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Résumé

Résumé

Dans cette thèse, on s’intéresse à des questions relatives aux arrangements d’hyperplans du point
de vue des périodes motiviques. Suivant un programme initié par Beilinson et al., on étudie une
famille de périodes appelée polylogarithmes d’Aomoto et leurs variantes motiviques, vues comme
éléments de l’algèbre de Hopf fondamentale de la catégorie des structures de Hodge-Tate mixtes,
ou de la catégorie des motifs de Tate mixtes sur un corps de nombres.

On commence par calculer le coproduit motivique d’une famille de telles périodes, appelées
polylogarithmes de dissection génériques, en montrant qu’il est régi par une formule combina-
toire. Ce résultat généralise un théorème de Goncharov sur les intégrales itérées.

Puis, on introduit les bi-arrangements d’hyperplans, objets géométriques et combinatoires
qui généralisent les arrangements d’hyperplans classiques. Le calcul de groupes de cohomologie
relative associés aux bi-arrangements d’hyperplans est une étape cruciale dans la compréhension
du coproduit motivique des polylogarithmes d’Aomoto. On définit des outils cohomologiques et
combinatoires pour calculer ces groupes de cohomologie, qui éclairent dans un cadre global des
objets classiques tels que l’algèbre d’Orlik-Solomon.

Mots-clefs

Périodes, polylogarithmes, arrangements d’hyperplans, motifs de Tate mixtes, structures de
Hodge mixtes, algèbres de Hopf combinatoires.

Periods of hyperplane arrangements and motivic coproduct

Abstract

In this thesis, we deal with some questions about hyperplane arrangements from the viewpoint of
motivic periods. Following a program initiated by Beilinson et al., we study a family of periods
called Aomoto polylogarithms and their motivic variants, viewed as elements of the fundamental
Hopf algebra of the category of mixed Hodge-Tate structures, or the category of mixed Tate
motives over a number field.

We start by computing the motivic coproduct of a family of such periods, called generic
dissection polylogarithms, showing that it is governed by a combinatorial formula. This result
generalizes a theorem of Goncharov on iterated integrals.
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Then, we introduce bi-arrangements of hyperplanes, which are geometric and combinato-
rial objects which generalize classical hyperplane arrangements. The computation of relative
cohomology groups associated to bi-arrangements of hyperplanes is a crucial step in the un-
derstanding of the motivic coproduct of Aomoto polylogarithms. We define cohomological and
combinatorial tools to compute these cohomology groups, which recast classical objects such as
the Orlik-Solomon algebra in a global setting.

Keywords

Periods, polylogarithms, hyperplane arrangements, mixed Tate motives, mixed Hodge struc-
tures, combinatorial Hopf algebras.
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Chapter 1

Introduction

1.1 The philosophy of periods

Following [KZ01], we introduce periods and some very general ideas related to them.

1.1.1 The algebra of periods

In their modern definition, periods are the values of the integrals that “come from algebraic
geometry”, even though it is fair to say that an important part of modern algebraic geometry
and number theory actually finds its source in the study of these integrals.

For instance, let us consider the classical problem of finding a formula for the arc length of
an ellipse, studied by Fagnano and Euler in the first half of the 18th century. If we consider an
ellipse with major radius a and minor radius b, then its arc length is given by the value of the
integral

` = 4a
∫ 1

0

1− ε2x2√
(1− x2)(1− ε2x2)

dx (1.1)

where ε2 = 1− a2

b2 denotes the square of the eccentricity of the ellipse.

a

b

In terms of algebraic geometry, this leads to the introduction of the elliptic curve given by
the equation

y2 = (1− x2)(1− ε2x2).

We may indeed rewrite the above integral as

` = 4a
∫

0�x�1 ; y�0 ;
y2=(1−x2)(1−ε2x2)

(1− ε2x2)
y

dx.

If ε2 is a rational number, then the dimensionless quantity `
a is an effective period in the

sense of the following definition.
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Definition 1.1.1. An effective period is a complex number whose real and imaginary part can
be written as an absolutely convergent integral∫

σ
f(x1, . . . , xn) dx1 · · · dxn

where

– f(x1, . . . , xn) is a rational function with rational coefficients, and

– σ is a subset of Rn defined by a finite union and intersection of subsets of the form {g(x1, . . . , xn) >
0} with g(x1, . . . , xn) a rational function with rational coefficients.

Effective periods form a subring Peff of the complex numbers. It contains the field Q of
algebraic numbers; for instance, one can realize

√
2 as an effective period by writing

√
2 =

∫
x262 ;x>0

dx.

More generally, we may use rational functions with algebraic coefficients (and even algebraic
functions) to define periods, as in (1.1). Most examples of interesting periods are transcendental
numbers, such as

log(2) =
∫ 2

1

dx

x
and π =

∫∫
x2+y261

dx dy.

It is conjectured that 1
π is not an effective period. For reasons that will soon be made clearer

(see Example 1.3.3), it is convenient to add it to the ring of effective periods and make the
following definition.

Definition 1.1.2. A period is a complex number p such that for some non-negative integer N ,
the product πNp is an effective period.

The periods form an algebra
P = Peff

[ 1
π

]
.

Although by definition P is countable, there is no known example of a complex number that
is not a period (apart from “artificial” examples using cardinal-theoretic arguments). It is
conjectured that the basis e of the natural logarithm, or the Euler-Mascheroni constant γ, are
not periods.

1.1.2 Relations between periods

A very important problem is to understand the algebraic relations between periods. Since P is
an algebra, it can be reduced to the study of linear relations. In the case of one-dimensional
integrals, we have the following identities.

1. Bilinearity:

–
∫ b
a (f(x) + λg(x))dx =

∫ b
a f(x)dx+ λ

∫ b
a g(x)dx ;

–
∫ b
a f(x)dx+

∫ c
b f(x)dx =

∫ c
a f(x)dx.

2. Change of variables:
∫ b
a f(ϕ(u))ϕ′(u)du =

∫ ϕ(b)
ϕ(a) f(x)dx.

3. Stokes’ formula:
∫ b
a f
′(t)dt = f(b)− f(a).
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For higher-dimensional integrals, these relations have to be replaced by their well-known gener-
alizations.

Conjecture 1.1.3 ([KZ01], Conjecture 1). The above relations generate all linear relations
over Q between periods.

For instance, it is an easy exercise to prove the relation log(ab) = log(a) + log(b), a, b ∈ Q>0,
using only these relations.

1.1.3 Periods and cohomology

It is convenient to give a more abstract definition of a period in terms of algebraic geometry.
Let X be a smooth algebraic variety defined over Q, let Y be a closed subvariety of X also
defined over Q, and let n be any integer. Let α ∈ Ωn(X) be a closed algebraic differential form
on X (with rational coefficients) whose restriction to Y is zero. Let σ be a singular n-chain
on X(C) whose boundary lies on Y (C). Then the value of the integral∫

σ
α (1.2)

is an effective period, and all effective periods arise in this way.

A period can then be viewed as a coefficient of the comparison isomorphism between two
cohomology theories, as follows.

– Let H•dR(X,Y ) be the algebraic de Rham cohomology groups of X relative to Y [Gro66]; they
are finite-dimensional vector spaces over Q.

– Let H•B(X,Y ) be the singular 1 cohomology groups of X(C) relative to Y (C); they are finite-
dimensional vector spaces over Q.

– Let
compB,dR : H•dR(X,Y )⊗Q C

∼=−→ H•B(X,Y )⊗Q C (1.3)

be the comparison isomorphism between de Rham and Betti cohomology, given by the integra-
tion of algebraic differential forms on singular chains. A matrix representing this isomorphism
in Q-bases of H•dR(X,Y ) and H•B(X,Y ) is called a period matrix of the pair (X,Y ).

By definition, α defines a class in the de Rham cohomology group Hn
dR(X,Y ), and σ defines

a class in the Betti homology group HB
n (X,Y ) = Hn

B(X,Y )∨. The period (1.2) is thus the
corresponding coefficient 〈σ, compB,dR(α)〉 of the period matrix.
Example 1.1.4. Let us look at X = A1 \ {0} the punctured affine line, and Y = ∅. The de
Rham cohomology group H1

dR(A1 \ {0}) is one-dimensional with basis the class of dxx ; the Betti
homology group H1

B(A1 \ {0})∨ is one-dimensional with basis the class of a circle δ winding
counterclockwise around 0 in C∗. The corresponding period is 2iπ =

∫
δ
dz
z .

Example 1.1.5. The integral log(2) =
∫ 2

1
dx
x corresponds to X = A1 \ {0}, Y = {1, 2}, α = dx

x
and σ the straight path from 1 to 2. A basis of H1

B(A1 \ {0}, {1, 2})∨ is given by the classes of σ
and δ, while a basis of H1

dR(A1 \ {0}, {1, 2}) is given by the classes of the forms dx and dx
x . The

corresponding period matrix is then (
1 log(2)
0 2iπ

)
. (1.4)

1. The letter B stands for Betti (co)homology, which is a standard term for singular (co)homology in algebraic
geometry.
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1.2 Aomoto polylogarithms

Among all periods, we will focus on certain subspaces of periods that are “defined by linear
data”. In other words, the algebraic varieties that we are going to consider will be defined by
(products of) linear equations. We start by formalizing this idea, following [BVGS90].

1.2.1 Definition

Let us fix an integer n > 1. A n-simplex is an ordered family L = (L0, L1, . . . , Ln) of n + 1
hyperplanes in Pn(C). We use the same letter to denote the union L = L0 ∪ L1 ∪ · · · ∪ Ln
of the hyperplanes. A stratum of this simplex is a non-empty intersection Li1 ∩ · · · ∩ Lir of
hyperplanes from the family; the whole space Pn(C) is a stratum of L, and the other strata
are called strict. We say that L is degenerate if the hyperplanes L0, L1, . . . , Ln are linearly
dependent, i.e. if L0 ∩ L1 ∩ · · · ∩ Ln is non-empty.

An admissible pair of n-simplices is a pair (L;M) = (L0, L1, . . . , Ln;M0,M1, . . . ,Mn) of
simplices such that L and M do not have any strict stratum in common.

We fix an admissible pair of n-simplices (L;M); let us choose for each Li a defining linear
form fi (it is unique up to a non-zero multiplicative constant). We then have a canonical
differential form

ωL =
n∑
i=0

(−1)i df0
f0
∧ · · · ∧ d̂fi

fi
∧ · · · ∧ dfn

fn

on Pn(C) \ L. If L is degenerate, then a standard computation shows that ωL is zero. Else we
may choose projective coordinates (x0, x1, . . . , xn) such that Li = {xi = 0}. In this system of
coordinates and in the principal affine chart {x0 6= 0}, ωL is nothing but the logarithmic n-form

dx1
x1
∧ · · · ∧ dxn

xn

on the torus (C∗)n.
Now let ∆n = {0 6 t1 6 · · · 6 tn 6 1} be the standard topological n-simplex and

∆M : ∆n → Pn(C)

be an embedding that maps the interior of ∆n to Pn(C) \ L, and the j-th face ∂j∆n to the
hyperplane Mj , for all j = 0, . . . , n. Such an embedding exists if M is not degenerate, otherwise
we may choose ∆M to be constant.

Definition 1.2.1. TheAomoto polylogarithm associated to the admissible pair of simplices (L;M)
and the choice of ∆M is the value of the absolutely convergent integral

I(L;M) =
∫

∆M

ωL.

If (L;M) is defined over a number field F ↪→ C, then I(L;M) is a period in the sense of Defi-
nition 1.1.2 and we call it an Aomoto period.

The terminology is a reference to the work of Aomoto on the analytic properties of families
of integrals indexed by sets of hyperplanes [Aom77, Aom82], that are close to those considered
here.
Remark 1.2.2. Although it is not clear from the notation, I(L;M) depends on a choice of
integration simplex ∆M , see Example 1.2.3.



1.2. Aomoto polylogarithms 13

1.2.2 Examples

Example 1.2.3 (Logarithms). Let n = 1. Then an admissible pair of 1-simplices is a quadru-
ple (a, b; c, d) of points of P1(C) such that {a, b} ∩ {c, d} = ∅. It is non-degenerate if and only
if a 6= b and c 6= d; in this case, we may choose a coordinate such that (a, b; c, d) = (∞, 0; r, 1),
where by definition r = (a−d)(b−c)

(a−c)(b−d) ∈ C∗ is the cross-ratio of (a, b, c, d).
The form ωL is dx

x , and ∆M : [0, 1] → C∗ is a path that starts at 1 and ends at r. We
picture this geometric situation in Figure 1.1, with P1(C) being depicted as the Riemann sphere.
Then I(∞, 0; r, 1) = log(r) is the value of the logarithm of r computed via the path ∆M . 2

Changing ∆M by winding around 0 amounts to adding an integral multiple of 2iπ to the value
of I(∞, 0; r, 1). If r belongs to a number field F ↪→ C, then log(r) is an Aomoto period.

∞

0

1

r

∆M

Figure 1.1: The example of log(r)

Example 1.2.4 (Classical polylogarithms). Let n � 1 be an integer. The n-th polylogarithm is a
function of a complex variable defined by the series

Lin(z) =
∑
k�1

zk

kn

for |z| < 1. For instance, Li1(z) = − log(1− z). Using the differential system

Li′n(z) = Lin−1(z)dz
z
,

it is possible [Hai94] to analytically continue the polylogarithms as multivalued functions

Lin : C \ {0, 1} → C,

i.e. holomorphic functions on a universal covering space of C \ {0, 1}. It is easy to see that
all the values of these functions are naturally Aomoto polylogarithms, and that their values at
algebraic numbers are Aomoto periods. We explain how this works for Li2(t) =

∑
k�0

tk

k2 with a
real argument 0 < t < 1 to keep things simple. By integrating the differential equation above
(or expanding 1

1−x as a geometric series and integrating), one gets the integral representation

Li2(t) =
∫∫

0<x<y<t

dx dy

(1− x)y ·

2. Our convention is the classical one according to which for a path γ : [0, 1] → C∗, we have ∂0γ = γ(1)
and ∂1γ = γ(0). In [BVGS90] the authors use a different convention and get I(∞, 0; r, 1) = − log(r).
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We work in the projective plane P2(C) with affine coordinates (x, y), whose real points are
pictured in Figure 1.2. Let L = (L0, L1, L2) be the 2-simplex with L0 the line at infinity, L1 =
{x = 1} and L2 = {y = 0}, pictured in dashed lines in Figure 1.2. Then

ωL = dx

x− 1 ∧
dy

y
·

Now let M = (M0,M1,M2) be the 2-simplex with M0 = {x = 0}, M1 = {x = y} and M2 =
{y = t}, pictured in full lines in Figure 1.2. If we choose for ∆M the truncated standard
triangle 0 < x < y < t, shaded in Figure 1.2, then we have Li2(t) = −I(L;M).

L

M

y = t

Figure 1.2: The example of Li2(t)

Example 1.2.5 (Multiple zeta values). For n > 2, the value at 1 of the n-th polylogarithm is the
special value of the Riemann zeta function

ζ(n) =
∑
k>1

1
kn
·

It has an integral representation:

ζ(n) =
∫

0<t1<···<tn<1

dt1 dt2 · · · dtn
(1− t1)t2 · · · tn

,

which shows that it is an Aomoto period.
More generally, we define the multiple zeta values (originally introduced by Euler for r 6 2)

ζ(n1, . . . , nr) =
∑

16k1<···<kr

1
kn1

1 · · · k
nr
r

(1.5)

for integer indices n1, . . . , nr−1 > 1, nr > 2. It has been observed by Kontsevich that these
numbers all have an integral representation

ζ(n1, . . . , nr) = (−1)r
∫

0<t1<···<tn<1

dt1 · · · dtn
(t1 − ε1) · · · (tn − εn)

where n = n1 + · · ·+ nr and

(ε1, . . . , εn) = (1, 0, . . . , 0︸ ︷︷ ︸
n1

, 1, 0, . . . , 0︸ ︷︷ ︸
n2

. . . , 1, 0, . . . , 0︸ ︷︷ ︸
nr

)

This shows that multiple zeta values are Aomoto periods.
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Example 1.2.6 (Iterated integrals on the punctured affine line). Let us fix pairwise distinct com-
plex numbers a0, a1, . . . , an, an+1 and a path γ from a0 to an+1 in C\{a1, . . . , an}. Let ∆n(γ) ⊂
Cn be the image of the standard simplex 0 < t1 < · · · < tn < 1 under (t1, . . . , tn) 7→
(γ(t1), . . . , γ(tn)). Then the integral

I(a0; a1, . . . , an; an+1) =
∫

∆n(γ)

dt1 · · · dtn
(t1 − a1) · · · (tn − an) (1.6)

is an Aomoto polylogarithm. The above integral may even converge (or be regularized) with-
out any assumption on the complex numbers ai. They form an important family of Aomoto
polylogarithms called iterated integrals (on the punctured affine line), introduced and studied
in full generality by Goncharov [Gon05]. For pairwise distinct indices, we will call them generic
iterated integrals. For indices

(a0; a1, . . . , an; an+1) = (0; 1, 0, . . . , 0︸ ︷︷ ︸
n

; t),

we recover the value Lin(t) of the n-th polylogarithm (up to a minus sign). For indices

(a0; a1, . . . , an; an+1) = (0; 1, 0, . . . , 0︸ ︷︷ ︸
n1

, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
nr

; 1),

we recover the multiple zeta value ζ(n1, . . . , nr) (up to the sign (−1)r).
Example 1.2.7. Apart from iterated integrals, there are many interesting families of Aomoto
polylogarithms. In this thesis (see § 1.8 in this Introduction), we will introduce and study the
family of (generic) dissection polylogarithms, which are integrals of the form∫

∆

dt1 · · · dtn
f1 · · · fn

where fi has the form ti− ai with ai ∈ C or ti− tj − ai for ai ∈ C and j 6= i, and ∆ is a singular
simplex bounded by the hyperplanes t1 = a0, t1 = t2, t2 = t3, . . . , tn−1 = tn, tn = an+1.

1.2.3 Scissors congruence relations

Some linear relations between Aomoto polylogarithms are easily written in terms of the corre-
sponding pairs of simplices. In the following relations, whose proofs are straightforward, one has
to choose the different integration domains in a consistent way. The name “scissors congruence
relations” comes from the analogy with Hilbert’s third problem [DS82].

– Degeneracy: if L or M is degenerate, then

I(L;M) = 0.

– Projective invariance: for g ∈ PGLn+1(C) a projective transformation, we have

I(g.L; g.M) = I(L;M).

– Anti-symmetry in L: for σ a permutation of {0, . . . , n}, we have

I(σ.L;M) = sgn(σ) I(L;M).

where σ.L = (Lσ−1(0), . . . , Lσ−1(n)) and sgn(σ) is the signature of σ.
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– Anti-symmetry in M : for σ a permutation of {0, . . . , n}, we have

I(L;σ.M) = sgn(σ) I(L;M).

where σ.M = (Mσ−1(0), . . . ,Mσ−1(n)) and sgn(σ) is the signature of σ.

– Additivity in L: If L0, . . . , Ln+1 are such that for each i, (L(i);M) = (L0, . . . , L̂i, . . . , Ln+1;M)
is an admissible pair of n-simplices, we have

n+1∑
i=0

(−1)i I(L(i);M) = 0.

– Additivity inM : IfM0, . . . ,Mn+1 are such that for each i, (L;M (i)) = (L;M0, . . . , M̂i, . . . ,Mn+1)
is an admissible pair of n-simplices, we have

n+1∑
i=0

(−1)i I(L;M (i)) = 0.

The following conjecture, in the spirit of Conjecture 1.1.3, is implicit in [BVGS90].

Conjecture 1.2.8. The above relations generate all linear relations over Q between Aomoto
periods.

1.3 Motivic periods and motivic Galois theory

The (still conjectural) theory of motives, initiated by Grothendieck, provides an abstract frame-
work for working with periods. We review this formalism, following [And04, And09, Bro13].

1.3.1 Categories of mixed motives, and motivic periods

Let us assume that we have a category M of mixed motives over Q with coefficients in Q. It
is an abelian Q-linear category, and an algebraic variety X over Q defines objects Hn(X) in M
that are contravariant in X and should be thought of as “universal cohomology groups” of X.
In addition, there should exist two functors

ωdR : M→ VectQ , M 7→MdR

ωB : M→ VectQ , M 7→MB

respectively called the de Rham and Betti realization functors, which map Hn(X) to Hn
dR(X)

and Hn
B(X) respectively. The same should be true for relative cohomology groups, i.e. a

pair (X,Y ) should define objects Hn(X,Y ) in M that are mapped to the usual de Rham and
Betti relative cohomology groups by the corresponding realization functors. The comparison
isomorphisms (1.3) should give an isomorphism of functors

compB,dR : ωdR ⊗Q C
∼=−→ ωB ⊗Q C.

Remark 1.3.1. At the present time, we do not have such an abelian category of mixed motives,
but only triangulated categories of mixed motives [Lev98, VSF00]. Nevertheless, we will see
in §1.4.2 that we have categories of mixed Tate motives over number fields (which should be
thought of as subcategories of a still-to-be-defined category of mixed motives). Only certain
pairs (X,Y ) will define objects in these categories of mixed Tate motives, which will be enough
for all our purposes.
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Let us further assume that the category M is Tannakian 3, with ωdR and ωB two fiber functors.
In particular, this means that M is endowed with a tensor product ⊗ such that ωdR and ωB are
tensor functors; we assume that the comparison isomorphism compB,dR is compatible with the
tensor product. Let

T = Isom⊗M(ωdR, ωB)

be the torsor of tensor-preserving isomorphisms from the de Rham to the Betti realization
functors. It is an affine Q-scheme. More precisely, for F a field of characteristic zero, an F -point
of T is a set of isomorphisms

MdR ⊗Q F
∼=−→MB ⊗Q F

which are functorial in M ∈ M and compatible with the tensor product. Thus, the comparison
isomorphism compB,dR is a C-point of T .

Let us denote by
PM = O(T )

the Q-algebra of functions on T . By definition, it is spanned by triples (M,α, σ) with M ∈
M, α ∈ MdR and σ ∈ M∨B . We call PM the algebra of motivic periods. The comparison
isomorphism compB,dR gives a morphism of algebras

per : PM → C

called the period morphism. The algebra of periods P contains the image of per.

Conjecture 1.3.2 (Grothendieck’s period conjecture for M). The period morphism is injective.

If we start with a period p =
∫
σ α as in §1.1.3, with α ∈ Hn

dR(X,Y ) and σ ∈ Hn
B(X,Y )∨,

then we define a triple
pM = (Hn(X,Y ), α, σ) ∈ PM

which we call the motivic period corresponding to p. It maps to p via the period map:

per(pM) = p.

If we start with another representation p =
∫
σ′ α

′ of p as a period, with α′ ∈ Hn
dR(X ′, Y ′)

and σ′ ∈ Hn
B(X ′, Y ′)∨, then we get another definition of the motivic period corresponding to p.

If Grothendieck’s period conjecture for M holds, then we actually get the same element of PM.
Thus, in principle, the motivic period pM is canonically attached to p.
Example 1.3.3. Going back to Example 1.1.4, the motive H1(A1 \ {0}) is called the Lefschetz
motive, denoted by Q(−1). Its period is 2iπ. If we want the category M to have a duality, there
should exist a dual Q(1) to the Lefschetz motive, called the Tate motive. Its period is then
necessarily 1

2iπ . This explains the inversion of π in Definition 1.1.2. More generally, we should
have motives Q(−k) for k ∈ Z, such that Q(−k)∨ = Q(k) and Q(−k)⊗Q(−l) ∼= Q(−k− l). The
period of Q(−k) is (2iπ)k.
Example 1.3.4. Coming back to Example 1.1.5, the period log(2) =

∫ 2
1
dx
x corresponds to the

motive H = H1(A1 \ {0}, {1, 2}). It is called a Kummer motive. In any reasonable category of
mixed motives we should have a short exact sequence (implied in particular by the long exact
sequence in relative cohomology)

0→ Q(0)→ H → Q(−1)→ 0

which is parallel to the period matrix (1.4).

3. Throughout this text, “Tannakian category” means “neutral Tannakian category over Q”.
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1.3.2 Motivic Galois theory of periods

Let us denote by
GM = Aut⊗M(ωdR)

the Tannakian group of M relative to the fiber functor ωdR. It is an affine group scheme over Q,
and ωdR induces an equivalence of categories

M ∼= Rep(GM)

between M and the category of finite-dimensional representations of GM.
By definition T = Isom⊗M(ωdR, ωB) is a GM-torsor. Thus, there is a GM-action on the

algebra PM of functions on T . This action

GM × PM → PM (1.7)

is called the motivic Galois theory of periods. If Grothendieck’s period conjecture holds, then
this gives an action of GM on (a subalgebra of) the algebra of periods P.

The motivic Galois theory of periods generalizes the classical Galois theory of algebraic
numbers in the following sense: if a ∈ Q is an algebraic number and F the number field
generated by a and its conjugates, then GM acts on F ⊂ P by the classical Galois theory
through a quotient GM � Gal(F/Q).

More generally, if p is a period, there should be a well-defined notion of the Galois group
of p, which should be an algebraic group over Q. For instance, the Galois group of π should be
the multiplicative group Gm. See [And09] for a more detailed treatment of this notion.

1.4 The Tannakian formalism in the mixed Tate setting

1.4.1 Mixed Hodge-Tate structures

The category of mixed Hodge structures is a good prototype for a category of mixed motives.
We describe here the Tannakian formalism for mixed Hodge-Tate structures.

The fundamental Hopf algebra

Definition 1.4.1. A mixed Hodge-Tate structure is a mixed Hodge structure (H,W,F ) such
that for every integer k, grW2k+1H = 0 and grW2kH is a sum of Tate structures Q(−k).

Equivalently, a mixed Hodge-Tate structure is the data of

– a finite-dimensional Q-vector space H;

– an increasing filtration (the weight filtration) W2•H of H indexed by even integers;

– a decreasing filtration (the Hodge filtration) F •HC of the complexification HC = H ⊗Q C
indexed by integers,

such that for every integer k we have a direct sum decomposition

W2kHC = W2(k−1)HC ⊕ (W2kHC ∩ F kHC). (1.8)

Note that for a mixed Hodge-Tate structure (H,W,F ), the direct sum decomposition (1.8)
provides a canonical splitting of the weight filtration over C:⊕

k

grW2kHC
∼=−→ HC. (1.9)
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We denote by MHTS the category of mixed Hodge-Tate structures. It is a Tannakian cate-
gory, with two distinguished fiber functors:

ωdR : MHTS→ VectQ (H,W,F ) 7→
⊕
k

HomMHTS(Q(−k), grW2kH)

and ωB : MHTS→ VectQ (H,W,F ) 7→ H.

The canonical splitting (1.9) gives a comparison isomorphism

compB,dR : ωdR ⊗Q C
∼=−→ ωB ⊗Q C.

Let GMHTS be the Tannakian group of MHTS for the de Rham fiber functor ωdR. It is an
affine group scheme over Q, and we have an equivalence of categories

MHTS ∼= Rep(GMHTS)

between MHTS and the category of finite-dimensional representations of GMHTS. Using in par-
ticular the fact that ωdR is naturally graded, one derives a semi-direct product decomposition

GMHTS = Gm n UMHTS

where Gm is the multiplicative group and UMHTS is a pro-unipotent affine group scheme over Q.
We let HMHTS be the Hopf algebra of functions on UMHTS. Since Gm acts on UMHTS, HMHTS

is graded. The category MHTS is then equivalent to the category of finite-dimensional graded
comodules over HMHTS:

MHTS ∼= grComod(HMHTS).
We call HMHTS the fundamental Hopf algebra of the category MHTS.
The fact that the extension groups Ext1

MHTS(Q(−n),Q(0)) vanish for n 6 0 implies that H
is non-negatively graded and connected:

HMHTS =
⊕
n>0
HMHTS
n , HMHTS

0 = Q.

An element of HMHTS
n is an equivalence class of triples (H, v, ϕ) where

– H is a mixed Hodge-Tate structure,

– v ∈ HomMHTS(Q(−n), grW2nH),

– ϕ ∈ HomMHTS(grW0 H,Q(0)).

The equivalence relation is generated by the fact that (H, v, ϕ) ≡ (H ′, v′, ϕ′) if there exists a
morphism of mixed Hodge-Tate structures f : H → H ′ such that grW2nf◦v = v′ and ϕ′◦grW0 f = ϕ.

A triple (H, v, ϕ) as above is called an n-framed mixed Hodge-Tate structure, where v and ϕ
are called the framings. The expression (H, v, ϕ) is bilinear in v and ϕ.

The product in HMHTS is defined via the tensor product:

(H, v, ϕ)(H ′, v′, ϕ′) = (H ⊗H ′, v ⊗ v′, ϕ⊗ ϕ′).

The coproduct ∆n−k,k : HMHTS
n → HMHTS

n−k ⊗HMHTS
k is abstractly defined by the formula

∆n−k,k(H, v, ϕ) =
∑
i

(H(k), v, b∨i )⊗ (H, bi, ϕ) (1.10)

where (bi) is any basis of HomMHTS(Q(−k), grW2kH) and (b∨i ) the dual basis, with the identification
HomMHTS(grW0 H(k),Q(0)) ∼= HomMHTS(Q(−k), grW2kH)∨.
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The algebra of mixed Hodge-Tate periods

Following the construction of §1.3.1 , we let PMHTS be the algebra of functions on the torsor of
tensor-preserving isomorphisms between ωdR and ωB. We call it the algebra of mixed Hodge-Tate
periods; it is graded:

PMHTS =
⊕
n

PMHTS
n .

An element of PMHTS
n is an equivalence class of triples (H, v, δ) with H a mixed Hodge-Tate

structure, v ∈ HomMHTS(Q(−n), grW2nH) and δ ∈ H∨.

The product is defined in the same way as in HMHTS. The action of GMHTS on PMHTS

translates as a comodule structure

ρn−k,k : PMHTS
n → HMHTS

n−k ⊗ PMHTS
k

given by the formula

ρn−k,k(H, v, δ) =
∑
i

(H(k), v, b∨i )⊗ (H, bi, δ) (1.11)

where (bi) is any basis of HomMHTS(Q(−k), grW2kH) and (b∨i ) the dual basis.

Let PMHTS,eff denote the subalgebra of PMHTS spanned by the triples (H, v, δ) where H has
non-negative weights: W−1H = 0. It is non-negatively graded, and is stable under the coaction
by HMHTS. We call it the elements of PMHTS effective mixed Hodge-Tate periods. There is a
surjective morphism of graded algebras

PMHTS,eff � HMHTS (1.12)

which sends (H, v, δ) to (H, v, ϕ) where ϕ is the image of δ via the map H∨ �
(
grW0 H

)∨
. This

is well-defined since by assumption W−1H = 0. The surjection (1.12) is compatible with the
structures of graded comodules over HMHTS.

The comparison isomorphism compB,dR gives a period morphism per : PMHTS → C. Note
that contrary to what is expected in a motivic setting, this period morphism is not injective,
and its image is C. Actually, we will see in §1.6.2 that PMHTS,eff

1 contains elements logP(r)
for r ∈ C∗, whose image by per is log(r), hence its image by per is already all of C.

1.4.2 Mixed Tate motives

Let F be a number field and let MTM(F ) be the category of mixed Tate motives over F with
coefficients in Q, defined in [Lev93]. It should be thought of as a subcategory of a still-to-be-
defined category of mixed motives over Q.

For simplicity, let us fix σ : F ↪→ C a complex embedding of F ; according to [Hub00, Hub04],
we have a Hodge realization functor

realσ : MTM(F )→ MHTS. (1.13)

This allows us to define fiber functors ωdR and ωB on MTM(F ). It so happens that ωdR is
independent of σ and is given by the formula

ωdR(H) =
⊕
k

HomMTM(F )(Q(−k), grW2kH)

where W2•H is the canonical weight filtration on a mixed Tate motive H.
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Remark 1.4.2. The “true” de Rham realization is defined over F ; in this case it may be
checked [DG05, Proposition 2.10] that it is nothing but ωdR ⊗Q F , hence the (slightly abu-
sive) notation.

As in the case of mixed Hodge-Tate structures, one may use the fiber functor ωdR to define
a fundamental Hopf algebra HMTM(F ), which is non-negatively graded and connected, and such
that MHTS is equivalent to the category of graded comodules over HMHTS. The realization
functor (1.13) induces a morphism of graded Hopf algebras

realσ : HMTM(F ) → HMHTS. (1.14)

One may also define algebras PMTM(F ),eff ⊂ PMTM(F ) of (effective) mixed Tate periods
over F , which depend on the choice of σ; we have a natural surjection

PMTM(F ),eff � HMTM(F ).

The relation between mixed Tate motives and higher algebraic K-theory resides in the iso-
morphisms [DG05, 1.6]

Ext1
MTM(F )(Q(−n),Q(0)) ∼= K2n−1(F )⊗Z Q (1.15)

which rely on the work of Borel, Beilinson, Bloch, Levine . . .

1.5 Motivic Aomoto polylogarithms

We want to define a motivic version of a given Aomoto polylogarithm I(L;M). As a first step,
we have to find a cohomology group which has I(L;M) as a period. We first discuss this step
for the case of ζ(2), following the discussion in [GM04].

1.5.1 The example of ζ(2)

We work with the Aomoto period

ζ(2) =
∫∫

0<x<y<1

dx

1− x
dy

y
·

Let us consider the geometric situation pictured in the left-hand side of Figure 1.3 below. In the
projective plane P2 with affine coordinates (x, y), let L (the dashed lines) be the divisor of poles
of the form ω = dx

1−x
dy
y . It is the union of the line at infinity and the lines {x = 1}, {y = 0}. Let

now M (the full lines) be the Zariski closure of the boundary of the domain of integration ∆ =
{0 < x < y < 1} (the shaded triangle). It is the union of the lines {x = 0}, {x = y}, {y = 1}.

The divisor L ∪M is not normal crossing in P2. We let π : P̃2 → P2 be the blow-up along
the points P1, P2, Q1, Q2, and let E1, E2, F1, F2 be the corresponding exceptional divisors. We
let L̃ be the union of E1, E2, and the strict transforms of the three lines from L; we let M̃ be
the union of F1, F2, and the strict transforms of the three lines from M . Now L̃∪M̃ is a normal
crossing divisor in P̃2, pictured in the right-hand side of Figure 1.3.

Let us introduce the relative cohomology group (with coefficients in Q)

H = H2(P̃2 \ L̃, M̃ \ M̃ ∩ L̃). (1.16)

The differential form π∗(ω) is closed and has poles along L̃, hence defines a class in the de
Rham cohomology group HdR. The domain π−1(∆) (the shaded pentagon in Figure 1.3) has its
boundary on M̃ , hence defines a class in the Betti homology group H∨B . Hence,

ζ(2) =
∫

∆
ω =

∫
π−1(∆)

π∗(ω)
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P1

P2

Q2

Q1

π

L

M

F1

F2

E1

E2

M̃

L̃

Figure 1.3: The example of ζ(2)

is a period of H.

Why work in the blow-up? One could want to replace H with the (simpler) relative cohomol-
ogy group H ′ = H2(P2 \L,M \M ∩L). This is not the right thing to do because the boundary
of ∆ intersects L, hence ∆ does not define a homology class in H ′B. This is why we have to work
in the blown-up situation.

One can note that such a blow-up procedure is also standard in the algebro-geometric study
of Feynman integrals [BEK06], in the process of finding a motive which has a given Feynman
integral as a period.

1.5.2 The general case

Let (L;M) be an admissible pair of n-simplices, that we assume to be non-degenerate. We fix
a choice of integration simplex ∆M for the corresponding Aomoto polylogarithm I(L;M). We
are going to define

– an element IP(L;M) ∈ PMHTS,eff ;

– an element IH(L;M) ∈ HMHTS.

They will both be called the motivic Aomoto polylogarithm corresponding to (L;M). They
satisfy the following properties.

– per(IP(L;M)) = I(L;M);

– IH(L;M) is the image of IP(L;M) under the surjection PMHTS,eff � HMHTS;

– IH(L;M) is independent of the choice of ∆M .

This last point is the main motivation for the notation I(L;M) where ∆M does not appear.

As in the case of ζ(2), we first want to resolve the singularities of L∪M . A stratum of (L;M)
is a non-empty intersection LI ∩MJ . An L-stratum is a stratum of type LI with |I| > 0, and
an M -stratum is a stratum of type MJ with |J | > 0; the other strata are called mixed strata.
By the admissibility condition, an L-stratum and an M -stratum are never equal.



1.5. Motivic Aomoto polylogarithms 23

Let
π : P̃n → Pn

be the iterated blow-up defined by the following procedure.

– Blow-up the strata of (L;M) of dimension 0 (the points);

– Blow-up the strict transforms of the strata of (L;M) of dimension 1;

– Blow-up the strict transforms of the strata of (L;M) of dimension 2;

– · · ·

– Blow-up the strict transforms of the strata of (L;M) of dimension (n− 1);

One notes that at each step, the center of the blow-up is a disjoint union of smooth varieties.

The total transform π−1(L ∪M) is a normal crossing divisor whose irreducible components
are in bijection with the strict strata of (L;M); they are thus of three types:

– the L-components, which are the exceptional divisors corresponding to L-strata;

– the M -components, which are the exceptional divisors corresponding to M -strata;

– the mixed components, which are the exceptional divisors corresponding to mixed strata.

The following Lemma is easily proved using local coordinates.

Lemma 1.5.1. 1. The divisor of the poles of the form π∗(ωL) is the union of the L-components.

2. The Zariski closure of the boundary of π−1(∆M ) is the union of the M -components. 4

Let us write L̃ for the union of the L-components and M̃ for the union of theM -components.
We then look at the relative cohomology group (with coefficients in Q)

H(L;M) = Hn(P̃n \ L̃, M̃ \ M̃ ∩ L̃).

It is endowed with a mixed Hodge structure which is easily seen to be a mixed Hodge-Tate
structure, hence H(L;M) is an object of the category MHTS. Its weights are between 0 and 2n,
and one easily proves the following facts.

– The weight 2n part

grW2nH(L;M) ∼= grW2nHn(P̃n \ L̃) ∼= Hn(Pn \ L) ∼= Q(−n)

is 1-dimensional with a canonical generator α (fixed by the ordering of L) corresponding
to π∗(ωL) under the morphism

H(L;M)� grW2nH(L;M).

– The dual of the weight 0 part(
grW0 H(L;M)

)∨ ∼= (
grW0 Hn(P̃n, M̃)

)∨ ∼= Hn(Pn,M) ∼= Q(0)

is 1-dimensional with canonical generator ϕ (fixed by the ordering of M) corresponding
to π−1(∆M ) under the morphism

H(L;M)∨ �
(
grW0 H(L;M)

)∨
.

4. Here, as in the example of §1.5.1, ∆M denotes the open simplex. By its boundary, we mean the image of
the boundary of the standard simplex ∆n.
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We define

IP(L;M) = (H(L;M), α, π−1(∆M )) ∈ PMHTS,eff
n

and

IH(L;M) = (H(L;M), α, ϕ) ∈ HMHTS
n ,

which is independent of the choice of ∆M . By definition, the period of IP(L;M) is

per(IP(L;M)) =
∫
π−1(∆M )

π∗(ωL) =
∫

∆M

ωL = I(L;M)

and its image under the surjection PMHTS,eff
n � HMHTS

n is IH(L;M).

1.5.3 Variant: the need for a coloring

In the construction of the previous paragraph, we did not take into account the mixed com-
ponents. In practice, in order to compute the cohomology groups Hn(P̃n \ L̃, M̃ \ M̃ ∩ L̃), it
is convenient to be in a situation where L̃ ∪ M̃ is all of π−1(L ∪M). We may then define L̃
to be the union of the L-components and the mixed components, and M̃ to be the union of
the M -components; dually, we may define L̃ to be the union of the L-components and M̃ to
be the union of the M -components and the mixed components. These are the two “extreme”
choices that Goncharov looks at in [Gon02]. In between these two possibilities, one may simply
choose to partition the mixed components into two sets, one that will form part in L̃ and the
other one in M̃ .

In order to keep track of these choices, one introduces a coloring function χ which associates
to every strict stratum of (L;M) a color χ(S) ∈ {λ, µ}. The L-strata should have the color λ,
and the M -strata should have the color µ. This coloring induces a coloring on the irreducible
components of π−1(L∪M), which by definition are in bijection with the strict strata. Then we
may define L̃ to be the union of the components with color λ, and M̃ to be the union of the
components with color µ.

We then have relative cohomology groups H(L;M ;χ) = Hn(P̃n\L̃, M̃ \M̃∩L̃) which depend
on the coloring function χ. One easily sees that the corresponding framed objects IP(L;M)
and IH(L;M) that we define out of these cohomology groups are independent of χ.

1.5.4 The setting of mixed Tate motives

If we start with an Aomoto period I(L;M) with (L;M) defined over a number field F ↪→C,
then Hn(P̃n \ L̃, M̃ \ M̃ ∩ L̃) defines an object of the category MTM(F ) whose Hodge realization
is the mixed Hodge-Tate structure defined above (see [Gon02], Proposition 3.6). We then have
motivic Aomoto polylogarithms IP(L;M) and IH(L;M) in PMTM(F ),eff

n and HMTM(F )
n respec-

tively.

The following conjecture is implicit in [BVGS90].

Conjecture 1.5.2. The elements IP(L;M) span PMTM(F ),eff , hence the elements IH(L;M)
span HMTM(F ).
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The initial motivation of [BVGS90] for introducing motivic Aomoto polylogarithms comes
from higher algebraic K-theory. Indeed, Conjecture 1.5.2 and (the motivic version of) Conjec-
ture 1.2.8 give a set of explicit generators and relations for HMTM(F ). If we knew how to compute
the motivic coproduct of these generators, we would be able to produce explicit “combinatorial”
complexes that compute the rational K-groups of F , in view of (1.15). One hope is that these
complexes would be natural enough to compute the rational K-groups of any field F , in the
spirit of the Bloch group and its variants (see [Gon95] for a survey on this topic).

An alternative approach for finding generators of categories of mixed Tate motives is Deligne
and Goncharov’s theory of motivic fundamental groups [Del89, Gon05, DG05, Del10]. Brown’s
theorem [Bro12] shows that the motivic fundamental group of P1 \ {∞, 0, 1} generates the Tan-
nakian category MTM(Z) ⊂ MTM(Q) of mixed Tate motives over the integers. Similar results
for rings of integers in cyclotomic number fields were previously obtained by Deligne [Del10].
More precisely, let FN denotes the N -th cyclotomic field, ON denotes its ring of integers, and µN
denote the group of N -th roots of unity. It is proved that for N ∈ {2, 3, 4, 8} the motivic funda-
mental group of P1\{∞, 0, µN} generates the Tannakian category MTM(ON [1/N ]) ⊂ MTM(FN ).
The limits of such an approach were discovered by Goncharov [Gon01], who showed that it is
no longer the case for N prime > 5. Finding the “missing generators” is one of the motivation
for introducing all motivic Aomoto polylogarithms.

1.6 The motivic coproduct of Aomoto polylogarithms

1.6.1 The general question

Summing up what we have done so far, we have associated to each admissible pair of sim-
plices (L;M) an element IP(L;M) in the algebra of effective mixed Hodge-Tate periods PMHTS,eff ,
and its image IH(L;M) in the fundamental Hopf algebraHMHTS of the category of mixed Hodge-
Tate structures.

Both PMHTS,eff and HMHTS are acted upon by the motivic Galois group GMHTS. We want
to understand how the latter acts on the motivic Aomoto polylogarithms. This amounts to
understanding the motivic Galois theory for Aomoto polylogarithms.

In practice, it is easier to work with the Hopf algebra HMHTS and compute the coaction

ρ : PMHTS,eff → HMHTS ⊗ PMHTS,eff

and the coproduct
∆ : HMHTS → HMHTS ⊗HMHTS.

We then pose the following general problem.

Problem A: For a given admissible pair of simplices (L;M), compute the motivic coac-
tion ρ on IP(L;M) and the motivic coproduct ∆ on IH(L;M).

Of course, the answer for the motivic coaction gives an answer for the motivic coproduct
by applying the surjection PMHTS,eff � HMHTS. This being said, we will focus on the motivic
coproduct because it allows us to state the results in a more symmetric manner, and without
taking care of choosing integration simplices for Aomoto polylogarithms. In practice, though,
these two questions are equally difficult.
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If (L;M) is defined over a number field F ↪→ C, then we may ask the same question in the
setting of mixed Tate motives described in §1.5.4. Although we will not mention it any further,
all the formulas that follow are valid in this setting.
Remark 1.6.1. In view of Conjecture 1.5.2, one should be able to express the motivic coprod-
uct ∆(IH(L;M)) in terms of motivic Aomoto polylogarithms IH(L′,M ′).

1.6.2 The case of dimension 1: logarithms

Let r ∈ C∗ be a fixed complex number, and let logP(r) = IP(∞, 0; r, 1) ∈ PMHTS,eff
1 and logH(r) =

IH(∞, 0; r, 1) ∈ HMHTS
1 be the motivic periods corresponding to log(r). For r = 1 we have the

motivic version (2iπ)P of 2iπ. Note that (2iπ)H = 0. The motivic coaction is given by

ρ(logP(r)) = 1⊗ logP(r) + logH(r)⊗ 1. (1.17)

More symmetrically, the motivic coproduct is given by

∆(logH(r)) = 1⊗ logH(r) + logH(r)⊗ 1.

1.6.3 The case of dimension 2

The authors of [BVGS90] give formulas for ∆(IH(L;M)) for (L;M) = (L0, L1, L2;M0,M1,M2)
an admissible pair of 2-simplices. Although these formulas are not proved, one can check that
they indeed give the right answer (up to a sign, see Remark 1.6.3 below).

For instance, we have a motivic dilogarithm LiH2 (t) for t ∈ C\{0, 1} whose motivic coproduct
is given by

∆1,1(LiH2 (t)) = − logH(t)⊗ logH(1− t).

Remark 1.6.2. In order to compare with the formulas of [BVGS90], one has to interchange the
left-hand side and the right-hand side of the coproduct. This is just a matter of convention.
Remark 1.6.3. There is a sign error in the formulas of [BVGS90]: the component ∆1,1 should
be multiplied by the sign −1. It so happens that the formula (2.14) op.cit. for ∆1,1(LiH2 (t)) is
correct, but is actually derived from −LiH2 (t) (L1 and L2 should be interchanged in Figure 1.4
op. cit.).

1.6.4 The case of dimension 3

Zhao [Zha04] gives formulas to compute the motivic coproduct ∆(IH(L;M)) for (L;M) =
(L0, L1, L2, L3;M0,M1,M2,M3) an admissible pair of 3-simplices. Although these formulas are
not proved, one can check that they indeed give the right answer (up to a sign).

1.6.5 The generic case

A pair of n-simplices (L;M) = (L0, L1, . . . , Ln;M0,M1, . . . ,Mn) is generic if its (2n + 2) hy-
perplanes are in general position in Pn. It is then automatically admissible. For such a
pair, L ∪ M is a normal-crossing divisor and the corresponding mixed Hodge-Tate structure
is simply Hn(Pn \ L,M \ L ∩M). In this case, it is easy to compute the motivic coproduct.
First we introduce a little bit of notation.

For a subset I ⊂ {1, . . . , n}, we denote by I its complement in {1, . . . , n}. We write LI
for the intersection of the hyperplanes Li, i ∈ I, and L(I) for the tuple formed by the Li, i ∈
I. For A ⊂ Pn a projective subspace of dimension k, and Li,Mj ⊂ Pn hyperplanes, we use
the notation

(
A
∣∣L0, . . . , Lk;M0, . . . ,Mk

)
for a pair of k-simplices on A ∼= Pk formed by the

intersections A ∩ Li and A ∩Mj .
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One then proves the formula

∆(IH(L;M)) =
∑

I,J⊂{1,...,n}
|I|+|J |=n

εI,J I
H
(
LI
∣∣L0, L(I);M0,M(J)

)
⊗ IH

(
MJ

∣∣L0, L(I);M0,M(J)
)

(1.18)
where εI,J = (−1)|I||J |sgn(I, I)sgn(J, J). Here

(
LI
∣∣L0, L(I);M0,M(J)

)
is a generic pair of sim-

plices in LI ∼= Pn−|I|.

The formula for the motivic coaction is exactly the same, replacing IH
(
MJ |L0, L(I);M0,M(J)

)
on the right-hand side by IP

(
MJ |L0, L(I);M0,M(J)

)
; this has to be understood as being com-

puted with the integration simplex ∂J∆M ⊂MJ .
Remark 1.6.4. As in Remark 1.6.3, there is a sign error in most references where formula (1.18)
appears [BMS87, BVGS90, Zha00], where the sign (−1)|I||J | is forgotten. Since

(−1)k(n−k) = (−1)
n(n+1)

2 (−1)
k(k+1)

2 (−1)
(n−k)(n−k+1)

2 ,

one recovers the right formulas by multiplying the component HMHTS
n by the sign (−1)

n(n+1)
2 .

