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Introduction: version française

1 Equations différentielles partielles paramétriques

Cette thèse est consacrée à l’étude théorique et l’approximation numérique des équa-
tions aux dérivées partielles (EDP) paramétriques en grandes dimensions. Les EDP
paramétriques apparaissent dans des contextes très variés pour la modélisation de la
dépendence de systèmes physiques spécifiques en fonction de certains paramètres per-
tinents. Par exemple, la distibution de la chaleur dans une plaque métallique où la
paramétrisation décrit le pourcentage des différentes composantes chimiques de l’alliage.
La représentation formelle que nous adoptons pour les EDP paramétriques est la suiv-
ante :

D(u, y) = 0, (1.1)
où D est un opérateur différentiel linéaire ou non linéaire, modélisant le phénomène
physique, qui dépend d’un ensemble de d paramètres représentés par le vecteur y :=
(y1, . . . , yd) ∈ Rd. Nous désignons par U ⊂ Rd le domaine paramétrique qui décrit la
plage des valeurs admissibles de y, et nous supposons qu’il existe un espace de Banach
V , par exemple un espace de Sobolev, dans lequel le problème (1.1) est bien posé pour
tout y ∈ U . Nous pouvons ainsi définir l’application solution de U dans V :

u : y 7→ u(y), (1.2)

qui associe à chaque paramètre y ∈ U l’unique solution u(y) ∈ V de (1.1).

Les EDP paramétriques sont utilisées dans la modélisation des systèmes complexes
dans des contextes physiques ou d’ingénierie très variés. Nous ne faisons pas une clas-
sification exhaustive des ses contextes, mais nous distinguons deux classes principales:

• Modélisation déterministe: Les paramètres y sont des données déterministes du
système physique qui peuvent être contrôlées et modifiées par l’utilisateur. Ils peu-
vent par exemple être des paramètres de conception ou de contrôle dans un processus
industriel réel ou numériquement simulé. Une application typique dans ce contexte
est l’optimisation d’une certaine quantité d’intérêt scalaire Q qui dépend de la solu-
tion et par conséquent des paramètres:

y 7→ u(y) 7→ Q(u(y)). (1.3)

9



10 1. Equations différentielles partielles paramétriques

Par exemple, considérons l’équation stationnaire de la chaleur dans un domaine donné
D

−div(a∇u) = f in D, u|∂D = 0, (1.4)

en présense d’une source thermique f donnée et a = a(y) choisi dans une famille
{a(y) : y ∈ U} de fonctions de conductivité thermique. Pour des fins de conception
du matériau, nous pouvons varier le paramètre y dans le but de minimiser le flux du
champ de température u(y) à travers une portion de la surface Γ ⊂ ∂D. Dans ce cas,
la quantité d’intérêt scalaire est

y 7→ Q(y) =

∫
Γ

∂u(y)

∂n
(x)dx. (1.5)

• Modélisation stochastique: Les paramètres y sont des réalisations de variables
aléatoires qui reflètent des incertitudes dans le modèle physique décrit par (1.1).
Par exemple, si l’équation (1.4) est utilisée pour la modélisation de la diffusion dans
un milieu poreux dont les propriétés ne sont pas connues exactement, il est alors
naturel de modéliser le coefficient de diffusion a comme un champ aléatoire qui,
comme expliqué plus loin, peut être décrit par une suite (yj)j≥1 de variables aléatoires
scalaires. Dans la modélisation stochastique, l’utilisateur est typiquement intéressé
par les propriétés statistiques de la solution u, qui est elle même un champ aléatoire
sur V . Par exemple, on peut être intéressé par le calcul du champ moyen ū := E[u]
qui, si il existe, est une fonction déterministe dans V , de l’écart type E[‖u− ū‖2

V ], de
l’espérance d’une quantité d’intérêt Q = Q(y) dépendant de la solution comme dans
le contexte déterministe, ou d’un intervalle de confiance pour cette quantité.

Outre la distinction entre les contextes déterministes et stochastiques, les paramètres
(yj)j≥1 peuvent être utilisés dans la description de différentes quantités: la conductivité
ou les propriétés de diffusion du matériau comme dans les exemples ci-dessous, le flux
dans un problème de transport, un terme de forçage comme celui de droite dans (1.4),
la géométrie du domaine physique (via la paramétrisation de la frontière, par exemple
à l’aide des points de contrôle dans une conception assistée par ordinateur). Il est aussi
possible que plusieurs de ces quantités soient simultanément considérées, auquel cas y
concatène tous les paramètres utilisés dans la description de ces quantités.

Une partie importante de cette thèse est consacrée à l’étude du problème modèle
(1.4) pour une classe particulière de coefficients a. Bien que simple en énoncé, ce mod-
èle est pertinent pour la création d’une méthodologie traitant d’autres classes d’EDP
paramétriques. Ici, D ⊂ Rm est un domaine lipschitzien borné, avec m typiquement
égal à 2 ou à 3, et f dans H−1(D). Nous considérons le problème elliptique du second
ordre

−div(a(y)∇u) = f dans D, u|∂D = 0, (1.6)
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où pour tout y ∈ U , la fonction de diffusion a(y) ∈ L∞(D) dépend de façon affine en
y, selon

a(y) := a+
d∑
j=1

yjψj (1.7)

avec a et les ψj sont des fonctions dans L∞(D). Nous faisons l’hypothèse que le problème
est uniformément elliptique sur U , au sens où il existe 0 < r ≤ R <∞ tels que

r ≤ a(x, y) ≤ R, x ∈ D, y ∈ U, (1.8)

avec la notation

a(x, y) := a(y)(x) = a(x) +
d∑
j=1

yjψj(x). (1.9)

Sous ces hypothèses, la théorie de Lax-Milgram garantit que le problème (1.6) est bien
posé dans V := H1

0 (D) pour tout y ∈ U . L’application solution associe à tout y ∈ U
l’unique solution u(y) ∈ V .

Le fait de supposer une dépendance affine en y pour a(y) est pertinent dans plusieurs
contextes. Par exemple si a est constant par morceaux sur une partition D = ∪dj=1Dj

du domaine physique, alors il est naturel de poser

a(y) = a+
d∑
j=1

yjχDj , (1.10)

où a est une constante et χDj la fonction indicatrice de Dj. Plus généralement, la forme
affine (1.7) est rencontrée si nous tronquons le développement de a − a, où a est une
fonction de x, dans une base donnée (ψj)j≥1, c’est à dire un développement de la forme

a(y) = a+
∞∑
j=1

yjψj. (1.11)

Il existe évidement plusieurs choix possibles pour une telle base (séries de Fourier,
polynômes orthogonaux, ondelettes...). Dans le contexte stochastique, lorsque a est
un champ aléatoire du second ordre avec espérance E[a] = a et avec une fonction de
covariance continue

(x, z) ∈ D ×D 7→ cov[a](x, z) := E[(a(x)− a(x))(a(z)− a(z))], (1.12)

un choix fréquemment utilisé est la base de Karhunen-Loève, en d’autres termes, les
vecteurs propres orthonormaux de l’opérateur

v 7→ Tav :=

∫
D

cov[a](·, x)v(x)dx, v ∈ L2(D), (1.13)
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qui est compact, auto-adjoint et positif sur L2(D). Les variables scalaires yj sont
centrées et mutuellement non-corrélées, i.e. E[yj] = 0 et E[yiyj] = δij pour i, j ≥ 1,
avec variance donnée par la valeur propre correspondante λj > 0.

Tout au long de cette thèse, nous supposons que le domaine paramétrique U a une
forme tensorielle, ce qui veut dire que les variables yj varient indépendamment dans
des intervalles Ij. Une telle hypothèse est naturelle pour des problèmes déterministes
où ces paramètres peuvent être indépendamment ajustés. Par exemple, dans le cas
constant par morceaux (1.10), ces intervalles peuvent être de la forme Ij = [−αj, αj]
avec 0 < αj < a pour tout j. Dans le contexte stochastique, en utilisant par exemple
la représentation Karhunen-Loève ci-dessous, cette supposition est naturelle si on sup-
pose que les yj sont des variables aléatoires indépendantes. Notons que l’indépendance
statistique des composantes est une propriété plus forte que leur non-corrélation. Nous
pouvons donc, quitte à changer la normalisation des fonctions de base ψj, supposer
dans les deux contextes, déterministe et stochastique, que le domaine des paramètres
U est l’hypercube unitaire en dimension d,

U := [−1, 1]d. (1.14)

Dans les modèles où les paramètres y = (y1, . . . , yd) correspondent à la troncation
d’une series infinie telle que (1.11), la précision est affectée par l’ordre d de la troncation.
Afin d’atteindre des précisions arbitrairement élevées dans l’approximation numérique
de ces modèles, il faut par conséquent autoriser la croissance de la variable d. Comme
expliqué plus loin, cette croissance a en principe un coût numérique sévère exprimé par
la plaie des grandes dimensions. Un des objectifs de cette thèse est donc de développer
des méthodes numériques qui sont robustes à la croissance de d, au sens où elles peuvent
être appliquées au cas où le vecteur paramètre

y = (yj)j≥1, (1.15)

est de dimension infinie. Dans ce cas, le domaine paramétrique est l’hypercube en
dimension infinie,

U := [−1, 1]N. (1.16)

2 Approximation numérique

Dans le contexte déterministe comme stochastique, les applications concrètes peuvent
exiger en principe l’évaluation de la solution u(y) pour un grand nombre N d’instances
du paramètre vectoriel y. Les exemples typiques dans ce sens sont l’optimisation d’une
quantité d’intérêt scalaire y 7→ Q(u(y)) par la méthode de Newton, où l’approximation
de la moyenne E[Q(u(y))] par les méthodes de Monte Carlo. De telles approches exigent
des résolutions {ui = u(yi) : i = 1, . . . , N} de l’application solution (1.2), chacune
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d’entre elle étant effectuée par un solveur numérique, éventuellement très coûteux dans
le cas d’un système complexe. Ajoutons à cela que les approches citées sont souvent
orientées objectif, en d’autres termes, la base de données des évaluations collectées pour
une certaine tâche (par exemple l’optimisation) peut être mal adaptée pour une autre
tâche (par exemple le calcul de la moyenne).

Les difficultés décrites ci-dessus conduisent au défi d’approcher simultanément toutes
les solutions u(y) pour y ∈ U à une précision prescrite et avec un coût numérique
raisonnable, ce qui revient à approcher l’application solution u : y 7→ u(y).

Cette tâche est difficile car, contrairement au problème de l’approximation d’une
fonction à valeurs réelles u : R 7→ R, l’application solution u associée à une EDP
paramétrique (i) est définie sur un domaine multi-dimensionnel [−1, 1]d où la dimension
paramétrique d peut être large ou même infinie, et (ii) prend ses valeurs dans un espace
V de dimension infinie, ou dans un espace de discrétisation Vh ⊂ V de dimension finie
mais grande quand un solveur numérique est utilisé.

Le premier point (i) souligne le problème de la plaie des grandes dimensions qui fait
référence à l’explosion exponentielle de la complexité des méthodes de discrétisation,
avec la croissance du nombre d de variables, même pour les fonctions à valeurs réelles.
Une autre émanation de ce phénomène est la détérioration des taux d’approximation des
fonctions d’une régularité donnée quand d croît: par exemple la précision en métrique
L∞ (ou uniforme) de la reconstruction d’une fonction arbitraire avec des dérivées con-
tinues jusqu’à l’ordre m avec des polynômes par morceaux dans des grilles h-espacées
est au mieux de l’ordre de hm et donc, en terme du nombre de degrés de liberté n,
est d’ordre asymptotique n−m/d. La vitesse de convergence est donc d’autant plus mé-
diocre que d est grand. Un examen plus approfondi à l’aide de la théorie des épaisseurs
non-linéaires [43, 40, 80] révèle que ce taux de convergence ne peut pas être amélioré
avec une autre méthode de discrétisation.

Le deuxième point (ii) est lié au calcul pratique des approximations. Les instances
u(y) de l’application solution ou toute quantité qui en dépend, par exemple les coeffi-
cients d’une approximation polynomiale en la variable paramétrique y de cette appli-
cation, peuvent seulement être approchées avec une certaine discrétisation de l’espace,
telle que par la méthode des éléments finis. Par conséquent, il est crucial d’incorporer
ces considérations dans l’analyse de l’erreur numérique finale. Plusieurs questions peu-
vent être soulevées dans l’analyse de l’erreur de discrétisation. Par exemple, est-il
judicieux d’utiliser le même espace de discrétisation Vh pour toutes les instances? est
ce que la méthode d’approximation de l’application solution u est robuste aux erreurs
de discrétisation? etc. Nous laissons de côté la discrétisation de l’espace dans le reste
de l’introduction et nous nous concentrons sur la discrétisation paramétrique (en y).

Nous distinguons deux approches dans l’approximation de l’application solution
(1.2). Une propriété commune à ces deux approches est la séparation du paramètre
vectoriel y et de la variable physique x, espace et/ou temps, dans l’approximation de
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u. La première approche consiste à construire une application peu coûteuse à évaluer

y ∈ U 7→ un(y) :=
n∑
i=1

viφi(y) ∈ V, (2.1)

basée sur un petit nombre n de fonctions vi ∈ V et de fonctions à valeurs scalaires φi de
U dans R ou C. Par exemple, les vi peuvent être des instances de l’application solution
u associées avec des valeurs yj ∈ U bien choisies du paramètre vectoriel, i.e. vi = u(yi),
et les fonctions φi dans ce cas sont des fonctions de Lagrange associées avec un schéma
d’interpolation par des polynômes aux points (y1, . . . , yn). Dans le contexte stochas-
tique, ces méthodes sont communément appelées méthodes stochastiques spectrales, voir
[51, 52, 59].

En fonction du contexte de modélisation, déterministe ou stochastique, et de l’application
visée, on décide en quel sens l’approximation un doit être proche de u. Si par exemple
l’objectif est de capturer l’application u partout sur U à une précision prescrite ε(n),
alors l’erreur doit être considérée dans le sens uniforme, i.e.

sup
y∈U
‖u(y)− un(y)‖V ≤ ε(n). (2.2)

Dans le contexte stochastique, la qualité de l’approximation est souvent mesurée en
moyenne, par exemple à travers une estimation de l’erreur quadratique moyenne de la
forme

E[‖u(y)− un(y)‖2
V ] :=

∫
U

‖u(y)− un(y)‖2
V d%(y) ≤ ε2(n), (2.3)

où % est la distribution de probabilité du vecteur aléatoire y. Notons que la première
estimation entraîne la seconde.

La deuxième approche consiste à rechercher un sous espace En de V de dimension
faible n qui peut servir pour l’approximation simultanée de toutes les solutions u(y),
par exemple par la méthode de Galerkin. Ceci signifie que nous cherchons à approcher
la variété des solutions,

M :=
{
u(y) : y ∈ [−1, 1]d

}
⊂ V, (2.4)

par l’espace vectoriel En. À nouveau, on peut chercher les estimations d’erreur au sens
uniforme ou dans un sens quadratique moyen, entre u et sa meilleure approximation
uEn : y 7→ un(y) := argminv∈En‖u(y) − v‖V , obtenue par la projection orthogonale de
chaque u(y) dans En dans le cas où V est un espace de Hilbert.

Dans le cas de l’approximation au sens uniforme, le choix optimal de En lorsqu’il
existe correspond à l’espace qui réalise la n-épaisseur de Kolmogorov,

dn(M)V := inf
dim(E)≤n

σE(M), σE(M) := sup
w∈M

inf
v∈E
‖w − v‖V . (2.5)



Introduction: version française 15

Dans le contexte stochastique, on soustrait habituellement le champ moyen u = E[u]
à u et on cherche l’espace En qui minimise l’erreur quadratique moyenne

E(‖ũ− ũE‖2
V ), (2.6)

entre ũ = u − u et sa meilleure approximation ũE, parmis tous les sous-espaces E de
dimension n. Le choix optimal est lié au développement de Hilbert-Karhunen-Loève

ũ =
∞∑
j=1

√
λivjUj (2.7)

où (λi, vi) est la famille des couples, de valeurs propres classées par ordre décroissant
et de vecteurs propres associés à l’opérateur de covariance de u sur V (voir [45] pour
plus de détails), et

Uj :=
1√
λi
〈ũ, vj〉V , (2.8)

sont centrées et mutuellement non-corrélées, et de variance 1. L’espace optimal est
alors engendré par {v1, . . . , vn}.

Dans les deux cas, les espaces optimaux ne sont pas facilement accessibles d’un
point de vue numérique et on a donc recours à des espaces sous-optimaux mais facile
à calculer. Pour des estimations au sens quadratique moyen, on peut approcher u et
le noyau de covariance cov[u] à partir de la connaissance de u sur une discrétisation
grossière de V , voir [45], où par le calcul de u et le noyau de covariance cov[u] en
n’ayant aucune connaissance de u, voir [65] pour le problème (1.6). Cependant, le
calcul du développement Hilbert-Karhunen-Loève revient à la résolution d’un problème
aux valeurs propres généralisé, ce qui peut être coûteux numériquement. Pour les
estimations uniformes, une stratégie populaire est la méthode des bases réduites, [16,
64, 63]. Dans cette stratégie, on calcule en premier lieu au cours d’une étape offline,
éventuellement très coûteuse, n éléments vj = u(yj) de la variétéM, puis dans le calcul
online on approche pour n’importe quel paramètre y la solution u(y) dans l’espace
Fn = span{v1, . . . , vn} par un schéma de Galerkin. Les espaces Fn sont en général sous-
optimaux par comparaison avec les espaces des n-épaisseur En qui réalisent l’infimum
en (2.5). Cependant, il a été prouvé dans [12] et [42] qu’une certaine sélection greedy
des instances vj dans l’étape offline produit des espaces qui sont optimaux en taux de
convergence, au sens suivant: étant donnés α, c > 0, il est prouvé que

sup
n>0

nασFn(M) ≤ Cα sup
n>0

nαdn(M), (2.9)

et que
sup
n>0

ecαcn
α

σFn(M) ≤ Cα sup
n>0

ecn
α

dn(M), (2.10)

où Cα et cα sont des constantes qui dépendent de α.
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Il faut remarquer que les deux approches décrites ci-dessus sont liées. D’une part, si
un est une approximation de u de la forme (2.1) dans le sens uniforme à une précision
ε(n), alors en introduisant l’espace Fn := span{v1, . . . , vn}, nous avons

σFn(M) = sup
y∈U

inf
v∈Fn
‖u(y)− v‖V ≤ sup

y∈U
‖u(y)− un(y)‖V ≤ ε(n). (2.11)

Par conséquent, l’espace vectoriel Fn approche la variétéM dans le sens uniforme avec
la précision ε(n), entraînant ainsi une estimation de la n-épaisseur de Kolgomorov par

dn(M) ≤ σFn(M) ≤ ε(n). (2.12)

Ceci peut à son tour être utilisé pour l’étude de la convergence de la méthode des bases
réduites, au vu de (2.9) et (2.10). D’autre part, si En := span{v1, . . . , vn} est l’espace
qui réalise la n-épaisseur de Kolmogorov, lorsqu’elle atteinte, alors on peut écrire pour
tout y ∈ U

uEn(y) =
n∑
i=1

viφi(y), (2.13)

où φi(y) sont les coordonnées de uEn(y) associées avec les vi. Evidemment uEn a la
forme (2.1) et

dn(M) = σEn(M) = sup
y∈U
‖u(y)− uEn(y)‖V , (2.14)

ce qui montre que uEn est la meilleure approximation de la forme (2.1) dans le sens
uniforme.

En pratique, il y a cependant une différence fondamentale entre les deux approches.
Dans la première approche, on choisit d’abord n fonctions à valeurs scalaires φ1, . . . , φn
dans une famille de fonctions, par example la famille des polynôme de Legendre, puis
on calcule les fonctions v1, . . . , vn ∈ V . Dans la deuxième approche, on s’applique
à identifier n “bonnes” fonctions v1, . . . , vn dans V , puis pour y donné on calcule les
valeurs φj(y) par une méthode de projection de Galerkin dans l’espace engendré par
ces fonctions. Une fois les fonctions v1, . . . , vn ∈ V sont calculées, la première approche
présente l’avantage du fait que le calcul de un(y) est immédiat par la combinaison
linéaire (2.1) alors qu’une inversion de système est requise, pour tout y ∈ U , dans la
deuxième approche.

Cette thèse aborde uniquement la première approche, et plus particulièrement la
construction d’approximations peu coûteuses de la forme (2.1) à l’application solution,
avec les fonctions φi(y) qui sont des polynômes multidimensionels en la variable y. Une
autre distinction essentielle dans les méthodes numériques pour les EDP paramétriques
fait apparaître les deux classes suivantes considérées dans cette thèse:

• Méthodes non-intrusives: elles demandent des résolutions (approchées) répétées
de l’application solution u, obtenues par un solveur numérique déterministe existant.
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Typiquement, le solveur est un code de simulation industriel considéré comme une
boite noire qui associe à chaque paramètre vectoriel y ∈ U une evaluation uε(y) ∈ V
approchant u(y) à une précision ε > 0 arbitraire requise. Un exemple de ces méthodes
est l’approximation Monte Carlo du champ moyen u par moyenne empirique

un :=
1

n

n∑
i=1

u(yi), (2.15)

où les yi sont des réalisations indépendantes du paramètre vectoriel aléatoire y. Un
autre exemple est l’approximation de l’application solution par l’interpolation en des
points y1, . . . , yn ∈ U . Les méthodes non-intrusive présentent l’intérêt de pouvoir être
utilisées comme un post-traitement aux solveurs numériques existants. Cependant, la
dépendance au solveur, qui est éventuellement coûteux numériquement, peut s’avérer
contraignante. De plus, lorsque le solveur est donné comme une boite noire sans
information précise sur le modèle EDP sous-jacent (1.1), il n’y a aucune garantie
théorique qu’une méthode non-intrusive convient à l’objectif numérique ou même
que les approximations produites par une telle méthode convergent.

• Méthodes intrusives: à l’inverse des méthodes non-intrusives, elles exploitent les
particularités des classes spécifiques d’EDP paramétriques ou stochastiques. Par
“particularités”, on entend ici toute information additionnelle (donnée ou hypothèse)
sur l’équation (1.1) qui gouverne le système physique. Par exemple, la distribution
du vector aléatoire y dans le contexte stochastique, la catégorie de l’opérateur D,
la forme de sa dépendance en y, etc. La connaissance de telles spécificités permet
l’élaboration de méthodes qui sont bien adaptées au problème et qui peuvent être
plus performantes que les méthodes non-intrusives en vitesse et en précision. Par
exemple, la connaissance du modèle exacte permet l’utilisation de la méthode de
Galerkin avec les polynômes en y pour la discrétisation paramétrique. Notons que
la méthode des bases réduites est non-intrusive dans l’étape offline où on calcule
seulement des instances de solutions, alors que l’étape online est intrusive car on
utilise ces instances pour générer un espace de discrétisation pour la méthode de
Galerkin.

3 Approximations polynomiales de l’application solu-
tion

Nous avons vu qu’il existe des approximations à n termes qui ont une forme séparable
(2.1) et qui sont optimales au sens uniforme ou au sens quadratique moyen. En revanche,
elles ne sont pas facilement calculables. En outre, les fonctions φj dans ces cas peuvent
être assez complexes puisqu’elles dépendent de toutes les variables yj. Notre approche
consiste à chercher davantage de séparation de variables, via des approximations de la
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forme

un(y) =
n∑
j=1

vj
∏
i≥1

φj,i(yi). (3.1)

Le problème du choix optimal des facteurs est mal posé. À titre d’illustration, nous
considérons le cas où u est à valeurs réelles et que le domaine paramétrique U est discret
et fini de la forme {t1, . . . , tk}d. Dans ce cas V := R et u ∈ V k×...×k est un tenseur
d’ordre d, ainsi les approximations de la forme (3.1) sont les approximations de rang n
de u qui s’écrivent sous la forme

un =
n∑
j=1

vj Φj,1 ⊗ . . .⊗ Φj,d, (3.2)

où Φj,i := (φj,i(t1), . . . , φj,i(tk))
t. Il est bien connu que le problème du calcul de la

meilleure approximation de rang n ≥ 2 est en général mal posé pour toutes les normes,
excepté dans le cas d = 2 où, grâce au théorème d’Eckart-Young, voir [38], il est
complètement résolu pour les normes de Hilbert-Schmidt et les normes spectrales.

Les approches alternatives consistent à choisir les fonctions φj,i dans une famille
prédéfinie. Par exemple, nous pouvons imposer aux fonctions φj,i d’être des polynômes,
des polynômes par morceaux, des fonctions trigonométriques, etc. Ici, nous considérons
essentiellement les polynômes, auquel cas les approximations de la forme (3.1) sont des
polynômes à plusieurs variables définis sur U et à coefficients dans V .

Les approximations par des polynômes tensorisés peuvent être construites à l’aide de
plusieurs méthodes, par exemple les séries de Taylor, les séries de Legendre, la projection
de Galerkin, l’interpolation polynomiale, les moindres carrés, les grilles parcimonieuses
(sparse grids), etc. Le choix d’une méthode se fait en fonction du but recherché dans
l’approximation et des informations dont on dispose sur l’EDP paramétrique. En par-
ticulier, parmi toutes les méthodes que nous venons de citer, seules les trois dernières
sont non-intrusives. Pour chaque méthode, les polynômes φj,i ont une forme prédéfinie.
Nous introduisons dans ce qui suit une notation unifiée que nous utiliserons pour décrire
les différentes méthodes polynomiales qui ont été proposées depuis quelques années.

Nous considérons une famille de polynômes à une variable

P := (Pj)j≥0, (3.3)

avec P0 constant et égale à 1 et Pj est de degré j, de sorte que {P0, . . . , Pk} est une base
de Pk l’espace des polynômes de degré au plus k. Nous désignons par F l’ensemble Nd
des multi-indices de longueur d. Nous considérons la famille (Pν)ν∈F des polynômes à
plusieurs variables définis par

Pν(y) :=
d∏
j=1

Pνj(yj), y := (y1, . . . , yd), ν ∈ F . (3.4)
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Les approximations polynomiales que nous considérons ont la forme

uΛ :=
∑
ν∈Λ

vν Pν , (3.5)

où Λ ⊂ F est un ensemble de multi-indices de cardinalité finie et {vν}ν∈Λ sont des
éléments de V . Les polynômes uΛ appartiennent ainsi à l’espace des polynômes à
valeurs dans V

VΛ := V ⊗ PΛ où PΛ = PΛ(P) := span{Pν : ν ∈ Λ}. (3.6)

Il est important de signaler que l’espace VΛ dépend à priori à la fois de l’ensemble Λ et
de la famille P . Pour la famille P , nous pouvons typiquement considérer les monômes

Pj(t) = tj, (3.7)

où les polynômes de Legendre obtenus par l’orthogonalisation Gram-Schmidt de ses
derniers dans L2([−1, 1], dt

2
). En revanche, si Λ a la propriété suivante:

ν ∈ Λ et µ ≤ ν ⇒ µ ∈ Λ, (3.8)

où µ ≤ ν signifie que µi ≤ νi pour tout i = 1, . . . , d, alors il facile à voir que VΛ est
indépendant de P , auquel cas on a

VΛ := V ⊗ span{y 7→ yν : ν ∈ Λ} où yν =
d∏
j=1

y
νj
j . (3.9)

Les ensembles Λ qui ont la propriété précédente sont appelés ensembles bas ou ensembles
fermés vers le bas (lower sets ou downward closed sets), et jouent un rôle très important
dans cette thèse.

Étant donné une EDP paramétrique ou stochastique (1.1), deux questions fonda-
mentales sont à poser:

(i) Comment trouver Λ de faible cardinalité tel que l’application solution est bien
approchée dans VΛ ?

(ii) Comment calculer en pratique une approximation de l’application solution dans
VΛ ?

Dans le cas du problème elliptique modèle (1.6) avec une dépendance affine comme
dans (1.7) et une hypothèse d’ellipticité uniforme (1.8), ces questions ont été abordées
depuis quelques années par diverses approches [2, 5, 6, 4, 68, 70, 69, 7, 8, 74, 34, 33, 22].
Les algorithmes réalisables de l’approximation polynomiale considérés dans ces travaux
intègrent la discrétisation en la variable d’espace, prenant ainsi en compte le fait que
les instances u(y) ∈ V ou tout autre coefficient dans V associé à u ne peuvent qu’être
approchées avec une précision donnée. Par exemple, pour le modèle (1.6), ceci peut
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passer par une discrétisation utilisant la méthode des élément finis (FEM), où les fonc-
tions v ∈ V = H1

0 (D) sont approchées dans des espaces Vh ⊂ V de fonctions linéaires
continues par morceaux sur un maillage régulier quasi-uniforme de D de taille de pas
h (voir par exemple [28] pour une introduction générale). L’erreur FEM est ensuite
prise en compte dans l’analyse de l’erreur totale de l’approximation. À ce stade, ce
point n’est pas central dans notre présentation, c’est pourquoi nous décrivons les méth-
odes polynomiales dans un cadre semi-discret, c’est-à-dire en considérant seulement la
discrétisation dans la variable paramétrique.

L’approche proposée dans [2] est basée sur le développement en séries de Neumann
appliqué à la formulation suivante du problème:

A(y)u = f, (3.10)

où pout tout y ∈ U , A(y) est l’opérateur différentiel de V dans V ∗ défini par A(y)v =
−div(a(y)∇v). Au vu de (1.7), cet opérateur peut être décomposé en A = A0 + Ψ où
A0 donné par A0v = −div(a∇v) ne dépend pas de y et Ψ(y)v = −div((a(y) − a)∇v).
Sous l’hypothèse d’ellipticité uniforme (1.8), nous pouvons écrire

u(y) = A(y)−1f = (Id+ A−1
0 Ψ(y))−1g, g := A−1

0 f, (3.11)

où ‖A−1
0 Ψ‖V→V ≤ ξ = 1− r

R
< 1. Ceci permet d’appliquer le développement en séries

de Neumann et d’obtenir la borne exponentielle

sup
y∈U

∥∥∥u(y)−
k∑
j=0

(−1)j(A−1
0 Ψ(y))jg

∥∥∥
V
. ξk. (3.12)

Puisque l’opérateur Ψ(y) dépend linéairement de y, alors le polynôme dans l’approximation
ci-dessus appartient à VSk où Sk est le simplexe

Sk :=
{
ν ∈ Nd : |ν| :=

d∑
j=1

νj ≤ k
}
. (3.13)

On note que Sk est un ensemble fermé vers le bas et que PSk est l’espace des polynômes
à d variables de degré totale k. L’approximation polynomiale converge avec une vitesse
exponentielle vers u dans le sens uniforme. En revanche, l’espace de polynômes est de
dimension

(
k+d
k

)
qui croît par conséquent rapidement avec d est k.

Dans les travaux ultérieurs [5, 6], les approximations de u dans le sens quadratique
moyen sont construites par la projection de Galerkin dans des espaces prédéfinis de
polynômes par morceaux et de polynômes. Dans le contexte stochastique, si on désigne
par % la distribution de probabilité jointe du vecteur aléatoire y, l’application u peut
être définie comme l’unique fonction de l’espace de Bochner V2 := L2(U, V, d%), solution
du problème variationnel∫

U

∫
D

a(y)∇u(y)∇w(y)d%(y) =

∫
U

∫
D

fw(y)d%(y), w ∈ V2, (3.14)
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et son approximation Galerkin dans VΛ = V ⊗ PΛ est l’unique uΛ ∈ VΛ tel que∫
U

∫
D

a(y)∇uΛ(y)∇w(y)d%(y) =

∫
U

∫
D

fw(y)d%(y), w ∈ VΛ. (3.15)

Les espaces de polynômes considérés dans [5, 6] sont de type VBµ où pour µ ∈ Nd, Bµ
est le bloc rectangulaire

Bµ :=
{
ν ∈ Nd : ν ≤ µ

}
. (3.16)

On note que Bµ est fermé vers le bas et que PBµ est l’espace de polynômes à d variables
de degré au plus µj dans la variable yj. Les auteurs supposent que % est égale au
produit de la mesure uniforme %̂ := ⊗dj=1

dyj
2

avec une fonction bornée. Ceci, combiné
avec l’optimalité de la projection de Galerkin uBµ et l’hypothèse d’ellipticité uniforme,
implique

E
[
‖u(y)− uBµ(y)‖2

V

]
.
∫
U

‖u(y)−
∑
ν∈Bµ

vνLν(y)‖2
V d%̂(y) =

∑
ν /∈Bµ

‖vν‖2
V , (3.17)

où (Lν)ν∈F sont les polynômes de Legendre tensorisés, orthonormales par rapport à ρ̂,
et les vν sont les coefficients associés. En obtenant des estimés sur les quantités ‖vν‖V
via l’étude des dérivées partielles de u et en utilisant la structure produit des espaces
de polynômes PBµ , les auteurs montrent que uBµ converge vers u avec une borne de la
forme

E
[
‖u(y)− uBµ(y)‖2

V

]
.

d∑
j=1

(
1 +

c

‖ψj‖L∞(D)

)−(µj+1)

, (3.18)

où c est une constante fixée. Notons par contre que si µj ≥ 1 pour tout j, alors la
dimension de l’espace des polynômes PBµ dépasse 2d, ce qui reflète la plaie des grandes
dimensions.

