
HAL Id: tel-01081642
https://theses.hal.science/tel-01081642

Submitted on 10 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Predicting User-Centric Behavior : mobility and content
popularity

Alexandru-Florin Tatar

To cite this version:
Alexandru-Florin Tatar. Predicting User-Centric Behavior : mobility and content popularity. Human-
Computer Interaction [cs.HC]. Université Pierre et Marie Curie - Paris VI, 2014. English. �NNT :
2014PA066202�. �tel-01081642�

https://theses.hal.science/tel-01081642
https://hal.archives-ouvertes.fr


Thèse de Doctorat

UPMC Sorbonne Universités - Paris VI
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Résumé

Il est fondamental de comprendre le comportement des utilisateurs, afin de créer des
systèmes de communication efficaces. Dévoiler les interactions complexes entre les utili-
sateurs dans le monde réel ou en ligne, déchiffrer leurs activités sur Internet, ou bien com-
prendre la mobilité humaine — toutes les formes des activités – peuvent avoir un impact
direct sur la performance d’un réseau de communication. Mais l’observation du comporte-
ment de l’utilisateur n’est pas suffisante. Pour transformer l’information en connaissance
utile, il faut cependant aller au-delà de l’observation et de l’explication du passé, ainsi que
créer des modèles permettant de prédire le comportement.

Dans cette thèse, nous nous concentrons sur le cas des utilisateurs qui consomment
du contenu dans leurs trajets quotidiens, en particulier lorsque la connectivité est faible
ou intermittente. Nous considérons que les utilisateurs peuvent communiquer entre eux en
utilisant l’infrastructure, mais aussi directement, en utilisant les communications oppor-
tunistes. Nous proposons de nouvelles perspectives sur la façon d’utiliser de l’information
sur le comportement des utilisateurs dans la conception de solutions plus efficaces pour les
communications mobiles opportunistes. En particulier, nous mettons en avant le fait que
le comportement des utilisateurs, à la fois en termes de consommation de contenu et de
contact entre les utilisateurs mobiles, peut être utilisé dans le but d’élaborer des stratégies
dynamiques de réplication de données.

On commence par une étude sur les caractéristiques de la consommation de contenu.
Notre contribution dans ce domaine est double : tout d’abord, on analyse les caractéristiques
sur la publication des nouvelles publiées sur 20minutes.fr, une plate-forme de nouvelles
populaire en France ; ensuite, on passe en revue les différents algorithmes de prédiction
proposés dans la littérature, on compare la capacité de deux méthodes pour prédire la po-
pularité des articles de presse en ligne. Nous observons qu’un modèle linéaire sur une échelle
logarithmique est une solution efficace pour prédire la popularité des nouvelles en ligne. De
plus, dans le contexte de classification automatique, nous observons que cette méthode est
également une solution efficace pour classer correctement les articles en fonction de leur
popularité prédite.

Nous étudions ensuite l’impact d’un modèle capable de prédire la popularité du contenu
dans un scénario de communication mobile opportuniste. Nous considérons le contexte de
déchargement des données mobiles, où le but est de disséminer du contenu d’une de façon
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proactive pendant les périodes d’inactivité, afin de réduire le trafic de données pendant les
périodes de pointe. Nous montrons que la capacité de réellement prédire la future demande
de l’utilisateur peut améliorer l’effet de dissémination proactive par rapport aux méthodes
traditionnelles, qui ne tiennent pas compte que d’une évolution stable de la popularité du
contenu. Dans un scénario mobile, les utilisateurs qui partagent un intérêt commun dans
le contenu et qui se trouvent dans une proximité physique, peuvent établir des connexions
de dispositif à dispositif et ils peuvent, de même, récupérer le contenu directement à partir
de leurs voisins.

Nous continuons avec une étude sur la prédiction des contacts entre les utilisateurs
mobiles. La mobilité des utilisateurs, représentée comme un système dynamique, n’est pas
complètement aléatoire et des modèles peuvent être créés à partir des études sur les mou-
vements des utilisateurs pendant une certaine période de temps. Mais les contacts entre
les utilisateurs mobiles sont une ressource rare : par conséquence, certains utilisateurs vont
souvent se rapprocher l’un de l’autre, mais ils ne seront jamais en contact direct. Nous
étendons donc la tâche de prédiction pour le cas de k-contact, qui suppose de prédire si
les utilisateurs mobiles vont se trouver à une distance d’au plus κ nœuds un de l’autre. En
analysant trois traces de contact de la vie réelle, nous observons que, dans un scénario ca-
ractérisé par des déconnexions fréquentes, on peut obtenir de meilleures performances lors
de la prédiction des nœuds se retrouvant à une plus grande distance les uns des autres, par
rapport au cas de contact direct. Pour évaluer l’impact de ces résultats dans un scénario
de la vie réelle, nous proposons une expérience de simulation dans laquelle, en combinant
les communications mobiles opportunistes avec la prédiction κ-contact, on peut réduire la
quantité de trafic utilisé dans la communication de nœuds mobiles avec l’infrastructure
cellulaire.

Mots-clés

Réseaux mobiles opportunistes, popularité du contenu web, comportement des utilisateurs,
mobilité, réseau de téléphonie mobile, prédiction



Abstract

Understanding user behavior is fundamental in the design of efficient communication sys-
tems. Unveiling the complex online and real-life interactions among users, deciphering
online activity, or understanding user mobility patterns – all forms of user activity – have
a direct impact on the performance of the network. But observing user behavior is not
sufficient. To transform information in valuable knowledge, one needs however to make a
step forward and go beyond observing and explaining the past to building models that will
predict future behavior. In this thesis, we focus on the case of users consuming content
on the move, especially when connectivity is poor or intermittent. We consider both tra-
ditional infrastructure-based communications and opportunistic device-to-device transfers
between neighboring users. We offer new perspectives of how to use additional information
about user behavior in the design of more efficient solutions for mobile opportunistic com-
munications. In particular, we put forward the case that the collective user behavior, both
in terms of content consumption and contacts between mobile users, can be used to build
dynamic data replication strategies.

We first investigate content consumption patterns. Our contribution in this area is
two-fold. First, we analyze a large news data set published on 20minutes.fr, a popular
daily newspaper in France. We survey the different prediction algorithms proposed in the
literature and compare the ability of two of these methods to predict the popularity of
online news articles. We observe that a linear model on a logarithmic scale is an effective
solution to predict the popularity of online news. Furthermore, in the context of automatic
online news ranking we observe that this method is also an effective solution to correctly
rank items based on their future popularity with a performance that can evenly match
more customized learning-to-rank algorithms. We study then the practical impact of using
a model that can predict content popularity in a mobile opportunistic scenario. We place
this in the context of mobile data offloading where the goal is to proactively seed content
during idle periods to reduce data traffic during the peak periods. We show that the
ability to actually predict future user demand can improve the benefit of proactive seeding
for a mobile opportunistic data offloading solution compared to traditional methods that
consider a stable evolution of content popularity.

In a mobile scenario, users who share common interest in a content and are within phys-
ical proximity, can establish the device-to-device connections and retrieve content directly
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from their neighbors. We study the predictability of human contacts. User mobility, repre-
sented as a highly dynamic system, is not completely random and patterns can be learned
after studying user movement for a certain period of time. But contacts between mobile
users are a scarce resource, as some users will often come close to each other but never in
direct contact. We thus extend the prediction task to the multi-hop contact case – predict
if mobile users will find themselves at a distance of at most κ-hops from one another. By
analyzing three real-life contact traces we observe that, in a mobile scenario characterized
by frequent disconnections, one can obtain better performance when predicting that nodes
will find themselves at a greater distance from one another compared to the direct contact
case. To assess the impact of these findings in a real-life scenario, we propose a simulation
experiment in which, by combining mobile opportunistic communications with κ-contact
prediction, one can reduce the amount of traffic used in the communication of mobile nodes
with the cellular infrastructure.

Key Words

Mobile opportunistic networks, web content popularity, user behavior, mobility, cellular
network, prediction
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A.2 La problématique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
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Chapter 1
Introduction

1.1 Context and motivation

In the past years we have assisted at two emerging trends in the evolution of Internet. First,

the production of online content has evolved from the hands of a few (e.g., traditional media

organizations) to the general public. Stimulated by the technological progress brought by

Web 2.0 platforms and the explosive growth of social networking sites, online users are

now able to create and share content on their own – and often to rival professional content

creators. Then, we assist at an important shift towards mobile web access. Equipped with

better web-enabled mobile devices (smaller, cheaper, and with improved functionalities),

and under a better broadband mobile coverage, data-hungry consumers crave to consume

content at any moment of time. One good example of the rapid proliferation of mobile

devices is reflected by two photos, taken eight years apart, and representing people gathering

at St. Peter’s Square (Figure A.1).

These two trends have stimulated users’ needs to connect anywhere and anytime –

to other users and to information – and to create, consume, and share content at an

unprecedented pace. For example, every minute, users around the world send more than

300,000 tweets [1], share more than 680,000 pieces of content on Facebook [2], and upload

100 hours of video on YouTube [3]. And this increase is not an isolated trend. As it turns

out, the global volume of data has been increasing at a rate of 50% per year and there

has been a 40-fold increase compared to 2001 [4]. And, while storing this huge amount of

information still seems manageable (e.g., it costs 600$ to store all the music in the world

[4]), providing the infrastructure to make content always available is a challenging objective.

Telecom operators strive under the increasing mobile data consumption. Traditionally,

when the network capacity reached critical limits, operators relied on certain technical

15



16 1.1. CONTEXT AND MOTIVATION

(a) 2005 (b) 2013

Figure 1.1: People gathering in St. Peter’s Square eight years apart (Source: NBC1).

solutions: acquire additional spectrum, deploy more cell sites, or switch to the latest mobile

communication standard (e.g., LTE Advanced). But nowadays, there is a general believe

that these solutions may not hold to the challenges of the years to come. Spectrum is a finite

resource (and also the more and more expensive), spectrum efficiency is quickly reaching its

limits, and installing additional cell sites has a significant cost. As a result, new solutions

have been proposed to cope with the expected traffic increase. Mobile data offloading is

one attractive solution that enables telecom operators to shift part of the traffic from the

cellular networks to alternative low-cost networks [5]. In this context, Wi-Fi hotspots are

a valuable resource as they are widely available, have a low cost, and good data rates [6].

Femtocells are also a promising alternative that allow a better utilization of the available

spectrum [7]. However, the offloading potential of these solutions may not sustain the rate

of data traffic increase and novel solutions are needed.

Opportunistic networks have been recently been proposed as an appealing solution

to offload content with non-real time constrains. Instead of using the cellular network

infrastructure, mobile users can retrieve content from collocated peers that share common

interest (and are willing to participate in the network operation). This opens new directions

on how people can generate and consume content on-the-go, but the design of efficient

communication protocols in opportunistic networks is challenging (due to user mobility, it

is difficult to make assumptions about the existence of a path between two nodes) and it

depends in great part on the capacity to understand user behavior. Thus, capturing the

dynamics of user behavior, discovering regularities, and learning predictive patterns becomes

vital in the design of opportunistic network communication protocols.

So far, most studies on user behavior have focused on a better understanding of user

mobility and connectivity patterns. This includes insights about the duration of contacts

(and inter-contacts) between mobile users [8], the periodicity of human encounters [9], or

in understanding the underlying social structures (physical and online) that may explain

1http://instagram.com/p/W2FCksR9-e/
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human mobility patterns [10, 11]. Studying user mobility is essential, but in the complex

environment under which mobile users operate there are other aspects about user behavior,

equally important, that can be exploited.

The objective of this thesis is to offer new perspectives on how to use additional aspects

about mobile users’ behavior in the design of efficient mobile opportunistic data offload-

ing solutions. In particular, we address from a different angle the problem of predicting

contacts between mobile users and we put forward the case that the design of efficient mo-

bile opportunistic data offloading strategies should pay attention not only to the mobility

aspect but also to what users consume.

1.2 Global scenario and research challenges

The global scenario considered throughout this work and illustrated in Figure A.2 is com-

posed of three main entities: a content producer, a telecom operator, and a group of

collocated mobile users. The content producer is located on the Internet and periodically

publishes content for a group of collocated mobile users. The telecom operator provides

the infrastructure for the communication between mobile users and the content producer.

Finally, we consider a group of collocated mobile users that communicate with the content

producer using the cellular infrastructure and can also communicate directly between each

other using device-to-device communication techniques (e.g., Bluetooth, Wi-Fi direct).

This network environment corresponds to a certain urban area (e.g., university campus

or commercial center) populated by mobile users that show localized, geographical and

temporal, data access patterns. In this context, we distinguish two possible strategies

for the mobile users to access content on-the-go. In the classical approach, users rely

on the services provided by the telecom operator and individually retrieve content using

the infrastructure. But, given that the temporal-geographical correlation of user requests,

this approach seems outdated and inefficient as there is a high chance that content could

directly be retrieved from collocated mobile users. The alternative solution is to rely

on opportunistic communications (if the geographic area is densely populated to provide

good means of communication between nodes) and give mobile users the possibility to

communicate directly and share the cache space of collocated mobile users.

Different solutions have been proposed in the latest years, which consider the coexistence

of infrastructure with the opportunistic networks communications to decide when and where

(to which users) to proactively seed content in order to reduce the communication of mobile

users with the infrastructure [12, 13]. But the current implementations of opportunistic

networks are rather myopic in the sense that they do not fully benefit from the potential

knowledge about user behavior. For example, by tracking the content request patterns,
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Contact opportunity
Users can exchange data
when they are in direct
communication range.  

   Telecom operator
   Provides the fixed infrastructure that
   allows mobile users to  communicate 
   with the content producer.  

  Predict contact opportunities
  Study mobile users' connectivity 
  patterns and learn to predict when
  users will be in contact.

Predict  content demand
Study user consumption 
patterns and learn to predict
future users' demand. 

   Content producer
   Publishes content that is consumed by 
   a group of collocated mobile users. 
   Coordinates the distribution of content 
   by analyzing and predicting mobile users 
   content demand and contact opportunities. 

Collocated mobile users
Group of mobile users that are 
often collocated in a certain 
geographic area.

Content reply
Proactive seeding

Content request

Figure 1.2: The global scenario considered throughout this work and composed of a content
producer, located on the Internet, a telecom operator that provides the infrastructure for
the communication between mobile users and the content provider, and a set of collocated
mobile users.

one can predict content popularity and decide to proactively seed part of the content to

better satisfy future user demand. Furthermore, even greater benefits could be attained

by tracking the connectivity patterns between mobile users and predicting the evolution of

the network topology.

The problem addressed in this thesis is how to design more effective mobile opportunistic

data offloading solutions based on a global knowledge about users content requests and

connectivity patterns. In particular we address the following two problems:

• Problem 1

What content to seed? Given the great amount of content published on a daily basis,

the skewed distribution of users’ interest, and the non-stationary content popularity (the

popularity of a piece of content evolves over time) decide on what content to seed and

the number of replicas to cope with the future users’ demand. This allows one to build

adaptive proactive seeding techniques that are consistent with the dynamic evolution of

content popularity.

Approach. We undertake this problem using the following steps. First, we want to under-

stand to what extend the popularity of web content can be predicted. We take online news

articles as a use-case example and study the popularity of articles published on two popular

news platforms from France and Netherlands. We look into the various methods that have
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been proposed to predict the popularity of web content, select the ones that are adapted to

our case, and study their effectiveness to predict the popularity of news articles. We then

assess the impact of these findings as a solution to improve the benefit of proactive seeding

solutions in the context of mobile data offloading.

• Problem 2

Where to seed? Given the opportunistic nature of human encounters that are, to a cer-

tain extent, predictable decide on how to better organize the seeding process by choosing

where (to which nodes) to seed content.

Approach. We analyze various human-based contact traces and study the predictability of

human contacts. Given the rather unpredictable nature of these relationships we extend

our analysis to the κ-contact case – predict if users will find themselves at a distance of at

most κ-hops from one another. To assess the impact of these findings in a real-life appli-

cation, we propose a simulation experiment in which, by combining mobile opportunistic

communications with κ-contact prediction one can reduce the amount of traffic used in the

communication of mobile nodes with the infrastructure.

1.3 Contributions of this thesis

1.3.1 A survey on predicting the popularity of web content

When studying the popularity of web content there is no clear evidence that there is a

prediction model that could be applied to every possible scenario nor that the creation of

a generic prediction model is a feasible objective. The reasons are that the prediction out-

comes are influenced by the type of online content, the site’s framework, and the availability

of predictive information. Thus, in the field of social media various popularity prediction

methods have been proposed and evaluated on different types of web content.

The first contribution of this thesis is a survey on the current state-of-the-art in web

content popularity prediction methods. This domain has become an active area of research

and, while still in an incipient phase, a large number of prediction methods for different

types of web content have been proposed in the latest years. To structure the existing

prediction methods we propose a classification based on the type of information used in the

prediction process. We report the performance of the different prediction methods, present

the features that have showed good predictive capabilities, and reveal factors known to

influence content popularity.
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1.3.2 Predicting the popularity of online news

We study two popular online news platforms from France and Netherlands to understand

how articles are consumed by online readers. By exploring these two large data sets (one

that covers a 4-year period and another one an 8-month period) we observe that news

articles have a very short lifespan and that the volume of comments per article can be

described by a power-law distribution. Using these data sets we analyze the predictive

power of two popularity prediction methods. Our results indicate that a linear model on a

logarithmic scale provides the most accurate results in predicting the popularity of online

news articles.

In the context of automatic online news ranking we evaluate the ranking effectiveness

of the popularity prediction methods and show that a linear model on a logarithmic scale is

an effective method for online news ranking. We compare the performance of these meth-

ods with learning to rank algorithms and show that for this ranking problem, popularity

prediction methods could successfully replace more customized learning to rank algorithms.

1.3.3 Proactive seeding based on content popularity prediction

We propose and evaluate the benefit of using a proactive seeding strategy, based on web

content popularity prediction method, as a solution for mobile opportunistic data offload-

ing. Compared to traditional strategies that consider a rather stable evolution of content

popularity over time, the strategy used in this case is to actually predict future content

demand and adjust the proactive seeding decisions accordingly.

To evaluate the benefit of this solution in a real-life deployment, we proposed a simu-

lation scenario that reproduces, to a certain extent, the mobility and data request charac-

teristics of a group of mobile users. In this scenario, the objective is to reduce the amount

of traffic that the mobile users create during the day by preloading content when the net-

work is less loaded. We show through simulation that proactive seeding can have a greater

impact for mobile data offloading if the decision of what content to replicate is based on

an algorithm that predicts future users’ requests.

1.3.4 Predicting κ-contact opportunities between mobile users

We study the problem of predicting future connectivities between mobile users. Given the

rather limited ability to predict contacts between mobile users we extend our prediction

scope to the κ-contact case – predict if users will find themselves at a distance of at

most κ-hops from one another. Using a supervised prediction framework we analyze the

predictability of κ-contacts on three real-life contact traces, and observe that one can attain

better performances when predicting that users will not be in direct contact but in the
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nearby vicinity. To assess the impact of these findings in a real-life deplyment, we propose

a simulation experiment in which, by combining mobile opportunistic communications with

κ-contact prediction one can reduce the amount of traffic used in the communication of

mobile nodes with the infrastructure. Our results suggest that services benefiting from

contact predictions can efficiently exploit the predictable nature of κ-contacts.

1.4 Thesis outline

The remainder of this thesis is organized as follows. We begin with a classification and

a presentation of the methods used to predict the popularity of web content (Chapter 2).

Then, in Chapter 3, we analyze the ability to predict the popularity of online news articles.

In Chapter 4 we propose the application of popularity prediction methods in proactive

seeding and evaluate the impact of this approach as a solution for mobile opportunistic

data offloading. We study user mobility characteristics and analyze the predictability of

human encounters in Chapter 5. We conclude in Chapter 6 with a discussion of some

possible future directions.
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Chapter 2
A survey on predicting the
popularity of web content

2.1 Introduction

In the digital world, web content has become the main attraction. Whether it is useful

information and entertainment to Internet users or business opportunity for marketing

companies and content providers, web content is an asset on the Internet. At the same

time, the growth in social media innovation, the ease of content creation and low publishing

costs, has created a world saturated with information. For example, every minute, users

around the world send more than 300,000 tweets [1], share more than 680,000 pieces of

content on Facebook [2], and upload 100 hours of video on YouTube [3]. Yet, the online

ecosystem adheres to a “winner-take-all” society: the attention is concentrated on a few

items while the majority remains unknown. In this context, finding the web item that will

be popular becomes of utmost importance. Online users, flooded by information, can reduce

the clutter and focus their attention – the most valuable resource in the online world – on

the most relevant information. In a world where companies spend up to 30% of their money

in online marketing [14], spotting early on the next rising star of the Internet can maximize

their revenues through better add placement. Moreover, given the ever-growing consumer

Internet traffic, content-distribution networks can rely on popularity prediction methods

to proactively allocate resources according to future user demands.

The term web content is effectively generic and it broadly defines any type of information

on a web site. It can refer both to the subject of the information and the individual object

used to deliver the information. In this dissertations we define web content as any individual

item, publicly available on a web site and which contains a measure that reflects a certain

23
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interest shown by an online community.

The notion of popularity for a web content is subtle, beyond the usual number of

page views. Before Web 2.0, the competition was on counting “eyeballs”, but now, with

the growing prevalence of social media platforms, there are new indicators that reflect

user interest. In response to content publication, users can now provide a direct feedback,

thought comments and ratings, or further share it in their online social circles (through, for

example, Facebook, Twitter, or Digg). These alternative metrics capture user engagement

at a much deeper level and provide valuable information complementary to view counts:

rating improves the quality of publications, comments increase the time spent on a web

page (which impacts the advertising revenues), and sharing gives content a larger notoriety.

In addition, these metrics capture distinct user habits as users have different preferences

(to comment, rate, or share) in their post-click actions [15–18]. In this context, studying

these metrics individually or how they relate to each other [19, 20] provides a wider and

better perspective of what popularity actually means.

Predicting the popularity of web content is a challenging task. First, different factors

known to influence content popularity, such as the content quality or its relevance to users,

are difficult to measure. Then, other factors, such as the relationship between events in the

physical world and the content itself are hard to capture and used in a prediction model.

Moreover, at a microscopic level, the evolution of content popularity may be described by

complex online interactions and information cascades, which are difficult to predict [21–23].

Predicting the popularity of web content has become an active area of research and,

while still in an incipient phase, a large number of prediction methods for different types

of web items have been proposed in the latest years. As a first step to actually predicting

the popularity of news articles, to have a better understanding on the challenges and the

existing solutions, in this chapter we look from a general point of view to the problem of

predicting the popularity of web content. We review the current state of research in this

field, propose a classification that allows us to structure the different prediction methods,

and briefly describe the main prediction methods.

2.2 Domains

The consumption of web content is spread across multiple domains and a variety of items.

Some of the most popular types of web items studied so far include: user-generated videos,

which account for a great percent of Internet traffic [24]; news articles, massively diffused

through social networking sites [25] and heavily consumed on mobile devices [26]; stories

published on social news aggregators, which provide an even greater exposure to the most

popular items on the Internet; and items (comments, photos, or videos) published on
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Figure 2.1: Data sets used as case-studies to evaluate the performance of prediction meth-
ods. On a log-log scale we depict the total number of items and the cumulative time period
covered by each data set (using a weekly, monthly, yearly demarcation).

social networking sites, the most popular platforms to share information and allow user

participation on a global scale. Examples of the variety of web items, gathered from

different platforms and used in the context of popularity prediction, are illustrated in Figure

1, together with information about the number of items and the time period covered by

each data set.

Online videos. YouTube, the world’s largest video sharing platform with 100 hours of

upload per minute [3] and more than 1 trillion worldwide views per year [27], has been the

main focus of existing studies. The site’s content, with more than 200 million unique videos,

covers a broad range of topics and is sustained by a large and active online community [28].

Studying the popularity of YouTube videos is challenging given the ever-growing number

of videos, the many features that the platform provides (e.g., video recommendations,

internal search, online social networking), and the limitations associated with the retrieval

of a representative sample of videos [29].

