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les discussions que nous avons eu, ainsi que pour sa disponibilité et son aide regardant les

formalités administratives. Je remercie Michael Bender et Marek Ploszajczak d’avoir rapporté
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Chapter I

Introduction

The atomic nucleus is one of the most complex and challenging quantum many-body system.

It is composed of two types of nucleons (protons and neutrons), themselves made of internal

quarks and gluons, and brings into play no less than three of the four fundamental interactions:

the dominating strong force, leading to the binding of nucleons into nuclei, as well as the

electromagnetic interaction (mostly the Coulomb force acting between protons) and the weak

interaction responsible for the β-decay of some exotic nuclei. As they comprise a rather

small number of nucleons (2 6 A . 350), finite-size effects also play a central role in nuclei.

Different combinations of proton and neutron numbers can thus lead to very different and rich

phenomena in both the structure (shapes, neutron skins, nucleon clusters or halos...) and the

excitation modes of nuclei (such as collective vibrations or rotations).

One of the main goal of low-energy nuclear physics is to understand how protons and neutrons

interact and bind inside the nucleus, in order to describe and predict different properties of the

many-body nuclear system. This task is usually tackled with the use of several assumptions.

In particular,

• The typical energy scales of the nucleus are of the order of∼ 10 MeV, which is much lower

than the energy necessary to explore the quark structure of the nucleons (∼ 1 GeV).

Thus, one usually makes use of this ”separation of scales” and considers the nucleons

as the relevant degrees of freedom for the study of nuclear structure. The protons and

neutrons are therefore regarded as point-like particles interacting by means of a nuclear

potential which incorporates the effect of the internal structure of the nucleons.

• Since the typical velocities of nucleons in the nucleus are rather small compared to the

speed of light
(
v
c

)2 ∼ 0.1, it is of common use to neglect any relativistic effects.

With these hypotheses, the equation governing the structure properties of the many-body

system which one aims to describe is the (time-independent) Schrödinger equation,

Ĥ |ΨM〉 = EM |ΨM〉 , (I.1)
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Chapter I : Introduction

where Ĥ = K̂ + V̂ is the many-body Hamiltonian, sum of the non-relativistic kinetic energy

K̂ and the interaction potential V̂ . The state |ΨM〉 is an eigenvector of Ĥ, corresponding to

a certain nuclear state with energy EM .

Although the problem appears now quite simple, two major difficulties arise.

• The first one is due to the fact that the nuclear interaction acting between the nucleons

is extremely complex and remains today partly unknown.

• The second challenge arises from the mesoscopic nature of atomic nuclei which comprises

a number of nucleons that is of intermediate range (2 6 A . 350). This feature prevents

in most cases an exact solution of the many-body problem (too many particles), and

forbids the use of statistical methods (too few particles).

Since protons and neutrons are composite particles, the inter-nucleon force is interpreted

as the residual (colorless) interaction between their constituent quarks and gluons. The in-

teraction between two nucleons in free space has the property of being extremely repulsive

at short distance, and for that reason is referred as ”hard-core potential”. This pathological

behavior makes difficult to handle such a ”bare interaction” in many-body calculations, and

in particular, prohibits the direct application of perturbation theory. An interesting fact is

that the nuclear force is deeply modified in the presence of surrounding nucleons. One can

incorporate these medium effects into an ”effective interaction” which becomes well behaved

and more suitable for practical calculations. The last obstacle to an accurate description of

low-energy nuclear systems lies in the existence of many-nucleon forces which arise from the

approximation of point-like nucleons. The treatment of three-body forces has been proven

necessary to reproduce e.g. the triton binding energy (Tjon line) [80] and the saturation

properties of nuclear matter. Higher-body forces appear much weaker and are usually not

considered in modern approaches. There exists currently many different interactions on the

market, bare or effective, microscopic or phenomenological.

Purely phenomenological approaches to bare interactions are based on the symmetry proper-

ties of the nucleon-nucleon potential. The analytical form is postulated a priori as a sum of

terms (central, spin-orbit, tensors...) respecting several invariance properties of nature such as

rotational, translational, time-reversal invariances and so on. Such potentials contain parame-

ters that are fitted so that to reproduce nucleon-nucleon scattering data and several properties

of the deuteron. For instance the Argonne V18 potential [107] is based on 18 operators and

40 parameters to fit.

Semi-phenomenological potentials based on the meson ”theory” of nuclear forces also exist.

This concept goes back to Yukawa (1935) who introduced the idea that the force acting be-

tween two nucleons would be carried by a meson with non-zero mass [110]. The latter was

discovered in 1947 and named as pion (π). Development of realistic interactions based on one
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boson-exchange models usually assume the long-range part of the nuclear force to be carried

by the pion while heavier mesons contribute to the medium and short range parts. For exam-

ple, the CD-Bonn potential [68] includes π, ρ, ω and σ mesons with 43 parameters to fit.

Since the discovery of asymptotic freedom in the early 1970’s by Politzer, Wilczek and Gross

[52, 87, 51], much evidence has been gathered proving that Quantum ChromoDynamics (QCD)

is the theory of strong interactions. Hence, the goal nowadays is to develop microscopic nu-

clear forces from the first principles of this theory.

Ideally one could think of deriving the nuclear force directly from QCD, considering quark

and gluon degrees of freedom. However due to the confinement properties of QCD, the strong

coupling αS drastically increases in the low-energy regime, where perturbation theory breaks

down. Although much progress has been achieved these last few years in the context of non

perturbative lattice QCD (see e.g.[95]), this field is currently in its early days and progress

will greatly depend on future increase of computer resources.

Nowadays the most fundamental way to derive the nuclear force from first principles is based on

Effective Field Theory (EFT), and more particularly Chiral Perturbation Theory [69, 37, 36].

This formalism, first initiated by Weinberg [105], exploits the fact that the relevant degrees

of freedom at low energies are hadrons. In this context, nuclear forces are derived from an

effective Lagrangian which keeps tracks of all symmetries of the underlying QCD. Spontaneous

symmetry breaking of (approximate) chiral symmetry leads to the appearance of (pseudo-)

Goldstone bosons, interpreted as pions. The Lagrangian can be expanded in powers of Q
Λχ

where Q ∼ mπ represents the soft scale, and Λχ ∼ 1 GeV is the breakdown scale of the

theory. One can then derive a NN potential order by order, up to a desired accuracy. Consis-

tent three-body (and higher-body) forces also naturally emerge. In this framework, the high

energy degrees of freedom are effectively taken into account via the presence of low-energy

constants (LECs). Although these LECs are currently usually extracted from experimental

data, the goal will be to derive them from lattice QCD calculations when numerical resources

will permit it.

Bare interactions exhibits an extremely strong short-range component which can scatter nu-

cleons into states with very high momentum, and thus can hardly be handled in many-body

calculations where basis truncations are often necessary. There exists several ways of properly

deriving effective interactions in which the high-momentum hard core has been resumed. Let

us cite for instance the Brückner G-matrix theory [22, 27]. This formalism was first intro-

duced to derive an effective interaction which would be suitable for perturbative calculations

in nuclear structure. This is achieved by resumming the (non-perturbative) infinite serie of

scattering processes onto intermediate states above the Fermi sea (so-called ladder diagrams),

into an energy-dependent reaction matrix given by the Bethe-Goldstone equation [9]. This

G-matrix can then be used as expansion parameter in e.g. a perturbation expansion of the

3



Chapter I : Introduction

ground-state energy. The diagrams of this serie can be ordered according to the number of in-

dependent hole lines appearing (this is the so-called ”hole expansion”). Alternatively, methods

based on the renormalization group approach start from the idea that low-energy observables

are not affected by the short-distance details of the potential. Following this idea, the goal

is to decouple high and low momentum modes by integrating out these details, allowing for

better convergence of many-body calculations. For instance, the Vlow k approach [15, 14] im-

poses a momentum cut-off Λ and resums the effect of high momentum modes into an effective

interaction Vlow k which is obtained by requiring the scattering matrix T to be unchanged while

Λ is lowered. This condition leads to an Renormalization Group equation which is integrated

using the bare interaction V as initial condition. More recently the Similarity Renormalization

Group (SRG) method has been applied to the nuclear interaction [12, 13]. The philosophy of

this approach is to transform the Hamiltonian through successive unitary transformations in

order to bring non-diagonal terms to zero.

However, deriving effective forces is a difficult task and phenomenological interactions are

still widely used in nuclear physics calculations. These interactions are based on a postulated

analytic form containing parameters that are fitted to reproduce experimental data within a

certain many-body approach. In particular, the zero-range Skyrme interaction [98, 99] and

the finite-range Gogny force [29] are the two most employed interactions in self-consistent

mean-field calculations. Inspired from the G-matrix theory, their analytical from is taken as

density-dependent.

The complexity of the nuclear interaction is only the first difficulty one is confronted with

while studying the properties of atomic nuclei. Due to their mesoscopic nature, a unified

description of the structure properties (size and deformation of ground states, individual or

collective excitation modes...) of all nuclei (stable and exotic, open and closed shell) is ex-

tremely difficult to achieve and is yet to be reached. Roughly speaking, the existing many-body

methods can be categorized into three classes: ab-initio approaches, methods based on the

self-consistent mean-field theory and the so-called Shell-Model.

Ab-initio techniques aim to describe the nucleus as accurately as possible using a micro-

scopic two- (and three-) body interaction as only input. Although enormous progress has

been achieved the last few years, the most exact approaches, able to handle vacuum forces,

are still limited to a small number of nucleons. For example the Green’s Function Monte-Carlo

(GFMC) [23, 83] can describe system with A . 12. The No-Core Shell-Model [78, 79] based

on explicit expansion of the wave function on a large harmonic oscillator basis can now reach

A ≃ 16. Finally, the more recent development of lattice Effective Field Theory [38], analo-

gous of lattice QCD with nucleons, can tackle nuclei with A ∼ 28. An ab-initio treatment
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of heavier systems requires a truncation of the many-body space and thus demands a renor-

malization of the bare interaction to account for the neglected space. Let us cite for example

the Self-Consistent Green’s Function (SCGF) [31] method based on the description of nucleon

propagators, or the Coupled Cluster (CC) approach [97, 59] which expresses the nuclear wave

function as an exponential operator eS acting on an uncorrelated reference state. Finally the

recent In-Medium Similarity Renormalization Group (IMSRG) method [102] directly evolves

the bare interaction in the nuclear medium and allows to decouple the uncorrelated reference

state from other many-body configurations. These ab-initio approaches are currently mostly

restricted to light and closed-shell medium mass nuclei. Consequently, the rest of the nuclear

chart is usually tackled with methods where approximations and phenomenology enter more

drastically. The following two major approaches can be cited.

The Shell-Model [24] belongs to the class of Configuration Interaction (CI) techniques which

expand the nuclear wave function on a set of many-body states built on chosen single-particle

states. In order to simplify the solution of the Schrödinger equation, the Shell-Model divides

the single-particle space into three subspaces: an inert fully occupied core, an active partially

filled valence space, and the remaining empty orbitals. The nucleons in the valence space

are considered as the relevant degrees of freedom and their interaction fully determines the

properties of the nucleus. To make up for such a truncation of the model space, one needs

to renormalize the nuclear interaction within this space. Although this can in principle be

achieved from the theory of effective operators [92], the interactions used in practical Shell-

Model calculations contain a number of matrix elements that are fitted to experimental data.

Finally, the diagonalization of the resulting Hamiltonian leads directly to the solutions of the

problem: the eigenstates correspond to the nuclear wave functions while the eigenvalues are

the energies of the system.

Finally, methods based on the self-consistent mean-field theory starts from the idea that

in a first approximation, the nucleons can be considered as evolving independently from each

other in an average potential generated by all other nucleons. The wave function can thus

be written as a Slater determinant of single-particle states that are the unknown quantities

to be determined. Within the Hartree-Fock theory [53, 43], they are obtained by applying a

variational principle to the energy of the system. This procedure results in an eigenvalue equa-

tion for the Hartree-Fock potential which arises naturally as the two-body interaction folded

with the one-body density of the system. Through this density dependence, the average po-

tential is thus related to the single-particle orbitals that are themselves determined in return

by the average potential. In this sense, the Hartree-Fock method is a self-consistent problem

requiring an iterative solution procedure. As they lead to strong divergences, bare hard-core

interactions are impossible to use in self-consistent mean-field methods, which require the use

of an effective force. This can be done in the framework of the Brueckner G-matrix described
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Chapter I : Introduction

previously, leading to the Brueckner-Hartree-Fock method. However this approach is very

difficult to compute and phenomenological forces, such as Gogny or Skyrme functionals are

commonly used.

In order to provide an accurate description of the structure of nuclei, one usually needs to

go beyond this 0th-order approximation and account for missing correlations. In particular,

pairing correlations are known to play a very important role in the description of open-shell

nuclei. In fact this type of correlations can be included into the mean-field using the Hartree-

Fock + BCS (Bardeen-Cooper-Schrieffer) [5, 92] or HFB (Hartree-Fock-Bogolyubov) [16, 17]

approaches. The wave function is then written as an independent state of quasi-particles. The

remaining types of correlations are usually added on top of the mean-field picture. For exam-

ple the method of the Random Phase Approximation (RPA) [100], or Quasi-particle Random

Phase Approximation (QRPA), describes small amplitude collective vibrations of the nucleus

as coherent superpositions of individual excitations. Alternatively, the Generator Coordinate

Method (GCM) [50] can treat large amplitude collective motion as superpositions of deformed

mean-field solutions. Many other methods exist.

Self consistent mean-field solutions usually break a certain number of symmetries. For exam-

ple, rotational invariance is lost when the Hartree-Fock solution is built on deformed orbitals.

The BCS wave function also does not preserve the number of particle in the system. Although

these symmetry breakings allow to account for correlations while using simplified wave func-

tions, they need to be restored through the use of projection techniques.

The present work focuses on the development of a many-body approach aiming to de-

scribe all types of long-range correlations on the same footing in order to explicitly preserve

the most important symmetries of the system, avoiding thus the need for projection techniques.

This approach, named ”multiparticle-multihole configuration mixing method” (shortly mp-mh

method), represents the adaptation of a many-body technique already widely used in the con-

text of atomic physics or quantum chemistry, and known as Multi-Configuration Hartree-Fock

(MCHF) [44, 75] or Multi-Configuration Self-Consistent Field (MCSCF) [108, 106] method.

While successful results have been obtained in these fields, the application of this approach to

the description of nuclear systems present additional difficulties. Namely, the lack of knowl-

edge of the nuclear force contrary to electromagnetic interactions, as well as the presence of two

types of particles (protons and neutrons), leading to the collectivity property of nuclei requir-

ing account for a large number of configurations. The multiparticle-multihole configuration

mixing method is inspired from both the self-consistent mean-field approach, which optimizes

orbitals considering a Slater determinant wave function, and the Shell-model - or more gener-

ally configuration interaction techniques - which explicitly treat all correlations in a restricted

many-body space built on frozen orbitals. Taking advantage of both philosophies, the mp-mh

approach assumes a correlated wave function preserving explicit symmetries, and optimizes

at the same time the single-particle states. We thus obtain a set of orbitals reflecting the

6



correlation content of the nuclear state. In this way, the mp-mh method allows to treat on the

same footing long range correlations, beyond a mean-field that is improved as correlations are

introduced. First multiconfiguration-type calculations based on Hartree-Fock single-particle

states (as opposed to the usual oscillator sates) have been realized in e.g. [85, 91, 18, 76, 61].

The orbitals were however kept frozen. Pioneering work using the full Multi-Configuration

Self-Consistent Field approach in the context of nuclear physics has been done a few decades

ago [34, 39, 96, 60]. However the applications performed in these studies were restricted to

simple analytical cases (Lipkin model). The development of the multiparticle-multihole con-

figuration mixing method at CEA,DAM,DIF started in the early 2000’s. So far, the studies

that have been performed have not applied the full self-consistent formalism. Recent analysis

of the spectroscopy of sd-shell nuclei using the Gogny interaction [86, 63] used frozen Hartree-

Fock orbitals, while an earlier work [84] applied the mp-mh method to the description of

pairing correlations in Sn isotopes making drastic approximations in the equation determining

the single-particle states. The goal of this thesis is to pursue the development of the mp-mh

approach to be able to apply the full formalism to the description of nuclei. After formal

and numerical developments, we are now able to exercise for the first time the completely

self-consistent method to a few light nuclei. In particular, the first applications of this work

are done for p and sd-shell nuclei using the Gogny interaction.

This thesis is organized as follows.

• In the first chapter we remind of the formalism of the mp-mh configuration mixing

approach. For clean understanding and formal analysis of the equations, this formalism is

derived from a Hamiltonian operator (without density-dependence). This chapter focuses

then on the formal interpretation of the role of the orbital transformation. In particular,

we show that the equation determining the single-particle states can be obtained from

the Green’s function formalism at equal times.

• In the second chapter, we perform a first application of the method using the Gogny

force. The density-dependence of this interaction leads to a modification of the formalism

which we derive in consequence. Secondly, the procedure used to solve the equations are

exposed. Finally, we end by applying the full mp-mh method to a first test case: the 12C

nucleus. In particular we test and compare the convergence procedure using two types

of truncation of the many-body wave function.

• In the third chapter, a systematic study of sd-shell nuclei is performed. The influence

of the orbital transformation on the description of ground and excited properties is

analyzed.

• Finally, the last chapter is dedicated to first applications of the method for the study of

reaction mechanisms. More particularly, transition densities calculated in the framework

7



Chapter I : Introduction

of the mp-mh configuration mixing approach are used as input to calculate observables

associated with inelastic scattering of electrons and protons from sd-shell nuclei.

8



Chapter II

General Formalism of the mp-mh

configuration mixing method

At the crossroads between self-consistent mean-field approaches and Configuration-Interaction

techniques, the multiparticle-multihole configuration mixing method exhibits several advan-

tages. The configuration mixing form of the wave function allows to preserve symmetries

that are usually broken in mean-field-type approaches. In particular, the number of particles

and the angular momentum are explicit good quantum numbers. The Pauli principle, usually

slightly violated in RPA-type methods (so-called Quasi-Boson Approximation) is also fully re-

spected here. Moreover, all types of long-range correlations are described on the same footing.

Namely, pairing correlations, correlations associated with collective excitations and coupling

of these collective states with individual excitations (so-called particle-vibration coupling).

Finally ground and excited states of even-even, even-odd and odd-odd nuclei can be described

on the same footing. As in self-consistent mean-field methods, the mp-mh approach offers

nice and satisfying consistency properties. Even better, the mean-field evolves according to

the correlation content of the system, and thus reflects the effect of all types of correlations.

We start this chapter by deriving the formalism of the mp-mh method based on a general

two-body Hamiltonian. Secondly, a formal analysis of the role of the orbital optimization

is conducted. In particular the link with the Green’s function formalism at equal time is

established.

II.1 Derivation of the equations

The starting point of the method is to build the trial wave function |Ψ〉 describing the nuclear

state. |Ψ〉 is taken as a general superposition of direct products of proton (π) and neutron (ν)

9



Chapter II : General Formalism of the mp-mh configuration mixing method

Slater determinants |φα〉 ≡ |φαπ〉 ⊗ |φαν 〉,

|Ψ〉 =
∑

α

Aα|φα〉

≡
∑

απαν

Aαπαν |φαπ〉 ⊗ |φαν 〉 . (II.1)

Each configuration |φα〉 is a multiparticle-multihole (mp-mh) excitation of a reference state

|φ〉 obtained by filling the lowest orbitals with the A = Z+N nucleons of the system (see Fig.

(II.1)).

That is,

|φα〉 =
Mα∏

i

(
a†piahi

)
|φ〉

≡ |φαπ〉 ⊗ |φαν 〉 =
Mαπ∏

i

(
a†piπahiπ

)
|φπ〉 ⊗

Mαν∏

j

(
a†pjν ahjν

)
|φν〉 , (II.2)

with,

|φ〉 =
A∏

i=1

a†i |0〉

≡ |φπ〉 ⊗ |φν〉 =
Z∏

i=1

a†iπ |0〉 ⊗
A∏

j=1

a†jν |0〉 . (II.3)

In Eq. (II.2), the indices h (resp. p) stand for ”hole” (resp. ”particle”) and denote occu-

pied (resp. unoccupied) orbitals in |φ〉. The highest hole level is known as the Fermi level.

Mα = Mαπ +Mαν is called the excitation order of the configuration |φα〉 and corresponds to

the number of p-h excitations applied to |φ〉 in order to obtain |φα〉. The reference state |φ〉
obtained from the particle vacuum |0〉 and characterized by Mα = 0 is included in expansion

(II.1). It is represented on Fig. (II.1) along with other possible configurations up to 2p-2h

configurations.

It is obvious that a wave function as written in Eq. (II.1) explicitly preserves the number

of protons and neutrons, Z and N , of the system. Other symmetries, such as the rotational

invariance, are preserved by restricting the configuration mixing (II.1) to Slater determinants

ensuring the conservation of good quantum numbers.
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II.1 Derivation of the equations

protons neutrons

hole states

particle states

Fermi level

Figure II.1: Examples of multiparticle-multihole excitations.
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Chapter II : General Formalism of the mp-mh configuration mixing method

Ideally the single-particle basis would be infinite so that the many-body configurations

|φα〉 would span the complete Hilbert space I. According to the Ritz variational principle,

the exact wave function |Ψex〉 making the energy functional E [Ψex] =
〈Ψex|Ĥ|Ψex〉

〈Ψ|Ψ〉
stationary

would then be an eigenstate of the many-body Hamiltonian Ĥ. This wave function would be

independent of the nature of the single-particle basis, so that the mixing coefficients Aα would

be the only variational parameters to consider.

However, practically, one is forced to consider a finite basis. Thus the trial wave function

|Ψ〉 can only be varied within a subspace S of the whole Hilbert space I. If one includes in

expansion (II.1) all many-body configurations (with good quantum numbers) belonging to S,
varying the energy functional with respect to the coefficients Aα leads to finding the exact

eigenstates of Ŝ†ĤŜ, projection of the Hamiltonian on S. These states are not, a priori,

eigenstates of Ĥ. However, if the one-body basis is large enough, the subspace S tends to

cover an important part of I, so that the trial wave function |Ψ〉 resembles closely |Ψex〉 and
E [Ψ]→ E [Ψex]

+ [67]. The exact solution within S would then be a satisfactory approximation

to the exact solution within I.

However this procedure is usually practically unfeasible. Indeed, roughly speaking, the size

of the many-body space S for N particles on M single-particle states grows combinatorially

as

(
M

N

)
= M !

N !(N−M)!
. Moreover the presence of two types of particles (protons and neutrons)

increases drastically the number of possible combinations. Thus, one is usually compelled

to restrict the expansion (II.1) to configurations belonging to a subspace P of S. In this

case, the wave function depends significantly on the nature of the single particle basis. The

strategy of the multiparticle-multihole configuration mixing approach is thus to determine the

single-particle states which optimize at best the subspace P .
Consequently, the two sets of unknown parameters to be determined are,

• The mixing coefficients {Aα} , representing the weight of each configuration in the

trial wave function.

• The single-particle orbitals {ϕiτ (~r, σ)} (τ = (π, ν), σ = (↑, ↓)), or equivalently the

creation operators {a†iτ}1, used to build the many-body states.

The equation determining the weights {Aα} is obtained by requiring the energy functional

E [Ψ] = 〈Ψ|Ĥ|Ψ〉 to be stationary with respect to infinitesimal variations δA∗
α of the coeffi-

1The orbitals {ϕiτ (~r, σ)} are related to the creation operators {a†iτ } through the relation,

ψ̂†(~r, σ, τ) =
∑

i

ϕiτ (~r, σ)
∗a†iτ ⇔ a

†
iτ

=
∑

σ

∫
d3rψ̂†(~r, σ, τ)ϕiτ (~r, σ)

∗ ,

where ψ̂†(~r, σ, τ) is the field operator creating a nucleon with spin σ and isospin τ at point ~r.
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II.1 Derivation of the equations

cients, while the orbitals are kept fixed. Similarly the orbitals are optimized by fixing the

coefficients and minimizing E [Ψ] with respect to the single-particle states {ϕiτ}.

This leads to the following system of equations,





δAE [Ψ] ≡
∑

α

∂E [Ψ]

∂A∗
α

∣∣∣∣
{ϕi,ϕ∗

i } fixed

δA∗
α +

∑

α

∂E [Ψ]

∂Aα

∣∣∣∣
{ϕi,ϕ∗

i } fixed

δAα = 0 (II.4)

δϕE [Ψ] ≡
∑

ϕi

∂E [Ψ]

∂ϕ∗
i

∣∣∣∣
{Aα,A∗

α} fixed

δϕ∗
i +

∑

ϕi

∂E [Ψ]

∂ϕi

∣∣∣∣
{Aα,A∗

α} fixed

δϕi = 0 , (II.5)

where δA and δϕ denote the variations with respect to the expansion coefficients and the or-

bitals, respectively. Since the mixing coefficients depend on the nature of the single-particle

states, and vice versa, the two equations (II.4) and (II.5) are coupled.

In what follows, we show the formalism of the multiparticle-multihole (mp-mh) configura-

tion mixing approach derived from a two-body Hamiltonian with general form,

Ĥ = K̂ + V̂ 2N

=
∑

ij

Kija
†
iaj +

1

4

∑

ijkl

〈ij|Ṽ 2N |kl〉 a†ia†jalak , (II.6)

where K̂ is the kinetic energy operator containing the center of mass correction
(
1− 1

A

)
, and

Ṽ 2N ≡ (1 − P̂12)V̂
2N is the antisymmetrized two-body interaction. P̂12 = P̂r1r2P̂σ1σ2

P̂τ1τ2

denotes the exchange operator between particle 1 and 2, with P̂r1r2 , P̂σ1σ2
and P̂τ1τ2 the space,

spin and isospin exchange operators respectively.

The generalization to e.g. a three-body Hamiltonian is straightforward (see. Appendix A).

II.1.1 First variational equation: the mixing coefficients

Let us first consider Eq. (II.4). The mixing coefficients being related through the normalization

condition of the wave function,

1 = 〈Ψ|Ψ〉 =
∑

αβ

A∗
αAβ 〈φα|φβ〉 =

∑

α

|Aα|2 , (II.7)
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Chapter II : General Formalism of the mp-mh configuration mixing method

we make use of the Lagrange method 2 and introduce a multiplier λ associated to this condition.

The new functional to minimize is then,

F [Ψ, λ] = E [Ψ]− λ (〈Ψ|Ψ〉 − 1) (II.8)

=
∑

αβ

A∗
αAβ 〈φα|Ĥ|φβ〉 − λ

(
∑

αβ

A∗
αAβ 〈φα|φβ〉 − 1

)
, (II.9)

and the equation (II.4) to solve can be rewritten as,





∂F [Ψ, λ]

∂A∗
α

= 0, ∀α (II.10)

∂F [Ψ, λ]

∂Aα

= 0, ∀α . (II.11)

Inserting Eq. (II.9) into Eqs. (II.10) and (II.11) we finally get,

∑

β

Aβ 〈φα|Ĥ|φβ〉 = λAα, ∀α , (II.12)

and its equivalent conjugate equation.

Eq. (II.12) represents the diagonalization of the Hamiltonian matrix in the many-body con-

figuration space. This eigenvalue equation is common to all Configuration Interaction-type

methods3. The nuclear states |Ψ〉 correspond to the eigenvectors of Ĥ, while the eigenvalues

give the energy of the system.

As mentioned earlier the size of the matrix growing combinatorially with the number of parti-

cles and the number of single-particle states, one is usually forced to restrict the wave function

(II.1) to a subspace P ⊂ S containing certain selected configurations. Thus we have in fact,

|Ψ〉 =
∑

α∈P

Aα |φα〉 . (II.13)

Calling Q the subspace orthogonal to P in S, we have

P ⊕Q = S . (II.14)

2The Lagrange multiplier method states that the extrema of a function f(x1, ..., xn) constrained to the
condition C(x1, ..., xm) = 0 (m 6 n), can be obtained by finding unconstrained extrema of the function
g(x1, ..., xn, λ) = f(x1, ..., xn)− λC(x1, ..., xm).

3Since in practical applications we will be using a density-dependent interaction, new terms called ”rear-
rangement terms” will appear, making Eq. (II.12) non-linear and therefore more complicated to solve. See
chapter III.
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II.1 Derivation of the equations

This truncation is schematically shown in Fig. (II.2).

Figure II.2: Truncation of the many-body space.

Neglecting the space outside of S, the projectors P̂ and Q̂ onto P and Q respectively, satisfy

the following relations,

P̂ 2 = P̂

Q̂2 = Q̂

P̂ + Q̂ = 1̂S ≃ 1̂

P̂ Q̂ = Q̂P̂ = 0 . (II.15)

The Hamiltonian can then be decomposed into,

Ĥ = P̂ ĤP̂ + Q̂ĤQ̂+ P̂ ĤQ̂+ Q̂ĤP̂

= ĤPP + ĤQQ + ĤPQ + ĤQP , (II.16)

where ĤPP and ĤQQ act within P and Q respectively, while ĤPQ and ĤQP represent the

couplings between both spaces.
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Chapter II : General Formalism of the mp-mh configuration mixing method

We note that Eq. (II.12) can be rewritten as,

〈φα|Ĥ − λ|Ψ〉 = 0 , ∀α
⇔ P̂ (Ĥ − λ) |Ψ〉 = 0 (II.17)

⇔ (1̂− Q̂)(Ĥ − λ) |Ψ〉 = 0

⇔ (Ĥ − λ) |Ψ〉 = Q̂Ĥ |Ψ〉 . (II.18)

Eq. (II.17) expresses nothing but the fact that |Ψ〉 is the eigenstate of ĤPP , projection of Ĥ

onto P , with eigenvalue λ.

Role of the first equation

The first variational equation allows to explicitly build two-body correlations in the wave

function of the nucleus. Although these correlations are restricted to a truncated P space

of the complete Hilbert space, they are however of all physical types. Indeed, looking at the

elements 〈φα|V̂ |φβ〉 of the matrix to diagonalize, one sees that different types of vertices can

appear according to the difference of excitation order ∆M = |Mα −Mβ| of the two Slater

determinants φα and φβ. If V̂ is a two-body interaction it can only connect configurations

differing by up to 2p − 2h excitations. Three cases have then to be examined. They are

represented in Fig. (II.3).

• Case (a): ∆n = 0. The two top diagrams of the figure correspond to the direct and

exchange part of the same matrix element. They represent respectively the scattering

and the creation/annihilation of a particle-hole (p-h) pair. This type of vertices are char-

acteristic of RPA-type (Random Phase Approximation-type) correlations. In particular,

they correspond to the A-matrix in the ph-RPA approach. These vertices are able to

generate the well-known ring diagrams representing collective vibrations of the nucleus.

The two bottom diagrams on Fig. (II.3)(a) respectively represent the scattering of

a pair of particles and of a pair of holes. These vertices appear for instance in the

pp(hh)-RPA or QRPA approaches. They generate pairing vibrations. When particles

are in time-reversed states they also occur in BCS (Bardeen-Cooper-Schrieffer) or HFB

(Hartree-Fock-Bogolyubov) methods.

• Case (b): ∆n = 1. These diagrams represent the influence of the creation (annihilation)

of a ph pair on the propagation of a single particle (hole). They allow to couple collective

vibrations of the nucleus to the motion of individual nucleons. This is the so-called

”particle-vibration coupling” which is rarely considered in microscopic beyond mean-

field approaches. It is however known to play an important role in odd nuclei. In

particular these diagrams are expected to lead to a compression of the single-particle

spectrum around the Fermi level.
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II.1 Derivation of the equations

• Case (c): ∆n = 2. These vertices represent the creation (annihilation) of two particle-

hole pairs from the uncorrelated reference state. They are essential to introduce correla-

tions in the ground state and appear again in the RPA approach through the B-matrix.

Figure II.3: Different types of vertices appearing in the configuration mixing. See text for
explanation.

Finally let us remind that the Hamiltonian appearing in Eq. (II.12) has not been renormalized

inside the P-subspace and therefore the first variational equation completely neglects Q. We

will see that the second variational equation should partly make up for this truncation.

II.1.2 Second variational equation: the single-particle orbitals

Let us now consider the variation of the energy E [Ψ] with respect to the single-particle orbitals,

while the mixing coefficients are kept fixed. A variation of the creation operators {a†i} can be
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Chapter II : General Formalism of the mp-mh configuration mixing method

obtained from a general unitary transformation,

a†i → eiT̂a†ie
−iT̂ = a†i + i

[
T̂ , a†i

]
− 1

2

[
T̂ ,
[
T̂ , a†i

]]
+ ... , (II.19)

where T̂ is an infinitesimal hermitian one-body operator T̂ =
∑

ij Tija
†
iaj. This leads to the

first order variation,

⇒ δa†i = i
[
T̂ , a†i

]
. (II.20)

This transformation of orbitals yields the following variation of the many-body states,

|φα〉 =
∏

i∈α

a†i |0〉 = a†1α ...a
†
Aα
|0〉 →

(
eiT̂a†1αe

−iT̂
)
...
(
eiT̂a†Aα

e−iT̂
)
|0〉

= eiT̂a†1α ...a
†
Aα
e−iT̂ |0〉︸ ︷︷ ︸

=|0〉

= eiT̂ |φα〉 , (II.21)

where we used the unitarity property e−iT̂ eiT̂ = 1̂ and the fact that the true vacuum |0〉 stays
invariant under such a transformation.

Expanding the exponential, we get |δφα〉 = iT̂ |φα〉. Similarly the trial wave function varies

as |δΨ〉 = iT̂ |Ψ〉, so that the corresponding first order variation of the energy is,

δϕE [Ψ] = 〈δΨ|Ĥ|Ψ〉+ 〈Ψ|Ĥ|δΨ〉 (II.22)

= −i 〈Ψ|T̂ Ĥ|Ψ〉+ i 〈Ψ|ĤT̂ |Ψ〉
= i 〈Ψ|

[
Ĥ, T̂

]
|Ψ〉 . (II.23)

The requirement (II.5) for the energy to be stationary amounts then to,

〈Ψ|
[
Ĥ, T̂

]
|Ψ〉 = 0 . (II.24)

This condition is often referred in the literature as ”Generalized Brillouin equation” [20, 64].

