
HAL Id: tel-01082065
https://theses.hal.science/tel-01082065

Submitted on 26 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Querying and Analytics of Semantic Web Data
Alexandra Roatis

To cite this version:
Alexandra Roatis. Efficient Querying and Analytics of Semantic Web Data. Databases [cs.DB].
Université Paris Sud - Paris XI, 2014. English. �NNT : 2014PA112218�. �tel-01082065�

https://theses.hal.science/tel-01082065
https://hal.archives-ouvertes.fr

Université Paris-Sud

École Doctorale 427 : Informatique Paris-Sud

Laboratoire de Recherche en Informatique (LRI)

Discipline : Informatique

Thèse de doctorat
Soutenue le 22 Septembre 2014 par

Alexandra ROATIŞ

Efficient Querying and Analytics of
Semantic Web Data

Thèse dirigée par :

Mme. Ioana Manolescu Inria Saclay

M. François Goasdoué Université Rennes 1

M. Dario Colazzo Université Paris-Dauphine

Rapporteurs :

M. Alon Halevy Google Research

M. Frank van Harmelen Vrije Universiteit Amsterdam

Examinateurs :

M. Serge Abiteboul Inria Saclay & ENS Cachan

Mme. Christine Froidevaux Université Paris-Sud

M. Philippe Rigaux CNAM Paris

“Anyone who has lost track of time when using a computer

knows the propensity to dream,

the urge to make dreams come true

and the tendency to miss lunch.”

Tim Berners-Lee

Résumé

L’utilité et la pertinence des données se trouvent dans l’information qui peut en être

extraite. Le taux élevé de publication des données et leur complexité accrue, par exemple

dans le cas des données du Web sémantique autodescriptives et hétérogènes, motivent

l’intérêt de techniques efficaces pour la manipulation de données. Dans cette thèse, nous

utilisons la technologie mature de gestion de données relationnelles pour l’interrogation

des données du Web sémantique.

La première partie se concentre sur l’apport de réponse aux requêtes sur les données

soumises à des contraintes RDFS, stockées dans un système de gestion de données re-

lationnelles. L’information implicite, résultant du raisonnement RDF est nécessaire

pour répondre correctement à ces requêtes. Nous introduisons le fragment des bases

de données RDF, allant au-delà de l’expressivité des fragments étudiés précédemment.

Nous élaborons de nouvelles techniques pour répondre aux requêtes dans ce fragment,

en étendant deux approches connues de manipulation de données sémantiques RDF,

notamment par saturation de graphes et reformulation de requêtes. En particulier, nous

considérons les mises à jour de graphe au sein de chaque approche et proposerons un

procédé incrémental de maintenance de saturation. Nous étudions expérimentalement

les performances de nos techniques, pouvant être déployées au-dessus de tout moteur de

gestion de données relationnelles.

La deuxième partie de cette thèse considère les nouvelles exigences pour les outils et

méthodes d’analyse de données, issues de l’évolution du Web sémantique. Nous revisi-

tons intégralement les concepts et les outils pour l’analyse de données, dans le contexte de

RDF. Nous proposons le premier cadre formel pour l’analyse d’entrepôts RDF. Notam-

ment, nous définissons des schémas analytiques adaptés aux graphes RDF hétérogènes

à sémantique riche, des requêtes analytiques qui (au-delà de cubes relationnels) permet-

tent l’interrogation flexible des données et schémas, ainsi que des opérations d’agrégation

puissantes de type OLAP. Des expériences sur une plateforme entièrement implémentée

démontrent l’intérêt pratique de notre approche.

Mots clés : RDF, réponse aux requêtes, raisonnement, entrepôt de données, OLAP

Abstract

The utility and relevance of data lie in the information that can be extracted from it. The

high rate of data publication and its increased complexity, for instance the heterogeneous,

self-describing Semantic Web data, motivate the interest in efficient techniques for data

manipulation. In this thesis we leverage mature relational data management technology

for querying Semantic Web data.

The first part focuses on query answering over data subject to RDFS constraints, stored

in relational data management systems. The implicit information resulting from RDF

reasoning is required to correctly answer such queries. We introduce the database frag-

ment of RDF, going beyond the expressive power of previously studied fragments. We

devise novel techniques for answering Basic Graph Pattern queries within this fragment,

exploring the two established approaches for handling RDF semantics, namely graph sat-

uration and query reformulation. In particular, we consider graph updates within each

approach and propose a method for incrementally maintaining the saturation. We ex-

perimentally study the performance trade-offs of our techniques, which can be deployed

on top of any relational data management engine.

The second part of this thesis considers the new requirements for data analytics tools

and methods emerging from the development of the Semantic Web. We fully redesign,

from the bottom up, core data analytics concepts and tools in the context of RDF data.

We propose the first complete formal framework for warehouse-style RDF analytics.

Notably, we define analytical schemas tailored to heterogeneous, semantic-rich RDF

graphs, analytical queries which (beyond relational cubes) allow flexible querying of

the data and the schema as well as powerful aggregation and OLAP-style operations.

Experiments on a fully-implemented platform demonstrate the practical interest of our

approach.

Keywords: RDF, query answering, reasoning, data warehouse, OLAP

Acknowledgements

I wish I could say that writing this section has allowed me to finally put into words my feelings of

gratitude towards all the wonderful people who have shaped me into the person I am today. I am

still struggling for the right way to say it and I guess that, as any thesis, this part is still full of

future potential. While I cannot justly acknowledge now the rippling effect that their influence

will have on my life, I feel the impact has been consequential and I strive here to express my

deeply felt gratitude.

I wish to start by thanking my three thesis advisors for the parental care that they have invested

in my education and development.

Dear Ioana, I honestly don’t know how to thank you enough for giving me this opportunity,

for teaching me so many things relating to research and to life in general, and for opening the

door to countless future prospects. I would like you to know that the biggest compliment I have

ever received is being compared to you and that I am striving every day to become worthy of

it. I truly admire your uncanny ability to see beyond the spoken words, to understand people’s

intentions and the meaning behind their words, to make the right comment and ask the most

pertinent question at the ideal time. I find your work ethic inspirational and I hope to learn to

invest the same determination and discipline in my work as you do every day.

Dear François, I cannot express what your advice has meant to me. I have always been in awe

of your opinion and every conversation we had during these three years has filled me with a

passionate interest for science and learning. I now examine and write every formalism through

your perspective, aiming at clarity and making sure to leave nothing undefined, and I am truly

proud of my work only when it has gotten your stamp of approval. I profoundly appreciate the

patience with which you have guided me through this learning process. I hope to have learned

some of it as well and to apply the same composure in my advice to others.

Dear Dario, I cannot thank you enough for your kindness and trust. Starting from my first

teaching assignment and till the very end of my PhD I have always felt your confidence in my

abilities and it has motivated me to aim higher and higher. Your support has encouraged me

to have faith in myself. Your belief in my choices has been of consequential importance to my

future steps, and I deeply appreciate it.

I want to thank Alon Halevy and Frank van Harmelen for reviewing my PhD thesis, and Serge

Abiteboul, Christine Froidevaux and Philippe Rigaux for accepting to be part of my PhD jury.

I highly appreciate all of your comments, questions, advice and kind encouragements.

I also wish to express my gratitude towards my Bachelor’s thesis advisor, Daniela Zaharie. Thank

you for the knowledge you have imparted on me, for teaching me to love algorithms, and for

putting me on the path of research.

I want to thank all the people that I had the privilege and pleasure to interact with on a

professional and personal level during these three years. I warmly mention here the Inria OAK

team members (formerly Leo and Gemo). I thank you for the great work environment and your

friendship during these years.

iv

To Nicole, I would like to say that I have always admired you. In my opinion, you are the

definition of what a professor should be, irreproachable in appearance and extremely kind at

heart. I hope to some day reach the high standard you have set.

Dear Melanie, I truly appreciate your friendship and I deeply admire your approach to life and

your dedication to both work and family. I hope to one day be able to follow suite. Also, thank

you for allowing me to act as teaching assistant for your database classes and to learn from the

great example you set.

I thank Philippe Chatalic and Laurent Simon for trusting me as teaching assistant for their

artificial intelligence course for the past two years. And I thank Camille and Jean-Baptiste

for the collaboration on preparing the classes and assignments during the second year and the

friendship that resulted from this collaboration.

I thank Xavier and Michèle for supervising my mission doctorale during the first year of PhD

and I am grateful to all the people in the Autoportrait team for their collaboration and advice

on that project.

For Alin, my former colleague and first friend in France, I have a question. How did you manage

to tolerate all my questions? I am very grateful for all the help and advice you gave me when

I started my first internship here. Your aid was invaluable in navigating the “misteries” of

command lines and accessing servers. Thank you for all of it and for always offering your help

with a smile!

To my first office mates, Stamatis and Francesca: it’s been such a long time since we each did

our first internship in the team. Sharing the office with you was a real pleasure. However the

even bigger pleasure was getting to know you during these years. Stamatis, thank you for the

friendly attitude you have always shown me and for inspiring me to lead a healthier life. I finally

joined a gym! Dear Francesca, thank you for becoming the friend that I was missing ever since I

left Romania, for listening to my troubles, for the advice you gave me and for filling my mailbox

with postcards. It is a privilege to call you my friend!

To Asterios and Jesús, with whom I shared the office for the duration of my PhD: I thank you

for welcoming me in your little clique, for always providing solutions to my questions and advice

when I needed it. It has been a pleasure to briefly work with you and to learn from you. Even

more, I thank you for all the chats and jokes we have shared and the smiles they have triggered.

I greatly enjoyed spending each work day in your company.

To my newest office mates, Elham and Katerina: even though we have shared the office only for

a little time, it has been a real pleasure so far. I am loving the friendly, one may even say girly,

environment we have. Your lovely smiles offer a motivational boost to each day. Dear Elham,

I also want to add that it has been a real pleasure to co-supervise your internship so far, and

I want to thank you for becoming my friend in the process. You make even a tough work day

pass by smoothly and end in a smile.

I thank Šejla and Damian for the work collaboration. I have learned a lot from both of you.

Danai, thank you for being the friend in need. I really appreciate it.

Gianluca, Tushar and Benjamin, thank you for being not only my colleagues, but also good

friends and for bringing an unconventional dose of fun to the work environment. Gianluca, I

appreciate your help through the bureaucratic mess of renting an apartment. Tushar, thank you

for collaborating with me on the WaRG demo and creating the beautiful visual interface for the

analytics framework we developed. And Benjamin, I am very grateful for all the aid you have

given me in writing proper French.

I wish to thank Maëva for the dedicated manner with which she has handled all the paperwork

for missions and for her help through many bureaucratic procedures.

I share my deep gratitude towards everyone from Lannion, for making my stay there so enjoyable,

that I look for every opportunity to visit them again.

I wish to thank all my friends from Romania, in particular Alina, Cipi, Andrei, Rosi, Codruţa,

Anda and Oana for always welcoming me with open arms when I visit and for their continued

support during these years. I miss you all dearly! Thank you Driss for being the first friend

I made at a conference and for proving that such friendships are meant to last. Dear Fredrik,

thank you for your friendship, support and for all the great times we spent together.

I thank Ştefania for bringing me the feeling of home and for becoming my close friend. I am very

grateful to you for keeping me alive (with home cooked meals and pizza) and well caffeinated

while I was writing my thesis. And I thank you for all the conversations and all the laughs we

have had since we met. You are a real comfort and a valuable friend.

Dear Steven, you have been the best of friends ever since I have uprooted my life to this strange

new country. Thank you for being the person I could always count on to listen to my troubles

and to remind me that whatever happens and wherever I go, I should not forget my smile. And

most of all, thank you for the music!

Dear Carmen, I am so proud of you! As the older sibling I should try to be the role model, but

the truth is that you are my inspiration. Thank you for your honesty, care and love. I know

that wherever life takes us, I can always count on you.

I finish by expressing my deep gratitude towards my parents. Thank you for the way you raised

me, for all the sacrifices you have made along the way and for your unending love. I know how

difficult it has been for you to see me move to a new country and I thank you for letting me go.

I will always do my best to make you proud.

Finally, I want to thank serendipity for putting me in the path of all these wonderful people. I

wish I could say that I knew it all along, that my decisions have been calculated and that every

step I made has been carefully thought out to get me here. But the truth is that I had the

fortune to base my decisions on a bit of good intuition and a lot of great advice. So, I conclude

by thanking one more time the wise voices that convinced me to do a PhD and advised me

during its duration.

Contents

Acknowledgements iv

Contents vii

List of Figures x

List of Tables xi

Abbreviations xii

1 Introduction 1

1.1 Data vs. Technology . 2

1.2 Motivation: Leverage Mature RDBMS Technology for Querying Semantic
Data . 3

1.2.1 Querying Data under Constraints 3

1.2.2 Data Analysis . 4

1.3 Contributions . 4

2 A Brief Review of RDF Data Management 6

2.1 The RDF Data Model . 6

2.1.1 RDF Graphs . 7

2.1.2 RDF Schema . 8

2.1.3 Entailment . 9

2.2 Querying RDF Graphs . 12

2.2.1 BGP Queries . 12

2.2.2 Queries for Data Analysis . 14

2.3 RDF vs. Relational Data Management . 16

2.4 Outlook . 17

I Efficient Query Answering against Dynamic RDF Databases 18

3 RDF Database Management Overview 19

3.1 Query Answering . 20

3.1.1 Fragments of RDF/SPARQL . 20

3.1.2 Data Saturation . 21

3.1.3 Query Reformulation . 23

3.2 Storage and Indexing . 24

vii

Contents viii

3.3 Systems . 25

3.4 Summary . 26

4 Query Answering in RDF Databases 28

4.1 The Database Fragment of RDF . 28

4.1.1 Query Evaluation on the DB Fragment 30

4.1.2 Query Answering on the DB Fragment 32

4.2 The Saturation-based Approach . 32

4.2.1 Database Saturation . 33

4.2.2 Saturation Maintenance upon Updates 34

4.2.3 Saturation-based Query Answering 38

4.3 The Reformulation-based Approach . 39

4.3.1 Query Reformulation . 39

4.3.2 Reformulation Rules and Algorithm 41

4.3.3 Reformulation-based Query Answering 43

4.4 Summary . 46

5 RDF Query Answering: A Practical Assessment 47

5.1 Settings . 47

5.2 Performance of the Saturation Algorithms 48

5.3 Query Answering Times . 51

5.4 Comparison with Query Evaluation on Virtuoso 55

5.5 Instance and Schema Updates . 55

5.6 Saturation Thresholds . 58

5.7 Summary . 61

Concluding Remarks 62

II Warehousing RDF Graphs 64

6 RDF Data Warehousing Overview 65

6.1 Multidimensional Relational Data Management 65

6.2 RDF and Graph Data Analysis . 66

6.2.1 Extracting Multidimensional Data from RDF 67

6.2.2 Vocabularies for RDF Data Analysis 67

6.2.3 Graph Data Warehouses . 67

6.3 Summary . 68

7 RDF Graph Analysis 69

7.1 Data Warehousing Scenario . 69

7.2 Analytical Schemas and Instances . 70

7.3 Analytical Queries . 75

7.4 Analytical Query Answering . 78

7.5 On-Line Analytical Processing on RDF Graphs 80

7.6 Summary . 83

8 The WaRG RDF Analytics Platform 84

Contents ix

8.1 Implementation and Settings . 84

8.2 Analytical Schema Materialization . 86

8.3 Analytical Query Answering over I . 87

8.4 Query Reformulation . 89

8.5 OLAP Operations . 89

8.6 The WaRG Tool . 90

8.7 Summary . 92

Concluding Remarks 93

9 Conclusion 95

9.1 Saturation vs. Reformulation . 95

9.2 RDF Analytics . 96

9.3 Perspectives . 97

A Theorem Proofs 99

A.1 Proof of Theorem 4.2 . 99

A.2 Proof of Theorem 4.4 . 101

A.3 Proof of Proposition 4.5 . 102

A.4 Proof of Theorem 4.7 . 103

A.5 Proof of Theorem 4.14 . 109

A.6 Proof of Theorem 4.18 . 111

A.7 Proof of Theorem 7.13 . 114

A.8 Proof of Proposition A.1 . 115

B Queries used in the Experiments of Chapter 5 117

B.1 BGP Queries over the DBLP Dataset . 117

B.2 BGP Queries over the DBpedia Dataset 121

B.3 BGP Queries over the Barton Dataset . 123

B.4 BGP Queries over the LUBM Datasets . 124

Bibliography 129

List of Figures

2.1 Sample RDF graph. Alternative representations. 8

2.2 Sample RDF Schema triples. Alternative representations. 9

4.1 Running example: RDF database – graph representation. 31

4.2 Saturation rules for an RDF database db. 33

4.3 Reformulation rules for a partially instantiated query qσ w.r.t. a database db. 40

5.1 Saturation times using different data partitions. 50

5.2 Saturation algorithms scalability. 51

5.3 Query answering times for the DBLP, DBpedia and Barton datasets. . . . 52

5.4 Query answering times for the LUBM datasets. 53

5.5 Saturation-based query answering through PostgreSQL and Virtuoso on
the saturated LUBM datasets. 56

5.6 Schema triple insertion times. 57

5.7 Schema triple deletion times. 58

5.8 Update times. 59

5.9 Saturation thresholds for the DBLP, DBpedia and Barton datasets. 60

5.10 Outline of the positioning of our work. 62

7.1 Running example: RDF graph. 72

7.2 Sample analytical schema (AnS). 72

8.1 Data layout of the RDF warehouse. 85

8.2 Evaluation time (s) and number of results for AnS node queries (left) and
edge queries (right). 86

8.3 I materialization time vs. I size. 87

8.4 AnQ statistics for query patterns. 88

8.5 AnQ evaluation time over large datasets. 88

8.6 AnQ reformulation. 89

8.7 Slice and dice over AnQs. 90

8.8 WaRG visualization of a sample AnS and AnQ. 91

x

List of Tables

2.1 RDF statements. 7

2.2 RDFS statements. 9

2.3 Entailment rules [Recommendation04]. 11

5.1 Graph characteristics and saturation times. 49

5.2 Query characteristics. 51

7.1 The labels λ and queries δ for the Figure 7.2 AnS nodes and edges. . . . 73

8.1 Dataset characteristics. 85

xi

Abbreviations

RDF Resource Description Framework

BGP Basic Graph Pattern

RDBMS Relational DataBase Management System

OLAP On-Line Analytical Processing

AnS Analytical Schema

AnQ Analytical Queries

rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs: http://www.w3.org/2000/01/rdf-schema#

rdf:type http://www.w3.org/1999/02/22-rdf-syntax-ns#type

rdfs:subClassOf http://www.w3.org/2000/01/rdf-schema#subClassOf

rdfs:subPropertyOf http://www.w3.org/2000/01/rdf-schema#subPropertyOf

rdfs:domain http://www.w3.org/2000/01/rdf-schema#domain

rdfs:range http://www.w3.org/2000/01/rdf-schema#range

rdf:Literal http://www.w3.org/1999/02/22-rdf-syntax-ns#Literal

rdfs:Class http://www.w3.org/2000/01/rdf-schema#Class

rdf:Property http://www.w3.org/1999/02/22-rdf-syntax-ns#Property

xsd:int http://www.w3.org/2001/XMLSchema#int

xii

Chapter 1

Introduction

“I can’t recommend this book too highly.” Such a statement can be followed by praise

for the book or by criticism, elucidating the intended meaning. The context determines

the book’s properties. Regular speech is filled with ambiguous entities, e.g., “jaguar” can

be an animal or a car, “duck” can be used as a verb or a noun, the combination of the

two positive words “yeah” and “sure” results in a negative assertion. The human mind

can easily make the necessary disambiguations given the context, but how do we teach

context to a computer?

The initial vision behind the Semantic Web [Berners-Lee01] was to make Web pages as

comprehensible to machines as they are to humans. The Resource Description Frame-

work (RDF [W3Cb]) specification, first recommended by the World Wide Web Consor-

tium (W3C) in February 1999, allows to uniquely identify entities and concepts through

the use of uniform resource identifiers (or URIs, in short). Moreover, such resources

can be interrelated, when a resource r1 is stated to have a property whose name is given

by the resource r2 and whose value is a third resource r3. Modeling such a statement as

a directed link going from r1 to r3 and labeled r2 leads to a graph representation of a set

of interconnected resources, or in other terms, a linked data set. The semi-structured

nature of this model is apparent: data can be heterogeneous (different resources may

have very different sets of properties defined) and self-describing (the structure of the

data is encoded in the data itself). These characteristics make it a very suitable format

for Web-based data exchange.

“Linked Data is the Semantic Web done right” [Berners-Lee08] is Tim Berners-Lee’s

characterization to the W3C-promoted set of good practices for publishing and connecting

information on the Web. Common resources are used to link datasets to each other

building a Web of interconnected information. Efficient techniques for taking advantage

of such semantic-rich, interconnected data bring data management (and computing, more

generally) one step closer to the intelligent computers dreamed of by the Web’s founders,

capable of understanding and exploiting the meaning of content on the Web.

1

Chapter 1. Introduction 2

1.1 Data vs. Technology

“Information is the oil of the 21st century, and analytics is the combustion engine.”

The high importance of information in today’s world has been aptly described by Peter

Sondergaard in his statement at the Gartner Symposium [Pettey11]. Data is used in in-

dustry to increase profit, and in the fields of research to drive innovation. Its applications

are countless, starting from curing diseases to winning public elections.

However, data is only as valuable as the information that can be extracted from it.

The data volume being analyzed is growing exponentially while the technologies to

manipulate it are lagging behind [Win, Gantz12].

Scientific data is obtained using increasingly performant tools, capable of extensive mea-

surements and complex simulations. Efficient analysis of such experimental data is the

bottleneck in today’s scientific progress [Ailamaki10].

The volume of social data obtained by user interactions with public websites, software

and sensors is coming close behind. Users have moved from being sole consumers of

data, to publishing at an alarming rate. With this high amount of user data available,

user personalized applications are an expectation.

Transactional (structured) data has been the subject of research for the past decades,

resulting in a great variety of efficient relational data management tools. However, recent

years have seen a growing interest in the use and analysis of unstructured data taking

on different shapes and sizes, e.g., text, images, audio, video. This creates a big gap

between the data being published and the ability of existing tools to analyze it. New

tools and technologies have been developed for this purpose. However, oftentimes these

tools are ad-hoc and application-specific systems which are leaving some of the database

experts with the feeling of seeing attempts at reinventing the wheel [Mohan13].

On the other hand, the utility of semi-structured data models, such as W3C’s Resource

Description Framework [W3Cb] is unquestioned. RDF facilitates the integration of data

from different sources and formats, making it easy for new data to be interrogated

together with data stored in the old (legacy) systems. The use of metadata (data about

data), the addition of semantic constraints, and the high emphasis on collaboration and

sharing of on-line resources, in this already expansive volume of data makes traditional

relational technologies even more difficult to apply. Moreover, since the general pattern

is to continuously appended new data, multidimensional structures are naturally built,

where time plays a key role.

This scientific horizon shows a world of massive unstructured and semantic rich data

which cannot be easily ported to the technologies that have been perfected over the

decades for storing and manipulating its structured counterpart.

Chapter 1. Introduction 3

1.2 Motivation: Leverage Mature RDBMS Technology for

Querying Semantic Data

Given the high rate of data publication [Win, Gantz12] and its increased complexity,

the goal of this thesis is twofold:

• First, to leverage existing technologies for efficient answering of queries over data

subject to semantic constraints;

• Second, to formalize procedures for powerful analytics on such data.

We outline the respective research problems next.

1.2.1 Querying Data under Constraints

We start by looking at query answering over this complex and semantic rich data.

The literature provides several scalable solutions for querying RDF graphs using re-

lational data management systems (RDBMSs, in short) or RDBMS-style specialized

engines [Abadi07, Neumann10b, Weiss08]. These works, however, ignore the essential

RDF feature called entailment, which allows modeling implicit information within RDF.

Taking entailment into account is crucial for answering SPARQL queries, as ignoring

implicit information leads to incomplete answers [W3Cd]. Thus, to capitalize on (and

benefit from) scalable RDBMS performance, SPARQL query answering can be split into

a reasoning step which handles entailment outside the RDBMSs, and a query evaluation

step delegated to RDBMSs.

A popular reasoning step is graph saturation (closure). This consists of pre-computing

(making explicit) and adding to the RDF graph all implicit information. Answering

queries using saturation amounts to evaluating the queries against the saturated graph.

While saturation leads to efficient query processing, it requires time to be computed,

space to be stored, and must be recomputed upon updates.

The alternative reasoning step is query reformulation. This consists in turning the

query into a reformulated query, which, evaluated against the original graph, yields the

exact answers to the original query. Since reformulation is made at query run-time, it

is intrinsically robust to updates; reformulation is also typically very fast. However,

reformulated queries are often syntactically more complex than the original ones, thus

their evaluation may be costly.

Opinions with respect to which is the best option are split in the research community.

Works generally focus on improving either one or the other technique. Motivated by this

observation, we look into improving the state of the art for both approaches, choosing

a set of semantic constraints that allows straightforward portability to any RDBMS,

and endeavoring to make a thorough comparison of the two techniques in the same

experimental setting.

Chapter 1. Introduction 4

1.2.2 Data Analysis

Having treated the problem of inference, we take the topic of query answering one

step further, by considering data analytics. The standardization of the SPARQL query

language now at v1.1 [W3C13] has lead to the emergence of many systems capable of

storing, querying, and updating RDF, such as OWLIM [wwwf], RDF-3X [Neumann10a],

Virtuoso [Erling07] etc. However, as more and more RDF datasets are made available,

in particular Linked (Open) Data, application requirements also evolve, demanding ad-

vanced data analytics over semantic graphs.

Significant attempts have been made at translating RDF data to the realm of warehous-

ing application and also proposing vocabularies for publishing such data. However, these

works are mostly tailored for transforming the heterogeneous RDF data into structured

tabular data. While such an approach enables the immediate use of performant data

warehouse technologies, it takes away from the versatility of RDF.

Aiming at maintaining all the features that have given RDF its popularity, namely

heterogeneity, rich semantics, ease of publication, we investigate data analytics in a

context where the warehousing process is RDF specific. Moreover, since RDF datasets

are rarely centered around a single set of facts, we look into a flexible choice of facts,

dimensions and measure for data warehousing.

1.3 Contributions

This thesis aims at efficient query answering over RDF data. As such it addresses two

main problems:

(i) query answering in dynamic RDF databases; and

(ii) RDF data warehouses analytics.

The overview below presents the thesis organization and main contributions.

Chapter 2 formalizes the RDF-related concepts used throughout the thesis.

Part I focuses on query answering in RDF databases that are subject to updates. In

this context we make the following contributions:

Chapter 3 reviews the state of the art in RDF data management.

Chapter 4 presents the formalizations for our contributions:

• We identify the novel DB fragment of RDF, extending fragments previ-

ously studied [Arenas09, Goasdoué11, Kaoudi08, Urbani11] by the sup-

port of blank nodes.

• We propose novel BGP query answering techniques for this DB fragment,

designed to work on top of on any standard conjunctive query processor

(and in particular any off-the-shelf RDBMS). Specifically, we provide:

Chapter 1. Introduction 5

(i) an efficient novel incremental RDF saturation maintenance algorithm,

based on which query answering reduces directly to query evaluation; and

(ii) a novel reformulation-based query answering algorithm, required by

the augmented expressive power of our DB fragment w.r.t. those in the

literature.

Chapter 5 demonstrates the feasibility and efficiency of the above query an-

swering techniques. We implemented and deployed our algorithms on top

of the PostgreSQL [wwwe] RDBMS. The best choice among saturation- or

reformulation-based query answering depends on the queries, the amount of

implicit data and the frequency and volume of updates to the data and/or

schema. Our experiments study these possible cases and show which strategy

works best for each of them.

The Concluding Remarks summarize the placement of our work with respect

to the state of the art.

Part II presents a full redesign, from the bottom up, of the core data analytics con-

cepts and tools, leading to a complete formal framework for warehouse-style ana-

lytics on RDF data, particularly suited to heterogeneous, semantic-rich corpora of

Linked Data.

Chapter 6 starts by reviewing that state of the art pertinent to the topic.

Chapter 7 lists our contributions:

• We devise a full-RDF warehousing approach, where the base data and

the warehouse extent are RDF graphs.

• We introduce RDF analytical schemas, which are graphs of classes and

properties themselves, having nodes (classes) connected by edges (prop-

erties) with no single central concept (node). This contrasts with the

typical relational data warehouse star or snowflake schemas. The core

idea behind many-node analytical schemas is to define each node (respec-

tively edge) by an independent query over the base data.

• We define analytical queries over our decentralized analytical schemas.

Such queries are highly flexible in the choice of measures and classifiers,

while supporting all the classical analytical cubes and operations (slice,

dice etc.).

Chapter 8 presents experiments on our fully implemented operational prototype

and empirically demonstrate its interest and performance.

The Concluding Remarks relate our contribution to the existing works in the

state of the art.

Chapter 9 provides a thesis summary relating the two main topics. It also presents the

multiple research opportunities that this work has inspired.

Chapter 2

A Brief Review of

RDF Data Management

This chapter provides the background information required to follow the problems raised

in this thesis and their proposed solutions. The concepts used throughout the work are

illustrated and formalized as follows.

First, Section 2.1 describes the Resource Description Framework (RDF) [W3Cb], a

graph-based data model recommended by the W3C for interchanging data on the Web.

The following Section 2.2 presents the W3C standard for querying RDF, namely the

SPARQL Protocol and RDF Query Language (SPARQL) [W3Cd].

Finally, Section 2.3 puts RDF data storage in the context of relational database man-

agement systems (RDBMSs) [Codd70].

2.1 The RDF Data Model

Initially designed as a data model for metadata, RDF is now generally accepted as the

W3C standard for Semantic Web applications. Using RDF, one can describe the prop-

erties of (Web) resources through simple statements (called triples). This basic syntax

(detailed in Section 2.1.1) is both human-readable and machine-processable. Further-

more, RDF enables exploiting and sharing a mix of structured and semi-structured data.

Its heterogeneous generic nature makes RDF easily adaptable to diverse contexts, no-

tably giving it a key role in publishing and connecting Web data. As such, RDF data

can be expressed in multiple serialization formats, for instance RDF/XML [W3C14c],

Turtle [W3C14e], N-Triples [W3C14a], RDFa [W3C14b], etc.

An ontology language can be used to enhance the description of RDF data. Section 2.1.2

shows how, using the RDF Schema (RDFS) language, one can express useful constraints

on the resources and their properties used in RDF triples. The interpretation of such

constraints highlights a powerful feature of RDF: its ability to express implicit informa-

tion. Finally, the process of inferring implicit information from explicit RDF triples is

detailed in Section 2.1.3.

6

Chapter 2. A Brief Review of RDF Data Management 7

Assertion Triple Relational notation

Class s rdf:type o o(s)
Property s p o p(s, o)

Table 2.1: RDF statements.

2.1.1 RDF Graphs

An RDF graph (or graph, in short) is a set of triples of the form s p o. A triple states that

its subject s has the property p, and the value of that property is the object o. Given

a set U of uniform resource identifiers (URIs), a set L of typed or un-typed literals

(constants), and a set B of blank nodes (unknown URIs or literals), such that U , B and

L are pairwise disjoint, a triple is well-formed whenever its subject belongs to U [B,

its property belongs to U , and its object belongs to U [B [L. In what follows, only

well-formed triples are considered.

Blank nodes are an essential feature of RDF enabling the support of unknown URI/literal

tokens. For instance, one can use a blank node :b1 to state that the country of :b1
is France while the city of the same :b1 is Paris. Many such blank nodes can co-exist

within a graph, e.g., one may also state that the country of :b2 is Romania while the

city of :b2 is Timişoara; at the same time, the population of Timişoara can be said to

be an unspecified value :b3.

Notations. In the following, s, p, o and :b are used in triples (possibly with subscripts)

as placeholders. Literals are shown as strings between quotes, e.g., “string”. Finally,

the set of values – URIs, blank nodes, literals – of an RDF graph G is denoted Val(G).

Table 2.1 shows how to use triples to describe resources, that is, to express class (unary

relation) and property (binary relation) assertions. A resource URI is built of a la-

bel belonging to a namespace. The RDF standard [Recommendation04] provides a set

of built-in classes and properties, as part of the rdf: and rdfs: pre-defined namespaces,

e.g., rdf:type specifies the class(es) to which a resource belongs. All the standard names-

paces and resources used in this thesis are detailed in Abbreviations. The namespaces

for resources used as examples are replaced by the prefix “:” for readability.

A more intuitive representation of an RDF graph can be drawn from its triples where ev-

ery (distinct) subject or object value is represented by a node labeled with this value. For

every triple, there is a directed edge labeled with the property value from the subject

node to the object node. Following the RDF standard [Recommendation04], Defini-

tion 2.1 formalizes this representation of an RDF graph. The notation f|d is used to

denote the restriction of a function f to its sub-domain d.

Definition 2.1 (Graph notation of an RDF graph).

An RDF graph is a labeled directed graph G = hN , E , λi where:

• N is the set of nodes, N 0 denotes the nodes in N having no outgoing edge, and

N>0 = N \N 0;

• E ✓ N>0 ⇥N is the set of directed edges;

• λ : N [E ! U [B [L is a labeling function such that λ|N is injective, with

λ|N 0 : N 0 ! U [B [L and λ|N>0 : N>0 ! U [B, and λ|E : E ! U .

Chapter 2. A Brief Review of RDF Data Management 8

(a) G =

{ :Good Omens :author :Neil Gaiman ,
:Good Omens :author :Terry Pratchett ,
:Good Omens rdf:type :Book ,
:Good Omens :name “Good Omens” ,
:Good Omens :language :b0 ,
:b0 rdf:type :Language }

(b) G = :Good Omens

:Neil Gaiman

:Terry Pratchett

:Book

Good Omens

:b0 :Language

:author

:author

rdf:type

:name
:language

rdf:type

Legend: resource literal blank node property

Figure 2.1: Sample RDF graph. Alternative representations.

Example 2.2 (RDF graph).

Consider an RDF graph comprising information about books and authors. Figure 2.1 (a)

shows the triples, while (b) depicts the dataset using its graph notation. The RDF graph

features a resource :Good Omens whose name is “Good Omens” and whose type is :Book.

It was written by two authors (:author), namely :Neil Gaiman and :Terry Pratchett, in a

language :b0 that is not known in this dataset.

2.1.2 RDF Schema

RDF Schema (RDFS) is a valuable feature of RDF used for enhancing the descrip-

tions in graphs. RDFS triples declare semantic constraints between the classes and the

properties in these graphs, through the use of built-in properties modeling sub-class

(rdfs:subClassOf) and sub-property relationships (rdfs:subPropertyOf), typing the first

attribute (a.k.a. domain) of a property (rdfs:domain) and typing the second attribute

(a.k.a. range) of a property (rdfs:range).

Table 2.2 shows the allowed constraints and how to express them, also relating these

constraints to relational inclusion constraints under the open-world assumption.

Open-world interpretation of RDFS constraints. Traditionally, constraints can

be interpreted in two ways [Abiteboul95]: under the closed-world assumption (CWA)

or under the open-world assumption (OWA). Under CWA, any fact not present in the

database is assumed not to hold. Under this assumption, if the set of database facts

Chapter 2. A Brief Review of RDF Data Management 9

Constraint Triple OWA interpretation

Sub-class s rdfs:subClassOf o s ✓ o

Sub-property s rdfs:subPropertyOf o s ✓ o

Domain typing s rdfs:domain o Πdomain(s) ✓ o

Range typing s rdfs:range o Πrange(s) ✓ o

Table 2.2: RDFS statements.

(a) G0 = G[

{ :Book rdfs:subClassOf :Work ,
:author rdfs:domain :Work ,
:author rdfs:range :Person ,
:author rdfs:subPropertyOf :creator }

(b) G0 = G[

:Book

:author

:Work

:Person

:creator

rdfs:subClassOf

rdfs:domain

rdfs:range

rdfs:subPropertyOf

Figure 2.2: Sample RDF Schema triples. Alternative representations.

does not respect a constraint, then the database is inconsistent. For instance, the CWA

interpretation of a constraint of the form R1 ✓ R2 is: any tuple in the relation R1 must

also be in the relation R2 in the database, otherwise the database is inconsistent. On the

contrary, under OWA, some facts may hold even though they are not in the database.

For instance, the OWA interpretation of the same example is: any tuple t in the relation

R1 is considered as being also in the relation R2 (the inclusion constraint propagates t

to R2).

The RDF data model – and accordingly, the present work – is based on OWA, and this

is how all the constraints in Table 2.2 are interpreted. For instance, if the following two

triples hold in the graph: :author rdfs:domain :Work and :Good Omens :author :Neil Gaiman,

then so does the triple :Good Omens rdf:type :Work. The latter is due to the rdfs:domain

constraint in Table 2.2.

Example 2.3 (Schema for an RDF graph).

Consider next to the graph G from Figure 2.1, the schema depicted in Figure 2.2. This

schema expresses semantic (or ontological) constraints like a :Book is a :Work, the do-

main of :author is :Work, while its range is :Person, that being the author of something

(:author) is one way of creating something (:creator).

2.1.3 Entailment

The above discussion about OWA illustrated an important RDF feature: implicit triples,

considered to be part of the graph even though they are not explicitly present in it. An

example is :Good Omens rdf:type :Work, which is implicit in the graph G0 of Figure 2.2.

Chapter 2. A Brief Review of RDF Data Management 10

The W3C names RDF entailment the mechanism through which, based on the set of

explicit triples and some entailment rules (to be described soon), implicit RDF triples

are derived. We denote by `i
RDF immediate entailment, i.e., the process of deriving new

triples through a single application of an entailment rule. More generally, (full) RDF

entailment can be defined as follows: a triple s p o is entailed by a graph G, denoted

G `RDF s p o, if and only if there is a sequence of applications of immediate entailment

rules that leads from G to s p o (where at each step of the entailment sequence, the triples

previously entailed are also taken into account). Table 2.3 shows multiple examples of

immediate entailment rules directly linked to the RDFS constraints in Table 2.2.

Graph saturation. The immediate entailment rules allow defining the finite saturation

(a.k.a. closure) of an RDF graph G, which is the graph, denoted G1, defined as the fixed-

point obtained by repeatedly applying `i
RDF on G:

• G0 = G

• G↵ = G↵−1 [{s p o | G↵−1 `i
RDF s p o}

The saturation of a graph is unique (up to blank node renaming), and does not contain

any implicit triples (they have all been made explicit by saturation). An obvious con-

nection holds between the triples entailed by a graph G and its saturation: G `RDF s p o

if and only if s p o 2 G1.

RDF entailment is part of the RDF standard itself; in particular, the answers of a query

posed on G must take into account all triples in G1, since the semantics of an RDF graph

is its saturation, that is: any graph G is equivalent to, and models, its saturation G1.

In Sesame [wwwg], Jena [wwwc], OWLIM [wwwf] etc., RDF entailment is supported

through saturation.

Immediate entailment rules. We give here an overview of the different kinds of

immediate entailment rules upon which RDF entailment relies.