However, in references such as [Gon00, GZ01, Gon13], the formula for the component ∆1,n−1
of the generic motivic coproduct is actually correct, the sign being, for i, j ∈ {1, . . . , n}:

ε{i},{1,...,n}\{j} = (−1)n−1(−1)i−1(−1)n−j = (−1)i+j .

1.6.6 Iterated integrals

In [Gon05], Theorem 1.2, Goncharov computes the coproduct for motivic iterated integrals.
More precisely, he shows that they generate a Hopf subalgebra of HMHTS and that the coprod-
uct ∆(IH(a0; a1, . . . , an; an+1)) is given by the formula

∑
06k6n

0=i0<i1<···<ik<ik+1=n+1

(
k∏
s=0

IH(ais ; ais+1, . . . , ais+1−1; ais+1)
)
⊗ IH(a0; ai1 , . . . , aik ; an+1).

(1.19)
When applied to indices ai ∈ {0, 1}, one sees that the motivic multiple zeta values are

closed under the coproduct. This special feature and the corresponding formula for the motivic
coaction have been used by Brown [Bro12] to prove the Deligne-Ihara conjecture and the motivic
Hoffman basis conjecture.

1.7 Arrangements and cohomology

1.7.1 The general question

As a preliminary step towards computing the motivic coproduct of Aomoto polylogarithms,
we want to understand the underlying relative cohomology groups. Let us forget for a mo-
ment about the periods and look at the following general situation. In the projective space Pn,
let L = {L1, . . . , Ll} and M = {M1, . . . ,Mm} be two disjoint sets of hyperplanes. In view of
the discussion of §1.5.3, let us assign to each strict stratum S of the pair (L;M) a color χ(S) ∈
{λ, µ} such that the strata LI (I ⊂ {1, . . . , l}, |I| > 0) are colored λ and the strata MJ

(J ⊂ {1, . . . ,m}, |J | > 0) are colored µ. For now, let us call such a triple (L;M ;χ) a (pro-
jective) bi-arrangement of hyperplanes (the definition is actually a little bit more technical, see
Definition 4.1.1, but this one will do for now).
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Let π : P̃n → Pn be the iterated blow-up described in §1.5.2. Then π−1(L ∪ M) is a
normal crossing divisor in P̃n and its irreducible components are in bijection with the strict
strata of (L;M). We let L̃ be the union of those irreducible components corresponding to strata
colored λ, and M̃ be the union of those irreducible components corresponding to strata colored µ.
We then let

H•(L;M ;χ) = H•(P̃n \ L̃, M̃ \ M̃ ∩ L̃)

be the collection of the corresponding relative cohomology groups. We call it the motive of the
bi-arrangement of hypersurfaces (L;M ;χ). A general problem is thus the following.

Problem B: For a given bi-arrangement of hyperplanes (L;M ;χ) in the projective
space Pn, set up tools to compute the motive H•(L;M ;χ).

We will be more precise about this problem in §1.10. For now let us just mention a “global”
version of Problem B. We take X a complex variety, L = {L1, . . . , Ll} andM = {M1, . . . ,Mm}
two disjoint sets of hypersurfaces in X such that around every point of X we can find local
coordinates in which all hypersurfaces Li and Mj are defined by linear equations. If we add a
coloring χ of all strata of (L;M), then we get a triple (L;M ;χ) that we call a bi-arrangement
of hypersurfaces in X. By exactly the same procedure as in the setting of bi-arrangements of
hyperplanes, one may attach to such a triple the motive

H•(L;M ;χ) = H•(X̃ \ L̃, M̃ \ M̃ ∩ L̃)

where X̃ → X is an iterated blow-up.
Remark 1.7.1. Here, the word “motive” is used in a non-technical sense, as a synonym for the
expression “relative cohomology group”. Nonetheless, if X is a smooth algebraic variety over
a field, then we may give a more technical sense to it by realizing H•(L;M ;χ) in Voevodsky’s
triangulated category of motives. In the case of bi-arrangements of hyperplanes in Pn defined
over a number field F , we have seen in §1.5.4 that H•(L;M ;χ) defines an object of the category
of mixed Tate motives over F .

We then pose the following general problem, which includes Problem B as a special case.

Problem B’: For a given bi-arrangement of hypersurfaces (L;M ;χ) in a complex mani-
fold X, set up tools to compute the motive H•(L;M ;χ).

1.7.2 The classical Orlik-Solomon algebra

As a very special case of Problem B, let us look at the case M = ∅. The coloring is thus
constant of value λ, and we are left with a set of hyperplanes L = {L1, . . . , Ll}. This is simply
called an arrangement of hyperplanes in Pn. The corresponding cohomology groups are

H•(L;∅;λ) = H•(Pn \ L).

Arrangements of hyperplanes have been much studied from multiple points of view (algebraic
topology, combinatorics, algebraic geometry, etc.) since the pioneering work [Arn69] of Arnol’d.
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To recall this classical setting, we now work in Cn, looking at a set L = {L1, . . . , Ll} of
hyperplanes of Cn that pass through the origin. Arnol’d posed the following problem: compute
the cohomology ring H•(Cn \ L) of the complement of L = L1 ∪ · · · ∪ Ll in Cn. This problem
was settled in two steps by Brieskorn [Bri73] and Orlik and Solomon [OS80] and led to the
introduction of the Orlik-Solomon algebra which we now discuss.

We set Λ•(L) = Λ•(e1, . . . , el), the exterior algebra over Q with a generator ei in degree 1
for each Li. Let d : Λ•(L) → Λ•−1(L) be the unique derivation of Λ•(L) such that d(ei) = 1
for i = 1, . . . , l.

A subset I ⊂ {1, . . . , l} is said to be dependent if the hyperplanes Li, for i ∈ I, are linearly
dependent. Let J•(L) be the homogeneous ideal of Λ•(L) generated by the elements d(eI)
for I ⊂ {1, . . . , l} dependent. The quotient

A•(L) = Λ•(L)/J•(L)

is a graded Q-algebra called the Orlik-Solomon algebra of L.
An important feature of the Orlik-Solomon algebra is the direct sum decomposition with

respect to the set of strata. If Sr(L) denotes the set of strata of L of codimension r, then we
have

Ar(L) =
⊕

S∈Sr(L)
AS(L)

where AS(L) is spanned by the classes of the monomials eI for I ⊂ {1, . . . , l} such that LI = S.
Combining this with the fact that the Orlik-Solomon algebra is exact as a complex, we get a
more geometric but less explicit way of defining the components AΣ(L) by induction on the
codimension of the strata, as follows. Suppose that we have already defined the components
AS(L) for S ∈ Sk−1(L), the components AT (L) for T ∈ Sk−2(L), and the differential d :
Ak−1(L)→ Ak−2(L). Then for Σ ∈ Sk(L), we define AΣ(L) as the kernel of the differential

⊕
S∈Sk−1(L)

S⊃Σ

AS(L) d−→
⊕

T∈Sk−2(L)
T⊃Σ

AT (L)

which means that we impose an exact sequence

0→ AΣ(L) d−→
⊕

S∈Sk−1(L)
S⊃Σ

AS(L) d−→
⊕

T∈Sk−2(L)
T⊃Σ

AT (L).

This point of view is adopted in [Loo93, Lemma 2.2].
The Brieskorn-Orlik-Solomon theorem asserts that there is an isomorphism of graded alge-

bras
H•(Cn \ L) ∼= A•(L)

where a generator ei corresponds to the class of the logarithmic differential form 1
2iπ

dfi
fi
, with fi a

linear equation for Li. In particular, this theorem implies that the cohomology ring H•(Cn \L)
only depends on the combinatorics of L, i.e. on the poset of its strata.

In terms of mixed Hodge structures, the Brieskorn-Orlik-Solomon theorem implies that the
cohomology group Hk(Cn \ L) is a sum of Tate structures Q(−k), and thus a pure Hodge
structure of weight 2k. The point of introducing the motives H•(L;M ;χ) is that they contain
non-trivial extensions between Tate structures Q(−k).
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1.8 The results of Chapter 2

In Chapter 2, which is a slightly rewritten version of the article [Dup14a], we solve Problem A
for a special family of Aomoto polylogarithms called dissection polylogarithms. This family is
indexed by combinatorial objects called dissection diagrams, and includes Goncharov’s generic
iterated integrals (1.6). We show that their motivic coproduct is related to a combinatorial Hopf
algebra on dissection diagrams. This Hopf algebra is part of a growing family of Hopf algebras
based on combinatorial objects, whose most famous representative is the Connes-Kreimer Hopf
algebra [CK99] (see [LR10] for a tentative definition of the term “combinatorial Hopf algebra”
and references).

The combinatorial objects that we consider are called dissection diagrams. A dissection dia-
gram of degree n is a set of n non-intersecting chords of a rooted oriented polygon (the polygons
will always be drawn as circles) with (n+ 1) vertices such that the graph formed by the chords
is acyclic.

Figure 1.4: Examples of dissection diagrams of respective degrees 2, 3, 4. The polygons are
drawn as circles. Every polygon has a distinguished vertex, which is called the root and is
depicted as a white dot.

Let D be the free commutative Q-algebra generated by dissection diagrams, with a grading
given by the degrees of the dissection diagrams. We give D the structure of a graded Hopf
algebra (see 2.1 for the precise definition). The coproduct ∆ : D → D ⊗ D is uniquely defined
by its value on the dissection diagrams D, and is given by a formula of the form

∆(D) =
∑

C⊂C (D)
±qC(D)⊗ rC(D). (1.20)

For now let us just mention that C (D) denotes the set of chords of D, qC(D) is a product of
dissection diagrams obtained by taking the quotient of D by the chords in C (contraction of
chords), and rC(D) is a single dissection diagram obtained by keeping only the chords in C
(deletion of chords). The form of the coproduct (1.20) is reminiscent of several other combina-
torial Hopf algebras, such as the Connes-Kreimer Hopf algebra.

There is a decorated version D(C) of this Hopf algebra, where we attach complex numbers
to each side of the polygon and each chord of the dissection diagram (see Figure 1.5).

We mainly consider the Hopf subalgebra Dgen(C) ⊂ D(C) generated by the decorated dis-
section diagrams that satisfy a genericity condition on the decorations. To each such generic
decorated dissection diagram D, we associate an absolutely convergent integral

I(D) =
∫

∆D

ωD

called a dissection polylogarithm, where ωD is a meromorphic form on Cn and ∆D is a singular
simplex in Cn that does not meet the polar locus of ωD. It is a special case of the definition of
an Aomoto polylogarithm given in §1.2.1.
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Figure 1.5: Decorated dissection diagrams. On the right, a decorated corolla.

For example, for D the first decorated dissection diagram in Figure 1.5, we get

ωD = dx ∧ dy
(x− u)(y − x− v)

and ∆D : ∆2 → C2 is an embedding of a triangle which is bounded by the lines {x = a}, {x = y}
and {y = b}. In general, the form ωD is determined by the combinatorial data of the decorated
chords and the domain ∆D is determined by the decorations of the sides of the polygon (as for
all Aomoto polylogarithms, the integral I(D) depends on the choice of ∆D).

The dissection polylogarithms generalize the generic iterated integrals (1.6), which corre-
spond to the special case of corollas (dissection diagrams where the chords are all linked to
the root vertex, see Figure 1.5). In this special case, the genericity condition dictates that the
decorations ai are pairwise distinct, hence the terminology is consistent.

As a special case of the construction of §1.5, we introduce motivic counterparts for dissection
polylogarithms. Let L be the polar locus of ωD and let M be the Zariski closure of ∂∆D; they
are unions of hyperplanes inside Cn. The dissection polylogarithm I(D) is thus a period of the
mixed Hodge-Tate structure

H(D) = Hn(Cn \ L,M \M ∩ L).

Because of the genericity assumption on the decorations, the bi-arrangements of hyper-
planes (L;M) we are looking at are normal crossing divisors inside Cn: we say that they are
affinely generic. Nonetheless, they are highly degenerate at infinity when viewed inside Pn(C)
(Remark 2.3.6); they are thus much more degenerate than the generic pairs of simplices from
§1.6.5. Furthermore, the affine context enables us to take products of configurations of hyper-
planes, an operation which is more involved in the projective setting. Here, because L ∪M is a
normal crossing divisor, we do not need a coloring χ.

As in §1.5.2, we use the cohomology groupsH(D) to define a motivic version IH(D) ∈ HMHTS

which we call amotivic dissection polylogarithm. The main result of Chapter 2 is the computation
of the coproduct of the motivic dissection polylogarithms. More precisely, we show that they
generate a Hopf subalgebra ofHMHTS and that their coproduct can be computed combinatorially
using formula (1.20).

Theorem 1.8.1 (see Theorem 2.4.9). Let D be a generic decorated dissection diagram. Then
the coproduct of the corresponding motivic dissection polylogarithm in HMHTS is given by for-
mula (1.20):

∆(IH(D)) =
∑

C⊂C (D)
±IH(qC(D))⊗ IH(rC(D)).
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In other words, the morphism

Dgen(C)→ HMHTS , D 7→ IH(D)

is a morphism of graded Hopf algebras.

In the case of corollas, we recover Goncharov’s formula (1.19) for the motivic coproduct of
(generic) iterated integrals.

In order to prove Theorem 1.8.1, one needs to have a good understanding of the relative
cohomology groups H(D). Our main technical tool is the following theorem, which is a solution
to Problem B in the affinely generic case.

Theorem 1.8.2 (see Theorems 2.2.5 and 2.2.7). Let {L1, . . . , Ll,M1, . . . ,Mm} be a set of hy-
perplanes of Cn. We write L = L1 ∪ · · · ∪ Ll and M = M1 ∪ · · · ∪Mm and assume that L ∪M
is a normal crossing divisor inside Cn. Then for every k we have a presentation

grW2kHn(Cn \ L,M \M ∩ L) ∼=
(
Λk(e1, . . . , el)⊗ Λn−k(f1, . . . , fm)

)
/Rk(L;M)

where Rk(L;M) is an explicit subspace of relations. This presentation is functorial in (L;M).

The functoriality statement in Theorem 1.8.2, that is made more precise in Theorem 2.2.7, is
crucial. Indeed, it allows us to relate the geometric situation coming from D and the geometric
situations coming from the terms qC(D) and rC(D) in formula (1.20).

1.9 The results of Chapter 3

In Chapter 3, which is a slightly rewritten version of the preprint [Dup13], we study Problem
B’ in the case M = ∅. Let X be a complex manifold of dimension n. An arrangement of
hypersurfaces in X is a union

L = L1 ∪ · · · ∪ Ll
of smooth hypersurfaces Li ⊂ X, i = 1, . . . , l, that locally looks like a union of hyperplanes
in Cn: around each point of X we can find a system of local coordinates in which each Li is
defined by a linear equation.
This generalizes the notion of a (simple) normal crossing divisor: an arrangement of hypersur-
faces is a normal crossing divisor if the local linear equations defining the Li’s are everywhere
linearly independent; in other words, if we can always choose local coordinates (z1, . . . , zn) such
that L is locally defined by the equation z1 · · · zr = 0 for some r.
Besides normal crossing divisors, examples of arrangements of hypersurfaces include unions of
hyperplanes in a projective space Pn(C), or unions of diagonals ∆i,j = {yi = yj} ⊂ Y n inside
the n-fold cartesian product of a Riemann surface Y . The class of hypersurface arrangements
is also closed under certain blow-ups.

The aim of Chapter 3 is to define and study a model M•(X,L) for the cohomology algebra
over Q of the complement X \ L of an arrangement of hypersurfaces, when X is a smooth
projective variety over C.
Our model, which we call the Orlik-Solomon model, has combinatorial inputs coming from the
theory of hyperplane arrangements (the local setting) and geometric inputs coming from the
cohomology of smooth hypersurface complements in a smooth projective variety (the global
setting). Roughly speaking, it is the direct product of two classical tools related to these two
situations, that we first recall.
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– Combinatorics: the Orlik-Solomon algebra. Let L be an arrangements of hyperplanes in Cn.
Its Orlik-Solomon algebra A•(L), introduced in §1.7.2, has a direct sum decomposition

A•(L) =
⊕

S∈S•(L)
AS(L). (1.21)

It has the structure of a graded algebra, via product maps

AS(L)⊗AS′(L)→ AS∩S′(L). (1.22)

Furthermore, there are differentials

AS(L)→ AS′(L) (1.23)

for any inclusion S ⊂ S′ of strata of L such that codim(S′) = codim(S)− 1.
One may define an Orlik-Solomon algebra A•(L) for L any hypersurface arrangement inside a
complex manifold X. We still have a direct sum decomposition (1.21), with S•(L) the graded
poset of the strata of L, as well as product maps (1.22) and natural morphisms (1.23). As in
the local case, the Orlik-Solomon algebra A•(L) only depends on the poset of the strata of L.
It is functorial with respect to (X,L) in the sense that any holomorphic map

ϕ : X → X ′ , ϕ−1(L′) ⊂ L (1.24)

induces a map of graded algebras A•(ϕ) : A•(L′)→ A•(L).

– Geometry: the Gysin long exact sequence. For a smooth hypersurface V inside a smooth
projective variety X over C, the Gysin morphisms of the inclusion V ⊂ X are the mor-
phisms Hk−2(V )(−1)→ Hk(X) , where (−1) denotes a Tate twist, obtained as the Poincaré
duals of the natural morphisms H2n−k(X)→ H2n−k(V ) where n = dimC(X). They fit into a
long exact sequence, called the Gysin long exact sequence:

· · · → Hk−2(V )(−1)→ Hk(X)→ Hk(X \ V )→ Hk−1(V )(−1)→ · · · (1.25)

It is worth noting that the connecting homomorphisms Hk(X \ V ) → Hk−1(V )(−1) are
residue morphisms, which are easily described using logarithmic forms.

We can now state the main Theorem of Chapter 3 (see Theorem 3.3.8 for more precise
statements).

Theorem 1.9.1. Let X be a smooth projective variety over C and L an arrangement of hyper-
surfaces in X.

1. For integers q and n let us consider

Mn
q (X,L) =

⊕
S∈Sq−n(L)

H2n−q(S)(n− q)⊗AS(L)

where (n−q) is a Tate twist, viewed as a pure Hodge structure of weight q. Then the direct
sum

M•(X,L) =
⊕
q

M•q (X,L)

has the structure of a differential graded algebra (dga) in the (semi-simple) category of
split mixed Hodge structures over Q. The product in M•(X,L) is obtained by tensoring the
product maps (1.22) of the Orlik-Solomon algebra with the cup-product on the cohomology
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of the strata. The differential in M•(X,L) is obtained by tensoring the natural morphisms
(1.23) with the Gysin morphisms

H2n−q(S)(n− q)→ H2n−q+2(S′)(n+ 1− q)

of the inclusions of strata S ⊂ S′. The dga M•(X,L) is functorial with respect to (X,L)
in the sense explained above.

2. The dga M•(X,L) is a model for the cohomology of X \L in the following sense: we have
isomorphisms of pure Hodge structures over Q

grWq Hn(X \ L) ∼= Hn(M•q (X,L))

which are compatible with the algebra structures, and functorial with respect to maps (1.24).

The precise definition of the Orlik-Solomon modelM•(X,L) is given in §3.3.4. Theorem 1.9.1
generalizes the case of normal crossing divisors, which is due to P. Deligne [Del71] (see also [Voi02,
8.35]) as a by-product of the definition of the mixed Hodge structure on the cohomology of
smooth varieties over C. The Orlik-Solomon model appears as the first page of a spectral se-
quence, called the Orlik-Solomon spectral sequence.

Before we describe the proof of Theorem 1.9.1 and some of its applications, we mention that
it completes a result by E. Looijenga [Loo93] who first considered the Orlik-Solomon spectral
sequence. Our approach is totally different, with a prominent use of differential forms. In par-
ticular, we introduce a complex of logarithmic differential forms (see §1.9.3 in this Introduction)
that should have applications in other situations. The main advantages of the use of differential
forms are the following.

1. It allows us to prove the functoriality of the Orlik-Solomon model, whereas Looijenga’s
spectral sequence cannot be easily proved to be functorial. This is crucial when discussing
the behaviour of the Orlik-Solomon model with respect to blow-ups (see §1.9.1 in this
Introduction and §3.4). As a consequence, we are able to reconcile Kriz’s and Totaro’s
approaches on models for configuration spaces of points on curves (see §1.9.2 in this In-
troduction and §3.5.4).

2. It makes the multiplicative structure of the Orlik-Solomon model transparent and closer
in spirit to the classical Brieskorn-Orlik-Solomon theorem.

3. Our approach is more down-to-earth in that we prove that the Orlik-Solomon spectral
sequence is compatible with Hodge structures using only mixed Hodge theory à la Deligne.
With Looijenga’s formalism, one would have to use Saito’s theory of mixed Hodge modules
(in this direction, see also [Get99]): indeed, his spectral sequence is defined out of a complex
of sheaves built out of the constructible sheaves i!i!Q for i a closed immersion, hence it is
not immediate that it is compatible with mixed Hodge theory.

1.9.1 Wonderful compactifications

We should say a word on the usefulness of the generalization from normal crossing divisors to
arrangements of hypersurfaces. Indeed, Deligne’s approach relies on the fact that any smooth
variety over C can be viewed as the complement of a normal crossing divisor inside a smooth
projective variety, using Nagata’s compactification theorem and Hironaka’s resolution of singu-
larities. Thus the case of normal crossing divisors is (in principle) sufficient to give a model for
the cohomology of any smooth variety over C.
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In the framework of Theorem 1.9.1, we may even produce, following [FM94, DCP95, Hu03, Li09],
an explicit sequence of blow-ups (see Theorem 3.4.4)

π : X̃ → X

sometimes called a “wonderful compactification”, that transforms L into a normal crossing
divisor L̃ = π−1(L) inside X̃ and induces an isomorphism

π : X̃ \ L̃
∼=−→ X \ L.

Thus Deligne’s special case of Theorem 1.9.1 applied to (X̃, L̃) gives a model M•(X̃, L̃) for
the cohomology of X \ L. The functoriality of our construction gives a quasi-isomorphism of
differential graded algebras

M•(π) : M•(X,L)→M•(X̃, L̃)

that we can compute explicitly (see Theorem 3.4.5). Along with the work of Morgan [Mor78],
this implies that M•(X,L) is a model of the space X \ L in the sense of rational homotopy
theory.
The model M•(X,L) has three advantages over M•(X̃, L̃). Firstly, it is in general smaller
(M•(π) is always injective). Secondly, its definition only uses geometric and combinatorial
information from the pair (X,L) without having to look at the blown-up situation (X̃, L̃).
Thirdly, it is functorial with respect to maps (1.24).

1.9.2 Configuration spaces of points on curves

Let Y be a compact Riemann surface and n an integer. For all 1 6 i < j 6 n we have a diagonal

∆i,j = {yi = yj} ⊂ Y n

inside the n-fold cartesian product of Y . Any union of ∆i,j ’s then defines an arrangement of
hypersurfaces in Y n. For example, if we consider the union of all diagonals, the complement is
the configuration space of n ordered points in Y :

C(Y, n) = {(y1, . . . , yn) ∈ Y n | yi 6= yj for i 6= j}.

Theorem 1.9.1 hence gives an Orlik-Solomon model for the cohomology of C(Y, n). This model
is isomorphic to the one independently found by I. Kriz [Kri94] and B. Totaro [Tot96], as we
prove in Theorem 3.5.2.

On the one hand, our method is close to Totaro’s, since the Orlik-Solomon spectral sequence
that we are considering in §3.3.3 is the Leray spectral sequence of the inclusion j : X \ L ↪→ X.
On the other hand, the functoriality of our constructions implies that there exists a quasi-
isomorphismM•(π) associated to any wonderful compactification π; in §3.5.4 we prove that this
quasi-isomorphism is exactly the one used by Kriz to prove the main result of [Kri94]. Hence,
our method reconciles Kriz’s and Totaro’s approaches in the case of curves.

As a natural generalization, we consider the union of only certain diagonals ∆i,j . Such a
generalization has been recently studied by S. Bloch [Blo12], who gives a model in the spirit of
Kriz and Totaro’s model. We prove that this model is also isomorphic to our Orlik-Solomon
model.
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1.9.3 Logarithmic forms and mixed Hodge theory

We now discuss the proof of Theorem 1.9.1. Our approach follows Deligne’s proof of the case of
normal crossing divisors, hence makes extensive use of logarithmic forms and the formalism of
mixed Hodge structures.
Let X be a smooth projective variety and L = L1 ∪ · · · ∪ Ll an arrangement of hypersurfaces
in X. The first task is to define a complex of sheaves on X, denoted by Ω•〈X,L〉, of meromorphic
forms on X with logarithmic poles along L. In local coordinates where each Li is defined by a
linear equation fi = 0, a section of Ω•〈X,L〉 is a meromorphic differential form on X which is a
linear combination over C of forms of the type

η ∧ dfi1
fi1
∧ · · · ∧ dfis

fis
(1.26)

with η a holomorphic form and 1 6 i1 < · · · < is 6 l. It has to be noted that the complex Ω•〈X,L〉
is in general a strict subcomplex of the complex Ω•X(logL) introduced by Saito [Sai80], even
though the two complexes coincide in the case of a normal crossing divisor.

The main point of the complex Ω•〈X,L〉 is that it computes the cohomology of the comple-
mentX\L. More precisely, if we denote by j : X\L ↪→ X the open immersion of the complement
of L inside X, we prove the following theorem (Theorem 3.2.13).

Theorem 1.9.2. The inclusion Ω•〈X,L〉 ↪→ j∗Ω•X\L is a quasi-isomorphism, and hence induces
isomorphisms

Hn(Ω•〈X,L〉) ∼= Hn(X \ L,C). (1.27)

It has to be noted (Remark 3.2.10) that according to this theorem, a conjecture of H.
Terao [Ter78] is equivalent to the fact that the inclusion Ω•〈X,L〉 ⊂ Ω•X(logL) is a quasi-
isomorphism.

The proof of Theorem 1.9.2 is local and relies on the Brieskorn-Orlik-Solomon theorem. An-
other central technical tool is the weight filtrationW on Ω•〈X,L〉: we defineWkΩ•〈X,L〉 ⊂ Ω•〈X,L〉 to
be the subcomplex spanned by the forms (1.26) with s 6 k. In view of the isomorphism (1.27),
we get a filtration on the cohomology of X \ L which is proved to be defined over Q. Together
with the Hodge filtration F pΩ•〈X,L〉 = Ω>p〈X,L〉, it defines a mixed Hodge structure on H•(X \L).
The functoriality of our construction then implies that this is the same as the mixed Hodge
structure defined by Deligne.

According to the general theory of mixed Hodge structures, the hypercohomology spectral
sequence associated to the weight filtration degenerates at the E2-term, hence the E1-term gives
a model for the cohomology of X \L. We then prove that this model is indeed the Orlik-Solomon
model M•(X,L). This concludes the proof of Theorem 1.9.1.

It has been pointed out to us by A. Dimca that the sheaves Ω1
〈X,L〉 have been previously

defined in [CHKS06] (where they are denoted ΩX(logL)) and [Dol07] (where they are de-
noted Ω̃X(logL)).

1.10 The results of Chapter 4

In Chapter 4, which is a slightly rewritten version of the preprint [Dup14b], we study Prob-
lem B’ by introducing tools to compute the motive of a given bi-arrangement.
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– In the local context of hyperplanes in Cn, we define the Orlik-Solomon bi-complex of a bi-
arrangement of hyperplanes, generalizing the construction of the Orlik-Solomon algebra. This
allows us to single out a class of bi-arrangements for which the Orlik-Solomon bi-complex
is well-behaved, which we call exact, and which includes all classical arrangements of hyper-
planes.

– In the global context of hypersurfaces in a complex manifold X, we define the geometric
Orlik-Solomon bi-complex of a bi-arrangement of hypersurfaces, which incorporates the com-
binatorial data of the Orlik-Solomon bi-complexes and the cohomological data of the geometric
situation.

Our main result can then be vaguely stated as follows: the motive of an exact bi-arrangement
is computed by its Orlik-Solomon bi-complex. In the special case of arrangements, we recover
the classical Brieskorn-Orlik-Solomon theorem and its global counterpart (Theorem 1.9.1).

1.10.1 From the Orlik-Solomon algebra to the Orlik-Solomon bi-complex

Let (L;M ;χ) be a bi-arrangement of hyperplanes in Cn (all hyperplanes pass through the origin).
We recall that a stratum of (L;M) is an intersection LI ∩MJ of some hyperplanes Li and Mj .
We let Sk(L;M) denote the set of strata of (L;M) of codimension k, and Σ c

↪→ Σ′ denote an
inclusion of strata of L with dim(Σ) = dim(Σ′)− c.

The Orlik-Solomon bi-complex of (L;M ;χ) is a bi-complex A•,• = A•,•(L;M ;χ) with dif-
ferentials d′ : A•,• → A•−1,• and d′′ : A•,•−1 → A•,•. By definition, there is a direct sum
decomposition

Ai,j =
⊕

S∈Si+j(L;M)
ASi,j .

Following the approach of [Loo93, Lemma 2.2] explained in §1.7.2, we define the components
ASi,j by induction on the codimension i + j of S. According to the color χ(Σ), the component
AΣ
i,j is defined as a kernel or a cokernel of a previously defined differential, by imposing exact

sequences
0→ AΣ

i,j
d′−→

⊕
Σ

1
↪→S

ASi−1,j
d′−→

⊕
Σ

2
↪→T

ATi−2,j if χ(Σ) = λ; (1.28)

0← AΣ
i,j

d′′←−
⊕

Σ
1
↪→S

ASi,j−1
d′′←−

⊕
Σ

2
↪→T

ATi,j−2 if χ(Σ) = µ. (1.29)

Starting with A0,0 = Q, this is enough to define the components ASi,j and the differentials.
If M = ∅ and χ takes only the value λ, we recover the inductive definition of the Orlik-Solomon
algebra: A•,0(L;∅;λ) = A•(L). In the world of bi-arrangements there is a duality that exchanges
the roles of L and λ on the one hand, and M and µ on the other hand. This duality translates
as the linear duality of the Orlik-Solomon bi-complexes.

We are mostly interested in the bi-arrangements (L;M ;χ) such that the exact sequences
(1.28) and (1.29) can be extended to exact sequences

0→ AΣ
i,j

d′−→
⊕

Σ
1
↪→S

ASi−1,j
d′−→

⊕
Σ

2
↪→T

ATi−2,j
d′−→ · · · d′−→

⊕
Σ
i
↪→Z

AZ0,j → 0 if χ(Σ) = λ;

0← AΣ
i,j

d′′←−
⊕

Σ
1
↪→S

ASi,j−1
d′′←−

⊕
Σ

2
↪→T

ATi,j−2
d′′←− · · · d′′←−

⊕
Σ
j
↪→Z

AZi,0 ← 0 if χ(Σ) = µ.
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These bi-arrangements are called exact, and form a very natural class of bi-arrangements
that includes the arrangements (L;∅;λ) - this is because the Orlik-Solomon algebras are exact
as complexes. Inside the class of exact bi-arrangements, we prove the existence of a deletion-
restriction short exact sequence that generalizes the classical deletion-restriction exact sequence
for arrangements, as follows.

Theorem 1.10.1 (see Theorem 4.2.9 for a precise statement). If the deletion and the restriction
of (L;M ;χ) with respect to some hyperplane K ∈ L ∪M are exact, then (L;M ;χ) is exact and
there is a deletion-restriction short exact sequence which produces the Orlik-Solomon bi-complex
of (L;M ;χ) as an extension of that of its restriction and that of its deletion.

The drawback of the inductive definition of the Orlik-Solomon bi-complexes is that we lack an
explicit description as in the case of the Orlik-Solomon algebra. We settle this issue for a subclass
of exact bi-arrangements that we call tame. The tameness condition (see Definition 4.1.26) is
a simple combinatorial condition on the coloring which ensures that the colors λ and µ do not
interfere too much.

Theorem 1.10.2 (see Theorem 4.1.38). All tame arrangements are exact. Furthermore, we can
describe the Orlik-Solomon algebra of a tame bi-arrangement ({L1, . . . , Ll}; {M1, . . . ,Mm};χ)
as an explicit subquotient of the tensor product Λ•(e1, . . . , el) ⊗ Λ•(f∨1 , . . . , f∨m) of two exterior
algebras.

In the affinely generic case, we recover Theorem 1.8.2, with the change of notations fj ↔ f∨j .

1.10.2 Bi-arrangements of hypersurfaces

We now turn to a global geometric situation. The formalism of the Orlik-Solomon bi-complexes
immediately extends from bi-arrangements of hyperplanes to bi-arrangements of hypersurfaces,
using the same inductive definition.

The main result of Chapter 4 is the following (see Theorem 4.4.11). It states that for exact
bi-arrangements of hypersurfaces, we can compute the corresponding motive via a spectral
sequence that involves the cohomology of the strata and the Orlik-Solomon bi-complex of the
bi-arrangement. It is important to note that this spectral sequence only uses cohomological and
combinatorial information from the geometric situation in X, and not in the blow-up X̃.

Theorem 1.10.3. Let (L;M ;χ) be an exact bi-arrangement of hypersurfaces in a complex
manifold X, with its Orlik-Solomon bi-complex A•,•.

1. There is a spectral sequence 5

E−p,q1 =
⊕
i−j=p

S∈Si+j(L;M)

Hq−2i(S)(−i)⊗ASi,j =⇒ H−p+q(L;M ;χ). (1.30)

2. If X is a smooth complex variety and all hypersurfaces of (L;M) are smooth divisors in X,
then this is a spectral sequence in the category of mixed Hodge structures.

3. If X is a smooth and projective complex variety, then this spectral sequence degenerates at
the E2 term and we have

E−p,q∞
∼= E−p,q2

∼= grWq H−p+q(L;M ;χ).

5. Here, (−i) denotes the Tate twist of weight 2i. It is important in the algebraic case; otherwise it should be
ignored.
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The differential of the E1 page of the above spectral sequence is explicit. It is induced
by the differentials of the Orlik-Solomon bi-complex and the Gysin and pullback morphisms
corresponding to inclusions of strata.

In the case of an arrangement of hypersurfaces (L;∅;λ), this gives a spectral sequence

E−p,q1 =
⊕

S∈Sp(L )
Hq−2p(S)(−p)⊗ASp (L) =⇒ H−p+q(X \ L)

and we recover the main theorem (Theorem 1.9.1) of Chapter 3. However, the proof of Theo-
rem 1.10.3 is drastically different from the one of Theorem 1.9.1.

We can apply Theorem 1.10.3 to the case of projective bi-arrangements in X = Pn(C).

Theorem 1.10.4 (see Theorem 4.5.4 for a more precise statement). Let (L;M ;χ) be an exact
bi-arrangement of hyperplanes in Pn(C). For k = 0, . . . , n, let (k)A•,• be the bi-complex obtained
by only keeping the rows 0 6 i 6 k and the columns 0 6 j 6 n − k of the Orlik-Solomon
bi-complex of (L;M ;χ), and let (k)A• be its total complex. Then we have isomorphisms

grW2kHr(L;M ;χ) ∼= H2k−r((k)A•)(−k).

We introduce projective bi-arrangements of hyperplanes Z (n1, . . . , nr) corresponding to the
multiple zeta values (1.5) and show that they are tame, hence exact. Theorem 1.10.4 thus pro-
vides explicit complexes that compute their motives. The motives Z (n1, . . . , nr) are alternatives
to the approach via the motivic fundamental group of P1 \ {∞, 0, 1} [Del89, DG05]. One advan-
tage of such an alternative is that it generalizes to a larger family of integrals. More specifically,
let us look at the periods of the moduli spacesM0,n considered by Brown in [Bro09]. They are
integrals of a rational function over a simplex 0 < t1 < · · · < tn < 1, such as∫∫∫

0<x<y<z<1

dx dy dz

(1− x)y(z − x) · (1.31)

The main result of [Bro09] is that these integrals are all linear combinations (with rational
coefficients) of multiple zeta values, although not in an explicit way. It so happens that the pro-
jective bi-arrangement of hyperplanes corresponding to the integral (1.31) is also exact, hence
the corresponding motive may be computed explicitly via an Orlik-Solomon bi-complex. This
will be studied in more detail in a subsequent article.

Theorem 1.10.3 is easy for normal crossing divisors. To prove the general case, we investigate
the functoriality of the geometric Orlik-Solomon bi-complex

(q)Di,j =
⊕

S∈Si+j(L;M)
Hq−2i(S)(−i)⊗ASi,j

with respect to blow-ups of some strata. More specifically, we prove that there is a quasi-
isomophism between the geometric Orlik-Solomon bi-complex of a bi-arrangement and that of
its blow-up. Proceeding by induction, it is enough to treat the case of a single blow-up.

1.11 Open questions and developments

1.11.1 Perspectives on the motivic coproduct of Aomoto polylogarithms

In this thesis, we have answered Problem A for a family of Aomoto polylogarithms, called
generic dissection polylogarithms. We were able to compute the motivic coproduct of generic
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dissection polylogarithms because of the genericity assumption, that limited the degeneracy of
the geometric situation. Armed with the results of Chapter 4, which solves Problem B in the
case of tame bi-arrangements, we are now capable of computing an even larger family of motives
of bi-arrangements of hyperplanes. Up to the combinatorial problem of finding suitable bases for
Orlik-Solomon bi-complexes, this is in principle sufficient for computing the motivic coproduct
of a large number of Aomoto polylogarithms, using the abstract formula (1.10).

In order to understand the motivic coproduct of all Aomoto polylogarithms, there are at
least two (complementary) strategies.

1. The first strategy consists in using the scissors congruence relations (see §1.2.3) to express
a given Aomoto polylogarithms in terms of a small family of generators. Thus, we reduce
the problem to that of computing the motivic coproduct for a family of essential Aomoto
polylogarithms. We believe that there is such a family of essential Aomoto polylogarithms
for which the corresponding bi-arrangements are tame (for a wise choice of coloring).

2. The second strategy consists in deducing the motivic coproduct of a given Aomoto poly-
logarithm by a degeneration argument. If (Lε;Mε) is a “generic” family of admissible
pairs of simplices indexed by a parameter ε in a punctured disk and degenerating to an
admissible pair of simplices (L;M), then there should be a formalism to deduce the mo-
tivic coproduct of IH(L;M) from the motivic coproduct of the family IH(Lε;Mε). Here,
the word “generic” can have different meanings: in general position as in §1.6.5, or in a
less restrictive way, with “generic arguments”, as for dissection polylogarithms. This has
been used by Goncharov [Gon05] to deduce the motivic coproduct of all iterated inte-
grals I(a0, a1, . . . , an; an+1) from the case where the indices ai are pairwise distinct. See
also [Gon02, §4].

In view of the second point, one should be able to regularize dissection polylogarithms and
give a meaning to the formula for their coproduct without any genericity assumption on the
decorations.

1.11.2 Perspective on bi-arrangements

The theory of bi-arrangements that we have developed raises many open questions for future
research, such as:

1. give a simple combinatorial characterization of exact bi-arrangements;

2. give an explicit description of the Orlik-Solomon bi-complex of an exact bi-arrangement
in the spirit of (and generalizing) the case of tame bi-arrangements.

Another direction of research concerns the homological properties of Orlik-Solomon bi-
complexes. The homological properties of Orlik-Solomon algebras have been much studied in
their own right (see [Yuz01, Den10] for a survey). In some cases, the Orlik-Solomon bi-complex
of a bi-arrangement (L ,M , χ) is a module over the Orlik-Solomon algebra of L or M ; it would
be interesting to investigate, for instance, the Koszulness properties of these modules in relation
to the combinatorial properties of the bi-arrangements, as for the case of arrangements.

1.11.3 Applications

We plan on applying the techniques that we have developed in this thesis in different directions.

As arithmetics are concerned, it is tempting to use motivic Aomoto polylogarithms to inves-
tigate the categories of mixed Tate motives over rings of integers of cyclotomic fields. In view of
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the discussion of §1.5.4, one wants to understand how to generate these categories using explicit
mixed Tate motives coming from bi-arrangements, and fill in the gaps of the theory of motivic
fundamental groups.

Another direction is the computation of the motivic coproduct of periods of the moduli
spacesM0,n studied in [Bro09], such as (1.31). This should help us understand better the com-
binatorics and arithmetics of multiple zeta values.

Our methods should also apply to the algebro-geometric study of Feynman integrals [BEK06,
Dor10, BS12]. Even though graph hypersurfaces are much more complicated than arrangements
of hyperplanes, the motives that we consider are “linear prototypes” for the graph motives, and
our methods are a first step in the difficult task of computing them.
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Notations and terminology

Coefficients: Unless otherwise stated, all vector spaces and algebras are defined over Q, as
well as the tensor products of such objects. All (mixed) Hodge structures are defined over Q.

Cohomology: The cohomology groups H•(X) and relative cohomology groups H•(X,Y ) im-
plicitly denote the singular cohomology groups with coefficients in Q. We will write H•(X)⊗C
for the singular cohomology groups with complex coefficients. If X is a manifold, the latter are
naturally isomorphic, via the de Rham isomorphism, to the (analytic) de Rham cohomology
groups tensored with C, hence we allow ourselves to use smooth differential forms as represen-
tatives for cohomology classes.

Homological algebra: Our convention on bi-complexes is not standard since we mix the
homological and the cohomological convention. A bi-complex is a collection of vector spaces Ci,j
with differentials d′ : Ci,j → Ci−1,j and d′′ : Ci,j−1 → Ci,j such that d′ ◦ d′ = 0, d′′ ◦ d′′ = 0
and d′ ◦ d′′ = d′′ ◦ d′. Our convention is to view the total complex Cn =

⊕
i−j=nCi,j as a

homological complex.

Signs: Let I and J be disjoint subsets of a linearly ordered set {1, . . . , n}; we then define a
sign sgn(I, J) ∈ {±1} as follows. In the exterior algebra on n independent generators x1, . . . , xn,
we write xI = xi1 ∧ . . . ∧ xik for I = {i1 < . . . < ik}. Then sgn(I, J) is defined by the
equation xItJ = sgn(I, J)xI ∧ xJ . For example we get sgn({ir}, I \ {ir}) = (−1)r−1.

Consistency: Chapters 2, 3, 4 are slightly rewritten versions of the article [Dup14a] and the
preprints [Dup13, Dup14b], and can be read in any order. For the sake of convenience, there
are some minor redundancies between chapters. As notations and terminology are concerned,
the only sources of inconsistency between chapters are the following:

– In Chapter 2 we use monomials fj that are denoted by f∨j in Chapter 4. This is because
duality is pointless in the affine setting of Chapter 2, and fundamental in the global setting
of Chapter 3.

– In Chapter 3, we favored the terminology “hyperplane arrangement” (or “hypersurface ar-
rangement”) over the more cumbersome terminology “arrangement of hyperplanes” (or “ar-
rangement of hypersurfaces”). In Chapter 4, we used the latter terminology because of the
appearance of bi-arrangements.

– In Chapter 3, the differential in the Orlik-Solomon algebra is denoted by δ, the letter d being
used for the exterior derivative on differential forms.

– In Chapter 4, we have used script letters (A , L , M , B) to denote (bi-)arrangements. This
is in accordance with the general convention in the arrangements literature. Italic letters
(K, L, M) denote hyperplanes or hypersurfaces from some (bi-)arrangement.





Chapter 2

The combinatorial Hopf algebra of
motivic dissection polylogarithms

In §2.1 we introduce dissection diagrams and the Hopf algebra D, as well as its decorated vari-
ants; this section is purely combinatorial. In §2.2 we focus on bi-arrangements of hyperplanes
and prove Theorem 2.2.2 on the relative cohomology groups for affinely generic bi-arrangements.
This section can be read independently from the rest of the chapter. In §2.3 we introduce the
dissection polylogarithms I(D) and discuss some of their algebraic relations. In §2.4 we define
the motivic dissection polylogarithms IH(D) and prove the main theorem of this chapter (The-
orem 2.4.9), which computes their coproduct. In §§2.5, 2.6 and 2.7, which serve as appendices
to this chapter, we prove three technical lemmas.

2.1 A combinatorial Hopf algebra on dissection diagrams

2.1.1 The combinatorics of dissection diagrams

For every integer n we consider a regular oriented (n + 1)-gon Πn with a distinguished vertex
called the root. We draw the polygons as circles so that Π0 and Π1 also make sense, hence the
sides of Πn are drawn as arcs between two consecutive vertices. A chord of Πn is a line between
two distinct vertices.

Definition 2.1.1. A dissection diagram of degree n is a set of n non-intersecting chords of Πn

such that the graph formed by the chords is acyclic.

In all the examples the polygons will be drawn with a clockwise orientation. The root will
be drawn at the bottom as a white dot, whereas the non-root vertices will be drawn as black
dots.
Since there are n chords and (n+ 1) vertices, the graph formed by the chords is actually a tree
that passes through all (n + 1) vertices; in other words, it is a spanning tree of the complete
graph on the (n+ 1) vertices of Πn.
All the dissection diagrams of degree 6 3 are pictured in Figure 2.1.

Lemma 2.1.2. The number of dissection diagrams of degree n is

dn = 1
2n+ 1

(
3n
n

)
.

Proof. We will not use this Lemma in the rest of this chapter, so we just give a sketch of
the proof. The sequence (dn)n>0 counting the dissection diagrams in each degree satisfies the
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degree 0 degree 1 degree 2

degree 3

Figure 2.1: The dissection diagrams of degree 6 3

recurrence relation, for n > 1:

dn =
∑

i1,i2,i3>0
i1+i2+i3=n−1

di1di2di3 . (2.1)

The reason for this recurrence relation is that a dissection diagram D of degree n is uniquely
determined by a triple (D1, D2, D3) of dissection diagrams of respective degrees (i1, i2, i3) such
that i1 + i2 + i3 = n− 1.

ρρ

cD1

D2

D3

In the above picture, ρ is the first (in clockwise order, starting at the root) non-root vertex of Πn

that is attached to the root by a chord of D. Let c be the chord between ρ and the root.
The i1 chords that are on the left-hand side of c form a rooted tree with i1 internal vertices,
whose root is ρ. Since the internal vertices of this tree are all on the polygon Πn, we view it as
a dissection diagram D1 of degree i1.
The (n − 1 − i1) chords that are on the right-hand side of c form two connected components:
one of cardinality i2 that is attached to ρ, the other of cardinality i3 that is attached to the
root of Πn. In the same fashion as above, we get dissection diagrams D2 and D3 of respective
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degrees i2 and i3, with i2 + i3 = n− 1− i1.
Now let d(x) =

∑
n>0 dnx

n be the ordinary generating series for the enumeration of dissection
diagrams. The recurrence relation (2.1), together with d0 = 1, implies the functional equa-
tion d(x) = 1 + xd(x)3. Thus the Lagrange inversion formula [Sta99, Theorem 5.4.2] applied
to f(x) = d(x)− 1 gives the result.

Remark 2.1.3. It is well-known that dn is also the number of ternary trees (planar rooted trees
in which every internal vertex has exactly 3 incoming edges) with n internal vertices. The proof
goes along the same lines: a ternary tree T is completely determined by its subtrees T1, T2, T3
attached to the root.

T3T2T1

Thus we may recursively build a bijection between ternary trees and dissection diagrams.

We let D be the free commutative unital algebra (over Q) on the set of dissection diagrams
of positive degree. The degrees of the dissection diagrams induce a grading

D =
⊕
n>0
Dn

on D. The unit 1 of D will be identified with the dissection diagram of degree 0.
In small degree, we have

D0 = Q D1 = Q D2 = Q ⊕Q ⊕Q ⊕Q

where represents the square of the only dissection diagram of degree 1. For ev-
ery n > 0, Dn is a finite-dimensional vector space.

Conventions on dissection diagrams We introduce some labeling conventions on dissec-
tion diagrams. An example is shown in Figure 2.2.

The non-root vertices of Πn are labeled 1, . . . , n following the orientation, 1 being just after
the root. The sides of Πn are labeled 0, 1, . . . , n in such a way that the side labeled 0 is between
the root and the vertex 1. This side plays a special role in the sequel and is called the root side.
The other sides are called the non-root sides: for i = 1, . . . , n− 1, the side labeled i is between
the vertices i and i+ 1, and the side labeled n is between the vertex n and the root.

In a dissection diagram of degree n, the n chords form a spanning tree of the complete graph
on the (n + 1) vertices of Πn. There is thus a preferred orientation of all the chords, towards
the root. We may then label the chords with 1, . . . , n such that the chord labeled i leaves the
vertex labeled i.

The sides of Πn are also implicitly oriented following the orientation of Πn (clockwise, in all
our figures). Thus when we consider the (n + 1) sides of Πn together with the n chords of a
dissection diagram D, we get a directed graph with (n + 1) vertices and (2n + 1) edges that is
denoted Γ(D) and called the total directed graph of D.
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Remark 2.1.4. Even though we will not always include them in the pictures, the orientations of
the sides and the chords, as well as the labelings of the vertices, sides and chords of a dissection
diagram are implicit.

