy

deduced from a recent work at Rice University [155]. This last measurement was done by tuning

the magnetic �eld and measuring the in-situ Thomas-Fermi radius of the Bose-Einstein condensate.

In the mean-�eld regime RTF ∝ (Na)1/5 and one can in principle deduce the scattering length

from the BEC radius. They eventually include beyond-mean �eld corrections when the value of

the scattering length is too large to neglect them. All the results are gathered in Tab.3.1.

Table 3.1: Properties of the Feshbach resonance in the |F = 1,mF = 1〉 state.

B0 (G) abg (a0) ∆ (G) Γ (a0.G)

Rice (in-situ BEC size) [155] 736.97(7) −24.5+3.0
−0.2 192.3(3) 4711

Bar-Ilan (RF spectroscopy) [79] 738.3(3) - - 3600(150)

This work (RF spectroscopy) 737.8(2) - - 3550(100)

Eindhoven (coupled channel calculations) [156] 737.88(2) -20.98 -171.0 3588

Apart from a small systematic shift of the magnetic �eld, our measurements are in very good

agreement with Bar-Ilan group data and the properties of the resonance are fully compatible within

the stated error bars (see Tab.3.1). We see however that the Rice measurement clearly di�ers from

the two RF-spectroscopy determinations and from a coupled channel calculations. The in-situ BEC
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size method is delicate because the scattering length has a sensitive dependence in RTF and also

subject to systematic uncertainty on N . In addition, when the scattering length becomes large,

heating can be expected from three-body recombination and its e�ect on the radius of the BEC

has to be considered for an accurate measurement.

3.3 Measurement of the Equation of State

We now turn to the quantitative analysis of the in-situ density pro�les of the Bose gas. According

to the pressure formula presented in section 1.3.4, we have for a single species Bose gas at zero-

temperature the following relation:

P (µz; a) =
mω2

r

2π
n̄(z) (3.14)

between the local pressure P of the gas along the axial direction z and the doubly-integrated

density n̄(z). This formula relies on the validity of the local density approximation, checked within

mean-�eld theory in section 3.1.2. Knowing the value of the global chemical potential µ0, we can

deduce the local chemical potential along the z-axis is µz = µ0 − V (z), and each pixel along the

z direction gives us a point (µz, P (µz)) of the equation of state, by simply measuring the doubly-

integrated density n̄(z). The value of a has been calibrated in the previous section. We are now

left with the determination of the global chemical potential µ0.

3.3.1 Determination of the global chemical potential

The global chemical potential must be determined in order to deduce the local chemical potential

µz = µ0−V (z) along the z-axis. For a harmonic trap, the global chemical potential is equal to the

local one at the bottom of the trap r = 0. Determining the chemical potential directly from the

density pro�le looks at �rst as a circular problem. Indeed, the absorption images give access to

the density and the relation between the density and the chemical potential n(µ) is the equation

of state of the system itself. However we can focus on the dilute limit, where the EoS is known:

µ = gn. Consequently, for vanishing density n → 0, the chemical potential vanishes, µ → 0. In

the harmonic trap along the z-axis, we can thus measure the chemical potential at the point where

the density pro�le vanishes. If we note R0 this radius (such as n̄(R0) = 0), the global chemical

potential is simply µ0 = 1
2mω

2
zR

2
0. Let us emphasize that this reasoning is only valid at T = 0.

As soon as we consider the �nite temperature density pro�les, there is no such value R0 where the

density vanishes strictly speaking. In the dilute limit the gas will behave like a classical gas and

in an harmonic trap, it will result in asymptotically gaussian wings on the density pro�les, and it

would be necessary to determine both µ0 and T , which is in principle possible using the classical

density distribution but more di�cult given the signal-to-noise ratio.

A self-consistent method to measure µ0

The problem is now reduced to the determination of the radius R0 at which the density pro�le

vanishes. For density pro�les with a �nite signal-to-noise ratio, this task is non-trivial as in general

the value of R0 will depend on the �tting function. From the pressure formula, we know that the

choice of a �tting function for the doubly-integrated density is equivalent to a choice of equation

of state. We solved this problem by using a simple self-consistent scheme. Since the values of

the gas parameter na3 that can be reached in quasi-equilibrium in our experiment are still much
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smaller than 1, we expect the beyond-mean-�eld e�ects to be small. As a result, determining the

chemical potentials using model density pro�les corresponding to the mean-�eld EoS (see Eq.(3.8))

is a reasonable starting point However, this leads to an EoS that is not self-consistent because the

inverted parabola assumes the MF-EoS to deduce a di�erent EoS. One can then implement an

iterative scheme to obtain a self-consistent EoS. At the �rst step, one starts with the density

pro�les n̄i(z) (for i = 1, ...,M) �tted with n̄(1)(z) = n0

(
1− z2

R2

)2

, and M the number of images.

From the values of Ri, one deduces µ
(1)
0,i and a �rst step EoS P (1)(µ). From this �rst step EoS

obtained by gathering all the images, one can generate density pro�les (using the pressure formula),

using a �tting function for h(1)(ν) = 2πν2(1 + γ
(1)
1 ν+ γ

(1)
2 ν2). We �t again all the density pro�les,

this time with a �tting functions deduced from h(1)(ν), to get a second set of radii, and hence a

new set of chemical potentials µ
(2)
0,i for each image. This procedure is iterated until a �xed point

is reached and the EoS no longer changes with additional iterations. The �xed point is a self-

consistent EoS: the values of µ
(∞)
0,i are determined using a �tting function consistent with the EoS

that is deduced. The principle of the self-consistent method is simple but it is important to check

that the procedure converges to the correct solution. The robustness of the convergence relative

to the presence of noise is also of obvious experimental relevance. The method has been validated

using simulated density pro�les, and the results are shown in appendix A.1.

3.3.2 Pressure Calibration
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Figure 3.7: Calibration of the pressure in the mean-�eld regime. (a): normalized pressure h(ν)

as a function of the grand-canonical gas parameter ν = µ
g a

3. The mean-�eld (Lee-Huang-Yang)

pressure is plotted in red solid (dashed) line. The green area corresponds to a 5 % uncertainty on

the scattering length. (b) pressure normalized to the mean-�eld pressure. The dots are the data

at a/a0 = 730, while the blue solid line, at a/a0 = 550.

Now that the determination of µ0 has been validated, we turn to the measurement of the

pressure itself. In the dilute limit na3 � 1, where the EoS is universal, the grand canonical EoS

of the homogeneous Bose gas at zero temperature can dimensionally be written as

P (µ, a) =
~2

ma5
· h
(
ν ≡ µ

g
a3

)
, (3.15)

where ν is the gas parameter. It is the grand-canonical analog to the usual gas parameter na3,

since in the mean-�eld limit we have ν = na3. Our goal is to measure the function h. Let us recall
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that in the mean-�eld limit, the pressure is P = µ2/2g and we readily �nd hMF(ν) = 2πν2.

From the pressure formula, we need only the radial trapping frequency ωr and the integrated

density pro�le n̄. However, an absolute and precise determination of the density is notoriously

di�cult from absorption images, due to various parameters a�ecting our knowledge of the absorp-

tion cross-section, such as imperfect probe beam polarization, imaging optics, etc. (see section

2.4.1). Rather than measuring precisely this cross-section, we calibrate the pressure directly using

a reference pressure, taken in the relevant experimental conditions. We write the relation of the

pressure to the experimental doubly-integrated density n̄exp, P (µz) =
mω2

r

2π ξdn̄exp, where the real

density is n̄ = ξdn̄exp and ξd is the detectivity of our system. In the deep mean-�eld regime, we

can measure the pressure and adjust the detectivity ξd in order to recover the mean-�eld pressure.

Two remarks can be done at this point. First, this calibration method is very convenient as it will

automatically account for an error in the radial trapping frequency determination as well as for a

probe detuning mismatch (provided all images are taken with the same detuning mismatch). In

principle the smaller a, the better, since beyond mean-�eld e�ects will be smaller. However, there

are two additional constraints. First, local density approximation should be valid and from the

Gross-Pitaevskii equation we know that the Thomas-Fermi parameter Na/aho must be large (see

section 3.1.2). Secondly, there are non-universal corrections to the binding energy (see the footnote

after Eq.(3.12)). Therefore, we want the scattering length a to be much larger than the �nite range

corrections (a � δa where, δa ≈ 20a0). In practice, at a/a0 ∼ 700, the beyond mean-�eld e�ects

are smaller than 5 %. In Fig.3.7a we show the function h for images taken at a/a0 = 730. Using

ξd = 1.55(4), we �nd excellent agreement with the mean-�eld prediction. We can check that we

do not have important density-dependent e�ects altering the absorption imaging by measuring the

EoS in the mean-�eld regime for a di�erent values of the scattering length. In Fig.3.7b, we show

the pressure normalized to hMF. The points are the data at a/a0 = 730, while the solid blue line

is an average of 10 images taken at a/a0 = 550 for which we recover the mean-�eld pressure to less

than 5 %.

3.3.3 Observation of beyond mean-�eld e�ects in a Bose gas

Let us now turn to a regime of stronger interactions. The value of the scattering length necessary

to unambiguously observe beyond mean-�eld e�ects depends on our precision in the pressure

measurement. In practice we sweep the magnetic �eld in 150 ms, and we can reach scattering

length of about 2000 a0 without observable losses (see chapter 4). For larger values of the scattering

length, losses are visible, and it then becomes necessary to model them. The density-dependent

character of three-body losses makes it subtle because the pro�le is distorted and a �ow of atoms

can exist within the cloud depending on the relative timescale of the losses and the trapping

frequencies. These aspects will be discussed in chapter 4. In order to avoid these model-dependent

inputs, we limit to a maximal value of a/a0 = 2150. In Fig.3.8 we plot the Equation of State

deduced using the self-consistent determination of the chemical potential for scattering lengths of

a/a0 = 1400 (Fig.3.8a) and a/a0 = 2150 (Fig.3.8b). In addition, due to the �nite duration of the

interaction sweep, the gas has not completely reached its �nal size and this small systematic error

is taken into account by applying a rescaling to the density pro�les n̄(z) = (1− ε)−1n̄0((1− ε)z),
with ε = 1.8 % (resp. 2.6 %) for a/a0 = 1400 (resp. a/a0 = 2150) (see chapter 4 for the detailed

model). We see that for a/a0 = 1400 even though there is a small systematic deviation to mean-

�eld, it is within the uncertainty of 5% of the measurement. For a higher value a/a0 = 2150, we

oberve a clear departure from the mean-�eld pressure. At a maximum value of ν ≈ 2.5 10−3, the
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Figure 3.8: Equation of state of a low-temperature Bose gas for a/a0 = 1400 (a) and a/a0 = 2150

(b). In (dashed) red line, the (mean-�eld) Lee-Huang-Yang pressure, deduced from Eqs.(3.18),

3.23, and 3.24. The dotted blue line is the analytical Lee-Huang-Yang pressure (see text). The

green area corresponds to an error of 5 % on the scattering length.

beyond mean-�eld e�ects accounts for ∼ 18 % decrease of the pressure compared to the mean-�eld

prediction.

3.3.4 Quantitative determination of the Lee-Huang-Yang correction

Our measurement presented in Fig.3.8 cannot be explained by the mean-�eld theory of section

3.1.2. It was shown in 1957, that the quantum �uctuations lead to a shift of the ground state

energy compared to the mean-�eld expectation. Instead of the simple replacement (3.3), we add a

small component δΨ̂(r) describing the quantum �uctuations of the �eld operator:

Ψ̂(r) =
√
n0 + δΨ̂(r) (3.16)
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We insert this expression in the Hamiltonian 3.2 and keep the terms at most quadratic in ˆδΨ:

Ĥ = E0 +

∫
d3r δΨ̂†(r)

(
− ~2

2m
∆ + 2gn0

)
δΨ̂(r) +

gn0

2

∫
d3r

(
δΨ̂†(r)2 + δΨ̂(r)2

)
, (3.17)

where E0 is the mean-�eld energy in Eq.(3.4), This Hamiltonian can be diagonalized exactly using

the so-called Bogoliubov transformation and after an appropriate renormalization of the coupling

constant g, the energy can be calculated and to lowest order, one �nds the following expansion in

powers of the gas parameter na3:

E

V
=
gn2

2

(
1 +

128

15
√
π

√
na3 + . . .

)
. (3.18)

The �rst term is the mean-�eld energy, obtained by Bogoliubov [143] (section 3.1.2). In 1998, it

was proven that this term is a lower bound to the energy of a Bose gas with �nite-range repulsive

interactions [157]. The next term is the �rst correction beyond mean-�eld. It was �rst derived by

Lee, Huang and Yang for a Bose gas with hard-sphere interactions [42, 41, 43]. More recently, the

Lee-Huang-Yang formula was rigorously proven for a Bose gas with repulsive interactions described

by an exponential function [158]. The Lee-Huang-Yang correction is thought to be identical for

all Bose gases with short-range interactions in the dilute limit [159, 160, 161], and as such is one

of the �rst non-trivial exact results in quantum many-body physics. The expansion (3.18) is valid

provided na3 � 1. Within the same approach, one can calculate the fraction of particles that are

expelled from the condensate due to the quantum �uctuations which is n − n0 = 8
3
√
π

√
na3. We

see that the initial hypothesis (3.16) that few atoms are outside the condensate is controlled by

the smallness of
√
na3.

On the basis of the Equation of State measured in Fig.3.8, we can perform a direct quantitative

comparison to the Lee-Huang-Yang calculation. In order to do so, we need to translate the expan-

sion (3.18) into the grand-canonical ensemble, switching from E(n) to P (µ). A simple approach is

to start with the Lee-Huang-Yang chemical potential:

µLHY(n) = gn

(
1 +

32

3
√
π

√
na3

)
(3.19)

and invert this equation to lowest order to obtain:

nLHY(µ) =
µ

g

(
1− 32

3
√
π

√
µ

g
a3

)
. (3.20)

Finally, integrating nLHY(µ) yields the Lee-Huang-Yang pressure:

PLHY(µ) = PMF(µ)

(
1− 128

15
√
π

√
µ

g
a3

)
. (3.21)

Or equivalently, the dimensionless pressure reads: hLHY(ν) = 2πν2(1 − 128
15
√
π

√
ν). We see that

apart from the sign of the correction, its magnitude in the grand-canonical variable ν is the same

as in the canonical ensemble. However, if we plot this Equation of State (dotted blue lines in

Fig.3.8), we see that the agreement is good only for small enough interaction strength (typically

ν < 1.5 10−3). For stronger interactions, our pressure is systematically slightly higher than hLHY.

This apparent discrepancy can be investigated using comparison with theoretical calculations.

A Di�usion Monte-Carlo (DMC) calculation was performed on the Hamiltonian for a Bose gas

with binary interactions using di�erent model potentials, whose properties were adjusted to re-

cover the desired value of a [163]. While early Monte-Carlo studies using hard-sphere potentials
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Figure 3.9: Variational Monte-Carlo calculation of the ground state energy of a Bose gas as a

function of the canonical gas parameter na3. This energy is calculated for: hard-sphere potential

(blue squares), a square-well potential with a range R = a (empty green circles) and R = 0.1a

(empty red triangles) [162]. This set is expanded compared to the data published in [163]. The

mean-�eld (LHY) energy (see Eq.(3.18)) is shown in dashed (solid) blue line.

were performed on very dense samples with the aim of understanding the properties of 4He (for

which na3 ∼ 0.1) [164, 165], the work done by Giorgini et. al. focused on the dilute limit, which

is the most relevant for ultracold gases. In Fig.3.9, we plot the ground state energy E normalized

to the mean-�eld energy EMF = N gn
2 . The calculation was done for a hard-sphere potential (blue

squares), a square-well potential with a range R = a (empty green circles) and R = 0.1a (empty red

triangles). In addition to the mean-�eld energy (dashed blue line), we also show the Lee-Huang-

Yang correction (solid blue line). We observe that universality is very well veri�ed as all model

potentials give the same ground state energy for a given value of a. Deviations start to become

signi�cant at about na3 ' 0.02. For both hard-sphere and square-well potential (with R = a)

the range of the potential R is on the order of a. As a consequence, for na3 ' 0.02, the distance

between particle is on the order of the range of the potential ((nR3)1/3 ∼ (na3)1/3 ∼ 0.3) and the

details of the model potential cannot be neglected anymore (see the discussion in section 1.2.3).

An unexpected result of the Monte-Carlo calculation is that the Lee-Huang-Yang EoS represents

a quantitatively accurate description of the Bose gas even for gas parameter values for which the

Lee-Huang-Yang contribution to the energy is not a small correction.

The numerical observation that LHY theory is valid up to high interaction strength suggests

to calculate the pressure directly by applying the Legendre transform to the energy expression

Eq.(3.18) rather than using the low-µ expansion (3.21). First, we de�ne the dimensionless energy

ξ:
E

N
=

~2

ma2
ξ(y ≡ na3). (3.22)

Combining −PV = E − µN at zero temperature, with the Gibbs-Duhem formula ∂P/∂µ = n, we
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Figure 3.10: Determination of the Lee-Huang-Yang parameter. (a): correspondence between the

canonical na3 and grand-canonical ν gas parameters assuming the mean-�eld (LHY) EoS in black

(dashed red) line. (b): �t of the Lee-Huang-Yang parameter to the data at a/a0 = 2150 as a

function of the iteration in the self-consistent determination of µ0.

�nd the following set of correspondence equations:

ν(y, ξ) =
1

4π
(ξ(y) + yξ′(y)) (3.23)

h(y, ξ) = y(4πν(y, ξ)− ξ(y)) (3.24)

The inverse transformation can be readily derived using ∂E/∂N = µ instead of the Gibbs-Duhem

relation. In Fig.3.10a we plot the relation between the canonical na3 and grand-canonical ν gas

parameters for both mean-�eld (ν = y, solid black line) and LHY EoS (ν = y(1 + 32
3
√
π

√
y),

dashed red line). The measured EoS, h(ν) can be used to extract the value of the Lee-Huang-Yang

parameter αLHY, that is de�ned in the canonical ensemble as: ξ(y, αLHY) = 2πy(1 + αLHYy
1/2).

The red solid line in Fig.3.8 corresponds to αLHY = 128
15
√
π
. Alternatively, we can �t αLHY at each

iteration of the self-consistent determination of the µ
(i)
0 's (Fig.3.10b). We notice the convergence of

the EoS within a few iterations and the magnitude of the many-body e�ects on the pressure is found

to be in very good agreement with the Lee-Huang-Yang calculation 128
15
√
π
≈ 4.81. Fitting the EoS

after averaging the data taken at 1400 a0 and 2150 a0, we experimentally extract αLHY = 4.5(7).

The agreement between the experimental data taken for a gas constituted of 7Li bosons, with

a complex interatomic interaction potential, and the Lee-Huang-Yang Equation of State shows

the universality of the �rst many-body correction to the ground state energy of a Bose gas with

short-range interactions.

Non-universal e�ects

As the �rst beyond-mean-�eld e�ects have been measured, one is naturally led to wonder about

the next terms in expansion (3.18) and the universality of these terms. The next terms in the

expansion are [166]:

E

V
=
gn2

2

(
1 +

128

15
√
π

√
na3 +

8(4π − 3
√

3)

3
na3

(
log na3 +B

)
− 1024

√
π

15

re
a

(na3)3/2 + . . .

)
.

(3.25)

The term after the Lee-Huang-Yang contribution, in na3 log na3 was �rst calculated by Wu for a

hard-sphere Bose gas [167] and was later shown to be also universal [168]. The B-term however is
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Figure 3.11: Non-universal e�ects in the equation of state of a T = 0 Bose gas. The experimental

data points are plotted together with the mean-�eld (red dashed line) and the Lee-Huang-Yang

pressure (red solid line). The log (or Wu) term is plotted in dotted purple, as well as the Wu term

including the non-universal B-contribution (the shaded area corresponds to the values between

B = 5 and B = 9.

non-universal and involves the scattering of three bosons [169]. It was discovered in 1961 that the

three-boson problem with contact interactions is not well de�ned with the scattering length only

and requires the introduction of an additional parameter, the three-body parameter Λ∗ [170]. In

1971, V. E�mov discovered that the three-body system can support an in�nite set of three-body

bound states, with universal properties3, the E�mov trimers [2]. B was explicitly calculated for

bosons with a hard-sphere interactions, yielding 8.5 [171]. In the case of bosons with short-range

interactions, B was shown to be complex, the imaginary part being associated to three-body recom-

bination. More interestingly, B depends log-periodically on the three-body parameter Λ∗, directly

re�ecting the presence of the E�mov trimers in the spectrum of three bosons with short-range

interactions [172]. The amplitude of the log-oscillations is small and B ≈ 7.2. The last term in

Eq.(3.25) is the �rst correction due to the e�ective range re of the s-wave scattering [173].

We can check for possible nonuniversal e�ects in our measured EoS. The e�ective range in the

|F = 1,mF = 1〉 state is re ∼ 40a0 at our largest interaction strength [174] and we �nd the last

term in Eq.(3.25) to be a correction of ∼ 0.04 % to the mean-�eld energy, far out of experimental

reach under our conditions. The Wu and the B-terms cannot be considered separately as they are

both numerically of the same order in the experimental range of na3 explored. In addition, the

logarithm term alone (as written in [163]) leads to an upshift of the ground state energy, maximum

of about 3 % at na3 ∼ 10−4 and then becomes negative. This violates the Lieb-Yngvason lower

energy bound [157] (see dotted purple line in Fig.3.11). Taking the value of B = 8, we �nd the

third term of Eq.(3.25) to be about 10 % for na3 = 3 × 10−3, a large contribution, comparable

to the Lee-Huang-Yang correction, while for B = 6 the contribution is almost zero. We can

3For example, at unitarity a → ∞, the energy spectrum of the E�mov trimer contains an in�nite set of states

whose energies tends to zero following asymptotically a universal geometric law En/En+1 → e2π/|s0| ≈ 515 (where

s0 = i× 1.00624 is the solution of a transcendental equation).
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plot the beyond-LHY contribution for values between B = 5 and B = 9 (see Fig.3.11). If we

�x the value of the LHY parameter and use B as a �t parameter, we �nd B = 6.8. Attempts

to extract the nonuniversal B for various model potentials on Bose gases have been done [173]

based on the di�usion Monte-Carlo calculation of [163] in the very dilute limit. However, even for

these precision calculations, the statistical errors prevented from inferring non-universality from

the numerical data. The possibility of observing signatures of the E�mov e�ect directly on the

Equation of State appears very challenging.

3.3.5 Comparison to Quantum Monte-Carlo calculations
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Figure 3.12: Finite-temperature e�ects in a Bose gas beyond mean-�eld. (a): In-situ density pro�le

of a low-temperature Bose is averaged over 5 images at a/a0 = 2150. The QMC calculations are

performed for 38000 particles in a trap with ωr/2π = 345 Hz and ωr/2π = 18.5 Hz. The solid

lines are the result of the QMC calculation at temperatures of T/T 0
c = 0.75 (red), 0.5 (orange),

0.25 (green), and 0.125 (purple). (b): Comparison between the T/T 0
c = 0.125 QMC density pro�le

(blue dots) and the T = 0 prediction of the Lee-Huang-Yang assuming local density approximation.

All the studies realized in this chapter relied on the zero-temperature assumption. Obviously the

clouds cannot be cooled to T = 0 and it is important to explore the role of �nite-temperature e�ects

on the equation of state measurement. For weakly interacting Bose gases, the �nite-temperature

corrections in the super�uid phase are small and the main feature is the presence of thermal wings

outside the condensate region (see Fig.3.1) [40]. This picture was accurately con�rmed experimen-

tally using weakly interacting 87Rb [106,175]. Measuring the temperature on a weakly interacting

Bose gas can thus be done on the thermal wings which can be treated classically.

The corresponding problem for a Bose gas with stronger interactions is considerably more com-

plex. E�ects of interactions on �nite-temperature Bose gas is a notoriously subtle problem. Within

the LDA, the density pro�les simply give the equation of state. There have been several numerical

studies of the �nite-temperature equation of state [176,177] but there is no simple analytical model

beyond low-(or high-) temperature corrections comparable to the mean-�eld Hartree-Fock mod-

els [166]. In addition, the spatial separation between the Bose condensate and the thermal part is

more di�cult to distinguish as the Bose-Einstein condensate expands due to the increasingly re-

pulsive interactions. In order to avoid relying on approximate models, numerical simulations were

carried out by S. Piatecki and W. Krauth at ENS, using a Path-Integral Quantum Monte Carlo
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(QMC) method [178]. The calculations were carried out in a cylindrically symmetric trap, in the

same conditions (atom number and trapping frequency) as in the experiment. In Fig.3.12a, we plot

together with an experimental density pro�le (averaged over 5 images with atom numbers within 5

%) the result of QMC calculations for various temperatures, in units of T 0
c = ~ω̄(N/ζ(3/2))1/3/kB ,

the critical temperature for BEC of an ideal gas in a trap of average frequency ω̄ = (ω2
rωz)

1/3.

The distance to the experimental pro�le is quanti�ed using a χ2 test (see inset of Fig.3.12a) and

shows that the data at T/T 0
c = 0.25 and 0.125 are both within the 68 % interval of con�dence. In

Fig.3.12b, we compare the lowest temperature QMC calculation (T/T 0
c = 0.125, blue dots) with

the expected density pro�le assuming the Lee-Huang-Yang equation of state and the LDA (dashed

purple line). The very good agreement between these two pro�les, as well as with the experimental

data, shows that �nite-temperature e�ects are made negligible in our conditions and that the local

density approximation is very well veri�ed.

In this chapter, we have presented a study of the equation of state of the homogeneous Bose

gas at low-temperature. We �rst accurately characterized the Feshbach resonance using radio-

frequency association spectroscopy of 7Li2 dimers. Using this Feshbach resonance, we increased

the strength of the repulsive interactions and we have reached a regime where mean-�eld theory

does not describe properly the system anymore. The �rst beyond-mean-�eld correction, due to

quantum �uctuations was calculated by Lee, Huang and Yang in 1957. Our work provides the �rst

quantitative measurement of the LHY correction in an atomic Bose gas. This beyond-mean-�eld

is a many-body e�ect of fundamental importance and was shown to be universal, in the sense that

it does depend on the details of the boson-boson interaction potential only through its low energy

scattering properties, characterized by the scattering length. We have explored the possibility to

observe non-universal e�ects on the equation of state. Using Quantum Monte Carlo simulations, we

tested the zero-temperature assumption underlying the EoS study and �nd very good agreement

with the lowest temperature calculations as well as with the local density approximation.



Chapter 4

Dynamics of a Bose Gas with

Tunable Interactions

We now turn to the dynamics of a Bose gas subjected to an interaction sweep. The thermodynamic

measurements presented in the previous chapter relied on the hypothesis of thermal equilibrium.

In the �rst part of this chapter, we justify this assumption by studying the three-body losses

close to the Feshbach resonance, and we assess the adiabaticity of the interaction sweeps for

the thermodynamic measurements. We probe beyond-mean-�eld dynamics and propose a simple

theoretical description to compare with the measurements. Finally, we use faster sweeps to access

the regime of strong interactions close to the Feshbach resonance. Using a simple argument, we

infer information about the hypothetical unitary Bose gas.

4.1 In quasi-equilibrium

To observe unambiguously beyond-mean-�eld e�ects in a Bose gas as presented in the previous

chapter, we needed to reach values of the scattering length for which the associated three-body

loss time τ3 is not much larger than the axial trapping period, τ3 & Tax(= 2πω−1
z ). Because

these time scales are similar, the magnetic �eld sweep to the strongly interacting regime cannot

be made arbitrarily slow. In practice, we used tramp ≈ 3Tax, which causes slight non-equilibrium

e�ects. Both atom losses and non-equilibrium e�ects can distort the density pro�le compared to

the equilibrium pro�le. It is thus important to characterize the in�uence of the interaction sweeps,

both for size and density measurements.

4.1.1 Cloud size measurements

In order to test the adiabaticity of the interaction sweeps, we measure the radius of the cloud as

a function of the sweep time. For simplicity, we measure the radius using a Thomas-Fermi �tting

function. As the in-situ cloud size depends on the atom number for a quantum gas, we normalize

the radius to a radius1 R∗ = aho(15λ2N)1/5. This choice is justi�ed in the mean-�eld regime: if the

atom number in the BEC �uctuates from shot-to-shot, the ratio R/R∗ will remain constant, and

the change in R/R∗ would only be due to dynamical e�ects. However, if beyond-mean-�eld e�ects

set in, the radius will not scale as N1/5 anymore. Because most of the data is taken in a regime

1R∗ would correspond to the mean-�eld Thomas-Fermi radius of a BEC with a scattering length a = aho.
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Figure 4.1: Radius R of the Bose gas as a function of the ramp duration τ of the interaction sweep.

The radius R is normalized to the radius R∗ = aho(15λ2N)1/5 (where aho = (~/mωz)1/2
and

λ = ωr/ωz). N is the measured atom number at the end of each sweep. The �nal values of a/a0

are 380 (blue dots), 840 (purple squares), 2940 (red diamonds) and 4580 (green triangles). The

solid (dashed) lines show the solution of a variational hydrodynamic approach (mean-�eld scaling

solutions), see section 4.1.2 for details. The crosses show the predicted equilibrium beyond-mean-

�eld radii.

where beyond mean-�eld e�ects are not large, we can expect this scaling to be still approximately

valid. We can test this hypothesis with the beyond-mean-�eld expression for the density (see

Eq.3.20) and express it locally using the LDA: nLHY(µ0 − V (r)). Integrating this expression over

the trap 4π
∫
d3r nLHY(µ0 − V (r)) = N , we relate the atom-number N(R) to the radius of the

cloud R =
√

2µ0

mω . Inverting this expression to lowest order we obtain [179]:

RLHY = RMF

(
1 +

1

4
√

2

a

a2
ho

RMF

)
. (4.1)

Using this expression and R∗ = RMF( a
aho

)−1/5, we can compute the variation of RLHY/R
∗ with a

variation δN of atom number, due to the approximate atom number scaling. In our trap, at 3000 a0

a variation of 30 % in atom number around 4×104 leads to a relative variation of RLHY/R
∗ of 0.5 %.

In Fig.4.1, we display the normalized radius of the cloud R/R∗ as a function of the sweep time τ

for di�erent �nal scattering length values: a/a0 = 380 (blue dots), 840 (purple squares), 2940 (red

diamonds) and 4580 (green triangles). We observe that for low values of the scattering length, the

ramp is adiabatic and the radius R/R∗ rapidly reaches its equilibrium value (crosses in Fig.4.1).

For larger values of a (a/a0 = 2940), equilibrium is not ensured for short sweep rates. However,

for longer ones, a plateau is noticeable and a quasi-equilibrium state is reached. For even larger

scattering lengths (a/a0 ∼ 4500), the three-body recombination rate is faster than the axial period

and there is no sweep time for which even an intermediate quasi-equilibrium is obtained. Due to

the decreasing atom number, the radius R/R∗ increases and no plateau is obtained.
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4.1.2 Simple Theoretical Approaches

We now develop simple theoretical descriptions of the experiment presented above. We �rst adopt

a mean-�eld approach, using exact scaling solutions. We then take the treatment one step further

and propose a simple scaling ansatz to predict the beyond-mean-�eld dynamics of the Bose gas.

Mean-Field Regime: Scaling Solutions

In the limit of weak interactions, we can describe the dynamics of the BEC with a variable scattering

length a(t) using the time-dependent Gross-Pitaevskii equation:

i~
∂ψ

∂t
=

(
− ~2

2m
∆ +

4π~2a(t)

m
|ψ|2 + V (r)

)
ψ. (4.2)

In the Thomas-Fermi limit, the GPE can be solved using a scaling ansatz, where the spatial

coordinate xi is rescaled by a factor λi(t) obeying the following set of equations [180]:

λ̈i(t) + ω2
i λi(t) = ω2

i

a(t)

a(0)

1

λi(t)
∏
j λj(t)

. (4.3)

These equations are solved numerically and the solutions are plotted as dashed lines in Fig.4.1 for

a(t) corresponding to an approximately linear change in magnetic �eld (see section 2.3.5 for details

about the ramp). This problem was also recently addressed with a simple variational gaussian

ansatz [181], which was used to study non-adiabaticity and heating e�ects in a BEC subjected to

interaction sweeps.

Beyond-Mean-Field E�ects: Scaling Ansatz

As one increases the interactions in the Bose gas, it becomes necessary to go beyond-mean-�eld

theory, as seen by the increasing discrepancy between the mean-�eld model (dashed lines) and the

experimental data in Fig.4.1. Solving this problem beyond the framework of mean-�eld theory

is challenging. In the Thomas-Fermi limit, the mean-�eld dynamics are well described by super-

�uid hydrodynamics (that can be deduced from the GPE) [40]. We are thus inclined to describe

the beyond mean-�eld dynamics with the hydrodynamic equations. We start from the following

Lagrangian density:

L[n, φ] =
m

2
n(∇φ)2 +mn

∂φ

∂t
+ nVext(r) + e[n], (4.4)

where L depends on two functions, the density n and a phase function φ (whose gradient will be

the velocity �eld), and e[n] is the internal energy of the �uid considered. We are looking for the

functions n and φ for which the action S[n, φ] =
∫
d3rdtL is stationary with respect to in�nitesimal

variations δn and δφ: δS
δn = 0 and δS

δφ = 0. These two conditions for the Lagrangian density (4.4)

yield:

m

2
(∇φ)2 +m

∂φ

∂t
+ V (r) + µ(n) = 0 (4.5)

∂n

∂t
+∇.(n∇φ) = 0. (4.6)

We recover the hydrodynamic equations for an inviscid �uid with an equation of state µ(n) = ∂e
∂n .

The �rst equation is Bernoulli's with an irrotational velocity �eld v = ∇φ, while the second is the

continuity equation. Though it is numerically possible to solve the hydrodynamic equations (4.5)

and (4.6) for a given choice of EoS µ(n), it is not a simple problem as the boundary conditions
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for solving these partial di�erential equations are mobile (the contour on which the atomic density

vanishes). We have seen above that a scaling solution is valid in the mean-�eld limit. A simple

extension is to assume a scaling ansatz:

n(r, z, t) =
1

λr(t)2λz(t)
n0

(
r

λr(t)
,

z

λz(t)

)
(4.7)

φ(r, z, t) = φ0(t) +
ar(t)r

2

2
+
az(t)z

2

2
. (4.8)

First, we check that the mass conservation equation (4.6) is veri�ed for any initial density n0

provided ar = λ̇r/λr and az = λ̇z/λz. Next, the action is written as a function of the scaling

parameters λr(t) and λz(t) and minimized with respect to these two parameters. If one assumes

the mean-�eld internal energy e[n] = gn2

2 , one indeed recovers the mean-�eld scaling equations

(4.3).

Next, we take Lee-Huang-Yang expression for the internal energy:

e[n] =
gn2

2

(
1 +

128

15
√
π

√
na3

)
. (4.9)

Minimization of the action including the beyond-mean-�eld contribution to internal energy leads

to the equations:

λ̈r(t) = −λ2λr(t) +
a(t)

a(0)

λ2

λ3
rλz

+

(
a(t)

a(0)

)5/2
κλ12/5

λ4
rλ

3/2
z

(4.10)

λ̈z(t) = −λz(t) +
a(t)

a(0)

1

λ2
rλ

2
z

+

(
a(t)

a(0)

)5/2
κλ2/5

λ3
rλ

5/2
z

(4.11)

where κ = 105
64
√

2

(
aho
a(0)

)−6/5

(15N)1/5, λ = ωr/ωz is the aspect ratio and t is measured in units

of ω−1
z . Solving this set of equations numerically leads to the solid lines in Fig.4.1. We see that

although this approach is variational, the agreement with the experimental data is very good,

signi�cantly improving the mean-�eld predictions, in particular for a/a0 ∼ 3000. The crosses in

Fig.4.1 are the stationary solutions to Eqs.(4.11). We see however that for a/a0 ∼ 5000, the scaling

model is accurate only for the shortest sweep rates. For longer sweep durations, the radius R/R∗

is higher than predicted by the scaling ansatz, due to increasing atom losses that are not taken

into account in this treatment.

4.1.3 Three-body recombination

With respect to size measurements, we have seen that for scattering lengths up to a/a0 ∼ 3000,

a quasi-equilibrium radius is reached for intermediate sweep durations, which in turn allows for

reliable measurements of the local chemical potential µz. Another quantity of central importance

in the thermodynamic study is the (integrated) density, which gives access to the local pressure.

Atom losses will distort the density distribution. In particular, three-body recombination are an im-

portant aspect of ultracold atom experiments, limiting the densities of Bose-Einstein condensates.

They represent the �rst step towards the formation of clusters, as the gaseous phase produced in

cold atom experiments is not thermodynamically stable at these ultralow temperatures: the true

ground state is a solid. In most experiments involving weakly interacting Bose gases, this rate is

usually su�ciently low to be neglected. However, the three-body loss rate increases dramatically

with the interactions, and thus plays a crucial role in experiments exploring e�ects of strong inter-

actions in Bose gases. The quantitative analysis of the in-situ density pro�les in chapter 3 assumed
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negligible loss and thus required a su�ciently long lifetime for the Bose gas, which we study now

as a function of the scattering length.
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Figure 4.2: Three-body recombination in a Bose-Einstein condensate at a = 600 a0. (a): Atom

number versus wait time. The K3 coe�cient is deduced from the �t (red solid line), see text. (b):

Thomas-Fermi radius of the BEC as a function of the wait time.

Since we work with 7Li in its absolute ground state |F = 1,mF = 1〉 (or |1〉 at high magnetic

�elds), two-body losses are suppressed. However, three-body recombination events occur, and

typically two of the three incoming particles will form a dimer (either weakly or tightly bound).

The energy released will be shared as kinetic energy between the third partner and the dimer.

Except when the scattering length is very large, the binding energy of a weakly bound Feshbach

molecule is higher than the trap depth (for example, the Feshbach molecule binding energy at

a = 1000 a0 is kB × 25 µK.) and all participants to the three-body collision are lost. Even if

the Feshbach molecule remains trapped (as will happen for su�ciently high values of a), it will

rapidly become subject to decay into deeper bound states when colliding with another atom (called

collisional relaxation) and will thus be lost as well. The rate equation describing the three-body

losses is (assuming the molecules rapidly escape from the trap):

dn

dt
= −K3 n

3, (4.12)

where n is the density and K3 is the three-body recombination coe�cient. If we assume that

the scattering length is the only relevant parameter, the following scaling is a consequence of di-

mensional analysis: K3 ∝ ~
ma

4 [37]. However, it is known that such a simple scaling is only a

crude description as it neglects important three-body physics phenomena. The presence of E�mov

trimers in the spectrum of the three-boson problem was shown to have a direct consequence on

the a4 scaling of K3, and one has to write the three-body coe�cient as K3 = 3C(a) ~
ma

4 where

C(a) is a log-periodic function of the scattering length and depends on the microscopic details of

the interaction potential through Λ∗ [182].

To measure the lifetime, we perform the interaction sweep with the o�set coils and a systematic

wait time of 50 ms is included in order to let the magnetic �eld stabilize. We �rst start in the

weakly interacting regime a = 600 a0, and probe the atom number (Fig.4.2a) as a function of the

wait time. From Eq.(4.12), we derive an evolution equation for the total atom number N(t):

1

N

dN

dt
= −g

(3)

3!
K3〈n2〉, (4.13)
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where 〈X〉 = 1
N

∫
drXn(r), and g(3) is a spatial correlation coe�cient equal to 3! for a BEC and

1 for a thermal gas [183]. In order to proceed further, we have to make an assumption about the

density pro�le to calculate the average 〈n2〉. In the weakly interacting regime, we can work with

a Bose-Einstein condensate. If the inverse loss rate is much larger than the trapping periods, the

heating due to the three-body loss is low, the BEC will retain a Thomas-Fermi shape, and the

radius will scale as N1/5 (see Eq.(3.9)). Calculating the average in Eq.(4.13) using a TF pro�le,

we readily obtain a closed equation for the total atom number N :

1

N

dN

dt
= − ᾱ

3!
K3N

4/5, (4.14)

where ᾱ = 75
56π2 15−6/5λ8/5a

−24/5
ho a−6/5. This equation can be solved and yields the evolution of

the atom number2 N(t):

N(t) =
N0(

1 + 4
5
ᾱ
3!K3N

4/5
0 t

)5/4
. (4.15)

The assumption of quasi-equilibrium can be easily checked by measuring the Thomas-Fermi

radius of the BEC as a function of time (Fig.4.2b). In red solid line, we plot the expected shrink-

ing of the gas due to atom loss measured in Fig.4.2a, R(t) = R(0)(N(t)/N(0))1/5 where R(0)

is the only �tting parameter. The very good agreement shows that even though atoms are lost,

the BEC remains almost pure and can be described by the simple model derived above. Fitting

the data of Fig.4.2a with the solution (4.15), we �nd K3 = 2.0(3) × 10−24 cm6/s, in agreement

with [79] (the uncertainty is the �tting error only). We repeat this measurement for various values

of the scattering length and gather the measured values of K3 in Fig.4.3. For the two largest

scattering lengths, the measurement is done with a thermal gas (empty circles in Fig.4.3). Since

no appreciable heating is observed, we solve the three-body loss equation (4.12) assuming a gaus-

sian density distribution at a �xed temperature, and the solution for the atom number decay is

N = N0(1 + t/τ3)−1/2, where τ−1
3 = 2κ

T 3K3N
2
0 and κ = 1√

27

(
mω̄2

2πkB

)3

.

In addition to our experimental data (blue points), we also show in Fig.4.3 the result for K3

obtained in the Bar-Ilan group [79] (red solid line) and at Rice [155] (green dashed line). The

observed reduction of K3 is due to the presence of E�mov trimers in the spectrum, this oscillation

is a log-periodic feature, separated by a factor 22.7 (see for example the review [185]). As the

Rice determination of the Feshbach resonance disagrees with both spectroscopic methods, we have

also plotted the result of Rice measurement assuming our parameters for the Feshbach resonance

position and width (green solid line) and we see very good agreement with our data. For reference,

an a4 law (with an arbitrary factor) is also shown in dashed black. From these loss measurement,

we can now assert the typical values of interaction that can be reached in static measurements.

Indeed, the density pro�le equilibration necessitates a time that is on the order of the axial (weak)

timescale. Our axial trapping frequency is about 20 Hz. As a consequence, the Bose condensates

lifetime must be at least about 50 ms for static measurements. Using our measurement of Fig.4.3,

we deduce that at the end of the interaction sweep, the lifetime of a BEC of 4.104 atoms in our

trap geometry will be about 70 ms at a = 2200 a0, while at 3000 a0, it is only 15 ms. This puts

an upper bound to the interaction regime we can reach in these conditions, and justify the choice

of ∼ 2000 a0 for the EoS measurement in chapter 3.

We con�rm this by measuring the averaged atom number N (normalized to N0 = 3.8 104) for

the sweep duration of 150 ms, plotted in Fig.4.4. We see that indeed up to a/a0 ∼ 2000 atom

2Note that in [184], the exponent of the solution (4.15) is mistyped.
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Figure 4.3: Three-body recombination coe�cient K3 as a function of the scattering length. The

measurements are done on a BEC (�lled circles) or a thermal gas (empty circles). The experimental

measurements are shown in blue points, the Bar-Ilan group result is shown in solid red line [79],

the Rice group result in dashed green line [155]. For reference, an a4 law is plotted in dashed black

line (with an arbitrary factor). Reanalyzing the Rice group data with our determination of the

Feshbach resonance leads to the solid green line. The error bars represent the �tting uncertainties.

losses are negligible within our error bars. For larger scattering lengths, the losses become observ-

able. A simple model of these losses is provided by taking the quasi-equilibrium model presented

in section 4.1.3, assuming a time-dependent three-body loss coe�cient K3(a(t)) in Eq.(4.14), and

using the experimental interaction sweep for a(t). Let us recall that this model assumes that the

BEC retains a Thomas-Fermi shape and that the radius of the cloud still scales as N1/5 as the

atom number is reduced. The integration of Eq.(4.14) for N(t) results in the solid black line in

Fig.4.4a. For a/a0 < 3000 the model matches well the experimental data but at a/a0 ∼ 3000,

the losses are slightly larger than expected (by about 5 %), and this trend is reinforced for larger

values of the scattering length. This is due to the fact that for these interaction strength, the

loss rate becomes smaller than the axial trapping period and the density distributions do not have

su�cient time to adjust to the changing scattering length. This crossover is shown in Fig.4.4b to

happen between 2000 and 3000 a0. As the BEC radius is smaller than the equilibrium radius for

the same scattering length, the peak density will be correspondingly higher and the losses faster

than for the quasi-equilibrium model, as observed on the experimental data.
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Figure 4.4: (a): Atom number measured after a sweep time of 150 ms, where N0 = 3.8 104 as a

function of the �nal scattering length a/a0. Each experimental point is an average of about 10

shots. The black solid line is a simple model for the atomic losses in quasi-equilibrium conditions.

(b): Three-body recombination time τ3 as a function of the scattering length a/a0. The red solid

line is the axial trapping period of 54 ms.

