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At first sight, riveted and bolted connections seem to be one of the simplest mechanical systems possible. The primary function of these elements is to provide a rigid clamping between the components they assemble. The designing of these parts to nominal static stresses is already quite mastered. However, engineers are still bothered when it comes to modeling these components which have been studied for more than 50 years. This paradox can be explained by the large damping ratios joints generate in structures. The vibration level of a system is directly related to its damping ratio, i.e. its ability to dissipate or store energy. In the field of transport, among others, vibrations are unwanted because they affect the comfort of the users or the integrity of structures. A good designing of jointed structures is likely to improve the vibration behavior of mechanical systems. Nowadays, numerical calculations allow for the computing of the modes but the damping is still measured, a posteriori, through expensive tests. This is explained by the multi-scale nature and the complexity of contact physics. That is why the dynamic behavior of assembled structures remains an area of study for researchers. The work of this thesis aims to provide practical solutions for the identification and the designing of reduced order models for the dynamics of assembled structures.

Résumé

Les liaisons boulonnées ou rivetées sont, en apparence, l'un des systèmes mécaniques parmi les plus simples qui soient. La fonction première de ces éléments est d'assurer un encastrement rigide entre les composants qu'elles assemblent. Le dimensionnement de ces pièces aux efforts statiques nominaux est un problème assez largement résolu. Néanmoins, ces composants suscitent l'intérêt des ingénieurs et chercheurs depuis plus de 50 ans. Ce paradoxe s'explique en partie par l'amortissement important que ces liaisons produisent au sein des structures. Les efforts subis par les liaisons d'assemblages provoquent le glissement partiel des interfaces de contact. Il résulte de ce glissement, une dissipation par frottement qui est une source majeure d'amortissement des structures aéronautiques. Le niveau vibratoire d'un système est directement lié à son amortissement, c'est à dire à sa capacité à dissiper ou à accumuler de l'énergie. Dans le domaine du transport, entre autres, les vibrations sont néfastes car elles nuisent au confort des usagers ou à l'intégrité des structures. Le bon dimensionnement des assemblages est donc de nature à améliorer le comportement vibratoire des systèmes mécaniques. Actuellement, les outils de calcul numériques permettent d'estimer assez précisément les modes et fréquences propres d'une structure à priori mais l'amortissement, c'est à dire le niveau vibratoire, reste une donnée mesurée, à postériori au travers d'essais coûteux. Ceci s'explique par le caractère multi-échelle et la complexité des problèmes de contact. Ainsi, le comportement dynamique des assemblages reste un sujet d'étude très privilégié. Les travaux de cette thèse cherchent à répondre de manière pratique au besoin de produire des modèles réduits de structures assemblées pour la dynamique.

Mots clefs : Dynamique des structures assemblées, Glissement partiel, Réduction de modèle, Filtres de Kalman unscented, Modèles phénoménologiques.

Publications & communications

Articles de revues :

Introduction

Les liaisons boulonnées ou rivetées sont, en apparence, l'un des systèmes mécaniques parmi les plus simples qui soient. La fonction première de ces éléments est d'assurer un encastrement rigide entre les composants qu'ils assemblent. Le dimensionnement de ces pièces aux efforts statiques nominaux est un problème assez largement résolu. Néanmoins, ces composants suscitent l'intérêt des ingénieurs et chercheurs depuis plus de 50 ans. Ce paradoxe s'explique en partie par l'amortissement important que ces liaisons produisent au sein des structures.

Les efforts subis par les liaisons d'assemblages provoquent le glissement partiel des interfaces de contact. Il résulte de ce glissement, une dissipation par frottement qui est une source majeure d'amortissement des structures aéronautiques, voir [Ung73]1 , [Gro85], [GN01]. Le niveau vibratoire d'un système est directement lié à son amortissement, c'est à dire à sa capacité à dissiper ou à accumuler de l'énergie. Dans le domaine du transport, entre autres, les vibrations sont néfastes car elles nuisent au confort des usagers ou à l'intégrité des structures et des composants qu'elles embarquent. Le bon dimensionnement des assemblages est donc de nature à améliorer le comportement vibratoire des systèmes mécaniques. Actuellement, les outils de calcul numériques permettent d'estimer assez précisément les modes et fréquences propres d'une structure a priori mais l'amortissement, c'est à dire le niveau vibratoire, reste une donnée identifiée, à postériori au travers d'essais coûteux. Ceci s'explique par le caractère multi-échelle du phénomène de glissement partiel. Ainsi le comportement dynamique des liaisons rivetées et vissées reste un sujet d'étude très privilégié. Les travaux de cette thèse cherchent à répondre de manière pratique au besoin de produire des modèles réduits de structures assemblées pour la dynamique.

Un état de l'art est proposé dans le premier chapitre. Il y est notamment présenté le principe de mode linéarisé équivalent sous les hypothèses simplificatrices de faible non-linéarité et de découplage modal. Ce cadre est celui sous lequel se place les thèses de Heller [Hel05], Caignot [Cai09] et Peyret [Pey12]. La première partie de la thèse repose sur cette approche. Le chapitre 2 est une illustration, appliquée à un cas élémentaire, des principes fondamentaux présentés dans le premier chapitre. Les chapitres 3 et 4 présentent respectivement deux méthodes d'identification des structures au travers de l'estimation des paramètres modaux équivalents ; l'une est une formulation de filtre de Kalman qui est appliquée aux études expérimentales, l'autre est une méthode de simulation à faible coût basée sur une écriture quasi-statique qui est appliqué au calcul éléments finis. Le chapitre suivant est une analyse de l'influence de divers paramètres physiques sur le comportement dynamique des assemblages. Cette étude expérimentale est basée sur la caractérisation de bancs d'essais élémentaires.

La seconde partie traite le problème de couplage modal. Une méthode de réduction basée sur le principe original de "sollicitations principales" constitue une alternative pragmatique à l'approche modale. Cette technique, développée au chapitre 6, permet notamment l'identification des liaisons à une échelle locale tout en conservant les principales propriétés dynamiques de la structure complète. Les mouvements principaux sont associés à des macro-modèles qui sont utilisés pour représenter le comportement global d'une liaison sous un chargement donné. Dans le dernier chapitre, une formule analytique reliant la dépendance à l'amplitude de la fréquence et de l'amortissement permet de vérifier si le modèle de Iwan peut être employé pour un cas donné. Une étude expérimentale, permettant d'évaluer l'importance du couplage modal, est finalement présentée.

Les travaux développés aux chapitres 4, 6 et 7 ont fait, ou sont en cours de faire l'objet de publications dans différentes revues scientifiques. La forme des articles est conservée ici, ce qui signifie notamment que ces chapitres sont rédigés en anglais, intègrent une courte bibliographie et peuvent être, très ponctuellement, redondants avec ce qui est présenté par ailleurs.

Le cadre de la thèse est celui de la dynamique vibratoire. Le dimensionnement des liaisons aux efforts statiques ou la fatigue et à l'endommagement des surfaces ou des matériaux n'est pas traité. 
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Résumé

Ce chapitre vise à donner les principes élémentaires de la modélisation et de l'identification des liaisons visées ou rivetées et des structures assemblées. Les objectifs et originalités de cette thèse sont replacés par rapport à l'état de l'art.

Introduction

Les liaisons d'assemblage ont pour fonction d'assembler rigidement plusieurs éléments d'une structure mécanique. Les efforts entre les pièces de liaison sont transmis au travers d'un certain nombre d'interfaces. Ces pièces sont maintenues en contact à l'aide de systèmes de vis-écrous ou de rivets. À l'échelle macroscopique, les efforts de contact entre deux surfaces nominalement planes résultent d'une part de la condition de non-interpénétration dans la direction normale et d'autre part de la force de frottement dans le plan tangentiel qui ne peut pas excéder une fraction de la force normale. Cette valeur maximale n'est atteinte qu'à l'état de glissement total des interfaces entre elles. Les pièces d'assemblages sont dimensionnées de façon à ce que les efforts qu'elles subissent n'engendrent pas le glissement total des interfaces. Ainsi la dissipation par friction dans les assemblages est due au glissement partiel d'une faible portion des interfaces tandis que la majeure partie du contact reste en adhérence.

La figure 1.1 présente l'usure de l'interface de contact d'une liaison d'assemblage. Cette détérioration est caractéristique de la dissipation d'énergie par frottement. Ce profil d'usure permet de présenter quelques caractéristiques élémentaires de ce phénomène de glissement partiel. Tout d'abord, rappelons que les efforts de friction ne peuvent exister que dans les zones où la force normale est nonnulle. Lorsque deux pièces sont serrées entre elles, le contact ne s'établit pas de manière uniforme mais est localisé sous les têtes de vis comme on peut le voir sur la figure 1.1. La répartition de pression de contact à l'interface peut être calculée analytiquement dans l'hypothèse de matériaux élastiques et de surfaces idéalement planes, voir [Gui97] 1 , [CM77]. Ces études montrent que la pression de contact est maximale au bord du trou et qu'elle s'annule à Les efforts de contact entre deux pièces métalliques s'exercent au travers de micro-irrégularités, appelées aspérités qui sont dues à la matière elle même, aux procédés d'obtention ainsi qu'aux outils d'usinage. On distingue classiquement six différents ordres de défauts de surface, de la plus petite échelle à la plus grande :

-Ordre 6 -Les défauts du réseau cristallin : Dislocation -Échelle 1e-9m.

-Ordre 5 -Les défauts de structure cristalline : Terrasse, crête ou Décrochement -Échelle : de 1e-9 à 1e-7m. -Ordre 4 -Les défauts localisés : marque d'outil, arrachement, fente, piqûre -Échelle : de 1e-6 à 1e-5m -Ordre 3 -Les stries et sillons : défauts périodiques ou pseudo-périodiques -Échelle : l'écart entre les crêtes est compris entre 0,02 et 0,5 mm -Ordre 2 -L'ondulation : idem -Échelle : l'écart entre les crêtes est compris entre 0,5 et 2,5 mm -Ordre 1 -Les écarts de forme : défauts de planéité, de rectitude, de circularité, etc. -Échelle : macroscopique Les échelles du contact s'étendent donc grossièrement du nanomètre au mètre. Le contact entre deux pièces métalliques ne se fait que sur une très faible fraction de la surface nominale et ceci indépendamment de la force de serrage. Les forces de frottement héritent elles aussi de cette propriété et le glissement partiel se produit à différentes échelles au sein des interfaces de contact. Afin de mettre en évidence le principe de glissement partiel, nous considérons désormais un essai de frottement élémentaire. La figure 1.3 présente un moyen de d'essai appelé "tribomètre de fretting" qui permet de caractériser plusieurs aspects du contact frottant notamment l'usure et la fatigue par micro-glissement. Il s'agit ici d'un contact élémentaire plan entre un pion cylindrique et une piste. L'effort normal est constant. La piste est reliée rigidement au bâti et le pion est soumis à un effort transverse appliqué à l'aide d'un pot vibrant. La figure 1.4 montre trois courbes d'hystéresis caractéristiques. Ces courbes sont obtenues en traçant le régime stabilisé de la force tangentielle en fonction du déplacement du pion. Ces courbes sont obtenues en appliquant trois chargements cycliques d'amplitude différentes. Nous observons ici trois régimes de frottement : adhérence/collage -glissement partiel/mixte -glissement total/macro-glissement. Les pièces en contact soumises à un chargement tangentiel de nul à très faible sont en état d'adhérence total. En absence de glissement, la raideur de contact est constante et la force de frottement dépend linéairement de l'amplitude. Dans ce cas, les points directement en contact n'ont pas de mouvement relatif et le déplacement mesuré n'est dû qu'à l'élasticité du matériau. La dissipation, égale au travail de la force de frottement, est nulle. En réalité, même pour les amplitudes les plus faibles, il est probable que le glissement de quelques aspérités microscopiques se produise sans pour autant entrainer une quantité de dissipation mesurable. Le régime de glissement partiel est visible pour des amplitudes de chargement d'amplitude supérieures. Pour ce second cas, on observe un assouplissement lié au glissement des interfaces. Cependant la perte de charge n'est que partielle puisque la raideur instantanée ne s'annule pas au cours d'un cycle. Le régime de glissement partiel se traduit physiquement par la perte d'adhérence d'une partie de l'interface. Il est courant de distinguer un régime intermédiaire appelé "micro-glissement" correspondant au glissement des micro-aspérités de la surface rugueuse sans perte d'adhérence à l'échelle macroscopique. Cet état peut être vu comme l'amorce du cas de glissement partiel. Notons cependant qu'il n'existe pas dans la littérature de frontière clairement définie entre ces deux états qui sont souvent confondus. Lorsque toutes les aspérités d'une portion de contact glissent, alors la sous partie est elle-même en état de glissement.

Le glissement total de toute l'interface est finalement obtenu lorsque toutes les sous-parties du contact sont en plein glissement. Les états d'adhérence, (de micro-glissement) de glissement partiel puis de macro-glissement sont obtenus en cascade à mesure que l'effort croit. Distinguons ici le cycle de glissement stabilisé qui sera appelé "régime" de glissement et l'état de glissement instantané. Par exemple le régime de macro-glissement passe par les trois états d'adhérence, de glissement partiel et de glissement total au cours d'un cycle.

Les efforts dynamiques responsables du glissement partiel dans les liaisons sont dus aux vibrations des structures. Les méthodes de sous-structuration associées aux méthodes éléments finis permettent aujourd'hui de calculer avec une précision importante et pour un faible coût (de temps de calcul) le comportement dynamique des structures linéaires. Les vibrations des structures assemblées résultent du couplage des parties linéaires, réductibles, pour simplifier des volumes, et des différentes zones de non-linéarité qui ne sont pas réductibles par une approche classique. Nous avons vu que les ordres de gran-deur géométriques qui déterminent le comportement des interfaces de contact (compris entre 1e-9m et 1e-3m) sont immensément moindres que celle de la structure complète (de l'ordre du mètre). Il en est de même pour les temps caractéristiques. Les grandes structures peuvent de surcroit être composées d'une grande quantité de liaisons et donc d'un nombre immense d'interfaces de contact. On mesure ainsi pourquoi il est si difficile d'intégrer le comportement des liaisons dans le calcul des vibrations de grande structures.

Les différentes approches de modélisation

Nous distinguons ici deux familles de travaux traitant du comportement dynamique des liaisons :

-La première est l'étude des efforts régissant la physique du contact. Cette approche nécessite la mesure des propriétés fondamentales des matériaux ainsi que celle des états microscopiques des surfaces en contact. Cette branche de la mécanique appelée tribologie vise à fournir des modèles indépendants de la géométrie nominale des pièces. Les modèles obtenus sont très réalistes par rapport à la physique fondamentale mais possèdent généralement un grand nombre de paramètres. On parle de modèle a priori, physics-based ou encore de modèle white box. -La seconde approche consiste à construire des modèles globaux ou "macromodèles" afin de réduire la liaison à son mouvement d'ensemble sous un chargement donné. Ces modèles ne sont généralement pas dérivés de lois fondamentales mais sont simplement basés sur l'observation empirique du comportement dynamique des liaisons. L'objectif final de ces modèles est donc de fournir une approximation acceptable des liaisons permettant le calcul à moindre coût. Les paramètres de ces modèles sont recalés à partir d'essais expérimentaux ou numériques. Les mesures de caractérisation sont le plus communément réalisées sur un banc d'essai élémentaire contenant la liaison isolée de la structure qu'elle assemble. Il est aussi possible simuler ces essais à l'aide d'un modèle white box. Ces modèles empiriques sont couramment appelés modèles phénoménologiques, "macro-modèles" ou encore modèles grey box. Dans ce chapitre, ces deux approches complémentaires sont explicitées et les principaux travaux associés sont présentés.

Modélisation du phénomène de glissement partiel par la physique du contact Travaux analytiques fondateurs et autres études analytiques

Les premiers travaux cherchant à modéliser le phénomène de glissement partiel dans les assemblages remonte aux années 50 et sont dus à Goodman et Klumpp [GK56]. Ces études analytiques supposent l'interface de contact idéalement plane et le frottement est localement supposé suivre la loi de frottement de Coulomb. Sous l'action de l'effort (tranchant dans le premier cas (a), de traction dans le second (b)), une contrainte de cisaillement se produit le long de l'interface. Le cisaillement n'est pas uniforme et le glissement apparait dans la zone où la contrainte tangentielle atteint la limite d'adhérence égale à la pression p multipliée par le coefficient de frottement µ. L'interface se divise donc en une zone d'adhérence au centre de la liaison et une zone de glissement aux extrémités comme on peut le voir sur la figure 1.6.

Le problème de Goodman et

La force de friction qui résulte du contact frottant entre les deux objets élastiques dépend de l'histoire du chargement. Sous un chargement cyclique, la courbe de force tangentielle-déplacement prend la forme d'un hystéresis qui Le calcul analytique a l'avantage de proposer une relation directe entre effort et dissipation. Cependant cette approche est hélas restreinte à l'étude de géométries simplistes puisqu'elle consiste à modéliser la liaison comme un espace à une seule dimension. Cette approche n'est donc pas applicable dans le cas de structures industrielles qui possèdent généralement une géométrie complexe avec un grand nombre de singularités tels que des trous ou des arêtes. L'approche numérique par éléments finis permet de régler le problème géométrique.

L'approche éléments finis

Le problème de contact frottant peut être résolu avec une approche éléments finis avec l'hypothèse de non-pénétration des éléments en contact dans la direction normale et de frottement de Coulomb local dans le plan tangentiel. Les mises en équation du problème de contact les plus employées sont basées sur des méthodes de pénalisation ou de Lagrangien, voir [Cha05]. La simulation numérique par éléments finis permet d'étendre à n'importe quelle géométrie l'étude de la dissipation dans les liaisons. La publication de Chen et Deng [CD05] compare les résultats des deux travaux analytiques précédents, figure 1.5, à un calcul éléments finis afin de montrer les limites de l'approche analytique. Quasiment en même temps et certainement indépendamment, une étude très similaire est proposée dans la thèse de Heller [Hel05]. Un certain nombre de travaux basés sur le calcul quasi-statique et l'hypothèse de frottement Coulomb ont montré la force du calcul par éléments finis pour la prédiction de la dissipation d'une liaison sous un chargement donné, voir par exemple [CWRU06], [OOM05]. Les limitations de cette approche sont principalement liées au caractère multi-échelles de la physique du contact. Tout d'abord, l'approche directe par calcul éléments finis est très coûteuse en temps de calcul. La résolution des problèmes non-linéaires nécessite classiquement une étape de recherche de solution à l'aide d'algorithmes itératifs de type Newton-Raphson. Le problème de contact demande en plus un maillage extrêmement fin des interfaces de contact, ce qui pose par ailleurs des problèmes de stabilité numérique [BRS + 11]. D'autres algorithmes de résolutions multiéchelles peuvent être employés afin de répondre à ce problème, voir [Cai09]. Malgré la progression exponentielle des capacités de calcul, il n'est pas envisageable, au moins dans une phase de conception, de résoudre les problèmes de dynamique en intégrant la rhéologie locale tant les modèles seraient lourds et difficile à construire. Notons néanmoins que Mayer et Gaul proposent une formulation d'éléments finis de contact sans épaisseur appelé zero-thickness elements limités au cas de faible glissement [MG07]. Ces éléments intègrent un modèle phénoménologique de contact permettant de mailler les interfaces assez grossièrement. Ces éléments ont pour vocation de réduire le temps de calcul et donc d'être directement utilisables pour la dynamique des structures. Une revue des différentes approches de modélisation des interfaces et des liaisons notamment par éléments finis peut être trouvée dans [BRS + 11].

La seconde grande difficulté de la modélisation est l'incertitude sur l'estimation des paramètres physiques [IP05]. Par exemple, il est communément admis qu'une donnée aussi simple que l'effort de serrage imposé par une vis est estimée (à partir du couple de serrage) avec une marge d'erreur de 20%. L'erreur la plus importante est certainement celle de l'hypothèse de frottement de Coulomb. Le frottement de Coulomb est la modélisation la plus simple de la force de frottement. Ce problème peut être en partie contourné par une analyse paramétrique, voir [Hel05] ou [RCB11]. Ce type d'étude permet généralement de borner l'espace des solutions mais reste relativement coûteuse en temps de calcul.

Le prochain chapitre propose quelques éléments de tribologies et les avancées récentes appliquées au cas de liaisons d'assemblage.

Éléments de tribologie

Le contact entre deux pièces métalliques est limité au voisinage du sommet des aspérités. Les modèles de contact rugueux sont basés sur cette assertion. Le contact entre deux aspérités est classiquement modélisé par la théorie du contact de Hertz [Her], [IDSBLC13]. Cette loi prévoit la force de réaction entre deux sphères élastiques soumises à un chargement normal. Sous l'hypothèse de non-interpénétration, la force normale suit une loi proportionnelle à l'enfoncement à la puissance 3/2. Les travaux de Mindlin [Min49] élargissent cette théorie au cas du contact frottant sous l'hypothèse de glissement de Coulomb. Sous un chargement normal constant et une force tangentielle croissante, un anneau de glissement se produit dans la bordure extérieure du cercle de contact comme présenté à la figure 1.4. Ainsi le phénomène de glissement partiel apparait au sein même des aspérités en contact. La théorie de Mindlin à été mise en oeuvre dans la thèse de Peyret [Pey12] 

Modèles de liaison phénoménologiques

Revue des modèles courants

Il existe un certain nombre de macro-modèles permettant d'approcher de manière globale les problèmes de contact frottant et plus généralement les problèmes d'élasto-plasticité. La plupart de ces modèles ne sont pas dérivés de lois physiques fondamentales mais sont simplement basés sur l'observation empirique de la relation entre déplacements et efforts. Le modèle de Dahl [Dah68] a été introduit en 1968 afin de décrire de manière compacte le comportement des roulements à billes. Sous sa forme classique, c'est un modèle à deux paramètres : r max est la valeur de force en glissement total et σ la raideur à l'origine. Un paramètre de pondération 0 < γ ≤ 1 permet aussi d'ajuster la forme de la courbe d'hystérésis. Ce modèle s'écrit sous la forme d'une équation différentielle :

dr dp = σ 1 - r r max sign( ṗ) γ (1.1)
Notons que la force r n'est pas dépendante de l'amplitude de la vitesse mais seulement de son signe. Ainsi la force de frottement ne dépend que de l'amplitude de déplacement. La figure 1.7 présente la forme des cycles de forcedéplacement produit par le modèle de Dahl. On peut notamment y voir la dépendance du modèle au paramètre γ. Trois cycles d'hystéresis sont calculés à partir de l'état initial nul.

Le modèle de LuGre [DWOAL95] est une extension du modèle de Dahl qui inclut l'effet de Stribeck (i.e. la dépendance du coefficient de frottement à la vitesse2 ) et limite la dérive obtenue pour les faibles efforts. Ce modèle est particulièrement adapté pour la modélisation des problèmes de contact lubrifiés.

Le modèle de Bouc-Wen à quatre paramètres σ α, β, n permet de produire une très large variété de forme d'hystérésis dépassant le cas des problèmes de type élasto-plastiques, voir figure 1.8. Il est notamment possible de simuler des comportements rigidifiants comme présenté dans le cadre en bas à droite. Cette grande variété de forme vaut à ce modèle d'être utilisé pour des applications très diverses (e.g. amortisseurs à fluide électrorhéologique ou métaux à mémoire de forme [KHN + 07]). Dans sa formulation originale, la dérivée par rapport au temps de la force de retour hystérétique satisfait à l'équation suivante :

ṙ = σ ṗ -α| ṗ||r| n-1 r -β ṗ|r| n (1.2)
Notons que les paramètres du modèles de Bouc-Wen n'ont pas de sens physique évident, ce qui peut être perçu comme un défaut important. Une revue détaillée, de ces modèles peut être trouvée dans la publication, écrite en Français, de Borsotto [BB06].

partir d'une certaine vitesse de glissement ce coefficient redevient croissant en fonction de la vitesse. Ces modèles peuvent être intégrés très simplement dans un système d'équations du second ordre. Considérons par exemple la dynamique d'un oscillateur à un degré de liberté (SDOF) de masse unitaire et de raideur ω 2 ∞ + σ. En remplaçant la raideur σ par le modèle de Dahl, on obtient le système d'équations différentielles gouvernant la dynamique de l'oscillateur de Dahl à un degré de liberté :

p + ω 2 ∞ p + r = f e (t) ṙ = σ 1 -r rmax sign( ṗ) γ ṗ (1.3)
Notons que la raideur ω 2 ∞ + σ est la raideur à l'origine correspondant à l'état d'adhérence.

Règles phénoménologiques de Masing

À première vue, il semble que les modèles de Dahl ou de Bouc-Wen permettent de reproduire les différents états de glissement d'une interface de contact. Le faible nombre de paramètres que contiennent ces modèles et la simplicité de leur écriture semblent en faire de très bons candidats pour la modélisation des liaisons. Cependant les courbes d'hystéresis générées par ces modèles ne respectent pas une propriété fondamentale à priori vraie dans les problèmes de type élasto-plastiques. Cette loi initialement conçue pour décrire le comportement plastique des matériaux porte le nom de Masing [Mas26]. Elle prévoit qu'un cycle d'hystéresis dans le plan de contrainte-déformation peut être extrapolé à partir de la charge initiale (dite courbe backbone). Le chemin de l'hystérésis obtenu lors d'un chargement cyclique est une homothétie de facteur 2 de la courbe backbone (avec l'origine décalée au point d'inversion de charge). Cette règle est identique pour le cas de la force de frottement dans le plan de force-déplacement comme schématisé sur la figure 1.9. La règle de Masing est calquée sur le comportement de l'élément de Coulomb (aussi appelé élément de Masing ou élément de Jenkins). Celui-ci est composé de l'association en série du frotteur de Coulomb de coefficient de frottement µ et de la raideur σ. Comme les modèles précédents, cet élément possède une variable interne, ici p j qui traduit la position du frotteur de Coulomb. La relation entre la force de serrage (force normale F n ), la force de frottement r, le déplacement imposé et p j est la suivante : 

si σ|p -p j | < µF n , alors r = σ|p -p j | et ṗj = 0 sinon, r = µF n sign(p -p j ) et σp j = σp -µF n sign(p -p j ) (1.

Le modèle d'Iwan

Le modèle dit d'Iwan consiste en l'association en série, en parallèle et toute les combinaisons hybrides de plusieurs éléments de Jenkins. Ce modèle est aussi Le chapitre présent traite de la dynamique des structures assemblées, de l'analyse vibratoire expérimentale et de l'identification des macro-modèles par les analyses dynamiques. Les méthodes de résolutions des problèmes de dynamique non-linéaire ne sont pas traitées dans cette étude, pour cela, se référer par exemple à [Nay08] (méthode de perturbations), [KPGV09] (methode de shooting-continuation), [JSP10] (méthode de balance harmonique adapative).

Dynamiques des assemblages et études expérimentales

Comportement faiblement non-linéaire des structures

La figure 1.13 présente la mesure de la réponse d'une structure assemblée élémentaire à un choc au marteau. Cette structure sera explicitée dans la suite, il s'agit de deux portions de plaques composites assemblées par une liaison boulonnée, appelée liaison SSS, prêtée par le CNES. La structure répond principalement sur son premier mode de flexion dont la fréquence de résonance se situe autour de 90Hz. Le pic de résonance est légèrement incliné vers la droite ce qui traduit une variation de la fréquence dans le temps et donc un comportement non-linéaire. La mesure d'accélération ne fait cependant pas apparaitre d'harmoniques, ce qui est une propriété caractéristique des systèmes linéaires. Ainsi, et bien que les lois physiques régissant le comportement local des liaisons boulonnées soient fortement non-linéaires, le comportement global de la structure assemblée ne l'est que très légèrement. Cette propriété est vérifiée par de nombreux auteurs [SGC00], [Hel05], [Seg07]. Parallèlement, la dépendance de la déformée modale à l'amplitude est faible [MBV01] Notons que le comportement faiblement non-linéaire des structures assemblées est tout à fait compatible avec une dépendance très forte de l'amortissement à l'amplitude de vibration. Typiquement, les ratios d'amortissements mesurés sur les structures élémentaires prennent des valeurs autour de 0.5% aux faibles niveaux vibratoires et jusqu'à 5% pour les plus grands. Ces taux d'amortissements relativement faibles traduisent le fait que l'énergie dissipée par cycle est petite devant l'énergie vibratoire. Ainsi les efforts causants la dissipation sont faibles devant les efforts réversibles. On peut cependant mesurer l'effet que produit le décuplement du taux d'amortissement sur la fonction de réponse en fréquence d'un oscillateur à un degré de liberté sur la figure 1.17. Les faibles amortissements sont difficiles à mesurer car ils correspondent à de petites quantités d'énergie. Il est cependant néces- saire de mesurer ces grandeurs avec une precision importante étant donné leur impact sur l'amplitude vibratoire des structures. L'hypothèse de faible non-linéarité peut s'étendre aux systèmes à plusieurs degrés de liberté. Dans ce cas, l'hypothèse simplificatrice de découplage modal est souvent associée afin de se ramener à une somme d'oscillateurs à un degré de liberté.

p(t) = p 0 e -ξ(t)ω(t)t cos ω(t) 1 -ξ 2 (t)t + ϕ = p m (t)cos(Θ(t)) (1.6)
Soit X le déplacement géométrique discrétisé d'une structure linéaire. L'équation non-amortie de la dynamique de cette structure s'écrit :

M Ẍ + KX = F e (1.8)
Les matrices M et K sont respectivement les matrices de masse et de raideur.

