
HAL Id: tel-01082696
https://hal.science/tel-01082696

Submitted on 14 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Detecting and indexing moving objects for behavior
analysis by video and audio interpretation

Alessia Saggese

To cite this version:
Alessia Saggese. Detecting and indexing moving objects for behavior analysis by video and audio
interpretation. Computer Science [cs]. Université de Caen, 2014. English. �NNT : �. �tel-01082696�

https://hal.science/tel-01082696
https://hal.archives-ouvertes.fr

	 	 	 	 	 	

	

Université	 de	 Caen	 Basse-‐Normandie	

Ecole	 doctorale	 SIMEM	

	

Thèse	 de	 doctorat	

présentée	 et	 soutenue	 le	 :	 24/02/2014	

par	

Alessia	 SAGGESE	

pour	 obtenir	 le	 	

Doctorat	 de	 l’Université	 de	 Caen	 Basse-‐Normandie	

Spécialité	 informatique	 et	 applications	

préparée	 dans	 le	 cadre	 d’une	 cotutelle	 internationale	 de	 thèse	

	 entre	 l’Université	 de	 Caen	 Basse-‐Normandie	 et	 l’Université	 de	 Salerno	

Detecting	 and	 Indexing	 Moving	 objects	 for	 Behavior	 Analysis	 	
by	 Video	 and	 Audio	 Interpretation	

	
Directeur	 de	 thèse	 :	 Pr.	 Luc	 BRUN	

Co-‐directeur	 de	 thèse	 :	 Pr.	 Mario	 VENTO	
	

Jury	

Nicolai	 PETKOV,	 Professeur	 des	 Universités,	 University	 of	 Groningen	 (rapporteur)	
Francesc	 SERRATOSA,	 Professeur	 des	 Universités,	 Universitat	 Rovira	 i	 Virgili	 (rapporteur)	
Francesco	 TORTORELLA,	 Professeur	 des	 Universités,	 University	 of	 Cassino	 and	 Lazio	
Meridionale	 (Examinateur)	
Antoine	 TABBONE,	 Professeur	 des	 Universités,	 Universités	 de	 Nancy	 (Examinateur)	
M.	 Luc	 BRUN,	 Professeur	 des	 Universités,	 ENSICAEN	 (directeur	 de	 thèse)	
M.	 Mario	 VENTO,	 Professeur	 des	 Universités,	 University	 of	 Salerno	 (codirecteur	 de	 thèse)	

ii

Contents

1 Introduction 3
1.1 Overview . 4
1.2 Organization . 8

2 State of the Art 11
2.1 Trajectories extraction . 11
2.2 Visual Behavior Analysis . 16
2.3 Storing and Retrieval . 19
2.4 Audio Analysis . 21

3 From Pixels to Behaviors 25
3.1 Trajectories Extraction . 25

3.1.1 Detection . 26
3.1.2 Tracking Algorithm . 29

3.1.2.1 Common problems 31
3.1.2.2 Object state management 33
3.1.2.3 Object classification 39
3.1.2.4 Association management 40
3.1.2.5 Similarity evaluation 47
3.1.2.6 Conclusion . 49

3.2 Visual Behavior Analysis . 49
3.2.1 Preliminaries . 49
3.2.2 Overview . 50
3.2.3 Scene Partitioning . 52
3.2.4 Trajectory representation 54
3.2.5 Trajectory similarity . 56
3.2.6 Clustering algorithm . 58

3.2.6.1 Complexity analysis 60
3.2.7 Conclusion . 61

3.3 Indexing and Storing Engine . 62
3.3.1 Spatial Databases . 62
3.3.2 Preliminaries . 63
3.3.3 Indexing Engine . 66
3.3.4 Trajectory Representation Scheme 69
3.3.5 Physical Representation Scheme 72
3.3.6 Conclusion . 74

3.4 Interactions with the user . 74
3.4.1 Anomaly Detection . 74

iii

3.4.2 Query by sketch . 75
3.4.3 Spatio Temporal Queries 79
3.4.4 Conclusion . 81

4 From Audio Signals to Events of Interest 83
4.1 First-level features . 83
4.2 Second-level features (Aural words) 86
4.3 The classifier . 89
4.4 Conclusions . 89

5 Experimental Results 91
5.1 Tracking Algorithm . 91

5.1.1 Datasets . 92
5.1.2 Parameters setup . 94
5.1.3 Quantitative Evaluation 94

5.1.3.1 Experimentation 1 94
5.1.3.2 Experimentation 2 99
5.1.3.3 Experimentation 3 99

5.1.4 Qualitative Evaluation . 100
5.1.5 Computational cost . 101

5.2 Visual Behavior Analysis . 101
5.2.1 Datasets . 103
5.2.2 Parameters Setup . 105
5.2.3 String representation: experimental results 107
5.2.4 Clustering: experimental results 108
5.2.5 Anomaly Detection: experimental results 112
5.2.6 Query by sketch: experimental results 116

5.3 Indexing and Retrieval Engine 117
5.3.1 Graphical User Interface 117
5.3.2 Experimental Set Up . 118
5.3.3 Experiments over Real Dataset 119
5.3.4 Synthetic Data Generator 120
5.3.5 Comparison . 120

5.4 Audio Recognition . 121
5.4.1 The dataset . 123
5.4.2 Performance evaluation 125
5.4.3 Performance comparison 127

5.5 Achievements . 131

6 Conclusions 133

A Proofs 135

Bibliography 138

iv

Computers are incredibly fast, accurate and stupid;
humans are incredibly slow, inaccurate and brilliant;

together they are powerful beyond imagination.
-Albert Einstein-

2

Chapter 1

Introduction

In the last decades we have assisted to a growing need for security in various
public environments. According to a study recently conducted by the European
Security Observatory, one half of the entire population is worried about the
crime and requires a law enforcement to get more protection.

This consideration has lead the diffusion of cameras and microphones, which
are a suitable solution for their relative low cost of maintenance, the possibility
of installing them virtually everywhere and, finally, the capability of analyzing
more complex events. However, the main limitation of traditional audio-video
surveillance systems lies in the so called psychological overcharge issue of the
human operators responsible for security; this issue causes a decrease in their
capabilities to analyze raw data flows from multiple sources of multimedia infor-
mation: indeed, as stated by a study conducted by Security Solutions magazine,
“after 12 minutes of continuous video monitoring, a guard will often miss up to
45% of screen activity. After 22 minutes of video, up to 95% is overlooked” [1].

For these reasons, it would be really useful to design an intelligent surveil-
lance system, able to support the human operator in his control task by properly
interpreting audio and video signals with the aim of identifying events of inter-
est. Let’s think to a train station or to an airport where people are fighting:
their movements become disordered and screams can be heard in the environ-
ment. An intelligent system detects this dangerous behavior and alerts the users
in charge of monitoring the environment, allowing a prompt intervention of the
competent authorities.

It is worth pointing out that a system able to automatically understand
events occurring in a scene would be useful even in other application fields,
oriented for instance to marketing purposes: in fact, the shopper movement
patterns can be captured and properly analyzed by an intelligent system in
order to take better operational decisions for sales, marketing and staffing and
to maximize the customer satisfaction.

This thesis introduces a novel video and audio analysis framework, able to
meet the above mentioned needs by analyzing the low-level data acquired by
video and audio peripherals and generating high-level information, in terms
of events the human operator is interested in. Audio and video information,
complementary for their nature, are used and properly combined in order to
face different situations: in fact, a video analysis system is not feasible for
every context, although it is able to provide detailed information about the

4 1. Introduction

scene; think, as an example, to a public toilette where it is obvious impossible
to install a camera or to environments with too many obstacles, where a full
covering would result in a large expense.

Different typologies of events can be recognized by the proposed system. On
the one hand, screams, gunshots and broken glasses are evaluated by interpreting
audio data; note that a visual interpretation of such events would be really
difficult, also for a human operator. On the other hand, video analysis allows to
interpret more complex typologies of events, that can not be analyzed by only
using audio inspection: for instance, a person crossing an area of interest or
several areas of interests in a given sequence, a vehicle crossing an highway in
the wrong side, a person moving in the opposite direction of a crowd or loitering
in a forbidden area, the typical paths of person inside a mall and so on.

Another important task of the proposed framework is to store all the detected
events so that the human operator can easily and quickly recover such events
if necessary. In this way, the human operator can interact with the proposed
system in different ways: on the one hand, he is alerted as soon as a dangerous
situation is detected (for instance, a gun shot, a person loitering in a forbidden
area or a vehicle crossing a street in the wrong side); on the other hand, he can
easily interact with the proposed system for recovering information of interest;
a typical example is the following: suppose that an aggression took place at
the airport, near gate 10, at 11am. The human operator may be interested in
identifying all the persons passing between 10:50am and 11:10am in the gate
10, so to very quickly identifying the person of interest.

The realization of a similar system is as fascinating as challenging; the com-
plexity of the problem can be also confirmed if we analyze the scientific papers
of the last years. No systems able to integrate audio and video information for
security purposes have been proposed; furthermore, the analysis of behaviors
through video as well as audio inspection is a very young field, and the scientific
community is very active since a definitive solution to the problem has not been
found yet.

This thesis aims to bridge over these considerations: it introduces a novel
and efficient system for analyzing behaviors through a proper combination of
video and audio analysis, by joining together different knowledge and skills,
ranging from pattern recognition and computer vision to databases and signal
processing.

1.1 Overview

An example of the proposed system at work is shown in Figure 1.1: considering
the large amount of data to be managed, the human operators do not see the
bag left unattended in one of the monitor. The aim of the proposed system in
this case is to identify the anomaly and immediately alert the operators for a
prompt intervention. Furthermore, all the acquired data are stored in order to
keep knowledge of the abnormal events for future efficient analysis.

The main idea behind the proposed approach lies in the fact that the move-
ment of the people (more in general of the objects) populating a scene is not
random, but instead is determined by the associated behaviors. It means that
analyzing moving objects trajectories would help in recognizing those events the
human operator is interested in.

1.1. Overview 5

PROPOSED	
SYSTEM	 Warning!

Figure 1.1 The proposed system at work: as soon as an event of interest (bag left unattended
in the airport in the particular example) is detected, the human operator is alerted.

Figure 1.2 illustrates the overall architecture of the framework proposed in
this thesis, whose modules cover the considered requirements. First, the system
has to detect objects of interest populating the scene, for instance persons,
vehicles or animals, (Detection) and extract information about their trajectories
as well as their appearance, namely the class (i.e. person, bag, vehicle etc.), the
real size or the dominant color (Tracking).

As soon as an abnormal behavior is detected, an alert needs to be sent to
the human operator. As mentioned before, both audio and video information
are used and properly combined: on the one hand, the trajectories extracted
during the previous tracking phase are analyzed and abnormal ones, associated
to dangerous events, are recognized according to a previously learnt set of normal
paths (Visual Behavior Analysis). On the other hand, audio events of interest,
such as gun shots, screams and broken glasses are recognized by analyzing the
audio stream acquired by a microphone (Audio Event Analysis).

Finally, this large amount of data needs to be properly stored (Storing)
in a way that the human operator can efficiently interact with the system by
submitting different typologies of queries (Querying), whose parameters are
defined only at query time (that is exactly in the moment the query is thought).
For instance, the objects crossing a given area in a given time interval (dynamic
spatio temporal query) or the objects following a particular trajectory, similar
to the one manually drawn by the user (query by sketch).

A brief description of the above mentioned modules is provided in the fol-
lowing:

• Detection: this module is devoted to detect moving objects of interest
inside the scene. This is a very complex task to achieve, due to the several
kinds of situations that need to be properly managed. A few examples
are shown in Figure 1.3: in (a) the same scene taken at different time
instant is reported (light change). Consider that a lot of differences in
terms of colors, due to the relative position of the sun, are evident. In
(b) we can note that the color of the person is very similar to the one of
the wall (camouflage), consequently making very difficult to distinguish
and then identify him. Finally, in (c) a tree moved by the wind is shown;
note that, although it is a moving object, it can not be considered as an
object of interest and the system has to filter out this kind of patterns.

6 1. Introduction

TRACKING	

STORING	

QUERYING	

BEHAVIOR	
VIDEO	

ANALYSIS	

Warning

Trajectories

Appearance

AUDIO	 EVENT	
ANALYSIS	

Video

Audio

DETECTION	
Objects

Figure 1.2 Architecture of the proposed system.

(a) (b) (c)

Figure 1.3 Typical situations causing detection errors: light changes (a), camouflage (b)
and waving trees (c).

In other words, only the moving objects of interest needs to be identified
and successively tracked. More details about the detection phase will be
provided in Section 3.1.

• Tracking: this module extracts information about moving objects tra-
jectories and appearance, namely the class (i.e. person, bag, vehicle etc.),
the real size or the dominant color. One of the most challenging problem is
related to the occlusions, happening when an object of interest is partially
or totally covered by another object in the scene. This issue is determined
by the fact that tracking algorithms analyze a three-dimensional world by
using bi-dimensional images. However, in the above mentioned systems
it is required that a person has to be tracked (and its trajectory has to
be extracted) even if it is partially or completely hidden by another per-
son moving in the scene (Figure 1.4a) or by a static object (Figure 1.4b).
Think to a wall that only allows to see a small part of a person (his head
or his legs), making this task extremely demanding. Note that this is a
very challenging task also for a human operator, who should consider the
path of each person populating the scene even if this is partially or totally
hidden.

Furthermore, the tracking phase needs to face with the problems intro-
duced by the detection phase, such as merged objects (Figure 1.4c), objects
split in different pieces (Figure 1.4d) or undetected objects (Figure 1.4e).

1.1. Overview 7

(a) (b) (c) (d) (e)

Figure 1.4 Typical situations causing tracking errors: an occlusion between three persons
(a) and between a person and a pole (b). Typical errors of the detection phase the tracking
has to deal with: merge (c), split (d) and undetected object (e). The yellow boxes represent
the output of the detection.

More details about the proposed tracking algorithm will be provided in
Section 3.1.

• Visual Behavior Analysis: the aim of this module is to alert the hu-
man operator as soon as an abnormal behavior occurs. In particular, it
processes trajectories extracted during the tracking phase and it is able to
identify abnormal trajectories, associated to potential dangerous behav-
iors, according to previously learnt set of normal and typical paths. It is
evident that the system has to be robust enough to deal with the errors
that typically occur during the tracking phase, related for instance to bro-
ken trajectories. Furthermore, an high level of generalization is required
in order to avoid to wrongly classify as abnormal those normal trajectories
that only rarely occur. More details about this step will be provided in
Sections 3.2 and 3.4.1: in particular, the former will focus on the learning
phase while the latter on the operative phase.

• Audio Event Analysis: this module is in charge of detecting abnormal
behaviors, such as gun shots, screams and broken glasses, by analyzing
the audio stream acquired by means of a microphone. One of the main
open issue of this kind of algorithms lies in the fact that the properties
characterizing different events of interest might be evident at very diverse
time scales: compare, for instance, an impulsive sound like a gunshot
with a sustained sound, like a scream, that can have a duration of several
seconds. Furthermore, in real applications there is often the problem that
sounds of interest are superimposed to significant background sounds; thus
it might be difficult to separate noise to be ignored from the useful sounds
to be recognized. In Section 4 a detailed description of the proposed
method will be provided.

• Storing: this module stores the large amount of information previously
acquired, in terms of both events and trajectories. Its aim is to improve
the overall performance of the system during the retrieval phase. This
module needs to face with different problems: the former pertains the
huge amount of data to be efficiently managed. As a matter of fact,
in real scenarios it is required that millions of trajectories, extracted from

8 1. Introduction

different cameras, must be stored and that on this wide database a human
operator can submit complex queries involving spatial and temporal data,
as well as semantic one. Moreover, it is worth noting that the events can
be simply stored by using available relational datasets, while trajectories
are much more complex data to deal with, thus customized and enhanced
solutions need to be properly defined. The Storing module will be deeply
described in Section 3.3.

• Querying: human operator can interact with the system by submitting
different typologies of queries, whose parameters are defined only at query
time, concerning both spatio-temporal and semantic information. Exam-
ples of queries that the user can submit involve the objects crossing a
given area in a given time interval (dynamic spatio temporal query) or the
objects following a particular trajectory, similar to the one hand drawn
by the user (query by sketch). More details related to these interactions
will be provided respectively in Sections 3.4.3 and 3.4.2.

It is worth pointing out that all the modules of the proposed system, be-
sides their own problems, are joined by the following consideration: a common
challenge lies in the fact that all these operations need to be performed in real
time. It means that meanwhile the video and the audio are acquired (usually
with a frame rate of 25 frames per second and a bit rate of 128 Kbit per second
respectively) the system has to perform all the required operations (detection of
objects, tracking of their movements, storage and analysis of their trajectories,
detection of audio events and finally allow an interaction with the user), without
showing delay in the response time.

Although increasing the complexity of the overall system, this consideration
is very important, since it allows the proposed approach to be used in real
applications.

1.2 Organization

This thesis consists of the following six chapters:

• Chapter 1 presents an overview of this research, by analyzing the problem
and briefly highlighting the novelties of the proposed approach.

• Chapter 2 provides an overview of the state of the art methods, by deeply
investigating approaches recently proposed for tracking moving objects,
analyzing their behaviors and storing useful information respectively in
Sections 2.1, 2.2 and 2.3. The chapter is concluded by Section 2.3, which
analyzes the methods for audio recognition proposed in the last years.

• Chapter 3 analyzes the modules for extracting semantic information
starting from the analysis of the videos; in particular, Section 3.1 details
the proposed tracking algorithm; in Section 3.2 the method defined for
dynamically understanding a scene and then to identify typical behaviors
is proposed, while Section 3.3 details the strategy adopted for indexing
and storing trajectories data. This chapter is concluded by Section 3.4,
where the queries that the user is allowed to submit are defined.

1.2. Organization 9

• Chapter 4 is devoted to analyze the method proposed for recognizing
sound events of interest.

• Chapter 5 analyzes the results obtained by the proposed modules. In
particular, five different standard datasets, detailed in the following of this
thesis, have been used in order to prove the effectiveness of the proposed
algorithms.

• Chapter 6 draws some conclusions and describes future works.

10 1. Introduction

Chapter 2

State of the Art

The framework analyzed in Chapter 1 is really challenging: as briefly analyzed
previously, each part composing the system is characterized by its intrinsic prob-
lems. This is mainly why in recent literature there is no author facing with the
whole problem, but instead the trend is to focus over a single module, or in
general over a few modules (for instance Detection and Tracking). This focus
is even more pronounced if we analyze the number of papers where information
coming from video and audio sources are combined [2].

For the above mentioned reason, in this chapter the state of the art of each
module is separately analyzed, so to better highlight novelties and advances
with respect to the state of the art introduced in this thesis.

Considering the large amount of methods (more than 2000) proposed in the
last years, this thesis analyzes the state of the art starting from the surveys, sum-
marized in Table 2.1, and by reporting some of the most important approaches
for each module. In particular, Table 2.1 shows a significantly high number of
review papers focusing on Visual Behavior Analysis. It is mainly due to the fact
that this concept covers a lot of different kinds of behaviors, ranging from ac-
tions and activities to anomaly detection. In Section 2.2 more information will
be provided in order to better understand this aspect. On the other hand, as
highlighted in Table 2.1, no survey has been proposed about audio-surveillance
methods, since only recently the community has started investigating on this
topic.

This chapter is organized as follows: methods introducing a tracking algo-
rithm are summarized in Section 2.1; approaches for trajectories-based behavior
analysis and trajectories storing are presented respectively in Section 2.2 and
2.3. Finally, the state of the art of the audio surveillance is analyzed in Section
2.4.

2.1 Trajectories extraction

The tracking problem is deceptively simple to formulate: given a video sequence
containing one or more moving objects, the desired result is the set of trajectories
of these objects. This result can be achieved by finding the best correspondence
between the objects tracked until the previous frames and the ones identified
by the detection phase (from now on the blobs) at the current frame, as shown

12 2. State of the Art

People Vehicles

Detection [3] [4] [5] [6] [7]
Tracking [8] [5] [6]
Visual Behavior Analysis [3] [9] [10] [11]

[12] [13] [13]
[14] [15]

[14] [16] [17]
[6]

Trajectories Storing [18] [19]
Audio Event Analysis -

Figure 2.1 Survey papers published in the last years partitioned by topic (Detection, Track-
ing, Behavior Analysis, Trajectories Storing and Audio Event Analysis) and by applications
field (oriented to people or vehicles).

in Figure 2.2. The ideal situation is shown in Figure 2.2a, where each person is
associated to a single blob.

FRAME (T-1) FRAME T

2

1

?
?1

2

(a)

FRAME (T-1) FRAME T
?

?

1111

(b)

FRAME (T-1) FRAME T
2

3
?2

3

(c)

Figure 2.2 Each image is composed as follows: on the left the objects tracked until the
previous frame t− 1, on the right the blobs identified during the detection step at the current
frame t. The aim of the tracking algorithm is to perform the best association, identified by
the orange arrows: in (a) the ideal situation is shown, in (b) the detection splits the person in
two parts while in (c) the persons are merged in a single blob because of an occlusion pattern.

Unfortunately, in real world scenarios, there are several issues that make
this result far from being easy to achieve: the detection may split a person in
several blobs, as shown in Figure 2.2b, or an occlusion pattern may merge two
or more persons in a single blob, as shown in Figure 2.2c. It is evident that in
such situations more complex associations need to be managed.

Because of these difficulties, many tracking algorithms have been proposed
in the last years, but the problem is still considered open.

Tracking algorithms can be divided into two main categories, as summarized
in Figure 2.4: the former category (off-line) contains the methods [20][21][22]
which extract small but reliable pieces of trajectories, namely the tracklets,

2.1. Trajectories extraction 13

(a) (b)

Figure 2.3 In (a) the tracklets extracted at the time instant t by using off-line tracking algo-
rithms. The entire trajectories will be produced only when all the tracklets will be available.
In (b) trajectories extracted at the same time instant by on-line algorithms.

instead of entire trajectories. Once all the tracklets are available, the system
needs a post-processing step aimed at linking the ones belonging to the same
individual for extracting the final trajectories. An example is shown in Figure
2.3a. Although such a strategy significantly increases the final reliability in
the extraction of the trajectories, it can not be used in on-line applications for
behavior analysis, since the human operator should wait for the alert a lot of
time, so risking that the abnormal situation can not be properly managed.

The latter category (on-line) contains all those algorithms performing the
analysis on-line, so that at each time instant t the entire trajectory of each
object is available until t and ready to be used, as shown in Figure 2.3b. In this
category, two main strategies have been proposed up to now:

• Detection and tracking: the tracking is performed after an object detection
phase; in particular, objects are detected in each frame using a priori
model of the objects or some form of change detection: differences from a
background model, differences between adjacent frames, motion detection
through optical flow and so on. Algorithms following this strategy are
usually faster than the ones belonging to the other strategy, but they
have to deal also with the errors of the detection phase as spurious and
missing objects, objects split into pieces, multiple objects merged into a
single detected blob.

• Detection-by-Tracking: detection and tracking are performed at once, usu-
ally on the basis of an object model that is dynamically updated during
the tracking.

Some examples of algorithms following the first strategy (detection and
tracking) are [23] and [24]: the criterion used to find a correspondence between
the evidence at the current frame and the objects at the previous one is based
on the overlap of the areas. Overlap-based methods work well with high frame
rates and when objects do not move very fast, but might fail in other conditions.
Positional information, obtained by taking advantage of the Kalman filter, is
also used in [25] and [26]. In the former, only the distance between the detected

14 2. State of the Art

TRACKING	

OFF-‐LINE	

ON-‐LINE	

Detec3on	 and	
Tracking	

Detec3on	 by	
Tracking	

Figure 2.4 Trajectories extraction: the state of the art methods.

blob and the predicted position is considered; on the contrary, in the latter the
appearance information is taken into account by means of a smoothed 4D color
histogram.

Dai et al . [27] have proposed a method able to track pedestrians by us-
ing shape and appearance information extracted from infra-red images. The
method may have some problems when objects quickly change their appearance
or during occlusions.

The method proposed in [28] formulates the tracking problem as a bipar-
tite graph matching, solving it with the well-known Hungarian algorithm. It
recognizes an occlusion, but is able to preserve the object identities only if the
horizontal projection of the detected blob shows a separate mode. The Hun-
garian algorithm is also used in [29] and [30] in order to solve the assignment
problem. In general, its main drawback lies in the polynomial time needed
for the computation, which prevents these tracking methods from managing
crowded scenarios.

The method by Pellegrini et al . [31] tries to predict the trajectories on the
scene using a set of behavior models learned using a training video sequence. The
method is very effective for repetitive behaviors, but may have some problems
for behaviors that do not occur frequently.

Several recent methods [32][33][34] use the information from different cam-
eras with overlapping fields of view in order to perform the occlusion resolution.
The data provided by each camera are usually combined using a probabilistic
framework to solve ambiguities. These methods, although increasing the reli-
ability of the entire system, are limited to situations where multiple cameras
can be installed; furthermore, most of the methods adopting this approach re-
quires a full calibration of each camera, which could make the deployment of
the system more complicated.

On the other hand, methods belonging to the second strategy (Detection-by-
Tracking) are computationally more expensive, and often have problems with
the initial definition of the object models, that in some cases have to be provided
by hand. The paper by Comaniciu et al . [35] proposes the use of Mean Shift, a
fast, iterative algorithm for finding the centroid of a probability distribution, in
order to determine the most probable position of the tracked target. It requires
a manual selection of objects being tracked in the initial frame, and deals only
with partial occlusions. This consideration implies that the method can not
be applied in the proposed framework. Tao et al . [36] have proposed a method
based on a layered representation of the scene, that is created and updated using
a probabilistic framework. Their method is able to deal with occlusions, but is

2.1. Trajectories extraction 15

extremely computational expensive, requiring up to 30–40 seconds per frame.
The method by Bhuvaneswari and Abdul Rauf [37] uses edge-based features
called edgelets and a set of classifiers to recognize partially occluded humans;
the tracking is based on the use of a Kalman filter. The method does not handle
total occlusions, and, because of the Kalman filter, it works better if people are
moving with uniform direction and speed. The method proposed by Han et al .
[38] detects and tracks objects by using a set of features, assigned with different
confidence levels. The features are obtained by combining color histograms and
gradient orientation histograms, which give a representation of both color and
contour. The method is not able to handle large scale changes of target objects.
The method by Yogameena et al . [39] uses a skin color model to detect and
then track faces in the scene. The method is able to deal with crowded scenes
where the persons are dressed with very similar attire, but it works only as long
as the face of each person remains clearly visible.

Several recent methods [40] [41] [42] [43] [44] [45] [46] [47] [48] have investi-
gated the use of Particle Filters, a tool based on the approximate representation
of a probability distribution using a finite set of samples, for solving the tracking
problem in a Bayesian formulation. Particle Filters look very promising, since
they make tractable a very general and flexible framework, which can incorpo-
rate in the probability distribution also information related to the past history
of objects. However, the computational cost is still too high for real-time ap-
plications, especially with multiple occluding targets, with a processing time
ranging from 0.5 to 15 seconds per frame.

A recent, promising trend in tracking algorithms is the use of machine learn-
ing techniques. As an example, the method by Song et al . [49] improves the
ability of tracking objects within an occlusion by training a classifier for each
target when the target is not occluded. These individual object classifiers are
a way of incorporating the past history of the target in the tracking decision.
However, the method assumes that each object enters the scene un-occluded;
furthermore, it is based on the Particle Filters framework, and so it is compu-
tationally expensive. Another example is the method by Wang et al . [50] that
uses manifold learning to build a model of different pedestrian postures and
orientations; this model is used in the tracking phase by generating for each
object of the previous frame a set of candidate positions in the current frame,
and choosing the closer candidate according to the model.

The high computational effort required by Detection-by-Tracking algorithms
is the main limitation for using such strategy in the proposed system. On the
other hand, it is needed that at each time instant the entire trajectory is available
in order to properly interpret the event associated to it, so making also unfeasible
off-line algorithms. For these reasons, the tracking algorithm proposed in this
thesis is based on the first of the above mentioned strategy (Detection and
Tracking): it assumes that an object detection based on background subtraction
generates its input data. However, one of the main limitations of the existing
algorithms using a Detection and Tracking strategy lies in the fact that they
make their tracking decisions by comparing the evidence at the current frame
with the objects known at the previous one; all the objects are processed in
the same way, ignoring their past history that can give useful hints on how they
should be tracked: for instance, for objects stable in the scene, information such
as their appearance should be considered more reliable. To exploit this idea, the
proposed algorithm adopts an object model based on a set of scenarios, in order

16 2. State of the Art

(a) (b) (c)

Figure 2.5 Behavior analysis can be performed at different layers: gestures (a), actions (b)
and activites (c).

to deal differently with objects depending on their recent history and conditions;
scenarios are implemented by means of a Finite State Automaton, that describes
the different states of an object and the conditions triggering the transition to
a different state. The state is used both to influence which processing steps are
performed on each object, and to choose the most appropriate value for some
of the parameters involved in the processing.

It is worth pointing out that another important advantage deriving by the use
of a strategy based on Detection and Tracking is that the variables characterizing
the tracking process are explicitly defined and easily understandable, and so can
be used in the definition and in the manipulation of the state; an approach of the
second kind (Detection by Tracking), especially if based on machine learning,
would have hidden at least part of the state, and thus the history of the objects
would not have been explicitly manageable through a mechanism such as the
Finite State Automaton.

Furthermore, although a limited a priori knowledge about the objects of
interest is required, in order to differentiate between single objects and groups,
the method can be rapidly adapted to other application domains by providing
a small number of object examples of the various classes. Finally, the spatio-
temporal continuity of moving objects is taken into account using a graph-based
approach. Thanks to this novel approach, our system is able to simultaneously
track single objects and groups of objects, so significantly increasing the overall
reliability of the proposed approach.

More details about the proposed tracking algorithm will be provided in Sec-
tion 3.1.

2.2 Visual Behavior Analysis

The visual behavior analysis can be performed at different levels; although it
is not possible to identify a strict partition among them, a common taxonomy
identifies the following three layers: gestures, actions and activities. A simple
example for each kind of behavior is shown in Figure 2.5. Gestures are ele-
mentary movements of a single body part; often, this terms just refers to hand
motions. Think, as an example, to a person which uses hand gestures to control
the computer mouse or keyboard functions [51]. An action is a more complex
behavior of a single person that may be composed of multiple gestures organized
temporally, such as walking, drinking, or speaking [52]. Finally, an activity is

2.2. Visual Behavior Analysis 17

the most complex behavior and is associated to the overall movement of the
objects inside the scene, namely to its trajectory. An activity can involve a
single object (a vehicle crossing the highway in the wrong side) or a group of
objects (two persons are fighting) [14].

In real applications devoted to video surveillance detailed information re-
lated to the pose of persons is not available: objects are often in a far-field or
video has a low-resolution, so implying that the only information that a video
analytic system is reliably able to extract is a noisy trajectory. On the other
hand, we can note that the analysis of moving objects trajectories can allow
to understand common behaviors inside a specific context: it is due to the fact
that the movement of objects in a scene is not random, but instead has an un-
derlying structure which can be exploited to build some models. In particular,
in the contexts mentioned before the key point is the understanding of activity
patterns, which are the underlying hidden process that dictates how objects move
in a scene. In this thesis we will focus on the activity pattern recognition and
analysis: in particular, once learnt the activity patterns, the system is able to
compute how much a new trajectory is similar to a pattern and then to recognize
abnormal trajectories if not enough similar to a given pattern.

The process of learning activity patterns requires that each trajectory is
properly represented (pre-processing) and that the typical patterns are com-
puted. In particular, a typical strategy consists in extracting these typical pat-
terns in an unsupervised way, so to make the entire system more general and
able to be easily adapted to different environments. For this reason, a clustering
algorithm needs to be defined.

Note that preprocessing and clustering steps are very related each others,
since the preprocessing step aims at producing a trajectory representation which
is suitable for the chosen clustering algorithm. Two approaches are typically
used: a normalization, which guarantees all trajectories having the same length
(for instance by zero padding [53]) in order to easily verify if two trajectories
are similar or not, or a dimensionality reduction, which allows to represent a
trajectory into a lower dimensional space, computationally less expensive (for
instance by vector quantization [54], string quantization [55][56] or principal
component analysis and wavelet transform [57]).

It is clear that the chosen representation strongly influences the definition
of a metric encoding the similarity between trajectories. For instance, in [58]
raw data are used and the similarity is evaluated by using a Time-Delay Neural
Network. Although in this case the preprocessing step is avoided, the perfor-
mance of the control system strongly depends on the accuracy of the extracted
trajectories and a large amount of data is needed during the learning phase.

A common strategy consists in representing a trajectory by means of a single
features vector and then evaluating the similarity by using one of the common
distances: Hausdorf [59], Mahalanobis [60] or Bhattacharyya [61]. In [55], [62],
[63] and [64] trajectories are represented as a sequence of symbols and statisti-
cal machine learning approaches are exploited. In particular, in [55], [62] and
[63] the similarity between trajectories is evaluated by using the Edit Distance,
while in [64] by a Dynamic Time Warping (DTW) based approach. DTW is
a template-based dynamic programming matching technique able to measure
similarity between two time series by finding an optimal match. It is conceptu-
ally simple and provides robust performance in recovering different speeds and
scale variations. The main problem of the above mentioned techniques lies in

18 2. State of the Art

the fact that, although being able to compute a distance, are not able to easily
define a metric.

In [65], [66] and [67] trajectories are modeled and classified within a state
transition matrix by a continuous chain of Hidden Markov Models (HMMs). The
main idea in this case is that observations are defined to be similar in terms of
common similarity to a model, expressed through the likelihood function. The
main benefit of this approach lies in the ability of the system to cope with the
so-called uneven sampling instances, which are non-uniform temporal sampling
between consecutive points. The main drawback, however, is that in general
a large amount of data is needed to avoid the over-fitting during the HMM
training step.

As for the clustering step, it aims at discovering prototypical activities start-
ing from the analysis of preprocessed trajectories; furthermore, each clustering
algorithm requires the definition of a proper similarity measure. As summa-
rized in [68], different typologies of clustering have been recently exploited for
dynamic scene understanding: hierarchical agglomerative or divisive techniques,
graph cuts and spectral methods. The main limitation in the above mentioned
algorithms lies in the fact that they do not allow to readily verify if a novel tra-
jectory belongs to a cluster, an then do not allow to understand if a trajectory,
and then the associated behavior, has to be considered normal or abnormal.

To avoid this restriction, k-means approach and its derivative methods are
most frequently used. In particular, the Kernel k-means [69] is a generalization
of the standard k-means algorithm: the input data are mapped into a higher di-
mensional feature space through a non-linear transformation and then k-means
is applied in the resulting feature space. In this way, this algorithm allows to
separate non linearly separable clusters. In [70] an improved version of the ba-
sic Kernel k-means, the Global Kernel k-means, has been proposed. The main
idea is that a near-optimal solution with k clusters can be obtained by starting
with a near-optimal solution with k − 1 clusters and initializing the kth cluster
appropriately based on a local search. During the local search, N initializations
are tried, where N is the size of the data set. The k − 1 clusters are always
initialized to the k − 1-clustering problem solution, while the kth cluster for
each initialization includes a single point of the data set. The solution with the
lowest clustering error is kept as the solution with k clusters. Since the opti-
mal solution for the 1-clustering problem is known, the above procedure can be
applied iteratively to find a near-optimal solution to the M -clustering problem.

As regarding the trajectories pre-processing and the similarity measure, a
common limitation of the above mentioned approaches lies in the fact that ei-
ther cause an important loss of information from trajectories to vectors or that
the similarity or dissimilarity measures, such as the string edit distance, used by
these methods do not induce as a metric, and then most of the traditional sta-
tistical tools used in pattern recognition (for instance many efficient clustering
algorithms) can not be applied.

On the other hand, regarding clustering algorithms, two main drawbacks can
be found in the considered algorithms: first, the initialization of the k-means
based approaches strongly influences the performance of these methods, since
the algorithms converge to the local minimum closest to the initial cluster’s
centroids. Furthermore, the high computational effort required for the activity
patterns extraction closes the door the the application of such algorithms for
our purposes.

2.3. Storing and Retrieval 19

Starting from the limitations of existing approaches, I decide to represent
the trajectories by using a string based approach, in order to reduce the dimen-
sionality without losing positional and other useful information. Furthermore, I
propose a novel similarity metric based on kernels: the main advantage is that
the problem can be formulated in an implicit vector space on which statistical
methods for pattern analysis can be applied. Furthermore, a novel and efficient
kernelized clustering algorithm, able to perform a partition into k clusters by
only performing k − 1 iterative bisections, has been defined in this thesis. The
proposed method for behavior analysis will be detailed in Section 3.2.

2.3 Storing and Retrieval

Another relevant consequence of the scenario we are working on is the possibility
of storing a huge amount of trajectories extracted from the scene, each annotated
with the properties of the associated object; this is related to the important
perspective to efficiently extract synthetic data by suited queries using jointly
geometric and temporal information: geometric information refers to the spatial
area where the event of interest occurs, while temporal one pertains the time
interval associated to the event of interest. For instance, if we are interested
in investigated on the theft which took place in the line 4 of the train station
at 9pm, we need to find all the objects, and then all the trajectories stored in
our database, crossing the portion of the scene where line 4 lies in the selected
temporal interval (8:50pm - 9:10pm).

However, only a modest attention has been devoted to systems able to store
and also retrieve off-line moving object trajectories, able to cope with very large
amount of trajectory data and sufficiently general to deal with the needs of
different application domains. This is an important and not negligible feature,
especially when considering crowded real world scenarios. In these cases it is
required that millions of trajectories must be stored and that, on this wide
database, the user must be able to submit complex queries involving geometric
and temporal data.

A few tries have been given in this sense in the last years; for instance, the
method proposed in [71] aims at counting the number of vehicles crossing the
scene at a given time instant. It is achieved by partitioning the scene into a
fixed number of zones and by indexing the trajectory data using a multimedia
augmented transition network model and a novel multimedia input strings. A
similar approach has been used in [72], where the spatial structures of the mon-
itored environment (like its division into regions corresponding to traffic lanes,
curb, exit lane, etc.) are directly stored into the database.