4.1.4 Consistency check of the Lee-Huang-Yang Equation of State

At ∼ 2000 a0, the losses are negligible and no model-dependent treatment of the e�ects of loss was

necessary. We can use the above atom-loss and radii-dynamics modeling to attempt to extract the

equation of state slightly beyond equilibrium and test the consistency of the LHY equation of state

on the density distributions at 3000 a0. The raw measurement is displayed as empty blue squares

in Fig.4.5a. The e�ect of the �nite duration of the ramps as estimated using the scaling models

is shown Fig.4.5b and taking it into account leads to the full black circles in Fig.4.5a. For the

measurement at 2150 a0 the radius correction is respectively 2.3 and 2.9%3. We see on Fig.4.5b

that the mean-�eld (dashed line) and the beyond-mean-�eld (solid line) models give a correction

factor that are 3.5 and 5%, respectively at 3000 a0. We need to rely here on the beyond-mean-�eld

model (which proved to be accurate in Fig.4.1). This reduces the predictive power of the EoS

at this scattering length, but it will serve as a consistency check for the EoS measured at 2000

a0. The agreement obtained with the LHY equation is good, but a slight systematic downshift

is observable. We see in Fig.4.4 that the atom loss at 3000 a0 is slighly larger than the quasi-

equilibrium model prediction. As long as the quasi-equilibrium model applies, the radius of the

cloud adjusts to the atom number and the density distribution (and hence the extracted equation

of state) re�ects the equilibrium situation. From Fig.4.4 we infer that about 5% of the atoms are

lost without equilibration of the density distribution. A simple model to take this additional e�ect

into account is to assume that a local thermal equilibrium is reached in the radial direction, while

the dynamics are frozen in the axial direction. This condition is reasonably ful�lled at 3000 a0,

where the three-body loss rate is about 67 Hz, much larger than νz = 18.5 Hz and much smaller

3Though this di�erence is small, we take the average value 2.6% for the EoS extracted in chapter 4, and we

check that the uncertainty introduced by this correction is within the stated error bar on the LHY coe�cient,

αLHY = 4.5(7).
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than νr = 345 Hz. In this case, we can write the local chemical potential as:

µ(r) = µz −
1

2
mω2

rr
2. (4.16)

Due to the lack of equilibrium in the axial direction however, we cannot write µz as µ0 − V (z)

anymore. Integrating the density as well as the three-body loss equation (4.12) along the radial

direction (assuming a Thomas-Fermi shape in this direction for simplicity) yields the following

equations for n̄(z) and µz:

n̄(z) =
π

g

µ2
z

mω2
r

(4.17)

dn̄

dt
(z) = −π

2

K3

g3

µ4
z

mω2
r

. (4.18)

Using these equations, one can predict the deformation of the density pro�les due to the three-body

losses. We �rst produce a density distribution derived with the LHY equation of state (in the same

conditions as the experimental data of Fig.4.5a) and solve the equations (4.17 and 4.18) for a time

corresponding to an atom-number loss of 5%. From the resulting density pro�le, we extract the

normalized pressure and �nd the green solid line in Fig.4.5a, in improved agreement with the data.

Even though this analysis is model-dependent, we see that the results at 3000 a0 are also in very

good quantitative agreement with the Lee-Huang-Yang equation of state.
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Figure 4.5: (a): Normalized pressure measured at a/a0 = 2950. In red dashed (solid) line, the

mean-�eld (Lee-Huang-Yang) EoS. The raw EoS is shown in empty blue squares; in full black

circles, we include the correction due to non-equilibrium (see text). The green solid line is a simple

model including the small atom losses (see text). (b): The ratio of the equilibrium radius of

the BEC Req to the radius after the 150 ms sweep as a function of the �nal scattering length as

predicted by the scaling solution for the mean-�eld approach (black dashed line), and including

the beyond-mean-�eld e�ects through the scaling ansatz (black solid line).

4.2 Towards the Feshbach resonance

In order to access the regime of stronger interactions in a Bose gas, we cannot rely on the slow

ramps used for the thermodynamic studies. A simple approach consists of using faster ramps in

order to reach higher interaction strengths. This method has been used in the group of C. Wieman

at JILA, where a fast magnetic �eld pulse (of about 10 G) was applied in tens of µs to reach
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a regime of strong interactions using a Feshbach resonance with 85Rb and study the atom loss

dependence on the rise time of the magnetic pulse4 [36,188]. The time scales in both experiments

are almost three orders of magnitude apart. This can be partly attributed to the comparatively low

densities in our experiment (in the range 1012 cm−3 rather than 1013 cm−3), but a more accurate

measurement of K3 as a function of a should be done on 85Rb, re�ning the early work of [35], in

order to understand this di�erence.

4.2.1 Atom losses close to the Feshbach resonance
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Figure 4.6: Atom number as a function of the �nal scattering length. In empty red squares

(solid black circles), the experimental data for a ramp time of 150 ms (75 ms). The dashed lines

correspond to the prediction of the quasi-equilibrium model for both ramp times. The errors bars

on the black points represent the standard error of 3 to 5 shots on each point.

The three-body recombination increases dramatically in the vicinity of the Feshbach resonance.

By shortening the interaction sweep, we obviously reduce the three-body losses as can be seen in

Fig.4.6, allowing us to reach the resonance and slightly beyond with reasonable atom numbers. The

empty red squares are the rescaled data from Fig.4.5a for a sweep of 150 ms; black points, the data

for a faster sweep of 75 ms. The dashed lines correspond to the prediction of the quasi-equilibrium

model for both ramp times. For the slow ramp, the agreement is much better than for the fast one.

Indeed, for fast ramps we rapidly reach a regime where the density distribution does not follow the

changing scattering length (as will be seen on the radii measurements in the next section). The

quantitative description of the data in Fig.4.6 beyond a naive model is very challenging as we need

a theoretical framework for the non-equilibrium dynamics of a strongly interacting Bose system.

4A similar magnetic �eld quench was used to study the repulsive Fermi gas, which is similiarly increasingly

unstable for strong interactions [186,187].
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In practice, we see that we can reach the Feshbach resonance center with almost half of the atoms

left.

4.2.2 Radii Measurements

Similarly, we measure the radius of the Bose gas as a function of the scattering length reached at the

end of the 75-ms interaction sweep. For convenience, the radius is measured using a Thomas-Fermi

�tting function and normalized to the radius R∗ (see section 4.1 for details). As expected, the ra-

dius �rst grows as a1/5 (static mean-�eld prediction in red solid line). However, for a/a0 & 1000,

the experimental data starts to deviate from the mean-�eld expectation. The dynamical e�ect

of the sweep is immediately observed as the deviation from the equilibrium mean-�eld theory is

a reduction of the radius. If beyond-mean-�eld e�ects alone were present, we would expect an

increase of the radius, as shown in Eq.(4.1). We can use the scaling models developed earlier in

section 4.1.2 to provide with a �rst description of the Bose gas dynamics. With the dashed red

line, we note that the scaling solutions of mean-�eld theory provide an improved description of

the radius dynamics. For even larger scattering lengths a/a0 ∼ 3000, the scaling ansatz of the

hydrodynamic equations using the Lee-Huang-Yang equation of state is in better agreement with

the data.
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Figure 4.7: Normalized cloud radius R/R∗ (�lled purple circles) as a function of the inverse scat-

tering length aho/a at the end of a 75-ms magnetic-�eld sweep. The static mean-�eld prediction is

plotted in solid red line, the mean-�eld scaling solution in dashed red, and the beyond mean-�eld

scaling ansatz in solid green line. Inset: Zoom around the unitary limit. Predictions for the uni-

versal constant ξB are shown in up green up triangle [55], red down triangle [56], blue square [57],

and orange diamond [58]. The �lled (empty) circles correspond to the radii normalized to the �nal

(initial) atom number. The dotted black line is a linear interpolation at unitarity (see text).
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4.2.3 A Lower Bound on ξB
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Figure 4.8: Density pro�le of an out-of-equilibrium strongly interacting Bose gas with a scattering

length of a/a0 = 2.8 × 104 after an interaction sweep of 75 ms. The peak density is ∼ 6 × 1011

cm−3, giving a gas parameter na3 ∼ 2. The pro�le is the result of an average of 5 images with a

mean atom number of 2.1× 104 atoms. The density distribution is �tted with a gaussian (dashed

red line), a fermionic (solid black line), and a bosonic (solid green line) Thomas-Fermi function.

Finally, we focus on the region where the interactions are unitarity limited, and the scattering

length diverges (vertical dotted line in the inset of Fig.4.7). In this region, most properties of the

Bose gas are very poorly understood. First, the gas parameter na3 ∼ 1 and the perturbative ex-

pression 3.25 is meaningless as all the terms are of the same order. The fate of a many-body state

with universal properties for a gas of bosons is currently uncertain. If one assumes that short-range

physics are irrelevant to describing the low-energy collisions for all interaction strengths, there is no

energy scale associated with the interactions in the limit a→∞, and the properties of the system

become universal in the sense that the only relevant length scale is the interparticle spacing n−1/3.

It is the so-called unitary gas. As a consequence of dimensional analysis, the equation of state must

take the form µ = ξBEF where EF = ~2

2m (6π2n)2/3 is the �Fermi energy" of the Bose gas. This is

the EoS of an ideal Fermi gas, apart from a universal factor ξB . While the unitary Fermi gas was

shown experimentally to be stable (see chapter 5) and we have good indications of its universality,

the possible existence of a unitary Bose gas has attracted signi�cant interest in the recent years,

but no convincing theoretical nor experimental hints of its existence and universality has been put

forward so far.

First, it is important to assess that we do not observe signi�cant heating during the sweeps,

since the radius of a classical gas is meaningless. In Fig.4.8, we display the density pro�le (av-

eraged over 5 images within 5% in atom number) of a strongly interacting Bose gas. The �nal

scattering length is a/a0 = 2.8× 104 and the estimated peak density is ∼ 6× 1011 cm−3, making

the gas parameter large, na3 ∼ 2. If the universality conjecture applies to the Bose gas, the density

distribution at unitarity should have a fermionic Thomas-Fermi shape n̄0

(
1− z2

R2

)γ
with γ = 5/2
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for the doubly integrated pro�le (solid black line) and we compare it to a bosonic Thomas-Fermi

function γ = 2 (solid green line). None of the two distributions signi�cantly �ts the data better

than the other. It is not surprising since the density pro�le in Fig.4.8 is out-of-equilibrium and

we remark that the peak density is �attened, consistent with the deformation expected from im-

portant three-body losses in the densest parts of the cloud. We observe that the density pro�le

is highly non-gaussian (red dashed line) and the edges of the distribution are very sharp, giving a

good indication that the gas is deeply degenerate. We also note that the cloud largely expanded

compared to lower values of a (see for comparison the pro�les in Fig.3.3).

Due to the �nite response time of the gas, we can assume that the measured radius R is smaller

than the equilibrium radius, R < Req. This reasonable assumption is veri�ed by the scaling

models. From this inequality, in the spirit of variational methods, we deduce a lower bound for

the value of ξB by interpolating our data at unitarity, in black dashed line in the inset of Fig.4.7.

The link between ξB and R/R∗ must be established: at unitarity, the cloud radius R would scale

as N1/6ξ
1/4
B (as a result of the EoS µ = ξBEF ). The normalization radius R∗ scales as N1/5 so

that R/R∗ ∝ ξ1/4
B N−1/30. The choice of R∗ for normalization thus leads to a residual dependence

on N but it is very slowly varying (N−1/30) and results in only minor correction for our range

of atom numbers (less than a percent correction) and we safely neglect it. In order to take into

account the changing atom number near unitarity and obtain a conservative experimental lower

bound on ξB ∝ (R/R∗)4N2/15, we minimize both R/R∗ and N2/15. This is done by taking for

R/R∗ the initial atom number (empty circles in the inset of Fig.4.7), and the �nal, for N2/15. We

then �nd ξB > 0.44(8). The compressibility of the T = 0 unitary Bose gas has been calculated by

several methods. This bound is satis�ed for the predictions ξB = 0.66 [57], and a recent calculation

0.4618 [58], as well as for the upper bounds from variational calculations, 0.80 [56] and 2.93 [55].

Putting together the most stringent variational calculation and our measurement, we deduce a

strong constraint on the possible value of the universal bosonic ξB :

0.44(8) < ξB < 0.80 (4.19)

While this does not give direct information on the existence of the unitary Bose gas, should it exist,

the stated inequality should hold. It is interesting to note that the measured radius normalized to

the initial atom number (empty circles in the inset of Fig.4.7) is in very good agreement with the

scaling ansatz including beyond-mean-�eld e�ects up to very high values of a (in solid green line).

The choice of the proper atom number for the normalization (either initial, �nal or intermediate

during the sweep) is a delicate issue due to the non-equilibrium state, and strongly depends on

the loss rate. In the limit where the loss rate is slow, the radius follows N and the atom number

at the end of the sweep is the appropriate choice. In the limit of very fast losses, the radius does

not have the time to adjust to the changing atom number and the initial atom number will be

the reasonable choice. This is the case in the region around unitarity and might explain the very

good agreement of the experimental data (empty purple circles) up to unitarity with the beyond

mean-�eld hydrodynamic model, though its validity is still to be demonstrated.

In this chapter, we have presented a series of experiments using a Bose gas subjected to a

time-dependent sweep of the interatomic interactions. In the �rst part, we have shown that if the

scattering length is not too large, there is a sweep rate for which the density distribution reaches

a quasi-equilibrium and we justify the adiabaticity required for the thermodynamic studies of the

previous chapter. We developed two simple models to describe the dynamics of the Bose gas: �rst

by treating the interactions at the mean-�eld level and solving the resulting scaling equations. Sec-
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ondly, we proposed a variational approach through a scaling ansatz to the hydrodynamic equations

including the �rst beyond-mean-�eld e�ects in the equation of state. After a study of the atom

losses as a function of the scattering length, we used these models to show that, taking into account

both the dynamic aspect of the interaction sweep and the three-body losses, the density pro�les at

3000 a0 are also in quantitative agreement with the LHY equation of state. Finally, we investigate

the regime of stronger interactions using a faster sweep rate and measured both atom numbers

and radii close to the unitarity limit. From these measurements, we deduced a lower bound on the

universal constant ξB that would characterize the EoS of the unitary Bose gas.
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Fermions





Chapter 5

The Strongly Interacting Fermi

Gas

In this chapter, we study the thermodynamics of a strongly interacting Fermi gas. We focus here

on the spin-population balanced gas: n↓ = n↑ (the case of spin-imbalanced gases will be addressed

in chapter 6). In the �rst section, we present the measurement of the Equation of State of the

unitary (a → ∞) Fermi gas as a function of temperature. In the second part, we present the

measurement of the EoS for a low temperature (T ≈ 0) Fermi gas as a function of interaction

strength, and compare the molecular limit of the Fermi gas to the equation of state of the atomic

Bose gas shown in chapter 3.

5.1 Universal Thermodynamics of the Unitary Fermi Gas

In 1999, before the experimental production of degenerate ultracold Fermi gases, G. Bertsch posed

the following question at the 10th Many-body Conference on neutron matter (see [3]): What are

the ground state properties of the many-body system composed of spin-1/2 fermions interacting via

a zero-range, in�nite scattering-length contact interaction ? This question aimed at understanding

a simple model for neutron matter. Indeed, in low-density neutron matter the scattering length

a ≈ −18.5 fm is much larger than the e�ective range re ≈ 2.7 fm [189]. Despite the fact that

the atom-atom and neutron-neutron interaction potentials are very di�erent, in the low-energy

limit these systems should be described by the same Hamiltonian. This idea is very profound, and

it was suggested early after the production of the �rst ultracold Fermi gases that they could be

used to quantum simulate neutron matter (see for example [190]). Indeed, as seen in chapter 1,

ultracold fermions with two spin-components are accurately described by a zero-range interaction

potential thanks to their diluteness (in the sense that the range of the interaction is much smaller

than the interparticle spacing). The problem that G. Bertsch referred to is the limiting case where

the scattering length is also much larger than the interparticle spacing kFa� 1 (where kF is the

Fermi wavenumber), or a → ∞, the unitary limit. In this limit, the scattering length disappears

from the description of the system and there are no energy (or length) scales associated with the

interactions. The only length scale left is the interparticle spacing ∼ 1/kF : all thermodynamic

properties of the system obey simple scaling laws1.

1The contact interactions can also be replaced by contact boundary conditions (called the Bethe-Peierls condi-

tions) on the many-body wavefunction obeying a free Schrödinger equation. As a result (see for instance [191]), at

unitarity 1/a = 0, the system is invariant by a scaling transformation of the spatial coordinates X→ λ−1X (where
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However, the stability of the strongly interacting Fermi gas was uncertain until it was pro-

duced experimentally [13,192,149,74,193] using ultracold 6Li in its two lowest spin states around

the Feshbach resonance at 834 G. The universality hypothesis provides strong constraints on the

thermodynamics of a unitary quantum gas [49]. In particular, due to dimensional reasons, all

quantities are related to the ideal gas via universal functions. The (grand-canonical) equation of

state of the unitary Fermi gas can thus be written as:

P (µ, T ) =
1

βλ3
dB

f(βµ), (5.1)

where β = 1/kBT , and f is a universal function. All the thermodynamic quantities can be deduced

from f . For example:

nλ3
dB = f ′(βµ) (5.2)

E

V
=

3

2
P, (5.3)

relations that we will use later on. This chapter is dedicated to measuring the function f . If

the local density approximation is valid, the method presented in section 1.3.4 can be applied to

determine the EoS of the homogeneous unitary gas. Since the gas is equally populated in the two

spin states, we have n̄1(z) = n̄2(z) ≡ n̄(z), and we write the total pressure of the gas as:

P (µz, T ) =
mω2

r

π
n̄(z) (5.4)

where µz = µ0 − V (z) is the local chemical potential along the z-axis. We see that each density

pro�le requires the determination of two parameters to obtain the pressure: the global chemical

potential µ0 and the temperature T . In a quantum gas, both µ and T determine the shape of the

density pro�le. This is in sharp contrast to the classical non-interacting gas, where the temperature

can be determined by the shape (or width) of the distribution, and the chemical potential by its

amplitude. Starting from the EoS of the classical gas, and under the validity of the LDA we can

write the local pressure of the gas: P (r)βλ3
dB = eβµ0e−βV (r). From the pressure formula, this

expression is proportional to the doubly integrated density along the z-axis n̄. We see that β can

be extracted from the spatial dependence of the distribution (for example the gaussian width in

the case of a harmonic trap) while µ0 is an overall factor. This decoupling of µ and T does not

hold for quantum gases, not even ideal ones (as can be seen from their EoS in section 1.1). In the

next two sections we present a method to determine them independently for the unitary Fermi gas.

5.1.1 Thermometry of the Strongly Interacting Fermi Gas

Thermometry is an obvious necessity for thermodynamical studies. Measuring the temperature

of an ultracold gas is a fundamental problem. For weakly interacting gases, one can usually use

reliable model-dependent methods to measure the temperature of a sample. In a weakly interact-

ing gas, the wings of the density distribution can usually be well described by a classical gas EoS.

If a re�ned treatment is necessary, interactions can be taken into account through a mean-�eld

description (as for the 2D Bose gas studies shown in section 1.3.2 [94,95]). Either using in-situ or

time-of-�ight measurement, the shape of the density (or the momentum) distribution will provide

X=(r1,. . . ,rN )), if the eigenfunction ψi (of energy Ei) is rescaled as ψi → λ−3N/2ψi and Ei → Ei/λ
2. This scaling

doesn't hold for �nite a (because of the boundary conditions). This can be understood in simple terms: a unitary

gas remains unitary whatever its density (since 1/kF a=0) while at �nite a, no matter how large, the system will

ultimately be weakly interacting in the dilute limit.
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the temperature of the sample. When strong correlations are present, thermometry becomes noto-

riously more di�cult. Because the temperature dependence of the density distributions is usually

unknown (within LDA, amounts to knowing the EoS), one cannot extract the temperature from it

a priori. Similarly, the expansion dynamics can reveal complex phenomena (see for example [194])

and thus do not give a direct information on the temperature of the system.

It was �rst demonstrated at JILA [195] and by the Innsbruck group [196] that another spin

state or species could be immersed in a strongly interacting gas of 6Li and used as a thermometer

probe of it. Implementing this idea on our experimental setup was fairly straightforward since

we have bosonic 7Li at our disposal as the coolant of 6Li in the Io�e-Pritchard trap. Instead of

evaporating it completely in the magnetic trap, we keep a trace of 7Li, that is transferred together

with 6Li in the optical dipole trap. We observed no losses due to collisions between 6Li (in equal

spin-mixture of |1/2, 1/2〉 and |1/2,−1/2〉) and 7Li atoms (in state |1, 1〉). The two-body loss

rate was estimated to be G ∼ 2 × 10−18 cm−3/s between state |1, 1〉 (of 7Li) and |1/2,−1/2〉 (of
6Li)2 [133]. For a (very) conservative upper bound of n7 = 1013 cm−3, this gives an extremely low

two-body loss rate of 2× 10−5 s−1, compatible with the observations. We wait about 1 to 1.5s at

the end of the evaporation to ensure complete thermalization3 of 7Li in contact with 6Li. Since it

is an isotopic mixture, there is almost no di�erential gravitational sag to be compensated.

Figure 5.1: Sketch of the Imaging. The 6Li atoms are imaged perpendicular to the long, z-axis for

the pressure measurement, while the 7Li cloud is imaged along the z-axis for thermometry.

The imaging scheme is shown in Fig.5.1. The 6Li atoms are imaged in-situ perpendicularly to

the long z-axis for the pressure measurement (see also Fig.2.13). Shortly thereafter the optical trap

is switched o� and the 7Li is allowed to expand and imaged along the z-axis for a time-of-�ight

measurement of the momentum distribution. Because of the integration of the line-of-sight along

the z-axis, imaging the Bose gas along this direction allows us to detect low atom numbers (∼ 3000)

with a reasonable signal-to-noise ratio. This capability is important because the number of bosons

must be kept as small as possible for several reasons. First, the density of the thermometer should

be kept low to avoid disturbing the Fermi gas density pro�le. Second, because the Bose gas is a

load for the Fermi gas during the evaporative cooling, the larger the 7Li atom number, the hotter

2For the other state of 6Li (|1/2, 1/2〉), both isotopes are in their absolute ground state and there are no two-body

loss processes.
3The boson-fermion scattering length is equal to ∼ 40 a0 [133], and the (classically estimated) elastic collision

rate for the 7Li atoms is about 10 s−1.
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the 6Li will be at the end of the cooling.

Finally, 7Li in state |1, 1〉 has a negative scattering length of about −40a0 at a magnetic

�eld of 834 G (see section 3.2). Consequently, due to the attractive interactions, a Bose-Einstein

condensate in this state will be subject to a collapse instability above a critical atom number

[197, 198]. Above a certain atom number, the attractive interactions are not compensated by the

kinetic energy and collapse occurs. This critical number is written as:

Nc = λ−1/3 k(λ)

|a| aho, (5.5)

where λ = ωr/ωz is the aspect ratio of the trap, aho = (~/mωz)1/2 is the axial harmonic oscillator

length and k(λ) is a factor determined numerically [199]. In our trap, λ ∼ 10 and we �nd Nc ∼ 600,

which is much smaller than the atom numbers necessary for us to reliably measure the temperature.

Our thermometer will thus be limited to a temperature above the Bose-condensation threshold.

This critical temperature for BEC, TBEC is approximately 90 nK (in the �nal trap with ωr/2π = 420

Hz and ωz/2π = 37 Hz), when one takes into account �nite-size correction to TBEC
4. This lower

limit must be compared to the Fermi temperature TF of the 6Li gas in the same trap (we use

N6 = 5× 104 per spin state for this estimate):

TBEC
TF

≈ 0.15 (5.7)

where kBTF = ~ω̄(6N)1/3 is the Fermi energy of the non-interacting trapped gas. This value is

smaller than the expected super�uid/normal phase transition of the Fermi gas in the trap (see

section 5.1.7). If lower temperatures need to be reached, either the 7Li atom number must be

reduced or the bosonic gas should be transferred into a state with a positive scattering length.

Two additional e�ects have to be taken into account for accurate thermometry. First, �tting the

density pro�le with a Bose function (Eq.(1.8) in chapter 1) close to TBEC rather than with a gaussian

function is important. Second, because the time-of-�ight is realized in presence of the magnetic

�elds, the curvature coils produce an anti-trapping potential on the atoms in the radial direction.

This results in a hyperbolic sine increase of the width of the distribution (rather than linear for a

free-space time-of-�ight in the ballistic regime). A self-consistent check of our thermometry is that

our coldest samples are measured to have temperatures at most 5 % smaller than TBEC, showing

that the overall calibration of the magni�cation and atom number are accurate.

5.1.2 Determination of the chemical potential µ0

The above determination of the temperature is a considerable simpli�cation in the process of mea-

suring the equation of state. We are now left only with the determination of the global chemical

potential µ0. Let us �rst note that the technique used for the Bose gas in chapter 3 cannot be

readily applied because at �nite temperature, there is no �nite radius (within the LDA) at which

the density pro�le vanishes (since the gas will have asymptotically classical gaussian tails). In prin-

ciple, we can use the known high-temperature limit of the classical gas for the equation of state to

determine µ0 on the hottest samples. However, in our range of temperature studied, the classical

4The shift of the critical temperature due to �nite-size e�ects is [40]:

δTBEC

T 0
BEC

= −
ω′ζ(2)

2ω̄ζ(3)2/3
N−1/3, (5.6)

where ω̄ (ω′) is the geometric (arithmetic) average of the trapping frequencies. For 3000 particles, the shift due to

�nite-size e�ects lowers the critical temperature by ∼ 20%.
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Figure 5.2: Determination of the global chemical potential µ0 on a �nite-temperature unitary

Fermi gas. The normalized pressure Pβλ3
dB/2 is plotted against the normalized chemical potential

βµ. Each image has βµ0 as a free parameter, corresponding to a horizontal shift on these plots.

(a): The global chemical potential on the high-temperature images (grey points) is �tted using the

second-order virial coe�cient (solid blue line) rather than the classical gas (dashed blue line) and

the images are averaged to obtain a low noise EoS (red). (b): µ0 is adjusted on lower temperature

images to minimize the distance in the overlapping region of the EoS determined from the hotter

samples.

gas EoS (dashed blue line in Fig.5.2) is not expected to be su�cient to describe the system and

we have to include the �rst high-temperature correction, the second-order virial expansion (blue

solid line in Fig.5.2, see section 1.1.2): Pβλ3
dB/2 = eβµ + b̃2e

2βµ + . . .. We use the known value of

b̃2, whose calculation will be done below, in section 5.1.4.
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Figure 5.3: Progressive reconstruction of the EoS by patching colder and colder density pro�les

(grey points) on the previously averaged EoS determined by the hotter samples (full black points).

The variable ζ = e−βµ is the inverse of the fugacity.

Each density distribution provides a parametrization (with the parameter being the position z

in the trap with respect to the trap center) of the EoS with µ0 a parameter to be determined:{
βµ(z),

P (z)βλ3
dB

2

}
=

{
β(µ0 − V (z)),

βλ3
dB

2

mω2
r

π
n̄(z)

}
(5.8)

First, the pressure is calibrated similarly to the procedure of chapter 3 using a reference pressure
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which, in this case, is the T = 0 unitary Fermi gas. Since its EoS is known, µ = ξsEF (with ξs =

0.41 determined independently from this calibration using spin-imbalanced mixture, see chapter 6),

the density pro�le is a fermionic Thomas-Fermi function and provides a single-parameter calibration

of the pressure, whose accuracy is estimated to be 5%. This in turn makes the determination of

the radial trapping frequency ωr irrelevant. Plotting the normalized pressure Pβλ3
dB/2 against the

normalized chemical potential βµ gives us a piece of the EoS and changing µ0 corresponds to a

horizontal shift of the overall density pro�le (Fig.5.2). Using colder samples, one can in this way

map out the equation of state of the unitary gas (see Fig.5.3). The result is plotted in Fig.5.4

normalized as in Eq.5.1 (the function f(βµ)/2). With over 40 images, we have a total of about

4000 points de�ning the equation of state, which after averaging results in an EoS with a standard

deviation of about 6 %. This is the universal pressure of the unitary Fermi gas. For comparison

we also plot the pressure of a classical Boltzmann gas (dotted blue line, Eq.(1.13)) and of the ideal

Fermi gas (dashed red line, Eq.(1.19)). A preliminary EoS measured at MIT is also shown (solid

green line) and is in reasonable agreement, though a systematic lower shift is observable [114]. It

is rather unexpected that the EoS of the unitary gas is close to the classical gas one and these

di�erences (as well as with MIT EoS) show the necessity of normalizing the pressure in a more

sensitive way. The next sections will be devoted to extracting various quantities from this function.
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Figure 5.4: Grand-canonical Equation of State of the Unitary Fermi Gas. The ideal Fermi (Boltz-

mann) gas pressure is shown in red dashed (blue dotted) line. The preliminary EoS measured at

MIT is shown in solid green line [114].

5.1.3 Comparison to Many-body Theories

Because of the large variation of the pressure with βµ in Fig.5.4, we instead normalize the pressure

of the unitary gas to that of the ideal Fermi gas. We write the universal pressure as:

P (µ, T ) = P1(µ, T )h(ζ) (5.9)

where P1(µ, T )βλ3
dB = −Li5/2(−eβµ) is the non-interacting Fermi gas pressure (Eq.1.19) and

ζ = exp(−βµ) is the inverse of the fugacity. The h-function is universal and contains all the
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thermodynamics of the spin-balanced unitary Fermi gas. We show in Fig.5.5 the measurement of

h(ζ) together with various theories. We recall that the EoS of a single-component ideal Fermi gas

is h(ζ) = 1.
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Figure 5.5: Comparison between the experimental Equation of State (black circles) and various

many-body theories, (a): Monte-Carlo calculations, and (b): various analytic (or semi-analytic)

calculations.

Monte Carlo simulations (Fig.5.5a)

- Blue circles: Diagrammatic MC (DMC) [200]

- Green squares: Quantum MC [201]

- Brown solid line: Recent Diagrammatic MC [115]

Analytic calculations (Fig.5.5b)

Black dotted: Self-consistent GG perturbation theory [202]

Black double-dot-dashed: BCS Mean-�eld theory

Green dot-dashed: Pseudo-gap model [203]

Blue dashed : GG0 perturbation theory [203]

Red line: Gaussian pair �uctuations / Nozières-Schmitt Rink (NSR) theory [23]

Black triple-dotted-dashed: Ladder diagrams approximation [204]

In Fig.5.5a, we compare the experimental result to di�erent Monte-Carlo calculations and

Fig.5.5b, to various analytic approaches (Table 5.1.3). We see that there is a wide dispersion among

the theories, showing that the equation of state of the homogeneous unitary gas is a sensitive test

for many-body theories. In particular BCS mean-�eld is strongly ruled out by our measurement.

We see that the agreement is reasonably good with the Quantum Monte Carlo calculation [201]

and very good with the recent diagrammatic Monte Carlo calculation of the Amherst group [115],
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even though a systematic di�erence is observed at the lowest temperatures (or lowest ζ).

5.1.4 High-temperature Limit: Virial Expansion

We now focus on the high-temperature behavior of the EoS. We saw in section 1.1.2 that at high-

temperature kBT � µ or low fugacity ζ � 1, the equation of state can be written as the virial

expansion

Pβλ3
dB/2 = eβµ + b̃2e

2βµ + b̃3e
3βµ + . . . , (5.10)

and that the calculation of the ith order coe�cient involves the spectrum of the i-body prob-

lem. In section 1.1.3, we computed the virial coe�cients of a single component Fermi gas:

b̃k = (−1)k+1k−5/2. For convenience we de�ne a virial expansion where we subtract the con-

tribution of the non-interacting Fermi gas. For the function h(ζ), we write the expansion in the

form:
h(ζ)

2
=

∑∞
k=1

(
(−1)5/2k−5/2 + bk

)
ζ−k∑∞

k=1

(
(−1)5/2k−5/2

)
ζ−k

. (5.11)

The bk coe�cients are non-zero only due to interactions, and the relation to the b̃k's in Eq.(5.10)

is simply:

b̃k = (−1)k+1k5/2 + bk (5.12)

Calculation of the virial coe�cients

Since the two-body problem is solvable, b2 can be calculated analytically [205, 206]. It can be

expressed as a function of the scattering phase shift between the two particles, the Beth-Uhlenbeck

formula (see paragraph 77 of [207]):

b2√
2

=
∑
b

e|Eb|/kBT +

∞∑
l=0

γl

∫ ∞
0

dk

π

dδl(k)

dk
e−~

2k2/mkBT , (5.13)

where γl = 2l + 1 and δl(k) is the scattering phase shift of the lth order partial wave. The sum

over b is done over all bound states of energy Eb. If k � r0 (r0 being the range of the interaction

potential), the phase shift reads tan δ(k) = −ka (we neglect �nite range corrections). Performing

the integral with the explicit expression of δ(k) one �nds5:

b2√
2

=
∑
b

e|Eb|/kBT − sign(a)

2
(1− erf(|x|)) ex2

(5.14)

where x = λdB/
√

2πa. Because of the sign(a) term, one must be careful when taking the unitary

limit x → 0. On the molecular side (a > 0), since we neglect the deeply bound states6, the only

term of the sum over b is the one of the Feshbach bound state. Its energy (∼ 1/a2) tends to zero

at unitarity and the �rst term of Eq.(5.14) is equal to one. On the BCS side (a < 0) there is no

weakly two-body bound state, and the sum must be neglected. In both cases, we �nd:

b2 =
1√
2
. (5.15)

5The absolute value in the argument of the error function should be added in Eq.(5) for b2 in [206].
6This assumption is reasonable because in general these bound states are irrelevant in the timescale of the

experiments performed. However, the metastability of our gases is directly related to their existence. Decay

processes in these deep bound state can happen and it releases considerable energy (the atoms are then lost) but

these events are considered su�ciently rare to be neglected here.
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The calculation of the third order virial coe�cient is considerably more involved since it requires

the solution of the quantum-mechanical three-body problem. This calculation was carried out

in [208]. An interesting feature of this calculation is that they calculated the virial coe�cient

for three fermions in a trap. It is easy to show that the virial coe�cients for the trapped (btk)

and homogeneous gas (bk) are related by btk = bk/k
3/2, by writing the pressure of the trapped

gas as the integral of the local pressure of the homogeneous gas and using the virial expansion

for the latter [208]7. Using the spectrum of the three-fermion problem in a trap8 [209, 210], b3

was found to be −0.3551. This result was con�rmed in subsequent works [211, 212, 213]. Another

calculation using �eld-theoretic methods surprisingly gives another result b3 = 1.05 [214]. Recently,

the daunting problem of the fourth-order virial coe�cient from the four-body problem has been

addressed and yielded b4 = −0.016(4) [212].

Experimental determination of the virial coe�cients

The high-temperature part of the experimentally determined equation of state can be used to

extract the virial coe�cients. The measurement of the EoS required to use the second-order

coe�cient as an input parameter to �t the hottest samples (Fig.5.2). We can thus �t the data

points for h(ζ) �rst using b3 as a free parameter.
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Figure 5.6: Determination of the (a) third-order and (b) fourth-order virial coe�cients. The

experimental data is shown as black dots and the �ts to extract the coe�cients are displayed as

solid red lines. Theoretical calculations include a prediction for b3 (dotted red line in (a) [214]), b4

(dotted red line in (b) [212]) and a recent Diagrammatic Monte-Carlo calculation (brown dashed

line [115]).

In order to identify b3, we calculate the di�erence between the pressure and the second order

virial expansion:

− Li5/2(−ζ−1)
h(ζ)

2
− ζ−1 − b̃2ζ−2 ζ→∞−→ b̃3ζ

−3 (5.16)

7The second virial coe�cient of the homogeneous gas can be recovered as well by calculating bt2 directly [121].
8The virial coe�cients b2 and b3 in the BEC-BCS crossover are detailed in section 5.3.1.
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Figure 5.7: Virial expansion equations of state, V2 (solid black line) for the second order, and

higher-order deduced from the experimental data for the third V3 (green dash-dotted line, in

agreement with [208, 211, 212]) and fourth order V4 (red dashed line) as well as the result of [214]

(V ′3 , dashed purple) and [212] (V ′4 , dotted red).

We plot the result on Fig.5.6a as a function of ζ−3 and �nd a straight line whose slope is b̃3. From

this �t, we �nd (see Eq.(5.12)):

bexp3 = −0.35(2) (5.17)

This experimentally con�rms the theoretical predictions in [208,211,212] (solid red line) and rules

out the result from [214] (dashed red line). We can go one step further and take the theory value

for b3 = −0.3551 as �xed and �t the fourth virial coe�cient. Following the same procedure, we

subtract up to the third order the expansion from the pressure

− Li5/2(−ζ−1)
h(ζ)

2
− ζ−1 − b̃2ζ−2 − b̃3ζ−3 ζ→∞−→ b̃4ζ

−4, (5.18)

and plot this quantity versus ζ−4 (Fig.5.6b), from which we �nd:

bexp4 = 0.09(1) (5.19)

plotted in the red solid line. The recent prediction for the fourth-order virial coe�cient, b4 =

−0.016(4), does not agree with this value, not even the sign of the coe�cient [212]. The high-

temperature limit of the DMC calculation agrees well with our value of b4 (brown thick line in

Fig.5.6b). To summarize, we plot the various virial contributions to the equation of state at

high-temperature compared to the data in Fig.5.7.

5.1.5 Low-Temperature I: Fermi-liquid type behavior

We now turn to the low-temperature sector of the EoS. We will �rst make a brief overview of

the low-temperature behavior of other known quantum systems divided in two broad families:

Fermi-liquid and Non-Fermi-liquid systems.
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The Normal State of Strongly Interacting Systems I: Fermi Liquids

All solid state physics textbooks introduce band theory, which is the theory of a single-electron in

a periodic potential. As metals are composed of many strongly Coulomb-interacting electrons, it

is remarkable that an independent-electron theory can capture many properties of metals such as

the linear speci�c heat well below room temperature [215]. This does not mean that interactions

are absent but their e�ect can be taken into account via a change in the properties of the free

electron gas, such as a change of mass compared to the bare particle.

Figure 5.8: Examples of Fermi liquids. Left panel: electrical resistivity ρ as a function of T 2

of the heavy-fermion compound CeAl3 [216]. Right panel: speci�c heat CV /R as a function of

temperature for liquid 3He close to the super�uid critical temperature Tc [217].

Over time very di�erent systems have shown those similar properties. For example, liquid 3He

also presents a linear dependence of the speci�c heat CV as a function of temperature (right panel

of Fig.5.8). The linearity is observed down to a critical temperature Tc [217]. This temperature

marks the onset of fermionic super�uidity in 3He and a dramatic discontinuity in speci�c heat is

observed. Other exotic materials showing these �non-interacting Fermi gas" features were discov-

ered in 1975. For example, the electrical resistivity was shown to scale as T 2 (left panel of Fig.5.8)

in CeAl3, as well as the linear behavior of the speci�c heat [216]. The constant of proportionality

A (ρ ∝ AT 2) was observed to be unusually large. If one interprets this as the behavior of an ideal

gas of particle with an e�ective mass m∗, they found that the excitation in these materials have

gigantic e�ective masses, m∗ ∼ 1000m, and are called, for this reason heavy-fermion compounds.

For comparison, the e�ective mass of the 3He excitations is between 3 to 6 times the bare helium

mass depending on the pressure (see Table VII in [218]).

In 1957, L. Landau developed a phenomenological theory of interacting Fermi systems [219].

Even though the ground-state properties of a material can be di�cult to determine, many observ-

ables addressed in experiments such as the low-temperature properties depend only on the low-lying

excitations above this ground-state. While the ground-state can be system-speci�c, these excita-

tions can have very general properties. The idea of Landau's theory is that the bare particles,

such as the electrons, or 3He atoms are dressed by the interactions and the system is described by
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fermionic excitations that have renormalized physical characteristics compared to the bare parti-

cles: these are Landau quasi-particles. The theory relies on the assumption that the excited states

of the interacting system are adiabatically connected to that of the non-interacting Fermi gas when

one turns on the interactions. We will merely present the ideas and quote the results of Landau's

Fermi liquid theory (FLT). First, the energy of a (slightly) excited state relative to the ground

state energy can be Taylor-expanded:

F − F0 =
∑
kσ

(εk − µ)δnkσ +
1

2V

∑
kk′σσ′

f(k, σ;k′, σ′)δnkσδnk′σ′ + . . . (5.20)

where F = E − µN and δnkσ is the population of quasi-particles with wavenumber k and spin σ.

The dispersion relation εk = εF + ~2kF
m∗ (k−kF )+ . . . is expanded around the Fermi surface k = kF ,

where the quasi-particles are long-lived. m∗ is the e�ective mass of the quasi-particle. The second

term describes an e�ective interaction between the quasi-particles. It is natural to wonder why this

second term cannot be dropped altogether. This is due to the fact that the excitations are limited

to a region close to the Fermi surface, where εk − µ is small and the �rst term is also of second-

order, the second must thus be kept for consistency. One can show that the quasi-particles follow

the same distribution as the non-interacting system, namely Fermi-Dirac statistics with an energy

distribution that depends on the e�ective interactions. Since there is a one-to-one correspondence

between the non-interacting and interacting states, the entropy has the same expression as for the

non-interacting gas. Within this framework, one can calculate the entropy of a Fermi liquid to

leading order in T :

S

NkB
=
π2

2

(
2m∗

~2

)
T

(6π2n)2/3
=
m∗

m

(
S

NkB

)0

(5.21)

where the superscript 0 refers to the ideal gas. To leading order, the entropy of a Fermi liquid is

the same as that of the ideal Fermi gas with a renormalized mass m∗. And so will be the speci�c

heat as a consequence 9:
CV
C0
V

=
m∗

m
, (5.22)

Finally, the compressibility can be obtained from10:

∂µ

∂n
=

(
∂µ

∂n

)0
1 + F s0
m∗/m

(5.24)

The quantity F s0 is a so-called Landau parameter11. Landau theory of the Fermi liquid is phe-

nomenological in the sense that it does not state to which systems its assumptions are valid (though

9We recall that

CV = T

(
∂S

∂T

)
V,N

10 The isothermal compressibility is de�ned as:

κT ≡ −
1

V

(
∂V

∂p

)
T

=
1

n2

(
∂n

∂µ

)
T

(5.23)

11Because we limit to wavevectors close to the Fermi surface and we assume rotational invariance, f(k, σ;k′, σ′)

depends on k and k′ only through the angle between them θ. By spin rotation symmetry, there is just one spin-

parallel and antiparallel interaction and the e�ective interaction can be written as [220]:

f(k, σ;k′, σ′) =
∞∑
l=0

(f
(s)
l + σσ′f

(a)
l )Pl(cos θ) (5.25)

From the fl coe�cients, we de�ne dimensionless quantities: F
(s,a)
l = 2g(εF )f

(s,a)
l , where g(εF ) = m∗kF /2π~2 is

the quasi-particle density of states at the Fermi surface, and F
(s,a)
l are the Landau parameters.
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it can be justi�ed using perturbative theory on weakly interacting systems) and does not give a

framework to calculate ab-initio the e�ective mass or the Landau parameters. However, given

these parameters as input (determined experimentally for example), Landau theory has proved

very powerful to explain the low-temperature properties of the normal state of a broad range of

systems.

The Normal State of Strongly Interacting Systems II: Non-Fermi liquids

Figure 5.9: Observation of a pseudo-gap behavior in the speci�c heat of the Y0.8Ca0.2Ba2Cu3O7−δ

copper-oxide superconductor. The ratio of the electronic speci�c heat to the temperature γ =

Cel/T versus temperature is plotted in the underdoped (a) and overdoped (b) regions of the phase

diagram [221]. (c): Sketch of the phase diagram versus the (hole-) doping (corresponding to

∼ 1− δ in (a) and (b)) (from [222]). Note that the de�nition of the doping varies and sometimes

the quantity x = 1− δ is used instead.

Some strongly interacting systems have been shown to exhibit non-Fermi-liquid behavior (see

for example [223]). In this respect, high-Tc superconductors are a special family as they possess a

spectacular amount of exotic features. In Fig.5.9a and Fig.5.9b, we show the measurement of the

ratio of the electronic speci�c heat to the temperature γ = Cel/T of the Y0.8Ca0.2Ba2Cu3O7−δ

copper-oxide12. These measurements show a maximum corresponding to the transition to the su-

perconducting state. Tc is the highest for δ = 0.29 (the top of the superconducting �dome" on the

phase diagram Fig.5.9c, see also the measurement of the dome in Fig.1 of [221]). For overdoped

samples (δ < 0.29) (left part of Fig.5.9c) the Fermi-liquid behavior is good for a broad range of

temperatures above Tc. However, below the optimal doping (δ > 0.29), a dip starts to form (red

circle in Fig.5.9b) in γ before the superconducting phase transition. This depression appearing at

a temperature T ∗ is the entrance into the pseudo-gap regime. The pseudo-gap corresponds to a

12This measurement is challenging because for the temperature range imposed by the high-Tc nature of the

system, the electronic speci�c heat is only about 1 % of the total speci�c heat. A reference measurement was used

to substract the phonons contribution to the speci�c heat (see [224]).
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depletion in the density of states around the Fermi surface that persists above Tc, and was observed

with many di�erent probes (such as photoemission or tunneling spectroscopy, see the review [225]).

The disappearance of well-de�ned elementary excitations around the Fermi surface leads to the

breakdown of a description in terms of a Fermi liquid13. The understanding of the pseudo-gap as

a regime of pre-formed Cooper pairs that do not exhibit long-range phase coherence or an ordered

phase of unknown origin, is still a highly unsettled matter (see for instance [226] and references

therein).

There are other exotic features in the normal phases of cuprate superconductors. While around

optimal doping, the speci�c heat is reasonably linear for T > Tc, the resistivity of the system

also shows an approximately linear behavior (in contrast with the ∝ T 2 dependence expected

from a Fermi liquid), the reason for which this part of the phase diagram is coined strange metal

(see Fig.5.9c). The Fermi liquid T 2 dependence is approximately recovered for large dopings

though some strange features remain (see Fig.2 of [227] for details). The normal phases of high-Tc

superconductors still lack a comprehensive theoretical description despite an enormous research

e�ort since their discovery in 1986.

The Normal Phase of the Unitary Fermi Gas

In order to analyze the low-temperature behavior of the equation of state, and discuss its possible

(non-)Fermi liquid character we change the normalization of the universal function to a normal-

ization more appropriate around T = 0. We thus plot the pressure P (µ, T )/2 in units of the zero-

temperature pressure of a single-component Fermi gas. The thermodynamic variable is changed

from ζ to (kBT/µ)2 (we will show below that Landau Fermi theory predicts that P ∝ (T/µ)2)14.

This change of variable is relevant only at very low temperature, where µ(T ) ≈ µ(0). Indeed, as

µ(T ) decreases (and goes to −∞ in the high-temperature limit), the variable kBT/µ will diverge

(when ζ → 1).