We show in appendix4 (A) that the Brillouin equation (II.24) can be recasted as the following

generalized inhomogeneous mean-field equation,

[
ĥ[ρ], ρ̂

]
= Ĝ[σ] . (II.25)

4The orbital equation is derived in Appendix (A) for the general case of a three-body Hamiltonian.
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II.1 Derivation of the equations

In Eq. (II.25) ρ is the one-body density matrix of the correlated state,

ρij = 〈Ψ|a†jai|Ψ〉 , (II.26)

and σ is the two-body correlation matrix defined by,

ρ
[2]
ij,kl ≡ 〈Ψ|a†ja†lakai|Ψ〉

= (ρijρkl − ρilρkj) + σji,lk . (II.27)

We show in appendix (B) that σ can also be expressed as,

σji,lk = 〈Ψ| : a†ja†lakai : |Ψ〉
− 〈Ψ| : a†jai : |Ψ〉 〈Ψ| : a†lak : |Ψ〉+ 〈Ψ| : a

†
jak : |Ψ〉 〈Ψ| : a†lai : |Ψ〉 ,

(II.28)

where :: denotes the normal product taken with respect to the uncorrelated reference state

|φ〉.
The one-body mean-field Hamiltonian,

h[ρ]ij = Kij +
∑

kl

〈ik|Ṽ 2N |jl〉 ρlk
︸ ︷︷ ︸

≡ Kij + Γ2N
ij [ρ] , (II.29)

represents a generalization of the Hartree-Fock field in the sense that it is built with the density

matrix of the correlated system and not an approximated Slater density.

Finally the source term G[σ] contains the effect of correlations beyond this mean-field, and is

given by,

G[σ]ij =
1

2

∑

klm

σki,lmṼ
2N
kljm −

1

2

∑

klm

Ṽ 2N
iklmσjl,km . (II.30)

It is easy to show that G[σ] is anti-hermitian since it can be rewritten as,

G[σ] = F [σ]− F †[σ] , (II.31)

where,

F [σ]ij =
1

2

∑

klm

σki,lmṼ
2N
kljm . (II.32)

Eq. (II.24) and (II.25) are two equivalent expressions of the equation determining the

optimal orbitals. There exist in fact several other possible ways of deriving and expressing
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Chapter II : General Formalism of the mp-mh configuration mixing method

this equation (see e.g. [73]). For instance, defining the following operator,

Ô = ρ̂ĥ[ρ] + F̂ [σ] , (II.33)

it is straightforward to see that Eq. (II.25) can be recasted into,

Ô = Ô† . (II.34)

This operator Ô is often referred in the literature as the ”orbital operator” [45] or ”Fock-like

operator” [55] (by analogy to the usual Fock operator encountered in the Hartree-Fock the-

ory). Its hermiticity is thus a necessary and sufficient condition for the energy to be stationary

with respect to orbital variations.

Continuing this reasoning, this is also equivalent to the fact that the matrix O can be diago-

nalized by a unitary matrix U as,

U−1OU = D , (II.35)

where D is diagonal and real, and U †U = 1. The orbital equation can therefore also be

expressed as an eigenvalue problem for the orbital operator Ô [34].

Role of the second equation - Coupling to the Q-subspace

As mentioned previously, the nuclear state built from the first variational equation is in practice

restricted to a subspace P of the full many-body space S. The variation of this state obtained

via the variation of the single-particle states can be divided into a part belonging to P and a

part belonging to the orthogonal Q-subspace as,

|Ψ〉P → |Ψ〉P + |δΨ〉 , where |δΨ〉 = |δΨ〉P + |δΨ〉Q . (II.36)

Thus, the corresponding variation of the energy becomes,

δφE [Ψ] = P〈Ψ|Ĥ |δΨ〉+ 〈δΨ|Ĥ|Ψ〉P
= P〈Ψ|Ĥ |δΨ〉P + P〈δΨ|Ĥ |Ψ〉P + P〈Ψ|Ĥ |δΨ〉Q + Q〈δΨ|Ĥ |Ψ〉P
= P〈Ψ|P̂ ĤP̂ |δΨ〉P + P〈δΨ|P̂ ĤP̂ |Ψ〉P + P〈Ψ|P̂ ĤQ̂ |δΨ〉Q + Q〈δΨ|Q̂ĤP̂ |Ψ〉P .

(II.37)

We see from the last two terms on the r.h.s of Eq. (II.37) that couplings between the P- and
Q-subspaces are introduced through ĤPQ ≡ P̂ ĤQ̂ and ĤQP ≡ Q̂ĤP̂ . However propagation

into the Q-subspace through ĤQQ ≡ Q̂ĤQ̂ is ignored 5.

5Since ĤQQ is not taken into account neither in the first nor via the second equation, one of the challenges
of the mp-mh approach will be to select an optimal selection criterion of the P-space. That is, find a truncation
scheme of the many-body configurations such that the ignored Q-subspace will not impact on the observables
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II.1 Derivation of the equations

The orbital equation should therefore partly compensate for the truncation made on the wave

function. This can be illustrated by the following arguments.

Starting from a certain set of single-particle states {a†}, the orbital equation leads to a new

set {b†} that can be expressed as,

b†i = eiΛ̂a†ie
−iΛ̂ =

∑

j

a†j

(
eiΛ̂
)
ji
≡
∑

j

a†jθji , (II.38)

where the sum runs over all states j (of same symmetry than i in a symmetry-conserving

approach), and Λ̂ =
∑

kl Λkla
†
kal. Under this transformation, the many-body configurations

therefore vary as,

|φα〉 → |φ′
α〉 = eiΛ|φα〉

= |φα〉+
∑

ij

Λija
†
iaj|φα〉+

∑

ijkl

ΛijΛkla
†
iaja

†
kal|φα〉+ ... . (II.39)

The optimization of orbitals thus amounts to creating multiparticle-multihole excitations on

top of the existing configurations. These multiparticle-multihole excitations extend to the

whole single-particle basis one is considering. Since Λ is a one-body operator, they are always

built as products of 1p-1h excitations.

The configurations belonging to the new restricted P ′-subspace should therefore take into

account the effect of Slater determinants built from the entire starting single-particle basis.

Indeed,

|φ′
α〉 = b†1α ...b

†
Aα
|0〉

=
∑

j1...jA

θj11α ...θjAAαa
†
j1
...a†jA |0〉 , (II.40)

where ji is in the same symmetry block than iα but is not restricted to e.g. some type of

valence space. Thus,

|φ′
α〉 =

∑

β∈P+Q
with same symmetry

than α′

Cαβ |φβ〉 (II.41)

where Cαβ decomposes as product of Λ.

Let us insist on the fact that, since it acts at the one-body level, the transformation of

single-particle states does not create additional correlations. It allows however, to optimize

under study (excitation energies, transition probabilities...).
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Chapter II : General Formalism of the mp-mh configuration mixing method

the P-subspace so that the role of the Q-subspace on the description of the nuclear state is

minimized.

Hartree-Fock limit Finally let us note that in the limit where only the reference state is

included in expansion (II.1), i.e. if |Ψ〉 = |φ〉, the two-body correlation matrix σ cancels and

one gets back the usual Hartree-Fock equation [h[ρ], ρ] = 0, where ρ reduces to6,

ρij =

{
δij, if i and j 6 Fermi level,

0, otherwise.
(II.42)

This equation expresses that the mean-field and the one-body density commute and therefore

there exists a common eigenbasis diagonalizing both of theses matrices simultaneously. It

is this basis that one usually seeks and takes as optimal set of single-particle states. This

commuting property ensures a one to one correspondence between the ”canonical” states7

(eigenstates of the mean field h[ρ]) and the ”natural” ones (eigenstates of the density ρ).

Single-particle energies (eigenvalues of h[ρ]) and occupation numbers (eigenvalues of ρ) are

therefore both defined simultaneously.

In the general case where one includes several configurations in the wave function (II.1),

[h[ρ], ρ] = G[σ] 6= 0 and this property is lost. The canonical and natural basis do not coincide

anymore and one cannot define states with definite single-particle energies and occupations at

the same time.

II.1.3 Importance of the consistency between correlations and mean-

field description

Most microscopic many-body methods are based on the concept of an existing underlying

independent-particle picture. That is, on the idea that in first approximation, the nucleons of

the system can be described as evolving independently from each other in an average potential

Γ, which generates single-nucleon orbitals organized in shells8. The inclusion of correlations

arising from the residual interaction Vres = V − Γ is then accomplished in a second separate

stage9.

On the contrary, the formalism exposed here allows to generate an optimized single-particle

picture which reflects and encapsulates part of the correlation content of the system. We see

6in the case of a closed sub-shell nucleus.
7Here we use the jargon of quantum chemistry where the canonical basis denotes the basis that diagonalizes

the mean-field Hamiltonian h[ρ]. This definition should not be confused with the one used in HFB theory,
where the canonical basis is a special case of a natural basis which also brings the pairing tensor into ”canonical”
form.

8The Shell-model method starts from a schematic potential whereas the Hartree-Fock method optimizes
the mean-field self-consistently but considering an independent-particle wave function.

9Only pairing correlations can be treated at the mean-field level within HFB or BCS methods.
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indeed that the one-body mean-field Hamiltonian ĥ[ρ] appearing in the orbital equation,

h[ρ]ij = Kij + Γ2N [ρ]ij = Kij +
∑

kl

〈ik|Ṽ 2N |jl〉 ρlk , (II.43)

is obtained by averaging the two-body interaction with the complete density ρ of the correlated

state |Ψ〉. Thus, contrary to the Hartree-Fock field which averages the interaction of the

nucleons over the orbits situated under the Fermi level, the mean potential (II.43) contains

contributions from both particle and hole states. It therefore accounts for the scattering of

nucleons into orbits that are unoccupied in the reference state |φ〉. In the ideal case where ρ is

constructed with the exact solution |Ψ〉 of H2N |Ψ〉 = E |Ψ〉, the mean field (II.43) constitutes

the most general mean field that can be constructed from a two-body interaction. In fact, if one

considers a M-body force, the average potential is obtained by folding the n-body interactions

with the full (n-1)-body densities (1 6 n 6M) as,

hij[ρ, ρ
[2], ..., ρ[M−1]] = Kij +

∑

kl

〈ik|Ṽ 2N |jl〉 ρlk +
1

4

∑

k1l1k2l2

〈ik1k2|Ṽ 3N |jl1l2〉 ρ[2]l1k1,l2k2

+...+
1

(M − 1)!2

∑

k1l1...kM lM

〈ik1...kM |Ṽ MN |jl1...lM〉 ρ[M−1]
l1k1,...,lM1

kM−1
.

(II.44)

See e.g. appendix A for the derivation of h in the case of a three-body force.

Extracted in this way from the correlated many-body solution, the resulting average potential

absorbs the mean effect of correlations and partly shields the influence of the latter. The

importance of the residual interaction Vres = V −Γ[ρ] is then minimized and the independent-

particle system governed by h[ρ] should therefore be a better approximation to the exact

solution then e.g. a Hartree-Fock state.

An expression of such an average potential already appeared in [94]. It was extensively

discussed in [4], and more recently in [33] in the context of the definition of single-particle

energies ε. It is shown that taking the latter as eigenvalues of the mean-field (II.43),

εa = 〈a|h[ρ]|a〉 = Kaa +
∑

bc

〈ab|Ṽ 2N |ac〉 ρcb where h[ρ] |a〉 = εa |a〉 , (II.45)

constitutes a ”universal” unambiguous definition of the single-nucleon energies, which also

coincides with the ”experimentalists’ definition”10.

Indeed one can easily show that h[ρ] can also be expressed as (see e.g. [94]),

ĥ[ρ]ij = 〈Ψ|
{[
ai, Ĥ

]
, a†j

}
|Ψ〉 , (II.46)

10Although the notion of single-particle energies can also differ within the experimentalists’ community,
depending on the mass region under study.
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Chapter II : General Formalism of the mp-mh configuration mixing method

where [, ] and {, } are the notations for the commutator and anti-commutator respectively.

Let us now insert the following closure relations into Eq. (II.46),

1̂A+1 =
∑

N

|ΨA+1
N 〉 〈ΨA+1

N | , 1̂A−1 =
∑

n

|ΨA−1
n 〉 〈ΨA−1

n | , (II.47)

where N (n) denotes the eigenstates of the neighboring system with A+1 (A-1) nucleons, i.e.

the solutions of Ĥ |ΨA+1
N 〉 = EN |ΨA+1

N 〉 (Ĥ |ΨA−1
n 〉 = En |ΨA−1

n 〉). We finally obtain,

ĥ[ρ]ij =
∑

N

〈Ψ|ai|ΨA+1
N 〉 (EN − E) 〈ΨA+1

N |a†j|Ψ〉+
∑

n

〈Ψ|a†j|ΨA−1
n 〉 (E − En) 〈ΨA−1

n |ai|Ψ〉 .

(II.48)

Let us remind that Ĥ |Ψ〉 = E |Ψ〉 is the problem for the A-particle system one is trying to

solve. In the basis {a} diagonalizing h[ρ], Eq. (II.48) reads,

εa = haa[ρ] =
∑

N

∣∣〈ΨA+1
N |a†a|Ψ〉

∣∣2 (EN − E) +
∑

n

∣∣〈ΨA−1
n |aa|Ψ〉

∣∣2 (E − En) . (II.49)

We recognize in Eq. (II.49) the observable one-nucleon addition and separation energies,

E+
N = EN − E and E−

n = E − En respectively. They correspond to the pole of the complete

one-body energy propagator or two-point Green’s function. The quantities,




S+
N,a ≡

∣∣∣〈ΨA+1
N |a†j|Ψ〉

∣∣∣
2

, (II.50)

S−
n,a ≡

∣∣〈ΨA−1
n |ai|Ψ〉

∣∣2 , (II.51)

are known as spectroscopic factors. They estimate the validity of approximating the eigenstate

N (n) of the A+1 (A-1) system by the ground state of the A-nucleus plus (minus) one nucleon

in state a added to it (removed from it).

This analysis allows to extract from Eq. (II.49) the physical meaning of the single-particle

energies taken as eigenvalues of the mean field (II.43): they represent the average of the one-

nucleon separation energies weighted by the corresponding spectroscopic factors, i.e. they

represent the centroid of the observable separation energies.

The theory of the most general mean-field is also extensively exposed in Ref. [11, 93]

from the point of view of perturbation theory. It is emphasized that the density ρ used to

calculate the potential Γ[ρ] must be fully consistent with the correlations σ of the system.

More precisely, one can always divide ρ into an uncorrelated part and a correlated one as,

ρ = ρ(0) + ρ(1) ,
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where

• ρ(0) = 〈φ|ρ̂|φ〉 is the density of the uncorrelated reference state |φ〉. It satisfies the

equation (ρ(0))2 = ρ(0), characteristic of an independent-particle state.

• ρ(1) = ρ − ρ(0) is the contribution to the one-body density arising from the two-body

correlations. The presence of this part leads to the loss of the idempotence property:

(ρ)2 6= ρ.

The authors of [11, 93] treat the density and the total energy E in terms of a graph expansion.

It is shown that the diagrams for the energy can all be decomposed into sub-diagrams that are

categorized into different classes. In particular graphs arising from the two-body correlations

are called ”irreducible”. We denote by ∆ their resummed contribution to E. Considering

then the total energy as a functional of the average potential Γ[ρ], the authors show that the

variational condition δE[Γ]
δΓ

= 0 is realized if Γ[ρ] is calculated with ρ(1) satisfying,

ρ(1) =
δ

δΓ
(∆) =

δ

δΓ
(”Irreducible” energy diagrams) . (II.52)

It is important to stress that this result stays true in the case where one truncates the infinite

summation ∆ in the expansion of the energy E, or limits this summation to a certain subclass

of diagrams, as long as the same graphs are used in (II.52) to calculate ρ(1).

A first application of this method was performed in [81] where the modification of the self-

consistent field in the presence of 2p-2h admixtures was studied.

Although the variational principle applied in the multiparticle-multihole configuration mix-

ing method is different (it is based on an explicit expression of the wave function) consistency

between the one-body density ρ and the correlation matrix σ is achieved by the fact that they

are calculated from the same (approximated) nuclear state |Ψ〉 ≃ |Ψ〉P . A deep link between

mean-field description and correlation content is thus ensured.
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II.2 Analysis of the orbital equation - Relation to Green’s

functions

In this section we show that the variational orbital equation can also be obtained using the

formalism of Green’s functions, and thus constitutes a general equation of Physics. This

formalism allows to interpret nicely the renormalization of orbitals in term of a diagrammatic

representation.

II.2.1 Reminder of the Green’s function formalism

Green’s functions (GFs) have been very widely studied and used in all areas of many-body

quantum physics. They are discussed in great detail in a large number of textbooks and lec-

ture notes. See e.g. [103, 42, 11, 72]. Here we only recall some definitions and properties of

the Green’s functions that are needed in order to derive the orbital equation.

Let a†i (t) and ai(t) be the creation and destruction operators of a particle in state i in

the Heisenberg picture. They are related to the time-independent operators a†i and ai in the

Schrödinger picture as (with ~ = 1),

{
a†i (t) = eiHta†ie

−iHt

ai(t) = eiHtaie
−iHt . (II.53)

The many-body Green’s functions in the representation i are defined as follows,





G [1]ij (t1 − t2) = −i 〈Ψ|T
(
ai(t1)a

†
j(t2)

)
|Ψ〉

G [2]ij,kl(t1, t2; t3, t4) = −〈Ψ|T
(
ai(t1)aj(t2)a

†
l (t4)a

†
k(t3)

)
|Ψ〉

...

G [n]i1...in,j1...jn
(t1...tn; t

′
1...t

′
n) = (−i)n 〈Ψ|T

(
ai1(t1)...ain(tn)a

†
jn
(t′n)...)a

†
j1
(t′1)
)
|Ψ〉 ,(II.54)

where |Ψ〉 is in principle the exact ground-state of the A-particle system, and T () is the time-

ordering operator which brings the operators taken at latter times on the left of operators

taken at earlier times and affects the results by the sign of the corresponding permutation.

◦ The one-body propagator or two-point Green’s function
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II.2 Analysis of the orbital equation - Relation to Green’s functions

Definition According to (II.54), the one-body Green’s function is defined as,

G [1]ij (t1 − t2) = −i 〈Ψ|T
(
ai(t1)a

†
j(t2)

)
|Ψ〉

=

{
−i 〈Ψ|ai(t1)a†j(t2)|Ψ〉 , if t1 > t2

+i 〈Ψ|a†j(t2)ai(t1)|Ψ〉 , if t1 < t2 .
(II.55)

When t1 > t2 the one-body GF gives the probability of finding the system in its initial ground-

state after adding a particle in state j at time t2, letting the system evolve and finally removing

a particle in state i at time t1. It describes therefore the behavior of the system containing

one additional particle.

Conversely, when t1 < t2, the one-body GF gives the probability of finding the system in its

ground state after annihilating a particle at time t1 and creating one at time t2. The one-body

GF for t1 < t2 thus describes the behavior of the system when removing a particle from it.

Equation of motion Let us start from the equation of motion for the Heisenberg anni-

hilation operator ai(t) = eiĤtaie
−iĤt,

i
∂

∂t
ai(t) = [ai(t), Ĥ] = eiĤt[ai, Ĥ]e−iĤt

=
∑

kl

Kkle
iĤt[ai, a

†
kal]e

−iĤt +
1

4

∑

jk,lm

Ṽ 2N
klmne

iĤt[ai, a
†
ka

†
lanam]e

−iĤt

=
∑

l

Kilal(t) +
1

2

∑

lmn

Ṽ 2N
ilmna

†
l (t)an(t)am(t) . (II.56)

where we have used the following relations,

[Â, B̂Ĉ] = [Â, B̂]Ĉ + B̂[Â, Ĉ] = {Â, B̂}Ĉ − B̂{Â, Ĉ} . (II.57)

Multiplying by a†j(t
′) on the right, taking the T -product and the expectation value in |Ψ〉 of

the corresponding expression we obtain,

i 〈Ψ|T
(
∂

∂t
ai(t)a

†
j(t

′)

)
|Ψ〉 =

∑

l

Kil 〈Ψ|T
(
al(t)a

†
j(t

′)
)
|Ψ〉

+
1

2

∑

lmn

Ṽ 2N
ilmn 〈Ψ|T

(
a†l (t)an(t)am(t)a

†
j(t

′)
)
|Ψ〉 . (II.58)

On the second line of equation (II.58) appears the four-point Green’s function.

27



Chapter II : General Formalism of the mp-mh configuration mixing method

The T -product of operators being a distribution it verifies11,

∂

∂t

[
T
(
ai(t)a

†
j(t

′)
)]

= ∆δ(t− t′)δij + T
(
∂

∂t
(ai(t)a

†
j(t

′)

)
. (II.59)

where ∆ = 1 is the module of the distribution’s discontinuity in t = t′.

Thus we finally get,

∑

l

(
iδil

∂

∂t
−Kil

)
G [1]lj (t− t′) = δ(t− t′)δij +

i

2

∑

lmn

Ṽ 2N
il,mnG

[2]
nm,jl(t, t; t

′, t+) . (II.60)

This is the equation of motion expressing the one-body propagator G [1] in terms of G [2]. It is
the first step of the infinite Martin-Schwinger hierarchy [71] of coupled equations relating G [n]
to G [n−1] and G [n+1].

Similarly one could have started from the equation of motion for the creation operator

a†j(t
′). This would have led to the following equivalent equation,

∑

k

G [1]ik (t− t′)
(
i

←−
∂

∂t′
δkj +Kkj

)
= −δ(t− t′)δij +

i

2

∑

klm

G [2]im,lk(t, t
′−; t′, t′)Ṽ 2N

kl,mj . (II.61)

Free propagator The propagator G [0] of a free particle is solution of,

∑

l

(
iδil

∂

∂t
−Kil

)
G [0]lj (t− t′) = δ(t− t′)δij , (II.62)

or equivalently,
∑

k

G [0]ik (t− t′)
(
i

←−
∂

∂t′
δkj +Kkj

)
= −δ(t− t′)δij . (II.63)

It is therefore a Green’s function in the mathematical sense and solutions of Eq. (II.60) and

(II.61) can be written in an integral form as,

G [1]ij (t− t′) = G
[0]
ij (t− t′) +

i

2

∑

klmn

∫
dt1G [0]ik (t− t1)Ṽ 2N

kl,mnG
[2]
nm,jl(t1, t1; t

′, t+1 ) , (II.64)

11This can be easily shown by writing

T
(
ai(t)a

†
j(t

′)
)
= θ(t− t′)ai(t)a†j(t′)− θ(t′ − t)a

†
j(t

′)ai(t) ,

differentiating this expression with respect to t and using the anti-commutation rules at equal time
{a†j(t), ai(t)} = δij .
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and,

G [1]ij (t− t′) = G
[0]
ij (t− t′)−

i

2

∑

klmn

∫
dt1G [2]im,lk(t, t

−
1 ; t1, t1)Ṽ

2N
kl,mnG

[0]
nj (t1 − t′) , (II.65)

respectively.

◦ The two-body propagator or four-point Green’s function

Definition According to (II.54), the two-body GF is defined as,

G [2]ij,kl(t1, t2; t3, t4) = −〈Ψ|T
(
ai(t1)aj(t2)a

†
l (t4)a

†
k(t3)

)
|Ψ〉 . (II.66)

Here again different time ordering can be considered: For instance, when t1, t2 > (<)t3, t4 the

two-body GF describes the propagation of a pair of particles (”holes”). Whereas it describes

the propagation of a particle-hole pair when t1, t3 < t2, t4 .

Equation of motion Following the same steps than for the one-body propagator one

can derive an equation of motion for the four-point GF, relating G [2] to G [1] and G [3],

∑

s

(
iδis

∂

∂t1
− Tis

)
Gsj,kl(t1, t2; t3, t4) = δikδ(t1 − t3)Gjl(t2 − t4)− δilδ(t1 − t4)Gjk(t2 − t3)

− i
2

∑

srm

Ṽ 2N
is,rmG

[3]
mrj,kls(t1, t1, t2; t3, t4, t

+
1 ) . (II.67)

Solutions of Eq. (II.67) can then also be expressed in an integral form in terms of the free

propagator G [0].

Cluster expansion It is also possible to show that G [2] can be expressed in terms of the

complete one-body propagator G [1] as12,

G [2]ij,kl(t1, t2; t3, t4) = G
[1]
ik (t1−t3)G

[1]
jl (t2−t4)−G

[1]
il (t1−t4)G

[1]
jk (t2−t3)+G

[2]C
ij,kl(t1, t2; t3, t4) , (II.68)

where G [2]C denotes the connected part of the two-body GF.

12In fact any N-body propagator can be expressed as a sum of an antisymmetrized product of lower-body
propagator and a connected N-body part. This cluster decomposition of the GFs is very useful when per-
turbative methods cannot be used (for instance when dealing with a hard core). One can indeed make a
truncation at a certain order in correlations. This amounts to resumming the infinite serie of a certain type
of diagrams (partial summation). For instance, the Hartree-Fock approximation is obtained by neglecting
two-body correlations, i.e. by setting G[2]C = 0.
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◦ Dyson equation Defining a quantity Σ which satisfies,

∑

s

∫
dt2Σks(t1 − t2)G [1]sj (t2 − t′) =

i

2

∑

lmn

Ṽ 2N
kl,mnG

[2]
nmjl(t1, t1; t

′, t+1 ) , (II.69)

the equation of motion (II.64) for the one-body propagator can be rewritten as,

G [1]ij (t− t′) = G
[0]
ij (t− t′) +

∑

ks

∫
dt1

∫
dt2G [0]ik (t− t1)Σks(t1 − t2)G [1]sj (t2 − t′) , (II.70)

or equivalently,

G [1]ij (t− t′) = G
[0]
ij (t− t′) +

∑

sn

∫
dt1

∫
dt2G [1]is (t− t2)Σsn(t2 − t1)G [0]nj (t1 − t′) . (II.71)

Eq. (II.70) and (II.71) are two equivalent forms of the well known Dyson equation represented

on Fig. (II.4). Σ is the self-energy (also called mass-operator) which contains all information

about the one-, two-, three-, ...-body propagators. The self-energy resums all one-particle

irreducible diagrams.

Figure II.4: Graphical representation of the Dyson equation. The simple line represents the
free propagator G [0], while the double line denotes the complete propagator G [1].

II.2.2 Orbital equation from the Green’s function formalism at

equal times

Now that the notations and definitions have been recalled, let us show that the second varia-

tional equation of the mp-mh approach can be obtained from the Green’s function formalism

at equal times.

Let us first define,

Ωij(t, t
′) =

i

2

∑

klm

G [2]im,lk(t, t
′−; t′, t′)Ṽ 2N

kl,mj (II.72)

The equations of motion (II.60) and (II.61) can then be written as,

∑

l

(
iδil

∂

∂t
−Kil

)
G [1]lj (t− t′) = δ(t− t′)δij + Ω∗

ji(t
′, t) , (II.73)
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and ,
∑

k

G [1]ik (t− t′)
(
i

←−
∂

∂t′
δkj +Kkj

)
= −δ(t− t′)δij + Ωij(t, t

′) , (II.74)

respectively.

Adding now Eq. (II.73) to Eq. (II.74) eliminates the time derivatives and we get,

∑

k

(Gik(t− t′)Kkj −KikGkj(t− t′)) = Ωij(t, t
′) + Ω∗

ji(t
′, t) . (II.75)

Let us now take the equal-time limit t′ → t+ of Eq. (II.75).

It is straightforward to see that the many-body propagators taken at equal times are propor-

tional to the many-body densities. In particular,

lim
t′→t+

G [1]ij (t− t′) = −i lim
t′→t+

〈Ψ|T
(
ai(t)a

†
j(t

′)
)
|Ψ〉

= +i 〈Ψ|a†j(t)ai(t)|Ψ〉
= +i 〈Ψ|a†j(0)ai(0)|Ψ〉 (translation invariance)

= +iρij , (II.76)

and,

lim
t′→t+

G [2]kl,ji(t, t; t
′, t′) = − lim

t′→t+
〈Ψ|T

(
ak(t)al(t)a

†
i (t

′)a†j(t
′)
)
|Ψ〉

= −〈Ψ|a†i (0)a†j(0)ak(0)al(0)|Ψ〉
= −ρ[2]likj

= − (ρliρkj − ρljρki + σil,jk) . (II.77)

Using the cluster decomposition (II.68) of G [2] we also notice that,

lim
t′→t+

G [2]Ckl,ji(t, t; t
′, t′) = −σil,jk . (II.78)

We deduce from these properties that,





lim
t′→t+

Ω(t, t′) = −i (F (σ) + ρΓ[ρ]) (II.79)

lim
t′→t+

Ω†(t′, t) = i
(
F †(σ) + Γ[ρ]ρ

)
, (II.80)

where Γ[ρ] is the average potential given in Eq. (II.29), and F (σ) is defined in Eq. (II.32).
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Thus, Eq. (II.75) taken at the limit t′ → t+ leads exactly to the orbital equation (II.25),


K̂ + Γ̂[ρ]︸ ︷︷ ︸

=ĥ[ρ]

, ρ̂


 = F̂ [σ]− F̂ †[σ] ≡ Ĝ[σ] . (II.81)

II.2.3 Diagrammatic analysis

Using the cluster decomposition (II.68) of G [2], Ω can be split into two parts as,

Ω(t, t′) = Ω1(t, t′) + ΩC(t, t′) , (II.82)

where,

Ω1
ij(t, t

′) =
i

2

∑

klm

(
Gil(t− t′)Gmk(t

′− − t′)− Gik(t− t′)Gml(t
′− − t′)

)
Ṽ 2N
kl,mj

= −
∑

l

Gil(t− t′)
∑

km

ρmkṼ
2N
kl,mj

= −
∑

l

Gil(t− t′)Γlj[ρ] , (II.83)

and,

ΩC
ij(t, t

′) =
i

2

∑

klm

G [2]Cim,lk(t, t
′−; t′, t′)Ṽ 2N

kl,mj . (II.84)

These contributions are diagrammatically represented on Fig. (II.5).

Figure II.5: Graphical representation of Ω = Ω1 + ΩC . The blob ’C’ denotes the connected
part of the two-body GF. The cut leg corresponds to the interaction line that is not attached
to G [2].

The equal-time limit of Ω1 corresponds to,

lim
t′→t+

Ω1(t, t′) = −iρΓ[ρ] . (II.85)
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We see from Eq. (II.83) that Γ[ρ] is the part of Ω1 represented on Fig. (II.5) without the

external propagator. It is therefore represented by the diagram on Fig. (II.6).

Figure II.6: General diagrams for Γij[ρ].

It was shown in [4] that the average potential Γ[ρ] is in fact the discontinuity of Ω(t, t′) at

t = t′ which is equal to the discontinuity of Ω1(t, t′) at t = t′. This is easily obtained by sub-

tracting the equation of motion (II.73) taken at t′ = t+ from the same equation taken at t′ = t−.

The equal-time limit of ΩC gives,

lim
t′→t

ΩC
ij(t, t

′) =
i

2

∑

klm

σkm,liṼ
2N
kl,mj

= iFij[σ] . (II.86)

Thus, we can represent F [σ] as shown on Figs. (II.7) and (II.8).

Figure II.7: Graphical representation of Fij[σ].

In particular one wees from Fig. (II.8) that F [σ] contains resummations of ring and ladder

diagrams shown in Fig. (II.9).

Relation to the self energy From this study we can now also establish a relation between

the quantities appearing in the orbital equation and the self-energy of the Dyson equation.

Using again the cluster decomposition (II.68) for G2, it is easily shown that Σ(t−t′) can always

be split into a static part proportional to δ(t− t′), which is nothing but the average potential

Γ̂ defined in (II.29), and a dynamical part Σdyn(t− t′) which is given by,

Σdyn
ij (t− t′) = −i

∫
dt1
∑

klmn

Ṽ 2N
ki,lmG

[2]C
ml,nk(t, t; t1, t

+)G [1]−1
nj (t1 − t′) . (II.87)

From this we can relate the operator F (σ), and therefore the source term of the orbital
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Figure II.8: A few diagrams contained in the expansion of Fij[σ].

Figure II.9: Resummation of ring (top) and ladder (bottom) diagrams in Fij[σ].

equation, to the dynamical part of the self-energy as,

lim
t2→t+

1

2i

∑

j

∫
dt′Σdyn

ij (t− t′)G [1]js (t
′ − t2) =

1

2

∑

klm

Ṽ 2N
ki,lmσkl,sm = (F †)is . (II.88)

The previous analysis allowed us to improve our understanding of the second variational

equation of the mp-mh method. In particular the relation to Green’s function led to a di-

agrammatic interpretation of the renormalization of the orbitals. In the next chapters, we

apply the mp-mh configuration mixing formalism to the description of a few nuclei. The im-
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pact induced by the inclusion of correlations into the mean-field, as well as the role of the

”dynamical” correlations (via the source term G[σ]) will be analyzed.
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Chapter III

Application to the Gogny force

Although the multiparticle-multihole configuration mixing approach could in principle be ap-

plied to any effective nuclear interaction, the applications realized in this work are performed

using the phenomenological effective Gogny force D1S. Although the density-dependence of

this interaction prevents any precise and formal link with the analysis made in the previous

chapter, the qualitative discussions should stay valid.

We start the present chapter with a short presentation of the Gogny interaction. In the sec-

ond part, we derive the formalism applied to a density-dependent force. As we will see, this

property leads to the appearance of new terms complicating the resolution of the variational

equations. In the third part, we describe in detail the procedure adopted to practically solve

the equations. Finally, the last part applies the self-consistent procedure to a first test case:

the 12C nucleus.

III.1 A few words about the Gogny force

The first version D1 of the Gogny interaction dates back to the 1970’s [29]. At that time

effort was being made in order to go beyond the Hartree-Fock description of nuclei by adding

the treatment of pairing correlations. D1 was originally introduced in this context in order

to realize Hartree-Fock-Bogolyubov (HFB) [92] calculations in which the mean-field and the

pairing correlations were derived in a fully self-consistent manner from the same interaction.

As effective interaction, the analytical form of the Gogny force was taken as density-dependent.