In the sequel it will be more convenient to consider dissection diagrams D where the chords
are labeled by some abstract set C (D) of cardinality n, and the sides of the polygon by some
other abstract set S (D) of cardinality (n+ 1), which are both linearly ordered.
If we set S +(D) = S (D) \ {min(S (D))} for the set of non-root sides, the linear orderings give
bijections

C (D) ' {1, . . . , n} ' S +(D). (2.2)

Remark 2.1.5. When the context is clear, we will drop the dissection diagram D from the
notations and simply write C , S , S +, Γ.

1

2

3

0

1 2

3

1

2

3
1

2 3

Figure 2.2: Conventions on dissection diagrams. Labeling the vertices and the sides of Π3; a
dissection diagram D of degree 3; the natural orientation and labeling of the chords of D; the
total directed graph Γ(D) of D.

2.1.2 Operations on dissection diagrams

Let D be a dissection diagram of degree n. We fix a subset C ⊂ C of chords of D. We introduce
the notations S +

C , qC(D), rC(D), KC(D) and kC(D) that will allow us to make sense of formula
(2.4) below for the coproduct in D. The reader may refer to Figure 2.3 for a special case.

The set S +
C ⊂ S +

We first define a subset S +
C ⊂ S + of the non-root sides of D, of cardinality n − |C|. It

plays a sort of “dual role” to C, see Proposition 2.4.7. In some simple cases (see Example 2.1.14
below), S +

C will simply be the complement C of C in S +, using the identification (2.2).
The planar graph C ∪S has |C| + 1 faces. Each such face α is the interior of a polygon that
we denote Π̃(α), whose sides are sides of Πn and chords of D. If we denote by SC(α) the set of
sides of Πn that are sides of Π̃(α), we get a partition

S =
⊔
α

SC(α). (2.3)

Lemma 2.1.6. Let J ⊂ S be a subset of edges of Πn, with |C|+ |J | = n. Then the undirected
graph C ∪ J is acyclic if and only if J has the form

J =
⊔
α

J(α) with J(α) = SC(α) \ {uα}

for some choice of uα ∈ SC(α).
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Proof. Let us write J = tαJ(α) with J(α) ⊂ SC(α). If there exists an α such that J(α) =
SC(α) then C ∪ J contains the whole boundary of the polygon Π̃(α), hence contains a cycle.
Hence if C ∪ J is acyclic, then all the inclusions J(α) ⊂ SC(α) are strict. Since |J | = n− |C|,
we necessarily have |J(α)| = |SC(α)| − 1 for each α, hence J(α) = SC(α) \ {uα}. We leave it
to the reader to show that in that case, J ∪ C is indeed acyclic.

Let us set
S +
C =

⊔
α

S +
C (α) with S +

C (α) = SC(α) \ {min(SC(α))}.

It is a subset of S + and has cardinality n− |C|.
Let C = C \ C denote the set of the chords of D which are not in C. Since the chords do

not intersect each other, we have a partition

C =
⊔
α

C(α)

where C(α) is the set of chords of D which are inside the polygon Π̃(α).
It is clear that S +

C (α) and C(α) have the same cardinality |S +
C (α)| = |C(α)| = n(α), with

∑
α n(α) =

n− |C|.

Remark 2.1.7. Despite the notation, S +
C does not depend only on C but also on the dissection

diagram D.

Example 2.1.8. Let us focus on the dissection diagramD of Figure 2.2 and put C = {3} consisting
only of the horizontal chord.

1

2

3

0

1 2

3
1

2 3

Then the partition S =
⊔
α SC(α) is {0, 1, 2, 3} = {1, 2}t{0, 3} hence we get S +

C = {2}t{3} =
{2, 3}. The corresponding partition of C = {1, 2} is C = {2} t {1}.

The dissection diagrams qαC(D) and their product qC(D)

Starting from the dissection diagram D, let us contract the chords from C. The resulting
picture is a “cactus” of dissection diagrams glued together. These dissection diagrams are
denoted by qαC(D) and we write

qC(D) =
∏
α

qαC(D)

for their product in D.

More precisely, let us consider an individual polygon Π̃(α) and contract all its sides that are
chords of C. We get a polygon Π(α) that is naturally oriented. The dissection diagram qαC(D)
naturally lives in Π(α). The set of its non-root sides is S +

C (α) and the set of its chords is C(α).
The degree of qαC(D) is n(α), hence the degree of qC(D) is

∑
α n(α) = n− |C|.

Let us recall that we identify the dissection diagram of degree 0 with the unit 1 of D, so
that we do not write the dissection diagrams qαC(D) of degree n(α) = 0 in the product qC(D).
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Example 2.1.9. We come back to the dissection diagram D of degree 3 from Example 2.1.8
with C = {3}. Contracting the horizontal chord labeled 3 gives the picture

2

1

1 2

0 3

hence qC(D) = 1 22 0 31 =

is the square of the dissection diagram of degree 1.

The dissection diagram rC(D); the set KC(D) and its cardinality kC(D)

Going back to the initial dissection diagram D, let us look at the graph obtained by keeping
only the chords from C and contracting the sides from S +

C . By Lemma 2.1.6, this process does
not lead to cycles between the chords from C and hence gives a dissection diagram whose set
of chords is C and whose set of non-root sides is S +

C = S + \ S +
C . We call this dissection

diagram rC(D). Its degree is |C|.

It has to be noted that in general the directions of the chords in rC(D) may differ from the
directions of the chords in D. We let KC(D) ⊂ C be the set of these chords that one has to flip
in the process of computing rC(D), and write kC(D) = |KC(D)| for its cardinality.
Example 2.1.10. We come back to the dissection diagram D of degree 3 from Example 2.1.8
with C = {3}. Keeping only the horizontal chord labeled 3 gives the picture

1

2

3

0

1 2

3

3

and hence contracting the sides from S +
C = {2, 3} gives the picture

rC(D) = 0 13 =

hence rC(D) is (unsurprisingly) the dissection diagram of degree 1. Since in the above picture
we had to flip the chord labeled 3, we get KC(D) = {3} and kC(D) = 1.
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1

2

3

0

1 2

3
1

2 3

C S +
C qC(D) rC(D) KC(D) kC(D)

{1, 2, 3} ∅ 1 ∅ 0

{1, 2} {3} ∅ 0

{1, 3} {2} ∅ 0

{2, 3} {3} {3} 1

{1} {2, 3} ∅ 0

{2} {2, 3} {2} 1

{3} {2, 3} {3} 1

∅ {1, 2, 3} 1 ∅ 0

Figure 2.3: The computations of S +
C , qC(D), rC(D), KC(D) and kC(D) for the dissection

diagram D from Example 2.1.8

2.1.3 Definition of the Hopf algebra

We define a map
∆ : D → D ⊗D

by setting
∆(D) =

∑
C⊂C (D)

(−1)kC(D)qC(D)⊗ rC(D) (2.4)

for D a dissection diagram, and extending it to all of D as a morphism of algebras.
For a dissection diagram D of degree n, qC(D) has degree n − |C| and rC(D) has degree |C|.
Thus the coproduct ∆ is compatible with the grading of D, with components

∆n−k,k : Dn → Dn−k ⊗Dk

corresponding to the subsets C ⊂ C (D) of cardinality k.

For C = C (D) we get SC = ∅, qC(D) = 1, rC(D) = D, KC(D) = ∅ and kC(D) = 0,
hence the corresponding term in formula (2.4) is ∆0,n(D) = 1 ⊗ D. For C = ∅, we get the
term ∆n,0(D) = D ⊗ 1.

Proposition 2.1.11. Formula (2.4) gives D the structure of a graded connected commutative
Hopf algebra.

Proof. All there is to prove is that ∆ is coassociative, since it is well-known that given a graded
connected bialgebra there exists a unique antipode that makes it into a Hopf algebra. Let us fix
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a dissection diagram D of degree n and prove that (id⊗∆)(∆(D)) = (∆⊗ id)(∆(D)).
On the one hand we have

(id⊗∆)(∆(D)) =
∑

C⊂C′⊂C (D)
(−1)kC′ (D)+kC(rC′ (D))qC′(D)⊗ qC(rC′(D))⊗ rC(rC′(D)).

On the other hand we have

(∆⊗ id)(∆(D)) =
∑

C⊂C (D)
(−1)kC(D)∆(qC(D))⊗ rC(D).

Let us recall that qC(D) =
∏
α q

α
C(D). For a given α, the set of chords of qαC(D) is C(α), hence

∆(qαC(D)) =
∑

C′α⊂C(α)

(−1)kC′α (qαC(D))
qC′α(qαC(D))⊗ rC′α(qαC(D)).

Let us perform the change of summation indices C ′ = C t
⊔
αC
′
α. The result then follows from

the following Lemma.

Lemma 2.1.12. 1. qC′(D) =
∏
α qC′α(qαC(D)).

2. qC(rC′(D)) =
∏
α rC′α(qαC(D)).

3. rC(rC′(D)) = rC(D).

4. kC′(D) + kC(rC′(D)) = kC(D) +
∑
α kC′α(qαC(D)).

Proof. See §2.5.

Example 2.1.13. We can use the computations of Figure 2.3 in order to get

∆
( )

= 1⊗

+ ⊗

+
(

− −
)
⊗

+ ⊗ 1.

Example 2.1.14. 1. For all n > 0 let Xn be the dissection diagram of degree n (“corolla”, see
Figure 2.4) with all chords pointing towards the root, with the convention X0 = 1.
Then the formula for the coproduct is:

∆(Xn) =
n∑
k=0

 ∑
i0+···+ik=n−k

Xi0 · · ·Xik

⊗Xk.

Indeed, for a subset C = {i0 + 1, i0 + i1 + 2, . . . , i0 + i1 + . . . + ik−1 + k}, we get S +
C =

C, qC(Xn) = Xi0 · · ·Xik , rC(Xn) = Xk, KC(Xn) = ∅ and kC(Xn) = 0.
For instance we get

∆(X3) = 1⊗X3 + 3X1 ⊗X2 + (2X2 +X1X1)⊗X1 +X3 ⊗ 1.
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2. For all n > 0, let Yn be the dissection diagram of degree n (“path tree”, see Figure 2.4)
consisting of the chords betwen 1 and 2, 2 and 3, . . ., (n− 1) and n, n and the root, with
the convention Y0 = 1. Then the formula for the coproduct is:

∆(Yn) =
n∑
k=0

(
n

k

)
Yn−k ⊗ Yk.

Indeed, for any subset C ⊂ {1, . . . , n} of cardinality k, we get S +
C = C, qC(Yn) =

Yn−k, rC(Yn) = Yk, KC(Yn) = ∅ and kC(Yn) = 0.
The above formula is reminiscent of the formula for the coproduct in the Hopf algebra Q[t]
of functions on the additive group Ga.

Figure 2.4: The corolla X4 and the path tree Y4.

Remark 2.1.15. The Hopf algebra D is a right-sided combinatorial Hopf algebra in the sense
of [LR10, 5.7]. According to [LR10, Theorem 5.8], there is thus a structure of graded pre-
Lie algebra on the free vector space spanned by dissection diagrams of positive degree (more
precisely, its graded dual). It would be interesting to know if this pre-Lie structure has a simple
presentation.

A family of Hopf algebras Let x be a fixed rational number. If one changes formula (2.4)
to

∆(x)(D) =
∑

C⊂C (D)
xkC(D)qC(D)⊗ rC(D) (2.5)

then the proof of Proposition 2.1.11 (replace−1 by x) shows that this defines a (graded connected
commutative) Hopf algebra D(x).
Apart from the choice x = −1 which gives back D(−1) = D, there are two other natural choices:
for x = 1 there is no sign in the formula; for x = 0 (with the convention 00 = 1) there is no sign
and the sum is restricted to the subsets C with kC(D) = 0. The formulas of Example 2.1.14 are
valid for any choice of x since we always have kC(D) = 0.
We may also consider x as a formal parameter and view formula (2.5) as a map of Q[x]-algebras

Q[x]⊗D → Q[x]⊗D ⊗D ∼= (Q[x]⊗D)⊗Q[x] (Q[x]⊗D) (2.6)

given by
D 7→

∑
C⊂C (D)

xkC(D) ⊗ qC(D)⊗ rC(D).

In terms of algebraic geometry, we get an algebraic family of affine group schemes parametrized
by the affine line

Spec(Q[x]⊗D) = A1 × Spec(D)→ A1 = Spec(Q[x])
with constant underlying scheme Spec(D).

2.1.4 Decorations on dissection diagrams

In this paragraph we fix an abelian group Λ. We define a decorated version D(Λ) of the Hopf
algebra D.
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Decorated directed graphs

Let Γ be a directed graph. A Λ-decoration on Γ is the data of an element of Λ for each edge of Γ.
While performing operations on directed graphs, we will always keep in mind the two following
rules for the decorations:

• Let us flip an edge, i.e. change its direction. We then multiply its decoration by −1.

α −α
 

• Let us contract an edge going from a vertex v− to a vertex v+ which is decorated by
an element α ∈ Λ. For any edge of Γ going to v−, we replace its decoration x by the
decoration x + α; for any edge of Γ leaving from v−, we replace its decoration y by the
decoration y − α. The other decorations (including the decorations of the edges that
touch v+) stay unchanged.

v− v+α

x′

x y

y′

 
v

x′ + α

x+ α y − α

y′ − α

We leave it to the reader to check that if one contracts a set of edges (that does not contain
a loop), the resulting decorated graph does not depend on the order in which we perform
the contractions.

Decorated dissection diagrams and the Hopf algebra D(Λ)

1 2

a1

a2

b0

b1

b2

Figure 2.5: A decorated dissection diagram of degree 2

A Λ-decorated dissection diagram of degree n is a dissection diagram D of degree n together
with a Λ-decoration on the total directed graph Γ(D). For i = 1, . . . , n, we denote by ai ∈ Λ
the decoration of the chord i, and for j = 0, . . . , n, we denote by bj ∈ Λ the decoration of the
side j (see Figure 2.5). We use the same letter to denote the decorated dissection diagram and
its underlying dissection diagram obtained by forgetting the decorations.

We let D(Λ) be the free commutative unital algebra (over Q) on the set of Λ-decorated
dissection diagrams of positive degree. If Λ = 0 then we recover D(0) = D. We want to
generalize the Hopf algebra structure on D to all the D(Λ)’s.
We define the coproduct

∆ : D(Λ)→ D(Λ)⊗D(Λ)

as in D by formula (2.4). The terms qC(D) and rC(D) are understood through the conventions
of § 2.1.4.
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Example 2.1.16. LetD be a decorated dissection diagram of degree 3 whose underlying dissection
diagram is the one from Examples 2.1.8, 2.1.9, 2.1.10:

1

2

3

b0

b1 b2

b3

a1

a2
a3

Then for C = {3} we get

qC(D) = a2b1 b2+a3 a1b0 b3-a3

and

rC(D) = a3-b3b0 b1+b2+b3 = b3-a3b0 b1+b2+b3.

The last equality is the application of the convention related to flipping an edge (§2.1.4).
We leave it to the reader to check that properties 1., 2. and 3. from Lemma 2.1.12 remain

true, as well as property 4., which is independent of the decorations. Hence the proof of Propo-
sition 2.1.11 can be copied word for word and gives the following extension.

Proposition 2.1.17. For any abelian group Λ, formula (2.4) gives D(Λ) the structure of a
graded connected commutative Hopf algebra. Moreover, for any morphism Λ → Λ′ of abelian
groups, the corresponding morphism D(Λ) → D(Λ′) is a morphism of Hopf algebras. In other
words, Λ  D(Λ) is a functor from the category of abelian groups to the category of Hopf
algebras.

Remark 2.1.18. The variant of formula (2.5) remains valid with decorations.

Generic decorations and the Hopf algebra Dgen(Λ)

Let Γ be a directed graph. A simple cycle of Γ is an undirected cycle in Γ that does not pass
twice through the same vertex. For a given simple cycle in Γ, the total decoration of the simple
cycle is the signed sum of the decorations in the cycle, the sign being +1 if and only if the
direction of the edge agrees with the direction of the cycle. We say that a Λ-decoration on Γ is
generic if for every simple cycle in Γ, the total decoration of the cycle is non-zero.

We say that a Λ-decorated dissection diagram is generic if the Λ-decoration on Γ(D) is
generic. For example, the decorated dissection diagram from Figure 2.5 is generic if and only if
the quantities b0 + b1 + b2, b1 + b2 − a1, b0 − a2 + b2, b0 + a1, b1 + a2, b2 − a1 − a2 are all 6= 0.

We leave it to the reader to check that the operations of reversal of arrows and contraction of
§ 2.1.4 preserve the genericity condition. As a consequence, the generic Λ-decorated dissection
diagrams of positive degree generate a Hopf subalgebra

Dgen(Λ) ↪→ D(Λ).

The functoriality assertion of Proposition 2.1.17 is valid for the Hopf algebras Dgen(Λ) if we
restrict to injective morphisms Λ ↪→ Λ′.
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2.2 Bi-arrangements of hyperplanes and relative cohomology

After recalling some classical results on arrangements of hyperplanes, we introduce and study
bi-arrangements of hyperplanes, focusing on the affinely generic case. This section is a solution
to Problem B in the affinely generic case.

2.2.1 Affinely generic arrangements of hyperplanes

Let L = {L1, . . . , Ll} be an arrangement of hyperplanes in Cn. The hyperplanes do not neces-
sarily pass through the origin. As the notation suggests, the set L is implicitly linearly ordered.
We will use the same letter L to denote the union

L = L1 ∪ . . . ∪ Ll

of the hyperplanes. For a subset I ⊂ {1, . . . , l}, the stratum of L indexed by I is the affine space

LI =
⋂
i∈I

Li

with the convention L∅ = Cn.

We say that L is affinely generic if it is a normal crossing divisor inside Cn. It means that
for all I, LI is either empty or has codimension the cardinality |I| of I.

Remark 2.2.1. If the Li’s are in general position in Cn then L is affinely generic, but the converse
is not true. For instance, two parallel lines in C2 constitute an affinely generic arrangement. In
other words, if we work in the projective space Pn(C) by adding a hyperplane L0 at infinity, the
projective arrangement of hyperplanes L0 ∪ L1 ∪ . . . ∪ Ln is not necessarily normal crossing.

In the sequel, we will only consider affinely generic hyperplane arrangements. This class of
hyperplane arrangements is stable under the operations of deletion, restriction and product that
we now describe.
The deletion of L with respect to the last hyperplane Ll is the arrangement L′ = {L1, . . . , Ll−1}
in Cn. We have a natural morphism H•(Cn \ L′)→ H•(Cn \ L).
The restriction of L with respect to Ll is the arrangement L′′ = {Ll ∩ L1, . . . , Ll ∩ Ll−1}
in Ll ∼= Cn−1 consisting of all the intersections of Ll with the Li’s, i = 1, . . . , l − 1. We have a
residue morphism H•(Cn \ L)(1)→ H•−1(Ll \ L′′), where (1) denotes a Tate twist.
If L(1) ⊂ Cn1 and L(2) ⊂ Cn2 are two hyperplane arrangements, then the product arrange-
ment L(1) × L(2) ⊂ Cn1+n2 consists of the hyperplanes L(1)

i1
× Cn2 followed by the hyper-

planes Cn1×L(2)
i2

. There is a Künneth isomorphismH•(Cn1\L(1))⊗H•(Cn2\L(2)) ∼= H•(Cn1+n2\
L(1) × L(2)).

Let Λ•(e1, . . . , el) denote the exterior algebra over Q with a generator ei in degree 1 for each
hyperplane Li. For a set I = {i1 < . . . < ik} ⊂ {1, . . . , l} we set eI = ei1 ∧ · · · ∧ eik with the
convention e∅ = 1.
Let R•(L) be the ideal of Λ•(e1, . . . , el) generated by the elements eI for subsets I ⊂ {1, . . . , l}
such that LI = ∅.

The following theorem is a particular case of the Brieskorn-Orlik-Solomon theorem (for a
detailed proof of the general case, see [OT92, Theorems 3.126 and 5.89]).

Theorem 2.2.2. Let L be an affinely generic hyperplane arrangement.
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1. There is an isomorphism of graded algebras

Λ•(e1, . . . , el)/R•(L)
∼=−→ H•(Cn \ L) (2.7)

that sends ei to the class of the form ωi = 1
2iπ

dfi
fi

, where fi is any linear form that
defines Li.

2. This isomorphism is functorial in the following sense.

(a) the deletion morphism H•(Cn \ L′) → H•(Cn \ L) is given by eI 7→ eI for I ⊂
{1, . . . , l − 1}.

(b) the restriction morphism H•(Cn\L)(1)→ H•−1(Ll\L′′) is given, for I such that l /∈ I,
by eI 7→ 0 and eI ∧ el 7→ eI .

(c) The Künneth isomorphism H•(Cn1 \L(1))⊗H•(Cn2 \L(2)) ∼= H•(Cn1+n2 \L(1)×L(2))
is given by eI1 ⊗ eI2 7→ eI1tI2.

Remark 2.2.3. The first part of Theorem 2.2.2 implies that the mixed Hodge structure underly-
ing Hk(Cn \ L) is pure of weight 2k and of Tate type: it is a direct sum of a certain number of
copies of Q(−k).
Remark 2.2.4. If I ⊂ {1, . . . , l} has cardinality > n then LI = ∅ by definition of an affinely
generic hyperplane arrangement. Hence (2.7) implies that Hk(Cn \ L) = 0 for k > n. This is
also a consequence of Artin vanishing since Cn \ L is an affine algebraic variety of dimension n.

2.2.2 Affinely generic bi-arrangements of hyperplanes

A bi-arrangement of hyperplanes (L;M) in Cn is the data of two disjoint sets L = {L1, . . . , Ll}
andM = {M1, . . . ,Mm} of hyperplanes in Cn. Equivalently, it is a 2-partition of the underlying
hyperplane arrangement L ∪M = {L1, . . . , Ll,M1, . . . ,Mm}. As the notation suggests, both L
and M are linearly ordered. We say that (L;M) is affinely generic if L ∪M is, which means
that it is a normal crossing divisor in Cn. In the sequel, we will only consider affinely generic
bi-arrangements of hyperplanes.

Among the relative cohomology groups H•(Cn \L,M \M ∩L), we will focus on the middle-
degree one: we set

H(L;M) = Hn(Cn \ L,M \M ∩ L).

According to Deligne [Del74], H(L;M) is endowed with a functorial mixed Hodge structure.
It is clear (and will be re-proved in the proof of Theorem 2.2.5) that this is actually a mixed
Hodge-Tate structure. This means that for all k we have grW2k+1H(L;M) = 0, and grW2kH(L;M)
is isomorphic to a direct sum of the Tate structures Q(−k). The graded quotient grW2kH(L;M)
is 0 for k /∈ {0, . . . , n}.

Theorem 2.2.5. Let (L;M) be an affinely generic bi-arrangement in Cn. Then for all k =
0, . . . , n we have a presentation

grW2kH(L;M) ∼=
(
Λk(e1, . . . , el)⊗ Λn−k(f1, . . . , fm)

)
/Rk(L;M) (2.8)

where Rk(L;M) is spanned by the elements

– eI ⊗ fJ if LI ∩MJ = ∅, |I| = k, |J | = n− k.

– eI ⊗

∑
j /∈J ′

sgn({j}, J ′)fJ ′∪{j}

 for |I| = k, |J ′| = n− k − 1.



50 Chapter 2. The Hopf algebra of dissection polylogarithms

Proof. Let us denote by j : Cn \ (L∪M) ↪→ Cn \L the natural open immersion. Then H•(Cn \
L,M \M ∩ L) is the cohomology of the sheaf j!QCn\(L∪M). One readily checks that we have a
resolution

0→ j!QCn\(L∪M) → QCn\L →
⊕
i

(ιi)∗QMi\Mi∩L →
⊕
i<j

(ιi,j)∗QMij\Mij∩L → · · ·

where ιJ : MJ \MJ ∩ L ↪→ Cn \ L denotes the natural closed immersion. More precisely let us
set

Kp =
⊕
|J |=p

(ιJ)∗QMJ\MJ∩L

and d : Kp → Kp+1 is given by the natural restriction morphisms

(ιJ)∗QMJ\MJ∩L → (ιJ∪{j})∗QMJ∪{j}\MJ∪{j}∩L

for j /∈ J , multiplied by the sign sgn({j}, J). We then have a quasi-isomorphism

j!QCn\(L∪M) ∼= K•.

Let w be the descending filtration on K• given by wpK• = K>p. The corresponding hypercoho-
mology spectral sequence is

Ep,q1 =
⊕
|J |=p

Hq(MJ \MJ ∩ L) =⇒ Ep,q∞ = grpwHp+q(Cn \ L,M \M ∩ L)

On the E1-term, the differential d1 is given by the natural restriction morphisms

Hq(MJ \MJ ∩ L)→ Hq(MJ∪{j} \MJ∪{j} ∩ L)

for j /∈ J , multiplied by the sign sgn({j}, J).
According to Deligne [Del74, 8.3.5], this spectral sequence is a spectral sequence of mixed Hodge
structures. Since by Remark 2.2.3 the mixed Hodge structures Hq(MJ \MJ ∩ L) are pure of
weight 2q, the spectral sequence degenerates at E2: E∞ = E2. The same argument implies that
on H•(Cn \ L,M \ L ∩M), w is (up to a shift) the canonical weight filtration.
According to Remark 2.2.4, we have Hk(MJ \MJ ∩ L) = 0 for |J | > n− k. Thus in degree n
we get

grW2kH(L;M) ∼= Coker

 ⊕
|J ′|=n−k−1

Hk(MJ ′ \MJ ′ ∩ L) d1→
⊕

|J |=n−k
Hk(MJ \MJ ∩ L)


which is obviously 0 if k /∈ {0, . . . , n}. Introducing basis elements fJ , Theorem 2.2.2 tells
us that Hk(MJ \ MJ ∩ L) has a presentation given by generators eI ⊗ fJ , |I| = k, and re-
lations eI ⊗ fJ = 0 if LI ∩ MJ = ∅. Since the differential is given by d1(eI ⊗ fJ ′) =

eI ⊗

∑
j /∈J ′

sgn({j}, J ′)fJ ′∪{j}

, this implies the theorem.

Remark 2.2.6. In order to do explicit computations, we introduce a useful acyclic model for the
complex of sheaves K•C := K• ⊗ C. For (L;M) an affinely generic hyperplane arrangement, let
us define a double complex of sheaves on X

Ωp,q
(L;M) =

⊕
|J |=p

(iCnMJ
)∗Ωq

MJ
(logL)
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where Ω•MJ
(logL) is the complex of logarithmic forms defined in [Del71, 3.1], and iCnMJ

is the in-
clusion of MJ inside Cn. The horizontal differential Ωp,q

(L;M) → Ωp+1,q
(L;M) is given by the restriction

morphisms Ωq
MJ

(logL)→ (iMJ
MJ∩Mj

)∗Ωq
MJ∪{j}

(logL) for j /∈ J , multiplied by the sign sgn({j}, J).
The vertical differential Ωp,q

(L;M) → Ωp,q+1
(L;M) is the exterior differential on forms. We let Ω•(L;M) de-

note the total complex. Using [Del71, 3.1.8]., one easily proves that we have a quasi-isomorphism

K•
∼=−→ Ω•(L;M).

We adapt the notions of deletion and restriction to the setting of (affinely generic) bi-
arrangements. Furthermore, we allow ourselves to iterate them. Thus, for a subset I0 ⊂
{1, . . . , l} (resp. J0 ⊂ {1, . . . ,m}) we consider the deletion (L(I0);M) (resp. (L;M(J0)) ob-
tained by forgetting the hyperplanes Li, i /∈ I0 (resp. the hyperplanes Mj , j /∈ J0), and the
restriction (LI0 |L(I0);M) (resp. (MJ0 |L;M(J0))) obtained by considering the intersections of
the hyperplanes with LI0 (resp. with MJ0).
On the relative cohomology groups H(L;M), we get natural deletion/restriction morphisms,
which are computed in the next Theorem.

Theorem 2.2.7. The isomorphism (2.8) is functorial in the following sense.

1. For a subset J0 ⊂ {1, . . . ,m}, the deletion morphism H(L;M) → H(L;M(J0)) is given
by eI ⊗ fJ 7→ 0 if J 6⊂ J0 and eI ⊗ fJ 7→ eI ⊗ fJ if J ⊂ J0.

2. For a subset J0 ⊂ {1, . . . ,m}, the restriction morphism H(MJ0 |L;M(J0)) → H(L;M) is
given, for J ⊂ J0, by

eI ⊗ fJ 7→ eI ⊗ (fJ0 ∧ fJ) = sgn(J0, J)eI ⊗ fJ0∪J .

3. For a subset I0 ⊂ {1, . . . , l}, the deletion morphism H(L(I0);M) → H(L;M) is given,
for I ⊂ I0, by eI ⊗ fJ 7→ eI ⊗ fJ .

4. For a subset I0 ⊂ {1, . . . , l} of cardinality k0, the restriction morphism H(L;M)(k0) →
H(LI0 |L(I0);M) is given, for I ⊂ I0, by eI ⊗ fJ 7→ 0, and

eI∪I0 ⊗ fJ = sgn(I, I0)(eI ∧ eI0)⊗ fJ 7→ sgn(I, I0)eI ⊗ fJ .

5. The Künneth morphism H(L(1);M (1)) ⊗H(L(2);M (2)) → H(L(1) × L(2);M (1) ×M (2)) is
given by (eI1 ⊗ fJ1)⊗ (eI2 ⊗ fJ2)→ (eI1tI2)⊗ (fJ1tJ2).

Proof. 1. It is obvious.

2. Let k0 be the cardinality of J0. Let us denote K0 the complex of sheaves correspond-
ing to (MJ0 |L;M(J0)) as defined in the proof of Theorem 2.2.5. The restriction mor-
phism H(MJ0 |L;M(J0))→ H(L;M) is defined by a morphism Φ : K•−k0

0 → K•.
By definition we have

Kp−k0
0 =

⊕
|J |=p−k0
J0∩J=∅

(ιJ0∪J)∗QMJ0∪J\MJ0∪J∩L

which is obviously a sub-sheaf of Kp. We define Φ by multiplying the natural inclusion by
the sign sgn(J0, J) on the component indexed by J . We check that with this sign, Φ is a
morphism of complexes of sheaves, and the claim follows.

3. It is obvious.
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4. It is enough to do the proof over C and work with the models defined in Remark 2.2.6.
The residue morphism is then given by morphisms (with obvious notations)

Ωp,q
(L;M) → (iCnLI0 )∗Ωp,q−k0

(LI0 |L(I0);M)

which are induced by the residue morphisms

Ωq
MJ

(logL)→ (iMJ
LI0∩MJ

)∗Ωq−k0
LI0∩MJ

(logL(I0))

defined in [Del71, 3.1.5]. The formula follows.

5. We also work over C with the models defined in Remark 2.2.6. It is easy to check that the
Künneth morphism is given by the cup-product

(p1)∗Ωq1

M
(1)
J1

(logL(1))⊗ (p2)∗Ωq2

M
(2)
J2

(logL(2))→ Ωq1+q2
M

(1)
J1
×M(2)

J2

(logL(1) × L(2))

and the formula follows.

2.3 Dissection polylogarithms

In this section, we focus on C-decorated dissection diagrams, which we simply call decorated
dissection diagrams.

2.3.1 The bi-arrangement attached to a decorated dissection diagram

Definition

We attach to any decorated dissection diagram D of degree n a bi-arrangement (L;M) inside Cn.
The equations of the Li’s depend on the chords of D and their decorations, while the equations
of the Mj ’s depend on the decorations of the sides of the polygon (hence not on the combina-
torics of D).
Let us recall that the total directed graph Γ(D) of D is the graph whose vertices are the (n+ 1)
vertices of Πn, and whose (2n + 1) directed edges are the chords of D and the sides of Πn,
oriented clockwise.

Let us work in the complex affine space Cn with coordinates (t1, . . . , tn). To each edge
in Γ(D) we associate a hyperplane in Cn in the following way:

– To an edge i• α−→
j
• between two non-root vertices, we associate the hyperplane ti− tj −α = 0.

– To an edge i• α−→ ◦ that goes to the root, we associate the hyperplane ti − α = 0.

– To an edge ◦ α−→ i• that comes from the root, we associate the hyperplane −ti − α = 0.

Hence the rule is always the same: we interpret the vertex i as the coordinate ti, and the
root as 0. The third case above only occurs for the side labeled 0.

We label L1, . . . , Ln the hyperplanes given by the chords of the decorated dissection dia-
gram D, Li being given by the i-th chord (which by definition is the chord starting at the
vertex i). Hence Li is defined by ti − tj − ai = 0 if the i-th chord goes to the j-th vertex, and
by ti − ai = 0 if it goes to the root.
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We label M0,M1, . . . ,Mn the hyperplanes given by the sides of the polygon Πn, in clockwise
order. They are defined by M0 = {t1 = −b0}, Mj = {tj = tj+1 + bj} for j = 1, . . . , n − 1,
and Mn = {tn = bn}.

This defines a bi-arrangement

(L;M) = (L1, . . . , Ln;M0,M1, . . . ,Mn)

in Cn.
Example 2.3.1. Let us look at the decorated dissection diagram D of degree 3 from Exam-
ple 2.1.16. Then the bi-arrangement (L1, L2, L3;M0,M1,M2,M3) in C3 is defined by the equa-
tions L1 = {t1 − a1 = 0}, L2 = {t2 − t1 − a2 = 0}, L3 = {t3 − t1 − a3 = 0}, M0 = {t1 =
−b0}, M1 = {t1 = t2 + b1}, M2 = {t2 = t3 + b2}, M3 = {t3 = b3}.

The combinatorics of the bi-arrangement (L;M) can be read directly off the dissection dia-
gram, as the following Lemma shows.

Lemma 2.3.2. Let D be a decorated dissection diagram with generic decorations. Let I ⊂
{1, . . . , n} be a set of chords of D and J ⊂ {0, . . . , n} be a set of sides of D. We view I ∪ J as
a subgraph of the total directed graph Γ(D).

1. LI ∩MJ = ∅ if and only if the graph I ∪ J contains an undirected cycle.

2. If LI ∩MJ 6= ∅, then codim(LI ∩MJ) = |I|+ |J |.

Thus the bi-arrangement (L;M) is affinely generic.

Proof. If there is an undirected path of total decoration λ from the vertex i to the vertex j
in I ∪ J , then for any point (t1, . . . , tn) ∈ LI ∩ MJ , we get ti = tj + λ. If I ∪ J contains
an undirected cycle, then it contains some simple cycle with total decoration λ 6= 0. Let i
be a non-root vertex inside this simple cycle. For a point (t1, . . . , tn) in LI ∩MJ , we get by
definition ti = ti + λ, which is impossible. Thus LI ∩MJ = ∅.
Conversely, one easily sees that if I ∪ J does not contain an undirected cycle then LI ∩MJ 6= ∅
and codim(LI ∩MJ) = |I|+ |J |.

Operations on dissection diagrams and bi-arrangements

We can now explain the conventions from § 2.1.4 on dissection diagrams.

– If we change the direction of an edge and multiply its decoration by −1, this does not change
the equation given by this edge.

– The convention for the contraction of edges accounts for the restriction of hyperplanes in bi-
arrangements. Indeed, let us look at a restricted bi-arrangement (Li|L1, . . . , L̂i, . . . , Ln;M).
If we choose the coordinates on Li ∼= Cn−1 to be (t1, . . . , t̂i, . . . , tn), then the equations of
the hyperplanes in this restricted bi-arrangement are exactly given by the edges of the graph
resulting from the contraction of the i-th chord, with the convention from § 2.1.4. The same
is of course true for a restriction of some hyperplane Mj , j > 1.

This allows us to reinterpret the operations qC and rC in terms of restriction and deletion of
bi-arrangements.

Lemma 2.3.3. Let D be a decorated dissection diagram of degree n and (L;M) the corresponding
bi-arrangement in Cn. Let C ⊂ C be a set of chords of D.
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1. For each α, let (L(α);M (α)) be the bi-arrangement corresponding to the dissection dia-
gram qαC(D). We have an isomorphism of bi-arrangements∏

α

(
L(α);M (α)

)
∼= (LC |L(C);M).

2. The bi-arrangement of the dissection diagram rC(D) is(
MS +

C

∣∣∣L(C);M0,M
(
S +
C

))
.

Proof. 1. Let us recall the partition C =
⊔
αC(α). The equations of the bi-arrangement (L(α);M (α))

are written in coordinates ti, i ∈ C(α), hence the product
∏
α(L(α);M (α)) is a bi-arrangement

in an affine space with coordinates ti, i ∈ C. The same is true of (LC |L(C);M). We then
describe the isomorphism.
Let us denote by D/C the graph obtained by contracting the chords from C; its non-root
vertices are labeled by C. For each α, the root of qαC(D) in D/C is either the root of D
or a non-root vertex ρ(α) ∈ C. We let t(α) = 0 in the first case, and t(α) = tρ(α) in the
second case. The isomorphism is then defined by the change of variables t′i = ti + t(α)
for i ∈ C(α).

2. It is straightforward, if we choose the coordinates ti, i /∈ C, on Li.

Example 2.3.4. Let us look at Example 2.1.16 and illustrate the first point of the above Lemma.
On L3 with coordinates (t1, t2), the change of variables is defined by t1 = t′1, t2 = t′2 − t′1. Then
for instance the equation t2 − a2 = 0 becomes t′2 − t′1 − a2 = 0.

2.3.2 Definition of the dissection polylogarithms

We fix a decorated dissection diagram D of degree n and assume that its decorations are generic.
The following is a special case of the definition of Aomoto polylogarithms, see §1.2.

The differential form ωD
For i = 1, . . . , n, let ϕi be the linear equation for the hyperplane Li defined in the previous
paragraph, of the form ϕi = ti−tj−ai if the i-th chord goes to the j-th vertex, and by ϕi = ti−ai
if it goes to the root. We then set

ωD = dlog(ϕ1) ∧ . . . ∧ dlog(ϕn) = dt1 ∧ . . . ∧ dtn
ϕ1 . . . ϕn

·

It is a meromorphic n-form on Cn and its polar locus is exactly the union L = L1 ∪ . . . ∪ Ln.

The integration simplex ∆D

In the previous paragraph we have defined a family of hyperplanes M0 = {t1 = −b0}, Mj =
{tj = tj+1 + bj} for j = 1, . . . , n− 1, and Mn = {tn = bn}. We set M = M0 ∪M1 ∪ . . . ∪Mn.
We fix a singular n-simplex ∆D inside Cn \ L such that for all j = 0, . . . , n, ∂j∆D ⊂ Mj . The
existence of such a simplex is guaranteed by the fact that the decorations being generic, L ∪M
is a normal crossing divisor inside Cn (Lemma 2.3.2).

Definition 2.3.5. We set
I(D) =

∫
∆M

ωD ∈ C

and call it the dissection polylogarithm attached to the dissection diagram D.
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The above integral is absolutely convergent since the integration simplex ∆D does not meet
the polar locus L of the form ωD.

As the examples in the next paragraph will show, the integral I(D) really depends on ∆D

(though only via its homology class [∆D] ∈ Hn(Cn \ L,M \M ∩ L)). Thus, the notation I(D)
is abusive. We allow ourselves that abuse for at least two reasons. Firstly, there is no canonical
way of choosing [∆D] for all decorated dissection diagrams; if one looks at specific families
of dissection diagrams and/or decorations (see the examples in the next paragraph) then this
may sometimes be achieved. Secondly, we will replace (see Definition 2.4.1) the dissection
polylogarithms I(D) by motivic versions IH(D) that only depend on the decorated diagram D,
and not on the homology class of ∆D.

Remark 2.3.6. A dissection polylogarithm is a special case of an Aomoto polylogarithm in the
sense of [BVGS90]. To make the connection with the setting of [BVGS90] precise, one has to
work in the projective setting, adding the hyperplane at infinity L0. One has to notice that in
this case we get a pair of simplices (L;M) inside Pn(C) which is not in general position: it is
highly degenerate at infinity. Thus we are not in the case studied by J. Zhao in [Zha00].

2.3.3 Examples of dissection polylogarithms

We study some families of dissection polylogarithms.

a1b0 b1 a1

a2 a3

a4

−a0 a5

0

0

0

−b

0

0

0

0

a1

a2
a3

a4

Figure 2.6: A decorated dissection diagram of degree 1; the decorated corolla corresponding
to the iterated integral I(a0; a1, a2, a3, a4; a5); the decorated path tree corresponding to the J-
integral J(b; a1, a2, a3, a4).

Degree 1: logarithms

Let D be a decorated dissection diagram of degree 1 (see Figure 2.6). The genericity as-
sumption on the decorations reads:

a1 + b0 6= 0, a1 − b1 6= 0, b0 + b1 6= 0

We have ϕ1 = t− a1 so that L1 = {a1} and ωD = dt
t−a1

. We have M0 = {−b0} and M1 = {b1},
so that ∆D is any continuous path from −b0 to b1 in C \ {a1}. We then have

I(D) =
∫ b1

−b0

dt

t− a1
= log

(
a1 − b1
a1 + b0

)
.

As is well-known, this number is well-defined up to an integer multiple of 2iπ, depending on the
number of times that the path of integration winds around a1.
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Corollas and iterated integrals

This example generalizes the previous one. Let us consider the case where D is a corolla
of degree n, which is the case when all chords of D point towards the root. In this case we
have ϕi = ti − ai for all i = 1, . . . , n, so that

ωD = dt1 ∧ · · · ∧ dtn
(t1 − a1) · · · (tn − an) ·

By performing the change of variables

t′1 = t1, t
′
2 = t2 + b1, t

′
3 = t3 + b1 + b2, . . . , t

′
n = tn + b1 + . . .+ bn

we can always assume that the decorations on the sides of D are all 0 except for the first and the
last one. We then put a0 = −b0 and an+1 = bn, so that the genericity condition reads: ai 6= aj
for 0 6 i 6= j 6 n+ 1 (see Figure 2.6).
We denote by ∆(a0, an+1) the integration simplex ∆D. Its boundary is given by the hyper-
planes t1 = a0, tj = tj+1 for j = 1, . . . , n, and tn = an+1. The corresponding dissection
polylogarithm is the generic iterated integral

I(a0; a1, . . . , an; an+1) =
∫

∆(a0,an+1)

dt1 · · · dtn
(t1 − a1) · · · (tn − an) · (2.9)

In general, the dissection polylogarithms cannot be interpreted directly as iterated integrals
in the above sense (however, see Theorem 2.3.12 for an abstract statement on a reduction to
iterated integrals).

Path trees and J-polylogarithms

Let us consider the case where D is a path tree of degree n. In this case we get

ωD = dt1 ∧ · · · ∧ dtn
(t1 − t2 − a1)(t2 − t3 − a2) · · · (tn−1 − tn − an−1)(tn − an) ·

As in the previous example, we can perform a change of variables so that the edge decorations
are b0 = −b, b1 = · · · = bn−1 = bn = 0 (see Figure 2.6).
Let us write, for all I ⊂ {1, . . . , n}, aI =

∑
i∈I ai. Then the genericity condition on the decora-

tions reads: for all i = 1, . . . , n, ai 6= 0 and for all I ⊂ {1, . . . , n}, aI 6= b (which includes the
condition b 6= 0 for I = ∅).
The corresponding dissection polylogarithm is denoted

J(b; a1, . . . , an) =
∫

∆(b,0)

dt1 · · · dtn
(t1 − t2 − a1) · · · (tn−1 − tn − an−1)(tn − an) ·

2.3.4 Relations among dissection polylogarithms

We describe certain families of relations between dissection polylogarithms that one can describe
combinatorially on the dissection diagrams.

Translations

LetD be a decorated dissection diagram of degree n; let us fix a non-root vertex i ∈ {1, . . . , n}
and λ ∈ C. Let τi(λ).D be the decorated dissection diagram obtained from D by adding λ to
the decoration of every edge of Γ(D) going to i, and substracting λ from the decoration of every
edge of Γ(D) leaving i.
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i

x′

x y

y′

 
i

x′ + λ

x+ λ y − λ

y′ − λ

Proposition 2.3.7. The decorations of τi(λ).D are generic if and only if the decorations of D
are generic. In this case we have the equality

(R1) : I(D) = I(τi(λ).D).

Proof. The first statement is straightforward. The equality follows from the change of vari-
ables ti 7→ ti − λ in the integral defining I(D). Of course the simplices ∆D and ∆τi(λ).D are
chosen in a compatible way: ∆τi(λ).D is the image of ∆D under ti 7→ ti − λ.

Rotating a dissection diagram

Let D be a decorated dissection diagram of degree n; let D+ be the dissection diagram
obtained from D by rotating the labels of the (n+ 1) vertices of D in clockwise order. One has
to flip a certain number of chords so that all the chords in D+ point towards the root (which
was formerly vertex 1). The rule for flipping chords is given in § 2.1.4.

 

D D+

Proposition 2.3.8. The decorations of D+ are generic if and only if the decorations of D are
generic. In this case, let ε be the signature of the permutation relating the orders of the chords
in D and in D+. Then we have the equality

(R2) : I(D) = (−1)nε I(D+).

Proof. The first statement is straightforward since Γ(D) = Γ(D+) as decorated directed graphs.
Let us perform the change of variables f(t1, . . . , tn) = (t2 − t1, t3 − t1, . . . , tn−1 − t1,−t1) in the
integral defining I(D):

I(D) =
∫

∆D

ωD =
∫
f−1(∆D)

f∗ωD.

Now ∆D+ is chosen to be f−1(∆D), but with the orientation multiplied by (−1)n: indeed, we
perform a cyclic permutation of the (n + 1) faces of the simplex. As the differential forms are
concerned, we get by definition f∗ωD = ε ωD+ , hence the result.

Stokes’ theorem

Let us consider a set of n non-intersecting chords in Πn+1 such that the graph created by
the chords is acyclic. For such a diagram D̃ and a side s ∈ {0, . . . , n + 1} of Πn+1, we let ∂sD̃
be the graph obtained by contracting the side s. One easily checks that there exist exactly two
sides i and j of D̃ such that ∂iD̃ and ∂jD̃ are dissection diagrams.
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i

j

Now let us suppose that the chords of D̃ are directed and that we are given a decoration on the
total directed graph of D̃. Then D̃ gives a bi-arrangement (L;M) = (L1, . . . , Ln;M0,M1, . . . ,Mn+1)
in the same fashion as in § 2.3.2.

For a side s ∈ {0, . . . , n + 1}, the bi-arrangement given by ∂sD̃ is exactly the restric-
tion (Ms|L;M0, . . . , M̂s, . . . ,Mn+1), with natural coordinates (t1, . . . , t̂s, . . . , tn+1) on Ms (the
rule for contracting edges is given in § 2.1.4).

To sum up, ∂iD̃ and ∂jD̃ are decorated dissection diagrams. One way of coherently choosing
the singular simplices ∆

∂iD̃
and ∆

∂jD̃
is to choose a singular simplex ∆̃ such that ∂s∆̃ ⊂Ms for

all s, and to put ∆
∂iD̃

= ∂i∆̃ and ∆
∂jD̃

= ∂j∆̃.

Proposition 2.3.9. If the decorations on D̃ are generic then the decorations on ∂iD̃ and ∂jD̃
are generic too. In this case, let εi (resp. εj) be the signature of the permutation relating the
orders of the chords in D̃ and in ∂iD̃ (resp. ∂jD̃). Then we have the equality

(R3) : (−1)iεi I(∂iD̃) + (−1)jεj I(∂jD̃) = 0.

Proof. The first statement is straightforward. Let ω be the differential n-form on Cn+1 given
by the n decorated chords of D̃ as in 2.3.2. It is a closed form so by Stokes’ theorem we get

n+1∑
s=0

(−1)s
∫
∂s∆̃

ω|∂s∆̃
= 0.

For s /∈ {i, j} we get ω|∂s∆̃ = 0; the result then follows from the equalities ω|∂i∆̃ = εi ω∂iD̃
and ω|∂j∆̃ = εj ω∂jD̃

.

Orlik-Solomon relations

Let us consider a set of (n + 1) non-intersecting chords in Πn such that the graph created
by the chords has Betti number 1. For such a diagram D̂, let C be the unique simple cycle. For
every chord c ∈ C, we get a dissection diagram D̂ \ {c} by deleting c.

Now let us suppose that the chords of D̂ are linearly ordered by {1, . . . , n+ 1} and directed and
that we are given a decoration on the total graph of D̂. Then for every chord c ∈ C we get
a decorated dissection diagram D̂ \ {c}. It has to be noted that one may have to reorder the
chords in D̂ \ {c}. One can compute all the dissection polylogarithms I(D̂ \ {c}) using the same
choice of integration simplex.