The result is displayed on Fig.5.10 and we observe a clear T 2 behavior of the pressure (nor-

malized to the T = 0 Fermi pressure). It is tempting to interpret this low-temperature behavior

as a Fermi-liquid type behavior. This is not obvious in the grand-canonical ensemble. We saw in

Eq.(5.22) that the speci�c heat of the Fermi liquid is linear in T , as for the ideal gas. Using usual

thermodynamic relations, it is easy to show that the speci�c heat at constant volume is related to

the pressure by:

CV
T

=

(
∂2P

∂T 2

)
µ

−
(
∂S

∂µ

)2

T

(
∂n

∂µ

)−1

T

(5.28)

Since we expand the quantities around T = 0, the second term vanishes and we deduce that

the pressure should indeed be quadratic in temperature to leading order, as for the Sommerfeld

expansion of the ideal gas P (µ, T ) = 2P (µ, 0)(c0 + 5π2

8 c1(kBT/µ)2 + . . .). The coe�cients are

de�ned so that c0 = c1 = 1 for the non-interacting Fermi gas (see Eq.1.20). For the Fermi liquid,

the only di�erence will be the renormalized compressibility of the gas and renormalized mass of the

13The destruction of the Fermi surface is anisotropic, some directions showing well-de�ned excitations (called

Fermi arcs), others being pseudo-gapped.
14The formulas for the conversion are straightforward:(

kBT

µ

)2

= (log ζ−1)−2 (5.26)

P (µ, T )

2P0(µ, 0)
= −Li5/2(−ζ−1)

15
√
π

8
(log ζ−1)−5/2 h(ζ)

2
(5.27)
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Figure 5.10: Low-temperature equation of state. The experimental data (black dots) are shown

together with a linear �t in (kBT/µ)2 (dashed black line). The ideal Fermi gas EoS is shown in

solid red line (Eq.(1.19)), as well as its Sommerfeld expansion (Eq.(1.20)) in dashed red line. A

Quantum Monte Carlo calculation is shown in green squares [201], and two diagrammatic Monte

Carlo calculations are displayed in empty blue circles [200], and solid brown line [115] (as in

Fig.5.5a).

quasi-particle that will determine the coe�cients c0 and c1. We write the EoS of the normal state

at zero temperature as µ = ξnEF , so that its T = 0 compressibility (in units of the compressibility

of the ideal two-component Fermi gas) is ξ
3/2
n , hence c0 = ξ

−3/2
n . To determine c1, we use the ratio

of the speci�c heats in Eq.(5.22). However one must be cautious as this ratio must be evaluated

at constant density (not constant µ). Recalling that for the ideal gas µ0 = EF , we �nd that

CV /C
0
V = ξ

1/2
n c1 and by equating this to m∗/m, we �nd the low-temperature pressure of a Fermi

liquid in the grand-canonical ensemble:

P (µ, T ) = 2P0(µ, 0)

(
ξ−3/2
n +

5π2

8
ξ−1/2
n

m∗

m

(
kBT

µ

)2

+ . . .

)
. (5.29)

Fitting the data shown in Fig.5.10 with Eq.(5.29), we extract the parameters of the Fermi liquid at

zero-temperature15: ξn = 0.51(2) and m∗/m = 1.13(3). The compressibility is in good agreement

with the �xed-Node Monte Carlo results ξn = 0.54 [228] and ξn = 0.56 [229] and the Quantum

15Or alternatively, the Landau parameters F s0 = ξn
m∗

m
− 1 = −0.42 and F s1 = 3(m

∗

m
− 1) = 0.39.
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Figure 5.11: Compressibility ξn (red squares) and e�ective mass m∗/m (blue circles) of the (a)

normal phase of the unitary gas, (b): the ideal Fermi gas (see Eq.5.29).

Monte Carlo calculation ξn = 0.52 [230]. The value for the e�ective mass has not been predicted

yet. Note that there is possibly a source of systematic error in this determination. In principle, the

expansion (5.29) is valid only in the T → 0 limit (though we must have T > Tc). It is instructive to

compare the Sommerfeld expansion (dashed red line in Fig.5.10) of the ideal gas to its exact EoS

(solid red line in the same �gure). A small deviation is observed. We compare the �tted parameters

extracted for the ideal Fermi gas (Fig.5.11a) and for the unitary gas (Fig.5.11b) as a function of the

cuto� value for (kBT/µ)2. The ideal gas values ξ0
n = 1 and m∗0/m = 1 are indeed recovered in the

low-temperature limit (kBT/µ)cuto� → 0 but a systematic downshift is observed at intermediate

values. Since the exact EoS of the unitary gas is unknown, it is not clear that a similar e�ect is

present for the thermal excitation of the unitary gas and a systematic upshift correction should

be applied. Assuming this is the case, for (kB/µ)cuto� = 0.3, the compressibility is downshifted

by 1 % (small compared to the error bar) but the e�ective mass of the ideal fermion requires a

9 % correction, and for the unitary Fermi liquid, one would then �nd m∗/m = 1.23(4), a value

remarkably close to the Fermi-polaron mass (see section 6.1.2). Whether this is an appropriate

correction or a numerical coincidence requires further investigation. We now use our observation

of Fermi liquid behavior to make a prediction on the photoemission spectra of the unitary gas.

Using Fermi Liquid Theory: Comparison with the Photoemission Spectra from JILA

The nature of the normal phase of the unitary gas is currently debated. As far as the thermo-

dynamics are concerned, we have seen that the low-temperature properties of the unitary gas are

well described by Landau's Fermi liquid theory. However, recent photoemission spectroscopy ex-

periments performed at JILA on a strongly interacting Fermi gas of 40K have been interpreted

with pseudo-gap models [232, 233]. The goal of these experiments is to extract the spectral func-

tion A(k, ω), a fundamental quantity characterizing the single-particle excitations of a many-body

system16. In photoemission spectroscopy experiments, an RF photon with a frequency ν is used

to expel an atom from the gas with a momentum k. This allows one to measure the energy of the

single-particle state Es:

Es = εk + φ− hν (5.30)

16For example the signature of a quasi-particle in A(k, ω) is a narrow peak, whose width will be related to its

lifetime. The position of the peak maximum in k and ω will provide the dispersion relation of the excitation

~ωk = Es(k).
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Figure 5.12: Principle of momentum-resolved photoemission spectroscopy. An RF photon with an

energy hν is used to extract an atom from the sample and allows one to measure the single particle

excitation energy (Figure from [231])

where εk = ~2k2/2m, and φ is the work function of the surface (see Fig.5.12). Experimentally the

spectroscopy is achieved by applying an RF �eld on the unitary gas and measuring the shell of

particles transferred to another state after time-of-�ight, using an Abel reconstruction of the three-

dimensional momentum distribution, to obtain k. The RF-outcoupling is done on the transition

from state |9/2,−7/2〉 to state |9/2,−5/2〉 and in the absence of �nal state e�ects17 the function

φ is given by the Zeeman splitting between these two states. However, the relation between the

measured signal and Es contains additional subtleties. First, the �nite energy resolution of the

measurement broadens the spectral function A(k, ω) (where ω = 2πν). Secondly, one has to

convolve the spectral function with a �nite-temperature Fermi-Dirac distribution. Finally, the

signal must be integrated over the trap because the measurement address the trapped sample as a

whole and is not spatially resolved. As a result the measured Energy Distribution Curves (EDC)

are related to the spectral function by [233]:

EDC(k, ω) =
48k2

π2

∫
d3r

A(k, ω − µ(r)/~)

exp [β(~ω − µ(r))] + 1
(5.31)

where β = 1/kBT . In order to calculate this integral, we consider long-lived quasi-particles, and

we would take for A(k, ω−µ) a delta function δ(ω−ωk) with the excitation spectrum of the Fermi

liquid:

~ωk = µ+
~2(k2 − k2

F )

2m∗
(5.32)

However, to take into account the experimental resolution, due to the �nite duration of the RF-

pulse, we take instead a gaussian function with a width of σ = 0.25 EF /~ for ω [233]. The integral

(5.31) requires calculation of the local Fermi wavenumber kF (r) from the in-trap density distri-

bution. Since the experiments at JILA are done at Tc, we take a central value of the chemical

potential corresponding to the critical one: (kBT/µ)c = 0.32(3) (see next section) and use our

measured equation of state h(ζ) to calculate kF (r).

17For these states of 40K, �nal state e�ects are indeed small. Early RF-spectroscopy studies on 6Li used the

traditional mixture |1〉− |2〉 (around 834 G) and outcoupling to state |3〉 where �nal e�ects were important, making

the interpretation of the RF-spectra di�cult [28,234,235]. This issue was solved in subsequent works using resonant

|1〉 − |3〉 mixtures (around 690 G) and outcoupling to state |2〉 [236,29].
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Figure 5.13: Spectral function of a trapped unitary gas at T = Tc for k = 0.3,0.6,0.9 and 1.2 kF

(where ω is in units of EF /~ = ω̄(3N)1/3). The data from JILA [233] is shown in black dots.

The spectral functions predicted by Fermi liquid theory is shown in red line, the prediction from

a t-matrix pairing-�uctuation approach in green line [233]. In dashed (dotted) blue line, a simple

BCS model with a pseudo-gap ∆pg/EF = 0.3 (0.8), see text.

We show in Fig.5.13 several spectra for di�erent values of momenta k of the EDC(k, ω) as pre-

dicted for a Fermi liquid (red line) together with the experimental data from JILA (black points).

A t-matrix pairing-�uctuation calculation is shown in green line [233]. Apart from a global nor-

malization factor (the same normalization is used in all panels of Fig.5.13), the prediction from

FLT has no adjustable parameter. In particular, in the region around kF where FLT is applicable

(and where the in�nite quasi-particles lifetime assumption is most valid), the agreement with the

experimental data is very good. We see that at 0.6 kF , close to the most probable wavevector k

(as measured by the area under the RF-signal), the FLT spectrum reproduces well the width of

the experimental data, showing that the width of the lines is probably limited by the measurement

resolution or trap inhomogeneity broadening rather than the lifetime of the quasi-particles. We

see that the t-matrix calculation, predicting the existence of a pseudo-gap is not in signi�cantly

better agreement with the data compared to the prediction of FLT.

Instead of the Fermi liquid dispersion relation (5.32), we can use a simple pseudo-gap model

in the form of a BCS-like dispersion relation [237,238]: ~ω±k = µ±
√

( ~2

2m (k2 − k2
F ))2 + ∆2

pg. The

spectral function is given by A(k, ω) = u2
kδ(ω−ω+

k ) + v2
kδ(ω−ω−k ), and the uk,vk are the standard

coe�cients from the BCS theory. We replace the super�uid pairing gap ∆ by the pseudo-gap ∆pg.
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Integrating the spectral functions, we �nd the dashed (dotted) blue line for ∆pg/EF = 0.3 (0.8) in

Fig.5.13. We see that qualitatively the pseudo-gap appears as an onset of a second peak close to

k = kF distant from the �rst one by ∆pg (for the uniform case). They further separate for increas-

ing values of k as was seen in ARPES experiment on high-Tc superconductors [239]. This results

in a �back-bending" feature on the one-particle excitation spectrum, that is the maxima E(k) of

the spectral function A(k, ω). However, it is di�cult to interpret the BCS-like back-bending as

proposed by the JILA group [232] since it occurs in the region where the spectral weight collapses

for k > kF .

The JILA group interpreted their photoemission spectra as evidence for a pseudo-gap regime.

However we conclude that the smoothening e�ect due to the trap averaging makes unambiguous

interpretation of the photoemission spectra di�cult and their data is equally well described by a

Fermi liquid theory with no adjustable parameters. Quantitative data on the pseudo-gap magnitude

and corresponding depletion of the density of states remain to be obtained. Let us note that

the P ∝ (T/µ)2 behavior was also recovered using a pseudo-gap theory [233]. Direct proof of

Fermi liquid (or pseudo-gap) character of the normal phase could be given by a spatially resolved

measurement of the spectral function, which would allow the observation of the existence (or

absence) of long-lived excitations in the vicinity of the Fermi surface (provided su�cient energy

resolution to access the quasi-particles lifetime). Experiments on two-dimensional Fermi gases by

photoemission spectroscopy, ongoing in M. Köhl group, could also shine some light on the e�ect of

the dimensionality on the normal phase, and the quasi-particle behavior.

5.1.6 Low-Temperature II: Normal to Super�uid Phase Transition

The description in term of a Fermi liquid, and in particular the T = 0 equation of state of the

normal phase µ = ξnEF is not expected to be valid down to very low temperatures. Indeed, the

unitary gas possesses a phase transition to a super�uid state. By further zooming on the lowest

temperatures of Fig.5.10, we observe a systematic deviation of the coldest data points compared to

the Fermi liquid behavior. We interpret this deviation as the onset of the super�uid phase. There

are several reasons to back up this interpretation.

First, we observe that within the noise of our data, the pressure is saturating. The robustness

of the super�uid to thermal excitations is expected (as for Bose gases, for example). Indeed, there

are two types of excitations, single-particle gapped fermionic excitations, which are exponentially

suppressed, and collective phononic excitations, which scale as T 4 [244]. Simple models of those

two excitations show that the pressure should not vary by more than ∼ 3 % up to the transition

point (see [121] for details). Unfortunately, our data is limited by the collapse of the cloud of 7Li

used as a thermometer, which did not allow us to explore colder regions.

Second, the value at which the pressure saturates is found to be18 ξs ≈ 0.415, which is in

very good agreement with various low-temperature determinations of ξs (see section 5.2.4). It is

interesting to investigate the energy di�erence between the super�uid and the normal phase at

T = 0, given by: δE = ES − EN = 3
5NEF (ξs − ξn). Since δE < 0, the super�uid is the stable

phase, and δE is the so-called condensation energy. The BCS theory predicts that the condensation

energy is related to the single-particle excitation gap ∆ through

δEBCS =
3N

8

∆2

EF
. (5.33)

18We recall that at T = 0 the equation of state of the super�uid unitary Fermi gas reads µ = ξsEF .
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Figure 5.14: Normal/super�uid phase transition in the unitary Fermi gas. (a): Low-temperature

deviation to the Fermi liquid behavior. The T = 0 compressibility of the super�uid (normal

�uid) ξs (ξn) is shown in dashed blue line (dotted green line). (b): Comparison between the

experimental critical point (black dot) and theoretical predictions: 1/N expansion (brown diamond

[240]), Diagrammatic Monte-Carlo calculations from Burovski et. al. (blue circle [241]) and Goulko

et. al. (red cross [242]), Quantum Monte Carlo (green square [230]), self-consistent diagrammatic

approach (solid purple diamond [202]), a Borel-Padé approximation connecting a ε-expansion (black

down triangle [243]) (the result for the ε = 1 of the ε = 4− d expansion is o� range [243]).

Taking ξs ≈ 0.41 and ξn = 0.51, we �nd that the condensation energy of the unitary gas per

particle (in units of the Fermi energy) is 3(ξs − ξn)/5 ≈ −0.06. Using the value of ∆ measured by

radio-frequency spectroscopy to be 0.44 EF [29], the BCS theory predicts a condensation energy

δE/(NEF ) ≈ −0.07, remarkably close to our determination.

Now, the simplest way of pinpointing the transition point is to �t the pressure in Fig.5.14 by

a two-piece linear function. In this way, we �nd the value of the critical point for the super�uid

transition: (
kBT

µ

)
c

= 0.32(3). (5.34)

Physically, the two-piece linear function is not satisfactory as it would mean that there would

be a jump in the density at the phase transition, which would then be �rst-order. However, the

transition is expected to be second order [241, 245]. A more re�ned modelization of the critical

region (using the appropriate critical behavior for the pressure) does not change the value of the

critical point beyond the error bars (see [246]).

The measurement of the critical point for the homogeneous unitary gas allows a direct compar-

ison with several predictions from advanced many-body theories. Usually the results are given in

the canonical ensemble, stating the quantities Tc/TF , µ/EF and E/NEF for the critical point (as
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well as the entropy, see for example Table II of [202])19. The critical values are plotted in Fig.5.14b

and compared to the experimental data point (black dot). The dispersion of the various predic-

tions is spectacular and except for the reasonable agreement with the Diagrammatic Monte-Carlo

calculation [241], the other predictions are quite far from the experimental determination.

It is also instructive to extract the critical temperature Tc/TF in units of the Fermi temperature.

Since kBTF = ~2

2m (3π2n)2/3 (where n is the total density), it requires the relation giving the

chemical potential µ as a function of n, that is, the equation of state. Since the density veri�es the

Gibbs-Duhem formula n = (∂P/∂µ)T , we have to calculate the slope of the pressure at the critical

point. Given the feature in Fig.5.14a, we can calculate this slope both on the lower side (where

P/2P0 is approximately constant) and upper side, which will give us lower and upper bound on the

value of Tc/TF . First, on the lower side, we have µ ≈ ξsEF , hence Tc/TF = ξs(kBT/µ)c. Reaching

the transition from above, we use the Fermi-liquid EoS Eq.(5.29), from which we deduce:

Tc
TF

=

(
kBT

µ

)
c

[
ξ−3/2
n − 5π2

8
ξ−1/2
n

m∗

m

(
kBT

µ

)2

c

]−1

(5.37)

so that we �nd:

0.13 <
Tc
TF

< 0.18 (5.38)

which is in good agreement with 0.152(7) [241], 0.173(3) [242], 0.16 [202], in marginal agreement

with 0.136 [240] and 0.183 [243] and in disagreement with 0.23 [230], 0.225 [247] and 0.249 (also

in [243]). It is also in agreement with the extrapolation at the spin-population balanced limit of

a measurement of the phase diagram of the spin-imbalanced Fermi gas at MIT, where they found

Tc/TF ≈ 0.15 [248]. This makes the resonantly interacting Fermi gas the highest-Tc super�uid

known, in units of TF . Indeed, in most metals, the Fermi temperature is several ten thousands

of kelvins. For conventional superconductors (Tc ∼ 10 K), we have Tc/TF ∼ 10−4. For high-Tc

superconductors this ratio can reach 0.05, still signi�cantly below the unitary Fermi gas value

∼ 0.15. The role of the strong interactions in the dramatic increase of the critical temperature is

clear.

5.1.7 Equation of State of the Trapped Unitary Gas

The pioneering works on the thermodynamics of the unitary Fermi gas done at Duke University

[249], at JILA [108], and at ENS [250, 27] measured global quantities of the gas, such as its total

energy or entropy. For example, in the experiment of the Duke group, they measured the energy

of the trapped gas Et through the size of the density distribution in model-independent way by

using the virial theorem [110]:

Et = 3mω2
z

〈
z2
〉
, (5.39)

where 〈X〉 = 1
N

∫
d3r Xn(r) is the average over the density distribution. By using an adiabatic

sweep deep in the BCS regime (at a magnetic �eld of 1200 G), they measured the entropy of the

system assuming it is a weakly interacting Fermi gas (correcting for the large background scattering

19It is straightforward to calculate the critical point in the plane {(kBT/µ)2, P/2P0}:(
kBT

µ

)
c

=

(
Tc

TF

EF

µc

)
(5.35)

Pc(µc, Tc)

2P0(µc)
=

5

3

E

NEF

(
µc

EF

)−5/2

(5.36)

where we used that PV = 2E/3.
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Figure 5.15: Universality of the unitary Fermi gas: the equation of state in the canonical ensemble

for the trapped gas. The energy Et/NEF is plotted versus the entropy per particle St/NkB . The

data from Duke University on 6Li (red squares, [249]) and JILA on 40K (blue triangles, [108]) are

plotted together with the EoS deduced from our measurement on 6Li of the homogeneous EoS

(black dots). The ideal gas EoS is shown in dashed black line.

length). In this way, they extracted the relation between the energy Et and the entropy St of the

unitary gas, the canonical equation of state of the trapped gas (right panel of Fig.1.9). The JILA

group probed the potential energy of the unitary gas as a function of the ideal gas temperature

(T/TF )0 (left panel of Fig.1.9). They used a gas of 40K around a Feshbach resonance at 202 G. This

resonance has a nice feature: there is a zero crossing at 209.9 G on the BCS side of the resonance.

They could thus normalize the potential energy of the unitary to the measured potential energy of

the ideal one, after an adiabatic sweep to the zero-crossing. We can convert this set of data to the

E(S) representation by converting the abscissa using the relation St0

(
T
TF

)0

for the ideal gas20,

and using the virial theorem, we convert Epot/E
0
pot (where the superscript

0 refers to the quantity

measured on the non-interacting Fermi gas with the same entropy) to Et(St) by multiplying the

ratio by the relation Et0(St0) for the harmonically trapped non-interacting gas.

We compare our EoS to the results from Duke and JILA by calculating the relation Et(St)

from the homogeneous pressure h(ζ) using the local density approximation. For example, the total

atom number is obtained by integrating the local density:

N =

∫
d3r n(r) =

∫
d3r

(
∂P

∂µ

)
T

(µ(r)) (5.40)

Using the de�nition of h and replacing the integration over position r by the integration over ζ

20Calculating the St0(T/TF ) relation, as well as µt0(T/TF ) using the density of states in a harmonic trap can

easily be done numerically and the details can be found in section 5.1.1 of [251].
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(and recalling that ζ(r) = exp(−β(µ0 − V (r)))), we �nd:

N = − 2√
π

(
kBT

~ω

)3 ∫ ∞
ζ0

dζ
d
√

log(ζ/ζ0)

dζ
Li5/2(−ζ−1)h(ζ) (5.41)

where ω = (ω2
rωz)

1/3. Similar expressions can be derived for Et/NEF (using PV = 2E/3) and

St/NkB (through −PV = E − TS − µN). These normalized quantities do not depend on ω and

can be calculated parametrically with the inverse fugacity at the center of the trap ζ0. EF here

is the Fermi energy of the trapped gas, EF = ~ω(3N)1/3. The integral in Eq.(5.41) is discretized

and the sum runs over the experimental data. We thus avoid relying on an interpolation func-

tion21. The results are gathered in Fig.5.15 and we see the excellent agreement between the three

measurements. This is even more remarkable because the measurement at JILA (blue triangles) is

done on 40K, while the others on 6Li. This shows the universality of the unitary Fermi gas [252].

However, because of the smoothening e�ect of the trap average, this is not a test as stringent

as the homogeneous gas EoS would be. For example, while there are (small) di�erences between

the experimental data and the quantum Monte Carlo calculation on the uniform gas EoS (green

squares of Fig.5.5), the agreement between the latter and the Duke EoS is excellent (see Fig.2

of [201]).

The super�uid transition in the trapped gas happens when the atoms at the bottom of the trap

become super�uid. We can thus estimate the critical point for the trapped system by setting ζ0 to

ζc. Calculating the trapped quantities, we deduce that Tc/TF = 0.19(2), (St/NkB)c = 1.5(1) and

(Et/NEF )c = 0.67(5). These critical parameters can be compared to the various theories (usually

using the LDA to integrate their EoS in a trap) (see Table II of [249] for example), and also to

experimental determinations. Our measurement of Tc/TF is in good agreement with a previous

thermodynamic determination 0.21(1) [249], a condensate fraction technique 0.21(2) [113, 253]

or via the quenching of the momentum of inertia 0.2 [254], but somewhat lower than previous

thermodynamic measurements from the Duke group 0.29(3) [109], 0.27 [255] and 0.35 [256].

5.1.8 Comparison with the Tokyo Canonical Equation of State

Almost simultaneously to our work, the group led by M. Ueda and T. Mukaiyama also presented the

measurement of the EoS of the homogeneous unitary Fermi gas by a di�erent method. Assuming

mechanical equilibrium, we can write the following equation (which is a restatement of the local

density approximation):

∇P (r) + n(r)∇V (r) = 0 (5.42)

At unitary, we write the local internal energy E = nεF fE(T/TF ) (where fE is a universal dimension-

less function) and P (r) = 2E(r)/3. The in-situ density distribution was inferred from time-of-�ight

images using the assumption of hydrodynamic expansion (and the corresponding scaling solutions).

By using the inverse Abel transform, the local density n(r) was deduced from the column density.

Eq.(5.42) was used to measure E(r), using an additional assumption for the shape of the density

pro�le (with three �tting parameters adjusted to each local density data n(r)). This method does

not require the determination of the global chemical potential, since the measurement is entirely

done in the canonical ensemble but the temperature must still be known. The Japanese group

performed the thermometry by measuring the size of the density pro�le and made use of the virial

theorem Eq.(5.39) and the trapped energy measurement of the Duke group Et(T ) [249] (red solid

21However, it is necessary to complete the data at high-temperature with the second-order virial coe�cient in

order to have proper convergence of the sums.
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Figure 5.16: Comparison with the Tokyo group equation of state [113]. (a): h-function deduced

from the Tokyo measurement, the red empty squares are obtained by using the previous E(T ) Duke

thermometry calibration (red solid line in (b)), the full blue squares by using our E(T ) calibration

(black empty dots in (b)). Our curve for E(T ) is in good agreement with a recent revised E(T )

curve from the Duke group (full green squares in (b) [257]).

line in Fig.5.16b). We see in Fig.5.16 that there is an important discrepancy between our h-function

(black empty circles) and the Japanese EoS (red empty squares)22. However, the Tokyo EoS does

not recover the virial expansion at high temperature. It was noted that the calibration curve from

the Duke work is not in agreement with the Et(T ) deduced from our h-function (black points in

Fig.5.16b). In a subsequent work, the Duke group presented a revised curve23 [257] (green squares

in Fig.5.16b) which is in very satisfactory agreement with our data. In light of this change, the

data from the Tokyo EoS was reanalyzed with the new temperature calibration resulting in the

blue squares in Fig.5.16b [258], which is in considerably better agreement with our data.

5.2 The Low-Temperature Fermi Gas with Tunable Interac-

tions

In the preceding section, we have studied the EoS for a unitary gas a = ∞ as a function of tem-

perature T . It is then natural to extend this measurement as a function of interaction strength.

As a �rst step towards this direction, we have studied the thermodynamics of a Fermi gas at very

22Since the Japanese group provided us both the function fE and the chemical potential µ = εF fµ(T/TF ), it is

easy to convert their EoS in the grand-canonical ensemble:

ζ = exp

(
−
TF

T
fµ

)
(5.43)

h(ζ)

2
=

8

9
√
π

(T/TF )−5/2fE

−Li5/2(−ζ−1)
(5.44)

23The initial Et(T ) curve published in [249] used the ideal gas approximation, this was corrected in [257], yielding

the green squares in Fig.5.16b, see comment [37] in [257].
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low temperature with variable scattering length. As we have shown in chapter 1, we can measure

the pressure through the doubly-integrated density pro�les, as the pressure formula requires no

speci�c assumptions about the scattering length (except the validity of LDA).

For the sake of clarity, the EoS of the T = 0 Fermi gas in the BEC-BCS crossover is presented

in this chapter even though it has been measured using spin-population imbalanced mixtures (see

chapter 6). The imbalance proved very convenient to extract the EoS of the spin-balanced gas

using the central, fully paired region of a spin-imbalanced sample. The technicalities related to the

determination of the chemical potential required for the EoS determination are speci�c to spin-

imbalanced gases and since it is irrelevant for the physics of the unpolarized super�uid described

in this section, we will describe the procedure in section 6.2.3 as well as the T ≈ 0 assumption that

will be made throughout this section.

5.2.1 The Equation of State of a Fermi gas in the BEC-BCS crossover

BECBECBCSBCS
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Figure 5.17: Equation of state of a low-temperature Fermi gas in the BEC-BCS crossover. The

blue and red lines are the Padé approximants on the BCS and BEC side of the resonance, used to

extract several physical quantities as well as to convert the EoS into the canonical EoS (see text).

Usually, the interaction strength in a Fermi gas is characterized by the parameter 1/kFa where

kF = (3π2n)1/3 (where n is the total density), that compares the inter-particle spacing to the

scattering length (similarly to na3 for the Bose gas). Since we work in the grand-canonical ensemble,

we characterize the interaction strength using the chemical potential instead of the density as we

have done it for the Bose gas (section 3.3.2). Di�erent choices can be made and they are not

equally convenient in particular as the properties turn from those a Fermi gas (on the BCS side) to

a Bose gas (on the BEC side of the resonance). Here, we favor a Fermi gas normalization, and the

grand-canonical interaction parameter is de�ned as δ = ~/
√

2mµ̃a, where we subtract the binding

energy per particle to the chemical potential on the BEC side, µ̃ = µ+Θ(a)~2/2ma2, so that µ̃ > 0
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everywhere. δ is related to 1/kFa through the EoS µ(n) and this interpretation is straightforward

on the BCS side, as we have in this limit µ→ EF and thus δ → 1/kFa. Similarly, the pressure of

the two-component T = 0 Fermi gas with tunable interactions can be written as:

P (µ; a) = 2P0(µ̃)hS(δ). (5.45)

P0(µ̃) is the T = 0 pressure of a single-component Fermi gas. The hS-function is a universal dimen-

sionless function, that we measured and show in black dots on Fig.5.17. The pressure normalization

in Eq.(5.45) is also a fermionic normalization. While appropriate on the BCS side (where hS → 1),

this normalization gives a less intuitive result on the molecular side, as seen by the linear divergence

of hS . This can be understood very simply: far in the BEC regime, one expects a mean-�eld Bose

gas equation of state P ∝ µ2, which in Eq.(5.45) result in hS ∝ µ−1/2 ∝ δ.

5.2.2 Comparison with many-body theories
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Figure 5.18: Equation of state of a low-temperature Fermi gas in the BEC-BCS crossover. The

experimental data (black dots) are compared to di�erent zero-temperature theories: a Quantum

Monte Carlo calculation (red circles [230]), a self-consistent t-matrix approach (green squares [202]),

a Nozières-Schmitt Rink approximation (blue triangles [259]), and the BCS-mean-�eld theory (blue

solid line [21,22]). Inset: Zoom on the BCS side of the resonance (δ < 0).

We can directly compare this measurement to many-body theories (Fig.5.18). The agreement is

very good with a Nozières-Schmitt Rink (NSR) approximation (blue triangles [259]) while small dif-

ferences can be observed with the Quantum Monte Carlo (red circles [230]) and the self-consistent

t-matrix approach (green squares [202]). Note that the two latter are zero-temperature extrapola-

tions of �nite-temperature calculations. The BCS mean-�eld theory24 is completely ruled out and

24From the standard number and gap equations of BCS mean-�eld theory, one can readily calculate the gap ∆/EF ,
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shows again that the EoS is a sensitive probe of beyond mean-�eld e�ects.

Several calculations of the T = 0 EoS have been performed using the �xed-Node Monte Carlo

method, where the energy is calculated as a function of 1/kFa. In order to compare our mea-

surement to the calculations of the canonical EoS, we need to proceed to the grand-canonical to

canonical transformation. This is done by the following correspondence equations:

x(δ) =
δ

(h(δ)− δ
5h
′(δ))1/3

(5.47)

ξ(δ) =
h(δ)− δ

3h
′(δ)

(h(δ)− 1
5δh
′(δ))5/3

, (5.48)

where the canonical variable x = 1/kFa and the dimensionless energy ξ is de�ned as:

E −Θ(x)
NEb

2
=

3

5
NEF ξ(x) (5.49)

where we subtract to the energy the binding energy of the Feshbach molecules Eb = −~2/ma2

on the BEC side of the resonance (Θ is the Heaviside step function). Eq.(5.47) follows from

the Gibbs-Duhem relation ∂P/∂µ = n, while Eq.(5.48) is derived from the Legendre transform

−PV = E−µN . Thus knowing h(δ) we can parametrically plot ξ(x). Since Eqs.(5.47) and (5.48)

involve the derivative of h(δ), we need to parametrize our data with analytical functions. This is

conveniently done using Padé approximants, that will be detailed in the next sections (blue and

red lines in Fig.5.17) and in the appendix A.2.

In this way, we compute the thick black line of Fig.5.19 and we compare it to many-body

calculations (Fig.5.19). The agreement is excellent with the Fixed-Node Monte Carlo calculations

of Pilati and Giorgini (green triangles [261]), and Chang et. al. (red squares [262]) as well as with

Astrakharchik et. al. (blue points [44]). For the latter a small deviation can be observed in the

BCS region, where the trial wavefunction is changed from a BCS wavefunction to a Jastrow-Slater

wavefunction (see Fig.1 in [44]), and this region is less reliable. In the more recent Monte Carlo

work by Gandol� et. al. (purple empty circles [263]) an improved ansatz is used for the variational

calculation, and the result is systematically lower than our measurement. Another important

quantity that can be computed from our �ts is the chemical potential in the BEC-BCS crossover:

µ

EF
= x(δ)2

(
1

δ2
−Θ(δ)

)
. (5.50)

and is plotted in Fig.5.20b. The link between the usual interaction parameter 1/kFa and the

grand-canonical one δ is shown in Fig.5.20a. In order to extract the physical content from our

EoS, we now focus on well-controlled analytical limits of the crossover.
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Figure 5.19: Energy of the low-temperature spin-1/2 Fermi gas in the BEC-BCS crossover. The

dimensionless energy ξ is de�ned in Eq.(5.49). The curve deduced from the experimental data is

plotted in black thick line and compared to Fixed-Node Monte Carlo calculations by Astrakharchik

et. al. (blue points [44]), by Pilati and Giorgini (green triangles [261]), by Chang et. al. (red

squares [262]), by Gandol� et. al. (purple empty circles [263]), and a Nozières-Schmitt Rink

approximation (orange dash-dotted line [259]). The BCS mean-�eld theory is shown in dotted

blue line and the dashed black lines are the analytic expansions in the dilute BEC and BCS limits

(see text). Right panel: Zoom around the unitary limit.
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Figure 5.20: (a): Conversion between the canonical (1/kFa) and grand-canonical (δ) interaction

parameters. (b): Chemical potential deduced from the measured hS (black thick line), compared

to BCS mean-�eld theory (dotted blue line), and to a t-matrix theory (dashed green line [264]).

Half the binding energy of a molecule ~2/2ma2 is plotted on the BEC side (dashed red line).
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Figure 5.21: Asymptotic behaviors in the BEC (main panel) and in the BCS (inset) limits are

shown. The mean-�eld (Galitskii-Lee-Yang) EoS is shown in dotted (dashed) blue line on the

BCS side, the mean-�eld (the Lee-Huang-Yang) EoS is shown in dotted (dashed) red line on the

molecular side.

5.2.3 Asymptotics I: the BCS-limit of a Weakly Interacting Fermi Gas

For a weakly interacting repulsive Fermi gas, the energy of the system was shown in 1958 by

Galitskii [265], Lee and Yang [42] to obey a perturbative expansion, in powers of kFa:

E =
3

5
NEF (1 +

10

9π
kFa+ αGLY (kFa)2 + αB(kFa)3 + . . .) (5.51)

or the chemical potential µ/EF as a function of 1/kF a (which can be expressed in terms of elliptic functions [260]).

The resulting chemical potential is shown in dotted blue line in Fig.5.20b. We can calculate the dimensionless energy

ξ (de�ned in Eq.(5.49)):

ξ(x) = 5x5

∫ sign(a)∞

x

du

u6
µ̃(u) + Θ(x)

5

3
x2, (5.46)

where µ̃ = µ/EF , x = 1/kF a and displayed in dotted blue in Fig.5.19. In particular, we recover that BCS theory
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The term proportional to kFa is the mean-�eld shift to the ideal gas energy, while the (kFa)2-term

is due to the quantum �uctuations. The applicability of the Galitskii-Lee-Yang expansion to our

problem is not obvious. It was calculated for a repulsive Fermi gas while our gas is subjected to

attractive interactions25. In particular, in the limit of weak interactions a→ 0−, the system is of

paramount importance in condensed matter physics as it is subjected to the Cooper instability of

the Fermi sea towards pairing of fermions, in the presence of arbitrarily weak attractive interactions,

leading to the formation of the BCS super�uid. The energy di�erence between the BCS and

the normal state is exponentially small since BCS theory predicts that it is proportional to ∆2

(Eq.5.33), and ∆ ∝ exp(−π/2kF |a|). However, it was shown that the quantum �uctuations of the

super�uid BCS state, also lead to the Galitskii-Lee-Yang expansion (apart from the condensation

energy) [266]. It is notorious that the BCS mean-�eld theory does not verify the Galitskii-Lee-Yang

expansion and only contains the condensation energy, and we see that the theory (dotted blue line

in Fig.5.19) tends to unity on the BCS side much faster than expected. We can quantitatively test

this expansion by �tting our data on the BCS side with a rational function that has the appropriate

asymptotic behavior for small values of kFa, and that is regular around unitarity26:

hBCSS (δ) =
δ2 + α1δ + α2

δ2 + α3δ + α4
(5.52)

This function by construction satis�es the non-interacting limit: hBCSS (δ) → 1 when δ → −∞.

Two additional constraints on the αi parameters are added: �rst, the value of the mean-�eld shift

is �xed because our data do not explore the deep BCS limit; secondly, the value at unitarity

h(δ = 0) = ξ
−3/2
s is assumed, leaving two �tting parameters that are determined on our data for

δ < 0.2. Using the correspondence equations, we can relate the coe�cients of the Galitskii-Lee-

Yang expansion to the αi and we �nd:

αGLY = 0.18(2) (5.53)

which is in very good agreement with the predicted value of 4(11− log 2)/21π2 ≈ 0.186. Further,

assuming this value, we can �t the next term in the expansion, and �nd αB = 0.03(2) that is also

compatible with the calculated value of 0.030 [267]. This expansion up to (kFa)2 is plotted as a

dashed black line on the BCS side in Fig.5.19.

5.2.4 Asymptotics II: the Unitary Limit

Next, we focus on the strongly interacting limit. Around unitarity, where 1/kFa → 0, we write

the dimensionless energy as:

ξ

(
1

kFa

)
= ξs −

ζC
kFa

(5.54)

The �rst term is the compressibility of the unitary gas ξs, the Bertsch parameter. The second

parameter ζC is de�ned here27 as the derivative of the energy with respect to 1/kFa. This pa-

rameter appears to have a deep physical interpretation that connects microscopic and macroscopic

observables of the unitary gas.

predicts ξ = 0.59 at unitarity. The h-function predicted by BCS mean-�eld theory can be computed either from ξ by

inverting the correspondence equations (5.47) and (5.48), or directly from x = x(µ̃), by integrating the Gibbs-Duhem

relation: P =
∫
dµ n(µ).

25A repulsive Fermi gas can be prepared in so-called higher branches, such as the repulsive Bose gas, but it is

increasingly unstable to decay to lower branches. The BEC-BCS crossover as described here is occurring in the

lower branch.
26Details about the Padé approximants can be found in appendix A.2.
27Not to be confused with the inverse critical fugacity ζc = e−(βµ)c of the previous section !
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The Contact ζC

In 2005, S. Tan derived a set of remarkable universal relations holding for the two-component Fermi

gas with short-range interactions [268, 269, 270]. He showed that the momentum distribution

nkσ decreases for large momenta as 1/k4 such that it is possible to de�ne a quantity I: I =

limk→∞ k4nkσ. In addition the pair correlation function diverges at short distances r → 0 as

I/16πr2. These properties are very general, and are valid for any many-body state, at zero or

�nite temperature, in the super�uid or normal state [268]. Tan later showed that the contact is

related to the energy of the system by the adiabatic sweep theorem [269]:

dE

d(−1/a)
=

~2

4πm
I, (5.55)

For homogeneous systems, it is convenient to de�ne the contact density C = I/V (where V is the

volume), so that the quantity ζC de�ned in Eq.(5.54) is the dimensionless contact density:

C =
2ζC
5π

k4
F (5.56)

Moreover, the virial theorem can be generalized away from unitarity with an additional term that

is proportional to the contact. It is remarkable that the contact C relates microscopic proper-

ties (probability of �nding two fermions close to each other28), to macroscopic observables (the

derivative of the energy). Using the equation of state together with the Padé approximants, we

determine the value of ζC from the adiabatic sweep theorem:

ζC = 0.93(5). (5.57)

We can compare our measurement to various calculations: Quantum Monte Carlo calculation of

the pair correlation function yields ζC = 0.95 [272], or the static structure factor ζC = 0.90 [273].

It also agrees well with a Nozières-Schmitt Rink approximation 0.89 [274], but is somewhat larger

than a self-consistent diagrammatic calculation 0.80 [275] and a t-matrix approximation 0.86 [276].

A recent �xed-node calculation compared the contact obtained by the adiabatic sweep theorem

ζC = 0.901(2) and by the pair-correlation function 0.897(2) [263], both in very good agreement

with our determination.

Several groups have measured the contact by di�erent means. The number of closed-channel

molecules was measured in the group of R. Hulet [278], and it was later shown that this amounted

to measuring the contact [280]. In the group of P. Hannaford, the static structure factor was

probed via Bragg spectroscopy [279] and the large momentum behavior yields the contact. Finally,

the group of D. Jin tested several of the Tan universal relations, by measuring the contact both

through the large momentum part of the momentum distribution (by a fast magnetic �eld sweep

technique and photoemission spectroscopy) and the large frequency tail of the RF lineshape, as well

as testing the generalized virial theorem [277]. All these measurements were global probes of the

trapped gas and thus yielded the trap-averaged contact. Similarly to what has been done in section

5.1.7, we can use our uniform gas EoS in order to predict the trap-averaged contact measured in

the above experiments. The contact is the integral over the trap of the contact density:

It =

∫
d3r C(r) =

2

5π

∫
d3r ζC

(
1

kFa

)
kF (r)4 =

2

5π
(3π2)1/3

∫
d3r ζC

(
1

kFa

)
n(r)4/3 (5.58)

28This interpretation is made more quantitative in section 3.1 of [271]
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Figure 5.22: Integrated Contact in the trap It/NkFt in the BEC-BCS crossover. The curve deduced
from our equation of state (solid black line) is compared to three measurements done at JILA: large

momentum-tail of the momentum distribution using a fast magnetic �eld sweep (solid blue circles)

and photoemission spectroscopy (red empty circles), and the large frequency tail of the RF lines

(green stars) [277]. We also plot the measurement using the number of closed-channel molecules

at Rice (purple down triangles) [278]), and the Bragg spectroscopy measurement at Swinburne

University (brown empty square) [279].

The density pro�le n(r) is deduced from the equation of state, under the assumption of the local

density approximation. This integral can be calculated analytically at unitarity, since the EoS

(and thus the density pro�le) is exactly known and depends only on ξs (see next section):

n(r) = n0

(
1− r2

R2
TF

)3/2

, (5.59)

where RTF = ahoξ
1/4
s (24N)1/6, aho =

√
~/mω, and n0 = 8N/π2R3

TF. We assumed an isotropic

trap for convenience (with trapping frequency ω). This is not a necessary assumption, since the

end result will be normalized in such a way to be independent of the trap frequencies. Evaluating

the integral, we �nd:
It

NkFt
=

512

175ξ
1/4
s

ζC (5.60)

where ζC = ζC(0), and kFt =
√

2a−1
ho (3N)1/3 is the Fermi wavenumber of the trapped gas. The

quantity in the left-hand side of Eq.(5.60) has been measured to be 3.00(12) using Bragg spec-

troscopy [279] close to our value of 3.40(18) (with ξs = 0.41), determined via the energy of the

system, which provides an experimental evidence of the Tan relations.

Our EoS can also be compared to the experiments performed in the BEC-BCS crossover.

Deducing the integrated contact It/NkFt from the equation of state away from unitarity is slightly
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more involved. The contact can readily be expressed in the grand-canonical ensemble since29(
∂E

∂(−1/a)

)
S,V,N

=

(
∂Ω

∂(−1/a)

)
T,V,µ

, (5.61)

where Ω = −PV is the grand-potential. We then calculate It, N , and kFt, as function of δ0 and we

plot the parametric curve {1/kFta(δ0), It/NkFt(δ0)} in Fig.5.22 as a solid black line30. We gather

all the measurements in Fig.5.22 and the overall agreement between the various measurements

makes a strong case, both for universality (as the JILA measurements are done on 40K, the others

on 6Li) as well as for a veri�cation of the Tan relations.

The Bertsch parameter ξs

Because of the divergence of a at unitarity, there is no energy scale associated to the interactions

and the T = 0 thermodynamics of the unitary gas are formally identical to those of an ideal gas

except for the universal number ξs. It is remarkable that all the complexity of the maximally

interacting unitary Fermi gas is encapsulated in a single universal number. Obviously, while the

form of the EoS can simply be deduced on dimensional grounds only, the ab-initio calculation of

ξs requires to solve the fermion many-body problem and is a formidable theoretical challenge, that

is still unsettled. Averaging our data at unitarity gives a result of 0.41(1). These measurements

were taken at a magnetic �eld of 835.5 G. The comparison with the result expected at 834.1 is

studied in section 5.3. Correcting for the 1.4 G shift using the contact and taking into account the

uncertainty on the Feshbach resonance position (B0 = 834.1 G ± 1.5 G [72]), we �nd ξs = 0.40(2).

5.2.5 Asymptotics III: the BEC-limit of a Weakly Interacting Bose Gas

In the limit where a → 0+, the two-body potential sustains a bound state that is spatially lo-

calized (with a size ∼ a). The dimers can thus be considered as pointlike bosons, and the Fermi

gas will have the properties of a Bose gas of 6Li2 dimers. It is then natural to wonder whether

the ground-state energy of the system can be expanded in powers of the gas parameter as for a

Bose gas (see chapter 3). First, the mean-�eld energy gddn
2
d/2 (where nd is the dimer density) will

depend on the dimer-dimer scattering length. This scattering length was determined by solving the

scattering four-body problem and it was found that add = 0.6a [38], in sharp contrast with the BCS

mean-�eld prediction add = 2a. Fitting the energy deeply in the BEC regime, G. Astrakharchik

et. al. found that the EoS was well described by a mean-�eld energy with a e�ective scattering

length of add = 0.62(1) [44], thus con�rming that the �rst term of the energy expansion is valid

provided the gdd = 2π~2add/m (where m is the fermion mass, half the mass of the dimer).

29See section 5.3.2 for details.
30As an example, the calculation on the BCS side gives:

I(δ0) =
128
√

2

15

∫ 1

0
du u2(1− u2)2h′(δ(u)) (5.62)

N(δ0) =
16

15π

∫ 1

0
du u2(1− u2)3/2(5h(δ(u))− δ(u)h′(δ(u))) (5.63)

1

kFta
=

δ0

(6N(δ0))1/6
(5.64)

where δ(u) = δ0/
√

1− u2. The calculation on the BEC side is similar except that care must be taken for the shift

of the binding energy in the chemical potential. Interestingly, the calculation is more straightforward than the same

calculation performed in the canonical ensemble, in the appendix C of [280].
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Figure 5.23: Predictions and measurements of the Bertsch parameters ξs. From left to right,

the measurements on 6Li are shown in full squares: [13], [255] (up) [281] (down), [27, 137, 282,

235, 249, 113, 62], and this work. In full triangles, the works on 40K: [283, 108]. The open circles

are theoretical calculations: [228, 284, 44, 285, 286, 202, 287, 259, 189, 230, 263, 288, 289]. The value

predicted from BCS mean-�eld theory is ξs = 0.59 [23].