This property can be derived from the G-matrix theory [22, 27] and reflects the fact that the

actual force felt by a nucleon depends on the density of its neighboring particles, and there-

fore on its position in the nucleus. The parameters of this phenomenological force were then

adjusted in order to reproduce some nuclear properties at the lowest Hartree-Fock order, al-

though the fitting procedure was done in the perspective of allowing reasonable extensions

beyond this approximation such as the inclusion of pairing correlations. To make this possi-
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ble, the introduction of finite ranges in part of the interaction was crucial in order to avoid

pathologies when high relative momenta appear1. However one should always keep in mind

that such a phenomenological approach causes the loss of any link with perturbation theory,

making impossible any clear higher-order correction.

The analytical form of the Gogny force was postulated as,

V~r,~x[ρ] =
∑

j=1,2

(Wj +BjPσ −HjPτ −MjPσPτ ) e
− ~x2

µ2
j

+t3 (1 + x0Pσ)δ(~x)ρ
α(~r)

+iWLS
←−∇12δ(~x)×

−→∇12.(σ1 + σ2)

+(1 + 2τ1z)(1 + 2τ2z)
e2

|~r1 − ~r2|
. (III.1)

where,





~r = ~r1+~r2
2

is the center of mass of the particles 1 and 2,

~x = ~r1 − ~r2 is the relative coordinate .

(III.2)

The first line in Eq. (III.1) represents the finite range central part of the interaction. Pσ and

Pτ are the spin and isospin exchange operators respectively. The form factor is taken as two

Gaussian functions with respective ranges µ1 = 0.7 fm and µ2 = 1.2 fm, allowing explicit treat-

ment of middle and long-range correlations. Short-range correlations associated with the hard

core of the interaction are implicitly taken into account via the zero-range density-dependent

term on the second line of Eq. (III.1), which also accounts for many-body effects. The third

and fourth line of Eq. (III.1) respectively represent a zero-range spin-orbit interaction and the

Coulomb interaction acting between protons (with τz =
1
2
). The coefficients Wj, Bj, Hj, Mj,

µj (j = 1, 2) as well as t3, x0, α and WLS are the 14 parameters to be determined.

The D1 interaction led to successful results concerning the description of static properties

of nuclei within the HFB approach [29, 47], as well as the description of vibrational collective

modes within the RPA method (see e.g. [10, 48]). However, spectroscopy results obtained

using the 5DCH approach [30] were not found in adequacy with experiment: Ref. [46] shows

unsatisfactory description of rotational and vibrational bands. This disagreement was mostly

1In the Hartree-Fock approximation the use of a zero-range interaction is not catastrophic since it only
involves relative momenta up to twice the Fermi momentum kF .
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attributed to the pairing content of the force whose intensity was slightly too high. The D1

interaction was also tested on the description of nuclear fission [7] which revealed unrealistic

shapes of the second barrier. The D1S version of the Gogny interaction [8] was created at the

beginning of the 1980’s, in order to correct these discrepancies. Since then, this parametriza-

tion has been successful in reproducing many properties of nuclei within reasonable exten-

sions of the mean-field such as HFB, RPA, GCM as well as projection techniques (see e.g.

[30, 88, 89, 90]).

The D1S interaction The D1S version of the Gogny force uses the following set of param-

eters,

j µj (fm) Wj (MeV) Bj (MeV) Hj (MeV) Mj (MeV)

1 0.7 -1720.30 1300.00 -1815.53 1397.60

2 1.2 103.639 -163.483 162.812 -223.933

and,

t3 (MeV.fm3) x0 α WLS (MeV)

1390.60 1.0 1
3

-130.00

The ranges (µ1, µ2) were fixed a priori. The exponent α of the density-dependence was chosen

equal to 1/3 in order to fit at best different properties such as the binding energy per nucleon

E/A and the incompressibility of nuclear matterK∞. The coefficient x0 was taken equal to one

so that the density-dependent part of the interaction would be of proton-neutron type only,

in order to avoid the appearance of density-dependent terms in the particle-like pairing fields.

The spin-orbit intensity WLS was also determined independently of the other parameters in

order to reproduce the p3/2 − p1/2 splitting in 16O. Regarding the other free parameters, they

have been fitted so as to reproduce some properties of nuclear matter as well as,

• Global properties such as binding energies and charge radii of a few nuclei,

• Pairing properties by constraining matrix elements in the singlet-even component of the

interaction,

• Isospin properties by constraining the energy difference between the neutron and the

proton 2s1/2 states in 48Ca.

Note on the use of the D1S Gogny force in the mp-mh configuration mixing

approach As stated previously, the Gogny interaction was originally created in order to

achieve mean-field calculations, leaving room for RPA and GCM-type extensions. Although

it showed success in certain beyond-mean-field extensions, there is no clear way of calculating

higher order corrections and it might not be adapted to the treatment of all kind of correlations
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such as in the mp-mh configuration mixing approach. Moreover, the question of which density

is to be used in the interaction remains open when going to correlated system (density of the

uncorrelated reference state, density of the correlated state...). In the following we use the

density built with the correlated wave function |Ψ〉 (this simplifies the orbital equation since

only one density appears). However there is no physical justification for that, and since the

phenomenological nature of the Gogny force makes impossible to disentangle what effects are

already included in the interaction, uncontrolled over-counting effects might occur.

Nevertheless, as seen throughout this work, the results obtained in the present studies are

generally satisfactory and no pathological behaviour is obtained.

There exist in fact more recent parametrizations of the Gogny force such as D1N [25] or

D1M [49] improving the equation of state in nuclear matter, as well as the description of

nuclear states within the GCM method. One of the challenges in the development of the

multiparticle-multihole configuration mixing method, is to be able to use, at some point, an

interaction containing only finite-range components and adjusted to new constraints associated

with the proton-neutron T = 0 channel. Since none of the existing parametrizations of the D1

interaction satisfy to this new criteria, and seem to lead to similar satisfying results, the choice

has been made to develop the multiparticle-multihole configuration mixing method using the

most tested and thus reliable version, that is D1S. Parallely to this project, work is in progress

in order to develop an interaction satisfying the new requirements [26, 82].

III.2 Modification of the variational equations due to

the density dependence of the interaction

Let us now present the formalism of the multiparticle-multihole configuration mixing method

applied to a density dependent interaction. In the following, for the sake of simplicity, we omit

the ~r, ~x indices, so that V̂ [ρ] ≡ V̂~r,~x[ρ]. The density dependence of the interaction can also be

understood as a dependence in the mixing coefficients {Aα} and the single-particle orbitals

{ϕi(~r)}. This leads to the appearance of new terms while deriving the variational equations.

They are explicitly described in the following.
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interaction

III.2.1 First variational equation: the mixing coefficients

Varying the Lagrange functional F [Ψ, λ] = 〈Ψ|Ĥ[ρ]|Ψ〉 − λ (〈Ψ|Ψ〉 − 1) with respect to the

expansion coefficients {Aα} now leads to,

0 =
∂F [Ψ, λ]
∂A∗

α

, ∀α

=
∂

∂A∗
α

(
〈Ψ|Ĥ[ρ]− λ|Ψ〉

)

=
∂

∂A∗
α

(
∑

ββ′

A∗
β′Aβ 〈φβ′ |Ĥ[ρ]− λ|φβ〉

)

=
∑

β

Aβ 〈φα|Ĥ[ρ]− λ|φβ〉+ 〈Ψ|
∂Ĥ[ρ]

∂A∗
α

|Ψ〉 , (III.3)

where,

∂Ĥ[ρ]

∂A∗
α

=
∂V̂ [ρ]

∂A∗
α

=

∫
d3r′

δV [ρ]

δρ(~r′)

∂ρ(~r′)

∂A∗
α

. (III.4)

The local density ρ(~r′) can be expressed as,

ρ(~r′) = 〈Ψ|ρ̂(~r′)|Ψ〉
=

∑

σ,τ

∑

iτ jτ

ϕ∗
iτ (
~r′, σ)ϕjτ (~r

′, σ) 〈Ψ|a†iτajτ |Ψ〉 , (III.5)

so that,
∂ρ(~r′)

∂A∗
α

=
∑

σ,τ

∑

iτ jτ

ϕ∗
iτ (
~r′, σ)ϕjτ (~r

′, σ)
∑

β

Aβ 〈φα|a†iτajτ |φβ〉 . (III.6)

Therefore the last term on the r.h.s. of Eq. (III.3) reads,

〈Ψ|∂Ĥ[ρ]

∂A∗
α

|Ψ〉 =
∑

β

Aβ 〈φα|R̂[ρ, σ]|φβ〉 , (III.7)

where we have defined,

R̂[ρ, σ] =
∑

τ

∑

iτ jτ

Rτ
ij[ρ, σ]a

†
iτ
ajτ

=
∑

τ

∑

iτ jτ

∫
d3r′

∑

σ

ϕ∗
iτ (
~r′, σ)ϕjτ (~r

′, σ) 〈Ψ| δV [ρ]

δρ(~r′)
|Ψ〉 a†iτajτ

=

∫
d3r′ 〈Ψ| δV [ρ]

δρ(~r′)
|Ψ〉 ρ̂(~r) . (III.8)
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This type of operator due to the density-dependence of the Gogny force is called ”rearrange-

ment term”. Although one-body operator, this rearrangement term introduces a dependence

on the correlation matrix σ through,

〈Ψ| δV [ρ]

δρ(~r′)
|Ψ〉 =

1

4

∑

klmn

〈kl| δV [ρ]

δρ(~r′)
|m̃n〉 〈Ψ|a†ka

†
lanam|Ψ〉

=
1

4

∑

klmn

〈kl| δV [ρ]

δρ(~r′)
|m̃n〉 (ρmkρnl − ρmlρnk + σkm,ln) , (III.9)

and thus requires the construction of this connected two-body quantity. Defining now Ĥ[ρ, σ]
as,

Ĥ[ρ, σ] ≡ Ĥ[ρ] + R̂[ρ, σ] , (III.10)

the first variational equation (III.3) can be expressed as,

∑

β

Aβ 〈φα|H[ρ, σ]|φβ〉 = λAα, ∀α , (III.11)

representing the diagonalization of the modified Hamiltonian matrix H[ρ, σ] in the many-

body configuration space. It is important to remind that the dependence of H on the one-

and two-body densities of the system renders Eq. (III.11) non-linear. Solving this equation

thus requires an iterative procedure and therefore is more complicated to solve than the usual

diagonalization performed in Configuration-Interaction-type methods. Finally let us note that

the eigenvalues λ of this Hamiltonian no longer correspond to the energies of the nucleus under

study. In fact we have E[ΨN ] = 〈ΨN |Ĥ[ρ]|ΨN〉 = λN − 〈ΨN |R̂[ρ, σ]|ΨN〉.

III.2.2 Second variational equation: the single-particle orbitals

Similarly, additional terms appear when minimizing the energy functional with respect to the

single-particle orbitals. Eq. (II.22) is modified as,

0 = 〈δΨ|Ĥ[ρ]|Ψ〉+ 〈Ψ|Ĥ[ρ]|δΨ〉+ 〈Ψ|δĤ[ρ]|Ψ〉 , (III.12)

where,

δĤ[ρ] = δV̂ [ρ] =

∫
d3r′

δV̂ [ρ]

δρ(~r)
δρ(~r) . (III.13)
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interaction

Considering a transformation a†i → eiT̂a†ie
−iT̂ of the orbitals, leading to a variation |δφα〉 =

iT̂ |φα〉 of the many-body configurations, we get,

δρ(~r) = δ (〈Ψ|ρ̂(~r)|Ψ〉)

= δ

(
∑

αβ

A∗
αAβ 〈φα|ρ̂(~r)|φβ〉

)

=
∑

αβ

A∗
αAβ (〈δφα|ρ̂(~r)|φβ〉+ 〈φα|ρ̂(~r)|δφβ〉)

= i 〈Ψ|[ρ̂(~r), T̂ ]|Ψ〉 . (III.14)

The third term on the r.h.s of Eq. (III.12) therefore reads,

〈Ψ|δĤ[ρ]|Ψ〉 = i

∫
d3r′ 〈Ψ|δV̂ [ρ]

δρ(~r)
|Ψ〉 〈Ψ|[ρ̂(~r), T̂ ]|Ψ〉

= i 〈Ψ|
[
R̂[ρ, σ], T̂

]
|Ψ〉 , (III.15)

where we recognized the expression of the rearrangement term defined in Eq. (III.8).

According to Eq. (II.23) the first two terms on the r.h.s of Eq. (III.12) are equal to

i 〈Ψ|
[
Ĥ[ρ], T̂

]
|Ψ〉. The second variational equation (III.12) therefore reads,

〈Ψ|
[
Ĥ[ρ, σ], T̂

]
|Ψ〉 = 0 , (III.16)

where Ĥ[ρ, σ] = Ĥ[ρ]+ R̂[ρ, σ] is the Hamiltonian modified by rearrangement terms as defined

in Eq. (III.10).

Following the same procedure than in Appendix (A), it can then easily be shown that this

variational equation can be recasted into,

[
ĥ[ρ, σ], ρ̂

]
= Ĝ[σ] , (III.17)
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where ρ and σ are respectively the one-body and connected two-body densities as previously.

The mean-field Hamiltonian ĥ[ρ, σ] is modified by rearrangement terms as,

h[ρ, σ]ij = Kij +
∑

kl

〈ik|V̂ [ρ]|j̃l〉 ρlk +
1

4

∑

klmn

〈kl|∂V̂ [ρ]

∂ρji
|m̃n〉 〈Ψ|a†ka

†
lanam|Ψ〉

= Kij +
∑

kl

〈ik|V̂ [ρ]|j̃l〉 ρlk
︸ ︷︷ ︸

Γij [ρ]

+
1

4

∑

klmn

〈kl|∂V̂ [ρ]

∂ρji
|m̃n〉 (ρmkρnl − ρmlρnk + σkm,ln)

︸ ︷︷ ︸
Rij [ρ,σ]

.

(III.18)

The one-body Hamiltonian h[ρ, σ] now directly depends on the two-body correlation matrix2

σ. The expression of the source term G[σ] stays unchanged,

G[σ]ij =
1

2

∑

klm

σki,lm 〈kl|V̂ [ρ]|j̃m〉 − 1

2

∑

klm

〈ik|V̂ [ρ]|l̃m〉 σjl,km . (III.19)

Let us note however that if an explicit three-body force is used, the source term contains

additional terms in ρσ and χ, where χ denotes the three-body correlation matrix (see Appendix

A).

III.3 Solution techniques

III.3.1 Global self-consistent procedure

Since the mixing coefficients {Aα} depend on the choice of orbitals {a†i}, and vice-versa, both

variational equations (III.11) and (III.17) are coupled and therefore can be solved using the

following iterative procedure.

1. Start from a set of pure Hartree-Fock orbitals {a(0)i } obtained by solving
[
ĥ[ρ(0)], ρ̂(0)

]
=

0, i.e. by solving Eq. (III.17) with |Ψ(0)〉 = |φ(0)〉 and therefore σ(0) = 0.

2. Build the many-body configurations |φ(0)
α 〉 on this first set of orbitals, and calculate the

matrix elements Hαβ[ρ
(0), σ(0) = 0] = H[ρ(0)]αβ + R[ρ(0), σ(0) = 0]αβ. At this stage, the

density used in the interaction is the density ρ(0) of the uncorrelated state |φ(0)〉. The

rearrangement terms are also calculated at the Hartree-Fock level using (ρ(0), σ(0) = 0).

Solve then Eq. (III.11) to obtain a first set of mixing coefficients {A(1)
α }, that is, a first

correlated state |Ψ(1)〉.
2Although the density dependence of the Gogny interaction effectively takes into account various many-

body effects, we note the similarity between the expression of this mean-field and the one derived from a real
three-body interaction in Appendix A.
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3. Calculate the one-body density matrix ρ(1) and the two-body correlation matrix σ(1) as,

ρ
(1)
ij = 〈Ψ(1)|a†(0)j a

(0)
i |Ψ(1)〉 ,

and,

σ
(1)
ij,kl = 〈Ψ(1)|a†(0)i a

†(0)
k a

(0)
l a

(0)
j |Ψ(1)〉 − ρ(1)ji ρ

(1)
lk + ρ

(1)
jk ρ

(1)
li ,

respectively.

4. From this, calculate the mean-field h[ρ(1), σ(1)] and the source term G[σ(1)], and solve

Eq. (III.17) to obtain a new set of single particle states {a(1)i }.

5. Go back to step 2 and calculate H[ρ(1), σ(1)] using correlated densities. Solve Eq. (III.11)

to obtain new mixing coefficients {A(2)
α }.

6. Calculate ρ(2) and σ(2) as,

ρ
(2)
ij = 〈Ψ(2)|a†(1)j a

(1)
i |Ψ(2)〉 ,

and,

σ
(2)
ij,kl = 〈Ψ(2)|a†(1)i a

†(1)
k a

(1)
l a

(1)
j |Ψ(2)〉 − ρ(2)ji ρ

(2)
lk + ρ

(2)
jk ρ

(2)
li .

7. Calculate h[ρ(2), σ(2)] and G[σ(2)], and solve Eq. (III.17) to obtain a new set of single

particle states {a(2)i }.

8. And so on... until convergence.

This procedure is represented on Fig. (III.1).

In principle, convergence of both the mixing coefficients and the orbitals, or equivalently of

both the one-body density ρ and the two-body correlation matrix σ, must be reached. In

practice however, we only verify the convergence of the one-body density3, that is,

|ρ(N)
ij − ρ

(N−1)
ij | 6 η, ∀i, j, where η is the convergence parameter.

Let us now detail the solution techniques used to solve each variational equation.

III.3.2 First equation

Eq. (III.11) involves the diagonalization of the matrix H which is achieved numerically using

a Lanczos algorithm. More precisely, we use the very efficient techniques for large-scale Shell-

Model calculations developed by the group in Strasbourg, and in particular E. Caurier [24].

Because of the density-dependence of the Gogny interaction, the matrix H = H[ρ, σ] depends
3This being said, we notice in practice that whenever ρ has converged to the required accuracy, the two-body

density is then also converged to a similar accuracy.
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Starting point: 
Hartree-Fock 

orbitals
Solve the 1st equation:

→ Mixing coefficients {Aα}

Solve the 2nd equation:

→ New single-particle orbitals

Calculation of the densities:

-one-body density

  
-two-body correlation matrix

 

… → until convergence

Figure III.1: Global convergence procedure

on the one- and two-body densities of the system, and this equation therefore becomes non-

linear. One could thus iterate the diagonalization of the matrix until the mixing coefficients

are converged, before solving the orbital equation. However, because the size of the matrix H
can rapidly explode (see the application done in the next section), this step can become very

time consuming, and since this convergence is destroyed when moving to the second equation,

we choose not to perform this sub-convergence process.

III.3.3 Second equation

Contrary to the uncorrelated Hartree-Fock case, the presence of the source term G[σ] in Eq.

(III.17) forbids the existence of a basis diagonalizing both the mean-field h[ρ, σ] and the one-

body density ρ. A priori one could either choose to work in the eigenbasis of ρ (natural basis)

or in the eigenbasis of h[ρ, σ] (canonical basis). However, in order to build the many-body

configurations during the self-consistent procedure, one needs to be able to create and destroy

(dressed) particles. This can only be done in the natural basis where occupation numbers are
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defined. We therefore consider as unknown of Eq. (III.17) the set of single-particle states that

are eigenstates of the matrix ρ satisfying [h[ρ, σ], ρ] = G[σ]. As discussed in chapter II one

can then define the single-particle energies as the eigenvalues of the mean-field h[ρ, σ].

Solving Eq. (III.17) is far from being an easy task. Unlike in the Hartree-Fock case, the

presence of the source term G[σ] does not allow a clear interpretation of the equation. The

idea followed here is therefore to find a way to rewrite Eq. (III.17) in a homogeneous form,

where the source term is expressed as a commutator with ρ. This is done using the following

reasoning [6].

The orbital equation in an homogeneous form

Let {|α〉} denote an arbitrary single-particle basis (e.g. a Hartree-Fock or harmonic oscillator

basis). As symmetric matrix, ρ can be diagonalized using an orthogonal matrix U as,

∑

αβ

(UT )µα ραβ Uβν = nµδµν , (III.20)

where UUT = UTU = Î and nµ ∈ R.

Let us now write the orbital equation (III.17) in the natural basis {µ} (we omit for now the

σ- and ρ-dependencies to lighten the notations),

[
ĥ, ρ̂
]
= Ĝ ⇒ hµν(nν − nµ) = Gµν . (III.21)

• If there is no degeneracy,

nν = nµ ⇒ ν = µ⇒ Gµν = Gµµ = 0 ,

because G is skew-symmetric 4. Eq. (III.21) is then automatically fulfilled.

• In fact, degeneracies nν = nµ for µ 6= ν can happen

– Because of the symmetries (rotational invariance ν = (nµ, lµ, jµ,Ων), time-reversal

invariance ν = µ ...) of the Hamiltonian. In this case, the explicit conservation of

these symmetries in the multiparticle-multihole configuration mixing method leads

to Gµν = 0.

– If one chooses to select the many-body configurations of the nuclear state by defining

4As shown in section II.1.2 it is anti-hermitian since G = F − F †. We also assume the system to be
invariant under complex conjugation transformation K̂ = T̂ Π̂−1

2 , where T̂ denotes the time-reversal operator

and Π̂2 = e−iπĴy is the operator of signature with respect to the y-axis. All matrices are therefore real.
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a core + valence space + empty orbitals. In that case,

{
nµ = nν = 1 , if µ, ν ∈ core,

nµ = nν = 0 , if µ, ν ∈ empty states.

Looking at the expression of the source term,

Gµν =
1

2

∑

µ1µ2µ3

σµ1µ,µ2µ3
Ṽµ1µ2,νµ3

− 1

2

∑

µ1µ2µ3

Ṽµµ1,µ2µ3
σνµ2,µ1µ3

, (III.22)

one sees that Gµν is non-zero if at least one index among µ and ν belongs to the

valence space. Indeed the correlations being restricted to this valence space, if both

µ and ν belong to the core (or the empty orbitals) then all elements of σ occurring

in (III.22) are zero and Gµν vanishes.

Therefore in both cases, Eq. (III.21) is automatically satisfied.

Let us now define the following quantity,

Qµν =

{
Gµν

nν−nµ
if nν 6= nµ

0 otherwise.
(III.23)

In fact, in the degenerate case when nµ = nν , the orbital equation being trivially fulfilled, the

corresponding elements Qµν can be taken equal to any arbitrary real value. In particular they

can be taken equal to zero.

Eq. (III.21) can then be written as,

(h−Q)µν(nν − nµ) = 0 . (III.24)

That is, in any single-particle basis,

[
h[ρ, σ]−Q[ρ, σ], ρ

]
= 0 . (III.25)

The orbital equation expressed as (III.25) can then be solved as some sort of Hartree-Fock

equation where the mean-field h is constrained by the ”correlation field” Q. The latter intro-

duces modification of the mean-field coming from the inclusion of two-particle correlations, in

particular those associated with the scattering of two nucleons from core orbitals into valence

states, taking also into account the rearrangement effect due to the density dependence of the

effective interaction.
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Solution of the orbital equation

Eq. (III.25) tells us that the modified mean-field h̃[ρ, σ] ≡ ĥ[ρ, σ] − Q̂[ρ, σ] and the density

ρ̂ are commuting operators and therefore can be diagonalized simultaneously5. The common

basis of eigenvectors is the optimal single-particle basis we seek. Since h̃[ρ, σ] depends on the

solution of the equation (the one-body density ρ), this is of course a non-linear problem which

requires an iterative solution procedure.

Let us note that during this sub-iterative process the wave function |Ψ〉, output of the first

variational equation, is fixed. Thus, the correlations contained in σ do not evolve while solving

the orbital equation. We therefore omit the σ-dependence of the quantities in the following.

We refer to the number of global iterations by capital letters N and to the number of ”local”

sub-iterations by small letters n. The solution procedure for the second variational equation

consists then in,

1. Start from a given density ρ(N),(n=0) which is given by the solution of the first variational

equation:

ρ(N),(n=0) ≡ ρ(N) = 〈Ψ(N)|a†(N−1)a(N−1)|Ψ(N)〉 .

2. Diagonalize ρ(N),(n=0) to obtain the occupation numbers {nµ} and the natural states

{|µ〉}.

3. Calculate the mean-field h[ρ(N),(n=0)] and the correlation field Q[ρ(N),(n=0)].

4. Diagonalize h̃[ρ(N),(n=0)] = h[ρ(N),(n=0)]−Q[ρ(N),(n=0)] to obtain its eigenstates {|i〉} and
eigenvalues {ε̃i}.

5. Construct the new density ρ(N),(n=1) by imposing it to be diagonal on the basis |i〉. That
is,

ρ
(N),(n=1)
ij = niδij . (III.26)

6. Go back to step 2 ... and so on, until the density matrix ρ has converged, i.e. until

|ρ(N),(n)
ij − ρ

(N),(n−1)
ij | 6 η2, ∀i, j. Where η2 is the convergence parameter of this sub-

process.

Let us emphasize once again that this sub-convergence process takes place inside a global one.

We represented on Fig. (III.2) the detailed global self-consistent procedure.

Finally, let us note that in principle the formalism gives different orbitals for different many-

body eigenstates of H. However, solving the orbital equation for each eigenvalue would be

very difficult to achieve. The approach adopted in this work consists in calculating the source

term and solving the orbital equation using the densities of the ground-state. The resulting

single-particle basis is then also used to expand the excited states.

5they are both diagonalizable because symmetric.
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Hartree-Fock 
Solution 

Solve the 1st equation:

→ Mixing coefficients 

Solve the 2nd equation:

Until 

… → until global 
                convergence

Starting point: 

Diagonalization of 

Diagonalization of                     

Starting point : n=0

N=1

N=N+1

Diagonalization of 

Construction of  n=n+1

Calculation of

and

→ Single-particle orbitals  

Figure III.2: Detailed global convergence procedure.

III.4 Example of convergence in the case of the 12C

ground state

In this part we want to apply the solution procedure described previously to a test-case nu-

cleus. The idea is to compare the convergence process and the effect induced by the orbital

optimization when adopting different types of criteria for selecting the many-body configura-

tions |φα〉 included in the nuclear state |Ψ〉. Such configurations can indeed be chosen using

different truncation schemes, e.g.,

• A ”Shell-model-type” truncation involving the separation of the single-particle orbits in

three different blocks: a filled core, a partially filled valence space where particle are

distributed according to their interaction, and a block of remaining empty orbits.

• A selection of the configurations according to their excitation order (1p-1h, 2p-2h, ...)

in the full available single-particle space, respecting rotational invariance.

• A selection of the configurations according to their excitation energy E∗
α = Eα−Eφ from
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the uncorrelated ground reference state |φ〉.

The third type of truncation generally breaks spherical symmetry and special care needs to

be applied in this case. In fact, an ideal criterion may be to e.g. select the configurations

according to their excitation order M and impose a cut-off energy that is chosen different for

each order M . This type of truncation is however very complicated to set up and we do not

attempt to use it in this work. We therefore restrict our comparative study to the first and

second criteria. This test analysis is applied to the ground-state of the 12C nucleus composed

of Z = 6 protons and N = 6 neutrons. This rather small number of particles allows us to

perform these tests without having to deal with too enormous matrices and calculation times.

A few technical details

Let us first give some details about the tools used in practical calculations.

• Single-particle states are expanded on axially deformed harmonic oscillator states, so

that many-body states are explicitly characterized by a good projection K ≡ Jz of the

angular momentum J (so-called m-scheme). In order to obtain solutions with a good

J , the calculations are done at the spherical point. That is, the perpendicular and

longitudinal oscillator frequencies are taken equal: ω⊥ = ωz ≡ ω. The self-consistent

property of the spherical symmetry ensures then its preservation along the convergence

process.

• The values of the oscillator frequency ω, as well as the number of major shells N0 are

optimized at the Hartree-Fock level. This leads to, ~ω = 15.50 and N0 = 5 shells.

• The criteria ensuring convergence of the one-body density matrix during the global and

local iterative procedures are both taken equal to η = η2 = 10−4.

Conventions

In what follows we denote by,

• i, j, k... the single-particle states used to build the configurations during the convergence

procedure at a given global iteration N . They correspond therefore to the basis diago-

nalizing simultaneously ρ(N−1) and h̃[ρ(N−1), σ(N−1)]. (i = (αi,Ωi) where αi = (ni, li, ji)

denotes a spherical sub-shell.) During the first iteration, the i-basis is the Hartree-Fock

one.

• a, b, c... the eigenstates of the mean-field h[ρ, σ].

• µ, ν... the optimal orbitals we seek, diagonalizing simultaneously ρ(NF ) and h̃[ρ(NF ), σ(NF )]

(NF denoting the last global iteration), when the process has converged and both vari-

ational equations are simultaneously satisfied.
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The 12C nucleus

The understanding of 12C has always attracted much interest. The presence of a 0+ Hoyle

state at 7.654 MeV, exhibiting a structure of three alpha particles, is necessary for the exis-

tence of many other stable elements. A recent experiment [70] also reported evidence that the
12C ground-state displays an equilateral triangular structure.

Fig. (III.3) displays the potential energy curve (PEC) and potential energy surface (PES) pro-

vided by Hartree-Fock-Bogolyubov calculations performed with the D1S Gogny force. Two

distinct minima appear. The ground-state minimum exhibits a strong oblate shape, charac-

terized by an axial deformation parameter β ∼ −0.65. The second minimum is characterized

by a prolate shape with β ∼ 0.45. This deformed nucleus is thus expected to incorporate a

great correlation content where shell effects play an important role. Fig. (III.4) displays the

evolution of the proton and neutron single-particle spectra with deformation β. One notices

the evolution of the gaps at the Fermi level, while β varies. Moreover, we note a crossing of

the 0p1/2 sub-shell with the d5/2 at β ∼ 0.6 and β ∼ −0.7. The latter shell should thus play a

role at high deformations.
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Figure III.3: Hartree-Fock-Bogolyubov Potential Energy Curve (left) and Surface (right) for
the 12C nucleus.

III.4.1 First truncation scheme: 4He core + p-shell valence space

We first apply the multiparticle-multihole configuration mixing method using a ”Shell-model-

type” truncation to select the many-body Slater determinants. The single-particle states are

divided into a core of 4He and a valence space taken as a full oscillator shell corresponding
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Figure III.4: Evolution of HFB single-particle spectra as a function of axial deformation β.

here to the 0p-shell. The remaining orbitals are considered empty. This is represented on Fig.

(III.5).
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Figure III.5: Schematic separation of the single-particle states.

All excitations of the valence nucleons in the 0p-shell are considered. The correlated wave

function |Ψ〉 is then built as a superposition of all possible configurations in this model space,

|Ψ〉 =
∑

α

Aα |φα〉 with, |φα〉 =
∏

iα∈0p-shell

a†iα |
4He〉 . (III.27)

This choice of truncation scheme defines the P and Q subspaces from chapter II and their
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respective projectors P̂ and Q̂ as,

P̂ =
∑

α∈model space

|φα〉 〈φα| , Q̂ ≃ 1̂− P̂ .

Correlations in the restricted valence shell are explicitly treated by the diagonalization of the

many-body Hamiltonian matrix H[ρ, σ], while the rest of the space is ignored and considered

frozen at that stage. However, optimizing the single-nucleon states by solving the second

variational equation will result in a mixing of the three orbital blocks (core/valence shell/empty

states). Thus, none of these blocks remain frozen and this procedure should allow to partly

account for configurations built outside of the initial model space. This will be illustrated

in the following. With this truncation scheme the convergence of the one-body density is

reached in 15 global iterations. In fact we can easily reach a convergence up to a precision of

∆ρ 6 10−6 in 30 iterations.

Step 1: Building the configurations

At the first global iteration N = 1, the Slater determinants are built on Hartree-Fock single-

particle states. As explained in more detail in appendix C, the nuclear states are characterized

in practice by a good parity π and a good projection K = Jz of the total angular momentum J

on the z-axis (so-called m-scheme). By considering all possible configurations in the 0p-shell,

we ensure the conservation of spherical symmetry, and thus J is also a good quantum number.

Since we focus here on the description of the ground state of the even-even nucleus 12C, we have

J = K = 0. The configurations |φα〉 = |φαπ〉 ⊗ |φαν 〉 are classified into blocks of projections

(Kαπ , Kαν = K −Kαπ) and organized by increasing excitation orders (0p-0h, 1p-1h, 2p-2h...).

Time reversal invariance allows to deduce the configuration blocks with (Kαπ > 0) from the

ones characterized by (Kαπ < 0). The former are therefore never explicitly built and the size

of the matrix H[ρ, σ] to diagonalize is drastically reduced (factor ∼ 2).

Following this procedure, we obtain here 38 configurations from 0p-0h to 4p-4h excitations,

organized in three blocks:

• Kαπ = Kαν = 0,

• Kαπ = −1, Kαν = 1,

• Kαπ = −2, Kαν = 2,

which are schematically represented on Fig. (III.6), (III.7) and (III.8) respectively. On these

figures the 0p3/2 sub-shell has been virtually split into two degenerate levels corresponding to

the projections |Ω| = |jz| = 1
2
, 3
2
. Pure proton or neutron multiparticle-multihole excitations

of the reference state (the 0p-0h configuration) are denoted by (mp-mh)τ (τ = π, ν), while

excitations of proton-neutron nature are referred as (mp-mh)πν .
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π core ν core

0p-0h :

π core ν core

(1p-1h)π :

π core ν core π core ν core

(1p-1h)ν :

π core ν core

π core ν core

(2p-2h)π :

π core ν core π core ν core

(2p-2h)ν :

π core ν core

π core ν core

(2p-2h)πν = (1p-1h)π x (1p-1h)ν :

π core ν core π core ν core π core ν core

π core ν core

(3p-3h)πν =(2p-2h)π x (1p-1h)ν :

π core ν core π core ν core π core ν core

π core ν core

(3p-3h)πν = (1p-1h)π x (2p-2h)ν :

π core ν core π core ν core π core ν core

π core ν core

(4p-4h)πν = (2p-2h)π x (2p-2h)ν :

π core ν core π core ν core π core ν core

0p3/2, Ω=1/2
0p3/2, Ω=3/2

0p1/2

Figure III.6: Block of configurations |φα〉 characterized by (Kαπ = Kαν = 0).
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π core ν core

(2p-2h)πν = (1p-1h)π x (1p-1h)ν :

π core ν core π core ν core π core ν core

(3p-3h)πν = (2p-2h)π x (1p-1h)ν :

π core ν core π core ν core

(3p-3h)πν = (1p-1h)π x (2p-2h)ν :

π core ν core π core ν core

(4p-4h)πν = (2p-2h)π x (2p-2h)ν :

π core ν core

Figure III.7: Block of configurations |φα〉 characterized by (Kαπ = −1, Kαν = 1).