The main drawback of the above mentioned methods is related to the fact
that the reduction of the computational cost is obtained at the expense of the
staticity of the query’s schema. It is required that the parameters (both geo-
metrical and temporal) included in queries are pre-determined and cannot be
consequently chosen by the user at query time; this implies that the user is
forced to use a set of pre-definite queries and the addition of another query
typology requires heavy operations by the system designer, involving a system
stop and a database recompiling.

An example of query supported by the above mentioned systems can be given
by asking to the system to retrieve all those vehicles flowing on the different

20 2. State of the Art

lanes. The limitation becomes evident when we would like to determine, for
example, the vehicles running exactly over the center line (so occupying two
half lanes): in this case it is necessary to define at query time the area in which
to find vehicles (a rectangle centered on the line dividing the two lanes).

Although the systems above cited are good examples of the potentiality of
spatio-temporal queries in a given domain, a step towards their geometrical gen-
eralization could significantly improve their usability; in fact, they suffer from
the fact that parameters characterizing the queries are mostly pre-determined
and cannot be chosen by the user at query time. Their rationale is to have a
system architecture devised and optimized for supporting a bunch of queries,
each one referring to a given spatial area; this is sufficient to solve the corre-
sponding retrieving problem, but the capability of choosing at query time (i.e.
exactly when the query is thought) the area in which we are interested in is
neglected.

The main contributions to this problem can be obtained by browsing the
literature coming from the database field: while objects’ meta-informations can
be easily stored using standard tables of well known relational DBMSs, spatially
enabled DBMSs can be profitably used to store trajectories represented as a
sequence of 3D points. In particular, indexing moving objects databases has
been an active research area in the recent past and several solutions have been
proposed. [18] and [19] survey many accessing strategies, proposed in the last
two decades, which are able to index the past and the current position, as well
as methods supporting queries related to the future. A widely adopted solution
for bi-dimensional spatial indexing is based on R-Trees [73], which hierarchically
organize geometric bi-dimensional data representing each object by using its
MBR (Minimum Bounding Rectangle), an expression of the object’s maximum
extents in its coordinate system. The conceptual simplicity of an R-Tree and
its resemblance to widely adopted standard B-Trees, allowed the developers to
easily incorporate such a solution in spatial enabled DBMS [74] in order to
support spatial query optimization and processing.

Starting from the original R-Tree structure, several improved versions have
been proposed: STR-trees [75] extend R-tree with a different insert/split al-
gorithm, while the characteristics of spatio-temporal data are captured by two
access methods (STR-tree and TB-tree).

When objects’ movements are constrained, for example on a network of con-
nected road segments, a bidimensional R-tree can be used to index the static
network’s segments. In this case, each leaf contains a segment and a pointer to a
monodimensional R-Tree that indexes the time intervals of objects’ movements,
as for FNR-Tree [76]. MON-tree [77] extends the FNR-tree by modeling the
constrained network as a set of junctions and routes; a bidimensional R-tree is
used to index polylines’ bounding boxes while, for each polyline, another bidi-
mensional R-tree indexes the time dimension of the objects within the polyline.
PARINET [78] has been designed for historical data in constrained networks
and models the network as a graph; trajectories are partitioned according to
the graph partitioning theory. This method has been extended to handle con-
tinuous indexing of moving objects [79].

When dealing with real applications for indexing and querying large repos-
itories of trajectories, the size of MBRs can be reduced by segmenting each
trajectory and then indexing each sub-trajectory by using R-Trees; such an
approach is described, for example, in [80], where a dynamic programming al-

2.4. Audio Analysis 21

gorithm is presented for the minimization of the I/O for an average size query.
SETI [81] segments trajectories and groups sub-trajectories into a collection of
spatial partitions; queries run over the partitions that are most relevant for the
query itself. TrajStore [82] co-locates on a disk block (or in a collection of adja-
cent blocks) trajectory’ segments by using an adaptive multi-level grid; thanks
to this method, it is possible to answer a query by only reading a few blocks.

All the above cited methods, even presenting efficient solutions from different
perspectives, are typically not supported in the available commercial products
that make use of very efficient spatial indexes that, unfortunately, are typically
restricted to the bi-dimensional case. For instance, PostGIS [83], the well known
open source spatial extension of the PostgreSQL DBMS, even supporting three
(and four)-dimensional data, only recently introduced the possibility of indexing
3D data providing a first support for those queries involving intersection between
two geometries. As a consequence, there is a strong interest in those methods
which, even using well established 2D solutions, allow to solve the indexing
problem in a multi-dimensional space.

In this thesis we propose to index 3D trajectories by turning the 3D repre-
sentations into a set of 2D schemes, so as to make it possible the use of well
established and optimized available 2D indexing solutions. In particular, the
proposed solution is optimized to solve Range Spatial Queries assumed to be
Dynamic (DRSQs), i.e. are formulated in any their part at query time, so al-
lowing the user the important potentiality of extracting from the database non
only predefined information but the data he is interest in at any moment of sys-
tem’s use. The contribution of this thesis also includes the definition of different
typologies of 3D queries, so general to hopefully cover most of the applicative
needs and that can be formulated as a combination of two or more DRSQs.

2.4 Audio Analysis

Audio analysis has been traditionally focused on the recognition of speech [84,
85] and speaker identification [86, 87]. In recent years several researchers have
proposed audio-based systems for the automatic detection of abnormal or dan-
gerous events for surveillance purposes. Such systems can be an inexpensive
addition to existing video surveillance infrastructures, where video analytic so-
lutions are used; in fact, many IP cameras are already predisposed to connect to
a microphone, making available an audio stream together with the video stream.
Furthermore, as mentioned before, there are some events that have a very dis-
tinctive audio signature, but are not so easy to spot on a video: for instance,
a gunshot, or a person screaming. For these reasons, in the recent years the
research community has shown a growing interest towards those audio surveil-
lance applications able to reliably identify those events of interest happening
in the environment. In particular, most of the approaches recently proposed
focuses on the recognizing of screams, gunshots and broken glasses.

In [88] Clavel et al. propose a method for gunshot detection, that operates by
dividing the audio stream into 20 milliseconds frames, and computing for each
frame a vector with such features as short-time energy, Mel-Frequency Cepstral
Coefficients (MFCC) and spectral statistical moments. The vectors are classi-
fied using a Gaussian Mixture Model (GMM). Then, the final decision is taken
over 0.5 seconds intervals using a Maximum A Posteriori (MAP) decision rule.

22 2. State of the Art

Vacher et al. in [89] also adopt a GMM classifier, with wavelet-based cepstral
coefficients as features, for the detection of screams and broken glass. Rouas et
al. [90] use MFCC features and a combination of the GMM and Support Vec-
tor Machine (SVM) classifiers for detecting screams in outdoor environments.
Their method uses an adaptive thresholding on sound intensity for limiting the
number of false detections. Gerosa, Valenzise et al. [91, 92] propose a system for
the detection of gunshots and screams which specifically address the ambient
noise problem. Their method uses two parallel GMM classifiers trained to sepa-
rate screams from noise and gunshots from noise. The paper by Ntalampiras et
al. [93] proposes a two stage classifier: the first stage is used to discriminate be-
tween vocal sounds (such as screams and normal speech) and impulsive sounds
(such as gunshots or explosions); then specific second stage GMM classifiers are
activated, using different features for the two kinds of sound, to provide the
final classification of the sound. In [94], the same authors explore techniques
for novelty detection with application to acoustic surveillance of abnormal sit-
uations. In [95], Rabaoui et al. address the problem of reducing the effect of
the environmental noise on the classification results by defining a novel and
sophisticated dissimilarity measure, combined with a pool of one-class Support
Vector Machine (SVM) classifiers. Conte et al. [96] present a method with two
classifiers that operate at different time scales; the method uses a quantitative
estimation of the reliability of each classification to combine the classifier deci-
sions and to reduce the false detections by rejecting the classifications that are
not considered sufficiently reliable. Chin and Burred [97] propose a system in
which the audio is represented as a sequence of symbols, each corresponding
to a spectral shape observed over a 10 milliseconds window. Then, they apply
to these sequences the Genetic Motif Discovery, a technique introduced for the
analysis of gene sequences, in order to discover sub-sequences that can be used
to recognize the audio events of interest. The algorithm is able to consider sub-
sequences of different lengths for different classes, and the sub-sequences may
contain wildcard elements that can be used to skip variable symbols due to the
background noise.

However, one of the open problems in the design and implementation of a
reliable and general audio event detector lies in the fact that the properties
characterizing the different events of interest might be evident at very diverse
time scales: compare, for instance, an impulsive sound like a gunshot with a
sustained sound, like a scream, that can have a duration of several seconds. It is
not easy to find a set of features that can accommodate both kinds of situation.
Also, in real applications there is often the problem that the sounds of interest
are superimposed to a significant level of background sounds [98]; thus it might
be difficult to separate the noise to be ignored from the useful sounds to be
recognized.

A strategy often applied in other fields, ranging from textual documents
retrieval to human actions recognition and video-based object detection, is the
bag of words approach. The datum to be classified is represented by detecting
the occurrence of local, low-level features (words) and constructing a vector
whose dimensionality corresponds to the number of possible words, and whose
elements are indicators of the presence of the corresponding words, or a count
of their occurrences. For instance, in text characterization the low-level features
are the actual natural language words of a document (after removing suffixes,
articles etc.), and the whole document is represented by a (high dimensional)

2.4. Audio Analysis 23

vector of word occurrences; such vectors are then classified using traditional
Pattern Recognition. For the extension of these approaches to Computer Vision,
the words are replaced either by small fixed-size image patches, or by salient
points (e.g. SIFT features). In these cases, since the space of the possible words
is huge (theoretically infinite), a quantization is performed using a training set;
the result is a codebook that allows to associate each low-level feature with one
word chosen from a finite set. In audio analysis, the bag of words approach
has been recently applied to music hashing and retrieval [99] and to music
classification [100].

In this thesis we introduce a novel audio event detection system for an audio
surveillance application able to face the problems mentioned before by employ-
ingw a bag of words classifier. The proposed system uses a two level description
of the audio stream: first-level features are computed on a very short time inter-
val, and are somewhat analogous to the words of a text. Second-level features
characterize a longer time interval, and are constructed by means of a learning
process, on the basis of the actual sounds to be recognized. Finally, a classifier
is trained on second level features, so as to learn which of them are significant
for the recognition of a particular class of events and which ones are irrelevant.
This architecture is thus able to work on a longer time scale, but still remains
able to give the right weight to short relevant sounds. Furthermore, the pres-
ence of background noise has a reduced impact because the classifier can learn
to ignore the second level features that are due to the background.

24 2. State of the Art

Chapter 3

From Pixels to Behaviors

In this chapter we describe the approach proposed in this thesis for extracting by
visual inspection semantic information associated to moving objects’ behavior.
In particular, Section 3.1 introduces the problem, by focusing on method I
propose for the extraction of moving objects’ trajectories directly from the video
data. In Section 3.2 I show that the method proposed in this thesis is able
to process trajectories in order to discover typical paths inside a scene. The
discussion continues in Section 3.3, where the method introduced for efficiently
storing and indexing trajectories is detailed. Finally, in Section 3.4 the different
interactions allowed to the user are presented.

3.1 Trajectories Extraction

As introduced in Section 2.1, the trajectories extraction module is in charge of
extracting moving objects trajectories starting from the analysis of raw videos.
A general overview is depicted in Figure 3.1: two main steps are required,
namely the detection and the tracking.

The aim of the detection step is to obtain the list of blobs, being each blob
a connected set of foreground pixels; in order to achieve this aim, the detection
module first finds foreground pixels by comparing the frame with a background
model; then foreground pixels are filtered to remove noise and other artifacts
(e.g. shadows) and are finally partitioned into connected components, namely
the blobs.

The tracking algorithm receives as input the set of blobs detected at each
frame and produces a set of objects. An object is any real-world entity the
system is interested in tracking. Each object has an object model, containing
such information as

• the object class (e.g . a person or a vehicle) (Subsection 3.1.2.3),

• state (Subsection 3.1.2.2),

• size, position and predicted position, trajectory and appearance (Subsec-
tion 3.1.2.5).

A group object corresponds to multiple real-world entities tracked together; if
a group is formed during the tracking (i.e. it does not enter in the scene as a

26 3. From Pixels to Behaviors

DETECTION TRACKING

Frame (t)

Background (t-1)

List of Blobs (t) List of Objects (t)

List of Objects (t-1)

??

35

35

Figure 3.1 Architecture of a generic tracking system based on a background subtraction
algorithm: the list of blobs is extracted by the detection module and is analyzed by the tracking
algorithm in order to update the information associated to the list of objects populating the
scene.

group), its object model maintains a reference to the models of the individual
objects of the group.

The task of the tracking algorithm is to associate each blob to the right
object, so as to preserve the identity of real-world objects across the video se-
quence; the algorithm must also create new object models or update the existing
ones as necessary. As highlighted in Section 2.1 (see Figure 2.2), this problem
is far for being simple because of occlusions, split or merge patterns that may
happen because of the perspective flattening introduced by the use of a single
camera or by errors of the detection step. The algorithm defined in this thesis
is able to efficiently deal with the above mentioned problems: in particular,
we used as baseline the detection algorithm proposed in [101], while a novel
tracking algorithm has been introduced.

For the sake of completeness, in Subsection 3.1.1 only a brief description
regarding the detection module will be provided. It is worth pointing out that
the proposed tracking algorithm, detailed in Subsection 3.1.2, is able for its
nature to deal with any kind of detection algorithm.

3.1.1 Detection

Detection algorithms can be classified in the two following main categories:

• derivative algorithms: working by comparing adjacent frames of the video,
under the assumption that foreground objects correspond to rapidly chang-
ing areas, while the background is either static or slowly changing;

• background subtraction algorithms: the current frame of the video is com-
pared with a background model, that is a (usually compact) representa-
tion of the set of the possible images observable when the scene does not
contain foreground objects.

As for the first class, the main problem lies in the fact that the algorithms
consider the changing parts of the image as foreground [102]. This yields two
kinds of problems: on one hand, sometimes parts of a foreground object (even

3.1. Trajectories Extraction 27

large parts) do not appear to change, either because the object remains mo-
tionless momentarily, or because it has a uniform color and texture, and so its
motion determines a pixel change only at its borders (foreground aperture). On
the other hand, sometimes the pixel values of background areas do change, for
instance due to lighting variations, or small uninteresting movements of objects
that should be considered static (e.g., tree leaves moved by the wind). In this
case, false foreground objects would be detected by a derivative algorithm.

To avoid these problems, the most common approach is based on a back-
ground subtraction strategy: benefits coming from this choice are paid in terms
of algorithmic complexity. In fact, the background model must be initialized
and, more important, continuously kept up to date to reflect changes in the
observed scene.

In particular, three different categories can be identified [102]:

• reference image models: represent the background as a single image; the
comparison between the background model and the current frame is per-
formed by computing the distance in the color space between the corre-
sponding pixel values; pixels whose distance from the background is above
a threshold are assigned to foreground;

• probabilistic models: represent the background as a probability distribu-
tion; the comparison between the background model and the current frame
is performed by computing the probability that each pixel is generated ac-
cording to the background distribution; pixels whose probability is below
a threshold are assigned to foreground;

• neural models: represent implicitly the background by means of the weights
of a neural network suitably trained on a set of uncluttered frames; the
network learns how to classify each pixel into background and foreground.

It is worth pointing out that there is no large consensus in the scientific
community on which background subtraction method gives the best results; in
[102] a comparison involving algorithms belonging to different categories have
been performed and the obtained results confirm that [101] ranks at the top
positions, attaining a high value of the performance indices on all the datasets
used for the experimentations. For the above mentioned reason, in this thesis
it is used the algorithm proposed in [101].

A generic background subtraction algorithm is composed by the following
steps:

• pixel segmentation, which produces a foreground pixel mask from input
frames, obtained by thresholding the absolute difference between the cur-
rent image frame and the background image;

• morphological filtering, which is applied to the foreground mask;

• blob segmentation, which identifies semantically separated groups of pixels
and localizes them by a connected components labeling algorithm.

Furthermore, in [101] the following heuristics have been applied in order to
make the system more robust in real environments:

• Adaptive Threshold : the threshold used during the pixel segmentation step
is adapted based on brightness changes of the scene;

28 3. From Pixels to Behaviors

(a)

Slow	
Upda*ng	

Fast	
Upda*ng	

(b)

(c)

Figure 3.2 Some of the heuristics applied by the detection algorithm used in this thesis: (a)
Broken Object Recovery, (b) Background Maintenance Algorithm and (c) Noise Filtering.

• Noise Filtering : the spurious blobs identified during the blob segmentation
step are filtered according to their dimensions and density with respect to
the bounding box area (see Figure 3.2b);

• Background Maintenance Algorithm: the background is updated by using
two different speeds, depending on the region; a simple example is shown
in Figure 3.2a: for background pixels (red in the figure) the new values are
updated very quickly in order to guarantee an accurate updating of the
background if some variations occur; for detected objects region (blue in
the figure) a very slow update policy is needed in order to avoid including
wrong information in the background.

• Broken Object Recovery : blobs size is analyzed and blobs are merged,
depending on their height and their reciprocal positions (see Figure 3.2c).

It is worth pointing out that in real cases the detection phase produces some
common errors, which tracking algorithms need to deal with, as shown in Figure
3.3:

• spurious blobs, i.e. blobs not corresponding to any object; they can be
caused by lighting changes, movements either of the camera or the back-
ground, and other transient changes that the detection algorithm was not
able to filter out. An example is the blob identified by number 19, shown
in Figure 3.3b. In such situation the background updating algorithm is
not fast enough to compensate for the movement of the ribbon caused by
the wind.

• ghost blobs, i.e. blobs appearing where there was an object previously
considered as part of the background, that has moved away (e.g . if a
parked car starts moving, a blob is wrongly found in that position);

3.1. Trajectories Extraction 29

(a)

(b) spurious blob (c) merged objects (d) split object

Figure 3.3 Typical problems of the detection phase. (a) A frame with the detected blobs,
showing a spurious blob (number 19), objects merged into a single blob (number 7) and an
object split into multiple blobs (numbers 5, 9 and 10). (b), (c), (d) a close-up of the detected
foreground mask for the detection problems.

• missing blobs, i.e. undetected objects, for instance objects too similar to
the background behind them;

• split blobs, i.e. objects divided into multiple blobs. Figure 3.3d shows an
example of an object split into three different blobs, identified by numbers
5, 9 and 10, because of camouflage. The camouflage is the typical problem
occurring when the pixel characteristics of a foreground object are too
similar to the background to be discerned, as happens when a person is
wearing clothes having similar colors to the background.

• merged objects, i.e. multiple objects merged into a single blob; it is caused
by partial or total occlusions between multiple persons. The algorithm
must also handle this kind of situations, ensuring that object identities
are not lost across the occlusion. An example of multiple occlusion is
shown in Figure 3.3c, where three different individual objects are merged
into a single blob, identified by number 7.

At this point it should be clear that the detection step typically introduces
different typologies of errors that need to be properly managed by the moving
objects tracking algorithm, so making such a task very difficult to achieve.
However, we will show that the algorithm proposed in this thesis, described in
the following section, reveals to be very robust with respect to errors and it is
able to work with partial and total occlusions.

3.1.2 Tracking Algorithm

The main lack of most of existing algorithms lies in the fact that they make
their tracking decisions by comparing the evidence at the current frame with
the objects known at the previous one; all objects are managed in the same

30 3. From Pixels to Behaviors

Object
classifier

State
manager

Association
manager

Similarity
evaluator

Figure 3.4 An overview of the proposed tracking system.

way, ignoring their past history that can give useful hints on how they should
be tracked: for instance, for objects, stable in the scene, information such as
their appearance should be considered more reliable.

To exploit this idea, the proposed algorithm adopts an object model based
on a set of scenarios in order to deal differently with objects depending on their
recent history and conditions; the scenarios are implemented by means of a
Finite State Automaton (FSA), that describes the different states of an object
and the conditions triggering the transition to a different state. The state is
used both to influence which processing steps are performed on each object,
and to choose the most appropriate value for some of the parameters involved
in the processing.

Although a limited a priori knowledge about objects of interest is required,
in order to differentiate between single objects and groups, the proposed method
can be rapidly adapted to other application domains by providing a small num-
ber of object examples of the various classes.

Figure 3.4 gives an overview of the modules composing the tracking system
and their interdependencies:

• the state manager, which maintains and updates an instance of the FSA
for each object;

• the association manager, which establishes a correspondence between ob-
jects and blobs, solving split events and performing occlusion reasoning;

• the object classifier, which assigns objects to a set of predefined classes; the
object class is used both during the update of the FSA state and during
the association between objects and blobs to solve split/merge cases;

• the similarity evaluator, which computes a similarity measure between ob-
jects and blobs, considering position, size and appearance; this similarity
is used during the association between objects and blobs.

The above modules share a set of objects models, which, as previously said,
contain all the relevant information about each object.

Figure 3.5 shows an outline of the tracking algorithm. The algorithm op-
erates at the arrival of each new frame, receiving as inputs the existing object
models and the blobs discovered by the detection phase for the current frame;
for the first frame of the sequence, the existing object models are initialized as
an empty set. The output of the algorithm is a set of updated object mod-
els, which possibly includes new objects. The steps of the algorithm are the
following:

3.1. Trajectories Extraction 31

procedure Tracking(obj_models , blobs)

Classify(blobs)

S := ComputeSimilarity(obj_models , blobs)

FindAssociations(obj_models , blobs , S)

UpdateModels(obj_models , blobs)

UpdateState(obj_models)

end procedure

Figure 3.5 The structure of the tracking algorithm.

• first, the classifier is applied to the current blobs, which are annotated
with the information on the assigned class;

• then, the algorithm computes the similarity between each object and each
blob, activating the similarity evaluator; the similarity information is kept
in a similarity matrix S;

• at this point, the algorithm is ready to perform the association between
objects and blobs, including the split/merge and occlusion reasoning;

• on the basis of the associations found, the algorithm updates the models
for each object; if new objects are detected, their models are created at
this step;

• finally, the state manager updates the FSA states, using the previous
state and the information gathered by the previous steps and stored in
the object models.

In the following subsections, more details are provided for each module of
the system.

3.1.2.1 Common problems

In this section we examine some typical problems of people detection, in order
to see how they can be solved by incorporating information about the history
of objects.

One of the most frequently encountered issue is related to objects entering
the scene, which have a very unpredictable appearance during the first frames of
their life. Figure 3.6 shows a typical example, in which the person is split by the
detection phase into two different blobs (i.e. legs and arms). The problem here is
that after a few frames the parts appear to merge forming a new group of objects;
since the occlusion resolution requires that object identities are preserved within
a group, the tracking algorithm would continue to keep track of two separate
objects (labeled 1 and 2 in the figure). To solve this problem, the tracking
algorithm has to use different rules for dealing with merging objects when they
are just entering or when they are stable within the scene.

Missing blobs are another typical problem affecting the detection; they can
be caused either by camouflage, occurring when the foreground object is very
similar to the background, or when occlusions between moving objects arise.
The latter case is really difficult to deal with as information about the occluded
part is totally missing and consequently to be restored by suited reasoning.

32 3. From Pixels to Behaviors

Figure 3.6 Problems with entering objects. (a) Blobs across three adjacent frames. (b) The
tracking performed without considering the object history; in this case a tracking algorithm
would not be able to distinguish this situation from two separate objects joining a group, and
so attempts to preserve the separate identities of the two objects 1 and 2.

Figure 3.7 Problems with totally occluded objects. (a) The detection output across three
adjacent frames. (b) The tracking performed without considering the object history; in this
case a tracking algorithm would see the blob 2 as a new object in the scene, since in the
previous frame there was no corresponding object.

Figure 3.7 shows an example of the above mentioned problem: the person
that passes behind the tree is detected in the first and in the third frames of the
sequence, but not in the second one. Thus, the tracking algorithm would find
at the third frame a blob having no corresponding object in the previous frame,
and would assign it to a newly created object, if it does not keep some memory
about an object even when it is not visible in the scene. On the other hand, the
tracking algorithm should not preserve information about objects that are truly
leaving the scene: doing so it would risk to reassign the identity of an object
that has left the scene to a different object that is entering from the same side.

Other issues are related to objects occluding each other, forming a group.
Figure 3.8a illustrates a problem connected with the stability of group classifi-
cation: in the first frame, the two persons in the group are perfectly aligned,
and so a classifier would not be able to recognize that the object is a group. On
the other hand, in the following frames the object is easier to recognize as such.
Thus, in order to obtain a reliable classification the tracking algorithm has to
wait that the classifier output becomes stable, before using it to take decisions.

Another problem related to groups is the loss of the identities of the con-
stituent objects. An example is shown in Figure 3.8b, where objects 1 and 2 first
join a group and then are separated again. When objects become separated, the
tracking algorithm would incorrectly assign them new identities, if the original
ones were not preserved and associated with the group. Note that in this case it
would not have been possible to simply keep tracking separately the two objects
using some kind of motion prediction until the end of the occlusion, because as
a group the objects have performed a drastic change of trajectory (a 180◦ turn).

The analysis conducted in this Section about the typical problems in a real-
world setting shows that in a lot of situations a tracking system cannot be able

3.1. Trajectories Extraction 33

Figure 3.8 Occlusion related problems. In (a) the appearance of a group of people change
from being identical to a single person to being clearly a group; if the classifier uses a clas-
sification result obtained in the first frame, it will continue to track the group considering it
as an individual object. In (b) the system would not be able to correctly track the individual
objects during all their life as a group if it attempts to exploit the uniformity of the motion,
since the group can have strong changes in direction.

to correctly follow objects without additional information about their history.
In the next subsection, we will see how the proposed FSA is able to provide this
information.

3.1.2.2 Object state management

The state manager has the task of maintaining and updating the FSA state of
each object; the FSA state embodies the relevant information about the past
history of the object, which can be used by the other parts of the tracking
system. What pieces of information are actually relevant depends somewhat
on the specific application; different problems may require the algorithm to
keep different information in order to deal appropriately with them, and so may
require an entirely different FSA.

Although we present only a single formulation of the FSA, the methodology
remains general and easily extendable to other cases, since the knowledge about
the states and the transitions between them is declaratively specified in the
automaton definition, and not hidden within procedural code.

In order to deal with the issues discussed in Section 3.1.2.1, we propose a
state manager based on the Finite State Automaton A depicted in Figure 3.9.
It can be formally defined as:

A = 〈S,Σ, δ, s0, F 〉 (3.1)

where S = {s0, . . . , sm} is the set of the states; Σ = {a0, . . . , am} is the set of
the transition conditions, i.e. the conditions that may determine a state change;
δ : S × Σ → S is the state-transition function; s0 ∈ S is the initial state and
F ⊂ S is is the set of final states.

The proposed Finite State Automaton states and transitions are shown in
Table 3.10. In particular, the set of states S is shown in Table 3.10.a; we choose
s0 as initial state, since each object enters the scene by appearing either at the

34 3. From Pixels to Behaviors

new

deleted

exiting

to be

classified
classified

frozen

in group

a0

a1

a
6

a3

a4

a
5

a
6

a1

a1

a7

a2
a1

a8

a8

a8

Figure 3.9 The state diagram of the object state manager.

edge or at a known entry region (e.g . a doorway). Furthermore we choose s5

as final state, since each object necessarily has to leave the scene. The set Σ of
transition conditions and the state-transition function δ are shown respectively
in Table 3.10b and 3.10c.

It is worth noting that each state has been introduced in order to correctly
solve one of the issues described earlier, as we will detail below. So it is possible
to extend the FSA with the addition of other states and transitions, in order
to deal with some other problems that should arise in a specific application
context.

The meaning of the states and the conditions triggering the transitions are
detailed below:

• new (s0): the object has been just created and is located at the borders of
the frame; if it enters completely, and so does not touch the frame borders
(a0), it becomes to be classified; otherwise, if it leaves the scene (a1), it
immediately becomes deleted.

The introduction of new state solves the problem related to the insta-
bility of the entering objects, since it makes the system aware of such
scenario and then capable to react in the best possible way, as shown in
Figure 3.11a. Moreover, this state allows the algorithm to quickly dis-
card spurious objects due to detection artifacts, since they usually do not
persist long enough to become to be classified.

• to be classified (s1): the object is completely within the scene, but its class
is not yet considered reliable; if the classifier assign the same class for at
least two frames (a3), it becomes classified; if the association manager

3.1. Trajectories Extraction 35

Id Description
s0 new
s1 to be classified
s2 classified
s3 frozen
s4 in group
s5 exiting
s6 deleted

(a)

Id Description
a0 obj is completely within the scene
a1 obj disappears from the scene
a2 obj does not reappear in the scene for a time Td
a3 obj classification is the same for two frames
a4 obj classification changes
a5 obj leaves the group
a6 obj occludes with one or more objects
a7 obj reappears inside the scene
a8 obj is not completely within the scene

(b)

a0 a1 a2 a3 a4 a5 a6 a7 a8
s0 s1 s6 - - - - - - -
s1 - s3 - s2 - - s4 - s5
s2 - s3 - - s1 - s4 - s5
s3 - - s6 - - - - s1 -
s4 - - - - - s1 - - s5
s5 - s6 - - - - - - -

(c)
Figure 3.10 The Finite State Automaton. (a) The set S of the states. (b) The set Σ of
the transition conditions. (c) The state-transition function δ; for entries shown as ‘-’, the
automaton remains in the current state.

Figure 3.11 Output of the tracking algorithm based on the proposed FSA, when applied
to the problems discussed in Section 3.1.2.1. (a) The entering object is correctly recognized
as a single object, and not a group. (b) The object identity is preserved when the person
passes behind the tree. (c) A group initially classified as a single person is correctly handled
when classification becomes stable. (d) The group object maintains the constituent object
identities.

36 3. From Pixels to Behaviors

detects that the object has joined a group (a6), it becomes in group; if
the object disappears (a1), it becomes frozen; if the object is leaving the
scene, i.e. it is not completely within it (a8), it becomes exiting.

The to be classified state solves the issues of the objects entering the scene
as group, discussed in Figure 3.8a. Thanks to this state, the class of the
object is only validated when the system is sure about them. An example
is shown in Figure 3.11c. Note that objects class is very important, since
it makes the association manager able to take the correct decisions about
the resolution of split and merge patterns.

• classified (s2): the object is stable and reliably classified; if the classifier
assigns a different class (a4), it becomes to be classified; if the associa-
tion manager detects that the object has joined a group (a6), it becomes
in group; if the object disappears (a1), it becomes frozen; if the object
is leaving the scene, then it is not completely within it (a8), it becomes
exiting.

The distinction between classified and to be classified objects is used by
the association manager when reasoning about split objects and group
formation.

• frozen (s3): the object is not visible, either because it is completely oc-
cluded by a background element, or because it has left the scene; if the
object gets visible again (a7), it becomes to be classified; if the object
remains suspended for more than a time threshold Td (a2), it becomes
deleted; currently we use Td = 1 sec.

The frozen state avoids that an object is forgotten too soon when it mo-
mentarily disappears, as it happens in Figure 3.7.

• in group (s4): the object is part of a group, and is no more tracked in-
dividually; its object model is preserved to be used when the object will
leave the group; if the association manager detects that the object has left
the group (a5), it becomes to be classified; if the object is located at the
borders of the frame (a8), it becomes exiting.

The in group state has the purpose of keeping the object model even when
the object cannot be tracked individually, as long as the algorithm knows
it is included in a group. Thanks to this state, the proposed method is
able to correctly solve the situation shown in Figure 3.8b, related to group
objects.

• exiting (s5): the object is located at the borders of the frame; if it disap-
pears from the scene (a1), it becomes deleted.

The exiting objects differ from the frozen ones because of the system have
not to preserve their identity, since their are leaving the scene;

• deleted (s6): the object is not being tracked anymore; its object model can
be discarded.

Figures 3.12 and 3.13 show a detailed example of how the object state
management works.

3.1. Trajectories Extraction 37

1. The object 37 enters the scene as a new object while the object 28 is a classified
object.

2. The object 37 becomes a to be classified object since it completely enters the
scene.

3. The classification as a person of the object 37 becomes reliable, then it becomes
classified.

Figure 3.12 Evolution of the states of the FSA of each object along a short frame sequence
(part 1). The second part is in Figure 3.13.

38 3. From Pixels to Behaviors

4. After a few frames, the association manager shows an occlusion between objects
37 and 28. Both these objects become in group and a new group object is created.

5. The objects 37 and 28 do not leave the group, then they do not change their
states.

6. Finally, the group object splits and both the objects 37 and 28 become
to be classified.

Figure 3.13 Evolution of the states of the FSA of each object along a short frame sequence
(part 2). The first part is in Figure 3.12.

3.1. Trajectories Extraction 39

(a) (b) (c)

Figure 3.14 Examples of different entities by HOG descriptors: (a) a single person, (b) a
small group of persons and (c) a backpack.

3.1.2.3 Object classification

The tracking system needs an object classifier to determine if a blob corre-
sponds to a group, an individual object, or an object part. In particular, two
classes of individual objects have been considered in this thesis: person and bag-
gage. We adopt a multi-class Support Vector Machine (SVM) classifier using the
Histogram of Oriented Gradients (HOG) [103] as descriptor. HOG descriptor,
which has already proved to be very effective for pedestrian detection, allows
to describe the patterns by using the distribution of local intensity gradients or
edge directions: the image is partitioned into cells and a local 1-D histogram of
gradient directions or edge orientations over the pixels of each cell is computed.
The accuracy of the descriptor is improved by contrast-normalizing the local
histograms: a measure of the intensity across a larger region of the image, a
block, is computed and it is used to normalize all the cells within the block.
Such normalization makes the descriptor invariant in changes in illumination
and shadowing. In Figure 3.14 we show the description of different entities
using HOG.

Once extracted the features vector, a multi-class SVM has been applied.
Being our problem multi-class, a N one-against-rest strategy has been consid-
ered (see Figure 3.15); in particular N different classifiers, one for each class,
are constructed. The i -th classifier is trained on the whole training data set
in order to classify the members of i -th class against the rest. It means that
the training set is relabeled: the samples belonging to the i -th class are labeled
as positive examples, while samples belonging to other classes are labeled as
negative ones. During the operating phase, a new object is assigned to the class
with the maximum distance from the margin.

At this point one can note that object evolution is not dependent on its
class (e.g . group or individual object), but only on its actual state. As a matter
of fact, only object information is related to object class, while object state
only determines the reliability of such information. In particular, for individual
object we have information about appearance and shape: we consider the area
and the perimeter of an object, its color histograms and its real dimensions,
namely width and height, both obtained using an Inverse Perspective Mapping.
Moreover we have information about the observed and predicted position of
the object centroid. The predicted position is obtained using an extended 2D

40 3. From Pixels to Behaviors

SVM	 1	
C1/C2,C3	

SVM	 2	
C2/C1,C3	

SVM	 3	
C3/C1,C2	

Co
m
bi
na
1o

n	 HOG
descriptor

Class

Figure 3.15 Multi class SVM: the i-th classifier is labeled considered as positive samples
the ones belonging to the i-th class, while as negative samples the ones belonging to the other
classes.

Position-Velocity (PV) Kalman Filter, whose state vector is:

ξ =
[
xc, yc, w, h, ẋc, ẏc, ẇ, ḣ,

]
(3.2)

where (xc, yc) is the centroid of the object, w and h are the width and the
height of the object minimum bounding box in pixels, (ẋc, ẏc) and (ẇ, ḣ) are
respectively the velocity of the object centroid and the derivative of the mini-
mum bounding box size. It is worth noting that such a PV Kalman Filter is
very effective when the object motion is linear and the noise has a Gaussian
distribution.

Group objects contain also information about occluded objects. In this way
the system can continue to track the in group objects when they leave the group.

3.1.2.4 Association management

The aim of this module is to determine the correspondence between the set of
blobs B = {b1, ..., bn} and the set of objects O = {o1, ..., om}, and properly
update the information about the annotated objects: the current position is
added to the trajectory, the appearance model updated and the state properly
recomputed; this is made also in presence of detection errors: objects split into
more parts, objects merged together or objects hidden by foreground elements.

To this aim, the system uses a graph based approach by taking into account
the spatio-temporal information of each object and at the same time reduces the
computational cost needed to perform all the possible association: this is done
by taking into account spatio-temporal information of each object; see details
in Sections 3.1.2.4.2 and 3.1.2.4.1.

The associations between blobs and objects is represented by a matrix T =
{tij}, where:

tij =

 0 if object oi is not associated to blob bj
1 if oi is associated to bj
−1 if the pair oi, bj hasn’t been evaluated

(3.3)

It can be obtained by evaluating the similarity matrix S = {sij}, being sij
the index of similarity between the blob bi and the object oj . More details about
the computation of this matrix will be provided in Section 3.1.2.5.

3.1. Trajectories Extraction 41

In simple situations, there is a one-to-one correspondence: the single blob bi
is associated to the single object oi, as shown in Figure 3.20a. However, in pres-
ence of split or merge, the association manager needs to take into account more
complex associations (one-to-many, many-to-one, and even many-to-many).

To this purpose, we evaluate the similarity matrix over an augmented set of
blobs BI and objects OI in order to take into account all those above mentioned
situations:

BI = B ∪Bd; OI = O ∪Od. (3.4)

Bd and Od are respectively the set of derived blobs and derived objects, virtually
created at the current frame; their introduction allows the system to simulate
all the possible splits and occlusions occurring in real scenarios, so as to take
the best possible decision in terms of association between one or more blobs and
one or more objects.