Les modes réels φ sont les solutions de l'équation aux valeurs propres du système conservatif associé :

(K -Ω 2 M)X = 0 (1.9)
Le champ des solutions admissibles X de dimension N peut être identiquement produit par la base des modes propres, soit X = N i φ i q i = Φq. Les modes propres φ i sont orthogonaux par rapport à M et à K c'est à dire que la base modale diagonalise ces matrices (i.e. Φ T MΦ et Φ T KΦ diagonales). En multipliant l'équation 1.12 par la transposée de Φ, le système est ainsi diagonalisé, c'est à dire qu'il peut s'écrire comme une somme d'équations à un degré de liberté découplées. Notons que la déformée d'un mode correspond aussi à un choix de normalisation. Dans le cas où les modes sont normalisés par rapport à la masse (i.e. Φ T MΦ = I), l'énergie de déformation du mode i est donnée par :

E p = 1 2 ω 2 i q 2 i (1.10)
Dans une bande de fréquence finie, le système est réductible à un nombre de degré de liberté généralisé M bien plus faible que le nombre de degré de liberté du système. Les solutions du problème sont approchés par la base dite "réduite" ou "base de Ritz" : 12 par la transposée de Φ puis en notant q i l'amplitude modale du mode i, la ligne correspondante est donnée par :

X = M <N i φ i q i = Φ r q r (1.
φ T i Mφ i qi + φ T i Cφ i qi + φ t i Kφ i q i = φ t i F (1.13)
soit, en normalisant par rapport à la masse : 

qi + 2ω i ξ i qi + ω 2 i q i = f i (1.14) avec ω 2 i = φ t i Kφ i φ t i Mφ i et 2ω i ξ i = φ t i Cφ i φ t i Mφ i (1.
X(t) = M i p 0,i e -ξ i (t)ω i (t)t cos ω i (t) 1 -ξ 2 i (t)t + ϕ i φ i = M i p m,i (t)cos(Θ i (t))φ i (1.

Rhéologie associée à un mode d'une structure assemblée

Soit X le déplacement géométrique discrétisé d'une structure assemblée par une ou plusieurs liaisons. L'équation du mouvement de cette structure s'écrit :

M Ẍ + KX + R(X, θ, x i ) = F e (2.1)
R est la force de contact aux interfaces des liaisons qui dépend d'un certain nombre de paramètres θ, de variables internes x i et éventuellement du temps. La structure comporte un nombre fini I de surfaces de contact I i S i qui représentent une zone discontinue de l'espace géométrique de la structure. La force de contact peut s'écrire sous la forme

R = [0 R S 1 • • • R S i • • • R S I ].
Sous l'hypothèse de faible non-linéarité, il est possible de définir la base modale réduite Φ du système de dimension N. On suppose cette base normalisée par rapport à la masse. En projetant l'équation 2.1 sur la base modale, on obtient N équations : Le système est dans un état de glissement partiel bien que le modèle d'Iwan soit en glissement total.

pn + ω 2 ∞,n p n + I i (φ S i n ) T R S i = φ T n F e := f e,n (2.2) 
Nous avons précédemment défini les paramètres modaux équivalents comme les fréquences et amortissements propres, mesurés sur la fréquence fondamentale lors des vibrations libres du système. Ces paramètres sont fonction de l'enveloppe, c'est à dire de l'amplitude maximale atteinte au cours d'un cycle. En régime établi, ces mêmes paramètres sont obtenus lorsque le système est en quadrature de phase avec la force d'excitation.

Balance harmonique

La méthode de balance harmonique est généralement employée afin de calculer le régime établi de système non-linéaire, voir [JSP10]. Celle-ci est basée sur l'hypothèse que la réponse du système, en régime établi, se décompose comme une série de Fourier. Cette technique vise à transformer l'équation différentielle de la dynamique en un problème discrétisé algébrique. Elle appartient ainsi à la famille des méthodes de Galerkin. Nous employons ici une méthode basée sur le principe de la balance harmonique pour calculer les paramètres modaux équivalents du système élémentaire d'Iwan.

On se donne une force d'excitation harmonique :

f e (t) = f m sin(ωt) (2.4)
Dans l'hypothèse de faible non-linéarité, on ne garde ensuite que la fréquence fondamentale du mouvement qui est donc supposé être en quadrature de phase. On peut aussi en déduire l'accélération :

p(t) = p m cos(ωt) ⇒ p = -p m ω 2 cos(ωt) (2.5)
La restoring force dépend de l'amplitude et de son histoire. Elle est aussi supposée se décomposer comme une série de Fourier. En ne conservant que M composantes :

r(t) := ω 2 ∞ p + r Iwan (t) = M m R m r cos(mωt) + R m i sin(mωt) (2.6)
Nous omettons la composante continue, le système est supposé vibrer autour de la position nulle. Lorsque la forme de la force est simple (i.e. une raideur cubique), les coefficients de Fourier sont facilement calculables par intégration, avec T la période d'un cycle : L'estimation numérique des coefficients de Fourier peut être réalisée à l'aide d'une transformée de Fourier rapide de la courbe de force. Nous lui préférons ici une méthode des moindres carrés ordinaire. L'équation 2.6 discrétisée en temps (soit t = [t1, t 2 , .., t1 + T ]) peut être mise sous forme matricielle :

∀n R n r = 2 T T 0 r(t)cos(nωt)dt R n i = 2 T T 0 r(t)
r(t) =       cos(ωt 1 ) sin(ωt 1 ) cos(2ωt 1 ) sin(ωt 1 ) ... cos(N ωt 1 ) sin(N ωt 1 ) cos(ωt 2 ) sin(ωt 2 ) cos(2ωt 2 ) sin(ωt 2 ) .... cos(N ωt 2 )
sin(N ωt 

cos(ω(t

1 + T )) sin(ω(t 1 + T )) cos(2ω(t 1 + T )) sin(2ω(t 1 + T )) ... cos(N ω(t 1 + T )) sin(N ω(t 1 + T ))                   R 1 r R 1 i R 2 r R 2 i . . . R N r R N i             (2.8) soit r(t) = AR
Les coefficients de Fourier R sont finalement obtenus par le calcul de : R = (A T A) -1 Ar (2.9) La figure 2.5 présente la force obtenue pour différentes troncatures de la série de Fourier. Le cycle réel présente une symétrie par rapport à l'origine. Ainsi les harmoniques paires sont nulles. La courbe verte en pointillé présente l'estimation obtenue avec les trois premières harmoniques impaires.

Le principe de la balance harmonique est d'utiliser une expression tronquée de l'équation du mouvement et d'équilibrer les termes relatifs aux différentes composantes fréquentielles. Cette étape est appelée équilibrage harmonique. Ainsi, en ne gardant que le terme d'ordre 1 en quadrature, l'équation différentielle 2.3 est transformée en une équation algébrique simple :

-ω 2 p m + ω 2 ∞ p m + R 1 r (p m ) = 0 (2.10)

Calcul des paramètres équivalents

La pulsation ω est celle obtenue à la quadrature de phase. Ainsi, la fréquence modale équivalente est donnée par l'équation :

2πf eq (p m ) := ω eq = ω = ω 2 ∞ + R 1 r (p m ) p m (2.11)
Notons que la fraction R 1 r (pm) pm est la raideur équivalente du modèle d'Iwan. Cette raideur est la pente de la droite tracée à la figure 2.5. Notons que cette droite passe approximativement par les points de retournement de la force d'Iwan (cette observation sera utilisée dans le dernier chapitre de la thèse).

L'amortissement d'un système linéaire en état stabilisé peut être calculé à partir des énergies conservative et dissipée. L'énergie dissipée par cycle D est le travail de la force de dissipation. Dans le cas d'un oscillateur linéaire de masse unitaire, de pulsation propre ω 0 et d'amortissement ξ excité à la pulsation ω , on a :

D = cycle 2ξω 0 ṗdp = 2ξω 0 2π ω 0 ω 2 cos 2 (ωt)dt = 2πξ ω ω 0 ω 2 0 p 2 m = 4πξ ω ω 0 E p (2.
12) E p est l'énergie potentielle égale à l'énergie de déformation E d du système. Notons que dans le cas de l'oscillateur d'Iwan, l'énergie de déformation n'est pas exactement égale à l'énergie potentielle. L'énergie potentielle est celle qui peut être utilisée par le système pour vibrer. Une fois que le système a quitté sa position initiale, l'équilibre statique n'est plus exactement atteint à la position nulle. Ainsi le système est légèrement précontraint à cette position d'équilibre statique. Le résidu d'énergie de déformation correspondant est alors la différence entre l'énergie potentielle et l'énergie de déformation. Ce résidu est faible car la force linéaire est très importante devant la force du modèle d'Iwan. Ainsi, nous gardons cette définition pour le cas de notre oscillateur faiblement non-linéaire.

ξ eq (p m ) = ω 4πω 0 D(p m ) E cons (p m ) = ω 4πω 0 D(p m ) E d (p m ) (2.13)
En calculant la dynamique du système sur un cycle stabilisé pour différentes amplitudes de vibrations puis en résolvant l'équation 2.9, on peut calculer les énergies de déformation et d'énergies dissipées par cycle dans le cas de l'oscillateur d'Iwan présenté, voir figure 2.6.

Dans le cas d'oscillations libres ou en quadrature de phase, la pulsation du système est égale à la pulsation propre, on obtient ainsi les fonctions de paramètres équivalent en fonction de l'amplitude maximale tracée à la figure 2.7. Le phénomène de glissement partiel dans les assemblages se traduit par un assouplissement de la fréquence de résonance et une dépendance de l'amortissement au niveau vibratoire. L'évolution de la fréquence en fonction de l'amplitude est toujours monotone décroissante car la raideur des interfaces décroit avec l'amplitude de vibration. L'évolution de l'amortissement en fonction de l'amplitude est généralement croissante. Il est cependant possible d'observer une décroissance locale de la fonction taux d'amortissement avec l'amplitude. Ce type de comportement a été observé notamment par Heller, [Hel05]. Ceci correspond physiquement au cas où une portion des interfaces est en état de glissement total tandis que l'autre reste en adhérence, indépendamment de l'augmentation de l'amplitude. Notons que la diminution du taux d'amortissement avec l'amplitude ne signifie pas nécessairement une diminution de l'énergie dissipée par cycle avec l'amplitude. Dans le cas présent, la croissance de l'énergie dissipée par cycle est linéaire alors que l'énergie de déformation évolue comme le carré de l'amplitude. Notons enfin que la pente de la fonction taux d'amortissement peut encore reprendre des valeurs positives pour des amplitudes supérieures si une nouvelle portion des interfaces perd son état d'adhérence. 

Calcul de la réponse harmonique à partir du modèle équivalent

La connaissance des paramètres modaux équivalents permet de calculer la réponse du système à une excitation mono-fréquencielle f e = f m cos(ωt). En opérant la transformée de Fourier de l'équation en paramètres équivalents, l'équation 2.3 est dans ce cas réduite à l'équation suivante : 

(-ω 2 + 2jωξ eq (p m , ω)ω eq (p m ) + ω 2 eq (p m ))p m = f m (2.

Conclusion

Ce chapitre a présenté le principe de réduction des structures selon le principe de mode équivalent. Ce principe est basé sur deux hypothèses fondamentales : le comportement dynamique global des assemblages est faiblement non-linéaire et les modes sont découplés. L'hypothèse de découplage modal suppose que la réponse du système est égale à la somme des contributions modales calculées séparément. Sous cette hypothèse, le régime établi d'une structure assemblée peut être calculé à partir de N équations (pour N modes) du type de l'équation 2.14. Ainsi, la réponse d'une structure assemblée à une excitation mono-harmonique peut être obtenue dès lors que les N modes (déformées modales φ n (supposées indépendantes de l'amplitude) et fonctions paramètres modaux ω eq,n et ξ eq,n ) sont identifiés.
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Résumé

Ce chapitre présente une formulation du filtre de Kalman adapté au cas de vibrations de structures faiblement non-linéaires en régime libre. Le développement est basé sur le principe de linéarisation équivalente présenté au chapitre précédent.

Estimation des paramètres modaux

La dynamique d'une structure faiblement non-linéaire amortie peut s'écrire comme une combinaison linéaire de modes dont les amplitudes sont fonction du temps. La contribution d'un seul mode au signal mesuré en un point donné est le produit d'une "porteuse" (de pulsation instantanée ici égale à la dérivée par rapport au temps de la phase Θ) et d'une modulation d'amplitude p m , qui traduit l'amortissement modal. Dans le cas d'une mesure de déplacement mesuré x(t) = [x capteur1 (t), x capteur2 (t), ...] T est la partie réelle d'un signal complexe dit signal analytique. Ainsi nous cherchons à décomposer les réponses des structures étudiées sous la forme suivante :

x(t) = R N n=1 Φ n p m,n (t)e iΘm(t) (3.1)
Φ n est la déformée modale du mode n. Rappelons que les paramètres modaux équivalents sont supposés dépendre de l'enveloppe du signal. Il apparait ici l'intérêt d'identifier la structure sur sa réponse libre : un seul essai, de choc par exemple, permet de traverser l'ensemble des amplitudes modales et donc d'identifier l'intégralité des courbes de fréquences et d'amortissements. En contrepartie, ce signal est composé de la contribution de plusieurs modes de la structure. Au contraire, dans le cas d'une excitation mono-fréquencielle et multi-points, il est par exemple possible d'approprier la structure sur un seul mode, voir [Fol98]. Notons que certaines excitations "appropriantes" (e.g. sinus interrompu [Hel05], [DCP13], ondelettes [Seg10]) permettent elles aussi d'observer la réponse libre d'un seul mode. Il est généralement nécessaire de décomposer le signal mesuré en chacune des contributions modales.

On cherche maintenant à se donner une définition de la fréquence et de l'amortissement propre équivalent qui soit identique pour le régime libre ou pour le régime forcé. Pour simplifier l'écriture, on se focalise sur la dynamique d'un seul mode. Sous l'hypothèse de découplage modal, les paramètres modaux équivalents d'un mode sont définis comme ceux de l'équation de la dynamique du système à un degré de liberté :

p + 2ξ(p m )ω 0 (p m ) ṗ + ω 2 0 (p m )p = f e m (3.2)
La réponse du système à un degré de liberté est une composante de l'équation 3.1 :

p = p m (t)e i ωdt (3.3)
La pulsation instantanée ω est la dérivée par rapport au temps de la phase Θ. On a ainsi :

ṗ = ṗm p m + iω p (3.4) puis : p = pm p m + i ω -ω 2 + 2i ṗm p m ω p (3.5)
Dans la suite, les courbes de fréquences et d'amortissements sont identifiées à partir de la réponse libre de la structure. En remplaçant les termes dérivés dans l'équation de la dynamique 3.2 en régime libre (f e = 0), on obtient l'équation suivante : pm

p m -ω 2 + 2ξω 0 ṗm p m + ω 2 0 + i ω + 2 ṗm p m ω + 2ξω 0 ω = 0 (3.6)
Pour chaque t, cette équation complexe est équivalente au système d'équations réelles suivant : 

   ξ = -ṗm pmω 0 -ω 2ωω 0 ω 2 0 = ω 2 + 2 ṗ2 m p 2 m + ṗm ω pmω -pm pm ( 3 

Filtrage de Kalman

Principe

La technique de Filtrage de Kalman (KF) fait référence à une famille d'algorithmes permettant de suivre l'évolution temporelle de l'état d'un système dynamique du premier ordre. La définition en temps discret est basée sur le principe des moindres carrés ordinaires. Soit t le vecteur temps discrétisé tel que

t = [t 1 , t 2 , ..., t k ]. Soit x k = x(t n ) le vecteur de mesure à l'instant t k et p k = p(t k
) l'estimation des états du système au même instant. On se donne enfin la matrice dite d'observation H reliant la mesure à l'état réel p r k du système. Il faut distinguer l'état réel de l'état estimé du système (qui sera noté p k dans la suite) et de la mesure. La mesure à l'instant t k est supposée entachée d'un bruit de mesure ǫ k . On a donc :

x k = Hp r k + ǫ k (3.8)
Nous supposons que les bruits de mesures sont centrés (i.e. de moyenne nulle) et décorrélés entre tous les capteurs. Dans le cas d'une distribution gaussienne par exemple, la matrice de covariance R du bruit de mesure est alors une matrice diagonale de termes diagonaux égaux à la variance du bruit de mesure de chaque capteur. Notons que cette matrice est aussi inversible car le bruit de mesure est supposé non-nul.

L'estimation de l'état du système à l'instant t k peut être effectuée sans tenir compte des états précédents en cherchant à minimiser la forme quadratique r 1 :

p k = min p [r 1 (p)] = min p (x k -Hp) T W(x k -Hp) (3.9)
L'estimation p k ainsi produite est nécessairement biaisée car la mesure est bruitée. Il semble donc raisonnable d'affecter un poids à chaque mesure d'autant plus grande que le bruit de mesure est petit, soit W = R -1 .

Supposons maintenant que l'on dispose, en plus de la mesure à l'instant t k , d'une estimation directe p k|k-1 de l'état p k du système. Comme son nom l'indique, cette estimation n'est pas exacte mais est entachée d'une erreur statistique donnée par la matrice dite de covariance de l'estimation Q k|k-1 supposée connue. Comme pour le bruit de mesure, l'inverse de cette matrice peut permettre la pondération de l'estimation. L'estimation basée sur p k|k-1 pondérée par Q k|k-1 consiste à minimiser la forme quadratique r 2 : 

p k = min p [r 2 (p)] = min p (p -p k|k-1 ) T Q k|k-1 -1 (p -p k|k-1 ) (3.
p k|k-1 = Fp r k-1 + Bu k-1 + ν k (3.11)
La matrice F relie l'état k à l'état précédent k -1 lorsque le système ne subit pas d'excitation extérieure ou commande u k . B est la matrice qui relie la commande à l'état. Dans le cas d'oscillations libres cette matrice est nulle.

Il existe une erreur entre l'état prédit au travers des matrices F et B et l'état réel. Cette erreur est prise en compte par la variable aléatoire appelée bruit d'état ν.

Le filtre de Kalman est une estimation de l'état du système calculé comme le barycentre de la mesure x k et de la prévision p k|k-1 affecté des pertinences

R et Q k|k-1 : p k = min p [r 1 (p) + r 2 (p)] (3.12)
La solution de ce problème peut être calculé analytiquement, voir [Lli05] :

p k = p k|k-1 + Q k|k-1 H T (R + HQ k|k-1 H T ) -1 (x k -Hp k|k-1 ) (3.13)
Pour simplifier cette équation, on définit la matrice dite "gain de Kalman", selon : 

K k = Q k|k-1 H T (R + HQ k|k-1 H T ) -1 (3.

Les équations de l'algorithme de Kalman linéaire

Reprenons dans l'ordre les étapes de l'algorithme de Kalman. Tout d'abord, l'état et la covariance sont prévus selon le modèle au temps t k à partir du temps t k-1 , c'est la phase de prédiction. Le bruit d'état est imposé comme une variable aléatoire de moyenne nulle. Ainsi la prévision de l'estimation (ou moyenne) de l'état est donnée par l'équation :

p k|k-1 = Fp k-1 + Bu k-1 (3.15)
On peut en déduire la prédiction de la covariance de l'estimation :

Q k|k-1 = E (p k -p k|k-1 ) T (p k -p k|k-1 ) (3.16)
À cette étape p k est inconnu, cependant en développant cette équation, il est possible d'exprimer la prédiction de la covariance de l'estimation comme :

Q k|k-1 = FQ k-1 F T + S (3.17)
où S est la covariance du bruit d'état. Comme pour les bruits de mesures, les bruits d'états sont supposés décorrélés et la matrice de covariance S est diagonale. Les équations 3.15 et 3.17 définissent la phase de prédiction de l'estimation et de sa covariance.

La phase dite de correction est l'estimation pondérée de la prédiction et de la mesure. L'estimation est donnée par l'équation 3.13. De la même façon, on actualise la covariance de l'estimation selon :

Q k = Q k|k-1 -K k HQ k|k-1 (3.18)
Le filtre de Kalman se résume donc en deux équations de prédictions :

-Prédiction de l'estimation de l'état :

p k|k-1 = Fp k-1 + Bu k-1 (3.19) 
-Prédiction de la covariance de l'estimation :

Q k|k-1 = FQ k-1 F T + S (3.20)
et deux équations de corrections :

-Correction de l'estimation de l'état :

p k = p k|k-1 + K k (x k -Hp k|k-1 ) (3.21) 
-Correction de la covariance de l'estimation :

Q k = Q k|k-1 -K k HQ k|k-1 (3.22) 
-auxquelles il faut ajouter le calcul du gain de Kalman :

K k = Q k|k-1 H T (R + HQ k|k-1 H T ) -1 (3.23)
Le vecteur des états et la covariance initiales, p 1 et Q 1 sont estimés à priori.

Extension du filtrage de Kalman aux systèmes non-linéaires

Le filtrage de Kalman a été initialement introduit pour le suivi de trajectoire. Nous prenons donc comme premier exemple le cas du suivi de trajectoire d'un objet oscillant en régime établi. Nous supposons tout d'abord que la mesure est faite en déplacement. La méthode de filtrage de Kalman permet d'enrichir cette mesure bruitée en utilisant la forme d'évolution attendu. Si le système étudié est un problème du second ordre, le signal doit à priori avoir une forme harmonique :

x(t) = R p m e iωt = R [a(t) + ib(t)] (3.24)
On discrétise le temps à la fréquence d'échantillonnage 1 ∆t . L'état de ce système au temps t k peut être décrit par la partie réelle a k et la partie imaginaire b k du signal [DSCF13] . Ainsi l'évolution entre deux pas de temps est prévue par le modèle suivant :

p k = a k b k = cos(ω∆t) -sin(ω∆t) sin(ω∆t) cos(ω∆t) a k-1 b k-1 = Fp k-1 (3.25)
La matrice dite d'observation H est quand à elle donnée par l'équation suivante : 

x k = 1 0 a k b k = Hp k (3.
p k =      a k b k ω k σ k      =      (cos(ω k-1 ∆t)a k-1 -sin(ω k-1 ∆t)b k-1 ) e σ k-1 ∆t (sin(ω k-1 ∆t)a k-1 + cos(ω k-1 ∆t)b k-1 ) e σ k-1 ∆t ω k-1 σ k-1      = f (p k-1 ) (3.
p = (2 σ + σt + σ 2 + σ2 t 2 -2σ σt + i ω -ω 2 + 2i(σ + σt)ω)(a + ib) (3.
x(t k ) = acc k = (σ 2 k -ω 2 k )a k -(2σ k ω k )b k = h acc (p k ) (3.32)
La mesure peut aussi être effectuée par la vitesse auquel cas l'équation d'observation est : 

x(t k ) = vit k = σ k a k -ω k b k = h vit (p k ) (3.

Filtrage de Kalman étendu et unscented

La technique originellement utilisée appelée filtre de Kalman étendu consiste à linéariser la fonction g (indifféremment correspondante à f ou h), c'est à dire à calculer sa matrice jacobienne, voir [DSCF13].

Une alternative à ce processus de linéarisation, est la transformée unscented1 développée par Julier et Uhlmann [JU04] pour le filtre de Kalman. Pour simplifier la démonstration du principe de cette méthode, nous présentons ici le cas d'une variable aléatoire à une dimension :

x = E [x] + ǫ := x + ǫ (3.34)
ǫ désigne indifféremment le bruit d'état ou de mesure. La transformation unscented consiste à estimer les premiers moments statistiques de la variable aléatoire résultante g(x) à l'aide d'un nombre très limité de couples (x i ,w i ) appelés points sigma. Le calcul de l'estimation et de la variance à l'aide d'une collection de points sigma est défini comme suit :

E [g(x)] = p i=0 w i g(x i ) =: ḡ (3.35) et E (g(x) -ḡ) 2 = p i=0 w i (g(x i ) -ḡ) 2 =: Σ (3.36)
L'idée originale de ce procédé se résume ainsi : (voir [JU04])

«il est plus facile d'approcher une distribution que d'approximer une fonction non-linéaire quelconque». La force de la méthode, qui semble presque trop simple, est démontrée en appréciant le développement limité de la fonction g autour de la moyenne x :

g(x) = g(x) + dg dǫ x ǫ + 1 2! d 2 g dǫ 2 x ǫ 2 + . . . (3.37)
La moyenne réelle de la distribution issue de la transformation est donc :

E [g(x)] = g(x) + dg dǫ x E [ǫ] + 1 2! d 2 g dǫ 2 x E ǫ 2 + . . . (3.38)
Parallèlement, on peut développer la fonction g pour les points discrets

x i := x + ǫ i . E [g(x)] = i w i g(x) + dg dǫ x ǫ i + 1 2! d 2 g dǫ 2 x ǫ 2 i + . . . (3.39)
L'identification termes à termes de ces deux équations fournit les conditions sur les points sigma : Deux collections de points sigma sont présentées. La première est composée de deux points sigma, nombre minimum nécessaire pour capturer la moyenne et la variance de la distribution ϕ(x) de départ. En dimension supérieure, ce type de collection est appelé simplexe. Bien-sur, les deux premiers moments d'une distribution statistique ne la caractérisent pas entièrement. En ajoutant un point, il est possible de former (avec les équations 3.40) une collection permettant de capturer l'asymétrie et l'aplatissement (skewness et kurtosis en anglais) de la distribution normale (respectivement égaux à 0 et 4). Ainsi la seconde collection est en mesure de calculer exactement la moyenne de la distribution d'arrivée (la transformation est un polynôme d'ordre 3). L'ordre de précision de l'estimation de la variance est quant à elle de 2, supérieure à celle de la collection de deux points, d'ordre 1 (seules les moyennes et variances de la distribution initiale sont exactes). La courbe noire dans le cadre à l'extrême gauche est la distribution normale "équivalente" qui possède les mêmes moyennes et variances que la distribution d'arrivée Φ(g(x)) réelle.

i w i (x -x i ) m = E (x -x i ) k , ∀m ∈ N (3.
Le tableau 1, présente les pourcentages d'erreurs commis pour le calcul de la moyenne et la variance pour les trois transformations dans le cas particulier présenté à la figure 3 -la transformation unscented peut s'appliquer aux fonctions non différentiables. -La transformation unscented est très facile à mettre en oeuvre au contraire de la linéarisation qui nécessite le calcul de la matrice jacobienne de la fonction. En pratique, celle-ci est évaluée de manière analytique ce qui peut s'avérer être une tache assez lourde et peut donc être une source d'erreur.

Les quatre équations du filtres de Kalman linéaire doivent être adaptées au calcul par la transformation unscented. On trouvera le récapitulatif de la procédure de calcul dans [JU04]. 

Plusieurs capteurs -plusieurs modes (MIMO)

p n k = [a n k , b n k , ω n k , σ n k ] T .
Le vecteur d'état est donc de dimension 4 * N . L'hypothèse de découplage modal permet d'étendre très simplement l'équation de prédiction au cas multi-modal :

p k =          p 1 k . . . p n k . . . p N k          =          f (p 1 k-1 ) . . . f (p n k-1 ) . . . f (p N k-1 )          (3.41)
Il existe plusieurs façons de prendre en compte la mesure des vibrations en plusieurs points. La première consiste à considérer les variables d'amplitudes du vecteur d'état comme celles de l'amplitude modale de chaque mode. Pour cela il est nécessaire de connaitre au préalable les déformées modales, auquel cas l'équation d'observation s'écrit :

x k = x(t k ) =         
x 1 (t k ) . . . 

x c (t k ) . . . x C (t k )          = N n=1 Φ n h(p n k ) (3.
p n k =                      a n,1 k b n,1 k . . . a n,c k b n,c k . . . a n,C k b n,C k ω n k σ n k                      (3.43)
puis dans le cas de N modes et C capteurs :

p k =          p 1 k . . . p n k . . . p N k          (3.44) 
La dimension du vecteur d'état ainsi obtenu est de N (2C + 2). La fonction de prédiction de l'état doit être adaptée à ce nouveau vecteur, ce qui est aisé à partir de l'équation 3.28. Les états sont directement égaux aux mouvements des points de mesure (déplacement, vitesse ou accélération) dans le cas de cette formulation. L'équation d'observation s'écrit donc comme suit :

x k = x(t k ) =          x 1 (t k ) . . . x c (t k ) . . . x C (t k )          =                               N n=1 h           a n,1 k b n,1 k ω n k σ n k           . . . N n=1 h           a n,c k b n,c k ω n k σ n k           . . . N n=1 h           a n,C k b n,C k ω n k σ n k                                         (3.45)

Initialisation du filtre de Kalman

La formulation du filtre de Kalman proposée La force excite le système sur une gamme de fréquence centrée autour de la résonance. Le signal d'accélération met en évidence le comportement nonlinéaire du système. On peut par exemple noter la présence d'harmoniques dans le signal d'accélération. Le taux d'harmonique est cependant très faible : la troisième harmonique présente un niveau d'accélération environs 100 fois plus faible que la fondamentale. En déplacement, les harmoniques seraient négligeables voire inexistantes. Cette observation est en accord avec l'hypothèse de faible non-linéarité qui stipule notamment que le système peut être identifié à partir de la fondamentale.

Le filtre de Kalman mis en place précédemment correspond au cas d'un régime libre. L'origine du temps est désormais déplacée au moment où la force appliquée au système s'annule. Les états initiaux sont estimés à partir de la première pseudo-période du signal (à l'aide d'une méthode de moindre carré). Le filtre de Kalman est donc initié très proche de l'état réel du système ce qui accélère sa convergence. La figure 3.5 présente le déplacement calculé, dont l'origine est décalée au point de force nulle, ainsi que l'estimation du signal analytique par le filtre de Kalman. Cette figure se focalise sur les premiers instants de la mesure.

L'estimation des états de position du système est obtenu quasi-instantanément Tout d'abord l'estimation des paramètres initiaux par la méthode de moindre carré est légèrement erronée. Par ailleurs, la matrice de covariance de l'estimation initiale, qui est elle même associée à l'erreur d'estimation des paramètres initiaux, est très difficile à évaluer à priori. Ainsi, dans les premiers moments de l'estimation, les états oscillent autour des valeurs réelles du système puis le filtre est convergé comme on peut le voir sur la figure 3.6. Ensuite, lorsque le filtre est convergé, la variation des paramètres modaux est attendue puisque le système observé est non-linéaire.