Proposition 2.3.10. Let us suppose that among all simple cycles in the total graph of D̂, C is
the only one whose total decoration is 0. Then for every chord c ∈ C, the decorations on D̂ \{c}
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are generic. For c ∈ C, let us denote by ε(c) the product of the signs sgn({c}, C \ {c}), sgn(C \
{c}, {1, . . . , n + 1} \ C), and the signature of the permutation reordering the chords in D̂ \ {c}.
We then have the equality:

(R4) :
∑
c∈C

ε(c) I(D̂ \ {c}) = 0.

Proof. The first statement is straightforward. Since the total decoration of C is 0, one easily sees
that the hyperplanes Lc, for c ∈ C, are linearly dependent. Thus, we have the Orlik-Solomon
relation [OT92, Lemma 3.119] ∑

c∈C
sgn({c}, C \ {c})ωC\{c} = 0.

Multiplying on the right by ω{1,...,n+1}\C we get∑
c∈C

sgn({c}, C \ {c})sgn(C \ {c}, {1, . . . , n+ 1} \ C)ω{1,...,n+1}\{c} = 0.

The result then follows from the fact that ω{1,...,n+1}\{c} is ωD̂\{c} up to the sign implied by the
reordering of the chords in D̂ \ {c}.

Remark 2.3.11. All the above relations are special cases of the “scissors congruence relations”
between Aomoto polylogarithms [BVGS90, 2.1]. The translation relation (R1) and the rotation
relation (R2) are special cases of projective invariance under particular subgroups of PGLn+1(C).
Stokes’ theorem (R3) is a particular case of the intersection additivity relation with respect toM ,
which has been shown [Zha00, Proposition 2.4] to follow from the scissors congruence relations.
The Orlik-Solomon relation (R4) is a particular case of the additivity relation with respect to L.

2.3.5 Reduction to iterated integrals

Theorem 2.3.12. Let D be a generic decorated dissection diagram. Then the dissection polylog-
arithm I(D) can be written as a linear combination with integer coefficients of generic iterated
integrals I(a0; a1, . . . , an; an+1) where the ai’s are linear combinations with integer coefficients of
the decorations of D.

Proof. It is enough to prove that using relations (R2), (R3), (R4), one can write I(D) as a
linear combination with integer coefficients of dissection polylogarithms I(X) for X a corolla
with generic decorations as in the statement of the Theorem. Indeed, using relation (R1), one
can always perform a change of variables so that any I(X) is an iterated integral.
Because the chords of D do not cross, at least one chord has to connect consecutive vertices
of Πn. Thus, using relation (R2), one can assume that in D there is a chord between 1 and the
root.
We prove by induction on k = 1, . . . , n that using relations (R3) and (R4), one can write I(D)
as a linear combination with integer coefficients of generic dissection polylogarithms involving
dissection diagrams where the first k non-root vertices are linked to the root, with decorations
as in the statement of the Theorem. The case k = 1 has already been settled, and the case k = n
gives the Theorem.
Let us suppose that in D all vertices between 1 and k are linked to the root by a chord. There
are two cases to consider.
Case 1: there is no chord going to the vertex k. Let us then consider the chord from the
vertex v0 = k + 1. If its endpoint is the root then we are done. Else, its endpoint must be a
vertex v1 ∈ {k + 2, . . . , n}. Let us consider the sequence of chords

v0• c0−→v1• c1−→v2• c2−→ · · · vr• cr−→ ◦
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going to the root, where ci has decoration αi. Let D̂ be the diagram obtained by adding to D
a chord c from k + 1 to the root decorated by the sum α0 + α1 + α2 + . . .+ αr. Then we have
created a simple cycle C = (c, c0, c1, . . . , cr) and we are in the situation where we can apply
relation (R4). Since D̂ \ {c} = D by definition we get

I(D) =
r∑
i=0
±I(D̂ \ {ci})

and for every i = 0, . . . , r, D̂ \ {ci} is a dissection diagram in which all vertices between 1
and k + 1 are linked to the root. Moreover its decorations are linear combinations with integer
coefficients of the decorations of D.

k v0

v1
c c0
c1

D = D̂ \ {c}

k

c
c1

D̂ \ {c0}

k

c c0

D̂ \ {c1}

Case 2: there are chords going to the vertex k. We are going to use relation (R3) to reduce to
Case 1. Let D̃ be the diagram obtained by opening the angle between the chord going from k
to the root and the first of the chords going to k, as in the picture below. The decoration of the
new edge is 0. Then by definition we get ∂kD̃ = D. The other ∂lD̃ that is a dissection diagram
has no chord arriving at k. Thus, relation (R3) gives

I(D) = ±I(∂lD̃).

The decorations of ∂lD̃ are linear combinations with integer coefficients of the decorations of D,
and we are reduced to Case 1.

k

D = ∂kD̃

k

l

D̃

k

∂lD̃

Remark 2.3.13. The algorithm defined in the above proof is not canonical in any sense. It is
worth noting that the number of iterated integrals that appear in the final sum is between 1
(for D a corolla) and (n− 1)! (for D a path graph).
For these reasons, Theorem 2.3.12 should be taken as a technical tool, and not as an abstract
statement on the internal structure of dissection polylogarithms.

2.4 Motivic dissection polylogarithms and their coproduct

As in the previous section, the decorations on dissection diagrams are implicitly taken in C.
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2.4.1 Motivic dissection polylogarithms

Let D be a generic decorated dissection diagram. Let (L;M) = (L1, . . . , Ln;M0,M1, . . . ,Mn)
be the bi-arrangement in Cn corresponding to D (see 2.3.1). With the notations of 2.2.2, we set

H(D) = H(L;M).

According to Theorem 2.2.5, it is a mixed Hodge-Tate structure with non-negative weights
between 0 and 2n and we have

• grW2nH(D) ∼= Λn(e1, . . . , en) which is one-dimensional with basis

v(D) = e1 ∧ · · · ∧ en.

• grW0 H(D) is isomorphic to the quotient of Λn(f0, f1, . . . , fn) by the vector space spanned
by the elements

(−1)if0 ∧ · · · ∧ f̂i ∧ · · · ∧ fn − (−1)jf0 ∧ . . . ∧ f̂j ∧ . . . ∧ fn

for 0 6 i < j 6 n. Hence it is one-dimensional with basis f1 ∧ . . . ∧ fn. We let

ϕ(D) = f∨1 ∧ · · · ∧ f∨n

be the dual linear form in
(
grW0 H(D)

)∨
.

Definition 2.4.1. We set

IH(D) = (H(D), v(D), ϕ(D)) ∈ HMHTS
n

and call it the motivic dissection polylogarithm corresponding to D.

More geometrically, we get

grW2nH(D) ∼= Hn(Cn \ L) = Q[ωD]

so that v(D) is the cohomology class of the the n-form ωD. We also have a commutative diagram

H(D)∨
∼= //

����

Hn(Cn \ L,M \M ∩ L)

µ

����(
grW0 H(D)

)∨ ∼= // Hn(Cn,M)

Let ∆D be any integration simplex for I(D), and [∆D] its homology class inHn(Cn\L,M\M∩L).
Then ϕ(D) = µ ([∆D]) ∈ Hn(Cn,M) is canonical and does not depend on the choice of [∆D]. It
corresponds to an oriented simplex in Cn whose boundary is contained in M .

To sum up, we have
IH(D) = (H(D), [ωD], µ ([∆D])) .

Remark 2.4.2. This is a particular case of the construction of motivic Aomoto polylogarithms
explained in §1.5.
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Remark 2.4.3. In a particular situation where one has a preferred choice of [∆D], then a more
natural thing to do is to work in the algebra PMHTS,eff and not in HMHTS, as explained in §1.5.
A candidate for the motivic dissection polylogarithm is then

IP(D) = (H(D), [ωD], [∆D]) ∈ PMHTS,eff
n .

Its period is
per(IP(D)) = I(D)

computed with the same choice of ∆D.
Via the surjection (1.12), IP(D) is mapped to IH(D). We stress the fact that IH(D) only
depends on the (generic) decorated diagram D, whereas I(D) and IP(D) also depend on the
choice of a homology class [∆D] ∈ Hn(Cn \ L,M \M ∩ L).

Theorem 2.4.4. The relations (R1), (R2), (R3), (R4) from Propositions 2.3.7, 2.3.8, 2.3.9, 2.3.10
remain true if we replace the dissection polylogarithms I(D) by their motivic versions IH(D).
Thus, Theorem 2.3.12 is also true in the motivic setting.

Remark 2.4.5. Of course, Remark 2.3.13 also applies in this setting. Furthermore, it is worth
noting that the reduction to iterated integrals does not tell us anything about the combinatorial
shape of the coproduct of the motivic dissection polylogarithms (Theorem 2.4.9 below).

Proof. We will not use this result in the sequel so we just sketch the proof that (R3) is true
in the motivic setting. Let (L;M) = (L1, . . . , Ln;M0,M1, . . . ,Mn+1) be the bi-arrangement of
hyperplanes given by D̃. By definition εi IH(∂iD̃) is the triple(

H(Mi|L;M0, . . . , M̂i, . . . ,Mn+1), e1 ∧ · · · ∧ en, f∨1 ∧ · · · ∧ f̂∨i ∧ · · · ∧ f
∨
n+1

)
.

Thus, using the natural morphism

H(Mi|L;M0, . . . , M̂i, . . . ,Mn+1)→ H(L;M)

from Theorem 2.2.7, we see that this triple is equivalent to

(H(L;M), (e1 ∧ · · · ∧ en)⊗ fi, f∨i ∧ f∨1 ∧ · · · ∧ f̂∨i ∧ · · · ∧ f
∨
n+1),

hence (−1)iεi IH(∂iD̃) is the triple

(H(L;M), (e1 ∧ · · · ∧ en)⊗ fi,−f∨1 ∧ · · · ∧ f∨n+1)

and the sum (−1)iεi IH(∂iD̃) + (−1)jεj IH(∂jD̃) is the triple

(H(L;M), (e1 ∧ · · · ∧ en)⊗ (fi + fj),−f∨1 ∧ · · · ∧ f∨n+1).

Thus it is enough to prove that (e1 ∧ · · · ∧ en)⊗ (fi + fj) = 0.
For s /∈ {i, j}, L1 ∩ · · · ∩ Ln ∩Ms = ∅ because the corresponding subgraph in the total graph
of D̃ has a cycle. Hence the first relation of Theorem 2.2.5 gives (e1 ∧ · · · ∧ en)⊗ fs = 0 and

(e1 ∧ · · · ∧ en)⊗ (fi + fj) = (e1 ∧ · · · ∧ en)⊗
n+1∑
s=0

fs = 0

using the second relation.

Remark 2.4.6. The above theorem is also valid if we work in PMHTS,eff with the elements IP(D)
(see Remark 2.4.3; in this setting the integration simplices have to be chosen coherently as in
§2.3.4).
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2.4.2 The computation of the coproduct

Proposition 2.4.7. Let D be a generic decorated dissection diagram and k ∈ {0, . . . , n}. The
classes of the elements

bC = eC ⊗ fS +
C

for C ⊂ C ' {1, . . . , n}, |C| = k, form a basis of grW2kH(D).

Proof. From Theorem 2.2.5 we get a presentation

grW2kH(L;M) ∼=
⊕
|I|=k

QeI ⊗
(
Λn−k(f1, . . . , fm)/RI(L;M)

)
where RI(L;M) is spanned by the elements

1. fJ if LI ∩MJ = ∅.

2.
∑
j /∈J ′

sgn({j}, J ′)fJ ′∪{j} for |J ′| = n− k − 1.

Let us fix a subset I ⊂ {1, . . . , n}, viewed as a subset C ⊂ C of chords of D. We want to prove
that the quotient of Λn−k(f0, f1, . . . , fn) by relations 1. and 2. above is one-dimensional with
basis element fS +

C
.

1. Let us write {0, . . . , n} = S = SC(0) t · · · t SC(k) the partition (2.3) of S given by
the dissection defined by C. From Lemma 2.3.2 and Lemma 2.1.6, we see that the only
subsets J ⊂ {0, . . . , n} such that LI ∩MJ 6= ∅ are

J(u0, . . . , uk) = (SC(0) \ {u0}) t · · · t (SC(k) \ {uk})

for some choice of uα ∈ SC(α).
Thus the quotient of Λn−k(f0, f1, . . . , fn) by relation 1. has a natural basis consisting of
the elements fJ(u0,...,uk).

2. Let us write f(u0, . . . , uk) = fJ(u0,...,uk) for simplicity. We investigate the relations between
the elements f(u0, . . . , uk) implied by relation (2). The only non-trivial ones come from
subsets

J ′ = (SC(0) \ {u0}) t · · · t (SC(i) \ {ai, bi}) t · · · t (SC(k) \ {uk})

with ai 6= bi, and are of the form

sgn({ai}, J ′)f(u0, . . . , ai, . . . , uk) + sgn({bi}, J ′)f(u0, . . . , bi, . . . , uk) = 0 (2.10)

Hence in the quotient of Λn−k(f0, . . . , fn) by relations 1. and 2., all the elements f(u0, . . . , uk)
are equal up to a sign, hence this quotient is spanned by any of these elements. If we
choose uα = min(SC(α)) for each α, we get J(u0, . . . , uk) = S +

C by definition. Thus all
there is to prove is that the elements f(u0, . . . , uk) are all non-zero in the quotient. This
follows from a compatibility between the signs in formula (2.10), which is the content of
the next Lemma.

Lemma 2.4.8. Let us define a graph whose vertices are the tuples (u0, . . . , uk) with uα ∈ SC(α)
for every α = 0, . . . , k. We put an edge between the pairs of the form (u0, . . . , ai, . . . , uk)
and (u0, . . . , bi, . . . , uk) for ai 6= bi in SC(i). Let us decorate such an edge by the sign

−sgn({ai}, J ′) sgn({bi}, J ′)

with J ′ = (SC(0) \ {u0}) t · · · t (SC(i) \ {ai, bi}) t · · · t (SC(k) \ {uk}).
Then for every loop in this graph, the product of the signs of the edges of the loop is 1.
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Proof. See §2.6.

The main result of this chapter is the following.

Theorem 2.4.9. The coproduct of the motivic dissection polylogarithms is given by the formula

∆(IH(D)) =
∑

C⊂C (D)
(−1)kC(D)IH(qC(D))⊗ IH(rC(D)) (2.11)

where IH(qC(D)) is understood as the product
∏
α I
H(qαC(D)).

In other words, the morphism

Dgen(C)→ HMHTS , D 7→ IH(D)

is a morphism of graded Hopf algebras.

Proof. According to formula (1.10) and Proposition 2.4.7, we get

∆n−k,k(IH(D)) =
∑

C⊂{1,...,n}
|C|=k

(H(D)(k), v(D), b∨C)⊗ (H(D), bC , ϕ(D))

1. We show that (H(D)(k), v(D), b∨C) = ±IH(qC(D)).
First, let us look at the bi-arrangement

(LC |L(C);M).

By Lemma 2.3.3 and the Künneth isomorphism, we have an isomorphism

H(LS |L(S);M) ∼=
⊗
α

H(qαS(D))

hence the graded 0 part
grW0 H(LC |L(C);M)

is one-dimensional and spanned by the vector
∧
α fS +

C (α) = ±fS +
C
.

Let us consider the residue morphism (Theorem 2.2.7)

H(D)(k)→ H(LC |L(C);M).

On the grW2(n−k) part, it sends v(D) = e1 ∧ · · · ∧ en to sgn(C,C)eC .
On the grW0 part, it sends bC = eC ⊗fS +

C
to fS +

C
and all the other basis elements bC′ to 0.

Thus it gives an identification

(H(D)(k), v(D), b∨C) = sgn(C,C)(H(LC |L(C);M), eC , f
∨
S +
C

).

For each α, let ναC : C(α) '→ S +
C (α) be the bijection (2.2) given by the dissection dia-

gram qαC(D), and let νC : C '→ S +
C be the bijection induced by the ναC ’s. This bijection

accounts for the reordering of the hyperplanes, and gives a sign

(H(LC |L(C);M), eC , f
∨
S +
C

) = sgn(νC)
∏
α

IH(qαC(D))

hence the equality

(H(D)(k), v(D), b∨C) = sgn(C,C) sgn(νC)IH(qC(D)).
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2. We show that (H(D), bC , ϕ(D)) = ±IH(rC(D)).
First let us consider the bi-arrangement of hyperplanes(

MS +
C

∣∣∣L(C);M0,M
(
S +
C

))
.

According to Lemma 2.3.3, it is exactly the one given by the dissection diagram rC(D),
so we get

H
(
MS +

C

∣∣∣L(C);M0,M
(
S +
C

))
∼= H(rC(D))

and the graded 0 part
grW0 H

(
MS +

C

∣∣∣L(C);M0,M
(
S +
C

))
is one-dimensional and spanned by the vector fS +

C
.

Let us consider the morphism (Theorem 2.2.7)

H
(
MS +

C

∣∣∣L(C);M0,M
(
S +
C

))
→ H(L;M). (2.12)

On the grW2k part, it sends eC to bC = eC ⊗ fS +
C
.

On the grW0 part, it sends fS +
C

to sgn(S +
C ,S

+
C )f1 ∧ · · · ∧ fn.

Thus it gives an identification

(H(D), bC , ϕ(D)) = sgn(S +
C ,S

+
C )
(
H
(
MS +

C

∣∣∣L(C);M0,M
(
S +
C

))
, eC , f

∨
S +
C

)
.

Because of the ordering conventions, we have(
H
(
MS +

C

∣∣∣L(C);M0,M
(
S +
C

))
, eC , f

∨
S +
C

)
= sgn(ηC)IH(rC(D))

where ηC : C '→ S +
C is the bijection (2.2) given by rC(D). Hence we have the equality

(H(D), bC(D), ϕ(D)) = sgn(S +
C ,S

+
C ) sgn(ηC)IH(rC(D)).

3. Putting the two first steps together, it only remains to check that the signs are correct.
This is done in the next Lemma.

Lemma 2.4.10. We have the equality between signs:

sgn(C,C) sgn(νC) sgn(S +
C ,S

+
C ) sgn(ηC) = (−1)kC(D).

Proof. See §2.7.

Remark 2.4.11. If we work in PMHTS,eff with the elements IP(D) (see Remark 2.4.3) then we
get a similar formula for the coaction ρ : PMHTS,eff → HMHTS ⊗ PMHTS,eff :

ρ(IP(D)) =
∑

C⊂C (D)
(−1)kC(D)IH(qC(D))⊗ IP(rC(D)).

We only have to define the integration simplices for the elements IP(rC(D)) in a coherent way.
If ∆D is the integration simplex for IP(D), then the integration simplex for IP(rC(D)) has to
be the face ∂S +

C
∆D of ∆D. This is because the morphism (2.12) corresponds, on the singular

homology groups, to a composition of face maps.
Remark 2.4.12. Let F be a number field. If we start with a generic F -decorated dissection
diagram D, then we may define a bi-arrangement (L;M) inside AnF , the n-dimensional affine
space over F . Then Hn(AnF \L,M \M ∩L) defines an object in the category MTM(F ) [Gon02,
Proposition 3.6]. By the same construction, we get a morphism of graded Hopf algebras

Dgen(F )→ HMTM(F ).
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2.4.3 Examples of computations

We present two special cases of Theorem 2.4.9.

In 2.3.3 we have introduced the iterated integrals I(a0; a1, . . . , an; an+1) as the dissection
polylogarithms corresponding to corollas. The motivic counterparts IH(a0; a1, . . . , an; an+1) ∈
Hn have already been defined and studied by Goncharov [Gon05, Theorem 1.1], in the framework
of motivic fundamental groupoids. We leave it to the reader to check that Goncharov’s definition
agrees with ours. The coproduct of the motivic iterated integrals has been worked out by
Goncharov.

Theorem 2.4.13 ([Gon05], Theorem 1.2). The coproduct ∆(IH(a0; a1, . . . , an; an+1)) of motivic
generic iterated integrals is given by the formula

∑
06k6n

0=i0<i1<···<ik<ik+1=n+1

(
k∏
s=0

IH(ais ; ais+1, . . . , ais+1−1; ais+1)
)
⊗ IH(a0; ai1 , . . . , aik ; an+1).

(2.13)

Proof. It is the same computation as in Example 2.1.14, 1., but taking care of the decorations.
The term indexed by 0 = i0 < i1 < · · · < ik < ik+1 = n + 1 corresponds to the subset C =
{i1, . . . , ik}.

In 2.3.3 we have introduced the J-polylogarithms J(b; a1, . . . , an) as the dissection polyloga-
rithms corresponding to path trees. We let JH(b; a1, . . . , an) ∈ Hn be their motivic counterparts.
Their coproduct is given by a simple formula.

Theorem 2.4.14. The coproduct of motivic generic J-polylogarithms is given by the formula

∆(JH(a1, . . . , an; b)) =
∑

I⊂{1,...,n}
JH(a(I); b− aI)⊗ JH(a(I); b). (2.14)

Proof. It is the same computation as in Example 2.1.14, 2., but taking care of the decorations.
Here we have to make a slight translation of variables on the left-hand side of the tensor product
so that it looks like the above formula. The details are left to the reader.

2.4.4 Genericity and regularization

In this paragraph we discuss the extension of our results to non-generic dissection diagrams
and polylogarithms. The genericity condition on the decorations of a dissection diagram is a
sufficient, but not necessary condition, for the existence of the corresponding dissection polylog-
arithm.

Let us take the example of the iterated integrals I(a0; a1, . . . , an; an+1), for which the gener-
icity condition reads ai 6= aj for i 6= j. The convergence of the corresponding integral is actually
guaranteed as soon as a0 6= a1 and an 6= an+1. For example, the multiple zeta values

ζ(n1, . . . , nr) =
∑

16k1<···<kr

1
kn1

1 · · · k
nr
r

defined for integers n1, . . . , nr−1 > 1 and nr > 2, are special cases of these non-generic iterated
integrals, as was first noticed by Kontsevich:

ζ(n1, . . . , nr) = (−1)r I(0; 1, 0, . . . , 0︸ ︷︷ ︸
n1

, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
nr

; 1)
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for n = n1 + · · ·+ nr.
The point is that in the formula for the coproduct of motivic iterated integrals (Theorem 2.4.13),
there may be non-convergent motivic iterated integrals on the right-hand side even if the left-
hand side corresponds to a convergent one. For example, for I(0; 1, 0; 1) = −ζ(2), the formula
would look like

∆1,1(IH(0; 1, 0; 1)) = IH(1; 0; 1)⊗ IH(0; 1; 1) + IH(0; 1; 0)⊗ IH(0; 0; 1). (2.15)

Goncharov showed that there is a regularization procedure that gives a meaning to (possibly
non-convergent) iterated integrals I(a0; a1, . . . , an; an+1) (for all tuples (a0, . . . , an+1)).
Furthermore, he defined their motivic versions IH(a0; a1, . . . , an; an+1) and proved that Theo-
rem 2.4.13 was valid without the genericity hypothesis. Thus, formula (2.15) makes sense (and
in this particular case, the right-hand side is 0).

Building upon Goncharov’s construction (see also [Gon02, §4]), one should be able to regu-
larize all dissection polylogarithms and compute the coproduct of their motivic versions. The
most naive hope would be that the formula for the coproduct would remain the same, hence
extending Theorem 2.4.9 to a morphism of Hopf algebras D(C)→ HMHTS.

2.5 Appendix: proof of Lemma 2.1.12

In this Appendix we fix a dissection diagram D of degree n. We use the identifications C =
{1, . . . , n}, S = {0, . . . , n} and S + = {1, . . . , n} for the sets of chords and sides of D.

Lemma 2.5.1. Let C ⊂ C be a subset of chords of D and c =i0•−→i1• be a chord in C.
Then c is in KC(D) if and only if the three following conditions are satisfied:

(K1) The path in C
i0• c−→i1•−→ · · · −→

iM−1• −→iM•

starting at i0 does not go to the root.

(K2) This path is decreasing: for all k = 1, . . . ,M we have ik−1 > ik.

(K3) For all k = 1, . . . ,M , there is no chord j
•−→ik• in C such that j > i0.

In particular, we have i0 > i1, so that all the chords in KC(D) are decreasing.

Example 2.5.2. In the following example, we have only drawn the chords from C = {1, 3, 4, 5, 6, 8, 9, 10},
and drawn the circle with dots for a matter of convenience.

1

2

3

4

5
6

7

8

9

10

11

We have SC(D) = {6, 8, 11} and KC(D) is made of the arrows 6•−→4•−→3•−→2• and 8•−→7•.
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Proof. For c a chord in C, we denote by (K) the conjunction of the three conditions (K1), (K2), (K3)
of the Lemma.
We investigate the process of contracting the edges from S +

C decomposing it into steps where
we contract only one edge. The number of steps is r = n− |C|. We label e1, . . . , er the elements
of S +

C , in decreasing order.
Let D(0) be the diagram obtained from D by forgetting the chords from C and only keeping the
chords from C. The chords form a disjoint union of rooted trees.
We define recursively diagrams D(i), i = 1, . . . , r. For i = 1, . . . , r, let D(i) be the diagram
obtained from D(i−1) by contracting the side ei, and possibly flipping chords so that the chords
in D(i) still form a disjoint union of rooted trees. The number of connected components of this
disjoint union decreases with i, and in the end we get a dissection diagram D(r) = rC(D).
We prove the following property by induction on i = 0, . . . , r:

(i) In the diagram D(i), among the chords that are attached to the root, the ones that have
been flipped have only been flipped once, and they are exactly the ones that satisfy condi-
tion (K).

(ii) For a chord that is not attached to the root, it satisfies (K) inD if and only if it satisfies (K)
in D(i).

The case i = 0 is trivial, and the case i = r will give the Lemma. Hence we only need to pass
from (i− 1) to i.
Let us consider the diagram D(i−1) and let m be the starting vertex of the side ei. We assume
that the end vertex of ei is the root of D(i−1), leaving to the reader the (very similar) case where
it is another non-root vertex (m+ 1). Let us denote

m=m0• −→m1• −→ · · · −→
mN−1• −→mN•

the (possibly empty) path in C starting at m.

m = m0

m1m2

m3

When we contract ei, m is merged with the root and then we have to flip all these arrows. It
is easy to see that they are the only ones. Hence we have to prove two things: these chords
satisfy (K), and all the other chords in their connected component in D(i−1) do not satisfy (K).
It is trivial that m0 > m1 since m0 is maximal in D(i−1). Since the chords cannot intersect each
other, one easily proves by induction on k thatmk−1 > mk for all k. If the path in C starting atm
goes to the root, then we cannot have ei ∈ S +

C , which is a contradiction. Condition (K3) cannot
happen because m is maximal in D(i−1). Hence we have proved that all the chords

mk−1• −→mk•
satisfy (K).
Now let c ∈ C be another chord in the same connected component of D(i−1) that satisfies (K).
Then c lies between mk and mk−1 for some k, or between the root and mN . Let us suppose that
we are in the first case; since the path starting with c is decreasing, it has to go through mk

because the chords cannot intersect each other. But then the chord
mk−1• −→mk• shows that

condition (K3) is not satisfied by c. In the second case, one sees that the path starting at c has
to end at the root, which is also a contradiction. Thus we are done with (i). Statement (ii) is
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straightforward since we have not affected the other connected components of D(i−1). This ends
the induction.

Lemma 2.5.3. Let C ⊂ C be a subset of chords of D and c =i0•−→i1• be a chord in C.
Then c is in KC(D) if and only if there exists a path

i−N• −→ · · · −→
i−1• −→i0• c−→i1•

of chords in C such that i−N ∈ S +
C .

Proof. We prove the equivalence with the condition (K) of Lemma 2.5.1.
If c satisfies (K), then we define i−1 to be the highest vertex > i0 such that there exists a
chord

i−1• −→i0• in C, and so on. The process stops at a vertex i−N and we want to prove
that i−N ∈ S +

C . By construction and by condition (K3), the chords
ik−1• −→ik• , for k = −N +

1, . . . ,M , are sides of the same polygon Π̃(α) in the dissection defined by C, as well as the side
labeled i−N .

Π̃(α)

i−1

i0i1

i2

Because of conditions (K1) and (K2), there is a side of this Π̃(α) that is a side of Πn and that
is less than iM . Hence by definition i−N ∈ S +

C .
Conversely, under the assumption of the Lemma, one easily sees that if any of conditions (K1), (K2), (K3)
is satisfied, then i−N /∈ S +

C .

For the remainder of this Appendix we use the unambiguous notation S +
C = S +

C (D) to
avoid any confusion.

Lemma 2.5.4. Let C ⊂ C (D) be a subset of chords of D and C =
⊔
αC(α) the partition (2.3)

of C determined by C. Let us fix C ′α ⊂ C(α) for each α and C ′ = C t
⊔
αC
′
α.

1. S +
C (D) =

⊔
α S +

C′α
(qαC(D)).

2. S +
C (D) = S +

C′(D) tS +
C (rC′(D)).

3. KC′(D) tKC(rC′(D)) = KC(D) t
⊔
α KC′α(qαC(D)).

Proof. 1. It is straightforward, since the partition of S given by C ′ refines the one given
by C.

2. The fact that S +
C′(D) ⊂ S +

C (D) and S +
C (rC′(D)) ⊂ S +

C (D) are easy. Then the fact
that S +

C′(D) ∩ S +
C (rC′(D)) = ∅ is straightforward since by definition S +

C (rC′(D)) is a
subset of non-root edges of rC′(D), which are precisely the elements from S +(D)\S +

C′(D).
Then we get S +

C′(D) t S +
C (rC′(D)) ⊂ S +

C (D). The equality follows from a cardinality
argument: |S +

C (D)| = n− |C|, |S +
C′(D)| = n− |C ′| and |S +

C (rC′(D))| = |C ′| − |C|.

3. Since by Lemma 2.5.1 the chords that one has to flip are all decreasing, we necessarily
have KC′(D) ∩KC(rC′(D)) = ∅.
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(a) We prove that KC′(D)∩C ′α = KC′α(qαC(D)). Let c =i0•−→i1• be a chord in KC′(D)∩
C ′α, and

i−N• −→ · · · −→
i−1• −→i0• c−→i1•

the path in C ′ given by Lemma 2.5.3, with i−N ∈ S +
C′(D). As has been noted in the

proof of Lemma 2.5.3, the chords
i−k+1• −→

i−k• are sides to the same polygon Π̃(α).
Hence i−N ∈ S +

C′α
(qαC(D)) and then Lemma 2.5.3 implies that c ∈ KC′α(qαC(D)). The

converse is straightforward.

(b) We prove that KC(D) ⊂ KC′(D)tKC(rC′(D)). Let c =i0•−→i1• be a chord in KC(D),
and

i−N• −→ · · · −→
i−1• −→i0• c−→i1•

the path given by Lemma 2.5.3. We know that i−N ∈ S +
C (D). According to 2., we

have to possibilities: either i−N ∈ S +
C′(D) and then Lemma 2.5.3 implies that c ∈

KC′(D), or i−N ∈ S +
C (rC′(D)) and then Lemma 2.5.3 implies that c ∈ KS(rT (D)).

(c) We prove that KC′(D) ∩ C ⊂ KC(D). This is straightforward using the characteri-
zation of Lemma 2.5.1.

(d) We prove that KC(rC′(D)) ⊂ KC(D). We use the characterization of Lemma 2.5.1.
If a chord c ∈ C is not in KC(D)), then one of the conditions (K1), (K2), (K3) is
not satisfied.
If (K1) is not satisfied in D, this means that the path starting from c in C goes to
the root. Then no chord in this path is in KC(D), and a fortiori in KC′(D). Thus no
chord is this path is flipped in rC′(D) and condition (K1) is not satisfied in rC′(D).
If (K2) is not satisfied in D, this means that in the path

i0• c−→i1•−→ · · · −→
iM−1• −→iM•

starting at c in C, there is an increasing arrow ik−1 < ik. Then for l = 1, . . . , k − 1,
the chord

il−1• −→il• is not in KC(D), hence not in KC′(D), then it is not flipped
in rC′(D). The chord

ik−1• −→ik• is increasing so it cannot be flipped in rC′(D) according
to Lemma 2.5.3. Thus we see that condition (K2) is not satisfied in rC′(D).
If (K3) is not satisfied in D, it means that there exists a chord c′ =j

•−→ik• , c′ ∈ C,
with j > i0 for some k = 1, . . . ,M . For the same reason as above, none of the
chords

il−1• −→il• is flipped in rC′(D), for l = 1, . . . , k. Let us suppose that c′ is not
flipped in rC′(D). Then condition (K3) is still not satisfied in rC′(D). Now let us
suppose that c′ is flipped in rC′(D). Then we necessarily have j > ik, and then c′

becomes decreasing in rC′(D), hence condition (K2) is not satisfied in rC′(D).
In either case we have shown that c /∈ KC(rC′(D)).

Proof of Lemma 2.1.12. 1. The left-hand side is obtained by contracting the chords from C ′;
the right-hand side is obtained by contracting the chords from C, then contracting the
chords from C ′α for each α. The result is thus the same since by definition C ′ = Ct

⊔
αC
′
α.

2. The left-hand side is obtained by contracting the edges from S +
T (D), then the chords

from S; the right-hand side is obtained by contracting the chords from C, then the edges
from S +

Cα
(qαC(D)) for each α. The equality then follows from Lemma 2.5.4, 1.
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3. The left-hand side is obtained by contracting the edges from S +
C′(D), then the edges

from S +
C (rC′(D)); the right-hand side is obtained by contracting the edges from S +

C (D).
The equality then follows from Lemma 2.5.4, 2.

4. This follows from taking the cardinality in Lemma 2.5.4, 3.

2.6 Appendix: proof of Lemma 2.4.8

We leave it to the reader to check that it is enough to do the proof for three families of loops.

1. The trivial loops
(u0, . . . , ai, . . . , uk) (u0, . . . , bi, . . . , uk)

The statement is trivial since the expression

−sgn({ai}, J ′)sgn({bi}, J ′)

is symmetric in ai and bi.

2. The triangles

(u0, . . . , ai, . . . , uk) (u0, . . . , bi, . . . , uk)

(u0, . . . , ci, . . . , uk)

The statement follows from the following equality, valid for any linearly ordered set X and
any set {a, b, c} of pairwise disjoint elements of X:

sgn({a}, X \ {a, b}) sgn({b}, X \ {a, b})
sgn({b}, X \ {b, c}) sgn({c}, X \ {b, c})

sgn({c}, X \ {a, c}) sgn({a}, X \ {a, c}) = −1.

Indeed, we apply this equality to

X = (SC(0) \ {u0}) t . . . tSC(i) t . . . t (SC(k) \ {uk}).

3. The squares
(u0, . . . , ai, . . . , cj , . . . , uk) (u0, . . . , bi, . . . , cj , . . . , uk)

(u0, . . . , ai, . . . , dj , . . . , uk) (u0, . . . , bi, . . . , dj , . . . , uk)

The statement follows from the following equality, valid for any linearly ordered set X and
any set {a, b, c, d} of pairwise disjoint elements of X:

sgn({a}, X \ {a, b, c}) sgn({b}, X \ {a, b, c})
sgn({c}, X \ {b, c, d}) sgn({d}, X \ {b, c, d})
sgn({a}, X \ {a, b, d}) sgn({b}, X \ {a, b, d})
sgn({c}, X \ {a, c, d}) sgn({d}, X \ {a, c, d}) = 1.

Indeed, we apply this equality to

X = (SC(0) \ {u0}) t · · · tSC(i) t · · · tSC(j) t · · · t (SC(k) \ {uk}).
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2.7 Appendix: proof of Lemma 2.4.10

Let σC : {1, . . . , n} '→ {1, . . . , n} be the permutation defined by blocks via νC and ηC . Then we
have

sgn(C,C) sgn(νC) sgn(S +
C ,S

+
C ) sgn(ηC) = sgn(σC)

thus we only have to prove that
sgn(σC) = (−1)kC(D).

This is a straightforward consequence of the next Lemma and the fact that the signature of a
cyclic permutation of length (r + 1) is (−1)r.

Lemma 2.7.1. Let D be a dissection diagram and C ⊂ C .

1. KC(D) is a disjoint union of path graphs i0•−→i1•−→ · · · −→
ir−1• −→ir• with i0 > i1 > · · · >

ir−1 > ir and i0 ∈ S +
C .

2. With these notations, σC is the product of the cycle permutations (i0 i1 · · · ir−1 ir).

Example 2.7.2. In the situation of Example 2.5.2, we get σC = (6 4 3 2)(8 7).

Proof. 1. Let us consider KC(D) as a directed graph. If it contains a vertex attached to l > 3
chords, then there is one outcoming chord and l − 1 > 2 incoming chords. Hence after
flipping those chords we get a vertex with l−1 > 2 outcoming chords, which is impossible.
Hence KC(D) is a disjoint union of path graphs, and the same reasoning shows that in an
individual component of KC(D), all chords have the same direction. The statement then
follows from Lemma 2.5.3.

2. Let us denote by ε : C
'→ S the bijection (2.2).

(a) Let us first consider the bijection ηC : C '→ S +
C related to rC(D). If a chord c ∈ C

starting at the vertex i is not in KC(D) then it keeps the same direction in rC(D)
and we get ηC(c) = ε(c), which means η(i) = i. Now let us consider a chord c =
ik =

ik−1• −→ik• with the notations of 1., k = 1, . . . , r. Then this chord changes direc-
tion in rC(D) and becomes

ik−1• ←−ik• , hence ηC(c) is the edge starting at ik and we
get ηS(ik−1) = ik.

(b) Let us now consider the bijection νC : C '→ S +
C related to qC(D). Let i0•−→i1•−→

· · · −→
ir−1• −→ir• be a connected component of KC(D) as in 1.. According to Lemma 2.5.3,

the chord starting at ir is necessarily in C. In qC(D), all the points ik, k = 0, . . . , r,
are identified, and thus the edge starting at ir is the edge starting at i0, which means
that νC(ir) = i0. It is easy to check that for all other chords c ∈ C we get ν(c) = ε(c).
This concludes the proof of the Lemma.



Chapter 3

The Orlik-Solomon model for
hypersurface arrangements

In §3.1 we recall some classical facts about the Orlik-Solomon algebra and the Brieskorn-
Orlik-Solomon theorem in the framework of hyperplane arrangements, and introduce the Orlik-
Solomon algebra of a hypersurface arrangement. In §3.2, we introduce the complex of logarithmic
forms along a hyperplane arrangement and its weight filtration, and prove the local form (The-
orem 3.2.9) of the comparison theorem 1.9.2. Then we globalize our results to the framework
of hypersurface arrangements (Theorem 3.2.13). In §3.3, we use the formalism of mixed Hodge
complexes to give an alternative definition of the mixed Hodge structure on the cohomology
of the complemet of a hypersurface arrangement in a smooth projective variety. This allows
us to prove the main result of this chapter (Theorem 3.3.8) which proves the existence of the
Orlik-Solomon model. In §3.4, we study the functoriality of the Orlik-Solomon model with re-
spect to blow-ups, giving explicit formulas (Theorem 3.4.5). In §3.5, we apply our results to
configuration spaces of points on curves and prove (Theorem 3.5.2) the isomorphism between
the Orlik-Solomon model and the model proposed by Kriz and Totaro and generalized by Bloch.

3.1 The Orlik-Solomon algebra of a hypersurface arrangement

We first recall some classical facts about hyperplane arrangements. The interested reader will
find more details in the expository book [OT92] or the survey [Yuz01]. Then we introduce
hypersurface arrangements, define their Orlik-Solomon algebras and discuss their functoriality
properties.

3.1.1 The Orlik-Solomon algebra of a hyperplane arrangement

A hyperplane arrangement in Cn is a finite set L of hyperplanes of Cn, all containing the origin. 1

For a matter of notation, we will implicitly fix a linear ordering on the hyperplanes and write
L = {L1, . . . , Ll}. Nevertheless, the objects that we will define out of a hyperplane arrangement
will be independent of such an ordering.

We will use the same letter L to denote the union of the hyperplanes:

L = L1 ∪ · · · ∪ Ll.

For a subset I ⊂ {1, . . . , l}, the stratum of the arrangement L indexed by I is the vector
space LI =

⋂
i∈I Li with the convention L∅ = Cn. We write S•(L) for the set of strata of L,

graded by the codimension, so that S0(L) = {Cn} and S1(L) = {L1, . . . , Ll}. With the order

1. In many references, this would be called a central hyperplane arrangement.
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given by reverse inclusion, S•(L) is given the structure of a graded poset, called the poset of
the hyperplane arrangement L.

We set Λ•(L) = Λ•(e1, . . . , el), the exterior algebra over Q with a generator ei in degree 1
for each Li. Let δ : Λ•(L) → Λ•−1(L) be the unique derivation of Λ•(L) such that δ(ei) = 1
for i = 1, . . . , l.
For I = {i1 < · · · < ik} ⊂ {1, . . . , l} we set eI = ei1∧· · ·∧eik ∈ Λk(L) with the convention e∅ = 1.
The derivation δ is then given by the formula

δ(eI) =
k∑
s=1

(−1)s−1ei1 ∧ · · · ∧ êis ∧ · · · ∧ eik .

A subset I ⊂ {1, . . . , l} is said to be dependent (resp. independent) if codim(LI) < |I|
(resp. codim(LI) = |I|), which is equivalent to saying that the linear forms defining the Li’s,
for i ∈ I, are linearly dependent (resp. independent). Let J•(L) be the homogeneous ideal
of Λ•(L) generated by the elements δ(eI) for I ⊂ {1, . . . , l} dependent. The quotient

A•(L) = Λ•(L)/J•(L)

is a graded Q-algebra called the Orlik-Solomon algebra of the hyperplane arrangement L. It
only depends on the poset of L.

For a stratum S, let AS(L) to be the sub-vector space of A•(L) spanned by the monomials eI
for I such that LI = S. One easily sees that we have a direct sum decomposition

A•(L) =
⊕

S∈S•(L)
AS(L) (3.1)

and AS(L) only depends on the hyperplane arrangement consisting of the hyperplanes in L that
contain S, and more precisely on its poset.

The product in A•(L) splits with respect to the direct sum decomposition (3.1), with com-
ponents

AS(L)⊗AS′(L)→ AS∩S′(L) (3.2)

which are zero if codim(S ∩ S′) < codim(S) + codimS′.
The derivation δ induces a derivation δ : A•(L) → A•−1(L) which splits with respect to the
direct sum decomposition (3.1), with components

AS(L)→ AS′(L) (3.3)

for S ⊂ S′, codim(S′) = codim(S)− 1.

3.1.2 Deletion and restriction

Let L = {L1, . . . , Ll} be a hyperplane arrangement in Cn such that l > 1. In this chapter we will
only be concerned about deletion and restriction with respect to the last hyperplane Ll. The
deletion of L (with respect to Ll) is the arrangement L′ = {L1, . . . , Ll−1} in Cn. The restriction
of L (with respect to Ll) is the arrangement L′′ on Ll ∼= Cn−1 consisting of all the intersections
of Ll with the Li’s, i = 1, . . . , l − 1. If the hyperplanes Li are not in general position, it may
happen that the cardinality l′′ of L′′ is less than l − 1.

For all k, we have a short exact sequence of Q-vector spaces, called the deletion-restriction
short exact sequence (see [OT92, Theorem 3.65] or [Yuz01, Corollary 2.17]):

0→ Ak(L′)
i→ Ak(L) j→ Ak−1(L′′)→ 0. (3.4)
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This exact sequence splits with respect to the direct sum decomposition (3.1). For S a stratum
of L, there are three cases:

• S is not contained in Ll, then it is not a stratum of L′′ but is a stratum of L′, and we just
get an isomorphism

0→ AS(L′)→ AS(L)→ 0→ 0;

• S is contained in Ll but is not a stratum of L′, and we just get an isomorphism

0→ 0→ AS(L)→ AS(L′′)→ 0;

• S is contained in Ll and is a stratum of L′, and we get a short exact sequence

0→ AS(L′)→ AS(L)→ AS(L′′)→ 0.

3.1.3 The Brieskorn-Orlik-Solomon theorem

Let L = {L1, . . . , Ll} be a hyperplane arrangement in Cn. For i = 1, . . . , l we fix a linear form fi
on Cn such that Li = {fi = 0}. Such a form is unique up to a non-zero multiplicative constant.
We define holomorphic 1-forms on Cn \ L:

ωi = dfi
fi
·

For a subset I = {i1 < · · · < ik} ⊂ {1, . . . , l} we set ωI = ωi1 ∧ · · · ∧ ωik .
Let Ω•(Cn\L) be the algebra of global holomorphic forms on Cn\L andR•(L) ⊂ Ω•(Cn\L) be

the subalgebra over Q generated by 1 and the forms 1
2iπωi for i = 1, . . . , l. We define a morphism

of graded algebras u : Λ•(L)→ R•(L) by the formula

u(ei) = 1
2iπωi.

A simple computation shows that u passes to the quotient and defines a map of graded
algebras

u : A•(L)→ R•(L).

Each form 1
2iπωi is closed and its class is in the cohomology of Cn \ L with rational (and

even integer) coefficients, thus there is a well-defined map of graded algebras

v : R•(L)→ H•(Cn \ L).

Theorem 3.1.1 (Brieskorn-Orlik-Solomon theorem). The maps u and v are isomorphisms of
graded algebras:

A•(L)
u
'−→ R•(L)

v
'−→ H•(Cn \ L).

Remark 3.1.2. The fact that v is an isomorphism was conjectured by Arnol’d [Arn69] and proved
by Brieskorn [Bri73]. The fact that u is an isomorphism was proved by Orlik and Solomon [OS80].
A proof may be found in [OT92, Theorems 3.126 and 5.89].
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3.1.4 The Orlik-Solomon algebra of a hypersurface arrangement

We write ∆ = {|z| < 1} ⊂ C for the open unit disk and ∆n ⊂ Cn for the unit n-dimensional poly-
disk. LetX be a complex manifold. The following terminology is borrowed from P. Aluffi [Alu12].

Definition 3.1.3. A finite set L = {L1, . . . , Ll} of smooth hypersurfaces of X is a hypersurface
arrangement if around each point of X we may find a system of local coordinates in which
each Li is defined by a linear equation. In other words, X is covered by charts V ∼= ∆n such
that for all i, Li ∩ V is the intersection of ∆n with a linear hyperplane in Cn.

As for hyperplane arrangements, the objects that we will define out of a hypersurface ar-
rangement will be independent of the linear ordering on the hypersurfaces Li. We use the same
letter L to denote the union of the hypersurfaces:

L = L1 ∪ · · · ∪ Ll.

The notion of hypersurface arrangement generalizes that of (simple) normal crossing divisor:
a hypersurface arrangement is a normal crossing divisor if the local linear equations defining
the Li’s are everywhere linearly independent, i.e. if we can always choose local coordinates such
that the irreducible components Li are coordinate hyperplanes.

For a subset I ⊂ {1, . . . , l}, we still write LI =
⋂
i∈I Li, which is a disjoint union of complex

submanifolds of X. A stratum of L is a non-empty connected component of some LI ; it is a
complex submanifold of X. We write S•(L) for the set of strata of L, graded by the codimen-
sion. We give S•(L) the structure of a graded poset using reverse inclusion, and call it the poset
of the hypersurface arrangement L.

Let p be a point in Cn and V a neighbourhood of p. Then any chart V ∼= ∆n as in the above
definition defines a hyperplane arrangement denoted L(p) in Cn. It is an abuse of notation since
choosing another chart gives a different hyperplane arrangement, but it will not matter since we
will only be interested in the poset of L(p), which is well-defined. More intrinsically, L(p) may
be read off the tangent space of X at p. Since S is connected, the poset of the strata of L(p)

that contain S is independent of the point p ∈ S, and we may define

AS(L) = AS(L(p))

for any choice of point p ∈ S. Let us then define

A•(L) =
⊕

S∈S•(L)
AS(L).

We now give A•(L) the structure of a graded algebra. The product

AS(L)⊗AS′(L)→ AT (L) (3.5)

is non-zero only if T is a connected component of S ∩ S′ such that codim(T ) = codim(S) +
codim(S′), ans is then given by (3.2) by choosing any point p ∈ T .

The graded algebra A•(L) is called the Orlik-Solomon algebra of the hypersurface arrange-
ment L.

For S ⊂ S′ an inclusion of strata of L such that codim(S′) = codim(S)− 1, we define

AS(L)→ AS′(L) (3.6)

as in the local case (3.3) by choosing any point p ∈ S. One should note that in general the
map A•(L)→ A•−1(L) induced by (3.6) is not a derivation of the Orlik-Solomon algebra.
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Remark 3.1.4. Let us assume that

for all I, LI is connected. (3.7)

The Orlik-Solomon algebra of L = {L1, . . . , Ll} thus has a presentation similar to that of a
hyperplane arrangement. A subset I ⊂ {1, . . . , l} is said to be null if LI = ∅ and dependent
(resp. independent) if LI 6= ∅ and codim(LI) < |I| (resp. codim(LI) = |I|). Then A•(L) is the
quotient of Λ•(e1, . . . , el) by the homogeneous ideal generated by the monomials eI for I null
and δ(eI) for I dependent. In the case of a general hyperplane arrangement (the hyperplanes
do not necessarily contain the origin), we recover the classical definition [OT92, Defintion 3.45].
Without the assumption (3.7), the Orlik-Solomon algebra may not even be generated in degree 1.