The popularity of YouTube videos (commonly expressed by the number of views in re-

search studies) follows a heavy-tailed distribution that, depending on the data set and the

method used to fit the distribution, can be described by Zipf [30,31], power-law with expo-

nential cut-off [32], Weibull [28], or Gamma distributions [33]. But video access frequency

over time is highly non-stationary. From a high-level point of view, the popularity growth

of videos over time can be represented through power-law or exponential distributions [34].

A more fine-grained analysis exhibits even more complex and diverse patterns. For in-

stance, Crane and Sornette found that, while the activity around most YouTube videos

can be described by a Poisson process, many videos reveal similar activity around the peak
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period that can be accurately described by three popularity evolution patterns [35]. Similar

temporal evolution patterns have been observed by Figueiredo [36] and even more complex

shapes have been discovered by Gorsun et al. [29].

In addition to YouTube, the popularity of videos published on other platforms has been

studied (e.g., Daum [32], Dutch TV [34], DailyMotion [37], Vimeo [38]), but on a smaller

scale, and no significant differences have been signaled.

Online news. The primary source of information in the digital world, news are created

in large numbers and massively diffused through online social networks [25]. Compared

to videos, which catch users’ attention for a longer period of time, the interest in news

articles fades quickly, within days after publication [19,39]. The popularity of online news,

frequently expressed by the volume of comments (the number of views are rarely disclosed

by news platforms), also follows a heavy tail distribution, described by power-law [40, 41]

or log-normal [42] distributions.

Social bookmarking sites. The third major type of content analyzed so far is stories

posted on social bookmarking sites such as Digg [43–45], Slashdot [46], or Reddit [45, 47].

Content published on these sites experiences an even greater rate of change with stories

reaching their attention peak in the first six hours after publication and being completely

saturated within one day [43]. Prediction becomes even more difficult in this setting given

the complex interactions between users [48, 49] and the promotion algorithm based on

collective user opinion [50, 51]. Similar to other types of online items, stories published on

these sites are described by a heavy-tailed distribution of popularity that is best represented

by a Weibull [45] or log-normal distributions [43, 44, 52].

Social networking services. Designed with the idea of facilitating interactions among

people on the Internet, these sites allow users to build and maintain online social relation-

ships with people that share common interest, background, or real-life relationships. While

there are different types of social networking services, the most popular ones today, are

the ones focused on content sharing. Microblogs, such as Twitter and Weibo, are a specific

type of social networking services and have been extensively studied. These platforms are

probably the most dynamic representation of social media. Users create and share infor-

mation in the form of short messages (known as tweets) containing up to 140 characters.

When users post a (re)tweet it becomes visible to all its followers (members of the social

group). Content can easily spread though the social graph as followers can further share

the content (known are retweeting) to their own list of followers. Two metrics have been

used to measure the popularity of a tweet: the number of impressions (number of online

users who viewed a certain tweet), or most commonly, the number of retweets. As other

type of online items the popularity of a tweet (in form of retweet counts) also follows a
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power-law distribution [53–55].

Tweets are probably one the most ephemeral type of online content as they become

popular very fast and they quickly die out. For example, studies conducted on Tencent

Weibo found out that an insignificant number of tweets get retweeted after one day [55].

Similar, a study on Twitter revealed that most tweets receive half of their retweets within

one hour after publication [56]. Useful predictions thus need to be done in the order of

minutes after a tweet post. In addition, as content is shared between users, large cascades

may form, which have a very unpredictable nature.

In addition to these main categories, other types of web items have been considered

for popularity prediction tasks such as threads on discussion forums (DPReview, MyS-

pace [57]), movie ratings on IMDb [58], an interactive video sharing application (Zync) [59],

and a joke sharing application (JokeBox) [60].

2.3 Performance measures

To provide a more explicit description of the prediction algorithms, let us introduce the

terminology and the measures used to evaluate the efficiency of a prediction method.

Terminology. Let c ∈ C be an individual item from a set C observed during a period

T . We use t ∈ T to describe the age of a web item (duration since it was published) and

mark two important moments: indication time ti, representing the time we perform the

prediction; reference time tr, the moment of time when we want to predict the popularity.

Let Nc(ti) be the popularity of c from the time it was published until ti and let Nc(tr) be

the value that we want to predict, i.e., the popularity at a later time tr. We define �Nc(ti, tr)

the prediction outcome: the predicted popularity of c at tr using the information available

until ti. Thus, the better the prediction, the closer �Nc(ti, tr) is to Nc(tr).

Evaluation. We distinguish two prediction goals: (i) Numeric prediction – predict the

exact popularity that an individual item will generate, (ii) Classification – predict the

popularity range that a web item is most likely to fall in.

2.3.1 Numeric prediction

There are different ways to assess the efficiency of a numeric prediction [61]. Mean squared

error (MSE – Equation 2.1) is used to report the average of the squared errors. By taking

the square root of MSE, one can express the error in the same dimension as the estimated

value (RMSE – Equation 2.2). One important limitation of squared errors is that they put

too much weight on the effect of outliers, and in this case reporting the absolute errors is

a good alternative (MAE – Equation 2.3).
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Absolute errors can be meaningfully interpreted if one knows the range of the actual

popularity values. Otherwise, a good way of expressing the error is though relative errors

such as the Mean Relative Error (MRE – Equation 2.4) and Mean Relative Squared Error

(MRSE – Equation 2.5). Relative measures are also useful to compare the efficiency of

prediction algorithm across studies, as in most cases the popularity values have widely

different ranges (e.g., the number of views on YouTube is several orders of magnitude

greater then the number of comments on a news web site). A special attention should

be paid when using these error measures for zero-inflated variables as the relative error is

undefined when the actual value is zero.

Another way of expressing the error is through the Relative Squared Error (RSE –

Equation 2.6), Root Relative Squared Error (RRSE – Equation 2.7), and Relative Absolute

Error (RAE – Equation 2.8). The error in this case is expressed relative to the performance

of a simple predictor, the average of the actual values (computed on the training data set).

Finally, a rather different way of reporting the quality of a numeric prediction is through

the correlation coefficient or the coefficient of determination (R2). Compared to the pre-

vious measures, which show how the estimated values diverge from the actual ones, these

evaluation criteria can only express the degree of linear association between the two vari-

ables (predicted and actual values).
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2.3.2 Classification

The prediction task can also be treated as a classification problem, where, assuming that

the popularity range is known, one can split this interval in k classes (non-overlapping

popularity ranges). Thus, given the k possible outcomes the prediction goal is to correctly

predict the popularity class.

Various metrics are available to evaluate the quality of a classification [61,62]. Accuracy,

one of the most reported metric, is used to express the proportion of correctly classified

instances. This measure is nevertheless inappropriate when dealing with highly imbalanced

classes, which can often be the case with the popularity of web items (characterized by a

heavy-tail nature). For example, a possible experiment could be to learn a classifier that

predicts which videos will get more that 106 views on YouTube - a “small” class (1%)

according to a recent study [63]. A simple rule, that decides that all videos receive less

than 106, will correctly predict 99% of the cases. Thus, a good level of accuracy is obtained

without even learning any prediction rule on how to detect the popular objects. To measure

the performance of the classifier on a “small” class, a good alternative is to use precision,

recall, or F-score (harmonic mean between precision and recall). But F-score measures the

performance of a classifier for only one class. To report the aggregate performance over

multiple classes, a good solution is to use macro-average measure (average F-score over all

k classes).

2.4 A classification of web content popularity prediction meth-

ods

To structure the different popularity prediction methods, we propose a classification that

groups the methods according to the type and granularity of the information used in the

prediction process (Figure 2.2). We further organize the subsequent chapters based on this

classification.

2.4.1 Single domain

We define a domain as the web site where an individual item resides, regardless if it has

been created or shared from an external source (e.g., news shared on social bookmarking
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Figure 2.2: A classification of web content popularity prediction methods.

sites). Methods under this category make forecasts about popularity using only the local

information about the web item.

2.4.1.1 Before publication

One of the most challenging objectives is to predict the popularity of a web content before

its publication, relying only on content metadata or the social structure of the publisher.

2.4.1.2 After publication

The alternative is to include in the prediction model data about the attention that one

item receives after its publication.

Aggregate behavior. A common approach is to deduce future content popularity from

the aggregate early users’ reactions. This can further be separated in three main categories:

• Study the cumulative growth of attention, i.e., the amount of attention that a web

item receives from the moment it was published until the prediction moment.

• Perform a temporal analysis of how content popularity evolved in time until the

prediction moment.

• Use clustering methods to find popularity evolution trends.

Individual behavior. Instead of treating each user action equally, one may further refine

the prediction model by taking into account individual user behavior.
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2.4.2 Cross domain

Explaining popularity from the perspective of single domain is limited due to the diverse

and complex user interactions between different platforms. Methods under this class draw

conclusions by extracting and transferring information across web domains.

2.5 A survey on popularity prediction methods

Several popularity prediction methods have been proposed in the last decade, from simple

linear regression functions to complex frameworks that mine and build knowledge from

social media. We describe these methods according to the proposed classification and

explain how these methods perform on different types of web content. A summary of these

methods is then presented in Table 2.1.

2.5.1 Single domain

In the vast majority of cases, prediction methods rely entirely on the information available

on the site where the content has been published.

2.5.1.1 Before publication

Predicting the popularity of an item before publication is particularly useful for web items

with short lifespan. News articles, which are time-sensitive by nature, fall under this

category and have been analyzed in two studies [64, 65].

Tsakias et al. addressed this problem as a two-steps classification problem: predict if

news articles will receive comments and if they do, if the number of comments will be high

or low [64]. The prediction method used in this case has been a RandomForest classifier

trained on a large number of features (textual, semantic, and real-world). Using several

online news sources the authors showed that one can accurately predict which articles will

receive comments and observed that the performance degrades significantly when trying to

predict if the volume of comments will be high or low.

Bandari et al., using the number of tweets as an indicator of news popularity, formu-

lated the prediction task both as a numeric and a classification problem [65]. Predicting

the exact popularity of news articles, even under various regression methods (linear, k-

nearest-neighbors and support vector machines (SVM) regression) showed modest results,

being able to explain only 34% of the variability in the observed popularity (R2 = 0.34).

Predicting ranges of popularity has proved to be more effective, with an accuracy of 84%

when identifying articles that would receive a small, medium, or large number of tweets.
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2.5.1.2 After publication - Aggregate behavior

The methods under this category have been used to predict the popularity of web items

based on the aggregate user attention received early after publication.

Cumulative growth. One of the first solutions, which was used to model the popularity of

Slashdot stories, was proposed by Kaltenbrunner et al. [46]. The model, which we will refer

to as growth profile (we adopt the terminology used in [43]), assumes that, depending

on the time of the publication, news stories follow a constant growth that can be described

by the following function:

�Nc(ti, tr) =
Nc(ti)

P (ti, tr)
, (2.9)

where P (ti, tr) is a rescaling parameter and represents the average growth of a story from

ti to tr

P (ti, tr) =
1

|C|
�

c

Nc(ti)

Nc(tr)
· (2.10)

The method has been tested on a large corpus of Slashdot stories and showed reasonable

performance in predicting the popularity of news stories using the aggregate user reactions

in the first day after publication (average MRE of 36%).

Describing future popularity as a linear relationship of popularity at earlier stages has

also been done by Szabo and Huberman under the constant scaling model [43]:

�Nc(ti, tr) = α2(ti, tr)Nc(ti)· (2.11)

Parameter α is computed in such a way that the model minimizes MRSE (by setting

the first derivate to zero) and is described by the following expression:

α(ti, tr) =

�
c
Nc(ti)
Nc(tr)

�
c

�
Nc(ti)
Nc(tr)

�2 · (2.12)

Szabo and Huberman also observed a strong correlation between the popularity of an

item early after its submission and its popularity at a later stage and proposed a logarith-

mically transformed linear regression model (log-linear) expressed as

�Nc(ti, tr) = exp

�
lnNc(ti) + β0(ti, tr) +

σ2
0(ti, tr)

2

�
· (2.13)

For the coefficients of Equation 3.1, β0 is computed on the training set using maximum

likelihood parameter estimation on the regression function lnNc(tr) = β0(ti, tr)+lnNc(ti)

and σ2
0 is the estimate of the variance of the residuals on a logarithmic scale.
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This method showed good predictive performance on several data sets: Digg stories [43],

YouTube videos [43], articles published on a French news platform [66], and Dutch online

news articles [42]. For example, Tsagkias et al. observed that, by using the number of

comments in the first ten hours after the publication, one can attain good performances in

predicting the final volume of comments (average MRSE of 20%) [42].

A different approach has been proposed by Lee et al. [57]. Instead of predicting the exact

amount of attention the authors study the possibility to predict if web items will continue to

receive attention from online readers after a certain period of time. The prediction model

used for this problem (Cox proportional-hazards regression) is a widely used method in

survival analysis that allows one to model the time until an event occurs (a typical event

is “death”, from which the term survival analysis is derived). While the main utilization

of this method could be to predict the lifetime of a web content, by changing the definition

of an event, the method can also be used also for popularity prediction tasks. The solution

proposed by Lee et al. is to consider as event the time when a web content will reach a

popularity above a certain threshold. The performance of this method has been studied

on threads from two online discussion forums (DPreview and MySpace) with popularity

expressed as the volume of comments per thread. Using different statistics related to the

users’ comment arrival rate the authors showed that, by observing user activity in the first

day after publication, the method can detect with an 80% accuracy threads that receive

more than 100 comments.

Regression-based methods have been frequently used for this prediction task. Tatar et

al. used a simple linear regression based on the early number of comments to predict the

final number of comments for news articles [67]. The authors observed that there is no sig-

nificant improvement when using specialized prediction models as a function of the category

and the publication hour of an article. Marujo et al. studied the problem of predicting the

number of clicks that news stories will receive during one hour. Various prediction methods

have been tested (multiple linear regression, regression-based trees, bagging, and additive

regression) using different features extracted from a news web platform. Their results in-

dicate that by combining different regression algorithms one can obtain fairly good results

(MRE = 12%) in predicting the number of clicks received by news articles during one

hour. Cho et al. used a linear model on a logarithmic scale to predict popularity ranges for

political blog posts [68]. They show that, by looking at the number of page views in the

first 30 minutes, one can classify articles in three classes of popularity with 86% accuracy.

A different approach, described more in detail in Chapter 3, was proposed by Tatar et al.

who studied the performance of two popularity prediction methods (linear-log and constant

scaling) to rank news articles based on their future number of comments [66]. Using a data

set of news articles and comments, the authors showed that a linear-log method could be
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an effective solution for automatic online news ranking.

Predicting the popularity of web items, based on the aggregate user behavior, has

also been addressed as classification problem. Jamali and Rangwala used the number of

comments that Digg stories receive in the first ten hours to predict the final Digg score [49].

By training different classification methods (decision tree classifier, k-nearest neighbor, and

SVM), they show that it is possible to predict the popularity class of a Digg story with

an accuracy of 80%, 64%, and 45% when considering a separation in 2, 6, and 14 ranges

of popularity. Hong et al. studied the problem of predicting the number of retweets

for Twitter posts [53]. The authors addressed this problem as a multi-class classification

task, where, for a given tweet the goal is to predict the range of popularity and not the

exact retweet count. Using a logistic regression classification function and various content,

topological, and temporal features the authors showed that they can successfully predict

which messages will not be retweeted (99% accuracy) and those which will be retweeted

more than 10,000 times (98% accuracy).

Temporal analysis. For web content that captures users’ attention for longer periods of

time (e.g., certain videos that are requested during several months or even years) it has

been observed that the aggregate-based prediction models are prone to large errors [43].

To improve the prediction effectiveness, one immediate solution is to design models that

can weight users’ attention differently based on the recency of the information relative

to the prediction moment. For this type of evaluation, the aggregate user behavior is

sampled in equal-size intervals of duration δ where xc(i) is the popularity of an item c

during the ith interval, and Xc(ti) the vector of popularities for all intervals up to ti:

Xc(ti) = [xc(1), xc(2), xc(3)..., xc(i)]T (Nc(ti) =
�i

j=1 xc(tj)).

This type of approach has been used by Pinto et al. to predict the popularity of

YouTube videos [69]. Using a sampling rate of one day the authors propose the use of a

multivariate linear regression expressed as

�Nc(ti, tr) = Θ(ti, tr)Xc(ti)· (2.14)

The parameters of the model, Θ(ti, tr) = [θ1, θ2, .., θi] are computed to minimize MRSE

under the new definition of estimated popularity. The performance of this model has been

empirically studied on a collection of YouTube videos and showed a significant improve-

ment compared to constant scaling model (an aggregate-based prediction model). For

instance, predicting the popularity of a video one-month after publication using data from

the first week showed an average improvement of 14% over the constant scaling model. The

main drawback of this algorithm as stated by the authors, is that, in order for the pre-

diction methods to be effective, additional exploration is needed to decide on the optimal

history length and the sampling rate.
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Reservoir computing [70], a novel paradigm in recurrent neural networks, has been

used to study more complex interactions between early and late popularity values (between

Xc(ti) and Nc(tr)). More specifically, this technique is used to build a large recurrent neural

network that allows one to create and evaluate nonlinear relationships between Xc(ti) and

Nc(tr) [71]. The model was tested on a small sample of YouTube videos and showed a

minor improvement over constant scaling model in predicting the daily number of views

based on the observations received in the previous ten days.

For videos that are popular over very long periods of time (those that receive views

during at least half a year), Gursun et al. [29] observed that daily view counts can be

modeled through a time series prediction model using Autoregressive Moving Average

(ARMA). The popularity of a video at a given day n, xc(n), can be computed with the

following formula:

xc(n) =
p�

i=1

αixc(n− i) + �n +
q�

j=1

θj�n−j , (2.15)

where α1, ..., αp are the parameters of the Autoregressive model, θ1, ..., θq are the parameters

of the Moving Average, and �n, �n−1, ... are the white noise error terms.

The model showed good performance in predicting the number of daily views using

observations received in the previous week (p = q = 7), with an average error (MRE) of

15%. This result suggests that using the number of views received during one week is

sufficient to predict the number of views during the next day. The main limitation of this

method is that it has a very high computational cost as it requires one ARMA model per

video. To improve the scalability of the model the authors use principal component analysis

(PCA) to reduce the number of ARMA functions: use PCA to find the main principal

components that can approximate the time series for the entire collection of videos and

apply ARMA modeling to the principal components instead of the individual time series.

This solution significantly improves the scalability (e.g., it requires 20 ARMA models for

the entire collection of videos) with minor decrease in the prediction accuracy (MRE =

0.12 when using individual ARMA models compared to MRE = 0.14 when using principal

component analysis).

Kong et al. proposed kSAIT (top-k Similar Author-Identical historic Tweets), an al-

gorithm to predict the popularity of tweets 1, 2, or 3 days after publication based on the

retweet information received in the first hour [55]. The underlying assumption of this al-

gorithm is that, tweets are retweeted in a similar manner depending on the author of the

tweet. The prediction algorithm is thus user-specific (there is one prediction function for

each user) and uses as predictive features only users’ retweeting behavior (it does not in-

clude any information about content itself or about users’ centrality in the graph of social
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Figure 2.3: Example of three popularity evolution trends discovered by Crane and Sornette
[35] (and similar with some of the trends presented by Figueiredo [36] and Gursun et
al. [29]). The figure shows the average number of views centered and normalized by the
popularity during the peak day.

interactions).

Each tweet is described by a set of features (e.g., retweet acceleration, retweet depth)

derived from the time-series of retweets published in the first hour after publication by the

direct and n-level followers, the publication time of the tweet, and information about the

users who retweet the original tweet. When a new tweet is posted, the algorithm computes

the similarity of the tweet and all other tweets published by the same user, selects the top-k

most similar tweets, and estimates the popularity of the target tweet as an average of the

popularity of the top-k most similar tweets.

The performance of the algorithm has been studied on a data set from Tencent Weibo

and compared to several regression-based methods. The algorithm showed good prediction

performance (and improvement of up to 10% in terms of MAE compared to regression-

based methods), but training a personalized function for each user makes it difficult to

implement in large-scale social networks.

Popularity evolution trends. Several studies showed that the popularity of different web

items follows a similar evolution over time [29, 35, 36, 72]. For example, Crane and Sor-

nette have revealed three common trends (illustrated in Figure 2.3) in the evolution of

daily YouTube views that correspond to viral, quality, and junk videos [35]. Detecting

these trends is useful as they provide a richer information about the evolution of content

popularity that could further be exploited in the prediction process.

For rarely-accessed videos (those that are viewed less than half a year), Gursun et

al. observed that most videos experience similar popularity evolution patterns around the

peak period [29]. To reveal these patterns the authors employ hierarchical clustering

using the time-series of video popularity during 64 days centered around the peak. This
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allows them to observe that there are ten common shapes that describe the evolution of

popularity for most of the videos. After these shapes have been detected, the prediction

task consists in mapping videos to the clusters that best describe their evolution until

the prediction moment (ti) and in using the temporal evolution trends of the clusters to

deduce future video popularity. On a sample of YouTube videos, this method showed good

performance in making short term predictions (predict the number of views in the next

day) but significantly larger ones in seeing further.

Pinto et al. extended the multivariate linear regression model by including additional

information that captures the similarity between videos in terms of their temporal evolu-

tion patterns [69]. The model assumes that the popularity evolution of a subset of videos

(C1 ∈ C) is representative for the entire population and could be used in the predic-

tion process. More specifically, the prediction model, called multivariate radial basis

function (MRBF), is described by the following relationship:

�Nc(ti, tr) = Θ(ti, tr)Xc(ti) +
�

c1∈C1

wc1RBFc1(c), (2.16)

where C1 ∈ C is the representative subset and wc1 is the weight associated with each mem-

ber. RBF is the Radial Basis Function with Gaussian kernel that measures the similarity

between the target video and each video in C1 [73, chapter 6]. Training MRBF involves

finding the optimal parameters Θ and wc1 to minimize MRSE, setting the optimal values

of RBF kernel, and finding a representative set C1. The performance of this model showed

an average improvement of 5% over multivariate linear regression and 20% compared to

the constant scaling model.

Ahmed et al. proposed a model that uses a more granular description of the temporal

evolution of popularity [38]. Instead of using a set of representative web items to describe

the entire evolution of content popularity, this model considers representative members for

each interval δi and defines rules to model the transitions among subsequent intervals.

The representative members for each interval, acting as representatives for clusters of

popularity, are computed using Affinity Propagation clustering algorithm [74]. To calculate

the similarity between items, the authors derive two features fromXc(ti): one that compares

if two items receive the same proportion of users’ attention and another that measures if

the two items experience a similar popularity growth. Once the clusters of popularity

have been identified, they are grouped into a probabilistic framework used to describe the

evolution of content popularity between clusters over time. Thus, by knowing to which

cluster an individual item is most likely to belong at time ti, one can predict its popularity

at a future moment of time tr.

The performance of the model has been tested on three data sets (YouTube, Vimeo,
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and Digg) and showed a significant improvement over the log-linear model. For example,

when using the observations received in the first 24 hours to predict the popularity 4 hours

ahead, this model led to an error (MRSE) of 1% (Digg) and 3.5% (Vimeo and YouTube)

compared to 17% (Digg), 24.2% (Vimeo), and 29.7% (YouTube) when using the log-linear

model.

2.5.1.3 After publication - Individual behavior

Instead of treating each user reaction equally in the prediction process, models under this

category draw conclusions based on individual user behavior.

Social dynamics, the model proposed by Lerman and Hogg, describes the temporal

evolution of a web content popularity as a stochastic process of user behavior during a

browsing session on a social media site [75]. In its original form, it was designed according

to the characteristics of the social bookmarking site Digg: stories can be found in three

sections of the site (front, upcoming, and friend list pages), users can express their opinions

through votes, and stories are arranged in pages (or promoted to different sections of the

site) based on the dynamics of votes.

User behavior is modeled through a set of states that describe the possible actions that

one can take on a site: browse through the different sections, read news stories, and cast

votes to further recommend them to the Digg community. Browsing sessions are dynamic

as stories circulate through the site (e.g., they may appear on different sections of the site

or change position on the page) depending on the voting results. Individual user behavior

is thus linked to the collective behavior, which in the end explains how stories receive votes

over time. More specifically, the number of votes a story receives depends on its visibility

and general interest. Visibility is expressed as the probability of finding a story in different

sections of the site and the interest is linked to the quality of the story estimated by the

voting dynamics.

