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Résumé
Mon travail traite des propriétés géométriques de domaines présents dans un modèle

magnétique simple, le modèle d’Ising. Par domaines nous entendons des régions où les
spins prennent des valeurs similaires. En plus des propriétés telles que l’aimantation ou
la susceptibilité magnétique, il est intéressant d’étudier la structure des domaines qu’il est
naturel de décrire dans le cadre de la percolation. Dans cette thèse je me suis intéressé
à plusieurs problèmes liés aux domaines de spins à l’équilibre et hors d’équilibre. J’ai
ainsi étudié la dynamique des amas après des trempes critiques ou sous-critiques. Dans
le cas de trempes cyritiques, le scaling dynamique a été étudié finement et l’influence des
propriétés d’équilibre sur la dynamique mise en avant. Pour les trempes sous-critiques,
nous avons considéré comme conditions initiales l’équilibre à une température critique ou
infinie. Nous avons montré que dans le cas d’une température initiale critique la prob-
abilité que le système finisse son évolution dans un état avec des bandes est exactement
celle qu’un amas percole initialement. Concernant une température initiale infinie nous
avons mis en évidence un régime transitoire conduisant le système vers le point critique
de percolation. À l’équilibre à la température critique, nous avons obtenu une formule ex-
acte pour la probabilité qu’un amas s’enroule autour d’un système avec des conditions aux
bords périodiques. Nous avons aussi étudié le comportement critique du modèle d’Ising
avec des interactions à longue portée en nous intéressant au passage des comportements
longue portée à courte portée.

Abstract
In this work I have considered the geometrical properties of the domains found in the

Ising model. Those domains are regions where the spins have the same value. In addi-
tion to the properties such as magnetisation and magnetic susceptibility, it is interesting to
study the domains’ structure and this is done naturally within percolation theory. In this
thesis, I considered several situations concerning spin domains be it in equilibrium or out
of equilibrium. I studied the dynamics of domains after critical or sub-critical quenches.
For critical quenches the dynamical scaling has been carefully checked and the influence of
the equilibrium properties on the dynamics has been shown. For sub-critical quenches we
have considered both critical and infinite temperature initial conditions. We have shown
that for critical initial condition the probability that the system ends up in a stripe state is
exactly the probability that a spin cluster percolates initially. For the infinite temperature
initial condition, we have discovered a transient regime which brings very quickly the sys-
tem to a state similar to critical percolation. In equilibrium at the critical temperature we
obtained an exact formula for the wrapping probabilities of Ising spin clusters on a system
with periodic boudary conditions. We have also studied the critical behaviour of the Ising
model with long-range interactions with a special interest to the cross-over between the
long-range and short-range regimes.
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Résumé long

Introduction

Mon travail traite des propriétés géométriques de domaines présents dans un modèle mag-
nétique simple, le modèle d’Ising. Par domaines nous entendons entre autres des régions
où les spins prennent des valeurs similaires. En plus des propriétés globales telles que
l’aimantation ou la susceptibilité magnétique, il est intéressant d’étudier la structure des
domaines. Il est de plus naturel de décrire de tels objets dans le cadre de la percolation.
Dans cette thèse je me suis intéressé à plusieurs problèmes liés aux domaines de spins à
l’équilibre et hors d’équilibre.

Le modèle d’Ising est un système modèle pour de nombreuses situations que ce soit à
l’équilibre ou hors d’équilibre. À l’équilibre et notamment en dimension deux, il s’agit
d’un modèle que l’on peut traiter exactement et qui est un paradigme des transitions de
phase continues. Hors d’équilibree c’est également un système modèle, par exemple pour
la séparation de phases et le vieillissement. Soumis à une trempe d’une température élevée
à une température inférieure ou égale à la température critique, le système relaxe lentement
vers l’équilibre. Comme il existe deux phases stables, il y a une compétition entre les deux
phases et une mosaique de domaines ordonnés grandissant avec le temps apparait. Nous
avons étudié plusieurs variantes de cette situation. Les trempes critiques constituent l’objet
du premier chapitre et les trempes sous-critiques du second.

Nous avons également considéré deux situations d’équilibre. Dans le troisième chapitre,
nous nous intéressons à la probabilité qu’un amas de spins du modèle d’Ising à sa tempéra-
ture critique s’enroule autour d’un système avec des conditions aux bords périodiques,
c’est-à-dire un tore. Enfin, dans le dernier chapitre, c’est le modèle d’Ising avec des inter-
actions décroissant comme une loi de puissance avec la distance qui est discuté.

13



14 RÉSUMÉ LONG

Trempes critiques

Nous avons ainsi étudié le modèle d’Ising après une trempe d’une température infinie à la
température critique du modèle. En deux dimension deux types d’amas connaissent une
transition de phase continue de percolation à la température critique du modèle : les amas
de spins et les amas de Fortuin-Kasteleyn. Ainsi pour un système à la température critique
les deux types d’amas sont fractals et ont des propriétés d’invariance d’échelle et même
d’invariance conforme. Nous avons condidéré les deux types d’amas dans notre étude.
Nous avons utilisé le réseau triangulaire pour lequel le seuil de percolation de site vaut
1/2. Ainsi nous nous sommes placés dans une situation telle que le point initial est le point
critique de la percolation pour les amas de spins, ces domaines sont donc initialement dans
un état critique et relaxe vers un autre état critique.

Pour décrire un amas de spins on peut mesurer son aire (le nombre de spins le com-
posant), mais également son périmètre (le nombre de spins de signe opposé à son contact),
son périmètre en excluant les éventuels trous présent dans l’amas et aussi l’aire incluse
dans ce périmètre restreint en bouchant les trous. . . Pour chacune de ces quantités on peut
définir la distribution du nombre d’amas ayant une valeur donnée de cette quantité. Ces
distributions dépendent de la quantité considérée mais également du temps mesuré à partir
de la trempe. Elle sont construites en analysant un grand nombre d’échantillons indépen-
dants lors de simulations de Monte-Carlo et en construisant les histogrammes provenant
de l’analyse de ces configurations. Ces distributions permettent de caractériser le système
sur toutes les échelles ce qui permet une analyse plus fine qu’avec des quantités globales.

Un concept important dans l’étude des phénomènes hors d’équilibre est le scaling dy-
namique. Il s’agit d’une extension du scaling tel qu’il a été développé pour les systèmes à
l’équilibre. Dans le cas des systèmes hors d’équilibre, cela donne qu’il existe une longueur
unique ⇠(t) qui croit avec le temps et que cette longueur est telle que les propriétés du
système sont indépendantes du temps quand elles sont exprimés avec cette longueur. C’est
donc l’équivalent de la longueur de corrélation à l’équilibre et cela permet une analyse
similaire au groupe de renormalisation pour les phénomènes hors d’équilibre. L’objectif
de notre travail était d’étudier comment le scaling dynamique s’applique pour ces distri-
butions. Dans le cas des trempes sous-critiques, des expressions exactes ont été obtenues
pour diverses distributions et nous espérions également obtenir des expressions dans le cas
critique mais nous n’avons pas abouti car la dynamique critique est plus complexe que
la dynamique sous-critique. En effet dans le cas sous-critique la dynamique est dominée
par la courbure des interfaces et comme les domaines tendent à diminuer la longueur de
leur périmètre ils rétrécissent et finissent par disparaitre. Pour la dynamique critique, les
interfaces tendent à devenir fractales et les amas peuvent être scindés, fusionnés et non
seulement rétrécir indépendamment des autres comme dans le cas sous-critique. Nous
avons cependant montré que les distributions sont bien de la forme attendue par les argu-
ments de scaling une fois que le nature fractale des objets considérés est prise en compte.
Plus précisément pour un objet de dimension fractale D, les objets de taille inférieure à
la taille caractéristique ⇠(t)D sont similaires à ceux présents à l’équilibre à la température
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critique tandis que ceux d’une taille supérieure restent similaires à la condition initiale de
percolation critique.

Nous avons également des interfaces uniques dont on peut forcer la création avec des
conditions aux bords adéquates. Étudier une interface unique est intéressant car à l’équilibre
de puissants outils permettant l’étude fine d’interfaces ont été développés, notamment les
évolutions stochastiques de Loewner. Ces outils reposent sur le fait qu’ils existent dans
beaucoup de situations critiques une symétrie plus forte que la simple invariance d’échelle,
à savoir l’invariance conforme. Les interfaces aux points critiques de la percolation et du
modèle d’Ising ont notamment été considérées et des résultats rigoureux et très intéressants
ont été obtenus. Cela fait de la situation que nous avons choisie où la percolation critique
est initialement présente et où le système tend vers l’équilibre à la température critique
un cas qui semble propice à l’utilisation de ces idées normalement réservées à l’équilibre.
Ainsi nous avons étudié non seulement la dimension fractale de l’interface mais également
la statistique des angles pour laquelle des résultats découlant de l’invariance conforme ex-
istent à l’équilibre. Nous avons aussi considéré la situation des évolutions stochastiques
de Loewner dipolaires pour les trempes critiques et mis en évidence une transition rapide
entre les deux régimes conformes.

En conclusion, nous avons étudié les distributions associées à des aspects géomtriques
des domaines (taille, périmètre. . . ) et mis en evidence les lois d’échelle dynamiques.
L’étude d’interfaces uniques renforce ces lois d’échelle et mets en évidence le rôle des
sysmétries plus fortes présentes à l’équilibre. Les différents aspects étudiés montrent
clairement que sur des distances bien inférieures à la taille caractéristique des domaines
le système est équilibré à la température critique alors que sur les grandes distances il est
tout à fait similaire à l’état initial.

Trempes sous-critiques

Nous nous sommes aussi intéressé aux trempes sous-critiques qui même si elles présen-
tent a priori une dynamique plus simple que leurs équivalents critiques font montre d’une
grandes richesses de comportement que nous allons décrire. Le fil directeur qui a guidé
notre étude des trempes sous-critiques est de comprendre et mettre en évidence le rôle de
la condition initiale dans l’évolution qui suit. Il y a naturellement deux conditions initiales
possibles : l’équilibre à la température critique et un système à température infinie. La
première condition initiale est telle que les spins sont corrélés sur de longues distances et
que les amas de spins sont critiques et ce quelque soit le réseau utilisé. La seconde ne
présente pas de corrélations entre spins et n’est pas un état critique pour les amas de spins
(sauf pour le réseau triangulaire considéré précédemment).

Dans le cas d’une température initiale critique, nous avons constaté numériquement que
les états finaux dans lequel le système peut se retrouver après une trempe à température
nulle peuvent contenir des amas métastables en forme de bande. Ces amas ont une durée
de vie infinie à température nulle mais si la température est non nulle ils disparaissent en un
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temps fini. Nous avons mesuré précisément les probabilités d’apparition de ces états finaux
avec des bandes de spins pour différentes conditions au bord. Dans chacun des cas étudié,
nous avons montré que ces probabilités coincident précisément avec les probabilités qu’il
existe un amas du même type percolant le système à l’état initial. Comme l’état initial
est un point critique bien étudié, il existe un certain d’expressions pour ces probabilités et
nous avons donc pu relié précisément une situation hors d’équilibre à des résultats exacts
à l’équilibre. Nous avons même vérifié que pour un système donné c’est bien l’éventuel
amas percolant initialement qui va s’épaissir jusqu’à devenir une bande de spins. Nous
avons également mesuré la persistence pour cet état initial corrélé et mesuré un exposant
différent du cas où la condition initiale est non-corrélée.

Nous nous sommes ensuite intéressé au cas d’une condition intiale à température infinie
et donc non corrélée. Dans ce cas, les états finaux obtenus après une trempe à tempéra-
ture nulle ont été étudiés dans la littérature et il a été montré par plusieurs auteurs que la
probabilité d’apparition d’état finaux avec des bandes coincident numériquement avec la
probabilité qu’un amas traverse le système au point critique de percolation. Cela semble
similaire au résultat que nous avons obtenu en partant du point critique mais en réalité c’est
surprenant car pour la plupart des réseaux les amas de spins sont dans un état sous-critique
de percolation initialement pour un système à température infinie. Il semble donc que le
système atteigne la percolation critique au cours de son évolution même s’il n’y est pas
initialement et que ceci se répercute aux temps longs jusque dans les caractéristiques des
états finaux. En observant les configurations de quelques échantillons au cours du temps,
on se rend compte que le temps nécessaire pour atteindre la percolation critique est en fait
extrêmement court par rapport au temps de thermalisation. Nous avons donc précisément
étudié le régime des temps courts pendant lequel s’établit un état critique de percolation
pour les domaines.

Des observables naturelles sont les probabilités de percolation et il est notamment in-
téressant d’étudier leur évolution avec le temps. On se rend ainsi compte que le temps
pour atteindre un état critique de percolation croit avec la taille du système et que ce temps
dépend du réseau considéré. On constate donc que quelque soit le réseau et sa taille on
atteint de façon certaine un état contenant un amas percolant mais il convient de distinguer
deux classes de réseaux qui donnent lieu à des comportements très différents. Pour les
réseaux dont tous les sites ont un nombre pair de voisins, on observe la dynamique usuelle
et même si le système finit fréquemment dans états avec des bandes, il n’y a pas de ralen-
tissement dû à la nature du réseau. Au contraire, pour un réseau contenant une fraction
de sites ayant un nombre impair de voisins, on constate que très rapidement la dynamique
ralentit fortement et que pour une trempe à température nulle le système se fige dans une
configuration contenant une multitude d’amas métastables de toutes tailles. La différence
d’avec les réseaux de coordinance paire tient au fait que des sites avec un nombre impair
de voisins permettent l’existence d’interfaces stables non rectilignes, ce qui fait qu’une
grande variété de structures métastables sont permises et non plus seulement des bandes
dont les interfaces sont des droites. Ainsi pour ces réseaux, deux phénomènes coexistent à
savoir la mise en place de la percolation et le gel du système. On peut se demander quel
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processus est le plus rapide et par exemple si un système peut geler avant d’atteindre la
percolation. Il semble que la réponse à cette question soit négative et nous avons même
constaté au contraire que le gel du système semble accélérer le développement de structures
percolantes.

Les probabilités de percolation nous donne un bon aperçu de la dynamique du système
mais en y regardant bien on se rend compte que dans ce régime des temps cours il y en
fait une phase d’intermittence pendant laquelle de nombreux amas percolants se font et se
défont jusqu’à ce que la struture percolante définitive s’installe et persiste jusqu’à l’état
final. On note t

p

le temps nécessaire pour atteindre cet état défnitif de percolation qui
est celui qui influence le plus le système. En étudiant précisément t

p

pour des réseaux
de tailles différentes, nous avons montré que t

p

varie comme une loi de puissance avec la
taille linéaire L du système, c’est-à-dire t

p

⇠ L↵ avec ↵ un exposant dépendant du réseau
utilisé. Les valeurs obtenues numériquement pour ↵ sont compatibles avec ↵ = z/n

c

où z est l’exposant dynamique et n
c

le nombre de coordination du réseau. Il existe donc
une échelle de temps supplémentaire par rapport au coarsening standard. En analysant le
comportement de fonctions de corrélation entre spins aux temps courts, on se rend compte
qu’on obtient un meilleur collapse des courbes en prenant en compte la longueur associée
à ce temps et non seulement la longueur caractéristique ⇠(t).

Nous avons donc étudié et comparé des trempes sous-critiques pour une condition ini-
tiale corrélée ou non. L’apparition de la percolation après les trempes faites depuis une
température infinie donne lieu à une nouvelle échelle de temps dont nous donnons quelques
conséquences. Pour les deux températures initiales nous étudions et comparons aussi di-
verses observables tels que la persistence, des fonctions d’auto-corrélation et des distribu-
tions de domaines.

Probabilités d’enroulement d’amas de spins d’Ising sur un tore

Nous avons également travaillé sur les probabilités qu’un amas s’enroule autour d’un tore
mentionnées précédemment. La motivation pour ce travail vient de l’étude des états finaux
avec des bandes en partant d’une situation d’équilibre au point critique. Bien que des
résultats aient été obtenus pour les amas de Fortuin-Kasteleyn du modèle de Potts à Q
états sur un tore pour une valeur quelconque de Q, aucun résultat concernant les amas
de spins n’existait dans la littérature. Les amas de spins, bien qu’ils soient des objets
géométriques tout à fait naturel à considérer notamment dans les situations hors d’équilibre
ne sont pas directement en lien avec les propriétés magnétiques du modèle. Par exemple
leur dimension fractale n’est pas lié à l’exposant magnétique � du modèle d’Ising comme
on pourrait s’y attendre, en réalité c’est celle des amas de Fortuin-Kastelyn qui est liée
à �. Étudier les amas de spins fournit un autre jeu d’exposants critiques qui est lié à un
modèle de Potts avec dilution à son point tricritique. Cette relation a été exploitée et permet
d’obtenir un grand nombre de résultats, notamment tous les exposants liés à ces amas. Mais
il existe quelques propriétés plus fine telles que les contributions universelles au nombre
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d’amas touchant une courbe ou encore les constantes de structures apparaissant dans des
fonctions de corrélations de connectivité pour lesquelles l’approche consistant à utiliser
directement le résultat pour le modèle de Potts avec dilution correspondant ne donne pas
des résultats corrects. Il est donc intéressant de voir ce qu’il en est pour la probabilité qu’un
amas de spin s’enroule d’une façon donnée autour d’un tore.

Pour être plus précis sur les grandeurs que nous cherchons à calculer, nous devons
décrire les objets de notre étude. Parmis les amas de spins pouvant exister sur un tore nous
distinguons les amas qui sont homotopes à un point et que nous appelerons amas triviaux

des amas s’enroulant d’une façon ou d’une autre autour du tore et que nous appelerons
amas non-triviaux. Les amas triviaux sont décrits par l’exposant 0 dans nos notations. Les
amas non-triviaux peuvent être classés en fonction du nombre de fois qu’ils s’enroulent
dans une direction ou une autre sur le tore. Ainsi un amas s’enroulant a fois horizontale-
ment et b fois verticalement sera nommé amas {a, b}. Seul les amas pour lesquels a et b
sont premiers entre eux sont distincts. Ils existent également des amas non-triviaux dont
plusieurs sous-parties ont des nombres d’enroulement non-nuls mais différents entre eux.
Le cas le plus simple est amas composé d’un sous amas horizontal {1, 0} et d’un autre
vertical {0, 1}. Cet amas est en forme de croix et de ce fait nous dénoterons tous les amas
de ce type amas-croix et nous utiliserons pour eux l’exposant +. Maintenant pour un tore
complexe de paramètre ⌧ , nous cherchons à obtenir une expression pour les probabilités
⇡0

(⌧), ⇡a,b

(⌧) et ⇡+

(⌧). Les probabilités que nous cherchons à calculer sont en fait sim-
plement le ratio de la fonction de partition restreinte aux configurations contenant le type
d’amas considéré sur la fonction de partition total du modèle. La fonction de partition du
modèle d’Ising étant connue exactement pour un tore quelconque il nous reste seulement à
calculer ces fonctions de partition réduites.

Pour attaquer ce probmème il convient de reformuler la situation initiale. Le modèle
de Potts est un modèle avec des variables de spin disposées sur les sites du réseau. Au
lieu de considérer la configuration des amas on peut s’intéresser à la configuration de leurs
contours qui forment dans le cas du modèle d’Ising des boucles auto-évitantes. Ce modèle
de boucles peut être transformé en un modèle de hauteur tel que les boucles séparent des
zones de hauteurs différentes. Il est connu que de tels modèles de hauteur sont décrit dans
la limite continue par un gaz de Coulomb avec un certain paramètre g. La présence d’amas
non-triviaux qui n’ont pas une forme de croix se traduit par des discontinuités dans le
champ. Les fonctions de partition pour de tels champs peuvent s’écrire à l’aide de fonctions
de partition coulombiques définies par Di Francesco, Saleur et Zuber. Les amas de spins
du modèle d’Ising sont décrits par le modèle de Potts à 1 état à son point tricritique. En
choisissant la valeur de g correspondant à ce modèle et en sommant correctement sur les
discontinuités on peut ainsi obtenir les fonctions de partition réduites désirées. Finalement
la formule obtenue s’exprime de façon compacte à l’aide de fonctions theta de Jacobi.

Cette formule est ensuite mise à l’épreuve des données issues de simulations. Pour
obtenir ces données numériques nous avons simulé un modèle d’Ising à son point cri-
tique et analysé un grand nombre (⇠ 10

6) de configurations indépendantes pour calculer
les probabilités correspondant aux différents groupes d’amas présents. Nous considérons



19

uniquement des tores tels que ⌧ = ir avec r le rapport d’aspect prenant des valeurs entre
0, 1 et 1 dans nos simulations. Seuls les amas {1, 0}, {0, 1}, {1, 1}, {1,�1} sont suffisam-
ment fréquents pour que les probabilités correspondantes puissent être estimées. L’accord
entre la formule obtenue et les données numériques est très bon. Cela indique que dans
ce cas l’approche naïve qui consiste à utiliser directement le gaz de Coulomb associé au
modèle tricritique pertinent donne un résultat correct.

En conclusion, nous avons obtenu une formule explicite pour les probabilités que des
amas de spins s’enroulent autour d’un tore quelconque. Cette formule est obtenue en
utilisant le formalisme du gaz de Coulomb et en utilisant la description des amas de spins
comme les amas d’un modèle de Potts avec dilution à son point tricritique. Cette formule
est testée numériquement et l’accord est très convaincant.

Modèle d’Ising avec interactions à longue portée

Finalement nous avons étudié le comportement critique du modèle d’Ising avec des inter-
action à longue portée. Ce sujet est indépendant des travaux mentionnés précédemment.
Les interactions décroissent comme une loi de puissance 1/rd+� avec la distance r et les
exposants critiques du modèle varient avec l’exposant � > 0 décrivant la portée des inter-
actions.

Ce modèle a été étudié par Fisher, Ma et Nickel grâce au groupe de renormalisation
perturbatif peu après l’introduction de la méthode. Ils calculèrent notamment la valeur de
la dimension anormale ⌘ en fonction de �. Tout d’abord la dimension critique supérieure
d
c

, à savoir la dimension au delà de laquelle le modèle est décrit de façon exacte par une
approche de champ moyen, vaut d

c

= 2�. Donc pour � < d/2 la dimension anormale
prend la valeur donnée par une approche de champ moyen, à savoir ⌘ = 2��. De plus, en
faisant une analyse naïve de l’importance relative du terme correspondant aux interactions
à longue portée q� par rapport au terme q2 des interactions à courte portée ils en conclurent
que pour � > 2 on retrouve le modèle d’Ising avec des interactions à courte portée. Ainsi
pour � > 2, ⌘ = ⌘

SR

la valeur standard de la dimension anormale du modèle d’Ising. Dans
le régime restant d/2 < � < 2, ils remarquèrent que le terme q� domine et qu’aucune
correction ne vient changer ⌘ de sa valeur de champ moyen 2��. Donc au final pour � < 2

ils trouvèrent que ⌘ = 2 � � et que ⌘ = ⌘
SR

pour � > 2. Comme ⌘
SR

6= 0 cela signifie
que ⌘ serait discontinue en � = 2. Cela est possible d’un point de vue thermodynamique
mais néanmoins surprenant.

Peu de temps après cette analyse a été partiellement remise en cause par Sak notamment
concernant cette possible discontinuité de ⌘. Revenant à l’étude des relations de récursions
du groupe de renormalisation, Sak réalise qu’en fait le point fixe courte portée est stable
en partie pour � < 2. Plus précisément il trouve que pour � > 2 � ⌘

SR

, la dimension
anormale prend sa valeur courte portée. Ainsi la discontinuité � = 2 disparait et ⌘ est une
fonction continue de �.

Depuis lors de nombreux travaux ont traité de ce modèle arrivant à des conclusions
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contradictoires en faveur d’un scénario ou de l’autre. Il y a un peu plus de 10 ans, Luijten
et Blöte ont étudié numériquement pour la première fois ce modèle. Leurs simulations
excluent une discontinuité de la dimension anormale et ils concluent de leur étude que
celle-ci confirme l’analyse de Sak. Plus récemment des simulations plus précises menées
par Picco donnent des valeurs de ⌘ incompatibles avec le scénario de Sak autour de � >
2 � ⌘

SR

. Nous avons donc étudié la stabilité des différents points fixes pour expliquer
ces résultats de simulations. Nous avons également étudié ce problème grâce au groupe
de renormalisation perturbatif et obtenu dse résultats en bon accord avec les simulations.
Plusieurs travaux ont paru depuis dont un par Angelini, Parisi et Ricci-Tersenghi et un autre
par Brézin et Parisi. Ces travaux suggèrent que l’origine de ces exposants différents est que
la fonction de coorélation présente non pas un comportement simple de loi de puissance
mais est en fait composée de deux lois de puissances distinctes. La discussion n’est pas
close et il semble que des travaux supplémentaires seront nécessaires pour complètement
clarifier le régime intermédiaire entre longues et courtes portées.



Introduction

0.1 Motivations

In this section I describe briefly the motivations and interests that have guided my work
during my PhD. I have treated several independent subjects but hopefully this small ac-
count will help follow the path of thought we have trodden. Chronologically first, every-
thing started during my master’s internship done under the supervision of Marco Picco and
Leticia Cugliandolo. The goal of this internship was to extend and complete the research
carried out by Leticia and co-workers on the distributions of spin cluster sizes during a
subcritical quench. What we had in view was to see if similar formulae could be obtained
in the case of critical quenches. Moreover we used a particular setup which makes both
the initial and final points of the quench critical points for spin clusters. The hope was to
use the wealth of knowledge that exists for those critical points at equilibrium to gain hind-
sights on the out of equilibrium situation. Even though we have made convincing checks of
dynamical scaling concerning distributions of geometrical observables, we were unable to
obtain expressions for those distributions due to the greater complexity of critical quenches
compared to subcritical ones. This work has been the subject of a publication in the Jour-
nal of Statistical mechanics [1], and we argued that the setup used may be appropriate for
more analytical works.

After this study of critical quenches, we concentrated on the critical behaviour of the
Ising model with long-range interactions and in particular to explain the results of Marco
concerning the anomalous dimension in the cross-over region. We studied numerically the
stability of the different fixed points and developed a perturbative renormalisation group
approach yielding results in good agreement with the numerics. This work was published
in EPL [2].

We then came back to quenches and in particular to the study of stripe states appearing
after a quench from the critical point. We found that the appearance of stripe states is
very well described by crossing or wrapping probabilities of spin clusters at the critical
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temperature and wrote about our results in Physical Review E [3]. Doing so we found
that no expression for the wrapping probabilities of spin clusters existed in the literature.
This triggered the personal work on wrapping probabilities described in the chapter 3 and
published in Journal of Physics A as a Fast Track Communication [4].

This study of stripe states led us to re-investigate the appearance of stripe states after
a quench from infinite temperature. In this case the appearance of stripe states has been
related to critical percolation crossing probabilities. A troubling point is that critical perco-
lation is not obviously present in this setup. Trying to better understand the role of critical
percolation, we studied the early time dynamics and the time scale needed to reach the
percolation regime. This was the subject of a publication in EPL [5].

In the rest of the introduction we introduce general notions that we will use throughout
the manuscript. We will not attempt to make a comprehensive overview of the subjects
mentioned but rather to give the elements relevant to our study.

0.2 Percolation

In this section we will define the percolation model and state general results which will be
used all along the manuscript. Percolation is interesting because, although it is deceptively
simple to define, it is one of the simplest systems exhibiting a continuous phase transition.

0.2.1 Definition

Percolation was introduced by Broadbent and Hammersley in 1957 as a model for random
media [6]. One can imagine a porous rock with small channels in which a fluid can flow or
not depending on the size of channels. One natural question is whether the fluid can per-
colate through the rock, that is if it enters it by one side, can it exit it by the opposite side?
Percolation models simply this situation but can also be applied to many other random
media and situations. We mention two books on percolation among others. The book by
Aharony and Stauffer [7] is an introduction to the field by physicists and the mathematical
introduction by Grimmett [8] which presents exact results concerning percolation. Many
variants of percolation exist but we will focus on two of the most common: bond and site
percolation.