X. Leyronas and R. Combescot showed afterwards that this intuitive replacement is also correct

for the �rst beyond mean-�eld term, the Lee-Huang-Yang correction [45]. It is remarkable that

the composite nature of the dimer does not show up in the energy expansion up to this order. We

can test this expansion, assuming the mean-�eld energy:

E

V
= nEb +

gddn
2

2

(
1 + αLHY

√
na3

dd + . . .

)
, (5.65)

where the �rst term accounts for the binding energy of the molecular Bose gas. Fitting the Padé

approximant on the BEC side31 with Eq.5.65, we �nd αLHY = 4.4(5), in good agreement with the

calculation by Lee, Huang and Yang: 128/15
√
π ≈ 4.81.

Going beyond the LHY correction for the Bose gas of Feshbach molecules is a delicate problem.

The simplest approach would be to assume that the expansion for molecules can be derived from

that of a Bose gas (see Eq.3.25), provided we replace a by add, m by 2m, and n by n/2. In the

same spirit of section 3.3.4, we assume the LHY coe�cient and �t the parameter B, for which

we �nd B ≈ 7. It is interesting to note that this value is close both to the calculation for a

hard-sphere Bose gas (B = 8.5 [171]), for a Bose gas with contact interactions (B ≈ 7.2 [172])

as well as the value B = 6.8 estimated on the EoS for the Bose gas in chapter 3. It is however

important to keep in my mind that it is unknown whether the energy expansion is still valid up to

31Details about the Padé approximants can be found in appendix A.2.
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that order for a gas of dimers. This raises an interesting question: while it is known that B is not

universal for pointlike bosons (as it involves the three-body problem, which in turn depends on

short-range physics [172]), we can expect this parameter to be truly universal for a Fermi gas. First,

the hypothesis of universality of the BEC-BCS crossover would imply that B cannot depend on

another parameter than a. Second, the short-range physics of dimers can in principle be described

by the a only, because the internal structure of the molecules is also given by the scattering length.

These questions would be answered by solving the three-dimer or six-fermion problem.

5.2.6 Universality of the Lee-Huang-Yang correction
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Figure 5.24: Low-temperature Equations of State of the atomic Bose (green squares at large δ > 0,

rescaling the bosonic a to the dimer-dimer add) and spin-1/2 Fermi gases (red circles at small δ)

with short-range interactions. The mean-�eld (Lee-Huang-Yang) EoS is shown in dotted (solid)

black line.

Finally, it is instructive to gather the low-temperature equations of state obtained on the bosonic
7Li (in chapter 3) and on the fermionic 6Li (in the present chapter), as shown in Fig.5.24. The

Bose (Fermi) gas EoS is shown in green squares (red circles). In order to plot the bosonic EoS on

the Fermi gas representation, it is important to keep in mind that the two Bose gases interact via

di�erent scattering lengths. To �nd the appropriate rescaling, we write the EoS of the molecular

Bose gas in the BEC limit (see appendix A.2.4 for details): hS → 15
4

a
add

δ (when δ → +∞) and

rescale it so that the EoS of the atomic Bose gas in the mean-�eld limit is identical provided one

replaces add by aB . The fact that both measurements fall on the Lee-Huang-Yang EoS shows that

despite the two Bose gases have very di�erent interaction potentials, the �rst beyond mean-�eld

correction depends only on the scattering length. It is obviously interesting to explore the region

in between the two measurements. However, it is di�cult due to stability issues: for the molecular

Bose, weakening the interactions make the dimers smaller, and the gas is increasingly unstable

due to collisional relaxation losses as the dimers are no longer Pauli-protected against three-body

recombination into deeply bound states. The Bose gas on the other hand becomes unstable due

to increasing three-body losses. Nonetheless, even if these losses could be prevented, it is not clear
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that the two curves would join since we know that the term beyond the Lee-Huang-Yang correction

is non-universal for a Bose gas with short-range interaction. In addition, these systems should be-

long to di�erent many-body branches: attractive Fermi gas for one (lower-branch), repulsive Bose

gas for the second one (upper-branch), and di�erent crossover physics might be expected [290].

5.3 Finite Scattering Length Corrections

Subsequent re�ned magnetic �eld calibration have shown that our data at unitarity have been

most likely taken at a magnetic �eld of 835.5 G, rather than 834.1 G32. The current most precise

determination of the Feshbach resonance, B0 = 834.1(1.5) G does not discriminate between these

two values. However, since most other experiments are reported at 834.1 G, it is instructive to esti-

mate the e�ect of the �nite scattering length on the previously obtained results, mostly the Bertsch

parameter ξs and the EoS h(ζ) of the unitary gas. First, δ(1/a) = δB/Γ where the width of the

resonance for 6Li is Γ = abg∆ = 4.2× 105 a0.G. For a shift of 1.4G we �nd δ(1/a) = −3.3× 10−6

a−1
0 . If the center of the resonance is at 834.1 G, the scattering length is a/a0 = −3× 105 at 835.5

G, very large but not in�nite.

Taking a conservative lower bound for kF (at the edge of the super�uid region in the spin-

imbalanced mixture), 1/kF ≈ 300 nm, we have a deviation of at most |1/kFa| = 0.02 from the

resonance, which given a contact density ζC = 0.93 determined in section 5.2.4, would lead to a

maximum down shift of 0.02 for ξs. However, as we shall see in chapter 6, this is an upper bound to

the error committed since the local value of the interaction parameter δ varies in the trap. Taking

this into account on the spin-polarized gas analysis, a more realistic correction of the systematic

error asumming the resonance position at 834.1 G leads to ξs = 0.40(2) (see section 6.2.5). We now

investigate the e�ects of �nite-a corrections on the equation of state of the unitary gas determined

in chapter 5.

5.3.1 The virial coe�cients b2 and b3 in the BEC-BCS crossover

The virial expansion, which is an expansion in powers of the fugacity eβµ can be extended beyond

unitarity:

P (µ, T, a)βλ3
dB/2 = eβµ + b̃2(T, a)e2βµ + b̃3(T, a)e3βµ + . . . , (5.66)

where the virial coe�cients b̃j depend on T and a. By dimensional analysis, the virial coe�cients

at unitarity are independent of temperature, since the b̃j are dimensionless. Away from unitarity,

the coe�cients can depend on T and a only through a/λdB. In particular, the two �rst virial

coe�cients b̃2 and b̃3 were calculated as a function of 1/kFa for various temperatures T/TF in

Fig.3 of [208]. However, we found that the curves at di�erent temperatures collapse on a single

universal function of a/λdB for each coe�cient. The result is shown in Fig.5.25. In order to obtain

a conservative estimate, we take for λdB(T ) an intermediate temperature of 1 µK, for which the

deviation from unitarity in term of a/λdB is about 0.04. Both b2 and b3 vary by less than 5 %,

well within the error bar stated in Eq.(5.17), and this is an upper bound.

32The re�ned calibration has been performed more than a year after the original data taking and it is thus not

excluded that the magnetic trap has slightly moved, leading to a possible minute change in the bias �eld, for the

same set of currents in the coils as in the original experiment.
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Figure 5.25: Virial coe�cients b2 (upper) and b3 (lower panel) in the BEC-BCS crossover, as a

function of a/λdB. Zoom around unitarity are shown in insets. The Beth-Uhlenbeck formula (5.13)

is shown in dashed red for b2. The calculation of b2 from the coe�cient bt2 for the trapped gas is

in near perfect agrement with the Beth-Uhlenbeck formula as expected.

5.3.2 Tan Contact at Finite Temperature

Following an idea of the Amherst-MIT collaboration [115], we can calculate the correction away

from unitarity using the Tan contact at �nite temperature. We recall that the contact is de�ned
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as:
dE

d(−1/a)
=

~2

4πm
I, (5.67)

The contact can be expressed in the grand-canonical ensemble using the relation(
∂E

∂(−1/a)

)
S,V,N

=

(
∂Ω

∂(−1/a)

)
T,V,µ

(5.68)

where Ω = −PV is the grand-potential33. Using the contact density C = I/V , we can write to

lowest order in a−1:

P (µ, T, a−1) = P (µ, T, 0) + a−1 ~2

4πm
C(µ, T, 0) (5.72)

where the contact density at unitarity is a function of βµ. We can thus write the �nite a correction

to the universal h-function:

h(ζ)− ha(ζ) =
1

8π2

λdB
a

C̃(ζ)

Li5/2(−ζ−1)
(5.73)

where ha(ζ) is the pressure away from unitarity, C̃(ζ) = Cλ4
dB is the dimensionless contact density.

In order to calculate the correction, we need both the contact density C̃(ζ), and λdB/a. Di�eren-

tiating the virial expansion of the grand-potential Eq.(5.66) with respect to 1/a (with Eqs.(5.67)

and (5.68)) we �nd a virial expansion for the contact density:

Cλ4
dB = 16π2(c2e

2βµ + c3e
3βµ + . . .) (5.74)

with

cj =
∂bj

∂(λdB/a)
. (5.75)

Since the �rst coe�cient b1 is constant, the virial expansion for the contact starts at the second-

order in fugacity. The c2 coe�cient can be readily calculated from the explicit expression of b2

from Beth-Uhlenbeck formula in Eq.(5.14) and we �nd c2 = 1/π [291]. The derivative of b3 at

unitarity (see Fig.5.25b) provides the third virial coe�cient for the contact: c3 = −0.141 [274].

The contact has otherwise been calculated at �nite temperature by analytical [276, 274], and

Quantum Monte Carlo methods [292] but these calculations normalize the contact to the density

C/k4
F and we thus also need the equation of state nλ3

dB(βµ) to convert the contact to the normal-

ization Cλ4
dB(ζ). A DMC calculation of Cλ4

dB(ζ) was directly performed by the Amherst group

(blue circles in Fig.5.26) and we will use this one for the correction [115]. On Fig.5.26, we also

33The relation (5.68) can be easily demonstrated by proving the same relation �rst for the Helmholtz free energy

F (T, V,N) and di�erentiating the relation F = E − TS (V is �xed):(
∂E

∂(−1/a)

)
S,N

=

(
∂F

∂(−1/a)

)
S,N

+ S

(
∂T

∂(−1/a)

)
S,N

(5.69)

We use a common formula for changing the variable that is kept �xed:(
∂F

∂(−1/a)

)
S,N

=

(
∂F

∂(−1/a)

)
T,N

+

(
∂F

∂T

)
a,N

(
∂T

∂(−1/a)

)
S,N

(5.70)

Since
(
∂F
∂T

)
a,N

= −S, we �nd that:

(
∂E

∂(−1/a)

)
S,V,N

=

(
∂F

∂(−1/a)

)
T,V,N

(5.71)

Using the same relation with the additional Legendre transform Ω = F − µN , Eq.5.68 is recovered.
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Figure 5.26: Finite-temperature contact Cλ4
dB versus ζ. The DMC calculation is shown in blue

circles [115], the interpolation function used in the text, in dashed blue line. The second-order

(third-order) virial expansion is plotted in red dashed (solid) line. The T = 0 contact determined

in chapter 5 is plotted in dashed green.

show the second-order (third-order) expansion of the contact in red dashed (solid) line. The T = 0

limit of the contact can be displayed on this plot, though it requires the EoS, since we have:

Cλ4
dB =

2ζC
5π

(3π2)4/3(nλ3
dB)4/3, (5.76)

where the contact in the zero-temperature limit is C/k4
F = 2ζC/5π. Since the DMC calculations

are limited to ζ > ζc = 0.05 (where ζc is the critical inverse fugacity for the super�uid transition),

we can use the Fermi-liquid parametrization of the pressure from Eq.(5.29) to deduce the phase-

space density in Eq.(5.76) at low temperature. Using ζC = 0.93 found in section 5.2.4, we compute

Cλ4
dB(ζ) at zero temperature (dashed green line on Fig.5.26).

5.3.3 Estimate of the Correction for the Equation of State h(ζ)

The value of λdB/a is estimated by measuring the temperature of the gas obtained as a function

of the fugacity for which it contributes (we take here ζ0). This is shown in gray points on Fig.5.27,

together with an empirical �t λdB = (0.647µm) × ζ−0.275 in red solid line34. Using this estimate

34Let us recall that the images are taken at various depth, trap frequencies and atom number and as such, images

at di�erent temperatures could contribute for a same window of ζ. The relation between λdB(T ) and ζ is thus only
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Figure 5.27: Estimation of the average value of λdB/a for a data set (gray circles) and an empirical

�t λdB = (0.647µm)× ζ−0.275 in red solid line.

for λdB/a, we calculate the shift from our original EoS (black empty circles) and estimate the EoS

at 834.1 G from Eq.(5.73) and obtain the full red circles. The largest systematic error occurs at

the lowest temperatures, where the upshift is 4 %. We see that the agreement between our EoS

estimated at 834.1 G (red circles), the reanalyzed EoS from the Tokyo group (empty blue squares),

and the Amherst Diagrammatic Monte Carlo calculation (brown solid line) is slightly improved

in the low-temperature regime above Tc. The very good agreement between the experiments and

theory for a strongly correlated many-body system almost down to Tc is remarkable.

The state of art techniques to probe quantum many-body physics with 6Li have now reached a

level of accuracy that requires an improved determination of the position (and width) of the Fesh-

bach resonance (in particular for the measurement of ξs). Previous characterizations of the wide res-

onance on the |1〉− |2〉 spin-mixture of 6Li include a thermodynamic determination (B0 = 800(40)

G, [250]), dissociation of molecules (B0 = 822...834 G, [76]), and molecular radio-frequency spec-

troscopy (B0 = 834.1(1.5) G [72]). This last method is generally considered as the most reliable

one. However, the regime where kFa � 1 is very extended and the RF-association (or dissoci-

ation) of Feshbach molecules can only be performed very far from the resonance (about 100 G

below) in order to avoid important many-body e�ects. This is due to the very large width of the

resonance. We can compare here the case of 6Li and 7Li. The spectroscopic determination of the

Feshbach resonance on state |F = 1,mF = 1〉 of 7Li was shown in chapter 3 and a scattering length

a/a0 = 2000 (where beyond mean-�eld start to become important) is reached about 2 G below

the resonance, for which the Feshbach binding energy is Eb = h × 150 kHz. The same scattering

length for 6Li is reached about 110 G below the resonance35.

an estimate but we see that the dispersion around the �t is reasonably small (less than 20 % on the value of the

correction, whose absolute value is at most of 4 %). A more rigorous approach would be to perform the correction

image per image, and then only, �tting µ0 for the patching.
35The relevant quantity is not the width ∆ of the resonance but the product Γ = abg∆. While the widths are

similar ∆6 = 300 G and ∆7 = 170 G, the products are not: Γ7 = 3550, Γ6 = 4.2× 105 (in units of a0.G), owing to
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Figure 5.28: Finite-temperature correction on the equation of state using the contact. Together

with our measurement (empty black circles), we plot the EoS estimated at 834 G (red circles), the

reanalyzed Tokyo EoS (empty blue squares) and the DMC (brown solid line).

Methods to determine more accurately the Feshbach resonance position (and width) without

theoretical input (as was required in [72] for example) remain to be devised. A possibility could

be to measure the dissociation spectra in time-of-�ight on a gas of molecules, and extrapolate

the binding energy in the dilute limit n → 0. Since the deterministic preparation of trapped

few-fermion systems is now experimentally achievable [293], it would be possible to measure the

binding energy of a single trapped molecule, in which case many-body e�ects would obviously

be inexistent. An elegant determination of the Feshbach resonance position would be to directly

observe the scale invariance of the unitary gas, for example by proving that all quantities depend

only on the local Fermi energy EF of the system. For example, the measurement of ξs should be

shown to be independent of the gas density (or equivalently, of kF ). This wouldn't be true away

from unitarity, where an energy scale associated with a is also involved.

In conclusion, we have measured in this chapter the equation of state of the spin-balanced Fermi

gas. In a �rst part, we studied the �nite-temperature thermodynamics of the uniform unitary Fermi

the very large background scattering length of 6Li in the mixture of states |1〉 and |2〉.
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gas, allowing for a direct comparison with many-body theories. We measured the virial expansion

at high-temperature, and observed a Fermi-liquid type behavior at low-temperature. Using the

parameters of the Fermi liquid, we have predicted the spectral functions, that are in good agree-

ment with photoemission spectroscopy experiments performed at JILA. In the second part, we

measured the equation of state of the low-temperature Fermi gas in the BCS-BCS crossover. In

the asymptotic limit, we have shown the universality of the Lee-Huang-Yang correction, identical

for atomic and molecular Bose gases. In addition to the asymptotic limits, we have compared the

prediction of our equation of state to measurements of the contact in a trapped gas.

In spite of the intense research e�ort, much work is still necessary to have a full quantitative

understanding of the thermodynamics of the unitary Fermi gas. In addition, there are many

open questions. First, the scale invariance of the unitary gas has never been directly tested.

Secondly, increasing the accuracy on the measurement of ξ would now be desirable to provide

extremely stringent benchmarks for theories. This in turn will require an improved precision on

the determination of the Feshbach resonance position as seen above. The exact nature of the

normal phase also needs to be clari�ed. New methods should be devised to address the ongoing

pseudo-gap/Fermi liquid debate, such as spatially resolved photoemission spectroscopy, and could

also allow to describe recent spin-transport [294] and viscosity [194] measurements performed in

the normal phase. In addition, the thermodynamic study presented here should be extended in

the BEC-BCS crossover, and would yield the critical temperature Tc of the homgeneous gas as a

function of interaction strength, one of the most fundamental quantity of the BEC-BCS crossover

physics.



Chapter 6

The Spin-Polarized Fermi Gas

The fundamental question of fermionic super�uidity with spin-population imbalance n↓ 6= n↑ has

been studied since the early 1960's and the work by Clogston and Chandrasekhar [295,296]. Despite

important e�orts in condensed matter physics [297], the �rst unambiguous experimental evidence

for the robustness of the unpolarized super�uid to spin-imbalance came with ultracold Fermi gas

experiments performed at MIT and Rice University in 2006 [137,298]. In these experiments, it was

observed that the trapped unitary gas phase-separates and adopts a shell-like structure. In the

center of the trap, an unpolarized (n↓ = n↑) super�uid accommodates spin-imbalance by expelling

the excess atoms in a surrounding polarized normal shell. These experiments triggered a rush of

interest in the rich phase diagram of the system at low temperature, and searches for predicted

exotic phases.

In this last chapter, we address the thermodynamics of the spin-population imbalanced Fermi

gas. First, we will review basic facts about the phase diagram and the physics that arises from

the spin imbalance. We then present the implementation of the equation of state measurement

scheme in the case of spin-imbalanced systems, allowing us to explore the phase diagram of the

system. Finally we compare our equation of state with previous measurements performed on

trapped samples and with the canonical equation of state obtained for the uniform gas at MIT.

6.1 Overview of the Phase Diagram

We introduce the main concepts of spin-imbalanced Fermi gas physics, starting with the Clogston-

Chandrasekhar limit of super�uidity. We will then expose the theory of highly-imbalanced gases

and the Fermi polaron, a quasi-particle composed of a single minority atom immersed in a Fermi

sea of majority atoms that is of central relevance to the normal phase of the imbalanced Fermi gas.

6.1.1 The Clogston-Chandrasekhar Limit

As the key ingredient for BCS superconductivity is the Cooper pairing of spin ↑ and ↓ particles with
opposite momenta, the question naturally arises whether the unpolarized super�uid can survive if

a spin-polarizing �eld is applied. This is related to the energy competition between the gain in

�ipping the spin of one particle and the cost of breaking a pair. In the grand-canonical ensemble,

the ground state is obtained by minimizing the grand-potential:

Ω(µ↑, µ↓) = E − µ↑N↑ − µ↓N↓ = E −HM − µ̄N, (6.1)
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where M = N↑−N↓ is the polarization, N = N↑+N↓ the total atom number, µ̄ = (µ↑+µ↓)/2 the

mean chemical potential, and H = (µ↑ − µ↓)/2 the e�ective �magnetic" (or spin-polarizing) �eld1.

The robustness of the unpolarized super�uid state was �rst addressed very soon after the discovery

of BCS theory by Clogston and Chandrasekhar [295, 296]. They compared the energy of the

superconducting state to that of the normal state and they showed that the BCS superconducting

state has a lower energy provided the e�ective magnetic �eld H is smaller than a critical value

H < Hc = ∆/
√

2, where ∆ = 8e−2 exp(−1/2kF |a|) is the pairing gap. The BCS super�uid will be

exponentially fragile in 1/kFa to spin-imbalance. Since Hc < ∆, the transition to a normal state

occurs before the super�uid becomes polarized2. Because the unpolarized super�uid is still a local

minimum in the energy landscape (see for instance [299]), the transition is �rst-order. Deep in the

BEC region, the picture is di�erent. The energy cost to �ip a spin is essentially the bound state

energy of a dimer, ~2/ma2, and this energy is increasingly large in the BEC limit. The system

will be robust to the presence of an e�ective magnetic �eld. In this case however, the unpolarized

super�uid is not a local minimum anymore and a second-order transition to a polarized super�uid

occurs [300] 3. The gas is then a molecular Bose gas immersed in a Fermi sea of unpaired excess

atoms.

6.1.2 The N + 1 body problem: the Fermi Polaron

Figure 6.1: Sketch of the impurity ↓ particle in a Fermi sea of ↑ atoms (left panel). The interactions

with the majority atoms lead to a dressing of the minority atom, the Fermi polaron (middle panel).

If the interactions are further increased, the ↓-atom binds with a single ↑-atom forming a molecule

that interacts with the rest of the Fermi sea.

Another important limiting case is that of highly-imbalanced samples, namely a single minority

↓ particle immersed in a Fermi sea of ↑ atoms. In the phase diagram, this corresponds to the line

between the fully polarized phase at large e�ective �eld and a partially polarized phase (either

normal or super�uid). This question was �rst addressed analytically in [112, 301]. F. Chevy

proposed an intuitive variational ansatz describing the scattering of the ↓ particle, creating one

1The e�ective �eld is usually written h in the literature but we avoid this notation because of the h-pressure

function.
2The system becomes polarized when it is energetically favored to �ip a spin. We calculate the variation of the

grand-potential δΩ for �ipping one atom from Eq.(6.1): δM = 2 (and δN = 0). If the system is paired, this results

in breaking a pair: δE = 2∆. The unpolarized system is protected as long as δΩ > 0, or H < ∆.
3A simple mean-�eld model of this picture can be found in [300], and one �nds:

Hc

EF
=

1

(kF a)2
+

1

2πkF a

(
aad −

add

6

)
, (6.2)

where aad (add) is the atom-dimer (dimer-dimer) scattering length.
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particle-hole excitation in the ↑ Fermi sea [301]:

|ψ〉 = φk0
|k0,FS〉+

∑
k,q

φk,qa
†
k↑aq↑ |k0 + q− k,FS〉 (6.3)

where |k0,FS〉 is the Fermi sea of ↑ and the ↓ particle has a momentum k0. The second term

describes the particle-hole excitations, with a majority atom of the Fermi sea of momentum q (q <

kF ) being excited to a momentum k (k > kF ), and to conserve momentum, the minority particle

acquires a momentum k0 + q − k. To determine the properties of the minority atom interacting

with the Fermi sea, one �nds the φ0 and φk,q parameters which minimize the expectation value of

the Hamiltonian describing a two-component Fermi gas with short-range interactions:

Ĥ =
∑
kσ

εka
†
kσakσ +

g0

V

∑
k,k′,q

a†k+q↑a
†
k′−q↓ak′↓ak↑ (6.4)

where εk = ~2k2/2m, akσ is the annihilation operator of particle of spin σ and momentum k, and

g0 is the bare coupling constant. The minimization leads to an implicit equation for the energy of

the minority particle:

E = εk0
+

1

V

∑
q<kF

1
1
g0

+ 1
V

∑
k>kF

1
εk−εq+εk0+q−k−E

(6.5)

This expression requires a renormalization of the bare coupling constant g0, that needs to be

replaced by the scattering length, using the Lippman-Schwinger equation 1
g0

= m
4π~2a − 1

V

∑
k

1
2εk

.

At low momenta, the dispersion relation of the impurity can be expanded as:

E(k0) = AEF +
~2k2

0

2m∗
+ . . . (6.6)

The minority atom becomes dressed by the interaction with the Fermi sea and the resulting quasi-

particle is called the Fermi polaron. The polaron has two important properties: a binding energy

AEF and an e�ective mass m∗. For a free particle, one would have A = 0 and m∗ = m. To

determine these quantitatively, we replace the sums in Eq.(6.5) by integrals, and solve Eq.(6.5) for

the energy. At unitarity 1/a = 0 we �nd A = −0.607 and m∗/m = 1.17. This calculation can be

performed as a function of 1/kFa [302], and the result is shown by the dashed black line in Fig.6.2.

The polaron characteristics have been determined accurately by more advanced approaches: two

Fixed-Node calculations �nd A = 0.58(1) and m∗/m = 1.04(3) [229] (black triangle in Fig.6.2b),

and A = 0.59(1) and m∗/m = 1.09(2) [261] (green diamonds in Fig.6.2). An analytical approach

taking into account two particle-hole excitations yields A = 0.6156 and m∗/m = 1.20(2) [303]

(blue circles in Fig.6.2b). A Diagrammatic Monte Carlo calculation yields A = 0.615 and m∗/m =

1.225(50) [304, 305, 306] (red squares in Fig.6.2). It is remarkable that the simple variational

treatment (6.3) gives a quantitatively reasonable picture of the Fermi polaron. All theoretical

calculations are in reasonable agreement for the binding energy of the polaron, together with the

measurement at MIT, A = −0.58(5) [132]. On the other hand, there are important quantitative

di�erences concerning the e�ective mass, together with the experimental measurements from MIT,

using a density pro�le analysis (m∗/m = 1.06) [111], and from our group, using a collective modes

study (m∗/m = 1.17(10)) [63]. Nevertheless, all determinations agree that the e�ective mass of

the Fermi polaron is close to unity and is thus surprisingly barely modi�ed by the interactions,

contrary to other strongly interacting systems such as 4He (see section 5.1.5).

The Polaron-to-Molecule Transition

The properties of the Fermi polaron can be calculated in the BEC-BCS crossover, giving the line

in the phase diagram between the fully polarized and a partially polarized normal phase. Indeed,
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Figure 6.2: Properties of the Fermi Polaron. (a): The binding energy A of the Fermi polaron (where

E = AEF ). Theoretical predictions: the single particle-hole ansatz (dashed black line [302]), a

Diagrammatic Monte Carlo calculation (red squares [304]), and a Fixed-Node Monte Carlo (green

diamonds [261]). A RF-spectroscopy measurement is in agreement with the calculations at unitarity

A = −0.58(5) (purple triangle [132]). The binding energy on the BEC side is shown in dashed blue

line. (b): The e�ective mass m∗/m as predicted by a one-particle-hole (dashed black line [302]),

and two-particle-hole analytical calculation (blue circles [303]), together with a Fixed-Node result

at unitarity (black triangle [229]). The Fixed-Node Monte Carlo calculation from [261] is shown

in green diamonds.

in this case Hs/EF = (µ↑ − µ↓)/2EF = (1 − A)/2 (since µ↑ = EF ) where A is a function of

1/kFa (Fig.6.2a). However, it is expected that far in the BEC regime, the Fermi polaron will not

be stable as the minority atom will tend to bind with a single ↑ particle. In this case, the trial

wavefunction (6.3) is not appropriate to describe a ↑-↓ molecule interacting with the Fermi sea of

↑. In particular, the calculation of the e�ective mass leads to a diverging behavior in the BEC

limit (see Fig.6.2b), while we expect the e�ective mass to tend to 2m because of the formation

of a molecule. The energy of the molecule was calculated using a Diagrammatic Monte Carlo

method [304], an analytic theory involving two particle-hole excitations [307] and a molecular

variational ansatz in the spirit of the variational wavefunction [308, 300]. These studies revealed

that the energy of the polaron and the molecule crosses, leading to a sharp transition between the

polaron and the molecular state for a value of 1/kFa ≈ 0.9.

6.1.3 A Qualitative Phase Diagram

We now show in Fig.6.3 a qualitative phase diagram of the spin-imbalanced Fermi gas. TheM -point

is the polaron-to-molecule transition. The splitting point S is the point where the super�uid-to-

normal transition turns from �rst-order to second-order. Deep in the BEC regime, the critical

e�ective �eld will turn the unpolarized super�uid SF into a polarized super�uid SFp rather than a

normal phase. The system is then composed of a Bose-Einstein condensate of molecules immersed

in a weakly interacting gas of unpaired majority atoms. However, for large enough interactions, the

atom-dimer mixture is unstable against demixion (a mean-�eld calculation provides a critical value

1/kFa ≈ 1.7). Monte-Carlo simulations have shown that between 1/kFa ≈ 0.73 and 1/kFa ≈ 1.7,

the Hs-line indeed becomes �rst-order [261] (not depicted in Fig.6.3), where the molecules and the

unpaired atoms are phase-separated, and the polarized super�uid disappears with a �nite density-

jump. Because theM -point is expected to sit inside this �rst-order line, it cannot be observed for a
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�nite amount of minority atoms, since the pairs will phase-separate before the polaron-to-molecule

transition occurs. This phase diagram is however not completely understood. It is predicted

for example that in the BCS regime, the balanced super�uid has a transition to a phase with a

spatially varying order parameter, the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) phase [309, 310].

Other exotic phases have been proposed such as the deformed Fermi surface, or Sarma phase (see

for instance the reviews [311, 312]). The transition from the normal partially polarized phase to

the polarized super�uid (region marked by �?") is also discussed, with a possible splitting of Hc in

two lines (see for instance Fig.2 in [312]) with an unstable region up to the tricritical point (not

shown) at 1/kFa ≈ 1.7 where the SF, SFp and FP phases join.

FP

PP

SFp

SF

H

1/kFa
0 0.5-0.5 1

M

S

Hs

Hc

Figure 6.3: Qualitative Phase Diagram of the Spin-Polarized Fermi Gas in the BEC-BCS crossover

(�gure adapted from [300]). The phases indicated are the fully polarized normal phase (FP), the

partially polarized normal phase (PP), the unpolarized super�uid (SF) and the polarized super�uid

(SFp).

6.1.4 Experimental investigations

Because of the ubiquitous presence of Fermi systems in nature, the search for the Clogston-

Chandrasekhar limit was undertaken in various �elds of physics, ranging from astrophysics, to

quantum chromodynamics and solid state physics [297]. In most superconductors, it is hard to ob-

serve the CC-limit as the necessary magnetic �elds are usually above the critical �eld for the quench

of the superconducting phase, in addition to the di�culty of addressing the electron spins rather

than their orbital motion (see chapter VI in [297]). Though experimental hints of the existence of

the FFLO phase have been gathered in heavy-fermion compounds [297], a clear experimental ob-

servation remains elusive. In ultracold atoms, because of the stability of the Zeeman spin-mixture,

it is experimentally easy to produce chemical potential imbalance in dilute Fermi gases. When

our work was initiated, two groups had performed pioneering experiments on spin-polarized Fermi

gases, observing the robustness of the unpolarized super�uid but with di�erent scenarios. The

group of W. Ketterle at MIT had observed phase-separation of an unpolarized super�uid core
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surrounded by a partially polarized normal phase and a fully polarized outer rim [298]. Above a

critical polarization Pc = (N1−N2)/(N1 +N2) ≈ 75 % the super�uid core disappeared. The group

of R. Hulet at Rice University observed a qualitatively di�erent picture [137,313]: the unpolarized

super�uid core was surrounded by a fully polarized shell only. As a consequence, it was always

present regardless of the spin-imbalance, thus giving Pc = 100 %.

The discrepancy sparked an intense theoretical e�ort. The two experiments were performed in

very di�erent atom number and trap aspect-ratio conditions and this was considered as a possible

explanation for the di�erences observed in the experiments [314]. In addition, clear LDA-violating

features were observed in the Rice experiment, and surface tension e�ects were considered to

explain them [315, 316]. Understanding this discrepancy was an important source of motivation

for our early experiments.

6.2 Measurement of the Equation of State

The equation of state of the low-temperature two-component imbalanced Fermi gas can be mea-

sured using the technique introduced in the previous chapters, since the pressure formula is also

valid for unequal spin populations. In this case, the pressure of the system will read P (µ1, µ2, a)

where µ1 and µ2 are the chemical potential of both spin species (by convention label �1" will

refer to the majority component), and a the scattering length. Assuming that the local density

approximation is veri�ed, the pressure is measured from the sum of the doubly-integrated density

pro�les of the two spin components:

P (µ1z, µ2z, a) =
mω2

r

2π
(n̄1(z) + n̄2(z)). (6.7)

where µiz = µ0
i − V (z) is the local chemical potential of species i along the z-axis. As usual,

we introduce dimensionless quantities. First, the new variables introduced are the dimensionless

spin-imbalance η, and interaction strength δ1:

η =
µ2

µ1
(6.8)

δ1 =
~√

2mµ1a
. (6.9)

Secondly, the pressure is normalized to the pressure of a single-component non-interacting gas of

majority atoms P0(µ1) = 1/15π2(2m/~2)3/2µ
5/2
1 :

P (µ1, µ2, a) = P0(µ1)h(η, δ1). (6.10)

The aim of this chapter is the measurement of the universal function h(η, δ1). The interaction

strength δ1 is similar to the interaction strength introduced in chapter 5, except that it refers to

the majority spin component4. Similarly to what was encountered in the previous chapters, the

trap scans di�erent local values of both η and δ1, and the main issue is to determine the global

chemical potential of each spin species µ0
1 and µ0

2.

In the experimental sequence, we prepare the spin-mixture following the procedure in section

2.3.3, and the interaction strength is varied by slowly ramping the Feshbach coils to the desired

�nal magnetic �eld value, while evaporating the mixture using an exponential ramp of 5 s (with

4In the interaction range explored, we will show later that µ1 > 0 so that δ1 is well de�ned.
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Figure 6.4: Raw in-situ doubly-integrated density pro�les (left panel) and absorption images (right

panel) of a spin-imbalanced Fermi gas at the unitary limit. Both images are taken with an exposure

time of 10 µs, separated by a 10 µs delay. The pressure calibration using the fully polarized outer

shell is shown in dashed green (see text). The vertical size of each absorption image (right panel)

is 45 µm.

a characteristic time of 500 ms) towards a �nal laser trap intensity before taking the images.

The density pro�les n̄1(z) and n̄2(z) are recorded using absorption imaging, imaged successively

on a spin-imbalanced mixture (see section 2.4.1). An example of raw density pro�les of a spin-

imbalanced gas at the unitarity limit is shown in Fig.6.4. The majority (minority) component is

shown in blue circles (red squares), together with the absorption images (right panel).

6.2.1 Pressure Calibration and Determination of the Chemical Potentials

The local population imbalance and interaction strength along the z-axis (denoted by ηz and δ1z)

vary according to:

ηz =
η0 − V (z)/µ0

1

1− V (z)/µ0
1

(6.11)

δ1z =
~√

2m(µ0
1 − V (z))a

, (6.12)

We thus have to determine µ0
2 and µ0

1 (and hence, η0 = µ0
2/µ

0
1). In addition, the pressure formula

requires an absolute measurement of the doubly-integrated density pro�les 6.7, together with an

accurate determination of the radial trapping frequency ωr. As we have seen in the previous

chapters, several tricks can be used to calibrate the pressure to a reference pressure. In the case

of imbalanced spin-mixtures, an elegant solution to the calibration issue can be implemented, as

�rst presented in [111]. The h-function as de�ned in Eq.(6.10) is normalized to the pressure of the

non-interacting Fermi gas of majority with the same chemical potential. In the range of interaction

strength explored in this work, we always observe an outer rim consisting of majority atoms only.

Because p-wave interactions are negligible, this fully polarized gas at the rim is a non-interacting

gas and its density pro�le in a trap corresponds to the fermionic Thomas-Fermi distribution. As a

consequence, the global chemical potential of the majority spin species µ0
1 is readily given by the
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Thomas-Fermi radius R1 �tted in the outer shell5:

µ0
1 =

1

2
mω2

zR
2
1. (6.13)

At each point on the z-axis, the �tted Thomas-Fermi pro�le n̄0
1(z) = A0(1 − z2/R2

1)5/2 is the

pressure of the non-interacting gas with the same local chemical potential µ1z than the interacting

majority component. This pressure is precisely the normalization of h. We can thus rewrite

Eq.(6.10), together with the pressure formula (6.7):

h(η, δ1) =
P (µ1, µ2, a)

P0(µ1)
=
n̄1(z) + n̄2(z)

n̄0
1(z)

. (6.14)

We note that the fully polarized shell acts as a reference pressure for the whole density distri-

bution. This is a very convenient normalization as it is self-included in each absorption picture.

Importantly, the self-normalization contained in the factor A0 cancels various systematic errors: it

makes accurate knowledge of the radial trapping frequency irrelevant, as well as a probe detuning

mismatch (provided it is the same for both spin species) or image magni�cation error.

Finally, the determination of the minority global chemical potential µ0
2 can be achieved with

the minority density pro�le. We saw in section 6.1.2 that the dilute limit, where n̄2 → 0, the

problem reduces to a single impurity in a (local) Fermi sea of majority atoms, the Fermi polaron.

Hence, in this limit the minority chemical potential is related to the majority one by µ2 = Aµ1,

with A being the dimensionless polaron binding energy and µ0
2 given by the radius R2 at which

the minority density distribution vanishes:

µ2z(z = R2) = Aµ1z(z = R2)⇐⇒ η0 = A+

(
R2

R1

)2

(1−A) (6.15)

This approach thus requires one to use A as an input parameter6. Finding R2 is still subject to the

choice of the �tting function, as for the case of the T = 0 Bose gas of chapter 3. Fixed-Node Monte

Carlo calculations �rst observed that the normal partially polarized state appeared to behave

like a weakly interacting gas of quasi-particles [229]. This was later con�rmed experimentally at

MIT [111], and established analytically [317], justifying the simple choice of a fermionic Thomas-

Fermi distribution7 to �t R2.

6.2.2 The Equation of State of the Spin-Imbalanced Gas in the BEC-BCS

crossover

In order to make an intuitive link between the density distributions, the phase diagram and the

grand-canonical equation of state that we will extract from them, we �rst present the measurement

at unitarity 1/a = 0. In addition, it will allow us to introduce the main features observed in the

region of the BEC-BCS crossover that we investigated.
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Figure 6.5: Equation of state of the two-component unitary (δ1 = 0) Fermi gas as a function of

spin-imbalance η. (a): In-situ density pro�les of the majority n̄1(z) (blue circles), minority spin-

component n̄2(z) (red squares), and the di�erence n̄d(z) = n̄1(z) − n̄2(z) (green diamonds). RS

(R2) is the super�uid (minority) radius. The solid lines are guides to the eye. (b): h-function

extracted from the density distributions showing the three phases: the super�uid (SF), normal

partially polarized (PP), and fully polarized phase (FP). We also show the equation of state for

the PP phase predicted by a Fixed-Node Monte Carlo (dotted black line [229]) and using a Fermi-

liquid EoS together with the polaron properties extracted the two particle-hole excitations (dashed

blue line [303]), see section 6.2.4. The transition FP-PP is given by the polaron binding energy

η = A, while the PP-SF transition occurs for η = ηc.

Density Pro�les and Phase Diagram of the Spin-Imbalanced Unitary Gas

In Fig.6.5a, we show the in-situ density pro�les of the majority n̄1(z) (blue circles), minority spin-

component n̄2(z) (red squares), and the di�erence n̄d(z) = n̄1(z) − n̄2(z) (green diamonds). We

�rst note that there is an outer region where the majority is present without minority atoms,

composing the fully polarized (FP) phase. According to the normalization of h Eq.(6.10), this

corresponds to:

hFP(η) = 1. (6.16)

The �rst minority atoms appear at a radius R2, when the minority chemical potential µ2 = Aµ1,

or η = A, marking the separation between the fully polarized and the normal partially polarized

phase (PP). Finally, we observe that n̄d(z) saturates below a radius RS . As we will see in section

6.2.3, within LDA, it is a direct signature of a fully paired core, the unpolarized super�uid phase

(SF). The critical chemical potential imbalance for the normal-to-super�uid transition ηc is simply

related to the super�uid radius RS by:

ηc =
η0 − (RS/R1)2

1− (RS/R1)2
. (6.17)

5From Eq.(6.13), µ1z > 0 for all z and δ1 in Eq.(6.9) is well de�ned.
6An alternative option is to use ξs as an input, which in turn �xes η0.
7This procedure, though simple, is sensitive to the �tted radius R2. In order to make it robust, about 20 images

are averaged before determining η0. We �rst start with a reference image, with some unknown η
(1)
0 . A second image

is patched to it by adjusting its value η
(2)
0 . Both are averaged and a third image is patched, and so on, recursively.

At the end, we obtain a low-noise averaged pro�le whose η0 can be determined accurately (the interested reader is

referred to the Appendix B.1 of [121] for details).
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Moreover, an abrupt change is seen in the slope of n̄d at z = RS , which is clearer in the averaged

pressure on Fig.6.5b at η = ηc and is the signature of a �rst-order phase transition, as we will see

in section 6.2.3.

The Equation of State in the BEC-BCS crossover

Applying the pressure method for density pro�les taken at di�erent values of the magnetic �elds

comprised between 766 and 981 G (about 20 images are taken for each magnetic �eld value), we

measure the function h(η, δ1), for which several examples are shown in Fig.6.6. Let us �rst note

that, while it is clear that the measurements of h for each magnetic �eld are convenient to plot

in this way, they represent curved lines in the parameter space of interaction strength and spin

imbalance (δ1, η). If one takes into account the variation of these parameters in the trap, Eqs.(6.11)

and (6.12), they are locally related one to each other by:

δ1z = δ0
1

√
1− ηz
1− η0

(6.18)

Each absorption image thus scans the parameter space (δ1, η) from a central value of (δ0
1 , η0) along

the line 6.18 down to δ1 → sign(a)∞ and η → −∞ (in the limit of in�nite signal-to-noise ratio)8.

871 G871 G834 G834 G

822 G822 G

811 G811 G

-1 -0.5 0 0.5
1

1.4

1.8

2.2

Η

h

Figure 6.6: Equation of state h of an imbalanced Fermi gas as a function of spin-imbalance η

for di�erent values of the magnetic �eld. The super�uid (normal) phase is shown in red (black)

points. The critical spin-imbalance for the super�uid transition ηc is shown in vertical dashed lines

together with the uncertainty in grey shaded area. The �ts to extract the e�ective mass m∗/m

using a Fermi-liquid type EoS are shown in black solid lines.

8Except for the unitary limit, where all images belong to the line (0, η) and thus can be patched together, various

images at di�erent polarization for a given magnetic �eld will not necessarily belong to the same curve (δ1, η(δ1)) and

cannot be patched in principle. We estimated the systematic error of patching together images at a given magnetic

�eld by comparing the EoS obtained by averaging the M simulated pro�les with the same values of (δ
0(i)
1 , η

(i)
0 )

(where i = 1, 2, . . . ,M) as the set of data patched and observed a deviation of at most 5% compared to the EoS

expected for the averaged value (〈δ0(i)
1 〉, 〈η(i)

0 〉), thanks to the fact that the images selected have similar total atom

number and polarization conditions.
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6.2.3 The Normal/Super�uid Phase Transition

For all values of interaction strength explored in this work (−1 < δ1 < 0.6), we observe in the

center of the trap a �at-top feature in the doubly-integrated di�erence of the density pro�les (see

green diamonds on Fig.6.5a at unitarity). Assuming the LDA (and a harmonic trap), we can

simply relate the local density on the z-axis n(0, 0, z) to n̄(z). We start with the Gibbs-Duhem

relation n = ∂P/∂µ and use the pressure formula to replace P by n̄. We then use the LDA:

∂/∂µ = −(mω2
zz)
−1∂/∂z to �nd:

n(0, 0, z) = −λ
2

2π

1

z

dn̄

dz
, (6.19)

where λ = ωr/ωz is the trap aspect ratio. This relation is valid for any of the spin species and

by linearity, for the density di�erence as well. We thus deduce from Eq.(6.19) that dn̄d/dz = 0

implies n1 = n2. The plateau is a direct indication of a fully paired inner core. Though strong

evidence, the full pairing character is not a direct proof of super�uidity. This proof came by setting

an imbalanced gas in rotation and observing the appearance of quantized vortices only in the fully

paired core, not in the outside normal regions [298]. Another important consequence of Eq.(6.19)

is that a discontinuity in the derivative of h represents a jump in the density n.

At Unitarity...

òò ìì
àà

ΗcΗc

-0.2 0 0.2
0

0.5

1

Η

n
2

�n
1

Figure 6.7: Minority concentration n2/n1 as a function of chemical potential spin-imbalance η

for the unitary gas. The critical point was determined experimentally (black diamond) and is

compared to a density pro�le analysis at MIT (green triangle [111]), as well as to a Fixed-Node

Monte Carlo study (blue square [229]).

At unitarity, the minority concentration n2/n1 can be readily calculated from h(η) (here δ1 =
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0)9:
n2

n1
=

h′

5
2h− ηh′

(6.22)

where ′ = d/dη. The discontinuity in h′ at η = ηc on Fig.6.5b thus leads to a jump in the minority

concentration. Using the value of h measured as well as a three-point �nite di�erence derivative,

we can extract n2/n1 from our data at unitarity (Fig.6.7). For η > ηc, n2/n1 ≈ 1 as expected for

the balanced super�uid. From the equality of densities we deduce that the pressure depends on µ1

and µ2 through µ̄ only, and we can write10:

PSF =
2

15π2

(
2m

ξs~2

)3/2

µ̄5/2 (6.24)

where µ̄ = (µ1 + µ2)/2. This pressure is plotted in a red solid line in Fig.6.5b. Below ηc the

density abruptly jumps, marking a �rst-order quantum phase transition to the normal state with

a critical concentration (n2/n1)c = 0.5(1) and ηc = 0.065(20) (black diamond in Fig.6.7). This

phase separation was �rst observed at MIT [138] using the inverse Abel transform, and from a

subsequent density pro�le study Y. Shin extracted ηc = 0.03(2) and (n2/n1)c = 0.53(5) (green

triangle in Fig.6.7) [111]. Our result is in agreement both with the MIT analysis as well as with a

Fixed-Node calculation ηc = 0.017 and (n2/n1)c = 0.44 (blue square) [229].