Les points extremums de la mesure temporelle de déplacement permettent aussi de déduire une estimation directe de la pulsation puis de l'amortissement propre par la méthode du décrément logarithmique. Notons que ce calcul est rendu possible par le fait que la mesure ne fait apparaitre qu'une seule sinusoïde et qu'elle n'est pas bruitée. La figure 3.7 présente les courbes de pulsation et d'amortissement équivalentes en fonction de l'amplitude maximale de vibration p m , obtenues par la méthode du filtrage de Kalman et par la méthode directe. Les courbes de pulsation sont identiques. On observe ici un temps de convergence du filtre de Kalman qui semble relativement long avant d'atteindre la valeur réelle. En réalité, l'estimation est d'emblée largement acceptable puisque l'erreur est de l'ordre du millième de Hertz en fréquence et de 0.05% d'amortissement (absolu). Le filtre commence à diverger à la fin de la mesure car l'amplitude du second mode est noyé dans le bruit de mesure comme on peut le constater à la figure 3.10. Dans le cas d'une mesure réelle, la limite de sensibilité de l'accéléromètre peut faire disparaitre la présence du mode.

Φ = Φ Iwan Φ lin =    1 1 2 -1 -1.8 2    (3.
La figure 3.12 présente les courbes de pulsation et d'amortissement équivalentes en fonction de l'amplitude maximale de vibration p m , obtenue pour le premier mode (courbe bleue). Ce type d'évolution est typique de ce qu'on observe dans le cas de structures réelles. Cette figure présente aussi les courbes obtenues avec la mesure de déplacement non-bruitée d'un seul mode par la méthode de filtrage de Kalman ainsi que celle calculée au chapitre précédent par la méthode de balance harmonique numérique. Les courbes de pulsation sont identiques.

Ici encore on observe une légère différence entre la courbe d'amortissement prévues par le calcul issu du chapitre précédent (courbe rouge) et celles identifiées à partir du modèle simulé en réponse libre (courbes noir et bleue). Cependant, cette erreur est d'une part acceptable (inférieure à 0.2% d'amor-tissement) et doit certainement être attribuée au calcul de l'amortissement effectué au chapitre précédent (comme le ratio de l'énergie dissipée sur l'énergie de déformation). Auquel cas, l'identification par la méthode du filtrage de Kalman n'est pas entachée d'erreur puisqu'elle n'utilise pas cette définition. Cette erreur peut aussi s'expliquer par d'autres causes dont les effets peuvent se cumuler (ce qui rend difficile son interprétation), à savoir : -Un amortissement numérique généré par le solveur ode23t.

-L'hypothèse de faible non-linéarité et les simplifications qu'elle engendre dans le système d'état à identifier. Par exemple, on ne peut pas exclure un transfert d'énergie de la fréquence fondamentale vers les harmoniques supérieures.

Conclusion

Dans ce chapitre nous avons développé une formulation du filtre de Kalman adapté au cas de vibrations de structures faiblement non-linéaires en régime libre. La formulation proposée permet l'identification directe des paramètres modaux équivalents sans aucun recours à des méthodes de filtrage classique ou d'intégration préalable. En outre, cette méthode permet de décomposer la contribution de chaque mode sans aucune hypothèse de proximité fréquentielle. Enfin, la méthode converge très rapidement, ce qui est un critère très important dans le cas d'oscillations libres amorties. La contrepartie de la performance du filtrage de Kalman est la difficulté de sa mise en oeuvre notamment en ce qui concerne la définition des matrices de covariances.

La méthode a été validée pour le cas d'un oscillateur à plusieurs degrés de liberté dont la dynamique est basée sur une formulation proche de la physique. L'estimation des paramètres équivalents par la méthode de filtrage de Kalman à partir de la mesure de déplacement ou bien à partir de la mesure d'accélération donne des résultats identiques. La cohérence des résultats obtenus par le filtrage de Kalman avec ceux obtenus au chapitre précédent valide la méthode présentée.

Chapitre 4

Un outil numérique pour la simulations locales des liaisons 

Préambule

Le chapitre précédent traite de l'identification expérimentale des paramètres modaux équivalents d'une structure assemblée. L'analyse expérimentale est une méthode de caractérisation coûteuse à mettre en oeuvre et entièrement à postériori de la phase de conception. Pour des besoins de dimensionnement et d'optimisation évidents, on doit aussi être en mesure d'estimer ces paramètres en amont de la production à partir de modèles numériques. C'est le propos de ce chapitre.

Les modèles de structures assemblées dont la vocation est de fournir une estimation correcte de la dissipation énergétique par frottement doivent nécessairement pouvoir reproduire convenablement le phénomène physique qu'est le contact 1 . Pour cela, il est nécessaire de construire des modèles très raffinés aux endroits de contacts. La manière la plus directe d'en extraire les paramètres dynamiques est de reproduire numériquement l'essai de caractérisation expérimental. Cependant, les différences d'échelle (en espace et en temps) entre la dynamique du contact et celle d'une grande structure ne permettent pas dans la pratique (c'est à dire sans y consacrer un coût prohibitif) de calculer la réponse temporelle d'un tel modèle. Les méthodes de recherche de solutions de régimes établis destinées aux systèmes non-linéaires (e.g. méthodes de perturbation, méthode de tir ou balance harmonique) ne sont, en l'état actuel des choses, ni applicables ni dédiées aux systèmes dépassant une centaine d'éléments non-linéaires.

Parallèlement, nous avons déjà évoqué le comportement paradoxalement quasilinéaire des structures assemblées bien que les lois régissant le contact soient très fortement non-linéaires. La tentation de travailler dans l'espace des modes de la grande structure est donc forte. Ce chapitre étudie l'idée d'utiliser les modes de la structure linéarisée comme conditions aux limites sur un modèle détaillé réduit aux seules liaisons. L'hypothèse de Masing est aussi exploitée afin de réduire le nombre de calculs à réaliser. Le principe de cette méthode est présenté dans la thèse de Heller [Hel05]. Il s'agit ici de reprendre les équations de la dynamique afin de proposer une formulation générique non-linéaire pour le calcul de l'amortissement ainsi que celui de la fréquence équivalente. Aussi nous proposons une formulation basée sur l'énergie de déformation qui est adaptée aux cas de comportement non-linéaires. Deux algorithmes sont proposés ; le premier est basé sur l'hypothèse de couplage faible, c'est à dire que les déformées modales sont supposées constantes. Sous cette hypothèse, la méthode aboutit à une formulation quasi-statique corrigée (l'inertie est prise en compte), ce qui, de fait, filtre les comportements en très haute fréquence responsables de la lenteur des calculs dynamiques par intégration temporelle. Le second est un algorithme en boucle fermée intégrant une itération de correction de la déformée modale.

L'intérêt premier de ce développement est le faible coût de calcul qu'il né-1. Ceci n'est pas le sujet de ce chapitre (ni celui de cette thèse), on pourra se référer aux nombreux travaux sur le sujet cités dans le chapitre d'introduction.

Préambule

cessite. Aussi dans le cas de l'algorithme en boucle ouverte, la méthode peut facilement s'adapter à n'importe quel "solveur" de problème de MMC avec contact et frottement. Par exemple, le cas présenté a été résolu à l'aide du logiciel Abaqus.

Ce travail a fait l'objet d'une publication dans la revue International Journal of Mechanical Sciences en 2013 [FCD13]. La forme de l'article a été conservée, c'est la raison pour laquelle ce chapitre est rédigé en anglais.

Introduction

Under a dynamic load, riveted and bolted joints are known to give rise to high damping ratios and moderate decrease of resonant frequency with amplitude in assembled structures. This so-called micro-slip phenomenon is known to be caused by the partial sliding of the contact interfaces in joints, see [GK56], [Gro85] [GN01], [PDCA10]. A large number of models assuming Coulomb friction have been developed to describe the dissipation of energy in joints. Among the most famous benchmarks, one can mention the Goodman and Klumpp clamped beams with a longitudinal interface [GK56], the Metherell and Diller sandwich beams preloaded with a pure transverse force [MD68] and the Earles shear lap-joints [Ear66]. In order to get the frictional dissipation over a cycling load, these authors used an analytical approach to solve the model equations with constant and uniformly distributed normal stresses and this approach is still being investigated today, see [PDCA10] and [Nan06] [DOOO08] These studies have been extended to nonuniformly distributed normal stress with the use of the finite element method, see Chen and Deng [CD05] and Heller [Hel05]. In all these models, the joint is loaded with an axial force F, and the evolution of the interfacial stresses and slippage are assumed to be quasi-static. Frictional dissipation is then given with respect to loading cycles.

In general, the slip in joints is due to the dynamic magnification in the proximity of the resonance. Several experimental studies have investigated the dynamic non-linear behaviour of jointed structures close to resonance for uniformly [DCP13] and nonuniformly [HFP09] distributed normal stress. The classical lap-joint benchmark fitted with two beams connected with a bolted joint in its center has been experimentally investigated [TC88], [HSM + 04], [JAM07]. The main difference with the previous works relies on the fact that the stresses applied to the lap joint are due to modal displacements of the structure. In this specific case as for most real vibrations, the joint is dynamically stressed in both axial and normal directions. Under linear assumption the use of modal coordinates is useful to reduce the size of vibrational problems, the extension to weak non-linear dynamics is investigated today [Qui12], [Seg10] The purpose of this work is to extend the former quasi-static approach to modal solicitations through the use of the finite element method.

It has been observed that after a number of repetitive loading cycles, the response of a bolted joint structure, may lead to a stabilized state called limit cycle. In the case of an assumed linear structure, this limit cycle is known. Nowadays a large number of methods allows to compute non-linear dynamics. We can especially mention the harmonic balance or shooting methods [PVS + 09] associated with continuation techniques. These methods allow for the computation of a limited number of non-linear degrees of freedom. One of the strategies investigated to model a mechanical joint consists in reducing it to a small number of degrees of freedom by building a macro-model of it [Seg02], so that these non-linear methods can be applied, see [AJ07] or [JSP10]. The (experimentally) identified parameters in these macro-models are specific to the chosen configuration. In a design context, the aim can be to search for the best geometrical or material configuration by doing a parametric analysis which is not possible with macro-models since their parameters are not directly linkable to the configuration. In this case one needs to have a detailed finite element model of the joint. This strategy has been investigated with an assumed local Coulomb law for friction see [CWRU06] or [RCB11]. The meso [WO08] and micro-geometry [EPB11] of the contact interfaces in joints is often critical for the estimation of frictional dissipation and so a large number of degree of freedom should be kept in the model in order to be predictive. However the computational cost of a classic non-linear dynamic analysis, even if it is associated with substructuring techniques, generally does not allow to take into account a large number of non-reductible non-linear elements.

The goal of the presented method is to identify the evolution of the dynamic properties of an assembled structure (resonant frequencies and damping) along with the amplitude of vibration. It is based on a corrected quasi-static analysis associated with the Masing hypothesis. This description simplifies the modelling of hysteretic behaviors of joints. Using this method, the considerable numerical expense due to the non-linear dynamic can be avoided while still giving sufficiently accurate computations by keeping a detailed model of the joints. The non-linear modes being considered separately, any coupling effects that can exist in non-linear dynamics are neglected.

The governing equations and development of the method are detailed in the first section. In order to improve the simulation, two modal shapes correction methods are developed in the second section. Masing assumptions are discussed in the third. The method is finally investigated on a lap-joint benchmark and results are discussed.

Governing equations

We consider a linear structure fitted with one or several non-linear joints subjected to a dynamic excitation. Using a finite element formulation, one can write the non-linear dynamic equation of the problem :

Mü + Ku + f NL (u, u, r) = f e (4.1)
Where M and K denote, respectively, the mass and stiffness matrices. u is the nodal displacements vector, f e the external forces and f NL denotes the nodal contact and friction forces which may depends on internal variables r.

Computation of the linear mode basis

The first step of the method consists in a linearization of the macro-size model of the assembled structure in order to compute its linear modes. This step can be conducted on a model with a rough mesh of the joints. The static equilibrium u 0 is the solution of the static problem :

Ku 0 + f NL = P (4.2)
P denotes the clamping force. Contact stiffness is linearized around u 0 by calculating its Jacobian matrix to get a linearized stiffness matrix :

K lin-Low = K + ∂f NL ∂v u 0 (4.3)
v denotes a small variation around the static equilibrium (u = u 0 + v).

An eigenvalue extraction can be conducted since the problem has been linearized :

(K lin-Low -S 2 M)Ψ = 0 (4.4)
We get the linear modes basis Ψ and natural angular frequencies S. Since this linear mode basis is obtained from the linearization of the contact around the static equilibrium, it stands for low-energy vibrations as shown in figure 4.1. Alternatively, a linearized stiffness matrix can also be found for higher Force Amplitude K lin-Low K lin-High 

Model reduction

The whole structure can be split into two substructures as shown figure 4 

M aa üa + M ab üb + K aa u a + K ab u b + f NL (u a ) = 0 (a) M bb üb + M ba üa + K bb u b + K ba u a = f e (b) (4.5)
It is firstly assumed that mode shapes of the structure are only altered in the domain Ω a by the weak non-linear behavior of the joints. This assumption is extensively discussed in the following section. Under this assumption, the linearized structure basis Ψ can be used as "boundary conditions" on the domain Ω a . The sub-structuring presented in figure 4.2 is not carried out the same way than for Craig-Bampton reduction. Actually, the domain Ω a is not only limited to the non-linear degrees of freedom, but extend to the region "close" to the joint. Thus the admissible displacement field in Ω a is enlarged. We consider (ω, Φ), one of the mode of the linear modal basis. The nodal displacement in the linear domain is u b = Φ b q where q denotes the modal amplitude. In this case, inertial forces are Mü = -ω 2 MΦq. Equation 4.5a becomes :

K aa u a + f NL (u a ) = (ω 2 M aa Φ a -K ab Φ b )q (a) (4.6)
The solution of this equation is u a ; Φ is an element of the linear modes basis Ψ which has been previously computed. M ab is neglected here since mass matrix coupled terms are often neglected by numerical integration in FEM but these terms can also be kept. In this equation, all the degrees of freedom belong to the domain Ω a . The problem has been reduced to the joint only. Acceleration terms no longer exist in equation 4.6 : the problem has also been reduced to quasi-static. This quasi-static evolution is consistent with a Coulomb friction modelling.

Amplitude-dependant mode shape

The partial slippage that takes place in joint interfaces during vibration is characterized by a slight decrease of the contact stiffness with amplitude of excitation [Seg10]. The greater the magnitude of vibration is, the smaller the gripping surface is. In practice, the situation where the effective joint stiffness would massively decrease would be equivalent to a destruction of the joint.

Since joints are firstly designed to maintain the integrity of structures, it is assumed that the softening due to micro-sliding is moderate in the case of bolted connections. As a result, the mode shapes of assembled structures are often assumed to be weakly amplitude-dependent [Qui12]. Under this so-called weak non-linear assumption, the hereby method is founded on the intuition that mode shapes are only affected in the region close to the local contact interfaces. As a result, it is needed to at least consider an amplitudedependent mode shape in the region close to the contact interfaces. In this section two algorithms are proposed. The first one allows to deal with the case of this weak non-linearity assumption when the mode shape is assumed to vary only in the domain of the joints (Ω a ). The second one extends the correction of the mode shape to the whole domain.

For both approaches, the instantaneous amplitude will be given with respect to the instantaneous strain energy which is particularly convenient in the case of amplitude-dependent mode shapes. The solution of equation 4.6 is the displacement field in the domain Ω a that should correspond to the strain energy e = 1 2 (Φq) T K(Φq). However, since the solution of eq.4.6 is not exactly the mode shape, the strain energy has varied and the displacement is denoted u a (Φ, e+ǫ) where ǫ denotes the energy residual. For convenience, u a (Φ, e+ǫ) is replaced by u a (e+ǫ) by keeping in mind that an unique amplitude-dependent mode Φ is considered.

Open loop algorithm

The problem is solved by increasing the strain energy by a fixed δe between two steps, thus e n = e n-1 + δe. The initialisation of u a (e n ) and boundary conditions u b (e n ) at step n are deduced from step n -1 by considering the straightforward continuation :

u(e n ) = αu(e n-1 ) with α 2 =
e n e n-1 (4.7)

This updating ensure that u(e n ) T Ku(e n ) = α 2 u(e n-1 ) T Ku(e n-1 ) = e n . Since linear assumption applies for low energy, the first iteration is given by u(e 1 ) = u(δe) = Φδq, (thus δq 2 = δe/ΦKΦ).

In the case of non-linear dynamic, the angular frequency is not constant.

The angular frequency must be replaced by the ratio of strain energy and kinetic energy. In the case of a linear structure, the angular frequency is ω 2 = (Φ T KΦ)/(Φ T MΦ). Generalized to the non-linear case, equation 4.6 is finally rewritten as :

K aa u a (e n + ǫ) + f NL = u(en) T Ku(en) u(en) T Mu(en) M aa u a (e n ) -K ab u b (e n ) (a) (4.8)
The solution of this equation is the corrected mode shape u(e n +ǫ) = [u a (e n + ǫ), u b (e n )] T at the updated energy e n + ǫ = u(e n + ǫ) T Ku(e n + ǫ). The assumption of weak non-linearity can be checked by making sure that ǫ < ǫ T ol = 1%δe. A scheme of the incrementation is presented figure 4.3 and a flowchart of the algorithm is presented figure 4.6. This method is an open loop algorithm so the solution is assumed to be reached at first step. This approach is straightforward and fast and can easily be implemented on commercial solvers. On the other hand such systems are known to generate drift. However, for small to moderate non-linear cases (i.e. for most assembled structure problems), the potential drift generated with such approach should be acceptable.

Displacement field (u)

Energy 

Energy residual

In this section, a closed loop algorithm is presented. The insight is to extend the same approach that was used for the domain Ω a , to the whole structure. Equation (5b) is not exactly satisfied by the solution of eq.4.8. The residual mode shape in domain Ω b can also be computed. The solution of eq.4.8 is now used as the boundary conditions for the static problem in domain Ω b . Besides, the inertial forces M bb üb in domain Ω b are approximated by -ω 2 M bb u b . Thus, the corrected mode shape u b (e + ǫ) is the solution of :

(K bb -u(en) T Ku(en) u(en) T Mu(en) M bb )u b (e + ǫ) = -K ba u a (e + ǫ) (b) (4.9)
This equation requires the use of a direct linear solver or the computing of the inverse of the matrix C = (K bb -u(en) T Ku(en) u(en) T Mu(en) M bb ) that can be extremely CPU time consuming for large systems even if this matrix is usually very sparse.

Enhanced basis

To avoid such heavy computation, an enhanced basis made of a predetermined set of corrector vectors can be constructed and used. This set is computed by considering different load cases in the contact interfaces corresponding to different amplitudes. Indeed, the evolution of the contact pressure during the movement can be inferred from the linear mode shape. For instance, a "high amplitude" vector can be computed by tying the different areas where the contact is likely to occur for high amplitude. Thus, this appropriate enhancement vector Φ High is the solution of the linearized eigenstate problem eq.4.4 where K lin-High is computed from this high amplitude contact state. The corresponding linearization is shown figure 4.1. The enhanced basis Π = [Φ Low , Φ High ] is then orthonormalized with regard to the mass matrix (Π T ⊥ MΠ ⊥ = I). The actual deformation at energy e, is assumed to be somewhere "between" the low and the high energy mode shapes. More precisely, the real deformation is approximated by a linear combination of the vectors of this enhanced basis. The optimal solution p is the one that minimize the norm of eq 4.9 : min( K ba u a (e + ǫ) + CΠ b p ) (4.10)

The optimal solution of this problem can be computed directly in the case of the quadratic norm using the ordinary least square. This estimated linear combination is :

p = -(Π T b C T CΠ b ) -1 Π T b C T K ba u a (e + ǫ) (4.11)
Note that the dimension of the square matrix Π T b C T CΠ b is 2. Thus, instead of solving eq.4.9 directly, which can be very time consuming, the solution of this equation is approximated by u(e + ǫ) = Πp.

Convergence of modal shape

In the closed loop algorithm, the modal shape is also corrected in the domain Ω b which means that the convergence of the solution is not reached at first step. Once a solution is found it is used as a new initialisation for equations 4.6 and 4.9, as shown figure 4 non-linearities that cannot be covered by the open loop algorithm. Note that this algorithm can be seen as a non-linear dynamic system. As such, the stability of this algorithm is not guaranteed and the convergence cannot be proved for any case and has not been investigated so far.

Computation of the dynamic parameters 4.5.1 Computation of the dissipated energy with the use of the Masing rules

The dissipated energy D(e n-1 → e n ) between the steps n -1 and n is the work of the friction force from the state u(e n-1 ) to the state u(e n ) :

D(e n-1 → e n ) = u(en) u(e n-1 )
f NL du t (4.12) It is computed by numerical integration. The conservative total energy of the system is equal to the maximum of the strain energy in a cycle E = e max .

To avoid the computing of a complete cycle for each energy E, it is assumed that the hysteretic behaviors of the joint follows the Masing rules [Mas26]. This description simplifies the modelling of hysteretic behaviors by assuming that a full cycle in a force-amplitude hysteresis can be extrapolated from the initial loading (so-called backbone curve) as shown figure 4.5. The hysteretic path obtained during cyclic loading are assumed to be of the same form as the backbone curve except for an expansion by a factor of two (with the origin shifted to the loading reversal point). The Masing's assumptions are often made in the case of jointed structures, see [WO08] or [AB11], since these rules are observed by most macro-model used to model mechanical joints, such as any combination of jenkins elements, see [Hel05] or [Seg10]. Besides, the finite element model of a jointed structure that assume local Coulomb friction can be seen as an Iwan's series-parallel model [Seg02] (in the case where the normal pressure is maintained constant). As a result, it is assumed that the model is consistent with the Masing rules. According to these assumptions, the dissipated energy over a cycle of amplitude E is extrapolated from the dissipated energy over the initial loading : 

D(E) = 4 n,en=E n=1 D(e n-1 → e n ) ( 4 

FEP and DEP

The aim of the method is to get the evolution of the resonant frequencies and damping with total conservative-energy E of an assembled structure (respectively frequency-energy plots (FEP) and damping-energy plots (DEP)) This computing can be post-treated.

The frequency is computed as the ratio of the strain energy and the kinetic at total energy E :

f p (E) = 1 2π u(E) T Ku(E) u(E) T Mu(E) (4.14)
It is also convenient to give an equivalent damping ratio, instead of a dissipated energy per cycle. In the case of a linear and viscously damped system, the modal damping is the ratio of the dissipated energy and the total conservative energy. A generalisation to an amplitude-dependent damping ratio can be computed as :

ξ(E) = D(E) 4πE (4.15)

Dynamic behavior of the structure

The dynamic steady-state response of the structure to an harmonic load f e , of angular frequency ω, can be obtained from the computed FEP and DEP under several assumptions : -Like for linear case, the system is reduced on N uncoupled modes so the displacement of the structure is assumed to be u = N k=1 u k (E k ), where u k (E k ) denotes the shape of the mode Φ k for energy E k .

-The response of the structure is assumed to be composed exclusively of the first harmonic. In frequency domain, u(E(t)) is replaced by û(E(ω)) = u(E(ω))e jϕ(ω) , where û denotes the complex amplitude u. ϕ k denotes the phase between force and mode k. This assumption is justified in the case of weak non-linearity. -For each mode Φ k , an "equivalent" amplitude-dependent hysteretic damping η k = 2ξ k (frequency-independent) is assumed. Under these assumptions, equation 4.1 is simplified to N non-linear single degree of freedom systems :

(K(1 + jη k ) -Mω 2 )u k e jϕ k = f e , ∀k ∈ [1 : N ] (4.16)
Multiplied by u k T , the previous equation becomes :

ω 2 k (E k )(1 + j2ξ k (E k )) -ω 2 = u k T (E k )f e e -jϕ k u k T (E k )Mu k (E k ) , ∀k ∈ [1 : N ] (4.17)
The solutions (E k (ω), ϕ k (ω)) of these non-linear algebraic equations are obtained with an optimization technique.

Example : the lap-joint benchmark

Computation of the Low-energy basis Ψ; eq.( 4 

The model

The method is investigated on a clamped-free lap-joint benchmark depicted in figure 4.8. The structure consists of a 300mm×25mm×5mm beam made of steel (Young modulus is 210 Gpa and poisson's ratio is 0.3) with a lap joint at the bottom. According to the presented method, two finite element models have been carried out.

-The macro-size model of the whole structure which is dedicated to the computing of the linear modes basis is roughly meshed (around 6000 quadratic -The bolted-joint model (Ω a domain only) is meshed with around 10.000 quadratic tetrahedron elements, see figure 4.8. Normal contact force is governed by a ABAQUS "hard contact" (Lagrangian contact). Friction is modelled with the Coulomb law with a constant friction coefficient µ = 0.3 and using a penalty method with an elastic slip fixed to 0.1µm. This non-linear contact law is only considered at the interface between the two beams. The bolt clamping force is simulated with a preloaded spring. The pre- 

The dynamic simulation

In order to check the method, the obtained results can be compared with a dynamic simulation. This simulation consists in the free response of the whole structure initialised with the linear mode shape with a displacement of the top of the beam equal to 5 mm (y direction).

    

Mü + Ku + f NL (u, u, r) = 0 u(t = 0) = Φq max , with Φ T KΦq 2 max = 2e max u(t = 0) = 0 (4.18) This system is the numerical equivalent to the experimental stopped sinus, see [DCP13]. Since the global non-linear behavior is moderate, the free response is expected to be almost exclusively composed of the first bending mode. This analysis is computed with the implicit integration scheme of the Abaqus/standard solver. The finite element model is the same detailed model in the domain of the joint Ω a and meshed with approximatively 5000 quadratic tetrahedron elements in the domain Ω b ; 15.000 quadratic tetrahedron elements in total count for this model. The instantaneous energies (strainenergy, kinetic-energy, total energy E) obtained with this dynamic simulation are plotted figure 4.9 in the case of the first vertical bending mode Φ. Figure 4.9 also shows the sum of the dissipated energy since the beginning of the simulation. The total conservative-energy is dissipated by frictional dissipation. The numerical damping, that could lead to an overestimation of the actual dissipation, induced by numerical integration is very low in this simulation since the dissipated energy computed from the work of the friction force is almost equal to the loss of total conservative-energy.

Results

Figure 4.10 shows a comparison between both computed dissipated-energy per cycle D, versus the total conservative energy. Of course, in the case of the dynamic analysis, the total energy E is not constant over a period/cycle because of the frictional dissipation. The mean value over the cycle of the total conservative-energy is used for the horizontal axes of figures 4.10 and 4.11. 4 is also plotted. In the case of the dynamic analysis, the frequency is computed by looking at the time spent between three maximums of strain-energy (strain energy has two maximums in a period). In order to have a clear and vivid idea of the problem, the magnitude of vibration, in figure 4.11, is also given with respect to the peak displacement of the top of the beam in the case of the normal mode shape. It is related to the total energy thanks to :

u top = Φ top q = Φ top 2E Φ T KΦ .

Discussion

The Damping-Energy Plots and the Frequency-Energy Plots computed with the open loop algorithm are very close to those computed with the full dynamic simulations. First, the principal trends of the evolution of damping and frequency along with amplitude are respected : Magnitude are globally very close, shapes are identical and maxima are located at the same energies for both computings. The main error is the frequency for low vibrational energy. A part of the total computed strain energy is due to the tightening force, and cannot be easily subtracted, which may explain these differences for low energies. However, as the vibrational energy increases this tightening strain energy becomes negligible. Similarly, even if this problem looks significant in the case of the lap-joint benchmark, the tightening strain energy should be negligible compared to the vibrational energy in the case of a real massive structure. Besides, the frequency of the low energy mode computed using eq.4.3 makes the error measurable.

In this example the structure is fitted with only one bolted joint. Generally, the domain Ω a does not need to be restricted to a located area. Thus, the method can be used for a structure fitted with several joints. In the case of the presented lap-joint model, the computing cost of the presented quasistatic analysis was approximatively 20 times less important than the complete dynamical analysis. In the case of a real structure, this ratio should even be smaller since the domain Ω a is generally a smaller part of the total volume of the structure than in case of the presented lap-joint structure.

Conclusion

Industrial companies face a growing need for the geometry of joints to maximize the dissipated energy by friction and ensure an acceptable softening. However detailed finite-element models for joints cannot be taken into account with classic dynamic analysis because of the high computational cost involved by non-linear dynamics. As a result, the impact of the geometry of joints cannot be studied in an industrial calculation process. This work has been motivated by this need. The presented method is based on a quasi-static formulation from which result an open loop algorithm. As a result, it requires low computational costs and can easily be implemented on commercial solvers. It is adapted for the systems that shows small to moderate non-linear behaviors such as assembled structures. A closed loop algorithm intended for larger non-linear problems is also presented. The method is investigated on a realistic finite element of a lap-joint structure. It is shown that the proposed method is an accurate enough design tool for the estimation of the dynamic properties of assembled structures.

Bibliographie du chapitre 4 : Simulations locales

Chapitre 5 

Essais de caractérisation

Bancs d'essais de caractérisation

Montage lap-joint encastré-libre

Géométrie -conditions et moyens d'essais

Le premier montage étudié est composé de deux poutres en acier rectangulaires de 25mm par 5mm assemblées par deux boulonnages de type M6. La structure est montée en condition "encastrée-libre" et sa longueur totale est de 300mm. Un épaulement, de profondeur égal à la moitié de l'épaisseur de la poutre, est usiné (fraisage puis rectification). L'intérêt de cette géométrie est d'ordre pratique : elle permet construire facilement une poutre monolithique de même dimension. La figure 5.2 présente la géométrie du montage ainsi qu'une photo des poutres réalisées.

La poutre est montée en condition de limite encastrée libre. Une attention toute particulière a été portée à l'encastrement pour qu'il soit suffisamment rigide et surtout qu'il engendre une dissipation la plus faible possible. Afin de limiter cet effet indésirable, la poutre est fortement serrée et collée dans un étau massif.

On ne s'intéresse ici qu'au premier mode de flexion autour de l'axe z de la poutre. Une analyse modale numérique permet de tracer la forme de la déformée modale, figure 5 La poutre monolithique est installée dans la même configuration que celle de la poutre assemblée. Notamment, les vis d'assemblage sont montées.