Dans le cas où % est une mesure produit, ce qui est équivalent à l’indépendance
des variables aléatoires yj, les auteurs proposent d’utiliser des polynômes doublement
orthogonaux tensorisés dans le but de découpler le système de Galerkin et calculer rapi-
dement la projection de Galerkin. Sans perte de généralité, supposons que % := ⊗dj=1

dyj
2

et désignons par (Lj)j≥1 les polynômes de Legendre orthonormés dans L2([−1, 1], dt
2

).
Puisque PBµ a une structure produit, alors

PBµ = ⊗dj=1span
{
l
µj+1
k : k = 0, . . . , µj

}
= span{lµν : ν ≤ µ} (3.19)

où

lnk :=
Ln

(t− tnk)L′n(tnk)
et lµν := ⊗dj=1l

µj+1
νj

, ν ≤ µ, (3.20)
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et pour tout n ≥ 1, tn0 , . . . , tnn−1 sont les n racines simples du polynôme de Legendre Ln.
Il est facile de vérifier, par des arguments élémentaires d’orthogonalité que pour tout
n ≥ 1 et 0 ≤ i, j ≤ n− 1,

1∫
−1

lni (t)lnj (t)
dt

2
= βni δi,j et

1∫
−1

t lni (t)lnj (t)
dt

2
= tni β

n
i δi,j, où βni =

1

2

1∫
−1

(lni )2dt. (3.21)

Puisque a depend linéairement de y comme dans (1.7), alors en formulant le système
de Galerkin avec les polynômes {lµν}ν∈Bµ , il est facile de voir que les coordonnées corre-
spondantes uBµ,ν de la projection de Galerkin uBµ , sont chacunes l’unique solution dans
H1

0 (D) du problème variationnel suivant

βµν

∫
D

(a+
d∑
j=1

tµj+1
νj

ψj)∇uBµ,ν∇w =

∫
U

∫
D

fwlµνd%, w ∈ H1
0 (D), (3.22)

où βµν =
∏d

j=1 β
µj+1
νj . Le calcul de la projection de Galerkin revient donc à résoudre∏d

j=1(1 + µj) problèmes aux limites déterministes, équivalents en coût au calcul d’une
instance de l’application solution u. En outre, soulignons la remarque suivante qui
n’est pas mentionnée dans [5]. Si f ne dépend pas de y, alors le terme de droite dans
(3.22) est le produit de deux intégrales et puisque les solutions u(y) de (1.6) satisfont
les problèmes suivants∫

D

(a+
d∑
j=1

yjψj)∇u(y)∇w =

∫
D

fw, w ∈ H1
0 (D), (3.23)

alors en notant tµν := (tµ1+1
ν1

, . . . , tµd+1
νd

) ∈ U , on obtient que

uBµ,ν =
wµν
βµν
u(tµν ), wµν :=

∫
U

lµν (y)d%(y) =
d∏
j=1

∫
U

lµj+1
νj

(t)
dt

2
(3.24)

Notons que wµν est le poids de Gauss associé avec l’abscisse multi-dimensionnelle tµν
pour la quadrature dans la grilles de points {tµν : ν ∈ Bµ}.

Dans un travail ultérieur [4], les auteurs proposent de calculer une approximation
de u dans l’espace VBµ directement par la collocation du problème variationel (3.23)
satisfait par les fonctions u(y) ∈ V , sur la grille tensorisée

ΓBµ := {tµν : ν ≤ µ} = ⊗dj=1{t
µj+1
0 , . . . , tµj+1

µj
}, (3.25)

puis en construisant l’approximation par interpolation. Grâce à la structure produit de
PBµ , il est facile de voir que les {lµν}ν∈Bµ sont les polynômes de Lagrange associés avec
la grille ΓBµ et l’espace PBµ . Par conséquent, l’opérateur d’interpolation est donné par

Iµu :=
∑
ν≤µ

u(tµν )lµν . (3.26)
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Une façon d’analyser la stabilité de l’opérateur d’interpolation consiste à exploiter la
propriété de double orthogonalité (3.21). Plus précisément, avec ‖u‖V∞ := sup

y∈U
‖u(y)‖V ,

on a

E[‖Iµu(y)‖2
V ] =

∑
ν≤µ

‖u(tµν )‖2
V

∫
U

(lµν (y))2d%(y) ≤ ‖u‖2
V∞

∑
ν≤µ

∫
U

(lµν (y))2d%(y) = ‖u‖2
V∞ ,

(3.27)
où la dernière identité découle de l’orthogonalité (3.21), et le fait que

∑
ν≤µ l

µ
ν (y) = 1.

Par conséquent,
E[‖u− Iµu‖2

V ] ≤ 2 inf
v∈VBµ

sup
y∈U
‖u(y)− v(y)‖2

V . (3.28)

Par un examen approfondi de la croissance des dérivées partielles de u comme dans
[5], les auteurs montrent que l’application u admet une extension holomorphe dans le
domaine complexe et utilisent cette propriété pour montrer que le terme de droite dans
la dernière inégalité satisfait une borne similaire à l’erreur L2 dans (3.18).

Dans [70, 69], les approximations polynomiales sont construites avec les méthodes
de collocations dans des espaces de polynômes qui ne sont pas nécessairement de type
produit tensoriel, suivant l’approche des sparse grids initialement due à Smolyak [76] et
étudiée dans plusieurs travaux, entre autres [50, 71, 9, 81]. Dans [70], ces approximations
polynomiales sont considérées dans des espaces isotropes Vm(Sk), où m est une function
de N dans N donnée croissante, qui satisfaitm(0) = 0 et la convention quem(−1) = −1,
Sk est le simplexe dans (3.13) et la notation m(Sk) signifie

m(Sk) :=
⋃
i∈Sk

Bm(i) avec Bm(i) :=
{
ν ∈ Nd : m(ij − 1) < νj ≤ m(ij)

}
. (3.29)

Notons que m(Sk) est un ensemble fermé vers le bas et qu’il coincide avec Sk lorsque
m est la fonction identité. L’approximation polynomiale est donnée par la formule de
Smolyak

Im(Sk)u =
∑
i∈Sk

⊗dj=1(Im(ij) − Im(ij−1))u, (3.30)

où I−1 := 0, et pour tout l ≥ 0, Im(l) l’opérateur d’interpolation de Lagrange associé avec
m(l) + 1 points distincts {r0, . . . , rm(l)} dans [−1, 1]. Lorsque les points d’interpolation
des opérateurs Im(0), Im(1), . . . sont les sections emboitées d’une suite infinie r0, r1, r2 . . .
de points mutuellement distincts, l’opérateur Im(Sk) est un opérateur d’interpolation
associé avec l’espace Vm(Sk) et la grille parcimonieuse isotrope de points de U

Γm(Sk) :=
{
rν := (rν1 , . . . , rνd) : ν ∈ m(Sk)

}
, (3.31)

voir [7, 9, 26]. Le schéma que nous avons décrit soulève le problème de l’optimisation du
compromis entre la croissance de m qui dicte le nombre total de points de collocation et
le choix des positions de ces points qui détermine la qualité de l’approximation. Dans le
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cas des sections emboitées, la qualité de l’approximation est étudiée via la stabilité de
l’opérateur d’interpolation, quantifiée par sa constante de Lebesgue. Dans [70], le choix
classique des points de Clenshaw-Curtis emboités est examiné, plus précisément le choix
dem(l) et des sections emboitées des points d’interpolation associés aux opérateurs Im(l)

est donné par

m(l) = 2l, l ≥ 1, et {r0, . . . , rm(l)} =
{

cos
( j

2l
π
)

: j = 0, . . . ,m(l)
}
. (3.32)

Il est connu que les opérateurs Im(l) ont des constantes de Lebesgue qui croissent comme
log(2l). Des résultats de convergence sont obtenus en combinant cette dernière propriété
et les résultats d’analyticité obtenus dans [5].

Les espaces de polynômes Vm(Sk) ci-dessus sont isotropes, et par conséquent les
approximations Im(Sk)u sont aussi isotropes, dans le sens où les variables yj jouent des
rôles symétriques. Pour certains problèmes, la solution u a une dépendance fortement
anisotrope en les variables individuelles yj, par exemple quand les fonctions ψj dans
(1.7) ont des normes ‖ψj‖L∞(D) qui varient fortement avec j. Il convient alors de choisir
des approximations polynomiales qui reflètent cette anisotropie. Dans [69], les auteurs
traitent ce problème en considérant des versions anisotropes de l’espace VSk et par
conséquent des versions anisotropes des Vm(Sk). Ces versions sont caractérisées par des
paramètres α := (α1, . . . , αd) ∈ R∗+d suivant

Sk,α :=
{
ν ∈ Nd : 〈ν, α〉 :=

d∑
j=1

νjαj ≤ k
}
, m(Sk,α) :=

⋃
i∈Sk,α

Bm(i). (3.33)

Notons à nouveau que ces ensembles sont fermés vers le bas. Le paramètre α doit
refléter l’anisotropie du problème: plus la dépendance en la variable yj est faible, plus
la valeur de αj est grande. Dans la cas isotrope, toutes les coordonnées de α sont égales
à 1. Les approximations considérées dans [69] sont construites avec la même formule
de Smolyak (3.30), avec maintenant i ∈ Sk,α. Comme dans le cas isotrope, lorsqu’il y a
emboitement des points, l’opérateur est un opérateur d’interpolation associé à l’espace
Vm(Sk,α) et la grille parcimonieuse anisotrope de points

Γm(Sk,α) :=
{
rν := (rν1 , . . . , rνd) : ν ∈ m(Sk,α)

}
, (3.34)

voir [7, 26]. Comme dans [70], l’analyse de la convergence est basée sur la stabilité
de l’opérateur d’interpolation et les résultats d’analyticité de [5]. Il est en particulier
prouvé que lorsque l’on utilise les points de Clenshaw-Curtis, il existe un choix optimal
de α dépendant des rayons d’analyticité de u dans chaque variable yj, pour lequel les
bornes d’erreur sont minimales. Les méthodes de collocation de type “sparse grid” sont
ensuite étendues à des espaces de polynômes encore plus anisotropes dans [7, 8], où
cette fois les ensembles Λ sont construits de façon adaptative et optimisés à l’aide de
l’algorithme knapsack.
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Toutes les stratégies décrites ci-dessus produisent des approximations polynomiales
calculables qui convergent vers l’application solution u dans les deux sens uniforme et/ou
quadratique moyen. Afin de comparer leurs performance numériques, un benchmark
adéquat est l’analyse de la décroissance de l’erreur en fonction du coût numérique
total. Pour les méthodes que nous avons présentées jusqu’à maintenant, le coût du
calcul de l’approximation dans un espace donnné VΛ est essentiellement dominé par
le coût de #(Λ) évaluations de u. Il est donc pertinent d’étudier l’erreur de chaque
méthode comme une fonction de n := #(Λ). Ceci n’est pas immédiat, car les erreurs
sont pour la plupart des stratégies données sous forme de sommes de contributions
d’erreur. Cependant, un examen détaillé révèle que pour chaque méthode, les vitesses
de convergences ne sont pas meilleures que

ξλ(Λ), λ(Λ) := max
ν∈Λ
{νmax : νmax := max(ν1, . . . , νd)}, (3.35)

où ξ un nombre donné dans ]0, 1[ indépendent de d. Notons que λ(Λ) est le degré maxi-
mal atteint en au moins une variable pour les polynômes de PΛ. Pour les approximations
isotropes, les cardinalités des ensembles d’indices considérés sont #(Bµ) = (1 + µ1)d

avec µ := (µ1, . . . , µ1), #(Sk) =
(
k+d
k

)
et avec m la function de doublement de (3.32),

on a si d ≥ k,

#(m(Sk)) =
∑
i∈Sk

#(Bm(i)) ≥
∑

i∈Sk∩{0,1}d
2|i| =

k∑
j=0

(
d

j

)
2j ≥ d2k. (3.36)

Comme λ(Bµ) = 1 + µ1, λ(Sk) = k et λ(m(Sk)) = 2k, alors il est facilement vérifiable
que

λ(Bµ) ≤ (#(Bµ))
1
d , λ(Sk) ≤

k!

dk
#(Sk), λ(m(Sk)) ≤

1

d
#(m(Sk)), (3.37)

et donc au vu de (3.35), les taux des approximations isotropes se détériorent avec la
croissance de la dimension d et ne sont donc pas robustes aux grandes dimensions.
L’approximation dans des espaces anisotropes permet dans une certaine mesure de
contourner cette restriction car la dimension d peut être réduite en activant seulement
peu de variables yj dans l’approximation. Par example, poser µj = 0 lorsque l’ensemble
Bµ est considéré ou prendre αj >> 1 lorsque les ensembles Sk,α et m(Sk,α) sont consid-
érés, conduit à l’inactivité de la variable yj dans l’approximation. Cependant, à cause
de leurs formes rigides, les ensembles anisotropes doublent au minimum en cardinalité
lorsqu’une nouvelle coordonnée yj est activée alors que seulement la j-ème contribution
de l’erreur décroît. Signalons aussi que pour les grilles parcimonieuses (sparse grids),
les constantes multiplicatives dans les bornes sur les erreurs dépendent de d.

À la lumière de la discussion précédente, un objectif consiste donc à concevoir
des méthodes polynomiales qui ont des taux de convergence robustes à la dimension
paramétrique d. Un objectif équivalent est de concevoir des méthodes polynomiales
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avec des taux de convergence dans le cas de la dimension infinie d = ∞, par exemple
des taux algébriques, c’est à dire des bornes d’erreur de la forme Cn−s, où n = #(Λ).
Bien entendu, un tel objectif ne peut être atteint si toutes les variables yj pèsent de
façon identique dans les variations de la solution u pour les raisons expliquées précédem-
ment. Par ailleurs, la convergence d’un développement de type (1.11) exige une certaine
décroissance des ψj ce qui justifie que les variables yj sont moins actives quand j → +∞.

Dans [34, 33], un nouveau paradigme a été introduit pour traiter le modèle (1.6)
dans le cas d = ∞ et atteindre les objectifs mentionnés ci-dessus. Le résultat suivant
est démontré: si a est de la forme (1.11) avec la suite (‖ψj‖L∞(D))j≥1 appartenant à
`p(N) pour une valeur de p < 1, alors les séries de Taylor∑

ν∈F

tνy
ν avec tν :=

∂νu(0)

ν!
∈ V, (3.38)

restreintes à des ensembles bien choisis (Λn)n≥1, avec #(Λn) = n, convergent vers u
au sens uniforme avec la vitesse algébrique n−s, à une constante multiplicative près ne
dépendant que de ‖(ψj)‖`p(N), avec

s :=
1

p
− 1. (3.39)

Le même résultat est démontré pour les séries de Legendre∑
ν∈F

vνLν avec vν :=

∫
U

u(y)Lν(y)d%(y) ∈ V, (3.40)

au sens quadratique moyen, avec la meilleure vitesse n−s∗ où

s∗ :=
1

p
− 1

2
. (3.41)

En d’autres termes, on peut établir des vitesses de convergence algébriques qui sont
robustes à la croissance de la dimension d, sous une hypothèse de décroissance des
fonctions ψj quand j → +∞ reflétant l’anisotropie de l’application solution.

Afin d’établir les résultats précédents, l’idée de base consiste à définir les ensem-
bles Λn comme étant ceux des indices associés avec les n plus grands termes des suites
(‖tν‖V )ν∈F et (‖vν‖V )ν∈F des coefficients de Taylor et Legendre. Cette troncation
est une forme d’approximation non-linéaire de l’application solution, souvent appelée
meilleure approximation à n termes, voir [40]. Les ensembles Λn qui en résultent peu-
vent être assez différents des ensembles isotropes et anisotropes que nous avons décrit
précédemment.

La connaissance exacte de la meilleure approximation à n termes est souvent inac-
cessible, et par conséquent les résultats précédents doivent être vus comme des résultats
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d’approximation théoriques. En particulier, ils ne débouchent pas naturellement sur des
stratégies numériques. Soulignons aussi que les preuves des résultats ci-dessus exploitent
fortement la nature linéaire elliptique du modèle (1.6) et la dépendance paramétrique
affine dans (1.11). Ces limitations soulèvent les questions suivantes:

(i) Peut-on construire des ensembles d’indices (Λn)n≥1 avec des stratégies numériques
adaptatives où non-adaptatives, tels que le taux de convergence des approxima-
tions polynomiales de l’application solution dans l’espace VΛn est similaire à celui
de la meilleure approximation à #(Λn) termes ?

(ii) Étant donné ces ensembles d’indices, peut on définir les polynômes d’approximation
de l’application solution par des stratégies numériques simples, par exemple par
des méthodes non-intrusives telle que l’interpolation, et obtenir un taux de con-
vergence similaire?

(iii) Peut-on obtenir des résultats d’approximation similaires pour des modèles plus
généraux, y compris des EDP non-linéaires avec une dépendance non-affine des
paramètres, et toujours en la dimension paramétrique d =∞?

Cette thèse est motivée par ces questions et elle apporte des réponses précises à
chacune d’entre elles.

4 Plan de la thèse

Cette thèse est constituée de sept chapitres et contient trois parties principales numérotées
I, II et III. La plupart des résultats présentés dans cette thèse sont publiés dans nos
articles [22, 26, 25, 21, 24, 23].

La partie I traite des résultats théoriques d’approximation, alors que les parties
II et III traitent de la construction d’algorithmes pratiques d’approximation. Dans
la partie I (chapitres 1-2), nous rappelons les résultats de [34] et [33] pour les EDP
elliptiques linéaires (1.6) avec dépendance paramétrique affine (1.7) et nous présentons
nos résultats de [25] qui s’appliquent à des modèles plus généraux tels que des EDP
non-linéaires avec une dépendance paramétrique non-affine. Dans la partie II (chapitres
3-4) nous présentons deux algorithmes intrusifs pour l’approximation de l’application
solution u de (1.6), l’un basé sur des séries de Taylor construites de façon adaptative
suivant l’approche adoptée dans [22], l’autre basé sur des projections de Galerkin dans
la lignée des méthodes de [53]. Dans la partie III (chapitres 5-6-7), nous présentons
deux algorithmes non-intrusifs qui peuvent être utilisés pour des EDP paramétriques
plus générales : l’interpolation et les moindres carrés, suivant les approches que nous
avons développés dans [26, 21, 24] et dans [23]. Il convient de noter que tout au long
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de cette thèse, nous nous plaçons dans le cadre de la dimension infinie,

d =∞ et U := [−1, 1]N, (4.1)

mais que les différents algorithmes et les résultats sont aussi applicables dans le cadre
de la dimension finie d <∞.

Dans le chapitre 1, nous étudions le problème paramétrique elliptique (1.6) avec
la dépendance paramétrique affine (1.7) et l’hypothèse d’ellipticité uniforme (1.8).
Pour ce modèle, nous rappelons en détail les résultats d’approximation obtenus dans
[34, 33]. Comme nous l’avons expliqué précédemment, ces résultats montrent que sous
l’hypothèse (‖ψj‖L∞(D))j≥1 ∈ `p(F) pour un certain p < 1, les series de Taylor re-
streintes aux ensembles Λn de leurs n plus grands termes convergent vers l’application
solution u avec une vitesses algébrique n−s où s := 1

p
−1 dans le sens uniforme, et celles

de Legendre convergent avec la vitesse n−s∗ où s∗ := 1
p
− 1

2
dans le sens quadratique

moyen. En outre, nous montrons que les ensembles (Λn)n≥0 des meilleures approxima-
tions à n termes utilisés dans ces résultats peuvent être modifiés pour être fermés vers le
bas dans le sens de (3.8), sans détérioration de la vitesse de convergence. Ceci est d’une
grande importance dans l’étude de la construction et la convergence des algorithmes
numériques des parties II et III. Bien que le chapitre 1 réunisse dans une certaine mesure
les résultats obtenus dans [34, 33], il est auto-contenu et peut être lu sans avoir recours
aux papiers cités. Nous avons souhaité expliquer en détail le paradigme du traite-
ment de la dimension infinie, tout en raccourcissant et simplifiant les raisonnements de
[34, 33]. L’analyse du chapitre 1 est essentielle pour la compréhension des divers outils
que nous utilisons dans les chapitres suivants.

Dans le chapitre 2 qui reprend notre article [25], nous étudions des EDP paramétriques
de la forme générale (1.1) avec des dépendances anisotropes en les paramètres yj. Ces
EDP ne sont pas nécessairement de type (1.6) avec dépendance affine comme dans
(1.7). Pour donner un exemple simple, considérons le modèle (1.6) avec le coefficient
de diffusion

a(x, y) := a+
(∑
j≥1

yjψj

)2

. (4.2)

Bien que l’ellipticité uniforme en y ∈ U est maintenue pour cette nouvelle forme de
a, les séries de Taylor peuvent ne pas converger. Ceci est déjà le cas quand toutes les
fonctions ψj sont nulles sauf ψ1 = b > 1 constante et a constant égal à 1. En effet, dans
ce cas

u(y) =
u(0)

1 + b2y2
1

, y ∈ U, (4.3)

est une fonction dont la série de Taylor diverge sur [−1, 1]. En revanche, cette fonc-
tion reste la somme de sa série de Legendre. En suivant l’approche du chapitre 1 pour
l’approximation par les polynômes de Legendre, nous montrons qu’une large classe
d’EDP paramétriques peut être approchée avec des vitesses de convergence algébriques
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n−s par les meilleures approximations à n-termes associées aux séries de Legendre.
Pour faire cela, nous introduisons la notion de (p, ε)-holomorphie qui décrit certaines
hypothèses d’anisotropie pouvant garantir la vitesse de convergence algébrique. On
introduit deux cadres généraux dans lesquels la (p, ε)-holomorphie est satisfaite, le pre-
mier basé sur des conditions Inf-Sup et le second sur la version holomorphe du théorème
des functions implicites dans des espaces de Banach. Nous montrons que ces deux
cadres s’appliquent à diverses EDP paramétriques. En particulier, nous considérons
des problèmes elliptiques semi-linéaires de la forme

g(u)− div(a(y)∇u) = f, (4.4)

des problèmes paraboliques tels que

∂tu− div(a(y)∇u) = f, (4.5)

et des EDP considérées sur des domaines qui dépendent du paramètre y.

Le reste de la thèse, parties II et III, est consacré à la conception d’algorithmes
qui permettent en pratique de construire des approximations polynomiales pour les
EDP paramétriques. Étant donnée une famille de polynômes P du type (3.3), deux
problèmes principaux doivent être traités:

• L’identification de bons ensembles d’indices Λn dans le sens où u peut être bien
approchée dans VΛn(P).

• Le calcul d’une bonne approximation uΛn ∈ VΛn(P) de u.

Comme nous l’avons souligné à plusieurs reprises, il est d’une grande importance que
les deux tâches soient raisonnables d’un point de vue du coût de calcul. Nous verrons
que pour l’approximation, tant au sens uniforme qu’au sens quadratique moyen, il n’est
pas sans intérêt de considérer des algorithmes adaptatifs. Pour ce type d’algorithmes,
la suite des ensembles d’indices (Λn)n≥1 n’est pas fixée d’avance, l’identification de
l’ensemble Λn+1 étant basée sur l’information dont on dispose à l’issue du calcul à
l’étape n. Nous montrons de façon rigoureuse l’efficacité de ce type d’algorithmes dans
les chapitres 3-4 qui traitent du problème elliptique (1.6).

Le chapitre 3 reprend notre article [22] consacré à l’approximation de u par des séries
de Taylor numériquement calculables. Dans [34, 33], il est prouvé que les coefficients de
Taylor tν , définis dans (3.38), sont les uniques solutions des problèmes récursifs suivants∫

D

a(x)∇tν(x)∇w(x)dx = −
∑
j:νj 6=0

∫
D

ψj(x)∇tν−ej(x)∇w(x)dx, w ∈ V, (4.6)

où ej = (δi,j)i≥1 est la suite de Kronecker d’indices j et ν−ej la soustraction vectorielle
de ej à ν, i.e.

ν − ej = (ν1, . . . , νj−1, νj − 1, νj+1, . . .). (4.7)
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En se basant sur cette récurrence et en utilisant des arguments de réduction de résidu
dans la lignée de ceux introduits pour les méthodes adaptatives d’ondelettes [30, 31],
nous montrons qu’il est possible de construire de proche en proche une suite d’ensembles
emboités (Λk)k≥1 tels que les séries de Taylor associées convergent avec la vitesse op-
timale n−s, où n = n(k) := #(Λk), établie dans le chapitre 1. Au vu de (4.6), la série
de Taylor associée à un ensemble d’indices Λ donné peut être calculée en exactement
#(Λ) étapes de récurrence si et seulement si

ν ∈ Λ⇒ ν − ej ∈ Λ pour tout j ≥ 1 tel que νj 6= 0. (4.8)

Cette définition est équivalente à (3.8). Les ensembles d’indices qui sont construits de
façon adaptative pour les séries de Taylor sont donc toujours fermés vers le bas.

Dans le chapitre 4, nous étudions l’approximation de u par des projections de
Galerkin dans le sens quadratique moyen, à l’aide des polynômes de Legendre (Lν)ν∈F .
Nous considérons seulement le cas où la probabilité jointe de y est la mesure uni-
forme sur U . Cependant, tous les résultats s’étendent de manière immédiate à d’autres
mesures produit, en remplaçant les polynômes de Legendre par les polynômes tensorisés
orthogonaux pour la mesure produit. En suivant l’approche de [53], nous formulons le
problème variationnel (3.14) dans la base de Legendre, ce qui conduit à une formulation
matricielle

Au = f (4.9)

où A = (Aν,ν′)ν,ν′∈F est une matrice infinie d’opérateurs définis de V dans V ∗, u =
(vν)ν∈Λ ∈ `2(F , V ) la suite des coefficients de Legendre de u et f = (fν)ν∈Λ ∈ `2(F , V ∗)
la suite des coefficients de Legendre de f ∈ (L2(U, V, d%))∗. En suivant une approche
analogue à celle des méthodes adaptatives en ondelettes pour les opérateurs elliptiques
[30, 31, 49], nous étudions les propriétés de la matrice infinie A, puis par une anal-
yse de résidus, nous construisons de proche en proche une suite d’ensembles emboités
(Λk)k≥1 tels que la projection de Galerkin uΛk ∈ `2(Λk, V ) de la formulation précédente
converge vers u avec la vitesse n−s∗ , où n = n(k) := #(Λk), établie dans le chapitre
1. Contrairement au chapitre 3, les ensembles Λk ne sont pas nécessairement fermés
vers le bas. Nous montrons que des résultats d’approximation similaires peuvent être
obtenus avec les ensembles fermés vers le bas, et que dans ce cas, les projections de
Galerkin approchent aussi u dans le sens uniforme.

Les méthodes que nous présentons dans les chapitres 3-4 sont intrusives. Elles sont
spécifiquement conçues pour le problème elliptique linéaire (1.6) avec dépendance affine
comme dans (1.7). En particulier, l’analyse de la convergence est fortement liée à ces
spécificités. Pour des problèmes plus généraux, ces méthodes sont difficiles à mettre en
oeuvre, et on peut donc leur préférer des méthodes non-intrusives. Celles-ci deviennent
incontournables dans les cas où on n’a pas une connaissance complète de l’EDP et
on peut seulement obtenir les solutions u(y) pour tout paramètre y via un solveur
numérique. Dans cette perspective, nous étudions dans la partie III deux méthodes
non-intrusives souvent utilisées : l’interpolation et les moindres carrés.
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Dans le chapitre 5, nous présentons le schéma d’interpolation que nous avons intro-
duit dans [26]. Le schéma est défini par la généralisation de la formule de Smolyak qui
donne les opérateurs d’interpolation (3.30) pour les simplexes isotropes et anisotropes
Sk et Sk,α, maintenant remplacés par des ensembles fermés vers le bas quelconques.
Nous généralisons ainsi les résultats des articles [9, 7] dans lesquels il est prouvé que
pour certains types d’ensembles fermés vers le bas Λ, l’opérateur IΛ definé par (3.30)
avec simplement Λ au lieu de Sk est un opérateur d’interpolation. Plus précisement,
étant donné (r0, r1, r2, . . .) une suite de points deux à deux distincts dans [−1, 1] et en
désignant par Ik l’opérateur d’interpolation polynomiale associé avec (r0, . . . , rk), avec
la convention I−1 = 0, alors pour tout ensemble fermé vers le bas Λ,

IΛ :=
∑
i∈Λ

⊗dj=1(Iij − Iij−1), (4.10)

est un opérateur d’interpolation sur PΛ pour la grille de points

ΓΛ :=
{
rν := (rνj)j≥1 : ν ∈ Λ

}
. (4.11)

Nous montrons que ces opérateurs peuvent être calculés de façon simple par une formule
de type Newton. Plus précisément, étant donné Λ un ensemble fermé vers le bas et
ν ∈ F \ Λ telle que Λ′ := Λ ∪ {ν} est fermé vers le bas, alors

IΛ′u = IΛu+
(
u(rν)− IΛu(rν)

)
hν , (4.12)

où

hν(y) =
∏
j≥1

hνj(yj), avec h0 = 1 et hk(t) :=
k−1∏
j=0

t− rj
rk − rj

. (4.13)

Nous étudions ensuite la stabilité de l’interpolation via l’analyse de la constante de
Lebesgue LΛ := ‖IΛ‖L∞→L∞ . Nous montrons en particulier que la croissance de ces
constantes en fonction de la taille Λ peut être estimée à partir de la croissance des con-
stantes de Lebesgue Lk associées aux opérateurs Ik. Plus précisement, nous montrons
que

Lk ≤ (k + 1)θ, k ≥ 1 ⇒ LΛ ≤ (#Λ)θ+1 pour tout ensemble bas Λ. (4.14)

La croissance polynomiale (#(Λ))θ+1 peut être plus grande que la décroissance al-
gébrique (#(Λ))−s que nous avons établie dans les chapters 1-2 pour l’approximation
des EDP dans les espaces de polynômes VΛ. Cependant, nous montrons que sous les
mêmes hypothèses que celles des chapitres 1-2, il existe une suite d’ensembles fermés
vers le bas (Λn)n≥0 avec #(Λn) = n, tel que l’approximation de u par IΛnu converge
avec la vitesse optimale n−s où s = 1

p
− 1.

Nous utilisons également la formule (4.12) comme point de départ pour le développe-
ment d’algorithmes adaptatifs où, pour Λn donné, l’indice selectionné ν tel que Λn+1 =
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Λn ∪ {ν} maximise pour une norme d’intérêt fixé l’incrément
(
u(rν) − IΛu(rν)

)
hν .

Bien que la convergence de tels algorithmes adaptatifs avec une vitesse optimale n’est
pas assurée, ils présentent des comportements numériques satisfaisants dans plusieurs
cas tests. Finalement, nous étendons l’idée de l’interpolation parcimonieuse en grande
dimension dans le cas de systèmes tensorisés autres que les polynômes. En particulier,
pour les fonctions affines par morceaux et quadratiques par morceaux, en introduisant
des concepts similaires d’ensemble fermés vers le bas.

Le résultat (4.14) motive la recherche d’une suite infinie (r0, r1, r2, . . .) telle que
les constantes de Lebesgue Lk associées aux sections (r0, . . . , rk) ont une croissance
modérée. Notons que les constantes de Lebesgue des abscisses de Chebychev ou de
Gauss-Lobatto ont des croissances logarithmiques, cependant ces points ne sont pas les
sections d’une suite infinie de points. Dans le chapitre 6, nous étudions la croissance
de la constante de Lebesgue associée avec les suites dites de Leja sur le disque unité
complexe et leurs projections sur [−1, 1] appelées suites de <-Leja. Ce chapitre améliore
les résultats de notre article [21] et de deux autres travaux antérieurs [18, 19] dans
lesquels ce type de suite est étudié. Nous donnons de nouvelles propriétés structurelles
de ces suites, puis nous établissons une nouvelle borne sur la croissance de la constante
de Lebesgue des suites de <-Leja. Plus précisément, nous montrons que

Lk ≤ 8
√

2(k + 1)2, k ≥ 0, (4.15)

ce qui améliore la borne 8(k+1)2 log(k+1) que nous avons établi dans [21]. Ce nouveau
résultat montre en particulier que, étant donné une suite de <-Leja (r0, r1, r2, . . .),
les opérateurs d’interpolation en grande dimension IΛ qui lui sont associés ont des
constantes de Lebesgue bornées par (#(Λ))3 quelque soit la dimension d et la forme de
l’ensemble Λ.

Dans le chapitre 7, nous présentons les résultats de notre article [23] dans lequel
nous étudions la stabilité de la méthode des moindres carrés par les polynômes en
grande dimension. Étant donné Λ un ensemble fermé vers le bas de cardinalité n
et Om := (yi, zi)i=1,...,m, où les yi sont des réalisations indépendantes du paramètre
vectoriel aléatoire y et zi sont des observation bruités ou non-bruités de l’application
solution en yi, la projection des moindres carrés est définie par

IΛ,Omu := argmin
v∈VΛ

1

m

m∑
i=1

‖zi − v(yi)‖2
V . (4.16)

Lorsque V est un espace de Hilbert, la solution du problème est obtenue par la résolution
d’un système linéaire simple similaire au cas de données à valeurs réelles ou complexes.
En se basant sur les techniques introduites dans [32], nous examinons la stabilité des
projections des moindres carrés, en faisant apparaître un compromis entre la dimension
n = #(Λ) de l’espace de polynômes VΛ et la taille m de l’échantillon. En particulier,
lorsque % est la mesure uniforme sur U , nous montrons que la projection est stable
lorsque m est au moins de l’ordre de n2.
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1 Parametric partial differential equations

This thesis is devoted to the theoretical study and numerical approximation of high
dimensional parametric partial differential equations (PDEs). Parametric PDE’s appear
in various context for modeling dependence of a specified physical phenomenon with
respect to cerain relevant parameters. For example, the heat distribution on a steel
plate for various type of steel, the parametrization being on the percentage of the
different chemical elements constituting the alloy. The abstract representation that we
shall adopt for parametric PDEs is

D(u, y) = 0, (1.1)

where D is a linear or nonlinear partial differential operator, modelling the physical
phenomenon, that depends on a parameter vector y := (y1, . . . , yd) ∈ Rd. We denote
by U ⊂ Rd the parameter domain that describe the range of values of y, and assume
that there exists a fixed Banach space V , typically a Sobolev space, where the problem
(1.1) is well posed for every y ∈ U . We may therefore define the solution map from U
to V :

u : y 7→ u(y), (1.2)

which associates to every parameter y ∈ U , the unique solution u(y) ∈ V of (1.1).

Parametric PDEs are used to model complex systems in a variety of physical and
engineering contexts. Without going into an exhaustive classification of theses contexts,
we make the following major distinction:

• Deterministic modelling: The parameters y are deterministic inputs of the physi-
cal system that can be controlled and monitored by the user. They could for instance
be design or control parameters in a real or numerically simulated industrial process.
A typical application in this context is the optimization of a certain scalar quantity
of interest Q that depends on the solution and therefore on the parameters:

y 7→ u(y) 7→ Q(u(y)). (1.3)

33
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For example, consider the steady state heat equation set on a domain D

−div(a∇u) = f in D, u|∂D = 0, (1.4)

with f a given source term and a = a(y) picked from a family {a(y) : y ∈ U} of
thermal conductivity functions. We may use the parameter y in the design of the
material with the objective of minimizing the heat flux of the temperature fields u(y)
over a portion of the boundary Γ ⊂ ∂D. In this case, the scalar quantity of interest
is

y 7→ Q(y) =

∫
Γ

∂u(y)

∂n
(x)dx. (1.5)

• Stochastic modelling: The parameters y are realizations of random variables which
reflect uncertainties in the physical model described by (1.1). For instance, if the
equation (1.4) is used to model the diffusion in a porous media which properties are
not known exactly, it is then natural to model the diffusion coefficient a as a random
field, which as explained further may be described by a sequence (yj)j≥1 of scalar
random variables. In stochastic modelling, the user is typically interested in the
resulting statistical properties of the solution u, which is itself a random field over V .
For instance, one may want to compute, if it exists, the average field ū := E[u] which
is a deterministic function in V , the standard deviation E[‖u− ū‖2

V ], the expectation
of a scalar quantity of interest Q = Q(y) that depends on the solution similar to the
previous deterministic context, or a confidence interval for this quantity.

