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Abstract

This thesis describes the design, construction and characterization of an apparatus

capable of trapping and cooling fermionic atoms of 6Li and 40K to ultracold tempera-

tures. The study of mixtures of degenerate Fermi gases opens the door for the creation

of new many-body quantum systems.

We present a novel laser cooling technique able to simultaneously cool 6Li and
40K to the sub-Doppler regime based on the gray molasses scheme operating on the

D1 atomic transition. This strategy enhances the phase space density of both atomic

species to 10−4, the highest value reported in the literature for laser cooled 6Li and
40K.

The optimization of a device able to transport a magnetically trapped atomic cloud

from the MOT chamber to a science cell is described. In this cell evaporative cooling is

performed first in a plugged magnetic quadrupole trap and then in an optical dipole

trap. We report the production of a quantum degenerate Fermi gas of 1.5× 105 atoms
40K in a crossed dipole trap with T/TF = 0.17, paving the way for the creation of

strongly interacting superfluids of 40K.
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Résumé

Ce mémoire décrit la conception, la construction et la caractérisation d’un appareil

capable de piéger et refroidir des atomes fermioniques de 6Li et 40K à des tempéra-

tures ultrabasses. L’étude des mélanges des gazes de Fermi dégénérés ouvre la porte

vers la création des nouveaux systèmes quantiques à N corps.

Nous présentons une nouvelle technique de refroidissement laser capable de refroi-

dir simultanément 6Li et 40K à des températures sub-Doppler basée sur un schéma de

molasses grises fonctionnant sur la transition atomique D1. Cette stratégie améliore

la densité dans le espace des phases des deux espèces atomiques à 10−4, la valeur la

plus élevée rapportée dans la littérature pour le refroidissement laser du 6Li et du
40K.

L’optimisation d’un dispositif capable de transporter un nuage atomique piégé ma-

gnétiquement de l’enceinte MOT à une cellule de science est décrite. Dans cette cellule

on effectue du refroidissement évaporatif d’abord dans un piège magnétique quadri-

polaire dont le zéro du champ est interdit par un potentiel répulsif et après dans un

piège optique dipolaire. Nous rapportons la production d’un gaz quantique de Fermi

dégénéré de 1.5× 105 atomes de 40K dans un piège dipolaire croisé avec T/TF = 0.17,

ouvrant la voie à la création des superfluides de 40K en interactions fortes.
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1 Introduction

The field of ultracold atoms has made a remarkable progress since the 1980s and is

today an important subject in Physics on its own. One of the main motivations for

development of the field in the early days was the quest for the observation of a quan-

tum phase transition predicted by S. N. Bose and A. Einstein [23, 53]. Bose-Einstein

condensation (BEC) occurs when the typical distance between bosonic particles be-

comes of the order of their thermal de Broglie wavelength. In this regime, the single-

particle wavefunctions interfere, driving the macroscopic occupation the ground state

of the system, giving rise to a “macroscopic wavefunction”. This phenomenon was

first observed in superfluid 4He in 1937 [4, 95]. In the 1970s it was pointed out that di-

lute gases of neutral atoms were promising systems for achieving weakly interacting

BEC.

The first system to be explored was polarized Hydrogen, which has a high critical

temperature, due to its small mass. Cooling was performed in two stages: first by

using a cryostat to load Hydrogen directly in a magnetic trap [86] and then by per-

forming evaporative cooling in this trap [85, 125]. However, the quest for BEC was

hindered by the small atom scattering cross-section and dipolar losses.

Starting in the 1980s, there was a spectacular development of powerful laser cool-

ing techniques, such as magneto-optical trapping (MOT) [162] and sub-Doppler cool-

ing [30, 38, 112]. It was the combination of laser cooling [128] and evaporative cooling

[99] in a magnetic trap [131] that allowed the first observations of BEC in Rubidium

[6] and Sodium [39] in 1995. Hydrogen followed few years later in 1998 [61], as well

as many other bosonic isotopes: all alkali metals (except Francium), alkaline earth

metals (Calcium and Strontium), a noble gas (metastable Helium), a transition metal

(Chromium) and Lanthanides (Ytterbium, Erbium, Dysprosium).

Using the same techniques of laser and evaporative cooling, several groups tried to

cool fermionic isotopes. While for bosons the occupation of the same quantum state is

possible, for fermions this is not the case since they obey the Pauli exclusion principle.
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1 Introduction

In consequence, no phase transition was expected to occur when reaching the quan-

tum regime, only the observation of a smooth transition to the degenerate Fermi sea.

Moreover, the cooling of fermions is hindered by the Pauli principle, which does not

allow indistinguishable fermions to collide at low energies, making evaporative cool-

ing impossible1. This was circumvented by cooling two distinguishable spin-states

of the fermionic atom [41, 42, 44] or by using a boson as a sympathetic coolant for

the fermion [176]. The cooling of fermions to quantum degeneracy was first achieved

with 40K atoms in 1999 for the first time [43]. Since then, degeneracy was attained for

several atoms: another alkali 6Li [177, 202], metastable 3He* [127], 87Sr [45, 195], 173Yb

[64], 161Dy [119] and 167Er [3].

The discovery of Feshbach resonances was a key turning point in the field of ul-

tracold Fermi gases. These resonances occur when two free atoms (open channel)

are coupled to a molecular bound state belonging to a different molecular potential

(closed channel). In this case, the scattering properties of the two free atoms can dra-

matically change. By tuning the energy difference between the open and closed chan-

nels, one can control their coupling and, consequently, the elastic scattering cross-

section. Typically, this is achieved by choosing molecular states which have different

magnetic moment, so that their coupling may be manipulated by simply tuning the

magnetic field2. Feshbach resonances were first observed in bosons by measuring

strong inelastic losses, which were triggered by the enhancement of interactions [89].

Few years later, resonances were also observed in fermionic atoms 6Li [47, 94, 145]

and 40K [118]. Fortunately, it turns out that for fermions inelastic three-body losses

are suppressed due to the Pauli exclusion principle [158]. The stability of strongly

interacting Fermi gases opens the door for exciting experimental manipulations.

There were many ground-breaking achievements in the ultracold fermionic gas

field, but it is out of the scope of the introduction of this thesis to do a complete re-

view of those results (for this we refer the reader to refs. 70, 100). Instead we give few

examples. 1. The observation of BEC of pairs of strongly bound fermions [73, 93, 217].

2. The production of quantized vortices, which is a proof of superfluidity, through-

out the BCS-BEC crossover [219]. This crossover can be studied by changing the

1A remarkable exception is Erbium, for which elastic collisions between atoms in the same state are
possible due to the strong magnetic dipole-dipole interaction [2].

2We refer the reader to ref. 29 for a review on Feshbach resonances in ultracold atoms.
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1.1 Prospects for ultracold fermionic mixtures

strength of the attractive interaction between two components of a Fermi gas. The

gas smoothly alters between weakly attractive fermions (Cooper pairs, BCS phase)

and strongly bound fermions (composite molecules, BEC phase). 3. The study of the

phase diagram of a two-component Fermi gas [182]. 4. The measurement of the equa-

tion of state of a universal gas [136]. 5. The observation of ultracold fermionic polar

diatomic molecules in the rovibrational ground state [139].

Besides having the possibility of tuning the interaction strength, ultracold atomic

systems are versatile (one can tailor the confining potential practically at will), pure

(as opposed to condensed matter systems, where impurities are always present) and

controlled (all couplings to the exterior are manipulated by the experimentalist). All

these attributes unravel a surprisingly broad class of interesting quantum many-

body systems. By designing systems with the same Hamiltonian as systems from

condensed matter, QCD or even astrophysics, ultracold atoms can be used as multi-

faceted quantum simulators [18, 58, 68].

This thesis describes the design, construction and characterization of a new gen-

eration apparatus for the production of large samples of quantum degenerate gases

of two different atomic fermionic species: 6Li and 40K. Mixtures of mass imbalanced

fermions allied with the realization of species-selective potentials open the door to

new classes of quantum many-body systems. In the following we will briefly review

the existing theoretical proposals for mixtures of Fermi gases, present the state of art

of the field and then describe the outline of this thesis.

1.1 Prospects for ultracold fermionic mixtures

A mixture of two different fermionic atomic species allows the observation and study

of a wide range of new interesting phenomena. In recent years there were many

exciting theoretical proposals [70, and references therein] of which we give here some

account.

A consequence of having a fermionic mass imbalance system is the presence of un-

matched Fermi surfaces, which do not allow symmetric pairing, resulting in a much

richer phase diagram than the balanced case [11, 15, 37, 48, 69, 77, 83, 90, 124, 151,

207, 214]. For this system there is the prediction of exotic superfluids [11, 79, 148].

The asymmetric pairing can give rise to a superfluid with a spatially inhomogenous
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1 Introduction

density, which is a known topic in condensed matter physics (and QCD) [26]. Some

exotic phases are predicted, such as the FFLO state [65, 88, 108, 132], the breached

pair state [60, 116] and the Sarma state [174]. There is also the possibility of a link

with baryonic phases of QCD [163, 211] and there are proposals for the observation

of Anderson localization using atoms as random scatterers [66] and a transition to a

stable crystalline phase [157].

From the few-body physics approach, studies were performed on the atom-dimer

and dimer-dimer scattering [5, 8, 19, 113] and long-lived [114] and nonuniversal [170]

trimers were predicted.

The fact that the two atoms have different energy level structures opens the possi-

bility of tailoring selective potentials for each of the atomic species [117]. One exciting

direction is to freeze the motion of one (or both) fermionic species in one (or more)

directions of space, thereby creating a mixed-dimensional system. Many new exotic

phases and phenomena are predicted in this regime [1, 34, 140–143].

Another possibility is the production of quantum degenerate dipolar molecules in

the rovibrational ground state [40, 139], which in the case of 6Li40K possess a large

dipolar moment [9, 10]. New phases of matter are expected to be observed with

quantum gases with strong dipolar interactions [104].

The list of theoretical proposals is not exhaustive, but shows that ultracold fermionic

mixtures are strong candidates for the observation of interesting new phenomena. In

our group the planned research direction is the study of mixed-dimension systems,

which will be described in more detail in section 8.2 (perspectives of this thesis).

1.2 State of the art in Fermi-Fermi experiments

There are five experimental apparatus in the world capable of cooling 6Li and 40K, of

which two are pursuing the investigation of fermionic mixtures.

The pioneering steps were made by the group of K. Dieckmann in Munich (now

in Singapore), which reported the triple magneto-optical trapping (MOT) of 6Li, 40K

and 87Rb [193]. They reported the cooling of the three species to quantum degeneracy

by evaporative cooling of 87Rb and letting the fermions being sympathetically cooled

in a Ioffe-Pritchard trap [192]. The group is trying now to produce bosonic 6Li40K

molecules in the rovibrational ground state and study the resulting dipolar gas.
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1.2 State of the art in Fermi-Fermi experiments

The group of J. Walraven (Amsterdam) constructed two 2D-MOTs to produce cold

atomic beams of both 6Li [196] and 40K. Potassium is evaporative cooled in an op-

tically plugged magnetic trap, transferred in an optical dipole trap and transported

into a science cell for further evaporation. Quantum degeneracy of 40K was reported,

but not of 6Li [200]. Sadly, this experiment was recently shut down.

In Innsbruck, a group led by R. Grimm built an apparatus incorporating a single

Zeeman slower for 6Li and 40K (and Strontium). After capturing and cooling the two

species in a MOT, they load the mixture in a crossed optical dipole trap and perform

forced evaporation of 6Li on a Feshbach resonance to double degeneracy [187, 188].

At the MIT in Boston the group of M. Zwierlein cooled the fermionic mixture using
41K, a bosonic isotope of Potassium, as coolant. Forced evaporation was performed

in a optically plugged magnetic trap resulting in degenerate gas of the three species

[213]. They reported Feshbach resonances between 6Li and 41K and between 40K and
41K. This machine is now devoted to the production of quantum degenerate NaK

molecules in the rovibrational ground state.

Our experiment, in Paris, led by F. Chevy and C. Salomon, we built a Zeeman

slower for 6Li and a 2D-MOT for 40K [167]. After transferring the mixture into a

science cell with a dynamic magnetic trap, we evaporate 40K and load it in an optical

dipole trap, as explained in this thesis. The evaporation of two spin states of 40K

results in a quantum degenerate gas. Attaining the double degeneracy should be

achieved in the near future.

Several Feshbach resonances were observed in the 6Li-40K system [198, 212]. At

the present, these resonances are very well studied and understood. Thanks to a

asymptotic-bound-state model [199], the positions and widths of all the 6Li-40K Fes-

hbach resonances were numerically calculated and match very well with the existing

experimental values [134]. Unfortunately, strong inelastic losses were observed and

the universal regime is quite narrow (only few milli-Gauss wide), which increases

the experimental challenge. The main experimental achievements with the 6Li-40K

system include the observation of the enhancement of the interspecies collision rate

close to the Feshbach resonance [35] and the production of 6Li40K Feshbach molecules

[205], both reported by the group of K. Dieckmann. In Innsbruck, the group of R.

Grimm studied the expansion of a strongly interacting gas of 6Li-40K [201], investi-

gated the dressing of 40K impurities by a sea of strongly interacting 6Li atoms [101]
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and, more recently, observed the predicted [5, 113] strong attractive interaction be-

tween a 6Li-40K dimer and 40K atoms [91].

1.3 Outline of this thesis

This thesis reports the design, construction and characterization of an apparatus ca-

pable of cooling a mixture of 6Li and 40K. It started from an already designed and

partially constructed experiment, with the laser sources ready for laser cooling on

the D2 atomic line. The main achievements of this thesis are the discovery of a sub-

Doppler scheme for cooling 40K and 6Li, the implementation of a magnetic transport

and the production of the first quantum degenerate gas of 40K in France. The orga-

nization of this thesis follows the chronological order of the cooling sequence of the

fermionic mixture.

Chapter 2

In this chapter, the presentation of the more technical aspects of the experimental ap-

paratus will be made. We will describe the systems involving vacuum, laser cooling

and laser trapping, imaging and experiment control.

Chapter 3

This chapter will be devoted to the presentation and characterization of the double

MOT. A Zeeman slower was built to produce an atomic jet of 6Li and a 2D-MOT was

conceived to produce a cold atomic beam from a vapor of 40K-enriched sample of

natural Potassium. Atoms from both systems were collected in a double species MOT,

yielding high number of collected atoms and high capture rates for both species [167].

The description of subsequent improvements of the setup will also be the subject of

this chapter.

Chapter 4

We will present in this chapter one of the core results of the thesis, which is an effi-

cient sub-Doppler cooling mechanism implemented on the D1 atomic line. This novel
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strategy relies on a gray molasses scheme, which we show to be able to cool an entire

atomic cloud of 40K to the sub-Doppler regime [168]. We also report the implemen-

tation of this strategy on 6Li [184]. The described gray molasses scheme is the first

efficient sub-Doppler cooling mechanism being reported for the fermionic alkalis and

it is also being implemented in a increasing number of isotopes. Thanks to its success,

gray molasses cooling on the D1 atomic line is turning out to be a standard technique

for sub-Doppler cooling of atomic gases.

Chapter 5

In this chapter we will explain the properties of a quadrupole magnetic trap and

how to efficiently load it with an atomic cloud. In a second part, we will describe

a magnetic transport which is able to efficiently transfer the atomic cloud from the

MOT chamber into a science cell.

Chapter 6

We will describe the forced evaporation of a cloud of 40K in a magnetic plugged trap

and its transfer into an optical dipole trap. Calculations will be presented in order to

understand the evaporative cooling dynamics and they will be compared to experi-

mental results. We also show results of the sympathetic cooling of 6Li in the plugged

magnetic trap.

Chapter 7

The loading and evaporation of 40K in the optical dipole trap to quantum degeneracy

will be presented in this chapter. We will also report on the efforts done to obtain a

strongly interacting superfluid of 40K and on strategies to achieve a double degener-

ate gas.

Chapter 8

In the final chapter we will summarize the results of this thesis and discuss some

concrete and exciting ideas to be realized in the near future with this apparatus.

21



1 Introduction

22



2 Experimental apparatus

This chapter is devoted to the description of the main technical features of the Fermix

machine. The apparatus in located in a laboratory room two levels below the ground

floor, which is temperature stabilized by air conditioning with set point at 21ºC (daily

temperature stability ∼ ±0.5ºC). The room has weak reception of mobile and wifi

signals and it is likely that the strongest electromagnetic contamination comes from

an elevator located ∼ 5 − 10m away.

When the author of this thesis started working in the Fermix apparatus the laser

sources for cooling 40K and 6Li on the D2 atomic line were already implemented and

a preliminary 40K MOT had already been tested. The following steps were to bake-

out the vacuum chamber and then to assemble and align all the optics necessary to

achieve the double MOT. The description of these tasks was already reported with

detail by two fellow PhD students [166, 171] and was also the object of a publica-

tion [167]. To avoid repetition, in this chapter we shall only describe changes in the

apparatus relative to those documents.

In this chapter we shall start by presenting the vacuum chamber and the improve-

ments which were made. The different laser setups will only be enumerated, since

their detailed description is made more pertinently in subsequent chapters. Finally,

we will present the absorption imaging technique and the implemented computer

control system. The electromagnetic coils used in the experiment are described in ap-

pendix 5.A. The radiofrequency/microwave sources and the antennae are presented

in section 6.5.1 and appendix 6.B, respectively.

2.1 Vacuum chamber

Experiments with ultracold gases must be done under high quality vacuum. Since

the standard traps for neutral atoms are rather shallow (the depth is typically of the

order of 100mK), a collision of a trapped atom with a particle from the background
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2 Experimental apparatus

gas at room temperature will knock it from the trap [203]. The required pressure

regime to perform experiments with ultracold atoms is the ultra-high vacuum (UHV,

< 10−9mbar), in which the background gas is so dilute that particles fly ballistically,

bouncing only at the walls of the vacuum chamber (molecular flow). To be more

accurate„ the typical background pressure in experiments is rather in the 10−11 −
10−12mbar regime1, which requires a very careful design and building of the vacuum

chamber and the pumping system2

40K 2D-MOT

6Li Zeeman 

slower

Dual species 

MOT

Magnetic

transport

Science 

Cell

56 cm

Figure 2.1.1: Vacuum chamber (scheme from ref. 183).

The structure of the vacuum chamber is depicted in fig. 2.1.1. It comprises the

atomic sources: a 2D-MOT with enriched 40K (4%) and a Zeeman slower for 6Li; the

MOT chamber; a (magnetic) transport in a “L” shape and a (science) glass cell. All

components under vacuum are either made of glass or stainless steel. The majority of

the components was bought from MDC Vacuum, which are made of type 304 stain-

less steel and UHV rated to 1× 10−13Torr. As explained in ref. 166, the global strategy

is to implement a series of differential pumping stages. This technique consists in in-

1For comparison, the pressure at the interaction point of the LHC is ∼ 10−11mbar; the pressure at
10.000km of altitude is ∼ 10−13mbar.

2For building and baking-out UHV chambers the author found reference 22 very useful.
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2.1 Vacuum chamber

serting a physical constriction between a chamber with an elevated pressure and a

second one where a lower pressure is required. By pumping the later, one can cre-

ate an important gradient of pressure between the two chambers. This strategy was

realized between the atomic sources (where the background pressure is very high),

the MOT chamber (where a moderate pressure of ∼ 10−10mbar can be accepted) and

the science cell (where experiments will be conducted and very low pressure ∼ 10−12

mbar is required).

The lifetime of the magnetically trapped atoms in the MOT chamber was deter-

mined to be ≈ 3.0s for both 40K and 6Li, which suggests that it was limited by the

background pressure (as losses due to stray light and Majorana losses depend on the

atomic species). At the time of the measurement, this value was found acceptable.

By measuring the geometry of the vacuum tubbing between the MOT chamber and

the science cell, it is possible to calculate the conductances and the pumping speed

in this region. Using this calculation, one can estimate the pressure ratio induced by

the differential pumping between the two chambers to be ≈ 9.8. The lifetime mea-

sured in the science cell was indeed of 30s, indicating that it is limited by the residual

background gas bouncing from the MOT chamber to the science cell.

The situation reported in the previous paragraph was not ideal for performing

experiments with ultracold gases. In particular, evaporative cooling in a magnetic

trap typically requires a long lifetime (see section 6.3). Experiments confirmed that
40K could not be evaporated efficiently due to the limiting lifetime. To improve the

background pressure it was decided to increase the pumping speed in two different

regions: in the MOT chamber and in the transport section. This approach did not

require baking the full apparatus, which would imply removing all the optics from

the main table, and took only about 1 month of work. The improvements resulted in

very satisfactory lifetimes and made efficient evaporative cooling possible.

2.1.1 MOT chamber

The lifetime in the magnetic trap in the MOT chamber prior to the increase in pump-

ing speed was of ≈ 3.0s. This value did not depend on the pressure of the atomic

sources, which indicated that the MOT chamber had a small leak or a badly baked

region outgassing. The strategy to reduce pressure was to insert a thin metallic strip
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2 Experimental apparatus

(Constantan) with a deposit of St 707, a non evaporable getter (NEG)3. This getter is

fully activated when heated between 400 − 500ºC for ∼ 10min (or for longer times

at lower temperatures) and efficiently pumps H2, H2O, CO, CO2 and N2 (especially

H2). Some ≈ 20cm of NEG strip were inserted into a CF40 90º elbow, which was

connected to the valve close to the glass window for the Zeeman laser beam (see fig.

2.1.2). The termination was done with another all-metal valve.

MOT Valve

NEG

Figure 2.1.2: Detail of fig. 2.1.1

showing the intervention area.

Increasing the pumping speed in the MOT cham-

ber improved the lifetime to ≈ 9s over one day. If

needed, the NEG strip could be reactivated by clos-

ing the valve to the MOT chamber and by heating the

strip again and pump desorbing H2 (other molecules

migrate to deeper layers of the getter). At the mo-

ment of writing, the lifetime in the magnetic trap in

the MOT chamber is (16.5 ± 0.6)s, which is a factor 5

improvement compared to the previous situation. In-

terestingly, the reported lifetime was measured with

the valve to the getter pump closed. This suggests

that the actions undertaken to activate the getter and

bake the transport region (reported in the following

section) somehow helped solving the pressure prob-

lem existing in the MOT chamber.

2.1.2 Transport section

The region of the transport is decoupled from the rest of the apparatus by a valve

about 20cm from the MOT chamber (see fig. 2.1.1). This gives the freedom to improve

the pumping in the transport region without having to bake the whole experiment (or

removing important parts of the optics). In the following we describe the important

changes that were made to the vacuum parts in this region.

The transport section is schematized in fig. 2.1.3. It shows the MOT chamber,

from which the atoms are magnetically transported to the science cell (depicted as

3St 707 is a getter alloy made of 70% Zirconium, 24.6% Vanadium and 5.4% Iron commercialized by
SAES getters (reference St 707/CTAM/30D).
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2.1 Vacuum chamber

Figure 2.1.3: Scheme of the vacuum parts of the second transport part viewed from the above.
In the left is depicted the previous setup (reported in refs. 166, 171, see fig. 4.25 and fig. A.8
of ref. 171) and in the right the current setup. The pink color refers to the parts coated with
the TiZrV NEG and the green color the emplacement of St707 NEG strips.

“Glass cell”) in a “L” shaped motion. The corner of the “L” is called elbow and is a

pumping region. One of the major issues of the previous setup was that the pumping

at this level was not optimal (see left scheme of fig. 2.1.3). The pumping rate at the

elbow SE is given by the relation 1/SE = 1/SPump + 1/CPump, where SPump is the

nominal pumping rate of the installed pumps and CPump is the conductance of the

tube between the elbow and the pumps. The conductance of a cylindrical tube is C =

12.4D3/L for N2 (in L/s units), D being the diameter of the tube and L its length both

in cm units. It turns out that the conductance CPump was very low CPump ≈ 6.6L/s,

simply due to the neck-shaped constriction of diameter 16mm between the elbow

and the CF40 tube (see left scheme of fig. 2.1.3). This design problem rendered the

Titanium sublimation pump useless, as the pumping speed at the elbow was limited

by the tubbing conductance.

In the new design it was introduced a straight CF40 tube4, which increased con-

ductance CPump by a factor of 3 (see right scheme of fig. 2.1.3). The engineering

drawing of the new designed part can be found in section 2.A (top scheme). The

4Due to the presence of the transport coils, it was not possible to have a tube with larger diameter.
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cumbersome (and useless) Titanium sublimation pump was removed from the sys-

tem and replaced by ≈ 20cm of St707 getter strip. A Bayard-Alpert ionization gauge

was introduced in order to help diagnosing eventual problems5 .

In addition, a second stage of differential pumping was introduced between the

elbow and the science cell. A supplementary gradient of pressure is possible due to a

constriction of diameter 16mm between the elbow and the new pumping region (see

right scheme of fig. 2.1.3). The engineering drawing of this vacuum part can be found

in section 2.A (bottom scheme). The pumping is assured by a 20L/s ion pump6 and

≈ 20cm St707 strip. Notice that since NEGs do not capture noble gases it is preferable

to combine them with ion pumps. Without taking into account the pumping power

of the NEGs, the calculated improvement in pressure in the science cell was of factor

16, yielding a pressure ratio of 160 between the science cell and the MOT chamber.

Moreover, we decided to coat the interior of two of the new vacuum parts with a

NEG (colored in pink in fig. 2.1.3). This technology was developed by a group at

CERN, who managed to optimize a mixture of Titanium, Zirconium and Vanadium

(TiZrV) that works as an efficient getter and has a low activation temperature of ≈
180ºC [17]. In addition, they used magnetron sputtering to depose this NEG in the

interior of vacuum parts, most notably in all the LHC vacuum chambers [28]. This

group very kindly accepted to coat our vacuum parts (see fig. 2.A.2)7. We expect

this NEG coating to pump very efficiently since it is not limited by any conductance.

Molecules bouncing in the vacuum tubes from the MOT chamber will immediately

stick in the coating.

The TiZrV coating was activated by baking it at 200ºC for 24h, while the St 707 strips

were baked at 350ºC for 2h. The activation of the TiZrV coating was the last step of

the bake-out of the transport to ensure maximum pumping efficiency. Both NEGs can

be reactivated if needed: H2 will be desorbed and pumped by the ion pumps, while

other gases will migrate to lower layers of the getters. However, one as to act wisely

since there are some reports of pealing off of the NEG coating.

At the moment of writing, the lifetime in the magnetic trap at the elbow region is

5Agilent UHV-24 P
6All ion pumps in the apparatus are Varian Vaclon Plus 20L/s or 40L/s. This particular ion pump

was shielded using mu-metal due to its proximity to the science cell (Ateliers Soudupin).
7We acknowledge Paolo Chiggiato and Ivo Wevers for their contribution.
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2.2 Laser systems

≈ 130s for 40K. It is not clear if this value is limited by the background pressure, but

it is largely sufficient to evaporative cool down atomic gases to quantum degeneracy.

2.2 Laser systems

Light is a versatile and powerful method to manipulate atoms [75, 128]. In this ex-

periment we dispose of several laser systems built with different purposes. The rel-

evant atomic transitions are shown in section 2.2.1 and comprise a D2 and a D1 line

for both 40K (λ = 766.701nm and λ = 770.108nm) and 6Li (λ = 670.977nm and

λ = 670.979nm, respectively). The atomic properties of 6Li and 40K can be found in

refs. 67, 197, respectively.

• The laser system for cooling on the D2 atomic line is described in detail in sec-

tion 2.3 of ref. 166 and it had already been already implemented when the au-

thor started his thesis. The updated scheme of this laser system is depicted in

fig. 2.2.2 and the optical tables are depicted in sections 2.C and 2.B. The main

changes are the paths for optical pumping (discussed in section 5.2) and for

imaging in the high-field (see section 2.3).

• For the gray molasses cooling we implemented two different laser systems fre-

quency locked to the D1 line for 40K and for 6Li (see fig. 2.2.2). These systems

are described in sections 4.4 and 4.6.1, respectively.

• We also implemented laser systems for an optical plug with λ = 532nm, an

optical dipole trap at 1064nm and an optical lattice at 808nm. These systems are

described in detail in sections 6.5.3, 7.2 and in the appendix 8.A, respectively.

The laser setup around the science cell is explained in section 2.2.3.
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2.2.1 Atomic levels and cooling transitions
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Figure 2.2.1: 6Li and 40K atomic transitions used for laser cooling.

6Li Laser Beam δ 40K Laser Beam δ Transition

6Li Crossover +116 MHz 39K Crossover -593 MHz D2 Principal

Zeeman Cooling -76Γ 2D-MOT Cooling -3.0Γ D2 Principal
Zeeman Repumper -76Γ 2D-MOT Repumper -2.0Γ D2 Repumper

3D-MOT Cooling -4.5Γ 3D-MOT Cooling -2.9Γ D2 Principal
3D-MOT Repumper -2.6Γ 3D-MOT Repumper -5.2Γ D2 Repumper

Imaging 0 Imaging 0 D2 Principal

D1 Cooling +4Γ D1 Cooling +2.3Γ D1 Principal
D1 Repumper +4Γ D1 Repumper +2.3Γ D1 Repumper

Table 2.2.1: Laser beams used for locking, cooling and imaging and their detunings δ re-
spective to the atomic transitions signaled in fig. 2.2.1 (Γ6Li/2π ≈ 5.87MHz and Γ40K/2π ≈
6.04MHz).
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2.2.2 Setup for cooling in the D2 and D1 transitions
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Figure 2.2.2: Laser setup for cooling of 6Li (top) and 40K (bottom) on the D2 and in the D1
atomic lines, adapted from ref. 167. AOMs diffract light and are used to tune laser frequency
and power. The frequency shifts corresponding to the detunings of table 2.2.1 are indicated in
the figure and can be single or double. Vertical dashed lines refer to light that passes through
an AOM without diffraction (thus not frequency shifted). EOMs are used for phase modula-
tion of a spectroscopic probe beam in order to generate a lock dispersive signal, following the
Pound-Drever-Hall technique [49]. Single mode polarization maintaining fibers (FI) are used
for spatial mode filtering and laser pointing stability.
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2.2.3 Optical setup around the science cell
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Figure 2.2.3: After the atom cloud being magnetically transported from the MOT chamber, it
is trapped in the inner quadrupole coils of the science cell. This cell is made of Vycor glass
(not coated) of 4mm thickness by Hellma and has inner size of 23 × 23 × 10mm (x × y × z).
The technical drawings can be found in previous thesis [166, 171]. The magnetic field center is
in the center of the science cell, except in the y direction, for which it is ≈ 7mm from the glass
wall. This asymmetry allows an improved optical access in the y direction (NAmax ≈ 0.52)
with reasonable working distance and allows having laser beams with incidence angle of 45º.
In this setup, the beams along the x axis make an angle of 10º with the perpendicular of the
science cell wall (not shown in the scheme to simplify). This avoids reflections in the cell
walls to interfere with the incoming beam. The crossed optical dipole trap (ODT1 and ODT2)
is depicted in red. The optical plug beam is depicted in green. The absorption imaging beam
is depicted in light blue and is bichromatic since it has a component resonant with 40K and
another with 6Li. The z direction (vertical) has the best optical access and there is an imaging
system along this axis (not shown). The lattice beam is depicted in dark blue. Dichroic mirrors
are Thorlabs DMLP1000, except for dichroic 3, which is Melles-Griot LWP-45-RP532-TU633-
106. The optical breadboard has dimensions 640 × 580 × 60mm and was custom made by
Thorlabs. Scheme is adapted from ref. 183.
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2.3 Absorption imaging

2.3 Absorption imaging

In order to probe the density profile of an atomic cloud in this apparatus, we use the

standard absorption imaging, which is a destructive probing technique. It relies on

impinging a resonant laser beam onto the atomic cloud and recording the transmit-

ted light, which features a shadow cast by the atoms. This shadow in the transmitted

beam is due to the absorption of resonant light by the atoms and subsequent rescat-

tering in random directions (we assume negligible the scattered light measured by

the detector). The detectors used in this apparatus are charge-coupled device (CCD)-

based cameras8 that through an optical imaging system are able to record an image

of the atomic cloud I(x, y)9.

In a typical detection sequence a first imaging laser pulse with 100µs duration is

recorded Iimg(x, y) and, after letting the atomic cloud expand and fall for ≈ 50ms,

a second reference picture is taken Iref(x, y)10. This image has exactly the same char-

acteristics as Iimg(x, y), except for the presence of atoms. Another pair of pictures is

taken in the same conditions, but in the absence of laser light in order to measure

the dark noise in the CCD camera Ibg,img(x, y) and Ibg,ref(x, y)11. Using this data, the

transmission profile T(x, y) can be calculated

T(x, y) =
Iimg − Ibg,img

Iref − Ibg,ref
,

which does not depend on the intensity profile of the laser beam. This function carries

information about the integrated density profile of the atomic cloud along the imaging

8pco. Pixelfly QE 270XD, 1392 × 1024 pixels (px), 1px=̂6.45µm. The quantum efficiency for λ =
767nm light is ∼ 25% and for λ=671nm is ∼ 43% (in the “high gain” mode).

9Since a CCD image sensor is made out of pixels of finite size, I(x, y) is in reality a discrete function
of position I(xn, ym). For simplicity, we assume this function to be continuous, since in the im-
ages recorded in this thesis the atomic cloud features were always much bigger than the pixel size
(6.45µm).

10The Pixelfly cameras in our apparatus operate in the double shutter mode, which allows an expo-
sition time as short as 5µs and a time interval between subsequent images as short as 5µs. This
allows to take a reference picture immune to mechanical vibrations of the imaging system. An-
other possibility is to use this double shutter mode to collect two different images of the atomic
cloud (two hyperfine or Zeeman spin states) or images of the 6Li and the 40K cloud in the same
experimental cycle.

11This is mandatory since in the double shutter mode the image and reference pictures have different
exposure times.
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direction. Assuming that the atomic absorption is homogeneous along the imaging

direction z, we can use the Beer-Lambert law to obtain the integrated density profile:

n2D(x, y) ≡
ˆ

n(r)dz = − 1
mσ

ln T(x, y). (2.3.1)

In this equation m is the magnification of the imaging system and σ is the scattering

cross-section, which is given by

σ =
C2σ0

1 +
(

δimg/(Γ′/2)2
)2 . (2.3.2)

In this relation σ0 = 3λ2/2π (λ is the wavelength of the atomic transition), δimg is the

frequency detuning of the imaging light in respect to the atomic transition, C is the

Clebsch-Gordan coefficient of the imaging atomic transition and Γ′ = Γ
√

1 + 2I/Isat

is the broadened line-width of the excited state (here I is the intensity of the imaging

light pulse). In this thesis we always work in the regime I/Isat ≪ 1 (and Γ′ = Γ).

A useful quantity readily obtained from the experimental data is the optical density

OD(x, y) = − ln T(x, y), which is trivially related to the integrated density n2D =

OD/σ.

2.3.1 Evaluation of the imaging data

A very powerful measurement method is to directly probe the in situ atomic den-

sity distribution, while the trap is present. However, the non-trivial influence of the

confinement12 and/or the limited resolution of the imaging system13 may hinder the

analysis of the images. The alternative to in situ imaging is to abruptly switch off the

trap, let the atoms expand freely for a time tTOF and then perform absorption imag-

ing. We call this the time-of-flight technique (TOF) and it is widely used in the cold

12An optical dipole trap induces a space-dependent light shift of the atomic ground-state U(r), being
maximum at the trap center U(0) = U0. For a two-level system, the imaging resonance will be
shifted by 2U(r) and, in consequence, the probe light absorption will be non-uniform. Exceptions
occur when the cloud is confined to the trap center kBT ≪ U0 or when the light shift is smaller
than the imaging transition linewidth 2U0 ≪ h̄Γ. An interesting application of a non-uniform
probe light absorption is the light-shift tomography in 87Rb [24].

13The most notable exception is the 87Rb quantum microscope [181].
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atoms community. From these images one can extract the atom number and the tem-

perature of the trapped cloud. The number of atoms N is given by integrating the

signal

N =

ˆ

n2D(x, y)dxdy

and does not depend on the value of tTOF. For a classical atomic gas, the measured

density distribution n2D is simply given by the Maxwell-Boltzmann law and the tem-

perature is directly related to the speed at which the gas expands14. The measured

cloud size σ as a function of tTOF is given by

σ2(tTOF) = σ2
0 +

kBT
m

t2
TOF, (2.3.3)

from which one can extract the temperature T of the cloud. Here we assume that the

initial atomic distribution is gaussian with size σ0. This is the case of the harmonic

trap, for which the density distribution is always given by a gaussian function and

σ2
0 = kBT/mω2, ω being the trapping frequency. In contrast, in a linear trap the

corresponding value of σ0 is a complicated function of the size of the trapped cloud

λ (see section 5.1 for the definition of λ and details). For a bosonic or a fermionic

quantum gas this picture breaks down and the problem of measuring temperature

can be rather complex. This issue will be addressed in section 7.5.4.

Typically, the accurate measurement of the atom number N is not a trivial task,

mainly due to the imprecision in determining the scattering cross-section σ (see eq.

2.3.2). By varying the frequency of the imaging pulse, one can precisely determine

the imaging resonance frequency and verify if there is no power broadening from

the width of the experimental data curve. The most difficult term to evaluate is the

Clebsch-Gordan factor C, which depends on the imaging transition. A notable case

is the transition between stretched states mF = ±(I + 1/2) → mF′ = mF ± 1 with

σ±-polarized light, in a presence of a small guiding homogenous magnetic field. For

this particular case, the atom can be considered a two-level system while absorbing

and emitting light and therefore C2 = 1. When the guiding magnetic field is not

14We make the assumption that there is no variation of the kinetic energy when releasing the atoms
from the trap. The assumption is valid if the trap is switched off fast enough and that the interaction
energy is negligible compared to the kinetic energy.
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present, the atomic magnetic moment will randomly rotate in space and its projec-

tion to the imaging light field will be arbitrary. In this case, for a closed imaging

transition F = I + 1/2 → F′ = F + 1, we chose an averaged transition strength which

is the average of all the different possible transitions, yielding C2 = 0.4 for 40K and

C2 = 0.5 for 6Li [166, 200]. All the absorption imaging measurements reported in this

thesis were done in this regime, except if mentioned otherwise. Notice that the case

of 6Li is more complicated due to its narrow excited structure (see level scheme in

section 2.2.1), which allows important off-resonant excitations and decay to the dark

F = 1/2 hyperfine level. To compensate for this effect, we shine a beam resonant with

the transition F = 1/2 → F′ = 1/2, 3/2 in a direction perpendicular to the imaging

one, in order to pump back the atoms back into the imaged state F = 3/2. Neverthe-

less, we admit that it might be possible that the atom number counting suffers from

an unidentified systematic error. Another source of systematic error is the determi-

nation magnification of the imaging system, since the measured atom number and

temperature depend quadratically on this value. The value of the magnification was

carefully measured down to the 10% level or better with methods described in section

2.3.2.

2.3.2 Imaging optical setup

The frequency of the light needed for absorption imaging is controlled by AOMs in-

stalled in the optical tables of 40K and 6Li (see fig. 2.2.2). In each optical table, the

imaging light is injected into two separate fibers: one for imaging in the MOT cham-

ber another for imaging in the science cell (see section 2.2.3). In the main experimental

table, the light from each atomic species is combined together using dichroic mirrors.

For each species, the light power in each imaging direction can be controlled using

λ/2 plates and PBS (polarization beam splitters) cubes.

For each imaging direction, a collimated resonant laser beam shines through the

atomic cloud and is collected via an imaging system onto the CCD camera (for details

concerning the camera see section 2.3). The waist of this beam can be found in table

2.3.1. The imaging system is in general composed of a series of lenses that image the

object (the atomic cloud) onto the CCD plane. In our apparatus they are composed

by one or two lenses, whose positions were found by using the standard the thin lens
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equation and the imposed physical constraints.

In order to find the accurate position of the CCD camera (the imaging plane) we

image a small atomic cloud (≈ 4µm in the science cell). We find the imaging plane

by determining the position of the camera for which the size of the imaged cloud is

smallest. In general, for a gaussian object of size w0 placed in the object plane, the

size of its image will be w(z) = mw0
√

1 + z2/L2, where z is distance of the camera to

the image plane and L is a length that depends on the image size mw0, the numerical

aperture NA and the light wavelength λ. The magnification was determined by let-

ting this cloud of 40K to free fall under gravity and using the fact that the acceleration

is g15. In the MOT chamber we used a different strategy, which consisted in imaging

a stainless steel mesh of 320× 320µm2 in opposite sides of the chamber. By determin-

ing the corresponding positions of the imaging plane and taking the average of those

two measurements, one could estimate the position of the image of the center of the

chamber and the corresponding magnification (see table 2.3.1).

Direction w (mm) m PS (µm) Optical system NA dr(µm)
MOT [166] 13.8 0.44 15 f = 60mm (Gradium) 0.12 3.9
SC x-axis 4.0 1.6 4.0 f = 200mm (AC254-200-B) 0.039 12
SC y-axis 6.0 0.79 8.2 f = 100mm (AC254-100-B) 0.056 8.4

SC z-axis 2.7 2.55 2.53
f = 75mm (AC254-75-B)

0.17 2.8
f = 200mm (AC508-200-A)

Table 2.3.1: Imaging systems in the MOT chamber and in the science cell (SC). m is the ex-
perimentally determined magnification, PS the pixel size, NA the numerical aperture calcu-
lated assuming the lens as aperture and dr the calculated optical resolution (as given by the
Rayleigh criterium for λ = 767nm). The AC lenses were acquired from Thorlabs.

The resolution the imaging systems has yet to be determined experimentally. The

lower boundary can be estimated using the geometry of the optical system and the

Rayleigh criterium:

dr = 1.220
soλ

D
≈ 1.220

λ

2NA
,

15Notice that we make the assumption that no other forces act on the atoms during the free fall. A
stray magnetic gradient b on the vertical direction would add a contribution to the acceleration of
a = µBb/m for the stretched state. While for 40K we estimate that this contribute is not significant,
for 6Li this might not be the case due to its smaller mass.
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with D being the diameter of the entrance pupil and so its distance to the object16.

This value is only a lower bound since it does not take into account the effect of

aberrations. In our apparatus we try to minimize their effect by using achromatic

lens doublets.

For applications needing higher optical resolution we decided to acquire a commer-

cial objective17, which costed a factor 10 less than a custom made one. This objective

has a high numerical aperture of NA=0.5 and a long working distance of 15.1mm

(the physical constraints of the science cell are discussed in section 2.2.3). Also, it is

corrected for a glass plate of BK7 (n = 1.57) with thickness 3.5mm, which is close to

the wall of the science cell. The science cell is made of Vycor (n = 1.46) and its walls

have thickness 4mm. The relative difference of the optical paths is 2.7% (instead of

−61% without glass plate correction). This objective is optimized for a range of visi-

ble wavelengths (436 − 656nm), having a specified longitudinal chromatic aberration

of ∼ 4µm for λ = 767nm. The performance of this objective is yet to be tested, but it

is a promising device.

Another strategy to improve the resolution is to image atoms using an atomic tran-

sition with lower wavelength, thereby reducing the resolution diffraction limit. A

possible transition for 40K has wavelength λ = 404nm [16, 166] and for 6Li λ =

323nm.

2.3.3 High magnetic field imaging

Feshbach resonances are a powerful phenomenon that allow the manipulation of in-

teractions in cold atoms, as it was explained in chapter 1. To access them one produces

an homogeneous magnetic field in the B = 150 − 250G range for the 6Li-40K and the
40K-40K resonances and in the B = 700 − 900G range for the 6Li-6Li resonances. As it

will be properly explained in section 5.1, the energy of the atomic states is shifted due

to an external magnetic field (Zeeman effect). Consequently, the imaging transitions

will shift in frequency. One solution to this problem is to switch off the magnetic field

and image the atoms in the absence of a field, but this is not acceptable for some ex-

periments. The purpose of this section is to calculate the frequency shifts for the most

161.220 is the first root of the Bessel function J1(x) divided by π
17Mitutoyo G plan APO 50x
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2.3 Absorption imaging

relevant imaging transitions.

The magnetic coupling to an atom is given by V = −µB, µ being the projection

of the atomic magnetic moment to the magnetic field direction and B the value of

that field. As it will be better explained in section 5.1, for low magnetic fields B ≪
Bhf = h∆νhf/2µB, the total atomic angular momentum F = I + J is a good quantum

number and the magnetic interaction energy is given by Em = mFgFµBB. Here mF is

the atomic Zeeman state, gF the Landé factor, µB the Bohr magneton and h∆νhf the

ground-state hyperfine energy splitting. On the other hand, if B ≫ Bhf the electron

angular momentum J fully decouples from the nuclear angular momentum I and F

is no longer a good quantum number. In this case, since the Wigner-Eckart theorem

can not be used, one can not write the magnetic interaction as V = µBgFFzB. The

case B ≫ Bhf is called the Paschen-Back regime and the magnetic interaction energy is

given by Em = cte + µB(gJmJ + gImI)B. Notice that since the electron is decoupled

from the nucleus and since the light field is only coupled to the electron, the selection

rule ∆mI = 0 applies for electric dipolar transitions.

For the intermediate case B ≈ Bhf, one has to diagonalize the full atomic Hamil-

tonian to find the eigen-energies Em. For orbital angular momentum L = 0, the

diagonalization can be performed analytically and one can find an expression for the

eigen-energies, which is given by the Breit-Rabi formula [189]. However, the excited

P3/2 manifold has L = 1 and the Breit-Rabi formula can not be applied. Fortunately,

the hyperfine spacings of the excited state are much smaller than the ones of the

ground state (Bhf = 14G for 40K and Bhf = 1.4G for 6Li) and the Paschen-Back regime

is attained for smaller magnetic fields. Therefore, one can apply the Breit-Rabi for-

mula to accurately calculate the Zeeman shifts of the ground states and the Paschen-

Back formula for the shifts of the excited states (provided that B ≫ Bhf ∼ 20G). This

is confirmed by comparing this approximative approach with the diagonalization of

the full Hamiltonian (see fig. 2.3.1).

The Zeeman states that have relevant Feshbach resonances for this experiment are

|mF = −9/2,−7/2,−5/2〉 of the F = 9/2 manifold for 40K (that correspond to the

states |mI = −4,−3,−2〉 with mJ = −1/2 in the Paschen-Back regime, respectively)

and |mF = −1/2, 1/2〉 of the F = 1/2 manifold for 6Li (that correspond to the states

|mI = 0, 1〉 with mJ = −1/2 in the Paschen-Back regime, respectively). Their imaging
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Figure 2.3.1: Detuning from the imaging transitions of 40K |mF = −9/2〉 → |mF = −11/2〉
(blue), |mF = −7/2〉 → |mF = −9/2〉 (red) and |mF = −5/2〉 → |mF = −7/2〉 (black) from
the F = 9/2 → F′ = 11/2 transition at B = 0. In the left we plot the numerical calculation of
the detuning (solid lines) and the approximative approach (dashed lines) as explained in the
main text. In the right we plot the absolute difference between the two calculations.

detunings were calculated around B0 = 200G and are listed in tables 2.D.1 and 2.D.2

of appendix 2.D.

In order to shift the imaging laser frequency, we installed an additional AOM for
40K, as depicted in fig. 2.2.2. This setup is flexible enough to image all three target

states in the desired field range with σ− or π polarization. For 6Li the high-field

imaging laser system has yet to implemented. One option, which would be the most

versatile one, would be to have an independent laser diode18 offset-locked to the 6Li

master diode laser, which in turn is spectroscopy-locked to the D2 light. The offset

frequency could be tuned using a voltage controlled oscillator (VCO) or a controllable

frequency synthesizer.

2.4 Computer control system

In this apparatus we dispose of three desktop computers, Bruxelles, Bamako and As-

gard, in order to control the experiment, acquire and process images and analyze data,

respectively.

The control of the experiment is done by using the “Atticus Hardware Server”,

which communicates to the hardware via a series of National Instruments cards (3

18For example Opnext HL6756MG lases at 670nm with 15mw of output power.
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2.4 Computer control system

digital cards PXI-6533 and 5 analog cards PXI-6713 at the present). The experimen-

tal sequence is generated and uploaded to Atticus by the “Cicero Word Generator”,

which provides a very intuitive graphical interface. We use a variable frequency clock

synthesized by a FPGA module19, which allows to have a variable timebase during

the experimental sequence. We changed the code of Atticus and Cicero in order to

communicate with our imaging acquisition software and with the synthesizers used

for the evaporation ramps (described in section 6.5.1). Atticus and Cicero were de-

veloped by Aviv Keshet [96] and their implementation in our apparatus was done by

Norman Kretzschmar.

The imaging acquisition is done using a Python code originally written by Florian

Schreck and modified by successive generations of students of the LKB Lithium ma-

chine. It communicates with Atticus, triggers the CCD cameras and downloads the

images to Bamako.

The automatic processing of the images is done by an Octave code originally writ-

ten by Colin Parker and modified by the author of this thesis. It is a robust program

that finds the atomic cloud in the taken image, fits it to 1D/2D-dimensional gaussians

and outputs all relevant fitting parameters to an external file. This data is analyzed in

Asgard using Mathematica 8.

The temperature in several points of the lab can be monitored using thermistances,

whose voltage drop is acquired using an inexpensive DAQ (Data Acquisition) card20.

Using the same acquisition card we also monitor the position of the optical plug by

measuring the voltages in a 4-quadrant photodiode (see details in section 6.5.3).

19Opal Kelly XEM 3001
20National Instruments USB-6009
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Appendix 2.A Vacuum parts

Figure 2.A.1: Engineering drawings of the new vacuum parts made by MDC Vacuum for the
second transport section.
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Figure 2.A.2: Vacuum parts being coated with the NEG of TiZrV at a facility in CERN (engi-
neering schemes in fig. 2.A.1). Photo courtesy of Ivo Wevers.

Figure 2.A.3: Photo of the vacuum chamber after baking-out in March 2010 (left). One can
distinguish the science cell and the MOT chamber (compare with fig. 2.1.1). Equivalent photo
taken in September 2014 (right), see section 2.2.3 for a scheme and a description.
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Appendix 2.D Imaging detunings for high-field imaging

|mF〉 →
∣

∣mJ′ , mI′
〉

(σ−) δ0(B0) (MHz) h
µB

δ′(B0)(1/G)

|−9/2〉 → |−3/2,−4〉 -279.6 -1.00
|−7/2〉 → |−3/2,−3〉 -312.0 -1.11
|−5/2〉 → |−3/2,−2〉 -347.0 -1.23

|mF〉 →
∣

∣mJ′ , mI′
〉

(π) δ0(B0) (MHz) h
µB

δ′(B0)(1/G)

|−9/2〉 → |−1/2,−4〉 125.7 0.334
|−7/2〉 → |−1/2,−3〉 84.4 0.222
|−5/2〉 → |−1/2,−2〉 40.9 0.100

Table 2.D.1: Detuning of the imaging transitions of 40K respective to the F = 9/2 → F′ =
11/2 resonance at B = 0, calculated around B0 = 200G: δ(B) ≈ δ0(B0) + δ′(B0)(B − B0) +
O(B − B0)2. The calculation is done for σ− and π light polarization excitations.

|mJ, mI〉 →
∣

∣mJ′ , mI′
〉

(σ−) δ0(B0) (MHz) h
µB

δ′(B0)(1/G)

|−1/2, 1〉 → |−3/2, 1〉 -107.0 -1.05
|−1/2, 0〉 → |−3/2, 0〉 -179.6 -1.09

|mJ, mI〉 →
∣

∣mJ′ , mI′
〉

(π) δ0(B0) (MHz) h
µB

δ′(B0)(1/G)

|−1/2, 1〉 → |−1/2, 1〉 265.6 0.281
|−1/2, 0〉 → |−1/2, 0〉 194.0 0.247

|mJ, mI〉 →
∣

∣mJ′ , mI′
〉

(σ+) δ0(B0) (MHz) h
µB

δ′(B0) (1/G)

|−1/2, 1〉 → |1/2, 1〉 638.1 1.62
|−1/2, 0〉 → |1/2, 0〉 567.7 1.58

Table 2.D.2: Detuning of the imaging transitions of 6Li respective to the F = 3/2 → F′ = 5/2
resonance at B = 0, calculated around B0 = 200G: δ(B) ≈ δ0(B0) + δ′(B0)(B − B0) +O(B −
B0)2. The calculation is done for σ−, π and σ+ light polarization excitations.
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3 Dual-species MOT

The apparatus to create a quantum degenerate gas mixtures starts with a laser cooling

and trapping phase. Atomic beams produced by a Zeeman slower for 6Li and by a

2D-MOT for 40K are cooled are trapped in a dual-species magneto-optical trap (MOT).

Large atom number dual-species magneto-optical trap for fermionic 6Li and
40K atoms

The design, implementation and characterization of a dual-species MOT for fermionic
6Li and 40K atoms with large atom numbers was reported in the following publication

(in appendix 3.A):

• A. Ridinger, S. Chaudhuri, T. Salez, U. Eismann, D.R. Fernandes, K. Magalhães,

D. Wilkowski, C. Salomon, and F. Chevy. Large atom number dual-species magneto-

optical trap for fermionic 6Li and 40K atoms. Eur. Phys. J. D (The European Physical

Journal D) 242, 223-242 (2011).

The MOT simultaneously contains 5.2× 109 6Li-atoms and 8.0× 109 40K-atoms, which

are continuously loaded by a Zeeman slower for 6Li and a 2D-MOT for 40K. The atom

sources induce capture rates of 1.2× 109 6Li-atoms/s and 1.4× 109 40K-atoms/s. Trap

losses due to light-induced interspecies collisions of ∼ 65% were observed and could

be minimized to ∼ 10% by using low magnetic field gradients and low light powers

in the repumping light of both atomic species. This system represents the starting

point for the production of a large-atom number quantum degenerate fermi-fermi

mixture.

Photoassociative creation of ultracold heteronuclear 6Li40K* molecules

At this point, we investigated the formation of weakly bound, electronically excited,

heteronuclear 6Li40K* molecules by single-photon photoassociation in the dual-species
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magneto-optical trap. The results of this study were reported in the following publi-

cation (in appendix 3.A):

• A. Ridinger, S. Chaudhuri, T. Salez, D. R. Fernandes, N. Bouloufa, O. Dulieu, C.

Salomon, and F. Chevy. Photoassociative creation of ultracold heteronuclear 6Li40K*

molecules. EPL (Europhysics Letters) 96, 33001 (2011).

We performed trap loss spectroscopy within a range of 325 GHz below the Li(2S1/2)

+ K(4P3/2) and Li(2S1/2) + K(4P1/2) asymptotic states and observed more than 60

resonances, which we identify as rovibrational levels of 7 of 8 attractive long-range

molecular potentials. The long-range dispersion coefficients and rotational constants

are derived. We find large molecule formation rates of up to ∼ 3.5 × 107s−1, which

are shown to be comparable to those for homonuclear 40K∗
2 . Using a theoretical model

we infer decay rates to the deeply bound electronic ground-state vibrational level

X1Σ+(v′ = 3) of ∼ 5 × 104s−1. Our results pave the way for the production of ultra-

cold bosonic ground-state 6Li40K molecules which exhibit a large intrinsic permanent

electric dipole moment.

3.1 Double MOT current status and improvements

In this section we report on the changes made to the MOT system in order to improve

its functioning. At the present, we routinely load 1.5 × 109 6Li atoms and 3 × 109

40K atoms in the double MOT in 15s. The capture rates are 1.7 × 108 6Li atoms/s

from the Zeeman oven and 2 × 108 40K-atoms/s from the 2D-MOT. These values are

smaller than the ones reported before, in particular the capture rates. However, they

are largely sufficient to create a double-species degenerate gas with high numbers.

One of the main improvements in the MOT chamber relative to the previously re-

ported setup was the background pressure, which decreased by a factor of ≈ 5, as ex-

plained in section 2.1.1. By estimating the steady-state number of atoms in the MOT

as N ∼ L/γ (neglecting light-induced collisions), we should expect an improvement

of factor 5 (1/γ is the lifetime of the MOT and L its capture rate). On the other hand,

we measured a degradation of the capture rate L of a factor of ≈ 7. The number of

atoms in the MOT (for a 15s loading) is a factor of ≈ 3 smaller compared to the re-
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3.1 Double MOT current status and improvements

ported value (for the steady-state). We estimate that the main degradation occurred

in the atom flux coming from the sources.