A first kind of rule generalizes triples using blank nodes. For instance, if s is an instance

of o, then there exists an instance of o, namely the blank node :b:

s rdf:type o `RDF :b rdf:type o

A second kind of rule derives entailed triples from the semantics of built-in classes and

properties. For example, RDF provides rdfs:Class, whose semantics is the set of all

built-in and user-defined classes. Thus, if a resource is of type o, then o is a class:

s rdf:type o `RDF o rdf:type rdfs:Class

Finally, the third kind of rule derives entailed triples from the constraints modeled in an

RDFS. Some rules derive entailed RDFS statements, through the transitivity of class and

property inclusions, and from inheritance of domain and range typing. Using a tabular

notation, with the entailed (consequence) triple shown at the bottom, some examples

are:

Chapter 2. A Brief Review of RDF Data Management 11

Table 2.3: Entailment rules [Recommendation04].

(a) Schema-level entailment from a single instance-level triple.

Entailment pattern Triple Entailed triple (`i
RDF)

RDFS axioms + rdfs10 s rdf:type o o rdfs:subClassOf o

rdfD2 + rdfs6 s p o p rdfs:subPropertyOf p

(b) Schema-level entailment from a single schema-level triple.

Entailment pattern Triple Entailed triple (`i
RDF)

RDFS axioms + rdfs10 s1 rdfs:subClassOf s2 s1 rdfs:subClassOf s1
RDFS axioms + rdfs10 s1 rdfs:subClassOf s2 s2 rdfs:subClassOf s2
RDFS axioms + rdfs6 p1 rdfs:subPropertyOf p2 p1 rdfs:subPropertyOf p1
RDFS axioms + rdfs6 p1 rdfs:subPropertyOf p2 p2 rdfs:subPropertyOf p2
RDFS axioms + rdfs6 p rdfs:domain s p rdfs:subPropertyOf p

RDFS axioms + rdfs10 p rdfs:domain s s rdfs:subClassOf s

RDFS axioms + rdfs6 p rdfs:domain rdf:Literal p rdfs:subPropertyOf p

RDFS axioms + rdfs6 p rdfs:range s p rdfs:subPropertyOf p

RDFS axioms + rdfs10 p rdfs:range s s rdfs:subClassOf s

RDFS axioms + rdfs6 p rdfs:range rdf:Literal p rdfs:subPropertyOf p

(c) Schema-level entailment from two schema triples.

Entailment pattern Triples Entailed triple (`i
RDF)

rdfs11 s rdfs:subClassOf s1,
s1 rdfs:subClassOf s2

s rdfs:subClassOf s2

rdfs5 p rdfs:subPropertyOf p1,
p1 rdfs:subPropertyOf p2

p rdfs:subPropertyOf p2

ext1 p rdfs:domain s1,
s1 rdfs:subClassOf s

p rdfs:domain s

ext2 p rdfs:range s1,
s1 rdfs:subClassOf s

p rdfs:range s

ext3 p rdfs:subPropertyOf p1,
p1 rdfs:domain s

p rdfs:domain s

ext4 p rdfs:subPropertyOf p1,
p1 rdfs:range s

p rdfs:range s

(d) Instance-level entailment from combining schema and instance triples.

Entailment pattern Triples Entailed triple (`i
RDF)

rdfs9 s1 rdfs:subClassOf s2,
s rdf:type s1

s rdf:type s2

rdfs7 p1 rdfs:subPropertyOf p2,
s p1 o

s p2 o

rdfs2 p rdfs:domain s,
s1 p o1

s1 rdf:type s

rdfs3 p rdfs:range s,
s1 p o1

o1 rdf:type s

Chapter 2. A Brief Review of RDF Data Management 12

s rdfs:subClassOf o1
o1 rdfs:subClassOf o2
s rdfs:subClassOf o2

p1 rdfs:subPropertyOf p2
p2 rdfs:domain o

p1 rdfs:domain o

Some other rules derive entailed RDF statements, through the propagation of values

(URIs, blank nodes, and literals) from sub-classes and sub-properties to their super-

classes and super-properties, and from properties to classes typing their domains and

ranges. Within our running example:

:author rdfs:subPropertyOf :creator

:Good Omens :author :Neil Gaiman

:Good Omens :creator :Neil Gaiman

Restricted rule sets. While these families of rules are part of the W3C specifica-

tion [W3Cb], they are not all of equal interest. For instance, consider the generalization

to blank nodes: it is probably more interesting to know that s rdf:type o than to know

that some unknown :b has the type o. Similarly, the fact that rdfs:Class is an instance

of itself is of limited interest. Other rules, such as those stating that, e.g., :Book is a

subclass of :Work are comparatively much more useful.

Clearly defining the set of entailment rules is absolutely essential, because query an-

swers are defined based on the saturated graph (see Section 2.2). Formally identified

RDF fragments [Arenas09, Goasdoué11, Kaoudi08, Urbani11] each consider only a useful

subset of the existing rules. This thesis is also based on such an approach, considering

only the entailment rules detailed in Table 2.3.

2.2 Querying RDF Graphs

The SPARQL query language is typically used for RDF graph pattern matching with

the purpose of extracting either tabular information about the resources in a graph or

constructing new RDF graphs.

The querying capabilities of the latest SPARQL 1.1 version [W3C13] allow a wide

range of features, like conjunctions and/or disjunctions of required and/or optional

graph patterns, use of aggregation functions, subqueries, negation, etc. Moreover it

permits choosing among different sets of entailment rules through the use of entailment

regimes [W3Ca]. The query semantics considered in this thesis (shown in Table 2.3)

correspond to the RDFS Entailment Regime [W3Ca].

The contributions of this thesis are based on a subset of SPARQL, namely its conjunctive

query fragment introduced in Section 2.2.1. The following Section 2.2.2 introduces

concepts useful for data analysis, presented as types of queries.

2.2.1 BGP Queries

This work considers the well-known subset of SPARQL consisting of (unions of) basic

graph pattern (BGP) queries, also known as SPARQL conjunctive queries.

Chapter 2. A Brief Review of RDF Data Management 13

A BGP is a set of triple patterns, or triples in short. Each triple has a subject, property

and object. Subjects and properties can be URIs, blank nodes or variables; objects can

also be literals.

The focus is set on the boolean BGP queries of the form ASK WHERE {t1, . . . , t↵}, and on

the non-boolean BGP queries of the form SELECT x̄ WHERE {t1, . . . , t↵}, where {t1, . . . , t↵}

is a BGP, i.e., a set of triples modeling their conjunction; the variables x̄ in the head of

the query are called distinguished variables, and are a subset of the variables occurring

in t1, . . . , t↵.

Notations. Without loss of generality, in the following the conjunctive query notation

q(x̄) :- t1, . . . , t↵, where {t1, . . . , t↵} is a BGP, is used for both ASK and SELECT queries

(for boolean queries, x̄ is empty). The head of q denoted head(q) is q(x̄), and the body

of q denoted body(q) is t1, . . . , t↵. Variables in queries are denoted by a question mark

before the variable name, e.g., ?x. Further, VarBl(q) represents the set of variables and

blank nodes occurring in the query q. The set of values (URIs, blank nodes, literals) of

a graph G is denoted Val(G).

BGP query graph. Each triple atom in the body of a BGP query can be seen as

a generalized RDF triple, where, beyond URIs, blank nodes and literals, variables may

appear in any of the subject, predicate and object positions. This leads to a graph

notation for BGP queries, which can be seen as a corresponding generalization of the

RDF graph representation in Definition 2.1. For instance, the body of the query:

q(?x, ?y, ?z) :- ?x :author ?y,

?x ?z :Book

is represented by the graph:

?x

?y

:Book

:author

?z

Query evaluation. Given a query q and an RDF graph G, the evaluation of q against

G is:

q(G) = {x̄µ | µ : VarBl(q) ! Val(G) is a total assignment such that

tµ1 2 G, tµ2 2 G, . . . , tµ↵ 2 G}

where for a given triple (or triple set) t, we denote by tµ the result of replacing every

occurrence of a variable or blank node e 2 VarBl(q) in t, by the value µ(e) 2 Val(G). If

q is boolean, the empty answer set encodes false, while the non-empty answer set made

of the empty tuple ;µ = hi encodes true.

Notice that (normative) query evaluation treats the blank nodes in a query as non-

distinguished variables [Abiteboul11]. That is, one could consider equivalently queries

Chapter 2. A Brief Review of RDF Data Management 14

without blank nodes or queries without non-distinguished variables. Thus, in the sequel,

without loss of generality, we consider queries where all blank nodes have been replaced

by distinct (new) non-distinguished variable symbols.

Query answering. It is important to keep in mind the distinction between query

evaluation and query answering. The evaluation of q against G only uses G’s explicit

triples, thus may lead to an incomplete answer set. The (complete) answer set of q

against G is obtained by the evaluation of q against G1, denoted by q(G1).

Example 2.4 (BGP query answering).

The following query asks for the names of works somehow related to Neil Gaiman:

q(?x) :- ?y :name ?x,

?y rdf:type :Work,

?y ?z :Neil Gaiman

The complete answer set to the query q on the RDF graph G0 from Figure 2.2 is:

q(G01) = { h“Good Omens”i }.

The answer results from G0 `RDF :Good Omens rdf:type :Work and the assignment:

µ = { ?x ! “Good Omens”, ?y ! :Good Omens, ?z ! :author }.

Note that evaluating q against G0 leads to the incomplete (empty) answer set q(G0) = {hi}.

2.2.2 Queries for Data Analysis

Rooted queries. Data analysis typically allows investigating particular sets of facts

according to relevant criteria (a.k.a. dimensions) and measurable or countable attributes

(a.k.a. measures) [Jensen10]. In this thesis, rooted BGP queries play a central role as

they are used to specify the set of facts to analyze, as well as the dimensions and the

measures to be used (Section 7.3).

Definition 2.5 (Rooted query).

Let q be a BGP query, G = hN , E , λi its graph representation and n 2 N a node whose

label is a variable in q. The query q is rooted in n iff G is a connected graph and any

other node n0 2 N is reachable from n following the directed edges in E .
Example 2.6 (Rooted query).

The query q described below, asking for the names of works, their authors and related

language, is a rooted BGP query, with ?x1 as root node.

q(?x2, ?x3, ?x5) :- ?x1 :name ?x2,

?x1 :author ?x3,

?x1 ?x4 ?x5,

?x5 rdf:type :Language

Chapter 2. A Brief Review of RDF Data Management 15

Its graph representation below shows that every node is reachable from the root ?x1.

?x1

?x2

?x3

?x5 :Language

:name

:author

?x4 rdf:type

Join queries. Another useful concept is that of join query, which joins BGP queries

on their distinguished variables and projects out some of these variables. Join queries

will be used when defining data warehouse analyses (Section 7.4).

Definition 2.7 (Join query).

Let q1, . . . , qn be BGP queries whose non-distinguished variables are pairwise disjoint.

We say q(x̄) :- q1(x̄1)^· · ·^qn(x̄n), where x̄ ✓ x̄1[· · ·[x̄n, is a join query q of q1, . . . , qn.

The answer set to q(x̄) is defined to be that of the BGP query qon:

qon(x̄) :- body(q1(x̄1)), · · · , body(qn(x̄n))

In the above, q1, q2, . . . , qn do not share non-distinguished variables (variables not present

in the query head). This assumption is made without loss of generality, as one can easily

rename non-distinguished variables in q1, q2, . . . , qn in order to meet the condition. In

the sequel, it is assumed that such renaming has been applied in join queries.

Example 2.8 (Join query).

Consider the BGP queries q1, asking for the works having a name and their author, and

q2, asking for works and their language:

q1(?x1, ?x3) :- ?x1 :name ?x2,

?x1 :author ?x3

q2(?x1, ?x4) :- ?x1 :language ?x4,

?x4 rdf:type :Language

The join query qon1,2(x1, x3) :- q1(x1, x3) ^ q2(x1, x4) asks for the works and their author,

for those works having a name and a language, i.e.,

qon1,2(x1, x3) :- ?x1 :name ?x2,

?x1 :author ?x3,

?x1 :language ?x4,

?x4 rdf:type :Language

Other join queries can be obtained from q1 and q2 by returning a different subset of the

head variables x1, x2, x3, and/or by changing their order in the query head etc.

Chapter 2. A Brief Review of RDF Data Management 16

2.3 RDF vs. Relational Data Management

The RDF research community has shown considerable interest in capitalizing on (and

benefiting from) the scalable performance of relational data management systems

(RDBMSs, in short). The literature provides several scalable solutions for querying RDF

graphs using RDBMSs or RDBMS-style specialized engines [Abadi07, Neumann10b,

Weiss08], while other works have invested effort into translating large fragments of

SPARQL to SQL [Chebotko09].

RDF graphs turn out to be a special case of incomplete relational databases based on

V-tables [Abiteboul95, Imielinski84], which allow using variables in their tuples. Note

that using a variable multiple times in a V-table allows expressing joins on unknown

values.

An important result on V-table querying is that the standard relational evaluation

(which sees variables in V-tables as constants) computes the exact answer set of any

conjunctive query [Abiteboul95, Imielinski84]. From a practical viewpoint, this provides

a possible way of answering conjunctive queries against V-tables using standard rela-

tional database management systems. We use the same observation to obtain complete

answer sets to BGP queries using RDBMS evaluation, as follows.

Given a graph G, we encode it into the V-table Triple(s, p, o) storing the triples of G as

tuples, in which blank nodes become variables. Then, given a BGP query

q(x̄) :- s1 p1 o1, . . . , sn pn on, in which blank nodes have been equivalently replaced by

fresh non-distinguished variables, the SPARQL evaluation q(G) of q against G is obtained

by the relational evaluation of the conjunctive query Q(x̄) :-
Vn

i=1 Triple(si, pi, oi)

against the Triple table. Indeed, SPARQL and relational evaluations coincide with

the above encoding, as relational evaluation amounts to finding all the total assignments

from the variables of the query to the values (constants and variables) in the Triple

table, so that the query becomes a subset of that Triple table.

It follows that evaluating Q(x̄) :-
Vn

i=1 Triple(si, pi, oi) against the Triple table con-

taining the saturation of G, instead of G itself, computes the answer set of q against G.

In other words, BGP query answering boils down to conjunctive query evaluation on a

saturated database.

Conceptually, the above observation is the reason why the simple RDF query answering

approach taken in previous works such as [Abadi07, Weiss08, Neumann09, Sidirourgos08,

Neumann08] is sound. Completeness, on the other hand, requires query answering to

go beyond basic query evaluation by also returning the implicit answers. The novel

saturation-based query answering algorithm described in Section 4.2 also immediately

follows from the above observation and is complete w.r.t. the discussed fragment se-

mantics. In contrast, the reformulation-based query answering technique introduced in

Section 4.3 requires a quite subtler approach.

Example 2.9 (Answering queries on V-tables).

Provided that the saturation of the graph G0 from Figure 2.2 is encoded into a V-table

Triple(s, p, o) as described above, the answer set of the BGP query from Example 2.4

against G0 is the same as the result of evaluating the relational query Q(x) against the

V-table Triple:

Chapter 2. A Brief Review of RDF Data Management 17

Q(x) :- Triple(y, :name, x) ^

Triple(y, rdf:type, :Work) ^

Triple(y, z, :Neil Gaiman).

2.4 Outlook

The following chapters present the contributions of this thesis, organized into two

main topics.

First, we discuss efficient query answering in RDF databases. Essential to this part are

the notion of schema and entailment presented in Sections 2.1.2 and 2.1.3, the difference

between query evaluation and query answering discussed in Section 2.2.1 and the use of

RDBMSs for storing RDF described in Section 2.3.

In the second part we formalize analytical querying of RDF data warehouses. The RDF

graph definition shown in Section 2.1.1 together with the specialized queries presented

in Section 2.2.2 are key notions necessary for following the formalizations pertaining to

this topic.

Part I

Efficient Query Answering against

Dynamic RDF Databases

18

Chapter 3

RDF Database Management

Overview

This chapter presents the main problems raised by the efficient and expressive manage-

ment of large volumes of Semantic Web (and in particular RDF) data. We present

these problems, the main techniques and algorithms proposed towards addressing them

within the Databases, Semantic Web and Knowledge Management communities, and

finally characterize the techniques implemented within the major existing tools, commer-

cial systems and research prototypes.

The central problem we consider is query answering, that is: given an RDF database

and a query asked against this database, compute the answer to the query against the

database. Going beyond the classical database problem of query evaluation (which focuses

on identifying and ordering a set of operations that compute the results out of the data

explicitly present in the database), query answering also requires reasoning mechanisms

in order to take into account, when computing query answers, not only the explicit data

but also the data implicitly present there. Implicit information in a Semantic Web

(RDF) database is due to the presence of semantic (schema) rules which state that

certain premises (found in the schema and/or in the data) entail certain consequences

(or implicit facts). In order to compute correct query answers, explicit and implicit data

must be taken into account.

Our discussion of query answering models, algorithms and techniques is divided into two

sections.

First, Section 3.1 presents the main languages used to query RDF databases, the most

popular schema languages used in conjunction with RDF databases, and the main query

answering techniques.

Second, Section 3.2 outlines storage, indexing and query processing techniques put for-

ward for the task of RDF query evaluation. We detail the advantages and technical

difficulties raised by each approach, followed by a look into the expressive power sup-

ported by and algorithms implemented within the existing platforms.

19

Chapter 3. RDF Database Management Overview 20

Based on this description, Section 3.3 characterizes the models and languages imple-

mented within a comprehensive set of RDF data management tools, issued from industry

and research.

Finally, in Section 3.4, we examine the open issues related to RDF reasoning and data

management, and conclude.

3.1 Query Answering

Ontologies are used to encode and organize information about specific domains, com-

monly natural and formal scientific fields or business intelligence. Formal ontology lan-

guages are vocabularies for knowledge representation, denoting types and relationships

between the concepts of a domain. Such languages are often based on first-order logic

(FOL) [Russell10] and include some reasoning rules for inference.

Inference can be applied with multiple purposes [Abiteboul11]. It can facilitate data

integration by detecting and resolving inconsistencies between data sources. Or it can

be used to support search or optimize query evaluation.

Deductive database research [Ramakrishnan95] was motivated by a desire to blend logic

programming with relational databases, in order to build systems capable of efficiently

handling large datasets while also enabling powerful reasoning capabilities. As such,

it proposes two main approaches to reasoning. One option is to apply inference in a

data-driven fashion. This strategy is called forward chaining [Russell10] and consists of

the repeated application of modus ponens starting from a set of known facts and a set of

inference rules. The inference process stops once the goal is reached or no new facts are

deduced. The second option is to apply a goal-driven inference. This strategy is known

as backward chaining [Russell10] and starts from a set of hypotheses working backwards

to find the facts that prove them.

Among the efforts focused on devising the query language for RDF [Haase04], SPARQL

was the one to became an W3C standard. Now at version 1.1, SPARQL supports

aggregates, negation etc. Aiming at profiting from the legacy RDBMS optimizations,

some works have looked into translating SPARQL to other query languages, like SQL

[Chebotko09] and Datalog [Polleres07].

In the following, Section 3.1.1 outlines the main RDF and SPARQL fragments previously

considered in RDF data management works. Sections 3.1.2 and 3.1.3 discuss each of the

two established techniques for handling the crucial problem of reasoning for the purpose

of answering queries over semantically rich Web data.

3.1.1 Fragments of RDF/SPARQL

As explained above, FOL is the basis of most ontology languages; however, inference in

FOL is in general undecidable. Therefore, research has focused on isolating semantically

interesting fragments for which inference is feasible.

Chapter 3. RDF Database Management Overview 21

A family of knowledge representation languages known as Description Logic (DL)

[Baader03] provides the foundations of the Web Ontology language (OWL) [W3Ce]

recommended by W3C, and consequently the RDF/RDFS ontology languages. A DL

knowledge base (KB) is a first order theory made of a Tbox (the schema-level) and an

Abox (the instance-level). In such a KB, the notion of logical consequence plays a role

similar to that of entailment in RDF: implicit schema-level and instance-level statements

can be exhibited.

Different from the RDF/RDFS specification, DL KBs rule out the possibility to express

incomplete information through blank nodes. Also, it is not possible to use a class or a

property as a constant in the instance-level of a DL KB (a KB being a first order theory,

the sets of relations and of constants are disjoint).

The query language considered in the DL fragment of RDF is that of (union of) re-

lational conjunctive queries, in which atoms are either of the form ClassName(s) or

PropertyName(s, o), with ClassName a class and PropertyName a property. This cor-

responds to BGP queries whose triples are only of the form s rdf:type ClassName or

s PropertyName o, not allowing the use of variables in place of classes and properties for

expressing unspecified relations.

Significant fragments (dialects) of RDF and SPARQL study RDF query processing focus-

ing on efficient query answering over data subject to expressive semantic constraints. The

tractability of RDF/S and OWL fragments has been discussed in [terHorst05, Pichler08].

Frequently these fragments are correlated with the relational conjunctive SPARQL sub-

set [Adjiman07, Calvanese07, Gottlob11], and its extensions [Arenas09, Goasdoué11,

Kaoudi08, Urbani11].

An important factor in measuring the query answering efficiency is the choice of reason-

ing time. Two main approaches have been established in the literature.

First, one can opt for static reasoning in a forward chaining [Russell10] fashion. Such

reasoning is data driven and applied independent of the query being asked. After es-

tablishing the considered fragment (rule set), the saturation (or closure) of a dataset

is computed offline and used for answering user queries. We detail this technique in

Section 3.1.2.

The alternative approach is to apply reasoning dynamically at query evaluation time.

Inference here is based on the backward chaining [Russell10] and focused on the query

demands. It requires reformulating the query using the chosen fragment constraints,

and then evaluating the reformulated query over the fact base. More details on this

approach are given in Section 3.1.3.

The literature has also considered other approaches that combine forward and backward

chaining, e.g., [Christophides03, Matono05, Stuckenschmidt05, Kaoudi08, Urbani11].

3.1.2 Data Saturation

Data saturation is the static approach to reasoning. It consists of exhaustive forward

inferencing by computing all the implicit triples and explicitly storing them. Each

Chapter 3. RDF Database Management Overview 22

newly inferred triple may participate in the inference of other triples, until a fixed-point

is reached, meaning that no new facts can be inferred. After this, query answering is

reduced to simple query evaluation over this saturated dataset.

The technique is widely used in commercial systems, due to its principal advantages:

• after the database saturation is materialized and stored, query answering can ben-

efit from the standard optimized evaluation of such systems;

• since inference is applied off-line, it does not hinder query evaluation, making it

as efficient as it can be.

The core advantage of saturation is the efficient support it provides to query processing.

However, this efficiency comes at a price paid in terms of:

• the time necessary for computing the saturation;

• the storage space necessary to save the inferred data;

• the effort required to maintain (or recompute) the closure after updates. In par-

ticular, updates to the schema may lead to an important recomputation effort, as

schema triples are likely to participate to many inference chains.

Data saturation is a well studied subject. Correct and complete saturation algorithms

for generic inference rule sets can be found e.g., in textbooks such as [Abiteboul11].

In the particular context of inference for RDF, [Broekstra03a] proves the utility and

feasibility of the exhaustive forward inferencing approach. The work also highlights the

benefits of taking into account the characteristics of the entailment rules and ordering

them for improved efficiency.

Particular interest has been given to diminishing the drawbacks of saturation, in particu-

lar those related to updates. The main problem considered is identifying the triples which

no longer hold in the saturation as a consequence of deleting some of the explicit database

triples. Therefore, incremental saturation algorithms were proposed [Broekstra03a,

wwwf, Bishop11, Urbani12, Urbani13]. Such algorithms seek to maintain the satura-

tion when the explicit schema and data triples change, as opposed to recomputing it

from scratch.

The technique proposed in [Broekstra03a] relies on the storage and management of jus-

tifications (reasons of entailment) for implicit triples. While efficient on graphs with few

entailed triples, this truth maintenance technique was not tailored for handling updates

on large datasets. Handling these entailed triple justifications becomes a bottleneck as

the augmented data size makes their number grow. Consequently, the work aptly points

out the efficiency issues raised by saturation when there are deletions in the underlying

database. To maximize efficiency, [Bishop11] proposes to compute only the relevant

justifications for the entailed triples affected by an update, at maintenance time. From

the expressive power viewpoint, this work focuses on the DL fragment of RDF. While

efficient for instance-level updates, the authors mention that schema updates still pose

a problem w.r.t. maintenance time.

Chapter 3. RDF Database Management Overview 23

The works above focus on propagating the effects of deleted explicit database triples. A

distinct problem is considered in [Gutierrez11] which tackles the problem of updating an

RDF graph so that a given triple is guaranteed no longer to hold in the updated graph;

the authors provide a deterministic and feasible algorithm for the task.

Parallelization has also been proposed as an optimization strategy for saturation algo-

rithms [Weaver09, Urbani10, Urbani12, Urbani13]. In [Weaver09] the authors propose a

parallel approach to RDFS entailment implemented using the well-known Message Pass-

ing Interface. The work underlines the high potential for parallelization of the RDFS

rules of [w3cf] given a proper ordering of the rules. The work [Urbani10] expands the on-

tology expressive power with the OWL Horst rules [terHorst05]. MapReduce is exploited

in [Urbani12] to compute the saturation of a graph stored in a distributed file system.

The work in [Urbani13] treats the problem of maintaining the materialized data closure

upon addition and removal of data. It employs parallelism for optimizing data addition

and derivation counts for data deletions. Instead of using a Hadoop distributed archi-

tecture such as [Urbani12], [Urbani13] makes use of the parallelism offered by multi-core

hardware. In [Weaver09, Urbani12] and [Urbani13] the data is split between processes,

while every process can use the full schema for reasoning in parallel.

In [Stuckenschmidt05] the authors propose an RDF fragment requiring the materializa-

tion of only a small part of the closure, and the use of query rewritings to infer all the

implicit triples at run-time.

3.1.3 Query Reformulation

When certain restrictions or preferences prevent us from changing the data, the alter-

native approach to reasoning is to change the query in a backward chaining fashion.

This implies transforming the query based on the schema constraints into a reformu-

lated query, which returns the correct answers when evaluated over the explicit RDF

graph.

Query reformulation has the benefit of being intrinsically robust w.r.t. data updates,

since it is done at query run time. Also, even in the case of large ontologies, the

reformulation process is typically swift, since it applies the entailment rules directly to

the query. Therefore, in general, the reformulation process can be executed in memory.

The main drawback of reformulation lies in the fact that reformulated queries tend to

be syntactically intricate. This typically increases significantly the evaluation cost.

Despite the many query reformulation algorithms proposed in the literature [Adjiman07,

Arenas09, Calvanese07, Goasdoué11, Gottlob11, Kaoudi08, Urbani11], large volumes of

data still pose significant difficulties for the efficient evaluation of reformulated queries,

due to the query size and complexity. For example, depending on the used schema, even

queries that start by having a moderate-size, can be reformulated into large unions of

hundreds (even thousands) of queries. The evaluation of such unions is challenging even

for the highly efficient off-the-shelf RDBMSs.

Reformulation-based query answering has been investigated in RDF fragments ranging

from the Description Logic (DL) [Baader03] one [Adjiman07, Calvanese07, Gottlob11],

Chapter 3. RDF Database Management Overview 24

i.e., modeling simple DL knowledge bases, to a slight extension thereof allowing values

to be used both as constants and classes/properties [Arenas09, Goasdoué11, Kaoudi08,

Urbani11]. The fragments in the works mentioned above pose restrictions on triples (no

blank nodes) and on entailment (only the RDFS entailment rules are considered).

Reformulation-based query answering in the DL fragment of RDF has been investigated

for relational conjunctive queries [Adjiman07, Calvanese07, Gottlob11], while the slight

extension thereof considered in [Arenas09, Goasdoué11, Kaoudi08, Urbani11] has been

investigated for one-triple BGP queries [Kaoudi08, Urbani11], BGP queries [Goasdoué11],

and SPARQL queries [Arenas09]. Because relational conjunctive queries are rule out the

possibility of having variables in place of classes or properties, they are less expressive

than BGP queries which allows this option.

In [Kaoudi08, Urbani11], one-triple BGP queries are reformulated using a standard

backward-chaining algorithm [Russell10] on first order encodings of the entailment rules

dedicated to RDFS.

In [Arenas09], SPARQL queries are reformulated into nested SPARQL, i.e., an extension

of SPARQL in which properties in triples can be nested regular expressions. While such

nested reformulated queries are more compact, the queries we produce are more practical,

since their evaluation can be directly delegated to any off-the-shelf RDBMS, or to an

RDF engine such as RDF-3X [Neumann10b] even if it is unaware of reasoning.

Among the well-established RDF data management systems, only Virtuoso [wwwh]

(supporting only the rdfs:subClassOf and rdfs:subPropertyOf RDFS rules) and Allegro-

Graph [wwwa] (allowing more RDFS rules, but providing incomplete reasoning in some

cases) support reasoning at query time.

Datalog has also been considered as a reformulation language, e.g., [Rosati10, Giacomo12]

reformulate queries in a DL-Lite setting into non-recursive Datalog programs.

3.2 Storage and Indexing

An RDF dataset can be seen either as a set of triples (leading to a tabular notation) or

as a labeled directed graph. Consequently, the research done in data storage has focused

on efficiently representing one of these two structures.

Aiming to benefit from scalable commercial system performance, RDF data storage is

often delegated to relational back ends like Jena [wwwc, Wilkinson03], OWLIM [wwwf,

Bishop11], Sesame [wwwg, Broekstra02], Virtuoso [wwwh, Erling12], Oracle’s Seman-

tic Graphs [ora, Chong05] etc., or to graph databases, e.g., AllegroGraph [wwwa],

Neo4J [wwwd]. New specialized engines based on relational algebra, and dedicated

to RDF data storage also provide scalable solutions for querying RDF graphs [Abadi07,

Neumann10b, Weiss08].

Given that a triple set can be seen as a three-attribute relation, many works investigated

relational approaches to storing them. The aim of such works is to benefit from the

reliability and performance of mature RDBMS technology, developed extensively over

the last decades.

Chapter 3. RDF Database Management Overview 25

Triple tables. One option is storing RDF in a three-attribute relation, one for each part

of the triple. This approach was adopted by Sesame [Broekstra02], Hexastore [Weiss08]

and RDF-3x [Neumann08]. Such tabular storage requires computing many self joins

in order to evaluate graph pattern queries. Therefore, diverse indexing and compres-

sion schemes [Neumann09, Neumann11] have been proposed to optimize the space-

time performance. Notably RDF-3x [Neumann08] proposed dictionary encoding the

strings denoting URIs and literals using integer keys. Header-Dictionary-Triples (HDT)

[Fernández13] is a dictionary encoding submitted to the W3C enabling high compression

of the stored RDF data. Effort was also invested into optimizing query evaluation by de-

vising appropriate ways to store and index RDF graphs, e.g., [Neumann08, Neumann09,

Neumann10b, Udrea07, Weiss08].

Property tables. The study [Duan11a] of frequently used RDF datasets shows that

usually the number of distinct properties in a dataset is a few orders of magnitude

smaller than the number of subjects and objects. Given this sparsity of properties

w.r.t. the other two triple components, another relational approach is to group the data

by property. As such, triples are stored into property tables, which are relations of

two or more columns. The first column is dedicated to triple subject values, while

the other columns in a tuple store the object values of triples with that subject and

the property for which the table was built. Property tables were first considered in

Jena [wwwc, Wilkinson03]. Due to the heterogeneous nature of RDF, this type of storage

frequently results in sparse tables, i.e., some subjects may be connected by the same

property to a variable number of objects. Clustering and partitioning were proposed for

improving this storage [Levandoski09]. An alternative property table implementation is

to create a two column table for storing the triple subject and object, for each property

of the graph [Abadi07, Sidirourgos08].

The alternative to relational storage is to interpret the sets of triples as graphs.

Key-Value stores. RDF datasets can also be seen as directed graphs (recall Sec-

tion 2.1.1). With this representation in mind, RDF data can be stored in graph data

management systems. Such systems are typically Key-Value stores, relating each node

(key) to the adjacent ones (values), e.g., gStore [Zou11], Neo4J [wwwd].

RDF cubes. Other works [Matono06, Atre10, Virgilio12] propose storing dictionary

encoded triples as points in a 3D space, called RDF cubes.

Distributed and cloud-based RDF stores. To handle large datasets, the literature

has proposed to take advantage of several distributed storage schemes, like those rely-

ing on DHTs [Kaoudi08], MapReduce [Urbani09, Urbani11, Huang11] or older parallel

frameworks, e.g., C/MPI [Weaver09]. More recently, many systems have been devised

with the goal of handling very large volumes of RDF data in a cloud environment; a

recent survey dedicated to such systems is [Kaoudi14].

RDF query optimization and statistics. In order to make the evaluation of RDF

queries more efficient, RDF statistics have been introduced for instance in [Maduko07,

Maduko08, Neumann11]. Beyond the usage of indexing, cost-based RDF query op-

timization is studied in [Neumann09], while an heuristic-based approach is described

in [Tsialiamanis12].

Chapter 3. RDF Database Management Overview 26

Materialized views for RDF. Materialized views are a well-known and very effec-

tive technique for improving the performance of query evaluation. Accordingly, pro-

posals for automatically recommending RDF materialized views have been proposed

e.g., in [Dritsou11, Goasdoué11].

3.3 Systems

Below, we outline the main features of query answering in the best-known RDF storage

and management platforms.

AllegroGraph [wwwa] AllegroGraph’s RDFS++ performs run-time reasoning, some-

times incomplete, based on backward chaining. It supports all the RDFS pred-

icates and some of OWL’s. It is not complete, but it has predictable and fast

performance.

Jena [wwwc] relies on saturation-based query answering.

Oracle Spatial and Graph [ora] The RDF Semantic Graph features of [ora] pro-

vide persistent inferencing based on forward-chaining, that supports RDFS [w3cf],

OWL 2 [W3Ce], SKOS [W3Cc], and user-defined rules. While the system does not

currently support query rewriting, the topic has been considered in [Wu12].

OWLIM [wwwf] Focusing on a DL fragment of RDF, it implements a forward-chaining

approach for materializing all implicit information before query processing/ It then

employs both inferencing techniques to compute only the relevant justifications

w.r.t. an update, at maintenance time [Bishop11].

RDF data management prototypes such as Hexastore [Weiss08] or RDF-3X

[Neumann08, Neumann09] assume the data is already saturated, and thus focus

exclusively on query evaluation and transactions [Neumann10b]. In the latter case,

the interplay between updates and semantics is not considered.

Sesame implements the justification technique [Broekstra03a] to handle entailed RDF

triples.

Virtuoso [wwwh, Erling09, Erling12] Virtuoso’s SPARQL compiler uses a backward

chaining implementation for inferring triples that are not physically stored, mean-

ing queries return the complete answer set without having all the implied triples

materialized. Its reasoning supports some of the RDFS and OWL predicates.

Virtuoso also provides explicit means to saturate the database.

WebPie [Urbani12] uses MapReduce to compute the saturation of an RDF graph.

3.4 Summary

While data saturation can be considered a mature field of research, the state of the art at

the beginning of this work in 2011 showed a need for efficient incremental maintenance

Chapter 3. RDF Database Management Overview 27

algorithms. Such algorithms, are required so that saturation-based query answering

remains a reasonable option in the setting of updates, notably in the case of schema

updates. The work of [Broekstra03a] has shown that handling justifications for the

entailed triples becomes cumbersome as the data size increases. Next [Bishop11] com-

bines forward and backward chaining to compute only the necessary entailment justifi-

cations at maintenance time, but points out that schema updates are still problematic.

In [Gutierrez11] the authors prove the feasibility of their saturation maintenance algo-

rithms, but consider the orthogonal problem of finding which triples to delete so that

entailed triples no longer hold.

Query reformulation on the other hand still presents a lot of paths worth investigat-

ing. The works exploring query answering through reformulation for the DL frag-

ment and its extensions [Adjiman07, Calvanese07, Gottlob11, Arenas09, Goasdoué11,

Kaoudi08, Urbani11] do not consider the use of blank nodes for modeling incomplete or

existential information. Furthermore, the relational conjunctive queries in [Adjiman07,

Calvanese07, Gottlob11] disallow the use of variables instead of classes or properties.

Keeping in mind the advantages of evaluating queries in the highly optimized exist-

ing RDBMSs, the query language considered by [Arenas09] is too general to be easily

translated and plugged on top of a standard RDBMS or a specialized RDF engine,

e.g., RDF-3X [Neumann10b].

Finally, the works mentioned above are focused on either improving the static, or the

dynamic (run-time) approach to reasoning. Therefore, the literature shows a crucial

need for a practical comparison of the two techniques in a common setting, considering

both query answering and data updates.

In the following chapters we address these open problems.

Chapter 4

Query Answering in

RDF Databases

A promising method for efficiently querying RDF data consists of translating SPARQL

queries into efficient RDBMS-style operations. However, answering SPARQL queries

requires handling RDF reasoning, which must be implemented outside the relational en-

gines.

In Section 4.1, we introduce the database (DB) fragment of RDF, going beyond the

expressive power of previously studied RDF fragments.

We devise novel sound and complete techniques for answering BGP queries within the

DB fragment of RDF. These techniques are designed to be deployed on top of any

RDBMS engine and explore the two established approaches for handling RDF semantics,

namely data saturation (Section 4.2) and query reformulation (Section 4.3).

In particular, we focus on handling database updates within each approach, which raise

specific difficulties due to the rich RDF semantics. Consequently, we propose a method

for incrementally maintaining the database saturation.

This work has led to several publications, an article [Goasdoué12c] in the French con-

ference Reconnaissance des Formes et l’Intelligence Artificielle (RFIA 2012), a poster

[Goasdoué12b] in the Proceedings of the 21st World Wide Web Conference (WWW

2012) and the INRIA research report RR-8018 [Goasdoué12a]. The main results of this

work have been published in the Proceedings of the 16th International Conference on

Extending Database Technology (EDBT 2013) [Goasdoué13].

4.1 The Database Fragment of RDF

We define a restriction of RDF, dubbed the database (DB) fragment, aiming simulta-

neously at an expressive fragment, and at one for which saturation- and reformulation-

based query answering can be efficiently implemented on top of any conjunctive query

evaluation engine, be it an RDBMS or a reasoning-agnostic RDF engine. This DB

fragment is obtained by:

28

Chapter 4. Query Answering in RDF Databases 29

• restricting RDF entailment to the rules dedicated to RDF Schema only (a.k.a. RDFS

entailment). These rules are shown in Table 2.3;

• not restricting graphs in any way. In other words, any triple allowed by the RDF

specification is also allowed in the DB fragment.

The goal in identifying this fragment is to clearly separate an instance level made of

assertions (or facts, or “data”) and a schema level comprising the semantics (or con-

straints, or “schema”). This separation is the cornerstone of translating efficient data

management techniques to the realm of RDF [Gottlob11], while remaining faithful as

much as possible to the RDF specification. Making this separation in a well-principled

manner is a delicate task, due to the way facts, classes, constraints, and type statements

are all modeled at the same level in RDF (Section 2.1).

An RDF graph belonging to this DB fragment will hence forth be referred to as a

database. A database db is a pair hS, Di, where S and D are two disjoint sets of triples.

S triples can only be RDFS statements such as those shown in Table 2.2. We call these

triples the schema-level of db. The other triples, of the forms listed in Table 2.1, where

p is different from the four RDFS-specific properties above, belong to D, and are called

the instance-level of db. Observe that S and D provide a way to partition any RDF graph

(any triple t 2 db belongs to exactly one of them, a.k.a. (t 2 S^ t 62 D) _ (t 62 S^ t 2 D)).

The DB fragment is delimited from the general RDF model by restricting the immediate

entailment rules to only those listed in Table 2.3. The saturation of a database db with

this aforementioned entailment rule set is denoted db/, thus db/ ✓ db1.

Example 4.1 (RDF database – running example).