Résultats d'essais

On choque fortement la structure, dans la direction transverse (selon la direction y), au sommet afin d'obtenir des amplitudes de vibrations importantes. La figure 5.5 présente la transformée de Fourier des signaux de force d'impact et d'accélération mesurés dans le cas où le serrage est de 1000N sur les deux vis. Le gain de la réponse impulsionnelle fait apparaitre les premier deux modes de flexion autour de l'axe z sur la bande de fréquence 10-1000Hz. Il existe un autre mode de flexion autour de l'axe y dans cet intervalle qui n'est pas excité (ni observable).

On observe un taux d'harmonique quasiment négligeable, ce qui confirme l'hypothèse de faible non-linéarité. Ce taux d'harmonique est légèrement supérieur pour les configurations moins fortement serrées.

La méthode de filtrage de Kalman permet ensuite d'estimer les courbes de L'écart entre les courbes de la poutre monolithique et celles de la poutre assemblée prouve que le comportement présenté est bien le fait de la liaison d'assemblage.

La poutre assemblée en flexion présente un comportement similaire pour toutes les configurations de serrage. Tout d'abord, le ratio d'amortissement estimé croît avec l'amplitude puis atteint une valeur maximale (qui semble relativement indépendante du serrage) avant de décroitre. La décroissance de la courbe d'amortissement ne traduit pas une diminution de la dissipation par cycle avec l'amplitude, mais le fait que la dissipation croit moins vite que l'énergie de déformation. Le maximum n'est pas atteint pour les serrages importants dans la gamme d'amplitude appliquée.

Au contraire, l'amplitude pour laquelle cette valeur maximale d'amortisse- ment est atteinte est directement liée à la force de serrage. Ceci s'explique simplement par la loi de Coulomb : La force de glissement permettant le glissement d'une zone localisée est d'autant plus importante que la force normale (le serrage) est importante.

Parallèlement, la structure a un comportement assouplissant c'est à dire que la raideur décroit avec l'amplitude de vibration. Ce caractère non-linéaire est lié à la perte d'adhérence de l'interface de contact à mesure que l'amplitude de vibration croît. La variation en fréquence est d'autant plus forte que le serrage est faible. Cette observation est aussi valable pour la raideur à l'origine. En effet, plus le serrage est important, plus la fréquence de résonance à faible amplitude est importante.

Les courbes de fréquence et d'amortissement de la poutre monolithique permettent de juger de la qualité de l'encastrement et des sources de perturbation autres que celles de la liaison. Les paramètres modaux sont quasiment indépendants de l'amplitude ce qui correspond à un comportement linéaire. Il faut remarquer que la fréquence de résonance de la poutre monolithique est inférieure à celle de poutre assemblée, contrairement à ce qu'on devrait attendre. Il s'agit ici d'une erreur de fabrication. L'épaisseur de la poutre est légèrement inférieure à 5mm et inégale. Finalement, les rainures usinées à 2.5mm sont trop profondes sur la poutre monolithique et la poutre est plus souple qu'espérée.

L'amortissement résiduel pour les valeurs d'amplitude proches de zero est environ de 0.2% dans le cas de la poutre monolithique, relativement indépendant de l'amplitude et compris entre 0.3% et 0.4% dans le cas de la poutre assemblée. Cette observation tend à montrer que l'amortissement induit par le régime de micro-glissement, régime pour lequel le glissement n'est obtenu qu'à l'échelle des aspérités pour de faibles valeurs d'amplitudes, est faible devant celui induit par le régime de meso-glissement (échelle de l'ordre du dixième de millimètre) obtenu pour les amplitudes plus importantes. Cette observation permet de croire que la dissipation dans les assemblages peut être évaluée au moyen de simulations éléments finis avec une hypothèse de frottement de Coulomb selon par exemple la méthode proposée au chapitre précédent.

Couplage modal

Le choc appliqué au sommet de la poutre excite le second mode de la poutre assemblée comme on peut le voir sur la figure 5.5. En réalité si l'accélération du second mode est comparable au premier, le déplacement est bien plus faible car sa fréquence est bien plus élevée. Les courbes de fréquence et d'amortissement estimées du second mode sont tracées sur la figure 5.7. L'énergie dissipée par cycle par frottement est d'autant plus grande que le déplacement est important. Ainsi, les taux d'amortissement mesurés sont très faibles. Cependant, la dépendance des paramètres à l'amplitude est nonnégligeable bien que le déplacement du mode soit extrêmement faible. Il est donc probable que les courbes obtenues traduisent un phénomène de couplage. Les courbes identifiées, dans le cas où le second mode aurait été excité seul seraient probablement bien moins dépendantes du temps et donc de l'amplitude apparente. Ce phénomène est étudié dans le dernier chapitre de la thèse. Nous chercherons par la suite à faire en sorte de n'exciter qu'un seul mode du banc d'essai à la fois pour limiter le phénomène de couplage. Nous faisons l'hypothèse qu'un mode n'est affecté par un autre que si son amplitude est d'ordre au moins aussi importante. Dans le cas présent, cette hypothèse revient à dire que si les courbes du second mode sont fortement affectées par le premier mode, l'inverse n'est pas vrai.

Répétabilité

Une courte campagne d'essais a été menée afin d'estimer la répétabilité de la procédure de serrage. Pour cela, entre chaque mesure, les deux vis-écrous sont dévissées puis revissées l'une après l'autre. Les deux pièces sont constamment maintenues en contact, ce qui permet de garder un positionnement relatif des interfaces assez rigoureusement identique entre chaque mesure. Pour chacune des configurations de serrage, la figure 5.8 présente les courbes de fréquence et d'amortissement estimées pour quatre différentes mesures. Les courbes estimées se superposent relativement bien, ce qui traduit une certaine répétabilité de la procédure de serrage. Les courbes correspondantes aux serrages 250N et 1000N font apparaitre un léger saut ce qui, au moment des essais, n'avait pas suscité d'intérêt. Ce défaut est en partie expliqué dans la suite de ce chapitre.

Corrélation essais-calculs

Les résultats obtenus par la simulation pour la poutre de même géométrie sont rappelés sur la figure 5.9. Dans la simulation, la rotation de la poutre à la base est libérée. La condition de limite de rotation nulle est en réalité remplacée par une raideur de torsion ce qui permet de recaler les courbes de fréquences2 . Cette modélisation est physiquement valable car elle permet de tenir compte de la souplesse de l'encastrement. La corrélation entre essais et calculs est excellente si l'on tient compte du fait que le contact frottant est modélisé par une simple loi de frottement de Coulomb locale. En effet, les tendances d'évolutions des paramètres de fréquence et d'amortissement modaux sont vérifiés aussi bien en ce qui concerne la dépendance à l'amplitude que celle à l'effort de serrage. Aussi, la valeur maximale du taux d'amortissement (∼ 4%) est tout à fait comparable à celle observée expérimentalement (∼ 5%).

Les amplitudes pour lesquelles le taux d'amortissement maximal est atteint sont plus faibles dans le cas de la simulation qu'en réalité. Ceci peut s'expliquer par plusieurs raisons :

-La raideur de torsion des vis a été négligée ce qui peut entrainer une légère sous-évaluation de la souplesse de la liaison. -Le coefficient de frottement choisi µ = 0. Le plan moyen de la surface réelle est défini. On interpole ensuite la mesure aux noeuds d'un maillage préalablement construit à partir de la géométrie nominale. La hauteur des points est finalement modifiée pour prendre en compte ces défauts. La distance moyenne entre deux noeuds du maillage est fixée à 0.2mm. Le maillage du modèle éléments finis ainsi modifié est présenté sur la figure 5.12 Par manque de temps, cette voie n'a pas pu fournir de Figure 5.12 -Interpolation de la surface réelle par les points du maillage du modèle éléments finis. résultats. Notons seulement que la convergence du calcul du problème semble plus difficile à obtenir que dans le cas de la géométrie nominale. Cette piste reste intéressante pour étudier l'influence des défauts d'ordre 1 ou 2. Bien sur cette approche est exclue dans le cadre d'un processus de calcul systématique, tant son coût est important.

Banc d'essai de la liaison boulonnée SSS du SYLDA5

Le 

Liaison SSS du SYLDA5

Ainsi tout phénomène de couplage est à peu près exclu. Le décrément de la structure libre est mesuré à l'aide de deux accéléromètres placés au centre de la poutre.

Pour cette étude, trois configurations de serrage sont considérées. Les cinq vis au centre de la poutre sont serrées au tournevis dynamométrique avec des couples de 1Nm, 3Nm puis 4Nm (une erreur de manipulation a conduit à la perte des mesures à 2Nm). La figure 5.14 présente les courbes des paramètres modaux équivalents estimés. La liaison SSS présente des caractéristiques d'évolution de la fréquence et de l'amortissement tout à fait similaire à celle de la liaison précédente. Aussi cette analyse paramétrique montre une dépendance au serrage comparable. Le taux d'amortissement tend vers une valeur autour de 0.5% pour les faibles amplitudes. Cette valeur, relativement élevé, est en partie due au matériau en nid d'abeille qui compose la poutre. Ce type de composite possède un amortissement intrinsèque plus important que celui des métaux. Les deux premiers modes de cette structure sont envisagées. Une analyse modale numérique à l'aide d'un modèle éléments finis permet de calculer les formes modales attendues, voir figure 5.16. L'amplitude du champ de déplacement est représenté du blanc (pas de déplacement) au noir (déplacement maximum).

Banc d'essai lap-joint en H 5.4.1 Géométrie -conditions et moyens d'essais

Les deux premiers modes de la structure ont deux noeuds de vibrations communs aux lieux où les lignes vibratoires (en pointillés sur la figure) se croisent. 

Répétabilité

Le serrage des vis M6 est maintenu à l'aide d'écrous JPB system spécialement réalisés pour le projet MAIAS. Ces écrous sont conçus afin de ne pas pouvoir se dévisser. Une photo de ces écrous est présenté sur la figure 5.18. Caignot a réalisé une étude sur l'évolution de l'amortissement de la liaison SSS en flexion pure après 1, 15 puis 40 000 cycles, voir [Cai09]. Pour un faible nombre de cycles, Caignot observe le même phénomène d'adaptation. Pour un très grand nombre de cycles, ses travaux montrent le rodage de la liaison du à la modification de l'état des surfaces en contact. L'usure de la liaison du banc d'essai en H est indéniable, voir la figure 1 de l'introduction, cependant ce phénomène n'est pas étudié ici.

Résultats d'essais

Afin de limiter le phénomène de couplage modal, les modes de flexion et de torsion sont excités séparément. Cette opération peut être réalisée à l'aide d'un marteau de choc en frappant la structure en des points particuliers. La figure 5.16 présente les points de chocs particulier (indiqués par une croix blanche sur les déformées). Ces points sont placés au croisement du lieu de plus grande amplitude d'un mode et d'une ligne de vibration de l'autre. Les essais sont analysés tout de suite après la mesure afin de vérifier que le choc est porté à l'endroit adéquat.

La figure 5.20 présente les paramètres du mode de torsion en fonction du module du signal analytique estimé, pour les quatre configurations de serrage ainsi que dans le cas où seules les vis M6 assurent l'assemblage (indiquée 0Nm ; les vis M4 ont été retirés). Les paramètres sont donnés en fonction de la mesure au point Acc6. estimé croît avec l'amplitude puis atteint éventuellement une valeur maximale avant de décroitre. L'amplitude pour laquelle cette valeur maximale d'amortissement est atteinte est directement liée à la force de serrage : plus le montage est déserré, plus la dissipation est importante pour de faibles amplitudes. Aussi, la structure a un comportement d'autant plus assouplissant que le serrage est faible.

Dépendance de la déformée modale à l'amplitude

L'assouplissement de la liaison entraine une variation de la déformée modale. Les variations de déformées modales sont d'un ordre de grandeur comparable pour les trois configurations de serrage présenté. On retrouve cependant le même type de comportement que précédemment, à savoir plus le montage est serré moins la déformée modale semble être affectée par la variation d'ampli-4. Ce vecteur moyen est la première déformée de la décomposition en valeurs singulière de la mesure présentée. Une seconde batterie d'essais au pot vibrant a été réalisée avec notamment comme objectif d'évaluer le caractère non-linéaire de la structure. La structure est connectée à un pot vibrant électromagnétique avec une tige flexible au point de mesure 7. Un capteur de force est fixé entre la tige et la structure. La tige a une rigidité de flexion négligeable devant la raideur de la structure mais sa raideur en compression est suffisante pour appliquer des efforts importants. La masse du capteur de force et de la partie mobile du pot vibrant n'est pas négligeable au regard de la masse de la structure. Ainsi la structure est légèrement dissymétrique tout comme ses déformées modales. La figure 5.26 présente les fonctions d'accélérances (accélération/force (capteur 0)) obtenues à l'aide d'une excitation aléatoire de type bruit blanc. Chaque mode de la structure est ensuite excité séparément à l'aide d'une excitation mono- harmonique. Les amplitudes de force employées permettent ici d'atteindre des amplitudes de vibration supérieures à celles présentées précédemment. Le comportement non-linéaire étant d'autant plus marqué que l'amplitude de vibration est grande, l'étude ainsi réalisée vise ainsi à valider le caractère faiblement non-linéaire des assemblages. La fréquence d'excitation est choisie légèrement inférieure au lieu de quadrature de phase de chaque mode 5 . Les figures 5.27 et 5.28 montrent quelques périodes des signaux d'accélération mesurés en régime établis.

La proximité immédiate d'anti-résonances explique la présence des déphasages importants entre les capteurs. Pour les deux modes, les signaux d'accélérations contiennent un certain taux d'harmoniques. Notons néanmoins que les taux d'harmoniques auraient été nettement plus faibles si la mesure avait été faite en déplacement. On peut relever une certaine asymétrie par rapport à l'origine probablement engendrée par le caractère également asymétrique du contact unilatéral. Le taux d'harmonique (HR) de chaque signal d'accélération est calculé en estimant le rapport entre l'amplitude de crête du fondamental a 1 et la somme des quatre premières harmoniques [a 2 , a 3 , a 4 , a 5 ] :

HR = 5 i=2 a i a 1
(5.1)

5. Initialement, l'idée était d'avoir un rapport entre mesure et bruit de mesure de la force d'excitation qui ne soit pas trop faible 

Conclusion et perspectives

Ce chapitre a présenté l'étude expérimentale de petites structures appelées bancs de caractérisations. Ces systèmes élémentaires ont permis quelques analyses paramétriques.

Nous avons confirmé que le rôle du phénomène de glissement partiel est prépondérant dans le comportement dissipatif des assemblages. Cette affirmation a été prouvée en comparant le comportement dynamique d'un assemblage à une structure monolithique de même géométrie.

Le rôle de la force de serrage est clairement identifié. Notons que la force limite qui permet d'initier de glissement est, selon le modèle de Coulomb, le produit du coefficient de glissement et de la force normale (la force de serrage). Autrement dit, le rôle du coefficient de glissement 6 sur la dynamique est certainement comparable à celui du serrage. L'utilisation de procédé de traitement de surface est donc de nature à améliorer (ou à détériorer) le comportement dynamique d'une structure assemblée. L'influence des défauts d'ordres 1 et 2 n'a pas pu être démontré. L'hypothèse de faible non-linéarité est validée par la faible présence d'harmonique des réponses mesurées, par l'assouplissement modéré, ainsi que par la faible dépendance de la déformée modale à l'amplitude.

Les essais de répétabilité semblent indiquer une adaptation des assemblages aux conditions initiales.

6. Rappelons qu'on utilise cette définition moyenne permettant de simplifier le comportement réel des interfaces dont la force est déterminée par les défauts de surface. 

Résumé

Ce chapitre présente un principe de synthèse de modèle basé sur l'utilisation d'une base locale. Les éléments de cette base appelés sollicitations principales sont associés à des rhéologies de Iwan.

Préambule

Dans le chapitre 3, la liaison est définie comme un sous-domaine légèrement étendu autour des zones de contact entre deux pièces d'assemblages. La liaison est vue comme un composant dont le comportement peut être étudié en lui appliquant différents cas de charges. L'étude de bancs d'essais de caractérisation a permis d'observer le comportement des liaisons lorsqu'elles sont soumises à différentes sollicitations-types (traction, flexion, torsion, etc.). Si les mouvements d'une structure sont décomposés sur l'espace des modes propres, alors ces modes peuvent être vus comme autant de cas de charge appliqués à une liaison donnée.

Prenons pour exemple le cas d'une grande structure qui possède M modes dans la gamme de fréquence d'intérêt. Cette structure est assemblée par L liaisons. Si on cherche à fournir un modèle à priori de la structure en projetant la dynamique sur l'espace des modes, alors le nombre de cas de charge à considérer est au moins de L * M. Ce nombre ne tient pas compte des couplages modaux. En pratique, il n'est possible de construire le modèle d'une grande structure assemblée qu'au travers d'une analyse modale expérimentale à postériori.

Le domaine d'une liaison ne représente qu'une très faible portion de celui de la structure entière. Ainsi, les modes d'une grande structure peuvent être localement colinéaires à l'échèle d'une liaison d'assemblage. Les modes sont donc susceptibles de solliciter une même liaison de manière identique. Deux modes localement colinéaires sont donc couplés.

Par ailleurs, puisque les modes sont localement colinéaires, il existe une base de dimension N inférieure à celle de la base des modes propres et suffisante pour engendrer l'ensemble des mouvements de la liaison. Ce chapitre est basé sur cette assertion. Nous proposons de projeter le déplacement d'une liaison sur ce sous-espace local de faible dimension. La base de ces sollicitations élémentaires permet de coupler les modes, ce qui est légitimement attendu. Si on suppose que les L liaisons ont la même géométrie, le nombre de cas de charge à considérer est réduit à N : Le calcul des éléments de la base principale est basé sur le principe de décomposition en valeurs singulières. Considérons, sous hypothèse de faible non-linéarité, la matrice des modes propres de la structure complète :

Modes propres DDLs                . . . . . . . . . φ 1 1 φ 1 2 . . . φ 1 M . . . . . . . . . φ 2 1 φ 2 2 . . . φ 2 M . . . . . . . . . φ L 1 φ L 2 . . . φ L M . . . . . . . . .                (6.1)
On regroupe ensuite les déformées modales de chacune des liaisons dans la matrice A, dont le nombre de lignes est le nombre de degré de liberté géométrique des liaisons (commun pour toutes) et le nombre de colonnes est L * M.

A = φ 1 1 . . . φ 1 M , φ 2 1 . . . φ 2 M . . . φ L 1 . . . φ L M (6.2)
Les N premières valeurs propres de la matrice AA T 

Introduction

Reduced Order Models (ROM) are generally built in order to make simulation processes faster. These methods are very useful as a part of an optimization process using a high fidelity Finite Element (FE) model parametrized by design variables or as a part of the acceleration process for simulations with a high number of Degrees of Freedoms (DoFs). For an optimization, it is interesting to build a reduced parametric model of a small size, while for an acceleration process, design parameters are useless but accuracy is the main goal. We focus on the framework of optimization even if this paper refers to the modelling step only.

Numerous methods are available to achieve this goal. We can classify the model reduction methods into two groups : the first one aims to provide a basis, spanning a subspace which belongs to the space of solutions, to link the variables of the full order models to a smaller number of variables. Such methods are often called Ritz methods or "kinematic methods" (KM). The second group aims to identify a macro-model able to provide accurate results for selected Dofs of the full order models. We will call these methods "identification methods". Sometimes, in an optimization framework, both methods are used : the first one to reduce the number of variables and the second one to build a ROM which is parametric, see for example Filomeno et al. [FCBKL08]. To reduce the complex systems constituted with several components, it is rather commonplace to reduce each component with KM and to make the synthesis of the system, see for example Craig [BC68] or Guyan [Guy65]. The way to build the Ritz basis has been widely discussed in the previous work and we can consider two methods : modal approaches and optimal approaches based on proper orthogonal decomposition, see for example Balmès [Bal96].

Non-linear problems involve specific model order reduction techniques, see for example Kerschen et al. [KPGV09]. In this paper, we focus on localized nonlinearities. For such kind of problems, there are dedicated methods such as the one developed by Amsallem et al. [AZF12]. In this paper, we are specifically interested in jointed structures which have non-linearities localized at the joints. These joints cause energy dissipation due to micro-slip in contact and softening effects that play an important role in the dynamic behavior of the global structure, see [PDCA10], [GN01].

Our purpose is to improve the methods developed by Quinn [Qui12] and Segalman [Seg10] by giving an hybrid ROM formulation which is based on both experimental and numerical identification. Since the actual physics taking place at the joint interfaces is very complex [WO08], high fidelity FE models of joints are generally hardly predictive. The low frequency dynamic of the local domain of a joint is proposed to be approximated in a low-dimensional subspace generated by macro-models (also called gray boxes or low-order models) which are experimentally identified. This local basis couples together the global modes of the structure which is an important feature of non-linear structures. The linear part of the structure is assumed to be well described by FE model.

Governing equations and principles are detailed in the two first sections. Then the ROM formulation is investigated on a jointed structure. Results are presented and compared to the full order models and assumptions are discussed in the last section.

Reduced order formulation

We consider a structure Λ fitted with one or several joints subjected to a dynamic excitation. Using a FE formulation, the non-linear dynamic equation of the problem can be written as :

Mẍ + Kx + f c (x, r) = f e (6.3)
where M and K respectively denote the mass and stiffness matrices. x is the nodal displacements vector, f e the external forces and f c denotes the nodal contact and friction non-linear forces which may depend on internal variables r.

The whole structure can be split into two substructures as shown in figure 6.1 :

-An assumed linear domain Λ b .

-The domain Λ a of the joints, that is submitted to the external bolt clamping forces and the non-linear contact forces f c = f clamping + f contact and the external forces f e . In the following developments, we will only consider one joint but the extension to several joints is straightforward. According to this sub-structuring, equation 6.3 can be written as :

M aa 0 0 M bb ẍa ẍb + K aa K ab K ba K bb x a x b + f c 0 = f e (6.4)
Coupled terms of the mass matrix are neglected here since they are often neglected by numerical integration in FEM but these terms can also be kept.

The sub-structuring presented in figure 6.1 is not carried out the same way than for Craig-Bampton reduction [BC68]. Actually, the Λ a domain is not only limited to the non-linear Dofs, but extend to the region around the joint. Non-linearities in real joints have a local extent and thus Λ a contains both non-linear and linear elements. In practice, the Λ a domain must also be extended to the nodes where the external forces are applied but afterwards Λ a refers only to the "joint domain".

The reduction process of the presented method mainly relies on the following assumption :

Assumption 1 : The displacements x a in the joint domain Λ a , generated by the low frequency dynamic of the whole structure can be approximated by a small size basis V referred as the "Principal Joint Strains Basis" (PJSB) :

x a = Vp (6.5)

Since bolted joints must ensure the integrity of structures, they are generally not designed to allow macroscopic motions. As a result, even if joints shows softening effects that can distort the mode shapes of the structure, the local basis V is still generally suitable to generate the principal movements that the joint may carry out. The definition and the use of the basis V will be justified in the following section. The vector p denotes the generalized coordinates for amplitude of joint modes. The whole displacement vector is reduced to :

x a x b = V 0 0 I p x b = Υ p x b (6.6)
Of course, to reduce the size of the problem, a Ritz basis can be built in the linear domain Λ b too. Any KM can be considered. In this paper, the displacement in domain Λ b is let unreduced since it is not the point of this work. The projection of equation 6.3 on the generalized coordinates yields :

Υ T MΥ p ẍb + Υ T KΥ p x b + V T f c 0 = Υ T f e (6.7)
The mass matrix in the final set of generalized coordinates is :

Υ T MΥ = V T M aa V 0 0 M bb (6.8)
The stiffness matrix in the final set of generalized coordinates is :

Υ T KΥ = V T K aa V V T K ab K ba V K bb (6.9)

Identification of the joint rheology 6.4.1 The test bench structure

Theoretically, the "best" Ritz base for V should be obtained using optimal approaches based on Singular Value Decomposition (SVD). The obtained singular vectors could be applied to the joint using a high fidelity FE. However, these numerical models are generally hardly predictive since the actual physics taking place at the joint interfaces is very complex and hard to update. Indeed, there is many multiscale parameters and uncertainties that prevent an accurate modelling of the joints. Main characteristics can still be extracted from such simulations and adapted methods allows a fast computing of these models, see [FCD13].

Rather than using numerical simulations, the joint should generally be identified onto an experimental rig. Besides, the behavior of the joint shall be extracted regardless of the other non-linearities that may exist in the whole structure. The generic test bench that is proposed here consists of the same bolted joint Λ a a in the whole structure fitted with two seismic weights at the free ends as depicted in figure 6.2.

The use of macro-models to model this kind of elementary structure remains a challenge since its behavior depends on the direction of the load it undergoes.

Segalman [Seg02] uses parallel series Iwan systems to model the behavior of lap-type joints under axial load. Song [SHM + 04] and Ahmadian [AJ07] have developed macro-models that are able to reproduce the bending behavior of jointed beams. The identified joint macro-models are always implicitly combined with a loading/strain direction. The PJSB contains the principal strains that the joint undergo.

We impose three criteria to determine this basis :

-This basis should properly generate the low dynamic movements of the structure Λ in the local domain Λ a . Thus this basis should especially include the rigid motions of the joint. -The contact forces should ideally be uncoupled in V.

-The identification of the elements of V using a test bench which is only composed of the studied joint should be experimentally feasible.

The reduction formulation is based on the intuition that the design of a test bench can be such that its first modes under free-free conditions satisfy the criteria mentioned above.

The generic setup pictured in figure 6.2 is based on practical facts : first, the free-free conditions are easily reproducible in experimental conditions and give a very low additional damping compared to, e.g., clamped conditions. Otherwise, the added weights act like seismic masses and lower the natural frequencies of the bench structure and so a larger modal amplitude can be obtained.

M w M w

Figure 6.2 -The identification of the joint behavior is performed on an experimental test bench. This bench contains the same bolted joint as in the whole structure fitted with two seismic weights at the free ends.

The joint mode basis

In this section, we consider the free dynamic of this bench structure. Its mass and stiffness matrices, respectively M e aa and K e aa , are the same of the whole matrix minus the Boundary Terms :

M aa = M e aa + M BT aa and K aa = K e aa + K BT aa (6.10)
The boundary elements are the elements between domain Λ a and Λ b . Note that the forces between these two domains are only applied through these elements.

The free dynamic of the test bench is non-linear :

(M w + M e aa )ẍ a + K e aa x a + f c = 0 (6.11)

In this equation, the mass of the seismic weights is taken into account thanks to the mass matrix M w . V is defined as the first solutions of the free motion of the test bench for very low amplitude (when all the sliders are stuck) :

(K e aa + K j -Ω 2 a (M w + M e aa ))V = 0 (6.12)

Where K j denotes the Jacobian matrix of f c at X = 0 which correspond to the linearization of the contact law for very low vibrational amplitude. As a result, the contact force can be decomposed according to :

f c = K j x a + f NL (6.13)
f NL is null at zero amplitude.

Actually, the basis V should be measured with low energy experimental modal analysis : equation 6.13, which is the numerical equivalent, is given for a better understanding. Under experimental conditions the movements of the structure are measured on a finite number of points x mes . In order to estimate the motion at all FE Dofs of domain Λ a , shape expansion methods can be carried out, see [Bal00]. If the model is accurate enough, the mass and stiffness matrices should be approximatively diagonalized by V. Besides its vectors are chosen normalized to the mass matrix :

V T M e aa V + V T M w V = 1 (6.14)
The mass matrix of the whole structure (equation 6.8) is computed from this identification.

Reduction on macro-models

The projection of equation 6.11 on V yields :

V T (M w + M e aa )Vp + V T (K j + K e aa )Vp + V T f NL = 0 (6.15)
The non-linear joint force f NL is defined in the nodal space. Its projection on the PJSB generally couples together the generalized displacements p contrary to the mass and stiffness matrices, respectively (M w + M e aa ) and (K j + K e aa ) which are diagonalized by V. The identification of the coupled terms of the force in the mode space is hard to carry out since these coupled terms may depend on a quasi-infinite number of parameters such as the amplitudes, the instantaneous frequencies and even the phases of modes. In other words, the exact behavior of joints cannot be reduced without any loss. As a result we are led to consider the following assumption : Assumption 2 : If two macro-models of the same joint are associated with deformations vectors which are LOCALLY orthogonal, then these two models are uncoupled Note that assumption 2 is generally not true since the local physics that stand in the contact interfaces is strongly non-linear and, above all, depends on the local forces. Nevertheless it is a better approximation than the projection on the modes of the whole structure. It is indeed very commonplace to extend the Ritz method to weak non-linear dynamic using the modal DoFs. However, the firsts modes of the whole structure have long wavelengths, i.e. normal modes may be LOCALLY collinear in the domain of the joint Λ a . As a result these modes induce the same distortion in the joint so they should share the same internal state.

Note that when the PJSB can be reduced to an unique load direction of the joint, assumption 2 is not necessary. In this case it is possible to formulate and identify an unique hysteretic constitutive model as it done in the recent work of Quinn [Qui12]. When the size of the PJSB is more than one, it is needed to use multiple hysteretic constitutive models. Nevertheless, the admissible movements of the joint in the low frequency range are generated by a basis of a much smaller dimension than the modes of the whole structure. Thus, in the case where assumption 2 is not respected, it may be possible to consider coupling effects between the two or three PJSB vectors (not counting rigid body motions) rather than considering the coupling between the numerous elements of the mode basis. In the following developments, assumption 2 is considered to be respected.

Finally, the PJSB may also have to be enhanced, but the vibrational energy of these enhancement vectors is also assumed to be very weak compared to the elements of the PJSB. As a results each of them can be associated with a DoF which is considered to be non-dissipative and behave linearly.