The authors validated the model on a small sample of Digg stories by studying user

reactions to the publication of stories and by taking into account the relationships between

Digg users. By using this algorithm, the authors show that they can predict in 95% of

the cases which stories will become popular enough to reach Digg’s front page. In terms

of numeric prediction of the number of votes, results indicate that the first twenty votes

are strong predictors of the final Digg score (RMSE = 593, compared to 610 when using

log-linear model).

For platforms that allow users to cast positive and negative votes, Yin et al. proposed

Conformer Maverick model used to predict web content popularity based on user voting

profile [60]. The underlying assumption of the model is that, in the voting process, users

can have two behaviors: obey the general user opinion (the “conformers”) or be against
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them (the “mavericks”). User personality (its profile) is in-between these two extremes but

in general one trait prevails.

The first step is to build user profiles based on the voting history by comparing individ-

ual votes with the overall appreciation of the content (if the majority of votes is positive

or negative). These profiles are later used to decide if an item will be popular by analyzing

early user votes. Receiving positive votes from conformers and negative ones from maver-

icks is then a good indication that one piece of content will be appreciated by the majority.

The algorithm has been tested on a joke sharing application (JokeBox) and showed better

performance than collaborative filtering solutions.

Zaman et al. propose a probabilistic model based on Bayesian inference to predict the

popularity of Twitter messages [56]. The predictive features are content-agnostic and based

on retweets time-series and the social connectivity graph of the Twitter users. The model

is based on the assumption that Twitter users have similar actions with regard to the post

of a tweet (to share or not) that creates a pattern in the evolution of tweets popularity.

More particularly the probability of a (re)tweet to be retweeted depends on the number of

followers and the distance from the user that originally generated the tweet. Using a small

data set of 52 tweets, the method showed a good performance (given the difficulty of task),

with an average error (MRE) of 40% using the retweeting information received in the first

5 minutes after the publication.

2.5.2 Cross domain

The second major category of methods are used to predict web content popularity using

information from multiple web domains: they extract data from one domain (e.g., social

media) and transform it into knowledge used to predict web content popularity in another

domain (e.g., the site where content has been published). Currently, only methods that

predict content popularity after publication based on the aggregate behavior have been

designed.

Oghina et al. used information from Twitter and YouTube to predict movie ratings

on IMDb [58]. By training a linear regression model on several textual features extracted

from Twitter and various statistics from YouTube (likes, dislikes, and comments) the au-

thors showed that they can accurately predict movie ratings on IMDb. The most accurate

prediction model has proved to be the one that combines the ratio of likes over dislikes

from YouTube activity with the subjective terms (positive and negative unigrams about

the movies) extracted from Twitter.

The algorithm proposed by Roy et al., Social Transfer, extracts information from

Twitter to detect videos that will experience sudden bursts of popularity on YouTube [76].

The model can be decomposed in the following three steps: extract popular topics from
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Twitter, associate these topics to YouTube videos, and compare the popularity of videos

on Twitter with their popularity on YouTube. A disproportionate share of attention on

Twitter compared to YouTube is then used as strong evidence that an individual item will

experience a sudden burst in popularity.

Topics are learned by analyzing Twitter stream, extracting topical words, and finding

topics from words with semantic similarity. Each topic has a certain popularity on Twitter

(called social prominence) based on its prevalence in the Twitter stream and the time it

first appeared. The algorithm uses the Social Transfer framework [77] to map videos – using

only the textual information from the title and video description – to topics extracted from

Twitter. The popularity of a video on Twitter (expressed by the popularity of its topic) is

then compared to its popularity on YouTube (represented by number of views) and, if the

difference is significant, the video is susceptible to receive a sudden burst of attention.

Using data from YouTube and Twitter, and by training a support vector machine

(SVM) classifier, the algorithm showed that it can predict with 70% accuracy videos that

will experience a significant increase in popularity on a daily basis. The results show an

improvement of almost 60% compared to a model that uses only the information available

on YouTube.

Another approach used in cross domain content popularity prediction is the method

proposed by Castillo et al. that collects information about the early attention that news

articles receive on social networks to predict the total number of page views on a news

site [19]. The statistical method used for this task is a multiple linear regression

that uses as input variables: number of Facebook shares, number of tweets and retweets,

entropy of tweet vocabulary, and mean number of followers sharing the articles on Twitter.

Using a collection of Al Jazeera news stories, the authors showed that a model based on the

social media signals received in the first ten minutes after publication achieves the same

performance as one based on the number of page views received in the first three hours.

These results show that, when information related to a web content is spread across

multiple web domains, aggregating information from multiple sources can significantly im-

prove the prediction accuracy. In particular, the information extracted from Twitter proved

very useful in learning more accurate prediction models. The benefit of using social streams

as an additional source of information can be explained by the fact that sharing (and re-

sharing) is one of the most popular methods to reach information on the Internet. And,

as sharing rarely happens inside the originating web domain, this information gives an

additional – and more reactive – perspective about the popularity of a web content.
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Table 2.1: Summary of the popularity prediction methods.

Class Methods Data set Comparison Performance / Remarks

Before pub-
lication

SVM,
Naive
Bayes,
Bagging,
Decission
Trees,
Regres-
sion [65]

Feedzilla An accuracy of 84% in pre-
dicting the popularity range
of an article.

Before pub-
lication

Random
Forests [64]

AD,De Pers,
FD, NU-
jiji, Spits,
Tele-
graaf, Tr-
puw,WMR

Good performance in identify-
ing articles that will receive at
least one comment.

Cumulative
growth

Constant
growth [46]

Slashdot Good performance in predict-
ing the volume of comments
one day after the publication
of an article (MSE = 36%).

Cumulative
growth

Constant
scaling [43]

Digg,
YouTube

Constant
growth,
Log-linear

Outperforms the other two
methods in terms of MRSE.

Cumulative
growth

Log-
linear [43]

Digg,
YouTube

Constant
growth,
Constant
scaling

Outperforms the other two
methods in terms of MSE.

Cumulative
growth

Survival
analy-
sis [57]

DPreview,
MySpace

Using the information re-
ceived in the first day it can
detect with an 80% accuracy
threads that will receive more
than 100 comments.

Continued on next page
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Table 2.1 – continued from previous page

Class Methods Data set Comparison Performance / Remarks

Cumulative
growth

Logistic
regres-
sion [53]

Twitter Successfully predict which
messages will not be retweeted
(99% accuracy) and those
who will be retweeted more
than 10,000 times (98% accu-
racy).

Temporal
analysis

Multivariate
linear
regres-
sion [69]

YouTube Constant
scaling

An average improvement of
15% (in terms if MRSE)
compared to constant scaling
model.

Temporal
analysis

Reservoir
comput-
ing [71]

YouTube Constant
scaling

Minor improvement over con-
stant scaling model.

Temporal
analysis

Time series
predic-
tion [29]

YouTube For frequently-accessed
videos.
Good performance in predict-
ing daily views.

Temporal
analysis

kSAIT [55] Twitter Regression-
based
methods

Predict the number of tweets
using information from the
first hour.
An improvement of up to 10%
compared to regression-based
methods.

Popularity
evolution
patterns

Hierarchical
cluster-
ing [29]

YouTube Designed for rarely-accessed
videos.
Good performance for short-
term predictions but signifi-
cantly larger ones for long-
term predictions.

Popularity
evolution
patterns

MRBF [69] YouTube Constant
scaling,
Multivari-
ate linear
regression

An average improvement of
5% (in terms if MRSE) com-
pared to multivariate linear
regression and 21% compared
to constant scaling model.

Continued on next page
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Table 2.1 – continued from previous page

Class Methods Data set Comparison Performance / Remarks

Popularity
evolution
patterns

Temporal-
evolution
predic-
tion [38]

YouTube,
Vimeo,
Digg

Log-linear Significant improvement com-
pared to log-linear method.
It can be used to predict the
temporal evolution of popu-
larity.

Individual
behavior

Social dy-
namics [75]

Digg Log-linear It incorporates information
about site’s design.
It can be used to predict the
temporal evolution of popu-
larity.

Individual
behavior

Conformer
Maver-
ick [60]

JokeBox Collaborative
filtering so-
lutions

Adequate for platforms that
rank content based on user
votes.

Individual
behavior

Bayessian
net-
works [56]

Twitter Predict the total number of
tweets using the information
received in the first 5 minutes
after publication.
MRE = 40%

Cross-
domain

Linear
regres-
sion [58]

IMDb,
Twitter,
YouTube

Predict movie ratings using
social media signals.
The best performance was
achieved when using textual
features from Twitter and the
fraction of likes over dislikes
from YouTube.

Cross-
domain

Linear
regres-
sion [19]

Al Jazeera A model based on social me-
dia reactions in the first ten
minutes has the same perfor-
mance as one based on the
number of views received in
the first three hours.

Continued on next page
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Table 2.1 – continued from previous page

Class Methods Data set Comparison Performance / Remarks

Cross-
domain

Social dy-
namics [76]

YouTube,
Twitter

SVM basic 70% accuracy in identifying
videos with sudden bursts in
popularity (60% improvement
over a model that uses only
the information available on
YouTube).

2.6 Selecting the right features

The quality of the prediction is reflected by the quality of the data used as input in the

prediction model. While the majority of the models presented earlier make popularity

estimations based on early popularity counts (e.g., number of views/comments received in

the first hours after publication to predict the number of views/comments later in time)

some of the models rely on richer information in the prediction process. We make a brief

summary of the various features used in the prediction models and report their predictive

capacity.

Characteristics of content creators. The online media ecosystem is populated by

content creators – independent producers, professional bloggers, mainstream mass media,

or news agencies – with different but relatively stable audience that could be used as

additional knowledge in the prediction process. This information has been exploited by

Bandari et al. who showed that, when predicting the number of tweets that an article will

generate, one of the strongest predictor is the publisher of the news article [65].

Content features. It has been observed that certain words or key phrases, that prob-

ably refer to hot or controversial topics, often produce a significant amount of attention.

Tsagkias et al. observed that the top most popular terms used in the text of news stories

have a strong and robust performance in predicting if articles will receive comments and if

the volume of comments will be high [64]. Similar, Marujo et al. observed that the highest

prediction performance (when predicting the popularity of news articles) was obtained after

including in the prediction model popular key-phrases from the text of the articles [78].

Content category. Designing specialized prediction models for the different content

categories showed little benefit in predicting the popularity of videos [69] and new arti-

cles [65,78]. The only notable exceptions have been signaled for YouTube Music videos [69]

and news articles related to Technology [65]. The low predictive performance of using this
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information in a prediction model can be explained by the overlapping scope of categories,

with content often belonging to multiple categories [32, 65].

Named entity identification. The popularity of people, locations, or organizations may

be directly correlated to the popularity of the web item they are associated with. Tsagkias

et al. found that including popular entities from Netherlands in a prediction model is useful

in spotting articles that will be commented [64].

Sentiment analysis. Text is often charged with emotion that may be appealing to online

readers. The subjectivity of the language has shown little predictive power in predicting the

volume of tweets for online news stories [65]. However, it has been observed that articles

that are written in a more positive or negative voice, associated with strong emotions (e.g.,

admiration or anger), are good indicators of how viral the article will become [79]. In

addition, Oghina et al. observed that extracting subjective terms from the discussions

about movies on Twitter can be used to build regression models that can predict movie

ratings on IMDb [58].

Comment statistics. Jamali et al. used various comment statistics (number of com-

ments, average word length, and the hierarchical organization of comments) to predict the

popularity of Digg stories and found that the number of comments is a strong predictor for

the Digg score [49].

Social media signals. As we saw in Section 2.5.2, social media conveys valuable informa-

tion about the popularity of a web content. Castillo et al. showed that the attention that

news articles generate across social networks (number of Facebook shares, number of tweets

and retweets, the language of the Twitter messages) is effective in predicting the popularity

of articles on a news site [19]. Another example of the predictive power of social media

has been reported by Roy et al. who showed that the popularity of a topic on Twitter is a

good indication that a YouTube video will experience a sudden burst in popularity [76].

Social sharing viewing behavior. Recent applications such as Yahoo! Zync allow users

to share and jointly manipulate content in real time, which produces additional digital

traces that can be used in content popularity prediction. Shamma et al. studied how users’

actions during a sharing session can be used to predict the popularity of YouTube videos

and observed that these interactions are strong indicators of videos with a high number of

views [59].

Real-world features. Content published in online media is strongly related to real-world

events but transferring information from physical to online world is difficult. An attempt

to employ real-world information in the predictions process has been done by Tsagkias et

al. who showed that there is an insignificant benefit in using weather conditions (average

temperature in Netherlands) to predict the volume of news comments [64].
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2.7 Factors that influence content popularity

Research on web content popularity has evolved from describing the popularity character-

istics to understanding the temporal evolution as well as designing models to predict the

future. However, during this process, little has been said about the factors that can drive

a web content to its success. We report the main findings on the factors known to have an

important impact on the popularity growth.

The amount of attention that a web item generates depends on various content and

content-agnostic factors. In general, the content itself explains much of its popularity.

Creating quality content [80, 81], that generates strong emotions [79], and has a large

geographic relevance [82, 83] is more likely to attract a larger audience. The topic of the

content is also important, as popularity is susceptible to bursts of attention in response to

real-world events [84]. On the other hand, there are elements that have a negative impact

on content popularity. One of them is the presence of multiple versions of the same content

that tends to limit the popularity of each individual copy [32].

There are also several content-agnostic factors that have a strong impact on the pop-

ularity growth [85]. Popular Internet services, such as search tools, recommendation sys-

tems, and social sharing applications can extent the visibility of a web item and increase

its popularity. Taking the example of YouTube (one of the most active platform for this

kind of studies) the internal search engine accounts for most of the views, followed by the

recommendation systems, and the social sharing tools [17, 85]. But the outcome of these

services can also play an important role in the popularity outcome. For example, it has

been observed that videos have a higher chance of becoming popular if they are placed in

the related list of popular videos [20, 86] and higher the position of the video in the list

the greater the number of views [87]. The recommendation system thus creates a strong

linked structure between similar videos, which influence each other in terms of popular-

ity [88]. This information can be extremely valuable to newborn videos that can have a

big advantage in creating relationships with similar popular videos by choosing a relevant

title, description, or keyword set [88].

Social sharing acts as an additional catalyst of user attention. Diffusing videos though

social networks, blogs, or e-mail services generates peaks of attention during short periods

of time but the popularity quickly drops afterwards [63]. Similarly, the social interactions

created within a site play an important role in the success of a web object. This factor

is particularly important in the early stages of the objects’s lifetime for which the bigger

the social network of the publisher the greater the increase in popularity [85]. Finally,

social influence can have a non negligible consequence in the popularity growth. A study

conducted by Salganik et al. has revealed that, when users were informed about the
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collective decisions of other individuals, the popularity of songs were driven by a “rich-get-

richer” process where early user attention explained much of the later one [80].

2.8 Predictive proactive seeding: an application of web con-

tent popularity prediction

The ability to predict future web content demand can prove valuable to different actors:

online users can filter more easily the massive amount of information; content producers

and content providers can better organize their information and build more effective de-

livery platforms; and advertising networks can design more sophisticated and profitable

advertising algorithms.

In this dissertation we study one concrete application that can benefit from popularity

prediction methods: predictive proactive seeding in the context of mobile data offloading.

To achieve this, in the following chapters we will first study the capacity to predict the

popularity of a specific type of web content (Chapter 3) and then analyze the possible gain

that prediction methods can bring to a proactive seeding approach (Chapter 4).

2.9 Conclusions

In this chapter we reviewed the current state-of-the-art in online content popularity pre-

diction. To structure the existing prediction methods we have proposed a classification

based on the type of information used in the prediction process. We presented the different

prediction methods, reported their performance, and looked at the different features that

have been observed to have a strong predictive power.
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Chapter 3
Predicting the popularity of
online news articles

3.1 Introduction

To better understand the problem of predicting the popularity of web content popular-

ity, given the panoply of methods applied to different types of web items, we study the

feasibility of predicting the popularity of web content using real web traces. We chose as

content of interest online news articles, an engaging type of online content that captures

the attention of a significant amount of Internet users. This is a type of content that can

easily be produced, has a small size, and low cost – properties that makes it interesting

to be massively spread through online social platforms and particularly enjoyed by mobile

users.

We analyze two important online news platforms from France and Netherlands, provide

insights on how articles are produced and consumed by online readers, and study the

effectiveness of predicting their popularity. We focus on one dimension of the content

popularity and consider the number of comments as an implicit evaluator of the interest

generated by an article. As we saw in Chapter 2, predicting the popularity of online content

is a complex and difficult task and different prediction methods and strategies have been

proposed in the literature. We select as case studies two of these methods, that are adequate

to the type of information contained in our data set, and study their capacity to predict

the popularity of online news.

In addition to predicting the exact amount of attention that one content will gen-

erate, in another practical situation, it may be valuable to rank articles based on their

future popularity. As the online users’ interest in web content is often highly skewed (with

49
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popular objects being extremely popular) finding the top most popular objects is often a

good-enough solution for applications that benefit from predicting users’ preferences. For

example, a Top-10 approach to prefetching content has proved to be robust solution to

anticipate future content requests [89]. Thus, we study the effectiveness of using prediction

methods to rank news articles based on their future popularity and compare them with

various heuristics and more customized learning to rank algorithms.

3.2 Background

In Section 2 we described the various methods used to predict the popularity of web items

and showed that different approaches have been proposed depending on the type of in-

formation used in the prediction process. We saw that the choice of a method (and its

accuracy) depends on the type of web item, the granularity of user behavior (using aggre-

gate of individual user information), or the possibility to cross-correlate information from

multiple web sources. In this chapter we study the possibility to predict the popularity of

news articles using the aggregate user behavior.

We position this work with respect to similar studies that address the problem of pre-

dicting the popularity and ranking online news articles. One of the first models, used to

predict the popularity of Slashdot stories, was proposed by Kaltenbrunner et al. [90]. This

solution considers that, depending on the publication hour, the popularity of news stories

follows a constant growth. Szabo et al. proposed two other prediction methods that have

shown good results in predicting the popularity of Digg stories [91]. Tsagkias et al. showed

that a linear model on a logarithmic scale (used in [91]) is also reliable method for pre-

dicting the popularity of news articles [92]. Lerman et al. propose a model based on the

social influence and web platform characteristics in the prediction process [93]. A different

approach was proposed by Lee et al. where, instead of predicting the exact popularity

value, the authors are interested in predicting the probability that a content will continue

to receive comments after a certain period of time [94]. We place ourselves in this context

of popularity of online news stories. In our work we analyze the capacity to predict the

popularity of online news articles using methods that are adapted to our prediction goal

(predict the exact popularity count at a certain moment in time) and can operate with the

the type of information available in our data sets (we lack information about the social in-

fluence and web site’s characteristics). We make a step further in our research and analyze

the ranking capabilities of these methods by taking into consideration the dynamic nature

of news generation.

The feasibility of ranking online news has been addressed in [95, 96]. McCreadie et al.

propose a ranking method based on relevant blog posts and show that the blogosphere
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Table 3.1: Summary of the data sets analyzed in this paper.
Data set 20minutes telegraaf
Lifespan:

- start 3/2/2007 18/8/2008
- end 6/5/2011 21/4/2009

Total articles 231,120 40,287
Total comments 2,635,489 731,395
Articles per day

- mean 157 176
- median 136 153

Comments per day
- mean 1,255 3,086
- median 1,231 3,052

activity is a reliable indicator of news stories importance [96]. A different approach was

proposed by Morales et al. who use a learning to rank algorithm and Twitter posts to

rank news articles based on the future number of clicks [95]. The study shows that micro

blogging activity can successfully be used to detect the important news stories. In our

study we share the same general objective of ranking news articles, but our work differs

both in the ranking technique, notion of article relevance, and input used for the ranking

methods.

3.3 Global statistics

3.3.1 Online news data collections

In this study we use data from two news platforms, 20minutes1 and telegraaf2. Both news

sources are popular daily newspapers that complement the hard copy editions with online

sites that allow users to read news stories and express their opinions through comments.

The sites’ content is news oriented, starting with the main articles from the printed version

and being periodically updated with the latest news. These newspapers target a broad

audience and cover diverse topics from national and international politics, sports, economy,

or lifestyle.

The two data collections differ in size and lifespan: 20minutes contains 231,120 articles

and 2,635,489 comments published from February 2007 until May 2011 [97]; telegraaf

data set contains 40,287 articles and 731,395 comments published from August 2008 until

April 2009 [92,98]. We present a summary of the data sets in Table 3.1.

1http://www.20minutes.fr/
2http://www.telegraaf.nl/
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Figure 3.1: The number of articles and comments posted per hourly cycles. On the y-axis
we illustrate the average number of articles and comments published per hour.

Figure 3.1 shows the average number of articles and comments published on an hourly

basis during the period of one week. Our data sets confirm previous observations of the

circadian pattern of user activity [40, 42]. Daily variations can also be deducted from this

graph. Readers are twice more active during the working days compared to the weekend,

nevertheless with an important contribution if we consider the number of published articles

(fewer during weekends).

3.3.2 News articles lifetime

A common characteristic of online content is that it suffers from a decay of interest over

time and, depending on the type of content, this interest is steep or gradual. News articles

depict a very steep decay compared with videos [99] or photos [100] as they refer to a recent

type of information that by its nature has a very short life cycle.

We provide a coarse representation of articles’ lifetime by analyzing when articles re-

ceived their last comment3. We present the results in Figure 3.2 by means of a com-

plementary cumulative distribution function of the last comment time relative to articles

publication time. For both news sources we observe that most articles, 72% for telegraaf

and 61% for 20minutes, receive all the comments within the first day after the publication.

There are however articles that continue to receive comments after one day but in most of

the cases they represent only a sparse interest and not a constant one as observed for other

type of online content [99]. By analyzing the overall comments arrival rate, we observe that

3We are aware that there are other fine-grained methods of evaluating the decay of attention over
time [94, 101, 102], but for the scope of our work, this coarse characterization provides us with sufficient
information.
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Figure 3.2: Complementary cumulative distribution function corresponding to the articles’
lifetime (time elapsed between article publication time and the last comment time). The
labels on the x-axis correspond to one hour, day, week, month, and year. We represent two
versions of 20minutes data: one over the entire data set and a reduced version that covers
the same period of time as telegraaf data set.

the most significant share of comments is received within the first day after the publication

of an article. We report this observation in Figure 3.3 by means of a probability density

function of the comments publication time relative to articles publication time. As it can

be observed, for both news sources, users react very fast to news articles but their interest

drops quickly after 6 hours and only a negligible amount of comments are received after

one day.

Comparing the two news sources, we observe that, while the drop of interest over time

is similar in the first day for both sites, articles published on 20minutes engage users in a

commenting activity for a longer period of time than those published on telegraaf. This

difference can be explained by the different lifespan of the data sets, one covering more than

four years and the other one only eight months. To isolate this effect we analyze a reduced

version of the 20minutes data set, one that covers the same period of time as telegraaf

(Figure 3.2(b)). Even after this adjustment we can observe that, in general, 20minutes

articles receive comments for a longer period of time than telegraaf. There are several

factors that could explain this difference. One of them is that 20minutes news have a

greater exposure than telegraaf news, as indicated by the traffic statistics of the two web

sites (5.5 million unique visitors per month for 20minutes.fr compared to 3.8 million for

telegraaf.nl4). The result is that 20minutes articles may seize a greater amount of attention

in the early stages after the publication, which could further impact the popularity and

smoothen the decay of interest over time. Other explanations, which unfortunately cannot

4According to the latest statistics of the two sites: http://corporate.tmg.nl/en/result-second-quarter-
2012 (telegraaf); http://www.mediametrie.fr (20minutes)
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Figure 3.3: Probability distribution function of the comments time relative to the articles
publication time. We represent the histogram covering a one day period along with the
best probability fit, which in our case is best described by a log-normal distribution.

be deduced from the information found in our data sets, could be related to the tone of the

articles (a more personal and subjective voice may be more captivating to online readers) or

the topic of the news (it has been observed that certain topics have a longer life cycle [103]).