In addition to the distinction between deterministic and random contexts, the pa-
rameters (yj)j≥0 may be used to describe very different quantities: the conductivity or
diffusion properties of material as in the above mentioned examples, the flux function
in a transport problem, a forcing term such as the right hand side in (1.4), the geometry
of the physical domain (through a parametrization of the boundary, for instance using
control points in computer aided design). It is also possible that several such quantities
are simultaneously considered, meaning that y concatenates all parameters used for
describing the different quantities.

A significant part of this thesis is devoted to the study of the model problem (1.4)
for a particular class of coefficients a. Although simple in formulation, it is relevant
for establishing a methodology for the treatment of other classes for parametric PDEs.
Here, D ⊂ Rm a bounded Lipschitz domain, with m typically equal to 2 or 3, and f in
H−1(D). We consider the second order elliptic problem

−div(a(y)∇u) = f in D, u|∂D = 0, (1.6)

where for every y ∈ U , the diffusion function a(y) ∈ L∞(D) has affine dependance on
y, according to

a(y) := a+
d∑
j=1

yjψj (1.7)
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where a and the ψj are functions in L∞(D). In addition, we assume that the problem
is uniformly elliptic over U , in the sense that there exist 0 < r ≤ R <∞ such that

r ≤ a(x, y) ≤ R, x ∈ D, y ∈ U, (1.8)

where we have used the notation

a(x, y) := a(y)(x) = a(x) +
d∑
j=1

yjψj(x). (1.9)

Under such assumptions, Lax-Milgram theory ensures that the problem (1.6) is well-
posed in V := H1

0 (D) for every y ∈ U . The solution map associates to every y ∈ U a
unique solution u(y) ∈ V .

Assuming an affine dependence in y for a(y) is relevant in several contexts. For
example if a is piecewise constant over a disjoint partition D = ∪dj=1Dj of the physical
domain D, then it is natural to set

a(y) = a+
d∑
j=1

yjχDj , (1.10)

where a is a constant and χDj the indicator function of Dj. More generally the affine
form (1.7) is encountered if we truncate the expansion of a − a, where a is a function
in x, in a given basis (ψj)j≥1, that is, an expansion of the form

a(y) = a+
∞∑
j=1

yjψj. (1.11)

There are of course many possible choices for such a basis (Fourier series, orthogonal
polynomials, wavelets...). In the stochastic context, when a is second order random
field, with expectation E[a] = a and continuous covariance function

(x, z) ∈ D ×D 7→ cov[a](x, z) := E[(a(x)− a(x))(a(z)− a(z))], (1.12)

a frequently used choice is the Karhunen-Loève basis, in other words the orthonormal
eigenfunctions of the operator

v 7→ Tav :=

∫
D

cov[a](·, x)v(x)dx, v ∈ L2(D), (1.13)

which is compact, self-adjoint and non-negative on L2(D). The resulting scalar variable
yj are centered and mutually uncorrelated, i.e. E[yj] = 0 and E[yiyj] = δij for i, j ≥ 1,
with variance given by the corresponding eigenvalue λj > 0.
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Throughout the rest of this thesis, we assume that the parameter domain U has a
simple tensor product form, by which we mean that the variables yj may vary indepen-
dently in intervals Ij. Such an assumption is quite natural for deterministic problems
where these parameters may be tuned independently. For instance in the piecewise con-
stant model (1.10), these intervals could be of the form Ij = [−αj, αj] with 0 < αj < a
for all j. In the stochastic context, using for example the above Karhunen-Loève repre-
sentation, this assumption is natural if one assumes that the yj are independent random
variables. Note that statistical independence of the component is a stronger property
than decorrelation. We may then, upon rescaling the basis functions ψj, assume in
both the deterministic and stochastic contexts that the parameter domain U is the unit
hypercube in d dimension,

U := [−1, 1]d. (1.14)

In models where the parameters y = (y1, . . . , yd) correspond to the truncation of an
infinite series such as in (1.11), the accuracy is affected by the level d of truncation.
In order to reach arbitrarily high accuracy in the numerical approximation of such
models, one therefore needs to allow the number of variables d to grow. As explained
further, this growth has in principle a severe computational cost expressed by the curse
of dimensionality. One of the objective of this thesis is to develop numerical methods
that are as much as possible immune to the growth of the truncation level d, in the
sense that they readily apply to the case where

y = (yj)j≥1, (1.15)

is infinite dimensional. In this case, the rescaled parameter domain is the infinite
dimensional hypercube,

U := [−1, 1]N (1.16)

2 Numerical approximation

In both deterministic and stochastic setting, concrete applications may in principle
require the evaluation of the solution u(y) for a very large number N of instances of
the parameter vector y. Typical examples are the optimisation of a scalar quantity
of interest y 7→ Q(u(y)), for instance using Newton’s method, or the approximation
of the average E[Q(u(y))] by Monte Carlo methods. Such approaches thus require
queries {ui = u(yi) : i = 1, . . . , N} of the solution map (1.2), each of them being
approximately executed by a numerical solver which may be computationally expensive
in the case of a complex system. It should also be noted that the mentioned approaches
are goal oriented, in other words, the database of gathered evaluations for a certain task
(such as optimization) is unlikely to be used for another task (such as averaging).
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In light of the above difficulties, a typical challenge is to simultaneously approximate
all the solution u(y) for y ∈ U to some prescribed accuracy, at reasonable computational
cost, which amounts in approximating the solution map u : y 7→ u(u).

This task is difficult since in contrast to the standard problem of approximating a
real-valued function u : R 7→ R, the solution map u associated to a parametric PDE
(i) is defined on a multidimensional domain [−1, 1]d where the parametric dimension d
can be large, or even infinite, and (ii) takes its value in an infinite dimensional space V ,
or in a finite yet large dimensional discretization subspace Vh ⊂ V when using a given
numerical solver.

The first item (i) points out the issue of the curse of dimensionality which refers
to the exponential blow up of complexity occurring in discretization methods, as the
number d of variables grows, even for R-valued functions. Another expression of this
phenomenon is the deterioration of approximation rates as d grows, for functions of a
given smoothness: for example the accuracy in the L∞ (or uniform) metric of recon-
structing an arbitrary function with continuous derivatives up to order m by piecewise
polynomials from h-spaced grid samples is at best of order hm and therefore, in terms
of the number of degrees of freedom n, of asymptotic order n−m/d, which is a very poor
convergence rate when d is large. A deeper investigation in terms of nonlinear width
theory [43, 40, 80] reveals that this poor convergence rate cannot be improved by any
other discretization method.

The second item (ii) is concerned with the practical implementation of approxima-
tions. The instances u(y) of the solution map or any related quantity, for instance the
coefficients of a polynomial approximation in the parametric variable y to this map,
can only be computed approximately by space discretization, such as by finite element
methods. Therefore, it is crucial to incorporate these considerations on the analysis of
the final numerical error. Numerous questions may arise when analyzing discretization
errors. For instance, should one use the same discretization space Vh for all instances?
is the approximation method of the solution map u robust to discretization errors? etc.
We leave aside the space discretization in the remainder of this introduction and focus
our attention on the parametric discretization.

We distinguish two approaches for the approximation of the solution map (1.2).
An inherent property of both approaches is the separation of the parametric vector y
and the physical variable x, space and/or time, in the approximation of u. The first
approach consists in building a cheaply computable map

y ∈ U 7→ un(y) :=
n∑
i=1

viφi(y) ∈ V, (2.1)

based on a small number n of functions vi ∈ V and scalar valued functions φi from U to
R or C. For example, the vi could be particular instances of the solution u associated
with well chosen values yi ∈ U of the parameter vector, that is vi = u(yi), and the φi
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could be the Lagrange functions in a given polynomial interpolation process associated
to the points (y1, . . . , yn). In the stochastic setting, these methods are commonly called
spectral stochastic methods, see [51, 52, 59].

Depending on the modelling context, deterministic or stochastic, and on the aimed
application, one decides in which way the approximation un should be close to u. If the
objective is capturing the map u everywhere in U to a prescribed accuracy ε(n), then
the error should be considered in the uniform sense, i.e.

sup
y∈U
‖u(y)− un(y)‖V ≤ ε(n). (2.2)

In the stochastic context, the quality of approximation is often measured in an average
sense, such as a mean square error estimate of the form

E[‖u(y)− un(y)‖2
V ] :=

∫
U

‖u(y)− un(y)‖2
V d%(y) ≤ ε2(n), (2.3)

where % is the joint probability distribution of random vector y. Note that the first
estimate implies the second estimate.

The second approach consists in searching for a subspace En of V of low dimension
n that could serve for simultaneous approximation of all solutions, for example using
the Galerkin method. This means that we aim to approximate the solution manifold

M :=
{
u(y) : y ∈ [−1, 1]d

}
⊂ V, (2.4)

by the linear space En. Once again, we may search for error estimates in a uni-
form or mean square sense between u and its best approximation y 7→ uEn(y) :=
argminv∈En‖u(y)− v‖V , which is computed via the orthogonal projection of every u(y)
onto En in the case where V is a Hilbert space.

In the case of uniform estimates, the optimal choice for En, if it exists, corresponds
to the space that achieves the Kolmogorov n-width of the solution manifold in V , that
is

dn(M)V := inf
dim(E)≤n

σE(M), σE(M) := sup
w∈M

inf
v∈E
‖w − v‖V . (2.5)

In the stochastic setting, one usually substract the average field u = E(u) to u and
searches for the space En that minimizes the least-square error between ũ = u− u and
its best approximation ũE, that is,

E(‖ũ− ũE‖2
V ), (2.6)

among all n-dimensional spaces E. The optimal choice is related to Hilbert-Karhunen-
Loève expansion

ũ =
∞∑
j=1

√
λivjUj (2.7)
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where (λj, vj)j≥1 the family of decreasing eigenvalues and orthonormonal eigenvectors
associated to the covariance operator of u in V , see [45] for more details, and

Uj :=
1√
λi
〈ũ, vj〉V , (2.8)

are centred and mutually uncorrelated random variables with variance 1. The optimal
space En is then spanned by {v1, . . . , vn}.

In both cases, the optimal spaces are out of reach from a computational point of
view, and one therefore needs to rely on sub-optimal yet more easily computable choices.
For least-squares estimates, one may approximate u and the covariance kernel cov[u]
using the knowledge of u on a coarse descritisation of V , see [45], or by computing
u and cov[u] without any knowledge on u, see [65] for the problem (1.6). However,
the computation of the Hilbert-Karhunen-Loève expansion eventually amounts to the
resolution of a generalized eigenvalue problem which can be numerically costly. For
uniform estimates, a popular strategy in this direction is the reduced basis method [16,
64, 63]. In this strategy, one first acquires during a possibly expensive off-line processing
stage n elements vj := u(yj) of the manifoldM, then in the online stage, approximate
for any parameter query y the solution u(y) in the space Fn := span{v1, . . . , vn} by a
Galerkin scheme. The spaces Fn are generally sub-optimal compared to the n-width
spaces En that achieve the infimum in (2.5). However, it was proved in [12] and [42]
that a certain greedy selection of the instances vi in the off-line stages produces spaces
that are rate-optimal in the following sense: for α, c > 0, it is proved that

sup
n>0

nασFn(M) ≤ Cα sup
n>0

nαdn(M), (2.9)

and
sup
n>0

ecαcn
α

σFn(M) ≤ Cα sup
n>0

ecn
α

dn(M), (2.10)

where Cα, cα > 0 are constants depending on α.

It should be well understood that the two above approaches are connected. On
the one hand, if un is an approximation to u of the form (2.1) in the uniform sense
to accuracy ε(n), then by introducing the space Fn := span{v1, . . . , vn}, we obviously
have

σFn(M) = sup
y∈U

inf
v∈Fn
‖u(y)− v‖V ≤ sup

y∈U
‖u(y)− un(y)‖V ≤ ε(n). (2.11)

Therefore the linear space Fn approximates the manifoldM in the uniform sense with
accuracy ε(n), implying an estimation of the Kolmogorov n-width by

dn(M) ≤ σFn(M) ≤ ε(n), (2.12)

which may in turn be used to study the convergence of the reduced basis method, in
view of (2.9) and (2.10). One the other hand, if En := span{v1, . . . , vn} is the space
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achieving the Kolmogorov n-width, when it is attained,then we may write for every
y ∈ U

uEn(y) =
n∑
i=1

viφi(y), (2.13)

where φi(y) are the coordinate of uEn(y) associated with the vi. Obviously uEn is of
the form (2.1) and

dn(M) = σEn(M) = sup
y∈U
‖u(y)− uEn(y)‖V (2.14)

which shows that uEn is the best approximation of the form (2.1) in the uniform sense.

In practice, there is however an essential difference between the two approaches.
In the first approach, we first choose n scalar valued functions φ1, . . . , φn in a family
of functions, for example the family of Legendre polynomials, then we compute the
functions v1, . . . , vn ∈ V . In the second approach, one rather strives to identify n
“good” functions v1, . . . , vn in V and then for every given y compute the values φj(y)
by the Galerkin projection method in the space spanned by these functions. Once
the functions v1, . . . , vn are computed, the first approach has the advantage that the
computation of un(y) is immediate by the linear combination (2.1) while a system
inversion is required, for every y ∈ U , in the second approach.

This thesis is only concerned with the first approach, namely the construction of
cheaply computable approximations of the form (2.1) to the solution map, with the
functions φi(y) being particular multivariate polynomials in the y variable. Another
important distinction between numerical methods for parametric PDE’s is through the
two following classes, both of them being considered in this thesis:

• Non-intrusive methods rely only on repeated (approximate) queries of the solution
map u, obtained by an existing deterministic numerical solver. Typically, this solver
is an industrial simulation code, considered as a black-box, it can associate to every
parameter vector y ∈ U an output uε(y) ∈ V approximating u(y) to any desired
accuracy ε > 0. One example of such methods is the Monte-Carlo approximation of
the average field u by the empirical mean

un :=
1

n

n∑
i=1

u(yi), (2.15)

where the yi are independent realizations of the random parameter vector y. Another
example is the approximation of the solution map by interpolation at chosen points
y1, . . . , yn ∈ U . Non-intrusive methods are convenient in that they may be thought
as a post-processing on top of existing numerical solvers. However the dependence
on the solver, which itself could be computationally expansive, might be a serious
limitation. In addition, when the solver is given as a black box with no precise
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informations on the underlying PDE model (1.1), one has no theoretical guarantee
that a given non-intrusive method is suited for the numerical purpose or that it even
produces converging approximations.

• Intrusive methods in contrast exploit the features of specific classes of paramet-
ric and stochastic PDEs. By specific, we mean any additional information (data or
assumption) on the equation (1.1) governing the physical system. For example, the
distribution of the random vector y in the stochastic context, the category of the
operator D, its dependence on the parameters y, etc. The knowledge of such specific
features allows the design of methods that are well adapted to the problem, hence
hopefully outperforms non intrusive methods in precision and speed. For example,
knowing the exact model allows to use the Galerkin method for the parametric dis-
cretization using for example polynomials in the y variable. Note that the previously
described reduced basis method is non-intrusive in the offline stage that computes
instances of solutions, but intrusive in the online stage that uses these instances to
generate a particular trial space for the Galerkin method.

3 Polynomial approximations of the solution map

As already discussed, there exists n-term approximations with the separable form (2.1)
that are optimal, either in the uniform or least-square sense, however they are not easily
computable. In addition, the corresponding functions φj may be quite complex since
they depend on all the variables yj. One approach is to search for further separation of
variables through approximations of the form

un(y) =
n∑
j=1

vj
∏
i≥1

φj,i(yi). (3.1)

The problem of an optimal choice of the factors is not well posed. For illustrative
purposes, we assume that u is real valued and that the parameter domain U is discrete
and finite of the form {t1, . . . , tk}d. In this case V := R and u ∈ V k×...×k is an order-d
tensor and approximations of the form (3.1) are rank-n approximations of u, which are
of the form

un =
n∑
j=1

vj Φj,1 ⊗ . . .⊗ Φj,d, (3.2)

where Φj,i := (φj,i(t1), . . . , φj,i(tk))
t. It is well known that the problem of finding the

best n-rank, for n ≥ 2, is in general ill-posed and for all norms, except for d = 2
where it is completely resolved for the Hilbert-Schmidt and spectral norms, thanks to
Eckart-Young Theorem, see [38].

Alternate approaches consist in picking the functions φj,i among a predefined family.
For instance, we may impose that the functions φj,i are picked among polynomials,
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piecewise polynomials, trigonometric functions, etc. Here, we consider polynomials, in
which case approximation of the form (3.1) are multivariate polynomials over U with
coefficients in V .

Approximations by tensorized polynomials may be constructed using various meth-
ods, for example Taylor series, Legendre series, Galerkin projection, polynomial in-
terpolation, least squares, sparse grids, etc, each of which favored depending on the
approximation purpose and the amount of knowledge on the parametric PDE at hands.
In particular, among the previously cited methods, only the last three are non-intrusive.
For every method, the polynomials φj,i have a predefined form. We introduce next a
unified notation that we use to describe various polynomial methods introduced in
recent years.

We consider a family of univariate polynomials

P := (Pj)j≥0, (3.3)

with P0 constant equal to 1 and Pj of degree exactly j, so that {P0, . . . , Pk} is a basis
of Pk the space of polynomials of degree at most k. We denote by F the set Nd of
multi-indices of length d. We consider the family (Pν)ν∈F of tensorized multivariate
polynomials defined by

Pν(y) =
d∏
j=1

Pνj(yy), y = (y1, . . . , yd), ν ∈ F . (3.4)

The polynomial approximations that we consider have the form

uΛ :=
∑
ν∈Λ

vν Pν , (3.5)

where Λ ⊂ F is a set of finite cardinality and {vν}ν∈Λn are elements in V . The polyno-
mials uΛ thus belong to the space of V -valued polynomials over U ,

VΛ := V ⊗ PΛ where PΛ = PΛ(P) := span{Pν : ν ∈ Λ}. (3.6)

It is important to notice that the space VΛ depends in principle both on the set Λ and
on the chosen family P . For the family P , we may typically consider the monomials,

Pj(t) = tj, (3.7)

or the Legendre polynomials obtained by Gram-Schmidt orthogonalization of the latter
in L2([−1, 1], dt

2
). However, if Λ has the property that

ν ∈ Λ and µ ≤ ν ⇒ µ ∈ Λ, (3.8)
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where µ ≤ ν means that µi ≤ νi for all i = 1, . . . , d, then it is readily seen that VΛ is
independent of P , in which case

VΛ := V ⊗ span{y 7→ yν : ν ∈ Λ} where yν =
d∏
j=1

y
νj
j . (3.9)

Sets Λ having this property are called lower sets or downward closed sets, and play an
important role in this thesis.

For a given parametric or stochastic PDE (1.1), two basic questions are the following:

(i) How to identify a set Λ of small cardinality such that the solution map is well
approximated in VΛ ?

(ii) How to practically compute an approximation of the solution map in VΛ ?

In the case of the model elliptic problem (1.6) with affine dependance as in (1.7)
and uniform ellipticity assumption (1.8), these questions have been addressed in recent
years by many different approaches [2, 5, 6, 4, 68, 70, 69, 7, 8, 74, 34, 33, 22]. Practical
algorithms of polynomial approximation considered in these works also incorporate
discretization in the space variable, taking into account the fact that the instances
u(y) ∈ V or any other coefficient in V associated with u can only be approximated to
a given accuracy. For instance, for model (1.6), this can be done through discretization
by the finite element method where functions v ∈ V = H1

0 (D) are approximated in
continuous, piecewise linear finite element spaces Vh ⊂ V on regular quasi-uniform
simplicial partitions of D of meshwidth h, see e.g. [28] for a general introduction. The
FEM error is then incorporated in the analysis of the overall approximation error. At
this stage, this is irrelevant for our exposition and we describe the polynomial methods
in a semi-discrete setting, that is, only the discretization in the parametric variable is
considered.

The approach proposed in [2] is based on Neumann series applied to the operator
formulation of the problem

A(y)u = f, (3.10)
where for every y ∈ U , A(y) is the differential operator from V to V ∗ defined by
A(y)v = −div(a(y)∇v). In view of the (1.7), the operator can be decomposed into
A = A0 + Ψ where A0 given by A0v = −div(a∇v) does not depends in y and Ψ(y)v =
−div((a(y)− a)∇v). Under the uniform ellipticity assumption (1.8), we write

u(y) = A(y)−1f = (Id+ A−1
0 Ψ(y))−1g, g := A−1

0 f, (3.11)

with ‖A−1
0 Ψ‖V→V ≤ ξ = 1− r

R
< 1. This allows to apply the Neumann series expansion

and obtain the exponential bound

sup
y∈U

∥∥∥u(y)−
k∑
j=0

(−1)j(A−1
0 Ψ(y))jg

∥∥∥
V
. ξk. (3.12)



44 3. Polynomial approximations of the solution map

Since the operator Ψ(y) has an affine dependence y, then the polynomial in the previous
approximation belongs to VSk where Sk is the simplex

Sk :=
{
ν ∈ Nd : |ν| :=

d∑
j=1

νj ≤ k
}
. (3.13)

Obviously Sk is a lower set and PSk is the space of d-variate polynomials of total degree
k. The polynomial approximation converges exponentially fast toward u in the uniform
sense, however the polynomials space has dimension

(
k+d
k

)
which grows fast with d and

k.

In the subsequent works [5, 6], approximations of u in the mean square sense are
constructed by Galerkin projection on predefined piecewise polynomial and polynomial
spaces. In the stochastic setting, denoting % the joint probability distribution of the
random vector y, the map u can be defined as the unique function in the Bochner space
V2 := L2(U, V, d%), solution of the variational problem∫

U

∫
D

a(y)∇u(y)∇w(y)d%(y) =

∫
U

∫
D

fw(y)d%(y), w ∈ V2, (3.14)

and its Galerkin approximation in VΛ is the unique uΛ ∈ VΛ such that∫
U

∫
D

a(y)∇uΛ(y)∇w(y)d%(y) =

∫
U

∫
D

fw(y)d%(y), w ∈ VΛ. (3.15)

The polynomial spaces considered in [5, 6] are of type VBµ where for µ ∈ Nd, Bµ is the
rectangular block

Bµ :=
{
ν ∈ Nd : ν ≤ µ

}
. (3.16)

We note that Bµ is a lower set and that PBµ is the space of d-variate polynomials of
degree at most µj in variable yj. The authors assume that % is the product of the
uniform product measure %̂ := ⊗dj=1

dyj
2

by a bounded function. This, combined with
the optimality of the Galerkin projection uBµ and the uniform ellipticity assumption
implies

E
[
‖u(y)− uBµ(y)‖2

V

]
.
∫
U

‖u(y)−
∑
ν∈Bµ

vνLν(y)‖2
V d%̂(y) =

∑
ν /∈Bµ

‖vν‖2
V , (3.17)

where (Lν)ν∈F are the tensorized Legendre polynomials, orthonormal with respect to ρ̂,
and vν are the associated coefficients. Deriving estimates on the V -norm of Legendre
coefficients ‖vν‖V through the study of the partial derivative of u and using the product
structure of the polynomials space PBµ , the authors show that uBµ(y) converge toward
u with a bound that is roughly of the form

E
[
‖u(y)− uBµ(y)‖2

V

]
.

d∑
j=1

(
1 +

c

‖ψj‖L∞(D)

)−(µj+1)

, (3.18)



Introduction: English version 45

with c a fixed constant. Note however that if µj ≥ 1 for every j, then the dimension of
the polynomial space PBµ exceeds 2d, which reflects the curse of dimensionality.

In the case where % is a product measure, which is equivalent to the independence
of the random variables yj, the authors propose to use tensorized double orthogonal
polynomials in order to decouple the Galerkin system and compute rapidly the Galerkin
projection. Without loss of generality, suppose that % := ⊗dj=1

dyj
2

and denote (Lj)j≥1 the
Legendre polynomials orthonormal in L2([−1, 1], dt

2
). Since PBµ has a product structure,

one has
PBµ = ⊗dj=1span

{
l
µj+1
k : k = 0, . . . , µj

}
= span{lµν : ν ≤ µ} (3.19)

where
lnk :=

Ln
(t− tnk)L′n(tnk)

and lµν := ⊗dj=1l
µj+1
νj

, ν ≤ µ, (3.20)

and for every n ≥ 1, tn0 , . . . , tnn−1 are the n simple roots of the Legendre polynomial Ln.
It is easy to show, using elementary orthogonality arguments, that for every n ≥ 1 and
0 ≤ i, j ≤ n− 1

1∫
−1

lni (t)lnj (t)
dt

2
= βni δi,j,

1∫
−1

t lni (t)lnj (t)
dt

2
= tni β

n
i δi,j, where βni =

1

2

1∫
−1

(lni )2dt. (3.21)

Since a depends linearly on y as in (1.7), then by formulating the Galerkin system using
the polynomials {lµν}ν∈Bµ , it can be easily shown that the corresponding coordinates
uBµ,ν of the Galerkin projection uBµ in the previous basis, are the unique solutions in
H1

0 (D) of the following variational problem s

βµν

∫
D

(a+
d∑
j=1

tµj+1
νj

ψj)∇uBµ,ν∇w =

∫
U

∫
D

fwlµνd%, w ∈ H1
0 (D), (3.22)

where βµν =
∏d

j=1 β
µj+1
νj . The computation of Galerkin projection amounts then to

solving
∏d

j=1(1 + µj) deterministic boundary problems equivalent in cost to computing
ane instance of the solution map u. In addition, we should note the following remark
that was not mentioned in [5]. If f does not depend on y, then the right side in (3.22)
is a product of two integrals and since the solutions u(y) of (1.6) satisfy the following
variational problems∫

D

(a+
d∑
j=1

yjψj)∇u(y)∇w =

∫
D

fw, w ∈ H1
0 (D), (3.23)

then by denoting tµν := (tµ1+1
ν1

, . . . , tµd+1
νd

) ∈ U , one gets that

uBµ,ν =
wµν
βµν
u(tµν ), wµν :=

∫
U

lµν (y)d%(y) =
d∏
j=1

∫
U

lµj+1
νj

(t)
dt

2
(3.24)
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We note that wµν is the Gauss weights associated with the multidimensional abscissas
tµν for quadratures in the grids of point {tν : ν ∈ Bµ}.

In a later work [4], the authors propose to compute an approximation of u in the
space VBµ directly by first collocating the variational problem (3.23) satisfied by the
functions u(y) ∈ V , in the tensorized grid

ΓBµ := {tµν : ν ≤ µ} = ⊗dj=1{tµν : ν ≤ µ}, (3.25)

then constructing the approximation by interpolation. Thanks to the product structure
of PBµ , it is easy to see that {lµν}ν∈Bµ are the Lagrange polynomials associated with the
grid ΓBµ in the space PBµ , so that the interpolation operator is given by

Iµu :=
∑
ν≤µ

u(tµν )lµν . (3.26)

One way to analyze the stability of the interpolation operator is to use the double
orthogonality property in (3.21). More precisely, with ‖u‖V∞ := sup

y∈U
‖u(y)‖V , we have

E[‖Iµu(y)‖2
V ] =

∑
ν≤µ

‖u(tµν )‖2
V

∫
U

(lµν (y))2d%(y) ≤ ‖u‖2
V∞

∑
ν≤µ

∫
U

(lµν (y))2d%(y) = ‖u‖2
V∞ ,

(3.27)
where the last identity follows from the orthogonality property (3.21) and the fact that∑

ν≤µ l
µ
ν (y) = 1. Therefore, one has

E[‖u− Iµu‖2
V ] ≤ 2 inf

v∈VBµ
sup
y∈U
‖u(y)− v(y)‖2

V . (3.28)

Investigating more thoroughly the growth of partial derivatives of u as in [5], the authors
show that the map u admits an holomorphic extension in the complex domain and use
it to show that the right side in the last inequality satisfy a similar bound as the L2

error in (3.18).

In [70, 69], polynomial approximations are constructed using collocation methods
in polynomials spaces which are not of the above tensor product type, following the
sparse grids approach, originally due to Smolyak [76] and investigated in many works,
among others [50, 71, 9, 81]. In [70], the polynomial approximations are considered in
isotropic spaces Vm(Sk), where m is any given increasing function from N to N satisfying
m(0) = 0 and the convention m(−1) = −1, Sk is the simplex in (3.13) and the notation
m(Sk) stands for

m(Sk) :=
⋃
i∈Sk

Bm(i) with Bm(i) :=
{
ν ∈ Nd : m(ij − 1) < νj ≤ m(ij)

}
. (3.29)

Let us note that m(Sk) is always a lower set and that it coincides with Sk when m is
the identity. The polynomial approximation is given by Smolyak formula

Im(Sk)u =
∑
i∈Sk

⊗dj=1(Im(ij) − Im(ij−1))u, (3.30)
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where we have I−1 = 0, and for every l ≥ 0, Im(l) is the Lagrange interpolation operator
associated withm(l)+1 disjoint points {r0, . . . , rm(l)} in [−1, 1]. When the interpolation
points of the operators Im(0), Im(1), . . . are the nested sections of an infinite sequence
r0, r1, r0 . . . of mutually distinct points, the operator Im(Sk) is an interpolation operator
associated with the space Vm(Sk) and the isotropic sparse grid of points

ΓSk :=
{
rν := (rν1 , . . . , rνd) : ν ∈ m(Sk)

}
, (3.31)

see [7, 9, 26]. A typical challenge is the optimization of the trade-off between the
growth of m which dictates the overall number of collocations and a good choice of
collocation points which determines the quality of the approximation. In the nested
case, the quality of the approximation can be studied through the stability of the
interpolation operator Im(Sk), measured by its Lebesgue constant. In [70], the classical
choice of nested Clenshaw-Curtis points is studied, more precisely, the choice of m and
the nested sections of interpolation point associated with every Im(l) is given by

m(l) = 2l, l ≥ 1, and {r0, . . . , rm(l)} =
{

cos
( j

2l
π
)

: j = 0, . . . ,m(l)
}
. (3.32)

The individuals operators Im(l) are known to have Lebesgue constants which grow like
log(2l). Convergence bounds in the uniform sense are obtaind by combining this with
the analyticity results proved in [5].

The previous polynomials spaces VSk are isotropic, and accordingly the approxi-
mations Im(Sk)u are also isotropic, in the sense that the variables yj play symmetric
roles. For highly anisotropic problems, for example when the functions ψj in (1.7) have
norms ‖ψj‖L∞(D) that strongly vary with j, the solution u inevitably inherits a highly
anisotropic dependence on the individual variables yj. This should then be reflected in
the polynomial approximation. In [69], the authors treat this by considering anisotropic
version of the space VSk and accordingly anisotropic versions of Vm(Sk). These versions
are characterized by parameters α := (α1, . . . , αd) ∈ R∗+d according to

Sk,α :=
{
ν ∈ Nd : 〈ν, α〉 :=

d∑
j=1

νjαj ≤ k
}
, m(Sk,α) :=

⋃
i∈Sk,α

Bm(i). (3.33)

We note again that such sets are lower sets. The parameter α should reflect the
anisotropy of the problem: the smaller is the dependance on the variable yj, the larger
is the value of αj. In the isotropic case, α has all entries equal to 1. The approxima-
tions considered in [69] are constructed using the same Smolyak formula (3.30) with
now i ∈ Sk,α. As in the isotropic setting, in the case of points netedness, the approxi-
mation operator is an interpolation operator associated with the space Vm(Sk,α) and the
anisotropic sparse grid of points

ΓSk,α :=
{
rν := (rν1 , . . . , rνd) : ν ∈ m(Sk,α)

}
, (3.34)
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see [7, 26]. Similar to [70], the convergence analysis is based on the stability of the
interpolation operator combined with the analyticity results in [5]. It is in particular
shown that with the choice of Clenshaw Curtis points, there exists an optimal choice
of α, depending on the radii of analyticity of u in each variable yj, for which the
error bound is minimal. Sparse grid collocation methods are extended to more general
anisotropic polynomial spaces in [7, 8], for which the sets Λ are adaptively constructed
and optimized using the so-called knapsack algorithm.

All the above described strategies provide computable polynomial approximations
that converge toward the solution map u in both the uniform and/or the mean square
sense. In order to compare their computational efficiency, an appropriate benchmark
consists in analyzing the error decay rate as a function of the overall computational
cost. For the methods presented so far, the cost of approximation in a given space VΛ

is essentially dominated by the cost of #(Λ) evaluations of u. It is therefore relevant
to study the error rates of each method as a function of n := #(Λ). This is, alas, not
straightforward since the error rates are for almost all the strategies in form of sum of
error contributions. However, a detailed inspection shows that for each method, the
rates is not better than

ξλ(Λ), λ(Λ) := max
ν∈Λ
{νmax : νmax := max(ν1, . . . , νd)}, (3.35)

where ξ is a given number in ]0, 1[ independent of d. We note that λ(Λ) is the max-
imal degree attained in at least one variable of the polynomials in PΛ. For isotropic
approximations, the cardinalities of the considered sets are #(Bµ) = (1 + µ1)d with
µ := (µ1, . . . , µ1), #(Sk) =

(
k+d
k

)
and with m the doubling rules in (3.32), we have if

d ≥ k

#(m(Sk)) =
∑
i∈Sk

#(Bm(i)) ≥
∑

i∈Sk∩{0,1}d
2|i| =

∑
j=0

k

(
d

j

)
2i ≥ d2k. (3.36)

Since λ(Bµ) = 1 + µ1, λ(Sk) = k and λ(m(Sk)) = 2k, then it is readily verified that

λ(Bµ) ≤ (#(Bµ))
1
d , λ(Sk) ≤

k!

dk
#(Sk), λ(m(Sk)) ≤

1

d
#(m(Sk)), (3.37)

so that in view of (3.35), the rates of isotropic approximations deteriorate with the
growth of the dimension d and are then not immune to the curse of dimensionality. The
approximation in anisotropic spaces can in some measure overcomes this limitation since
the dimension d can be reduced by activating only few variables yj in the approximation.
For instance, setting µj = 0 when working with Bµ or αj >> 1 when working with Sk,α
and m(Sk,α) yields the inactivity of the variable yj in the approximation. However,
due to their coupled rigid shape, these anisotropic sets double at least in cardinality,
whenever a new coordinate yj is activated, while only the jth contribution of the error
decreases. We note also that for sparse grids, the multiplicative constants in the error
bounds depend on d.