π core ν core

(2p-2h)πν = (1p-1h)π x (1p-1h)ν :

π core ν core

(3p-3h)πν = (2p-2h)π x (1p-1h)ν :

π core ν core

(3p-3h)πν = (1p-1h)π x (2p-2h)ν :

π core ν core

(4p-4h)πν = (2p-2h)π x (2p-2h)ν :

Figure III.8: Block of configurations |φα〉 characterized by (Kαπ = −2, Kαν = 2).
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Step 2: Calculation of the correlation matrix σ.

Diagonalizing the Hamiltonian matrix H[ρ, σ] in the P configuration space leads to the deter-

mination of the weight of each mp-mh excitation in the correlated wave function and allows

us to calculate the two-body correlation matrix σ.

We plotted on Fig. (III.9) all non-zero elements σ(I) = σij,kl of the (non recoupled in J) pro-

ton and neutron correlation matrices (they are found very similar since N = Z). I is a linear

index corresponding to a certain quadruplet of single-particle states (i, j, k, l). The graphs are

organized as follows,

• The indices I = 1→ 10 correspond to quadruplet of single-particle states (i, j, k, l) which

are all different.

– The two main peaks σ(I) ≃ 0.19 at I = 9, 10 correspond to correlations of pairing

type, and more precisely to the scattering of a pair of protons (neutrons) from the

0p3/2 to the 0p1/2 sub-shell. This process is represented by the diagram (III.10a).

– Elements σ(I = 2, 3, 4) ≃ 2 × 10−2 reflect the propagation of a particle-hole pair,

as shown on diagram (III.10b). This corresponds to RPA-type correlations.

– Elements σ(I = 5→ 8) ≃ 1× 10−2 reflect particle-vibration couplings (III.10c).

– Finally σ(I = 1) ≃ 5×10−2 corresponds to the destruction of a pair of time-reversed

protons (neutrons) on e.g. the Ω = 3
2
-level of the 0p3/2 sub-shell, followed by the

creation of a pair on the Ω = 1
2
-level of the same spherical sub-shell.

• The indices I = 11→ 45 represents ”diagonal” elements of σ, i.e., elements of the type

σii,jj = 〈Ψ|a†ia†jajai|Ψ〉− ρiiρjj + ρijρji. They are globally of order ∼ 5× 10−2− 1× 10−1

• Finally, σ(I = 46 → 56) . 2 × 10−2 represent elements of the correlation matrix with

two equal indices, i.e. of the type σkk,ij = 〈Ψ|a†ka
†
iajak|Ψ〉 − ρkkρji + ρkiρjk, where e.g.

j, k ∈ 0p3/2 and i ∈ 0p1/2. They reflect therefore a particular case of particle-vibration

coupling.

Similarly, correlations of proton-neutron type σiπlπ ,jνkν = 〈Ψ|a†iπa
†
jν
akνalπ |Ψ〉−ρπliρνkj are shown

on Fig. (III.11). They appear to be more important than correlations of pure proton (or

neutron) nature.

• As previously, on the first part of the graph (I = 1 → 89) are represented the ”non-

diagonal” part of the correlation matrix, i.e. σiπlπ ,jνkν with (iπ 6= lπ, jν 6= kν).

– The biggest peaks σ(I) ≃ 0.166 at I = 73, 88 and σ(I) ≃ 0.118 at I = 17, 63

correspond again to pairing-type correlations, where a proton-neutron pair with

Jpair
z = 0 is scattered from the pπ3/2 ⊗ pν3/2 sub-shell to the pπ1/2 ⊗ pν1/2 one.

– σ(I) ≃ 9× 10−2 at I = 3, 8, 76, 85 reflects the propagation of a particle-hole pair.
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Figure III.9: Absolute value of the proton (left) and neutron (right) two-body correlation
matrices. The two main peaks at α = 9, 10 correspond to the scattering of a pair of proton
(neutron) from the p3/2 to the p1/2 sub-shell.

(a) Pairing-type correlations.
(b) Propagation of a
particle-hole pair.

(c) Particle-vibration
coupling.

Figure III.10: Different types of correlations involved in the two-body correlation matrix σ.

– Finally σ(I = 9, 18) ≃ 8× 10−2 correspond to the destruction (or creation) of two

particle-hole pairs.

• The rest of the graph shows σij,kl with one or two couples of equal indices.

In conclusion, pairing correlations inducing scattering from the Fermi level onto the 0p1/2

sub-shell seem to be the most important in this case.

Step 3: Calculation of the source term G[σ] and the correlation field Q[ρ, σ].

The previous correlation matrices are now used to calculate the source term G[σ] appearing

in the orbital equation. Let us first look more closely at the analytical expression of this term,

G[σ]ij =
1

2

∑

klm

σki,lmṼ
2N
kljm −

1

2

∑

klm

Ṽ 2N
iklmσjl,km . (III.28)

We note that G[σ]ij 6= 0 if there exists at least one triplet (k, l,m) of single-particle states

such that σki,lm 6= 0 or σjl,km 6= 0. Since σ reflects the correlations that have been explicitly
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Figure III.11: Proton-neutron two-body correlation matrix. The main peaks corresponds to
the scattering of a proton-neutron pair of from the pπ3/2 ⊗ pν3/2 to the pπ1/2 ⊗ pν1/2 shells.

introduced in the wave function, σki,lm 6= 0 if (k, i, l,m) all belong to the valence 0p-shell.

The source matrix G[σ]ij therefore has at least one external index (i or j) belonging to the

valence space. The second index being attached to the matrix element of the interaction Ṽ 2N ,

it can belong to the whole single-particle basis. The source term is therefore able to couple

the active valence space to the rest of the orbitals that were previously considered as inert.

Thus, it has the role of propagating the effect of correlations on the full single-particle basis

by establishing a communication between the three blocks (core/valence/empty states).

Because of explicit symmetry conservations imposed in this study, the source term can only

couple states of same parity π and angular momentum j. In the present test case, it therefore

couples the 0p3/2 and 0p1/2 sub-shells to the 1p3/2 and 1p1/2 ones respectively. We obtain the

following values,

{
Gπ[σ]p3/2 ≡ |Gπ[σ]0p3/2,1p3/2 | ≃ 0.226 MeV (III.29)

Gπ[σ]p1/2 ≡ |Gπ[σ]0p1/2,1p1/2 | ≃ 0.456 MeV , (III.30)

and,

{
Gν [σ]p3/2 ≡ |Gν [σ]0p3/2,1p3/2 | ≃ 0.207 MeV (III.31)

Gν [σ]p1/2 ≡ |Gν [σ]0p1/2,1p1/2 | ≃ 0.416 MeV . (III.32)
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This is shown on Fig. (III.12) where we represented the proton and neutron source terms

(calculated at iteration N = 1) in a matrix form Gπ[σ]αi,αj
and Gν [σ]αi,αj

where αi denotes a

spherical sub-shell (ni, li, ji).
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Figure III.12: Proton (left) and neutron (right) source terms G[σ]αi,αj
calculated at the first

global iteration N = 1. The x and y-axis correspond to the different spherical sub-shells
αi = (ni, li, ji) ordered by increasing energy. We note the coupling between the 0p3/2 and
1p3/2 sub-shells, as well as the coupling between the 0p1/2 and 1p1/2 sub-shells.

Since the valence space only contains sub-shells with different angular momentum, the

basis {i} used to construct the many-body configurations (at this stage the original Hartree-

Fock basis) already diagonalizes the one-body density matrix: ρij = niδij. We can therefore

express the correlation field Q in this basis as,

Qij[ρ, σ] =

{
Gij [σ]

nj−ni
, if ni 6= nj

0 , otherwise,
(III.33)

so that the only non zero elements are,





Qτ [ρ, σ]1p3/2,0p3/2 = Qτ [ρ, σ]0p3/2,1p3/2 =
Gτ [σ]0p3/2,1p3/2
n1p3/2 − n0p3/2

= −
Gτ [σ]0p3/2,1p3/2

n0p3/2

(III.34)

Qτ [ρ, σ]1p1/2,0p1/2 = Qτ [ρ, σ]0p1/2,1p1/2 =
Gτ [σ]0p1/2,1p1/2
n1p1/2 − n0p1/2

= −
Gτ [σ]0p1/2,1p1/2

n0p1/2

. (III.35)

We find at iteration N = 1,





Qπ[ρ, σ]p3/2 ≡ |Qπ[ρ, σ]0p3/2,1p3/2 | ≃
0.226 MeV

0.870
≃ 0.260 MeV (III.36)

Qπ[ρ, σ]p1/2 ≡ |Qπ[ρ, σ]0p1/2,1p1/2 | ≃
0.456 MeV

0.260
≃ 1.754 MeV , (III.37)
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III.4 Example of convergence in the case of the 12C ground state

and,





Qν [ρ, σ]p3/2 ≡ |Qν [ρ, σ]0p3/2,1p3/2 | ≃
0.207 MeV

0.870
≃ 0.238 MeV (III.38)

Qν [ρ, σ]p1/2 ≡ |Qν [ρ, σ]0p1/2,1p1/2 | ≃
0.416 MeV

0.259
≃ 1.606 MeV . (III.39)

To establish their importance, these values can be compared to the values of the mean field

h[ρ, σ]. We find,

{
hπ[ρ, σ]p3/2 ≡ |hπ[ρ, σ]0p3/2,1p3/2 | ≃ 10.33 MeV (III.40)

hπ[ρ, σ]p1/2 ≡ |hπ[ρ, σ]0p1/2,1p1/2 | ≃ 8.03 MeV , (III.41)

and,

{
hν [ρ, σ]p3/2 ≡ |hν [ρ, σ]0p3/2,1p3/2 | ≃ 10.48 MeV (III.42)

hν [ρ, σ]p1/2 ≡ |hν [ρ, σ]0p1/2,1p1/2 | ≃ 8.24 MeV . (III.43)

Clearly the constraint that couples the p1/2 states are not negligible compared to the mean

field value.

Again because of symmetry conservations, the orbital equation can be solved separately for

each block of states with same angular momentum and parity (j, π) 6. Thus, we have (omitting

the ρ- and σ-dependency of the quantities),





[
h

3

2

−

, ρ
3

2

−
]
= G

3

2

−

⇔
[
h

3

2

−

−Q 3

2

−

, ρ
3

2

−
]
= 0 , (III.44)

[
h

1

2

−

, ρ
1

2

−
]
= G

1

2

−

⇔
[
h

1

2

−

−Q 1

2

−

, ρ
1

2

−
]
= 0 , (III.45)

[
hj

π

, ρj
π]

= 0 , for jπ 6= 1

2

−

,
3

2

−

. (III.46)

The states characterized by different quantum numbers jπ than the ones present in the valence

space are therefore not affected by source term G[σ]. They are however still renormalized

through Eq. (III.46) by the fact that the mean-field h[ρ, σ] is much richer than a pure Hartree-

Fock field. These states are indeed influenced by the two-body correlations,

• Indirectly through the fact that the average potential
∑

kl Ṽ
2N
ik,jlρlk in h[ρ, σ] is built with

the correlated one-body density ρ.

• Directly through the rearrangement terms R[ρ, σ] that introduce an explicit dependence

of the mean-field h[ρ, σ] on the two-body correlation matrix σ.

6In practice, the equations are solved in an axial formalism (i.e. the orbital equation is solved for each (Ω, π)
blocks) at the spherical point. The spherical symmetry being self-consistently conserved, couplings between
states of different j are indeed found to be zero.
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Step 4: Modification of the one-body density via the orbital optimization.

A first manifestation of the effect induced by the orbital equation can be seen on the evolution

of the one-body density matrix ρ.

Before looking at the results, it is important to remind the following. In the previous section,

we mentioned the density ρ calculated from the output of the first variational equation, i.e.

calculated as,

ρij =
∑

αβ

A∗
αAβ 〈φα|a†jai|φβ〉 ,

and the density resulting from the second variational equation, i.e. solution of [h, ρ] = G. For-

mally these two densities should correspond to the same quantity. However, at the beginning

of the procedure, when convergence has not been yet reached, they are not identical. This is

illustrated on Fig. (III.13), where we show the evolution of the neutron density along the con-

vergence process (sinceN = Z the behavior of the proton density shows a similar behavior). To

emphasize the effect of the orbital equation, we plotted the difference ∆ραi,αj
≡ |ραi,αj

−ρHF
αi,αj
|

between the correlated density and the density of a Hartree-Fock state (being equal to unity

under the Fermi level and to zero above), in the original Hartree-Fock basis.

In Fig. (III.13a) we show the matrix ∆ρ obtained at the first global iteration N = 1, re-

sulting from the solution of the first equation only (i.e. when the mixing coefficients have

been calculated with fixed Hartree-Fock orbitals). As expected, the density is only modified

in the valence space, where explicit correlations have been introduced.

In Fig. (III.13b) is represented ∆ρ obtained at N = 1, after solving the orbital equation.

We see that optimizing the single-particle states has modified the density in the whole basis

and introduced non-diagonal elements ραiαj
. As stated before, couplings between positive-

parity states also appear, even though they have not been introduced in the configuration

mixing (and thus are not affected by G[σ]).

in Fig. (III.13c) we show ∆ρ at the global iteration N = 2 after solving the first varia-

tional equation. At this stage we redefined the p-shell valence space on the new single-particle

basis. We note that the density kept trace of the orbital mixing and is starting to look similar

to the density resulting from the orbital equation.

In fact, as expected, we observe that the density matrices from the first and second variational

equations converge to the same quantity at the end of the procedure. This is shown on Fig.

(III.14) where we plotted both densities at different stages of the convergence process. We see

that they tend to align themselves on the y = x line after a few iterations.

Finally we show on Fig. (III.13d) the matrix ∆ρ obtained at the end of the convergence

procedure (at iteration N = 15). We see that the difference to the Hartree-Fock density has
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III.4 Example of convergence in the case of the 12C ground state

generally increased. Let us note that mixing the orbitals not only allows to introduce non-

diagonal couplings in the density (which in this case would be nonexistent if only the first

equation was solved), it also modifies the diagonal elements of ρ. More precisely it allows in

principle to partially empty the core and populate the initially empty states. In this test case,

the biggest effect concerns the initial Hartree-Fock 0s-shell of the core which is emptied up

to 1.43 × 10−3 in the case of protons and 1.48 × 10−3 in the case of neutrons. The initially

empty 1s-shell is populated at 1.22× 10−3 and 1.27× 10−3 respectively. In this test case, the

effect is thus quite weak and not visible on the figures. However, it could in principle become

more drastic when e.g. using a different truncation scheme to build the wave function (see

next section).

Evolution of the source term

We previously showed on Fig. (III.12) the source matrix Gij[σ] obtained at the first iteration

N = 1 (in the starting Hartree-Fock basis). It is now interesting to look at the evolution of this

term after the convergence procedure. The source term G[σ] reflects the residual correlations

beyond the mean field h[ρ, σ]. Since the latter absorbs the average effect of the correlation

content of the system and thus becomes more and more refined, one could expect the intensity

of G to decrease. The results obtained in this test case are however not so straightforward.

We show on Fig. (III.15) the proton and neutron source terms expressed in the final basis µ.

We note that if the coupling between the p1/2 sub-shells has indeed decreased to,

{
Gπ[σ]p1/2 ≃ 0.356 MeV (III.47)

Gν [σ]p1/2 ≃ 0.328 MeV , (III.48)

the coupling between the p3/2 sub-shells has increased to,

{
Gπ[σ]p3/2 ≃ 0.307 MeV (III.49)

Gν [σ]p3/2 ≃ 0.283 MeV . (III.50)

It seems that both final couplings tend to resemble each other. This behavior will also be

encountered in the next section where another truncation scheme of the wave function is used.

The occupation of single-particle states are only slightly modified at the end of the convergence

procedure. Thus the behavior for the correlation field Q[ρ, σ] is similar to the one observed for

G[σ]. Finally, the corresponding values of the mean-field h[ρ, σ] in the optimized basis remain

roughly unchanged along the convergence process.

Evolution of the single-particle energies

The single-particle energies (SPEs) εa are defined as eigenvalues of the mean-field h[ρ, σ].

In order to appreciate the modification induced by the correlations on the single-particle

spectrum, we plotted on Fig. (III.16) the difference between these SPEs and Hartree-Fock
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(a) ∆ρ after solving the first variational equation
at the first global iteration N = 1. The density is
modified in the valence space only.
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(b) ∆ρ after solving the second variational equa-
tion at the first global iteration N = 1. The den-
sity is modified in the whole basis. Positive-parity
states are also affected.
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(c) ∆ρ after solving the first variational equation
at the second global iteration N = 2. The density
in the valence space has kept trace of the orbital
transformation.
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(d) ∆ρ at the end of the convergence procedure
N = 15. The density given by the first and the
second variational equations have become identi-
cal, and the difference to the Hartree-Fock density
has increased.

Figure III.13: Evolution of the neutron one-body density along the convergence process. The
difference between the correlated density and a pure Hartree-Fock density ∆ρ = |ρ− ρHF | is
represented in a matrix form, in the original Hartree-Fock basis.

ones (eigenvalues of the Hartree-Fock field). We arrive to similar conclusions concerning both

types of nucleons: the account for correlations in the mean-field leads to a global compression

of the single-particle spectra. The energy difference between the lowest shell (0s) and the
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(b) Iteration N = 2.
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(c) Iteration N = 10.

 1e-35

 1e-30

 1e-25

 1e-20

 1e-15

 1e-10

 1e-05

 1

 1e-35  1e-30  1e-25  1e-20  1e-15  1e-10  1e-05  1

N
e

u
tr

o
n

 d
e

n
s
it
y
 f

ro
m

 e
q

u
a

ti
o

n
 2

Neutron density from equation 1

(d) Iteration N = 15, convergence reached.

Figure III.14: Comparison between the neutron density matrices given by the first and second
variational equations at different stages of the convergence process.

highest one (1d3/2 in this case) is decreased by ∼ 2.5 MeV. In particular the gap at the Fermi

level between ε0p3/2 and ε0p1/2 is reduced. The 0p3/2-level is increased by ∼ 0.74 MeV in both

cases. The 0p1/2-level is lowered by ∼ 0.18 MeV in the case of protons, whereas is stays

almost unchanged in the case of neutrons. Let us also note the important effect induced on

the 0s1/2-shell which is shifted up by more than 2 MeV for both types of particles.

Effect on the description of the ground-state

Let us now look at the effect caused by the orbital optimization on the energy and the com-

position of the ground state wave function. For a complete comparison and in order to isolate

the effect of the second equation alone, we calculate these quantities at three levels:

• After solving the first variational equation (Eq. (III.11) denoted by Eq. 1 in the following

tables) without rearrangement terms, i.e. after simple diagonalization of the Hamiltonian

matrix H[ρHF ] constructed with the uncorrelated Hartree-Fock density.

• After solving the first variational equation (Eq. (III.11) denoted by Eq. 1) with rear-
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Figure III.15: Proton (left) and neutron (right) source term at the end of the convergence
procedure N = 15.
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Figure III.16: Difference ∆ε = εHF −ε[ρ, σ] between single-particle energies taken as eigenval-
ues of the Hartree-Fock field and single-particle energies taken as eigenvalues of the improved
mean-field h[ρ, σ], for protons (left) and neutrons (right). The Fermi level is marked by a
dashed line.

rangement terms, i.e. by iterating the diagonalization of H[ρ, σ] = H[ρ] + R[ρ, σ]. This

allows to identify the effect generated by the nucleus’ medium.

• After the whole self-consistent procedure, when both variational equations (Eq. (III.11)

and Eq. (III.17) denoted by Eq. 1 and Eq. 2 respectively in the following tables) are

simultaneously satisfied.

We first show the correlation energy, difference between ground state and spherical Hartree-

Fock energies, Ecorr = EHF − E0, obtained in these three cases:
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III.4 Example of convergence in the case of the 12C ground state

Correlation energy

Eq. 1 with R = 0 Eq. 1 with R 6= 0 Eqs. 1 and 2 satisfied

5.1 6.22 6.56

The major effect with the D1S Gogny force, is produced by the inclusion of the rearrangement

terms which increases the correlation energy by ∼ 1.12 MeV. The optimization of orbitals

allows to gain additional 340 keV. Although the effect is small, the variational aspect of the

orbital equation is indeed found on these results.

Regarding now the composition of the wave function, we show in the next table the weight

of the most important configurations built on original Hartree-Fock orbitals. In fact, to calcu-

late the latter after the self-consistency process, one has to perform the following procedure.

Denoting by b†µ the optimized single-particle states, the final self-consistent wave function can

be written as,

|ΨSC〉 =
∑

α

ASC
α |φSC

α 〉 where, |φSC
α 〉 =

∏

µ∈α

b†µ |0〉 . (III.51)

The weight B0
β of a configuration |φ0

β〉 =
∏

iβ
a†i |0〉 built on Hartree-Fock orbitals a†i , in |ΨSC〉

reads,

B0
β = 〈φ0

β|ΨSC〉 =
∑

α

ASC
α 〈φ0

βφ
SC
α 〉 , (III.52)

and is thus obtained by calculating overlaps of the Slater determinants, themselves equal to

the determinant of the overlaps of their occupied orbitals.

Configurations Eq. 1 with R = 0 Eq. 1 with R 6= 0 Eqs. 1 and 2 satisfied

built on HF basis

0p-0h (spherical HF state) 64.42% 53.95% 47.65%

(2p-2h)πν 15.68% 19.05% 29.26%

(2p-2h)π 7.03% 8.94% 9.74%

(2p-2h)ν 7.08% 8.90% 9.76%

The weight of the spherical Hartree-Fock component is lowered by ∼ 10% after adding the

rearrangement effects. It keeps decreasing with the orbital optimization to reach a final value

∼ 48%. The Hartree-Fock reference state therefore represents less than half of the correlated

wave function at the end of the self-consistent procedure, underlying the importance of cor-

relations in the 12C nucleus. In fact, we note that the second major configuration is a 2p-2h

excitation of proton-neutron type, indicating the necessity of accounting for correlations be-

tween protons and neutrons in this case. The weight of this configuration increases to ∼ 19%

after including rearrangement terms.
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Chapter III : Application to the Gogny force

Finally it is also of interest to compare the final weights of these configurations (the ones

built on HF orbitals) to the weights of configurations built on optimized orbitals µ. We there-

fore show on the next table the main components of the wave function obtained when both

variational equations are solved.

Configurations Eqs. 1 and 2 satisfied

built on optimized basis

0p-0h (optimized reference state) 48.20%

(2p-2h)πν 20.84%

(2p-2h)π 9.85%

(2p-2h)ν 9.87%

We note that the weight of the new reference state is slightly higher than the weight of the

pure Hartree-Fock state. Although the difference is small in this case, this is a sign that the

optimized 0p-0h excitation is ”better” than the HF state, in the sense that it contains more

physics. The (2p-2h)πν configurations is here again very important since it has reached a

weight of almost 21%.

III.4.2 Second truncation scheme: excitation order of the configu-

rations in the full single-particle space

We apply now the formalism of the multiparticle-multihole configuration method using a

second scheme for selecting the many-body configurations. They are now chosen according

to their excitation order. We decide to include all possible proton and neutron configurations

up to 2p-2h. This generates A-body states |φα〉 = |φαπ〉 ⊗ |φαν 〉 with an excitation order

Mα 6 4. In other words, all nucleon excitations of the following types are considered: (0p-

0h), (1p-1h)π, (1p-1h)ν , (2p-2h)π, (2p-2h)ν , (2p-2h)πν , (3p-3h)πν and (4p-4h)πν . This type of

truncation scheme ensures explicit conservation of spherical symmetry.

Since no use of a core is made, all particles are considered active and the number of Slater

determinants expands very rapidly. In the case of 12C, when single-particle states are expanded

on N0 = 5 oscillator shells we obtain a total of

26 401 700 configurations to build,

in the J = K = 0 component, making use of the time-reversal invariance. Convergence of the

one-body density with a precision η 6 10−4 is reached after 14 global iterations.

Two-body correlation matrices

We show on Fig. (III.17) all elements of the proton, neutron and proton-neutron correlation

matrices. They appear much more fragmented than in the previous case.
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Figure III.17: Correlation matrices at iteration N = 1.

In the case of pure proton or neutron correlations, more than 160 000 elements appear. If

most of them are of very small intensity, several distinguishable peaks appear, mostly reflecting

correlations of pairing type.

• The biggest one at I = 6, and characterized by σ(6) ≃ 5.8 × 10−2, corresponds to the

scattering of a pair of protons (neutrons) on the 0p3/2 sub-shell itself (from one projection

Ω = jz to another).

• The elements σ(I = 4, 5) ≃ 2.2×10−2 reflect the scattering of a pair from the 0s sub-shell

to the 0p3/2 one.

• Scattering between the 0p3/2 and the 0p1/2 is contained in σ(I = 142713, 142714) ≃
3.33× 10−2.

• Scattering between the 0s and the 0p1/2 is contained in σ(I = 142712) ≃ 2.03× 10−2.

Correlations between protons and neutrons appear again more intense. More than 700 000

elements are represented on Fig. (III.17). The strongest ones are again of pairing type. For
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Chapter III : Application to the Gogny force

instance the element at σ(I = 306734) ≃ 5.3× 10−2 reflects pair scattering between the 0p3/2

sub-shell and the 1d5/2 one.

Let us remind that these correlations matrices are not recoupled in J and therefore it is diffi-

cult to compare the intensity of the couplings between different shells. It is interesting however

to see how these correlations evolve after the process has converged.

Hence, we show on Fig. (III.18) the same correlation matrices at iteration N = 14, when

convergence is reached. We note a decrease of some elements of the correlation matrices of

same isospin. This behaviour is coherent with the interpretation of the role of the orbital

equation. The mean-field is indeed supposed to absorb as much effect of the correlations as

possible and thus reduce the intensity of the latter. However, we note that this is not true

concerning the proton-neutron correlation matrix σπν , which even has a tendency to slightly

increase. In a shell-model context, it is often argued that this type of correlations is at the

origin of deformation in nuclei. Perhaps the behaviour of σπν is thus due to the fact that

the spherical symmetry stays explicitly conserved in our approach, and therefore this type of

correlations cannot be incorporated into the mean-field. They remain correlations of ”dynam-

ical” type. Hence, it would be very informative to perform the same study while allowing for

deformation, i.e. by working in the intrinsic frame of the nucleus. The main drawback of such

an approach would however be the need to project the final solution in order to obtain a state

characterized by a good angular momentum J .

Source term

We show on Fig. (III.19) the proton and neutron source terms at the beginning and end of the

convergence procedure. Since all orbitals participate to the configuration mixing, many more

couplings appear in the source matrix Gij, than in the previous case, where a valence space was

considered. However, this source term seems to evolve in the same manner as before. That is,

some kind of ”harmonization” of the different couplings seems to appear: the strongest ones

decrease while the weakest ones increase.

One-body density

We also show on Fig. (III.20) the evolution of the one-body density (in fact its difference to

a Hartree-Fock-state density) in the starting Hartree-Fock basis.

Since no use of a valence space is made, the correlated density calculated at the end of the first

variational equation at the global iteration N = 1 already contains non-diagonal couplings in

this basis. Again, the densities obtained via both variational equations tend to resemble each

other along the convergence procedure. In fact they become identical up to ∼ 10−3, as seen

from Fig. (III.21). It is important to state that this also means that the non-diagonal elements

of the density ρ calculated via the first equation in the final optimal basis µ go to zero.

Finally a stronger modification of the diagonal elements of the density are observed, compared
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Figure III.18: Correlation matrices when convergence is reached, at iteration N = 14.

to the previous truncation scheme. We show in the following table, the evolution of the

Hartree-Fock state occupations at the beginning and end of the procedure.

Protons Neutrons

Original Hartree-Fock Occupation at Occupation at Occupation at Occupation at

sub-shell global iteration global iteration global iteration global iteration

N = 1 N = 14 N = 1 N = 14

0s 0.97 0.93 0.97 0.93

0p3/2 0.90 0.78 0.90 0.77

0p1/2 3.7 ×10−2 9.2 ×10−2 3.7 ×10−2 9.2 ×10−2

0d5/2 2.1 ×10−2 5.3 ×10−2 2.1 ×10−2 5.3 ×10−2

Identical behaviors are obtained for both protons and neutrons. We observe a depopulation

of the 0s shell that is of the order ∼ 4× 10−2. More importantly the 0p3/2 is emptied by more

than 0.1. Conversely higher shells are filled.
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(a) Proton source term at N = 1
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(b) Proton source term at N = 14
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(c) Neutron source term at N = 1
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(d) Neutron source term at N = 14

Figure III.19: Proton (up) and neutron (down) source terms at iterations N = 1 (left) and
N = 14 (right).

Single-particle energies

The new single-particle energies are greatly affected by the renormalization procedure, as seen

from Fig. (III.22). Most levels are shifted up compared to the Hartree-Fock spectrum. The

biggest effect concerns again the 0s shell which is moved up by more than 6 MeV in the case

of protons and neutrons. The gap at the Fermi level is also reduced by ∼ 2 MeV in both cases.

Effect on the description of the ground-state

As previously we can study the effect of the orbital equation induced on e.g. the correlation

energies as well as on the content of the ground state wave function. As seen from the following

table, the correlation energies are increased by more than 50 MeV in all cases. This effect is
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(a) ∆ρ at N = 1 from eq. 1
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(b) ∆ρ at N = 1 from eq. 2
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(c) ∆ρ at N = 14 from eq. 1
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(d) ∆ρ at N = 14 from eq. 2

Figure III.20: One-body neutron density matrix in the Hartree-Fock basis from the first
equation (left) and second equation (right) at iterations N = 1 (up) and N = 14 (down).

expected since the Gogny interaction has been fitted at the Hartree-Fock level. Considering

only relative energies, we note however the reasonable gain of ∼ 4.4 MeV in correlation energy

when the full self-consistent process is applied.

Correlation energy (MeV)

Eq. 1 with R = 0 Eq. 1 with R 6= 0 Eqs. 1 and 2 satisfied

58.15 61.77 62.54

Concerning the wave function composition, we note an important fragmentation already

present at the non self-consistent stage. The Hartree-Fock component embodies less than

a third of the total strength. This effect is reinforced by self-consistency effects which lower
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(b) Iteration N = 14.

Figure III.21: Comparison between the neutron density matrices given by the first and second
variational equations at the beginning and the end of the convergence process.
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Figure III.22: Difference ∆ε = εHF −ε[ρ, σ] between single-particle energies taken as eigenval-
ues of the Hartree-Fock field and single-particle energies taken as eigenvalues of the mean-field
h[ρ, σ], for protons (left) and neutrons (right). The Fermi level is marked by a dashed line.

the HF component to ∼ 20% only. Again let us note that the weight of the optimized 0p-0h

component is slightly higher (22.33%).

Hartree-Fock component in the ground state wave function

Eq. 1 with R = 0 Eq. 1 with R 6= 0 Eqs. 1 and 2 satisfied

29.29 21.46 20.39

Conclusion A few conclusions can be drawn from this comparative study. Firstly, we no-

ticed that the number of global iterations needed to reach global convergence was similar when

using both truncation schemes (∼ 15). However it should be said that it was not possible to go

beyond the convergence criterion η = |∆ρ| = 10−4 using a truncation based on the excitation

order of the configurations. The renormalization of orbitals appears to have a stronger effect
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III.4 Example of convergence in the case of the 12C ground state

when a larger model space is used. This was illustrated on the evolution of e.g. occupations

of Hartree-Fock states or fragmentation of the wave function. However this type of truncation

scheme involves a rapid growth of the number of configurations. Indeed in this study of 12C,

increasing the model space from one to five oscillator shells enlarged the number of configu-

rations from only 38 to more than 26 millions. Moreover as seen from the correlation energies

obtained in this framework, the D1S Gogny interaction does not seem to be suited for this

type of truncation, when the full single-particle space is explicitly considered (although results

concerning the wave function are very reasonable). In the next chapter we go back to the

first truncation scheme to perform a systematic study of ground and excited states in sd-shell

nuclei.
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Chapter IV

Description of sd-shell nuclei

In this chapter we perform a detailed study of sd-shell nuclei characterized by proton and

neutron numbers 10 6 (Z,N) 6 18. In the first section we investigate the ground-state

properties of these nuclei, and analyze in more detail the features of a few benchmark cases with

different correlation content. In particular, we are interested in the composition of the wave

function providing information on the collectivity of the nuclei, as well as quantities such as

correlation and binding energies, charge radii and neutron skin thickness. In the second section

we expose the low-lying spectroscopy obtained with the multiparticle-multihole configuration

mixing approach. Observables such as excitation energies, electric quadrupole and magnetic

dipole moments, as well as electric and magnetic transition probabilities B(E2) and B(M1),

are calculated and compared to experiment. This study is in the continuation of a previous

work [63] that provided a description of ground and excited properties of sd-shell nuclei.

However that investigation was only performed at the non self-consistent level i.e. performing

a configuration mixing on frozen Hartree-Fock orbitals and without introducing rearrangement

terms. Moreover the Hartree-Fock average potential did not include the exchange Coulomb

field and N0 = 11 major oscillator shells were used to expand the single-particle states.

In the present work, we investigate the effect induced by self-consistency on spectroscopic

observables. Theoretical results are generally shown at three levels:

• At the non self-consistent stage, after the Hamiltonian matrix H[ρHF ] has been diago-

nalized without rearrangement terms (a Hartree-Fock density ρHF being introduced in

the Gogny interaction).

• After solving the first variational equation consistently with rearrangement terms R[ρ, σ],

in order to quantify the effect induced by the medium. This is achieved by diagonalizing

H[ρ, σ] = H[ρ] + R[ρ, σ] iteratively using the densities (ρ, σ) of the correlated ground-

state, until the mixing coefficients have converged.

• After full self-consistency has been reached, that is, when both orbitals and mixing

coefficients are optimized together. This is achieved using the double iterative procedure
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Chapter IV : Description of sd-shell nuclei

described in section III.3.

In this way, we are able to quantify the effect of introducing the correlated density in the

interaction, which is not justified a priori, and to appreciate the consequence of the orbital

optimization. When only little change is induced by the rearrangement terms, we do not

expose the corresponding results.