Identification of the macro-models

Under assumption 2, equation 6.15 is approximated by N non-linear single DoFs :

v T i (M w + M e aa )v i pi + v T i (K j + K e aa )v i p i + f h i (p i , r i ) = 0, ∀i ∈ [1, N] (6.16)
Where v i and p i are respectively the i th component of V and p. The non-linear part of the restoring force f h i is thus assumed to only depend on p i and an internal variable r i . Therefore each element of V is associated with a macromodel, depicted in figure 6.3. These macro-models are composed of a modal mass of value equal to v T i (M w + M e aa )v i = 1 and the restoring force is driven by the hysteretic force f h i and a linear spring of stiffness k i . The hysteretic force is driven by a proper elasto-plastic hysteretic formulation (e.g. Lugre, Bouc-Wen or Iwan models) in order to model the microsliding phenomenon that occurs in the joint. The proposed generic rheology is believed to be able to accurately fit most type of joint solicitation even bending modes, see [Hel05], since it is close to the actual physical behavior of jointed structures. The choice to use a parallel linear spring is based on experimental observations : jointed structures can show a decreasing damping ratio along with the increasing amplitude of vibration. This situation corresponds to the case where the hysteretic model is in a macro-sliding mode.

The experimental identification of this macro-model is performed according to the following procedure : -First the basis V is measured for low amplitude, with modal analysis. A linear FE model of the joint is updated from this analysis in order to compute the entire V matrix. -Under suitable excitation (e.g. "harmonic appropriation" [DCP13] or wavelet excitation [Qui12]), the structure is appropriated on a single mode with a strong amplitude and the free decay of this assumed single mode is measured. Since the mode shapes of the test bench are slightly affected by the non-linearity, the estimated state of the amplitude pi at time t is obtained with Ordinary Least Squares method (OLS) :

p(t) = (V T mes V mes ) -1 V T mes x mes (t) (6.17)
V mes is the PJSB at measuring points or its mass weighted equivalent. This point is discussed in the following section. -Finally, the parameters α of the macro-model are to be updated from those measurements. This specific problem might be tricky but it is not the point of this paper. The identification process is performed in broad outline by finding the optimal solution that best fits the measured free responses. Indeed, the free response contains all the observable states of the nonlinear model. The optimal parameters α are those that solve the following problem : min

α p model (α, t) -p(t) 2 (6.18)
Where p model is the, numerically solved, solution of equation 6.16. The global minimum can be obtained using local optimization technique, such as Levenberg-Marquardt [Mor78], provided that the initial parameters are chosen close enough to the solution. For instance, a good estimation of the model parameters can be found by fitting the analytically calculated (from the model) and the measured instantaneous frequency and damping curves.

Alteration of the mode shape

The i th identified macro-model is the association of a non-linear equation, in which current state is the amplitude p := p i , and a deformation vector v := v i . The components of this vector do not depend on the amplitude whereas the mode shape of the test bench shall be affected by the non-linearity. The principle of assumption 1 is based on the principle that joints are firstly designed in order to maintain the integrity of structures and thus cannot allow a massive decrease of their stiffness : the non-linear part of the contact force f NL (x a ) is weak compared to its linear part K j x a . The amplitude of deformation v that best fits the actual measured deformation, in the sense of the quadratic norm, is the OLS solution, equation 6.17.

For large amplitudes, the actual deformation of the test bench is composed of v at modal amplitude p plus a slight alteration e(p) :

x a = vp + e(p) , with e(p i → 0) = 0 (6.19) e is assumed to be a monotonic function of p, i.e the maximum error is found for large amplitude. The exact projection of the dynamic equation 7.1 on v, yields :

v T (M w + M e aa )(vp+ ∂ 2 e ∂t 2 )+v T (K j + K e aa )(vp+e(p))+v T f NL (vp+e(p), r i ) = v T f e (6.20) When choosing vector v normalized to the mass matrix, equation 6.20 becomes :

p + ω 2 ∞ p + f v = v T f e (6.21)
The projected force f v is determined by :

f v = v T f NL (vp + e(p), r) + v T (K j + K e aa )e(p) + v T (M w + M e aa )
∂ 2 e ∂t 2 (6.22)

Note that the terms of this equation (except the last one) only depends on the amplitude p and its history r. The last terms also depends on the two firsts derivatives of p, i.e the frequency of excitation. Most elasto-plastic models are frequency independent. However, the amplitude of the error is only important when the structure is excited with large amplitude. In practice, the projected force is identified for the frequencies close to the resonance of the test bench. As a result, this error can be minimized if the resonant frequencies of the bench are close to those of the whole structure.

Otherwise, the error induced by the added weight v T M w ∂ 2 e ∂t 2 can be almost cancelled if the measurement for the estimation of the amplitude (equation 6.17) is performed close to the added masses.

Inclusion of the macro-models in the whole model

The same joint assembles the whole structure and the test bench. Several components of equation 6.35 are updated from the identification of the macromodels :

-The first component of the stiffness matrix (equation 6.9) is replaced by the identified linear part of the restoring force :

v T i K aa v i := k i + v T i K BT aa v i (6.23)
-The boundary elements between the domain Λ a and Λ b are supposed to be linear. Thus, the boundary terms of the non-linear force are null. The projection of the non-linear contact force of the whole model on v i is :

v T i F NL := f h i (6.24)
-The first component of the mass matrix of the whole structure of equation equation 6.8 is replaced also according to :

v T i M aa v i := 1 + v T i (M BT aa -M w )v i (6.25)
Note that the restoring force only depends on the displacement in the border of domain Λ a . The forces between domain Λ a and Λ b are applied through the boundary elements as well. As a result, the inner part of domain Λ a does not even have to be meshed since it is completely replaced by the identified macro-models. In practice, v i is only measured in a finite number of points. However the displacement field must be known at least at all the nodes of the border. The motion of these Dofs can be estimated via shape expansion methods [Bal00].

Example : clamped-free jointed beams 6.5.1 The whole structure

The presented method is investigated on a numerical example but the identification process is carried out as for an experimental investigation ; i.e. in order to be easily reproduced by anybody, the full order models of the considered structures (the joint test bench and the "whole" structure) are presented but they are used as black boxes. The considered whole structure, depicted in figure 6.4, is a clamped-free 1000mm×60mm×5mm steel (E=210e9Gpa ; ϕ=7500kg.m-3) beam assembled with a bolted-joint at its middle. The flexural behavior of this structure is investigated.

The linear part of its FEM is composed of 10 hermitian 2D beam elements governed by Bernoulli formulation. The j th element has two transverse displacement DoFs denoted u j and u j+1 and two rotational DoFs denoted θ j and θ j+1 . The adjusted Iwan beam element is obtained by replacing these two springs with one-dimensional hysteretic models. This model has been recently used in association with the LuGre model [JSP10]. The properties of this model are given by the following relations :

k 1 = 1 2 k 1lin ; k 2 = 2 3 ( 1 2 k 2lin ); 3σ = 1 3 ( 1 2 k 2lin ) (6.26)
The extensional deformations of the two cells are given by : 

∆ 1 = L e 2 (
     T 5 M 5 T 6 M 6      =      k 1 ∆ 1 k 1 ∆ 1 + h 2 f Iwan (∆ 2 , r 2 ) -k 1 ∆ 1 k 1 ∆ 1 -h 2 f Iwan (∆ 2 , r 2 )     
(6.30)

Identification of the bolted-joint

The reduction process starts with the identification of the bolted-joint behavior. It is performed on a numerical test bench which contains the bolted-joint domain Λ a (i.e. 3 elements -8 Dofs) and added weights of mass M w = 6kg and inertia moment J 0 = 1.3.10 -3 kg.m 2 at free ends in free-free conditions as depicted in figure 6.2. The basis V contains the first eigenmodes of this linearized structure (when all the sliders are stuck and the joint behave like a linear beam) : the two rigid body modes v 1 , v 2 and the two first bending modes v 3 and v 4 as depicted in figure 6 In general, the number of elements which has to be kept into the PJSB should be estimated with a SVD analysis of the measured vibration of sub-domain Λ a .

The two rigid body modes do not distort the joint, thus the corresponding single DoF resonators have zero restoring force :

[v 1 v 2 ] T K e aa [v 1 v 2 ] = 0 [v 1 v 2 ] T F NL = 0 (6.31)
The identification of the two macro-models associated with the two first bending modes v 3 and v 4 is carried out the same way, according to the procedure detailed in section 6.4.4 : The identification of the mode v 3 is only presented here. The test bench is appropriated on this mode by exciting the structure with a sinusoidal force of frequency close to the resonance until a limit cycle is reached. The excitation is then shut and the free decay of this assumed single mode is measured, see [DCP13]. The natural frequency of the first bending mode is f 3 = 41Hz. The resonant frequency is amplitude-dependent, thus the appropriative frequency of excitation is chosen equal to the resonant frequency for maximum used amplitude f e = 36.5Hz. The vibrations are measured at the free ends of the test bench :

x mes = [u 1 , θ 1 , u 4 , θ 4 ] T (6.32)
Of course it does not seem realistic to measure rotations but multiple translations are more likely hence the need to expand. Figure 6.6 shows the free decay of the structure after appropriation on v 3 . The time evolution of the differences of rotation θ 4 -θ 1 is presented. For large amplitude, the stiffness of the bolted joint is locally reduced. As a result, the deformed shape of the test bench is not linear to the mode shape v 3 as shown in figure 6.7. However the softening effect is still captured through the variation of frequency with amplitude. Besides, measuring and computing the OLS estimation of the amplitude p 3 at the free ends gives a quasi-exact assessment of the real shape in the boundaries of Λ a where the internal forces between Λ a and Λ b are computed in the whole structure.

As expected, the OLS estimation is exact for low amplitudes as shown in figure 6.8.

The generic equivalent one DoF model depicted in figure 6.3 is fitted with an Iwan model of 3 Jenkins elements. Generally the Iwan model doesn't need an important number of Jenkins elements to accurately fit the measured properties of joints [Seg02]. The parameters of this model are directly identified from the OLS estimation of amplitude p 3 of the free response. The identified parameters of the macro-model are : The identified macro-model very precisely fits the measured dynamic as shown in figure 6.6. The obtained hysteretic force is depicted in figure 6.9.

The linear-equivalent dynamic properties of the identified macro-model associated with v 3 are depicted in figure 6.10. The plotted amplitude-dependent frequency f 3 (p 3max ) and damping ratio ξ 3 (p 3max ) are the linear equivalents in the sense that the steady-states of peak amplitude p 3max are the same than those obtained with the linear system of equation 6.34.

p3 + 2ξ 3 (p 3max )ω 3 (p 3max ) ṗ3 + ω 2 3 (p 3max )p 3 = f e (6.34) Finally, the full order model is reduced to :

Υ T MΥ p ẍb +Υ T KΥ p x b +        0 0 (k 3 -v T 3 K e aa v 3 )p 3 + f h 3 (p 3 , r 3 ) (k 4 -v T 4 K e aa v 4 )p 4 + f h 4 (p 4 , r 4 ) 0        = Υ T f e (6.35)

Results and discussion

ROMs versus FULL order model

The proposed reduced order formulation is now referred as ROM2. In this section, it is compared with the common Ritz-Rayleigh reduction, referred as ROM1, which is based on the assumption that the modes of the whole structure are uncoupled. In this formulation, the nodal displacements are approximated by a linear combination of the modes of the whole structure :

x = Φq (6.36)
The Ritz basis Φ is the solution of the linearized problem when all the sliders are stuck. Equation 6.3 is approximated by N uncoupled non-linear single DoF resonators :

Φ T i MΦ i qi + Φ T i KΦ i q i + Φ T i f NL (Φ i q i , r i ) = 0, ∀i ∈ [1, N] (6.37)
Note that, in the case of ROM1, there is actually no identification process : The exact joint force is directly used and projected. This simulation is equivalent to the case where the reduced non-linear forces are exactly identified ; i.e. no error is made from identification.

Two load cases are computed to investigate the free and the forced response of the ROMs and to compare with the full order model. In both load cases, the excitation force is applied at the top of the structure (node 11).

In the first load case, a Morlet wavelet of frequency close to the resonance of the first mode Φ 1 is applied. The free decay, measured at the excitation point is depicted in figure 6.11.

As expected ROM1 mainly fits the exact solution since the structure is appropriated on the first mode only. However, the linear mode does not take into account the local softening effect which leads to an underestimation of the actual strain undergone by the joint. As a result, ROM1 response is less damped than the full order model response. In contrast, ROM2 is able to take into account the local softening effect and the solution is almost exact. This is due to the local formulation of ROM2. For the second load case a sinusoidal force of frequency close to the one of the second mode Φ 2 is applied until the steady-state regime is reached. Then the same wavelet excitation of load case 1 is applied and the transient response is observed. The response of the structure is depicted in figure 6.12. The response of the structure is multi-modal. This load case highlights the coupling effects that may occur in jointed structures. The global amplitude of ROM1 decreases faster than the full order model. This ROM1 stands for the situation where no coupling effect is considered. In that case, the total dissipated energy per time is linearly combined :

D ROM1 (Φ 1 q 1 + Φ 2 q 2 ) = D ROM1 (Φ 1 q 1 ) + D ROM1 (Φ 2 q 2 ) = D FULL (Φ 1 q 1 + Φ 2 q 2 ) (6.38)
This ROM1 is not able to take into account the actual coupling effect due to non-linear damping predicted by the full order model. On the contrary, ROM2 is able to take into account this effect as shown in figure 6.12. So, in the case where modes are considered uncoupled, the strain energy seen by the joint is strongly underestimated. In the load case 2, the considered RMS amplitude on each mode of ROM1 locally corresponds to the amplitude p 3 = 1.5.10 -3 in figure 6.10, where the damping is maximum. In contrast to it, ROM2 accurately fits the expected response of the structure since the coupling effect is considered.

ROM1 may strongly underestimate the actual amplitude of vibration. In a conception process, this situation can lead to an under-dimensioning of the structure. The presented load case 2 may correspond to excessively severe conditions, but in general, the actual dissipation generated by joint depends on the real amplitude. As a result, the projection on a global Ritz basis is not suitable contrary to the use of a local basis.

Validity of the PJSB

In this section, the assumption that the normal basis of the test bench is able to generate the low dynamic movements of the structure Λ in the local domain Λ a is checked. The minimum angle Θ 1 between the exact deformation at time t in Λ a , i.e. x a (t), and the subspace W generated by the PJSB, estimates the error due to the reduction. The minimum angle is defined as :

Θ 1 (t) = min v∈W (arccos x a (t), v x a (t) v (6.39)
The minimum angle between the exact deformation and the subspace generated by the two first modes of the whole structure restricted to the sub-domain Λ a , namely Φ a1 and Φ aa , is also computed. The numerical estimation of the minimum angle is carried out thanks to the matlab function subspace. Figure 6.13 and 6.14 shows the computed minimum angles respectively for the first and the second load case. The largest amplitudes are pictured. As pictured in figure 6.13, the maximum error is found near zero amplitude and thus can be attributed to a wrong conditioning. This does not affect the quality of the result since the minimum angle stays at a really low level for medium to high amplitudes. Besides, these figures focus on the shape error in the domain of the joint where this error is expected to be the highest. As a result the proposed projection offers a very good approximation of the exact deformation at any time even in the domain of the joint. 

Conclusion

This paper provides a pragmatic and accurate way for the simulation of jointed structures. The method is founded on the intuition that the modes of a "local" basis is adequate to generate the principal movements that the joints may carry out under low frequency dynamic excitations. The proposed formulation couples together the modes of the whole structure. It also keeps a geometrical meaning and thus the reduced order model is able to take into account the local damping as well as softening effects induced by joints. The formulation also enables to take into account FE models of any realistic geometry. Finally the joints macro-models are directly updated from experimental data. As a result, the obtained models are very light but nevertheless accurate formulations for assembled structures. 

Résumé

Les modèles de Iwan permettent de modéliser la physique du problème de Metherell and Diller. On se demande ici si il est possible d'étendre ce modèle à d'autres cas de charges. L'hypothèse de découplage modal, qui est un principe fondamental pour l'utilisation de ce type de modèles, est étudiée expérimentalement.

Préambule

Le chapitre précédent s'intéresse au choix de l'espace de projection du problème de dynamique. Les sollicitations principales dans l'espace géométrique permettent de reproduire le comportement global d'une liaison à l'aide d'un faible nombre de degrés de liberté. Ces mouvements généralisés "locaux" sont associés à des rhéologies basées sur le modèle de Iwan.

Ce chapitre vise à évaluer la capacité de ce modèle pour reproduire le comportement dynamique d'un assemblage. Pour cela, la rhéologie de l'oscillateur de Iwan est développée afin de fournir une relation liant les paramètres modaux de fréquence et d'amortissement. La formule semi-analytique obtenue permet d'évaluer, à partir de caractéristiques facilement mesurables, la proximité du modèle de Iwan aux mesures.

Le comportement dynamique d'une liaison dépend du type de chargement c'est pourquoi il est nécessaire d'associer un modèle de Iwan différent à chacune des sollicitations principales. Cette modélisation repose sur l'hypothèse de découplage modal qui est aussi étudiée dans ce chapitre au travers d'une étude expérimentale.

Ce travail a été soumis en novembre 2013 à la revue mechanical systems and signal processing sous le titre "Are Iwan Models Relevant To Model Joints ?". La forme du manuscrit a été conservée dans ce chapitre, c'est la raison pour laquelle il est rédigé en anglais.

Introduction

Under dynamic loads, riveted and bolted joints are known to give rise to high damping ratios and moderate softening behaviors in assembled structures. The underlying phenomenon, called partial-slip or micro-slip, is known to be caused by the partial sliding at contact interfaces, see [GK56], [Gro85] [GN01], [PDCA10].

The modelling of this non-linear phenomenon with finite element models (FEM) still remains a challenge. Most of the difficulties are related to the multi-scale nature of contact interfaces. First, the behavior of joints depends both on the macro and the micro geometry of surfaces. The real contact patch in joint interfaces is unknown but nevertheless plays a significant role on the actual stiffness of interfaces and on the frictional energy dissipation [AB11]. Joints may also undergo other complex phenomena due to contact such as micro-impact and local plastic deformations [WO08]. Besides, the estimation of local parameters cannot be performed directly because the instrumentation cannot be placed without changing the system. As a result the uncertainty associated with the identification of parameters that govern the contact physics is large. Otherwise, the characteristic times of contact are generally much lower than those of the assembled structure in the frequency range of interest. As a result, the modelling of contact is a source of expensive simulation times and numerical stability problems [BRS + 11]. Despite all these limitations, such simulations still allow for the investigation of the main trends of joint dynamics and thus it is useful in the framework of optimal design. In regard to it, quasi-static assumption is adapted for cheap CPU-time investigations of joint dynamics, see [FCD13].

On the contrary, in the framework of Model Order Reduction (MOR) for simulations, it is necessary to describe mechanical joints with a small number of Degrees of Freedom (DoF). For instance, the Metherell and Diller (MD) problem [MD68] has been the source of a large number of works which aimed to give a low order model of it. The MD problem deals with a bolted lap-joint submitted to a quasi-static lateral force under the assumption of Coulomb friction and an uniform contact pressure. Metherell and Diller showed a power-law relationship between the applied force F and dissipation per cycle D ∝ F α with α = 3. Smallwood's experimental investigations [SGC00] revealed a similar relationship with 2 < α = 3 + χ < 3. Segalman showed that such a behavior can be obtained with the continuous Iwan model [Iwa66] (also called Masing or BPII model) assuming a power-law distribution of sliders, see [Seg02]. Other works established the Iwan distribution associated with the generalised (i.e. with realist bold pressure field) MD problem, see [SM05], [QS05] Argatov and Butcher gave the Iwan distribution associated with the MD problem with a tribological modelling of rough contact [AB11]. These studies revealed that the continuous Iwan model is an equivalent formulation to the generalised MD problem when the joint is preloaded by a time-independent preload and oscillated by small transversal displacement.

Generally, the assumption that the normal stress field is amplitude independent (i.e. time-independent) is not verified. For instance, when subjected to a bending motion, the pressure in the contact patch of a joint depends on the magnitude of the applied torque. In this case, Iwan model is not in accordance with physics. Song [SM05] and Ahmadian [AJ07a] proposed lumped models of joints dedicated to the specific case of bending motions. The purpose of this work is to investigate a generic formulation based on Iwan model. If the Iwan model is still relevant for the modelling of joints when subjected to any load case, then the model would allow for a generic modelling of joints.

In the following section, a generic one Dof oscillator based on Iwan model is developed. In the third section, a semi-analytical formula gives a straightforward condition required for a system to be modelled using Iwan model. This equation gives the relationship between the frequency and damping properties of a system. In section 4, a lap-joint structure is subjected to bending and torsional motions. The estimated frequency and damping properties of the structure are extracted with Kalman filtering. The obtained curves are used to see if the structure is in accordance with the proposed model. Like all model of this type, when used for structural dynamic, the mode decoupling assumption is taken. In the last section, this assumption is questioned. The random response excitation is studied in order to exhibit the limitations associated with the use of macro-models for joints.

Definition of a generic macro-model for joints 7.3.1 Test bench

First, the behavior of a jointed structure under a mono-harmonic excitation is studied. The random response is investigated in the last part of the paper.

In the literature, experimental investigations on joints most commonly result from the dynamic magnification of the resonance of a small structure, see [MBV01], [AJ07b],[HSM + 04], [Hel05], [Cai09], [GIB11]. Likewise, the deformations applied to joints are supposed to be generated by the resonances of a small structure that we call test bench. Figure 7.1 shows a typical configuration. This type of experimental bench is composed of a bolted connection, beams or plates and heavy "seismic" masses. When excited close to resonances, the first modes of this test bench under free-free conditions generate elementary deformations of the joint. Free-free conditions are chosen since a very low amount of parasitic damping is wished. The masses lower the resonant frequencies and thus, large amplitudes can be reached.

Note that the test rig is a way to identify the behavior of a joint under a specific load case. The joint is generally intended to assemble the elements of
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Figure 7.1 -A typical test bench setup a larger structure than just a test structure. As a result, the design of the test bench should be such that its first modes load the joint the same way than the larger structure does.

Low amplitude linearization

Consider the dynamics of the test bench. Using a discrete formulation, the dynamic equation of this small structure can be written in a matrix form :

Mẍ + C ẋ + Kx + f c (x, r) = f e (7.1)
where x, M, C and K respectively denote the displacement vector, the mass matrix, the damping matrix and the stiffness matrix. Vector f e is the external force applied to the structure. The contact force f c (x, r) depends on the actual displacement and its history denoted by the variable r.

For low amplitudes, the non-linear part of the contact force is assumed to be negligible, and the structure can be considered to behave linearly. It is assumed that even if the joint dynamics is locally governed by non-linear laws, the reduced behavior of the joint can be linearized around zero amplitude, i.e. f e is distributed to the damping and stiffness matrices.

Friction dissipations are localized at contact interfaces. As a result, even in the assumption of linear damping, the damping operator may not match Caughey assumption C = i α i M i + β i K i (also referred to as Rayleigh or Basile hypothesis) and the mode basis may be complex. Specific method dedicated to the identification of complex structure can be employed [Fol98]. It is assumed that real vector is good enough in the case of structure like the one depicted in 7.1 and moderate damping. Thus, when the structure is excited at a low amplitudes, the displacement of the structure can be reduced to the real eigenvector basis V : x = Vp (7.2) p denotes the modal coordinates. When excited close to the resonance of one mode v, the dynamic equation of the test bench reduces to :

p + 2ξω 0 ṗ + ω 2 0 p = v T f e m (7.3)
where ω 0 , ξ and m respectively denote the natural angular frequency, the modal damping ratio and the modal mass. The mode shape can be estimated from the experimental Frequency Response Function (FRF) obtained at low amplitude using experimental modal analysis methods. Even if the mass matrix is not available, the experimental mode shapes can still be scaled to unit modal masses (i.e. v T Mv = m = 1) by using the relationship between residues and mode shapes.

Choosing v normalized to the mass matrix yields :

v T K 0 v = ω 2 0 (7.4)

Weak non-linear assumption

On picture 7.2, a typical evolution of the angular frequency versus the amplitude of vibration is plotted. ω ∞ is the asymptotic limit of the angular frequency at very large amplitude. In the assumption of partial sliding, a part of the contact patch is never sliding over a cycle. The linearisation of the stiffness matrix at large amplitude gives

K ∞ = K + ∂fcontact ∂x x→∞ .
The corresponding angular frequency is :

v T K ∞ v = ω 2 ∞ (7.5) ∞ ω 0 ω ω p Figure 7

.2 -A typical evolution of the angular frequency versus vibration amplitude

The constant modal shape can be extended for large motions as long as the assumption of weak non-linearity is still relevant. Joints are firstly designed in order to maintain the integrity of structures and thus cannot allow for a massive decrease of the stiffness (i.e. ω 0 -ω ∞ < 0.1ω 0 ). As a result for large amplitudes, the following hypothesis, referred to as the weak non-linear behavior of joints, is considered : The deformation of the test bench structure for large amplitudes near a resonance is assumed to be well approximated by the mode shape v identified at low amplitude of vibration. The non-linear behavior of the structure is taken into account thanks to the reduced non-linear force but the mode shape alteration is neglected.

The generic form of macro-model

Under this assumption, the joint dynamics is finally reduced to a one degree of freedom resonator of amplitude p : . This model is in accordance with the real physics taking place at contact interfaces in the case of the MD problem. As such, it is adapted for the modelling of joints. Quinn and Segalman showed that the parallel-series formulation is equivalent to the series-series formulation under quasi-static assumption [QS05]. More generally all Iwan dispositions are equivalent. The restoring force f r is now assumed to be derived from the parallel-series Iwan model. Note that the linear part of the restoring force is taken into account by the Iwan model.

p + ω 2 ∞ p + f h (p, r) = f e (7.
The amplitude that governs the dynamic of this Iwan oscillator is the modal coordinate p. It is associated with the shape v. This formulation allows for the identification of a joint subjected to a given load. The identified model can be used for larger structure by considering the joint as a component of it, see [FCD13].

Identification of the joint dynamic 7.4.1 Identification of the equivalent parameters with Kalman filters

This section focuses on the experimental identification of the test bench. Using an appropriate force excitation, the structure bench is excited on an unique mode. The free decay of this mode enable to identify its equivalent frequency and damping properties. A feature of weakly non-linear structures is that each mode mainly responds on the first harmonic of the resonant frequency.

The equivalent modal parameters are those estimated from the first harmonic.

The measured signals are generally polluted by noise and a small contribution of other modes. The contribution of a mode can be extracted from the signal using Butterworth zero phase filtering [HSM + 04], the wavelet transform [HFP09], the empirical mode decomposition [EKL + 13] or Kalman Filtering (KF) [DSCF13].

In this paper the KF method is used. KF refers to a family of algorithms that track the temporal evolution of a system by estimating the two first central moments of its states. The linear KF and the Extended KF (EKF) have been widely used over the past decades in the case of discrete systems. KF methods are performed in order to compute the optimal estimations of the system according to an expected shape of solution. In the present case, the time evolution is assumed to be pseudo-harmonic. The used KF formulation is built in order to minimize the quadratic norm between the analytically integrated signals (the measured signals are accelerations) and the expected movements at each measuring point. For each mode m, the analytical signal is estimated at each measuring point i and two additional states, that are common for all points, governs the evolution of the instantaneous frequency and damping terms. The instantaneous state of mode m at point i, is :

x m,i (t) = X m,i exp((-ξ m (t)ω m (t) + jω m (t) 1 -ξ m (t) 2 )t) (7.7)
The KF identify the evolution with amplitude of the equivalent frequency and damping properties of each mode. The used process is based on the method previously presented in [DSCF13]. In the present work, the "Unscented" KF (UKF) formulation is used, see [JU04] for details. The method is very effective and converges very fast which is an important feature for the study of transient responses.

Equivalent frequency and damping properties of the Iwan oscillator

In this section, Iwan oscillator properties are investigated thanks to a cyclic steady state regime of peak amplitude p m .

-The equivalent angular frequency of the macro-model is the root of the ratio between the equivalent stiffness and the mass of the model :

ω 2 Iwan (p m ) = k eq (θ, p m ) m (7.8)
Theoretically, the slight alteration of the mode shape with amplitude generates the dependence of the modal mass to the modal coordinate. It is assumed that the non-linear effects are only supported by the stiffness. In the case where mode shapes are normalized to the mass matrix, the mass of the model is equal to 1. -The equivalent damping of the macro-model at peak amplitude p m is the ratio between the dissipated energy per cycle D and the total conservative energy E of the model :

ξ Iwan (p m ) = D(p m ) 4πE(p m ) = D(p m ) 2πk eq (p m )p 2 m (7.9)
The dissipation per cycle is the work of the friction force. The total conservative energy is equal to the maximum of strain energy over a cycle which is equal to the equivalent stiffness times the square of the amplitude divided by two. The equivalent stiffness is estimated thanks to the force-displacement curve as shown in figure 7.4. The stiffness is approximated by the ratio between the maximum force and the maximum amplitude over a cycle of peak amplitude p m :

k eq = f r (p m ) p m (7.10)
The actual equivalent stiffness should be estimated from the first term of Fourier expansion of the Iwan force. Figure 7.4 compares the equivalent stiffness computed from Fourier expansion and the approximated definition for different amplitudes. The equation 7.10 slightly overestimates the stiffness. However, the error is only significant for extremely large amplitudes when full sliding regime is obtained, see k(3) in fig 7 .4. This case is not expected under the weak non-linear assumption.