Introduction: English version 49

In view of the previous discussion, the challenge consists in designing polynomial
methods with convergence rates that are robust to the parametric dimension d. An
equivalent challenge is to design polynomial methods with provable convergence rate in
the infinite dimensional setting d =∞, for example algebraic rates, that is, error bounds
of the form Cn−s, where n = #(Λ). Of course, this objective can not be achieved if all
the variables yj weigh equally in the solution u for the reasons explained above. On the
other hand, the convergence of an expansion of the type (1.11) enforces some decay of
ψj making the variables yj less active as j → +∞.

In [34, 33], a new paradigm is introduced for treating model (1.6) in the case d =∞
following the previously discussed prescriptions. The following result is proved: if a is
as in (1.11) with the sequence (‖ψj‖L∞(D))j≥1 belonging to `p(N) for some p < 1, then
Taylor series ∑

ν∈F

tνy
ν with tν :=

∂νu(0)

ν!
∈ V, (3.38)

truncated to well chosen sets (Λn)n≥1, with #(Λn) = n, converge to u in the uniform
sense with at least the algebraic convergence rate n−s up to a multiplicative constant
that only depends on ‖(ψj)‖`p(N), and

s :=
1

p
− 1. (3.39)

The same result is also proved with Legendre series∑
ν∈F

vνLν with vν :=

∫
U

u(y)Lν(y)d%(y) ∈ V, (3.40)

in the mean square sense, with the improved convergence rate n−s∗ , where

s∗ :=
1

p
− 1

2
. (3.41)

In other words, algebraic rates that are robust to the dimension d are established, under
a certain decay assumption on the functions ψj as j → +∞ that reflects the anisotropy
of the solution map.

In order to establish the previous results, a critical idea is to define the sets Λn as the
indices associated to the n largest terms of the sequences (‖tν‖V )ν∈F and (‖vν‖V )ν∈F of
Taylor and Legendre coefficients. This truncation is a form of nonlinear approximation
of the solution map, sometimes called best n-term approximation, see [40]. The sets
Λn might be quite different from the previously descibed isotropic or anisotropic sets.

The exact knowledge of the best n-term sets is ususally out of reach, and there-
fore the above results should only be thought as theoretical approximation results. In
particular, they do not obviously yield a computational strategy. It should also be
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remarked that the proof of the above results strongly exploits the linear elliptic nature
of the model (1.6) and the affine parametric dependence in (1.11). These limitations
motivate the following natural questions:

(i) Can we build index sets (Λn)n≥1 by adaptive or non-adaptive computational
strategies, such that the convergence rate for polynomial approximations of the
solution map in the space VΛn that is similar to that provided by the best #(Λn)-
term approximation ?

(ii) Given such index sets, can we define the associated polynomial approximation of
the solution map by simple computational strategies, in particular non-intrusive
methods such as interpolation, and obtain a similar convergence rate ?

(iii) Can we obtain similar approximation results for more general models, including
nonlinear PDEs with non-affine dependence in the parameters, and still with
parametric dimension d =∞ ?

This thesis is motivated by these questions and brings precise answers to all of them.

4 Outline of the thesis

This thesis is composed of seven chapters and comprises three main parts numbered
I,II and III. Most of the results presented in the thesis are published in our papers
[22, 26, 25, 21, 24, 23].

Part I deals with theoretical approximation results, while parts II and III deal with
the construction of practical approximation algorithms. In Part I (chapters 1-2), we
recall the results in [34] and [33] for the linear elliptic PDE (1.6) with affine parametric
dependence (1.7) and present our results from [25] that apply to more general models
including nonlinear PDEs with non-affine parametric dependence. In part II (chapters
3-4), we present intrusive algorithms for the approximation of the solution map u of
(1.6), either by mean of adaptively constructed Taylor series, following our approach
from [22], or by mean of Galerkin projections, in the line of [53]. In part III (chapters
5-6-7), we discuss two non-intrusive algorithms that can be used for the treatment of
general parametric PDEs: interpolation, following our approach developed in [26, 21, 24]
and least squares, following our approach from [23]. It should be noted that throughout
the thesis, we mostly place ourself in the infinite dimensional setting,

d =∞ and U := [−1, 1]N, (4.1)

but the various algorithms and results are also applicable in the finite dimensional
setting d <∞.
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In Chapter 1, we study the parametric elliptic problem (1.6) with affine dependence
(1.7) and uniform ellipticity assumption (1.8). For this model, we recall in detail the
approximation results obtained in [34, 33]. As previously explained, theses results show
that under the assumption that (‖ψj‖L∞(D))j≥1 ∈ `p(F) for some p < 1, the Taylor series
truncated to the sets Λn of their n largest terms converge toward the solution map u
in the uniform sense with algebraic rate n−s where s := 1

p
− 1, and the Legendre series

converge in the mean square sense with the rate n−s∗ where s∗ := 1
p
− 1

2
. In addition, we

establish that the best n-term sets (Λn)n≥0 which are used to obtain such rates can be
modified so that they are lower sets in the sense of (3.8), while still maintaining the same
convergence rate. This is of importance for the construction and convergence study of
numerical algorithms in Part II and III. Although Chapter 1 gathers to a large extent
the results obtained in [34, 33], it is self contained and can be red without referring to
the cited papers. We have undertaken the task of explaining thoroughly the paradigm
of treating the infinite dimension, yet shortening and simplifying the reasonings from
[34, 33]. The analysis in Chapter 1 is essential in understanding the various tools that
are used in further chapters.

In Chapter 2, we study parametric PDEs of the general form (1.1) with anisotropic
dependences on the parameters yj, however not necessarily of the type (1.6) with affine
dependence (1.7), following our approach from [25]. As a toy example, consider the
model (1.6) with diffusion coefficient

a(x, y) := a+
(∑
j≥1

yjψj

)2

. (4.2)

Although uniform ellipticity in y ∈ U is maintained for this new form for a, the Taylor
series may not anymore converge. In fact, this is already the case when all the functions
ψj are equal to 0 except ψ1 = b > 1 constant and a constant equal to 1. Indeed, in this
case

u(y) =
u(0)

1 + b2y2
1

, y ∈ U, (4.3)

is a function for which the Taylor expansion diverges on [−1, 1]. However, this function
remains the sum of its Legendre series. Following the approach of Chapter 1 for the
approximation by Legendre polynomials, we show that a large class of parametric PDEs
can be approximated with similar algebraic convergence rates n−s by n-term truncations
of Legendre series. For this purpose, we introduce the notion of (p, ε)-holomorphy which
describes certain anisotropy assumptions that guarantee the algebraic convergence rate.
We introduce two general framework in which (p, ε)-holomorphy holds, the first one
based on Inf-Sup conditions and the second one on the holomorphic version of the
implicit function theorem in Banach spaces. We show that these frameworks apply to
various parametric PDEs. In particular, we consider semi-linear elliptic problems of the
form

g(u)− div(a(y)∇u) = f, (4.4)
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parabolic problems such as

∂tu− div(a(y)∇u) = f, (4.5)

and PDEs set on domains which themselves depend on the parameter y.

The remainder of the thesis, Parts II and III, is dedicated to the design of practical
algorithms for constructing polynomial approximations to parametric PDEs. Given a
family of polynomials P as in (3.3), two main problems need to be addressed:

• The identification of good index sets Λn in the sense u can be well approximated
in VΛn(P).

• The practical computation of a good approximation uΛn ∈ VΛn(P) to u.

As stressed several times, it is of the utmost importance that both tasks are numerically
tractable. We will see that in both the uniform and mean average sense, it is of interest
to rely on adaptive algorithms. For this type of algorithms, the sequence of index sets
(Λn)n≥1 is not known in advance, the identification of every set Λn+1 is only based on
the available information gained from computation at the previous step n. In particular,
we rigorously demonstrate the effectiveness of such type of algorithms in chapters 3-4
which are concerned with the elliptic problem (1.6).

Chapter 3 discusses our results from [22] which deal with the approximation of u
by computable Taylor series. In [34, 33], it is proved that Taylor coefficients, defined
in (3.38), are the unique solutions of the following recursive problems∫

D

a(x)∇tν(x)∇w(x)dx = −
∑
j:νj 6=0

∫
D

ψj(x)∇tν−ej(x)∇w(x)dx, w ∈ V, (4.6)

where ej = (δi,j)i≥1 is the Kronecker sequence of index j and ν − ej the subtraction
element-wise of ej from ν, that is,

ν − ej = (ν1, . . . , νj−1, νj − 1, νj+1, . . .). (4.7)

Building upon this recursion and using residual reduction arguments of the same type
as introduced in adaptive wavelet methods [30, 31], we show that one can incrementally
construct a sequence of nested sets (Λk)k≥1 such that the associated Taylor series con-
verge with the optimal rate n−s with n = n(k) := #(Λk) proved in Chapter 1. In view
of (4.6), the Taylor series associated with a given set Λ can be computed in exactly
#(Λ) recursion steps if and only if

ν ∈ Λ⇒ ν − ej ∈ Λ for any j ≥ 1 such that νj 6= 0. (4.8)

This definition is equivalent to (3.8). The index sets that are adaptively built for Taylor
series are therefore always lower sets.
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In chapter 4, we investigate the approximation of u by Galerkin projection in the
mean square sense, using the Legendre polynomials (Lν)ν∈F . We only consider the case
where the joint probability % of y is the uniform measure in U . However, all the results
can be readily extended to other product measures, if one replaces Legendre polynomials
by the orthogonal tensorized polynomials for the given product measure. Following the
approach of [53], we formulate the variational problem (3.14) in the Legendre basis,
which yields an equivalent sequence space formulation

Au = f (4.9)

where A = (Aν,ν′)ν,ν′∈F an infinite matrix of operators defined from V to V ∗, u =
(vν)ν∈Λ ∈ `2(F , V ) the sequence of Legendre coefficients of u and f = (fν)ν∈Λ ∈
`2(F , V ∗) the sequence of Legendre coefficients of f ∈ (L2(U, V, d%))∗. Using the ma-
chinery of adaptive wavelet methods for elliptic operator equations [30, 31, 49], we
study the properties of the infinite matrix A, then by a residual analysis we incremen-
tally build a nested sequence of index sets (Λk)k≥1 such that the Galerkin projection
uΛk ∈ `2(Λk, V ) of the previous formulation converge to u with the prescribed rate n−s∗

with n = n(k) := #(Λk) proved in Chapter 1. In contrast with Chapter 3, the sets
Λk are not necessarily lower sets. We show that similar approximations results can be
obtained with the lower sets constraint, and that in such case, Galerkin projection also
approximate u in the uniform sense.

The methods presented in chapters 3-4 are intrusive. They are specifically designed
for the elliptic linear problem (1.6) with affine dependence as in (1.7). In particular,
the convergence analysis is strongly tied to these features. For more general models,
these methods might be difficult to apply and one may prefer to rely on non-intrusive
methods. The latter become unavoidable in cases where one has no complete knowledge
on the PDE and only has access to the solution u(y) for any query y through a numerical
solver. In this direction, we investigate in part III two frequently used non-intrusive
methods, namely interpolation and least squares.

In chapter 5, we present the interpolation process that we introduced in [26]. The
process is defined through a generalisation of the Smolyak formula defining the inter-
polation operators (3.30) for the isotropic and anisotropic simplices Sk and Sk,α, now
replaced by arbitrary lower index sets. We generalize in particular the results of [9, 7]
in which it is shown that for certain types of lower sets Λ, the operator IΛ defined by
(3.30) with simply Λ replacing Sk is an interpolation operator. To be specific, given
(r0, r1, . . .) a sequence of pairwise distinct points in [−1, 1] and denoting by Ik the poly-
nomial interpolation operator associated with (r0, . . . , rk), with the convention I−1 = 0,
then for any lower set Λ,

IΛ :=
∑
i∈Λ

⊗dj=1(Iij − Iij−1), (4.10)

is the interpolation onto PΛ for the grid of points

ΓΛ :=
{
rν := (rνj)j≥1 : ν ∈ Λ

}
. (4.11)
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We show that such operators can be computed easily by a Newton-like formula. Namely,
given Λ a lower set and ν ∈ F \ Λ such that Λ′ := Λ ∪ {ν} is lower, then

IΛ′u = IΛu+
(
u(rν)− IΛu(rν)

)
hν , (4.12)

where

hν(y) =
∏
j≥1

hνj(yj), with h0 = 1 and hk(t) :=
k−1∏
j=0

t− rj
rk − rj

. (4.13)

We then study the stability of the interpolation through the analysis of Lebesgue con-
stants LΛ := ‖IΛ‖L∞→L∞ . We show in particular that the growth of such constants in
terms of the size of Λ can be estimated from the growth of the Lebesgue constants Lk
associated with the operator Ik. More precisely, we prove

Lk ≤ (k + 1)θ for any k ≥ 1 ⇒ LΛ ≤ (#Λ)θ+1 for any lower set Λ. (4.14)

The polynomials growth (#(Λ))θ+1 might be larger than the algebraic decays (#(Λ))−s

that we established in chapters 1-2 for the approximation of PDEs by polynomials in
the spaces VΛ. However, we show under the same assumptions as those in the results
of chapters 1-2 that there exist a sequence of lower sets (Λn)n≥0 with #(Λn) = n, such
that the approximation to u by IΛnu converges at the optimal rate n−s, with s = 1

p
−1.

We also use formula (4.12) as a starting point to the development of adaptive algo-
rithms where, for a given Λn, the newly chosen ν such that Λn+1 = Λn∪{ν} maximizes
the increment

(
u(rν)− IΛu(rν)

)
hν in some norm of interest. Although such adaptive

algorithms are not proved to converge with the optimal rate, they appear to behave
quite well in several relevant test cases. Finally, we extend the idea of sparse high
dimensional interpolation to other tensorized systems than polynomials, in particular
piecewise affine and quadratic functions, based on similar concepts of lower sets.

Motivated by the result expressed by (4.14), we are interested in finding infinite
sequences (r0, r1, . . .) such that the Lebesgue constants Lk associated to the sections
(r0, . . . , rk) have moderate algebraic growth. Note that Chebychev or Gauss-Lobatto
points result in a logarithmic growth of the Lebesgue constant, however such points are
not the sections of a single infinite sequence. In chapter 6, we study the growth of the
Lebesgue constant associated with the so-called Leja sequences on the unit complex
disk and their projection into [−1, 1] the so-called <-Leja sequences. This chapter is
a follow up of our paper [21] and two anterior works [18, 19] in which these sequences
are studied. We provide new structural properties of these sequences, then prove a new
bound on the growth of Lebesgue constant of <-Leja sequences. Namely

Lk ≤ 8
√

2(k + 1)2, k ≥ 0, (4.15)
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which improves the bound 8(k + 1)2 log(k + 1) that we established in [21]. This new
result, shows in particular that starting with an <-Leja sequence (r0, r1, . . .), the re-
sulting high dimensional interpolation operator IΛ has Lebesgue constant bounded by
(#(Λ))3 regardless of the dimension d and of the shape of Λ.

In chapter 7, we present the results of our paper [23] in which the stability of
polynomial least squares in high dimension is investigated. Given Λ a lower set of
cardinality n and Om := (yi, zi)i=1,...,m, where the yi are i.i.d. copies of the random
parameter vector y and zi are noiseless or noisy observations of the solution map u at
yi, the least squares projection is defined by

IΛ,Omu := argmin
v∈VΛ

1

m

m∑
i=1

‖zj − v(yj)‖2
V . (4.16)

When V is a Hilbert space, the solution of this problem is obtained by solving a simple
linear systems similar to the case of real valued data. Using techniques from [32],
we investigate the stability of the least squares projection, in terms of a compromise
between the dimension n = #(Λ) of the polynomial space VΛ and the sample size m. In
particular, when % is the uniform measure on U , we show that the projection is stable
for values of m that scale at least like n2.
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In order to facilitate referencing, we provide again the description of this parametric
problem: given D a bounded Lipschitz domain of Rm, m ≥ 1, and f ∈ H−1(D), we
consider the parametrized family of elliptic boundary value problems

−div(a(y)∇u) = f in D, u = 0 on ∂D. (1.1.1)

Here, for y := (yj)j≥1 ranging in U := [−1, 1]N, the diffusion function a(y) is defined
over D by

a(y)(x) := a(x) +
∑
j≥1

yjψj(x), x ∈ D, (1.1.2)

where a and (ψj)j≥1 are functions of L∞(D), such that the above series converges
absolutely for any x ∈ D and any y ∈ U . For notational simplicity, we use the notation
a(x, y) instead of a(y)(x). We assume that the parametric diffusion coefficient a satisfies
the uniform ellipticity assumption

UEA(r, R) : 0 < r ≤ a(x, y) ≤ R <∞, y ∈ U, x ∈ D. (1.1.3)

The previous parametric problem is considered in the study of steady state diffusion
problems which are subject to internal diffusivity uncertainties (in the stochastic set-
ting) or controls (in the deterministic setting). For example, fluid diffusion in random
heterogeneous porous media, heat diffusion in domain with random thermal conductiv-
ity, control of the heat flux through the design of a thermal component, etc.

By Lax-Milgram theory, UEA(r, R) ensures for every y ∈ U the existence and
uniqueness of the solution u(y) of (1.1.1) in the space

V := H1
0 (D). (1.1.4)

Moreover, the solutions u(y) are uniformly bounded according to

sup
y∈U
‖u(y)‖V ≤

‖f‖V ∗
r

. (1.1.5)

This chapter is in large part discussing the approximation results obtained in the papers
[34, 33] for the approximation of the solution map defined from U to V by

u : y 7→ u(y), (1.1.6)

using sparse Taylor and Legendre series. Previously to the mentioned works, the para-
metric elliptic model was extensively studied in the literature, e.g. [39, 3, 2, 82, 5, 6,
65, 74, 4, 70, 69, 68, 7, 8] and references their-in.

As discussed in the general introduction of this thesis, these papers propose various
strategies based on multivariate polynomials in the setting d <∞. Specific polynomial
approximation methods are considered, for instance Galerkin projection or collocation
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on pre-defined polynomial spaces, then the convergence of the built polynomial ap-
proximations is investigated. For the purposes of the latter task, as for scalar-valued
functions, the smoothness of u in the parametric variable y is examined. The ap-
proach of [34, 33] is quite different, in the sense that the authors investigate the rate
of polynomial approximation of u in dimension d =∞ for some optimal truncations of
polynomial expansions. Such optimal truncations are practically out of reach, yet they
may serve as benchmark for the convergence of adaptive and non-adaptive algorithms,
as discussed in part II and III of the thesis. The analysis in [34, 33] is also based on the
study of the smoothness of u in the parametric variable y. However, in order to be able
to treat the infinite dimensional setting d = ∞, it is crucial to assume a certain form
of decay in the size of the ψj as j → +∞. Such decay is intuitively due to the fact that
the convergence of the affine series (1.1.2) for all y ∈ U should typically be reflected by
a certain form of decay in the size of ψj as j → +∞, resulting into weaker dependence
in the corresponding variables yj. As a consequence, the discretization tools should also
reflect this anisotropy. We recall in ample details a paradigm introduced in [34, 33] for
dealing with this purpose and give new results in the same lines of work.

First, we show in §1.2, using arguments of best n-term approximations, how one can
overcome the curse of dimensionality in polynomial approximation of the solution map
u. More precisely, we explain that when u is equal to its Taylor series and the sequence
(‖tν‖V ) of V -norm of Taylor coefficients is `p-summable with 0 < p < 1, then truncated
Taylor series associated with the n largest Taylor coefficients converge towards u with
algebraic rates (n + 1)−s, where s := 1

p
− 1, in the uniform sense. In the mean square

sense, we show that the same approach applied with Legendre series yield convergence
towards u with algebraic rates (n+ 1)−s

∗ , where s∗ := 1
p
− 1

2
.

Motivated by the analysis of §1.2, we examine in §1.3 a first approach for the study
of the summability of Taylor and Legendre coefficients of u, based on a recursive com-
putation of the partial derivatives. Recalling the arguments of [34], we show in both
cases that, for 0 < p < 1, the `p-summability of the coefficients sequences is inherited
from a similar property of `p-summability for the sequence (‖ψj‖L∞(D))j≥1, under the
additional assumption that this sequence has sufficiently small `1-norm.

We then discuss in §1.4 a more powerful approach, introduced in [33], based on
extending u to the complex domain. More precisely, we show that u has an holomorphic
extension to complex polydiscs with variable radii in each direction yj reflecting the
anisotropy on the dependence in y. Based on this anisotropic holomorphy, we derive
new estimates on the V -norm of Taylor coefficients by application of Cauchy formula.
This allow us to prove that they are `p-summable under the only assumption that
(‖ψj‖L∞(D))j≥1 ∈ `p(N) for some 0 < p < 1,

In §1.5, we introduce the notion of lower set which was already given in the gen-
eral introduction, see (3.8), and study its interplay with best n term approximation.
We show in particular that the estimates obtained for Taylor coefficients by complex
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analysis in §1.4 are actually better than `p-summable in the sense that they allow us to
replace the best n-term index sets by lower sets of same cardinality n, while maintaining
the rate (n+ 1)−s.

Finally, in §1.6, we investigate the approximation of the solution map u by its
Legendre series or more generally by its Jacobi series. Using again complex analysis
arguments as in [33], we first recall the result stating that, for 0 < p < 1, Legendre
coefficients are `p-summabe under the only condition that (‖ψj‖L∞(D))j≥1 ∈ `p(N).
Then, we prove a new theorem stating that the same result holds in general with Jacobi
coefficients and that, similarly to Taylor coefficients, the summability is stronger than
`p in the sense that the best n-term index sets can be replaced by lower sets, while
maintaining the convergence rate (n+ 1)−s

∗ .

1.2 Sparse best n-term polynomial approximation

A natural obstruction when approximating the solution map u by multivariate poly-
nomials in y is the difficulty that y is infinite dimensional. In particular, the use of
standard polynomial spaces, such as of degree at most k in each variable, is not appro-
priate since such spaces would then be infinite dimensional. This also reflects the fact
that these spaces are not well adapted to finite yet high dimensional problems, since
their dimension grows exponentially with the number d of variables.

The approach introduced in [34, 33] consists instead in building sparse polynomial
approximations. These approximations are obtained by keeping the largest terms in
polynomial expansions of the map u. These expansions are either the Taylor series of
u at y = 0 or the Legendre series. Other expansions are discussed in §1.6.

We introduce F the set of finitely supported nonnegative integers, that consists of
all ν := (νj)j≥0 such that νj ∈ N and #{j : νj 6= 0} <∞. We introduce the notations

0F := (0, 0, . . .), (1.2.1)

for the null sequence, and

ν! :=
∏
j≥1

νj! and yν :=
∏
j≥1

y
νj
j , ν ∈ F , y ∈ U, (1.2.2)

with 0! = 00 = 1. The Taylor expansion of u is formally defined as the series

u(y) =
∑
ν∈F

tνy
ν , tν :=

∂νu(0)

ν!
∈ V (1.2.3)

The existence of the derivatives ∂νu(0) and the rate of convergence of this series towards
u are discussed further in §1.3 and §1.4. For now, we assume that the solution map u
is equal to its Taylor series for any y ∈ U .
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We next introduce the Legendre expansion of u, using two possible normalizations.
We denote by (Pn)n≥0 and (Ln)n≥0 the Legendre polynomials over [−1, 1] normalised
in the uniform and the mean square sense respectively, i.e.

‖Pn‖L∞([−1,1]) = Pn(1) = 1, ‖Ln‖2
L2([−1,1], dt

2
)

=

1∫
−1

Ln(t)2dt

2
= 1. (1.2.4)

We recall that the family (Ln)n≥0 is an orthonormal basis in the space L2([−1, 1], dt
2

).
Since ‖Ln‖L∞[−1,1] =

√
2n+ 1, the polynomials Pn and Ln are related according to

Pn =
Ln√

2n+ 1
, n ≥ 0. (1.2.5)

We now define the multivariate polynomials (Lν)ν∈F and (Pν)ν∈F by tensorization

Lν(y) :=
∏
j≥1

Lνj(yj) and Pν(y) :=
∏
j≥1

Pνj(yj) ν ∈ F , y ∈ U. (1.2.6)

The products are well defined and finite since L0 = P0 = 1. We denote by % the uniform
measure over U , i.e

d%(y) := ⊗j≥1
dyj
2
. (1.2.7)

The sigma algebra Θ for d% is generated by the finite rectangles
∏∞

j=1 Sj where only a
finite number of the Sj are different for [−1, 1] and are intervals contained in [−1, 1].
Here (U,Θ, d%) is a probability space. It is easy to check that the family (Lν)ν∈F forms
an orthonormal system in L2(U, d%). Moreover, this system is complete. Indeed, any
function of L2(U, d%) can be approximated to any given tolerance by a finite linear
combination of characteristic function of finite rectangle and each of the last can be
approximated by polynomials to any prescribed accuracy.

The family of polynomials (Lν)ν∈F constitute an orthonormal basis for the Bochner
space

V2 := L2(U, V, d%), (1.2.8)

of square %-measurable mappings from U to V equipped with the least-square norm

‖u‖V2 :=
(∫
U

‖u(y)‖2
V d%(y)

) 1
2
. (1.2.9)

We also introduce the space
V∞ ⊂ L∞(U, V ), (1.2.10)

of functions u defined everywhere in U and uniformly bounded in V , equipped with the
uniform norm

‖u‖V∞ := sup
y∈U
‖u(y)‖V . (1.2.11)
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The space V∞ is continuously embedded in V2. In view of the inequality (1.1.5), the
solution map u of (1.1.1) belongs to V∞ ⊂ V2, and is therefore equal to its Legendre
series

u(y) =
∑
ν∈F

vνLν =
∑
ν∈F

uνPν , vν :=

∫
U

u(y)Lν(y)d%(y) ∈ V, uν :=
(∏
j≥1

(2νj+1)
) 1

2
vν .

(1.2.12)

The key idea for the truncation of the above Taylor and Legendre expansions (1.2.3)
and (1.2.12) comes from nonlinear approximation [40]. It consists in retaining the n
largest terms in these expansions. This is a typical strategy in data compression: for
example, one retains the largest wavelet coefficients of a digital image in order to encode
it in an economical way. Therefore, the set Λn ⊂ F of the indices corresponding to the
n retained terms is not a-priori fixed, but rather adaptively chosen with respect to the
solution map.

One crucial observation is that the convergence rate of such nonlinear approxima-
tions is related to the summability of the terms in the expansion. This is expressed
by the following result, originally due to Stechkin. For convenience, we formulate this
lemma for sequences indexed by F .
Lemma 1.2.1

Let p > 0 and (eν)ν∈F a sequence in `p(F). If Λn is any set corresponding to the n
largest |eν | then for any q > p(∑

ν /∈Λn

|eν |q
)1/q

≤ ‖(eν)‖`p(F)(n+ 1)−sp,q , sp,q =
1

p
− 1

q
. (1.2.13)

Proof : We introduce (e∗j )j≥1 a decreasing rearrangement of the sequence (|eν |)ν∈F . On
the one hand, we have(∑
ν /∈Λn

|eν |q
)1/q

=
( ∑
j≥n+1

(e∗j )
q
)1/q

≤
( ∑
j≥n+1

(e∗n+1)q−p(e∗j )
p
)1/q

≤ (e∗n+1)1−p/q‖(eν)‖p/q`p(F).

On the other hand, we have

(n+ 1)(e∗n+1)p ≤
n+1∑
j=1

(e∗j )
p ≤ ‖(eν)‖p`p(F).

The combination of the two inequalities and q ≥ p implies (1.2.13).

We note that the sets Λn in the previous lemma are generally not unique because of
possible ties in the values of the |eν |. However, the decay of the tail is the same for all
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the index sets as it was shown in the proof. We observe also that the index sets Λn in
the lemma may be chosen nested, that is Λn ⊂ Λn+1 for all n.

In light of the previous lemma, we can investigate the decay of the tail of Taylor and
Legendre expansions. If we assume for example that the sequence (‖tν‖V )ν∈F belongs
to `p(F) for some 0 < p < 1, then with (ΛT

n )n≥1 any sequence of nested sets of indices
corresponding each to the n largest ‖tν‖V , we have∥∥∥u−∑

ν∈ΛTn

tνy
ν
∥∥∥
V∞
≤
∑
ν 6∈ΛTn

‖tν‖V ≤ ‖(‖tν‖V )‖`p(F)(n+ 1)−s, s =
1

p
− 1, (1.2.14)

where in the first inequality we have used the fact that |yν | ≤ 1 for y ∈ U , and in
the second inequality we have applied (1.2.13) with q = 1. Quite remarkably the rate
(n+1)−s and the constant in (1.2.14) are independent from d the number of parameters
yj since we have assumed here that d is countably infinite. Thus, (1.2.14) shows that
one can in principle overcome the curse of dimensionality in the approximation of u.

Similarly, if we assume that the sequences (‖vν‖V )ν∈F belongs to `p(F), for some
0 < p < 1 and (ΛL

n)n≥1 is any sequence of nested set of indices corresponding each to
the n largest ‖vν‖V , then∥∥∥u−∑

ν∈ΛLn

vνLν

∥∥∥
V2

=
(∑
ν 6∈ΛLn

‖vν‖2
V

) 1
2 ≤ ‖(‖vν‖V )‖`p(F)(n+ 1)−s

∗
, s∗ =

1

p
− 1

2
,

(1.2.15)
where we have applied (1.2.13) with q = 2. Here again, the rate (n + 1)−s

∗ and the
constant are independent of the number of parameters yj. Let us remark that, in view
of the Parseval equality in (1.2.15), the series

∑
ν∈ΛLn

vνLν is the best possible n-term
approximation of u by multivariate Legendre series in V2.

Legendre polynomials can also provide approximations in the uniform sense, that is
in V∞. For instance, if the sequence (‖uν‖V )ν∈F belongs to `p(F) for some 0 < p < 1
and (ΛP

n )n≥1 is any sequence of nested sets of indices corresponding each to the n largest
values of ‖uν‖V , then∥∥∥u− ∑

ν∈ΛPn

uνPν

∥∥∥
V∞
≤
∑
ν 6∈ΛPn

‖uν‖V ≤ ‖(‖uν‖V )‖`p(F)(n+ 1)−s, s =
1

p
− 1. (1.2.16)

Since ‖vν‖V ≤ ‖uν‖V for any ν ∈ F , then the `p summability of (‖uν‖V )ν∈F implies
also the `p summability of (‖vν‖V )ν∈F . However, it is important to note that the
index sets ΛP

n and ΛL
n differ. In particular the truncated series

∑
ν∈ΛPn

uνPν might not
yield the optimal rate in V2 achieved by

∑
ν∈ΛLn

vνLν . Likewise, the truncated series∑
ν∈ΛLn

vνLν might not yield the optimal rate in V∞ achieved by
∑

ν∈ΛPn
uνPν . Therefore,

the truncation strategy is strongly tied to the norm in which we want to measure the
error.
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We are thus interested in the summability properties of the sequences (‖tν‖V )ν∈F ,
(‖vν‖V )ν∈F and (‖uν‖V )ν∈F . As for real valued functions, this analysis requires the
study of the smoothness of the approximated function, that is the solution map y 7→
u(y), in order to derive upper bounds on the Taylor and Legendre coefficients. In the
next section §1.3, we present the regularity results from [34] which are obtained by a real
variable technique based on recursive differentiation of the solution map u with respect
to the variables yj. These results lead to upper bounds and summability results for the
Taylor and Legendre coefficients that are suboptimal, in particular in the cases where
the support of the functions ψj do not overlap much. This drawback is circumvented
by a different approach from [33] based on holomorphy results obtained by complex
variable arguments, which we present in §1.4.

1.3 Regularity and summability by the real variable
technique

The function u(y) is the unique solution of the variational problem∫
D

a(y)∇u(y)∇w =

∫
D

fw, w ∈ V, (1.3.1)

where∇ is the gradient with respect to the variable x ∈ D. The assumptionUEA(r, R)
implies that the solution map y 7→ u(y) is uniformly bounded in V , according to the
classical a-priori estimate

sup
y∈U
‖u(y)‖V ≤

‖f‖V ∗
r

. (1.3.2)

Our next objective is to define computable approximations to the solution map y 7→ u(y)
by means of polynomial expansions in the variable y with coefficients in V .

1.3.1 Differentiability of the solution map

Given 0 < r < R < ∞, we denote Sr,R the open subset of functions in L∞(D) that
satisfies the uniform ellipticity assumptionUEA(r, R) in (1.1.3) with strict inequalities.
By Lax-Milgram theory, for every a ∈ Sr,R, there exist a unique solution v(a) ∈ V of
the variational problem ∫

D

a∇v(a)∇w =

∫
D

fw, w ∈ V. (1.3.3)

In addition, the defined map v : Sr,R 7→ V is uniformly bounded with

sup
a∈Sr,R

‖v(a)‖V ≤
‖f‖V ∗
r

. (1.3.4)
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We begin by observing that this map is Frechet differentiable.
Lemma 1.3.1

For any function a in Sr,R, the map v : a 7→ v(a) if Frechet differentiable at a and
its Frechet derivative dav is defined as follows: for any h ∈ L∞(D) the function
dav(h) ∈ V is the unique solution ṽ = ṽ(a, h) of the variational problem∫

D

a∇ṽ∇w = −
∫
D

h∇v(a)∇w, w ∈ V (1.3.5)

Proof : Let a in Sr,R and h ∈ L∞(D) such that a+h ∈ Sr,R, the functions v(a), v(a+h) ∈
V are well defined and are the unique solutions of the variational problems∫

D

a∇v(a)∇w =

∫
D

fw,

∫
D

(a+ h)∇v(a+ h)∇w =

∫
D

fw, w ∈ V.

Therefore for any w ∈ V∫
D

a∇(v(a+ h)− v(a))∇w = −
∫
D

h∇v(a+ h)∇w.

In particular with w = v(a + h) − v(a), using UEA(r,R) in the left side, and (1.3.4)
and Cauchy Schwartz in the right side, we deduce that

‖v(a+ h)− v(a)‖V ≤
‖f‖V ∗
r2
‖h‖L∞ , (1.3.6)

which shows in particular that v is a Lipchitz map. Now subtracting the variational
problem (1.3.5) to the previous variational problem, we obtain∫

D

a∇(v(a+ h)− v(a)− ṽ)∇w = −
∫
D

h∇(v(a+ h)− v(a))∇w.