In all generality, bond percolation is defined on the edges of a graph, but for simplicity
we will consider bond percolation on a d-dimensional lattice such as the hypercubic lattice
Zd. A binary variable is associated with with each edge, so that an edge can be open or
closed (remember the origin of the model) and let us note p the probability that an edge is
open. Clearly p is also the mean fraction of open edges. Note that each edge is open with
probability p independently of the other edges, thus no correlation exists between edges.
Percolation is interested in the connected components (clusters) of open edges on the lat-
tice, and particularly in the existence or not of an infinite connected component (on an
infinite system). Site percolation is simply defined from bond percolation by considering
the vertices (sites) instead of the edges and p is the probability that a site is occupied. In this
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Figure 1 – Sample configurations of site percolation for different occupation probabilities given above the
snapshots. The clusters are coloured according to their size, the darker the bigger.

case a cluster is a collection of occupied vertices connected by edges. We will note ✓(p)
the probability that an infinite connected component exists. In figure 1, site percolation
configurations are represented for various values of p on a square lattice of size 100⇥ 100.
Each cluster is coloured to its size, that is the number of sites that compose it, the darkest
clusters in each configuration being the biggest. If p is very close to zero then only small
clusters are present so ✓(p) = 0. On the contrary for p close to 1 the lattice is covered with
an infinite cluster with only small holes within it, so that ✓(p) = 1. It is quite natural that
✓ is an increasing function of p and a mathematical argument shows that the only possible
values are 0 or 1. This suggests that there exists a special probability value p

c

such that for
p < p

c

✓(p) = 0 and ✓(p) = 1 for p > p
c

which is called the percolation threshold of the
lattice. p

c

depends on the lattice and on its dimension d. For the square lattice, looking
only at figure 1, one can expect that 0.5 < p

c

< 0.6 which is correct since p
c

' 0.59.

The region where no infinite cluster exists is the subcritical phase and for p > p
c

it is
the supercritical one and at p

c

exactly it is said to be critical. The differences between the
different phases can be made more explicit by looking at the probability that two points at
a distance r belong to the same cluster. In the subcritical phase, the qualitative observation
that big clusters are rare is reflected by the exponential decay with r of this probability.
In d = 2, one can show that p

c

� 1/2 [8], hence the supercritical phase is dual to the
subcritical one by looking at the empty sites present with probability 1� p. At the critical
point p = p

c

the aforementioned probability decreases algebraically with the distance r.
This is reminiscent of critical points for continuous phase transition and we will make the
relation more explicit in the following.
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0.2.2 General properties

Let us define P the fraction of sites that belong to an infinite cluster. We have obviously
P = 0 for p < p

c

since no infinite cluster exists. However for p > p
c

, one can see quite
easily from simulations for example that P > 0. Thus P can play the role of an order
parameter describing the change happening when crossing p

c

. For the usual bond and site
percolation P is a continuous function of p, making the phase transition happening at p

c

a
continuous one. It is quite surprising at first that such a simple system can exhibit a contin-
uous phase transition and its associated rich phenomenology, since there is no temperature,
hamiltonian, interactions. . . One has to keep in mind that percolation describes phenomena
of purely geometric nature. From there one can apply all the apparatus from statistical
physics and it can be useful to make an analogy with a simple ferromagnetic model such
as the Ising model. P is analogous to the magnetisation for the Ising model. One can show
that for p slightly above p

c

that P ⇠ (p�p
c

)

�� with � the equivalent of the magnetic expo-
nent. All the usual quantities used in statistical physics have an equivalent in percolation.
For example in percolation the equivalent of the magnetic susceptibility will be the mean
cluster size which also diverges as p approaches p

c

.
From the introduction of the model a very important question is whether a cluster perco-

lates the system or not. To be more precise in finite-size lattices with boundaries a cluster is
said to percolate whenever it is contact with at least two opposite sides of the system. For
systems with no boundaries as it is the case when periodic boundary conditions are used,
the equivalent problem is to see if a cluster is winding around the system in which case
we will say it is a wrapping cluster. We will often be interested in spanning or wrapping
probabilities at the critical point.

0.2.3 Statistical and geometric properties in equilibrium

One essential aspect of percolation is the morphology of clusters. An important object to
understand the shape of clusters is the number distribution of cluster size. One can also
consider number distribution for other cluster aspects such as the perimeter or hull length,
the hull enclosed area. . . We will give precise definitions of those quantities in time.

Critical distribution

In general, when we consider the probability distribution per lattice site n(X) which fol-
lows a power law at the critical point, we denote the related critical exponent ⌧ , i.e.,

n(X) ⇠ X�⌧ . (1)

The exponent ⌧ is often called the Fisher exponent. Either the clusters or their boundaries
are fractal objects at the critical point. Their Hausdorff dimension (referred hereafter as
fractal dimension even if other fractal dimensions can be defined) is non-trivial and is
related to the Fisher exponent. Indeed, the fractal dimension D can be expressed in terms
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of ⌧ :

D =

d

⌧ � 1

, (2)

with d the dimensionality of the lattice [7]. In two dimensions many fractal dimensions are
known but this is not the case in higher dimensions.

Subcritical distribution

When p < p
c

the distribution is no longer described by a power law and large clusters are
exponentially rare. The distribution is then given by:

n(X) ⇠ X�⌧e�X/X⇤ (3)

with X⇤ cutoff related to the correlation length ⇠ by X⇤ ⇠ ⇠D and ⌧ the Fisher exponent
as in (1). This means that for subcritical percolation large clusters are exponentially rare.
When the critical point is approached ⇠ diverges and the exponential factor vanishes so we
recover the power law behaviour.

Distribution of largest clusters

We have up to now described the distribution of all the clusters without distinction. One
can ask for finer distributions such as the distribution of the biggest cluster for a system
with N sites. More generally one may ask for the distribution of the kth largest cluster. We
will only discuss in this section the case of the largest clusters. Exact results exist for the
distribution of the largest cluster in subcritical percolation [9] and even for the Potts model
in general [10]. Let us consider a d-dimensional hypercubic lattice composed of N = Ld

sites and let us denote S
i

the random variable which equals the size of the largest cluster
centred at site i and 0 if no cluster is centred at i. The S

i

are identically distributed but
are correlated due to excluded volume effects. We note S

(N)

= max

1iN

S
i

the size of
the largest cluster. In the case of subcritical percolation, Bazant considered the cumulative
distribution function of the largest cluster size F

N

(s) = Prob(S
(N)

 s). As in subcritical
percolation the cluster size distribution n(s) decreases exponentially as n(s) ⇠ s�⌧e�s/s⇠

with s
⇠

a crossover size depending on p, Bazant assumes that the correlation of the S
i

must
be weak so that the S

i

are drawn independently from the parent distribution Prob(S
i


s) ⇠ 1� e�s/s⇠ . The problem is then reduced to the much simpler problem of the extreme
statistics of independent identically distributed random variables. Bazant showed that this
leads to:

lim

N!1
F
N

(s) = G((s� s
⇠

logN)/s
⇠

) (4)

with G the Gumbel (or Fisher-Tippet) distribution such that G(z) = e�e

�z . This form was
checked numerically and later proved in [10] where were also treated some other case of
correlated percolation.
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0.3 Potts model

0.3.1 Definition

The Potts model is defined as a possible generalisation of the Ising model. Instead of being
restricted to two values the spin variables can take Q values in the Q state Potts model. We
are interested in the ferromagnetic Potts model whose Hamiltonian is written as:

H = �J
X
hiji

�
SiSj , (5)

where the sum is over all nearest neighbours pairs of spins of a d-dimensional system, J >
0 and � the Kronecker delta and S

i

the spin at site i taking integer values in [1, Q]. The Ising
hamiltonian is related to this hamiltonian with the simple transformation 2J

Potts

= J
Ising

and Q = 2. This model undergoes a magnetic phase transition at the inverse temperature
�
c

= 1/T
c

and this transition is continuous for Q  Q
c

(d). For d = 2, Q
c

(2) = 4 and
�
c

= ln(1 +

p
Q) for the square lattice [11].

0.3.2 Random-cluster model

We will now describe a model very closely related to the Potts model and that sheds an
interesting light on it. For a general and mathematical introduction of the random-cluster
model see the review by Grimmett for example [12], from which we follow the presentation
of the model. The random-cluster model (RCM) can be defined on a graph G = (V,E)

with V and E the vertices and the edges of the graph. In the RCM, a configuration !
in ⌦ the space of all configurations corresponds to the states of the edges which can be
either open or closed as in bond percolation. An edge e 2 E is open if !(e) = 1 and
closed !(e) = 0. We note k(!) the number of connected components of open edges in the
configuration !, which includes the isolated vertices in contact with no open edges. The
RCM has two parameters p 2 [0, 1] and Q > 0 and its partition function equals:

Z
RCM

(p,Q) =

X
!2⌦

"Y
e2E

p!(e)(1� p)1�!(e)

#
Qk(!). (6)

For Q = 1, the factor Qk(!) equals 1 so the edges are open or closed independently from
the others. We thus recover bond percolation but for Q 6= 1, the state of an edge depends on
the state of the other edges through the term Qk(!). This term favours configurations with
many (few) clusters for Q > 1 (Q < 1). The limit Q ! 0 describes electrical networks
and is linked to works by Kirchhoff in the 19th century. This model was introduced in a
serie of articles by the Dutch physicists Cees Fortuin and Pieter Kasteleyn in 1972 [13, 14,
15]. They showed that the partition function of the Potts model can be recast into a RCM
partition function as we will explain in more details. This is not obvious at first as the Potts
model has its spin variables located on the vertices of the graph or lattice considered and
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not on the edges. In the following we will note K = �J the coupling appearing in the
partition function Z(K,Q) of the Q Potts at inverse temperature �. The transformation is
as follows:

Z(K,Q) =

X
{�}

eK
P

hi,ji ��i,�j
=

X
{�}

Y
hi,ji

eK��i,�j , (7)

then a simple rewriting of the exponential gives:

eK��i,�j
= eK [(1� e�K

)�
�i,�j + e�K

], (8)

Z(K,Q) = emK

X
{�}

Y
hi,ji

[p�
�i,�j + (1� p)], (9)

with p = 1 � e�K . Now we use the identity a + b =

P
1

n=0

[a�
n,0

+ b�
n,1

] on each bond
hi, ji by introducing an auxiliary variable n

ij

:

Z(K,Q) = emK

X
{�}

X
{n}

Y
hi,ji

[p�
�i,�j�nij ,1 + (1� p)�

nij ,0], (10)

Z(K,Q) =emK

X
{n}

0@ Y
hi,ji,nij=1

p

1A0@ Y
hi,ji,nij=0

(1� p)

1AQk(n)

=emKZ
RCM

(p,Q) (11)

where k(n) is the number of bond clusters. Apart from an unimportant overall factor,
the Potts partition function is equal to an RCM partition function. One can remark that,
in addition to the limit Q ! 0 for electrical networks and Q = 1 for bond percolation,
we can add the Q states Potts model for all integer Q to the family of models described
by the RCM. But we also note that under this form Q can be real and not only integer
as in the original formulation of the Potts model with its spin variables. The RCM thus
interpolates in some sorts between various Potts model, and for example it has been fruitful
to study percolation as a limit of the Potts model with Q ! 1 [16]. The RCM gives an
alternative description of the Potts model in terms of clusters. For example the onset of
long-range correlations at the critical temperature corresponds to a percolation transition
in the RCM. All the Potts physical observables are equivalent to cluster observables in
the RCM, for example the magnetisation is related to the size of the biggest cluster. The
clusters generated by the RCM are called the Fortuin-Kasteleyn (FK) clusters and the RCM
is often called the Potts model in FK representation in the physics literature.

In addition to the FK clusters, we can also define another type of clusters by the same
construction as before with p = 1, i. e. all bonds connecting spins with equal value are
open. We will call the connected components of such a construction same-spin clusters or
simply spin clusters. Those clusters are the one occurring naturally in experimental realisa-
tions of the Potts model and are most frequently studied in coarsening and more generally
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Figure 2 – Spashots of system configuration at different times after a quench from T

i

= 1 to T

f

= 0.01T

c

done at time t = 0. The four snapshots correspond from left to right to t = 0, t = 10, t = 20 and t = 40

where the time is counted in Monte Carlo steps.

out of equilibrium situations as we will see the next section section and in chapters 1 and 2.
The spin clusters also undergo a continuous percolation transition but at a temperature T

s

in general different from T
c

. It is only in d = 2 that T
s

= T
c

, hence both types of clusters
are self-invariant at the critical temperature. We will detail more in chapter 3 the physics
of spin clusters which is quite subtle.

0.4 Dynamics and coarsening

Up to now we have described percolation and the Potts model in equilibrium situations.
However in this manuscript we will often be interested in out of equilibrium situations. In
this section we will describe a certain type of out of equilibrium situations, namely phase
ordering dynamics which is relevant for our work. As before, we will not attempt to be
exhaustive but rather to give a general flavour of the subject and describe in more details
the aspects that we will use.

0.4.1 Phase separation

We will often be concerned with a certain type of non-equilibrium situation corresponding
to systems quenched from a disordered phase to an ordered one. As a simple case we can
consider the ferromagnetic 2d Ising model quenched from an initial temperature T

i

> T
c

to a temperature T
f

 T
c

. We show in figure 2 snapshots of a 2d Ising model quenched
from T

i

= 1 to T
f

= 0.01T
c

at time t = 0. The system is out of equilibrium but a mosaic
of ordered domains appear which sizes grow with time. The prediction of the domain
growth law and of the form of different correlation functions are well known in a variety
of situations [17, 18].

0.4.2 The dynamical scaling hypothesis

This type of situations are difficult to study as there exists no such framework as in equi-
librium statistical physics. However great advances were done by formulating a simple
hypothesis. It was remarked in experimental and numerical studies of coarsening systems
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that there exists a unique characteristic length L(t) such that the domain structure is inde-
pendent of time when all distances are scaled by L(t). This is referred to as the dynamical

scaling hypothesis. It is an hypothesis because it has only been proved in simple cases such
as the one dimensional Ising model with Glauber dynamics and the O(n) with n ! 1,
but it is strongly supported by numerous simulations and experiments. The expression of
L(t) depends on the characteristics of the system considered and for the Ising model we
consider it behaves as L(t) ⇠ t1/z with z the dynamical critical exponent.

0.4.3 Renormalisation group approach

The idea of dynamical scaling can in fact be extended and used in a powerful way with
a renormalisation group approach. For systems at equilibrium, the renormalisation group
has brought a systematic approach to critical behaviour by introducing the concept of uni-
versality classes [19, 20]. If two (very) different systems are found to be in the same
universality class, then there critical behaviour will be governed by the same set of crit-
ical exponents. The same kind of classification can be done for the different dynamical
behaviours but one has to keep in mind that this relies in general on a scaling hypothesis
and no fixed points can be explicitly shown.

In our description of the system considered we have omitted an important aspect: the
dynamics type. If the evolution of the Ising model is achieved with a usual single spin flip
Monte Carlo algorithm, at each update a spin can be flipped or not using a dynamical rule.
It means that the number of up and down spins is not conserved. This type of dynamics is
called non-conserved order parameter dynamics. If we want to use this system to mimic
the phase separation of a binary alloy, the number of atoms of each species has to be
conserved. This type of dynamics is called conserved order parameter dynamics. The two
types of dynamics do not belong to the same universality class and are not governed by the
same critical exponent. This shows that the equilibrium and dynamical universality classes
are not identical or more precisely that a single equilibrium class can be divided into several
dynamical classes depending on the constraints on the dynamics. More generally dynamics
can be classified as in the work of Hohenberg and Halperin [21].

0.4.4 Influence of the initial condition

From what we said before, we could imagine that once the type of order parameter, the
dimension, the type of dynamics, and the working temperature are fixed the universal-
ity class is completely determined. This is however not exact and one has to look more
carefully at the initial condition. Taking as before the 2d Ising model and quenching it
from T

i

� T
c

to T
f

 T
c

, how many universality classes are there? Let us first consider
quenches with T

i

> T
c

. For all those temperatures in the paramagnetic phase the correla-
tions decay exponentially fast and as we are concerned with the long distance properties
all those quenches are similar to the one where T

i

= 1. When T
f

< T
c

, the question
is whether the thermal fluctuations change the behaviour from the zero-temperature one.
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As the infinite temperature point is attractive for the whole paramagnetic phase T > T
c

,
the zero-temperature point is attractive for the ferromagnetic phase T < T

c

. This can be
shown explicitly in some cases where the order parameter is conserved and in those cases
a non-zero final temperature simply changes non-universal quantities. The critical point
is of course special either as the initial or final temperature. For T

i

= T
c

the correlations
decay algebraically with an exponent related to the anomalous dimension ⌘ so they cannot
be neglected. When T

f

= T
c

the properties at equilibrium are different than in the ferro-
magnetic phase and so we can expect that the dynamic properties are going to be different
from T

f

< T
c

. So, similarly to the equilibrium case, we are left with only three different
points, the two attractive ones T = 1 and T = 0 and the repulsive one T = T

c

.

0.4.5 Possible types of quenches

As we have seen, there are only three interesting temperature fixed points T = 0, T = T
c

and T = 1. As the only interesting dynamical cases are T
f

= T
c

and T
f

= 0, this
makes four possible quenches. We will study the two quenches to T

c

in chapter 1 and the
two quenches to T = 0 in chapter 2. With this we will have exhausted the possible types
of temperature quenches. Of course one could imagine other types of quenches starting
from a correlated initial condition other than the critical one by crafting one with a certain
algebraic decay. It might be interesting to test if the dynamical universality classes depend
indeed continuously on the exponent ruling the decay of the initial correlations but we have
not considered such cases in this manuscript [22, 23, 24].

0.5 Organisation of the manuscript

This thesis is composed of four chapters which are mostly independent. The two first
chapters are concerned with dynamic situations, namely critical and subcritical quenches.
They deal with similar subjects but one can be easily read independently of the other. The
third chapter deals with wrapping probabilities of Ising spin clusters at equilibrium. The
last chapter describes the equilibrium critical properties of the Ising model with long-range
interactions. We will indicate during the manuscript if certain pieces have been the subject
of a publication.
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CHAPTER 1

Critical quenches
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1.1 Introduction

The work presented in this chapter was the subject of the publication [1]. We study the
geometric properties of a system initially in equilibrium at a critical point that is suddenly
quenched to another critical point and subsequently evolves towards the new equilibrium
state. We focus on the bidimensional Ising model and we use numerical methods to char-
acterize the morphological and statistical properties of spin and Fortuin-Kasteleyn clusters
during the critical evolution. The analysis of the dynamics of an out of equilibrium inter-
face is also performed. We show that the small scale properties, smaller than the target
critical growing length ⇠(t) ' t1/z with z the dynamic exponent, are characterized by

33



34 CHAPTER 1. CRITICAL QUENCHES

equilibrium at the working critical point, while the large scale properties, larger than the
critical growing length, are those of the initial critical point. These features are similar to
what was found for sub-critical quenches. We argue that quenches between critical points
could be amenable to a more detailed analytical description.

The relaxation dynamics of a macroscopic system taken to its critical point with some
quenching protocol has received much attention. Most of the existing studies focused on
the time evolution of global quantities (magnetization, susceptibility, correlation functions,
etc.) and characterized their scaling properties with numerical simulations and renormal-
ization group techniques [2, 3, 4, 5]. These studies are not restricted to any spatial nor
order parameter dimensionality.

In two dimensional critical systems in equilibrium, powerful theoretical tools such as
Coulomb gas methods [6], conformal field theory (CFT) [7] and stochastic Loewner evo-
lution (SLE) [8, 9, 10], allowed one to characterize the geometric and statistical properties
of a large variety of mesoscopic observables in great detail. These objects give a more
complete image of the system’s equilibrium configurations than the global observables ac-
cessed with scaling arguments and renormalization group techniques. We will discuss an
application of Coulomb gas methods to obtain wrapping probabilities in chapter 3. How-
ever, as far as we know, nothing is known about these objects during the out of equilibrium
evolution of the same (and other) critical samples.

An extensive numerical and analytic investigation of the coarsening sub-critical dynam-

ics of two dimensional models from a mesoscopic point of view was carried out in recent
years. The models treated were the clean Ising model with non-conserved [11, 12, 13] and
conserved [14] order parameter dynamics, the random ferromagnet with non-conserved or-
der parameter dynamics [15] or still the q state Potts model [16, 17]. These studies allowed
one to build a rather complete picture of the geometric and statistical properties of the spin
clusters in these bidimensional systems. More precisely, their domain and hull-enclosed
areas as well as their boundary lengths and the relation between areas and perimeters were
analyzed and characterized in detail.

The aim of this chapter is to present a similar study of relevant dynamic geometric
objects during the critical non-equilibrium evolution of the 2d Ising model evolving from
equilibrium at another critical point, in this case an infinite temperature configuration that
is equivalent to critical uncorrelated site percolation. We use simple scaling arguments and
extensive numerical simulations.

Let us be more specific about the objects of our study. The most natural objects to
consider are the spin clusters, i.e. clusters of nearest neighbor spins on the lattice that
point in the same direction. These clusters are accessible via direct observation of the sys-
tem. However, at the critical point, and as we have seen in the introduction, they are not
appropriate to describe the critical equilibrium properties of the Ising model since their
shape and statistical properties are not only dictated by the physical correlations but also
by purely geometrical factors [18, 19]. To remedy this problem one has to consider, in
place, smaller clusters, namely the Fortuin-Kasteleyn (FK) ones, that capture exclusively
the equilibrium physical correlations in the system. Although not relevant to describe the
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equilibrium physical macroscopic properties of the samples the spin clusters are, nonethe-
less, also critical at the phase transition. Consequently, they are characterized by a different
set of exponents from the ones of the FK clusters. For this reason spin clusters are also
interesting to analyze and we study both types of clusters here. In fact it is interesting to
note that in most out of equilibrium studies, the only clusters studied are the spin clusters
while at equilibrium it is mostly the FK clusters.

This chapter is organized as follows. In Sec. 1.2 we list the definitions of the different
objects we study and recall the results obtained for subcritical quenches. The concrete
analysis is presented next in Sec. 1.3. We first check that the dynamical exponent z gov-
erning the critical dynamics of spin clusters is actually the one of the 2d Ising model, as
obtained with other means, as the dynamic renormalization group method [3]. To the best
of our knowledge, this has never been brought to light before. We then study in full extent
the number densities of various quantities giving access to the structure of spin clusters on
a large interval of sizes. The validity of the dynamical scaling hypothesis is tested upon
these number densities. Relations between areas and boundaries are also explored. The
same method is applied to the FK clusters. We later turn our attention to the dynamics
of a single interface and the comparison with the equilibrium results given by conformal
field theory and stochastic Loewner evolution. This is the content of Sec. 1.3. Finally, in
Sec. 1.4 we consider a critical quench from the ordered phase.

1.2 Scaling of cluster quantities

1.2.1 A few hints on conformal field theory

The existence of two types of critical clusters, the spin and FK ones belonging to distinct
universality classes is valid for all q-state Potts model with 0  q  4 in two dimensions.
In order to understand this point it is useful to consider the Coulomb gas formulation of
the Potts model [6]. In this formulation, the 2d q-state Potts model can be described by the
parameter  2 [4, 8] such that

p
q = �2 cos

✓
4⇡



◆
. (1.1)

We choose a convention such that  also corresponds to the SLE parametrization for the in-
terfaces associated to the q-state Potts model. We will come back to this point in Sec. 1.3.4
where we will study the behaviour of an out of equilibrium interface. The parameter 
is also related to the central charge of the corresponding conformal field theory by the
relation [6, 7]:

c =

1

4

(6� )

✓
6� 16
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. (1.2)

For  2 [8/3, 4] this Coulomb gas representation describes another class of models,
the tricritical Potts model, i.e. Potts models with dilution. Note that the central charge is
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invariant under the transformation  ! 16/ which maps a critical q-state Potts model
onto a tricritical Potts model with a different number of states given by eq. (1.1). This
means that there exist two critical theories for a given central charge. One is associated to
the critical Potts model and the relevant structures are the FK clusters. The other one is
the tricritical Potts model and the relevant clusters are the domains or spin clusters. This
duality is such that the geometrical clusters of one model are the FK clusters of the other
model and vice versa [20, 21].

The tricritical model associated to the 2d Ising model ( = 16/3) is the dilute q = 1

Potts ( = 3). Both models possess the same central charge c = 1/2 but the same quantities
in the two model are not associated to the same operators of the CFT. In 2d the spin clusters
of the Ising model are the critical objects of the dilute q = 1 Potts model [22]. This explains
why the percolation exponents associated to the spin clusters are not related to the Ising
model exponents but in fact are those of the tricritical q = 1 Potts model, described by
 = 3.

The critical exponents can then be expressed in term of . For instance, the fractal
dimensions D

c

, D
h

and D
ep

of the cluster area, its hull and its external perimeter (a precise
definition of these quantities will be given in subsection 1.2.2) read [23, 20]:

D
c

= 1 +

3
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D
h

= 1 +
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, (1.4)

D
ep

= 1 +

2


. (1.5)

Note that the duality  ! 16/ relates the fractal dimension of the external perimeter to
the dimension of the hull of the dual model, such as D

ep

() = D
h

(16/) for  � 4. This
relation is called Duplantier duality [20]. For  < 4 the external perimeter coincides with
the hull since they are no fjords. In this case the relation between D

ep

and D
h

mentioned
above does not hold anymore and in fact D

ep

= D
h

.

c  q D

c

D

h

D

ep

percolation 0 6 1 91/48 7/4 4/3

Ising FK clusters 1/2 16/3 2 15/8 5/3 11/8

Ising spin clusters 1/2 3 1 187/96 11/8 11/8

Table 1.1 – Central charge, c, Coulomb gas or SLE parameter, , Potts model parameter, q [all these related
by eqs. (1.1) and (1.2)], and three fractal dimensions at the percolation threshold, and for FK and spin clusters
at the critical point of the 2d Ising model. The c subscript in the fractal dimension is for the cluster mass, the
h one for its hull, and ep for its external perimeter.

Finally, let us note that the existence of two types of critical clusters at the critical point
is specific to the 2d Potts model. While the FK clusters can be defined for more general
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models, nothing ensures that they are critical at the transition point. For instance, FK
clusters are not critical at the critical point in 2d parafermionic models [24]. Concerning
the spin clusters, it is not even sure that they are critical at the critical point as for example
in the 3d Ising model for which they undergo a percolation transition at a temperature
different from the critical one [25].

1.2.2 Definitions

In this section we define the quantities that we will consider in this chapter. We call a
domain or spin cluster a connected set of sites with spins taking the same value. The mass

(area in 2d) of a domain is the number of sites belonging to it. A broken bond is a link of
the lattice between two neighboring spins with different value (see Fig. 1.1).1

+1
�1 l = 30

Figure 1.1 – Left: sketch of an Ising spin configuration with the two-valued spins represented by black and
red (black and grey) dots on the square lattice sites. Broken bonds are drawn with green (light grey) lines on
the edges of the lattice. Right: a domain is singled out and its hull is represented with a thin red line.

The domain wall of a spin cluster is its external and internal contour, constructed as
follows. One first generates a dual lattice by placing a site at the center of each plaquette
of the original lattice. Next, the links on the dual lattice that cross broken bonds on the
original lattice are joined together. In this way, one finds a closed loop on the dual lattice
that runs along the internal or external boundary of a spin cluster in the way sketched
in Fig. 1.1 for the external component. There is not much theoretical knowledge on this
object and it is therefore more convenient to study other geometrical quantities which have
received a theoretical description in equilibrium.

The hull of a cluster is restricted to the external part of the contour, that is to say, one
excludes the contribution of the holes of the cluster (see Fig. 1.1). The hull enclosed area

is the area, i.e. the total number of sites, inside the hull (the holes within the domains are
thus filled). In the example in the right of Fig. 1.1 the hull-enclosed area is 29.

The length of the different types of contours defined above and living on the dual lattice
is computed by counting the number of broken bonds corresponding to the object of con-
cern that are crossed by the boundary. We can also define the external perimeter built by
closing the narrow gates of the hull, making in this way a smoother version of the contour
by eliminating the deep fjords. The meaning of narrow will be discussed later. As an ex-
ample, on a square lattice, a cluster composed of a unique spin has a hull of length 4 and

1In all the figures we use a square lattice for simplicity. The extension to the triangular lattice considered later should be straightfor-
ward.
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an area equal to 1 while for a two-spin cluster the hull length is 6 and the area equals 2.
The FK clusters are defined on the edges of the lattice and not on the sites of the lattice

as for the spin clusters. Therefore the length of their contour on the dual lattice is not
proportional to the number of broken bonds. Indeed some bonds linking two sites of a FK
cluster may not be within the cluster if they have not been kept in the construction of the
cluster. In order to define the border of an FK cluster we then use a different sub-lattice,
with four sites associated to an original one as shown in Fig. 1.2. The distance between
two nearest-neighbor sub-sites counts as the unit of length for the contour. As an example,
the cluster in Fig. 1.2 has a hull length of 24.