Zeeman slower

The Zeeman oven is routinely operated at 470ºC. In the Summer of 2011 we observed

a sudden drop of the atomic flux. This was interpreted as the clotting of the collima-

tion tube connecting the oven to the subsequent vacuum chamber. This tube has 6mm

of internal diameter, according to fig. A.3 of ref. 171. In order to fix this problem, we

installed heating bands in this region, increased its temperature to 400ºC and let it hot

overnight. This partially solved the problem: the atomic flux increased considerably

when returning to normal operation. This “clotting problem” occurs once or twice

per year. We believe that the present atomic flux is limited by the deterioration of our

control over the Lithium oven. However, we estimate that this limitation is not at all

a problem for the experiment. In order to attain quantum degeneracy by sympathetic

cooling with 40K, only few 107 atoms of 6Li are required in the MOT. Our current

number is still two orders of magnitude higher than needed.

2D-MOT

It was found that maintaining a controlled pressure of Potassium in the 2D-MOT

chamber for extended periods of time is a challenging task. We observed that Potas-

sium quickly migrates inside the 2D-MOT chamber and we lose control over the po-

sition (and temperature) of the reservoir. The solution we found was to heat all the

parts1 (metal vacuum parts to ≈ 140ºC, ion pump to 80ºC and glass cell to ≈ 40ºC),

while having a cold region with smaller and controlled temperature. For this purpose

we wrapped 3 turns of a PVC tube around the glass part of the metal-to-glass junc-

tion of the 2D-MOT chamber (see fig. 7 of ref. 167). This tube is connected to a water

chiller, which enables us to control the temperature of the cold point (the reservoir)

by changing the temperature of the water. Overnight we set the water temperature to

16ºC, thus accumulating crystals of Potassium in the glass walls. This metallic crys-

tals can be seen by naked eye, which is very useful to diagnose eventual problems.

1See section 2.5.2. of ref. 166 for a description of the 2D-MOT chamber.

51



3 Dual-species MOT

By adjusting the temperature of the water to 40ºC we observe 50% absorption of a

resonant beam along the cell, which corresponds to a vapor pressure of Potassium

of ≈ 1.3 × 10−7mbar (see appendix A of ref. 166 for details concerning the method

for measuring the vapor pressure). In this case, the flux of the 2D-MOT should be

of 1.2 × 109s−1, as measured in fig. 10 of ref. 167, but we observe instead a flux ≈ 7

times smaller.

In order to improve the atom flux from the 2D-MOT we added an independent

laser beam to push the atoms to the MOT chamber. This beam has waist ≈ 1.9mm

and 4.6mW of power. Since it is derived from the 2D-MOT beams (1.2% of their

power), it shares the same light frequencies and same ratio between cooling and re-

pumper. After re-optimizing of the power balance in the 2D-MOT, we observed that

the capture rate of the MOT increased by a factor 2 compared to the previous situ-

ation. Further improvement could eventually be obtained by independently tuning

the frequencies of the pushing beam [27, 175, 191] or by having a combination of red-

and blue-detuned pushing beams [152].

Although the 2D-MOT atomic flux is smaller than reported before, we show in this

thesis that large quantum degenerate gases of 40K could be produced. Furthermore,

thanks to the reported improvements, we observe a stable number of atoms in the

MOT over several months of continuous operation.

Figure 3.1.1: (Left) One of the first 6Li MOTs. The emitted red fluorescence (λ ≈ 671nm) is
visible to the naked eye. The diameter of the glass port is ≈ 1.5cm. (Right) MOT chamber
right after baking-out (no optics nor electromagnetic coils). Picture taken in the same angle as
scheme of fig. 2.1.1. The diameter of the glass ports is ≈ 4cm.
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Abstract. We present the design, implementation and characterization of a dual-species magneto-optical
trap (MOT) for fermionic 6Li and 40K atoms with large atom numbers. The MOT simultaneously contains
5.2×109 6Li-atoms and 8.0×109 40K-atoms, which are continuously loaded by a Zeeman slower for 6Li and a
2D-MOT for 40K. The atom sources induce capture rates of 1.2×109 6Li-atoms/s and 1.4×109 40K-atoms/s.
Trap losses due to light-induced interspecies collisions of ∼65% were observed and could be minimized to
∼10% by using low magnetic field gradients and low light powers in the repumping light of both atomic
species. The described system represents the starting point for the production of a large-atom number
quantum degenerate Fermi-Fermi mixture.

1 Introduction

The study of ultracold atomic Fermi gases is an emerg-
ing research field aiming to understand many-body quan-
tum phenomena occurring in various fields, such as con-
densed matter systems, disordered systems, quark-gluon
plasmas or astrophysics (neutron stars) [1,2]. They provide
a unique opportunity to create strongly correlated many-
body systems with a high degree of experimental con-
trol. One intends to realize analog quantum simulators in
Feynman’s spirit [3], with which many-body Hamiltonians
could be solved.

In the field of ultracold Fermi gases the study of mix-
tures of two different fermionic species with different mass
is gaining interest. Both theoretical and experimental as-
pects motivate this study. Such mixtures are predicted to
exhibit a rich phase diagram such as phase separation [4],
crystalline phases [5], exotic pairing mechanisms [6] and
long-lived trimers [7]. They further allow the creation of
polar molecules, which have a long-range dipole-dipole in-
teraction [8,9]. Two different atomic species yield addi-
tional tunable parameters, such as the mass imbalance
and species-specific potentials. The mass-imbalance can
be varied in an optical lattice, where the effective mass of
each species depends on the optical lattice parameters.

The mixture 6Li-40K is a prime candidate for these
studies. 6Li and 40K are the only stable fermionic alkali

a e-mail: armin.ridinger@gmail.com

isotopes and thus belong to the experimentally best-
mastered class of atoms. Moreover, both species have
bosonic isotopes which can also be used to create boson-
fermion gases. Furthermore, the mass difference between
the two species is large leading to a large electric dipole
moment for heteronuclear diatomic molecules (3.6 D) [10].
Finally, many of the above-mentioned predicted quantum
phases require strong interspecies interactions and a uni-
versal behavior of the gas. It was recently reported [11]
that it is possible to reach the universal regime for the
6Li-40K-mixture due to the existence of a 1.5 gauss-wide
Feshbach resonance.

The starting point of most mixture experiments is a
dual-species magneto-optical trap. It is desirable to cap-
ture a large number of atoms at this stage for the fol-
lowing reasons. First, large atom numbers allow to an-
ticipate the losses induced by the subsequent evaporative
cooling procedure, which needs to be applied to reach the
quantum degenerate regime. Second, a large initial atom
number makes the evaporation procedure more efficient.
Third, the Fermi temperatures of the gas are larger for
larger atom numbers and thus quantum phenomena can
be observed at higher temperatures. Finally, a large atom
number leads to better signal-to-noise ratios and a greater
robustness in day-to-day operation.

A dual-species magneto-optical trap with large atom
numbers also allows an efficient creation of ultra-
cold heteronuclear molecules via photoassociation. Us-
ing this technique, we have been able to create excited
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heteronuclear 6Li-40K* molecules with a formation rate of
∼5 × 107s−1. The results of this experiment will be the
subject of a separate publication [12].

In this article we describe the design, implementation
and characterization of a dual-species magneto-optical
trap for 6Li and 40K with large atom numbers. In a dual-
species MOT, the atom number is in general reduced
compared to single-species MOTs due to additional in-
terspecies collisions and to experimental constraints, such
as the imperative to use the same magnetic field for both
species or common optics. In other groups working with
the 6Li-40K mixture the following atom numbers have
been achieved: in the Munich group [13] the dual-species
MOT is loaded from a Zeeman slower for 6Li and a va-
por for 40K, resulting in atom numbers of ∼4× 107 (6Li)
and ∼2× 107 (40K). In the Innsbruck group [14] the dual-
species MOT is loaded from a multi-species Zeeman slower
and atom numbers of ∼109 (6Li) and ∼107 (40K) are
achieved. In the group in Amsterdam [15] two separate
2D-MOTs allow to load ∼3 × 109 (6Li) and ∼2 × 109

(40K). In our setup, the dual-species MOT is loaded from
a Zeeman slower for 6Li and a 2D-MOT for 40K. It si-
multaneously contains 5.2 × 109 6Li-atoms and 8.0× 109
40K-atoms, which represents a substantial atom number
improvement.

For our application in particular a large atom number
in the 40K-MOT is of interest, since we intend to sympa-
thetically cool 6Li with 40K, where 40K will be prepared
and cooled in two different spin states. This approach has
been implemented by Tiecke et al. [11] and proved to be
an efficient cooling method, as it can be realized in a mag-
netic trap. In this cooling process mostly 40K-atoms will
be lost.

In future experiments, the atoms stored inside the
dual-species MOT will be polarized and magnetically
transported to an ultra-high vacuum (UHV) environment
with large optical access. There the atom cloud will be
evaporatively cooled to quantum degeneracy in an opti-
cally plugged magnetic quadrupole trap. Finally it will be
transferred into an optical trap to investigate many-body
phenomena in lower dimensions.

This article is organized as follows. In Section 2 the
experimental setup, including the vacuum assembly and
the laser systems, is described. In Section 3 we present the
design and the performance of the atom sources, which are
used to load the dual-species MOT, i.e. a Zeeman slower
for 6Li and a 2D-MOT for 40K. In Section 4, the dual-
species MOT is characterized and a study of light-induced
interspecies collisions is presented.

2 Experimental setup

2.1 Vacuum system

A three-dimensional view of the vacuum system is shown
in Figure 1. It consists of two atom trap chambers and
three flux regions. The first chamber is a central octagonal
chamber where the 6Li-40K dual-species MOT is prepared.

40K 2D MOT
6Li Zeeman

slowerslower

Dual species MOT

S i M tiScience

cell

Magnetic

transport 50 cm

Fig. 1. (Color online) Schematics of the vacuum assembly.
The dual-species MOT is loaded from a 2D-MOT for 40K and a
Zeeman slower for 6Li. A magnetic transport allows to transfer
the cloud to a UHV science cell with large optical access.

The second chamber is a glass science cell, in which we will
evaporatively cool the mixture to quantum degeneracy.

The three flux regions are all connected to the octago-
nal chamber and are divided in two parts. First, the atom
sources, namely a 2D-MOT for 40K and a Zeeman slower
for 6Li. Second, a magnetic transport connecting the oc-
tagonal chamber to the final science cell. This magnetic
transport consists of a spatially fixed assembly of mag-
netic coils which creates a moving trapping potential of
constant shape by applying time-varying currents [16]. It
has already been implemented in our system and will be
described in a separate publication.

The octagonal chamber can be isolated from the source
regions and the science cell by all-metal UHV valves,
which allow for separate baking and trouble-shooting. The
2D-MOT and the Zeeman slower region are pumped by
one and three 20 L/s ion pumps, respectively. The oc-
tagonal chamber is pumped by a 40 L/s ion pump and
the science chamber by a 40 L/s ion pump and a titanium
sublimation pump. Differential pumping tubes connect the
source regions to the octagonal chamber in order to cre-
ate a high vacuum environment in the octagonal cell. In
a similar way, the science chamber is connected to the
octagonal chamber via a combination of standard CF16-
and homemade vacuum tubes of 1 cm diameter to fur-
ther increase the vacuum quality. The glass science cell
has a large optical access and permits the installation of
an objective for high-resolution imaging.

2.2 Laser systems

The dual-species MOT requires separate laser systems and
optics for the two different atomic transition wavelengths
671 nm (Li) and 767 nm (K). The laser systems provide
several beams with different frequencies and intensities
for slowing, trapping and probing each atomic species. A
sketch of the energy levels of the atomic species and the
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Fig. 2. (Color online) Level diagrams for the 6Li and 40K D2-
lines with their respective hyperfine structures, showing the
frequencies required for the dual-species MOT operation. The
diode lasers are locked to the indicated saturated absorption
crossover signals 2S1/2(F =1/2, F =3/2) → 2P3/2 of 6Li and
4S1/2(F =1, F =2) → 4P3/2 of 39K.

frequencies of interest are shown in Figure 2. The laser
systems are set up on separate optical tables and the gen-
erated laser beams are transferred to the main experi-
mental table using optical fibers. A simplified scheme of
the laser systems is shown in Figure 3. Each one consists
of a single low output-power frequency-stabilized diode
laser (DL) and three tapered amplifiers (TAs) used for
light amplification. Due to the small hyperfine splittings of
both 6Li and 40K, the required frequencies of the various
laser beams are conveniently shifted and independently
controlled by acousto-optical modulators (AOMs).

The diode lasers are homemade tunable external cav-
ity diode lasers in Littrow configuration. The laser diode
for Li (Mitsubishi, ref. ML101J27) is of low-cost due to
its mass production for the DVD industry. Its central
free running output wavelength at room temperature is
660 nm which can be shifted into the range of 671 nm by
heating the diode to 80 ◦C. In external cavity configura-
tion its output power is 40 mW at a driving current of
150 mA. Under these conditions the laser diode reaches
a typical lifetime of 6 months. It can be mode hop-free
tuned over a range of 5 GHz. The laser diode for K is an
anti-reflection coated Ridge-Waveguide Laser (Eagleyard,
ref. EYP-RWE-0790-0400-0750-SOT03-0000), whose cen-
tral free running output wavelength at room temperature
corresponds to the desired wavelength. In external cavity
configuration its output power is 35 mW at 90 mA and it
has a typical lifetime of one year. It can be mode hop-free
tuned over a range of 10 GHz.

The tapered amplifiers are commercial semiconduc-
tor chips which are mounted on homemade supports. We
developed compact support designs with nearly no ad-
justable parts, which allow for a quick temperature stabi-
lization, do not require running water for heat dissipation
and allow for an easy installation process. The support
designs are described in detail in the appendix.

DL

TA

FI

AOM

+331MHz dp

EOM Spectroscopy

AOM

+184MHz dp

AOM

+430MHz dp

AOM

−228MHz dp

TA

AOM

+432MHz dp

TA

FI
MOT

FI
Imaging

FI
Zeeman

DL

TA

FI

AOM

−240MHz dp

EOM Spectroscopy

AOM

+436MHz dp

AOM

−380MHz dp

AOM

−452MHz dp

AOM

+343MHz dp

AOM

+432MHz dp

AOM

−90MHz sp

AOM

−80MHz sp

AOM

−440MHz dp

TA

TA

FI
MOT

FI
2D-MOT

FI
Imaging

6Li

40K

Fig. 3. Laser systems for 6Li and 40K. The frequencies and
amplitudes of the various beams are controlled by AOMs in
single pass (sp) or double pass (dp) configuration. The EOMs
are used to phase modulate a part of the beam for the diode
laser’s frequency stabilization. Single mode polarization main-
taining fibers (FI) are used for beam shaping and spatial fil-
tering. The indicated AOM frequencies allow to generate the
required beam frequencies (see Fig. 2).

We have also developed an all-solid-state laser for
lithium delivering more than 630 mW output power, with
which we intend to increase further the number of laser-
cooled Li atoms. The setup of this light source is described
elsewhere [17].

The frequency of each diode laser is stabilized via satu-
rated absorption spectroscopy for which a small part of the
DL’s output is used (see Fig. 3). A 20 MHz electro-optical
modulator (EOM) is employed to modulate the phase of
the spectroscopy laser beam yielding the derivative of the
absorption signal through a lock-in detection. The result-
ing error signal is transferred to both the diode’s current
(via a high frequency bias-tee), and, via a PID-controller,
to a piezo that adjusts the external cavity’s length with a
4 kHz bandwidth. An AOM is used to offset the frequency
of the diode laser with respect to the absorption line used
for locking. It allows for fine adjustments of the frequency
while the laser is locked.

The Li diode laser frequency is shifted by −331 MHz
from the 6Li 2S1/2(F = 1/2, F = 3/2) → 2P3/2 crossover
signal and the K diode laser frequency is shifted by
+240 MHz from the conveniently located 4S1/2 (F = 1,

F = 2) → 4P3/2 crossover signal of 39K. Note that the

small excited state hyperfine structures of both 6Li and
39K are unresolved in the spectroscopy.

The saturated absorption spectroscopy for lithium is
realized in a heat pipe of 50 cm length, in which a nat-
ural Li sample (with the isotopic abundances 7Li: 92%,
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6Li: 8%) is heated to 350 ◦C to create a sufficiently high
vapor pressure for absorption. The heat pipe consists of
a standard CF40 tube with the Li-sample placed at its
center. The tube is heated with a pair of thermocoax ca-
bles which are wound around the tube in parallel with
opposite current directions in order to prevent magnetic
fields to build up. Condensation of lithium atoms on the
cell windows needs to be inhibited as Li chemically reacts
with glass. This is achieved by adding an argon buffer gas
at ∼0.1 mbar pressure, as Ar-Li collisions prevent Li to
reach the cell windows in ballistic flight. The optimum
argon pressure was chosen such that it provides enough
collisions, but does not substantially collision-broaden the
absorption spectrum. Water cooling of the metallic parts
close to the windows leads to condensation of the diffus-
ing lithium-atoms before those can reach the windows. To
avoid that lithium slowly migrates to the colder surfaces,
the inside of the tube is covered with a thin stainless steel
mesh (Alfa Aesar, ref. 013477), which induces capillary
forces acting on the condensed atoms. Since the surface
tension of liquid lithium decreases with increasing tem-
perature [18], the capillary forces cause the atoms to move
back to the hotter surfaces.

The saturated absorption spectroscopy for potassium
is realized in a cylindrical glass vapor cell of 5 cm length, in
which a natural K-sample (with the isotopic abundances
39K: 93.36%, 40K: 0.012%, 41K: 6.73%) is heated to 40 ◦C.
Here, a small non-heated appendix of the cell serves as
a cold point to prevent condensation of K-atoms on the
surfaces crossed by the laser beam.

In both laser systems the frequency stabilized mas-
ter laser beam is immediately amplified by a first TA
and subsequently injected into a single-mode polarization
maintaining optical fiber (FI) for beam shaping and spa-
tial filtering (see Fig. 3). The output beam of the opti-
cal fiber is split by a series of polarizing beam splitters
into several beams whose frequencies and intensities are
independently shifted and controlled with AOMs in sin-
gle or double pass configuration. The various beams are
then recombined with a pair of polarizing beam splitters
to linearly polarized bichromatic beams consisting of one
cooling and one repumping frequency. Those are then ei-
ther directly injected into a fiber or into another TA for
further amplification. The fibers finally transfer the beams
to the main experimental table.

The injection of a bichromatic beam into a TA, whose
gain-medium is non-linear, is accompanied with the cre-
ation of sidebands [19]. The sideband creation is due to
parametric amplification of the gain medium by the beat-
ing between the two injected frequencies. In general, side-
bands represent a loss of the power available in the in-
jected frequencies and can excite unwanted transitions. In
our case, where the two injected beam components have
significantly different powers and frequencies (differing by
∼228 MHz for 6Li and by ∼1286 MHz for 40K), the power
losses are below 10%. No unwanted transitions are ex-
cited by the amplified bichromatic beams, except for the
Zeeman slower beam, as that is detuned close to an in-
teger multiple of 228 MHz and would thus perturb the

atoms in the MOT. For this beam the injection of both
frequency components into the same TA was thus avoided
(see Fig. 3).

Acoustically isolated homemade mechanical shutters
are placed in front of each fiber on the optical tables al-
lowing to switch off the laser beams when required. The
shutters consist of a low-cost solenoid-driven mechanical
switch (Tyco Electronics, ref. T90N1D12-12) and a razor
blade attached to it via a small rigid lever arm. These shut-
ters typically have a closing time of ∼100 µs when placed
in the focus of a laser beam and a sufficiently reproducible
time delay of the order of 3 ms.

3 Atom sources

Magneto-optical traps can be loaded in different ways.
The most efficient is the loading from a beam of slow
atoms. This scheme allows isolating the MOT from the
atom source region with a differential pumping tube,
through which the beam is directed. The MOT thus
can be located in a UHV chamber where collisions with
the residual gas are minimized. Furthermore, the MOT
will be quickly loaded when the atomic beam is cold
and has a high flux. The most efficient methods to cre-
ate such beams are Zeeman slowers and 2D-MOTs. For
both atomic species 6Li and 40K, both, Zeeman slow-
ers [14,20,21] and 2D-MOTs [22], have been realized in
the past. In our setup we chose to implement a Zeeman
slower for 6Li and a 2D-MOT for 40K.

3.1 6Li Zeeman slower

3.1.1 Introduction

Zeeman-tuned slowing represents one of the earliest and
most widely used techniques to slow down atoms from
an oven [23]. A Zeeman slower longitudinally decelerates
an atomic beam using the radiative force of a counter-
propagating resonant laser beam. The Doppler effect ac-
cumulated during the deceleration is compensated by the
Zeeman effect, induced by an inhomogeneous magnetic
field, which maintains the atoms on resonance and pro-
vides a continuous deceleration.

Two types of Zeeman slowers are commonly used:
the positive-field and the sign-changing field (“spin-flip”)
Zeeman slower [24]. We have implemented a spin-flip
Zeeman slower since it brings about several advantages.
First, a smaller maximum absolute value of the magnetic
field is required. Second, the Zeeman laser beam is non-
resonant with the atoms exiting the slower and thus does
not push them back into the slower, neither it perturbs
the atoms trapped in the 6Li-MOT. However, the spin-
flip Zeeman slower requires repumping light in the region
where the magnetic field changes sign and thus makes the
optics system slightly more complicated.
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3.1.2 Experimental setup

The Zeeman slower consists of two distinct parts: the oven,
which creates an atomic beam of thermal atoms, and an
assembly of magnetic field coils. In the oven a nearly pure
6Li sample (5 g) is heated to 500 ◦C and an atomic beam is
extracted through a collimation tube. The magnetic field
coils create an inhomogeneous magnetic field along the
flight direction of the atoms.

The oven consists of a vertical reservoir tube (diame-
ter: 16 mm, length: 180 mm) and a horizontal collimation
tube (diameter: 6 mm, length: 80 mm), which is attached
to it (see Fig. 1). The upper end of the reservoir tube
and the free end of the collimation tube are connected to
CF40-flanges. The flange of the reservoir tube is sealed and
allows connecting a vacuum pump for baking purposes.
The flange of the collimation tube connects the oven to
the rest of the vacuum chamber. All parts of the oven are
made of stainless steel of type 302L and connected us-
ing nickel gaskets instead of copper gaskets as they stand
higher temperatures and react less with lithium. The heat-
ing of the oven is realized with two high power heating ele-
ments (Thermocoax, ref. SEI 10/50-25/2xCM 10), wound
around both, the reservoir and the collimation tube.

The temperature of the oven needs to be stabilized
precisely, since the atomic flux critically depends on the
temperature. This is accomplished by an active stabiliza-
tion circuit and an isolation with glass wool and aluminum
foil. Along the collimation tube a temperature gradient
is maintained in order to recycle lithium atoms sticking
to the inner tube walls through capillary action, as ex-
plained above. In order to amplify the effect of capillary
action, a thin stainless steel mesh with a wire diameter
of 0.13 mm (Alfa Aesar, ref. 013477) is placed inside the
tube. This wire decreases the effective diameter of the col-
limation tube to∼5 mm. For the operating temperature of
500 ◦C, the vapor pressure of lithium in the oven amounts
to 4× 10−3 mbar.

A computer controlled mechanical shutter (Danaher
Motion, ref. BRM-275-03) in front of the oven allows to
block the atomic beam during experiments or when the
6Li-MOT is not in operation.

The oven is pumped through the collimation tube with
a 20 L/s ion pump and isolated from the main chamber
via three differential pumping stages and the tube of the
Zeeman slower. The pumping efficiency through the colli-
mation tube is ∼0.19 L/s resulting in a pressure drop of
a factor ∼100. The second and third differential pump-
ing tubes both have a length of 100 mm and a diameter
of 5 mm and 10 mm, respectively. A 20 L/s ion pump is
placed after each tube. In total a pressure drop of a factor
of ∼2.5× 106 between the oven and the main chamber is
obtained.

The assembly of the oven is a three-step procedure.
First, the metallic parts of the oven are pre-baked at
600 ◦C during 48 h. Then, the oven is filled with the
lithium sample under air atmosphere and baked again at
600 ◦C during 12 h in order to eliminate the impurities
in the lithium sample (mostly LiH). Typically 50% of the
sample is lost during this procedure. Then, the oven is

Fig. 4. (Color online) 6Li Zeeman slower coil assembly and
generated axial magnetic field profile. The thermal atoms com-
ing from the 6Li-oven enter the coil assembly at the position 0,
and a fraction of them is slowed down and finally captured in
the 6Li-MOT, which is located at 71.4 cm. A compensation coil
placed on the opposite side of the MOT (at 84.1 cm) ensures
that the magnetic field is zero at the position of the MOT.

connected to the rest of the vacuum chamber under an ar-
gon atmosphere, since argon does not react with lithium.
Since argon damages ion pumps, the vacuum chamber is
first pumped by a turbo molecular pump during 12 h be-
fore the ion pumps are finally launched and the oven is
operational.

The Zeeman slower coils are mounted on a 65 cm long
standard CF40 tube placed between the oven and the
MOT chamber. A sketch of the coil assembly and the gen-
erated axial magnetic field profile are shown in Figure 4.
The coil assembly extends over L = 55 cm and is sepa-
rated from the position of the MOT by 16 cm. The coils
are connected in series and were designed such that the
desired magnetic field profile is generated for a moderate
driving current of 12 A. The axial magnetic field of the
slower along the flight direction of the atoms is measured
to be 570 G at the entrance and −220 G at the exit.

The magnetic field of the Zeeman slower is non-zero at
the position of the MOT and hence compensated by a coil
placed opposite to the slower coils at a distance of 12.7 cm
from the MOT (see Fig. 4). The compensation coil consists
of 4 coil layers wound around a 10 cm long CF40 standard
tube. They are powered by a separate power supply for
fine adjustments. When compensated, the magnetic field
has an axial gradient of 0.5 G/cm at the position of the
MOT.

The cables of the Zeeman slower coils (APX France,
ref. méplat cuivre émaillé CL H 1.60 × 2.50) stand bake
out procedures up to 200 ◦C. One layer of a heating cable
(Garnisch, ref. GGCb250-K5-19) is permanently placed
underneath the magnetic field coils for these bake out pro-
cedures. To avoid heating of the vacuum parts during the
Zeeman slower’s operation, two layers of water coils were
wound underneath the coil layers.

Slowing and repumping light for the Zeeman slower
is derived from a bichromatic laser beam which is pro-
vided by an optical fiber originating from the laser system.



228 The European Physical Journal D

It has a total power of Pfiber = 50 mW and its frequencies
are both red detuned by ∆ωslow = ∆ωrep = 75 Γ from
the 2S1/2(F = 3/2) → 2P3/2(F

′ = 5/2) slowing and the
2S1/2(F = 1/2) → 2P3/2(F

′ = 3/2) repumping transi-
tion (see Fig. 2). The intensity Islow of the slowing light
is 8 times bigger than the intensity Irep of the repumping
light. Both beam components have the same circular po-
larization (σ+ at the position where the atoms enter the
slower).

The detuning of the slowing light and the axial mag-
netic field at the entrance of the coil assembly define the
so-called capture velocity vZeecap of the Zeeman slower. All

atoms with a velocity smaller than vZeecap are expected to be

decelerated to the same final velocity vZeefi at the exit of the
slower, provided that they initially populate the correct in-
ternal atomic state. The resonance condition for the atoms
inside the slower yields vZeecap ∼ 830 m/s and vZeefi ∼ 90 m/s.
The exit velocity of the slower is thus larger than the cap-
ture velocity of the 6Li-MOT, which is estimated to be
∼50 m/s. However, the atoms are still decelerated signifi-
cantly in the region between the slower exit and the MOT
and are thus expected to be captured by the MOT. The
capture velocity of the Zeeman slower is smaller than the
most probable thermal speed of the atomic beam, which
is given by vp =

√

2kBT/m = 1464 m/s at T = 500 ◦C,
where kB denotes the Boltzmann constant andm the mass
of the 6Li-atoms.

The bichromatic Zeeman slower beam is expanded and
focused by a lens pair. The focusing of the beam accounts
for the divergence of the atomic beam and the loss of beam
power due to absorption and thus yields an efficient uti-
lization of the available laser power. In addition, it induces
a small cooling effect along the transverse direction [24].
The 1/e2-diameter at the position of the MOT is 31 mm
and the focus is at a distance of 120 cm from the MOT,
10 cm behind the oven.

The divergence of the atomic beam is an important pa-
rameter characterizing the Zeeman slower. Three factors
contribute to it: first, the geometry of the oven’s collima-
tion and the subsequent differential pumping tubes, sec-
ond the atom’s deceleration inside the slower, and third
the transverse heating due to the scattered photons during
the slowing process. In order to estimate the divergence
of the atomic beam, we calculate the maximum possible
deflection of an atom which exits the oven with a longi-
tudinal velocity vZeecap . An atom with this velocity needs
∼1.1 ms to reach the exit of the Zeeman slower and ad-
ditional ∼1.8 ms to reach the MOT. Due to the geome-
try of the collimation and differential pumping tubes it
can have a maximum transverse velocity of ∼16 m/s. The
change in transverse velocity due to the heating is cal-
culated to be ∼2.5 m/s [25] and is thus negligible with
respect to the maximum transverse velocity determined
by the tube geometry. The final transverse displacement
of the atom with respect to the beam axis at the position
of the 6Li-MOT would thus be ∼5 cm, resulting in an
effective beam divergence of ∼90 mrad. This divergence
requires 6Li-MOT beams of a large diameter.

Table 1. Optimized values for the parameters of the 6Li
Zeeman slower, yielding a 6Li-MOT capture rate of ∼1.2 ×

109 atoms/s at an oven temperature of 500 ◦C. The definition
of the symbols is given in the text. The natural linewidth of
6Li is Γ/(2π) = 5.87 MHz. The length of the Zeeman slower
coil assembly is 55 cm.

6Li Zeeman slower
Pfiber (mW) 50
∆ωslow (Γ ) –75
∆ωrep (Γ ) –75
Irep/Islow 1/8
Bmax (G) 570

(a) (b)

Fig. 5. (Color online) 6Li-MOT capture rate as a function
of (a) the power of the Zeeman slowing light for a constant
repumping light power of 5.6 mW and (b) the intensity ratio
between repumping and slowing light of the Zeeman slower for
a constant slowing light power of 45 mW. The intensities of the
superimposed beams depend on the position inside the slower,
since the beams are focused toward the oven. At the position
where the magnetic field changes sign, a power of 10 mW corre-
sponds to an intensity of 2.5 Isat, with the saturation intensity
Isat given in Table 3.

3.1.3 Experimental results

For our application the essential parameter which charac-
terizes the performance of the Zeeman slower is the cap-
ture rate of the 6Li-MOT. We studied its dependence as
a function of several Zeeman slower parameters, such as:
the temperature of the oven, the power of the slowing
light, the magnitude of the magnetic field and the inten-
sity ratios between the repumping and slowing light. The
optimized values of these parameters are displayed in Ta-
ble 1, leading to a 6Li-MOT capture rate of ∼1.2 × 109

atoms/s. The capture rate was deduced from a very short
loading of the MOT, for which atom losses can still be
neglected (∼250 ms).

Figure 5a shows the dependence of the 6Li-MOT cap-
ture rate on the power of the Zeeman slowing light. The
curve increases with increasing beam power and indicates
saturation for higher powers. In the experiment the slow-
ing light power is 45 mW, for which the curve in Figure 5a
starts to saturate, demonstrating that the size of the slow-
ing beam is well chosen. In particular it shows that the
beam is not absorbed significantly by the atoms inside
the slower.

The dependence of the 6Li-MOT capture rate on the
intensity ratio between repumping and slowing light of
the Zeeman slower is depicted in Figure 5b. The curve
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(a) (b)

Fig. 6. (Color online) 6Li-MOT capture rate as a function of
(a) the axial magnetic field of the Zeeman slower and (b) the
temperature of the Li-oven. Circles represent the experimen-
tal data and the solid curve the theoretical prediction from
equation (3).

increases with increasing repumping intensity and sat-
urates for higher intensities. For the intensity ratio
Irep/Islow ∼ 0.1 the repumping intensity in the region
where the magnetic field of the Zeeman slower changes
sign, is of the order of the saturation intensity. There-
fore the transition probability of the repumping transi-
tion saturates at Irep/Islow ∼ 0.1, explaining the behavior
in Figure 5b. The graph shows that the Zeeman slower
only requires a small repumping intensity. It is important
that the repumping light has the same circular polariza-
tion as the slowing light, since it helps to optically pump
the atoms to the cycling transition used for slowing.

Figure 6a shows the 6Li-MOT capture rate as a func-
tion of the magnitude of the axial magnetic field of the
Zeeman slower. The position of the maximum depends on
the detuning of the slowing light.

Figure 6b shows the dependence of the 6Li-MOT cap-
ture rate on the oven temperature T (circles) as well as
a (scaled) theoretical prediction (solid curve) for the ex-
perimental data. The curve shows a nearly exponential
increase of the capture rate with the temperature. The
theoretical prediction is based on a model which assumes
no collisions between the atoms (i.e., no intrabeam colli-
sions and no collisions between the beam and the MOT
atoms). It is derived as follows.

In the absence of collisions, the normalized velocity dis-
tribution of the Zeeman-slowed atoms exiting the slower
does not depend on the temperature of the oven. Assum-
ing that the 6Li-MOT captures mainly atoms which have
been slowed by the Zeeman slower, the capture rate ṄM of
the 6Li-MOT is a temperature-independent fraction of the
flux ṄZ of the Zeeman-slowed atoms: ṄM(T ) = κ1ṄZ(T ).
The proportionality constant κ1 depends on the diver-
gence of the atomic beam and the capture velocity of the
6Li-MOT. The flux of the Zeeman-slowed atoms ṄZ is
given by the flux of the oven atoms which have a speed
smaller than the Zeeman slower’s capture velocity vZeecap

and which are in the correct internal atomic state to be de-
celerated by the Zeeman slower (i.e. F = 3/2, mF = 3/2).

Assuming the oven to be in thermal equilibrium, ṄZ is
given by [22,26]

ṄZ(T ) = κ2ns(T )A

∫ ΩZ

0

dΩ
cos θ

4π

∫ vZee
cap

0

vf(v, T )dv, (1)

with a temperature-independent constant κ2, which
equals the fraction of atoms which are in the correct in-
ternal atomic state. ns(T ) is the atomic density in the
oven, A = 2 × 10−5 m2 the aperture surface of the oven,
ΩZ = A′/l2 = 5 × 10−4 the solid angle of the atomic
beam (with A′ the aperture surface of the last differential
pumping tube and l the distance between the two aperture
surfaces A,A′) and dΩ = 2π sin θdθ, with θ the emission
angle with respect to the oven axis. f(v, T ) is the normal-
ized speed distribution function given by

f(v, T ) =

√

2m3

πk3BT
3
v2 exp

(

− mv2

2kBT

)

. (2)

Since the solid angle of the atomic beam is small, it is

cos θ ≈ 1 and thus
∫ ΩZ

0 dΩ cos θ ≈ ΩZ.

The explicit temperature dependence of the 6Li-MOT
capture rate is then obtained via ṄM(T ) = κ1ṄZ(T )
by substituting into equation (1) the ideal gas equa-
tion ns(T ) = ps/(kBT ) and the relation ps =
pa exp[−L0/(kBT )] for the saturated vapor pressure ps,
with pa = 1.15 × 108 mbar and the latent heat of vapor-
ization L0/kB = 18 474 K [27]. This relation applies to
the temperature range 300–500 ◦C with an accuracy of
5%. Thus, we have

ṄM(T ) = κAΩZpa

√

m3

8π3k5BT
5
e
−

L0
kBT

∫ vZee
cap

0

v3e
−

mv
2

2kBT dv, (3)

with κ = κ1κ2. Scaling equation (3) to the experimental
data for a given (low) temperature (T = 350 ◦C) yields
the theoretical prediction for the curve shown in Figure 6.
The scaling yields κ = 10−3, thus 0.1% of the atoms, which
enter the Zeeman slower with a velocity smaller than vZeecap ,

are captured by the 6Li-MOT.
The main contribution to the small value of κ is the

large divergence of the slowed atomic beam: κ is propor-
tional to the ratio of the atomic beam cross section and
the capture surface of the 6Li-MOT, which is estimated to
∼10−2 (assuming the 6Li-MOT capture surface to be a cir-
cle of 1.1 cm diameter). Two-dimensional transverse laser
cooling of the atomic beam could vastly increase the value
of κ. The remaining 10% are due to an inefficient capture
of the 6Li-MOT and to a significant fraction of oven atoms
occupying the incorrect internal atomic states.

The obtained theoretical prediction agrees well with
the experimental data for temperatures below 475 ◦C (see
Fig. 6b). For temperatures above 475 ◦C, the experimen-
tal data deviate from the prediction indicating that in-
trabeam collisions or collisions between the atoms in the
beam and the MOT become important. We found that
for T = 500 ◦C collisions between the thermal 6Li beam
and the trapped 6Li-MOT atoms indeed take place, which
we verified by measuring the lifetime of the 6Li-MOT in
presence and absence of the thermal 6Li beam, making
use of the mechanical block placed at the exit of the oven.
The lifetime was found 10% larger for the case where the
thermal 6Li beam was blocked. In a similar way the ther-
mal 6Li beam also affects the lifetime of the 40K-MOT.
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In order to avoid a reduction of the number of trapped
40K atoms in the dual-species MOT, we therefore limit
the 6Li-oven temperature to 500 ◦C.

With the help of equation (1) the lifetime of the oven
can be estimated. Assuming that the collimation tube of
the oven recycles all atoms sticking to its wall and the vac-
uum pumps have no impact on the Li pressure in the oven,
the total atomic flux through the collimation tube is ob-
tained by replacing A′ = A, vZeecap = ∞ and l = 8 cm (the
length of the collimation tube) in equation (1). For the
working temperature T = 500 ◦C the lithium vapor pres-
sure is ps = 4.8× 10−3 mbar, corresponding to a density
ns = 4.5×1019 m−3. Thus, the atom flux through the col-
limation tube is ṄO = 3.5× 1014 s−1 =̂ 3.5× 10−12 kg/s.
With 3 g of 6Li this corresponds to an oven lifetime of
τoven ∼ 25 years. (The importance of the recycling be-
comes manifest when comparing this value to the hy-
pothetical lifetime of the oven, would the collimation
tube be replaced by an aperture of the same surface. In
this case the atom flux through this aperture would be

Ṅhyp
O = (πl2/A)ṄO ∼ 1000ṄO and thus τhypoven ∼ 10 days.)

3.2 40K 2D-MOT

3.2.1 Introduction

2D-MOTs have been widely used over the past years to
produce high flux beams of cold atoms [14,22,28–31]. In
some cases they offer advantages over the more common
Zeeman slowers. Even though Zeeman slowers can pro-
duce higher fluxes and are more robust, they have the fol-
lowing disadvantages. They produce unwanted magnetic
fields close to the MOT which need to be compensated
by additional fields, they require a substantial design and
construction effort and are space consuming. The atomic
beam source of Zeeman slowers needs to be operated at
higher temperatures than the vapor cell used as source for
2D-MOTs and the material consumption can be high. In
the case of the rare isotope 40K, this drawback is major:
no pure source of 40K exists and enriched 40K samples
are very expensive (4000 Euros for 100 mg of a 4% en-
riched sample). Therefore a 40K Zeeman slower would be
very costly. A 2D-MOT can be operated at lower pressures
and is thus more economic. In addition it allows separat-
ing 40K from the more abundant 39K, since it produces
an atomic beam which nearly only contains the slowed
atoms (i.e. no thermal background). These considerations
motivated us to implement a 2D-MOT for 40K.

3.2.2 Principle of operation

In a 2D-MOT, an atomic vapor is cooled and confined
transversally and out-coupled longitudinally through an
aperture tube. The role of the aperture tube is two-fold.
First, it isolates the 2D-MOT from the MOT chamber by
differential pumping, and second, it acts as a geometric
velocity filter, since only atoms with a small transverse
velocity pass through. As the transverse cooling is more
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Fig. 7. (Color online) Sketch of the parallelepipedical glass
cell used for the 40K 2D-MOT. A mirror is placed inside the
vacuum chamber to allow an independent control over the lon-
gitudinal beam pair. The mirror has a hole in its center and
creates a dark cylindrical region in the reflected beams.

efficient for atoms which have a small longitudinal veloc-
ity – since those spend more time in the cooling region –
most of the transversally cold atoms are also longitudi-
nally cold. Thus, the filter indirectly filters atoms also ac-
cording to their longitudinal velocity. A 2D-MOT thus
produces an atomic beam which is transversally and lon-
gitudinally cold.

The flux of a 2D-MOT can be improved by adding
a longitudinal molasses cooling to the 2D-MOT config-
uration [28]. Thus, the atoms spend more time in the
transverse cooling region due to the additional longitu-
dinal cooling. The longitudinal beam pair is referred to
as the pushing and the retarding beam, where the push-
ing beam propagates in the direction of the atomic beam
(see Fig. 7). We implemented such a configuration, mak-
ing use of a 45◦-angled mirror inside the vacuum chamber.
This mirror has a hole at its center which creates a cylin-
drical dark region in the reflected retarding beam. In this
region, the atoms are accelerated along the longitudinal
direction by the pushing beam only, which allows an effi-
cient out-coupling of the atomic beam.

3.2.3 Experimental setup

The vacuum chamber of the 2D-MOT consists of standard
CF40 components and a parallelepipedical glass cell (di-
mensions 110 mm × 55 mm × 55 mm), which is depicted
in Figure 7. Its long axis is aligned horizontally, paral-
lel to the differential pumping tube and the direction of
the produced atomic beam. The mirror inside the vacuum
chamber is a polished stainless steel mirror with an ellip-
tical surface (diameters 3.0 cm and 4.2 cm). It is attached
to the differential pumping tube inside the vacuum. It al-
lows to overlap the two longitudinal laser beams whose
powers and orientations can thus be independently con-
trolled externally. The mirror’s material has a reflectivity
of only 50%, but inhibits chemical reaction of potassium
with its surface. The differential pumping tube intercepts
the mirror at its center. The tube has a diameter of 2 mm
over a distance of 1.5 cm and then stepwise widens up
to 10 mm over a total distance of 22 cm. The 40K-MOT
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is located 55 cm away from the 2D-MOT center. Assum-
ing a ballistic flight of the atoms, the geometry of the
differential pumping tube defines an upper limit of the di-
vergence of the atomic beam, which is calculated to be
∼35 mrad. The atomic beam thus is expected to have a
diameter of ∼2 cm when it reaches the 40K-MOT. The
differential pumping tube has a conductance of 0.04 L/s.
The generated pressure ratio between the 2D-MOT and
the 3D-MOT chambers is ∼103.

The potassium source is an isotopically enriched 40K
sample (containing 4 mg of 40K, 89.5 mg of 39K and 6.5 mg
of 41K, from Technical Glass Inc., Aurora, USA), placed
at a distance of 20 cm from the glass cell. It was purchased
in a small ampule which was broken under vacuum inside
a modified stainless steel CF16 bellow. The small vapor
pressure of potassium at room temperature (10−8 mbar)
requires heating of the entire 2D-MOT chamber. We heat
the source region to 100 ◦C, all intermediate parts to 80 ◦C
and the glass cell to 45 ◦C. The gradient in temperature
ensures that the potassium migrates into the cell and re-
mains there. The resulting K-pressure in the glass cell was
measured by absorption of a low intensity probe. We found
2.3 × 10−7 mbar, which implies a partial pressure of the
40K-isotope of 1× 10−8 mbar. In contrast to lithium, the
source lifetime is mainly determined by the pumping speed
of the ion pump. At the measured pressure the lifetime of
the source is estimated to ∼2 years.

Four air-cooled rectangular shaped elongated race-
track coils (dimensions 160 mm × 60 mm) are placed
around the glass cell to produce a 2D quadrupole field
with cylindrical symmetry and a horizontal line of zero
magnetic field. This racetrack coil geometry allows an in-
dependent control of the transverse position of the mag-
netic field zero, and minimizes finite coil fringe effects at
the coil ends. The coils are controlled by four separate
power supplies. For optimized operation, the transverse
magnetic field gradients are ∂xB = ∂yB = 11 G/cm.

Cooling and repumping light for the 2D-MOT is de-
rived from a bichromatic laser beam which is provided
by an optical fiber originating from the laser system. It
has a total power of Pfiber = 450 mW and its frequen-
cies are red detuned by ∼3.5 Γ from the 4S1/2(F =
9/2) → 4P3/2(F

′ = 11/2) cooling and by ∼2.5 Γ from
the 4S1/2(F = 7/2) → 4P3/2(F

′ = 9/2) repumping
transition (see Fig. 2). The beam is separated into four
beams and expanded by spherical and cylindrical tele-
scopes to create the transverse and longitudinal 2D-MOT
beams. The transverse beams have an elliptical cross sec-
tion (1/e2-diameters: 27.5 mm and 55 mm), are circularly
polarized and retro-reflected by right-angled prisms, which
preserve the helicity of the beams. The power losses in the
surface of the glass cell and the prisms weaken the power
of the retro-reflected beams by ∼17% (the loss contribu-
tion of the absorption by the vapor is negligible due to the
high laser power). This power imbalance is compensated
by shifting the position of the magnetic field zero. The
longitudinal beams are linearly polarized and have a cir-
cular cross section (1/e2-diameter: 27.5 mm). 75% of the
fiber output power is used for the transverse beams, 25%

Table 2. Optimized values for the parameters of the 40K 2D-
MOT, yielding a 40K-MOT capture rate of ∼ 1.4×109 atoms/s.
The definition of the symbols is given in the text. The natural
linewidth of 40K is Γ/(2π) = 6.04 MHz.

40K 2D-MOT
Pfiber (mW) 450
∆ωcool (Γ ) –3.5
∆ωrep (Γ ) –2.5
Irep/Icool 1/2
Ipush/Iret 6
∂xB, ∂yB (G/cm) 11
K vapor pressure (mbar) 2.3 × 10−7

for the longitudinal beams. The intensity ratio between
pushing and retarding beam along the atomic beam axis
is ∼6 (for reasons explained below).

3.2.4 Experimental results

For our purpose the essential parameter which character-
izes the performance of the 2D-MOT is the capture rate
of the 40K-MOT. We studied its dependence as a function
of several 2D-MOT parameters, such as: the vapor pres-
sure in the 2D-MOT cell, the total cooling light power,
the detuning of the cooling frequency and the intensity ra-
tios between the repumping and cooling light and between
the pushing and retarding beam. The optimized values of
these parameters are displayed in Table 2, leading to a
40K-MOT capture rate of ∼1.4× 109 atoms/s.

The mean velocity of the atoms in the atomic beam
can be estimated as follows. It is approximately given by
the average time required for the atoms of the 2D-MOT
region to reach the 3D-MOT. This time was measured by
recording the time delay of the onset of the 40K-MOT
loading after switching on the 2D-MOT beams. We mea-
sured a time delay of ∼23 ms and deduce a mean longitu-
dinal velocity of the captured atoms of ∼24 m/s. At this
velocity, the displacement due to gravity of the beam of
atoms from the 40K-MOT center is ∼2.6 mm, which is
negligible compared to the size of the 40K-MOT beams
and the divergence of the atomic beam.

Figure 8a shows the dependence of the 40K-MOT cap-
ture rate on the detuning ∆ωcool of the 2D-MOT cooling
light. The curve has a maximum at ∆ωcool = −3.5 Γ and
a full width at half maximum (FWHM) of 2.7 Γ . The
maximum is the result of two opposing effects: the scat-
tering force of the 2D-MOT beams decreases with increas-
ing detuning whereas the capture velocity increases [24].
The first effect implies a less efficient transverse cooling
whereas the second leads to a more efficient capture of
atoms. An additional effect might influence the shape of
the curve: since the scattering force of the pushing beam
depends on the detuning, also the mean-velocity of the
atomic beam depends on it [28,29,31]. Since we mea-
sure the 40K-MOT capture rate rather than the flux of
the 2D-MOT, the mean-velocity might exceed the cap-
ture velocity of the 40K-MOT. However, as shown in ref-
erences [28,29,31], the mean-velocity of the beam only
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(a) (b)

Fig. 8. (Color online) 40K-MOT capture rate as a function of
(a) the detuning and (b) the total power of the cooling light
used for the 2D-MOT (for a constant intensity ratio between
the cooling and repumping light). The total power refers to the
sum of the powers in the six 2D-MOT beams, where a power
of 470 mW corresponds to a total intensity of ∼47 Isat at the
center of the 2D-MOT, with the saturation intensity Isat given
in Table 3.

Table 3. Characteristic parameters of the dual-species
6Li-40K-MOT.

40K-MOT 6Li-MOT
Pfiber (mW) 220 110
∆ωcool (Γ ) –3 –5
∆ωrep (Γ ) –5 –3
Γ/(2π) (MHz) 6.04 5.87
Icool per beam (Isat) 13 4

Isat (mW/cm2) 1.75 2.54
Irep/Icool 1/20 1/5
∂zB (G/cm) 8 8
Nsingle (×109) 8.9 5.4
Ndual (×109) 8.0 5.2

nc (×1010 at./cm3) 3 2
T (µK) 290 1400

slightly changes with the detuning, such that we expect
this effect to only weakly influence the curve. From the
shape of the curve we conclude that the 40K-MOT cap-
ture rate is not very sensitive to changes of ∆ωcool.

The dependence of the 40K-MOT capture rate on the
total power of the 2D-MOT cooling light is depicted in
Figure 8b. The total power refers to the sum of the pow-
ers in the six 2D-MOT beams. According to the chosen
beam sizes, the maximum power of 470 mW corresponds
to a total intensity of ∼47 Isat (for zero detuning) at the
center of the 2D-MOT, with the saturation intensity Isat
given in Table 3. The curve almost linearly increases with
light power without a clear indication of saturation. The
increase is due to two effects. First, the 2D-MOT capture
velocity increases with laser power due to the power broad-
ening of the atomic spectral lines. Second, the scattering
force increases, resulting in a steeper transverse confine-
ment, which facilitates the injection of the atoms into the
differential pumping tube. At some point, the curve is ex-
pected to saturate, since the temperature of the cooled
atoms and light-induced collisions between them increase
with light power. These effects, however, are less limiting
in a 2D-MOT as compared to a 3D-MOT, since the atomic
density in a 2D-MOT is typically three orders of magni-
tude smaller due to the absence of a three-dimensional

(a) (b)

Fig. 9. (Color online) 40K-MOT capture rate as a function
of the intensity ratio between (a) repumping and cooling light
of the 2D-MOT for two different repumping detunings ∆ωrep

and a constant total cooling light power of 300 mW (which
corresponds to a total intensity of∼30 Isat) and (b) the pushing
and the retarding beams of the 2D-MOT. The intensities of the
pushing and retarding beams refer to the intensities along the
atomic beam axis.

confinement. Thus, in a 2D-MOT a high light power would
be required to reach the regime of saturation.

Figure 9a shows the dependence of the 40K-MOT cap-
ture rate on the intensity ratio between the cooling and
repumping light of the 2D-MOT for the two different re-

pumping detunings ∆ω
(1)
rep = −2.5 Γ and ∆ω

(2)
rep = −6.5 Γ

and for a constant total cooling light power of 300 mW.
The graph shows that for both frequencies the 40K-MOT
capture rate increases with increasing repumping intensity
and that it saturates at high intensities. It also shows that
the maximum capture rate is bigger for the smaller detun-
ing. The intensity dependence of the curves results from
the likewise intensity dependence of the transition prob-
ability for an atomic transition. The maximum capture
rate is bigger for the smaller detuning, since this detuning
contributes more efficiently to the cooling process. In our
experiment, a fixed total laser power is available for both
repumping and cooling light. It is distributed such that
the resulting capture rate is maximized. It was found to
be maximum for an intensity ratio of Irep/Icool ∼ 1/2. For

that ratio the detuning ∆ω
(2)
rep = −2.5 Γ also yields the

maximum capture rate.

The dependence of the 40K-MOT capture rate on the
intensity ratio between pushing and retarding beam is
depicted in Figure 9b. The curve has a maximum at
Ipush/Iretard ∼ 6. It is zero for values of Ipush/Iretard be-
tween 0 and 3, then increases until the maximum and falls
off again with a smaller slope. From the curve we can ex-
tract information about the importance of the reflectivity
of the mirror inside the vacuum and of the size of its hole.
For a given intensity ratio Ipush/Iretard along the (horizon-
tal) direction of the atomic beam, the mirror’s reflectiv-
ity determines the intensity ratio I∗push/I

∗

retard along the
vertical direction above the reflecting surface of the mir-
ror (see Fig. 7). If I∗push/I

∗

retard differs from 1, the atomic
beam can experience a vertical deflection in this region.
The hole inside the mirror creates a dark cylinder in the
pushing beam after its reflection, so that in the region
above the hole only light from the retarding beam has a
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vertical direction, which can also give rise to a vertical
deflection of the atomic beam.

In the following we estimate the deflection of the
atomic beam, which is induced by the unbalanced retard-
ing beam in the small region above the hole. Assuming the
atomic beam to have reached its final longitudinal velocity
of 24 m/s when entering into the hole, the atoms spend
85 µs in the region above the hole. Neglecting Doppler
shifts and the presence of the pushing beam along the
horizontal direction (no transverse beams are present in
the region above the mirror), the atoms will scatter Nph =
Rsc × (85 µs) ∼ 75 photons, with Rsc being the scatter-
ing rate [24] for the given detuning ∆ωcool = −3.5 Γ and
peak intensity I∗retard = 2.5Isat. The recoil velocity of 40K
being given by vrec = 0.013 m/s, each atom will accumu-
late a transverse velocity of vdev ∼ 1 m/s. This leads to a
downwards deflection of the atomic beam by an angle of
∼40 mrad, which is more than a factor two bigger than
the maximum deflection angle allowed by the differential
pumping tubes. The atoms will thus not reach the 40K-
MOT.

This deflection needs to be anticipated by an intensity
imbalance I∗push > I∗retard in the region above the reflecting
surface of the mirror, as that results in an upwards deflec-
tion of the atomic beam. For the given mirror reflectivity
of 50%, I∗push > I∗retard is equivalent to Ipush/Iretard > 4,
which corresponds to the experimental observation de-
picted in Figure 9b. The deflection of the atomic beam in
the region above the hole could be avoided using a beam
block which creates a dark cylinder in the region above
the mirror which overlaps with the one in the pushing
beam. In this configuration the position of the curve opti-
mum in Figure 9b would change from Ipush/Iretard = 6 to
Ipush/Iretard = 4. For mirrors with a reflectivity close to
100% the position of the curve optimum could thus even
be changed to Ipush/Iretard = 1, for which the longitudi-
nal optical molasses cooling would be most efficient lead-
ing to a maximum 2D-MOT flux. Due to the polarization
gradients generated by the transverse 2D-MOT beams the
longitudinal optical molasses cooling is, however, still very
efficient even in case of an intensity imbalance of 6 along
the atomic beam axis.

We now study the dependence of the 40K-MOT cap-
ture rate on the vapor pressure of potassium (all isotopes)
in the 2D-MOT cell, which is shown in Figure 10 (circles)
together with a fit to a theoretical model (solid curve). The
vapor pressure was measured by recording the absorption
profile of a low intensity probe. The curve in Figure 10 has
a maximum at a vapor pressure of 2.3×10−7 mbar. In the
absence of collisions, the curve should increase linearly
with pressure, which is indeed observed for low pressures.
For high pressures, collisions become important and limit
the 40K-MOT capture rate. The dependence of the 40K-
MOT capture rate L on the pressure p can be described
by the function [31]

L = L0 exp

[

−
(

Γcoll + β

∫

n2(r)d3r

)

〈tcool〉
]

, (4)

Fig. 10. (Color online) 40K-MOT capture rate as a function
of the potassium vapor pressure (all isotopes). Circles: experi-
mental data, solid curve: fit of the experimental data by equa-
tion (5). Due to the low abundance of the 40K-isotope in our
potassium sample (4%), the 40K-MOT capture rate is limited
by collisions between the 40K-atoms and the other K-isotopes
in the 2D-MOT cell. At room temperature the potassium vapor
pressure is 1× 10−8 mbar.

where L0 denotes the hypothetical capture rate of the
40K-MOT in the absence of collisions in the 2D-MOT
chamber, Γcoll denotes the collisional loss rate due to col-
lisions in the 2D-MOT chamber between the cooled atoms
and the background atoms, 〈tcool〉 is the average time
which the atoms spend inside the 2D-MOT cooling re-
gion, n(r) is the position-dependent atomic density in the
atomic beam, and β is the two-body loss rate coefficient
which describes the cold collisions between the 40K atoms
in the atomic beam. L0 is proportional to the atomic den-
sity nK in the vapor cell, and Γcoll = nKσeff 〈v〉, where σeff
is the effective collision cross section, and 〈v〉 ∼ 400 m/s
the mean velocity of the thermal potassium atoms. The
term describing the cold collisions is approximately pro-
portional to n2

K due to the small density obtained in the
2D-MOT. For the investigated pressure range, the ratio
p/nK only changes slightly with temperature and can thus
be considered constant. Therefore equation (4) can be
written as

L(p) = κ1p exp
(

−κ2p− κ3p
2
)
, (5)

with the constants κ1, κ2, κ3, which are obtained from the
fit shown in Figure 10. At the curve’s maximum, the fit
yields κ2p/κ3p

2 = 8, showing that the collisions which
limit the 40K-MOT capture rate are mainly the collisions
with the hot background atoms, consisting mostly of 39K.