...and beyond

Similarly, we can pinpoint the location of the transition from the kink on the pressure as shown in

vertical dashed lines in Fig.6.6 for the di�erent values of the interaction parameter δ1. We show in

Fig.6.8 the critical e�ective �eld Hc/µ1 = (1−ηc)/2 in the BEC-BCS crossover11. In particular we

see that the two lines between the FP-PP and the PP-SF transition are joining on the BEC side,

which marks the disappearance of the partially polarized normal phase. This point was determined

experimentally at MIT and found at 1/kF1a = 0.74(4) [47] (green �lled rectangle in Fig.6.8)12,

consistent with our phase diagram.

For the super�uid to remain unpolarized, it is necessary that the e�ective �eld H = (µ1−µ2)/2

be smaller than the single-particle excitation gap ∆. Indeed, as we have seen before, if H > ∆ it is

energetically favorable to �ip the particle spins, and the system becomes polarized. We then have a

transition either to a normal or a super�uid polarized phase. Since we investigated a region where

9 Starting from the de�nition P (µ1, µ2) = P0(µ1)h(η), Gibbs-Duhem relation for each spin species yields:

E
3/2
F1 =

2

5
µ

3/2
1 (

5

2
h− ηh′) (6.20)

E
3/2
F2 =

2

5
µ

3/2
1 h′, (6.21)

where EFi = ~2

2m
(6π2ni)

2/3 is the Fermi energy of species i.
10Or:

hSF(η) = (2ξs)
−3/2(1 + η)5/2. (6.23)

11The analysis on the density jump is not as easily extendable outside the unitary limit. Indeed the calculation

of n2/n1 involves not only the derivative of h versus η but also versus δ1. Our measurement is not su�ciently

dense to estimate the latter from the experimental data points (see right panel of Fig.6.8) but it is still possible to

extract n2/n1 from the density pro�les knowing from Eq.(6.19) that n2/n1 = dn̄2/dn̄1. This analysis is undertaken

in section 5.3.2 of [121].
12The horizontal width represents the error bar, the vertical position and size are chosen for clarity.
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Figure 6.8: Phase Diagram of the spin-imbalanced Fermi gas. The three phases present are the

super�uid phase (SF), the normal partially polarized phase (PP) and the fully polarized phase

(FP). Upper panel: The experimental data points for the critical �eld Hc/µ1 for the super�uid-

to-normal phase transition are shown together with a guide to the eye (red solid line), as well as

the transition line between the FP to PP phase (blue solid line). The upper bounds provided by

RF-spectroscopy of the pairing gap are shown in green squares [29]. Lower panel: EoS h(δ1, η)

together with the data points (black dots) and the transition lines. The solid black lines are the

curves (δ1z, ηz) scanned by an image in the trap (see Eq.(6.18)).

the super�uid is unpolarized, the gap provides us with an upper bound to the value of the critical

�eld. We plot on the phase diagram Fig.6.8 the bound provided by the MIT measurement of the
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pairing gap using radio-frequency spectroscopy [29] (green squares). Our value of Hc seems to

saturate the upper bound in the interaction regime explored here rather than verify the Clogston

expression Hc = ∆/
√

2 which should ultimately be reached in the BCS limit. This shows the

remarkable robustness of the strongly interacting super�uid Fermi gas to population imbalance.

This point was already suggested in a Monte Carlo calculation [285].

Zero-Temperature Assumption

We have throughout this chapter assumed that our measurements were done at T = 0. It is

important, as in chapter 3, to check the validity of this assumption. For an imbalanced spin-

mixture a remarkable solution for the problem of thermometry of strongly interacting systems

has been proposed and implemented in [248]: since the fully polarized phase of majority atoms

is a non-interacting gas, its thermodynamics is exactly known, and it is in thermal contact with

the inner strongly correlated region. It thus ful�lls the requirement of an ideal thermometer and

the temperature can be �tted using �nite-temperature Thomas-Fermi distributions on the fully

polarized wings. From our unitarity gas density pro�les (see Fig.6.5a for example), we �nd an

upper bound on the temperature of T < 0.06TF , where kBTF = µ0
1. This method is also e�cient

on the BEC side and leads to the same upper bound. On the BCS side, where the fully polar-

ized shell is smaller, the �t is less reliable and we obtain a less stringent upper bound of T < 0.13TF .

We also have an independent check on this bound because we observe a kink, hence a �rst-order

phase transition between the super�uid and the normal phase. It was determined experimentally

that at unitarity this transition becomes second order above the temperature of a tricritical point

Ttri = 0.07TF [248], in agreement with mean-�eld calculations [318, 319] and they predicted that

Ttri is about half the critical temperature for super�uidity on the BCS side. We thus have Ttri as

an upper bound for all our values of interaction strength.

The Super�uid Phase

We recall that the unpolarized super�uid, where n1 = n2, depends only on the mean chemical

potential µ̄ = (µ1 + µ2)/2. In this phase, we can also write the pressure symmetrically:

P (µ1, µ2, a) = 2P0(µ̄)hS(δ) (6.25)

where the symmetric interaction strength is de�ned as:

δ =
~√

2m(µ̄− Eb/2)a
. (6.26)

We subtract to the mean chemical potential the binding energy on the BEC side of the resonance

Eb = −~2/ma2 for a > 0 and zero otherwise in order to avoid negative chemical potentials. Using

the points in the super�uid phase (red points in Fig.6.6), we have a direct measurement of the EoS

of the balanced super�uid in the BEC-BCS crossover, presented in section 5.2.

6.2.4 A Gas of Polarons

Let us focus on the normal partially polarized phase. The critical value for the appearance of the

normal phase is dictated by the problem of a single impurity in a Fermi sea, and the transition

between the fully polarized and the partially polarized phase occurs for η = A(δ1). However, going

beyond this picture is not trivial and computing the EoS of the normal phase requires, in principle,
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Figure 6.9: E�ective mass of the Fermi Polaron in the BEC-BCS crossover (our data is shown as

black points). Other experimental measurements: a density pro�le analysis at MIT m∗/m = 1.06

(down black triangle [111]) and a measurement we performed using collective modes m∗/m =

1.17(10) (brown empty circle [63]). Theoretical predictions: a one-particle (dashed black line [302]),

and two particle-hole analytical calculation (blue circles [303]), together with a Fixed-Node result

(black triangle [229]). The Fixed-Node Monte Carlo calculation from [261] is shown in green

diamonds. Inset: Zoom around unitarity. The various measurements are slightly shifted from the

unitary limit for clarity.

to solve the problem of a �nite number of minority atoms immersed in a Fermi sea of majority

atoms. This cannot be done analytically and Fixed-Node Monte Carlo methods have been used to

address this problem. It was observed numerically [229, 320], and later justi�ed analytically [317]

that at �nite concentration x = n2/n1, the small amount of Fermi polarons would form a degenerate

gas describable by a Landau-Pomeranchuk equation of state:

E =
3

5
N1EF1(1− 5

3
Ax+

m

m∗
x5/3 + Fx2 + . . .) (6.27)

where the quadratic F -term represents interactions between polarons. In order to test this behavior,

we need to translate the Fermi-liquid EoS in the grand-canonical ensemble. We suggested writing

the pressure in the normal phase as [60]:

P (µ1, µ2) =
1

15π2

((
2m

~2

)3/2

µ
5/2
1 +

(
2m∗

~2

)3/2

(µ2 −Aµ1)5/2

)
. (6.28)

Using the canonical to grand-canonical correspondence equations Eqs.(6.37) and (6.38), it is easy

to show that to lowest order Eq.(6.28) is equivalent to the canonical expression Eq.(6.27), provided

F = 5A2/9. Using the value of A at unitarity, we deduce F = 0.21, in reasonable agreement with

the estimate F = 0.14 from the Fixed-Node calculation [261]. It was later shown by C. Mora

and F. Chevy that this relation is a particular case of the exact relation F = 5
9

(
dµp
dµ1

)2

(where

µp = A(δ1)µ1) valid in the BEC-BCS crossover (as long as the Fermi polaron is stable) [317]. The

gas of polaron is thus assumed to be a weakly-interacting gas of quasi-particles with a renormalized
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mass m∗ and a shifted chemical potential µ2 − Aµ1 due to the binding to the Fermi sea. In the

crossover, we simply generalize the pressure from Eq.(6.28) as:

hPP(η, δ1) = 1 +

(
m∗(δ1)

m

)3/2

(η −A(δ1))5/2 (6.29)

In Fig.6.5b we use Eq.(6.29) with the parameters A(0) = −0.61 and m∗(0) = 1.2m determined

at unitarity from the Diagrammatic Monte Carlo [304] (or the two particle-hole calculation [303])

and we obtain the blue dashed line in the PP phase. The predictions from the Fixed-Node Monte

Carlo [229] result in the dotted black line on the same �gure. We see that while the �rst one is in

excellent agreement with our EoS in the normal phase, the second one is slightly but systematically

below our data. Alternatively, we can use A as the only input parameter, and leave m∗/m as a free

�tting parameter. Doing so in the BEC-BCS crossover, we obtain the solid black lines in Fig.6.6

and we can directly measure the e�ective mass of the Fermi polaron in the BEC-BCS crossover as

shown in Fig.6.9. It is remarkable that, except for the data points in the BCS regime (EoS at 871

G in Fig.6.6) the description of the normal phase as a weakly interacting gas of polarons is very

successful even up to the critical point ηc, despite the fact that the minority concentration n2/n1

reaches 0.5, and the picture of a dilute gas of polarons might be expected to break down.

6.2.5 Comparison to other experiments

Critical Polarization of a Trapped Fermi gas

As was already demonstrated in the previous chapters, the EoS of the homogeneous gas can be

used to deduce information on trapped samples, provided the LDA is veri�ed. Early experiments

on spin-polarized Fermi gases measured global quantities, most importantly the critical polariza-

tion at which the super�uid core vanishes. For example, the MIT group has measured the critical

polarization via the condensate fraction, by using the fast-sweep-projection technique [321, 322]

and observing a bimodal distribution after expansion (blue triangles [298] and red squares [138]

in Fig.6.10). We plot the critical polarization P = (N1 − N2)/(N1 + N2) as a function of the

global majority interaction strength 1/kFa, where k
2
F = 2m

~2 ~ω̄(6N1)1/3. For P < Pc, a super�uid

core is present at the center of the trap while for P > Pc the cloud is completely normal. In early

experiments performed in the Rice group, a super�uid was always seen regardless of the imbalance,

thus setting the Clogston-Chandrasekhar limit to 1 (empty black square [137]).

We can determine Pc from the full h-function shown in the right panel of Fig.6.8. The critical

polarization is reached when the critical spin-imbalance ηc is obtained at the center of the trap.

The global polarization is obtained by calculating the total atom number of each spin-species in

the trap:

Ni =

∫
d3r ni(µ

0
1 − V (r), µ0

2 − V (r)) (6.30)

where the trap is considered isotropic. This is not an additional assumption since the LDA is

assumed for this calculation and the normalized result will not depend on the trap frequencies.

Finally the interaction strength in the trap must also be computed:

1

kFa
=
R1

a

1

(6N1)1/6
=

δ0
1

(6N1)1/6
(6.31)

The total atom numbers are calculated as a function of δ0
1 , the grand-canonical interaction strength
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Figure 6.10: Critical polarization P = (N1 − N2)/(N1 + N2) for a trapped imbalanced Fermi

gas versus the majority interaction parameter 1/kFa. Below the critical polarization Pc(1/kFa) a

super�uid SF is present in the center of the trap surrounded by a normal phase shell N (SF+N).

The calculation in the trap using our experimentally determined EoS for the homogeneous gas is

shown in thick black line and compared to two measurements at MIT (blue triangles [298] and

red squares [138]), one in our group at unitarity (green circle [63]) and one from the Rice group

(empty black square [137]).

at the center of the trap13. The central spin-imbalance is constrained to η0 = ηc(δ
0
1). We show

in thick black line the curve {1/kFa(δ0
1), P (δ0

1)} in Fig.6.10. The agreement with the MIT mea-

surement is excellent, as well as with a previous determination of Pc from the density pro�les at

unitarity from our group (green circle [63]). It is however incompatible with the Rice experiment.

The fact that we quantitatively con�rmed the MIT scenario using experimental conditions (trap

aspect ratio and atom number) close to the Rice experiment further thickened the mystery. In a

subsequent work, the Rice group has reported that the maximal Clogston-Chandrasekhar limit ob-

served in their early experiments was probably due to non-equilibrium evaporative depolarization

which lead to a long-lived metastable state [131], possibly explaining the discrepancy.
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Figure 6.11: Canonical Equation of State of the Unitary Spin-Polarized Fermi Gas. (a): Radial

(upper) and Abel-reconstructed (lower) MIT density pro�les. (b): Universal g(x) function obtained

at MIT (empty blue circles [111]) and calculated from our h-function (red squares) together with

the Landau-Pomeranchuk �ts for both EoS (in green for the MIT EoS, in black for ours). The

critical concentration xc above which the system phase-separates is shown in grey shaded area and

the �ts are shown in dashed lines in the thermodynamically unstable region.

Comparison with the MIT Canonical EoS for the Spin-Polarized Unitary Gas

A measurement of the equation of state of a homogeneous spin-polarized Fermi gas using the in-situ

density pro�les of a trapped system was performed at MIT [111]. The quantity measured is the

universal dimensionless energy g(x) de�ned by

E(n1, n2) =
3

5
α(n1g(x))5/3 (6.34)

where E = E/V is the energy density, α = (6π2)2/3~2/2m and x = n2/n1. The function g(x) is

measured using the relation µi = ∂E/∂ni which yields:

g(x)5/3 =
µ1

EF1
(1 + xη). (6.35)

The local density approximation is assumed to determine the spatial variation of µ1 and η and the

local densities n1 and n2 are computed using an inverse Abel transform (bottom image in Fig.6.11a)

on the radial density pro�les (top image). The measurement of the local densities comes at a cost

of a signi�cant decrease in signal-to-noise ratio on the density distributions. The resulting EoS is

shown in empty blue circles in Fig.6.11b. The solid green line represents a �t using a modi�ed

13More precisely, we �nd:

N1 =
32

15π2

∫ 1

0
du u2(1− u2)3/2(

5

2
h− ηhη −

1

2
δ1hδ1 ) (6.32)

N2 =
32

15π2

∫ 1

0
du u2(1− u2)3/2hη (6.33)

where u = r/R1, R1 =
√

2µ0
1/mω

2 being the majority radius, the function h and its derivatives hδ1 = ∂h/∂δ1 and

hη = ∂h/∂η are all evaluated at the local value η(u) = (ηc(δ0
1)− u2)/(1− u2) and δ1(u) = δ0

1/
√

1− u2.
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Landau-Pomeranchuk EoS [111]:

g(x)5/3 = 1 +
5

3
Ax+

1 + cx

m∗
xγ , (6.36)

which yielded m∗/m = 1.06, A = −0.58, c = −0.019, and γ = 1.6. The fact that γ ≈ 3/2 shows

that the polaron gas is weakly interacting (c being a correction to the Fermi liquid behavior). We

can compare this measurement to our grand-canonical equation of state. Using Eq.(6.35), together

with Eq.(6.22) for the minority concentration and the expression of the majority Fermi energy in

Eq.(6.20), we �nd:

x =
h′

5
2h− ηh′

(6.37)

g =
h3/5

h− 2
5ηh

′ . (6.38)

Using our data points for h(η) (black points in Fig.6.5b), we compute the g-function (full red

squares in Fig.6.11b). Alternatively, we can use the analytical form for the function h(η) and we

deduce the black line. Note that the curves are shown in dashed in the region x > xc where the

system is unstable and phase-separates. We see that the agreement is reasonable.
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Figure 6.12: Density pro�les of the unitary imbalanced Fermi gas measured at MIT [248]. (a):

Radial density pro�les ñi(r), obtained by absorption imaging. (b): the numerically-integrated

radial distribution, giving the doubly-integrated pro�les n̄i(z) (solid lines). The blue dashed line

is the normalization n̄0
1(z) (see text), and the dotted black line is n̄0

1(z)−An̄2(z) (see text). (b):

Grand-Canonical analysis of MIT density pro�les

It is striking that using density pro�les with a signal-to-noise ratio lower than MIT's14, we can

measure an EoS with an equivalent or even higher precision. This demonstrates the power of the

grand-canonical pressure analysis, and in what follows we use the pressure method to analyze the

MIT density distributions, assuming harmonic trapping as in [111]. Since the raw data consists

of the radial density distributions ñi(r) (Fig.6.12a) measured in [248]15, we �rst use interpolation

14Typical atom numbers in the MIT experiment is 10 to 50 times larger than in our (or most other) experiment

because of the very e�cient cooling of 6Li, using a large BEC of 23Na as a coolant in a magnetic trap [323].
15The radial distribution are obtained using absorption imaging and are related to the real 3D density by an

integration along the line-of-sight y: ñi(r) =
∫
dy n(

√
y2 + r2). We assume here that each direction has been

rescaled according to the trap aspect ratio (which can be done provided the LDA is veri�ed).
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functions of the data to compute the doubly-integrated density pro�les n̄i(z) =
∫
dx ñi(

√
x2 + z2),

plotted in Fig.6.12b. We notice the clear �at-top feature on n̄d(z). We then determine the reference

calibration density n̄0
1(z) using the �t on the fully polarized shell (see Eq.6.14), shown in dashed

blue line in Fig.6.12b.
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Figure 6.13: Universal function h(η) extracted from the MIT data (in empty blue circles). The

error bars are an estimate on the uncertainty on the determination of η0. The solid (dashed) red

line is the super�uid EoS with ξs = 0.395 (0.38). The dashed blue line is the EoS of the polaron

gas (Eq.6.28). Our measurement is shown in �lled black circles. We also plot the function h(η, δ0a
1 )

in solid green line, corresponding to a down shift of 1.4 G between the magnetic �elds of the two

measurements.

We also plot the quantity n̄0
1(z)−An̄2(z) (dotted black line) and notice that it is equal to n̄1(z)

to less than 1 % in the whole partially polarized phase. These pro�les thus seem to verify the

following functional relation16

∂P

∂µ1
=
∂P0

∂µ1
−A ∂P

∂µ2
(6.39)

from which we deduce that the pressure in the normal phase should read P (µ1, µ2) = P0(µ1) +

f(µ2 − Aµ1). For dimensional reasons, the unknown f -function can only be the pressure of the

non-interacting Fermi gas times a constant that can be recast in a renormalization of the mass.

Hence, we deduce from the pro�les that the EoS in the normal phase is, to very good precision,

equal to the pressure that we proposed for the polaron gas in Eq.(6.28). Finally, �tting the mi-

nority radius (and using A as an input parameter), we deduce the chemical potential ratio η0 and

we plot the resulting EoS in empty blue circles in Fig.6.13. We �nd very good agreement be-

tween our EoS and the one extracted from MIT density pro�les in all three phases, though a small

16We di�erentiate with respect to z the relation n̄1(z) = n̄0
1(z) − An̄2(z), and use Eq.(6.19) in a harmonic trap.

We deduce that n1(r) = n0
1(r)−An2(r) + c, with c = 0 since n1(r) = n0

1(r) if |r| is larger than the minority radius.

Using the Gibbs-Duhem formula in this last expression leads to Eq.(6.39).
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systematic shift is seen in the super�uid phase, that might be explained by a small di�erence in

magnetic �eld between the two measurements (see section 5.3). For comparison, we displayed in a

dashed red line the expected EoS for the super�uid with the most recent Fixed-Node upper bound

ξs < 0.38 [263,288], which is di�erent from both EoS17. It is remarkable that such an analysis can

be undertaken on a single density pro�le. Two points could easily be improved in this study. First,

an average over several pro�les would further reduce the noise on the data. Secondly and more

importantly, the measurement of the EoS could be made more accurate by preparing the largest

possible normal phase, with still a small super�uid core (to pinpoint ηc), adjusting the imbalance

so that η0 is just slightly above ηc.

Finite Scattering Length correction on ξs

As performed in section 5.3, we can estimate the EoS at a magnetic �eld of 834.1 G, given the

fact that our data were likely taken at B = 835.5 G. A simple estimate is given by evaluating the

value of the interaction parameter at the center of the trap δ0a
1 = ~/

√
2mµ0

1a, with the value of

a given above, and a typical value µ0
1 = 630 nK. Using our parametrization of the EoS h(η, δ1)

(see Fig.6.8), we plot in Fig.6.13 h(η, δaz) (solid green line) together with h(η, 0) (dashed black

line), where δaz = δ0a
1 /
√

1− z2/R2
1. The resulting EoS is slightly shift in the super�uid phase,

and we note that the small systematic shift between our EoS and the one deduced from the MIT

density pro�les seems to be well explained by the small magnetic �eld shift. The change in the

normal phase is even smaller because the change of the polaron energy A and e�ective mass are

tiny, leading to minute changes in the partially polarized phase EoS. This analysis leads to a value

of the Bertsch parameter of

ξs = 0.40(2). (6.40)

The current uncertainty on the resonance position is an important source of systematic error on

the determination of ξs.

To conclude this chapter, we have measured the equation of state of the uniform spin-1/2 Fermi

gas as a function of spin-population imbalance and interaction strength. We have measured the

critical line marking the separation between the unpolarized super�uid and the partially polarized

normal phase phase diagram. This was observed to be a �rst-order quantum phase transition.

From the unpolarized phase, we have extracted the equation of state of the balanced super�uid

in the BEC-BCS crossover. We saw that the EoS in the normal phase was well described by

the pressure of a weakly interacting gas of polarons. We used our measurement to compare with

previous works done both in a trap and on the homogeneous gas. Our work should be extended

in the deep molecular regime, where many questions remain opened on the phase diagram, in

particular the change from the partially polarized normal phase to the polarized super�uid, and

the detection of exotic phases, such as the FFLO phase. However, in the BEC regime, a new

method to determine µ2 in the absence of the partially polarized phase should be devised.

17One can assume this value of ξs and �t η0 to match the data in the super�uid phase. However, we notice in

this case that the data points for the EoS are systematically above unity for η ≈ A. This would be in contradiction

with the single-polaron physics, expecting to constraint the appearance of the minority atoms at η = A. More

investigations are required to clarify this point.
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Conclusion

Summary

In this work, we have developed and implemented a new method to probe the thermodynamics

of homogeneous 3D quantum gases using harmonically trapped samples. This method is based

on an elementary relation that links the local pressure of the gas to the doubly-integrated density

pro�le. This technique is very powerful: it requires only very general assumptions, namely the

validity of the local density approximation and an external harmonic trapping. Because it makes

no additional assumptions on the system itself, this method can be equally applied to systems

of interacting bosons, fermions, or arbitrary mixtures. It is valid at �nite temperature and for

arbitrary, short- or long-range interactions. In this work, we have applied this method to measure

the equation of state of Bose and Fermi gases with short-range interactions. We bene�ted from

Feshbach resonances on fermionic 6Li and bosonic 7Li and used them to study the many-body

physics of these systems with tunable interactions. The equation of state of the homogeneous

gas is a central quantity in the characterization of the many-body system, since it condenses all

the thermodynamic information of the system. Furthermore it can be calculated by advanced

many-body theories and thus allows direct comparison between theory and experiment, providing

benchmarks for theoretical models.

We �rst presented our study of the pointlike Bose gas. Using a cloud of 7Li, we measured the

pressure as a function of the interaction strength. For su�ciently large interactions, we observed

the onset of beyond mean-�eld e�ects. We made a quantitative comparison with the seminal cal-

culation performed by T.D. Lee, K. Huang and C.N. Yang in 1957 and found excellent agreement.

The increase of three-body losses with interactions required a study of non-equilibrium e�ects to

support the assumption of thermal equilibrium, as well as a direct comparison with a Quantum

Monte Carlo calculation to verify the zero-temperature assumption. Using faster sweep rates, we

have explored the regime of strong interactions, and we inferred a lower bound on the value of

the universal constant ξB that would characterize the hypothetical unitary Bose gas. This lower

bound was compared to theoretical predictions.

In the second part, we explored the thermodynamics of a two-component Fermi gas. We �rst

addressed the �nite-temperature thermodynamics of the unitary Fermi gas. Thermometry of the

strongly interacting system was performed using a trace of bosonic 7Li as a thermometer. Besides

the virial expansion, and the super�uid-to-normal phase transition, we observed that the normal

phase thermodynamics of the unitary gas is well described by Landau's Fermi liquid theory. Using

the Landau parameters extracted from our EoS, we predicted the spectral function of the system.

Photoemission experiments performed at JILA have been interpreted using pseudo-gap models but

we �nd that our description in terms of a Fermi liquid accounts well for their current observations,
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with no adjustable parameters.

We then turned to the low-temperature Fermi gas in the BEC-BCS crossover, from which we

extracted various well-controlled asymptotic behaviors. In particular, we used our measured EoS

to compute the contact for a trapped gas and compare it to several other measurements on 6Li and
40K, providing strong indication of universality of the BEC-BCS crossover. In the molecular limit,

we recover the Lee-Huang-Yang correction for a gas of bosonic dimers, illustrating the universality

of the �rst beyond-mean-�eld correction in a Bose gas.

Finally, we investigated the phase diagram of a two-component Fermi gas with spin-population

imbalance. We con�rmed that the unpolarized super�uid is very robust with respect to chemical

potential imbalance, and is present at the center of the trapped sample. Above a critical chemical

potential ratio ηc, a �rst-order quantum phase transition to a normal state occurs and we mapped

out the phase diagram. We showed that the normal phase is well described by a Fermi-liquid equa-

tion of state of Fermi polarons, the quasi-particle resulting from a single minority atom dressed by

the interactions with the Fermi sea majority atoms.

Perspectives

The work presented in this thesis could be extended in various directions. In what follows, we

�rst focus on ideas that could readily be implemented on our existing 6Li-7Li setup.

Bose gases

A possible extension to our T = 0 study would be the measurement of another fundamental

prediction of weakly interacting Bose gases. Bogoliubov theory predicts that due to interactions,

some particles are expelled from the condensate (state k = 0 for a homogeneous Bose gas) and

possess a �nite momentum, the so-called quantum depletion. The quantum depleted fraction of a

Bose-Einstein condensate is predicted to be [143]:

1− N0

N
=

8

3
√
π

√
na3 (6.41)

A central example of strongly interacting quantum liquid, super�uid 4He, was measured to have a

quantum depletion of about 90 % [324], for which the gas parameter is na3 ∼ 0.1 and Bogoliubov

theory is not expected to be quantitatively accurate. For the largest interaction strengths reached

in quasi-equilibrium in this work (na3 ∼ 3×10−3), Eq.(6.41) predicts a quantum depletion of about

8 %. This can be contrasted with the quantum depletion for typical 87Rb or 23Na condensates of

0.1-0.5 %. First measurements of quantum depletion in an ultracold Bose gas were achieved by

loading a BEC in a deep optical lattice, which e�ectively increased the interactions [325]. Bragg

spectroscopy could be used to probe the momentum distribution of the depleted Bose-Einstein

condensate [326]. One can also employ a Feshbach resonance to switch o� the interactions just

prior to switching o� the trap and measure the momentum distribution using the time-of-�ight

technique. This method allowed for the detection of a condensed fraction as low as 2 % on 39K [327].

The problem of the strongly interacting Bose gas is largely open and it would be important to

investigate whether a unitary limit na3 → ∞ can be well de�ned, and whether the properties of

this unitary Bose gas could be universal or if it would depend on additional parameters besides the
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scattering length a (such as the three-body parameter Λ∗). In order to avoid the collapse insta-

bility, numerical simulations have been limited either to weak interactions, or potentials without

two-body bound states [163]. However, we saw in chapter 1 that in order to be simultaneously

short-ranged (nb3 � 1, b being the range of the potential) and strongly interacting (na3 � 1),

and thus expect universal properties, one needs an interaction potential with an attractive part.

A simulation with such a potential that would reject the two- (and possibly N -) body bound

states in order to simulate the gaseous phase, could explore the strongly correlated regime. From

an experimental perspective, the three-body losses are the main obstacle in achieving a strongly

interacting Bose gas. However, it was proposed that immersing the Bose gas (at low �lling factors)

in an optical lattice could lead to an e�ective three-body repulsion and would prevent the collapse

in deeply bound states, thus stabilizing the �lower branch" [328]. If the stability issues were solved,

it might be possible to investigate a type of BEC-BCS crossover predicted to occur in pointlike

Bose gases, from atomic to molecular super�uids [50,51,52,53].

The �nite-temperature thermodynamics of the Bose gas is a very rich subject as well. In par-

ticular, the e�ect of interactions on the Bose-Einstein transition is a notoriously subtle problem

and has been the center of considerable attention for many years. An important motivation is to

understand why the critical temperature for the λ-transition of liquid 4He, Tc = 2.2 K is smaller

than the Bose-Einstein condensation temperature T 0
c = 3.1 K for an ideal gas of helium atoms

with the same density (n = 2.2 × 1022 cm−3). This problem was tackled theoretically as early

as the 1950's and a Monte-Carlo calculation on a hard-sphere Bose gas showed highly non-trivial

interaction-strength dependence of Tc, �rst increasing at low density compared to T 0
c , then be-

coming smaller above na3 ∼ 0.1 [329]. The low-density limit was addressed with various methods,

leading to a large number of di�erent predictions, both in dependence on a and even sign18 ! It

is now generally believed that the critical shift for a homogeneous Bose gas is to leading order

∆Tc/T
0
c = c(na3)1/3, with c ≈ 1.3 [331,332]. The interest in the study of strongly interacting Bose

gases has been considerably revived in the last years [48, 148]. Very recently, the observation of

the critical shift for BEC in a trapped Bose gas of 39K as well as the condensate fraction behavior

close to the critical point have been reported [327,333]. The equation of state P (µ, a) as a function

of the parameter a/λdB could be measured with our method (µ0 and T being determined using

a mean-�eld theory on the thermal wings), exploring for instance the critical chemical potential

shift, the role of the Bogoliubov quasi-particles [334] in the �nite-temperature thermodynamics

of the super�uid phase, the possible role of the E�mov e�ect in the virial expansion [205], or a

breakdown of universality at large scattering lengths [176].

Fermi gases

The �nite-temperature thermodynamic study of the unitary gas could be extended in the BEC-

BCS crossover. Using a/λdB as the interaction parameter (rather than a local interaction parameter

such as δ), it should be possible to scan the parameter space (βµ, a/λdB) along lines of �xed a/λdB,

owing to the fact that T is homogeneous in the trapped sample, by adjusting the scattering length

to the temperature of the gas obtained. In this way, the same patching method used in chapter 5

could be readily applied to reconstruct the EoS of the �nite-temperature balanced Fermi gas, using

the virial coe�cients calculated in the BEC-BCS crossover (shown in the appendix 5.3). The stakes

are high: the critical temperature Tc for the super�uid transition of the homogeneous gas is one of

18For a historical perspective of these predictions, see the introduction in [330].
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the most important quantities to be measured for the crossover physics. The exact nature of the

normal phase is still to be clari�ed, with a crossover between a normal phase described by Fermi

liquid theory in the BCS side and at unitarity, and a bosonic normal phase with preformed pairs

on the BEC side of the resonance. The phase diagram of the imbalanced Fermi gas is even richer.

The phase diagram in the molecular regime contains many open questions and deserves further

investigation. Moreover, a tri-critical point was observed at �nite-temperature for the imbalanced

unitary gas [248], where the unpolarized super�uid/normal phase transition turns from �rst-order

to second-order. The temperature dependence of the tri-critical point as a function of interactions

could be measured.

In addition to the attractive Fermi gas discussed above, the repulsive Fermi gas (on the �upper

branch") has attracted considerable attention. A recent experiment suggested that the Fermi gas

undergoes a phase transition to a ferromagnetic state at a critical value of (kFa)c = 1.9(2) [186].

However, with similarities to the repulsive Bose gas studied in chapter 3, this system is metastable

for increasing interactions (with a decay to the �lower branch"), and since there was no direct ob-

servation of ferromagnetic domains or divergence of the magnetic susceptibility, the interpretation

of the MIT measurements in terms of the ferromagnetic Stoner instability is challenged (see for

instance [335]). The equation of state of the repulsive Fermi gas could be measured, and should

follow the Galitskii-Lee-Yang expansion in the dilute limit. It is not sure, however, that reaching

su�ciently high values of kFa will be possible, due to stability issues [187]. Finally, the two-

component Fermi gas in the vicinity of a narrow resonance could allow us to study a system with a

non-negligible e�ective range re, a situation closely resembling the one of medium-density neutron

matter [189]. This could be done with the resonance located at 543 G for the |1〉−|2〉mixture of 6Li.

Bose-Fermi mixtures

The 6Li-7Li system provides us with a very convenient isotopic mixture to study strongly in-

teracting Bose-Fermi mixtures (reminiscent of the 4He-3He system), which are predicted to have

similarities with dense QCD matter (see for instance [336]). The 6Li-7Li is predicted to have several

wide heteronuclear resonances in various spin-mixture combinations [133]. The limitation due to

the collapse of 7Li at the BEC threshold (because of its negative scattering length) encountered

in chapter 5 can be solved using two di�erent spin-combinations. One can use 6Li in the |1〉 − |3〉
mixture (around B = 690 G) and 7Li in state |1〉 (the state used for our Bose gas experiments),

whose Feshbach resonance is at 738 G. Another possibility is the fermion gas in the |1〉−|2〉 mixture

(around B = 834 G) and 7Li in state |2〉. This last Bose-Fermi mixture might exhibit unusual fea-

tures because both Feshbach resonances occur at almost the same magnetic �eld (B0 = 831(4) for
7Li in state |2〉). Using one of these mixtures, we could probe the very-low temperature physics of

the strongly interacting Fermi gas, as well as creating mixtures of bosonic and fermionic super�uids.

Other systems

In addition to these perspectives applicable to our 6Li-7Li system, virtually any (harmonically)

trapped cold atomic system could bene�t from the pressure measurement method. Indeed, there

are many intriguing systems under active investigation whose thermodynamics could yield very

valuable information. For example Fermi-Fermi mixtures with mass imbalance in the strongly

interacting regime have been realized [145,337], and have mismatched Fermi surfaces (similarly to

the spin-imbalanced gas). They are predicted to have a rich phase diagram (see for instance [338]
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and references therein), including a crystalline phase transition [339]. Quantum gases of ground

state polar molecules are now prepared near quantum degeneracy [340, 341], and would allow

the study of systems with long-range anisotropic interactions. Bosons and/or fermions in optical

lattices present a major interest in simulating quantum magnetism [14], and studying their phase

diagram, described by the Bose- or Fermi-Hubbard model [8] using our thermodynamic method

would be possible as well. Because of its simplicity, and its wide applicability, we believe that the

pressure method we have developed could be a valuable tool to probe the thermodynamics of novel

strongly correlated ultracold systems.
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Appendix A

Technical details

A.1 Testing the self-consistent determination of µ0 on a Bose

gas

ææææææææææ ææææææææææ ææææææææææ ææææææææææ
ææææææææææ ææææææææææ ææææææææææ ææææææææææ ææææææææææ ææææææææææ ææææææææææ

ææææææææææ

ááááá ááááá ááááá ááááá

HaLHaL

0 0.02 0.04 0.06 0.08 0.1 0.12
0

2

4

6

ΣG

Α
L

H
Y

æ

æ

æ
æ æ æ æ æ æ

HbLHbL

1 3 5 7 9
0

2

4

6
128

15 Π

Iterations

Α
L

H
Y

Figure A.1: Test of the self-consistent determination of µ0. (a): The LHY coe�cient αLHY is

plotted as a function of the gaussian noise (measured in standard deviation of σG with respect

to the peak density). In blue circles (green squares) the result using a polynomial interpolation

function (the exact LHY function). The experimental data correspond to σG ∼ 0.07. (b): An

example of convergence of the EoS towards the �xed point, by �tting αLHY at each �tting iteration.

We test the self-consistent determination of µ0 on the Bose gas presented in chapter 3 by

generating realistic density pro�les for our trap geometry (ωr/2π = 345 Hz, ωz/2π = 18.5 Hz)

and typical atom numbers, using the beyond-mean-�eld EoS predicted by Lee, Huang and Yang

Eq.(3.1). We add a gaussian noise of standard deviation σG, normalized to the peak density. We

use the generic polynomial interpolation function presented above, and after averaging over 15

pro�les, we �t the Lee-Huang-Yang coe�cient αLHY, de�ned by E = EMF(1 + αLHY
√
na3) (and

using the correspondence equations (3.23) and (3.24) to translate the energy into pressure) to

�nd the blue circles in Fig.A.1a. This shows that apart from a small shift, the method converges

towards the correct equation of state. By plotting αLHY at each iteration (Fig.A.1b), we see the

necessity of the self-consistent determination as the �rst value is incorrect. We recall that the
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mean-�eld EoS correspond to αLHY = 0. The systematic shift is due to the choice of interpolation

function, and can be made arbitrarily small if one assumes the correct power for the �rst beyond

mean-�eld correction, for example h(ν)(1) = 2πν2(1 + γ1ν
1/2 + γ2ν) (green squares Fig.A.1a), but

it is currently not a limiting factor given our experimental accuracy.

A.2 Padé approximants

In this section, we detail the Padé approximants used in section 5.2, and show how the various

asymptotic behaviors and the related physical quantities (such as the Galitskii-Lee-Yang or the

Lee-Huang-Yang coe�cients) are extraced. The Padé approximants are used to parametrize our

equation of state hS(δ) of the spin-balanced T = 0 Fermi gas in the BEC-BCS crossover and

have two uses. First, it allows us to translate the grand-canonical EoS (the pressure) h(δ), in the

canonical one (the energy) ξ(x) using the Legendre transform, which involves derivative of the

EoS (see Fig.5.19 for instance). Next, it allows us to extract physically relevant quantities in the

BEC, the BCS and the unitary limit. Since our measurements are limited to a range where the

interactions are not weak kF |a| & 1, it is useful to �t the data with functions that can be expanded

in powers of kFa and that are regular around unitarity.

We want to relate the perturbative expansion coe�cients of the ξ function (in the canonical

ensemble) by the one found from the function h(δ) in the grand-canonical language. The de�nitions

are:

ξ

(
x ≡ 1

kFa

)
=
E/N − Eb/2

EFG
(A.1)

where Eb is the molecular binding energy (Eb = −~2/ma2 when a > 0, 0 otherwise), N the total

atom number and EFG = 3
5EF the energy of a non-interacting Fermi gas. The function h is de�ned

as:

h(δ) =
P (µ, a)

2P0(µ)
(A.2)

where µ̃ = µ− Eb/2, δ = ~
a
√

2mµ̃
,

A.2.1 Relation between ξ and h

From Canonical to Grand-Canonical

Using the standard Legendre transform for the fully paired super�uid E/V = −P + µn (where

n is the total atomic density), the Gibbs-Duhem relationship dP = ndµ and the appropriate

normalization for the dimensionless functions ξ and h, one �nds the following equations related

the two EoS in the two ensembles (from Canonical to Grand-Canonical, using the canonical variable

x):

G(x) = ξ(x)−Θ(x)
5

3
x2 (A.3)

µ(x) = G(x)− x

5
G′(x) + Θ(x)x2 (A.4)

δ(x) =
x√
µ(x)

(A.5)

h(x) =
G(x)− x

2G
′(x)

µ(x)5/2
(A.6)

h can thus be plotted as a function of its natural variable δ through a parametric plot (δ(x), h(x)).

The terms with Θ(x) account for the molecular binding energy on the BEC side (x > 0).
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From Grand-Canonical to Canonical

The EoS in the reverse direction is given by:

x(δ) =
δ

(h(δ)− δ
5h
′(δ))1/3

(A.7)

ξ(δ) =
h(δ)− δ

3h
′(δ)

(h(δ)− δ
5h
′(δ))5/3

(A.8)

Moreover, we can write down the expression of the chemical potential (in units of the Fermi energy):

µ(δ) = x(δ)2

(
1

δ2
−Θ(δ)

)
(A.9)

A.2.2 The BCS side

We write the expansion on the BCS side:

ξ(x) = 1 + αMFx
−1 + αLHY x

−2 + αBx
−3, (A.10)

where αMF is the mean-�eld shift, αLHY the fermionic Lee-Huang-Yang correction and αB the �rst

beyond-LHY coe�cient, computed by Baker. We start from the grand-canonical Padé approximant

on the BCS side:

h(δ) =
δ2 + α1δ + α2

δ2 + α3δ + α4
(A.11)

By expanding this expression in powers of δ−1, and using the correspondence equations we obtain

the coe�cients of the power-expansion of h as a function of αMF ,αLHY and αB , and we can relate

them to the αi's of Eq.(A.11):

αMF =
2

3
(α3 − α1) (A.12)

αLHY = −2

3
(α2 − α1α3 + α2

3 − α4 −
6

5
(α3 − α1)2) (A.13)

αB = −2

3
(−α2α3 + α1α

2
3 − α3

3 − α1α4 + 2α3α4) +
21

5
αLHY αMF −

18

5
α3
MF (A.14)

The four �tting parameters αi's are reduced to two using two constraints, the value at unitarity

α2/α4 = ξ
−3/2
s and the value of the mean-�eld correction αMF = 10

9π .

A.2.3 The Contact

The Tan contact is de�ned as:

C = −4πm

~2

∂E
∂(1/a)

, (A.15)

where E is the energy density. It is more convenient to write it in the form : C = 2ζC
5π k

4
F where

kF is the Fermi momentum and ζC is a dimensionless number. It is easy to see that ζC = −ξ′(0).

Using instead the function h(δ) we have: ζC =
2ξ2
s

3 h′(0). It follows:

ζC =
2

3ξsα2

(
(ξ3/2
s − 1)α1 −

5

3π

)
(A.16)
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A.2.4 The BEC side

The function ξ(x) on the BEC side is written as:

ξ(x) = αMFx
−1(1 + αLHY x

−3/2 + x−3(αW log(x−1) + αB)), (A.17)

We �nd the following expansion for h in the deep BEC regime (in powers of δ−1):

h(δ) =
25

24αMF

δ−1 −

√
5
6αLHY

α
1/2
MF

+O(δ) (A.18)

We use the following approximant:

h(δ) =
β1 + β2δ + β3δ log(1 + δ) + β4δ

2 + β5δ
3

1 + β6δ2
(A.19)

The Lee-Huang-Yang correction

We �t the data for δ > 0 with the approximant (A.19) and we add two constraints: the value at

unitarity : β1 = ξ
−3/2
s and the known mean-�eld coe�cient. To do so, we develop (A.19) in powers

of δ−1:

h(δ) =
β5

β6

(
δ−1 +

β4

β5

)
+O(δ) (A.20)

Thus, identifying the powers in (A.18) and (A.20), we �x a coe�cient, β6 = 24αMF β5

25 , by using

the mean-�eld coe�cient (for simpli�city the dimer-dimer scattering length add is in unit of the

atomic scattering length a) αMF = 5add
18π . From β4 and the constraint on β6 we can readily extract

the LHY correction :

αLHY =
β4

β6

24α
3/2
MF

25

√
6

5
(A.21)

Wu parameter

We go one step further to determine the three-body parameter αB . To do so, we use additional

constraints: we �x the value of the checked LHY correction and the Wu coe�cient αW
1:

αW =
a3
dd

6π2
(8(4π − 3

√
3)) =

a3
dd

2π2
W, (A.22)

where W = 8
3 (4π − 3

√
3) ≈ 19.65. And for the B coe�cient:

αB =
a3
dd

6π2

(
W log

(
a3
dd

6π2

)
+BW

)
(A.23)

We �x the parameters in the Padé expression by pursuing the development (A.18) and simplifying

with the known expression of the MF and LHY terms:

h(δ) =
15π

4add
δ−16

√
2 +

(
640add

3π
− 15addW

8
log

(
a2
dd

2π

)
− 15addBW

8

)
1

δ
+

15add
4

W
log(δ)

δ
(A.24)

1Note that the 1/3 factor is missing compared to the traditional Wu coe�cient because the expansion (A.17) is

usually written in powers of in powers of na3
dd (see Eq. (5) in the paper), hence the argument of the log is x−3.
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To �t B, we �x use �ve constraints: ξs, ζ, the MF and LHY coe�cients, and the Wu parameter.

Thus:

β1 = ξ−3/2
s (A.25)

β2 =
3ζ

2ξ2
s

(A.26)

β6 =
4add
15π

β5 (A.27)

β4 = −32

√
3

5
β6 (A.28)

β3 =
15add

4
Wβ6 ≈ 44.22β6 (A.29)

Using all the preceeding, we extract B through the only �tting parameter β5:

B =
8

15addW

(
−β2β6 − β5

β2
6

+
640add

3π
− 15addW

8
log

(
a2
dd

2π

))
(A.30)

A.2.5 Parameters for the Padé approximants

The best �t parameters to our total data for hS(δ) are gathered in Tab.A1

α1 α2 α3 α4

-1.137 0.533 -0.606 0.141

β1 β2 β3 β4 β5 β6

3.78 8.22 8.22 -4.21 3.65 0.186

Table A.1: Padé-type approximants coe�cients αi and βi �tted from our data.
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A.3 The Magnetic Circuit
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Figure A.2: Electric circuit of the experimental setup. High power supplies are noted Pi, IGBT

switches Ii, power diodes Di, and MOSFET switches Mi. Each power supply is protected by a

diode in inverse and a high-voltage varistor (as the IGBT's). An additional MOSFET in parallel

is used to unload the capacitors of the power supply to have smooth start ramps.

The magnetic trapping (Fig.2.2) involves several stages detailed in chapter 2. As the coils of

our setup are often used in various con�gurations, the electric circuit (pictured in Fig.A.2) was

designed (and modi�ed) to be able to switch between these modes2.

� In the MOT, Quadrupole Trap and Magnetic Transport: P1 supplies the Feshbach coils in

quadrupole (I1 and I3 closed, and I2 open) and P2 for the MOT coils (I6 closed). At the end

of the transport, the cloud is pushed slightly further by reversing the current in the MOT

coils using P3 (and M4 closed).