3.1.5 Functoriality of the Orlik-Solomon algebra

Let L = {L1, . . . , Ll} and L′ = {L′1, . . . , L′l′} be hyperplane arrangements respectively in Cn
and Cn′ . Let ϕ : ∆n → ∆n′ be a holomorphic map such that ϕ−1(L′) ⊂ L, i.e. ϕ(∆n \ L) ⊂
∆n′ \ L′.
Then ϕ induces a map ϕ∗ : H•(∆n′ \L′)→ H•(∆n \L) in cohomology. The inclusions ∆n \L ⊂
Cn \ L and ∆n′ \ L′ ⊂ Cn′ \ L′ are retractions and hence induce isomorphisms in cohomology.
Thus the Brieskorn-Orlik-Solomon theorem 3.1.1 implies that there is a unique map of graded
algebras

A•(ϕ) : A•(L′)→ A•(L)

that fits into the following commutative square.

A•(L′)
A•(ϕ) //

∼=
��

A•(L)
∼=
��

H•(∆n′ \ L′) ϕ∗ // H•(∆n \ L)

For j = 1, . . . , l′, there is an equality

f ′j ◦ ϕ = uj
∏
i

f
mij
i

between germs at 0 of holomorphic functions on ∆n, with uj a holomorphic function such
that uj(0) 6= 0 and mij > 0. On then sees that A•(ϕ) : A•(L′) → A•(L) is the unique map of
graded algebras such that for j = 1, . . . , l′,

A1(ϕ)(e′j) =
∑
i

mijei.

We may globalize this construction; if L (resp. L′) is a hypersurface arrangement in a complex
manifold X (resp. X ′), and ϕ : X → X ′ a holomorphic map such that ϕ−1(L′) ⊂ L, then we
define

AS,S′(ϕ) : AS′(L′)→ AS(L) (3.8)

for strata S ∈ S•(L) and S′ ∈ S•(L′) by looking at ϕ in local charts and applying the above
definition. It is clear that this defines a map of graded algebras A•(ϕ) : A•(L) → A•(L′) that
is functorial in the sense that we have A•(ψ ◦ ϕ) = A•(ϕ) ◦ A•(ψ) whenever this is meaningful.
If ϕ : X → X ×X is the diagonal of X, then A•(ϕ) is the product morphism A•(L)⊗A•(L)→
A•(L).
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3.2 Logarithmic forms and the weight filtration

We define and study the forms with logarithmic poles along a hyperplane arrangement. In
§ 3.2.1, 3.2.2, 3.2.3, 3.2.4, we focus on hyperplane arrangements (the local case). The main
results are Theorem 3.2.6 which computes its graded pieces, and Theorem 3.2.9 which states
that the logarithmic complex computes the cohomology of the complement of the hyperplane
arrangement. Then in § 3.2.5 we extend our constructions and results to the case of hypersurface
arrangements (the global case).

If Y is a complex manifold, we write Ωp
Y for the sheaf of holomorphic p-forms on Y and Ωp(Y ) =

Γ(Y,Ωp
Y ) for the vector space of global holomorphic p-forms on Y .

3.2.1 The logarithmic complex

Let L = {L1, . . . , Ll} be a hyperplane arrangement in Cn. We recall that we defined some
differential forms ωi = dfi

fi
for i = 1, . . . , l, and ωI = ωi1 ∧ · · · ∧ωik for I = {i1 < · · · < ik}, which

is zero if I is dependent.

Definition 3.2.1. A meromorphic form on Cn is said to have logarithmic poles along L if it is
a linear combination over C of forms of the type η ∧ ωI for some I ⊂ {1, . . . , l}, where η is a
holomorphic form on Cn.

We define Ωp〈L〉 to be the C-vector space of meromorphic p-forms on Cn with logarithmic
poles along L. These forms are stable under the exterior differential, hence we get a com-
plex Ω•〈L〉 that embeds into the complex of holomorphic forms on Cn \ L:

Ω•〈L〉 ↪→ Ω•(Cn \ L)

which we call the complex of logarithmic forms of L.

Remark 3.2.2. This definition is not standard in the theory of hyperplane arrangements. In [OT92],
following Saito [Sai80], one defines a complex Ω•(logL) in the following way. Let Q = f1 · · · fl be
a defining polynomial for the arrangement. Then Ωp(logL) is the set of meromorphic p-forms ω
on Cn such that Qω and Qdω are holomorphic.

We have an inclusion Ω•〈L〉 ⊂ Ω•(logL) which is an equality if and only if L = {L1, . . . , Ll}
is independent. For instance, in C2 with coordinates x and y, let us look at L1 = {x = 0}, L2 =
{y = 0}, L3 = {x = y}. Then Q = xy(x − y) and the closed form ω = dx∧dy

xy(x−y) is in Ω2(logL)
but not in Ω2〈L〉.

3.2.2 Residues

We briefly recall the notion of residue of a form with logarithmic poles along a hyperplane ar-
rangement. In the case of dimension n = 1, this is the usual Cauchy residue in complex analysis;
the general notion of residue is due to Poincaré and Leray [Ler59]. For residues in the setting
of hyperplane arrangements, see [OT92, 3.124].

We fix a hyperplane arrangement L = {L1, . . . , Ll} in Cn. Let L′ (resp. L′′) the deletion
(resp. the restriction) of L with respect to Ll = {fl = 0}. Let ω be a p-form on Cn with
logarithmic poles along L. Then there exists a (p − 1)-form α and a p-form β, both of which
have logarithmic poles along L′, such that

ω = α ∧ ωl + β.
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The form
ResLl(ω) = 2iπ α|Ll

is independent of the choices. It is a (p− 1)-form on Ll with logarithmic poles along L′′, called
the residue of ω along Ll. We then have a morphism of complexes

ResLl : Ω•〈L〉 → Ω•−1〈L′′〉

where L′′ is the restriction of L with respect to Ll. We then have a sequence of morphisms of
complexes

(R) : 0→ Ω•〈L′〉 i→ Ω•〈L〉
ResLl−→ Ω•−1〈L′′〉 → 0

where i is the natural inclusion. It is obvious from the definitions that ResLl ◦ i = 0, that i is
injective and ResLl is surjective. We will prove in the next paragraph that ker(ResLl) ⊂ Im(i),
so that the above sequence is a short exact sequence.

Remark 3.2.3. When taking iterated residues, one should note that they “do not commute”
in general, even when this has a clear meaning. For example, if L1 = {x = 0}, L2 = {y =
0}, L3 = {x = y} in C2 and ω = dx

x ∧
dy
y ∈ Ω2〈L〉, we have ResL2∩L3ResL2(ω) = (2iπ)2

and ResL3∩L2ResL3(ω) = 0.

3.2.3 The weight filtration

We fix a hyperplane arrangement L = {L1, . . . , Ll} in Cn. The following terminology is borrowed
from P. Deligne [Del71, 3.1.5].

Definition 3.2.4. For k > 0, we define WkΩ•〈L〉 ⊂ Ω•〈L〉 to be the subcomplex spanned by
the forms that are of the type η∧ωI with |I| 6 k, where η is a holomorphic form on Cn. These
subcomplexes define an ascending filtration

W0Ω•〈L〉 ⊂W1Ω•〈L〉 ⊂ · · ·

on Ω•〈L〉 called the weight filtration.

We have W0Ω•〈L〉 = Ω•(Cn) and WpΩp〈L〉 = Ωp〈L〉.

By definition, the residue morphisms induce morphisms ResLl : WkΩ•〈L〉 →Wk−1Ω•−1〈L′′〉
which are easily seen to be surjective. Thus the sequence (R) induces sequences

(WkR) : 0→WkΩ•〈L′〉
i→WkΩ•〈L〉

ResLl−→ Wk−1Ω•−1〈L′′〉 → 0 (3.9)

and
(grWk R) : 0→ grWk Ω•〈L′〉 i→ grWk Ω•〈L〉

ResLl−→ grWk−1Ω•−1〈L′′〉 → 0. (3.10)

We will prove that they are short exact sequences. For now, the only easy facts are that (WkR)
is exact on the left and on the right, and that (grWk R) is exact on the right.

The following lemma is easily proved by choosing appropriate coordinates on Cn.

Lemma 3.2.5. Let I ⊂ {1, . . . , l}, |I| = k, be an independent subset and η a holomorphic form
on Cn. If η|LI = 0 then η ∧ ωI ∈Wk−1Ω•〈L〉.
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For all k, we define
G•k(L) =

⊕
S∈Sk(L)

Ω•−k(S)⊗AS(L).

This is a complex of C-vector spaces. We define a morphism of complexes

Φ : G•k(L)→ grWk Ω•〈L〉

in the following way. For I independent of cardinality k, for η ∈ Ω•−k(LI), we set

Φ(η ⊗ eI) = (2iπ)−kη̃ ∧ ωI

where η̃ ∈ Ω•−k(Cn) is any form such that η̃|Ll = η. Lemma 3.2.5 implies that this does not
depend on the choice of η̃ and one immediately sees that it passes to the quotient that defines
the groups AS(L). It is then easy to check that Φ is a morphism of complexes.

Theorem 3.2.6. The morphism Φ : G•k(L)→ grWk Ω•〈L〉 is an isomorphism of complexes.

Proof. The surjectivity is trivial; we prove the injectivity by induction on the cardinal l of the
arrangement.
For l = 0, the only non-trivial case is k = 0 and Φ is just the identity of Ω•(Cn).
Suppose that the statement is proved for arrangements of cardinality 6 l − 1 and take an
arrangement L of cardinality l. Tensoring the deletion-restriction short exact sequence from
§3.1.2 with the complexes Ω•−k(S) we get a short exact sequence of complexes of C-vector
spaces

0→ G•k(L′)→ G•k(L)→ G•−1
k−1(L′′)→ 0.

We then have a diagram

0 // G•k(L′) //

Φ
��

G•k(L) //

Φ
��

G•−1
k−1(L′′) //

Φ
��

0

0 // grWk Ω•〈L′〉 // grWk Ω•〈L〉 // grWk−1Ω•−1〈L′′〉 // 0

where the bottom row is the sequence (3.10). This diagram is easily seen to be commutative.
By the inductive hypothesis, the vertical arrows on the right and on the left are isomorphisms.
Thus a diagram chase shows that the bottom row is exact in the middle.
Now the complexes (3.9) and (3.10) give rise to a short exact sequence of complexes

0→ (Wk−1R)→ (WkR)→ (grWk R)→ 0.

The long exact sequence in cohomology tells us that if (Wk−1R) is exact in the middle then it
is also the case for (WkR). Since (W0R) is just the sequence

0→ Ω•(Cn) id→ Ω•(Cn)→ 0→ 0,

we show by induction on k shows that (WkR) is exact in the middle, hence a short exact
sequence, for all k. Again, the long exact sequence in cohomology shows that (grWk R) is also a
short exact sequence for all k.
Thus, in the above commutative diagram, both rows are exact and a diagram chase (the 5-
lemma) shows that the middle Φ is injective. This completes the induction and the proof of the
theorem.
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Remark 3.2.7. The inverse morphism Ψ : grWk Ω•〈L〉 → G•k(L) is given, for η holomorphic and I
independent of cardinality k, by

Ψ(η ∧ ωI) = (2iπ)k η|LI ∈ Ω•−k(LI)

For k = 1 this is exactly the definition of a residue, but for k > 1 one should note that this has
nothing to do with an “iterated residue” (see Remark 3.2.3).

Since (R) = (WkR) for k large enough, the proof of Theorem 3.2.6 implies the following.

Theorem 3.2.8. The sequences (R), (WkR) and (grWk R) are short exact sequences of com-
plexes.

3.2.4 The comparison theorem

Theorem 3.2.9. The inclusion Ω•〈L〉 ↪→ Ω•(Cn \ L) is a quasi-isomorphism.

Proof. Since Cn \ L is a smooth affine algebraic variety over C, the cohomology of Ω•(Cn \ L)
is the cohomology of Cn \ L with complex coefficients. Thus we have to prove that the natural
map

Hp(Ω•〈L〉)→ Hp(Cn \ L,C)

is an isomorphism for all p. We proceed by induction on the cardinality l of the arrangement.
For l = 0 the statement is trivial. To pass from l− 1 to l we consider the commutative diagram

· · · // Hp(Ω•〈L′〉) //

��

Hp(Ω•〈L〉) //

��

Hp−1(Ω•〈L′′〉) //

��

· · ·

0 // Hp(Cn \ L′) // Hp(Cn \ L) // Hp−1(Ll \ L′′) // 0

The first row is the long exact sequence in cohomology associated to (R), the second row is
induced by the deletion-restriction exact sequence via the Brieskorn-Orlik-Solomon theorem.
Both rows are exact. By induction the vertical arrows on the left and on the right are iso-
morphisms. A classical diagram chase implies that the vertical arrow in the middle is also an
isomorphism.

Remark 3.2.10. We have the inclusions of complexes

Ω•〈L〉 i1
↪→ Ω•(logL) i2

↪→ Ω•(Cn \ L)

where Ω•(logL) has been defined in Remark 3.2.2.
A conjecture by H. Terao [Ter78] states that i2 is a quasi-isomorphism. According to Theo-
rem 3.2.9, the composite i2 ◦ i1 is a quasi-isomorphism, hence Terao’s conjecture is equivalent
to the fact that i1 is a quasi-isomorphism. This is equivalent to the acyclicity of the quotient
complex Ω•(logL)/Ω•〈L〉.

3.2.5 Logarithmic forms along hypersurface arrangements

In this paragraph we globalize the definitions of the logarithmic complex and the weight filtra-
tion. As in the local case, we determine the weight-graded parts of the logarithmic complex and
prove a comparison theorem. This generalizes the case of normal crossing divisors, studied by
Deligne in [Del71, 3.1].
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Let X be a complex manifold and L a hypersurface arrangement in X. A meromorphic form
on X is said to have logarithmic poles along L if it is locally a linear combination over C of forms
of the type

η ∧ dfi1
fi1
∧ · · · ∧ dfir

fir
(3.11)

with η holomorphic and the fi’s local defining (linear) equations for the Li’s. The meromorphic
forms on X with logarithmic poles along L form a complex of sheaves of C-vector spaces on X,
that we denote by Ω•〈X,L〉. As in the local setting (Remark 3.2.2), we should point out that Ω•〈X,D〉
differs from Saito’s complex Ω•X(logL) if L is not a normal crossing divisor.

We globalize the weight filtration on Ω•〈X,L〉 which gives subcomplexes of sheavesWkΩ•〈X,L〉 ⊂
Ω•〈X,L〉.

The complex of sheaves Ω•〈X,L〉 is functorial in (X,L) in the following sense. If L′ is another
hypersurface arrangement in a complex manifold X ′, and if we have a holomorphic map ϕ :
X → X ′ such that ϕ−1(L′) ⊂ L, then there is a pull-back map

ϕ∗ : ϕ−1Ω•〈X′,L′〉 → Ω•〈X,L〉

that is compatible with composition in the usual sense. This follows from the discussion in
§3.1.5. The weight filtration is also functorial.

For a stratum S we denote by iS : S ↪→ X the closed immersion of S inside X. We globalize
the definition of G•k(L) from §3.2.3 and define a complex of sheaves of C-vector spaces on X:

G•k(X,L) =
⊕

S∈Sk(L)
(iS)∗Ω•−kS ⊗AS(L).

As in the local case, we may define a morphism of complexes of sheaves

Φ : G•k(X,L)→ grWk Ω•〈X,L〉

by putting
Φ(η ⊗ eI) = (2iπ)−k η̃ ∧ dfi1

fi1
∧ . . . ∧ dfik

fik

for I = {i1 < . . . < ik}, η ∈ Ω•−kS a local section, η̃ ∈ Ω•−kX a local extension of η, and
the fi’s local equations for the Li’s. This definition is independent from the choice of the local
equations fi. The following theorem is a global version of Theorem 3.2.6.

Theorem 3.2.11. The morphism Φ : G•k(X,L)→ grWk Ω•〈X,L〉 is an isomorphism.

Proof. It is enough to prove that for every chart V ∼= ∆n on which L is a hyperplane arrangement,
the morphism

Γ(V,G•k(X,L))→ Γ(V, grWk Ω•〈X,L〉)

is an isomorphism. This is exactly Theorem 3.2.6 with the ambient space Cn replaced by the
polydisk ∆n. One can check that the proof of Theorem 3.2.6 can be copied word for word in
that local setting.

Remark 3.2.12. The inverse morphism Ψ : grWk Ω•〈X,L〉 → G
•
k(X,L) is given locally by the same

formula as in Remark 3.2.7. As already noted, this should not be mistaken with an iterated
residue, unless L is a normal crossing divisor (in this case, Deligne calls Ψ the Poincaré residue,
see [Del71, 3.1.5.2]).
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Let j : X \ L ↪→ X be the open immersion of the complement of L inside X. The following
theorem is a global version of Theorem 3.2.9.

Theorem 3.2.13. The inclusion Ω•〈X,L〉 ↪→ j∗Ω•X\L is a quasi-isomorphism.

Proof. It is enough to prove that for every chart V ∼= ∆n on which L is a hyperplane arrangement,
the morphism

Γ(V,Ω•〈X,L〉)→ Γ(V, j∗Ω•X\L) = Ω•(V \ L)

is a quasi-isomorphism. This is exactly Theorem 3.2.9 with the ambient space Cn replaced by
the polydisk ∆n. One can check that the proof of Theorem 3.2.9 can be copied word for word
in the local setting. The argument that the strata LI are contractible has to be replaced by the
fact that the local strata ∆n ∩LI are contractible (because they are polydisks). The Brieskorn-
Orlik-Solomon theorem remains true in the local setting because the inclusion ∆n \ L ⊂ Cn \ L
is a retraction and hence induces an isomorphism in cohomology.

Remark 3.2.14. It has been pointed out to us by A. Dimca that the sheaves Ω1
〈X,L〉 have been

previously defined in [CHKS06] (where they are denoted ΩX(logL)) and [Dol07] (where they
are denoted Ω̃X(logL)).

3.3 A functorial mixed Hodge structure and the Orlik-Solomon
model

If X is a smooth projective variety and L is a hypersurface arrangement in X, we put a functorial
mixed Hodge structure on the cohomology of the complement X \L. Our construction mimicks
Deligne’s [Del71] in the case of normal crossing divisors.

3.3.1 Mixed Hodge complexes

We refer to [Del74, 7.1, 8.1] for the definitions of mixed Hodge complexes. If K is a field, the
filtered (resp. bifiltered) derived category of (bounded from above) complexes of K-vector spaces
on a complex manifold Y is denoted by D+F(Y,K) (resp. D+F2(Y,K)). A cohomological mixed
Hodge complex on Y is a triple

K = ((KQ,W ), (KC,W, F ), α)

with (KQ,W ) ∈ D+F(Y,Q), (KC,W, F ) ∈ D+F2(Y,C) and α : (KQ,W ) ⊗ C ∼= (KC,W ) an
isomorphism in D+F(Y,C). These data must satisfy some compatibility conditions.

The following theorem [Del74, 8.1.9] is the fundamental theorem of mixed Hodge complexes.
Our convention for spectral sequences uses decreasing filtrations. One passes from an increasing
filtration {Wp}p∈Z to a decreasing filtration {W p}p∈Z by putting W p = W−p.

Theorem 3.3.1. Let Y be a complex manifold and K = ((KQ,W ), (KC,W, F ), α) a cohomolog-
ical mixed Hodge complex on Y .

1. For all n, the filtrationW [−n] and the filtration F define a mixed Hodge structure on Hn(KQ).

2. Let wE be the cohomological spectral sequence defined by (KQ,W ). Then for all (p, q), the
filtration F induces on wE

−p,q
1 = H−p+q(grWp KQ) a Hodge structure of weight q and the

differentials d−p,q1 are morphisms of Hodge structures.

3. The spectral sequence wE degenerates at E2: wE
−p,q
2 = wE

−p,q
∞ = grWp Hn(KQ) = grW [−n]

q Hn(KQ)
for n = −p+ q.
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3.3.2 A functorial mixed Hodge structure

Let X be a smooth projective variety over C and L a hypersurface arrangement in X. We use the
previous constructions to put a functorial mixed Hodge structure on the cohomology H•(X \L)
of the complement, using the formalism of mixed Hodge complexes. This generalizes the case of
normal crossing divisors, studied by Deligne in [Del71, 3.2], and summarized in terms of mixed
Hodge complexes in [Del74, 8.1.8]. We recall the notation j : X \ L ↪→ X.

We define a triple

K(X,L) = ((KQ(X,L),W ), (KC(X,L),W, F ), α)

in the following way:

1. KQ(X,L) = Rj∗QX\L with the filtration W = τ , the canonical filtration [Del71, 1.4.6].

2. KC(X,L) = Ω•〈X,L〉 with the weight filtration W defined in §3.2.5, and the Hodge filtra-
tion F defined by

F pΩ•〈X,L〉 = Ω>p〈X,L〉.

3. We have isomorphisms in D+(X,C):

Rj∗QX\L ⊗ C ∼= Rj∗CX\L ∼= j∗Ω•X\L ∼= Ω•〈X,L〉

the last one being the quasi-isomorphism of the comparison theorem 3.2.13.
Hence we have an isomorphism (Rj∗QX\L⊗C, τ) ∼= (Ω•〈X,L〉, τ) in D+F(X,C). Finally the
identity gives a filtered quasi-isomorphism (Ω•〈X,L〉, τ) ∼= (Ω•〈X,L〉,W ), as follows from the
same proof as in [Del71, 3.1.8], in view of the comparison theorem 3.2.13. This gives the
isomorphism

α : (Rj∗QX\L, τ)⊗ C ∼= (Ω•〈X,L〉,W )

in D+F(X,C).

Theorem 3.3.2. The triple K(X,L) is a cohomological mixed Hodge complex on X, which is
functorial with respect to the pair (X,L). It thus defines a functorial mixed Hodge structure
on Hn(Rj∗QX\L) ∼= Hn(X \ L) for all n.

Here, functoriality has to be understood in the sense of §3.1.5.

Proof. Theorem 3.2.6 gives an isomorphism

grWk Ω•〈X,L〉 ∼=
⊕

S∈Sk(L)
(iS)∗Ω•−kS ⊗AS(L).

A local computation as in [PS08, Lemma 4.9], shows that this isomorphism is defined over Q if
we take care of the Tate twists. In other words we have a commutative diagram:

grWk Ω•〈X,L〉
∼= //⊕

S∈Sk(L)(iS)∗Ω•S [−k]⊗AS(L)

grτkRj∗CU
∼= //

∼=
OO

⊕
S∈Sk(L)(iS)∗CS [−k]⊗AS(L)

∼=

OO

grτkRj∗QU

∼= //

OO

⊕
S∈Sk(L)(iS)∗QS [−k](−k)⊗AS(L)

OO
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To complete the proof it is enough to notice that the top row of this diagram is compatible with
the Hodge filtrations. Hence we get

grWk K(X,L) =
⊕

S∈Sk(L)
(iS)∗K(S)[−k](−k)⊗AS(L)

which is a cohomological Hodge complex of weight k.
The functoriality statement follows from the functoriality of the sheaves of logarithmic forms.

The following theorem shows that the Hodge structures that we have just defined are indeed
the functorial Hodge structures defined by Deligne.

Theorem 3.3.3. Let U be a smooth quasi-projective variety over C.

1. There exists a smooth projective variety X and an open immersion U ↪→ X such that the
complement L = X \ U is a hypersurface arrangement in X.

2. Given two such compactifications (X1, L1) and (X2, L2), the mixed Hodge structures on H•(U)
defined via (X1, L1) and (X2, L2) are the same.

3. The mixed Hodge structure on H•(U) defined in Theorem 3.3.2 is the same as the mixed
Hodge structure defined by Deligne in [Del71].

Proof. 1. This follows from Nagata’s compactification theorem and Hironaka’s resolution of
singularities. In fact, we can assume that L is a normal crossing divisor.

2. Using resolution of singularities, we can always embed U in a smooth projective vari-
ety X such that X \ U = L is a simple normal crossing divisor (and hence a hypersurface
arrangement), and such that there exists morphisms

(X1, X1 \ L1)← (X,X \ L)→ (X2, X2 \ L2)

that are the identity on U . Hence by functoriality the two mixed Hodge structures are
isomorphic to the mixed Hodge structure defined via (X,L).

3. The claim follows from (2) and the fact that for a given U , one can always choose (X,L)
such that L is a normal crossing divisor (using resolution of singularities).

3.3.3 The Orlik-Solomon spectral sequence

Let X be a smooth projective variety and L a hypersurface arrangement in X. In the previ-
ous paragraph we defined a cohomological mixed Hodge complex on X that defines a mixed
Hodge structure on the cohomology of X \ L. The general formalism of mixed Hodge com-
plexes (Theorem 3.3.1) tells us that the Orlik-Solomon spectral sequence wE

p,q
r associated to

the weight filtration degenerates at E2. In this section we make the E1 term explicit. We will
write wE

p,q
r = wE

p,q
r (X,L) when confusion might occur.

By definition we have wE
−p,q
1 = H−p+q(grWp KQ(X,L)). From the proof of Theorem 3.3.2 we

get
wE
−p,q
1
∼=

⊕
S∈Sp(L)

H−2p+q(S)(−p)⊗AS(L).

We first study the functoriality of the Orlik-Solomon spectral sequence.
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Proposition 3.3.4. Let L (resp. L′) be a hypersurface arrangement in a smooth projective
variety X (resp. X ′), and ϕ : X → X ′ a holomorphic map such that ϕ−1(L′) ⊂ L. Let S
and S′ be strata of codimension p respectively of L and L′ such that ϕ(S) ⊂ S′ and let us denote
by ϕS,S′ : S → S′ the restriction of ϕ. Then the component of the morphism

wE
−p,q
1 (ϕ) : wE

−p,q
1 (X ′, L′)→ wE

−p,q
1 (X,L)

indexed by strata S and S′ is obtained by tensoring the morphism (3.8)

AS,S′(ϕ) : AS′(L′)→ AS(L)

with the pull-back morphism

ϕ∗S,S′ : H−2p+q(S′)→ H−2p+q(S).

The other components of wE
−p,q
1 (ϕ) are zero.

Proof. It is enough to do the proof over C and work with the complexes Ω•〈X,L〉. There is a
pull-back morphism

ϕ−1Ω•〈X′,L′〉 → Ω•〈X,L〉
that is compatible with the weight filtrations. Via the isomorphisms of Theorem 3.2.11, one
sees by local computation that this pull-back is as described in the Proposition at the level of
holomorphic forms.

When applied to the diagonal morphism X → X × X, one gets an algebra structure on
the E1 term of the Orlik-Solomon spectral sequence, as follows.

Proposition 3.3.5. The product

wE
−p,q
1 ⊗ wE

−p′,q′
1 → wE

−(p+p′),q+q′
1 (3.12)

is obtained by tensoring the product morphisms (3.5)

AS(L)⊗AS′(L)→ AT (L)

with the morphisms

H−2p+q(S)⊗H−2p′+q′(S′)→ H−2p+q(T )⊗H−2p′+q′(T ) ∪→ H−2(p+p′)+(q+q′)(T )

multiplied by the sign (−1)pq′. The above morphism is the composition of the restriction mor-
phisms for the inclusion of T inside S and S′, followed by the cup-product on T .

Note the sign (−1)pq′ , which is a Koszul sign associated to the interchanging of the termsAS(L)
and H−2p′+q′(S′).

We now turn to the description of the differential of the E1 term of the Orlik-Solomon
spectral sequence.

Proposition 3.3.6. Let S ⊂ S′ be an inclusion of strata of L with codim(S) = p and codim(S′) =
p− 1. Then the component of the differential

d1 : wE
−p,q
1 → wE

−p+1,q
1

indexed by S and S′ is obtained by tensoring the natural morphism (3.6)

AS(L)→ AS′(L)

with the Gysin morphism

H−2p+q(S)(−p)→ H−2p+q+2(S′)(−p+ 1)

multiplied by the sign (−1)q−1. The other components of d1 are zero.
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Proof. First step: If L = D = {D1, . . . , Dl} is a normal crossing divisor, this is Proposition 8.34
in [Voi02] (see also [PS08, Proposition 4.7]). Indeed in this case we have for every subset I ⊂
{1, . . . , l}, ADI (D) = Q eI a one-dimensional vector space.
Second step: We deduce the general case from the functoriality of the Orlik-Solomon spectral
sequenceand the fact that A•(L) is spanned by monomials eI with I independent. Let eI be
such a monomial and let us write L(I) =

⋃
i∈I Li, which is a normal crossing divisor in X. From

the functoriality of the spectral sequence, there is a map of spectral sequences

wE
−p,q
1 (X,L(I))→ wE

−p,q
1 (X,L)

which is easily seen to be injective (this follows from the injectivity in the deletion-restriction
short exact sequence). Thus the differential of an element in H−2p+q(S) ⊗ QeI can be read
off wE

p,q
1 (X,L(I)). We are then reduced to the first step.

Remark 3.3.7. If X is any complex manifold, then we can also consider the Orlik-Solomon
spectral sequence converging to the cohomology of X \ L, and the above discussion for the E1
term remains valid. The only thing that we gain when assuming that X is a projective variety
is the degeneracy of this spectral sequence at the E2 term, by Theorem 3.3.1.

3.3.4 The Orlik-Solomon model and the main theorem

We restate the results of the previous paragraph. Let X be a smooth projective variety and L
a hypersurface arrangement in X. Let us define

Mn
q (X,L) =

⊕
S∈Sq−n(L)

H2n−q(S)(n− q)⊗AS(L)

viewed as a Hodge structure of weight q.

1. We have a product
Mn
q (X,L)⊗Mn′

q′ (X,L)→Mn+n′
q+q′ (X,L). (3.13)

obtained by tensoring the product morphisms (3.5)

AS(L)⊗AS′(L)→ AT (L)

with the morphisms

H2n−q(S)⊗H2n′−q′(S′)→ H2n−q(T )⊗H2n′−q′(T ) ∪→ H2(n+n′)−(q+q′)(T )

multiplied by the sign (−1)(q−n)q′ . The above morphism is the composition of the re-
striction morphisms for the inclusion of T inside S and S′, followed by the cup-product
on T .

2. We have a differential
d : Mn

q (X,L)→Mn+1
q (X,L). (3.14)

Let S ⊂ S′ be an inclusion of strata of L with codim(S) = q−n and codim(S′) = q−(n+1).
Then the component of the differential (3.14) indexed by S and S′ is obtained by tensoring
the natural morphism (3.6)

AS(L)→ AS′(L)
with the Gysin morphism

H2n−q(S)(n− q)→ H2n−q+2(S′)(n− q + 1)

multiplied by the sign (−1)q. The other components of the differential (3.14) are zero.
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3. Let X ′ be another smooth projectiver variety, L′ be a hypersurface arrangement in X ′

and ϕ : X → X ′ a holomorphic map such that ϕ−1(L′) ⊂ L. Then we define a map

M•(ϕ) : M•(X ′, L′)→M•(X,L). (3.15)

Let S and S′ be strata of codimension q−n respectively of L and L′ such that ϕ(S) ⊂ S′,
and let ϕS,S′ : S → S′ be the restriction of ϕ. Then the component of Mn

q (ϕ) indexed
by S and S′ is obtained by tensoring the morphism (3.8)

AS,S′(ϕ) : AS′(L′)→ AS(L)

with the pull-back morphism

ϕ∗S,S′ : H2n−q(S′)→ H2n−q(S).

The other components of M•(ϕ) are zero.

In the next theorem, a split mixed Hodge structure is a mixed Hodge structure that is a
direct sum of pure Hodge structures.

Recall that a graded algebra B = ⊕n>0Bn is said to be graded-commutative if for homoge-
neous elements x and x′ in B we have xx′ = (−1)|x||x′|x′x.

Theorem 3.3.8. Let X be a smooth projective variety over C and L a hypersurface arrangement
in X.

1. The direct sum M•(X,L) =
⊕
qM

•
q (X,L) is a graded-commutative differential graded al-

gebra in the category of split mixed Hodge structures. It is functorial with respect to (X,L),
using (3.15).

2. We have isomorphisms of algebras in the category of split mixed Hodge structures:

grWH•(X \ L) ∼= H•(M•(X,L)).

They are functorial with respect to (X,L).

We call M•(X,L) the Orlik-Solomon model of the pair (X,L).

Proof of Theorem 3.3.8. 1. Note that we have multiplied the differential by −1 for a matter
of convenience; this gives an isomorphic differential graded algebra. The assertion is a
consequence of the previous paragraph (Propositions 3.3.5, 3.3.6 and 3.3.4).

2. The isomorphism is simply, after the change of variables n = −p + q, the fact that the
spectral sequence wE

p,q
r degenerates at E2 and converges to the cohomology of X \ L:

Hp(wE
−•,q
1 ) ∼= grWq H−p+q(X \ L).

Remark 3.3.9. Under the assumption (3.7), we may give a presentation of the Orlik-Solomon
model that is more suitable in certain situations. For S a stratum of L and I ⊂ {1, . . . , l} an
independent subset such that LI = S, we have a monomial eI ∈ AS(L). If we identifyH2n−q(S)⊗
QeI = H2n−q(LI), then we see that Mn

q (X,L) is the quotient of⊕
|I|=q−n
I indep.

H2n−q(LI)(n− q)
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by the sub-vector space spanned by the images of the morphisms

H2n−q(LI′)→
⊕
i∈I′

I′\{i} indep.

H2n−q(LI′\{i})

for I ′ dependent. The above morphism the alternate sum of identity morphisms (if I ′ is depen-
dent and I ′ \ {i} is independent, then LI′\{i} = LI′ for dimension reasons).

3.4 Wonderful compactifications and the Orlik-Solomon model

3.4.1 Hypersurface arrangements and wonderful compactifications

Definition 3.4.1. Let L = {L1, . . . , Ll} be a hyperplane arrangement in Cn, Z a stratum
of L. We say that Z is a good stratum if there exists coordinates (z1, . . . , zn) on Cn such
that Z = {z1 = . . . = zr = 0} for some r, and for each i = 1, . . . , l, Li is either of the
type {a1z1 + . . .+ arzr = 0} or of the type {ar+1zr+1 + . . .+ anzn = 0}.

Example 3.4.2. In C3, let L1 = {x = 0}, L2 = {y = 0}, L3 = {z = 0}, L4 = {x = y}. Then the
stratum {x = y = 0} is good, but the stratum {x = z = 0} is not.

Let L = {L1, . . . , Ll} be a hypersurface arrangement in a complex manifold X, Z a stratum
of L. We say that Z is a good stratum if in every local chart where the Li’s are hyperplanes, it
is a good stratum in the sense of the above definition. A stratum of dimension 0 (a point) is
always good. In the case of a normal crossing divisor, all non-empty strata are good.

Lemma 3.4.3. Let L = {L1, . . . , Ll} be a hypersurface arrangement in a complex manifold X, Z
a good stratum of L, and

π : X̃ → X

the blow-up of X along Z. Let E = π−1(Z) be the exceptional divisor, and for all i, let L̃i be
the strict transform of Li. Then L̃ = {E, L̃1, . . . , L̃l} is a hypersurface arrangement in X̃.

Proof. It is enough to do the proof for X = ∆n and the Li’s hyperplanes. We choose coordi-
nates (z1, . . . , zn) as in Definition 3.4.1.

We have r natural local charts X̃k
∼= ∆n on X̃, k = 1, . . . , r. On the chart X̃k, the blow-up

morphism is given by

π(z1, . . . , zn) = (z1zk, . . . , zk−1zk, zk, zk+1zk, . . . , zrzk, zr+1, . . . , zn)

In this chart, E is defined by the equation zk = 0. The strict transform of a hyperplane of the
type {a1z1 + . . . + arzr = 0} is given by the equation a1z1 + . . . + ak−1zk−1 + ak + ak+1zk+1 +
. . .+ arzr = 0. The strict transform of a hyperplane of the type {ar+1zr+1 + . . .+ anzn = 0} is
defined by the same equation.

To sum up, in the chart X̃k, all the hypersurfaces of L̃ are given by affine equations. Up
to some translations, we can then find smaller charts where all the equations are linear. This
completes the proof.

With the notations of the above lemma, we will simply write that

π : (X̃, L̃)→ (X,L)

is the blow-up of the pair (X,L) along the good stratum Z. We stress the fact that L̃ is the hy-
persurface arrangement consisting of the exceptional divisor E and all the proper transforms L̃i
of the hypersurfaces Li.
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The blow-ups along good strata are enough to resolve the singularities of a hypersurface
arrangement, as the following theorem shows. It is simply a reformulation of classical results on
“wonderful compactifications” (see [FM94, DCP95, Hu03, Li09]).

Theorem 3.4.4. Let L be a hypersurface arrangement in a complex manifold X. There exists
a sequence

(X̃, L̃) = (X(N), L(N)) πN−→ (X(N−1), L(N−1)) πN−1−→ · · · π1−→ (X(0), L(0)) = (X,L)

where

1. for all k, X(k) is a complex manifold and L(k) a hypersurface arrangement in X(k)

2. for all k, πk : (X(k), L(k)) → (X(k−1), L(k−1)) is the blow-up of (X(k−1), L(k−1)) along a
good stratum of L(k−1)

3. L̃ is a normal crossing divisor in X̃.

Proof. An arrangement of hypersurfaces defines an arrangement of subvarieties in the sense
of [Li09]. Let us fix a building set G and let π : X̃ → X be the corresponding wonderful
compactification, with L̃ = π−1(L). Then according to [Li09], π is a composition of blow-ups
along a minimal element of a building set. It simply remains to prove that a minimal element
of a building set is a good stratum. We work in the cotangent spaces, hence reducing to a
statement of linear algebra.

Let G be a building set of an arrangement of subspaces C in the context of [DCP95], and let
us write M =

∑
C∈C C. We have a G-decomposition

M = G1 ⊕ · · · ⊕Gr

where the Gi ∈ G are the maximal elements. Let X ∈ C be any element, then X ⊂ M and by
definition of a building set X ⊂ Gi for some unique i = 1, . . . , r. Hence if we write Ui =

⊕
j 6=iGj ,

we then have, for all X ∈ C, X 6⊂ Gi ⇒ X ⊂ Ui.

3.4.2 Functoriality of the Orlik-Solomon model with respect to blow-ups

Let us consider a sequence of blow-ups along good strata as in Theorem 3.4.4:

(X̃, L̃) = (X(N), L(N)) πN−→ (X(N−1), L(N−1)) πN−1−→ · · · π1−→ (X(0), L(0)) = (X,L).

Then by the functoriality of the Orlik-Solomon model we get a sequence of morphisms of differ-
ential graded algebras (in the category of split mixed Hodge structures):

M•(X,L) = M•(X(0), L(0))
M•(π1)
∼−→ · · ·

M•(πN )
∼−→ M•(X(N), L(N)) = M•(X̃, L̃).

For each k, M•(πk) is a quasi-isomorphism since πk induces an isomorphism X(k) \ L(k) ∼=→
X(k−1) \ L(k−1). Thus we get a natural quasi-isomorphism between the Orlik-Solomon model
of (X,L) and that of (X̃, L̃).

In the following theorem, we give explicit formulas in the case of a single blow-up. For
simplicity, we work under the assumption (3.7) and use the presentation of the Orlik-Solomon
model given in Remark 3.3.9.

Theorem 3.4.5. Let X be a smooth projective variety over C and L a hypersurface arrangement
in X such that the assumption (3.7) is satisfied. Let Z be a good stratum of L and

π : (X̃, L̃)→ (X,L)
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the blow-up of (X,L) along Z. Let

M•(π) : M•(X,L)→M•(X̃, L̃)

be the morphism induced by π on the Orlik-Solomon models. Then

1. M•(π) is a quasi-isomorphism.

2. the components of Mn
q (π) are given, for I = {i1 < · · · < iq−n} independent, by

(a) the pull-back morphism H2n−q(LI)
π∗→ H2n−q(L̃I).

(b) for all s such that Z ⊂ Lis, the morphism H2n−q(LI)→ H2n−q(E ∩ L̃I\{is}) which is
the pull-back morphism corresponding to E ∩ L̃I\{is}

π→ Z ∩ LI\{is} = Z ∩ LI ↪→ LI ,
multiplied by the sign (−1)s−1.

Proof. 1. This is obvious by Theorem 3.3.8, since π induces an isomorphism X̃ \ L̃
∼=→ X \L.

2. It is a consequence of the general formula for functoriality given in §3.3.4. Using the
notation E = L̃0, a local computation shows that we have the following formula for A•(π) :
A•(L)→ A•(L̃).

A1(π)(ei) =
{
ei if Li does not contain S
e0 + ei if Li contains S

Thus we get
A•(π)(eI) = eI +

∑
16s6q−n
Z⊂Lis

(−1)s−1e0 ∧ eI\{is}

and the claim follows.

3.5 Configuration spaces of points on curves

3.5.1 Configuration spaces associated to graphs

Let Y be a compact Riemann surface, i.e. a smooth projective complex curve. Let Γ be a finite
unoriented graph with no multiple edges and no self-loops, with V its set of vertices and E its
set of edges. Let Y V be the cartesian power of Y indexed by V , with coordinates yv. For v ∈ V ,
we have a projection

pv : Y V → Y.

Every edge e ∈ E with endpoints v and v′ defines a diagonal ∆e = {yv = yv′} ⊂ Y V which
is the locus where the coordinates corresponding to the two endpoints of e are equal. We
define ∆Γ =

⋃
e∈E ∆e and then the configuration space of points on Y associated to Γ:

C(Y,Γ) = Y V \∆Γ.

In the case where Γ = Kn is the complete graph on n vertices, we recover the configuration
space

C(Y, n) = {(y1, . . . , yn) ∈ Y n | yi 6= yj for i 6= j} = Y n \
⋃
i<j

∆i,j .
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3.5.2 A model for the cohomology

In [Kri94] and [Tot96], I. Kriz and B. Totaro independently found a model for the cohomology
of C(Y, n). Their result has been recently generalized to C(Y,Γ) by S. Bloch in [Blo12] (even
though Bloch’s framework is slightly more general, with external edges in Γ labeled by points
of Y ). We recall the definition of this model. Here Y has dimension 1, but the general definition
is similar.

If B = ⊕n>0Bn is a graded-commutative graded algebra and {xα} are indeterminates with
prescribed degrees {dα}, then there is a well-defined notion of graded-commutative algebra gen-
erated by the xα’s over B. This is a graded-commutative graded algebra which is the quotient
of B[{xα}] by the relations bxα = (−1)|b|dαxαb for b homogeneous, and xβxα = (−1)dαdβxαxβ
for all α and β. For example, if B is a field concentrated in degree 0 then we recover the exterior
algebra generated by the xα’s. We use the wedge notation xα ∧ xβ to remember the graded-
commutativity property.

Let us define, following [Blo12], a graded-commutative differential graded algebra N•(Y,Γ) in
the following way. It is generated (as a graded-commutative algebra) by the cohomologyH•(Y V )
and elements Ge in degree 1 for every edge e ∈ E, modulo the relations:

(R1) p∗v(c)Ge = p∗v′(c)Ge for every class c ∈ H•(Y ), where v and v′ are the endpoints of e in Γ.

(R2)
∑r
i=1(−1)i−1Ge1 ∧ · · · ∧ Ĝei ∧ · · · ∧Ger = 0 if {e1, . . . , er} ⊂ E contains a loop.

We now define a differential d on N•(Y,Γ) as zero on H•(Y V ) and given on the elements Ge
by the formula

d(Ge) = [∆e] ∈ H2(Y V ).
One shows that d is well-defined and makes N•(Y,Γ) into a graded-commutative differential
graded algebra.

3.5.3 The isomorphism with the Orlik-Solomon model

By choosing charts on Y , one easily sees that L = ∆Γ is a hypersurface arrangement in X = Y V .
Thus theorem 3.3.8 can be applied to the pair (Y V ,∆Γ) and gives a model for the cohomology
of C(Y,Γ) = Y V \∆Γ. We fix an linear order on the set E of edges of Γ, hence on the irreducible
components ∆e of ∆Γ. This allows us to consider the Orlik-Solomon model M•(Y V ,∆Γ), with
its presentation given by Remark 3.3.9. Thus Mn

q (Y V ,∆Γ) is a quotient of⊕
I⊂E
|I|=q−n
I indep.

H2n−q(∆I)(n− q).

We note that a subset I ⊂ E is dependent if and only if it contains a loop, and is a circuit if
and only if it is a simple loop.

We define a morphism of differential graded algebras

α : N•(Y,Γ)→M•(Y V ,∆Γ)

in the following way.
First we note that for all n we haveMn

n (Y V ,∆Γ) = Hn(Y V ), and we easily see that the resulting
(injective) map H•(Y V )→M•(Y V ,∆Γ) is a map of graded algebras. Then we define α(Ge) to
be a generator ge of H0(∆e)(−1) ⊂M1

2 (Y V ,∆Γ).
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Lemma 3.5.1. The morphism α is well-defined and compatible with the differentials. It is thus
a map of differential graded algebras.

Proof. First we show that α respects the relations (R1) and (R2). For the relation (R1) we see
that by definition

α(p∗v(c)Ge) = p∗v(c)ge = p∗v(c)|∆e
∈ H•(∆e).

This equals i∗e(p∗v(c)) = (pv ◦ ie)∗(c) where ie : ∆e ↪→ Y V is the inclusion of ∆e. The relation
then follows from the equality pv ◦ ie = pv′ ◦ ie.
For the relation (R2) we can assume that we have e1 < · · · < er. Then if R is the expression in
the relation (R2) we have

α(R) =
r∑
i=1

(−1)i−1ge1 · · · ĝei · · · ger

and ge1 · · · ĝei · · · ger is a generator of H0(∆e1∩· · ·∩∆̂ei∩· · ·∩∆er)(−r+1). Since {∆e1 , . . . ,∆er}
is dependent, α(R) is thus killed by the quotient that defines M•(Y V ,∆Γ).
We then show that α is compatible with the differentials. By definition, the differential is
zero on H•(Y V ) ⊂ M•(Y V ,∆Γ). Furthermore, dα(Ge) = d(ge) is, by definition of the Gysin
morphism, the class of ∆e in H2(Y V ). This completes the proof.

Theorem 3.5.2. The morphism α : N•(Y,Γ)→M•(Y V ,∆Γ) is an isomorphism of differential
graded algebras.

Proof. We sketch the proof and leave the details to the reader. We define the inverse morphism β
in the following way. Let I ⊂ E be an independent set of edges of Γ of cardinality |I| = q − n,
let iI : ∆I ↪→ Y V be the inclusion of the corresponding stratum. Let fI : Y V → ∆I be any
natural splitting of iI defined out of projections pv’s. Then we define the component of β:

βnq : H2n−q(∆I)→ H2n−q(Y V )GI

to be the pull-back f∗I . The degrees match since H2n−q(Y V )GI is in degree 2n− q + |I| = n. It
remains to prove that β passes to the quotient that defines M•(Y V ,∆Γ), and defines an inverse
to α.

Remark 3.5.3. It is striking that Kriz and Totaro’s model works for configuration spaces of points
on any smooth projective variety Y , where the diagonals can have any codimension. It is then
tempting to ask for a generalization of the Orlik-Solomon model to the cohomology of X \ L
where L ⊂ X locally looks like a union of sub-vector spaces of any codimension inside Cn.
In [Tot96], B. Totaro suggests a particular case of the previous question, focusing on vector
spaces Vi of a fixed codimension c such that all intersections Vi1 ∩ . . . ∩ Vir have codimension a
multiple of c (this chapter handles the case c = 1).

3.5.4 Comparison with Kriz’s quasi-isomorphism

In this paragraph we sketch the proof that Kriz’s quasi-isomorphism ϕ from [Kri94] can be
recovered as a consequence of the functoriality of the Orlik-Solomon model.
For the sake of comfort we use the notations from [Kri94] and write E•(n) for N•(Y,Kn)
where Kn is the complete graph on n vertices. We write ∆ = ∆Kn for the union of all diagonals
of Y n. According to Theorem 3.5.2, we have an isomorphism of differential graded algebras

α : E•(n)
∼=→M•(Y n,∆).

Let π : Y [n]→ Y n be the Fulton-MacPherson wonderful compactification [FM94]. ThenD =
π−1(∆) is a simple normal crossing divisor whose irreducible components D(S) are indexed by
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subsets S ⊂ {1, . . . , n} with |S| > 2. We now describe the model F •(n) defined by Kriz. By its
very definition [FM94, §6], we have a natural isomorphism of differential graded algebras

ε : F •(n)
∼=−→M•(Y [n], D)

between F •(n) and the Orlik-Solomon model M•(Y [n], D). To make this isomorphism precise,
let us mention that

• on H•(Y n), ε is the pull-back H•(π) : H•(Y n)→ H•(Y [n]);

• ε(S) is the generator gS ∈ H0(D(S))(−1) and ε(DS) is the class [D(S)] ∈ H2(Y [n]).