3.3.3 Distribution of popularity

A common question addressed by scientists that study the properties of online content is

whether the data under observation exhibits heavy-tail characteristics or not. While this

is interesting from a scientific point of view, where a mathematical model can summarize

empirical data, this observation also has practical implications. For example, it has been

shown that understanding the underlying distribution of popularity for web content can

have important consequences in the design of caching algorithms [104, 105] or to improve
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Figure 3.4: The complementary cumulative distribution function of the articles’ popularity
and the corresponding power-law fit.

the performance of search engines [106].

In the case of social media content, recent work, on different sources of online content

and using various popularity metrics, indicates that content popularity can be described by

heavy-tail distributions and the log-normal distribution appears to give the most consistent

description [52, 98, 102]. Our data sets make no exceptions from this observation. This

can visually be observed in Figure 3.4, where we present the complementary cumulative

distribution of the number of comments per article and the power-law fit. The power-law

appears in the tail of the distribution and has been confirmed by rigorous power-law tests

proposed by Clauset et al. [107].5 There is, however, a difference between the two news

sources as observed in Table 3.2. Our results indicate that while a power-law is the most

accurate solution for 20minutes articles, a power-law with exponential cut-off is a better

5Statistical techniques based on maximum-likelihood methods and Kolmogorov-Smirnov statistics.
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Table 3.2: Comparing the power-law fit against other alternative distributions. For each
alternative distribution, we provide the p-value and the likelihood ratio test (LR). We
consider a significance level of 0.1 for the p-value and display the significant values in bold.
Positive values of the log-likelihood indicate that the power-law is a better fit model than
the alternative distributions.

Data set
Exponential Power + cut-off Log-normal
LR p LR p LR p

20minutes 34.42 0.07 -1.24 0.11 -2.5 0.31
telegraaf 13.40 0.12 -5.6 0.00 -4.6 0.05

alternative for telegraaf data.

It is out the scope of this work to debate over which distribution is the most adequate

one for describing the popularity of online news and we encourage the reader to follow the

enriching discussion presented in [108]. One possible explanation of why power-law is more

visible for 20minutes articles is given by the web site recommendation strategy. The site

highlights the most commented articles in a dedicated section and twice a day it delivers

to its subscribers a short electronic edition with the most commented articles. This creates

a rich-get-richer effect, which is one of the reasons why power-law appears so often on the

Internet [109]. The recommendation mechanism can also explain why the power-law fails

to appear in the beginning of the distribution and could also account for the difference in

articles lifetime observed in Section 3.3.2. Articles that are unpopular in the beginning do

not benefit from any recommendation mechanism and the probability of receiving any kind

of attention drops even more as they loose their position on the web site [101].

The heavy-tail property has important implications in the ranking evaluation. Indeed,

given that the distribution is so heavily skewed, a ranking algorithm should perform par-

ticularly well in identifying the top most important articles. We explore in Figure 3.5 the

exact spread of daily comments for the top most important articles. On the x-axis we order

articles based on their popularity (in a decreasing way) and normalize the ranks from 0 to

100. For the y-axis we consider the proportion of the total comments (per day) received by

the top-k most important. As we can observe in Figure 3.5, for both data sets, on a daily

basis the top 10% most commented articles gather 50% of the total number of comments

and around 20% of the articles receive 80% of all the comments published that day.

3.4 Predicting the popularity of online news articles

3.4.1 Popularity predictions methods

We consider the following two methods to predict the popularity of online news articles:
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Figure 3.5: Normalized article ranks and the cumulative of proportion of comments received
on a daily basis. We present the average value and one standard deviation (shaded area).

• Linear regression on a logarithmic scale model (linear log) proposed by Szabo and

Huberman [91] and previously evaluated on Digg stories, YouTube videos, and Dutch

news articles [98].

• constant scaling model also proposed by Szabo and Huberman and evaluated on

Digg stories and YouTube videos [91].

The choice of the prediction model is given by the properties of our data, where the

linear model on a logarithmic scale is particularly well adapted to data with heavy tail

characteristics. We also consider the constant scaling model in our analysis following the

observations that this model outperforms the linear log model with respect to the relative

squared error [91].

These two models are regression functions where the dependent variable is the total

number of comments an article receives at time tr and the independent variable is the

number of comments received ti hours after the publication of an article. The goal of the

prediction method is thus to estimate the number of comments tr hours after an article a

is published using the information received in the first ti hours.

The estimated popularity for the linear log model is described by the following equation:

�NLN
a (ti, tr) = exp

�
ln(Na(ti)) + β0(ti, tr) +

σ2
0(ti, tr)

2

�
· (3.1)

For the parameters of Equation 3.1, β0 is computed on the training set using maximum

likelihood parameter estimation on the regression function lnNa(tr) = β0(ti, tr)+ lnNa(ti)

and σ2
0 is the estimate of the variance of the residuals on a logarithmic scale.
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Figure 3.6: The prediction error in terms of QSE for the two popularity prediction methods.
On the x -axis we vary the observation period from 1 to 24 hours. On the y-axis we represent
the mean error (depicted in the top figures) and the mean along with one standard deviation
represented by the shaded area in the bottom figures.

The constant scaling model is expressed as

�NCS
a (ti, tr) = α2(ti, tr)×Na(ti), (3.2)

where α2 is obtained using the following expression:

α(ti, tr) =

�
a

Na(ti)
Na(tr)

�
a

�
Na(ti)
Na(tr)

�2 · (3.3)

3.4.2 Popularity prediction accuracy

We assess the performance of these methods in predicting the total number of comments

using the absolute squared error (QSE) and the relative squared error (QRE):

QSE(a, ti, tr) =
1

|A|
�

a

[ �Na(ti, tr)−Na(tr)]
2, (3.4)
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Figure 3.7: The prediction error in terms of QSE for the two popularity prediction methods.
On the x -axis we vary the observation period from 1 to 24 hours. On the y-axis we represent
the mean error (depicted in the top figures) and the mean along with one standard deviation
represented by the shaded area in the bottom figures.

QRE(a, ti, tr) =
1

|A|
�

a

�����
�Na(ti, tr)−Na(tr)

Na(tr)

����� · (3.5)

We analyze the predictive performance of these models as a function of the observation

period (ti) in Figures 3.6 and 3.7. The results indicate that the prediction error for both

models is significantly high for an observation period of less than 6 hours and it rapidly

decreases after that. Comparing the two data sets, we observe that telegraaf articles have

very low predictive performance in the beginning and a negligible one after 20 hours. On the

other hand, 20minutes articles show a better overall predictive performance but the error

prevails even after one day. The different performance of these models can, however, be

explained by the different dynamics of the comment arrival rate presented in Section 3.3.2.

As observed in Figure 3.1, the most significant share of comments is received in the first

6 hours after publication, which explains the high prediction error for short observation

periods. Similar, the low error for telegraaf news stories after 20 hours is explained by

the saturation of articles’ popularity in less than one day.
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Figure 3.8: NDCG at different levels of precision. @n corresponds to the NDCG score for
the top most important n articles. We present the mean over all prediction hours h (n=24)
along with a 95% confidence interval.

3.5 Ranking news articles based on popularity prediction

Given that the popularity of web objects can often be described by Zipf-like distribu-

tions [104], the ability to detect only the most important ones is often a good enough

solution in the design of applications that anticipate future clients’ requests. For example,

prefetching the top most popular documents from a server has been found as an effective

prefetch heuristics [89] with a robust performance in anticipating future requests. In this

case, an alternative to predicting the exact popularity value is to predict the relative order

of the documents. We thus look at the ability of popularity prediction methods to iden-

tify the most popular articles and compare their performance with simple heuristics (that

requires less computing effort) and dedicated learning to rank algorithms (that are more

sophisticated techniques deigned for learning to rank problems [110]).

3.5.1 Methodology

To evaluate the ranking performance we propose the following methodology:

1. We break the corpus of articles of each data set in small subsets, where each subset

contains all articles published during a certain period of time before a specific reference

hour h. We set the duration of the period to one day given our previous observations

of how readers significantly lose their interest in articles after one day.

2. We rank each subset of articles based on the number of comments that articles receive

after the reference hour and consider this ranking as the ground truth. We then apply

the different methods (heuristics, popularity prediction methods, and learning to rank

algorithms) to estimate the ranking of articles and assess the ranking effectiveness

using NDCG evaluation measure.
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Ranking strategy. Let A be the corpus of articles published by a news platform during

a period of time T, with a ∈ A being one specific article. We discretize time on an hourly

basis and consider h a precise hour of the day according to a 24-hour clock. Let th be the

absolute time in hours and denote d as a one-day period. According to this time description

and relative to an hour h we split A in k subsets, with k = �T/d�. Denote Ai
h the ith

subset of articles created relative to an hour h, with A =
�k

i=1A
i
h. Please note that as h

varies from 0 to 23 there are 24 ways of separating the corpus of articles. This separation

allows us to further measure how the ranking performance is influenced by the hour we

perform the ranking.

For every article a we refer to at0 as the article’s publication time and define Na(t) the

number of comments received by article a from at0 to certain time t. We also consider

Na(th, tr) the number of comments received by an article from th to tr.

For this specific ranking task, given a set of articles Ai
h and a ranking time th, our goal

is to accurately rank articles by the number of comments they will receive from th until a

future time tr, with tr > th. We set tr to 30 days to catch only the most relevant comments

and reduce possible sources of spam. Under this description the ground truth ranking for

Ai
h is given by Na(th, tr). We consider this value the relevance of an article, and note

rel(ath,tr) = Na(th, tr)· (3.6)

Evaluation measure. We assess the ranking performance of the different strategies using

the normal discounted cumulative grain (NDCG) [111]. To compute NDCG for a set of q

articles we first determine DCG as

DCG = rel1 +
q�

i=2

2reli − 1

log2(i+ 1)
, (3.7)

where reli is the relevance of an article found at position i in the ranked list. From this

value we compute NDCG as

NDCG =
DCG

IDCG
, (3.8)

where IDCG is the ideal DCG, the DCG of the perfectly ranked list of articles (ground

truth ranking). We report the results using 10-fold cross-validation. That is, after splitting

the corpus of articles in k subsets we randomly divide these subsets in 10 folds. We use

9 folds to train the models and assess their performance on the remaining fold; we repeat

the process 10 times, using a different fold at each step, and report the average value.
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3.5.2 Ranking methods

Each ranking method rates the relevance of an article using a certain criterion and one

method is considered adequate if the estimated ranked list is close to the ground truth

ranking. We analyze the ranking effectiveness of the two methods based on popularity pre-

diction (linear log and constant scaling) and compare them with several baseline strategies:

• Live: rank articles by the number of comments received until the prediction moment,

Na(th).

• Recency : rank articles by the time of publication, at0 , with the most recent first.

• Weighted : rank articles by the number of comments but weight the volume of com-

ments per hour giving importance to more recent information.

The first two methods are simple heuristics often used by news portals to highlight their

popular content, where live is oblivious to the temporal information and recency considers

the time of the publication as the only factor that matters in the ranking decision. The

third baseline method is similar6 to the algorithm proposed by McCreadie et al. that

showed one of the most accurate performance on TREC 2009 blog collection [96]. This

method combines the partial popularity and recency of articles in the ranking decision by

weighting the popularity relative to its closeness to th. By using this method, the score S

assigned to an article a at time th is given by the following formula:

S(ath) =
th�

t=at0

f(th − t)Na(t)· (3.9)

where f is a probability density function that describes how much weight we should assign

to past popularity on an hourly basis. In our case, we observed in Figure 3.3 that the decay

of interest over time follows a log-normal behavior. As a result, we express f as log-normal

probability density function:

f(δ;µ, σ) =
1

δσ
√
2π

exp

�
(− ln(δ)− µ)2

2σ2

�
, (3.10)

where we obtain the values of µ, σ by fitting the log-normal distribution on the empirical

data.

6The algorithm uses the number of blog posts to predict users’ interest in articles.
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Figure 3.9: Ranking accuracy in terms of NDCG@100 per hourly basis. The outer numbers
correspond to different reference hours h (only the even hours of the day). The inner
numbers correspond to the different ranking methods, with 1 - linear log, 2 - weighted, 3 -
constant scaling, 4 - recency, 5 - live.

3.5.3 Ranking performance

We compare the ranking performance of the two popularity prediction models with the base-

line strategies (Figure 3.8). We report the mean value and a 95% confidence interval over

all prediction hours and for various levels of precision: NDCG@1, NDCG@5, NDCG@10,

NDCG@20, and NDCG@100. One can observe from the results that the simplest baseline

models, live and recency, have limited ranking capabilities. This suggests that news rank-

ing based on the submission time – recency heuristic – or one based on static view of the

popularity – live heuristic – are inefficient solutions for this ranking task. The performance

can however be improved using popularity prediction methods or a weighted solution. For

a precision level of NDCG@100 (that allows us to capture on average 98% of the daily com-

ments - Figure 4) the linear log model shows 50% improvement compared to live solution

(for both data sets) and a 40% improvement for telegraaf - and 75% for 20minutes -

compared to the recency solution. From the top three performing algorithms, the linear log

model shows the overall highest performance; the only exception is observed for NDCG@1,

where the weighted model is equally effective. The gain of linear log model, compared to

the second best solution (weighted model) for NDCG@100, is of 2% for 20minutes and 10%

for telegraaf. If the benefit brought by the linear log model over the other top two models

is important for telegraaf (with an increase between 10% and 14% for precision levels

greater than NDCG@5), for 20minutes the top three methods show a similar performance
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suggesting that they are equally fit for this ranking task.

These results depict the average performance over all hours of the day. However, in

similar studies [91, 97, 98], it has been observed that articles and comments are published

at a different rate during the day. As a consequence, articles may be more popular or

exhaust their interest more quickly depending on the publication hour, an effect that can

influence the ranking accuracy. To capture the impact of this observation, we illustrate in

Figure 3.9 the ranking performance as a function of different prediction hours (to ease the

presentation of the figure we report only the even hours of a day). We take as example the

case of NDCG@100, but we observed that the relative performance of the ranking methods

is equivalent for the other levels of precision. One can notice that, in general, the top three

algorithms show a consistent improvement over the simple heuristics live and recency.

The improvement of the linear log model over the other two methods is insignificant for

20minutes – suggesting that the top three ranking solutions are equally effective – but has

an important impact for telegraaf data set where the improvement is notable for some

specific hours (e.g. the improvement for 10 a.m. is 12%.)

3.5.4 An alternative to learning to rank algorithms

A different approach to this ranking problem is to automatically construct a ranking model

using learning to rank algorithms. These algorithms propose a straightforward approach

to the ranking problem and provide greater adaptability to add more information into

the ranking model. We compare the methods based on popularity prediction with several

learning to rank algorithms.

Depending on how they address the ranking problem, there are three main classes

of learning to rank algorithms: pointwise, pairwise, and listwise [110]. We consider a

representative model from each category:

• Multiple additive regression trees (MART) - pointwise approach based on the gra-

dient boosting technique proposed in [112].

• RankBoost - pairwise approach based on a boosting algorithm and multiple weak

rankers [113].

• LambdaMART - pairwise and listwise approach using boosted regression trees and

designed to optimize NDCG [114].

• AdaRank - listwise approach also based on a boosting algorithm that minimizes an

exponential loss function [115].
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Table 3.3: Ranking accuracy in terms of NDCG for different levels of precision. We compare
the linear log model and the learning to rank algorithms using different set of features:
basic and enhanced. The bold value indicates the best performing algorithm for a specific
precision level.

(a) 20minutes

Method
NDCG

@1 @5 @10 @20 @100
Linear log 0.35 0.52 0.56 0.58 0.61

MART- b 0.3 0.48 0.52 0.54 0.57
MART - e 0.33 0.50 0.54 0.56 0.59
RankBoost - b 0.07 0.12 0.13 0.14 0.26
RankBoost - e 0.24 0.36 0.39 0.43 0.48
LambdaMART - b 0.06 0.17 0.22 0.25 0.32
LambdaMART - e 0.05 0.16 0.22 0.26 0.32
AdaRank - b 0.13 0.23 0.28 0.31 0.38
AdaRank - e 0.07 0.19 0.24 0.29 0.35

(b) telegraaf

Method
NDCG

@1 @5 @10 @20 @100
Linear log 0.36 0.50 0.55 0.59 0.60
MART- b 0.31 0.48 0.52 0.56 0.59
MART - e 0.32 0.49 0.54 0.59 0.61

RankBoost - b 0.19 0.24 0.28 0.32 0.40
RankBoost - e 0.27 0.46 0.49 0.52 0.56
LambdaMART - b 0.13 0.20 0.24 0.30 0.39
LambdaMART - e 0.14 0.21 0.25 0.29 0.40
AdaRank - b 0.15 0.22 0.24 0.24 0.37
AdaRank - e 0.16 0.26 0.41 0.41 0.51

Using the same evaluation strategy (10-fold cross-validation) we deploy and assess the

performance of these algorithms for our specific ranking task.7 While the format of the

previous models is not adapted to be used with a large number of features, this can easily

be done using learning to rank algorithms. We thus compare the performance of dedicated

learning to rank algorithms using the same amount of information as the previous models,

with models that include other features into the ranking decision (e.g. section, author,

mean inter-comment time). As a result, we train and evaluate these algorithms using two

different set of features:

7We deploy these algorithms using RankLib open source library [116].
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• basic set of features: partial popularity, time since publication, publication hour.

• enhanced set of features: basic features + (section, author, time of the first comment,

mean and median inter-comment time, weekday, and week).8

We report the performance of these models in Table 3.3 and compare them with the

best performing model from the previous set of tests, the linear log model. Overall, one

can observe that the linear log method is more effective than most of the learning to rank

solutions, being surpassed only by the MART model with an enhanced set of features for

NDCG@100. From the learning to rank algorithms, MART exhibits effective performances

(very close to linear log method) across all levels of prediction. This is likely due to the

underlying structure of the model that solves the ranking problem through a set of regres-

sion trees. Using the basic set of features, the other learning to rank solutions generally

do not perform as well as the previous two, which suggest that they are not able to solve

the pairwise and listwise constrains for this ranking problem. In general, we observe that

adding more features in the model improves the ranking performance except for AdaRank

applied to 20minutes data set, which shows a reduced performance. These results sug-

gest that popularity prediction methods can accurately identify the top most commented

articles and could be used as a valuable solution to automatic online news ranking.

3.6 Conclusions

In this chapter, we analyzed the capability to predict the popularity of online news articles.

We conducted our study on a large corpus of articles and comments from a French and a

Dutch online news platforms and provided insights on how users post comments on news

articles. By exploring these data sets we observe that news stories have a very short lifespan

and that the volume of comments per article can be described by a power-law distribution.

We analyzed the predictive capacity of two content popularity prediction methods and

found that a linear model on a logarithmic scale provides the most accurate performance

in predicting the popularity of online news articles. In the context online news ranking,

we analyzed the ranking effectiveness of two popularity prediction methods and compared

them with several baselines methods and learning to rank algorithms. Our results indicate

that a linear model on a logarithmic scale is also an effective solution to ranking online

news based on their future popularity, with a performance that can evenly match more

customized learning to rank algorithms.

8Information about section and author are available only for 20minutes data set.



Chapter 4
Predictive proactive seeding for
mobile opportunistic data
offloading

4.1 Introduction

To get real value out of predicting the popularity of web content, we study the effect of

this solution in the context of mobile data offloading. In particular we propose the design

of a proactive seeding strategy combined with mobile opportunistic communications that

can help telecom operators reduce data traffic during periods of increased load.

There are various strategies used by telecom operators to cope with the increasing

consumption of mobile data traffic. The typical actions are to optimize the existing network

capacity (through better network planning and traffic shaping), to upgrade the network to

the next generation technology (e.g., LTE), or to purchase additional blocks of spectrum.

More recent alternatives – cheaper and easier to deploy – are built on the notion of mobile

data offloading: the use of complementary network technologies to shift in time and space

data traffic that is originally intended to traverse the cellular infrastructure.

Mobile opportunistic networks provide a good alternative to offload data with non-real

time constraints. By allowing mobile users to access the cache space of collocated users,

content requests can be treated through opportunistic communications and thus reduce

the data traffic targeted to the cellular infrastructure [12]. Proactive seeding (preloading

content into mobile users cache before the actual content request) has often been used in

the context of mobile opportunistic communications, where, to reduce the effect of a poor

network connectivity, content is preloaded into the cache space of certain mobile users

67
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that can serve as proxies to future content requests [117]. But this strategy can also be

valuable for mobile data offloading, where, by anticipating future user requests content can

be preloaded in advance during periods of low data traffic to reduce the amount of traffic

at future moments of time [118].

The benefit of proactive seeding depends on the capacity to anticipate future user

requests. Previously, when similar solutions have been used to reduce the effect of network

bottlenecks, predicting the volume of requests was considered a difficult task and simple

heuristics have been proposed to detect future popular web objects [89]. Recent findings in

the field of social media (as described in Chapter 2) show that the popularity of web content

can be predicted and thus improve the impact of proactive seeding. In the following, we

elaborate on the results these findings and study the effect of using an actual popularity

prediction method as an integrated component of the proactive seeding decission.

4.2 Background

Different strategies have been proposed for mobile data offloading. One practical solution

(given the availability and capacity of the resource) is to migrate part of the data traffic

from the cellular network to Wi-Fi access points both for the uplink [119] and the downlink

traffic [6, 120]. Another approach would be to schedule and preload content into mobile

terminals during periods of low data traffic or under better traffic conditions to reduce data

traffic in the future. Lee et al. propose a mobile content distribution architecture used to

schedule content delivery when the network is lightly loaded and under good physical

channel conditions [121]. A technique to reduce the cellular traffic during heavy load

has also been proposed by Malandrino et al. [118]. Under the assumption that user-specific

requests can perfectly be predicted, the authors propose a water filling algorithm to schedule

users’ request in advance in such a way that traffic is uniformly distributed across time.

The strategy proposed in our work is based on proactive seeding used to reduce the traffic

during peak periods. However, in our study we relax the strong assumption of being able to

predict user-specific requests and consider that we could only predict the aggregate mobile

users content demand. In addition, compared to previous works, we consider that content

request delays are tolerated in opportunistic network communications.

The benefit of using opportunistic networks for mobile data offloading has been recently

been explored in several recent studies [12, 13, 122–125]. The common scenario considered

in these works involve a situation of information flooding, with one message (e.g., web item,

file) that needs to be delivered to all other mobile devices. The research question in this case

is how to optimize the dissemination of information through opportunistic communications

(by making the content available to a larger population of mobile users in the shortest time
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duration) and reduce the communication of mobile nodes with the cellular infrastructure.

One approach is to use network analysis to detect a set of central nodes (e.g., users that

meet many other users), use the infrastructure to push content to these nodes, and rely on

the opportunistic communications to further disseminate content to the remaining mobile

users [12,122,123]. Another strategy is to control the dissemination progress by reinjecting

content into the network when the dissemination though opportunistic communications

gets stuck [13,124,126]. We share the same goal – reduce the traffic load though proactive

seeding and opportunistic communications – but the situation considered in this work is

one where content is heterogenous and the objective is to reduce the data traffic during

certain periods of time when the network is heavily used.

Little has been said about the potential use of opportunistic networks for mobile data

offloading under the heterogenous data traffic assumptions (i.e., when users show different

interest in multiple web items). Li et al. proposed a mathematical formulation of this

problem and observed that the greatest offloading potential is obtained when the number

of replicas pushed in the network reflect the distribution of content popularity [127]. Simi-

lar, Wang et al. proposed an optimal content replication scheme that considers the skewed

interest of users in online content [128] and showed that the optimal content replication

scheme (to maximize the content requests treated though opportunistic communications)

is one that replicates content according to the skewed user’ interest. One important lim-

itations of these studies is that they assume predefined and fixed distributions of content

popularity and thus ignore the dynamic evolution of content popularity – observed in real-

ity with web content. In our work we assume that the popularity of online content evolves

over time and study the impact of different proactive seeding strategies used in the context

of mobile data offloading.

4.3 Global scenario

The global scenario considered in this work, and illustrated in Figure 4.1, involves the

following three entities: a content producer, a telecom operator, and a population of mobile

users.