The background atoms are predominantly potassium
atoms. These can collide either with the excited or the
non-excited 40K-atoms of the atomic beam. Depending
on the isotopes of the colliding partners, these collisions
have different cross sections. Collisions between an ex-
cited and a non-excited atom of the same isotope usually
have a very large cross section due to the strong resonant
dipole-dipole interaction, described by a C3/R

3-potential.
In 2D-MOT systems of other atomic species these col-
lisions have been identified as the ones which limit the
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flux of the 2D-MOT [28,29,31]. In the case of 40K, the
scattering rate for these collisions is reduced by the small
abundance of 40K in the vapor. Therefore other collisions
might limit the flux. In order to identify the flux-limiting
collisions we calculate the cross section of different possi-
ble collisions and deduce the corresponding collision rates.
The cross sections can be calculated using the approach
described in reference [32] for losses out of a cold atom
cloud. The cross section for collisions involving an excited
and a non-excited 40K-atom is given by [32]

σ40,40∗

eff = π

(
4C3

mvesc 〈v〉

)2/3

, (6)

where m is the mass of the 40K-atom, vesc ∼ 1 m/s is
the estimated transverse velocity kick needed to make an
atom miss the 40K-MOT, and C3 = 5.4 × 10−48 J m3

is the dispersion coefficient for the resonant dipole-dipole
interaction [33]. The cross section for collisions involving
a non-excited 40K-atom and a non-excited K-atom of the
different isotopes is given by [32]

σ40,39
eff ∼ σ40,41

eff ∼ σ40,40
eff = π

(
15πC6

8mvesc 〈v〉

)1/3

, (7)

where C6 = 3.7 × 10−76 J m6 is the dispersion coeffi-
cient for the underlying van der Waals interaction [33].
Substituting the experimental parameters, one obtains:

σ40,40∗

eff = 2.7 × 10−16 m2 and σ40,39
eff ∼ σ40,41

eff ∼ σ40,40
eff =

1.3 × 10−17 m2. The resulting collision rates are propor-
tional to the atomic densities n39, n40 and n41 of the
corresponding isotopes in the vapor and the relative num-
ber of excited 40K-atoms in the atomic beam, which was
estimated to P ∼ 0.1 for the given beam detunings and
intensities. One obtains

Γ 40,40∗

coll = Pn40σ
40,40∗

eff 〈v〉 = 4.4× 10−16nK, (8)

Γ 40,39
coll = (1− P )n39σ

40,39
eff 〈v〉 = 4.4× 10−15nK, (9)

Γ 40,40
coll = (1− P )n40σ

40,40
eff 〈v〉 = 2.0× 10−16nK, (10)

Γ 40,41
coll = (1− P )n41σ

40,41
eff 〈v〉 = 3.0× 10−16nK (11)

(nK denoting the atomic density of potassium in the vapor

cell). The dominant collision rate here is Γ 40,39
coll (Eq. (9))

for collisions involving a non-excited 40K-atom and a non-
excited 39K-atom from the background. The largest col-

lision rate for collisions between two 40K-atoms, Γ 40,40∗

coll ,

is by a factor of 10 smaller than Γ 40,39
coll . Therefore, colli-

sions involving two 40K-atoms are not the collisions which
limit the flux of the 2D-MOT. This is in contrast to
2D-MOT systems of other species. From the difference

between Γ 40,40∗

coll and Γ 40,39
coll we conclude that the flux of

the 2D-MOT for 40K could still be improved by about
a factor of 10 by using a potassium sample of a higher
isotopic enrichment.

4 6Li-40K dual-species MOT

4.1 Introduction

Previously, several groups have studied samples of two
atomic species in a magneto-optical trap [13–15,34–37].
Here we report on the implementation and performance
of our 6Li-40K dual-species MOT and on the study of col-
lisions between atoms of the different species. After a de-
scription of the experimental setup, we start with a char-
acterization of the single-species MOTs and then focus on
the collisions in the dual-species MOT.

4.2 Principle of operation

In a magneto-optical trap six counter-propagating red-
detuned overlapping laser beams cool and magneto-
optically confine atoms in a magnetic quadrupole field
around its zero [24]. MOTs for alkali-atoms require laser
light of two frequencies, namely the cooling and the re-
pumping frequency. The latter ensures that the atoms stay
in the cycling transition used for cooling. Typically the re-
pumping light has a much lower power than the cooling
light as the atoms principally occupy the states belong-
ing to the cooling transition. For 6Li, however, the power
of the repumping light needs to be relatively high, since
6Li has a very small hyperfine structure in the excited
state manifold (of the order of the linewidth). When laser
cooled, 6Li-atoms thus very likely quit the cooling transi-
tion. Therefore, the repumping light needs to contribute
to the cooling process. As a consequence it needs to be
present in all six directions with the same polarization
as the cooling light. Therefore, we use bichromatic MOT-
beams containing both cooling and repumping frequen-
cies. We adapt the same strategy also for 40K.

4.3 Experimental setup

Light for the dual-species MOT is derived from two bichro-
matic laser beams, containing each a cooling and a re-
pumping frequency, which are provided by two separate
optical fibers originating from the respective laser systems.
The beams are superimposed using a dichroic mirror and
then expanded by a telescope to a 1/e2-diameter of 22 mm.
All subsequent beam reflections are realized by two-inch
sized broadband mirrors (Thorlabs, ref. BB2-E02-10). The
beam is separated by three two-inch sized broadband po-
larization cubes (Lambda Optics, ref. BPB-50.8SF2-550)
into four arms that form a partially retro-reflected MOT,
in which only the vertical beam pair is composed of inde-
pendent counter-propagating beams. Each retro-reflected
MOT beam is focused with a lens of focal length 10 cm,
placed at a distance of ∼11 cm in front of the retro-
reflecting mirror, in order to increase the intensity and
therefore compensate for the losses in the optics and the
light absorption by the trapped atoms. The distribution
of the light power over the MOT beams is independently
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adjusted for the two wavelengths using a pair of custom-
made wave plates, placed in front of each broad-band split-
ting cube. The wave plate pair consists of a λ/2 plate of
order 4 for the wavelength 767 nm and a λ/2 plate of order
4 for the wavelength 671 nm. To a very good approxima-
tion each of these wave plates can turn the polarization
direction for one wavelength without affecting the polar-
ization for the other one (since it is 4.5 × 767 ≈ 5 × 671
and 4.5 × 671 ≈ 4 × 767). The circular polarization of
the MOT beams is produced by first order λ/4 plates for
767 nm, which work sufficiently well also for 671 nm. All
four frequency components thus have the same circular po-
larizations in each beam. A mechanical shutter is placed
in the focus of the telescope allowing to produce total ex-
tinction of the MOT light in addition to the partial and
fast switching by the AOMs.

The bichromatic beam for the 40K-MOT has a total
power of Pfiber = 220 mW and its frequencies are red-
detuned by ∼3 Γ from the 4S1/2(F = 9/2) → 4P3/2(F

′ =
11/2) cooling and by ∼5 Γ from the 4S1/2(F = 7/2) →
4P3/2(F

′ = 9/2) repumping transition (see Fig. 2). The
intensity of the cooling light is ∼20 times bigger than
that of the repumping light. The bichromatic beam for
the 6Li-MOT has a total power of Pfiber = 110 mW
and its frequencies are red-detuned by ∼5 Γ from the
2S1/2(F = 3/2) → 2P3/2(F

′ = 5/2) cooling and by ∼3 Γ
from the 2S1/2(F = 1/2) → 2P3/2(F

′ = 3/2) repumping
transition (Fig. 2). The power of the cooling light is ∼5
times bigger than that of the repumping light.

The magnetic field for the dual-species MOT is cre-
ated by a pair of coils in anti-Helmholtz configuration.
The magnetic field gradient along the vertically directed
symmetry axis is ∂zB = 8 G/cm. This gradient yields an
optimum atom number for the 40K-MOT.

The atoms in the dual-species MOT are probed by ab-
sorption imaging. In order to obtain a two-dimensional
density profile of the atom cloud, three pictures are taken
and recorded by a CCD-camera (PCO imaging, ref. Pix-
elfly qe). The first picture is taken with the imaging beam
tuned near resonance and thus records the shadow cast by
the atom cloud on the CCD-chip of the camera. The sec-
ond picture is taken with the imaging beam tuned far off
resonance (by −10 Γ ) and records the intensity profile of
the imaging beam. The third picture is taken in absence of
the imaging beam and records the background signal. The
change of frequency of the imaging beam allows to take
the first two pictures with a short time delay (2 ms), while
keeping the imaging beam at the same frequency would
require to wait for the atom cloud to disappear before the
second picture could be recorded. Thus, the intensity fluc-
tuations of the imaging beam during the recording process
are minimized and both pictures can be taken with the
same intensity.

Each atomic species requires its own imaging beam,
which is provided by a separate optical fiber originating
from the respective laser system (see Fig. 3). The two
imaging beams are superimposed using a dichroic mir-
ror and expanded by a telescope to a 1/e2-diameter of
27.5 mm. The imaging beams have low intensity (Iimg ∼

0.01Isat in the beam center), are circularly polarized and
pass through the MOT along the horizontal direction, per-
pendicular to the axis of the quadrupole magnetic field
of the MOT. No bias magnetic field is applied when ab-
sorption pictures are taken. The best atom number esti-
mate from the measured absorption pictures is thus given
by using an averaged squared Clebsch-Gordan coefficient,
which is C2 = 0.5 for 6Li and C2 = 0.4 for 40K. Both
beams are red detuned by 2 Γ from the 4S1/2(F = 9/2) →
4P3/2(F

′ = 11/2) and the 2S1/2(F = 3/2) → 2P3/2(F
′ =

5/2) cooling transitions of 40K and 6Li, respectively (see
Fig. 2), so as to reduce saturation effects. For the chosen
length of the imaging pulses (100 µs) no repumping is re-
quired during the imaging process (we verified for 6Li that
even in the case of a resonant imaging beam, the presence
of a repumping beam would yield an increase of the de-
tected atom number of only 8%, which would be even less
for 40K). In order to image the total number of atoms in
the MOTs the atom clouds are exposed for 500 µs to only
the repumping light before the image is taken in order to
optically pump all atoms to the hyperfine ground state
which is imaged. The overall uncertainty of the absolute
atom number determination is estimated to be 50%.

4.4 Experimental results

In single-species operation we characterized the MOTs
using the parameters for the optimized dual-species op-
eration. We determined the atom numbers, the atomic
densities in the cloud center, the loading times and the
temperatures. Furthermore, we studied for each atomic
species the dependence of the steady-state MOT atom
number on the following parameters: the power and de-
tuning of the cooling light and the intensity ratio between
the repumping and cooling light. In dual-species opera-
tion, we studied the dependence of heteronuclear light-
induced cold collisions on the laser power used for the
MOT-beams. The optimum parameters, which lead to
atom numbers of Nsingle ∼ 8.9 × 109 in the 40K-MOT
and Nsingle ∼ 5.4 × 109 in the 6Li-MOT, are displayed
in Table 3 together with the characteristics of the MOTs
(in dual-species operation, the atom numbers only slightly
change due to the additional interspecies collisions to
Ndual ∼ 8.0×109 in the 40K-MOT andNdual ∼ 5.2×109 in
the 6Li-MOT). The (1− 1/e)-loading times of the MOTs
are ∼5 s for 40K and ∼6 s for 6Li.

Magneto-optical traps with large atom numbers have
a high optical density and are optically dense for weak
resonant laser beams. Therefore, when determining the
atom number via absorption imaging, the frequency of the
imaging beam has to be detuned, so not to “black out”
the image.

Figures 11a, 11b depict the detected atom number of
the two MOTs (circles) as a function of the detuning of
the imaging beam. The detected atom number was de-
rived from the measured optical density assuming the
imaging beam to be resonant. The curves are expected
to have the shape of a Lorentzian with the peak centered
around zero detuning. The experimental data shown in
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Fig. 11. (Color online) (a), (b) Detected atom number in the
MOTs as a function of the detuning of the imaging beams.
Circles correspond to the experimental data and solid curves
to Lorentzian fits of the curve wings with an imposed width,
which was determined by another measurement. (c), (d) Ab-
sorption images of the MOTs and the doubly-integrated opti-
cal density profile n, recorded with a resonant imaging beam.
The graphs (a, c) relate to the 40K-MOT and (b), (d) to the
6Li-MOT. The flat top of n in the graphs (c), (d) and the sat-
uration of the detected atom number for small magnitudes of
the detuning in the graphs (a), (b) demonstrate that the MOTs
are optically dense for the imaging beam when the detuning
is small. Their (extrapolated) central optical densities for a
resonant imaging beam are ∼20 for 40K and ∼15 for 6Li.

Figures 11a, 11b clearly deviate from a Lorentzian behav-
ior – they saturate for small magnitudes of the detuning.
This deviation demonstrates that the MOTs are optically
dense for small detunings. A correct estimate of the atom
number is obtained from an extrapolation of the experi-
mental data to zero detuning based on a Lorentzian fit of
the curve wings (solid curves). A reliable extrapolation,
however, requires imposing the width of the Lorentzian
fit. In order to determine this width, an additional exper-
iment was done (not shown): the data in Figures 11a, 11b
were again recorded and fitted by a Lorentzian for a MOT
with a small atom number and a low optical density (ob-
tained by a short loading of 250 ms). The widths found
by this additional measurement were 1.05 Γ for 40K and
1.5 Γ for 6Li. For 40K this width corresponds to the natu-
ral linewidth of the exited state addressed by the imaging
transition. For 6Li the width is larger than the natural
linewidth, since the small excited hyperfine structure is
unresolved and thus its width (∼0.5 Γ ) and the natu-
ral linewidth add up (this line broadening does not oc-
cur when a bias magnetic field is applied and a closed

transition is used for imaging). The peak values of the
Lorentzian fits in Figures 11a, 11b finally yield the atom
numbers in the MOTs, given in Table 3.

Figures 11c, 11d show images of the MOTs and their
doubly-integrated optical density profiles n for the case of
a resonant imaging beam. The flat top of n as a function of
position shows that the MOTs are optically dense. Their
central optical densities for the resonant imaging beam
are determined to be ∼20 for 40K and ∼15 for 6Li by the
extrapolation technique described above. In addition, the
density profiles in Figures 11c, 11d show that the MOTs
have spatial extensions of the order of 1 cm.

The atomic density in the MOT center is extracted
from the recorded two-dimensional density profile as fol-
lows. The recorded profile is proportional to the atomic
density n(x, y, z) integrated along the imaging beam di-
rection z: g(x, y) ∝

∫
n(x, y, z)dz. When assuming that

the MOT has cylindrical symmetry (with the symmetry
axis along the x-direction), the local atomic density nc at
the MOT center is given by the maximum of the inverse
Abel transform of g(xc, y), where xc is the x-coordinate
of the MOT center

nc = max
r

(
− 1

π

∫
∞

r

(
∂g(xc, y)

∂y

)
dy√
y2 − r2

)
, (12)

with r =
√
y2 + z2 denoting the distance to the MOT

center [38]. Since the derivative ∂g/∂y is very sensitive to
noise, the density profile g is smoothened before its deriva-
tive is calculated. We obtain nK

c ∼ 3×1010 atoms/cm3 and
nLi
c ∼ 2× 1010 atoms/cm3, respectively.
The temperature of the MOTs in single-species opera-

tion was determined by the time-of-flight method [24]. The
40K-MOT has a temperature of 290 µK and the 6Li-MOT
of 1.4 mK. Both temperatures are higher than the Doppler
cooling limit, because of the high intensity in the MOT
beams. In addition, for 6Li, the unresolved excited hy-
perfine structure (see Fig. 2) inhibits sub-Doppler cooling
effects. The same temperatures are found in dual-species
operation. The measured temperatures and atomic densi-
ties yield the peak phase space densities DK = nK

c Λ
3
K ∼

1.2×10−7 andDLi = nLi
c Λ

3
Li ∼ 1.3×10−7 with the thermal

de Broglie wavelength Λ =
√
2π�2/(mkBT ), respectively.

The dependence of the MOT atom number on the de-
tuning of the cooling light is depicted in Figures 12a, 12b.
The atom number is maximum at ∆ωK

cool = −3 Γ for 40K
and at ∆ωLi

cool = −5 Γ for 6Li, and has a FWHM of 2.3 Γ
and 4.1 Γ , respectively.

Figures 12c, 12d show the dependence of the MOT
atom number on the power of the cooling light per MOT
beam. In the figures, a power of 10 mW corresponds to
an on-resonance peak intensity of ∼3 Isat (Fig. 12c) and
∼2 Isat (Fig. 12d) in each of the six MOT beams. The atom
number increases with increasing light power and satu-
rates for higher powers. The saturation is due to several
effects. First, the absorption probability for the cooling
light saturates for high intensities. Second, the repulsive
forces between the atoms due to rescattered photons and
the temperature of the cloud increase with increasing light
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Fig. 12. (Color online) MOT atom number as a function of
(a), (b) the detuning and (c), (d) the power of the cooling light
per MOT beam for a constant intensity ratio between the cool-
ing and repumping light. The graphs (a), (c) relate to the 40K-
MOT and (b), (d) to the 6Li-MOT. For 40K a power of 45 mW
corresponds to an intensity of 13 Isat, for

6Li a power of 20 mW
corresponds to an intensity of 4 Isat, with the respective satu-
ration intensities Isat given in Table 3.

power [32]. Finally the scattering rate for light-induced
cold collisions increases with increasing light power.

Figure 13 shows the dependence of the 40K-MOT atom
number on the intensity ratio Irep/Icool between repump-
ing and cooling light for three different repumping detun-

ings ∆ω
(1)
rep = −3 Γ , ∆ω

(2)
rep = −5 Γ and ∆ω

(3)
rep = −7 Γ

and a constant cooling light power of 18 mW per MOT
beam. The curves have a maximum at different ratios
Irep/Icool, the position of the maxima lying at higher ra-
tios for lower detunings. Furthermore, the maxima have
different values for the three curves. The maximum is
biggest for the detuning ∆ω

(2)
rep = −5 Γ . The shape of

the curves can be understood as follows. Each curve in-
creases between Irep/Icool = 0 and the position of the
maximum, because the transition probability of the re-
pumping transition increases with increasing repumping
intensity. Thus the atoms are more efficiently cooled by
the cooling light, as they are more efficiently repumped
into the cycling transition. However, when the intensity of
the repumping light becomes too large, the curve decreases
again. Then, due to the strong repumping, the atoms are
exposed to the more intense near-resonant cooling light,
which causes light-induced cold collisions, leading to trap
loss. At the maximum, the repumping is sufficiently strong
to allow for an efficient cooling, and it is sufficiently weak
to preserve the atoms from cold collisions induced by the
strong cooling light. The value of the curve maximum is

biggest for the detuning ∆ω
(2)
rep = −5 Γ . It is situated at

Irep/Icool ∼ 1/20, for which, as one can see below, only

Fig. 13. (Color online) 40K-MOT atom number as a func-
tion of the intensity ratio between repumping and cooling light
for three different repumping detunings ∆ωrep and a constant
cooling light power of 18 mW per MOT beam (which corre-
sponds to an intensity of 6 Isat).

∼20% of the 40K-MOT atoms occupy the cooling cycle
states F = 9/2 or F ′ = 11/2 (see Fig. 14), the others
occupying the “dark” hyperfine ground state F = 7/2.

For very small intensity ratios Irep/Icool ≤ 0.01 the
atom number in the 40K-MOT is larger for higher re-
pumping detunings (Fig. 13). This behavior might be a
consequence of the fact that the 40K-MOT is loaded from
a slow atomic beam. The beam atoms, which have a neg-
ative Doppler shift of more than 5 Γ with respect to the
counter-propagating MOT beams, might absorb the re-
pumping light more likely when it has a higher detuning.

Figure 14 shows the fraction of atoms in the 40K-MOT
(circles) which populate the states F = 9/2 or F ′ = 11/2
(i.e. the cooling cycle states, see Fig. 2) as a function of
the intensity ratio Irep/Icool between repumping and cool-
ing light. In the experiment, the cooling light power was
fixed to 18 mW per MOT beam, and the repumping de-
tuning was ∆ωrep = −5 Γ . The graph was recorded as
follows. The absolute population of the states F = 9/2
and F ′ = 11/2 was measured by simultaneously switching
off both the repumping and cooling light of the 40K-MOT
600 µs before taking the image (with the imaging beam
being near-resonant with the F = 9/2 → F ′ = 11/2-
transition). During the 600 µs time delay, all excited
atoms relax to one of the ground states. For the used de-
tunings and intensities of the MOT-beams ∼90% of the
excited atoms occupy the state F ′ = 11/2 and thus relax
to the ground state F = 9/2, which is imaged. Therefore,
the image approximately yields the sum of the populations
of the states F = 9/2 and F ′ = 11/2. The total popula-
tion of all states (i.e. the total number of trapped atoms)
was measured as described in the previous paragraph.

The curve in Figure 14 is increasing with increasing ra-
tios Irep/Icool and it saturates for high ratios. For the ratio
Irep/Icool = 1/5 about 60% of the 40K-MOT atoms occupy
the cooling cycle states. For this ratio the fluorescence
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Fig. 14. (Color online) Circles: measured fraction of atoms in
the 40K-MOT populating the states F = 9/2 or F ′ = 11/2
(cooling cycle states) as a function of the intensity ratio be-
tween repumping and cooling light for the repumping detuning
∆ωrep = −5 Γ and a constant cooling light power of 18 mW
per MOT beam (which corresponds to an intensity of 6 Isat).
For the ratio which maximizes the total atom number in the
40K-MOT, Irep/Icool ∼ 1/20, only 20% of the trapped atoms
occupy the cooling cycle states. Solid curve: a fit based on
Einstein’s rate equations.

emitted by the 40K-MOT is found to be maximum. For
the ratio Irep/Icool = 1/20, which is used in the experi-
ment, only ∼20% of the atoms occupy the cooling cycle
states. Atom losses due to light-induced collisions are thus
minimized.

The solid curve in Figure 14 shows a fit of the experi-
mental data, based on a simple model, assuming 40K to be
a four-level atom (with the states F = 9/2, F = 7/2, F ′ =
11/2 and F ′ = 9/2). Einstein’s rate equations yield that
the curve obeys the law Pccs = 1/(1 + a+ b/(Irep/Icool)),
with the fitting parameters a = −0.11 and b = 0.17, which
depend on the transition probabilities and the used inten-
sities and detunings.

Figure 15 shows the dependence of the 6Li-MOT atom
number on the intensity ratio Irep/Icool between repump-
ing and cooling light for the repumping detuning ∆ωrep =
−3 Γ and a constant cooling light power of 11 mW per
MOT beam. In contrast to Figure 13, the curve does
not have a maximum but rather increases with increas-
ing Irep/Icool and saturates. This behavior is a result of
the important contribution of the repumping light to the
cooling process, particular to 6Li, as it has an unresolved
excited state hyperfine structure.

In a dual-species MOT, inelastic collisions between
atoms of the two different species can occur and represent
important loss mechanisms. Previous studies have shown
that the principal loss mechanisms for heteronuclear colli-
sions in dual-species MOTs involve one ground-state and
one excited atom of different species [35,36]. Such atom
pairs can undergo radiative escape or fine-structure chang-
ing collisions [39]. Both these loss processes require the

Fig. 15. (Color online) 6Li-MOT atom number as a function
of the intensity ratio between repumping and cooling light for a
constant cooling light power of 11 mW per MOT beam (which
corresponds to an intensity of 2 Isat). In comparison to 40K
(Fig. 13), the optimum atom number requires a larger inten-
sity in the repumping light, which is a consequence of the un-
resolved excited hyperfine structure of 6Li.

two atoms to approach each other sufficiently close such
that a large enough interaction energy is gained to make
the atoms leave the trap. The long-range behavior of the
scattering potentials determines if the atoms can approach
each other sufficiently. For LiK, the scattering potentials
for a singly-excited heteronuclear atom pair are all at-
tractive for the case where the K atom is excited and all
repulsive for the case where the Li atom is excited [40]. As
a consequence, a ground-state K atom and an excited Li
atom repel each other and are prevented from undergoing
inelastic collisions (optical shielding). Inelastic collisions
involving singly-excited heteronuclear atom pairs thus al-
ways contain an excited K atom. In order to minimize
the rate of heteronuclear collisions in the LiK-MOT, the
density of excited K atoms must therefore be reduced.
Furthermore, the atomic density in the trap as well as the
relative speed of the colliding atoms, i.e. the temperature
of the cloud, need to be minimized.

In our 6Li-40K dual-species MOT the following strat-
egy is applied in order to minimize inelastic heteronu-
clear collisions. First the use of very low magnetic field
gradients (8 G/cm), which decreases the atomic densities
(nK

c ∼ 3×1010 atoms/cm3 and nLi
c ∼ 2×1010 atoms/cm3).

Second, low intensities in the repumping light for both,
6Li and 40K, are used in order to decrease the number
of excited atoms. Decreasing the number of excited 6Li
atoms here a priori serves to decrease the temperature of
the 6Li-cloud. Since that is much larger than the temper-
ature of the 40K-cloud, the relative speed of two colliding
atoms and thus the collision rate can be efficiently de-
creased by minimizing the temperature of the 6Li-cloud.
Finally a small mutual influence of the MOTs is obtained:
the atom numbers in the MOTs decrease by ∼4% in the
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Fig. 16. (Color online) (a) Evolution of the atom number in
the 40K-MOT in the absence (t < 100 s) and presence (t >
100 s) of the 6Li-MOT for an increased magnetic field gradient
of 16 G/cm. (b) Trap loss coefficient βKLi for heteronuclear
collisions as a function of the relative excited state population
of the trapped 6Li atoms.

6Li-MOT and ∼10% in the 40K-MOT due to the presence
of the other species.

The importance of decreasing the magnetic field gradi-
ents in order to minimize the heteronuclear collision rate
in the dual-species MOT is demonstrated in Figure 16a,
which depicts the effect of the 6Li-MOT on the 40K-MOT
atom number when a two-times larger magnetic field gra-
dient (16 G/cm) is used. At this gradient the atomic den-
sity in the 6Li-MOT is by a factor of 4 larger than at
the gradient used for the optimized MOT. In the experi-
ment, the 40K-MOT was intentionally reduced in size (by
decreasing the 2D-MOT flux) to ensure a better inclo-
sure in the 6Li-MOT. The curve shows that ∼65% of the
40K-MOT atoms leave the trap due to the enhanced het-
eronuclear collisions. Using a low magnetic field gradient
is therefore helping significantly to decrease the heteronu-
clear collisions.

In the following we determine the trap loss coefficients
for the (optimized) dual-species MOT in order to quan-
tify the heteronuclear collisions. The rate equation for the
atom number in a dual-species MOT (with species A and
B) reads [35]

dNA

dt
= LA − γNA − βAA

∫
n2
AdV − βAB

∫
nAnBdV, (13)

where LA is the loading rate, γ the trap loss rate due
to collisions with background gas atoms and nA, nB the
local atomic densities. βAA and βAB denote the cold col-
lision trap loss coefficients for homo- and heteronuclear
collisions, respectively. LA and γ are determined from the
loading and decay curves of the single-species MOTs. The
obtained values for LA are given in Table 3 and γ is found
to be 1/7.5 s−1. The homonuclear trap loss coefficients
βAA are determined from the steady state atom numbers
in single-species operation using the measured density pro-
files. For the experimental conditions indicated in Table 3,
we obtain

βLiLi = (8± 4)× 10−12 cm3 s−1, (14)

βKK = (6± 3)× 10−13 cm3 s−1. (15)

The determination of the heteronuclear trap loss coeffi-
cients βAB for the optimized dual-species configuration
would require the knowledge of the mutual overlap of
the MOTs, which is difficult to estimate when absorption
images are taken only along one direction. We therefore
choose a configuration, which makes the determination
of βAB less dependent on assumptions about the mutual
overlap (but which does not change the value of βAB). We
reduce the atom flux of species A, in order to decrease the
spatial extension of the trapped cloud of species A and to
place it in the center of the cloud of species B. A video
camera which records the fluorescence of the MOTs from
a different direction than that of the absorption imaging
verifies that this configuration is indeed achieved. Then,
in equation (13) it is

∫
nAnBdV ∼ nB

c NA. Comparing the
steady-state atom numbers for the different configurations
then yields

βLiK = (1± 0.5)× 10−12 cm3 s−1, (16)

βKLi = (3± 1.5)× 10−12 cm3 s−1, (17)

for the experimental conditions indicated in Table 3. Com-
paring all four trap loss coefficients, the dominant is βLiLi
(Eq. (14)) for light-induced homonuclear 6Li-6Li colli-
sions. This is a consequence of the large temperature of
the 6Li-MOT and the unresolved hyperfine structure of
6Li which prohibits the creation of a dark MOT, lead-
ing to a large excited state population. The much smaller
homonuclear trap loss coefficient βKK for 40K (Eq. (15))
is consistent with Figure 13 which shows that, for 40K,
small repumping intensities are favorable. The heteronu-
clear trap loss coefficients βLiK, βKLi (Eqs. (16) and (17))
are also much smaller than βLiLi, indicating that our ap-
plied strategy for decreasing the heteronuclear collisions
is good. In the Amsterdam group the heteronuclear trap
loss coefficients were found by a factor of about 2 larger
than ours [15]. A dark SPOT MOT has been implemented
in order to reduce the excited state population of the 40K
atoms. In the next paragraph we show, however, that it is
also important to reduce the excited state population of
the 6Li atoms.

Figure 16b depicts the dependence of the trap loss co-
efficient βKLi on the relative excited state population of
the 6Li atoms. The graph was obtained by recording the
influence of the 6Li-MOT on the 40K-MOT as the power
of the 6Li-MOT beams was varied. For each power it was
verified that the 40K-MOT was placed in the center of
the 6Li-MOT and the atomic density of the 6Li-MOT was
recorded. In the experiment a magnetic field gradient of
16 G/cm was used. The central atomic density of the 6Li-
MOT was found to be approximately constant, when the
power was varied (nLi

c ∼ 8 × 1010 atoms/cm3). The rela-
tive excited state population for a given beam power was
estimated using Einstein’s rate equations. In addition the
variation of the excited state population was measured
by recording the fluorescence emitted by the 6Li-MOT
and by measuring the number of captured atoms. The
latter changed by a factor of 1.5 in the considered range
of beam powers. The graph in Figure 16b shows that the
trap loss coefficient increases by more than a factor of 2
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as the relative excited state population is increased from
∼7% to ∼16%. The error bars shown in the figure refer
to statistical errors. The uncertainty due to systematic
errors is estimated to be 50%. The significant increase
of βKLi demonstrates the importance of minimizing the
number of excited 6Li atoms (and not only that of the
excited 40K atoms). One reason for this increase is the
increase of temperature of the 6Li-MOT, which changes
from ∼1 mK to ∼1.6 mK when the beam power is in-
creased. Another reason could be the occurence of colli-
sions involving doubly-excited Li*K* atom pairs, the rate
of which increases with the excited state populations. The
scattering potentials for these collisions are known to be
of a long-range, as they scale with the internuclear separa-
tion as 1/R5 [41], whereas they scale as 1/R6 for collisions
involving a singly-excited heteronuclear atom pair [33].

5 Conclusions

We have produced a dual-species magneto-optical trap
for fermionic 6Li and 40K with large atom numbers. Two
strategies have been applied in order to achieve this re-
sult. First, the dual-species MOT is placed in an ultra-high
vacuum environment, being continuously loaded from cold
atomic beams. The atomic beams originate from separate
atom sources – a Zeeman slower for 6Li and a 2D-MOT
for 40K – which both yield a large flux of cold atoms.
Second, the homo- and heteronuclear collisions have been
minimized by using small magnetic field gradients and low
light powers in the repumping light. The atom loss in each
MOT due to the presence of the other species decreases
by only 4% (6Li) and 10% (40K) due to the heteronuclear
collisions.

We have given a detailed description of the imple-
mented apparatus, which we hope serves as a guideline
for the construction of next generation experiments with
fermionic 6Li and 40K.

The produced dual-species MOT represents the start-
ing point for the production of a large-atom number quan-
tum degenerate Fermi-Fermi mixture. The atoms trapped
in the dual-species MOT have already been transferred
into the magnetic trap and magnetically transported to
the science chamber with large optical access and low
background pressure. The large depth of magnetic traps
as compared to optical traps allows for a large transfer ef-
ficiency, leading to smaller losses of atoms. In the science
cell, the dual-species cloud will be evaporatively cooled in
a plugged magnetic trap to quantum degeneracy and then
transferred into an optical trap for investigation.
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grant SFRH/BD/68488/2010 and from Fundação Calouste
Gulbenkian.
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Fig. 17. (Color online) Sketch of the tapered amplifier sup-
ports for (a) Li and (b) K. In the figure, TA Li and TA K
refer to the respective tapered amplifier chips, CL1, CL2, CL3
and CL4 to the (only longitudinally adjustable) collimation
lens supports and BCM to the isolated mount for the blade
connectors used to power the chip for K. The supports for the
output collimation lenses are CL2 and CL4.

Appendix: Tapered amplifier mounts

We developed compact support designs for our tapered
amplifier chips, in order to minimize the costs of the laser
sources of our experimental setup. The TAs are commer-
cial semiconductor chips which are mounted on homemade
compact mechanical supports with nearly no adjustable
parts. The support designs allow for an easy installa-
tion process, which does not require any gluing or the
help of micrometric translation stages for the alignment
of the collimation optics, as that can be accomplished by
free hand. Furthermore, the design minimizes the heat
capacity of the support and the produced temperature
gradients, allowing for a quick temperature stabilization
that makes the TAs quickly operational after switch-on.
The temperature stabilization is accomplished using a
Peltier element (Roithner Lasertechnik GmbH, ref. TEC1-
12705T125) connected to a PID control circuit. The heat
of( the chip is dissipated via an aluminum base plate which
is economically cooled by air rather than running water
(the base plate reaches a maximum temperature of 28 ◦C
for diode currents of 2 A).

The commercial TA chips are sold on small heat sinks
which have different dimensions for the two different wave-
lengths. We thus had to design slightly different sup-
ports for the Li- and K-TAs, which are both schematically
shown in Figure 17.

For lithium the semiconductor chip (Toptica, ref. TA-
670-0500-5) is delivered on a heat dissipation mount of
type “I”. It is placed between two axially aligned cylindri-
cal lens tubes (CL1 and CL2 in Fig. 17a), each of which
containing an aspheric collimation lens of focal length
4.5 mm (Thorlabs, ref. C230TME-B). The support of the
tubes and the chip are precisely machined such that the
chip’s output beam falls on the center of the respective
collimation lens (CL2 in Fig. 17a). The tubes are sup-
ported by cylindrically holed tightenable hinges in which
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they can move only longitudinally, along the direction of
the amplified laser beam. This restriction of the tube’s mo-
tion facilitates the alignment of the collimation lenses. The
support design does not allow for a transverse alignment of
the collimation lenses. Since this alignment is not very crit-
ical for the performance of the TA, we found it needless to
allow this degree of freedom and relied on precise machin-
ing (possible imperfections could be compensated utilizing
the mechanical play of the large attachment screw holes of
the commercial heat sinks of the chips). When tightened
by a screw, the hinges fix the position of the tubes. Since
the tightening applies a force perpendicular to the longi-
tudinal direction, it does not move the tubes along this
(critical) direction. They might only move slightly along
the transverse direction, which does not affect the final
performance of the TA.

For potassium, the semiconductor chip (Eagleyard, ref.
EYP-TPA-0765-01500-3006-CMT03-0000) is delivered on
a heat dissipation mount of type “C”. Placing this mount
between two hinges as for the case of lithium is less conve-
nient since the heat dissipation mount has to be attached
by a screw in the longitudinal direction which requires ac-
cess from one side. Therefore one hinge is replaced by a
rail which guides a parallelepipedically formed mount for
the second (output) collimation lens (CL4 in Fig. 17b).
The motion of this mount is also fixed by tightening a
screw applying forces perpendicular to the rail direction,
which does not move the collimation lens along the critical
longitudinal direction. For all our TAs, the positioning of
the collimation lenses never had to be adjusted again once
they were aligned.

The commercial heat dissipation mount of the potas-
sium chip is inconvenient for a simple powering of the chip.
The very fragile gold wire, which has to be connected to
the negative source of the current supply, has to be pro-
tected by a mechanical support before being connected
to a cable. Therefore we soldered it to a blade connector
that is fixed by an isolated plastic mount (BCM Fig. 17b)
and which is connected to the current supply. To avoid
an overheating of the chip during the soldering process we
permanently cooled the gold wire by blowing cold dry air
from a spray can on it.

The output beams of the TA chips are astigmatic
and thus require additional collimation. The choice of the
collimation optics needs to be adapted to the specifica-
tions of the subsequent optical fiber, which in our case
requests a collimated circular Gaussian beam of 2.2 mm
1/e2-diameter for optimum coupling efficiency. The mode-
matching was found optimum for a pair of lenses con-
sisting of one spherical lens (with f = 15 cm for Li and
f = 4 cm for K) and a cylindrical lens (with f = 8 cm for
Li and f = 2.54 cm for K), which are placed outside the
TA’s housing. The cylindrical lenses are supported by ro-
tatable mounts, in order to facilitate the mode-matching
into the fibers. For all our TAs we achieve fiber-coupling
efficiencies larger than 50% (Li) and 60% (K).

When injected with 20 mW, the Li-TAs yield an out-
put power of 500 mW at 1 A driving current and the K-
TAs yield an output power of 1500 mW at 2.5 A driving

current. In order to increase the lifetime of the chips, we
limit the driving currents to smaller values and we switch
the chips on only for periods of experimentation. When
switched on, the TAs quickly reach a stable functioning
(usually within 10 min) due to the compactness of the
mechanical support, which allows for a quick temperature
stabilization.
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Abstract – We investigate the formation of weakly bound, electronically excited, heteronuclear
6Li40K∗ molecules by single-photon photoassociation in a magneto-optical trap. We performed
trap loss spectroscopy within a range of 325GHz below the Li(2S1/2)+K(4P3/2) and Li(2S1/2)+
K(4P1/2) asymptotic states and observed more than 60 resonances, which we identify as
rovibrational levels of 7 of 8 attractive long-range molecular potentials. The long-range dispersion
coefficients and rotational constants are derived. We find large molecule formation rates of up
to ∼3.5× 107s−1, which are shown to be comparable to those for homonuclear 40K∗2. Using a
theoretical model we infer decay rates to the deeply bound electronic ground-state vibrational
level X1Σ+(v′ = 3) of ∼5× 104 s−1. Our results pave the way for the production of ultracold
bosonic ground-state 6Li40K molecules which exhibit a large intrinsic permanent electric dipole
moment.
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Introduction. – The recent realization of gases
of ultracold polar molecules in their rovibrational
ground state [1,2] has opened a new frontier in
atomic and molecular physics [3,4]. Due to their
long-range anisotropic dipole-dipole interactions and
the possibility to trap and manipulate these mole-
cules with external electric fields, they offer fascinating
prospects for the realization of new forms of quan-
tum matter [5,6]. Applications to quantum informa-
tion processing [7,8], precision measurements [9,10]
and ultracold chemistry [3] have been proposed.
The heteronuclear alkali dimer LiK is an excellent

candidate for these studies. It has a large dipole moment
of 3.6D [11] in its singlet rovibrational ground state and
both of its constituents, Li and K, possess stable fermionic
and bosonic isotopes with which dipolar gases of different
quantum statistics can be realized.
While atoms are routinely laser cooled to ultracold

temperatures, the complex internal structure of molecules
makes this direct method difficult (although possible [12]).

(a)E-mail: armin.ridinger@gmail.com
(b)Current address: LENS and Dipartimento di Fisica, Università

di Firenze - Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy, EU.

So far the most efficient way to produce ultracold
molecules has been to associate pre-cooled atoms. Two
techniques have been established, namely magnetically
tunable Feshbach resonances and photoassociation. Fesh-
bach resonances allow the production of vibrationally
excited molecules in the electronic ground state. In this
way, ultracold heteronuclear 6Li40K molecules could
recently be produced [13,14]. A combination of Feshbach
resonances with a multi-photon state transfer may give
access to the collisionally stable rovibrational ground
state [1,15]. Photoassociation can directly give access
to this state either via single-photon photoassociation
and subsequent spontaneous decay [2] or by multi-color
photoassociation [16].
In this letter we report on the production of ultracold

heteronuclear excited 6Li40K∗ molecules by single-photon
photoassociation (PA) in a dual-species magneto-optical
trap (MOT). We detect the molecule creation by a loss
in the number of trapped atoms, which results from the
molecules’ spontaneous decay into either a pair of free
untrapped atoms or a bound ground-state molecule.
Heteronuclear PA has so far been demonstrated

for RbCs∗ [17], KRb∗ [18], NaCs∗ [19], LiCs∗ [2] and
YbRb∗ [20]. As compared to homonuclear molecules, the
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PA rate for heteronuclear molecules is typically smaller
due to the different range of the excited-state potentials.
Whereas two identical atoms in their first excited state
interact via the resonant dipole interaction at long
range (with potential V (R)∝−C3/R3), two atoms of
different species interact via the van der Waals interaction
(V (R)∝−C6/R6), leading, for the heteronuclear case,
to molecule formation at much shorter distances where
fewer atom pairs are available. Besides, it has been argued
that among the heteronuclear dimers, LiK∗ would be
particularly difficult to photoassociate due to its small
reduced mass and C6 coefficients, which should lead to
small PA rates of, e.g., two orders of magnitude less than
for the heavier dimers RbCs∗ and KRb∗ [21]. However,
the PA rates we observe in our experiment are similar
to those of the comparable experiment with RbCs∗ [17]
and those found for homonuclear K∗2. Our theoretical
calculations are able to predict the large rates observed.
We perform PA spectroscopy in order to determine the

long-range part of the excited-state molecular potentials.
Previously, several molecular potentials of LiK have been
determined by molecular [22–24] and Feshbach resonance
spectroscopy [14,25]. Our measurements give access to
previously undetermined spectroscopic data of high preci-
sion and will allow the derivation of more precise mole-
cular potential curves facilitating the search for efficient
pathways to produce LiK molecules in the rovibrational
ground state.
Figure 1(a) shows the molecular potentials dissociating

to the three lowest electronic asymptotes 2S+4S, 2S+
4P and 2P +4S of the LiK molecule. They have been
calculated as described in ref. [11] and connected to the
asymptotic form given in ref. [26] at large distances (R>
40 a0). Note that, as usual in alkali dimers, a strong spin-
orbit coupling is expected between the 13Π and the 21Σ+

states due to the crossing of their potential curves around
7.5 a0. Relevant for our experiment are the eight Hund’s
case c potential curves dissociating to the 2S1/2+4P1/2,3/2
asymptotes. Figure 1(b) displays their long-range part,
which is obtained by diagonalizing the atomic spin-orbit
operator in the subspace restricted to the Hund’s case a
states correlated to 2S+4P , for each of the symmetries
Ωσ = 0+, 0−, 1, 2 (where Ω denotes the quantum number of
the projection of the total electronic angular momentum
on the molecular axis and σ the parity of the electronic
wave function through a symmetry with respect to a
plane containing the molecular axis). These potentials are
all attractive at long range, whereas the curves which
dissociate to the asymptotes 2P1/2,3/2+4S1/2 are all
repulsive [21]. For the relevant asymptotes the dispersion
coefficients C6 assume only three different values due to
the small atomic fine structure of the Li atom [27]. They
have been calculated theoretically [26,27] and they are
determined experimentally in this work.

Experimental setup. – The 6Li40K∗ molecules are
created by a PA beam which is superimposed with the

Fig. 1: (Colour on-line) (a) Molecular potentials of the
LiK molecule for short interatomic separations R (a0 =
0.0529177 nm). The upward arrow represents the energy deliv-
ered by the PA laser and the downward the spontaneous decay
to electronic ground-state molecules. The vibrational state
X1Σ+(v′ = 3) shown in the figure has a favorable overlap with
the addressed excited states due to spatially coincident classi-
cal inner turning points. (b) Detailed view of the excited-state
potentials, labeled by their Hund’s case c quantum numbers Ωσ

and an additional classification (“up/down”) for unambiguous
distinction. At short range, each of these potentials approaches
one of those shown in (a) as illustrated in ref. [30].

atoms trapped in the dual-species MOT. The MOT is
continuously loaded from a Zeeman slower for 6Li and
a 2D-MOT for 40K, as described in ref. [28]. We record
PA spectra by scanning the PA beam in frequency,
simultaneously recording the steady-state atom number
of each species via the emitted trap fluorescence. The
signature of 6Li40K∗ formation is a decrease of both the
6Li and the 40K fluorescence. The PA laser is scanned red
detuned with respect to one of the atomic transitions of
40K (see fig. 1(b)) and has no effect on a single-species 6Li-
MOT. The 6Li fluorescence signal thus represents a pure
heteronuclear PA spectrum, whereas the 40K fluorescence
signal represents the sum of a heteronuclear (6Li40K∗) and
homonuclear (40K∗2) PA spectrum. The frequency of the
PA laser is recorded by a wavelength meter (High Finesse,
ref. WS-6) with an absolute accuracy of ±250MHz1.

1A higher accuracy could be obtained using a more precise wave-

length meter or an optical frequency comb. However, a significantly
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Fig. 2: (Colour on-line) Heteronuclear PA trap loss spectra of 6Li40K∗ below the asymptotes 2S1/2+4P3/2 (a) and 2S1/2+4P1/2
(b). The spectra contain seven vibrational series (labeled N = 1, . . . , 7) with resolved rotational structure, whose assignment
is given in table 1. (c) Zoom on the heteronuclear (upper trace, left axis) and heteronuclear+homonuclear (lower trace, right
axis) PA spectrum below the 2S1/2+4P3/2 asymptote showing the rotational structure of the Ω= 1

up, v= 3 vibrational state
of 6Li40K∗ (v denoting the vibrational quantum number counted from dissociation) and three vibrational 0+u levels of

40K∗2,
which show a resolved hyperfine (∗ and ◦) but no rotational structure. (d) Zoom on the Ω= 1up, v= 2, J = 1 resonance of
6Li40K∗, showing a nearly resolved hyperfine structure. The PA detuning ∆PA is specified relative to the

40K atomic transitions
4S1/2(F = 9/2)→ 4P3/2(F

′ = 11/2) (a,c,d) and 4S1/2(F = 9/2)→ 4P1/2(F
′ = 9/2) (b).

Additionally, a Fabry-Perot interferometer is used to verify
the laser’s single-mode operation.
The PA light is derived from a homemade diode laser-

tapered amplifier system. It has a wavelength of 767 nm
and a power of 660mW at the output of a single-mode
polarization-maintaining fiber. It is collimated and passes
four times through the center of the MOT with a total
peak intensity of ∼100W/cm2. The beam diameter of
2.2mm (1/e2) was chosen to match the size of the 6Li-
MOT. Using the feed-forward technique [29], the laser’s
mode hop free continuous tuning range extends over
∼35GHz.
For optimum experimental conditions, the PA-induced

trap loss needs to be maximized and all other intrinsic
losses that compete with it minimized [30]. Besides, the
frequency of the PA beam needs to be scanned slowly
enough (∼15MHz/s) to allow the trap loss to reach a
quasi-steady state. To achieve these conditions the 6Li-
MOT is reduced to a small atom number and volume (by
lowering the loading rate) and placed at the center of the
larger 40K-MOT. Further, light-induced cold collisions are
reduced by using small intensities for the MOT cooling
and repumping light (ILicool ∼1.5ILisat, ILirep ∼0.5ILisat, IKcool ∼
10IKsat, I

K
rep ∼3IKsat per beam, respectively). The detunings

are ∆νLicool =∆ν
Li
rep ∼−3Γ, ∆νKcool =∆νKrep ∼−4Γ and the

axial magnetic field gradient is 20G/cm. These parameters
result in NLi ∼ 5× 108 and NK ∼ 2.5× 109 trapped atoms

more precise determination of the resonance positions could not be

gained due to the large widths of the resonances.

with central atomic densities of nLi ∼ 7× 1010 cm−3 and
nK ∼ 5× 1010 cm−3 and temperatures of TLi ∼ 1.2mK and
TK ∼ 300µK, respectively. At these temperatures only
heteronuclear collisions of s- and p-wave character (i.e.,
ℓ= 0, 1, where ℓ is the rotational angular momentum of the
atom pair) reach sufficiently short internuclear distances
to allow for PA (the height of the d-wave rotational barrier
being 13.4mK). If J is the total angular-momentum
quantum number of the atom pair (including electronic
angular momentum and rotation), molecule formation
is thus restricted to the rotational levels J = 0, 1, 2 for
electronic states with Ω= 0, J = 1, 2, 3 for Ω= 1 and
J = 2, 3 for Ω= 2.

Results. – Figure 2(a)–(d) shows a compilation of our
recorded spectroscopic data. Figures 2(a) and (b) depict
the heteronuclear PA spectra near the dissociation limits
2S1/2+4P3/2 and 2S1/2+4P1/2 for PA detunings ∆PA
between 0 and −325GHz and between 0 and −60GHz,
respectively. The graphs represent, respectively, an aver-
age of∼6 and∼20 recorded spectra for noise reduction and
have been recorded in pieces and stitched together. The
spectra contain 68 resonances whose contrasts decrease
and whose mutual separations increase with increas-
ing detuning. The maximum contrast amounts to ∼35%
and is obtained for a detuning of ∆PA =−14.4GHz (see
fig. 2(d)). The observed resonance widths (FWHM) vary
between 80 and 300MHz, primarily due to unresolved
molecular hyperfine structure [31].
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We have also recorded the heteronuclear+homonuclear
PA spectra appearing on the K fluorescence signal, which
contain all the resonances of fig. 2(a,b) as well. A compar-
ison between the two spectra is shown for a small part in
fig. 2(c). This figure shows comparable contrasts for the
heteronuclear 6Li40K∗ and homonuclear 40K∗2 PA signals.
We identify the observed 40K∗2 resonances as excitations
to 0+u states [32].
In the heteronuclear spectra of fig. 2(a), (b) we iden-

tify seven vibrational series (labeled with numbers), corre-
sponding to seven of the eight molecular potentials disso-
ciating to the 2S1/2+4P1/2,3/2 asymptotes (see fig. 1(b)).
Each series contains up to five resonances, which appear
in doublets or triplets due to resolved rotational struc-
ture. This structure is shown more clearly in fig. 2(c) for
a particular vibrational state. Some of the observed rovi-
brational resonances have a further substructure resulting
from hyperfine interactions, which is shown for a particu-
lar resonance in fig. 2(d).
In fig. 2(a), (b) and table 1 we present an assign-

ment of the observed resonances, which was obtained by
the combination of different assignment rules: the first is
the rotational progression law Erot =Bv[J(J +1)−Ω2],
with J =Ω,Ω+1, . . . for Hund’s case c molecules [30]
combined with our theoretical calculations of the rota-
tional constants Bv. It allowed us to identify rotational
progressions and to assign some J and Ω based on the rota-
tional spacing. The identification of the Ω= 2 vibrational
series (series 1 in fig. 2(a)) is particularly easy, because
only two rotational lines per vibrational level are expected,
as opposed to three for all other series. The second is
the semi-classical LeRoy-Bernstein (LRB) law [33,34] (see
eq. (1)) combined with the available calculated C6 coeffi-
cients [26,27]. It allowed us to identify vibrational progres-
sions and to assign some v and Ω based on the vibrational
spacing. The third is the hyperfine structure law Ehfs ∝
Ω/[J(J +1)] for Ω= 1 and Ehfs ≈ 0 for Ω= 0 [31,35]. It
predicts small widths for resonances with Ω= 0 and partic-
ularly large widths for those with Ω= 1, J = 1 making
their identification possible. The fourth is the expected
similar contrast pattern of the rotational lines of the same
vibrational series, which helped us to identify vibrational
progressions.
An application of the assignment rules allowed us to

identify the observed vibrational series and to assign
their quantum numbers except the parity σ of the
Ω= 0 electronic states. σ can be determined from an
analysis of the relative strength of the rotational lines:
due to the selection rules, the parity of the total wave
function of the system, i.e. the product of σ and (−)ℓ for
the rotational part, changes sign during the transition.
Further, σ is conserved, namely only X1Σ+(0+)→ 0+ and
a3Σ+(0−)→ 0− are allowed for parallel transitions. In our
experiment, s-wave collisions dominate, such that the total
parity is + (−) for the former (the latter) initial state. The
parallel transition X1Σ+(0+, ℓ= 0)→ (0+, ℓ= 1) is thus
allowed enhancing then the J = 1 line, while the parallel

Table 1: PA resonances of 6Li40K∗ observed below the 2S1/2+
4P1/2,3/2 asymptotes and their contrasts. N denotes the
number of the vibrational series given in fig. 2(a), (b).

N v J N v J

transition a3Σ+(0−, ℓ= 0)→ (0−, ℓ= 1) is forbidden.
Under the same approximation, the perpendicular transi-
tion a3Σ+(1, ℓ= 0)→ (0−, ℓ= 0) is allowed and enhances
the J = 0 line in the spectrum. Therefore we assign the
Ω= 0 series with pronounced (reduced) J = 1 line to the
excited 0+ (0−) states.

Discussion. – Having assigned all observed reso-
nances, the parameters of the different molecular
potentials can be derived. We infer the C6 coeffi-
cients from the measured vibrational binding energies
D−Ev =−(h∆PA−Erot) (D denoting the dissociation
energy and Ev the energy of the vibrational level v),
using the LRB formula [33,34]

D−Ev =A6(vD − v)3, (1)

with A6 = 64π
3
�
3C6/

[

B(2/3, 1/2)
√
2µC6

]3
, where B

denotes the Beta-function (B(2/3, 1/2)≈ 2.587), µ is the
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Fig. 3: (Colour on-line) Plot of the one-third power of
the measured binding energies D−Ev =−(h∆PA−Erot)
(symbols) as a function of the vibrational quantum number
counted from the dissociation limit for the five vibrational
series dissociating to the 2S1/2+4P3/2 asymptote. The slopes
of the linear fits (solid lines) yield the dispersion coefficients
C6 according to eq. (1). The nearly identical slopes of the triad
and dyad potentials demonstrate the equality of the respective
C6 coefficients.

reduced mass, and vD the vibrational quantum number at
dissociation (a constant between 0 and 1 so that the most
weakly bound state has v= 1). Figure 3 shows the plots of
the 1/3-rd power of the binding energies as a function of
the vibrational quantum number for the five vibrational
series dissociating to the 2S1/2+4P3/2 asymptote. The
plots are predicted to follow straight lines whose slopes
yield: C6 = 9170± 940 a.u. and C6 = 9240± 960 a.u. for
the dyad potentials Ω= 2, 1up, C6 = 25220± 600 a.u.,
C6 = 25454± 720 a.u. and C6 = 24310± 1710 a.u. for
the upper triad potentials Ω= 1down, 0+, 0− and
C6 = 12860± 660 a.u. for the lower triad potential
Ω= 0+ (not shown in fig. 3), respectively, where the
uncertainties represent statistical uncertainties for the
fits. These values are in good agreement with the respec-
tive theoretical values C6 = 9800 a.u., C6 = 25500 a.u.
and C6 = 13830 a.u. predicted by Bussery et al. [26]. The
agreement with the values C6 = 9520 a.u., C6 = 22000 a.u.
and C6 = 15420 a.u. predicted by Movre et al. [27] is not
as good. The two predictions differ in their treatment of
the interaction between the two asymptotes 2S+4P and
2P +4S, which is taken into account in ref. [26] only,
hinting its significance.
The uncertainty of the derived C6 coefficients results

from the following effects. First, the heteronuclear
nature of LiK and its small C6 coefficients lead to
molecule formation at small internuclear separations (of
Reff = �/

√
2µBv ∼ 18 a0 at ∆PA =−300GHz) at which

the exchange interaction and higher-order terms in the
long-range multipole expansion of the molecular potential
become important, which are neglected by the LRB law.
Second, the small reduced mass of LiK leads to a low
density of vibrational states and thus to a small number
of states with long-range character available for fitting.