Figure 1.2 – Left: an example of an FK cluster. Center: the sites of the sub-lattice associated to the original
square lattice are added as small points. Right: the hull and the external perimeter of the chosen FK cluster
are shown with a thin green line.

In Fig. 1.2 we also present the construction of the external perimeter of an FK cluster. To
measure its length, the procedure is the following: all the bonds between nearest-neighbor
sites (on the original lattice) belonging to the FK cluster are drawn, and then the walker
is allowed to wander around this new cluster, that is to say, on the sites of the sub-lattice
introduced before. The external perimeter is a smoother version of the hull and it has,
consequently, a smaller fractal dimension. The cluster in Fig. 1.2 has an external perimeter
of length 20 which is effectively smaller than its hull length.

1.2.3 Dynamical scaling of distributions

This work follows several works [26, 12, 27, 14] concerning the form that probability dis-
tributions of geometric observables take after a quench. Those works were carried for
different situations but always for subcritical dynamic. The initial goal of the work pre-
sented in this chapter was to determine to which extent similar advances could be done for
critical dynamics.

We detail here the derivation done in [26]. The authors use a continuum approximation
for which it is known that the clusters interfaces have a velocity v = �(�/2⇡) during a
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subcritical quench, where here  is the local curvature of the interface and � a constant de-
pending on the system considered. This equation is known as the Allen-Cahn equation. We
are interested in the evolution with time of hull-enclosed areas. Let A be a hull-enclosed
area, its evolution with time is obtained by integrating the velocity on the hull:

dA

dt
=

I
vdl = � �

2⇡

I
dl. (1.6)

To compute the remaining integral they used the Gauss-Bonnet theorem which is a general
result connecting the geometry of two-dimensional compact manifolds to their topology.
It relates the integral of the curvature on the boundary to the Euler characteristics � of the
manifold

H
dl = 2⇡�. For a disk � = 1 which finally gives the simple result:

dA

dt
= ��. (1.7)

This means that each hull sees its area A(t) decrease at a constant rate independent of A
which translates into a certain invariance for the distribution n

h

(A, t) of hull-enclosed area
in the way that for t

2

> t
1

, n
h

(A, t
2

) = n
h

(A + �(t
2

� t
1

), t
1

). This implies that if the
distribution is known at one moment it is known at all times. For a system with a triangular
lattice, the cluster are initially in a critical percolation state as p

c

= 1/2. But actually on
other lattices we have already mentioned that the clusters become critical percolation like
very quickly after the quench, let us say after a time t

p

. We will study the apparition of
critical percolation in great detail in chapter 2. So in any case the system is at one point
a realisation of critical percolation so we need to know the form of hull-enclosed area
number distribution in this case. The hull-enclosed areas do not exhibit a fractal structure
since they have no holes. Their fractal dimension and their Fisher exponent is therefore 2.
Their boundaries behave differently and they are fractal. Furthermore, Cardy and Ziff [28]
showed that the number density of hull-enclosed areas behaves as:

n
h

(A) ⇠ C

A2

(1.8)

for L2 � A2 � a2 with C = 1/(8
p
3⇡) at the percolation threshold and C = 1/(16

p
3⇡)

for Ising spin clusters. The microscopic cut-off a is the lattice spacing. With this result we
can now know the form of the distribution at all times. For infinite temperature, we have
n
h

(A, t) = n
h

(A + �(t � t
p

), t
p

) ' n
h

(A + �t, t
p

) as t
p

is very small so that in practice
we consider times such that t � t

p

. For critical initial temperature it gives n
h

(A, t) =

n
h

(A+ �t, 0), so to summarise:

n
h

(A, t) =
2C

(A+ �t)2
for T

i

! 1,

n
h

(A, t) =
C

(A+ �t)2
for T

i

= T
c

, (1.9)
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where C = 1/(16
p
3⇡) hence the factor 2 in the numerator of the first equation. In this

derivation, we have not used any dynamical scaling hypothesis but we can easily check
that the expressions obtained are of the form:

n
h

(A, t) = (�t)�2f(A/�
h

t) with f(x) =
2C

(1 + x)2
. (1.10)

Indeed since the relevant length during the dynamics is ⇠(t) ⇠ t1/2, the typical area is
proportional to ⇠(t)2 ⇠ t. The overall factor ⇠ t�2 comes from the fact that hulls disappear
during the dynamic. It is quite remarkable that the derivation does not use dynamical
scaling and in fact it demonstrates the validity of the dynamical scaling [26].

For a system with periodic boundary conditions, clusters wrapping around the system
may be present. In this case their hull is formed of two circles and their Euler characteristic
� is no longer 1 but equals 0. This means that their hull-enclosed area should be constant
with time. A consequence of this fact is that they do not shrink and disappear as other
clusters and that they are present in the system during all the coarsening regime. We will
discuss such clusters in chapter 2.

1.3 Critical dynamics

The stochastic relaxation dynamics after a quench to the critical point has been performed
with a time dependent extension of the renormalization group method. Scaling laws for
averaged global observable such as correlation functions and others have been obtained in
many different systems. The growth of an equilibration length, ⇠(t) ⇠ t1/z with z the dy-
namic critical exponent, was evidenced. In this section we study the critical dynamics from
a mesoscopic point of view and we show that this growing length also plays an important
role in the characterization of the statistical properties of fluctuating quantities.

1.3.1 Description of the protocol

In this section we study the evolution of a system after a quench from T = 1 to T
c

.
We first consider spin clusters on a triangular lattice for which T

c

= 4/ ln 3. The choice
of a triangular lattice is motivated by the fact that the infinite temperature point exactly
corresponds to a site percolation critical point on this lattice. Indeed, the site percolation
threshold for this lattice is p

c

= 1/2 [29] so that, if we consider the number density of
domains, the system is exactly at the percolation threshold at infinite temperature where
the spins take the values 1 or �1 with equal probability. For the quench considered, the
system is initially in equilibrium at a critical state and after the quench it evolves towards
equilibrium at another critical state, the one at T

c

.
At infinite temperature FK clusters are not critical, actually they are trivial, for any

lattice so it is immaterial to use the triangular or any other one. For this reason, in our
study we used a square lattice. For the square lattice T

c

= 2/ ln(1 +
p
2) and the infinite
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temperature point is not a critical one for the spin clusters since here p
c

> 1/2. (Having
said this, the studies in [11, 12, 13] showed that, somehow surprisingly, the sub-critical
Monte Carlo dynamics of such a non-critical initial state gets, after a few time steps, very
close to the critical percolation point as far as the properties of spin clusters are concerned.
For instance, their number densities rapidly develop the critical percolation tails and only
later the dynamics evolve towards the target equilibrium state at low temperature. We will
discuss this phenomenon in chapter 2.)

The simulations were carried out on a lattice of linear size L with periodic boundary
conditions in both directions. For the initial condition at infinite temperature, the spins
were chosen randomly with equal probability of being up or down. Once the system was
prepared in the desired initial condition, single spin updates were performed at the temper-
ature of the quench. A Monte Carlo time step (MCs) corresponds to L2 single spin updates.
The updates were accepted or rejected via the standard Monte Carlo Metropolis scheme.
We gathered around 6 10

5 independent samples. Unless stated otherwise, the lattice used
has a linear size L = 1000 for the analysis of spin clusters and L = 320 for the study
of FK clusters. For each sample we computed the desired quantities every 2

n MCs with
n 2 [1, 12].

For the spin clusters, the algorithm distinguishes first between the internal and external
part (hull) of the perimeter and then calculates the length of the hulls, i.e. the number of
broken external bonds. To do so the lattice is scanned and when a broken bond that has not
been counted yet is found, the algorithm follows the boundary in a precise direction and
keeps track (with a cumulative angle) of the path followed. Then, depending on the sign of
the angle the boundary drawn is an external or an internal one. Some clusters (wrapping
ones) have a boundary with a vanishing angle. Those boundaries run across the system
from one side to another so they are not homotopic to a point on the torus. We checked
that these clusters are sufficiently rare so that we can discard them without affecting the
statistics. For the FK clusters the process is the same on the sub-lattice evoked above. The
algorithm walks on the sub-lattice around the FK clusters and once a contour is formed, the
angle is measured to discriminate between internal and external contours and their lengths
are computed.

The number densities obtained via this Monte Carlo method present a great dispersion,
especially for large clusters which are much rarer than the small ones. This dispersion has
been greatly suppressed by choosing appropriate bin sizes to construct the histograms, and
to extract from them the distributions.

1.3.2 Spin clusters

We first briefly present the simulations performed to check whether the dynamical exponent
governing the dynamics of the spin clusters conforms to the one extracted from the analysis
of the correlation functions that is well documented in the literature [30, 31, 4]. Then we
present the results for the spins clusters on a triangular lattice after the quench.
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The dynamic exponent

As explained in Sec. 1.2.1, the critical geometric clusters of the 2dIM are well understood
as they are the FK clusters of the tricritical q = 1 Potts model. However, it is not obvious
whether this correspondence should hold in an out of equilibrium situation, typically a
quench towards the critical point. In particular, one may wonder whether the dynamical
exponent z for spin clusters is the Ising one. To check this reasonable assumption, we
calculated specific quantities that allow us to extract spin clusters exponents. For example,
in equilibrium, the size of the largest spin cluster scales as L�(�/⌫)tri where (�/⌫)

tri

=

5/96 and �
tri

is the magnetic exponent of the tricritical q = 1 Potts model, ⌫
tri

is the
exponent associated to the divergence of the correlation length and L is the linear size of
the sample. We denote this quantity M

g

. We now consider a quench from T = 0 to T
c

for different system linear sizes L, and we compute M
g

(t). We consider this quench since
the scaling form is simple in this case and the dynamical exponent should not depend upon
the initial condition as long as we quench at the critical temperature. The inset of Fig. 1.3
shows the relaxation of this quantity for several sizes. We then apply the following scaling
M

g

(t) ! M
g

(t)L(�/⌫)tri and t ! t/Lz. The collapse of the different curves giving access
to z is presented in Fig. 1.3. The value obtained is compatible with the most accurately
estimated value z = 2.1667 (5) [31]. This gives strong evidence that the dynamics of the
spin clusters are indeed governed by the Ising dynamical exponent z. In consequence we
will use the same z for all the quantities computed in this work.
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Figure 1.3 – Geometrical cluster magnetization M

g

(t). The main part shows the collapse onto a master curve
with the rescaling t ! t/L

z and M

g

(t) ! M

g

(t)L

(�/⌫)tri . In the inset we show the raw data M

g

(t) versus
time for different system linear sizes L.
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Hull-enclosed area number density

In Fig. 1.4 we present the distribution of the hull-enclosed areas, n
h

(A, t), at different times
after the quench. In the first panel, Fig. 1.4(a), we display the distributions, n

h

, versus the
hull-enclosed area A. As expected from the results of Cardy and Ziff [28], the slopes of the
initial and asymptotical (equilibrium at T

c

) distributions equal �2 in a double logarithmic
plot but the prefactors are slightly different. For this reason, the changes occurring in the
distributions are very small. Equilibrium data (generated with a special purpose algorithm
at T

c

) are shown with (green at T ! 1 and red at T
c

) dashed lines. The bumps at large
sizes correspond to the spanning clusters with a linear size of the order of L, the linear size
of the system, are finite size effects. Note that the position of the bump and the very last
part of the n

h

(A, t) close to it, are almost time-independent (within our numerical accuracy
and for the times accessed in the simulation).

For hull-enclosed areas dynamic scaling suggests

n
h

(A, t) ' A�⌧ g

✓
A

t↵

◆
(1.11)

for A
0

⌧ A ⌧ L2 with A
0

= a2 a microscopic area scale and L2 the macroscopic one.
To make the notation lighter we did not add any sub-script to ⌧ and ↵. The exponents are
given by

⌧ = 1 + d/D, ↵ = D/z. (1.12)

Since these areas are regular, i.e. they have no holes, D = d = 2 and

⌧ = 2, ↵ = 2/z. (1.13)

Consistency with the asymptotic limit requires g(y ! 0) = C and g(y ! 1) = 2C.
In order to test the dynamical scaling hypothesis, we impose the value ⌧ = 2 and rescale

the areas by a factor t↵ with ↵ a free parameter whose value is determined by the collapse
of the numerical data on a master curve. The best collapse is obtained for ↵ = 0.92 (5)

and is seen in Fig. 1.4(b) with the theoretical percolation and Ising critical distributions
being just horizontal after the given ordinate rescaling. The numerical equilibrium critical
distributions (red dashed line for T

c

and green dashed line for T ! 1) have been placed
at convenience (horizontally) to ease the comparison with the other distributions. The
horizontal dotted lines correspond to the exact prefactors C = 1/(16

p
3⇡) and 2C for the

critical Ising and percolation distributions, respectively. The value of ↵ is in agreement
with the expected value ↵ = 2/z ' 0.92306 with z ' 2.1667 (5) [31] since the typical
hull-enclosed areas scale as the square of the dynamical length scale ⇠(t) ⇠ t1/z. It is quite
remarkable that, while no time-dependent rescaling has been applied to the distribution,
the curves collapse so accurately in the vertical direction. One may remark that the scaling
is not so good for times that are smaller than 64 MCs, which is not surprising since the
dynamical scaling hypothesis only holds after a non-universal time-scale.
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Figure 1.4 – Spin clusters hull-enclosed area number densities in the 2dIM on a triangular lattice are pre-
sented. (a) With dashed (red and green) lines equilibrium data at T ! 1 and T

c

. With solid lines the raw
dynamic data for the times given in the key (in MCs) including the spanning clusters using a double loga-
rithmic scale. (b) The areas in the x-axis are rescaled by the factor t↵, with ↵ = 0.92 consistently with the
expectation ↵ = D/z = 2/z. The distributions in the y-axis (in linear scale) are multiplied by A

⌧

= A

2.
The grey dotted horizontal lines at 0.046 and 0.023 are the theoretical predictions for the T ! 1 critical
site percolation point and the T

c

one, respectively, and g(x) is the fitting function defined in eq. (1.11), and
discussed in the text.

In curvature-driven coarsening we know from [12, 14], that n
h

(A, t) = 2C/(A+ �
h

t)2

if we use an infinite temperature initial condition, i.e. n
h

(A, 0) = 2C/A2, with �
h

a non-
universal parameter as we have already discussed. It implies

A⌧n
h

(A, t) = f(A/�
h

t) with f(x) =
2C

(1 + 1/x)2
. (1.14)

f(x) looks like the right part of A⌧n
h

(A, t) for A > t2/z in our case. Since we consider a
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situation with two critical points and not only one as in the sub-critical case we are tempted
to think that the minimum of g(x) around x ' 1 and more generally its non-monotonic
behaviour can be reproduced with a sum of two functions similar to f(x), one decreasing
from C to 0 and one increasing from 0 to 2C. This suggests for g(x) defined in eq. (1.11)
the form:

g(x) = C

✓
1

(1 + axb

)

c

+

2

(1 + (axb

)

�1

)

c

◆
. (1.15)

We left the powers b and c as free parameters as there is a priori no reason for them to
be simple integers as in the sub-critical coarsening situation. Numerical inspection of the
data shows a good fit for the values a ' 0.65, b ' 0.79 and c ' 2.3. Roughly speaking,
a fixes the position of the minimum, b its width and c its depth. Note that c is chosen to
allow the fitting curve g(x) to go through the minimum of the numerical data but we do
not attribute a special meaning to this value. Indeed the expansion of g(x) close to the
asymptotic values C and 2C is proportional to xb and x�b, respectively, both independent
of c.

Hull-enclosed areas and hull lengths

As in [12, 14, 17] we study the relation between the hull-enclosed areas and the hull lengths
by tracing an averaged scattered plot of A against p in Fig. 1.5. In panel (a) we show the
raw data for different times after the critical quench. In panel (b) we scale the data by
the relevant typical growing scales. In the case of the hull-enclosed areas this is the linear
growing length, ⇠(t), to the power of their fractal dimension that is simply D = d = 2 for
these regular objects. In the case of the hull lengths, instead, the relevant linear scale is still
the growing length, ⇠(t), now to the power of the hulls fractal dimension in the critical Ising
point, which is DI

h

= 11/8, as given in Table 1.1. The master curve shows a clear cross-
over between two power law behaviors with the powers D/DI

h

= 16/11 ' 1.45 controlling
the small scales and D/DP

h

= 8/7 ' 1.14 controlling the large scales. Summarizing,✓
A

tD/z

◆
'
✓

p

tD
I
h/z

◆
⇣

with ⇣ =

⇢
D/DI

h

for p/tD
I
h/z ⌧ 1,

D/DP

h

for p/tD
I
h/z � 1.

(1.16)

Hull length number density

Next we proceed with the hull length distribution displayed in Fig. 1.6. In the first graph,
Fig. 1.6(a), we show the distributions n

h

(p, t) vs. p for various times after the quench
where p stands for the hull length. For this quantity, the equilibrium behavior for the
critical Ising model is n

h

(p) ⇠ p�27/11 and it is different from percolation criticality
where n

h

(p) ⇠ p�15/7. These equilibrium curves are drawn with dashed lines in the
figure. We see in Fig. 1.6(a) that the dynamic curves interpolate between these two critical
laws. For example, we can observe that for t = 4096 MCs there is a qualitative change
for p ⇠ 2000. However, since the difference between 27/11 and 15/7 is small it is still
difficult to get a precise picture of what is happening with this data representation.
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Figure 1.5 – The hull-enclosed area against the length of the hull at different times after the critical quench
for L = 400. (a) Raw data. (b) Scaled plot. The master curve crosses over from x

d/D

I
h to x

d/D

P
h with

d/D

I

h

' 1.45 and d/D

P

h

' 1.15.

Note that, contrary to what happens with the area number densities, the time-dependence
is seen in the full extent of the curves and not only for (relatively) small scales. Even the
bump is displaced towards shorter lengths in the course of time.

A better description is given in Fig. 1.6(b) where we drew the same distribution multi-
plied by p⌧ with ⌧ = 27/11, the exponent of the tail in the equilibrium distribution at T

c

,
so that the Ising equilibrium critical distribution is horizontal. As before, the lengths are
rescaled by a factor t↵ to take into account the growing length scale. Searching the value
of ↵ that gives the best horizontal collapse we find ↵ = 0.63 (3). This fits well with the
value expected from dynamical scaling argument such that p is rescaled by ⇠(t)Dh with
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D
h

= DI

h

= 11/8 = 1.375 the fractal dimension of Ising clusters’ hulls. D
h

/z ' 0.6348
is in good agreement with the measured value and this clearly supports the idea that the
growing clusters have a fractal boundary. It is interesting to notice that this does not happen
in sub-critical coarsening where the domain growth is curvature-driven and the boundaries
of clusters that are smaller than the cross-over scale are smooth and do not have a fractal
structure (see [12] e.g. for the study of such a case in the 2dIM). The asymptotic value,
for p/tDh/z ⌧ 1, coincides with the expected equilibrium value, as obtained from the
equilibrium simulations and shown with the (red) dashed horizontal line.

The behavior in the large scale or short time limits, p � tD
I
h/z, is also interesting. Since

there is a one-to-one relation between areas and perimeters, we can use n
h

(A, t)dA '
n
h

(p, t)dp where A and p are related by eq. (1.16) (note that we use the same symbol n
h

to represent two different functions). Using n
h

(A, t) ' A�⌧ with ⌧ = 1 + d/D for large
values of A and the value of the exponent ⇣ given in eq. (1.16) for large scales we find

n
h

(p, t)p⌧
I
h '

✓
p

tD
I
h/z

◆
�

with � = d
DP

h

�DI

h

DP

h

DI

h

= ⌧ I
h

� ⌧P
h

(1.17)

independently of D. We used the super-script I to stress that the ⌧ -value in the factor in the
left-hand-side corresponding to critical Ising equilibrium was used in the scaling of data in
Fig. 1.6(b). The bump at the end of the data is just the contribution of the spanning clusters.
The growing part of the master curve is very well described by the power law given above.
Indeed, close to it we placed the data obtained in equilibrium at T ! 1 (dashed green
line) that in the representation used in the plot is given by x� , with the value of � given in
eq. (1.17). The two curves are parallel in the selected range of variation (within numerical
accuracy) confirming our prediction.

Domain area number density

We have checked that the area-hull relation for the domains conforms to the scaling in
eq. (1.16) with the relevant ⇣ given by the fractal dimension of the domains.

Finally, we present the spin clusters (or domain) area distributions at several instants
after the quench in Fig. 1.7. Again the two equilibrium distributions appear as (green and
red) dashed lines. Even for the relatively short time t = 8 MCs the change in the distri-
bution is rather drastic, and we can observe that the system has been depleted from small
clusters with area up to 80 because of the onset of the interactions. This is related to the fact
that the fractal dimension of the Ising clusters at equilibrium is greater than the dimension
of the percolation clusters. Qualitatively we can explain this fact by saying that the Ising
clusters are less porous because of the interactions. We perform again the rescaling of the
areas by t↵ and we multiply the distributions by A⌧ , with ⌧ = 379/187 ' 2.027 being the
critical Ising exponent for the distribution of domain areas (see the Table). Here the best
collapse (Fig. 1.7(b)) is obtained for the value ↵ = 0.90 (3). The fractal dimension of the
geometrical clusters at the critical point is D

c

= 187/96 ' 1.948. Then the value of ↵ is
in good agreement with the value expected from scaling arguments D

c

/z ' 0.899.
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Figure 1.6 – Time-dependent distribution of the hull length p of the spin clusters, in a double logarithmic scale
for the times given in the key in MCs. (a) Raw data dynamic data together with the ones for equilibrium at
the departure and arrival values, T ! 1 and T

c

, that are shown with dashed (red and green) lines. (b) Same
as in (a) but the distributions are multiplied by p

⌧ with ⌧ = 27/11 the exponent of the equilibrium number
density at T

c

and the lengths are divided by t

↵ with ↵ = D

h

/z ' 0.63 with D

h

the fractal dimension of the
equilibrium hulls at T

c

.

Note that if we had neglected the fractal character and used D
c

= 2, we would have ob-
tained 2/z ' 0.923 which is also in the interval of confidence of our numerical estimate
but we think the value D

c

/z with D = 187/96 is the correct one. The scaling just dis-
cussed gives evidence for the importance of the fractal structure of the spin clusters at the
critical point. The values obtained suggest a fractal front, whose fractality is the critical
Ising one, propagating on increasingly larger scales and bringing the system towards a new
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equilibrium, although very slowly, with a law governed by the dynamic exponent z.

1.3.3 Fortuin-Kasteleyn clusters

In this subsection we present the results of simulations in which we analyze the FK clusters.
These clusters are critical at T = T

c

but they are not critical at T ! 1 since at infinite
temperature p = 1� e�2�

= 0 and they are all composed of only one site. We constructed
the dynamic FK clusters adapting the usual procedure explained in subsection 1.2.2 to the
time-dependent domains. At different instants after the quench from � = 0 to �

c

we used
the probability p = 1� e�2�c to erase bonds from the spin domains existing at the chosen
times. We next studied various distribution functions associated to the FK clusters. We
recall that in this study we used a square lattice for simplicity and that the initial point
(infinite temperature) is not critical for the spin clusters either.

We have checked that the number density of hull-enclosed and domain FK areas as well
as the area-perimeter relations satisfy the expected scaling relations already discussed for
spin clusters in Sec. 1.3.2, so we prefer to show the data for other observables.

Hull length

In Fig. 1.9(a) we show the hull length distributions at T ! 1 and at T
c

as well as the
distributions of the same quantities at several times after the quench. We can easily see
that the initial distribution is not a critical one since it is not a straight line in this log-log
graph. As time elapses, the distribution approaches a power law behavior since it heads
towards criticality. Again, to get a better description, the curves are collapsed on Fig. 1.9(b)
by using the now usual rescaling p�n

h

(p, t) = f(p/t↵). The best collapse onto a master
curve is obtained for � = 2.12 and ↵ = 0.87. These values are compatible with ⌧ = 2.2
and D

h

/z ' 0.77, the values at the Ising critical point, cf. Table 1.1, though here the
agreement is not as good as for the hulls of the spin clusters. We notice that for times
longer than 2000 MCs the curves do not collapse anymore for large sizes. This is expected
since it roughly corresponds to the moment when the dynamical length scale reaches the
order of the linear size of the system ⇠(t) ⇠ L. After this time we are no longer in the
regime of unconstrained domain growth as the clusters are sensitive to the finite size of the
system.

External perimeter

The same scaling is finally applied to the external perimeter distributions of the FK clus-
ters, the idea being to check whether the consequences of Duplantier’s duality hold out of
equilibrium. The curves are not shown since they are very similar to the ones in Fig. 1.9.
The curves collapse for � = 2.56 and ↵ = 0.63. To compare this values with the re-
lated equilibrium exponent at T

c

we must remember that, according to the duality relation
evoked before [D

ep

() = D
h

(16/) for  � 4], the external perimeters of the FK clusters
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Figure 1.7 – Time-dependent domain area distribution. (a) Raw data at the times given in the key in MCs.
(b) Same as in (a) with the distributions multiplied by A

⌧

= A

2.025 and the area rescaled by t

↵ with ↵ =

D/z ' 0.90.

at T
c

should scale at equilibrium like the hulls of the spin clusters, that is possess also at
T
c

a fractal dimension D
ep

( = 16/3) = D
h

( = 3) = 11/8. This gives ⌧ ' 2.45 which
is compatible with � and ↵ = D

ep

/z ' 0.63. Therefore the relation between the statistical
and geometric properties of the external perimeters of FK clusters and the hulls of spin
clusters proven in equilibrium, seems to remain valid out of equilibrium for the growing
FK clusters.



1.3. CRITICAL DYNAMICS 51

1.3.4 Interfaces

In the previous sections, we have seen fractal dimensions appear while considering the
dynamic scaling of several probability distributions. A different strategy, that has proven
to be very useful in the analysis of the equilibrium critical points and in particular in the
context of the study of SLE [8, 9, 10], is to study the fractal properties of an artificially
generated interface. This is the line of research we follow here by generating the interface
as follows. We take a 2dIM on a triangular lattice and we quench the system from equi-
librium at T ! 1 to T

c

at t = 0. With appropriate boundary conditions we force the
existence of a unique curve, defined on the edges of the dual honeycomb lattice, separating
spin clusters of opposite sign and going, say, from top to bottom. One such curve is shown
in Fig. 1.8, their properties are analyzed in this section.

Figure 1.8 – An interface in a 2dIM on a triangular lattice created by imposing spin up boundary condition
on the left (grey hexagons) and spin down on the right (white hexagons). The curve is defined on the edges
of the dual lattice, the honeycomb lattice represented in the figure.

Fractal dimension

We are interested in the fractal dimension of the interface. To compute this quantity we
measured the length of the curve l(L, t) with L the linear size of the system as a function
of the time t. If the curve is fractal at time t, then the fractal dimension d

f

(t) is defined by
l(L, t) / Ldf (t). An effective d

f

(t) is obtained from the slope of l(L, t) between two sizes
L and L0:

d
f

(L,L0, t) =
ln l(L, t)� ln l(L0, t)

lnL� lnL0 . (1.18)

This yields a fractal dimension depending on time but also on the two lengths L and L0

because of finite-size corrections. In Fig. 1.10 we draw this fractal dimension vs. time t
rescaled by Lz for several values of L and L0 with z the dynamical exponent employed in
Sec. 1.3.2 and Sec. 1.3.3.
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Figure 1.9 – Number density of FK hull length p at several times after the quench given in the key for a
system of linear size L = 320. (a) Raw data. (b) Same data presented in the rescaled form p

⌧

n

FK

h

(p, t) vs.
p/t

↵ with ⌧ = 2.12 and ↵ = 0.87 that gives the best data collapse.

We observe that for short times, i.e. t ⌧ Lz, the fractal dimension is compatible with
7/4 = 1.75 the fractal dimension of the hulls at the percolation threshold, while for long
times it is closer to 11/8 = 1.375 the fractal dimension of the Ising clusters’ hull at the
critical point. The compatibility is strong since even the finite-size corrections for the short
(long) scales correspond to the related equilibrium values. The points completely on the
left correspond to the initial values being rejected to �1 in the log scale. The dynamical
scaling is also very accurate here since the curves perfectly collapse apart from finite-size
corrections.
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The main disadvantage of calculating a fractal dimension this way is having to handle
the two lengths in the interpretation of the fractal dimension. This is uneasy. We use a
different and more performant approach in the next subsection.