The parallel-series Iwan model is a parallel association of Jenkins elements. The ith Jenkins elements is the series association of a linear spring of stiffness σ and a Coulomb slider of breaking force f i = σp i . The continuous Iwan model has an infinite number of Jenkins sliders arranged according to a continuous breaking forces density φ(f i ). Iwan [Iwa66] derived the force to a monotonic pulls from the distribution :

∂ 2 f r ∂p 2 = -ϕ(p) (7.11)
The parameter σ is removed from the equations by considering the maximum displacement distribution ϕ(p i ) instead of the breaking force distribution φ(f i ), see [Seg02]. The dissipation per forcing cycle of maximum amplitude p m is related to the distribution by : After two integration by parts, the dissipation per cycle is derived from equation 7.11 and 7.12 into :

D(p m ) = 4 pm 0 p(p m -p)ϕ(p)dp (7.12) -3 -2 -1 0 1 2 3 -1.5
D(p m ) = 8 pm 0 f r (p)dp -4p m f r (p m ) (7.13)
In [Seg02], Segalman assumed a power law distribution of the force. The relationship between the dissipation per cycle and the force is generally unknown. In order to keep any possible shape of the force distribution, the integral is numerically integrated using a trapezoidal approximation. A linear sampling on N points is considered from zero to the largest amplitude considered p max m . The n th increment is given by :

p n m = n N p max m (7.14)
The restoring force at zero amplitude is null. Thus, equation 7.13 is discretized as :

D(p n m ) = 4(1 -n)p n m f r (p n m ) n + 8p n m n n-1 k=1 f r (p k m ) (7.15)
Replacing the restoring force by the angular frequency according to equation 7.10 and 7.8 into equation 7.15 yields :

D(p n m ) = 4(1 -n)(p n m ) 2 ω 2 Iwan (p n m ) n + 8p n m n n-1 k=1 p k m ω 2 Iwan (p k m ) (7.16)
Finally, the relationship between the damping ratio and the angular frequency is derived from equation 7.9 as :

ξ Iwan (p n m ) = 2(1 -n) πn + 4 πn 2 ω 2 Iwan (p n m ) n-1 k=1 kω 2 Iwan (p k m ) (7.17)
This formula allows to compute the damping curve that should be obtained by a Iwan oscillator knowing the evolution of the angular frequency with the amplitude.

Similarly, a frequency curve can be obtained from an experimentally identified damping curve. This is obtained with equation 7.17 from n = 2 to n = N : 

1 ω 2 0          ω 2 Iwan (p 2 m ) ω 2 Iwan (p 3 m ) . . . ω 2 Iwan (p n m ) . . . ω 2 Iwan (p N m )          =           ξ Iwan (p 2 
πN 2 ξ Iwan (p N m ) + 2(N -1) πN           -1          4 π4 4 π9 
. . . . . .

4 πN 2          (7.18)
This triangular matrix is not singular since all its diagonal terms are strictly positive.

The evolution of the angular frequency can be deduced from the damping ratio when ω 0 (= ω Iwan (p 1 m )) is known, i.e. the damping curve is not related to the absolute frequency but to the relative softening of the system.

Experimental investigations

Experimental setup

The dynamic behavior of joints is studied thanks to the experimental rig depicted in figure 7.5 referred to as the "H-bench". This small structure consists of two beams connected by a lap-joint and two seismic masses. The beams are made of steel and the dimensions of the structure are given in the appendices. Seismic masses and beams are glued together and tightened with M10 bolts on each side of the structure. The glue associated with a strong clamping of the M10 bolts ensure a very weak dissipation and high stiffness of these joints. The lap-joint is assembled with two M6 bolts in the center of the structure and four M4 bolts close to the edges. 

Estimation of the equivalent parameters

The H-bench is designed so it can be excited on each mode separately with a impact hammer. A white cross shows the hit position used for each mode in figure 7.6. The impact points are placed at the intersection of the largest amplitude on the mode and the vibrational line of the other. The mass of the hammer and the flexibility of its tip are chosen in order to have a cutting frequency just over the second mode (∼ 100Hz). The structure is strongly hit and the free decay of one of these two mode can be observed.

The identification process is now only detailed in the case of the bending mode. For the identification part, this case was the "worst" because it was one for which the pollution of the higher modes was the highest. The exact same process is used for the torsional mode in the following sections. Figure 7.9 shows the free decay of the bending mode measured at measuring points 6. The low dynamic rigid motions due to the free boundary conditions are remo- Note that the torsional mode is not excited at all thanks to the location of the hammer hit. Besides the harmonic ratio is extremely low. Two modes (natural frequencies : 389Hz and 461Hz) are somewhat excited and non-negligible amplitudes are observed in the acceleration signals. Nevertheless, the displacement amplitudes of these modes are very weak compared to the amplitude of the studied mode. It is assumed that these modes are not coupled with the bending mode.

From the measured signals, it is necessary to extract the contribution of the bending mode. The previously presented KF method allows for it by estimating the current modal amplitude, frequency and equivalent damping ratio of these three modes. Figure 7.11 shows the first periods of the measured acceleration at point 6 and the Kalman estimation. The signal is decomposed into the contribution of three modes. The frequency and damping states of a mode are common for all measuring points. The use of several accelerometers improve the robustness of the algorithm and the identification.

The fidelity of the estimated amplitude is extremely high. The formulation of these Kalman filters is based on an analytical description of signal so the imaginary part of the real signal (i.e. the Hilbert transform of the real signal) is estimated too. Figure 7.12 shows the first periods of the estimated analytical signal of the first mode.

The estimation of the instantaneous modulus and phase is performed directly by the Kalman filters using the data of accelerometers 1 to 6. Based on the previously identified mass-normalised mode shape, pictured in figure 7.8, and a double integration over time, the estimated instantaneous frequency and damping ratio can be given in terms of the modal amplitude of the bending mode. 

Iwan oscillator versus experiments

In order to evaluate the robustness of the model, three tightening configurations are studied on the H bench structure. The four M4 bolts are clamped with a torque of 0.5Nm, 1Nm or 2Nm. For all configurations, M6 bolts are clamped with a torque of 15Nm. The identification process is achieved the same way for all configurations. Figure 7.13 and 7.14 respectively show the evolution of the damping ratio and frequency along with the amplitude at point 6 of respectively the torsional mode and the bending mode.

Equations 7.17 and 7.18 give a straightforward way to evaluate the ability of Iwan oscillator to model the dynamic behavior of the system. From equation 7.17 and the experimentally identified frequency curve, a damping curve is computed (referred to as the "Iwan model from frequency" curves in figures 7.13 and 7.14). The similar approach is carried out from equation 7.18 and the experimentally identified damping curve to compute the frequency curve that is in accordance with the Iwan model (referred to as the Iwan model from damping curve).

At near-zero amplitudes, the damping is not null contrary to expected in the model. This small damping is probably caused by micro-sliding between contact asperities at very low amplitude or other sources such as material damping or due to the experimental boundary conditions. This "parasitic" damping is taken into account thanks to an assumed constant damping terms ξ 0 . This constant coefficient is identified by choosing the one that minimize the quadratic norm between the measured curves and those calculated from the model. The frequency curves computed from the identified damping curves very closely fit the identified frequency curves for all configurations. The sensitivity of the damping ratio parameters reveals higher distances between the damping curves computed from the identified frequency curves, and the identified damping curves. Nevertheless these results show that the fundamental characteristics of the system are reproduced by the Iwan model.

This observation is unexpected looking at the wear of the contact surface of the lap-joint. Indeed an important part of the wear is located at the edges as highlighted by the white rectangles in figure 7.15. This wear confirms that the contact pressure field, that is initially located around the bolts and null at the edges, is altered as the amplitude increases. Finally equations 7.17 and 7.18 have allowed to know if Iwan oscillator was good enough to fit the observed behavior. In the previous section, it is shown that the Iwan model is able to reproduce the global behavior of an elementary jointed structure under a monotonic excitation. In larger structures, bolted connections undergo several of these loads simultaneously. The first assumption made in this paper was to consider that all the deformations undergone by the joint can be generated using Ritz decomposition. At the same time, it is rather commonplace to assume the de-coupling between the elements of the Ritz basis (see e.g. [Hel05], [Cai09] or [Seg07]) : The projection of the restoring force on an element v of the modal basis only depends on the modal coordinate associated with this element.

Of course, this hypothesis is theoretically not verified since the occurrence of sliding depends on local tangential forces, i.e. not on generalised motions. This assumption is made for practical reasons : Today, there is no macro-model that is able to take into account the case of multi-mode excitations. Besides, the experimental identification of this hypothetical model is virtually impossible for more than two modes since these terms may depend on the amplitudes, frequencies and phases of each mode. For these practical reasons, the use of macro-model for the simulation of multi-frequency excitation (e.g. random response) relies on the validity of this hypothesis.

Experimental investigations

The coupling between the first torsional and the first bending modes of the H-bench structure is investigated. Coupling forces between these two modes depends on the amplitudes, frequencies and phases of each mode. For this reason, the random vibration of the structure is studied and the obtained response is a mean value in terms of amplitude and phase. The structure is connected to an electromagnetic-shaker with a flexible rod at point 7. A force transducer is fixed between the rod and the structure. The excitation force is controlled in order to enforce a given PSD acceleration at the exciting point. The servo control system, which ensures the PSD set, is composed of a computer with the vibration research software provided by B&K. The servo chain is depicted in figure 7.16. The idea of this experiment is to consider the evolution of the transfer function of a given mode when increasing the amplitude of the other one. If the modal de-coupling assumption is true, the transfer function of a given mode only depends on its own amplitude.

The results are obtained once the wanted PSD set is stabilised. The two first modes of the structure are excited on a bandwidth centred around their natural frequency spanning ±20% of the central frequency. For each mode, 3 constant PSD amplitudes are considered as it is shown in figure 7.17 In order to consider the coupling effects, the 9 PSD combinations are applied, in turn, to the structure.

The transfer function estimator H1 between the excitation force F 7 and acceleration A 6 (with Acc6) is considered.

H 1 (jω) = A 6 (jω)F ⋆ 7 (jω) F 7 (jω)F ⋆ 7 (jω) (7.19) Figure 7.18 and 7.19 shows the Bode diagrams of H 1 for the frequencies respectively around the torsional and the bending mode for the 9 PSD sets. Since the larger amplitude 3 is relatively severe for both modes, bolts may slightly loose during operation. In order to avoid this situation, the responses of the structure, before and after the test campaign, are compared. In graph 7.18, the coupling effects are observable by looking at the evolution of the response for constant T amplitude (curves with the same color).

In graph 7.19, the coupling effects are observable by looking at the evolution of the response for constant B amplitude (curves with the same shape). This figure shows the modal coupling which is observable by looking at the evolution of the response for constant B amplitude (curves with the same shape).

These results clearly shows that the modal-decoupling assumption is not confirmed. Specifically, in graph 7.18, the transfer function of the torsional mode is not independent of the amplitude of the bending mode. Similarly, in graph 7.19, the transfer function of the bending mode is not independent of the amplitude of the torsional mode. In order to evaluate the "amount of coupling effect", the evolution of frequency and absolute value at quadrature to the amplitudes of the modes are considered within the following ratios :

-the difference of frequency at quadrature ∆ f (T iF j) = 100 * This graph shows that the torsional mode plays a more important role on the response of the joint around 43Hz than the bending mode does, both in terms of resonant frequencies and amplitudes. Similarly, the same behavior is observed on the response of the joint around 72Hz (see graph 7.19) : the amplitude of the bending mode plays a more important role than the torsional mode.

Nevertheless, the overall result shows that the coupling effects are not negligible. These coupling effects are actually expected since the local physics of the contact interfaces is strongly non-linear and depends on the local forces.

Conclusion

This paper focus on the use of macro-model for jointed structures. A generic formulation is investigated to obtain the relationship between the frequency and damping parameters of an Iwan oscillator. The obtained semi-analytical formulae allows to know if a system is consistent with the Iwan model, using easily identifiable properties. In the case of mono-harmonic excitations, the results suggest that the generic model is adapted to model the dynamic behavior of joints under any kind of loading case. On the contrary, it is shown that the frequency and damping properties of a mode depends on the amplitude of the other ones. These coupling effects are a serious limitation to the use of macro-models for joints. In the presented definition, mode shapes are considered unaltered by the amplitude of vibration. The presented results suggest a need for models in which the restoring force simultaneously depends on the amplitude of several modes.

Conclusion et perspectives

Le principe de glissement partiel et l'amortissement que ce phénomène engendre au sein des structures boulonnées ou rivetées est un vieux sujet d'étude amorcé il y a plus de cinquante ans. Cependant, la littérature sur le sujet est relativement peu fournie avant la fin des années 90. Cette problématique suscite aujourd'hui un vif intérêt qui peut être mis en évidence par le nombre croissant de thèses, d'articles de revues ou de conférences et d'ateliers dédiés à ce sujet. Notons par exemple la constitution récente d'une communauté de scientifiques, principalement conduite par les laboratoires de Sandia et de l'Imperial college de Londres, qui ont notamment organisés trois sessions depuis 2006 intitulées "Workshop on Jointed Structures", la dernière ayant eu lieu en 2012 à la conférence de l'ASME IDETC/CIE à Chicago. En France, on peut citer les travaux de thèse de Heller [Hel05], de Caignot [Cai09], de Peyret [PDCA10] et de Jaumouillé [JSP10]. Notons qu'il existe aussi un intérêt croissant pour le problème connexe de modélisation de l'amortissement des pieds d'aubes de turbines, voir [START_REF] Nacivet | Modélisation du frottement en pied d'aube par une approche frequentielle[END_REF].

Les travaux de cette thèse ont été soutenus par le pôle de compétitivité AsTech au travers du projet FUI MAIAS (Maîtrise des Amortissement Induit dans les ASsemblages) dans lequel sont impliqués, outre Supmeca, l'école des Arts et Métiers, EADS Innovation Works, l'ONERA, le CNES, la SOPEMEA, SD Tools ainsi qu'un certain nombre de PME spécialisées dans le secteur de l'aéronautique. Notons que la thématique est largement soutenue, avec le secteur de l'aérospatial (CNES), par l'industrie aéronautique (EADS, Onera) mais aussi par le secteur de l'énergie nucléaire (Sandia, CEA).

La caractérisation des amortissements propres permet d'estimer le niveau vibratoire d'une structure sous un chargement donné, ce qui bien sûr est essentiel pour le dimensionnement en fatigue vibratoire. Cette propriété est aussi fondamentale pour les problématiques de stabilité telles que rencontrées dans le cas du crissement de frein ou encore celle du problème de flotteur en aviation. Dans le premier cas, la fonction d'amortissement est généralement prise en charge par l'utilisation de matériaux viscoélastiques, voir [FCR + 12]. Ces matériaux sont susceptibles d'engendrer un amortissement très important mais sont limités par la gamme de température pour laquelle ils peuvent être employés. Dans le cas des structures aéronautiques et aérospatiales les températures sont extrêmes et l'amortissement vibratoire est en grande partie dû au phénomène de glissement partiel dans les liaisons ce qui explique l'intérêt de cette industrie pour le sujet.

La prédiction de l'amortissement des structures assemblées a priori, c'est à dire lors de la phase de conception, est un objectif difficile a atteindre. Les travaux de la présente thèse ont été motivés par le souhait de répondre à ce problème d'une manière assez globale et notamment de faire le lien entre la caractérisation de la rhéologie locale d'une liaison et le modèle complet d'une grande structure. L'amortissement induit par micro-glissement est dépendant de l'amplitude vibratoire. Il est donc nécessaire de mettre en oeuvre les principes dédiés aux systèmes non-linéaires aussi bien pour l'identification que pour la modélisation.

L'identification expérimentale a été traitée par une formulation originale du filtre de Kalman adapté au cas de vibrations des structures faiblement nonlinéaires en régime libre. Cette technique a été mise en oeuvre afin de réaliser une analyse paramétrique du comportement de bancs d'essais. Une méthode de caractérisation numérique basée sur une formulation quasi-statique a aussi été proposée. Elle vise a offrir une alternative peu couteuse pour l'estimation des courbes de fréquences et d'amortissement. Les résultats présentés montrent une assez bonne corrélation entre essais et calculs. L'originalité de la thèse réside aussi dans la formulation en modèle réduit. En pratique, l'approche modale classique ne peut pas être mise en oeuvre dans le cas d'un modèle a priori car celle-ci nécessite le calcul des dissipations de chaque liaison pour chaque mode. Aussi, la dissipation induite au sein d'une liaison est liée aux variables locales. Ainsi, il n'est généralement pas possible de découpler les équations de mouvement dans une approche de réduction de modèle avec des mouvements généralisés. La présence de couplages modaux rend cette méthode théoriquement inutilisable pour les excitations autres que mono-fréquentielles. La méthode de réduction proposée est basée sur l'association de déformées locales principales associées à des rhéologies de Iwan. Cette formulation permet une caractérisation moins coûteuse des modèles qui par ailleurs sont en mesure de prendre en compte les effets de non-linéarité tels que l'assouplissement, la dépendance de l'amortissement aux niveaux vibratoires ainsi que les couplages modaux. Il a finalement été montré expérimentalement que le modèle de Iwan est, si ce n'est exactement représentatif de la physique locale, tout à fait adapté à la modélisation des liaisons.

Le schéma proposé à la page suivante est un aperçu ordonné de différents travaux la thèse. Il s'agit d'un diagramme basé sur le modèle du cycle en V. Les chapitres y sont ordonnés afin de fournir un processus de construction d'un modèle réduit de structure assemblé.

Vers la conception d'une liaison amortissante ?

La dissipation au sein des assemblages est un phénomène bénéfique pour l'intégrité d'une structure car elle permet de limiter le niveau vibratoire de celle-ci. Cependant, ce comportement dissipatif s'accompagne nécessairement d'un effet d'assouplissement qui au contraire n'est pas désirable. Cette particularité est propre au phénomène de contact glissant.

L'assouplissement d'une liaison est d'autant plus grand que la dissipation qu'elle engendre est importante. La forme de l'assouplissement joue aussi un rôle déterminant, si bien qu'il n'est généralement pas possible de déterminer un taux d'amortissement à partir d'un taux d'assouplissement. La figure 7.21 présente les courbes caractéristiques de plusieurs oscillateurs de Iwan dont le point commun est une diminution de la fréquence de résonance de 10% à l'amplitude 1. On se donne ici plusieurs formes quelconques d'évolution de la fréquence et les courbes d'amortissement sont calculées à partir de la formule 7.17. La valeur du taux d'amortissement à l'amplitude 1 dépend de la forme de la courbe de fréquence.

Rien n'exclut à priori une forme d'évolution plutôt qu'une autre (tant que la fréquence est décroissante monotone en fonction de l'amplitude). Nous avons vu qu'il est possible de "régler" le comportement d'une liaison en jouant sur certains paramètres tels que le serrage pour passer d'une configuration à une autre. Typiquement, les configurations correspondantes aux courbes vertes et cyans sur la figure 7.21 sont très serrés comparativement à celles des courbes bleues foncées et roses. Dans tous les cas, les caractéristiques d'amortissement et d'assouplissement sont couplées.

La liaison du banc d'essais en H a été conçue pour concilier ces caractéristiques contradictoires du point de vue de la conception. La géométrie proposée permet de découpler les fonctions de dissipation et de sécurité. Les deux vis M6 sont fortement serrées (15Nm) comparativement aux vis M4 dont le serrage est inférieur à 2Nm. Il est attendu que la rigidité de la zone de contact sous les têtes de vis M6 ne soit pas affectée par l'amplitude de vibration. Cette hypothèse est validée par les courbes noires indiquées 0Nm dans les figures 5.20 et 5.21. La configuration 0Nm correspond au cas où les vis M4 sont retirées et seules les vis M6 assurent le maintient de la liaison. Évidemment la raideur globale de la liaison est plus faible (environ deux fois plus faible) qu'avec les vis M4, mais cette raideur est assurée même dans le cas où les autres points de contact seraient en régime de glissement total. L'assouplissement est ainsi maitrisé car la limite basse de la raideur est connue.

Les taux d'amortissement mesurés dans la configuration 0Nm sont très faibles. Le phénomène de glissement partiel est donc très majoritairement localisé sous les têtes de vis M4. Dans la mesure où une certaine rigidité de liaison est assurée, il est alors possible d'envisager d'appliquer toute sorte de couple de serrage aux vis M4. Les faibles serrages ont permis d'engendrer des taux d'amortissement importants aux faibles et moyennes amplitudes. Cette caractéristique peut être exploitée afin d'assurer un niveau vibratoire bas dans les conditions nominales de vibration d'une structure. Les forts serrages assurent un taux d'amortissement important pour les conditions d'amplitudes fortes. Des configurations hybrides avec différents serrages, comme présenté sur la figure 5.6 doivent être considérées car elle permettent d'assurer un taux d'amortissement important quel que soit l'amplitude de vibration. Une autre caractéristique importante, et non-souhaitable, du phénomène de glissement partiel est l'usure des pièces de contact. La géométrie de la liaison en H peut être améliorée en remplaçant les vis M4 par des points de contact discrets comme représenté sur la figure 7.22. Technologiquement, cette fonction peut être assurée par des vis de type pointeau. Le préchargement des points de contact est assuré par la déformation (exagérée sur le dessin) des pièces assemblées.

Ce type de contact très localisé présente aussi l'avantage d'être très bien connu des tribologues, voir figure 1.3. La localisation de la zone d'usure en un nombre limité de points bien identifiés permet ainsi de maitriser la détérioration de la liaison. Le choix de matériaux ou de revêtement adaptés permet aussi d'user principalement les vis (qui peuvent facilement être remplacées) plutôt que les pièces assemblées. L'identification de ce type de contact dont la géométrie est connue est bien plus aisée que dans le cas d'une surface de contact réputée plane pour laquelle les défauts sont inconnus. Enfin la modélisation des contacts ponctuels ne nécessite pas autant de ressources que dans le cas d'un contact surfacique. La construction d'un modèle pour représenter la dynamique d'une liaison de ce type semble assez aisée comparée aux modèles alambiqués qui ont été développés dans cette thèse. L'effort considérable que nécessite la mise en place des modèles de liaisons de géométries ordinaires laisse penser qu'il serait intéressant de concevoir et de mettre en place, en certains points stratégiques, des liaisons dédiées à une fonction amortissante maitrisée.
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 12 Figure 1.2 -Usure caractéristique d'une interface de contact autour d'un trou de vis.

Figure 1 . 3 -

 13 Figure 1.3 -Essai de frottement élémentaire sur tribomètre de fretting.
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 15 Figure 1.5 -(a) Modèle de Goodman et Klumpp (GK)-Modèle de Metherell et Diller (MD) -Source [PDCA10].
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 16 Figure 1.6 -Glissement partiel dans une interface de contact -Source [SM05].
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 1217 Figure 1.7 -Cycles d'hystérésis produits par le modèle de Dahl.
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 18 Figure 1.8 -Cycles d'hystéresis générés par le modèle de Bouc-Wen.
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 19 Figure 1.9 -Principe des règles de Masing.
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 110 Figure 1.10 -Élément ressort-frotteur de Coulomb -source : [Hel05].
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 111 Figure 1.11 -Modèle d'Iwan -source : Thèse de Heller[Hel05].
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 1112 Figure 1.12 -Principe d'équivalence des modèles. (a) Modèle physique, (b) Modèle d'Iwan en disposition quelconque proche de la physique , (c) Modèle d'Iwan en disposition parallèle.
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 113 Figure 1.13 -Réponse impultionnelle d'une structure assemblée.
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 114 Figure 1.14 -Réponse impultionnelle d'une structure assemblée.
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 1 Figure 1.15 -Évolution des paramètres modaux dans le temps.
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 1 Figure 1.16 -Paramètres modaux équivalents en fonction de l'amplitude vibratoire.
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 1 Figure 1.17 -Fonction de réponse en fréquence d'un système à un degré de liberté en fonction de l'amortissement -Source : Cours de vibration de J.L Dion (Supmeca 1ère année).
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 1 Figure 1.18 -ExpBenchGW -(a) Banc d'essai de Smallwood [SGC00] (b) Banc d'essai de Goyder [GIB11] (b) Banc d'essai de Gaul [BRS + 11]
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 119 Figure 1.19 -Courbes d'hystéresis traduisant la dissipation -Source [SGC00]
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 23 Figure 2.3 -Restoring force : Raideur linéaire + Modèle d'Iwan.
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 24 Figure 2.4 -Amplitude et force en fonction du temps sur un cycle.
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 25 Figure 2.5 -Principe de la linéarisation équivalente.
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 26 Figure 2.6 -Évolution de l'énergie de déformation et de l'énergie dissipée par cycle en fonction de l'amplitude.
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 27 Figure 2.7 -Évolution des paramètres modaux équivalents en fonction de l'amplitude vibratoire.
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 29 Figure 2.9 -Évolution des paramètres modaux équivalents en fonction de l'amplitude vibratoire. Les cercles colorés indiquent la correspondance avec les figures 2.8 et 2.10.
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 2 Figure 2.10 -Cycle d'hystéresis du modèle d'Iwan pour différentes amplitudes. Les couleurs indiquent la correspondance avec les figures 2.8 et 2.9.
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  28) La pulsation et l'amortissement dépendent du temps ; cependant leurs évolutions temporelles sont à priori inconnues. Par défaut, nous choisissons un modèle d'évolution invariant en fonction du temps. Ce modèle est néanmoins basé sur l'hypothèse que ces paramètres varient lentement. C'est le bruit d'état qui autorise la variation effective d'un pas de temps à l'autre. Pour s'en convaincre, il suffit de choisir un bruit d'état nul (centré d'écart type nul) : dans ce cas l'état du système fait totalement confiance au modèle d'évolution et la pulsation et l'amortissement restent figés à leurs valeurs initiales. De la même façon, si le signal mesuré est une accélération x(t) := acc(t), la fonction d'observation n'est plus proportionnelle à p k . L'équation 3.5 fournit la relation entre l'accélération et le déplacement en fonction de p m , de la pulsation ω et de leurs dérivées. Nous avons introduit le paramètre σ dans le vecteur d'état du filtre de Kalman pour traduire la décroissance de l'enveloppe du signal. Il est donc nécessaire d'exprimer l'accélération en fonction de ce paramètre. La première dérivée de l'enveloppe par rapport au temps est : ṗm = (σ + σt)p m (3.29) La seconde est : pm = (2 σ + σt + σ 2 + σ2 t 2 -2σ σt)p m (3.30) L'équation 3.5 donne donc la relation entre l'accélération et le vecteur d'état :
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 31 Figure 3.1 -Principe de la linéarisation et de la transformation unscented.
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 33 Figure 3.3 -Signaux temporel de force et d'accélération simulé. La figure 3.4 présente les spectres fréquentiels de ces signaux calculés. Ces spectres sont obtenus à partir des valeurs absolues de la transformée de four-
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 34 Figure 3.4 -Spectres fréquentiels des signaux de la figure 3.3.
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 35 Figure 3.5 -Estimation du déplacement analytique
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 36 Figure 3.6 -Estimation des paramètres modaux équivalents.
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 37 Figure 3.7 -Paramètres modaux équivalents en fonction de l'amplitude de vibration.
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 3839 Figure 3.8 -Signaux temporels simulés en trois points de mesure.
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 310 Figure 3.10 -Estimation des états (Acc1) aux derniers instants.

Figure 3 . 11 -

 311 Figure 3.11 -Estimation des paramètres modaux du second mode.
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 312 Figure 3.12 -Estimation des paramètres modaux équivalents du premier mode.
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 41 Figure 4.1 -linearization of the non-linear force

Figure 4 . 2 -

 42 Figure 4.2 -the model is sub-structured in two domains : the localized non-linear domain (joints) Ω a and the linear domain Ω b
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 43 Figure 4.3 -Iteration of the method under the assumption of weak nonlinearity
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 444 Figure 4.4 -Iteration of the method in the case of the closed loop algorithm
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 45 Figure 4.5 -Masing principle. The hysteretic paths obtained during cyclic loading are assumed to be of the same form as the backbone curve except for an expansion by a factor of two (with the origin shifted to the loading reversal point)
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 46 Figure 4.6 -Flowchart of the open loop algorithm (for weak to moderate non-linear problems) : Gray boxes means that the computing is done on the macro-size model.
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 147 Figure 4.7 -Flowchart of the closed loop algorithm : Gray boxes means that the computing is done on the macro-size model.
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 48 Figure 4.8 -The lap-joint benchmark The presented method, in the case of the weak non-linearity assumption, has been investigated on the first vertical bending mode Φ (around z) of this lapjoint benchmark for three different bolt pressures (500N, 1000N and 2000N).
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 49 Figure 4.9 -Instantaneous energies of the free response of the lap-joint initialized with the first vertical bending mode Φ : strain-energy, kinetic-energy, total energy E obtained by dynamic simulation for a tightening force of 500N
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 410 Figure 4.10 -Dissipated energy per cycle along with total energy E for the first bending mode of the lap-joint benchmark. A comparison of the dissipation computed with the presented method using the open loop algorithm (solid line) and the full dynamic analysis (Dashed lines) for three tightening forces.

Figure 4 .

 4 Figure 4.11 shows a comparison of the computed FEP and DEP of the first vertical bending mode Φ for three different bolt pressures. The frequency of the low energy mode computed with eq.4.4 is also plotted. In the case of the dynamic analysis, the frequency is computed by looking at the time spent between three maximums of strain-energy (strain energy has two maximums in a period). In order to have a clear and vivid idea of the problem, the magnitude of vibration, in figure4.11, is also given with respect to the peak displacement of the top of the beam in the case of the normal mode shape. It is related to the total energy thanks to : u top = Φ top q = Φ top

  top of the beam (Φ top q) [mm] Displacement of the top of the beam (Φ top q) [mm] method 1000N -Presented method 2000N -presented method 500N -Full dynamic analysis 1000N -Full dynamic analysis 2000N -Full dynamic analysis

Figure 4 .

 4 Figure 4.11 -Damping-Energy Plots and Frequency-Energy Plots of the first bending mode of the lap-joint benchmark. A comparison of the dynamic parameters computed with the presented method using the open loop algorithm (solid line) and the full dynamic analysis (Dashed lines) for three tightening forces. The frequency of the Low Energy mode computed with eq.4.4 is also plotted
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 52 Figure 5.2 -Poutre lap-joint et poutre monolithique.
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 5354 Figure 5.3 -Premier mode de la structure en condition de limite encastrélibre.
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 55 Figure 5.5 -Valeurs absolues des transformées de Fourier des signaux de force et d'accélération
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 56 Figure 5.6 -Influence de la force de serrage sur les paramètres équivalents du premier mode de la structure lap-joint.

FrequenceFigure 5 . 7 -

 57 Figure 5.7 -Estimation des paramètres équivalents du second mode de la structure lap-joint.
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 58 Figure 5.8 -Répétabilité de la procédure de serrage.

  top of the beam (Φ top q) [mm] Displacement of the top of the beam (Φ top q)[mm] 
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 59 Figure 5.9 -Paramètres modaux équivalents calculé par la simulation.