Fig. 4: (Colour on-line) Measured rotational constants
(symbols) for the observed excited molecular states below the
2S1/2+4P3/2 asymptote and their theoretical predictions for
computed vibrational levels (dots, the lines serve to guide the
eye), derived from the potential curves of fig. 1.

The measured rotational splittings allow us to infer the
rotational constants and to confirm the assignments above.
They are shown in fig. 4 for the five vibrational series below
the 2S1/2+4P3/2 asymptote, together with their theoret-
ical predictions, which we have derived from the potential
curves of fig. 1. The agreement between the measured and
predicted values is reasonable. The error bars account for
the imprecision of the wavelength determination and of the
resonance positions due to the unresolved hyperfine struc-
ture. Deviations from the theoretical predictions are likely
to be due to the multichannel character of the vibrational
levels.
We have determined the 6Li40K∗ molecule formation

rate from the steady-state depletion of the 6Li atom
number induced by PA. For the resonance shown in
fig. 2(d) we obtain a lower bound of βPAnKN

PA
Li ∼3.5×

107 s−1 and a PA rate coefficient βPA = (2.2± 1.1)×
10−12 cm3/s. This coefficient is larger by about a factor
of two than the one found in the experiment with
RbCs∗ [17], showing that PA rates for LiK∗ are much
more favorable than previously expected [21], confirming
the trend discussed in ref. [36]. Using the approach
described in ref. [37] we estimate the total PA rate
coefficient for a computed 1up level with −21GHz
detuning to 1.6× 10−12 cm3/s [32], in agreement with
our measured value. The associated 6Li40K∗ molecule
formation rate is also found to be comparable to that for
40K∗2, which is derived from fig. 2(c) to be ∼5.3× 107 s−1,
despite the much longer range of the excited 40K∗2 mole-
cular potential. Using our model, which reproduces the
observed rovibrational structure, we infer the rates for
decay into bound levels of the X1Σ+ state. The rates are
found largest for the decay into the most weakly bound
level, but are still significant for the decay into deeply
bound levels such as the X1Σ+(v′ = 3) level (v′ counted
from the potential bottom) for which it is 5× 104 s−1
(see fig. 1). Since the 6Li40K∗ molecule formation rate
saturates in our experiment at moderate PA intensities of
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∼80W/cm2, efficient coherent multi-photon population
transfers to the molecular rovibrational ground state can
be expected.

Conclusion. – In summary, we have investigated
single-photon photoassociation of excited heteronuclear
6Li40K∗ molecules. We have recorded photoassocia-
tion spectra and assigned all observed resonances. We
have derived the long-range dispersion coefficients and
rotational constants, which agree with the theoretical
predictions of ref. [26] and our calculations, respectively.
In particular, we have observed large formation rates for
the heteronuclear 6Li40K∗ molecules which are compa-
rable to those found for homonuclear 40K∗2. These rates
promise efficient creation of rovibrational ground-state
molecules and show that photoassociation is an attractive
alternative to Feshbach resonances, since those have a
very small width for 6Li40K and are thus difficult to
control [14].
For future research it will be interesting to combine ours

and previously recorded data on LiK and to refine the
molecular potentials. Spectroscopic data is available for
the potential 11Π [38], which correlates with the Ω= 1up

potential, for which we measured the binding energies of
the five previously undetermined least-bound vibrational
states, such that a complete set of vibrational levels is now
available for a high-precision refinement of this potential.
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4 Gray molasses

In the previous chapter we described the setup responsible for the trapping and cool-

ing of 6Li and 40K atoms in a double magneto-optical trap (MOT). At this point, the

measured phase-space density (PSD) is of the order of ∼ 10−7 [166], meaning that fur-

ther steps of cooling have to be implemented in order to achieve the quantum regime

(PSD? 1). One possibility is to perform evaporative cooling in a magnetic trap, but

our experiments showed that the initial elastic collision rate was too small for the

evaporation to be efficient. By implementing an intermediate cooling step such as

sub-Doppler cooling, one can enhance the initial collision rate. Due to the inexistence

of efficient sub-Doppler cooling for 6Li and 40K, we implemented a novel mechanism

based on a gray molasses scheme [21, 76]. We show that using this cooling technique

the PSD was enhanced by almost three orders of magnitude compared to the MOT,

which provides excellent conditions for performing fast evaporation of 6Li and 40K.

We start this chapter by presenting the state of the art of laser cooling of 6Li and
40K. This will be followed by an introduction to the principle of our gray molasses

cooling scheme and a discussion of the particular case of 40K based on semi-classical

calculations. The optical setup used for cooling will be presented, followed by the

experimental results and their discussion. A separated section will be devoted to

the gray molasses cooling of 6Li. At the end of the chapter we will summarize the

main results and point out that this novel technique was successfully implemented

to other isotopes by other groups and is at the present well-established technique for

sub-Doppler cooling.

4.1 Introduction

When shining coherent light to an ensemble of atoms, one can cool them down to

very low temperatures by using clever strategies. Until the end of the 1980s, it was

expected that the limit for laser cooling would be the Doppler temperature. This limit
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would be attained by shinning light on atoms from all directions of space, frequency

red-detuned by δ = −Γ/2 from an atomic resonance, where 1/Γ is the lifetime of

the excited state. In this case, each atom would perform a random walk in the mo-

mentum space due to the spontaneous emission, resulting an atomic ensemble at

equilibrium temperature of TD = h̄Γ/2kB (e.g. 145µK for 40K and 141µK for 6Li). In

reality, experiments showed that the temperature attained in this configuration was

lower than expected by one to two orders of magnitude. This effect was later ex-

plained as being consequence of another cooling mechanism: the Sisyphus or polar-

ization gradient cooling [38]. This mechanism relies on the fact that two red-detuned

counter-propagating beams give rise to a periodic modulation of the polarization or

the intensity of light, which can play a crucial role for a multilevel atom. If there is a

favorable positive correlation between light shift and optical pumping of the differ-

ent internal levels, cooling can occur and temperature can decrease to the scale of the

recoil energy TR = h̄2k2
L/2mkB (e.g. 0.41µK for 40K and 3.5µK for 6Li). In the case of

the fermionic alkaline isotopes 40K and 6Li, the hyperfine structure of the P3/2 excited

state is too narrow to allow efficient Sisyphus cooling. Indeed, strong off-resonant

excitations disrupt the positive correlation between light shift and optical pumping,

washing out the Sisyphus cooling effect. In the case of 40K, it was observed that sub-

Doppler cooling is possible, since temperatures of 15µK were reported, but only a

small fraction of the atomic sample were cooled, typically ∼ 107 atoms [71, 133].

Interestingly, the hyperfine structure of the P1/2 state is more resolved than its P3/2

counterpart. One can thus use the D1 transition S1/2 → P1/2 and perform efficient

sub-Doppler cooling. There are several Sisyphus-like mechanisms reported, most of

them discovered in the 1990s. One of them is the gray molasses cooling, which can be

performed with blue-detuned light respective to a F → F′ = F or a F → F′ = F − 1

transition. This mechanism was successfully implemented on the D1 transition of 40K

and will be described in the following sections. The results of subsequent works that

demonstrated efficient cooling for 6Li will be presented at the end of the chapter.

4.2 Principle

Gray molasses cooling was proposed by Grynberg and Courtois [76], Weidemüller

et al. [209], following previous schemes involving a Λ transition [7], and was ex-
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4.2 Principle

perimentally realized in a three dimensional configuration on the D2 transitions of

Cesium and Rubidium [20, 21, 55].

This cooling mechanism relies on the existence of dark and bright states when

atoms are shinned with light, on a coupling between them induced by motion and

on Sisyphus cooling. When an atom is in a non-coupled (dark) state its energy does

not change with its position, but it can be excited to a coupled (bright) state. The en-

ergy of this state is positive for a positive light detuning and spatially variable since

the light shift depends on the light intensity (and polarization) variations. Since cou-

pling is more likely to occur at the bottom of the bright state potential, the atom will

subsequently climb this potential and lose kinetic energy. As the atom approaches

the top of the potential, it is optically pumped way back into the dark state. Repeated

cooling cycles decrease the temperature of the atomic ensemble to the sub-Doppler

regime (see fig. 4.2.1).

0

E

Figure 4.2.1: Gray molasses cooling scheme. An atom in the dark state |ψD〉 can be excited to
the bottom of the bright state |ψB〉 potential by motion coupling. While climbing the potential
the atom loses kinetic energy. After a cycle of absorption and spontaneous emission the atom
returns to the dark state.

A toy model useful to understand the gray molasses cooling mechanism is the Λ

system, which includes two (degenerate) ground states |g1〉 and |g2〉 coupled by light

to an excited state |e〉. Let us consider an atom in one-dimension with Λ-type energy

levels and two counter-propagating transition-dependent laser fields Ω1 and Ω2, as
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Figure 4.2.2: Scheme of three atomic levels coupled to light in a Λ configuration.

shown in fig. 4.2.2. For this system, the semi-classical light coupling is given by the

interaction operator V̂ = h̄Ω1/2 |e〉 〈g1| + h̄Ω2/2 |e〉 〈g2| + h.c. and can be derived

from first principles from the dipolar interaction. We can then introduce a new basis

for the ground state

|ψD〉 =
1
Ω

(Ω2 |g1〉 − Ω1 |g2〉)

|ψB〉 =
1
Ω

(Ω1 |g1〉+ Ω2 |g2〉) ,

with Ω =
√

Ω2
1 + Ω2

2.

We name the |ψD〉 the dark or the uncoupled state, since it is unaffected by light

V̂ |ψD〉 = 0 and we name the |ψB〉 the bright or the coupled state, since it is coupled

to the excited state 〈e| V̂ |ψD〉 = h̄Ω/2. These states give an intuitive picture of the

system, but they are actually not stationary if we consider the complete hamiltonian

Ĥ = Ĥat + V̂, Ĥat being the atomic hamiltonian which includes the kinetic term

p̂2/2m. In this case, there is coupling between the dark and the bright states, due

to the atomic motion. It is not the purpose of this thesis to give a complete account

of the problem, which can be found in section 2 of ref. 150 or refs. 31, 32, but one can

obtain that

〈ψB(p)| p̂2

2m
|ψD(p)〉 = −2Ω1Ω2

Ω2 h̄k
p
m

,

which is the frequency at which the atomic state oscillates between the dark and the
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bright state, where v = p/m is the atomic speed. An atom in the dark state has thus

a lifetime of τD ∝ 1/(vk)2 before being transferred to the bright state (cf. Fermi rule).

In consequence, atoms with low speed (colder) will be kept in the dark state, while

atoms with high speed will be transferred to the bright state. The action of a cooling

mechanism (e.g. Sisyphus) will decrease the velocity of the atoms and those which

have lower speeds will accumulate in the dark state.

The seminal experimental study of this Λ system was done by Aspect et al. [7].

Atoms of metastable 4He* were exposed to σ+σ− light resonant with the F = 1 →
F′ = 1 transition. The selection rules impose that the only possible couplings are

|F = 1, mF = −1〉 ≡ |g1〉 → |F′ = 0, mF = 0〉 ≡ |e〉 (by means of σ+ photons) and

|F = 1, mF = +1〉 ≡ |g2〉 → |F′ = 0, mF = 0〉 ≡ |e〉 (by means of σ− photons)1. The

authors showed that atoms were pumped to the dark state |ψD(p = 0)〉 after a cer-

tain interaction time, resulting in a net cooling of the atomic ensemble. This is the

principle of the so-called VSCPT mechanism (velocity-selective coherent population

trapping) and applies to the particular of the case F = 1 → F′ = 1.

The second ingredient of the gray molasses is Sisyphus cooling, which can occur in

the coupled state for a positive detuning. If the detuning between the light frequency

and the atomic transition is δ = ω − ω0, the bright state will suffer a light shift given

by EB = h̄Ω2/δ (proportional to the light intensity), while the dark state will not be

affected by light ED = 0. As argued above, an atom in the dark state with some kinetic

energy can be transferred to the the bright state. The probability of this non-adiabatic

passage can be calculated perturbatively

P =

∣

∣

∣

∣

∣

∣

〈ψB(p)| p̂2

2m |ψD(p)〉
EB − ED

∣

∣

∣

∣

∣

∣

2

= 2
(

Ω1Ω2

Ω3 δk
p
m

)2

.

The probability of non-adiabatic passage increases with the atomic speed v = p/m,

decreases with light shift Ω2/δ and increases with the detuning δ [209]. For a sta-

tionary wave the coupling from the dark to the bright state will be maximum at the

valleys of the bright state potential, where EB − ED = EB is minimal (see fig. 4.2.1).

When the atom is transferred to the bottom of this potential, it climbs the potential

1Notice that J ≡ F, since 4He* has no nuclear angular momentum I.
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hill and loses kinetic energy. At the top of the hill it may absorb a photon and decay

to the dark state after a spontaneous emission. At the end of one cooling cycle, the

kinetic energy of the atom will reduce and therefore the probability for non-adiabatic

coupling also decreases. After many cooling cycles, atoms will be cold and stocked

in the dark state. In a Sisyphus-type cooling mechanism, cooling becomes inefficient

when the kinetic energy of the atom is too small to climb the potential hill. This

leads to a final equilibrium temperature that scales with the light shift kBT ∝ I/δ

(for T ≫ TRecoil = h̄2k2/2mkB). We turn now to the question of the capture velocity

of the gray molasses vcap. If Γ′ ∝ I/δ2 is the optical pumping rate from the bright

states to the dark states, then the capture velocity is given by vcap ∼ λ/τ′ = Γ′/k,

with τ′ = Γ′/2π being the optical pumping time and λ being the wavelength of the

cooling light.

The analysis of the gray molasses cooling mechanism made so far was restricted

to a Λ configuration in one dimension. In general, for transitions of the type F → F′

and F → F′ − 1 one can always find dark states, which obey the relation V̂ |ψD〉 = 0

for elliptically polarized light2 [150, 185]. The idea is that one can always arrange the

Zeeman states in a series of coupled Λ systems. In a three-dimensional configuration

this is not always true. For the F = 1 → F′ = 1 case it was shown that the dark states

survive in a three-dimensional arrangement of σ+σ− polarized light [146]3. However,

for the relevant case of half-integer F and F′ the dark states are localized in space.

4.3 The case of 40K: semi-classical calculations

The relevant level structure of 40K can be seen in section 2.2.1. It comprises a ground

state manifold 2S1/2 (with hyperfine states F = 7/2 and F = 9/2) and two excited

manifolds 2P1/2 (with hyperfine states F′ = 7/2 and F′ = 9/2) and 2P3/2 (with hy-

perfine states F′ = 5/2, 7/2, 9/2, 11/2). We decided to perform cooling on the D1

transition (transition between the ground state 2S1/2 to the 2P1/2 manifold) for two

reasons. First, the two states of the 2P1/2 manifold are much better resolved than

their 2P3/2 counterparts. Second, by having a cooling beam blue detuned from the

2Notice that in the absence of magnetic field the quantification axis is given by the direction of light
~k and therefore light can only by elliptically polarized.

3See a simple argument in ref. 109.
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2P1/2 manifold, the two possible transitions both result in gray molasses cooling.

Raman

Figure 4.3.1: Level scheme of the tran-

sitions used for D1 gray molasses cool-

ing of 40K. In blue is depicted the cool-

ing laser frequency (positive detuning

δ from the F = 9/2 → F′ = 7/2 tran-

sition) and in red the repumper fre-

quency (detuning δrep from the F =

7/2 → F′ = 7/2 transition).

In fig. 4.3.1 we plot a scheme of the transitions

used for cooling. The cooling light is blue de-

tuned of δ from the F = 9/2 → F′ = 7/2 transi-

tion. Since depumping to the F = 7/2 state will

occur, we also introduce repumping light, which

is blue detuned of δrep from the F = 7/2 →
F′ = 7/2 transition. We denote δRaman the differ-

ence between the detuning of the cooling light

and the detuning of the repumper light. Notice

that the effect of off-resonant excitations to the

F′ = 9/2 should be small, since this state is sep-

arated from F′ = 7/2 by 155.3MHz =̂ 25.7Γ.

There are 2 × (10 + 8) Zeeman levels of 40K

which are important to describe the cooling

mechanism. Due to the complexity of the

problem we performed a full computational

calculation of the coupled optical Bloch equa-

tions in order to obtain the light shifts and the

(de)pumping rates4. This calculation was per-

formed for the one dimensional lin⊥lin config-

uration and for an atom at rest. The light inten-

sities are Icool/Isat = 13 and Irepump = Icool/8

per beam, with global detuning δ = +3Γ from the F′ = 7/2 state and δRaman = 0. The

cooling and the repumper light fields are in phase. The results of these calculations

are presented in figure 4.3.2.

When examining the plot of the light shift as a function of the position in the mo-

lasses one counts 9 bright states (labeled mF = −9/2, . . . , 5/2 at z/λ = 1/8), 2 weakly

coupled states (labeled mF = 7/2 and mF = 9/2) and 9 very weakly coupled states

(F = 7/2 manifold). This is in apparent contradiction with the conclusions of the

4The Matlab code for this calculation was kindly provided by Saijun Wu and is based on the Quantum
Optics Toolbox made by Sze Meng Tan[194].
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Figure 4.3.2: Light shift (top left) and depumping rate (top right) as a function of position
in the molasses and light shift as a function of depumping rate (bottom). One dimensional
lin⊥lin configuration with Icool/Isat = 13, Irepumper/Icool = 1/8, δ = 3Γ and δRaman = 0. The
cooling and the repumper light fields are in phase.

previous section, that there should be 2 dark states all over the space z/λ. Actually,

the existence of the excited level F′ = 9/2 has a non-negligible contribution, giving

rise to the 2 weakly coupled states mentioned before5. In fig. 4.3.2 there is also a plot

of the departure rates γ for each state as a function of the position. This plot shows

that the weakly coupled states are long-lived, while the bright states have a much

smaller lifetime, as expected. Let us now turn to the interesting combined plot of γ

and the light shift. It displays a set of long-lived weakly coupled states and a set of

bright states, whose departure rate globally increases with light shift. In other words,

an atom that climbed the bright state potential is more likely to be depumped than

the one that is it still at the bottom of the potential. This behavior enables efficient

5This was confirmed by running the computational calculation for a 10 fold increased separation
between the excited states F′ = 7/2 and F′ = 9/2 (10 × 155.3MHz). The light shift of the weakly
coupled states was reduced to negligible values for all z/λ.
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Sisyphus cooling.

4.4 Experimental setup

The D1 system for 40K operates at λ =770nm and is composed of a master diode laser

which is frequency-locked to an atomic spectroscopic signal, an electro-optical mod-

ulator (EOM) that generates the repumping light and a tapered amplifier (TA). This

system is depicted in a scheme in sections 2.2.2 and appendix 2.B and is described in

the following paragraphs. The master diode laser is a commercial tunable diode in

the Littrow configuration6. Using a polarization beamsplitter cube we divert part of

the laser power to the spectroscopy setup (∼ 1mW) and the main part to the EOM

(∼ 20mW) followed by the TA.

The spectroscopy setup is composed by an AOM in the cat-eye configuration (+2×
260MHz), a homemade heated glass cell with natural Potassium (∼ 50ºC) and an

EOM that creates sidebands at ±10MHz on the probe beam. This beam is focused in

a fast photodiode7 and the electric signal is demodulated by mixing it with the (de-

phased) reference signal fed to the EOM, following the Pound-Drever-Hall scheme.

The resulting signal is dispersive [49] and by feeding it into the voltage of piezo-

electric element voltage of the laser grating one can lock the light frequency to the

chosen atomic transition8. For this we chose the strongest line we observed, which

corresponds to the difference of energy between the ground-state crossover and the

F′ = 2 state of the 2P1/2 manifold of 39K.

The main part of the output of the laser diode goes through an EOM9, which is

fed by the amplified10 signal of a synthesizer11 tuned to the ground state hyperfine

splitting of 40K (1285.8MHz). The output beam of the EOM is injected into a TA12

installed in a homemade mount [166].

The output of the TA is beam shaped with cylindrical and spherical lenses in order

6Toptica DL pro 770nm
7Newport model 1801-FS
8Toptica PDD110, SC110 and PID110.
9Qubig EO-K40-3M

10Mini Circuits ZHL-5W-2G+
11Winfreak Technologies SynthNV
12Eagleyard EYP-TPA-0765-01500-3006-CMT03-0000

89



4 Gray molasses

to maximize fiber injection efficiency. Before the fiber injection there is a single pass

AOM13 (+200MHz) that serves to control the light power in the experiment. On the

output side of the polarization maintaining fiber, the light is polarization cleaned with

a polarization beamsplitter cube and then “combined” with the MOT light by means

of a small angle, achieved by using a D-shaped mirror14. The waist size is 1.1cm and

is the same as waist size of the MOT beams. We could in principle have reduced the

beam size in order to improve the laser intensity: Indeed during the molasses phase

the atomic cloud as only ∼ 3mm diameter. However we verified experimentally

that the capture efficiency was 100% for the available laser power. Just like the MOT

beam, the molasses laser beam is split into two vertical beams and two retro-reflected

horizontal beams in a three-dimensional σ+σ− configuration. A small fraction of this

beam is injected into a Fabry-Perot15 in order to determine the repumper fraction.

4.5 Results and discussion

In this section the experimental results concerning the 40K D1 gray molasses will be

presented. The experimental cycle starts with the loading of the MOT, as described

in the previous chapter. After this phase, the magnetic field gradient is ramped from

9G/cm to 60G/cm in 5ms without changing the detunings of the D2 light. This pro-

cess increases the spatial density of the cloud at the expense of temperature, which

rises from 200µK to ∼ 3mK. The magnetic field gradient is then switched off abruptly

by means of an IGBT16. We estimate that the field decreases with a time constant of

∼ 100µs due to Foucault currents. The magnetic field bias was compensated by in-

stalling a coil on each spatial axis and optimizing their currents by minimizing the

molasses temperature. The diameter of the coils is about ∼ 1m in order to guaran-

tee a very weak gradient over the atomic cloud. This bias coils are kept on since the

beginning of the MOT loading until the magnetic transport sequence.

The measurement of the density profile of the atomic cloud was done by absorption

imaging, as described in a previous section 2.3. The number of atoms is measured af-

13Crystal Technology 3200-124
14Thorlabs BBD1-E02
15Thorlabs SA200-5B
16Mitsubishi CM200HA-24H, see appendix 5.A for details.
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Figure 4.5.1: Atom number (in blue) and temperature (in red) of the atomic cloud after a
pulse of molasses beams of duration τm. The cooling intensity was Icool/Isat = 14 per beam,
the detuning was δ = 2.3Γ, Irepump = Icool/8 and the Raman detuning δRaman = 0.

ter a short pulse of D2 repumper light (in order to pump the atoms into the imaging

transition) and the temperature is measured by taking several pictures at different

time-of-flight (TOF) values. The laser power intensities are written as a function of

Isat = 1.75mW/cm2, which corresponds to the saturated intensity of a 40K closed

transition. The ratio between the repumper and the cooling power is calculated by

measuring the ratio between the amplitude of the corresponding peeks observed us-

ing the Fabry-Perot analyzer.

4.5.1 Characterization of the 40K gray molasses

In a first experiment we pulsed the molasses beams for a certain duration τm and

measured the atom number and the temperature of the cloud. The cooling intensity

was set to the maximum Icool/Isat = 14 per beam, the detuning to δ = 2.3Γ, Irepump =

Icool/8 and the Raman detuning δRaman was set to zero. As presented in fig. 4.5.1,

we observe that all the atoms are captured in the molasses and are quickly cooled

down. The cooling dynamics has two time scales: First there is a very fast drop of

temperature from 3mK to 100µK in less than 1ms; Then a further drop from 100µK

to 30µK in 4ms. This dynamics can be compared to the fluorescence light emitted

during the D1 molasses phase showed in fig. 4.5.2. Indeed, we observe a very fast

decay of the molasses light emission in ∼ 1µs to the 40% level and then a slow decay,
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Figure 4.5.2: Measured fluorescence (in blue) and total cooling power (in red) during the
MOT and the D1 molasses phase as a function of time. Left: Detailed plot of the first 10µs of
molasses. The vertical line is a help to the eye. In the interval t ∈ [0, 2]µs MOT and D1 light
may coexist due to finite time response of the AOMs, which might explain the initial positive
“bump” in the fluorescence. Right: Measurement for complete molasses phase.

reaching 5% in ∼ 3ms.

In a second experiment we pulsed the molasses beams for a fixed time τm = 6ms for

different values of the D1 laser intensity and measured the number of atoms captured

in the molasses and their temperature (fig. 4.5.3). In order to measure the number of

atoms captured in the molasses pictures at large time-of-flight (20ms) were taken. In

this situation, atoms which are not captured by the molasses quickly fly off (due to

their high energy) and their contribution to the measured signal is negligible. Indeed,

without molasses light no atoms were measured after the time-of-flight. By decreas-

ing the laser intensity we observed that the number of captured atoms decreases with

the laser intensity, which is expected, since the molasses capture velocity decreases

with laser intensity in the Sisyphus picture [168]. The capture efficiency saturates at

∼ 100% for Icool/Isat ' 11. Notice that this saturation value depends on many vari-

ables such as the initial velocity distribution: For a less compressed/colder MOT the

saturation intensity would be smaller. Concerning the temperature, we observed that

it decreases monotonically with the cooling light intensity. This behavior is expected

from a Sisyphus cooling mechanism, as discussed in section 4.2.

The results from the previous paragraphs suggests implementing the D1 molasses

cooling in two distinct phases. In the first one, the laser intensity is kept at maximum

in order to have full capture efficiency; In the second one, the intensity is linearly
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Figure 4.5.3: Atom number (in blue) and temperature (in red) of the atomic cloud after a pulse
of molasses beams of duration τm = 6ms. The cooling intensity was varied, the detuning was
δ = 2.3Γ, Irepump = Icool/8 was kept constant and the Raman detuning δRaman = 0. The
capture efficiency is 100% for Icool/Isat ' 11.
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Figure 4.5.4: Atom number (in blue) and temperature (in red) of the atomic cloud after a
pulse of molasses beams of duration 6ms with maximum cooling intensity Icool/Isat = 14 and
a linear intensity ramp of 2ms to an adjustable value. The detuning was δ = 2.3Γ, Irepump =
Icool/8 was kept constant and the Raman detuning δRaman = 0.

ramped down in order to further cool down the captured atoms. To test this strategy

the laser intensity was kept at high value Icool/Isat = 14 for 6ms and then linearly

ramped down to an adjustable value for 2ms. We observed a drop of temperature

from 30µK to 20µK without any loss of atoms (fig. 4.5.4).

In another experiment, the global laser detuning was varied for the full 8ms se-

quence (see fig. 4.5.5). For the interval δ ∈ [1.5, 3.5]Γ the temperature and the number
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of captured atoms is essentially constant. For δ > 3.5Γ the number of atoms decreases

due to inverse dependence of the capture velocity with detuning, while temperature

stays constant. When detuning is too close of resonance δ < 1.5Γ the molasses stop

working efficiently.

æ

æ

æ
æ

æææ
æ
æ
æ
æ
æ
æ

æ
ææ

æ
ææ
æ

æ
æ

æ

æ

æ

æ

æ

0 1 2 3 4 5
0

1

2

3

4

5

6

Detuning ∆ HGL

A
to

m
n

u
m

b
e

r
H�

1
0

8
L

òò
ò

òòò
òòòòò

òò
òòò

òòòò

ò

ò

ò
ò

ò

ò

ò

20

40

60

80

100

T
e

m
p

e
ra

tu
re
HΜ

K
L

Figure 4.5.5: Atom number (in blue) and temperature (in red) of the atomic cloud after a
molasses sequence of 8ms (described in the text). The global detuning δ was varied, the initial
intensity was Icool/Isat = 14, Irepump = Icool/8 was kept constant and the Raman detuning
δRaman = 0.

Discussion of the lowest attainable temperature

A relevant question that emerges at this point is which is the lowest temperature one

can achieve with this cooling strategy. A semi-classical simulation of the movement of

a 40K atom in the three-dimensional molasses appears to show that the temperature

can reach very low temperatures. In metastable 4He*, Lawall et al. [110] managed

to cool down 104 atoms to the sub-recoil regime T = 180nK ≈ TR/22. In 133Cs it

was reported that temperature was limited by atomic density. Indeed, for densities

smaller than 109 atoms/cm3 the measured temperature was of T = 1.1µK ≈ 2.4TR,

while for higher values of density it was observed that temperature increased with a

slope of 0.6µK/(1010atoms/cm3) [21]. The authors attributed this effect to “photon

multiple scattering within the [gray molasses] atomic cloud”. This effect is strong

in “standard” bright molasses, but it is weak in gray molasses since atoms are accu-

mulated in dark states and therefore light induced collisions are suppressed. In the
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40K setup the smallest temperature obtained was 20µK and the estimated density is

of 2 × 1010 atoms/cm3. By changing the atomic density there was no clear experi-

mental evidence that there was a temperature variation. On the other hand, it was

verified that temperature depends on the magnetic field bias B as ∆T ∼ 80B2µK/G2

and for that reason all the experiments reported in this thesis were done with can-

celled stray magnetic fields to less than 100mG. Recent experiments done on 39K,

which has a even narrower D1 excited state splitting (55.5MHz) than 40K, show gray

molasses cooling down to 6µK of an atomic cloud with density 1.3 × 1011 atoms/cm3

[172]. This encourages the conclusion that probably the coldest temperature achieved

on the 40K setup was actually limited by technical imperfections. One possibility is

the lack of fine control of the laser power balance between the different axes of the

three-dimensional molasses17.

Measurement of the molasses diffusion coefficient

Finally, we increased substantially the molasses time up to 0.5s in order to measure

the molasses lifetime and the diffusion coefficient. The lifetime was determined to be

∼ 0.6s, probably limited by small misalignments of the beams and/or beam power

imbalance. The spatial diffusion coefficient Dx was determined from the cloud size

after a time-of-flight18 of 10ms for different molasses times τm and the relation σ2 =

σ2
0 + 2Dxτm. We estimate the spatial diffusion coefficient to be Dx ≈ 1.2 mm2/s

(results shown in fig. 4.5.6). In other experiments, with standard bright molasses and

different conditions (cooling transition, light intensity, polarizations and detuning)

higher (39K [107]) and lower values (85Rb [87]) for the spatial diffusion coefficient

have been found.

4.5.2 Role of the repumper: study of the Raman detuning

Due to the open nature of the D1 transition, one intuitively concludes that there is

a need of a repumper to pump back the atoms accumulated in the F = 7/2 state

17Indeed we observed a drift of the molasses with speed ∼ 5mm/s in one of the axes during the
molasses phase.

18Assuming that the temperature is the same for all data points, the squared cloud size after time-of-
flight only differs from the squared initial cloud size by a constant.
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Figure 4.5.6: Squared cloud size after fixed time of flight as a function of the molasses duration
τm. In blue we plot the data for the horizontal axis and in red the data for the vertical axis
(gravity direction). The slopes of each axis are identical to the 10−2 level.

in the cooling transition. This was already realized in the pioneering studies of the

gray molasses mechanism [20, 21, 55]. Actually it was discovered in this work that

the repumper can have a more subtle and complex effect than just repumping the

atoms back into the cooling transition: It can actually have a cooling effect of its own.

Indeed, if one looks closely to scheme 4.3.1 one can see that if the cooling and re-

pumper light fulfill the Raman condition, they form exactly the Λ structure discussed

in section 4.2. Indeed this configuration will provide a new dark state manifold and

a new bright state manifold in which gray molasses cooling can occur. For the sake

of clarity we shall call this the hyperfine gray molasses, in order to distinguish from

the cooling discussed in previous sections, which we shall call the Zeeman gray mo-

lasses. By varying the frequency of the repumper light (and consequently the Raman

detuning) it was observed that these two molasses mechanisms can strongly interact

between each other [74].

It was observed that when the Raman detuning was negative δRaman < 0 (repumper

light slightly blue or even red detuned from the repumper transition F = 7/2 → F′ =
7/2) the variation of the detuning had almost no effect on the temperature and the

capture efficiency (see fig. 4.5.7). Comparing to the δRaman = 0 case, the temperature

was higher (around 45µK) and the capture efficiency lower (around 80%). Around the

Raman condition, the system responded quite strongly with the Raman detuning, dis-

96



4.5 Results and discussion

ææ
ææ
æææ
æ
æ
æ
æææ
æ
æ
æ
ææææ
ææ
æ
æææææææ

ææææææ
ææææææ

ææ
æ

æ

æ
ææææ

æ
ææ

æ

ææ

æ
æ

æ
æ
ææææææ
æ
æ
æææ
æ
æ
æ

æ

æææ
æææ
æææææææ
æ

æ

ææ
æ
æ
æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ
ææ

æ
æ
æ
æ
ææææææ

æ
ææææ

-40 -30 -20 -10 0 10 20
0

2

4

6

8

10

Raman detuning HMHzL

A
to

m
n

u
m

b
e

r
H�

1
0

8
L

ò
òòò
ò

ò
òòòò
òò
òòòòòòòòòòòòòòòòò

òòòòòòòòòòòò
ò
òò
òò
ò
ò
òòòòò
òòòòò
ò
ò
òò
òòòòòò
òòòòòòòòòòòòòò
òòò
òò
òò
òò

ò

ò
ò
ò
ò

ò
ò

ò

ò

ò

ò

ò
ò
ò

ò

ò

òòòòòò
ò
òò
òòòòòòòò
òòò 50

100

150

200

T
e

m
p

e
ra

tu
re
HΜ

K
L

ò

ò

ò

ò

ò

ò

ò

òò

ò

ò

ò

ò

ò
òò

ò

ò

ò

ò
ò

ò

ò

ò
ò

ò
ò
ò

ò

ò

òò

ò

ò

ò

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
20

30

40

50

60

Raman detuning HMHzL

T
e

m
p

e
ra

tu
re
HΜ

K
L

Figure 4.5.7: Number of atoms captured in the molasses (blue) and temperature (red) as a
function of the Raman detuning (for a fixed cooling detuning). The plot at the right is an
enlarged view close to the Raman resonance condition.

playing a resonance feature (fig. 4.5.7). By fitting this feature with a Lorentzian profile

the minimal temperature observed was 26µK at δ = (0.10 ± 0.02)MHz and the width

of the resonance was (0.7 ± 0.1)MHz (FWHM). The enhancement of cooling can be

understood as a cooperative cooling interaction between the hyperfine and Zeeman

cooling mechanisms. For red Raman detuning δRaman < 0 (far from resonance) the

two mechanisms decouple: the Zeeman gray molasses are sole responsible for the

cooling, which is less performant without the combined action of the hyperfine cool-

ing mechanism. Actually, one might expect that a detuned Λ configuration would

induce heating, but it seems that it is prevented by the strong power imbalance be-

tween cooling and repumper. Indeed, we observed considerable heating for 6Li and

δRaman < 0 when Icool ≈ Irepumper compared to the imbalanced case [184]. In the

balanced case, the effect of changing the Raman detuning on the hyperfine gray mo-

lasses is analogous to the effect of changing the magnetic field bias on the Zeeman

gray molasses. In the imbalanced case, the heating effect is suppressed and the role

of the repumper is mainly to repump atoms back into the cooling transition.

For blue Raman detuning δRaman > 0 the situation is apparently very different from

the one described above. Indeed, we observe a sharp peak of heating at δ = +(4.24±
0.05)MHz. This could be interpreted as a destructive effect of the repumper light on

the Zeeman gray molasses. When the repumper detuning is such that the atoms in

the F = 7/2 state are pumped to the top of a hill of the bright state potential (see fig.

4.2.1), they accelerate by falling down the optical potential, increasing their kinetic
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energy and generating heating. To test this explanation we measured the position

of the heating peak for two values of intensity (maintaining the ratio Irepumper/Icool

constant) for 6Li. It was observed that: The heating peak position displaced by a

positive amount proportional to the laser intensity; The width of the heating peak also

increased with intensity. This is consistent with the simple explanation put forward

above since the light shift of the bright states is proportional to the light intensity.

We did not try to study the role of the phase of the repumper laser field relative

to the one of the cooling in the molasses performance [80]. We estimate that in the

three-dimensional configuration the relative phase is modulated in space and only

has an averaged effect [74].

4.6 Gray molasses cooling of 6Li

Due to the very narrow excited state structure of the P3/2 level of 6Li (compared with

the linewidth Γ), it is not possible to attain efficient sub-Doppler cooling, as argued in

the introduction of this chapter. The same gray molasses cooling strategy described

for 40K was employed for 6Li, with identical results concerning the behavior of the

capture fraction and the temperature as a function of the different experimental pa-

rameters. The gray molasses were operated with a cooling intensity per beam of

Icool/Isat = 15, a cooling/repumper ratio of Irepump/Icool = 1/20, a detuning of

δ = 4Γ on the Raman resonance δRaman = 0 (see fig. 4.6.1). After the CMOT phase

there were 2 × 109 atoms at 800µK. For a gray molasses cooling sequence of 5ms,

one could capture 1.2 × 109 atoms in the molasses (60% capture efficiency) and cool

them down to 44µK. This cooling phase enhanced the PSD of factor ≈ 30. When per-

forming the molasses cooling for 40K simultaneously, no interspecies interaction was

observed. This was expected since the cooling phase is fast and light-induced colli-

sions are highly suppressed due to the accumulation of the atoms in the dark states.

For a detailed study of the performance of the 6Li gray molasses we refer the reader to

ref. 184. Recently, Sisyphus cooling of 6Li was observed in Berkeley [82] and related

studies were reported by a team in Florence [25].

4.6.1 Experimental setup - offset lock
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4.6 Gray molasses cooling of 6Li

Raman

Figure 4.6.1: Level scheme of the tran-

sitions used for D1 gray molasses cool-

ing of 60Li. In blue is depicted the cool-

ing laser frequency (positive detuning

δ from the F = 3/2 → F′ = 3/2 tran-

sition) and in red the repumper fre-

quency (detuning δrep from the F =

1/2 → F′ = 3/2 transition).

The 6Li system for D1 gray molasses cooling (see

section 2.2.2 and appendix 2.C) is identical to

the one of 40K described above, but with some

differences worth mentioning. The light source

is a compact tunable diode laser system ampli-

fied by a TA integrated in a single unit19. A

small portion of the diode laser power is used

for locking, which will be described in a fol-

lowing paragraph. The amplified output (∼
450mW) is beam shaped to optimize fiber injec-

tion and passes through an EOM20 for the gen-

eration of the repumper sideband. The signal

fed to the EOM is produced by a synthesizer21

tuned to the ground state hyperfine splitting of
6Li (228.2MHz) and then amplified22. The laser

beam passes through an AOM23 in single pass (-

110MHz) before being injected to a polarization

maintaining fiber. Around 40% of the power of

the initial beam from the TA is measured at the

output of the fiber.

To lock the laser light frequency to the D1 line

it was decided to implement an offset lock based

on the setup of ref. 169. The idea is to beat the D1 laser light with a D2 reference,

which is locked to an atomic absorption line by saturated absorption spectroscopy,

and lock the beating signal to a precise offset frequency. The signal is first mixed

down using as reference a stable (and tunable) signal at high frequency and then

goes through the circuit that produces the error signal. In this circuit the signal (now

at some tens of MHz) has its power divided in two: The first arm has a high pass

filter at a cut frequency fc and a diode that clips negative voltages; The second arm

19Toptica TA pro 670nm
20Qubig EO-Li6-3M
21Windfreak Technologies MixNV
22Mini Circuits ZHL-1-2W
23AA Opto-electronic MT110-B50A1-VIS
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serves at reference and has a attenuator and a diode that clips positive voltages. These

signals are then converted into DC and summed up. If f > fc, the power is not

attenuated in the first arm and the resulting DC sum signal is positive, since there is

an attenuation in the reference arm. If f < fc, the signal is attenuated in the first arm

due to the high pass filter and the resulting DC is negative. This way one can have a

dispersive signal around fc with a rather steep slope (depending on the filter) and a

good capture range. This contrasts with the “standard” delay-line technique [179], in

which the output signal displays several dispersive signals and compromises have to

be made in order to a good capture range and a steep error signal.

λ
/2

from locked D2 Laser

from D1 Laser

PD

-3dB

-6dB

AC→DC

AC→DC

ε(t)

DRO

9.8GHz

-3dB

DRO

AC→DC

λ/2

Amplifier

Splitter

High-pass filter

Dielectric Resonator Oscillator

Diode

Sum circuit

Mixer

Attenuator

AC to DC converter

Fiber injection

PBS

λ/2 Waveplate

PhotodiodePD

Figure 4.6.2: Scheme of the offset lock circuit described in the text.

The setup is depicted in fig. 4.6.2. A small portion of the diode laser beam is injected

into a single mode fiber and a small portion of the spectroscopy locked D2 diode

laser beam is injected into a second fiber. The outputs of these fibers are combined

spatial and polarisation-wise and injected into a third fiber which is connected to

fast photodiode24. The power measured at the level of the photodiode is of 520µW

for each individual beam. The electronic signal of the beating is then amplified25

24Newport 1580-A
25Mini-Circuits ZX60-183-S+
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Figure 4.6.3: Spectrum of the mixed-down signal (bandwidth 10 kHz, integration time 1s,

average of 10 shots). The red curve is a Lorentzian fit with central frequency 83.73 MHz and

FWHM 0.39 MHz.

and mixed26 with a stable reference at 9.783GHz27. The mixed down signal is then

amplified28 and the output power is divided in two29 (a small fraction of the signal is

picked up before the splitter by a coupler30 for diagnostic purposes). After the splitter,

the reference arm has two -3dB attenuators31 and the filter arm has a -3dB attenuator

and a high-pass filter32. The signal is then processed by a circuit similar to the one

indicated in ref. 169, resulting in a dispersive signal, as explained above. This signal

is fed into a PID circuit that feeds the piezoelectric element driving the grating of the

ECDL for low frequency corrections and the current of the laser diode for the high

frequency corrections. When locked, the mixed down signal was read by spectrum

analyzer and the result outputted using the video output (see fig. 4.6.3 and its caption

for details concerning the data acquisition). By fitting the signal with a Lorentzian

we obtain the central frequency 83.73 MHz and the FWHM 0.39 MHz. The central

frequency is close to the expected value for the used filter (82MHz). Without the fast

26Mini-Circuits ZX05-153LH-S+
27Dielectric Resonator Oscillator (DRO) made by CTI Inc. The specified thermal stability is 5ppm/ºC=̂

50kHz/ºC and the mechanical tunability is ±50MHz.
28Mini-Circuits ZFL-500+
29Mini-Circuits Z99SC-62-S+
30Mini-Circuits ZFDC-20-1H-S+
31Mini-Circuits VAT-3
32Mini-Circuits SHP-100+, nominal cut frequency at 82MHz (-3dB)
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correction of the lock the FWHM was approximately 5 times higher. After several

months of daily operation of the molasses, no drifts were observed in its performance,

which validates the long-term stability of the lock.

4.7 Conclusions

The gray molasses cooling mechanism was implemented with success on 40K and 6Li

on the D1 transition. By having the cooling and the repumper light satisfying a Raman

configuration enhanced cooling was observed. Compared with other reported cool-

ing methods [50, 126], the gray molasses method yielded higher phase space density

and the implementation of this scheme was fairly easy. Indeed, the light sources and

techniques are the same as the ones used for the standard cooling, since the D1 and

the D2 lines have very close wavelengths. The performance of the D1 gray molasses

is summarized in table 4.7.1.

40K 6Li
Icool 13Isat 15Isat

Irep/Icool 1/8 1/20
δ 2.3Γ 4Γ

N (×109) 3.2 (100%) 1.2 (60%)
T (µK) 20 44

PSD (×10−5) 9.4 7

Table 4.7.1: Summary of the gray molasses parameters and resulting number of atoms, cap-
ture efficiency, temperature and phase space density (PSD).

The good performance and robustness of the gray molasses cooling attracted inter-

est in the scientific community. This scheme was successfully implemented in other

isotopes that do not display efficient sub-Doppler cooling: 7Li [74], 39K [138, 172] and
41K (unpublished results of our group). Moreover, this technique allowed the imple-

mentation of efficient all-optical schemes for the production of quantum gases of 6Li

[25], 39K [173] and 7Li [98]. Gray molasses are at present a well-established technique

for sub-Doppler cooling of atomic gases. In addition, this scheme could open the

door for the implementation of single-atom resolved imaging [181, 210] of fermions

in a pinning lattice, for which an efficient cooling mechanism is needed.
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The work presented in this chapter was reported in the following articles:

• D. Rio Fernandes, F. Sievers, N. Kretzschmar, S. Wu, C. Salomon, and F. Chevy.

Sub-Doppler laser cooling of fermionic 40K atoms in three-dimensional gray optical

molasses. EPL (Europhysics Letters) 100, 63001 (2012).

• F. Sievers, S. Wu, N. Kretzschmar, D. Rio Fernandes, D. Suchet, M. Rabinovic, C.

V. Parker, L. Khaykovich, C. Salomon, F. Chevy. Simultaneous sub-Doppler laser

cooling of fermionic 6Li and 40K: Theory and Experiment. arXiv:1410.8545 (2014)

(submited to Phys. Rev. A).
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Abstract – We demonstrate sub-Doppler cooling of 40K on the D1 atomic transition. Using a
gray-molasses scheme, we efficiently cool a compressed cloud of 6.5× 108 atoms from ∼ 4mK to
20µK in 8ms. After transfer to a quadrupole magnetic trap, we measure a phase space density of
∼ 10−5. This technique offers a promising route for fast evaporation of fermionic 40K.

editor’s  choice Copyright c© EPLA, 2012

Introduction. – Cooling of fermionic atomic species
has played a fundamental role in the study of strongly
correlated Fermi gases, notably through the experimen-
tal exploration of the BCS-BEC crossover, the observa-
tion of the Clogston-Chandrasekhar limit to superfluidity,
the observation of the Mott-insulator transition in opti-
cal lattices, and the study of low-dimensional systems (see
for instance [1,2] for a review). When the temperature is
further decreased, new exotic phases are predicted (p-wave
superfluids for spin imbalanced gases, antiferromagnetic
order . . . [1,3,4]) and, as a consequence, intense experi-
mental effort is currently under way to push the tempera-
ture limit achieved in ultracold fermionic samples in order
to enter these novel regimes.
Most experiments on quantum degenerate gases begin

with a laser cooling phase that is followed by evaporative
cooling in a non-dissipative trap. Achieving quantum
degeneracy depends critically on the collision rate at the
end of the laser cooling phase and sub-Doppler cooling [5]
is often a key ingredient for initiating efficient evaporation.
In the case of fermionic lithium-6 and potassium-40, the
narrow hyperfine structure of the P3/2 excited level does
not allow for efficient Sisyphus sub-Doppler cooling to the
red of a F → F ′ = F +1 atomic transition [6,7].
Experiments for producing quantum degenerate gases

of 40K typically start with ∼ 108 atoms laser-cooled

(a)These authors contributed equally to this work.
(b)E-mail: diogo.fernandes@lkb.ens.fr
(c)E-mail: franz.sievers@lkb.ens.fr

to the Doppler limit (145µK) [8]. More refined laser-
cooling schemes have produced 40K temperatures
of ∼ 15µK, but with only reduced atom numbers
(∼ 107) [7,9,10]. This relatively poor efficiency is due to the
combination of the fairly narrow and inverted hyperfine
level structure of the P3/2 excited state which results in
the washing out of the capture velocity of the molasses
when the laser detuning is increased [11]. To overcome
these limitations, two groups recently realized Magneto-
Optical Traps (MOT) in the near-UV and blue regions of
the spectrum to cool 6Li [12] and 40K [13], respectively.
The associated transitions, being narrower than their
D2 counterparts, lead to a smaller Doppler temperature
and were used to improve the final phase space density
typically by one order of magnitude.
In this letter, we report efficient sub-Doppler cooling of

40K atoms using gray molasses on the D1 atomic transition
at 770 nm. Thanks to the much reduced fluorescence
rate compared to standard bright sub-Doppler molasses,
we could produce cold and dense atomic samples. The
temperature of a tightly compressed cloud of 6.5× 108
atoms was decreased from ∼ 4mK to 20µK in 8ms
without significant change of the density in the process.
After transfer to a quadrupole magnetic trap, we achieved
a phase space density of ∼ 2× 10−5.

Gray molasses. – Sub-Doppler cooling using gray
molasses was proposed in ref. [14] and realized in the mid
1990s on the D2 atomic transition of cesium and rubidium,
allowing one to cool atomic samples close to 6 times the

63001-p1
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Fig. 1: Gray-molasses scheme. On a F → F ′ = F or F → F ′ =
F − 1 optical transition with positive detuning, the ground
state splits into a dark and a bright manifold with positive
energy, shown as |ψD〉 and |ψB〉, respectively. In the presence
of a polarization gradient, the bright-state energy is spatially
modulated. Like in Sisyphus cooling, energy is lost when an
atom in |ψB〉 climbs a potential hill before being pumped back
into the dark state |ψD〉. Motional coupling between |ψD〉 and
|ψB〉 occurs preferentially at the potential minima.

single-photon recoil energy [15–17]. For an atomic ground
state with angular momentum F , gray molasses operate
on the F → F ′ = F (F → F ′ = F − 1) optical transition.
For any polarization of the local electromagnetic field,
the ground-state manifold possesses one (two) dark states
which are not optically coupled to the excited state by
the incident light [14,18]. When the laser is detuned to
the blue side of the resonance, the ground-state manifold
splits into dark states which are not affected by light and
bright states which are light-shifted to positive energy by
an amount which depends on the actual polarization and
intensity of the laser field (see fig. 1).
When the atom is in a bright state, it climbs up the hill

of the optical potential before being pumped back to the
dark state near the top of the hill. The kinetic energy of
the atom is thus reduced by an amount of the order of the
height of the optical potential barrier. The cooling cycle
is completed near the potential minima by a combination
of motional coupling and optical excitation to off-resonant
hyperfine states.
We implement 3D gray-molasses cooling in 40K on the

D1 transition (see fig. 2). In alkali atoms, the P1/2 excited
level manifold has only two hyperfine states, which are
better resolved than their P3/2 counterparts. These facts
allow for less off-resonant excitation and a good control
of the cooling mechanism. A first laser beam (cooling
beam) is tuned to the |2S1/2, F = 9/2〉→ |2P1/2, F ′ = 7/2〉
transition with a detuning δ > 0. A second laser beam

Fig. 2: Level scheme for the D1 transition of
40K and transitions

used for gray-molasses cooling. The laser detuning from the
cooling/repumping transitions is δ and the detuning from the
off-resonant excited hyperfine state F ′ = 9/2 is δ2 (see text).

(repumping beam) is tuned to the |2S1/2, F = 7/2〉→
|2P1/2, F ′ = 7/2〉 transition with the same detuning δ.
As mentioned above, two mechanisms can lead to the

departure from the dark state. The first one is the motional
coupling Vmot due to the spatial variations of the dark
state internal wave function induced by polarization and
intensity gradients. The second one is the dipolar coupling
Voff via off-resonant excited hyperfine states. A rough
estimate shows that Vmot ≃ �kv, where v is the velocity
of the atom and k the wave vector of the cooling light,
while Voff ≃ �Γ (Γ/δ2) I/Isat, where Γ−1 is the lifetime of
the excited state, I the light intensity, Isat the saturation
intensity and δ2 the detuning to off-resonant excited
state. Comparing the two couplings, we see that the
motional coupling is significant in the high velocity regime
v� Γ/k (Γ/δ2) I/Isat. In our case, the off-resonant level
F ′ = 9/2 (see fig. 2) is detuned by δ2 = 155.3MHz+ δ
from the cooling transition |2S1/2, F = 9/2〉→ |2P1/2, F ′ =
7/2〉. For I ≃ Isat, motional coupling dominates for T �
50µK, meaning that both processes are expected to be
present in our experiments. In general, the transition rate
between |ψD〉 and |ψB〉 induced by motional coupling Vmot
and the off-resonant coupling Voff are both maximal when
the distance between the dark and bright manifolds is
smallest, which favors transitions near the bottom of the
wells of the optical lattice.
In 40K, the simplified discussion presented so far must

be generalized to the case involving many hyperfine states
(10+8). However, the essential picture remains valid.
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Indeed, by numerically solving the optical Bloch equations
for the 40K system in the presence of the cooling and
repumping laser fields, we obtain the light shifts ǫ and the
total optical pumping rates γ of all the dressed states for
an atom at rest (see fig. 3). This is done for the particular
case of a one-dimensional optical lattice in the lin⊥lin
configuration and with a low repumping intensity (1/8 of
the cooling beam intensity, typical for our experiments).
In fig. 3a) we see 8 bright states, 2 weakly coupled states
and 8 dark states combining both hyperfine manifolds.
In fig. 3b) we plot the optical pumping rates of the
corresponding dressed states. We find that the optical
pumping rate is low for the weakly coupled states and
it practically vanishes for the dark states. In fig. 3c)
the optical pumping rates display a good correlation
with the light shift magnitude, which favors efficient sub-
Doppler cooling. Note also the long-lived dark states. This
correlation shows that the gray-molasses picture remains
valid for this more complex level scheme.
We now turn to the question of the capture velocity of

the gray-molasses scheme. Let Γ′ be the optical pumping
rate from bright to dark states. The atom is pumped
efficiently towards dark states if it stays a time τ � Γ

′
−1

near the top of the hill. If the atom moves at a velocity
v in the lattice, then τ ≃ 1/kv and the optical pumping
to dark states is efficient when kv� Γ′. vc ≃ Γ′/k thus
defines the capture velocity of the gray molasses. For a
beam with detuning δ to the main cooling transition,
Γ′ ∝ I/δ2 and thus vc increases with laser intensity. On
the other hand, the cooling efficiency is reduced when the
atom cannot climb the potential hill anymore, which leads
to an equilibrium temperature that scales as kBT ∝ I/δ,
when T ≫ TRecoil = �2k2/2mkB [5,19].

Experimental results. – Our setup is based on
the apparatus presented in [20]. In the experiments
presented here, 6.5× 108 40K atoms are loaded from
a two-dimensional magneto-optical trap (2D-MOT)
into a three-dimensional magneto-optical trap (MOT)
operating on the D2 line. The initial temperature of the
cloud is 200µK, not far from the Doppler temperature
TD = �Γ/2kB = 145µK, with Γ/2π≈ 6.035 MHz. In the
MOT, the cooling and repumping laser intensities are
Icool = 13Isat and Irepump = Icool/20 per beam, with
Isat = 1.75 mW/cm

2. After the loading phase, we ramp
the magnetic field gradient from 9G · cm−1 to 60G · cm−1
in 5ms without changing the laser detunings in order to
compress the cloud. This process yields a cloud with high
density, but with a much higher temperature of ∼ 4mK.
At this point the magnetic field is switched off in ≃ 100µs
and the D1 molasses beams are switched on for a time τm.
The D1 cooling and repumping beams are detuned by

the same amount δ in the range of 2Γ–5Γ as shown in fig. 2.
The repumping beam is detuned from the main cooling
beam by 1285.8MHz using an electro-optical modulator.
Its intensity is typically 1/8 of the cooling beam intensity.
After propagation through an optical fiber, the total D1
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Fig. 3: (Color online) Semi-classical calculation of the effect
of dual frequency counterpropagating laser beams in a 1D
lin⊥lin configuration on a 40K atom at rest. a) Light shifts
ǫ vs. position; b) optical pumping rates γ; c) optical pumping
rates vs. light shifts. The laser intensities are Icool = 20Isat and
Irepump = Icool/8 per beam, with δ=+3Γ. The different lines
correspond to the 18 dressed states of the 2S1/2 ground state.
At z = λ/8 the local polarization is σ+ and here each curve
corresponds to a pure mF state. At this position the light shift
increases with −mF . The |

2S1/2, F = 7/2〉 manifold interacts
only weakly with light since the repumping beam is kept at low
intensity. Consequently, the light shifts and optical pumping
rates are small.

optical power is 240mW and the beam is magnified to
a waist of 1.1 cm. We then split the beam into two
vertical beams and two retro-reflected horizontal beams in
a three-dimensional σ+/σ− configuration. The maximum
D1 cooling intensity per beam attained in our experiments
is 25mW/cm

2
or I = 14Isat.