The RDF database db = hS, Di, whose triples are shown below, is used as a running

example throughout this chapter.

The instance of this database describes the resource :doi1 that belongs to an unknown

class, whose title is “RDF Analytics: Lenses over Semantic Graphs”, whose author is

“Alexandra Roatis” and having an unknown contact author. This paper is in the pro-

ceedings of an unknown resource whose name is “WWW014”. Lastly, the URI :edbt2013

is a conference and :name, the property associating names to resources, was created by

“John Doe”.

D =

{ :doi1 rdf:type :b0 ,
:doi1 :title “RDF Analytics: Lenses over Semantic Graphs” ,
:doi1 :author “Alexandra Roatis” ,
:doi1 :contactAuthor :b1 ,
:doi1 :inProceedingsOf :b2 ,
:name :createdBy “John Doe” ,
:edbt2013 rdf:type :Conference ,
:b2 :name “WWW014” }

Next to this instance comes a schema stating that poster papers together with the un-

known class :b0 of which :doi1 is an instance, are sub-classes of conference papers,

which are scientific papers. Moreover, titles, authors, and contact authors (themselves

Chapter 4. Query Answering in RDF Databases 30

a particular case of authors) are used to describe papers, which are connected to the

conferences in whose proceedings they appear. Finally, names describe conferences, and

creators describe resources.

S =

{ :PosterConferencePaper rdfs:subClassOf :ConferencePaper ,
:b0 rdfs:subClassOf :ConferencePaper ,
:ConferencePaper rdfs:subClassOf :Paper ,
:title rdfs:domain :Paper ,
:title rdfs:range rdf:Literal ,
:author rdfs:domain :Paper ,
:author rdfs:range rdf:Literal ,
:contactAuthor rdfs:subPropertyOf :author ,
:inProceedingsOf rdfs:domain :ConferencePaper ,
:inProceedingsOf rdfs:range :Conference ,
:name rdfs:domain :Conference ,
:name rdfs:range rdf:Literal ,
:createdBy rdfs:range rdf:Literal }

Figure 4.1 depicts graphically the database db.

4.1.1 Query Evaluation on the DB Fragment

The evaluation of a BGP query q against a database db is exactly the evaluation of q

against the graph db, i.e., q(db), and the answer set of q against db is q(db/), thus

q(db/) ✓ q(db1).

User queries may traverse both the schema- and instance-level of the database. In our

running example, one can ask for the ranges of properties describing conference papers:

ClassRelatedToConfPaper(?t) :- ?x rdf:type :ConferencePaper, ?x ?y ?z, ?y rdfs:range ?t

However, the separation between schema and data, corresponds to many users’ intuitive

comprehension of the database. In some settings, users may want to specify that their

queries be evaluated only against the instance-level or only against the schema-level

database.

From a database perspective, queries whose evaluation is asked against the (saturated)

instance-level database only are the most familiar. While schema triples are not returned

by such queries, they do impact their answer, because the saturation of the instance-

level database (necessary in order to return complete answers) relies on the schema-level

triples. For instance, an instance-level query returning the city of EDBT 2013 is:

EDBTCity(?y) :- ?x :name “EDBT013”, ?x :city ?y

Instance-level queries can also return classes and properties associated to specific values.

For instance, one can ask for the classes to which a given resource :res belongs:

ClassFinding(?x) :- :res rdf:type ?x

Chapter 4. Query Answering in RDF Databases 31

From a knowledge representation perspective, a class of interesting queries can be eval-

uated over the schema-level database alone. Such queries offer a convenient means to

explore the relationships between the classes and properties of a schema, including the

implied relationships. For instance, one can ask whether a given class is a sub-class of

another:

SubClassChecking() :- :PosterConferencePaper rdfs:subClassOf :Paper

or, what are the classes typing the domain of a given property:

DomainFinding(?x) :- :inProceedingsOf rdfs:domain ?x

Another example of an exploration query is:

AllTriples(?x, ?y, ?z) :- ?x ?y ?z

returning all the triples of the database. By restricting the query to only the schema-

level database, the user retrieves all direct or entailed relationships among classes and

properties.

Instance D

Schema S

:doi1

:b0

“RDF Analytics: Lenses over Semantic Graphs”

“Alexandra Roatis”

:b1

:b2 “WWW014”

:name “John Doe”

:edbt2013 :Conference

rdf:type

:title

:author

:contactAuthor

:inProceedingsOf
:name

:createdBy

rdf:type

:PosterConferencePaper:b0

:ConferencePaper:inProceedingsOf

:Paper

:title

:authorrdf:Literal

:contactAuthor

:Conference

:name

:createdBy

rdfs:subClassOfrdfs:subClassOf

rdfs:subClassOfrdfs:domainrdfs:range

rdfs:domainrdfs:range

rdfs:subPropertyOf

rdfs:domain

rdfs:range
rdfs:domain

rdfs:range

rdfs:range

Figure 4.1: Running example: RDF database – graph representation.

Chapter 4. Query Answering in RDF Databases 32

The above discussion shows that our setting is general enough to integrate both database-

style instance-level querying and knowledge representation-style schema-level querying,

while also allowing a smooth integration of both levels through queries on both database

components.

In this chapter, given the overwhelming practical impact of querying only the instance-

level (implicit and explicit) data, the focus is set on efficient query answering algorithms

for this problem.

4.1.2 Query Answering on the DB Fragment

This thesis investigates two query answering techniques against RDF databases, namely

saturation- and reformulation-based. Each technique performs a specific pre-processing

step, either on the database or on the queries, to deal with entailed triples, after which

query answering is reduced to query evaluation.

Saturation-based query answering is rather straightforward. The saturation of the

database is computed using the allowed entailment rules. Then, the answer set of ev-

ery query against the (original) database is obtained by query evaluation against the

saturation. The advantage of this approach is that it is easy to implement. Notably,

query evaluation can be delegated to a standard RDBMS as illustrated in Section 2.3.

Its disadvantages are that database saturation needs time to be computed and space to

store all the entailed triples. Moreover, the saturation must be somehow recomputed

upon every database update.

Reformulation-based query answering reformulates a query q w.r.t. a database db into

another query q0 (using the immediate entailment rules), so that the evaluation of q0

against the (original) database db, denoted q0(db), is exactly the answer set of q against

db (i.e., q(db/)). The advantage of reformulation is that the database saturation does

not need to be (re)computed. The disadvantage is that every incoming query must be

reformulated, which often results in a more complex query.

The following sections focus on saturation- and reformulation-based query answering

only for instance-level queries. Theorem 4.2 shows that to answer such queries, among

the DB fragment’s rules shown in Table 2.3, it suffices to consider only the entailment

rules in Table 2.3(d).

Theorem 4.2. Let db be a database, t1 be a triple of the form s rdf:type o, and t2 be a

triple of the form s p o. t1 2 db/ (respectively, t2 2 db/) iff there exists a sequence of

application of the rules in Table 2.3(d) leading from db to t1 (respectively t2), assuming

that each entailment step relies on db and all triples previously entailed.

Appendix A.1 reports the proof for Theorem 4.2.

4.2 The Saturation-based Approach

The first and simplest query answering technique resembles those previously discussed in

the literature [Abadi07, Weiss08, Neumann09, Sidirourgos08, Neumann08]: computing

Chapter 4. Query Answering in RDF Databases 33

{c1 rdfs:subClassOf c2, s rdf:type c1} ✓ db

db = db [{s rdf:type c2}
(4.1)

{p rdfs:domain c, s p o} ✓ db

db = db [{s rdf:type c}
(4.2)

{p rdfs:range c, s p o} ✓ db

db = db [{o rdf:type c}
(4.3)

{p1 rdfs:subPropertyOf p2, s p1 o} ✓ db

db = db [{s p2 o}
(4.4)

Figure 4.2: Saturation rules for an RDF database db.

the instance-level saturation of a given database, then evaluating the original query

against it (Section 4.2.1). This thesis’ main contribution in the area of saturation-based

query answering is showing how to efficiently handle database changes at the instance-

or schema-level. Section 4.2.2 provides a novel incremental algorithm for saturation

maintenance, while Section 4.2.3 formally establishes the correctness of our saturation-

based query answering technique.

4.2.1 Database Saturation

The Saturate algorithm relies on the saturation rules in Figure 4.2, which are a direct

implementation of the entailment rules in Table 2.3(d). In Figure 4.2 and in the sequel,

the bold symbols (possibly with subscripts) c for a class, and p for a property, denote

some unspecified values.

The rules in Figure 4.2 define a set of database transformations of the form input
output , where

the input consists of a database satisfying a boolean condition and the output is a new

database for which the entailed triple was made explicit. Intuitively, given a database db,

Saturate(db) applies exhaustively the rules in Figure 4.2, on db plus all the gradually

generated triples.

The output of Saturate(db) is defined as the fixed-point Saturate1(db), where:

Saturate0(db) = db

Saturatek+1(db) = Saturatek(db) [{ t3 | 9 i 2 [4.1, 4.4] s.t.

applying rule (i) on some {t1, t2} ✓ Saturatek(db)

produces t3, where t2 62 Saturatek−1(db) when defined }

Example 4.3 (Saturation of a database).

The saturation of the db described in Figure 4.1 is shown below.

Chapter 4. Query Answering in RDF Databases 34

Saturate0(db) = db

Saturate1(db) = Saturate0(db) [
{ :doi1 rdf:type :ConferencePaper ,
:doi1 rdf:type :Paper ,
:doi1 :author :b1 ,
:b2 rdf:type :Conference }

Saturate2(db) = Saturate1(db)

Theorem 4.4 shows that the Saturate algorithm terminates. It also provides upper

bounds for the size of the output saturation and its computation time.

Theorem 4.4. Given a database db, the size (number of triples) of the output of

Saturate(db) is in O(#db2) and the time to compute it is in O(#db3), with #db the

size (number of triples) of db.

Appendix A.2 reports the proof for Theorem 4.4.

Our experiments (Table 5.1 in Chapter 5) show that in practical cases, Saturate(db) has

a more moderate size, but it can still be significantly larger than db; moreover, in prac-

tical databases, the theoretical time complexity is far from being reached (Figure 5.2).

4.2.2 Saturation Maintenance upon Updates

Saturation-based query answering is efficient at query time, since one only has to evaluate

the original query. However, the saturation must be somehow recomputed to reflect the

impact of updates.

This section studies the problem of efficiently maintaining the database saturation upon

two kinds of updates: triple insertion and deletion. Taking inspiration from the rich

literature on incremental view maintenance in databases [Gupta99], the aim is to devise

incremental algorithms, which do not re-compute the saturation, but just modify it to

reflect the update.

An important issue is to keep track of the multiple ways in which a triple was entailed

(i.e., derived). This is significant when considering both implicit data and updates: for a

given update, we must decide whether this adds/removes one reason why a triple belongs

to the saturation. When this count reaches 0, the implied triple should be removed. A

naive implementation would record the inference paths of each implied triple, that is: all

sequences of reasoning rules that have lead to that triple being present in the saturation.

However, as shown in [Broekstra03b], the volume of such justification grows very fast

and thus the approach does not scale. Instead, we chose to keep track of the number of

reasons why a triple has been inferred, and provide maintenance algorithms which rely

only on this (much more compact) information.

We extend the previous notion of database saturation, so that it becomes a multiset in

which a triple appears as many times as it can be entailed. Formally, given a database

db, the saturation is now defined as the fixed-point Saturate1+ (db) obtained from the

following Saturate+ algorithm, where] is the union operator for multisets.

Chapter 4. Query Answering in RDF Databases 35

Saturate0+(db) = db

Saturatek+1
+ (db) = Saturatek+(db)

U
{t3 | 9 i 2 [4.1, 4.4] such that

applying rule (i) on some {t1, t2} ✓ Saturatek+(db)

produces t3 with t2 62 Saturate
j<k
+ (db) when defined}

Proposition 4.5 expresses the obvious relationship between the set-based saturation and

the multiset-based saturation of a database; set(·) returns the set of (distinct) elements

occurring in a given multiset.

Proposition 4.5. For any RDF database db

Saturate(db) = set(Saturate+(db)) holds.

Appendix A.3 reports the proof for Proposition 4.5.

Example 4.6 (Multiset saturation of a database).

Consider again the previously introduced database db described in Figure 4.1.

Its multiset-based saturation is shown below.

Saturate0+(db) = db

Saturate1+(db) = Saturate0+(db)]
{ :doi1 rdf:type :ConferencePaper ,
:doi1 rdf:type :Paper ,
:doi1 rdf:type :Paper ,
:doi1 :author :b1 ,
:doi1 rdf:type :ConferencePaper ,
:b2 rdf:type :Conference ,
:b2 rdf:type :Conference }

Saturate2+(db) = Saturate1+(db)]
{ :doi1 rdf:type :Paper ,
:doi1 rdf:type :Paper ,
:doi1 rdf:type :Paper }

Saturate3+(db) = Saturate2+(db)

With the multiset-based saturation and Proposition 4.5 in place, Theorem 4.7 shows

how saturation can be incrementally maintained upon update;] is again multiset union,

while \+ is multiset difference.

Theorem 4.7. Let db = hS, Di be a database.

Insertion: Saturate+(db [{t}) =

• Saturate+(db) if t 2 db. Otherwise, t 62 db and:

Chapter 4. Query Answering in RDF Databases 36

• Saturate+(db)] [Saturate+(hS, {t}i) \+ S] if t is an instance-level triple;

• Saturate+(db)] {t}]
U

t02D0 [Saturate+(hS, {t
0}i) \+ S], where the multiset D0 is

{t3 | 9 i 2 [4.1, 4.4] such that applying rule (i) on {t, t2} with t2 2 Saturate+(db)

yields t3}, if t is a schema-level triple.

Deletion: Saturate+(db \ {t}) =

• Saturate+(db) if t 62 db. Otherwise, t 2 db and:

• Saturate+(db) \+ [Saturate+(hS, {t}i) \+ S] if t is an instance-level triple;

• Saturate+(db)\+{t} \+
U

t02D0 [Saturate+(hS, {t
0}i)\+S] where the multiset D0 is

{t3 | 9 i 2 [4.1, 4.4] such that applying rule (i) on {t, t2} with t2 2 Saturate+(db)

yields t3}, if t is a schema-level triple.

Appendix A.4 reports the proof for Theorem 4.7.

Theorem 4.7 reads as follows. Inserting a triple already in the database, or deleting

a triple that is not in the database, does not require any work. Otherwise, inserting

(deleting) a given instance or schema triple also adds to (removes from) the current

saturation all instance-level triples whose derivation uses this given triple.

Optimized implementation. From a practical viewpoint, the multiset Saturate+(db)

can be compactly stored (Example 4.8) as the set Saturate(db), for which every triple

is tagged with:

(i) a boolean indicating whether it belongs to db (T) or is only entailed by db (F), and

(ii) an integer indicating how many times it appears in Saturate+(db).

The above provides a single lightweight representation for db, Saturate(db), and

Saturate+(db).

Example 4.8 (Compact storage of the multiset saturation of a database).

Given Saturate+(db) illustrated in Example 4.6, its compact representation is:

Saturate+(db) = S] { (:doi1 rdf:type :b0 , true , 1) ,
(:doi1 :title “RDF Analytics: . . .” , true , 1) ,
(:doi1 :author “Alexandra Roatis” , true , 1) ,
(:doi1 :contactAuthor :b1 , true , 1) ,
(:doi1 :inProceedingsOf :b2 , true , 1) ,
(:name :createdBy “John Doe” , true , 1) ,
(:edbt2013 rdf:type :Conference , true , 1) ,
(:b2 :name “WWW014” , true , 1) ,
(:doi1 rdf:type :ConferencePaper , false , 2) ,
(:doi1 rdf:type :Paper , false , 5) ,
(:doi1 :author :b1 , false , 1) ,
(:b2 rdf:type :Conference , false , 2) }

Chapter 4. Query Answering in RDF Databases 37

The example below shows the saturation maintenance process for an instance insertion

and a schema deletion:

(i) First we illustrate maintaining the saturation upon the insertion of a triple t =

:doi2 :inProceedingsOf :edbt2013. The triple is saturated using the schema S,

resulting in a set of entailed triples represented as Saturate+(hS, {t}i) \+ S in

Theorem 4.7. This set contains three new triples, one of which already exists ex-

plicitly in the saturation. The updates made on db are shown below, where the first

triple is updated and the other three are inserted:

Saturate+(db) = { . . . , (:edbt2013 rdf:type :Conference , true , 2) ,
. . . , (:doi2 :inProceedingsOf :edbt2013 , true , 1) ,

(:doi2 rdf:type :ConferencePaper , false , 1) ,
(:doi2 rdf:type :Paper , false , 1) }

(ii) Deleting the schema triple t = :contactAuthor rdfs:subPropertyOf :author causes its

removal from Saturate+(db), together with all the instance triples entailed by it

and the database instance:

D0 = { :doi1 :author :b1 },

and the instance triples entailed by D0 and the schema:
U

t02D0 [Saturate+(hS, {t
0}i) \+ S] = { :doi1 rdf:type :Paper }.

Notice that only one instance of :doi1 rdf:type :Paper is removed (the count is

decreased to 4), as it still is entailed by other facts.

Handling cyclic hierarchies. The RDF Schema specification [w3cf] allows cyclic

sub-class and sub-property hierarchies. Such relations can be used to model equivalent

classes or properties. For example, given two classes c1 and c2, declaring the triples

c1 rdfs:subClassOf c2 and c2 rdfs:subClassOf c1 amounts to asserting that the two classes

are equivalent, i.e., all instances of c1 are also instances of c2 and all instances of c2 are

also instances of c1.

From an implementation view-point, such cycles may create issues when computing the

saturation. Due to the set semantics of the Saturate algorithm new inferred triples

are considered for subsequent iterations only if they are not already present in the

saturation. On the other hand when moving from sets to multisets as in the case of the

Saturate+ algorithm, such cyclic hierarchies may lead to an infinite multiset as shown

in Example 4.9.

Example 4.9 (Infinite multiset saturation of a database).

Consider the database dbc made of the following three triples declaring a cyclic hierarchy

between the classes c1 and c2, and that the resource :res belongs to the class c1.

c1 rdfs:subClassOf c2
c2 rdfs:subClassOf c1
:res rdf:type c1

Chapter 4. Query Answering in RDF Databases 38

Its multiset-based saturation is shown below.

Saturate0+(db) = db (0)

Saturate1+(db) = Saturate0+(db)] { :res rdf:type c2 } (1)

Saturate2+(db) = Saturate1+(db)] { :res rdf:type c1 } (2)

Saturate3+(db) = Saturate2+(db)] { :res rdf:type c2 } (3)

Saturate4+(db) = Saturate3+(db)] { :res rdf:type c1 } (4)

. . .

Notice that at each odd number iteration a new triple of the form :res rdf:type c2 is

added to the saturation multiset, which leads to the addition of a triple of the form

:res rdf:type c1 at each even number iteration, resulting into an infinite loop.

There are two classical ways of handling the problem of cycles [Russell10].

I. Static cycle analysis can be applied before running the Saturate+ algorithm to

find the cycles in the schema. From these cycles we obtain the sets of equivalent

classes/properties. Then we view each set as a single class/property and do not

propagate values among them during saturation.

II. The second approach is to dynamically control cycles during saturation. For this

we use a history of the classes/properties in which values are propagated through

rdfs:subClassOf/rdfs:subPropertyOf, and set a blocking condition to prevent us from

propagating a value to the same class/property more than once.

The implementation used for evaluating the algorithms in Chapter 5 is based on the

former approach. This variant was chosen with the aim of reducing the saturation

run-time memory consumption. Also, common-use RDF datasets do not frequently

present such cycles. In particular, the datasets used for experiments in Chapter 5 (and

frequently considered in the literature) are cycle free. Due to this diminished frequency,

taking cycles into account only when they are a certainty is preferable and a natural

optimization.

4.2.3 Saturation-based Query Answering

Based on the above notion of saturation, Theorem 4.10 shows the saturation-based query

answering technique.

Theorem 4.10. Given a BGP query q and a database db, the following holds:

Chapter 4. Query Answering in RDF Databases 39

q(db/) = q(Saturate(db)) = q(set(Saturate+(db))).

The proof for Theorem 4.10 trivially follows from Theorem 4.2, the definition of the

Saturate algorithm (Section 4.2.1), and Proposition 4.5.

From a practical viewpoint, and based on the observations from Section 2.3, saturation-

based query answering can be delegated to an RDBMS by:

(i) storing either Saturate(db) or the aforementioned compact representation of

Saturate+(db) in the Triple table, and

(ii) evaluating queries using the RDBMS engine.

Example 4.11 (Saturation-based query answering).

Consider the query q asking for all resources and the classes to which they belong:

q(?x, ?y) :- ?x rdf:type ?y

The answer set of q against the previous database db (Figure 4.1) is:

q(Saturate(db)) = q(set(Saturate+(db))) ={ h:doi1, :b0i ,
h:doi1, :ConferencePaperi ,
h:edbt2013, :Conferencei ,
h:doi1, :Paperi ,
h :b2, :Conferencei }.

4.3 The Reformulation-based Approach

Given a query q and a database db, Sections 4.3.1 and 4.3.2 introduces an algorithm

for reformulating queries in the DB fragment. The expressive power of the RDF DB

fragment, however, widens the gap between query answering and conjunctive query eval-

uation: in this setting, simply evaluating the queries resulting from reformulation does

not suffice to compute the correct result. To bridge this gap, Section 4.3.3 introduces a

novel non-standard query evaluation, which, applied on reformulated queries, computes

(still relying on an RDF-agnostic conjunctive query processor, e.g., an RDBMS) the

sound and complete answer sets in our expressive DB fragment.

4.3.1 Query Reformulation

The Reformulate algorithm exhaustively applies the set of rules shown in Figure 4.3,

starting from a query q and a database db. Each rule defines a transformation of the form
input
output , where the input is of the form h logical condition on db , logical condition on q i

Chapter 4. Query Answering in RDF Databases 40

hs ?y o 2 qσi

qσ[⌫={?y!rdf:type}
(4.5)

hs1 p o1 2 db, s ?y o 2 qσi

qσ[⌫={?y!p}
(4.6)

hs1 rdfs:subPropertyOf p 2 db, s ?y o 2 qσi

qσ[⌫={?y!p}
(4.7)

hp rdfs:subPropertyOf o1 2 db, s ?y o 2 qσi

qσ[⌫={?y!p}
(4.8)

hs1 rdf:type c 2 db, s rdf:type ?z 2 qσi

qσ[⌫={?z!c}
(4.9)

hs1 rdfs:subClassOf c 2 db, s rdf:type ?z 2 qσi

qσ[⌫={?z!c}
(4.10)

hc rdfs:subClassOf o 2 db, s rdf:type ?z 2 qσi

qσ[⌫={?z!c}
(4.11)

hs1 rdfs:domain c 2 db, s rdf:type ?z 2 qσi

qσ[⌫={?z!c}
(4.12)

hs1 rdfs:range c 2 db, s rdf:type ?z 2 qσi

qσ[⌫={?z!c}
(4.13)

hc1 rdfs:subClassOf c2 2 db, s rdf:type c2 2 qσi

qσ[s rdf:type c2/s rdf:type c1]
(4.14)

hp rdfs:domain c 2 db, s rdf:type c 2 qσi

qσ[s rdf:type c/s p ?y]
(4.15)

hp rdfs:range c 2 db, s rdf:type c 2 qσi

qσ[s rdf:type c/?y p s]
(4.16)

hp1 rdfs:subPropertyOf p2 2 db, s p2 o 2 qσi

qσ[s p1 o/s p2 o]
(4.17)

Figure 4.3: Reformulation rules for a partially instantiated query qσ
w.r.t. a database db.

and the output is a query q0. Each, but not both of the conditions in the input may be

unspecified. Intuitively, each rule produces a new query when the rule’s input conditions

are satisfied, one by the database db, and the other by some query (either the original

query q or a query q0 produced by a previous application of a rule). The set of all queries

produced by applying the rules is the result of the reformulation of q w.r.t. db.

A key concept for our reformulation-based query answering are:

Definition 4.12 (Partially instantiated queries).

Let q(x̄) :- t1, . . . , t↵ be a query and σ be a mapping from a subset of q’s variables and

blank nodes, to some values (URIs, blank nodes, or literals).

Chapter 4. Query Answering in RDF Databases 41

The partially instantiated query qσ is a query qσ(x̄σ) :- (t1, . . . , t↵)σ where σ has been

applied both on q’s head variables x̄ and on q’s body. In a non-standard fashion, some

distinguished (head) variables of qσ can be bound. If σ = ;, then qσ coincides with the

original (non-instantiated) query q.

By allowing constants in the head, partially instantiated queries go outside the reach

of the defined BGP queries. Accordingly, a slight extension is required to the notions

of BGP query evaluation and answer set, introduced in Section 2.2.1 for graphs and in

Section 4.1.1 for databases, as follows.

Given a database db whose set of values (URIs, blank nodes, literals) is Val(db) and

a query qσ(x̄σ) :- (t1, . . . , t↵)σ whose set of variables and blank nodes is VarBl(qσ), the

evaluation of qσ against db is:

qσ(db) = { (x̄σ)µ | µ : VarBl(qσ) ! Val(db)

is a total assignment such that ((t1, . . . , t↵)σ)µ ✓ db }

The answer set of qσ against db is the evaluation of qσ against db/, denoted qσ(db
/).

4.3.2 Reformulation Rules and Algorithm

The rules (4.5)–(4.13) reformulate queries by binding one of their variables, either to the

built-in property rdf:type or to a class or property name picked in the database. The

other rules (4.14)–(4.17) replace some query triple with another, based on schema-level

triples.

Consider for instance rule (4.5). The rule says: if a triple of the form s ?y o, i.e., having

any kind of subject or object, but having a variable in the property position, appears

in qσ, then create the new query qσ[⌫ , which binds ?y to the built-in property rdf:type.

Observe that if ?y was a distinguished variable in qσ, a head variable in qσ[⌫ will be

bound after the rule application. Now consider rule (4.6) on some query qσ. If qσ
contains a triple of the same form s ?y o, and the database db contains a triple with any

p in the property position, the rule creates the new query qσ[⌫ where ?y is bound to p.

Rules (4.7) and (4.8) instantiate query variables appearing in the property position, to

values appearing in a rdfs:subPropertyOf statement of db. The intuition is that both the

subject and the object of a rdfs:subPropertyOf statements are properties, therefore they

can be used to instantiate the property variable ?y.

Rules (4.9)–(4.13) instantiate the variable ?z in a query triple of the form s rdf:type ?z.

The RDF meta-model specifies that the values of the rdf:type property are classes.

Therefore, the rules bind ?z to db values that can be deemed as classes by means

of entailment, i.e., those appearing in specific positions in schema-level triples. For

instance, if s1 rdf:type c 2 db, then c is a class and ?z in rule (4.9) can be instantiated

to c. Similarly, the subject and object of a rdfs:subClassOf statements are used in

rules (4.10) and (4.11). Finally, rules (4.14)–(4.17) use schema triples to replace (denoted

old triple / new triple) a triple in the input query with a new triple. Rule (4.14) exploits

Chapter 4. Query Answering in RDF Databases 42

rdfs:subClassOf statements: if the query qσ asks for instances of class c2 and c1 is a

subclass of c2, then instances of c1 should also be returned, and this is what the output

query of this rule does. The last three rules are similar.

Example 4.13 (Using the rules in Figure 4.3 to reformulate queries).

Consider the previously introduced database db (Figure 4.1) and the query q asking for

all the triples of db (including the entailed ones).

q(?x, ?y, ?z) :- ?x ?y ?z

We show how some of the above rules can be used to reformulate q w.r.t. db.

(i) Using q as input for rule (4.5) produces the query:

q{?y!rdf:type}, i.e., q(?x, rdf:type, ?z) :- ?x rdf:type ?z.

(ii) Using q{?y!rdf:type} as input for rule (4.11) can lead to:

q{?y!rdf:type,?z!:ConferencePaper}, i.e.,

q(?x, rdf:type, :ConferencePaper) :- ?x rdf:type :ConferencePaper.

(iii) Finally, using q{?y!rdf:type,?z!:ConferencePaper} as input for rule (4.14) can lead to:

q(?x, rdf:type, :ConferencePaper) :- ?x rdf:type :b0.

Query reformulation algorithm. For a query q and a database db, the output of

Reformulate(q, db) is defined as the fixed-point Reformulate1(q, db), where:

Reformulate0(q, db) = {q}

Reformulatek+1(q, db) = Reformulatek(q, db) [

{ q00σ00 | 9i 2 [4.5, . . . , 4.17] such that applying rule (i) on db and

some query q0σ0 2 Reformulatek(q, db) yields the query q00σ00 }

Theorem 4.14 shows that our reformulation algorithm terminates and provides an upper

bound for the size of its output.

Theorem 4.14. Given a BGP query q and a database db, the size (number of queries)

of the output of Reformulate(q, db) is in O((6 ⇤#db2)#q), with #db and #q the sizes

(number of triples) of db and q respectively.

Appendix A.5 reports the proof for Theorem 4.14.

In practice, the size of a reformulated query is much smaller than the theoretical upper

bound, but it may still be in the hundreds, depending on the query and the schema-

level triples. The queries in the union obtained after reformulation have many common

atoms, therefore important performance benefits can be achieved by evaluating each

sub-expression common to several such queries, only once. In our experiments (see

Chapter 5), the off-the-shelf PostgreSQL optimizer was able to recognize some such cases

and handle them fairly well, but significant optimizations are still possible. Notably,

Chapter 4. Query Answering in RDF Databases 43

inspired by this observation, we are currently looking into ways to further optimize such

reformulated queries. Chapter 9 briefly describes this ongoing work.

Clearly, improving the conjunctive query processor’s capability to recognize and factorize

common sub-expressions may further speed up the evaluation of reformulated queries.

Example 4.15 (Reformulation of a query w.r.t. a database).

The reformulation of the query q(?x, ?y) :- ?x rdf:type ?y w.r.t. db (described in

Figure 4.1), asking for all resources and the classes to which they belong is shown below.

Reformulate0(q, db) = { q(?x, ?y) :- ?x rdf:type ?y }

Reformulate1(q, db) = Reformulate0(q, db) [
{ q(?x, :ConferencePaper) :- ?x rdf:type :ConferencePaper ,
q(?x, :PosterConferencePaper) :- ?x rdf:type :PosterConferencePaper ,
q(?x, :b0) :- ?x rdf:type :b0 ,
q(?x, :Paper) :- ?x rdf:type :Paper ,
q(?x, :Conference) :- ?x rdf:type :Conference }

Reformulate2(q, db) = Reformulate1(q, db) [
{ q(?x, :ConferencePaper) :- ?x rdf:type :PosterConferencePaper ,
q(?x, :ConferencePaper) :- ?x rdf:type :b0 ,
q(?x, :ConferencePaper) :- ?x :inProceedingsOf ?z ,
q(?x, :Paper) :- ?x rdf:type :ConferencePaper ,
q(?x, :Paper) :- ?x :title ?z ,
q(?x, :Paper) :- ?x :author ?z ,
q(?x, :Conference) :- ?z :inProceedingsOf ?x ,
q(?x, :Conference) :- ?x :name ?z }

Reformulate3(q, db) = Reformulate2(q, db) [
{ q(?x, :Paper) :- ?x rdf:type :PosterConferencePaper ,
q(?x, :Paper) :- ?x rdf:type :b0 ,
q(?x, :Paper) :- ?x :inProceedingsOf ?z ,
q(?x, :Paper) :- ?x :contactAuthor ?z }

Reformulate4(q, db) = Reformulate3(q, db)

4.3.3 Reformulation-based Query Answering

It turns out that by handing the result of reformulating a query as explained above, di-

rectly to a conjunctive query processor for evaluation, may introduce erroneous answers:

Example 4.16 (Erroneous reformulation-based query answering).

Consider again the database db (Figure 4.1) and the query q(?x, y) :- ?x rdf:type y.

The queries in Reformulate(q, db) are shown in Example 4.15.

Evaluating this union of queries, in particular

Chapter 4. Query Answering in RDF Databases 44

q(?x, :ConferencePaper) :- ?x rdf:type :b0

in Reformulate2(q, db), with the assignment

µ = { ?x ! :edbt2013, :b0 ! :Conference },

leads to the answer tuple h:edbt2013, :ConferencePaperi. This tuple does not belong to the

correct answer (presented in Example 4.11). Thus, the tuple is an erroneous answer.

As the above example suggests, the issue is due to blank nodes. The semantics of blank

nodes in BGP queries does not match the purpose for which they are brought into query

reformulation by the Reformulate algorithm. Remember that the semantics of a blank

node in a BGP query against an RDF graph or database is that of a non-distinguished

variable. However, when our Reformulate algorithm brings a blank node in a query

through a variable binding or a triple replacement, it refers precisely to that particular

blank node in the database (as opposed to: any value which matches an existential vari-

able). In the above example, during the reformulation of q, when we use the rule (4.14)

to reformulate q(?x, :ConferencePaper) :- ?x rdf:type :ConferencePaper using the schema-

level triple: :b0 rdfs:subClassOf :ConferencePaper 2 db into q(?x, :ConferencePaper) :-

?x rdf:type :b0 the goal is indeed to find conference paper values for ?x from the anony-

mous (blank-node) subclass :b0 of :ConferencePaper.

Non-standard evaluation and answer set of a query against a database. To

overcome the above issue, we introduce alternate notions of evaluation and of answer set

of a partially instantiated query against a database. The difference between the standard

definitions from Section 4.3.1 and the non-standard ones concerns blank nodes. Standard

evaluation is based on binding VarBl(q), all the query variables and blank nodes, to

database values. In contrast, the non-standard definition only seeks bindings for the

query variables; blank nodes are left untouched, just like URIs and literals.

Formally, given a database db whose set of values (URIs, blank nodes, literals) is Val(db)

and a query qσ(x̄σ) :- (t1, . . . , t↵)σ whose set of variables (no blank nodes) is Var(qσ),

the non-standard evaluation of qσ against db is defined as:

q̃σ(db) = { (x̄σ)µ | µ : Var(qσ) ! Val(db)

is a total assignment such that ((t1, . . . , t↵)σ)µ ✓ db }

The non-standard answer set of qσ against db is obtained by the non-standard evaluation

of qσ against db/, which using the notation in this thesis is denoted q̃σ(db
/).

The next property shows how standard and non-standard definitions of query evaluation

and answer set are related. It follows directly from the fact that the assignments µ in-

volved in non-standard evaluations, defined on Var(q) only, are a subset of those allowed

in standard evaluations, defined on VarBl(q), as non-standard evaluations implicitly

assign any URI, blank node, or literal to itself.

Property 4.17. Let db be a database and qσ a (partially instantiated) query against db.

1. q̃σ(db) ✓ qσ(db) and q̃σ(db
/) ✓ qσ(db

/) hold.

Chapter 4. Query Answering in RDF Databases 45

2. If qσ does not contain blank nodes then q̃σ(db) = qσ(db) and q̃σ(db
/) = qσ(db

/).

With the above notion of non-standard evaluation in place, our reformulation-based

query answering technique is specified by the following theorem.

Theorem 4.18. Given a BGP query q without blank nodes and a database db, the

following holds:

q(db/) =
[

q0
σ0
2Reformulate(q,db)

q̃0σ0(db).

Appendix A.6 reports the proof for Theorem 4.18.

Note that Theorem 4.18 considers queries without blank nodes. This assumption is made

without loss of generality, since blank nodes from the original query can be immediately

replaced with non-distinguished variables in BGP queries, without impacting the answer

set in any way (as explained in Section 2.2.1). We only make the assumption in order

to prevent confusion between the original blank nodes (i.e., non-distinguished variables)

and those introduced by the reformulation steps, and which required the introduction

of non-standard evaluation in order to avoid erroneous answers.

Implementing (non-)standard evaluation. While our alternate definitions are non-

standard from an RDF perspective, they are just as easy to implement using e.g. an

RDBMS, as the “standard” definitions. For “standard” RDF evaluation of a conjunctive

BGP query q, translate q into SQL, taking care to replace each blank node with the

respective relation attribute name; for “non-standard” evaluation, translate q into SQL

by enclosing the blank nodes within quotes, so that the RDBMS treats each as a constant,

to be matched only by the exact same value in the database.

From a practical perspective, Theorem 4.18 states: to answer a query q against a

database db, it suffices to

(i) reformulate q w.r.t. db and

(ii) evaluate each reformulated query on the original database db, using the non-

standard evaluation.

In other words, query reformulation (based on db) followed by non-standard evaluation

of partially instantiated queries computes the exact answer set, and does not require

saturating the database. Moreover (and importantly), these steps only require standard

conjunctive query evaluation capabilities from the underlying system.

Importantly, based on Section 2.3, reformulation-based query answering can be delegated

to any RDBMS by storing db in a Triple table, and then by evaluating queries using

relational evaluation, without replacing blank nodes by fresh non-distinguished variables.

Example 4.19 (Reformulation-based query answering).

Consider again the query q(?x, ?y) :- ?x rdf:type ?y. The answer set of q against the

previous database db (Figure 4.1) is:

Chapter 4. Query Answering in RDF Databases 46

S
q0
σ0
2Reformulate(q,db) q̃

0
σ0(db) ={ h:doi1, :b0i ,

h:doi1, :ConferencePaperi ,
h:edbt2013, :Conferencei ,
h:doi1, :Paperi ,
h :b2, :Conferencei }.

Note that this answer set coincides with the one obtained by saturation-based query

answering in Example 4.11.

4.4 Summary

In this chapter we have shown the theoretical interest of extending the state of the art

in query answering over RDF databases.

We extended the considered RDF fragments for which efficient query answering meth-

ods are proposed, notably by the inclusion of blank nodes (Section 4.1). We propose

novel query answering algorithms on the above fragment and prove their soundness and

completeness. In particular, we proposed a novel saturation algorithm which allows in-

cremental maintenance of the database (Section 4.2.2). Also, we show how to correctly

answer reformulated queries given the extended fragment semantics (Section 4.3.3).

The following chapter will present an empirical evaluation of the proposed algorithms

and prove their practicality and efficiency. Moreover, we compare the two algorithms

in the same experimental settings and propose means of choosing among them the one

best suited to the RDF database characteristics.

Chapter 5

RDF Query Answering: A

Practical Assessment

The saturation and reformulation-based query answering techniques presented in

Chapter 4 are designed to be deployed on top of any RDBMS(-style) engine. This chap-

ter describes the experiments we performed to assess the practical utility of our query

answering strategies within the DB fragment of RDF.

We start by describing the platform we used for implementing and testing our algo-

rithms. Section 5.1 presents information on data storage, indexing scheme and choice

of encodings.

The following sections present an empiric study of the performance of the two query

answering techniques and their trade-offs. We discuss our results on data saturation

in Section 5.2, query answering over the database instance in Sections 5.3 and 5.4, in-

stance and schema updates in Section 5.5, and compare the two techniques from the

perspective of both query answering and updates in Section 5.6.

5.1 Settings

This section opens the chapter by describing the settings of our experimental study.

Software and hardware. The Saturate and Reformulate algorithms described pre-

viously were implemented in Java 6. They were tested as add-ons to the already ex-

isting RDFViewS (standing for RDF View Selection) system [Goasdoué10], which

given a conjunctive SPARQL query workload and a set of RDFS statements returns

a set of recommended views for materialization, in order to optimize query processing

times. Our Reformulate algorithm, in particular, is derived from the one implemented

in [Goasdoué10] for view rewritings. It uses the appropriate (non-standard) semantics

described in Section 4.3.3 for query answering over the DB fragment, also handling the

use of blank nodes.