Technical framework This systematic study of sd-shell nuclei is performed is the following

framework.

• The single-particle states are expanded on axially deformed harmonic oscillator states at

the spherical point. In order to ensure convergence of the results we use N0 = 9 major

oscillator shells.

• The relevant many-body configurations included in the wave function are selected in

a ”shell-model manner”, that is, by defining a filled core1 of 16O and allowing for all

possible excitations of nucleons in the sd-shell. This is depicted on Fig. (IV.1). The

nuclear state is thus written,

|Ψ〉 =
∑

α

Aα |φα〉 where, |φα〉 =
∏

iα∈sd-shell

a†iα |
16O〉 .

Making use of the time-reversal invariance, the number of configurations spans from 418

in the case of 20Ne (4 valence nucleons, excitations from 0p-0h to 4p-4h) up to 56 937 in

the case of 28Si (12 valence nucleons, excitations from 0p-0h to 12p-12h).

• The convergence criteria on the one-body density are taken equal to η1 = η2 = |∆ρij| =
1.0× 10−5, ∀ i, j.

IV.1 Ground-state properties

Deformation properties of sd-shell nuclei predicted within mean-field approaches are very

diverse. For instance, we show on Fig. (IV.2) axial potential-energy curves (PEC) and

triaxial potential-energy surfaces (PES) of Neon isotopes, obtained within the Hartree-Fock-

Bogolyubov (HFB) approach using the same D1S Gogny interaction. One observes a transition

of shape from spherical to deformed as the number of neutrons N decreases. The heaviest iso-

topes appear spherical while the lightest ones are predicted oblate (24Ne) or prolate (20−22Ne).

We also display on Fig. (IV.3) the PEC and PES of three other noteworthy nuclei of the

sd-shell: 24Mg, 28Si and 32S. The 24Mg and 28Si nuclei exhibit a large prolate deformation

1Again, this core will not remain inert through the convergence procedure.
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Figure IV.1: Separation of the single-particle states. The picture illustrates the case of 28Si.

characterized by β ∼ 0.6 and β ∼ 0.4 respectively. The 32S nucleus, although predicted

spherical in its ground state, exhibits a super-deformed second minimum at β ∼ 1.2 as seen

from the potential energy curve (IV.3c).

IV.1.1 Correlation content

Correlation matrices

The collective deformation present (or absent) in these benchmark nuclei should reflect on the

intensity of their two-body correlation matrices σ. We show on Fig. (IV.4) the calculated

correlations for three Neon isotopes at the global iteration N = 1. If proton correlations

appear quite analogous for all three nuclei (σπ is a bit more fragmented for 20Ne), correlations

of neutron type are seen much more important and fragmented in the lighter nuclei. This is in

accordance with the interpretation that the neutron collectivity increases as N decreases and

drives the shape transition in this isotopic chain through the proton-neutron interaction. One

also notes the importance of correlations between protons and neutrons, which is generally

enhanced in nuclei with equal numbers of protons and neutrons, such as 20Ne, since the two

types of nucleons occupy the same orbitals and highly overlap spatially.

This effect is also illustrated on Fig. (IV.5) where we display the correlation content of the

three other N = Z benchmark nuclei. We also note the strength of pure neutron and proton

correlations in 28Si and 24Mg, compared to other nuclei under study.

Source term

As explained in the previous chapter (in the study of 12C), the source term G[σ] couples
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Chapter IV : Description of sd-shell nuclei

(a) (b)

(c) (d)

(e)

Figure IV.2: HFB PES and PEC of the Neon isotopes. The red curve is to be ignored. We
observe a transition from spherical to deformed: 28−26Ne is predicted spherical while 24Ne is
oblate, and 22−20Ne prolate.

single-particle states in the valence space, to orbitals in the rest of the basis, characterized

by same angular momentum j and parity π. Since we perform the present calculation using
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IV.1 Ground-state properties

(a) (b)

(c)

Figure IV.3: HFB PES and PEC for 24Mg (top left), 28Si (top right) and 32S (bottom).
24Mg and 28Si are both predicted with a strong axial deformation, prolate for the former and
oblate for the latter. 32S is predicted spherical with the existence of a super-deformed second
minimum.

N0 = 9 oscillator shells, the 0d5/2 sub-shell can couple to the 1d5/2, 2d5/2 and 3d5/2 empty

sub-shells. The same happens concerning the d3/2 sub-shells. In addition to the 2s, 3s and 4s

empty orbitals, the 1s shell can also couple to the filled 0s states of the core. Thus, we obtain

a total of 10 couplings for each isospin. The corresponding values are displayed in table (IV.1)

for the selected nuclei.

A few remarks can be done.

• Clearly some values of the source term are not negligible. In particular, we observe a

systematic high value of the coupling between the 1s and the 0s shells (shown in bold)

compared to other couplings. They are > 1 MeV in the nuclei described as the most

deformed by mean-field calculations, and reach ∼ 2 MeV in 24Mg and 28Si. Dynamical

correlations related to the source term therefore seem to act toward a strong mixing of

these shells.
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Figure IV.4: Proton correlations σπ (left), neutron correlations σν (center) and proton-neutron
correlations σπν (right), for 28Ne, 24Ne and 20Ne. They are calculated at the global iteration
N = 1.

• Regarding the Neon isotopic chain, the proton source term generally increases as the

neutron number N decreases. Since the proton correlation content was similar for differ-

ent isotopes (except for the very light 20Ne nucleus), this behavior seems to be produced

via the effect of proton-neutron correlations. Looking now at the behavior of the neu-

tron source term, the interpretation is less clear. For instance, the coupling between the

0d3/2 and the 1d3/2 appears more important in the heavier Neon nuclei. This suggests a

dependence of G[σ] on the occupation of the shells. Indeed the 0d3/2 orbitals are much

more occupied in 28Ne than e.g. 20Ne. This would also explain why Gν [σ] is always

slightly higher in 24Ne than 20Ne. Since the correlation field Q[ρ, σ] divides the source

term by the corresponding occupations this trend should be compensated. Indeed the

corresponding values of e.g. |Q0d3/2,1d3/2 | appear equal to 0.550, 4.09 and 3.66 in 28Ne,
24Ne and 20Ne respectively. In fact, similar occupations of the 0dν3/2 are found for the
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Figure IV.5: Proton, neutron and proton-neutron correlation matrices, σπ, σν , σπν respec-
tively, for 32S (up), 24Mg (middle) and 28Si (down). They are calculated at the global iteration
N = 1.

28Ne and 24Ne isotopes.

• Finally, lets us look more carefully at the evolution of the couplings Gkl[σ] with the

single-particle energy difference ∆ε = |εk − εl|. One would expect the values of G[σ]

to decrease while ∆ε increases. However, this behavior is not clear from the calculated

values. Let us remind that these calculations are realized using a spherical mean-field.

Thus if correlations associated to deformation are strong, important couplings to high

energy orbitals can appear.

Correlation energy

Table (IV.2) displays the correlation energy, defined as the difference of the correlated ground
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Sub-shells (αk, αl)
28Ne 24Ne 20Ne 24Mg 28Si 32S

(0d 5

2

, 1d 5

2

) 0.0643 0.0328 0.0432 0.183 0.127 0.000156

(0d 5

2

, 2d 5

2

) 0.253 0.439 0.593 0.543 0.399 0.170

(0d 5

2

, 3d 5

2

) 0.299 0.272 0.405 0.505 0.542 0.211

(1s, 0s) 0.263 0.281 1.248 1.913 2.210 1.256
(1s, 2s) 0.0839 0.0830 0.526 0.749 0.827 0.637
(1s, 3s) 0.0337 0.0314 0.194 0.139 0.0983 0.112
(1s, 4s) 0.0523 0.0414 0.244 0.436 0.602 0.235

(0d 3

2

, 1d 3

2

) 0.0463 0.0795 0.277 0.345 0.381 0.279

(0d 3

2

, 2d 3

2

) 0.0198 0.0205 0.308 0.241 0.170 0.350

(0d 3

2

, 3d 3

2

) 0.0303 0.0748 0.340 0.389 0.414 0.459

(a) Protons couplings |Gπ
αk,αl
| (in MeV).

Sub-shells (αk, αl)
28Ne 24Ne 20Ne 24Mg 28Si 32S

(0d 5

2

, 1d 5

2

) 0.0267 0.0681 0.0247 0.0976 0.050 0.0279

(0d 5

2

, 2d 5

2

) 0.00578 0.177 0.610 0.572 0.427 0.177

(0d 5

2

, 3d 5

2

) 0.0128 0.265 0.391 0.489 0.523 0.199

(1s, 0s) 0.304 1.411 1.239 1.918 2.206 1.226
(1s, 2s) 0.111 0.573 0.454 0.655 0.709 0.545
(1s, 3s) 0.0447 0.0143 0.219 0.184 0.166 0.0461
(1s, 4s) 0.0430 0.350 0.230 0.424 0.585 0.226

(0d 3

2

, 1d 3

2

) 0.293 0.247 0.235 0.293 0.315 0.185

(0d 3

2

, 2d 3

2

) 0.0613 0.144 0.319 0.261 0.201 0.397

(0d 3

2

, 3d 3

2

) 0.252 0.276 0.331 0.382 0.406 0.448

(b) Neutrons couplings |Gν
αk,αl
| (in MeV).

Table IV.1: Proton (top) and neutron (bottom) source terms |Gτ
αk,αl
| (τ = π, ν) (in MeV)

between the sub-shells of the valence space and other sub-shells (with same jπ) outside of the
model space (at the first iteration N = 1).

energy E0 with the energy of a spherical Hartree-Fock ground-state EHF ,

Ecorr = EHF − E0 , (IV.1)

for the selected benchmark nuclei. We show here the results at three levels: without any

self-consistency i.e. after diagonalizing the Hamiltonian matrix H[ρ] without rearrangement

terms; after solving the first variational equation with rearrangement terms R[ρ, σ] i.e. by

iterating the diagonalization of H[ρ, σ] = H[ρ] + R[ρ, σ]; and after the full self-consistent

procedure when both variational equations are satisfied.

As expected from the values of σ andG[σ], the correlation energy of the Neon isotopes increases

drastically for the lighter ones. At the non self-consistent level, among the presented nuclei,
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IV.1 Ground-state properties

No self-consistency (R = 0) 1st eq. with R 6= 0 Full self-consistency
20Ne 10.93 11.54 13.30
22Ne 10.48 10.90 12.12
24Ne 5.75 6.23 6.98
26Ne 0.41 0.88 1.55
28Ne 1.15 1.28 1.58
24Mg 14.24 15.06 16.04
28Si 5.89 6.25 8.08
32S 3.37 4.58 5.76

Table IV.2: Correlation energy Ecorr = EHF −E0 for the Neon isotopes and other benchmark
nuclei, in MeV.

24Mg appears as the most correlated one. The introduction of rearrangement terms accounting

for medium effects, allows to gain an energy ∆Ecorr < 1 MeV in all nuclei. The rest of the

correlation energy is thus attributed to the renormalization of single-particle states. The most

significant effect concerns the 28Si for which optimizing the orbitals allows to gain additional

1.83 MeV. Ecorr is increased by 1.76, 1.22, 1.18 and 0.98 MeV for 20Ne, 22Ne, 32S and 24Mg

respectively. The effect is weaker in other nuclei under study.

Composition of the wave function

In order to obtain a more precise description of the amount of correlations in the ground-

state, it is necessary to analyze the composition of the wave function in terms of the different

configurations. We show in Table (IV.3) the main components of the wave function at the three

stages explained at the beginning of the chapter, that is, (i) without any self-consistency (1st

variational equation with a Hartree-Fock density in the interaction), (ii) solving iteratively

the 1st variational equation with the correlated density in the interaction and thus, with

rearrangement terms, (iii) when full self-consistency of correlations and orbitals is reached.

In cases (i) and (ii), we show the weights of the most important configurations built on

Hartree-Fock single-particle states, while in case (iii) the many-body Slater determinants are

constructed on optimized orbitals.

• At the non self-consistent level, the Hartree-Fock 0p-0h state always appears as the major

component, and absorbs most of the wave function in poorly correlated nuclei (> 86%

in 28Ne). The rest of the weight is distributed among many other configurations, mostly

of 1p-1h and 2p-2h types.

• As already stated, configurations involving excitations of both protons and neutrons are

more important in N = Z nuclei, where their interaction is favored. The second main

component in 28Si is a (2p− 2h)πν = (1p− 1h)π ⊗ (1p− 1h)ν excitation, with a weight

> 12% while the Hartree-Fock states only embodies ∼ 26% of the wave function.
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Nucleus Configuration No self- Eq. 1 with Full self-
consistency rearrangements consistency

28Ne
0p-0h 86.24 84.11 83.63

(1p-1h)π (0d5/2 → 1s) 3.49 3.19 2.85
(1p-1h)ν (1s→ 0d3/2) 3.26 4.04 4.50

26Ne

0p-0h 77.11 70.88 69.62
(1p-1h)ν (1s→ 0d3/2) 6.02 7.28 7.59

(1p-1h)ν (0d5/2 → 0d3/2) 4.45 4.87 5.20
(2p-2h)πν (1sν ⊗ 0dπ5/2 → 0dν3/2 ⊗ 1sπ) 2.27 2.75 2.38

24Ne

0p-0h 56.51 53.45 49.41
(1p-1h)ν (0d5/2 → 1s) 17.81 17.48 17.81

(1p-1h)ν (0d5/2 → 0d3/2) 5.60 6.27 6.34
(2p-2h)ν (0d5/2 → 1s) 6.17 6.56 7.54

20Ne

0p-0h 45.36 43.05 33.05
(2p-2h)πν (0dπ5/2 ⊗ 0dν5/2 → 1sπ ⊗ 1sν) 8.15 6.80 8.86

(1p-1h)π (0d5/2 → 0d3/2) 6.91 8.26 8.65
(1p-1h)ν (0d5/2 → 0d3/2) 6.94 8.30 8.58
(1p-1h)π (0d5/2 → 1s) 5.29 4.44 5.08
(1p-1h)ν (0d5/2 → 1s) 5.40 4.50 5.13

(2p-2h)π (0d5/2 ⊗ 0d5/2 → 1s⊗ 1s) 2.32 1.89 2.46
(2p-2h)ν (0d5/2 ⊗ 0d5/2 → 1s⊗ 1s) 2.44 1.95 2.52

24Mg

0p-0h 34.63 32.45 23.82
(1p-1h)ν (0d5/2 → 1s) 8.31 7.13 6.49
(1p-1h)π (0d5/2 → 1s) 8.08 6.98 6.37

(2p-2h)πν (0dπ5/2 ⊗ 0dν5/2 → 1sπ ⊗ 1sν) 5.30 4.32 5.16

(1p-1h)ν (0d5/2 → 0d3/2) 4.43 4.83 3.94
(1p-1h)π (0d5/2 → 0d3/2) 4.37 4.83 3.96

(2p-2h)ν (0d5/2 ⊗ 0d5/2 → 1s⊗ 1s) 2.24 1.83 2.26
(2p-2h)π (0d5/2 ⊗ 0d5/2 → 1s⊗ 1s) 2.12 1.76 2.17

28Si

0p-0h 26.02 38.68 17.80
(2p-2h)πν (0dπ5/2 ⊗ 0dν5/2 → 1sπ ⊗ 1sν) 12.36 8.11 8.98

(2p-2h)ν (0d5/2 ⊗ 0d5/2 → 1s⊗ 1s) 5.03 3.28 3.66
(2p-2h)π (0d5/2 ⊗ 0d5/2 → 1s⊗ 1s) 4.87 3.17 3.54

32S

0p-0h 60.30 47.23 26.20
(2p-2h)πν (1sπ ⊗ 1sν → 0dπ3/2 ⊗ 0dν3/2) 8.36 9.31 11.20

(2p-2h)ν (1s⊗ 1s→ 0d3/2 ⊗ 0d3/2) 3.80 4.38 5.47
(2p-2h)π (1s⊗ 1s→ 0d3/2 ⊗ 0d3/2) 4.11 4.80 5.87

Table IV.3: Main components of the ground-state of different nuclei, expressed in percents
(%).

• Accounting for medium effect via rearrangement terms allows to fragment the wave

function by diminishing the 0p-0h component in most cases. The opposite phenomenon

only occurs in 28Si where the Hartree-Fock component is increased from ∼ 26 to ∼ 39%.
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• After self-consistency is reached the composition of the ground state wave function ap-

pears again considerably modified. The 0p-0h (reference state) component undergoes

the biggest variation. In the Neon chain it decreases by a few percents in the heavier

isotopes. The reduction is more important in the lighter ones such as 20Ne where the

weight of the reference state is lowered from ∼ 43 to ∼ 33%. The wave function of
24Mg already appeared fragmented before self-consistency was introduced with a 0p-0h

Hartree-Fock component of ∼ 35%. Still the self-consistency effects lead to an addi-

tional loss of ∼ 11% of the total strength. In 28Si, the rise of the 0p-0h component due

to rearrangement terms is now counterbalanced by the renormalization of single-particle

states which bring it back down to only ∼ 18%. Finally the most striking effect is seen

on 32S for which the reference state component decreases from ∼ 60% to ∼ 45% with

rearrangement terms and to only ∼ 26% after orbital optimization.

• Looking now at other components, we note that this systematic reduction of the 0p-

0h configuration is not transmitted to one particular other configuration. The missing

weight seems to be rather equally distributed on many components. This strong frag-

mentation seems to reflect an important increase of the collectivity of the wave function.

Finally, it is always informative to analyze the evolution of the pure Hartree-Fock component,

that is the weight of the 0p-0h component built on non-optimized Hartree-Fock orbitals at

the three stages (i), (ii) and (iii) of the mp-mh method. Following the procedure described in

section III.4 to obtain this quantity after reaching self-consistency, we get the results shown

in table (IV.4).

Nucleus Without self-consistency 1st eq. with R 6= 0 full self-consistency
26 Ne 77.11 70.89 61.50
28 Si 26.02 38.68 16.99
32 S 60.30 47.23 24.26

Table IV.4: Pure Hartree-Fock component in the correlated ground-state (i.e. weight of the
0p-0h configuration built on non-optimized Hartree-Fock orbitals), in percent.

Comparing them to the values showed in table (IV.3) after full self-consistency, we note that

the weight of the optimized reference 0p-0h state (called φ) is systematically slightly higher

than the weight of the Hartree-Fock state |HF 〉, illustrating the fact that the new reference

state always incorporates more physics and minimizes the effect of correlations. This phe-

nomenon is however in competition with the tendency to fragment the wave function and the

evolution of the single-particle spectrum. Indeed if gaps around the Fermi level are reduced,

certain excitations may become more favorable and their weight might increase.

Single-particle energies

We present here the modification of single-particle energies (SPE) when the mean-field is
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Chapter IV : Description of sd-shell nuclei

constructed consistently with the correlations present in the system. We show on Fig. (IV.6)

the difference between Hartree-Fock SPE εHF and optimized SPE taken as eigenvalues εa of

the mean-field,

h[ρ, σ]ab = Kab +
∑

cd

〈ac|V̂ [ρ]|b̃d〉 ρdc +
1

4

∑

cdc′d′

〈cd|∂V̂ [ρ]

∂ρba
|c̃′d′〉 〈Ψ|a†ca†dad′ac′ |Ψ〉 ,

for the lightest and heaviest Neon isotopes.
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Figure IV.6: Differences ∆ε = εHF−ε between Hartree-Fock and self-consistent single-particle
energies, expressed in MeV. The differences between proton SPEs are on the left and the
neutron ones on the right. The Fermi level is marked by a dashed line.

The proton and neutron spectra appear very similar for the N = Z nucleus 20Ne. They are

globally more compressed than the Hartree-Fock ones (by ∼ 1 MeV), and in particular the

gaps under and above the Fermi level are decreased. The deepest shells 0s and 0p undergo

the biggest modification and are shifted up by > 600 keV (∼ 1 MeV for the 0s and the 0p1/2).

The change is less important in 28Ne where the biggest shifts are of order ∼ 250 keV. If

a smooth compression of the neutron spectrum is observed, the behavior of the proton one
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IV.1 Ground-state properties

is a bit more chaotic and seems to indicate an important influence of the proton-neutron

interaction. The gap at the Fermi level is actually slightly increased in this case (by ∼ 40

keV).

IV.1.2 Binding and separation energies

We plotted on Fig. (IV.7) the difference between experimental and theoretical binding energies

BE(N,Z) = 〈Ψ(N,Z)
0 |H[ρ]|Ψ(N,Z)

0 〉 for the different isotopic chains.

No self consistency Eq. 1 with R 6= 0 Full self-consistency
〈∆BE〉 8.342 8.914 9.837
σdev(BE) 0.821 0.793 0.789

Table IV.5: Average difference 〈∆BE〉 and standard deviation σdev(BE) of binding energies
compared to experiment (in MeV).

At the non-self consistent level, an average difference to experiment 〈∆BE〉 ∼ 8.34 MeV is

found. This global shift is understood as due to the Gogny interaction that was fitted at the

Hartree-Fock level, as already stated in [63]. This also explains the increase of 〈∆BE〉 from no

to full self-consistency. On the contrary the standard deviation σdev(BE) is slightly improved

from 0.82 to 0.79 MeV.

Fig. (IV.8) now displays the difference between experimental and theoretical two-neutron

and two-proton separation energies defined respectively as,




S2n(N,Z) = BE(N,Z)− BE(N − 2, Z) ,

S2p(N,Z) = BE(N,Z)− BE(N,Z − 2) .
(IV.2)

Little change is induced by self-consistency. The standard deviation is improved by ∼ 100

keV in both cases. The average difference in the proton case is also decreased by the same

quantity, while it is increased by ∼ 80 keV in the neutron one. Globally these results are very

satisfactory. Finally we obtain theoretical S2p < 0 for 28Ar, 30Ar and 26S. These nuclei are

thus predicted unbound, which is in agreement with experiment.

IV.1.3 Charge radii and neutron skin-thickness

Charge radii

Charge radii are measurable quantities very sensitive to the correlation content of nuclei and

related to nuclear deformation. The root mean-square charge radius rc is expressed as,

rc =

√
r2p +

3

2
(B2 − b2)− 0.1161

N

Z
, (IV.3)
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Chapter IV : Description of sd-shell nuclei

where rp denotes the proton root mean square radius,

rp =

√∫
d3rρπ(r)r2

Z
, (IV.4)

with ρπ(r) the proton radial density. The charge radius rc is corrected by 3
2
(B2 − b2) where

B = 0.7144 fm results from the proton form factor, and b is a center of mass correction.

Finally 0.1161N
Z

denotes a correction due to neutron electromagnetic properties.

We display on Fig. (IV.9) the charge radii calculated in the mp-mh approach at the three

levels of the method. They are compared to experimental data taken from [3].

• At the non self-consistent stage, charge radii are either underestimated or lying in the

experimental error bars, leaving room for unaccounted correlations. The worst discrep-

ancy is encountered in the nuclei where collectivity is expected to be stronger. This

behavior can be anticipated since the configuration mixing has been restricted to the

sd-shell, and therefore ”surface” orbitals with a larger spatial extension such as the 0f7/2

are not populated.

• The introduction of rearrangement terms slightly improves the theoretical values. Only
28Si makes exception again.

• At the fully self-consistent level, when both coefficients and orbitals are optimized, the

charge radii are (almost) systematically increased. The radii of the Argon isotopes,

rather poorly correlated, are all improved. The radii of Sulfur nuclei are drastically

augmented and in better accordance with experiment. Let us remind the important

fragmentation introduced in the nucleus 32S via the orbital renormalization. An impor-

tant effect is also seen on the Silicon and Magnesium isotopes, although it appears too

important in 26Mg and 28Si, leading to an overestimation of the radii and a wrong trend

along the isotopic chains. Let us remind once again that the Gogny interaction used

to perform the calculation is not a priori adapted to approaches such as the mp-mh

configuration method which introduces all types of correlations. Moreover the use of

the correlated density in the interaction may lead to uncontrolled over-counting effects.

Concerning the Neon nuclei, the results without self-consistency already lied at the top

of the error bars for 28−26−24Ne, and become now slightly overestimated. Very little effect

is seen on the lighter and more correlated isotopes 20−22Ne, whose radii remain largely

undervalued. Finally let us note that a good experimental trend is obtained from the

Ne, S and Ar isotopes.

Neutron-skin thickness The neutron skin thickness rn − rp, difference between neutron

and proton root mean square radius, can provide information on the relative distribution of
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protons and neutrons in nuclei. We calculate this quantity for the Neon isotopes and show

the results on Fig. (IV.10).

As expected, the neutron-skin thickness increases with the number of neutrons. No influence

of the rearrangement terms is observed. However we note that the orbital renormalization has

a tendency to slightly decrease the neutron thickness in neutron rich isotopes. Concerning

the 24Ne isotope this effect seems to be attributed to a slight increase of the proton radius.

However, no clear attribution can be made in the case of 26−28Ne.
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Figure IV.7: Difference between theoretical and experimental binding energies (in MeV) at
the non-self consistent level (a), introducing rearrangement terms only (b), after full self-
consistency is reached (c). Experimental data are taken from [104].
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IV.2 Low-lying spectroscopy

In this section we study the properties of excited states in sd-shell nuclei. Observable quantities

such as excitation energies and electromagnetic moments and transitions, are calculated and

compared to experiment.

• At the non-self consistent stage, excited states are obtained by extracting several eigen-

states of the Hamiltonian matrix H[ρHF ] with the Lanczos algorithm.

• When the first equation is solved iteratively with rearrangement terms, we iterate the

diagonalization ofH[ρgs, σgs] = H[ρgs]+R[ρgs, σgs], where ρgs and σgs denote the densities

of the correlated ground-state. Once this procedure has converged, we extract several

eigenvalues of H[ρgs, σgs] in order to obtain the excited states.

• Similarly, to achieve self-consistency, we perform the global iterative procedure described

in section III.3 at the ground state level. In other words, the orbitals are optimized

consistently with the mixing coefficients Ags
α of the ground-state Ψ0, by solving the

second variational equation using the ground-state densities ρgs and σgs. Again, once this

doubly-iterative procedure has converged, we extract several eigenvalues of H[ρgs, σgs]
in order to obtain the excited states.

IV.2.1 Excitation energies

Excitation energies E∗
N are defined as the difference between the ground-state binding energy

E0 = 〈Ψ0|H[ρgs]|Ψ0〉 and the energy EN = 〈ΨN |H[ρgs]|ΨN〉 of the excited state N,

E∗
N = EN − E0 . (IV.5)

Since the configuration mixing is restricted to the sd-shell, the excited states are all charac-

terized by a positive parity. We show in Table (IV.6) the theoretical excitation energy of the

first three excited states in a few nuclei, and compare them to experiment.

Only little change is induced by the introduction of rearrangement terms (except in 28Si).

However the renormalization of orbitals clearly improves the predicted results in the majority

of cases.

Looking in more detail, before modification of the single-particle states, one observes an over-

estimation of ∼ 1.5 − 2 MeV of the energy spectra in 30Si and 30S, two mirror nuclei. This

behaviour has already been identified and investigated in a previous study [86]. It has been

found that this global shift is actually due to uncontrolled proton-neutron matrix elements of

the Gogny interaction in the T = 0 channel. However, as illustrated in the previous section,

the optimization of orbitals modifies the single-particle spectra and in particular the sizes of

the gaps around the Fermi level. Solving the second variational equation is thus expected to
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Nucleus state Jπ
n isospin T No self- Eq. 1 with Full self- Experiment

consistency rearrangements consistency

28Ne
2+1 4.002 1.181 1.182 1.272 1.304 (3)
4+1 4.002 2.392 2.392 2.658 ( 3.010 (6))
2+2 4.002 3.149 3.149 3.401 ?

24Ne
2+1 2.003 1.769 1.848 1.925 1.9816 (4)
4+1 2.003 3.515 3.503 3.867 3.972 (20)
2+2 2.003 4.069 4.411 4.094 3.868 (4)

22Ne
2+1 1.002 1.045 1.081 1.117 1.274577 (2)
4+1 1.002 2.881 2.881 3.250 3.3577 (3)
2+2 1.002 4.034 3.982 4.639 4.4558 (3)

20Ne
2+1 0.002 1.630 1.694 1.880 1.633614 (15)
4+1 0.002 3.360 3.312 4.441 4.2477 (11)
2+2 0.002 5.543 5.410 7.507 7.4219 (12)

32S
2+1 0.01 2.247 2.821 2.063 2.23057 (15)
0+1 0.01 2.958 3.402 3.049 3.7784 (10)
2+2 0.01 5.539 6.263 4.929 4.2818 (3)

30S
2+1 1.004 3.894 3.935 3.294 2.2106 (5)
2+1 1.004 4.902 4.915 4.344 3.4026 (10)
0+2 1.004 6.566 6.407 5.793 5.2174 (7)

30Si
2+1 1.003 4.145 4.184 3.478 2.235322 (18)
2+1 1.003 5.219 5.218 4.673 3.49849 (3)
0+2 1.003 7.073 6.977 6.167 3.78772 (4)

28Si
2+1 0.006 1.771 2.536 1.963 1.779030 (11)
0+2 0.006 4.460 4.891 5.284 4.97992 (8)
4+1 0.006 5.060 6.033 5.420 4.61786 (4)

24Mg
2+1 0.004 1.318 1.369 1.453 1.368672 (5)
4+1 0.004 4.152 4.804 4.564 4.122889 (12)
2+2 0.004 4.470 4.322 4.230 4.23824 (3)

Table IV.6: Energies of the three first excited states in a few nuclei (in MeV). Experimental
data with error (err) are taken from [1].

modify the values of the matrix elements occurring in the Hamiltonian matrix to diagonalize,

and hence to have an impact on the low-lying spectroscopy. Indeed we observe a downward

shift of ∼ 600 keV in the spectra of 30Si and 30S. This effect is very encouraging but still

insufficient to reach the experimental values. The rest of the discrepancy can now be more

surely attributed to the D1S Gogny interaction that is used in the calculations.

Fig. (IV.11) now displays the theoretical excitation energies of the first excited Jπ = 2+ state

as a function of experimental ones, for all sd-shell nuclei. Results are shown without and with

full self-consistency.

Excluding the peculiar cases 30S and 30Si, a good agreement with experiment is found at the

non self-consistent level for most nuclei. However we note a slight systematic underestimate
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Figure IV.11: Theoretical excitation energies of the 2+1 states compared to experiment. Ex-
perimental data are taken from [1]. Results are expressed in MeV.

of the experimental values, as the points always lie under the y = x line. This discrepancy

disappears after self-consistency is reached. Statistically, the average difference to experimen-

tal results is decreased from 191 to 142 keV and the standard deviation is lowered from 178

to 122 keV. Including now also 2+1 states of 30S and 30Si, the average difference to experiment

of 383 keV obtained when no self-consistency is applied, is lowered to 281 keV when the full

iterative procedure is performed. Similarly the standard deviation is modified from 670 to 496

keV. Overall results for excitations energies are in very good agreement with experiment.

IV.2.2 Electromagnetic properties of nuclei - reminder

◦ Transition probabilities

Electromagnetic transitions in nuclei result from the interaction of the nucleus with an external

electromagnetic field. Interaction of radiation with matter is well known theoretically. We

first remind a few aspects of the formalism and refer to e.g. [92] or [74] for more details. The

total system nucleus+radiation is governed by H = Hnucl +Hfield +Hint, sum of the nuclear

Hamiltonian, the Hamiltonian of the free radiation field and the interaction between the

nucleus and the field. Compared to the strong nuclear force, the electromagnetic interaction

Hint can be regarded as a perturbation. The transition probability for the nucleus to decay

by photon emission is thus given by the ”Fermi Golden rule”,

Tfi =
2π

~

∣∣∣〈Ψi|Ĥint|Ψf〉
∣∣∣
2

ρ(Ef ) , (IV.6)
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IV.2 Low-lying spectroscopy

where ρ(Ef ) denotes the density of available final states.

The interaction Hamiltonian is given by,

Hint = −
1

c

∫
jµA

µd3r =

∫ (
ρ(~r, t)Φ(~r, t)− 1

c
~j(~r, t). ~A(~r, t)

)
d3r , (IV.7)

where ρ(~r, t) and ~j(~r, t) denote the charge and current density of the nucleus respectively. The

scalar potential Φ couples the field to the nuclear density while the vector potential ~A couples

to the current. In a general way, one can write the potential (Φ, ~A) as a multipole expansion

(σ, λµ) of two types of radiations (electric σ = E and magnetic σ = M) expressed in terms

of spherical harmonics. λ and µ denote the total angular momentum of the emitted photon

and its projection respectively. After calculus (see e.g. [92]) one finally gets the following

probability for emission of a photon with quantum numbers (σ, λ, µ) and energy Eγ,

Tfi(σ, λµ) =
8π

~

λ+ 1

λ[(2λ+ 1)!!]2

(
Eγ

~c

)2λ+1 ∣∣∣〈Ψi|M̂(σ, λµ)|Ψf〉
∣∣∣
2

, (IV.8)

where M̂(σ, λµ) is the operator associated with the multipole radiation field (σ, λµ).

Experimentally one usually does not differentiate different orientations of the angular momenta

and measures quantities where all projections have been resumed. The total probability for a

multipole transition is then given by,

Tfi(σ, λ) =
1

2Ji + 1

∑

µ,Mi,Mf

Tfi(σ, λµ) , (IV.9)

where (Ji,Mi) and (Jf ,Mf ) characterize the angular momentum and projection of the ini-

tial and final nuclear state respectively. Since the multipole operators are spherical tensor

operators one can make use of the Wigner-Eckart theorem [74] and write,

〈JiMi|M̂(σ, λµ)|JfMf〉 = (−)Jf−M−f

(
Jf λ Ji

−Mf µ Mi

)
〈Ji||M̂(σ, λ)||Jf〉 , (IV.10)

where the second term on the r.h.s of Eq. (IV.10) denotes the 3j-symbol and 〈Ji||M̂(σ, λ)||Jf〉
has lost any dependency on magnetic numbers. Inserting this into Eq. (IV.9) one finally gets,

Tfi(σ, λ) =
8π

~

λ+ 1

λ[(2λ+ 1)!!]2

(
Eγ

~c

)2λ+1

B(σλ ; Ji → Jf ) , (IV.11)

where B(σλ ; Ji → Jf ) are called reduced transition probabilities and are given by,

B(σλ ; Ji → Jf ) =
1

2Ji + 1
〈Ji||M̂(σ, λ)||Jf〉 . (IV.12)
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In order to practically calculate the reduced transition probabilities B(σλ ; Ji → Jf ), one

usually performs the explicit calculation of one element 〈JiMi|M̂(σ, λµ)|JfMf〉 (the simplest

one) and uses the Wigner-Eckart theorem (IV.10) to deduce the value of the reduced element

〈Ji||M̂(σ, λ)||Jf〉.