We first measure the atom number and temperature
of the D1 molasses as a function of the cooling beam
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Fig. 4: (Color online) a) Number of atoms captured in the
D1 molasses (circles) and their temperature (triangles) as a
function of molasses duration. The number of atoms in the
compressed MOT was 4.5× 108. b) Measured fluorescence
during the MOT and the D1 molasses phase. Both experiments
were performed with Icool = 14Isat, δ= 2.3Γ and Irepump =
Icool/8.

duration τm (fig. 4). The temperature is determined by
time of flight. At high intensity Icool = 14Isat and detuning
δ= 2.3Γ, all 4.5× 108 compressed MOT atoms are cooled
to a temperature of 30µK in 6 to 8 ms. Although the
initial temperature of the compressed MOT is rather
high, D1 cooling occurs rapidly. As shown in fig. 4a),
the temperature drops from ∼ 4mK to 100 µK in 2 ms,
and reaches its asymptotic value in about 6 ms. These
dynamics are confirmed by direct measurement of the
fluorescence light emitted during the D1 molasses phase,
as displayed in fig. 4b). The fluorescence exhibits a fast
decay in ∼ 200µs to about 20% of the MOT light followed
by a slower decay in ∼ 3ms to 10%, which indicates the
accumulation of atoms in weakly coupled states.
When repeating the experiment for lower D1 laser inten-

sities for a fixed time of 6 ms, we observe both a decrease
of the number of atoms cooled by gray molasses and a
further lowering of the temperature down to 24µK (fig. 5).
The number of atoms is measured after a time of flight of
20 ms, after which we would not detect any atoms in the
absence of D1 molasses. The capture efficiency increases
with the cooling intensity indicating a higher capture
velocity at higher laser intensity and it reaches ∼ 100%
for I � 11Isat. Similarly, the equilibrium temperature
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Fig. 5: (Color online) Number of atoms captured in the
D1 molasses (circles) and their temperature (triangles) as a
function of the D1 cooling beam intensity for δ= 2.3Γ and
Irepump = Icool/8. The number of atoms in the compressed
MOT was 6.5× 108 and the capture efficiency reaches ∼ 100%
for I � 11Isat.
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Fig. 6: (Color online) Number of atoms captured in the D1
molasses (circles) and their temperature (triangles) after a 6ms
capture phase at high intensity Icool = 14Isat followed by a 2ms
linear intensity ramp to adjustable value. The detuning is fixed
to δ= 2.3Γ. The number of atoms in the compressed MOT was
7× 108.

increases with laser intensity in the explored range in
agreement with Sisyphus-type cooling mechanisms.
The results of fig. 4 and fig. 5 suggest implementing a

cooling sequence with two successive phases. A first phase
lasting 6ms at high D1 cooling intensity takes advantage
of the high capture velocity. This phase is followed by a
2ms stage in which the intensity is linearly reduced by
an adjustable amount to further lower the temperature.
As illustrated in fig. 6, this supplementary cooling phase
allows the sample to reach a temperature of 20µK by
reducing the intensity by one order of magnitude and
without any atom loss. No significant change of the atomic
cloud volume was observed during this 8ms sequence.
In fig. 7, we show the number of atoms captured in the

D1 molasses and their temperature as a function of the
laser detuning δ for the complete 8 ms sequence. For δ ∈
[0.5Γ, 2Γ], we observe a steep decrease of the temperature
from 100µK to 30µK, as expected from Sisyphus cooling,
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Fig. 7: (Color online) Number of atoms captured in the D1
molasses (circles) and their temperature (triangles) for the
dynamic 8 ms cooling sequence as a function of the detuning
δ. The number of atoms in the compressed MOT was 6× 108.

followed by a plateau near 30µK for detunings above
2Γ. The capture efficiency raises sharply to ∼ 100% at
δ∼ 2.3Γ, displays a broad maximum and slowly decreases
above 4Γ, indicating a decrease of the capture velocity.
We have also scanned the intensity and the detuning

of the repumping laser. We observe a very weak depen-
dence of the molasses temperature and capture fraction
upon repumping intensity. On the other hand, when scan-
ning the repumper detuning, we observe that cooling is
optimal within 300 kHz from the exact Raman condi-
tion. This points to the existence of long-lived coherences
between the two hyperfine manifolds |2S1/2, F = 9/2〉 and
|2S1/2, F = 7/2〉, resulting in the formation of new inter-
manifold dark states. Finally, optimal parameters for 40K
gray molasses are summarized in table 1.
We checked that the minimum temperature of 20µK

is not limited by residual magnetic fields nor by atomic
density. We found that the residual magnetic field during
the D1 molasses should be minimized. Indeed, introducing
a small tunable bias magnetic field B in the vertical direc-
tion, the D1 molasses temperature increased quadratically
as ∆T ≈ 80B2µK/G2. For this reason, the stray magnetic
field was cancelled to less than 100 mG in three direc-
tions using compensation coils. We also searched for a
density dependent temperature limitation and observed
no significant temperature change when the density was
reduced by a factor of 4 from n0 ∼ 2× 1010cm−3. Model-
ing gray-molasses cooling in three dimensions in order to
understand the temperature limit remains today an open
problem.

Magnetic trapping. – After the D1 molasses
phase, the atoms are optically pumped to the
|2S1/2, F = 9/2,mF = 9/2〉 stretched state and then
transferred into a quadrupole magnetic trap. The σ+

polarized optical pumping laser beams are pulsed for
120µs in the presence of a bias magnetic field. After this
phase, the trap axial magnetic field gradient is raised
from 0 to 37G · cm−1 in 3 ms, followed by a compression

Table 1: Optimized parameters for 40K D1 gray molasses. Using
these parameters, all the 6.5× 108 atoms from a compressed
MOT are cooled to 20µK in D1 gray molasses.

Duration (ms) Icool(Isat) δ(Γ)

Capture phase 6 14 +2.3
Cooling phase 2 14→1 +2.3

to 76 G·cm−1 in 147 ms and a thermalization stage
lasting 350 ms during which the field gradient remains
constant. At this point we detect 2.5× 108 atoms at
a temperature of 80µK. Assuming that all atoms are
in the |F = 9/2,mF = 9/2〉 stretched state, the central
phase-space density is PSD= n0λ

3
dB ≈ 2× 10−5. In the

absence of gray-molasses phase, the central phase-space
density is about 100 times lower. From the p-wave
cross-section σ≈ 2× 10−11 cm2 at a temperature of 80µK
measured in [21], we estimate the trap averaged initial
collision rate to be γcoll = n0σv̄/8

√
2≈ 23 s−1. This rate

is quite favorable for initiating evaporative cooling.

Conclusion. – We have shown that gray molasses
operating on the D1 optical transition is a very simple
and powerful method to increase the phase space density
of laser-cooled 40K alkali gases to ∼ 10−5. This phase
space density leads to excellent starting conditions for
evaporative cooling in magnetic or optical dipole traps.
For 40K, this is particularly useful as the low temperature
allows direct transfer into an optical trap and magnetic
tuning to a Feshbach resonance for efficient evaporation.
Moreover, our results open the way for sub-Doppler
cooling of other atoms with narrow P3/2 excited states,
such as 6Li and 7Li. We already have experimental
evidence for sub-Doppler D1 cooling of

6Li and 7Li and
this will be the subject of a future publication.
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[7] Modugno G., Benkö C., Hannaford P., Roati G.
and Inguscio M., Phys. Rev. A, 60 (1999) R3373.

[8] DeMarco B. and Jin D. S., Science, 285 (1999) 1703.
[9] Taglieber M., Voigt A.-C., Aoki T., Hänsch T. W.
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We report on simultaneous sub-Doppler laser cooling of fermionic 6Li and 40K using the D1

optical transitions. We compare experimental results to a numerical simulation of the cooling
process applying a semi-classical Monte Carlo wavefunction method. The simulation takes into
account the three dimensional optical molasses setup and the dipole interaction between atoms and
the bichromatic light field driving the D1 transitions. We discuss the physical mechanisms at play,
we identify the important role of coherences between the ground state hyperfine levels and compare
D1 and D2 sub-Doppler cooling. In 5ms, the D1 molasses phase largely reduces the temperature for
both 6Li and 40K at the same time, with a final temperature of 44µK and 11µK, respectively. For
both species this leads to a phase-space density close to 10−4. These conditions are well suited to
directly load an optical or magnetic trap for efficient evaporative cooling to quantum degeneracy.
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INTRODUCTION

The road towards quantum degeneracy in atomic gases
usually starts with a laser cooling and trapping phase.
The resulting initial phase-space density of the atomic
ensemble and the initial collision rate should be as large
as possible for initiating efficient evaporative cooling to
quantum degeneracy. Sub-Doppler cooling has proven
to be a powerful technique to increase the phase-space
density of most alkali atoms and other atoms with multi-
ple level structure [1–3]. However, in the case of lithium
and potassium, the narrow excited-state structure of the
D2 transition compromises the efficiency of this cooling
scheme [4, 5]. Both species possess stable fermionic and
bosonic isotopes, and they play an important role in re-
cent experimental studies of strongly correlated quan-
tum gases. Thus, important efforts have been devoted to
search for alternative laser cooling schemes.

For instance, it has recently been shown that three di-
mensional Sisyphus cooling for 7Li, some GHz red de-
tuned from the D2 line, can lead to temperatures as
low as 100µK with up to 45% of the atoms in the
cooled fraction [6]. A second option is to operate the
magneto-optical trap (MOT) on a transition with smaller
linewidth to reduce the Doppler temperature [7–9]. Such
transitions exist for 6Li and 40K in the near-UV and blue
regions of the spectrum, respectively, leading to tempera-
tures of 33µK for 6Li and 63µK for 40K. Yet, special op-
tics and a coherent source at 323 nm for 6Li and 405 nm
for 40K are needed for this approach. Additionally, at
these wavelengthes the available power is still a limiting
factor.
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More recently a simpler sub-Doppler cooling scheme
using blue detuned molasses operating on the D1 line was
proposed and demonstrated on 40K [10] and has been
extended to other atomic species such as 7Li [11], 39K
[12, 13] and 6Li [14]. Using this technique, temperatures
as low as 20 µK (40K), 50 µK (7Li), 6 µK (39K) and
40 µK (6Li) were reached.
Even though the main ingredients of the D1 cooling

scheme are now understood at a qualitative level, in
particular the role of the coherences between hyperfine
ground-state levels [11], a complete picture, taking into
account the full level-structure of the atoms, is still miss-
ing. In this paper, we present a three-dimensional semi-
classical solution of the optical Bloch equations that takes
into account the full set of relevant energy levels of alkali
atoms and we apply it to the case of 6Li and 40K. The
model fully confirms the experimentally observed cooling
behaviour and its robustness with respect to changes in
experimental parameters. The model is validated by a
good match between the simulation and the experimen-
tally measured temperature and fluorescence rate. We
recover the important role of the Raman-detuning be-
tween the main cooling laser and the repumping laser
on the achievable temperature. We show here for both
6Li and 40K, that the gain in temperature of a factor of
∼3 at the exact Raman-resonance is well reproduced by
the theoretical model and that the amount of coherence
between both hyperfine states shows a pronounced res-
onance behavior. Beyond individual studies of the two
species, we also show experimentally that simultaneous
cooling of 6Li and 40K does not lead to any severe trade-
off and is technically easy to implement. We are able to
capture more than 1 × 109 atoms of each species, with
a capture efficiency exceeding 60% from a compressed
magneto-optical trap (CMOT), and reach temperatures
as low as 44µK for 6Li and 11µK for 40K within 5ms.

I. D1 COOLING MECHANISM

In a typical D1 cooling setup (Fig. 1), all the D1 hy-
perfine levels are involved in the interaction. The sub-
Doppler cooling effects include a mix of Sisyphus cooling,
motion-induced and off-resonant light coupling from gray
to bright levels, and coherent population trapping of slow
atoms in nearly decoupled states. In this section we first
introduce our semi-classical laser cooling model. We then
present and compare the results from experimental ob-
servations and numerical simulations, and finally discuss
the physical mechanism of D1 cooling.

A. Semi-classical Monte Carlo simulation

The level diagrams of our bichromatic cooling scheme
for both 6Li and 40K are depicted in Fig. 1. The D1

molasses is composed of a 3D lattice whose polariza-
tion configuration is the same as that of a six-beam

standard MOT, but with two sidebands to address the
|F = 3/2〉 and |F = 1/2〉 hyperfine ground states of 6Li
(resp. |F = 9/2〉 and |F = 7/2〉 for 40K) in the D1 Λ-
system at positive detunings.

Here, by convention, we refer to the |F = 3/2〉 → |F ′
h〉

and |F = 1/2〉 → |F ′
h〉 transitions as cooling/repumping

transitions. It is however important to notice that neither
the cooling nor the repumping D1 transitions are actually
closed.

Our numerical simulation of the cooling process is
based on a semi-classical Monte Carlo wavefunction
method. The simulation takes into account the three
dimensional optical molasses setup and the dipole in-
teraction between the single atoms and the polarized
light driving the transitions of the D1 manifold, which
is spanned by the 4(2I+1) hyperfine Zeeman sub-levels
(I > 0 is the nuclear spin). We treat the external states of
the atom classically and update its position r(t) and ve-
locity v(t) according to the calculated expectation value
of the light force

f(t) =
〈ψ(t)| − ∇Heff(r(t)) |ψ(t)〉

〈ψ(t)|ψ(t)〉 . (1)

The atomic internal states |ψ(t)〉 evolve in a dressed basis
with respect to the cooling laser (Fig. 1), according to
the Monte Carlo wave function method [15, 16] with the
effective rotating-wave Hamiltonian

Heff = H0 +HF=I−1/2 +HF=I+1/2 − iΓ̂/2, (2)

where

H0 =
∑

m

|F = I − 1/2,m〉 ~∆ 〈F = I − 1/2,m|

−
∑

F ′m′

|F ′,m′〉 ~(δcool + δhfs,F ′) 〈F ′,m′| . (3)

Here H0 operates over the whole D1 manifold, δcool is
the detuning of the cooling laser with respect to the F =
I + 1/2 → F ′

h transition, where F ′
h (Fig. 1) corresponds

to the excited hyperfine level that is higher in energy, e.g.
F ′
h = 3/2 for 6Li and F ′

h = 7/2 for 40K. ∆ = δrep−δcool is
the two-photon detuning for the F = I − 1/2 → F = I +
1/2 Raman-transition, and δhfs,F ′ the hyperfine splitting
of the excited state for F ′

l and zero for F ′
h.

The light-atom coupling Hamiltonian

HF=I±1/2 = ~

∑

m,σ,F ′,m′

ΩF,σ cF,m,σ,F ′,m′

× |F,m〉 〈F ′,m′|+ h.c. (4)

describes the cooling (F = I + 1/2) and repumping
(F = I − 1/2) interactions [17]. Here ΩF,σ are the Rabi
frequencies of the repumping and cooling laser beams for
F = I − 1/2, I + 1/2 respectively. cF,m,σ,F ′m′ represent
the Clebsch-Gordan coefficients associated with the tran-
sitions coupled by σ polarized light. To take into account
the radiation damping we include the spontaneous emis-
sion rate Γ̂ = ΓP̂ee where Γ is the excited-state linewidth
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FIG. 1. (Color online) Cooling scheme on the 6Li and 40K D1 lines. The cooling beam (blue) is blue detuned by δcool
from the |F = 3/2〉 → |F ′

h = 3/2〉 (|F = 9/2〉 → |F ′
h = 7/2〉) transition where F ′

h (F ′
l ) is the upper (lower) excited state

level. The repumping beam (red) is blue detuned by δrep from the |F = 1/2〉 → |F ′
h = 3/2〉 (|F = 7/2〉 → |F ′

h = 7/2〉)
transition. The detuning from the Raman-condition is denoted by ∆ = δrep − δcool.

and P̂ee =
∑

F ′,m′ |F ′m′〉 〈F ′m′|. This leads to a de-

cay of the internal state wave function norm 〈ψ(t) |ψ(t)〉.
The speed of this decay probabilistically dictates the col-
lapse of the internal quantum states in the numerical
simulation, which corresponds to spontaneous emission.
We take into account the polarization of the spontaneous
scattering photon and follow the standard quantum jump
procedure to project the atomic states to ground states
with its norm reset to unity [15]. A recoil momentum
shift is then assigned to v(t) before continuing to evolve
|ψ(t)〉 via Heff(r(t)).
The simulations are performed with parameters match-

ing the experimental setup by properly introducing the
spatially-dependent ΩF,σ(r), the detunings ∆, δcool, and
atomic initial conditions. To reproduce experimental
conditions, we fix the relative phases for all the 12 cool-
ing and repumping laser beams at values randomized
for each simulation trial. We record the evolution of
the 3D atomic velocity, the time-stamped fluorescence
events corresponding to quantum jumps, as well as inter-
nal states properties such as state population and coher-
ence. The observables are averaged over multiple simu-
lation trials for comparison with the experiment.

B. Raman-detuning dependence for 6Li

A critical parameter in the D1 molasses scheme is the
Raman-detuning ∆ (Fig. 1). In the following we investi-
gate the Raman-detuning dependence of the 6Li molasses
temperature and fluorescence rate both theoretically and
experimentally, for various cooling and repumping laser
intensities.

Our 6Li-40K machine is described in [18]. We first load
a lithium MOT using a laser slowed atomic beam (Zee-
man slower). After a compressed MOT phase the mag-
netic field and the D2 light are switched off and the D1

molasses is applied (a more detailed description of the
sequence is presented in the Appendix). To probe the
Raman-detuning dependence we apply a 100µs D1 mo-
lasses pulse with variable ∆ to an atomic cloud precooled
to 100µK. Figures 2a and 2b show the fluorescence rate
and the temperature after the pulse as functions of the
Raman-detuning ∆ for the intensities used in the simu-
lations. We observe a temperature dip at zero Raman-
detuning and a heating/fluorescence peak at positive ∆
whose position and amplitude are correlated to the mo-
lasses intensity.

In the simulations we set the initial velocity of lithium
to 0.2 m/s (T ∼ 30 µK). The simulation time is set to
200 µs. In the first 100 µs we allow the cooling dy-
namics to equilibrate, and during the second 100 µs we
record the velocity v(t) as well as the time-stamped quan-
tum jump events to calculate the equilibrium tempera-
ture and fluorescence rate. At each Raman-detuning we
average over 25 trajectories. The simulation results for
two different intensities Icool = 2.7 Isat, Irep = 0.13 Isat
and Icool = 9 Isat, Irep = 0.46 Isat are shown in Figs. 2c
and 2d, respectively (here Isat refers to the saturation
intensity of the D2 line).

The simulated heating/fluorescence peak positions for
low and high intensities (Fig. 2) agree well with the ex-
perimental findings. Also the shift between the heating
and fluorescence peak, which increases with the molasses
intensity, is numerically reproduced without any freely
adjustable parameters.
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(c) Simulation: Low intensity

−1 −0.5 0 0.5 1

0.2

0.4

0.6

0.8

1

Raman-detuning ∆ (Γ)

F
lu
or
es
ce
n
ce

ra
te

(
1
/µ

s)

101

102

103

T
em

p
er
at
u
re

(
µ
K
)

(d) Simulation: High intensity

FIG. 2. (Color online) Fluorescence (squares) and temperature (triangles, logarithmic scale) of the 6Li atomic cloud
after a 100µs pulse of D1 light with variable Raman-detuning ∆. (a) and (c) show the experimental and simulation

results for Icool = 2.7 Isat, Irep = 0.13 Isat, (b) and (d) for Icool = 9 Isat, Irep = 0.46 Isat per beam.

We next study the same Raman-detuning dependent
effects, but for different cooling/repumping ratios. Typ-
ical experimental and simulation results are presented in
Fig. 3. Here again, the simulation parameters are cho-
sen according to the experimental values. The simulation
and experiments match fairly well. In particular, for the
usual configuration with Icool/Irep > 1 (Icool = 9 Isat
and Irep = 0.45 Isat), we observe a heating peak at
∆ > 0. When inverting the roles of the cooling and
repumping light, i.e. Icool/Irep < 1 (Icool = 0.18 Isat and
Irep = 1.2 Isat), the heating peak appears for ∆ < 0
instead. In all cases, cooling is most efficient at the
Raman-resonance (∆ = 0). Finally, for Icool equal to
Irep, both as large as 9 Isat, we observe less efficient cool-
ing at ∆ = 0 with moderate heating at blue and red
detunings. Despite the nice match between simulations
and experiments in Figs. 2 and 3, we observe that the
semi-classical simulations provide temperatures that are
systematically lower than the measured ones, particu-
larly near the Raman-resonance condition ∆ = 0. The
reason for this is not fully understood and may come

both from theory and experimental limitations. In the
semi-classical simulation, we observe that slow atoms are
likely trapped within sub-wavelength regions, where the
light shift is minimal and the atom is nearly decoupled
from light over a long time without quantum jump. This
coherent population trapping effect enhances the cool-
ing at both large and small ∆, although it is most pro-
nounced at the Raman-resonance (∆ = 0) since more
choices of decoupled states emerge. The semi-classical
picture clearly exaggerates the cooling effect since the
wave nature of the atom’s external motion is not included
in the model. In fact, the wave function of the slow
atoms will sample a larger volume of the sub-wavelength
traps and will shorten the lifetime of the dark periods.
Another reason for shortening the lifetime of dark peri-
ods of the slow atoms is re-absorption of photons emit-
ted by other atoms. We have indeed seen a density de-
pendent excess temperature which we measured to be
4.6µK× 1011 at./cm3 for 40K. A careful simulation of
cooling including photon re-absorption processes is far
more complex and is beyond the scope of this work.
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(b) Simulation

FIG. 3. (Color online) Temperature of the 6Li D1 mo-
lasses after a 100µs pulse with variable Raman-detuning
∆ for different cooling and repumping intensities. Stan-
dard intensities (red circles): Icool = 9 Isat, Irep =
0.46 Isat. Equal cooling/repumping ratio (black squares):
Icool = Irep = 9 Isat. Inverted cooling/repumping ratio

(blue triangles): Icool = 0.18 Isat, Irep = 1.2 Isat.

C. Raman-detuning dependence for 40K

Typical simulation results for 40K are shown in Fig. 5a.
Compared to 6Li, simulations for 40K require significant
higher computational power due to larger internal state
dimensions as well as a larger atomic mass and therefore
slower cooling dynamics. To save computation time, we
start at a velocity of 0.2 m/s (T ∼ 50 µK), and set the
simulation time to 2 ms. We record the velocity v(t)
as well as the time-stamped quantum jump events for
t > 1ms to calculate the fluorescence rate. For each
Raman-detuning ∆, 13 trajectories are simulated.

Experimental results for 40K are presented in Fig. 4,
showing the temperature and atom number of the D1

molasses as functions of the Raman-detuning ∆. The
total molasses duration tm = 5ms. In the last 2 ms a lin-
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FIG. 4. (Color online) Experiment: Atom number and
equilibrium temperature of the 40K D1 molasses as func-
tions of the Raman-detuning ∆. δcool = 3Γ, Icool =
6 Isat, Irep/Icool = 7.6%, tm = 5ms. In the constant
temperature regions below−0.1Γ and above 2Γ gray mo-
lasses cooling involves coherences between Zeeman states
in a given hyperfine state but not between hyperfine
states. At the exact Raman-condition ∆ = 0, long-lived
coherences between hyperfine states are established, as
can be seen in the simulation in Fig. 5. In a narrow de-
tuning range, the temperature (red triangles) drops to

20µK (inset: expanded scale).

ear intensity ramp to Icool = 6 Isat is performed. Just
like 6Li, we observe a sharp temperature drop at the
Raman-condition, a heating resonance at ∼0.7Γ and con-
stant temperature regions below −0.1Γ and above 2Γ.
For the constant temperature regions the temperature
T ∼ 45µK is small compared to the Doppler-temperature
TDoppler,K = 145µK. On the Raman-condition the tem-
perature decreases to 23µK. In carefully optimized con-
ditions we measured temperatures as low as 11µK.
As for 6Li, the comparison between Fig. 4 and Fig. 5a

again demonstrates the qualitative agreement between
simulations and experimental results and that the heat-
ing peak position is reproduced by the simulation without
adjustable parameters. Interestingly the inverted hyper-
fine structure in the ground and excited states of 40K and
the different F → F ′ = F − 1 transition for the cooling
laser and F → F ′ = F repumping transition does not
significantly modify the D1 cooling scheme as compared
to 6Li.

D. The D1 cooling mechanism

The agreement between simulation and experiment
suggests that the semi-classical picture is able to catch
the essential physics behind the D1 molasses cooling. In
particular, the mechanisms behind the cooling dips and
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FIG. 5. (Color online) Hyperfine coherence and Λ-
enhanced cooling for the 40K D1 molasses. Simulation
time 2ms, δcool = 3Γ, Icool = 6 Isat, Irep/Icool = 7.6%.
(a) Fluorescence (squares) and temperature (triangles)
as functions of the Raman-detuning ∆. (b) Coher-
ence 4 · 〈ρ2F=7/2,F=9/2〉 between the two hyperfine ground

states F = 7/2 and F = 9/2 (see Section I E). The coher-
ence is peaked at the Raman-resonance condition, with

a width matching the temperature dip.

heating peaks in Figs. 2 to 4, previously interpreted us-
ing the dressed atom picture with a simplified three-level
model [11], survive in the full level scheme of the D1

transition.

It is well known that efficient D2 sub-Doppler cool-
ing requires isolated excited hyperfine levels for alkaline
atoms [4, 5]. In contrast, the D1 gray molasses operates
well even when all D1 levels are excited (as is the case
of 6Li) and even at zero excited-state hyperfine splitting
as confirmed numerically. The robustness of D1 molasses
is also seen in its insensitivity to the relative phase be-
tween the “cooling” and “repumping” lattices, a critical
parameter for D2 bichromatic cooling where no polariza-
tion gradient was introduced [19].

In the following we discuss the physics behind the ro-
bustness of the D1 sub-Doppler cooling. We then revisit
the cooling dips and heating peaks in Figs. 2 to 4.

We notice all the dipole allowed D1 transitions (Fig. 1)
are “open”: when addressed with weak off-resonant light,
the probability of inelastic (mF - or F -changing) photon
scattering is comparable to or larger than that of elas-
tic scattering. When blue detuned from the D1 transi-
tions, an off-resonant bichromatic lattice can establish a
correlation between the spatially varying light shift (due
to virtual elastic scattering) and decay (due to real in-
elastic scattering) for the dressed ground states, since a
larger light shift is accompanied with a stronger light-
atom coupling and typically a larger inelastic scattering
cross-section.

We verify this idea with the full D1 model for 6Li atoms
subjected to a 1D lattice with orthogonal linear polar-
izations (lin⊥lin configuration) with typical cooling pa-
rameters. The spatially varying light shifts ǫ of the six
dressed ground states of 6Li are plotted in Fig. 6a. The
decay of the dressed states, due to inelastic light scatter-
ing, are characterized by the decay rate γ that is plotted
versus ǫ in Fig. 6d. We see a correlation between ǫ and γ
for ǫ < 1.5 MHz. Such correlation is robustly established
for the D1 transitions, as verified numerically in the more
complicated 3D lattices and for other atomic species. The
correlation even persists for a fictitious atom with van-
ishing D1 hyperfine splitting and thus suppressed mF -
changing light scattering [20].

Such a correlation between the spatially dependent
light shift ǫ and decay rate γ has two consequences:
First, atoms with kv < γ tend to accumulate in
dressed states with low light shifts, which facilitates cool-
ing through motion-induced coupling to higher energy
dressed states [21]. Second, for a slowly moving atom
that adiabatically follows a particular dressed state, the
atom tends to leave the dressed state when the light
shift is high, leading to Sisyphus cooling. In addition,
at locations where ǫ, γ ∼ 0, slow atoms can be confined
near the local dark states such as those in Fig. 6a near
x = 0, λ/8, λ/4, 3λ/8 [22]. The resulting optical cool-
ing force is plotted in Fig. 6g and is negative (cooling
effect) over a broad range. We emphasize that this sim-
plified 1D analysis remains valid in the more complex 3D
beam geometry and is not restricted to 6Li atoms. The
D1 laser cooling mechanism applies to all alkalis even
those amenable to efficient D2 sub-Doppler cooling such
as cesium or rubidium. As D1 laser cooling involves dark
states it is less affected by density dependent photon mul-
tiple scattering and heating than D2 sub-Doppler cooling.
Therefore it would be interesting to quantify the gain in
phase-space density by applying D1 sub-Doppler cooling
for these atoms.

In comparison, sub-Doppler cooling on the D2 lines
is significantly different. While the F = I ± 1/2 →
F ′ = I ± 1/2 transitions are as “open” as in D1, the
F = I + 1/2 → F ′ = I + 3/2 and F = I − 1/2 →
F ′ = I − 3/2 have both “closed” and “open” transi-
tions. Here the “closed” transitions are characterized by
a greater-than-unity elastic-to-inelastic scattering ratio.
If the F = I + 1/2 → F ′ = I + 3/2 transitions can be
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FIG. 6. (Color online) Cooling mechanism around Raman-condition in a simplified model. Optical Bloch equation
simulation for 6Li subjected to a 1D bichromatic lattice with linear orthogonal polarizations near D1 resonance. The
cooling lattice and repumping lattice are displaced by π (λ/4). Icool = 15 Isat, Irep = 0.75 Isat, δcool = 4Γ. (a)(b)(c)
dressed states as functions of the position in units of the D1 optical wavelength. The two dressed F = 1/2 levels
(light blue and orange) are nearly flat in all the graphs due to the small Irep. (d)(e)(f) show the decay rate of dressed
states as a function of their energy shifts. Here the two dressed F = 1/2 levels span a very small energy range and are
with low decay rate. (g)(h)(i) show the velocity-dependent optical force for an atom dragged with velocity v. Figs.
(a)(d)(g) are for ∆ = 0; Figs. (b)(e)(h) are for ∆ = Γ/2. Figs. (c)(f)(i) are for ∆ = −Γ/4. Note the negative sign of

the force in (g) and (i) implying cooling, and the anti-cooling force for velocities near 0.5 m/s in (h).

isolated, then by taking advantage of the nearly closed
mF − mF ′ transitions, a correlation between the light
shift and decay rate can be established with (instead)
a red detuned lattice, as in standard sub-Doppler cool-
ing [1–3]. However, in case of small hyperfine splitting
the “open” hyperfine transitions are as well addressed at
red detuning, leading to short-lived potential minima and
degraded correlations, contributing to the inefficiency of
the sub-Doppler cooling [23].

E. Physical picture of the Raman-detuning effect

We now extend the three-level picture of Ref. [11] to
understand the details of the experiment. The cooling
dips observed both experimentally and numerically at
the Raman-resonance condition are also fairly easy to
understand in the full model: At ∆ = 0 the resonant
Raman-coupling splits the F = I± 1/2 hyperfine ground
states into a bright and a dark manifold. The dark man-
ifold is weakly coupled to the molasses. More precisely,
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the coupling strength of the Raman dark manifold is even
weaker than those due to individual cooling/repumping
couplings. Therefore the emergence of the Raman dark
manifold enhances all sub-Doppler cooling effects.
Since the dark manifold is a coherent superposition of

the two hyperfine states F1 = I − 1/2 and F2 = I + 1/2,
we expect that laser cooled atoms mostly occupy the
dark manifold and therefore display a hyperfine coher-
ence ρF1,F2

with significant amplitude. To test this pic-
ture, we record the time-dependent off-diagonal density
matrix quantity 4 · 〈ρ2F1,F2

(t)〉 for all the quantum tra-
jectories of the numerical simulations. The factor 4 en-
sures the normalization to one for the maximally coher-
ent situation. To compute the two-photon detuning ∆
dependent quantity 4 · 〈ρ2F1,F2

〉 we average over both the
equilibrium time and many quantum trajectories at fixed
∆. Typical results for 40K are given in Fig. 5 with the
cooling parameters corresponding to Fig. 4. We see that
the coherence 4·〈ρ2F1=7/2,F2=9/2〉 is peaked at the Raman-

resonance condition and becomes significant with a width
matching the temperature dip.
As in Figs. 2 to 4 and [11] we now explain the heating

peaks with the full D1 model. We first focus on the case
of Icool ≫ Irep so that at large |∆| the dressed F = I−1/2
hyperfine level is relatively long-lived and populated. As
in Figs. 6b,c, the Raman-detuning ∆ determines the en-
ergy level of the dressed F = I−1/2 hyperfine level, and
it is clear that when ∆ < 0, the motion-induced-coupling
to the dressed F = I + 1/2 level should still contribute
to cooling (as in Figs. 6c,f,i) [21], apart from Sisyphus
cooling. On the contrary, for ∆ > max[ǫF=I+1/2], e.g. a
Raman-detuning beyond the maximum light shift of the
dressed F = I+1/2 manifold (as in Fig. 6b,e,h), motion-
induced coupling to the lower energy dressed F = I+1/2
manifold would lead to heating. In addition, the Sisyphus
effect at the F = I + 1/2 manifold also contributes to
heating, since atoms coupled from F = I − 1/2 are more
likely to start at the anti-trap positions. The correspond-
ing heating peak is located at ∆ ∼ max[ǫF=I+1/2] > 0.
When Icool ≪ Irep, the heating peak is shifted to

∆ ∼ −max[ǫF=I−1/2] < 0, as in Fig. 3. This is straight-
forward to understand as the role of the two hyperfine
ground states are now inverted with respect to the pre-
vious case. Finally, for Icool ∼ Irep, the two hyperfine
ground states have similar lifetimes and therefore simi-
lar steady-state populations. As the heating effects are
balanced by cooling effects, the corresponding heating
peaks in Fig. 3 (black squares) at ∆ ∼ max[ǫF=I+1/2],
∆ ∼ −max[ǫF=I−1/2] are substantially suppressed.

II. SIMULTANEOUS 6Li AND 40K D1 COOLING

Finally, we discuss the simultaneous operation of the
6Li and 40K D1 molasses. We found that this simulta-
neous operation is required for subsequent efficient ther-
malization between both species in a quadrupole mag-
netic trap. The timing sequence and parameters are the

same as for single-species operation. Experimental de-
tails are given in the Appendix and in [10]). The D1

molasses phase is composed of a 3ms capture phase and
a 2ms cooling phase. Table I summarizes the optimal
parameters of the dual-species molasses. The presence

Potassium Lithium

P (mW) 230 300

δcool (Γ) 2.3 4

δrep (Γ) 2.3 4

Icool per beam (Isat) 14 14

Icool/Irep 8 20

D line properties 40K 6Li

Γ/(2π) (MHz) 6.04 5.87

Isat (mW/cm2) 1.75 2.54

TABLE I. Parameters of the simultaneous 6Li and 40K
D1 cooling phase.

of the other species reduces the atom numbers in the
MOTs by 4% for 6Li and by 10% for 40K. However,
we observe no mutual influence during the CMOT and
the D1 molasses phase. The temperatures and relative
atom numbers in dual-species operation do not differ
from single-species operation. This has several reasons.
First, the D1 resonances and lasers are ∼100 nm apart
in wavelength. Second, the CMOT and molasses phases
are short in duration (5ms) and the light-induced inter-
species collision losses or heating are minimized as atoms
are accumulated in dark states. Table II summarizes the
performance of the different experimental phases in dual
species-operation. For both 6Li and 40K the D1 molasses
phase largely reduces the temperature while the cloud-
size after the CMOT phase is conserved. For both species
this leads to a phase-space density close to 10−4.

T N n φa

(µK) (×109) (×1010 cm−3) (×10−5)

Lithium

MOT 1000 2 2.6 0.03

CMOT 800 2 18 0.29

Molasses 48 12 7.6 8.2

Potassium

MOT 240 3.2 7 0.02

CMOT 2000 3.2 37 0.06

Molasses 11 3.2 30 10.7

a The given phase-space density does not take into account the
different internal states and is calculated as φ = nλ3

B
, where λB

is the thermal de Broglie wavelength.

TABLE II. Performance of the different experimental
phases for 6Li and 40K, in dual species operation. We
show the optimum temperature T , the atom number N ,

the density n and the phase-space density φ.



9

III. CONCLUSION

In this study we have investigated the properties of
D1 laser cooling both experimentally and with numerical
simulations. The simulations take into account all rele-
vant Zeeman and hyperfine levels as well as the three di-
mensional bichromatic lattice geometry. Simulations and
experimental results match fairly well for both lithium
and potassium. Various sub-Doppler cooling effects [10]
are recovered in the full model. We have outlined the
importance of coherences between the ground-state hy-
perfine levels [11].

We discussed the robustness of the D1 cooling scheme,
in particular its insensitivity to the excited state hyper-
fine splitting and to the relative phase between the cool-
ing and repumping lattices, which is in sharp contrast
to its D2 counterpart [4, 5, 19]. We suggest and numeri-
cally verify that in a blue detuned bichromatic D1 lattice,
the dressed ground states exhibit a robust correlation be-
tween light-shift and decay, responsible for efficient sub-
Doppler cooling. Because of a smaller absorption cross-
section for atoms cooled in weakly coupled states, D1

gray molasses should also be less affected by the density
dependent heating than their D2 counterparts [24].
Experimentally, using commercial semiconductor laser

sources delivering ∼200mW of CW power, we achieve
efficient, simultaneous cooling of 6Li and 40K, resulting
in a phase space density close to 10−4 for both species.
This D1 cooling scheme enables efficient direct loading
of a dipole or magnetic trap because of the large gain
in temperature. As recently shown in [12, 14] these con-
ditions are well suited to directly load an optical dipole
trap and to perform all-optical evaporation to quantum
degeneracy. In our own experiments, we load a magnetic
trap, transport the atoms to a separate science cell, and
perform evaporative cooling of 40K in two Zeeman states
with a combined magnetic/optical trap scheme intro-
duced in [25]. Deep quantum degeneracy (T/TF = 0.14)
in the dipole trap has been achieved and will be the sub-
ject of a future publication.
Finally we have also used the D1 gray molasses scheme

to cool the bosonic 41K isotope. All of 5 × 109 41K
atoms from a CMOT were cooled to a final temperature
of 20µK leading to a phase-space density of 1.1 × 10−4.
This confirms the generality of this D1 sub-Doppler cool-
ing method.
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APPENDIX: EXPERIMENTAL DETAILS

In this section we describe the experimental details, as
well as results of additional measurements on the D1 mo-
lasses scheme, in particular, the single species operation
of 6Li.
Our experimental setup has been already described

previously [18]. A Zeeman-slower for 6Li and a 2D+-
MOT for 40K load the three-dimensional dual-species
MOT in the MOT-chamber. The D2 laser systems for
6Li and 40K comprise master oscillator power ampli-
fiers (MOPAs) to produce light at 671 nm and 767 nm
respectively. Beamsplitters and acousto-optic modula-
tors (AOMs) generate the cooling and repumping beams,
which are combined before injecting tapered amplifiers
for the Zeeman-slower and 3D-MOT for 6Li and accord-
ingly the 2D+-MOT and 3D-MOT for 40K.
The D1 laser system for 40K operates at 770 nm and

is composed of a MOPA and an electro-optic modulator
(EOM) to produce the repumping frequency. The to-
tal power used for the 40K cooling is 240mW, with an
intensity per molasses beam of 14 Isat.
The source for the 6Li D1 light at 671 nm, used in this

work, is a home-made solid-state laser, the next genera-
tion of [26, 27], with up to 5W output power. AOMs
allow to independently tune the frequencies and powers
of the cooling and repumping beams, before recombina-
tion and injection into an optical fiber. We typically use
300mW total power for the 6Li D1 cooling. The waist of
the 6Li D1 beam after the telescope (Fig. 7) is 8.6mm.
We have also used a commercial 671 nm tapered amplifier
system (MOPA) with 130mW available power impinging
on the atoms and obtained similar performances for the
capture efficiency and sub-Doppler temperatures.
Our optical scheme superimposes the D1 and D2 light

for both 6Li and 40K and produces the molasses and
3D-MOT beams (Fig. 7). D-shaped mirrors (MD) su-
perpose the D1 cooling light and the 3D-MOT light of
each species before a dichroic mirror (Mdichroic) combines
the lithium and potassium light. The beam containing
all eight frequencies is expanded and distributed to the
three pairs of σ+–σ− counter-propagating beams of the
3D-MOT and the D1 molasses. The two horizontal axes
are retroreflected, the vertical axis consists of two inde-
pendent beams. The λ/2 plates of order four for lithium
(λ/2∗Li) and potassium (λ/2∗K) allow for independent con-
trol of the 6Li and 40K MOT power distribution.
The experiment starts with loading the dual-species

MOT. In 10 s we typically load 8 × 108 6Li atoms with
an initial temperature of 1mK and 3× 109 40K atoms at
200µK. Then a CMOT phase [28] increases the density
of the atom cloud. The magnetic gradient is linearly
ramped from 9G/cm to 60G/cm in 5ms. Meanwhile the
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5 Magnetic trapping and magnetic transport

The typical phase space density achieved after the gray molasses cooling phase de-

scribed in the previous chapter is ∼ 10−4. In order to achieve quantum degeneracy

one has to reconfine the atoms and perform evaporative cooling. One possibility is to

directly load the atoms into an optical dipole trap (the so-called all optical approach),

which was the strategy pursued by the Innsbruck team with success [188]. Another

possibility is to load the atoms into a magnetic trap, which was the strategy pursued

by the Munich (now Singapore) team [192], by the Amsterdam team [120, 200] and

by us. The first approach is technically simpler, but the number of the trapped atoms

depends greatly on the interplay between the capture volume and the trap depth.

Without gray molasses cooling, a considerable amount of laser power is needed to

trap a significant amount of atoms from the MOT. On the other hand, magnetic traps

have bigger trap volumes and trap depths, thus being able to collect the full atomic

cloud. Usually these setups are more complex that the single beam optical dipole

trap, but the resulting number of degenerate atoms is larger. In our apparatus we load

the sub-Doppler cooled atomic cloud into a quadrupole magnetic trap. The transfer

is preceded by a phase of optical pumping into magnetically-trappable state(s). The

trapped cloud is then transported from the MOT chamber to a science glass cell. The

transport is realized by dynamically changing the currents of a series of pairs of coils,

thus displacing the magnetic trap center. This step allows to move the atomic cloud

to a glass cell where the optical access and the vacuum quality are much more favor-

able than the MOT chamber. By performing evaporative cooling of the atomic cloud

in the science cell we were able to obtain a quantum degenerate gas.

In this chapter the principles of operation of magnetic trapping will be reviewed,

with a separate section for the optical pumping phase and the loading in the trap.

In a second part the implementation of a magnetic transport will be motivated and

explained. Technical details concerning the electromagnets of the apparatus are given

in appendix 5.A. The evaporation in the magnetic trap will be presented in chapter 6.
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5 Magnetic trapping and magnetic transport

5.1 Principles of magnetic trapping of neutral atoms

Zeeman effect

The coupling between a neutral atom and an external magnetic field is in general

weak when compared with ions. For alkalis the main contribution to the magnetic

moment µ comes from the valence electron. The order of magnitude of the coupling

of an electron to an external magnetic field is the Bohr magneton µB/h ≈ 1.4MHz/G.

The magnetic interaction contribution to the atomic Hamiltonian is given by V =

−µ · B, which is the so-called Zeeman term. Setting the quantification axis parallel

to the magnetic field B, then V = −µB, µ being the projection of the atomic mag-

netic moment on the direction of the field. In the classical framework, the magnetic

moment precesses around the magnetic field direction with the Larmor frequency

ωL = µB/h̄. This frequency sets a timescale for which the movement of an atom

in an inhomogenous magnetic field is adiabatic1. In the quantum framework the

magnetic moment is quantified. In alkalis there are two ground-state hyperfine man-

ifolds: F = I ± 1/2. For weak magnetic fields B ≪ Bhf = h∆νhf/2µB (where h∆νhf is

the energy difference between the two hyperfine manifolds2) the magnetic interaction

energy is quantized and given by Em = mFgFµBB, where mF is the magnetic quantum

number and gF the Landé factor [189]. For the particular case of the stretched states

mF = ±(I + 1/2), the coupling of the atom to the magnetic field is maximum and is

purely electronic Em = ±µBB. Consequently, for the F = I + 1/2 manifold one has

mFgF = mF/(I + 1/2) for |mF| ≤ F. The Breit-Rabi formula generalizes this result for

any value of the magnetic field B [189]. For the case of the excited state manifold, we

refer the reader to section 2.3.3.

Principle of magnetic trapping

Due to the Zeeman effect, an inhomogeneous magnetic field B = B(r) will induce

a magnetic force on the atoms Fm ∝ −∇B. Maxwell’s equations prevent the exis-

tence of a local maximum of the magnetic field. As a consequence, magnetic traps

1When the adiabaticity condition is violated, the magnetic moment µ is not conserved and the so-
called Majorana flips occur. This will be object of study in section 6.3.1.

2Bhf ≈ 459G for 40K and Bhf ≈ 82G for 6Li.
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5.1 Principles of magnetic trapping of neutral atoms

for neutral atoms rely on the fact that low field seeking atoms3 are trapped around a

magnetic field minimum. Since the coupling of neutral atoms to an external magnetic

field is quite weak, as pointed out before, the trap depths achieved are usually small.

However, after laser cooling the atomic ensemble to ∼ 100µK, magnetic trapping is

generally quite easy to implement4. For example to trap a cloud with T = 1mK one

has to produce a field difference of ∼ 150G (10mK=̂150G, for the stretched states).

x
y

z

Figure 5.1.1: Scheme of an atomic

cloud trapped by the magnetic field

created by two coils. The curved ar-

rows indicate the direction of current

flow.

The simplest way of creating a magnetic trap

is to have a pair of concentric loops of conduct-

ing wire separated by a gap with currents flow-

ing in opposite directions. For symmetry rea-

sons, the magnetic field produced by these rings

is 0 at the center of the arrangement and in-

creases (in absolute value) along every direction

of space. The magnetic field 0 is the field mini-

mum and atoms in low field seeking states will

be attracted to it from every direction. Consider

a system of oriented axis with origin in the trap

center, as depicted in fig. 5.1.1. Since electric

currents are counter-propagating, the system is

anti-symmetric and the magnetic field is an odd

function B(−r) = −B(r). By Taylor-expanding

the magnetic field B(r) around its origin (the trap

center) one can write Bz ≈ bz +O(z3), where b is

the so-called magnetic field gradient and embodies the trapping strength. Using the

second Maxwell law ∇ · B = 0 one has immediately for the radial direction that

Bρ ≈ −bρ/2 +O(ρ3). The magnetic field is then given by

B(r) = b(−x/2,−y/2, z) (5.1.1)

up to the third order for this arrangement: the so-called quadrupole trap [131]. Notice

3mFgF > 0 in the small magnetic field approximation.
4In the historical case of Hydrogen, no laser cooling was implemented rendering magnetic trapping

challenging [86]
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5 Magnetic trapping and magnetic transport

that this field also obeys ∇× B = 0. Say that the distance between the rings is D

and that their radius is R. It can be shown that the configuration D = R has highest

magnetic field gradient [129] and it is given by

b =
48

25
√

5

µm I
R2 , (5.1.2)

where µm is the magnetic permeability and I is the current flowing through the wires.

This particular configuration is called anti-Helmholtz and is very commonly used in

cold atom experimental apparatus.

Trapping of neutral atoms in a quadrupole magnetic trap

The total potential felt by a magnetically trapped atom is given by the sum of the

magnetic µBb|B| and the gravitational mgz contributions

U(r) = µBb
√
(x2 + y2)/4 + z2 + mgz. (5.1.3)

Here it is assumed that the atom is in the stretched state, but for the general case we

can replace: b → (µ/µB)b. It is also assumed that gravity is along the axial direction

of the coils. The volume of the trap is given by

Ve =

ˆ

e−U(r)/kBTdr =
32πλ3

(1 − γ2)2 .

Here λ = kBT/µBb is the characteristic length of the magnetically trap cloud and

γ is a gravity parameter γ = bg/b, with bg = mg/µB. For example, after loading

the magnetic trap in the MOT chamber and compressing the trap, one has 3 × 109

atoms of 40K at T ≈ 200µK for a gradient of b = 1.5T/m, giving a central density of

n0 = N/Ve ≈ 4 × 1012cm−3 and λ ≈ 0.20mm.

Notice that by doing x = y = 0 in eq. 5.1.3 one gets U(z) = µB(b|z|+ bzz), meaning

that gravity can be interpreted as a positive contribution to the magnetic gradient for

z > 0 (b → b + bg) and a negative contribution for z < 0 (b → b + bg). In other words,

gravity tilts the magnetic potential. However for most situations γ2 ≪ 1, which will

be assumed unless explicitly stated.
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5.1 Principles of magnetic trapping of neutral atoms

By modifying the current I one can linearly vary the magnetic gradient b, thus

changing the strength of the trap. This change is adiabatic if done slower than the

timescale associated with the movement of the trapped atoms e.g. λ/vth = λ/
√

8kBT/πm,

which is on the order of the (sub-)millisecond. In this case, the entropy is conserved.

Since phase space density is conserved in a adiabatic process (for a fixed trap shape)

one obtains readily that n1/3
0 Λ ∝ b/T3/2 is constant (Λ2 = 2πh̄2/mkBT is the de

Broglie wavelength). As a consequence, increasing the magnetic field gradient will

increase the cloud temperature

T/T0 = (b/b0)
2/3. (5.1.4)

This is intuitive since an increase in magnetic trapping energy will increase the ki-

netic energy to insure energy conservation. One other hand, the cloud size decreases

λ/λ0 = (b/b0)
−1/3 and central density increases linearly n/n0 = b/b0.

Probing a trapped atomic cloud

The atomic cloud density profile of a classical gas in the magnetic trap is given by

n(r) = n0e−U(r)/kBT = n0 exp
{
− 1

λ2

√
(x2 + y2)/4 + z2

}
, (5.1.5)

where n0 = N/Ve is the central atomic density and it now explicit that λ is the typical

length of the trapped cloud [206]. Probing the density distribution of a magneti-

cally trapped cloud using standard imaging procedures is not straightforward. In the

presence of a magnetic field, the imaging transitions will be shifted due to the Zee-

man effect. If one supposes that the imaging transition involves two stretched states,

the Zeeman frequency shift will be of µBB(r)/h, where B(r) is the local magnetic

field. This means that while the atoms in the center of the trap will be on resonance

(B(0) = 0), the atoms from the edge will yield lower signal, as the absorption co-

efficient/fluorescence rate scales as A = 1/
(
1 + (2µBB(r)/h̄Γ)2

)
. Furthermore, no-

tice that the assumption that the imaging transition is between stretched states (and

closed) is a simplification. In practice, since the magnetic moment of the atom is

aligned with the local magnetic field direction, the coupling of the atom to the light

127



5 Magnetic trapping and magnetic transport

field has to be calculated locally. In spite of these difficulties, one can still obtain in-

formation if the Zeeman shift at the edge of the cloud is small compared to transition

width 2µBbλ/h̄Γ ≪ 1. This can be improved by having a cloud of small temperature

or just by decompressing the trap (bλ ∼ b2/3). For example, for b = 2.5T/m and

T = 100µK the absorption at the cloud edge is only reduced by 1/3. An obvious

strategy to avoid these problems is to switch off abruptly the magnetic field and mea-

sure the density profile. This measurement is meaningful if done right after switching

off the trap tTOF ≪ λ/
√

kBT/m, otherwise the trap density profile will be perturbed

(see eq. 2.3.3). This condition gives tTOF ≪ 0.4ms for the example above. This is very

stringent condition, since it is close to the time scale of the magnetic field current elec-

tronic switches and of the exposure time for the image taking (100µs). Moreover, in

our apparatus the presence of metallic components build up Foucault currents that

dissipate in τ ∼ 2ms, making this experiment unfeasible. For tTOF ≫ λ/
√

kBT/m

we lose information about the in situ distribution and the atomic density profile is

given by the Maxwell-Boltzmann law and one can accurately extract the number of

atoms and the temperature. The remaining parameter is b, which can be estimated

by measuring the coil geometry and using eq. 5.1.2.

Let us suppose that one could accurately image the magnetically trapped cloud. If

x is the imaging axis, the integrated density profile is be given by

n2D(y, z) = n0

ˆ

exp
{
− 1

λ2

√
(x2 + y2)/4 + z2

}
dx,

which does not have analytical solution. By integrating the collected image numeri-

cally, say along the y axis, one has

n1D(z) =
ˆ

n2D(y, z)dy =
N
4λ

(
1 +

|z|
λ

)
e−|z|/λ,

where it was used n0 = N/32πλ3. By fitting the integrated density profile with the

previous function, one can directly get access to the atomic cloud size λ and the total

number of atoms N.
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5.2 Optical pumping and transferring atoms into the magnetic quadrupole trap

5.2 Optical pumping and transferring atoms into the magnetic

quadrupole trap

Optical pumping

After the molasses phase atoms are depolarized: they populate both hyperfine ground

states and are randomly distributed in the mF states. Before loading them into the

magnetic trap, one performs an optical pumping phase in order to pump the atoms

into trappable states (low-field seekers). This phase lasts 470µs: in the first 400µs

an homogeneous magnetic field of ∼ 1G is quickly ramped and in the last 70µs a

σ+ polarized light pulse is applied into the atoms (50µs for 6Li). The purpose of the

(bias) magnetic field is to define a quantization axis, while the collinear σ+ laser beam

pumps atoms to increasing mF state. The cycles of absorption/emission of photons

induce heating ∼ ER/kB per cycle on average and for that reason it is important to

have conditions such that that number of cycles is minimized5. A trick is to use an

optical transition such that the target state is a dark state. For example, if ones drives

a F → F′ = F transition, once atoms are in the mF = F state they will not absorb any

additional photons. Hence this state is dark and is protected against further heating.

At the same time, the optical pumping stage has to have the smallest duration possi-

ble since atoms expand freely, decreasing their (phase space) density. This is a quite

dramatic for 6Li since it has a smaller mass.

One is interested in pumping both 40K and 6Li to their stretched states F = mF =

I + 1/2. For 40K the optical pumping is done on the F = 9/2 → F′ → 9/2 transition

(of the D2 line), in the presence of repumper light F = 7/2 → F′ = 9/2. For 6Li

the optical pumping is done in the F = 3/2 → F′ = 3/2 transition (of the D1 line),

which also has a dark state mF = 3/2, in the presence of repumper light F = 1/2 →
F′ = 3/2. In spite of the presence of the dark states, it is still important to keep the

light power as low as possible since in practice light is not perfectly σ+ polarized

(n.b. in our setup the same MOT λ/4 plate is used for both 40K and 6Li) and, in

the case of 40K, off-resonant excitations to the energetically close F′ = 11/2 excited

state can be enhanced due to power broadening. When measuring atom number and

temperature of the atoms captured in the magnetic trap, we observe that excessive

5ER/kB is ≈ 0.41µK for 40K and ≈ 3.5µK for 6Li.
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5 Magnetic trapping and magnetic transport

laser power is detrimental. For 6Li only the stretched state is magnetically trappable

and stable against inelastic collisions [178], while for 40K the condition is less stringent

as different spin states can be trapped (see experiment of fig. 5.2.1). Fortunately, it

happens that a mixture of spins of 40K is rather stable [44]. Moreover, a mixture

of spins of 40K with 6Li in the stretched state is also relatively stable [200], as it is

going to be studied with more detail in section 6.3.2. In the end, in order to optimize

the laser power during the optical pumping what we do in practice is: for 6Li one

wants to optimize collision rate (∝ N/T5/2); for 40K one needs a mixture of spins

to perform evaporative cooling, so one optimizes the phase space density after the

magnetic evaporation in the optical dipole trap [200] (cf. chapter 6). The optimal

optical pumping parameters are indicated in table 5.2.1.

After the optical pumping phase we observe heating, mostly along the direction

of the optical pumping beam. For 40K the temperature along this axis increases by

≈ 45µK, while for 6Li it increases by ≈ 170µK, which corresponds to a temperature

increase of 110ER/kB and 50ER/kB, respectively.