47

Chapter 5. RDF Query Answering: A Practical Assessment 48

The system relies on a relational database back-end for storing data. The experi-

ments in this thesis were deployed on top of the PostgreSQL (version 8.5 using stan-

dard default settings) back-end, on an 8-core DELL server at 2.13 GHz with 16 GB

of RAM, running Linux 2.6.31.14. All times we report are averaged over five execu-

tions. PostgreSQL is an efficient open source RDBMS, frequently used in the litera-

ture [Abadi07, Sidirourgos08, Weiss08, Neumann08, Neumann09, Goasdoué10]. Given

the generic nature of the proposed algorithms any other platform supporting conjunctive

query evaluation can be used instead.

Data storage. Instance-level triples are stored in a Triple(s, p, o) table, the set-based

saturation in a Sat(s, p, o) table, while the multiset-based saturation (required for incre-

mentally maintaining the saturation) is compactly stored, as explained in Section 4.2.2,

in a table SatM(s, p, o, isExplicit, count).

We do this to delegate RDF query evaluation to the relational server. Indeed, relational

query evaluation coincides either with the standard RDF query evaluation when the

query has no blank nodes (as is the case of our queries, Theorem 4.18) or with the

non-standard one when the query has blank nodes (as is the case of our reformulations,

Theorem 4.18).

Indexing. Each table is indexed by all permutations of the (s, p, o) columns, leading to

a total of 6 indexes; the spo index is clustering. We adopted this indexing choice (inspired

by [Neumann10a]) to give PostgreSQL efficient query evaluation opportunities. Schema-

level triples are kept in memory. All measured times are averaged over 10 executions.

Dictionary encoded triples. Previous works, for example [Neumann08], have used

dictionary encodings when storing an RDF database. In order to avoid storing and

joining string-encoded RDF attributes, a dictionary is built associating an integer to

each distinct URI or blank node. Queries are encoded by replacing constants with the

respective integers, evaluated on the integer-encoded data, and their results decoded at

the end of execution. We stored the encoding dictionary in a separate table, which

we indexed by both the encoded string value and the integer encoding. We tested

our experiments with and without a dictionary; we present results with this dictionary

encoding, due to their increased performance.

Datasets. Our evaluation is based on the well-established DBLP [DBL], DBpedia

[Lehmann14] and Barton [wwwb] RDF datasets and also three datasets of diverse sizes

from the LUBM benchmark [Guo05]. The main characteristics of the considered datasets

are summarized in Table 5.1. In [Duan11b], a detailed analysis of such datasets was

performed, providing to the interested reader a deeper knowledge of the dataset, such

as number of subjects, predicates, objects, types, instances per type, etc.

5.2 Performance of the Saturation Algorithms

We denote by tsat the time to compute the saturation of a given database by the

Saturate algorithm (described in Section 4.2.1), and by tsat+ the time to saturate

the database by the Saturate+ algorithm (introduced in Section 4.2.2).

Chapter 5. RDF Query Answering: A Practical Assessment 49

Schema DBLP DBpedia Barton LUBM
a) number of triples 41 5, 666 101 84

Schema DBLP DBpedia Barton LUBM
a) number of triples (⇥106) 8.4 26.9 34.9 1 9.7 93.3

Schema DBLP DBpedia Barton LUBM
a) number of triples (⇥106) 11.8 29.8 38.9 1.2 11.9 114.3
b) size increase (%) 41.05 10.65 14.91 22.60 22.54 22.54
c) computation time tsat (s) 748 2, 742 4, 294 59 558 5, 211

Schema DBLP DBpedia Barton LUBM
a) number of triples (⇥106) 18.6 66 73.5 2.6 25.7 245.7
b) size increase (%) 121.97 227.37 116.89 163.25 163.40 163.33
c) computation time tsat+ (s) 799 2, 977 4, 586 60 595 5, 728

Table 5.1: Graph characteristics and saturation times.

As Table 5.1 shows, saturation added between 10% and 41% to the database size. The

values in row a) showing the number of triples for the Multiset saturation, are ob-

tained by adding to the number of explicit triples every entailed triple, as many times as

it is derived. As the next row b) shows, this more than doubles (even triples in the case

of DBpedia) the size of each graph as entailed triples can be derived in several ways.

Table 5.1 also shows the saturation times tsat and tsat+ for each graph. As expected,

Saturate is (slightly) faster than Saturate+. However, if the graph is updated, one

can maintain the saturation only if Saturate+ was used, as explained in Section 4.2.2.

The size of the graphs makes it difficult for a Java program to process the whole data in

memory in one pass. Therefore, we use a partition-based saturation method, which reads

the graphs in partitions of a specified number of triples at a time. The positive logic

nature of RDFS makes implementing incremental updates close to trivial [Gutierrez06].

Our partition-based approach can be seen as successive incremental updates made on

the saturation table.

Figure 5.1 shows the time to saturate the DBLP, DBpedia and Barton graphs using

different partition sizes. Since the difference between these times is less than 2% of the

total time, in the following experiments we consider the saturation time obtained when

reading the data in partitions of 500, 000 triples (values already shown in Table 5.1).

Saturation process scalability. We now study the scalability of our saturation al-

gorithms, with and without the provisions needed for incremental maintenance of the

saturation. Figure 5.2 shows the running times of our Saturate and Saturate+ algo-

rithms for datasets of increasing sizes. The first graph shows results after saturating

the 1
4 ,

1
2 , and finally the whole DBLP instance-level data with the DBLP schema-level

triples. The second graph reports results for the LUBM datasets, for which the data size

increases by approximately a factor of 10. As can be seen in both graphs of Figure 5.2,

the saturation time grows almost linearly as the data size increases, although its worst-

case complexity is O(#db2) (Theorem 4.4).

Comparison with other saturation methods. Our Saturate algorithm is quite

straightforward and its performance is comparable to others from the literature (modulo

Chapter 5. RDF Query Answering: A Practical Assessment 50

 10,000 100,000 500,000
4,200

4,300

4,400

4,500

4,600

4,700

4,800
direct saturation

saturation with maintenance

T
im

e
 (

s
e

c
o

n
d
s
)

Number of tuples per partition

(a) Barton dataset

 10,000 100,000 500,000
2,700

2,800

2,900

3,000

3,100

3,200

3,300
direct saturation

saturation with maintenance

T
im

e
 (

s
e

c
o

n
d
s
)

Number of tuples per partition

(b) DBpedia dataset

 10,000 100,000 500,000
800

850

900

950

1,000

1,050

1,100
direct saturation

saturation with maintenance

T
im

e
 (

s
e

c
o

n
d
s
)

Number of tuples per partition

(c) DBLP dataset

Figure 5.1: Saturation times using different data partitions.

the specific set of rules used). Our incremental Saturate+ algorithm, on the other hand,

is novel and outperforms existing saturation-based query answering techniques, relying

on saturation maintenance. These either scale poorly [Broekstra03b] or perform more

costly maintenance operations [Bishop11].

The maintenance method in [Broekstra03b], implemented in Sesame, uses a truth main-

tenance algorithm relying on managing the justifications (i.e., the proofs) for every en-

tailed triple. Maintaining this set of justifications is problematic even for relatively small

graphs (300.000 triples); maintenance after deletions is more costly than re-saturating

the graph from scratch.

Chapter 5. RDF Query Answering: A Practical Assessment 51

2.1 x 10⁶ 4.2 x 10⁶ 8.4 x 10⁶
100

251

631

1,585

T
im

e
 (

s
e

c
o

n
d
s
)

Dataset size (triples)

direct saturation

saturation with maintenance

(a) DBLP datasets

1.0 x 10⁶ 9.7 x 10⁶ 93.3 x 10⁶
10

100

1,000

10,000

T
im

e
 (

s
e

c
o

n
d
s
)

Dataset size (triples)

direct saturation

saturation with maintenance

(b) LUBM datasets

Figure 5.2: Saturation algorithms scalability.

The maintenance method in [Bishop11], implemented in the well-known BigOWLIM

commercial system, improves over the maintenance-upon-delete method of [Broekstra03b]

by computing justifications only at maintenance time, and only for the triples which may

be impacted, instead of systematically computing and storing all entailed triples justi-

fications. Still, this computes and stores much more data than our integer derivation

counts, while achieving the same goal of correctly maintaining the saturation when the

database changes. Furthermore, our algorithm is not tailored for a specific system and

can be plugged on top of any RDBMS.

5.3 Query Answering Times

Table 5.2 shows the number of queries evaluated on each graph and information on the

number of triples in each query. Most queries were hand-picked aiming at a variety of

behavior when reformulated against each schema. In the case of DBpedia we considered

queries of the forms typically asked in real life scenarios, as described in [Arias11].

While in the case of LUBM we also included the benchmark queries [Guo05] that were

expressible as BGP queries. The queries are detailed in the Appendix B. The query

answering times were similar on the two saturation tables, Sat and SatM, therefore from

this point further only the SatM results will be discussed, since this table also allows

incremental maintenance upon updates.

Chapter 5. RDF Query Answering: A Practical Assessment 52

Barton DBpedia DBLP LUBM
a) number of queries 17 21 26 36
b) minimum number of triples per query 1 1 1 2
c) average number of triples per query 2 2 6 4
d) maximum number of triples per query 3 4 10 9

Table 5.2: Query characteristics.

For a query q, we denote by tsat(q) the time to answer q against the already saturated

database SatM, and tref (q) the time to answer q by reformulating q and the (non-

standard) evaluation of its reformulation against the Triple table.

The graphs in Figures 5.3 and 5.4 show, for each query:

• the number of union terms in the reformulated query (in parentheses after the

query name);

• the time tsat(q);

• the time tref (q);

• the sum tsat(q) + tsat+.

The query answering times are grouped in the decreasing order of tref and divided in

groups by the value of tref compared with the thresholds 10i,−4  i  4 seconds.

As expected, tsat(q) is significantly smaller than tref (q) for queries with large refor-

mulations. However, if one factors in the saturation time tsat+, the saturation-based

approach becomes expensive. Obviously, saturation costs are paid only once, not for

each query; we deepen this analysis below when discussing thresholds. Inspecting the

results, we also found small-result queries have small tsat and tref , an encouraging sign

that PostgreSQL’s optimizer handled correctly both the original and the reformulated

queries.

In the graph of Figure 5.3(a), the first group contains two extreme-case queries: Q01

returns the whole saturation of the database (11 ⇥ 106 tuples), while Q02 returns all

(DBLP publication, attribute) pairs (5⇥106 tuples). The second group contains mostly

general queries using upper-level classes or properties of the schema (entailed triples,

thus RDF reasoning, strongly contribute to answering such queries). While such queries

may be useful in certain contexts, they are not the usual queries asked by users knowing

the schema. For example, if one is interested in all the articles that fit certain criteria,

the query will be built restricting the answer to articles only (e.g., Q15, Q16), but if

all publications (not just articles) are of interest, the user has no choice but to use the

top concept of the ontology (e.g., Q11, Q12). Query selectivity also plays an important

part, as can be seen by comparing the results for Q10 and Q13. Finally, the third and

fourth group contains mostly specific queries using lower-level classes or properties of

the schema (thus, these queries’ results are less impacted by reasoning). The results in

Figures 5.3(b), 5.3(c), 5.4(a), 5.4(b) and 5.4(c) follow such patterns. Note that in the

case of Figure 5.4 some of the queries could not be evaluated through reformulation by

PostgreSQL due to the high number of reformulations and/or size of the intermediate

Chapter 5. RDF Query Answering: A Practical Assessment 53

Query answering based on saturation

Query answering based on reformulation

Query answering based on saturation with time to saturate

Q02 (684)

Q01 (121)

Q13 (36)

Q25 (36)

Q23 (36)

Q10 (138)

Q14 (36)

Q19 (36)

Q20 (36)

Q11 (36)

Q12 (36)

Q08 (19)

Q06 (19)

Q17 (1)

Q18 (1)

Q09 (4)

Q24 (1)

Q03 (36)

Q26 (1)

Q21 (1)

Q22 (1)

Q05 (1)

Q15 (1)

Q16 (1)

Q07 (4)

Q04 (1)

Time (seconds)

(a) DBLP dataset

Q02 (8188)

Q11 (2229)

Q04 (2220)

Q13 (347)

Q05 (463)

Q06 (347)

Q10 (9793)

Q16 (9793)

Q20 (463)

Q17 (463)

Q01 (9793)

Q03 (8188)

Q12 (463)

Q18 (39)

Q14 (39)

Q07 (39)

Q21 (39)

Q08 (11)

Q15 (1)

Q19 (1)

Q09 (1)

Time (seconds)

(b) DBpedia dataset

Q13 (176)

Q10 (143)

Q01 (143)

Q11 (46)

Q08 (414)

Q02 (46)

Q15 (143)

Q07 (2)

Q14 (1)

Q12 (1)

Q17 (9)

Q06 (2)

Q05 (2)

Q04 (1)

Q16 (46)

Q03 (12)

Q09 (2)

Time (seconds)

(c) Barton dataset

Figure 5.3: Query answering times for the DBLP, DBpedia and Barton datasets.

Chapter 5. RDF Query Answering: A Practical Assessment 54

Query answering based on saturation

Query answering based on reformulation

Query answering based on saturation with time to saturate

Q21 (650)

Q24 (35344)

Q16 (35344)

Q15 (1105)

Q06 (10790)

Q36 (318096)

Q20 (28458)

Q30 (8496)

Q11 (8496)

Q19 (6696)

Q04 (3384)

Q27 (2788)

Q25 (2444)

Q23 (940)

Q12 (1296)

Q28 (697)

Q26 (697)

Q18 (376)

Q13 (221)

Q34 (2256)

Q05 (130)

Q14 (221)

Q22 (65)

Q17 (26)

Q29 (65)

Q02 (136)

Q10 (492)

Q07 (156)

Q31 (752)

Q35 (156)

Q33 (156)

Q01 (136)

Q09 (123)

Q08 (123)

Q03 (34)

Q32 (52)

Time (seconds)

(a) ≈ 1 mil. triples dataset

Q21 (650)

Q24 (35344)

Q16 (35344)

Q15 (1105)

Q06 (10790)

Q20 (28458)

Q36 (318096)

Q04 (3384)

Q30 (8496)

Q27 (2788)

Q25 (2444)

Q23 (940)

Q11 (8496)

Q19 (6696)

Q26 (697)

Q28 (697)

Q18 (376)

Q12 (1296)

Q13 (221)

Q05 (130)

Q14 (221)

Q22 (65)

Q17 (26)

Q29 (65)

Q34 (2256)

Q07 (156)

Q02 (136)

Q10 (492)

Q31 (752)

Q33 (156)

Q35 (156)

Q01 (136)

Q09 (123)

Q08 (123)

Q03 (34)

Q32 (52)

Time (seconds)

(b) ≈ 10 mil. triples dataset

Q04 (3384)

Q24 (35344)

Q27 (2788)

Q16 (35344)

Q21 (650)

Q06 (10790)

Q15 (1105)

Q30 (8496)

Q36 (318096)

Q20 (28458)

Q23 (940)

Q25 (2444)

Q11 (8496)

Q26 (697)

Q28 (697)

Q18 (376)

Q13 (221)

Q12 (1296)

Q22 (65)

Q05 (130)

Q17 (26)

Q29 (65)

Q14 (221)

Q19 (6696)

Q07 (156)

Q34 (2256)

Q31 (752)

Q02 (136)

Q10 (492)

Q33 (156)

Q35 (156)

Q09 (123)

Q01 (136)

Q32 (52)

Q08 (123)

Q03 (34)

Time (seconds)

(c) ≈ 100 mil. triples dataset

Figure 5.4: Query answering times for the LUBM datasets.

Chapter 5. RDF Query Answering: A Practical Assessment 55

results1. While additional parameter tuning may enable the evaluation of such queries,

the error was raised by many large-reformulation queries, signaling that their shape is

problematic. We will reopen this subject while discussing ongoing works.

5.4 Comparison with Query Evaluation on Virtuoso

To emphasize the interest of query answering over standard RDBMSs we compare (in

the same experimental setting) our PostgreSQL query evaluation over the saturated

dataset with its Virtuoso counterpart (version 6.1.6 open source multi threaded edition).

Figure 5.5 shows for each query evaluated over each dataset:

• the query evaluation time over the saturated dataset stored in PostgreSQL;

• the query evaluation time over the saturated dataset stored in Virtuoso.

• the number of query answers over the saturated dataset;

Figure 5.5 shows that for the majority of cases the PostgreSQL-based solution scales

much better that the Virtuoso one. In some case, e.g., Q30 on the ⇡ 100 million triples

dataset, the query answering time is faster by up to three orders of magnitude. In the

majority of remaining cases, where the Virtuoso query answering times are better, the

evaluation times are comparable since they pass PostgreSQL-based evaluation by a rela-

tively small margin only. With the exception of Q4 on the ⇡ 100 million triples dataset,

we can see by analyzing each row of queries that as the data increases, the PostgreSQL

solution scales better. This demonstrates the competitive performance of our imple-

mentation replying on SQL query evaluation and leveraging RDBMSs performance for

handling large data.

5.5 Instance and Schema Updates

Updates have no impact on reformulation, but saturation needs to maintain the SatM

table. To measure this overhead, we performed updates of one triple on the instance

and on the schema.

We made a random selection of instance triples from each dataset, considering all the

distinct property values and the different classes. We obtained 42 triples for DBLP,

30 triples for LUBM, and hundreds of triples for Barton and DBpedia out of which we

randomly selected 40 triples in each case. These triples were used in the instance deletion

experiments. The same triples were modified by changing the subject or object or both

with a new resource not present in the initial dataset, producing a new set of triples that

was used for the instance insertions. The instance update experiments showed minor

time variations between the different triples.

For the DBLP dataset, all the 41 triples in the schema were considered for schema

deletions, while a set of the same triples with modified object values were used for

1Concretely, the system threw an I/O exception due to a failed attempt at materializing intermediary
results.

Chapter 5. RDF Query Answering: A Practical Assessment 56

Query evaluation time on PostgreSQL (seconds)

Query evaluation time on Virtuoso (seconds)

Number of query results (divided by 10^3)

Q01

Q02

Q03

Q04

Q05

Q06

Q07

Q08

Q09

Q10

Q11

Q12

Q13

Q14

Q15

Q16

Q17

Q18

Q19

Q20

Q21

Q22

Q23

Q24

Q25

Q26

Q27

Q28

Q29

Q30

Q31

Q32

Q33

Q34

Q35

Q36

(a) ≈ 1 mil. triples dataset

Q01

Q02

Q03

Q04

Q05

Q06

Q07

Q08

Q09

Q10

Q11

Q12

Q13

Q14

Q15

Q16

Q17

Q18

Q19

Q20

Q21

Q22

Q23

Q24

Q25

Q26

Q27

Q28

Q29

Q30

Q31

Q32

Q33

Q34

Q35

Q36

(b) ≈ 10 mil. triples dataset

Q01

Q02

Q03

Q04

Q05

Q06

Q07

Q08

Q09

Q10

Q11

Q12

Q13

Q14

Q15

Q16

Q17

Q18

Q19

Q20

Q21

Q22

Q23

Q24

Q25

Q26

Q27

Q28

Q29

Q30

Q31

Q32

Q33

Q34

Q35

Q36

(c) ≈ 100 mil. triples dataset

Figure 5.5: Saturation-based query answering through PostgreSQL and Virtuoso on
the saturated LUBM datasets.

Chapter 5. RDF Query Answering: A Practical Assessment 57

Average
0.01

0.1

1

10

100

1,000

Inserted triple

T
im

e
 (

s
e
c
o
n
d
s
)

(a) DBLP dataset

Average
0.01

0.1

1

10

100

Inserted triple

T
im

e
 (

s
e
c
o
n
d
s
)

(b) DBpedia dataset

Average
0.01

0.1

1

10

100

1,000

10,000

Inserted triple

T
im

e
 (

s
e
c
o
n
d
s
)

(c) Barton dataset

 Average
0

0.01

0.1

1

10

100

Inserted triple

T
im

e
 (

s
e
c
o
n
d
s
)

(d) LUBM ≈ 1 million triples dataset

Figure 5.6: Schema triple insertion times.

schema insertions. Similar experiments were run for all 84 schema triples from the

LUBM dataset, a random selection of 26 triples from the Barton schema, and 39 triples

from the DBpedia schema.

Schema updates present high variations among the different updated triples. This can

be observed in Figures 5.6 and 5.7 (only one of the LUBM datasets is displayed since

the others follow a similar pattern), which show:

• for each of the schema triples considered for updates, the time to insert into,

respectively delete from, and maintain the SatM table;

• the average update time for each dataset (the light colored column in each chart).

Finally, the graph in Figure 5.8 shows for each of the considered graphs:

• the average time to insert into (respectively delete from) the Triple table;

• the average time to insert into (respectively delete from) and maintain the SatM

table;

Chapter 5. RDF Query Answering: A Practical Assessment 58

Average
1

10

100

1,000

10,000

T
im

e
 (

s
e
c
o
n
d
s
)

Deleted triple

(a) DBLP dataset

Average
1

10

100

T
im

e
 (

s
e
c
o
n
d
s
)

Deleted triple

(b) DBpedia dataset

Average
1

10

100

1,000

10,000

100,000

T
im

e
 (

s
e
c
o
n
d
s
)

Deleted triple

(c) Barton dataset

 Average
0.1

1

10

100

T
im

e
 (

s
e
c
o
n
d
s
)

Deleted triple

(d) LUBM ≈ 1 million triples dataset

Figure 5.7: Schema triple deletion times.

• the average time to maintain the SatM table after an insertion (respectively dele-

tion) made on the schema.

We see that handling SatM is generally slower than updating Triple, by two orders

of magnitude for instance deletions. This shows that while the algorithm Saturate+

and the SatM table are required in order to avoid saturating from scratch, saturation

maintenance may get costly due to the recursive nature of entailment. In particular, in

the case of schema updates, maintaining the saturation may sometimes be more costly

than re-saturating.

5.6 Saturation Thresholds

We now study when saturation pays off over multiple query runs. We call the saturation

threshold of a query q, or st(q), the smallest integer n such that:

n⇥ tref (q) > n⇥ tsat(q) + tsat+

Chapter 5. RDF Query Answering: A Practical Assessment 59

instance insertion (Triple)

instance deletion (Triple)

instance insertion (SatM)

instance deletion (SatM)

schema insertion (SatM)

schema deletion (SatM)

0

0.01

0.1

1

10

100

1,000

T
im

e
 (

s
e

c
o

n
d

s
)

(a) DBLP dataset

0.01

0.1

1

10

100

1,000

T
im

e
 (

s
e

c
o

n
d

s
)

(b) DBpedia dataset

0.01

0.1

1

10

100

1,000

T
im

e
 (

s
e

c
o

n
d

s
)

(c) Barton dataset

0

0.01

0.1

1

10

T
im

e
 (

s
e

c
o

n
d

s
)

(d) LUBM ≈ 1 mil. dataset

0

0.01

0.1

1

10

100

T
im

e
 (

s
e

c
o

n
d

s
)

(e) LUBM ≈ 10 mil. dataset

0.01

0.1

1

10

100

1,000

T
im

e
 (

s
e

c
o

n
d

s
)

(f) LUBM ≈ 100 mil. dataset

Figure 5.8: Update times.

In other words, n is the minimum number of times one needs to run q in order for the

whole saturation cost to amortize.

Similarly, we study how many times q should run in order for the maintenance overhead

due to one instance or schema update to pay off. We formalize this as follows.

Concerning instance updates, let t+Triple be the time to insert one statement in Triple,

and t+SatM be the time to propagate the insertion of one triple to the SatM relation. Then,

the saturation threshold for an instance insertion, denoted st+i (q), is the smallest n for

which:

n⇥ tref (q) + t+Triple > n⇥ tsat(q) + t+SatM

In other words, st+i (q) is the minimum number of times one needs to run q in order

for the maintenance overhead due to the insertion of one triple (recall Figure 5.8) to

amortize. We similarly define the saturation threshold for an instance deletion, denoted

st−i (q).

Chapter 5. RDF Query Answering: A Practical Assessment 60

saturation threshold

saturation threshold for an instance insertion

saturation threshold for an instance deletion

saturation threshold for a schema insertion

saturation threshold for a schema deletion

Q02 (684)

Q01 (121)

Q13 (36)

Q25 (36)

Q23 (36)

Q10 (138)

Q14 (36)

Q19 (36)

Q20 (36)

Q11 (36)

Q12 (36)

Q08 (19)

Q09 (4)

Q03 (36)

Q06 (19)

Q17 (1)

Q18 (1)

Q07 (4)

Q24 (1)

Q26 (1)

Q21 (1)

Q15 (1)

Q22 (1)

Q04 (1)

Q05 (1)

Q16 (1)

Threshold

(a) DBLP dataset

Q02 (8188)

Q04 (2220)

Q11 (2229)

Q13 (347)

Q05 (463)

Q06 (347)

Q10 (9793)

Q16 (9793)

Q20 (463)

Q17 (463)

Q01 (9793)

Q03 (8188)

Q12 (463)

Q18 (39)

Q14 (39)

Q07 (39)

Q21 (39)

Q08 (11)

Q09 (1)

Q15 (1)

Q19 (1)

Threshold

(b) DBpedia dataset

Q13 (176)

Q10 (143)

Q01 (143)

Q11 (46)

Q08 (414)

Q02 (46)

Q15 (143)

Q17 (9)

Q07 (2)

Q16 (46)

Q03 (12)

Q09 (2)

Q04 (1)

Q05 (2)

Q06 (2)

Q12 (1)

Q14 (1)

Threshold

(c) Barton dataset

Figure 5.9: Saturation thresholds for the DBLP, DBpedia and Barton datasets.

Chapter 5. RDF Query Answering: A Practical Assessment 61

Schema updates do not affect the Triple table, since the schema is kept in memory, but

they can have a big impact on SatM. Similar to st(q), we define the saturation threshold

for a schema insertion st+s (q) and deletion st−s (q), as the minimum number of times one

needs to run q in order for the schema update cost to amortize.

Figure 5.9 shows the 5 saturation thresholds for our queries w.r.t. each considered graph.

The vertical (log-scale) axis is limited to 107, for readability. The thresholds follow a

similar trend, strongly determined by the size of the reformulated query (shown in

parentheses on the x axis). The larger the reformulated query, the lower the threshold:

saturation pays off faster when reformulation is expensive, and this tends to happen

when the queries are syntactically complex.

Looking at st(q) in Figure 5.9(a), we see that it varies from 2 for Q02 to more than 105 for

Q05 or Q22; for queries such as Q04, Q05 etc., which are left unchanged by reformulation,

the saturation cost can only be compensated after 106 − 107 runs. This shows that

saturation is not always the most efficient way to go. While it is true saturation can

be performed off-line, one needs to also keep in mind that saturation may require quite

complex maintenance algorithms.

Comparing the thresholds among themselves, we notice that st is always higher than the

update thresholds, which is expected since st runs need to offset the complete saturation

cost, whereas st+i , st
−
i , st

+
s and st−s need to offset the cost of maintaining saturation

for just one triple added or deleted. Finally, st+i is lower than st−i , and st+s is lower

than st−s , meaning that saturation costs particularly penalize scenarios where deletions

are frequent. Figures 5.9(b) and 5.9(c) show similar results for the Barton and DBpedia

datasets, for the same reason the charts for the LUBM datasets were omitted.

5.7 Summary

Our experiments showed that Saturate and Reformulate can be used to process BGP

queries efficiently by exploiting an off-the-shelf RDBMS. However, they perform very

differently depending on the query selectivity and the impact of the schema through

reasoning: saturation is best for large-reformulation queries, while reformulation is effi-

cient for small-to-moderate reformulation.

With respect to updates, we showed that saturation can be maintained at a reasonable

cost for instance-level updates, while schema-level updates are much more expensive.

Updates, however, have a small impact on reformulation making it appropriate for high

update rates. When considering also repeated query runs, we highlighted a number of

thresholds determining when saturation pays off; these thresholds are strongly impacted

by the query reformulation size and selectivity. While saturation is the default in many

RDF platforms, our experiments demonstrate the practical interest of reformulation-

based BGP query answering.

Concluding Remarks

In this first part of the thesis we presented a detailed analysis of the two main tech-

niques for answering conjunctive queries against RDF databases, a significant fragment

of RDF allowing both implicit and incomplete information. Figure 5.10 illustrates the

positioning of our work w.r.t. to the related literature.

Query language expressive power

SPARQL

BGP queries

relational

conjunctive

queries

RDF fragment expressive power

DL DB

[Adjiman07, Calvanese07, Gottlob11]

[Goasdoué11, Kaoudi08, Urbani11]

[Arenas09]

this
work

Figure 5.10: Outline of the positioning of our work.

We studied query answering over this DB fragment, when the data is saturated. Also, we

proposed a data saturation algorithm robust to instance and schema updates, countering

the main drawback of the technique. In contrast to the works presented in Section 3.1.2,

the saturation maintenance technique presented in Section 4.2.2 is based on the number

of times triples are entailed, facilitating data storage and manipulation. The subsequent

work [Urbani13] also employes the use of derivation counts to facilitate saturation main-

tenance upon data deletions. In [Urbani13] the additional information stored for inferred

triples counts the distinct direct entailments for that triple. While offering a higher de-

gree of precision, it comes with the additional cost of keeping track of the entailment

path. Our algorithms are tailored to work with the total number of different deriva-

tions, in order to avoid the computations necessary for distinguishing between different

entailment paths. Our technique performs well for instance updates, and acceptably on

schema updates. On average, it is worth maintaining the saturation. We note though

that in some (rare) cases, when the updates affect upper-level classes or properties of

the schema, saturation maintenance may be more costly than re-saturating.

62

Part I. Conclusive Remarks 63

We also devised a query reformulation approach for the identified fragment, and we

described the requirements for obtaining correct answers when evaluating reformulated

queries. The query reformulation algorithms of [Adjiman07, Goasdoué11] are restrictions

of our Reformulate. The same holds for the algorithms in [Calvanese07, Gottlob11]

when restricted to the DL fragment of RDF, whereas they are capable of handling

complex DLs.

The algorithms in [Adjiman07, Calvanese07, Gottlob11] consider only our rules (4.14)–

(4.17) to reformulate relational conjunctive queries, while the algorithm in [Goasdoué11]

needs two additional rules for BGP queries. These two rules actually correspond to our

rules (4.5)–(4.13), under the simplifying assumption that part of the information needed

for reformulation have been pre-computed.

In [Kaoudi08, Urbani11], atomic BGP queries are reformulated using a standard backward-

chaining algorithm [Russell10] on first order encodings of the entailment rules dedicated

to RDFS statements.

In [Arenas09], SPARQL queries are reformulated into nested SPARQL, i.e., an extension

of SPARQL in which properties in triples can be nested regular expressions. While such

nested reformulated queries are more compact, the queries we produce are more practical,

since their evaluation can be directly delegated to any off-the-shelf RDBMS, or to an

RDF engine such as RDF-3X [Neumann08] even if it is unaware of reasoning.

Finally, we thoroughly compared the performance of the saturation and reformulation

techniques and identified the factors impacting the comparison. Notably, our techniques

can be directly deployed on top of any off-the-shelf RDBMS. We offered empirical proof

that such approaches scale very well, even better than RDF dedicated stores.

Part II

Warehousing RDF Graphs

64

Chapter 6

RDF Data Warehousing

Overview

In this chapter we present the main approaches proposed in the literature aiming at

efficient analytics over multidimensional data, focusing on graph data and the semantic-

rich RDF data model.

Data warehousing is a mature research field which has received significant attention. In

Section 6.1 we discuss the main approaches to data warehousing, and then focus on the

relational setting.

Works proposing warehousing techniques for RDF data have focused either on extracting

tabular data from the RDF graphs or on proposing new RDF vocabularies. We describe

these efforts in Section 6.2 and also examine the setting of graph data warehousing.

The sections above highlight the distinct need for data warehousing techniques taking

into account the semantic rich web data. We detail this open issue in Section 6.3.

6.1 Multidimensional Relational Data Management

The multidimensional data model was first proposed in the 1990s with the aim of find-

ing efficient techniques for analyzing large amounts of data. Databases of facts, each

characterized by multiple dimensions, whose values are recorded in measures, are at

the core of multidimensional data warehouses (DWs in short) [Jensen10]. The facts can

then be analyzed by means of aggregating the measures, e.g., “what is the average sale

price of item A every month in every store?”. One of the pioneer books on the topic

is [Inmon92], which lists a set of data warehouse characteristics: the data is integrated

(possibly through an Extract-Transform-Load process that feeds the warehouse with

well-structured data); data is typically non volatile, since a recorded fact or measure is

unlikely to change in the future, data only gets added to the warehouse; finally, time is

an important dimension in most DW applications.

Data warehouses are typically built to analyze (some aspects of) an enterprise’s business

processes. Thus, a first crucial task is choosing among the many data sources available

65

Chapter 6. RDF Data Warehousing Overview 66

to the analyst, those that are interesting for a given class of business questions that the

DW is designed for answering. The analysts then describe the facts, dimensions, and

measures to be analyzed. Then, for each relevant business question, an analytical query

is formulated, by (i) classifying facts along a set of dimensions and (ii) reporting the

aggregated values of their measures. Such queries are commonly known as cubes.

The aim in data warehouses is to provide quick answers to complex multi-dimensional

analytical queries. On-Line Analytical Processing (OLAP) [OLA] tools have been built

for retrieving (and aggregating) large amounts of data, and also for viewing the data

from multiple perspectives, e.g., using basic analytical operations to navigate through

the data dimensions and hierarchies like slice, dice, roll-up, drill-down, etc.

Data warehousing and OLAP system implementations have been proposed from different

perspectives. Multidimensional structures like arrays and matrixes have been consid-

ered for storing cube data. Such systems fit in the category of Multidimensional OLAP

(MOLAP). The frequently adopted Relational OLAP (ROLAP) storage leverages rela-

tional database technologies (indexes, materialized views, etc.) for data analysis. Hybrid

OLAP (HOLAP) approaches have also been considered, aiming at benefiting from both

MOLAP and ROLAP techniques.

Relational data warehousing. For all its practical applications, data warehousing has

attracted enormous interest, both from practitioners [Kimball02] and from the research

community [Harinarayan96, Jarke99, Theodoratos97]; warehousing tools are now part

of major relational database servers. The MD-join operator [Chatziantoniou01] was

proposed for performing complex aggregations by separating the grouping computation

from the aggregation. This operator’s interaction with other relational operators union,

selection, projections etc. allows for optimized computations. - can be used to express

roll-ups. [Spyratos06] proposes a formal model for dimensional data analysis, using a

functional algebra for data manipulation. Relational data warehousing is thus a pretty

mature area.

Building data warehouses for unstructured data poses a new set of challenges [Inmon11].

Web data warehouses have been presented as interconnected corpora of XML docu-

ments and Web services [Abiteboul03], or as distributed knowledge bases [Abiteboul12].

In [Preda10], a large RDF knowledge base, Yago [Suchanek08], is enriched with infor-

mation gathered from the Web, but do not consider RDF analytics.

6.2 RDF and Graph Data Analysis

The RDF language is increasingly being used in order to export, share, and collabora-

tively author data in many settings. For instance, it serves as a metadata language to

describe cultural artifacts in large digital libraries, and to encode protein sequence data,

as in the Uniprot dataset. RDF is a natural target for representing heterogeneous facts

contributed by millions of Wikipedia users, gathered within the DBpedia data source, as

well as for the Linked (Open) Data effort, aiming at connecting and sharing collectively

produced data and knowledge.

Chapter 6. RDF Data Warehousing Overview 67

While the current landscape of RDF data shows great potential for meaningful analysis,

RDF-centric approaches have not yet been developed. In the following subsections

we report on connected topics that have looked into the extraction of RDF data for

the purpose of analysis (Section 6.2.1), proposing new vocabularies for publishing RDF

analytical data (Section 6.2.2) and graph data warehousing (Section 6.2.3).

6.2.1 Extracting Multidimensional Data from RDF

The Journal on Data Semantics has shown its interest in Semantic Data Warehouses

by proposing a special issue on this topic. The published works [Nebot09, Pinet09,

Banerjee09, Niinimäki09, Skoutas09, Papastefanatos09] propose novel solutions to de-

signing Semantic Data Warehouses using ontologies, but are mainly focused on the ETL

process and how to create a relational schema for the data warehouse and to populate

it. [Nebot12] also presents a semi-automated approach for deriving a RDW from an

ontology.

The works mentioned above are oriented towards relational storage of RDF data, there-

fore preserving the data heterogeneity, and the ability to query the data semantics are

not considered.

6.2.2 Vocabularies for RDF Data Analysis

[Etcheverry12, W3C14d] propose RDF(S) vocabularies (pre-defined classes and proper-

ties) for describing relational multidimensional data in RDF.

The vocabulary introduced by [Etcheverry12] is titled Open Cubes. It is used for the

representation of the schemas and instances of OLAP cubes and allows applying oper-

ations to such representations of multidimensional RDF data. The work is motivated

by decision making applications that require temporary Web data to complete the in-

formation already available in a given decision-support system. As such they allow (i)

retrieving Web data in the Open Cubes vocabulary representation; (ii) applying analyt-

ical operations such as roll−up and slice to align the data with the one already available

in the decision support system; (iii) using the resulting data cubes for data analysis,

and discarding this additional information when it is no longer needed/pertinent.

Notably, [Etcheverry12] provides an algorithm for mapping OLAP operations into

SPARQL 1.1 queries. Preliminary experimental results are presented, mentioning that

the Open Cubes vocabulary and proposed techniques are meant for handling specific

information needs, therefore the data handled is assumed to be small. While retrieval of

the web data is considered orthogonal to the work, they do sketch a procedure for export-

ing web cubes (a.k.a. the answer to the SPARQL queries) into a relational model-based

OLAP server.

As of January 2014, the W3C proposes its own RDF Data Cube Vocabulary [W3C14d],

recommended for publishing multi-dimensional data.

Chapter 6. RDF Data Warehousing Overview 68

6.2.3 Graph Data Warehouses

Recent works [Zhao11, Bleco12] have focused on graph warehousing.

The model of [Zhao11] introduces the idea of defining independently the semantics of

nodes and edges in an analytical schema (“graph cube” in their terminology). Analysis

cubes and OLAP operations on cubes over graphs are also defined, considering a lattice

structure for navigating between perspectives. However, their approach does not ap-

ply to heterogeneous graphs, and thus it cannot handle multi-valued attributes (e.g., a

movie being both a comedy and a romance), nor data semantics, both central in RDF.

Furthermore, the approach is focused on counting edges, not considering more complex

aggregations.

In [Bleco12], graph data can be aggregated in a spatial fashion by grouping connected

nodes into regions (think of a street map graph). This basic aggregation serves as a

foundation for the proposed OLAP framework. The work makes a distinction between

data and schema. While the schema is the graph built of all connections between nodes,

data records are subgraphs of the schema with (cost) labeled edges (and occasionally

nodes).

6.3 Summary

The current popularity of RDF raises interest inmodels and tools for RDF data analytics.

For instance, consider applications seeking to harvest, aggregate and analyze user data

from various sources (such as social networks, blog posts, comments on public Web

sites etc.). The data is heterogeneous; it may include facts about the user such as age,

gender or region, an endorsement of a restaurant the user liked etc. The data is graph-

structured, since it describes relationships between users, places, companies etc. It comes

from multiple sources and may have attached semantics, based on some ontologies for

which RDF is an ideal format.