Content producer: periodically publishes web items, c ∈ C, of fixed size s for a popula-

tion of mobile users. We consider that the content producer collaborates with the telecom

operator with the goal of reducing the communication of mobile users with the cellular

infrastructure. The role of the content producer is to track the popularity of each of its

web items, with popularity expressed in the number of requests, and to learn models that

predict their popularity. Denote Nc(ti), the number of requests received by a web item c

from the time it was published until time ti and �Nc(ti, tr) the estimated popularity at time
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   Telecom operator
   Provides the fixed infrastructure that
   allows mobile users to  communicate 
   with the content producer.  

Predict  content demand
Study user consumption 
patterns and learn to predict
future users' demand. 

   Content producer
   Publishes content that is consumed by 
   a group of collocated mobile users. 
   Coordinates the distribution of content 
   by analyzing and predicting mobile users 
   content demand. 

Collocated mobile users
Group of mobile users that are 
often collocated in a certain 
geographic area.

Content reply
Proactive seeding

Content request

Proactive seeding
Preload popular content 
into mobile users' cache.

Opportunistic retrieval
Content requests can be treated 
using device-to-device 
communications. 

Figure 4.1: The global scenario considered composed of a content producer, located on
the Internet, a telecom operator that provides the infrastructure for the communication
between mobile users and the content provider, and a group of collocated mobile users.

tr using the information available up to ti.

To reduce the number of prediction models (given that time is a continuous variable),

we sample time in regular intervals of duration w and learn prediction models only for

durations multiple of w. To achieve this, the popularity of online content is recorded during

fixed-size time intervals {0, w, 2w, ..., t}. The smaller value for w the more fine-grained

the prediction functions with the downside of an increase in the execution time [129]. In

the following we set w to 30 minutes, but the strategy itself makes no assumptions of the

sampling rate.

Telecom operator: provides the cellular infrastructure that allows mobile users to com-

municate with the content producer. In our scenario we consider that the load on the

telecom operator comes entirely from the communication of mobile users with the content

producer. Concretely, the traffic on the telecom operator side is due to the messages sent

from the content producer to the mobile users while content request messages are ignored.

We use the same sampling rate w when analyzing the load on the telecom operator and

note Lk
C the number of requests treated by the telecom operator during the interval [tk,

tk+1), with tk+1− tk = w. Also, denote Lmax the maximum accepted load that the telecom

operator can handle. We also assume that the telecom operator has a fairly accurate

estimation of the traffic load over time, and when Lk
C < Lmax it can use an additional

amount of resources Lk
add to proactively seed content to the population of mobile users

(under the constraint Lk
add + Lk

C < Lmax).
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Mobile users: let M be a population of mobile users interested in the web items published

by the content producer. To have access to these web items mobile users can either use

the cellular infrastructure or by using mobile opportunistic communications (retrieve con-

tent from collocated mobile users through device-to-device communications). When using

opportunistic communications a content request is broadcasted to the collocated mobile

users and, if no answer is received within a delay δ, content is fetched using the infrastruc-

ture. We consider that the content producer is notified when a request is treated through

opportunistic communications. This is important to maintain accurate statistics about

the popularity of each web item and prevents the use of unnecessary resources caused by

preloading content already found in mobile users’ cache. We also consider that the size of

a content c is small enough to be transmitted between two users when they are in direct

communication range. The transmission of one content c to a mobile user using the cellular

infrastructure takes exactly one unit of cellular traffic (the request itself is negligible). To

isolate the effect of a cache replacement policy we also consider that the mobile device

storage has an infinite capacity.

4.4 Proactive seeding in mobile opportunistic networks

Proactive seeding operation. We consider that the data traffic that the telecom op-

erator needs to handle per day follows the typical diurnal user activity, with a significant

amount of traffic during the day and reduced traffic during the night [130,131]. The proac-

tive seeding strategy consists in preloading content when the cellular network is less charged

(Lk
C < Lmax), by spending an additional amount of traffic (Ladd), with the goal of reducing

the network load at a further moment in time. To achieve this we consider a cooperation

between the telecom operator and the content producer where the decision of when to

preload content is taken by the telecom operator based on its traffic load statistics and the

decision of what to preload (which web item and how many replicas) is the decision of the

content producer.

4.4.1 Premise for effective proactive seeding

In our scenario, the value of proactive seeding is measured in the volume of traffic that is

reduced from the traffic peak periods. Intuitively, the more content is preloaded during

idle periods the greater the reduction of data traffic at later moments. But there is an

important danger in proactive seeding: if the speculations made on the future user actions

are incorrect the outcome can be an inefficient – or even an extra – utilization of network

resources. From a more general point of view we distinguish the following dimensions that

can influence the value of proactive seeding in a mobile opportunistic network scenario:
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• Network resources: the goal of proactive seeding is to level out the data traffic by

using the network resources during periods of low user activity. An inefficient use

of these resources can lead to an additional load (and extra costs) on the telecom

operator facilities.

• Mobile device resources: preloading content into mobile terminals can also consume

additional resources at the mobile terminal side (e.g., battery and processing power,

storage capacity, and quota from the data plan).

• Content characteristics: the properties of online content (distribution of popularity,

lifetime, or size) can also affect the value of proactive seeding. For example by knowing

that distribution of popularity is highly skewed (e.g., Zipf-type distribution) one can

tune the seeding decision to identify and promote only the most popular web items.

• Quality of the predictions: the impact of proactive seeding depends on the capacity

to correctly predict future users’ requests. Accurate predictions will translate in a

decrease of traffic during periods of traffic peak; wrong guesses will lead to inefficient

use of handsets and network resources. Prediction thus plays a crucial role in this

process and can incline the balance from reduction of data traffic to inefficient use of

resources.

• Opportunistic mobile contacts: data about user mobility can be capitalized into useful

information in the proactive seeding action. For example, by knowing that two users,

interested in the same content, will be in direct communication range, content can

be preloaded to one of the users that could further transmit it to its peer.

Proactive seeding is thus a complex process and, while a study of the inter-play of

these aspects can be very useful, in this work we focus on one particular aspect of the

problem: the quality of the predictions. In particular we compare how the different levels

of predictions can reduce the data traffic during periods of increased load.

4.4.2 Proactive seeding strategies

We consider the following strategies for proactive seeding:

• Constant popularity: this method considers that the popularity of online content

remains stable over time and thus the proactive seeding decisions based on the popu-

larity of a web item at time ti, Nc(ti). This approach has been used to as a solution to

prefetch web pages [89] but also in the context of proactive seeding in opportunistic

networks [117].
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Figure 4.2: The probability distribution function for the request arrival times relative to
the content publication time for MediSyn synthetic workload. We represent the histogram
covering a one-week period.

• Predicted popularity (linear log model): under this strategy we predict the actual

number of requests that a content will receive at a future time tr (tr > ti), �Nc(ti, tr).

To estimate this value we use a linear model on a logarithmic scale, that, as we

presented in Chapter 3, showed the most accurate performance in predicting the

popularity of online news.

• Perfect popularity prediction (perfect prediction): because predicting the popularity

of online news articles is prone to errors, we also consider the case where the popularity

prediction algorithm can perfectly predict the popularity of web content, Nc(ti, tr).

• Proactive seeding scheduler : this method assumes a perfect knowledge of user-specific

requests (it knows exactly when web items will be requested by mobile users) and

schedules the seeding decisions to level out the traffic throughout the day. This

strategy has been considered as a fine-grained solution in proactive seeding [118], and

although nowadays such a granular level of prediction would be difficult to attain,

this could be achieved in the near future through a better understanding of the social

influence and the information diffusion in social networks [21–23].
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Figure 4.3: The distribution of content request per hour, on a weekly basis, generated by
MediSyn.

4.5 Evaluation

4.5.1 Simulating user behavior

To study the benefit of proactive seeding, and in the absence of a data trace that contains

both mobility and content request information, we combine traces that depict user mobility

in real-life scenarios with traces that simulate HTTP requests. To simulate user mobility,

we rely on two real-life connectivity traces and use a synthetic HTTP request workload

generator to simulate users’ content requests.

Simulating content requests. To simulate mobile content request patterns we use

Medisyn, a synthetic workload generator [132]. Most of the existing workload generators

consider a predetermined and fixed popularity over time, which, as we saw in Chapter 3, is

unrealistic as online content has a limited lifetime and its popularity decreases over time.

MediSyn is a workload generator that reproduces more closely the properties observed with

real HTTP traffic as it is designed to simulate the dynamic evolution of content requests

over time. To create more realistic content request patterns we tune the parameters of the

workload using the empirical observations made on news articles described in Chapter 3.

We summarize the main parameters of the simulation in Table 3.1.

Using these configuration parameters we generate workload for a duration of one month.

We illustrate two properties for the resulting workload trace: the non-stationarity of content

popularity (Figure 4.2) and diurnal content request patterns (Figure 4.3). In Figure 4.2 we
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Table 4.1: Summary of the content creation and users’ requests.
Component Model
Content creation:

- New contents per day: Pareto (α = 1.13)
- Content arrival process: Pareto (α = 1.01)

Content request:
- Popularity: Zipf (α = 1.2)
- Content life span: Log-normal (µ = 5.74, σ = 1.22)
- Request arrival process: Non-homogenous Poisson process

represent the probability density function of content request times relative to content pub-

lication time. We observe that the most significant share of requests (on average 60%) are

received in the first day after the publication and the probability to receive requests drops

considerably after one week. In Figure 4.3 we represent the average number of content

requests during one week and per hourly basis. Even if the workload generator does not

perfectly reproduces user activity on an hourly basis (compared to what has been observed

with online news articles in Figure 3.1) the circadian patterns of users requests are never-

theless fairly approximated: users’ activity starts to increase around 7 a.m., it presents the

most intense activity between 11 a.m. and 5 p.m., and it reveals a reduced activity during

the night.

Table 4.2: Mobility datasets characteristics.

Dataset Number of participants Trace duration Probing interval Type of activity
Rollernet 61 1h30 15s Sport
Stanford 200 1h 20s Scholar

User mobility. To simulate user mobility we use two real-life contact traces, Rollernet and

Stanford. Rollernet is a contact mobility trace that describes the connectivity characteris-

tics of 62 participants captured during a rollerblading tour in Paris for a duration of one

hour and a half [133]. We also consider Stanford mobility trace in our evaluation, a data

set that reflects user mobility in a different setting [134]. This trace allows us to replay the

contacts between 788 individuals (students, teachers, and other members) during a typical

school day (between 7 a.m. and 5 p.m.) at an American high-school. This trace describes

users’ daytime mobility for a longer duration of time and on a larger population of users.

We summarize the characteristics of the two traces in Table 4.2.
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Figure 4.4: The performance of the different proactive seeding strategies using a request
timeout of 60 seconds and for different values of the additional load.

4.5.2 Simulation scenario

To jointly simulate users’ content requests in a mobile scenario we map the HTTP request

trace to the users of a mobility trace such that each content request is randomly assigned

to a mobile user. Users consume content at any moment of time (according the workload

characteristics) but they are collocated only during a limited period of time (according

to the characteristics of a mobility trace) and separated otherwise. Taking the example

of Stanford data set, users appear in the mobility setting around 7 a.m. and leave the

mobility setting after 5 p.m.. Given that the scenario described by the Rollernet data set

covers a much reduced period of time we replay the trace several times to cover the same

duration as Stanford.

For the HTTP request trace used in this work, traffic is significantly higher during

the typical working hours (from 9 a.m to 7 p.m.). We thus measure the effectiveness of

proactive seeding in the percent of traffic that is reduced from the periods of increased data

traffic (9 a.m. – 7 p.m.). For the popularity-based methods the additional credit, Ladd, is

proportionally split according to the estimated future demand 1. To replicate the content,

we assume that the content producer has no indication about users interest in web content,

and therefore it randomly select mobile users in the proactive seeding process. We consider

an additional average traffic of 2.5%, 5%, 10%, and 15% (average, because depending on

the workload this value may vary) and consider different values for the request time-out

period δ: 0, 60, 300, 600 seconds.

1We have also tried a square-root replication scheme, that is known to be the optimal allocation scheme
in unstructured Peer-to-Peer networks [135], but the results were less efficient.
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Figure 4.5: The performance of the different proactive seeding strategies for an additional
traffic of 10% and for different durations of the request timeout.

4.5.3 Results

In Figure 4.4 we illustrate the traffic reduction when applying the different proactive seeding

strategies. The results show that, when considering that the popularity of online content

remains constant over time the benefit of proactive seeding is poor. For example, for an

additional traffic of 10% used during idle periods the traffic reduction during the day is,

on average, 1% for Stanford and 2% for Rollernet. On the other hand, the ability to

predict future content demand and adjust the proactive seeding decisions accordingly, has

a greater potential in traffic reduction. For instance, by learning an actual popularity

prediction model on the history of user requests one can double the amount of traffic that

can be reduced compared to the model that considers that the popularity remains constant

over time. Moreover, the benefit that can be obtained using a prediction algorithm that

perfectly knows the future shows a 5 times potential increase. Thus, even if for this type

of workload the benefit of using an actual prediction model appears to be limited, the

theoretical improvement that can be obtained with a more accurate prediction method (or

using a data set with better predictive characteristics) is a good indicator of the benefit

brought by content popularity prediction methods.

The previous set of results considered a request timeout of 60 seconds, which, in a

disconnected mobile setting may limit the impact of proactive seeding. To observe how

the performance is influenced by the duration of the request timeout, we vary this value

from 0 to 600 seconds while keeping the additional traffic to10%. The results show that

even for a request timeout of 600 seconds the potential reduction obtained for the constant

popularity solution is of only 2.7% for Stanford and 3.3% for Rollernet, whereas, when

using an actual prediction algorithm the performance reaches 3.7% for Stanford and 4.7%

for Rollernet. Thus, under the constant popularity assumption, by promoting stale content

into the network, this solution shows that it is unadapted for the practical use because it
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Figure 4.6: For an additional credit of credit of 5%, the performance of the Scheduler
strategy using a request timeout of 60 seconds, compared to the perfect prediction strategies
under different values of request timeout.

wastes important network resources with little gain in terms of the future traffic reduction.

Certainly, relying on a solution that predicts individual user requests (in our case the

Scheduler method) guarantees an efficient use of the network bandwidth if the predictions

are perfect. However, this altruistic manner of preloading content may not be the most

effective solution. This can be observed for the Rollernet scenario, where, by planning

the proactive seeding decisions based on the global popularity demand one can obtain an

average improvement of 3% compared to the Scheduler strategy. Stanford, on the other

hand, shows a different behavior with the Scheduler strategy showing an improvement of

5% over perfect prediction method. The different performance observed in the two cases is

explained by the connectivity characteristics of the mobile traces: Rollernet represents a

more dynamic and connected mobile environment compared to Stanford and thus requests

are better treated through opportunistic contacts. In poorly connected mobile environ-

ments the benefit of a popularity-based proactive seeding can, nevertheless, be improved

by increasing the duration of the request timeout. Taking the example of Scheduler method

for an additional 5% traffic and a request timeout of 60 seconds, by increasing the duration

of the request timeout, one can reduce the performance gap between the two strategies

(Figure 4.6).

4.6 Conclusion

In this chapter we proposed the use of content popularity prediction methods to improve

the efficiency of proactive seeding in the context of mobile opportunistic data offloading.
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Compared to traditional strategies that consider a stable evolution of content popularity

over time, the strategy used in this case is to actually predict future content demand and

adjust the proactive seeding decisions accordingly.

To evaluate the benefit of this solution in a real-life deployment, we proposed a sim-

ulation scenario that reproduces, to a certain extent, the mobility and content request

characteristics of a group of collocated mobile users. In this scenario the objective is to

reduce the amount of traffic that the mobile users create during the day by preloading

content when the network is less loaded.

A preliminary set of results show that proactive seeding can have a greater impact

if the decision of what content to replicate is based on an algorithm that predicts future

content demand. Although, for this particular workload trace, the benefit of using an actual

prediction algorithm is limited, the theoretical gain obtained under the assumption that

the global popularity can better be predicted is a strong evidence of the potential value of

using this strategy.
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Chapter 5
Beyond contact predictions in
mobile opportunistic networks

5.1 Introduction

The design of efficient communication protocols in mobile opportunistic networks depends

in great part on the capacity to understand human mobility characteristics. Over the

last years several studies have revealed important insights about the duration of contacts

and inter-contact between mobile users [8,136,137], the periodicity of these encounters [9],

or the network structures created by human interactions [10, 138–140]. In the context of

mobile opportunistic networks, uncovering mobility patterns can then be used to design

measures that facilitate the prediction of contacts between mobile users. This includes the

use of frequency of contacts to identify similarities between mobility characteristics [141],

or in finding strongly-connected mobile users that could serve as message carriers [142].

While these metrics can serve as good heuristics to predict contacts between mobile users,

they have a limited power in detecting future contact opportunities. A more advantageous

but laborious approach to this problem is to actually train a model that can predict future

contacts between mobile users.

Recent studies have addressed the problem of contact prediction – predict if two nodes

are going to be in direct transmission range – and have revealed that, under the right

prediction method and predictive features, contacts between mobile users are, to a certain

extent, predictable [143]. This result is valuable as it allows one to actually predict human

encounters and design more effective communication protocols.

The properties and the impact of κ-vicinity view in mobile opportunistic networks has been studied by
Phe-Neau [144].

81
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But the pairwise relationships between mobile users can be described by more than the

binary (contact / intercontact) view as often, individuals may find themselves not in direct

transmission range but in the nearby vicinity. Thus, to have a more comprehensive view

on the available communication opportunities, the extended notion of contact, namely κ-

contact, has recently been proposed [145]. Previous analyses showed that considering only

contacts between mobile users offers a biased and suboptimal network understanding while

studying κ-contacts provides a more complete understanding of the available end-to-end

communication opportunities.

In this chapter, we provide novel insights about the κ-contact relationships and show

that considering only direct contacts provides us a limited view about the pairwise com-

munication possibilities. We then study the predictability of κ-contacts. Using data from

three human-based contact traces, we compare the accuracy of predicting κ-contacts with

the traditional case of predicting direct contacts between mobile users. We show that κ-

contact opportunities are more predictable than direct contact relationships. To measure

the possible impact of these findings in a real-life application we analyze the impact of using

a κ-contact prediction model as a solution for mobile data offloading. Through simulation

we show that there is a greater potential of relying on κ-contact prediction compared to

the traditional contact case.

5.2 Background

Understanding human interactions and mobility has been the main subject of several recent

studies. Song et al. observed that, despite many decisions influencing mobile users’ daily

routines, there is a high degree of predictability in user mobility (an average 93% potential)

with low variability across the population [146]. Clauset and Eagle revealed strong peri-

odicities in contact periods between mobile users which depend on the environment under

study (the physical place and the type of user activity) [9]. Zayani et al. studied the prob-

lem of predicting contact opportunities between mobile users [143]. Using a tensor-based

link prediction method, the authors analyze the predictive power of various features that

capture both the topological distance and the physical proximity between users. In this

work we focus on one specific aspect of human mobility, i.e., predicting if two nodes will be

in each other κ-vicinity. Our analysis is close to the work of Zayani et al. but differs in the

prediction goal (we extend the contact prediction to the κ-contact case), the connectivity

traces under study, and the prediction framework (we use a supervised learning framework

compared to the unsupervised setting used in their work).

From a general point of view, the prediction objective presented in this work is related

to the link prediction problem studied in the context of complex networks. This topic
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Figure 5.1: Sig09 example: current vision versus vicinity awareness.

has been an active research direction in several domains that define relationships between

different entities. This includes predicting the co-authorship of research publications, hy-

perlinks between web pages, or human communication activities [147–150]. Liben-Nowell

and Kleinberg studied the predictive power of various topological features and observed

that the Katz measure performs consistently well [147]. While analyzing the predictive

power of non-topological features Al Hasan et al. observed that the frequency of inter-

actions (e.g., the number of times two people co-authored scientific papers) is an efficient

predictive variable for future interactions [151]. We build on these findings, and rely on

the predictive power of various features (topological measures and the frequency of mobile

users’ encounters) to predict the κ-contact opportunities.

5.3 Vicinity and data sets

5.3.1 Beyond contact relationships

Previous studies on mobile opportunistic networks considered only network knowledge com-

ing from nodes in contact. This approach has proved to be a good-enough solution in

making forwarding but it has its limitations in what concerns the network view about the

end-to-end communication opportunities. Let us take for example two mobile users tracked

during Sigcomm 2009 conference (entitled Sig09 in the following) and look at the propor-

tion of time spend by nodes at a certain distance from one another. Using the binary view,

we observe in Figure 5.1(a) that the two mobile users remain 6% of the time in contact

and the remaining 94% in intercontact; thus we are inclined to say that there is a weak

communication potential between this pair of nodes. However, when we analyze the same

situation from a vicinity-aware point of view (see Figure 5.1(b)) we observe that the two
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Figure 5.2: Sig09 end-to-end transmission opportunities.

nodes also remain at a 2-hop distance around 20% of the time and at a 3-hop distance

around 10% of the time. Seen from this perspective the proportion of time nodes spend

without any end-to-end path linking them (∞) is 57% of the duration; far below the 94%

intercontact duration illustrated in Figure 5.1(a).

In addition, from a general point of view we observe that direct contacts represent only a

fraction of the available end-to-end transmission opportunities. Taking again the example of

Sig09data set, in Figure 5.2 we represent the number of pairs connected by a their shortest

distance. The bottom layer indicates the number of pairs in contact, the yellow layer shows

nodes connected by 2-hop paths and so on. We can see from this example that most end-to-

end transmission opportunities come from 2-hop paths and not from direct contacts. Thus,

viewing the pairwise relationships beyond the contact / intercontact paradigm improves

our understanding about the available end-to-end communication opportunities.

5.3.2 κ-vicinity, κ-contact, and κ-intercontact

To characterize the notion of vicinity in DTN, we adopt the the concept of κ-vicinity

proposed by Pheneau et al. [152]. We discriminate a node i’s vicinity according to the

number of hops between i and its surrounding neighbors. We also assume that connectivity

is bidirectional which makes κ-vicinity relationships symmetric.

Definition 1 κ-vicinity. The κ-vicinity V i
κ of node i is the set of nodes with shortest
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Figure 5.3: Example of κ-vicinity. The 1-vicinity consists in in all nodes found at a 1-hop
distance. The 2-vicinity consists in all i neighbor’s whose shortest distance is less than 2
hops.

paths of length at most κ hops from i.

As an example, we illustrate in Figure 5.3 the 1-vicinity and 2-vicinity for node i.

Clearly, V i
κ−1 ⊂ V i

κ.

Definition 2 κ-contact. Two nodes are in κ-contact when they dwell within each other’s

κ-vicinity, with κ ∈ N∗. More formally, two nodes i and j are in κ-contact when {i ∈ Vj
κ}

≡ {j ∈ V i
κ}. In other words, a contemporaneous path of length at most κ hops links i and

j. Note that, 1-contact represents direct contact.

Definition 3 κ-intercontact. Two nodes are in κ-intercontact when they do not belong

to each other’s κ-vicinity (there is no path of length κ or less linking the two nodes).

5.3.3 Data sets

Table 5.1: Data sets characteristics.
Data set # Duration Probing Type

Infocom05 41 12h 120s Conference
Sig09 76 1 day 120s Conference

Rollernet 61 1h30 15s Sport

We consider several real-life contact traces throughout our experiments.

Infocom05 measurement was held during a 5 days conference in 2005 [8]. 41 attendees

carried iMotes collecting information about other iMotes within a 10m wireless range. We

study a 12-hour interval bearing the highest networking activity. Each iMote probes its

environment every 120 seconds. Infocom05 represents a professional meeting framework.



86 5.4. PAIRWISE RELATIONSHIPS UNDER THE κ-CONTACT CASE

Table 5.2: The average duration that nodes remain at a certain distance (in seconds).
κ

Data set 1 2 3 4 5 6 7

Infocom05 399 296 224 175 131 154 212
Sig09 149 83 41 25 18 13 11

Rollernet 48 65 76 89 105 114 129

Sig09 trace was captured during the first day of Sigcomm 2009 conference in Barcelona [153].

The experiment tracked 76 users using Bluetooth-based smartphones. Each phone probed

the environment every 120 seconds to log all users in direct communication range.

Rollernet had 62 participants measuring their mutual connectivity with iMotes during a

one hour and a half rollerblading tour in Paris [133]. For this experiment the iMotes were

configured to scan the environment every 15 seconds. This experiment shows a specific

sport gathering scenario.