Transfer to the magnetic quadrupole trap

Once the atoms are pumped into stable low field states, they can be loaded into the

magnetic trap. The optimal loading occurs in two phases. In the first one the magnetic

field is ramped as fast as possible in order to confine the atoms. In the second one the

magnetic field is ramped adiabatically to compress the trap and increase atomic den-

sity. In the first step, the quick ramp has to be such as the final magnetic field gradient

stops the atoms from expanding, keeping the atomic density constant in time. In the

second step, the magnetic field ramp is adiabatic. This ensures minimal loss of phase

space density during the transfer. Say that σ is the average RMS radius of the atomic

cloud after the optical pumping phase σ =
√
〈r2〉 and that the RMS size of a mag-

netically trapped cloud is ≈ λ. If there was a single very fast ramp of the magnetic

field gradient then λ ≪ σ and the atomic cloud would be out of equilibrium: the

atoms would oscillate in the magnetic trap, rendering a hot cloud after dissipation of

the excessive energy. If there was a single slow ramp of the gradient, then the atoms

would have time to expand before being trapped, decreasing density, and resulting

in a size λ > σ which would correspond to a hotter cloud (λ ∝ T). Again, in the ideal
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5.2 Optical pumping and transferring atoms into the magnetic quadrupole trap

case, the gradient has to be rapidly ramped to λ ≈ σ so that the atoms are trapped

and in equilibrium. Then, the gradient can be adiabatically ramped up in order to

enhance density/collision rate without any loss in phase space density. In our exper-

iment σ ≈ 1.5mm and T = 20µK after the 40K molasses, corresponding to a very low

gradient of b = 0.02T/m, two orders of magnitude smaller than the highest value

achieved in this setup. Experimentally we observe that changing the ramping time

of the gradient does not have a great impact on the density of the atoms, except for

very slow ramps (τ ∼ 10 − 100ms). Very fast ramps (τ . 1ms) are not possible in our

apparatus due to Foucault currents in the MOT chamber. These currents might pre-

vent us from achieving optimal loading, but it turns out that the loss in phase space

density is small.

The typical numbers measured in the magnetic trap are indicated in table 5.2.1. The

loading efficiency is quite good: the ratio between the detected number of trapped

atoms and the number of atoms before ramping the magnetic field is 1 for 40K and

≈ 0.9 for 6Li.

When releasing the atoms from the trap and performing a time-of-flight measure-

ment of the thermal speed of the atomic ensemble we find that its value is not isotropic.

The cloud is not in thermal equilibrium, but we take the liberty to assign a “temper-

ature” (not in the thermodynamical sense) for two directions of the measurement:

vertical (the optical pumping direction) and horizontal. In the case of 6Li, the verti-

cal temperature is higher than the horizontal one, probably due to the severe heating

caused by the optical pumping. This heating is more dramatic for 6Li than for 40K due

to its large recoil energy. In order to reduce this effect we tried to perform the optical

pumping with two balanced contra-propagating beams, thus compensating the net

momentum kick of several recoils. This strategy did not yield a clear improvement in

the temperature anisotropy. In contrast with the case of 6Li, 40K exhibits a higher tem-

perature in the horizontal direction. This might be due to the reduced heating caused

by the optical pumping and a small horizontal mispositioning of the molasses rela-

tive to the magnetic field center. This difference in position is of ≈ d = 300µm, which

a sudden ramp of the magnetic trap would make the cloud oscillate horizontally and

corresponds to E/kB = µB(b/2)d/kB ≈ 150µK. This value gives an upper bound for

the heating caused by the misalignment, which might be more severe for 40K than

for 6Li due to the difference in mass (and inertia). Nevertheless, we observed that by
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letting the atoms collide in the trap the temperature differences decreased. After a

waiting time of ≈ 0.5s the two gases of 40K and 6 Li were practically thermalized. A

more detailed study will be presented in section 6.7.2.

Finally, the lifetime of the magnetically trapped cloud in the MOT chamber was

determined to be (16.5 ± 0.6)s. This value was achieved after carefully isolating the

atoms from any source of resonant photons by means of the installation of mechanical

shutters and switching AOMs off. These photons are detrimental as they depolarize

the atoms into non trapped states (a few photon flux is sufficient to quickly deplete

the trap). The measured lifetime did depend on the atomic species and we concluded

that it is limited by collisions of the trapped atoms with atoms from residual back-

ground gas.

Probing the spin composition of trapped atomic cloud

Finally, one would like to determine the spin-composition of the trapped gas. While

for 6Li only the stretched state |F = 3/2, mF = 3/2〉 is simultaneously trappable and

collisional stable [178], for 40K several Zeeman states of the F = 9/2 manifold can

be trapped and their mixture is long-lived [44]. To probe the spin-composition of a
40K mixture, one can decompress the magnetic trap down to a point at which the

vertical magnetic force exerted on a certain spin component is weaker than gravity.

By measuring the atom loss, one can determine the number of atoms that fell and

their magnetic moment (spin). Using this strategy one can discriminate the different

spin species and determine their populations. For F = I + 1/2, atoms with Zeeman

state mF will fall from the trap when

b . (F/mF)bg. (5.2.1)

An example of such an experiment is shown in fig. 5.2.1. In this experiment a cloud

at T ∼ 120µK is magnetically trapped in the science cell with b = 2.5T/m. The

current flowing in the coils is then linearly reduced to a final value I in 400ms and

after a wait time of 700ms the trap is recompressed and the remaining atom number

measured after a time-of-flight. One observes that there is a series of steps, each one

corresponding to a different spin state: for I < 2.75A no atom is detected, for 2.75A <
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5.2 Optical pumping and transferring atoms into the magnetic quadrupole trap

I < 3.5A only mF = 9/2 is present, for 3.5A < I < 5A both mF = 9/2 and mF = 7/2

are present and for I > 5A three spin-states are detected mF = 9/2, 7/2, 5/2. The

different spins can be identified by their magnetic moment: 3.5A ≈ 2.75A × 9/7 and

5A ≈ 2.75A × 9/5, as predicted by eq. 5.2.1. These values allow us to determine the

trapping gradient of these pairs of coils: bg/2.75A = 25.5 × 10−3T/(m·A), which is

compatible with the value estimated from the geometry of our coils using the Biot-

Savart law 25.0 × 10−3T/(m·A).
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Figure 5.2.1: Spin-composition analysis by ramping down the magnetic confinement. See
description in the main text.

Let us finish the analysis of this experiment by deriving the function used for the

fit in fig. 5.2.1. The behavior assumed in the previous paragraph was the one corre-

sponding for a cloud with T = 0: a series of step functions. For finite temperature

T the cloud increases its size while the trap is being decompressed λ ∼ b−1/3 and

atoms might hit the cell/chamber walls and be lost. In section 6.5.2 it will be shown

that if atoms with energy E > Ecut are removed for the trap, the fraction of remain-

ing atoms is given by P(9/2, ηcut) = Γ(9/2, ηcut)/Γ(9/2, ∞), with ηcut = Ecut/kBT

and Γ(n, η) ≡
´ η

0 xn−1e−xdx being the incomplete Gamma function. In this partic-

ular problem Ecut = µB(mF/F)(b − (F/mF)bg)L, where L is the distance between

the trap center and the obstacle where the atoms are adsorbed. On the other hand
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5 Magnetic trapping and magnetic transport

kBT = kBT0(b/b0)
2/3 for an adiabatic opening (see eq. 5.1.4). So one has finally:

N(b)
N0

=
F

∑
mF>0

fmF P

(
9
2

,
((mF/F)b − bg)

b2/3b1/3
0

L
λ0

)
θ(b − (F/mF)bg), (5.2.2)

where λ0 = kBT0/µBb0 is the initial cloud size, N0 the total atom number, fmF is the

fraction of atoms in the mF state in the sample (with ∑
F
mF>0 fmF = 1) and θ(x) is the

Heaviside function. In the limit L ≫ λ0 one gets a sum of step functions, while for

hotter clouds the steps are smeared out. Notice that it is assumed that the cloud size

is at all moments much smaller than the dimensions of the coils, otherwise the linear

approximation for the magnetic field breaks down and one has to take into account

higher order terms. In other words, the size of the chamber/cell has to be smaller than

the size of the coils L ≪ R (cf. eq. 5.1.2). Equation 5.2.2 is fitted to the experimental

data and plotted in fig. 5.2.1. The agreement of the theory to the data is quite good.

This technique can in principle be used to determine the spin composition of mag-

netically trapped atoms or to purify a mixture of spins by removing the unwanted

ones. However, in our setup we found out that when performing this experiment

the sample is depolarized. The reason for this unexpected depolarization is still not

clear. We speculate that the magnetic field ramp down is not sufficiently slow to be

adiabatic for b ∼ bg, because the oscillation period is rather large λ/vth ∼ b−2/3.

40K 6Li
Ipump 1.0Isat 0.1Isat
Irep 24Ipump 12Ipump

δpump 2.0Γ ∼3Γ

δrep 0.3Γ δrep

N (×109) 3.0 (100%) 1.0 (90%)
TH/TV (µK) 240/180 230/320

PSD ∼ 3 × 10−5 ∼ 4 × 10−6

Table 5.2.1: Summary of the optical pumping parameters and loaded number of atoms, tem-
perature and phase space density (PSD) in the compressed magnetic trap in the MOT chamber
b = 1.5T/m (after waiting time of 0.5s). The values refer to the single-species operation.
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5.3 Magnetic transport

Summary

In the preceding sections we presented the principles of magnetic trapping and we

studied the trapping of an atomic cloud in a magnetic quadrupole. By optically

pumping the atoms into magnetically trappable states, one can load the magnetic

trap and adiabatically compress it in order to enhance density. In table 5.2.1 we sum-

marize the main parameters of the optical pumping phase and of the magnetically

trapped clouds.

5.3 Magnetic transport

The majority of the experiments with utracold atomic gases comprises a mechanism

that displaces the atomic cloud from the MOT region into a science cell. There are two

main reasons to do this. The first one is that in the MOT region the optical access is

reduced, for instance due to the presence of the optics for the creation of the MOT in

all directions of space. The second is that background residual pressure is usually not

good enough in the MOT region to perform evaporative cooling in a magnetic trap,

due to the proximity to the atomic sources. By implementing differential pumping

stages one can have a much improved vacuum quality in a separate region. There are

essentially two classes of transport methods for cold gases: optical and magnetic.

The optical method consists in trapping the atomic cloud in the focus of a tightly

focused laser beam and to displace it to the desired region [36, 81] (cf. section 7.1 for

the working principle of an optical dipole trap). Up to now all experiments relied on

an optical setup mounted on an electronically controlled air bearing stage. Recently

Léonard et al. [111] reported on an optical transport of a distance of 28cm, using a

fixed optical setup, featuring a lens with electrically tunable focal distance. This so-

lution has the advantage of not including the cumbersome and expensive air bearing

stage.

The magnetic method consists in simply displacing the magnetic field center. This

can be done by installing the anti-Helmholtz coils in a movable stage. Another option

is to have a set of pairs of coils and, by dynamically changing the current on each coil

pair, the atoms can be transported from coil pair to coil pair. The advantage of the first

method is its simplicity, but it requires an important compromise in terms of optical

135



5 Magnetic trapping and magnetic transport

accessibility due to the moving coil mount. Moreover, since this mount is usually

metallic, it can create unwanted magnetic fields such as Foucault currents.

In this experiment we have chosen to implement a magnetic transport composed

of pairs of coils in the anti-Helmholtz configuration [72]. The total distance is 64cm

and the transport has an “L” shape. An important part of the first year of the thesis

of the author were dedicated to the implementation, optimization and debugging of

this device. This setup is already well described in the thesis of Salez [171], but there

are some updates worth mentioning. In this section we will start by reviewing the

basic principles of the magnetic transport and in the second to report on the present

configuration and performance. This section with conjunction with ref. 171 should

give a complete description of the magnetic transport implemented in the apparatus.

5.3.1 Working principle

The principle of the magnetic transport is to change the position of the magnetic trap

center in space and time, so that atoms adiabatically follow it, while keeping the

atomic cloud confined. The transport comprises two linear sections: one from the

MOT chamber to the elbow and another from the elbow to the science cell, in an “L”

shape (see fig. 5.3.3). We consider the transport to be done along one dimension,

comprising two segments, since atoms stop at the elbow. Let us suppose that the

magnetic field minimum is at some position x0 along that dimension. Since all coil

pairs are in the anti-Helmholtz configuration, the trap will be linear and therefore

will be characterized by the gradients in each direction of space: bx, by and bz, that is

B = (bx(x − x0), byy, bzz). We take by convention x to be the longitudinal direction

(the transport direction), z to be the vertical (gravity) direction and y the transver-

sal direction. These gradient values are not independent, since they have to obey

Maxwell’s law

∇ · B = bx + by + bz = 0. (5.3.1)

For this reason, we reason in terms of the transversal gradient by and the aspect ratio

A = bx/bz. So, for every instant of time, there are three parameters to impose in order

to have a well defined trap: the trap position x0, the transversal gradient by and the as-

pect ratio A. These three parameters can independently be controlled with three pairs

of coils with electric currents I1, I2 and I3. In other words, for a fixed set of three pairs
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5.3 Magnetic transport

of coils and for a continuous set of transport parameters P(x0) = (x0, by(x0), A(x0)),

one can always find a continuous set of solutions I(x0) = (I1(x0), I2(x0), I3(x0)) that

satisfy CI = P, where C is the matrix of conditions which depends only the geometric

properties of the coils. Having calculated the solutions I(x0) for every position of the

trap center x0, in a second stage one imposes a dynamical function for the movement

of the trap center x0(t). The current that must be fed to each coil pair n as a function

of time is simply In(x0(t)).

Switching points

In practice, a magnetic transport along a linear segment is composed of several coil

pairs in the anti-Helmholtz configuration, approximately equidistant and with some

superposition. At every instant of time only three coils have current flowing, say I1,

I2 and I3, as argued above. As the atomic cloud moves in the direction of coil 3, the

influence of coil 1 decreases and current I1 decreases with distance x0 accordingly

(see fig. 5.3.1). At some switching point x0 = xsw we will have I1(xsw) = 0 and at this

1 2 3 4 1 2 3 4 1 2 3 4

Figure 5.3.1: By dynamically changing the current of three coil pairs one can displace the
center of the magnetic trap and its confinement strength, thus transporting an atomic cloud.
In the second image the atomic cloud is in the geometrical center of coil pairs 2 and 3, which
corresponds to a switching point. Here both the currents of coil pair 1 and 4 must be 0 and
consequently the aspect ratio of the trap is defined by the geometry of coil pairs 2 and 3. For
prior (later) positions the current in coil pair 1 (4) will be positive, respectively.

point coil 4 must be switched on. Let us study more carefully this switching point. At

this point the equation CI = P becomes

B̃2 I2 + B̃3 I3 = 0 A =
b̃x,2 I2 + b̃x,3 I3

b̃z,2 I2 + b̃z,3 I3
by = b̃y,2 I2 + b̃y,3 I3,
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5 Magnetic trapping and magnetic transport

where B̃n (b̃n) is a magnetic field (gradient) produced by coil n per unit of current,

respectively, evaluated at xsw. Inserting the first equation in the other ones one gets

A =
b̃x,2 + b̃x,3(−B̃2/B̃3)

b̃z,2 + b̃z,3(−B̃2/B̃3)
I2 =

by

b̃y,2 − b̃y,3B̃2/B̃3
I3 =

−B̃2

B̃3
I2.

The first equation imposes a relation between the aspect ratio and the switching point

A(xsw), while the two others are straightforward: they give the currents as a function

of by and xsw. As an example, in fig. 5.3.2 we plot the function A(xsw) for the trans-

port coil pairs T1 and T2 , playing the role of coils 2 and 3 respectively (cf. schemes

5.3.3 and 5.3.4 and table 5.A.2). It can be seen that for a given aspect ratio, there are

always two switching points, except for one case. To get a deeper insight into this

curve, let us think of the case in which coils 2, 3 and 4 are on (that is with I2, I3 and I4

all positive) and that the cloud center performs a backward movement. Like for the

forward movement, there will be a switching point at which coil 4 switches off I4 = 0,

which is not necessarily the same point as the switching point for coil 3. This is well

illustrated in fig. 5.3.2: the left branch xsw < 14.1cm corresponds to the switching

points of coil 3, while the right branch corresponds to a switch off of coil 4. If the as-

pect ratio was chosen to be A = −0.3, coil 3 would turn off at xsw,1 ≈ 12.7cm (I3 = 0),

while only at xsw,2 ≈ 15.3cm would coil 4 turn on. There would exist solutions of the

CI = P equation for xsw,1 < x0 < xsw,2, but with negative I3 or I4 values, which is not

12 13 14 15 16

-0.34
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A
sp

ec
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Figure 5.3.2: Calculation of the aspect ratio as a function of the switching point xsw for the T1
and T2 coils.
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possible in our setup.

In conclusion, avoiding negative currents imposes another condition to the prob-

lem, which fixes the aspect ratio and the (single) switching point: in this case, A =

−0.259 for xsw = 14.1cm. These solutions have to be found numerically by maximiz-

ing the function A(xsw) for every pair of pairs of coils. Notice that the numerically

calculated switching point xsw corresponds to the average position of coils T1 and T2,

which is expected due to symmetry.

In the thesis of Salez [171] the aspect ratio was fixed to A = −0.3 and the result-

ing negative currents were clipped. This gave rise to uncontrolled variations of the

gradients (see discussion in sections 4.4.1, 4.4.2 and 4.4.3 of that thesis).

5.3.2 Optimization and performance

The choice of transporting an atomic cloud comes with the price, which is a decrease

in phase space density. This can be translated into a loss of atoms or heating during

the transport, which must be minimized. Atoms can be lost mainly in two processes:

collision and adsorption in the walls of the vacuum tubes and spilling due to insuffi-

cient trap depth. Heating arises when the changes in the trap geometry during trans-

port are not adiabatic. In this section we will evaluate the present efficiency of the

transport. Details concerning the coils used for transport, the water cooling mecha-

nisms, the used power supplies and the electronics can be found in appendix 5.A and

ref. 171.

The trap geometry constraints (aspect ratio A and transversal gradient by) and the

result of the calculation of the respective currents for each coil pair are plotted in fig.

5.3.56 and are going to be discussed in the following paragraphs.

The starting condition of the magnetic transport is the trapping in the MOT coils

and here the aspect ratio (cf. top left plot) is A(0) = −0.5, naturally7. The black

dots in the aspect ratio plot show the other points of the transport at which the aspect

6These plots can be compared with the “old sequence”, as shown in figs. 4.4, 4.3 and 4.15 of ref. 171,
respectively.

7This is simply a result of the cylindrical symmetry of the system and Maxwell’s equations, see eq.
5.1.1.
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Figure 5.3.4: Scheme of the transport coils and the vacuum chamber seen from the side (y =
0). Here xelbow ≡ LE = 30.95cm and xfull ≡ LF = 64.7cm (scheme from ref. 183).
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Figure 5.3.5: Aspect ratio A = bx/bz (top left), absolute value of the magnetic field gradi-
ents (top right: bx in blue, by in red, bz in black) and calculation of the current for each coil
pair (bottom: caption in the main text) as a function of the position of the trap center in the
transport.

ratio is also A = −0.5. Apart from the starting position where the cloud is trapped

by the MOT coils, the cloud is trapped by the T1 coils at LA = 10.7cm, by the T4

coils at the elbow LE = 30.95cm and by the Quad coils at the end of the transport

LF = 64.7cm. The red dots show the switching points and their corresponding aspect

ratios, calculated as discussed in the previous section. The resulting constraints are

basically an interpolation between the previous conditions, except at the injection

region (x0 < LA) and at the arrival to the science cell (∼ 50cm < x0 < LF). Here

the aspect ratio must be carefully tuned in order to optimize the trap depth in the

longitudinal direction, since it can be very low. This optimization is vital, otherwise

there can be severe atom spilling, caused by inertia for instance8.

In the top right graph of fig. 5.3.5 the absolute value of the magnetic field gradients

8See discussions in sections 4.3.1 and 5.3.4 of ref. 171.
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5.3 Magnetic transport

is plotted as a function of the position in the transport (in this thesis we convention

the axial/vertical gradient bz to be positive and the remaining gradients bx and by

to be negative). As mentioned before we impose by and consequently the remaining

gradients can be calculated from the aspect ratio A = bx/bz definition and Maxwell’s

law:

bx =
−Aby

1 + A
bz =

−by

1 + A
.

Having fixed the trap geometry (aspect ratio and transversal gradient) as a function

of the trap position in the transport and having all the geometrical parameters of the

coils, one can now use equation CI = P to calculate the current for each coil pair as

a function of the trap position in the transport. The calculation result is given in the

bottom plot of fig. 5.3.5. In red it is plotted in this order: the MOT coils, T4 and V1; in

green T1/2, T2, T8 and V2; in blue the Pushing coil, T3, T6 and T9; and in black T1, T5,

T7 and the Quad coils. The complete geometric properties of these coils are given in

ref. 171, except for the Quad coils which are in appendix 5.A.1. Notice that coils T5,

T6 and V2 have inverted current direction.

0 10 20 30 40 50 60
0.5

0.6

0.7

0.8

0.9

1.0

Transport position HcmL

T

Figure 5.3.6: Fraction of atoms which are left after cropping in the vacuum tube at the position
x0 of the transport for T0 = 300µK (blue), for T0 = 300µK and a misalignment of 1.5mm in
the y direction (red) and for T0 = 600µK (black). T0 is the temperature in the initial magnetic
trap.

One of the reasons for losing atoms during the transport is their adsorption in the

walls of the transport tube, as mentioned before. This is particularly important at

the level of the transport injection due to the presence of a tube of diameter 10mm
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5 Magnetic trapping and magnetic transport

for differential pumping (7.7cm < x0 < 23.31cm) and the entrance of the science cell

at the end of the transport, which has the same diameter (see fig. 5.3.3 and 5.3.4).

Having fixed all the trap constraints in the previous paragraphs one can calculate the

cropping in the transport T in the following way

η(x0) =
µBby(x0)Ry(x0)

kBT(x0)
T (x0) = P(9/2, η(x0)).

T (x0) is the fraction of atoms which are left after cropping in the vacuum tube at

the position x0 of the transport. Ry(x0) is the local radius of the transport tube and

P(n, η) is the normalized incomplete Gamma function, already mentioned in section

5.2. Moreover T(x0) is the local temperature given by the adiabatic relation 5.1.4:

T(x0) = T0 ∏
i=x,y,z

(bi(x0)/bi,0)
2/9,

where T0 and bi,0 are the parameters in the MOT chamber. Notice that to calculate the

cropping we neglect the contribution in the z direction since this gradient is always

larger than the one in the y direction (see fig. 5.3.5). The result of the calculation of

T is given in fig. 5.3.6: it shows that the injection in the transport x0 ∼ 11cm and the

entry in the science cell x0 ∼ 64cm are the regions where most adsorption losses will

occur. For a cloud with T0 = 300µK the loss will be of ∼ 3%, while for T0 = 600µK

the loss will be of ∼ 43%. On the other hand, for T0 = 300µK and a misalignment

of the transport of 1.5mm in the y direction, the loss will increase to ∼ 17%. The

temperatures in the initial trap for 40K and 6Li are in the range 200 − 300µK so we

expect a good transmission. This validates the constraints imposed to the magnetic

transport. The experimental results will be shown in a following paragraph.

The last step in the definition of the transport sequence is to impose the dynamics

of the movement of the magnetic trap center x0(t) (see fig. 5.3.7). These dynamics are

divided in three parts: first, from the MOT region to LA (blue), second, from LA to the

elbow LE (red) and third, from the elbow LE to the science cell LF (black). In order to

have a smooth function for each transport segment, we have chosen that the veloc-

ity and the acceleration must be 0 for both ends of each segment. As a consequence,

the velocity function is a polynomial of degree 4 in time. The reason to separate the
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Figure 5.3.7: Position of the magnetic trap center (top left), velocity (top right) and accelera-
tion (bottom) as a function of the transport time. In blue is the first transport segment (from
the MOT cell to LA), in red the second (from LA to the elbow LE) and in black the third (second
transport arm: from the elbow LE to the science cell LF).

first transport arm (from the MOT to the elbow) in two segments is due to the region

around . LA (the transport injection) which is problematic for two reasons. The con-

finement in the longitudinal direction is weak (low trap depth) and it corresponds

to the entry in the transport tube, which has a diameter of 10mm (where adsorption

losses can be dramatic). With this approach, both the velocity and the acceleration

of the cloud are small around the injection region. The choice of the maximal ac-

celeration is a compromise with the lag felt by the atomic cloud. In our conditions

lag should be smaller than 1mm9, which is small compared with the typical cloud

longitudinal size 2λx ∼ 10mm. The final duration for each segment of the transport

was optimized subsequently, being 1s for x0 < LA, 1.3s for LA < x0 < LE and 3s for

LE < x0 < LF, yielding a total duration of the magnetic transport of 5.3s.

9See fig. 5.4 of ref 171.
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5 Magnetic trapping and magnetic transport

Back-and-forth experiment

In order to diagnostic the magnetic transport, we did a “back-and-forth” experiment,

in which atoms were transported from the initial trap into a certain transport position

and then transported back to the beginning. This allows us to directly measure the

relative atom loss and temperature increase in the path travelled by the atoms. This

is a powerful diagnostic method in the absence of direct imaging along the transport

axis.
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Figure 5.3.8: Efficiency of the magnetic transport determined by the “back-and-forth” exper-
iment for 40K. Measured atom number (left) and temperature (right: Thor in red and Tvert in
green) as a function of the probed transport distance. The initial temperature is ≈ 200µK. No-
tice that in this experiment the distance travelled by the atoms is twice the probed transport
distance.

The back-and-forth experiments were performed with 40K and the results are plot-

ted in fig. 5.3.8. They show that the atom number is continuously reduced down to

60% of its initial value, meaning that one can estimate the efficiency for a one-way

travel as ∼
√

0.6 ≈ 78% (assuming that the losses are similar in both ways). Before

the differential pumping tube, that is for x0 < 7.7cm, the lifetime in the magnetic trap

is ≈ 16.5s, limited by the background pressure, while at the elbow LE = 30.75cm it is

∼ 130s. The transport time from the MOT chamber to x0 = 7.7cm takes 1s and so the

effect of the residual background pressure is negligible.

Concerning temperature, it can be measured by the standard time-of-flight tech-

nique. The values in the initial trap were already measured T0 ≈ 200µK and are

shown in table 5.2.1. The temperature after a back-and-forth travel is plotted in the
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right graph of fig. 5.3.8. It was observed an increase of the temperature in both the

horizontal and the vertical directions, being more important in the horizontal one.

One can identify important heating occurring around x0 = 32cm (beginning of the

second section of the transport) and at the arrival in the science cell x0 > 60cm. In

the remaining regions there is a slope of gradual heating. After the complete back-

and-forth experiment from the initial trap to the science cell and back the measured

temperatures were Thor = 550µK and Tvert = 457µK. Notice that the observed heating

depends on the duration of the transport. The results presented here concern a total

transport duration of 5.3s, which is a trade-off between heating and experimental

repetition time.

The origin of the gradual heating might come from modeling imperfections of the

magnetic transport, resulting in the production magnetic field that is not the same as

the calculated one. These imperfections might shake the magnetic trap diabatically

resulting in heating. Another cause for modeling imperfections is the induction of

Foucault currents in the transport water cooling plates, whose (dynamic) contribution

to the magnetic field is not taken into account. Furthermore, at every switching point,

there is the switching of two MOSFETs (one off, another on) in order to make the

current flow from one transport coil pair to another. It might be that this abrupt

switching disturbs the atomic cloud, even if one expects there should be no current

flowing in the coils during the switching. A way to improve this is to implement a

solution with 4 power supplies.

Let us now estimate the effect of the misalignment of the transport assembly. In

the first section of the transport there is no possibility of imaging the atomic cloud.

Nevertheless, by transporting the cloud to a certain transport position x0 and then

adiabatically decompressing the trap, one can measure the effective radius of the trans-

port tubbing R(x0) (see end of section 5.1). We interpret the difference between the

measured effective radius and the real radius of the transport tube as a misalignment

and we determined it as ≈ 1mm for x0 = 9cm (see fig. 5.13 of ref. 171). In the sec-

ond section of the transport one can image the cloud and measure its distance to the

transport tubbing. In fig. 5.3.9 it is plotted the distance between the atomic cloud (the

magnetic field center) and the center of the circular constriction of 10mm of diameter
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Figure 5.3.9: Transversal distance between the magnetic field center and the center of the
science cell for the second portion of the magnetic transport. In blue is the x direction and in
the red the z direction, as defined in section 2.2.3.

at the science cell entrance10. The misalignment is smaller than 0.5mm in both axis

between the elbow and x0 = 60cm and it is probably due to imperfections in the

relative positioning of the transport coils. For x0 > 60cm one sees that the cloud is

displaced horizontally by ≈ 1mm, which might be due to a misalignment of the final

quadrupole coils relative to the transport plate. Fortunately, this displacement is not

associated with atom loss nor important heating (see fig. 5.3.8).

Concerning 6Li, we expect its solo transport efficiency to be smaller than the one of
40K, since its initial temperature is bigger. However, in the presence of 40K the cloud

of 6Li thermalizes to a smaller temperature, which should improve the transport ef-

ficiency. Moreover, we expect that heating during transport to be less important for
6Li due to its smaller inertia.

5.4 Conclusions

In this chapter we reviewed the principle of magnetic trapping, we studied the par-

ticular case of the quadrupole trap and we explained how to fully experimentally

characterize a trapped atomic cloud. In order to transfer atoms from the molasses

to the magnetic trap an optical pumping phase is required in order to pump all the

atoms into trappable Zeeman state(s). We show that we were able to transfer 100%

10For an engineering drawing of the science cell see fig. C.1 of ref. 166
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5.4 Conclusions

of the 40K atoms and 90% of the 6Li atoms from the molasses into the magnetic trap.

The optimized parameters of the optical pumping phase and the characterization of

the magnetically trapped clouds are summarized in table 5.2.1.

In order to transport the atomic cloud from the MOT chamber into the science cell,

in which the background pressure and the optical access is improved, we designed a

magnetic transport composed of a series of pairs of coils. By dynamically changing

the current of each coil pair we are able to move the trap center and transport the

atomic cloud. The magnetic transport sequence transports the atoms from the MOT

chamber to the science cell, covering a distance of ≈ 65cm in 5.3s. We estimate that

80% of the atoms reach the science cell, limited by spilling and adsorption in the

tubbing of the apparatus. The measured averaged atom number fluctuations of 40K

are ≈ 9% at this point. After transport, we observe a temperature increase of ∼ 50%,

yielding a loss in phase space density of factor N/T9/2 ∼ 1/7, mainly due to heating.

One could decrease heating by increasing the transport time, but we find that the

achieved compromise between phase space density loss and experimental repetition

rate to be satisfactory. This concludes the optimization and the characterization of

the magnetic transport, which has a good performance compared to other solutions

[36, 72, 81, 135].
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Appendix 5.A Electromagnets

5.A.1 Description of the coils

In this apparatus there are several electromagnetic coils present, which were designed

to produce magnetic fields with different purposes.

The Zeeman slower and its compensation coil (named anti-Zeeman), that slow the
6Li atomic jet, and the four racetrack coils, that produce the 40K 2D-MOT, were al-

ready described in refs. 166, 171. The first ones are made with hollow tubbing

through which tap water can flow, while the latter are let permanently switched on

since heating is not significant.

In the MOT chamber there is the MOT coil pair that creates the magnetic field gra-

dient for the MOT and the magnetic trapping of the atoms. There is also a pair of

coils for the optical pumping (SP), that have low impedance in order to quickly ramp

an homogenous magnetic field. For the magnetic transport we use the MOT coils, the

pushing coil, two pairs of coils called T1/2 (inner and outer), a series of pair of coils

T1, T2, . . . , T5 for the first section (in T5 current flows in the opposite direction), and

T4, T6, . . . , T9, V1, V2 and Quad (in T4 and V2 current flows in the opposite direction).

We refer the reader to ref. 171 for details about the coils and below for the Quad coils.

The most relevant parameters of these coils are listed in table 5.A.2.

The power supplies used to feed current to the coils are listed in table 5.A.1. Ac-

cording to the suppliers, the Delta Elektronika have specified current stability of 10−4,

the TDK-Lambda 3 × 10−4 and the High Finesse < 10−5 (typical bandwidth 5Hz-

1MHz).

We implemented a security system that monitors the temperature of several of the

coils used in the experiment (via thermistances glued to them) and shuts down all

the power supplies when the measured temperature value is above a certain safe set

point. Flowmeters measure the water flux through the cooling elements and warns

the security system if the water flux is not sufficient, resulting again in the switch off

of all power supplies.

The apparatus also has magnetic field compensation coils. Three large coils were

installed ≈ 80cm from the MOT chamber, in each direction of space, in order to com-

pensate for stray fields and optimize the functioning of the gray molasses. Their
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5 Magnetic trapping and magnetic transport

shape is squared with side ℓ = 1m and each coil has 54 turns. There are switched us-

ing MOSFETs (see next section for details concerning the switching electronics) and

are only on during the gray molasses phase. Two other coils were installed ≈ 45cm

from the science cell. Their shape is squared with side ℓ ≈ 35cm and each coil has

70 turns. They are also switched using MOSFETs. For the vertical axial direction

the outer coils in the Helmholtz configuration are used, as explained in the following

section.

Code Model
Blue Delta Elektronika SM 45-140

Delta SP Delta Elektronika SM 1540-D
Orange Delta Elektronika SM 45-70D
Yellow Delta Elektronika SM 45-70D

Annexe
Delta Elektronika SM 30-200

(2x in series)
Genesis TDK-Lambda GEN 50-200
White Delta Elektronika SM 15-400

HighFinesse High Finesse 30A/15V

Table 5.A.1: Code for the power supplies.

152



5.A
E

lectro
m

ag
n

ets
Coil(s) Position (cm) Axial field Power supply Cooling

MOT 0 0.91G/A/cm Blue Hollow wires

SP 0 4.8G/A Delta SP
None

Pushing -9.86 (0.16 − 0.73cm−1)G/A Yellow

T1/2 9.05
0.37G/A/cm Annexe

Cooling plate
(inner/outer) 0.29G/A/cm Genesis

T1 LA =10.7 3.3G/A/cm Orange

Transport cooling plate

T2 17.45 5.5G/A/cm Yellow
T3 24.2 3.7G/A/cm Blue
T4 LE =30.95 5.5G/A/cm Orange
T5 LE+6.75 −3.7G/A/cm Yellow
T6 LE−6.75 −2.6G/A/cm Blue
T7 37.7 2.6G/A/cm Yellow
T8 44.45 3.7G/A/cm Blue
T9 51.2 2.6G/A/cm Orange
V1 57.95 2.8G/A/cm Yellow
V2 71.45 −2.8G/A/cm Orange

Quad LF =64.7 2.7G/A/cm Blue Hollow wires

Table 5.A.2: Coils present in the experiment, their position in the transport (0 is the MOT chamber and 64.7cm is the science
cell positions), main components of the produced field calculated at the center of the coil pair (for the pushing coil it was
calculated at the center of the MOT coils), the corresponding power supply and cooling mechanism. The water cooling the
transport cooling plate is stabilized to 17ºC by a chiller, while for the other systems the water comes from the tap. Hollow
wires allow direct cooling with water. See ref. 171 for more details.

1
5
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5 Magnetic trapping and magnetic transport

Quad coils

The Quad coils are composed of two pairs of concentric coils: the inner coils and the

outer coils (see scheme of fig. 5.A.1). For the magnetic transport they are connected in

the anti-Helmholtz configuration and have the same current flowing. They are made

of hollow copper wires with squared cross section 4 × 4mm2, through which water

flows from the chiller which stabilizes water temperature to 17ºC. These coils were

wound by the company Oswald11 and were impregnated in epoxy for mechanical

stability. The inner coils have 4 layers of 12 windings each and their mean radius

is 44mm. The outer coils have 4 layers of 4 windings each and their mean radius is

80.5mm. The mount for the Quad coils is made of glass-fibre-reinforced polyamide

6612 and it fixes the position of the coils by clamping them against to the transport

mount (see fig. 5.A.2). The electromagnetic properties of the quadrupole coils are

listed in table 5.A.3 and the electronic connections are shown in a scheme in fig. 5.A.3.

40

38.5

z

x

Figure 5.A.1: Scheme of the cross-section of the science cell and the Quad coils: inner pair
(in orange) and outer coils (in green). Each square represents the cross-section of the hollow
copper wire 4 × 4mm2.

The Quad coils were mounted in such a away that the inner coils have an important

positive curvature. Indeed, the distance between the inner coils exceeds their radius

and so the axial magnetic field they produce is not homogenous. The field produced

by these coils can be written as Bz = B0 +
1
2 B′′z2 +O(z4) and Bρ = − 1

4 B′′ρ2 +O(ρ4),

11Oswald Elektromotoren GmbH
12This is a plastic with good stability, both short-term (strength and stiffness) and long-term (fatigue

and creep). It is used for several applications, such as auto parts such as mirror housing brackets or
clutch pedals [12]. This material was also used for the coil mount of the experiment in Innsbruck.

154



5.A Electromagnets

Inner coil

Outer coil

Water connection

Current connection

R
20
m
m

R89.7mm

R72.5mm

R7
1.6

mm

Figure 5.A.2: Engineering drawing of the quadrupole coils (top) and their mount (bottom).
The quadrupole coils are made of two concentric coils: inner and outer and are made of hollow
copper wire impregnated in epoxy. The mount is made of glass-fibre-reinforced polyamide
66 and clamps the coils into the magnetic transport cooling plate. Scheme in the top is from
ref. 183.
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5 Magnetic trapping and magnetic transport

where B′′ is the field curvature. An atom in a high field seeking state will be harmon-

ically trapped in the transversal direction ρ̂ with trapping frequency

ω2
ρ =

µBB′′

2m
.

For example, for B0 = 200G in the inner coil ωρ/2π = 5.2Hz for 40K and ωρ/2π =

13Hz for 6Li (stretched states). The outer coils have a negative curvature and so they

can trap low field seekers. For B0 = 200G in the outer coil ωρ/2π = 7.0Hz for 40K and

ωρ/2π = 18Hz for 6Li (stretched states). Since the curvatures of the two coil pairs

have different sign, we can tune the curvature by distributing the current between

them.

Inner coils Axial field
H B0 = 8.00G/A B′′ = 0.61G/A/cm2

AH 2.5G/A/cm

Outer coils Axial field
H B0 = 2.089G/A B′′ = −0.29G/A/cm2

AH 0.24G/A/cm*

Table 5.A.3: Field produced by the inner and the outer coils in the Helmholtz (H) or anti-
Helmholtz (AH) configurations. All values were experimentally determined, except for the
one marked with an asterisk *.

5.A.2 Electronics

In order to quickly switch on or off the current flowing in a coil, we installed a system

of MOSFETs13 and IGBTs14. They can be controlled using the TTL channels of the dig-

ital cards15. Between the cards and the switching electronic devices we installed op-

tocoupler circuits16 in order to isolate and protect the digital cards and avoid ground

loops of current. Individual MOSFETs are installed for each coil pair listed in table

13IXFN 200N10
14Mitsubishi Electric CM600HA-24A
15National Instruments PXI-6533
16As explained in the thesis of Salez [171].
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5.A Electromagnets

5.A.2, except for the MOT coils and the Quad coils (inner and out) for which IGBTs

were used. This allows individual control of each pair of coils, in contrast with the

switch box reported in ref. 171, which was removed from the apparatus. The source of

each MOSFET is always connected to the ground of the respective power supply and

each MOSFET is protected using varistors17. The IGBTs are also protected using varis-

tors and their circuit is showed in fig. 5.A.3. The Quad coils are installed in such a

away that we can change the configuration of the inner and the outer coils (Helmholtz

or anti-Helmholtz). Diodes18 were installed to ensure that current is flowing in the

desired direction in the electronic circuits19 and to protect the power supplies.

HighFinesseBlue

In
ne

r 1

In
ne

r 2

A

B

Quad

HighFinesse

Outer 1

Outer 2

AH1

AH2

AAH1

AAH2

H1

H2

HAH1

HAH2

White

+

-

+

-

+ -

+ -

Outer coils H Inv H AH Inv AH
HH 1 0 0 1
AH 0 1 1 0

H/AH 1 0 1 0
AAH 0 1 0 1

Figure 5.A.3: Electronic schematics of the inner coils (left) and the outer coils (right), with the
relevant power supplies, IGBTs (named in bold) and diodes. When the current is flowing in
the direct direction of a coil, the magnetic field produced in the science cell is in the (positive)
z direction. Table with the code for the IGBTs logics for the different magnetic field field
configurations of the outer coils: Helmholtz (H), anti-Helmholtz (AH) and inverted currents.

17Vishay 07K14 for the gate and Vishay S20K320 for the drain
18Vishay 400U120D
19Dynex DFM600BXS12-A000
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6 Evaporative cooling in a plugged magnetic

quadrupole trap

6.1 Introduction

With the discovery of sub-Doppler cooling techniques, alkali cold gases became seri-

ous candidates to achieve Bose-Einstein condensation in the early 90s. However, opti-

cal cooling strategies alone were proven insufficient to reach this goal at that time. In-

deed, phase space density could reach at best ∼ 10−3, being limited by light induced

collisions in particular. In order to go further up in phase space density, the technique

of evaporative cooling was adapted from early experiments with spin-polarized Hy-

drogen [125] to alkali gases [99]. This strategy can be used when the atomic gas is

trapped in a conservative trap. The main idea behind evaporative cooling is to se-

lectively remove the most energetic atoms from the trap, while the remaining atoms

rethermalize into a cloud with smaller temperature. This method was proven to be

very efficient: at the expense of some atom loss, the phase space density (PSD) can in-

crease very fast. Evaporative cooling is still at present the standard method to achieve

quantum degeneracy1.

This chapter will be mainly devoted to the study and the experimental realization

of evaporative cooling of 40K in a plugged magnetic quadrupole trap. In a first part

we will describe the elastic (section 6.2) and inelastic collisions (section 6.3) between

Potassium atoms. We will conclude that for 40K the s-wave and the p-wave channels

have both important contributions to the elastic collision rate and that inelastic Ma-

jorana losses can be suppressed with an optical plug. In section 6.4 we will study the

evaporation dynamics of this system, by extending the standard analytical treatment

[33] to a momentum-dependent scattering cross-section and by evaluating the indi-

vidual contributions of the s-wave and the p-wave channels. In a second part we will

1A remarkable exception is the case of Strontium, for which it was recently reported laser cooling to
quantum degeneracy [190].
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6 Evaporative cooling in a plugged magnetic quadrupole trap

start by introducing the experimental techniques used in this thesis for evaporative

cooling in a plugged trap (section 6.5). In section 6.6 we will present and discuss the

experimental results of the evaporative cooling and demonstrate that with this tech-

nique we can enhance the phase space density of the atomic sample. In the following

chapter 7, we will show that by performing evaporative cooling to T = 100µK in the

plugged magnetic quadrupole trap (b = 2.5T/m), we can efficiently load an optical

dipole trap (where the degenerate gas will be produced).

Finally we will address in section 6.7 the cooling of 6Li. Since there is only one

atomic state that is simultaneously magnetically trappable and stable, collisions can

only take place via the p-wave channel. As for 6Li p-wave collisions are suppressed

below ∼ 6mK [100], the gas is collisionless in our experimental conditions. In order to

cool down 6Li we rely on interspecies collisions with 40K [176] (sympathetic cooling).

We will show that by performing evaporative cooling on 40K we cool a small sample

of 6Li in a plugged magnetic trap and we can load it into an optical dipole trap.

6.2 Cold elastic collisions

The performance and the dynamics of evaporative cooling crucially rely on elas-

tic collisions between atoms. Due to the Pauli exclusion principle, indistinguishable

fermions can only collide via the p-wave channel. These collisions are suppressed

at very low temperatures due to the rotational p-wave barrier2. For distinguishable

fermions the scattering cross-section is finite at very low temperatures σ = 4πa2,

where a is the scattering length. In turns out that at finite temperatures p-wave col-

lisions can dominate over the s-wave ones. In this section we will determine the

thermally-averaged scattering cross-section of 40K for the s-wave and the p-wave

channels. We will show that for T & 100µK the scattering cross-section for p-wave

collisions is more important than its s-wave counterpart.

It follows from basic scattering theory [106, 155, 206] that one can write the scatter-

ing cross section in the following way

σ(k) =
ˆ

dΩ | f (θ)|2 σ(k) =
ˆ

dΩ | f (θ)± f (π − θ)|2 . (6.2.1)

2We do not consider here the exceptional case of dipolar interactions [2].
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6.2 Cold elastic collisions

The expression at left is valid for the scattering of distinguishable particles, while the

one at right takes into account the symmetry properties of indistinguishable particles.

Here k is the wavenumber of the relative motion3. The function f (θ) is the scattering

amplitude and it can be expanded in partial waves using the Legendre polynomials Pℓ
as follows

f (θ) =
∞

∑
ℓ=0

(2ℓ+ 1) fℓPℓ(cos θ) fℓ =
1

k cot ηℓ − ik
.

Here ηℓ is the phase shift and depends directly on the properties of the molecular scat-

tering potential. For a finite-range potential, the partial scattering amplitudes are

fℓ ∼ k2ℓ in the limit of low energies4 [106, eq. 132.8]. In consequence, the scattering

cross section is dominated by the s-wave (ℓ = 0) scattering at low temperature. This

can be interpreted as the repulsive effect of the rotational barrier ℓ > 0. In the par-

ticular case of indistinguishable fermions, the scattering cross section decreases with

decreasing temperature, since they can not scatter in the s-wave channel due to the

Pauli exclusion principle.

The Boltzmann equation relates the scattering cross section with the collision rate

in a trapped gas, which is a fundamental quantity in the study of evaporative cooling.

For an atomic cloud in thermal equilibrium, one can calculate the thermally-averaged

scattering cross section

σ(T) =
〈vσ〉
v̄µ

=
2
v̄µ

(
Λµ

2πh̄

)3 ˆ

d3p (p/µ) σ(p)e−p2/2µkBT, (6.2.2)

where p = h̄k, v̄µ =
√

4kBT/πµ is the thermal speed of the reduced-mass particle

and Λ2
µ = πh̄2/µkBT its thermal wavelength [206]. For a single-component gas the

collision rate is given by

γcoll =
1√
2

n0σ(T)v̄µ=m/2
V2e

Ve
, (6.2.3)

with Ve =
´

d3r exp {−U(r)/kBT} being the reference trap volume,

V2e =
´

d3r exp {−2U(r)/kBT} being a “two-particle overlap volume” and n0 =

3For a collision of energy E between particles with reduced mass µ, E = h̄2k2/2µ.
4To be accurate, for a potential varying as r−n, this result is only valid for ℓ < (n − 3)/2 [106, 155].
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6 Evaporative cooling in a plugged magnetic quadrupole trap

N/Ve the central atom density in the trap. V2e/Ve = 1/2δ for a power-law trap po-

tential V(r) ∼ r3/δ and δ = 0 for an homogeneous gas. For a multiple component gas

the collision rate is twice as big [206].

The remaining part of this section is divided into two parts and has the objective

of evaluating the thermally-averaged scattering cross section for 40K atoms. In the

first part we will study the s-wave scattering between distinguishable particles. In

the second one we will analyze the case of the p-wave scattering between two indis-

tinguishable fermions.

6.2.1 S-wave collisions

For distinguishable particles, one can obtain the low energy scattering cross section

by expanding eq. 6.2.1. The contribution of the s-wave channel is given by

σ(k) =
4πa2

(1 − reak2/2)2 + a2k2
,

where a is the s-wave scattering length and re is the effective range [206]. For bosonic

particles there is a supplementary factor of 2 in the cross section due to constructive

interference in the scattering. By modeling the molecular potential with a long-range

van der Waals attraction U(r) = −C6/r6 and a hard-core short-range cut off, one can

obtain

re ≈ a6

(
1.39473 − 4/3 (a6/a) + 0.63732 (a6/a)2

)
a6 = (2µC6/h̄2)1/4,

where µ is the reduced mass of the colliding particles [59] [155, section 5.3]. The

thermally-averaged collision rate can be calculated by plugging this result into eq.

6.2.2

σ(T)
σ(0)

=

ˆ ∞

0

xe−x

(1 − α(T)x)2 + β(T)x
dx





α(T) = πrea/Λ2
µ

β(T) = 2πa2/Λ2
µ

with Λ2
µ = πh̄2/µkBT.

As discussed before, the s-wave scattering length encapsulates information con-

cerning the low-energy scattering of particles via their molecular potentials. For this
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6.2 Cold elastic collisions

reason it is a function of the contributions of the triplet and the singlet potentials (and

the magnetic field). Atoms in their stretched states (F = I + 1/2 and mF = ±F) only

scatter through the triplet channel, which greatly simplifies the problem5. In general,

a multi-channel calculation is needed. The triplet s-wave scattering lengths for the

scattering of 40K with the different Potassium isotopes are [56]

isotope at (a0)

40/40 169.67(24)

39/40 −1985(69)

40/41 97.39(9)

Although the mixture 39K-40K is apparently very favorable, it turns out that for

collisions at increasing energy (temperature) the scattering cross section decreases

very fast. Due to the negative value of the scattering length, it will eventually cross

0, yielding a minimum of the thermally-averaged scattering cross section (Ramsauer-

Townsend effect). For temperatures around ∼ 400µK the scattering cross sections

for all atom combinations are similar (see fig. 6.2.1). For simplicity we decided to

perform evaporative cooling in a mixture of states of 40K.
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Figure 6.2.1: σ(T)/σ(T = 0) (left) and a(T)/a0 ≡
√

σ(T)/4πa2
0 (right) as a function of tem-

perature for 40K-40K (black), 39K-40K (red) and 40K-41K (blue) collisions.

5For 40K one is usually interested in the states mF = ±9/2 and mF = ±7/2 of the F = 9/2 manifold.
For simplicity, one neglects the singlet channel contribution of state mF = ±7/2 at low magnetic
field. Experimental data show that this is in an accurate simplification [41].
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6 Evaporative cooling in a plugged magnetic quadrupole trap

6.2.2 P-wave collisions

For indistinguishable fermions, the p-wave ℓ = 1 contribution dominates at low en-

ergy

σ(k) = 2π(6| f1|)2
ˆ π/2

0
cos2 θ sin θdθ = 24π| f1|2.

The p-wave phase shift can be approximately be given by an expansion to the second

order

k3 cot η1 ≈ −1/V + k2/R1,

where V is an interaction effective volume and R1 an interaction effective range [106].

The p-wave scattering length is given by V = a3
1, since by definition limk→0 k2ℓ+1 cot ηℓ =

−1/a2ℓ+1
ℓ .

By doing x = p2/2µkBT = k2λ2, with λ = h̄/
√

mkBT (for the equal-mass problem),

in eq. 6.2.2 one gets

σ(T) =
ˆ ∞

0
σ(k =

√
x/λ2)xe−xdx.

Plugging in the low-energy expansion for p-wave one obtains

σ(T)
4πa2

0
= 6

ˆ ∞

0

xe−x

x/λ̃2 + (−λ̃2/xṼ + 1/R̃1)2
dx,

where a0 is the Bohr radius and the tilded variables are now adimensional (e.g. R̃1 =

R1/a0). In particular, by taking the low and high temperature limits, one gets the

following scalings:

σ(T)
4πa2

0

λ̃≫1
= 36Ṽ2/λ̃4 ∝ T2 σ(T)

4πa2
0

λ̃≪1
= 6λ̃2 ∝ 1/T.

Fitting this result to the scattering cross-section data set kindly provided to us by John

Bohn for 40K in the stretched state6, one gets

V ≈(111a0)
3 R ≈ 280a0.

6John Bohn computed the scattering cross-section by doing a full coupled scattering calculation. The
results were subsequently adjusted to fit the data of the Boulder experiments (see details in ref. 41).
Here the raw data is used, without adjusted parameters.
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6.2 Cold elastic collisions

The results are presented in fig. 6.2.2 and they show that this approach is good for

T < 600µK. For higher temperatures, a higher order term is needed to the p-wave

phase shift expansion

k3 cot η1 ≈ −1/V + k2/R1 + k4R2

and in that case the fitting parameters are

V ≈(111a0)
3 R1 ≈ 390a0 R2 ≈ 15a0.

The fit to the data is quite good, validating the model for p-wave collisions. In fig.

6.2.2 we observe the expected ∼ T2 behavior of the scattering cross-section at low

temperature, which peaks around Tp ≈ 200µK. This peak value for the p-wave scat-

tering is consistent with the estimation kBTp = h̄2/mr2
e ≈ kB × 0.4mK, where re is

the effective range of the van der Waals potential [100]. Comparing with the s-wave

scattering cross-section, we observe that p-wave scattering dominates for T > 100µK.

Moreover, we also conclude that the scattering cross-section depends on the temper-

ature. The scattering cross-section for a 40K gas was experimentally measured and

reported in ref. 41 and matches well the results of this section. In section 6.4 we

will study the influence on evaporation dynamics of a non-constant scattering cross-
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Figure 6.2.2: p-wave contribution σ(T)/4πa2
t for 40K as a function of temperature, with at =

170a0. Red curve is the fit with two parameters model and the blue with three. Data was
kindly provided by John Bohm. Black curve is the s-wave case for comparison.
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6 Evaporative cooling in a plugged magnetic quadrupole trap

section in the s-wave and p-wave channels.

6.3 Loss mechanisms

The efficiency of evaporative cooling depends directly on the ratio between elastic

collisions and inelastic losses r = Γinel/Γcoll. In order to optimize the performance of

the evaporation one must minimize this ratio r. The collision rate Γcoll depends on

the elastic scattering cross-section studied in the previous section and on the experi-

mental parameters (density and temperature). This section is devoted to the study of

two different loss mechanisms that contribute to Γinel and hinder cooling: Majorana

flips and spin-exchange collisions. In addition, a trapped cold atomic gas also col-

lides with the residual background gas. The total rate of inelastic losses Γinel will be

the sum of all the mentioned contributions.

6.3.1 Majorana losses

The loss process resulting from a Majorana spin flip can occur in a magnetically

trapped atomic cloud. As seen in section 5.1, the simplest way of creating a mag-

netic trap is to have a pair of coils with currents flowing in opposite directions. This

configuration has the inconvenient of having a trap center where the magnetic field is

null and, as a consequence, the direction of the magnetic field changes abruptly in its

vicinity. If an atom crosses this region in a time much smaller than the inverse Larmor

frequency ωL = µBB/h̄, its magnetic moment can not adiabatically follow the local

direction of the magnetic field. As a consequence, in the frame of the local magnetic

field, the atom can flip its spin from a low-field seeker into a high-field seeker and

be expelled from the trap. It is difficult to do a full analytical/quantitive account of

this process, but from the previous considerations one can estimate that the Majorana

atom loss rate should scale as

Γm = C
h̄

mλ2 λ =
kBT
µBb

,

where b is the magnetic gradient of the axial/strong direction, λ is the typical cloud

size and C is a geometrical adimensional constant [156]. There are different published
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6.3 Loss mechanisms

values for this constant C, differing up to a factor of 10, making the precise quantifi-

cation of Majorana losses difficult [115, 156]. Recently, two other groups argued that

since Majorana flips also induce a temperature increase, the decay rate of the number

of atoms Γm observed in experiments is actually not constant in time, because it is

a function of temperature. By describing Majorana losses with a simple system of

coupled equations

Ṅ
N

= −Γm
Ṫ
T
=

4
9

Γm

they propose to measure the Majorana heating rate instead of the atom losses, since

it is exactly solvable

T(t) = T0
√

1 + t/τ
1
τ
=

8
9

Γm(T0). (6.3.1)

With this improved model, the constant C seems not to depend strongly on the choice

of the atom, since the 87Rb and the 23Na values are found to be similar C = 0.040

[51, 84].

Majorana losses make the task of evaporative cooling to very low temperatures in

a linear magnetic trap impossible: not only there is atom loss, but also heating, being

both increasingly dramatic for lower temperatures Γm ∝ 1/T2. There are essentially

two classes of strategies to avoid this problem. The first one is to construct a magnetic

trap with a non-zero field minimum, such as the top trap [156] or the Ioffe-Pritchard

trap [161]. The second is to use an optical force. This last class has two different

approaches: the use of a repulsive potential in the trap center (optical plug) that de-

creases the atomic density [39] or the use of an attractive potential close to the trap

center (hybrid trap) to protect the coldest atoms from Majorana flips [115]. In our

experiment we use a combination of these two and we observe suppression of the

Majorana losses (see section 6.5.4).

6.3.2 Spin-exchange collision rate

When two atoms collide they can exchange angular momenta. In the presence of a

magnetic field, changing mF states can result in a net energy gain due to the Zeeman

shift, which can be turned into kinetic energy during a spin-changing collision. Spin-
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6 Evaporative cooling in a plugged magnetic quadrupole trap

exchange collisions in a magnetic trap have as consequences the depolarization of the

atomic cloud, heating and atom loss.