� In the Io�e-Pritchard trap, P1 supplies the Feshbach and Curvature coils in series (I2 and

I4 closed). Their bias �elds cancel and makes the bias very robust to current �uctuations

while the axial curvature is achieved by the curvature coils. The Io�e bars are supplied by

an independent circuit. During Doppler cooling, an additional large bias �eld (∼ 500 G) is

provided by P2 in the curvature coils (I5 closed). In the tight trap for RF evaporation, the

(small) bias �eld is provided by the O�set coils (I9 and M3 closed).

� In the optical trap, the Feshbach and curvature coils are supplied separately, by P1 and P4

respectively (I2, I7 and I10 closed). The O�set coils provide a �ne tuning of the Feshbach

2Note that this setup is not optimal and in particular the circuit con�guration used in the optical trap could be

achieved with P2 only, though we currently use P4 in this stage as well. P4 was added in a subsequent upgrade

of the electric circuit in order to leave the working setup as is, without changing its characteristics in the previous

MOT and Io�e trap stages.
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�eld in reverse (to match the Feshbach coils bias direction) by closing M1 and M2 (and

opening M3 and I9).
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We investigate the low-lying compression modes of a unitary Fermi gas with imbalanced spin

populations. For low polarization, the strong coupling between the two spin components leads to a

hydrodynamic behavior of the cloud. For large population imbalance we observe a decoupling of the

oscillations of the two spin components, giving access to the effective mass of the Fermi polaron, a

quasiparticle composed of an impurity dressed by particle-hole pair excitations in a surrounding Fermi

sea. We find m�=m ¼ 1:17ð10Þ, in agreement with the most recent theoretical predictions.

DOI: 10.1103/PhysRevLett.103.170402 PACS numbers: 03.75.Ss, 05.30.Fk, 32.30.Bv, 67.60.Fp

The study of the low-lying excitation modes of a com-
plex system can be a powerful tool for investigation of its
physical properties. For instance, Earth’s structure has
been probed using the propagation of seismic waves in
the mantle, and the ripples in space-time propagated by
gravitational waves can be used as probes of extreme
cosmic phenomena. In ultracold atomic gases, the mea-
surement of low energy modes of bosonic or fermionic
systems has been used to probe superfluidity effects [1], to
measure the angular momentum of vortex lattices [2], and
to characterize the equation of state of fermionic super-
fluids [3,4].

In this Letter, we study the excitation spectrum of an
ultracold Fermi gas with imbalanced spin populations.
This topic was initiated in the 1960s by the seminal works
of Clogston and Chandrasekhar [5,6] and only recently
found experimental confirmation thanks to the latest devel-
opments in ultracold Fermi gases [7,8]. These dramatic
experiments have observed that when a fermionic super-
fluid is polarized through imbalance of spin populations,
the trapped atomic cloud forms a shell structure. The
energy gap associated with pairing maintains a superfluid
core where the two spin densities are equal, while the outer
shell is composed by a normal gas with imbalanced spin
densities (see Fig. 1). Here, we extend this work to the
unexplored dynamical properties of these systems and we
focus on the regime of strong interactions, where the
scattering length a is infinite. We show, in particular, that
the study of the axial breathing mode provides valuable
insight on the dynamical properties of a quasiparticle, the
Fermi polaron, that was introduced recently to describe the
normal component occupying the outer shell of the cloud
[9–14]. The Fermi polaron is composed of an impurity
(labeled 2) immersed in a noninteracting Fermi sea
(labeled 1), and is analogous to the polaron of condensed
matter physics, i.e., an electron immersed in a bath of
noninteracting (bosonic) phonons. Understanding the static
and dynamic properties of impurities immersed in an ex-
ternal bath is a paradigm of many-body systems. In addi-

tion to polaron physics, famous examples include the
Kondo effect, Higgs mechanism, or the dressed atom.
Despite its apparent simplicity, this problem remains today
very challenging in the limit of strong interactions.
According to the Landau theory of the Fermi liquid, the

low energy spectrum of the polaron is similar to that of a
free particle and can, in the local density approximation
(LDA), be recast as

E2ðr;pÞ ¼ AEF1ðrÞ þ VðrÞ þ p2

2m� þ . . . (1)

where V is the trapping potential, EF1ðrÞ ¼ EF1ð0Þ � VðrÞ
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FIG. 1 (color online). Integrated density profiles of an imbal-
anced Fermi gas. Blue (dark gray): majority atoms �n1ðzÞ; Red
(medium gray): minority atoms �n2ðzÞ; Green (light gray): dif-
ference �nd ¼ �n1 � �n2. In this latter case, the flat-top feature
signals a cancellation of the density difference at the center of
the trap, characteristic of the existence of a fully paired super-
fluid core. The superfluid (resp. minority) radius RS (resp. R2)
are marked by vertical dashed lines. The solid color lines
correspond to the prediction of Monte Carlo theories [20], the
only fit parameters being the number of atoms in each spin state,
N1 ¼ 8:0� 104, N2 ¼ 2:4� 104 for this image. The axial (ra-
dial) trap frequency is 18.6 Hz (420 Hz).
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is the local Fermi energy of the majority species, A is a
dimensionless quantity characterizing the attraction of the
impurity by the majority atoms, and m� is the effective
mass of the Fermi polaron. For a ¼ 1, A ¼ �0:61 has
been determined both experimentally [14] and theoreti-
cally [9–13], while slight disagreements still exist on the
value of the effective mass. Fixed node Monte Carlo sug-
gests m�=m ¼ 1:09ð2Þ [15], systematic diagrammatic ex-
pansion yields m�=m ¼ 1:20 [11], and analysis of density
profiles (such as Fig. 1) gives m�=m ¼ 1:06 [16].

From Eq. (1), the quasiparticle evolves in an effective
potential V�ðrÞ ¼ ð1� AÞVðrÞ. Assuming VðrÞ to be har-
monic with frequency !, the polaron is trapped in an
effective potential of frequency !� [9]:

!�

!
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A

m�=m

s
: (2)

In this Letter we explore the compression mode properties
and determine the effective mass through the measurement
of the oscillation frequency !� in the axial direction
(labeled z) of a cylindrically symmetric trap.

Our experimental setup is an upgraded version of the
one presented in [17]. 7� 106 6Li atoms in the hyperfine
state jF ¼ 3=2; mF ¼ þ3=2i are loaded into a mixed mag-
netic or optical trap at 100 �K. The optical trap uses a
single beam of waist w0 ¼ 35 �m and maximum power
P ¼ 60 W operating at a wavelength � ¼ 1073 nm. The
atoms are transferred into the hyperfine ground state
j1=2; 1=2i, and a spin mixture is created by a radio-
frequency sweep across the hyperfine transition
j1=2; 1=2i ! j1=2;�1=2i. By varying the rate of this
sweep, we control the sample’s degree of polarization P �
ðN1 � N2Þ=ðN1 þ N2Þ, where N1 (resp. N2) is the atom
number of the majority (resp. minority) spin species. The
mixture is then evaporatively cooled in 6 s by reducing the
laser power to 70 mW. This is done at a magnetic field B ¼
834 G, which corresponds to the position of the broad
Feshbach resonance in 6Li where the scattering length is
infinite and where further experiments are performed.
Typical radial frequencies are !x ¼ !y � 2�� 400 Hz.

The axial confinement of the dipole trap is enhanced by the
addition of a magnetic curvature, leading to an axial fre-
quency !z � 2�� 30 Hz. Our samples contain�8� 104

atoms in the majority spin state at a temperature T &
0:09TF. The temperature is evaluated by fitting the wings
of the majority density profile outside the minority radius.
In this region, the gas is noninteracting, allowing unam-
biguous thermometry of the inner, strongly interacting part
of the cloud [18]. Here, TF is defined as the Fermi tem-
perature of an ideal gas whose density profile overlaps the
majority one in the fully polarized rim.

The two spin states are imaged sequentially using in situ
absorption imaging. To prevent heating from the scattered
photons and the strong interactions between the two spe-
cies, the duration of the two imaging pulses as well as their
separation must be short (10 �s each). By reversing the

order in which we image the two spin components, we
checked that imaging of the first species did not signifi-
cantly influence the second. Typical integrated density
profiles of the atom cloud �nðzÞ ¼ R

dxdynðx; y; zÞ, where
nðx; y; zÞ is the 3D atom density, are presented in Fig. 1.
These profiles display the characteristic features already
observed by the MIT group [18]: a flat-top structure in the
superfluid region confirming the existence of a fully paired
core satisfying the LDA [19], an intermediate phase where
the two spin species are present with unequal densities, and
an outer rim containing only majority atoms. Following
[20], we compare our density profiles to the prediction for
the equation of state of the different phases and find fairly
good agreement. In particular, we observe that the super-
fluid core disappears for polarizations P> 0:76ð3Þ. This
limit agrees well with the measurement of the MIT group
[7] but differs from the Rice group value [8]. Our data also
show no evidence for surface tension effects [8,21].
We excite the axial breathing mode by switching off the

axial magnetic trapping field for 1 ms. The effect of this
excitation is twofold: in addition to nearly suppressing the
axial confinement, the bias field is increased up to 1050 G,
where kFa��1, so that the gas is no longer strongly
interacting. This scheme provides a spatially selective
excitation of the cloud. Indeed, while the reduction of the
trapping frequency perturbs the whole cloud, the modifi-
cation of the scattering length only acts in the region where
the two spin components overlap. In the regime of strong
polarization, these two regions are well separated, leading
to a differential excitation of the two spin components.
Let us first focus on the oscillations of the majority

spin species presented in Fig. 2. Typical dynamics of the
outer radius R1ðtÞ of the majority component are exempli-
fied by Fig. 2(a). For each polarization, this time evolution
is fitted using an exponentially damped sinusoid, with

R1ðtÞ ¼ Rð0Þ
1 ½1þ A1 cosð!1tþ ’Þe��1t�, and the varia-

tions of !1 and �1 as a function of P are displayed in
Figs. 2(b) and 2(c). One remarkable feature of this graph is
the frequency plateau for polarizations P & 0:7, corre-
sponding approximately to the domain where a superfluid
core is present in the cloud. Although in this range of
parameters, the dynamics of the system is fairly complex
due to the strong coupling between the superfluid and
normal components, a simple argument based on a sum
rule approach generalizing the result of [22] allows us to
understand this property.
We describe the system by the Hamiltonian H ¼P
ip

2
i =2mþUðr1; r2; . . .Þ, where ri (resp. pi) is the posi-

tion (resp. momentum of particle i), m is the mass of the
atoms and U includes both trapping potential and inter-
atomic interaction. The compression of the trapping fre-
quency in the z direction is associated with the operator
F ¼ P

iz
2
i . Let us introduce the moments of the spectral

distribution associated with F and defined by

mk ¼
X
n�0

ðEn � E0Þkjh0jFjnij2;
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where the jni are the eigenstates of H associated with the
eigenvalue En, and j0i is the many-body ground state. We
assume that the operator F mainly couples j0i to one ex-
cited state j1i. In this case, the frequency of the breathing
mode excited by the axial compression of the trap is given

by !1 ¼ ðE1 � E0Þ=@ ’ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1=m�1

p
=@. An explicit calcu-

lation of these two moments leads to the following expres-
sion:

!2
1 ’ �2hz2i

�
@hz2i
@!2

z

: (3)

For a unitary gas, LDA imposes that the mean radius of the
cloud is given by hz2i ¼ R2

TFfðPÞ, where RTF is the radius
of an ideal Fermi gas in the same trap and with the same
atom number and f is some universal function of the
polarization [23]. Using this assumption, the calculation
of the oscillation frequency is straightforward and yieldsffiffiffiffi
12
5

q
!z ¼ 1:55!z, i.e., the hydrodynamic prediction [3,24]

for P ¼ 0, regardless of the polarization of the sample.
This argument is in good agreement with our experimental
findings [Fig. 2(b)].

At larger polarizations the frequency sharply increases
towards the collisionless value. The damping rate, very
small in the balanced superfluid, increases by a factor
�20 for higher imbalances [25]. Interestingly, as seen in
Fig. 3, this behavior is consistent with a general argument
about relaxation processes in fluid dynamics [26]. Indeed,
one can relate !1 and �1 through

!2 ¼ !2
CL þ

!2
HD �!2

CL

1þ i!�
; (4)

where ! ¼ !1 þ i�1, !HD ¼ ffiffiffiffiffiffiffiffiffiffiffi
12=5

p
!z (resp. !CL ¼

2!z) is the hydrodynamic (resp. collisionless) frequency
and � is an effective relaxation rate.
Measurements of !1=!z in three different traps of as-

pect ratios 8.2, 9.0, and 14.5 give identical results (within
3%) for all polarizations. By contrast, the effect of tem-
perature is more pronounced: for instance at 0:12ð1ÞTF,
!1ðPÞ remains equal to the hydrodynamic prediction at all
attainable polarizations with Pmax ¼ 0:95, for a cloud of
N1 � 2� 105 majority atoms held in a trap of aspect ratio
22. This illustrates the role of Pauli blocking at the lowest
temperatures which favors collisionless behavior. This is in
contrast with the balanced gas case where the collisionless
regime was observed at higher temperature (T * TF) [27].
Let us now consider the dynamics of the minority cloud

(we recall that subscript 2 refers to the impurity atoms). We
observe that for polarizations smaller than P� 0:75, the
oscillation frequencies and damping rates of the two spin
species are equal, indicating a strong coupling between
them. By contrast, for P> 0:75, a Fourier spectrum of
R2ðtÞ reveals two frequencies [Fig. 4(a)], a generic feature
of systems with multiple phases [28,29]. The lower fre-
quency !2a is equal to the majority oscillation frequency
!1. We interpret the higher frequency !2b, whose weight
increases with polarization, as the axial breathing of the
minority atoms out of phase with the majority cloud. A
linear extrapolation of this frequency to P ¼ 1 gives the
oscillation frequency of a dilute gas of weakly interacting
polarons inside a Fermi sea at rest, !2bðP ! 1Þ ¼
2:35ð10Þ!z [Fig. 4(b)]. The uncertainty represents the
standard deviation of a linear fit taking into account the

1 z1 z
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FIG. 3 (color online). Comparison of our experimental results
with the parametric curve (!1ð�Þ=!z, �1ð�Þ=!1ð�Þ) deduced
from prediction (4). The data in blue (dark gray) [red (medium
gray)] correspond to polarizations P< 0:8 [P > 0:8].
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FIG. 2 (color online). (a) Oscillations of the axial radius of the
majority component, for a population imbalance P ¼ 0:85ð2Þ,
beyond the Clogston limit. The solid line corresponds to a fit by
an exponentially damped sinusoid. (b) Frequency of the breath-
ing mode !1 normalized to the axial trapping frequency !z

versus polarization. The superfluid (resp. collisionless) limits

!1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
12=5

p
!z (resp. 2!z) are indicated by the dashed red lines.

The axial (radial) trap frequency is 28.9(1) Hz (420 Hz).
(c) Damping rate �1 versus polarization (in log scale). Note
that our data are limited to P < 0:95 due to the small minority
atom number (N2 & 2� 103) at such high polarizations.
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statistical uncertainties of the !2b measurements for each
polarization.

By identifying the breathing mode frequency!2b as 2!
�
z

and using (2), we deduce the mass of the quasiparticle:
m�=m ¼ 1:17ð10Þ. This is the first dynamic measurement
of the polaron effective mass, in good agreement with the
most recent theoretical predictions [11,15]. The previous
measurement of m� through analysis of density profiles
required an approximate equation of state for the polaron
gas, with uncontrolled accuracy [16]. Extrapolating!2bðPÞ
to P ¼ 1 allows us to overcome this issue.m� is close tom
(albeit different), a surprising feature for a system at
unitarity.

In conclusion, we have studied the low frequency
breathing modes of an elongated Fermi gas with imbal-
anced spin populations. In the presence of a superfluid
core, the majority and minority components oscillate in
phase with a frequency that is largely independent of the
spin polarization. At strong polarizations, the minority
atom oscillation reveals a second frequency, that we inter-
pret as the Fermi polaron breathing mode. Further inves-
tigations will extend our work to all values of the scattering
length. In particular, they should provide a clear signature
of the polaron-molecule transition [14,30]. The role of
interactions between polarons and damping phenomena
should also be clarified [31].
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FIG. 4 (color online). (a) Frequency power spectrum of the
minority spin state for P ¼ 0:90ð2Þ. The peak between !HD and
!CL corresponds to the oscillation in phase with the majority, the
other one to the polaron oscillation. (b) Frequency of the polaron
component as a function of polarization. All frequencies are
normalized to !z.
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LETTERS

Exploring the thermodynamics of a universal Fermi gas
S. Nascimbène1, N. Navon1, K. J. Jiang1, F. Chevy1 & C. Salomon1

One of the greatest challenges in modern physics is to understand
the behaviour of an ensemble of strongly interacting particles. A
class of quantum many-body systems (such as neutron star matter
and cold Fermi gases) share the same universal thermodynamic
properties when interactions reach the maximum effective value
allowed by quantum mechanics, the so-called unitary limit1,2. This
makes it possible in principle to simulate some astrophysical
phenomena inside the highly controlled environment of an atomic
physics laboratory. Previous work on the thermodynamics of
a two-component Fermi gas led to thermodynamic quantities
averaged over the trap3–5, making comparisons with many-body
theories developed for uniform gases difficult. Here we develop a
general experimental method that yields the equation of state of a
uniform gas, as well as enabling a detailed comparison with exist-
ing theories6–15. The precision of our equation of state leads to new
physical insights into the unitary gas. For the unpolarized gas, we
show that the low-temperature thermodynamics of the strongly
interacting normal phase is well described by Fermi liquid theory,
and we localize the superfluid transition. For a spin-polarized
system16–18, our equation of state at zero temperature has a 2 per
cent accuracy and extends work19,20 on the phase diagram to a new
regime of precision. We show in particular that, despite strong
interactions, the normal phase behaves as a mixture of two ideal
gases: a Fermi gas of bare majority atoms and a non-interacting gas
of dressed quasi-particles, the fermionic polarons10,18,20–22.

In this Letter we study the thermodynamics of a mixture of the two
lowest spin states (i 5 1, 2) of 6Li prepared at a magnetic field B 5 834 G
(see Methods), where the dimensionless number 1/kFa characterizing
the s-wave interaction is equal to zero, the unitary limit. (Here kF is the
Fermi momentum and a the scattering length.) Understanding the
universal thermodynamics at unitarity is a challenge for many-body
theories because of the strong interactions between particles. Despite
this complexity at the microscopic scale, all the macroscopic properties
of an homogeneous system are encapsulated within a single equation of
state (EOS), P(m1, m2, T), that relates the pressure P of the gas to the
chemical potentials mi of the species i and to the temperature T. In the
unitary limit, this relationship can be expressed as1:

P m1, m2, Tð Þ~P1 m1, Tð Þh g~
m2

m1

, f~exp
{m1

kBT

� �� �
ð1Þ

where P1 m1, Tð Þ~{kBTl{3
dB Tð Þf5=2 {f{1

� �
is the pressure of a single

component non-interacting Fermi gas. Here kB is the Boltzmann con-

stant, ldB(T) is the de Broglie wavelength and f5=2 zð Þ~
P?

n~1zn
�

n5=2:

h(g,f) is a universal function which contains all the thermodynamic
information of the unitary gas (Fig. 1). In cold atomic systems, the
inhomogeneity due to the trapping potential makes the measurement
of h(g, f) challenging. However, this inhomogeneity of the trap can be
turned into an advantage, as shown in refs 20 and 23.

We directly probe the local pressure of the trapped gas using in situ
images, following a recent proposal23. In the local density approxi-
mation, the gas is locally homogeneous with local chemical potentials:

mi rð Þ~m0
i {V rð Þ ð2Þ

here m0
i is the chemical potential at the bottom of the trap for species i

and V(r) is the trapping potential. Then a simple formula relates the
pressure P to the doubly-integrated density profiles23:

P m1z , m2z , Tð Þ~ mv2
r

2p
�nn1 zð Þz�nn2 zð Þð Þ ð3Þ

where �nni zð Þ~
Ð

ni x, y, zð Þdxdy, ni being the atomic density. vr and

vz are respectively the transverse and axial angular frequency of a
cylindrically symmetric trap (see Fig. 2), m is the 6Li mass, and
miz 5 mi(0, 0, z) is the local chemical potential along the z axis. From
a single image, we thus measure the EOS, equation (1), along the
parametric line (g, f) 5 (m2z/m1z, exp(2m1z/kBT)); see below.

The interest of this method is straightforward. First, one directly
measures the EOS of the uniform gas. Second, each pixel row zi gives a
point h(g(zi), f(zi)) whose signal to noise ratio is essentially given by
that of �nn1 zð Þz�nn2 zð Þ; typically one experimental run leads to ,100
points with a signal to noise ratio between 3 and 10. With about 40
images one gets ,4,000 points h(g, f), which after averaging provides
a low-noise EOS of standard deviation s 5 2%. In the following we
illustrate the efficiency of our method on two important sectors of the
parameter space (g, f) in Fig. 1: the balanced gas at finite temperature
(1, f) and the zero-temperature imbalanced gas (g, 0).

We first measure the EOS of the unpolarized unitary gas at finite
temperature, P(m1, m2, T) 5 P(m, T). The measurement of h(1, f)
through the local pressure, equation (3), can be done provided one
knows the temperature T of the cloud and its central chemical potential
m0.

1Laboratoire Kastler Brossel, CNRS, UPMC, École Normale Supérieure, 24 rue Lhomond, 75231 Paris, France.
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Figure 1 | Schematic representation of the universal function h(g, f). It
fully describes the thermodynamics of the unitary gas as a function of
chemical potential imbalance g 5 m2/m1 and of the inverse of the fugacity
f 5 exp(2m1/kBT). In this paper we measure the function h over the black
lines (1, f) and (g, 0), which correspond to the balanced unitary gas at finite
temperature and to the spin-imbalanced gas at zero temperature,
respectively.
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In the balanced case, model-independent thermometry is notoriously
difficult because of the strong interactions. Inspired by ref. 24, we over-
come this issue by measuring the temperature of a 7Li cloud in thermal
equilibrium with the 6Li mixture (see Methods).

The central chemical potential m0 is fitted on the hottest clouds so
that the EOS agrees in the classical regime f? 1 with the second-
order virial expansion h 1, fð Þ<2 1zf{1

� ffiffiffi
2
p� �

(ref. 25). For colder
clouds we proceed recursively. The EOS of an image recorded at
temperature T has some overlap with the previously determined
EOS from all images with T9 . T. In this overlap region, m0 is fitted
to minimize the distance between the two EOSs. This provides a new
portion of the EOS at lower temperature. Using 40 images of clouds
prepared at different temperatures, we thus reconstruct a low-noise
EOS from the classical part down to the degenerate regime, as shown
in Fig. 3a.

We now comment on the main features of the EOS. At high tem-
perature, the EOS can be expanded in powers of f21 as a virial
expansion11:

h 1, fð Þ
2

~

P?
k~1 {1ð Þkz1

k{5=2zbk

� �
f{k

P
?
k~1 {1ð Þkz1

k{5=2f{k

where bk is the kth virial coefficient. As we have b2~1
� ffiffiffi

2
p

in the

measurement scheme described above, our data provide for the first
time the experimental values of b3 and b4. b3 5 20.35(2) is in excellent
agreement with the recent calculation b3 5 20.291 2 325/2 5 20.355
from ref. 11, but not with b3 5 1.05 from ref. 12. b4 5 0.096(15)
involves the four-fermion problem at unitarity and could interestingly
be computed along the lines of ref. 11.

Let us now focus on the low-temperature regime of the normal
phase f= 1. As shown in Fig. 3b, we observe a T2 dependence of
the pressure with temperature. This behaviour is reminiscent of a
Fermi liquid, and indicates that pseudogap effects expected for
strongly interacting Fermi superfluids26 do not show up at the ther-
modynamic level within our experimental precision. In analogy with
3He or heavy-fermion metals, we fit our data with the EOS:

P m, Tð Þ~2P1 m, 0ð Þ j{3=2
n z

5p2

8
j{1=2

n

m�

m

kBT

m

� �2
 !

ð4Þ

Here P1(m, 0) 5 1/15p2(2m/"2)3/2m5/2 is the pressure of a single-
component Fermi gas at zero temperature, m* is the quasi-particle

mass, and j{1
n is the compressibility of the normal gas extrapolated to

zero temperature, and normalized to that of an ideal gas of same
density. We deduce two new parameters m*/m 5 1.13(3) and
jn 5 0.51(2). Despite the strong interactions, m* is close to m, unlike
the weakly interacting 3He liquid for which 2.7 , m*/m , 5.8, depend-
ing on pressure. Our jn value is in agreement with the variational
fixed-node Monte Carlo calculations jn 5 0.54 in ref. 27 and

jn 5 0.56 in ref. 10, and with the quantum Monte Carlo calcula-
tion jn 5 0.52 in ref. 28. This yields the Landau parameters
Fs

0~jnm�=m{1~{0:42 and Fs
1~3 m�=m{1ð Þ~0:39.

In the lowest temperature points (Fig. 3c) we observe a sudden
deviation of the data from the fitted equation (4) at (kBT/m)c 5

0.32(3) (see Supplementary Information). We interpret this beha-
viour as the transition from the normal phase to the superfluid phase.
This critical ratio has been extensively calculated in recent years. Our
value is in close agreement with the diagrammatic Monte Carlo cal-
culation (kBT/m)c 5 0.32(2) of ref. 6 and with the quantum Monte
Carlo calculation (kBT/m)c 5 0.35(3) of ref. 28; but it differs from the
self-consistent approach in ref. 8 that gives (kBT/m)c 5 0.41, from the
renormalization group prediction 0.24 in ref. 29, and from several
other less precise theories. From equation (4) we deduce the total
density n 5 n1 1 n2 5 hP(mi 5 m, T)/hm and the Fermi energy
EF 5 kBTF 5 "2/2m(3p2n)2/3 at the transition point. We obtain (m/
EF)c 5 0.49(2) and (T/TF)c 5 0.157(15), in very good agreement with
ref. 6. Our measurement is the first direct determination of (m/EF)c

x

z
y

6Li imaging 7Li imaging

Figure 2 | Schematic representation of our atomic sample. The 6Li atomic
cloud is imaged in the direction y; the column density is then integrated
along the direction x to give �nn zð Þ. The 7Li atoms are imaged after a time of
flight along the z direction.
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Figure 3 | Equation of state of a spin-balanced unitary Fermi gas. a, Finite-
temperature equation of state (EOS) h(1, f) (black dots). The error bars
represented at f 5 0.14 and f 5 2.3 indicate the 6% accuracy in f and h of our
EOS. The red curves are the successive virial expansions up to fourth order.
The blue triangles are from ref. 6, the green stars from ref. 7, the purple
diamonds from ref. 8, and the blue solid line from ref. 9. The grey region
indicates the superfluid phase. b, EOS P(m, T)/2P1(m, 0) as a function of
(kBT/m)2, fitted by the Fermi liquid EOS, equation (4). The red dashed line is
the non-interacting Fermi gas (NIFG). The horizontal dot-dashed and
dotted lines indicate respectively the zero-temperature pressure of the
superfluid phase!j{3=2

s and that of the normal phase!j{3=2
n . c, Expanded

view of b near Tc. The sudden deviation of the data from the fit occurs at
(kBT/m)c 5 0.32(3) that we interpret as the superfluid transition. The black
dashed line indicates the mean value of the data points below Tc.
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and (T/TF)c in the homogeneous gas. It agrees with the extrapolated
value of the MIT measurement19.

Below Tc, advanced theories7,8 predict that P(m, T)/2P1(m, 0) is
nearly constant (Fig. 3b). Therefore at T 5 Tc, P=2P1<j{3=2

s <3:7,
and is consistent with our data. Here js 5 0.42(1) is the fundamental
parameter characterizing the EOS of the balanced superfluid at zero
temperature, a quantity extensively measured and computed in
recent years2.

Our data are compared at all temperatures with the calculations
from refs 6–9 in Fig. 3a. The agreement with ref. 7 is very good for a
large range of temperatures. Concerning ref. 6, the deviation from
our data is about one error bar of the Monte Carlo method below
f 5 0.2, and the deviation increases with temperature (Fig. 3a).
Furthermore, we show in the Supplementary Information that h(1,
f)/2 must be greater than 1, an inequality violated by the two hottest
Monte Carlo points of ref. 6.

From our homogeneous EOS we can deduce the EOS of the
harmonically trapped unitary gas by integrating h(1, f) over the
trap (see Supplementary Information). In particular, we find a cri-
tical temperature for the trapped gas (T/TF)c 5 0.19(2), where
TF~B 3v2

r vzN
� �1=3

and N is the total atom number. This value
agrees very well with the recent measurement of ref. 30, and with less
precise measurements5,31,32.

Let us now explore a second line in the universal diagram h(g, f)
(Fig. 1) by considering the case of the T 5 0 spin-imbalanced mixture
m2=m1, that is, g=1. Previous work16–18 has shown that phase sepa-
ration occurs in a trap. Below a critical population imbalance a fully
paired superfluid occupies the centre of the trap. It is surrounded by a
normal mixed phase and an outer rim consisting of an ideal gas of the
majority component. In two out of the three previous experiments
including ours16,18, the local density approximation has been carefully
checked. We are therefore justified in using equation (3) to analyse
our data.

As in the previous case, the relationship between the pressure and the
EOS requires the knowledge of the chemical potentials m0

1 and m0
2 at the

centre of the trap. m0
1 is determined using the outer shell of the majority

spin component (i 5 1). The pressure profile P(m1z, m2z, 0) corresponds
to the Fermi–Dirac distribution and is fitted with the Thomas–Fermi
formula P1~a 1{z2

�
R2

1

� �5=2
, providing m0

1~
1
2

mv2
z R2

1. Using P1 for
the calculation of h 5 P/P1 cancels many systematic effects on the
absolute value of the pressure. Moreover, fitting the outer shell using
a finite-temperature Thomas–Fermi profile19, we measure a tem-
perature kBT~0:03 3ð Þm0

1. m0
2 is fitted by comparison in the superfluid

region with the superfluid EOS at zero temperature21:

h g, 0ð Þ~ 1zgð Þ5=2
.

2jsð Þ3=2 ð5Þ

Our measured EOS h(g, 0) is displayed in Fig. 4. By construction our
data agree for g>0:1 with equation (5). In Fig. 4 the slope of h(g, 0)
displays an obvious discontinuity for g 5 gc 5 0.065(20). This is a
signature of a first-order quantum phase transition to the partially
polarized normal phase. The error bar is dominated by the uncertainty
on js. This value is slightly higher than the prediction gc 5 0.02 given
by the fixed-node Monte Carlo10 and than the value gc 5 0.03(2) mea-
sured in ref. 19.

From the relations ni 5 hP/hmi, we deduce from h(g, 0) the density
ratio n2/n1 (Fig. 4 inset). This ratio is discontinuous at the phase
transition, from a maximum value in the normal phase (n2/n1)c 5

0.5(1) to n2 5 n1 in the superfluid phase. Our value is close to the
zero-temperature calculation 0.44 (ref. 10) and agrees with the coldest
MIT samples19,20. It confirms that the temperature is much smaller
than the tricritical point temperature T 5 0.07TF (ref. 19) where the
discontinuity vanishes, justifying our T 5 0 assumption made above.

For g , gc our data display a good agreement with a simple
polaron model, based on the pioneering work in ref. 10. A polaron
is a quasi-particle describing a single minority atom immersed in the
majority Fermi sea15,18,21,22. It is characterized10 by a renormalized

chemical potential m2 2 Am1 and an effective mass m�p. Following this
picture, we write the pressure as the sum of the Fermi pressures of
ideal gases of majority atoms and of polarons:

P~
1

15p2

2m

B2

� �3=2

m
5=2
1 z

m�p
m

� �3=2

m2{Am1ð Þ5=2

 !
ð6Þ

which can be written as:

h g, 0ð Þ~1z
m�p
m

� �3=2

g{Að Þ5=2 ð7Þ

A and m�p have recently been calculated exactly14,15: A 5 20.615,

m�p

.
m~1:20 2ð Þ, and with these values inserted in equation (7) the

agreement with our data is perfect. Note that our data lie slightly
above the variational fixed-node Monte Carlo calculation10. We
therefore conclude that interactions between polarons are not visible
at this level of precision.

Alternatively, we can fit our data with m�p

.
m as a free parameter in

equation (7). We obtain m�p

.
m~1:20 2ð Þ. The uncertainty combines

the standard error of the fit and the uncertainty on js. This value

agrees with our previous measurement18 m�p

.
m~1:17 10ð Þ (with a

fivefold improvement in precision), with the theoretical value14,15

m�p

.
m~1:20 2ð Þ, and with the variational calculation13. It differs

from the values 1.09(2) in ref. 33, 1.04(3) in ref. 10, and from the
experimental value 1.06 in ref. 20.

We arrive at a simple physical picture of the T 5 0 spin-polarized
gas: the fully paired superfluid is described by an ideal gas EOS
renormalized by a single coefficient js; the normal phase is nothing
but two ideal gases, one of bare majority particles and one of polaro-
nic quasiparticles.

In conclusion, we have introduced a powerful method for the
measurement of the EOS of the unitary and homogeneous Fermi
gas that enables direct comparison with theoretical models and
provides a set of new parameters shown in Table 1. The method
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Figure 4 | Equation of state of the zero-temperature spin-imbalanced
unitary gas h(g, 0). The EOS is shown as filled black circles; error bars are
equal to one standard error. The red solid line is the superfluid EOS, the blue
dashed line is the ideal Fermi liquid, equation (7), with A 5 20.615,
m*5 1.20m and the black dotted line is the Monte Carlo calculation from
ref. 10. Inset, local density ratio n2/n1 as a function of g. The red solid line n2/
n1 5 1 corresponds to the fully paired superfluid and blue dashed line to the
model, equation (7).

Table 1 | Table of quantities measured in this work

Parameter b
3

b
4

(kBT/m)c (m/EF)c (T/TF)c

Value 20.35(2) 0.096(15) 0.32(3) 0.49(2) 0.157(15)

Parameter jn m*/m gc (n
2
/n

1
)c m�p

.
m

Value 0.51(2) 1.13(3) 0.065(20) 0.5(1) 1.20(2)
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can readily be extended to any multi-component cold atom gas in
three dimensions that fulfils the local density approximation (see
Supplementary Discussion). We have shown that the normal phase
of the unitary Fermi gas is a strongly correlated system whose
thermodynamic properties are well described by Fermi liquid theory,
unlike high-Tc copper oxides.
Note added in proof: Since this paper was accepted for publication, we
have become aware of the measurement of a similar equation of state
for the balanced unitary Fermi gas at finite temperature by different
methods34.

METHODS SUMMARY
Our experimental set-up is presented elsewhere18. We load into an optical

dipole trap and evaporate a mixture of 6Li in the j1/2, 61/2æ states and of 7Li

in the j1, 1æ state at 834 G. The cloud typically contains N6 5 (5–10) 3 104 atoms

of 6Li in each spin state and N7 5 (3–20) 3 103 atoms of 7Li at a temperature

from T 5 150 nK to 1.3 mK. The 6Li trap frequencies are vz/2p5 37 Hz, vr/2p
varying from 830 Hz to 2.20 kHz, and the trap depth is 25 mK for our hottest

samples, with T < 2TF. 6Li atoms are imaged in situ using absorption imaging,

while 7Li atoms are imaged after time of flight, providing the temperature in the

same experimental run (Fig. 4). As the scattering length describing the inter-

action between 7Li and 6Li atoms, a67 5 2 nm, is much smaller than k{1
F , the 7Li

thermometer has no influence on the 6Li density profiles. The 7Li–6Li collision

rate, C67 5 10 s21, is large enough to ensure thermal equilibrium between the

two species.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Construction of the EOS by successive patches. A typical image at high tem-

perature provides about 100 pixels corresponding to f values varying from 2 at the

trap centre to 6 at the edges, with a signal-to-noise from 3 to 10. Seven such images

are fitted in the wings using the second-order virial expansion and averaged to

obtain a low-noise EOS up to f 5 2. Then images of clouds where the evaporation

has been pushed to a slightly lower temperature are recorded. They show about 75%

overlap in f with the previous EOS. After minimization of the distance between a

new image and the previously determined EOS in the overlap region, we obtain the

value of m0 for a single image with 3% statistical uncertainty. This process is repeated
for six successive trap depths. When averaging one image with typically 10 previous

images, we obtain a new EOS with an error on f of about 0:03
� ffiffiffiffiffi

10
p

<1%. The EOS

experiences a random walk error on the 40 images of 0:01|
ffiffiffiffiffi
40
p

<5% for the

coldest data. An independent check of the maximum error is provided by the good

agreement with the superfluid EOS for temperatures lower than Tc (refs 7, 8).

Evaluation of the systematic uncertainties. For the measurement of h(1, f), the

combined uncertainties on the radial frequency of the trap, trap anharmonicity,

magnification of our imaging system, and atom counting affect the pressure

measurement given in equation (3) at ,20% level. However, two measurements,

one at relatively high temperature and one at very low temperature, enable us to

show that the overall error does not exceed 6%. In the temperature range f . 0.5,

the agreement between the experimental value b3 5 20.35(2) and the theoretical

value b3 5 20.355 of the third virial coefficient indicates that the global system-

atic error is smaller than 6%. Second, at very low temperature, theory7,8 predicts

that the variation of P/2P1 as a function of kBT/m in the superfluid phase remains

smaller than 5%. Our value of P/2P1 5 3.75 below the critical point is within 5%

of the T 5 0 prediction j{3=2
s ~3:7 2ð Þ. This confirms that systematic errors for

our coldest samples are also smaller than 6%.
For the determination of the critical transition to superfluidity we fit the low-

temperature data P(m, T)/2P1(m, 0) with a variable horizontal line for T , Tc and

with the Fermi-liquid equation (4) for T . Tc. The result of the fit is the dashed

black line in Fig. 3c, which intersects equation (4) at (kBT/m)c 5 0.315(8). This

statistical error is negligible compared to the error induced by the 6% systematic

uncertainty discussed above, justifying our very simplified fit procedure. Indeed

a 6% error on the pressure induces a 10% error on m for images recorded in the

vicinity of the critical temperature, leading to (kBT/m)c 5 0.32(3).

For the measurement of h(g, 0), the fit of the fully polarized wings of the cloud

serves as a pressure calibration for the rest of the cloud, cancelling many systematic

effects.

In order to estimate temperature effects in the polarized gas, let us first remark

that in the superfluid phase corrections scale as T4 for the bosonic excitations and

are exponentially suppressed by the gap for the fermionic ones7. So in our

temperature range kBT~0:03m0
1 their contributions will be very small. On the

other hand, in the partially polarized normal phase, we expect a typical Fermi

liquid T2 scaling. In order to obtain an estimate of the error on the EOS, we

develop the following simple model. In equation (6) which describes a mixture of

zero-temperature ideal gases, we replace the Fermi pressures by the finite-

temperature pressures of ideal gases (see equation (1)):

P m1, m2, Tð Þ~P1 m1, Tð Þz
m�p
m

� �3=2

P1 m2{Am1, Tð Þ

and run the analysis described in the main text. At T~0:05m0
1, the correction on

h is less than 1%, half of our current error bar.

Limit of 7Li thermometry. As the scattering length between the 7Li atoms,

a77 5 23 nm is negative, the 7Li cloud becomes unstable when a BEC forms.

This occurs at T < 150 nK with typically 3,500 atoms. Precise thermometry with

lower atom numbers becomes difficult. For the measurement of the zero-

temperature EOS of the imbalanced gas, we do not use 7Li thermometry but

rather the fit of the wings of the majority spin component.
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The Equation of State of a
Low-Temperature Fermi Gas
with Tunable Interactions
N. Navon,*† S. Nascimbène,* F. Chevy, C. Salomon

Interacting fermions are ubiquitous in nature, and understanding their thermodynamics is an
important problem. We measured the equation of state of a two-component ultracold Fermi gas for
a wide range of interaction strengths at low temperature. A detailed comparison with theories
including Monte-Carlo calculations and the Lee-Huang-Yang corrections for low-density bosonic
and fermionic superfluids is presented. The low-temperature phase diagram of the spin-imbalanced
gas reveals Fermi liquid behavior of the partially polarized normal phase for all but the weakest
interactions. Our results provide a benchmark for many-body theories and are relevant to other
fermionic systems such as the crust of neutron stars.

R
ecently, ultracold atomic Fermi gases

have become a tool of choice to study

strongly correlated quantum systems

because of their high controllability, purity, and

tunability of interactions (1). In the zero-range

limit, interactions in a degenerate Fermi system

with two spin-components are completely char-

acterized by a single parameter 1/kFa, where a is

the s-wave scattering length and kF = (6p
2n)1/3 is

the Fermi momentum (n is the density per spin

state). In cold atom gases, the value of |a| can be

tuned over several orders of magnitude using a

Feshbach resonance; this offers an opportunity

to entirely explore the so-called BCS-BEC cross-

over, that is, the smooth transition from Bardeen-

Cooper-Schrieffer (BCS) superfluidity at small

negative values of a to molecular Bose-Einstein

Condensation (BEC) at small positive values

of a (1, 2). Between these two well-understood

limiting situations, a diverges, leading to strong

quantum correlations. The description of this sys-

tem is a challenge for many-body theories, as

testified by the large amount of work in recent

years (1). The physics of the BEC-BCS crossover

is relevant for very different systems, ranging from

neutron stars to heavy nuclei and superconductors.

In the grand-canonical ensemble and at zero

temperature, dimensional analysis shows that the

Equation of State (EoS) of a two-component Fermi

gas, relating the pressureP to the chemical potentials

m1 and m2 of the spin components can be written as

Pðm1,m2,aÞ ¼

P0ðm1Þh d1 ≡
ℏ
ffiffiffiffiffiffiffiffiffiffiffi

2mm1
p

a
,h ≡

m2
m1

 !

ð1Þ

where P0ðm1Þ ¼ 1=15p2ð2m=ℏ2Þ3=2m 5=2
1 is the

pressure of a single-component ideal Fermi gas,

m is the atom mass, ℏ is the Planck constant

divided by 2p, and d1 is the grand-canonical

analog of the dimensionless interaction parameter

1/kFa. The indices 1 and 2 refer to themajority and

minority spin components, respectively. From the

dimensionless function h(d1,h), it is possible to

deduce all the thermodynamic properties of the

gas, such as the compressibility, the magnetiza-

tion, or the existence of phase transitions. The aim

of this paper is to measure h(d1,h) for a range of

interactions (d1) and spin imbalances (h) and dis-

cuss its physical content. Because it contains the

same information as Eq. 1, the function hwill also

be referred to as the EoS in the rest of the text.

In situ absorption images of harmonically

trapped gases are particularly suited to investi-

gate the EoS, as first demonstrated in (3) and

(4). In the particular case of the grand-canonical

ensemble, a simple formula relates the local

pressure P at a distance z from the center of the

trap along the z axis to the doubly integrated

density profiles n1 and n2 (5).

Pðm1ðzÞ,m2ðzÞ,aÞ ¼ mw2
r

2p
ðn1ðzÞ þ n2ðzÞÞ ð2Þ

Here, we define the local chemical potentials

miðzÞ ¼ m0i −
1

2
mw2

z z
2, where m0i is the chemical

potential of the component i at the bottom of the

trap, assuming local density approximation. wr

and wz are the transverse and axial angular

frequencies of a cylindrically symmetric trap,

respectively, and niðzÞ ¼ ∫niðx,y,zÞdxdy is the

atomic density ni of the component i, doubly

integrated over the transverse x and y directions.

In a single experimental run at a given magnetic

field, two images are recorded, providing n1ðzÞ
and n2ðzÞ (fig. S4); the z-dependence of the chem-
ical potentials then enables the measurement of P

along a curve in the (d1,h) plane (6). This method

was validated in (4) for the particular case of the
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unitary limit a = ∞. Deducing the function h from
the doubly integrated profiles further requires a

precise calibration of wz and the knowledge of the

central chemical potentials m0i (6).

Our experimental setup is presented in (7).

We prepared an imbalanced mixture of 6Li in the

two lowest internal spin states, at the magnetic

field of 834 G (where a = ∞), and trapped it in a
hybrid magnetic-optical dipole trap. We then per-

formed evaporative cooling by lowering the

optical trap power, while the magnetic field was

ramped to the final desired value for a. The cloud

typically contained N = 2 to 10 × 104 atoms in

each spin state at a temperature of 0.03(3) TF,

justifying our T = 0 assumption (6). The final trap

frequencies arewz/2p ~ 30Hz andwr /2p ~ 1 kHz.

Below a critical spin population imbalance, our

atomic sample consists of a fully paired superfluid

occupying the center of the trap, surrounded by a

normal mixed phase and an outer rim of an ideal

gas of majority component atoms (4, 7, 8).

For a given magnetic field, 10 to 20 images

are taken, leading after averaging to a low-noise

EoS along one line in the (d1,h) plane. Measure-

ments at different magnetic fields chosen be-

tween 766 G and 981 G give a sampling of the

surface h(d1,h) in the range −1 < d1 < 0.6 and

−2 < h < 0.7 (Fig. 1). Let A(d1) be the limiting

value of the ratio of chemical potentials m1(z)/m2(z)

below which the minority density vanishes. At

fixed d1 and h < A(d1), h(d1,h) represents the EoS

of an ideal Fermi gas of majority atoms and is

equal to 1. For h > A(d1), it slowly rises and cor-

responds to the normal mixed phase, where both

spin components are present. At a critical value h =

hc(d1), the slope of h abruptly changes (6), the

signature of a first-order phase transition from the

normal phase (for A < h < hc) to a superfluid phase

with a lower chemical potential imbalance (h > hc).

We notice that the discontinuity is present for all

values of d1 we investigated, and this feature is

more pronounced on the BEC side.

Let us first consider the EoS of the superfluid

phase, h > hc. Each of our in situ images has,

along the z axis, values of the chemical potential

ratio h(z) = m2(z)/m1(z) both lower and greater

than hc. In the region where h(z) > hc, the doubly

integrated density difference n1ðzÞ − n2ðzÞ is

constant within our signal-to-noise ratio (fig. S4).

This is the signature of equal densities of the two

species in the superfluid core, that is, the

superfluid is fully paired. Using Gibbs-Duhem

relation ni ¼ ∂P

∂mi
, equal densities n1 = n2 imply

that P(m1,m2,a) is a function of m and a only,

where m ≡ (m1 + m2)/2. For the balanced superfluid,
we then write the EoS symmetrically.