The winding angles

The percolation and Ising model hulls, at equilibrium and in the continuum limit, are con-
formally invariant curves described by a stochastic Loewner evolution SLE



with  = 6

for percolation [32] while  = 3 for Ising hulls [33, 34]. The parameter  can be deter-
mined numerically by computing the variance of the winding angle for two points chosen
at random on a conformally invariant curve at a distance l along the curve which equals

h✓2i = ct +
4(D � 1)

D
ln l, (1.19)

where D is the fractal dimension of the curve [35, 36, 37] and ct is a constant. Finally,
using eqs. (1.4) and (1.19), we obtain the following form for the variance of the winding
angle:

h✓2i = ct +
4

8 + 
ln l. (1.20)
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The winding angle variance, h✓2i(l, t), is measured as a function of the distance l for
different times after the quench. The results for a system of linear size L = 1280 are given
in Fig. 1.11(a). For the time t = 0 corresponding to percolation, a fit of the form (1.20)
yields  = 5.98 in excellent agreement with the exact result  = 6. For the largest time
simulated t = 4096 MCs, a fit of the form (1.20) yields  = 2.96. For this fit we kept
the data with ln l < 6.5 since for larger distances, the variance starts deviating from a
straight line. This value is in excellent agreement with the exact result for Ising model
spins clusters in equilibrium,  = 3. The best fits for t = 0 MCs
and t = 4096 MCs are represented as dashed lines in Fig. 1.11(a). We now wish to collapse
these curves to make the dependence of the growing length scale upon time explicit. The
length l along the curve is divided by t↵ and the winding angle variance corresponding to a
length t↵ is subtracted. Thus, in Fig. 1.12, we plot h✓2i(l, t)�4/(8+) ln t↵ vs. ln(t/t↵).
The curves collapse very well for ↵ = 0.65 which is in good agreement with D

h

/z ' 0.63
with D

h

= 11/8 the fractal dimension of Ising clusters’ hulls. This means that the same
rescaling as the one used for the distributions works for the winding angle variance as
well. In the latter case, however, the transition between the two equilibrium regimes is
more rapid. Indeed, for distances smaller than the characteristic length ⇠(t)Dh ⇠ tDh/z the
interface is, at least for the observable h✓2i, as if the system were in equilibrium at T

c

and
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for larger distances as if the system were still in the independent percolation regime. In the
previous section, we have observed a similar crossover in the behavior of the probability
distributions, with small and large scales being the ones of the initial regime of percolation
and the ones of the state towards which the system is converging, respectively, but the
crossover was far less abrupt.

For comparison, we present the plot of h✓2i against ln l in equilibrium for various tem-
peratures in Fig. 1.11(b). It is known that the high temperature phase of the Ising model
at zero field on the triangular lattice is peculiar in the sense that it is critical and in the
universality class of uncorrelated percolation [38, 39]. This is not true for other planar
lattices. As we have already seen, the contours of percolation clusters on the triangular
lattice are described by SLE

6

. This explains why for sufficiently large sizes (larger than
the correlation length induced by the interactions between spins) we recover a dependence
of h✓2i with ln l that is compatible with  = 6, i.e. the behavior of the interface is governed
by the attractive infinite temperature point.

Both Figs. 1.11(a) and 1.11(b) are compatible with  = 6 at large scale. However, for
shorter distances the behavior of the quenched and equilibrium curves are very different.
In the case of the quench, for sufficiently small size and up to l ⇠ tDh/z the curves are
compatible with  = 3 (Ising spin clusters) but for the curves at equilibrium the critical
Ising behavior is not observed at all.

Thus during the coarsening process the interface has a radically different behaviour
from the one obtained by considering data for equilibrium at indermediate temperatures.
In the first case, we flow from T = 1 to T

c

, with an increasing scaling length ⇠(t) ⇠ t1/z.
In the second we flow from T

c

to T = 1 with a correlation length ⇠ ⇠ |T � T
c

|�⌫

with ⌫ = 1. In this second case we can only observe the critical large scale behaviour
dominated by the percolation point while in the first case we distinguish two behaviors
with a crossover controlled by the characteristic length ⇠(t) ⇠ t1/z.

Dipolar SLE

We have been a bit further in the characterisation of the spin clusters boundaries. Among
the different SLE setups we have considered the one called dipolar SLE introduced by
Bauer et al. [40]. In our case it consists in forcing the spins of the lower horizontal side
of a rectangular system to be +1 in the right part and �1 in the left one. This forces the
creation of an interface but contrarily to the setup already mentioned the second end of
the interface can wander freely and end up in any given position on the upper horizontal
side. If the position of the middle of the upper horizontal side is chosen as the origin of the
position x, Bauer et al. showed the probability distribution for the upper end to finish in
the reduced position x0

= x/L is given by:

P (x0
) =

1

I


cosh

✓
x0

2

◆��4/

(1.21)
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where I is the normalisation constant, L the system horizontal size and  the SLE param-
eter. The vertical system size is taken as 1.

We have measured the boundary excursion probability for an interface following a crit-
ical quench from the infinite temperature. At the initial time on the triangular lattice the
probability distribution is exactly Eq. (1.21) with  = 6 for critical percolation. We observe
that at all times after the quench the probability distribution assumes with a good accuracy
a similar form but with  varying with time. By fitting the probability distribution, one
can extract a value (t). We do not show a plot of this quantity as it is very similar to the
evolution of the fractal dimension of the interface with time as in Fig. (1.10). We can do
exactly the same rescaling of time by Lz and the curves for different system sizes perfectly
collapse except for some small finite size corrections. This good agreement of the out of
equilibrium boundary excursion probability with the equilibrium one strengthens the state-
ment made before that excluding length-scales comparable with ⇠(t) the properties of the
out of equilibrium interface are given very precisely by the corresponding critical points.
The correspondence is not only limited to scale invariance properties but also to the more
stringent properties related to conformal symmetry.

1.4 Quench from the ordered phase

An other interesting case is a critical quench starting from the ordered phase. For simplicity
we will only consider completely magnetised systems, that is systems initially at zero-
temperature. Only one cluster occupies all the sites of the lattice and we expect that the
thermal fluctuations at T

c

will create clusters growing with time. We will only consider
the hull-enclosed area number distribution but we expect that the features displayed in
this case are also present in the other distributions. In the main plot of figure 1.13 this
distribution is plotted versus the area for different times after the quench. Qualitatively, we
can see that the distribution for a given time looks like a power with a cut-off increasing
with time. To study the evolution of the distribution we multiply it by A2 the equilibrium
power law and plot it with the ordinate in logarithmic scale (not shown). We remark that
the remaining decrease is compatible with an exponential decay with a time dependant
rate. This indicates that the distribution is of the form n

h

(A, t) ⇠ e�A/Ac(t)/A2 with A
c

(t)
a time dependent area that sets the rate of the exponential decrease. This form is similar
to the distribution of cluster areas in subcritical percolation where in this case the cutoff
is simply the correlation length depending on the occupation probability p to the power
of the fractal dimension of the clusters ⇠(p)D. By rescaling the areas by a factor t↵ and
multiplying the distributions t2↵ in the inset of figure 1.13, we obtain a convincing collapse
for ↵ = 1.02(3). This means that the distributions follow the relation t2↵n

h

(A, t) =

f(A/t↵) as expected from the subcritical form we propose. However the value of ↵ is
markedly different from what we would expect if A

c

(t) ⇠ ⇠(t)2 that gives ↵ = 2/z ' 0.92.
This discrepancy might come from the fact that this cut-off increases slightly faster than
the dynamical length which is surprising or more simply that the numerics are not precise
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enough to conclude as it is often difficult to extract precise estimates from the collapse of
distributions.

Interestingly in the second chapter we will see plots very similar to the one in figure 1.13
of distributions going from a subcritical to critical form but this evolution will not be due
to coarsening.

1.5 Conclusion

In this paper we analyzed the dynamics of a system instantaneously quenched from one
critical point to another one. We used the prototype statistical model, the 2d Ising model,
quenched from T ! 1, i.e. critical site percolation on the triangular lattice, to the Ising
critical point.

As observed in [11]-[17] for sub-critical quenches, the typical growing length, ⇠(t) '
t1/z in this case, separates two length scales. In the smaller one, all mesoscopic observables
(areas, perimeters, etc.) satisfy the statistical and geometric properties of the working
temperature equilibrium state. Instead, in the largest scale, these same observables are the
ones of the initial state. In sub-critical quenches, this result could be shown analytically for
the hull-enclosed area distribution [11, 14] and it was confirmed numerically for different
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quantities and in different systems.
The attraction of quenches between critical points is that, in the departing and arrival

equilibrium conditions, very powerful analytic methods (Coulomb gas, conformal field
theory, SLE) allowed one to compute a myriad of geometric properties including fractal
dimensions and related critical exponents. Could these methods be extended to deduce,
analytically, the results presented in this manuscript for a particular case, the 2d Ising
model, that we conjecture apply to all critical quenches, at least in bidimensional systems?
This is definitely an interesting question which calls for other works.
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Sub-critical quenches
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2.1 Introduction

In the first chapter we have discussed the dynamical scaling of quantities related to clusters.
We were concerned with the coarsening regime during which the dynamical scaling is
valid. This regime starts after a microscopic time scale till the dynamic correlation length
⇠(t) reaches the system linear size. In this chapter we will on the contrary study what
happens very early or very late after a quench and see how it is sometimes surprisingly
related. We will consider in all this chapter the situation of a bi-dimensional Ising model
quenched from an initial temperature T to zero temperature. One of the question that one
can ask is the nature of the final states reached by a system after a zero temperature quench.
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The ground states are of course the first answer but, since the zero temperature dynamics
only allows the energy to decrease, the system may also end up in a local minimum of the
energy landscape, i.e. a metastable state. This depends of course on the initial condition
and then a legitimate question is the influence of this initial condition on the appearance of
metastable states as final states of a zero temperature dynamic. Furthermore if the system
falls in metastable states, at which moment of the evolution can we be certain that it will
happen? In this chapter we will answer such questions concerning the 2d Ising model.

We will first consider the situation where the initial temperature is the critical one and
study the appearance of stripe states as final states of a zero temperature dynamic. We
will then consider the same situation where the initial temperature is infinite and also study
final stripe states and their relation to an initial transient regime leading to critical perco-
lation. We will see that the infinite temperature initial condition exhibits a more complex
behaviour than the critical initial one.

2.2 Critical intial condition

In this section we will concentrate on the critical initial condition. As we have already
seen in the introduction and used extensively in the first chapter, at T

c

the spin clusters are
in a critical state and their properties can be described in various ways that are based on
scale and conformal invariance. We will explore the consequences and relevance of those
properties for out-of-equilibrium processes.

2.2.1 Stripe states

The results presented in this subsection have been published in the Phys. Rev. E [1]. Some-
what surprisingly, even with such a simple set up as the two dimensional nearest neighbour
ferromagnetic Ising model quenched to zero temperature, a variety of final states can be
reached with non trivial probabilities. It was first noticed by Lipowski [2] that an anoma-
lous scaling for the equilibration time of the kinetic Ising model arises from the existence
of stripe states. In an interesting series of papers, Krapivsky, Redner and collaborators
noticed as well the presence of stripes states after a quench from infinite temperature, and
analysed both the dynamics and the final states. They measured numerically the probabil-
ity of getting stuck in stripe states and found that it was around 1/3 but were at first unable
to explain it [3, 4]. In the same situation but with different goals, Sicilia et al. studied
the geometry of spin clusters, and noticed that after a few Monte-Carlo steps at T < T

c

,
an infinite temperature system on a square lattice is very similar to the critical percolation
point for the spin clusters [5, 6]. So, even though the initial occupation probability of 1/2
for a type of spins is inferior to the critical site percolation probability for the square lattice
p
c

' 0.59, the system is rapidly very similar to a critical percolation system. This corre-
spondence enabled Krapivsky and collaborators to give an explanation for the probabilities
of appearance of stripe states in terms of critical percolation probabilities, be it for free or
periodic boundary conditions [7, 8].
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The study of crossing probabilities has a long history and a landmark in this topic is
due to Cardy and his eponymous formula [9]. This formula gives the probability of left-
right crossing of an incipient spanning cluster at the critical percolation threshold on a
rectangle. This probability depends only upon the aspect ratio r of the rectangle and can
be expressed in terms of hypergeometric functions. Since then a number of percolation
probabilities have been studied either for percolation [10, 11, 12] or other models [13,
14, 15, 16, 17]. One aspect that is particularly interesting is that although Cardy and
others found those formulas using conformal field theory (CFT), i. e. in a non rigorous
way mathematically speaking, rigorous tools have been developed which can be used to
tackle those systems. Schramm introduced the stochastic Loewner evolution (SLE) [18]
which describes numerous physically occurring curves (see [19] with Lawler and Werner
e.g.) and showed that SLE proves Cardy’s formula if the continuum limit of percolation is
conformally invariant. In a slightly different line of research Smirnov proved the existence
of a conformal scaling imit of the percolation critical point for site percolation on the
triangular lattice and thus gave the missing piece to the proof of Cardy’s formula [20].

The correspondence discovered by Krapivsky et al. is thus very interesting since it
relates a non-equilibrium situation to exact results. It is remarkably accurate and based on
the observation of Sicilia et al. and general considerations on coarsening dynamics and
it was supported by numerical results on a lattice with different aspect ratios. We will
give more details on those results and clarify the role of percolation later in this chapter
in subsection 2.3.3. The underlying question to those studies is to what extent the initial
condition influences the final one? In this regard, it is interesting to study the same situation
with a different initial condition to extract the universal behaviors from the rest. For the
Ising model, the results discussed above have to hold for any starting temperature above the
critical temperature since for an initial condition at T > T

c

the long distance properties are
governed by the infinite temperature fixed point. Since the subcritical region is trivial from
the spin clusters point of view, the critical temperature point only remains and is absolutely
non trivial concerning spin clusters as we have already discussed.

In the following we study as before the ferromagnetic Ising model whose hamiltonian
is written as:

H = �
X
hiji

JS
i

S
j

, (2.1)

where the sum is over all nearest neighbors pairs of spins of a two dimensional system
and J > 0. The system considered is rectangular and three boundary conditions will be
considered : free, periodic and fixed. The lattices used will be discussed in each case.

Method

In the simulation that we will consider here, we started from a system equilibrated at the
critical temperature. The equilibration is obtained with the Wolff cluster algorithm [22].
We generate a large number of independent configurations, at least one million for each
size considered. For each configuration, we determine the probability that there exists at
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obtained after a quench at zero temperature.

least one cluster of spins crossing the horizontal or vertical direction. We denote these
probabilities ⇡c

h

or ⇡c

v

. The probability that a spin cluster is crossing in both directions will
be denoted ⇡c

hv

. Next, we perform a quench at T = 0. We then let the system evolve
with a Glauber dynamics with a suitable algorithm described below until it reaches a stable
state. We record similar (stripe) probabilities that we denote by ⇡0

h

, ⇡0

v

for the horizontal or
vertical stripes and ⇡0

hv

for the stripes in both directions, i. e. a ground state. Note that the
clusters contributing to the ⇡

h

(⇡
v

) only span horizontally (vertically).
One difficulty is that it can take a tremendous amount of (Monte-Carlo) time to reach

the final state where no spins can be updated without increasing the energy of the system
because the system tends to wander in long-lived iso-energetic states. A simple kinetic
Monte Carlo algorithm [23] with Glauber dynamics bypasses this issue quite easily.

Free Boundary conditions

We will first describe our results for a system with free boundary conditions. The prob-
abilities ⇡c

h

, ⇡c

v

and ⇡c

hv

were already considered in equilibrium at T
c

by Lapalme and
Saint-Aubin [21]. These authors measured these quantities on the triangular lattice. They
also tried to find a way to predict the behaviour of these crossings in a way analogous to
the Cardy formula for percolation. They obtained a differential equation on a four point
correlation function related to ⇡c

h

but were unable to solve it so they resorted to a numerical
solution in good agreement with their measurements.

We considered systems of size L⇥ L/r with L = 256 while varying r. We only study
the case r  1, the case with r > 1 being obtained by a trivial duality relation exchanging
the vertical and horizontal directions. Our results are shown in Fig. 2.1. In this figure we
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compare the situation at T
c

and the final states of the evolution at T = 0. To do so we
present the probabilities of getting a crossing ⇡0

h

, ⇡0

v

and ⇡0

hv

for various values of ratio r
obtained at T = 0 as crosses and in the critical case, ⇡c

h

, ⇡c

v

and ⇡c

hv

shown as lines. The
agreement between the ⇡c and the ⇡0 is excellent, this is one of the main results of the
present work. The values of the ⇡c are those obtained by Lapalme and Saint-Aubin in [21].
Note that these authors considered the case of a triangular lattice while our measurements
have been done on a square lattice. As a check, we also repeated the measurement of the
⇡c on the square lattice and of the ⇡0 on the triangular lattice and our results are in perfect
agreement with the ones of Lapalme and Saint-Aubin obtained on the triangular lattice.
This supports the universality of these quantities.

In conclusion, the crossing probabilities are the same for the equilibrium at T
c

and in
the blocked states obtained after a quench at T = 0 starting from the critical point. This
first result confirms the idea that the final state is dictated by the topology of spin clusters
in the initial one.

Figure 2.2 – Two possible types of stripes of the alternate triangular lattice with periodic boundary conditions.
The vertical stripes on the left can exist for arbitrary aspect ratios r contrarily to the stripes on the right which
only exists for r = 2n/

p
3 with n 2 N⇤. Actually the stripe on the right wraps in both directions around the

torus.

Periodic Boundary conditions

To make this fact more explicit we move on to the case of periodic boundary condition
(PBC). Here the situation is a bit more complicated since clusters can wind in various ways
around the torus. We will discuss wrapping probabilities in great details in chapter 3 and we
will just give now the facts that we need for our study. Wrapping clusters can be classified
according to the number of times they wind in the horizontal and vertical direction. We
note ⇡a,b the probability that a cluster wraps a times in the horizontal direction and b times
in the vertical direction. The clusters wrapping in both direction but with a cross shape
are counted separately and the associated probability is denoted ⇡+. We will use this
notations in chapter 3 but here we will note those probabilities differently for the sake of
coherence with the other types of boundary conditions. Hence we will note ⇡

h

= ⇡1,0,
⇡
v

= ⇡0,1 and ⇡
hv

= ⇡+. We consider the triangular lattice. With this choice of lattice
and boundary condition only vertical stripes are stable at T = 0 for arbitrary aspects
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ratios (see Fig. 2.2). This means that ⇡0

h

= 0 and ⇡0

hv

= 1 � ⇡0

v

thus we only need
to consider ⇡0

v

. As is shown in Fig. 2.2, diagonal stripes are stable in addition to the
vertical ones for the aspect ratios r = 2n/

p
3 with n 2 N⇤, but their rarity (⇡

diag

is at
most 6.10�8) forbids their study numerically as has been done in [8]. The factor

p
3/2 in

the definition of the aspect ratio takes into account the actual horizontal system size. We
have seen that different percolation probabilities of same spin cluster for free boundary
conditions has been studied numerically and analytically in [21]. We found no such study
for the PBC. This motivated us to extend the work of Arguin [24] which deals with the
probability that a given configuration contains a Fortuin-Kasteleyn cluster winding a times
horizontally and b times vertically around the torus. Arguin used the mapping between the
Fortuin-Kasteleyn clusters and a Coulomb gas with parameter g 2 [2, 4]. A correspondence
is usually expected between Ising spin clusters and clusters of the Q = 1 Potts model
with dilution at its tricritical point [25] corresponding again to a Coulomb gas. Using this
correspondence we have been able to obtain an explicit formula for such a probability for
Ising spin clusters [26]. The details of the derivation and numerical checks will be provided
in Chapter 3. In the case where the spin cluster winds only vertically around the torus, the
formula reduces to:

⇡c

v

(r) =
1

2r|⌘(ir)|
✓
3

�
i

12r

�
� ✓

3

�
3i

4r

�
� 2✓

2

�
3i

4r

�
|✓

2

(ir) |+ |✓
3

(ir) |+ |✓
4

(ir) | (2.2)

where ⌘ is the Dedekind ⌘ function and the ✓
i

are the Jacobi ✓ functions. In Fig. 2.3, the

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2  0.4  0.6  0.8  1
r

π0
v
πc

v

Figure 2.3 – (Vertical percolation probability ⇡
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v

at T
c

(red crosses) and vertical stripe probability ⇡

0
v

at T = 0

(blue squares) for various aspect ratio r = L

y

/(

p
3L

x

/2) with L

y

= 128. The dashed line corresponds to
the expression in Eq. (2.2).

results for the triangular lattice with PBC are presented. The agreement between ⇡c

v

, ⇡0

v

(dots) obtained from the simulations and the theoretical prediction from Eq. (2.2) for ⇡c

v

(dashed line) is very good. This second case confirms the link between probabilities of
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blocked stripe states and initial crossing probabilities of spin clusters.

Fixed Boundary conditions

Finally, we will look at a last case in which we impose fixed boundary conditions with
S = �1 on the left and right sides of a rectangle and with S = +1 on the top and bottom
sides. This case is interesting because it has been extensively studied analytically at T

c

by several authors using CFT and multiple stochastic Loewner evolutions [14, 15, 16], so
there exists a number of theoretical predictions to compare our simulations to; moreover it
is really easy to simulate and analyze as we will see below.

These boundary conditions will force the existence of two interfaces. The two possible
configuration types are represented in Fig. 2.4. In the first case, the first interface goes

Figure 2.4 – Schematic representation of the two configuration types with fixed boundary conditions. Is is
easy to see that beginning with the left (respectively right) configuration we will end up in a state where all
spins equal +1 (�1) except the fixed ones.

from the left top corner to the left bottom corner and the second interface connects the
right top corner to the bottom right corner. In the second case the interface goes from the
left top corner to the right top corner and the second interface connects the bottom left
corner to the bottom right corner. The probabilities for these two situations at T

c

can be
written in several equivalent forms, we use Kozdron’s version written only in terms of the
hypergeometric function F [16]. The probability for the left situation in Fig. 2.4 is given
by:

P (x) =
F (

4

3

, 3, 8
3

; 1� x)

F (

4

3

, 3, 8
3

; x) + F (

4

3

, 3, 8
3

; 1� x)
(2.3)

where x 2 (0, 1) is related to the aspect ratio r by:

r =
K(x)

K(1� x)
(2.4)

with K(x) the complete elliptic integral of the first kind. For the case of infinite initial tem-
perature, the probabilities for the two situations of Fig. 2.4 are given by Cardy formula [9].
Indeed, in the case of percolation, the fixed boundary condition considered in [14, 15, 16]
coincides with the situation considered by Cardy.

As previously we quench the system from T
c

to T = 0 but also from T = 1 to T = 0

as we found no mention of this case in the literature. With this boundary condition the
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analysis of the final state is really easy, the sign of magnetization suffices to indicate the
state of the system as bulk spins are all of the same sign in the end. We show the results of
our simulations for L = 1280 for the initial temperatures T

c

and T = 1 in Fig. 2.5. The
agreement with the theoretical prediction (dashed lines) is again excellent in both cases.
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Figure 2.5 – Crossing probabilities versus r. The dashed lines correspond to the formula proved in [14,
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c
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since they are numerically very close.

We have thus shown the connection between crossing probabilities and the probabilities
of existence of stripe states after a T = 0 Glauber dynamics in the case of the critical
Ising model for various boundary conditions. We have obtained clear results showing that
the final state of the evolution is strongly correlated to the initial condition. This result
is interesting since it allows to relate an out-of-equilibrium situation to exact results at
equilibrium.

2.2.2 How much is determined by the initial condition?

We have seen that the stripe probabilities are directly equal to crossing probabilities of spin
clusters at the critical temperature. We can go further and ask whether, for one sample,
it is really the clusters crossing the system initially that persist until the end to become
stripes. If yes the conclusion would be much stronger than before because what we have
established up to now is that the initial condition imposes the precise proportion of stripe
states in the end but only statistically speaking. If each crossing cluster becomes a stripe
then the final state of a sample is directly determined as soon as the initial configuration is
chosen. To address such a question one has to study the right quantities.

We are interested in the evolution of the percolative state after the quench. For a system
with FBC, we note n

h

(t) [n
v

(t)] the number of horizontal (vertical) crossing clusters at
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time t. Just a word of caution, the clusters crossing the systems vertically and horizontally
contribute to n

h

(t) and n
v

(t), so this differs from previously where those clusters were
contributing to ⇡

hv

but not to ⇡
h

and ⇡
v

. These two numbers encode all the information
concerning the percolative state of the system at time t. For example the crossing proba-
bilities studied previously can be expressed, albeit in a rather cumbersome way, with these
numbers of clusters as ⇡

h

(t) = h(1 � �
nh(t),0

)�
nv(t),0i with h· · · i the average over initial

configurations and thermal histories, and �
ab

the Kronecker delta. Here we want to go fur-
ther and compare the percolative states between two times t

1

and t
2

. This leads us quite
naturally to define the two times autocorrelation function A

c

(t
1

, t
2

):

A
c

(t
1

, t
2

) = h�
nv(t1)nv(t2)�nh(t1)nh(t2)

i . (2.5)

Quite simply the product of Kronecker deltas equals 1 if there is the same number of
vertical and horizontal crossing clusters at t

1

and t
2

and it equals 0 otherwise. We note that
A

c

(0, t) is the correlation function measuring if the current state of the system is the same
as it was initially.

Percolative correlation with the initial state

To answer the question about the influence of the initial condition we can look at the
restricted correlation function A

c

(0, t). It is of course a decreasing function of time but one
can wonder if it reaches a finite value for t ! 1. If it is the case then some information
is conserved from the initial condition even in the thermodynamic limit. So we compute
the quantity A

c

(0,1) which should be understood as lim
t!1 A

c

(0, t). Of course in MC
simulations the infinite time limit is unreachable in general but here it is actually exact since
the system freezes at some finite time and stays in this state forever after. In figure 2.6 we
represent A

c

(0,1) vs. the linear system size L for 32  L  1024. We can see that
A

c

(0,1) not only has a finite value for all the L used but that it actually increases with L
and it makes little doubt that it converges to 1 as L ! 1. We highlight the convergence
towards 1 in the inset by representing 1 � A

c

(0,1) vs. L in double logarithmic scale.
We remark that the approach to one is compatible with a power-law decay. This means
that the statement made in subsection 2.2.1 that the final states probabilities are given by
the initial crossing probabilities is strengthened as the results discussed above show that
each single system stays in the same percolative state during all the evolution. The most
stringent test of this statement could be achieved by defining and computing a quantity
which equals 1 only if a system stays strictly in the same state after each single update and
zero otherwise. But computing such a quantity requires a test of the percolative state of
the system after each update which requires a time roughly proportional to the number of
spins in the system. Another approach is to use an algorithm which labels each clusters and
relabels the clusters if necessary after an update. This way the computational cost of the
operation would not be prohibitive. We have not used such an algorithm but we consider
nevertheless that the conclusions drawn from the study of A

c

(0,1) are convincing enough.
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Overlap with the initial state

The overlap with the initial state q(t) at time t is simply defined as:

q(t, L) =
1

N

X
i

hs
i

(0)s
i

(t)i (2.6)

for a system of linear size L and N = Ld. The values of q(1, L) were measured for differ-
ent system sizes and plotted vs. L in double logarithmic scale (not shown). The behaviour
is compatible with a power law behaviour and a fit yields that q(1, L) ⇠ L�0.125(1). This
value coincides with the magnetic exponent �/⌫ = 1/8 of the Ising model, and this is not
by chance as we are going to see. We are giving below two explanations for this exponent
one qualitative and another more quantitative. As defined in equation (2.6) we can see that
q(1, L) is the product spin by spin of the initial and final configurations. Considering for
the moment only the samples which end up in a ground state where all spins take the same
value ±1, in this case

P
i

s
i

(0)s
i

(1) = ±
P

i

s
i

(0), which means that the overlap for this
sample equals plus or minus its initial magnetization depending of the final ground state.
Furthermore as we have argued earlier the initial spanning clusters dictates the ending of
the evolution. For samples which final states are completely magnetized there must have
been initially one cluster spanning both directions. Since this cluster is also certainly the
biggest thus imposing the sign of the magnetization, the final magnetization should be of
the same sign as the initial one. This can be verified directly and for a system with FBC a
little bit over 93% of samples have an initial and final magnetization of the same sign almost
independently of the system size. This means that a majority of the sums

P
i

s
i

(0)s
i

(1)

are positive thus the overlap behaves as the mean absolute value of the magnetization. As
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the latter behaves as L��/⌫ ⇠ L�1/8 this explains the behaviour observed for q(1, L). It
seems that the stripe states do not alter this behaviour since the exponent measured is in
really good agreement with �/⌫.