  3 est trop faible. Cependant, dans le cas d'un contact acier-acier, cette valeur est au contraire considérée comme la limite supérieure. -Les défauts de surface locaux d'ordre 1 ou 2 (échelle macroscopique) jouent un rôle non-négligeable. Nous supposons que la modélisation du frottement local par la loi de Coulomb permet de tenir compte des défauts d'ordre élevée. Cette hypothèse est certainement d'autant plus fausse que l'ordre de défaut est bas. Une tentative a été menée afin d'évaluer cette dernière hypothèse. Pour cela, les défauts de surface de chacune des deux pièces ont été mesurés à l'aide d'un profilomètre optique puis intégrés dans un modèle éléments finis reprenant la géométrie réelle de chaque pièce. Dans le cas d'une approche analytique, Peyret a montré le rôle important que jouent les défauts d'ordre bas, voir [Pey12]. Le profil de la surface mesurée de l'un des deux spécimens est présenté sur la figure 5.10.
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 5 Figure 5.10 -Profil de la surface réelle.

Figure 5 .

 5 Figure 5.11 -Aperçu détaillé de la surface réelle -Défauts d'ondulations.

  Cnes a mis a disposition du projet MAIAS une portion d'une liaison boulonnée du système SYLDA5 (SYstème de Lancement Double sur Ariane 5). Cette liaison appelée SSS contient le cordon pyrotechnique qui permet de séparer le SYLDA5 du lanceur avant le lancement de la charge utile basse. Cet assemblage boulonné est représenté dans la figure 5.13.
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 5 Figure 5.13 -Liaison boulonnée SSS du SYLDA5
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 514 Figure 5.14 -Paramètres modaux équivalents identifiés.

  Le banc d'essai lap-joint en H est composé de masses sismiques et d'une plaque assemblée par une liaison composée de six boulons. Cette structure est conçue pour charger la liaison de deux manières différentes : selon un chargement de torsion axiale et un chargement de flexion. Une photo du montage est donnée sur la figure 5.15.

Figure 5 .

 5 Figure 5.15 -Banc d'essai lap-joint en H.
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 516517 Figure 5.16 -Réponse impulsionelle.
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 5 Figure 5.18 -Écrous JPB system.
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 519 Figure 5.19 -Adaptation de la structure.
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 520521 Figure 5.20 -Paramètres équivalents du mode de torsion.
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 522 Figure 5.22 -Dépendance de la déformée du mode de torsion à l'amplitude.
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 523 Figure 5.23 -Dépendance de la déformée du mode de flexion à l'amplitude.
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 524 Figure 5.24 -Comparaison des déformées du mode de torsion à faible et grande amplitude.

Figure 5 . 25 -

 525 Figure 5.25 -Comparaison des déformées du mode de torsion à faible et grande amplitude.
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 526527528 Figure 5.26 -Fonctions d'accélérances aux différents points de mesure.

  . . . . . . . . . . . . . . . . . . . . . . . . 150 6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . 152 6.3 Reduced order formulation . . . . . . . . . . . . . . 153 6.4 Identification of the joint rheology . . . . . . . . . 155 6.4.1 The test bench structure . . . . . . . . . . . . . . . . 155 6.4.2 The joint mode basis . . . . . . . . . . . . . . . . . . 156 6.4.3 Reduction on macro-models . . . . . . . . . . . . . . 157 6.4.4 Identification of the macro-models . . . . . . . . . . 158 6.4.5 Alteration of the mode shape . . . . . . . . . . . . . 159 6.4.6 Inclusion of the macro-models in the whole model . 160 6.5 Example: clamped-free jointed beams . . . . . . . 161 6.5.1 The whole structure . . . . . . . . . . . . . . . . . . 161 6.5.2 Identification of the bolted-joint . . . . . . . . . . . 162 6.6 Results and discussion . . . . . . . . . . . . . . . . 167 6.6.1 ROMs versus FULL order model . . . . . . . . . . . 167 6.6.2 Validity of the PJSB . . . . . . . . . . . . . . . . . . 171 6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 173 Bibliographie du chapitre 6 . . . . . . . . . . . . . . .

Figure 6 . 1 -

 61 Figure6.1 -The sub-structuring -It is not carried out the same way as for the Craig-Bampton reduction. Actually, the domain Λ a is not only limited to the non-linear DoFs, but extend to the region around the joint ; Λ b is assumed to behave linearly.
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 63 Figure 6.3 -The generic macro-model associated with each component of the PJSB.

3 e

 3 h and L e are respectively section height and element length. The joint domain Λ a is modelled with 3 beam elements (n o 4,5,6). The rest of the structure is the Λ b domain. Non-linearities in real joints have a local extent and thus Λ a contains both non-linear as well as linear elements. Its second element (fifth element in the whole structure) is fitted with a non-linear hysteretic model which is largely inspired from the work of Song [SHM + 04]. This model, referred to as an Adjusted Iwan Beam Element (AIBE), relies on the reduction of the 2D linear elastic beam element to rigid bars and linear springs k 1lin = 12EI/L and k 2lin = 4EI/L e h 2 , where I denotes the quadratic moment of the beam.
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 5123465 Figure 6.5 -The Joint Mode Basis (PJSB) ; The local sub-space Λ a of the whole structure Λ is projected on this reduced basis.
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 66 Figure 6.6 -Identification of the macro-model ; The identified macro-model very precisely fits the measured dynamics.

k 3 = 5 .

 35 254.10 4 ; σ = 4.65.10 3 ; f m = [1.57, 3.23, 4.21] (6.33)
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 6768 Figure 6.7 -Ordinary least square estimation of the actual shape for large amplitude ; The instantaneous estimation of p 3 is carried out through this estimation.
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 69 Figure 6.9 -Identified hysteretic force f h 3 .
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 6 Figure 6.10 -Linear-equivalent dynamic properties of the identified macromodel.
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 6 Figure 6.11 -LOAD CASE 1 -(a) : Excitation force ; (b),(c),(d),(e) : Measured displacement for FULL order model and ROM1 ; (f),(g),(h),(i) : Measured displacement for FULL order model and ROM2.
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 612 Figure 6.12 -LOAD CASE 2 -(a),(b),(c),(d) : Excitation force ; (e),(f),(g),(h) : Measured displacement for FULL order model and ROM1 ;(i),(j),(k),(l) : Measured displacement for FULL order model and ROM2.
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 613 Figure6.13 -Instantaneous minimum angle between the exact deformation and the subspace generated by the PJSB and the whole structure mode basis restricted to the sub-domain Λ a ; First load case between time t=1 and t=2 sec
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 614 Figure 6.14 -Instantaneous minimum angle between the exact deformation and the subspace generated by the PJSB and the whole structure mode basis restricted to the sub-domain Λ a ; Second load case between time t=7 and t=8 sec
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 273 Figure 7.3 -The generic macro-model is a one degree of freedom resonator fitted with a unit mass and a hysteretic restoring force.The continuous formulation of the parallel-series Iwan model has been largely investigated in the literature, see[AB11],[SM05],[Seg01],[Seg02]. This model is in accordance with the real physics taking place at contact interfaces in the case of the MD problem. As such, it is adapted for the modelling of joints. Quinn and Segalman showed that the parallel-series formulation is equivalent to the series-series formulation under quasi-static assumption[QS05]. More generally all Iwan dispositions are equivalent. The restoring force f r is now assumed to be derived from the parallel-series Iwan model. Note that the linear part of the restoring force is taken into account by the Iwan model.
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 74 Figure 7.4 -How the equivalent stiffness is calculated. This approximation allows for an analytical formulation.
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 75 Figure 7.5 -A picture of the H test-bench
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 767778 Figure 7.6 -Acceleration frequency response (Acc7) to low amplitude hammer hit

  ) [m.s-2]
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 79 Figure 7.9 -Acceleration time response (Acc6) to heavy hammer hit
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 710 Figure 7.10 -Acceleration response to heavy hammer hit in frequency domain ; measured at point 6
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 711 Figure 7.11 -The first periods of the measured acceleration (Acc6) -Kalman estimation and decomposition of the signals -The measured response is decomposed according to the contribution of each mode.
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 712 Figure 7.12 -The first periods of the estimated analytical amplitude of the first mode (Bending mode)
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 713714 Figure 7.13 -Torsional mode -Evolution of frequency and damping ratio with peak modal amplitude estimated with the Kalman filtering method
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 715 Figure 7.15 -The wear of the contact surface
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 716 Figure 7.16 -The servo-control system ensure the wanted PSD sets

Figure 7 .

 7 Figure7.17 -9 acceleration PSD sets are applied in turn to the structure at point 7.
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 718 Figure 7.18 -Bode diagram of the Torsional mode for different PSD sets. This figure illustrate the modal coupling which is observable by looking at the evolution of the response for constant T amplitude (curves with the same color).
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 719 Figure 7.19 -Bode diagram of the Bending mode for different PSD sets.This figure shows the modal coupling which is observable by looking at the evolution of the response for constant B amplitude (curves with the same shape).

  of the absolute value of the transfer response function at quadrature∆ |H| (T iF j) = 100 * |H quad T iF j |-max i,j (|H quad T iF j | max i,j (|H quad T iF j |)These ratios are plotted in figure7.20 for the two considered resonances.
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 720 Figure 7.20 -Deviation ratio of frequency and absolute value at quadrature with the amplitudes of the modes
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 721 Figure 7.21 -Relation entre assouplissement et amortissement.

Figure 7 . 22 -

 722 Figure 7.22 -Schéma de principe d'une liaison à vocation dissipative.

  

  pour estimer la dissipation d'une interface contenant un nombre finis d'aspérités. Peyret distingue notamment deux classes d'aspérités : celles dont les ordres de défauts sont les plus bas se comportent comme les points d'adhérence de la surface ; celles d'ordre plus élevés sont principalement responsables de la dissipation. outre basée sur une hypothèse de pression de contact uniforme. Il est clair sur cette image que l'éloignement entre deux aspérités est d'un ordre de grandeur non-négligeable devant les gradients de contrainte sous la tête de vis. Une approche statistique peut donc être limitée par le faible nombre d'aspérités en contact pour les ordres de défauts les plus petits. Notons finalement que d'autres phénomènes complexes, de micro-impacts[JAP11] et de plasticité localisés au lieu des arrêtes de liaisons[WO08], peuvent eux aussi jouer un rôle important dans la dissipation des liaisons.Le contact est un phénomène très complexe faisant intervenir différentes échelles de description et plusieurs phénomènes de dissipation. Ainsi la tribologie est une science fortement liée à l'expérimentation. La caractérisation des paramètres du contact nécessitent par ailleurs des moyens d'essais difficiles à mettre en oeuvre et une expertise spécifique. La prédiction de la dissipation

	Notons cependant que la plupart des approches tribologiques (la totalité ?)
	supposent une hypothèse de force normale constante au cours d'un cycle de
	chargement. Les bancs d'essais développés dans cette thèse font état de cas
	pour lesquels cette hypothèse est probablement fausse. Nous pouvons aussi
	remarquer que l'approche statistique est limitée au cas où un nombre suffi-
	sant d'aspérités sont effectivement en contact. On peut voir sur la figure 1.2

La modélisation des surfaces rugueuses nominalement planes (i.e. celles pour lesquelles les principaux défauts sont d'ordre 3 et 4) introduite par Greenwood et Williamson en 1966

[GW66] 

est largement admise

[BDPH13]

. Cette approche consiste à décrire les surfaces nominalement planes comme une collection N d'aspérités arrondies de même rayon de courbure R et de hauteur variable. La hauteur des aspérités est déterminée par une densité de probabilité assumée suivre une loi normale centrée d'écart type σ. Il existe d'autres modèles de ce type basés sur différentes normes de rugosité ou d'ondulation, voir

[RV]

. L'approche statistique permet de calculer la résultante de la force normale de contact sous un chargement uniforme à l'aide d'un nombre limité de paramètres d'états de surface en plus des paramètres matériaux. Par la suite, plusieurs études ont permis d'étendre cette approche statistique au cas du contact frottant, voir par exemple

[Bjo97]

.

Cette extension permet récemment à Argatov et Butcher

[AB11] 

de résoudre analytiquement le problème de Metherell et Diller, voir figure 1.5(b), dans le cas du contact rugueux. Farhang et al.

[FSS11] 

proposent des formulations par éléments finis qui intègrent ces considérations tribologiques. L'index de plasticité permet de prendre en compte simultanément la dissipation par glissement partiel des aspérités ainsi que leur déformation plastique, voir

[CEB87]

,

[EPB11]

. L'approche classique de l'étude du fretting vise à caractériser l'endommagement des surfaces. L'objectif des travaux de Eriten

[Eri12] 

est de construire des modèles de surfaces recalés à partir d'essais de fretting élémentaires afin d'estimer la dissipation par micro-glissement au sein de liaison complètes. que le frottement n'apparait que sur un nombre relativement limité de stries d'usinage assimilables à des défauts d'ordre 2 à 3 (la largeur des stries mise en évidence par l'usure est comprise entre 0.1mm et 1mm). L'approche statis-tique est en d'une liaison à partir des efforts de contact recalés à partir d'essais de fretting est une approche possible qui cependant n'est pas le sujet de cette thèse. Une approche alternative est celle des modèles phénoménologiques.

existe une distribu- tion du modèle d'Iwan en parallèle représentant exactement le pro- blème de Metherell et Diller pour des liaisons de n'importe quelle géométrie

  Le modèle de Segalman est, selon son auteur, un modèle suffisant de liaison. Song [SM05] établit lui aussi une relation d'équivalence entre le modèle d'Iwan en parallèle (en anglais : series-parrallel Iwan model) et le modèle analytique du problème de Metherell et Diller avec une répartition réaliste des contraintes sous tête de vis. De même, Quinn et Segalman [QS05] ont écrit les relations équivalentes entre le modèle d'Iwan en série (en anglais : series-series Iwan model) et le modèle analytique de lap-joint. Argatov et butcher [AB11] relient les paramètres statistiques du contact rugueux, à une distribution singulière de frotteur pour le modèle d'Iwan parallèle [AB11]. Retenons qu'il existe des relations équivalentes entre le cas Metherell et Diller généralisé et le modèle d'Iwan. Quinn et Segalman [QS05] ont par ailleurs montré que le modèle d'Iwan en série et en parallèle possèdent elles aussi des relations équivalentes (en quasi-statique). Toutes les dispositions du modèle d'Iwan sont en fait équivalentes. En d'autres termes, il

Dans le cas du modèle d'Iwan continu, une distribution de force de glissement ϕ est associé à un champ continu de frotteur de Jenkins, voir

[Seg01]

. Les paramètres du modèle d'Iwan sont la raideur, commune à tous les éléments, et la distribution de force de glissement. Cette distribution peut être assimilée au champ de pression de contact d'une interface. Le modèle d'Iwan continu est donc une formulation équivalente au problème

de 

Metherell et Diller généralisé (rappel : lap-joint soumis à un chargement transverse et pré-chargé selon une répartition quelconque, voir figure 1.6). Le modèle d'Iwan continu a fait l'objet d'un certain nombre de travaux analytiques visant à relier ses paramètres au cas de Metherell et Diller. Les travaux expérimentaux de Smallwood [SGC00], qui seront explicités par la suite, montrent une relation entre force appliquée F et dissipation par cycle D au sein d'une liaison similaire à celle trouvée analytiquement. Smallwood observe en effet une relation telle que D ∝ F α avec cependant α compris entre 2 et 3. Segalman montre que cette même relation de puissance D ∝ F 3+χ (avec χ entre -1 et 0), peut être obtenue avec le modèle d'Iwan en parallèle en prenant une densité de frotteur de la forme ϕ ∝ φ χ [Seg02]. Le modèle de Segalman fait aujourd'hui référence. C'est un cas particulier du modèle d'Iwan à quatre paramètres (χ, φ max , F s , , β) : χ est le paramètre de distribution des frotteurs avant le glissement total, φ max est une singularité qui définit le déplacement maximal admissible, F s est la force correspondante pour laquelle le glissement total se produit et β est un paramètre d'ajustement. . Le principe de cette propriété est illustré dans la figure 1.12. Ainsi le modèle continu d'Iwan en parallèle est théoriquement équivalent à toutes les géométries de liaisons soumises à une force normale indépendante de l'amplitude et un chargement transverse. La simplicité du principe du modèle d'Iwan, sa grande souplesse et sa proximité avec la physique réelle explique l'intérêt grandissant que la communauté des chercheurs porte à son égard, voir notamment [SHM + 04], [OOM05], [OOM06] ,[DBBK07] et [AB11]. Notons que ces études récentes visent à construire des modèles d'Iwan de liaison à partir de la géométrie (i.e. à priori).

Le modèle d'Iwan est donc un choix adapté pour la modélisation du comportement des liaisons. Il faut cependant noter que ce modèle repose sur l'hypothèse d'une répartition de pression de contact indépendante de l'amplitude : p(x) = p 0 (x). En réalité, le champ de pression dépend généralement de l'amplitude : p(x, p) = p 0 (x) + ∆p(x, p). Cette dépendance est plus ou moins accentuée selon les types de chargements que la liaison subit. Par exemple, cette variation est plus forte dans le cas d'un chargement de flexion plutôt que dans le cas de Metherell et Diller. Rien ne présume donc que le modèle d'Iwan soit bel et bien capable de décrire le comportement dynamique d'une liaison soumise à des chargements qui induisent de fortes variations de la pression de contact ; i.e. ∆p(x, p) non négligeable devant p 0 (x). Notons qu'il existe des macro-modèles spécialement conçus pour les cas de poutres en flexion, voir [SHM + 04] et

[AJ07a]

.

et sou- vent considérée comme négligeable [Qui12].

  Ce paradoxe s'explique par le fait que les liaisons sont avant tout conçues afin de tenir aux efforts. Les liaisons d'assemblages sont surdimensionnées lorsqu'elles assurent l'intégrité des structures. Ainsi, les vibrations d'une structure assemblée ne provoquent pas l'assouplissement massif de ses liaisons. L'état de glissement total n'est jamais atteint dans l'interface d'une liaison puisqu'il correspond en réalité à la destruction de la liaison. Les vis et rivets ne sont généralement pas conçus pour supporter du cisaillement. En tout état de cause, ce cas de figure sort du cadre d'étude de cette thèse.La dynamique présentée à la figure1.13 est approximativement assimilable à celle d'un oscillateur libre à un degré de liberté de la forme : La caractérisation de la structure élémentaire et de la liaison SSS consiste en l'estimation de la forme de la force r, c'est à dire sa dépendance à l'amplitude modale de vibration p, éventuellement au temps et à des variables internes p i ainsi qu'en l'estimation de ses paramètres invariants θ et ω ∞ . Lorsqu'on se donne la forme de la force, ou lorsqu'elle est connue, il est possible d'identifier ses paramètres de manière directe en utilisant une approche optimale. Dans le cas des structures linéaires, les paramètres à identifier sont la pulsation et l'amortissement propre. Dans le cas des structures faiblement non-linéaires,

	p + ω 2 ∞ p + r(r i , p, θ, t) = 0	(1.5)

le système peut être identifié de manière indirecte en mesurant l'évolution temporelle de la pulsation propre ω(t) et de l'amortissement ξ(t) de la fondamentale du mode. Les harmoniques d'ordres supérieurs sont négligés. Ces paramètres sont définis comme les paramètres modaux équivalents. Il s'agit de chercher les solutions de l'équation 1.5 sous la forme :

Le phénomène de glissement partiel dans les assemblages se traduit par un assouplissement de la fréquence de résonance et une dé- pendance de l'amortissement au niveau vibratoire. Dans le cas des assemblages vissés ou rivetés, l'évolution de la fréquence en fonc- tion de l'amplitude est toujours monotone décroissante. L'évolution de l'amortissement en fonction de l'amplitude n'est pas forcément monotone croissante bien que ce soit le cas le plus fréquemment rencontré.

  

				6	xy10	-5		
									Amplitudeyinstantanée
		Déplacementy[m]	-2 0 2 4					Moduleyduysignalyanalytique
				0 -4	0.2	0.4	0.6	0.8	1	1.2	1.4
								Tempsy[s]
	Fréquenceyinstantannéey[Hz]	0 89 89.5 90 90.5 91 91.5 92	0.2	0.4	0.6	0.8	1	1.2
								Tempsy[s]
	RatioydTamortissementy[H]	1 1.5 2				
			0 0.5	0.2	0.4	0.6	0.8	1	1.2
								Tempsy[s]

ω et ξ ne sont pas des fonctions oscillantes. L'équation de mouvement est alors ramenée à celle d'un oscillateur amorti dont les paramètres dépendent explicitement du temps. p + 2ξ(t)ω(t) ṗ + ω 2 (t)p = 0 (1.7) L'identification du système consiste alors en l'estimation des fonctions de paramètres modaux équivalents. Ce type d'identification est appelé identification non-paramétrique.

La méthode de filtrage de Kalman, explicitée dans la suite, permet la caractérisation de ces fonctions de pulsation et d'amortissement. La figure

1

.15 montre ces deux fonctions du temps dans le cas de la liaisons SSS.

Le cadre supérieur montre l'évolution temporelle de l'amplitude de vibration ramenée à l'amplitude modale ainsi que son enveloppe p m (t). L'enveloppe est l'amplitude maximale atteinte au cours d'un cycle, c'est à dire le niveau vibratoire courant. L'estimation de l'enveloppe permet de donner la dépendance des paramètres modaux équivalent au niveau vibratoire, figure 5.14.

1.3.2 Hypothèse de découplage modal

  

	méthodes sont basées sur des approches optimales [Bal96], ou sur le calcul de
	résidus [Bob02], [VDRBB + 10]. Elles permettent d'obtenir des solutions plus
	performantes et à moindre coût.	
	L'équation amortie de la dynamique d'une structure linéaire s'écrit :	
	M Ẍ + C Ẋ + KX = F e	(1.12)
	C désigne la matrice d'amortissement du système. En général, la matrice
	d'amortissement n'est pas diagonalisée par la base des modes réels. L'amor-
	tissement de Rayleigh consiste à définir la matrice d'amortissement C comme
	combinaison linéaire de M et K. Cette simplification permet de rendre la
	base des modes propres orthogonale par rapport à C. La condition d'ortho-
	gonalisation de l'amortissement est plus généralement donnée par l'équation
	CM -1 K = KM -1 C ; c'est hypothèse de Basile. Cette hypothèse correspond
	à un amortissement distribué sur toute la structure comme c'est le cas par
	exemple de l'amortissement des matériaux. Sous cette condition, le système
	amorti est diagonalisé sur la base des modes réels. En multipliant l'équation
	1.	
		11)
	Ce concept dépasse le cadre de la dynamique des structures. Typiquement
	pour des problèmes de statique, la méthode de Guyan [Guy65] permet de
	produire la synthèse de plusieurs modèles réduits. Dans le cas d'une structure
	constituée de plusieurs composants, chacun de ces composants est réduit sur
	une base produite par la déformation statique unitaire de certains degrés de
	liberté appelés noeuds maitres. Les autres degrés de liberté sont condensés.
	Dans le cas de la dynamique des structures, il est nécessaire d'enrichir cette
	base de modes statiques en ajoutant une base de modes propres à interfaces
	fixes ; c'est la méthode de Craig-Bampton [BC68].	
	Notons que cette méthode est généralement lourde en temps de calcul car
	elle demande l'inversion de la quasi-totalité de la matrice de raideur. D'autres

Dans le cas de vibrations libres amorties d'une structure assemblée, nous cherchons les solutions temporelles sous la forme :

  

	pu être relevés que pour des amplitudes de vibrations extrêmes pour lesquelles
	les hypothèses de faible non-linéarité ne tiennent plus vraiment. Ainsi nous
	supposons les modes réels avec, en première approche l'hypothèse de Basile.
	Dans ce cas, la réponse d'une structure assemblée peut être supposée comme
	étant la somme de composantes modale.
	15)
	Dans le cas de structures présentant de fortes zones de dissipation localisée,
	l'hypothèse de Basile n'est pas valable et il est possible de découpler le système
	linéaire sur la base de ses modes propres complexe solutions de l'équation ho-
	mogène associée à l'équation 1.12. Une revue des principales méthodes d'ana-
	lyses modales temporelles ou fréquentielles peut être trouvée dans [Pir13].
	Cependant, même dans l'hypothèse de faible non-linéarité, nous avons vu que
	les amortissement modaux peuvent présenter une forte dépendance au ni-
	veau vibratoire. Cet amortissement est causé par le phénomène de glissement
	partiel qui est localisé aux interfaces de contact. Ce phénomène non-linéaire
	dépend donc de variables locales et non des amplitudes modales. Ainsi, que
	la base de projection soit réelle ou complexe, les équations de mouvements
	des modes sont couplées dans les deux cas. Une caractéristique des modes
	complexes est l'effet de phase : ces modes ne présentent plus de noeuds de vi-
	bration car tous les points de la structure ne vibrent pas forcément en phase.
	Dans le cas des structures élémentaires étudiées, de tels comportement n'ont

16) 1.3.3 Cas de Metherell et Diller

  

	Le problème de Metherell et Diller a fait l'objet de plusieurs études expé-
	rimentales. Ces études sont assez proches de l'essai tribologique élémentaire
	pion-plan présenté à la figure 1.3 mais dans ce cas, les efforts transverses sont
	transmis au travers d'une liaison complète. Le chargement transverse peut
	être appliqué de manière quasi-statique à l'aide d'une poutre céramique pié-
	zoélectrique par exemple, voir [EPB11], cependant l'approche la plus employée
	consiste à utiliser la résonance d'un banc d'essai afin de charger fortement la
	liaison, voir [SGC00], [GIB11], [BRS + 11]. Pour les raisons cités dans le sous-
	chapitre précédent, la raideur d'une liaison de type lap-joint dans la direction
	transverse est très importante et un effort important doit être appliqué pour
	mesurer une dissipation non-négligeable. Les bancs d'essais de résonance sont
	souvent composés de balourds permettant d'abaisser la fréquence de réso-
	nance et ainsi d'atteindre des amplitudes de déformation importantes comme
	on peut le voir sur la figure 1.18.
	Le tracé de la différence de déplacement en fonction de la force tangentielle
	résultante fait apparaitre des courbes d'hystéresis comme présenté dans la
	figure 1.19.
	Cette courbe d'hystéresis traduit le glissement partiel de l'interface de contact.
	Comme prévu, la partie non-réversible de la force est très faible, comparée à
	la partie élastique. Dans les limites de sollicitations nominales d'une liaison,
	la dissipation par cycle est effectivement généralement très faible comparée à
	l'énergie de déformation de cette même liaison (de l'ordre d'un centième). La
	mesure de l'effort est effectuée à distance de l'interface de contact et l'élasticité
	du matériau est incorporée à la mesure. Ainsi

il n'est généralement pas possible d'identifier les macro-modèles directement à partir de la forme de l'hystéresis dans le cas des liaisons d'assemblages. C'est pourquoi l'identification des assemblages est couramment réalisée de manière indirecte en mesurant la dépendance de l'amortissement et de la fréquence du système à l'amplitude.

  

	Peyret et al. [PDCA10], [DCP13] ont conçu une géométrie de banc d'essai per-
	mettant de solliciter une interface de contact plane dans la direction transverse

1.3.4 Problème de Goodman et Klumpp et autres cas

  

	Rappelons que le problème de Goodman et Klumpp consiste en l'étude de
	deux poutres encastrées-libres serrées l'une contre l'autre sous un chargement
	uniforme et soumises à un effort tranchant appliqué de manière quasi-statique,
	voir figure 1.5 (a). Un grand nombre d'études expérimentales traitent le cas de
	poutres lap-joint en flexion assimilable au problème de Goodman et Klumpp,
	voir [MBV01], [HSM + 04], [SHM + 04], [JAM07], [AJ07b], [NFAB + 08b], [CB08],
	[Cai09], [HFP09], [EKL + 13].[SSAD13]. La totalité de ces études utilisent la
	résonance d'un banc d'essai afin de charger la liaison selon un mouvement de
	flexion. Notons que quelques travaux concernent le cas de dissipations dues
	à la rotation des poutres autour de la liaison, voir [BW77], [OOM06]. La
	dissipation d'une interface chargée dynamiquement dans la direction normale
	a aussi été étudiée [HOG02]. Une revue détaillée des différents banc d'essai
	utilisés peut être trouvée dans [DCP13].
	Les hypothèses de faible non-linéarité associées et de découplage modal sont
	largement acceptées pour l'identification des structures assemblées. Une ap-
	proche consiste à exciter la structure avec un choc ou par appropriation et
	de mesurer le décrément libre d'un mode particulier, voir [HSM + 04],[HFP09],
	[EKL + 13], [DCP13], [Cai09], [SSAD13]. Sous ces hypothèses,

le lâché per- met théoriquement d'observer tous les états du système à l'aide d'une seule mesure pour toutes les amplitudes jusqu'à la plus grande

  

	(atteinte au début de l'essai).