In order to clarify this, consider two objects o1 and o2 meeting in the scene:
at the frame t − 1 the algorithm correctly tracks these objects one by one. At
the frame t, a merge occurs and the detection phase detects a single blob bA
(instead of two). The similarity sA1 between the blob bA and the object o1 and
the similarity sA2 between the blob bA and the object o2 are very low, and then a
simple association manager could fail. Thanks to the introduction of the derived
object o1∪2, composed by the union of the objects o1 and o2, a merge situation
is simulated. In this way, the similarity between the blob bA and the derived
object o1∪2 is very high, and then the association can be correctly performed.
The states of o1 and o2 are updated to in group and their information are stored
inside the group object o1∪2, whose state is initialized to classified. In this way,
the system is able to correctly track the two objects as a single group object.

3.1.2.4.1 Derived Blobs and Objects Creator This modules generates
the sets Bd and Od of derived blobs and objects. The most simple, but also
the most inefficient way, to perform this task is to evaluate all the possible
combinations of k blobs (objects), with k = 1...n(m).

Bd = {b1b2, ..., b1bn, ..., b1b2bn, ...}; (3.5)

Od = {o1o2, ..., o1om, ..., o1o2om, ...}. (3.6)

The inclusion of all the combinations determines a very high computational
cost and an explosion of the size of the similarity matrix; note that the number
of possible combinations C for n blobs and m objects is:

C =

n∑
i=1

(
n
i

)
·
m∑
j=1

(
m
j

)
. (3.7)

Consider that if the scene is populated by only 10 objects and the detection
phase finds 10 blobs, we need to verify more than 1000 possible associations
(1274). In order to decrease the number of associations to be evaluated, we
propose to exploit the spatio-temporal continuity of the tracked objects so as
to select only the subset of feasible combinations.

In particular, the following heuristics have been considered to obtain the sets
Bd and Od:

42 3. From Pixels to Behaviors

τ1
τ3

o1
o3 τ2

o2

Figure 3.16 Heuristic for pruning the derived blobs.

• The distance between the centroids of the blobs (objects respectively) com-
posing a derived blob (object) has to be less than an adaptive threshold τ .
τ is dynamically chosen and depends on the maximum velocity of objects
representing the maximum displacement (in pixels) of an object between
two frames. This value is strongly related to the position of the object in-
side a scene: once fixed the maximum real velocity of an object inside the
scene, the maximum distance dmax in pixel can be computed by means of
the IPM algorithm: τ = α · dmax, being α a weight set in our experiments
to 2, which determines the area where find out possible split and merge
of blobs. An example is depicted in Figure 3.17: the only derived objects
that the system can evaluate are o1o2 and o2o3, so discarding the pair
o1o3, whose distance between the centroids is over the thresholds τ1 and
τ3.

• The reciprocal position of the blobs (objects) is taken into account. For
instance, starting from the situation depicted in Figure 3.17a, only the
combination b1b2b3 (Figure 3.17b), b1b2 (Figure 3.17c) and b2b3 (Figure
3.17d) can be accepted, while the association b1b3 (Figure 3.17e) doesn’t
make sense, since it is an impossible merge, implicitly including b2. Note
that in this very simple situation, often recurring also in real scenarios,
we are able to obtain a 25% decrease in the number of association to deal
with; furthermore, it does not affect the reliability of the system, since it
only discards unfeasible associations.

The main steps of the algorithm for obtaining the set of derived blobs Bd
are shown in Figure 3.18. A similar algorithm applies for derived objects Od.

The algorithm starts by computing the distance between the boxes belonging
to B, whose relative centroids distance is less than τ , so obtaining the weighted
undirected graph G = {V,E,w}; the vertices V = {V1, V2, ..., Vn} are associated
to blobs, while the edges E = {E1, E2, ..., Ek} to the distances between the
blobs. Each edge is associated to a weight ei,j corresponding to the distance
between the blob bi and the blob bj . Note that if the distance between two
blobs is under τ , then the corresponding edge does not belong to E.

For each blob bi, the shortest path to reach all the other blobs belonging
to B and not yet explored is computed by using the Dijkstra’s algorithm; it is

3.1. Trajectories Extraction 43

B1 B2 B3

B1 B2 B3

B1 B2 B3

B1 B2 B3

B1 B2 B3

(a)

(d)

(b) (c)

(e)

Figure 3.17 Examples of feasible (b,c,d) and unfeasible (e) merge of the boxes in (a) for the
composition of derived boxes.

procedure Bd = FindDerivedFeasibleBlobs(Blobs B)

Bd={ }

d := ComputeDistancesBetweenCentroids(B)

graph := ComputeGraph(B,d)

foreach bi in B

foreach bj in B, j > i

path := ComputeShortestPath(graph, bi, bj)

bd := CreateBlob(graph, path)

Bd:= AddBlob(graph,bd)

end procedure

Figure 3.18 The algorithm for finding out the derived feasible blobs (objects).

implemented by a min priority queue with a Fibonacci heap [104], so that the
global computational complexity of the algorithm is O(|E|+ |V | · log |V |).

For each found shortest path, a new derived blob bd is created, composed by
the blobs corresponding to the vertices crossed during the path. An example is
shown in Figure 3.19: in this case, the method reduces by 40% the number of
derived objects (the combinations b2b3, b2b4, b1b4 and b2b3b4 are not generated).

3.1.2.4.2 The algorithm The algorithm operates in two distinct phases,
as shown in Figure 3.21: in the first one, it finds the correspondence for stable
objects (i.e. objects in the to be classified, classified or frozen state); in the
second phase it tries to assign the remaining blobs to objects in the new state,
possibly creating such objects if necessary. The motivation for this distinction
is that the management of split-merge and occlusions can be performed only for
stable objects, since for new ones the system would not have enough information
to do it in a reliable way.

During the first phase, the algorithm starts by choosing the maximum ele-
ment s∗ij of the matrix, corresponding to the blob bi and to the object oj and
records the corresponding associations in T . At each step, the algorithm selects
the pair bi−oj such that sij is the maximum value corresponding to tij = −1
and records the obtained associations.

The following situations can occur:

one-to-one correspondence : bi ∈ B, oj ∈ O (see Figure 3.20a). The

44 3. From Pixels to Behaviors

B1

B2

B3
B4

(a)

B1

B3
B2

1 1

12

B4

1
15

4

(b)

FROM TO PATH

B1 B2 B1	 B2

B1 B3 B1	 B3

B1 B4 B1	 B3	 B4

B2 B3 B2	 B1	 B3

B2 B4 B2	 B1	 B3	 B4

B3 B4 B3	 B4
(c)

B1

B2

B3
B4

B1

B2

B3
B4

B1

B2

B3
B4

B1

B2

B3
B4

B1

B2

B3
B4

B1

B2

B3
B4

(d)

Figure 3.19 An example of the algorithm in charge of creating derived blobs (objects) for a
split pattern: starting from the detected blobs in (a), the algorithm creates the graph in (b)
and finds the shortest paths in (c). The output of the algorithm is in (d).

associations corresponding to the blob bi and to the object oj need to be up-
dated, together with all the derived blobs and objects containing bi and oj ; in
particular:

ti,j = 1;

tz,j = 0 ∀ bz ∈ BI , bz 6= bi;

tz,k = 0 ∀ bz ⊃ bi, ∀ ok ∈ OI ;
ti,k = 0 ∀ ok ∈ OI , ok 6= oj ;

tz,k = 0 ∀ ok ⊃ oi, ∀ bz ∈ BI ;

(3.8)

one-to-many correspondence : bi ∈ B, oj ∈ Od (see Figure 3.20b). In
this case the occlusion pattern has to be solved. The associations corresponding
to the blob bi and to the object oj need to be updated, together with all the

3.1. Trajectories Extraction 45

Obj 1 Obj 2 Obj 1 U 2

Blob A 0,96 0 0,32

Blob B 0 0,93 0,26

Blobs A U B 0,25 0,31 0,63

Frame t Frame t-1

1

2

A

B

(a)

Obj 1 Obj 2 Obj 1 U 2

Blob A 0,48 0,53 0,86

Frame t Frame t-1

1

2
A

(b)

Obj 1

Blob A 0,65

Blob B 0,25

Blobs A U B 0,89

Frame t Frame t-1

1 A

B

(c)

Obj 1,2

Blob A 0,38

Blob B 0,45

Blobs A+B 0,89

Frame t Frame t-1

1, 2

A B

(d)

Obj 1 Obj 2 Obj 1 U 2

Blob A 0,59 0,20 0,43

Blob B 0,62 0,53 0,71

Blobs A U B 0,43 0,27 0,88

Frame t Frame t-1

1

2

A

B

(e)

Obj 1 Obj 2 Obj 1 U 2

Blob A 0,90 0,15 0,23

Blob B 0,62 0,89 0,18

Blobs A U B 0,25 0,27 0,91

Frame t Frame t-1

1 2 A B

(f)

Figure 3.20 Different kinds of associations: one-to-one association (a), one-to-many associ-
ation (b), many-to-one associations (c,d), many-to-many associations (e,f).

46 3. From Pixels to Behaviors

associations of the objects composing the derived object oj :

ti,j = 1;

tz,j = 0 ∀ bz ∈ BI , bz 6= bi;

tz,k = 0 ∀ bz ⊃ bi, ∀ ok ∈ OI ;
ti,k = 0 ∀ ok ∈ OI , ok 6= oj ;

tz,k = 0 ∀ ok ⊂ oj , ∀ bz ∈ BI ;

(3.9)

Furthermore, the state of oj is initialized to classified while the state of the
objects composing oj is updated to in group; finally, an instance of each object
is stored inside the derived object, which is classified as a group object. Starting
from this frame, the object oj will be tracked as a group until it will split in the
next frames.

many-to-one correspondence : bi ∈ Bd, oj ∈ O. In this case a split prob-
lem has to be solved. Two different situations have to be taken into account; if
oj is classified as a person (see Figure 3.20c), then the associations correspond-
ing to the blob bi and to the object oj need to be updated, together with all the
associations of the blobs composing the derived blob bi:

ti,j = 1;

tz,j = 0 ∀ bz ∈ BI , bz 6= bi;

tz,k = 0 ∀ bz ⊂ bi, ∀ ok ∈ OI ;
ti,k = 0 ∀ ok ∈ OI , ok 6= oj ;

tz,k = 0 ∀ ok ⊃ oi, ∀ bz ∈ BI ;

(3.10)

A different situation occurs when the object oj is classified as a group (see
Figure 3.20d), since the split refers to the end of an occlusion pattern. The
system, by exploiting the set of occluded objects (1 and 2 in Figure 3.20d) and
their history, does not solve the split but it is able to correctly associate each
blob to the most similar object. A similarity matrix based approach is exploited
in this case in order to find the best association between occluded objects and
blobs.

many-to-many correspondence : bi ∈ Bd, oj ∈ Od (see Figure 3.20e).
This situation arises when a merge and a split contemporaneously happen. In
this case we decide to create a group object, so to avoid any kind of decision
which could be reveal too risky. In this scenario, the associations corresponding
to the blob bi and to the object oj need to be updated, together with all the as-
sociations of the blobs composing the derived blob bi and the objects composing
the derived object oj :

ti,j = 1;

tz,j = 0 ∀ bz ∈ BI , bz 6= bi;

tz,k = 0 ∀ bz ⊂ bi, ∀ ok ∈ OI ;
ti,k = 0 ∀ ok ∈ OI , ok 6= oj ;

tz,k = 0 ∀ ok ⊂ oi, ∀ bz ∈ BI ;

(3.11)

Furthermore, as in the one-to-many correspondence, the state of oj is initialized
to classified while the state of the objects composing oj is updated to in group

3.1. Trajectories Extraction 47

and their information are stored inside the derived object, which is classified as
a group object.

A many-to-many correspondence can also arise when two or more objects
are very near each other: as a matter of fact, the similarity between the derived
object and the derived blob can be only slightly higher than the similarity
between the single objects and the single blobs (see Figure 3.20f). If it happens,
each object is associated to the blob with the higher similarity.

During the second phase, only the one-to-one association is performed. For
this reason, the algorithm follows a similar scheme, except that it considers only
the objects in the new state, and does not create derived blobs and derived ob-
jects. Moreover, the similarity matrix is built using less features than in the first
phase since we have experimentally verified that only the position information
is sufficiently reliable for such objects. At the end of this phase, any remaining
unassigned blobs are used to create new annotated object, initialized to the new
state.

procedure TrackingAlgorithm (annotated_objs , blobs)

AssocStableObjs (annotated_objs , blobs)

pending_blobs := SearchPendingBlobs(blobs)

unassoc_objs := SearchUnassocObjs(annotated_objs)

AssocInstableObjs (unassoc_objs , pending_blobs)

unassoc_blobs := SearchPendingBlobs(pending_blobs)

CreateObjFromPendingBoxes (annotated_objs ,unassoc_blobs)

UpdateObjectsState(annotated_objs)

end procedure

procedure AssocInstableObjs (annotated_objs , blobs)

sim_mat := ObjInstableSimMatrix (annotated_objs , blobs)

foreach obj in annotated_objs:

(best_boxes , best_objs) := BestAssoc(sim_mat)

end

end procedure

procedure AssocStableObjs (annotated_objs , blobs)

derived_objs := CreateDerivedFeasibleObjs(annotated_objs)

derived_blobs := CreateDerivedFeasibleBlobs(blobs)

all_objs := JoinObjs(annotated_objs , derived_objs)

all_blobs := JoinBlobs(blobs , derived_blobs)

sim_mat := ObjStableSimMatrix (all_objs , all_blobs)

foreach obj in all_objs:

(best_boxes , best_objs) := BestAssoc(sim_mat)

end

end procedure

Figure 3.21 Structure of the algorithm for stable and unstable objects associations.

3.1.2.5 Similarity evaluation

As already mentioned, the similarity matrix is used to match one or more blobs
with one or more objects.

In order to measure the similarity between an object oi and a blob bj , the
tracking system uses an index based on three kinds of information: the position,
the shape and the appearance:

sij =

√
αp · (spij)2 + αs · (ssij)2 + αa · (saij)2

αp + αs + αa
(3.12)

48 3. From Pixels to Behaviors

As described below, sij values identify similarity metrics and α values are
weights chosen according to the state of the object and the association manage-
ment phase. In particular:

• spij is the position similarity index, computed as the distance between the
estimated centroid of an object oi and the centroid of a blob bj ;

• ssij is the shape similarity index between an object oi and a blob bj ;

• saij is the appearance similarity index between an object oi and a blob bj ,
based on color histograms;

• αp, αs and αa are the weights of position, shape and appearance similarity
index respectively;

All α values have been chosen by experimentation over a training set. Namely,
in the first phase, selected values for objects in the to be classified and classified
state are αp = αs = αa = 1 while for objects in the in group state selected
values are αs = αa = 1; αp = 0 since in this context shape and appearance
similarity perform better than position one. Finally, in the second phase that
evaluates new objects, we choose to consider the only reliable feature, namely
the position. Thus selected α values are αs = αa = 0; αp = 1.

For the position, as already seen, the system uses a Kalman filter, based on a
uniform velocity model, to predict the coordinates of the object centroid at the
current frame. The predicted coordinates are compared with the blob centroid,
using Euclidean distance, in order to obtain for each object oi and each blob bj
the distance dij . The position similarity index is then computed as:

spij = 1− dij/dmax (3.13)

where dmax is a normalization factor depending on the maximum velocity of ob-
jects representing the maximum displacement of an object between two frames.

For characterizing the shape similarity, the system uses the real height and
the area of the blob and of the object model; in particular if we denote as ∆hij
the relative height difference between oi and bj , and as ∆Aij the relative area
difference, the considered shape similarity index is:

ssij = 1−
√
|∆Aij |+ (∆hij)2

2
(3.14)

Finally, as a representation of the appearance we have used the color his-
tograms computed separately for the upper half and for the lower half of the
object or blob (Image Partitioning). We have experimented with several criteria
for comparing the histograms, and we have found that the most effective value
is the χ2 distance:

qij =
1

M

∑
k

(
hoi (k)− hbj(k)

)2
hoi (k) + hbj(k)

(3.15)

where index k iterates over the bins of the histogram, hoi is the histogram of
object oi, h

b
j is the histogram of blob bj , and M is the number of bins. The

appearance similarity index is:

saij = 1−

√(
qupij
)2

+
(
qlowij

)2
2

. (3.16)

3.2. Visual Behavior Analysis 49

where qupij is the value of qij computed using only the upper half of the objec-

t/blob, and qlowij is the value computed using only the lower half.

3.1.2.6 Conclusion

In this section I presented the novel tracking algorithm introduced in this the-
sis, able to overcome many of the problems induced by the object detection
phase, as well as to deal with total or partial occlusions. In order to confirm
these characteristics, the algorithm has been tested over two standard datasets,
namely PETS and ISSIA Soccer. As I will show in Section 5.1, the obtained
results confirm the effectiveness of the proposed approach in very different envi-
ronments. Furthermore, this algorithm participated to an international compe-
tition on surveillance applications, PETS 2013 Contest [105], and the obtained
results confirms that it is a very promising algorithm. Furthermore its low com-
putational cost makes this algorithm well suited for real-time applications for
behavior analysis.

3.2 Visual Behavior Analysis

Once trajectories have been extracted (by using the algorithm detailed in Sec-
tion 3.1), the proposed system has to analyze them in order to detect dangerous
behaviors and then alert the human operator. This responsibility is assigned
to the Visual Behavior Analysis module: this module is able to identify dur-
ing a preliminary learning step typical behaviors occurring in the scene by a
clustering algorithm, especially designed for this purpose. One of the main ad-
vantages lies in the fact that this step is performed into an unsupervised way,
without requiring any knowledge of the human operator about the particular
environment.

The extracted clusters will be used during the operating phase; in particular,
the following interactions with the system are allowed to the human operator: an
abnormal behavior framework, which allows the human operator to be informed
of abnormal behaviors occurring in the scene, and a query by sketch application,
which makes possible an efficient search of the k most similar trajectories to the
one hand drawn by the human operator without analyzing the entire dataset.

The learning step will be analyzed in this section, while the proposed appli-
cations (abnormal behavior framework and query by sketch) will be analyzed
in Section 3.4.

3.2.1 Preliminaries

As mentioned before, the aim of a tracking algorithm is to extract the trajectory
of objects populating a scene. A generic trajectory T k can be represented as a
sequence of n three dimensional points:

T k =< P k1 , P
k
2 , ..., P

k
n >, (3.17)

being the generic point a triple containing the spatial information (xki , y
k
i) of

the object at the time instant tki :

P ki = (xki , y
k
i , t

k
i) ∀i ∈ {1, ..., n}. (3.18)

50 3. From Pixels to Behaviors

The analysis of raw data for behavior analysis has two main drawbacks: first,
raw data are more sensible to noise and tracking errors, and thus a filtering of
each trajectory is needed before use. Second, if a system considers the similarity
between raw data, it can introduce non relevant differences between trajectories.
For example, many trajectories on a garden path may be considered as similar
independently of the exact position of people on the path.

As mentioned in Section 2.2, this problem is often deal with by representing
the trajectory as a reduced sequence of symbols. In this thesis in particular
I decided to represent a trajectory as a string, aiming to preserve only the
discriminant information and to reduce the space required to store it.

The discriminant information to be preserved is strongly influenced by the
aim of the system and the dynamic of the scene: in order to verify, for instance,
if a person is moving in the opposite direction of a crowd or if a vehicle is
driving on the emergence line on a highway, the most discriminant feature is
the sequence of zones crossed by the moving object.

From these considerations, we need to partition the scene into a set of zones,
hence associating a single symbol to a sequence of points and eliminating non
discriminant information. The criterion adopted to subdivide the scene certainly
influences the performance of the entire system. In fact, on one hand it strongly
affects the time needed for the computation of similarity between trajectories;
on the other hand, it could decrease the reliability of the system if the chosen
number of zones is not sufficiently representative of the scene. The simplest
and at the same time efficient way could be to partition the scene using a fixed-
size uniform grid [106]. The main drawback of an uniform grid, however, is
that each zone has an uneven statistics, causing only a suboptimal statistical
segmentation of trajectories. Furthermore, it is evident that the distribution of
trajectories in the scene highlights region of interests, where most of trajectories
lies and for which we need a higher level of detail.

In order to overcome these limitations, we propose an adaptive method aimed
at minimizing the mean error made when assimilating a trajectory to its zone
(Section 3.2.3). As a consequence of this partitioning criterion, areas in the
scene where most of trajectories lies are represented with a higher number of
zones.

3.2.2 Overview

Before entering in the details of the proposed approach, let’s briefly summarize
the main steps required during the learning phase, as well as the motivation
behind the choice of an unsupervised approach.

The learning phase aims at defining rules or at extracting prototypes of
normal trajectories. The definition of rules is strongly dependent on the envi-
ronment and, at the same time, on the knowledge that the human operator has
about the possible normal(or abnormal) behaviors. On the other hand, The ex-
traction of prototypes for (ab)normal trajectories can be performed by following
one of the following two strategies: supervised and unsupervised. Techniques
trained in supervised mode assume the availability of a training data set with
labeled instances of normal as well as abnormal trajectories. However, such an
approach has a significant drawback: abnormal instances are usually far fewer
compared to normal ones in the training set, so implying that the prototypes
extracted for abnormal trajectories are not accurate and representative. Fur-

3.2. Visual Behavior Analysis 51

A B C D

E
F

G H ABFD

…

PROTOTYPES OF
“NORMAL

TRAJECTORIES”

SCENE	
PARTITIONING	

Cluster n

Cluster 2

Cluster 1

TRAJECTORY	
PREPROCESSING	 CLUSTERING	

Figure 3.22 Learning phase for abnormal recognition.

thermore, it is impossible to predict all abnormal behaviors inside a real scenario
because of its intrinsic complexity.

Techniques operating in unsupervised mode [107] do not require labeled data
since they make the implicit assumption that normal instances are far more
frequent than abnormal ones. The main advantage of an unsupervised learning
phase makes the control system context-independent and can be easily applied
in different real environments, since it does not use human knowledge. This
is a very important and not negligible feature, since it allows the system to
autonomously understand typical patterns within a scene, so avoiding the boring
and expensive labour of labeling a large amount of trajectories data.

In order to make this step human-independent, I propose an unsupervised
approach, where an abnormal trajectory refers to something that the control
system has never (or rarely) seen. However, a system that raises an alarm for
each trajectory which has not been seen before risks to generate too many false
alarms: the system needs to identify a normal trajectory as one enough similar
to a model of normal trajectories that the system already knows.

The method we propose is based on the following steps, as shown in Figure
4.1:

• Scene Partitioning: in order to reduce the large amount of data to be
managed, the scene is partitioned into zones and the trajectories are rep-
resented by considering the zones crossed during their life: in particular,
the zones are dynamically defined according to the distribution of the ex-
tracted trajectories, so that areas where most of the trajectories lie are
represent by an higher number of zones. The scene partitioning algorithm
introduced in this thesis is detailed in Subsection 3.2.3.

• Trajectories preprocessing: each trajectory is represented as a se-
quence of symbols, namely a string. Each symbol contains those dis-
criminant features (related to position, in terms of crossed zones, speed

52 3. From Pixels to Behaviors

and shape in each zone) required for discriminate two different trajectories
(see Section 3.2.4). The similarity between two trajectories is evaluated
by using a kernel-based method. The main advantage in this choice lies
in the fact that it is possible to combine the kernel with a large class of
clustering and machine learning algorithms, which can be expressed using
only scalar product between input data (see Subsection 3.2.5).

• Clustering: given the kernel, a novel tree-based clustering algorithm is
applied in order to extract clusters of trajectories inside the scene, each
corresponding to a typical normal path. The choice of an unsupervised
method is justified by the fact that in this way the knowledge of the
human operator about the particular environments is not necessary. The
proposed clustering method is detailed in Subsection 3.2.6.

3.2.3 Scene Partitioning

In this section we will introduce the method proposed in this thesis for parti-
tioning the scene into a fixed number of zones. As previously mentioned, its
aim is to represent the areas where most of trajectories lies with an higher num-
ber of zones, in order to increase the discriminative power of the string-based
representation.

Initially, the scene is represented by a single zone Z1. The scene partitioning
algorithm aims at dividing Z1 into a fixed number L of zones. The main idea
behind our algorithm is to exploit the distribution of the training set by taking
into account the density, as in the clustering algorithm proposed in [108]. Each
zone (Zi)i∈{1,...,L} is represented by using its statistical properties (mean, major
axis and covariance matrix); the proposed method works by recursively splitting
a selected zone by a set of planes (cutting planes) at chosen positions (cutting
positions). The algorithm is briefly summarized in Figure 3.38. In the following,
more details about this algorithm will be provided since an enhanced kernelized
version of it will be introduced in Subsection 3.2.6.

Let P be a generic point in the scene. We define f(P) as the number of
trajectories passing through P in the image.

Using function f(.) and our zone’s representation, we define the statistical
property of a zone Zi (cardinality |Zi|, Mean µi and Covariance Covi):

|Zi| =
∑
P∈Zi

f(P) µi =

∑
P∈Zi f(P)P

|Zi|

Covi =

∑
P∈Zi f(P)P · P t

|Zi|
− µi · µti.

(3.19)

The main idea is to minimize the loss of information induced by the mapping
of the set of points in each zone to the mean of the zone they belong to. This
objective can be achieved by minimizing the total squared error TSE induced
by the partition ρ = {Z1, ..., ZL}:

TSE(ρ) =

L∑
i=1

SE(Zi), (3.20)

3.2. Visual Behavior Analysis 53

procedure PartitionScene

(List <Trajectory > LT , Scenario S, ZonesNumber N)

current_zones_number = 0

Tree <Zone > TZ <- InitializeTree(S)

while (current_zones_number < N)

TZ <- DefineStatisticalProperty(TZ, LT)

Z <- SelectZoneToSplit(TZ)

c_a <- SelectCuttingAxis(Z)

c_p <- SelectCuttingPosition(Z, c_a)

[Z1 , Z2] <- CutZone(Z, c_a , c_p)

TZ <- Add_Leafs (TZ, Z, Z1, Z2)

current_zones_number = current_zones_number +1

end

end procedure

Figure 3.23 The structure of the scene partitioning algorithm.

being SE(Zi) the squared error of the ith zone Zi computed as follows:

SE(Zi) =
∑
P∈Zi

||µi − P ||2 · f(P). (3.21)

Since the set of all possible partitions into L zones is too large for an ex-
haustive enumeration for its very high computational cost, being

1

L!

L∑
l=0

(−1)L−l
(
L
l

)
lL, (3.22)

an heuristic needs to be applied. In particular, we decided to use the following
heuristic, detailed in [109]. Each zone Zi is recursively split into two sub-zones
until the L final zones are obtained. This splitting strategy is based on the
definition of the following steps:

• The selection of the next cluster to be split;

• The selection of the cutting axis (i.e. the direction normal to each cutting
plane);

• The selection of the cutting position (i.e. the location of the cutting plane
along the cutting axis).

This bipartitioning strategy generates a tree-structured vector quantization,
as shown in Figure 3.24, where each leaf of the tree represents a zone of the
scene.

Cluster Selection: At each iteration, a single leaf of the tree-structured
vector quantization is selected and then split into two zones. Therefore, the
choice of the zone to be split plays a crucial role. The main idea is to find the
best compromise between the computational time required by this operation and
the final quantization error. As shown in [110], this objective can be reached by
minimizing TSE(ρ): for this reason, the algorithm splits the zone Z with the
maximum squared error, since its contribution to TSE(ρ) is the largest.

54 3. From Pixels to Behaviors

L=2

L=4

L=8

Figure 3.24 Example of a tree-structured vector quantization obtained recursively parti-
tioning the scene into L = 8 zones.

Cutting Axis: Given a zone Zi to be split, we need to determine the
location of the cutting plane. As in [109], we decide to split along the axis with
the greatest variance, namely the major axis.

Cutting Position: The optimal cutting position T ? defines the position
of the hyperplane along the cutting axis, which allows to subdivide the zone
Zi into two sub-zone Z1

i and Z2
i . In particular, we choose the value able to

maximize the decrease of the total squared error induced by the split:

SE(Zi)−
[
SE(Z1

i) + SE(Z2
i)] (3.23)

Let m and M be respectively the minimum and the maximum projections of Zi
on the cutting axis. It can be proved [109] that the maximization of Equation
3.23 can be reached by computing the optimal cutting position T ? as follows:

T ? = arg max
T∈[m,M]

[
δ(T)

1− δ(T)
||µi − µ1

i ||2
]
, (3.24)

where µi and µ1
i denote respectively the mean of Zi and Z1

i and δ(T) is defined

as δ(T) =
|Z1
i |
|Zi| . Note that if δ(T) = 1/2, the zone is divided into two sub-zones

with the same cardinality.
An example of the output of the proposed scene partitioning method is

provided in Figure 3.25: starting from the trajectory distribution in Figures
3.25a and 3.25b, we show the partition of the scene by using L = 20.

3.2.4 Trajectory representation

Once partitioned the scene into zones, a trajectory can be segmented into
l segments: T = {< S1, ..., Sl >}, where the j-th segment Sj is defined as the
sequence of points lying in the same zone Zk: Sj = {< Pa, ...Pb > |Pi ∈ Zk}.

3.2. Visual Behavior Analysis 55

(a)

0
50

10
0

15
0

20
0

25
0

30
0

35
0

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

102030405060

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

400

450

10

20

30

40

50

60

(b) (c)

Figure 3.25 Partition of the scene starting from the training set depicted in (a) represented
by the frequency map in (b). The quantization algorithm is applied with L=20 (c).

10

14

30 29

17
18 20

28

26

27

19

21

22

23
1

12 11

16 15 2

25

24

9
8

5

7

4

13

36

(a) (b) (c)

Figure 3.26 Partition of the scene with L=30 (a). Examples of two clusters: (b) composed
by 30-29-28-27-16-15-(2)-(21)-11-12- 20-18-17-14-10 and (c) by 30-29-28-27-(20)-16-15-2-23-
13. Symbols in brackets are the ones occurring only in a few trajectories.

The operator α(•) allows us to map the j-th segment into a symbol of our
alphabet, each symbol identifying the passing through a zone. It means that
the trajectory T can be defined as T = {< α(S1), ..., α(Sl) >}.

In order to clarify this concept and to emphasize the importance of the
chosen partitioning strategy, an example is shown in Figure 3.26. In particular,
two different clusters and the corresponding representations are reported.

Once obtained the information about the zones crossed in the scene, addi-
tional features are extracted in order to improve the reliability of the proposed
system. For each segment, information about the speed v and the shape s of the
trajectories are taken into account by means of the operator θ(•). The introduc-
tion of these information is very important, since it allows to distinguish those
trajectories which are similar only in terms of position: think, as an example,
to two vehicles crossing the highway with a different speed, namely 120 and 250
km/h. It is evident that the last behavior should be identified as an abnormal
one.

In particular, we use the Bernstein Polynomial Approximation to model
each trajectory into a zone; the polynomial degrees are bounded by cs = 3 and
cv = 2 for the polynomials representing respectively s and v. The operator θ(•)
is then computed as the vector composed by the obtained coefficient asi and avi :
θ(S) = [as1, ..., a

s
cs , a

v
1, ..., a

v
cv].

Thanks to this representation, each trajectory is encoded by T = {< α(S1), ..., α(Sl) >
,< θ(S1), ..., θ(Sl) >}.

Although the operator α(•) gives to our method the most important contri-
bution, the shape of the trajectory contributes to distinguish trajectories lying

56 3. From Pixels to Behaviors

in the same zones but with very different shapes. The definition of a proper
similarity value (Section 3.2.5) allows to weight both types of information.

3.2.5 Trajectory similarity

The definition of a similarity measure is a very complex task, since of course it
depends on the particular application field we are interested in. In this thesis
we are interested in evaluating the similarity between trajectories: intuitively,
two trajectories can be considered similar to each other if are close enough, have
the same direction and spend the same time inside the scene. We can note that
the representation introduced in Section 3.2.4 is able to take into account all the
required information. On the other hand, it is evident that this representation
results in a complex strategy to verify the similarity between trajectories.

A very promising technique often used for evaluating the similarity between
strings or time series in different contexts is the application of kernel-based
approaches. The main idea behind such approach is to map the data into a high
dimensional feature space, where each coordinate corresponds to one feature of
the data items. The main advantage lies in the fact that kernel functions enable
to operate in the feature space without ever computing the coordinates of the
data in that space, but rather by simply computing the inner products between
the images of all pairs of data in the feature space (the well known kernel
trick). This operation is in general computationally cheaper than the explicit
computation of the coordinates, making such approaches especially suited for
real-time applications.

In the last years a family of similarities based on dynamic programming
has been taken into account to construct kernels for evaluating the similarity
between strings or time series and has been successfully applied to different
applications fields, ranging from bioinformatics to text-processing (for instance
the Dynamic-Time-Warping [111] and the Smith Waterman algorithm [112]).
However, as stated in [113], the main problem lies in the fact that, although
these methods are able to compute a distance, it is not easy to translate them
into positive definite kernels and then define a metric, which is an important
requirement of kernel machines. In order to face these problems, we propose a
novel similarity metric based on kernels: the main advantage is that the problem
can be formulated in an implicit vector space on which statistical methods for
pattern analysis can be applied.

In particular, we construct our kernel starting from the Fast Global Align-
ment Kernel (FGAK) proposed in [114]. The main idea of global alignment
kernels is to measure the similarity between two sequences by summing up
scores obtained from local alignments with gaps of the sequences.

An alignment between two sequences x = {x1, ..., xn} and y = {y1, ..., ym}
of length n and m respectively is a pair of increasing integral vectors (π1, π2)
of length p < n + m, such that 1 = π1(1) ≤ ... ≤ π1(p) = n and 1 = π2(1) ≤
... ≤ π2(p) = m, with unary increments and no simultaneous repetitions. Let
A(n,m) be the set of all the possible alignments between two time series of
lengths n and m.

The global alignment kernel (GAK) is defined as:

kGA(x, y) =
∑

π∈A(n,m)

|π|∏
i=1

k(xπ1(i), yπ2(i)). (3.25)

3.2. Visual Behavior Analysis 57

It can be shown [114] that kGA is a positive definite kernel if k and k/(1 +
k) are positive definitive kernels. Furthermore, the GAK avoids the diagonal
dominance of the Gram matrix. Diagonal dominance is an undesirable property,
since it implies that all the points in a training set are nearly orthogonal to each
other in the corresponding feature space.

Starting from the representation of our trajectories, we need to define a
kernel k which is able to properly combine all the different features related to a
trajectory. In particular, we defined the following kernels:

Triangular Kernel: In order to speed up the computation of the kernel,
we use the triangular kernel for integers, also known as Toeplitz kernel [114]:

w(i, j) =

(
1− |i− j|

O

)
+

, (3.26)

where O is the order of the kernel and + refers to the fact that w(i, j) = 0 if
|i− j| ≥ O. The main idea behind the introduction of the triangular kernel is to
consider only a small but feasible subset of all the possible alignments induced
by the GAK. As a matter of fact, if the two time-series’ length differ by more
than O, their kernel value is equal to 0.

Dirac Kernel: In order to evaluate the similarity between two strings α(x)
and α(y) encoding the sequences of zones respectively traversed by trajectories
x and y, we use a dirac kernel δ(xi, yi), defined as:

δ(xi, yi) =

{
0 if α(xi) 6= α(yi)

1 if α(xi) = α(yi)
(3.27)

The Dirac Kernel is combined with the Toeplitz Kernel obtaining:

kZ(xi, yj , i, j) = w(i, j) · δ(xi, yj). (3.28)

Weighted Dirac Kernel: The main lack in using the traditional Dirac
Kernel lies in the fact that the proximity of two zones is not considered. In
order to overcome this limitation a weighted version of the dirac kernel which
takes into account adjacency relationships between zones is also exploited:

kWZ(xi, yj , i, j) = w(i, j) · δw(xi, yj). (3.29)

Zones are mapped into a non-oriented weighted graph G = (V,E,w), whose
vertices V identify zones and whose edges E identify zones’ adjacencies (Fig-
ure 3.27). Each edge is associated to a weight w(eij), defined as the number
of pixels separating zones i and j divided by the double length of the longest
zone’s border. The maximal value of w(ei,j) is thus equal to 1/2. Given this
graph encoding, the function δw(•, •) is then defined as follows:

δw(xi, yi) =

0 if α(xi) 6= α(yi) and exi,yi /∈ E
w(exi,yi) if exi,yi ∈ E
1 if α(xi) = α(yi)

(3.30)

Speed and Shape Kernel: The evaluation of the similarity related to
the velocity and to the shape inside a zone is based on the following kernel:
kSS(xi, yi) = e−φσ(θ(xi),θ(yi)), where:

φσ(θ(xi), θ(yi)) =
1

2σ2
||θ(xi)− θ(yi)||2 + log

(
2− e−

||θ(xi)−θ(yi)||
2

2σ2

)
. (3.31)

58 3. From Pixels to Behaviors

A

B C

D

8
5

2

4

(a)

A

B C

D

8/16
2/16

5/16

4/16

(b)

Figure 3.27 A scene and the relative graph based representation. Each zone is represented
by a vertex and each border between two zones is represented by an edge. The weight of each
edge is determined by the length of the corresponding border.

This last kernel is used instead of the Gaussian one in order to guarantee
that kGA is positive definite (p.d.) [114]. The combination of these two last
kernels is defined as:

k(W)ZSS(xi, yj , i, j) = k(W)Z(xi, yj , i, j) • kSS(xi, yi). (3.32)

Starting from Equation 3.25, products of any of the 4 kernels (kZ , kWZ , kZSS
and kWZSS) can be considered to obtain the final kernel kGA.

Finally, a normalization is performed in order to normalize kernel’s values
in the interval [0, 1]. Therefore, the final normalized kernel kNGA is:

kNGA(xi, yj , i, j) =
kGA(xi, yj , i, j)√

kGA(xi, xi, i, i) ∗ kGA(yj , yj , j, j)
. (3.33)

It is worth pointing out that the particular combination of kernels to be cho-
sen depends on the general aim of the application we are interested in; suppose,
for instance, that our objective is to identify the vehicles crossing the highway
in the wrong side: in this case, we may compare the trajectory to be tested with
some prototypes encoding normal trajectories by only considering a similarity
based on Dirac Kernel (or its weighted version); on the other hand, the Speed
and Shape Kernel is sufficient alone if we are only interested in verifying if a
vehicles is crossing a street with a very high speed, if compared with the usual
speed of vehicles in that place.