Despite the perceived need, there is currently no satisfactory conceptual and practical

solution for large-scale RDF analytics. Relational DW tools are not easily adaptable,

since loading RDF data in a relational analytical schema may lead to facts with unfilled

or multiply-defined dimensions or measures; the latter does not comply with the rela-

tional multidimensional setting and DW tools. More important, to fully exploit RDF

graphs, the heterogeneity and rich semantics of RDF data should be preserved through

the warehouse processing chain and up to the analytical queries. In particular, RDF an-

alytical queries should be allowed to jointly query the schema and the data, e.g., ask for

most frequently specified properties of a CollegeStudent, or the three largest categories

of Inhabitants. Changes to the underlying database (such as adding a new subclass of

Inhabitant) should not cause the warehouse schema to be re-designed; instead, the new

resources (and their properties) should propagate smoothly to the analysis schema and

cubes.

In the next chapter we define a novel framework for RDF analytics, based on analytical

schemas and queries that can be efficiently deployed on top of any RDF data management

platform, to extend it with analytic capabilities.

Chapter 7

RDF Graph Analysis

The development of the Semantic Web (RDF) brings new requirements for data analytics

tools and methods, going beyond querying to semantics-rich analytics through warehouse-

style tools. The motivating scenario presented in Section 7.1 exemplifies the problems

faced by developers using such data and highlights a set of emerging application needs.

In this chapter, we present a full (bottom-up) redesign of the core data analytics concepts

and tools in the context of RDF data, leading to the first complete formal framework for

warehouse-style RDF analytics.

Notably, we define analytical schemas tailored to heterogeneous, semantics-rich RDF

graphs in Section 7.2. We introduce analytical queries which (beyond relational cubes)

enables flexible querying of the data and the schema as well as powerful aggregation

in Section 7.3. In Section 7.4 we discuss different query answering alternatives. Fi-

nally we introduce OLAP-style operations, allowing navigating through the data cubes in

Section 7.5 and conclude.

This work has led to the publication of an article [Colazzo13b] and a demonstration

[Colazzo13a] in the French database conference 29e journées Bases de Données Avancées

and a news article [Roatis14] in the magazine of the European Community in Informa-

tion Technology (ERCIM News). The main results of this work have been published

in the Proceedings of the 23rd International World Wide Web Conference (WWW

2014) [Colazzo14].

7.1 Data Warehousing Scenario

In the following scenario, we identify by (i)-(v) a set of real-world application require-

ments, for further reference.

Alice is a software engineer working for an IT company responsible of developing user

applications based on open (RDF) data from the region of Grenoble. From a

dataset describing the region’s restaurants, she must build a clickable map showing for

each district of the region, “the number of restaurants and their average rating per type

of cuisine”.

69

Chapter 7. RDF Graph Analysis 70

The data is (i) heterogeneous, as information, such as the menu, opening hours or closing

days, is available for some restaurants, but not for others. Fortunately, Alice studied data

warehousing [Jarke99]. She thus designs a relational data warehouse (RDW, in short),

writes some SPARQL queries to extract tabular data from the restaurant dataset (filled

with nulls when data is missing), loads them in the RDW and builds the application

using standard RDW tools.

The client is satisfied, and soon Alice is given two more datasets, on shops and museums;

she is asked to (ii) merge them in the application already developed. Alice has a hard

time: she had designed a classical star schema [Jensen10], centered on restaurants,

which cannot accommodate shops. She builds a second RDW for shops and a third for

museums.

The application goes online and soon bugs are noticed. When users search for landmarks

in an area, they don’t find anything, although there are multiple museums. Alice knows

this happens because (iii) the RDW does not capture the fact that a museum is a

landmark. With a small redesign of the RDW, Alice corrects this, but she is left with

a nagging feeling that there may be many other relationships present in the RDF data

which she missed in her RDW.

Further, the client wants the application to find (iv) the relationships between the region

and famous people related to it, e.g., Stendhal was born in Grenoble. In Alice’s RDWs,

relationships between entities are part of the schema and statically fixed at RDW design

time. In contrast, useful open datasets such as DBpedia [Lehmann14], which could be

easily linked with the RDF restaurant dataset, may involve many relationships between

two classes, e.g., bornIn, gotMarriedIn, livedIn etc.

Finally, Alice is required to support (v) a new type of aggregation: for each landmark,

show how many restaurants are nearby. This is impossible in Alice’s RDW designs of

a separate star schema for each of restaurants, shops and landmarks/museums, as both

restaurants and landmarks are central entities and Alice cannot use one as a measure

for the other.

Alice’s needs in setting up the application can be summarized as follows:

(i) support of heterogeneous data;

(ii) multiple central concepts, e.g., restaurants and landmarks above;

(iii) support for RDF semantics when querying the warehouse;

(iv) the possibility to query the relationships between entities (i.e., the schema);

(v) flexible choice of aggregation dimensions.

We address each of these requirements in the following sections.

7.2 Analytical Schemas and Instances

We model a schema for RDF graph analysis, called analytical schema, as a labeled

directed graph.

Chapter 7. RDF Graph Analysis 71

From a classical data warehouse analytics perspective, each node of our analytical schema

represents a set of facts that may be analyzed. Moreover, the facts represented by an

analytical schema node can be analyzed using (as either dimensions or measures) the

schema nodes reachable from that node. This makes our analytical schema model much

more general than the traditional DW setting where facts (at the center of a star or

snowflake schema) are analyzed according to a fixed set of dimensions and of measures.

From a Semantic Web perspective, an analytical schema node corresponds to an RDF

class, while an analytical schema edge connecting two nodes corresponds to an RDF

property. The instances of these classes and properties, modeling the DW contents to

be further analyzed, are intensionally defined in the schema, following the well-know

“Global As View” (GAV) approach for data integration [Halevy01].

Definition 7.1 (Analytical Schema).

An analytical schema (AnS) is a labeled directed graph S = hN , E , λ, δi in which:

• N is the set of nodes;

• E ✓ N ⇥N is the set of directed edges;

• λ : N [E ! U is an injective labeling function, mapping nodes and edges to URIs;

• δ : N [E ! Q is a function assigning to each node n 2 N a unary BGP query

δ(n) = q(x), and to every edge e 2 E a binary BGP query δ(e) = q(x, y).

Notation. We use n and e respectively (possibly with subscripts) to denote AnS nodes

and edges. To emphasize that an edge connects two particular nodes we will place the

nodes in subscript, e.g., en1!n2 .

For simplicity, we assume that through λ, each node in the AnS defines a new class (not

present in the original graph G), while each edge defines a new property1. Observe that

using δ we define a GAV view for each node and edge in the analytical schema. Just as

an analytical schema defines (and delimits) the data available to the analyst in a typical

relational DW scenario, in our framework, the classes and properties modeled by an AnS

(defined using δ and labeled by λ) are the only ones visible to further RDF analytics,

that is: analytical queries will be formulated against the AnS and not against the base

data (as Section 7.3 will show). Example 7.2 introduces the sample RDF graph used to

illustrate new notions throughout this chapter, while in Example 7.3 we define an AnS

for this graph.

Example 7.2 (RDF graph – running example).

We consider the RDF graph G depicted in Figure 7.1, comprising information about

users and products. The graph features a resource :user1 whose name is :Bill and whose

age is “2800. Bill works with :user2 and is a friend of :user3. He is an active contributor

to two blogs, one shared with his co-worker :user2. Bill bought a :SmartPhone and rated

it online etc. Moreover, the graph comes with a schema expressing semantic constraints

like a :Phone is a :Product, a :SmartPhone is a :Phone, a :Student is a :Person, the

domain and range of :knows is :Person, working with someone is one way of knowing her

etc.

Chapter 7. RDF Graph Analysis 72

:user2

:user1

:user3

:worksWith

:friend

:Mary :hasName

40
:hasAge

:William

:hasName
:Bill

:hasName

:Madrid :inCity

28
:hasAge

:New York
:inCity

35 :hasAge

:post3

:post2

:post1

:post4

:wrote

:wrote

:wrote

:wrote

:WorkBin:blog1

:blog2

:hasName

:inBlog

:inBlog

:inBlog

:inBlog

:Student

rdf:type

:product1

:bought

:SmartPhone

rdf:type

400

:hasPrice

:rating1:gave

:on

:Rating

rdf:type

:Blog:inBlog

:Message

rdfs:domain

rdfs:range
:Phone

:Product

rdfs:subClassOf

rdfs:subClassOf

:Person

rdfs:subClassOf

:worksWith :knows

:friend

rdfs:range
rdfs:domain

rdfs:subPropertyOf

rdfs:subPropertyOf

xsd:int

:hasAge

:hasPrice

rdfs:range

rdfs:range

Figure 7.1: Running example: RDF graph.

n1 :Blogger

e1 :acquaintedWith

n2 :Name

e2 :identifiedBy

n3 :City

e3 :livesIn

n4 :BlogPost

e4 :wrotePost

n5 :Site

e5 :postedOn

n6 :Value

e6 :age

n7 :Iteme7 :purchased

e9 :ratedBy

e10 :cost

n8 :Type

e8 :classifiedAs

Figure 7.2: Sample analytical schema (AnS).

Example 7.3 (Analytical Schema).

Figure 7.2 depicts an AnS for analyzing bloggers and items. The node and edge labels

appear in the figure, while the BGP queries defining these nodes and edges are provided

in Table 7.1. In Figure 7.2 a blogger (n1) may have written posts (e4) which appear on

some site (e5). A person may also have purchased items (e7) which can be rated (e9).

The semantic of the remaining AnS nodes and edges can be easily inferred.

1In practice, nothing prevents λ from returning URIs of class/properties from G and/or the
RDF model, e.g., rdf:type.

Chapter 7. RDF Graph Analysis 73

node λ(n) δ(n)

n1 :Blogger q(?x) :- ?x rdf:type :Person, ?x :wrote ?y, ?y :inBlog ?z

n2 :Name q(?x) :- ?y :hasName ?x

n3 :City q(?x) :- ?y :inCity ?x

n4 :BlogPost q(?x) :- ?x rdf:type :Message, ?x :inBlog ?z,
?z rdf:type :Blog

n5 :Site q(?x) :- ?y :inBlog ?x, ?x rdf:type :Blog

n6 :Value q(?x) :- ?z rdfs:range xsd:int, ?y ?z ?x

n7 :Item q(?x) :- ?x rdf:type ?y, ?y rdfs:subClassOf :Product

n8 :Type q(?x) :- ?x :rdfs:subClassOf :Product

edge λ(e) δ(e)

e1 :acquaintedWith q(?x, ?y) :- ?z rdfs:subPropertyOf :knows, ?x ?z ?y

e2 :identifiedBy q(?x, ?y) :- ?x :hasName ?y

e3 :livesIn q(?x, ?y) :- ?x :inCity ?y

e4 :wrotePost q(?x, ?y) :- ?x :wrote ?y, ?y rdf:type :Message

e5 :postedOn q(?x, ?y) :- ?x rdf:type :Message, ?x :inBlog ?y

e6 :age q(?x, ?y) :- ?x rdf:type :Person, ?x :hasAge ?y

e7 :purchased q(?x, ?y) :- ?x :bought ?y

e8 :classifiedAs q(?x, ?y) :- ?x rdf:type :Product, ?x rdf:type ?y

e9 :ratedBy q(?x, ?y) :- ?y :gave ?z, ?z rdf:type :Rating,
?z :on ?x, ?x rdf:type :Product

e10 :cost q(?x, ?y) :- ?x :hasPrice ?y

Table 7.1: The labels λ and queries δ for the Figure 7.2 AnS nodes and edges.

The nodes and edges of an analytical schema define the perspective (or lens) through

which to analyze an RDF dataset. This is formalized as follows:

Definition 7.4 (Instance of an AnS).

Let S = hN , E , λ, δi be an analytical schema and G an RDF graph. The instance of S

w.r.t. G is the RDF graph I(S, G) defined as:

[

n2N

{s rdf:type λ(n) | s 2 q(G1) ^ q = δ(n)}

[[

e2E

{s λ(e) o | s, o 2 q(G1) ^ q = δ(e)}.

The above definition states that an instance of an AnS is a “new” RDF graph, consisting

of the class and property assertions built through the BGP queries labeling the AnS

nodes and edges. From now on, we denote the instance of an AnS either I(S, G) or

simply I, when that does not lead to confusion.

Example 7.5 (Analytical Schema Instance).

Below we show part of the instance of the analytical schema introduced in Example 7.3.

We indicate at right of each triple the node (or edge) of the AnS which produced it.

Chapter 7. RDF Graph Analysis 74

I(S, G0) =

{ :user1 rdf:type :Blogger, n1

:user1 :acquaintedWith :user2, e1
:user1 :identifiedBy :Bill, e2
:post1 :postedOn :blog1, e5
:user1 :age “28”, e6
:product1 rdf:type :Item, n7

:SmartPhone rdf:type :Type, n8

:product1 :cost “400”, . . . } e10

Central to our notion of RDF warehouse is the disjunctive semantics of an AnS, mate-

rialized by the two levels of the union ([) in Definition 7.4. Each node and each edge

of an AnS populates I through an independent RDF query, and the resulting triples

are added to the union producing the AnS instance. Defining AnS nodes and edges

independently of each other is crucial for allowing our warehouse to:

• be an actual RDF graph (in contrast to tabular data, possibly with many nulls,

which would result if we attempted to fit the RDF data in a relational warehouse).

This addresses the requirement (i) from our motivating scenario (Section 7.1).

It also guarantees that the AnS instance can be shared, linked, and published

according to the best current Semantic Web practices;

• directly benefit from the semantic-aware SPARQL query answering provided by

SPARQL engines. This answers our semantic-awareness requirement (iii), and

also (iv) (ability to query the schema, notoriously absent from relational DWs);

• provide as many entry points for analysis as there are AnS nodes, in line with

the flexible, decentralized nature of RDF graph themselves (requirement (ii)). As

a consequence (see below), aggregation queries are very flexible, e.g., they can

aggregate one entity in relation with another (count restaurants at proximity of

landmarks, requirement (v) in Section 7.1);

• support AnS changes easily (requirement (ii)) since nodes and/or edge definitions

can be freely added to (removed from) the AnS, with no impact on the other

node/edge definitions, or their instances.

As an illustration of our point on heterogeneity ((i) above), consider the three users in

the original graph G (Figure 7.1) and their properties: :user1, :user2 and :user3 are part

of the :Blogger class in our AnS instance I (through n1’s query), although :user2 and

:user3 lack a name. However, those user properties present in the original graph, are

reflected by the AnS edges e3, e4 etc. Thus, RDF heterogeneity is accepted in the base

data and present in the AnS instance.

Defining analytical schemas. As customary in data analysis/warehouse, analysts are

in charge of defining the schema, with significant flexibility in our framework for doing

so. Typically, schema definition starts with the choice of a few concepts of interest, to

be turned into AnS nodes. These can come from the application, or be “suggested”

based on the RDF data itself, e.g., the most popular types in the dataset (RDF classes

together with the number of resources belonging to the class), which can be obtained

Chapter 7. RDF Graph Analysis 75

with a simple SPARQL query. Core concepts and edges may also be identified through

RDF summarization as in e.g., [Campinas12]. Further, SPARQL queries can be asked

to identify the most frequent relationships to which the resources of an AnS node par-

ticipate, or chains of relationships connecting instances of two AnS nodes etc. In this

incremental fashion, the AnS can be “grown” from a few nodes to a graph capturing

all information of interest; throughout the process, SPARQL queries can be leveraged

to assist and guide AnS design. Chapter 9 briefly describes this ongoing work.

Once the queries defining AnS nodes are known, the analyst may want to check that an

edge is actually connected to a node adjacent to the edge, in the sense: some resources in

the node extent also participate to the relationship defined by edge. Let n1, n2 2 N be

AnS nodes and en1!n2 2 E an edge between them. This condition can be easily checked

through a SPARQL query ensuring that:

ans(δ(n1)) \Πdomain(ans(δ(en1!n2))) 6= ;

Such criteria are a useful means for testing the quality of any analytical schema, proposed

by a data analyst or automatic schema creation methods.

Extensions. An AnS uses unary and binary BGP queries (introduced in Section 2.2.1)

to define its instance, as the union of all AnS node/class and edge/property instances.

This can be extended in a straightforward fashion to unary and binary (full) SPARQL

queries (allowing disjunction, filter, regular expressions, etc.) in the setting of RDF

analytics, and even to unary and binary queries from (a mix of) query languages (SQL,

SPARQL, XQuery, etc.), in order to analyze data integrated from distributed heteroge-

neous sources.

7.3 Analytical Queries

Data warehouse analysis summarizes facts according to relevant criteria into so-called

cubes. Formally, a cube (or analytical query) analyzes facts characterized by some

dimensions, using a measure. We consider a set of dimensions d1, d2, . . . , dn, such that

each dimension di may range over the value set {d1i , . . . , d
mi
i }; the Cartesian product of

all dimensions d1 ⇥ · · · ⇥ dn defines a multidimensional space M. To each tuple t in

this multidimensional space M corresponds a subset Ft of the analyzed facts, having for

each dimension di,1in, the value of t along di.

Ameasure is a set of values2 characterizing each analyzed fact f . The facts in Ft are sum-

marized by the cube cellM[t] by the result of an aggregation function ⊕ (e.g., count, sum,

average, etc.) applied to the union of the measures of the Ft facts: M[t] = ⊕(
S

f2Ft
vf),

where vf is a measure associated to each fact f .

An analytical query consists of two (rooted) queries and an aggregation function. The

first query, known as a classifier in traditional data warehouse settings, defines the

dimensions d1, d2, . . . , dn according to which the facts matching the query root will be

analyzed. The second query defines the measure according to which these facts will be

2It is a set rather than a single value, due to the structural heterogeneity of the AnS instance,
which is an RDF graph itself: each fact may have zero, one, or more values for a given measure.

Chapter 7. RDF Graph Analysis 76

summarized. Finally, the aggregation function is used for summarizing the analyzed

facts.

To formalize the connection between an analytical query and the AnS on which it is

asked, we introduce a useful notion:

Definition 7.6 (BGP Query to AnS Homomorphism).

Let q be a BGP query whose labeled directed graph is Gq = hN , E , λi, and let

S = hN 0, E 0, λ0, δ0i be an AnS. An homomorphism from q to S is a graph homomor-

phism h : Gq ! S, such that:

• for every n 2 N , λ(n) = λ0(h(n)), or λ(n) is a variable;

• for every en!n0 2 E : (i) eh(n)!h(n0) 2 E 0 and (ii) λ(en!n0) = λ0(eh(n)!h(n0)), or

λ(en!n0) is a variable;

• for every e1, e2 2 E , if λ(e1) = λ(e2) is a variable, then h(e1) = h(e2);

• for n 2 N and e 2 E , λ(n) 6= λ(e).

The above homomorphism is defined as a correspondence from the query to the AnS

graph structure, which preserves labels when they are not variables (first two items),

and maps all the occurrences of a given variable labeling different query edges to the

same label value (third item). Observe that a similar condition referring to occurrences

of a same variable labeling different query nodes is not needed, since by definition, all

occurrences of a variable in a query are mapped to the same node in the query’s graph

representation. The last item (independent of h) follows from the fact that the labeling

function of an AnS is injective. Thus, a query with a same label for a node and an edge

cannot have an homomorphism with an AnS.

Next we introduce our analytical queries. In keeping with the spirit (but not the re-

strictions!) of classical RDWs [Jarke99, Jensen10], a classifier defines the level of data

aggregation while a measure allows obtaining values to be aggregated using aggregation

functions.

Definition 7.7 (Analytical Query).

Given an analytical schema S = hN , E , λ, δi, an analytical query (AnQ) rooted in the

node r 2 N is a triple:

Q = hc(?x, ?d1, . . . , ?dn),m(?x, ?v),⊕i

where:

• c(?x, ?d1, . . . , ?dn) is a query rooted in the node rc of its graph Gc, with λ(rc) =?x.

This query is called the classifier of ?x w.r.t. the n dimensions ?d1, . . . , ?dn.

• m(?x, ?v) is a query rooted in the node rm of its graph Gm, with λ(rm) =?x. This

query is called the measure of ?x.

• ⊕ is a function computing a value (a literal) from an input set of values. This

function is called the aggregator for the measure of ?x w.r.t. its classifier.

Chapter 7. RDF Graph Analysis 77

• For every homomorphism hc from the classifier to S and every homomorphism hm
from the measure to S, hc(rc) = hm(rm) = r holds.

The last item above guarantees the “well-formedness” of the analytical query, that is:

the facts for which we aggregate the measure are indeed those classified along the desired

dimensions. From a practical viewpoint, this condition can be easily and naturally guar-

anteed by giving explicitly in the classifier and the measure either the type of the facts to

analyze, using ?x rdf:type λ(r), or a property describing those facts, using ?x λ(er!n) o

with er!n 2 E . As a result, since the labels are unique in an AnS (its labeling function

is injective), every homomorphism from the classifier (respectively the measure) to the

AnS does map the query’s root node labeled with ?x to the AnS’s node r.

Notice that the above formalism allows the use of a classifier query c(?x) with zero

dimensions. Such a query can result from the application of typical cube operation

discussed in Section 7.5. As a corner case, using a classifier without dimensions in an

analytical query permits the analysis of unclassified sets of facts.

Example 7.8 (Analytical Query).

The query below asks for the number of sites where each blogger posts, classified by the

blogger’s age and city:

hc(?x, ?y1, ?y2),m(?x, ?z), counti

where the classifier and measure queries are defined by:

c(?x, ?y1, ?y2) :- ?x :age ?y1, ?x :livesIn ?y2

m(?x, ?z) :- ?x :wrotePost ?y, ?y :postedOn ?z

The semantics of an analytical query is:

Definition 7.9 (Answer Set of an AnQ).

Let S be an analytical schema, whose instance I is defined w.r.t. an RDF graph G. And

let Q = hc(?x, ?d1, . . . , ?dn),m(?x, ?v),⊕i be an analytical query against S. The answer

set of Q against I, denoted ans(Q, I), is:

ans(Q, I) = {hdj1, . . . , d
j
n,⊕(qj(I))i | hxj , dj1, . . . , d

j
ni 2 c(I)

and qj is defined as qj(?v) :- m(xj , ?v)}

assuming that each value returned by qj(I) is of (or can be converted by the SPARQL

rules [W3C13] to) the input type of the aggregator ⊕. Otherwise, the answer set is

undefined.

In other words, the analytical query returns each tuple of dimension values found in the

answer of the classifier query, together with the aggregated result of the measure query.

The answer set of an AnQ can thus be represented as a cube of n dimensions, holding

in each cube cell the corresponding aggregate measure. In the following, we focus on

analytical queries whose answer sets are not undefined.

Chapter 7. RDF Graph Analysis 78

Example 7.10 (Analytical Query Answer).

Consider the query in Example 7.8, over the AnS in Figure 7.2. Some triples from

the instance of this analytical schema were shown in Example 7.5. The classifier query’

answer set is:

{ h :user1, “28”, :Madrid i, h :user3, “35”, :New York i }

while that of the measure query is:

{h :user1, :blog1 i, h :user1, :blog2 i, h :user2, :blog2 i, h :user3, :blog2 i}

Aggregating the blogs among the classification dimensions leads to the AnQ answer:

{ h “28”, :Madrid,2 i, h “35”, :New York,1 i }

For the sake of simplicity, we assume that an analytical query has only one measure.

However, this can be easily relaxed, by introducing a set of measure queries with an

associated set of aggregation functions.

7.4 Analytical Query Answering

The view-based definition of the warehouse AnS leaves open two concrete implementa-

tions of the warehouse. First, one can materialize (populate) the node and edge views, in

the spirit of an ETL process; analytical queries are then evaluated over the materialized

warehouse (as was done in Example 7.10). Alternatively, one could omit materialization

and rewrite analytical queries using the views at runtime, following a mediator approach.

We consider next such practical strategies for AnQ answering.

The AnS materialization approach. The simplest method consists of materializing

the instance of the AnS (Definition 7.4) and storing it within an RDF data management

system (or RDF-DMS, for short); recall that the AnS instance is an RDF graph itself

defined using GAV views. Then, to answer an AnQ, one can use the RDF-DMS to

process the classifier and measure queries, and the final aggregation. While effective,

this solution has the drawback of storing the whole AnS instance; moreover, this instance

may need maintenance when the analyzed RDF graph changes.

The AnQ reformulation approach. To avoid materializing and maintaining the AnS

instance, we consider an alternative solution. The idea is to rewrite the AnQ using the

GAV views of the AnS definition, so that evaluating the reformulated query returns

exactly the same answer as if materialization was used. Using query rewriting, one can

store the original RDF graph into an RDF-DMS, and use this RDF-DMS to answer the

reformulated query.

Our reformulation technique below translates standard query rewriting using GAV views

[Halevy01] to our RDF analytical setting.

Chapter 7. RDF Graph Analysis 79

Definition 7.11 (AnS Reformulation of a Query).

Given an analytical schema S = hN , E , λ, δi, a BGP query q(x̄) :- t1, . . . , tm whose graph

is Gq = hN 0, E 0, λ0i, and the non-empty set H of all the homomorphisms from q to S,

the reformulation of q w.r.t. S is the union of join queries:

qonS =
[

h2H

qonh (x̄) :-

m̂

i=1

qi(x̄i)

such that:

• for each triple ti 2 q of the form s rdf:type λ0(ni),

qi(x̄i) in qonh is defined as qi = δ(h(ni)) and x̄i = s;

• for each triple ti 2 q of the form s λ0(ei) o,

qi(x̄i) in qonh is defined as qi = δ(h(ei)) and x̄i = s, o.

This definition states that for a BGP query stated against an AnS, the reformulated

query amounts to translating all its possible interpretations w.r.t. the AnS (modeled

by all the homomorphisms from the query to the AnS) into a union of join queries

modeling them. The important point is that these join queries are defined onto the

RDF graph over which the AnS is wrapped. Also recall that we assume an implicit

renaming of the non-distinguished variables was applied to the join query, prior to its

creation (Section 2.2.2).

Example 7.12 (AnS Reformulation of a Query).

Let q(?x, ?y1) be a BGP query over the AnS in Figure 7.2.

q(?x, ?y1) :- ?x rdf:type :Blogger, ?x :acquaintedWith ?y1

The first atom ?x rdf:type :Blogger in q is of the form s rdf:type λ(n1), for the node n1.

Consequently, qonS contains as a conjunct the query:

q(?x) :- ?x rdf:type :Person, ?x :wrote ?y, ?y :inBlog ?z

obtained from δ(n1) in Table 7.1.

The second atom in q, ?x :acquaintedWith ?y is of the form s λ(e1) o for the edge e1 in

Figure 7.2, while the query defining e1 is: q(?x, ?y) :- ?z rdfs:subPropertyOf :knows, ?x ?z ?y.

As a result, qonS contains the conjunct:

q(?x, ?y1) :- ?z1 rdfs:subPropertyOf :knows, ?x ?z1 ?y1

Thus, the reformulated query amounts to:

qonS (?x, ?y1) :- ?x rdf:type :Person, ?x :wrote ?y, ?y :inBlog ?z,

?z1 rdfs:subPropertyOf :knows, ?x ?z1 ?y1

Chapter 7. RDF Graph Analysis 80

which can be evaluated directly on the graph G in Figure 7.1.

Theorem 7.13 states how BGP query reformulation w.r.t. an AnS can be used to answer

analytical queries correctly.

Theorem 7.13 (AnQ Reformulation-based Answering).

Let S be an analytical schema, whose instance I is defined w.r.t. an RDF graph G.

Let Q = hc(?x, ?d1, . . . , ?dn),m(?x, ?v),⊕i be an analytical query against S, conS be the

reformulation of Q’s classifier query against S, and mon

S be the reformulation of Q’s

measure query against S. We have:

ans(Q, I) = { hdj1, . . . , d
j
n,⊕(qj(G1))i | hxj , dj1, . . . , d

j
ni 2 conS (G

1)

and qj is defined as qj(?v) :- mon

S (x
j , ?v) }

assuming that each value returned by qj(G1) is of (or can be converted by the SPARQL

rules [W3C13] to) the input type of the aggregator ⊕.

Otherwise, the answer set is undefined.

The theorem states that in order to answer Q on I, one first reformulates Q’s classifier

into conS and answers it directly against G (not against I as in Definition 7.9): this is

how reformulation avoids materializing I. Then, for each tuple hxj , dj1, . . . , d
j
ni returned

by the classifier, the following steps are applied: instantiate the reformulated measure

query mon

S with the fact xj , leading to the query qj ; answer the latter against G; finally,

aggregate its results through ⊕.

Appendix A.7 reports the proof for Theorem 7.13.

The trade-offs between materialization and reformulation have been thoroughly analyzed

in the literature [Jarke99]; we leave the choice to the RDF warehouse administrator.

7.5 On-Line Analytical Processing on RDF Graphs

On-Line Analytical Processing (OLAP) [OLA] technologies enhance the abilities of data

warehouses (so far, mostly relational) to answer multi-dimensional analytical queries.

The analytical model we introduced is specifically designed for graph-structured, het-

erogeneous RDF data. In this section, we demonstrate that our model is able to express

RDF-specific counterparts of all the traditional OLAP concepts and tools known from

the relational DW setting.

Typical OLAP operations allow transforming a cube into another. In our framework,

a cube corresponds to an AnQ; for instance, the query in Example 7.8 models a bi-

dimensional cube on the warehouse related to our sample AnS in Figure 7.2. Thus, we

model traditional OLAP operations on cubes as AnQ rewritings, or more specifically,

rewritings of extended AnQs which we introduce below.

Definition 7.14 (Extended AnQ).

As in Definition 7.7, let S be an AnS, and ?d1, . . . , ?dn be a set of dimensions, each

ranging over a non-empty finite set Vi,1in. Let Σ be a total function over {?d1, . . . , ?dn}

Chapter 7. RDF Graph Analysis 81

associating to each ?di, either {?di} or a non-empty subset of Vi. An extended analytical

query Q is defined by a triple:

Q :- hcΣ(?x, ?d1, . . . , ?dn),m(?x, ?v),⊕i

where (as in Definition 7.7) c is a classifier and m a measure query over S, ⊕ is an

aggregation operator, and moreover:

cΣ(?x, ?d1, . . . , ?dn) =
S

(χ1,...,χn)2Σ(?d1) ⇥ ...⇥Σ(?dn)
c(?x, χ1, . . . , χn)

In the above, the extended classifier cΣ(?x, ?d1, . . . , ?dn) is the set of all possible classifiers

obtained by substituting each dimension variable ?di with a value in Σ(?di). The function

Σ is introduced to constrain some classifier dimensions, i.e., it plays the role of a filter-

clause restricting the classifier result. The semantics of an extended analytical query

is easily derived from the semantics of a standard AnQ (Definition 7.9) by replacing

the tuples from c(I) with tuples from cΣ(I). In other words, an extended analytical

query can be seen as a union of a set of standard AnQs, one for each combination of

values in Σ(?d1), . . . ,Σ(?dn). Conversely, an analytical query corresponds to an extended

analytical query where Σ only contains pairs of the form (?di, {?di}).

We can now define the classical slice and dice OLAP operations in our framework:

Slice. Given an extended query Q = hcΣ(?x, ?d1, . . . , ?dn), m(?x, v), ⊕i, a slice opera-

tion over a dimension ?di with value :val returns the extended query

hcΣ0(?x, ?d1, . . . , ?dn),m(?x, ?v),⊕i, where Σ0 = (Σ \ { (?di,Σ(?di)) })[{ (?di, {:val}) }.

The intuition is that slicing restricts an aggregation dimension to one of its domain

values.

Example 7.15 (Slice).

Let Q be the extended query corresponding to the query-cube defined in Example 7.8,

that is: hcΣ(?x, ?y1, ?y2),m(?x, ?z), counti, Σ = { (?y1, {?y1}), (?y2, {?y2}) } (the clas-

sifier and measure are as in Example 7.8). A slice operation on the age dimension ?y1
with value “35” results in replacing the extended classifier of Q with cΣ0(?x, ?y1, ?y2) =

{ c(?x, “35”, ?y2) } where Σ0 = Σ \ { (?y1, {?y1}) } [{ (?y1, {“35”}) }.

Dice. Similarly, a dice operation on Q over dimensions {?di1 , . . . , ?dik } and correspond-

ing sets of values { Si1 , . . . , Sik }, returns the query hcΣ0(?x, ?d1, . . . , ?dn),m(?x, ?v),⊕i,

where Σ0 = (Σ \
Sik

j=i1
{ (?dj ,Σ(?dj)) }) [

Sik
j=i1

{ (?dj , Sj) }.

Intuitively, dicing restricts a set of aggregation dimensions to subsets of values of their

respective domains.

Chapter 7. RDF Graph Analysis 82

Example 7.16 (Dice).

Consider again the initial cube Q from Example 7.8 and a dice operation on both age

and location dimensions with values {“28”} for ?y1 and { :Madrid, :Kyoto } for ?y2. The

dice operation replaces the extended classifier of Q with

cΣ0(?x, ?y1, ?y2) = { c(?x, “28”, :Madrid), c(?x, “28”, :Kyoto) }

where Σ0 = Σ\{ (?y1, {?y1}), (?y2, {?y2}) }[{ (?y1, {“28”}), (?y2, {:Madrid, :Kyoto}) }.

Drill-in and drill-out. These operations consist of adding to, respectively removing

from, the classifier a dimension. Rewritings for drill operations can be easily formalized.

We directly exemplify below a drill-in.

Example 7.17 (Drill-in).

Consider the cube Q from Example 7.8, and a drill-in on the age dimension. The

drill-in rewriting produces the query Q = hc0Σ0(?x, ?y2),m(?x, ?z), counti with Σ0 =

{ (?y2, {?y2}) } and c0(?x, ?y2) =?x :livesIn ?y2.

Notice that a second drill-in applied to the obtained query in Example 7.17 leads to a

classifier query c(?x) with no dimensions. This is equivalent to the use of ALL in typical

OLAP drill-in operations.

Dimension hierarchies. Typical relational warehousing scenarios feature hierarchical

dimensions, e.g., a value of the country dimension corresponds to several regions, each of

which contains many cities etc. Such hierarchies were not considered in our framework

thus far3.

To capture hierarchical dimensions, we introduce dedicated built-in properties to model

the nextLevel relationship among parent-child dimensions in a hierarchy. For illustra-

tion, consider the addition of a new :State node and a new nextLevel edge to the AnS

in Figure 7.2. Below, only part of that AnS is shown, highlighting the new nodes and

edges with dashed lines:

n1 :Bloggern2 :Name

e2 :identifiedBy

n3 :City

e3 :livesInn9 :State

e11 :nextLevel n4 :BlogPost

e4 :wrotePost
n5 :Site

e5 :postedOn

n6 :Value
e6 :age

In a similar fashion one could use the :nextLevel property to support hierarchies among

edges. For instance, relationships such as isFriendsWith and isCoworkerOf can be rolled

up into a more general relationship knows etc.

Based on dimension hierarchies, roll-up/drill-down operations correspond to adding

to/removing from the classifier, triple atoms navigating such :nextLevel edges.

3Dimension hierarchies should not be confused with the hierarchies built using the predefined
RDF(S) properties, such as rdfs:subClassOf, e.g., in Figure 7.1.

Chapter 7. RDF Graph Analysis 83

Example 7.18 (Roll-up).

Recall the query in Example 7.8. A roll-up along the :City dimension to the :State level

yields hc0Σ0(?x, ?y1, ?y3),m(?x, ?z), counti, where:

c0Σ0(?x, ?y1, ?y3) :- x :age ?y1, x :livesIn ?y2, ?y2 :nextLevel ?y3.

The measure component remains the same, and Σ0 in the rolled-up query consists of the

obvious pairs of the form (?d, {?d}). Note the change in both the head and body of the

classifier, due to the roll-up.

7.6 Summary

In this chapter we presented a full redesign, from the bottom up, of the core data an-

alytics concepts and tools, leading to a complete formal framework for warehouse-style

analytics on RDF data; in particular, this framework is especially suited to heteroge-

neous, semantic-rich corpora of Linked (Open) Data. We highlighted the requirements

of modern-day applications using RDF data through a motivating scenario (Section 7.1).

We addressed these requirements as follows:

• We devised a full-RDF warehousing approach, where the base data and the ware-

house extent are RDF graphs. This answers to the needs (i), (iii) and (iv) stated

in the motivating scenario (Section 7.1).

• We introduced RDF Analytical Schemas (AnS), which are graphs of classes and

properties themselves (Section 7.2), having nodes (classes) connected by edges

(properties) with no single central concept (node). This contrasts with the typical

RDW star or snowflake schemas, and caters to requirement (ii) in the motivating

scenario. The core idea behind many-node analytical schemas is to define each

node (respectively edge) by means of an independent query over the base data.

• We define Analytical Queries (AnQ) over our decentralized analytical schemas

(Section 7.3). Such queries are highly flexible in the choice of measures and clas-

sifiers (requirement (v)), while supporting all the classical analytical cubes and

operations, i.e., slice, dice etc. (Section 7.3).

We fully implemented our approach in an operational prototype. We empirically demon-

strate its interest and performance in the next chapter.

Chapter 8

The WaRG RDF Analytics

Platform

We implemented the concepts and algorithms presented in the previous chapter within our

WaRG tool [Colazzo13a]. In this chapter, we present experiments carried on this tool,

demonstrating the practical interest and effectiveness of the RDF analytics framework

proposed in Chapter 7.

Section 8.1 outlines our implementation and experimental settings.

We describe experiments on I materialization in Section 8.2, and on AnQ evaluation in

Section 8.3. Next, we study the performance of query reformulation in Section 8.4 and

OLAP operations in Section 8.5, then we conclude.

8.1 Implementation and Settings

We implemented our RDF analytics approach within the WaRG (for Warehousing RDF

Graphs) tool, demonstrated in [Colazzo13a]. WaRG is built on top of kdb+ v3.0 (64

bits) [kdb], an in-memory column DBMS used in decision-support analytics. kdb+ pro-

vides arrays (tables), which can be manipulated through the q interpreted programming

language. We store in kdb+ the RDF graph G, the AnS definitions, as well as the AnS

instance, when we choose to materialize it. We translate BGP queries into q programs

that kdb+ interprets; any engine capable of storing RDF and processing conjunctive

RDF queries could be easily used instead.

Data organization. Figure 8.1 illustrates our data layout in kdb+. The URIs within

the RDF dataset are encoded using integers; the mapping is preserved in a q dictionary

data structure, named dict. The RDF graph saturation G1 (Section 2.2.1), is stored in

the db table. Analytical schema definitions are stored as follows. The asch table stores

the analytical schema triples: λ(n) λ(en!n0) λ(n0). The separate query dict dictionary

maps the labels λ for nodes and edges to their corresponding queries δ. Finally, we use

the dw table to store the AnS instance I, or several tables of the form nX and eY if a

partitioned-table storage is used (see Section 8.2). While query dict and db suffice to

84

Chapter 8. The WaRG RDF Analytics Platform 85

Tables used for AnS materialization

Tables used for AnQ reformulation

dict
(URI encodings)

uri[str], val[int]

AnS instance

dw
(DW instance: I)

s[int], p[int], o[int]
OR

nX
(I nodes)

s[int]

eY
(I edges)

s[int], o[int]

AnS definition

asch
(DW schema: AnS)

s[int], p[int], o[int]

query dict
(AnS nodes/edges)

λ[int], δ[str]

RDF graph

db
(RDF/S triples)

s[int], p[int], o[int]

Figure 8.1: Data layout of the RDF warehouse.