→ Electric and magnetic operators: As mentioned previously, two types of radiation

appear in the multipole expansion of the field: electric (denoted σ = E) and magnetic (denoted

σ =M) radiations. The electric and magnetic transition operators M̂(E, λµ) and M̂(M,λµ)

can be generally derived in terms of spherical harmonics Yλ,µ(θ, φ) and Bessel spherical func-

tions jλ. In the context of nuclear physics, the ”long-wavelength limit” is generally assumed

(i.e. the wavelength of the photon is considered large compared to the size of the nucleus), and

one can expand the Bessel functions in term of the small kr parameter (k being the momentum

of the photon).

• At first order, one obtains for the electric operator,

M̂(E, λµ) =

∫
ρ(~r)rλYλµ(θ, φ)d

3r +
ik

λ+ 1

∫
(~r × ~µ(~r))~∇rλYλµ(θ, φ)d3r , (IV.13)

where ρ(~r) =
∑A

j=1 e(j)δ(~r−~rj) is the charge density of the nucleus (e(j) = e(1
2
− tz(j)))

and ~µ(~r) the density of magnetic moment. The second term in Eq. (IV.13) is usually

neglected and one gets the following electric multipole operator,

Q̂(λµ) ≡ M̂(E, λµ) =
A∑

j=1

e(j)rλj Yλµ(θj, φj) . (IV.14)

• At first order in the long-wavelength limit, the multipole magnetic operator reads,

M̂(λµ) ≡ M̂(M,λµ) = µN

A∑

j=1

[
2

λ+ 1
g
(j)
l
~l(j) + g(j)s ~s(j)

]
.~∇
[
rλj Yλµ(θi, φi)

]
. (IV.15)

In Eq. (IV.15), µN = e~
2mp

= 0.10515 c e fm is the nuclear magneton. gl and gs are the

orbital and gyromagnetic factors respectively. They are equal to,

gl =

(
1

2
− tz

)
=




1 for protons ,

0 for neutrons ,
(IV.16)

and,

gs =




gp = 5.586 for protons ,

gn = −3.826 for neutrons .
(IV.17)
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IV.2 Low-lying spectroscopy

→ Selection rules:

• The transition probability Tfi(σλ) ∼
∫∞

−∞
Ψ∗

iM(σ, λ)Ψf is non-vanishing if the prod-

uct of the parities π(Ψi) π
(
M̂(σ, λ)

)
π(ψf ) = +. The multipole operators Q̂(λµ) and

M̂(λµ) have parity (−)λ and (−)λ+1 respectively2. Therefore the parity selection rule

reads,

π(Ψi)π(Ψf ) =




(−)λ for an electric transition Eλ ,

(−)λ−1 for a magnetic transition Mλ .
(IV.18)

• Moreover, the conservation of angular momentum leads to,




|Ji − Jf | 6 λ 6 Ji + Jf ,

µ =Mf −Mi .
(IV.19)

◦ Static multipole moments

Diagonal expectation values of the multipole operators in a nuclear state can provide infor-

mation on the structure of nuclear wave function. In particular,

• the magnetic dipole moment defined as,

µ ≡
√

4π

3
〈J, J |M̂(1, 0)|J, J〉 , (IV.20)

informs on the current densities in the nucleus, while

• the quadrupole electric moment (also called quadrupole spectroscopic moment),

Qs ≡
√

16π

5
〈J, J |Q̂(2, 0)|J, J〉 , (IV.21)

provides insight into the charge repartition and this the shape associated to the nuclear

state.

We refer to [62] for details about the practical calculation of electromagnetic transition

probabilities and moments within the multiparticle-multihole configuration mixing method.

IV.2.3 Magnetic dipole properties

Magnetic dipole moments

We first investigate the magnetic dipole properties of the nuclei of interest. In Fig. (IV.12), we

compare the theoretical magnetic dipole moments µ of the 2+1 states to available experimental

data.

2(−)λ from the spherical harmonics and (−) from ~∇ in M(λ, µ)

101



Chapter IV : Description of sd-shell nuclei

0

1

2

0 1 2

m
p

-m
h

 (
µ

N
)

Experiment (µN)

µ(21
+
)

A=26

Ne

Mg

Si

S

Ar

(a) No self-consistency

0

1

2

0 1 2

m
p

-m
h

 (
µ

N
)

Experiment (µN)

µ(21
+
)

A=26

Ne

Mg

Si

S

Ar

(b) Full self-consistency

Figure IV.12: Comparison of theoretical magnetic dipole moments µ(2+1 ) to experiment. Ex-
perimental data are taken from [1]. Results are expressed in units of the nuclear magneton
µS.

Before self-consistency, a general good agreement is found for the majority of nuclei. Four

nuclei lie outside the experimental error bars, including the peculiar 30Si case. Regarding 26Mg,

as already stated in [63], the experimental value originally at 2.6 µN has been re-evaluated to

1.0 µN . We obtain at this stage an average difference to experiment of 〈∆µ〉 = 0.31 µN , and

a standard deviation σdev(µ) = 0.47 µN .

With self-consistency, the statistics is improved to 〈∆µ〉 = 0.25 µN and σdev(µ) = 0.33 µN , as

the results for 22Ne, 34S and 26Mg get closer to experiment. However the magnetic moment of
30Si worsens.

Magnetic dipole transitions

We present in Table (IV.7) magnetic transition probabilities B(M1). The conclusion already

drawn for the static magnetic moments roughly apply here.

Results at the first stage agree rather nicely with experiment and are slightly globally improved

by self-consistency: 〈∆B(M1)〉 goes from 1.9×10−2 to 1.5×10−2 W.u. and σdev(B(M1)) from

2.9×10−2 to 1.7×10−2 W.u.. This behavior can be understood from the following arguments.

Selection rules for a B(M1) transition enforce the parities of the initial and final states to

be identical: πiπf = +. Moreover transition characterized by angular momentum transfer

λ = 1 can allow excitations between shells with ∆Nshell = 0, 1, where Nshell denotes the major

quantum number N = 2(n−1)+l of the oscillator shell. ∆Nshell = 0, 1 correspond to transition

characterized by ∆E = 0, 1~ω. 0~ω excitations are restricted within the sd-shell and hence,

are already explicitly accounted for in the configuration mixing. 1~ω configurations would
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IV.2 Low-lying spectroscopy

Nucleus Transition Experiment No self-consistency Full self-consistency

24Mg
2+2 → 2+1 9× 10−6 (8) 9.582× 10−6 5.043× 10−6

3+1 → 2+1 2.1× 10−5 (1.1) 5.150× 10−5 2.363× 10−7

3+1 → 2+2 3.5× 10−4 (1.7) 2.231× 10−4 5.371× 10−5

26Mg
2+2 → 2+1 9.7× 10−2 (12) 6.698× 10−2 6.846× 10−2

3+1 → 2+1 1.02× 10−3 (15) 5.003× 10−3 5.601× 10−4

3+1 → 2+2 1.59× 10−2 (23) 2.125× 10−2 2.976× 10−2

3+2 → 2+1 6.7× 10−3 (14) 4.596× 10−3 2.011× 10−3

3+2 → 2+2 3.2× 10−2 (7) 5.509× 10−2 5.270× 10−2

26Si 2+2 → 2+1 1.0× 10−1 (3) 6.367× 10−2 6.668× 10−2

30Si 2+2 → 2+1 9× 10−2 (3) 1.905× 10−1 4.056× 10−2

34S 2+2 → 2+1 5.2× 10−2 (3) 6.057× 10−2 4.811× 10−2

34Ar 2+2 → 2+1 5.8× 10−2 (12) 3.175× 10−2 2.990× 10−2

Table IV.7: Transition probabilities B(M1) in Weisskopf units (W.u.). Experimental data are
extracted from [1].

correspond to 1p-1h excitations from sd to the fp shell or from the 0p to sd shell. However

these would lead to a change of parity and are therefore forbidden. This would explain why

the results at the non-self consistent level are already roughly in accordance with experimental

values. This result also demonstrates that the D1S Gogny interaction exhibits good dipole

magnetic properties.

IV.2.4 Electric quadrupole properties

We now investigate quadrupole electric features of sd-shell nuclei.

Quadrupole spectroscopic moments

Fig. (IV.13) shows the quadrupole static moment for the first excited state 2+1 .

At the non self-consistent stage, clearly theoretical values badly agree with experiment. When

the predicted sign is in agreement with the experimental one, the mp-mh approach always

underestimates spectroscopic quadrupole moments (in absolute value). Self-consistency, and

in particular orbital optimization, does not seem to induce a significant change on the results.

Electric quadrupole transitions

We now display in Fig. (IV.14) the reduced probabilities B(E2) for the transition 2+1 → 0+1
in different isotopic chains.

• Without self-consistency (red squares), the behavior is similar to what we obtained

for the static moments. That is, the probability calculated within the multiparticle-

multihole approach largely underestimates the experimental values. This being said,
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Figure IV.13: Comparison of theoretical spectroscopic quadrupole moments Qs(2
+
1 ) with ex-

periment. Experimental values are taken from [1]. Results are expressed in e.fm2

one notes however that the experimental trends along isotopic chains are generally well

reproduced (apart from a few cases). The multiplication of the theoretical B(E2) by a

global factor would lead to a nice agreement with experiment in most isotopic chains.

At a closer look, a wrong behavior is seen in the light Silicon isotopes A = 24, 26. A

discrepancy is also found in the Neon chain: the slope is predicted too small for 20−22Ne.

Concerning the Sulfur isotopes, the small predicted value for 30−32S compared to 28−34S

has been investigated in [63]. The main component in the 0+1 ground state (∼ 60% of 0p-

0h as shown in Table IV.3) is found much higher than the weight of the most important

configuration in the 2+1 state (∼ 22% of (1p-1h)ν + ∼ 25% of (1p-1h)π), leading to a

small matrix element 〈0+1 |Q̂(2, 0)|2+1 〉.

• With rearrangement terms in the first variational equation and Hartree-Fock orbitals

kept frozen (forest green circles), the transition probabilities are essentially modified for

the Silicon and Sulfur isotopes where B(E2) are increased in most nuclei. Only 28Si and
30Si make exception and suffer a reduction of their electric quadrupole probability. This

is in accordance with the increase of the Hartree-Fock 0p-0h component noted in the

wave function of the 0+1 state in 28Si (see previous section). Overall, all predicted B(E2)

stay largely lower than the experimental ones.

This systematic underestimate of the electric quadrupole properties is a well-known behavior

which is due to the restriction of the configuration mixing to the sd-shell, unable to fully

account for quadrupole collectivity. In shell-model studies, this issue is overcome by the intro-

duction of effective charges eeffp and eeffn instead of ep = 1 and en = 0 in the definition (IV.14)

of the electric quadrupole operator Q̂(2, 0). If effective charges arise naturally from the theory
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IV.2 Low-lying spectroscopy

of effective operators [77] used to compensate for Hilbert space truncation, the values of eeffp

and eeffn utilized in shell-model calculations are usually fitted so to reproduce experimental

data. Ref. [21] discusses this in detail and compares E2 matrix elements calculated with and

without effective charges. Without effective charges, transition probabilities are found sys-

tematically smaller than the experimental data (factor ∼ 0.6). The same behavior is observed

for spectroscopic quadrupole moments.

In this work we aim to quantify the effect of the optimization of orbitals on transition probabil-

ities, with no use of effective charges. As previously mentioned, solving the second variational

equation introduces coupling between the valence space and the fully occupied core of 16O as

well as the empty states. The latter therefore do not remain frozen. In fact, as discussed in

chapter II, this procedure allows to generate mp-mh excitations spanning on the entire starting

single-particle basis, on top of the Slater determinants of the sd-shell. Part of the neglected

Hilbert space is thus implicitly accounted for.

Let us examine in more detail what types of configurations are missing to improve the transi-

tionsB(E2). The action of the electric quadrupole E2 operator on a state Jπ is able to generate

excitations characterized by ∆Nshell = 0, 1, 2. Again, 0~ω ones are already accounted for in the

sd-shell, and excitations 1~ω (1p-1h sd→ fp or p→ sd) would involve a parity change which

is forbidden in E2 transitions. Excitations 2~ω are however clearly missing when restricting

the many-body mixing to the sd-shell. Such configurations can be generated by,

• 1p-1h excitations between shells differing by ∆Nshell = 2.

– The most important are expected to be excitations from the sd to the sdg shell

or from the 0s to the sd shell. As seen from the previous section the 0s and sdg

shells are largely influenced by the source term G[σ]. In particular, the coupling

sd − 0s is always very strong. Moreover, 1p-1h excitations are of one-body type

and therefore can be generated through the optimization of orbitals (acting at the

mean-field, thus one-body level). For these two reasons, the effect of the second

variational equation should be maximal in this case, and should allow to partly

account for this type of excitations.

– At a weaker level, 1p-1h excitations from the p to the fp shells can also come into

play in a B(E2) transition. The source term does not couple to such negative

parity states. The orbital equation will however allow to mix the single-particle

orbitals from p sub-shells with same angular momentum j through [h(ρ, σ), ρ] = 0.

A configuration

|φα〉 = ...a†k∈0pj ... |0〉
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will transform as

|φα〉 → |φ′
α〉 = ...

(
C1a

†
k∈0pj

+ C2a
†
k∈1pj

+ ...
)
... |0〉 .

The 1pj (j = 1/2 or 3/2) sub-shell from the fp shell thus become slightly occupied in

Ψ, and some core-polarization effect is produced. It is important to remind that we

are reasoning here in terms of the starting non-optimized orbitals. In practice these

are taken as spherical Hartree-Fock states. Since the Hartree-Fock field already

incorporates much physical information (compared to e.g. pure harmonic oscillator

potential), the mixing between orbitals is usually weak.

• 2p-2h excitations between shells with ∆Nshell = 1. The most important ones being

excitations from sd to fp and p to sd. Because symmetries are explicitly conserved

here, single-particle states from sd will never mix with orbitals from fp. More precisely,

writing schematically the explicitly introduced many-body configurations as,

|φα〉 =
∏

a†k∈s
∏

a†l∈p
∏

a†m∈sd |0〉 ,

they transform as,

|φα〉 → |φα〉 =
∏

(C1
ka

†
k∈s +C2

ka
†
k∈sd)

∏
(C1

l a
†
l∈p +C2

l a
†
l∈fp)

∏
(Cm

l a
†
m∈sd +C2

l a
†
m∈s) |0〉 ,

where for the sake of simplicity, we only considered shells up to fp. Hence, we see that

2p-2h excitations sd → fp or p → sd can never be generated by the transformation of

orbitals.

Let us now look at the transition probabilities from Fig. (IV.14) obtained when full self-

consistency is applied. Although small, the effect induced by the orbital renormalization allows

to systematically improve the B(E2). The Silicon and Sulfur isotopes seem again to be the

most sensitive to the transformation of single-particle states. In particular, a factor ∼ 1.7

is gained in 30Si, and ∼ 1.3 in 28Si and 32S. In the Neon chain however, the difference with

the non self-consistent case is hardly visible. According to our previous analysis, this would

suggest that the E2 transition is mainly generated by 2p-2h excitations sd→ fp or p→ sd. In

order to verify this, we take 20Ne as a test nucleus, and apply the mp-mh configuration mixing

introducing the fp-shell in the valence space, creating thus explicit 2p-2h excitations sd→ fp.

The effect on B(E2) transition is shown on Fig. (IV.15). We already note an increase of the

B(E2) at the non-self consistent level reflecting the inclusion of additional explicit configura-

tions. We also note that the self-consistency effects have increased in accordance.
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In summary, this first systematic study of sd-shell nuclei within the fully self-consistent mp-

mh approach was very satisfying. Most observables quantities that have been calculated are

generally found in good agreement with experiment. This study also allowed to quantify the

effect of the renormalization of single-particle states, which almost systematically improved

the theoretical results. Although weak, the effect induced on transition probability B(E2)

was positive. However, it appeared that a truncation of the wave function in terms of valence

space might not be the optimal selection criterion to exploit the maximum effect of the orbital

optimization. This was confirmed by the modification of B(E2) when adding the fp shell to

the valence space in the case of 20Ne.

Accounting for the missing quadrupole collectivity could in principle by achieved either by

increasing the size of the model space, or, when such calculations are not tractable by current

computational resources, by the construction of effective operators. In the former case, an

analysis of the composition of deformed Hartree-Fock or HFB states, projected on a spherical

basis, could be very useful. As deformed HF(B) often give an accurate quadrupole moment,

such a study could provide an estimate of how large the model space needs to be in order to

describe the quadrupole collectivity of the system. Enlarging the size of the space will however

inevitably lead to an increase of the correlation energy which may become pathologically high,

such as found in the study of 12C in the previous chapter. This behaviour might however be

corrected by the use of a fully finite range interaction. When such model spaces are too large

to deal with, the construction of effective operators may be a good alternative. Such operators

act within a restricted space P while accounting implicitly for the missing space Q. Resulting
consistent effective charges would also lead to an increase of the radii.
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Figure IV.14: Comparison of quadrupole transition probabilities B(E2; 2+1 → 0+1 ) expressed
in e2.fm4. The experimental data (in black) are taken from [1]. Results without and with full
self-consistency are shown in red and blue respectively. We also display B(E2) obtained with
introducing rearrangement terms in the first variational equation (in green).
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Chapter V

First applications to reactions

In this last chapter, we use the structure description provided by the mp-mh approach for the

study of reaction mechanisms on target nuclei. The field of nuclear reactions is very wide.

Depending on the nature of the probe, many mechanisms can occur when a projectile strikes a

nucleus. They spread from the long-time compound nucleus reactions involving the capture of

the projectile by the target, to short time direct reactions involving nucleon exchange (transfer,

pick-up...) or not (elastic or inelastic scattering).

In the following we are interested in inelastic scattering of protons and electrons from sd-shell

nuclei, when the target nucleus is excited from its ground to a low-lying excited state.

V.1 Inelastic electron scattering on discrete states

Electrons are point-like particles which only interact electromagnetically with the target. Ex-

perimentally, the study of electron scattering can thus provide direct and clear information

about the charge distribution of nuclei.

V.1.1 Formal aspects

The theoretical study of electron scattering is widely discussed in the literature. Hence, we

only remind here of a few important results and refer to e.g. [28, 54, 32] for more detail.

Since the electromagnetic interaction is weak in comparison to the nuclear force, electron

scattering can usually be treated in the context of the Plane Wave Born Approximation, as an

exchange of a single virtual photon between the target and the electron described as a plane

wave. In this approximation, the cross section for electron scattering from the target nucleus

reads,

dσ

dΩ
=

(
dσ

dΩ

)

Mott

R

[
|FL(q)|2 +

(
1 + tan2 θ

2

)
|FT (q)|2

]
, (V.1)
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where, (
dσ

dΩ

)

Mott

=
Z2e4 cos2(θ/2)

4E2
i sin

4(θ/2)
, (V.2)

is the Mott cross section for the scattering of an electron with incoming energy Ei, on a

point-like target with charge Ze. θ denotes the scattering angle in the laboratory. The factor,

R =

(
1 +

2Ef

MT

sin2(θ/2)

)−1

, (V.3)

is the correction due to the recoil of the target with mass MT . Finally the form factor[
|FL(q)|2 +

(
1 + tan2 θ

2

)
|FT (q)|2

]
is the correction to the Mott cross section due to the ex-

tended size of the nucleus.

• |FL(q)|2 is called the longitudinal form factor. It arises from the Coulomb interaction

of the electron with the charge distribution of the nucleus. This form factor can be

expanded into multipoles as,

|FL(q)|2 =
∑

λ>0

|FC,λ(q)|2 (V.4)

where,

FC,λ(q) =
4π

Z2

√
2Jf + 1

2Ji + 1

∫ ∞

0

ρtr(r)jλ(qr)r
2dr . (V.5)

ρtr(r) = 〈Ψf |ρ̂ch(r)|Ψi〉 is the radial transition density between initial and final states.

• The transverse part |FT (q)|2 of the form factor is due to the interaction of the elec-

tron with electric and magnetic currents of the nucleus. It is composed of electric and

magnetic multipoles,

|FT (q)|2 =
∑

λ>1

[
|FE,λ(q)|2 + |FM,λ(q)|2

]
. (V.6)

The transverse form factor is usually negligible compared to the Coulomb part [54]. It is

neglected in the present study. Moreover, we study here transitions 0+ → J+ (target initially

in its ground state). In this case, a unique angular momentum λ = J is transferred and the

longitudinal factor reduces to,

|FL(q)|2 = |FC,λ=J(q)|2 =
4π

Z2

√
2Jf + 1

2Ji + 1

∫ ∞

0

ρtr(r)jλ(qr)r
2dr . (V.7)

The transition charge densities ρtr(r) = 〈Ψf |ρ̂ch(r)|Ψi〉 constitute the input provided by the

multiparticle-multihole configuration mixing method.

Considering the finite size of the nucleons, the charge density ρch(r) is obtained by folding
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V.1 Inelastic electron scattering on discrete states

the proton density with the distribution of the proton (which is normalized to unity). In the

same way, the correction due to the internal structure of neutrons is added by convoluting the

neutron density and the charge distribution of the neutron. The latter is now normalized to

zero, as neutrons have zero global charge.

V.1.2 Results

Using transition densities calculated in the framework described in the previous chapter, we

calculated form factors for scattering on nuclei of the sd-shell. They are shown on Fig. (V.1)

to (V.6) and compared to experimental data taken from [56, 57, 58, 65, 111, 19, 109, 66].

Again we show the results at three levels: (i) without self-consistency (Hartree-Fock density

in the interaction, no rearrangement terms, frozen Hartree-Fock orbitals), (ii) self-consistency

in the first equation only (correlated density in the interaction, rearrangement terms are

introduced, frozen Hartree-Fock orbitals) (iii) full self-consistency (both variational equations

are solved, i.e. coefficients and orbitals are optimized at the same time, correlated densities

and rearrangement terms are introduced everywhere). The black curves are the theoretical

form factors. We show in red the curve obtained when multiplying these results by a global

factor which allows to fit at best the experimental data. To interpret the results, we also show

the theoretical transition densities.
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Figure V.1: Transition densities and Coulomb form factor for λ = 2 electron scattering from
20Ne target.
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Figure V.2: Transition densities and Coulomb form factor for λ = 4 electron scattering from
20Ne target.
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Figure V.3: Transition densities and Coulomb form factor for λ = 2 electron scattering from
24Mg target.
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Figure V.4: Transition densities and Coulomb form factor for λ = 2 electron scattering from
28Si target.
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Figure V.5: Transition densities and Coulomb form factor for λ = 4 electron scattering from
28Si target.
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Figure V.6: Transition densities and Coulomb form factor for λ = 2 electron scattering from
32S target.
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The results are globally in accordance with the quadrupole transition probabilities B(E2)

calculated in the previous chapter. For instance, looking at the transition 0+1 → 2+1 in 20Ne

shown in (Fig. V.2), we observe a clear lack of magnitude on the form factor at the non

self-consistent stage. We only note a small effect induced by self-consistency: the global factor

applied to reach experiment decreases from 4.5 to 4. However one notes an improvement of

the trend due to the orbital renormalization. More precisely, a displacement of the minimum

of |FC,2|2 toward smaller momenta is observed. This shift leads now to a good agreement with

the experimental minimum. We also observe a narrowing at the tail of the form factor. The

latter reflects a slight spreading of the transition density toward higher distance r. This is

in accordance with the interpretation of the orbital transformation which allows to partially

populate single-particle states outside of the original sd-shell, characterized by larger spatial

extensions. The conclusion from the 0+1 → 2+1 transition in 20Ne (Fig. V.2) is similar.

Regarding 24Mg, the global factor gained from no to full self-consistency is ∼ 1.1, and cor-

responds to the value that was gained on the B(E2) in the previous chapter. Again the

experimental trend is slightly improved at the tail.

Looking at the transition 0+1 → 2+1 in 28Si, we note an important increase in the charge density

profile caused by the optimization of the single-particle states. The peak at r ∼ 3 fm varies

from a value ∼ 0.13 fm−3 to ∼ 0.16 fm−3. The increase of the density at the surface is balanced

by a decrease of the volume component at r ∼ 1.2 fm. This reflects in a important gain of

magnitude for the form factor |FC,2|2. Indeed the latter is improved by a factor ∼ 4
2.5
∼ 1.6

in accordance with the results for the B(E2) (∼ 1.3). The transition 0+1 → 4+1 in 28Si is more

peculiar. At the non self-consistent level, an important lack of collectivity is noted (global

factor 9). This lack of strength is largely corrected by the introduction of rearrangement terms

which lower this factor to 3. We note however that the orbital equation acts slightly against

this process and bring back up to ∼ 3.5. Nevertheless, the second orbital equation narrows

the form factor leading to a better trend.

Finally, regarding the 0+1 → 2+1 in 32S, we note a displacement of the form factor minimum

toward higher momenta q, when the full self-consistency is applied. It is related to a shrinking

of the transition density toward smaller r. This leads to a disagreement with the experimental

value of the minimum, although global magnitude is gained.

In conclusion, the renormalization of single-particle states generally improves the theoreti-

cal results. In particular, it involves a spreading of the radial density toward the surface,

causing a shrinking of the tail of the form factor and a better agreement with the experimen-

tal trend. The minima are usually also improved (except in 32S), and magnitude is gained.

Finally, let us look at the effect of the explicit introduction of the fp-shell in the valence

space. Results are shown on Fig. (V.7) for 20Ne. At the non self-consistent case, little change

is observed compared to the sd valence space calculation. Self-consistency effects are how-
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V.1 Inelastic electron scattering on discrete states

ever increased. The shift of the minimum toward smaller momenta q is found larger, and is

accompanied by a global compression of the form factor (in particular at the tail). Global

magnitude is also gained.
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Figure V.7: Transition densities and Coulomb form factor for λ = 2 electron scattering from
20Ne target. Results are obtained with sd+ fp valence space.
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V.2 Inelastic proton scattering on discrete states

Hadron scattering can provide information on the distribution of protons and neutrons. In

particular, due to the strength of the proton-neutron interaction between projectile and target,

proton scattering is more sensitive to the contribution of neutron collectivity in transitions.

Because of the complexity of the nuclear force, the transition operator T̂ needed to calculate

a transition probability 〈Ψi|T̂ |Ψf〉 from an initial to a final state is unknown. The model used

here to approach this quantity is based on the Distorted Born Wave Approximation (DWBA),

which describes the incident and scattered waves of the projectile as distorted by the field

of the target nucleus. The latter is taken as an optical potential simulating the interaction

between the proton and the nucleus. The calculations of resulting cross sections are realized

in collaboration with Marc Dupuis (CEA,DAM,DIF).

V.2.1 Formal aspects of the model

We first recall briefly the main points of the theoretical framework, leading to the derivation

of cross sections. More details can be found in [35].

One starts from the initial Schrödinger equation for the target+projectile system,

Ĥ |Ψ〉 = EΨ , (V.8)

where the wave function is written assuming discernibility between the projectile and the

nucleons of the target. That is,

|Ψ〉 =
∑

i

|ψi〉 ⊗ |ui〉 , (V.9)

where {|ψi〉} form an orthonormal basis for the target states, while {|ui〉} characterizes the

relative motion between the target and the projectile. We denote by |ψ0〉 the ground state

of the target, and |u0〉 the center of mass in an elastic scattering state with energy E. The

Hamiltonian can then be separated into,

Ĥ = ĤA + T0 + V̂ , (V.10)

where ĤA denotes the intrinsic Hamiltonian of the target nucleus, T0 the relative kinetic

energy, and V̂ =
∑A

n=1 V0n is the sum of the interactions between the projectile and each

nucleon of the target. Inserting (V.10) and (V.9) into (V.8), one obtains the (a priori infinite)

following system of coupled equations,

(Ek + T0 − E + Vkk) |uk〉 = −
∑

i 6=k

Vki |ui〉 , (V.11)
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V.2 Inelastic proton scattering on discrete states

where we defined the one-body potential,

Vki ≡ 〈ψk|V̂ |ψi〉 . (V.12)

Practically unsolvable, this problem has to be simplified with the use of approximations. When

one wants to study one particular transition ψi = ψ0 → ψf = ψN , a good strategy is found in

the Feshbach formalism [40, 41]. One thus defines P and Q spaces1 with respective projectors,




P̂ = |ψ0〉 〈ψ0|+ |ψN〉 〈ψN | ,
Q̂ = 1̂− P̂ .

(V.13)

The P subspace contains the elastic channel where the nucleus is left in its ground state ψ0 as

well as the particular inelastic channel under study, while Q includes the rest of the channels.

Using projection techniques, one can show that the Schrödinger equation (V.8) for the wave

function |Ψ〉 spanning the whole Hilbert space, can be recasted into an equation,

HeffP |Ψ〉 = EP |Ψ〉 , (V.14)

for the projection P |Ψ〉 of |Ψ〉 on P . The action of the Q space is implicitly accounted for

through the definition of the effective Hamiltonian Heff acting within P ,

Heff = HPP +HPQ
1

E −HQQ + iη
HQP

= T0 +

(
VPP + VPQ

1

E −HQQ + iη
HQP

)

︸ ︷︷ ︸
Veff

. (V.15)

Using the definition (V.13) for P and projecting (V.14) onto |ψ0〉 and |ψN〉, one obtains the

following set of two coupled equations,





(
Eki − T0 + 〈ψ0|Veff |ψ0〉

)
|u0〉 = 〈ψ0|Veff |ψN〉 |uN〉 (V.16)

(
Ekf − T0 + 〈ψN |Veff |ψN〉

)
|uN〉 = 〈ψN |Veff |ψ0〉 |u0〉 . (V.17)

The potentials UNN ≡ 〈ψN |Veff |ψN〉 and U00 ≡ 〈ψ0|Veff |ψ0〉 are the one-body optical po-

tentials acting in the space of the projectile states. Similarly, U0N ≡ 〈ψ0|Veff |ψN〉 and

UN0 ≡ 〈ψN |Veff |ψ0〉 are the transition potentials.

The approximation usually made to solve the system of Eqs. (V.16, V.17) consists in neglect-

ing the term 〈ψ0|Veff |ψN〉 in Eq. (V.16). This assumption amounts to assuming that the

1Obviously, different from the ones discussed in the context of the mp-mh method in chapter II.
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elastic channel |u0〉⊗ |ψ0〉 is not perturbed by the particular inelastic process where the target

is excited in the state |ψf〉 = |ψN〉.
Calling now |χ−

kf
〉 and |χ+

ki
〉 the solutions of

(
Eki − T0 + 〈ψ0|Veff |ψ0〉

)
|χ+/−

ki/f
〉 = 0 , (V.18)

the transition probability for exciting the target from |ψ0〉 to |ψN〉 is given, in the DWBA

approximation, by

Tfi = 〈χ−
kf
ψN |T̂ |u0ψ0〉

≃ 〈χ−
kf
ψN |V̂eff |χ+

ki
ψ0〉

= 〈χ−
kf
|UN0|χ+

ki
〉 . (V.19)

We note that the T -matrix has been expanded to first order in Veff , hence the name ”Born

approximation”. The differential scattering cross-section is then obtained from,

dσfi
dΩ

=
µ2

4π2~

kf
ki
|Tfi|2 . (V.20)

In second quantization, the optical and transition potential are obtained from the effective

interaction Veff as,

UNN ′ =
1

2

∑

βδkk′

〈k′β|Veff |k̃δ〉 〈ψN |a†k′aka
†
βaδ|ψN ′〉

=
1

2

∑

βδkk′

〈k′β|Veff |k̃δ〉 〈ψN |a†βaδ|ψN ′〉 a†k′ak , (V.21)

where (k, k′) denote states of the projectile nucleon, while (β, δ) are states for nucleons in the

target. In order to determine the optical and transition potentials, one thus needs two input

quantities:

• Firstly, one needs to know the effective interaction Veff . In the present application, this

interaction is taken as a G-matrix (the Melbourne G-matrix obtained from the Bonn

realistic potential [2]).

• Secondly, one needs to know the transition densities of the target nucleus. These are

calculated within the mp-mh approach.

V.2.2 Results

We show in Fig. (V.8) and (V.9) the theoretical cross sections for proton scattering on a 28Si

target. Fig. (V.8) displays the cross section for the 0+1 → 2+1 transition, while Fig. (V.9)
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V.2 Inelastic proton scattering on discrete states

shows the cross section for the 0+1 → 4+1 transition. Again the black lines are the theoretical

cross sections, while the red ones represent the theoretical value multiplied by a global factor

adjusted to fit at best the experimental data. Qualitatively, the results are in accordance

with the previous electron scattering study. Concerning the 0+1 → 2+1 transition, we observe a

disagreement with the experimental trend at high angle. This discrepancy might be due to the

reaction model. Comparing the theoretical results obtained at the three stages of the mp-mh

approach, we note that the rearrangement terms do not produce a noticeable effect, while the

optimization of orbitals globally improves the cross section by a factor ∼ 1.25. Looking now

at the 0+1 → 4+1 transition, we observe a nice agreement of the theoretical and experimental

trends. As noted on electronic form factors, the rearrangement terms have a drastic effect in

this case. They allow to reduce the global factor needed to reach experiment by a factor 3.

This improvement is then slightly worsen by the orbital renormalization. Let us remind that

in this nuclei, rearrangement terms and orbital optimization often act against each other. The

deductions made from the electron scattering thus globally apply here. We are led to similar

conclusions in other sd-shell nuclei.
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Figure V.8: Cross section for the 0+1 → 2+1 transition in proton scattering on a 28Si target,
with incident proton energy E = 65 MeV.
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Figure V.9: Cross section for the 0+1 → 4+1 transition in proton scattering on a 28Si target,
with incident proton energy E = 180 MeV.
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Chapter VI

Conclusion and outlook

This thesis work took part in the development of the multiparticle-multihole configuration

mixing approach for the description of atomic nuclei. Based on a variational principle deter-

mining both the expansion coefficients of the nuclear wave function and the single-particle

orbitals, this method establishes a natural link between Shell-Model and self-consistent mean-

field approaches.