3.2.6 Clustering algorithm

An essential step of the proposed approach is the understanding of typical pat-
terns inside a scene. As a matter of fact, once extracted some prototypes of nor-
mal trajectories, abnormal trajectories can be easily found as those not enough
similar to the extracted prototypes. The learning of normal prototypes is per-
formed by using a novel kernelized clustering algorithm, based on the splitting
methods presented in Subsection 3.2.3: the cluster with the maximum squared
error is selected and then split into two different clusters along the major axis.
However, the main novelty refers to the kernelization of the considered algo-
rithm.

Thanks to the chosen heuristics, the partitioning of the space into N clusters
is performed by a sequence of N − 1 iterations. It is an important and not
negligible feature, since a lot of recently proposed clustering algorithms [70] are
very expensive from a computational point of view, as we will show in Section
5.2.

3.2. Visual Behavior Analysis 59

(a) (b) (d)

C

α

(c)

t* Ct

C\Ct

Figure 3.28 Simple example of the proposed clustering algorithm: once selected the cluster
C (a), the cutting axis and the cutting position are computed ((b) and (c) respectively) and
the new clusters Ct and (C\Ct) are obtained.

Given the cluster R containing all trajectories belonging to the training set
(i.e. the root of the tree), let us consider an arbitrary order on R = (T1, ..., T|R|)

and a generic cluster C ⊂ R. This cluster is encoded by the vector 1C of R|R|,
where 1C(i) is equal to 1 if i ∈ C and 0 otherwise. Finally, K is the Gram
Matrix of the training set, defined by Kij = (kNGA(si, sj , i, j)).

As mentioned in Section 3.2.3, our clustering algorithm builds a sequence of
partitions ρ1, . . . , ρN of C, with ρ1 = {R} and ρN encoding a partition of R into
N clusters. The following heuristics have been selected for each step; a simple
example is shown in Figure 3.28.

Cluster Selection: For each iteration k, the cluster C of ρk with the
maximum squared error SE(C) is selected:

SE(C) =
∑
s∈C
||ψs − µ||2 = |C| − 1

|C|
1tCK1C , (3.34)

where ψs is the projection of the string s in the Hilbert space implicitly defined
by kNGA. Equation 3.34 may be evaluated in O(|C|2), with |C| denoting the
cardinality of C (Appendix A).

Cutting Axis: Once selected the cluster C, we need to chose a cutting
plane in order to partition the cluster C into two clusters Ct and (C\Ct); the
optimum cutting plane aims at minimizing SE(Ct) + SE(C\Ct).

A traditional heuristic to minimize SE(Ct)+SE(C\Ct) consists in splitting
C along its axis with the greatest variance, i.e. the major axis (Figure 3.28b).
This last axis can be obtained by means of a Kernel PCA [115]. Let be KC

the Gram Matrix associated to the cluster C. It is first diagonalized and the
centered matrix K̃C is obtained:

K̃C = (KC − ΓC ·KC −KC · ΓC + ΓC ·K · ΓC) (3.35)

with ΓC being a |C| by |C| matrix for which each element takes value 1/|C|.
The eigenvector α of K̃C associated to the largest eigenvalue λ is then com-

puted . Such a vector satisfies: λα = K̃Cα is then computed. For each trajec-
tory s, the projection of ψs on the major axis ν of C is obtained by:

< ν,ψs >=

|C|∑
i=1

αik(si, s). (3.36)

Cutting Position: Thanks to the computed projections, trajectories be-
longing to C are ordered along the major axis and the computation of the

60 3. From Pixels to Behaviors

optimum cutting position T ? can be done in the range [m,M], being m and M
respectively the minimal and the maximal projection of C on the major axis by
means of Equation 3.36 (Figure 3.28c).

If µ and µt denote respectively the means of C and Ct, it can be shown
(Appendix A) that ||µ− µt||2 can be computed as follows:

||µ− µt||2 =
1

|C|2
1tCK1C −

2

|Ct||C|
1tCK1Ct +

1

|Ct|2
1tCtK1Ct . (3.37)

Note that the number of points to be processed, contained in the range
[m,M], is equal to |C|, which corresponds to the number of trajectories pro-
jected on the cutting axis. Since it requires multiple matrix multiplications, it
results in a high computational cost. Let p denotes the next trajectory to add
to Ct in order to obtain Ct+1 (Ct+1 = Ct ∪ {p}). It can be shown (Appendix
A) that ||µ − µt+1||2 can be efficiently updated from ||µ − µt||2. In particular,
the first term 1

|C|2 1CK1C is constant since it does not depend on the partition

induced by T . Let be 1Ct+1 = 1Ct + δp, being δp the vector of zeros containing
a single 1 at position p. The second term 1CK1Ct+1

of Equation 3.37 may be
defined iteratively as follows:

1CK1Ct+1 = 1CK1Ct +
∑
i∈C

k(i, p). (3.38)

Note that the second term of Equation 3.38 may be precomputed. Equation 3.38
is thus evaluated in constant time. Finally, the last term 1tCt+1

K1Ct+1 becomes:

1tCt+1
K1Ct+1 = 1tCtK1Ct + 2

∑
i∈Ct

k(i, p) + k(p, p). (3.39)

Using Equations 3.38 and 3.39, we significantly reduce the computational
cost of our algorithm: as a matter of fact, the evaluation of ‖µ − µt+1‖2 only
requires to compute, for each iteration, values

∑
i∈Ct k(i, p) and k(p, p) this last

term being equal to 1 since we use a normalized kernel.
Stop Condition: It should be clear that each obtained cluster encodes a

prototype of normal trajectories: it implies that in real environments the number
of different kinds of typical behaviors (and then the number of clusters) can not
be fixed a priori, and then a more sophisticated strategy needs to be defined.
In particular the following considerations have been considered: on the one
hand, two clusters need to encode different behaviors (and then have to contain
different trajectories). On the other hand, the risk to have clusters with a very
low number of trajectories should be avoided. For these reasons, we choose to
use as stop condition a lower bound on the mean squared error (MSE) made
when assimilating one trajectory to its cluster: MSE(Ct) = SE(Ct)/|Ct|. In
this way, the system does not need knowledge of the human operator about the
environment, but is able to determine the optimum number of clusters starting
from the distribution of trajectories.

The output of the proposed clustering algorithm on the dataset shown in
Figure 3.25a is depicted in Figure 3.29.

3.2.6.1 Complexity analysis

In this section we summarize the complexity analysis of the proposed clustering
algorithm. As for the cluster selection step, the algorithm needs to find the

3.2. Visual Behavior Analysis 61

. . .

Figure 3.29 A part of the tree obtained by applying the proposed clustering method over
the MIT Trajectory Dataset. The color of each trajectory highlights its direction: it starts in
green and progressively turns its color into red.

cluster with the maximum squared error, so resulting (in the worst case) in a
complexity of O(N/2), being N the number of clusters built until the current
iteration. As a matter of fact, the squared error of a new cluster Ct can be simply
computed during its creation without additional costs: in particular the second
terms (1tCtK1Ct), which is the most expensive one, is evaluated during the
computation of the cutting position, as shown in Equation 3.37. On the other
hand, the squared error of (C\Ct) can be simply computed as the difference
between SE(C) and SE(Ct).

As for the cutting axis computation, it mainly requires two different steps:
the computation of the centered matrix and the computation of the first eigen-
vector. In both cases, the operations can be evaluated in O(|C|2.376) using the
Coppersmith Winograd algorithm [116]. Furthermore, the sort of trajectories’
projections on the cutting axis is performed using an Heapsort algorithm, which
requires O(|C| log |C|) in the worst case.

Finally, the computation of the cutting position only requires O
(
|C|·(|C|+1)

2

)
:

in fact, we need to compute, for each trajectory p of C, the sum of similarities
between p and all trajectories belonging to Ct

(∑
i∈Ct k(i, p))

)
. Since the size

of Ct increases by 1 at each iteration, the complexity of this step is equal to the
sum of integers up to |C|.

In other words, each iteration of the algorithm can be performed in

O(N) +O(|C|2.376) +O(|C| log |C|) +O

(
|C| · (|C|+ 1))

2

)
= O(|C|2.376). (3.40)

3.2.7 Conclusion

In this section I analyzed the algorithm proposed in this thesis for learning
typical trajectory patterns inside a scene by using a novel string-kernel based
approach: each trajectory is represented as a string by combining different ty-
pologies of information concerning position, speed and shape; the similarity

62 3. From Pixels to Behaviors

between trajectories is evaluated by defining a novel string kernel metric, which
is used by the clustering algorithm proposed in this thesis. Each cluster encodes
a kind of prototype of normal trajectories.

The tree obtained by the proposed clustering algorithm will be used for a
double aim: on the one hand, it allows to recover abnormal trajectories if not
enough similar to the clusters obtained during the learning phase (see Section
3.4.1). On the other hand, the tree is used for solving into a very efficient way
the queries by sketch submitted by the human operator; in fact, the tree allows
to find the most k similar trajectories to the one hand drawn by the user without
searching in the entire dataset (see Section 3.4.2).

A deep experimentation has been conducted over three standard datasets;
as it will be shown in Section 5.2, the obtained results, compared with state of
the art methods, confirm the robustness and the effectiveness of the proposed
approach, both in terms of accuracy and computational cost.

3.3 Indexing and Storing Engine

Once extracted, the raw trajectories need to be properly indexed and stored in
order to be efficiently retrieved.

The main contribution of the proposed approach is to index 3D trajectories
by turning the 3D representations into a set of 2D schemes, so as to make it
possible the use of well established and optimized available 2D indexing solu-
tions. In particular, the proposed solution is optimized to solve Range Spatial
Queries assumed to be Dynamic (DRSQs), i.e. are formulated in any their part
at query time, so allowing the user the important potentiality of extracting from
the database non only predefined information but the data he is interest in at
any moment of system’s use. The contribution of the method also includes the
definition of different typologies of 3D queries, so general to hopefully cover
most of the applicative needs and that can be formulated as a combination of
two or more DRSQs. Finally, we describe how the retrieving efficiency can be
significantly increased using a properly designed segmentation algorithm aimed
at improving the selectivity of the proposed indexing strategy.

In this section I will focus on the storing engine: after a brief introduc-
tion over spatial databases in Subsection 3.3.1, some preliminary concepts will
be provided in Subsection 3.3.2. The indexing engine and the segmentation
strategy will be detailed respectively in Subsection 3.3.3 and 3.3.4. Finally, the
physical representation scheme designed for this purpose will be discussed in
Subsection 3.3.5.

More information on the retrieval engine devoted to the interactions with
the user will be discussed in Section 3.4, and in particular in Subsection 3.4.3.

3.3.1 Spatial Databases

A spatial database defines special data types for geometric objects and allows
to store geometric data in regular database tables. In particular, the following
three basic geometries, shown in Figure 3.30, can be defined: points, linestrings
and polygons.

The main advantage in the use of such databases for managing the above
defined spatial entities lies in the fact that special functions and indexes for

3.3. Indexing and Storing Engine 63

querying and manipulating that data using something like Structured Query
Language (SQL) are provided [83]. Furthermore, such functions are optimized
for answering spatial queries: how far two points differ, whether points fall
within a spatial are of interest and so on. A few examples are shown in Figure
3.31: for instance, function Overlaps verifies if two given polygons share space
without being completely contained by each other, while function Crosses ver-
ifies if geometries (for instance a polygon and a linestring) have some, but not
all, interior points in common.

On the other hand, the most efficient functions available in spatial databases
are based on Minimum Bounding Rectangles (MBRs), which play a critical role
when two geometries interact. As a matter of fact, it is possible to efficiently
verify the interactions between geometries by checking the interactions between
the corresponding bounding boxes. It is worth pointing out that this kind of
comparison is made by taking advantage on the indices and then without the
need of extracting geometries from the database, as in the cases shown in Figure
3.31.

On the other hand, it is clear that the geometries whose MBRs overlap do
not necessarily overlap. In order to clarify this concept, an example is shown in
Figure 3.32: on the left two geometries are shown; on the right the corresponding
MBRs are depicted. We can note that, although the geometries do not intersect,
their MBR do it. The reason why this concept is highlighted will be clarified in
the following.

Any details about spatial datasets are out of the scope of this thesis. Our aim
in this section is to highlight the big advantages in the use of such strategies,
in order to better justify the proposed method. The reader can refer to the
specialized literature for more details [83].

Figure 3.30 Basic geometries of a spatial database: point, linestring and polygon.

Within, Contains Overlaps Disjoint Crosses

Figure 3.31 Some of the basic spatial operations allowed by spatial databases.

3.3.2 Preliminaries

In Section 3.2.1 (Equation 3.17) I have shown that a trajectory can be seen as a
sequence of three dimensional points. According to the line-segment model, we
can further assume the trajectory as approximated by a polyline, each segment
being the linear interpolant between two positions sampled at consecutive time
instants.

64 3. From Pixels to Behaviors

Geometries Corresponding MBRs

Figure 3.32 The geometries do not intersect, while the corresponding MBRs do it.

x
max

x

x
min

y
min

y

y
max

t

t
s

t
e

Figure 3.33 Geometric interpretation of a DRSQ.

Once defined the representation of trajectories, we need to exploit, from a
geometric point of view, the proposed range spatial query (DRSQ). Its aim
is to detect all those trajectories passing through a given spatial area A in a
given time interval [ts; te]; the area A, assumed to be rectangular, can be fully
identified by two points, respectively the top-left and the bottom-right, in the
xy plane: P xym = (xmin; ymin) and P xyM = (xmax; ymax). Starting from this
consideration, each DRSQ can be thus associated to a query box Q:

Q = {(xmin; ymin; ts); (xmax; ymax; te)}. (3.41)

In other words, the temporal dimension extends the rectangular area A in the
3D space (see Figure 3.33).

In order to solve a DRSQ, we have to select all the trajectories having at least
one segment falling in the query box Q; for the generic trajectory T k, it means
to iteratively check this condition for each segment of T k, being each segment
identified by two consecutive points

(
(xki , y

k
i , t

k
i), (xki+1, y

k
i+1, t

k
i+1)

)
, and to stop

the process as soon as a segment intersecting the query box Q is detected. The
worst case arises when the trajectory does not intersect the query box: in this
case, all the trajectory’s segments have to be processed before asserting that

3.3. Indexing and Storing Engine 65

A

B

xe xs

ye

ys

C

D

xe xs

ye

ys

E

F

G

H
xe xs

ye

ys

I

L

(a) (b) (c)

Figure 3.34 The Cohen Sutherland clipping algorithm at work: in (a) and (b) the segment
can be trivially analyzed, while in (c) a further processing is needed.

the trajectory does not intersect the query box, resulting in a large amount of
checks to do.

In turn, the problem of determining if a segment intersects Q can be solved
using the method proposed by Cohen and Sutherland for identifying that portion
of a picture lying inside a given region, namely the clipping algorithms [117]; for
the sake of completeness, let’s briefly summarize their method into a 2D space.
The geometric plane is subdivided into nine areas by extending the edges of
the query box: if at least one of the segment endpoints lies inside the box, the
intersection is trivially verified (see segment AB in Figure 3.34a); if, on the
contrary, both the endpoints lie outside the query box, we check the position
of the endpoints with respect to the query area: in some cases the intersection
can be still trivially verified, as for CD and EF in Figure 3.34b, otherwise the
segment is split at its intersection points and each obtained sub-segment is in
turn inspected (as in the case of the segment GH and IL in Figure 3.34c). This
clipping algorithm can be easily extended for dealing with 3D trajectories by
considering 27 spatial regions, rather than 9. Although the aforementioned
algorithm also provides the sub-segment lying inside the box, for simplicity in
this discussion from now on we will indicate with the term clipping the boolean
operation aimed at verifying if a segment intersects a box.

Note that the use of this kind of brute-force approach to solve a DRSQ is a
very expensive operation, since it requires to preliminary extract each trajectory
from the database and successively verify if at least one segment of each trajec-
tory intersects Q by applying the aforementioned strategies. In real applications
the number of trajectories is too high to apply a similar approach, and more ef-
ficient approaches, coming from the spatial database field, are thus mandatory:
it implies that suitable indexing strategies are necessary to reduce the number of
trajectories to be extracted and clipped. In the following sections the proposed
solution will be detailed; it is mainly based on the assumption that the actual
3D problem can be solved in terms of three 2D problems, so that potentialities
of well established bi-dimensional spatial indexes can be fully exploited.

Before leaving this section it is important to introduce the following symbols
that we will use in the rest of this thesis. Given a query box Q, Q|xy (Q|xt,
Q|yt) represents the projection of Q on the xy (respectively xt and yt) coordinate
plane. Furthermore, given a trajectory T k and its 3D MBR Bk, Bk|xy (Bk|xt,
Bk|yt) is the projection of Bk on the xy (respectively xt and yt) coordinate

66 3. From Pixels to Behaviors

plane.

3.3.3 Indexing Engine

Before entering into details of the proposed approach, it is worth observing that
if a trajectory T k intersects a query box Q, then Bk will intersect Q as well:

T k ∩Q 6= ∅ ⇒ Bk ∩Q 6= ∅ (3.42)

xy

t

x

y

x

t

y

t

(a)

xy

t

x

y

x

t

y

t

(b)

xy

t

x

y

x

t

y

t

(c)

xy

t

x

y

x

t

y

t

(d)

Figure 3.35 Each row shows a trajectory and a query box, together with the corresponding
projections on the 2D planes. In (a) the trajectory intersect the query box; in (b) it is
completely contained in the query box; in (c) the trajectories does not intersect the query
box although all the 2D projections do it; in (d) the trajectory does not intersect the query
box.

Equation 3.42 represents a necessary but not sufficient condition, as the opposite
is clearly not true. It means that if the right part of the equation is satisfied, we
can not assume that the trajectory intersects the query box. On the contrary,
if the right part is not verified, we can confirm that the trajectory does not
intersect the query box (see Figure 3.35(d)). This is a very important and not
negligible consideration, since it allows to diminish the computational burden of
the extraction of trajectories from the database, assuming the set of trajectories
satisfying the right part of Equation 3.42 as the candidate set of trajectories to
be extracted and clipped.

3.3. Indexing and Storing Engine 67

Another point to be considered is that the intersection between two boxes
(the trajectory’ MBR and the query box) can be easily verified using, when
available, 3D spatial indexes, as briefly explained in Section 3.3.1.

Furthermore, it is possible to observe that if and only if Bk and Q inter-
sect (in the 3D space), all their respective projections on the coordinate planes
intersect too (see Figure 3.35(a)):

Bk ∩Q 6= ∅ ⇔

 Bk|xy ∩Q|xy 6= ∅
Bk|xt ∩Q|xt 6= ∅
Bk|yt ∩Q|yt 6= ∅

 (3.43)

Unlike the previous condition, this is a necessary and sufficient one. This is a
very important feature, since Equation 3.43 allows to formalize the algorithm to
solve a DRSQ using well established 2D indexes. In fact, assuming that for each
trajectory T k, we store and index Bk|xy, Bk|xt, and Bk|yt, we can efficiently
find, using one of the well established 2D indexes, three sets of trajectories Γxy,
Γxt and Γyt defined as:

Γxy = {T : B|xy ∩Q|xy 6= ∅} (3.44)

Γxt = {T : B|xt ∩Q|xt 6= ∅} (3.45)

Γyt = {T : B|yt ∩Q|yt 6= ∅}, (3.46)

Note that the generic set Γab contains all the trajectories whose projections
on the plane ab intersect the projection of the query box on the same plane.
It is evident that the same trajectory can be contained in more than one set.
Finally, the set Θ of the trajectories candidate to be clipped in the 3D space
can be obtained by identifying all those trajectories contained in all the above
defined sets. Θ is therefore defined as:

Θ = Γxy ∩ Γxt ∩ Γyt. (3.47)

In this way, we have turned a 3D problem (the one of establishing if T k

intersects Q) into three 2D problems, namely to determine if the projection of
Bk intersects the projection of Q on the same plane, for each of the three planes
xy, xt and yt.

It is important to underline that, although we are interesting in solving a 3D
problem in this particular domain, Equations 3.42 and 3.43 can be easily gener-
alized. This is a very interesting and useful result, since it makes the proposed
method general and potentially able to deal with any kind of n-dimensional
data.

The set of candidate trajectories to be clipped can be further reduced thanks
to the following intuition: if the bounding box trajectory is completely contained
in the query box, the condition expressed in Equation 3.42 becomes sufficient
(see Figure 3.35(b)):

Bk ⊂ Q⇒ T k ∩Q 6= ∅. (3.48)

Furthermore, as for the condition expressed in Equation 3.43, the problem can be
easily re-conducted and solved into the bi-dimensional space: Bk is completely
contained in Q in the 3D space if and only if all their respective projections on
the coordinate planes are contained too:

Bk ⊂ Q⇔

 Bk|xy ⊂ Q|xy
Bk|xt ⊂ Q|xt
Bk|yt ⊂ Q|yt

 (3.49)

68 3. From Pixels to Behaviors

Consequently, we can state that: Bk|xy ⊂ Q|xy
Bk|xt ⊂ Q|xt
Bk|yt ⊂ Q|yt

⇒ T k ∩Q 6= ∅. (3.50)

The aforementioned consideration allows to select all those trajectories which
surely satisfy the query, without the need to be clipped, and then without the
need to be extracted from the database.

According to the considerations stated until this moment and independently
on how the projection of trajectories are represented and indexed in the database,
the selection of the trajectories intersecting a given query box can be carried
out by three distinct successive steps, as shown in Figure 4.1:

• Min-selection: the determination of all the trajectories T i contained into
the database D, whose bounding box Bi is completely contained inside
the query box Q:

PS =
{
T i ∈ D|Bi ⊂ Q

}
. (3.51)

It is worth noting that trajectories satisfying Equation 3.50 can be ob-
tained by only working on their bounding box and checking that the latter
is included in Q; the computational burden deriving from the need of ex-
tracting the trajectories from the database and successively checking that
each its segment is included in Q can be avoided, making this phase very
effective from a computational point of view.

• Max-selection: the determination of all the trajectories T i, not yet selected
in the previous step, whose bounding box projections on the coordinate
axes intersect the query box Q:

MS =
{
T i ∈ D/PS|Bi ∩Q 6= ∅

}
. (3.52)

This phase, as the previous one, is computationally cheap as it works
by using the trajectories by means of their representation in terms of
bounding box. Unfortunately, the max-selection, as clarified by Equation
3.42, selects not only trajectories which satisfy the query box, but also
a set of other trajectories (from now on denoted as false positive) falling
outside the query box but having the projections Bk|xy, Bk|xt and Bk|yt
overlapped with the corresponding query box projections Q|xy, Q|xt and
Q|yt.

• Clipping : the selection among the trajectories selected in the previous
step of all those trajectories really intersecting the query box (since the
condition about the bounding boxes is only a necessary condition):

C =
{
T i ∈MS|T i ∩Q 6= ∅

}
. (3.53)

This is the most expensive step, since it necessarily requires the extraction
of each trajectory T i from the dataset and the iteratively check of each
segment.

3.3. Indexing and Storing Engine 69

The final set of trajectories T satisfying our query will be composed both by
the trajectories belonging to PS, selected during the min-selection step without
the need to be extracted, and the trajectories C, selected by means of the max
selection and the clipping steps:

T = PS ∪ C. (3.54)

Min - Selection

Max - Selection

Clipping

Output

D

D/PS

MS

C

T

PS

Figure 3.36 An overview of the proposed method. Note that the Min and the Max Selection
Steps work directly on the indexes.

It is important to underline that a 3D indexing has been recently imple-
mented in some of the available spatial databases (like, for instance, Postgis),
so allowing to verify the intersection between two boxes, namely the query box
and the bounding box trajectory, directly into the 3D space (Bk ∩ Q 6= ∅),
without the need to decompose the problem into three bi-dimensional spaces.
However, on the other side, no solution has been proposed for verifying if a 3D
box is completely within another one (Bk ⊂ Q). It means that an efficient so-
lution can be reached only by decomposing the problem into simpler problems
and by using off-the-shelf 2D operators.

3.3.4 Trajectory Representation Scheme

It is clear at this point that the retrieval performance of the proposed approach
strongly depends on the capability of the system to reduce the number of trajec-
tories to be clipped, and then to increase the number of trajectories satisfying
Equations 3.43 and 3.51, namely the selectivity of the indexes. Furthermore,
it is simple to imagine that the longer are the trajectories in the database the

70 3. From Pixels to Behaviors

higher will be the size of the corresponding bounding boxes. The rationale of
the proposed approach is to preliminarly segment each trajectory into smaller
pieces, so as that, in the whole, the min-selection, max-selection and clipping
steps are computationally more convenient.

The segmentation algorithm recursively segments a trajectory into smaller
units (called trajectory units); the generic trajectory unit of the trajectory T k is
identified by the ordinal number of its starting point and end point respectively,
say r and s, and denoted with T kr,s.

Let us now analyze how the algorithms proceeds: it starts from a trajectory
unit (note that at the beginning an input trajectory T k can be seen as a tra-
jectory unit and denoted with T k0,n). Each trajectory unit is then recursively
split until any trajectory units has a length less than a given fixed threshold.
Consideration about the determination of the optimal value of the threshold
will be presented in the following.

A greedy criterion, aiming to maximize the selectivity of the indices, has been
considered to split a generic trajectory unit; the selectivity can be informally
defined as the suitability of the indexing method to select only those trajectories
really satisfying the query, and then to reduce the number of false positive.

The selectivity of the indexing method can be achieved by splitting the
input trajectory unit T kr,s on the axis having the highest relative projection,
as shown in Figure 3.37; to this aim we preliminarily calculate its bounding
box projections Bkr,s|x, Bkr,s|y and Bkr,s|t on the three axes normalized by the
maximum relative size. To this concern, we point out that each axis is limited
to a range of values: ||x|| and ||y|| are the physical coordinates of the images
while ||t|| refers to the width of the time period.

Let be:

Ox =
||Bkr,s|x||
||x||

(3.55)

Oy =
||Bkr,s|y||
||y||

(3.56)

Ot =
||Bkr,s|t||
||t||

. (3.57)

Our algorithm selects the split axis ξ as the one maximizing the corresponding
Ok, with k = {x, y, t}:

ξ = arg max
k

(Ok) (3.58)

Once determined the split axis, the split value is selected as the average value
of the projection of the trajectory unit on ξ;

ξ∗ =
maxξ(T

k
r,s|ξ)−minξ(T kr,s|ξ)

2
(3.59)

The obtained value ξ in a 3D plane allows to obtain the plane ξ = ξ∗ (from now
on called segmenting plane) that intersects the considered input trajectory unit
into at least one point; generally the number of intersections may be higher,
so making it possible its split into several pieces, as highlighted in Figure 3.37,
each one representing a smaller split unit.

The segmenting plane divides the 3D space into two half-3D planes: the
trajectory is segmented by this plane and some of its pieces will fall into one

3.3. Indexing and Storing Engine 71

0 20 40 60 80 100 120 140

0
10

20
30

40
50

0

10

20

30

xy

t

0 20 40 60 80 100 120 140

0
10

20
30

40
50

0

10

20

30

xy

t

(a) (b)

0 20 40 60 80 100 120 140
0

10

20

30

40

50

x

y

0 20 40 60 80 100 120 140
0

10

20

30

x

t

0 10 20 30 40 50
0

10

20

30

y

t

(c)

0 20 40 60 80 100 120 140
0

10

20

30

40

50

x

y

0 20 40 60 80 100 120 140
0

10

20

30

x

t

0 10 20 30 40 50
0

10

20

30

y

t

(d)

0 20 40 60 80 100 120 140

0
10

20
30

40
50

0

10

20

30

xy

t

(e)

Figure 3.37 An overview of the segmentation algorithm.

72 3. From Pixels to Behaviors

procedure SplitTrajectory(Trajectory T)
for each Unit U in Trajectory T

if(StopConditionsAreNotReached(U))
ξ <- MaximumCoordinateAxis(Ox, Oy , Ot)
ξ∗ <- ComputeSplitValue(ξ, U)
P <- IntersectionPoints(U,ξ, ξ∗)
List <U> <- Split(U, P)
List <U> <- UpdateSegmentedTrajectory(T, List <U>)

end
end

end procedure

Figure 3.38 The structure of the segmentation algorithm.

of these two half-plane and other pieces on the other. Each piece now becomes
a different trajectory unit, ready to be split again if the stop criterion of the
Algorithm 3.38 is not satisfied.

It is worth pointing out that an intersection with the trajectory unit may
happen not precisely at the junction of two successive segments. As it is im-
portant to remain still unchanged the original segments composing a trajectory,
it is necessary in these cases to choose the junction closest to the intersection
with the the plane ξ = ξ∗: so, instead to introduce a new point (the one relative
to the intersection), the segmentation algorithm, by means of the procedure
Intersection points, chooses for each segment intersecting the segmenting
plane the closest point. Figure 3.37 illustrates this step: in c) are reported the
points of the intersections and in d) the chosen ones.

The algorithm will end as soon as a stop condition, evaluated by the pro-
cedure Stop Conditions Are Not Reached, is verified. In particular, for each
segment the areas occupied by the bounding box projection over all the planes
are computed (respectively A(Bk|xy), A(Bk|xt) and A(Bk|yt)) and the obtained
values are normalized over the corresponding projections of the entire volume
(A(V |xy), A(V |xt) and A(V |yt)). Note that the volume is computed by con-
sidering the maximum extent of the trajectories contained in the dataset. If at
least one of the computed ratios is lower than a given threshold (AreaMin),
then the procedure is stopped.

3.3.5 Physical Representation Scheme

In the following, a detailed description of the physical schema of the database
will be provided. For each trajectory, an instance in the table Object, depicted
in Figure 5.2, is associated. This table contains all the additional information
associated to the appearance of an object: its class (person, animal, vehicle and
so on) and its dominant color. Both these information are extracted during the
tracking phase. It is worth pointing out that any other useful and available
information extracted by the tracking algorithm can be very easily stored in the
table Object : for instance, the plate of the vehicle or its brand if available and
so on.

According to the indexing method that we proposed, we need to store, for
each acquired trajectory T k, all its component units: a generic unit T kr,s is rep-
resented by means of two typologies of information: the sequence of consecutive
points and the bounding boxes on the coordinate planes Bkr,s|xy, Bkr,s|xt and

Bkr,s|yt.
These spatial objects are represented by exploiting the geometrical entities,

3.3. Indexing and Storing Engine 73

Object	

	 	 	 	 object_ID	
	 	 	 	 object_Class	
	 	 	 	 object_Appearance	
	

Segment	
	 	 	 	 trajectory_ID	
	 	 	 	 segment_ID	
	 	 	 	 3D_points	
	

Projec/ons	
	 	 	 	 trajectory_ID	
	 	 	 	 segment_ID	
	 	 	 	 B_xy	
	 	 	 	 B_xt	
	 	 	 	 B_yt	
	

1 n 1 1

Figure 3.39 The physical schema of the database.

efficiently stored in PostGIS through a Well-known binary (WKB) represen-
tation [118]; it is a markup language standardized from the Open Geospatial
Consortium (OGC) in the ISO/IEC 13249-3:2011 standard (Information tech-
nology – Database languages – SQL multimedia and application packages – Part
3: Spatial). WKB, based on a binary format, permits geography data to be ex-
changed between a client application and an SQL database in a very efficient
way. In particular, for our purposes we consider two kind of geometries: the
ST LineString is a path between locations which takes the form of an ordered
sequence of two or more points; on the contrary, the ST Polygon is a represen-
tation of an area. The outer boundary of the polygon is represented by a ring,
which is a ST LineString closed and simple. Since our polygon is a box, it can
be univocally identified through its bottom-right and top-left points.

These information are stored in the tables Segment and Projections: in par-
ticular, the former contains the sequence of points 3d-points, stored as a three-
dimensional ST LineString. The latter contains the three projections Bkr,s|xy,

Bkr,s|xt and Bkr,s|yt stored as a PostGis ST Polygon.

During the operating phase, the human operator defines a new query box
Q: three new ST Polygons (Q xy, Q xt and Q yt) are initialized, one for each
coordinate plane.

The preselection step uses of the PostGis operator ’@ ’, which takes advan-
tage on the spatial indices to verify if a box is completely within another one.
A simplified example of the considered query is shown in the following:

SELECT Projections.trajectory_ID ,
Projections.segment_ID

FROM Projections p
WHERE p.B_{xy} @ Q_{xy} and

p.B_{xt} @ Q_{xt} and
p.B_{yt} @ Q_{yt};

During the max selection step, the PostGis ’&&’ operator is used in order
to efficiently verify if a box intersects another one.

A very simple example for the max-selection step, without considering any
kind of information about the vehicle appearance, is shown in the following:

SELECT Projections.trajectory_ID ,
Projections.segment_ID

FROM Projections p
WHERE

Q_{xy} && p.B_{xy} and
Q_{xt} && p.B_{xt} and
Q_{yt} && p.B_{yt};

74 3. From Pixels to Behaviors

3.3.6 Conclusion

In this section the approach proposed in this thesis for storing and retriev-
ing moving objects trajectories has been detailed. Starting from geometrical
intuitions, it has been shown how to decompose the n-dimensional problem
into a set of (n-1)-dimensional ones, and in particular how to decompose the
three-dimensional problem into a set of bi-dimensional ones for managing three-
dimensional trajectories data. This consideration has allowed to profitably use
existing spatial databases, whit their well established bi-dimensional indexes,
in order to significantly improve the retrieving performance. As I will show
in Section 5.3, the proposed method has been tested both over real and syn-
thetic datasets and its performance, compared with a state-of-the art approach,
confirm its effectiveness.

3.4 Interactions with the user

This section details the different typologies of interactions allowed to the user:

• Anomaly detection: as soon as an abnormal behavior occurs in the
scene, the human operator is alerted. This interaction is made possible
thanks to a previous learning phase, introduced in Section 3.2, which
allows to learn some models corresponding to normal behaviors. More
details will be provided in Subsection 3.4.1.

• Query by sketch: the human operator is allowed to draw a trajectory
and to extract from a given set of trajectories the k most similar ones. A
detailed description of the algorithm defined for this purpose in detailed
in Subsection 3.4.2.

• Spatio Temporal Queries: as in the previous case, the human operator
can select at query time the queries parameter; in particular, spatial and
temporal information can be defined by the operator. In Subsection 3.4.3
this kind of interaction will be described.

3.4.1 Anomaly Detection

Once extracted the prototypes of normal trajectories according to the algorithm
defined in Section 3.2, the control system can start the operating phase, devoted
to identify abnormal behaviors. In particular the operating phase is composed
by the following steps:

• Trajectory preprocessing: the extracted trajectory is represented as a
sequence of symbols according to the representation strategy detailed in
Subsection 3.2.4.

• Classification: the distance between a trajectory ts and all the cluster’s
centroids C1, ...CN obtained during the learning phase is evaluated. The
cluster with the closest mean from ts is selected as the potential typical
trajectory followed by ts.

• Decision: An additional test is performed in order to determine if ts
belongs to this closest cluster. According to this last test, ts is classified

3.4. Interactions with the user 75

as normal (it belongs to one cluster encoding typical trajectories) (3) or
an alert is raised and ts is classified as an abnormal behavior (7).

It is worth pointing out that in this way the proposed system is able to
identify both rare and atypical trajectories: the former refer to something that
does not appear in the training set (or only rarely appears); the latter consider
all those trajectories differing in a slightly but significant way from a group of
normal trajectories.

Let’s enter into details of the different steps required by the proposed method.
Classification: Let s denote the string associated to ts and ψs the projec-

tion of s into the Hilbert space encoded by our kernel. The distance between
cluster C and ψs is computed by using a Kernel Mahalanobis Distance dRC .
This choice is justified by the following two reasons: first, we consider the dis-
tribution of trajectories inside each cluster to be nearby gaussian, because of
the construction of the tree; furthermore, as experimentally evaluated in [119],
this distance is advantageous for problems with high class overlap and nonlinear
pattern distributions in a kernel-induced feature space.

In particular, dRC can be also applied to singular gram matrices, since it is
based on a previous regularization of the covariance matrix, which prevents it
to be singular. Let be K̃reg the regularized covariance matrix, obtained as:

K̃reg = K̃ + α · I|C|, α = |C| · σ2 (3.60)

being K̃ and σ2 > 0 respectively the Centered Gram Matrix and a parameter
to be chosen, set in our experiments to 1 (as suggested in [119]). I|C| is the |C|
by |C| identity matrix.

Let be ks = [k(s, s1), ..., k(s, s|C|)]
t and k̃s = [k̃(s, s1), ..., k̃(s, s|C|)]

t respec-
tively the vector of kernel values of s on the training data and its centered
version; according to Equation 3.35, the generic k̃(s, si) can be computed as
follows:

k̃(s, si) = k(s, si)−
1

|C|
(
1tC · ks +K · 1C(i)

)
+

1

|C|2
· 1tC ·K · 1C . (3.61)

The distance between C and ψs can be computed as:

d2
RC(ψs, C) =

1

σ2

(
k̃(s, s)− k̃ts · K̃−1

reg · k̃s
)
. (3.62)

Decision: Let C∗ denote the cluster with the lowest distance dRC(ψs, C
∗)

determined according to Equation 3.62. A threshold on the probability that the
string ts belongs to C∗ is obtained by comparing the square distance d2

RC(ψs, C
∗)

with a fixed threshold α:
d2
RC(ψs, C

∗) ≤ α. (3.63)

Conversely to the parameter ν of one class SVM, a high value of α provides a
better generalization but may increase the number of false positive in the test
determining the classification to C∗.