Pðm1,m2,aÞ ¼ 2P0ðm̃ÞhS ˜d ≡
ℏ
ffiffiffiffiffiffiffiffiffi

2mm̃
p

a

 !

ð3Þ

To avoid using negative chemical potentials, we

define here m̃ ¼ m − Eb=2, where Eb is the mo-
lecular binding energy Eb ¼ −ℏ2=ma2 for a > 0
(and 0 for a ≤ 0). hsð˜dÞ is then a single-variable
function. It fully describes the ground-state

Fig. 1. h(d1,h) of a zero-temperature two-component Fermi gas in the BEC-BCS crossover. (A) Samples of
the data for different magnetic fields. The black (red) data points correspond to the normal (superfluid)
phase and are separated at hc(d1) by a clear kink in the local slope of h. Solid black lines are the
predictions of the polaron ideal gas model (Eq. 8). The scattering length corresponding to each curve is
(from left to right): (1.7, 3.4,∞, and −1.3) in units of 104 a0, where a0 is the Bohr radius. (B) h(d1,h). The
black dots are data recorded for eachmagnetic field value (as in Fig. 1A). The black lines correspond to the
parametric curves [d1(h),h] scanned by the density inhomogeneity in the harmonic trap (6). The red line is
A(d1), the frontier between the fully polarized (FP) ideal gas h = 1 and the normal partially polarized (PP)
phase. The green line is hc(d1), marking the phase transition between the normal and superfluid (S)
phases. The surface is the parametrization of h(d1,h) given in the text.

Fig. 2. hS( d̃) of the T = 0 balanced
superfluid in the BEC-BCS crossover
(black dots). The blue solid line is
the fit hS

BCS( d̃) on the BCS side of
the resonance; the red solid line is
the fit hS

BEC( d̃) on the BEC side. The
dotted (dashed) red line is the
mean-field (LHY) theory (32). (Inset)
Zoom on the BCS side. The dotted
and dashed blue lines are the EoS,
including the mean-field and LHY
terms, respectively. The systematic
uncertainties on the x and y axes are
about 5%. The errors bars represent
the standard deviation of the statis-
tical uncertainty.
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macroscopic properties of the balanced super-

fluid in the BEC-BCS crossover and is displayed

in Fig. 2 as black dots.

To extract relevant physical quantities, such

as beyondmean-field corrections, it is convenient

to parametrize our data with analytic functions. In

this pursuit, we use Padé-type approximants (6),

interpolating between the EoS measured around

unitarity and the well-known mean-field expan-

sions on the BEC and BCS limits. The two

analytic functions, hBCSS and hBECS , are respec-

tively represented in blue and red solid lines in

Fig. 2 and represent our best estimate of the EoS

in the whole BEC-BCS crossover.

On the BCS side, ð˜dÞ < 0, hBCSS yields the

following perturbative expansion of the energy in

series of kFa

E ¼ 3

5
NEF

 

1þ 10

9p
kFaþ 0:18ð2ÞðkFaÞ2 þ

0:03ð2ÞðkFaÞ3 þ …

!

ð4Þ

where N is the total number of atoms, EF is the

Fermi energy, andwhere by construction of hBCSS ,

themean-field term (proportional to kFa) is fixed to

its exact value 10/9p. We obtain beyond mean-

field corrections up to the third order. The term pro-

portional to (kFa)
2 agrees with the Lee-Yang (9, 10)

theoretical calculation 4(11−2log2)/21p2 ≅ 0.186.
The third-order coefficient also agrees with the

value 0.030 computed in (11).

Around unitarity, the energy expansion yields

E ¼ 3

5
NEF xs − z

1

kFa
þ …

 !

ð5Þ

We find the universal parameter of the unitary

T = 0 superfluid, xs = 0.41(1) with 2% accuracy.

This value is in agreement with recent calculations

and measurements (1). Our thermodynamic mea-

surement z = 0.93(5) can be compared with a

recent experimental value z = 0.91(4) (12), as well

as the theoretical value z = 0.95 (13), both of them

obtained through the study of the pair correlation

function. This experimental agreement confirms

the link between the macroscopic thermodynamic

properties and the microscopic short-range pair

correlations, as shown theoretically in (14).

In the BEC limit, the energy of the superfluid

is that of a weakly interacting Bose-Einstein con-

densate of molecules (9, 15)

E ¼ N

2
Eb þ N

pℏ2add

2m

# n 1þ 128

15
ffiffiffi

p
p

ffiffiffiffiffiffiffiffiffi

na3dd

q

þ :::

 !

ð6Þ

where add = 0.6a is the dimer-dimer scattering

length (1) and n is the dimer density. The term

in

ffiffiffiffiffiffiffiffiffi

na3dd

q

is the well-known Lee-Huang-Yang

(LHY) correction to the mean-field interaction

between molecules (9, 15). Signatures of beyond

mean-field effects were previously observed

through a pioneering study of collective modes

(16) and density profile analysis (17), but no

quantitative comparison with Eq. 6 was made.

Fitting our data in the deepBEC regimewith Eq. 6,

we measure the bosonic LHY coefficient 4.4(5), in

agreement with the exact value 128=15
ffiffiffi

p
p

≃ 4:81
calculated for elementary bosons in (9) and

recently for composite bosons in (15).

Having checked this important beyondmean-

field contribution, we can go one step further

in the expansion. The analogy with point-like

bosons suggests that the next term should be

written as ½8
3
ð4p − 3

ffiffiffi

3
p

Þna3ddðlogðna3ddÞ þ BÞ%

(6, 18, 19). UsinghBECS ð˜dÞ (Fig. 2) (6), we deduce
the effective three-body parameter for composite

bosons B = 7(1). Interestingly, this value is close

Fig. 3. Comparison with
many-body theories. (A) Direct
comparison of hS( d̃) with a
quantum Monte-Carlo calcula-
tion [red open circles (22)], a
diagrammatic method [green
open squares (23)], a Nozières-
Schmitt-Rink approximation
[blue open triangles (21)], and
the BCSmean-field theory (solid
blue line). (Inset) Zoom on the
BCS side. (B) EoS in the canon-
ical ensemble x(1/kFa) (solid
black line) deduced from the
Padé-type approximants to the
experimental data hS

BCS and
hS
BEC plotted in Fig. 2. Fixed-

Node Monte-Carlo theories: red
squares (24), blue circles (25),
and green triangles (26).

Fig. 4. Effective mass m*/m of
the polaron in the BEC-BCS
crossover (black dots). The blue
dashed line is a calculation from
(29), red open squares (30),
green dot-dashed line (26),
and blue solid line (31). Mea-
surements at unitarity through
density profile analysis [blue
triangle (3)] and collectivemodes
study [brown empty circle (7)]
are also displayed. (Inset) Phase
diagram of a zero-temperature
imbalanced Fermi gas in the
BEC-BCS crossover. The blue
line is the theoretical value of
A (26, 29, 30) that sets the
separation between the partially
polarized (PP) and the fully
polarized (FP) phases. Black
dots are the measured values
of hc (as in Fig. 1A), which set the separation between the superfluid (S) phase and the partially polarized
phase. The red line is the calculation of hc using our EoS of the superfluid and themodel (Eq. 8) for the normal
phase. The green squares are lower bounds of hc given by the values of the gap measured in (33); see (6).
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to the bosonic hard-sphere calculation B = 8.5

(20) and to the valueB ≈ 7.2 for point-like bosons
with large scattering length (19).

Our measurements also allow direct compar-

ison with advanced many-body theories devel-

oped for homogeneous gases in the strongly

correlated regime. As displayed in Fig. 3A, our

data are in agreement with a Nozières-Schmitt-

Rink approximation (21) but show significant

differences from a quantum Monte-Carlo calcu-

lation (22) and a diagrammatic approach (23).

The measured EoS strongly disfavors the predic-

tion of BCS mean-field theory.

Comparison with Fixed-Node Monte-Carlo

theories requires the calculation of the EoS

x(1/kFa) in the canonical ensemble

x
1

kFa

 !

≡
E −

N

2
Eb

3

5
NEF

ð7Þ

that is deduced from hBCSS ð˜dÞ and hBECS ð˜dÞ (6). As
shown in Fig. 3B, the agreement with theories

(24–26) is very good.

We now discuss the EoS of the partially

polarized normal phase (black points in Fig. 1).

At low concentrations, we expect the minority

atoms to behave as noninteracting quasiparticles,

the fermionicpolarons (27). Thepolarons aredressed

by the majority Fermi sea through a renormalized

chemical potential m2 − A(d1)m1 (28) and an

effective mass m*(d1) (26, 29, 30). Following a

Fermi liquid picture, we propose to express the

gas pressure as the sum of the Fermi pressure of

the bare majority atoms and of the polarons (4).

hðd1; hÞ ¼ 1þ m∗ðd1Þ
m

 !3=2

ðh − Aðd1ÞÞ5=2

ð8Þ

Our measured EoS agrees with this model at

unitarity and on the BEC side of the resonance

(Fig. 1), where form*(d1) we use the calculations

from (30, 31). On the BCS side of the resonance,

however, we observe at large minority concen-

trations an intriguing deviation to Eq. 8. In the

BCS regime, the superfluid is less robust to spin

imbalance. Consequently, the ratio of the two

densities n1/n2 in the normal phase becomes

close to unity near the superfluid/normal bound-

ary hc. The polaron ideal gas picture then fails.

Alternatively, we can let the effective mass

m* be a free parameter in the model in Eq. 8 in

the fit of our data around h = A. We obtain the

value of the polaron effective mass in the BEC-

BCS crossover (Fig. 4).

An important consistency check of our study

is provided by the comparison between our

direct measurements of hc(d1) (from Fig. 1, black

dots in the inset of Fig. 4) and a calculated hc(d1)

from Eq. 8 and the EoS of the superfluid hS.

Assuming negligible surface tension, the normal/

superfluid boundary is given by equating the

pressure and chemical potential in the two

phases. This procedure leads to the solid red line

in the inset of Fig. 4, in excellent agreement with

the direct measurements. In addition, by integrat-

ing our measured EoS of the homogeneous gas

over the trap, one retrieves the critical polariza-

tion for superfluidity of a trapped gas, in agree-

ment with most previous measurements (6).

We have measured the equation of state of a

two-component Fermi gas at zero temperature in

the BEC-BCS crossover. Extensions of our work

include exploring the thermodynamics of the far

BEC region of the phase diagram where a new

phase associated with a polarized superfluid

appears (17, 26), mapping the EoS as a function

of temperature, and investigating the influence of

finite interaction range, which is playing a key

role in higher-density parts of neutron stars.
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Nanoscale Three-Dimensional
Patterning of Molecular Resists
by Scanning Probes
David Pires,1 James L. Hedrick,2 Anuja De Silva,3 Jane Frommer,2 Bernd Gotsmann,1

Heiko Wolf,1 Michel Despont,1 Urs Duerig,1 Armin W. Knoll1*

For patterning organic resists, optical and electron beam lithography are the most established methods;
however, at resolutions below 30 nanometers, inherent problems result from unwanted exposure of the
resist in nearby areas. We present a scanning probe lithographymethod based on the local desorption of a
glassy organic resist by a heatable probe. We demonstrate patterning at a half pitch down to 15
nanometers without proximity corrections and with throughputs approaching those of Gaussian electron
beam lithography at similar resolution. These patterns can be transferred to other substrates, and
material can be removed in successive steps in order to fabricate complex three-dimensional structures.

T
o date, a wide variety of techniques has

been available for nanofabrication (1),

including electron beam lithography (EBL)

and scanning probe lithography (SPL) (2–4) as

direct-write methods. Although EBL is used in

critical applications such as the fabrication of
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Abstract. We describe a powerful method for determining the equation of state
of an ultracold gas from in situ images. The method provides a measurement of
the local pressure of a harmonically trapped gas and we give several applications
to Bose and Fermi gases. We obtain the grand-canonical equation of state of a
spin-balanced Fermi gas with resonant interactions as a function of temperature
(Nascimbène et al 2010 Nature 463 1057). We compare our equation of state
with an equation of state measured by the Tokyo group (Horikoshi et al 2010
Science 327 442), which reveals a significant difference in the high-temperature
regime. The normal phase, at low temperature, is well described by a Landau
Fermi liquid model, and we observe a clear thermodynamic signature of the
superfluid transition. In a second part, we apply the same procedure to Bose
gases. From a single image of a quasi-ideal Bose gas, we determine the equation
of state from the classical to the condensed regime. Finally, the method is applied
to a Bose gas in a three-dimensional optical lattice in the Mott insulator regime.
Our equation of state directly reveals the Mott insulator behavior and is suited to
investigate finite-temperature effects.
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1. Introduction

Ultracold gases are a privileged tool for the simulation of model Hamiltonians relevant in
the fields of condensed matter, astrophysics or nuclear physics in the laboratory [3]. As an
example, thanks to the short-range character of interactions, ultracold Fermi mixtures prepared
around a Feshbach resonance mimic the behavior of neutron matter in the outer crust of
neutron stars [4, 5]. For cold atoms, the density inhomogeneity induced by the trapping
potential has long made the connection between the Hamiltonian of a homogeneous system
and an ultracold gas indirect. Early experimental thermodynamic studies have provided global
quantities averaged over the whole trapped gas, such as total energy and entropy [6, 7], collective
mode frequencies [8] or radii of the different phases that may be observed in an imbalanced
Fermi gas [9]–[11]. Reconstructing the equation of state of the homogeneous gas then requires
deconvolving the effect of the trapping potential, a delicate procedure that has not been
done so far. However, the gas can often be considered as locally homogeneous (local density
approximation (LDA)), and careful analysis of in situ density profiles can directly provide the
equation of state of a homogeneous gas [1], [12]–[14]. In the case of two-dimensional (2D)
gases, in situ images taken along the direction of tight confinement obviously give access to
the surface density [15]–[18] and thus to the equation of state [19]. For three-dimensional (3D)
gases, imaging leads to an unavoidable integration along the line of sight. As a consequence,
inferring local quantities is not straightforward. Local density profiles can be computed from
a cloud image using an inverse Abel transform for radially symmetric traps [20]. A more
powerful method was suggested in [13] and implemented in [1, 14]: as explained below, for
a harmonically trapped gas, the local pressure is simply proportional to the integrated in situ
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absorption profile. Using this method, the low-temperature superfluid equation of state for
balanced and imbalanced Fermi gases was studied as a function of interaction strength [1, 14].
In this paper, we describe in more detail the procedure used to determine the equation of state
of a spin-unpolarized Fermi gas in the unitary limit [1]. We compare our data with recent results
from the Tokyo group [2], and show a significant discrepancy in the high-temperature regime. In
the second part, we apply the method to ultracold Bose gases. From an in situ image of 7Li, we
obtain the equation of state of a weakly interacting Bose gas. Finally, analyzing the experimental
profiles of a Bose gas in a deep optical lattice [21], we observe clear thermodynamic signatures
of the Mott insulator phases.

2. Measurement of the local pressure inside a trapped gas

In the grand-canonical ensemble, all thermodynamic quantities of a macroscopic system can be
derived from the equation of state P = f (µ, T ) relating the pressure P to the chemical potential
µ and the temperature T . P can be straightforwardly deduced from integrated in situ images.

Consider first a single-species ultracold gas, held in a cylindrically symmetric harmonic
trap whose frequencies are labeled ωx = ωy ≡ ωr in the transverse direction and ωz in the axial
direction. Provided that the LDA is satisfied, the gas pressure along the z-axis is given by [13]

P(µz, T ) =
mω2

r

2π
n(z), (1)

where n(z) =
∫

dx dy n(x, y, z) is the doubly integrated density profile, µz = µ0
−

1
2mω2

z z2

is the local chemical potential on the z-axis and µ0 is the global chemical potential. n(z) is
obtained from an in situ image taken along the y-axis, by integrating the optical density along
the x-axis (see figure 1). As described below, if one independently determines temperature T
and chemical potential µ0, then each pixel row of the absorption image at a given position z
provides an experimental data point for the grand-canonical equation of state P(µz, T ) of the
homogeneous gas. The large number of data obtained from several images allows one to perform
an efficient averaging, leading to a low-noise equation of state.

This formula is also valid in the case of a two-component Fermi gas with equal
spin populations if n(z) is the total integrated density. The method can be generalized to
multicomponent Bose and Fermi gases, as first demonstrated on spin-imbalanced Fermi gases
in [1, 14].

3. Thermodynamics of a Fermi gas with resonant interactions

In this section, we describe the procedure used in [1] to determine the grand-canonical equation
of state of a homogeneous and unpolarized Fermi gas with resonant interactions (a = ∞). We
also compare our data with recent measurements from the Tokyo group [1, 2]. We then study
the physical content of the equation of state at low temperature.

3.1. Grand-canonical equation of state

In the grand-canonical ensemble, the equation of state of a spin-unpolarized Fermi gas in the
unitary limit can be written as

P(µ, T ) = P (0)(µ, T )hT (ζ ), (2)
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4

z

x

y

atom cloud
probe beam

camera chip

pressure

Figure 1. Scheme of the local pressure measurement: the absorption of a
probe beam propagating along the y-direction provides a 2D image on the
CCD camera. Integration of this image along the x-axis provides the doubly
integrated density profile n(z) and, using equation (1), the pressure profile along
the z-axis.

where P (0)(µ, T ) is the pressure of a non-interacting two-component Fermi gas and ζ =

exp(−µ/kBT ) is the inverse fugacity. Since P (0)(µ, T ) is known, the function hT (ζ ) completely
determines the equation of state P(µ, T ). Let us now describe the procedure used to measure
it. The pressure profile of the trapped gas along the z-axis is directly derived from its in
situ image using equation (1). The effect of the trap anharmonicity of the optical dipole
trap on the pressure measurement is expected to be less than 5%. One still has to know the
value of the temperature T and the global chemical potential µ0 in order to infer hT (ζ ).
We use a small number of 7Li atoms, at thermal equilibrium in the 6Li component, as a
thermometer. We then extract µ0 from the pressure profile, by comparison in the cloud’s
wings with a reference equation of state. For high-temperature clouds (kBT > µ0), we choose
µ0 so that the wings of the pressure profile match the second-order virial expansion [22]
(see figure 2(a)):

P(µ, T ) =
2kBT

λ3
dB(T )

(
eµ/kBT +

4

3
√

2
e2µ/kBT + · · ·

)
. (3)

For colder clouds, the signal-to-noise ratio is not good enough, in the region where (3)
is valid, to extract µ0 using the same procedure. We thus rather use the equation of state
determined from all images previously treated as a reference, since it is accurate over a wider
parameter range than (3) (see figure 2(b)). We then iterate this procedure at lower and lower
temperatures, eventually below the superfluid transition. By gathering the data from all images
and statistical averaging, we obtain a low-noise equation of state in the range 0.02 < ζ < 5
(see figure 3(a)).
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Figure 2. Determination of µ0: we plot the data from an in situ image as
P/2kBT λ−3

dB versus −µ/kBT = V (z)/kBT − µ0/kBT (black points). A wrong
choice of µ0 in this representation corresponds to a translation of the data in
abscissa. We adjust µ0 so that the wings of the pressure profile match a reference
equation of state (in red). (a) For high-temperature clouds, we use the second-
order virial expansion (3). (b) For a lower temperature pressure profile, we
minimize its distance with the averaged equation of state deduced from higher
temperature images (in red) in the overlap region.

3.2. Canonical equation of state

In [2], a canonical equation of state E(n, T ) expressing energy E as a function of density and
temperature was measured using fits of absorption images taken after a short time-of-flight.
In situ density profiles were deduced by assuming a hydrodynamic expansion. The temperature
was extracted from the cloud’s total potential energy at unitarity, using the experimental
calibration made in [7]. In figure 3(b), data from [2] are plotted as E(n, T )/E (0)(n, T ) as
a function of θ = T/TF, where n is the total atom density, TF is the Fermi temperature and
E (0)(n, T ) is the energy of a non-interacting Fermi mixture.

The comparison between the two equations of state requires expressing our data in the
canonical ensemble. The density n = ∂ P/∂µ|T is calculated by taking a discrete derivative, and
we obtain the black points in figure 3(b). While the two sets of data are in satisfactory agreement
in the low-temperature regime T/TF < 0.4, they clearly differ in the high-temperature regime.
The disagreement of the data from [2] with the second- and third-order virial expansions
calculated in [22, 23] indicates a systematic error in this regime. This is possibly due to a
breakdown of hydrodynamics during the time-of-flight as expected at high temperature.

3.3. Fermi liquid behavior in the normal phase

Above the superfluid transition and in the low-temperature regime 0.05 < ζ < 0.5, our data are
well modeled by a Fermi liquid equation of state

PFL(µ, T ) =
2

15π 2

(
2m

h̄2

)3/2

µ5/2

(
ξ−3/2

n +
5π2

8
ξ−1/2

n

m∗

m

(
kBT

µ

)2
)

, (4)

where ξn = 0.51(1) and m∗
= 1.12(3)m respectively characterize the compressibility of the

normal phase extrapolated to zero temperature and the effective mass of the low-lying
excitations. The agreement with (4) is better than 5% in a large parameter range 0.33 µ < kBT <

2 µ. Our value of ξn is in agreement with the variational fixed-node Monte Carlo calculations
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Figure 3. (a) Grand-canonical equation of state of a two-component Fermi
gas with resonant interactions from [1] (black dots). Inset: equation of state
expressed as P(µ, T )/P (0)(µ, 0) as a function of (kBT/µ)2. The solid line is
the Fermi liquid equation of state (4). (b) Canonical equation of state from the
Tokyo group [2] (open circles) and from the ENS group (black dots). The dashed
black line is the ideal gas equation of state, the dot-dashed (solid) black line is
the second- (third-) order virial expansion, the solid green line is the Fermi liquid
equation (4) and the solid blue line is the fit function (5) in the superfluid phase.
The superfluid transition occurs at ζ = 0.05.

ξn = 0.54 in [24], ξn = 0.56 in [25], and with the quantum Monte Carlo calculation ξn = 0.52
in [26]. It is surprising that the quasi-particle mass m∗ is quite close to the free fermion mass,
despite the strongly interacting regime. Note also that this mass is close to the effective mass
m∗

= 1.20 m of a single spin-down atom immersed in a Fermi sea of spin-up particles (the Fermi
polaron) [1, 11, 12, 25], [27]–[30].

3.4. Superfluid transition

The deviation of the experimental data from (4) for ζ < 0.05 signals the superfluid phase
transition. This transition belongs to the U (1) universality class, and the critical region is
expected to be wide [31] in the unitary limit. Assuming that our low-temperature data belong to
the critical region, we fit our data with a function

P(µ, T ) = PFL(µ, T ) + A(ζc − ζ )2−α H(ζrmc − ζ ), (5)

where H is the Heaviside function and α ' −0.013 is the specific heat critical exponent,
measured with a very good accuracy on liquid 4He [32]. We obtain the position of the superfluid
transition ζc = 0.05, or kBTc/µ = 0.33, in agreement with the value kBTc/µ = 0.32(3) extracted
in [1] using a simpler fit function. We thus confirm more rigorously our previous determination
of the superfluid transition. In the appendix, we discuss the validity of LDA around the
superfluid transition. Under our current experimental conditions, the deviation from LDA is
very small.
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Figure 4. (a) Integrated density profiles n(z) for the 7Li component (black dots)
and the 6Li component (open circles). The solid line is a fit of the 6Li component
with a finite-temperature Thomas–Fermi profile, yielding T = 1.6(1) µK.
(b) Thermodynamic function g(ζ ) determined from the 7Li profile. The solid
line is a fit of the data with a Bose function in the non-condensed region and a
mean-field equation of state in the condensed region (see text). The dashed line
is the equation of state of a classical gas g(ζ ) = ζ−1. The difference between
the dashed and solid lines around ζ = 1 is a consequence of Bose statistics.
Inset: equation of state in the condensed phase expressed as g as a function of
(µ/kBT )2. The solid line is the Thomas–Fermi equation of state (5).

4. Thermodynamics of a weakly interacting Bose gas

In this section, we apply equation (1) to the case of trapped Bose gases. Firstly, we test the
method by determining the equation of state of a weakly interacting Bose gas [33, 34]. We
use an in situ absorption image of a 7Li gas taken from [35] (see figure 4(a)). 7Li atoms are
polarized in the internal state |F = 1, mF = −1〉, and held in an Ioffe–Pritchard magnetic trap
with ωr/2π = 4970 Hz and ωz/2π = 83 Hz, in a bias field B0 ' 2 G. The anharmonicity of
this magnetic trap is negligible. Thermometry is provided by a gas of 6Li atoms, prepared in
|F =

1
2 , mF = −

1
2〉, and in thermal equilibrium with the 7Li cloud.

4.1. Determination of the equation of state

The equation of state of a weakly interacting Bose gas can be expressed, in the grand-canonical
ensemble, as

P(µ, T ) =
kBT

λ3
dB(T )

g(ζ ),

where ζ = e−µ/kBT is the inverse fugacity and λdB(T ) =

√
2π h̄2/mkBT is the thermal de Broglie

wavelength. The pressure profile is calculated using (1). We aim here at measuring g(ζ ). We
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obtain the global chemical potential value µ0
= 0.10 kBT by fitting the 7Li profile in the non-

condensed region |z| > 50 µm with a Bose function:

P(µz, T ) =
kBT

λ3
dB(T )

g5/2(ζz), ζz = e−µ0/kBT exp

(
mω2

z z2

2kBT

)
, g5/2(z) =

∞∑
k=1

z−k

k5/2
.

Combining the measurement of the pressure profile, the cloud’s temperature T and the global
chemical potential µ0, we obtain the thermodynamic function g(ζ ) plotted in figure 4(b).

4.2. Analysis of the equation of state

In the region ζ > 1, the data agree with the Bose function g(ζ ) = g5/2(ζ ) expected for a
weakly interacting Bose gas. The departure from the thermodynamic function of a classical
gas g(ζ ) = ζ−1, and especially the fact that g(ζ ) > 1 above the condensation threshold, is the
thermodynamic signature of a bosonic bunching effect, as observed in [36]–[38]. The sudden
and fast increase of our data for ζ . 1 indicates the Bose–Einstein condensation threshold. In
the LDA framework, the chemical potential of a weakly interacting Bose–Einstein condensate
reads as follows:

µ =
4π h̄2a77

m7
n,

where m7 is the 7Li atom mass and a77 is the scattering length describing s-wave interactions
between 7Li atoms. We neglect thermal excitations in the condensed region. Integrating the
Gibbs–Duhem relation at a fixed temperature dP = ndµ between the condensation threshold ζc

and ζ < ζc, and imposing continuity at ζ = ζc, we obtain the equation of state in the condensed
phase:

g(ζ ) = g5/2(ζc) +
λdB(T )

4 a77
(log2 ζ − log2 ζc). (6)

Fitting our data with the function g(ζ ) given by (6) for ζ < ζc and with g5/2(ζ ) for ζ > ζc,
we obtain ζc = 1.0(1) and a77 = 8(4) a0 = 0.4(2) nm. The uncertainties take into account the
fit uncertainty and the uncertainty related to the temperature determination. The condensation
threshold is in agreement with the value ζc = 1 expected for an ideal Bose gas, the mean-field
correction being of the order of 1% [39, 40]. Our measurement of the scattering length is in
agreement with the most recent calculations a77 = 7(1) a0 [41].

Extending this type of measurement to larger interaction strength Bose gases prepared close
to a Feshbach resonance would reveal more complex beyond-mean-field phenomena, provided
thermal equilibrium is reached for strong enough interactions.

5. Mott insulator behavior of a Bose gas in a deep optical lattice

Here we extend our grand-canonical analysis to the case of a 87Rb gas in an optical lattice in the
Mott insulator regime. By comparing experimental data with advanced Monte Carlo techniques,
it has been shown that in many circumstances the LDA is satisfied in such a system [42]. We
analyze the integrated density profiles of the Munich group (see figure 2 of [21]).
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5.1. Realization of the Bose–Hubbard model with ultracold gases

Atoms are held in a trap consisting of the sum of a harmonic potential Vh(x, y, z) and a periodic
potential,

V0(sin2(kx) + sin2(ky) + sin2(kz)),

created by three orthogonal standing waves of red-detuned laser light at the wavelength
λ = 2π/k = 843 nm. The atoms occupy the lowest Bloch band and realize the Bose–Hubbard
model [43]:

Ĥ = −J
∑
〈i, j〉

â†
i â j +

U

2

∑
i

(â†
i âi − 1)â†

i âi , (7)

with a local chemical potential µ(r) = µ0
− Vh(r). The index i refers to a potential well at

position ri , J is the tunneling amplitude between nearest neighbors, and U is the on-site
interaction, U and J being a function of the lattice depth [3]. The slow variation of Vh(r)
compared with the lattice period λ/2 justifies the use of LDA.

We consider here the case of a large lattice depth V0 = 22Er, for which J ' 0.003 U ∼ 0,
and assume that the temperature is much smaller than U . In this regime, the gas is expected
to form a Mott insulator: in the interval µ ∈ [(p − 1)U, pU ], where p is an integer, the atom
number per site remains equal to p, and the density is equal to n = p(2/λ)3. Integrating the
Gibbs–Duhem relation between 0 and µ, we obtain that the pressure P is a piecewise linear
function of µ:

P(µ, T = 0) =

(
2

λ

)3 (
µ −

p − 1

2
U

)
p, where (p − 1)U < µ < pU.

5.2. Determination of the equation of state

We use a series of three images from [21], labeled a, b and c, with different atom numbers
Na = 1.0 × 105, Nb = 2.0 × 105 and Nc = 3.5 × 105 (see figure 5(a)). The integrated profiles
n(z) are not obtained using in situ absorption imaging but rather using a tomographic technique,
providing ∼1 µm resolution. The pressure profile is then obtained using equation (1).

Each image i = a, b and c plotted as P as a function of −
1
2mω2

z z2 provides the equation
of state P(µ) translated by the unknown global chemical potential µ0

i . By imposing that
all images correspond to the same equation of state (in the overlapping µ/U region), we
deduce the chemical potential differences between the different images µ0

b − µ0
a = 0.56 U and

µ0
c − µ0

b = 0.61 U (see figure 5(b)). Gathering the data from all images, we thus obtain a single
equation of state, translated by µ0

a, which is still unknown. We fit these data with a function
translated by µ0

a from the following function, capturing the Mott insulator physics:
P

U (λ/2)−3
= 0, for µ < 0

= n1
µ

U
for 0 < µ < δµ1

= n1
δµ1

U
+ n2

µ − δµ1

U
for δµ1 < µ < δµ1 + δµ2

= n1
δµ1

U
+ n2

δµ2

U
+ n3

µ − δµ1 − δµ2

U
for δµ1 + δµ2 < µ,
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Figure 5. (a) Integrated density profiles n(z) corresponding to images a (open
squares), b (black dots) and c (crosses) from [21]. (b) Determination of the global
chemical potential difference µ0

c − µ0
b by superposing the equations of states

given by each image.

with µ0
a, δµ1, δµ2, n1, n2 and n3 as free parameters. The value µ0

a = 1.51 U yielded by the fit
thus corresponds to the condition P → 0 when µ → 0. Once it is determined, we obtain the
equation of state of the Bose–Hubbard model in the Mott regime, plotted in figure 6.

5.3. Observation of Mott insulator behavior

After fitting the value of µ0
a, the other parameters resulting from the fit exhibit the characteristic

features of incompressible Mott phases. The occupation number in the first Mott region is
n1 = 0.9(1) atom per site and the size is δµ1 = 0.9(1)U . The second Mott region occupation
number is n2 = 2.0(1) and its size is δµ2 = 1.1(1)U . Finally, the third Mott region occupation
number is n3 = 3.1(1). These values agree with the theoretical values ni = i and δµi = U , in
the T = 0 and J = 0 limits.

5.4. Estimation of finite-temperature effects

The equation of state deduced from the experimental data is also suited for investigating finite-
temperature effects. Since sites are decoupled in the regime J � U , kBT considered in this
study, the finite-temperature equation of state is easily calculated from the thermodynamics of
a single site [44, 45]:

P(µ, T ) =
kBT

(λ/2)3
log

 ∞∑
p=0

exp

(
−

U p(p − 1)/2 − µp

kBT

) . (8)

Fitting now the experimental data with (8) and T and µ0
a as free parameters, we deduce

kBT = 0.09+0.04
−0.09 U.

This value is in agreement with a direct fit of the density profiles and number statistics
measurements [46]. Firstly, this temperature is significantly smaller than the temperature
kBT ∗ ' 0.2 U at which the Mott insulator is expected to melt [44]. Secondly, this temperature
should be considered as an upper limit because of its uncertainty on the low-temperature side.
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Figure 6. Equation of state of a Bose gas in an optical lattice, in the Mott
insulator regime. The solid line is a fit with a piecewise linear function capturing
the Mott insulator behavior. The slope dP/dµ provides the density in each of the
Mott zones, n1 = 0.9(1), n2 = 2.0(1) and n3 = 3.1(1).

Indeed, the finite resolution of the images tends to smear out the sharp structure associated with
Mott insulator boundaries, leading to an overestimation of the actual temperature. To overcome
this limit, the spin-gradient thermometry proposed in [47] could be employed.

6. Summary and concluding remarks

To summarize, we have shown on various examples of Fermi and Bose gas systems how
in situ absorption images can provide the grand-canonical equation of state of the homogeneous
gas. This equation of state is obtained up to a global shift in chemical potential and we
have given several examples for its determination. The method relies on the LDA, which is
satisfied in many situations, but notable exceptions exist such as the case of the ideal Bose
gas. The equation of state given by this procedure allows a direct comparison with many-body
theories. Although we have here illustrated this method on a single-component Bose gas and a
spin-balanced Fermi gas, it can easily be generalized to multi-component gases. For instance,
the phase diagram and the superfluid equation of state of spin-imbalanced Fermi gases were
obtained in [1, 14]. We expect this method to be very useful in the investigation of Bose–Bose,
Bose–Fermi and Fermi–Fermi mixtures. Finally, the equation of state of a Bose gas close to
a Feshbach resonance may reveal thermodynamic signatures of beyond-mean-field behavior in
Bose–Einstein condensates [48].
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Appendix. Validity of local density approximation (LDA)

Let us now discuss the validity of LDA around the superfluid transition in our experiment.
Along the z-axis, the correlation length ξ diverges around the transition point z = zc according
to ξ ∼ k−1

F |(z − zc)/zc|
−ν , where ν = 0.67 is the correlation length critical exponent, directly

measured in [49], and in agreement with ν = (2 − α)/3. LDA is expected to become inaccurate
in the region zc − δz < z < zc + δz, where δz is given by [31, 50]

δz ∼ ξ(zc + δz), i.e. δz ∼ zc(kFzc)
−1/(1+ν).

zc is of the order of the cloud size along z, and is much larger than k−1
F , which is of the order

of the inter-particle distance. Given the parameters of our experiments, (kFzc)
−1/(1+ν)

∼ 1% and
the size δz where LDA is invalid is very small. Given the noise of our data (a few per cent),
the deviation from LDA is thus negligible. Investigating the critical behavior at the superfluid
transition, such as measuring the critical exponent α, would be an interesting development for
this method, as proposed in [50].
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We measure the magnetic susceptibility of a Fermi gas with tunable interactions in the low-temperature

limit and compare it to quantum Monte Carlo calculations. Experiment and theory are in excellent

agreement and fully compatible with the Landau theory of Fermi liquids. We show that these measure-

ments shed new light on the nature of the excitations of the normal phase of a strongly interacting

Fermi gas.
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In 1956 Landau developed an elegant description of
interacting Fermi systems at low temperature relying on
the existence of long-lived quasiparticles. While this
Fermi-liquid theory (FLT) describes well Helium 3 and
many solid-state materials above the superfluid tempera-
ture, there exist notable exceptions such as underdoped
cuprates [1], where despite tremendous theoretical and
experimental efforts, the nature of the normal phase is
not yet understood. Similarly to high-critical temperature
superconductors, the properties of the normal phase of
strongly correlated atomic fermionic gases and the nature
of its excitations are still debated. This issue was addressed
recently for spin-balanced gases above the superfluid
transition, through the measurement of equations of state
[2–5], the study of the single-particle excitation spectrum
[6,7], or of spin fluctuations [8]. On the one hand, recent
photoemission spectroscopy experiments near the critical
temperature were interpreted using a pseudogap model [7].
On the other hand, measurement of the temperature depen-
dence of the specific heat displayed a linear behavior
compatible with Fermi liquid’s prediction [2]. All these
experimental probes give access to the properties of the
normal phase of the unpolarized normal phase above the
critical temperature Tc. This limitation can be overcome by
stabilizing the normal state at T < Tc by imposing a spin
population imbalance in the trapped gas [9–11] and ex-
trapolating its properties to zero imbalance. Previous
works focused on the highly polarized limit where minor-
ity atoms behave as impurities: n2 � n1, where ni is the
density for species i [2,12–20]. Here, we interpret the spin
imbalance as the application of an effective magnetic field
to the unpolarized normal gas at very low temperature and
using a combination of Monte Carlo simulations and ex-
perimental results, we extract from the equation of state the
magnetic spin response of the normal phase in the limit
T � Tc. We show that our results are compatible with
a Fermi-liquid description of the normal phase, and we

extract the Fermi-liquid parameters in the universal unitary
limit where scattering length is infinite. The relationship
between these parameters and the properties of low-lying
excitations of the system allow us to quantitatively inter-
pret spectroscopic data from [6,7].
The polarization dependence of the energy E of the

system directly reflects the presence of spin-singlet dimers
in the sample. Indeed, the presence of a gap in the spin
excitation spectrum implies a linear dependence of the
energy E with polarization p ¼ ðN1 � N2Þ=ðN1 þ N2Þ at
low temperature, and hence a zero spin susceptibility. We
have performed quantum Monte Carlo simulations of the
partially polarized Fermi gas at T ¼ 0 in the BEC-BCS
crossover. We make use of the fixed-node diffusion
Monte Carlo method that was employed in earlier studies
of polarized Fermi gases [14,18]. The state of the system is
forced to be in the normal phase by imposing the nodal
surface of a many-body wave function incompatible with
off-diagonal long-range order. A simple way to implement
this requirement is by choosing the trial function of the
Jastrow-Slater form

c TðRÞ ¼ Y
i;i0

fðrii0 ÞDðN1ÞDðN2Þ; (1)

where R ¼ ðr1; . . . ; rNÞ is the spatial configuration vector
of the N particles and D denotes the Slater determinant of
plane waves in a cubic box of size L with periodic bound-
ary conditions. The positive Jastrow correlation term fðrÞ
is determined as described in Ref. [14]: at short distances it
corresponds to the lowest-energy solution of the two-body
problem, while it satisfies the boundary condition on its
derivative f0ðr ¼ L=2Þ ¼ 0.
The results for the canonical equation of state EðN1; N2Þ

are shown in Fig. 1. They are well fitted by the energy
functional

EðpÞ ¼ 3
5NEFð�N þ 5

9
~��1p2 þ . . .Þ; (2)
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holding for a spin polarizable system at low temperature,
where both �N and the dimensionless spin susceptibility ~�
(in units of the susceptibility of an ideal Fermi gas

3n=2EF) depend on 1=kFa, where kF ¼ ð3�2nÞ2=3. The
Monte Carlo method indicates the absence of spin gap, and
thus of preformed molecules in the normal phase for
1=kFa & 0:5. Note that the extracted values of ~� reported
in the inset of Fig. 1 show a rapid drop for positive values
of a when entering the BEC side of the Feshbach reso-
nance. A likely explanation is the binding of fermions into
spin-singlet pairs for some positive value of the interaction
strength 1=kFa. Monte Carlo calculations for values of
1=kFa � 0:7 show that EðpÞ is indeed linear rather than
quadratic in p, indicating the emergence of a gap.
However, pairing fluctuations play a major role for such
values of the coupling and the nodal surface of the Jastrow-
Slater state (see the supplemental material [21]) is no
longer sufficient to enforce the normal phase. This behav-
ior is reminiscent of the pairing transition investigated in
the framework of BCS theory [22], as well as in the normal
phase of the attractive Hubbard model, extrapolated to a
temperature range below the superfluid transition [23,24],
while in our work the extrapolation is made towards a
small spin imbalance.

We now compare these simulations with the grand-
canonical equation of state (EOS) of a homogeneous sys-
tem obtained experimentally in Refs. [2,12]. We prepare a
deeply degenerate mixture of the two lowest internal states
of 6Li, held in a cylindrically symmetric hybrid optical-
magnetic trap, of radial (axial) frequency !r (!z, respec-
tively). The bias magnetic field B0 is chosen between
822 and 981 G, allowing us to tune the strength of inter-
actions �1< 1=kFa < 0:2. The final atom number is 2 to
10� 104 atoms per spin state, and the gas temperature is

smaller than 0:06TF, as measured from the fully polarized
wings of a trapped gas [25]. From dimensional analysis,
the EOS of a spin-imbalanced Fermi gas can be written as

Pð�1; �2; aÞ ¼ P0ð�Þh
�
� ¼ @ffiffiffiffiffiffiffiffiffiffiffi

2m�
p

a
; b ¼ �1 ��2

�1 þ�2

�
;

where � ¼ ð�1 þ�2Þ=2 is the mean chemical potential
and P0ð�Þ is the pressure of a noninteracting unpolarized
Fermi gas. � is a grand-canonical analog of the interaction
parameter 1=kFa, and b is a dimensionless number pro-
portional to the ‘‘spin-polarizing field’’ �1 ��2.
At all values of the scattering length addressed in this

work, the equation of state exhibits a clear discontinuity of
its derivative at the critical field bcð�Þ (See Fig. 2), indicat-
ing a first-order phase transition from a superfluid state for
b < bc to a normal state for b > bc, where h is linear in b2.
[10,12]. The equation of state of the superfluid phase has
been discussed in a previous work [12] and we focus here
on the properties of the normal phase. We write

hð�; bÞ ¼ hNð�Þð1þ 15
8
~�GCð�Þb2 þOðb4ÞÞ: (3)

hNð�Þ is the grand-canonical equation of state in the nor-
mal state, extrapolated to a spin-symmetric configuration.
~�GCð�Þ is a grand-canonical magnetic susceptibility. For an
ideal two-component Fermi gas, the functions hN and ~�GC

are equal to 1. Fitting our data in the normal phase with (3),
we obtain the parameters hNð�Þ and ~�GCð�Þ in the BEC-
BCS crossover shown in Fig. 3 where we compare their
values to the predictions of the Monte Carlo simulations.
To this end, we fit the dependence with 1=kFa of the
parameters �N and ~� determined by Monte Carlo simula-
tions, and perform a Legendre transform to obtain the
grand-canonical EOS hNð�Þ of the normal phase and mag-
netic susceptibility ~�GCð�Þ measured experimentally. In
the investigated parameter range, the agreement between
theory and experiment is excellent. We also remark that our
value for the susceptibility of the normal phase at unitarity
is about twice larger than the value measured in [8] on a gas
with a 35% condensate fraction, confirming a significant
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FIG. 2 (color online). Thermodynamic function hðbÞmeasured
at different magnetic fields B0 ¼ 871, 834, 822 G. The blue lines
correspond to the superfluid equation of state hSð�Þ measured in
[12]. The red line is a linear fit of the data in the normal phase,
b > bc. The dashed line indicates the superfluid/normal phase
transition (b ¼ bc).
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FIG. 1 (color online). Canonical equation of state of a two-
component Fermi gas calculated using quantum Monte Carlo
simulation, for 1=kFa ¼ �1:5, �1, �0:6, �0:2, 0, 0.2, 0.4, 0.5
(from top to bottom). The solid lines are fits of the low-
polarization data with Eq. (2). Inset: Extracted values of the
susceptibility ~� as a function of 1=kFa. The dashed red line is
the result of a perturbation expansion valid up to order ðkFaÞ2.
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suppression of the spin susceptibility in the superfluid
phase.

Our findings demonstrate that for 1=kFa & 0:5, the spin
excitations of the system are not gapped in the normal
phase which therefore does not support ‘‘true’’ molecules.
However, a certain class of theories predicts a reminis-
cence of this gap in the form of a dip in the density of states
over a range �� around the Fermi level [26]. �� is often
called the pseudogap, in relationship to some features of
high-critical temperature superconductors. These theories
predict a departure of EðpÞ from its quadratic behavior
when the Fermi levels of the two spin species reach the
edges of the dip,�2 ��1 ’ ��. (see Auxiliary Materials).
The absence of such an anomaly in Fig. 1 and 2, and in the
whole range �1< 1=kFa < 0:5 thus suggests that the dip
is either extremely narrow or very broad: the density of
state remains flat over the range of polarizations and inter-
action strength studied in our work. For instance, at
unitarity this range covers 0< b2 < 3. If a sizeable
dip existed, then its width cannot be smaller than

’ ð�1 þ�2Þ
ffiffiffi
3

p ’ 1:4EF where we have used the unitary
equation of state, � ¼ 0:41EF [12]. Such a large pseudo-
gap is not compatible with the photoemission data of [7]
(See below). Furthermore, we would expect on physical
grounds that �� becomes smaller on the BCS side of the
resonance. This is observed neither in the experimental
data of Fig. 2 nor in the quantum Monte Carlo results
of Fig. 1.