The formal analysis conducted in the first part of this document allowed us to improve our

comprehension of the mp-mh method and more precisely to gain insight into the role of the

orbital optimization. In particular, this study revealed the link between the variational equa-

tion determining the single-particle states and the Green’s function formalism at equal times.

It was shown that, while all static correlations can be incorporated into the general mean-field

naturally defined by the orbital equation, the remaining dynamical correlations are related to

the source term of this equation.

The rest of the present work was devoted to applications of the fully self-consistent mp-mh

approach using the D1S Gogny interaction. Particular attention was paid to the effect induced

by the orbital transformation. The systematic study of sd-shell nuclei conducted in chapter

IV led to very satisfactory results. In particular, separation and excitation energies, as well

as magnetic dipole properties were found in very good agreement with experimental data. A

particularly positive effect was induced by the orbital equation on excited spectra as well as

charge radii. The study of electric quadrupole transitions B(E2) clearly suffered from a lack

of collectivity when the mp-mh approach was applied at the non self-consistent level. This

behavior was expected since the configuration mixing was restricted to the sd-shell and no use

of effective charge was made. A global improvement of these results was obtained through the

renormalization of single-particle states. Although the effect is systematically directed in the

right direction, it appears very small for the majority of nuclei under study. This behavior was

understood as due to the explicit symmetry conservation imposed in the method, which pre-

vents the orbital equation from generating 2p-2h excitations from the positive parity valence
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sd-shell to the surroundings negative parity shells. The inclusion of the fp shell in the valence

space in the case of 20Ne led to an improvement of the theoretical B(E2) and to a larger effect

of the orbital optimization. This result suggests that another type of selection criteria of the

configurations according to e.g. their excitation order and taking into account the full available

single-particle space could be more successful. The test study of 12C performed in chapter III

using this type of truncation scheme however led to unrealistically high correlation energies,

confirming that the D1S Gogny interaction is not prepared for this kind of truncations. The

global shifts observed in the excitation spectra of 30Si and 30S by ∼ 1.5 MeV compared to

experiment, also reinforce the need for an interaction that is constrained in the T = 0 channel.

Moreover, although pathological behaviors have not been encountered in the present work,

the zero-range terms in the Gogny interaction (spin-orbit and density-dependent terms) may

lead to ultra-violet divergences during the self-consistent procedure. To avoid such behaviors,

a fully finite-range interaction is necessary. Work in this direction is in progress [26, 82].

Many perspectives can be considered concerning both applications and extensions of the for-

malism of the multiparticle-multihole configuration mixing method. For instance the descrip-

tion of collective excitations such as giant or Pygmy resonances would be of great interest.

A comparison to the Random Phase Approximation approach which utilizes frozen Hartree-

Fock orbitals and an uncorrelated ground state to calculate matrix elements (Quasi-Boson

Approximation) could be conducted. This would allow to further quantify the effect of the

renormalization of orbitals on observables and the importance of correlations in the ground

state.

As illustrated during the study of 12C in chapter III, the use of a selection criterion of the

many-body configurations involving the whole single-particle space can become numerically

very demanding as the number of particles increases. When this type of truncation is unfeasi-

ble, an alternative can be found in the definition of effective operators. One of the perspective

of the mp-mh approach is to use the Feshbach formalism [40, 41] to renormalize the Hamil-

tonian within the space P of configurations that are explicitly treated. Such an effective

Hamiltonian would account for the effect of the missing space that is left untreated by the

renormalization of orbitals.

Finally, from the perspective of a unified treatment of all nuclei, applications of the method

to odd nuclei are in progress. Also, motivated by the experimental progress achieved in the

production of exotic nuclear systems, it appears necessary to extend the formalism of the

mp-mh approach in order to account for the continuum of unbound states. Treating closed

and open systems on an equal footing, such a formalism would contribute to a unification of

both structure and reaction aspects.
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Appendix A

Derivation of the orbital equation for

two- and three-body Hamiltonians

We showed in section (II.1.2) that requiring the energy to be stationary with respect to orbital

variations δa†i leads to the following ”generalized Brillouin equation”,

〈Ψ|
[
Ĥ, T̂

]
|Ψ〉 = 0 , (A.1)

where T̂ is the one-body hermitian operator parameterizing the variation.

In this appendix we derive the orbital equation for the general case of a three-body Hamilto-

nian,

Ĥ = K̂ + V̂ 2N + V̂ 3N

=
∑

ij

Kija
†
iaj +

1

4

∑

ijkl

〈ij|Ṽ 2N |kl〉 a†ia†jalak +
1

36

∑

ijklmn

〈ijk|Ṽ 3N |lmn〉 a†ia†ja†kanamal ,

(A.2)

where K̂ is the kinetic energy operator (including center-of-mass correction), and Ṽ 2N and

Ṽ 3N are the antisymmetrized two- and three-body interactions respectively.

That is,

Ṽ 2N = (1− P12)V
2N

Ṽ 3N = (1− P12 − P23 − P13 + P12P23 + P13P23)V
3N , (A.3)

where Pij = PrirjPσiσj
Pτiτj denotes the exchange operator between particle i and j.
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Injecting (A.2) into Eq. (A.1) we get,

0 =
∑

rs

Trs

(∑

ij

Kij 〈Ψ|
[
a†iaj, a

†
ras

]
|Ψ〉

︸ ︷︷ ︸
1

+
1

4

∑

ijkl

Ṽ 2N
ijkl 〈Ψ|

[
a†ia

†
jalak, a

†
ras

]
|Ψ〉

︸ ︷︷ ︸
2

+
1

36

∑

ijklmn

Ṽ 3N
ijklmn 〈Ψ|

[
a†ia

†
ja

†
kanaman, a

†
ras

]
|Ψ〉

︸ ︷︷ ︸
3

)
. (A.4)

We can calculate 1 , 2 and 3 using the following anti-commutation properties of the

creation and annihilation fermion operators,

{a†i , aj} = δij, and {a†i , a†j} = {ai, aj} = 0 , (A.5)

where {A,B} = AB +BA is the notation for the anti-commutator.

Calculation of the first term We have,

[
a†iaj, a

†
ras

]
= a†i aja

†
r︸︷︷︸

=δrj−a†raj

as − a†r asa
†
i︸︷︷︸

=δsi−a†ias

aj

= δrja
†
ias − δsia†raj − a†ia†rajas + a†ra

†
iasaj︸ ︷︷ ︸

=a†ia
†
rajas

= δrja
†
ias − δsia†raj . (A.6)

Injecting this into the expression of 1 , we obtain,

1 =
∑

ij

Kij 〈Ψ|
[
a†iaj, a

†
ras

]
|Ψ〉

=
∑

i

Kir 〈Ψ|a†ias|Ψ〉 −
∑

j

Ksj 〈Ψ|a†raj|Ψ〉

=
∑

i

ρsiKir −
∑

j

Ksjρjr , (A.7)

where ρsi = 〈Ψ|a†ias|Ψ〉 is the one-body density matrix.

So that finally,

1 = [ρ,K]sr . (A.8)

132



Calculation of the second term Using again the anti-commutation relations (A.5) we

can express the commutator in 2 as,

[
a†ia

†
jalak, a

†
ras

]
= a†ia

†
jalaka

†
ras − a†rasa†ia†jalak (A.9)

= δkra
†
ia

†
jalas − δlra†ia†jakas

−δisa†ra†jalak + δjsa
†
ra

†
ialak

+a†ia
†
ja

†
ralakas − a†ra†ia†jasalak︸ ︷︷ ︸

=a†ia
†
ja

†
ralakas

. (A.10)

The two terms on the first line of Eq. (A.10) differ by the exchange k ↔ l. Using the property

Ṽ 2N
ijkl = −Ṽ 2N

ijlk of the antisymmetrized interaction we therefore see that they both bring the

same contribution to 2 . The same argument apply to both terms on the second line of

(A.10), whereas the two terms on the third line cancel each other. As a result we have,

2 =
1

2

∑

ijl

Ṽ 2N
ijrl 〈Ψ|a†ia†jalas|Ψ〉 −

1

2

∑

jkl

Ṽ 2N
sjkl 〈Ψ|a†ra†jalak|Ψ〉 . (A.11)

Using the definition of the two-body correlation matrix σ,

ρ
[2]
1′1,2′2 ≡ 〈Ψ|a†1a†2a2′a1′ |Ψ〉

= (1− P12)ρ1′1ρ2′2 + σ11′,22′ , (A.12)

we obtain,

2 =
∑

i

ρsi

(
∑

jl

Ṽ 2N
ijrlρlj

)

︸ ︷︷ ︸
≡Γ2N [ρ]ir

−
∑

k

(
∑

jl

Ṽ 2N
sjklρlj

)

︸ ︷︷ ︸
≡Γ2N [ρ]sk

ρkr +
1

2

(
∑

ijl

σis,jlṼ
2N
ijrl −

∑

jkl

Ṽ 2N
sjklσrk,jl

)

︸ ︷︷ ︸
≡G2N [σ]sr

,

(A.13)

where we introduced the average potential Γ2N [ρ] and the source term G2N [σ] coming from

the two-body interaction V 2N . As a result we have,

2 =
[
ρ,Γ2N [ρ]

]
sr
+G2N [σ]sr . (A.14)

Calculation of the third term Following the same procedure than previously, we deduce,

[
a†ia

†
ja

†
kanamal, a

†
ras

]
= δlra

†
ia

†
ja

†
kanamas − δmra

†
ia

†
ja

†
kanalas + δnra

†
ia

†
ja

†
kamalas

−δsia†ra†ja†kanamal + δsja
†
ra

†
ia

†
kanamal − δska†ra

†
ia

†
janamal .

(A.15)
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The first three terms on the right-hand side of Eq. (A.15) differ by permutations of (l,m, n).

Thus because of the anti-symmetrization properties Ṽ 3N
ijklmn = −Ṽ 3N

ijkmln = +Ṽ 3N
ijknlm, they bring

the same contribution to the sum 3 . Similarly the last three terms on the right-hand side of

Eq. (A.15) contribute equally to 3 . Consequently we get,

3 =
1

12

∑

ijkmn

Ṽ 3N
ijkrmn 〈Ψ|a†ia†ja†kanamas|Ψ〉 −

1

12

∑

jklmn

Ṽ 3N
sjklmn 〈Ψ|a†ra†ja†kanamal|Ψ〉 . (A.16)

Expressing the three-body density matrix in terms of the two-body and three-body correlations

matrices σ and χ,

ρ
[3]
1′1,2′2,3′3 ≡ 〈Ψ|a†1a†2a†3a3′a2′a1′ |Ψ〉

= (1− P12 − P13)(1− P23)ρ1′1ρ2′2ρ3′3

+(1− P12 − P13)ρ1′1σ22′,33′ + (1− P12 − P23)ρ2′2σ11′,33′ + (1− P13 − P23)ρ3′3σ11′,22′

+χ11′,22′,33′ , (A.17)

injecting it into Eq. (A.16) and using again the anti-symmetrization properties of Ṽ 3N we

obtain,

3 =
∑

i

ρsi

(
∑

jkmn

Ṽ 3N
ijkrmn

[
1

2
ρmjρnk +

1

4
σjm,kn

])

︸ ︷︷ ︸
Γ3N [ρ,σ]ir

−
∑

l

(
∑

jkmn

Ṽ 3N
sjklmn

[
1

2
ρmjρnk +

1

4
σjmkn

])

︸ ︷︷ ︸
Γ3N [ρ,σ]sl

ρlr

1

2

(
∑

ijkmn

σis,knṼ
3N
ijkrmnρmj − Ṽ 3N

sjkimnρmjσri,kn

)
+

1

12

(
∑

ijkmn

χis,jm,knṼ
3N
ijkrmn − Ṽ 3N

sjkimnχri,jm,kn

)

︸ ︷︷ ︸
G3N [ρ,σ,χ]sr

,

(A.18)

where we have introduced the average potential Γ3N [ρ, σ] and the source term G3N [ρ, σ, χ]

coming from the three-body interaction V 3N . This leads to,

3 =
[
ρ,Γ3N [ρ, σ]

]
sr
+G3N [ρ, σ, χ]sr . (A.19)

Thus, adding 1 , 2 and 3 , the variational equation (A.4) can be rewritten as,

∑

rs

Trs

([
ρ,K + Γ2N [ρ] + Γ3N [ρ, σ]

]
sr
+G2N [σ]sr +G3N [ρ, σ, χ]sr

)
= 0 . (A.20)
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This needs to be verified for any variation of the orbitals, i.e. for all Trs. Therefore the

stationarity of the energy with respect to orbital variations can be expressed as,

[
ĥ[ρ, σ], ρ̂

]
= Ĝ[ρ, σ, χ] , (A.21)

where we defined the one-body mean-field Hamiltonian ĥ[ρ, σ] whose matrix elements are,

ĥ[ρ, σ]ij = Kij + Γ2N [ρ]ij + Γ3N [ρ, σ]ij

= Kij +
∑

kl

Ṽ 2N
ikjlρlk +

1

4

∑

klmn

Ṽ 3N
ikl,jmn 〈Ψ|a†ka

†
lanam|Ψ〉

= Kij +
∑

kl

Ṽ 2N
ikjlρlk +

1

2

∑

klmn

Ṽ 3N
ikl,jmnρmkρnl +

1

4

∑

klmn

Ṽ 3N
ikl,jmnσkm,ln , (A.22)

and the source term Ĝ[ρ, σ, χ] given by,

G[ρ, σ, χ]sr = G2N [σ]sr +G3N [ρ, σ, χ]sr

=
1

2

(
∑

ijl

σis,jlṼ
2N
ijrl −

∑

jkl

Ṽ 2N
sjklσrk,jl

)
+

1

2

(
∑

ijkmn

σis,knṼ
3N
ijkrmnρmj − Ṽ 3N

sjkimnρmjσri,kn

)

+
1

12

(
∑

ijkmn

χis,jm,knṼ
3N
ijkrmn − Ṽ 3N

sjkimnχri,jm,kn

)
. (A.23)

This source term is generated by two- and three-body correlations beyond the mean-field

ĥ[ρ, σ]. We easily notice that there exists an operator F̂ [ρ, σ, χ] such that Ĝ = F̂ − F̂ †.

Consequently, Ĝ[ρ, σ, χ] is an anti-hermitian operator.
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Appendix B

Two- and three-body correlation

matrices

B.1 Wick’s theorem

Several proofs of the Wick’s theorem can be found in the literature [101, 42]. In this appendix

we only state the fermionic time-independent Wick’s theorem and apply it to two- and three-

body operators.

The fermion particle creation and destruction operators annihilate the true vacuum |0〉 as,

ai |0〉 = 〈0| a†i = 0 , ∀i . (B.1)

They satisfy the anti-commutation rules,

{
{a†i , aj} ≡ a†iaj + aja

†
i = δij

{a†i , a†j} = {ai, aj} = 0 . (B.2)

Before stating Wick’s theorem we need to introduce the concepts of normal ordering and

contractions.

Normal product The normal product N(...) (or : ... :) of creation and/or annihilation

operators, with respect to the vacuum |0〉, is equal to the product of these operators reordered

so that all creation operators a†i are on the left of all destruction operators ai. It is affected

by the sign of the permutation P required to bring the product to that form.

That is,

N(a†1a2...ama
†
m+1a

†
m+2....an....a

†
N) ≡ : a†1a2...ama

†
m+1a

†
m+2....an....a

†
N ... :

= (−)P(a†1...a†m+1a
†
m+2...a

†
N ...)(a2...am...an...) . (B.3)
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A very useful property arises from this definition: the vacuum expectation value of a normal

product of operators is equal to zero.

〈0|N(A,B,C...)|0〉 = 〈0| : A,B,C... : |0〉 = 0 , (B.4)

where A,B,C... can be any linear combinations of a† and a’s.

Contractions The contraction AB of two operators A and B is defined as,

AB = AB− : AB : . (B.5)

Clearly this quantity is a number either equal to 0 or {A,B}. Moreover since the vacuum

expectation value 〈0| : AB : |0〉 = 0 we have,

AB = 〈0|AB|0〉 . (B.6)

In many-body theories, one often defines a reference state taken as the ground state of a

first approximation non-interacting theory. In our case, this reference state is the Slater

determinant |φ〉 =
∏A

i=1 a
†
i |0〉 =

∏
h a

†
h|0〉 containing a filled Fermi sea (hole states h) and

empty particle states p. Therefore if we define a new basis of operators b and b† such that,

{
b†h = ah , bh = a†h
b†p = a†p , bp = ap ,

(B.7)

we have,

bi |φ〉 = 〈φ| b†i = 0 , ∀i = p, h . (B.8)

The state |φ〉 is said to be a vacuum for these operators and therefore we can define the

contraction and normal products with respect to this reference state 1

For instance,

: a†hap : = +a†hap

: a†pap′ : = +a†pap′

: a†hah′ : = −ah′a†h .

where : ... : denotes now the normal ordering with respect to |φ〉.

1In fact more generally any b† and b’s obtained by linear combination of a† and a’s conserve the anti-
commutation rules (B.1) (canonical transformation). Therefore the new reference state obtained by filling the
lowest b-states can be used to define contractions and normal products.
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Wick’s theorem:

We can now state the Wick’s theorem as following.

For a given reference state, any product of N creation and/or annihilation operators

A1A2...AN is equal to the sum of all possible terms obtained by contracting p pairs

of operators (0 6 p 6 N/2), by normal ordering the remaining ones and by affecting

each term by the sign of the permutation required to bring together the contracted

operators. That is,

A1A2...AN = : A1A2...AN :

+
∑

: A1A2...Ai...Aj...AN :

+
∑

: A1A2...Ai...Aj...Ak...Al...AN :

+
∑

: A1A2...Ai...Aj...Ak...Al...Ap...Aq...AN :

+... . (B.9)

B.1.1 Wick’s theorem for a two-body operator

Let us apply (B.9) to a two-body operator a†ia
†
kajal. Contraction and normal products are

taken with respect to the reference state |φ〉 =∏A
i=1 a

†
i |0〉 =

∏
h a

†
h|0〉.

a†ia
†
kajal = a†ia

†
kajal − a

†
iaja

†
kal + a†iala

†
kaj

+ a†ia
†
k : ajal : + ajal : a

†
ia

†
k :

− a†iaj : a†kal : − a
†
kal : a

†
iaj :

+ a†ial : a
†
kaj : + a†kaj : a

†
ial :

+ : a†ia
†
kajal : . (B.10)

Since the Slater determinant |φ〉 =∏A
i=1 a

†
i |0〉 has a good particle number, we have,

a†ia
†
j = aiaj = 0 . (B.11)
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Thus, Eq. (B.10) reduces to,

a†ia
†
kajal = − a†iaja†kal + a†iala

†
kaj

− a†iaj : a†kal : − a
†
kal : a

†
iaj :

+ a†ial : a
†
kaj : + a†kaj : a

†
ial :

+ : a†ia
†
kajal : . (B.12)

B.1.2 Wick’s theorem for a three-body operator

Let us now apply (B.9) to a three-body operator a†ia
†
ja

†
kanamal. Again we use the fact that

the particle number is a good quantum number.

a†ia
†
ja

†
kanamal = a†kana

†
jama

†
ial − a†kana

†
jala

†
iam − a†kama

†
jana

†
ial

+ a†kama
†
jala

†
ian − a†kala

†
jama

†
ian + a†kala

†
jana

†
iam

+ a†kana
†
jam : a†ial : + a†kana

†
ial : a

†
jam : + a†jama

†
ial : a

†
kan :

− a†kana
†
jal : a

†
iam : − a†kana

†
iam : a†jal : − a†jala†iam : a†kan :

− a†kama
†
jan : a†ial : − a†kama

†
ial : a

†
jan : − a†jana†ial : a†kam :

+ a†kama
†
jal : a

†
ian : + a†kama

†
ian : a†jal : + a†jala

†
ian : a†kam :

− a†kala
†
jam : a†ian : − a†kala

†
ian : a†jam : − a†jama†ian : a†kal :

+ a†kala
†
jan : a†iam : + a†kala

†
iam : a†jan : + a†jana

†
iam : a†kal :

+ a†kan : a†ia
†
jamal : − a†kam : a†ia

†
janal : + a†kal : a

†
ia

†
janam :

− a†jan : a†ia
†
kamal : + a†jam : a†ia

†
kanal : − a

†
jal : a

†
ia

†
kanam :

+ a†ian : a†ja
†
kamal : − a

†
iam : a†ja

†
kanal : + a†ial : a

†
ja

†
kanam :

+ : a†ia
†
ja

†
kanamal : . (B.13)
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B.2 Two-body correlation matrix σ

Let us show that there exists a matrix σ such that the two-body density ρ[2] can be written

as,

ρ
[2]
li,jk ≡ 〈Ψ|a†ia†kajal|Ψ〉

= ρliρjk − ρlkρji + σil,kj (B.14)

where ρli = 〈Ψ|a†ial|Ψ〉 is the one-body density matrix.

Making use of Wick’s theorem (B.12) with respect to |φ〉, we obtain,

ρ
[2]
li,jk ≡ 〈Ψ|a†ia†kajal|Ψ〉

= − a†iaja†kal + a†iala
†
kaj

− a†iaj : a†kal : − a
†
kal 〈Ψ| : a

†
iaj : |Ψ〉

+ a†ial 〈Ψ| : a†kaj : |Ψ〉 + a†kaj 〈Ψ| : a
†
ial : |Ψ〉

+ 〈Ψ| : a†ia†kajal : |Ψ〉 , (B.15)

Since a†iaj = 〈φ|a†iaj|φ〉 is a number, taking the expectation value of Eq. (B.5) in the correlated

state |Ψ〉, leads to a†iaj = 〈Ψ|a†iaj|Ψ〉 − 〈Ψ| : a†iaj : |Ψ〉. We inject this expression into Eq.

(B.15) to finally get,

ρ
[2]
li,jk = 〈Ψ|a†ia†kajal|Ψ〉

= 〈Ψ|a†ial|Ψ〉 〈Ψ|a†kaj|Ψ〉 − 〈Ψ|a
†
iaj|Ψ〉 〈Ψ|a†kal|Ψ〉

+ 〈Ψ| : a†ia†kajal : |Ψ〉 − 〈Ψ| : a
†
ial : |Ψ〉 〈Ψ| : a†kaj : |Ψ〉+ 〈Ψ| : a

†
iaj : |Ψ〉 〈Ψ| : a†kal : |Ψ〉

≡ ρliρjk − ρlkρji + σil,kj , (B.16)

where,

σil,kj = 〈Ψ| : a†ia†kajal : |Ψ〉 − 〈Ψ| : a
†
ial : |Ψ〉 〈Ψ| : a†kaj : |Ψ〉+ 〈Ψ| : a

†
iaj : |Ψ〉 〈Ψ| : a†kal : |Ψ〉

(B.17)

is the two-body correlation matrix.

This can be written in a more compact way as,

ρ
[2]
1′1,2′2 ≡ 〈Ψ|a†1a†2a2′a1′ |Ψ〉

= (1− P12)ρ1′1ρ2′2 + σ11′,22′ , (B.18)

141



Chapter B : Two- and three-body correlation matrices

with

σ11′,22′ = 〈Ψ| : a†1a†2a2′a1′ : |Ψ〉 − (1− P12) 〈Ψ| : a†1a1′ : |Ψ〉 〈Ψ| : a†2a2′ : |Ψ〉 . (B.19)

B.3 Three-body correlation matrix χ

Similarly we can use Wick’s theorem (B.13) for a three-body operator to show that,

ρ
[3]
li,jk ≡ 〈Ψ|a†ia†ja†kanamal|Ψ〉

= ρnkρmjρli − ρnkρmiρlj − ρmkρnjρli + ρmkρniρlj − ρniρmjρlk + ρnjρmiρlk

+ρnkσil,jm − ρnjσim,kl − ρniσkl,jm
+ρmjσil,kn − ρmiσjl,kn − ρmkσil,jn

+ρliσjm,kn − ρljσim,kn − ρlkσjm,in

+χil,jm,kn , (B.20)

where,

χil,jm,kn = 2
(
〈Ψ| : a†ial : Ψ〉 〈Ψ| : a†jam : |Ψ〉 〈Ψ| : a†kan : |Ψ〉

− 〈Ψ| : a†ial : Ψ〉 〈Ψ| : a†jan : |Ψ〉 〈Ψ| : a†kam : |Ψ〉
− 〈Ψ| : a†iam : Ψ〉 〈Ψ| : a†jal : |Ψ〉 〈Ψ| : a†kan : |Ψ〉
− 〈Ψ| : a†ian : Ψ〉 〈Ψ| : a†jal : |Ψ〉 〈Ψ| : a†kam : |Ψ〉
+ 〈Ψ| : a†ian : Ψ〉 〈Ψ| : a†jal : |Ψ〉 〈Ψ| : a†kam : |Ψ〉
+ 〈Ψ| : a†iam : Ψ〉 〈Ψ| : a†jan : |Ψ〉 〈Ψ| : a†kal : |Ψ〉

)

−〈Ψ| : a†ial : |Ψ〉 〈Ψ| : a†ja†kanam : |Ψ〉+ 〈Ψ| : a†jal : |Ψ〉 〈Ψ| : a†ia†kanam : |Ψ〉
+ 〈Ψ| : a†kal : |Ψ〉 〈Ψ| : a

†
ja

†
ianam : |Ψ〉

− 〈Ψ| : a†jam : |Ψ〉 〈Ψ| : a†ia†kanal : |Ψ〉+ 〈Ψ| : a
†
kam : |Ψ〉 〈Ψ| : a†ia†janal : |Ψ〉

+ 〈Ψ| : a†iam : |Ψ〉 〈Ψ| : a†ja†kanal : |Ψ〉
− 〈Ψ| : a†kan : |Ψ〉 〈Ψ| : a†ia†jamal : |Ψ〉+ 〈Ψ| : a†ian : |Ψ〉 〈Ψ| : a†ka

†
jamal : |Ψ〉

+ 〈Ψ| : a†jan : |Ψ〉 〈Ψ| : a†ia†kamal : |Ψ〉
+ 〈Ψ| : a†ia†ja†kanamal : |Ψ〉 . (B.21)
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That is,

ρ
[3]
1′1,2′2,3′3 ≡ 〈Ψ|a†1a†2a†3a3′a2′a1′ |Ψ〉

= (1− P12 − P13)(1− P23)ρ1′1ρ2′2ρ3′3

+(1− P12 − P13)ρ1′1σ22′,33′ + (1− P12 − P23)ρ2′2σ11′,33′ + (1− P13 − P23)ρ3′3σ11′,22′

+χ11′,22′,33′ , (B.22)

where

χ11′,22′,33′ = 2(1− P12 − P13)(1− P23) 〈Ψ| : a†1a1′ : Ψ〉 〈Ψ| : a†2a2′ : |Ψ〉 〈Ψ| : a†3a3′ : |Ψ〉
−(1− P12 − P13) 〈Ψ| : a†1a1′ : |Ψ〉 〈Ψ| : a†2a†3a3′a2′ : |Ψ〉
−(1− P12 − P23) 〈Ψ| : a†2a2′ : |Ψ〉 〈Ψ| : a†1a†3a3′a1′ : |Ψ〉
−(1− P13 − P23) 〈Ψ| : a†3a3′ : |Ψ〉 〈Ψ| : a†1a†2a2′a1′ : |Ψ〉
+ 〈Ψ| : a†1a†2a†3a3′a2′a1′ : |Ψ〉 . (B.23)
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Appendix C

Practical calculations of the densities

and the source term G[σ]

C.1 Construction of the many-body wave function in

the mp-mh approach

In the mp-mh approach, the nuclear states |Ψ〉 are explicitly characterized by a good parity

p, and projection Jz of the total angular momentum J on the symmetry axis. The rotational

invariance is implicitly preserved by restricting the configuration mixing to Slater determinants

ensuring the conservation of J as good quantum number. These Slater determinants are

practically classified into blocks characterized by a certain projection Jz and parity p. In

the present appendix, we focus on the description of the ground-state of even-even nuclei,

characterized by J = K = 0. In this case, the blocks of configurations to be considered are

the followings.

• Block (0) containing all the configurations α ≡ (απαν) with K(απ) = K(αν) = 0.

In particular, this block groups configurations built from pairs of time-reversed single-

particle states (BCS-type), as well as configurations built with more general pairs (HFB-

type).

• Blocks (−) containing the configurations α ≡ (απαν) characterized by K(απ) < 0

and

K(αν) = −K(απ).

• Blocks (+) containing the configurations α ≡ (απαν) characterized by K(απ) > 0

and

K(αν) = −K(απ).

They are represented on Fig. (C.1).
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Figure C.1: Different configuration blocks for the case K = Kπ + Kν = 0. Only blocks (0)
and (−) are explicitly constructed.

Practically all configurations belonging to the block (0) and to the blocks (−) are explicitly

constructed. In order to minimize at best the size of the matrix to diagonalize while solving

the first variational equation, configuration blocks (+) are never explicitly built. Indeed one

can make use of time-reversal invariance to write the total wave function as,

|Ψ〉J=0,K=0,p =
∑

α∈(0)

Aα |φα〉+
1√
2

∑

α∈(−)

(
Aα |φα〉+ T̂Aα |φα〉

)

=
∑

α∈(0)

Aα |φα〉+
1√
2

∑

α∈(−)


Aα |φα〉+ A∗

α T̂ |φα〉︸ ︷︷ ︸
≡|φα〉


 . (C.1)

This wave function is time reversal invariant as it satisfies T̂ |Ψ〉 ≡ |Ψ〉 = |Ψ〉. More precisely,

in terms of proton and neutron configurations we have,

|Ψ〉J=0,K=0,p =
∑

α0
π

K
α0
π
=0

∑

α0
ν

K
α0
ν
=0

Aα0
πα

0
ν
|φα0

π
〉 ⊗ |φα0

ν
〉

+
1√
2

∑

απ
Kαπ<0

∑

αν
Kαν=−Kαπ

[
Aαπαν |φαπ〉 ⊗ |φαν 〉+ A∗

απαν
|φαπ〉 ⊗ |φαν 〉

]
.

(C.2)

C.2 Calculation of the densities

Two types of densities are to be calculated:
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• Isospin-diagonal densities.

Let us write the wave function in a generic way 1 as |Ψ〉 =
∑

αCα |φα〉, and denote by

τ = (π, ν) the isospin. This type of density can be of one-body (ρ
[1]
τ ) or two-body (ρ

[2]
τ )

type. It can be expressed as,

〈Ψ|ρ̂[i]τ |Ψ〉 =
∑

αβ

C∗
αCβ 〈φα|ρ̂[i]τ |φβ〉

=
∑

ατατ ′

∑

βτβτ ′

C∗
ατατ ′

Cβτβτ ′
〈φατ |ρ̂[i]τ |φβτ 〉 〈φατ ′

|φβτ ′
〉

=
∑

ατατ ′

∑

βτ

C∗
ατατ ′

Cβτατ ′
〈φατ |ρ̂[i]τ |φβτ 〉

where i = (1, 2).

The τ ′ configurations must therefore be identical. Since,

{
K = Kαπ +Kαν = Kβπ +Kβν (C.3)

p = pαπ × pαν = pβπ × pβν , (C.4)

this restricts the τ configurations to have identical projections Kατ = Kβτ and parities

pατ = pβτ . Pure-proton and pure-neutron densities can therefore only couple Slater de-

terminants belonging to the same block.

• Proton-neutron density.

Since the numbers of protons and neutrons are conversed, this type of density can only

be of two-body type. Let us consider for instance,

〈iπjν |ρ̂[2]πν |kνlπ〉 = 〈Ψ|a†iπa
†
jν
akνalπ |Ψ〉 =

∑

απαν

∑

βπβν

C∗
απαν

Cβπβν 〈φαπ |a†iπalπ |φβπ〉 〈φαν |a†jνakν |φβν 〉 .

We see that now both proton and neutron configurations in α and β can be different.

Therefore |φα〉 and |φβ〉 can belong to different configuration blocks.

Conditions (C.3) and (C.4) lead to,





Kαπ −Kβπ︸ ︷︷ ︸
∆Kπ

= − (Kαν −Kβν )︸ ︷︷ ︸
∆Kν

(C.5)

pαπ

pβπ︸︷︷︸
∆pπ

=
pβν

pαν

=
pαν

pβν︸︷︷︸
∆pν

. (C.6)

1Cα contains eventual 1√
2
factors.
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So that the only conditions to be fulfilled are,





∆Kπ = miπ −mlπ = mkν −mjν = −∆Kν (C.7)

∆pπ =
piπ
plπ

=
pkν
pjν

= ∆pν . (C.8)

C.2.1 Conventions and notations

The single-particle states a†i(j,k,l...) (we omit the index τ) can be either states a†µ = a†κµ,mµ

with positive projection mµ = jzµ (κµ = other quantum numbers) or time-reversed states

ā†µ = (−)lµ+jµ−mµa†κµ,−µ.

Let us therefore define in a generic way ã†i as,

ã†i =

{
ā†µ , if i = µ > 0

a†µ , if i = µ̄ < 0 .
(C.9)

Practically, the configurations |φα〉 are built with the following conventions,

• The orbitals are ordered by increasing energies.

• If |φα〉 contains pairs of time-reversed single-particle states, the particle in the reversed

state is created first.

For instance,

|φα〉 = a†µ1
a†µ2

a†µ2
a†µ3
|0〉 . (C.10)

The configuration obtained after applying a time-reversal transformation is,

|φα〉 ≡ T̂ |φα〉 =
(
T̂sa

†
µ1
T̂ †
s

) (
T̂sa

†
µ2
T̂ †
s

) (
T̂sa

†
µ2
T̂ †
s

) (
T̂sa

†
µ3
T̂ †
s

)

=
(
a†µ1

) (
a†µ2

) (
−a†µ2

) (
a†µ3

)
. (C.11)

If N̄α is the number of time-reversed states occupied in the configuration α, we note θα = (−)N̄α

the phase obtained after applying time reversal transformation to |φα〉. (In the previous ex-

ample, θα = (−)).