We called this quantity overlap to be coherent with other quantities we studied but
actually in this case it coincides the usual autocorrelation function hs

i

(0)s
i

(t)i. The au-
tocorrelation function is known to decay with time as L(t)�� which defines the exponent
� where L(t) is the dynamic length scale which grows as t1/2 for a dynamics with non-
conserved order parameter. � is a non-trivial exponent which equals approximately 1.25
for bi-dimensional systems quenched from a supercritical temperature, i.e. a short-range
correlated initial condition. An RG treatment of the coarsening from a correlated initial
condition has been described in an article by Bray et al. [27]. Taking the form of the initial
correlation as hs

i

(0)s
j

(0)i ⇠ r�d��

ij

with d the dimension of the system, they concluded
that the speed of the decrease of the autocorrelation function vary with the exponent �
describing the initial decay of long-range correlations. There is a value of the exponent �

c

such that for � > �
c

the initial correlations decay fast enough for the autocorrelation to
take the same form as for short-range correlated initial condition, i.e. that the exponent �
has its short-range (SR) value � = �SR. For � < �

c

the exponent � appears in the time
dependence of the autocorrelation function and Bray et al. showed that �LR = (d + �)/2
so that it behaves as t�(d+�)/4. Furthermore they showed that the transition between those
two regimes happens at �

c

= 2�SR � d so � is a continuous function of �. This situation
is very similar to the Ising model with long-range interactions at equilibrium which we
will talk about in great details in chapter 4. For the Ising model equilibrated at its critical
temperature which is of interest for us here the correlations decay as 1/rd�2+⌘

ij

with the
anomalous dimension ⌘ = 1/4 in d = 2. This means that � = ⌘ � 2 = �7/4 which is
less than �

c

= 2�SR � d ' 0.5 so in our case the initial correlation are relevant and the
autocorrelation function decays as t�⌘/4 ⇠ t�1/16. This is completely consistent with the
long-time behaviour of the overlap with the initial condition studied before as we found
that it depends on the system size as L�0.125(1) and we conjectured in the previous para-
graph that it should be L��/⌫ with �/⌫ = 1/8. One can show from scaling relations that
⌘ = 2�/⌫ which means that q(1, L) ⇠ L�⌘/2 ⇠ L�2�SR in perfect agreement with the RG
result. It is interesting that our simple argument yields the exact result from a completely
different way.

Overlap between two copies

Another approach to the influence of the initial condition is to say that if the initial con-
dition really persists later in the evolution then two systems with an identical initial spin
configuration evolving under different thermal histories should be somehow correlated.
The overlap is a quantity which can make this correlation more obvious. Here we will use
a variant of the overlap already discussed which is actually closer to the historical use of
this notion [28, 29, 30, 31]. The overlap between two copies of the system is defined as
follows: at t = t

w

one makes two copies of the configuration, say s
i

(t
w

) = �
i

(t
w

), and lets
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them evolve with different noises. The overlap between the clones at time t is then

q
tw(t, L) =

1

N

X
i

hs
i

(t)�
i

(t)i , (2.7)

where the angular brackets indicate an average over different realizations of this proce-
dure. The two-time scaling properties of this quantity, in the limit L ! 1, were used to
distinguish domain-growth processes from glassy ones [29, 30]. It was recently shown that
q
tw=0

(t, L) and q
tw=0

(1, L) decrease algebraically with t and L, respectively [31]. The
fact that q

tw=0

(t, L) decreases with t is clear. We will for now only consider the case with
no waiting time t

w

= 0, but we will see later that the introduction of a non-zero waiting
time can be very informative.

In figure 2.7 q
0

(t, L) is plotted as a function of time t for different system sizes L.
It first decreases on a very short time and reaches a minimum at around t ' 1MCs and
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Figure 2.7 – Overlap q0(t, L) vs. time t the different linear system sizes given in the key. The abscissa is in
log-scale.

then increases until it reaches a constant value corresponding to the moment when all
systems have reached their final state. A fit of the form c + aL�b confirms that, as for the
autocorrelation function A(0,1), q

0

(1, L) converges towards 1 in the large system limit.
Indeed, in figure 2.8, 1 � q

0

(1, L) is plotted vs. system size L in a double log-scale. It
is well described by a power law behaviour. Excluding the three smallest sizes yields the
best fit quality and gives an exponent equal to 0.57(1). As we will see in subsection 2.3.3,
one can also study an exponent describing the behaviour of the overlap but this time with
an infinite temperature initial condition. In this case the results is 0.50(1) which means
that the two values are incompatible. This shows that when changing the initial condition
from super-critical to critical but keeping the working temperature T = 0, the behaviour
of the overlap is governed by a different exponent. We do not have an explanation for this
fact as before for the overlap with the initial condition so further studies (numerical and
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analytical) would be very interesting to clarify this feature as we have found no mention of
it in the literature. For example one can wonder if this exponent can be expressed in terms
of other known exponents.
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b= 0.57(1)
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Figure 2.8 – 1� q0(t, L) vs. linear system size L in double logarithmic scale.

Persistence

Another interesting quantity to measure how much of the initial condition remains is the
persistence P . Persistence is a very general notion related to first passage times, see [32]
for a recent review on the subject. For a random walker on a line it is the probability that its
position remains positive up to time t starting from a given position. For spin systems P(t)
simply equals the fraction of spins that have never flipped at time t since a zero-temperature
quench or equivalently the probability that a single spin has not flipped up to time t. It is
different from a two time quantity such as the autocorrelation function defined previously.
Indeed it contains informations from every update, about all the history of the system. In
a lot of cases, the persistence decreases algebraically for long time as P(t) ⇠ t�✓ with ✓ a
non trivial dynamical exponent.

The persistence has been studied mostly starting from an infinite temperature, i.e. un-
correlated, initial condition. We will talk about this case in more details in the next section
but we will recall here the main results that we need now. We concentrate on local per-
sistence even if other types of persistence can be defined and studied. It was first studied
numerically for the one dimensional Ising model [33], but one can in general consider a
Q state Potts model in d dimensions after a zero temperature quench from T = 1 evolv-
ing with a Glauber dynamic [34, 35]. The persistence decreases in a power-law fashion
P(t) ⇠ t�✓ with ✓ a universal exponent depending only on Q and d. The exact value of ✓
was obtained explicitly in d = 1 for all values of Q by mapping the domain walls to par-
ticles which diffuse, annihilate and coalesce [36, 37]. No such exact result exist in higher
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dimensions. Nevertheless a perturbation scheme was developed in [38, 39] and an approx-
imate value of ✓ ' 0.19 was obtained for the bi-dimensional Ising model. This value is
in agreement with the slightly superior numerical estimate [35] and the experimental value
of [40]. We will estimate precisely ✓ in this case in subsection 2.3.4.

We will now concentrate on the zero-temperature quench from a critical initial condi-
tion. As for the overlap, we can either follow the behaviour of the persistence with time or
check the size dependence of the final value for t ! 1. We plot the value P(1, L) vs.
system linear size L (not shown) for systems with PBC and study its behaviour. A function
of the form aL�b yields a fit of good quality giving b = 2✓

c

= 0.07(1). Excluding the three
smallest system sizes greatly improves the fit’s quality. Studying the time dependence is
tricky as the long time regime where the real persistence dominates is only attained for big
systems (L � 1000). Nevertheless one can measure ✓

c

= 0.06(2) which is close but not
completely in agreement with the value measured from the long time limits. It is likely that
the value obtained from the fit of P(1, L) is more accurate than the one extracted from
the time dependence since the slope of the persistence with time approaches only slowly
the universal value. We will explore the difficulties to measure precisely the persistence
exponent in subsection 2.3.4 concerned with infinite temperature initial condition.

One can derive a bound on the persistence exponent from geometrical arguments. As
we have seen only spanning or wrapping clusters survive the coarsening process as all the
others clusters shrink and eventually disappear. This means that the only spins contributing
to P(1, L) have to belong to the initial spanning clusters. In the simplest case where one
clusters spans both direction for a system with FBC, the initial spanning cluster is certainly
the largest cluster whose mass scales as ⇠ LD with D its fractal dimension. Thus the
persistence P(1, L) must decay at least as fast or faster than the fraction of spins in the
initial spanning cluster LD�d. As we have seen P(1, L) ⇠ L�2✓c , implying that:

2✓
c

� d�D. (2.8)

Remembering that D = d� (�/⌫)
tri

where (�/⌫)
tri

= 5/96 are the exponents associated
to the magnetization of the tricritical model or giving the size of the biggest spin cluster,
one can rewrite Eq. (2.8) as 2✓

c

� (�/⌫)
tri

. The exponent measured follows this inequality
as 2✓

c

= 0.07 and (�/⌫)
tri

= 5/96 ' 0.052. We must note that while we have assumed
that all the persistent states in the final state belonged to the initial spanning cluster, we
think that this assumption is very likely. However during the evolution, the persistent sites
can of course belong to any clusters, so that we cannot apply a similar argument at any
time.

One may rewrite this inequality in another way considering the spatial distribution of
persistent sites. Several authors have shown that the persistent sites of a system quenched
from infinite temperature have a non trivial spatial distribution [41, 42, 43, 44, 45]. Indeed
persistent sites form fractal clusters of dimension D

p

= d� z✓ with z = 2, as can be easily
seen from the infinite time value of the persistence P(1, L) which scales as L�2✓ so the
number of persistent sites behaves as Ld�2✓. While we have not checked that the persistent
sites have a fractal structure in the case of a critical initial condition, they quite likely do
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in analogy to the previous case. We will therefore assume that the persistent clusters have
a fractal dimension D

p

= d � z✓
c

, which is compatible with the value of the persistence
in the final state. The inequality (2.8) can then be rewritten as D

p

 D, which is natural
since the persistent sites in the final state are a subset of the initial largest cluster so their
fractal dimension must be less than the biggest cluster’s one.

The value measured for ✓
c

' 0.035(5) is clearly different from the value measured and
computed analytically for the persistence exponent ✓ ' 0.19 for an infinite temperature
initial condition. The difference between the two situations is that no long-range corre-
lations exists at infinite temperature contrarily to the critical case. It is the assumption
made for the analytical derivation of ✓, i.e. that the initial correlation are short-ranged so
that they play no role in the universal behaviour of the dynamic. Moreover, it is quite
natural that ✓

c

 ✓ as one expects that less spins will flip when the initial condition is
more preserved as it is the case for the critical initial condition compared to the infinite
temperature one as we will see more precisely in the next section. It is however far from
rigorous and it would be very interesting to carry an analysis similar to [38] for this situ-
ation and maybe give a theoretical explanation to ✓

c

. As before for the overlap with the
initial state we should consider an initial spin configuration s0 which would no longer be
uncorrelated as hs0(x)s0(y)i = �(x�y) but with long-range correlations typical of critical
points hs0(x)s0(y)i ⇠ 1/|x� y|d+� with � = ⌘� 2. It is however unclear to us where this
correlations would enter the method of [38, 39]. We nonetheless expect that there should
be a special value �

c

of the exponent of the initial correlations such that for correlations
decaying faster than this we recover the short-range case. This would be quite interesting
to test numerically.

2.3 Infinite temperature initial condition

We will now consider systems quenched from infinite to zero temperature. We have inter-
ests similar as the ones in the previous section, we want to study final states and see how
much is kept from the initial condition. We will show that the evolution is more complex
than before and that an additional transient regime exists.

2.3.1 Stripe states

As we have shortly discussed in subsection 2.2.1, several works have studied the appear-
ance of stripe states during subcritical coarsening. It has implication for the thermalisation
time [2] because diagonal stripe states for which the thermalisation time is much higher
appear in a finite fraction of samples. Indeed, in this case, the stripe boundaries have
to diffuse until they collapse in order to reach a ground state and this interface diffusion
regime lasts much longer than the usual coarsening thermalisation time [3, 4]. In 2009
Barros et al. finally gave a very interesting explanation of the probabilities for which the
stripes are found in final states [7]. They showed numerically that those stripe probabilities
agree very precisely with critical percolation crossing probabilities for various boundary
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conditions. In 2012 Olejarz et al. strengthened this correspondence by showing that it also
holds for stripes winding in both directions around a system with PBC [8]. In this case one
has to add short-range interactions going beyond the nearest neighbours to stabilise the
stripes. These works draw a nice and convincing picture that critical percolation is indeed
an essential ingredient to understand precisely the final states.

The explanation proposed in [7] for the success of percolation crossing formula for
the appearance of stripe states is based on two observations. On one hand, very soon
after the quench the typical domain size is much larger than the lattice spacing, so the
discrete nature of the underlying lattice is forgotten and the system is now a realisation of
continuum percolation for which p

c

= 1/2. At infinite temperature the concentration for
both spin values is 1/2 and it stays close to it in the short-time regime, so the system quickly
corresponds exactly to the critical point of continuum percolation. On the other hand in the
coarsening regime the evolution of cluster interfaces only tends to reduce local curvature
and clusters just shrink until they disappear. With this kind of evolution no change of
topology (in the sense of percolating clusters) is to be expected once the dynamic length-
scale ⇠(t) ⇠ t1/2 is much larger than the lattice spacing. Considered together this provide a
convincing scenario for the presence of critical percolation probabilities in the final states.

We can note that even though fairly probable the first of those two observations lacked
a more rigorous study. One had to assume that the dynamics brings the system to a state in
which its spin clusters possess critical percolation properties. But several questions remain
unanswered among which an important one is how and when the system reaches critical
percolation? This question is completely absent of the traditional theory of coarsening [46]
which is otherwise very successful to explain and characterize a wealth of other phenom-
ena. The study of this question is the subject of the rest of this section along with some
related issues.

2.3.2 Onset of critical percolation
Overview

It is a priori difficult to have an intuition of when the system becomes similar to critical
percolation. In the works of Sicilia et al. the authors noticed that after a few Monte-Carlo
steps at T < T

c

, an infinite temperature system on a square lattice is very similar to the
critical percolation point for the spin clusters [5, 6]. So it seems that it is on a very short
time scale that the critical percolation appears. It is very interesting to look at snapshots of
some samples during their evolution to understand what happens. In figure 2.9 we show
such snapshots for a system on a square lattice of linear size L = 128. +1 spins (�1 spins)
are shown as white (red) dots. Since we are interested in clusters spanning the system, we
colour +1 spins (�1 spins) spanning clusters in clear blue (black).

The times chosen to draw the snapshots correspond to all the times when the percolative
state of the system changes. As expected at the initial time no spanning cluster is present as
their probability to appear decreases exponentially fast with the system size in subcritical
percolation. While looking at these snapshots, several facts are quite surprising: the first
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time when a spanning cluster appears is very small (less than 1MCs in figure 2.9), the
systems changes of percolative state a great number of times and the last change occurs
quite early (t = 7.46MCs for this sample) compared to the thermalisation time proportional

t=0.0 t=0.57533 t=0.94844 t=1.07461 t=1.29578

t=1.38039 1.46945 1.66507 1.77245 t=2.00847

t=2.13742 t=2.27548 t=2.57898 t=2.74525 t=3.75072

t=3.99211 t=4.81767 t=5.45726 t=6.58423 t=7.46144

t=128.0

Figure 2.9 – Snapshots of a 2dIM on a square lattice with L = 128 and FBC. A quench from T

i

! 1 to
T = 0 was performed at t = 0. Spins S

i

= �1 (S

i

= +1) are shown in red (white). A percolating cluster of
spins S

i

= �1 (S
i

= +1) is shown in black (clear blue).

to L2. So in general the evolution of a system follows the different phases: at t = 0 the
spins take random values and no spanning cluster is present. At a time t

f

⌧ L2 a first
spanning cluster appears. Then follows a period t

f

< t < t
p

with t
p

⌧ L2 in which
spanning clusters appear and disappear typically 10 to 20 times in our simulations. At t

p

the number and type of spanning clusters are equal to the number and kind of stripes in the
final state. The regime t

f

< t < t
p

is interesting and we will clarify it in subsection 2.3.2.
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The fact that t
p

⌧ L2 is intriguing as it indicates that the fate of the Ising model is sealed
very soon in the evolution, we will study this phenomenon in subsection 2.3.3.

Crossing probabilities

Square lattice To study spanning clusters, natural quantities to consider are crossing prob-
abilities as we have done in subsection 2.2.1 for the quench from critical to zero tem-
perature, but here we will follow their evolution with time. In figure 2.10 the probability
⇡ = ⇡

h

+⇡
v

+⇡
hv

that a cluster spans the system in one or two directions vs. time is shown
for different system linear sizes L. Even though for one sample the evolution of the per-
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Figure 2.10 – Crossing probability vs. time t for several system linear sizes L given in the key on a square
lattice with FBC.

colative state is stochastic and full of events as we have seen in the previous subsection the
average probability has a very smooth behaviour. As mentioned above, the total crossing
probability ⇡(0) at t = 0 equals zero since the configuration is subcritical on the square lat-
tice. This probability rapidly increases until it reaches 1 after a few MCs. It is clear that the
time at which the system contains a spanning with probability 1 increases with the system
size. It is also interesting to understand the time dependence of the probability when it ap-
proaches 1. In figure 2.11 the probability 1�⇡(t) that no cluster spans the system at time t
is plotted in double logarithmic scale. After a short time the approach to percolation seems
to be compatible with a power law behaviour of the type ⇡(t) = 1 � at�b with b an expo-
nent which appears to be size dependant. To estimate the time needed to reach percolation
we rescale the time by a size dependent factor L↵ in the inset of figure 2.11. A collapse for
the tail is obtained for ↵ = 0.29(4). This collapse is convincing but it does not work for the
intermediate regime preceding the power law regime. While looking more closely at the
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Figure 2.11 – Non-crossing probability 1� ⇡(t) vs. time t for several system linear sizes L given in the key
on a square lattice with FBC in double logarithmic scale. The straight line is a guide to the eye. In the inset
the same quantity is plotted but the time has been rescaled by a factor L↵ with ↵ = 0.29(4).

different types of spanning clusters, we can see that in an intermediate regime a significant
fraction (more that 10%) of the samples are in a state with only one cluster spanning in
one direction. Those configurations are counter-intuitive since one would expect that the
interface of a + stripe should also be the boundary of a � stripe and therefore that clusters
spanning in only one direction come in pairs. This is however not always the case since
on the square lattice, a stripe boundary containing a step in addition to another cluster of
the same sign having a corner on the opposite direction can cut the cluster neighbour of
the stripe into two. From the point of view of domain walls drawn on the dual lattice, this
corresponds to a point where two domain walls pass by the same point. This situation does
not last very long since a corner is unstable at T = 0 and therefore disappears to form
a straight interface. The temporary existence of those configuration may explain that the
collapse does not work for all t and in particular just before the power law regime.

Kagome lattice We have studied the same quantities and situation on the kagome lattice. It
is a regular lattice where all sites possess four neighbours with a site percolation threshold
pK
c

' 0.65. So we expect the situation to be similar to the one on the square lattice since
the initial condition is subcritical. The crossing probability ⇡(t) is shown in figure 2.12 for
different system sizes. L

x

(L
y

) is the number of sites in the horizontal (vertical) direction.
The values chosen correspond to an aspect ratio r = (

p
392/2)/80 ' 0.9959 close to 1 so

that the horizontal crossing probability equals the vertical one. As expected the curves are
very similar to previous case, going quickly from a non percolating initial condition to a
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given in the key on a
kagome lattice with FBC.

percolating one. As before the approach to 1 is compatible with a power law behaviour with
an exponent close to 3.5 and we can also rescale the time dependence by a size dependent
factor L↵ with ↵ ' 0.25. This indicates that the exponent related to the time needed to
reach a percolating configuration is lattice dependent so not universal.

There is on the kagome lattice a feature that is absent from the other lattices studied
up to now. When a stripe state occurs there are spins between the stripes that possess
two neighbours of each sign and can therefore flip indefinitely with no energy change,
see figure 2.13. It is quite remarkable that the system can end up in an ensemble of iso-
energetic final states in such a simple set-up. In 3d it is very common as it is for example the
predominant scenario on the cubic lattice with entangled spanning clusters and sites which
can blink indefinitely [47, 48]. In this case the ground states are almost never reached.
With the presence of those blinkers we had to refine the condition that a final is a state
where no spin updates are possible, by adding that states possessing sites with an equal
numbers of neighbours of opposite sign with no possibility of change are also considered
final. Numerically it is fairly easy to detect them as the blinkers come in numbers multiple
of the linear horizontal system size.

Odd coordinated lattices In this paragraph we are interested in the same set-up on odd coor-
dinated lattices, that is lattices which sites have an odd number of neighbours. It has been
known for a long time that in this case the dynamics is very different than on even coordi-
nated lattice due to the existence of metastable spin droplets [49]. For a zero temperature
dynamics those metastable droplets live indefinitely, hence the system quickly get frozen
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Figure 2.13 – Configuration presenting blinkers (in green) on a kagome lattice with FBC.

in a configuration with many metastable droplets with no possible updates. More gener-
ally this happens on any lattice where a fraction of sites have an odd number of neighbours.
Seven out of the eleven archimedean lattices are odd coordinated, the hexagonal lattice with
coordination 3 being the most common. More generally among lattices with several types
of vertices, those having only even coordination numbers are uncommon. It is therefore
interesting to study odd coordinated lattices and in particular we would like to know what
happens on these lattices concerning the approach to critical percolation studied above for
even-coordinated lattices.

We will concentrate on the hexagonal lattice. As mentioned the coarsening dynamics
was studied on this lattice in [49] by Takano and Miyashita which focused on the thermal-
isation time at small but finite temperature. These authors observed that the magnetisation
does not behave as on the square lattice, presenting a plateau during the evolution. They
also remarked that the thermalisation time increases as the temperature decreases. The
dynamics can be separated in three phases: for t < t

1

the magnetisation evolves and the
number of sites with 2 or 3 neighbours of opposite signs decreases quickly; for t

1

< t < t
2

the magnetisation has a fixed value and for t > t
2

the magnetisation finally evolves to-
wards its equilibrium value. They measured that the dependence of t

1

on the temperature
and system size L was small contrarily to t

2

which varies greatly with those two param-
eters. The first phase corresponds to the onset of metastable clusters formed by gluing
together a certain number of same-spin hexagons. The smallest metastable cluster con-
sist of six spins with the same sign taking the form of an hexagon. It is easy to see that
the destruction of such a cluster with single spin flips requires an energy increase for the
first spin flip and then the flips of the other spins are favoured energetically. For bigger
metastable clusters, the process has to be repeated for each elementary hexagon forming
it. This energy increase makes this process very slow at low temperature due to the time
needed to overcome the activation barrier. At zero-temperature such an energy increase is
impossible thus the evolution comes to an halt at the time t

1

mentioned previously. We
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know that the plateau is simply the time needed for the activated process. The time needed
to jump a barrier �E at inverse temperature � scales as e��E so in our case e2�J . Takano
and Miyashita checked numerically that the magnetisation behaves as f(t/(e2�JL2

)) for
the late stage of the evolution. Thus when the activation time-scale is taken into account,
one recovers a scaling t/L2 as for other lattices.

A similar activated process was studied by Spirinet al. in [3] on the square lattice when
horizontal or vertical stripes form during an evolution at low temperature. As we have
seen those stripes last forever at zero-temperature but at finite temperature they are only
metastable and disappear at some point and then the system can reach equilibrium. The
destruction of a stripe begins by forming a dent, i.e. flipping a spin at its boundary, which,
if it expands and reaches the system boundary, removes a line of L spins off the stripe. This
process has to be repeated until the whole stripe has been unknitted. This is very similar to
the destruction of the metastable clusters on the hexagonal lattice but there are nonetheless
differences. On the hexagonal lattice, once the first spin has successfully flipped and is
followed by a second spin, the other spins of the hexagons which do not belong to another
hexagon quickly flip and the open hexagon is destroyed. Indeed this process of destroying
the open hexagon makes the energy decrease after the initial activation, so the destruc-
tion is inevitable once it has begun. On the square lattice on the contrary, the two kinks
formed on the stripe boundary after an energy increasing spin flip move at no energy cost
in one direction or the other. They behave as random walkers which have to travel to the
system boundary before colliding into the other kink. Using first-time passage arguments
the authors of [3] showed and checked that the time needed to destroy a stripe scales as
L3e4�J � L2. This time is much longer than the usual thermalisation time L2 so the sit-
uation, though similar, is not the same as for the hexagonal lattice. On the hexagonal the
thermalisation time still depends as L2 on the system size and only the prefactor depends
on the temperature.

Let us now consider the early times of the evolution on the hexagonal lattice at T = 0,
corresponding to t < t

1

. An interesting question is whether the onset of critical percolation
occurs before the system freezes. One way to look at this problem is as before to compute
the crossing probabilities. The crossing probabilities (not shown) reveal that one can ob-
serve the very fast approach to critical percolation even for fairly big systems (L < 1024)
as on even-coordinated lattice. For those sizes this means that the system reaches perco-
lation before freezing. We show another way to study this problem in figure 2.14 where
the distribution of the areas of spin clusters n

d

(A, t) is plotted for various times after the
quench. As for other lattices with p

c

> 0.5 the initial distribution n
d

(A, 0) decays exponen-
tially but already at t = 4MCs the percolation-like power law tail is established. The peaks
for small sizes corresponds to the discrete values of possible area values for metastable
clusters which sequence begins as 6, 10, 13, 14 . . . But for areas A > 50 no such effect is
noticeable and the distribution is exactly as expected for critical percolation. This confirms
that the onset of percolation is faster than the freezing at least for systems smaller than
L = 1024.

To have a deeper understanding of the relative speed of the approach to percolation
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hexagonal lattice of linear size L = 1024 with FBC in double logarithmic scale.

compared to the freezing process, let us focus on the latter. In [49] the authors only re-
marked that the time needed to reach the plateau of magnetisation depends weakly on the
system size and on temperature. We define the freezing time of a system as the time when
no updates are possible, which means that flipping any spins of the system increases its
energy as the system is in a local minimum of energy. This time is easy to compute with a
CTMC algorithm for the evolution as the implementation of this algorithm requires to keep
a list of all the sites which can be updated. In figure 2.15, the mean freezing time t⇤(L) is
plotted as a function of the system linear size L. The evolution of the freezing time is com-
patible with a logarithmic growth t⇤(L) ⇠ a logL + b. This result is interesting because
if the time needed to reach percolation grows algebraically with the system size as for the
other cases seen before then systems big enough will freeze before percolation has the time
to be established. It is not clear to us how this size dependence arises. The freezing process
goes as follows: any spin with at least two neighbours of opposite sign can be updated but
as soon as a spin belongs to an hexagon of spins of same value it is frozen. This must be
qualified as in fact any structure composed of loops linked together are stable as any spin
composing it have exactly two neighbours aligned with it. But coarsening tends to make
the clusters compact over distances of a few lattice spacing very quickly so it is certainly
accurate to consider that all frozen spins belong to elementary hexagons. In analogy with
the dynamical length scale one can define a time dependent freezing length ⇠⇤(t). From the
dependence of the freezing time with the system size we can say that this freezing length
grows exponentially fast with time ⇠⇤(t) ⇠ eat with a a positive constant. This is obtained
from the behaviour of the freezing time but it would a very interesting to see if this length
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Figure 2.15 – Mean freezing time vs. system linear size L a hexagonal lattice with FBC with the abscissa in
logarithmic scale.

appears in observables related to frozen sites as for example a correlation function.
Now let us come back to the question of the relative speed of the onset of percolation

vs. the freezing process. We have already shown the probability distribution of spin cluster
areas, n

d

(A, t), as a function of the number of spins in a cluster, A, and time, t. It ac-
quires a power-law behaviour very quickly with the precise form of a critical percolation
distribution as we have seen in figure 2.14. This description is nonetheless incomplete as
the distribution is not solely a power-law and for the biggest clusters one can observe a
bump. This bump corresponds to clusters with a linear size of the size of the system, that
is percolating clusters. A more complete form for the distribution is therefore:

n
d

(A, t) ' 2cA�⌧

+N
p

(A/LD, t) (2.9)

with D = d/(⌧ � 1) = 91/48 ' 1.896 is the fractal dimension of the percolating clus-
ters. The bump N

p

is written as function of A/LD because the size of the percolating
clusters grows with the system size according to their fractal dimension. Numerically this
distribution is built by recording the areas of the biggest cluster of each sample separately.
One can then plot the bump for different sizes and times (not shown). Qualitatively this
distribution evolves at first very quickly from its initial subcritical Gumbel form towards
bigger sizes. After some time the distributions for different system sizes converge to a
distribution roughly independent of time. We can then estimate the time needed to reach
this distribution which grows with the system size. This time is in fact the time to reach the
percolative state. From the plots at different times, we remark that this time grows slower
than a power law contrarily to the case of even-coordinated lattices which we will discuss
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in more detail in the next subsection. It looks like the freezing process accelerates the onset
of percolation. This is a bit surprising at first but in fact rather natural. What happens on
the hexagonal lattice is that even very early after the quench clusters are already mostly
frozen and thus constitute fixed building blocks for the forming percolating cluster. On
even coordinated lattices the initial subcritical clusters are subject to much more change
before the percolating cluster is formed. This argument is very qualitative but we think
that the main difference between those two situations is here. We have studied the freezing
process on the Shastry-Sutherland lattice which only possess a fraction of odd coordinated
vertices and everything is very similar to what happens on the hexagonal lattice.