Substituting here w by v(a+ h)− v(a)− ṽ and using UEA(r,R) in the left side and
Cauchy-Schwartz inequality and the previous Lipchitz inequality in the right side, we
obtain

‖v(a+ h)− v(a)− ṽ‖V ≤
‖f‖V ∗
r3
‖h‖2L∞ ,

which confirms that v is Frechet differentiable at a with dav(h) = ṽ(a, h).

We return to the regularity of the solution map y 7→ u(y) of the parametric problem
(1.1.1). We may view this map as the composition

u = v ◦ a, (1.3.7)
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where a acts from U to the open set S r
2
,2R of L∞(D) according to

a(y) = a+
∑
j≥1

yjψj, (1.3.8)

and where v is the previously introduced map, now defined over S r
2
,2R. By the chain

rule, we have ∂eju(y) = da(y)v(ψj), hence ∂eju(y) ∈ V is the unique solution of the
variational problem∫

D

a(y)∇∂eju(y)∇w = −
∫
D

ψj∇u(y)∇w, w ∈ V. (1.3.9)

Note that this variational problem can be directly obtained by formal differentiation of
(1.3.1) with respect to y. This reasoning can be repeated in order to prove the existence
of higher order derivatives ∂νu(y) for any ν ∈ F . The variational problem satisfied by
the derivative ∂νu(y) is obtained by deriving “ν times” with respect to y the variational
problem (1.3.1). Using Leibniz formula in multi-dimension and the affine dependence
of a in the parameter y, we find that for ν 6= 0F the derivative ∂νu(y) ∈ V is the unique
solution of the variational problem∫

D

a(y)∇∂νu(y)∇w = −
∑
j:νj 6=0

νj

∫
D

ψj∇∂ν−eju(y)∇w, w ∈ V. (1.3.10)

Let us note that the sum in the right hand side is finite for any ν ∈ F \ {0}. The
previous formula implies that Taylor coefficients tν satisfy recursive formulas. Indeed,
setting y = 0 and dividing by ν!, one obtains the variational problem∫

D

a∇tν∇w = −
∑
j:νj 6=0

∫
D

ψj∇tν−ej∇w, w ∈ V. (1.3.11)

The explicit recursive formulas (1.3.10) and (1.3.11) allows us to obtain a priori es-
timates on the V -norms ‖∂νu(y)‖V which shall provide us with a preliminary under-
standing of the summability of the the Taylor and Legendre coefficients.

1.3.2 Upper estimates of Taylor and Legendre coefficients

The previous recursive formulas can be used in order to bound the partial derivatives
∂νu(y), and subsequently the Taylor and Legendre coefficients. We introduce the se-
quence

b := (bj)j≥1, bj := ‖ψj‖L∞(D). (1.3.12)
Considering the formula (1.3.10) with w = ∂νu(y) and applying the uniform ellipticity
assumption UEA(r, R) and Cauchy Schwartz inequality, we obtain that for any y ∈ U

‖∂νu(y)‖V ≤
∑
j:νj 6=0

νj
bj
r
‖∂ν−eju(y)‖V , ν 6= 0F . (1.3.13)
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Since by (1.3.2), the map ∂0Fu = u is uniformely bounded by ‖f‖V ∗
r

, then an immediate
induction yields

‖∂νu‖V∞ ≤
‖f‖V ∗
r
|ν|! cν , ν ∈ F , (1.3.14)

where we have used the notation

|ν| :=
∑
j:νj 6=0

νj, (1.3.15)

and introduced the sequence c = (cj)j≥1 := (
bj
r

)j≥1. The same justification, based on
the recursive formulas (1.3.11), shows that Taylor coefficients satisfy the following

‖tν‖V ≤
‖f‖V ∗
r̄

|ν|!
ν!

c̄ν , (1.3.16)

where c̄ = (c̄j)j≥1 := (
bj
r̄

)j≥1 with r̄ := minx∈D ā(x). As for the Legendre coefficients,
using Rodrigues formulas Pn(t) = (−1)n

2nn!
dn

dtn
{(1 − t2)n}, we obtain from (1.3.10) by in-

ductive integration by parts in the variables yj that the Legendre coefficients defined
in (1.2.12) satisfy

vν :=
1

ν!

∏
j:νj 6=0

√
2νj + 1

2νj

∫
U

∂νu(y)
∏
j:νj 6=0

(1− y2
j )
νjd%(y) (1.3.17)

Therefore, these coefficients can be bounded according to

‖vν‖V ≤
‖∂νu‖V∞

ν!

∏
j:νj 6=0

Iνj , In :=

√
2n+ 1

2n

1∫
−1

(1− t2)n
dt

2
. (1.3.18)

The sequence (In)n≥1 can be computed explicitly and shown to satisfy In ≤ ( 1√
3
)n, the

inequality being sharp since for n = 1 we have I1 = 1√
3
. We deduce then that

‖vν‖V ≤
‖f‖V ∗
r

|ν|!
ν!

c̃ν , ‖uν‖V = βν‖vν‖V ≤
‖f‖V ∗
r

βν
|ν|!
ν!

c̃ν , (1.3.19)

where we have defined c̃ = (c̃j)j≥1 := (
bj
r
√

3
)j≥1 and the sequence (βν)ν∈F with βν =∏

j≥1

√
2νj + 1.

The bounds (1.3.16) and (1.3.19) have been obtained by cumulating a series of
inequalities, and are therefore expected not to be sharp. As explained further in §1.4,
these bounds are particularly overestimated when the supports of the functions ψj do
not overlap, and in this case better bounds can be obtained by a complex variable
technique.
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We may however produce an example for which the bound (1.3.16) is sharp. In this
example, we assume that the functions a and ψj are constants. We assume for example
that a take the value 1 and denote by −bj < 0 the value of each function ψj. The
uniform ellipticity assumption UEA(r, R) is then equivalent to b := (bj)j≥1 ∈ `1(N)
with r ≤ 1− ‖b‖`1(N) ≤ 1 + ‖b‖`1(N) ≤ R or simply ‖b‖`1(N) ≤ 1− r and the value 2− r
for R. Since the diffusion coefficient is contant over D, the solution map u is simply
given by

u(y) =
u0

1−
∑∞

j=1 bjyj
, y ∈ U. (1.3.20)

Here, u0 := u(0) ∈ V is the unique solution of the Laplace equation

−∆v = f in D, v = 0 on ∂D. (1.3.21)

Since we may write

(1−
∞∑
j=1

bjyj)
−1 =

∑
k≥0

( ∞∑
j=1

bjyj

)k
=
∑
k≥0

∑
|ν|=k

k!

ν!
bνyν =

∑
ν∈F

|ν|!
ν!
bνyν , (1.3.22)

then the Taylor coefficients are given by tν = |ν|!
ν!
bνu0. This shows that in this particular

case, the bound (1.3.16) is sharp up to a multiplicative constant.

1.3.3 Summability of upper estimates

The summability properties of the sequences (‖tν‖V )ν∈F and (‖vν‖V )ν∈F can be in-
vestigated using the upper bounds in (1.3.16) and (1.3.19). In both cases, the analysis
amounts to the study of a sequence of the form ( |ν|!

ν!
αν)ν∈F with α a sequence of positive

real number. We observe that α = (αj)j≥1 is a subsequence of ( |ν|!
ν!
αν)ν∈F associated

with the indices ej, hence if α is not `p(N)-summable then ( |ν|!
ν!
αν)ν∈F is not `p(F)-

summable. It is then of interest to investigate what condition one should assume on α
beside the `p-summability that implies the `p-summability of ( |ν|!

ν!
αν)ν∈F with the same

p > 0. This was done in [34] for 0 < p < 1. We give the result and its proof in Theorem
1.3.2 below. We begin by giving the intermediate result [34, Lemma 7.1] formulated
with 0 < p ≤ 1 in [34] but which we remark is valid also for any p > 0, as shown in the
proof.
Theorem 1.3.2

Let α := (αj)j≥1 ∈ [0,+∞[N. For any p > 0, the sequence (αν)ν∈F belongs to `p(F)
if and only if α ∈ `p(N) and ‖α‖`∞(N) < 1. Moreover

‖(αν)‖`p(F) ≤ exp
(
κp
‖α‖p`p(N)

p

)
, κp :=

1

1− ‖α‖p`∞(N)

. (1.3.23)
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Proof : It is sufficient to establish the result for p = 1, since one can consider αp = (αpj )j≥1

in the case p 6= 1. We assume that (αν)ν∈F ∈ `1(F), then α which can be seen as
(αej )j≥1 belongs to `1(N). Moreover, from the identity∑

ν∈F
αν =

∏
j≥1

∑
n≥0

αnj , (1.3.24)

it is necessary that αj < 1 for every j ≥ 1. This combined with limj→∞ αj = 0
implies that necessarily ‖α‖`∞(N) < 1 and settles the “only if” implication. For the “if”
implication, we have by (1.3.24)∑

ν∈F
αν =

∏
j≥1

(
1 +

αj
1− αj

)
≤
∏
j≥1

exp
( αj

1− αj

)
≤
∏
j≥1

exp(κ1αj), (1.3.25)

where we have applied the inequality 1 + t ≤ et, valid for any t ∈ R, with the real
numbers αj

1−αj . We thus find that the sequence (αν)ν∈F belongs to `1(F) with its
`1-norm dominated by exp(κ1‖α‖`1(N)). The bound (1.3.23) for p 6= 1 is obtained by
considering (αpj )j≥1 which belongs to `1(N).

The condition ‖α‖`∞(N) < 1 in the previous theorem yields a decay of the sequence
(αν)ν∈F which allows us to obtain the summability result. It is of interest to show that
this summability is not affected by the presence of certain type of algebraic factors, as
expressed by the following theorem, which is not given in [34]. We introduce a notation
for polynomial growth in multi-dimension by: for C > 0 and θ ≥ 0 real numbers, we
define the sequence (Cν(θ))ν∈F by

C0F (θ) = 1 and Cν(θ) :=
∏
j:νj 6=0

C νθj for ν ∈ F − {0}. (1.3.26)

Theorem 1.3.3

Let α := (αj)j≥1 ∈ [0,+∞[N, C > 0 and θ ≥ 0. For any p > 0, the sequence(
Cν(θ)α

ν
)
ν∈F

belongs to `p(F) if and only if α ∈ `p(N) and ‖α‖`∞(N) < 1. In
addition

‖(Cν(θ)αν)‖`p(F) ≤ exp
(
m!Cpκm+1

p

‖α‖p`p(N)

p

)
, (1.3.27)

with κp as in Theorem 1.3.2 and m = θp if θp ∈ N or m = dθpe otherwise.

Proof : Up to work with αp, Cp and pθ, it suffices to prove the theorem for p = 1. If the
sequence (Cν(θ)αν)ν∈F belongs to `1(F), then the subsequence Cα = (Cej (θ)α

ej )j≥1

is in `1(N) and so is α. In addition, by the identity∑
ν∈F

Cν(θ)αν =
∏
j≥1

(
1 +

∑
n≥1

Cnθαnj

)
,
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necessarily αj < 1 for any j ≥ 1. This combined with αj → 0 completes the “only if”
implication. In order to prove the “if” implication, we let m = θ if θ ∈ N and m = dθe
otherwise, so that nθ ≤ nm ≤ (n−1+m)!

(n−1)! for any n ≥ 1. We have then for t ∈]0, 1[

∑
n≥1

nθtn ≤
∑
n≥1

(n− 1 +m)!

(n− 1)!
tn = t

(∑
n≥0

tn+m
)(m)

= t
( tm

1− t

)(m)
=

m! t

(1− t)m
.

Therefore∑
ν∈F

Cν(θ)αν ≤
∏
j≥1

(
1+C

m!αj
(1− αj)m+1

)
≤
∏
j≥1

exp
(
C

m!αj
(1− αj)m+1

)
≤
∏
j≥1

exp(m!Cκm+1
1 αj),

which completes the proof. The bound (1.3.3) is obtained for p 6= 0 using αp, Cp and
pθ.

We now turn to the `p summability of ( |ν|!
ν!
αν)ν∈F which, in view of |ν|!

ν!
≥ 1 for any ν,

will necessarily demands a stronger condition than ‖α‖`∞(N) < 1. The following result
is given in [34].
Theorem 1.3.4

Let α := (αj)j≥1 ∈ [0,+∞[N. For any 0 < p < 1, the sequence
(
|ν|!
ν!
αν
)
ν∈F

belongs
to `p(F) if and only if α ∈ `p(N) and

∑
j≥1 αj < 1.

Proof : We assume that
(
|ν|!
ν! α

ν
)
ν∈F
∈ `p(F) ⊂ `1(F), then α which is the subsequence

associated with the indices ej is in `p(N). Moreover, the quantity

∑
ν∈F

|ν|!
ν!
αν =

∞∑
k=0

(∑
j≥1

αj

)k
, (1.3.28)

is finite. Therefore, necessarily
∑

j≥1 αj < 1 and we have proved the “only if” implica-
tion. The “if” implication is not straightforward, due to the fact that no identity similar
to (1.3.28) is available for

∑
ν∈F ( |ν|!ν! α

ν)p with p 6= 1. We decompose the sequence α
into the product αj = γjδj with γ and δ to be precised later. By Holder inequality, we
have ∑

ν∈F

( |ν|!
ν!
αν
)p

=
∑
ν∈F

( |ν|!
ν!
γν
)p

(δν)p ≤
∥∥∥( |ν|!

ν!
γν
)∥∥∥p

`1(F)
‖(δν)‖p

`p′ (F)
,

where p′ = p
1−p . In view of Theorem 1.3.2 and the first part of the proof, the right side

in the above inequality is finite whenever γ ∈ `1(N) with ‖γ‖`1(N) < 1 and δ ∈ `p′(N)
with ‖δ‖`∞(N) < 1. We now construct a factorization of α into two sequences γ and δ
that satisfy these properties. For η > 0 and J ≥ 1 to be specified later, we define δ by

δj =
1

1 + η
, for 1 ≤ j ≤ J − 1, δj = α1−p

j , for j ≥ J.
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We have δ ∈ `p′(N) and ‖δ‖`∞(N) < 1 because α ∈ `p(N) and 0 ≤ αj < 1 for any j ≥ 1.
The sequence γ is given by

γj = (1 + η)αj , for 1 ≤ j ≤ J − 1, δj = αpj , for j ≥ J.

The sequence γ is in `1(N) because α ∈ `p(N). Moreover, we have

‖γ‖`1(N) = (1 + η)

J−1∑
j≥1

αj +
∑
j≥J+1

αpj .

Since ‖α‖`1(N) < 1, then taking η such that 1 + η < 1
‖α‖`1(N)

and J large enough, we

get ‖γ‖`1(N) < 1, which concludes the proof.

Similar to Theorem 1.3.3, the summability is not affected by the presence of algebraic
factors of the type Cν(θ).
Theorem 1.3.5

Let α := (αj)j≥1 ∈ [0,+∞[N, C ≥ 1 and θ ≥ 0. For 0 < p < 1, the sequence(
Cν(θ)

|ν|!
ν!
αν
)
ν∈F

belongs to `p(F) if and only if α ∈ `p(N) and
∑

j≥1 αj < 1.

Proof : It is similar to the proof of the previous theorem. The “only if” implication
follows from the observation |ν|!ν! α

ν ≤ Cν(θ) |ν|!ν! α
ν because we assumed C ≥ 1. For the

“if” implication, we use the decomposition Cν(θ) |ν|!ν! α
ν = ( |ν|!ν! γ

ν)(Cν(θ)δν), then use
the same choice for γ and δ and apply Theorem 1.3.3.

In light of the previous Theorems 1.3.4 and 1.3.5, we are now able to study the
`p-summability of the estimates in (1.3.16) and (1.3.19). If those estimates belong to
`p(F) for some 0 < p < 1, then necessarily the sequences c̄ and c̃ belong to `p(N) with
the same p. This obviously holds if and only if (‖ψj‖L∞)j≥1 belongs to `p(N). In view
of the multiplicative constants relating the sequences c̄, c̃ and b, we thus obtain the
following result.
Theorem 1.3.6

Under the uniform ellipticity assumption and if the sequence b = (‖ψj‖L∞)j≥1 be-
longs to `p(N) for some 0 < p < 1, then

• If ‖b‖`1(N) < r̄ = minx∈D ā(x), the sequence (‖tν‖V )ν∈F belongs to `p(F).

• If ‖b‖`1(N) <
√

3r, the sequences (‖vν‖V )ν∈F and (‖uν‖V )ν∈F belongs to `p(F).

For the sequences (‖tν‖V )ν∈F and (‖vν‖V )ν∈F , we have used directly the estimates
(1.3.16) and (1.3.19) and Theorem 1.3.4. Concerning the sequence (‖uν‖V )ν∈F , we have
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used Theorem 1.3.5, taking into account the algebraic coefficients βν in (1.3.19). This
last result was not given in [34].

Note that we have the implication

‖b‖`1(N) < r̄ ⇒ UEA(r, R) with r := r̄−‖b‖`1(N), R = ‖a‖L∞(R) +‖b‖`1(N). (1.3.29)

In the particular case where the functions a and ψj are constants, ‖b‖`1 < r̄ = a is
exactly equivalent to UEA(r, R) with such values of r and R. However, in the more
general case of non-constant a and ψj, the condition ‖b‖`1 < r̄ could be much stronger
than UEA(r, R). This is particularly clear when the supports of ψj do not overlap too
much, since in that case the maximal value of

∑
j≥1 |ψj(x)| for x ∈ D may be much

smaller than ‖b‖`1 . In that sense, restrictions on the value of ‖b‖`1 such as in the above
theorem appear artifical. In the next section, we discuss a different approach for the
estimation of Taylor and Legendre coefficients, which leads to `p summability results,
under the sole assumptions that b = (‖ψj‖L∞)j≥1 belongs to `p(N) and that UEA(r, R)
holds, without such artificial restrictions.

1.4 Holomorphy of the solution map on the complex
variable

1.4.1 Holomorphy of the solution map

We describe shortly the process of extending the solution map u of the parametric
problem (1.1.1) to certain regions of CN. The steps of this process are more detailed in
[33]. First, we extend the parametrization of the diffusion coefficient a according to

a(z) := a+
∑
j≥1

zjψj, z ∈ CN. (1.4.1)

We have that for every z ∈ CN such that supj≥1 |zj| < ∞, the coefficient a(z) is well
defined and belongs to L∞(D) the space of complex valued and bounded functions over
D. Indeed, the uniform ellipticity assumption UEA(r, R) is equivalent to

0 < r ≤ a(x)−
∑
j≥1

|ψj(x)| ≤ a(x) +
∑
j≥1

|ψj(x)| ≤ R <∞, x ∈ D, (1.4.2)

therefore, for z as above, we have ‖a(z)‖L∞(D) ≤ Rmax{1, supj≥1 |zj|)}. We introduce
the notation

U := ⊗j≥1{|zj| ≤ 1}, (1.4.3)

for the unit poly-disc in CN. In view of the previous discussion, the diffusion coefficient
a is well defined on U . Moreover, using the uniform ellipticity assumption UEA(r, R)
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recalled in the form (1.4.2), we have

UEAC(r, R) : 0 < r ≤ <(a(x, z)) ≤ |a(x, z)| ≤ R <∞, z ∈ U , x ∈ D.
(1.4.4)

By the complex version of Lax-Milgram theory, for any z ∈ U , there exists a unique
solution u(z) of the elliptic problem (1.1.1) with parameter z. This function u(z) belongs
to V the complex version of the sobolev space H1

0 (D) and is the unique solution of the
variational problem ∫

D

a(z)∇u(z)∇w =

∫
D

fw, w ∈ V. (1.4.5)

Moreover, as with the real variable, the uniform ellipticity inequality UEAC(r, R) in
(1.4.4) implies that the solution map u : z ∈ U 7→ u(z) is uniformly bounded in V with

sup
z∈U
‖u(z)‖V ≤

‖f‖V ∗
r

. (1.4.6)

The map u : z ∈ U 7→ u(z) is an extension of the map u : y ∈ U 7→ u(y). It is
fundamental to check that this extension is holomorphic with respect to every variable
zj. In other words, u is continuously C-differentiable with respect to every variable zj.
The linearity of the parametric variational problem (1.4.5) and the affine dependence of
the complex diffusion coefficient a in z suggests using the same perturbation arguments
of the previous section 1.3 used for the real variable.

Given 0 < r < R < ∞, we denote this time by Sr,R the open subset of functions
in L∞(D) that satisfies the uniform ellipticity assumption UEAC(r, R) in (1.4.4) with
strict inequalities. By Lax-Milgram theory, for every a ∈ Sr,R, there exists a unique
solution v(a) ∈ V of the variational problem∫

D

a∇v(a)∇w =

∫
D

fw, w ∈ V. (1.4.7)

In addition, the defined map v : Sr,R 7→ V is uniformly bounded with

sup
a∈Sr,R

‖v(a)‖V ≤
‖f‖V ∗
r

. (1.4.8)

As for the real variable case, the map v is Frechet C-diffentiable. We have
Lemma 1.4.1

For any function a in Sr,R, the map v if Frechet C-differentiable at a and its Frechet
derivative dav is defined as follows: for any h ∈ L∞(D) the function dav(h) ∈ V is
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the unique solution ṽ = ṽ(a, h) of the variational problem∫
D

a∇ṽ∇w = −
∫
D

h∇v(a)∇w, w ∈ V (1.4.9)

The proof of this lemma is exactly similar to that of Lemma 1.4.1. We can now view
u : U 7→ V as the composition u = v ◦ a where a acts from U to the open set S r

2
,2R

as in (1.4.1) and where v is the previously introduced map, now defined over S r
2
,2R. In

particular, the holomorhy of a on z combined with the previous lemma implies that u
admits partial derivatives of first order ∂eju(z) at any z ∈ U . By the chain rule, we
have ∂eju(z) = da(z)v(ψj), hence ∂eju(z) ∈ V is the unique solution of the variational
problem ∫

D

a(z)∇∂eju(z)∇w = −
∫
D

ψj∇u(z)∇w, w ∈ V. (1.4.10)

The holomorphy of the solution map is then established.

In order to derive sharp estimates on Taylor and Legendre coefficients, the authors
in [33] used the extension of the map u by holomorphy to neighbourhood of poly-discs
wider than U . We discuss this approach for Taylor coefficients and postpone the same
approach for Legendre coefficients to Section 1.6 where the more general case of Jacobi
polynomials is presented.

Definition 1.4.2

Given 0 < δ < r, we say that a sequence ρ := (ρj)j≥1 is δ-admissible if and only if
ρj ≥ 1 for any j ≥ 1 and∑

j≥1

(ρj − 1)|ψj(x)| ≤ r − δ, x ∈ D. (1.4.11)

We note that there exist δ-admissible sequences ρ that satisfie ρj > 1 for every
j ≥ 0. Indeed, in view of (1.4.2), the sequence ρ with ρj := 1 + r−δ

2j
1
R

for any j ≥ 1 is
δ-admissible. We observe that if ρ is δ-admissible then the previous inequality combined
with (1.4.2) implies

0 < δ ≤ a(x)−
∑
j≥1

ρj|ψj(x)| ≤ a(x) +
∑
j≥1

ρj|ψj(x)| ≤ R + r − δ <∞, x ∈ D.

(1.4.12)
This is equivalent to say that a satisfies the uniform ellipticity assumptionUEAC(δ, R+
r − δ) over the domain

Uρ := ⊗j≥1{|zj| ≤ ρj}. (1.4.13)
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Using exactly the same arguments as above, it can be proved that the map u can be
extended by holomorphy to the domain Uρ with for any z ∈ Uρ, u(z) is the unique
solution of (1.4.5). Similarly to (1.4.6), the map u stays uniformly bounded in the
domain Uρ with

sup
z∈Uρ
‖u(z)‖V ≤

‖f‖V ∗
δ

. (1.4.14)

The above discussion shows that, under only the uniform ellipticity assumption
(1.4.2), it is possible to extend the map u by holomorphy to wider polydiscs Uρ than
the unit polydisc U , with the possibility that Uρj contains strictly {|zj| ≤ 1} for any
j ≥ 1. The same method can be carried again, in order to prove that u can be extended
beyond the domain Uρ. For instance, given δ ∈]0, r[ and ρ a δ-admissible sequence, it
is easily checked that the sequence ρ′, defined by ρ′j := ρj + δ/2

2j
1
R
, is { δ

2
}-admissible,

so that the map u can be extended by holomorphy to the domain Uρ′ . We note that
individually, the interior of every disk Uρ′j is a neighbourhood of the disk Uρj .

Remark 1.4.3

The holormorphy properties of the map z 7→ u(z) allows us to justify the fact that
the Taylor series

∑
ν∈F tνz

ν converges uniformly towards u over the polydisc U ,
under the assumption that b ∈ `1(N). Indeed, on the hand, for any J ≥ 0, the map

(z1, . . . , zJ) 7→ u(z1, . . . , zJ , 0, 0, . . .), (1.4.15)

is holomorphic in a neighbourhood of the finite dimensional polydisc ⊗Jj=1{|zj| ≤ 1},
which implies the uniform convergence of its Taylor series. On the other hand, using
the property (1.3.6), we find that

sup
z∈U
‖u(z)− u(z1, . . . , zJ , 0, 0, . . .)‖V ≤

‖f‖V ∗
r2

∑
j>J

bj, (1.4.16)

which tends to 0 as J →∞. This shows that the Taylor series converges according
to certain summability processes which progressively activate the variables zj as j
grows. However, the results on `p summability of the sequence (‖tν‖V )ν∈F for p ≤ 1
imply that the series converges unconditionally, see [33] for more details on this
point.

1.4.2 Upper bounds and summability of the Taylor coefficients

We let δ be in ]0, r[, ρ a δ-admissible sequence and ρ′ a { δ
2
}-admissible such that the

interior of every Uρ′j is a neighbourhood of Uρj . We consider ν 6= 0 a multi-index in F
and assume without loss of generality that {1, . . . , J} is the support of ν, that is νj 6= 0



78 1.4. Holomorphy of the solution map on the complex variable

for j = 1, . . . , J and νj = 0 for j ≥ J + 1. The Taylor coefficient tν defined in (1.2.3) is
equal to the Taylor coefficient associated with the index (ν1, . . . , νJ) ∈ NJ of the map
uJ defined over [−1, 1]J by uJ : (y1, . . . , yJ) 7→ u(y1, . . . , yJ , 0, 0, . . .). This last map can
be extended by holomorphy to the poly-disk ⊗Jj=1Uρ′j . Since the interior of every Uρ′j is
a neighbourhood of Uρj , then by successive application of Cauchy integral formula on
the variables z1, . . . , zJ , we obtain

tν = (2iπ)−J
∫

|z1|=ρ1

. . .

∫
|zJ |=ρJ

u(z1, . . . , zJ , 0, 0, . . .)

zν1
1 . . . zνJJ

dz1 . . . dzJ . (1.4.17)

Using the uniform bound (1.4.14), the previous bound implies ‖tν‖V ≤ ‖f‖V ∗
δ

∏J
j=1 ρ

−νj
j .

We introduce the notation ρ−ν :=
∏

j:νj 6=0 ρ
−νj
j for ν ∈ F − {0} and ρ−0F = 1. The

above discussion shows that for any δ ∈]0, r[ and any δ-admissible sequence ρ, one has

‖tν‖V ≤
‖f‖V ∗
δ

ρ−ν , ν ∈ F , (1.4.18)

The bound is valid for 0F because ‖t0F‖V = ‖u(0)‖V ≤ ‖f‖V ∗
r

. We thus have established
the following result.
Theorem 1.4.4

Under the uniform ellipticity assumption UEA(r, R), for any ν ∈ F

‖tν‖V ≤ hν := inf
0<δ<r

{‖f‖V ∗
δ

inf{ρ−ν : ρ is δ-admissible}
}

(1.4.19)

It is not obvious if the previous estimates on Taylor coefficients are better than the
estimates in (1.3.16). In order to draw a rough comparison, let us define the sequence
c := (cj)j≥1 with cj =

2‖ψj‖L∞(D)

r
. Given an index ν 6= 0, it is easily checked that the

sequence ρ = ρ(ν) defined by ρj = 1 + 1
cj

νj
|ν| is {r/2}-admissible, therefore

‖tν‖V ≤
‖f‖V ∗
r/2

ρ−ν ≤ 2
‖f‖V ∗
r

cν
|ν||ν|

νν
≤ 2
‖f‖V ∗
r

(ec)ν
|ν|!
ν!

(1.4.20)

where we have used the Stirling type inequalities n! ≤ nn ≤ enn!. We have then
retrieved from (1.4.19) an estimate of the type obtained by the real variable techniques
in (1.3.16). We remark that this estimate does not sharpen the estimate in (1.3.16),
the quantity 1/r being replaced with the larger quantity 2e/r.

However, the flexibility in the choice of the sequence ρ allows us to prove better
summability result on the sequence (hν)ν∈F . For instance, if the function ψj have
mutually disjoint supports then ρ is δ-admissible if and only if (ρj − 1)bj ≤ r − δ for
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any j ≥ 0. Therefore, for any ν 6= 0, we find in this case that

hν = inf
0<δ<r

{‖f‖V ∗
δ

∏
j≥0

(
1 +

r − δ
bj

)−νj}
≤ ‖f‖V

∗

r/2
cν , c := (

bj
bj + r

2

)j≥1. (1.4.21)

If the sequence b belongs to `p(N), then c also belongs to `p(N). Moreover ‖c‖`∞(N) < 1,
then according to Theorem 1.3.2, the sequence (cν)ν∈F belongs to `p(F). Therefore, in
this case the sequences (hν)ν∈F and (‖tν‖V )ν∈F belong to `p(F).

One main result established in [33] shows that a similar result holds in the general
case.
Theorem 1.4.5

Under the uniform ellipticity assumptionUEA(r, R) and if the sequence b = (‖ψj‖L∞)j≥1

belongs to `p(N) for some 0 < p < 1, then the sequences (hν)ν∈F and (‖tν‖V )ν∈F
belong to `p(F).

Proof : Let J ≥ 1 be an integer to be fixed later. We write N = E ∪ F with E := {1 ≤
j ≤ J} and F := {j ≥ J + 1} and introduce for ν = (νj)j≥1 ∈ F the notations
νE := (ν1, . . . , νJ) ∈ NJ and νF := (νJ+1, νJ+2, . . .) ∈ F . Let ν ∈ F − {0} fixed. We
introduce the sequence ρ(ν) := (ρj)j≥1 that depends on ν according to

ρj := κ for j ∈ E and ρj := κ+
r/4

|bj |
νj

|νF |+ 1
for j ∈ F,

where κ = 1 + r/4
‖(bj)‖`1

. We have

∑
j≥1

(ρj − 1)|bj | ≤ (κ− 1)
∑
j≥1

bj +
r

4

∑
j>J

νj
|νF |+ 1

=
r

4
+
r

4

|νF |
|νF |+ 1

≤ r

2
= r − r

2
.

The sequence ρ(ν) is thus {r/2}-admissible, hence hν ≤ 2‖f‖V ∗r ρ−ν . It is then sufficient
to prove that the sequence (qν := ρ(ν)−ν)ν∈F with q0F = 1 belongs to `p(F). We have

qν = qE(ν)qF (ν), qE(ν) :=
∏

j≤J :νj 6=0

κ−νj , qF (ν) :=
∏

j>J :νj 6=0

ρ
−νj
j .

We use the convention qE(0) = qF (0) = 1. We denote FE the multi-indices in F
supported in E and FF the multi-indices in F supported in F , with convention that
0F belongs to both sets. The separable form of the qν above allows us to write∑

ν∈F
qpν = AEAF where AE :=

∑
ν∈FE

qE(ν)p and AF :=
∑
ν∈FF

qF (ν)p.

On the one hand, in view of κ > 1, we have

AE =
∑
ν∈NJ

∏
1≤j≤J

κ−pνj =
( ∞∑
n=0

κ−pn
)J

< +∞,



80 1.4. Holomorphy of the solution map on the complex variable

On the other hand, introducing the sequence d := (dj)j≥1 defined by dj :=
bj+J
r/4 and

for ν ∈ FF denoting µ := νF = (νJ+1, νJ+2, . . .) ∈ F , we may write

qF (ν) ≤
∏

j≥1:µj 6=0

(1 + |µ|
µj

dj

)µj
=

(1 + |µ|)|µ|

µµ
dµ.

Using the Stirling type inequalities n! ≤ nn ≤ (1 + n)n ≤ n!en+1 valid for any n ≥ 1,
it follows that qF (ν) ≤ e |µ|!µ! (ed)µ, which is also valid for µ = νF = 0F , hence

AF ≤ ep
∑
µ∈F

( |µ|!
µ!

(ed)µ
)p

Since b ∈ `1, choosing J large enough, we may assume that

‖ed‖`1(N) =
4e

r

∑
j>J

|bj | < 1.

By Theorem 1.3.4 we have AF <∞, which concludes the proof.

The estimates (hν)ν∈F that we obtained using complex analysis allows us to obtain
the `p summability of the Taylor coefficients under the only condition that UEA(r, R)
holds and that the sequence b = (‖ψj‖L∞)j≥1 belongs to `p(N) with 0 < p < 1, with
no restrictions on the `1 norm of b. The approximation of the map u by best n-term
Taylor series discussed in section 1.2 then holds. One way to construct good n-term
approximations consists in considering the sequence (hν)ν∈F instead of (‖tν‖V )ν∈F . For
instance, if (Λe

n)n≥1 is any sequence of nested set of indices corresponding each to the
n largest hν , then∥∥∥u−∑

ν∈Λen

tνy
ν
∥∥∥
V∞
≤
∑
ν 6∈Λen

‖tν‖V ≤
∑
ν 6∈Λen

hν ≤ ‖(hν)‖`p(F)(n+ 1)−s, s =
1

p
− 1.

(1.4.22)
This yields approximation to u with the same rate (n + 1)−s as with best n-term
Taylor series in (1.2.14), yet with the constant ‖(hν)‖`p(F) which is in view of (1.4.19)
larger than ‖(‖tν‖V )‖`p(F). One advantage in considering best n-term approximations
associated with (hν)ν∈F is that, from the definition (1.4.19), this sequence (hν)ν∈F is
monotone decreasing:

µ ≤ ν =⇒ hν ≤ hµ, (1.4.23)

where the order relation ≤ is defined over indices by ν ≤ µ if and only if νj ≤ µj for any
j ≥ 1. This is easily checked since the admissible sequences ρ considered in (1.4.19) are
picked in [1,+∞[N. In view of this observation, in addition to their nestedness, we may
impose constraints on the shape of the index sets Λe

n of the following form: if ν ∈ Λe
n,

then all the indices µ ≤ ν belong to Λe
n. Sets with such properties are called “lower

set".
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1.5 Lower sets

Lower sets will play a central role throughout all the chapters of this manuscript. The
following section is an introduction to this type of index set. We give some of the
properties needed for this chapter. Many other interesting properties of lower sets will
be progressively given in subsequent chapters.