In Table 5.1, we recapitulate all data sets characteristics: # is the number of participat-

ing nodes; Duration indicates the data set duration; Probing shows the probing intervals

of the measuring devices.

5.4 Pairwise relationships under the κ-contact case

Given the new definitions of κ-contact and κ-intercontact we analyze different character-

istics of the pairwise interactions. (For additional information concerning κ-contact and

κ-intercontact properties, please refer to [152].)

5.4.1 Pairwise minimum distance

We begin by studying the pairwise minimum distance, i.e., how close nodes come to each

other throughout the duration of a trace. For instance, if two nodes meet at least once, we

mark this distance as 1. If they come as close as 3 hops, we consider the minimum distance

to be 3. For nodes that never come in κ-contact, we consider this distance as ∞.

We represent the results in Figure 5.4. In terms of pairs of nodes that come in direct

contact, we observe that in conference settings, characterized by a high number of nodes

in restricted physical spaces, the number of connected pairs is reasonably high: 49% for

Sig09 and 73% for Infocom05. Rollernet on the other hand shows a lower network connec-

tivity, with only 33% of nodes coming in a direct contact. But the analysis of contact alone

yields an incomplete picture as there is a considerable amount of nodes who come close to

each other but never in direct communication range. For example, the percentage of pairs

that come at a distance of 2 is 5% for Infocom05, 16% for Sig09, and 41% for Rollernet.
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Figure 5.4: Pairwise minimum distance for Infocom05, Sig09, and Rollernet.

For Rollernet the percent of nodes that come at a 2-hops distance is even higher than the

nodes that come in direct contact and one can observe that a non negligible amount of

nodes advance up to a distance 3 (16%) and 4 (6%).

5.4.2 Analyzing the distribution of pairwise distance

In a mobile scenario the distance between nodes changes over time due to nodes’ movement.

To understand the repartition of time that nodes spend at a certain distance from one

another we analyze the distribution of pairwise distance. The results are presented in

Figure 5.5, with pairs of nodes ordered by how long they stay in κ-contact = 5 and where

we delineate the proportion of time spend at each distance.

The three data sets depict different connectivity characteristics. Sig09 shows a poor

network connectivity with, on average, 93% of time nodes finding themselves in intercon-

tact. Rollernet, a denser and more dynamic mobility setting, reveals stronger connectivity

characteristics with nodes finding themselves in intercontact only 37% of time. Figure 5.5

also illustrates that direct contacts are a scarce resource. On average, users spend only

2.1% (Rollernet-1.5%, Infocom05 -3.2%, Sig09 -1.6%) of their time in contact and a more

significant amount of time in the close neighborhood, e.g., 4.7 % at a distance 2 (Rollernet-

4.9%, Infocom05 -6.9%, Sig09 -2.4%), 5.3 % at a distance 3 (Rollernet-7.5 %, Infocom05 -6.8

%, Sig09 -1.6%), and 4.4 % at a distance 4 (Rollernet-8.8 %, Infocom05 -4.2 %, Sig09 -0.7%).
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Figure 5.5: The proportion of time (relative to the duration of a mobility trace) that nodes
spend at a certain distance from one another. To simplify the representation we delineate
with a distinct color only the first five distances and represent the remaining distances
under a unique color (yellow). The pairs are ordered by the proportion of time spent in
κ-vicinity = 5.

But even users that come in contact spend only a limited proportion of time in direct com-

munication range. On average, nodes that meet at least once throughout the duration of a

trace, spend only 3.9% of time in contact (Sig09 -3.1%, Infocom05 -4.1%, Rollernet-4.5%)

and a non negligible proportion of time in their immediate vicinity: 7.2% at a distance 2

(Sig09 -4.6%, Infocom05 -9%, Rollernet-8%), 6.5% at a distance 3 (Sig09 -2.7%, Infocom05 -

8%, Rollernet-9%), and 5% at a distance 4 (Sig09 -1.1%, Infocom05 -5%, Rollernet-9%).
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Table 5.3: The average duration of a κ-contact relationship (in seconds).
κ

Data set 1 2 3 4 5 6 7

Infocom05 399 322 274 247 230 224 224
Sig09 149 101 72 60 54 51 50

Rollernet 48 61 68 75 81 86 90

Thus even if users have the tendency to get further from one another, they often remain in

the immediate vicinity.

5.4.3 The stability of κ-contact relationships

The previous analysis gives us a better understanding of the proportion of time spent by

nodes at a certain distance from one another but it provides limited information about the

frequency of change of these distances over time. We thus analyze how often the distance

between two nodes changes and how often nodes leave each other κ-vicinity.

In Table 5.2, we present the average duration of an interval during which nodes remain

at a distance of κ-hops from one another. For Infocom05 and Sig09, we observe that close

connections are more stable, with smaller average durations as the distance between nodes

increases. This shows that for conference settings, network stability comes from the core of

the κ-vicinity. However, we observe the opposite phenomenon for Rollernet data set. With

larger κ we have an increase of the average duration that nodes spend at a certain distance

from one another. Thus, due to nodes’ movement in a highly dynamic scenario, meeting

between users lasts for very short periods of time but nodes spend a significant amount of

time in the nearby vicinity.

We also study the average κ-contact durations (see Table 5.3), i.e., we observe the

average duration of each κ-contact interval. Intuitively we would expect that, since we

cover a wider spatial range with our κ-vicinity, nodes coming closer are likely to be in

κ-contact earlier and leave the κ-contact later, therefore we should obtain longer κ-contact

intervals. With Rollernet, we observe that the greater the value for κ, the longer the

durations. Surprisingly for Infocom05 and Sig09, this is not the case, we actually notice

the opposite phenomenon. With larger κ, we seem to have smaller κ-contact intervals. So

does that mean that increasing our network vision with the κ-vicinity reduces the duration

of end-to-end transmission possibilities?

Table 5.4 shows how wrong this conclusion may be. In this table, we show the actual

number of κ-contact intervals for each κ and each data set. For all of them, the greater

the value of κ, the greater the number of κ-contact intervals. So, with higher κ values,

we multiply the possibility of observing a κ-contact interval. They may be on average of
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Table 5.4: κ-contact number of intervals (×1, 000).
κ

Data sets 1 2 3 4 5 6 7

Infocom05 3.7 14.7 28.9 40.0 46.7 50.3 51.9
Sig09 13.3 49.7 96.9 131.6 152.2 163.4 168.8

Rollernet 2.6 9.4 18.4 27.5 35.2 41.3 45.7

shorter length (for Infocom05 and Sig09 ) yet we multiply the possibility of having pairwise

end-to-end paths. In addition, the cumulated κ-contact duration grows with larger κ. A

similar observation as well as an explanation has been made in a companion paper [152].

5.5 Predicting κ-contact encounters

5.5.1 Dynamic graph representation

The mobile traces analyzed in this paper represent dynamic networks composed of a set of

mobile users that sporadically come in contact. We represent this network using a dynamic

graph structure, G0,T = (V,E0,T ), with V the set of mobile users observed during a finite

period of time [0, T) and E0,T the set of temporal edges between them. We consider an

edge euv ∈ E0,T if any two users u, v ∈ V have been at least once into contact during

the period [0, T). To analyze the evolution of this network over time, we split time into

fixed time-windows of duration w and represent the dynamic network as a time series of

network snapshots Gt1 , Gt2 , ..., Gtn , with n = �Tw�. Gti represents the aggregate graph

Gti−1,ti that records the contacts between mobile users during the period [ti−1, ti). In a

dynamic network, the future changes of the network may depend not only on the most

recent state of the network but also on older ones. To model the dynamic evolution and

catch possible periodicities in human encounters, the data used as input in the prediction

process is represented as a successive series of static snapshots Gti−m , ..., Gti−2 , Gti−1 . Thus,

given data from the previous m time-windows our objective is to predict the κ-contacts

during the next target period Gti . We will later discuss how the choice of w and m affect

the prediction performance.

5.5.2 κ-contact prediction problem

We formulate the prediction task as a binary classification problem where, given past data

recorded until a moment in time ti−1, the goal is to predict if any two mobile nodes will be

in κ-contact during the subsequent period [ti−1, ti).

We rely on two types of information in the prediction model: the frequency of κ-

contact occurrences and the structural properties of the connectivity network. The first
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type of information measures the strength of κ-contact relationships, expressed by the

duration and the number of times any pair of nodes has been in κ-contact in the past.

A longer duration and a greater number of κ-contacts can provide stronger evidence that

two nodes will be in κ-contact in the future. For the second type of information, to

quantify the structural properties of the network, we extract various features that capture

the proximity between nodes in the network of past interactions. These features showed

strong predictive power in various prediction tasks such as collaborative filtering and link

prediction problems [147,148,154]. In this work we use the following proximity measures:

• Common neighbors (CN). For each pair of nodes u, v ∈ V , CN represents the number

of common neighbors:

CN(u,v) = | Vu
1 ∩ Vv

1 |. (5.1)

• Adamic Adar [155]. This measure extends the notion of common neighbors by weight-

ing each neighbor by the inverse logarithm of its degree centrality:

AdamicAdar(u,v) =
�

x∈{Vu
1 ∩Vv

1 }

1

| Vx
1 | . (5.2)

• Katz [156]. This feature counts all the paths between any pair of nodes, giving a

higher weight to shorter paths. If pathlu,v represents the set of paths of length l

between two nodes u and v, and β is a damping factor (set to 0.05 in our evaluation),

the Katz score is calculated using the following formula:

Katz(u,v) =
∞�

l=1

βl × | pathlu,v |. (5.3)

• Preferential attachment [157]. This feature is built on the premise that the probability

of a new contact is correlated with the product of nodes’ degree.

PA(u,v) = | Vu
1 | × | Vv

1 | (5.4)

The two types of features provide complementary information about pairwise κ-contact

characteristics. The frequency of interactions catches the persistence of κ-contact rela-

tionships but its predictive power is conditioned by the past contact occurrences (using

these features one can only predict the reoccurrence of a pairwise κ-contact relationship).

Topological features, on the other hand, allow us to capture complex data patterns about

the structure of the network of interactions. We build the prediction model and report the
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Table 5.5: Notation for the binary classification confusion matrix
Predicted value

predicted = 1 predicted = 0

Actual value
actual = 1 TP FN
actual = 0 FP TN

results using the entire set of features as we observed that taking these features together

achieves the most accurate performance.

We adhere to a supervised learning procedure in our evaluation. Each mobile trace

is split in two equal-sized temporal parts: the first period is used as the training set and

the remaining part serves to report the prediction performance. We use a Support Vector

Machine classification algorithm (using LIBSVM library [158]) under different parameter

settings and used a validation set to avoid overfitting. We report the quality of the predic-

tion using the F1 score (also referred to as F -measure in the literature), expressed as the

harmonic mean between precision ( TP
TP+FP ) and recall ( TP

TP+FN ) as defined by the confusion

matrix (Table 5.5).

5.5.3 The effect of time-window duration and past data

We analyze how the prediction performance is influenced by the duration of the time-

window and the number of past intervals (time-windows) used in the prediction model.

Aggregating data over longer durations may lose useful temporal information about the

structure of the dynamic network. On the other hand, on more granular separation may

capture important temporal patterns but also increase the computational cost.

We build prediction models that use {1, 3, 5, 7, 9} time-windows and illustrate the results

for the 1-contact case as we observed that the remarks made on this value are consistent with

other κ values as well. For the size of the time-window we select the most granular duration

(the probing interval used in each mobility trace) and two other values that represent 5×
and 10× this duration. Thus, we consider time-windows of duration {120, 600, 1200}
seconds for Sig09 and Infocom05 and use {15, 75, 150} seconds for Rollernet (which has a

more granular probing rate).

The results are presented in Figure 5.6 by means of 3D plots that represent the F1

score as a function of the time-window duration and the number past intervals used in

the prediction model. On the x-axis we examine different time-window durations and the

y-axis (labeled past intervals in Figure 5.6) denotes the number of time-windows used in

the prediction model. For example, a past interval of length 9 for a time-window of 1200

seconds means that, based on the contacts recorded during the previous 9 intervals of 1200

seconds, we predict contacts during the next 1200 seconds.
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(a) Infocom05 (b) Sig09

(c) Rollernet

Figure 5.6: Prediction performance for different time-window durations and by varying the
number of training time-windows (past intervals).

The figure illustrates that the most recent information plays the most important role in

the prediction performance. For all three data sets, using data from the latest three time-

windows achieves the highest performance and older information has little predictive power.

This indicates that the most recent interactions are the most important in predicting the

immediate future 1. We can also observe that the longer the duration of the time-window,

the less accurate the prediction performance. This suggests that aggregating data over

longer durations is prone to larger errors. Taking the example of Infocom05 (Figure 5.6(a)),

the results show that predicting the contact opportunities during the next 2 minutes shows

an F1 score of 0.8 and the performance drops with 50% when trying to predict what

will happen during the next 20 minutes. For Rollernet, which represents a more dynamic

1These observations may apply only to these specific contact traces. For traces that span longer periods
of time other periodicities could be observed.
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Figure 5.7: The efficiency of predicting κ-contact relationships for different durations of
the time-window. On the y-axis we represent the prediction performance and on the x-axis
we vary the value of κ-contact from 1 to 7.

scenario, the drop of performance is even higher with a 70% decrease when trying to predict

the contacts during the next 150 seconds compared to a 15-seconds time-window.

5.5.4 κ-contact prediction results

Based on the previous observations of the optimal number of past intervals (3 in our

case) we assess the performance of predicting κ-contact relationships. We vary the value

of κ from 1 to 7 and consider three durations for the time-window: {120, 600, 1200}
seconds for Infocom05 and Sig09 and {15, 75, 150} seconds for Rollernet. The results are

illustrated in Figure 5.7. First, we observe that predicting that two nodes will be in direct

communication range shows particularly poor results for Rollernet data set, very dynamic
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mobile settings, and when trying to make predictions over longer periods of time. Thus, in

situations that involve important changes in the network topology, predicting that nodes

will be in direct contact is prone to large errors.

Relaxing the prediction objective beyond direct contact relationships reveals more accu-

rate predictive power. Overall, the greater the value for κ the more effective the prediction

performance. On average (for all mobility traces and different time-window durations) pre-

dicting that nodes will be at most at a distance 2, 3, and 4 shows an improvement of 7%,

10%, and 11% compared to the case where we want to predict direct encounters. While

the improvement is important for small values of κ we notice that there is little benefit in

extending the prediction for a κ greater than 3. The most significant increase, compared

to the direct contact case, can be observed for κ = 2 with an average increase of 10%

for Rollernet, 7% for Infocom05, and 6% for Sig09. The benefit is negligible when trying

to predict the network change in the immediate horizon but it becomes significant when

trying to make predictions over longer periods of time. Taking the case of Infocom05 for

a time-window of 1200 seconds and Rollernet for 150 seconds, predicting that nodes will

be separated by at most two nodes (κ-contact = 3) reveals an improvement of 60% for

Infocom05 and 74% for Rollernet compared to the direct contact prediction case.

We provide two plausible explanations for these results. First, as we showed in Fig-

ure 5.4, a non-negligible number of nodes, although never in direct contact, they come at a

2-hop distance. By extending the prediction objective to 2-hop contacts, we include these

potential events into consideration, which appear to have a more predictable nature. Then,

as showed in Section 5.4 direct contacts between mobile users are scarce and short-lived,

which makes them more difficult to predict in very dynamic scenarios and for longer time

horizons. This explains the low prediction effectiveness observed with Rollernet and for

longer time-windows for Sig09 and Infocom05. Thus, extending the notion of contact to

κ-contact gives us access to more stable connections (nodes leave direct connectivity but

remains in κ-contact for longer durations) that reveal a more predictable nature.

5.6 Practical implications

To capture the possible benefit that κ-contact prediction would bring in practical scenario

we propose and evaluate the following use-case example.

We consider a content producer, located on the Internet, that regularly publishes con-

tent for a known group of collocated mobile users that communicate with the server using

the cellular infrastructure. Content is categorized in topics. Users subscribe to these topics

and content is pushed to users upon creation. We also consider that, in order to reduce

the amount of cellular traffic caused by content delivery, the content producer collects data
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Figure 5.8: The percent of traffic with the infrastructure that can be reduced through κ-
contact prediction and mobile opportunistic communications. On the y-axis we represent
the traffic reduction compared to the case where content is sent to mobile users using only
the infrastructure. On the x-axis we present different values for κ-contact.

about the contacts between mobile users and uses κ-contact prediction functionality to

transfer the published objects to mobile users. More specifically, at the publication of a

piece of content, instead of individually transmitting the content to each subscriber, the

content producer optimizes the delivery process based on the predicted κ-contact opportu-

nities. For example, if the server predicts that two users, interested in the same content,

will be in κ-contact, a message is sent to only one of these nodes that will opportunistically

forward the message to the peer node when they will be κ-contact. We also assume that

nodes are capable of sensing their κ-vicinity and can detect when a targeted user is in

κ-contact. To collect nearby topological knowledge, we assume the existence of a link-state

protocol gathering nearby knowledge under the form of a connectivity graph. The imple-

mentation itself is beyond the scope of this study, yet previous analysis studied the impact

of monitoring overhead [145].
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We design the experimental setting using ONE simulation environment [159]. In our

experiments we set the number of topics to 100. Each mobile node randomly subscribes

to 20 up to 100 topics. For the prediction module, we use a time-window of 75 seconds

for Rollernet, and 600 seconds for Infocom05 and Sig09. Content is uniformly created

throughout the duration of the experiments (that covers the duration of a mobility trace)

and the results are averaged over 10 simulation runs. We also consider an infinite cache

size at the user side and assume that one piece of content is small enough to fit into one

message in the communication between content producer and the users and between the

mobile users. To measure the impact of κ-contact prediction we report the reduction in the

number of messages in the communication between the content producer and the mobile

users when using κ-contact prediction module compared to a case where the content is

individually sent to each user using the cellular infrastructure.

The results are presented in Figure 5.8. First, we observe that the greater the value

of κ-contact, the greater the potential of traffic reduction. A significant improvement of

predicting beyond direct neighbors is noticed for κ = 2, that shows an improvement of

6% for Sig09, 7% in Infocom05, and 30% for Rollernet. The potential traffic reduction is

directly influenced by the characteristics of the connectivity traces: κ-vicinity properties

(presented in Figure 5.4) and prediction performance (presented in Figure 5.7). Taking the

example of Sig09, even if the effectiveness of the prediction showed little improvement for

κ = 2 compared to κ = 1 the potential reduction is nevertheless important (6%). This

is explained by the significant number of nodes located at a 2-hop distance and correctly

predicted. The benefit is even more substantial in the case of Rollernet. By counting

on the pairs of nodes connected at a 2-hop distance (that exceed the number of direct

contact opportunities), the traffic reduction attains a performance of 33% compared to

5% when using only direct contact prediction. Thus, a κ-contact prediction model used

in the context of mobile data offloading could be an effective solution considering that:

by extending the pairwise vision from contact to κ-contact we consider more end-to-end

transmission opportunities; and given that κ-contact interactions can be predicted more

accurately than contact relationships.

5.7 Conclusions

In this chapter, we addressed the problem of predicting κ-contact opportunities between

mobile users – predict if users will find themselves at a distance of at most κ-hops from

one another. By analyzing three real-life contact traces, we observed that one can obtain

better performances when predicting 2+-contacts compared to the direct contact case. Us-

ing a supervised prediction framework, we studied the predictive nature of κ-contacts and
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compared it with the traditional case of predicting contacts between nodes. Our results

indicate that, in highly dynamic mobile settings (e.g., rollerblading scenario), predicting

that nodes will remain at a distance of two hops from one another, can attain twice the

performance of direct contact prediction. To assess the impact of these findings in a real-life

application, we proposed a simulation experiment in which, by combining mobile oppor-

tunistic communications with κ-contact prediction one can reduce the amount of traffic

used in the communication of mobile users with the infrastructure. Our results suggest

that services that may benefit from contact predictions [160] can efficiently exploit the

predictable nature of κ-contacts.



Chapter 6
Conclusions and future work

6.1 Summary

Mobile opportunistic networks provide a good solution to the challenging problem of mobile

data offloading but the success of real-life deployments will depend on the capacity to better

understand and predict mobile users’ behavior.

In this dissertation we looked at new perspectives about user behavior that can be

used to improve the efficiency of mobile opportunistic data offloading solutions. The first

aspect proposed in this work is to study users’ content access patterns, build models to

predict content popularity, and adjust the availability of content based on the predicted

users’ demand. To better understand the difficulties and limitations of actually predicting

web content popularity (in our case online news articles) we analyzed the popularity of

articles published on two online news platforms. After studying the various prediction

methods proposed in the literature, we analyzed the capacity of two of these methods to

predict the popularity of news. Our results indicate that a linear model on a logarithmic

scale is an effective solution to predict the popularity of online news. Furthermore, in the

context of automatic online news ranking we showed that this method is also an effective

solution to correctly rank news items by their future popularity; with a performance that

can evenly match more customized learning to rank algorithms. To get real value out of

these observations we showed that the ability to actually predict future content demand

can improve the impact of proactive seeding used in the context of mobile opportunistic

data offloading.

The second aspect addressed in this thesis is the capacity to predict κ-contact opportu-

nities between mobile users – predict if users will find themselves at a distance of at most

κ-hops from one another. By analyzing three real-life connectivity traces we observed that,

99
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in a mobile scenario, one can obtain better performances in predicting that users will find

themselves not necessarily in direct communication range but in the nearby vicinity sepa-

rated by only few other mobile users. To assess the impact of these findings in a real-life

application, we proposed a simulation scenario in which, by combining mobile opportunis-

tic communications with κ-contact prediction, one can reduce the amount of traffic used

in the communication of mobile users with the infrastructure. Our results suggest that

services benefiting from contact predictions can efficiently exploit the predictable nature of

κ-contacts.

6.2 Looking ahead

We identify several directions for the future work: (1) design more accurate content popu-

larity prediction algorithms; (2) study the predictability of spatiotemporal connections in

mobile opportunistic networks; and (3) design a real-life mobile data offloading engine that

combines the capacity to learn and predict users’ content demand and mobility patterns

and uses it to better orchestrate the mobile data offloading decisions.

6.2.1 Improving the quality of the prediction

Even if research on predicting the popularity of web content has been an active area in the

latest years there are many avenues that wait to be explored.

Predicting long-term popularity evolution. Most previous works addressed the prob-

lem of predicting the popularity of a web content up to a specific moment of time. While

this is useful to detect in time future popular web items, a bigger impact would come from

a long-term evolution forecast [36, 38]. Knowing this can provide important insights of

how content progresses through different stages of popularity: initial growth, peak period,

decline, and even popularity rebounds. Such information can help online advertisers or

content delivery networks in making more profitable decisions, focusing on a web content

during its peak period and wasting less resources on expired web items.

Building richer prediction models.In addition to early popularity measures, different

studies have analyzed the predictive power of various features. We believe that this direction

has not been fully explored and more work in finding more powerful predictive features

would be valuable. For example, except for Bandari et al., which used the news source

in their prediction model [65], to our knowledge no other work has studied the predictive

power of content publisher. Yet, news columnists and video publishers attract a significant

(and maybe predictable) audience on their own.

The topic of a web content plays, without doubt, an important role in its future pop-

ularity. The daily agenda of discussions in the Internet and mainstream media is centered



CHAPTER 6. CONCLUSIONS AND FUTURE WORK 101

on major topics with limited and different life cycles. Thus, capturing trending topics

and learning how to include them in prediction models can lead to a major breakthrough

in prediction accuracy. Research in this field has made important advances in the recent

years. Leskovec et al. found that the attention that online users pay to certain topics

can accurately be described by six different time-series shapes [161]. In a novel approach

to find trending topics on Twitter, Nikolov et al. proposed an algorithm that can detect

trending topics earlier (with an average of 1.43 hours) than the internal algorithm used by

Twitter [162].

Current work has showed that, for web items with very short lifecycle, timely predictions

(within minutes after a web content has been posted) are a major challenge. News articles

are a perfect example as they quickly become popular and ”die-out” within hours. One

way to improve the predictability of news would be to extract recurrent events over time,

observe the level of interest that they generate, and predict when these future events will

take place. Predicting global events in various fields (e.g., economy, seismology, society),

as challenging as it may seem, is nevertheless plausible. Radinsky et al. have proposed two

algorithms for this prediction task: PROFET, an algorithm that predicts the terms used

in the future news based on the historical web query patterns [163]; and Pandit, a system

that can predict future events given a certain news event [164].