2.3.3 Definitive percolation state

In the previous subsection we have studied the approach to critical percolation. We have
shown that a characteristic size dependent time exists to reach percolation. But when con-
sidering the final states only the last percolative state matters as it is its spanning cluster(s)
that coarsens to give either stripe or ground states. We will now concentrate on the question
of when this definitive state is reached. The work that we will now describe has been the
subject of [50].

As before we study the transient between a fully disordered initial condition and a per-
colating structure in the low-temperature non-conserved order parameter dynamics of the
two-dimensional Ising model. The stochastic evolution of the ferromagnetic Ising model
(IM) quenched below T

c

is a textbook example of coarsening phenomenology. However,
the role played by the initial conditions and the pre-asymptotic dynamics leading to the
scaling regime, and atypical ordered spatial regions, in this and other models have not
been studied in detail yet.

Here we analyze the transient regime between the initial condition and the state that
will actually control the large scale properties in the scaling regime and the eventually
frozen asymptotic configurations. We study the 2dIM on different lattices. We determine
the dependence of the time-scale needed to reach this state, that we call t

p

, on the lat-
tice coordination and the system size by analyzing how t

p

manifests itself in a number
of non-trivial observables. We conjecture its dependence on the microscopic dynamics.
Importantly enough, we generalize the dynamic scaling framework to include the influ-
ence of this time-scale, so-far ignored, on the dynamic correlations. Finally, we discuss
the possible implications of our results on systems with more complex out of equilibrium
dynamics.

We consider square, triangular, kagome and bowtie-a lattices with linear size L and
either free (FBC) or periodic (PBC) boundary conditions. FBC are better suited to our
study as it is slightly easier to consider spanning clusters for FBC than wrapping clusters
for PBC. Still, we checked that there are no significant changes when taking one boundary
condition or the other. The coordination numbers are n⇤

c

= 4, n4
c

= 6, nK

c

= 4, and
n./

c

= 5 and the site percolation thresholds are p⇤
c

' 0.59, p4
c

= 0.5, pK
c

' 0.65 and
p./
c

' 0.55. n./

c

is a mean coordination number since the sites have either 4 or 6 neighbors
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Figure 2.16 – N (A, t) vs. A at different times t given in the key after a quench from T

i

! 1 to T

c

/2 for a
system with L = 2560. In the inset data obtained after a quench from T

c

to T

c

/2.

on this lattice.

Distributions of clusters areas

A first quantitative indication of critical percolation playing a role is given by the proba-
bility distribution of spin cluster areas, N (A, t), as a function of the number of spins in
a cluster, A, and time, t [5, 6]. At t = 0 the system is not critical and N (A, 0) decays
exponentially with A, as shown by the solid (red) curve in the main panel in Fig. 2.16.
After a very short time, t ' 10, the tail tends to an algebraic decay N (A, t) ' 2cA�⌧ . For
finite L and sufficiently long times the power-law is cut-off by a bump around areas that
scale with L. For t & 16 the power-law holds in the range 103  A  10

6 and the bump is
around A ' 2 10

6. The functional form

N (A, t) ' 2cA�⌧

+N
p

(A/LD, t) (2.10)

takes into account all these features as we have seen before. D = d/(⌧ � 1) is the fractal
dimension of the percolating clusters.

A direct fit of the power-law yields ⌧ = 2.020 � 2.040 depending on the fitting range.
While these values are close to the percolation one, ⌧ = 187/91 ' 2.05495, they are also
close to the critical 2dIM one, ⌧ = 2.02674, and it is difficult to distinguish between these
two cases with this measurement (having said this, the numerical value of c is very close
to the analytic one for percolation, c = 1/(8

p
3⇡) [51] and distinctively different from the

one for the critical IM [5, 6]).
The study of the bump, scaled as in the second term in (2.10), lifts all ambiguities on the

value of ⌧ . In Fig. 2.17 we plot A⌧N (A, t) vs. A/LD with the percolation ⌧ for t 2 [2, 16]
and different L. For small t the height of the distribution depends on L while for t & 16
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Figure 2.17 – A

⌧N (A, t) vs. A/L

D at different times t after a quench from T

i

! 1 to T

c

/2. We employ the
parameters ⌧ and D of critical percolation except in the inset of the lower right panel where we use the ones
of the critical Ising model. The number of samples used to build the pdf is 106 for L = 160 and L = 640

and 2 10

5 for L = 2560.

they all collapse. The inset in the lower right panel displays the same data scaled with the
critical IM value of ⌧ . Clearly, there is no scaling with this choice.

We note that the time required for the distribution to become percolation-like increases
weakly with L. The curves for L = 160 and L = 640 at t = 2 are replaced by the curves
for L = 640 and L = 2560 at t = 4. The same holds true between t = 4 and t = 8. At
t = 8, the curves for L = 160 and L = 640 do collapse, as for data at t = 16 for L = 640

and L = 2560. This suggests that there is a time scale t
p

⇠ L↵p , with ↵
p

⇠ 0.5, after
which the bump remains stable in the scaling plot. It is still not clear whether this bump
is made of everlasting percolating structures or whether these still appear and disappear as
illustrated in Fig. 2.9.

Correlation with the final state

The time-scale t
p

after which the actual percolating structure stabilizes can be estimated
from the analysis of the correlation of the number of crossing clusters present at time t and
those surviving in the blocked configuration at zero temperature. We introduce a particular
case of the two-time autocorrelation function introduced previously:

A
c

(t) = h�
nv(t)n

1
v
�
nh(t)n

1
h
i . (2.11)

The correlation A
c

(t) interpolates between 0 and 1. For sufficiently large system sizes,
n
h

(0) = n
v

(0) = 0. In the blocked configuration there should be at least one crossing
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Figure 2.18 – Number of crossings autocorrelation, A
c

(t) defined in Eq. (2.11), after a quench of the FBC
square lattice form T

i

! 1 to T = 0. Data are displayed as a function of t/L0.5 in linear-log scale for the
values of L given in the key. The dashed red line very close to 1 is the behavior of A

c

(t) for a quench from
T

c

to T = 0 for L = 128.

cluster, leading to n1
h

6= 0 and/or n1
v

6= 0. In Fig. 2.18 we show A
c

(t) on a square lattice
with FBC. A very accurate data collapse for different sizes is found for t/L0.5 & 0.1. At
shorter times the scaling is not as good due to the large number of states with only one
cluster percolating in one direction (see Fig. 2.9) present on the square lattice because of
interface corners as we have already discussed with the crossing probabilities. As soon as
interfaces become flat these configurations no longer exist. The convergence to 1 is fast
since A

c

(t) ⇠ 1 for t/L0.5 > 10. This indicates that t
p

scales as t
p

⇠ L0.5 on the square
lattice.

Overlap between twin systems

The overlap between two copies of the system similar up to some point but with different
thermal histories afterwards also informs us about the time t

p

. We have introduced this
quantity when considering the critical initial condition case. We recall its definition here
for simplicity. At t = t

w

one makes two copies of the configuration, say s
i

(t
w

) = �
i

(t
w

),
and lets them evolve with different noises. The overlap between the clones at time t is

q
tw(t, L) =

1

N

X
i

hs
i

(t)�
i

(t)i , (2.12)

where the angular brackets indicate an average over different realizations of this procedure.
It was recently shown that q

tw=0

(t, L) and q
tw=0

(1, L) decrease algebraically with t and L,
respectively [31]. The fact that q

tw=0

(t, L) decreases with t is clear. Even though we know
that there are a finite amount of stripes in the final state [7, 8], these are not encoded in the
initial condition and there is no reason why the different thermal histories will take the two
clones to the same percolating state. Instead, by letting t

w

go beyond t
p

, the two clones
should be strongly correlated for all subsequent times since they are in the same percolating
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state. We set this argument in practice by computing lim

t!1 q
tw(t, L) for various t

w

(L).
The outcome is shown in Fig. 2.19 for the square (a), kagome (b), and triangular (c) lattices.
For the square and kagome lattices, we observe that if t

w

(L) increases as L0.5, the overlap
remains constant with a finite value, thus confirming that t

p

⇠ L0.5 in these cases.

 0.7
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q
t w

L
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tw=L0.55
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Figure 2.19 – The L-dependence of the asymptotic overlap lim

t!1 q

tw(t, L) in the 2dIM quenched from a
PM state to T = 0 at t = 0. (a) Square lattice with FBC. (b) kagome lattice with FBC. (c) Triangular lattice
with PBC. The values of t

w

(L) are given in the keys. Data have been averaged over 106 � 10

7 samples.

On the triangular lattice p4
c

= 1/2 and there is a percolating cluster in the initial condi-
tion with non-zero probability. A naive guess would be that this percolating state survives
after the quench, and t

p

⌘ 0. This, however, is not true as we have checked that q
0

(t, L)
also decays to zero in the large size and time limits on this lattice. As shown in panel (c) in
Fig. 2.19, only for t

w

> t
p

' L0.33, lim
t!1 q

tw(t, L) saturates. The initial state, although
percolating, is not stable under the dynamics and a transient scaling with L is still needed
to reach the truly stable one. We have also simulated the bowtie-a lattice (not shown) and
found t

p

⇠ L0.38(5). We have checked that in all the lattices studied the constant prefactor
in t

p

is of order 1.
These results suggest that, after a sub-critical quench from T

i

! 1, the time t
p

is
compatible with

t
p

' L↵p , ↵
p

= z/n
c

, (2.13)
with z the dynamic exponent and n

c

the regular or averaged lattice coordination. We have
to say that we have no clear understanding of why this should stand but the agreement is
very good for the four types of lattices considered.

Correction to dynamical scaling

For the system sizes commonly used in the literature L ' 100 � 1000, t
p

' 10 � 30, and
percolation is very quickly attained. It is important to notice that, since the equilibration
time remains at least t

eq

⇠ L2 � t
p

[46], or even longer due to blocked states [2, 4, 3],
after stable percolation of an ordered cluster is established at t

p

the systems are still far
from equilibrium, as shown by the correlation and response functions that continue to re-
lax well beyond this time-scale [52, 53]. The new feature provided by our study is that the
scaling properties are modified by the extra time-scale t

p

. Indeed, according to the usual
formulation of the dynamical scaling hypothesis, in the regime ⇠

micro

⌧ ⇠(t) ⌧ L, when
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⇠ is grown much larger than a microscopic length ⇠
micro

associated to the lattice spac-
ing but is still much smaller than the system size when equilibration or blocked states
start to occur, the statistical properties do not depend on time provided that distances
are measured in units of the dominant length ⇠(t). Due to this fact, correlators such as
G(r, t) = hS

i

(t)S
j

(t)i, where r = |i� j|, take the scaling form

G(r, t, L) = f


r

⇠(t)

�
, (2.14)

where f(x) is a scaling function, expressing the fact that there is a unique relevant length
in the system. However, the presence of t

p

introduces another characteristic length L(L) =
⇠(t

p

) ' L↵p/z separating an early stage in which there are no stable percolating structures
from a late stage in which they exist. In the presence of two characteristic lengths, since L
plays a companion role to that of ⇠, the proper scaling form for G(r, t, L) should read

G(r, t, L) = g


r

⇠(t)
,
L(L)
⇠(t)

�
(2.15)

with a new, two-variable, scaling function g(x, y). The difference between Eqs. (2.14) and
(2.15) is manifest when trying to collapse data for G(r, t, L) at different times t. Indeed,
according to Eq. (2.15) curves for a system of a given size L (and hence a given L) cannot
be superimposed on a master-curve by simply plotting them against r/⇠(t), as Eq. (2.14)
would suggest, because in so doing the second argument entering the scaling function g
changes. Instead, Eq. (2.15) states that it is possible to collapse curves at different times t =
t
0

, t
1

, . . . , t
i

, . . . if they are relative to systems of different sizes L = L
0

, L
1

, . . . , L
i

, . . .
chosen in such a way that L(L

i

)/⇠(t
i

) = const., by still plotting them against r/⇠(t).
In order to check this we have computed G(r, t, L) on square lattices of sizes L

i

=

2

i·L
0

, with L
0

= 50 and i = 0�4. Using Eq. (2.13) and ⇠(t) ⇠ t1/z leads to L(L
i

) ' L1/nc

i

.
We have considered times t

i

such that t
0

= 15 and L(L
i

)/⇠(t
i

) ' 16.86. Having verified
that, for these times, the scaling condition ⇠

micro

⌧ ⇠(t) ⌧ L is met for any L
i

, we try to
collapse the data for the smaller system according to Eq. (2.14), namely by simply plotting
the data against r/⇠(t) (where ⇠ is obtained as the half-height width of G, namely from
the condition G(⇠, t) ⌘ 1/2). The result is shown in Fig. 2.20 (a), where one observes
a systematic downward spreading of the curves from r/⇠(t) ' 1.5 onwards (the collapse
of the curves at r/⇠ = 1 is exact due to the operative definition of ⇠(t)). In Fig. 2.20 (b),
instead, we plot the data at the same times t

i

but for systems with different sizes L
i

. As
expected, the quality of the collapse is, in this case, much better. Besides shedding some
light on the scaling properties of coarsening systems, this results confirm the validity of
Eq. (2.13) in an independent way.

We repeated the analysis for various choices of the constant L(L
i

)/⇠(t
i

) finding that, in
all cases, Eq. (2.15) provides a better description of data than Eq. (2.14), although it is clear
that for times t � t

p

(so that ⇠(t) � L(L)) the validity of Eq. (2.14) gets progressively
restored since one expects lim

y!0

g(x, y) ' g(x, 0) = f(x). We have also checked that,
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Figure 2.20 – G(r, t, L) against r/⇠(t) in the 2dIM quenched from a PM state to T = 0 at t = 0. The system
size and measuring times are given in the keys. Data have been averaged over 2 · 104 samples.

similarly to what happens for G, a better scaling description of other correlators, such as,
for instance, the autocorrelation function C(t, t

w

, L) = hS
i

(t)S
i

(t
w

)i, can be obtained by
taking into account the presence of t

p

. Indeed, also for this quantity we have found that a
two-variable scaling form C(t, t

w

, L) = h
h
⇠(tw)

⇠(t)

, L(L)
⇠(t)

i
improves the collapse with respect

to the usually conjectured form where the role of the second argument in h is neglected.

As we have already discussed in the previous section the situation is different if we start
from a configuration equilibrated at T

c

. We higlight here some of the differences. The inset
in Fig. 2.16 shows N (A, t) after a quench from T

c

to T
c

/2. In this case, the initial state is
critical and the curve at t = 0 is a power law [5, 6]. Again, extracting ⌧ from it is hard.
Instead, the bump described by the second term in (2.10) can only be scaled by using the
critical IM ⌧ (not shown). Moreover, the crossing properties of the final state are already
contained in the initial configuration [1]. A

c

(t) is immediately close to one, see the red
dashed line in Fig. 2.18, as well as the clone overlap q

tw(t, L) previously shown in Fig. 2.7
and 2.8 for t

w

= 0. So for the critical initial condition the twins are strongly correlated
even for t

w

= 0. All these results strongly suggest that t
p

= 0 in this case. We should
stress that the initial presence of percolating clusters does not necessarily imply t

p

= 0 as,
for example, t

p

> 0 on the triangular lattice when T
i

= 1. The difference between the two
situations resides in the finer cluster structure; mainly the fact that red bonds are essentially
inexistent at the critical temperature as opposed to what happens at critical percolation. We
will come back to this point in the conclusion of this chapter.
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Figure 2.21 – The persistence P(t, L = 1024) vs. t for the ferromagnetic 2dIM on the square lattice with
PBC and FBC (red and green data, respectively, see the key) quenched at t = 0 from a 1/T ! 0 initial state
to T = 0. The dotted (grey) line corresponds to the best fit found over the interval t 2 [100 : 10000] with a
power law for the PBC case.

2.3.4 Persistence

Previous works

We will focus on persistence as we did for critical initial condition. The case of persistence
starting from an infinite temperature initial condition is the most studied case. After the
initial study of Derrida, Bray and Godreche, Stauffer considered the Ising model from
dimension one to five in [35], . He determined numerically that the persistence follows a
power law scaling with time, P(t, L) ⇠ t�✓ with a persistence exponent ✓ = 0.22 in two
dimensions. There have been many other estimates of the persistence exponent ✓. The first
numerical estimate by Stauffer was followed by an analytic value ✓ = 0.19 by Majumdar
and Sire using a perturbation scheme [38]. In [40] Yurke et al. measured experimentally
✓ = 0.19(3) using a system of liquid crystals in the same universality class, and other
numerical estimates are 0.21 [44] and 0.209(4) [54]. Those various estimates are roughly
compatible with each other but we wanted to see if a more accurate estimate was accessible.

In Fig. 2.21, we show numerical results for the persistence probability in the ferromag-
netic 2dIM as a function of the time. This figure contains data for the square lattice with
L = 1024 and both FBC and PBC. At first sight, it seems that both cases have the same be-
haviour for t > 10 with an algebraic decay. The best fit of the data for PBC on the interval
t 2 [100 : 10000] gives ✓ = 0.2218(4) in excellent agreement with Stauffer’s result [35].
This fit is shown in Fig. 2.21 as a dotted grey line. For large t & 10

6, there is saturation of
data, i.e. P(t, L = 1024) ' cst for t & 10

6 ' L2. This is expected since for t ' L2, the
system gets close to equilibrium and the persistence reaches a finite L-dependent value due
to finite size effects. We obtain that lim

t!1 P(t, L) = P1(L) ⇠ L�2✓ with 2✓ = 0.45(1).
This is consistent with previous results but we would like to describe more precisely the
dependence of persistence with time.
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New estimation

In this section, we want to reinvestigate the estimation of the persistence exponent. One
reason to do so is that although the fit in Fig. 2.21 looks good, in fact it is not. The reduced
chi-squared for the power law fit is ' 6000 which means that it is actually a terribly bad
fit. (The data used for the plot in Fig. 2.21 contains one million samples.) By changing the
fitting region, we observed that the value of the exponent is changing slightly, always in
the range ✓ = 0.20 � 0.225 though always with a very large reduced chi-squared. In the
first panel of Fig. 2.22, we show again the persistence P(t, L) against time for the system
with PBC, after a rescaling by the power t✓ with ✓ = 0.2218, the value previously obtained.
This quantity should be constant if the scaling were well-described by this power ✓. This
is clearly not the case. We observe different regimes as a function of time. A first regime
for small times, 10 < t < 100, with ✓ ' 0.2214. In Stauffer’s work [35], measurements
were done on very small time scales, up to t = 200, thus in this first regime of our analysis.
Next, for 100 < t < 1000 the exponent increases up to ✓ ' 0.2241. For longer times, it
decreases again up to ✓ ' 0.207 for t > 100000. We also note that the persistence does not
depend on the size of the system up to t ' L2/10. For each size, we observe a drop of the
persistence beyond this time (this drop is followed by a rapid increase that, for clarity, we
removed from the presentation since it corresponds to the final constant persistence) which
signals the approach to equilibrium. The existence of finite size effects at t = L2/10 was
already observed in [35].

Systems with PBC In the second panel of Fig. 2.22, we plot the effective exponent, ✓
e↵

(t, L),
obtained from a fit of the persistence probability P(t, L) to a power law in the range
[t/3, 3t]. For times t & 1000, the effective exponent slowly decreases with time and it
is well described by a fit to the form

✓(t) = ✓
0

+ ✓
1

t�� (2.16)

with ✓
0

= 0.198(3), ✓
1

' 0.07, and � ' 0.15. In conclusion, we obtain the following
numerical estimate of the persistence exponent in the ferromagnetic 2dIM on the square
lattice with PBC: ✓ = 0.198(3) in the large size and large time limit.

In Fig. 2.23, we show the same quantities for the triangular lattice with PBC. We com-
puted the effective exponent ✓

e↵

and plotted as a function of time for different sizes L in
the first panel of Fig. 2.23. The situation is similar to the square lattice. For the largest
times, the effective exponent is ✓ ' 0.2065. In the second panel we rescale the persistence
with this value of ✓. Again, the curves for different sizes coincide for a given time but this
rescaling is not very convincing. To obtain a better estimate we also use a good quality fit
to the form (2.16) with ✓

0

= 0.200(3), ✓
1

' 0.04, and � ' 0.15. This value of 0.200(3) is
compatible with the value obtained on the square lattice 0.198(3). We think those estimates
are more reliable and accurate than those obtained with a direct fit of the persistence.
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Figure 2.22 – First panel: t

✓P(t, L) vs. t for the ferromagnetic 2d Ising model on the square lattice with
PBC, ✓ = 0.2218. Second panel: effective exponent ✓ vs. t for the model with PBC. The system sizes are
given in the key.

Systems with FBC Next we turn to the case of FBC. Going back to Fig. 2.21, we can
observe that in this case, there is a deviation from scaling behaviour for t > 10000. A
fit to a power law also gives a very large reduced chi-squared, but the fit improves as we
approach longer times. This can be better explained in Fig. 2.24.

In the left panel, we plot t✓P(t, L) as a function of t with ✓ = 0.2205 which corresponds
to the best fit for short times and L = 1024. We also observe that t✓P(t, L) still depends
on the size, contrary to what was observed for PBC. This can also be seen in the right panel
of Fig. 2.24 where we plot the effective exponent ✓

e↵

as a function of time. For each size,
we observe a plateau at long times t ' L2/10. Thus, for FBC, finite size effects are much
stronger. We also observe that t✓P(t, L) goes to a power law with ✓ = 0.1954(1) for long
times and L = 1024, just before reaching equilibration. We found that the value of ✓ for
long times has a weak size dependency. We measured 0.1950(1) for L = 256, 0.1953(1)
for L = 512 and 0.1954(1) for L = 1024. Thus, it seems that a large size extrapolation
will be compatible with the value obtained for PBC, ✓

0

= 0.198(3). Let us come back to
the behaviour of the persistence with the system size for PBC and FBC. When rescaling
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Figure 2.23 – First panel: Effective exponent ✓ vs. t for the PBC. Second panel: t✓P(t, L) vs. t for the PBC
on the triangular lattice with ✓ = 0.2068.
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Figure 2.24 – First panel: t✓P(t, L) vs. t for the FBC with ✓ = 0.2205. Second panel: Effective exponent ✓
vs. t for the FBC

by a power of time the PBC persistence all the curves fall on a same master curve. Thus
for PBC P(t, L) ' f(t) with no apparent dependence on the system size. On the contrary
for FBC this is not the case and it can be checked that P(t, L) ' f(t/L2

) which is a more
usual form of scaling. We have no explanations for the intriguing difference between those
two cases.

Final values We now turn to the determination of the exponent ✓ using the final value of
the persistence for which P1(L) ' L�2✓ once the system is equilibrated. This exponent is
obtained by doing a two points fit of two successive increasing sizes L. The measurement
of P1(L) is in fact very time consuming since we need to let the systems equilibrate. As
a consequence, for this measurement, the largest systems that we considered are much
smaller than for the finite time persistence. The results for 2✓ are shown in Fig. 2.25.

It is computed as an effective exponent between two systems with sizes L and L0 as

2✓
eft

((L+ L0
)/2) = �

log (

P (L)

P (L

0
)

)

log (

L

L

0 )
. (2.17)
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Figure 2.25 – The Effective exponent ✓ vs. L in the ferromagnetic 2dIM with different boundary conditions
and on different lattices (see the key for the line code).

In both cases, we observe that there are strong finite size corrections. The value of 2✓
decreases with size but it is difficult to extrapolate an asymptotic value. We also show in
Fig. 2.25 data obtained on a triangular lattice with PBC. There are two advantages with
this lattice: first, the diagonal crossing states are absent and we can therefore simulate
equilibrate configurations for large sizes, up to size L = 1024. Second, the results for
PBC have smaller finite size corrections than the ones for FBC. Moreover, we observe that
the finite size corrections on the PBC triangular lattice are much smaller than on the PBC
square lattice without any obvious reason. Thus, the results on former case are much more
accurate. A fit of these curves, skipping the data for the small sizes, will give a prediction
in the range 2✓ = 0.40� 0.41 in the large size limit which is compatible with our previous
estimates obtained from the time evolution. But since the sizes are more limited and since
is more difficult to extrapolate a value of 2✓ in this case we can say that this is not the
optimal way to obtain an accurate estimate of ✓. In Fig. 2.25, we also show the values
obtained for 2✓ starting from configurations with a strictly zero magnetisation. Those tend
to be a bit lower but are also subject to strong finite size corrections.

Conclusion

We have showed that behind an apparently quiet power law behaviour the persistence ex-
hibits a complex evolution with time. This makes the estimation of the exponent ✓ tricky
and in particular one has to consider large systems to be able to reach the universal decay.
The persistence also presents an intriguing difference of dynamic scaling depending on the
type of boundary conditions used. We obtain the estimate ✓ = 0.198(3) which is somewhat
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lower than previous numerical estimate but closer to the analytical estimate of [38, 39].

2.4 Conclusion

2.4.1 Initial condition and red bonds

We have studied subcritical quenches with two different initial conditions and have seen
that they differ qualitatively even though the systems possess clusters with a fractal struc-
ture. Indeed the initial spanning clusters are very resilient during the evolution when start-
ing from critical temperature as they see virtually no change in their topology. On the
contrary the spanning clusters that one observes after an infinite initial temperature quench
typically see many changes in their topology before they become thick enough to resist.
The key feature that seems to control this difference of behaviour is whether a spanning
cluster can be easily cut into several not percolating clusters. The finer structure of clus-
ters has been studied and is quite well known. In bond percolation, one can categorize
the bonds into the backbone, red bonds and dangling ends (first introduced by Pike and
Stanley [55, 56]). This terminology is quite natural if one thinks to the spanning cluster as
a network of wires that carries electrical current from one side of the system to the other.
Then quite naturally there is a conducting backbone of bonds and dangling ends that do not
contribute to the electric conductivity of the cluster. Within the backbone there are some
special bonds such that all the current transmitted by the cluster has to pass through them so
that they become red. If one cuts a red bond the spanning cluster will stop conducting the
current hence the cluster will stop being percolating. So by studying the set of red bonds
one can learn how a spanning cluster resist to some random bond cuts. The red bonds
can be considered quite generally when one has clusters and not only for percolation. It
was shown that the set of red bonds has a non-trivial fractal structure and that their fractal
dimension is given by:

D
r

= 1� 3

8

g +
2

g
(2.18)

with g the Coulomb gas parameter [57, 58, 59]. For the Ising spin cluster at the critical
temperature (g = 16/3) it gives D

r

= �0.625. The negative fractal dimension means
that the number of red sites (and not even the fraction) goes to zero in the thermodynamic
limit. In [59], the authors note that even for a system of moderate size there are often
no red sites for a given system. On the contrary for percolation (g = 8/3) the fractal
dimension of red sites is positive and equals 3/4. Thus for a finite size system there is a
non zero probability to cut a spanning cluster by updating a red site. However the fraction
of red sites goes to zero in the infinite system size limit so it is not clear to us how a
percolation cluster behaves upon updates in this limit. Nevertheless for finite size systems
the difference of red bond structure between Ising spin clusters and percolation clusters
qualitatively explains the difference of behaviour during a subcritical quench. This may
of course be made more precise, for example by testing numerically the structure of red
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bonds with time. We expect that the time t
p

corresponds to the moment when the spanning
clusters are thick enough to be free of red bonds.

2.4.2 Perspectives

A lot of quantities have not been studied starting from a correlated initial condition: persis-
tence, percolative autocorrelation exponent, twin overlap. One may wonder about what can
be done analytically? We have seen that for the autocorrelation exponent � the value of the
exponent is known exactly when initial long-range correlations are relevant as opposed to
the case with only short-range initial correlations where only an estimate is known. Maybe
similar results could be obtained for other quantities.