G size schema size dictionary G1 size

3.4⇥ 107 triples, 5.5⇥ 103 triples, 7⇥ 106 3.8⇥ 107

4.4 GB 746 KB entries triples

Table 8.1: Dataset characteristics.

create the instance, we store the analytical schema definition in asch to enable checking

incoming analytical queries for correctness w.r.t. the AnS.

kdb+ stores each table column independently, and does not have a database-style query

optimizer. It is quite fast since it is an in-memory system; at the same time, it relies

on the q programmer’s skills for obtaining an efficient execution. We try to avoid low-

performance formulations of our queries in q, but further optimization is possible and

more elaborate techniques (e.g., cost-based join reordering etc.) would further improve

performance.

Dataset. Our experiments used the Ontology and Ontology Infobox datasets from the

DBpedia Download 3.8; the data characteristics are summarized in Table 8.1. For our

scalability experiments (Section 8.2), we replicated these datasets to study scalability in

the database size.

Hardware. The experiments ran on an 8-core DELL server at 2.13 GHz with 16 GB of

RAM, running Linux 2.6.31.14. All times we report are averaged over five executions.

Chapter 8. The WaRG RDF Analytics Platform 86

ArtistScientist (2)

Agent (1)

Artist (1)

Award (1)

Company (1)

Currency (1)

EthnicGroup (1)

EduInstitution (1)

GovType (1)

Ideology (1)

Language (1)

Non-ProfitOrg (1)

Organisation (1)

Person (1)

PersonFunction (1)

PopulatedPlace (1)

ProgLanguage (1)

Scientist (1)

Software (1)

Work (1)

WrittenWork (1)

Double (2)

Year (2)

String (2)

affiliation (3)

birthPlaceOf (1)

contributeWork (3)

headOf (3)

personFunction (3)

placeLanguage (3)

relatedCompany (3)

relatedPerson (3)

relatedWork (3)

workLanguage (3)

workRltdPerson (3)

areaTotal (1)

birthPlace (1)

deathPlace (1)

occupation (1)

populationTotal (1)

starring (1)

writer (1)

log10(number of results)/10

evaluation using dw (s)

evaluation using partitioned store (s)

Figure 8.2: Evaluation time (s) and number of results for AnS node queries (left)
and edge queries (right).

8.2 Analytical Schema Materialization

Loading the (unsaturated) G took about 3 minutes, and computing its full saturation G1

22 minutes. We designed an AnS of 26 nodes and 75 edges, capturing a set of concepts

and relationship of interest. AnS node queries have one or two atoms, while edge queries

consist of one to three atoms.

We considered two ways of materializing the instance I. First, we used a single table

(dw in Figure 8.1). Second, inspired from RDF stores such as [Husain11], we tested

a partitioned data layout for I as follows. For each distinct node (modeling triples of

the form s rdf:type λX), we store a table with the subjects s declared of that type;

this leads to a set of tables denoted nX (for node), with X 2 [1, 26]. Similarly, for

each distinct edge (s λY o) a separate table stores the corresponding triple subjects and

objects, leading to the tables eY with Y 2 [1, 75].

Figure 8.2 shows for each node and edge query (labeled on the y axis by λ, chosen based

on the name of a “central” class or property in the query):

(i) the number of query atoms (in parenthesis next to the label),

Chapter 8. The WaRG RDF Analytics Platform 87

 38 x 10^6 71 x 10^6 104 x 10^6 137 x 10^6 169 x 10^6
0

50

100

150

200

250

300
dictionary size (number of triples / 10^6)

instance size (number of triples / 10^6)

time to create instance table (s)

time to create partitioned tables (s)

initial graph size (number of triples)

Figure 8.3: I materialization time vs. I size.

(ii) the number of query results (we show log10(#res)/10 to improve readability),

(iii) the evaluation time when inserting into a single dw table,

(iv) the time when inserting into the partitioned store.

For 2 node queries and 57 edge queries, the evaluation time is too small to be visible

(below 0.01 s), and we omitted them from the plots. The total time to materialize the

instance I (1.3⇥ 107 triples) was 38 seconds.

Scalability. We created larger RDF graphs such that the size of I would be multiplied

by a factor of 2 to 5, with respect to the I obtained from the original graph G. The

corresponding I materialization time are shown in Figure 8.3, demonstrating linear

scale-up w.r.t. the data size.

8.3 Analytical Query Answering over I

We consider a set of AnQs, each adhering to a specific query pattern. A pattern is

a combination of: (i) the number of atoms in the classifier query (denoted c), (ii) the

number of dimension variables in the classifier query (denoted v), and (iii) the number of

atoms in the measure query (denoted m). For instance, the pattern c5v4m3 designates

queries whose classifiers have 5 atoms, aggregate over 4 dimensions, and whose measure

queries have 3 atoms. We used 12 distinct patterns for a total of 1,097 queries.

The graph at the top of Figure 8.4 shows for each query pattern, the number of queries in

the set (in parenthesis after the pattern name), and the average, minimum and maximum

number of query results. The largest result set (for c4v3m3) is 514, 240, while the second

highest (for c1v1m3) is 160, 240. The graph at the bottom of Figure 8.4 presents the

average, minimum and maximum query evaluation times among the queries of each

pattern.

Figure 8.4 shows that query result size (up to hundreds of thousands) is the most

strongly correlated with query evaluation time. Other parameters impacting the evalua-

tion time are the number of atoms in the classifier and measure queries, and the number

Chapter 8. The WaRG RDF Analytics Platform 88

c
1

v
1

m
1

c
1

v
1

m
2

c
1

v
1

m
3

c
2

v
1

m
3

c
3

v
2

m
3

c
4

v
3

m
3

c
5

v
1

m
3

c
5

v
2

m
3

c
5

v
3

m
3

c
5

v
4

m
1

c
5

v
4

m
2

c
5

v
4

m
3

0

1

10

average minimum maximum

c1v1m1
(73)

c1v1m2
(53)

c1v1m3
(62)

c2v1m3
(71)

c3v2m3
(76)

c4v3m3
(130)

c5v1m3
(144)

c5v2m3
(216)

c5v3m3
(144)

c5v4m1
(28)

c5v4m2
(64)

c5v4m3
(36)

0

1

10

100

1,000

10,000

100,000

e
v
a
lu

a
ti
o

n
 t
im

e
 (

s
)

n
u
m

b
e
r

o
f

re
s
u
lt
s

Figure 8.4: AnQ statistics for query patterns.

0

2

4

6

8

0

2

4

6

8 instance table

partitioned store

e
v
a
lu

a
ti
o
n
 t
im

e
 (

s
)

c1v1m1 c5v4m3

instance size (number of triples)

Figure 8.5: AnQ evaluation time over large datasets.

of aggregation variables. These parameters are to be expected in an in-memory execu-

tion engine such as kdb+. Observe the moderate time increase with the main query size

metric (the number of atoms); this demonstrates robust performance even for complex

AnQs.

Figure 8.5 shows the average evaluation time for queries belonging to the sets c1v1m1

and c5v4m3 over increasing tables, using the instance triple table and the partitioned

store implementations. In both cases the evaluation time increases linearly with the size

of the dataset. The graph shows that the partitioned store brings a modest speed-up

(about 10%); for small queries, the difference is unnoticeable. Thus, without loss of

generality, in the sequel we consider only the single-table dw option.

Finally, we tested the impact of the I data layout on the query evaluation time. We

compared the times obtained when I triples are stored in a single dw relation, with

the times when a partitioned store is used. We found that the partitioned store brings

Chapter 8. The WaRG RDF Analytics Platform 89

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
1

0

Q
1
1

Q
1

2

Q
1

3

Q
1

4

Q
1

5

Q
1

6

Q
1

7

Q
1

8

Q
1

9

Q
2

0

Q
2

1

Q
2

2

Q
2

3

Q
2

4

Q
2

5

Q
2

6

Q
2

7

Q
2

8

Q
2

9

Q
3

0

Q
3

1

Q
3

2

0.1

1

10
reformulated – evaluation time over db (s)
evaluation time over dw (s)

number

of results
100 to 500 500 to 800 1,300 to 7,000 12,300 to 76,200 >100k

Figure 8.6: AnQ reformulation.

a modest speed-up (about 10%); for small queries, the difference is unnoticeable. This

small difference is due to the efficient data access of kdb+ even when I is not partitioned

and thus access is not selective. Thus, without loss of generality, in the sequel we consider

only the single-table dw option.

8.4 Query Reformulation

We now study the performance of AnQ evaluation through reformulation (Section 7.4),

through a set of 32 queries matching the pattern c1v1m1.

Figure 8.6 shows for each query, the number of answers (under the chart), the evalu-

ation time over db when reformulated and the evaluation time over I. As expected,

reformulation-based evaluation is slower, because reformulated queries have to re-do

some of the AnS materialization work. It turns out that the queries for which the

difference is largest (such as Q15, Q16 or Q19) are those whose reformulation against

the AnS definition have the largest numbers of atoms, one or more of which are of the

form x y z. Evaluating complex joins including those of this form (matching all dw) is

expensive, compared to evaluating them on the materialized I. However, the extra-time

incurred by query reformulation can be seen as the price to pay to avoid AnS’s instance

maintenance time upon base data updates.

8.5 OLAP Operations

We now study the performance of OLAP operations on analytical queries (Section 7.5).

Slice and dice. In Figure 8.7, we consider three c5v4m3 queries: Q1 having a small

result size (455), Q2 with a medium result size (1, 251) and Q3 with a large result size

(73, 242). For each query we perform a slice (dice) by restricting the number of answers

for each of its 4 dimension variables, leading to the OLAP queries Q1s1 to Q1s4, Q1d1 to

Chapter 8. The WaRG RDF Analytics Platform 90

Q
1

Q
1

s
1

Q
1

s
2

Q
1

s
3

Q
1

s
4

Q
1

d
1

Q
1

d
2

Q
1

d
3

Q
1

d
4

Q
2

Q
2

s
1

Q
2

s
2

Q
2

s
3

Q
2

s
4

Q
2

d
1

Q
2

d
2

Q
2

d
3

Q
2

d
4

Q
3

Q
3

s
1

Q
3

s
2

Q
3

s
3

Q
3

s
4

Q
3

d
1

Q
3

d
2

Q
3

d
3

Q
3

d
4

0

1

2

3

4

5

6

7

log10 (number of answers)

evaluation time (s)

Figure 8.7: Slice and dice over AnQs.

Q1d4 and similarly for Q2 and Q3. The figure shows that the slice/dice running time is

strongly correlated with the result size, and is overall small (under 2 seconds in many

cases, 4 seconds for Q3 slice and dice queries having 104 results).

Drill-in and drill-out. The queries following the patterns c5v1m3, c5v2m3, c5v3m3

and c5v4m3 were chosen starting from the ones for c5v4m3 and eliminating one dimen-

sion variable from the classifier (without any other change) to obtain c5v3m3; removing

one further dimension variable yielded the c5v2m3 queries etc. Recalling the definitions

of drill-in and drill-out (Section 7.5), it follows that the queries in c5vnm3 are drill-ins of

c5v(n+1)m3 for 1n3, and conversely, c5v(n+1)m3 result from drill-out on c5vnm3.

Their evaluation times appear in Figure 8.4.

8.6 The WaRG Tool

As mentioned before, WaRG currently runs as an application on top of kdb+ [kdb] v3.0.

kdb+ stores the RDF graph, AnS and I, while BGP/AnQ queries are translated to the

query language supported by kdb+, namely q. The WaRG system is provided with a

graphic user interface (GUI), implemented in Java 1.6 and based on the Prefuse [Heer05]

toolkit for visualizing and interacting with data. A video teaser and screenshots can

be found at https://team.inria.fr/oak/warg. The WaRG tool allows doing the

following:

(1) The user can select an RDF graph to analyze. The graph triples (or subsets, for

large graphs) are displayed by the GUI giving a first glimpse at the data.

(2) The user may choose an AnS from a set of such schemas, created beforehand for

the respective graph, or design one from scratch with the help of our AnS editor GUI.

Once the AnS is selected, WaRG materializes its instance I over which the user can

pose analytical queries. Figure 8.8(a) shows a sample analytical schema viewed within

our GUI.

(2’) We are currently adding to WaRG a schema recommendation feature (part of our

ongoing work), e.g., proposing as AnS nodes the classes most frequent in the input graph

etc.This extension can be seen as an alternative to step (2).

Chapter 8. The WaRG RDF Analytics Platform 91

(a) AnS view. (b) Node information. (c) Edge information.

(d) AnQ view.

Figure 8.8: WaRG visualization of a sample AnS and AnQ.

(3) On the chosen AnS, the user may select through the GUI an AnS node (class) or

AnS edge (property), see the query defining it, and visualize its extent, i.e., the RDF

resources whose type is the selected AnS class, respectively the resource pairs connected

by the AnS property. This retrieves from kdb+ the corresponding query answer; a

bounded subset of this answer is displayed by the GUI (Figures 8.8(b) and 8.8(c)).

(4) The user may choose a previously defined AnQ over the current AnS, or edit a new

query. The GUI’s point-and-click interface allows incrementally designing the classifier

and measure BGP queries in an AnQ. The user must first select an AnS node, desig-

nating the set of facts to be analyzed. This leads to all eligible edges (outgoing from

the selected node and having non-empty extents) to become highlighted. The user can

continue forming the query by selecting one such edge, which leads to highlighting its

target node; and then selecting from amongst the highlighted nodes and edges etc. The

query is complete after its output variables are also chosen. This process ensures that an

AnQ is over connected nodes from the AnS. An AnQ is specified as one BGP classifier

and one BGP measure (starting from the same initial node – set of facts), while the

aggregation operation (sum, max etc.) is selected from a drop-down list. Figure 8.8(d)

shows the GUI’s visualization for an analytical query (similar to the one in Figure 7.8),

where the classifier is depicted in blue, the measure in green, while the common set of

facts is the node x (orange). Each node in this query graph represents a variable, whose

type appears after the colon.

Chapter 8. The WaRG RDF Analytics Platform 92

(5) The user can trigger the evaluation of the chosen AnQ, again delegated to kdb+,

and inspect the results. We are currently working on implementing several visualization

options for exploring these results.

8.7 Summary

Our experiments demonstrate the feasibility of our full RDF warehousing approach,

which exploits standard RDF functionalities such as triple storage, conjunctive query

evaluation, and reasoning. We showed robust scalable performance when loading and

saturating G, and building I in time linear in the input size (even for complex, many-joins

node and edge queries). Finally, we proved that OLAP operations can be evaluated quite

efficiently in our RDF cube (AnQ) context. While further optimizations are possible,

our experiments confirmed the interest and good performance of our proposed all-RDF

Semantic Web warehousing approach.

Concluding Remarks

Data warehouse models and techniques have had a strong impact on the usages and us-

ability of data. In this work, we proposed the first approach for specifying and exploiting

an RDF data warehouse, notably by

(i) defining an analytical schema that captures the information of interest, and

(ii) formalizing analytical queries (or cubes) over the analytical schema.

Importantly, instances of analytical schemas are RDF graphs themselves, which permits

exploiting the semantics and heterogeneous structure (e.g., jointly query the schema and

the data) that make RDF data interesting.

This novel framework for RDF analytics, can be efficiently deployed on top of any

RDF data management platform, to extend it with analytic capabilities. We fully im-

plemented our approach in an operational prototype and empirically demonstrated its

interest and performance.

Compared to other works in the literature, our approach is not focused on a specific

vocabulary like [Etcheverry12, W3C14d]. Also, in contrast to [Nebot12], in our work,

the analytical schema instance is an RDF graph itself thus seamlessly preserves the

heterogeneity, semantics, and ability to query the schema together with the data, present

in RDF.

Unlike the recent graph warehousing approaches [Zhao11, Bleco12], our warehouse is

built to handle heterogeneous graphs, and keep the data semantics, both central in RDF.

Moreover, our analytical queries provide more flexibility, by allowing diverse aggregation

functions.

Multidimensional modeling based on an object-oriented paradigm [Boukraâ13] bears

some similarities with our work, but it is not dedicated to Semantic Web data, and

more importantly, it does not allow defining analytical schema edges independently

from nodes. As we explained in Section 7.2, this independent definition is crucial in

meeting the RDF analytics requirement we identified in Section 7.1.

Our approach of separating grouping and aggregation in the analytical queries (by

the use of a classifier and a measure query) is in line with the MD-join operator

[Chatziantoniou01] for relational data warehouses.

93

Part II. Conclusive Remarks 94

The techniques for transforming OLAP queries into SPARQL, proposed by [Kämpgen13]

can be added to our framework in order to further optimize analytical query answer-

ing. Moreover, deploying our framework on an efficient SPARQL 1.1 [W3C13] platform

(featuring SQL-style grouping and aggregation) enables taking advantage both of its effi-

ciency and of the high-level, expressive, flexible RDF graph analysis concepts introduced

in this work.

Chapter 9

Conclusion

The expanding world of Semantic Web data is made truly valuable by the tools developed

for exploring and processing it. Handling the unstructured and semi-structured modern

day data, together with its potential for inferring new information is a challenge faced by

data management systems. In a context where data publication far exceeds the current

tools’ capacities for analyzing it, it is essential to find ways to take advantage of the

available technologies.

In this thesis we propose efficient algorithms and pertinent formalizations for handling

RDF data complexity, while still allowing easy portability to existing relational database

management systems. We analyze two critical problems, query answering over data

subject to semantic constraints and complex analytics on heterogeneous, semantic-rich

data.

9.1 Saturation vs. Reformulation

Ontology languages are used to add semantic constraints to RDF data. Such constraints

model implicit information that is expected to be included in the answers to queries. The

literature proposes two main approaches for querying data in the presence of semantic

constraints. The first and simplest approach is to alter the data by making explicit, all its

inferable information. The alternative is to build a new query that uses the constraints

to reshape the question in such a way as to obtain the correct set of answers.

Previous works have mostly viewed the two techniques as orthogonal problems and have

focused on improving either one or the other. In contrast we formalize a common setting

for comparing the two approaches, while also improving the state of the art for each.

Notably we propose a new data saturation algorithm that is robust to changes brought to

the data instance and schema. Also, we describe query reformulation for the considered

RDF fragment, which extends those in the literature by the inclusion of blank nodes.

The choice of RDF data fragment was made in an informed fashion, taking into account

the portability to relational database management systems. We implemented our al-

gorithms on top of such a systems and presented a thorough experimental comparison

of the two approaches. In particular we showed that the implementation on top of an

95

Chapter 9. Conclusion 96

RDBMS rivals the use of dedicated systems and is oftentimes more efficient. Moreover

our experimental comparison of the two approached quantifies their strengths and weak-

nesses, allowing a database administrator to make an informed choice between them.

The work in this thesis was focused on individually extending the saturation and re-

formulation approaches and comparing them. However, mixed approaches have also

been proposed in the literature. In [Urbani11] the authors leverage the benefits of both

forward and backward chaining, proposing a mixed approach that makes use of precom-

puted reasoning steps to reduce the number of query reformulations and consequently

its run time. The results of Section 5.6 could be extended to also compare saturation or

reformulation with such mixed approaches.

Improving query reformulation. Recall that some of our large-reformulation queries

could not be evaluated by the RDBMS (Figure 5.4). These reformulated queries present

a great number of common subexpressions that are evaluated multiple times in the

current implementation. Optimizing the current state-of-the-art query reformulation

language for the DB fragment is ongoing work as the topic of a separate PhD thesis.

9.2 RDF Analytics

Heterogeneity significantly complicates RDF data analytics. Existing works tackle the

problem by normalizing the data in the Extract Transform Load process, occasionally

also allowing null values and nesting. In contrast, we view heterogeneity as an essential

desired feature of RDF data, that should be propagated to the data warehouse storing it.

Moreover, we go beyond the classical star (or snowflake) data warehouse schemas, where

facts of a single kind can be analyzed based on a specified set of dimensions and measures.

In our analytical setting the facts, dimensions and measures are chosen at query run time.

This allows a great flexibility in the choice of analyses, in particular even enabling the

analysis of core concepts by means of other core concepts.

Notably, in our framework, the warehousing process does not change the structure of

the data. Hence, the RDF semantics are maintained and can even be used inside anal-

yses. In particular our setting facilitates querying the schema to find and analyze the

relationships between entities.

To the best of our knowledge, our framework is the first one to keep the data entirely

in RDF while still providing meaningful data analysis. In this thesis we demonstrated

both the theoretical benefits of such an approach, and its practicability.

Automatic analytical schema design. In our proposed framework, analytical schemas

are designed by the data analyst. This task may have daunting complexity, given the

very numerous alternative ways of choosing analytical schema nodes and edges. At the

same time, the choice of an analytical schema conditions (determines) any analysis that

may be subsequently performed, thus it is very important that the schema be carefully

chosen. In this context, one can devise a set of metrics characterizing the interest and

relevance of an analytical schema with respect to a given RDF dataset. Based on these

Chapter 9. Conclusion 97

metrics, a search algorithm can then be devised to identify schemas having good prop-

erties. This work has started in the group as part of a Master thesis and is ongoing at

the time of the writing.

Analytical queries as views. The OLAP operations described thus far were applied

on analytical queries and evaluated against the data warehouse instance. We are inter-

ested in improving performance of such operations by evaluating them directly on the

materialized results of previous analytical queries (significantly reducing the input data

and benefiting from the regular-structure analytical query results). We started analyzing

the situations where such “shortcuts” are applicable and devising concrete algorithms

for computing the results of an analytical query based on the previously materialized

results of another analytical query. This work has started and is ongoing, as part of a

distinct Master thesis.

9.3 Perspectives

In addition to the ongoing work mentioned above, we identify several avenues for po-

tential follow-up works. These mostly focus on: the optimization of the described tech-

niques; and the automation of data analysis.

Extending the RDF fragment and query language. The main contributions in

Part I relate to answering instance-level queries over the introduced DB fragment

of RDF. We see several paths for extending our algorithms, such as evaluating

both instance and schema-level queries, considering a larger set of entailment rules

and expanding the query language to also allow disjunctions and negations.

Benchmarking RDF Schema updates. Maintaining the data saturation after a

schema update may lead to diverse outcomes, namely altering from a few triples

to significant portions of the database. To our knowledge at this date no works

have proposed a benchmark for RDF Schema updates. Most works, as in our case,

make a best effort at illustrating the variety of outcomes that can occur. I am

interested in exploring a standardized approach to evaluate schema updates over

RDF data.

Dynamic choice of inference technique. The saturation thresholds introduced in

Section 5.6, can be extended to compare saturation-based query answering with

the optimized reformulation-based technique described above. These thresholds

allow the database administrator to make an informed choice regarding which

inference technique to adopt. However, a workload for computing such thresholds

is not always available. In particular, in the case of the Semantic Web, the interest

is to continuously add new data, infer new semantics and explore the available

data through queries. We are interested in leveraging the information gained

through the computation of thresholds to make the choice of inference technique

dynamically, at run-time, and benefit from both query answering approaches. For

this we envision a global system threshold that is adjusted as queries and updates

arrive. It may lead the system to saturate the data or to reformulate the queries.

By keeping track of the schema triples for which saturation was already applied,

Chapter 9. Conclusion 98

we can further optimize query reformulation to use only subparts of the schema,

while still returning the correct and complete query answers.

Parallel analytics. The broader area of data analytics, related to data warehousing,

albeit with a significantly extended set of goals and methods, is the target of very

active research now, especially in the context of massively parallel Map-Reduce

processing. We are interested in extending such techniques to our analytical

schemas and queries to further improve the deployment of the data warehouse

and analytical query evaluation. Efficient methods for deploying our analytical

schemas and evaluating analytical queries in such a parallel context are part of

our future work.

Integrating known vocabularies. TheW3C has proposed recommendations for pub-

lishing cube data on the Web [W3C14d]. Though orthogonal to our work, this topic

has a great potential for integration with our analytics framework. Therefore, ma-

nipulating such data within our framework is a venue worth exploring.

Code release. Finally, to increase the visibility of our analytics framework, we plan to

make a public version available to users that want to profit from the interactive

interface and the high potential for data analysis. Also, we envision expanding the

WaRG tool to be pluggable on top of multiple database backends.

Appendix A

Theorem Proofs

A.1 Proof of Theorem 4.2

For one direction ((), the proof is trivial as the rules of Table 2.3(d) are among those

defining db/.

For the converse direction ()), let us call a derivation of t any sequence of immediate

entailment rules that produces the entailed triple t, starting from db. Let us consider,

without loss of generality, a minimal derivation (i.e., in which removing a step of rule

application does not allow deriving t anymore). A derivation can be minimized by

gradually removing steps producing entailed triples that are not further reused in the

entailment sequence of t. We show for such a minimal derivation of an entailed triple t

that any step using a rule that is not in Table 2.3(d) can be replaced by a sequence of

steps using only rules from Table 2.3(d), leading to another derivation of t. Applying ex-

haustively the above replacement on the minimization of obtained derivations obviously

leads to a derivation of t using the rules in Table 2.3(d) only.

Consider a minimal derivation of t using the immediate entailment rule from Table 2.3(d):

s rdfs:subClassOf o, s1 rdf:type s `RDF s1 rdf:type o

While the triple s1 rdf:type s is either in db or produced by a rule from Table 2.3(d)

(only the rules in Table 2.3(d) produce such a triple), the triple s rdfs:subClassOf o may

result from the triples:

{s rdfs:subClassOf on, on rdfs:subClassOf on−1, . . . , o1 rdfs:subClassOf o} ✓ db

and n applications of the rule:

s rdfs:subClassOf o, o rdfs:subClassOf o1 `RDF s rdfs:subClassOf o1

99

Appendix A. Theorem Proofs 100

from Table 2.3(c) (only that rule produces triples of the form s rdfs:subClassOf o).

Observe that we do not have to consider the rules from Table 2.3(b) in a minimal

derivation. It is therefore easy to see that the application of:

s rdfs:subClassOf o, s1 rdf:type s `RDF s1 rdf:type o

in the derivation of t can be replaced by the following sequence:

s rdfs:subClassOf on, s1 rdf:type s `RDF s1 rdf:type on ,

on rdfs:subClassOf on−1, s1 rdf:type on `RDF s1 rdf:type on−1 ,

. . . ,

o1 rdfs:subClassOf o, s1 rdf:type o1 `RDF s1 rdf:type o .

The rest of the proof is omitted as it amounts to showing, similarly as above, that the

claim also holds for the three other immediate entailment rules of Table 2.3(d).

Appendix A. Theorem Proofs 101

A.2 Proof of Theorem 4.4

A close examination of the saturation rules exhibits producer-consumer dependencies

among rules. For instance, triples produced by the rule (4.1) can only be used to further

apply the same rule. Hence, rule (4.1) can only feed itself. One can similarly see that

rules (4.2) and (4.3) can only feed rule (4.1), and rule (4.4) can only feed itself plus rules

(4.2) and (4.3).

Given the two possible forms of instance-level triples, the saturation schemes based on

the above dependencies can be written, using regular expressions, as follows.

Instance-level triple Saturation scheme

s rdf:type o (4.1)⇤

s p o (4.4)⇤.((4.2) + (4.3)).(4.1)⇤

This said, we provide now an upper bound for the size of Saturate(db), when db contains

the single instance-level triple s rdf:type o or s p o. Assume db = hS, Di and let #S and

#D be the sizes (number of triples) of S and D respectively.

• The triple s rdf:type o can be transformed at most #S times by the sequence of

rules (4.1)⇤ (there are at most #S schema-level triples in db).

• The triple s p o can be transformed at most #S times by the sequence of rules

(4.4)⇤.(4.2).(4.1)⇤ and also at most #S times by the sequence of rules

(4.4)⇤.(4.3).(4.1)⇤ (there is at most #S schema-level triples in db).

As a result, the worst-case is for a triple of the form s p o. Therefore, the overall upper

bound for the size of the output of Saturate(db) is 2 ⇤#S.

The above result easily generalizes to a database whose instance-level is of size #D,

namely 2⇤#S⇤#D. Given that #db = #S+#D, the size of the output of Saturate(db)

is in O(#db2).

Appendix A. Theorem Proofs 102

A.3 Proof of Proposition 4.5

Saturate(db) = set(Saturate+(db)) is shown by induction on the number k of satura-

tion steps by proving: Saturatek(db) = set(Saturatek+(db)).

Base step:

By definition, Saturate0(db) = db and Saturate0+(db) = db.

Thus Saturate0(db) = set(Saturate0+(db)) holds.

Inductive step:

Suppose that Saturatek(db) = set(Saturatek+(db)) for k < α and let us show that it

still holds for k = α.

By definition,

Saturate↵(db) = Saturate↵−1(db) [

{t3 | 9 i 2 [4.1, 4.4] such that applying rule (i)

on some {t1, t2} ✓ Saturate↵−1(db)

yields t3 with t2 62 Saturatej<↵−1(db)}.

By the induction hypothesis,

Saturate↵(db) = set(Saturate↵−1
+ (db)) [

{t3 | 9 i 2 [4.1, 4.4] such that applying rule (i)

on some {t1, t2} ✓ set(Saturate↵−1
+ (db))

yields t3 with t2 62 set(Saturatej<↵−1
+ (db))} holds.

That is, given the semantics of the set and] operators,

Saturate↵(db) = set(Saturate↵−1
+ (db)]

{t3 | 9 i 2 [4.1, 4.4] such that applying rule (i)

on some {t1, t2} ✓ Saturate↵−1
+ (db)

yields t3 with t2 62 Saturate
j<↵−1
+ (db)}) = set(Saturate↵+(db)) holds.

Appendix A. Theorem Proofs 103

A.4 Proof of Theorem 4.7

Let us consider the three cases for insertions.

• Insertion Case 1: t 2 db.

Because db is a set of triples and t 2 db, we have db [{t} = db.

Thus Saturate+(db [{t}) = Saturate+(db).

• Insertion Case 2: t 62 db is an instance-level triple.

Given that t 62 db and t is an instance-level triple,

Saturate+(db [{t}) = Saturate+(db)] [Saturate+(hS, {t}i) \+ S]

is proved by showing the more general result:

Saturate+(hS, D1] D2i) = Saturate+(hS, D1i)] [Saturate+(hS, D2i) \+ S].

Indeed, observe that Saturate+(db [{t}) = Saturate+(hS, D] {t}i), since t 62 db.

The proof is by induction on the number k of saturation steps:

Saturatek+(hS, D1] D2i) = Saturatek+(hS, D1i)] [Saturatek+(hS, D2i) \+ S].

Base step:

By definition Saturate0+(hS, D1] D2i) = hS, D1] D2i and

Saturate0+(hS, D1i)] [Saturate0+(hS, D2i) \+ S] = hS, D1i] [hS, D2i \+ S]

= hS, D1] D2i.

Thus, the following equation holds:

Saturate0+(hS, D1] D2i) = Saturate0+(hS, D1i)] [Saturate0+(hS, D2i) \+ S].

Inductive step:

Suppose that the following equation holds for k < α

Saturatek+(hS, D1] D2i) = Saturatek+(hS, D1i)] [Saturatek+(hS, D2i) \+ S]

and let us show that it still holds for k = α.

By definition, we have:

Saturate↵+(hS, D1i)] [Saturate↵+(hS, D2i) \+ S]

= [Saturate↵−1
+ (hS, D1i)] { t3 | 9 i 2 [4.1, 4.4] such that applying rule (i)

on some {t1, t2} ✓ Saturate↵−1
+ (hS, D1i)

yields t3 with t2 62 Saturate
j<↵−1
+ (hS, D1i) }]

] [(Saturate↵−1
+ (hS, D2i)] { t3 | 9 i 2 [4.1, 4.4] such that applying rule (i)

on some {t1, t2} ✓ Saturate↵−1
+ (hS, D2i)

yields t3 with t2 62 Saturate
j<↵−1
+ (hS, D2i) }) \+ S].

By the semantics of the] and \+ operators, it holds that:

Saturate↵+(hS, D1i)] [Saturate↵+(hS, D2i) \+ S]

= [Saturate↵−1
+ (hS, D1i)] (Saturate↵−1

+ (hS, D2i) \+ S)]

] { t3 | 9 i 2 [4.1, 4.4] such that applying rule (i) on some

{t1, t2} ✓ Saturate↵−1
+ (hS, D1i)] [Saturate↵−1

+ (hS, D2i) \+ S]

yields t3 with t2 62 Saturate
j<↵−1
+ (hS, D1i)] [Saturatej<↵−1

+ (hS, D2i) \+ S] }.

By the induction hypothesis, we get:

Appendix A. Theorem Proofs 104

Saturate↵+(hS, D1i)] [Saturate↵+(hS, D2i) \+ S]

= Saturate↵−1
+ (hS, D1] D2i)

] { t3 | 9 i 2 [4.1, 4.4] such that applying rule (i) on some

{t1, t2} ✓ Saturate↵−1
+ (hS, D1] D2i)

yields t3 with t2 62 Saturate
j<↵−1
+ (hS, D1] D2i) }.

Therefore, it holds that:

Saturate↵+(hS, D1i)] [Saturate↵+(hS, D2i) \+ S] = Saturate↵+(hS, D1] D2i).

• Insertion Case 3: t 62 db is a schema-level triple.

Given that t 62 db and t is a schema-level triple, we prove that

Saturate+(db [{t}) = Saturate+(db)] {t}]
U

t02D0 [Saturate+(hS, {t
0}i) \+ S],

where the multiset D0 is { t3 | 9 i 2 [4.1, 4.4] such that applying rule (i) on {t, t2} with

t2 2 Saturate+(db) yields t3}.

We show this by induction on the number k of saturation steps:
Saturatek+(db [{t}) = Saturatek+(db)] {t}

]
Uk

l=0

U
t0l2D

0

l
[Saturatek−l

+ (hS, {t0l}i) \+ S],

where the multiset D0l is ; for l = 0 and { t3 | 9 i 2 [4.1, 4.4] such that applying rule (i)

on {t, t2} yields t3 with t2 2 Saturatel−1
+ (db) and t2 62 Saturate

j<l−1
+ (db)} for l > 0.

Observe that, by definition, D0 =
U1

l=0 D
0
l, i.e., whenever the saturation fixed-point is

reached.

Base step:

By definition, Saturate0+(db [{t}) = db [{t} holds. In turn, by definition,

Saturate0+(db)] {t}]
U0

l=0

U
t0l2D

0

l
[Saturate0−l

+ (hS, D0li) \+ S]

= db] {t}

= db [{t} since t 62 db.

Therefore, the following equation holds:
Saturate0+(db [{t}) = Saturate0+(db)] {t}

]
U0

l=0

U
t0l2D

0

l
[Saturate0−l

+ (hS, D0li) \+ S].

Inductive step:

Suppose that the following equation holds for k < α
Saturatek+(db [{t}) = Saturatek+(db)] {t}

]
Uk

l=0

U
t0l2D

0

l
[Saturatek−l

+ (hS, {t0l}i) \+ S]

and let us show that it still holds for k = α.

By definition,

Saturate↵+(db)] {t}]
U↵

l=0

U
t0l2D

0

l
[Saturate↵−l

+ (hS, {t0l}i) \+ S]

= (Saturate↵−1
+ (db)] { t3 | 9 i 2 [4.1, 4.4] such that applying rule (i)

on some {t1, t2} ✓ Saturate↵−1
+ (db)

yields t3 with t2 62 Saturate
j<↵−1
+ (db) })

] {t}]
U

t0α2D
0
α
[Saturate0+(hS, {t

0
↵}i) \+ S]

]
U↵−1

l=0

U
t0l2D

0

l
[(Saturate↵−1−l

+ (hS, {t0l}i)]

{ t3 | 9 i 2 [4.1, 4.4] such that applying rule (i)

on some {t1, t2} ✓ Saturate↵−1−l
+ (hS, {t0l}i)

yields t3 with t2 62 Saturate
j<↵−1−l
+ (hS, {t0l}i) }) \+ S] holds.

Appendix A. Theorem Proofs 105

That is, by the semantics of the] and \+ operators,

Saturate↵+(db)] {t}]
U↵

l=0

U
t0l2D

0

l
[Saturate↵−l

+ (hS, {t0l}i) \+ S]

= Saturate↵−1
+ (db)] {t}]

U↵−1
l=0

U
t0l2D

0

l
[Saturate↵−1−l

+ (hS, {t0l}i) \+ S]

] { t3 | 9 i 2 [4.1, 4.4] such that applying rule (i)

on some {t1, t2} ✓ Saturate↵−1
+ (db)

yields t3 with t2 62 Saturate
j<↵−1
+ (db) }

]
U

t0α2D
0
α
[hS, {t0↵}i \+ S]

]
U↵−1

l=0

U
t0l2D

0

l
{ t3 | 9 i 2 [4.1, 4.4] such that applying rule (i)

on some {t1, t2} ✓ Saturate↵−1−l
+ (hS, {t0l}i)

yields t3 with t2 62 Saturate
j<↵−1−l
+ (hS, {t0l}i) } holds.

By the induction hypothesis,

Saturate↵+(db)] {t}]
U↵

l=0

U
t0l2D

0

l
[Saturate↵−l

+ (hS, {t0l}i) \+ S]

= Saturate↵−1
+ (db [{t})] { t3 | 9 i 2 [4.1, 4.4] such that applying rule (i)

on some {t1, t2} ✓ Saturate↵−1
+ (db)

yields t3 with t2 62 Saturate
j<↵−1
+ (db) }

] D0↵]
U↵−1

l=0

U
t0l2D

0

l
{ t3 | 9 i 2 [4.1, 4.4] such that applying rule (i)

on some {t1, t2} ✓ Saturate↵−1−l
+ (hS, {t0l}i)

yields t3 with t2 62 Saturate
j<↵−1−l
+ (hS, {t0l}i) } holds.

By definition of D00i↵,

Saturate↵+(db)] {t}]
U↵

l=0

U
t0l2D

0

l
[Saturate↵−l

+ (hS, {t0l}i) \+ S]

= Saturate↵−1
+ (db [{t})] { t3 | 9 i 2 [4.1, 4.4] such that applying rule (i)

on some {t1, t2} ✓ Saturate↵−1
+ (db [{t})

yields t3 with t2 62 Saturate
j<↵−1
+ (db [{t}) } holds.

Therefore,

Saturate↵+(db)] {t}]
U↵

l=0

U
t0l2D

0

l
[Saturate↵−l

+ (hS, {t0l}i) \+ S]

= Saturate↵+(db [{t}) holds.

Let us now consider the three cases for deletions.

• Deletion Case 1: t 2 db.

Because db is a set of triples and t 62 db, we have db \ {t} = db.

Thus Saturate+(db \ {t}) = Saturate+(db).

• Deletion Case 2: t 62 db is an instance-level triple.

Given that t 2 db and t is an instance-level triple,

Saturate+(db \ {t}) = Saturate+(db)\+ [Saturate+(hS, {t}i) \+ S]

is shown on the number k of saturation steps:

Saturatek+(db \ {t}) = Saturatek+(db)\+ [Saturatek+(hS, {t}i) \+ S].

Base step:

By definition Saturate0+(db \ {t}) = db \ {t} and

Appendix A. Theorem Proofs 106

Saturate0+(db) \+ [Saturate0+(hS, {t}i) \+ S] = db \+ [hS, {t}i \+ S]

= db \+ {t}

= db \ {t} since t 2 db.
Thus, Saturate0+(db \ {t}) = Saturate0+(db) \+ [Saturate0+(hS, {t}i) \+ S] holds.

Inductive step:

Suppose that the following equation holds for k < α
Saturatek+(db \ {t}) = Saturatek+(db)\+ [Saturatek+(hS, {t}i) \+ S]

and let us show that it still holds for k = α.