Understanding and merging user activity, stemming from different web channels, is

undeniably an important direction to follow. Up to now, Twitter feed has been used

as the main source of information. But there are other rich opportunities to explore.

For example, analyzing Web users’ query behavior can unveil important insights about

the popularity of certain topics, and the ability to predict search queries, as showed by

Radinsky et al. [165], could be incorporated in a popularity prediction model. Wikipedia

is also a valuable source of information. Important real-life events are quickly recorded

on Wikipedia, and real-time monitoring of this channel can be transformed into valuable

knowledge by a prediction model. Wikipedia Live Monitor is a good example of automatic

monitoring tool that detects breaking news events by studying simultaneous user activity

for certain topics edited in different languages [166,167].

Beyond predictions. Studying online content popularity prediction should be not only

useful in revealing new patterns in user dynamics, but also valuable in improving various

web services. For instance, using the examples from the previous section, content producers

(professionals or amateurs) can rely on the factors known to influence content popularity to

build the genome of popular content. Although there are many factors that are difficult to

control, creating content that is original (multiple copies of the same content has a negative

impact on popularity [32]), fresh (the benefit of first-comer advantage [85]), emotional

(stronger emotions are correlated to content viralness [79]), and by tagging it with popular
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keywords (to appear in more popular recommendation lists [86]) can increase the likelihood

of a web content to become popular. Then, online advertisers should try to figure out how to

seize the opportunity of finding popular content in advance and design novel monetization

strategies. Finally, there are few reports on how content popularity prediction can be used

to design more effective networking solutions. Yet, predicting popularity dynamics can be

used to design more scalable content delivery solutions (by proactively replicating content

according the future demand) and to reduce the level of congestion caused by sudden bursts

of content demands.

6.2.2 Smart proactive seeding

The proactive seeding strategy proposed in this work consists in prefetching popular content

to randomly assigned mobile users to better cope with the future demand. Used as a real-

life application this solution may seem primitive and rather unrealistic given that users

may often need to spend additional resources to store content that is beyond their own

interest. A reasonable alternative would be to predict individual user demand and adapt

the preloading decisions accordingly. The benefit in this case is manyfold: mobile users

will enjoy a better experience in accessing content on-the-go (e.g., reduced delay, better

tolerance to network disconnections); content providers can better deliver information to

mobile clients; and telecom operators can further improve the effect of proactive seeding

(one content preload reduces the future network load with at least the same quantity).

One can go even further and imagine that in addition to predicting what users will

consume the prediction engine could also reveal when the expected request will take place.

The theoretical benefit of this approach is even greater as this additional knowledge can

be used to build mechanisms for data traffic shaping [118].

Of course, creating a predictive behavior analytics engine is much more complex as it

requires an additional amount of personal information about users’ interest, usage patterns,

or social behavior. But popular commercial applications such as Incoming TV, used for

content recommendation and content delivery services, show that users are open to divulge

more about their preferences to improve the quality of their mobile experience [168].

6.2.3 Predicting spatiotemporal contacts

As presented in Chapter 5, predicting future communications opportunities between mobile

users can efficiently be used in the context of mobile data offloading. To make an even better

use of this solution future work should try to extend the prediction objective to predicting

when the κ-contact will take place and the duration of the connection. This information

can then be used to decide when to initiate the transfer of a message or to postpone the

transfer of bulky data if the duration of the communication opportunity is too short.
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Predicting only instantaneous communication paths between mobile users gives access

to only some of the data transfer opportunities in a mobile setting. In mobile opportunistic

network environments, characterized by frequent disconnections, physical paths between

users may never exist (or they may be too transient) but spatiotemporal paths can be

more frequent. Formalized under the concept of temporal reachability graphs [169] this

concept allows one to capture temporal communication capabilities between mobile users.

6.2.4 Mobile opportunistic data offloading engine

Content blueprint

Mobility blueprint

Push content

Reply

Request

Identify participants Learn behavioral 
       patterns

Coordinated proactive
            seeding

Improve service in 
  congested areas

Figure 6.1: Opportunistic mobile data offloading procedure.

Finally, the solutions proposed in this work can be used as integrated components

of an opportunistic mobile data offloading engine used by telecom operators to improve

data traffic services in highly congested areas caused by large gatherings (e.g., concerts or

sporting events). Concretely, this service, illustrated in Figure A.3, could be decomposed

in the following steps:

• Identify mobile participants: for a predefined location that presents a high risk of

being congested, identify the population of mobile users that will be within the area

of interest.

• Learning users’ behavioral patterns: for the population of users the prediction engine

would need to track, understand, and identify patterns in user behavior. This includes

learning data usage patterns (learn what users will likely consume inside congested

areas) and mobility characteristics (learn the trajectory of users up to the location of

interest).

• Coordinated proactive seeding : by predicting what users will consume inside the con-

gested location the telecom operator can preload content during users’ journey up

to a specific location. This action can be performed using the cellular infrastructure
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(when users pass thought areas with low data traffic), Wi-Fi access points, and device-

to-device communications by predicting future encounters between mobile users.

• Improving the service inside congested areas: in addition to the proactive offloading

strategies the telecom operator could also improve users’ experience inside the con-

gested area. In particular, during periods of congestion, due to an increased dropping

probability, transferring data to certain mobile nodes can be difficult. By knowing

which users will remain in the proximity of a target node (thought κ-contact predic-

tion) the telecom operator may decide to use another mobile node as a proxy in the

communication with the targeted mobile user.
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Résumé en francais

A.1 Contexte et motivation

Les dernières années on été marqués par deux nouvelles tendances dans l’évolution de

l’Internet. Tout d’abord, on a assisté à la démocratisation de la création du contenu.

Stimulé par le progrès technologique apporté par les plateformes web 2.0 et la croissance

continue des sites de réseaux sociaux, les internautes sont désormais capables de créer et de

partager de contenu eux mêmes – et souvent être en concurrence avec les producteurs de

contenu professionnels. Ensuite, nous assistons à un changement important vers un accès

mobile à Internet. Équipés avec des dispositifs mobiles plus performantes (plus petites,

moins chers, et avec plus des fonctionnalités) et sous une meilleure couverture mobile à

haut débit, des utilisateurs expriment une grande envie pour consommer du contenu à

tout moment du temps. Un bon exemple de la rapide prolifération des appareils mobiles

est illustré en Figure 1.1 par les deux photos prises dans une intervalle de huit ans, et

représentant des personnes réunis dans la Place Saint-Pierre.

Ces deux tendances ont stimulé les besoins des utilisateurs d’êtres connectés partout

et à tout moment – à d’autres utilisateurs et à l’information – et de créer, consommer

et partager du contenu dans un rythme sans précédent. Par exemple, chaque minute, les

utilisateurs du monde entier envoient plus de 300 000 tweets [1] , partagent plus de 680 000

éléments de contenu sur Facebook [2], et téléchargent 100 heures de vidéo sur YouTube [3].

Et cette augmentation n’est pas une tendance isolée. Il s’avère que le volume global de

données a augmenté à un taux de 50 % par an et il y a eu une augmentation de 40 fois

par rapport à 2001 [4]. Et, même s’il y a des ressources pour stocker cette énorme quantité

d’information (par exemple, ça coûte 600$ pour stocker toute la musique du monde [4]),

mettre en place une infrastructure pour rendre le contenu toujours disponible reste un

105
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objectif ambitieux.

(a) 2005 (b) 2013

Figure A.1: Personnes rassemblées dans la place Saint-Pierre dans une différence de huit
ans (Source: NBC2).

Les opérateurs de télécommunications doivent faire face aux nouveaux défis en raison de

la croissance de consommation de données mobiles. Traditionnellement, lorsque la capacité

du réseau a atteint des limites critiques, les opérateurs comptaient sur certaines solutions

techniques: acquérir du spectre additionnel, déployer des antenne-relais supplémentaires,

ou de passer à la dernière technologie de communication mobile (par exemple LTE). Mais il

est généralement estimé que ces solutions ne peuvent faire face aux défis des années à venir.

Le spectre est une ressource limitée (et aussi de plus en plus chère), l’efficacité du spectre

atteint vite ses limites, et l’installation de stations de base vient avec un coût important.

En conséquence, de nouvelles solutions ont été proposées pour faire face à la consommation

de données mobile prévue. Le délestage du trafic mobile de données est une solution

attractive qui permet aux opérateurs de télécommunications de transférer une partie du

trafic des réseaux cellulaires aux réseaux alternatifs à bas prix [5]. Dans ce contexte, les

bornes Wi-Fi sont une ressource précieuse, car elles sont largement disponibles, elles ont

un coût relativement bas, et un débit de données élève [6]. Les femto et picocellules sont

aussi une alternative qui permettent une meilleure utilisation du spectre disponible [7].

Cependant, le potentiel de déchargement de ces solutions ne peut pas soutenir le taux de

croissance de la consommation de données mobile et de nouvelles solutions sont nécessaires.

Les réseaux mobiles opportunistes ont été récemment proposés comme une solution at-

tractive pour délestage du trafic de données mobile qui ne pose pas de contraintes de temps

réel. Au lieu d’utiliser l’infrastructure de réseau cellulaire, les utilisateurs mobiles peuvent

récupérer l’information à partir des autres utilisateurs mobiles qui sont dans la proximité

et qui partagent un intérêt commun (et qui sont disponibles à partager l’information avec

leurs voisins). Ce paradigme de communication ouvre de nouvelles perspectives sur la façon

dont les utilisateurs mobiles peuvent générer et consommer du contenu tout le temps, mais

2http://instagram.com/p/W2FCksR9-e/
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la conception des protocoles de communication pour les réseaux mobiles opportunistes est

difficile (en raison de la mobilité des utilisateurs, il est difficile de faire des hypothèses sur

l’existence d’un chemin entre les nœuds mobiles) et elle dépend en grande partie sur la

capacité à comprendre le comportement des utilisateurs mobiles. Ainsi, capturer le com-

portement des utilisateurs mobiles, découvrir des régularités, et construire des modèles de

prédiction devient essentiel dans la conception des protocoles de communication dans les

réseaux mobiles opportunistes.

Jusqu’à présent, la plupart des études sur le comportement des utilisateurs mobiles ont

été concentrées sur une meilleure compréhension de la mobilité humaine. Cela comprend

des études sur la durée des contacts (et inter-contacts) entre les utilisateurs mobiles [8]

et la périodicité des rencontres humaines [9], ou de comprendre les structures sociales

sous-jacentes (physiques et en ligne) qui peuvent expliquer les tendances de la mobilité

humaine [10, 11]. Étudier la mobilité humaine est essentielle, mais dans l’environnement

complexe dans lequel les utilisateurs mobiles fonctionnent il y a d’autres aspects concernant

le comportement des utilisateurs, tout aussi importants, qui peuvent être exploités.

L’objectif de cette thèse de doctorat est d’offrir des nouvelles perspectives sur la façon

d’utiliser le comportement des utilisateurs mobiles dans la conception des solutions pour

le délestage du trafic mobile. En particulier, on propose une nouvelle approche sur le

problème de prédiction des contacts entre les utilisateurs mobiles et on met en avant l’idée

que la conception des stratégies efficaces du délestage de données devrait non seulement

prendre en considération la mobilité humaine, mais aussi l’information sur le trafic mobile

de données consommées par les utilisateurs.

A.2 La problématique

Le scénario envisagé tout au long de ce travail, illustré dans la Figure 1.2, est com-

posé de trois entités principales: un producteur de contenu, un opérateur de réseau de

télécommunications, et un groupe d’utilisateurs mobiles qui se trouvent en proximité un de

l’autre. Le producteur de contenu se trouve sur l’Internet et publie périodiquement du con-

tenu pour le groupe des utilisateurs mobiles. L’opérateur de réseau de télécommunications

fournit l’infrastructure pour la communication entre les utilisateurs mobiles et le produc-

teur de contenu. Enfin, on considère un groupe des utilisateurs mobiles qui communiquent

avec le producteur de contenu en utilisant l’infrastructure cellulaire et peut aussi communi-

quer directement entre eux en utilisant les techniques de communication directe d’appareil

à appareil (par exemple, Bluetooth ou Wi-Fi Direct).

Ce scénario correspond à une certaine zone urbaine (par exemple, un campus universi-

taire ou un centre commercial) densément peuplée par des utilisateurs mobiles qui partagent
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les mêmes intérêts dans aces au contenu. Dans ce contexte, on considère deux stratégies

possibles pour les utilisateurs mobiles d’accéder au contenu. Dans l’approche classique,

les utilisateurs s’appuient sur les services fournis par l’opérateur de télécommunications et

récupérèrent individuellement le contenu en utilisant l’infrastructure. Mais, étant donné la

corrélation temporelle et géographique d’accès au contenu, cette approche peut être con-

sidérée comme obsolète et inefficace, car il y a de fortes chances que le contenu pourrait

être directement récupéré à partir des utilisateurs mobiles qui se trouvent en proximité.

Une solution alternative sera d’utiliser les communications mobiles opportunistes (si la

zone géographique est assez peuplée pour assurer de bons moyens de communication en-

tre les utilisateurs) et de donner aux utilisateurs mobiles la possibilité de communiquer

directement et de partager l’espace de stockage des autres utilisateurs mobiles voisins.

Contact opportunity
Users can exchange data
when they are in direct
communication range.  

   Telecom operator
   Provides the fixed infrastructure that
   allows mobile users to  communicate 
   with the content producer.  

  Predict contact opportunities
  Study mobile users' connectivity 
  patterns and learn to predict when
  users will be in contact.

Predict  content demand
Study user consumption 
patterns and learn to predict
future users' demand. 

   Content producer
   Publishes content that is consumed by 
   a group of collocated mobile users. 
   Coordinates the distribution of content 
   by analyzing and predicting mobile users 
   content demand and contact opportunities. 

Collocated mobile users
Group of mobile users that are 
often collocated in a certain 
geographic area.

Content reply
Proactive seeding

Content request

Figure A.2: Le scénario global considéré tout au long de ce travail est composé d’un
producteur de contenu, situé sur l’Internet, un opérateur de télécommunications qui fournit
l’infrastructure pour la communication entre les utilisateurs mobiles et le fournisseur de
contenu, et un ensemble d’utilisateurs mobiles qui se trouvent en proximité.

Plusieurs solutions ont été proposées dans les dernières années pour le délestage de

trafic de données, qui considèrent la coexistence de l’infrastructure avec les communica-

tions mobiles opportunistes pour décider quand et où (à quel utilisateur) de télécharger du

contenu d’une manière préventive afin de réduire la communication des utilisateurs mobiles

avec l’infrastructure [12,13]. Mais les solutions actuelles des communications opportunistes

sont assez myopes dans le sens où ils ne bénéficient pas pleinement de la connaissance sur

le comportement de l’utilisateur. Par exemple, en observant comment les utilisateurs con-

sument du contenu, on peut imaginer un modèle capable de prédire la demande future et



APPENDIX A. RÉSUMÉ EN FRANCAIS 109

adapter le fonctionnement du réseau en fonction de ce besoin. En outre, de plus grands

avantages peuvent être atteints par le suivi de la mobilité humaine.

Le problème traité dans cette thèse est de proposer des nouvelles solutions pour les

communications mobiles opportunistes, des solutions fondées sur une connaissance globale

sur la demande de contenu et la connectivité humaine. En particulier, on répond à deux

problèmes principaux:

• Problème 1

Quel contenu à envoyer? Étant donné la grande quantité de contenu publié quotidien-

nement, la répartition inégale de l’intérêt des utilisateurs, et la popularité non stationnaire

du contenu (la popularité d’un morceau de contenu évolue au fil du temps) il est impor-

tant de décider quel contenu à télécharger aux utilisateurs et le nombre des copies pour

mieux gérer la future demande des utilisateurs. Cela permet de construire des techniques

de dissémination préventive qui sont adaptées à l’évolution dynamique de la popularité du

contenu.

Stratégie. Tout d’abord, on veut comprendre dans quelle mesure la popularité du contenu

web peut-être prédite. On prend comme exemple le contenu publié sur un journal en ligne

et on étudie la popularité des articles publiés sur deux plates-formes web. On étudie les

différentes méthodes de prédiction qui ont été proposées dans la littérature, on choisit ceux

qui sont adaptées à ce type de contenu, et on étudie leur capacité à prédire la popularité

des articles. On évalue ensuite l’impact de ces résultats pour une solution de délestage de

données mobile en utilisant les communications mobiles opportunistes.

• Problème 2

Comment choisir les utilisateurs pour télécharger les données mobiles? Étant

donné la nature opportuniste des rencontres humaines qui sont, dans une certaine mesure,

prévisibles il faut décider sur la façon de mieux organiser le processus de téléchargement

du contenu en choisissant où (à quels utilisateurs) pour envoyer le contenu.

Stratégie. On analyse des différentes traces des contacts humains et on étudie la prévisibilité

des contacts humains. Étant donné la nature assez imprévisible de ces relations on étend

l’analyse au cas κcontact – prédire si les utilisateurs vont se trouver à une distance d’au

plus κutilisateurs. Pour évaluer l’impact de ces résultats dans une application réelle, on

propose une expérience de simulation dans laquelle, en combinant les communications mo-

biles opportunistes avec la prédiction κcontact, on peut réduire la quantité de trafic utilisé

dans la communication de nœuds mobiles avec l’infrastructure.
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A.3 Contributions de cette thèse

A.3.1 Une synthèse sur les algorithmes de prédiction de la popularité du

contenu web.

Lorsqu’on étudie la popularité du contenu web, il n’est pas clairement établi qu’il existe

un modèle de prédiction qui pourrait être appliqué à tous les scénarios possibles, ni que la

création d’un modèle de prédiction générique est un objectif réalisable. Les raisons sont

que les résultats de prévisions sont influencés par le type de contenu en ligne, le cadre

du site, et la disponibilité de l’information prédictive. Ainsi, dans le domaine des médias

sociaux plusieurs méthodes de prédiction de la popularité ont été proposées et évaluées

pour différents types de contenu web.

La première contribution de cette thèse est une synthèse sur les méthodes de la prédiction

de popularité de contenu web. Ce sujet de recherche est devenu un domaine actif et un

grand nombre de méthodes de prédiction pour différents types de contenus web ont été

proposées dans les dernières années. Pour structurer les méthodes de prédiction existantes,

on propose une classification fondée sur le type d’information utilisée dans la prédiction.

On présente les performances des différentes méthodes de prédiction, on expose les car-

actéristiques qui ont fait preuve de bonnes capacités prédictives, et on révèle les facteurs

connus pour influencer la popularité du contenu web.

Dans le monde numérique, le contenu web est devenu l’attraction principale. Que ce

soient des informations utiles, du divertissement pour les utilisateurs d’Internet, ou une

possibilité des affaires pour les entreprises de marketing et les fournisseurs de contenu le

contenu web est un atout sur Internet. Dans le même temps, la croissance dans l’innovation

des médias sociaux, la facilité de la création du contenu et les coûts de publication faibles,

ont créé un monde saturé d’information. Pourtant, l’écosystème en ligne adhère à une

société “winner-take-all”: l’attention est concentrée sur quelques pièces de contenu alors

que la majorité reste inconnue. Dans ce contexte, trouver le contenu web qui sera populaire

devient de la plus haute importance. Les utilisateurs en ligne, inondés par information,

peuvent réduire l’encombrement et concentrer leur attention – la ressource la plus précieuse

dans le monde d’Internet – sur l’information la plus pertinente. Dans un monde où les

entreprises dépensent jusqu’à 30 % de leur budget dans le marketing en ligne [14], repérer

le plus vite possible la prochaine étoile montante de l’Internet peuvent maximiser leurs

revenus grâce à un meilleure placement de la publicité. En outre, étant donné la croissance

de trafic Internet, les réseaux de distribution de contenu peuvent s’appuyer sur des méthodes

de prédiction de la popularité et d’allouer les ressources d’une façon proactive en fonction

de futures demandes des utilisateurs.

Le terme de contenu web est effectivement générique et il définit d’une façon générale
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tout type d’information sur un site web. Il peut faire référence à la fois à l’information

transmisse et de l’objet individuel utilisé pour transmettre l’information. Dans ce travail,

on définit le contenu web comme tout élément individuel à la disposition du public sur

un site web et qui contient une mesure qui reflète un certain intérêt manifesté par une

communauté en ligne.

La notion de la popularité du contenu web est subtile, au-delà du nombre habituel des

pages vues. Avant le web 2.0, la mesure la plus importante était le nombre des fois où

une page web est affichée, mais maintenant, avec la prévalence de plates-formes de médias

sociaux, il y a de nouveaux indicateurs qui reflètent l’intérêt des utilisateurs. En réponse

à la publication de contenu, les utilisateurs peuvent désormais exprimer leur opinion face

au contenu par commentaires et évaluations, ou partager davantage dans leurs cercles

sociaux en ligne (par exemple, Facebook, Twitter, ou Digg). Ces mesures alternatives cap-

turent l’engagement plus profond des utilisateurs et fournissent de précieuses informations

complémentaires au nombre de pages vues: les évaluations améliorent la qualité des publi-

cations, les commentaires augmentent le temps passé sur une page web, et le partage sur les

réseaux sociaux donne au contenu une plus grande notoriété. En outre, ces mesures cap-

turent des habitudes différentes comme les utilisateurs ont des préférences différentes (e.g.,

commenter, évaluer, ou partager) [15–18]. Dans ce contexte, l’étude de ces paramètres indi-

viduellement ou comment ils se rapportent les uns aux autres [19,20] offre une perspective

plus complète de ce que signifie réellement la popularité de contenu.

La prédiction de la popularité du contenu web est une tâche difficile. Tout d’abord, des

différents facteurs connus pour influencer la popularité du contenu, telles que la qualité du

contenu ou la pertinence pour les utilisateurs, sont difficiles à mesurer. Ensuite, d’autres

facteurs, tels que la relation entre des événements dans le monde physique et le contenu

sont difficiles à capturer et utiliser dans un modèle de prédiction. En outre, au niveau

microscopique, l’évolution de la popularité du contenu peut être décrite par des interactions

en ligne complexes et cascades d’information, qui sont difficiles à prédire [21–23].

La prédiction de la popularité du contenu web est devenue un domaine de recherche actif

et un grand nombre de méthodes de prédiction pour différents types de contenu web ont

été proposées dans les dernières années. Dans une première étape, pour avoir une meilleure

compréhension sur les enjeux et les solutions existantes, dans ce chapitre, on examine d’un

point de vue général le problème de la prédiction de la popularité du contenu web. On passe

en revue l’état actuel de la recherche dans ce domaine, on propose une classification qui

nous permet de structurer les différentes méthodes de prédiction, et on décrit brièvement

les principales méthodes de prédiction.
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A.3.2 Prédire la popularité des articles

Pour mieux comprendre le problème de la prédiction de la popularité du contenu web, étant

donnée la panoplie des méthodes appliquées aux différents types de contenu sur Internet,

on étudie la capacité de prédire la popularité du contenu web en utilisant des traces web

réels. On choisit comme contenu en ligne des articles de presse, un type de contenu qui

saisit l’attention d’un nombre important des utilisateurs. Il s’agit d’un type de contenu

qui peut facilement être produit, avec une petite taille et un faible coût de production –

des propriétés qui le rend intéressant pour être massivement propagé dans les plateformes

sociales en ligne et particulièrement apprécié par les utilisateurs mobiles.

On étudie deux plateformes des articles en ligne pour mieux comprendre comment les

articles sont publiés par les agences de news et consommés par les lecteurs et on analyse

la capacité de prédire la popularité des articles. On se concentre sur une dimension de la

popularité du contenu et on considère le nombre des commentaires comme un évaluateur

implicite de l’intérêt suscité par les articles. On évalue la performance de deux méthodes

de prédiction, qui sont adaptées pour le type d’informations contenues dans notre ensemble

de données, et on étudie leur capacité à prédire la popularité des articles en ligne.