For 40K atoms in the F = 9/2 manifold it was found that spin-mixtures are quite

stable [44]. On one hand, there are no hyperfine spin-exchange collisions due to the

inverted hyperfine structure. In consequence, the mixture of |F = 9/2, mF = 9/2〉
and |9/2, 7/2〉 is stable. On the other hand, it was experimentally observed that the

Zeeman state-exchange collisions have a very low rate. For example, DeMarco [44]

determined K2 = 1.0 × 10−14cm3/s as an upper bound for the rate of the reaction

|9/2, 7/2〉+ |9/2, 5/2〉 → |9/2, 9/2〉+ |9/2, 3/2〉. In the same reference it is reported

that a theoretical multi-channel calculation performed by John Bohn is consistent with

the experimental measurement.

6.4 Evaporation dynamics

In the previous sections we studied the elastic and the inelastic collision processes at

finite temperature. We concluded that inelastic losses can be neglected if the Majorana

flips are inhibited. Moreover, we observed that there are two channels that contribute

to the elastic collisions at finite temperature: s-wave and p-wave. The purpose of this

section is to study and quantify the cooling effect of these elastic collisions when the

trap depth is decreased.

The basic principle of evaporative cooling was already explained in the introduc-

tion of this chapter. By decreasing the trap depth of a conservative trap, energetic

atoms resulting from elastic collisions can leave the trap. This results in a net kinetic

energy loss for the remaining atoms or, in other words, in a temperature decrease.

In consequence, evaporative cooling depends crucially on the elastic collisions. To

study the dynamics of evaporation one usually takes the scattering cross section σ as

being constant [33, 99]. In the case of 40K, we concluded at the end of section 6.2 that

this is hardly a good approximation (see fig. 6.2.2). The scattering cross-section is

only constant for distinguishable spins at very low temperatures. For increasing tem-

perature, the s-wave cross-section decreases and the p-wave cross-section increases,

peaking around Tp ≈ 200µK. For T > 100µK we observed that the p-wave scattering

cross-section dominates over the s-wave counterpart. In order to get some insight on

the corrections induced by a momentum dependent scattering cross section on the
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6.4 Evaporation dynamics

evaporation dynamics, we will extend the calculations done in ref. 33. At the end of

the section, we will compare the obtained results with the experiments.

6.4.1 Evaporation rate

Let us start by considering a thermal gas (n0Λ3 ≪ 1) with temperature T trapped in

a potential U(r) with depth ǫc. In this situation a particle with energy ǫ > ǫc will

escape the trapping potential and be lost. One assumes that particles explore all the

phase space and that the evaporation dynamics is slow enough such that at all times

the particle energy distribution can be given by a truncated Boltzmann distribution

f (ǫ) = n0Λ3e−ǫ/kBTθ(ǫc − ǫ), where Λ2 = 2πh̄2/mkBT. Notice that n0 and T refer

to the non-truncated distribution: in the cut distribution f (ǫ), n0 is no longer the

central density and T is not a temperature in the thermodynamical sense. Indeed, the

central density is given by n(0) = n0P(3/2, η),7 where η = ǫc/kBT. For a magnetic

quadrupole trap U(r) = µBb
√

ρ2/4 + z2 one has n0 = N/32πλ3 with λ = kBT/µb.

Let us consider two particles with energies (momenta) ǫ1 (p1) and ǫ2 (p2) that scat-

ter with cross-section σ(q) and then depart with energies (momenta) ǫ3 (p3) and ǫ4

(p4). The total momentum is P = p1 + p2 = p3 + p4 and the exchanged momentum

q = (p2 − p1)/2 and q′ = (p4 − p3)/2 (with q = |q| = |q′|). In order to determine

the rate at which particles evaporate Ṅevap one has to calculate the scattering events

such that the final energies are ǫ3 < ǫc and ǫ4 > ǫc (without loss of generality)

Ṅevap = −
ˆ ∞

ǫc

ρ(ǫ4) ḟ (ǫ4)dǫ4 (6.4.1)

= − 1
h62m

ˆ

dǫ1dǫ2dǫ3dǫ4 ( f (ǫ1) f (ǫ2)− f (ǫ3) f (ǫ4)) d3rd3Pdqq3dudu′σ(q, u′)

4

∏
i=i

δ(p2
i /2m + U(r)− ǫi).

Here the Boltzmann equation and the ergodicity hypothesis were used [33, 121]. In

the second line σ(q, u′) is the differential scattering cross-section and u (u′) is the cosine

7Here P(n, η) =
´ η

0 un−1e−udu/
´ ∞

0 un−1e−udu is the normalized incomplete Gamma function and it
will be properly introduced in section 6.5.2.
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6 Evaporative cooling in a plugged magnetic quadrupole trap

of the angle between P and q (q′).
This calculation was performed for both the s-wave and the p-wave cases and we

refer the reader to appendix 6.A for details. The result for the evaporation rate is

Γevap ≡ − Ṅevap

N
= Γcolle

−η Vevap

Ve
= Γcolle

−ηI0(η) fN ≡ Γ0
evap fN.

Here Ve =
´

dr exp{−U(r)/kBT} is the reference volume and Γcoll = n0σ0v̄ (this

quantity should not be confused with the collision rate already shown in eq. 6.2.3)

with n0 = N/V and v̄ =
√

8kBT/πm. Γ0
evap = Γcolle−ηI0(η) is the standard result for

the evaporation rate with constant scattering cross section σ0 = 4πa2 with

I0(η) = η − 11/2 P (11/2, η) /P (9/2, η)

for a quadrupole potential [33]. The corrections due to the momentum-dependent

cross section are included in the corrective term fN, which can be numerically calcu-

lated and is plotted in fig. 6.4.1. It shows that the assumption of a constant s-wave

scattering cross section largely overestimates the evaporation rate. It also shows that

the p-wave contribution is non-negligible down to T ∼ 50µK.
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Figure 6.4.1: (Left) Corrective factor fN of the evaporation rate induced by a momentum-
dependent scattering cross section for η = 8. Blue curve is the s-wave case and the red curve
is the p-wave case. The two curves have the same normalization: fN = 1 refers to the situation
of a constant s-wave scattering cross section. (Right) Evaporation time τevap = 1/Γevap for 109

Potassium atoms for η = 8 and b = 2.5T/m.
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6.4.2 Evaporation dynamics

In the previous section the evaporation rate Γevap = −Ṅevap/N was calculated. Now

it will be interesting to investigate how the number of trapped atoms and the tem-

perature evolve as a function of time in a trap with constant η, taking into account

the corrections calculated in the previous section. This will be done by extending the

theory laid out in ref. 33. Imposing the conservation of energy and total number of

particles, one obtains a set of rate equations for energy E, number of trapped particles

N and temperature T:

Ė
E

=
Ṅ
N

+
Ṫ
T

Ṅ
N

= −Γ0
evap fN − Γinel + ξ̃

Ṫ
T

Ė
E

= −η + κ̃

c̃
Γ0

evap fE − Γinel + ξ̃
Ṫ
T

η

c̃
.

The first equation comes from the relation E = c̃NkBT and the two other ones from

the sum of the contributions of evaporation, inelastic processes and spilling8 to the

balance of particles and energy. In these equations the tilde quantities are functions of

η alone and are defined in ref 33. The fE(η) function is the analog of the fN correction

for the momentum-dependent scattering cross section correction of the energy lost

due to evaporation

IE(η) =
1

P (9/2, η)

1

2
√

2π

ˆ η

0
dη3

ˆ η

η3

dη2e−η2

ˆ 0

η3−η2

dη1e−η1 (η1 + η2 − η3)

ˆ η3

0
dηx

ˆ

dηqσ̃s(ηq)
η2

x√
η1 + η2 + η − ηq − 2ηx

fE(η) = IE(η)/IE
0 (η).

8In order to maintain η = ǫc/kBT constant during evaporation, ǫc must decrease at the same pace as
temperature. As a consequence, some atoms (and energy) are lost due to the decrease of the trap
depth. These so-called spilling losses are detrimental to evaporation, since there is no cooling of the
remaining atoms in the trap, in contrast to evaporation.
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6 Evaporative cooling in a plugged magnetic quadrupole trap

The previous results can be used to write a differential equation for a quantity de-

noted as x proportional to the collision rate

ẋ = (A − B)x2 − rx. (6.4.2)

Here r = Γinel/Γcoll and A and B are functions of η and the corrective factors for

momentum-dependent scattering fE and fN

A =
δα̃ − 1
1 − α̃ξ̃

e−ηI0(η) fN B = A
α̃/2

δα̃ − 1
α̃ =

(η + k̃) fE/ fN − c̃
c̃ + ((η + k̃) fE/ fN − η)ξ̃

.

Notice that fN and fE are functions of temperature and thus depend on x in a non-

trivial manner. In order to proceed the investigation one has to rely on the numerical

solving of the differential equation 6.4.2. For simplicity, we make fN(T) ∼ fN(T0)

and fE(T) ∼ fE(T0) to have an upper bound of the sought result. In this case the

differential equation has analytical solution

x =
e−rt

1 − (1 − e−rt)A−B
r

, (6.4.3)

which has the same form as the simple case of constant scattering cross section [33].

This result shows that there is a certain characteristic time for which the denominator
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Figure 6.4.2: Runaway time for an evaporation with 109 Potassium atoms for η = 8 and
b = 2.5T/m. (Left) Blue curve is the s-wave case two distinguishable spins and the red curve
is the p-wave case of indistinguishable fermions. (Right) Runaway time as a function of the
inelastic collision time for Γcoll = 100 s−1.
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is zero and the collision rate diverges. This value is the runaway time:

τ = − 1
rΓcoll

ln
(

1 − r
A − B

)
,

which becomes simply τ = 1/Γcoll(A − B) for r = Γinel/Γcoll ≪ 1. The runaway

time is plotted in fig. 6.4.2 and it shows the calculation for the s-wave and the p-wave

cases. In the experiments reported in section 6.6 we measure τ ∼ 9s, for an evap-

oration with η ≈ 8 starting at T ≈ 350µK with N = 1.5 × 109 atoms. We would

expect the runaway time to be smaller by roughly one order of magnitude due to the

dominant contribution of the p-wave collisions, but this is not observed in our exper-

iments. One possible explanation is an hypothetical inaccuracy of the theoretical data

used to model the p-wave scattering cross-section for T ∼ 300µK, as there are no ex-

perimental measurements to verify it [41]. Nevertheless, we experimentally observe

efficient evaporative cooling in the plugged magnetic quadrupole trap.

It is important to discuss the validity of the approximation r ≪ 1. To be more

precise, r must be compared to A − B, which is a function of η. For the case η =

8, then A0 − B0 ∼ 400 and as a consequence r < 400 in order to have runaway

evaporation. For Γcoll ∼ 100 s−1 one must have τinel > 4s, which is largely the case

for the experiments reported in this thesis.

In this section we did a theoretical study of the evaporation dynamics considering

the case of s-wave and p-wave momentum-dependent collisions. We evaluated their

respective corrective factors to the evaporation rate and we calculated the runaway

time for fast evaporative cooling of 40K. This concludes the theoretical analysis of the

evaporative cooling. In the following section we shall present the techniques and the

experimental results.

6.5 Experimental techniques

In the experiments reported in this chapter, the atoms are confined in a quadrupole

magnetic trap. The principles of magnetic trapping and the properties of this trap

were already discussed in chapter 5. By exciting magnetically trapped atoms using

hyperfine transitions into states which are expelled from the trap (high-field seekers),

one can remove atoms from the trap. Due to the linear Zeeman shift induced by the
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6 Evaporative cooling in a plugged magnetic quadrupole trap

magnetic trap, the resonance frequency of the atom-removal transitions depends on

the position of the atoms in the trap. Using this fact, one can use hyperfine transitions

to extract atoms with a chosen energy. This technique allows to tune the trap depth of

a magnetic trap simply by manipulating the frequency of the exciting electromagnetic

wave. The used hyperfine transitions are in the microwave (MW) range for 40K and

in the radio-frequency (RF) range for 6Li and will be object of study in the first part

of this section.

In the second part of this text, the optical plug will be described. As mentioned

before, the purpose of the optical plug is to inhibit the inelastic losses caused by Ma-

jorana flips. We will measure the Majorana heating rate and show that it is highly

suppressed in the presence of the plug. These two “experimental techniques” will be

essential for performing evaporative cooling, which will be described in the following

section 6.6.

6.5.1 Radio-frequency and micro-wave sources

In order to address magnetically trapped 40K and 6Li atoms independently one must

use the individual hyperfine transitions, instead of the “usual” Zeeman transitions.

These transitions excite trapped low-field seekers into repelled high-field seekers.

In the case of 40K the |9/2, 9/2〉 → |7/2, 7/2〉, the |9/2, 7/2〉 → |7/2, 7/2〉 and

the |9/2, 5/2〉 → |7/2, 7/2〉 transitions are used, while for 6Li only |3/2, 3/2〉 →
|1/2, 1/2〉 is relevant since in a magnetic trap there is only one stable and trappable

state. The frequency of those transitions as a function of energy can be calculated

using the Breit-Rabi formula and are plotted in fig. 6.5.1. The addressing of these

transitions depends on the polarization of the incident electromagnetic radiation, re-

spective to the local direction of the magnetic field. In the quadrupole trap the field

direction varies over space and the surfaces with constant energy have an ellipsoidal

shape. In consequence, coupling will occur in two pole-like regions.

The RF/MW signals for evaporation are produced by two independent Agilent

synthesizers which can be programmed via LAN by the control computer. They are
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Figure 6.5.1: Transition frequencies as a function of energy cut ǫcut = kBTcut. 40K in the left
(MW transitions to the |7/2, 7/2〉 state from |9/2, 9/2〉 (blue), |9/2, 7/2〉 (red) and |9/2, 5/2〉
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Figure 6.5.2: Scheme of the RF/MW electronics for evaporation in the magnetic trap and spin
manipulation. MC stands for Mini Circuits. The antennae are described in appendix 6.B.
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both connected to fast switches and amplified. On the output there is a circulator9,

whose transmission port is connected to the antennae (placed close to the science

cell with the axis perpendicular to the z direction) and whose reflection port is con-

nected to a high power −40dB attenuator and a 50Ω termination10. These circuits

are schematized in fig. 6.5.2 and include electronics used for other manipulations of

the atomic states (such as the adiabatic passage described in section 7.5.3). Details

concerning the construction of the antennae can be found in appendix 6.B.

6.5.2 Probing density and energy distributions in a magnetic trap

A useful and precise way of “tomographically” probe the atom cloud in a magnetic

trap is to use RF/MW radiation, as the hyperfine transitions are narrow compared to

the optical ones. An experiment that we performed was to eliminate from the trap

all atoms with energy superior than ǫcut = kBTcut and to measure the number of

remaining atoms. This quantity can easily be calculated knowing that the density of

states is given by a law of the type ρ(ǫ) ∝ ǫ1/2+δ for a power law trap V(r) ∼ r3/δ.

The number of atoms remaining in the trap after a cut to energy ǫcut is

N(ǫcut)

N0
=

´ ǫcut
0 ǫ1/2+δe−ǫ/kBT
´ ∞

0 ǫ1/2+δe−ǫ/kBT
(6.5.1)

Introducing the incomplete gamma function Γ(n, η) ≡ ´ η
0 xn−1e−xdx and defining

ηcut = ǫcut/kBT = Tcut/T one gets N(ηcut)/N0 = Γ(3/2 + δ, ηcut)/Γ(3/2 + δ, ∞) ≡
P(3/2 + δ, ηcut). For a linear trap we have δ = 3 and thus Ncut = N0P(9/2, ηcut).

An example of such measurement can be found in fig. 6.5.3. The cloud tempera-

ture can be determined with this technique and in contrast with the TOF technique

it does not depend on the magnification of an optical system (see section 2.3.1). At

low temperature T ≈ 100µK we see that both methods agree very well. At higher

temperature it is difficult to measure the temperature by TOF.11

9The circulator for MW is RADC-800-2000M-S23-10/100WR Fwd-b and for RF is Raditek RADC-225-
400MHN23-150WR-f4.

10Mini Circuits BW-40N100W+ and Minicircuits KARN-50+
11The small size of the science cell requires using small values of time-of-flight for a hotter cloud. We
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Figure 6.5.3: Using MW to eliminate K atoms from a linear magnetic trap to a certain energy
kBTcut. The dots are data from single experiments and the curve is a fit of equation 6.5.1. The
temperature obtained from the fit is T = 640µK for a trap gradient of b = 2.2T/m in the
science cell.

Another useful experiment is to probe the flux of atoms through a RF/MW shell of

a certain energy ǫcut. This can be done experimentally by switching on the RF/MW

knife at a fixed frequency for a time interval short enough so that the energy distribu-

tion is not perturbed significantly (but still long enough compared to the oscillation

time of the atoms in the trap). The cut knife defines a surface S in such a way that

U(r) = ǫcut with r ∈ S . Let us calculate the loss of atoms due to spin flips in this sur-

face S during a short time. This quantity is proportional to the atomic flux through

the surface φ = S
´

f (r, p)|v⊥|d3p with r ∈ S , where S is the area of S , v⊥ is the com-

ponent of the atomic speed normal to the surface and f (r, p) is the atomic distribution

function in the surface. This function is simply the Maxwell-Boltzmann distribution

f (r, p) = N exp[−H(r, p)/kBT], where H(r, p) = p2/2m + V(r) is the Hamiltonian

of the system and z = n(0)Λ3. Let us start by calculating the flux integral

ˆ

f (r, p)|v⊥|d3p = 2π

ˆ

d cos θ

ˆ

p2dp
( p

m
|cos θ|

)
N exp[−H(r, p)/kBT]

=
2π

m
N
ˆ

p3e−(p2/2m+ǫcut)/kBTdp = πmN (2kBT)2e−ηcut .

observe that the eddy currents resulting from switching of the magnetic trap significantly perturb
the absorption imaging measurements.
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6 Evaporative cooling in a plugged magnetic quadrupole trap

Here ηcut = ǫcut/kBT. Concerning the surface area S, one can easily calculate it us-

ing the formula for the surface of an ellipsoid. It gives S = 2π5.52ℓ2
cut with ℓcut =

ǫcut/µBb = ηcutλ, where b is the strong axis magnetic gradient and λ = kBT/µb is the

size of the cloud along that axis.

This result can be used to calculate the atom loss due to the knife cut. The atom loss

is ∆N = Pφδt, where δt is the duration of the RF/MW pulse and P the probability of

a spin-flip when an atom crosses S (it is supposed constant12). Finally one obtains

∆N = Pδt2π5.52η2
cutλ

2πmN (2kBT)2 e−ηcut

and using N = NΛ3/Veh3 one gets the desired result

∆N
N

= αP
√

kBT/m
λ/δt

η2
cute

−ηcut , α =
5.52

8
√

2π
≈ 0.275.

This expression fits very well with the experimental results (see fig. 6.5.4).
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Figure 6.5.4: Atom flux experiment for a 40K cloud in the compressed trap b = 5.25T/m. The
fit gives T = 1.64mK and αP

√
kBT/m
λ/δt = 0.556, hence P = 15.1%.

6.5.3 Optical plug

In order to efficiently perform evaporative cooling in a quadrupole trap, Majorana

losses must be suppressed. Indeed, it was already shown in section 6.3.1 that the exis-
12P is actually an averaged probability, since there are only flips in the poles of the surface S
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6.5 Experimental techniques

tence of a magnetic field zero induces inelastic losses and heating of the cloud, which

are aggravated with the decrease of temperature due to the consequent increase of

density. To inhibit this effect, a laser beam with a repulsive force was focused into the

magnetic field zero. In the region close to the new bottom of the trap the confinement

is harmonic.

A Verdi13 single mode laser is used for this purpose, since its wavelength λ =

532nm is blue detuned respective to the strong D transitions of both 6Li and 40K.

The laser beam passes through an AOM14 and 7W of power are focused into a waist

of ≈ 20µm into the atomic cloud along y-axis (see figure in section 2.2.3 for a full

scheme). The optical components such as lenses and mirrors are made of fused silica

in order to prevent thermal lensing due to high power. By aligning the laser beam in

the center of a quadrupole magnetic trap, the potential at the center will be shifted by

U0 and the trap bottom will be harmonic. The calculated parameters are indicated in

table 6.5.1. For details concerning the optically plugged magnetic trap see ref. 51.

6Li 40K
U0 (mK) 0.78 0.80

ωb/2π (kHz) 4.1 1.6
ωb/2/2π (kHz) 3.0 1.2

Table 6.5.1: Parameters for the plugged trap: the maximum light shift (U0) and the trapping
frequencies for the strong and weak direction of the quadrupole trap.

For diagnostic purposes a leak from a dichroic mirror of the plug beam was aligned

into a 4-quadrant photodiode15. By imaging the focus of the plug into the 4-quad PD,

one can follow the slow drift of the beam. These drifts can be corrected by acting

on piezo-actuators mounted on a mirror close to the science cell16. A LabView rou-

tine was implemented in order to place the plug beam in a certain reference position

(measured by the 4-quad PD), by actuating on the piezo-actuators, when prompted.

The “fast” pointing noise was studied by measuring the position of the plug in the

4-quad PD for ∼ 3min with different sampling intervals. The root mean squared av-

13Coherent Verdi V10 (10W)
14AA Opto-electronic MCQ110-A2-VIS
15Newport Model 2901
16Newport AG-M100N
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6 Evaporative cooling in a plugged magnetic quadrupole trap

erage displacement is of ∼ 1µm (much smaller than the waist) and when measuring

the noise spectrum we did not observe resonant behavior.
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Figure 6.5.5: Absorption imaging along the axis of the plug of a 40K atomic cloud in the
magnetic quadrupole. On the left side a cloud with T = 95µK was released from the magnetic
trap for 2ms in the presence of the plug. On the right side is an image in situ of a cloud
resulting from a MW cut down to Tcut = 100µK. This last picture is used to position the plug
in the center of the trap.

6.5.4 Study of the plugged magnetic quadrupole trap

To determine the importance of losses during evaporation, a study was performed by

holding the cloud in the quadrupole trap with gradient b = 2.5T/m. In a first series

of measurements, the optical plug was absent in order to quantify the importance of

the Majorana losses. For the atomic cloud arriving at the science cell (T = 325µK) the

lifetime was determined from a exponential fit to be ≈ 70s. By performing evapora-

tive cooling down to T ≈ 75µK, the lifetime decreased to (5.2± 0.3)s in the absence of

the plug, as expected. A systematic study of the Majorana heating was performed by

determining the temperature by free expansion after a variable hold time (blue circles

in fig. 6.5.6). The Majorana heating is given by eq. 6.3.1, which we reproduce here

T(t) = T0
√

1 + t/τ
1
τ
= C

8
9

h̄
mλ2

0
λ0 =

kBT0

µBb
.

This expression is plotted for T = 75µK as a blue dashed line in fig. 6.5.6. One

can see that the observed heating (blue circles) is more severe than predicted. By
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6.6 Evaporation in the plugged trap

fitting the experimental data with eq. 6.3.1 one gets C = 0.16 ± 0.02, about 4 times

larger than reported for 87Rb by Dubessy et al. [51]. This increased heating could

be due to nature of 40K (e.g. the atomic ground-state structure F = 9/2). In the

presence of the plug we observe a strong suppression of the Majorana heating (red

circles in fig. 6.5.6). By fitting the previous equation to the experimental data we

obtain C = 0.02 ± 0.02 (red curve)17. In these experiments the initial central density

in the trap was of n0 = 6 × 1012cm−3.

æ

æ

æ

æ

æ
æ

æ

0 2 4 6 8 10
60

70

80

90

100

110

120

130

t hold HsL

T
em

pe
ra

tu
re
HΜ

K
L

Figure 6.5.6: Cloud temperature as a function of hold time in the unplugged (blue dots) and
plugged (red dots) magnetic quadrupole trap. The dashed blue line is the expected heat-
ing using the result of ref. 51, the blue (red) line is the fit to the experimental data for the
unplugged (plugged) trap.

6.6 Evaporation in the plugged trap

After the atomic cloud being magnetically transported to the science cell, we perform

evaporative cooling in order to achieve quantum degeneracy. This happens in two

stages: first we perform cooling in the plugged magnetic quadrupole trap and second

in an optical dipole trap. In this section we report the first cooling stage, which is

optimized in order to maximize the initial collision rate in the optical dipole trap, so

that the subsequent step is efficient. Evaporative cooling of 40K in a quadrupole trap

is realized by doing a microwave (MW) frequency ramp in the presence of the optical

17We have chosen to suppress one experimental data point T = (93 ± 15)µK at thold = 10s from the
plot, due to its high experimental uncertainty.
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6 Evaporative cooling in a plugged magnetic quadrupole trap

plug, as described in the previous section 6.5. The transfer and evaporation in the

optical dipole trap will be the subject of chapter 7.

In this experiment, a linear ramp of microwave from Tcut = 3.7mK to Tcut =

0.70mK is done in 5s, cooling a cloud of 1.5 × 109 atoms at 320µK into a cloud of

1.5 × 108 atoms at 95µK, in a quadrupole trap with a gradient of b = 2.5T/m in the

strong direction. After an adiabatic opening of the magnetic trap 2.8 × 107 atoms

were detected in the optical dipole trap at 45µK. The temperature measurements of

the cloud in the quadrupole trap were performed by using the MW cut technique

introduced in section 6.5.2. The MW ramp for the temperature measurement was

performed in 350ms, then the magnetic trap was ramped down to 10% of its initial

value, it was switched off and the remaining number of atoms determined by absorp-

tion imaging. The ramping down of the field was performed in order to decrease the

effect of eddy currents, which perturb the atom counting. This strategy was validated

at low temperature ∼ 100µK by comparing it with the standard measurement of the

cloud expansion speed, performed at long time-of-flight values (t ≥ 5ms), a regime

in which there are negligible eddy current effects. The measured atom number and

the temperature are plotted as function of the evaporation time in fig. 6.6.1. From

the log-log plot of temperature and the atom number one can deduce experimentally

the exponent α = d ln T/d ln N ≈ 0.55, meaning that one has to lose ≈ 2 orders of

magnitude in atom number to win an order of magnitude in temperature. For the

phase space density coefficient Γ = −d ln PSD/d ln N, one has Γ = 9α/2 − 1 ≈ 1.45,

showing that this evaporation is not very efficient (usually Γ ≈ 3 for a 87Rb experi-

ment). We did not observe improvement by increasing the evaporation time. On the

other hand, this evaporation sequence is quick and optimizes loading of the optical

dipole trap for subsequent cooling.

To estimate the order of magnitude of the collision rate, we take a constant scat-

tering cross-section σ = 4π(170a0)
2, which is not a bad approximation between

T = 100 − 300µK (see fig. 6.2.1). The collision rate in a quadrupole trap is γcoll =

n/8
√

2σs
√

8kBT/πm, with n = (N/2)/32πλ3. The evolution of the collision rate

during the evaporation is depicted in fig. 6.6.1 and it increases over time, showing

that we approach the runaway regime. The data was fitted to the model of eq. 6.4.3 for

the lossless case r ≪ 1, which gives γcoll(t) = γ0
coll/(1 − t/τdiv), where γ0

coll ≈ 37Hz
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Figure 6.6.1: Atom number and temperature as a function of evaporation time (top left) and
log-log plot of temperature as a function of atom number (top right). Collision rate as a
function of evaporation time (bottom).

is the initial collision rate and τdiv ≈ 8.5s is the runaway time. Since the lifetime in

the trap is τinel ∼ 70s, we can estimate r = 1/γ0
collτinel ∼ 1/2600, which is largely

sufficient to consider the evaporation lossless.

We have shown in this section that we are able to cool down a gas of 40K and

increase its collision rate and phase space density by performing evaporative cooling

in an plugged magnetic quadrupole trap. We will show in the following chapter

that we can load about ≈ 3 × 107 atoms into an optical dipole trap with T ≈ 45µK.

Subsequent evaporative cooling in this trap will allow us to to observe a quantum

degenerate gas.
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6 Evaporative cooling in a plugged magnetic quadrupole trap

6.7 Sympathetic cooling of 6Li

6Li only has one state which is simultaneously magnetically trappable and stable

against spin-exchange collisions [178], which is the stretched state |F = 3/2, mF = 3/2〉.
Due to fermionic nature of 6Li and the strong suppression of collisions below Tp =

6mK by the ℓ = 1 (p-wave) rotational barrier [100], it is not possible to cool down this

species on its own in a magnetic trap. Instead, we use a sympathetic cooling tech-

nique [100, 176]. This strategy consists in cooling another species, in our setup 40K,

and let 6Li gradually thermalize with the coolant. The technique crucially relies on

interspecies collisions.

In this section we will evaluate the thermalization rate of a trapped gas of 6Li with
40K in the same magnetic quadrupole trap and compare it with experiments realized

in the MOT chamber. In a second part we will present preliminary results on the

sympathetic cooling of 6Li with 40K. Finally we will discuss inter-species inelastic

losses due to spin-exchange collisions.

6.7.1 Thermalization of a gas of 6Li with 40K

The reported triplet scattering length for 6Li-40K collisions is at = 63.5a0 [212]. When

calculating the thermally-averaged scattered cross-section σLiK(T) (see eq. 6.2.2), we

conclude that its dependence with temperature is very weak (see left plot in fig. 6.7.1).
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Figure 6.7.1: (Left) Thermally-averaged scattered cross-section for 6Li-40K collisions. (Right)
Thermalization time for 6Li in the presence of 3 × 109 Potassium atoms in a quadrupole mag-
netic trap b = 1.35T/m.
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6.7 Sympathetic cooling of 6Li

The collision rate for inter-species collisions is given by the expression

γcoll =
√

2nv̄σLiK
V2e

Ve
,

where v̄ =
√

4kBT/πµ and V2e/Ve = 1/8 in a quadrupole trap18 [206]. Using this

result one can calculate the thermalization rate 1/τth between the two species. As-

suming that one has a majority gas (40K in our case) and a minority gas (6Li), that is

NK ≫ NLi, which are at the same temperature T, for a small perturbation in temper-

ature δT/T ≪ 1 the gases will re-thermalize with rate

1
τth

=
ξ

2 (δ + 3/2)
γcoll,

with ξ = 4µ/M being a mass mismatch term and δ the scaling of the power-law

trap potential V(r) ∼ r3/δ. A point worth stressing is that for a single species in an

homogenous trap (ξ = 1 and γ = 0) it takes 3 collisions to thermalize τth = 3/γcoll.

However for a linear trap it takes 9 collisions for a single species gas (ξ = 1 and δ = 3)

and ≈ 20 for a heterospecies 6Li-40K gas (ξ ≈ 0.454 and δ = 3). In the right panel of

fig. 6.7.1 we calculate the thermalization rate of 6Li with a gas of 3 × 109 atoms of 40K

in a quadrupole magnetic trap of the MOT chamber b = 1.35T/m.

6.7.2 Thermalization experiments in the MOT chamber

When describing the loading of atoms in the magnetic quadrupole trap in the MOT

chamber, we observed that the trapped clouds were not in thermal equilibrium (cf.

summary in table 5.2.1). Indeed, the measured “temperature” was not isotropic. By

measuring the temperature of a magnetically trapped 6Li cloud as a function of hold

time (in the absence of 40K), we observed that the temperature anisotropy did not re-

duce up to ≈ 5s of waiting time in the trap (see fig. 6.7.2). Notice that 6Li is polarized

in single state (the stretched state) and is collisionless, due to its fermionic character

and the p-wave barrier. Nevertheless, we (naïvely) expected that the ensemble of the

single atom trajectories would mix together, resulting in an energetically isotropic

gas, since in the magnetic quadrupole trap all the trapping directions are coupled

18Notice the factor 2 for distinguishable particles.
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6 Evaporative cooling in a plugged magnetic quadrupole trap

together19. It turns out that this intuition is wrong. By running a simple numerical

simulation of the movement of a single particle in the trap it was observed that the

temperature anisotropy did not decrease, as we observed in experiments.

In another set of experiments, we trapped 6Li together with 40K and observed the

full thermalization of the gases. After a hold time of τ ≈ 1.5s in the trap, the tem-

peratures of each gas were isotropic and approximately the same. The reason for this

behavior is the possibility of interspecies collisions σ6Li40K ≈ 1.4 × 10−12cm2, which

allows energy redistribution. The observed thermalization time-scale is close to the

calculation of the preceding section (see fig. 6.7.1).
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Figure 6.7.2: Study of the thermalization of a 6Li cloud in a magnetic quadrupole trap. The
magnetic gradient is ramped to b = 1.35T/m in 450ms. (Left) Absence of 40K: no thermaliza-
tion is observed. (Right) Presence of 40K: we observe full thermalization in ≈ 1.5s. (figures
from ref. 183).

6.7.3 Sympathetic cooling of 6Li

In the previous paragraphs we evaluated and experimentally demonstrated the ther-

malization of a gas of 6Li by a reservoir of 40K. This opens the door for sympathetic

cooling of 6Li while performing evaporative cooling of 40K.

19This contrasts with the case of the harmonic trap: since the trap directions are separable, the motion
of a collisionless gas in each direction is independent.
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Figure 6.7.3: Integration of a double absorption image of a mixture of 6Li (4.5 × 105 atoms at
T = 38µK in red) and 40K (1.9 × 105 atoms at T = 31µK in blue) simultaneously loaded in an
optical dipole trap after 0.5ms of time-of-flight. Dashed lines are gaussian fits.

Preliminary studies showed that we were able to cool a cloud of ≈ 2 × 106 atoms
6Li to T ≈ 60µK in the plugged quadrupole trap in the science cell. We observed

that the presence of the optical plug was crucial. In its absence, cooling was very

inefficient due to the strong Majorana losses. In the presence of the optical plug, the

measured lifetime of the 6Li cloud at low temperature was ≈ 20s. In order to cool
6Li we observed that it was required to have a small initial sample of ∼ 107 atoms in

the science cell. This was achieved by detuning away the 6Li Zeeman slower in order

to have a smaller magneto-optical trap (MOT) and consequently less atoms reaching

the science cell. For large samples of 6Li, we observed that cooling was inefficient.

By ramping down the magnetic field gradient at the end of the evaporation we

were able to load the optical dipole trap (this procedure will be described in detail

in section 7.3). We observed the trapping of 4.5 × 105 atoms of 6Li at T ≈ 38µK

(PSD≈ 5 × 10−4) and 1.9 × 105 atoms of 40K at T ≈ 31µK (PSD≈ 7 × 10−5) in the

optical dipole trap (see fig. 6.7.3). This preliminary result is very promising and

leaves room for further optimization.

6.7.4 Spin-exchange interspecies collision rate

When sympathetically cooling 6Li in the presence of 40K, inelastic losses due to spin-

exchange collisions can occur and they can be detrimental to the evaporation, as it
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6 Evaporative cooling in a plugged magnetic quadrupole trap

was already discussed in section 6.3.2. Collisions between stretched states are im-

mune to this effect, since the angular momentum of these states is maximum. A

spin-exchange collision between these states would violate the conservation of angu-

lar momentum and so they do not occur. On the other hand, other spin states of 40K

may coexist in the trap, such as |F = 9/2, mF = 7/2〉 and |F = 9/2, mF = 5/2〉. Colli-

sions with atoms of 6Li in the stretched state may exchange the spins. At the present,

we did not find a clear sign of spin-exchange reactions between 6Li and 40K in our

experimental conditions. However, it is important to estimate its magnitude, since

these reactions could be relevant in future experiments.

The rate of the spin-exchange reaction |i〉 → | f 〉 is given by

dnLi,i

dt
=

dnK,i

dt
= −dnLi, f

dt
= −dnK, f

dt
= −K2nLi,inK,i,

where n is the density of 6Li or 40K atoms in the initial (i) or final ( f ) state. The two-

body scattering rate K2 for spin exchange is given by:

K2 = 4π(as − at)
2v

′
rel |〈 f |sLi · sK| i〉|2 ,

where in turn v′rel =
√

2
µ

(
Ekin + ∆Emag

)
is the relative speed between the atoms after

collision (with Ekin = 3/2kBT for a trapped gas and ∆Emag is the variation in magnetic

energy due to change in spin) [155]. The scattering lengths for 6Li-40K in the singlet

and triplet channel are as and at, respectively and s is the electron spin operator. This

expression includes only the contribution of the exchange interaction, which should

be the dominant one. The dipolar-dipolar interaction is another inelastic mechanism

with exchange of spins, but it will not be treated here.

Let us start by considering the reaction |i〉 = |K, 9/2, 7/2〉+ |Li, 3/2, 3/2〉 → | f 〉 =
|K, 9/2, 9/2〉 + |Li, 1/2, 1/2〉. The spin-exchange matrix element can be calculated

and is 〈 f |sLi · sK| i〉 =
√

2/3/12. Since the final state of 6Li is not trapable, we will

observe a decay of the total atom number of 6Li

dNLi

dt
= − 〈K2nLinK〉 = −

ˆ

d3r K2nLinK.

Taking the known dependence of the atomic density in a quadrupole trap (eq. 5.1.5),
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6.7 Sympathetic cooling of 6Li

we can obtain an expression for the decay time τ of the 6Li sample

1
τ

=
π

4
(as − at)

2

√
3kBT

µ
nK,0 |〈 f |sLi · sK| i〉|2

ˆ

u2du
√

1 + 2uhf/3 + αu/3e−u,

where the replacement u = 2r′/λ, with r′ = (x/2, y/2, z) and λ = kBT/µbb was

made for the calculation. The volume of the trap is V0 =
´

d3re−U/kBT = 32πλ3. Also

the assumption was made that the Zeeman shift of all the states is linear ∆Emag =

Ehf + αµBbr′, with α = 7/9 + 4/3 = 10/9 and uhf = Ehf/kBT. The result is plotted as

a function of temperature in red in fig. 6.7.4. Neglecting the kinetic energy and the

Zeeman shift one obtains 1/τnK,0 ≈ 1.7 × 10−14 cm−3s−1.

Another possible spin-exchange reaction is |i〉 = |K, 9/2, 7/2〉 + |Li, 3/2, 3/2〉 →
| f 〉 = |K, 9/2, 9/2〉 + |Li, 3/2, 1/2〉. In this case 6Li does not change of hyperfine

manifold, but only of Zeeman state. The matrix element is 〈 f |sLi · sK| i〉 =
√

3/18.

The decay rate of 6Li can also be calculated using the same procedure, yielding

1
τ
=

π

4
(as − at)

2

√
3kBT

µ
nK,0

I
108

.

Here I =
´

u2du
√

1 + αu/3e−u ≈ 2.395, with α = 7/9 − 1/3 = 4/9. The result of

this calculation is plotted as a function of temperature in blue in fig. 6.7.4.
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Figure 6.7.4: Spin-exchange losses as a function of temperature for the colli-
sions: |K, 9/2, 7/2〉 |Li, 3/2, 3/2〉 → |K, 9/2, 9/2〉 |Li, 3/2, 1/2〉 (blue curve) and
|K, 9/2, 7/2〉 |Li, 3/2, 3/2〉 → |K, 9/2, 9/2〉 |Li, 1/2, 1/2〉 (red curve). The lifetime of
Lithium is plotted for 109 Potassium atoms in a magnetic trap with b = 2.5T/m.
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6 Evaporative cooling in a plugged magnetic quadrupole trap

The hyperfine-changing spin-exchange collisions are the most likely process that

changes the spin of 6Li and induces losses. After a collision there is a gain in kinetic

energy of h228.2MHz ∼ 11mK and 6Li, being the lighter atom, takes most of this

energy and is expelled from the trap. This is the dominant term of the loss rate, but

we observe nevertheless a weak dependence on the internal state.

This study shows that spin-exchanging collisions rate can be small compared to

the evaporation time-scale, which leaves a window open for sympathetic cooling in

the presence of different spin states of 40K. Notice that this study is not exhaustive

as it does not comprise the calculation for other trappable spin states of 40K (such as

|F = 9/2, mF = 5/2〉), nor other inelastic processes that we assumed to be less impor-

tant. In ref. 200 it was observed that when evaporating a mixture of spins of 40K in the

presence of a cloud of 6Li in a plugged magnetic trap, the density of 40K stopped in-

creasing for nK & 1012cm−3, contrasting with the case in which 6Li was absent. In the

experiments reported in the previous section 6.7.3, the density of 40K was probably

too small to observe any spin-exchange reactions (nK ≈ 5 × 1011cm−3).

6.8 Summary

In this chapter we studied the evaporative cooling of 40K in a magnetic quadrupole

plugged trap. By describing the elastic and inelastic collision channels we were able

to estimate the expected evaporation rate and the time for runaway evaporation. Ex-

periments were done in the presence of an optical plug, which was shown to inhibit

detrimental Majorana losses. Starting from a gas of 40K with N = 1.5 × 109 atoms

at 320µK in a trap with gradient b = 2.5T/m, we obtain 1.5 × 108 atoms at 95µK

after 5s of evaporation. This yields a gain of factor ≈ 2.4 × 102 in phase space den-

sity. These are good conditions to efficiently load an optical dipole trap, as it will be

demonstrated in the following chapter 7. Subsequent evaporative cooling will result

in a degenerate quantum gas.

We also discussed the cooling of 6Li in the magnetic plugged trap, which is done by

successive thermalization with the 40K cloud in the trap, due to interspecies collisions

(sympathetic cooling). At the end of the evaporative cooling sequence we were able

to load 4.5 × 105 atoms of 6Li at T = 38µK in the optical dipole trap.
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6.A Corrective factor for evaporation rate

Appendix 6.A Corrective factor for evaporation rate

In this section we calculate the integral of eq. 6.4.1 from section 6.4.1 for the s-wave

and the p-wave cases:

Ṅevap = − 1
h62m

ˆ

dǫ1dǫ2dǫ3dǫ4 ( f (ǫ1) f (ǫ2)− f (ǫ3) f (ǫ4)) d3rd3Pdqq3dudu′σ(q, u′)

4

∏
i=i

δ(p2
i /2m + U(r)− ǫi).

We refer the reader to the mentioned section for details concerning the notation and

the context of the calculation.

To simplify the notation one defines an adimensional scattering cross-section σ(q, u′) ≡
σ0σ̃(q, u′) with σ0 = a2

s . In the following on shall analyze two different cases: the s-

wave (σ̃(q, u′) = σ̃s(q)) and the p-wave (σ̃(q, u′) = σ̃p(q)u′2).

S-wave scattering case

Let us start by integrating the angular variables

ˆ

duδ

(
p2

1
2m

+ U(r)− ǫ1

)
δ

(
p2

2
2m

+ U(r)− ǫ2

)
=

2m
Pq

δ

(
ǫ1 + ǫ2 − 2U(r)− P2

4m
− q2

m

)
,

with an analogous result for u′. On the other hand, the integral in P is given by

ˆ

d3P

P2 δ

(
ǫ1 + ǫ2 − 2U(r)− P2

4m
− q2

m

)
δ

(
ǫ3 + ǫ4 − 2U(r)− P2

4m
− q2

m

)
=

=
4π

√
mδ(ǫ1 + ǫ2 − ǫ3 − ǫ4)√

ǫ1 + ǫ2 − 2U(r)− q2/m
.

For the integral in r, let us specialize to the linear trap case. This integral goes from 0

to the maximum position of the particle ǫ3 = µbrmax = xmax

ˆ

d3r
1√

ǫ1 + ǫ2 − q2/m − 2U(r)
=

16π

(µBb)3

ˆ xmax

0
dx

x2
√

ǫ1 + ǫ2 − q2/m − 2x
.
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6 Evaporative cooling in a plugged magnetic quadrupole trap

For the integral in q, one performs a simple replacement by introducing the exchanged

energy ǫq = q2/2m

ˆ

dqσ̃s(q)q =
m
2

ˆ

dǫqσ̃s(q =
√

2mǫq).

Concerning the limits of the definite integrals, let us recall that the extracted particle

has ǫ4 ∈ [ǫc, ∞[ and the other particles have energies smaller than ǫc. Moreover, ǫ3

is the smallest energy value ǫ3 ≤ ǫi, as consequence of energy conservation. Finally,

fixing ǫ3 and ǫ2, one has ǫ1 = ǫ4 + ǫ3 − ǫ2 < ǫc + ǫ3 − ǫ2 < ǫc. For the integral in ǫq

ǫq ≶
(p3 ± p4)

2

4m
=

ǫ3

2
+

ǫ4

2
− x ±

√
ǫ3 − x

√
ǫ4 − x,

where p3,4 = P/2 ± q. Using the previous results and integrating in ǫ4

Ṅevap = −64π2m5/2σ0

h6(µBb)3

ˆ ǫc

0
dǫ3

ˆ ǫc

ǫc+ǫ3−ǫ2

dǫ1

ˆ ǫc

ǫ3

dǫ2 f (ǫ1) f (ǫ2)

ˆ ǫ3

0
dx

ˆ

dǫqσ̃s(q)
x2

√
ǫ1 + ǫ2 − q2/m − 2x

,

where the limits for the ǫq integral were omitted for simplicity. Notice that for the

integration domain of ǫ4, f (ǫ4) = 0. Let us now adimensionalize the energy variables

ηi = ǫi/kBT and introduce the energy distributions

Ṅevap = −64π2m3σ0

h6 λ3
(

n0Λ3
)2

(kBT)3
(

kBT
m

)1/2

×F (ηc)

where F (ηc) was defined to simplify the notation

F (ηc) =

ˆ ηc

0
dη3

ˆ ηc

η3

dη2e−η2

ˆ ηc

ηc+η3−η2

dη1e−η1

ˆ η3

0
dηx

ˆ

dηqσ̃s(ηq)
η2

x√
η1 + η2 − ηq − 2ηx

.

The evaporation volume as defined in ref. 33 is given by

Vevap = − Ṅevap

n2
04πσ0v̄e−ηc

=
16πm3

h6 λ3Λ6 (kBT)3
(π

8

)1/2
eηc ×F (ηc)
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with v̄ =
√

8kBT/πm. Using now the fact that ζ∞(T) = 32πλ3/Λ3 one gets

Vevap = Λ3ζ∞(T)
1

32π2
√

2π
eηc ×F (ηc)

To simplify again the notation, let us define Vevap/Ve = I(η ≡ ηc), where Ve =

Λ3ζ∞(T)P
( 3

2 + δ, η
)
= N/n0 is the reference volume. In the case of constant σ, that

is of σ̃s(q) = 1, one obtains

I0(η) = η −
(

5
2
+ δ

)
P
(

5
2
+ δ, η

)
/P
(

3
2
+ δ, η

)
.

Here δ is the trapping potential energy scaling exponent with position U ∼ r3/δ

(e.g. δ = 3 for the quadrupole potential). Defining the corrective term as fN(η) ≡
I(η)/I0(η) one has Vevap/Ve = I0(η) fN(η). This corrective term fN is plotted in

blue in fig. 6.4.1 for 40K.

P-wave scattering case

In this case the scattering cross-section depends on the out-going angle as σ̃(q, u′) =

σ̃p(q)u′2, but the modifications in the previous reasoning are straightforward. In the

end it suffices to modify the integrand:

σ̃s(ηq)
η2

x√
η1 + η2 − ηq − 2ηx

→ 1
4

σ̃p(ηq)
η2

x

(η1 + η2 − ηq − 2ηx)3/2
(η1 + η2 − 2η3)

2

ηq
.

Appendix 6.B Construction of the antennae

In order to manipulate the atomic quantum state it is very useful to have at disposal

a radio-frequency/microwave radiation source. For instance, to change the Zeeman

state (or spin) of an atom at a certain magnetic field (range of 0-50 MHz) or the hy-

perfine state (∼ 230MHz for 6Li and ∼ 1.3GHz for 40K, etc.). The oscillating electrical

signal can be produced by a synthesizer (or a VCO), then amplified and delivered

to an antenna, which converts the electric signal into electromagnetic radiation. In

general, the response of the antenna depends strongly on the frequency of the signal.

This is highly inconvenient for cold atom experiments, since one needs the antenna
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6 Evaporative cooling in a plugged magnetic quadrupole trap

to respond in a certain frequency range around the frequency of interest. The anten-

nae are positioned close to the science cell with their axis orthogonal to the vertical z

direction20. This chapter is devoted to the description of the antennae construction of

the LiK experiment.

6.B.1 Potassium-40 hyperfine frequency (MW) antenna

In order to evaporate 40K in a magnetic trap, the needed frequencies are in the range

between ∼ 1.1GHz (∼ 5mK depth) to 1.285GHz (resonance), in the microwave (MW)

band, as showed in fig. 6.5.1. To have a performant antenna, it was decided to use

a λ/2 1-turn coil (diameter = 11.5 cm). When dealing with MW electrical currents

flowing through a conductor one has to have in mind the skin effect. Indeed, in this

frequency range f = ω/2π the current is only flowing in a small layer of thickness δ

at the surface of the conductor

δ =

√
2ρ

ωµ
≈ 2µm.

Here ρ is the resistivity of the conductor and µ its magnetic permeability. In order to

increase the radiative volume of the antenna we used Litz wire, which is a series of

several thin copper wires put in parallel. For the 40K antenna we used a multiplet of

400 wires of diameter 40µm.

In order to characterize the antenna, the λ/2 wire loop was connected to a bi-

direction coupler and the power of the reflection port was measured21. By changing

the frequency of the input signal it was observed a sharp decrease of the reflection at

≈ 1.5GHz, which was interpreted as a transmission resonance of the antenna. The

next step was to displace this peak to the frequency region of interest. In a perfect LC

circuit the resonance frequency is given by ω0 = 1/
√

LC. We thus tried to insert ca-

pacitors in parallel to the antenna in order to decrease the resonance frequency, with

no success. Inspired by ref. 44 we tried instead to use the stub technique by insert-

ing a T-connector and BNC cable with a loose end. It was indeed observed that the

20For atoms in an homogenous magnetic field, an antenna with its axis parallel to that field will excite
π transitions only.

21Mini Circuits ZABDC20-182H-S+
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6.B Construction of the antennae

resonance frequency shifted, whose displacement could be adjusted by changing the

length of the loose BNC cable (this was done simply by cutting the cable and checking

the position of the resonance).

In the plots below it is depicted the power measured at the reflection port of the

coupler (assumed to have a constant response over the interest frequency range) mi-

nus the power measured at the input of the coupler. It is assumed that at the max-

imum value of reflection there is no transmission of power to the antenna, which is

the worse case scenario.
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Figure 6.B.1: Characterization of the MW coil. Power reflected from the antenna as a function
of the frequency (left) and calculation of the transmission coefficient (right).

6.B.2 Radio-frequency antenna

The RF antenna is typically used to change the spin populations in two different

regimes. The first one is the low magnetic field B ∼ 10G (corresponding to ∼ 3MHz

for 40K) and the second is at high field B ∼ 200G, where several interesting 40K Fesh-

bach resonances exist (roughly at 45 MHz).

The coil used for these purposes was done using a 2r = 0.5mm diameter copper

wire wound 10 times around a pen of diameter 2R = 11mm. The inductance of this

coil can be estimated using the formula for a set of coil loops:

L = µ0RN2(ln 8R/r − 2) ∼ 2.2µH.
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6 Evaporative cooling in a plugged magnetic quadrupole trap

To directly measure the inductance, one used a directional coupler22 with a frequency

synthesizer as source and the coil as load. A fraction of the reflected wave (~10%)

could be measured by using the coupling channel. By comparing the incoming and

the reflected wave, the phase difference was measured as a function of the frequency

of the synthesizer signal. The results were fitted with the argument of the reflection

coefficient Γ

Γ =
Z2 − Z1

Z1 + Z2
,

where Z1 = 50Ω and Z2 = iωL + R. The fit gave L = 3.8µH and R = 35Ω.23
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Figure 6.B.2: Measurement of the inductance of the coil. Phase difference between the incom-
ing and the reflected wave in the coil as function of the signal frequency.

In order to have an efficient antenna one must impedance match it. This means that

one has to change it in such a way that its impedance is 50Ω, as seen by the ampli-

fier/synthesizer If this condition is met then there is no reflection Γ = 0. In practice

things are often difficult: for starters, one can only impedance match for a certain

frequency ω0. The important figure of merit is |Γ|2, which is the fraction of reflected

power. To impedance match an unbalanced L half section filter was built. This is no

more than a capacitor of capacitance C put in parallel with the coil and an inductor

22Mini Circuits ZDC-10-1+
23This resistance actually is a function of the frequency (cf. for DC R = 0Ω), but was taken as constant

for this simple fit.
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6.B Construction of the antennae

of inductance L2 in series with them. The impedance of this system is then

Z2 = iωL2 +
1

iωC + 1
R+iωL

.

This function |Γ| has a minimum when Im(Z2) = 0 and its depth and width as a

function of the frequency ω/2π depend on the real part (if R = 50Ω then |Γ|2 = 0

but the width of the resonance is small). Using available values for inductors and ca-

pacitors in the lab24 L2 = 560nH and C = 27pF were chosen, which give a resonance

frequency of ω0/2π = 44MHz. At low frequency there is some transmission since

Z2 ≈ R.

To measure the reflected power from the circuit the coupler technique was used

again. The input and the reflected power were measured using the spectrum analyzer

and the transmission power coefficient to the antenna circuit was calculated as 1 −
10−INdBm+RdBm . There is good agreement between the measurement and the designed

behavior.

0 20 40 60 80
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Frequency HMHzL

T
ra

ns
m

is
si

on

Figure 6.B.3: Power transmitted to the RF coil circuit as a function of frequency of the synthe-
sizer.

24Note that most standard electronic components have a radical dependence on frequency. For this
application components specified for “RF” were used (SMD mounting).
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6 Evaporative cooling in a plugged magnetic quadrupole trap

6.B.3 Lithium-6 hyperfine frequency (RF) antenna

When doing impedance matching, the use of lumped elements sometimes is not pos-

sible, e.g. due to power or frequency constraints. In these cases the stub technique

is most useful, like it was done for the antenna for 40K in the microwave range. To

evaporate (or cut the velocity distribution) of 6Li using hyperfine transitions, one is

interested in the range between 228MHz (resonance) up to 400MHz. The transmis-

sion coefficient of this antenna was measured using a calibrated network analyzer25.
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Figure 6.B.4: Power transmitted to the 6Li RF antenna measured with the help of a network
analyzer.

6.B.4 Stub technique

The idea of the stub technique is to change the impedance of a circuit by manipulating

its geometry. Indeed, since the wavelengths for RF/MW antennae are macroscopic

(cm to m) one can change the impedance by imposing conditions to the phase and

modify the standing electric wave in the circuit. There are two basic building blocks

to create stubs which are quite useful.

The first one is the introduction of a cable of length ℓ by means of a T adapter

into the circuit (stub). This is equivalent to put an impedance Zstub at that point of

the circuit. This impedance is given by ZSC = iZ0 tan(βℓ) or ZOC = −iZ0 cot(βℓ),

whether that cable is short circuited or open at the end, respectively. Here Z0 is the

25Anritsu 37369C
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6.B Construction of the antennae

characteristic impedance, typically 50Ω, and β = ω/v is the phase constant. This

means that inserting a stub is equivalent of introducing an inductor or a capacitor in

the circuit, depending on the chosen length.

The second one is the introduction of a cable of length ℓ in series with a load (ZL).

The total impedance of the system load+cable is given by

Z = Z0
ZL + iZ0 tan βℓ

Z0 + iZL tan βℓ
,

assuming that the impedance of the cable is Z0.

By attaching a series of stubs and cables to an antenna coil one can “design” the

impedance function just by manipulating the lengths of the cables.
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7 Evaporative cooling in an optical dipole trap

In this chapter we will describe the loading and the evaporative cooling of a mix-

ture of spins of 40K in an optical dipole trap (ODT). We will start by reviewing the

principles of optical trapping (section 7.1) and by presenting the experimental setup

(section 7.2). These sections will be followed by a study of the transfer of the atomic

cloud from the plugged magnetic quadrupole trap into the ODT (section 7.3). In sec-

tion 7.4 we will discuss the axial confinement in an ODT. Experimental results of the

evaporative cooling to quantum degeneracy will be presented and discussed in sec-

tion 7.5, which includes a study of the adiabatic transfer of the atoms into the lower

Zeeman states (section 7.5.3). In section 7.6 we will discuss the few remaining steps

to cool a mixture of 6Li-40K to double quantum degeneracy.

7.1 Trapping in an ODT

An oscillating electromagnetic field can induce a change in the energy of the atomic

levels due to its coupling with the atomic electric dipole. One can show that this

energy shift is proportional to the light intensity (in the first order approximation).