We think that we have shed some light upon the appearance of critical percolation.
Nonetheless, some question still remains. For example we have no quantitative explanation
of the mechanism behind the fast growth of the spanning clusters. It is certainly through
an aggregation of smaller clusters but how exactly does it happen? An explanation of the
exponent appearing in the time to reach a definitive percolative state is also very desirable
goal. We expect the effect of the working temperature to be weak and alter only the pre-
factor in (2.13). The effect that the microscopic dynamics (conserved quantities) may have
on t

p

remains to be clarified. Weak quenched disorder slows down the curvature driven
growth. Does it also affect the transient regime? It would also be interesting to pinpoint
the implications of these results in higher dimensions.

It should be possible to search for percolation effects experimentally in systems un-
dergoing phase ordering kinetics for which visualization techniques have proven to be
successful. Two examples are liquid crystals [60] and phase separating glasses [61].
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CHAPTER 3

Wrapping probabilities for Ising spin clusters on a torus
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Introduction

This chapter describes the work I have done on wrapping probabilities. It is independent of
the work described in the chapters 1 and 2 even though the wrapping formula obtained here
has been used in relation with stripe states after a quench from the critical temperature. The
content of this chapter is very similar to the article published in Journal of Physics A [1].
There are some repetitions about spin and FK clusters with what we have said before but
it makes this chapter almost self-contained.

In the study of the critical properties of the Potts model, it was soon remarked that
rewriting the model in terms of clusters was very enlightening [2, 3]. Indeed, the Fortuin-
Kasteleyn (FK) clusters or droplets, obtained by casting the Potts partition function into
a random cluster partition function, contain all the critical properties of the model and in
particular are ruled by the same critical exponents. However, these are not the clusters one
would observe in general in an experimental realisation of the Potts model, in this case one
can only see the clusters formed by connected spins sharing the same value (spin clusters).
It is only for bond percolation that the percolation clusters coincides with the FK clusters
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of the 1-state Potts model. In two dimensions both types of clusters undergo a continuous
percolation transition at the critical temperature but a measure of the fractal dimensions
of FK and spin clusters quickly convinces that the two types of clusters possess different
critical exponents [4, 5]. From a theoretical point of view there is then the question of the
origin of this set of exponents ruling the properties of spin clusters. A clear answer can be
given for the Q = 2 state Potts model, i. e. the Ising model. In [3] it was shown that the
Ising Hamiltonian can be rewritten as a diluted Potts model with Q0

= 1 state. This enabled
the computation of the Ising spin clusters exponents [6]. Unfortunately no such mapping
exists for other Potts models. It was nonetheless conjectured in [7, 8] that the exponents for
spin clusters can be obtained by a similar mapping to a diluted Potts model with a different
number of states at its tricritical point. This conjecture gives exponents compatible with
numerical estimates [9, 4, 10] and there is little doubt that those are exact even though a
rigorous proof is still lacking. An infinite set of critical exponents related to the geometrical
structure of spin clusters was also obtained [11, 12, 13]. We will talk about those exponents
in more details in the end of Sec. 3.3. The situation was thought to be more or less under
control until recent works showed that a naive analytic continuation from the critical branch
sometimes fails to give the correct results for some spin clusters properties. Even though
no problem is encountered at the level of dimensions, a naive continuation is not able to
explain the connectivity constants appearing in bulk three-point connectivity [14] and the
corner contribution to cluster number [15]. It is thus very interesting to further study the
properties of spin clusters to understand what can and cannot be obtained from an analytic
continuation.

In percolation theory, the percolation threshold is defined as the point below which no
infinite cluster exists and above which there exists one with probability one [16]. At the
percolation threshold, an important question for finite-size systems is whether a cluster
spanning the whole system is present or in other words: what is the crossing probability
of a percolation cluster for a given system? The study of crossing probabilities has a long
history and a landmark in this topic is due to Cardy and his eponymous formula [17]. This
formula gives the probability of left-right crossing of an incipient spanning cluster at the
critical percolation threshold on a rectangle. This probability depends only upon the as-
pect ratio r of the rectangle and can be expressed in terms of hypergeometric functions.
This work of Cardy followed a numerical study by Langlands et al. [18] of the universal-
ity of crossing probabilities in different setups. This study prompted Michael Aizenman
to suggest to Langlands and Cardy that conformal field theory (CFT) may lead to expres-
sions for crossing probabilities. Using this suggestion and the data from Langlands et al.

Cardy was able to obtain the first crossing probability formulae. Since then a number of
percolation probabilities have been studied either for percolation [19, 20, 21] or other mod-
els [22, 23, 24, 25, 26]. One aspect that is particularly interesting is that although Cardy
and others found those formulas using CFT, i. e. in a non rigorous way mathematically
speaking, rigorous tools have been developed which can be used to tackle those systems.
Schramm introduced the stochastic Loewner evolution (SLE) [27] which describes numer-
ous physically occurring curves (see [28] with Lawler and Werner e.g.) and showed that
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SLE proves Cardy’s formula if the continuum limit of percolation is conformally invariant.
In a slightly different line of research Smirnov proved the existence of a conformal scaling
limit of the percolation critical point for site percolation on the triangular lattice and thus
gave the missing piece to the proof of Cardy’s formula [29].

As a generalisation of the case of simply connected surfaces, Langlands et al. intro-
duced the notion of crossing probabilities on compact Riemann surfaces after a suggestion
of Israel Gelfand [30]. For percolation on a compact Riemann surface S, one has to con-
sider the clusters with boundaries forming non-contractible loops, i.e. non homotopic to
a point, winding around S. We will call such clusters non-trivial clusters. Then counting
the numbers of winding of non-trivial clusters, one can relate the configuration to which
they belong to a subgroup of the first homology group H

1

(S) of S. The probability that a
configuration contains clusters related to the subgroup G ⇢ H

1

(S) is:

⇡
G

=

Z
G

Z
(3.1)

where Z is the total partition function of the model considered and Z
G

the partition function
restricted to the configurations generating G. Among other cases Langlands et al. studied
numerically those probabilities for percolation on a torus. Shortly after they were derived
analytically for percolation by Pinson [19] building on the works of Nienhuis [31, 32] and
Di Francesco et al. [33]. Arguin [34] then extended the work of Pinson to the case of FK
clusters of the Q state Potts model for Q 2 [1, 4]. He was also able to derive closed forms
in terms of Jacobi ✓ functions in the case of percolation (Q = 1) and Ising FK clusters
(Q = 2) and supported his formula for integer values of Q with simulations. In [35] it was
checked numerically that the formula obtained by Arguin is also valid for real values of Q.

In this chapter we further generalise the derivation of wrapping probabilities of FK
clusters by Arguin to the case of Ising spin clusters. In this case a closed form in terms of
Jacobi ✓ function is obtained and checked numerically. Even though other cases (mainly
the 3-Potts model) are not treated explicity in this work it is expected that the arguments
developped for the Ising spin clusters can be generalized to other cases. This work was
motivated by the study of the appearance of long-lived stripe states in the Ising model after
a quench from T = T

c

to T = 0 with various boundary conditions as we have discusssed in
chapter 2. When periodic boundary condition are applied, the system has the topology of a
torus and wrapping probabilities of spin clusters are relevant to explain the appearance of
long-lived stripe states [36, 37]. We also present expressions for the probabilities of cross-
shaped FK and spin clusters for the Ising model on untwisted tori. This chapter is divided
as follows: we further discuss FK and spin clusters, present how wrapping probabilities
can be computed, show the derivation for Ising spin clusters and check it numerically and
finally we provide expressions for cross-shaped clusters.
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3.1 Potts model and spin clusters

In the following we study the ferromagnetic Potts model whose Hamiltonian is written as:

H = �J
X
hiji

�
SiSj , (3.2)

where the sum is over all the pairs of nearest neighbor spins of a d-dimensional system,
J > 0 and � the Kronecker delta and S

i

the spin at site i taking integer values in [1, Q].
This model undergoes a magnetic phase transition at the inverse temperature �

c

= 1/T
c

and this transition is continuous for Q  Q
c

(d). For d = 2, Q
c

(2) = 4 and �
c

= ln(1 +p
Q) for the square lattice [9].
In the study of the Potts model two types of clusters emerge: the FK clusters and the

same-spin clusters. The FK clusters appear naturally when the Potts partition function is
rewritten in the form of the random cluster model [2]. The construction of FK clusters
is simple, edges between spins with the same value are open with probability p = 1 �
e��J and edges between spins with different values are always closed. A FK cluster is a
connected component of open edges. Defined this way the Potts model is really a correlated
site-bond percolation model. The FK clusters undergo a continuous percolation transition
at T

c

in d = 2 for Q  4 which coincides with the magnetic transition and their exponents
are the usual Potts model ones.

We can also define another type of clusters by the same construction as before with
p = 1, i. e. all bonds connecting spins with equal value are open. We will call the
connected components of such a construction same-spin clusters or simply spin clusters.
Those clusters are the ones occurring naturally in experimental realisations of the Potts
model and are most frequently studied in coarsening and more generally out of equilibrium
situations [38, 39, 40]. The spin clusters also undergo a continuous percolation transition
but at a temperature T

s

in general different from T
c

. It is only in d = 2 that T
s

= T
c

, hence
both types of clusters are self-similar at the critical temperature. Moreover, in this case,
they are both described by a conformal field theory (CFT) with the same central charge c .
However they correspond to different realisations of the CFT since their critical exponents
differ, hence the conformal dimensions of the operators of the two models are different as
well. As mentioned in the introduction, it has been shown that the Ising spin clusters arise
naturally if one considers the Q = 1 Potts model with dilution at its tricritical point [3].
This correspondence has been used extensively, for example to derive the fractal dimension
of the Ising spin clusters [6].

Even though in the initial formulation of Eq. (3.2) the number of states Q has to be
an integer, it can readily be extended to real values for the FK clusters in the random
cluster formulation. For example the Q ! 1 limit of this model is known to correspond
to percolation. One can also make sense of the spin clusters for real values of Q, see for
example [11, 12, 13]

Two dimensional critical systems can be conveniently described using the Coulomb gas
formalism [33, 32]. In the case of the Potts model, the Coulomb gas parameter g can be
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parametrized in the following way:

Q = 2 + 2 cos

⇣⇡g
2

⌘
. (3.3)

For the critical branch we have g 2 [2, 4] and g 2 [4, 8] for the tricritical branch following
the conjectured duality. In particular we have g = 8/3 for percolation, g = 3 for Ising FK
clusters and g = 16/3 for Ising spin clusters.

3.2 Wrapping probabilities on a torus

In this section we recall shortly the derivation of FK clusters wrapping probabilities on a
torus. For more details, we refer the reader to the works [33, 19, 34]. We will consider a
torus T = C/(Z + ⌧Z) with parameter ⌧ 2 C such that ⌧ = ⌧R + i⌧I . In other words, we
build a torus in the complex plane by identifying the opposite sides of the parallelogram
with vertices 0, 1, 1 + ⌧ , ⌧ . The first homology group of a torus is H

1

(T) = Z ⇥ Z. We
will be interested in the probabilities ⇡a,b

(⌧) of subgroups {a, b} of Z⇥Z with (a, b) 2 Z2,
⇡0

(⌧) for the trivial subgroup {0} and ⇡+

(⌧) for Z⇥Z. The configurations corresponding
to {a, b} contain at least one non-trivial cluster winding a times horizontally from the
left to the right and b times vertically from top to bottom. It can be easily shown that
if a configuration contains a non trivial {a, b} cluster then all other non trivial clusters
that might be present are of the same topology [33]. Since the cluster boundaries cannot
intersect themselves a and b must be coprime [33]. The clusters {�a,�b} are identified
with {a, b} so we assume a > 0. The trivial subgroup {0} corresponds to configurations
containing only clusters homotopic to a point. Z ⇥ Z is generated by clusters containing
at least two sub-components with different non-trivial winding numbers, that is generators
from two different subgroups. The simplest of those clusters contain sub-components (1, 0)
and (0, 1) and have a cross shape so in the following we will simply call them cross-shaped
clusters. It is easy to check that a given configuration can only contain one such cluster.

From Eq. (3.1) we see that the derivation reduces to the computation of restricted parti-
tion functions. In particular, the partition function Z

Q

of the Q state Potts model can be de-
composed on the different cluster homology classes such that Z

Q

= Z0

Q

+Z+

Q

+

P
a^b=1

Za,b

Q

where a^ b stands for the greatest common divisor of a and b. The sum is taken with a and
b coprime for the reason mentioned previously. Z0

Q

, Z+

Q

and Za,b

Q

are the partition func-
tions restricted to the configurations containing respectively only trivial clusters, one cross
cluster and a least one non trivial cluster of type {a, b}.

The derivation of the crossing probabilities uses extensively a chain of equivalences
between the Q state Potts model, the six vertex model and solid on solid (SOS) models
which are known to renormalise into a bosonic free field with parameter g. We will not
describe those equivalences which have been extensively discussed in the literature, e.g.

see [32, 41]. We just need to know that clusters are represented by oriented loops formed
by their interfaces and that height variables are introduced such that the height varies of
±⇡/2 when crossing a line depending on its orientation. It is this height which becomes the
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bosonic free field in the continuum limit. One can easily see that a configuration containing
only trivial clusters or a cross-shaped cluster yields a periodic field in both periods of
the torus. On the contrary, a configuration with non trivial {a, b} clusters may induce
discontinuities in the field, for example in this case {a, b} cluster induces a discontinuity
of bk⇡ horizontally and ak⇡ vertically with k 2 Z. The discontinuities are multiple of ⇡
because for a single non trivial cluster there is a pair of interfaces.

Di Francesco et al. [33] showed that the partition function Z
Q

can be expressed with
bosonic partition functions Z

m,m

0
(g) corresponding to a bosonic free field with discontinu-

ities m⇡ horizontally and m0⇡ vertically. Z
m,m

0
(g) has the following expression:

Z
m,m

0
(g) =

r
g

⌧
I

1

|⌘(q)|2 exp

�⇡g

m2⌧ 2
I

+ (m0 �m⌧
R

)

2

⌧
I

�
(3.4)

with q = e2i⇡⌧ and ⌘(q) = q1/24
Q1

n=1

(1 � qn) is the Dedekind ⌘ function. One has to be
careful so as to give the correct weight

p
Q to non trivial interfaces. To achieve this we

have to add an electric charge e
0

such that:p
Q = 2 cos

⇣⇡e
0

2

⌘
. (3.5)

With this we can give the proper weight to all interfaces in the partition function by mul-
tiplying Z

m,m

0
(g) to a cosine factor cos [⇡e

0

(m ^m0
)]. One can see that choosing e

0

= 1

kills the contribution of non trivial loops. This allows the determination of Z0

Q

:

Z0

Q

=

1

2

X
m,m

02Z

Z
m,m

0
(g/4) cos [⇡(m ^m0

)] =

1

2

Z
c

(g, 1) (3.6)

where Z
c

(g, e
0

) is the Coulombic partition function defined by Di Francesco et al. whose
expression is:

Z
c

(g, e
0

) =

X
m,m

02Z

Z
m,m

0
(g/4) cos [⇡e

0

(m ^m0
)] . (3.7)

Then using the duality relation Z+

Q

= QZ0

Q

coming from Euler’s relation, one obtains
the partition function restricted to cross-shaped clusters. Now to obtain Za,b

Q

one has to
consider the sum over all configurations with the desired discontinuities:

Za,b

Q

=

X
m=bk

m

0
=ak

k2Z\{0}

(Z
m,m

0
(g/4) cos [e

0

⇡(m ^m0
)]� Z

m,m

0
(g/4) cos [⇡(m ^m0

)]) . (3.8)

The second term in the sum accounts for the contribution of configurations with non trivial
{a, b} clusters inducing a periodic field [34].

The complete partition function Z
Q

can be obtained by summing over all topology
classes:

Z
Q

=

(Q+ 1)

2

Z
c

(g, 1) +
X
a^b=1

Za,b

Q

=

(Q� 1)

2

Z
c

(g, 1) + Z
c

(g, e
0

). (3.9)
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3.3 Closed forms for Ising spin clusters probabilities

We now turn to the determination of the closed form for the probability ⇡a,b

2,spin

(⌧) for Ising
spin clusters to wind around the torus. To compute this probability, we use the equiva-
lence to the Q0

= 1 Potts model with dilution at its tricritical point, so that ⇡spin

2

({a, b}) =
⇡tri

1

({a, b}). We know from Eq. (3.3) that the tricritical Potts model with Q0
= 1 renor-

malises to a Coulomb gas with parameter g = 16/3. The value e
0

= 2/3 comes from
Eq. (3.5) taking Q0

= 1. We can now compute Za,b

2,spin

:

Za,b

2,spin

=

X
m=bk

m

0
=ak

k2Z\{0}

[Z
m,m

0
(4/3) cos [2⇡/3(m ^m0

)]� Z
m,m

0
(4/3) cos [⇡(m ^m0

)]]

=

X
k2Z\{0}


cos

✓
2⇡

3

k

◆
� (�1)

k

�
Z

bk,ak

(4/3)

=

2/
p
3

⌧
I

1/2|⌘(q)|2

24 X
k2Z\{0}

cos

✓
2⇡

3

k

◆
e
�⇡

4
3

|⌧a,b|
2

⌧I
k

2

�
X

k2Z\{0}

(�1)

ke
�⇡

4
3

|⌧a,b|
2

⌧I
k

2

35
(3.10)

where ⌧
a,b

= a � b⌧ . The second sum can be expressed with a Jacobi ✓ function as
✓
4

⇣
i4
3

|⌧a,b|2
⌧I

⌘
with ✓

4

(⌧) =

P
n2Z(�1)

nqn
2
/2 with q = e2i⇡⌧ . The first sum has to be

decomposed so that the cosine has a constant value, i. e. k ⌘ 0, 1, 2 mod 3. Then the sums
obtained are all expressed with Jacobi ✓ functions:

Za,b

2,spin

(⌧) =

2/
p
3

⌧
I

1/2|⌘(q)|2

" X
k⌘0 mod 3

�1

2

X
k⌘1,2 mod 3

!
e
�⇡

4
3

|⌧a,b|
2

⌧I
k

2

� ✓
4

✓
i
4

3

|⌧
a,b

|2
⌧
I

◆#

=

2/
p
3

⌧
I

1/2|⌘(q)|2

3

2

✓
3

✓
12i

|⌧
a,b

|2
⌧
I

◆
� 1

2

✓
3

✓
i
4

3

|⌧
a,b

|2
⌧
I

◆
� ✓

4

✓
i
4

3

|⌧
a,b

|2
⌧
I

◆�
(3.11)

where ✓
2

(⌧) =
P

n2Z q
(n+1/2)

2
/2 and ✓

3

(⌧) =
P

n2Z q
n

2
/2. We now use identities on the ✓

functions to invert their arguments to obtain this compact expression:

Za,b

2,spin

(⌧) =

1

2|⌧
a,b

||⌘(q)|2

✓
3

✓
i

⌧
I

12|⌧
a,b

|2
◆
� ✓

3

✓
i
3

4

⌧
I

|⌧
a,b

|2
◆
� 2✓

2

✓
i
3

4

⌧
I

|⌧
a,b

|2
◆�

.

(3.12)

With the expression of the Ising model partition function on a torus [42] one obtains the
probability ⇡a,b

2,spin

(⌧):

⇡a,b

2,spin

(⌧) =
1

|⌧
a,b

||⌘(q)|
✓
3

⇣
i ⌧I
12|⌧a,b|2

⌘
� ✓

3

⇣
i3
4

⌧I
|⌧a,b|2

⌘
� 2✓

2

⇣
i3
4

⌧I
|⌧a,b|2

⌘
|✓

2

(⌧)|+ |✓
3

(⌧)|+ |✓
4

(⌧)| (3.13)
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It is interesting to see if this formula can be related to other known results. For example
one can recover the long cylinder limit by taking ⌧ = ir and the limit r ! 1. The
question is now the probability that a spin cluster spans the cylinder from top to bottom.
The answer depends on whether one also allows the cluster to wrap or not around the
cylinder as was also discussed by Cardy for percolation [43]. If no wrapping is allowed the
relevant probability is ⇡0,1

2,spin

(ir). In this case |⌧0,1|2
⌧I

= r and one can see that the dominant
term in the sum of exponential of Za,b

2,spin

(⌧) behaves as e�4⇡r/3. For the probability one has
to take into account the contribution coming from the Dedekind function |⌘(e�2⇡r

)|�1 ⇠
e⇡r/12 which gives that ⇡0,1

2,spin

(ir) ⇠ e�5⇡r/4 when r ! 1. In [11, 12], the authors
considered exponents related to thick and thin domain walls (DW) of spin clusters. For a
cylinder of size l ⇥ L, they claim that the probability that the two ends of the cylinder are
connected by

1

thin DW and l
2

thick DW decays as e�4⇡(l/L)h(Q,l1,l2) where h(Q, l
1

, l
2

) =

h
l1�l2,2l1 with the h

r,s

from the Kac table. They remark that in the case of a single thick
DW the exponent h(Q, 0, 1) = h�1,0

is related to the probability that the DW spans the
cylinder without wrapping. As h(2, 0, 1) = 5/16 this probability behaves as ⇠ e�5⇡r/4

which is exactly what we found using ⇡0,1

2,spin

(ir). When wrapping is allowed the exponent
is no longer h�1,0

but h
0,1/2

which equals one half of the magnetic exponent that is 5/192 in
the case of the Ising spin clusters. This gives a probability which decays slower than when
wrapping is forbidden as it behaves as e�5⇡r/48

= e�2⇡xr for r ! 1 with x = 5/96 the
magnetic scaling dimension . If one wants to recover this result from wrapping formulae,
one has to determine which type of clusters gives the dominant contribution and as we will
see in the last section this contribution comes from cross-shaped clusters. In [13] an infinite
set of exponents related to joint spin and FK observables was obtained. One can also
imagine obtaining wrapping formulae generalising Eq. (3.13) by considering situations
where spin and FK clusters wraps around the torus.

3.4 Numerical check

We have checked numerically by means of Monte Carlo simulations the formula (3.13)
obtained for spin clusters. The systems were equilibrated at T

c

using a Wolff cluster al-
gorithm [44]. 10

6 independent configurations were simulated for each value of the torus
parameter ⌧ considered. In all the simulations we used the triangular lattice where the
interfaces are defined with no ambiguity as opposed to the square lattice where there ex-
ists intersecting interfaces. We have simulated the common case of untwisted tori such
that ⌧ = ir for different aspect ratio r. To implement those tori one has to, starting from
a square lattice, add bonds on alternate diagonals on even or odd row. Adding periodic
boundary conditions one obtains the desired tori with ⌧ = ir.

We present the results for this case (⌧ = ir) with r 2 [0.1, 1]. For a system com-
posed of L

x

sites horizontally and L
y

sites vertically r = (

p
3L

y

/2)/L
x

. The factorp
3/2 accounts for the fact that the system is composed of hexagons instead of squares.

In the simulations we took L
x

= 128 and L
y

2 {148, 164, 180, 200, 224, 254, 296, 352,
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434, 568, 822, 1478}. This gives aspect ratios r 2 [1, 10]. We then use the trivial symmetry
⇡0,1

2,spin

(i/r) = ⇡1,0

2,spin

(ir) to be able to plot graphs with r 2 [0, 1]. In Fig. 3.1, ⇡0,1

2,spin

(ir) and
⇡1,0

2,spin

(ir) obtained from Eq. (3.13) are represented as function of r (lines) and compared
with the probabilities measured from Monte Carlo simulations (symbols). The agreement
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Figure 3.1 – (color online) Ising spin clusters wrapping probability ⇡

0,1
2,spin(ir) (blue squares and red line) and

⇡

1,0
2,spin(ir) (green circles and black line) at T

c

vs. the aspect ratio r. The lines correspond to the expression
of Eq. (3.13) and the symbols correspond to the results of simulations. The error bars are smaller than the
symbols. In the inset the same probabilities are represented with the ordinate in logarithmic scale.

is excellent. Since in this range of aspect ratios ⇡1,0

2,spin

(ir) is at most of order 10�2, hence
barely visible, we add an inset with the ordinate in logarithmic scale. In Fig. 3.2, the
probabilities for clusters winding once vertically and horizontally are presented. The sum
⇡1,1

2,spin

(ir) + ⇡1,�1

2,spin

(ir) is shown instead of each one individually because of the symmetry
relation ⇡1,1

2,spin

(ir) = ⇡1,�1

2,spin

(ir). Even at its maximum at r = 1 the sum is of the order of
5.10�5 which makes its numerical estimation less accurate than before but the agreement
with the formula is still good. The probabilities for other homotopy groups are too small
to allow a numerical estimation.

3.5 Wrapping probabilities for cross clusters on untwisted tori

In this section we are interested in clusters contributing to the subgroup Z⇥ Z, i.e. cross-
shaped clusters. In [45] Ziff et. al. obtained a closed form for cross clusters on untwisted
tori (⌧ = ir). They give a closed form only for percolation but it is possible to do the
same for the FK and spin clusters as well. As seen in section 3.2, the partition function of



116 WRAPPING PROBABILITIES

1⋅10−4

2⋅10−4

3⋅10−4

4⋅10−4

5⋅10−4

 0.4  0.6  0.8  1

π1,
1

2,
sp

in
(r)

+π
1,
−1

2,
sp

in
(r)

r

analytic expression
MC simulations

Figure 3.2 – (color online) Ising spin clusters wrapping probability ⇡

1,1
2,spin(ir) + ⇡

1,�1
2,spin(ir) (green circles

and black line) at T
c

vs. the aspect ratio r. The line corresponds to the expression of Eq. (3.13) and the
symbols correspond to the results of simulations.

interest Z+

Q

is:

Z+

Q

=

Q

2

Z
c

(g, 1) =
Q

2

X
m,m

02Z

[Z
m,m

0
(g)� Z

m,m

0
(g/4)]

=

Q

2

[Z
c

(4g, 0)� Z
c

(g, 0)] . (3.14)

For untwisted tori (⌧ = ir) Z
c

(g, 0) becomes:

Z
c

(g, 0) =

r
g

r

1

|⌘(q)|2
X

m,m

02Z

exp
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✓
m2r +

m02
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◆�
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�
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(3.15)

because in this case the sum over two integers reduces to a product of ✓ functions. Finally:
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Q
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2✓
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(igr) ✓
3
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�
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This formula is valid for all g but the probability is in general more complicated because
of the total partition function. For the Ising model the probability is simply:

⇡+

Q

(r) =
Q

2|⌘(q)|

r
g

r

2✓
3

(igr) ✓
3

�
ig

r

�
� ✓

3

�
igr

4

�
✓
3

�
ig

4r

�
|✓

2

(ir) |+ |✓
3

(ir) |+ |✓
4

(ir) | . (3.17)

Taking g = 3 and Q = 2 yields the result for the Ising FK clusters in agreement with
the values obtained by Arguin in [34]. For spin clusters the probability is expected to be
given by taking g = 16/3 and Q = 1. The situation is however slightly more subtle as a
direct measurement from MC simulations shows that ⇡0

2,spin

= 0 and that ⇡+

2,spin

is twice
the quantity given by Eq. (3.17). This can be explained by the fact that when spin clusters
of a given color are all trivial then there exists a cluster of the other color wrapping in both
direction and thus contributing to the subgroup Z ⇥ Z. This means that no configuration
can contribute to {0} while considering simultaneously both colors. Furthermore one has
to remember that we are extrapolating those results from the critical line using the mapping
to a tricritical model with only one state. By doing so, one of the two spin values of the
Ising spin is absorbed to generate the vacancies of the tricritical model. Hence considering
one color at a time is natural when considering the properties of spin clusters. It makes
no difference to the discussion for the configurations contributing to the subgroups {a, b}
since in this case at least one cluster of each color is present. However, for the cross-shaped
clusters, it is necessary to consider only one color as those clusters come alone. This
enables us to recover the relation ⇡0

2,spin

= ⇡+

2,spin

expected with Q0
= 1. Indeed, because

of the symmetry between the two colors, considering only one color reduces the value
⇡+

2,spin

measured in MC simulation by a factor two which is in agreement with Eq. (3.17)
with g = 16/3 and Q = 1 .

We can also study the asymptotes for this probability. We find that ⇡+

Q

(r) ⇠ e�⇡(1/g�1/12)r

for r ! 1. For the Ising spin clusters (g = 16/3) this gives e�5⇡r/48 as for the unrestricted
probability that the two ends of the cylinder are linked by a spin cluster. For the FK clus-
ters it gives e�⇡r/4 which is also of the form e�2⇡xr with x = 1/8 the magnetic scaling
dimension of the Ising model. The fact that the unrestricted probability is dominated by
cross-shaped clusters was also pointed out for percolation [46].