Let us now define |φ̃α〉, the state obtained after time-reversal transformation of |φα〉 with-
out the phase θα. That is,

|φα〉 = θα |φ̃α〉 . (C.12)

In the previous example,

|φα〉 = (−) a†µ1
a†µ2

a†µ2
a†µ3︸ ︷︷ ︸

= (−) |φ̃α〉 . (C.13)
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In terms of i-states, if

|φα〉 = a†i1a
†
i2
...a†iN |0〉 , (C.14)

then,

|φ̃α〉 = ã†i1 ã
†
i2
...ã†iN |0〉 . (C.15)

One notices that the pairs of reversed single-particle states (µ, µ) in |φ̃α〉 are not ordered as

in the conventions previously stated.

We therefore define,

|φ̃α

R
〉 = θRα |φ̃α〉 , (C.16)

as the state corresponding to |φ̃α〉, with pairs that are correctly ordered. θRα is the phase

appearing when reordering the pairs.

In the previous example,

|φ̃α

R〉 = a†µ1
a†µ2

a†µ2
a†µ3

= (−)a†µ1
a†µ2

a†µ2
a†µ3

= (−) |φ̃α〉 . (C.17)

In summary we have,

T̂ |φα〉 ≡ |φα〉 = θα |φ̃α〉

= θαθ
R
α |φ̃α

R〉 .

C.2.2 Two-body density of same isospin

Let us consider for instance an element ρ
[2]
lπiπ ,kπjπ

= 〈Ψ|a†iπa
†
jπ
akπalπ |Ψ〉 of the two-body proton

density. Using expression (C.2) for the wave function, we get,

〈Ψ|a†iπa
†
jπ
akπalπ |Ψ〉 =

∑

α0
π

K
α0
π
=0

∑

β0
π

K
β0π

=0

∑

α0
ν

K
α0
ν
=0

A∗
α0
πα

0
ν
Aβ0

πα
0
ν
〈φα0

π
|a†iπa

†
jπ
akπalπ |φβ0

π
〉

︸ ︷︷ ︸
(a)

+
1

2

∑

απ
Kαπ<0

∑

βπ
Kβπ=Kαπ

∑

αν
Kαν=−Kαπ

A∗
απαν

Aβπαν 〈φαπ |a†iπa
†
jπ
akπalπ |φβπ〉︸ ︷︷ ︸

(b)

+AαπανA
∗
βπαν
〈φαπ |a†iπa

†
jπ
akπalπ |φβπ〉︸ ︷︷ ︸

(c)




(C.18)
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When, for a given quadruplet Q ≡ (i, j, k, l) (we omit the π sub-index), there exists a

non-zero contribution 〈φαπ |a†ia†jakal|φβπ〉 from (b) to ρ[2](Q), the corresponding contribution

〈φαπ |a†ia†jakal|φβπ〉 from (c) to ρ[2](Q) is zero, and the couplings 〈φα0
π
|a†ia†jakal|φβ0

π
〉 from (a)

are built explicitly if non zero.

However the coupling 〈φαπ |ã†i ã†j ãkãl|φβπ〉 can be non zero and will be ignored by the code

since the time-reversed configurations are not explicitly built. If the contribution from (a) to

ρ[2](Q̃) = 〈Ψ|ã†iπ ã
†
jπ
ãkπ ãlπ |Ψ〉 is non zero, this means that ρ[2](Q̃) will be partially filled.

One therefore needs to implicitly take into account the contributions from (c). That is, for

every coupling 〈φαπ |a†ia†jakal|φβπ〉 = ϕαβ
ijkl 6= 0 from (b) participating to ρ[2](Q), one needs to

add by hand the contribution from (c) to ρ[2](Q̃). This contribution is equal to,

AαπανA
∗
βπαν
〈φαπ |ã†i ã†j ãkãl|φβπ〉

= AαπανA
∗
βπαν

θαπθβπ 〈φ̃απ |ã†i ã†j ãkãl|φ̃βπ〉︸ ︷︷ ︸
〈φαπ |a

†
ia

†
jakπal|φβπ 〉 (same ordering)

= AαπανA
∗
βπαν

θαπθβπϕ
αβ
ijkl . (C.19)

C.2.3 One-body densities

One-body densities being either of proton or neutron type, the same reasoning is applied for

their calculation.

C.2.4 Two-body proton-neutron density

As shown previously, the situation gets more complicated when calculating the two-body

density of proton-neutron type, since this type of operator can couple configurations belonging

to different blocks.

Let us consider for instance the following element: 〈Ψ|a†iπa
†
jν
akνalπ |Ψ〉. Using expression (C.2)
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for the wave function, we have,

〈ΨK=0|a†iπa
†
jν
akνalπ |ΨK=0〉 =

1

2

∑

απ
Kαπ<0

∑

αν
Kαν=−Kαπ

∑

βπ
Kβπ<0

∑

βν
Kβν=−Kβπ

A∗
απαν

Aβπβν 〈Φαπ |a†iπalπ |Φβπ〉 〈Φαν |a†jνakν |Φβν 〉 (C.20a)

+
1

2

∑

απ
Kαπ<0

∑

αν
Kαν=−Kαπ

∑

βπ
Kβπ<0

∑

βν
Kβν=−Kβπ

AαπανA
∗
βπβν
〈Φαπ |a†iπalπ |Φβπ〉 〈Φαν |a†jνakν |Φβν 〉 (C.20b)

+
1

2

∑

απ
Kαπ<0

∑

αν
Kαν=−Kαπ

∑

βπ
Kβπ<0

∑

βν
Kβν=−Kβπ

A∗
απαν

A∗
βπβν
〈Φαπ |a†iπalπ |Φβπ〉 〈Φαν |a†jνakν |Φβν 〉 (C.20c)

+
1

2

∑

απ
Kαπ<0

∑

αν
Kαν=−Kαπ

∑

βπ
Kβπ<0

∑

βν
Kβν=−Kβπ

AαπανAβπβν 〈Φαπ |a†iπalπ |Φβπ〉 〈Φαν |a†jνakν |Φβν 〉 (C.20d)

+
1√
2

∑

απ
Kαπ<0

∑

αν
Kαν=−Kαπ

∑

β0
π

K
β0π

=0

∑

β0
ν

K
β0ν

=0

A∗
απαν

Aβ0
πβ

0
ν
〈Φαπ |a†iπalπ |Φβ0

π
〉 〈Φαν |a†jνakν |Φβ0

ν
〉 (C.20e)

+
1√
2

∑

α0
π

K
α0
π
=0

∑

α0
ν

K
α0
ν
=0

∑

βπ
Kβπ<0

∑

βν
Kβν=−Kβπ

A∗
α0
πα

0
ν
Aβπβν 〈Φα0

π
|a†iπalπ |Φβπ〉 〈Φα0

ν
|a†jνakν |Φβν 〉 (C.20f)

+
1√
2

∑

απ
Kαπ<0

∑

αν
Kαν=−Kαπ

∑

β0
π

K
β0π

=0

∑

β0
ν

K
β0ν

=0

AαπανAβ0
πβ

0
ν
〈Φαπ |a†iπalπ |Φβ0

π
〉 〈Φαν |a†jνakν |Φβ0

ν
〉 (C.20g)

+
1√
2

∑

α0
π

K
α0
π
=0

∑

α0
ν

K
α0
ν
=0

∑

βπ
Kβπ<0

∑

βν
Kβν=−Kβπ

A∗
α0
πα

0
ν
A∗

βπβν
〈Φα0

π
|a†iπalπ |Φβπ〉 〈Φα0

ν
|a†jνakν |Φβν 〉 (C.20h)

+
∑

α0
π

K
α0
π
=0

∑

α0
ν

K
α0
ν
=0

∑

β0
π

K
β0π

=0

∑

β0
ν

K
β0ν

=0

A∗
α0
πα

0
ν
Aβ0

πβ
0
ν
〈Φα0

π
|a†iπalπ |Φβ0

π
〉 〈Φα0

ν
|a†jνakν |Φβ0

ν
〉 (C.20i)

All contributions involving time-reversed configurations, i.e. contributions from terms (C.20b),

(C.20c), (C.20d), (C.20g) and (C.20h) have to be treated implicitly.

Contribution (C.20b) As for the two-body density of same isospin, contributions from

(C.20b) can be deduced from (C.20a). That is, for every
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A∗
απαν

Aβπβν 〈Φαπ |a†iπalπ |Φβπ〉 〈Φαν |a†jνakν |Φβν 〉 = A∗
απαν

Aβπβνϕ
αβ
iπlπ

ϕαβ
jνkν
6= 0

contributing to ρ
[2]
lπiπ ,kνjν

, we need to add by hand the contribution from (C.20b) to ρ
[2]

l̃π ĩπ ,k̃ν j̃ν
.

This contribution is equal to,

A∗
απαν

Aβπβνϕ
αβ
iπlπ

ϕαβ
jνkν

θαπθανθβπθβν

.

Contribution (C.20c) To calculate couplings of the type 〈Φαπ |a†iπalπ |Φβπ〉, we act the

operators a†iπalπ on 〈Φαπ |. This returns a phase ϕα
permiπlπ

(corresponding to the number of

permutations applied) and a Slater determinant 〈φ̃βπ

R| ordered in the same way than the

states explicitly constructed in the code. That is, by orbitals of increasing energy and if it

contains pairs of single-particle time-reversed states the time-reversed one is created first.

Therefore we have,

〈Φαπ |a†iπalπ |Φβπ〉 = ϕα
permiπlπ

〈φ̃βπ

R|φβπ〉
= ϕα

permiπlπ
θβπ θ

R
βπ
〈φβπ |φβπ〉︸ ︷︷ ︸

=1

. (C.21)

Contribution (C.20d) For each non-zero contribution

A∗
απαν

A∗
βπβν
〈Φαπ |a†iπalπ |Φβπ〉 〈Φαν |a†jνakν |Φβν 〉 = ϕα

permiπlπ
θβπ θ

R
βπ
ϕα
permjνkν

θβν θ
R
βν

from (C.20c), to ρ
[2]
lπiπ ,kνjν

, we add the contribution from (C.20d) to ρ
[2]

l̃π ĩπ ,k̃ν j̃ν
. It is equal

to,

A∗
απαν

A∗
βπβν
〈Φαπ |ã†iπ ãlπ |Φβπ〉 〈Φαν |ã†jν ãkν |Φβν 〉

= A∗
απαν

A∗
βπβν

θαπθαν 〈Φ̃απ |ã†iπ ãlπ |Φβπ〉 〈Φ̃αν |ã†jν ãkν |Φβν 〉
= A∗

απαν
A∗

βπβν
θαπθανϕ

α
permiπlπ

〈φR
βπ
|φβπ〉ϕα

permjνkν
〈φR

βν
|φβν 〉

= A∗
απαν

A∗
βπβν

θαπθανϕ
α
permiπlπ

θRβπ
ϕα
permjνkν

θRβν
. (C.22)

where we introduced |φR
βπ
〉 = θRβπ

|φβπ〉 which corresponds to the Slater βπ with the pairs of

time-reversed states in inversed order compared to the conventions of the code.

Contribution (C.20g) For each non-zero contribution

A∗
απαν

Aβ0
πβ

0
ν
〈Φαπ |a†iπalπ |Φβ0

π
〉 〈Φαν |a†jνakν |Φβ0

ν
〉 = A∗

απαν
Aβ0

πβ
0
ν
ϕαβ0

iπlπ
ϕαβ0

jνkν
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from (C.20e) to ρ
[2]
lπiπ ,kνjν

, we add the contribution from (C.20g) to ρ
[2]

l̃π ĩπ ,k̃ν j̃ν
using,

〈φαπ |ã†iπ ãlπ |φβ0
π
〉 = θαπ 〈φ̃απ |ã†iπ ãlπ︸ ︷︷ ︸

〈φ
β0π

|θRαπ
ϕαβ0

iπlπ

|φβ0
π
〉 = θαπθ

R
απ
ϕαβ0

iπlπ
. (C.23)

Contribution (C.20h) Finally, for each non-zero contribution from (C.20f) to ρ
[2]
lπiπ ,kνjν

, we

add the contribution from (C.20h) to ρ
[2]

l̃π ĩπ ,k̃ν j̃ν
using,

〈φα0
π
|ã†iπ ãlπ︸ ︷︷ ︸

〈φ̃βπ |ϕ
α0
πβπ

il

|φβπ〉 = θRβπ
θβπϕ

α0β
iπlπ

. (C.24)

C.3 Calculation of the source term G[σ]

The source term is a one-body operator given by,

G[σ]τkl = F [σ]τkl − F [σ]τ∗lk , (C.25)

where τ = (π, ν) denotes the isospin and,

F [σ]τkl =
1

2

∑

imn

〈im|V |ñlτ 〉 σin,mkτ , (C.26)

where,

σin,mkτ = 〈Ψ|a†ia†makτan〉 − ρniρkτm + ρnmρkτ i . (C.27)

Here we assume all quantities to be real, so that,

G[σ]τkl = F [σ]τkl − F [σ]τlk , (C.28)

Let us look more precisely at F [σ]πkl (the neutron term being calculated similarly). The sum

in Eq. (C.26) is over i,m, n of different isospin so that we have,

F π
kl =

1

2

∑

imn

〈im|V |ñlπ〉 σin,mkπ

=
1

2

∑

iπmπnπ

〈iπmπ|V |ñπlπ〉 σiπnπ ,mπkπ +
1

2

∑

iνmπnν

〈iνmπ|V |ñνlπ〉 σiνnν ,mπkπ

+
1

2

∑

iπmνnν

〈iπmν |V |ñνlπ〉 σiπnν ,mνkπ

=
1

2

∑

iπmπnπ

〈iπmπ|V |ñπlπ〉 σiπnπ ,mπkπ + 2× 1

2

∑

iνmπnν

〈iνmπ|V |ñνlπ〉 σiνnν ,mπkπ .(C.29)
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Using (C.27) this gives,

F π
kl =

1

2

∑

iπmπnπ

〈iπmπ|V |ñπlπ〉 〈Ψ|a†iπa
†
mπ
akπanπ |Ψ〉 (C.30a)

−1×
∑

iπmπnπ

〈iπmπ|V |ñπlπ〉 〈Ψ|a†iπanπ |Ψ〉 〈Ψ|a†mπ
akπ |Ψ〉 (C.30b)

+1×
∑

iνmπnν

〈iνmπ|V |ñνlπ〉 〈Ψ|a†iνa
†
mπ
akπanν |Ψ〉 (C.30c)

−1×
∑

iνmπnν

〈iνmπ|V |ñνlπ〉 〈Ψ|a†iνanν |Ψ〉 〈Ψ|a†mπ
akπ |Ψ〉 . (C.30d)

Let us note that σ being non-zero in the valence space only, all sums are restricted to i,m, n

in this space. This restriction is implied in what follows.

C.3.1 Contribution from proton two-body densities

Let us look at the contribution (C.30a) from two-body proton densities. Here we omit the

sub-index π since all indices are of same isospin.

Let us divide (C.30a) in three contributions using,

∑

imn

=
∑

imn
(i,m,n,k) all different︸ ︷︷ ︸

a

+
∑

imn
1 couple of indices equal among (i,m,n,k)︸ ︷︷ ︸

b

+
∑

imn
2 couples of indices equal among (i,m,n,k)︸ ︷︷ ︸

c

(C.31)

Calculation of term a

We want to practically calculate,

a =
1

2

∑

imn
(i,m,n,k) all different

〈im|V |ñl〉 〈Ψ|a†ia†makan|Ψ〉 . (C.32)

In order to reduce the dimensions of the problem, we only explicitly calculate elements

〈Ψ|a†m1
a†m2

am4
am3
|Ψ〉 respecting the conditions,

• m2 > m1

• m4 > m3

• m1 > m3 .

The difficulty comes from the fact that the sum in a is not over all indices. Therefore one

needs to make use of permutation and hermiticity properties. Each element 〈Ψ|a†m1
a†m2

am4
am3
|Ψ〉

will then be contributing to F (m1,m5), F (m2,m5), F (m3,m5) and F (m4,m5),
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C.3 Calculation of the source term G[σ]

Let us detail this procedure more specifically.

First, let us divide a as,

a =
1

2

∑

m1m2m3

(m1,m2,m3,m4) all different

〈m1m2|V |m̃3m5〉 〈Ψ|a†m1
a†m2

am4
am3
|Ψ〉

=
1

2

∑

m3

∑

m1



∑

m2
m2>m1

+
∑

m2
m2<m1


 〈m1m2|V |m̃3m5〉 〈Ψ|a†m1

a†m2
am4

am3
|Ψ〉 . (C.33)

The sum being over both indicesm1 andm2 it is easy to show that
∑

m3

∑
m1

∑
m2

m2<m1

gives the

same contribution than
∑

m3

∑
m1

∑
m2

m2>m1

by permuting and renaming the dummy indices.

We therefore get,

a =
∑

m3

∑

m1

∑

m2
m2>m1

〈m1m2|V |m̃3m5〉 〈Ψ|a†m1
a†m2

am4
am3
|Ψ〉 . (C.34)

One has to be more subtle regarding the other ordering conditions. Let us now divide
∑

m3

in a as, ∑

m3

=
∑

m3
m3<m4
m3<m1

+
∑

m3
m3<m4
m3>m1

+
∑

m3
m3>m4
m3<m1

+
∑

m3
m3>m4
m3>m1

. (C.35)

The term,

a1 ≡
∑

m1

∑

m2
m2>m1

∑

m3
m3<m4
m3<m1

〈m1m2|V |m̃3m5〉 〈Ψ|a†m1
a†m2

am4
am3
|Ψ〉 , (C.36)

already fulfills the ordering conditions (C.3.1). The external indices for this term are (m4,m5).

The term,

a2 ≡
∑

m1

∑

m2
m2>m1

∑

m3
m3<m4
m3>m1

〈m1m2|V |m̃3m5〉 〈Ψ|a†m1
a†m2

am4
am3
|Ψ〉

︸ ︷︷ ︸
〈Ψ|a†m3

a†m4
am2

am1
|Ψ〉

, (C.37)

can be written with conditions (C.3.1) by renaming the dummy variables, as well as the

external ones. Thus we get,

a2 =
∑

m1m3m4
m2>m1
m3<m4
m3<m1

〈m3m4|V |m̃1m5〉 〈Ψ|a†m1
a†m2

am4
am3
|Ψ〉 , (C.38)

where the external indices have become (m2,m5).
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Similarly, using hermiticity and permutation properties,

a3 ≡
∑

m1

∑

m2
m2>m1

∑

m3
m3>m4
m3<m1

〈m3m4|V |m̃1m5〉 〈Ψ|a†m1
a†m2

am4
am3
|Ψ〉 , (C.39)

can be written as,

a3 = −
∑

m1m2m4
m2>m1
m3<m4
m3<m1

〈m1m2|V |m̃4m5〉 〈Ψ|a†m1
a†m2

am4
am3
|Ψ〉 , (C.40)

where the external indices have become (m3,m5).

And finally,

a4 ≡
∑

m1

∑

m2
m2>m1

∑

m3
m3>m4
m3>m1

〈m3m4|V |m̃1m5〉 〈Ψ|a†m1
a†m2

am4
am3
|Ψ〉 , (C.41)

can be written as,

a4 = −
∑

m2m3m4
m2>m1
m3<m4
m3<m1

〈m3m4|V |m̃2m5〉 〈Ψ|a†m1
a†m2

am4
am3
|Ψ〉 , (C.42)

where the external indices have become (m1,m5).

To sum up, in order to include the contribution of a to F, for each non zero element

〈Ψ|a†m1
a†m2

am4
am3
|Ψ〉 with condition (C.3.1), one needs to:

• add to F (m4,m5) the contribution from a1 ,

• add to F (m2,m5) the contribution from a2 ,

• add to F (m3,m5) the contribution from a3 ,

• add to F (m1,m5) the contribution from a4 .
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Calculation of term b

Let us now look at the term b . We have,

b =
1

2

∑

imn
1 couple of indices equal among (i,m,n,k)

〈im|V |ñl〉 〈Ψ|a†ia†makan|Ψ〉

=
1

2



∑

mn
i=k

+
∑

mn
i=n

+
∑

in
m=k

+
∑

in
m=n


 〈im|V |ñl〉 〈Ψ|a†ia†makan|Ψ〉

=
∑

mn

〈km|V |l̃n〉 〈Ψ|a†ka†manak|Ψ〉
︸ ︷︷ ︸

b1

+
∑

mn

〈nm|V |ñl〉 〈Ψ|a†na†makan|Ψ〉
︸ ︷︷ ︸

b2

,

where we grouped equal contributions.

Again, ordering conventions are used in practice to calculate elements of the type 〈Ψ|a†m1
a†m2

am3
am1
|Ψ〉.

These are: m2 < m3.

The term b1 needs then to be written as,

b1 =
∑

m2



∑

m3
m3<m2

+
∑

m3
m3>m2


 〈m1m2|V |m̃4m3〉 〈Ψ|a†m1

a†m2
am3

am1
|Ψ〉

=
∑

m2

∑

m3
m3>m2

(
〈m1m2|V |m̃4m3〉+ 〈m1m3|V |m̃4m2〉

)
〈Ψ|a†m1

a†m2
am3

am1
|Ψ〉 .(C.43)

The external indices being (m1,m4).

The term b2 is divided as,

b2 =
∑

m1

∑

m2
m2<m3

〈m1m2|V |m̃1m4〉 〈Ψ|a†m1
a†m2

am3
am1
|Ψ〉

︸ ︷︷ ︸
b21

+
∑

m1

∑

m2
m2>m3

〈m1m2|V |m̃1m4〉 〈Ψ|a†m1
a†m2

am3
am1
|Ψ〉

︸ ︷︷ ︸
b22

.
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Indices in b21 are already well ordered, the external ones are (m3,m4).

Using hermiticity property we find,

b22 =
∑

m1

∑

m3
m3>m2

〈m1m3|V |m̃1m4〉 〈Ψ|a†m1
a†m2

am3
am1
|Ψ〉 . (C.44)

The external indices are (m2,m4).

To sum up, in order to include the contribution of b to F , for each non zero element

〈Ψ|a†m1
a†m2

am3
am2
|Ψ〉 with m2 < m3, one needs to:

• add to F (m1,m4) the contribution from b1 ,

• add to F (m3,m4) the contribution from b21 ,

• add to F (m2,m4) the contribution from b22 .

Calculation of term c

Finally let us consider now the term c . We have,

c =
1

2

∑

imn
2 couples of indices equal among (i,m,n,k)

〈im|V |ñl〉 〈Ψ|a†ia†makan|Ψ〉

=
1

2



∑

m
i=k
n=m

+
∑

i
m=k
n=i


 〈im|V |ñl〉 〈Ψ|a

†
ia

†
makan|Ψ〉

=
∑

m

〈km|V |m̃l〉 〈Ψ|a†ka†makam|Ψ〉 , (C.45)

where we used the fact that both terms give the same contribution. No ordering being im-

posed here, for each non zero 〈Ψ|a†ka†makam|Ψ〉, one needs to add to F (k, l) the corresponding

contribution from c .

C.3.2 Contribution from products of proton one-body densities

Let us now turn to the contribution (C.30b) from one-body proton densities. Here we omit

again the sub-index π since all indices are of same isospin.

One can again divide (C.30b)

(C.30b) = −×
∑

imn

〈im|V |ñl〉 ρniρkm , (C.46)
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in three contributions using,

∑

imn

=
∑

imn
n 6=m
k 6=i︸︷︷︸
a

+
∑

imn
n=m
i 6=k︸︷︷︸
b

+
∑

imn
n 6=m
i=k︸︷︷︸
c

+
∑

imn
n=m
i=k︸︷︷︸
d

(C.47)

In practice, non-diagonal elements ρm1m2
= 〈a†m2am1

〉 of the one-body density are calculated

for m1 < m2. Using similar reasoning as previously we finally obtain the following results.

Contribution from the term a For each product of non zero element ρm1m2
ρm3m4

with

(m1 < m2) and (m3 < m4), one needs to:

• add to F (m4,m5) the contribution from

a1(m4,m5) =
∑

m1,m2,m3
m1<m2
m3<m4

(
〈m3m1|V |m̃2m5〉+ 〈m3m2|V |m̃1m5〉

)
ρm1m2

ρm3m4
. (C.48)

• add to F (m3,m5) the contribution from

a2(m3,m5) =
∑

m1,m2,m4
m1<m2
m3<m4

(
〈m4m1|V |m̃2m5〉+ 〈m4m2|V |m̃1m5〉

)
ρm1m2

ρm3m4
. (C.49)

Contribution from the term b For each product of non zero elements ρm1m1
ρm3m4

with

(m3 < m4), one needs to:

• add to F (m4,m5) the contribution from

b1(m4,m5) =
∑

m1,m3
m3<m4

〈m3m1|V |m̃1m5〉 ρm1m1
ρm3m4

. (C.50)

• add to F (m3,m5) the contribution from

b2(m3,m5) =
∑

m1,m4
m3<m4

〈m4m1|V |m̃1m5〉 ρm1m1
ρm3m4

. (C.51)

Contribution from the term c For each product of non zero elements ρm1m2
ρm3m3

with

(m1 < m2), one needs to add to F (m3,m5) the contribution from

c(m3,m5) =
∑

m1,m2
m1<m2

(
〈m3m1|V |m̃2m5〉+ 〈m3m2|V |m̃1m5〉

)
ρm1m2

ρm3m3
. (C.52)
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Contribution from the term d Finally, for each product of diagonal elements ρm1m1
ρm3m3

one needs to add to F (m3,m5) the contribution from

c(m3,m5) =
∑

m1

〈m3m1|V |m̃1m5〉 ρm1m1
ρm3m3

. (C.53)

C.3.3 Contribution from proton-neutron two-body densities

Let us now look at the contribution (C.30c).

(C.30c) =
∑

iνmπnν

〈iνmπ|V |ñνlπ〉 〈Ψ|a†mπ
a†iνanνakπ |Ψ〉

=
( ∑

iνmπnν
nν 6=iν
mπ 6=kπ︸ ︷︷ ︸
a

+
∑

iνmπ
nν=iν
mπ 6=kπ︸ ︷︷ ︸
b

+
∑

iνnν
nν 6=iν
mπ=kπ︸ ︷︷ ︸
c

+
∑

iν
nν=iν
mπ=kπ︸ ︷︷ ︸
d

)
〈iνmπ|V |ñνlπ〉 〈Ψ|a†mπ

a†iνanνakπ |Ψ〉(C.54)

Calculation of term a

Let us remind that, since parity p and projection K of the total angular momentum are good

quantum numbers, the following relations must be fulfilled,





Ω(mπ)− Ω(kπ) = Ω(nν)− Ω(iν) ≡ ∆K (C.55)

p(mπ)

p(kπ)
=
p(nν)

p(iν)
≡ ∆p . (C.56)

According the values of (∆K,∆p), different ordering are imposed on the indices when calcu-

lating an element of the type 〈Ψ|a†p1a†n1
an2

ap2 |Ψ〉 (where p (n) refers to a proton (neutron)

orbital). In all cases, the contribution of the term a requires the calculation of,

a1(p2, p3) =
∑

p1n1n2

ordering conditions

〈n1p1|V |ñ2p3〉 〈Ψ|a†p1a
†
n1
an2

ap2 |Ψ〉 , (C.57)

and,

a2(p1, p3) =
∑

p2n1n2

ordering conditions

〈n2p2|V |ñ1p3〉 〈Ψ|a†p1a
†
n1
an2

ap2 |Ψ〉 . (C.58)

Calculation of term b

Elements of the type 〈Ψ|a†p1a†n1
an1

ap2 |Ψ〉 being calculated for (p1 < p2), the contribution from

b involves the calculation of,
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b1(p2, p3) =
∑

p1n1
p1<p2

〈n1p1|V |ñ1p3〉 〈Ψ|a†p1a
†
n1
an1

ap2 |Ψ〉 , (C.59)

and,

b2(p1, p3) =
∑

p2n1
p1<p2

〈n1p2|V |ñ1p3〉 〈Ψ|a†p1a
†
n1
an1

ap2 |Ψ〉 . (C.60)

Calculation of term c

Similarly, elements of the type 〈Ψ|a†p1a†n1
an2

ap1 |Ψ〉 being calculated for (n1 < n2), the contri-

bution from c involves the calculation of,

c(p1, p3) =
∑

n1n2
n1<n2

(〈n1p1|V |ñ2p3〉+ 〈n2p1|V |ñ1p3〉) 〈Ψ|a†p1a
†
n1
an1

ap2 |Ψ〉 , (C.61)

Calculation of term d

Finally, no ordering is imposed for the calculation of diagonal elements 〈Ψ|a†p1a†n1
an1

ap1 |Ψ〉,
and therefore one can directly calculate,

d(p1, p3) =
∑

n1

〈n1p1|V |ñ1p3〉 〈Ψ|a†p1a
†
n1
an1

ap1 |Ψ〉 . (C.62)

C.3.4 Contribution from products of proton and neutron one-body

densities

Finally let us look at,

(C.30d) = −×
∑

iνmπnν

〈iνmπ|V |ñνlπ〉 〈Ψ|a†iνanν |Ψ〉 〈Ψ|a†mπ
akπ |Ψ〉 . (C.63)

Using similar reasoning as previously, we find that calculating this term implies the program-

161



Chapter C : Practical calculations of the densities and the source term G[σ]

ming of the following contributions,

a1(p2, p3) = −
∑

p1n1n2

ordering conditions
fulfilled

(〈n1p1|V |ñ2p3〉+ 〈n2p1|V |ñ1p3〉) 〈Ψ|a†n1
an2
|Ψ〉 〈Ψ|a†p1ap2 |Ψ〉 ,

a2(p1, p3) = −
∑

p2n1n2

ordering conditions
fulfilled

(〈n1p2|V |ñ2p3〉+ 〈n2p2|V |ñ1p3〉) 〈Ψ|a†n1
an2
|Ψ〉 〈Ψ|a†p1ap2 |Ψ〉 ,

b(p1, p3) =
∑

n1n2

ordering conditions
fulfilled

(〈n1p1|V |ñ2p3〉+ 〈n2p1|V |ñ1p3〉) 〈Ψ|a†n1
an2
|Ψ〉 〈Ψ|a†p1ap1 |Ψ〉 ,

c1(p2, p3) =
∑

p1n1

ordering conditions
fulfilled

〈n1p1|V |ñ1p3〉 〈Ψ|a†n1
an1
|Ψ〉 〈Ψ|a†p1ap2 |Ψ〉 ,

c2(p1, p3) =
∑

p2n1

ordering conditions
fulfilled

〈n1p2|V |ñ1p3〉 〈Ψ|a†n1
an1
|Ψ〉 〈Ψ|a†p1ap2 |Ψ〉 ,

d(p1, p3) =
∑

n1

〈n1p1|V |ñ1p3〉 〈Ψ|a†n1
an1
|Ψ〉 〈Ψ|a†p1ap1 |Ψ〉 .

162



Bibliography

[1] National Nuclear Data Center, Evaluated Nuclear Structure Data File,

http://www.nndc.bnl.gov/ensdf.

[2] K. Amos, P. J. Dortmans, H. V. von Geramb, S. Karataglidis, and J. Raynal. Adv. Nucl.

Phys., 25:275, 2000.

[3] I. Angeli. Atomic Data and Nuclear Data Tables, 87:185, 2004.

[4] M. Baranger. Nucl. Phys., A149:225, 1970.

[5] J. Bardeen, L. N. Cooper, and J. R. Schrieffer. Phys. Rev., 108:1175, 1957.

[6] J.-F. Berger. Private communications.

[7] J.-F. Berger, M. Girod, and D. Gogny. Nucl. Phys., A502:85c, 1989.

[8] J.-F. Berger, M. Girod, and D. Gogny. Comput. Phys. Commun., 63:365, 1991.

[9] H. A. Bethe and J. Goldstone. Proc. Roy. Soc., A238:551, 1957.

[10] J.-P. Blaizot and D. Gogny. Nucl. Phys., A284:429, 1977.

[11] J.-P. Blaizot and G. Ripka. Quantum Theory of Finite systems. The MIT press, 1986.

[12] S. K. Bogner, R. Furnstahl, and R. J. Perry. Phys. Rev. C(R), 75:061001, 2007.

[13] S. K. Bogner, R. Furnstahl, and A. Schwenk. Prog. Part. Nucl. Phys., 65:94–147, 2010.

[14] S. K. Bogner, T. T. S. Kuo, and A. Schwenk. Phys. Rep., 386:1, 2003.

[15] S. K. Bogner, T. T. S. Kuo, A. Schwenk, D. R. Entem, and R. Machleidt. Phys. Lett.

B, 576:265, 2003.

[16] N. N. Bogoliubov. Sov. Phys. JETP, 7:41, 1958.

[17] N. N. Bogoliubov. Sov. Phys. Usp., 2:236, 1959.

[18] L. Bonneau, P. Quentin, and K. Sieja. Phys. Rev. C, 76:014304, 2007.

163



BIBLIOGRAPHY

[19] S. W. Brain et al. J. Phys. G Nuck. Phys, 3:821, 1977.

[20] L. Brillouin. Act. Sci. Ind., 71:159, 1933.

[21] B. A. Brown and B. H. Wildenthal. Ann. Rev. Nucl. Part. Sci., 38:29, 1988.

[22] K. A. Brueckner. Phys. Rev., 97:1353, 1955.

[23] J. Carlson. Phys. Rev. C, 36:2026, 1987.

[24] E. Caurier, G. Mart́ınez-Pinedo, F. Nowacki, A. Poves, and A. P. Zuker. Rev. Mod.

Phys., 77:427, 2005.

[25] F. Chappert, M. Girod, and S. Hilaire. Phys. Lett. B, 668:420, 2008.

[26] F. Chappert and N. Pillet et al. Phys. Rev. C, submitted.

[27] D. Day. Rev. Mod. Phys., 39:719, 1967.

[28] T. de Forest and J. D. Walecka. Advances in Physics, 15:1–109, 1966.
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[70] D. J. Maŕın-Lámbarri. Phys. Rev. Lett., 113:012502, 2014.

[71] P. C. Martin and J. Schwinger. Phys. Rev., 115:1342, 1959.

[72] R. D. Mattuck. A guide to Feynman diagrams in the Many-Body Problem. Courier

Dover Publications, 2012.

[73] R. McWeeny. Methods of molecular quantum mechanics, second edition. Academic press,

1992.
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