Theorem 3.5.4. We have a commutative square

F •(n) ε //M•(Y [n], D)

E•(n) α
//

ϕ

OO

M•(Y n,∆)

M•(π)

OO

where ϕ is defined in [Kri94, §3], the horizontal arrows are isomorphisms of differential graded
algebras and the vertical arrows are quasi-isomorphisms of differential graded algebras.

Proof. It only remains to prove that we have

M1(π)(ga,b) =
∑

S⊃{a,b}
gS .

We do the proof in the case n = 3 (the cases n < 3 being trivial) and leave the general case to the
reader. We may assume that {a, b} = {1, 2}. Then π is simply the blow-up along ∆1,2,3,D(1, 2, 3)
is the exceptional divisor, and the equality M1(π)(g1,2) = g1,2 + g1,2,3 is a consequence of
Theorem 3.4.5.



Chapter 4

The motive of a bi-arrangement

In §4.1 we introduce the formalism of bi-arrangements and Orlik-Solomon bi-complexes as a
generalization of the Orlik-Solomon algebra of an arrangement. In §4.2 we define deletion
and restriction of bi-arrangements and prove the existence of a deletion-restriction short ex-
act sequence in the context of exact bi-arrangements. In §4.3 we introduce bi-arrangements of
hypersurfaces in a complex manifold. We define the motive of a bi-arrangement of hypersur-
faces and study the behaviour of the Orlik-Solomon bi-complexes with respect to blow-ups. In
§4.4 we define the geometric Orlik-Solomon bi-complex of a bi-arrangement of hypersurfaces,
and study its behaviour with respect to blow-up. We state the main theorem of this chapter
(Theorem 4.4.11). In §4.5 we study the particular case of projective bi-arrangements, with an
emphasis on bi-arrangements coming from multiple zeta values. In §4.6, which is quite technical,
we prove Theorem 4.4.11. The last two sections are appendices. In §4.7 we recall some more or
less well-known facts on relative cohomology in the case of normal crossing divisors. In §4.8 we
state a collection of cohomological identities related to Chern classes and blow-ups. They are
used in the proof of the main theorem.

4.1 The Orlik-Solomon bi-complex of a bi-arrangement of hy-
perplanes

4.1.1 The Orlik-Solomon algebra of an arrangement of hyperplanes

Here we recall a few definitions and notations from the theory of arrangements of hyperplanes.
We refer the reader to the classical book [OT92] for more details.

Definitions and notations

An arrangement of hyperplanes (or simply an arrangement) A in Cn is a finite set of hyperplanes
of Cn that pass through the origin. Let us write A = {K1, . . . ,Kk}. For i = 1, . . . , k, we may
write Ki = {fi = 0} where fi is a non-zero linear form on Cn.

If A ′ is an arrangement in Cn′ and A ′′ is an arrangement in Cn′′ , then we define their
product A = A ′ ×A ′′, which is the arrangement in Cn′+n′′ consisting of the hyperplanes K ′ ×
Cn′′ , for K ′ ∈ A ′, and Cn′ ×K ′′, for K ′′ ∈ A ′′.

A stratum of A is an intersection KI =
⋂
i∈I Ki of some of the Ki’s, for I ⊂ {1, . . . , k}.

By convention, we have K∅ = Cn, and all other strata are called strict. We write Sm(A ) for
the set of strata of A of codimension m, S (A ) =

⊔
m>0 Sm(A ) for the set of all strata of A

and S+(A ) =
⊔
m>0 Sm(A ) for the set of strict strata of A .

It is classical to view the set of strata as a poset ordered by reverse inclusion. For S a
stratum of A , we write A 6S for the arrangement consisting of the hyperplanes that contain S.



96 Chapter 4. The motive of a bi-arrangement

Let us write S⊥ ⊂ (Cn)∨ for the space of linear forms on Cn that vanish on a stratum S; it
is spanned by the fi’s for i such that S ⊂ Ki. We say that a family of strata S1, . . . , Sr intersect
transversely and write S1 t · · · t Sr if S⊥1 , . . . , S⊥r form a direct sum in Cn.

If S is a stratum of A , a decomposition of S is an equality S = S1 t · · · t Sr with the Sj ’s
strata of A , and such that for every hyperplaneKi that contains S,Ki contains some Sj . Dually,
this amounts to saying that we can write S⊥ = (S1)⊥ ⊕ · · · ⊕ (Sr)⊥ such that every fi ∈ S⊥ is
in some (Sj)⊥. Equivalently, we have a product decomposition A 6S ∼= A 6S1 × · · · ×A 6Sr . We
say that S is reducible if it has a non-trivial decomposition, i.e. with all Sj ’s strict strata, and
irreducible otherwise. Every K ∈ A is irreducible. A stratum S has a unique decomposition S =
S1 t · · · t Sr with the Sj ’s irreducible.

The Orlik-Solomon algebra

Let A = {K1, . . . ,Kk} be an arrangement of hyperplanes in Cn. Let E•(A ) = Λ•(e1, . . . , ek)
be the exterior algebra on generators ei, i = 1, . . . , k in degree 1. For I = {i1 < · · · < ir} ⊂
{1, . . . , k} we write eI = ei1 ∧ · · · ∧ eir for the corresponding basis element of Er(A ), with
the convention e∅ = 1. Let d : E•(A ) → E•−1(A ) be the unique derivation of E•(A ) such
that d(ei) = 1 for all i. It is given by

d(ei1 ∧ · · · ∧ eir) =
r∑
j=1

(−1)j−1ei1 ∧ · · · ∧ êij ∧ · · · ∧ eir .

A subset I ⊂ {1, . . . , k} is said to be dependent if the hyperplanes Ki, for i ∈ I, are lin-
early dependent, and independent otherwise. A circuit of A is a minimally dependent subset.
Let R•(A ) be the homogeneous ideal of E•(A ) generated by the elements d(eI) for I dependent.
The Leibniz rule implies that it is generated by the elements d(eI) for I a circuit.

The Orlik-Solomon algebra of A is the quotient A•(A ) = E•(A )/R•(A ). It is a differential
graded algebra which is easily seen to be exact if A is non-empty, a contracting homotopy h :
A•(A ) → A•+1(A ) being given by h(x) = e1 ∧ x. An important feature of the Orlik-Solomon
algebra is the following direct sum decomposition with respect to the set of strata:

Ar(A ) =
⊕

S∈Sr(A )
ASr (A )

where ASr (A ) is spanned by the classes of the elements eI for I such that KI = S.
We will write S m

↪→ T for an inclusion of strata of codimension m; for an inclusion S 1
↪→ T ,

we then have a component dS,T : ASr (A )→ ATr−1(A ) for the differential d.
If Σ is a strict stratum of A of codimension r, then the complex

0→ AΣ
r (A ) d−→

⊕
Σ

1
↪→S

ASr−1(A ) d−→
⊕

Σ
2
↪→T

ATr−2(A ) d−→ · · · d−→ ACn
0 (A )→ 0

is the Orlik-Solomon algebra of the arrangement A 6Σ, hence is exact. This property allows one
to uniquely define [Loo93, Lemma 2.2] the groups ASr (A ) and the differentials dS,T by induction
on the codimension, starting with ACn

0 (A ) = Q. We will use this inductive point of view to
generalize this construction to bi-arrangements.

4.1.2 Bi-arrangements of hyperplanes

Definition 4.1.1. A bi-arrangement of hyperplanes (or simply a bi-arrangement) B = (A , χ)
in Cn is the data of an arrangement of hyperplanes A in Cn along with a coloring function

χ : S+(A )→ {λ, µ}
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on the strict strata of A , such that the Künneth condition is satisfied:

for any non-trivial decomposition S = S′ t S′′, χ(S) = χ(S′) or χ(S) = χ(S′′). (4.1)

Remark 4.1.2. The Künneth condition is empty if χ(S′) 6= χ(S′′). More generally, let S = S1 t
· · · t Sr be the decomposition of a strict stratum S into irreducible strata Sk. If χ(S1) = · · · =
χ(Sr), then the Künneth condition forces χ(S) = χ(S1) = · · · = χ(Sr). Otherwise, χ(S) is not
constrained by the definition of a bi-arrangement of hyperplanes. To sum up, a coloring function
that satisfies the Künneth condition is uniquely determined by

– the colors of the irreducible strata;

– the colors of the strata S = S1 t · · · t Sr with the Sk’s irreducible which do not all have the
same color.

For all our purposes, only the colors of the irreducible strata will matter, thus we make the
following definition.

Definition 4.1.3. Two bi-arrangements are equivalent if their underlying arrangements are the
same and if their coloring functions agree on the irreducible strata.

In most of the article, we will implicitly consider bi-arrangements up to this equivalence
relation. In particular, we will allow ourselves to define a bi-arrangement by only specifying the
colors of the irreducible strata.
Remark 4.1.4. The hyperplanes L ∈ A such that χ(L) = λ (resp. the hyperplanes M ∈ A such
that χ(M) = µ) form an arrangement denoted by L (resp. M ). In most geometric situations
(see §1.5.1) these two arrangements play very different roles, hence the union A = L tM is
an artificial object. In other words, one should not view a bi-arrangement as an arrangement
with some coloring datum, but as two arrangements with some coloring datum. To emphasize
this point, we will use the following notational conventions.
Notation 4.1.5. We will sometimes denote a bi-arrangement B in Cn by a triple (L ,M , χ),
where L and M are two disjoint arrangements in Cn, and χ : S+(L tM ) → {λ, µ} is a
function that satisfies χ(L) = λ for L ∈ L , χ(M) = µ for M ∈M , and the Künneth condition
(4.1).
Notation 4.1.6. For B = (A , χ) a bi-arrangement, we will often make an abuse of notation and
simply write K ∈ B for K ∈ A , S ∈ S (B) for S ∈ S (A ), and so on.

We will make great use of a natural involution on bi-arrangements.

Definition 4.1.7. The dual of a bi-arrangement B = (A , χ) is the bi-arrangement B∨ =
(A , χ∨) where χ∨ is the composition of χ with the involution λ ↔ µ. Equivalently, the dual
of B = (L ,M , χ) is B∨ = (M ,L , χ∨). We have (B∨)∨ = B.

We may also take product of bi-arrangements. This operation is only well-defined if we work
up to equivalence (Definition 4.1.3).

Definition 4.1.8. If B′ = (A ′, χ′) is a bi-arrangement of hyperplanes in Cn′ and B′′ = (A ′′, χ′′)
is a bi-arrangement of hyperplanes in Cn′′ , then we define their product B = B′×B′′ = (A , χ),
whose underlying arrangement of hyperplanes is A = A ′ ×A ′′. Its irreducible strata have the
form S′ × Cn′′ or Cn′ × S′′ for S′ (resp. S′′) an irreducible stratum of A ′ (resp. A ′′). We thus
define the coloring by χ(S′ × Cn′′) = χ′(S′) and χ(Cn′ × S′′) = χ′′(S′′).

Example 4.1.9. There are two (dual) ways in which an arrangement A may be viewed as a bi-
arrangement: by defining the coloring χ to be constant equal to λ or µ. We will simply denote
these bi-arrangements by (A , λ) and (A , µ).
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Example 4.1.10. By taking products, we can define bi-arrangements (L , λ)× (M , µ). They are
somewhat trivial examples since the arrangements L and M “do not mix”.
Example 4.1.11. Let L and M be two disjoint arrangements in Cn. We define the λ-extreme col-
oring eλ and the µ-extreme coloring eµ so that (L ,M , eλ) and (L ,M , eµ) are bi-arrangements.

eλ(S) =
{
λ if S ⊂ L for some L ∈ L

µ otherwise.
eµ(S) =

{
µ if S ⊂M for some M ∈M

λ otherwise.

To understand the terminology, let us anticipate and note (see for instance Lemma 4.1.24 below)
that we will be interested mostly in the bi-arrangements such that for every stratum S, there
exists a hyperplane K ⊃ S with the same color as S. The λ-extreme coloring (resp. the µ-
extreme coloring) is extreme in the sense that we give the color λ (resp. the color µ) to as many
strata as possible while staying in that class of bi-arrangements.

4.1.3 The formalism of Orlik-Solomon bi-complexes

The definition

Lemma 4.1.12. Let B be a bi-arrangement in Cn. There exists a unique datum of

– for all i, j > 0, for every stratum S ∈ Si+j(B), a finite-dimensional Q-vector space ASi,j;

– for every inclusion S 1
↪→ T of strata of codimension 1, linear maps

d′S,T : ASi,j → ATi−1,j and d′′S,T : ATi,j−1 → ASi,j ;

such that the following conditions are satisfied:

– ACn
0,0 = Q;

– for every stratum Σ,

A6Σ
•,• =

⊕
S⊃Σ

AS•,•, d
′, d′′


is a bi-complex, where d′ and d′′ respectively denote the collection of the maps d′S,T and d′′S,T
for S ⊃ Σ;

– for every strict stratum Σ ∈ Si+j(B) such that χ(Σ) = λ, we have exact sequences

0→ AΣ
i,j

d′−→
⊕

Σ
1
↪→S

ASi−1,j
d′−→

⊕
Σ

2
↪→T

ATi−2,j ;

– for every strict stratum Σ ∈ Si+j(B) such that χ(Σ) = µ, we have exact sequences

0← AΣ
i,j

d′′←−
⊕

Σ
1
↪→S

ASi,j−1
d′′←−

⊕
Σ

2
↪→T

ATi,j−2.

Proof. We define the bi-complexes A6Σ
•,• by induction on the codimension of Σ. The case of

codimension 0 is forced by the equality ACn
0,0 = Q. If Σ is a strict stratum and χ(Σ) = λ then

one is forced to define

AΣ
i,j = ker

⊕
Σ

1
↪→S

ASi−1,j
d′→
⊕

Σ
2
↪→T

ATi−2,j


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and the differentials d′Σ,S : AΣ
i,j → ASi−1,j to be the components of the natural inclusion. This

uniquely defines the differentials d′′Σ,S : ASi,j−1 → AΣ
i,j by filling the dotted arrow in the following

commutative diagram.

⊕
Σ

1
↪→S

ASi,j−1

��

//
⊕

Σ
2
↪→T

ATi−1,j−1

��

//
⊕

Σ
3
↪→U

AUi−2,j−1

��

AΣ
i,j

//
⊕

Σ
1
↪→S

ASi−1,j //
⊕

Σ
2
↪→T

ATi,j−1

The case χ(Σ) = µ is dual, with the definition

AΣ
i,j = coker

⊕
Σ

2
↪→T

ATi,j−2
d′′→

⊕
Σ

1
↪→S

ASi,j−1

 .

Definition 4.1.13. The above datum is called theOrlik-Solomon bi-complex of the bi-arrangement B
and denoted by A•,•(B), or simply A•,• when the situation is clear.

Visually, we get a bi-complex that is defined inductively, starting in the top right corner and
going in the bottom left direction.

// A3,0

��

// A2,0 //

��

A1,0 //

��

A0,0

��
// A2,1

��

// A1,1

��

// A0,1

��
// A1,2

��

// A0,2

��
// A0,3

��

Remark 4.1.14. The Orlik-Solomon bi-complex is a local object: the bi-complex A6Σ
•,• (B) is

the Orlik-Solomon bi-complex of the bi-arrangement B6Σ consisting of the hyperplanes that
contain Σ.

Lemma 4.1.15. Let B be an arrangement and A•,• be its Orlik-Solomon bi-complex. The fact
that all A6Σ

•,• are bi-complexes is equivalent to the following identities.

1. For an inclusion S 2
↪→ U we have∑

S
1
↪→T

1
↪→U

d′T,U ◦ d′S,T = 0 and
∑

S
1
↪→T

1
↪→U

d′′S,T ◦ d′′T,U = 0.
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2. (a) Let S 6= U be two strata of the same codimension such that there is no diagram S
1
↪→

T
1←↩ U . Then for every diagram S

1←↩ R 1
↪→ U we have

d′R,U ◦ d′′R,S = 0.

(b) Let S 6= U be two strata of the same codimension such that there is a diagram S
1
↪→

T
1←↩ U . Then we necessarily have T = S + U and there is a unique diagram S

1←↩
R

1
↪→ U , which is R = S ∩ U . We then have

d′R,U ◦ d′′R,S = d′′U,T ◦ d′S,T .

(c) For every stratum S, we have ∑
S

1
↪→T

d′′S,T ◦ d′S,T = 0.

For every inclusion R 1
↪→ S we have

d′R,S ◦ d′′R,S = 0.

Proof. 1. It expresses the fact that d′ ◦ d′ = 0 and d′′ ◦ d′′ = 0 in A6S•,• .

2. (a) It expresses the fact that the components ASi,j−1 → AUi−1,j of d′ ◦d′′ and d′′ ◦d′ in A6R•,•
are equal.

(b) Same.
(c) There is no d′′R,S in A6S•,• , hence the component ASi,j−1 → ASi−1,j of d′′ ◦d′ is zero. This

gives the first equality. Now for some R 1
↪→ S, the second equality follows from the

first equality and the fact that the components ASi,j−1 → ASi−1,j of d′ ◦ d′′ and d′′ ◦ d′

in A6R•,• are equal.

Definition 4.1.16. Let B be an arrangement and A•,• be its Orlik-Solomon bi-complex. We
say that a strict stratum Σ of B is exact if the following condition, depending on the color of Σ,
is satisfied:
– χ(Σ) = λ and all the rows

0→ AΣ
i,j

d′−→
⊕

Σ
1
↪→S

ASi−1,j
d′−→

⊕
Σ

2
↪→T

ATi−2,j
d′−→ · · · d′−→

⊕
Σ
i
↪→Z

AZ0,j → 0

of the bi-complex A6Σ
•,• are exact;

– χ(Σ) = µ and all the columns

0← AΣ
i,j

d′′←−
⊕

Σ
1
↪→S

ASi,j−1
d′′←−

⊕
Σ

2
↪→T

ATi,j−2
d′′←− · · · d′′←−

⊕
Σ
j
↪→Z

AZi,0 ← 0

of the bi-complex A6Σ
•,• are exact.

We say that B is exact if all its strict strata are exact.
The next easy Lemma expresses the fact that the definition of the Orlik-Solomon bi-complex

is self-dual.
Lemma 4.1.17. The Orlik-Solomon bi-complexes of B and B∨ are dual to each other: we
have ASi,j(B∨) =

(
ASj,i(B)

)∨
, d′ being the transpose of d′′ and d′′ the transpose of d′. Further-

more, B is exact if and only if B∨ is exact.
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The Künneth formula

Up to now, we haven’t used the Künneth condition (4.1). This condition is actually crucial since
it implies that the Orlik-Solomon bi-complexes behave well with respect to decompositions.

Proposition 4.1.18. Let B be a bi-arrangement and Σ a stratum of B. Let us assume that Σ
has a decomposition Σ = Σ′ t Σ′′. Then we have an isomorphism of bi-complexes (“Künneth
formula”)

A6Σ
•,•
∼= A6Σ′

•,• ⊗A6Σ′′
•,• .

More precisely, a stratum S ⊃ Σ of codimension r has a unique decomposition S = S′ t S′′

with S′ ⊃ Σ′ of codimension r′ and S′′ ⊃ Σ′′ of codimension r′′ with r = r′ + r′′; we then have
isomorphisms

ASi,j
∼=
⊕

AS
′

i′,j′ ⊗AS
′′

i′′,j′′

that are compatible with the differentials (the above sum is restricted to the indices such that i′+
i′′ = i, j′ + j′′ = j, i′ + j′ = r′, i′′ + j′′ = r′′).

Proof. We proceed by induction on the codimension of Σ. The case of codimension 0 is just
the isomorphism Q ∼= Q ⊗ Q. More generally, the result is trivial if Σ′ or Σ′′ is the whole
space Cn. We thus assume that Σ′ and Σ′′ are strict strata. Let us assume that χ(Σ) = λ, the
case χ(Σ) = µ being dual. Then by the Künneth condition (4.1), we necessarily have χ(Σ′) = λ
or χ(Σ′′) = λ. We consider the complexes

0→ AΣ′
i′,j′

d′→
⊕

Σ′
1
↪→S′

AS
′

i′−1,j′
d′→

⊕
Σ′

2
↪→T ′

AT
′

i′−2,j′ (4.2)

and
0→ AΣ′′

i′′,j′′
d′→

⊕
Σ′′

1
↪→S′′

AS
′′

i′′−1,j′′
d′→

⊕
Σ′′

2
↪→T ′′

AT
′′

i′′−2,j′′ . (4.3)

The tensor product of these two complexes is necessarily exact, since one of the two is exact.
Summing over all possible indices (i′, j′, i′′, j′′) and using the induction hypothesis leads to an
exact complex

0→
⊕

AΣ′
i′,j′ ⊗AΣ′′

i′′,j′′ →
⊕

Σ′
1
↪→S′

AS
′tΣ′′

i−1,j ⊕
⊕

Σ′′
1
↪→S′′

AΣ′tS′′
i−1,j →

→
⊕

Σ′
2
↪→T ′

AT
′tΣ′′

i−2,j ⊕
⊕

Σ′
1
↪→S′

Σ′′
1
↪→S′′

AS
′tS′′

i−2,j ⊕
⊕

Σ′′
2
↪→T ′′

AΣ′tT ′′
i−2,j .

This gives the desired isomorphism. One easily checks the compatibilities with the differentials.

Corollary 4.1.19. 1. The Orlik-Solomon bi-complex A•,•(B) of a bi-arrangement B only
depends on its equivalence class (Definition 4.1.3).

2. A bi-arrangement B is exact if and only if all its irreducible strata of codimension > 2 are
exact. Thus, the exactness of B only depends on its equivalence class.

Proof. 1. Proposition 4.1.18 implies that for a decomposition into irreducibles S = S1 t · · · t
Sr, A6S•,• is the tensor product of the bi-complexes A6Sk•,• , hence it does not depend on the
color χ(S).



102 Chapter 4. The motive of a bi-arrangement

2. Let us assume that all the Sk’s are exact, and that χ(S) = λ (the case χ(S) = µ being
dual). By definition, we can then assume that χ(S1) = λ, and hence the rows of A6S1

•,• are
exact. The Künneth formula implies that the rows of A6S•,• are exact, hence S is exact.
The claim then follows from the fact that all hyperplanes K ∈ B are exact.

Another way of stating the Künneth formula is the following.

Corollary 4.1.20. The Orlik-Solomon bi-complex of a product B′ ×B′′ is the tensor product

A•,•(B′ ×B′′) ∼= A•,•(B′)⊗A•,•(B′′).

Furthermore, B′ ×B′′ is exact if and only if B′ and B′′ are exact.

Examples

Example 4.1.21. The notion of an Orlik-Solomon bi-complex generalizes the construction of the
Orlik-Solomon algebra. Indeed, if A is an arrangement then the Orlik-Solomon bi-complex of
the bi-arrangement (A , λ) is concentrated in bi-degrees (k, 0) and agrees with the Orlik-Solomon
algebra of A : ASk,0(A , λ) = ASk (A ) for all S ∈ Sk(A ), and d′S,T = dS,T the classical differential
of the Orlik-Solomon algebra. Dually, the Orlik-Solomon bi-complex of (A , µ) is concentrated
in bi-degrees (0, k) and is the linear dual of the Orlik-Solomon algebra of A : AS0,k(A , µ) =(
ASk (A )

)∨
. The bi-arrangements (A , λ) and (A , µ) are thus always exact.

Example 4.1.22. More generally, for a bi-arrangement B = (L ,M , χ), if all strata of L are
colored λ then we have an isomorphism A0,•(L ,M , χ) ∼= A•(L ). Dually, if all strata of M are
colored µ then we have an isomorphism A0,•(L ,M , χ) ∼= (A•(M ))∨.
Example 4.1.23. By Example 4.1.21 and Corollary 4.1.20, a product (L , λ)× (M , µ) is always
exact, with its Orlik-Solomon bi-complex

A•,•((L , λ)× (M , µ)) = A•(L )⊗ (A•(M ))∨.

The first obstruction to exactness

Let B = (L ,M , χ) be a bi-arrangement. By the definition of an Orlik-Solomon bi-complex, we
have for each L ∈ L an isomorphism AL1,0

∼=→ Q, and AL0,1 = 0. Dually, we get for each M ∈M

an isomorphism Q
∼=→ AM0,1, and AM1,0 = 0. This remark gives us the first obstruction to the

exactness of a bi-arrangement.

Lemma 4.1.24. If a bi-arrangement B = (L ,M , χ) is exact, then for every strict stratum S,

1. if χ(S) = λ then S ⊂ L for some L ∈ L ;

2. if χ(S) = µ then S ⊂M for some M ∈M .

Proof. Let us assume that χ(S) = λ, the case χ(S) = µ being dual. Then the first row of the
bi-complex A6S•,• is exact, which means that we have a surjection⊕

L∈L | S⊂L
AL1,0 → Q→ 0

hence S ⊂ L for some L ∈ L .

Example 4.1.25. The simplest bi-arrangement of hyperplanes that is not exact is made of three
lines L1, L2, L3 in C2 that meet at the origin Z, with χ(L1) = χ(L2) = χ(L3) = λ, and χ(Z) = µ.
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4.1.4 The Orlik-Solomon bi-complex of a tame bi-arrangement

Tame bi-arrangements

Let L = {L1, . . . , Ll} and M = {M1, . . . ,Mm} be two arrangements of hyperplanes in Cn. We
say that a pair (I, J) formed by a subset I ⊂ {1, . . . , l} and a subset J ⊂ {1, . . . ,m} is dependent
if the hyperplanes Li, for i ∈ I, and Mj , for j ∈ J , are linearly dependent, and independent
otherwise. A circuit is a minimally dependent pair (I, J) in the sense that if I ′ ⊂ I and J ′ ⊂ J
are two subsets such that (I ′, J ′) is dependent, then I ′ = I and J ′ = J . We note that if (I, J)
is a circuit, then LI ∩MJ is an irreducible stratum.

Definition 4.1.26. Let B = (L ,M , χ) be a bi-arrangement. A strict stratum S of B is tame
if the following condition, depending on the color of S, is satisfied:

1. χ(S) = λ and there exists a hyperplane Li that contains S and such that i does not belong
to any circuit (I, J) with S ⊂ LI ∩MJ and χ(LI ∩MJ) = µ;

2. χ(S) = µ and there exists a hyperplane Mj that contains S and such that j does not
belong to any circuit (I, J) with S ⊂ LI ∩MJ and χ(LI ∩MJ) = λ.

A bi-arrangement of hyperplanes is tame if all its strict strata are tame.

Remark 4.1.27. The tameness is a local condition in the sense that the tameness of a stratum S
of B only depends on the bi-arrangement B6S consisting of the hyperplanes that contain S.

Lemma 4.1.28. A bi-arrangement is tame if and only if all its irreducible strata of codimen-
sion > 2 are tame. Thus, the tameness of a bi-arrangement only depends on its equivalence
class.

Proof. We note that the hypersurfaces K ∈ B are necessarily exact. Let us assume that all
irreducible strata of B are tame. Let S be a reducible stratum of B with a decomposition S =
S1 t · · · t Sr into irreducibles Sj . Let us assume that χ(S) = λ, the case χ(S) = µ being
dual. Then by the Künneth condition (4.1) we can assume that χ(S1) = λ. Thus, there is
a hyperplane Li ⊃ S1 such that i does not belong to any circuit (I, J) with S1 ⊂ LI ∩MJ

and χ(LI ∩MJ) = µ. Then Li contains S; furthermore, a circuit (I, J) containing i and such
that S ⊂ LI ∩MJ necessarily satisfies S ⊂ S1 ⊂ LI ∩MJ , hence S is tame.

Remark 4.1.29. Let us say that a stratum S of B is hamiltonian if it can be written S = LI∩MJ

with (I, J) a circuit. A hamiltonian stratum is irreducible, but the converse is false in general.
If B is tame, then the color of the hamiltonian strata determine the colors of all irreducible
strata, using the following basic fact about connected (=irreducible) matroids.

Lemma 4.1.30 ([Oxl11], Proposition 4.1.3). Let A = {K1, . . . ,Kk} be an arrangement of hyper-
planes, S an irreducible stratum of A , Ki,Kj ∈ A hyperplanes containing S. Then there exists
a circuit I containing i, j such that S ⊂ KI .

Example 4.1.31. 1. If A is an arrangement, then the bi-arrangements (A , λ) and (A , µ) are
tame.

2. The class of tame bi-arrangements is closed under products (this is a consequence of
Lemma 4.1.28).

3. As a consequence, any product (L , λ)× (M , µ) is tame.

4. The tameness condition implies the necessary condition of Lemma 4.1.24. For bi-arrangements
in C2, these conditions are equivalent.



104 Chapter 4. The motive of a bi-arrangement

Lemma 4.1.32. Let L and M be disjoint arrangements in Cn. Then the bi-arrangements (L ,M , eλ)
and (L ,M , eµ), equipped with the λ-extreme and µ-extreme colorings, are tame.

Proof. By duality, it is enough to do the proof for (L ,M , eλ).

– Let S be a stratum such that eλ(S) = λ, then there exists a hyperplane Li such that S ⊂ Li.
Let (I, J) be a circuit such that i ∈ I, S ⊂ LI ∩ MJ , and eλ(LI ∩ MJ) = µ. Then by
definition, I = ∅, which is a contradiction.

– Let S be a stratum such that eλ(S) = µ, then there exists a hyperplaneMj such that S ⊂Mj .
Let (I, J) be a circuit such that j ∈ J , S ⊂ LI ∩MJ , and eλ(LI ∩MJ) = λ. Then there
exists a hyperplane Li such that LI ∩MJ ⊂ Li. Then S ⊂ Li and eλ(S) = λ, which is a
contradiction.

The Orlik-Solomon bi-complex

The goal of this section is to give an explicit formula for the Orlik-Solomon bi-complex of a tame
bi-arrangement, and to prove at the same time that tame bi-arrangements are exact. Let us fix
a tame bi-arrangement B = (L ,M , χ) with L = {L1, . . . , Ll} and M = {M1, . . . ,Mm}. We
first set

E•,•(B) = E•(L )⊗ E•(M )∨ = Λ•(e1, . . . , el)⊗ Λ•(f∨1 , . . . , f∨m).

Thus, Ei,j(B) has a basis consisting of monomials eI ⊗ f∨J for |I| = i and |J | = j. We define

d′ = d⊗ id : E•,•(B)→ E•−1,•(B)

and
d′′ = id⊗ d∨ : E•,•(B)→ E•,•+1(B)

so that E•,•(B) is a bi-complex.

We consider on E•,•(B) the following homogeneous relations (subspaces of E•,•(B)) and
co-relations (subspaces of the dual space E•,•(B)∨):

– for a circuit (I, J) such that χ(LI ∩MJ) = λ, for all J ′ ⊃ J , we consider the relation

(d(eI))⊗ f∨J ′

where (d(eI)) is the ideal of Λ•(e1, . . . , el) generated by d(eI).

– for a circuit (I, J) such that χ(LI ∩MJ) = µ, for all I ′ ⊃ I, we consider the co-relation

e∨I′ ⊗ (d(fJ))

where (d(fJ)) is the ideal of Λ•(f1, . . . , fm) generated by d(fJ).

Definition 4.1.33. Let A•,•(B) be the subquotient of E•,•(B) defined by the above relations
and co-relations.

The notation will be justified by the fact that A•,•(B) is the Orlik-Solomon bi-complex of B,
see Theorem 4.1.38 below. It is worth noting that the definition of A•,•(B) only uses the colors
of the hamiltonian strata, which is not surprising in view of Remark 4.1.29.

Lemma 4.1.34. The differentials d′ and d′′ pass to the subquotient and give A•,•(B) the struc-
ture of a bi-complex.
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Proof. By duality, it is enough to prove that d′ and d′′ pass to the quotient by the relations. It
follows easily from the definitions:

d′((eK ∧ d(eI))⊗ f∨J ′) = (d(eK) ∧ d(eI))⊗ f∨J ′

and
d′′((eK ∧ d(eI))⊗ f∨J ′) =

∑
j /∈J ′
±(eK ∧ d(eI))⊗ f∨J ′∪{j}.

For integers i, j > 0 and a stratum S ∈ Si+j(B), let us denote by ESi,j(B) the direct
summand of Ei,j(B) spanned by the eI ⊗ f∨J such that LI ∩MJ = S. Note that this implies
that (I, J) is independent. Then we have a direct sum decomposition

Ei,j(B) =
⊕

S∈Si+j(B)
ESi,j(B)⊕

⊕
|I|=i
|J |=j

(I,J) dependent

Q eI ⊗ f∨J . (4.4)

Lemma 4.1.35. The direct sum decomposition (4.4) passes to the subquotient and induces

Ai,j(B) =
⊕

S∈Si+j(B)
ASi,j(B).

Proof. We first prove that if (I, J) is dependent then in the definition of A•,•(B) we either have
the relation eI ⊗ f∨J = 0 or the co-relation e∨I ⊗ fJ = 0, so that the second direct summand of
(4.4) disappears.
Let (I, J) be dependent. There exists I ′ ⊂ I, J ′ ⊂ J such that (I ′, J ′) is a circuit. We assume
that χ(LI′ ∩ MJ ′) = λ, and show that the relation eI ⊗ f∨J = 0 holds in A•,•(B) (dually,
if χ(LI′ ∩MJ ′) = µ we would get the co-relation e∨I ⊗ fJ = 0). There are two cases to consider.
First case: I ′ 6= ∅. For any i ∈ I ′, the Leibniz rule implies that eI′ = ±ei ∧ d(eI′), hence eI′ and
then eI are in the ideal of Λ•(e1, . . . , el) generated by d(eI′). Thus the relation (d(eI′)) ⊗ f∨J
entails eI ⊗ f∨J = 0 in Ai,j(B).
Second case: I ′ = ∅. Let Li be a hyperplane containing MJ ′ and satisfying the condition given
in the definition of a tame arrangement. Then one easily shows that there exists a subset J ′′ ⊂ J ′
such that ({i}, J ′′) is a circuit. Since MJ ′ ⊂ Li ∩MJ ′′ , we necessarily have χ(Li ∩MJ ′′) = λ,
and we are reduced to the first case.

We next prove that the relations and co-relations are homogeneous with respect to the
grading by S (B). Let (I, J) be a circuit such that χ(LI ∩MJ) = λ, and let J ′ ⊃ J . Then the
corresponding relation reads ∑

i∈I
±eI\{i} ⊗ f∨J ′ = 0.

For all i ∈ I, (I \ {i}, J) is independent, hence LI\{i} ∩MJ = LI ∩MJ does not depend on i,
and LI\{i} ∩MJ ′ does not depend on i. Hence the relations are homogeneous with respect to
the grading by S (B). Dually, the same is true for the co-relations.

Remark 4.1.36. By definition, the component AS•,•(B) only depends on the arrangement B6S ,
which is tame according to Remark 4.1.27. For a strict stratum Σ, we then have A6Σ

•,• (B) ∼=
A•,•(B6Σ).

Example 4.1.37. Let L = {L1, L2} and M = {M1} be three distinct lines in C2. Let Z be
the origin, we set χ(Z) = λ. This defines a tame bi-arrangement B = (L ,M , χ). The only
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circuit is ({1, 2}, {1}). Then A•,•(B) is the quotient of Λ•(e1, e2) ⊗ Λ•(f∨1 ) by the relations
(e2 − e1)f∨1 = 0 and e12f

∨
1 = 0. It can be pictured as

Q e12 // Q e1 ⊕Q e2 //

��

Q 1

��
(Q e1f

∨
1 ⊕Q e2f

∨
1 ) /(e1f

∨
1 = e2f

∨
2 ) // Q f∨1

and its rows are exact.

Theorem 4.1.38. Let B be a tame bi-arrangement. Then A•,•(B) is the Orlik-Solomon bi-
complex of B, and B is exact.

Proof. Firstly, ACn
0,0(B) is indeed one-dimensional with basis 1 ⊗ 1. Secondly, for every strict

stratum Σ, A6Σ
•,• (B) = A•,•(B) is a bi-complex by Remark 4.1.36 and Lemma 4.1.34. Thirdly,

let Σ be a strict stratum of B such that χ(Σ) = λ (the case χ(Σ) = µ being dual). We want
to show that all the rows of A6Σ

•,• (B) are exact. By the same remark as above, we can assume
that Σ is the intersection of all the hyperplanes of B and show that all the rows of A•,•(B) are
exact.

By the definition of a tame bi-arrangement, there exists a hyperplane Li such that i does
not belong to any circuit (I, J) with χ(LI ∩MJ) = µ. We define h : E•,•(B) → E•+1,•(B) by
the formula h(x ⊗ y) = (ei ∧ x) ⊗ y. Then the Leibniz rule implies that d′ ◦ h + h ◦ d′ = id,
hence h is a contracting homotopy for all the rows of E•,•(B). Hence we are done if we prove
that h passes to the subquotient and induces h : A•,•(B)→ A•+1,•(B).
The fact that h respects the relations is trivial. Let (I, J) be a circuit such that χ(LI ∩MJ) = µ.
Then by assumption i /∈ I. Thus, any subset I ′ ⊃ I that contains i is of the form I ′ = {i} t I ′′
with I ′′ ⊃ I. Hence we have h∨(eI′ ⊗ (fK ∧ d(fJ))) = ±eI′′ ⊗ (fK ∧ d(fJ)) and h respects the
co-relations.

Remark 4.1.39. The definition of A•,•(B) is automatically self-dual, viewing A•,•(B∨) as a
subquotient of Λ•(e∨1 , . . . , e∨l )⊗ Λ•(f1, . . . , fm) ∼= Λ•(f1, . . . , fm)⊗ Λ•(e∨1 , . . . , e∨l ).
Remark 4.1.40. There is a natural structure of graded module over E•(L ) on E•,•(L ,M ).
Let (L ,M , eλ) be a bi-arrangement equipped with the λ-extreme coloring; then this structure
passes to the subquotient and induces on A•,•(L ,M , eλ) a structure of graded module over the
Orlik-Solomon algebra A•(L ). Dually, A•,•(L ,M , eµ) is a graded comodule over (A•(M ))∨,
which is the same as a graded module over A•(M ).

4.1.5 Examples

A non-tame bi-arrangement which is not exact

To find a non-tame non-exact bi-arrangement, we may choose trivial examples that do not satisfy
the necessary condition of Lemma 4.1.24. Here we present a less trivial example.

Let us consider, in C3, a bi-arrangement B = (L ,M , χ) with L = {L1, L2, L3} and M =
{M1,M2} defined by the equations L1 = {x1 = 0}, L2 = {x2 = 0}, L3 = {x3 = 0}, M1 =
{x1 + x3 = 0}, M2 = {x2 + x3 = 0}. Apart from the hyperplanes, the irreducible strata are
the lines D12 = {x1 = x2 = 0}, D13 = {x1 = x3 = 0} and the point P = {x1 = x2 = x3 = 0}.
We define χ(D12) = χ(D13) = µ and χ(P ) = λ. The circuits are ({1, 3}, {1}), ({2, 3}, {2}) with
color λ, and ({1, 2}, {1, 2}) with color µ. The stratum P is not tame, thus B is not tame.

It is easy to check that B is not exact. This follows from looking at the first row (•, 0) of
its Orlik-Solomon bi-complex. The only non-zero terms are ALi1,0 = Q for i = 1, 2, 3, and AL23

2,0 =
ker

(
AL2

1,0 ⊕A
L3
1,0 → Q

)
∼= Q. The first row is then

0→ 0→ Q→ Q⊕Q⊕Q→ Q→ 0



4.2. Deletion and restriction 107

which is not exact.

A non-tame bi-arrangement which is exact

Let us consider the same bi-arrangement as in the previous example, but with the color-
ing χ(D12) = χ(D13) = λ and χ(P ) = µ (it is not its dual, since we have not exchanged L
and M ). This bi-arrangement B is not tame. Nevertheless, it can be checked that the bi-
complex A•,•(B) defined in §4.1.4 is indeed the Orlik-Solomon bi-complex of B and that B is
exact.

Another non-tame bi-arrangement of hyperplanes which is exact

Let us consider a bi-arrangement B = (L ,M , χ) in C3 with L = {L1, L2, L3} and M =
{M1,M2,M3} defined by L1 = {x1 = 0}, L2 = {x2 = 0}, L3 = {x3 = 0}, M1 = {x2 + x3 =
0}, M2 = {x1 + x3 = 0}, M3 = {x1 + x2 = 0}. The irreducible strata are the lines D12 =
{x1 = x2 = 0}, D13 = {x1 = x3 = 0}, D23 = {x2 = x3 = 0} and the point P = {x1 =
x2 = x3 = 0}. We set χ(D12) = χ(D13) = χ(D23) = λ and χ(P ) = µ. The circuits
are ({1, 2}, {3}), ({1, 3}, {2}), ({2, 3}, {1}) with color λ, and ({1, 2}, {1, 2}), ({1, 3}, {1, 3}), ({2, 3}, {2, 3})
with color µ. The stratum P is not tame, thus B is not tame.

It is easy to check that B is exact, but that its Orlik-Solomon bi-complex is not the one
defined in § 4.1.4.

4.2 Deletion and restriction

In this section we introduce deletion and restriction of bi-arrangements of hyperplanes. The main
result is Theorem 4.2.9 which proves that there is a deletion-restriction short exact sequence in
the formalism of Orlik-Solomon bi-complexes. It implies that the exactness property is “stable
by extension” in the sense that a bi-arrangement is exact if its deletion and its restriction with
respect to some hyperplane are exact. When we apply our results to bi-arrangements B =
(A , λ), we recover the classical deletion and restriction short exact sequence for Orlik-Solomon
algebras [OT92, Theorem 3.65].

4.2.1 Deletion

Let A be an arrangement in Cn, and K0 ∈ A . The deletion of A with respect to K0 is the
arrangement δA = A \ {K0}.

Lemma 4.2.1. 1. We have an inclusion S•(δA ) ⊂ S•(A ). The complement consists in
those strata S such that there exits a decomposition S = K0 t T .

2. Any irreducible stratum of δA is irreducible as a stratum of A .

Proof. 1. The inclusion is trivial. For a stratum S of A , let T be the intersection of all the
hyperplanes K ∈ A , K 6= K0, that contain S. If S = T then S is a stratum of δA .
Otherwise, S is not a stratum of δA and we have a decomposition S = K0 t T .

2. Let S ∈ S (δA ) such that S is reducible as a stratum of A . Let S = S′ t S′′ be a
decomposition for S, with S′ and S′′ strict strata of A . If S′ is not a stratum of δA
then the first point implies that we have a decomposition S′ = K0 t T ′, and hence a
decompositon S = K0 t T ′ t S′′, and the first point implies that S is not a stratum
of δA , which is a contradiction. Hence S′ and S′′ are strata of δA , and S is reducible as
a stratum of δA .



108 Chapter 4. The motive of a bi-arrangement

If now B = (A , χ) is a bi-arrangement, we can define a bi-arrangement (δA , χ′) by defin-
ing χ′ on the irreducible strata of δA as the resriction of χ. Lemma 4.2.1 implies that this
operation is well-defined among equivalence classes of bi-arrangements (Definition 4.1.3).

Definition 4.2.2. We write δB = (δA , χ′) and call it the deletion of B with respect to K0.

Definition 4.2.3. The deletion of B with respect to K0 is color-consistent if there exists in the
respective equivalence classes of B and δB representatives such that χ′ : S+(δB) → {λ, µ} is
obtained as the restriction of χ : S+(B) → {λ, µ}. In this case, we then implicitly work with
these representatives.

Example 4.2.4. Let B = {K0,K1,K2} consist of three distinct lines in C2, and Z be the origin.
The irreducible strata of B are {K0,K1,K2, Z}. We let χ(K0) = λ, χ(K1) = χ(K2) = µ, χ(Z) =
λ. Then δB = {K1,K2} and the irreducible strata of δB are {K1,K2}. The Künneth condition
for δB implies that χ(Z) = µ for δB. Thus, this deletion is not color-consistent.

Proposition 4.2.5. Let us assume that the deletion δB of B with respect to K0 is color-
consistent, and that χ(K0) = λ. Then there exists a unique collection of morphisms

δS : ASi,j(δB)→ ASi,j(B)

for S ∈ Si+j(δB) such that

– δCn : ACn
0,0(δB)→ ACn

0,0(B) is the identity of Q;

– for every strict stratum Σ ∈ S+(δB), the morphisms δS induce a morphism of bi-complexes

δ : A6Σ
•,• (δB)→ A6Σ

•,• (B).

If χ(K0) = µ, the dual statement is true, with morphisms δS : ASi,j(B)→ ASi,j(δB).

Proof. We treat the case χ(K0) = λ, the case χ(K0) = µ being dual. We define the morphisms δS
by induction on the codimension of S, the case of codimension 0 being imposed by the definition.
Let Σ be a strict stratum of δB such that all the morphisms δS have been defined for strata S
that strictly contain Σ. Since the deletion is color-consistent, Σ has the same color in B and δB.
There are two cases.

1. χ(Σ) = λ. We have the following diagram.

0 // AΣ
i,j(δB)

δΣ

��

d′ //
⊕

Σ
1
↪→S

S∈S (δB)

ASi−1,j(δB)

⊕
δS

��

d′ //
⊕

Σ
2
↪→T

T∈S (δB)

ATi−2,j(δB)

⊕
δT

��

0 // AΣ
i,j(B)

d′
//
⊕

Σ
1
↪→S

ASi−1,j(B)
d′

//
⊕

Σ
2
↪→T

ATi−2,j(B)

(4.5)

The right square commutes by the induction hypothesis applied to a stratum S ∈ S (δB).
Since the bottom row of the diagram is exact, there is a unique way of completing the
diagram with the dotted arrow δΣ. This morphism is then automatically compatible with
the differentials d′. To see that it is compatible with the differentials d′′, a diagram chase
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shows that it is enough to show that the following diagram commutes.

⊕
Σ

2
↪→T

T∈S (δB)

ATi−1,j−1(δB)

d′′

��

⊕
δT //

⊕
Σ

2
↪→T

ATi−1,j−1(B)

d′′

��⊕
Σ

1
↪→S

S∈S (δB)

ASi−1,j(δB) ⊕
δS

//
⊕

Σ
1
↪→S

ASi−1,j(B)

(4.6)

According to the induction hypothesis applied to a stratum S ∈ S (δB), one has for S 1
↪→ T

with T ∈ S (δB), d′′S,T ◦ δT = δS ◦ d′′S,T . Thus, all we need to prove is that if S /∈ S (δB)
and T ∈ S (δB), the composite d′′S,T ◦ δT is zero. We prove that the differential d′′S,T is
zero. According to Lemma 4.2.1, there is a decomposition S = K0 t T , hence the Künneth
formula (Proposition 4.1.18) implies that d′′S,T factors as

ATi−1,j−1(B)→ AK0
0,1(B)⊗ATi−1,j−1(B) ↪→ ASi−1,j(B).

Since χ(K0) = λ we have AK0
0,1(B) = 0, hence d′′S,T = 0 and we are done.

2. χ(Σ) = µ. It is similar to the first case. The existence of δΣ follows from the same
argument using the commutativity of the square (4.6). The compatibility with the differ-
entials d′′ is then automatic. To check the compatibility with the differentials d′, one has
to use the commutativity of the right square in diagram (4.5).

4.2.2 Restriction

Let A be an arrangement in Cn, and K0 ∈ A . The restriction of A with respect to K0 is the
arrangement ρA on K0 ∼= Cn−1 consisting in the intersections of all hyperplanes of A \ {K0}
with K0.

Lemma 4.2.6. 1. We have an inclusion S•(ρA ) ⊂ S•+1(A ) corresponding to those strata
of A that are contained in K0.

2. An irreducible stratum for ρA is either an irreducible stratum for A or has a decomposi-
tion S = K0 t T with T an irreducible stratum of A .

Proof. 1. This is trivial.

2. Let us work in the dual space (Cn)∨. Let f0 ∈ (Cn)∨ be a linear form that defines K0.
Then the restriction corresponds to the quotient (Cn)∨ � (Cn)∨/Cf0. Let S ⊂ K0 be
a stratum and S⊥ = S⊥1 ⊕ S⊥2 ⊕ · · · ⊕ S⊥r be its decomposition into irreducibles. Then
we can assume that f0 ∈ S⊥1 . We then have a decomposition in (Cn)∨/Cf0: S⊥/Cf0 =
(S⊥1 /Cf0) ⊕ S⊥2 ⊕ · · · ⊕ S⊥r . If S⊥/Cf0 is irreducible in Cn/Cf0, we have two cases.
Either r = 1, which means that S⊥ is irreducible, or r = 2 and S⊥1 /Cf0 = 0, which means
that S⊥ has a decomposition S⊥ = Cf0 ⊕ S⊥2 with S⊥2 irreducible.
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If now B = (A , χ) is a bi-arrangement of hyperplanes, we can define an arrangement of hy-
perplanes (ρA , χ′) by defining the coloring χ′ on the irreducible strata of ρA . For an irreducible
stratum S of ρA which is an irreducible stratum of A , we set χ′(S) = χ(S). For an irreducible
stratum S of ρA of the form S = K0 t T with T irreducible, we set χ′(S) = χ(T ). Lemma 4.2.6
implies that this operation is well-defined among equivalence classes of bi-arrangements (Defi-
nition 4.1.3).