By definition the following holds:

Saturate↵+(db) \+ [Saturate↵+(hS, {t}i) \+ S]

= (Saturate↵−1
+ (db)] { t3 | 9 i 2 [4.1, 4.4] such that applying rule (i)

on some {t1, t2} ✓ Saturate↵−1
+ (db)

yields t3 with t2 62 Saturate
j<↵−1
+ (db) })

\+[(Saturate
↵−1
+ (hS, {t}i)] { t3 | 9 i 2 [4.1, 4.4] such that applying rule (i)

on some {t1, t2} ✓ Saturate↵−1
+ (hS, {t}i)

yields t3 with t2 62 Saturate
j<↵−1
+ (hS, {t}i) }) \+ S]

Since Saturate↵−1
+ (hS, {t}i) ✓ Saturate↵+(db), by the semantics of the] and \+

operators,

Saturate↵+(db) \+ [Saturate↵+(hS, {t}i) \+ S]

= (Saturate↵−1
+ (db) \+ [Saturate↵−1

+ (hS, {t}i) \+ S])

] ({ t3 | 9 i 2 [4.1, 4.4] such that applying rule (i)

on some {t1, t2} ✓ Saturate↵−1
+ (db)

yields t3 with t2 62 Saturate
j<↵−1
+ (db) }

\+ { t3 | 9 i 2 [4.1, 4.4] such that applying rule (i)

on some {t1, t2} ✓ Saturate↵−1
+ (hS, {t}i)

yields t3 with t2 62 Saturate
j<↵−1
+ (hS, {t}i) }) holds.

By the induction hypothesis,

Saturate↵+(db) \+ [Saturate↵+(hS, {t}i) \+ S] = Saturate↵−1
+ (db \ {t})

] ({ t3 | 9 i 2 [4.1, 4.4] such that applying rule (i)

on some {t1, t2} ✓ Saturate↵−1
+ (db)

yields t3 with t2 62 Saturate
j<↵−1
+ (db) }

\+ { t3 | 9 i 2 [4.1, 4.4] such that applying rule (i)

on some {t1, t2} ✓ Saturate↵−1
+ (hS, {t}i)

yields t3 with t2 62 Saturate
j<↵−1
+ (hS, {t}i) }) holds.

That is,

Saturate↵+(db) \+ [Saturate↵+(hS, {t}i) \+ S] = Saturate↵−1
+ (db \ {t})

] { t3 | 9 i 2 [4.1, 4.4] such that applying rule (i)

on some {t1, t2} ✓ Saturate↵−1
+ (db) \+ [Saturate↵−1

+ (hS, {t}i) \+ S]

yields t3 with t2 62 Saturate
j<↵−1
+ (db) \+ [Saturatej<↵−1

+ (hS, {t}i) \+ S] } holds.

By the induction hypothesis,

Saturate↵+(db) \+ [Saturate↵+(hS, {t}i) \+ S] = Saturate↵−1
+ (db \ {t})

] { t3 | 9 i 2 [4.1, 4.4] such that applying rule (i)

on some {t1, t2} ✓ Saturate↵−1
+ (db \ {t})

yields t3 with t2 62 Saturate
j<↵−1
+ (db \ {t}) } holds.

Appendix A. Theorem Proofs 107

Therefore, Saturate↵+(db)\+ [Saturate
↵
+(hS, {t}i)\+S] = Saturate↵+(db[{t}) holds.

• Deletion Case 3: t 62 db is a schema-level triple.

Given that t 2 db and t is a schema-level triple, Saturate+(db \ {t}) =

(Saturate+(db) \+ {t}) \+ (
U

t02D0 [Saturate+(hS, {t
0}i) \+ S]), where the

multiset D0 is { t3 | 9 i 2 [4.1, 4.4] such that applying rule (i) on {t, t2} with

t2 2 Saturate+(db) yields t3}. We actually show this by induction on the num-

ber k of saturation steps: Saturatek+(db \ {t}) = (Saturatek+(db) \+ {t}) \+
(
Uk

l=0

U
t0l2D

0

l
[Saturatek−l

+ (hS, {t0l}i) \+ S]), where the multiset D0l is ; for l = 0

and { t3 | 9 i 2 [4.1, 4.4] such that applying rule (i) on {t, t2} yields t3 with t2 2

Saturatel−1
+ (db) and t2 62 Saturate

j<l−1
+ (db) } for l > 0. Indeed, observe that, by

definition, D0 =
U1

l=0 D
0
l, i.e., whenever the saturation fixed-point is reached.

Base step:

By definition, Saturate0+(db \ {t}) = db [{t} holds. In turn, by definition,

(Saturate0+(db) \+ {t}) \+ (
U0

l=0

U
t0l2D

0

l
[Saturate0−l

+ (hS, D0li) \+ S])

= db \+ {t}

= db \ {t} since t 62 db.

Therefore,

Saturate0+(db \ {t}) = (Saturate0+(db) \+ {t})

\+ (
U0

l=0

U
t0l2D

0

l
[Saturate0−l

+ (hS, D0li) \+ S]) holds.

Inductive step:

Suppose that the following equation holds for k < α

Saturatek+(db \ {t}) = (Saturatek+(db) \+ {t})

\+ (
Uk

l=0

U
t0l2D

0

l
[Saturatek−l

+ (hS, {t0l}i) \+ S])

and let us show that it still holds for k = α.

By definition, the following equation holds

(Saturate↵+(db) \+ {t}) \+ (
U↵

l=0

U
t0l2D

0

l
[Saturate↵−l

+ (hS, {t0l}i) \+ S])

= ([Saturate↵−1
+ (db)] { t3 | 9 i 2 [4.1, 4.4] such that applying rule (i)

on some {t1, t2} ✓ Saturate↵−1
+ (db)

yields t3 with t2 62 Saturate
j<↵−1
+ (db) }] \+ {t})

\+ (
U

t0α2D
0
α
[Saturate0+(hS, {t

0
↵}i) \+ S]

]
U↵−1

l=0

U
t0l2D

0

l
[(Saturate↵−1−l

+ (hS, {t0l}i)

] { t3 | 9 i 2 [4.1, 4.4] such that applying rule (i)

on some {t1, t2} ✓ Saturate↵−1−l
+ (hS, {t0l}i)

yields t3 with t2 62 Saturate
j<↵−1−l
+ (hS, {t0l}i) }) \+ S]).

That is, by the semantics of the] and \+ operators and sinceU↵−1
l=0

U
t0l2D

0

l
[Saturate↵−1−l

+ (hS, {t0l}i) \+ S] ✓ Saturate↵−1
+ (db) holds due to t 2 db,

Appendix A. Theorem Proofs 108

(Saturate↵+(db) \+ {t}) \+ (
U↵

l=0

U
t0l2D

0

l
[Saturate↵−l

+ (hS, {t0l}i) \+ S])

= [(Saturate↵−1
+ (db) \+ {t})\+

U↵−1
l=0

U
t0l2D

0

l
(Saturate↵−1−l

+ (hS, {t0l}i) \+ S)]

] { t3 | 9 i 2 [4.1, 4.4] such that applying rule (i)

on some {t1, t2} ✓ Saturate↵−1
+ (db)

yields t3 with t2 62 Saturate
j<↵−1
+ (db) }

\+(
U

t0α2D
0
α
[Saturate0+(hS, {t

0
↵}i) \+ S]

]
U↵−1

l=0

U
t0l2D

0

l
{ t3 | 9 i 2 [4.1, 4.4] such that applying rule (i)

on some {t1, t2} ✓ Saturate↵−1−l
+ (hS, {t0l}i)

yields t3 with t2 62 Saturate
j<↵−1−l
+ (hS, {t0l}i) }) holds.

By the induction hypothesis,

(Saturate↵+(db) \+ {t}) \+ (
U↵

l=0

U
t0l2D

0

l
[Saturate↵−l

+ (hS, {t0l}i) \+ S])

= Saturate↵−1
+ (db \ {t})] { t3 | 9 i 2 [4.1, 4.4] such that applying rule (i)

on some {t1, t2} ✓ Saturate↵−1
+ (db)

yields t3 with t2 62 Saturate
j<↵−1
+ (db) }

\+(D
0
↵]

U↵−1
l=0

U
t0l2D

0

l
{ t3 | 9 i 2 [4.1, 4.4] such that applying rule (i)

on some {t1, t2} ✓ Saturate↵−1−l
+ (hS, {t0l}i)

yields t3 with t2 62 Saturate
j<↵−1−l
+ (hS, {t0l}i) }) holds.

By definition of D00i↵,

(Saturate↵+(db) \+ {t}) \+ (
U↵

l=0

U
t0l2D

0

l
[Saturate↵−l

+ (hS, {t0l}i) \+ S])

= Saturate↵−1
+ (db \ {t})] { t3 | 9 i 2 [4.1, 4.4] such that applying rule (i)

on some {t1, t2} ✓ Saturate↵−1
+ (db \ {t})

yields t3 with t2 62 Saturate
j<↵−1
+ (db \ {t}) } holds.

Therefore, (Saturate↵+(db) \+ {t}) \+ (
U↵

l=0

U
t0l2D

0

l
[Saturate↵−l

+ (hS, {t0l}i) \+ S])

= Saturate↵+(db \ {t}) holds.

Appendix A. Theorem Proofs 109

A.5 Proof of Theorem 4.14

As in the proof for Theorem 4.4, a close examination of the reformulation rules also

exhibits producer-consumer dependencies among rules.

Given the possible forms of query triples that trigger reformulation rules, we write the

reformulation schemes based on these dependencies using regular expressions as follows.

Query triple Reformulation scheme

s ?y o [(4.5).((4.9) + (4.10) + (4.11) + (4.12) + (4.13)).(4.14)∗.((4.15)

+(4.16)).(4.17)∗] + [((4.6) + (4.7) + (4.8)).(4.17)∗]

s rdf:type ?z ((4.9) + (4.10) + (4.11) + (4.12) + (4.13)).(4.14)∗.((4.15)+

4.16)).(4.17)∗

s rdf:type c (4.14)∗.((4.15) + (4.16)).(4.17)∗

s p o (4.17)∗

This said, we provide now an upper bound for the size of Reformulate(q, db), when q

contains a single triple s ?y o, s rdf:type ?z, s rdf:type c, or s p o Assume db = hS, Di

and let #S and #D the sizes (number of triples) of S and D respectively.

The triple s ?y o can be either s ?y val or s ?y ?z, depending whether o is a value or a vari-

able. In the former case, its reformulation scheme is reduced to [(4.5).(4.14)⇤.((4.15) +

(4.16)).(4.17)⇤]+[((4.6)+(4.7)+(4.8)).(4.17)⇤], while in the latter case its reformulation

scheme is that shown in the above table.

As for s ?y val,

• reformulating s ?y val with (4.5) leads to 1 triple of the form s rdf:type val,

which can be reformulated at most 2 ⇤#S times by the sequence (4.14)⇤.((4.15) +

(4.16)).(4.17)⇤, i.e., at most #S times for (4.14)⇤.(4.15).(4.17)⇤ and for

(4.14)⇤.(4.16).(4.17)⇤, as rules (4.14)–(4.17) are based on schema-level triples (there

is at most #S schema-level triples in db). Summing up, the number of reformula-

tions obtained starting from rule (4.5) is at most: 1 + 2 ⇤#S.

• reformulating s ?y val with rule (4.6) leads to at most #D triples of the form

s p val (there is at most #D instance-level triples in db). In turn, those triples can

be reformulated at most #S times by the sequence (4.17)⇤, as rule (4.17) is based

on schema-level triples (there is at most #S schema-level triples in db). Summing

up, the number of reformulations obtained starting from rule (4.6) is at most:

#D ⇤ (1 + #S).

• reformulating s ?y val with rules (4.7) and (4.8) leads to at most 2 ⇤ #S triples

of the form s p val (there is at most #S schema-level triples in db, with at two

properties per triple). In turn, those triples can be reformulated at most #S times

by the sequence (4.17)⇤, as rule (4.17) is based on schema-level triples (there is at

most #S schema-level triples in db). Summing up, the number of reformulations

obtained starting from rule (4.7) or (4.8) is at most: 2 ⇤#S ⇤ (1 + #S).

Summing up, the overall number of reformulations of s ?y val is at most: 2 ⇤#S2 + 5 ⇤

#S+#D+ 1.

Appendix A. Theorem Proofs 110

As for s ?y ?z,

• reformulating s ?y ?z with (4.5) leads to 1 triple of the form s rdf:type ?z In

turn, that triple can be reformulated using rule (4.9) in at most #D triples of

the form s rdf:type c (there is at most #D instance-level triples in db). The

triple s rdf:type ?z can also be reformulated using the rules (4.10)–(4.13) in at

most 2 ⇤ #S triples of the form s rdf:type c (there is at most #S schema-level

triples in db, with at most two classes per triple). Finally, the triples resulting

from rules (4.9)–(4.13) can be reformulated at most 2 ⇤#S times by the sequence

(4.14)⇤.((4.15)+(4.16)).(4.17)⇤, i.e., at most #S times for (4.14)⇤.(4.15).(4.17)⇤ and

for (4.14)⇤.(4.16).(4.17)⇤, as rules (4.14)–(4.17) are based on schema-level triples

(there is at most #S schema-level triples in db). Summing up, the number of

reformulations obtained starting from rule (4.5) is at most: 1 + (#D + 2 ⇤ #S) ⇤

(1 + 2 ⇤#S).

• reformulating s ?y ?z with rule (4.6) leads to at most #D triples of the form s p ?z

(there is at most #D instance-level triples in db). In turn, those triples can be

reformulated at most #S times by the sequence (4.17)⇤, as rule (4.17) is based

on schema-level triples (there is at most #S schema-level triples in db). Summing

up, the number of reformulations obtained starting from rule (4.6) is at most:

#D ⇤ (1 + #S).

• reformulating s ?y ?z with rule (4.7) or (4.8) leads to at most 2 ⇤#S triples of the

form s p ?z (there is at most #S schema-level triples in db, with at two properties

per triples). In turn, those triples can be reformulated at most #S times by the

sequence (4.17)⇤, as rule (4.17) is based on schema-level triples (there is at most #S

schema-level triples in db). Summing up, the number of reformulations obtained

starting from rule (4.7) or (4.8) is at most: 2 ⇤#S ⇤ (1 + #S).

Summing up, the overall number of reformulations of s ?y ?z is at most: 6 ⇤#S2 + 3 ⇤

#D ⇤#S+ 2 ⇤#D+ 4 ⇤#S+ 1.

We therefore get that the worst-case number of reformulations for s ?y o is actually that

of s ?y ?z.

By proceeding analogously with the other query triples, we show that the worst-case

number of reformulations for a query triple is precisely that of s ?y ?z.

That is, for a query q made of a single triple, the overall upper bound for the size of the

output of Reformulate(q, db) is: 1+ (6 ⇤#S2+3 ⇤#D ⇤#S+2 ⇤#D+4 ⇤#S+1), where

the leading 1 accounts for q itself.

The above result easily generalizes to a query of any size #q. Given that #db = #S+#D,

the size of the output of Reformulate(q, db) is in O((6 ⇤#db2)#q).

Appendix A. Theorem Proofs 111

A.6 Proof of Theorem 4.18

Let us first show that q(db/) ◆
S

q0
σ0
2Reformulate(q,db) q̃

0
σ0(db) holds. We actually show

that q̃0σ0(db/) ✓ q(db/) for any q0σ0 2 Reformulate(q, db), since q̃0σ0(db) ✓ q̃0σ0(db/) (1. in

Property 4.17). The proof is by induction on the length l of a sequence of reformulation

rules leading to q0σ0 , starting from hdb, qi.

Base step:

For l = 0, we have q0σ0 = q and q̃0σ0(db/) = q(db/), since q is blank node free (2. in

Property 4.17).

Inductive step:

For l < α, suppose that q̃0σ0(db/) ✓ q(db/) holds. Now at l = α, q0σ0 has been produced

from q00σ00 by the application a given rule. In turn, q00σ00 has been produced from q by

a sequence of rules starting from hdb, qi. That sequence being of length < α, we get

q̃00σ00(db/) ✓ q(db/) by the induction hypothesis. We show that q̃0σ0(db/) ✓ q̃00σ00(db/) to

prove our claim.

Let x̄σ0 be the (partially instantiated) output of q0σ0 and x̄σ00 be that of q00σ00 .

• Consider the case where q0σ0 is obtained from q00σ00 by a rule of the form ht12db,t22qσi
qσ[ν

that binds a variable of q00σ00 using an assignment ν. Observe here that σ0 = σ00[{ν}

holds. If (x̄σ0)µ 2 q̃0(db/), then µ [{ν} is a total assignment of the variables of

q00σ00 such that (x̄σ0)µ = (x̄σ00)µ[{⌫} 2 q̃00σ00(db/).

• Consider the case where q0σ0 is obtained from q00σ00 by a rule of the form ht12db,t22qσi
qσ[t2/t3]

that replaces a triple in q00σ00 by another one. Observe here that σ0 = σ00 holds.

If (x̄σ0)µ 2 q̃0σ0(db/), then (t3σ0)µ 2 db/ and the immediate entailment rule

t1, (t3σ0)µ `i
RDF (t2σ00)µ applies. As a result, (t2σ00)µ 2 db/ and µ is a total as-

signment of the variables of q00σ00 (that may also assign an extra variable generated

by the rule leading from q00σ00 to q0σ0) such that (x̄σ0)µ = (x̄σ00)µ 2 q̃00σ00(db/).

As there is no other form of rule that leads from q00σ00 to q0σ0 , we get q̃0σ0(db/) ✓ q̃00σ00(db/)

which concludes the proof of q(db/) ◆
S

q0
σ0
2Reformulate(q,db) q̃

0
σ0(db).

Let us show now that q(db/) ✓
S

q0
σ0
2Reformulate(q,db) q̃

0
σ0(db) holds.

We actually show that q̃σ(db
/) ✓

S
q0
σ0
2Reformulate(q,db) q̃

0
σ0(db) holds with qσ a possibly

partially instantiated query, for which q(db/) ✓
S

q0
σ0
2Reformulate(q,db) q̃

0
σ0(db) is a special

case when qσ is not partially instantiated (σ = ;) and does no contain blank nodes

(q̃(db/) = q(db/), 2. in Property 4.17).

Provided that qσ is of the form q(x̄σ) :- (t1, . . . , tn)σ, suppose that (x̄σ)µ is in q̃σ(db
/) and

let us show that there exists q0σ0 2 Reformulate(q, db) such that (x̄σ)µ is in q̃0σ0(db). We

show this by induction on the length l of a (minimal) sequence of immediate entailment

rules such that ((t1, . . . , tn)σ)µ ✓ dbl: for any l there exists a (possibly empty) sequence

of reformulation rules leading to q0σ0 , starting from hdb, qσi.

Base step:

For l = 0, we have ((t1, . . . , tn)σ)µ ✓ db0, thus ((t1, . . . , tn)σ)µ ✓ db, so for the empty

sequence of reformulation rules we have q0σ0 = qσ, and (x̄σ)µ is in q̃0σ0(db).

Appendix A. Theorem Proofs 112

Inductive step:

For l < α, suppose that the above claim holds. Now at l = α, for 1  i  n, tiσ matches

(tiσ)µ: it is either (tiσ)µ or a generalization of (tiσ)µ using one, two, or three (distinct)

variables. Moreover, (tiσ)µ has been added to the saturation at l  α by an entailment

rule of Table 2.3(d). Indeed, the entailment rules of the other Figures do not need to be

considered due to Theorem 4.2.

Consider the case of the rule: s rdfs:subClassOf o, s1 rdf:type s `i
RDF s1 rdf:type o.

Assume that (tiσ)µ = v rdf:type c1, i.e., has been produced from:

{ c2 rdfs:subClassOf c1, v rdf:type c2 } ✓ db↵−1.

Observe that v, c1, and c2 can be blank nodes.

• If tiσ = v rdf:type c1 then consider the query q00σ00 obtained from q using the

reformulation rule (4.14), in which v rdf:type c1 is replaced by v rdf:type c2. As

a result, (x̄σ)µ is in q̃00(db↵−1) and, by the induction hypothesis, there exists a

sequence of reformulation rules leading to q0σ0 starting from hdb, q00σ00i, thus from

hdb, qσi, such that (x̄σ)µ is in q̃0σ0(db).

• If tiσ =?x rdf:type c1 then consider the query q00σ00 obtained from q using the

reformulation rule (4.14), in which ?x rdf:type c1 is replaced by ?x rdf:type c2.

As a result, (x̄σ)µ is in q̃00(db↵−1) and, by the induction hypothesis, there exists

a sequence of reformulation rules leading to q0σ0 starting from hdb, q00σ00i, thus from

hdb, qσi, such that (x̄σ)µ is in q̃0σ0(db).

• If tiσ = v rdf:type ?x then consider the query q00σ00 obtained from q using the reformu-

lation rules (4.11) then (4.14), in which v rdf:type ?x is replaced by ?x rdf:type c2.

As a result, (x̄σ)µ is in q̃00(db↵−1) and, by the induction hypothesis, there exists

a sequence of reformulation rules leading to q0σ0 starting from hdb, q00σ00i, thus from

hdb, qσi, such that (x̄σ)µ is in q̃0σ0(db).

• If tiσ = v ?x c1 then consider the query q00σ00 obtained from q using the reformulation

rules (4.5) then (4.14), in which v ?x c1 is replaced by v rdf:type c2. As a result,

(x̄σ)µ is in q̃00(db↵−1) and, by the induction hypothesis, there exists a sequence of

reformulation rules leading to q0σ0 starting from hdb, q00σ00i, thus from hdb, qσi, such

that (x̄σ)µ is in q̃0σ0(db).

• If tiσ =?x ?y c1 then consider the query q00σ00 obtained from q using the reformulation

rules (4.5) then (4.14), in which ?x ?y c1 is replaced by ?x rdf:type c2. As a result,

(x̄σ)µ is in q̃00(db↵−1) and, by the induction hypothesis, there exists a sequence of

reformulation rules leading to q0σ0 starting from hdb, q00σ00i, thus from hdb, qσi, such

that (x̄σ)µ is in q̃0σ0(db).

• If tiσ =?x rdf:type ?y then consider the query q00σ00 obtained from q using the

reformulation rules (4.11) then (4.14), in which ?x rdf:type ?y is replaced by

?x rdf:type c2. As a result, (x̄σ)µ is in q̃00(db↵−1) and, by the induction hypothesis,

there exists a sequence of reformulation rules leading to q0σ0 starting from hdb, q00σ00i,

thus from hdb, qσi, such that (x̄σ)µ is in q̃0σ0(db).

Appendix A. Theorem Proofs 113

• If tiσ = v ?x ?y then consider the query q00σ00 obtained from q using the reformulation

rules (4.5), then (4.11) then (4.14), in which v ?x ?y is replaced by v rdf:type c2.

As a result, (x̄σ)µ is in q̃00(db↵−1) and, by the induction hypothesis, there exists

a sequence of reformulation rules leading to q0σ0 starting from hdb, q00σ00i, thus from

hdb, qσi, such that (x̄σ)µ is in q̃0σ0(db).

• If tiσ =?x ?y ?z then consider the query q00σ00 obtained from q using the refor-

mulation rules (4.5), then (4.11) then (4.14), in which ?x ?y ?z is replaced by

?x rdf:type c2. As a result, (x̄σ)µ is in q̃00(db↵−1) and, by the induction hypothesis,

there exists a sequence of reformulation rules leading to q0σ0 starting from hdb, q00σ00i,

thus from hdb, qσi, such that (x̄σ)µ is in q̃0σ0(db).

The rest of the proof is omitted here as it amounts to show, similarly as above, that the

claim also holds at l = α for the three other entailment rules of Table 2.3(d).

Appendix A. Theorem Proofs 114

A.7 Proof of Theorem 7.13

Given an analytical query Q = hc(?x, ?d1, . . . , ?dn),m(?x, ?v),⊕i against an analytical

schema S, for any analytical schema instance I (built from S and an RDF graph G), by

Definition 7.9, the answer of Q is

ans(Q, I) = {hdj1, . . . , d
j
n,⊕(qj(I))i | hxj , dj1, . . . , d

j
ni 2 c(I)

and qj is defined as qj(?v) :- m(xj , ?v)}

Let us show that the same answer is obtained through the reformulation of Q against S

(Definition 7.11), i.e., let us show:

ans(Q, I) = { hdj1, . . . , d
j
n,⊕(qj(G1))i | hxj , dj1, . . . , d

j
ni 2 conS (G

1)

and qj is defined as qj(?v) :- mon

S (x
j , ?v) }

This amounts showing that, above, c(I) = conS (G
1) and m(I) = mon

S (G
1). This follows

from the Proposition A.1 below (proved in Appendix A.8).

Proposition A.1. Given an analytical schema S = hN , E , λ, δi and an RDF graph G,

for any BGP query q and its corresponding reformulation qonS w.r.t. S:

qonS (G
1) = q(I(S, G)) holds.

Appendix A. Theorem Proofs 115

A.8 Proof of Proposition A.1

Proposition A.1 follows by two-way inclusion between qonS (G
1) and q(I(S, G)).

1. We start by proving that q(I(S, G)) ✓ qonS (G
1).

Let q be the BGP query q(x̄) :- t1, . . . , tm, m ≥ 1.

The answer set of q over I(S, G) is the union of the answer sets of all its dif-

ferent interpretations qh based on the homomorphisms in h 2 H from q to S

(Definition 7.6). A query qh is built using the graph homomorphism h by replac-

ing the variables in the query q which correspond to nodes/edges in S with their

corresponding labels. Hence qh(x̄) :- t
h
1 , . . . , t

h
m has triples of the form thi,1im 2

{ s rdf:type λ(n) , s λ(e) o } where s, o may be variables.

q(I(S, G)) =
[

h2H

qh(I(S, G)), qh(x̄) :-

m̂

i=1

thi (A.1)

By Definition 7.4, I(S, G) =
S

n2N {s rdf:type λ(n) | s 2 q(G1) ^ q = δ(n)} [S
e2E{s λ(e) o | s, o 2 q(G1) ^ q = δ(e)}.

It follows that

– for each triple thi 2 qh, h2H of the form s rdf:type λ(n), the set of values

matching its variables s, denoted Valthi
(I), is included in the set of values

matching the node n, denoted Valqi(G
1) = {(s) 2 qi(G

1) ^ qi = δ(n)}.

– for each triple thi 2 qh, h2H of the form s λ(e) o, the set of values matching

its variables s, o, denoted Valthi
(I), is included in the set of values matching

the edge e, denoted Valqi(G
1) = {(s, o) 2 qi(G

1) ^ qi = δ(e)}.

We conclude that Valthi
(I) ✓ Valqi(G

1) for any thi, 1im and its corresponding qi
described above. It follows that

qh(I) ✓ q?h(G
1), q?h(x̄) :-

m̂

i=1

qi (A.2)

Examining the definitions of qi above and Definition 7.11, we conclude that

[

h2H

q?h(x̄) ⌘
[

h2H

qonh (x̄) = qonS (x̄) (A.3)

Finally, from equations (A.1), (A.2) and (A.3) we have

q(I(S, G)) =
[

h2H

qh(I(S, G)) ✓
[

h2H

qonh (G
1) = qonS (G

1)

therefore proving that q(I(S, G)) ✓ qonS (G
1).

Appendix A. Theorem Proofs 116

2. We now proceed to showing that qonS (G
1) ✓ q(I(S, G)).

From AnS reformulation of a query (Definition 7.11) it follows that to answer qonS
we must answer all qonh , h 2 H:

qonS (G
1) =

[

h2H

qonh (G
1), qonh (x̄) :-

m̂

i=1

qi(x̄i). (A.4)

Considering BGP query answering (Section 2.2.1) in the case of join queries (Def-

inition 2.7) we see that to answer each query qonh , h 2 H over the graph G1 we

must evaluate its component queries over the graph, qi(G
1), 1  i  m, join their

results on the common variables and project out the answer x̄. (A.5)

From Definition 7.11 we can also deduce that:

– for x̄i = s we have qi(G
1) = {s 2 q(G1) ^ q = δ(n), h(ni) = n 2 S}; and

– for x̄i = s, o we have qi(G
1) = {s, o 2 q(G1) ^ q = δ(e), h(ei) = e 2 S};

Considering the AnS instance (Definition 7.4), it follows that

– for x̄i = s we have qi(G
1) ✓ {s | s rdf:type λ(n) 2 I(S, G)}; and

– for x̄i = s, o we have qi(G
1) ✓ {s, o | s λ(e) o 2 I(S, G)};

Naming qti the query having as head all the variables in the triple ti and as body

the triple ti itself (where the triple ti corresponds to qi in Definition 7.11), we have

that

qi(G
1) ✓ qti(I(S, G)) (A.6)

From (A.5) and (A.6) it follows that

qonh (G
1) ✓ q?h(I(S, G)), q

?
h(x̄) :-

m̂

i=1

qti(x̄i) (A.7)

Since the body of each qti is made of a single triple belonging to the initial query

q, we have:

q?h(x̄) ⌘ qh(x̄), qh(x̄) :-

m̂

i=1

thi (A.8)

Therefore we conclude that qonh (G
1) ✓ qh(I(S, G)) for any h 2 H.

It follows that [

h2H

qonh (G
1) ✓

[

h2H

qh(I(S, G))

which together with A.1 and A.4 finally prove that qonS (G
1) ✓ q(I(S, G)).

Since q(I(S, G)) ✓ qonS (G
1) and qonS (G

1) ✓ q(I(S, G)), it follows that q(I(S, G)) = qonS (G
1)

proving Proposition A.1.

Appendix B

Queries used in the

Experiments of Chapter 5

The queries evaluated over the DBLP [DBL], DBpedia [Lehmann14], Barton [wwwb]

and LUBM [Guo05] datasets are respectively shown in Appendix B.1, Appendix B.2,

Appendix B.3 and Appendix B.4. The number of queries in the union forming the re-

formulated query computed by Algorithm Reformulate is shown in parenthesis next to

each query.

The resource namespaces are abbreviate as follows:

elements http://purl.org/dc/elements/1.1/

foaf http://xmlns.com/foaf/0.1/

dblp http://sw.deri.org/ aharth/2004/07/dblp/dblp.owl#

mods http://simile.mit.edu/2006/01/ontologies/mods3#

language http://simile.mit.edu/2006/01/language/iso639− 2b/

role http://simile.mit.edu/2006/01/role/

info info:marcorg/

resource http://dbpedia.org/resource/

ontology http://dbpedia.org/ontology/

owl http://www.w3.org/2002/07/owl#

lubm http://www.lehigh.edu/ zhp2/2004/0401/univ − bench.owl#

:UnivX http://www.UniversityX.edu

:DepX.UnivY http://www.DepartmentX.UniversityY.edu

B.1 BGP Queries over the DBLP Dataset

(121) Q01(?x, ?y, ?z) :- ?x ?y ?z

(684) Q02(?x, ?y) :- ?x rdf:type dblp:Document ,

?x dblp:datatypeField ?y

(36) Q03(?x) :- ?x rdf:type dblp:Document ,

?x elements:publisher “Springer”

117

Appendix B. Queries used in the Experiments of Chapter 5 118

(1) Q04(?x) :- ?x rdf:type dblp:Book ,

?x elements:publisher “Springer”

(1) Q05(?y, ?z) :- ?x rdf:type foaf:Person ,

?x foaf:name ?y ,

?x foaf:homepage ?z

(19) Q06(?y, ?u, ?t) :- ?x dblp:datatypeField “Algorithmica” ,

?x elements:title ?y ,

?x elements:creator ?u ,

?x elements:date ?t

(4) Q07(?y, ?u, ?t) :- ?x dblp:objectField “Algorithmica” ,

?x elements:title ?y ,

?x elements:creator ?u ,

?x elements:date ?t

(19) Q08(?u, ?z) :- ?x dblp:editor ?y ,

?y foaf:name ?z ,

?x elements:title ?u ,

?x dblp:datatypeField ?v ,

?x elements:publisher “Springer”

(4) Q09(?u, ?z) :- ?x dblp:editor ?y ,

?y foaf:name ?z ,

?x elements:title ?u ,

?x dblp:objectField ?v ,

?x elements:publisher “Springer”