1.5.1 Definitions and properties

We define on F the partial order ≤ by ν ≤ µ if and only if νj ≤ µj for any j ≥ 1. The
corresponding strict order < is then defined by ν < µ if and only if ν ≤ µ and νj < µj
for at least one value of j.
Definition 1.5.1

A nonempty set Λ ⊂ F is called lower set if and only if

ν ∈ Λ and µ ≤ ν ⇒ µ ∈ Λ, (1.5.1)

or equivalently, if ν ∈ Λ then ν − ej ∈ Λ for any j ≥ 1 such that νj 6= 0.

Lower sets were introduced in a variety of contexts, mainly for the interesting prop-
erties of the corresponding polynomial spaces PΛ := span{y 7→ yν : ν ∈ Λ}. For
instance, in the context of polynomial interpolation, such spaces were introduced in the
book [58] in the special case of dimension d = 2 and were referred to by “polynômes
pleins”. They were also introduced in the theory of “least polynomial space” for in-
terpolation of functions on general multivariate point sets, see in particular [36]. The
corresponding spaces PΛ were referred to as “order closed polynomials”. Among other
appellations are: down set, decreasing set, initial segment and downward closed.

Considering polynomial spaces PΛ associated to lower sets is very natural. In par-
ticular, this allows to replace the monomials yν in the definition of such spaces by any
other tensorized basis Qν(y) =

∏
j≥1 Qνj(yj) where Q0 ≡ 1 and Qk has degree exactly

equal to k for every k ≥ 1 (for examples Legendre polynomials).

In the present context of parametric PDEs, lower sets were introduced in [22] in
connection with computation of quasi-optimal best n-term approximation of the map
u by Taylor series. They were referred to as “monotone sets”. We will explain in details
this connection in this chapter and Chapter 3. We first start by giving some useful
properties of lower sets.

It is obvious that the smallest lower set in F is {0F} and that any nonempty lower
set contains the null index 0F . Intersections and unions of lower sets are also lower sets.
Particular examples of lower sets are the “rectangular blocks” Bν defined by

Bν := {µ ∈ F : µ ≤ ν}, ν ∈ F . (1.5.2)
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Such lower sets are finite and have cardinality #(Bν) :=
∏

j≥1(νj + 1). We say that an
index ν is maximal in a lower set Λ if and only if there is no µ ∈ Λ satisfying ν < µ.
We observe that any finite lower set has at least one maximal element. Indeed, it is
easily checked that any index ν ∈ Λ with the largest `1-norm |ν| =

∑
i≥1 νi is maximal

in Λ. The only maximal element of a block Bν is ν. In general, any finite lower set Λ
in F is completely determined by its maximal elements according to

Λ =
⋃
ν∈Λ

ν maximal

Bν . (1.5.3)

We observe that given Λ a lower set and ν ∈ Λ, we have that Λ \ {ν} is a lower set if
and only if ν is maximal in Λ. This remark turn out to be useful in certain algorithmic
procedures.

We now turn to the connection between lower sets and sequences indexed in F . First,
suppose we have a sequence (hν)ν∈F of positive real number that is strictly monotone
decreasing, i.e. hν < hµ for any ν, µ ∈ F such that µ < ν. The sets (Λn)n≥1 of indices
corresponding each to the n largest values of hν are unique, lower sets and nested.
Indeed, there exists a unique decreasing rearrangement (hνk)j≥1 of (hν)ν∈F , hence the
sets Λn = {ν1, . . . , νn} are unique and nested. Also for k ≥ 2 and µ < νk, we have
hνk < hµ, so that necessarily µ = νj for some j = 1, . . . , k − 1, proving the sets are
lower sets.

The previous result is not true when (hν)ν∈F is only monotone decreasing. Many
realizations of (Λn)n≥1 may exist and may not be necessarily lower sets. However, there
exists at least one realization (Λn)n≥1 consisting in nested lower sets. In view of the
structure of this realization, the index ν such that Λn+1 = Λn∪{ν} satisfies ν−ej ∈ Λn

for any j ≥ 1 with νj 6= 0. This hints how the desired realisation can then be obtained.
Algorithm 1.5.2

• Set Λ1 := {µ1 := 0F}. For k ≥ 1 do;

• Λk has been defined, computeN (Λk) = {ν 6∈ Λk : ν−ej ∈ Λk for any j s.t νj 6=
0};

• Get µk = argmaxµ∈N (Λk)(eµ) and set Λk+1 = Λk ∪ {µk};

The sets of adjacent neighbours N (Λk) are of infinite cardinalities, however the
argmax problems always have a solution. Indeed, the sets {hν : ν ∈ N (Λk)} are
countable and bounded from above by h0F . We need to verify that every Λk is lower
set and corresponds to the largest k value of the sequence (hν)ν∈F . The first claim is
true by construction. Now, given that a set Λk has been constructed, we let µ 6∈ Λk. It
is easily checked that N (Λk) ∩ Bµ = N (Λk ∩ Bµ), hence the intersection is not empty
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and we can pick ν ∈ N (Λk) such that ν ≤ µ. From the definition of µk, we have
hµ ≤ hν ≤ hµk . This shows that (hµk)k≥1 is a decreasing arrangement of (hν)ν∈F and
affirms the claim.

In the rest of this manuscript, we refer to the following definition.
Definition 1.5.3

Let (hν)ν∈F be a monotone decreasing sequence of positive numbers. We call a
lower realization associated with (hν)ν∈F any sequence (Λn)n≥1 of nested lower sets
corresponding each to the n largest values of hν .

The notion of lower realization is particularly useful in the best n-term approxi-
mation by lower sets. We explain here this type of approximation. Given a sequence
c := (cν)ν∈F , we call the monotone envelope of the sequence c, the sequence c := (cν)ν∈F
defined by

cν = sup
ν≤µ
|cµ|. (1.5.4)

The sequence c is the smallest monotone decreasing sequence bounding element-wise
the sequence (|cν |)ν∈F . For p > 0, we introduce the space `pm(F) of sequence indexed
in F and defined by

(cν)ν∈F ∈ `pm(F) if and only if (cν)ν∈F ∈ `p(F), (1.5.5)

equipped with the quasi-norm

‖c‖`pm(F) := ‖c‖`p(F). (1.5.6)

We note that if the sequence c = (cν)ν∈F is monotone decreasing, then it coincides with
its monotone envelope, in which case it suffices to have c ∈ `p(F) in order to assert
that c ∈ `pm(F). We note also that if c and c′ are two sequence such that |cν | ≤ |c′ν | for
any ν ∈ F , then c′ ∈ `pm(F) implies c ∈ `pm(F).

The following lemma is the counterpart of Lemma 1.2.1 for sequences in the spaces
`pm(F).
Lemma 1.5.4

Let p > 0 and c := (cν)ν∈F a sequence in `pm(F). If (Λn)n≥1 is any lower realization
associated with the monotone enveloppe c, then for any q > p(∑

ν /∈Λn

|cν |q
)1/q

≤
(∑
ν /∈Λn

|cν |q
)1/q

≤ ‖(cν)‖`pm(F)(n+ 1)−sp,q , sp,q :=
1

p
− 1

q
(1.5.7)

For sequences that are in `pm(F) which is stronger than being in `p(F), it is therefore
possible to obtain the same convergence rate as with best n-term approximations in
(1.2.13) with the sets Λn being lower sets, however with a larger constant ‖(cν)‖`pm(F).
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1.5.2 Sparse Taylor approximations in lower sets

We now return to the approximation of the solution map u by Taylor series associated
with lower sets. The sequence (hν)ν∈F of estimates on Taylor coefficients given in
(1.4.19) is monotone decreasing and `p-summable under the assumptions of Theorem
1.4.5, therefore we have the following
Theorem 1.5.5

Under the uniform ellipticity assumption and if the sequence b := (‖ψj‖L∞)j≥1

belongs to `p(N) for some 0 < p < 1, then the sequences (hν)ν∈F and (‖tν‖V )ν∈F
belong to `pm(F).

In view of this theorem and Lemma 1.5.4, there exists a sequence (ΛT ∗
n )n≥1 of nested

lower sets with #(ΛT ∗
n ) = n and∥∥∥u− ∑

ν∈ΛT
∗

n

tνy
ν
∥∥∥
V∞
≤
∑
ν 6∈ΛT

∗
n

‖tν‖V ≤ ‖(‖tν‖V )‖`pm(F)(n+ 1)−s, s :=
1

p
− 1. (1.5.8)

Lower sets for approximation of the map u by Taylor series were introduced in [22]
for practical reasons. Indeed, from the recursive formulas (1.3.11), we have that the
Taylor coefficients can be computed using the variational problems∫

D

a∇tν∇w = −
∑
j:νj 6=0

∫
D

ψj∇tν−ej∇w, w ∈ V. (1.5.9)

In order to compute the coefficient tν , it is then necessary to know all the coefficient
tν−ej for j the actives coordinates of ν which justifies the use of n-term approximations
based on nested lower sets.

We should note that in practice the Taylor coefficients are not known in advance,
therefore the lower sets ΛT ∗

n are not known as well. They are of mere theoretical for
benchmarking interest in our analysis. Practical construction using adaptive algorithms
are presented in Chapter 3.

One way to construct good n-term approximations based on lower sets is thus by
using Algorithm 1.5.2 that build a lower realization (Λh

n)n≥1 associated with (hν)ν∈F
which is monotone decreasing. However the sequence (hν)ν∈F is given by a double
minimization problem and is unlikely to have an explicit closed formula. Even in the
simple case of disjoints supports, the sequence (hν)ν∈F given in (1.4.21) does not have
an explicit formula.

In order to build good computable lower sets, one should rather rely on computable
upper bound of the sequence (hν)ν∈F . For example, the sequence (qν = (ρ(ν)−ν))ν∈F
with the particular {r/2}-admissible sequences ρ(ν) introduced in the proof of Theorem
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1.4.5 is explicit and satisfies

hν ≤ 2
‖f‖V ∗
r

qν , ν ∈ F . (1.5.10)

The sequence (qν)ν∈F belongs to `p(F). However there is no guarantee that this se-
quence is monotone decreasing. As discussed further in the previous section and in
Chapter 3, a finer tuning of the sequence ρ(ν) can yield a monotone decreasing se-
quence (qν)ν∈F .

1.6 Approximation of the solution map with Jacobi
polynomials

The solution map u is uniformly bounded over U , therefore it belongs to V∞ ⊂ V2.
This implies that the sum of the Legendre series in (1.2.12) converges unconditionally
in V2 towards u. Moreover, under the assumptions of Theroem 1.3.6, the sequences
(‖vν‖V )ν∈F and (‖uν‖V )ν∈F belongs to `p(F) so that u can be approximated by trun-
cated Legendre series in the least square and uniform sense with the rates in (1.2.15)
and (1.2.16) respectively.

The summability result in Theroem 1.3.6 is based on the estimates (1.3.19) which
were obtained by the real variable arguments. Better estimates were obtained in [33]
using the holomorphy of the solution map u. Namely, it was proved that

‖vν‖V ≤ ‖uν‖V ≤ inf
0<δ<r

{‖f‖V ∗
δ

inf{ρ−νγν(ρ) : ρ is δ-admissible, ρj > 1}
}
, (1.6.1)

where
γν(ρ) :=

∏
j:νj 6=0

φ(ρj)(2νj + 1), φ(t) :=
πt

2(t− 1)
. (1.6.2)

The above estimates are larger than the estimates hν obtained for Taylor coefficients
(1.4.19) due to the presence of the quantities γν(ρ) that are greater than 1. However,
the `p-summability result is unchanged. The estimates were used in [33] in order to
establish the following result.
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Theorem 1.6.1

Under the uniform ellipticity assumption UEA(r, R) and if the sequence b :=
(‖ψj‖L∞(D))j≥1 ∈ `p(N) for some p < 1, then the sequences (‖uν‖)ν∈F and (‖vν‖)ν∈F
belong to `p(F).

The proof of the previous theorem is similar to that of Theorem 1.4.5. The authors
in [33] constructed {r/2}-admissible sequences (ρ(ν))ν∈F such that (ρ(ν)−νγν(ρ(ν)))ν∈F
belongs to `p(F) proving the `p-summability of the estimates in (1.6.1).

Unlike the Taylor case, there is no guarantee that the sequence of the estimates
(1.6.1) is monotone decreasing. Therefore, the approach of [33] does not discuss if this
sequence is in `pm(F). Similar to Taylor coefficients, we are interested in this stronger
type of summability for algorithmic purpose, which are further discussed in Chapter 4
and 5. In this section we will prove this type of summability for Legendre coefficients.
Our approach is not exclusive to Legendre expansion. We will present it in the general
framework of Jacobi polynomials.

For α, β > −1, we introduce the Jacobi weight function defined by

wα,β(t) := (1− t)α(1 + t)β, t ∈ [−1, 1], (1.6.3)

and denote %α,β the probability density associated with wα,β, i.e.

%α,β :=
wα,β
Wα,β

, Wα,β :=

1∫
−1

wα,β(t)dt. (1.6.4)

We denote by (Lα,βn )n≥0 the family of univariate Jacobi polynomials associated with
%α,β which is an orthonormal basis of polynomials in L2([−1, 1], d%α,β). We note that
the constant polynomial Lα,β0 is equal to 1 because %α,β is a probability measure. In
order to lighten the notation, we do not give a specific notation for Jacobi polynomials
normalized with the supremum over [−1, 1] equal to 1. We refer to them when needed
with Lα,βn

‖Lα,βn ‖L∞
.

We introduce the tensorized Jacobi polynomials (Lα,βν )ν∈F defined by

Lα,βν (y) :=
∏
j≥1

Lα,βνj (yj), y = (yj)j≥1 ∈ U. (1.6.5)

The family (Lα,βν )ν∈F is an orthonormal basis of L2(U, d%) where % := ⊗j≥1%α,β denote
here the tensorized Jacobi measure. Since the solution map u belongs to V∞ then it
also belongs to L2(U, V, d%) and therefore can be expanded according to

u =
∑
ν∈F

vα,βν Lα,βν , vα,βν :=

∫
U

u(y)Lα,βν (y)d%(y). (1.6.6)
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For s > 1, we introduce the Bernstein ellipse in the complex plane

Es :=
{w + w−1

2
: |w| = s

}
. (1.6.7)

This ellipse has foci 1 and −1 and semi axes of length s+s−1

2
and s−s−1

2
. The ellipse Es

concentrates near the real interval [−1, 1] when s is close to 1 and grows wider as s
increases. It does not contain the unit disc as long as s−s−1

2
< 1, that is for s in the

range s ∈]1, s∗[ with s∗ = 1 +
√

5/2. Also, the convex hull of Es is strictly included in
the disk {|ξ| ≤ s}.

Given ρ := (ρj)j≥1 a sequence of numbers in ]1,+∞[, we denote

Eρ := ⊗j≥1Eρj , (1.6.8)

the tensorized poly-ellipse associated with ρ. The convex hull of the poly-ellipse Eρ is
strictly contained in the polydisc Uρ defined in (1.4.13). The following result relates the
decay of Jacobi coefficients and the holomorphy of the map u.
Theorem 1.6.2

Let ρ = (ρj)j≥1 be a sequence of real numbers in ]1,+∞[. If the solution map u is
uniformly bounded by Cρ > 0 over the interior of Eρ and holomorphic on a domain
⊗j≥1Oρj with Oρj an open neighbourhood of the convex hull of Eρj for every j ≥ 1,
then

‖vα,βν ‖V ≤ Cρ
∏

j≥1:νj 6=0

(νj + 1)ϕ(ρj)ρ
−νj
j , (1.6.9)

with the convention that the product is equal to 1 when ν = 0F and where ϕ(t) :=
2t

(t−1)
for any t > 1.

Proof : In the case ν = 0, the estimate (1.6.9) is immediate since %(U) = 1 implies

‖vα,β0 ‖V =
∥∥∥∫
U

u(y)d%(y)
∥∥∥
V
≤ sup

y∈U
‖u(y)‖V ≤ sup

z∈Eρ
‖u(z)‖V ≤ Cρ

We assume now ν 6= 0 and fixed. Without loss of generality, we assume that ν is
supported in {1, . . . , J} for some J ≥ 1, i.e. νj 6= 0 for 1 ≤ j ≤ J and νj = 0 for
j ≥ J + 1 . This can always be achieved by reordering the basis (ψj)j≥1. We write
the variable y as y = (y1, . . . , yJ , y

′) where y′ := (yJ+1, yJ+2, . . .) ∈ U and rewrite the
coefficient vα,βν defined in (1.6.6) as

vα,βν =

∫
U

wν(y′)d%(y′),

where

wν(y′) :=

∫
[−1,1]J

u(y1, . . . , yJ , y
′)

 J∏
j=1

Lα,βνj (yj)

 d%α,β(y1) . . . d%α,β(yJ).
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Since %(U) = 1, then ‖vα,βν ‖V ≤ supy′∈U ‖wν(y′)‖V . We propose to show that for every
y′ ∈ U , the quantity ‖wν(y′)‖V is smaller than the right side in the inequality (1.6.9)
above.

We fix y′ ∈ U . By the holomorphy assumption, the map (z1, . . . , zJ) 7→ u(z1, . . . , zJ , y
′)

is holomorphic on ⊗Jj=1Oρj . Every domain Oρj is a neighboured of the interior of Eρj ,
therefore applying inductively Cauchy’s integral formula in each ellipse Eρj in the vari-
able zj for j = 1, ..., J , we obtain that for any (y1, . . . , yJ) ∈ [−1, 1]J

u(y1, . . . , yJ , y
′) =

1

(2πi)J

∫
Eρ,J

u(z1, . . . , zJ , y
′)

(y1 − z1) . . . (yJ − zJ)
dz1 . . . dzJ ,

with Eρ,J = ⊗Jj=1Eρj . Multiplying by
∏J
j=1 L

α,β
νj (yj), integrating over [−1, 1]J with

respect to d%α,β(y1) . . . d%α,β(yJ) and interchanging integration orders, we obtain

wν(y′) =
1

(2πi)J

∫
Eρ,J

u(z1, . . . , zJ , y
′)
( J∏
j=1

1∫
−1

Lα,βνj (yj)

zj − yj
d%α,β(yj)

)
dz1 . . . dzJ ,

Since (z1, . . . , zJ , y
′) is in the interior of Eρ for any (z1, . . . , zJ) ∈ Eρ,J , then using

uniform boundedness assumption, we deduce

‖wν(y′)‖V ≤ Cρ
( J∏
j=1

ρj

)( J∏
j=1

sup
ξ∈Eρj

∣∣∣ 1∫
−1

Lα,βνj (t)

ξ − t
d%α,β(t)

∣∣∣),
where we have used the fact that each of the ellipses Eρj has perimeter of length less
or equal to 2πρj . We complete the proof using the corollary A.3.2 of the appendix, in
which we prove that

sup
ξ∈Es

∣∣∣ 1∫
−1

Lα,βn (t)

ξ − t
d%α,β(t)

∣∣∣ ≤ 2(n+ 1)
s−n

s− 1
, s > 1.

By inspection of the previous proof, we note that the bound (1.6.9) for ν ∈ F −{0}
stays valid if the sequence ρ satisfies ρj = 1 for any j ≥ 1 such that νj = 0. An
immediate implication of the previous theorem is the estimation of Jacobi coefficients
for the solution map u. Given δ ∈]0, r[ and ρ = (ρj)j≥1 az δ-admissible sequence with
ρj > 1 for any j ≥ 1, we have seen that u is holomorphic and uniformly bounded by
‖f‖V ∗
δ

over Uρ. Since every Eρj is contained in the open disc {|ξ| < ρj}, then the bound
(1.6.9) holds with Cρ = ‖f‖V ∗

δ
. We have then,

Theorem 1.6.3

Under the uniform ellipticity assumption UEA(r, R), for any ν ∈ F

‖vα,βν ‖V ≤
(∏
j≥1

(νj+1)
)

inf
0<δ<r

{‖f‖V ∗
δ

inf{ρ−ν
∏

j≥1:νj 6=0

ϕ(ρj) : ρ is δ-admissible, ρj > 1}
}

(1.6.10)



Chapter 1: Elliptic PDEs with affine parameter dependance 89

We now turn to the summability of the previous estimates. As with Legendre
polynomials, we are also interested in studying the summability of the Jacobi coefficients
(uα,βν )ν∈F associated with Jacobi polynomials normalized in L∞(U). Since these Jacobi
coefficients are given by

uα,βν = vα,βν ‖Lα,βν ‖L∞ = vα,βν
∏
j≥1

‖Lα,βn ‖L∞ , (1.6.11)

and since, as shown in (A.2.4) in the appendix, the supremum norm of univariate Jacobi
polynomials is controlled by

‖Lα,βn ‖L∞ ≤ Cnγ, γ = max
{2α + 1

2
,
2β + 1

2
, 0
}
, C = C(α, β), (1.6.12)

their study amounts to the study of the summability of the estimates in (1.6.14) dete-
riorated by multi-dimensional algebraic factors of the type Cν(θ) defined in 1.3.26 and
encountered in Theorem 1.3.3. Studying this more general case turn our to be useful
also for the analysis in chapters 2 and 5.

We introduce a new notation for admissibility that we will adopt in the following
chapters.
Definition 1.6.4

Given a sequence b := (bj)j≥1 of strictly positive real numbers and ε > 0, we say
that the sequence (ρj)j≥1 is (b, ε)-admissible if and only if ρj ≥ 1 for any j ≥ 1 and∑

j≥1

(ρj − 1)bj < ε (1.6.13)

In the present setting, denoting by b the sequence (‖ψj‖L∞(D))j≥1, we observe that
for ε ∈]0, 1[ the (b, ε)-admissibility implies the δ-admissibility introduced in (1.4.11)
with δ = r − ε. This equality being satisfied, the inequality (1.6.14) implies

‖vα,βν ‖V ≤
‖f‖V ∗
r − ε

(∏
j≥1

(νj + 1)
)
gν , ν ∈ F , (1.6.14)

where we have introduced the sequence (gν)ν∈F defined by g0F = 1 and

gν := inf
{
ρ−ν

∏
j≥1:νj 6=0

ϕ(ρj) : ρ is (b, ε)-admissible, ρj > 1
}
. (1.6.15)

The following theorem implies the summability result for the sequences (‖vα,βν ‖V )ν∈F
and (‖uα,βν ‖V )ν∈F .



90 1.6. Approximation of the solution map with Jacobi polynomials

Theorem 1.6.5

Let ε > 0 be arbitrary and (gν)ν∈F as above. If the sequence b belongs `p(N) for
some 0 < p < 1, then for any C, θ > 0 the sequence

(
Cν(θ) gν

)
ν∈F

belongs to
`pm(F).

Remark 1.6.6
Before giving the proof, let us observe that this result is a significant improvement
over Theorem 1.4.5 which was used in order to prove the `p summability for the
Taylor coefficients. Indeed, the quantities gν are generally larger than hν for two
reasons. On the one hand, they contain the factors Cθ(ν)

∏
j≥1:νj 6=0 ϕ(ρj) in the

quantity to be infimized. On the other hand, when ε > 0 is small enough, the
property of (b, ε)-admissibility used in the definition of gν will imply the property of
δ-admissibility used in the definition of hν and therefore the infimum is taken over
a smaller set of sequences ρ. In addition, we prove an even stronger result by using
`pm(F) in place of `p(F).

Proof : Let B > 0 be arbitrary but fixed. Since 0 < p < 1, the sequence b belongs to
`1(N), let then J ≥ 1 be an integer such that∑

j>J

|bj | ≤
ε

4B

We write N = E ∪ F with E := {1 ≤ j ≤ J} and F := {j ≥ J + 1} and introduce for
ν = (νj)j≥1 ∈ F the notations νE := (ν1, . . . , νJ) ∈ NJ and νF := (νJ+1, νJ+2, . . .) ∈ F .
Let ν ∈ F − {0} fixed. We introduce the sequence ρ(ν) := (ρj)j≥1 that depends on ν
according to

ρj := κ for j ∈ E and ρj := κ+B +
ε

2|bj |
νj

|νF |+ 1
for j ∈ F,

where κ = 1 + ε
4‖(bj)‖`1

. We have∑
j≥1

(ρj − 1)bj ≤ (κ− 1)
∑
j≥1

bj +B
∑
j>J

bj +
ε

2

∑
j>J

νj
|νF |+ 1

≤ ε

4
+
ε

4
+
ε

2
= ε

The sequence ρ(ν) is then (b, ε)-admissible. Therefore from (1.6.15)

Cν(θ)gν ≤
∏

j≥1:νj 6=0

Cνθjϕ(ρj)ρ
−νj
j =

∏
j≤J :νj 6=0

Cνθjϕ(κ)κ−νj
∏

j>J :νj 6=0

Cνθjϕ(ρj)ρ
−νj
j .

We introduce the notation Cκ = ϕ(κ) > 1. We have φ(ρj) ≤ Cκ for any j ≥ 1 because
ϕ is a monotone decreasing function and ρj ≥ κ for any j ≥ 1. This combined with the
crude bounds CCκnθκ−n ≤ C1κ

−n
2 and CCκnθ ≤ Cn2 for any n ≥ 1 for some constants

C1, C2 > 1 and with ρj ≥ B + ε
2|bj |

νj
|νF |+1 for any j > J , implies

Cν(θ)gν ≤ CJ1 qν ,
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with qν := qE(ν)qF (ν) and

qE(ν) :=
∏
j≤J

κ−νj/2 and qF (ν) :=
∏

j>J :νj 6=0

C
νj
2

(
B +

ε

2|bj |
νj

1 + |νF |

)−νj
.

In view of g0F = 1 and C1 > 1, the previous bound is valid for ν = 0F with qE(0F ) =
qF (0F ) = 1. By following the same line as the proof of Theorem 1.4.5, we obtain by
choosing J sufficiently large, that the sequence (qν)ν∈F is proved to belong to `p(F).

In order to prove that (gν)ν∈F is in `pm(F), we propose to show that, if B is chosen
sufficiently large, the sequence (qν)ν∈F can be made monotone decreasing. We define
ej := (0, . . . , 0, 1, 0, . . .) the Kronecker sequence with 1 at position j. It is easily checked
that qν+ej = κ−1/2qν ≤ qν for any ν ∈ F and any j ≤ J . Now, we consider j ≥ J . We
have

qej = C2

(
B +

ε

4|bj |

)−1
≤ 1 = q0F ,

when B > C2. For ν ∈ F − {0}, we have

qν+ej

qν
=

C2

B + ε
2bj

νj+1
2+|νF |

(B + ε
2bj

νj
1+|νF |

B + ε
2bj

νj+1
2+|νF |

)νj ∏
k>J :k 6=j, νk 6=0

(B + ε
2bk

νk
1+|νF |

B + ε
2bk

νk
2+|νF |

)νk
.

The term in the middle is smaller than
(B+ ε

2bj

νj
1+|νF |

B+ ε
2bj

νj
2+|νF |

)νj
. This combined with B+A1

B+A2
≤

A1
A2

for any A1 ≥ A2 > 0, implies

qν+ej

qν
≤ C2

B

∏
k>J :νk 6=0

(B + ε
2bj

νk
1+|νF |

B + ε
2bj

νk
2+|νF |

)νk
≤ C2

B

∏
k>J :νk 6=0

(2 + |νF |
1 + |νF |

)νk
=
C2

B

(
1+

1

1 + |νF |

)|νF |
≤ eC2

B
.

where we have used (1 + 1
x+1)x ≤ e for any x ≥ 1. Therefore qν+ej ≤ qν if B > eC2.

We deduce that, for B sufficiently large, the sequence (qν)ν∈F is monotone decreasing.
Therefore (qν)ν∈F belongs to `pm(F) and so does (gν)ν∈F

In view of the estimates (1.6.14) of Jacobi coefficients and of (1.6.12), the following
result is an immediate consequence of the previous Theorem.
Theorem 1.6.7

Under the uniform ellipticity assumption UEA(r, R) and if b = (‖ψj‖L∞(D))j≥1

belongs to `p(N) for some 0 < p < 1, the sequences (‖vα,βν ‖V )ν∈F and (‖uα,βν ‖V )ν∈F
belongs to `pm(F).

Using Lemmas 1.2.1 and 1.5.4, under the assumptions of the previous theorem, we
are able to translate the conclusion of the above theorem in terms of convergence rates
for sparse Jacobi approximations. First, using only the `p summability in a similar
fashion to the approximations with Legendre series (1.2.15) and (1.2.15), we find that
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if ΛL
n and ΛP

n are index sets associated to the n largest terms in (‖vα,βν ‖V )ν∈F and
(‖uα,βν ‖V )ν∈F respectively, then∥∥∥u−∑

ν∈ΛLn

vα,βν Lα,βν

∥∥∥
L2(U,V,d%)

≤ ‖(vν)‖`p(F)(n+ 1)−s
∗
, s∗ :=

1

p
− 1

2
. (1.6.16)

and ∥∥∥u− ∑
ν∈ΛPn

vα,βν Lα,βν

∥∥∥
V∞
≤ ‖(uν)‖`p(F)(n+ 1)−s, s :=

1

p
− 1, (1.6.17)

Second, using the `pm summability, we have that if (ΛL
n)n≥1 and (ΛP

n )n≥1 are lower
realizations associated with the monotone envelopes of the sequences (‖vα,βν ‖V )ν∈F and
(‖uα,βν ‖V )ν∈F respectively, then∥∥∥u−∑

ν∈ΛLn

vα,βν Lα,βν

∥∥∥
L2(U,V,d%)

≤ ‖(vν)‖`pm(F)(n+ 1)−s
∗
, s∗ :=

1

p
− 1

2
. (1.6.18)

and ∥∥∥u− ∑
ν∈ΛPn

vα,βν Lα,βν

∥∥∥
V∞
≤ ‖(uν)‖`pm(F)(n+ 1)−s, s :=

1

p
− 1, (1.6.19)

In consequence, the n-term truncated Jacobi series provide approximations to the so-
lution map u in V∞ with similar convergence rates as the Taylor series and provide
approximations with better decay rate in L2(U, V, d%) (that coincides with V2 in the
Legendre case).

1.7 Conclusion

In this chapter, we have presented the paradigm of [34, 33] concerned with the study of
the elliptic model with diffusion coefficient depending affinely in the parameter vector
y = (yj)j≥1. The analysis can be generalized in a straightforward manner to many other
classes of parametric PDE. For example, for a separable Hilbert space V , consider the
equation

Au = f, (1.7.1)

where f belongs to V ∗ and where A is an operator from V to V ∗. We assume that A
depends affinely on y ∈ U according to

A = A(y) = A0 +
∑
j≥0

yjΨj (1.7.2)

where A0 and the Ψj are operators from V to V ∗. We assume that A is uniformly
continuous and uniformly coercive, i.e.

〈A(y)v, v〉 ≥ r‖v‖2
V and |〈A(y)v, w〉| ≤ R‖v‖V ‖w‖V , y ∈ U, v, w ∈ V (1.7.3)
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for some 0 < r ≤ R <∞. We introduce the sequence b = (bj)j≥0 defined by

bj := ‖Ψj‖V→V ∗ = sup
v,w∈V

‖v‖=‖w‖=1

|〈Ψjv, w〉|. (1.7.4)

Using the exact same arguments as in the previous sections, it can be shown that
b ∈ `p(N) for some p < 1 implies that the solution map y ∈ U 7→ u(y) ∈ V can
be approximated by its Taylor and Legendre series with algebraic rate (n + 1)−s and
(n+ 1)−s

∗ and that the truncated series can be localized to lower sets.

The paradigm can also be applied directly to the parametric parabolic equation

∂tu− div(a∇u) = f, in [0, T ]×D, (1.7.5)

with

u|∂D = 0 for 0 < t < T and u|t=0 = u0 ∈ V , for any y ∈ U . (1.7.6)

where f and a are as in the linear elliptic model studied throughout this chapter. Here
the solution space is

V := L2(0, T ;H1
0 (D)) ∩H1(0, T ;H−1(D)). (1.7.7)

Again, using the exact same arguments as in the previous sections, it can be shown
that under the assumption (‖ψj‖L∞)j≥1 ∈ `p(N) for some p < 1, the solution map u
can be approximated by it Taylor series and Legendre series with the rates (n + 1)−s

and (n+ 1)−s
∗ .

We can push further the generalization of the paradigm for many other types of
parametric PDEs. For example, it is of interest to inspect the complex analysis ar-
guments in §1.4 for possible generalization on the assumption on f . In particular, we
observe that we can have f parametric in which case it is a map

f : U 7→ V ∗ (1.7.8)

and assume that f can be extended by holomorphy to all the domains Uρ for any
δ-admissible sequence ρ, see (1.4.11), with f uniformly bounded on these domains

M := sup
ρ δ−admissible

sup
z∈Uρ
‖f(z)‖V ∗ <∞. (1.7.9)

Under such assumptions, the holomorphy and uniform boundedness of the solution
u map on domains Uρ for δ-admissible sequences ρ, with δ fixed, can be established.
Using this, one derives the same bounds (1.4.19) for Taylor coefficients with M instead
of ‖f‖V ∗ and the summability analysis is unchanged. The generalization over f can of
course be also considered for models (1.7.1) and (1.7.5).
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The paradigm introduced so far therefore applies to various classes of parametric
models. However, our analysis is strongly tied to (i) the linearity of the models and (ii)
the affine dependence of the operators on y. It is not as easily applicable for models
that do not satisfy such prescriptions, even very simple one, such as the same elliptic
equation

−div(a∇u) = f (1.7.10)

where a would have a non affine form such as

a = exp
(

1 + (
∑
j≥1

yjψj)
2
)
, (1.7.11)

or the semi-linear model
u3 − div(a∇u) = f, (1.7.12)

even in the case where a is affine in y. In the next chapter we use the key points
of the paradigm, namely uniform holomorphy, uniform boundedness and best n-term
approximation, in order propose a more general framework allowing the treatment of
problematic models such as the above.