Definition 4.2.7. We write ρB = (ρA , χ′) and call it the restriction of B with respect to K0.

If we choose a representative of B in its equivalence class such that for a decomposition K0 t
T we have χ(K0 t T ) = χ(T ), then we can choose a representative of ρB in its equivalence
class such that χ′ : S+(ρB) → {λ, µ} is the restriction of χ : S+(B) → {λ, µ}. In the sequel,
we implicitly work with these representatives.

Proposition 4.2.8. Let us assume that χ(K0) = λ. Then there exists a unique collection of
morphisms

ρS : ASi,j(B)→ ASi−1,j(ρB)

for S ∈ Si+j−1(ρB) such that

— ρK0 : AK0
1,0(B)→ AK0

0,0(ρB) is the identity of Q;

— for every strict stratum Σ ∈ S+(ρB), the morphisms ρS induce a morphism of bi-complexes 1

ρ : A6Σ
•,• (B)→ A6Σ

•−1,•(ρB).

If χ(K0) = µ, the dual statement is true, with morphisms ρS : ASi,j−1(ρB)→ ASi,j(B).

Proof. We treat the case χ(K0) = λ, the case χ(K0) = µ being dual. We define the morphisms ρS
by induction on the codimension of S in K0, the case of codimension 0 being imposed by the
definition. Let Σ be a strict stratum of ρB such that all the morphisms ρS have been defined
for strata S that strictly contain Σ. There are two cases.

1. χ(Σ) = λ. The proof is similar to the proof of Proposition 4.2.5. The existence of ρΣ is
obtained by filling the dotted arrow in the following commutative diagram.

0 // AΣ
i,j(B)

ρΣ

��

d′ //
⊕

Σ
1
↪→S

ASi−1,j(B)

⊕
ρS

��

d′ //
⊕

Σ
2
↪→T

ATi−2,j(B)

⊕
ρT

��

0 // AΣ
i−1,j(ρB)

−d′
//
⊕

Σ
1
↪→S

S∈S (ρB)

ASi−2,j(ρB)
−d′
//
⊕

Σ
2
↪→T

T∈S (ρB)

ATi−3,j(ρB)

The fact that the right square commutes is implied by the induction hypothesis applied
to a stratum S ∈ S (ρB). One has to note that for an inclusion S 1

↪→ T , if T ∈ S (ρB)
then T ⊂ K0 and hence S ⊂ K0 and S ∈ S (ρB). The above diagram guarantees
the compatibility of ρΣ with the differentials d′. To see that ρΣ is compatible with the

1. According to the Koszul sign rule, the differential d′ gets a minus sign in A6Σ
•−1,•(ρB).
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differentials d′′, a diagram chase shows that it is enough to show that the following diagram
commutes. ⊕

Σ
2
↪→T

ATi−1,j−1(B)

d′′

��

⊕
ρT //

⊕
Σ

2
↪→T

T∈S (ρB)

ATi−2,j−1(ρB)

d′′

��⊕
Σ

1
↪→S

ASi−1,j(B) ⊕
ρS

//
⊕

Σ
1
↪→S

S∈S (ρB)

ASi−2,j(ρB)

It is a consequence of the induction hypothesis applied to a stratum S ∈ S (ρB).

2. χ(Σ) = µ. This is similar to the first case and left to the reader.

4.2.3 The deletion-restriction short exact sequence

Theorem 4.2.9. Let B be a bi-arrangement, and K0 ∈ B. We assume that the deletion δB
with respect to K0 is color-consistent, and let ρB be the restriction of B with respect to K0. We
also assume that δB and ρB are exact.

1. If χ(K0) = λ then the deletion and restriction morphisms induce a short exact sequence

0→ A•,•(δB) δ→ A•,•(B) ρ→ A•−1,•(ρB)→ 0.

Dually, if χ(K0) = µ, then we get a short exact sequence

0→ A•,•−1(ρB) ρ→ A•,•(B) δ→ A•,•(δB)→ 0.

2. B is exact.

More precisely, the statement of the Theorem above includes three special cases. Let S be a
stratum of B.

– If S is a stratum of δB but not a stratum of ρB, then we get an isomorphism

0→ AS•,•(δB) δS→ AS•,•(B)→ 0→ 0.

– If S is a stratum of ρB but not a stratum of δB, then we get an isomorphism

0→ 0→ AS•,•(B) ρS→ AS•−1,•(ρB)→ 0.

– If S is a stratum of both δB and ρB, then we get a short exact sequence

0→ AS•,•(δB) δS→ AS•,•(B) ρS→ AS•−1,•(ρB)→ 0.

Proof. We treat the case χ(K0) = λ, the case χ(K0) = µ being dual.

1. We first deal with the special cases separately.
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– If S is a stratum of δB but not a stratum of ρB, this means that S is not contained
in K0, hence it is also the case for all strata T containing S. One then easily proves
by induction on the codimension of S that δS : ASi,j(δB)→ ASi,j(B) is an isomorphism.
The case of codimension 0 is easy by definition.

– If S is a stratum of ρB but not a stratum of δB, then Lemma 4.2.1 implies that
we have a decomposition S = K0 t S′. Since χ(K0) = λ, we have AK0

1,0(B) = Q
and AK0

0,1(B) = 0, hence the Künneth formula (Proposition 4.1.18) implies that we
have an isomorphism ASi,j(B) ∼= AS

′
i−1,j(B). Now by our convention on the restriction,

we have χ(K0 t S′) = χ(S′); more generally, for every stratum T ′ containing S′ we
have χ(K0 t T ′) = χ(T ′). It is then easy to show by induction on the codimension of S′
that we have an isomorphism AS

′
i−1,j(B) ∼= AK0tS′

i−1,j (ρB). The case of codimension 0
is easy by definition. One easily sees that the isomorphism ASi,j(B) ∼= ASi−1,j(ρB) is
indeed ρS .

Now we deal with the third case by induction on the codimension of the strata. Let Σ be
a strict stratum of B which is a stratum of both δB and ρB. Let us assume the result
for all strata that strictly contain Σ. We deal with the case χ(Σ) = λ, the case χ(Σ) = µ
being similar. We have the following commutative diagram.

0

��

0

��

0

��

0 // AΣ
i,j(δB) //

��

⊕
Σ

1
↪→S

S∈S (δB)

ASi−1,j(δB) //

��

⊕
Σ

2
↪→T

T∈S (δB)

ATi−2,j(δB) //

��

· · ·

0 // AΣ
i,j(B) //

��

⊕
Σ

1
↪→S

ASi−1,j(B) //

��

⊕
Σ

2
↪→T

ATi−2,j(B) //

��

· · ·

0 // AΣ
i−1,j(ρB) //

��

⊕
Σ

1
↪→S

S∈S (ρB)

ASi−2,j(ρB) //

��

⊕
Σ

2
↪→T

T∈S (ρB)

ATi−3,j(ρB) //

��

· · ·

0 0 0

We use the following facts:

– the top row is exact, since δB is exact;
– the middle row and the bottom row are exact at the two first places by definition of the
Orlik-Solomon bi-complex;

– the second and third columns are exact by the induction hypothesis and the special
cases.

Then a diagram chase shows that the first column is exact. Note that in the case χ(Σ) = µ,
we use the fact that ρB is exact.

2. It is a direct consequence of the first point and the long exact sequence in cohomology.
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4.2.4 The case of tame bi-arrangements of hyperplanes

Let B = (L ,M , χ) be a tame bi-arrangement of hyperplanes with L = {L1, . . . , Ll} and M =
{M1, . . . ,Mm}. For the sake of convenience, we discuss the deletion and restriction with respect
to Ll (resp. Mm).

Proposition 4.2.10. 1. We assume that the deletion δB of B with respect to Ll is color-
consistent and tame. The deletion morphism δ : A•,•(δB) → A•,•(B) is then induced by
the natural inclusion Λ•(e1, . . . , el−1)⊗Λ•(f∨1 , . . . , f∨m) ↪→ Λ•(e1, . . . , el)⊗Λ•(f∨1 , . . . , f∨m).

2. We assume that the restriction ρB of B with respect to Ll is tame. The restriction
morphism ρ : A•,•(B) → A•−1,•(ρB) is then induced, for I ⊂ {1, . . . , l − 1} and J ⊂
{1, . . . ,m}, by ρ(eI ⊗ f∨J ) = 0 and ρ((eI ∧ el)⊗ f∨J ) = eI ⊗ f∨J .

3. We assume that the deletion δB of B with respect to Mm is color-consistent and tame.
The deletion morphism δ : A•,•(B) → A•,•(δB) is then induced by the natural projec-
tion Λ•(e1, . . . , el)⊗ Λ•(f∨1 , . . . , f∨m)� Λ•(e1, . . . , el)⊗ Λ•(f∨1 , . . . , f∨m−1).

4. We assume that the restriction ρB of B with respect to Mm is tame. The restriction
morphism ρ : A•,•−1(ρB) → A•,•(B) is then induced, for I ⊂ {1, . . . , l} and J ⊂
{1, . . . ,m− 1}, by ρ(eI ⊗ f∨J ) = eI ⊗ (f∨J ∧ f∨m).

Proof. The details are left to the reader. In every case, one only needs to show that the mor-
phisms described pass to the subquotient and are compatible with the differentials.

4.3 Bi-arrangements of hypersurfaces

4.3.1 Arrangements of hypersurfaces and resolution of singularities

We fix a complex manifold X. An arrangement of hypersurfaces in X is a finite set A of smooth
hypersurfaces of X which is locally an arrangement of hyperplanes. More precisely, it means
that around every point p ∈ X we can find a system of local coordinates centered at p such that
all hypersurfaces K ∈ A are defined by a linear equation.
Example 4.3.1. A (simple) normal crossing divisor in X is a special case of an arrangement
of hypersurfaces. In this case, we can find local coordinates around every point such that all
hypersurfaces are defined by the vanishing of a coordinate.
Example 4.3.2. 1. An arrangement of hyperplanes in Cn is an arrangement of hypersurfaces.

More generally, a finite set of hyperplanes of Cn that do not necessarily pass through the
origin is an arrangement of hypersurfaces.

2. A finite set of hyperplanes of Pn(C) is an arrangement of hypersurfaces.

3. If Y is a Riemann surface and X = Y n is the n-fold cartesian power of Y , then there are
distinguished hypersurfaces in X: the diagonals {yi = yj}, and the hypersurfaces {yi =
a} where a ∈ Y is a point. Any finite set of such hypersurfaces is an arrangement of
hypersurfaces. In the context of motivic periods, these arrangements of hypersurfaces
have been studied by S. Bloch [Blo12].

A stratum of A is a connected component of a non-empty intersection KI =
⋂
i∈I Ki of some

hypersurfaces Ki ∈ A . It is a submanifold of X. For instance, the whole space X = K∅ is
always a stratum of A , and the other strata are called strict. A stratum S is reducible (resp.
irreducible) if it is reducible (resp. irreducible) locally around every point p ∈ S. Every hyper-
surface K ∈ A is irreducible; if they are the only irreducible strata, then A is a normal crossing
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divisor.

The class of arrangements of hypersurfaces is closed under blow-ups along a certain class of
strata, that we now introduce.

Definition 4.3.3. Let A be an arrangement of hyperplanes in Cn. A strict stratum Z of A is
good if there exists a stratum U and a decomposition Z t U such that for every hyperplane K ∈
A , K contains Z or U .

Let A be an arrangement of hypersurfaces in X. A strict stratum Z of A is good if it is
good in the above sense locally around every point p ∈ Z.

For instance, a stratum of dimension 0 (a point) is always good.

Lemma 4.3.4. Let A be an arrangement of hypersurfaces in X, and S be a minimal (for the
usual inclusion order) irreducible stratum of A . Then S is good.

Proof. The statement is local, so we can assume that X = Cn and A is an arrangement of
hyperplanes. Let M =

⋂
K∈A K be the minimal stratum of A and M = S1 t · · · t Sr be its

decomposition into irreducibles. Then the Si’s are exactly the minimal irreducible strata. We can
then assume that S = S1. Let us define U = S2 t · · · t Sr. Then we have a decomposition S t U
and every hyperplane K ∈ A contains S or U , hence S is a good stratum.

Lemma 4.3.5. Let A be an arrangement of hypersurfaces in X and Z a good stratum of A of
codimension > 2. Let π : X̃ → X be the blow-up of X along Z and E = π−1(Z) the exceptional
divisor. We write Ỹ for the strict transform of a submanifold Y ⊂ X. Then

1. The set Ã = {E} ∪ {K̃ , K ∈ A } is an arrangement of hypersurfaces in X̃.

2. The strata of Ã are of the form S̃ or E∩ S̃, for strata S of A that are not contained in Z.

3. The irreducible strata of A are E and the strict transforms S̃ of the irreducible strata S
of A that are not contained in Z.

Definition 4.3.6. We call Ã = {E} ∪ {K̃ , K ∈ A } the blow-up of A along Z.

Proof. The statement is local, so we assume that X = Cn and A is an arrangement of hyper-
planes. Since Z is a good stratum, we can choose coordinates (z1, . . . , zn) such that Z = {z1 =
· · · = zr = 0} for some integer r, and such that the hyperplanes K ∈ A are given by equations
of the form α1z1 + · · ·+ αrzr = 0 or αr+1zr+1 + · · ·+ αnzn = 0.

1. We have r local charts for the blow-up π : X̃ → X, given for k = 1, . . . , r by

πk(z1, . . . , zr) = (zkz1, . . . , zkzk−1, zk, zkzk+1, . . . , zkzr, zz+1, . . . , zn).

In such a chart, the exceptional divisor is E = {zk = 0}; the strict transform of K =
{α1z1 + · · ·+αrzr = 0} is K̃ = {α1z1 + · · ·+αk−1zk−1 +αk +αk+1zk+1 + · · ·+αrzr = 0};
the strict transform ofK = {αr+1zr+1+· · ·+αnzn = 0} is K̃ = {αr+1zr+1+· · ·+αnzn = 0}.
All these equations are linear, hence the result.

2. For S a stratum of A , it is easy to show using the above local charts that we have

S̃ = ∅ ⇔ E ∩ S̃ = ∅ ⇔ S ⊂ Z

hence the result.
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3. The exceptional divisor E is obviously irreducible. Now let us fix a stratum S of A not
contained in Z. Then it is easy to see using the above local charts that E t S̃ and that
for every K ∈ A , E ∩ S̃ ⊂ K̃ ⇒ S ⊂ K; thus, E ∩ S̃ is reducible if S is not the whole
space Cn. We are left with proving that S̃ is irreducible if and only if S is irreducible. It
it easy to see that a decomposition S = A t B gives a decomposition S̃ = Ã t B̃ and vice
versa, hence the result.

Blow-ups along good strata are enough to resolve the singularities of hypersurface arrange-
ments, as the next theorem shows.

Theorem 4.3.7. Let A be an arrangement of hypersurfaces in X. We inductively define a
sequence of complex manifolds X(k) and arrangements of hypersurfaces A (k) inside X(k), via
the following process.

(a) X(0) = X and A (0) = A ;

(b) for k > 0, let Z(k) be a minimal irreducible stratum of A (k) of codimension > 2, X(k+1) →
X(k) the blow-up of X(k) along Z(k). We let A (k+1) = Ã (k) be the blow-up of A (k)

along Z(k).

After a finite number of steps, we get a normal crossing divisor A (∞) inside X(∞).

Proof. The process is well-defined according to Lemma 4.3.4 and Lemma 4.3.5. For k > 0,
let I (k) be the set of irreducible strata of A (k) of codimension > 2. Then Z(k) is a minimal
element of I (k), and I (k+1) consists of the strict transforms of the other elements of I (k). Thus,
we get |I (k+1)| = |I (k)|−1. After a finite number of steps, we end up with an arrangement A (∞)

inside X(∞) such that I (∞) is empty, hence A (∞) is a normal crossing divisor.

4.3.2 The motive of a bi-arrangement of hypersurfaces

Definition 4.3.8. LetX be a complex manifold. A bi-arrangement of hypersurfaces B = (A , χ)
in X is the data of an arrangement of hypersurfaces A in X along with a coloring function

χ : S+(A )→ {λ, µ}

such that the Künneth condition (4.1) is satisfied locally around every point of X.

As for bi-arrangements of hyperplanes, only the colors of the irreducible strata will mat-
ter, and thus we will consider bi-arrangements of hypersurfaces up to equivalence (see Defini-
tion 4.1.3).

We will also use the notational conventions 4.1.5 and 4.1.6 in the context of bi-arrangements
of hypersurfaces. When the underlying arrangement of hypersurfaces is a normal crossing divisor,
then χ is only determined (up to equivalence) by the colors χ(K) of the hypersurfaces K ∈ B,
hence we can simply write B = (L ,M ).

We also define the dual B∨ of a bi-arrangement of hypersurfaces.

Let B = (A , χ) be a bi-arrangement of hypersurfaces in a complex manifold X, and Z be
a good stratum of B of codimension > 2. Let π : X̃ → X be the blow-up of X along Z,
and E = π−1(Z) be the exceptional divisor. Let Ã = {E} ∪ {K̃ , K ∈ A } be the blow-up of A
along Z. Then we define a bi-arrangement of hypersurfaces B̃ = (Ã , χ̃) in X̃ whose underlying
arrangement of hypersurfaces is Ã = {E}∪{K̃ , K ∈ A }. We define the coloring χ̃ only on the
irreducible strata: we set χ̃(E) = χ(Z), and for an irreducible stratum S not contained in Z,
we set χ̃(S̃) = χ(S).
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Definition 4.3.9. We call B̃ = (Ã , χ̃) the blow-up of B along Z.

If Z is irreducible (which will be our main case of interest) then the blow-up is a well-defined
operation among equivalence classes of bi-arrangements of hypersurfaces.

Let B be a bi-arrangement of hypersurfaces in a complex manifold X. We inductively define
a sequence of complex manifolds X(k) and bi-arrangements of hypersurfaces B(k) inside X(k),
via the following process.

(a) X(0) = X and B(0) = B;

(b) for k > 0, let Z(k) be a minimal irreducible stratum of B(k) of codimension > 2, X(k+1) →
X(k) the blow-up of X(k) along Z(k). We let B(k+1) = B̃(k) be the blow-up of B(k)

along Z(k).

As in the case of arrangements of hypersurfaces, we get after a finite number of steps a bi-
arrangement of hypersurfaces B(∞) insideX(∞), whose underlying arrangement of hypersurfaces
is a normal crossing divisor. We write B(∞) = (L (∞),M (∞)), with L (∞) ∪M (∞) a normal
crossing divisor. By an abuse of notation, we write L (∞) (resp. M (∞)) for the union of all the
hypersurfaces K ∈ L (∞) (resp. K ∈M (∞)).

Definition 4.3.10. The motive of the bi-arrangement of hypersurfaces B is the collection of
relative cohomology groups (see (4.14))

H•(B) = H•(X(∞) \L (∞),M (∞) \M (∞) ∩L (∞)).

If X is a smooth complex variety, then H•(B) is endowed with a mixed Hodge structure.

At each step of the blow-up, we choose a minimal irreducible stratum of codimension > 2.
One could worry that the resulting cohomology group H•(B) depends on the resulting order of
the blow-ups. It is not the case, as the work of Li shows [Li09, Theorem 1.3].

Example 4.3.11. 1. If A is a hypersurface arrangement in X, we have

H•(A , λ) ∼= H•(X \A ) and H•(A , µ) ∼= H•(X,A ).

2. For B = (L ,M ) a normal crossing divisor, then there is no blow-up and we simply have

H•(L ,M ) = H•(X \L ,M \M ∩L ).

Remark 4.3.12. There is also the compactly-supported version (see (4.18))

H•c (B) = H•c (X(∞) \L (∞),M (∞) \M (∞) ∩L (∞)).

Putting n = dimC(X), the duality of bi-arrangements is viewed as a Poincaré-Verdier duality
isomorphism (Proposition 4.7.4)

Hk(B∨) ∼=
(
H2n−k
c (B)

)∨
.
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4.3.3 The Orlik-Solomon bi-complex, and blow-ups

Let B be a bi-arrangement of hypersurfaces in a complex manifold X. The definition of the
Orlik-Solomon bi-complex of B may be repeated word for word from the local case: we start
with AX0,0(B) = Q and define the bi-complexes A6Σ

•,• (B) by induction on the codimension of Σ.
Note that A6Σ

•,• (B) only depends on the hypersurfaces that contain Σ and can be computed in
a local chart around any point of Σ. We say that a bi-arrangement of hypersurfaces is exact if
all its strict strata are exact in the sense of Definition 4.1.16.

It is worth noting that although every A6Σ
•,• (B) is a bi-complex, the direct sum

⊕
S A

S
•,• is

not in general. For instance, if B is made of two non-intersecting hypersurfaces, one colored λ
and the other colored µ, we get the following non-commutative square.

Q id //

��

Q

id
��

0 // Q

Let now Z be a good stratum of B, π : X̃ → X be the blow-up along Z, E = π−1(Z) be the
exceptional divisor, and B̃ be the blow-up of B along Z. The following Proposition, which will
be crucial in the sequel, expresses the Orlik-Solomon bi-complex of B̃ in terms of that of B.

Proposition 4.3.13. Let us assume that χ(Z) = λ. We have isomorphisms, for S a stratum
of B that is not contained in Z:

AS̃i,j(B̃) ∼= ASi,j(B) and AE∩S̃i,j (B̃) ∼= ASi−1,j(B).

They are compatible with the differentials in that we have the following commutative diagrams.

1. For the inclusions S̃ 1
↪→ T̃ :

AS̃i,j(B̃)
d′
S̃,T̃ //

OO
∼=
��

AT̃i−1,j(B̃)
OO
∼=
��

AT̃i,j−1(B̃)
d′′
S̃,T̃ //

OO
∼=
��

AS̃i,j(B̃)
OO
∼=
��

ASi,j(B)
d′S,T

// ATi−1,j(B) ATi,j−1(B)
d′′S,T

// ASi,j(B)

2. For the inclusions E ∩ S̃ 1
↪→ E ∩ T̃ :

AE∩S̃i,j (B̃)
d′
E∩S̃,E∩T̃ //

OO
∼=
��

AE∩T̃i−1,j(B̃)
OO
∼=
��

AE∩T̃i,j−1(B̃)
d′′
E∩S̃,E∩T̃ //

OO
∼=
��

AE∩S̃i,j (B̃)
OO
∼=
��

ASi−1,j(B)
−d′S,T

// ATi−2,j(B) ATi−1,j−1(B)
d′′S,T

// ASi−1,j(B)

3. For the inclusions E ∩ S̃ 1
↪→ S̃:

AE∩S̃i,j (B̃)
d′
E∩S̃,S̃ //

OO
∼=
��

AS̃i−1,j(B̃)
OO
∼=
��

AS̃i,j−1(B̃)
d′′
E∩S̃,S̃ //

OO
∼=
��

AE∩S̃i,j (B̃)
OO
∼=
��

ASi−1,j(B)
id

ASi−1,j(B) ASi,j−1(B) 0
// ASi−1,j(B)

The case χ(Z) = µ is dual.
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Proof. We have an isomorphism π : X̃ \ E
∼=→ X \ Z. Let us recall that the construction

of the Orlik-Solomon bi-complex is local. Let S be a stratum of B that is not contained
in Z, p ∈ S \ S ∩ Z, p̃ = π−1(p) ∈ S̃. Around the point p̃, the local situation is the same as the
one around the point p, hence the first isomorphism.
For the second isomorphism, we see using local coordinates as in the proof of Lemma 4.3.5 that
the local situation around a point of E∩ S̃ is that of a decomposition E t S̃. Thus, the Künneth
formula (Proposition 4.1.18) implies that we have

AE∩S̃i,j (B̃) ∼=
(
AE1,0(B̃)⊗AS̃i−1,j(B̃)

)
⊕
(
AE0,1(B̃)⊗AS̃i,j−1(B̃)

)
.

Since we have χ(E) = λ, we have AE1,0(B̃) = Q and AE0,1(B̃) = 0. Hence the second isomorphism
follows from the first isomorphism AS̃i−1,j(B̃) ∼= ASi−1,j(B).
The compatibility with the differentials is easy. One only has to note the minus sign in front
of d′S,T which follows from the Koszul sign rule in a tensor product of two (bi-)complexes.

Corollary 4.3.14. If B is exact, then B̃ is exact.

Proof. According to Corollary 4.1.19 it is enough to check the exactness of the strata S̃, for S an
irreducible stratum of B not contained in Z. Proposition 4.3.13 implies that we have AS̃•,•(B̃) ∼=
AS•,•(B), hence the result.

4.4 The geometric Orlik-Solomon bi-complex and the main the-
orem

4.4.1 The geometric Orlik-Solomon bi-complex

We fix a complex manifoldX and a bi-arrangement of hypersurfaces B inX. We fix an integer q.
Let us write, for S ∈ Si+j(B),

(q)DS
i,j(B) = Hq−2i(S)(−i)⊗ASi,j(B).

If X is a smooth complex variety and the hypersurfaces K ∈ B are smooth divisors (we call this
the “algebraic case”), then this is endowed with a mixed Hodge structure. If furthermore X is
projective, it is a pure Hodge structure of weight q.

Let ιTS : S 1
↪→ T be an inclusion of strata of B, with S ∈ Si+j(B) and T ∈ Si+j−1(B). We

refer the reader to Appendix 4.8 for details on Gysin morphisms and pull-backs.

– We have the Gysin morphism (ιTS )∗ : Hq−2i(S)(−i)→ Hq−2i+2(T )(−i+ 1). We then define a
morphism 2

d′S,T : (q)DS
i,j(B)→ (q)DT

i−1,j(B)

by the formula
d′S,T (s⊗X) = (ιTS )∗(s)⊗ d′S,T (X)

for s ∈ Hq−2i(S)(−i) and X ∈ ASi,j(B).

2. We make an abuse of notation by denoting by the same symbols d′S,T and d′′S,T the differentials in the
Orlik-Solomon bi-complex and in the geometric Orlik-Solomon bi-complex; no confusion should arise.
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– We have the pull-back morphism (ιTS )∗ : Hq−2i(T )(−i) → Hq−2i(S)(−i). We then define a
morphism

d′′S,T : (q)DT
i,j−1(B)→ (q)DS

i,j(B)

by the formula
d′′S,T (t⊗X) = (ιTS )∗(t)⊗ d′′S,T (X)

for t ∈ Hq−2i(T )(−i) and X ∈ ATi,j−1(B).

Let us now set
(q)Di,j(B) =

⊕
S∈Si+j(B)

(q)DS
i,j(B).

The above morphisms induce

d′ : (q)D•,•(B)→ (q)D•−1,•(B)

and
d′′ : (q)D•,•−1(B)→ (q)D•,•(B).

If X is a smooth complex variety, d′ and d′′ are morphisms of mixed Hodge structures. We
will prove the following theorem in the rest of this section.

Theorem 4.4.1. The differentials d′ and d′′ make (q)D•,•(B) into a bi-complex.

Definition 4.4.2. We call (q)D•,•(B) the geometric Orlik-Solomon bi-complex of index q of B.
We will denote by (q)D•(B) its total complex, and call it the geometric Orlik-Solomon complex
of index q:

(q)Dn(B) =
⊕
i−j=n

(q)Di,j(B).

Example 4.4.3. 1. Let A be an arrangement of hypersurfaces in X. Then the geometric
Orlik-Solomon bi-complexes for (A , λ) are concentrated in bi-degrees (n, 0) with

(q)Dn,0(A , λ) =
⊕

S∈Sn(A )
Hq−2n(S)(−n)⊗An(A ).

Up to a shift, it is the same as the Gysin complex defined in Chapter 3. Dually, the
geometric Orlik-Solomon bi-complexes for (A , µ) are concentrated in bi-degrees (0, n)
with

(q)D0,n(A , µ) =
⊕

S∈Sn(A )
Hq(S)⊗ (An(A ))∨ .

2. If B = (L ,M ) is a normal crossing divisor with L = {L1, . . . , Ll} and M = {M1, . . . ,Mm},
then we get

(q)Di,j(L ,M ) =
⊕
|I|=i
|J |=j

Hq−2i(LI ∩MJ)(−i)

and the Orlik-Solomon complexes (q)D•(L ,M ) form the E1 page of the spectral sequence
(4.15) described in Appendix 4.7.

In the rest of this section, we prove Theorem 4.4.1 by showing that in (q)D•,•(B) we have
the equalities d′ ◦ d′ = 0, d′′ ◦ d′′ = 0 (Lemma 4.4.4) and d′ ◦ d′′ = d′′ ◦ d′ (Lemma 4.4.5).

Lemma 4.4.4. We have d′ ◦ d′ = 0 and d′′ ◦ d′′ = 0 in (q)D•,•(B).
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Proof. By duality, it is enough to prove that d′ ◦ d′ = 0. Let s⊗X ∈ Hq−2i(S)(−i)⊗ ASi,j(B),
we get

(d′ ◦ d′)(s⊗X) =
∑

S
1
↪→T

1
↪→U

(ιUT )∗(ιTS )∗(s)⊗ d′T,Ud′S,T (X).

Since (ιUT )∗ ◦ (ιTS )∗ = (ιUS )∗, the above sum decomposes as

∑
S

2
↪→U

(ιUS )∗(s)⊗

 ∑
S

1
↪→T

1
↪→U

d′T,Ud
′
S,T (X)

 .
For U fixed, the right-hand side of the tensor product is zero because A6S•,• (B) is a bi-complex
(Lemma 4.1.15). The result follows.

The task of proving that d′ ◦ d′′ = d′′ ◦ d′ is more intricate. We fix a stratum S and an
element s⊗X ∈ Hq−2i(S)(−i)⊗ASi,j(B). Let us write

d′ ◦ d′′(s⊗X) =
∑

S
1
←↩R

1
↪→U

(ιUR)∗(ιSR)∗(s)⊗ d′R,Ud′′R,S(X) = Σ1 + Σ′1

where Σ1 is the sum over diagrams S 1←↩ R 1
↪→ U with S 6= U and Σ′1 is the sum over dia-

grams S 1←↩ R 1
↪→ S. In the same fashion we write

d′′ ◦ d′(s⊗X) =
∑

S
1
↪→T

1
←↩U

(ιTU )∗(ιTS )∗(s)⊗ d′′U,Td′S,T (X) = Σ2 + Σ′2

where Σ2 is the sum over diagrams S 1
↪→ T

1←↩ U with S 6= U and Σ′2 is the sum over dia-
grams S 1

↪→ T
1←↩ S.

Lemma 4.4.5. We have the following equalities:

1. Σ1 = Σ2;

2. Σ′1 = 0;

3. Σ′2 = 0.

Thus, d′ ◦ d′′ = d′′ ◦ d′ in (q)D•,•(B).

Proof. 1. We fix strata S 6= U . There are three cases to consider.

First case: S ∩ U = ∅. Then Σ1 = 0. For any diagram S
1
↪→ T

1←↩ U , S and U intersect
transversely in T , hence by (4.33) the composite (ιTU )∗ ◦ (ιTS )∗ is zero, hence Σ2 = 0.

Second case: S ∩ U 6= ∅, and there is no diagram S
1
↪→ T

1←↩ U . Then Σ2 = 0. For
every diagram S

1←↩ R 1
↪→ U we have d′R,Ud′′S,R(X) = 0 because A6R•,• (B) is a bi-complex

(Lemma 4.1.15), hence Σ1 = 0.

Third case: S∩U 6= ∅, and there is a diagram S
1
↪→ T

1←↩ U . Then T is unique for dimension
reasons (locally around a point of S ∩U , T is the sum S+U). The diagrams S 1←↩ R 1

↪→ U
correspond to the connected components of S ∩U . For such a connected component R we
have

d′R,Ud
′′
R,S(X) = d′′U,Td

′
S,T (X)
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because A6R•,• (B) is a bi-complex (Lemma 4.1.15). Thus

Σ1 =

 ∑
S

1
←↩R

1
↪→U

(ιUR)∗(ιSR)∗(s)

⊗ d′′U,Td′S,T (X).

Using (4.33) we have
(ιTU )∗(ιTS )∗(s) =

∑
S

1
←↩R

1
↪→U

(ιUR)∗(ιSR)∗(s)

hence Σ1 = (ιTU )∗(ιTS )∗(s)⊗ d′′U,Td′S,T (X) = Σ2.

2. For an inclusion R 1
↪→ S, the fact that A6R•,• (B) is a bi-complex implies that we have d′R,S ◦

d′′R,S = 0 (Lemma 4.1.15). The result then follows.

3. We have
Σ2 =

∑
S

1
↪→T

(ιTS )∗(ιTS )∗(s)⊗ d′′S,Td′S,T (X).

By (4.31), (ιTS )∗(ιTS )∗(s) = is the cup-product c1(NS/T ) . s where c1(NS/T ) ∈ H2(S)(−1)
is the first Chern class of the normal bundle of the inclusion S ↪→ T . We first consider a
special case.

Special case: We assume that the stratum S is irreducible. For an inclusion S 1
↪→ T , there

exists a hypersurface K ∈ B such that S is a connected component of the intersection T ∩
K. According to (4.29), we get c1(NS/T ) ∼= c1(NK/X)|S . Now Lemma 4.4.6 below implies
that c1(NK/X)|S = c is independent of K, hence we can write

Σ2 = (c . s)⊗

∑
S

1
↪→T

d′′S,Td
′
S,T (X)

 .
Now the fact that A6S•,• (L;M ;χ) is a bi-complex (Lemma 4.1.15) implies that the right-
hand side of the tensor product is zero, hence the result .
General case: In general there is a (local) decomposition of S into irreducible strata. Let
us assume for simplicity that this decomposition has two terms, i.e. we have a (local)
decomposition into irreducibles S = S′ t S′′. Then an inclusion S 1

↪→ T is (locally) either
of the form T = S′ t T ′′ for S′′ 1

↪→ T ′′ or of the form T = T ′ t S′′ for S′ 1
↪→ T ′. Using

the Künneth formula (Proposition 4.1.18) for the Orlik-Solomon bi-complex, we can then
split Σ2 into two sums. One gets the result by applying the same reasoning as in the first
case to each of these two sums.

We have used the following Lemma.

Lemma 4.4.6. Let A be an arrangement of hypersurfaces in a complex manifold X, and S an
irreducible stratum of A . Then the line bundles

(
NK/X

)
|S
, for K ∈ A such that K ⊃ S, are

all isomorphic.

Proof. Let us write A 6S = {K1, . . . ,Kr} for the hypersurfaces of A that contain S. Let i, j ∈
{1, . . . , r}. We first consider a special case.

Special case: Let us first assume that {1, . . . , r} is a circuit. Let T be the connected compo-
nent of K1 ∩ · · · ∩ K̂i ∩ · · · ∩ K̂j ∩ · · · ∩Kr that contains S. We then have an inclusion S 1

↪→ T , S
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being at the same time a connected component of Ki ∩ T and Kj ∩ T . From (4.29) we deduce
isomorphisms (

NKi/X

)
|S
∼= NS/T

∼=
(
NKj/X

)
|S
.

General case: One can reduce to the special case above by using Lemma 4.1.30.

4.4.2 Blow-ups and the geometric Orlik-Solomon bi-complex

We now define a morphism between the geometric Orlik-Solomon bi-complex of a bi-arrangement
of hypersurfaces B and that of its blow-up B̃. For all the rest of this article, we make the
following assumption on bi-arrangements of hypersurfaces:

any intersection of strata is connected (4.7)

(this includes the empty case). Equivalently, this means that the intersection of any number of
hypersurfaces K ∈ B is connected.

This assumption is not necessary, and we will sketch in §4.6.5 how to deal with the general
case. However, working under the assumption (4.7) makes the discussion and the computations
more accessible to the reader by keeping the notations light. One can note that (4.7) is satisfied
by all the examples of arrangements of hypersurfaces introduced in Example 4.3.2, and is stable
by blow-up.

The framework

We fix a bi-arrangement of hypersurfaces B in a complex manifold X, and a good stratum Z
for B.

Definition 4.4.7. An inclusion S
1
↪→ T of strata of B has parallel type with respect to Z

if Z ∩ S 6= ∅ and Z ∩ S = Z ∩ T . In this case we write S 1
↪→
‖
T .

In view of assumption (4.7), Z ∩S is connected and this can be checked locally. Around any
point of Z ∩ S, there is a decomposition Z t W , hence one has a decomposition S = S‖ t S⊥

with S‖ ⊃ Z and S⊥ ⊃ W . For an inclusion S
1
↪→ T of strata, we then have two mutually

exclusive cases.

– T = T‖ t S⊥ with S‖
1
↪→ T‖;

– T = S‖ t T⊥ with S⊥
1
↪→ T⊥.

The parallel type corresponds to the first case: Z ∩ S = Z ∩ T = Z t S⊥.

Let π : X̃ → X be the blow-up along Z. For every stratum S, it restricts to πS̃S : S̃ → S the
blow-up along Z ∩ S.

In the case S 1
↪→
‖
T , we have Z ∩ S = Z ∩ T , hence π induces a morphism

πE∩T̃Z∩S : E ∩ T̃ → Z ∩ T = Z ∩ S.
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Definition of Φ

Let us assume that we have χ(Z) = λ. We recall that we have made explicit the Orlik-Solomon
bi-complex of a blow-up in Proposition 4.3.13. Having this in mind, we define a morphism

Φ : (q)Di,j(B)→ (q)Di,j(B̃). (4.8)

Let S ∈ Si+j(B) be a stratum. We define, for s⊗X ∈ Hq−2i(S)(−i)⊗ASi,j(B) = (q)DS
i,j(B),

Φ(s⊗X) = (πS̃S )∗(s)⊗X +
∑
S

1
↪→
‖
T

(πE∩T̃Z∩S )∗(ιSZ∩S)∗(s)⊗ d′S,T (X). (4.9)

Let us explain more precisely the meaning of this formula:

– the term (πS̃S )∗(s) ⊗X lives in Hq−2i(S̃)(−i) ⊗ ASi,j = (q)DS̃
i,j(B̃); if S ⊂ Z then S̃ = ∅ and

this is zero by convention;

– the term (πE∩T̃Z∩S )∗(ιSZ∩S)∗(s)⊗ d′S,T (X) lives in Hq−2i(E ∩ T̃ )(−i)⊗ATi−1,j(B) = (q)DE∩T̃
i,j (B̃).

In the algebraic case, Φ is a morphism of mixed Hodge structures.

The motivation for formula (4.9) comes from the case of normal crossing divisors, as the next
Lemma shows.

Lemma 4.4.8. If L ∪M is a normal crossing divisor, then the total complex (q)D• is then E−•,q1
term of the natural spectral sequence (4.15) that computes the relative cohomology groups H•(X\
L ,M \M ∩ L ). In this case, the morphism (q)D•(L ,M ) → (q)D•(L̃ , M̃ ) induced by Φ is
the natural morphism (4.24) that expresses the isomorphism π∗ : H•(X \L ,M \M ∩L )

∼=−→
H•(X̃ \ L̃ , M̃ \ M̃ ∩ L̃ ).

Proof. It follows from a direct comparison of the formulas since by definition

d′(eI ⊗ f∨J ) =
∑
i∈I

sgn({i}, I \ {i}) eI\{i} ⊗ f∨J .

If we now assume that χ(Z) = µ, then we are in the dual situation and we can define a
morphism

Ψ : (q)Di,j(B̃)→ (q)Di,j(B). (4.10)

by the formulas

Ψ(s̃⊗X) = (πS̃S )∗(s̃)⊗X and Ψ(ẽ⊗X) =
∑
S

1
↪→
‖
T

(ιSZ∩S)∗(πE∩T̃Z∩S )∗(e)⊗ d′′S,T (X)

for s̃⊗X ∈ Hq−2i(S̃)(−i)⊗ASi,j(B) and e⊗X ∈ Hq−2i(E ∩ T̃ )(−i)⊗ATi,j−1(B).
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The essential case

Definition 4.4.9. Let B be a bi-arrangement of hypersurfaces in a complex manifold X. We
say that B is essential if the intersection

⋂
K∈B K of all hypersurfaces in B is non-empty.

According to assumption (4.7), the intersection Z =
⋂
K∈B K is the minimal stratum of B.

It is necessarily a good stratum. In this case, formula (4.9) takes a simpler form. Indeed, we
always have Z ∩ S = Z, and all inclusions S 1

↪→ T are of the form S
1
↪→
‖
T . Hence we get

Φ(s⊗X) = (πS̃S )∗(s)⊗X +
∑
S

1
↪→T

(πE∩T̃Z )∗(ιSZ)∗(s)⊗ d′S,T (X).

If S = Z the formula simply reads, for z ⊗X ∈ Hq−2i(Z)(−i)⊗AZi,j(B) = (q)DZ
i,j(B):

Φ(z ⊗X) =
∑
Z

1
↪→T

(πE∩T̃Z )∗(z)⊗ d′Z,T (X).

4.4.3 The main theorem

The following theorem will be proved in §4.6.

Theorem 4.4.10. Let B be a bi-arrangement of hypersurfaces in a complex manifold X, let Z
be a good stratum of B such that χ(Z) = λ, and let B̃ be the blow-up of B along Z.

1. Formula (4.9) defines a morphism of bi-complexes Φ : (q)D•,•(B)→ (q)D•,•(B̃).

2. If Z is exact, then the morphism Φ : (q)D•(B)→ (q)D•(B̃) induced on the total complexes
is a quasi-isomorphism.

If χ(Z) = µ, the dual statements are true, with Φ replaced by Ψ defined in (4.10).

It implies the main theorem of this article.

Theorem 4.4.11. Let B be an exact bi-arrangement of hypersurfaces in a complex manifold X.

1. There is a spectral sequence

E−p,q1 (B) = (q)Dp(B) =⇒ H−p+q(B). (4.11)

2. If X is a smooth complex variety and all hypersurfaces of B are smooth divisors in X,
then this is a spectral sequence in the category of mixed Hodge structures.

3. If X is a smooth and projective complex variety, then this spectral sequence degenerates at
the E2 term and we have

E−p,q∞
∼= E−p,q2

∼= grWq H−p+q(B).

Proof. 1. Let X(∞) = X(N) → X(N−1) → · · · → X(1) → X(0) = X be the sequence of blow-
ups used to define the motive of B (Definition 4.3.10) and B(∞) = B(N), B(N−1), . . .,
B(1), B(0) = B be the corresponding bi-arrangements of hypersurfaces, with B(∞) =
(L (∞),M (∞)) a normal crossing divisor. According to Proposition 4.7.1, there is a spectral
sequence

E−p,q1 = (q)Dp(B(∞)) =⇒ H−p+q(B).

Since B is exact, Corollary 4.3.14 implies that for each k, B(k) is exact. Then for each k,
Theorem 4.4.10 implies that there is a quasi-isomorphism (q)D•(B(k)) ∼ (q)D•(B(k+1)).
Thus we have a quasi-isomorphism (q)D•(B) ∼ (q)D•(B(∞)) and the result follows.
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2. This follows from the analogous statement for normal crossing divisors (Proposition 4.7.1)
and the fact that the morphisms (4.8) are morphisms of mixed Hodge structures.

3. This follows from the analogous statement for normal crossing divisors (Proposition 4.7.1).

The independence of the spectral sequence (4.11) with respect to the choice of the order of
blow-ups, and its functoriality with respect to a choice of wonderful compactification [Li09] will
be proven in a subsequent article.

4.5 Application to projective bi-arrangements

4.5.1 The setup

Let A be an arrangement in Cn+1 with n > 1. We let PA be the corresponding projective
arrangement in Pn(C); it is an arrangement of hypersurfaces consisting of the images PK of the
hyperplanes K ∈ A by the projection Cn+1 \ 0→ Pn(C). The strata of PA are the images PS
of the strata S 6= 0 of A . We implicitly assume that 0 is a stratum of A .

A partial coloring function χ : S+(A ) \ {0} → {λ, µ} that satisfies the Künneth condition
(4.1) gives rise to a projective bi-arrangement PB = (PA , χ) where we put χ(PS) = χ(S). It is
a bi-arrangement of hypersurfaces in X = Pn(C).

This projective bi-arrangement does not necessarily come from a bi-arrangement B = (A , χ)
since the color χ(0) is not defined. We will write Bλ (resp. Bµ) for the bi-arrangements (A , χ)
with χ(0) = λ (resp. χ(0) = µ), if they are well-defined (i.e. if they satisfy the Künneth condition
for the stratum 0).

There is a partial Orlik-Solomon bi-complex A•,•(B) where we have vector spaces ASi,j(B) for
strata S 6= 0. If Bλ (resp. Bµ) are well-defined, then it can be completed to an Orlik-Solomon
bi-complex A•,•(Bλ) (resp. A•,•(Bµ)).

Remark 4.5.1. For a projective space Pr(C) we have canonical isomorphisms H2k(Pr(C)) ∼=
Q(−k) for k = 0, . . . , r, and H2k+1(Pr(C)) = 0 for all k. Furthermore, for the inclusion ι :
Pr−1(C) ↪→ Pr(C) of a projective hyperplane:

– the Gysin morphism ι∗ : H2(k−1)(Pr−1(C))(−1)→ H2k(Pr(C)) is the identity of Q(−k) for k =
1, . . . , r;

– the pull-back morphism ι∗ : H2k(Pr(C)) → H2k(Pr−1(C)) is the identity of Q(−k) for k =
0, . . . , r − 1.

The next Proposition expresses the (geometric) Orlik-Solomon bi-complex of PB in terms
of that of B.

Proposition 4.5.2. 1. We have isomorphisms

APS
i,j (PB) ∼= ASi,j(B)

for S ∈ Si+j(B), S 6= 0, which induce isomorphisms of bi-complexes

A6PΣ
•,• (PB) ∼= A6Σ

•,• (B)

for Σ 6= 0 a strict stratum of B.
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2. We have (q)DPS
i,j (PB) = 0 for q odd. For k = 0, . . . , n we have isomorphisms of pure Hodge

structures of weight 2k:

(2k)DPS
i,j (PB) ∼=

{
ASi,j(B)(−k) if 0 6 i 6 k and 0 6 j 6 n− k;
0 otherwise.

Furthermore, these isomorphisms are compatible with the differentials d′ and d′′.

Proof. 1. It is trivial.

2. The first statement comes from the fact (Remark 4.5.1) that the projective spaces do not
have cohomology in odd degree. For k = 0, . . . , n, we have (2k)DPS

i,j = H2(k−i)(PS)(−i) ⊗
APS
i,j . The cohomology group H2(k−i)(PS)(−i) is non-zero if and only if 0 6 k − i 6

n− codim(S) = n− i− j, which amounts to i 6 k and j 6 n− k. In this range, we have
a canonical isomorphism H2(k−i)(PS)(−i) ∼= Q(−k), hence the result. The compatibility
with the differentials come from Remark 4.5.1.

According to Proposition 4.5.2, PB is exact if all strict strata Σ 6= 0 of B are exact. It is
actually convenient to ask for more and make the following definition.

Definition 4.5.3. We say that PB is λ-exact (resp. µ-exact) if Bλ (resp. Bµ) is well-defined
and exact. We say that PB is strongly exact if it is λ-exact and µ-exact.

We define in the same fashion the concepts of λ-tame, µ-tame and strongly tame projective
bi-arrangements; for such bi-arrangements, Theorem 4.1.38 provides an explicit presentation of
the Orlik-Solomon bi-complex.

Let us then write (k)A•,•(B) for the bi-complex obtained from A•,•(B) by keeping only the
rectangle 0 6 i 6 k, 0 6 j 6 n− k. We write (k)A•(B) for the total complex, with

(k)Ar(B) =
⊕
i−j=r
06i6k

06j6n−k

Ai,j(B).

Theorem 4.5.4. Let PB be a projective bi-arrangement in Pn(C).

1. If PB is exact then we have isomorphisms, for r = 0, . . . , 2n:

grW2kHr(PB) ∼= H2k−r((k)A•(B)).

2. If PB is λ-exact then we have Hr(PB) = 0 for r > n. For r = 0, . . . , n we have isomor-
phisms, for k = 0, . . . , r:

grW2kHr(PB) ∼= coker
(
Ak+1,r−k−1(Bλ) d′′−→ Ak+1,r−k(Bλ)

)
.

3. If PB is µ-exact then we have Hr(PB) = 0 for r < n. For r = n, . . . , 2n we have
isomorphisms, for k = n− r, . . . , n:

grW2kHr(PB) ∼= ker
(
Ar−n+k,n−k+1(Bµ) d′−→ Ar−n+k−1,n−k+1(Bµ)

)
.
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4. If PB is strongly exact then we have Hr(PB) = 0 for r 6= n, and we have isomorphisms,
for k = 0, . . . , n:

grW2kHn(PB) ∼= coker
(
Ak+1,n−k−1(Bλ) d′′−→ Ak+1,n−k(Bλ)

)
∼= ker

(
Ak,n−k+1(Bµ) d′−→ Ak−1,n−k+1(Bµ)

)
.