1.3.5 Techniques de traitement du signal

  

	est généralement suffisante.
	Heller [HFP09] utilise la transformée en ondelettes pour obtenir l'identifica-
	tion non-paramétrique des modes d'une poutre similaire. La transformée en
	ondelette ne nécessite pas de phase de filtrage préliminaire. Il est cependant
	nécessaire de supposer que la contribution des modes voisins du mode sélec-
	tionné est nulle pour l'identification. Cette approximation est généralement
	satisfaite dans le cas d'une structure d'essais élémentaire.
	La méthode de décomposition modale empirique (en anglais : Empirical Mode
	Decomposition ou EMD) a été utilisée par Eriten et al. [EKL + 13] pour l'iden-
	tification des modes de flexion d'une liaison lap-joint élémentaire. Le principe
	de l'EMD est de décomposer le signal en une somme de signaux élémentaires
	appelés modes intrinsèques à l'aide d'une technique d'interpolation. Dans le
	cas d'une réponse libre, les modes intrinsèques sont confondus avec les modes
	de la structure à identifier. Cette méthode est algorithmique : Le premier mode
	intrinsèque identifié correspond à la période la plus courte. Celui ci est ensuite
	soustrait du signal et ainsi de suite jusqu'aux modes de plus basses fréquences.
	L'algorithme est arrêté à l'aide d'un critère en énergie. Cette technique de dé-
	composition relativement récente est généralement associée à la transformée
	de Hilbert pour la partie identification, elle porte alors le nom de transformée
	de Hilbert-Huang, voir [HS05].
	Toutes ces méthodes ont la même faiblesse : elles présentent toutes des défauts
	de bord. L'effet de bord se caractérise par des variations rapides du signal ana-
	lytique estimé au début et à la fin de la mesure. Dans le cas de vibrations
	libres amorties, ce problème est très important car les amplitudes les plus
	importantes sont obtenues au début de la mesure. Ce défaut est accru par le
	fait que les amplitudes les plus importantes sont parcourues en un nombre as-
	sez faible de cycles (la décroissance de l'enveloppe étant quasi-exponentielle).
	Pour contourner ce problème, Heller [Hel05] propose de prolonger le signal Les techniques de traitement du signal sont très nombreuses et nous nous en lui ajoutant une portion de signal supplémentaire au début de la fenêtre contentons ici comme ailleurs de mentionner les travaux appliqués aux cas de temporelle. Ce signal est une harmonique de phase et d'amplitude égales à structures assemblées. La forme des solutions oscillantes supposés à l'équation celles du signal à l'origine, afin de le prolonger de manière continue. Cette mé-1.16 suppose que les paramètres évoluent avec le temps. Il est donc nécessaire thode nécessite néanmoins la connaissance de ces deux états à l'origine ce qui de recourir à des méthodes de traitement du signal en temps-fréquence. est l'objectif de l'identification. Par itération successive il semble néanmoins Hartwigsen et al. [HSM + 04] mesurent la réponse au choc d'une structure élémentaire de poutre et d'un cadre assemblé par une liaison de type lap-possible d'appliquer une telle méthode.
	joint. Les premiers modes observés sont des modes de flexion. Les paramètres L'approche d'identification non-paramétrique offerte par le concept de fré-
	modaux de chaque mode sont obtenus à l'aide d'un filtre de Butterworth quence et d'amortissement équivalents permet d'analyser le comportement dy-
	passe-bande centré autour de la fréquence de résonance. La transformée de namique d'une structure. Dans une optique de modélisation, l
	Hilbert est appliquée au signal ainsi obtenu afin d'en obtenir le signal analy-
	tique duquel peut être extrait l'évolution de la fréquence et de l'amortissement
	avec le temps. Elle est encore utilisée actuellement, voir [DCP13], [SSAD13].
	Cette méthode ne permet d'extraire que des variations d'amplitude (et donc
	d'amortissement) et de fréquence relativement lente ce qui peut dans certaines
	conditions poser quelques problèmes pour l'identification. Les variations les
	plus rapides sont de périodes égales à l'inverse de la largeur du filtre divisé par
	2. Dans le cas de l'identification d'un banc d'essai élémentaire, cette méthode

'identification non-paramétrique en fréquence et amortissement n'est pas suffi- sante. Cette approche n'est par ailleurs applicable que pour trouver les solutions du régime stabilisé sous excitation mono-fréquentielle.

  

	Une fois la forme de la force choisie, l'approche la plus commune pour recaler
	les paramètres θ du modèle consiste à minimiser, au sens des moindres carrés,
	l'écart entre la mesure et le modèle.	
	min θ	p mesure (θ) -p modele	(1.17)
	Cette approche optimale peut se faire dans le domaine fréquentiel, voir [BL04],
	[IA12], comme dans le domaine temporel.	
	La somme de la force r et de la force élastique ω 2 p est usuellement appelée
	restoring force. Dans le cas de formes simples, les paramètres de la force Figure 1.20 -Relation de puissance entre dissipation et effort appliqué -peuvent être identifiés en utilisant une méthode de lissage appelée force state mapping. Le principe consiste à retirer les efforts d'inertie à la mesure et de Source [SGC00]
	tracer la dépendance de la restoring force dans le plan vitesse-déplacement.
	Jalali et al. [JAM07] utilisent cette méthode associée aux moindres carrés
	ordinaires en se donnant une forme de type polynomiale.	
	Hanss et al. [HOG02] caractérisent la rigidité normale et l'amortissement
	d'une interface à l'aide d'une méthode inverse basée sur l'arithmétique floue.
	Il est aussi possible d'utiliser les fonctions de fréquence et d'amortissement
	équivalents préalablement identifiées. Cette approche est proposée dans la
	thèse de Nguyen [Ngu07]. Nguyen calcule analytiquement les solutions appro-
	chées pour des non-linéarités simple de type cubique ou linéaires par morceaux
	à l'aide de la méthode de perturbation de Krylov-Bogoliubov [Nay08]. La dis-
	tance aux courbes de fréquence et d'amortissement équivalents en fonction
	de l'amplitude identifiées à l'aide de la transformée en ondelettes est ensuite
	minimisée afin d'obtenir les paramètres optimaux. Cependant dans le cas des
	assemblages, l'hypothèse de force non-linéaires cubiques reste très éloignée de
	la physique du contact. Il est attendu que les forces réduites de la liaison pro-
	duisent des cycles d'hystérésis. Pour cette raison, il est souhaitable de chercher
	à recaler des forces de la forme des macro-modèles présentés au chapitre 1.2.2.
	Segalman [Seg02] utilise les courbes de dissipation par cycle en fonction de
	l'effort appliqué pour recaler son modèle. La relation entre dissipation et effort
	D = υF 3+χ trouvée expérimentalement par Smallwood [SGC00] produit des
	droites de pente 3 + χ en adoptant une échelle logarithmique, voir figure 1.20
	Notons que cette relation est basée sur une hypothèse de non dépendance de
	la déformée modale à l'amplitude. Dans ce cas, la relation entre dissipation et
	taux d'amortissement est directe. Ainsi Segalman recale son modèle à quatre
	paramètres en trouvant la droite qui minimise l'écart aux points mesurés.
	Nouira et al. [NFAB + 08a] utilisent un algorithme génétique couplé à un réseau Ainsi, elle ne permet pas de rendre compte de manière suffisante d'une ex-de neurone artificiel afin de recaler les paramètres de glissement et de raideur citation aléatoire ou plus généralement d'un régime transitoire quelconque. des frotteurs de Jenkins d'un modèle éléments finis à l'aide des paramètres Ce point est argumenté dans la dernière partie de la thèse. Il est donc géné-ralement nécessaire de caractériser la fonction de force r dans l'équation de modaux équivalents.
	dynamique 1.5.		

1.4 Positionnement des travaux de la thèse Le

  caractère faiblement non-linéaire des structures assemblées incite à étendre les méthodes de réduction des systèmes linéaires au cas présent afin d'en obtenir des modèles compacts.

	La thèse se découpe en deux grandes parties.
	Dans la première, on utilise une approche modale classique permettant de
	construire le modèle d'une grande structure. On utilise alors le principe de
	mode linéarisé équivalent basé sur les hypothèses simplificatrices de faible non-
	linéarité et de découplage modal. Les travaux développés dans les chapitres
	2 à 5 sont à rapprocher des travaux de thèse de Heller [Hel05], de Caignot
	[Cai09] et de Peyret [Pey12]. Plusieurs outils numériques et expérimentaux
	originaux sont proposés pour la mesure du comportement des liaisons. Une
	analyse paramétrique sur une géométrie de liaison dédié à la dissipation est
	aussi présentée.
	Les limites de l'approche modale sont discutés dans la seconde partie de la
	thèse (chapitres 6 et 7). Notamment, nous verrons que l'hypothèse de faible
	non-linéarité n'entraine pas nécessairement le découplage des modes. Il s'agit
	là d'une hypothèse assez forte. Un principe original de réduction de modèle
	est donc présenté. La synthèse du modèle est effectuée à l'échelle d'une liai-
	son grâce à l'espace des sollicitations principales. Cette approche permet de
	construire de façon bien moins coûteuse le modèle compact de la structure.
	Cette formulation permet en outre de s'affranchir en partie du problème de
	couplage modal. En cela cette seconde partie se rapproche des travaux ré-
	cents de Segalman [Seg10] et Quinn [Qui12]. Nous proposons d'associer des
	modèles d'Iwan aux éléments d'un espace local appelé espace des sollicita-
	tions principales. Une relation entre fréquence et amortissement équivalents
	originale permet de vérifier que le modèle d'Iwan est bien en mesure de modé-
	liser le comportement observé. Une étude expérimentale sur le couplage entre
	sollicitations est finalement présentée afin de mettre en évidence les limites
	inhérentes à l'utilisation des macro-modèles pour les liaisons d'assemblages.
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L'association en parallèle de plusieurs modèles d'Iwan est encore un modèle d'Iwan.

  

	Ces équations sont couplées car les fonctions de force de contact dépendent du
	déplacement géométrique X et non des amplitudes modales p n . Dans ce cha-
	pitre, nous les considérons découplées, ce qui revient à assumer que le système
	suit l'hypothèse de Basile. En réalité, l'hypothèse de Basile ne concerne que
	les termes d'amortissement. Il s'agit ici d'une extension de cette hypothèse au
	cas de faibles non-linéarités.	
	Sous l'hypothèse de contraintes de contact constantes (i.e. indépendante de
	l'amplitude ou du temps), les efforts entres deux interfaces peuvent être mo-
	délisées par le modèle phénoménologique d'Iwan [Iwa66]. Ainsi, l'équation 2.1 est assimilable à une somme d'oscillateurs d'amplitude
	modale p := p n à un degré de liberté de la forme :	
	p + ω 2 ∞ p + r Iwan (p, r int , θ) = f e	(2.3)
	où r prend la forme du modèle d'Iwan.	

Cette force traduit la contribution de toutes les interfaces à la dissipation. La

  

	2 Nicolas Peyret [Pey12] qui distingue deux classes d'aspérités : Celles dont les
	8 ordres de défauts sont les plus bas se comportent comme les points d'adhérence
	modélisés ici par la raideur linéaire et celles d'ordre plus élevées modélisés par 1 le modèle d'Iwan peuvent admettre un glissement total. La raideur linéaire est théoriquement atteinte pour une amplitude infinie. La valeur de la raideur f h est ici fixée à 5N/m. La forme de la restoring force est tracée à la figure 2.3.
	Les travaux expérimentaux de Smallwood ont permis de mettre en évidence p ce type de courbe d'hystéresis dans le cas d'une liaison lap-joint chargée dans
	Figure 2.1 -Rhéologie associée à un mode d'une structure assemblée. la direction axiale, voir [SGC00].
	2.2 Paramètres modaux équivalents
	On se donne maintenant une distribution particulière de frotteur pour laquelle
	le régime stabilisé produit la courbe d'hystérésis présentée à la figure 2.2.
		1.5					
		1					
	Force réduite r Iwan [N]	-1 -0.5 0 0.5			Adhérence	G l i s s e m	e n t p a r t i e l	Glissement total
		-3 -1.5	-2	-1	0 Amplitude [m]	1		2	3
			Figure 2.2 -Régime stabilisé d'un modèle d'Iwan.
	Il s'agit d'un modèle d'Iwan discret comprenant 20 cellules. La raideur d'adhé-
	rence du modèle est égale au nombre de frotteurs de Jenkins multiplié par la
	raideur σ d'un seul élément en adhérence. Cette raideur globale est ici fixée à
	1 [N/m]. Les forces de glissement des frotteurs sont réparties linéairement de figure 2.1 est un schéma de façon à ce que le glissement partiel apparaisse pour une amplitude de 0.2m et la rhéologie élémentaire associé à la dynamique d'un mode d'une structure le glissement total pour 2m. assemblée. Nous choisissons ici de ne pas intégrer la raideur ω 2 ∞ au modèle d'Iwan. Notons qu'il est possible d'obtenir la même raideur globale en ajoutant un frotteur
	de Jenkins associé à une force de glissement très élevée. Cependant ce cas
	correspond physiquement à la destruction des liaisons, ce qui est exclu dans
	l'hypothèse de faible non-linéarité. La raideur linéaire correspond à la somme
	de toutes les zones de contact qui restent en adhérence au cours de la dy-
	namique. Cette modélisation est en accord avec l'approche développée par

  Jaumouille, J.-J. Sinou, and B. Petitjean. An adaptive harmonic balance method for predicting the nonlinear dynamic responses of mechanical systems-application to bolted structures. Journal of Sound and Vibration, 329(19) :4048-4067, September 2010.
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, J.-L. Dion, G. Chevallier, and P. Argoul. Microslip induced damping in planar contact under constant and uniform normal stress. International Journal of Applied Mechanics, 02(02) :281, 2010. [Pey12] N. Peyret. Dissipation de l'énergie mécanique dans les assemblages : effet du frottement en sollicitation dynamique. PhD thesis, Université Paris-Est, October 2012. [SGC00] D.O. Smallwood, D.L. Gregory, and R.G. Coleman. Damping investigations of a simplified frictional shear joint. Technical report, Sandia National Labs., Albuquerque, NM (US) ; Sandia National Labs., Livermore, CA (US), 2000.

  31)Il est éventuellement possible d'intégrer au vecteur d'état les dérivées des paramètres σ et ω en supposant une accélération constante dans le modèle d'état puis par différence finie. En pratique, les termes dérivés sont négligeables. En ne gardant que les termes non dérivés, on obtient l'équation d'observation suivante :

  .1.

	0.7								
							Distr. normale equivalente	
	0.6						Linéarisation		
							Col. sigma pts 1		
	0.5						Col. sigma pts 2		
	0.4								
	0.3								
	0.2								
	0.1								
	-2 0	-1	0	1	2	3	4	5	6
	Transformation		Erreur sur la moyenne Erreur sur la variance
	Linéarisation			15% %			18.1 %	
	Unscented, collection 1		0%			17.2 %	
	Unscented, collection 2		0%			2.2 %	
	Tableau 1 : taux d'erreur de calcul des deux premier moments statistiques
		pour différentes méthodes de calcul.		

Pour illustrer ce tableau, les distributions normales équivalentes calculées par les différentes méthodes sont comparées dans la figure 3.2. Figure 3.2 -Comparaison entre la distribution normale équivalente à la distribution réelle et les différentes transformations.

Dans le cas du filtre de Kalman, seuls les deux premiers moments statistiques de la distribution sont connus et nécessaires. La forme réelle de la densité de probabilité de départ est inconnue 2 . Julier et Uhlmann proposent plusieurs collections de points sigma qui sont construites de façon à réduire l'influence des moments statistiques d'ordre supérieurs à 2. On peut voir à la figure 3.2, que les transformations unscented sont nettement plus précises que la linéarisation aussi bien dans le cas où la distribution est connue (courbe bleue) mais aussi lorsqu'elle est inconnue (courbe rouge). L'erreur de calcul sur les moments est généralement plus faible par la transformation unscented que par la linéarisation.

Cette méthode présente par ailleurs d'autres avantages par rapport à la linéarisation notamment :

  La formulation proposée traite le cas d'une seule mesure et d'un seul mode. Il existe différentes façons d'étendre cette écriture au cas d'un filtre MIMO (pour Multiple Inputs Multiple Outputs), comportant plusieurs capteurs et plusieurs modes. Dans le cas d'un système à un degré de liberté, le vecteur d'état est de dimension 4. Dans le cas multi-modal à N modes, le vecteur d'état est obtenu par la concaténation des variables d'états de chaque mode, qui sera indicé comme suit pour le mode n :

Il est important de garder à l'esprit que si ces variances sont choisies trop grandes, l'algorithme a tendance à diverger rapidement. Inversement, si elles sont choisies trop petites, le gain de Kalman initial est nul et le filtre ne fait alors confiance qu'au modèle de prédiction ce qui conduit l'algorithme vers des valeurs biaisées.

  3 est un système dynamique non-linéaire. Contrairement au cas d'un système linéaire, la convergence du filtre de Kalman n'est pas assurée. L'efficacité du filtre est liée à de nombreux paramètres.L'efficacité du filtre de Kalman est tout d'abord et très fortement liée au modèle de prédiction choisi. Dans le cas de la dynamique des structures, le nombre de modes à identifier doit par exemple être adapté au système observé. Notons qu'il est aussi possible de choisir moins d'états que de modes observables. La différence entre la mesure et le modèle est alors prise en compte par le bruit de mesure.La matrice de covariance du bruit de mesure dépend théoriquement du rapport signal sur bruit de chaque capteur. En pratique il est nécessaire de surestimer le bruit de mesure pour rendre le filtre de Kalman plus robuste. Les bruits de mesure sont supposés décorrélés, une règle empirique consiste à prendre la diagonale de la matrice comme quelques pourcent de la variance du signal mesuré par chaque capteur.Le second aspect posant problème pour la convergence du filtre est le bruit d'état. Dans la formulation proposée, les évolutions temporelles de la pulsation et de l'amortissement équivalents sont inconnues et le modèle les suppose constantes. Nous savons dès le départ que le modèle n'est pas en mesure de décrire complètement la mesure. Naturellement il est impossible de connaitre à priori la qualité du modèle employé. Il n'a pas été possible de fournir une règle satisfaisante, cependant il est possible pour un cas particulier de trouver cette matrice par itération. De la même façon que pour la matrice de covariance de l'estimation initiale, si

L'initialisation du vecteur d'état et de la covariance est un critère fondamental. Dans le cas de la transformée en ondelettes, Heller

[Hel05] 

propose de raccorder de manière continue le signal à gauche (pour les temps négatifs) avec une sinusoïde de pulsation égale à celle à l'origine. Ceci est, dans le cas du filtre de Kalman, équivalent à une initialisation exacte des états au temps zero. En pratique, l'estimation initiale se fait traditionnellement par une transformée de Fourrier sur l'ensemble du signal, voir

[DSCF13]

. Dans notre cas, nous utilisons les paramètres modaux identifiés sur les premiers cycles du signal. Plus généralement, l'initialisation du vecteur d'état n'est pas d'une grande difficulté d'autant que le modèle de prévision est connu. Cependant, dans le cas de la mesure d'un système libre, le temps de convergence doit être le plus faible possible, celui-ci étant ajouté aux faibles temps d'acquisitions pour les amplitudes les plus grandes. Il est préférable d'initier au mieux les états du filtre pour accélérer la rapidité de la convergence.

Le premier aspect véritablement difficile du filtrage de Kalman est l'initialisation de la matrice de covariance Q 1 . Cette matrice correspond aux incertitudes initiales que l'on pense faire sur les états. En supposant les erreurs sur les états découplées (ce qui est tout à fait faux), on peut initier cette matrice par une matrice diagonale avec un écart type raisonnable sur chacun des paramètres. En assumant 1% d'erreur sur l'estimation initiale de la pulsation, le terme diagonal correspondant est Q 1,ω = (0.01ω 1 ) 2 .

les variances sont choisies trop grandes, les états ont tendance à osciller autours des valeurs réelles. Inversement, si elles sont choisies trop petites, le gain de Kalman initial s'annule et le filtre ne fait alors confiance qu'au modèle de prédiction ce qui conduit l'algorithme vers des valeurs biaisées.

  Dans la pratique les variances optimales se trouvent pour des ordres de grandeurs compris entre 10 -10 et 10 -20 . Pour un cas particulier, les paramètres adéquats sont ceux pour lesquels les états n'oscillent pas et la mesure estimée ne s'écarte pas de la mesure réelle.

Il faut aussi garder à l'esprit que ces paramètres de bruit d'états sont d'autant plus petits que la fréquence d'échantillonnage est grande.

3.

3 Mise en oeuvre et vérification de la mé- thode 3.3.1 Systèmes à un degré de liberté -mesure de déplacement

  Afin de valider la méthode présentée, nous considérons tout d'abord le cas simple d'un système à un degré de liberté pour lequel la mesure est faite en déplacement. Nous reprenons ici l'oscillateur de Iwan présenté au chapitre précédent. Rappelons qu'il s'agit d'un système à un degré de liberté, de masse unitaire, dont la raideur et l'amortissement sont régis par l'association en parallèle d'une raideur linéaire et d'un modèle de Iwan. On s'intéresse à la réponse libre de ce système obtenue après une excitation de type ondelette de Morlet de pulsation centrale égale à la pulsation de résonance du système. La réponse est simulée à l'aide de l'algorithme d'intégration numérique ode23tb implémenté dans matlab qui est réputé sans amortissement numérique. La figure3.3 présente la force d'excitation ainsi que l'accélération calculée du système.

  est exacte que pour des systèmes purement linéaires. Dans le cas de systèmes faiblement non-linéaires, il est préférable d'utiliser l'équation 3.7 bien que l'erreur commise soit généralement acceptable.Pour ce second cas, on se place dans une situation souhaitée proche de la réalité d'une analyse vibratoire expérimentale. Notons que la fréquence d'échantillonnage est ici relativement importante devant la fréquence du système. Ce choix ne remet pas en cause le bon fonctionnement de la méthode. On simule une structure continue pour laquelle seuls deux modes sont excités. Pour cela, on ajoute à la réponse de l'oscillateur de Iwan, la réponse impulsionnelle d'un oscillateur linéaire de masse unitaire, de pulsation 2π et de taux d'amortissement de 0.5% . Les mesures sont dans ce cas les accélérations simulées. On suppose qu'elle sont mesurées en trois points. On se donne deux déformées modales arbitrairement données par la matrice :

	3.3.2 Systèmes à plusieurs degrés de libertés -me-
	sures d'accélération bruitées

Le taux d'amortissement est un paramètre extrêmement sensible. Ainsi on peut observer une légère différence entre la courbe obtenue grâce à l'équation 3.7 et celle du décrément logarithmique. Cette différence s'explique par le fait que la méthode du décrément logarithmique n'

  On se borne ici à donner les formes d'évolutions des paramètres modaux équivalents des premiers modes de petites structures que nous appelons bancd'essai de caractérisation. La liaison ainsi étudiée est vue comme un composant ou un sous-domaine restreint d'une structure complète. La littérature sur le sujet est très fournie. Le cas de Goodman et Klumpp (poutre en flexion) et celui de Metherell et Diller (poutre en traction compression) sont les plus étudiés. Expérimentalement, le premier est bien plus simple à mettre en oeuvre que le second (ce qui explique la très grande liste des travaux sur ce cas) du fait de la raideur très importante d'une poutre dans la direction axiale. Le procédé le plus courant consiste à utiliser la résonance d'une structure élémentaire intégrant une liaison et des balourds comme présenté sur la figure 5.1. La structure du banc-d'essai est conçue de façon à ce que l'un de ses 1 à une majorité de structures assemblées, y compris celles assemblées par un nombre de liaisons plus important que celui des petites structures étudiées.Trois géométries de liaisons de type lap-joint ont été étudiées. Au contraire de certains travaux académiques dont le but est de reproduire un contact idéalisé ou simplifié, ce montage présente l'intérêt d'être technologiquement assez proche des liaisons telles qu'elles existent au sein des structures industrielles. Nous savons par exemple que la pression de contact sous la tête de vis charge l'interface de contact de manière non-uniforme. Cette répartition de charge joue un rôle de premier plan sur le comportement du contact. Ainsi, nous faisons le choix d'étudier les liaisons telles quelles sont avec leurs défauts et caractéristiques techniques spécifiques. Le premier banc d'essai est le cas de la poutre présentée au chapitre précédent.

	M w	M w
	Les modes du banc doivent être suffisamment éloignés et dans la mesure du
	possible ne doivent pas être en rapport harmoniques. Sous l'hypothèse de
	faible non linéarité, nous écartons ainsi les possibles transfert d'énergie entre
	un mode basse fréquence et un mode de plus haute fréquence. La dynamique
	du banc d'essai élémentaire excité près de la résonance d'un mode est ainsi
	assimilable à celle d'un oscillateur à un degré de liberté découplé des autres
	modes.	
	Évidemment, il est pratiquement bien plus simple d'étudier ces petites struc-

Figure 5.1 -Banc d'essai de caractérisation.

modes (généralement le premier) charge la liaison selon le chargement élémentaire souhaité. Ainsi en excitant cette structure à une fréquence proche de la résonance du mode, la réponse de la structure élémentaire permet de caractériser la liaison pour un chargement donné. Il suffit ensuite d'identifier la dépendance à l'amplitude des paramètres modaux équivalents. Les résultats présentés ici sont obtenus à l'aide de la méthode de filtrage de Kalman. tures qu'une grande structure aéronautique par exemple. Aussi, dans une optique de dimensionnement ou d'optimisation, il peut être intéressant de ne s'intéresser qu'à une liaison particulière. Les conclusions obtenues ici sont néanmoins généralisables

  .3. Ce mode permet de charger la liaison selon une déformation de flexion. Le moment de flexion du premier mode est maximal à la base de la poutre. Ainsi la liaison est placée à la base du montage pour augmenter l'effort subit par la liaison.

	L'excitation se fait au marteau de choc et on mesure les vibrations avec un
	accéléromètre situé au sommet de la poutre. Un schéma ainsi qu'une photo
	du montage expérimental est présenté sur la figure 5.4.
	Le serrage des deux systèmes de vis-écrous M6 est assuré au moyen d'un
	tournevis dynamométrique à déclenchement. Pour ne pas affecter la pression

  Les figures 5.22 et 5.23 présentent la dépendance de la déformée à l'amplitude de vibration respectivement des modes de torsion et de flexion. La déformée modale est obtenue en calculant le module instantané du signal analytique estimé pour chaque capteur. Notons que seule la fondamentale du signal est conservée. Finalement la déformée obtenue est normalisée puis le signe de chaque point est adapté de façon à obtenir la forme attendue. Une erreur relative est aussi présentée. Celle-ci est obtenue en calculant la différence entre un vecteur de déformée moyen 4 et la déformée instantanée.

  Les accéléromètres 3 et 4, placés au dessus de la zone de contact, ont des taux d'harmoniques bien supérieurs aux autres. Inversement, le point de mesure 7, qui est le plus éloigné de la liaison, présente les taux d'harmoniques les plus faibles. Les taux d'harmoniques sont globalement d'autant plus importants que la mesure est proche de la liaison. Bien que le contact soit un phénomène fortement non-linéaire, les mouvements de hautes fréquences locaux sont filtrés à l'échelle globale de la structure. On peut aussi voir ici une justification du paradoxe plusieurs fois mentionné précédemment. L'hypothèse de faible-non-linéarité est donc adaptée dans le cadre d'une approche de type macro-modèle.

	Le tableau 2, montre les taux d'harmonique calculés pour les différents cap-
	teurs.		
	n°accéléromètre Mode de torsion Mode de flexion
	1	6.64 %	3.10 %
	2	5.27 %	2.62 %
	3	19.04 %	2.50 %
	4	17.39 %	4.87 %
	5	8.02 %	6.25 %
	6	5.63 %	2.21 %
	7	2.05 %	1.28 %
	Tableau 2 : taux d'harmoniques mesurés pour chaque capteur

modèles en fréquences et amortissements équivalents ne permettent de rendre compte que du cas d'une exci- tation mono-harmonique

  sont les sollicitations principales. Notons qu'il est nécessaire de retirer les mouvements de corps rigide de cet espace au préalable. Ce point est explicité dans le chapitre. Il faut aussi souligner que les . C'est pourquoi il est nécessaire d'utiliser le modèle de Iwan pour traiter le cas général. Les N mouvements généralisés sont donc associés à N oscillateurs de Iwan. Le modèle est ensuite recalé sur un banc d'essais expérimental ne comportant que la liaison, à partir des courbes de fréquence et d'amortissement équivalent. Ce dernier point est abordé dans ce chapitre et approfondi dans le chapitre 6.

Ce travail est paru en mars 2014 dans la revue Journal of Sound and Vibration sous le titre "Nonlinear Model Order Reduction of Jointed Structures for Dynamic Analysis" et possède un DOI http://dx.doi.org/10.1016/j.jsv. 2013.11.039,

[FCD14]

. La forme du manuscrit a été conservée, c'est la raison pour laquelle ce chapitre est rédigé en anglais.

  The whole assembled structure Λ and its FULL order model (FULL) ; The identification process is carried out as for an experimental investigation : The full order model is presented here but it is used as a black box, i.e. for which only experimental outputs/inputs data are available. This hysteretic model depends on the deformation history of ∆ 2 represented by the internal variable r 2 . The three slider strengths f m are linearly spaced between 66.7N and 233.3N.According to Song formulation, restoring shear forces T 5 , T 6 and bending moments M 5 , M 6 are related to DoFs by :

		10L e =1000mm			
		Δ b							Δ a	Δ b	h=5mm
	(T 5 ,u 5 )	E l e m (M 5 ,Θ 5 ) e n t 1 h/2		k 1	(M 6 ,Θ 6 )	(T 6 ,u 6 )	f m1	σ	e n t 1 0 (f Iwan ,Δ 2 ) E l e m
		h/2	Iwan L e /2 L e /2 k 2				f m2 f m3	σ σ	Iwan
	Figure 6.4 -∆ 2 =	h 2	(θ 5 -θ 6 ))	(6.28)
	In the presented model, the second spring is replaced by a three Jenkins ele-
	ments Iwan model. The rheological representation of Iwan model is presented
	in the gray box in figure 6.4. The hysteretic Iwan force is driven by equation
	6.29, see [Seg02] for details.			
	f Iwan (∆ 2 , r 2 ) =	3 j=1	f j (∆ 2 , r 2 ), with f j =	σ∆ 2 if |f j | < f mj f mj otherwise	(6.29)
						θ 5 + θ 6 ) + (u 5 -u 6 )	(6.27)

Voir bibliographie générale page 216

le coefficient de frottement dynamique est plus faible que le coefficient statique. À

La traduction littérale de ce terme est "non-parfumée" ; l'origine de ce nom est liée à un déodorant, son auteur estime que les termes techniques sont acceptés tel quel même si il sont vides de sens, voir[Uhl04] ; nous garderons cette appellation.

Notons au passage, qu'il n'est donc pas nécessaire de supposer le bruit de mesure gaussien puisque les transformations non-linéaires ne conservent pas cette propriété.

On peut aussi parler des filtres de Kalman (au pluriel) associés à chaque mode.

Au titre de l'équation (2) du chapitre "Dynamique modale"

Ce détail n'a pas été mentionné dans l'article pour en simplifier la lecture. L'assouplissement engendré n'a qu'une importance très relative au regard des résultats présentés.

Le serrage des vis M6 est maintenu à 15Nm pour tous les essais
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