Chapter 2

A framework for general parametric
PDEs

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

2.2 The (p, ε)-holomorphy and implications . . . . . . . . . . . . 100

2.3 The linear variational framework . . . . . . . . . . . . . . . . 102

2.4 The implicit function theorem framework . . . . . . . . . . . 106

2.5 Application to general models . . . . . . . . . . . . . . . . . . 110

2.5.1 Model (i): Linear elliptic PDEs with non-affine parametric
coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

2.5.2 Model (ii): Linear parabolic PDEs with non-affine parametric
coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

2.5.3 Model (iii): Nonlinear elliptic PDE . . . . . . . . . . . . . . . 114

2.5.4 Model (iv): Parametrized domain . . . . . . . . . . . . . . . . 116

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

2.1 Introduction

In this chapter, we investigate the numerical approximation of more general class of
parametric PDEs than the elliptic equation treated in Chapter 1. For such equations,
we adopt the abstract formulation from the introduction, thus considering the general
form

D(u, y) = 0, (2.1.1)

95
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where u 7→ D(u, y) is a partial differential linear or nonlinear operator that depends on
an infinite parameter vector y = (yj)j≥1 ∈ U = [−1, 1]N. Assuming that for any y ∈ U ,
the above problem is well posed in a certain Banach space V , we again introduce the
solution map

y ∈ U 7→ u(y) ∈ V . (2.1.2)

A typical setting for high dimensional parametric PDEs occurs for problems which
are parametrized by a function h varying over a certain class, according to

P(u, h) = 0, (2.1.3)

where P is a given partial differential linear or nonlinear operator. The function h may
for example used to describe or parametrize (i) a spatially variable diffusion property of
a material as in Chapter 1 (ii) a flux function in a transport problem (iii) a forcing term
such as the right hand side f in Chapter 1 (iv) the geometry of the physical domain.
Using a given basis (ψj)j≥1 for expanding h and rescaling the corresponding coefficients,
we may write

h = h(y) :=
∑
j≥1

yjψj, y ∈ U, (2.1.4)

which yields the parametric model (2.1.1), with

D(u, y) := P(u, h(y)) = P
(
u,
∑
j≥1

yjψj

)
, (2.1.5)

and where the number of variables is now countably infinite, that is d = ∞, or very
large if the above expansion has been truncated with high accuracy. This situation was
shortly described in the introduction (1.10) and (1.11) where typically the infinite series
(2.1.4) of h, as a random field, results from its Karhunen-Loève expansion.

As for the elliptic model in Chapter 1, the large number d of variables of the solution
map u is a serious obstruction, because of the curse of dimensionality. Numerical
approximation of u requires then non-standard discretization tools and a description of
the smoothness of this map which differs from the classical description in terms of Cm

spaces. A key idea is to introduce more subtle models which reflect the anisotropy of
this map in the sense that it has a weaker or smoother dependence on certain variables
than others. Intuitively this is due to the fact that the convergence of the series (2.1.4)
for all y ∈ U should typically be reflected by a certain form of decay in the size of ψj
as j → +∞, resulting in weaker dependence on the corresponding variables yj. As a
consequence the discretization tools should also reflect this anisotropy.

The effectiveness of the previously described paradigm was demonstrated in Chapter
1 for the elliptic model. We have indeed seen in Theorem 1.4.5 that if the sequence
(‖ψj‖L∞(D))j≥1 has a decay that we characterized by `p(N)-summability for some 0 <
p < 1, then the sequence (‖tν‖V )ν∈F of the norms of Taylor coefficients inherits the
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same decay, which implies the approximation of u by its truncated Taylor series with
an algebraic rate (n + 1)−s with s = 1

p
− 1 in the uniform sense as in (1.2.14). The

rate is proved despite the fact that d =∞, showing that one can in principle overcome
the curse of dimensionality in the approximation of u by a proper choice of sparse
polynomial spaces.

The proof of Theorem 1.4.5 is based on the analysis of the anisotropic holomorphy
of the solution map, in the sense of extending it to the complex domain and making a
fine study of its region of holomorphy in several complex variables. Unfortunately this
latter aspect is heavily tied to the affine dependence of the diffusion coefficient a with
respect to the parameter y as in (1.1.2) and to the linear nature of the elliptic equation
(1.1.1).

Many practically relevant parametric PDEs are nonlinear and depend on the pa-
rameters y in a non-affine manner. The objective of the present chapter is to propose
a general strategy in order to derive similar polynomial approximation results for such
PDEs. Here are a few examples, among many others, that can be treated by the
approach introduced in this chapter:

(i) Operator equations such as (1.1.1), with non-affine, yet holomorphic, dependence
in y of the diffusion coefficients and such that the problem is well posed uniformly
in y ∈ U . Typical instances are

a(x, y) := a+
(∑
j≥1

yjψj

)2

, (2.1.6)

with a a strictly positive function which satisfies ā(x) ≥ r > 0 for any x ∈ D, or

a(x, y) = exp
(∑
j≥1

yjψj

)
, y ∈ U (2.1.7)

so that the solution u(y) of (1.1.1) is uniquely defined in V = H1
0 (D).

(ii) Linear parabolic evolution equations with spatial operators as in (i). Specifically,
for a coefficient a as in (i), we consider in the Gel’fand evolution triple X ⊂ Y '
Y ∗ ⊂ X∗ the parabolic problem

∂tu− div(a∇u)− f = 0 in (0, T )×D, (2.1.8)

where f ∈ L2(0, T ;X∗), with initial and boundary conditions

u|∂D = 0 for 0 < t < T , and u|t=0 = u0 ∈ Y , for any y ∈ U . (2.1.9)

We consider here X = H1
0 (D) and Y := L2(D). A solution space (see [41]) for

the parametric PDE is

V := L2(0, T ;X) ∩H1(0, T ;X∗). (2.1.10)
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Boundary conditions, other than homogeneous Dirichlet, can be accommodated
with other choices of the space X.

(iii) Nonlinear operator equations, with analytic dependence of D on u and on y and
such that the problem is uniformly well posed in y ∈ U . One typical instance is
the monotone, elliptic problem

u2q+1 − div(a∇u)− f = 0, (2.1.11)

which is set on a bounded liptschiz physical domain D ⊂ Rm of dimension m ≥ 1
and with homogeneous Dirichlet boundary conditions on ∂D and right-hand side
f ∈ H−1(D), where a depends on y as in (1.1.2) and where q ≥ 0 is an integer such
that q < m

m−2
. These conditions ensure existence and uniqueness of the solution

u(y) in V = H1
0 (D), for every y ∈ U , by the theory of monotone operators (see

Chapter 6 of [72]).

(iv) Operator equations on domains whose shape depends on a parameter sequence y.
As a simple example, consider the Laplace equation

−∆v = f, (2.1.12)

with homogeneous Dirichlet boundary conditions set on a physical domainD(y) ⊂
R2 that depends on y in the following manner

D(y) := {(x1, x2) : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ φ(x1, y)}, (2.1.13)

where φ(t, y) := φ+
∑

j≥1 yjψj(t) satisfies a condition of the same type as (1.1.3)
ensuring that the boundary of D(y) is not self-intersecting. Using the map
Φ(y)(x1, x2) := (x1, x2φ(x1)) one can transport back the solution v(y) ∈ H1

0 (D(y))
into the reference domain D = [0, 1]2 according to u(y) := v(y) ◦ Φ(y) ∈ H1

0 (D).
The functions u(y) are solutions to an elliptic PDE set on D with diffusion co-
efficient and source term that both depend on the parameter sequence y in a
holomorphical, but non-affine manner.

The strategy developed in Chapter 1 for proving Theorem 1.4.5 for the model equa-
tion (1.1.1) with coefficients given by (1.1.2) does not carry over for the above problems.
In fact, this theorem will generally fail to hold, in the sense that in the previously de-
scribed models, we may assume (‖ψj‖L∞(D))j≥1 ∈ `p(N) for some p < 1 and yet the
Taylor series of u does not converge in L∞(U, V ). This is due to the fact that, for the
above models, the solution map does not generally admit an holomorphic extension in
a neighbourhood of the whole unit polydisc

U := ⊗j≥1{|zj| ≤ 1} . (2.1.14)
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As a simple example, consider model (i) or (ii) with a(x, y) = 1+by2
1, as a particular

case of (2.1.6) where b is a constant strictly larger than 1. In this case, a has no spacial
variability and the solution map u has an explicit formula,

u(y) :=
u(0)

1 + by2
1

, y ∈ U. (2.1.15)

The holomorphy in the first variable on an open disc {|z1| < ρ1} may then holds
only if ρ1 ≤ b−1/2 < 1. A more elaborate inspection of models (iii) and (iv) reveals
similar problems. A different approach is therefore needed for the construction and the
convergence analysis of sparse polynomial approximation.

An alternative to Taylor series are the Legendre series or more generally Jacobi
series, which were also investigated in Chapter 1. We have seen in particular with
Theorem 1.6.2 and its implications that weaker assumptions on the analyticity of u,
for instance in domains that do not necessarily contain the unit disc U , yields the
convergence of Legendre series toward u with the rate (n + 1)−s as with Taylor series.
The rate is improved in the mean square sense into (n+ 1)−s

∗ , where s∗ := 1
p
− 1

2
.

In the present chapter, we show that a large variety of models, including in particular
(i)-(ii)-(iii)-(iv), can be treated using Legendre series. As in the proof of Theorem 1.6.2,
the key argument will consist in extending u analytically to neighbourhoods of domains
of the type

Eρ := ⊗j≥0Eρj , (2.1.16)

where Es is the Bernstein ellipse (1.6.7) introduced in §1.6. As in Chapter 1, we use
the admissible range of radii ρj which reflect the anisotropy of the problem, in order to
establish `p-summability results on Legendre coefficients.

In §2.2, we introduce a property referred to as (p, ε)-holomorphy assumption, or
shortly HA(p, ε), that describes the domains of holomorphy of the solution map as
poly-ellipses of the form (2.1.16). We show that this property yields upper bounds for
the V -norms of Legendre coefficients ‖uν‖V which allows us to derive `p(F) summability
results as in Chapter 1.

In §2.3, we introduce a first framework that allows us to establish the validity of
HA(p, ε) for various classes of linear parametric PDEs. More precisely, this framework
applies to linear variational problems in Hilbert spaces, based on the inf-sup (LBB)
theory.

In §2.4, we introduce a second framework for establishing HA(p, ε) for parametric
PDEs which are not necessarily linear. For instance, PDE based on semi-linear on
non-linear differential operators D. This framework generalizes the first one and deals
with operators D which have a smooth dependence on u and holomorphic dependence
on y and is based on the implicit function theorem in complex Banach spaces.

Finally, we discuss in §2.5 the application of the two introduced frameworks to the
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previously described models (i) to (iv). We show that (iii) and (iv) can be treated using
the second framework and that both frameworks may be used to treat (i) and (ii).

2.2 The (p, ε)-holomorphy and implications

We consider sparse approximations constructed by tensorized Legendre series

u(y) =
∑
ν∈F

vνLν(y) =
∑
ν∈F

uνPν(y), (2.2.1)

where (Lν)ν∈F and (Pν)ν∈F are the tensorized Legendre polynomials that we introduced
in Chapter 1, formula (1.2.6). We recall that the family (Lν)ν∈F form an orthonormal
basis of the space V2 := L2(U, V, d%) of square integrable, V -valued map with respect to
the uniform product probability measure % defined in (1.2.8). The expansion (2.2.1) is
then justified whenever u ∈ V2 or more simply u belongs to V∞ ⊂ L∞(U, V ) the space
of functions defined everywhere in U and uniformly bounded in V .

As we have seen in chapter 1, the use of Legendre series instead of Taylor series
allows us to obtain similar sparse approximation results under weaker assumptions on
the domains of holomorphic extension of the solution map u. In particular, our analysis
relies on holomorphic extensions of u over domains of the type Eρ = ⊗j≥1Eρj where Es
for s > 1 denote the ellipse defined in (1.6.7). Our approach consists then in assuming
minimal assumptions on the operator D enabling to extend u to such domains.

We recall the notation of (b, ε)-admissibility that we introduced in Chapter 1. Given
b := (bj)j≥1 a sequence of strictly positive real numbers and ε > 0, we denote Aε,b the
set of (b, ε)-admissible sequences associated with b and ε, as in (1.6.13). In other words

Aε,b :=
{
ρ := (ρj)j≥1 ∈]1,+∞[N :

∑
j≥1

(ρj − 1)bj < ε
}
, (2.2.2)

In light of the previous discussion and the paradigm developed in Section 1.6 of
Chapter 1, the minimal assumption to be supposed on the operator D is introduced in
the following definition.
Definition 2.2.1

For ε > 0 and 0 < p < 1, we say that D satisfies the (p, ε)-holomorphy assumption,
denoted HA(p, ε), if and only if

(i) For every y ∈ U , there exists a unique solution u(y) ∈ V of the problem (2.1.1)
and the map y ∈ U 7→ u(y) ∈ V is uniformly bounded, i.e.

sup
y∈U
‖u(y)‖V ≤ C0 , (2.2.3)
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for some finite constant C0 > 0.

(ii) There exists a positive sequence (bj)j≥1 ∈ `p(N) and a constant Cε > 0 such
that for any sequence ρ in Aε,b, the map u admits a complex extension z 7→
u(z) that is holomorphic with respect to each variable zj on a domain of the
form Oρ := ⊗j≥1Oρj , with every Oρj ⊂ C is an open set containing Eρj . This
extension is bounded on Eρ := ⊗j≥1Eρj , according to

sup
z∈Eρ
‖u(z)‖X ≤ Cε. (2.2.4)

The first assumption justifies the existence of the Legendre coefficients and the
equality (2.2.1) in V2. Moreover, in view of Thereom 1.6.2, the second assumption
implies,

‖vν‖V ≤
(∏
j≥1

(νj + 1)
)
Cε inf

ρ∈Aε,b

{
ρ−ν

∏
j≥1:νj 6=0

ϕ(ρj)
}
, ν ∈ F (2.2.5)

with the infimum is equal to 1 when ν = 0F and the function ϕ is defined for t > 1
by ϕ(t) := 2t

(t−1)
. Let us note that in Theorem 1.6.2, we have worked with the H1

0 (D)-
norm of the coefficients vν , while here we work with the V -norm. The inspection of
the proof of the theorem shows that the space in which u take its values is irrelevant.
The sequence on the right hand of (2.2.5) is of the form (CεCν(θ)gν)ν∈F where the gν
defined with the same notation in (1.6.15). Therefore using Theorem 1.6.5, we are able
to deduce the following,
Theorem 2.2.2

If the differential operator D is such that HA(p, ε) holds for some 0 < p < 1 and
ε > 0, then the sequences (‖uν‖X)ν∈F and (‖vν‖X)ν∈F belong to `pm(F), and

u(y) =
∑
ν∈F

vνLν =
∑
ν∈F

uνPν , (2.2.6)

holds in the sense of unconditional convergence in V∞.

Using Stechkin lemma 1.2.1, we can translate the conclusion of the above theo-
rem in terms of convergence rates for sparse Legendre approximations as in (1.6.18)
and (1.6.19): if (ΛP

n )n≥1 and (ΛL
n)n≥1 are sequence of nested lower sets correspond-

ing respectively to the n largest terms in the monotone envelopes u := (uν)ν∈F and
v := (vν)ν∈F of the sequences (‖uν‖V )ν∈F and (‖vν‖V )ν∈F , then∥∥∥u− ∑

ν∈ΛPn

uνPν

∥∥∥
V∞
≤ ‖(‖uν‖X)‖`pm(F)(n+ 1)−s, s :=

1

p
− 1, (2.2.7)
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and ∥∥∥u−∑
ν∈ΛLn

vνLν

∥∥∥
V2

≤ ‖(‖vν‖X)‖`pm(F)(n+ 1)−s
∗
, s∗ :=

1

p
− 1

2
. (2.2.8)

In consequence, whenever a parametric PDE is described by an operator D that satisfies
the (p, ε)-holomorphy assumption, then its solution map u can be approximated by the
n-term truncated Legendre series in the uniform and mean square senses with algebraic
rates. The interest of having lower sets is useful for the construction of computable
approximations, for instance using interpolation, sparse grids and least square, as we
shall see in Chapters 5-6.

The notion of (p, ε)-holomorphy is merely intended for formalization purposes. In-
deed, Definition 2.2.1 does not give concrete assumptions on D but rather on the so-
lution map u. We therefore need frameworks where one consider specific assumptions
on D that can imply the (p, ε)-holomorphy and be verified for models such as (i)-(ii)-
(iii)-(iv). We propose two general frameworks in this direction. These frameworks are
rather simple and can be applied for many potential models of parametric PDEs.

In the case of models (i), (ii) and (iii), we verify HA(p, ε), using bj := ‖ψj‖L∞(D) and
under the assumption that (‖ψj‖L∞(D))j≥1 belongs to `p(N). In the case of model (iv),
we establish the validity of HA(p, ε) using bj := ‖ψj‖L∞(D) + ‖ψ′j‖L∞(D), and therefore
under the additional assumption that (‖ψ′j‖L∞(D))j≥1 belongs to `p(N).

2.3 The linear variational framework

The first framework is concerned with the parametric PDE that has the general varia-
tional form: for any y ∈ U , the function u(y) ∈ V is solution of

B(u(y), v, y) = F (v, y), v ∈ W, (2.3.1)

where V,W are Hilbert spaces over C and where, for every fixed y ∈ U , the maps
(u, v) 7→ B(u, v, y) and v 7→ F (v, y) are continuous sesquilinear and antilinear forms on
V ×W and on W respectively. In this setting, the operator D of (2.1.1) is defined from
V × U into the antidual W ∗ of W , according to

D(u, y) := B(u, ·, y)− F (·, y) . (2.3.2)

In many practical instances, the two spaces V and W coincide, however V 6= W is
relevant for the treatment of parabolic evolution problems. We use the same notations
B and F to denote the corresponding maps from U into the spaces of sesquilinear and
antilinear continuous forms on V ×W and on W , respectively, defined by

B(y)(v, w) := B(v, w, y) and F (y)(w) := F (w, y), y ∈ U, v ∈ V, w ∈ W.
(2.3.3)
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We propose a framework that makes possible the treatment of the parametric vari-
ational problem (2.3.1) using minimal assumption on B and F . As for the linear model
in Chapter 1, we introduce first an assumption allowing the well-posedness of (2.3.1)
for any y ∈ U and any z in the complex domains O ∈ CN where the solution map u
might be extended. This is given in the following generic definition
Definition 2.3.1

Let O be an open domain of CN and assume that B and F can be extended over
O. We say that B and F satisfies the uniform continuity and inf-sup assumption if
and only if there exist constants 0 < r ≤ R < ∞ and 0 < M < ∞ not depending
on z such that for any z ∈ O

sup
w∈W−{0}

|F (w, z)|
‖w‖W

≤M, sup
v∈V−{0}
w∈W−{0}

|B(v, w, z)|
‖v‖V ‖w‖W

≤ R, (2.3.4)

and

inf
v∈V−{0}

sup
w∈W−{0}

|B(v, w, z)|
‖v‖V ‖w‖W

≥ r, inf
w∈W−{0}

sup
v∈V−{0}

|B(v, w, z)|
‖v‖V ‖w‖W

≥ r. (2.3.5)

First, note that by assuming the uniform continuity and inf-sup inequalities above
for the real domain U with constants r0, R0 andM0 insures, using a standard functional
analytic argument similar to the proof of the Lax-Milgram lemma, that the parametric
problem (2.3.1) is well posed in V for any y ∈ U and that the solution map y 7→ u(y)
is uniformly bounded, with

sup
y∈U
‖u(y)‖V ≤

M0

r0

. (2.3.6)

Moreover, under only theses assumptions with U , we can study the regularity of the
map y ∈ U 7→ u(y) using real variable arguments similarly to the affine linear model
in Section 1.3 of chapter 1. We dot not embark in this direction, but rather study the
additional minimal assumptions on B and F that convey to D the (p, ε)-holomorphy
Definition 2.3.2

For ε > 0 and 0 < p < 1, we say that F and B satisfies the (p, ε)-holomorphy
assumption if and only if there exists a positive sequence (bj)j≥1 ∈ `p(N), and two
constants 0 < r ≤ R <∞ and a constant M <∞ such that the following holds:

(i) For any sequence ρ := (ρj)j≥1 in Ab,ε, the maps B and F admit extensions
that are holomorphic with respect to every variable zj on a set of the form
Oρ = ⊗j≥1Oρj , where every Oρj ⊂ C is an open set containing Eρj .

(ii) These extensions satisfy the uniform continuity and inf-sup assumptions of
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the definition 2.3.1 over the domains Oρ with the constants r, R and M .

The following result shows that the validity of HA(p, ε) expressing the analytic
behavior of the solution map y 7→ u(y) follows from the same analytic behavior of the
maps B and F expressed in the previous definition.
Theorem 2.3.3

For ε > 0 and 0 < p < 1, assume that B and F satisfy the analytic assumption
of Definition 2.3.2 with a sequence b and constants r, R and M . Then, the corre-
sponding operator D defined as in (2.3.2) satisfies the assumption HA(p, ε) with
the same p and ε and with the same sequence b.

Proof : Let p, ε, b, ρ := (ρj)j≥1 and Oρ be as in the assumptions of Theorem 2.3.3. First,
using the continuity and inf-sup conditions (2.3.4) and (2.3.5), a standard functional
analytic argument similar to the proof of the Lax-Milgram lemma, shows that for any
z ∈ Oρ, the variational problem

D(u, z) := B(z)(u, ·)− L(z)(·) = 0 in W ∗ (2.3.7)

is well posed in V and its solution u(z) is bounded by M
r where r and M are the same

as in conditions (2.3.4) and (2.3.5). Accordingly, the solution map z ∈ Oρ 7→ u(z) ∈ V
is well-defined and uniformly bounded in Oρ with

sup
z∈Oρ

‖u(z)‖X ≤
M

r
, (2.3.8)

In order to complete the proof of Theorem 2.3.3, we only need to prove that u is
holomorphic in Oρ with respect to each variable zj . We first observe that u is con-
tinuous on Oρ: indeed, for z, z̃ ∈ Oρ, we have from the equations D(u(z), z) = 0 and
D(u(z̃), z̃) = 0 in W ∗ that

B(z)
(
u(z̃)− u(z), v

)
= −

(
B(z̃)−B(z)

)
(u(z̃), v) +

(
F (z̃)− F (z)

)
(v), v ∈W .

(2.3.9)
Therefore, taking v = u(z̃) − u(z) and using the continuity and inf-sup conditions
(2.3.4) and (2.3.5), we obtain

r‖u(z̃)−u(z)‖2V ≤ ‖B(z̃)−B(z)‖L(V×W,C)‖u(z̃)‖V ‖u(z̃)−u(z)‖V +‖F (z̃)−F (z)‖W ∗‖u(z̃)−u(z)‖V ,

which combined with (2.3.8) implies

‖u(z̃)− u(z)‖V ≤
1

r

(
‖B(z̃)−B(z)‖L(V×W,C)

M

r
+ ‖F (z̃)− F (z)‖W ∗

)
.

The holomorphy of B and F implies then the continuity of u. Now, let z ∈ Oρ, j ≥ 1
and δ ∈ C such that z + δej ∈ Oρ, where ej is the j-th Kronecker sequence in CN and
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introduce wδ = 1
δ (u(z+ δej)−u(z)). Taking z+ δej in place of z̃ in (2.3.9) , we obtain

that for every v ∈W

B(z)(wδ, v) = −B(z + δej)−B(z)

δ
(u(z+δej), v)+

F (z + δej)− F (z)

δ
(v), v ∈W

(2.3.10)
By the holomorphic dependence of B and L on z,∥∥∥∥F (z + δej)− F (z)

δ
−∂F
∂zj

(z)

∥∥∥∥
W ∗

= oδ(1) and

∥∥∥∥B(z + δej)−B(z)

δ
−∂B
∂zj

(z)

∥∥∥∥
L(V×W,C)

= oδ(1),

where we use the generic notation oδ(1) for a positive quantity that tends to 0 as
C 3 δ → 0. Using again (2.3.8) to bound the functions u(z + δej) in (2.3.10) for any δ
such that z + δej ∈ Oρ, we infer that for any v ∈ Y∣∣∣∣B(z)(wδ, v)− ∂F

∂zj
(z)(v) +

∂B

∂zj
(z)(u(z + δej), v)

∣∣∣∣ = ‖v‖W oδ(1).

This, combined with the continuous dependence of u on z, implies∥∥∥∥B(z)(wδ, ·)−
∂F

∂zj
(z)(·) +

∂B

∂zj
(z)(u(z), ·)

∥∥∥∥
W ∗

= oδ(1).

Finally, we denote w0 ∈ V the unique solution of the variational problem

B(z)(w0, ·) =
∂F

∂zj
(z)(·)− ∂B

∂zj
(z)(u(z), ·), in W ∗.

The existence of w0 is insured by the uniform inf-sup condition on B, the continuity
of ∂F

∂zj
and ∂B

∂zj
, and the inequality (2.3.8) for bounding u(z) in V . We have that

‖B(z)(wδ − w0, ·)‖W ∗ = oδ(1) .

The inf-sup condition in (2.3.5) then implies ‖wδ−w0‖V → 0. This shows that the map
z 7→ u(z) from C to V admits a partial complex derivative ∂u

∂zj
(z) ∈ V with respect to

the complex extension zj of each coordinate variable yj . In addition, this derivative is
the unique solution of the variational problem

B(z)
( ∂u
∂zj

(z), v
)

=
∂F

∂zj
(z)(v)− ∂B

∂zj
(z)(u(z), v), v ∈W . (2.3.11)

The proof of the holomorphy of u with respect to every variable on Oρ is then complete.

We notice that in the previous proof, the partial derivative ∂eju(z) satisfies the same
variational problem the the one by u(z) but a with linear form defined by

v ∈ W 7→ ∂ejF (z)(v)− ∂ejB(z)(u(z), v). (2.3.12)

Since this form is also holomorphic over the considered domains Oρ, we can reiterate
the arguments of the previous proof and show that u admits partial derivatives to any
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order ν ∈ F at any z ∈ Oρ. Such derivatives can be obtained by deriving formally the
variational formula satisfied by u(z) and using Leibniz derivation formula. In particular,
for any z ∈ Oρ, the partial derivative ∂νu(z) is the unique solution of the following
variational problem

B(z)
(
∂νu(z), v

)
= ∂νF (z)(v)−

∑
µ<ν

ν!

µ!(ν − µ)!
∂ν−µB(z)(∂µu(z), v), v ∈ W. (2.3.13)

Let us also note that the inspection of the previous proof shows that u inherits the
same holomorphy regions where B and F are holomorphic. In particular, if B and
F satisfies the (p, ε)-holomorphy assumption given in Definition 2.3.2 in the polydisks
Uρ instead of the ellipses Eρ, we can show using the arguments of Chapter 1 that the
solution map can be approximated by its Taylor series at 0 and the series (‖tν‖V )ν∈F
of Taylor coefficients is in `p(F). The Taylor coefficients tν := ∂νu(0)

ν!
can be computed

using the recursive formula (2.3.13) by taking z = 0 in which case one has

B(0)(tν , v) =
∂νF (0)

ν!
(v)−

∑
µ<ν

∂ν−µB(0)

(ν − µ)!
(tµ, v), v ∈ W. (2.3.14)

Remark 2.3.4
Inspection of the proof of Theorem 2.3.3 reveals that it remains valid verbatim when
V and W are reflexive Banach spaces.

2.4 The implicit function theorem framework

Our second framework is concerned with parametric PDEs of the form (2.1.3). The
operator D depends on the parameter y ∈ U through the functions

h(y) =
∑
j≥1

yjψj (2.4.1)

where the functions ψj belong to some Banach space L over C. We assume that the
expansion converges in L for all y ∈ U . The operator D depends on y according to

D(u, y) = P
(
u, h(y)

)
, (2.4.2)

where P is a linear or nonlinear operator defined from the product of the two Banach
spaces V and L over C into a third Banach space W over C. In the particular case of
the elliptic model in Chapter 1, we have V = H1

0 (D) , L = L∞(D) and W = H−1(D).
We introduce the set

h(U) =
{
h(y) : y ∈ U

}
⊂ L . (2.4.3)
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We set b := (bj)j≥1 with bj := ‖ψj‖L. As for the elliptic model, we propose to use
this sequence to establish the HA(p, ε)-holomorphy of the operator D. The validity of
HA(p, ε) is ensured provided that (bj)j≥1 ∈ `p(N) for some p < 1 and that P satisfies
certain smoothness properties, in addition to the well-posedness of the problem (2.1.3)
over h(U). These properties are given in Theorem (2.4.3) below.

Before giving Theorem 2.4.3, we give two simple, yet useful observations that reveal
the key points in the present framework. The first observation is concerned with the
topology of the set h(U) introduced in (2.4.3). The second observation is concerned with
the open neighborhood Os for the complex ellipse Es in which we propose to establish
the holomorphy of the map u.
Lemma 2.4.1

Assume that the the sequence (‖ψj‖L)j≥1 belongs to `1(N). Then h(U) is compact
in L.

Proof : Let (hn)n≥1 be a sequence in h(U). Since (‖ψj‖L)j≥1 ∈ `1(N), the sequence
(hn)n≥1 is bounded in L. Each hn is of the form hn =

∑
j≥1 yn,jψj . Using a Cantor

diagonal argument, we infer that there exists y = (yj)j≥1 ∈ U such that

lim
n→+∞

yσ(n),j = yj , j ≥ 1, (2.4.4)

where (σ(n))n≥1 is a monotone sequence of positive integers. Defining h :=
∑

j≥1 yjψj ∈
h(U), we may write for any k ≥ 1,

‖hσ(n) − h‖L ≤
∥∥∥ k∑
j=1

(yj − yσ(n),j)ψj

∥∥∥
L

+ 2
∑
j≥k+1

‖ψj‖L. (2.4.5)

It follows that hσ(n) converges towards h in L and therefore h(U) is compact.

Lemma 2.4.2
Let s > 1 and introduce the set in C

Os :=
⋃

t∈[−1,1]

{ξ ∈ C : |ξ − t| < s− 1} = {ξ ∈ C : dist(ξ, [−1, 1]) < s− 1} . (2.4.6)

The set Os is an open neighbourhood of the convex hull of Es.

Proof : The set Os is open by construction, therefore it is sufficient to prove that Es ⊂ Os.
Since the ellipse Es has half-axes s+s−1

2 and s−s−1

2 and foci ±1, then for any ξ ∈ ∂Es
we have

(i) If <(ξ) ∈ [−1, 1], then since |=(ξ)| ≤ s−s−1

2 < s− 1, we have |ξ −<(ξ)| < s− 1.

(ii) If <(ξ) > 1 then |ξ + 1| > 2, but since |ξ − 1| + |ξ + 1| = s + s−1, we have
|ξ − 1| < s+ s−1 − 2 < s− 1.
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(iii) If <(ξ) < −1, then by symmetry with (ii), we have |ξ + 1| < s− 1.

This shows that in the three cases |ξ − t| < s − 1 for some t ∈ [−1, 1] and completes
the proof.

We now can give the main Theorem of this section. The idea of the framework is
to extend the solution map y 7→ u(y) by holomorphy on complex neighbourhoods of
the form ⊗j≥1{|zj − yj| < εj(y)} of any y ∈ U , then by a compactness argument show
that as y varies in U the radius εj(y) stay bounded from below by some εj, which in
view of Lemma (2.4.2) implies that u can be extended to Eρ with ρ := (1 + εj)j≥1. The
following theorem provide a general setting where the previous arguments apply.
Theorem 2.4.3

Assume that:

• One has (‖ψj‖L)j≥1 ∈ `p(N) for some 0 < p < 1.

• The problem (2.1.3) is well-posed in X for all h ∈ h(U).

• The map (u, h) 7→ P(u, h) is continuously differentiable from V × L into W .

• For every h ∈ h(U), the partial differential ∂P
∂u

(u(h), h) is an isomorphism from
V onto W .

Then there exists an ε > 0, for which D satisfies the assumptions HA(p, ε).

Proof : We consider an arbitrary y ∈ U and the corresponding h(y) ∈ h(U). The assump-
tions of Theorem 2.4.3 say that P is continuously differentiable as a mapping from V ×L
into W , that P(u(y), h(y)) = 0 in W and that the partial differential ∂P∂u (u(y), h(y)) is
an isomorphism from V onto W . Therefore, by the holomorphic version of the implicit
function theorem on complex Banach spaces, see [44, Theorem 10.2.1], there exists an
ε > 0, and a mapping G from B̊(h(y), ε) the open ball of L with center h(y) and radius
ε into V such that G(h(y)) = u(y) and P(G(h), h) = 0 for any h in B̊(h(y), ε). In
addition, the map G is uniformly bounded and holomorphic on B̊(h(y), ε) with

dG(h) = −
(∂P
∂u

(G(h), h)
)−1
◦ ∂P
∂h

(G(h), h), h ∈ B̊(h(y), ε) . (2.4.7)

Let us note that ε = ε(y) depends actually on y. We claim that ε can be made
independent of y ∈ U . Since

⋃
y∈U B̊(h(y), ε(y)

2 ) is an infinite open covering of h(U)
and since h(U) is compact in L, thanks to Lemma 2.4.1, then there exists a finite
sub-cover of h(U), i.e. a finite number M and y1, · · · , yM in U such that

h(U) ⊂
M⋃
j=1

B̊
(
h(yj),

ε(yj)

2

)
. (2.4.8)
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We introduce ε := min1≤j≤M
ε(yj)

2 . Let y ∈ U and h ∈ L such that ‖h − h(y)‖L < ε.
According to (2.4.8), h(y) belongs to some B̊(h(yj), ε(y

j)
2 ), therefore for j = 1, . . . ,M

‖h− h(yj)‖L ≤ ‖h− h(y)‖L + ‖h(y)− h(yj)‖L < ε+
ε(yj)

2
≤ ε(yj)

2
+
ε(yj)

2
= ε(yj).

This shows that B̊(h(y), ε) ⊂ B̊(h(yj), ε(yj)) and it implies that

hε(U) :=
⋃
y∈U
B̊(h(y), ε) ⊂

M⋃
j=1

B̊(h(yj), ε(yj)) . (2.4.9)

In particular the map G is well defined and is continuously differentiable as a mapping
from hε(U) into the complex Banach space V .