3.4.2 Query by sketch

A generic query by sketch aims at retrieving the k most similar trajectories to
the one hand-drawn by the user. In particular, one of the fastest way to solve

76 3. From Pixels to Behaviors

…

Prototypes of
“Normal

Trajectories”

TRAJECTORY	
PREPROCESSING	

Cluster n

Cluster 2

Cluster 1

CLASSIFICATION	

DECISION	

ABFD

Figure 3.40 Overview of the algorithm defined for anomaly behavior recognition.

this kind of problem is to use a k-d tree [120], a space-partitioning data structure
for organizing points in a k-dimensional space. A k-d tree is a generalization of a
binary tree: the root of the tree represents the entire set; each nonterminal node
has two sons (or successor nodes), each representing the two sub-sets induced by
the partitioning. The terminal nodes (the leaves of the tree) represent mutually
exclusive small subsets of data records, which collectively form a partition of
the record space. The main advantage in the use of such a data structure is
that a nearest-neighbor query (NN), as well as a k -NN query, can be answered
in logarithmic time.

The main idea exploited in this thesis is that the tree built during the previ-
ous step can be considered as a k-d tree: as a matter of fact, the generic cluster
C is partitioned into two clusters C1 and C2, once properly chosen a cutting
axis and a cutting position; it means that, once generated the tree, a k-NN
search can be easily performed without the need to analyze all the trajectories
belonging to the dataset, as shown in Figure 3.41.

In order to further speedup the search, two main improvements have been
conducted on the tree’s building, with respect to the technique detailed in Subec-
tion 3.2.6: the computation of the cutting axis and the stop condition.

Cutting Axis: Although being the best known heuristic, the computation
of the major axis, and in particular the projection of trajectories on the major
axis, is a really expensive operation if a large amount of queries has to be
considered: in fact, given the cluster C, the projection on an input data (a
query) on the major axis can be evaluated in O(C). However, it is worth
pointing out that, whereas the size of the dataset increases, each trajectory can
be considered as an axis and the one holding the greatest variance can well

3.4. Interactions with the user 77

SKETCH	

TRAJECTORY	
PREPROCESSING	

ABFD
K-‐D	 TREE	
SEARCH	

Figure 3.41 Overview of the algorithm defined for answering queries by sketch.

approximate the major axis:

var(s) =
1

|C|

|C|∑
j=1

(< ψj , ψs > − < µ,ψs >)
2

(3.64)

=
1

|C|

|C|∑
j=1

k2(s, sj)−

 1

|C|

|C|∑
j=1

k(s, sj)

2

.

The main advantage in this choice lies in the fact that the projection on the
cutting axis of the generic trajectory ti can be very quickly computed as the
similarity between ti and t∗s, in O(1). Furthermore, as we will show in Section
5.2.4, the results of the two strategies, major axis and axis with the greatest
variance, are still comparable.

Stop Condition: Our aim is to minimize the number of trajectories to
be analyzed. In particular, the best case arises when only a single leaf of the
tree needs to be analyzed. This is mainly why we decided to choose as a stop
condition the maximum number of trajectories in each leaf, set to k.

Algorithm: The algorithm defined for solving a query by sketch problem
is shown in Figure 3.42. It is described as a recursive procedure, where the
first invocation passes the root of the built tree as argument. If the node under
investigation is a leaf, then all trajectories belonging to it are evaluated and only
the k most similar ones are maintained by using the priority queue pq (Figure
3.42, lines 4-6).

If the node under investigation is not a leaf, the son which contains the
query bestSon is found (lines 12-17) and the procedure is recursively called over
it (lines 20-22). Furthermore, the algorithm has to verify if it is necessary to
also invoke the procedure over the other child otherSon (lines 24-26). This test,
also known as bound overlap ball test (hereinafter bob test) can be performed by
verifying if the hyperplane delimiting the two clusters (bestSon and otherSon)
is not intersected by the ball centered at query position and whose radius is
equal to the maximum distance to the k trajectories contained in pq.

78 3. From Pixels to Behaviors

1 bool KNN(/* Input*/ Cluster c, Trajectory x, int k,
2 /*Input - Output */ double &radius ,
3 double &minDist , PriorityQueue &pq){
4 if (c.isLeaf == true){
5 radius <- updateKNN(c, x, pq);
6 return (radius <= minDist);
7 }
8
9 t <- ProjectOnTheCuttingAxis(c, x);

10 minDist <- min(minDist , |c.topt - t|);
11
12 if (t < c.topt){
13 bestSon <- c.leftSon;
14 otherSon <- c.rigthSon;
15 }else{
16 bestSon <- c.rigthtSon;
17 otherSon <- c.leftSon;
18 }
19
20 bob <- KNN(bestSon ,x,k,radius ,minDist ,pq);
21 if (bob == true)
22 return true;
23
24 if (|c.topt - t| <= radius){
25 bob <- KNN(otherSon ,x,k,radius ,minDist ,pq);
26 return bob;
27 }
28
29 return false
30 }

Figure 3.42 The structure of the algorithm for K- Nearest Neighbor Search.

1	

2	 3	

4	 5	

(a)

2

1

(b)

2

1

(c)

Figure 3.43 A tree (a) represented by its geometric boundaries (b)(c). In (b) the bob test
has success, while in (c) it fails.

In order to clarify this concept, a simple example is shown in Figure 3.43.
In particular, Figure 3.43a shows a tree obtained by the proposed clustering
algorithm with its representation on the plane (Figures 3.43b, 3.43c). The red
cross represents the query trajectory x, while the yellow ones refer to the stored
trajectories. Finally, the red circle identifies the ball centered at query position
x and whose radius is equal to the maximum distance to the k trajectories con-
tained in pq. We can note that in Figure 3.43b the boundary delimiting the two
children clusters (identified respectively by the number 4 and 5 in Figure 3.43a)
are not intersected by the ball, while it clearly happens in Figure 3.43c. It means
that only in this last case the algorithm needs to also exploit the trajectories
contained in the otherSon.

3.4. Interactions with the user 79

3.4.3 Spatio Temporal Queries

In Section 3.3 we have deeply analyzed the method proposed for indexing and
storing trajectories, optimized for solving a DRSQ query. It should be clear that
the aim of a DRSQ is to answer queries involving spatio-temporal information:
find the objects crossing a given spatial area in a given time interval.

From a more formal point of view, a DRSQ can be defined as a function:

DRSQ : (Q,D)→ (T ⊆ D) (3.65)

in which Q is the query box, D is the entire set of trajectories stored into the
database and T is the resulting subset of trajectories satisfying the DRSQ query.

In order to better clarify the importance of the proposed DRSQ in real
applications, a few examples are needed; for instance, in the context of traffic
management systems, this kind of queries can be used for different retrieval
purposes. Typical interests of a human operator are:

• find the number of vehicles passing by a given toll-house each six hours
during the last two days.

• find all the vehicles passing by highway I-55 and then by Interstate 60 from
2 to 4 pm today.

• find all the vehicles passing by an area (defined at query time) inside San
Peter’s Square on 14th March 2011 in the morning.

More specific information can be obtained by augmenting this kind of queries
with additional information about objects’ appearance:

• find the number of red trucks leaving highway I59 from exit 14 running
overlapped with the middle lane (this area being defined at query time)
between 9-12 am yesterday ;

• verify whether a given motorcycle was walking through a level crossing
between 6-8 pm yesterday.

All these above mentioned queries can be easily and efficiently derived from
the DRSQ. As a matter of fact, the DRSQ query can also be used to:

• count the objects satisfying the query; in this case the output will consist
in a count value c:

DRSQCOUNT : (Q,D)→ (c) (3.66)

• verify whether a given object has passed through a given area at a given
time interval; therefore the object’s ID must also be given in input and
the result has a boolean form:

DRSQID : (Q, ID,D)→ {true, false} (3.67)

• search or count the objects having specific appearance characteristics, in
which case an appearance vector A must also be provided and the output
can consist of a count value c or the subset of trajectories T satisfying the
query:

DRSQA : (Q,A,D)→ c ∨ (T ⊆ D) (3.68)

80 3. From Pixels to Behaviors

x
max

xx
min

y
min

y
max

y

t
s

t
e

t

t
s
+∆

t
s
+2∆

(a)

x
max

1

x

x
min

1

x
max

2

x
min

2
y

min

1

y
max

1
y

min

2

y

y
max

2

t
s

1

t
e

1

t
s

2

t
e

2
t

(b)

Figure 3.44 Geometric interpretation of a Flow-DRSQ (a), and of a 2-DRSQ (b).

The DRSQ query can be also extended in order to analyze the traffic flow,
or in general to provide statistic in the observed scene; from a geometrical point
of view this new kind of query, hereinafter named as Flow-DRSQ (F-DRSQ),
can be introduced for analyzing the traffic flow in the observed scene; it allows
to retrieve information of the type:

• find the number of vehicles passing in a given area (dynamically defined
at query time) on highway S14 each hour from 8 am to 6 pm yesterday ;

• find the number of vehicles passing by a given toll-house each six hours
during the last two days.

From a more formal point of view, it can be seen as the application of various
DRSQ queries so as to obtain results at fixed time intervals, as shown in Figure
3.44a.

3.4. Interactions with the user 81

A F-DRSQ query can be defined as a function:

F −DST : (Q,n,D,A)→ (c1, c2, ..., cn) (3.69)

in which Q is the 3D query box, n is the number of fixed intervals, D is the entire
set of trajectories and A is an optional parameter identifying the appearance;
c1, c2, ..., cn are the n resulting count values.

Finally, a further type of query, called from now on Multi-DRSQ (M-DRSQ),
can be defined to retrieve more complex and structured information; examples
of this query type are:

• find the number of vehicles that have passed by a given intersection and
then have exited by a given offramp two days ago;

• find all the yellow vehicles passing by highway I-55 and then by Interstate
60 from 2 to 4 pm today.

As Figure 3.44b shows, this query typology can be seen as an application
of two (or more) DRSQ queries, typically having temporally successive query
boxes.

M −DRSQ : (Q1, ..., Qn, D,A)→ (T ⊆ D) (3.70)

in which Q1, ..., Qn are the n 3D query boxes, A is the optional appearance
information, D is the entire set of trajectories and T is the subset containing
the trajectories intersecting all the n query boxes and, thus, satisfying the M-
DRSQ query.

3.4.4 Conclusion

In this section we analyzed the different typologies of interactions allowed to
the human operator by the proposed system. On the one hand, an alert is sent
as soon as an abnormal behavior occurs (Section 3.4.1); on the other hand, the
human operator can dynamically interact with the system by submitting dif-
ferent typologies of queries, whose parameters are specified only at query time,
which involve both semantical (Section 3.4.2) and spatio-temporal information
(Section 3.4.3). A deeper experimentation has been conducted in Chapter 5 in
order to confirm the effectiveness of the introduced interactions: in particular,
in Section 5.2.5 the results concerning the anomaly detection algorithm are pre-
sented, while Sections 5.2.6 and 5.3.3 analyze the different typologies of queries,
respectively concerning semantical and spatio-temporal information.

82 3. From Pixels to Behaviors

Chapter 4

From Audio Signals to
Events of Interest

In this chapter we will focus on the module devoted to audio event detection;
given M classes of sounds of interest C1, . . . , CM (such as gunshot, scream, glass
breaking, etc.), each represented by a finite set of examples, and an audio stream,
the goal of the system is to find if (and where) there are occurrences of the
sounds of interest within the stream. The audio stream usually contains other
sounds not belonging to the classes of interest, that are considered as background
sounds; we will indicate as C0 the class containing all the background sounds.

The input audio signal is first divided into small frames and for each frame a
feature vector is calculated. Then the feature vectors extracted from the audio
clips of the training set are quantized by using a vector quantization technique,
namely the K-means clustering algorithm, in order to build an artificial dictio-
nary of aural words. Aural words are considered as small perceptual units of
hearing, whose distribution over a time interval allows to characterize the type
of sound. The detection of abnormal audio events is performed on a time win-
dow of m seconds that is forward shifted on the audio stream by one third of its
length. For each interval, a histogram of the occurrences of the aural words is
constructed and is used as a descriptor of the sound to be classified. It is worth
noting that the order of the aural words and their position within an interval is
not important and it does not affect the detection results.

The architecture of the proposed system is shown in Fig. 4.1. The first-
level and second-level feature extractor modules are used both in the training
phase and in the testing phase. The K-means clustering module, instead, is
involved only in the training phase in order to define a reference codebook for
the construction of the second-level feature vectors. Finally, a multiclass SVM
classifier is adopted to learn bag of aural words representations of the target
events.

4.1 First-level features

In contrast to video signals, in which a scene can persist even for several seconds,
an audio signal might show huge variations within a few milliseconds. Thus,
the input audio stream, originally sampled at a rate Fs = 32KHz, is segmented

84 4. From Audio Signals to Events of Interest

Figure 4.1 System architecture of the proposed method. The modules used in both the
training and the operative phases are shown in green, while the blue module is used only
during the training phase. The values of the parameters Fs, L, N and K used for the
experimental validation are also reported.

into groups of N partially overlapping frames of duration TF . The choice of
TF is influenced by two contrasting effects: if the value is too short, the frame
will be unable to accurately represent low-frequency components of the sounds.
Conversely, if it is too long the frame will not represent adequately shot-time
changes in the audio signal. We have experimented with several values of TF ,

4.1. First-level features 85

v2

v3

vN

v1

w1

w2

w3

w4 wK 1

2

3

u1 u2 u3 u4 uK

(a) (b) (c)

Figure 4.2 Second-level feature vectors construction. The interval to be classified is seg-
mented into N frames of 32 milliseconds that are represented as first-level feature vectors
(a). For each vector vi the codebook is searched for the nearest aural word wj (b). Then a
histogram of the occurrences of the aural words is computed (c). In the example, the vectors
v1 and v2 have w2 as the nearest aural word in the codebook. Thus, the second bin of the
histogram has a value equal to 2. In the same way, aural word w3 has only one close vector,
resulting in a value equal to 1 for the third bin of the histogram. Aural words w1 and w4,
instead, have no occurrences.

and we have found that a reasonable compromise is achieved with TF = 32msec.
Every frame is built by forward shifting the frame window by TF /4 and contains
L = 1024 PCM samples.

For each frame, a first-level feature vector is computed. In particular, we
have considered a set of 11 features from the literature on audio event detection
belonging to the category of spectral features, namely spectral centroid, spectral
spread, spectral rolloff, spectral flux [121, 122], of energy features, namely to-
tal energy, sub-band energy ratios (for 4 sub-bands), volume [121, 123] and of
instantaneous temporal feature, namely the zero-crossing rate [121, 122]. In the
following, we provide a brief description of the first-level features.

Spectral centroid and spectral spread: In digital signal processing, the
spectral centroid (SC) and the spectral spread (SS) are measures for charac-
terizing the distribution of the frequency components of a signal. The spectral
centroid is defined as the center of mass of the spectrum and is computed as
follows:

SC =

∑LF
k=1 k

Fs
LF
|X(k)|∑LF

k=1 |X(k)|
, (4.1)

while the spectral spread is computed as the dispersion of the frequency com-
ponents of the signal around the centroid:

SS =

√√√√√∑LF
k=1

[
k FsLF − SC

]2
|X(k)|∑LF

k=1 |X(k)|
, (4.2)

where LF = 2048 and |X(k)| are the length and the module of the FFT of the
input signal x(n), respectively.

Spectral rolloff : The spectral rolloff is a measure of the skewness of the
spectrum and is defined as the frequency fro at which the percentage P of the
spectral components of the signal is at lower frequency. In our case, we consider
P = 90 and determine the value fro from the following relation:

fro∑
k=1

|X(k)| = P

100

LF∑
k=1

|X(k)| . (4.3)

86 4. From Audio Signals to Events of Interest

Spectral flux: The spectral flux (SF) indicates how quickly the spectral
information of a signal is changing in time and it is computed as the squared-
difference between the spectra of two consecutive audio frames according to the
following equation:

SF =

LF∑
k=1

[|Xn(k)| − |Xn−1(k)|]2 , (4.4)

where Xn is the FFT of the current audio frame and Xn−1 is the FFT of the
immediately preceding frame.

Energy ratios in sub-bands: The energy ratios in sub-bands (ERSB)
give a rough approximation of the energy distribution of the spectrum. We
divided the spectrum of the signal into four sub-bands. For each sub-band we
computed the ratio between the energy contained in that sub-band and the
overall energy of the audio frame as reported in Eq. 4.5. The values of the
bounds of the considered sub-band intervals are given in Eq. 4.6.

ERSBn =

∑Kn2

k=Kn1
|X(k)|2∑LF

k=1|X(k)|2
, (4.5)

where

[Kn1
,Kn2

] =

[1, 630], n = 1

[631, 1720], n = 2

[1721, 4400], n = 3

[4401, 16000], n = 4

. (4.6)

Volume and energy: We calculate the volume feature (V) as the root
mean square (RMS) of the amplitude value of the samples in an audio frame:

V =

√√√√ 1

L

L∑
k=1

x(k)2, (4.7)

while the energy (E) is the squared-sum of the amplitude value of the audio
samples:

E =

L∑
k=1

x(k)2. (4.8)

Zero crossing rate: The zero crossing rate (ZCR) is the rate of the sign-
changes along a frame and is especially used to characterize percussive sounds
and environmental noise. For a frame x(n) of L samples, the ZCR is computed
as follows:

ZCR =
1

2L

L−1∑
k=1

∣∣sgn[x(k + 1)]− sgn[x(k)]
∣∣ (4.9)

4.2 Second-level features (Aural words)

In order to derive a finite set of aural words that play the role of the words in a
textual document, we have performed a quantization of the vector space of the

4.2. Second-level features (Aural words) 87

0 0.5 1 1.5 2 2.5 3-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

A
m

p
li

tu
d

e

(a)
Frame Number

F
ea

tu
re

s

0 50 100 150 200 250 300 350
1

2

3

4

5

6

7

8

9

10

11

(b)

0 200 400 600 800 10000

5

10

15

20

25

30

35

Aural words

O
cc

u
rr

en
ce

s

(c)

0 0.5 1 1.5 2 2.5 3-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

A
m

p
li

tu
d

e

(d)
Frame Number

F
ea

tu
re

s

0 50 100 150 200 250 300 350
1

2

3

4

5

6

7

8

9

10

11

(e)

0 200 400 600 800 10000

5

10

15

20

25

30

35

Aural words
O

cc
u

rr
en

ce
s

(f)

0 0.5 1 1.5 2 2.5 3-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

A
m

p
li

tu
d

e

(g)
Frame Number

F
ea

tu
re

s

0 50 100 150 200 250 300 350
1

2

3

4

5

6

7

8

9

10

11

(h)

0 200 400 600 800 10000

5

10

15

20

25

30

35

Aural words

O
cc

u
rr

en
ce

s

(i)

Figure 4.3 Bag of aural words representation of 3 seconds intervals. In the first column a
broken glass (a), a gunshot (d) and a scream (g) events; in the second column the correspond-
ing first-level representations (b, e, h); in the third column the histograms of the aural words
(c,f,i).

first-level features using the well known K-Means clustering algorithm during
the training phase of the system. Since this algorithm requires as a parameter
the desired number of clusters K, a grid search was conducted to find the value
that maximizes the final classification accuracy and we determined K = 1024.

It is worth noting that the method only requires unlabeled samples for per-
forming the clustering. Thus for the training set it is not necessary to have
a ground truth with a granularity of a single frame; this can be a significant
advantage over other methods, greatly reducing the human labor time required
to train the event detection system on a new set of sounds.

The output of the K-means algorithm is the set CB of the K centroids of
the clusters, which constitutes the codebook of the system:

CB = {w1, . . . , wK} (4.10)

Conceptually, an entry wi in the codebook can be thought as an elementary
word that can be detected in the input data to be classified. We call aural
words the entries in the set CB, to emphasize the fact that they are related to
atomic, perceptual units of hearing, and not to linguistic units.

In the same way as the topic of a document cannot be inferred from a single
word, but for a larger body of text it can be reasonably estimated in many cases

88 4. From Audio Signals to Events of Interest

by considering the presence or the absence of a certain number of relevant words,
we assume that a single aural word is not sufficient to classify a sound event, but
the presence or the absence of certain specific words over a longer time interval
may lead to a reliable classification. Thus, in order to perform the classification,
we compute a second-level feature vector. In Fig. 4.2, a sketch of the process
of construction of the second-level feature vectors is shown. First, the input
audio stream is segmented into sets of N = 375 partially overlapping frames,
each corresponding to time intervals of 3 seconds. The value of N is chosen so
that an interval covers a time scale sufficient to recognize both impulsive and
sustained sounds. For each frame in an interval, the first-level feature vectors
vi, (with i = 1, . . . , N), are computed.

Then, for each feature vector vi, the codebook is searched for the word wj
that is closest to vi, as shown in Fig. 4.2b. Let us denote as bi the index of such
a word within the codebook:

bi = arg min
j
D(vi, wj), j = 1, . . . ,K, (4.11)

where D(vi, wj) is the Euclidean distance between the i-th vector of the interval
and the j-th word of the codebook.

Finally, the second-level feature vector U = (u1, . . . , uK) is defined as
follows:

uj =

N∑
i=1

δ (bi, j) , j = 1, . . . ,K (4.12)

where δ (·) is the Kronecker delta.
Thus, the second-level feature vector is the histogram of the occurrences of

the aural words detected in the interval.
For instance, in Fig. 4.2 the vectors v1 and v2 have the aural word w2 as the

closest word in the codebook. Thus, the value of the bin u2 of the histogram
is equal to 2 (Fig. 4.2c). It means that, in the time interval to be classified,
the aural word w2 is present twice. In the same way, the words w3 and wN are
present once, while the words w1 and w4 have no occurrences in the considered
interval.

It is worth noting that the position of the aural words within an interval is
not taken into account, as in our context it is important only the detection of
the target audio event rather than the exact position. It can be considered an
advantage for the building of the model of the target events, because it is not
necessary to create different models for sounds that happen at different position
within an interval. For instance, two gunshots, which happen respectively at
the beginning and at the end of an interval, can be modeled with the same
histogram of aural words.

For the experimental evaluation of the proposed approach, we considered
the time window of 3 seconds that slides on the audio clip to be analyzed by
steps of one second. Two consecutive time windows are thus overlapped for 2/3
of their length.

Examples of the bag of aural words representation of the sounds in Fig. 4.3a,
4.3d and 4.3g are respectively shown in Fig. 4.3c, 4.3f and 4.3i. On one hand,
it is worth noting that the first-level representation of the sounds (Fig. 4.3b,
4.3e and 4.3h) allows to characterize the short-time properties of the events with
respect to the background noise. On the other hand, the histograms of the aural

4.3. The classifier 89

words effectively describe longer time-scale intervals in which different kinds of
event can occur.

4.3 The classifier

The second-level feature vectors are used to train a SVM classifier [124], using a
labeled training set, with a ground truth defined at a time scale corresponding
to an interval.

The choice of the SVM classifier is motivated by the ability of this algorithm
to find a hyperplane separating the classes to be recognized that is maximally
stable, in the sense that it maximizes the margin between the decision boundary
and the training samples, so as to avoid overfitting on small training sets. We
have used the original, linear version of the SVM, and not the kernelized one,
since it provided satisfactory results in our experiments.

The SVM (like other classifiers based on discriminant analysis, but differently
from distance-based classifiers like the Nearest Neighbor) is able to construct a
decision function that gives only a subset of the input features a non zero weight.
In this way it can learn which are the aural words that are really discriminant
for the events of interest, and ignore the others.

Since SVM is a binary classifier (i.e. it works on a two-classes problem), the
proposed system is designed so as to have several SVM instances operating in
parallel.Namely, we have a pool of M+1 1-vs-all SVM classifiers (where M is the
number of the classes to be recognized). The i-th classifier (with i = 0, . . . ,M)
is trained using as positive examples the samples from class Ci and as negative
examples all the samples from the other classes. In the classification phase,
given a second-level feature vector U , the i-th classifier produces an output
si that indicates the score of the feature vector for such classifier. Then, a
combination rule (Eq. 4.13) decides the class of the vector U . If at least one
classifier yields an output above a threshold τ , the vector is assigned to the class
that corresponds to the SVM that gives the maximum score (which might be
the background class C0, and so no event is reported). If all classifiers give a
negative score, the vector U is assigned to background class C0. Formally, the
output class C is defined as follow:

C =

{
C0, if si < τ ∀i = 0, . . . ,M

arg max
i
si, otherwise.

(4.13)

4.4 Conclusions

In this section I detailed the module proposed in this thesis for analyzing audio
streams in order to detect events of interest, namely screams, gunshots and
broken glasses. The effectiveness and the robustness of the proposed approach
with respect to different environmental conditions will be confirmed in Section
5.4, devoted to the experimentation. Since no publicly available datasets have
been proposed up to now by the scientific community for audio surveillance
applications, in this thesis we also introduce a novel dataset for benchmarking
purposes, detailed in Section 5.4.1. The results obtained on this dataset have
been compared with a state of the art approach, confirming the very promising
performance of the proposed method.

90 4. From Audio Signals to Events of Interest

Chapter 5

Experimental Results

In this chapter the results obtained by testing the different modules proposed
in this thesis will be summarized. In particular:

• Section 5.1 analyzes the results obtained by the proposed tracking method,
detailed in Section 3.1, over two different standard datasets, namely PETS
2010 Dataset and ISSIA Soccer Dataset, both acquired in real environ-
ments.

• Section 5.2 details the results obtained by the visual behavior analysis
module, introduced in Sections 3.2 and 3.4. Three datasets, acquired in
very different environments and involving both people and vehicles, have
been considered, namely MIT Trajectory dataset, Edinburgh Informatics
Forum Pedestrian Database and MIT Train Station dataset.

• In Section 5.3 the module devoted to store and allow spatio temporal
queries, introduced in Sections 3.3 and 3.4, is tested and the results are
presented. The test has been conducted both over the standard MIT
Trajectory dataset and on a synthetic dataset, generated in order to stress
the system.

• Finally, in Section 5.4 the results of the tests conducted over the algo-
rithm for recognizing audio events of interest (introduced in Chapter 4)
are presented. Since at our knowledge there are not standard datasets, in
this thesis a novel standard dataset for benchmarking purposes have been
proposed and made publicly available.

5.1 Tracking Algorithm

In this section we will show the results of the tracking method, detailed in Sec-
tion 3.1.2. In particular, in Subsection 5.1.1 we introduce the standard datasets
used for the experimentation. In Subsection 5.1.2 the parameters selected for the
experimentation are justified, while in Subsections 5.1.3 and 5.1.4 a quantitative
and qualitative evaluation is respectively provided. Finally, the computational
cost of the algorithm is show in Subsection 5.1.5.

92 5. Experimental Results

View Camera Model Resolution Frame Rate
1 Axis 223M 768x576 7
3 Axis 233D 768x576 7
4 Axis 233D 768x576 7
5 Axis 223M 720x576 7
6 Axis 223M 720x576 7
7 Canon MV1 720x576 7
8 Canon MV1 720x576 7

Figure 5.1 PETS Dataset: Camera Specification [125].

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.2 Camera views used in the PETS2010 database. We can note that each view
emphasizes one or more problem. For example, the first one (a) causes occlusions between
persons and the pole while the second one (b) is characterized by several occlusions between
persons and the tree. In (h) the position of the cameras on the plane is shown.

5.1.1 Datasets

In order to assess the performance of the method with respect to the state of
the art, we have used two different datasets: the publicly available PETS 2010
dataset [125], currently used by many research papers, and the ISSIA Soccer
Dataset [126].

5.1. Tracking Algorithm 93

(a) (b)

(c) (d)

(e) (f)

Figure 5.3 Camera views used in the ISSIA database.

PETS 2010 Dataset: it has been recorded at Whiteknights Campus, Uni-
versity of Reading, UK in 2009. It is composed by three datasets: S1 concerns
person count and density estimation, S2 addresses people tracking and S3 in-
volves flow analysis and event recognition. In this thesis we focus on the dataset
S2 (hereinafter PETS 2010 Dataset), made of seven videos, containing several
occlusions between a person and an object, two persons or among several per-
sons. Figure 5.2 shows an example for each considered view of the PETS 2010
database, while more information are provided in Table 5.1.

ISSIA Soccer Dataset: it is composed by six synchronized videos acquired
at 25 fps during a match by six Full-HD cameras, located along the major sides
of the playing-field. Examples of the different views are given in Figure 5.3;
the difficulty arising during the tracking in this context is related to the rapid
changes of trajectories of the players and their visual appearance: as a matter
of fact, except for the referees and the goalkeepers, all the players, depending
on their team, have a white or a blue uniform. Such an issue could make
very difficult to recover occlusions by exploiting visual dissimilarities between
involved players.

94 5. Experimental Results

5.1.2 Parameters setup

In the proposed tracking method the only parameter that needs to be properly
set up is the dmax parameter of equation 3.13. In order to evaluate it, we have
computed in each view the maximum speed of the objects, from which we have
derived the following values: dmax = 100 for views 1, 3 and 4 and dmax = 150
for view 5, 6, 7 and 8 of the PETS dataset; on the other hand, dmax = 80 for
all the views of the ISSIA Soccer Dataset.

5.1.3 Quantitative Evaluation

In this section a quantitative evaluation of the proposed method over both the
datasets is performed.

5.1.3.1 Experimentation 1

The first quantitative evaluation of the method has been carried out using the
performance indexing proposed in [127]. In particular, we have used the fol-
lowing indices, especially suited for tracking algorithms: the Average Tracking
Accuracy (ATA), the Multiple Object Tracking Accuracy (MOTA) and the Mul-
tiple Object Tracking Precision (MOTP). In the following we introduce some
notations useful to formally define them.

Let Gi and Di be the ith ground truth object and the ith detected one

at the sequence level, respectively; G
(t)
i and D

(t)
i denote the ith ground truth

object and the detected one in frame t; N
(t)
G and N

(t)
D denote the number of

ground truth objects and detected ones in frame t, respectively, while NG and
ND denote the number of ground truth objects and unique detected ones in the
given sequences. Nframes is the number of frames in the sequences. Finally,
Nmapped refers to the mapped system output objects over an entire reference

track, taking into account splits and merges and N
(t)
mapped refers to the number

of mapped objects in the frame t.
ATA is a spatiotemporal measure that penalizes fragmentations in spa-

tiotemporal dimensions while accounting for the number of objects detected
and tracked, missed objects, and false positives. ATA is defined in terms of
Sequence Track Detection Accuracy (STDA):

STDA =

Nmapped∑
i=1

∑Nframes
t=1

|G(t)
i ∩D

(t)
i |

|G(t)
i ∪D

(t)
i |

NGi∪Di 6=0
. (5.1)

The latter measures the overlap in the spatiotemporal dimensions of the
detected object over the ground truth, taking a maximum value of NG. The
ATA is defined as the STDA per object:

ATA =
STDA[
NG+ND

2

] . (5.2)

As already mentioned, the MOTA is an accuracy score that computes the num-
ber of missed detections, false positives and switches in the system output track
for a given reference ground truth track. It is defined as:

MOTA = 1−
∑Nframes
t=1

(
cm ·mt + cf · fpt + cs(ist)

)∑Nframes
t=1 N

(t)
G

, (5.3)

5.1. Tracking Algorithm 95

where mt is the number of misses, fpt is the number of false positives, and ist
is the number of ID mismatches in frame t considering the mapping in frame
(t− 1); c values are weights chosen as follows:

cm = cf = 1; cs = log10(·).

Finally, the MOTP is a precision score that calculates the spatiotemporal
overlap between the reference tracks and the system output tracks:

MOTP =

∑Nmapped
i=1

∑N
(t)
frames

t=1
|G(t)
i ∩D

(t)
i |

|G(t)
i ∪D

(t)
i |∑Nframes

t=1 N
(t)
mapped

. (5.4)

1	

1	
1	

2	

2	 2	

3	

3	
3	

4	

4	 4	

5	

5	 5	

6	

6	

6	

0	

0,2	

0,4	

0,6	

0,8	

1	

ATA	 MOTA	 MOTP	

ISSIA	 Dataset	

(a)

1	

1	

1	

3	

3	

3	

4	

4	 4	

5	

5	

5	

6	

6	

6	

7	

7	

7	

8	

8	
8	

0	

0,2	

0,4	

0,6	

0,8	

1	

ATA	 MOTA	 MOTP	

PETS	 Dataset	

(b)

Figure 5.4 Performance of the proposed method for the considered views of the PETS 2010
(a) and of the ISSIA Soccer (b) datasets. The numbers on the bars correspond to the views
number.

The obtained results are shown in Figure 5.4: in particular, Figure 5.4a sum-
marizes the performance obtained over the ISSIA Soccer dataset, highlighting
similar values over all the different views. Note that the performance are even
better at the light of the fact that this dataset contains some very complex
occlusion patterns, involving a variable number of players, ranging from two to
eight, that strongly influence the performance of the entire system. Although a
direct comparison with the state-of-the-art methods is not possible as the results
reported over this dataset are usually provided in a qualitative form, the high

96 5. Experimental Results

values obtained by our method both in terms of accuracy and precision confirm
the validity of the proposed approach in the sport applicative domain.

Figure 5.4b shows the results of the proposed method over the PETS 2010
dataset, related to the individual sequences. We can note that the performance
is strongly influenced by the complexity of the single sequence. This complexity
is not determined only by the typology of the single view (i.e., the presence of
the pole in the first view or the presence of the tree in the third one, which
covers one-third of the scene taken by the camera), but also by the interactions
among the tracked objects.

At this point we can examine in detail the considered views, analyzing their
performance in relation to the complexity of the scene. First view presents in-
teractions among two or three objects; the only difficulty is due to the presence
of the pole and of the sign hanged on it, which causes a lot of splits. Note that
the proposed method proves to be particularly robust with respect to the split
situations on this view. Views 3 and 4 are the most complex, as shown by the
results displayed in Figure 5.4b. Indeed, as already mentioned, view 3 is charac-
terized by the presence of a large tree (about one-third of the scene), occluding
a lot of individual or group objects. The situation is further complicated by
the complexity of interactions among the objects, which involves in the average
2− 5 objects for view 3 and 2− 6 for view 4. Another problem in view 4 is the
presence of a white-orange ribbon, continuously moving because of the wind.
Such situation causes a lot of problems also in the detection phase. The prob-
lem of the moving ribbon is also present in views 5, 6, 7 and 8, even if it is less
visible. We can note that the performance obtained in views 6 and 7 is generally
lower than that obtained on other sequences; this is related to more complex
interactions between the tracked objects, having a very high number of occlu-
sions associated to objects that are entering the scene (unstable objects). It is
worth noting that the method, during an occlusion, does not attempt to find
the exact position of an object inside a group; it continues to track the group
as a whole, using the Kalman filter for obtaining a prevision of the position of
each object inside the group itself; this choice obviously causes a degradation
of the performance if it is measured using indices defined assuming that objects
are always tracked individually.

Comparison: PETS Contest (Performance Evaluation of Tracking and
Surveillance) is a competition organized by the University of Reading, which
allows to compare all the state of the art tracking algorithms: each participant
has to submit the output of the proposed method over a standard dataset; the
output is processed by the organizers and the results are finally disclosed during
the contest session.

The proposed algorithm participated to the last PETS 2013 contest [105][128]
and, as highlighted by the organizers, it ranked first in terms of MOTA and in
the first positions in terms of ATA and MOTP. Although the results have not
been made available, in Figure 5.5 we report the ones computed over View 1,
declared during the final contest session. Our method strongly outperforms all
the other ones working in real time and based on a single camera view: in fact,
it is worth to point out that Breitenstein et al. (Br) [47] and Xu et al. (Xu)
[30] use a multi-camera approach, while Badie et al. (Ba) [21] and Hoffman et
al. (Ho) [22] consider a post-processing of the trajectories in order to link all
the extracted tracklets. It should be clear that our method extracts the objects’
positions at each frame, without applying any kind of post-processing aimed

5.1. Tracking Algorithm 97

Al	 An	
Ya	

Ni	

Xu	 Xm	

Ba	

Ho	
He	

PM	

Ar	

Be	 Co	 Br	
Ge	 Ag	

0	

0,2	

0,4	

0,6	

0,8	

1	
MOTA	

(a)

Method Abbrev.

Alahi Olasso Al

Anon An

Yang Ya

Nie Ni

Xu Xu

Xu multiview Xm

Badie Ba

Hoffman Ho

Heili He

Proposed Method PM

Arsic Ar

Berclaz Be

Conte Co

Breitenstein Br

Ge Ge

Alahi Ogreedy Ag

(b)

Al	 An	 Ya	 Ni	 Xu	

Xm	 Ba	 Ho	 He	 PM	
Ar	 Be	

Co	 Br	

Ge	
Ag	

0	

0,2	

0,4	

0,6	

0,8	

1	
MOTP	

(c)

Al	

An	

Ya	

Ni	
Xu	

Xm	

Ba	

Ho	
He	 PM	

Ar	

Be	
Co	

Br	

Ge	 Ag	

0	

0,2	

0,4	

0,6	
ATA	

(d)

Figure 5.5 Comparison of the proposed method with the participant to the last PETS 2014
competition, in terms of MOTA (a), MOTP (c) and ATA (d). In (b) the associations between
methods and abbreviations is summarized.

at linking the tracklets. It is a very important and not negligible feature in
the field of behavioral analysis, since we are interested in detecting abnormal
behaviors in real time, when the objects are still inside the scene.

Furthermore, a deeper comparison has been performed with the methods
participating to the previous PETS 2010 contest, whose results are available
in [129]. Figure 5.6 summarizes the obtained results. In particular, Figure
5.6a gives an overview of the precision index (MOTP) over all the views. It
is evident that the proposed method outperforms all the other methods on six
out of seven considered views in terms of precision. Figure 5.6b provides the
average performance, in terms of ATA, MOTA and MOTP obtained on Views
1, 5, 6 and 8, the only ones taken into account by Alahi et al. [130].