En plus de prédire la valeur exacte de l’attention qu’un contenu va générer, dans une

autre situation pratique, il peut être utile de classer les articles en fonction de leur pop-

ularité future. Comme l’intérêt des utilisateurs en ligne pour le contenu web est souvent

inégal (avec des objets populaires étant extrêmement populaires) trouver les objets les plus

populaires est souvent une solution assez bonne pour les applications qui bénéficient de

prédire les préférences des utilisateurs. Par exemple, une approche qui pré-télécharge du

contenu s’avère une solution robuste pour anticiper les demandes futures de contenu [89].

Ainsi, on étudie l’efficacité d’utiliser des méthodes de prédiction pour classer les articles en

fonction de leur popularité future et de les comparer avec différentes heuristiques et une

méthode d’apprentissage plus personnalisée de classification.

A.3.3 Pré-téléchargement du contenu fondé sur la prédiction de la pop-

ularité du contenu

Pour bénéficier de la prédiction de la popularité du contenu web, on étudie l’effet de cette

solution dans le cadre du délestage du trafic mobile de données. En particulier, on propose

la conception d’une stratégie proactive de délestage de données combiné avec les commu-

nications mobiles opportunistes qui peuvent aider les opérateurs de télécommunications à

réduire le trafic de données pendant les périodes de charge.

Il existe différentes stratégies utilisées par les opérateurs de télécommunications pour

faire face à la consommation croissante de trafic mobile de données. Les actions typiques

sont d’optimiser la capacité du réseau (grâce à une meilleure planification du trafic), de
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mettre à jour la technologie de réseau de prochaine génération (par exemple, LTE), ou

d’acheter des blocs supplémentaires de spectre. Les alternatives plus récentes – moins

chères et plus facile à déployer – sont construites sur la notion de délestage de données:

l’utilisation des réseaux complémentaires pour déplacer dans le temps et dans l’espace le

trafic de données qui, est à l’origine, destiné à traverser l’infrastructure cellulaire.

Les réseaux mobiles opportunistes offrent une bonne alternative pour décharger le trafic

mobile de données qui ne posent pas de contraintes de temps réel. En permettant aux util-

isateurs mobiles d’accéder à l’espace de stockage des utilisateurs qui se trouvent implantés

au même endroit, les demandes de contenu peuvent être traitées par des communications

opportunistes et donc de réduire le trafic de données ciblées à traverser l’infrastructure cel-

lulaire [12]. Le téléchargement proactif du contenu (pré-téléchargement du contenu dans les

appareils des utilisateurs mobiles avant la demande du contenu) a souvent été utilisé dans

le contexte des communications opportunistes mobiles, où, pour réduire l’effet d’une faible

connectivité de réseau, le contenu est pré-téléchargé dans l’espace de la mémoire cache de

certains utilisateurs mobiles qui peuvent desservir les demandes futures du contenu [117].

Mais cette stratégie peut également être utile pour le délestage de données mobile, où, en

anticipant la demande future d’un utilisateur, le contenu peut-être pré-téléchargé pendant

les périodes de faible trafic de données afin de réduire la quantité de trafic à des instants

futurs de temps [118].

L’avantage de pre-téléchargement dépend de la capacité d’anticiper les demandes futures

des utilisateurs. Auparavant, lorsque des solutions similaires ont été utilisés pour réduire

l’effet des goulot d’étranglement du réseau, prédire la demande de contenu des utilisateurs a

été considérée comme une tâche difficile et des heuristiques simples ont été proposées pour

détecter les futurs objets web les plus populaires [89]. Des découvertes récentes dans le

domaine des médias sociaux montrent que la popularité du contenu web peut être prédite,

un résultat qui peux améliorer l’impact de téléchargement proactif. On construit sur les

résultats de ces constatations et on étudie l’effet de l’utilisation d’une méthode de prédiction

de popularité réelle en tant que composant intégré de la décision de téléchargement proactif.

A.3.4 Prédire les événements κ-contact entre les utilisateurs mobiles

On étudie le problème de la prédiction des connectivités entre les utilisateurs mobiles.

Étant donné la capacité assez limitée de prédire les contacts entre les utilisateurs mobiles,

on étend le cadre de la prédiction pour le cas κ-contact – prédire si les utilisateurs mobiles

vont se trouver à une distance d’au plus κnœuds un de l’autre. En utilisant un cadre de

prédiction supervisé on analyse la prédictibilité de κ-contacts sur trois traces de contacts

de la vie réelle et on observe qu’on peut atteindre de meilleures performances si l’on veut

prédire que les utilisateurs ne seront pas en contact direct, mais dans à proximité. Pour
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évaluer l’impact de ces conclusions dans un déploiement réel, on propose une expérience

de simulation dans laquelle, en combinant les communications opportunistes mobiles avec

un module de prédiction κ-contact, on peut réduire le trafic utilisé dans la communication

de nœuds mobile avec l’infrastructure. Ces résultats indiquent qu’on peut efficacement

exploiter la nature la plus prévisible de κ-contacts pour créer des meilleurs services de

communications mobiles.

La conception des protocoles de communication dans les réseaux mobiles opportunistes

dépend en grande partie sur la capacité à comprendre les caractéristiques de la mobilité

humaine. Au cours des dernières années, plusieurs études ont révélé des résultats impor-

tants sur la durée des contacts et inter-contact entre les utilisateurs mobiles [8,136,137], la

périodicité de ces rencontres [9], et les structures créées par les interactions humaines [10,

138–140]. Dans le contexte des réseaux mobiles opportunistes, les caractéristiques de la mo-

bilité peuvent ensuite être utilisées pour concevoir des mesures qui facilitent la prédiction

des interactions entre les utilisateurs mobiles. Cela consiste à l’utilisation de la fréquence

des contacts pour identifier les similitudes entre les caractéristiques de la mobilité [141] ou

de trouver les utilisateurs mobiles fortement connectés qui pourraient servir comme por-

teurs des messages [142]. Bien que ces mesures puissent servir comme heuristiques pour

prédire les contacts entre les utilisateurs mobiles, ils ont une capacité limitée pour détecter

les prochains contacts humains. Une approche plus avantageuse de ce problème, mais aussi

plus laborieux, est de créer un modèle capable de prédire les contacts entre les utilisateurs

mobiles.

Des études récentes ont traité cette question de la prédiction de contacts – prédire si

deux nœuds vont être dans un rayon de transmission directe – et ont révélé que, avec

une bonne méthode de prédiction et des caractéristiques prédictives, les contacts entre

les utilisateurs mobiles sont, dans une certaine mesure, prévisibles [143]. Ce résultat est

important, car il permet en fait de prédire les rencontres humaines et peut servir pour

développer des protocoles de communication plus efficaces.

Mais les relations entre les paires des utilisateurs mobiles peuvent être décrites en de-

hors de la vue binaire (contact / inter-contact) comme souvent les individus peuvent se

trouver hors de portée de transmission directe, mais toujours à proximité. Ainsi, pour

avoir une vue plus complète sur les possibilités de communication disponibles, la notion

élargie de contact, définit comme κ-contact, a été récemment proposée [145]. Les analyses

précédentes ont montré que, étant donné que les contacts entre les utilisateurs mobiles

offrent une compréhension biaisée et sous optimale du réseau de communication, les études

sur κ-contacts permettent d’avoir une compréhension plus complète des possibilités de

Les propriétés et l’impact du κ-voisinage dans les réseaux mobiles opportunistes ont été étudiés par
Phe-Neau [144].
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communication de bout en bout.

Dans ce chapitre, on fournit de nouvelles informations sur les relations κ-contact et on

montre qu’étudier seulement les contacts directs offre une vue limitée sur les possibilités

de communication entre les paires des nœuds. On étudie ensuite la prédictibilité de κ-

contacts. En utilisant des données provenant de trois traces des contacts humains, on

compare la capacité de prédire les κ-contacts avec le cas classique de prédiction des contacts

directs entre les utilisateurs mobiles. On montre que les relations κ-contacts sont plus

prédictibles que les relations de contact direct. Pour mesurer l’impact de ces résultats

dans une application réelle, on analyse l’impact d’une solution qui utilise un modèle de

prédiction κ-contact pour le délestage de données mobile. Par simulation, on montre qu’il

existe un grand potentiel de s’appuyer sur la prédiction κcontact par rapport au cas de

contact direct.

A.4 Conclusions

Les réseaux opportunistes mobiles offrent une bonne solution au problème difficile de

délestage de trafic mobile de données, mais le succès des déploiements réels dépend de

la capacité de mieux comprendre et de prédire le comportement des utilisateurs mobiles.

Dans cette thèse, on a étudié des nouvelles perspectives sur le comportement des util-

isateurs qui peuvent être utilisés pour améliorer l’efficacité des solutions de délestage de

données mobiles. Le premier aspect proposé dans ce travail consiste à étudier l’accès au

contenu, de construire des modèles pour prédire la popularité du contenu et d’ajuster la

disponibilité de contenu basé sur la demande prédite des utilisateurs. Pour mieux compren-

dre les difficultés et les limites de la prédiction de popularité de contenu web (dans notre cas

les articles de presse), on a analysé la popularité des articles publiés sur deux plates-formes

d’information en ligne. Après avoir étudié les différentes méthodes de prédiction proposées

dans la littérature, on a analysé la capacité des deux de ces méthodes pour prédire la pop-

ularité des articles de presse. Les résultats indiquent qu’un modèle linéaire sur une échelle

logarithmique est une solution efficace pour prédire la popularité des articles. En outre,

on a montré que ce modèle de prédiction est aussi une solution efficace dans le contexte

de classification des articles basés sur leur popularité; avec une performance qui peut être

assez bonne que les méthodes de classification automatique. Pour bénéficier de ces observa-

tions, on a montré que la capacité de prédire la demande future du contenu peut améliorer

l’impact de pré-téléchargement utilisé dans le contexte de délestage de données mobile.

Le deuxième aspect traité dans cette thèse est la capacité de prédire les κ-contacts entre

les utilisateurs mobiles – prédire si les utilisateurs vont se trouver à une distance d’au plus

κnœuds un de l’autre. En analysant trois traces de connectivité de la vie réelle, on a ob-
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servé que, dans un scénario mobile, on peut obtenir de meilleures performances si on prédit

que les utilisateurs vont se retrouver pas nécessairement dans un rayon de communication

directe, mais toujours dans la proximité, séparés par seulement quelques autres utilisateurs

mobiles. Pour évaluer l’impact de ces résultats dans une application réelle, on a proposé un

scénario de simulation dans lequel, en combinant les communications mobiles opportunistes

avec la prédiction de κcontact, on peut réduire la quantité de trafic utilisé dans la commu-

nication des utilisateurs mobiles avec l’infrastructure cellulaire. Nos résultats indiquent que

les services bénéficiant de prévisions de contacts peuvent efficacement exploiter la nature

prévisible de κ-contacts.

A.5 Perspectives

On propose plusieurs directions pour les travaux futurs: (1) trouver des algorithmes plus

efficaces pour prédire la popularité de contenu; (2) étudier la prédictibilité des connexions

spatio-temporelles entre les utilisateurs dans les réseaux mobiles opportunistes; (3) et créer

un moteur de délestage de données qui combine la capacité d’apprendre et de prédire

l’accès au contenu des utilisateurs et leur mobilité et qui utilise ces informations pour

mieux orchestrer les décisions du délestage de trafic mobile.

A.5.1 Améliorer la qualité de la prédiction de popularité

Même si dans dernières années, il y a eu beaucoup de découvertes sur la capacité de

prédire la popularité du contenu, il reste encore des directions importantes qui doivent être

explorées.

Prédire l’évolution du popularité de contenu. La plupart des travaux antérieurs

s’occupent du problème de la prédiction de popularité du contenu web à un moment précis

du temps. Bien que cette approche permette de détecter très vite les articles web qui vont

devenir très populaires, un plus grand impact sera de prédire l’évolution de la popularité

à long terme [36,38]. Cette stratégie peut fournir des indications importantes sur la façon

dont le contenu évolue à travers des différentes étapes de la popularité: la croissance initiale,

la période de pointe, le déclin, et même les rebonds de popularité. Cette information peut

aider la publicité en ligne et les réseaux de diffusion de contenu à prendre des décisions

plus rentables, en mettant l’accent sur le contenu web lors de sa période de pointe et de

gaspiller moins de ressources sur les articles web qui ne présentent plus d’intérêt.

Créer des modèles de prédiction plus riches. La plupart des modèles de prédiction

utilisent seulement la popularité du contenu juste après la publication – et ignorent les

autres caractéristiques du contenu – pour prédire la popularité finale. Une direction im-

portante pour les travaux futurs, qui n’a pas été suffisamment explorée, ce sera de trouver
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des nouvelles caractéristiques prédictives. Par exemple, excepter Bandari et al., qui utilisent

l’éditeur des articles en ligne dans un modèle de prédiction [65], aucun autre travail n’a pas

étudié le pouvoir prédictif de l’éditeur de contenu. Pourtant, les chroniqueurs de presse et

les éditeurs vidéo attirent un public important – et peut-être prévisible.

Le sujet du contenu web joue, sans doute, un rôle important dans sa popularité. Les dis-

cussions sur l’Internet et les médias traditionnels sont centrées sur des sujets avec des cycles

de vie limités et différents. Ainsi, capturer les nouvelles tendances et apprendre comment

les inclure dans les modèles de prédiction peuvent conduire à des découvertes capitales pour

améliorer la précision de la prédiction. La recherche dans ce domaine a fait des progrès

importants dans les dernières années. Leskovec et al. ont constaté que l’attention que les

utilisateurs en ligne donnent aux certains sujets peut-être décrite avec précision par six

formes de séries chronologiques différents [161]. Dans une nouvelle approche, pour trouver

les sujets populaires sur Twitter, Nikolov et al. ont proposé un algorithme qui permet de

détecter les sujets populaires plus tôt (avec une moyenne de 1,43 heures) que l’algorithme

privé de Twitter [162].

Les travaux actuels ont montré que, pour les articles web avec très peu cycle de vie,

les prévisions rapides (quelques minutes après le contenu web a été publié) représentent un

défi majeur. Les articles de presse sont un bon exemple, car ils deviennent populaires très

vite et perdent leur intérêt dans quelques heures. Une façon d’améliorer la predictibilité

de popularité des articles serait d’extraire des événements récurrents au fil du temps, ob-

server le niveau d’intérêt qu’ils génèrent, et prédire quand ces événements futurs auront

lieu. Prédire les événements majeurs dans différents domaines (par exemple, l’économie,

la sismologie, la société), aussi difficile que cela puisse parâıtre, est néanmoins plausible.

Radinsky et al. ont proposé deux algorithmes pour ce type de prédiction: PROFET, un

algorithme qui prédit les termes utilisés à l’avenir dans des articles de presse basés sur

historiques des requêtes web [163]; et Pandit, un système qui peut prédire des événements

futurs à partir d’un certain événement existant [164].

Au-delà des prévisions. Prédire la popularité du contenu en ligne devrait être non seule-

ment utile pour trouver des nouvelles tendances dans la dynamique des utilisateurs, mais

aussi précieux pour améliorer certains services web. Par exemple, en utilisant les résultats

de la section précédente, les éditeurs des contenus (professionnels ou amateurs) peuvent

s’appuyer sur les facteurs connus d’influencer la popularité du contenu pour construire le

génome de contenu populaire. Bien qu’il existe des nombreux facteurs qui sont difficiles

à contrôler, créer de contenu qui est original (copies multiples du même contenu ont un

impact négatif sur la popularité [32]), nouveau (l’avantage de la première apparition [85]),

émotionnel (les émotions fortes sont corrélées au partage en ligne du contenu [79]), et par

le marquage électronique avec des mots-clés populaires (pour parâıtre dans des listes de
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recommandations plus populaires [86]) peut augmenter la probabilité du contenu web de

devenir populaire. Ensuite, la publicité en ligne devrait essayer de comprendre comment

saisir l’occasion de trouver du contenu populaire à l’avance et de créer des stratégies de

monétisation. Enfin, il existe peu de rapports sur la façon dont la prédiction de contenu

peut être utilisé pour créer des meilleures solutions pour les réseaux de distribution de

contenu. Pourtant, la prédiction dynamique de la popularité peut être utilisée pour créer

des solutions de distribution de contenus plus extensibles (répliquer le contenu d’une façon

proactive, selon la demande future) et de réduire le niveau de congestion causée par des

requêtes soudaines de demandes de contenu.

A.5.2 Pré-téléchargement intelligent

La stratégie de pré-téléchargement proposée dans ce travail consiste à récupérer à l’avance le

contenu populaire et de l’assigner au hasard aux utilisateurs mobiles pour mieux faire face à

la demande future. Utilisée dans une situation réelle, cette solution peut sembler primitive

et peu réaliste étant donné que les utilisateurs auront besoin de consacrer des ressources

supplémentaires pour stocker du contenu qui peut être au-delà de leur propre intérêt. Une

solution raisonnable serait de prévoir la demande individuelle des utilisateurs et d’adapter

les décisions de pré-téléchargement en conséquence. L’avantage dans ce cas est multiple: les

utilisateurs mobiles peuvent profiter d’une meilleure expérience dans leur accès au contenu

(par exemple, un délai réduit, une meilleure tolérance aux déconnexions du réseau); les

fournisseurs de contenu peuvent mieux fournir des informations aux clients mobiles; et les

opérateurs de télécommunications peuvent améliorer l’effet de pré-téléchargement (le pré-

téléchargement du contenu réduit dans l’avenir la charge du réseau avec au moins la même

quantité).

On peut même aller plus loin et imaginer que, en plus de prédire ce que les utilisateurs

consomment, le moteur de prédiction pourrait aussi révéler le moment lorsque la demande

attendue aura lieu. L’avantage de cette approche est encore plus grand comme cette con-

naissance supplémentaire peut être utilisée pour construire des mécanismes de mise en

forme du trafic de données [118].

La création d’un moteur d’analyse de comportement humain est beaucoup plus com-

plexe, car elle nécessite des renseignements personnels supplémentaires sur l’intérêt des

utilisateurs, les habitudes d’utilisation, et le comportement social. Mais des applications

commerciales populaires comme la vidéo mobile, utilisées pour la recommandation du con-

tenu et les services de diffusion de contenu, montrent que les utilisateurs sont ouverts

à divulguer plus d’informations sur leurs préférences pour améliorer la qualité de leur

expérience mobile [168].
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A.5.3 Prédire les contacts spatio-temporelles

On a montré que prédire les possibilités de communication entre les utilisateurs mobiles

peut être utile dans le contexte de la téléphonie mobile (pour le délestage des données

mobiles). Pour améliorer l’impact de cette stratégie, les travaux futurs devraient essayer

d’étendre l’objectif de la prédiction et de prédire le moment quand le κ-contact aura lieu

(et la durée de la connexion). Cette information peut ensuite être utilisée pour décider

le moment pour lancer le transfert d’un message ou de retarder le transfert des données

volumineuses si la durée de la connexion sera trop courte.

Prédire les connexions instantanées entre les utilisateurs mobiles offre des possibilités

limitées pour le transfert de données dans le cadre de communications mobiles oppor-

tunistes. Dans ce scénario, caractérisé par des déconnexions fréquentes, les chemins physiques

entre les utilisateurs peuvent être inexistants (ou ils peuvent être transitoires) mais des

chemins spatio-temporels peuvent être plus fréquents. Formalisé sous le concept de graphes

d’accessibilité temporels [169] cette stratégie permet de capturer les communications tem-

porelles entre les utilisateurs mobiles.

A.5.4 Moteur pour le délestage opportuniste de trafic mobile de données

Content blueprint

Mobility blueprint

Push content

Reply

Request

Identify participants Learn behavioral 
       patterns

Coordinated proactive
            seeding

Improve service in 
  congested areas

Figure A.3: La procédure utilisée dans cette thèse pour le délestage opportuniste de trafic
mobile de données.

Enfin, les solutions proposées dans ce travail peuvent être utilisées comme composantes

intégrés pour un moteur de délestage de trafic mobile de données utilisé par les opérateurs

de télécommunications pour améliorer les services de transfert de données dans les zones en-

combrées causés par les grands rassemblements (par exemple, des concerts ou des événements

sportifs). Concrètement, ce service, illustré dans la Figure 1.3, pourrait être décomposé

dans les étapes suivantes:

• Identifier les participants mobiles: pour un endroit prédéfini, qui présente un risque
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élevé d’être encombré, il faut identifier la population d’utilisateurs mobiles qui seront

dans la zone d’intérêt.

• Apprendre les comportements des utilisateurs: pour la population d’utilisateurs, le

moteur de prédiction aurait besoin de suivre, comprendre, et identifier les tendances

dans le comportement des utilisateurs. Cela comprend l’apprentissage des habitudes

d’utilisation des données (savoir ce que les utilisateurs vont consommer à l’intérieur

des zones congestionnées) et les caractéristiques de la mobilité (savoir la trajectoire

des utilisateurs dans la zone d’intérêt).

• Le pré-téléchargement coordonné: savoir ce que les utilisateurs vont consommer à

l’intérieur du lieu encombré, l’opérateur de télécommunications peut télécharger du

contenu pendant les voyages des utilisateurs à un emplacement spécifique. Cette

action peut être effectuée en utilisant l’infrastructure cellulaire (lorsque les utilisateurs

se déplacent à travers des zones avec une bonne connectivité cellulaire), les points

d’accès Wi-Fi, et la communication de dispositif à dispositif avec la prédiction des

rencontres entre les utilisateurs mobiles.

• Améliorer le service à l’intérieur des zones encombrées: en plus des stratégies de

pré-téléchargement, l’opérateur de télécommunications pourrait également améliorer

l’expérience des utilisateurs dans une zone encombrée. En particulier, pendant des

périodes de congestion le transfert de données entre certains nœuds mobiles peut

être difficile. En sachant que les utilisateurs vont rester dans la proximité d’un

nœud cible (par la prédiction de κ-contact) l’opérateur de télécommunications peut

décider d’utiliser un autre nœud mobile comme un proxy dans la communication avec

l’utilisateur mobile ciblé.
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[159] A. Keränen, J. Ott, and T. Kärkkäinen, “The ONE Simulator for DTN Protocol

Evaluation,” (Rome, Italy), Mar. 2009.

[160] “Ko-tag joint project.” http://ko-fas.de/english/ko-tag—cooperative-

transponders/operating-principle.html/, 2014.

[161] J. Leskovec, L. Backstrom, and J. Kleinberg, “Meme-tracking and the dynamics of

the news cycle,” in Proceedings of the 15th ACM SIGKDD international conference

on Knowledge discovery and data mining, pp. 497–506, ACM, 2009.

[162] S. Nikolov, Trend or no trend: a novel nonparametric method for classifying time

series. PhD thesis, Massachusetts Institute of Technology, 2012.

[163] K. Radinsky, S. Davidovich, and S. Markovitch, “Predicting the news of tomorrow us-

ing patterns in web search queries,” in Proceedings of the 2008 IEEE/WIC/ACM In-

ternational Conference on Web Intelligence and Intelligent Agent Technology-Volume

01, pp. 363–367, IEEE Computer Society, 2008.

[164] K. Radinsky, S. Davidovich, and S. Markovitch, “Learning causality for news events

prediction,” in Proceedings of the 21st international conference on World Wide Web,

pp. 909–918, ACM, 2012.

[165] K. Radinsky, K. Svore, S. Dumais, J. Teevan, A. Bocharov, and E. Horvitz, “Mod-

eling and predicting behavioral dynamics on the web,” in Proceedings of the 21st

international conference on World Wide Web, pp. 599–608, ACM, 2012.



References 145

[166] T. Steiner, S. van Hooland, and E. Summers, “Mj no more: using concurrent

wikipedia edit spikes with social network plausibility checks for breaking news de-

tection,” in Proceedings of the 22nd international conference on World Wide Web

companion, pp. 791–794, International World Wide Web Conferences Steering Com-

mittee, 2013.

[167] T. Steiner, “Telling breaking news stories from wikipedia with social multimedia: A

case study of the 2014 winter olympics,” arXiv preprint arXiv:1403.4289, 2014.

[168] “Incoming tv media application.” http://http://www.incoming-media.com/, 2014.

[169] J. Whitbeck, M. Dias de Amorim, V. Conan, and J.-L. Guillaume, “Temporal reach-

ability graphs,” in Proceedings of the 18th annual international conference on Mobile

computing and networking, pp. 377–388, ACM, 2012.