Therefore, by shinning an inhomogeneous laser beam to the atoms I(r) (focusing a

beam onto the atoms for example), one can induce a mechanical force ∝ −∇I(r) to

the atoms. This effect is relevant for a large laser detuning in order to have a small

scattering rate and negligible heating. In the limit of a laser detuning much larger

than the atomic fine structure, the atom can be seen as a simple two-level system. In

this case, the light shift of the ground state and the photon scattering rate are [75]

Udip(r) = −3πc2

2ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I(r) (7.1.1)

Γsc(r) =
3πc2

2h̄ω3
0

(
ω

ω0

)3 (
Γ

ω0 − ω
+

Γ

ω0 + ω

)2

I(r). (7.1.2)
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7 Evaporative cooling in an optical dipole trap

Here ω/2π is the laser frequency, ω0/2π is the atomic transition resonance frequency

and Γ/2π its linewidth. An atomic cloud placed in the focus of a gaussian laser beam

with power P, waist w (much larger than the cloud size) and negative (red) detuning

ω − ω0 < 0 will experience an attractive harmonic potential

U(r) =
1
2

mω2
Rρ2 +

1
2

mω2
Axx2

Ax

with depth U0 = Udip(0) with I(0) = 2P/πw2 and

ωR =

√
4U0

mw2 ωAx =

√
2U0

mz2
R

, (7.1.3)

where zR = πw2/λ is the Rayleigh length. These formulas were used to calculate the

parameters of the ODT existing in our apparatus and are shown in table 7.2.1 of the

following section.

The density profile of an atomic cloud in an optical dipole trap is given by a gaus-

sian

n(r) =
N
Ve

e−U(r)/kBT =
N
Ve

exp

{
− ρ2

2σ2
R
− x2

Ax

2σ2
Ax

}
, (7.1.4)

with

Ve = (2π)3/2σ2
RσAx σ =

√
kBT
mω2 .

This allows to readily calculate other quantities such as the collision rate (see eq. 6.2.3)

γcoll =
1
2

nσv̄,

with n = (N/2)/Ve (for an equilibrated mixture of two spins), σ = 4πa2
t and v̄ =√

8kBT/πm. In fig. 7.1.1 we show an absorption image of an atomic cloud in an ODT

after time-of-flight1, where we can observe the clear difference in the radial and axial

confinement. See the corresponding caption for details.

As the trapped atoms are sitting at the maximum of laser intensity, it is important

1See section 2.3.1 for details concerning the time-of-flight technique.
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Figure 7.1.1: Characterization of an evaporatively cooled cloud of 40K to P = 1.1W. (Top)
Absorption image after 2ms of time-of-flight. (Bottom) Oscillations of the center of mass
in the axial direction with ωAx/2π = (4.26 ± 0.03)Hz (exponential damping with τ =
(0.61 ± 0.06)s). The number of atoms is N = 1.7 × 107, the temperature T = 8.2µK, the radial
frequency ωR/2π = 880Hz. This corresponds to a central density of n = 1.2 × 1013cm−3 and
a phase space density of PSD= 0.011 (equivalent to T/TF ∼ 3, assuming a balanced mixture
of spins in the |F = 9/2, mF = 7/2〉 and the |F = 9/2, mF = 9/2〉 states).

to evaluate the heating caused by the scattering of photons from the trapping laser.

Let us consider the case ∆ = ω − ω0 ≪ ω0, in which the so-called rotating wave

approximation can be used. Using eqs. 7.1.1 and 7.1.2 we have the simple relation

h̄Γsc =
Γ

∆
Udip.

For a fixed optical potential Udip, the scattering rate can be minimized by having a

large detuning ∆. Since Udip ∝ I/∆, this condition usually requires a large amount

of laser power. In our case we use a laser beam with λ = 1064nm and power 10W
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7 Evaporative cooling in an optical dipole trap

(see table 7.2.1), yielding Γsc,0/2π ≈ 0.56Hz for 40K. To evaluate the energy increase

of the trapped atoms due to photon scattering, we follow the argument laid down in

ref. 75. This quantity is given by

Pheat = 2ErecΓ̄sc,

where Erec = h̄2(2π/λ)2/2m is the recoil energy and Γ̄sc is a trap-averaged scatter-

ing rate. The heating power takes into account the longitudinal and the transversal

contributions (hence the factor 2). Assuming that the atoms are at the bottom of the

trap kBT ≪ |U0|, we have h̄Γ̄sc ≈ Γ|U0|/|∆|. On the other hand, since the mean total

energy of a trapped atom is E = 3kBT, we equate Pheat = Ė, giving

Ṫ =
2Γ

3
Erec

kB

|U0|
h̄|∆| .

For the laser beam used in this apparatus, the heating due photon scattering events

is Ṫ = 0.96µK/s for 40K and Ṫ = 2.4µK/s for 6Li (the main difference is due to the

recoil energy). Notice that this heating rate was calculated for full power P = 10W

and that it scales linearly with the laser power Ṫ ∝ U0 ∝ P. The degenerate gas is

attained for P ∼ 100mW and the residual heating of ∼ 10nK/s is easily compensated

by residual evaporation.

7.2 Experimental setup

After having performed evaporative cooling in the plugged quadrupole trap (chap-

ter 6) the atomic cloud is transferred into an ODT for subsequent evaporation. This

allows to explore the Physics with atomic interactions mediated by Feshbach reso-

nances, which is difficult to study in magnetic traps since the atoms explore a low

and inhomogeneous magnetic field. As discussed in the previous section 7.1, a red-

detuned laser beam creates a negative light shift which is proportional to the light

intensity. By focusing a red-detuned beam into an atomic cloud, the atoms will be

attracted to its focus, which corresponds to the laser intensity maximum and the po-

tential minimum. In this section we will describe the experimental realization of such

an optical trap.
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7.2 Experimental setup

7.2.1 Laser setup

The optical dipole trap laser beam is produced by a Mephisto2 which operates at

λ = 1064nm in single frequency mode and displays very low power noise (cf. data-

sheet of the manufacturer). The laser beam passes through an AOM3 which is used

to control the laser power (the zero order is rejected). This AOM is made of a large

quartz crystal that allows laser beam diameters of 0.9mm to 2mm (active aperture

of 2.5x2.5mm) and optical power densities up to 500 MW/cm2 (1.4 kW/cm2 in our

setup). The response time is typically 0.2µs, limited by the diameter of the laser beam.

The first order of the AOM is injected into a single-mode polarization-maintaining

high power fiber, which is designed with a larger core to withstand larger laser power4.

It was observed that for low power (∼ 500mW) the fiber injection efficiency was of

∼ 85%, but for higher power the best achieved output was of 11W with 18W in the

input of the fiber. The reason for the degradation of the injection efficiency is yet to be

understood, but the fiber output power we reached was found to be sufficient. The

input/output collimators were designed to be compatible with the high-power SMA

905 connector5 and have focal distances of f = 11mm and f = 30mm, respectively.

The output beam has a waist of ≈ 2.3mm and after a polarization beam splitter it is

focused into the science cell using a f = 200mm lens6. To avoid eventual problems

6Li 40K
P (W) 10

w/zR (µm/mm) 42/4.3
U0 (mK) 0.22 0.48

ωR/2π (kHz) 4.2 2.4
ωAx/2π (Hz) 29 17

Table 7.2.1: Parameters for the optical dipole trap: available laser power P, beam waist w,
Rayleigh length zR, maximum light shift U0 and trapping frequencies.

2Coherent Mephisto MOPA 25W
3AA Opto-Electronic MCQ80-A2.5-L1064-Z42-C47Bc
4NKT Photonics LMA-PM-10 2m length and (8.6 ± 0.5)µm mode field diameter @1064nm, with a

SMA 905 APC connector at the input (7º) and a SMA 905 PC connector at the output.
5Schafter+Kirchoff 60FC-SMA-T-4-A11-03 (input) and 60FC-SMA-0-M30-37 (output)
6Melles-Griot BFPL-200-UV
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7 Evaporative cooling in an optical dipole trap

with optical interferences, the incidence of the beam is not normal with the cell wall,

but of 10º with the normal (full scheme in section 2.2.3). The optical components such

as lenses and mirrors are made of fused silica in order to prevent thermal lensing ef-

fects due to high power. The calculated optical dipole trap parameters are shown in

table 7.2.1.

7.2.2 Laser power control with a logarithmic amplifier

The control (and stabilization) of the laser power on the atoms is made by measuring

the power using a photodiode connected to a log circuit and by acting on the RF

power delivered to the AOM. The log circuit7 produces a voltage that is proportional

to the logarithm of the current produced by the photodiode8 [130, 154, 215], as shown

in fig. 7.2.1. This trick allows to readily control the laser power in a range of more than

3 orders of magnitude using a commercial PID controller9. The output voltage of this

PID acts on a RF power attenuator, which changes the laser power diffracted by the

AOM. We will see in section 7.5 that evaporative cooling in the ODT is performed by

reducing the laser power. This feedback system allows to readily execute convenient

exponential ramps [144] simply by linearly ramping the set point of the PID.
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Figure 7.2.1: Voltage output of the log circuit as a function of the laser power measured at the
entrance of the science cell. In blue measurement with photodiode (Thorlabs S121C) and in
red measurement with bolometer (Thorlabs S350C). Both measurements show a logarithmic
dependence V = 0.804 log10 P/P0 with slightly different offsets.

7Analog Devices AD8304
8Thorlabs SM05PD4A mounted InGaAs-Photodiode (FGA10)
9Stanford Research Systems SIM960
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7.3 Loading of the ODT

7.3 Loading of the ODT

7.3.1 Model

After the atom cloud is cooled in the plugged magnetic trap, as described in section

6.6 of the previous chapter, one can transfer it into the optical dipole trap (ODT). To

have an optimized transfer, it is important to understand this process and to estimate

at which point the evaporation should be stopped and the transfer be performed. The

study of this problem will be the subject of this section.

If one neglects the effect of the optical plug, the potential of the combined quadrupole

trap and the optical dipole trap is

U(r) = µBb
√
(x2 + y2)/4 + z2 − U0 exp

{
−2(x2 + (z − z0)

2)/w2
}
+ mgz + E0.

(7.3.1)

Here it is considered that the ODT is aligned along the y axis and that the confinement

in this direction is predominantly magnetic 2λ ≫ zR, with λ = kBT/µBb. The ODT

is not aligned with the center of the magnetic field, otherwise Majorana flips would

be enhanced, but it is at a distance of z0 from the magnetic quadrupole center. In

the experiments of this thesis z0 ≈ −100µm. E0 is calculated such as that at the trap

minimum U(rmin) = 0. The study of this potential is done in detail in ref. 115.

One possibility for the transfer is to abruptly switch off the magnetic field confine-

ment and in this case the loading fraction can be estimated in the following way. For

high temperature λ ≫ w one can neglect the spatial dependence of the ODT and

the potential is simply given by U(r) = kBT
√
(x2 + y2)/4 + z2/λ − U0 + mgz. Its

corresponding volume is

V0 =

ˆ

d3r exp {−U(r)/kBT} = 32πλ̃3e−U0/kBT, (7.3.2)

where λ̃ = λ/(1 − (bg/b)2)2/3 with bg = mg/µB being the effective size of the mag-

netic trapped cloud in the presence of gravity10. If the magnetic trap is suddenly

10bg ≈ 0.070T/m for 40K and bg ≈ 0.011T/m for 6Li.
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7 Evaporative cooling in an optical dipole trap

switched off, the atomic cloud in the ODT region has transversal area πw2/2 and ax-

ial length 2× 2λ (the radius of the magnetically trapped cloud is 2λ in the y direction).

Neglecting the effect of gravity λ̃ ≈ λ, an upper bound for the transferred fraction of

atoms is
NODT

N
∼ w2

16λ2 eU0/kBTe−z0/λ,

where the term e−z0/λ takes into account the displacement of the ODT relative to

the magnetic quadrupole center11. According to this result, the transferred fraction is

∼ 0.71% for T = 325µK (without evaporative cooling) and ∼ 50% for T = 95µK (after

evaporative cooling). This means that evaporative cooling is necessary to achieve a

good transfer performance. Experimentally it is observed that the transfer efficiency

at low temperature is smaller than the value predicted by this simple model. The

main reason is that the high temperature approximation fails since λ ≈ 50µm is not

much bigger than the waist w = 42µm, as it is assumed for this model.

Instead of an abrupt switch off of the magnetic field, let us study the adiabatic

ramping down of the field. To have a precise prediction let us take into account

the full potential given by eq. 7.3.1, as it was done in ref. 115. The volume of the

trap V0 can be calculated by numerically integrating the full potential given by eq.

7.3.1, which is a function of temperature and magnetic field gradient b. By defin-

ing the partition function ζ = V0/Λ3, with Λ2 = 2πh̄2/mkBT being the de Broglie

wavelength, and calculating the free energy per particle A = −kBT ln ζ, one can de-

duce the entropy per particle S/N = −∂A/∂T, the phase space density per particle

PSD/N = 1/ζ and the collision rate

γcoll/N = (1/
√

2)v̄σ/(V02δ) (7.3.3)

with v̄ =
√

8kBT/πm being the thermal speed12. The results of this calculation are

plotted in fig. 7.3.1 and the details are described in its caption. In the plot of the trap

volume one sees at high temperature the behavior set by eq. 7.3.2 (the trap is essen-

11In other words, the atomic density at the position of the ODT is N/V0e−z0/λ

12At high temperature the trap is linear (δ = 3) but at low temperature it is harmonic (δ = 3/2). For
the plot of the collision rate it was taken the average of the two cases to simplify 1/2δ → 0.24, that is
Γcoll/N = (0.24/

√
2)v̄σ/V0. For an exact calculation, the integral V2,0 =

´

d3r exp {−2U(r)/kBT}
has to be evaluated.
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Figure 7.3.1: Solid lines: numerical calculation of the trap volume V0 (top left), the entropy
per particle (top right), the collision rate per particle (bottom left) and the phase space density
per particle (bottom right) as a function of temperature. The calculation is performed for
different values of the magnetic gradient b = 2.5T/m (thick green), b = 0.5T/m (thick red),
b = 0.3T/m (thick blue), b = 0.1T/m≈ 1.42bg (thin green), b = 0.08T/m≈ 1.14bg (thin red),
b = 0.0703T/m≈ 1.00bg (thin blue). Red dots: adiabatic evolution of a cloud at T = 200µK
in a trap with gradient b = 2.5T/m ramped to b ≈ bg. The dashed lines are explained in the
text.
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7 Evaporative cooling in an optical dipole trap

tially magnetic) and at low temperature one sees the power law behavior expected for

the quadratic trapping of the ODT (V0 ∝ T3/2). Notice that in this limit the trapping is

actually hybrid: the transversal confinement is optical and the axial is magnetic. The

trap volume can be calculated in the low temperature limit and is plotted as a blue

dashed line for b = bg, while the red dashed line is 10VODT.

Let us consider the adiabatic ramping down of the magnetic field gradient13 starting

from T = 200µK and b = 2.5T/m. For each value of gradient considered in the

numerical calculations, the result of the adiabatic opening is represented with a red

dot. For instance, one can verify in the plot of entropy that the adiabatic opening does

not change the entropy, as expected, but decreases temperature. The trap volume

decreases approximately as a power law, opposite to the case of a pure magnetic

quadrupole in which the volume increases in an adiabatic opening V0 ∝ b−1 (black

dotted line in the trap volume plot). One can also see that the trap volume is close to

10VODT (red dashed line) and so 10% of the total atoms are expected to be loaded in

the ODT after the adiabatic opening. Due to the fact that the trap volume decreases

during the opening, the collision rate increases, as one can see in the corresponding

plot (the black dashed line is the purely magnetic case). Finally, the plot of the phase

space density (PSD) shows that there is an important increase of this variable. One

might expect that the PSD should be constant in a adiabatic process, but this is not

the case if the geometry of the trap changes [206]. This is sometimes called the dimple

effect [208].

7.3.2 Experimental results

At the end of the evaporation in the plugged trap there are about 1.5 × 108 atoms at

95µK for a gradient of 2.5T/m (PSD= 0.2 × 10−3). By ramping down the magnetic

gradient to . bg in 400ms the number of atoms loaded in the ODT is 2.8 × 107 and

their temperature is 45µK (PSD= 5 × 10−3). The measured averaged shot-to-shot

atom number fluctuations are ≈ 3% at this point. Although the captured fraction

is 1/5, the PSD increased by a factor of 25 due to the dimple effect. The density in

the optical dipole trap is of nODT = NODT/V0 ≈ 6.5 × 1013cm−3. One could increase

13This means that the time scale for changing the magnetic field gradient has to be longer than ∼
V1/3

0 /v̄
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7.3 Loading of the ODT

the waist of the optical dipole trap and transfer at lower temperature, thus decreas-

ing density without sacrificing in PSD. However, we decided to keep the waist un-

changed, since in the case of the mixed evaporation we expect the density of 40K to

be lower and 6Li has half of the trap depth of 40K for λ = 1064nm light. We also

observed that the optical plug has not a dramatic effect for 40K. When evaporating in

the magnetic quadrupole without the plug, the number of atoms loaded in the optical

dipole trap decreases by only 40%. The position of the ODT respective to the mag-

netic quadrupole trap center was found by optimizing the number of loaded atoms.

In fig. 7.3.2 we plot the number of trapped atoms as a function of the position of the

ODT in the z direction. We observe that atoms are lost close to the magnetic field cen-

ter due to Majorana spin flips. The optimal position was z0 ≈ −100µm, in accordance

with the reasoning laid down in this section [115].
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Figure 7.3.2: Number of atoms trapped in the ODT (arbitrary units) as a function of the laser
beam position in the z direction.

For the mixed evaporation in the magnetic quadrupole trap, we observe that the

presence of the plug is vital, as 6Li suffers from more important Majorana losses. By

performing sympathetic cooling of a sample of ≈ 2 × 106 6Li atoms down to 60µK,

we were able to load 4.5 × 105 atoms in the optical dipole trap (see section 6.7.3 for

details).
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7 Evaporative cooling in an optical dipole trap

In conclusion, we have studied the loading of an atomic cloud into an optical dipole

trap (ODT) by adiabatically decreasing the magnetic field gradient of the initial trap.

We are able to load 2.8 × 107 atoms of 40K at 45µK in the ODT, yielding a supplemen-

tary gain in PSD of factor 25 compared to the initial trap due to the dimple effect.

These are excellent conditions to start evaporative cooling of 40K in the ODT. In the

following section we will discuss the axial confinement, before reporting the experi-

mental results concerning evaporative cooling.

7.4 Axial confinement

Evaporative cooling in an ODT is performed by decreasing the laser power, which

decreases not only the trap depth U0 ∝ P, but also the trapping frequencies ω ∝√
P. In the optimal case, evaporation dynamics have to be slower than all other time

constants of the system. While γcoll and ωR/2π are of the order of kHz, ωAx/2π is

smaller (∼ 10Hz for the maximal power, see table 7.2.1). This frequency becomes

too low in the last stages of the evaporation, where the atoms might have to take

several seconds to oscillate in the axial direction. In order to circumvent this problem

a additional confinement must be introduced in this direction. Two strategies were

employed during this thesis: optical and magnetic.

The optical technique consists in crossing the optical dipole trap beam with a sec-

ond laser beam. This beam has the same wavelength as the first one, but orthogonal

polarization. Since the power of this beam is constant throughout the evaporation,

the axial confinement it produces does not change while evaporating. In our appa-

ratus the main optical dipole trap beam (ODT1) is aligned along the x-axis, while

the axial confinement beam (ODT2) is aligned along the y-axis (see fig. 2.2.3 for a

scheme). The frequency difference between the two laser beams is of 160MHz, im-

posed by the AOMs. The power of ODT2 is stabilized using a circuit analogous to the

one described in section 7.2. This arrangement imposes the following confinement

frequencies

ωx = ωR,2, ωy = ωR,1, ωz =
√

ωR,1 + ωR,2.

The properties of ODT2 are listed in table 7.4.1. Figure 7.4.1 shows an absorption
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Figure 7.4.1: Absorption image after the loading in the crossed dipole trap and 6ms of time-of-
flight. The number of atoms in the “dimple” is N = 4.8 × 106, the temperature T = 1.28µK,
the axial frequency ωAx/2π = 24.5Hz and radial frequency ωR/2π = 400Hz. This cor-
responds to a central density of n = 7 × 1013cm−3 and T/TF ≈ 0.7 (assuming a balanced
mixture of spins in the |F = 9/2, mF = 7/2〉 and the |F = 9/2, mF = 9/2〉 states), TF being the
Fermi temperature.

6Li 40K
P (W) 4.8

w (µm) 340
U0 (µK) 1.6 3.5

ωR/2π (Hz) 44 25
Ṫ (nK/s) 18 7.0

Table 7.4.1: Parameters for the axial confinement laser beam (ODT2): the maximum light shift
(U0), its radial trapping frequency and heating rate.

image of the crossed dipole trap (ODT1+ODT2) taken along the axis of ODT2 (com-

pare with fig. 7.1.1). One sees a very dense region where the laser beams cross and

fainter wings along the horizontal direction. These wings are due to a fraction of

atoms that have energy higher than the depth of ODT2, consequently not trapped in

the crossing region.

Optical confinement solves the problem of the weak confinement along the axial

direction and enhances collision rate. However, this can be cumbersome since it adds

more degrees of complexity, such as the alignment of the crossing beams. Magnetic

confinement does not have this problem. By confining the atoms magnetically in the

axial direction and optically in the radial direction we create an hybrid trap. In our

system we tested two kinds of hybrid traps: the gradient confinement and the magnetic
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7 Evaporative cooling in an optical dipole trap

curvature.

The gradient confinement scheme is inspired by the hybrid trap reported by Lin

et al. [115] and discussed in section 7.3. By having a magnetic quadrupole field with

center above the ODT (distance z0) the magnetic field felt by the atoms trapped along

the ODT (aligned along the x axis) is

B(x, y = 0, z = z0) = b
√

x2/4 + z2
0.

For low-field seeking atoms the resulting potential will be attractive. Neglecting the

influence of the ODT in the axial confinement, the potential energy contribution in

the axial direction is

U(x) = µBbz0

√
1 + x2/4z2

0,

for an atom in the stretched state. If the cloud size σx is much smaller than z0, the trap

has an harmonic shape with frequency

ω2
x =

µBb
4mz0

.

Notice that one can adjust this frequency by changing the magnetic gradient b. An-

other possibility is to introduce an homogenous field B0. If this field is in the vertical

(z) direction, the distance of the ODT to the center of the magnetic quadrupole field

can be changed: z0 → z0 + B0/b.

In principle this strategy can only be used for b < bg = mg/µB, so that evaporated

atoms from the ODT are not trapped in the quadrupole magnetic trap and fall due to

gravity. We found out that higher magnetic field gradients can also be used, provided

that a MW knife is present. This knife is placed at B . bz0 in order to excite atoms

evaporated from the ODT into high-field seeking states.

The magnetic curvature scheme relies on the fact that the inner coils in the science

cell (which create the field for Feshbach resonances) are not in the Helmholtz configu-

ration14. The field they produce has a non-zero quadratic term (curvature) of the Tay-

lor expansion around the atoms position. A coil pair which is more distanced than

the Helmholtz condition creates an attractive harmonic potential in the transversal

14See section 5.A.1 for details concerning the inner coils.
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7.5 Evaporative cooling to quantum degeneracy

direction for the high-field seeking states with frequency

ω2
x =

µBB′′

2m
,

where B′′ is the magnetic field curvature Bz ≈ B0 +
1
2 B′′z2. For 40K, this frequency is

given by ωx/2π ≈ 0.37
√

B0/1G. For 6Li the corresponding frequency is 2.6 times big-

ger. For the pertinent Feshbach resonances B ∼ 200G, the frequencies are ωx/2π ≈
5.2Hz for 40K and ωx/2π ≈ 13Hz for 6Li. One might think that the magnetic field

inhomogeneity responsible for trapping the atoms is incompatible with the Feshbach

resonance study, which requires an homogenous field. It turns out that this variation

is small. Indeed, if the magnetic field difference between the edge x = σx of the cloud

and its center is ∆B, then

E(σ) = µB∆B =
1
2

mω2
xσ2

x =
1
2

kBT,

simply because it is the Zeeman shift that traps the atoms. Consequently, the mag-

netic field difference over the two edges of the cloud is 2∆B = kBT/µB, which is

∆B ≈ 15mG for a cloud with T = 1µK. In a deep degenerate Fermi gas we have

E(σ) = µB∆B = EF. For a cloud with N = 106 per spin state and ω̄/2π = (5 ×
202)1/3, 2∆B ≈ 3.3mG. These values are much smaller than the width of 40K-40K

(∆ ≈ 7G) and 6Li-40K (∆ ≈ 1G) Feshbach resonances [120, 198]. For very stringent

applications, the axial confinement has to be done optically and the outer coils can be

used to decrease the magnetic curvature.

In the experiments reported in this thesis the confinement in the axial direction is

done optically, but magnetic confinement also gave satisfactory results. We managed

to obtain a Fermi gas with T/TF ≈ 0.5 in the hybrid trap.

7.5 Evaporative cooling to quantum degeneracy

7.5.1 Introduction

In order to perform evaporative cooling in a optical dipole trap one has to reduce the

laser power, which will directly decrease the trap depth U0 ∝ P. A full treatment of
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7 Evaporative cooling in an optical dipole trap

the evaporation dynamics in the ODT will not be performed in this manuscript. On

one hand, the typical temperature in the optical dipole trap is ≪ 50µK and scattering

occurs mainly in the s-wave channel, which is approximately temperature indepen-

dent in this regime (see fig. 6.2.2). On the other hand, since the trapping is harmonic

and, consequently, the atomic density profile is gaussian (see eq. 7.1.4), calculating

analytically the evaporative dynamics is a simpler task (than the quadrupole trap

case for example). For these two reasons, we refer the reader to refs. 33, 78, 99, 121

for studies concerning the evaporative cooling dynamics in a harmonic trap.

In the case of evaporation in an ODT, reducing the laser power (to reduce the trap

height) also decreases the confinement. Indeed, the trapping frequencies depend on

the laser power ω ∝
√

P (see eq. 7.1.3). The evaporation dynamics in this time-

dependent trap was thoroughly studied by O’Hara et al. [144]. They derive the scal-

ing laws for an evaporation with fixed η = U0/kBT and the corresponding dynamics.

They conclude that while the phase space density is enhanced, the atom density and

collision rate decrease due to deconfinement.

7.5.2 Experimental results

In this section we describe the experimental results of the evaporative cooling of a

mixture of spins of 40K in an optical dipole trap. We assume in this experiment that

atoms are distributed in the |F = 9/2, mF = 9/2〉 and the |F = 9/2, mF = 7/2〉 states

(possibly there are some atoms in the |F = 9/2, mF = 5/2〉 state), which are the states

present in the plugged magnetic trap. We can control this mixture by performing

imperfect optical pumping before loading the magnetic trap in the MOT chamber

[200]. The populations of each state can be probed using the Stern-Gerlach technique

described in section 7.5.3.

The first step of evaporation occurs in the single beam optical dipole trap in the

presence of a vertical homogeneous guiding magnetic field. This step lasts for 5.5s

and the laser power is exponentially decreased of a factor of ≈ 56. In a second stage,

the optical axial confinement beam is switched on in 1.5s and, in a last step, the laser

power is exponentially further decreased by a factor of ≈ 5.6 in 8s. These steps result

in a quantum degenerate gas of ≈ 1.5 × 105 atoms per spin with T/TF ≈ 0.17.
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Figure 7.5.1: Evaporative cooling in the single beam ODT. On the left we plot the temperature
(blue) and the calculated trap depth (black) as a function of the total atom number in the ODT.
On the right we plot the T/TF value as a function of the total atom number. The red dot refers
to the loaded crossed dipole trap.

In figure 7.5.1 we show the measured temperature and the calculated value of T/TF

as a function of the number of trapped atoms N during the first stage of evaporation

(in the single ODT). TF = h̄ω̄(3N)1/3 is the Fermi temperature if we assume that

the N atoms are equally distributed in two spin-states (ω̄ is harmonic average of the

trap frequencies). This is the more appropriate degeneracy parameter for a Fermi

gas15. We observe that in the evaporation sequence the atom number decreases by

less than one order of magnitude, while the temperature decreases of factor ≈ 50.

The plot of the T/TF value in fig. 7.5.1 reveals two regimes of evaporative cooling,

which are signaled with dashed lines. A first one with higher evaporation efficiency

Γ ≈ 5.4 and second with less efficiency Γ ≈ 2.3, where Γ = −d ln PSD/d ln N =

3 d ln(T/TF)/d ln N. Using the scaling laws derived in ref. [144], these two evap-

oration regimes correspond to η ≈ 8.6 and η ≈ 5.8, which are close to the values

calculated using the estimation of the trap depth. The smaller efficiency of the second

regime of evaporation might be caused by the loose axial trapping, which reaches

ωAx/2π ≈ 2Hz at the end of this evaporation step.

By smoothly ramping up the power of the ODT2, the axial confinement laser beam,

there is a further increase in PSD. The atom loss observed here is due to the fact

that not all atoms from initial trap are loaded into the crossed dipole trap (see fig.

15In this thesis we have defined PSD= n0Λ3, n0 being the central atomic density. For an equilibrated
mixture of two spins we have the simple relation PSD= 1/

(
3(T/TF)

3).
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7 Evaporative cooling in an optical dipole trap

7.4.1). In the crossed dipole trap we measure N = 4.8× 106 atoms at 1.28µK, yielding

T/TF = 0.7. The measured averaged shot-to-shot atom number fluctuations are ≈ 3%

at this point.

7.5.3 Transfer to the lower Zeeman states

In order to explore the rich Physics that emerges from tuning the interaction strength

by means of a Feshbach resonance we prepare the atoms in the appropriate Zeeman

states, before proceeding with further evaporative cooling. In the case of the reso-

nance at B0 = 202.1G the relevant states are mF = −9/2 and mF = −7/2 of the

F = 9/2 manifold [120, 164]. Since at this point of the cooling sequence the majority

of the atoms are in the positive states mF = 9/2 and mF = 7/2, a stage-preparation

stage will be performed. This is done using consecutive adiabatic passages between

the subsequent Zeeman states by means of a RF (radiofrequency) field.

The adiabatic passage is a well known technique in Atomic Physics to transfer

atoms from one state to another [97, 100]. Two atomic states with a certain energy

difference h̄ω0 can be coupled to each other by means of electromagnetic radiation

of frequency ω. In our case study, a RF field couples to the atomic magnetic dipole

moment16. Let the strength of the coupling be given by the Rabi frequency ΩR and

the detuning be ∆ = ω − ω0. By adiabatically sweeping the frequency of the radia-

tion from negative detuning −∆ ≫ ΩR, to the coupling regime |∆| ∼ ΩR and then to

positive detuning ∆ ≫ ΩR, one can transfer an atom from a pure state a to another

pure state b. The probability of transfer is given by

Pa→b = 1 − exp

{
− πΩ2

R
2|∂t∆|

}
,

which is the Landau-Zener result for a two-level avoided crossing. For a perfect adi-

abatic passage ΩR ≫
√
|∂t∆|, the transfer is complete. The full analytical treatment

of the adiabatic passage in ref. 189 (section 5.3.1).

The case of the F = 9/2 manifold of 40K is slightly more complicated than the sim-

ple two-level system since it is a 10-level system . To solve the general case one has to

16This is the reason why transitions with ∆F = 0 are allowed. This is not the case of transitions driven
by light, for which the coupling with the atomic electric dipole moment is involved.
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7.5 Evaporative cooling to quantum degeneracy

find the eigenstates of this problem, which involves diagonalizing a 10 × 10 matrix.

By using the Breit-Rabi formula one can calculate the energy spacings between the

different Zeeman states for a given bias field B0. We chose to perform the adiabatic

passage for a relatively high field of B0 = 19.2G. In this regime, the transitions be-

tween the Zeeman states are of the order of 6MHz and they are not degenerate. For

example, for mF = 9/2 → mF = 7/2 the resonance is at ω0/2π ≈ 6.213MHz, while

for mF = 7/2 → mF = 5/2 it is ω0/2π ≈ 6.151MHz. The difference in frequen-

cies is of 61kHz, while the estimated Rabi frequency is of the order of ΩR ∼ 10kHz.

In the low Rabi frequency regime the 10-level problem reduces to 9 practically inde-

pendent adiabatic passages (see left plot in fig. 7.5.2). So, starting from a pure state

of mF = 9/2 one can chose the target Zeeman state by tuning the final frequency

of the sweep. For lower field B0 (or higher Rabi frequency), the dressed states are a

more complex mixture of the Zeeman states during the sweep and selectivity is not

possible.

In our experiment we perform the RF sweep using the setup already presented in

fig. 6.5.2. The antenna was impedance matched and characterized as described in sec-

tion 6.B.2. We perform a linear RF sweep from 6.5MHz to 5.5MHz in 10ms, yielding
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Figure 7.5.2: Calculation of the eigen-energies of the atomic Zeeman states of the F = 9/2
manifold for B0 = 19.2G, dressed with RF radiation with frequency ω/2π and Rabi frequency
ΩR (abridged plot). Color code: purple for mF = 9/2, blue for mF = 7/2, green for mF = 5/2,
yellow for mF = 3/2 and pink for mF = 1/2. For the plot at the left ΩR/2π = 5kHz we
observe 2 independent avoided crossings, while at the right ΩR/2π = 25kHz the state mixing
is more rich. Dashed lines are the energies of the bare Zeeman states.
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7 Evaporative cooling in an optical dipole trap

√
|∂t∆|/2π ≈ 1.6kHz. In order to distinguish the populations in each Zeeman states

we perform a Stern-Gerlach experiment. By switching off the optical trap and apply-

ing a constant magnetic field, atoms will expand and experience a constant magnetic

force that depends on their magnetic moment. Using this Stern-Gerlach technique

we can separate the different spin components of an atomic cloud. An example of

experiment is presented in fig. 7.5.3. It shows that initially both the mF = 9/2 and the

mF = 7/2 states are populated (with some residue of mF = 5/2), while after applying

the RF sweep the atoms and transferred into their symmetric state with very good

efficiency.
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Figure 7.5.3: Adiabatic passage performed at constant magnetic field 19.2G. The RF field is
swept from 6.5MHz to 5.5MHz in 10ms. The images are absorption pictures taken in the
direction of the optical dipole trap after the Stern-Gerlach experiment. In the top is the result
without applying the RF sweep, in the middle with the RF sweep and in the bottom is the
result of applying 10 back-and-forth frequency sweeps in 10ms. The bottom image displays
the 10 states of the F = 9/2 manifold: mF = 9/2 is the first one at left and mF = −9/2 is last
one at right.

220



7.5 Evaporative cooling to quantum degeneracy

7.5.4 Degenerate Fermi gas

As the evaporative cooling continues and the trapped gas goes deeper in the quan-

tum regime, the standard time-of-flight technique we use for measuring the temper-

ature stops being valid. This strategy consists in measuring the average speed of

the atomic cloud, which for a classical Maxwell-Boltzmann distribution is propor-

tional to
√

kBT/m. However, a Fermi gas at low temperature saturates in the Fermi-

Dirac distribution and the average speed of the atomic cloud is some function of

vF =
√

2kBTF/m. In order to determine the temperature of the Fermi gas, the atomic

density profile must be measured. For a Fermi-Dirac distribution the density profile

in a harmonic trap is given by

n(r) = n0
Li3/2{−ζe

−∑i
x2

i
2σ2

i }
Li3/2{−ζ} , (7.5.1)

where n0 is the peak density, Lin(z) = ∑
∞
k=1 zk/kn is the Polylogarithm (or Jonquière)

function and ζ is the fugacity −Li3(−ζ) = (T/TF)
−3/6. The density distribution after

time-of-flight tTOF is simply re-scaled: σ2
i = σ2

i,0(1 + ω2
i t2

TOF), which is a particular

result for harmonic trapping. This distribution smoothly interpolates between the

gaussian classical distribution T/TF ≫ 1 and the zero temperature distribution

n(r) = n0

(
1 − ∑

i=x,y,z

x2
i

R2
F,i

)3/2

,

where R2
F,i = 2EF/mω2

i are the Fermi radii. Details concerning these results can be

found in the thesis of DeMarco [44], in ref. 92 (section 2.3) and in ref. 100 (section

3.3). Notice that these results are only valid in the very weakly interacting regime

kFa ≪ 1. In the regime of strong interactions kFa ∼ 1 other thermometry strategies

must be used [122, 136, 137].

After loading the atomic cloud in the crossed dipole trap we evaporate for 8s by

decreasing the power of the ODT1 by a factor of 5.6. In order to have access to the

single spin density profile we perform imaging at high magnetic field bias (see section

2.3.3). In this regime we can selectively image the different spin components of the
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7 Evaporative cooling in an optical dipole trap

cloud. By fitting the density profile of the atoms in the mF = −9/2 state with eq.

7.5.1, we obtain a temperature of T/TF ≈ 0.17 (see fig. 7.5.4). If only the wings

of the density profile are fitted with the Maxwell-Boltzmann gaussian distribution,

the curve deviates from the data in the central region and we get an independent

measurement of the temperature (which is not consistent with the Fermi-Dirac fit).

We have therefore obtained a degenerate Fermi gas in the weak interactions regime

kFa ≈ 0.07. The number of atoms in the mF = −9/2 state is 1.5 × 105 and the cloud

temperature is 70nK (TF ≈ 0.41µK). In the mF = −7/2 state we have roughly the

same number of atoms at the same temperature.

This result is the second main achievement of the thesis. We have obtained a deeply

degenerate Fermi quantum gas with a quite large number of atoms in the mF = −9/2

and the mF = −7/2 states. In order to study a degenerate gas in the strongly inter-

acting regime it suffices to further increase the magnetic field to the Feshbach reso-

nance B0 = 202.1G. For a degeneracy parameter below Tc/TF ≈ 0.19 at resonance,

we should be able to observe the transition to a strongly interacting Fermi superfluid

[100].
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Figure 7.5.4: (Left) Absorption image of a quantum degenerate gas of 40K atoms in the mF =
−9/2 state after 20ms of time-of-flight. The slight asymmetry is due to the trap aspect ratio.
(Right) Integrated density profile data. (blue), Fermi-Dirac distribution fit (red curve) and
Maxwell-Boltzmann distribution fit of the wings (black dashed curve). From the Fermi-Dirac
fit one obtains T/TF ≈ 0.17, N = 1.5 × 105 and T ≈ 70nK.
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7.6 Cooling of the 6Li-40K mixture

7.6 Cooling of the 6Li-40K mixture

If we restrict ourselves to binary mixtures, there is only one demonstrated strategy

to cool the 6Li-40K mixture in an optical dipole trap (ODT), at the present. The idea

is to trap a mixture of spins of 6Li in the F = 1/2 manifold and perform evaporative

cooling in the ODT near the Feshbach resonance between the |F = 1/2, mF = ±1/2〉
states (B0 ∼ 832G [216]). This allows to enhance the collision rate and have a very effi-

cient evaporative cooling for 6Li. 40K in small numbers has been cooled by successive

thermalization with the 6Li gas (sympathetic cooling) [188].

In our setup we would like to investigate another route that could potentially lead

to larger and balanced samples of quantum degenerate 40K and 6Li atoms. For the

ODT used in this apparatus the trap depth for 6Li is roughly half of the one of 40K

(λ = 1064nm), as shown in table 7.2.1. If the two species have the same temperature

then ηLi ∼ ηK/2. In consequence, the evaporation rate of 6Li is enhanced by a factor

e−ηLi/e−ηK ≈ eηK/2 compared to 40K (e.g. for ηK = 8, this factor would be eηK/2 ≈ 55),

as shown in eq. 7.B.1 (in appendix 7.B). Another effect is the fact that in a binary

interspecies collision the 6Li atom takes most of the kinetic energy due to its smaller

mass. Since the interspecies and the 40K intraspecies (between different spin states)

collision rates are of the same order of magnitude, the evaporation rate of 6Li is much

larger that the evaporation rate of a spin mixture of 40K, leading to a fast loss of 6Li

atoms from the trap.

A first way to circumvent this problem would be to enhance the intraspecies col-

lision rate of a spin mixture of 40K atoms by means of a Feshbach resonance. By

evaporating 40K at the same rate as 6Li, one may be able to find a window of pa-

rameters for which both species would evaporatively cool. In figure 7.6.1 we plot the

result of a calculation of the evaporation rates of 40K and 6Li for an ODT laser power

P = 1W and 107 trapped atoms of 40K at kBT = U0/10. This calculation confirms that

the evaporation rate of 40K with a = 170a0 (dashed blue line) is much smaller than

the evaporation rate of 6Li (red line). Increasing the scattering length to a = 1500a0,

the evaporation rate of 40K (blue solid line) is twice faster than of the one of 6Li for

ηK ≈ 6.3. In conclusion, we should be able to control the double evaporation dynam-

ics by tuning this scattering length.
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Figure 7.6.1: Calculation of the evaporation rate in an optical dipole trap for P = 1W and 107

atoms of 40K in two spin states at temperature T = U0,K/ηK. In red is the evaporation rate for
6Li due to collisions with 40K, calculated using eq. 7.B.1. In blue is the evaporation rate for
40K due to intraspecies collisions for a = 170a0 (dashed line) and a = 1500a0 (solid line). The
interspecies contribution is negligible for a similar number of 6Li atoms.

A second possible strategy is to perform two independent evaporations of 40K and
6Li, each in a balanced mixture of spin states. This is possible provided that the in-

traspecies collision rate is much higher than the interspecies one. This regime can

be achieved by simultaneously enhancing the collision rate for both atomic species

and perform fast evaporative cooling. For the case of 40K we could use the resonance

already mentioned in section 7.5.3 at B0 = 202.1G. At this magnetic field value the

scattering cross-section between 6Li atoms in the states |F = 1/2, mF = 1/2〉 (|1〉, the

Zeeman state with lowest energy) and the |F = 3/2, mF = −3/2〉 (|3〉, the Zeeman

state with the third lowest energy) is enhanced since aLi ≈ −800a0 [25, 149]. At the

end of the evaporation, we would let the two samples thermalize via interspecies

collisions.

In conclusion, we have discussed two promising alternative strategies to cool a

mixture of 6Li and 40K with balanced numbers of atoms. The first strategy is to per-

form double evaporative cooling, relying on interspecies collisions for 6Li and en-

hanced collisions between two spin states for 40K. This evaporation regime would

be attained when the evaporation rates of the two species are identical. The second

strategy is to perform doubly independent evaporative cooling, relying on collisions

between two spin states for both 6Li and 40K. If the evaporation rate for each species
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is faster than the interspecies thermalization rate, the evaporations are independent.

These two strategies will experimentally be investigated in the near future.

7.7 Conclusions

In this chapter we have presented the optical dipole trap and studied its loading from

a plugged magnetic quadrupole trap. We managed to transfer 2.8 × 107 atoms of 40K

at 45µK in the ODT. We showed that we were able to evaporate a mixture of spins of
40K in an ODT down to quantum degeneracy. We measured a degeneracy parameter

of T/TF ≈ 0.17 for 1.5 × 105 atoms in the |F = 9/2, mF = −9/2〉 state and similar

parameters for the |F = 9/2, mF = −7/2〉 state. This chapter paves the way to obtain

a strongly interacting Fermi superfluid and a mixture of degenerate Fermi gases in

the near future.
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7.A Gravitational sag

Appendix 7.A Gravitational sag

In the introductory analysis performed in section 7.1 the gravitational force was ne-

glected. It can actually have a dramatic effect in the ending steps of the evaporative

cooling sequence in an optical dipole trap. The potential energy along the vertical (z)

direction is given by

U(z) =
1
2

mω2
z z2 + mgz =

1
2

mω2
z(z − z0)

2 +
1
2

mω2
z z2

0,

with z0 = −g/ω2
z . This simple manipulation reveals that gravity induces a sag of the

atomic cloud of z0, along the vertical direction. This calculation is valid as long as the

gravitational sag is smaller than the waist of the ODT |z0| ≪ w. In the case of the

ODT1 laser beam, ωz/2π ≫
√

g/w/2π ≈ 77Hz. For the degenerate gas reported in

this thesis ωz/2π ≈ 160Hz, yielding a sag of z0 ≈ −9.7µm, smaller than the waist of

ODT1. If this were not the case, the atomic cloud would sag to the edge of the laser

beam, where the trap depth and the confinement are smaller. We observed this effect

in some experiments and we compensated it by introducing a magnetic field gradient

of b = bg = mg/µB in the vertical direction, which exactly compensates gravity for

the stretched states. In the presence of a bias field B0 ≫ σzb, this strategy can be used

for both the high-field and the low-field seeking states, by reversing the sign of the

gradient (or the direction of the bias).

Gravitational sag can be an issue when evaporating a mixture of 6Li and 40K, since

these atoms will sag differently. At the ending steps of evaporative cooling one has to

prevent the two atomic clouds from decoupling spatially, otherwise thermalization

cannot be assured.

Appendix 7.B Evaporation rate of a double atomic gas with

interspecies collisions

Let us consider two trapped gases with different masses without the possibility of

having intraspecies collisions (e.g. two polarized Fermi gases at a temperature low

enough so that p-wave collisions are inhibited). If the trap has a finite depth then

collisions between the two gases can induce evaporation. The purpose of this section
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7 Evaporative cooling in an optical dipole trap

section is to calculate the rate of this evaporation.

By following the reasoning of references [33, 121], already sketched above in sec-

tion 6.4.2, and assuming that the scattering cross-section is constant the calculation

is straightforward. The main difference is to properly define the total momentum

P = p1 + p2 and the exchanged momentum q = µ12(p1/m1 − p2/m2). The evapora-

tion rate of particles 2 by collisions with particles 1 is:

Γevap = n1σ12v̄12e−η2
Vevap

Ve,2
(7.B.1)

Vevap

Ve,2
=

(
m2

2µ12

)3/2 ζ∞,1(T)
ζ∞,2(T)

η1P(3/2 + δ, η1)− (5/2 + δ)P(5/2 + δ, η1)

P(3/2 + δ, η2)
,

with v̄12 =
√

8kT/2µπ. This result was used to evaluate the evaporation rate of 6Li

and 40K in an optical dipole trap (see fig. 7.6.1).
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8 Conclusions and outlook

This thesis has reported the design, construction and characterization of an experi-

mental apparatus capable of creating a deep degenerate Fermi gas of 40K with rela-

tively large atom numbers. The discovery of an efficient sub-Doppler cooling scheme

for 40K was determinant to achieve the quantum regime. This cooling mechanism

was readily adapted and implemented to the case of 6Li and operated simultaneously

with 40K. This apparatus features an efficient magnetic transport from the MOT cham-

ber to the science cell, which was optimized in the course of this thesis. A mixture

of 40K atoms in two spin states was evaporatively cooled first in a plugged magnetic

trap and then in an optical dipole trap to quantum degeneracy. This thesis has also re-

ported the sympathetic cooling of 6Li in the plugged trap and loading into the optical

dipole trap.

The described apparatus is on the brink of being able to produce strongly inter-

acting superfluids of 40K and strongly interacting fermionic mixtures of 40K and 6Li.

These systems have plenty of exciting experimental possibilities. At the end of this

chapter we will present some experiments to be realized with the described apparatus

in the near future.

8.1 Summary of the results

The first step to create ultracold gases is to trap and cool atoms in a magneto-optical

trap (MOT). In this thesis we described the implementation of a double-species MOT

that simultaneously traps and cool atoms of fermionic 6Li and 40K with large num-

bers. Losses due to light-induced collisions were minimized to ∼ 10% by optimizing

the trap parameters (low magnetic field gradient and low repumper power). With

this apparatus we were able to create excited 6Li40K* molecules by photoassocia-

tion and to determine their binding energies. This experiment give us insight over

the interspecies molecular potentials, opening the door for the creation of dipolar
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8 Conclusions and outlook

molecules in their rovibrational ground-state via the Raman adiabatic passage tech-

nique (STIRAP). These molecules have a strong long-range and anisotropic dipole-

dipole interaction, leading to novel many-body phenomena.

One of the core results of this thesis is the report of a novel cooling scheme, which is

able to cool both 40K and 6Li to the sub-Doppler regime. This scheme is based on the

gray molasses technique, which relies on Sisyphus cooling and on velocity selective

coherent population trapping (VSCPT) in dark dressed states. We implemented gray

molasses in a F → F′ = F − 1 transition for 40K and in a F → F′ = F transition for
6Li on the atomic D1 lines. We observed that by adding repumper light in the Raman

condition with the cooling light, thus forming a Λ system, the cooling effect of the

gray molasses was enhanced. For both fermionic atoms we achieved sub-Doppler

temperatures and the determined phase space densities are the highest reported in

the literature for laser cooling of 40K and 6Li.

We successfully implemented a magnetic transport that is able to transfer the cold

atomic cloud from the MOT chamber to a science cell. This cell has the advantage of

having very low residual background pressure for future experiments and improved

optical access for the realization of experiments. The optimization of the magnetic

transport was described in this thesis and yielded a loss in phase space density of just

a factor of 7, mainly due to heating.

We have described the evaporative cooling of a mixture of spin states of 40K in a

quadrupole magnetic trap in the presence of an optical plug. We demonstrate that

this plug efficiently suppresses Majorana losses in this trap, which otherwise would

hinder cooling. In order to understand and quantify the evaporation dynamics, we

performed a theoretical study taking in consideration a momentum-dependent scat-

tering cross-section for elastic collisions in the s-wave and p-wave channels. We also

present results on the sympathetic cooling of 6Li by 40K in the plugged magnetic trap.

We performed a study of the adiabatic transfer of an evaporatively cooled atomic

cloud from a magnetic quadrupole trap into an optical dipole trap. We showed exper-

imentally that we are able to achieve an efficient transfer (20%), in accordance with

the theoretical predictions. The loading into the optical dipole trap is accompanied

by an enhancement of the phase space density due to the dimple effect. Subsequent

evaporation in the optical dipole trap, loading into a crossed beam optical trap and

further evaporation is able to create a relatively large quantum Fermi gas of 1.5 × 105
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8.1 Summary of the results

atoms of 40K in the |F = 9/2, mF = −9/2〉 state with T/TF ≈ 0.17, mixed atoms in the

|F = 9/2, mF = −7/2〉 state with similar parameters. This is the first quantum degen-

erate gas of 40K reported in France and it should reveal a superfluid fraction in the

strongly interacting regime, attained via a known Feshbach resonance at B0 = 202.1G.

Concerning 6Li, we have shown sympathetic cooling by 40K and efficient loading into

the optical dipole trap. We pave the way to reach double quantum degeneracy by de-

scribing potential strategies to cool the mixture.

The constructed apparatus is able to create quantum degenerate gases with a fairly

high repetition rate (T = 45s) and has a good short and long term stability. The

scheme of fig. 8.1.1 illustrates the pathway to cooling a gas of 40K to the quantum

regime. In the very short term we believe that it will be able to create strongly in-

teracting mixtures of ultracold 6Li and 40K. In the following section we present some

exciting novel experiments that could be realized with this apparatus.
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Figure 8.1.1: Pathway to quantum degeneracy of a 40K gas: background pressure in the 2D-
MOT chamber (blue), laser cooling (red: MOT, compressed MOT and D1 gray molasses cool-
ing), magnetic trapping (black: loading, magnetic transport and evaporation) and optical
trapping (green: loading and evaporation). The red line shows the border from the classical
to the quantum regime (pink region) PSD= n0Λ3 = 1, where n0 is the atomic central density
and Λ is the thermal de Broglie wavelength.
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8.2 Perspectives

Since the apparatus built in this thesis is able to produce ultracold samples of 40K, a

first experiment that could be realized with the Fermi superfluid is the measurement

of the superfluid gap ∆gap across the BEC-BCS crossover. There are two experimen-

tal protocols proposed by Scott et al. [180]. The first one is to quench the superfluid

by changing the scattering length faster than h/∆gap (which can be done by quickly

ramping the magnetic field across a Feshbach resonance). This excitation will make

the (superfluid) order parameter oscillate with frequency given by 2∆gap/h̄. The sec-

ond protocol is to induce forced oscillations of the order parameter by modulating the

interactions and measuring the resonance frequency. In the theoretical proposal it is

suggested that the projection technique to the molecular BEC side [92, 100, 165, 218]

could be used to directly measure the order parameter and its oscillations. Notice

that these oscillations of the order parameter have an interesting similarity with the

famous “Higgs amplitude mode” from condensed matter and high energy physics

[54, 153].

Another research direction that we could follow is the study of the 6Li-40K Fermi

gas in mixed dimensions. To create such a system we intend to selectively trap 40K

in a one-dimensional optical lattice at λ = 808nm, relatively close to the 40K atomic

resonance, but far detuned from the 6Li transitions. If the typical energies of the
40K cloud (EF, kBT and the interaction energy) are much smaller than the inter-level

energy spacing of the lattice (h̄ωz), the behavior of the 40K is two-dimensional [159].

Since 6Li is not be affected by this potential, its behavior is three-dimensional. In

appendix 8.A we describe the already prepared optical lattice for 40K.

The first step would be to study the effect of the mixed confinement on the inter-

species Feshbach resonance. A related study was performed in a 87Rb-40K Bose-Fermi

mixture, in which the lighter species was confined in 2D [105]. When the interspecies

Feshbach resonance is tuned, it is predicted that this system has a rich many-body

phase diagram [142]. Another interesting angle is to study the interactions between

different 2D planes of 40K mediated by the 6Li 3D gas [141]. A calculation was per-

formed in our group by D. Suchet regarding the transmission of a mechanical per-

turbation throughout the 2D layers of 40K mediated by the excitation and absorp-

tion of phonons in a superfluid of 6Li. For the BEC of 6Li-6Li molecules this effect
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should be accessible in an experiment. Another direction would be the observation

of non-Efimovian 6Li-40K-40K trimers, which could be created in this mixed dimen-

sional system and are predicted to be stable [113, 114]. Moreover, exciting analogies

could be made with string theory [140] and eventually some collective excitations in

the heterogeneous neutron star crust, such as the “Lasagna” mode [46].

Another direction would be to use the optical lattice to study the behavior of an

interacting Fermi gas in two-dimensions. There are already some experimental re-

sults on this subject, namely by the group of M. Köhl [13, 14, 57, 62, 63, 102, 103, 204],

C. Vale [52, 147], Turlapov [123], M. Zwierlein [186] and S. Jochim. However, sev-

eral important open questions remain including the Berezinsky–Kosterlitz–Thouless

transition to a superfluid phase.
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8.A Optical lattice for 40K

Appendix 8.A Optical lattice for 40K

The chosen wavelength for the selective potential for 40K was λ = 808nm, which

offers a good compromise between selectivity and heating due to photon scattering.

The setup1 uses a commercial laser diode that lases at λ = 808nm and emits up

to 150mW of laser power2. This laser diode is installed in a homemade mount with

a grating in the Littrow configuration, which should reduce the laser linewidth to

< 1MHz3. The light emitted from this extended-cavity passes through an optical

isolator for protection of the diode and injects a tapered amplifier4. After a second

optical isolator, the laser beam is diffracted by an AOM, which is used to electron-

ically control the laser power, filtered5 and injected into a single-mode polarization

maintaining fiber. This system is able to deliver up to 500mW at the output of the

fiber. Some power outputted by the laser diode is used to verify the laser wavelength

and the single mode operation. The filter was installed to remove the spectral com-

ponents due to fluorescence emission by the TA , namely the ones resonant with the

40K 6Li
U0 (µK) 39 6.4
Ṫ (µK/s) 0.19 0.053

ωz/2π (kHz) 157 165
Tz = h̄ωz/kB 7.5 7.9
ωρ/2π (Hz) 381 437

TF (µK) 1.8 -
EF/h̄ωz 0.24 -

Er/kB (µK) 0.37 2.4
U0/Er 105 2.7

Tunnel time 61s 6µs

Table 8.A.1: Calculated parameters for an optical lattice resulting from the retro-reflection of
a laser beam with λ = 808nm, power P = 150mW and w = 80µm waist. For the estimation
of the Fermi energy, we assume that 5 × 103 atoms are trapped in each lattice site.

1The described setup was aligned and tested by M. Rabinovich.
2Axcel Photonics M9-808-0150
3To further decrease the linewidth the laser can be locked to an external Fabry-Pérot cavity.
4Eagleyard Photonics TA-EYP-TPA-0808-01000-4006-CMT04-0000
5Semrock LL01-808-12.5
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8 Conclusions and outlook

atoms. Preliminary tests showed trapping of 40K atoms by a single laser beam.

In order to have a lattice potential, a retro-reflection configuration will be imple-

mented. The resulting parameters of the lattice are given in table 8.A.1 for both 40K

and 6Li. For the chosen laser beam parameters, 40K can be quasi-2D trapped in the

lattice sites, while 6Li will hop from lattice site to lattice site τtunnel ∼ 6µs. 6Li will

behave effectively as 3D trapped particle, with a renormalized mass of m∗ ≈ 1.22mLi

in the lattice direction.
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