Finally, Figure 5.6d shows the average results over all the views: our method
is the most precise over the entire dataset and it is outperformed, in terms
of accuracy, only by the method proposed by Berclaz et al . [33], which takes
advantage of the use of a multi-camera approach and thus it is not directly

98 5. Experimental Results

PM	 PM	
PM	 PM	

PM	 PM	

Ar	
Ar	

Ar	

Ar	
Ar	

Ar	
BP	

BP	
BP	

BP	

BP	
BP	

Co	
Co	

Co	

Co	

Co	 Co	

Ge	

Ge	

Ge	
Ag	 Ag	 Ag	 Al	 Al	 Al	

0	

0,2	

0,4	

0,6	

0,8	

1	

MOTP	 VIEW3	 MOTP	 VIEW4	 MOTP	 VIEW5	 MOTP	 VIEW6	 MOTP	 VIEW7	 MOTP	 VIEW8	

MOTP	 -‐	 PETS	 2010	 Dataset	

(a)

PM	

PM	
PM	

Ag	

Ag	 Ag	

Al	

Al	 Al	

0	

0,2	

0,4	

0,6	

0,8	

1	

ATA	 MOTP	 MOTA	

Average	 on	 Views	 1,5,6,8	

(b)

Method Abbrev.

Proposed Method PM

Breitenstein Br

Leykin Le

Sharma Sh

Yang Ya

Berclazdp BD

Berclazlp BL

Arsic Winter AW

Conte Co

Ge Ge

Alahi Ogreedy Ag

Alahi Olasso Al

Arsic Ar

(c)

PM	

PM	
PM	

BL	

BL	

BL	

Ar	

Ar	

Ar	

Co	

Co	 Co	

0	

0,2	

0,4	

0,6	

0,8	

1	

ATA	 MOTP	 MOTA	

Average	 on	 all	 the	 views	

(d)

Figure 5.6 Performance of the proposed method compared with the PETS 2010 contest
participants on MOTP index (a), on Views 1, 5, 6 and 8 (b) and on all the views (e). In (c)
the associations between methods and abbreviations is summarized.

comparable with our approach.

It is worth highlighting that ATA, MOTA and MOTP do not perfectly fit,
for their nature, the proposed method. It is due to the fact that our approach,
during an occlusion, does not attempt to find the exact position of an object
inside a group; it continues to track the group as a whole, using the Kalman
filter for obtaining a prevision of the position of each object inside the group
itself; this choice obviously causes a degradation of the performance if measured

5.1. Tracking Algorithm 99

View
Split Occlusion

Resolution Percentage Resolution Percentage
[131] Proposed [131] Proposed

1 45% 73% 75% 95%
3 36% 51% 61% 76%
4 35% 74% 45% 74%
5 15% 51% 56% 67%
6 12% 56% 51% 62%
7 16% 61% 52% 63%
8 20% 51% 42% 59%

Figure 5.7 Comparison between the proposed method and [131] in terms of split and occlu-
sion patterns resolution over the PETS dataset.

using indices assuming that objects are always tracked individually.
In general, our method confirms a very high accuracy and precision; this

result is mainly a direct consequence of the fact that it solves many of the
errors usually occurring in tracking algorithms that do not distinguish between
single and multiple objects.

5.1.3.2 Experimentation 2

In this section the performance of the proposed method in terms of resolution
percentage of split and occlusion patterns is analyzed. The results are sum-
marized in Table 5.7, where a comparison with our previous method [131] is
performed over the PETS dataset. Note that [131] is more robust with respect
to the occlusion occurrences, rather than to the split ones. It is mainly due to
the association manager module, which uses a greedy strategy to solve split and
occlusion patterns. The main novelty of the proposed approach lies in the in-
troduction of a graph based approach, which proves to significantly improve the
performance with respect to [131], both in terms of split and occlusion patterns.

5.1.3.3 Experimentation 3

A further experimentation, shown in Table 5.8, presents some more general
evaluation criteria, which reflect the possibility to correctly follow a trajectory,
assigning it one or more id [132]. In particular:

• TP (True Positive) refers to the number of trajectories followed for more
than the 75% of their life, also with different identifiers. An example of
TP is shown in Figure 5.9a;

• PTP (Perfect True Positive) refers to the number of trajectories followed
for the 100% of their life with the same identifier. An example of PTP is
shown in Figure 5.9b;

• FN (False Negative) refers to the number of trajectories followed for less
than the 75% of their life;

• FP (False Positive) refers to the number of spurious trajectories followed
for more than two seconds;

100 5. Experimental Results

PETS Dataset
V GT TP PTP FP FN IDS Av Min Max AvI
1 21 21 4 2 0 43 232,6 86 575 2
3 21 15 0 7 6 82 306,4 72 792 3
4 23 18 0 19 (13) 5 89 264,5 23 792 3
5 28 28 1 4 0 81 97,3 22 293 2
6 33 32 1 28(20) 1 142 95,3 7 320 4
7 31 28 0 17 3 123 148,1 32 320 3
8 30 25 1 6 5 95 143,8 13 417 3

ISSIA Dataset
V GT TP PTP FN FP IDS Av Min Max AvI
1 21 19 4 2 24 67 523,2 1 2474 3
2 28 24 7 3 5 33 470,7 1 2597 1
3 57 50 23 8 36 69 667,7 1 2177 1
4 113 71 19 38 28 81 340,9 1 2051 1
5 28 21 7 7 15 46 564,4 1 2597 2
6 22 20 8 2 23 55 626,2 1 2597 2

Figure 5.8 Tracking results on PETS and ISSIA Soccer Dataset. (V: View; GT: Ground
Truth trajectories; TP: True Positives, at least 75% of the track without id-switches; PTP:
Perfect True Positives, 100% of the track without id-switches; FN: False Negatives; FP: False
Positives; IDS: Id Switches; Av: Average trajectory length; Min: Minimum trajectory length;
Max: Maximum trajectory length; AvI: Average number of id-switches).

• IDS (ID-Switch) refers to the number of times an object changes its iden-
tifier. Figure 5.10 shows the histogram of the id-switch number for both
the considered datasets.

• Av refers to the average trajectories length;

• Min refers to the minimum trajectories length;

• Max refers to the maximum trajectories length;

• AvI refers to the average number of id-switches for each trajectory;

In particular, the first part of the table refers to the PETS dataset, while
the second part refers to the ISSIA Soccer dataset. It is worth noting that the
high number of false positive trajectories, especially in Views 4 and 6 of the
PETS dataset, is caused by very frequent detection errors: in particular, as
already mentioned, in View 4 it is caused by the presence of the white-orange
moving wire, while in View 6 it is related both to the presence of the wire and to
the white car, wrongly identified as an object by the detection phase during all
the sequence. All these kinds of detection errors, identified in Table 5.8 by the
numbers in brackets, could be reduced in a very simple way, by applying a filter
to the detection phase, taking into account the particular shape and appearance
of the spurious objects. Since we are only interested in the proposed tracking
method, we do not investigate into the performing of the detection phase.

5.1.4 Qualitative Evaluation

A qualitative evaluation has been finally performed in order to confirm the
efficiency of the proposed approach. In particular, we show how the proposed
algorithm deals with splits and occlusions respectively in Figure 5.11 and 5.12:
in particular, Figure 5.11 reports an example of split caused by an error during
the detection phase and properly adjusted. On the other hand, Figures 5.12
shows some excerpts of the video sequences, with two complex occlusion patterns

5.2. Visual Behavior Analysis 101

(a) (b)

Figure 5.9 Examples of true positive trajectory (a) and perfect true positive trajectory(b).

among three and two persons; as it can be seen, the system preserves the object
identities across the occlusions.

Finally, we show in Figure 5.13 the trajectories obtained by applying the
proposed algorithm over the PETS 2010 Dataset. Despite the complexity of
each view, the trajectories are generally stable and reliable, so confirming the
goodness of the proposed approach.

5.1.5 Computational cost

In order to evaluate the performance of the proposed method in terms of com-
putational cost, we have computed the time needed to process a single frame
(both detection and tracking steps) by considering different images resolutions
and different number of video streams.

The middleware platform detailed in [133], installed on an Intel Xeon pro-
cessor running at 3.0GHz, has been used for the experimentation.

The obtained results are summarize in Figure 5.14: we can note that the time
required to process a single frame linearly increases by increasing the number of
streams (1, 2, 4, 6, 8, 10, 12, 14, 16) as well as the image resolution (1/8, 1/4,
1/2, 1).

Furthermore, it is important to highlight that in the best case, arising when
a single stream is processed, the entire process, from detection to tracking, runs
approximatively at 35 fps on 4CIF images, confirming its usability in real time
applications.

The promising results obtained by the proposed method over two very differ-
ent application fields, a video-surveillance domain (PETS dataset) and a sports
one (ISSIA Soccer Dataset), confirm the robustness of the approach and its
applicability to any real-time context. Almost all the problems arising during
the detection step, ranging from split blobs to undetected objects, are easily
managed by the different states and complex occlusions correctly solved thanks
to the introduction of the group objects.

5.2 Visual Behavior Analysis

In this section we will detail the results obtained by the method for visual
behavior understanding detailed in Section 3.2. Furthermore, the two typologies

102 5. Experimental Results

0	
2	
4	
6	
8	
10	

0	 1	 2	 3	 4	 5	

View1	 PETS	

0	

2	

4	

6	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

View3	 PETS	 	

0	
1	
2	
3	
4	
5	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

View4	 PETS	 	

0	
2	
4	
6	
8	
10	

0	 1	 2	 3	 4	 5	 6	 7	

View5	 PETS	 	

0	
2	
4	
6	
8	
10	

0	 1	 2	 3	 4	 5	 6	 7	 8	

View6	 PETS	 	

0	
1	
2	
3	
4	
5	

0	 1	 2	 3	 4	 5	

View7	 PETS	 	

0	

2	

4	

6	

8	

0	 1	 2	 3	 4	 5	 6	 7	

View8	 PETS	 	

0	

2	

4	

6	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	

View1	 ISSIA	

0	

5	

10	

15	

0	 1	 2	 3	 4	 5	

View2	 ISSIA	

0	

10	

20	

30	

40	

0	 1	 2	 3	 4	 5	 6	 7	 8	

View3	 ISSIA	

0	
20	
40	
60	
80	

100	

0	 1	 2	 3	 4	 5	 6	 7	 8	

View4	 ISSIA	

0	

2	

4	

6	

8	

0	 1	 2	 3	 4	 5	 6	 7	

View5	 ISSIA	

0	
2	
4	
6	
8	
10	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	

View6	 ISSIA	

Figure 5.10 Histogram of id-switches for all the views of the PETS and ISSIA datasets. In
each graphic, the column refers to the number of trajectories having during their life zero or
more id-switches; the row refers to the number of id-switches.

5.2. Visual Behavior Analysis 103

(i)

(ii)

Figure 5.11 The output of the proposed method on two sequences from the PETS (i) and the
ISSIA Soccer (ii) datasets, both containing a split; the first and the second row respectively
represent the input and the output of the method.

of interactions based on the above mentioned method, namely anomaly detection
(Subsection 3.4.1) and queries by sketch (Subsection 3.4.2) will be tested and the
results will be analyzed. In particular, a description of the considered datasets
and a discussion on the setup of the parameters of our method will be provided
respectively in Subsections 5.2.1 and 5.2.2; Subsection 5.2.3 will highlight the
expressive power of the string based representation and in Subsection 5.2.4 we
will show the performance of the clustering algorithm, while in Subsection 5.2.5
we will focus on the classification method. Finally, in Subsection 5.2.6 more
details about the results obtained by using the proposed method for solving
query by sketch will be proposed.

5.2.1 Datasets

Three different well-known datasets (Figure 5.15), acquired in very different
environments, have been used in order to test the proposed system:

• MIT Trajectory dataset [106] (hereinafter MIT1) is a standard and
freely available dataset composed by 40.453 trajectories obtained from a
parking lot scene within five days. Starting from the entire dataset, a

104 5. Experimental Results

(i)

(ii)

Figure 5.12 The output of the proposed method over two sequences of the PETS 2010
dataset (i) and of the ISSIA Soccer Dataset (ii) containing an occlusion. Note how the object
9 in (i) is correctly tracked inside the different groups although it quickly changes its direction
in the frame (c).

subset of trajectories belonging to vehicles (10.335) has been manually
extracted by an expert.

• Edinburgh Informatics Forum Pedestrian Database [134] (here-
inafter EDH) consists of a set of detected targets of people walking through
the Informatics Forum, the main building of the School of Informatics at
the University of Edinburgh. In particular, we focused on the 7146 trajec-
tories acquired on August, 2010. As already said for the MIT1, it has been
manually labeled and approximatively 90% of them have been evaluated
as normal.

• MIT Train Station dataset [135] (hereinafter MIT2) has been acquired
into the New York Grand Central Station; the video, compressed into 1.1
GB AVI file, lasts 33:20 minutes and it is composed by 50.010 frames
(25 fps) among which 42.821 moving objects trajectories have been auto-
matically extracted and filtered in order to remove the noise, resulting in
12.414 trajectories.

It is worth pointing out that the trajectories used in all the above mentioned
datasets have not been manually extracted by a human operator, but instead
by means of different kinds of tracking algorithms. This is a very important
consideration, since it allows us to confirm that the statistical nature of the pro-
posed method allows to also deal with the typical errors of tracking algorithms

5.2. Visual Behavior Analysis 105

(a) (b)

(c) (d)

(e) (f)

Figure 5.13 Output of the proposed algorithm for Views 1 (a), 3 (b), 5 (c), 6 (d), 7 (e) and
8 (f) of the PETS dataset.

as well as noisy trajectories.

5.2.2 Parameters Setup

This subsection is devoted to justify the choice of the free parameters in the
proposed method. The first parameter to be defined is the number of zones |Z|
used to partition the scene. It plays a fundamental role since a very small num-
ber of zones does not give enough informative content to represent trajectories
(think, as an example, if we just use a single zone). On the other hand, a very
large number of zones would avoid the system to be enough general to deal with
rare but normal trajectories and at the same time would make the system too

106 5. Experimental Results

0	

0,1	

0,2	

0,3	

0,4	

0,5	

0,6	

1	 2	 4	 6	 8	 10	 12	 14	 16	

Ti
m
e	
(s
ec
s)
	

#	 of	 Streams	

Computa=onal	 cost	 (single	 thread)	
Original	 Resolu=on	

Resolu=on	 =	 1/2	

Resolu=on	 =	 1/4	

Resolu=on	 =	 1/8	

Figure 5.14 Computational cost of the tracking algorithm by varying the resolution and the
number of video streams.

(a) (b) (c)

Figure 5.15 MIT1 (a), EDH (b) and MIT2 (c).

5.2. Visual Behavior Analysis 107

much sensitive to the error of the tracking phase. However, in Section 5.2.5 we
will show that the exact number of zones does not significantly influence the
performance of the system, and the range |Z| ∈ {20, .., 40} is a good compromise
for all the considered datasets.

The parameters of the kernels that we need to tune are respectively O (for
the Triangular Kernel) and σ (for the Speed and Shape Kernel). In particular,
in [114] it is shown that the best results can be achieved by using the following
parameters:

• The Bandwidth σ is set to a multiple of a simple estimate of the median
distance K of different points observed in different time-series of our train-
ing set, scaled by the square root of the median length of time-series in the
training set. In particular, in [114] it is suggested to try σ ∈ {0.1, 1, 10}·K,
where K = median||θ(xi)−θ(yi)||

√
median(||xi||) and to use higher mul-

tiples (e.g. 2,5).

• The Triangular parameter O can be set to a reasonable multiple of the
median length, e.g. 0.2 or 0.5.

Finally, a proper lower bound on the MSE should be selected as stop condi-
tion: since this value strongly depends on the real environment we are analyzing
and then cannot be fixed a priori, in Section 5.2.4 we will show how the perfor-
mance of the clustering algorithm varies by using different thresholds.

5.2.3 String representation: experimental results

Different trajectory representations and different similarity measures between
these representations have been proposed in this paper: decomposition of the
trajectory into a sequence of traversed zones, encoding of the speed and shape
of each trajectory within each zone and encoding of a similarity measure be-
tween zones through a weighted graph (Section 3.2.4). In order to measure the
insight provided by these different representations, we propose to compare the
different Area Under Curve (AUC) obtained by a one nearest neighbor classi-
fier based on different trajectory representations and different kernels. To that
end, we consider the cluster represented in Figure 3.26(c). Given one trajectory
representation, and one kernel between these representations, we consider each
trajectory of this cluster and sort increasingly all the remaining trajectories
of the dataset according to their distance to this trajectory. This distance is
associated to each kernel and defined as:

d2(s, s′) = 2 (1− k(s, s′)) ,

where k(•, •) denotes the considered kernel.
Different thresholds on this distance provide a ROC curve and hence an

AUC. The mean AUC value for all trajectories within the cluster is computed
for each kernel and trajectory representation. These results are summarized in
Table 5.16.

Note that the time series kernel represents the string kernel computed on
the whole set of points of a trajectory; this kernel obtains a low AUC of 0.6. On
the other hand, the Dirac kernel is based on a string representation solely based
on the sequence of traversed zones. Using this kernel, we obtain an AUC of

108 5. Experimental Results

Kernel AUC Time (msecs)

Dirac Kernel (kZ , Eq. 3.28) 0.86 0.48 · 10−3

Dirac Kernel, Speed and Shape Kernel (kZSS , Eq. 3.32) 0.89 0.53 · 10−3

Weighted Dirac Kernel (kWZ , Eq. 3.29) 0.89 0.50 · 10−3

Weighted Dirac Kernel, Speed and Shape Kernel (kWZSS ,
Eq. 3.32)

0.91 0.56 · 10−3

Time Series 0.60 0.97 · 10−2

Figure 5.16 Expressive power of the string based representation. Each row contains infor-
mation about the particular considered kernel, the mean AUC and the average time required
to compute a single normalized kernel.

0.86. This last result demonstrates the insight provided by the notion of zone.
The introduction of a notion of similarity between zones through the Weighted
Dirac Kernel allows to increase the AUC up to 0.89. The combination of this
last kernel with a description of the speed and shape of trajectories within each
zones allows to get the highest AUC of 0.91.

Finally the last column of Table 5.16 shows the mean execution time required
to compute a kernel value for each type of kernel. We can remark that the
use of zones significantly reduces the size of strings and hence execution times.
Moreover, all kernels using zones have approximately equivalent execution times.

5.2.4 Clustering: experimental results

The three above mentioned datasets have been used in order to evaluate the
performance of the proposed clustering algorithm. The experiments have been
conducted on a MacBook Pro equipped with Intel Core 2 Duo running at 2.4
GHz.

Two different evaluations have been carried out: the former is a quantitative
evaluation, performed in terms of C-index and computational cost. The latter
is a qualitative evaluation, aiming at visually confirming the effectiveness of the
proposed method by showing some of the most representative clusters obtained
by using the proposed method. Finally, a comparison both in terms of C-index
and computational cost will be carried out by considering other state of the art
approaches.

Quantitative Evaluation: the C-index [136] is often used in order to eval-
uate the performance of the clustering algorithms. It is defined as:

C =
S − Smin

Smax − Smin
, (5.5)

where S is the sum of distances over all pairs of objects from the same cluster,
n is the number of those pairs and Smin is the sum of the n smallest distances
if all pairs of objects are considered. Likewise Smax is the sum of the n largest
distances out of all pairs. The C-index ranges from 0 to 1 and the optimum
value is 0.

Figure 5.17 shows the performance of the proposed algorithm, both in terms
of computational cost and C-index for the three different considered datasets. In
particular, the graphics in the first row confirm that the time needed to perform
the clustering is linear with the number of clusters, which is in turn strongly
dependent in our method on the chosen threshold. Furthermore, we can also
note that the greatest variance based approach is a good approximation of the

5.2. Visual Behavior Analysis 109

major axis based approach: in fact, it is, as expected, less expensive than the
major axis based clustering but the C-index score is in practice still comparable.
This consideration is confirmed by the second row of Figure 5.17, where it is
shown how the C-index varies with different stop condition criteria (and then
with different thresholds). As a matter of fact, we can note that the two methods
are comparable in all the considered datasets. We can also observe in Figure 5.17
that the evolution of the C-index according to the threshold strongly depends
on the particular dataset and on the homogeneity of trajectories belonging to
it.

In fact, the number of clusters is a decreasing function of the threshold. By
varying the number of clusters, we induce a variation of the number n of pairs
of trajectories in a same cluster. This value of n has a direct influence on both
the numerator and the denominator of the C-index, hence leading to results
difficult to predict. The C-index is thus not specifically designed to select an
optimal number of clusters but rather to compare different clustering methods
using a same number of clusters. This type of protocol is applied in Table 5.18
explained bellow.

0,05	

0,07	

0,09	

0,11	

0,2	 0,4	 0,6	 0,8	 1	

C	
In
de

x	

Threshold	

MIT1	

Major	 Axis	
Greatest	 Variance	

0	

1000	

2000	

3000	

20	 40	 60	 80	 100	

Ti
m
e	
(s
ec
s)
	

Clusters	 number	

MIT1	

Major	 Axis	
Greatest	 Variance	

(a) (d)

0	

250	

500	

750	

1000	

40	 50	 60	 70	 80	 90	

Ti
m
e	
(s
ec
s)
	

Clusters	 Number	

EDH	

Major	 Axis	
Greatest	 Variance	 0,05	

0,1	

0,15	

0,2	

0,25	

0,2	 0,4	 0,6	 0,8	 1	

C	
In
de

x	

Threshold	

EDH	
Major	 Axis	

Greatest	 Variance	

(b) (e)

500	

1000	

1500	

2000	

2500	

3000	

40	 60	 80	 100	 120	 140	

Ti
m
e	
(s
ec
s)
	

Clusters	 Number	

MIT2	

Major	 Axis	
Greatest	 Variance	 0,05	

0,15	

0,25	

0,35	

0,2	 0,4	 0,6	 0,8	 1	

C	
In
de

x	

Threshold	

MIT2	
Major	 Axis	
Greatest	 Variance	

(c) (f)

Figure 5.17 Performance of the proposed clustering algorithm for the different datasets
(MIT1 (a,d), EDH (b,e) and MIT2 (c,f)) in terms of computational costs and c-index.

Qualitative Evaluation: a qualitative evaluation of the algorithm is pro-

110 5. Experimental Results

Method
MIT1 EDH MIT2

C-Index Time C-Index Time C-Index Time

Proposed
Method

0.07 0.53 0.08 0.19 0.18 0.72

Kernel
k-Means

0.29 0.04 0.31 0.04 0.36 0.04

Global
k-Means

0.23 40 0.27 63 0.19 67

Fast Global
k-Means

0.32 0.13 0.34 0.10 0.27 0.13

PCA+k-
Means

0.26 10 0.28 3 0.18 4

Figure 5.18 Comparison with state of the art approaches in terms of C-index and time

(expressed in hours).

vided in Figure 5.19. In particular, some representative clusters for each dataset
are depicted. The color of each trajectory highlights its direction: it starts in
black and progressively turns its color into red. As confirmed by the previ-
ous quantitative evaluation, the quality of the clustering algorithm is strongly
related to the particular environment: as a matter of fact, the first dataset
mainly contains vehicles trajectories: the trajectories are much more compact,
being the scenario a constraint one, so implying that all the clusters are very
homogeneous (see Figure 5.19(a)). On the other hand, in the other datasets
the trajectories belong to people freely moving inside a square, without a street
which forces them to follow a given path. Although in this case the problem is
much more difficult, the results obtained by the proposed clustering algorithm
are really promising, as shown in Figures 5.19(b) and 5.19(c).

Comparison: in order to confirm the effectiveness of the proposed ap-
proach, a comparison with the following algorithms has been carried out, in
terms of C-index and computational cost: in particular, the traditional Kernel
k-means and two improved versions, the Global Kernel k-means and the Fast
Global Kernel k-means [70], are considered. A standard implementation of the
Kernel K-means has been used and can be found in [137], while as for the other
two considered methods, the code has been made available by the authors.

It is worth pointing out that a very important disadvantage of the Kernel
k-means lies in the fact that the performance are also influenced by the random
initialization of the centroids needed to initiate the system. For this reason, in
order to limit the dependency of the results from the particular initialization,
all the results presented in this section are obtained by taking the minimal C-
index and the corresponding time over 300 different trials. This dependency to
the initial guess is one of the main difference between the proposed hierarchical
clustering method based on a recursive subdivisions and the k-means based
approaches: k-means methods converge to the closest local optima from the
initial guess. On the other hand, our method uses heuristics based on the
statistics of data in order to provide a solution which may not be locally optimum
but which is usually close from a good optima.

The results for the different datasets are shown in Table 5.18. In particular,
we fixed the threshold to 0.5 for the proposed method and the so obtained
numbers of clusters have been considered as input for the other state-of-the-art
approaches.

Even if the proposed method is slower than the traditional Kernel k-Means
and the Fast Global Kernel k-Means, it clearly outperforms both of these in
terms of C-Index over all the three considered datasets. It is worth pointing

5.2. Visual Behavior Analysis 111

(a)

(b)

(c)

Figure 5.19 Some of the representative clusters for the three considered datasets: MIT1 (a),
EDH (b) and MIT2 (c).

out that in general the low performance of the above mentioned approaches is
mainly due to the so-called problem of the curse of dimensionality [138]: when
the dimensionality increases, the volume of the space increases so fast that the
available data becomes sparse. It implies that the amount of data needed to
obtain a statistically sound and reliable result grows exponentially with the di-
mensionality. Furthermore, also the distance functions loose their usefulness: as
a matter of fact, the distance between any two points in a given dataset converges
and then the discrimination of the nearest and furthest point in particular be-
comes meaningless. This issue can be overcome by reducing the dimensionality
of the space [139]: the kernel PCA is applied and only the first N components,
being N the number of clusters, are considered. Finally, the traditional k-means
is used in order to find out the clusters. Although this approach reveals to be
better than the Kernel k-Means, the proposed method still outperforms it, both
in terms of C-index and time needed to perform the clustering. This is mainly
due to the fact that our method, based on successive projections, does not use a
global initial projection which may induce an important loss of information, but
instead analyzes at each iteration all the information pertaining a given cluster
in order to find its major axis. It means that it reduces the dimensionality of
the data without paying it in terms of global loss of information.

Furthermore, a qualitative comparison has been performed on the MIT2;

112 5. Experimental Results

(a) (b) (c)

(d) (e) (f)

Figure 5.20 MIT2: in first row the clusters belong to the following methods: (a) Spectral
Clustering [140], (b) HDP [141] and MDA mode [135]. These figures have been provided by
the authors of [135]. In second row (d,e,f) the corresponding clusters obtained by the proposed
method are depicted.

Figure 5.20 shows some representative clusters obtained respectively by [140],
[141] and [135]. The above mentioned approaches are good examples of distance-
based [140] and model based [141][135] approaches, being respectively based on
Hausdorff distance-based spectral clustering [140], hierarchical Dirichlet pro-
cesses (HDP) [141] and Mixture model of Dynamic pedestrian-Agents (MDA)
[135]. We can note that our clusters in Figures 5.20(d) and 5.20(e) seem quali-
tatively more compact than in Figures 5.20(a) and 5.20(b). On the other hand
clusters in Figures 5.20(c) and 5.20(f) seem approximately equivalent while vary-
ing differently around a same mean trajectory.

5.2.5 Anomaly Detection: experimental results

The classification algorithm has been tested over two of the considered datasets,
namely the MIT1 and the EDH. The absence of the MIT2 is mainly due to the
fact that this step requires a preliminary labeling of the trajectories into normal
and abnormal, which makes sense only if abnormal trajectories can be identified
in the dataset.

In both cases, given the entire dataset D, the normal trajectory dataset D∗

has been randomly partitioned into three folds and one of these has been used for
the learning phase. The remaining two folds have been mixed with the remaining
trajectories (D \D∗) and are used to test the system. Finally, a cross-validation
strategy has been adopted in order to obtain the results presented in Figure ??.
These results present the area under curve (AUC) of the Receiver Operating
Characteristic (ROC) curves computed on the MIT1 and the EDH using both
our traditional Dirac Kernel (kZSS) and Weighted Dirac kernel (kWZSS) with
an increasing number of zones (from 10 to 60).

Starting from the obtained results, the following consideration can be done:
the number of zones |Z| does not strongly influence the performance of the
proposed system. As a matter of fact, we can note that by using a Dirac Kernel
in the MIT dataset (Table 5.1e, line 1 and Figure 5.1a) we achieve comparable

5.2. Visual Behavior Analysis 113

performance with |Z| ranging from 10 to 40; the performance decreases with a
higher number of zones (|Z| ranging from 50 to 70). This is mainly due to the
fact that the system in this case pays in terms of generalization and it is not
able to correctly classify those normal trajectories only slightly different from
the ones included in the dataset. This consideration is also confirmed by the
result obtained on the EDH (Table 5.1e, line 2 and Figure 5.1b), where the
optimum number of zones ranges from 30 to 50.

0,00	

0,20	

0,40	

0,60	

0,80	

1,00	

0,00	 0,20	 0,40	 0,60	 0,80	 1,00	

Tr
ue

	 P
os
i1
ve
	 R
at
e	
(T
PR

)	

False	 Posi1ve	 Rate	 (FPR)	

ROC	 Curve	 	
MIT	 Trajectories	 Dataset	 	

10	 zones	 20	 zones	
30	 zones	 40	 zones	
50	 zones	 60	 zones	
70	 zones	

(a)

0,00	

0,20	

0,40	

0,60	

0,80	

1,00	

0,00	 0,20	 0,40	 0,60	 0,80	 1,00	

Tr
ue

	 P
os
i1
ve
	 R
at
e	
(T
PR

)	

False	 Posi1ve	 Rate	 (FPR)	

ROC	 Curve	 	
Edinburgh	 Dataset	 	

10	 zones	 20	 zones	
30	 zones	 40	 zones	
50	 zones	 60	 zones	

(b)

0,00	

0,20	

0,40	

0,60	

0,80	

1,00	

0,00	 0,20	 0,40	 0,60	 0,80	 1,00	

Tr
ue

	 P
os
i1
ve
	 R
at
e	
(T
PR

)	

False	 Posi1ve	 Rate	 (FPR)	

ROC	 Curve	 	
MIT	 Trajectories	 Dataset	 	

10	 zones	 20	 zones	
30	 zones	 40	 zones	
50	 zones	 60	 zones	

(c)

0,00	

0,20	

0,40	

0,60	

0,80	

1,00	

0,00	 0,20	 0,40	 0,60	 0,80	 1,00	

Tr
ue

	 P
os
i1
ve
	 R
at
e	
(T
PR

)	

False	 Posi1ve	 Rate	 (FPR)	

ROC	 Curve	 	
Edinburgh	 Dataset	 	

10	 zones	 20	 zones	
30	 zones	 40	 zones	
50	 zones	 60	 zones	

(d)

10 zones 20 zones 30 zones 40 zones 50 zones 60 zones
MIT1 Dirac 0.87 0.88 0.85 0.87 0.74 0.67
EDH Dirac 0.72 0.73 0.84 0.87 0.86 0.77
MIT1 Weighted
Dirac

0.87 0.85 0.92 0.86 0.89 0.86

EDH Weighted
Dirac

0.79 0.85 0.85 0.82 0.79 0.80

(e)

Figure 5.21 AUC of the MIT1 and of the EDH obtained by varying the α parameter and

by using the Dirac Kernel and its weighted version.

Furthermore, we can note that in this case a low number of zones (|Z| =
10) does not guarantee good performance. This is mainly due to the different
trajectories’ distribution of the two considered datasets. In fact we observe in
Figure 5.15 that the trajectories in the MIT1 are located in a limited area of
the image and are much more compact than in the EDH, where people can
freely move in the entire image. For this reason, although the proposed scene

114 5. Experimental Results

partitioning algorithm is able to optimize the partition of the space, the limited
number of zones seems to not give enough informative content because of the
homogeneous distribution of the dataset.

Finally, we can note that the introduction of the Weighted Dirac Kernel only
slightly improves the performance in both the considered datasets. However, its
main advantage lies in the fact that this similarity evaluation is less sensitive to
the different number of zones thanks to its nature: as a matter of fact, it also
guarantees good performance with a low, as well as an high number of zones,
since it also considers the proximity of zones. Furthermore, it is able to provide
a better generalization than the Dirac Kernel, without paying in terms of false
positive errors. This consideration is confirmed by the analysis of the AUCs,
reported in Table 5.1e: the improvement between the best and the worst case
by using the Dirac Kernel is higher than 20%; for instance, for the MIT1, where
we obtain 0.88−0.67

0.88 = 0.23. On the other hand, it is lower than 7% by using
the Weighted Dirac Kernel, where, for instance, we obtain on the same dataset
0.92−0.86

0.92 = 0.06.

Starting from the obtained results, which are sufficiently good for most prac-
tical applications, we can enforce the effectiveness of the method by drawing
some considerations about the nature of the errors; as we will show in the
following, most of the errors can be discussed, being strongly related to ambigu-
ous interpretations of the trajectories also for a human operator. An example
is shown in Figure 5.22a: the trajectory in yellow is labeled as abnormal in the
ground truth, since it refers to a vehicle’s trajectory partially located in the
grass (or to an error of the tracking phase as well); our method, as well as any
other kinds of methods based on shape and position similarities, has no chance
to give a correct answer and classifies such a trajectory as abnormal, since it
is very similar to those normal which avoid the grass just for a few centime-
ters. Only the introduction of areas boundaries could make the system able to
provide a correct answer by boundary cross detection.

Similar situation occurs in Figure 5.22b, where the vehicle tries to park,
but because of place lack, leaves out after a complete turn. In this case, the
description of the trajectory, manually labeled as abnormal, follows a regular and
normal path, except for a very limited stretch, reproducing the same typology
of error occurring in the previous case.

In general, it is worth pointing out that it is a really difficult task, also for a
human operator, to distinguish normal and abnormal trajectories: in fact, both
the above mentioned behaviors are ambiguous and could be considered normal
as well as abnormal. For instance, the last situation could be considered an
error of the tracking phase and could be labeled as normal also by a human
operator.

Opposite kinds of error occur in Figures 5.22c and 5.22d. In this case, the two
trajectories are manually labeled as normal with respect to their semantic, but
can also refer to tracking errors because of their very short lengths. The system
in such a situations has not sufficient information and then is not able to reliably
associate the two trajectories to any cluster containing normal trajectories.

In conclusion the performance, yet acceptable for many practical application,
can be considered even better at the light of the above considerations.

5.2. Visual Behavior Analysis 115

(a) (b)

(c) (d)

Figure 5.22 Abnormal trajectories classified as normal (a)(b) and normal trajectories clas-
sified as abnormal (c)(d).

0	

20	

40	

60	

80	

100	

500	 2000	 3000	 7000	

An
al
yz
ed

	 T
ra
js	
(%

)	

Size	 of	 the	 dataset	

MIT1	 K=1	

K=5	

K=10	

(a)

0	

20	

40	

60	

80	

100	

500	 1000	 2000	 3000	 4000	

An
al
yz
ed

	 T
ra
js	
(%

)	

Size	 of	 the	 dataset	

EDH	 K=1	
K=5	
K=10	

(b)

0	

20	

40	

60	

80	

100	

1000	 3000	 5000	 7000	

An
al
yz
ed

	 T
ra
js	
(%

)	

Size	 of	 the	 dataset	

MIT2	 K=1	
K=5	
K=10	

(c)

Figure 5.23 Query by sketch: percentage of trajectories that need to be analyzed in the
MIT1 (a), in the EDH (b) and in the MIT2 (c).

116 5. Experimental Results

(a) (b)

(c) (d)

(e) (f)

Figure 5.24 The trajectories sketched by the user are shown in the first row, while the
obtained results (with k = 20) are in the second row for the different datasets: MIT1 (a,d),
EDH (b,e) and MIT2 (c,f).

5.2.6 Query by sketch: experimental results

Two different evaluations will be provided in this section, a quantitative and a
qualitative one, in order to confirm the effectiveness of the method proposed for
solving queries by skecth. Both these evaluations have been performed over the
three datasets described in Section 5.2.1.

The quantitative evaluation has been carried out by evaluating the improve-
ment of the performance if compared to a brute-force approach. Among the
entire datasets, 3000 trajectories have been randomly selected from each dataset
for testing and the remaining have been used for training. In particular, the
number of the trajectories used to build the k-d tree has been progressively in-
creased in order to verify the performance of the proposed method with different
size, as shown in Figure 5.23. A k nearest neighbor search is performed and
the number of trajectories analyzed by the algorithm, expressed in percentage
with respect to the size of the considered dataset, has been evaluated. The
results are shown in Figure 5.23: as evident, the improvement is much more
significant with big datasets: for instance, if we are interested in discovering the
most similar trajectory (k = 1) in a dataset composed of 3000 trajectories, we
only have to analyze 24% of it (approximatively 700 trajectories) in the MIT1

5.3. Indexing and Retrieval Engine 117

(Figure 5.23a) and 11% of it (approximatively 300 trajectories) in the EDH and
the MIT2 (Figure 5.23b), resulting in a significant improvement of the overall
performance.

Furthermore, a simple Graphical User Interface has been designed in order
to allow the user to solve a query by sketch. The user simply draws a trajectory
and choses the number of trajectories (the k value) he is interested in. Examples,
one for each considered dataset, are provided in Figure 5.24. In particular, the
first row shows the trajectories sketched by the user for the different datasets,
while in the second one the result of the algorithm is depicted. The obtained
results highlight the effectiveness of the proposed method over very different
datasets, and then over different application fields.

5.3 Indexing and Retrieval Engine

The storing and retrieving engine has been tested over both synthetic and real
datasets. The former has been used to stress the proposed method with a
very complex scenario, while the latter has been chosen in order to confirm the
feasibility of our approach.

The database has been implemented by storing the trajectories’ data in
Postgres using PostGIS; data are indexed using the standard bi-dimensional
R-tree over Generalized Search Trees (GiST) indexes since, as highlighted in
the specialized literature, this choice guarantees higher performance in case of
spatial queries if compared with the PostGIS implementation of R-trees.

In the next sections the obtained results will be presented: in particular, in
Section 5.3.1 the graphical user interface designed for making easier the use of
the human operators is presented; Section 5.3.2 details the experimental set up,
while in Section 5.3.3 the results obtained by using the MIT Trajectory Dataset
are shown. Finally, in Section 5.3.4 the synthetic dataset generator is detailed
and in Section 5.3.5 a comparison with the off-the-shelf solution provided by
PostGis over the synthetic dataset is performed.