On the contrary, Landau’s theory of Fermi liquids is
fully compatible with our observations. This theory as-
sumes the existence of long-lived fermionic excitations
above the Fermi surface. Combining the measurement of
the low-temperature compressibility � and specific heat Cv

of [2] with the data presented here, we can fully character-
ize the parameters of the theory at the unitary limit. From
the magnetic response of the T ¼ 0 gas, we obtain here its

magnetic susceptibility and another determination of �.
The two determinations of � coincide within 5%, showing
that the two approaches indeed probe the same Fermi
liquid. From this set of thermodynamic quantities we
derive, according to Landau’s Fermi-liquid theory, a com-
plete characterization of the low-lying excitations of the
unitary gas: besides their effective mass m� ¼ 1:13m and
Landau parameters Fs

0 ¼ �0:42, Fs
1 ¼ 0:39 found in [2],

we recover here Fs
0 ¼ �0:40 and obtain the new parameter

Fa
0 ¼ m�=m~�ð0Þ�1 � 1 ¼ 1:1ð1Þ. Note that Fa

0 > 0 corre-

sponds to magnetic correlations which do favor the singlet
configuration.
We can finally test FLTon the single-particle photoemis-

sion spectrum obtained at the unitary limit and at the onset
of superfluidity from Ref. [7]. The experimental signal
�Aðk;!Þ is directly proportional to the spectral function
Aðk;!��Þ averaged over the trap that we estimate using
the following procedure: In the vicinity of the Fermi
surface, the dispersion relation of the Fermi-liquid
quasiparticles reads @!k ¼ �þ @

2ðk2 � k2FÞ=2m� where
m� ¼ 1:13m. Assuming long-lived quasiparticles, we
approximate Aðk;!Þ by �ð!�!kÞ and perform the inte-
gration over the trap to obtain �Aðk;!Þ given by [7]

�Aðk;!Þ ¼ 48k2

�2

Z
d3r

Aðk;!��ðrÞ=@Þ
1þ exp@!��ðrÞ

kBT

; (4)

where �ðrÞ is the local chemical potential at position r. In
order to calculate the integrated spectral function �Aðk;!Þ
of a Fermi liquid, we replace the spectral function by
�ð!�!kÞ, and perform the integration in Eq. (4). kFðrÞ
is calculated from the equation of state of the unitary gas
determined in [2]. The temperature is chosen at the onset of
superfluidity kBT=�

0 ¼ 0:32 [2,27]. In order to make a
direct comparison with the experimental data, we finally
convolve our result with the experimental resolution in !
[7], equal to 0:25EF=@ and results for various values of k
are shown in Fig. 4.
With no free parameter in the theory, FLT well repro-

duces the experimental spectra for �Aðk;!Þ in the region
k < kF, with an excellent agreement in the region 0:3kF �
k � kF close to the most probable Fermi level in the trap
(’ 0:7kF) where FLT is expected to be more accurate.
Interestingly, we observe that the width of the peak at
k=kF ¼ 0:6 is well reproduced by our model meaning
that the broadening of the line is not limited by the lifetime
of the quasiparticles, but rather by trap inhomogeneity and
measurement resolution. Significant deviations between
experiment and FLT appear for k > 1:1kF, far from the
most probable Fermi wave vector. However, in this region
the energy spectrum signal is very broad and weak, corre-
sponding to an incoherent background in the spectral func-
tion. Our Fermi-liquid description thus accounts for the
coherent part of the excitation spectrum from [7].
In conclusion we have shown that the magnetic and

thermal responses of the unitary Fermi gas support a
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FIG. 3 (color online). Fermi-liquid equation of state extrapo-
lated to a spin-symmetric configuration hNð�Þ. The black dots
are the experimental data, and the red line is calculated from the
Monte Carlo data. Inset: Grand-canonical susceptibility ~�GCð�Þ
of a Fermi gas in the BEC-BCS crossover.
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description of the normal phase in terms of Fermi-liquid
theory despite the fact that this system exhibits a high-
critical temperature for superfluidity. This behavior is in
contrast with underdoped cuprate high Tc materials dis-
playing anomalous magnetic susceptibility or pseudogap
physics in the normal phase. Recent quantum oscillation
experiments on cuprates in high magnetic fields, aiming at
studying the incipient normal state (somewhat analogously
to the present work) do suggest long-lived quasiparticles
[28]. The drop of the susceptibility on the BEC side of the
resonance for 1=kFa * 0:5 indicates the appearance of a
spin gap in this regime that deserves further investigations.
Finally, the magnetic susceptibility could be a key observ-
able for characterizing the onset of itinerant ferromagne-
tism in a repulsive Fermi gas [29,30].
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We measure the zero-temperature equation of state of a homogeneous Bose gas of 7Li atoms by

analyzing the in situ density distributions of trapped samples. For increasing repulsive interactions our

data show a clear departure from mean-field theory and provide a quantitative test of the many-body

corrections first predicted in 1957 by Lee, Huang, and Yang [Phys. Rev. 106, 1135 (1957).]. We further

probe the dynamic response of the Bose gas to a varying interaction strength and compare it to simple

theoretical models. We deduce a lower bound for the value of the universal constant � > 0:44ð8Þ that
would characterize the universal Bose gas at the unitary limit.

DOI: 10.1103/PhysRevLett.107.135301 PACS numbers: 67.85.�d, 05.30.Jp, 32.30.Bv, 67.60.Fp

From sandpiles to neuronal networks, electrons in met-
als, and quantum liquids, one of the greatest challenges in
modern physics is to understand the behavior of strongly
interacting systems. A paradigmatic example is superfluid
4He, the understanding of which has resisted theoretical
analysis for decades. Early attempts to address the problem
of the strongly interacting Bose liquid focused on the dilute
limit. A seminal result for the thermodynamics of the dilute
Bose gas was the expansion of the ground state energy (per
volume V), first obtained in the late 1950s [1]:

E

V
¼ gn2

2

�
1þ 128

15
ffiffiffiffi
�

p
ffiffiffiffiffiffiffiffi
na3

p
þ � � �

�
; (1)

where n is the density of the gas, g ¼ 4�@2a=m is the
coupling constant for particles with mass m, and a is the
s-wave scattering length, which characterizes the low-
energy interactions. The first term in Eq. (1) is the mean-
field energy, while the Lee-Huang-Yang (LHY) correction,

proportional to
ffiffiffiffiffiffiffiffi
na3

p
, is due to quantum fluctuations [1].

Up to this order, the expansion is universal, in the sense
that it depends solely on the gas parameter na3 and not on
microscopic details of the interaction potential [2–4].

Despite its fundamental importance, this expansion was
never checked experimentally before the advent of ultra-
cold quantum gases, where it became possible to tune the
value of the scattering length using magnetic Feshbach
resonances [5,6]. A first check of the LHY prediction
was provided by recent experiments on strongly correlated
Fermi gases [7–9] that behave as a gas of tightly bound
dimers in the limit of small and positive values of a
[10–12]. By contrast, early studies of Bose gases in the
strongly interacting regime were plagued by severe inelas-
tic atom loss [13], but recent experiments at JILA and Rice
have revived interest in these systems and showed the onset
of beyond mean-field effects [14,15]. Here we report on a
quantitative measurement of the thermodynamic equation

of state (EOS) of a strongly interacting atomic Bose gas in
the low-temperature limit. We show that the EOS follows
the expansion (1), and the comparison with fermionic
systems illustrates the universality of the LHY correction.
In the first part, we restrict ourselves to a moderately

interacting gas with negligible 3-body atom loss: a=a0 �
2000, a0 being the Bohr radius. In this regime our EOS
reveals the Lee-Huang-Yang correction due to quantum
fluctuations. We perform quantum Monte Carlo (QMC)
simulations to support our zero-temperature approxima-
tion. We then test our assumption of thermal equilibrium
by dynamically bringing the gas into a more strongly
interacting regime where atom loss is no longer negligible.
Finally, we explore the unitary regime where the scattering
length is infinite.
Our experimental setup was described in [16]. Starting

from a 7Li cloud in a magneto-optical trap, we optically
pump the atoms into the jF ¼ 2; mF ¼ 2i hyperfine state
and transfer them into a magnetic Ioffe trap. After evapo-
rative cooling to a temperature of �4 �K, the atoms are
loaded into a hybrid magnetic/optical trap and then trans-
ferred to the jF ¼ 1; mF ¼ 1i state. The radial optical
confinement of the trap is provided by a single laser
beam of 35 �m waist operating at a wavelength of
1073 nm, while the weak axial confinement is enhanced
by an additional magnetic-field curvature. We apply a
homogeneous magnetic field to tune the interaction
strength by means of a wide Feshbach resonance that we
locate at 737.8(2) G. The final stage of evaporation in the
optical trap is carried out at a bias field of 717 G, where
the scattering length has a value of about 200a0, and results
in a Bose-Einstein condensate of �6� 104 atoms with
no discernible thermal part. In the final configuration the
trapping frequencies are given by !r ¼ 2�� 345ð20Þ Hz
in the radial and !z ¼ 2�� 18:5ð1Þ Hz in the axial direc-
tion. The magnetic bias field is then adiabatically ramped
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to the vicinity of the Feshbach resonance in 150 ms and the
density distribution is recorded using in situ absorption
imaging (Fig. 1). As the EOS critically depends on the
scattering length, a precise knowledge of the latter close to
the Feshbach resonance is essential. In view of the discrep-
ancy between two recent works [15,17], we have indepen-
dently calibrated the scattering length aðBÞ as a function of
magnetic field B by radio-frequency molecule association
spectroscopy [18], as described in the Supplemental
Material [19].

For the measurement of the EOS, we follow the method
of [9,20–23]. Accordingly, the local pressure PðzÞ along
the symmetry axis of a harmonically trapped gas is related
to the doubly integrated in situ density profile �nðzÞ ¼R
dxdynðx; y; zÞ:

Pð�zÞ ¼ m!2
r

2�
�nðzÞ: (2)

This formula relies on the local-density approximation in
which the local chemical potential is defined as �z ¼
�0 � 1

2m!2
zz

2, where �0 is the global chemical potential

of the gas.
To measure the pressure at different interaction strengths

we have selected images with atom numbers in the range of
3–4� 104 in order to avoid high optical densities during
absorption imaging while keeping a good signal-to-noise
ratio. A total of 50 images are used, spanning values of
a=a0 from 700 to 2150. We calibrate the relation between
the integrated optical density and the pressure of the gas
at weak interaction, well described by mean-field theory
(inset of Fig. 2). The density profiles then generate the

EOS (2). The global chemical potential �0 remains to be
determined. For this work, we infer �0 self-consistently in
a model-independent way from the density profiles (see the
Supplemental Material [19]).
In the dilute limit na3 � 1, where the EOS is universal,

dimensional analysis can be used to write the grand
canonical EOS of the homogeneous Bose gas at zero
temperature in the form

Pð�; aÞ ¼ @
2

ma5
hð�Þ; (3)

where � � �a3=g is the (grand canonical) gas parameter
and hð�Þ is the normalized pressure. This EOS contains all
thermodynamic macroscopic properties of the system. For
example, the energy can be deduced from the pressure
using a Legendre transform detailed in the Supplemental
Material [19], and in particular, its LHYasymptotic expan-
sion (1). According to the above definition of h, the mean-
field EOS simply reads hð�Þ ¼ 2��2. These predictions
for hð�Þ are compared to the experimental data points in
Fig. 2, and to our QMC calculation. We observe a clear
departure of the EOS from the mean-field prediction
[dashed gray line (dashed red online)]. At the largest
measured value of � ¼ 2:8� 10�3 our data show a reduc-
tion of 20% of the pressure with respect to the mean-field
result.
We observe that LHY theory accurately describes our

experimental data and is hardly distinguishable from the
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FIG. 1 (color online). Doubly integrated density profile of a
trapped Bose gas at a scattering length a=a0 ¼ 2150, used to
measure the LHY expansion (1). The average over 5 experimen-
tal images is shown in black points. The QMC predictions for
3:9� 104 atoms are plotted in a solid line for T=Tc ¼ 0:75 in
red, 0.5 in orange, 0.25 in green, and 0.125 in purple (solid lines
from bottom to top). Inset: �2 deviation per degree of freedom of
a single experimental density profile with QMC results at differ-
ent temperatures. The excellent agreement between experimen-
tal profiles and QMC validates the zero-temperature assumption
for the EOS measurement.
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FIG. 2 (color online). Equation of state of the homogeneous
Bose gas expressed as the normalized pressure h as a function of
the gas parameter �. The gas samples for the data shown in the
main panel (inset) have been prepared at scattering lengths of
a=a0 ¼ 1450 and 2150 (a=a0 ¼ 700). The gray (red online)
solid line corresponds to the LHY prediction, and the gray
(red online) dashed line to the mean-field EOS hð�Þ ¼ 2��2.
In the weakly interacting regime the data are well described by
mean-field theory (inset), in opposition to stronger interactions
where beyond-mean-field effects are important (main panel).
The QMC EOS at T=Tc ¼ 0:25 (solid black line) is nearly
indistinguishable from the LHY EOS. The shaded (green online)
area delimits the uncertainty of 5% on the value of a.
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QMC in the studied range of interaction strength, a point
already put forward in a diffusion Monte Carlo simulation
at even higher values of the gas parameter [24]. We can
quantify the deviation of our data from mean-field theory
by fitting the measured EOS with a function that includes

a correction of order
ffiffiffiffiffiffiffiffi
na3

p
. For this purpose we convert

the energy E=N ¼ ½2�@2=ðma2Þ�na3½1þ �ðna3Þ1=2� to
the grand canonical EOS (see the Supplemental Material
[19]) and use � as a fit parameter in the resulting pressure
Pð�Þ. The fit yields the value � ¼ 4:5ð7Þ, which is in
excellent agreement with the theoretical result
128=ð15 ffiffiffiffi

�
p Þ � 4:81 in Eq. (1). Together with the mea-

surement with composite bosons of [9], this provides a
striking check of the universality predicted by the expan-

sion (1) up to order
ffiffiffiffiffiffiffiffi
na3

p
[11].

In the above interpretation we assumed that the zero-
temperature regime has effectively been reached. To
check this crucial assumption, we have performed finite-
temperature path-integral quantum Monte Carlo simula-
tions [25] in the anisotropic harmonic trap geometry of the
experiment with continuous space variables. The experi-
mental atom number can be reached without difficulty and
pair interactions are described by a pseudopotential. All
thermodynamic properties of the gas at finite temperature
are obtained to high precision and without systematic
errors. As seen in Fig. 1, we find good agreement between
the experimental density distributions and the QMC pro-
files at temperatures up to 0:25Tc, where Tc is the con-
densation temperature of the ideal Bose gas. This shows
that thermal effects are negligible and lead to an error in
the EOS much smaller than the statistical error bars in
Fig. 2.

We now assess the adiabaticity of the interaction sweep
in the measurements described above. A violation of adia-
baticity could lead to nonequilibrium density profiles that
distort the measured EOS. We study the dynamics of the
Bose gas subjected to time-dependent interaction sweeps
into increasingly strongly interacting regimes, where the
enhanced three-body loss rate limits the practical duration
of the sweep. In Fig. 3 we plot the axial cloud size deter-
mined by a Thomas-Fermi fit as a function of the sweep
duration. The magnetic field is ramped approximately
linearly in time, sweeping a=a0 from an initial value of
200 to different final values. Besides the experimental data
we present theoretical results from a mean-field scaling
solution [26,27] and from a solution of the hydrodynamic
equations incorporating the LHY EOS based on a varia-
tional scaling ansatz [28]. The latter shows a remarkable
agreement with our experimental data for a 	 3000a0. For
scattering lengths a=a0 	 840 the radius is nearly constant
for sweep durations �!z=ð2�Þ> 1:5 (� > 80 ms), indicat-
ing that the cloud follows the interaction strength adiabati-
cally. For the largest value used in the EOS study
(a=a0 ¼ 2150), the atom loss is less than 4% and the cloud
size after the � ¼ 150 ms sweep [�!z=ð2�Þ * 2:8] is 2.5%

smaller than the equilibrium value. We have corrected for
this systematic effect by rescaling the measured density n0
for the determination of the EOS, �n ¼ ��1 �n0ð�zÞ (with
� ¼ 0:975 for a=a0 ¼ 2150).
The properties of the Bose gas for very large values of

na3 constitute a challenging open problem. Because of the
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FIG. 3 (color online). Radius R of the Bose gas as a function of
the duration � of the interaction sweep. The radius R is normal-
ized to the radius R
 ¼ ahoð15	2NÞ1=5 [where aho ¼ ð@=m!zÞ1=2
and 	 ¼ !r=!z]. N is the measured atom number at the end
of each sweep. The final values of a=a0 are 380 (blue dots),
840 (purple squares), 2940 (red diamonds), and 4580 (green
triangles). The solid (dashed) lines show the solution of a varia-
tional hydrodynamic approach (mean-field scaling solutions).
The crosses show the predicted equilibrium beyond-mean-field
radii.
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FIG. 4 (color online). Normalized cloud radius RTF=R

 (filled

purple circles) and normalized atom number (open black
squares) as a function of the inverse scattering length aho=a at
the end of a 75-ms magnetic-field sweep. The static mean-field
prediction is plotted in a solid black line, the mean-field scaling
solution in a dashed red line, and the beyond mean-field scaling
ansatz in a solid gray line (green online). Inset: Zoom around the
unitary limit. Predictions for the universal constant � are shown
in an up triangle [34], down triangle [33], and square [32]. The
filled (empty) circles correspond to the radii normalized to the
final (initial) atom number (see [31]). The dashed black line is
the linear interpolation at unitarity.
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experimental limitation imposed by three-body recombi-
nation, we access this region with a shorter sweep of
duration �!z=ð2�Þ ¼ 1:35 (� � 75 ms). In Fig. 4 we
plot the normalized radius of the Bose gas as a function
of the inverse scattering length aho=a. Deep in the mean-
field regime (a & 800a0) the ramp is adiabatic as the data
match the equilibrium Thomas-Fermi prediction. As the
scattering length is increased, both nonadiabaticity and
beyond mean-field effects become important. A departure
from the equilibrium result becomes evident above a scat-
tering length of ’ 2000a0. Taking into account the mean-
field dynamics gives an improved description of our data
(red dashed line). Even better agreement (up to values of
a=a0 ’ 5000) is obtained with the variational approach
incorporating the LHY correction as presented above
[gray solid line (green online)] [28]. Probing larger values
of the scattering length enables us to gain further insight
into the unitary Bose gas, a ¼ 1. Because of the low
densities of our samples, only half of the atoms are lost
at the end of the sweep to the resonance (see squares in
Fig. 4). Universal thermodynamics at unitarity have been
conjectured for quantum gases [29] and successfully
checked experimentally for Fermi gases [30]. In the case
of bosonic atoms the existence of a many-body universal
state at unitarity is still unknown. Under the assumption of
universality, the only relevant length scale should be the

interparticle spacing n�1=3 and the EOS would take the

form � / @
2

m n2=3. Up to a numerical factor, this EOS is

identical to that of an ideal Fermi gas and we can write

� ¼ �EF [where EF ¼ @
2=2mð6�2nÞ2=3]. As we increase

the scattering length towards the unitarity regime, the
cloud is expected to grow in size. Because of the finite
response time of the gas, it is reasonable to assume that the
measured radius R is smaller than the equilibrium radius.
From this inequality, in the spirit of variational methods,
we deduce a lower bound for the value of � by interpolating
our data at unitarity [black dashed line in the inset of
Fig. 4]: � > 0:44ð8Þ [31]. This bound is satisfied for the
predictions � ¼ 0:66 [32] and for the upper bounds from
variational calculations, 0.80 [33] and 2.93 [34].

Future work could focus on the measurement of the
condensate fraction since the quantum depletion is ex-
pected to be as large as �8% for our most strongly inter-
acting samples in equilibrium, and on finite-temperature
thermodynamic properties [35]. Our measurements on
resonance as well as future theoretical studies should
give crucial insights on the unitary Bose gas.
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Condensation energy of a spin-1/2 strongly interacting Fermi gas

N. Navon,1,* S. Nascimbène,1 X. Leyronas,2,† F. Chevy,1 and C. Salomon1

1Laboratoire Kastler Brossel, CNRS, UPMC, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris, France
2Laboratoire de Physique Statistique, Ecole Normale Supérieure, UPMC Université Paris 06, Université Paris Diderot, CNRS,
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We report a measurement of the condensation energy of a two-component Fermi gas with tunable interactions.
From the equation of state of the gas, we infer the properties of the normal phase in the zero-temperature limit.
By comparing the pressure of the normal phase at T = 0 to that of the low-temperature superfluid phase, we
deduce the condensation energy, i.e., the energy gain of the system upon being in the superfluid rather than
the normal state. We compare our measurements to a ladder approximation description of the normal phase
and to a fixed-node Monte Carlo approach, finding excellent agreement. We discuss the relationship between
condensation energy and pairing gap in the BEC-BCS crossover.
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I. INTRODUCTION

From a thermodynamic point of view, a superconducting
state is favored compared to a normal state when the free
energy of the former (ES) is lower than that of the latter
(EN ). This energy difference, called the condensation energy,
is a central concept in the BCS theory of conventional
superconductivity. For example, in the weakly interacting
regime the condensation energy is related to the superfluid
pairing gap � by

Ec = EN − ES = Nf

�2

2
, (1)

where Nf is the density of states at the Fermi energy [1]. For
superconductors, the condensation energy is obtained from
the measurement of the critical magnetic field Hc at which
superconductivity is quenched,

Ec = μ0
H 2

c

2
, (2)

where μ0 is the vacuum magnetic permeability [1]. While
BCS theory [and relation (1)] have proven very successful to
explain conventional superconductivity, a similar description
to explain exotic forms of superconductivity, such as encoun-
tered in cuprate or iron-compound materials, is still lacking.
In particular, the role of the condensation energy in high-Tc

superconductors is thought to give insight into the mechanism
that could be responsible for driving the superconducting
transition (see, e.g., [2–5], and references therein), though its
extraction from experimental data or even its relevance is still
a hotly debated issue [6–8].

Ultracold atoms are now increasingly used as test beds to
experimentally explore quantum many-body physics, owing
to their high degree of control [9]. It has become possible to
simulate Hamiltonians from various fields of physics, such as
neutron matter or condensed matter physics in simple systems.

*Present address: Cavendish Laboratory, University of Cambridge,
J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom;
nn270@cam.ac.uk
†leyronas@lps.ens.fr

Moreover, interactions between ultracold atoms, characterized
by the s-wave scattering length a, can be tuned via magnetic
Feshbach resonances, giving access to the regime of strong
interactions.

In this article, we investigate the condensation energy of a
dilute spin-1/2 strongly interacting Fermi gas with a variable
interaction strength. We show that the condensation energy
can be measured by applying a chemical potential imbalance
between the two spin states which is the analog of a magnetic
field in superconductors. In contrast to superconductors, we
explore a regime where the effective Zeeman energy is of
the order of the Fermi energy. We compare our experimental
results to a diagrammatic theory, finding excellent agreement.

II. NORMAL-STATE PRESSURE

The experimental setup was presented in [13]. Our system
is a quantum gas of 6Li prepared in a mixture of its two lowest
energy spin states.

The gas is loaded into a single-beam dipole trap, providing
a radial (strong) confinement, while the axial (weak) confine-
ment (z axis) is provided by magnetic coils. This results in
a cigar-shaped trap. The interactions are tuned using a pair
of coils in the Helmholtz configuration in order to create a
large homogeneous bias field to tune the scattering length a

via the 832.18-G Feshbach resonance [10]. The mixture is
cooled to quantum degeneracy by lowering the trap depth,
and absorption images perpendicular to the weak direction are
recorded to obtain the in situ density distributions along the
z axis. Previous theoretical [11,12] and experimental [13,14]
studies have demonstrated that the density profiles of a trapped
spin-imbalanced Fermi gas can be used to extract the equation
of state (EoS) of the corresponding homogeneous system

via the pressure formula, P (μ1,μ2,T ) = mω2
r

2π
[n̄1(z) + n̄2(z)],

where ωr is the radial trapping frequency, and n̄i(z) =∫
d2r ni(r,z) is the doubly integrated density distribution of

spin species i (i = 1,2).
At unitarity, where the scattering length a diverges, we

previously measured the pressure of the spin-balanced gas as a
function of the reduced temperature t = kBT /μ (where 2μ =
μ1 + μ2) [13], as well as the pressure of the spin-imbalanced

063614-11050-2947/2013/88(6)/063614(6) ©2013 American Physical Society
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gas at t ≈ 0 as a function of the spin-polarizing field b =
μ1−μ2

μ1+μ2
. We suggested that the low-temperature properties of

the normal phase of the Fermi gas were consistent with a
Fermi-liquid behavior [19]. As a result, the low-temperature
and low-imbalance limit of the pressure of the unitary gas can
be written as

h(t,b) = P (μ1,μ2,T )

2P0(μ)
� ξ

−3/2
N + χ̃b2

2
+ c̃V t2

2
, (3)

where P0(μ) = 1
15π2 ( 2m

h̄2 )3/2μ5/2 is the ideal Fermi-gas pres-
sure. The response coefficient to temperature t is the dimen-
sionless specific heat c̃V , while the response to the polarizing
field b is the dimensionless magnetic susceptibility χ̃ (equal
to 5π2/8 and 15/4, respectively, for the ideal Fermi gas).
The magnetic susceptibility has been the subject of a previous
work [18], and we focus here on the measurement of the
pressure of the normal phase ξ

−3/2
N in the t = 0 and b = 0

limits. In the (t,b) plane, our measurements of the EoS of
the unitary gas have been performed along two directions:
the unpolarized gas as a function of temperature h(t,b = 0)
(Fig. 1) and the low-temperature polarized gas versus the
chemical potential imbalance h(t = 0,b) [Fig. 2(a)]. The
quadratic behavior of the pressure versus both b and t

supports the Fermi-liquid interpretation of the low-temperature
thermodynamic properties of the normal phase. However, the

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

2

4

6

8

10

t2

h
t,
b

0

FIG. 1. (Color online) Reduced pressure h(t,b) =
P (μ1,μ2,T )/2P0(μ̄) of the spin-1/2 unitary Fermi gas, where
P0 is the T = 0 Fermi pressure of an ideal gas, t the reduced
temperature kBT /μ, and b = 0 the unpolarized gas. Open black
circles are data from [13] taken at B = 834 G, while filled black
circles include a small correction due to a recently determined
downshift of the Feshbach resonance [10]. This correction is
estimated using Tan’s contact calculated by the bold diagrammatic
Monte Carlo (bDMC [16]) (see Appendix B for details). The
Fermi-liquid fit is shown as the solid red line, and the extrapolated
zero-temperature pressure of the normal state ξ

−3/2
N is represented by

the (red) X. MIT data from [15] are represented by (blue) squares;
the corresponding fit, by the dashed (blue) line; and the extrapolation
at t = 0, by the open (blue) square. The bDMC calculation [16] is
shown by the solid green line. The agreement with the bDMC data
is excellent, while a small discrepancy from the MIT data is visible
near the superfluid-to-normal transition around tc = 0.40 [15] or
tc = 0.33 here [17] (the latter represented by the dashed vertical
line). The dashed horizontal (red) line corresponds to the superfluid
pressure; the dotted black line, to the ideal gas.

system will ultimately undergo a second-order phase transition
to a superfluid state, and below the temperature tc ∼ 0.33, the
pressure of the spin-balanced gas deviates from the t2 behavior.
In contrast, at t = 0, the spin-imbalanced gas (μ1 �= μ2) under-
goes a first-order phase transition to an unpolarized superfluid
phase when hS(0,0) = hN (0,0) + χ̃b2/2. This condition is
the analog of Eq. (2), and at unitarity it yields the critical
chemical potential imbalance bc ≈ √

0.8 [see Fig. 2(a)]. This
is demonstrated by the discontinuity in the slope of h vs b2.
From Eq. (3), and extrapolating the Fermi-liquid behavior to
the zero-temperature and spin-balanced limits, we measure the
T = 0 dimensionless pressure of the spin-balanced unitary gas
in the normal phase ξ

−3/2
N . In the first limit (t → 0, b = 0) we

find ξN = 0.48(2), while in the second one (t = 0, b → 0), we
extract ξN = 0.53(2) [see (red) X’s in Figs. 1 and 2(a)]. The
proximity of these values, taken for two very different limiting
regimes, is remarkable and further supports the accurate
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FIG. 2. (Color online) Pressure of the spin-imbalanced gas in
the BEC-BCS crossover at t = 0. The position of the first-order
phase transition to the superfluid is shown by the vertical dashed
black line. (a) Unitary limit. The Fermi-liquid fit is shown by the
solid red line; the t = 0 equation of state in the superfluid phase, by
the solid horizontal blue line. The pressure of the noninteracting
gas is displayed as the dotted gray line. The t = 0 and b = 0
extrapolation of the normal phase pressure is shown by the (red)
X; the condensation pressure, by the double-arrows. (a–c) Results of
the ladder approximation for the normal phase are shown in green for
δ = 0, −0.58, and +0.2, respectively.
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description of the normal phase of the unitary gas as a Fermi
liquid. This value is in good agreement with the experimental
value, 0.46(1) [15], and close to the values calculated using
Monte Carlo methods: 0.54 [19], 0.56, [20], and 0.52 [21].

III. COMPARISON TO THE LADDER
APPROXIMATION THEORY

The problem of the zero-temperature balanced superfluid
Fermi gas has been the subject of thorough theoretical
investigations [22]. However, much less work has been devoted
to the EoS of the zero-temperature normal phase [20]. We
show below that our experimental results can be quantitatively
reproduced using the ladder approximation [23,24]. This
theory includes the repeated two-body scattering between
particle 1 and particle 2 described by the scattering length a. In
particular, for a−1 > 0, it contains the physics of a molecular
state. We use the finite-temperature formalism and take the
zero-temperature limit. The self-energy for particles 2, which
physically describes the effect of interaction between particles,
is given by (we take h̄ = 1)

�2(k,iω) =
∫

d3K
(2π )3

∫
iR

d	

2πi


(K,	)[
	 − iω + μ1 − (K−k)2

2m

] , (4)

where the two-particle vertex 
 is given by


(K,	)−1 = m

4π a
+ �(K,	), (5)

where �(K,	) is the pair bubble [24]. At zero temperature,
�(K,	) can be calculated analytically. The pairing instability,
signaling a second-order phase transition, is found using the
Thouless criterion 
−1(0,0) = 0. For given μ1 and a, this
happens for a critical value of the chemical potential μ2c of
particles 2. In order to stay in the normal phase, we have
performed our calculations for μ2 < μ2c. The integration on
	 can be performed by deforming the integration contour in
the half-plane Re(	) < 0. In this way, we pick the singularities
of the integrand in Eq. (4) and get three contributions
corresponding to the pole of (	 − iω + μ1 − (K−k)2

2m
)−1 (�L),

the branch cut of 
(K,	) (�
), and the molecular pole 	0(K)
(for a−1 > 0) of 
(K,	) (�m) [24]. 	0(K) + 2μ represents
physically the energy of a molecule of momentum K. We
find that in the normal phase 	0(K) > 0. As a consequence,
when we deform the integration contour in Re(	) < 0, we
do not get any contribution from the molecular pole of 
,
and therefore we have �m = 0. This is consistent with the
physical argument in favor of the absence of molecules in the
normal phase. Indeed, if we had some molecules in the system,
they would be condensed at zero temperature. Therefore the
system would be superfluid, and we would no longer be entitled
to use Eq. (4). We deduce the minority density n2 using the
Fermi-liquid-type relation due to Landau,

μ2 = k2
F,2

2m
+ �2(kF,2,0), (6)

where, by definition, kF,2 ≡ (6π2 n2)1/3, is the Fermi wave
vector of particles of type 2. For given μ1, μ2, and a, this is an
implicit equation for kF,2 and, hence, n2. Another approach to
calculation of the minority density relies on the interpretation

of the momentum distribution obtained from the self-energy,
Eq. (4). These two methods give very similar results (see
Appendix A for details). As found in [25], we find a no
zero density n2 for a chemical potential μ2 larger than the
polaron [25,26] chemical potential μp(μ1). In practice, we
fix μ1 > 0, then solve Eq. (6) for a given μ2 � μp(μ1). The
pressure is determined by integrating the density using the
Gibbs-Duhem relation,

P (μ1,μ2) = P0(μ1) +
∫ μ2

μp

dμ′
2

1

6π2
[kF,2(μ1,μ

′
2)]3. (7)

For a fixed μ1, we calculate the minority density for increasing
minority chemical potential between μp(μ1) and μ2. For a
sufficiently large chemical potential difference, the system
is normal (the pairing susceptibility does not diverge). For
sufficiently low b, we calculate the dimensionless EoS h(δ,b),
where δ is the grand-canonical interaction strength, δ =
h̄/

√
2mμa. For all values of δ � 0, we find a linear behavior of

h as a function of b2. The comparison between experiment and
theory is shown for δ = 0 (unitary limit), δ = −0.58 (BCS side
of the crossover), and δ = 0.2 (BEC side) in Figs. 2(a), 2(b),
and 2(c), respectively. The agreement is very good. However,
for increasing a−1 > 0, the values of b in the normal phase
become larger and larger, and as a consequence, the linear fit
of h as a function of b2, valid at low b, is worse. Still, for
δ = 0.2 the experimental EoS h(δ,b) is in good agreement
with the ladder approximation calculation above bc [diagonal
(green) line in Fig. 2(c)]. Within the ladder approximation we
have determined the critical spin polarizing field bc at which
a pole appears in the vertex function 
 at zero frequency and
zero wave vector (Thouless criterion). We found that bc was
always smaller than the experimental value of the first-order
transition. Our calculation is therefore free of any instability
singularity in the normal phase. For the spin susceptibility, we
also find a good agreement among the ladder approximation,
experiments, and Monte Carlo simulations of [18].

Gathering the results from Fig. 2, we now extract the zero-
temperature dimensionless pressure hN of the normal phase
as a function of δ [18]. The resulting EoS of the normal phase
hN (δ) is plotted in Fig. 3 as open (red) squares together with
the ladder approximation calculation [thick lower solid (green)
line], showing excellent agreement in the explored crossover.
For comparison, the previously measured EoS of the low-
temperature gas in the superfluid phase hS(δ) is shown as the
blue points and upper solid (blue) line fit [14]. The difference
between the superfluid and the normal pressure at T = 0 thus
represents the condensation pressure. The superfluid pressure
is higher than the normal phase pressure, hS(δ) > hN (δ),
hence the grand potential is lower and the superfluid state is
the stable phase at low temperature. Turning to the canonical
ensemble the superfluid and normal phase energies ξS and ξN

as a function of the canonical interaction strength 1/kF a can
be computed from the pressure measurement in Fig. 3 using a
Legendre transform [27]. The measured condensation energy
ξN − ξS is shown as the solid black line in Fig. 4.

IV. COMPARISON TO THE BCS RESULT

In the BCS regime, the condensation energy Ec can be
explicitly calculated from the energy of the superconducting
and normal states, yielding the well-known result Ec = 3

8N �2

EF
,
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FIG. 3. (Color online) Pressure of the normal hN [open (red)
squares] and superfluid hS [filled (blue) circles] phases at low
temperature in the BEC-BCS crossover measured in [14]. The thick
lower solid (green) line is the result of the ladder approximation. The
upper solid (blue) line is a guide for the eye, while the lower solid
(red) line is the result of fixed-node Monte Carlo calculations [18].
The difference between the blue and the red or green lines is the
condensation pressure.

where � is the single-particle excitation gap, and EF the Fermi
energy. Since E = 3

5NEF ξα(1/kF a) (where α = S,N ), the
BCS equation becomes

ξN − ξS = 5

8

(
�

EF

)2

. (8)

0.4 0.2 0.0 0.2 0.4 0.6
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 kFa

Ξ N
S

0.6 0.4 0.2 0.0 0.2 0.4 0.6
0.0

0.5

1.0

1.5

2.0

1 kFa

5
8
Ξ N

S
E F

2

FIG. 4. (Color online) Relation between the condensation energy
and the superfluid pairing gap. Dimensionless condensation energy
ξN − ξS versus interaction strength 1/kF a extracted from the b → 0
extrapolation (solid black line). Filled (red) circles represent the BCS
expression, (8), using the values of � measured in [28]. The prediction
from mean-field BCS theory is shown by the dashed (blue) line, and
the open (green) circle with a vertical bar is the t → 0 extrapolation
of Fig. 1. A fixed-node Monte Carlo calculation [18] coincides with
the solid black line. Inset: Rratio of the condensation energy ξN − ξS

to 5
8 ( �

EF
)2.

Strictly speaking, this formula is valid only in the weakly
attractive limit � → 0. For an arbitrary interaction, the
condensation energy is given by a more involved function
of the gap, and based on dimensional arguments, it should be
written as

ξN − ξS = 5

8

(
�

EF

)2

F (�/EF ), (9)

where F is a (yet) unknown function with F (0) = 1 to satisfy
the BCS prediction. In the spirit of Landau’s theory, the U (1)
invariance suggests that F can be expanded with (�/EF )2

instead of kF a, and as such, the first beyond-BCS correction
should be proportional to |�/EF |2. At unitarity, where � �
0.5EF [19], this leads to a moderate 25% correction to the BCS
prediction, which suggests that the range of validity of Eq. (8)
should extend beyond the strict weakly interacting limit [21].

In order to test the BCS expression, (8), in the BEC-BCS
crossover, we compare our measurement of the condensation
energy to 5

8 ( �
EF

)2 using the values of � measured by radio-
frequency spectroscopy in [28] [filled (red) circles in Fig. 4.
The agreement shown in Fig. 4 indicates that, even in the
strongly interacting regime, the BCS expression is remarkably
valid. A more stringent test is provided by plotting the ratio
between the left-hand and the right-hand sides of Eq. (8) (inset
in Fig. 4), and we indeed find a ratio close to unity. Note that
calculating this ratio using BCS mean-field theory provides a
reasonable estimate [dashed (blue) line in Fig. 4 inset], even
though the absolute values of the condensation energy [dashed
(blue) line in Fig. 4] or of the pairing gap are both quantitatively
inaccurate in the strongly interacting regime.

V. CONCLUSION

In summary, we have measured the condensation energy
of a two-component Fermi gas with tunable interactions.
The temperature and spin-polarizing field dependence of
the normal phase pressure are in good agreement with
a Fermi-liquid description. A simple ladder approximation
calculation quantitatively reproduces experimental data at zero
temperature in the normal phase. Future work will explore the
critical region and search for exotic phases such as the FFLO
phase [22].
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APPENDIX A: CALCULATION
OF THE MINORITY DENSITY

Another way to calculate the minority density n2 is to
integrate on the frequency and wave vector the one-particle
Green’s function,

nk,2 =
∫

iR

dω

2πi
eωδ 1[

ω + μ2 − k2

2m
− �2(k,ω)

] , (A1)
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n2 = 1

2π2

∫ +∞

0
k2dk nk,2, (A2)

where nk,2 is the occupation number of minority fermions at
wave vector k, δ → 0+, and we have used the isotropy of nk,2.
In practice, in order to have a more rapidly converging integral,
we add and subtract the free particle Green’s function, and
we calculate analytically the free particle occupation number.
This method is of course much more lengthy than the Landau
method, since one has to perform two additional integrations.
In the case of a negative chemical potential of the minority
particles μ2 < 0, we find that the Green’s function has, for
Re(ω) < 0, a single quasiparticle pole at an energy Ek < 0
with a residue Zk . Therefore we find nk,2 = Zk for Ek < 0
or, equivalently, k < kF,2 and nk,2 = 0 for k > kF,2. This
transforms the integration on frequency into finding a root
Ek and computing Zk = [1 − ∂�2(k,ω = Ek)/∂ω]−1, which
is easier numerically.

Furthermore, we find that for μ2 < 0, �2(k,ω; μ1,

μ2,a
−1) = F (k,ω + μ2; μ1,a

−1). This can be shown by study-
ing the location of the singularities of 
(K,	) in the complex
	 plane and by deforming the integration contour in Eq.(4).
As a consequence, the residue Zk does not depend on μ2. This
simplifies the calculation of the pressure in Eq. (7). Indeed we
find

P (μ1,μ2; a−1) − P0(μ1) =
∫ μ2

μP

dμ′
2 n2(μ1,μ

′
2; a−1)

=
∫ μ2

μP

dμ′
2

∫ kF,2(μ′
2)

0

dk

2π2
k2Zk

=
∫ kF,2(μ2)

0

dk

2π2
k2Zk (μ2 −μF (k)) ,

where we have permuted the integration order between the
second and the third lines. We have defined μF (k) such
that μF (k) = k2/(2m) + �2(k,ω = 0; μ1,μ2 = μF (k)) (μF is
basically the inverse function of kF,2). We are left with a single
integral and numerical calculation of μF and Zk . The quantities
μP (polaron chemical potential), n2(μ′

2) (minority density),
kF,2(μ′

2) (minority Fermi wave vector), and Zk (quasiparticle
residue) depend on the majority chemical potential μ1 and the
inverse scattering length a−1.

For the unitary limit, we show in Fig. 5 the results for
the reduced EoS h(b) using the two methods [Landau and
Eqs. (A1) and (A2)]. We see that the difference between the
two methods is small. Due to its simplicity, we therefore use
the Landau method.

APPENDIX B: SCATTERING LENGTH CORRECTION
OF THE EQUATION OF STATE

While the original data were taken at a magnetic field
of 834 G, corresponding to a previous determination of the
position of the wide Feshbach resonance between the two
lowest energy states of 6Li [29], a more refined measurement
involving radio-frequency spectroscopy of a few molecules
led to a small downshift of the resonance position, to B0 =
832.18(8) [10]. The influence of this scattering length change
on the thermodynamics can be estimated using the Tan
contact I, since it verifies the following relation (the so-called

b2
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FIG. 5. (Color online) Dimensionless pressure of the spin-
imbalanced gas in the unitary limit (δ = 0). Experimental results
are shown as filled black circles. The theory using Eq. (6) (Landau’s
method) is shown by the thick solid (green) line, while the result of
Eqs. (A1) and (A2) is shown as the dashed (red) line. The horizontal
(blue) line shows the value of the dimensionless pressure in the
superfluid state.

adiabatic sweep theorem):

dE

d(−1/a)
= h̄2

4πm
I. (B1)

The contact can be expressed in the grand-canonical ensemble
using the relation

(
∂E

∂(−1/a)

)
S,V,N

=
(

∂	

∂(−1/a)

)
T ,V,μ

, (B2)

where 	 = −PV is the grand potential. Using the contact
density C = I/V , we can write to lowest order in a−1,

P (μ,T ,a−1) = P (μ,T ,0) + a−1 h̄2

4πm
C(μ,T ,0), (B3)

where the contact density at unitarity is a function of βμ only.
We can thus write the finite a correction to the dimensionless
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FIG. 6. (Color online) Pressure of the unpolarized unitary Fermi
gas. The original data taken at 834 G are shown as open black
circles [13], while the corrected EoS at 832.18 G is displayed as
filled black circles (see text). Measurements from MIT and Tokyo
are shown as filled (blue) squares [15] and open (red) triangles [31],
respectively, and the bDMC calculation from Amherst, as the solid
(green) line [16]. At the lowest temperatures, we find a corrected
Bertsch parameter, ξS = 0.40(2).
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pressure,

P (μ,T )

P0(μ,T )
= P (μ,T ,a−1)

P0(μ,T )
+ 1

8π2

λdB

a

C̃(βμ)

Li5/2( − exp(βμ))
,

(B4)

where P0(μ,T ) is the pressure of the noninteracting Fermi
gas, and C̃(βμ) = Cλ4

dB is the dimensionless contact density.
C̃(βμ) has recently been calculated by the diagrammatic
Monte Carlo method [30]. We compute the small a cor-

rection by applying Eq. (B4) to the pressure extracted
from each 6Li density profile used in the measurement of
the EoS. The temperature in Eq. (B4) is determined from
the 7Li thermometer, and the full EoS is reconstructed
by first adjusting μ0 for each high-temperature image to
match the virial expansion and then progressively connecting
lower temperature images to high-βμ ones, as originally
done in [13]. The result for the pressure is shown in
Fig. 6.
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Résumé

Le problème à N -corps quantique est au centre de quelques-uns des plus importants problèmes

ouverts de la physique moderne, comme le mécanisme de la supraconductivité à haute tempéra-

ture critique, ou le comportement des étoiles à neutrons. Les gaz quantiques ultrafroids sont

maintenant utilisés pour simuler des hamiltoniens modèles de la physique de la matière condensée

ou de la physique nucléaire, dans un environnement très bien contrôlé. Dans cette thèse, nous

avons développé une nouvelle méthode pour sonder la thermodynamique de systèmes quantiques

homogènes en utilisant des gaz ultrafroids piégés. Nos mesures peuvent être directement com-

parées aux prédictions des théories du problème à N -corps quantique. Nous avons appliqué cette

technique au gaz de fermions à deux composantes de spin et au gaz de Bose atomique avec des

interactions à courte portée. Grâce au 6Li fermionique, nous avons exploré une partie de l'espace

de paramètres du système, en changeant la force des interactions, le désequilibre de population de

spin ou la température du gaz. Ce système présente une physique remarquablement riche, avec une

transition normale/super�uide (qui peut être de nature thermique ou quantique) ou un comporte-

ment de type liquide de Fermi à basse température. Nous avons également utilisé cette méthode

pour sonder le gaz de Bose atomique, constitué d'atomes de 7Li au voisinage d'une résonance de

Feshbach. Nous avons mesuré l'équation d'état du gaz de bosons en fonction de la force des in-

teractions à très basse température et avons déterminé la première correction au-delà du champ

moyen, dite correction de Lee-Huang-Yang, à l'énergie de l'état fondamentale du système, prédite

pour la première fois en 1957. Nous avons comparé nos résultats à des simulations Monte Carlo

quantique. Nous avons étendu cette étude à la dynamique hors d'équilibre du gaz de bosons en

interaction forte, donnant une première indication sur les propriétés de l'hypothétique gaz de Bose

unitaire.

Abstract

The quantum many-body problem is at the heart of some of the most formidable open problems

in modern physics, such as high-Tc superconductivity or the behaviour of neutron stars. Ultracold

atomic systems can now be used to simulate model Hamiltonians of condensed matter or nuclear

physics, in very well-controlled environnement. In this thesis, we have developed a general method

to probe the thermodynamics of homogeneous quantum systems using trapped atomic gases. These

measurements are directly compared to the predictions of theories of the quantum many-body

problem. We have applied this technique to the spin-1/2 Fermi gas and the Bose with short-range

interactions. Using fermionic 6Li, we explored a part of the wide parameter space by changing the

interaction strength, the spin-population imbalance or the temperature of the gas. This system

exhibits remarkably rich physics, such as normal/super�uid phase transitions (that can be of

thermal or quantum character) or a Fermi liquid-type behaviour of the normal phase. We have

also used this method to probe a Bose gas of 7Li atoms close to a Feshbach resonance. We

have measured the Equation of State of the Bose gas as a function of interactions at very low

temperature. For the �rst time, we measured quantitatively the Lee-Huang-Yang beyond mean-

�eld correction to the ground-state energy of the system, �rst predicted in 1957. We compared the

experimental results to Quantum Monte-Carlo calculations. We have extended this study using

out-of-equilibrium measurements of the Bose gas in the strongly interacting regime, which gives a

�rst hint on the properties of the hypothetical unitary Bose gas.
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