Proof. 1. This is a consequence of Theorem 4.4.11 and Proposition 4.5.2.

2. The differential d′ : Ak+1,r−k(Bλ)→ Ak,r−k(Bλ) = Ak,i−k(B) induces a morphismAk+1,r−k(Bλ)→
H2k−r((k)A•(B)). A diagram chase shows that it induces an isomorphism as in the state-
ment.

3. This is the dual of 3.

4. This is a consequence of 2 and 3.

4.5.2 Multizeta bi-arrangements

Let r > 1 and n1, . . . , nr be integers with n1, . . . , nr−1 > 1 and nr > 2. We let n = n1 + · · ·+nr
and define a n-uple

(a1, . . . , an) = (1, 0, . . . , 0︸ ︷︷ ︸
n1

, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
nr

).

In Pn(C) with projective coordinates (z0, z1, . . . , zn), we define two arrangements of hyper-
planes L = {L0, . . . , Ln} and M = {M0, . . . ,Mn}:

– we let L0 = {z0 = 0} be the hyperplane at infinity, and for k = 1, . . . , n, let Lk = {zk = akz0};

– we let M0 = {z1 = 0}, Mn = {zn = z0}, and for k = 1, . . . , n− 1, Mk = {zk = zk+1}.

We define the multizeta bi-arrangement Z (n1, . . . , nr) = (L ,M , χ) where χ is defined to
be µ on all M -strata, and λ on all other strata. According to the general formalism of Aomoto
polylogarithms, the multiple zeta value ζ(n1, . . . , nr) is a period of the motiveHn(Z (n1, . . . , nr)),
which is the Hodge realization of a mixed Tate motive over Z.

The following Proposition is easily proved by direct inspection.

Proposition 4.5.5. The multizeta bi-arrangements Z (n1, . . . , nr) are all λ-tame, hence λ-
exact.

When studying multiple zeta values, the motives Z (n1, . . . , nr) are alternatives to the ap-
proach of [Del89, DG05] via the motivic fundamental group of P1 \ {∞, 0, 1} (see also [Ter02]).
One advantage of such an alternative is that it generalizes to a larger family of integrals. More
specifically, let us look at the periods of the moduli spacesM0,n considered by Brown in [Bro09].
They are integrals of a rational function over a simplex 0 < t1 < · · · < tn < 1, such as∫∫∫

0<x<y<z<1

dx dy dz

(1− x)y(z − x) · (4.12)

The main result of [Bro09] is that these integrals are all linear combinations (with rational
coefficients) of multiple zeta values, although not in an explicit way. It so happens that the
projective bi-arrangement of hyperplanes corresponding to the integral (4.12) is also λ-exact,
hence the corresponding motive may be computed explicitly via an Orlik-Solomon bi-complex.
This will be studied in more detail in a subsequent article.
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4.6 Proof of the main theorem

The goal of this section is to prove the two points of Theorem 4.4.10. We first deal with the
essential case (§4.6.1 and §4.6.2) then with the general case (§4.6.3 and §4.6.4). The reader is
encouraged to focus on the essential case, since the general case reduces to the essential case at
the cost of a few technical trivialities.

4.6.1 The essential case: Φ is a morphism of bi-complexes

In this paragraph, we assume that B is essential and that Z is the minimal stratum. We prove
the first point of Theorem 4.4.10 by showing that Φ is compatible with d′ (Proposition 4.6.1)
and with d′′ (Proposition 4.6.2).

Proposition 4.6.1. We have Φ ◦ d′ = d′ ◦ Φ.

Proof. For s⊗X ∈ Hq−2i(S)(−i)⊗ASi,j(B), we compute

(Φd′)(s⊗X) =
∑
S

1
↪→T

(πT̃T )∗(ιTS )∗(s)⊗ d′S,T (X)

+
∑

S
1
↪→T

1
↪→U

(πE∩ŨZ )∗(ιTZ)∗(ιTS )∗(s)⊗ d′T,Ud′S,T (X).

and

(d′Φ)(s⊗X) =
∑
S

1
↪→T

(ιT̃
S̃

)∗(πS̃S )∗(s)⊗ d′S,T (X)

+
∑
S

1
↪→T

(ιT̃
E∩T̃ )∗(πE∩T̃Z )∗(ιSZ)∗(s)⊗ d′S,T (X)

−
∑

S
1
↪→T

1
↪→U

(ιE∩Ũ
E∩T̃ )∗(πE∩T̃Z )∗(ιSZ)∗(s)⊗ d′T,Ud′S,T (X).

The terms (. . .)⊗ d′S,T (X) cancel because of the equality

(πT̃T )∗(ιTS )∗(s) = (ιT̃
S̃

)∗(πS̃S )∗(s) + (ιT̃
E∩T̃ )∗(πE∩T̃Z )∗(ιSZ)∗(s)

which is a special case of (4.34) (set L = S and X = T ). Thus, it remains to show that we have,
for every U fixed, ∑

S
1
↪→T

1
↪→U

∆T ⊗ d′T,Ud′S,T (X) = 0

where we have set

∆T = (πE∩ŨZ )∗(ιTZ)∗(ιTS )∗(s) + (ιE∩Ũ
E∩T̃ )∗(πE∩T̃Z )∗(ιSZ)∗(s).

For S and U fixed, the fact that A6S•,• (B) is a bi-complex (Lemma 4.1.15) implies that we have∑
S

1
↪→T

1
↪→U

d′T,Ud
′
S,T (X) = 0.

Thus, we are done if we prove that ∆T is independent of T . On the one hand we have

(ιTZ)∗(ιTS )∗(s) = (ιSZ)∗(ιTS )∗(ιTS )∗(s) = (ιSZ)∗(s . c1(NS/T ))
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where we have used (4.31). On the other hand, we can use (4.36) to get

(ιE∩Ũ
E∩T̃ )∗(πE∩T̃Z )∗(ιSZ)∗(s) = (πE∩ŨZ )∗(ιSZ)∗(s) .

(
(πE∩ŨZ )∗(c1(NT/U )|Z)− c1(N

E∩Ũ/Ũ )
)
.

Thus, we can rewrite
∆T = (πE∩ŨZ )∗(ιSZ)∗(s) .∆′T

with
∆′T = (πE∩ŨZ )∗(c1(NS/T )|Z + c1(NT/U )|Z)− c1(N

E∩Ũ/Ũ ).

Using (4.27) we get c1(NS/T ) + c1(NT/U )|S = c1(NS/U ) and hence

∆′T = (πE∩ŨZ )∗(c1(NS/U )|Z)− c1(N
E∩Ũ/Ũ )

which is independent of T , hence ∆T is independent of T and we are done.

Proposition 4.6.2. We have Φ ◦ d′′ = d′′ ◦ Φ.

Proof. For s⊗X ∈ Hq−2i(S)(−i)⊗ASi,j(B), we compute

(Φd′′)(s⊗X) =
∑
S

1
←↩R

(πR̃R)∗(ιSR)∗(s)⊗ d′′R,S(X)

+
∑

S
1
←↩R

1
↪→U

(πE∩ŨZ )∗(ιRZ)∗(ιSR)∗(s)⊗ d′R,Ud′′R,S(X).

and

(d′′Φ)(s⊗X) =
∑
S

1
←↩R

(ιS̃
R̃

)∗(πS̃S )∗(s)⊗ d′′R,S(X)

+
∑

S
1
↪→T

1
←↩U

(ιE∩T̃
E∩Ũ )∗(πE∩T̃Z )∗(ιSZ)∗(s)⊗ d′′U,Td′S,T (X).

The terms (. . .)⊗ d′′R,S(X) cancel because of the equality (πR̃R)∗(ιSR)∗(s) = (ιS̃
R̃

)∗(πS̃S )∗(s), which

follows from (ιSR) ◦ (πR̃R) = (πS̃S ) ◦ (ιS̃
R̃

). Thus it remains to show that, for U fixed, we have

∑
S

1
←↩R

1
↪→U

(πE∩ŨZ )∗(ιRZ)∗(ιSR)∗(s)⊗ d′R,Ud′′R,S(X) =
∑

S
1
↪→T

1
←↩U

(ιE∩T̃
E∩Ũ )∗(πE∩T̃Z )∗(ιSZ)∗(s)⊗ d′′U,Td′S,T (X).

Now (πE∩ŨZ )∗(ιRZ)∗(ιSR)∗(s) = (πE∩ŨZ )∗(ιSZ)∗(s) = (ιE∩T̃
E∩Ũ

)∗(πE∩T̃Z )∗(ιSZ)∗(s) which is independent
of R and T . Thus, the claim follows from the equality∑

S
1
←↩R

1
↪→U

d′R,Ud
′′
R,S(X) =

∑
S

1
↪→T

1
←↩U

d′′U,Td
′
S,T (X)

which is a consequence of the fact that A6Z•,• (B) is a bi-complex.

4.6.2 The essential case: Φ is a quasi-isomorphism

In this paragraph, we still assume that B is essential and that Z is the minimal stratum. We
further assume that Z is exact and prove the second point of Theorem 4.4.10.
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The strategy

We start with a basic fact of homological algebra.

Lemma 4.6.3. Let f : C• → C ′• be a morphism of complexes, let (FpC•)p and (FpC ′•)p be finite
increasing filtrations on C• and C ′• such that f(FpC•) ⊂ FpC

′
•. Then f is a quasi-isomorphism

if for every p, the induced morphism grFp f : grFp C ′• → grFp C ′• is a quasi-isomorphism.

Proof. By induction on the length of the filtration, using the long exact sequence in cohomology
and the 5-lemma.

Let Φ : (q)D•(B)→ (q)D•(B̃) be the morphism of complexes induced on the total complexes.
Using the filtration on the lines and the above lemma, one sees that Φ is a quasi-isomorphism if
for every j, the morphism

Φ•,j : (q)D•,j(B)→ (q)D•,j(B̃)

induced on the j-th lines is a quasi-isomorphism. In the rest of §4.6.2, we fix an index j. We
are reduced to proving that the cone C•,j of Φ•,j is exact.

We have
Ci,j = (q)Di,j(B)⊕ (q)Di+1,j(B̃)

and the differential d′ : Ci,j → Ci−1,j is given by

d′(x, x̃) = (d′(x),Φ(x)− d′(x̃)).

The strategy is as follows. We define an complex B•,j and morphisms α : Bi,j → Ci,j ; the
second point of Theorem 4.4.10 then follows from the following facts:

– B•,j is exact (Lemma 4.6.4);

– α is a morphism of complexes (Proposition 4.6.6);

– α is a quasi-isomorphism (Proposition 4.6.7).

The exact complex B•,j

Let r be the codimension of Z inside X. For S ∈ Si+j(B), let us set

BS
i,j = Hq−2r+2j(Z)(r − j)⊗ASi,j(B).

For an inclusion S 1
↪→ T , we define d′S,T : BS

i,j → BT
i−1,j . For z⊗X ∈ Hq−2r+2j(Z)(r−j)⊗ASi,j(B),

it is given by
d′S,T (z ⊗X) = z ⊗ d′S,T (X).

If we now set Bi,j =
⊕
S∈Si+j(B)B

S
i,j , we get a complex B•,j .

Lemma 4.6.4. B•,j is an exact complex.

Proof. B•,j is nothing but the tensor product ofHq−2r+2j(Z)(r−j) with the complex (A6Z•,j (B), d′),
which is exact since Z is exact.

Remark 4.6.5. The complexes (B•,j , d′) are the lines of a bi-complex whose differentials d′S,T are
given by

d′′S,T (z ⊗X) = (z . c1(NS/T )|Z)⊗ d′′S,T (X).
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A quasi-isomorphism α : B•,j → C•,j

A morphism α : B•,j → C•,j is determined by two morphisms f : B•,j → (q)D•,j(B) and g :
B•,j → (q)D•+1,j(B̃).

We define f : BS
i,j → (q)DS

i,j(B) by the formula

f(z ⊗X) = (ιSZ)∗(z)⊗X

and g : BS
i,j → (q)DE∩S̃

i+1,j(B̃) by the formula

g(z ⊗X) = (πE∩S̃Z )∗(z) . γS ⊗X

where γS is the excess class of the blow-up πS̃S : S̃ → S along Z, defined in §4.8.4.

Proposition 4.6.6. We have f ◦ d′ = d′ ◦ f and g ◦ d′ + d′ ◦ g = Φ ◦ f . Thus, f and g define a
morphism of complexes α : B•,j → C•,j.

Proof. The first equality is trivial. For the second equality, we compute

(Φ ◦ f)(z ⊗X) =(πS̃S )∗(ιSZ)∗(z)⊗X +
∑
S

1
↪→T

(πE∩T̃Z )∗(ιSZ)∗(ιSZ)∗(z)⊗ d′S,T (X);

(gd′S,T )(z ⊗X) =(πE∩T̃Z )∗(z) . γT ⊗ d′S,T (X);

(d′
E∩S̃,S̃g)(z ⊗X) =(ιS̃

E∩S̃)∗((πE∩S̃Z )(z) . γS)⊗X;

(d′
E∩S̃,E∩T̃ g)(z ⊗X) =− (ιE∩T̃

E∩S̃ )∗((πE∩S̃Z )∗(z) . γS)⊗ d′S,T (X).

The terms (. . .)⊗X cancel because of the equality

(πS̃S )∗(ιSZ)∗(z) = (ιS̃
E∩S̃)∗((πE∩S̃Z )(z) . γS)

which is a special case of (4.41). For the terms (. . .)⊗ d′S,T (X), we have to prove the equality

(ιE∩T̃
E∩S̃ )∗((πE∩S̃Z )∗(z) . γS) = (πE∩T̃Z )∗(z) . γT − (πE∩T̃Z )∗(ιSZ)∗(ιSZ)∗(z).

We have (πE∩S̃Z )∗ = (ιE∩T̃
E∩S̃

)∗ ◦ (πE∩T̃Z )∗, hence the projection formula (4.30) gives

(ιE∩T̃
E∩S̃ )∗((πE∩S̃Z )∗(z) . γS) = (πE∩T̃Z )∗(z) . (ιE∩T̃

E∩S̃ )∗(γS).

Let us write r(T ) for the codimension of Z inside T . Then (πE∩T̃Z )∗(ιSZ)∗(ιSZ)∗(z) = (πE∩T̃Z )∗(cr(T )−1(NZ/S) . z).
To sum up, we are reduced to proving the equality

(ιE∩T̃
E∩S̃ )∗(γS) = γT − (πE∩T̃Z )∗(cr(T )−1(NZ/S))

which is a special case of (4.43).

Proposition 4.6.7. α : B•,j → C•,j is a quasi-isomorphism. Thus, C•,j is exact, and Φ is a
quasi-isomorphism.
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Proof. We use Lemma 4.6.3, defining the filtration Fpα : FpB•,j → FpC•,j which corresponds
to the terms involving strata S, S̃ and E ∩ S̃ with codim(S) 6 p + j. All we have to prove is
that grFp α : grFp B•,j → grFp C•,j is a quasi-isomorphism for every p. On the one hand, grFp B•,j is
concentrated in degree p with

grFp Bp,j =
⊕

S∈Sp+j(B)
BS
p,j

and differential 0. On the other hand, grFp C•,j is concentrated in degrees {p, p− 1} with

grFp Cp,j =
⊕

S∈Sp+j(B)
DS
p,j(B)⊕DE∩S̃

p+1,j(B̃);

grFp Cp−1,j =
⊕

S∈Sp+j(B)
DS̃
p,j(B̃).

The differential DS
p,j(B) → DS̃

p,j(B̃) is s ⊗ X 7→ (πS̃S )∗(s) ⊗ X; the differential DE∩S̃
p+1,j(B̃) →

DS̃
p,j(B̃) is given by e ⊗ X 7→ −(ιS̃

E∩S̃
)∗(e) ⊗ X. We are left with proving that for a fixed

stratum S ∈ Sp+j(B) we have a quasi-isomorphism

0 // DS
p,j(B)⊕DE∩S̃

p+1,j(B̃) // DS̃
p,j(B̃) // 0

0 // BS
p,j

//

OO

0 //

OO

0.

The above diagram is, up to a Tate twist, the tensor product of ASi,j with

0 // Hq−2p(S)⊕Hq−2p−2(E ∩ S̃)(−1) // Hq−2p(S̃) // 0

0 // Hq−2r+2j(Z)(p+ j − r) //

OO

0 //

OO

0.

The fact that this is a quasi-isomorphism is a reformulation of the short exact sequence (4.42).

4.6.3 The general case: Φ is a morphism of bi-complexes

In this paragraph we prove the general case of the first point of Theorem 4.4.10.

Proposition 4.6.8. We have Φ ◦ d′ = d′ ◦ Φ.

Proof. Here are the details to add in the proof of Proposition 4.6.1. We write S 1
↪→
⊥
T for an

inclusion which is not of parallel type.

– The terms (· · · ) ⊗ d′S,T (X) still cancel, but there are two cases to consider. For the terms

corresponding to an inclusion S
1
↪→
‖
T , the argument is the same as in the essential case,

replacing Z by Z ∩ S = Z ∩ T . For the terms corresponding to an inclusion S
1
↪→
⊥
T , the

cancelation follows from the formula

(πT̃T )∗(ιTS )∗(s) = (ιT̃
S̃

)∗(πS̃S )∗(s)

which is a special case of (4.37).
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– The terms corresponding to chains S 1
↪→
‖
T

1
↪→
‖
U cancel thanks to the same argument as in

the essential case, replacing Z by Z ∩ S = Z ∩ T = Z ∩ U .

– We are left with proving the equality, for U fixed:∑
S

1
↪→
⊥
Q

1
↪→
‖
U

(πE∩ŨZ∩Q)∗(ιQZ∩Q)∗(ιQS )∗(s)⊗d′Q,Ud′S,Q(X) = −
∑

S
1
↪→
‖
T

1
↪→
⊥
U

(ιE∩Ũ
E∩T̃ )∗(πE∩T̃Z∩S )∗(ιSZ∩S)∗(s)⊗d′T,Ud′S,T (X).

Let us start with a local decomposition S = S‖ t S⊥, and U = U‖ t U⊥ with S‖
1
↪→ U‖

and S⊥
1
↪→ U⊥. There is thus a unique diagram S

1
↪→
⊥
Q

1
↪→
‖
U and a unique diagram S

1
↪→
‖
T

1
↪→
⊥

U , i.e. Q = U‖ t S⊥ and T = S‖ t U⊥. Using the Künneth formula (4.1.18) for A6S•,• (B) with
respect to the decomposition S = S‖ t S⊥, the fact that d′◦d′ = 0 implies that d′Q,Ud′S,Q(X) =
−d′T,Ud′S,T (X). Thus, we are left with proving the equality

(πE∩ŨZ∩Q)∗(ιQZ∩Q)∗(ιQS )∗(s) = (ιE∩Ũ
E∩T̃ )∗(πE∩T̃Z∩S )∗(ιSZ∩S)∗(s).

Since Z ∩Q and S are transverse in Q, (4.33) implies the identity

(ιQZ∩Q)∗(ιQS )∗(s) = (ιZ∩QZ∩S )∗(ιSZ∩S)∗(s).

Thus, writing z = (ιSZ∩S)∗(s) and remembering that Z ∩ S = Z ∩ T , we only need to prove
that

(πE∩ŨZ∩Q)∗(ιZ∩QZ∩T )∗(z) = (ιE∩Ũ
E∩T̃ )∗(πE∩T̃Z∩T̃ )∗(z)

which is a special case of (4.39) since Z ∩ U and T are transverse in U .

Proposition 4.6.9. We have Φ ◦ d′′ = d′′ ◦ Φ.

Proof. Here are the details to add in the proof of Proposition 4.6.2.

– The terms (· · · ) ⊗ d′′R,S(X) cancel by the same argument as in the essential case. Thus it
remains to show that for U fixed we have∑
S

1
←↩R

1
↪→
‖
U

(πE∩ŨZ )∗(ιRZ)∗(ιSR)∗(s)⊗d′R,Ud′′R,S(X) =
∑

S
1
↪→
‖
T

1
←↩U

(ιE∩T̃
E∩Ũ )∗(πE∩T̃Z )∗(ιSZ)∗(s)⊗d′′U,Td′S,T (X).

– If S∩Ũ = ∅ then the left-hand side is zero. For a diagram S
1
↪→
‖
T

1←↩ U we have Z∩U ⊂ Z∩S,

hence Z ∩U = ∅ and E ∩ Ũ = ∅, thus the corresponding term in the right-hand side is zero.

– If S ∩ Ũ 6= ∅, the same argument as in the essential case works. To prove the identity∑
S

1
←↩R

1
↪→
‖
U

d′R,Ud
′′
R,S(X) =

∑
S

1
↪→
‖
T

1
←↩U

d′′U,Td
′
S,T (X)

one has to use the Künneth formula (Proposition 4.1.18) in addition of the fact that A6S∩U•,• (B)
is a bi-complex.
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4.6.4 The general case: Φ is a quasi-isomorphism

In this paragraph we prove the general case of the second point of Theorem 4.4.10 by reducing
to the essential case, already proved in §4.6.2.

Definition 4.6.10. Let P be a stratum of B that is transverse to Z; in particular, Z t P 6= ∅.
Let S be a stratum such that Z ∩ S 6= ∅. Then by looking at a local chart around any point
of Z ∩ S, one sees that we have a decomposition S = SZ t P with SZ ⊃ Z and P transverse
to Z. We call P the transverse direction of S.

We let BP be the arrangement of hypersurfaces on P consisting in the intersections of P and
the hypersurfaces K ∈ B6Z . It is essential, with minimal stratum Z t P . The strata of BP

are exactly the strata of B with transverse direction P . As the coloring is concerned, we ask
that χ(SZ t P ) = χ(SZ) for every SZ ⊃ Z.

The Orlik-Solomon bi-complex of BP is related to the one of B by

A6SZtP•,• (BP ) ∼= A6SZ•,• (B). (4.13)

In particular, if Z is exact in B then Z t P is exact in BP .
Let S = SZ t P be a stratum with transverse direction P . Combining the Künneth formula

(Proposition 4.1.18) and (4.13), we get an isomorphism

ASi,j(B) ∼=
⊕

k+l=codim(P )
ASZtPi−k,j−l(BP )⊗Ak,l(B).

and hence an isomorphism at the level of the Orlik-Solomon bi-complexes:
(q)DS

i,j(B) ∼=
⊕

k+l=codim(P )

(q−2k)DSZtP
i−k,j−l(BP )(−k)⊗APk,l(B).

Summing over all strata S ∈ Si+j(B) and grouping together the strata having the same
transverse direction P , we get a decomposition:

(q)Di,j(B) =

 ⊕
S∈Si+j(B)
Z∩S=∅

(q)DS
i,j(B)

⊕
 ⊕

P⊥Z
k+l=codim(P )

(q−2k)Di−k,j−l(BP )(−k)⊗APk,l(B)


where P ⊥ Z means that we sum over all strata P that are transverse to Z.

Now it is clear that in the blown-up situation we have

(q)Di,j(B̃) =

 ⊕
S∈Si+j(B)
Z∩S=∅

(q)DS̃
i,j(B̃)

⊕
 ⊕

P⊥Z
k+l=codim(P )

(q−2k)Di−k,j−l(B̃P )(−k)⊗APk,l(B)


where B̃P is the blow-up of BP along Z t P .

These decompositions are compatible with Φ in the following sense:

– for S ∈ Si+j(B) such that Z ∩ S = ∅, Φ is an isomorphism (q)DS
i,j(B) ∼= (q)DS̃

i,j(B̃).

– for every P ⊥ Z, Φ : (q)Di,j(B)→ (q)Di,j(B̃) restricts to

Di−k,j−l(BP )(−k)⊗APk,l(B)→ Di−k,j−l(B̃P )(−k)⊗APk,l(B)

which is nothing but Φ⊗ id.
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Proposition 4.6.11. If Z is exact, then Φ : (q)D•(B)→ (q)D•(B̃) is a quasi-isomorphism

Proof. As in §4.6.2, it is enough to prove that for every line j, the morphism Φ•,j : (q)D•,j(B)→
(q)D•,j(B̃) is a quasi-isomorphism.

With j fixed, we define an increasing filtration FpΦ•,j : Fp(q)D•,j(B) → Fp
(q)D•,j(B̃). By

definition, Fp(q)D•,j(B) is the sum of the terms corresponding to codim(P ) 6 p. We add the
convention Fp(q)D•,j(B) = (q)D•,j(B) for p = dim(X) + 1 to include the terms corresponding
to Z ∩ S = ∅. We make the analogous definition for (q)D•,j(B̃).

In view of Lemma 4.6.3, it is enough to show that for every p, the morphism grFp Φ•,j :
grFp (q)D•,j(B) → grFp (q)D•,j(B̃) is a quasi-isomorphism. For p = dim(X) + 1, grFp Φ•,j is an
isomorphism. For p 6 dim(X) we get

grFp (q)D•,j(B) =
⊕
P⊥Z

codim(P )=p
k+l=p

(q−2k)D•−k,j−l(BP )(−k)⊗APk,l(B)

and the differential on D•−k,j−l(BP )(−k)⊗APk,l(B) is d′ ⊗ id. The same is true for

grFp (q)D•,j(B̃) =
⊕
P⊥Z

codim(P )=p
k+l=p

(q−2k)D•−k,j−l(B̃P )(−k)⊗APk,l(B).

Thus, grFp Φ•,j is a quasi-isomorphism if and only if every Φ : (q−2k)D•−k,j−l(BP )→ (q−2k)D•−k,j−l(B̃P )
is a quasi-isomorphism. Since the arrangements BP are essential with Z t P exact, this follow
from the essential case, already proved in §4.6.2.

4.6.5 Working withouth the connectedness assumption

Let B be a bi-arrangement of hypersurfaces in a complex manifold X, and Z a good stratum
of X. If we do not assume (4.7) that the intersection of strata are all connected, then it is still
possible to define the morphisms Φ as in 4.4.2.

Let us fix a stratum S of B. For every S 1
↪→ T , we have a decomposition into connected

components
Z ∩ T =

⊔
α∈I‖(T )

(Z ∩ T )α t
⊔

β∈I⊥(T )
(Z ∩ T )β

where for each α ∈ I‖(T ), (Z ∩ T )α ⊂ S, and for each β ∈ I⊥(T ), (Z ∩ T )β 6⊂ S. In the same
fashion, we have a decomposition into connected components

E ∩ T̃ =
⊔

α∈I‖(T )
(E ∩ T̃ )α t

⊔
β∈I⊥(T )

(E ∩ T̃ )β

and for each α we have a morphism πT,α : (E ∩ T̃ )α → (Z ∩ T )α.
We then define

Φ(s⊗X) = (πS̃S )∗(s)⊗X +
∑
S

1
↪→T

α∈I‖(T )

(πT,α)∗(ιS(Z∩T )α)∗(s)⊗ d′S,T (X).

We leave it to the reader to check that the proof of Theorem 4.4.10 can be adapted in that
setting.
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4.7 Appendix: normal crossing divisors and relative cohomol-
ogy

In this Appendix, we fix X a complex manifold, L and M two simple normal crossing divisors
in X that do not share an irreducible component and such that L ∪M is a normal crossing
divisor. We will denote by L1, . . . , Ll (resp. M1, . . . ,Mm) the irreducible components of L
(resp. M ). For I ⊂ {1, . . . , l} (resp. J ⊂ {1, . . . ,m}), we will write LI =

⋂
i∈I Li (resp. MJ =⋂

j∈JMj), with the convention L∅ = M∅ = X. For every I and J , LI ∩MJ is a disjoint union
of submanifolds of X.

4.7.1 The spectral sequence

We let
H•(L ,M ) = H•(X \L ,M \M ∩L ) (4.14)

be the corresponding relative cohomology group. It is endowed with a canonical mixed Hodge
structure if X is a complex variety and L , M are complex subvarieties of X.

Proposition 4.7.1. 1. There is a spectral sequence

E−p,q1 (L ,M ) =
⊕
i−j=p
|I|=i
|J |=j

Hq−2i(LI ∩MJ)(−i) =⇒ H−p+q(L ,M ). (4.15)

The differential d1 : E−p,q1 → E−p+1,q
1 is that of the total complex of a double complex,

where

– the horizontal differential is the collection of the morphisms

Hq−2i(LI ∩MJ)(−i)→ Hq−2i+2(LI\{r} ∩MJ)(−i+ 1)

for every r ∈ I, which are the Gysin morphisms of the inclusions LI∩MJ ↪→ LI\{r}∩MJ ,
multiplied by the signs sgn({r}, I \ {r});

– the vertical differential is the collection of the morphisms

Hq−2i(LI ∩MJ)(−i)→ Hq−2i(LI ∩MJ∪{s})(−i)

for every s /∈ J , which are the pull-back morphisms of the inclusions LI ∩MJ∪{s} ↪→
LI ∩MJ , multiplied by the signs sgn({s}, J \ {s}).

2. If X is a smooth complex variety and L , M are complex subvarieties of X, then this is a
spectral sequence in the category of mixed Hodge structures.

3. If furthermore X is projective, then this spectral sequence degenerates at the E2 term and
we have

E−p,q∞
∼= E−p+q2

∼= grWq H−p+q(L ,M ).

Proof. 1. We will use the notation jYU : U ↪→ Y for open immersions. Let us write

F (L ,M ) = (jXX\L )∗(jX\LX\L∪M )!QX\L∪M

seen as an object of the (bounded) derived category of sheaves on X, where QY stands for
the constant sheaf with stalk Q on a space Y . Then we have

H•(L ,M ) = H•(X,F (L ,M )).
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The sheaf (jX\LX\L∪M )!QX\L∪M is resolved by the complex of sheaves

0→ QX\L →
⊕
|J |=1

(ιX\LMJ\MJ∩L )∗QMJ\MJ∩L →
⊕
|J |=2

(ιX\LMJ\MJ∩L )∗QMJ\MJ∩L → · · ·

where the arrows are the alternating sums of the natural restriction morphisms. Thus, F (L ,M )
is isomorphic to the complex of sheaves

0→ (jXX\L )∗QX\L →
⊕
|J |=1

(ιXMJ
)∗(jMJ

MJ\MJ∩L )∗QMJ\MJ∩L →
⊕
|J |=2

(ιXMJ
)∗(jMJ

MJ\MJ∩L )∗QMJ\MJ∩L → · · ·

For a subset J ⊂ {1, . . . ,m} fixed, the sheaf

(jMJ

MJ\MJ∩L )∗QMJ\MJ∩L = (jMJ

MJ\MJ∩L )∗(jMJ

MJ\MJ∩L )∗QMJ

is isomorphic to the complex of sheaves

· · · →
⊕
|I|=2

(ιMJ
LI∩MJ

)!(ιMJ
LI∩MJ

)!QMJ
→

⊕
|I|=1

(ιMJ
LI∩MJ

)!(ιMJ
LI∩MJ

)!QMJ
→ QMJ

→ 0

For ιBA : A ↪→ B a closed immersion of complex manifolds of codimension r, we have an
isomorphism

(ιBA)!QB
∼= QA[−2r]

and hence a morphism
(ιBA)∗QA[−2r]→ QB (4.16)

which corresponds in cohomology to the Gysin morphism Hk−2r(A) → Hk(B). Having
this in mind, we have for |I| = i an isomorphism

(ιMJ
LI∩MJ

)!QMJ
∼= QLI∩MJ

[−2i].

We have thus proved that we have an isomorphism F (L ,M ) ∼= K (L ,M ) where K (L ,M )
is the total complex of the double complex

Ki,j(L ,M ) =
⊕
|I|=i
|J |=j

(ιXLI∩MJ
)∗QLI∩MJ

[−2i].

Here the differential d′ : Ki,j(L ,M ) → Ki−1,j(L ,M ) is the alternation sum of the
Gysin morphisms (4.16), and d′′ : Ki,j−1(L ,M ) → Ki,j(L ,M ) is the alternating sum
of the restriction morphisms. The spectral sequence that we are looking for is simply the
hypercohomology spectral sequence for K (L ,M ).

2. If we work in the category of mixed Hodge modules [PS08, §14], then the above proof works
and gives the compatibility of the spectral sequence with the mixed Hodge structures.

3. If X is smooth and projective, then all LI ∩MJ are (disjoint union of) smooth projective
varieties. Thus, E−p,q1 is a pure Hodge structure of weight q. The degeneration then comes
from the fact that in the category of mixed Hodge structures, a morphism between two
pure Hodge structures of different weights is zero.
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Remark 4.7.2. In the case M = ∅, one recovers the spectral sequence

E−p,q1 =
⊕
|I|=p

Hq−2p(LI)(−p) =⇒ H−p+q(X \L )

where the differential is the alternating sum of the Gysin morphisms of the inclusions LI ↪→
LI\{r}. This spectral sequence was first studied by Deligne in the smooth and projective
case [Del71, Corollary 3.2.13]. If L is a smooth submanifold of X (i.e. l = 1), then this
spectral sequence is nothing but the residue/Gysin long exact sequence:

· · · → Hk−2(L )(−1)→ Hk(X)→ Hk(X \L )→ · · ·

In the case L = ∅, one recovers the spectral sequence

Ep,q1 =
⊕
|J |=p

Hq(MJ) =⇒ Hp+q(X,M )

where the differential is the alternating sum of the pull-back morphisms of the inclusionsMJ∪{s} ↪→
MJ . If M is a smooth submanifold of X (i.e. m = 1), then this spectral sequence is nothing but
the long exact sequence in relative cohomology:

· · · → Hk(X,M )→ Hk(X)→ Hk(M )→ · · ·

Remark 4.7.3. There is a way of proving the first and third points of Proposition 4.7.1 which
does not make use of mixed Hodge modules, but only of mixed Hodge theory à la Deligne [Del71,
Del74], i.e. with complexes of holomorphic differential forms. After tensoring with C, F (L ,M )
is isomorphic to the total complex of the double complex

0→ Ω•X(log L )→
⊕
|J |=1

(ιXMJ
)∗Ω•MJ

(log L ∩MJ)→
⊕
|J |=2

(ιXMJ
)∗Ω•MJ

(log L ∩MJ)→ · · · (4.17)

On each component Ω•MJ
(log L ∩MJ) there is the filtration P by the order of the pole [Del71]

such that we have the Poincaré residue isomorphisms

grPk Ω•MJ
(log L ∩MJ) ∼=

⊕
|I|=k

(ιMJ
LI∩MJ

)∗Ω•−kLI∩MJ
.

Suitably shifted, this gives a filtration W on (4.17) whose hypercohomology spectral sequence
is the spectral sequence of Proposition 4.7.1 tensored with C. If X is projective, the formalism
of mixed Hodge complexes [Del74] allows one to prove that it is defined over Q and compatible
with the mixed Hodge structures.

4.7.2 Duality

There is also the compactly-supported version of (4.14)

H•c (L ,M ) = H•c (X \L ,M \L ∩M ). (4.18)

This has to be understood as the compactly supported cohomology groups of the sheaf F (L ,M )
defined in the proof of Proposition 4.7.1. If X is compact, then it is the same as (4.14).

Proposition 4.7.4. Let n = dimC(X). Then H•(L ,M ) and H•c (M ,L ) are dual to each other
in the sense that we have a Poincaré-Verdier duality(

Hk(L ,M )
)∨ ∼= H2n−k

c (M ,L )

that is compatible with the mixed Hodge structures in the algebraic case. The corresponding
spectral sequences of Proposition 4.14 are also dual to each other.
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Proof. Let D denote the Verdier duality operator. We have, using the notations of the proof of
Proposition 4.7.1:

D (ιXLI∩MJ
)∗QLI∩MJ

[−2i] = (ιMJ
LI∩MJ

)∗QLI∩MJ
[2(n− j)].

Thus, we have a duality
D Ki,j(L ,M ) = Kj,i(M ,L )[2n]

that is easily seen to be compatible with the differentials, hence the result. The compatibil-
ity with the mixed Hodge structures follows from the same computation using mixed Hodge
modules.

4.7.3 Deletion and restriction

Let L ′ = L1∪· · ·∪Ll−1 ⊂ L , we then have (L ′,M ) the deletionof (L ,M ) with respect to Ll.
We write (Ll|L ′,M ) for the intersection of (L ′,M ) with Ll. It is a normal crossing divisor
on Ll, called the restriction of (L ,M ) with respect to Ll.

We have a natural deletion-restriction long exact sequence

· · · → H•(L ′,M )→ H•(L ,M )→ H•−1(Ll|L ′,M )(−1)→ · · · (4.19)

In the same fashion, for M ′ = M1 ∪ · · · ∪Mm−1, we have

· · · → H•−1(Mm|L ,M ′)→ H•(L ,M )→ H•(L ,M ′)→ · · · (4.20)

Proposition 4.7.5. The spectral sequences (4.15) are functorial with respect to the deletion and
restriction morphisms (4.19) and (4.20) via morphisms of spectral sequences. In particular, we
have on the E1 term natural short exact sequences

0→ E−p,q1 (L ′,M )→ E−p,q1 (L ,M )→ E−p+1,q−2
1 (Ll|L ′,M )(−1)→ 0 (4.21)

and
0→ E−p+1,q

1 (Mm|L ,M ′)→ E−p,q1 (L ,M )→ E−p,q1 (L ,M ′)→ 0. (4.22)

To be precise:

– E−p,q1 (L ′,M ) → E−p,q1 (L ,M ) is the natural inclusion corresponding to subsets I that do
not contain l;

– E−p,q1 (L ,M ) → E−p+1,q−2
1 (Ll|L ′,M )(−1) is the natural projection corresponding to sub-

sets I that contain l;

– E−p+1,q
1 (Mm|L ,M ′) → E−p,q1 (L ,M ) is the natural inclusion corresponding to subsets J

that contain m;

– E−p,q1 (L ,M )→ E−p,q1 (L ,M ′) is the natural projection corresponding to subsets J that do
not contain m.

Proof. The deletion-restriction long exact sequences (4.19) and (4.20) are defined on the com-
plexes of sheaves Ki,j (see the proof of Proposition 4.7.1) via the natural inclusions and projec-
tions.
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4.7.4 Blow-ups

We study the functoriality of the spectral sequence (4.15) with respect to the blow-up of a
stratum. For simplicity we assume that all LI ∩MJ ’s are connected. Let Z = LI0 ∩MJ0 be a
stratum, with I0 6= ∅ so that Z ⊂ L . Let π : X̃ → X be the blow-up along Z, E = π−1(Z) be
the exceptional divisor. We set L̃ = E ∪ L̃1 ∪ · · · ∪ L̃l and M̃ = M̃1 ∪ · · · ∪ M̃m. We then have
a natural isomorphism

π∗ : H•(X \L ,M \M ∩L )
∼=→ H•(X̃ \ L̃ , M̃ \ M̃ ∩ L̃ ). (4.23)

Proposition 4.7.6. The spectral sequence (4.15) is functorial with respect to the blow-up mor-
phism (4.23) via a morphism of spectral sequences

E−p,q1 (π) : E−p,q1 (L ,M )→ E−p,q1 (L̃ , M̃ ) (4.24)

given for s ∈ Hq−2p(LI ∩MJ)(−p) by

s 7→
(
πL̃I∩M̃J
LI∩MJ

)∗
(s) +

∑
i∈I∩I0

sgn({i}, I \ {i})
(
π
E∩L̃I\{i}∩M̃J

Z∩LI\{i}∩MJ

)∗ (
ιLI∩MJ
Z∩LI∩MJ

)∗
(s).

Proof. We sketch the proof for the case M = ∅, the general case being similar. In this special
case, the spectral sequence is Deligne’s spectral sequence

E−p,q1 =
⊕
|I|=p

Hq−2p(LI)(−p) =⇒ H−p+q(X \L ). (4.25)

One works over C with the complex of logarithmic forms Ω•X(log L ). By definition, we have a
pull-back morphism

π∗ : Ω•X(log L )→ Ω•
X̃

(log L̃ ).

The claim follows from the following local statement. In Cn with coordinates (z1, . . . , zn), let
us write ωi = dzi

zi
and for I = {i1 < · · · < ik}, ωI = ωi1 ∧ · · · ∧ ωik . In any standard affine

chart π : Cn → Cn of the blow-up of the linear space Z = {z1 = · · · = zr = 0}, one write zE
for the coordinate corresponding to the exceptional divisor, and ωE = dzE

zE
. One then has the

formula
π∗(ωI) = ωI +

∑
i∈I

16i6r

sgn({i}, I \ {i})ωE ∧ ωI\{i}.

Dually, if Z = LI0 ∩MJ0 with J0 6= ∅, we get an isomorphism

π∗ : H•(X̃ \ L̃ , M̃ \ M̃ ∩ L̃ )
∼=→ H•(X \L ,M \M ∩L )

where L̃ = L̃1 ∪ · · · ∪ L̃l and M̃ = E ∪ M̃1 ∪ · · · ∪ M̃m, that can be described explicitly in terms
of a morphism of spectral sequences.

4.8 Appendix: Chern classes, blow-ups, and some cohomologi-
cal identities

4.8.1 Chern classes of normal bundles

Let ιXZ : Z ↪→ X be the inclusion of a closed submanifold Z of codimension r of a complex
manifold X. We denote by NZ/X the normal bundle of ιXZ and by ck(NZ/X) ∈ H2k(Z), k =
0, . . . , r its Chern classes.
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For inclusions A ↪→ B ↪→ C we have a short exact sequence

0→ NA/B → NA/C →
(
NB/C

)
|A
→ 0 (4.26)

which implies the following transitivity property of Chern classes:

ck(NA/C) =
k∑
j=0

cj(NA/B) . ck−j(NB/C)|A. (4.27)

If A and B are two closed submanifolds of a complex manifold X that are transverse, and R
a connected component of the intersection A ∩B, we also have an isomorphism

NR/X
∼=
(
NA/X

)
|R
⊕
(
NB/X

)
|R
. (4.28)

By combining it with (4.26) for R ↪→ A ↪→ X, one gets an isomorphism

NR/A
∼=
(
NB/X

)
|R
. (4.29)

4.8.2 Gysin morphisms and pull-backs

Let ιXZ : Z ↪→ X be the inclusion of a closed submanifold Z of codimension r of a complex
manifold X. We have a pull-back morphism (ιXZ )∗ : H•(X) → H•(Z) and a Gysin mor-
phism (ιXZ )∗ : H•(Z)→ H•+2r(X). We have the projection formula

(ιXZ )∗(z.(ιXZ )∗(x)) = (ιXZ )∗(z) . x. (4.30)

We have the following compatibilities:

(ιXZ )∗(ιXZ )∗(z) = z . cr(NZ/X); (4.31)

(ιXZ )∗(ιXZ )∗(x) = x . [Z]X . (4.32)

Here NZ/X is the normal bundle of Z inside X, and ck(NZ/X) ∈ H2k(Z), k = 0, . . . , r are its
Chern classes; [Z]X ∈ H2r(Z) is the cohomology class of Z in X.
If A and B are two closed submanifolds of a complex manifold X that are transverse, then we
have

(ιXA )∗ ◦ (ιXB )∗ = (ιAA∩B)∗ ◦ (ιBA∩B)∗. (4.33)

This includes the case A ∩B = ∅ for which the right-hand side is 0, and the case where A ∩B
is not connected for which the right-hand side is the sum of (ιAR)∗ ◦ (ιBR)∗ for R a connected
component of A ∩B.

4.8.3 Blow-ups

Let X be a complex manifold and Z a closed submanifold of X, of codimension r. We
let π : X̃ → X be the blow-up of X along Z. We let πEZ : E → Z be the morphism in-
duced by π, it is the projectified normal bundle of Z inside X. For S a submanifold of X, we
denote by S̃ its strict transform along π, and πS̃S : S̃ → S the morphism induced by π. It is the
blow-up of S along Z ∩ S.

Let L be a smooth hypersurface of X that contains Z. We have the identity

π∗ ◦ (ιXL )∗ = (ιX̃
L̃

)∗ ◦ (πL̃L)∗ + (ιX̃E )∗ ◦ (πEZ )∗ ◦ (ιLZ)∗ (4.34)
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between morphisms H•(L)→ H•+2(X̃). When applied to the element 1 ∈ H0(L), one recovers

π∗([L]) = [L̃] + [E]. (4.35)

We also have the following identity, for any z ∈ H•(Z):

(ιE
E∩L̃)∗(πE∩L̃Z )∗(z) = (πEZ )∗(z) .

(
(πEZ )∗c1(NL/X)|Z − c1(N

E/X̃
)
)
. (4.36)

Proof (of (4.36)). We have (πE∩L̃Z )∗ = (ιE
E∩L̃

)∗ ◦ (πEZ )∗, hence using (4.32) we get

(ιE
E∩L̃)∗(πE∩L̃Z )∗(z) = (πEZ )∗(z) . [E ∩ L̃]E

where [E∩ L̃]E denotes the class of E∩ L̃ in the cohomology of E. Since L̃ and E are transverse
in X̃, we can use (4.33) to get

[E ∩ L̃]E = (ιE
E∩L̃)∗(ιL̃E∩L̃)∗(1) = (ιX̃E )∗(ιX̃

L̃
)∗(1) = (ιX̃E )∗([L̃]

X̃
).

Now using (4.35) we get
[L̃]

X̃
= π∗([L]X)− [E]

and thus
[E ∩ L̃]E = (ιX̃E )∗π∗[L]− (ιX̃E )∗[E] = (πEZ )∗(ιXZ )∗[L]− c1(N

E/X̃
).

The claim then follows from the computation (ιXZ )∗[L] = (ιLZ)∗(ιXL )∗(ιXL )∗(1) = c1(NL/X)|Z where
we have used (4.31).

Now if L is a smooth hypersurface of X such that Z and L are transverse in X, we have the
simpler identities

π∗ ◦ (ιXL )∗ = (ιX̃
L̃

)∗ ◦ (πL̃L)∗; (4.37)

π∗([L]) = [L̃]. (4.38)

We also have
(πEZ )∗ ◦ (ιZZ∩L)∗ = (ιE

E∩L̃)∗ ◦ (πE∩L̃Z∩L)∗. (4.39)

4.8.4 The excess class γ

Let X be a complex manifold and Z a closed submanifold of X, of codimension r. We let π :
X̃ → X be the blow-up of X along Z. The excess class of π is by definition

γ = cr−1
(
(πEZ )∗(NZ/X)/N

E/X̃

)
∈ H2(r−1)(E). (4.40)

It appears in the formula
π∗(ιXZ )∗(z) = (ιX̃E )∗((πEZ )∗(z) . γ). (4.41)

We have a short exact sequence

0→ Hk−2r(Z)(−r) α−→ Hk−2(E)(−1)⊕Hk(X) β−→ Hk(X̃)→ 0 (4.42)

where α and β are defined by α(z) =
(
(πEZ )∗(z) . γ, (ιXZ )∗(z)

)
and β(e, x) = −(ιX̃E )∗(e) + π∗(x).

Let L be a smooth hypersurface of X that contains Z. We let γL be the excess class
of πL̃L : L̃→ L, and is an element of H2(r−2)(E ∩ L̃). We have the identity

(ιE
E∩L̃)∗(γL) = γ − (πEZ )∗cr−1(NZ/L); (4.43)
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Proof (of (4.43)). Let us write ξ = −c1(N
E/X̃

) and ξL = −c1(N
E∩L̃/E). We then have

γ =
r−1∑
k=0

(πEZ )∗(cr−1−k(NZ/X)) . ξk and γL =
r−2∑
k=0

(πE∩L̃Z )∗(cr−2−k(NZ/L)) . ξkL.

Using (4.32) and (4.33) (E and L̃ are transverse in X) we get

(ιE
E∩L̃)∗ξ = −(ιE

E∩L̃)∗(ιX̃E )∗(ιX̃E )∗(1) = −(ιL̃
E∩L̃)∗(ιX̃

L̃
)∗(ιX̃E )∗(1) = −(ιE

E∩L̃)∗(ιE
E∩L̃)∗(ιL̃E∩L̃)∗(1) = ξL.

Repeated applications of the projection formula (4.30) then give

(ιE
E∩L̃)∗γ =

r−2∑
k=0

(ιE
E∩L̃)∗(πE∩L̃Z )∗(cr−2−k(NZ/L)) . ξk.

Using (4.36) we get

(ιE
E∩L̃)∗(πE∩L̃Z )∗(cr−2−k(NZ/L)) = (πEZ )∗(cr−2−k(NZ/L) . c1(NL/X)|Z) + (πEZ )∗(cr−2−k(NZ/L)) . ξ.

Replacing in the above sum and doing a change of summation index, one gets

(ιE
E∩L̃)∗γ =

r−1∑
k=0

(πEZ )∗(cr−2−k(NZ/L) . c1(NL/X)|Z + cr−1−k(NZ/L)) . ξk − (πEZ )∗(cr−1(NZ/L))

Now using (4.27) we get cr−2−k(NZ/L) . c1(NL/X)|Z + cr−1−k(NZ/L) = cr−1−k(NZ/X), hence the
claim.
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