5.3.1 Graphical User Interface

For an intuitive construction of the queries, the Graphical User Interface GUI
depicted in Figure 5.25 has been realized: it allows the user to define both the
geometric and temporal constraints needed for building a query box.

In particular, for a DRSQ query, the user specifies the temporal interval
by using a sliding bar and the spatial region of interest by drawing a rectangle
on the 2D plane. Furthermore, it is also possible to specify appearance-based
information like the class of the object and its dominant color.

As for Flow-DRSQ queries, the user is also required to insert the number
of intervals needed for the analysis. Finally, the definition of M-DRSQ queries
(M = 2 in the example provided in Figure 5.25) requires to set parameters of
two different query boxes: the user needs to draw two different rectangles, both
representing the spatial area of the query boxes, and to specify two different
time intervals, one for each query box.

In the example proposed in Figure 5.25, the user has built a M-DRSQ query
box; in particular, he is interesting to see all the black cars which cross the red
area, interactively drawn by the user, during the frames 1-806916 and after the

118 5. Experimental Results

Figure 5.25 A snapshot of the GUI.

green area during the frames 492022-1318618. The seven trajectories satisfying
the query are depicted on the GUI; the time needed to answer the query and to
visualize the final result on the screen is 187 milliseconds. This result confirms
that the proposed framework can surely satisfy in real time all the queries sub-
mitted by the human operator. More details about the computational cost of
the proposed method are shown in the next Sections.

5.3.2 Experimental Set Up

As stated previously in this thesis, each query can be represented as a 3D cube;
it is straightforward to observe that the time needed to process a generic DRSQ
query (QT) is a function of the following parameters: the number of trajecto-
ries T , the trajectories’ length L, the query cube dimension Dc (expressed as
percentage of the volume1 V = ||x|| ∗ ||y|| ∗ ||t||), and on the position of the
query box Pc. In particular, Pc strongly influences the time needed to extract
the trajectories as, in real world scenarios, the trajectories are not uniformly
distributed. To avoid the dependence on the query cube position, we decided
to repeat the query a number of times N inversely proportional to the query
cube dimension, as shown in Table 5.26; finally, results have been averaged to
obtain:

QTDRSQ = f(T ;L;Dc). (5.6)

It is evident that in real scenarios the dependency by the number of trajec-
tories T is imposed by the scenario itself. This is one of the main reasons why
in the following two different experimentations will be carried out: the former,
conducted over a real dataset, mainly aims at evaluating QT by varying the
query dimension Dc. On the other hand, the latter is devoted to stress the
system by properly generating the trajectories to be stored.

1||x|| and ||y|| are the width and the height of our scene while ||t|| be the whole time interval
we are interested in.

5.3. Indexing and Retrieval Engine 119

Dc 1% 5% 10% 20% 30% 50%
N 200 40 20 10 7 4

Figure 5.26 Query cube dimension Dc with corresponding number of repetitions N .

Dc T 1 + T 2 T 3 T 4 QTDRSQ

1% 0.003 0.010 0.009 0.022
5% 0.007 0.064 0.115 0.186

10% 0.013 0.154 0.320 0.487
20% 0.038 0.533 1.383 1.954
30% 0.097 1.566 4.014 5.673
50% 0.173 5.878 14.924 20.975

Figure 5.27 Averaged time (in seconds) to solve a DRSQ query.

5.3.3 Experiments over Real Dataset

The real dataset that we chose for our experimentation is the MIT Trajectory
dataset (MIT1), already introduced in Section 5.2.1. The whole dataset, com-
posed of approximately 4∗104 trajectories with 109 points in each trajectory (on
average), has been used. At loading time, each trajectory has been segmented
using AreaMin = 1, so obtaining approximately 1.92 ∗ 106 segments with 24
points in each segment (on average). We conducted our experiments on a PC
equipped with an Intel quad core CPU running at 2.66 GHz, using the 64 bit
version of the PostrgreSQL 9.2 server and the 2.1 release of PostGIS.

Table 5.27 shows QTDRSQ (in seconds) as Dc varies. It is worth pointing

out that QTDRSQ results from the sum of four terms: T 1 is the time needed to
select the segments whose bounding box is completely inside the query box on
each bi-dimensional plane (min selection), T 2 is the time needed to select the
segments whose bounding box intersects the query box on each bi-dimensional
plane (max selection), T 3 is the time to clip the segments (clipping) while T 4 is
the time needed to extract the whole trajectory, so obtaining:

TQDRSQ = T1 + T2 + T3 + T4. (5.7)

As shown in Table 5.27, the system spends most of the time in clipping
and extracting candidate trajectories (T 3 and T 4); this consideration further
confirms the importance and the effectiveness of the proposed approach, which
is able, as confirmed in the next section, to significantly reduce the number of
trajectories to be analyzed and then to significantly improve the overall perfor-
mance of the system during the retrieval phase.

Starting from the above considerations, it is possible in a simple way to
obtain the expected performance of both Flow-DRSQ and M-DRSQ queries.

F-DRSQ is the application of several DRSQ queries in sequence. Suppose,
for instance, that we ask to our system to retrieve the number of vehicles pass-
ing through Interstate 55 from 5 pm and 6 pm each ten minutes; what our
system would do is to perform six DRSQ queries, one for each 10 minutes inter-
val between 5 pm and 6 pm, only counting the number of instances satisfying
the query in each interval and giving, as the final result, the total sum of the
count. This means that, for each DRSQ query, the system performs only the

120 5. Experimental Results

intersection and the clipping stages, giving the total count as the final result of
the Flow-DRSQ query.

According to the above considerations, the expected QTF−DRSQ of a Flow-
DRSQ query asking for the number of objects intersecting query box B in the
time interval (t1, tn) each of the N time intervals is defined as:

QTFlow−DRSQ = N ∗ (T1 + T2 + T3), (5.8)

in which T1 is the time to verify if the trajectories 2D bounding boxes are
completely inside the query boxes and T2 and T3 are the intersection and clipping
times respectively for each of the N DRSQ queries; finally, the sum of the N
count values is given as a result.

M-DRSQs are slightly more complex as the multiple query boxes are vir-
tually independent. In this case, the system processes each query box as a
single DRSQ query, applying the intersection and clipping operations for each
query box; finally, the extraction phase provides the trajectories satisfying the
M-DRSQ query.

The expected QTM−DRSQ of a M-DRSQ query with M bounding boxes
(B1, B2, ..., BM), each having its time interval, is:

QTM−DRSQ = M ∗ (T1 + T2 + T3) + T4, (5.9)

where we just need to extract once the trajectories’ result set.

5.3.4 Synthetic Data Generator

In order to further stress the proposed approach, we also considered a synthetic
data set, generated as follows. Let ||x|| and ||y|| be the width and the height
of our scene and ||t|| be the time interval we are interested in. Being in a
video-surveillance context, we assume that the data are acquired for a week at
a frame rate of 10 seconds per frames and the video has a resolution of 4-CIF.
Each trajectory starting point is randomly chosen in our scene at a random time
instant t1; the initial directions along the x axis and the y axis, respectively dx
and dy, are randomly chosen. At each time step t, we first generate the new
direction, assuming that dx and dy are updated once for second of d degrees,
being d generated according to a uniform distribution in the interval (−D,D);
subsequently, we randomly chose the velocity along x and y. The velocity
is expressed in pixels/seconds and it is assumed to be generated in both the
directions, x and y, as a gaussian distribution N(µ, σ). Therefore the new
position of the object can be easily derived; if it does not belong to our scene,
other points will not be generated for that trajectory. In this way the length L
of the trajectories is not fixed a-priori.

5.3.5 Comparison

At this point it should be evident that the system spends most of the time in the
extraction of those trajectories candidate to be clipped as well as in the clipping
itself. For this reason, in order to confirm the effectiveness of the proposed
approach, we compare the proposed method with the solution recently provided
by PostGis, which introduced a 3D indexing strategy, based on R-Trees, for
verifying the intersection between bounding boxes. However, its main limitation

5.4. Audio Recognition 121

||x|| (pixels) 704
||y|| (pixels) 576
||t|| (frames) 10 ∗ 3600 ∗ 24 ∗ 7

T ∈ {1, 2, 3, 5, 10} ∗ 105

D (degrees) 45
µ (pixels/secs) 10
σ (pixels/secs) 1

Figure 5.28 The parameters used to generate synthetic data.

lies in the fact that the function for verifying the containing relationship is not
available in 3D dimensions but only in 2D dimensions, and then a decomposition
in a 2D space is still needed in order to achieve very competitive results.

In particular, the comparison between the proposed method and the off-the-
shelf solution provided by Postgis is carried out in terms of improvement of the
number of trajectories to be clipped:

improvement =
clippedPostgis − clippedproposed

clippedPostgis
, (5.10)

being clippedPostgis and clippedproposed the number of trajectory that the system
need to extract and after to clip, respectively for the solution provided by Postgis
and for the proposed method.

The obtained results, for different segmentation conditions, are shown in
Figure 5.29. In particular, in the generic figure the improvement (on the y-axis)
is depicted by increasing both the number of trajectories T (on the x-axis) and
the query box dimension Dc (by overlapping on the same figure different lines).

First, we can note that the segmentation step strongly influences the perfor-
mance of the proposed algorithm. As a matter of fact, the improvement shown
in Figure 5.29(g), obtained by considering AreaMin = 100% (without segmen-
tation) are only slightly better for very big query boxes. For most of the Dc

values, in fact, the improvement is null. This is mainly due to the fact that
a very long trajectory could potentially cover the entire spatial extension, so
implying that the introduction of the min-selection step does not make sense,
since the containing relationship is verified only for a few trajectories.

The improvement of the performance of the proposed method is much more
evident by decreasing the Area Min value. As shown in Figure 5.29(a), the best
results are obtained by considering a very small Area Min value (AreaMin =
1%) as well as very high query boxes dimensions: in this case, in fact, approx-
imatively 80% of trajectories does not need to be clipped. It is mainly due to
the following considerations: if the length of the segments is small enough, the
probability that it is completely contained inside the query box is very high; of
course, this consideration is much more true for bigger query boxes.

5.4 Audio Recognition

In this section we will analyze the performance obtained by the method intro-
duced in this thesis for detecting audio events of interest. In particular, Section
5.4.1 details the considered dataset, in Section 5.4.2 the obtained results will be

122 5. Experimental Results

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.29 Improvement of the proposed method if compared with the available Postgis
solution by varying the segmentation conditions (Area Min) and the query cube dimension
Dc.

5.4. Audio Recognition 123

reported while in Section 5.4.3 a comparison with a state of the art method is
performed.

5.4.1 The dataset

The experimental validation of the system has been carried out considering a
typical audio surveillance application that requires the recognition of the follow-
ing three classes of abnormal audio events: scream, broken glass and gunshot.
From the user perspective, the system must raise an alarm in presence of an
abnormal audio event, while the sounds produced by any other source should
be recognized as belonging to the background noise class.

To the best of our knowledge, there are no publicly available datasets for the
benchmarking of audio surveillance applications. Thus, we constructed our own
dataset of PCM audio clips sampled at 32 KHz frequency and with a resolution
of 16 bits per sample. We collected a total of 650 audio clips, some of them
recorded by us in different environment conditions and others selected from
compilations of sounds usually used for movie effects. In particular, we collected
271 different sounds that belong to the three classes of abnormal sounds defined
above.

Furthermore, in order to test the robustness of the proposed approach with
respect to the presence of different kinds of background sounds both from indoor
and outdoor environments, we collected and included into the dataset 379 audio
clips representative of the following types of sound: silence and white gaussian
noise, rain, whistles, crowded ambiance, vehicles, household appliances, bells,
applauses and claps. All the audio clips have been recorded with an Axis P8221
Audio Module and an Axis T83 omnidirectional microphone for audio surveil-
lance applications.

A key requisite for an audio surveillance system is the ability to detect that
an abnormal event (hereinafter foreground sound) occurs even when it is mixed
with one or many kinds of background sounds and when its energy is only
slightly higher or even comparable to the one of the background noise. That
means that a surveillance system must be able to detect abnormal events also
for low values of the signal to noise ratio (SNR). Thus, in order to account for
these necessities, we defined and adopted a procedure to create a new dataset of
audio clips suitable for abnormal events detection and classification purposes.

The audio clips from the original dataset have been normalized so that they
have all the same overall energy, as follows:

x(n) =
x(n)√

1
N

∑N
i=1 x(i)2

, (5.11)

Before to start generating the dataset, the normalized audio clips were split in
two groups comprising 70% and 30% of the total amount of sounds from the
original dataset, respectively. We used the clips from the first group to build
the training set and the ones from the second group to build the test set. Thus,
we generated two sets of audio clips of about 3 minutes duration, by mixing
foreground sounds with different combinations of a background sounds. The
procedure adopted to create a new audio clip is the same for both the training
set and the test set and is explained in detail in the following.

124 5. Experimental Results

First, an environmental sound is created by mixing a number d ∈ {1, 2, 3} of
sounds from the background class. The number d is randomly defined before the
creation of every clip. Since the original background sound files have different
durations, we replicated them in order to fit the duration of 3 minutes of the new
audio clip to be created. Let us define as Bj(n) =

∑d
k=1 bk(n) the background

noise, where bk(n), k = 1, . . . , d are the replicated background sounds.

Once the environmental sound is created, a number Ne of foreground events
is randomly chosen from the original dataset and mixed with the environmen-
tal sound, in order to simulate the occurrence of an abnormal event in a real
and complex environment. The foreground events are distanced each other by
∆tn seconds, whose value is uniformly distributed in the interval [3.5, 5]. A
certain event from the original dataset occurs a number of times in the final
dataset, but with different background noise in order to simulate the presence
of a specific sound in different environment configurations. It is worth noting
that in a real environment the source of a target event can be at different dis-
tances from the acquisition equipment resulting in signals with various values
of the SNR. Thus, when a foreground sound is mixed with the environmental
sound, the energy of the foreground sound is amplified or attenuated in or-
der to guarantee a specific value SNRp, p = 1, . . . , 6 of the SNR from the set
ζ = {5dB, 10dB, 15dB, 20dB, 25dB, 30dB} for the target sound. The rule for
the construction of the audio clip considering foreground events at a certain
SNR value is defined as follow:

ypj (n) =

Ne∑
i=1

{
Bj(n)⊕[si,ei] Apxi(n)

}
, (5.12)

where

Ap = 10SNR
p/20 rms(Bj(n))

rms(xi(n))
. (5.13)

The amplification (or attenuation) coefficient Ap depends on the specific value
SNRp and on the root mean square values (rms) of the environmental sound
and of the foreground sound. With ⊕[si,ei] we define an operator that allows to
mix the signal Apxi(n) with the signal Bj(n) in the interval delimited by [si, ei]
(si and ei are the starting and ending points of the target sounds within the
clip ypj (n), respectively).

The final dataset consists of a training set and a test set that contain, re-
spectively, 396 and 184 audio clips of about 3 minutes. The total duration of the
sounds in the dataset is about 20 hours for the training set and about 9 hours for
the test set. Given a specific sequence S = e1, e2, . . . , em of foreground events,
six versions of the audio clip are created. Such versions differ each other for the
value SNRp of the desired SNR at which the foreground events occur.

In the following we will refer to the different classes with the abbreviations
BG for broken glass, GS for gunshot, S for scream and BN for background noise.
The training set of the experimental dataset is composed by 700 events for each
target class. Each event is present at six different SNR values, for a total of
4200 events for each class. In the same way, in the training set 300 events per
class are provided in six versions, for a total of 1800 events for each foreground
class. In Table 5.30 we report a summary of the composition of the dataset.

5.4. Audio Recognition 125

Training set Test set

#Events Duration (s) #Events Duration (s)

Background - 58371.6 - 25036.8

Broken glass 4200 6024.8 1800 2561.7

Gunshot 4200 1883.6 1800 743.5

Scream 4200 5488.8 1800 2445.4

Figure 5.30 Summary of the composition of the final dataset. The training set and the test
set contain respectively the 70% and the 30% of the total number of events from the classes
of interest. For the background noise class the total duration of the background sounds is
reported.

BoAW classifier - Classification matrix

Guessed class

BG GS S Miss

T
r
u

e
c
la

ss BG 93.6% 0.2% 0.2% 6%

GS 3.3% 81.6% 0.5% 14.6%

S 2.8% 0.9% 79.3% 17%

Figure 5.31 Results achieved using the proposed system on the whole test set. The entry
at the row i and column j represents the fraction of samples belonging to the i-th class and
attributed by the system to the j-th class. The Miss column reports the ratio of the foreground
sounds of each class that are classified as background noise.

5.4.2 Performance evaluation

For a surveillance application, it is important to correctly recognize an abnor-
mal event and consequently fire an alarm, but it is also relevant to not detect
abnormal events when only background sounds are present in the environment.
Thus, we evaluated the performance of our system from two different perspec-
tives. On one hand, we considered the recognition rate of the events of interest
and, on the other hand, the evaluation of false positives (FP), i.e the detection
of abnormal events when only ambiance noise is present.

The average rate of correct classification achieved by the system for the
foreground events on the whole test set is 84.8%. An event is correctly detected
if it is detected in at least one of the time windows of analysis that overlap with
the considered event. The classification matrix reported in Table 5.31 shows
that the misclassification errors between the three classes of foreground sounds
(BG, GS, S) are mainly directed to the background noise class, consequently
being considered missed detections. In the fourth column of the classification
matrix the rate of missed detection is reported for the events of each class. The
misclassification error between the foreground classes is very low. It means that
the abnormal events are well detected and separated from each other by the
proposed classification system.

As said above, for a surveillance application it is important to not detect
abnormal events when normal ambiance sounds are present in the environment,
i.e. to reduce the false alarm rate. For our analysis, we consider that a false
positive hit is counted when an abnormal event is detected in a time window

126 5. Experimental Results

SNR5	 SNR10	 SNR15	 SNR20	 SNR25	 SNR30	
0%	
10%	
20%	
30%	
40%	
50%	
60%	
70%	
80%	
90%	

100%	

Error	 Rate	

Miss	 Rate	

Rec.	 Rate	

Figure 5.32 Classification of the foreground events for different values of the SNR. Each
bar represents how the performance results are distributed between correct detections, misses
and errors for a certain value of the SNR.

Rec. Rate Miss Rate Error Rate FP Rate

SNR 5dB 79.6% 14.2% 6.2% 6.2%

SNR 10dB 83.4% 13.4% 3.1% 1.6%

SNR 15dB 85.2% 12.8% 2% 1.3%

SNR 20dB 85.9% 12.2% 1.9% 1.2%

SNR 25dB 86.1% 12.3% 1.6% 1.2%

SNR 30dB 88.6% 10.2% 1.2% 1%

Average 84.8% 12.5% 2.7% 2.1%

Figure 5.33 Detailed results achieved by using the proposed bag of words classifier for
different values of the SNR of the foreground sounds.

where only background noise is present. If for two consecutive time windows a
foreground event is detected, we consider only one false positive occurrence.
Thus, the false positive rate is computed as the ratio of the detected false
positive events on the total number of intervals between two foreground sounds,
since those intervals contain only background noise. For the whole test set we
achieved a false positive rate equal to 2.1%, divided into 0.83% false detected
broken glasses, 0.74% gunshots and 0.53% screams.

In Table 5.33 we report, separately, the performance results that we achieved
by testing the proposed method on audio clips with different values of the SNR
for the foreground events. As expected, when the sounds have higher values of
SNR there is a reduction in both the miss and error rates, resulting in a better
recognition rate. In Figure 5.32 a cumulative graph of the results achieved at
different SNR values is depicted. For every value of the SNR, it is shown how
the classification results are distributed between correct detections, misses and

5.4. Audio Recognition 127

60%	

70%	

80%	

90%	

100%	

128	 256	 512	 1024	 2048	

Recogni(on	 Rate	 (different	 clusters)	

(a)

0%	

1%	

2%	

3%	

4%	

5%	

128	 256	 512	 1024	 2048	

False	 Posi*ve	 Rate	 (different	 clusters)	

(b)

Figure 5.34 Recognition rate (a) and false positive rate (b) achieved by training the system
for different values of K. The value K = 1024 has been observed to be an optimal number of
clusters evaluating both the recognition and false positive rates.

errors.
We also observed an improvement in the detection of false positives, which

decrease for higher values of the SNR due to the reduced influence of the back-
ground noise on the target sound. It is worth noting that the recognition rate
for events at 5dB SNR is only 5% lower than the average recognition rate on the
whole dataset and about 9% lower than the best value achieved for the events
at 30dB SNR. The correct classification rate and the false positive rate that we
achieved in different SNR conditions prove that the proposed system is robust
to background noise variation and can be used for surveillance applications also
in highly noisy environments.

As said in Section 4.2, the value K = 1024 has been chosen by evaluating
the performance results achieved for different numbers of cluster centroids. In
Figure 5.34 we show the curves of the recognition rate and of the false positive
rate for increasing values of K. We observed that for values greater than 1024,
although the recognition rate is slightly higher, the false positive rate is almost
double than the one reported for K = 1024. Since the false positive rate is
an important metric for the evaluation of an intelligent surveillance system, we
considered for our experiments the value K = 1024.

5.4.3 Performance comparison

In our experiments, we compared the performance results of the proposed system
with the ones achieved by the method that is described in [96] and that combines
a reject option with a LVQ classifier to classify 32 milliseconds audio frames.

The LVQ classifier has been trained using the same set of first-level features.
During the test phase, the audio frames are classified into one of the four con-
sidered classes, i.e. the three foreground sound classes (BG, GS, S) and the
background noise class (BN). The decisions at frame level are then aggregated
over intervals of 3 seconds. An interval is constituted of 375 frames like the
intervals used for the bag of aural words classifier. The system attributes an
interval to the class Ci that obtains the highest score zi = (ni− n̂i)/n̂i, where ni
is the number of frames in the interval assigned to the class Ci; n̂i is a threshold
that indicates a limit under which the i-th class is not considered as a candidate
for the final decision. In case of zi < 0 for ∀i = 1, ...,M , that is a negative score

128 5. Experimental Results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

o
si

ti
v
e

R
a
te

Broken Glass events - ROC curve

Conte et al. [96]
Proposed method

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

o
si

ti
v
e

R
a
te

Gunshot events - ROC curve

Conte et al. [96]
Proposed method

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

o
si

ti
v
e

R
a
te

Screams events - ROC curve

Conte et al. [96]
Proposed method

(c)

Figure 5.35 Comparison of the performance of the proposed method with respect to the
method of Conte et al. [96] in terms of ROC curves for the broken glass (a), gunshot (b)
and scream (c) events. Note that the proposed method (solid line) clearly outperforms [96]
(dashed line).

for all the classes, the interval is classified as belonging to the background class
C0.

The classification performance of the two systems has been compared by us-
ing the receiver operating characteristic (ROC) curves. The closer a ROC curve
approaches the top-left corner the better the performance of the algorithm is.
In Figure 5.35 we plot the ROC curves for each of the three classes of foreground
events and in Table 5.37 we report the values of the area under the ROC curves

5.4. Audio Recognition 129

65,0%	

70,0%	

75,0%	

80,0%	

85,0%	

90,0%	

95,0%	

SNR5	 SNR10	 SNR15	 SNR20	 SNR25	 SNR30	

Recogni(on	 Rate	

LVQ	

BoAW	

(a)

0,0%	

5,0%	

10,0%	

15,0%	

20,0%	

25,0%	

30,0%	

SNR5	 SNR10	 SNR15	 SNR20	 SNR25	 SNR30	

False	 Posi*ve	 Rate	

LVQ	

BoAW	

(b)

0,0%	
2,0%	
4,0%	
6,0%	
8,0%	
10,0%	
12,0%	
14,0%	
16,0%	

SNR5	 SNR10	 SNR15	 SNR20	 SNR25	 SNR30	

Miss	 Rate	

LVQ	

BoAW	

(c)

0,0%	

5,0%	

10,0%	

15,0%	

20,0%	

25,0%	

30,0%	

SNR5	 SNR10	 SNR15	 SNR20	 SNR25	 SNR30	

Error	 Rate	

LVQ	

BoAW	

(d)

Figure 5.36 Comparison of the performance of the proposed bag of aural words classifier
(solid line) with respect to the classifier proposed in [96] (dashed line). The recognition rate
(a), false positive rate (b), miss rate (c) and error rate (d) are reported for different values of
the SNR of the foreground sounds.

(AUC). We consider the AUC, which is equal to 1 for a perfect classification,
as a measure of the overall performance of the two methods. We observe that
the proposed method (solid line) generally outperforms [96] (dashed line). It is
evident that the proposed system is able to reduce the false positive rate, mostly
for the broken glass and gunshot classes, with respect to the performance of [96].

In order to compare the performance of the two systems in operating con-
ditions, we determined the value of the threshold τ = 0 for the proposed bag
of aural words classifier and the values of n̂BN = 266, n̂BG = 95, n̂GS = 26,
n̂S = 62 for [96], by performing a grid search on the training set. In Table 5.38,
we report the performance results by the method in [96] for the classification
of the foreground events class. The average recognition rate on the whole test
set is 83.9%, that is slightly lower than the one (84.8%) that we achieved by
using the proposed bag of aural words classifier. As shown in Figure 5.36a, the
proposed system is more accurate than the one in [96] for the analysis of highly
noisy environments, i.e. when the events of interest occurr with a lower value
of the SNR. For events with higher SNR, instead, the recognition rate achieved
by [96] on our dataset is slightly better than the one of the proposed system.
The classification error between the three foreground sounds classes achieved
by the bag of aural words system is remarkably lower than the one achieved
by [96]. The proposed system, thus, provides a generally better recognition of
the events of the classes of interest, reaching good performance results also in
environments in which the target sounds occur with a low value of the SNR.

In Table 5.39 we report the false positive rates achieved by the proposed

130 5. Experimental Results

AUC Comparison

Proposed Method Conte et al. [96]

BG 0.954 0.872

G 0.966 0.886

S 0.961 0.938

Figure 5.37 Comparison of the performance of the proposed method with respect to Conte
et al. [96] in terms of the area under the ROC curves for the foreground classes.

Conte et al. [96] - Classification matrix

Guessed class

BG GS S Miss

T
r
u

e
c
la

ss BG 91.3% 5.3% 1.4% 1.9%

GS 12.1% 80.6% 3.9% 3.4%

S 7.6% 7.9% 79.8% 4.7%

Figure 5.38 Classification matrix achieved by Conte et al. [96]. The entry at the row i and
column j represents the fraction of samples belonging to the i-th class and attributed by the
system to the j-th class. The Miss columns indicates the foreground sounds that are classified
as background noise.

FPR Comparison

Proposed Method Conte et al. [96]

SNR5 6.2% 27.9%

SNR10 1.6% 21.1%

SNR15 1.3% 9.7%

SNR20 1.2% 9.3%

SNR25 1.2% 7.2%

SNR30 1% 7.6%

All SNR 2.1% 13.8%

Figure 5.39 Comparison of the false positive rates for the BoAW system and the LVQ system
achieved at different levels of the SNR value. The performance increases with higher level of
SNR for both the classifiers.

system and by [96] on the whole test set. It is worth pointing out that, using
the LVQ classifier proposed in [96], the number of false positives hugely increases
with respect to the number of false positives detected by the proposed bag of
aural words classifier. The overall false positive rate achieved using the method
proposed in [96] is more that 10% higher than the one achieved by the proposed
system. A high number of false positive occurrences is an unacceptable weakness
for a real application, because it means that the system has a poor robustness
to the environmental noise.

From the comparison of the recognition rates (Figure 5.36a) and false pos-
itive rates (Figure 5.36b) at different SNR values of the foreground sounds we
can affirm that the proposed bag of aural words approach for audio surveillance

5.5. Achievements 131

Results Comparison

Proposed method Conte et al. [96]

Recognition rate 84.8% 83.9%

False Positive Rate 2.1% 13.8%

Miss Rate 12.5% 3.4%

Error Rate 2.7% 12.7%

Figure 5.40 Summary of the performance results achieved by the bag of aural words classifier
on the proposed dataset in comparison to the results achieved by the method proposed in [96].

applications proves to have a higher robustness to the environmental noise and
generally a better performance than the method proposed in [96]. Although the
miss rate is higher than the one achieved by [96] (Figure 5.36c), the error rate
reported for the proposed system (Figure 5.36d) shows that the recognition of
the events of interest is better performed by the bag of aural words classifier
described in this work. In Table 5.40 we report the summary of the comparison
of the performance results of the two methods.

The representation of time intervals using the histogram of the occurrences
of the aural words leads to a more fruitful and robust analysis of the audio
stream. The effects of the background noise on the detection of abnormal
events is limited and the performance are generally better than a method of
analysis based on the classification of shorter audio frames (in [96] the classi-
fication is performed for short audio frames of 32 milliseconds duration). The
proposed bag of aural words classification scheme is particularly useful in audio
surveillance applications due to its robustness to the environmental noise and
the consequently lower false alarm rate. With the adoption of the aural words
and the second level feature vectors, the representation of the audio stream to
be analyzed takes into account contextual information about the environmental
sounds and leads to a more accurate and reliable classification results. Instead,
when a decision is taken at a lower level, like in the case of [96], the contextual
information is not considered and the effect of the noise causes a considerable
decrease of the performance.

5.5 Achievements

In this section the results obtained by the proposed system will be briefly sum-
marized.

• The tracking algorithm has been tested over two standard datasets, namely
PETS and ISSIA Soccer. The obtained results (MOTA = 0.66, MOTP =
0.62, ATA = 0.09, Number of id-switches = 2.8, being the average trajec-
tory length = 184 for the PETS dataset; MOTA = 0.75, MOTP = 0.74,
ATA = 0.15, Number of id-switches = 2.8, being the average trajectory
length = 532, for the ISSIA Soccer dataset) strongly confirm the effective-
ness of the proposed approach. Furthermore, the algorithm participated
to a competition (PETS 2013 contest), where it has been selected by the
organizers as the most robust one in terms of accuracy (MOTA). As for

132 5. Experimental Results

the computational cost, the algorithm is able to work in real time, with a
frame rate of 35 fps by considering 4 CIF images, so confirming the real
applicability of the proposed approach.

• The module for visual behavior analysis has been tested over three stan-
dard datasets, namely MIT1, EDH and MIT2, and the results have been
compared with state of the art approaches: the proposed clustering algo-
rithm reveals to be very promising both in terms of c-index (0.11 vs 0.23,
on average) and time required for the computation (0.48 vs 57 hours, on
average). Furthermore, the high accuracy of the proposed approach is
confirmed by the module for anomaly detection, which obtains an average
AUC of 0.88 by considering 30 zones. Finally, a significant improvement
has been also obtained by the k-NN search based on KD-Tree for solving
queries by sketch: less than 20% (in the worst case) over the whole dataset
needs to be analyzed for k = 1, while less than 50% (in the worst case)
for k = 5.

• The storing and retrieving engine has been tested over both synthetic and
real dataset (MIT1 dataset). The obtained results have been compared
with the standard PostGis solutions, showing a significant improvement,
up to 70 times by considering a small query box size and a small area min
value.

• In order to test the algorithm for recognizing audio events of interest, a
new dataset, composed approximatively by 6000 events of interest, has
been introduced and made available for benchmarking purposes. The
performance results that we achieved (Rec. Rate = 84.8%, False Positive
Rate = 2.1%) have been compared with the results of another method
from the literature (Rec. Rate = 83.9%, False Positive Rate = 13.8%),
and show the robustness of the proposed approach with respect to noise
and its applicability to real environments.

Chapter 6

Conclusions

In this thesis we proposed a system for supporting the human operator in his
boring task of monitoring several areas of interest in crowded environments.
The system is able to interpret the behavior of different typologies of objects by
analyzing both video and audio data.

The analysis of audio information is performed by means of a novel ap-
proach based on bag of aural words, whose main advantages lie in its ability to
automatically adapt to both short, impulsive sounds (like gun shots) and long,
sustained ones (like screams), as well as to work in noisy environments where
the sounds of interest can occur at different signal to noise ratios. The events
recognized by the proposed system through audio inspection are screams, gun
shots and broken glasses.

On the other hand, behavior analysis using visual information is based on
the assumption that the movement of the objects inside a scene is not random,
but instead is determined by their behaviors. It implies that analyzing moving
objects trajectories would allow to analyze moving objects behaviors.

In order to achieve this aim, a novel tracking algorithm has been defined
for extracting moving objects trajectories. The proposed approach is able to
exploit the history of each object by means of a Finite State Automaton, so
significantly increasing the performance of the proposed method; the update
of information related to each object is performed by a graph-based approach,
while occlusions are properly managed by tracking into a different way single
objects and groups of objects.

The events of interest are then identified according to a set of prototypes
previously acquired into an unsupervised way during a learning step; it implies
that no knowledge about the particular environment is required during the
system setup. As soon as an abnormal behavior occurs, an alert is sent to
the human operator in order to allow a prompt intervention for managing the
particular situations. This step is achieved by defining a proper representation
of the trajectories, based on strings, which takes into account position, speed
and shape. The similarity between trajectories is evaluated by a novel string
kernel, while the extraction of prototypes is made possible by a novel kernel-
based clustering algorithm.

Furthermore, in order to allow the human operator to easily and efficiently
retrieve events of interest if necessary, all the obtained data are properly stored.
In particular, the most complex information to be managed pertains the tra-

134 6. Conclusions

jectories, for their spatio-temporal nature. For this reason, a novel indexing
schema has been defined in this thesis, by taking advantage on bi - dimensional
off-the-shelf solutions.

All the above mentioned modules, respectively devoted to tracking, behavior
analysis by visual inspection, audio event analysis and storing, have been tested
over standard datasets and a proper comparison with state of the art approaches
has been carried out.

In particular, the tracking algorithm has been tested over two extensively
used datasets: the obtained results, both in terms of accuracy (MOTA = 0.70,
MOTP = 0.68, ATA = 0.12 in average) and computational cost (frame rate
of 35 fps by considering 4 CIF images) confirm the robustness of the proposed
approach. Furthermore, the proposed method participated to an international
contest, namely the PETS competition, ranking at the the first places in all the
considered metrics. As for the module for visual behavior analysis, it has been
tested over three standard datasets and the obtained results (c-index = 0.11
and execution time = 0.48 hours in average) have been compared with several
state of the art approaches (c-index = 0.23 and execution time = 57 hours in
average for the best one), confirming its effectiveness. Promising performance
have been also obtained by the module for audio event recognition: a new
dataset has been made available for benchmarking purposes and the obtained
results (Rec. Rate = 84.8%, False Positive Rate = 2.1%), compared with a
state of the art approach (Rec. Rate = 83.9%, False Positive Rate = 13.8%),
confirm its strong robustness. Finally, the module for storing and retrieving
trajectories has been evaluated over both standard and synthetic datasets and
the obtained results have been compared with the standard solution provided
by PostGis. Even in this case, very encouraging results have been obtained,
strongly outperforming (up to 70 times) PostGis solution.

An advanced combination of audio and video information, obtained through
the introduction of a fusion engine, may improve the overall reliability of the pro-
posed framework by properly combining events respectively obtained by video
and audio inspection. Furthermore, the introduction of a sound-based localiza-
tion algorithm would allow to detect the exact position of the events of interest:
in this way, the camera may zoom on that position in order to better investigate
by visual inspection on the type of the event occurring.

However, the results obtained in this thesis are very encouraging, since each
module composing the system reveals to be efficient and robust. These features,
combined with the high level of interaction with the human operator made
possible by the proposed system, strongly encourage its use in real application
for supporting surveillance tasks.

Appendix A

Proofs

This appendix is devoted to prove Equations 3.34 and 3.37, respectively devoted
to the squared error and to the cutting position computations.

Proof A: Squared Error Computation (Equation 3.34)

Let be:

bis =

1− 1

|C| if i = s

− 1
|C| if i ∈ C ∧ i 6= s

0 otherwise

(A.1)

δis =

{
1 if i = s

0 otherwise
(A.2)

bs = − 1

|C|
1C + δs. (A.3)

µ =
1

|C|
∑
i∈C

Ψi (A.4)

136 Appendix A. Proofs

SE(C) =
∑
s∈C
||ψs − µ||2

=
∑
s∈C
||ψs −

1

|C|
∑
i∈C

ψi||2

=
∑
s∈C
||
∑
i∈C

bisψi||2

=
∑
s∈C

∑
i,j∈C

bisb
j
s < ψi, ψj >

=
∑
s∈C

btsKbs

=
∑
s∈C

(
− 1

|C|
1C + δs

)t
K

(
− 1

|C|
1C + δs.

)
=
∑
s∈C

1

|C|2
1tCK1C −

2

|C|
1tCKδs + δsKδs

=
1

|C|
1tCK1C −

2

|C|
∑
s∈C

1tCKδs +
∑
s∈C

k(s, s)

=
1

|C|
1tCK1C −

2

|C|
1tCK

(∑
s∈C

δs

)
+
∑
s∈C

k(s, s)

= − 1

|C|
1tCK1C +

∑
s∈C

k(s, s)

= |C| − 1

|C|
1tCK1C

Proof B: Cutting Position Computation (Equation 3.37)

Let us additionally consider Ct ⊂ C and:

µt =
1

|Ct|
∑
i∈Ct

Ψi =
1

|Ct|
∑
i∈C

1iCtΨi. (A.5)

where the upper script i in 1iCt denotes the ith coordinate of 1Ct . Let us
additionally consider:

ai =
1iC
|C|
−

1iCt
|Ct|

; (A.6)

a =
1C
|C|
− 1Ct
|Ct|

. (A.7)

137

The term ||µ− µt||2 can be computed as follows:

||µ− µt||2 = ||
∑
i∈C

1iCΨi

|C|
−

1iCtΨi

|Ct|
||2

= ||
∑
i∈C

(
1iC
|C|
−

1iCt
|Ct|

)
Ψi||2

= ||
∑
i∈C

aiΨi||2

=
∑
i,j∈T

aiaj < Ψi,Ψj >

=
∑
i,j∈T

aiaj · k(si, sj)

= atKa

=

(
1C
|C|
− 1Ct
|Ct|

)t
K

(
1C
|C|
− 1Ct
|Ct|

)
=

1

|C|2
1tCK1C −

2

|Ct||C|
1tCK1Ct +

1

|Ct|2
1tCtK1Ct .