(138) Q10(?t, ?n, ?m) :- ?x rdf:type dblp:Document ,

?x dblp:editor ?y ,

?x elements:creator ?z ,

?y foaf:name ?n ,

?z foaf:name ?m ,

?x elements:title ?t ,

?x dblp:objectField ?u

(36) Q11(?t, ?y, ?j, ?x) :- ?p elements:creator ?a ,

?a foaf:name “Alison Cawsey” ,

?p elements:title ?t ,

?p dblp:year ?y ,

?p dblp:pages ?x ,

?p dblp:journal ?j ,

?p rdf:type dblp:Document

Appendix B. Queries used in the Experiments of Chapter 5 119

(36) Q12(?t, ?y, ?x) :- ?p elements:creator ?a ,

?a foaf:name “Hugh Darwen” ,

?p elements:title ?t ,

?p dblp:year ?y ,

?p dblp:pages ?x ,

?p dblp:journal “SIGMOD Record” ,

?p rdf:type dblp:Document

(36) Q13(?t, ?j, ?x) :- ?p elements:creator ?a ,

?a foaf:name “Dana Randall” ,

?p elements:title ?t ,

?p dblp:year “2006” ,

?p dblp:pages ?x ,

?p dblp:journal ?j ,

?p rdf:type dblp:Document

(36) Q14(?n, ?t, ?x) :- ?p elements:creator ?a ,

?a foaf:name ?n ,

?p elements:title ?t ,

?p dblp:year “1966” ,

?p dblp:pages ?x ,

?p dblp:journal “Information and Control” ,

?p rdf:type dblp:Document

(1) Q15(?t, ?y, ?j, ?x) :- ?p elements:creator ?a ,

?a foaf:name “Alison Cawsey” ,

?p elements:title ?t ,

?p dblp:year ?y ,

?p dblp:pages ?x ,

?p dblp:journal ?j ,

?p rdf:type dblp:Article

(1) Q16(?t, ?y, ?x) :- ?p elements:creator ?a ,

?a foaf:name “Hugh Darwen” ,

?p elements:title ?t ,

?p dblp:year ?y ,

?p dblp:pages ?x ,

?p dblp:journal “SIGMOD Record” ,

?p rdf:type dblp:Article

(1) Q17(?t, ?j, ?x) :- ?p elements:creator ?a ,

?a foaf:name “Dana Randall” ,

?p elements:title ?t ,

?p dblp:year “2006” ,

?p dblp:pages ?x ,

?p dblp:journal ?j ,

?p rdf:type dblp:Article

Appendix B. Queries used in the Experiments of Chapter 5 120

(1) Q18(?n, ?t, ?x) :- ?p elements:creator ?a ,

?a foaf:name ?n ,

?p elements:title ?t ,

?p dblp:year “1966” ,

?p dblp:pages ?x ,

?p dblp:journal “Information and Control” ,

?p rdf:type dblp:Article

(36) Q19(?n, ?t, ?k, ?p, ?x) :- ?b elements:creator ?a ,

?a foaf:name ?n ,

?b elements:title ?t ,

?b dblp:year “1991” ,

?b dblp:pages ?x ,

?b dblp:Booktitle ?k ,

?b elements:publisher ?p ,

?b rdf:type dblp:Document

(36) Q20(?t, ?y, ?p, ?x) :- ?b elements:creator ?a ,

?a foaf:name “William J. Frawley” ,

?b elements:title ?t ,

?b dblp:year ?y ,

?b dblp:pages ?x ,

?b dblp:Booktitle “Knowledge Discovery in Databases” ,

?b elements:publisher ?p ,

?b rdf:type dblp:Document

(1) Q21(?n, ?t, ?k, ?p, ?x) :- ?b elements:creator ?a ,

?a foaf:name ?n ,

?b elements:title ?t ,

?b dblp:year “1991” ,

?b dblp:pages ?x ,

?b dblp:Booktitle ?k ,

?b elements:publisher ?p ,

?b rdf:type dblp:Book

(1) Q22(?t, ?y, ?p, ?x) :- ?b elements:creator ?a ,

?a foaf:name “William J. Frawley” ,

?b elements:title ?t ,

?b dblp:year ?y ,

?b dblp:pages ?x ,

?b dblp:Booktitle “Knowledge Discovery in Databases” ,

?b elements:publisher ?p ,

?b rdf:type dblp:Book

Appendix B. Queries used in the Experiments of Chapter 5 121

(36) Q23(?t, ?y, ?j, ?x) :- ?p elements:creator ?a1 ,

?a1 foaf:name “Grzegorz Rozenberg” ,

?p elements:creator ?a2 ,

?a2 foaf:name “Azriel Rosenfeld” ,

?p elements:title ?t ,

?p dblp:year ?y ,

?p dblp:pages ?x ,

?p dblp:journal ?j ,

?p rdf:type dblp:Document

(1) Q24(?t, ?y, ?j, ?x) :- ?p elements:creator ?a1 ,

?a1 foaf:name “Grzegorz Rozenberg” ,

?p elements:creator ?a2 ,

?a2 foaf:name “Azriel Rosenfeld” ,

?p elements:title ?t ,

?p dblp:year ?y ,

?p dblp:pages ?x ,

?p dblp:journal ?j ,

?p rdf:type dblp:Article

(36) Q25(?t, ?y, ?k, ?p, ?x) :- ?b elements:creator ?a1 ,

?a1 foaf:name “Christopher J. Matheus” ,

?b elements:creator ?a2 ,

?a2 foaf:name “William J. Frawley” ,

?b elements:title ?t ,

?b dblp:year ?y ,

?b dblp:pages ?x ,

?b dblp:Booktitle ?k ,

?b elements:publisher ?p ,

?b rdf:type dblp:Document

(1) Q26(?t, ?y, ?k, ?p, ?x) :- ?b elements:creator ?a1 ,

?a1 foaf:name “Christopher J. Matheus” ,

?b elements:creator ?a2 ,

?a2 foaf:name “William J. Frawley” ,

?b elements:title ?t ,

?b dblp:year ?y ,

?b dblp:pages ?x ,

?b dblp:Booktitle ?k ,

?b elements:publisher ?p ,

?b rdf:type dblp:Book

B.2 BGP Queries over the DBpedia Dataset

(9793) Q01(?x, ?y) :- resource:France ?x ?y

(8188) Q02(?x, ?y) :- ?x rdf:type ?y

Appendix B. Queries used in the Experiments of Chapter 5 122

(8188) Q03(?x) :- resource:France rdf:type ?x

(2220) Q04(?x) :- ?x rdf:type owl:Thing

(463) Q05(?x) :- ?x rdf:type ontology:Person

(347) Q06(?x) :- ?x rdf:type ontology:Organisation

(39) Q07(?x) :- ?x rdf:type ontology:Company

(11) Q08(?x) :- ?x rdf:type ontology:Animal

(1) Q09(?x) :- resource:France ontology:currency ?x

(9793) Q10(?x, ?y, ?z) :- resource:France ?x ?y ,

?y foaf:name ?z

(2229) Q11(?x, ?y, ?z) :- ?y ?x ontology:Place ,

?y foaf:name ?z

(463) Q12(?x) :- ?x rdf:type ontology:Person ,

resource:Cubix ontology:starring ?x

(347) Q13(?x, ?y) :- ?x foaf:homepage ?y ,

?x rdf:type ontology:Organisation

(39) Q14(?y, ?x) :- ?y rdf:type ontology:Company ,

?y ontology:headquarter ?x

(1) Q15(?y, ?x) :- ?y foaf:name ?x ,

?y foaf:page resource:Trinity

(9793) Q16(?x, ?y, ?z, ?t) :- resource:Eurosport ?x ?y ,

resource:Eurosport ontology:country ?z ,

resource:Eurosport foaf:homepage ?t

(463) Q17(?y, ?z) :- ?y rdf:type ontology:Person ,

resource:Cubix ontology:starring ?y ,

?y ontology:occupation ?z

(39) Q18(?x, ?y, ?z) :- ?x rdf:type ontology:Company ,

?x ontology:headquarter ?y ,

?x foaf:homepage ?z

(1) Q19(?x, ?y, ?z) :- resource:Eurosport foaf:name ?x ,

resource:Eurosport ontology:country ?y ,

resource:Eurosport foaf:homepage ?z

(463) Q20(?x, ?y, ?z) :- ?y rdf:type ontology:Person ,

?y ontology:nationality ?z ,

?y ontology:occupation resource:Author ,

?y ontology:hometown ?x

Appendix B. Queries used in the Experiments of Chapter 5 123

(39) Q21(?x, ?y, ?z) :- ?x rdf:type ontology:Company ,

?x ontology:headquarter ?y ,

?x ontology:alliance resource:Star Alliance ,

?x foaf:homepage ?z

B.3 BGP Queries over the Barton Dataset

(143) Q01(?x, ?y) :- ?x rdf:type ?y

(46) Q02(?x) :- ?x rdf:type mods:Item

(12) Q03(?x) :- ?x rdf:type mods:Name

(1) Q04(?x) :- ?x rdf:type mods:Text

(2) Q05(?x, ?y) :- ?x mods:language ?y

(2) Q06(?x, ?y) :- ?x mods:description ?y

(2) Q07(?x, ?z) :- ?x rdf:type mods:Text ,

?x mods:language ?z

(414) Q08(?y, ?z) :- ?x rdf:type mods:Text ,

?x ?y ?z ,

?x mods:language language:fre

(2) Q09(?x, ?z) :- ?x rdf:type mods:Text ,

?x role:creator ?z ,

?x mods:language language:fre

(143) Q10(?x, ?y) :- ?x mods:origin info:DLC ,

?x mods:records ?z ,

?z rdf:type ?y

(46) Q11(?x, ?z) :- ?x mods:origin info:DLC ,

?x mods:records ?z ,

?z rdf:type mods:Item

(1) Q12(?x, ?z) :- ?x mods:origin info:DLC ,

?x mods:records ?z ,

?z rdf:type mods:Text

(176) Q13(?y) :- ?x ?y ?z ,

?x mods:records ?t ,

?t rdf:type mods:Text

(1) Q14(?z) :- ?x mods:created ?z ,

?x mods:records ?t ,

?t rdf:type mods:Text

Appendix B. Queries used in the Experiments of Chapter 5 124

(143) Q15(?x, ?y, ?z) :- ?x mods:point “end” ,

?x mods:encoding ?y ,

?x rdf:type ?z

(46) Q16(?x, ?y) :- ?x mods:point “end” ,

?x mods:encoding ?y ,

?x rdf:type mods:Item

(9) Q17(?x, ?y) :- ?x mods:point “end” ,

?x mods:encoding ?y ,

?x rdf:type mods:Date

B.4 BGP Queries over the LUBM Datasets

(136) Q01(?x, ?y) :- ?x rdf:type lubm:Employee ,

?x lubm:worksFor :Dep0.Univ0 ,

?x lubm:degreeFrom ?y

(136) Q02(?x, ?y, ?u, ?v, ?w) :- ?x rdf:type lubm:Employee ,

?x lubm:worksFor :Dep0.Univ0 ,

?x lubm:degreeFrom ?y ,

?x lubm:name ?u ,

?x lubm:emailAddress ?v ,

?x lubm:telephone ?w

(34) Q03(?x, ?y) :- ?x rdf:type lubm:Employee ,

?x lubm:worksFor :Dep0.Univ0 ,

?x lubm:doctoralDegreeFrom ?y

(3, 384) Q04(?x, ?y, ?z) :- ?x rdf:type ?y ,

?u rdf:type lubm:University ,

?x lubm:doctoralDegreeFrom ?u ,

?x lubm:memberOf ?z

(130) Q05(?x, ?y, ?z) :- ?x rdf:type lubm:Student ,

?y rdf:type lubm:Faculty ,

?z rdf:type lubm:Course ,

?x lubm:advisor ?y ,

?y lubm:teacherOf ?z ,

?x lubm:takesCourse ?z

(10, 790) Q06(?x, ?w, ?y, ?z) :- ?x rdf:type ?w ,

?y rdf:type lubm:Faculty ,

?z rdf:type lubm:Course ,

?x lubm:advisor ?y ,

?y lubm:teacherOf ?z ,

?x lubm:takesCourse ?z

Appendix B. Queries used in the Experiments of Chapter 5 125

(156) Q07(?x, ?y) :- ?x rdf:type lubm:Faculty ,

?x lubm:degreeFrom ?y ,

?x lubm:memberOf ?y

(123) Q08(?x) :- ?x rdf:type lubm:Person ,

?x lubm:memberOf :Dep0.Univ0

(123) Q09(?x) :- ?x rdf:type lubm:Person ,

?x lubm:doctoralDegreeFrom ?y ,

?x lubm:memberOf :Dep0.Univ0

(492) Q10(?x, ?y) :- ?x rdf:type lubm:Person ,

?x lubm:degreeFrom ?y ,

?x lubm:memberOf :Dep0.Univ0

(8, 496) Q11(?x, ?y) :- ?x rdf:type lubm:Professor ,

?y rdf:type lubm:Professor ,

?x lubm:degreeFrom ?u ,

?y lubm:degreeFrom ?v ,

?x lubm:memberOf ?v ,

?y lubm:memberOf ?u

(1, 296) Q12(?x, ?y) :- ?x rdf:type lubm:Professor ,

?y rdf:type lubm:Lecturer ,

?x lubm:degreeFrom ?u ,

?y lubm:degreeFrom ?u ,

?x lubm:memberOf ?v ,

?y lubm:memberOf ?v

(221) Q13(?w, ?x, ?y) :- ?w rdf:type lubm:Lecturer ,

?x rdf:type lubm:GraduateStudent ,

?y rdf:type lubm:Faculty ,

?w lubm:Lecturer ?x ,

?w lubm:Lecturer ?y

(221) Q14(?w, ?x, ?y) :- ?w rdf:type lubm:Lecturer ,

?x rdf:type lubm:GraduateStudent ,

?y rdf:type lubm:Faculty ,

?x lubm:advisor ?y ,

?w lubm:Lecturer ?x ,

?w lubm:Lecturer ?y

(1, 105) Q15(?w, ?x, ?y) :- ?w rdf:type lubm:Lecturer ,

?x rdf:type lubm:GraduateStudent ,

?y rdf:type lubm:Faculty ,

?z rdf:type lubm:Course ,

?x lubm:advisor ?y ,

?y lubm:teacherOf ?z ,

?x lubm:takesCourse ?z ,

?w lubm:Lecturer ?x ,

?w lubm:Lecturer ?y

Appendix B. Queries used in the Experiments of Chapter 5 126

(35, 344) Q16(?u, ?v) :- ?x rdf:type ?u ,

?y rdf:type ?v ,

?x lubm:advisor ?y

(26) Q17(?z) :- ?x rdf:type lubm:Student ,

?y rdf:type lubm:GraduateStudent ,

?z rdf:type lubm:Faculty ,

?x lubm:advisor ?z ,

?y lubm:advisor ?z

(376) Q18(?z, ?w) :- ?x rdf:type lubm:Student ,

?y rdf:type lubm:GraduateStudent ,

?z rdf:type ?w ,

?x lubm:advisor ?z ,

?y lubm:advisor ?z

(6, 696) Q19(?x) :- ?x rdf:type lubm:University ,

?y rdf:type lubm:Article ,

?u rdf:type ?z ,

?y lubm:Lecturer ?u ,

?u lubm:memberOf ?x

(28, 458) Q20(?x) :- ?x rdf:type lubm:University ,

?y rdf:type lubm:Lecturer ,

?u rdf:type ?z ,

?y lubm:Lecturer ?u ,

?u lubm:memberOf ?x

(650) Q21(?z) :- ?z rdf:type lubm:Faculty ,

?x rdf:type lubm:Student ,

?y rdf:type lubm:GraduateStudent ,

?u rdf:type lubm:Course ,

?v rdf:type lubm:Course ,

?z lubm:teacherOf ?u ,

?z lubm:teacherOf ?v ,

?x lubm:takesCourse ?u ,

?y lubm:takesCourse ?v

(65) Q22(?x) :- ?x rdf:type lubm:Faculty ,

?y rdf:type lubm:GraduateCourse ,

?z rdf:type lubm:Course ,

?x lubm:teacherOf ?y ,

?x lubm:teacherOf ?z

(940) Q23(?x, ?w) :- ?x rdf:type ?w ,

?y rdf:type lubm:GraduateCourse ,

?z rdf:type lubm:Course ,

?x lubm:takesCourse ?y ,

?x lubm:takesCourse ?z

Appendix B. Queries used in the Experiments of Chapter 5 127

(35, 344) Q24(?x, ?y, ?z, ?w) :- ?x rdf:type ?y ,

?z rdf:type ?w ,

?z lubm:Lecturer ?x

(2, 444) Q25(?x, ?z, ?w) :- ?x rdf:type lubm:Faculty ,

?z rdf:type ?w ,

?z lubm:Lecturer ?x

(697) Q26(?x, ?y) :- ?x rdf:type lubm:Person ,

?y rdf:type lubm:Lecturer ,

?y lubm:Lecturer ?x

(2, 788) Q27(?x, ?y, ?z) :- ?x rdf:type lubm:Person ,

?y rdf:type lubm:Lecturer ,

?x lubm:degreeFrom ?z ,

?y lubm:Lecturer ?x

(697) Q28(?x, ?y, ?z) :- ?x rdf:type lubm:Person ,

?y rdf:type lubm:Lecturer ,

?x lubm:doctoralDegreeFrom ?z ,

?y lubm:Lecturer ?x

(65) Q29(?x, ?y) :- ?x rdf:type lubm:Faculty ,

?y rdf:type lubm:Course ,

?x lubm:doctoralDegreeFrom ?z ,

?x lubm:teacherOf ?y

(8, 496) Q30(?x, ?y) :- ?x rdf:type lubm:Professor ,

?y rdf:type lubm:Professor ,

?x lubm:degreeFrom ?u ,

?y lubm:degreeFrom ?u ,

?x lubm:memberOf ?v ,

?y lubm:memberOf ?v

(752) Q31(?x, ?y) :- ?x rdf:type ?y ,

?x lubm:degreeFrom :Univ0

(52) Q32(?x) :- ?x rdf:type lubm:Faculty ,

?x lubm:degreeFrom :Univ0

(156) Q33(?x, ?y) :- ?x rdf:type lubm:Faculty ,

?x lubm:degreeFrom :Univ532 ,

?x lubm:memberOf ?y

(2, 256) Q34(?x, ?y) :- ?x rdf:type ?y ,

?x lubm:degreeFrom :Univ532 ,

?x lubm:memberOf :Dep1.Univ7

(156) Q35(?x) :- ?x rdf:type lubm:Faculty ,

?x lubm:degreeFrom :Univ532 ,

?x lubm:memberOf :Dep1.Univ7

Appendix B. Queries used in the Experiments of Chapter 5 128

(318, 096) Q36(?x, ?u, ?y, ?v, ?z) :- ?x rdf:type ?u ,

?y rdf:type ?v ,

?x lubm:mastersDegreeFrom :Univ532 ,

?y lubm:doctoralDegreeFrom :Univ532 ,

?x lubm:memberOf ?z ,

?y lubm:memberOf ?z

Bibliography

[Abadi07] Daniel J. Abadi, Adam Marcus, Samuel R. Madden, Kate

Hollenbach. “Scalable Semantic Web Data Management Us-

ing Vertical Partitioning”. In PVLDB. 2007.

[Abiteboul95] Serge Abiteboul, Richard Hull, Victor Vianu. Foundations of

Databases. Addison-Wesley, 1995.

[Abiteboul03] Serge Abiteboul. “Managing an XML Warehouse in a P2P Con-

text”. In CAiSE, pages 4–13. 2003.

[Abiteboul11] Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-

Christine Rousset, Pierre Senellart. Web Data Management.

Cambridge University Press, New York, NY, USA, 2011.

[Abiteboul12] Serge Abiteboul, Emilien Antoine, Julia Stoyanovich.

“Viewing the Web as a Distributed Knowledge Base”. In ICDE,

pages 1–4. 2012.

[Adjiman07] Philippe Adjiman, François Goasdoué, Marie-Christine Rous-

set. “SomeRDFS in the Semantic Web”. JODS, 2007.

[Ailamaki10] Anastasia Ailamaki, VerenaKantere, Debabrata Dash. “Man-

aging Scientific Data”. Commun. ACM, 53(6):pages 68–78, 2010.

[Arenas09] Marcelo Arenas, Claudio Gutierrez, Jorge Pérez. “Founda-

tions of RDF Databases”. In Reasoning Web. 2009.

[Arias11] Mario Arias, Javier D. Fernández, Miguel A. Mart́ınez-

Prieto, Pablo de la Fuente. “An Empirical Study of Real-

World SPARQL Queries”. CoRR, abs/1103.5043, 2011.

[Atre10] Medha Atre, Vineet Chaoji, Mohammed J. Zaki, James A.

Hendler. “Matrix ”Bit” loaded: a scalable lightweight join query

processor for RDF data”. In WWW, pages 41–50. 2010.

[Baader03] Franz Baader, Diego Calvanese, Deborah L. McGuinness,

Daniele Nardi, Peter F. Patel-Schneider, editors. The De-

scription Logic Handbook: Theory, Implementation, and Applica-

tions. Cambridge University Press, 2003.

[Banerjee09] Sandipto Banerjee, Karen C. Davis. “Modeling Data Ware-

house Schema Evolution over Extended Hierarchy Semantics”. In

J. Data Semantics [Spaccapietra09], pages 72–96.

129

Bibliography 130

[Berners-Lee01] Tim Berners-Lee, James Hendler, Ora Lassila. “The Se-

mantic Web”. Scientific American Magazine, 2001.

[Berners-Lee08] Tim Berners-Lee. “Linked Open Data”. http://www.w3.org/

2008/Talks/0617-lod-tbl/, 2008. Talk.

[Bishop11] Barry Bishop, Atanas Kiryakov, Damyan Ognyanoff, Ivan

Peikov, Zdravko Tashev, Ruslan Velkov. “OWLIM: A family

of scalable semantic repositories”. Semantic Web, 2(1), 2011.

[Bleco12] Dritan Bleco, Yannis Kotidis. “Business intelligence on com-

plex graph data”. In EDBT/ICDT Workshops, pages 13–20. 2012.

[Boukraâ13] Doulkifli Boukraâ, Omar Boussäıd, Fadila Bentayeb,

Djamel Eddine Zegour. “A Layered Multidimensional Model

of Complex Objects”. In CAiSE, pages 498–513. 2013.

[Broekstra02] Jeen Broekstra, Arjohn Kampman, Frank van Harmelen.

“Sesame: A Generic Architecture for Storing and Querying RDF

and RDF Schema”. In International Semantic Web Conference,

pages 54–68. 2002.

[Broekstra03a] Jeen Broekstra, Arjohn Kampman. “Inferencing and Truth

Maintenance in RDF Schema: Exploring a naive practical ap-

proach”. In PSSS. 2003.

[Broekstra03b] Jeen Broekstra, Arjohn Kampman. “Inferencing and Truth

Maintenance in RDF Schema: Exploring a naive practical ap-

proach”. In PSSS Workshop. 2003.

[Calvanese07] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo,

Maurizio Lenzerini, RiccardoRosati. “Tractable Reasoning and

Efficient Query Answering in Description Logics: The DL-Lite

Family”. Journal of Automated Reasoning (JAR), 2007.

[Campinas12] Stephane Campinas, Thomas E. Perry, Diego Ceccarelli,

Renaud Delbru, Giovanni Tummarello. “Introducing RDF

Graph Summary with Application to Assisted SPARQL Formu-

lation”. In Proceedings of the 2012 23rd International Workshop

on Database and Expert Systems Applications, DEXA ’12, pages

261–266. IEEE Computer Society, Washington, DC, USA, 2012.

[Chatziantoniou01] Damianos Chatziantoniou, Michael O. Akinde, Theodore

Johnson, Samuel Kim. “The MD-join: An Operator for Complex

OLAP”. In ICDE, pages 524–533. 2001.

[Chebotko09] Artem Chebotko, Shiyong Lu, Farshad Fotouhi. “Semantics

Preserving SPARQL-to-SQL Translation”. Data Knowl. Eng.,

68(10):pages 973–1000, 2009.

[Chong05] Eugene Inseok Chong, Souripriya Das, George Eadon, Jagan-

nathan Srinivasan. “An Efficient SQL-based RDF Querying

Scheme”. In VLDB, pages 1216–1227. 2005.

Bibliography 131

[Christophides03] Vassilis Christophides, Dimitris Plexousakis, Michel Scholl,

Sotirios Tourtounis. “On labeling schemes for the semantic

web”. In WWW, pages 544–555. 2003.

[Codd70] E. F. Codd. “A Relational Model of Data for Large Shared Data

Banks”. Commun. ACM, 13(6):pages 377–387, 1970.

[Colazzo13a] Dario Colazzo, I. Ghosh, Tushar, François Goasdoué, Ioana

Manolescu, Alexandra Roatis. “WaRG: Warehousing RDF

Graphs”. In Bases de Données Avancées. Nantes, France, 2013.

Demonstration.

[Colazzo13b] Dario Colazzo, François Goasdoué, Ioana Manolescu,

Alexandra Roatis. “Warehousing RDF Graphs”. In Bases de

Données Avancées. Nantes, France, 2013.

[Colazzo14] Dario Colazzo, François Goasdoué, Ioana Manolescu,

AlexandraRoatis. “RDF analytics: lenses over semantic graphs”.

In 23rd International World Wide Web Conference, WWW ’14,

Seoul, Republic of Korea, April 7-11, 2014, pages 467–478. 2014.

[DBL] “DBLP RDF dataset”. http://kdl.cs.umass.edu/data/dblp/

dblp-info.html.

[Dritsou11] Vicky Dritsou, Panos Constantopoulos, AntoniosDeligian-

nakis, Yannis Kotidis. “Optimizing Query Shortcuts in RDF

Databases”. In ESWC, pages 77–92. 2011.

[Duan11a] Songyun Duan, Anastasios Kementsietsidis, Kavitha Srini-

vas, Octavian Udrea. “Apples and oranges: a comparison of

RDF benchmarks and real RDF datasets”. In SIGMOD Confer-

ence, pages 145–156. 2011.

[Duan11b] Songyun Duan, Anastasios Kementsietsidis, Kavitha Srini-

vas, Octavian Udrea. “Apples and oranges: A comparison of

rdf benchmarks and real rdf datasets”. In Proceedings of the

2011 ACM SIGMOD International Conference on Management of

Data, SIGMOD ’11, pages 145–156. ACM, New York, NY, USA,

2011.

[Erling07] Orri Erling, Ivan Mikhailov. “RDF Support in the Virtuoso

DBMS”. In CSSW, pages 59–68. 2007.

[Erling09] Orri Erling, Ivan Mikhailov. “Virtuoso: RDF Support in a

Native RDBMS”. In Semantic Web Information Management.

2009.

[Erling12] Orri Erling. “Virtuoso, a Hybrid RDBMS/Graph Column

Store”. IEEE Data Eng. Bull., 2012.

[Etcheverry12] Lorena Etcheverry, Alejandro A. Vaisman. “Enhancing OLAP

Analysis with Web Cubes”. In ESWC, pages 469–483. 2012.

Bibliography 132

[Fernández13] Javier D. Fernández, Miguel A. Mart́ınez-Prieto, Claudio

Gutiérrez, Axel Polleres, Mario Arias. “Binary RDF rep-

resentation for publication and exchange (HDT)”. J. Web Sem.,

19:pages 22–41, 2013.

[Gantz12] John Gantz, David Reinsel. “THE DIGITAL UNIVERSE IN

2020: Big Data, Bigger Digital Shadows, and Biggest Growth in

the Far East”. http://idcdocserv.com/1414, 2012.

[Giacomo12] Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenz-

erini, Antonella Poggi, Riccardo Rosati, Marco Ruzzi,

Domenico Fabio Savo. “MASTRO: A Reasoner for Effective

Ontology-Based Data Access”. In ORE. 2012.

[Goasdoué10] François Goasdoué, Konstantinos Karanasos, Julien Leblay,

Ioana Manolescu. “RDFViewS: A Storage Tuning Wizard for

RDF Applications”. In Proceedings of the 19th ACM International

Conference on Information and Knowledge Management, CIKM

’10, pages 1947–1948. ACM, New York, NY, USA, 2010.

[Goasdoué11] François Goasdoué, Konstantinos Karanasos, Julien Leblay,

IoanaManolescu. “View Selection in Semantic Web Databases”.

PVLDB, 2011.

[Goasdoué12a] François Goasdoué, Ioana Manolescu, Alexandra Roatis.

“BGP Query Answering against Dynamic RDF Databases”. Rap-

port de recherche RR-8018, INRIA, 2012. URL http://hal.

inria.fr/hal-00719641.

[Goasdoué12b] François Goasdoué, Ioana Manolescu, Alexandra Roatis.

“Getting more RDF support from relational databases”. In Pro-

ceedings of the 21st World Wide Web Conference, WWW 2012,

Lyon, France, April 16-20, 2012 (Companion Volume), pages 515–

516. 2012.

[Goasdoué12c] François Goasdoué, Ioana Manolescu, Alexandra Roatis.

“Répondre aux requêtes par reformulation dans les bases de

données RDF”. In Actes de la conférence RFIA 2012, pages 978–

2–9539515–2–3. Lyon, France, 2012. Session ”Posters”.

[Goasdoué13] FrançoisGoasdoué, IoanaManolescu, AlexandraRoatis. “Ef-

ficient query answering against dynamic RDF databases”. In Joint

2013 EDBT/ICDT Conferences, EDBT ’13 Proceedings, Genoa,

Italy, March 18-22, 2013, pages 299–310. 2013.

[Gottlob11] Georg Gottlob, Giorgio Orsi, Andreas Pieris. “Ontological

Queries: Rewriting and Optimization”. In ICDE. 2011. Keynote.

[Guo05] Yuanbo Guo, Zhengxiang Pan, Jeff Heflin. “LUBM: A bench-

mark for OWL knowledge base systems”. J. Web Sem., 3(2-

3):pages 158–182, 2005.

Bibliography 133

[Gupta99] Ashish Gupta, Iderpal Singh Mumick, editors. Materialized

Views: Techniques, Implementations, and Applications. MIT

Press, Cambridge, MA, USA, 1999.

[Gutierrez06] Claudio Gutierrez, Carlos Hurtado, Alejandro Vaisman.

“The Meaning of Erasing in RDF under the Katsuno-Mendelzon

Approach”. In In Proceedings WebDB-2006. 2006.

[Gutierrez11] Claudio Gutierrez, Carlos A. Hurtado, Alejandro A. Vais-

man. “RDFS Update: From Theory to Practice”. In ESWC,

pages 93–107. 2011.

[Haase04] Peter Haase, Jeen Broekstra, Andreas Eberhart, Raphael

Volz. “A Comparison of RDF Query Languages”. In Interna-

tional Semantic Web Conference, pages 502–517. 2004.

[Halevy01] Alon Y. Halevy. “Answering Queries Using Views: A Survey”.

The VLDB Journal, 10(4):pages 270–294, 2001.

[Harinarayan96] Venky Harinarayan, Anand Rajaraman, Jeffrey D. Ullman.

“Implementing Data Cubes Efficiently”. In SIGMOD Conference,

pages 205–216. 1996.

[Heer05] Jeffrey Heer, Stuart K. Card, James A. Landay. “Prefuse: a

toolkit for interactive information visualization”. In CHI, pages

421–430. 2005.

[Huang11] Jiewen Huang, Daniel J. Abadi, Kun Ren. “Scalable SPARQL

Querying of Large RDF Graphs”. PVLDB, 4(11):pages 1123–

1134, 2011.

[Husain11] Mohammad Farhan Husain, James P. McGlothlin, Moham-

mad M. Masud, Latifur R. Khan, Bhavani M. Thuraisingham.

“Heuristics-Based Query Processing for Large RDF Graphs Using

Cloud Computing”. IEEE Trans. Knowl. Data Eng., 23(9):pages

1312–1327, 2011.

[Imielinski84] Tomasz Imielinski, Witold Lipski Jr. “Incomplete Information

in Relational Databases”. JACM, 1984.

[Inmon92] William H. Inmon. Building the Data Warehouse. John Wiley &

Sons, Inc., New York, NY, USA, 1992.

[Inmon11] W.H. Inmon, K. Krishnan. Building the Unstructured Data

Warehouse: Architecture, Analysis, and Design. Technics Pub-

lications Llc, 2011.

[Jarke99] Matthias Jarke, Y. Vassiliou, P. Vassiliadis, M. Lenzerini.

Fundamentals of Data Warehouses. Springer-Verlag New York,

Inc., Secaucus, NJ, USA, 1st edition, 1999.

Bibliography 134

[Jensen10] Christian S. Jensen, Torben Bach Pedersen, Christian Thom-

sen. Multidimensional Databases and Data Warehousing. Synthe-

sis Lectures on Data Management. Morgan & Claypool Publishers,

2010.

[Kämpgen13] BenediktKämpgen, AndreasHarth. “No Size Fits All - Running

the Star Schema Benchmark with SPARQL and RDF Aggregate

Views”. In ESWC, pages 290–304. 2013.

[Kaoudi08] Zoi Kaoudi, Iris Miliaraki, Manolis Koubarakis. “RDFS Rea-

soning and Query Answering on Top of DHTs”. In International

Semantic Web Conference, pages 499–516. 2008.

[Kaoudi14] ZoiKaoudi, IoanaManolescu. “RDF in the Clouds: A Survey”.

VLDB journal, 2014.

[kdb] “[kx] white paper”. kx.com/papers/KdbPLUS_

Whitepaper-2012-1205.pdf.

[Kimball02] Ralph Kimball, Margy Ross. The Data Warehouse Toolkit: The

Complete Guide to Dimensional Modeling. John Wiley & Sons,

Inc., New York, NY, USA, 2nd edition, 2002.

[Lehmann14] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch,

Dimitris Kontokostas, Pablo N. Mendes, Sebastian Hell-

mann, Mohamed Morsey, Patrick van Kleef, Sören Auer,

Christian Bizer. “DBpedia - A Large-scale, Multilingual Knowl-

edge Base Extracted from Wikipedia”. Semantic Web Journal,

2014.

[Levandoski09] Justin J. Levandoski, Mohamed F. Mokbel. “RDF Data-

Centric Storage”. In ICWS, pages 911–918. 2009.

[Maduko07] Angela Maduko, Kemafor Anyanwu, Amit P. Sheth, Paul

Schliekelman. “Estimating the cardinality of RDF graph pat-

terns”. In WWW, pages 1233–1234. 2007.

[Maduko08] Angela Maduko, Kemafor Anyanwu, Amit P. Sheth, Paul

Schliekelman. “Graph Summaries for Subgraph Frequency Es-

timation”. In ESWC, pages 508–523. 2008.

[Matono05] Akiyoshi Matono, Toshiyuki Amagasa, Masatoshi Yoshikawa,

Shunsuke Uemura. “A Path-based Relational RDF Database”.

In ADC, pages 95–103. 2005.

[Matono06] Akiyoshi Matono, Said Mirza Pahlevi, Isao Kojima. “RD-

FCube: A P2P-Based Three-Dimensional Index for Structural

Joins on Distributed Triple Stores”. In DBISP2P, pages 323–330.

2006.

[Mohan13] C. Mohan. “History repeats itself: sensible and NonsenSQL as-

pects of the NoSQL hoopla”. In EDBT, pages 11–16. 2013.

Bibliography 135

[Nebot09] Victoria Nebot, Rafael Berlanga Llavori, Juan Manuel Pérez-

Mart́ınez, Maŕıa José Aramburu, Torben Bach Pedersen.

“Multidimensional Integrated Ontologies: A Framework for De-

signing Semantic Data Warehouses”. In J. Data Semantics

[Spaccapietra09], pages 1–36.

[Nebot12] Victoria Nebot, Rafael Berlanga Llavori. “Building data ware-

houses with semantic web data”. Decision Support Systems,

52(4):pages 853–868, 2012.

[Neumann08] Thomas Neumann, Gerhard Weikum. “RDF-3X: A RISC-style

Engine for RDF”. Proc. VLDB Endow., 1(1):pages 647–659, 2008.

[Neumann09] Thomas Neumann, Gerhard Weikum. “Scalable Join Processing

on Very Large RDF Graphs”. In Proceedings of the 2009 ACM

SIGMOD International Conference on Management of Data, SIG-

MOD ’09, pages 627–640. ACM, New York, NY, USA, 2009.

[Neumann10a] Thomas Neumann, Gerhard Weikum. “The RDF-3X Engine

for Scalable Management of RDF Data”. The VLDB Journal,

19(1):pages 91–113, 2010.

[Neumann10b] Thomas Neumann, Gerhard Weikum. “x-RDF-3X: Fast Query-

ing, High Update Rates, and Consistency for RDF Databases”.

PVLDB, 2010.

[Neumann11] Thomas Neumann, Guido Moerkotte. “Characteristic sets:

Accurate cardinality estimation for RDF queries with multiple

joins”. In ICDE, pages 984–994. 2011.

[Niinimäki09] Marko Niinimäki, Tapio Niemi. “An ETL Process for

OLAP Using RDF/OWL Ontologies”. In J. Data Semantics

[Spaccapietra09], pages 97–119.

[OLA] “OLAP Council White Paper”. http://www.olapcouncil.org/

research/resrchly.htm.

[ora] “Oracle Spatial and Graph white papers”. http://www.oracle.

com/technetwork/database/options/spatialandgraph/.

[Papastefanatos09] George Papastefanatos, Panos Vassiliadis, Alkis Simitsis,

Yannis Vassiliou. “Policy-Regulated Management of ETL Evo-

lution”. In J. Data Semantics [Spaccapietra09], pages 147–177.

[Pettey11] Christy Pettey. “Gartner Symposium Press Release”. http:

//www.gartner.com/newsroom/id/1824919, 2011.

[Pichler08] Reinhard Pichler, Axel Polleres, Fang Wei, Stefan

Woltran. “dRDF: Entailment for Domain-Restricted RDF”. In

ESWC, pages 200–214. 2008.

[Pinet09] François Pinet, Michel Schneider. “A Unified Object Con-

straint Model for Designing and Implementing Multidimensional

Systems”. In J. Data Semantics [Spaccapietra09], pages 37–71.

Bibliography 136

[Polleres07] Axel Polleres. “From SPARQL to Rules (and Back)”. In

Proceedings of the 16th International Conference on World Wide

Web, WWW ’07, pages 787–796. ACM, New York, NY, USA,

2007.

[Preda10] Nicoleta Preda, Gjergji Kasneci, Fabian M. Suchanek,

Thomas Neumann, Wenjun Yuan, Gerhard Weikum. “Active

knowledge: dynamically enriching RDF knowledge bases by web

services”. In SIGMOD Conference, pages 399–410. 2010.

[Ramakrishnan95] Raghu Ramakrishnan, Jeffrey D. Ullman. “A Survey of

Deductive Database Systems”. Journal of Logic Programming,

23(2):pages 125–149, 1995.

[Recommendation04] W3C Recommendation. “RDF Semantics”. http://www.w3.

org/TR/rdf-mt/, 2004.

[Roatis14] Alexandra Roatis. “Analysing RDF data: A realm of new possi-

bilities”. ERCIM News, 2014(96), 2014.

[Rosati10] Riccardo Rosati, Alessandro Almatelli. “Improving Query An-

swering over DL-Lite Ontologies”. In KR. 2010.

[Russell10] Stuart J. Russell, Peter Norvig. Artificial Intelligence - A Mod-

ern Approach. Pearson Education, 2010.

[Sidirourgos08] Lefteris Sidirourgos, Romulo Goncalves, Martin Kersten,

Niels Nes, Stefan Manegold. “Column-store Support for RDF

Data Management: Not All Swans Are White”. Proc. VLDB

Endow., 1(2):pages 1553–1563, 2008.

[Skoutas09] Dimitrios Skoutas, Alkis Simitsis, Timos K. Sellis. “Ontology-

Driven Conceptual Design of ETL Processes Using Graph Trans-

formations”. In J. Data Semantics [Spaccapietra09], pages 120–

146.

[Spaccapietra09] Stefano Spaccapietra, Esteban Zimányi, Il-Yeol Song, editors.

Journal on Data Semantics XIII, volume 5530 of Lecture Notes in

Computer Science. Springer, 2009.

[Spyratos06] Nicolas Spyratos. “A Functional Model for Data Analysis”. In

FQAS, pages 51–64. 2006.

[Stuckenschmidt05] Heiner Stuckenschmidt, Jeen Broekstra. “Time - Space

Trade-Offs in Scaling up RDF Schema Reasoning”. In WISE

Workshops, pages 172–181. 2005.

[Suchanek08] Fabian M. Suchanek, Gjergji Kasneci, Gerhard Weikum.

“YAGO: A Large Ontology from Wikipedia and WordNet”. J.

Web Sem., 6(3):pages 203–217, 2008.

Bibliography 137

[terHorst05] Herman J. ter Horst. “Completeness, decidability and com-

plexity of entailment for RDF Schema and a semantic extension

involving the OWL vocabulary”. J. Web Sem., 3(2-3):pages 79–

115, 2005.

[Theodoratos97] Dimitri Theodoratos, Timos K. Sellis. “Data Warehouse Con-

figuration”. In VLDB, pages 126–135. 1997.

[Tsialiamanis12] Petros Tsialiamanis, Lefteris Sidirourgos, Irini Fundulaki,

Vassilis Christophides, Peter A. Boncz. “Heuristics-based

query optimisation for SPARQL”. In EDBT, pages 324–335. 2012.

[Udrea07] Octavian Udrea, Andrea Pugliese, V. S. Subrahmanian.

“GRIN: A Graph Based RDF Index”. In AAAI, pages 1465–1470.

2007.

[Urbani09] Jacopo Urbani, Spyros Kotoulas, Eyal Oren, Frank van

Harmelen. “Scalable Distributed Reasoning Using MapReduce”.

In International Semantic Web Conference, pages 634–649. 2009.

[Urbani10] Jacopo Urbani, Spyros Kotoulas, Jason Maassen, Frank van

Harmelen, Henri E. Bal. “OWL Reasoning with WebPIE: Cal-

culating the Closure of 100 Billion Triples”. In ESWC, pages

213–227. 2010.

[Urbani11] Jacopo Urbani, Frank van Harmelen, Stefan Schlobach,

Henri E. Bal. “QueryPIE: Backward Reasoning for OWL Horst

over Very Large Knowledge Bases”. In International Semantic

Web Conference (1), pages 730–745. 2011.

[Urbani12] Jacopo Urbani, Spyros Kotoulas, Jason Maassen, Frank van

Harmelen, Henri E. Bal. “WebPIE: A Web-scale Parallel In-

ference Engine using MapReduce”. J. Web Sem., 10:pages 59–75,

2012.

[Urbani13] Jacopo Urbani, Alessandro Margara, Ceriel J. H. Jacobs,

Frank van Harmelen, Henri E. Bal. “DynamiTE: Parallel Ma-

terialization of Dynamic RDF Data”. In ISWC, pages 657–672.

2013.

[Virgilio12] Roberto De Virgilio. “A Linear Algebra Technique for

(de)Centralized Processing of SPARQL Queries”. In ER, pages

463–476. 2012.

[W3Ca] W3C. “Entailment Regimes”. http://www.w3.org/TR/

sparql11-entailment/.

[W3Cb] W3C. “Resource Description Framework”. http://www.w3.org/

RDF.

[W3Cc] W3C. “Simple Knowledge Organization System”. http://www.

w3.org/TR/skos-primer/.

Bibliography 138

[W3Cd] W3C. “SPARQL Protocol and RDF Query Language”. http:

//www.w3.org/TR/rdf-sparql-query.

[W3Ce] W3C. “Web Ontology Language”. http://www.w3.org/TR/

owl2-overview.

[w3cf] “RDF Schema”. http://www.w3.org/TR/rdf-schema/.

[W3C13] W3C. “SPARQL 1.1 Query Language”. http://www.w3.org/

TR/sparql11-query/, 2013.

[W3C14a] W3C. “N-Triples [A line-based syntax for an RDF graph]”. http:

//www.w3.org/TR/n-triples/, 2014.

[W3C14b] W3C. “RDFa [Rich Structured Data Markup for Web Docu-

ments]”. http://www.w3.org/TR/rdfa-primer/, 2014.

[W3C14c] W3C. “RDF/XML [XML syntax for RDF]”. http://www.w3.

org/TR/rdf-syntax-grammar/, 2014.

[W3C14d] W3C. “The RDF Data Cube Vocabulary”. http://www.w3.org/

TR/vocab-data-cube/, 2014.

[W3C14e] W3C. “Turtle [Terse RDF Triple Language]”. http://www.w3.

org/TR/turtle/, 2014.

[Weaver09] Jesse Weaver, James A. Hendler. “Parallel Materialization of

the Finite RDFS Closure for Hundreds of Millions of Triples”. In

International Semantic Web Conference, pages 682–697. 2009.

[Weiss08] Cathrin Weiss, Panagiotis Karras, Abraham Bernstein.

“Hexastore: Sextuple Indexing for Semantic Web Data Manage-

ment”. PVLDB, 1(1), 2008.

[Wilkinson03] Kevin Wilkinson, Craig Sayers, Harumi A. Kuno, Dave

Reynolds. “Efficient RDF Storage and Retrieval in Jena2”. In

SWDB, pages 131–150. 2003.

[Win] “WinterCorp White Papers”. http://www.wintercorp.com/

download-any-wp.

[Wu12] Zhe Wu, Karl Rieb, George Eadon, Ankesh Khandelwal,

Vladimir Kolovski. “Advancing the Enterprise-class OWL In-

ference Engine in Oracle Database”. In ORE. 2012.

[wwwa] “AllegroGraph”. http://franz.com/agraph/allegrograph/.

[wwwb] “Barton”. http://simile.mit.edu/rdf-test-data/barton.

[wwwc] “Jena”. http://jena.sourceforge.net.

[wwwd] “Neo4j”. http://www.neo4j.org/.

[wwwe] “PostgreSQL”. http://www.postgresql.org/.

Bibliography 139

[wwwf] “OWLIM”. http://owlim.ontotext.com.

[wwwg] “Sesame”. http://www.openrdf.org.

[wwwh] “Virtuoso”. http://virtuoso.openlinksw.com.

[Zhao11] Peixiang Zhao, Xiaolei Li, Dong Xin, Jiawei Han. “Graph cube:

on warehousing and OLAP multidimensional networks”. In SIG-

MOD Conference, pages 853–864. 2011.

[Zou11] Lei Zou, Jinghui Mo, Lei Chen, M. Tamer Özsu, Dongyan

Zhao. “gStore: Answering SPARQL Queries via Subgraph

Matching”. PVLDB, 4(8):pages 482–493, 2011.