Conclusion

In this chapter, we checked that the natural analytic continuation from the critical branch
yields the correct results for the wrapping probabilities of Ising spin clusters. We also
obtained an elegant expression for those wrapping probabilities. As a generalisation the
study of the 3-Potts spin clusters is definitely interesting but might be more subtle as the
mapping corresponds to a tricritical Potts model with a non integer number of states. This
case is also interesting since the conjectured continuation to the tricritical branch is known
to fail in some cases as already mentioned.
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Ising model with long-range interactions
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4.1 Introduction and history

4.1.1 Systems with long-range interactions

Systems with long-range interactions (LRI) form a huge class of systems in physics. One
might even say that most physical systems are under the influence of LRI. Gravity and
electromagnetic forces just to name the two most famous are omnipresent. In traditional
thermodynamics and statistical phyics, the usual assumption is that the system components
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interact with each other only through interactions that are short-range enough so that ex-
tensivity of thermodynamical quantities is preserved. If this is not the case, the study is
completely different and much more involved but nonetheless very interesting.

In recent years there has been a lot of interest in the statistical physics of classical and
quantum systems with long-range interactions, for a review see [1]. The role of quasista-
tionary states and ergodicity breaking in long-range interacting systems was investigated in
[2] and [3]. In [4] the approaching to equilibrium for long-range quantum systems was ex-
amined and there has been a lot of enthusiasm in investigating the entanglement entropy in
long-range spin chains [5, 6, 7]. Very recently an experiment was conducted on a quantum
system with tunable long-range interactions [8].

4.1.2 Ising model with long-range interactions

In the present manuscript we focus on the Ising model which is probably the most stud-
ied model in statistical mechanics, especially in the context of critical phenomena. Most
of the studies about the Ising model are concentrated around the short-range case which
is exactly solvable in one and two dimensions [9]. In three dimensions the problem was
perturbatively studied using the ✏-expansion technique [10] of the renormalization group
(RG) combined with the Borel resummation of the perturbation series, see [11] and ref-
erences therein. Most recently the problem was revisited by using conformal bootstrap
technique [12].

Although now there are few unknown facts about the short-range Ising model the long-
range Ising model is still the subject of many contradicting theoretical and numerical stud-
ies. The long-range Ising model was introduced by Dyson [13] in 1969 as an example of a
one dimensional system exhibiting a phase transition at a positive temperature, which is not
possible for system with short-range interactions. Its generalisation to arbitrary dimensions
has the following hamiltonian

H = �
X
hiji

J

rd+�

ij

S
i

S
j

, (4.1)

where the sum is over all pairs of spins of a d dimensional system, r
ij

the distance between
sites i and j and J > 0 the ferromagnetic interaction strength. The exponent is written as
d+ � with � > 0 to emphasize the fact that we study the regime where interactions decay
faster than 1/rd. Ths condition is required to maintain the extensivity property. It comes
from the fact that the sum over all interactions must be finite in order to define properly
thermodynamics averages [14]. We will restrict ourselves to systems where this condition
is verified.

After Dyson’s result on the existence of a phase transition, a natural question concerns
the universality class to which the system belongs. This universality class depends a priori
upon the value of the exponent �. We will now review some of the existing analyses of the
critical properties of the Ising model with LRI relevant to our work.
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4.1.3 Fisher, Ma and Nickel analysis

Shortly after the introduction of the ✏-expansion technique [10], Fisher, Ma and Nickel
(FMN) applied this method to compute the critical exponents of a d-dimensional system
with an isotropic n-component order parameter and LRI decaying as 1/rd+� [15]. Their
study is quite general as it concerns the Ising (n = 1), XY (n = 2) and Heisenberg models
(n = 3). In momentum space the action for the Ising model with LRI has the following
expression:

S =

1

2

Z
q

�(q)(r+ j
�

q� + j
2

q2)�(�q)+�

Z
q1,q2,q3

�(q
1

)�(q
2

)�(q
3

)�(�q
1

� q
2

� q
3

). (4.2)

We write it for the Ising model for simplicity but the O(n) action is quite straightforward
to write. The action (4.2) differs from the canonical ��4 action only through the term j

�

q�

which is due to the presence of LRI. This action can also be written is real space using a
fractional Laplacian defined as |r2|↵ =

R
q

|q|↵�(q)eiqx with ↵ a real number:

S =

Z
x

d

dx
1

2

�(x)(r + j
�

|r2|�/2 + j
2

r2

)�(x) +
�

4!

�4

(x). (4.3)

FMN did a naive analysis of the action (4.2) simply comparing the relative power of the
terms q2 and q�. We can easily see that for � > 2 the term q� is negligible at low momenta
compared to q2. More precisely three regimes were discovered for all values of n: (a)
the classical regime 0 < � < d/2 with mean field critical exponents; (b) the intermediate
regime d/2 < � < 2, where the exponents are functions of � and (c) the short-range regime
� > 2 where the exponents are the same as for the short-range models for all d.

In the classical regime and for all n the anomalous dimension ⌘ = 2� �, ⌫ = 1/� and
the susceptibility exponent � = 1. The conjectures around the first regime were proved in
[16] and the results of the third regime are widely accepted. It is the intermediate regime
that has been the subject of many controversies in the last forty years. In [15] FMN ob-
tained the expression for ⌘ and � the susceptibility exponent up to ✏02 for � < 2 with
✏0 = 2� � d. It corresponds to an ✏ expansion from the upper critical dimension d

c

= 2�.
For � = 2 one recovers d

c

= 4 as for the Ising model with SRI. They observed a discrep-
ancy for both exponents at this order at � = 2 between their expression for � < 2 and
their short-range value for � > 2. The case of the exponent ⌘ is special because it gets no
corrections at this order so that it sticks to its classical regime’s value; i.e. ⌘ = 2� �. So
for ⌘ the situation is the following: for 0 < � < 2, ⌘ = 2�� and then for � > 2 ⌘ takes the
value ⌘ SR of the corresponding model with SRI. This means that ⌘ goes from 0 to ⌘ SR 6= 0

as � passes 2. This is not prohibited by thermodynamics arguments which only requires
⌘  2 + � but it is nonetheless puzzling enough so that soon after that Sak disscussed this
point in more details [17].
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4.1.4 Sak’s scenario

A few month after FMN’s article, Sak [17] argued that there is no such discontinuity for
⌘, � and ' the crossover exponent because if one looks at the long-range interaction as a
perturbation of the short-range Ising, � = 2, one can discover that the short-range Ising
exponents should be extended to � = 2� ⌘ SR. It gives that for 0 < �  2� ⌘ SR, ⌘ = 2��
and then for � � 2 � ⌘ SR ⌘ = ⌘ SR and so there is no discontinuity for the anomalous
dimension as a function of �.

His analysis relies on a careful study of the renormalisation group recursion relations
and of the fixed points’ stability. He showed that, when terms of order ✏02 are taken into
account in the recursion relation for the coefficient in front of the short-range term, the
long-range fixed point is unstable when 2 � � < ⌘ SR. After reorganising the ✏ expansion,
one can show that in this case the stable fixed is the usual fixed point of short-range O(n)
model. Furthermore, when evaluating the RG expressions for the LR exponents at � =

2 � ⌘ SR, one recovers the corresponding RG short-range expressions. This is a strong
indication that the discontinuity was an artefact of the series truncated at the first order in
✏0.

Many authors have considered this model, some confirming Sak’s analysis or infirming
it while others provided alternative scenarii. We can cite the works of Yamazaki [18, 19, 20]
who obtained other expressions for the critical exponents.

4.2 New simulations for an old model

4.2.1 Luijten and Blöte

What was lacking for a long time was a numerical estimation of the LR exponents to give
support to one RG scenario or another. One of the difficulties with LRI models is that it is
very consuming in CPU time to generate independent configurations compared with model
with SRI. Indeed for a single spin flip one has to sum over all the lattice spins just to com-
pute the energy change whereas for SRI it only concerns a few neighbouring sites. It is only
in 2002 that Luijten and Blöte conducted a numerical study of the 2d Ising model with LRI
in the controversial � range [21]. Their results clearly exclude a discontinuity à la FMN
and are compatible with the situation depicted by Sak. They use an efficient cluster Monte
Carlo algorithm that makes a number of operations per spin flip that does not depend on the
system size which is the case for naive Monte Carlo implementations [22]. Furthermore,
the interest of using a cluster algorithm is that it greatly suppresses the critical slow-down
that burdens single spin flip schemes as for example does the cluster based Wolff algorithm
for SRI Ising model [23]. They used systems with periodic boundary condition with lin-
ear sizes L ranging from 4 to 1000. They carried simulations in the range � 2 [1.2, 3.0]
and evaluated the amplitude ratio B = hm2i2/hm4i with m the magnetization1 (related
to the Binder cumulant) and the anomalous dimension ⌘ by monitoring the divergence of

1The amplitude ratio B is noted Q in [21]



4.2. NEW SIMULATIONS FOR AN OLD MODEL 127

the magnetic susceptibility. Indeed the susceptibility diverges as L�/⌫ so ⌘ can be obtained
through the scaling relation � = (2 � ⌘)⌫. In the table 4.1 are shown the values, taken
from [21], measured for ⌘ for different values of �. The values of ⌘ for � = 1.85 and 1.95
exclude clearly a discontinuity with �, and even if the error bars are quite big, the authors
argued that this gives supports to Sak’s scenario. Together with the theoretical analysis
done by Sak, those simulations seem to settle the discussion between the contradicting RG
scenarios.

4.2.2 Picco’s analysis

As we have seen the numerical simulation done by Blöte and Luijten [21] completely
ruled out any possible jump in the value of ⌘. Again their algorithm uses the fact that for a
ferromagnetic model, one can use clusters of spins to improve the speed of the simulations
as is done in the Wolff cluster algorithm for short-range ferromagnetic models [23]. Even if
their work argues convincingly for Sak’s scenario the accuracy on ⌘ in the crossover region
was not completely satisfactory. This left room for improvement, which was achieved in
Picco’s work [24]. The improvement in [24] concerns the construction of the clusters by
optimizing the search of connected spins over large regions. With this new algorithm, one
can simulate systems up to size 5120⇥5120 with a typical update time of order one second
on an ordinary workstation. To update N spins Picco’s algorithm requires O(N) operations
compared to O(N logN) for Luijten and Blöte’s algorithm. By analyzing much bigger
sizes than in previous studies, Picco concluded that ⌘ displays an intriguing behaviour in
particular in the intermediate regime and close to the boundary with the short-range regime
that neither Fisher et al. procedure nor Sak’s analysis are able to account for.

The estimation of ⌘ goes as follows. First one needs to determine the critical coupling
K

c

defined as J/kT
c

with T
c

the critical temperature for each value of �. To do so, one can
compute the cumulant B(L,K) = hm2i2/hm4i for different temperatures K and system
sizes L. When considerng one correction to scaling the cumulant B is expected to behave
as:

B(L,K) ' f((K �K
c

)L1/⌫

) + A
1

L�y1 (4.4)

close to the critical point. The addition of subleading term is guided by the analysis of
the numerical data. Without the correction the curves of B(L,K) as a function of K for
different sizes are expected to cross at the same critical temperature K

c

. But with the
correction term A

1

L�y1 the curves for two system sizes L and L0 cross at a temperature
depending of both L and L0. For simplicity one can choose L0

= 2L so that only L appears.
This leads to a finite size correction for the critical temperature:

K
c

(L) ' K
c

+ ↵
1

L�w1 (4.5)

with w
1

= y
1

+ 1/⌫ and ↵
1

a constant. Now by monitoring the temperatures at which
the successive curves cross, one obtains several values of K

c

(L) from which the infinite
system value K

c

= lim

L!1 K
c

(L) can be extrapolated. Once the critical temperature is
obtained one can obtain the exponent ⌘ by observing the behaviour of the magnetisation m
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� LB Picco max(2� �,

1
4 )

1.20 0.798 (18) - 0.80
1.40 0.616 (10) 0.619 (12) 0.60
1.60 0.410 (24) 0.420 (8) 0.40
1.7 - 0.357 (7) 0.30
1.75 0.286 (24) 0.332 (8) 0.25
1.8 - 0.307 (5) 0.25
1.85 0.30 (6) - 0.25
1.9 - 0.279 (5) 0.25
1.95 0.24 (4) - 0.25
2.00 0.266 (16) 0.262 (4) 0.25
2.05 0.260 (14) - 0.25
2.2 - 0.251 (7) 0.25
2.25 0.248 (12) - 0.25
2.50 0.246 (8) - 0.25
2.75 0.250 (10) - 0.25
3.00 0.248 (8) - 0.25

Table 4.1 – Exponent ⌘ from Luijten-Blöte and Picco for different values of �. The last column contains the
prediction from the RG analysis of Sak, ⌘ = max(2� �, 1/4).

which behaves as L��/⌫ with the system size at the critical point and then using the relation
⌘ = 2�/⌫. Is has been checked that the value obtained for ⌘ depends only very weakly on
the maximum system size used to compute the critical coupling K

c

. The values obtained
are shown in the table 4.1.

The values of ⌘ computed agree with the values predicted by Sak’s RG analysis only for
�  1.5 and � � 2. In the intermediate region 1.5  �  2, the data interpolates smoothly
between the LR classical regime and the SR regime. At � = 2 � ⌘ SR = 1.75 where the
discrepancy is at its maximum the deviation approximately equals 10 times the uncertainty
on ⌘. Due to greater error bars Luijten and Blöte’s estimations are compatible with both
Sak’s scenario and Picco’s simulation. This results are quite puzzling at it suggests that an
important ingredient has been forgotten in previous analyses. It clearly invites for further
study which were undertaken soon after and are presented in the next section.

4.2.3 Stability of the fixed points

In the present section, we will compare the long-range behavior with the short-range one in
two dimensions. We provide numerical evidences that the long-range interactions dominate
for �  2. As we have seen, it was observed in [24] that the behavior of the model with
long-range interactions and for � < 2 is different from what is expected for the short-range
model. Then we must worry about the relevance of the long-range interactions compared
to the short-range ones. If we start from a short-range model and consider the addition
of long-range term g

P
ij

S
i

S
j

/rd+�

ij

as a small perturbation, then a simple dimensional
argument predicts the relevance of the perturbation as a function of the dimension of g [25].
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Figure 4.1 – (Color online) B(g, L) vs. L for � = 1.6 (top panel) and � = 1.8 (bottom panel). The SR
results are depicted in red and have the largest B(g, L). The dotted line corresponds to the extrapolated value
for the LR model (see [24]).

Since for large distances we have hS
i

S
j

i ' r2�d�⌘ SR

ij

, with ⌘ SR =

1

4

in two dimensions, we
expect that the dimension of g is 2 � ⌘ SR � �. Then the result is that the perturbation is
relevant for � < 2 � ⌘ SR and irrelevant otherwise. We will now test this argument. We
consider the case of the perturbation as a function of � and g. We will use the magnetic
cumulant B(g, L,K) defined previously. For each value of g, we consider the quantity
B

c

(g, L, L0
) which corresponds to the crossing of B(g, L,K) and B(g, L0, K) as a function

of K. By choosing a set of increasing values L and L0 not too far apart, we can determine
for each pair the value of K which corresponds to the crossing and B

c

(g, L, L0
) is expected

to converge towards a finite limit for L ! +1. In the following, we will always consider
L0

= 2L and then we will just denote the crossing value by B(g, L). In [24], it was
determined that the corresponding quantity for the long-range interaction model, which
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can be considered as the limit g ! 1, converges to a value smaller than the one of the
short-range model for �  2. In Fig. 4.1, we present the measured values of B(g, L)
for � = 1.6 and � = 1.8. For the first case, we observe a clear tendency for B(g, L) to
converge towards the same limit as the LR model (which is shown as a dotted line) and
this for all the values of g in the range g = 0.01 up to g = 1. For the second case, the
situation is less clear. For the small values of g  0.1, it seems first that B(g, L) converges
towards the model with short-range interactions. For larger values of the perturbation, we
just observe that B(g, L) increases with the size. While it can be assumed that this just
corresponds to the flow towards the value for the SR model, one can also invoke the effect
of strong finite size corrections.

In fact, since we are considering a case in which there is both a flow towards either the
LR model or the SR model and very strong finite size effects, it is difficult to know which
one is the dominant effect. We then adopt another strategy. We will look in the following
to the quantity defined as

X(g, L) =
B(g, L)� B LR(L)

B SR(L)� B LR(L)
. (4.6)

This quantity is defined such that it takes a value between 0 and 1. If B(g, L) flows towards
the SR point, then X(g, L) goes to 1. On the contrary, if it flows towards the LR point,
then it goes to 0. We then expect the crossover to be controlled by a crossover parameter
g/|t|� with t the reduced temperature and � = ⌫�

�

which defines �
�

. On a finite lattice
of linear size L and at the critical point, this becomes gL�� with the correspondence t�⌫⇠
⇠ ⇠ L. According to the naive dimensional analysis made above, �

�

= 2 � � � ⌘ SR. In
Fig. 4.2, we show a plot of X(g, L) vs. the crossover parameter for various values of g in
[0.01, 1] and �. For each value of �, we determined a single parameter �

�

which allows to
make a scaling for all the values of g on a single curve. The values that we obtained are
reported in the caption of the figure. It is quite remarkable that the curves for all values of �
collapse on a single curve. We obtain that for gL��⌧ 1, the curves follow an exponential,
i.e. X(g, L) ' exp (�gL��

). For gL�� � 1, the curves behave as a power law i.e.

X(g, L) ' (gL��
)

�↵ with ↵ ' 0.75.
A second fact is that the value of �

�

does not follow the prediction obtained from the
naive dimensional analysis. While for small values of �, the correspondence between the
measured crossover exponent and the predicted one is acceptable, this is clearly not the
case for larger values of �. And in particular, this exponent does not cancel at � = 2�⌘ SR.
Note also that the precision on this exponent is not very good for larger values of � since in
that case the denominator of X(g, L) becomes small and will cancel in the large size limit
for � = 2.

The conclusion of this analysis is that we observe a clear signal for a crossover between
the short-range interaction model and the long-range interaction model. This crossover
seems to be present in all the range that we can consider 1.2  �  1.9. Of course, such a
crossover is expected for small values of �, i.e. �  2� ⌘ SR = 1.75. We observed that in
fact this crossover between the SR model towards the LR model remains present even for
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Figure 4.2 – (Color online) X(g, L) vs. gL�� . The straight dashed line corresponds to (gL

��
)

�0.75, while
the other dashed curve is for exp(�gL

��
).

larger values of �, presumably up to � = 2.0.

4.3 Renormalisation group approach

4.3.1 Dimensional deformation

Now we propose another way to compute the ⌘ exponent guided by the simulations’ results
presented in the previous section. The main idea is to make a correspondence between

A
1

=

Z
d

dx

✓
1

2

|r�/2s
b

(x)|2 + �
0

4!

|s
b

(x)|4
◆
, (4.7)

with ✏0 = 2� � d and

A
2

=

Z
d

Dx

✓
1

2

|rs
b

(x)|2 + �
0

4!

|s
b

(x)|4
◆
, (4.8)

with ✏ = 4 �D. The first expression A
1

is a formal way of writing in real space a model
with long-range interactions. The second expression A

2

is the usual way of expressing a
short-range �4 model for a D dimensional theory. For � ' 2 and with the condition ✏ = ✏0,
the ✏-expansion of both models, A

1

and A
2

will be the same apart from a term proportional
to �� = 2��. Thus the computation will be done from the model A

2

with D = 4+d�2�.
The deviation of � from 2 is replaced by a deformation of the dimension from d to D.

In this section we propose a new way of doing RG analysis for long-range Ising model.
Although our analysis shares some similarities with the work of Yamazaki the final results
are more general [18, 19, 20]. We implement our RG analysis around the critical point [26,
27], then we can avoid calculating more complicated integrals. Based on the arguments
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of the last section one can write the Lagrangian of the long-range Ising model, forgetting
about the irrelevant short-range part, with respect to the renormalized coupling and field as

L =

1

2

|r�/2s(x)|2+ �

4!

µ✏

0 |s(x)|4 + (Z � 1)

1

2

|r�/2s(x)|2

+

�

4!

µ✏

0
(Z2Z

�

� 1)|s(x)|4 + · · · , (4.9)

where ✏0 = 2� � d, s = Z�1/2s
b

and �
0

= �µ✏

0
Z

�

with s
b

and �
0

as bare parameters.
The scale µ is introduced because we want to do the expansion around the massless theory
[26]. The third and fourth terms are designed to remove divergent contributions in vertex
functions. The renormalization conditions are

�

(2)

(0) = 0; (4.10)
@

@|p|��
(2)

(p,�p)||p|�=µ� = 1; (4.11)

�

(4)

(p
1

, p
2

, p
3

, p
4

)|Sµ
= �µ✏

0
. (4.12)

The symmetric point S
µ

is chosen in such a way that p2
i

=

3

4

µ2 and p
i

.p
j

= �µ2/4. Using
the relevant graphs of the Fig. 4.3 one can write

�

(2)

(p,�p) = Z|p|� (4.13)
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(2⇡)d
1

|q|�|p
1

+ p
2

� q|� .

The integrals are infrared divergent for ✏0 > 0 and need to be calculated by analytical
continuation from the convergent region. This is the same situation as in the usual ✏-
expansion in the short-range Ising model. Although the integrals are complicated, they can
be calculated using the formulas in [26], and after using the renormalization conditions we
will have

Z = 1� �2

3�(4⇡)d
�

3

[

d��

2

]
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3d�3�

2

]
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2
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]

, (4.15)

Z
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= 1 +
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2(4⇡)d/2
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2
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2

]

�[d� �]

�[✏0/2]

�

2

[�/2]
. (4.16)

The very important point is that if we expand Z with respect to ✏0 there will not be any pole
and one cannot get sensible contribution to the critical exponent of the field s(x). However,
since the integrals are infrared divergent, the right way to get a sensible perturbation theory
is to expand Z first around � = 2 and then around ✏0 = 0. The situation is very similar
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to the short-range case; we have an integral which is divergent and would like to control
its divergency. If we expand the above equations first around ✏0 we actually get a finite
term which is apparently wrong. Our choice of order of expansion is not arbitrary and it
was actually forced by the divergent integrals. Since we have two parameters dimension d
and �; and they can be changed independently, one can first consider having �� = 2 � �
small and then do the perturbation theory with respect to ✏0. After expanding Z and Z

g

with respect to �� and then ✏0 we get

Z = 1� �2

12(4⇡)d✏0


1�
✓
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Z
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(4⇡)d/2✏0
[1 + (1� �)�� + · · · ]+O

�
�2

�
. (4.18)

with � = 0.5772... as the Euler-Mascheroni constant. Using the Callan-Symanzik equation
which states that the derivative of the bare quantities with respect to µ is zero, one can get
the beta functions as

�(�) = µ
@

@µ
� = �✏0�+

3�2

(4⇡)d/2
[1+(1� �) ��], (4.19)
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To derive the above formula we first use the equation (4.18) to get a relation between �, �
0

and µ. Using the above beta functions at the critical point where �(�⇤
) = 0 one can easily

get the correction to the mean field value of the critical exponent �⌘ = ⌘ � (2� �) as

�⌘=�(�⇤
)=

1

54

✏02 � 1

108

✏0�� � 1

432

✏02(3� 4�)�� + · · · (4.21)

Based on our prescription it is obvious that in the ✏0-expansion of the ⌘ exponent the
zeroth order terms of �� expansion will be the same as the ✏-expansion of the short-range
Ising model but with ✏0 = 2� � d instead of ✏ = 4�D. So in principle close to the � = 2

we will have
⌘ = 2� � +

1

54

✏02 + · · ·+O(��), (4.22)

where dots represent the higher order terms of the ✏0-expansion. Since in our proposal
of doing the RG we first expand all the contributions around � = 2 and then around
✏0 = 0 we expect that the dots in the formula (4.22) are exactly the same as in the short-
range Ising model with ✏0 instead of ✏. The above expansion suggest that for �� small
one can argue that the critical exponent of the long-range Ising model in d dimensions is
approximately the same as the critical exponent of D = 4+d�2� short-range Ising model.
For the short-range Ising model �⌘ is known up to ✏5 for various dimensions [28, 29].
The first correction to this value comes from the second and third terms of the equation
(4.21) which are both negative. If the higher order terms, (��)n with n � 2, do not
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change the sign of the contribution to ⌘ one can conclude that the critical exponent ⌘ of
the short-range Ising model in D = 4 + d � 2� gives an upper bound for the �⌘ of the
long-range Ising model in d dimension. Of course this conjecture needs to be checked by
calculating higher loop corrections to the critical exponents. Based on the above arguments
we compared in Fig. 4.4 the ⌘ coming from the numerical calculations for the long-range
Ising model in two dimensions with the results coming from the five loop calculation of
D = 6 � 2� dimensional short-range Ising model. The results are well comparable in the
region 1.75 < � < 2 and as we argued for the smaller values of � the actual values lie
below our approximation.

+

+

Γ
2

=

4

=

+

+

...

...
Γ

Figure 4.3 – The relevant Feynman diagrams in RG calculation of the beta function and wave function
normalization.

4.3.2 Recent developments

Since the publication of our analysis of the Ising model with LRI [30], several authors have
considered this model as well.

Baczyk and collaborators have considered several models using the non-pertubative
renormalisation group (NPRG) [31, 32, 33, 34]. Their goal was to study the dimensional
reduction and its breakdown in different disordered models with or without LRI. The pure
Ising model with LRI was included in their study as a particular case and after a careful
analysis of the model in all dimensions their analysis gives support to the scenario of Sak.
They found no extra-contribution to the anomalous dimension ⌘ that could change it from
its mean field value 2� �.

Angelini et al. considered in [35, 36] various questions related to models with LRI.
In particular they re-investigated the Ising model with LRI in d = 2 in the crossover
region, and studied the behaviour of the spin-spin correlation function for � = 1.75. They
remarked that the correlation function displays a very peculiar behaviour with the presence
of two distinct power-law decays for short or long distances and that it does not seem to be
a finite-size correction. They propose that the usual expression for the correlation function
G(x) ⇠ x�⌘ should be changed to

G(x) =
A+ Bx�

x⌘

(4.23)

where the exponent � accounts for the preasymptotic power law decay x�⌘��. They have



4.4. CONCLUSION 135

 0.2

 0.4

 0.6

 0.8

 1

 1  1.5  2

η

σ

MC
LGZJ

Ho

Figure 4.4 – Data depicted in red are the result of the simulation in [24]. Green and blue data are coming
from our approximation using the results of [28] and [29] respectively. The dotted line is Sak’s result [17].

no explanation for this additional preasymptotic regime which furthermore only seem to
appear for � close enough to the SR regime. They argue that if one overlooks this additional
power law decay, the value of ⌘ obtained can be overestimated and they say that this might
be the reason for the discrepancy between Picco’s and Sak’s values. However they note
that both values are compatible with their more complete analysis, but for the sake of
simplicity they claim that Sak’s analysis should be kept owing to its simpler scenario. So
we can say that their analysis brings a few answers but also rises some questions, most
notably concerning the physical reasons for this additional preasymptotic decay.

Finally a very recent work by Brezin, Parisi and Ricci-Tersenghi has been posted on
the arXiv [37]. It aims at providing a theoretical explanation for the puzzling crossover
behaviour in simulations displayed by models with LRI.

4.4 Conclusion

The model considered in this chapter has seen several interesting developments in the last
few years. Interestingly some new questions have been asked concerning this forty years
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old debate. In particular the question of the value of the exponents in the crossover region is
quite interesting and not completely settled. Even if one accepts the analysis from Angelini
and collaborators with the two power laws, the physical origin of this peculiarity is quite
mysterious. This definitely calls for further studies.

Another line of research which seems very interesting is the determination of spin clus-
ters properties for the Ising model with LRI. As we have discussed extensively in previous
chapters, a rich description of spin clusters in terms of percolation, fractal dimensions. . . is
possible. What happens in the case of the model with LRI? For the critical exponents of
the model, the short-range regime is recovered as soon as � � 2. Is it also true for the spin
cluster properties? Some questions that could be adressed are: do spin clusters undergo
a percolation phase transition with temperature for all values of �? If yes is their fractal
dimension the same as in the SR case? And can the interfaces be described in terms of
Schramm-Loewner evolutions? Basically all the studies of geometrical properties in the
SR case are potentially interesting in the LR case. We plan to carry such a work in the near
future.
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