Furthermore, starting from ||µ−µt||2, ||µ−µt+1||2 can be quickly computed.
In particular, using the relationship 1Ct+1 = 1Ct + δp where Ct+1 = Ct ∪ {p}
and δip = 1 for i = p and 0 otherwize, the second term 1tCK1Ct+1

is equal to:

1tCK1Ct+1
= 1tCK(1Ct + δp) (A.8)

= 1tCK1Ct + 1tCKδp

= 1tCK1Ct +
∑
i∈C

k(i, p).

Finally, the last term 1tCt+1
K1Ct+1

may be decomposed as follows:

1tCt+1
K1Ct+1

= (1Ct + δp)
t
K (1Ct + δp) (A.9)

= 1tCtK1Ct + 21tCtKδp + δtpKδp

= 1tCtK1Ct + 2
∑
i∈Ct

k(i, p) + k(p, p).

138 Appendix A. Proofs

Bibliography

[1] T. Ainsworth, “Buyer beware,” Security Oz, vol. 19, pp. 18–26, 2002.

[2] S. Shivappa, M. Trivedi, and B. Rao, “Audiovisual information fusion in human
computer interfaces and intelligent environments: A survey,” Proceedings of the
IEEE, vol. 98, no. 10, pp. 1692–1715, 2010.

[3] P. Borges, N. Conci, and A. Cavallaro, “Video-based human behavior under-
standing: A survey,” Circuits and Systems for Video Technology, IEEE Trans-
actions on, vol. 23, no. 11, pp. 1993–2008, 2013.

[4] D. Simonnet, S. Velastin, E. Turkbeyler, and J. Orwell, “Backgroundless de-
tection of pedestrians in cluttered conditions based on monocular images: a
review,” Computer Vision, IET, vol. 6, no. 6, pp. 540–550, 2012.

[5] N. Buch, S. Velastin, and J. Orwell, “A review of computer vision techniques for
the analysis of urban traffic,” Intelligent Transportation Systems, IEEE Trans-
actions on, vol. 12, no. 3, pp. 920–939, 2011.

[6] S. Sivaraman and M. Trivedi, “Looking at vehicles on the road: A survey
of vision-based vehicle detection, tracking, and behavior analysis,” Intelligent
Transportation Systems, IEEE Transactions on, vol. PP, no. 99, pp. 1–23, 2013.

[7] Z. Sun, G. Bebis, and R. Miller, “On-road vehicle detection: a review,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 28, no. 5, pp.
694–711, 2006.

[8] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey,” ACM
Comput. Surv., vol. 38, no. 4, pp. –, Dec. 2006. [Online]. Available:
http://doi.acm.org/10.1145/1177352.1177355

[9] J. Candamo, M. Shreve, D. Goldgof, D. Sapper, and R. Kasturi, “Understanding
transit scenes: A survey on human behavior-recognition algorithms,” Intelligent
Transportation Systems, IEEE Transactions on, vol. 11, no. 1, pp. 206–224,
2010.

[10] H. M. Dee and S. A. Velastin, “How close are we to solving the
problem of automated visual surveillance?: A review of real-world
surveillance, scientific progress and evaluative mechanisms,” Mach. Vision
Appl., vol. 19, no. 5-6, pp. 329–343, Sep. 2008. [Online]. Available:
http://dx.doi.org/10.1007/s00138-007-0077-z

[11] D. Gowsikhaa, S. Abirami, and R. Baskaran, “Automated human behavior
analysis from surveillance videos: a survey,” Artificial Intelligence Review, pp.
1–19, 2012. [Online]. Available: http://dx.doi.org/10.1007/s10462-012-9341-3

http://doi.acm.org/10.1145/1177352.1177355
http://dx.doi.org/10.1007/s00138-007-0077-z
http://dx.doi.org/10.1007/s10462-012-9341-3

140 BIBLIOGRAPHY

[12] G. Lavee, E. Rivlin, and M. Rudzsky, “Understanding video events: A survey of
methods for automatic interpretation of semantic occurrences in video,” Systems,
Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions
on, vol. 39, no. 5, pp. 489–504, 2009.

[13] H. Liu, S. Chen, and N. Kubota, “Intelligent video systems and analytics: A
survey,” Industrial Informatics, IEEE Transactions on, vol. 9, no. 3, pp. 1222–
1233, 2013.

[14] B. Morris and M. Trivedi, “A survey of vision-based trajectory learning and
analysis for surveillance,” Circuits and Systems for Video Technology, IEEE
Transactions on, vol. 18, no. 8, pp. 1114–1127, 2008.

[15] A. Sodemann, M. Ross, and B. Borghetti, “A review of anomaly detection in
automated surveillance,” Systems, Man, and Cybernetics, Part C: Applications
and Reviews, IEEE Transactions on, vol. 42, no. 6, pp. 1257–1272, 2012.

[16] B. T. Morris and M. M. Trivedi, “Understanding vehicular traffic behavior
from video: a survey of unsupervised approaches,” Journal of Electronic
Imaging, vol. 22, no. 4, pp. 041 113–041 113, 2013. [Online]. Available:
http://dx.doi.org/10.1117/1.JEI.22.4.041113

[17] O. Popoola and K. Wang, “Video-based abnormal human behavior recognition:
A review,” Systems, Man, and Cybernetics, Part C: Applications and Reviews,
IEEE Transactions on, vol. 42, no. 6, pp. 865–878, 2012.

[18] M. F. Mokbel, T. M. Ghanem, and W. G. Aref, “Spatio-temporal access meth-
ods,” IEEE Data Eng. Bull., vol. 26, no. 2, pp. 40–49, 2003.

[19] L.-V. Nguyen-Dinh, W. G. Aref, and M. F. Mokbel, “Spatio-temporal access
methods: Part 2 (2003 - 2010),” IEEE Data Eng. Bull., vol. 33, no. 2, pp.
46–55, 2010.

[20] W. Nie, A. Liu, and Y. Su, “Multiple person tracking by spatiotemporal tracklet
association,” in Proceedings of the 9th AVSS Conference. Beijing, China: IEEE,
Septemer 18-21 2012.

[21] J. Badie, S. Bak, S. Serban, , and F. Bremond, “Recovering people tracking
errors using enhanced covariance-based signatures,” in Proceedings of the 9th
AVSS Conference. Beijing, China: IEEE, Septemer 18-21 2012.

[22] M. Hofmann, M. Haag, and G. Rigoll, “Unified hierarchical multi-object track-
ing using global data association,” in Performance Evaluation of Tracking and
Surveillance (PETS), 2013 IEEE International Workshop on, 2013, pp. 22–28.

[23] I. Haritaoglu, D. Harwood, and L. S. David, “W4: Real-time surveillance of
people and their activities,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 22, no. 8, pp. 809–830, August 2000.

[24] D. Conte, P. Foggia, G. Percannella, and M. Vento, “Performance evaluation of
a people tracking system on pets2009 database,” in Proceedings of the 7th IEEE
International Conference on AVSS, 2010, pp. 119–126.

[25] Z. Chen, T. Ellis, and S. A. Velastin, “Vehicle detection, tracking and classifica-
tion in urban traffic,” in Proceedings of the 15th International IEEE Conference
on Intelligent Transportation Systems. IEEE, 2012.

http://dx.doi.org/10.1117/1.JEI.22.4.041113

BIBLIOGRAPHY 141

[26] Z. Jiang, D. Q. Huynh, W. Moran, and S. Challa, “Tracking pedestrians using
smoothed colour histograms in an interacting multiple model framework.” in
ICIP, B. Macq and P. Schelkens, Eds. IEEE, 2011, pp. 2313–2316.

[27] C. Dai, Y. Zheng, and X. Li, “Pedestrian detection and tracking in
infrared imagery using shape and appearance,” Computer Vision and Image
Understanding, vol. 106, no. 23, pp. 288 – 299, 2007. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1077314206001925

[28] T.-L. L. Hwann-Tzong Chen, Horng-Horng Lin, “Multi-object tracking using
dynamical graph matching,” in Proc. of the IEEE Conf. on Computer Vision
and Pattern Recognition, vol. 2, 2001, pp. 210–217.

[29] J. Zhang, L. L. Presti, and S. Sclaroff, “Online multi-person tracking by tracker
hierarchy,” in Proceedings of the 9th AVSS Conference. Beijing, China: IEEE,
Septemer 18-21 2012.

[30] T. Xu, P. Peng, X. Fang, C. Su, Y. Wang, Y. Tian, W. Zeng, and T. Huang,
“Single and multiple view detection, tracking and video analysis in crowded
environments,” in Proceedings of the 9th AVSS Conference. Beijing, China:
IEEE, Septemer 18-21 2012.

[31] S. Pellegrini, A. Ess, K. Schindler, and L. van Gool, “You’ll never walk alone:
Modeling social behavior for multi-target tracking,” in Computer Vision, 2009
IEEE 12th International Conference on, 29 2009-oct. 2 2009, pp. 261 –268.

[32] Q. Delamarre and O. Faugeras, “3d articulated models and multiview tracking
with physical forces,” Computer Vision and Image Understanding, vol. 81, pp.
328–357, March 2001. [Online]. Available: http://dl.acm.org/citation.cfm?id=
376890.376922

[33] J. Berclaz, F. Fleuret, E. Turetken, and P. Fua, “Multiple object tracking us-
ing k-shortest paths optimization,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 33, no. 9, pp. 1806 –1819, sept. 2011.

[34] D.-T. Lin and K.-Y. Huang, “Collaborative pedestrian tracking and data fusion
with multiple cameras,” Information Forensics and Security, IEEE Transactions
on, vol. 6, no. 4, pp. 1432 –1444, dec. 2011.

[35] D. Comaniciu, V. Ramesh, and P. Meer, “Real-time tracking of non-rigid objects
using mean shift,” in Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition, vol. 2, 2000, pp. 142–149.

[36] H. Hai Tao, Sawhney and R. Kumar, “Object tracking with bayesian estima-
tion of dynamic layer representations,” IEEE Trans. on Pattern Analysis and
Machine Intelligence, vol. 24, no. 1, pp. 75–89, 2002.

[37] K. Bhuvaneswari and H. Abdul Rauf, “Edgelet based human detection and track-
ing by combined segmentation and soft decision,” in Control, Automation, Com-
munication and Energy Conservation, 2009. INCACEC 2009. 2009 International
Conference on, june 2009, pp. 1 –6.

[38] Z. Han, Q. Ye, and J. Jiao, “Combined feature evaluation for adaptive visual
object tracking,” Computer Vision and Image Understanding, vol. 115, no. 1,
pp. 69 – 80, 2011.

http://www.sciencedirect.com/science/article/pii/S1077314206001925
http://dl.acm.org/citation.cfm?id=376890.376922
http://dl.acm.org/citation.cfm?id=376890.376922

142 BIBLIOGRAPHY

[39] B. Yogameena, S. Roomi, and S. Abhaikumar, “Detecting and tracking people
in a homogeneous environment using skin color model,” in Advances in Pattern
Recognition, 2009. ICAPR ’09. Seventh International Conference on, feb. 2009,
pp. 282 –285.

[40] Y. Cai, N. de Freitas, and J. Little, “Robust visual tracking for multiple tar-
gets,” in Computer Visionâ ECCV 2006, ser. Lecture Notes in Computer Sci-
ence, A. Leonardis, H. Bischof, and A. Pinz, Eds., vol. 3954. Springer Berlin /
Heidelberg, 2006, pp. 107–118.

[41] H. Wang, D. Suter, K. Schindler, and C. Shen, “Adaptive object tracking based
on an effective appearance filter,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 29, no. 9, pp. 1661 –1667, sept. 2007.

[42] W. Hu, X. Zhou, M. Hu, and S. Maybank, “Occlusion reasoning for tracking
multiple people,” Circuits and Systems for Video Technology, IEEE Transactions
on, vol. 19, no. 1, pp. 114 –121, jan. 2009.

[43] J. Saboune and R. Laganiere, “People detection and tracking using the explo-
rative particle filtering,” in Computer Vision Workshops (ICCV Workshops),
2009 IEEE 12th International Conference on, 27 2009-oct. 4 2009, pp. 1298
–1305.

[44] L. Bazzani, M. Cristani, and V. Murino, “Collaborative particle filters for group
tracking,” in IEEE Int. Conf. on Image Processing, 2010, pp. 837–840.

[45] S. Yin, J. H. Na, J. Y. Choi, and S. Oh, “Hierarchical kalman-particle filter with
adaptation to motion changes for object tracking,” Computer Vision and Image
Understanding, vol. 115, no. 6, pp. 885 – 900, 2011.

[46] H. Medeiros, G. Holguin, P. J. Shin, and J. Park, “A parallel histogram-based
particle filter for object tracking on simd-based smart cameras,” Computer
Vision and Image Understanding, vol. 114, no. 11, pp. 1264 – 1272,
2010. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S1077314210000974

[47] M. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and L. Van Gool, “Online
multiperson tracking-by-detection from a single, uncalibrated camera,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 33, no. 9, pp.
1820 –1833, sept. 2011.

[48] J. Lee, S. Lankton, and A. Tannenbaum, “Object tracking and target reacqui-
sition based on 3-d range data for moving vehicles,” Image Processing, IEEE
Transactions on, vol. 20, no. 10, pp. 2912 –2924, oct. 2011.

[49] X. Song, J. Cui, H. Zha, and H. Zhao, “Vision-based multiple interacting targets
tracking via on-line supervised learning,” in Proceedings of the 10th European
Conference on Computer Vision: Part III, ser. ECCV ’08. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 642–655.

[50] M. Wang, H. Qiao, and B. Zhang, “A new algorithm for robust pedestrian
tracking based on manifold learning and feature selection,” Pattern Analysis
and Machine Intelligence, IEEE Transactions on, vol. 12, no. 4, pp. 1195–1208,
2011.

[51] S. Mitra and T. Acharya, “Gesture recognition: A survey,” Systems, Man, and
Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, vol. 37,
no. 3, pp. 311–324, 2007.

http://www.sciencedirect.com/science/article/pii/S1077314210000974
http://www.sciencedirect.com/science/article/pii/S1077314210000974

BIBLIOGRAPHY 143

[52] R. Poppe, “A survey on vision-based human action recognition,” Image
Vision Comput., vol. 28, no. 6, pp. 976–990, Jun. 2010. [Online]. Available:
http://dx.doi.org/10.1016/j.imavis.2009.11.014

[53] W. Hu, X. Xiao, Z. Fu, D. Xie, T. Tan, and S. Maybank, “A system for learning
statistical motion patterns,” IEEE Trans. Pattern Anal. Mach. Intell, vol. 28,
no. 9, pp. 1450–1464, 2006.

[54] N. Piotto, F. G. B. De Natale, and N. Conci, “Hierarchical matching of 3d
pedestrian trajectories for surveillance applications,” in Advanced Video and
Signal Based Surveillance, 2009. AVSS ’09. Sixth IEEE International Conference
on, 2009, pp. 146–151.

[55] J.-W. Hsieh, S.-L. Yu, and Y.-S. Chen, “Motion-based video retrieval by trajec-
tory matching,” IEEE Trans. Circuits Syst. Video Technol., vol. 16, no. 3, pp.
396–409, 2006.

[56] F. Bashir, A. Khokhar, and D. Schonfeld, “Object trajectory-based activity
classification and recognition using hidden markov models,” IEEE Trans. Image
Processing, vol. 16, no. 7, pp. 1912–1919, 2007.

[57] S. Atev, G. Miller, and N. Papanikolopoulos, “Clustering of vehicle trajectories,”
Intelligent Transportation Systems, IEEE Transactions on, vol. 11, no. 3, pp. 647
–657, sept. 2010.

[58] G. Acampora, P. Foggia, A. Saggese, and M. Vento, “Combining neural networks
and fuzzy systems for human behavior understanding,” in to appear in Proceed-
ings of the ”IEEE International Conference on Advanced Video and Signal Based
Surveillance (AVSS)”, 2012.

[59] Z. Fu, W. Hu, and T. Tan, “Similarity based vehicle trajectory clustering and
anomaly detection,” in Image Processing, 2005. ICIP 2005. IEEE International
Conference on, vol. 2, 2005, pp. II–602–5.

[60] R. R. Sillito and R. B. Fisher, “Semi-supervised learning for anomalous trajec-
tory detection.” in BMVC, M. Everingham, C. J. Needham, and R. Fraile, Eds.
British Machine Vision Association, 2008, pp. 1035–1044.

[61] A. Prati, S. Calderara, and R. Cucchiara, “Using circular statistics for trajectory
shape analysis,” in CVPR, june 2008, pp. 1 –8.

[62] L. Chen, M. T. Özsu, and V. Oria, “Symbolic representation and retrieval of
moving object trajectories,” in Proceedings of the 6th ACM SIGMM interna-
tional workshop on Multimedia information retrieval, ser. MIR ’04. New York,
NY, USA: ACM, 2004, pp. 227–234.

[63] N. Piotto, N. Conci, and F. G. B. De Natale, “Syntactic matching of trajectories
for ambient intelligence applications,” Trans. Multi., vol. 11, no. 7, pp. 1266–
1275, Nov. 2009.

[64] U. Gaur, B. Song, and A. Roy-Chowdhury, “Query-based retrieval of complex
activities using strings of motion-words,” in Motion and Video Computing, 2009.
WMVC ’09. Workshop on, dec. 2009, pp. 1 –8.

[65] H.-Y. Cheng and J.-N. Hwang, “Integrated video object tracking with
applications in trajectory-based event detection,” J. Vis. Comun. Image
Represent., vol. 22, no. 7, pp. 673–685, Oct. 2011. [Online]. Available:
http://dx.doi.org/10.1016/j.jvcir.2011.07.001

http://dx.doi.org/10.1016/j.imavis.2009.11.014
http://dx.doi.org/10.1016/j.jvcir.2011.07.001

144 BIBLIOGRAPHY

[66] N. Saunier and T. Sayed, “Clustering vehicle trajectories with hidden markov
models application to automated traffic safety analysis,” in Neural Networks,
2006. IJCNN ’06. International Joint Conference on, 2006, pp. 4132–4138.

[67] T. Xiang and S. Gong, “Incremental and adaptive abnormal behaviour detec-
tion,” Comput. Vis. Image Underst., vol. 111, no. 1, pp. 59–73, Jul. 2008.

[68] B. Morris and M. Trivedi, “Learning trajectory patterns by clustering: Experi-
mental studies and comparative evaluation,” in CVPR, 2009, pp. 312–319.

[69] G. K. D. De Vries and M. Van Someren, “Machine learning for vessel
trajectories using compression, alignments and domain knowledge,” Expert
Syst. Appl., vol. 39, no. 18, pp. 13 426–13 439, Dec. 2012. [Online]. Available:
http://dx.doi.org/10.1016/j.eswa.2012.05.060

[70] G. F. Tzortzis and A. C. Likas, “The global kernel k-means algorithm for clus-
tering in feature space,” IEEE Trans. Neur. Netw., vol. 20, no. 7, pp. 1181–1194,
Jul. 2009.

[71] S.-C. Chen, M.-L. Shyu, S. Peeta, and C. Zhang, “Learning-based spatio-
temporal vehicle tracking and indexing for transportation multimedia database
systems,” Trans. Intell. Transport. Sys., vol. 4, no. 3, pp. 154–167, Sep. 2003.
[Online]. Available: http://dx.doi.org/10.1109/TITS.2003.821290

[72] S. Bhonsle, M. Trivedi, and A. Gupta, “Database-centered architecture for traf-
fic incident detection, management, and analysis,” in Intelligent Transportation
Systems, 2000. Proceedings. 2000 IEEE, 2000, pp. 149 –154.

[73] A. Guttman, “R-trees: a dynamic index structure for spatial searching,” in Proc.
of ACM SIGMOD Conference. New York, NY, USA: ACM, 1984, pp. 47–57.

[74] Y. Manolopoulos, A. Nanopoulos, A. N. Papadopoulos, and Y. Theodoridis,
R-Trees: Theory and Applications (Advanced Information and Knowledge Pro-
cessing). Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2005.

[75] D. Pfoser, C. S. Jensen, and Y. Theodoridis, “Novel approaches in query pro-
cessing for moving object trajectories,” in Proc. of VLDB Conf. San Francisco,
CA, USA: Morgan Kaufmann Publ. Inc., 2000, pp. 395–406.

[76] E. Frentzos, “Indexing objects moving on fixed networks,” in 8th Interna-
tional Symposium on Advances in Spatial and Temporal Databases (SSTD 2003).
Springer, 2003, pp. 289–305.

[77] V. T. De Almeida and R. H. Güting, “Indexing the trajectories of moving
objects in networks*,” Geoinformatica, vol. 9, pp. 33–60, March 2005. [Online].
Available: http://dl.acm.org/citation.cfm?id=1046957.1046970

[78] I. S. Popa, K. Zeitouni, V. Oria, D. Barth, and S. Vial, “Parinet: A tunable
access method for in-network trajectories,” in Proceedings of the 26th Interna-
tional Conference on Data Engineering, ICDE 2010, March 1-6, 2010, Long
Beach, California, USA, F. Li, M. M. Moro, S. Ghandeharizadeh, J. R. Haritsa,
G. Weikum, M. J. Carey, F. Casati, E. Y. Chang, I. Manolescu, S. Mehrotra,
U. Dayal, and V. J. Tsotras, Eds. IEEE, 2010, pp. 177–188.

[79] I. Sandu Popa, K. Zeitouni, V. Oria, D. Barth, and S. Vial, “Indexing in-network
trajectory flows,” The VLDB Journal, vol. 20, pp. 643–669, Oct. 2011.

http://dx.doi.org/10.1016/j.eswa.2012.05.060
http://dx.doi.org/10.1109/TITS.2003.821290
http://dl.acm.org/citation.cfm?id=1046957.1046970

BIBLIOGRAPHY 145

[80] S. Rasetic, J. Sander, J. Elding, and M. A. Nascimento, “A trajectory
splitting model for efficient spatio-temporal indexing,” in Proceedings of VLDB,
ser. VLDB ’05. VLDB Endowment, 2005, pp. 934–945. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1083592.1083700

[81] V. P. Chakka, A. Everspaugh, and J. M. Patel, “Indexing large trajectory data
sets with seti,” in First Biennial Conference on Innovative Data Systems Re-
search (CIDR 2003), Asilomar, CA, USA, 2003.

[82] P. Cudre-Mauroux, E. Wu, and S. Madden, “Trajstore: An adaptive storage
system for very large trajectory data sets,” in Int. Conf. on Data Engineering.
Los Alamitos, CA, USA: IEEE CS, 2010, pp. 109–120.

[83] R. Obe and L. Hsu, PostGIS in Action. Greenwich, CT, USA: Manning Pub-
lications Co., 2011.

[84] M. A. Anusuya and S. K. Katti, “Speech recognition by machine, a review,”
CoRR, vol. abs/1001.2267, 2010.

[85] L. Besacier, E. Barnard, A. Karpov, and T. Schultz, “Automatic speech recogni-
tion for under-resourced languages: A survey,” Speech Communication, vol. 56,
no. 0, pp. 85–100, 2014.

[86] Z. Saquib, N. Salam, R. Nair, N. Pandey, and A. Joshi, “A survey on automatic
speaker recognition systems,” in Signal Processing and Multimedia, ser. Commu-
nications in Computer and Information Science, T.-h. Kim, S. Pal, W. Grosky,
N. Pissinou, T. Shih, and D. Olfozak, Eds. Springer Berlin Heidelberg, 2010,
vol. 123, pp. 134–145.

[87] A. Roy, M. Magimai-Doss, and S. Marcel, “A fast parts-based approach to
speaker verification using boosted slice classifiers,” IEEE Trans. Inf. Forensics
Security, vol. 7, no. 1, pp. 241–254, 2012.

[88] C. Clavel, T. Ehrette, and G. Richard, “Events detection for an audio-based
surveillance system,” in ICME, 2005, pp. 1306 –1309.

[89] M. Vacher, D. Istrate, L. Besacier, J. F. Serignat, and E. Castelli, “Sound De-
tection and Classification for Medical Telesurvey,” in Proc. 2nd Conference on
Biomedical Engineering, C. ACTA Press, Ed., Innsbruck, Austria, Feb. 2004,
pp. 395–398.

[90] J.-L. Rouas, J. Louradour, and S. Ambellouis, “Audio events detection in public
transport vehicle,” in IEEE ITSC, 2006, pp. 733–738.

[91] L. Gerosa, G. Valenzise, M. Tagliasacchi, F. Antonacci, and A. Sarti, “Scream
and gunshot detection in noisy environments,” in Proc. EURASIP European
Signal Processing Conference, Poznan, Poland, 2007.

[92] G. Valenzise, L. Gerosa, M. Tagliasacchi, F. Antonacci, and A. Sarti, “Scream
and gunshot detection and localization for audio-surveillance systems,” in IEEE
AVSS, 2007, pp. 21–26.

[93] S. Ntalampiras, I. Potamitis, and N. Fakotakis, “An adaptive framework for
acoustic monitoring of potential hazards,” EURASIP J. Audio Speech Music
Process., vol. 2009, pp. 13:1–13:15, Jan. 2009.

[94] ——, “Probabilistic novelty detection for acoustic surveillance under real-world
conditions,” IEEE Trans. Multimedia, vol. 13, no. 4, pp. 713 –719, 2011.

http://dl.acm.org/citation.cfm?id=1083592.1083700

146 BIBLIOGRAPHY

[95] A. Rabaoui, M. Davy, S. Rossignol, and N. Ellouze, “Using one-class svms and
wavelets for audio surveillance,” IEEE Trans. Inf. Forensics Security, vol. 3,
no. 4, pp. 763–775, 2008.

[96] D. Conte, P. Foggia, G. Percannella, A. Saggese, and M. Vento, “An ensemble
of rejecting classifiers for anomaly detection of audio events,” in IEEE AVSS,
2012, pp. 76–81.

[97] M. Chin and J. Burred, “Audio event detection based on layered symbolic se-
quence representations,” in IEEE ICASSP, 2012, pp. 1953–1956.

[98] H. Malik, “Acoustic environment identification and its applications to audio
forensics,” IEEE Trans. Inf. Forensics Security, vol. 8, no. 11, pp. 1827–1837,
2013.

[99] A. Ribbrock and F. Kurth, “A full-text retrieval approach to content-based audio
identification,” in IEEE Workshop on Multimedia Signal Processing, 2002, pp.
194–197.

[100] Z. Fu, G. Lu, K. M. Ting, and D. Zhang, “Music classification via the bag-of-
features approach,” Pattern Recognition Letters, vol. 32, no. 14, pp. 1768 – 1777,
2011.

[101] D. Conte, P. Foggia, M. Petretta, F. Tufano, and M. Vento, “Meeting the
application requirements of intelligent video surveillance systems in moving
object detection,” in Proceedings of the Third international conference on
Pattern Recognition and Image Analysis - Volume Part II, ser. ICAPR’05.
Berlin, Heidelberg: Springer-Verlag, 2005, pp. 653–662. [Online]. Available:
http://dx.doi.org/10.1007/11552499 72

[102] D. Conte, P. Foggia, G. Percannella, F. Tufano, and M. Vento, “An experimen-
tal evaluation of foreground detection algorithms in real scenes,” in EURASIP
Journal on Advances in Signal Processing, no. 11, 2010.

[103] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detec-
tion,” in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on, vol. 1, june 2005, pp. 886 –893 vol. 1.

[104] M. Fredman and R. Tarjan, “Fibonacci heaps and their uses in improved net-
work optimization algorithms,” Foundations of Computer Science, IEEE Annual
Symposium on, vol. 0, pp. 338–346, 1984.

[105] P. Foggia, G. Percannella, A. Saggese, and M. Vento, “Real-time tracking of
single people and groups simultaneously by contextual graph-based reasoning
dealing complex occlusions,” in Proceedings of the IEEE International Workshop
on Performance Evaluation of Tracking and Surveillance (PETS). IEEE, 2013.

[106] X. Wang, K. T. Ma, G.-W. Ng, and W. E. Grimson, “Trajectory analysis and
semantic region modeling using nonparametric hierarchical bayesian models,”
Int. J. Comput. Vision, vol. 95, no. 3, pp. 287–312, Dec. 2011. [Online].
Available: http://dx.doi.org/10.1007/s11263-011-0459-6

[107] B. Morris and M. Trivedi, “Trajectory learning for activity understanding: Un-
supervised, multilevel, and long-term adaptive approach,” IEEE Trans. Pattern
Anal. Mach. Intell, vol. 33, no. 11, pp. 2287 –2301, nov. 2011.

[108] L. Brun and A. Trémeau, Digital Color Imaging Handbook, ser. Electrical and
Applied Signal Processing. CRC Press, 2002, ch. 9 : Color quantization, pp.
589–637.

http://dx.doi.org/10.1007/11552499_72
http://dx.doi.org/10.1007/s11263-011-0459-6

BIBLIOGRAPHY 147

[109] J. P. Braquelaire and L. Brun, “Comparison and optimization of methods of
color image quantization,” IEEE Trans. Image Processing, vol. 6, no. 7, pp.
1048–1052, July 1997.

[110] S. J. Wan, S. K. M. Wong, and P. Prusinkiewicz, “An algorithm for multidimen-
sional data clustering,” ACM Trans. Math. Softw., vol. 14, no. 2, pp. 153–162,
Jun. 1988.

[111] H. Shimodaira, K. ichi Noma, M. Nakai, and S. Sagayama, “Dynamic time-
alignment kernel in support vector machine,” in Advances in Neural Information
Processing Systems (NIPS2002), vol. 14(2). MIT Press, Dec 2002, pp. 921–928.

[112] H. Saigo, J.-P. Vert, N. Ueda, and T. Akutsu, “Protein homology detection using
string alignment kernels,” Bioinformatics, vol. 20, no. 11, pp. 1682–1689, Jul.
2004.

[113] M. Cuturi, J.-P. Vert, O. Birkenes, and T. Matsui, “A kernel for time series
based on global alignments,” CoRR, vol. abs/cs/0610033, pp. 413–416, 2006.

[114] M. Cuturi, “Fast global alignment kernels,” in ICML), L. Getoor and T. Scheffer,
Eds. New York, NY, USA: ACM, June 2011, pp. 929–936.

[115] B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear component analysis as a
kernel eigenvalue problem,” Neural Comput., vol. 10, no. 5, pp. 1299–1319, Jul.
1998.

[116] J. Demmel, I. Dumitriu, and O. Holtz, “Fast linear algebra is stable,” Numer.
Math., vol. 108, no. 1, pp. 59–91, Oct. 2007.

[117] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes, Computer Graphics:
Principles and Practice in C (2nd Edition). Addison-Wesley, 2004.

[118] OGC, “OGC Standards,” http://www.opengeospatial.org/ standards/sfs,
2012.

[119] B. Haasdonk and E. Pekalska, “Classification with kernel mahalanobis distance
classifiers,” in GfKl, 2008, pp. 351–361.

[120] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Commun. ACM, vol. 18, no. 9, pp. 509–517, Sep. 1975. [Online].
Available: http://doi.acm.org/10.1145/361002.361007

[121] IEEE and ISO/IEC, “Multimedia Content Description Interface - Part 4: Au-
dio,” ISO/IEC 42010 IEEE Std 1471-2000 First edition 2007-07-15, 2001.

[122] G. Peeters, “A large set of audio features for sound description (similarity and
classification) in the CUIDADO project,” IRCAM, Tech. Rep., 2004.

[123] Z. Liu, Y. Wang, and T. Chen, “Audio Feature Extraction and Analysis for
Scene Segmentation and Classification,” The Journal of VLSI Signal Processing,
vol. 20, no. 1, pp. 61–79, Oct. 1998.

[124] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20,
no. 3, pp. 273–297, 1995.

[125] J. Ferryman and A. Ellis, “Pets2010: Dataset and challenge,” in Advanced Video
and Signal Based Surveillance (AVSS), 2010 Seventh IEEE International Con-
ference on, 2010, pp. 143–150.

http://doi.acm.org/10.1145/361002.361007

148 BIBLIOGRAPHY

[126] T. D”Orazio, M. Leo, N. Mosca, P. Spagnolo, and P. Mazzeo, “A semi-automatic
system for ground truth generation of soccer video sequences,” in Advanced
Video and Signal Based Surveillance, 2009. AVSS ’09. Sixth IEEE International
Conference on, Sept., pp. 559–564.

[127] R. Kasturi, D. Goldgof, P. Soundararajan, V. Manohar, J. Garofolo, R. Bowers,
M. Boonstra, V. Korzhova, and J. Zhang, “Framework for performance evalu-
ation of face, text, and vehicle detection and tracking in video: Data, metrics,
and protocol,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 31, no. 2, pp. 319–336, 2009.

[128] J. Ferryman and A.-L. Ellis, “Performance evaluation of crowd image analysis
using the {PETS2009} dataset,” Pattern Recognition Letters, no. 0, pp. –,
2014. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0167865514000191

[129] A. Ellis and J. Ferryman, “PETS2010 and PETS2009 evaluation of results using
individual ground truthed single views,” in IEEE Int. Conf. on Advanced Video
and Signal Based Surveillance, 2010, pp. 135–142.

[130] A. Alahi, L. Jacques, Y. Boursier, and P. Vandergheynst, “Sparsity-driven people
localization algorithm: Evaluation in crowded scenes environments,” in Perfor-
mance Evaluation of Tracking and Surveillance (PETS-Winter), 2009 Twelfth
IEEE International Workshop on, dec. 2009, pp. 1 –8.

[131] R. Di Lascio, P. Foggia, G. Percannella, A. Saggese, and M. Vento,
“A real time algorithm for people tracking using contextual reasoning,”
Computer Vision and Image Understanding, 2013. [Online]. Available:
http://dx.doi.org/10.1016/j.cviu.2013.04.004

[132] R. Eshel and Y. Moses, “Homography based multiple camera detection and
tracking of people in a dense crowd,” in Computer Vision and Pattern Recogni-
tion, 2008. CVPR 2008. IEEE Conference on, june 2008, pp. 1 –8.

[133] P. Foggia and M. Vento, “A middleware platform for real-time processing of
multiple videostreams based on the data-flow paradigm,” in 2011 IEEE Inter-
national Conference on Multimedia and Expo (ICME). IEEE Computer Society,
2011, pp. 1–6.

[134] B. Majecka, “Statistical models of pedestrian behaviour in the forum,” Ph.D.
dissertation, School of Informatics, University of Edinburgh, 2009.

[135] B. Zhou, X. Wang, and X. Tang, “Understanding collective crowd behaviors:
Learning a mixture model of dynamic pedestrian-agents,” in CVPR, 2012, pp.
2871–2878.

[136] L. Hubert and J. Schultz, “Quadratic assignment as a general data analysis
strategy,” British Journal of Mathematical and Statistical Psychology, vol. 29,
no. 2, pp. 190–241, 1976.

[137] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis. New
York, NY, USA: Cambridge University Press, 2004.

[138] H.-P. Kriegel, P. Kröger, and A. Zimek, “Clustering high-dimensional data:
A survey on subspace clustering, pattern-based clustering, and correlation
clustering,” ACM Trans. Knowl. Discov. Data, vol. 3, no. 1, pp. 1:1–1:58, Mar.
2009. [Online]. Available: http://doi.acm.org/10.1145/1497577.1497578

http://www.sciencedirect.com/science/article/pii/S0167865514000191
http://www.sciencedirect.com/science/article/pii/S0167865514000191
http://dx.doi.org/10.1016/j.cviu.2013.04.004
http://doi.acm.org/10.1145/1497577.1497578

BIBLIOGRAPHY 149

[139] C. Ding and X. He, “K-means clustering via principal component analysis,” in
ICML. ACM, 2004, pp. 29–35.

[140] X. Wang, K. Tieu, and E. Grimson, “Learning semantic scene models by tra-
jectory analysis,” in Proceedings of the 9th European conference on Computer
Vision - Volume Part III, ser. ECCV’06. Berlin, Heidelberg: Springer-Verlag,
2006, pp. 110–123.

[141] X. Wang, K. T. Ma, G.-W. Ng, and W. Grimson, “Trajectory analysis and
semantic region modeling using a nonparametric bayesian model,” in Computer
Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, 2008,
pp. 1–8.

	Introduction
	Overview
	Organization

	State of the Art
	Trajectories extraction
	Visual Behavior Analysis
	Storing and Retrieval
	Audio Analysis

	From Pixels to Behaviors
	Trajectories Extraction
	Detection
	Tracking Algorithm
	Common problems
	Object state management
	Object classification
	Association management
	Similarity evaluation
	Conclusion

	Visual Behavior Analysis
	Preliminaries
	Overview
	Scene Partitioning
	Trajectory representation
	Trajectory similarity
	Clustering algorithm
	Complexity analysis

	Conclusion

	Indexing and Storing Engine
	Spatial Databases
	Preliminaries
	Indexing Engine
	Trajectory Representation Scheme
	Physical Representation Scheme
	Conclusion

	Interactions with the user
	Anomaly Detection
	Query by sketch
	Spatio Temporal Queries
	Conclusion

	From Audio Signals to Events of Interest
	First-level features
	Second-level features (Aural words)
	The classifier
	Conclusions

	Experimental Results
	Tracking Algorithm
	Datasets
	Parameters setup
	Quantitative Evaluation
	Experimentation 1
	Experimentation 2
	Experimentation 3

	Qualitative Evaluation
	Computational cost

	Visual Behavior Analysis
	Datasets
	Parameters Setup
	String representation: experimental results
	Clustering: experimental results
	Anomaly Detection: experimental results
	Query by sketch: experimental results

	Indexing and Retrieval Engine
	Graphical User Interface
	Experimental Set Up
	Experiments over Real Dataset
	Synthetic Data Generator
	Comparison

	Audio Recognition
	The dataset
	Performance evaluation
	Performance comparison

	Achievements

	Conclusions
	Proofs
	Bibliography