To conclude the proof of Theorem 2.4.3, we verify assumption HA(p, ε). Let ρ :=
(ρj)j≥1 a sequence of numbers strictly greater than 1 such that

∑
j≥1(ρj − 1)bj ≤ ε

and Oρ := ⊗j≥1Oρj , where for s > 1, Os is the open domain in C defined in (2.4.6).
For any z := (zj)j≥1 ∈ Oρ, we define h(z) :=

∑
j≥1 zjψj ∈ L. If y = (yj)j≥1 ∈ U

satisfies |zj − yj | < ρj − 1 for every j ≥ 1, we then have

‖h(z)−h(y)‖L =

∥∥∥∥∑
j≥1

(zj−yj)ψj
∥∥∥∥
L

≤
∑
j≥1

|zj−yj |‖ψj‖L <
∑
j≥1

(ρj−1)bj ≤ ε, (2.4.10)

therefore h(z) ∈ hε(U) and G(h(z)) is well defined. We extend the solution map u
on the domain Oρ by u(z) := G(h(z)). By holomorphy of G on hε(U) and affine
dependence of h(z) on z, it follows that

z 7→ h(z) 7→ u(z) = G(h(z)),

is holomorphic with respect to every variable zj on Oρ. Moreover

sup
z∈Oρ

‖u(z)‖X = sup
z∈Oρ

‖G(h(z))‖X ≤ sup
h∈hε(U)

‖G(h)‖X ≤ max
i=1,...,M

sup
h∈B̊(h(yj),ε(yj))

‖G(h)‖X <∞ .

(2.4.11)
This completes the proof of Theorem 2.4.3.

Remark 2.4.4
Inspection of the above proof reveals that we can weaken the assumption in the sense
that holomorphy of the map P is required only over a set of the form V ×hη(U) for
some η > 0 instead of V × L, where hη(U) := {h ∈ L : distL(h, h(U)) < η}.

We should note that the previous theorem can also apply in order to prove the
(p, ε)-holomorphy of the operator D associated with the parametric problem (2.3.1) of
the first framework. More precisely, if the bilinear form B and the linear form F in
(2.3.1) depends on y ∈ U through h(y), we have the operator

P(u, h) := B(u, ·, h)− F (·, h), (u, h) ∈ V × L. (2.4.12)
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We only need to assume that (‖ψj‖L)j≥1 ∈ `p(N) for some 0 < p < 1 and that B and
F satisfies the uniform continuity and inf-sup conditions given in Definition 2.3.1 over
U (that is for every h ∈ h(U)). Indeed, as we have seen in the previous section, this
last assumption implies both the well posedness and the continuous differentiability
with respect to h. In addition, the bi-linearity of B implies that P is continuously
differentiable with respect to the variable u with ∂P

∂u
(u, h) = B(u, ·, h). The inf-sup con-

dition over U implies then the forth assumption of Theorem (2.4.3). The assumptions
of Theorem (2.4.3) are then complete.

2.5 Application to general models

In this section, we show that the models (i)-(ii)-(iii)-(iv) discussed in the introduction
are covered by at least one of the two frameworks of Theorem 2.3.3 or Theorem 2.4.3.
Specifically, we check the assumptions of Theorem 2.3.3 for models (i)-(ii)-(iv) and of
Theorem 2.4.3 for models (i)-(ii)-(iii).

2.5.1 Model (i): Linear elliptic PDEs with non-affine paramet-
ric coefficients

We recall that model (i) is the parametric elliptic diffusion equation (1.1.1) with the
typical instances of the diffusion coefficient a

a(x, y) := a(x)+
(∑
j≥1

yjψj(x)
)2

or a(x, y) := exp
(∑
j≥1

yjψj

)
, x ∈ D, y ∈ U.

(2.5.1)
In both cases, assuming that the well posedness is guaranteed in the Sobolev space
V = H1

0 (D), the solution map u is given by: For any y ∈ U , the function u(y) ∈ V is
the unique solution of the variational problem

B(u(y), w, y) = F (w, y), w ∈ V, (2.5.2)

where we have defined the sesquilinear and antilinear forms by

B(u,w, y) :=

∫
D

a(x, y)∇u(x)∇w(x)dx and F (w, y) := F (w) =

∫
D

f(x)w(x)dx

(2.5.3)
In order to apply the first framework (Theorem 2.3.3) to the present elliptic models,
we need to verify the (p, ε)-holomorphy of B and F given in Definition (2.3.2). Since
f ∈ V ∗ = H−1(D) does not depends on y, then F can be extended by holomophy to
CN and it is uniformly continuous with the constant

M := ‖f‖V ∗ . (2.5.4)
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We are left with the study of B which depends on y through the diffusion coefficient a.

Quadratic diffusion coefficient:

For the first example, we assume that ā and the function ψj are in L := L∞(D) with a
bounded from below by some r0 > 0 and the sequence b := (‖ψj‖L)j≥1 belongs to `p(N)
for some p < 1. This implies that a satisfies a uniform ellipticity assumption of type
(1.1.3) with

r0 := min
x∈D

a(x) and R0 := ‖ā‖L + ‖b‖2
`1(N), (2.5.5)

and establishes the well-posedness of (1.1.1) in V for any y ∈ U .
Now, we extend the diffusion coefficient a by holomorphy to complex variables

z = (zj)j≥1 ∈ CN in the natural way by replacing the yj by zj in the above expression
(2.5.1). Given any sequence ρ = (ρj)j≥0 of numbers strictly greater than 1, we denote
Oρ := ⊗j≥1Oρj , with Os ⊂ C is the domain defined in (2.4.6). The assumptions of
Definition 2.3.2 can be fulfilled with p, M , the domains Oρ and the numbers

ε :=

√
r0

2
, r :=

r0

2
, R := R0 + 2ε2 + ‖b‖2

`1 . (2.5.6)

Indeed, given ρ = (ρj)j≥0 a sequence of number strictly greater than 1 with
∑

j≥1(ρj −
1)bj ≤ ε, we have for x ∈ D and z ∈ Oρ

<(a(x, z)) = ā(x) +
(∑

j≥1<(zj)ψj(x)
)2

−
(∑

j≥1=(zj)ψj(x)
)2

≥ r0 −
(∑

j≥1 |=(zj)|bj
)2

≥ r0 −
(∑

j≥1(ρj − 1)bj

)2

≥ r0 − ε2 = r.

(2.5.7)
We have used that for s > 1 the domain Os is contained in the strip {t ∈ C : |=(t)| ≤
s− 1} in the second to last inequality. We have also the upper bound

|a(x, z)| ≤ ā(x)+
(∑
j≥1

|zj||ψj(x)|
)2

≤ ‖ā‖L+
(∑
j≥1

ρjbj

)2

≤ ‖ā‖L+2
(∑
j≥1

(ρj−1)bj

)2

+2
(∑
j≥1

bj

)2

≤ R.

(2.5.8)
We therefore have

0 < r ≤ <(a(x, z)) ≤ |a(x, z)| ≤ R < +∞, x ∈ D, z ∈ Oρ. (2.5.9)

This uniform ellipticity inequality combined with the holomorphy of z 7→ a(z) in each
variable in Oρ, implies the holomorphy of the sesquilinear form B and validate the
assumption of Definition 2.3.2. The first framework then applies.

In the present setting, the Taylor coefficients of the solution map u can be easily
computed using the recursion (2.3.14). Since the diffusion coefficient a is quadratic,
then it is easily checked that

∂ei+eja(0) = 2ψjψi for i, j ≥ 1, and ∂µa(0) = 0 if |µ| 6= 2. (2.5.10)
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We therefore only retain the indices µ such that |ν−µ| = 2 in (2.3.14). For such indices
we have ν−µ = ei+ej so that (ν−µ)! = 1+δi,j. Since 2

1+δi,j
= (2−δi,j), then according

to (2.3.14) the Taylor coefficients can be computed using the recursion∫
D

a(x)∇tν(x)∇w(x)dx = −
∑

i,j:ei+ej<ν

(2−δi,j)
∫
D

ψi(x)ψj(x)∇tν−ei−ej(x)∇w(x)dx, v ∈ W.

(2.5.11)

However, it is unlikely that the Taylor series converges toward the solution map u
in the uniform sense. For example, in the simple case where a and the ψj are constants
with a = 1, ψ1 = 5 and ψj = 0 for any j ≥ 0, then we have

u(y) =
u(0)

1 + 25y2
1

, y ∈ U. (2.5.12)

It is well known that the map t 7→ 1
1+25t2

is not the sum of its Taylor series in 0.

Log-normal diffusion coefficient:

For the second example, we assume similarly that the sequence b := (‖ψj‖L)j≥1 belongs
to `p(N) for some p < 1 where L = L∞(D). The uniform ellipticity assumption over U
is satisfied with

r0 := exp
(
−‖b‖`1(N)

)
and R0 := exp

(
‖b‖`1(N)

)
. (2.5.13)

Now let 0 < ε < π
2
and ρ a sequence with the usual assumption. Given x ∈ D, z ∈ Oρ

and y ∈ U such that |zj − yj| < ρj − 1, we have

<
(
a(z, x)

)
= a(y, x) exp

(∑
j≥1

<(zj−yj)ψj(x)
)

cos
(∑
j≥1

=(zj−yj)ψj(x))
)
≥ r0 exp(−ε) cos(ε),

(2.5.14)
where we have used |

∑
j≥1(zj−yj)ψj(x)| ≤

∑
j≥1(ρj−1)bj ≤ ε. By the same argument,

we have the upper bound

|a(z, x)| = a(y, x) exp
(∑
j≥1

<(zj − yj)ψj
)
≤ R0 exp(ε). (2.5.15)

We therefore have

0 < r ≤ <(a(x, z)) ≤ |a(x, z)| ≤ R < +∞, x ∈ D, z ∈ Oρ, (2.5.16)

with r = r0 exp(−ε) cos(ε) and R = R0 exp(ε). Similar to the first example, Theorem
2.3.3 applies for this second model.
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2.5.2 Model (ii): Linear parabolic PDEs with non-affine para-
metric coefficients

For the parabolic equation (2.1.8) in model (ii), with coefficient a as in (2.5.1), and
with the choice of spaces

V := L2(0, T ;X)∩H1(0, T ;X∗) and W := L2(0, T ;X)×L2(D), with X := H1
0 (D),

(2.5.17)
the sesquilinear and antilinear forms corresponding to the parabolic problem (2.1.8)
read: for v ∈ V and w = (w1, w2) ∈ W

B(v, w, z) =

T∫
0

∫
D

(
∂tv(x, t)w1(x, t) + a(x, z)∇xv(x, t)∇xw1(x, t)

)
dxdt+

∫
D

v(x, 0)w2(x)dx,

(2.5.18)
and

F (w) =

T∫
0

∫
D

f(x, t)w1(x, t)dxdt+

∫
D

u0(x)w2(x)dx, (2.5.19)

with all integrals to be understood as the corresponding duality pairings. The bound-
edness (2.3.4) of these forms is readily verified with the above choices of spaces. The
verification of the inf-sup conditions (2.3.5) for the parametric coefficients (1.1.2) or
(2.5.1), on the parameter domain Oρ follows from the fact that

0 < r < <(a(x, z)) ≤ |a(x, z)| ≤ R, x ∈ D, z ∈ Oρ, (2.5.20)

and using the general arguments given in [73, Appendix].

The application of the previous arguments for the three models studied so far is tied
to the simple formula of the diffusion coefficient a and may be tedious when applied
to diffusion coefficients with complicated formulas. One can overcome this difficulty by
using the second framework. More precisely let us consider a diffusion coefficient a that
depends on y according to

a(y) = A(h(y)), h(y) :=
∑
j≥1

yjψj(x), (2.5.21)

where A is a map from L∞(D) into itself such that

0 < r ≤ A(h) ≤ R <∞, h ∈ h(U), (2.5.22)

and such that A is continuously differentiable over L∞(D) viewed as a Banach space
over C. We also assume that (‖ψj‖L∞)j≥1 ∈ `p(N) for some 0 < p < 1. The two
examples (2.5.1) correspond to

A(h) = a+ h2 and A(t) = exp(h), h ∈ h(U). (2.5.23)
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To cast model (i) into the second framework, we introduce the operator

P(u, h) = − div (A(h)∇u)− f, (2.5.24)

This operator is well defined and continuously differentiable from V ×L into W where

(V, L,W ) := (H1
0 (D), L∞(D), H−1(D)), (2.5.25)

viewed as complex Banach spaces. For any u ∈ V and h ∈ L,

∂P
∂u

(u, h)(v) = − div (A(h)∇v), (2.5.26)

and therefore the uniform ellipticity assumption (2.5.22) implies that ∂P
∂u

(u(h(y)), h(y))
is an isomorphism from V onto W , for all y ∈ U . Therefore, all the assumptions of
Theorem 2.4.3 hold. Similar arguments apply for the parabolic problem of model (ii)
with

P(u, h) = (∂tu− div (A(h)∇u)− f, u(·, 0)), (2.5.27)

with the choices

V := L2(0, T ;X) ∩H1(0, T ;X∗), L := L∞(D), W := L2(0, T ;X∗)×H
(2.5.28)

where X := H1
0 (D) and H := L2(D).

2.5.3 Model (iii): Nonlinear elliptic PDE

The nonlinear equation (2.1.11) is associated to the operator,

D(u, y) := u2q+1 − div(a(y)∇u)− f, (2.5.29)

where f ∈ H−1(D) with D is a bounded Lipschitz subdomain of Rm. Here a(y) depends
affinely on y as in (1.1.2) and satisfies a uniform ellipticity assumption (1.1.3). We
assume that q ≥ 0 is an integer such that q < m

m−2
so that u2q+1 ∈ H−1(D) if u ∈ H1

0 (D).
With V = H1

0 (D), we thus have that D maps V ×U into V ∗ = H−1(D). More generally,
we can consider equations (2.1.1) associated with an operator of the form

D(u, y) := g(u)− div(A(h(y))∇u)− f, (2.5.30)

where f ∈ V ∗ and h(y) and A are as in the previous section. We assume that
(‖ψj‖L∞)j≥1 ∈ `p(N) for some 0 < p < 1. In addition, we assume that g is a func-
tion defined on C, such that

1) g is holomorphic on C.
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2) g(0) = 0 and for any t ∈ R, g′(t) ≥ 0.

3) g maps continuously V into V ∗.

4) For any u ∈ V , the sesquilinear form (v, w) 7→
∫
D

g′(u)vw is continuous over V 2.

These assumptions are in particular fulfilled by the polynomial nonlinearity g : t 7→ t2q+1

when q < m
m−2

.

Let us now verify the assumptions of Theorem 2.4.3. First, we establish for every
y ∈ U , the well-posedness of the nonlinear problem on V understood as a Banach
space over R. It follows from the above items 2) and 3) that, for any fixed y ∈ U , the
nonlinear operator

T (y) : u 7→ g(u)− div(A(h(y))∇u), (2.5.31)

is continuous, strongly monotone and coercive from V into V ∗. By the theory of
monotone operators on Banach spaces V over the coefficient field R, see for example
Theorem 1 in Chapter 6 of [72], for every y ∈ U the problem (2.1.1) admits a unique
(real-valued) solution u(y) ∈ V .

We next view the spaces (V, L,W ) defined as in (2.5.25) as Banach spaces over C
and observe that the map

(v, h) 7→ P(v, h) := g(v)− div (A(h)∇v)− f, (2.5.32)

is continuously differentiable over V × L, thanks to the assumptions on g and A. For
every (v, h) ∈ V × L, the first partial differential is given by

∂P
∂u

(v, h)(w) = g′(v)w − div (A(h)∇w) ∈ W . (2.5.33)

In particular, for any h ∈ h(U), we have

∂P
∂u

(u(h), h)(w) = g′(u(h))w − div (A(h)∇w) . (2.5.34)

This operator is associated to the sesquilinear form

b(v, w) =

∫
D

g′(u(h))vw +

∫
D

A(h)∇v · ∇w. (2.5.35)

which is continuous by the upper inequality in (2.5.22) and item 4). In addition it
satisfies the coercivity condition

b(v, v) ≥ r‖v‖2
V , v ∈ V, (2.5.36)

by the lower inequality in (2.5.22) and item 2). Therefore, by Lax-Milgram theory, it
is an isomorphism from V onto W . All the assumptions in Theorem 2.4.3 are thus
fullfilled.
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Remark 2.5.1

In the case of the nonlinear equation (2.1.11), a possible way to extend the solution
for complex valued parameter z would be to rather consider the equation

|u|2qu− div(a(z)∇u) = f. (2.5.37)

It is easily seen that monotone operator theory applied to the equation verified by
the vector (v, w) where u = v + iw allows us to uniquely define the solution u(z) of
the above equation under the ellipticity condition 0 < r ≤ <(a(z)) ≤ |a(z)| ≤ R.
However the presence of the modulus |u| in the equation obstructs holomorphic
dependence on the zj variable. In our approach, we maintain the original equation
(2.1.11). In this case the existence and holomorphy of the solution u(z) for the
complex argument z does not follow from monotone operator theory, but rather
from the implicit function theorem argument used in Theorem 4.2.

2.5.4 Model (iv): Parametrized domain

As a simple example of PDE set on a parametrized domain, we consider the Laplace
equation

−∆v = f (2.5.38)

with homogeneous Dirichlet boundary condition set on a physical domain D(y) ⊂ R2

that depends on y ∈ U in the following manner

D(y) :=
{

(x1, x2) : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ φ(x1, y)
}
, (2.5.39)

with
φ(t, y) := φ(t) +

∑
j≥1

yjψj(t), (2.5.40)

where the functions φ and ψj belong to W 1,∞([0, 1]), in other words they are Lipschitz
continuous on [0, 1]. We assume that φ satisfies a condition of the same type as (1.1.3),
namely

0 < r ≤ φ(t) +
∑
j≥1

yjψj(t) ≤ R <∞, t ∈ [0, 1], y ∈ U. (2.5.41)

The lower inequality ensures that the boundary of D(y) is not self-intersecting. We
also assume that the above series converges in W 1,∞([0, 1]), uniformly in y ∈ U , that is

δ :=
∥∥∥|φ′|+∑

j≥1

|ψ′j|
∥∥∥
L∞([0,1])

<∞ . (2.5.42)
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In the above model, the source term f is fixed independently of y and should therefore
be defined on the union of all domains D(y) for y ∈ U . For simplicity, we assume that
f is defined over

D̃ := [0, 1]× [0, R] (2.5.43)

and that f ∈ L2(D̃). It follows that f ∈ L2(D(y)) for any y ∈ U and

‖f‖L2(D(y)) ≤ ‖f‖L2(D̃), y ∈ U. (2.5.44)

Our strategy for treating this model is the following: we use the bijective map

Φ(y) : x := (x1, x2) 7→ Φ(x, y) := (x1, x2φ(x1, y)), (2.5.45)

to transport back the solutions v(y) ∈ H1
0 (D(y)) into the reference domain D := [0, 1]2

according to
u(y) := v(y) ◦ Φ(y), (2.5.46)

meaning that u(x, y) = v(Φ(x, y), y) for all x ∈ D. We then study the linear elliptic
PDE satisfied by u(y) on D. This PDE has matricial diffusion coefficient and source
term that depend on y. We then show that under certain conditions on the functions
ψj, one can establish the HA(p, ε) for the solution map y 7→ u(y), using the framework
of Theorem 2.3.3.

A change of variables

Having fixed a parameter y ∈ U , we use in what follows the simpler notation u, v and
Φ for u(y), v(y) and Φ(y). The transformation Φ maps the domain D into D(y) and
the boundary ∂D into ∂D(y). The function v ∈ H1

0 (D(y)) is the unique solution of the
variational problem: ∫

D(y)

∇v · ∇w =

∫
D(y)

fw, w ∈ H1
0 (D(y)). (2.5.47)

The function u = v ◦ Φ is defined on D, and we have

∇u(x) = (DΦ(x))t∇v(Φ(x)), (2.5.48)

where for x = (x1, x2) ∈ D,

DΦ(x) =

 1 0

x2φ
′(x1, y) φ(x1, y)

 , (2.5.49)

with the derivative in φ′ is meant with respect to the variable x1. Since Φ is Lipschitz
continuous on D, it follows that u ∈ V := H1

0 (D). Pulling back the variational formula
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(2.5.47) to the reference domain D using the bijective map Φ, one obtains that u is the
unique solution to the variational problem∫

D

(
(D−1

Φ )t∇u
)
·
(

(D−1
Φ )t∇w

)
JΦ =

∫
D

(f ◦ Φ) w JΦ, w ∈ V, (2.5.50)

where JΦ is the Jacobian of the transformation Φ which is given by JΦ(x) = φ(x1, y)
for any x ∈ D. We introduce the maps A and g defined on D × U by

A(x, y) := φ(x1, y)(D−1
Φ )(D−1

Φ )t =

 φ(x1, y) −x2φ
′(x1, y)

−x2φ
′(x1, y) 1+(x2φ′(x1,y))2

φ(x1,y)

 , (2.5.51)

and
g(x, y) := φ(x1, y)(f ◦ Φ)(x) = φ(x1, y)f

(
x1, x2φ(x1, y)

)
, (2.5.52)

and the sesquilinear and antilinear forms B(y) and F (y) defined on V by

B(y)(w1, w2) :=

∫
D

(
A(x, y)∇w1(x)

)
· ∇w2(x)dx and F (y)(w) :=

∫
D

g(x, y)w(x)dx.

(2.5.53)

To be consistent with our previous notations, we use the notations B(w1, w2, y)
instead of B(y)(w1, w2) and F (w, y) instead of F (y)(w). From (2.5.50), we deduce that
u(y) ∈ V is the unique solution to the variational problem

B(u(y), w, y) = F (w, y), w ∈ V . (2.5.54)

This is a linear elliptic PDE with parametric matricial diffusion coefficients and para-
metric source terms. Our next goal is to discuss under which circumstances the assump-
tions of Theorem 2.3.3 are satisfied for this problem with V = H1

0 (D). We introduce
the sequence b := (bj)j≥1, with

bj := ‖ψj‖L∞([0,1]) + ‖ψ′j‖L∞([0,1]) (2.5.55)

and assume that b ∈ `p(N) for some p < 1. We propose to use this sequence for the
verification of the assumptions of Theorem 2.3.3.

Analyticity of the map F

We first study the antilinear form w 7→ F (w, y). In view of the assumption that
f ∈ L2(D̃) and the definition (2.5.52) of g, we have a uniform bound of the form

|F (w, y)| ≤ C‖w‖V , w ∈ V, y ∈ U (2.5.56)
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where
C := CP sup

y∈U
‖g(y)‖L2(D) ≤ CPR‖f‖L2(D̃), (2.5.57)

with CP the Poincaré constant for D. More assumptions on f are needed in order
to define an holomorphic extension of F in a neighbourhood of U . One sufficient
assumption is that the map

x2 7→ f(·, x2), (2.5.58)

from [0, R] to L2([0, 1]) is analytic on [0, R]. Note that this assumption imposes smooth
dependence of f on the second variable. It holds of course if f is analytic in both
variables, for example if f is a constant. Since [0, R] is compact, there exists ε1 > 0
such that the previous map has an holomorphic and uniformly bounded extension on
the domain

Cε1 :=
{
ξ ∈ C : dist(ξ, [0, R]) < ε1

}
. (2.5.59)

Let now ρ := (ρj)j≥1 a sequence of numbers strictly greater than 1 satisfying
∑∞

j=1(ρj−
1)bj ≤ ε1. We consider the domain Oρ = ⊗j≥1Oρj where the definition of the open
complex domains Os is given in (2.4.6). For z ∈ Oρ and y ∈ U such that |zj−yj| < ρj−1
for any j ≥ 1, one has for any t ∈ [0, 1]

|φ(t, z)− φ(t, y)| =
∣∣∣∑
j≥1

(zj − yj)ψj(t)
∣∣∣ <∑

j≥1

(ρj − 1)bj ≤ ε1. (2.5.60)

Since by (2.5.41), φ(t, y) ∈ [0, R], then one has φ(t, z) ∈ Cε1 . It follows that the map
y 7→ g(y) defined from U into L2(D) admits an holomorphic extension z 7→ g(z) on the
domain Oρ, defined by

g(x, z) := φ(x1, z)f(x1, x2φ(x1, z)). (2.5.61)

Consequently, the map y 7→ F (y) from U to V ∗ admits a uniformly bounded holomor-
phic extension on the domain Oρ, defined by

F (z)(w) :=

∫
D

g(x, z)w(x)dx. (2.5.62)

Analyticity of the map B

We now turn to the study of the bilinear form (w1, w2) 7→ B(y)(w1, w2). In view of
its definition, this amounts to the study of the map y 7→ A(y) defined in (2.5.51). We
propose to show that this map can be extended by holomorphy to complex domains of
the form Oρ = ⊗j≥1Oρj , where the domain Os for s > 1 is defined as in (2.4.6), and
that it stays uniformly bounded in the sense of the spectral norm. This establishes the
holomorphy and uniform boundedness of the map B.
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The entries of the 2× 2 symmetric matrix A(x, y) are

φ(x1, y), −x2φ
′(x1, y) and

1 + (x2φ
′(x1, y))2

φ(x1, y)
(2.5.63)

Since φ(x1, y) and φ′(x1, y) depends linearly on y, then the map A : y 7→ A(y) can be
extended by holomorphy to complex open domains containing U where the quantities
φ(x1, z), with z replacing y in (2.5.40), never hit 0. Let 0 < ε ≤ r

2
where r is the

lower bound in (2.5.41) and ρ := (ρj)j≥1 (b, ε)-admissible sequence as in (2.2.2). For
z ∈ Oρ and y ∈ U such that |zj − yj| < ρj − 1 for every j, we have by (2.5.60) that
|φ(t, z)− φ(t, y)| ≤ ε for any t ∈ [0, 1], therefore

<
(
φ(t, z)

)
≥ φ(t, y)− ε ≥ r − ε ≥ r

2
, t ∈ [0, 1]. (2.5.64)

Since x1 varies in [0, 1], then it follows that the map y 7→ A(y) admits a holomorphic
extension on Oρ defined by z 7→ A(z) with

A(z)(x) := A(x, z) =

 φ(x1, z) −x2φ
′(x1, z)

−x2φ
′(x1, z)

1+(x2φ′(x1,z))2

φ(x1,z)

 , x ∈ D. (2.5.65)

In addition, for z ∈ Oρ, we have for all x ∈ D,

r

2
≤ |φ(x1, z)| =

∣∣∣φ(x1, y) +
∑
j≥1

(zj − yj)ψj(x1)
∣∣∣ ≤ R + ε (2.5.66)

and
|φ′(x1, z)| =

∣∣∣φ′(x1, y) +
∑
j≥1

(zj − yj)ψ′j(x1)
∣∣∣ ≤ δ + ε, (2.5.67)

It follows that the spectral norm of A(z) stays uniformly bounded over Oρ, for example
with the supremum value of the entries of A(z) for all z ∈ Oρ, which is smaller than

Rε := max
(
R + ε, R(δ + ε),

2

r
(1 + (R(δ + ε))2

)
, (2.5.68)

which only depends on R, r, δ and ε. As a consequence, the map y 7→ B(y) from U
to B(V × V ), the space of continuous sesquilinear forms over V , admits a uniformly
bounded holomorphic extension on Oρ, defined by

B(w1, w2, z) :=

∫
D

(
A(x, z)∇w1

)
· ∇w2, w1, w2 ∈ V. (2.5.69)

Note that the uniform bound is independent of the choice of ρ. Concerning the uniform
inf-sup condition, we propose to establish the stronger property that the sesquilinear
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forms B(z) are uniformly coercive on the domains Oρ, up to restricting the range of ε
to a smaller interval than ]0, r/2[.

We introduce now the notation y := <(z) and s := =(z). Using (2.5.64), (2.5.66)
and (2.5.67), we have for any t ∈ [0, 1] and any z ∈ Oρ that

φ(t, y) = <(φ(t, z)) ≥ r

2
and |φ(t, y)| ≤ |φ(t, z)| ≤ R+

r

2
and |φ′(t, y)| ≤ |φ′(t, z)| ≤ δ+

r

2
.

(2.5.70)
The symmetric real matrices A(x, y) have determinants equal to 1 and, from the above
inequalities, their traces are positive and bounded by

C1 := R +
r

2
+

2

r

(
1 + (δ + r/2)2

)
. (2.5.71)

Therefore these matrices are positive definite with coercivity constant r̃ := 1/C1. This
implies in particular that

|B(w,w, y)| ≥ r̃‖w‖2
V , w ∈ V, y = <(z), z ∈ Oρ. (2.5.72)

To prove the uniform coercivity of the bilinear forms B(z) on Oρ, it is therefore suffi-
cient to prove that the parametric sesquilinear forms B(z)− B(y) have norms strictly
smaller than r̃/2, uniformly on Oρ. To verify this, we note that the three entries in the
symmetric matrices (A(x, z)− A(x, y)) are φ(x1, s), −x2φ

′(x1, s) and

ξ(x, z) :=
1 + (x2φ

′(x1, z))
2

φ(x1, z)
− 1 + (x2φ

′(x1, y))2

φ(x1, y)
. (2.5.73)

Since Oρ is contained in the tensorized strip ⊗j≥1{|=(zj)| ≤ ρj− 1}, the condition on ρ
readily implies that the two first entries are bounded by ε. Concerning the third entry,
we have

ξ(x, z) =
(

1+(x2φ
′(x1, y))2

)( 1

φ(x1, y) + iφ(x1, s)
− 1

φ(x1, y)

)
+

2x2
2φ
′(x1, y)φ′(x1, s)− φ′(x1, s)

2

φ(x1, z)
.

(2.5.74)
Therefore, combining the previous inequalities, we obtain

|ξ(x, z)| ≤
(

1 + (δ +
r

2
)2
) ε

( r
2
)2

+
2(R + r

2
)ε+ ε2

r
2

. (2.5.75)

We conclude that the norms of the matrices (A(t, z)− A(t, y)) are uniformly bounded
by C2ε for some constant C2 depending on R, r and δ. Up to choosing ε small enough,
we have C2ε <

r̃
2
, in which case we have for any w ∈ V

|B(w,w, z)−B(w,w, y)| ≤
∫
D

∣∣∣((A(x, z)−A(x, y))∇w
)
·∇w

∣∣∣ ≤ r̃

2

∫
D

|∇w|2, (2.5.76)
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Therefore, with this value of r > 0, for any z ∈ Oρ and for any w ∈ V , one has

|B(w,w, z)| ≥ r̃

2
‖w‖2

V . (2.5.77)

This uniform coercivity implies both inf-sup conditions (2.3.5) with V = W = H1
0 (D).

To complete the verification of the assumptions of Theorem 2.3.3, we only need to
reduce the value of ε so that ε ≤ ε1 where ε1 was used in the proof of the analyticity
of the anti-linear form F (z).

2.6 Conclusion

In this chapter, we have developed a new paradigm which can be used for the treatment
of more general parametric PDE than those treated in Chapter 1. This paradigm yields
polynomial approximations of the solution map u with provable algebraic rate even in
the infinite dimensional setting d =∞. The polynomials considered for approximation
are merely the best n-term series associated with Legendre expansions. As seen in §2.5,
our approach applies to various classes of parametric PDEs.

In both Chapter 1 and 2, only the approximation of u by Taylor or Legendre series
is studied. In practice, the approximation based on such series are rater unconventional
since the Taylor and Legendre coefficients are in general out of reach. Moreover, even
if such coefficients are known exactly, the exact identification of the n largest terms in
a sequence indexed in the lattice F or Nd for d large is a difficult task.

In the remainder of this thesis, we propose practical strategies for polynomial ap-
proximation of u, the solution map of elliptic models as in Chapter 1 or more general
PDEs as models (i)-(ii)-(iii)-(iv) discussed in this chapter. Part II is concerned with
intrusive algorithms, which specifically apply to the linear elliptic model with affine
parametric dependence of Chapter 1. In part III, we investigate non-intrusive strate-
gies which can be used for more general parametric PDEs.
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3.1 Introduction

In this chapter, we study a first intrusive method for the approximation of the para-
metric elliptic model from Chapter 1. The model is given by the equation (1.1.1) where
the diffusion coefficient a depends on the parameter y in an affine manner as in (1.1.2)
and satisfies the uniform ellipticity assumption UEA(r, R) given in (1.1.3). We have
already studied in Chapter 1 the theoretical approximation of the solution map

y ∈ U 7→ u(y) ∈ V, (3.1.1)

where U := [−1, 1]N and V := H1
0 (D), by its truncated Taylor series. We recall in a

nutshell the main result in this direction.

We denote by F the set of finitely supported multi-indices of infinite length, i.e.
ν := (νj)j≥1 ∈ NN with #{j : νj 6= 0} <∞, and denote by 0F the null multi-index. We
introduce the notations

ν! :=
∏
j≥1

νj! and yν :=
∏
j≥1

y
νj
j , ν ∈ F , y ∈ U, (3.1.2)

with 0! = 00 = 1. We studied the summability properties in V of partial sums of the
formal Taylor series ∑

ν∈F

tνy
ν , tν :=

∂νu(0)

ν!
∈ V, (3.1.3)

and their convergence toward the solution map u. The main result concerning such
approximations is Theorems 1.5.5, which it is stated as follows.
Theorem 3.1.1

If the sequence b := (‖ψj‖L∞)j≥1 belongs to `p(N) for some 0 < p < 1, then

u =
∑
ν∈F

tνy
ν , (3.1.4)

in the unconditional uniform sense and the sequence (‖tν‖V )ν∈F belongs to `pm(F).

The sequence space `pm(F) contains `p(F) and is defined in (1.5.5). Working under
the assumptions of the previous theorem and denoting by (ΛT

n )n≥1 a sequence of nested
sets of indices corresponding each to the n largest ‖tν‖V , we have as in (1.2.14)∥∥∥u−∑

ν∈ΛTn

tνy
ν
∥∥∥
V∞

:= sup
y∈U

∥∥∥u−∑
ν∈ΛTn

tνy
ν
∥∥∥
V
≤
∑
ν 6∈ΛTn

‖tν‖V ≤ ‖(‖tν‖V )‖`p(F)(n+1)−s, s =
1

p
−1.

(3.1.5)

Using the previous best n-term approximations, we can then approximate simulta-
neously all the elements from the solution manifold

M :=
{
u(y) ; y ∈ U

}
, (3.1.6)
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at the cost of computing n functions tν ∈ V with a convergence rate (n + 1)−s and a
constant that are independent of the number of parameters yj, here considered infinite
(d = ∞). This shows that in principle one can overcome the curse of dimensionality
in the approximation of u. In computation, however, the sets ΛT

k are not known to us
and in order to find them we would ostensibly have to compute all the coefficients tν
and sort their V -norms which is infeasible. In order to obtain computable sequences
of index sets, we shall not insist on optimality: we shall say that a nested sequence
(Λk)k≥0 of finite subsets Λk ⊂ F is near optimal in the sense of (3.1.5) if it provides the
decay

∥∥∥u−∑
ν∈Λk

tνy
ν
∥∥∥
V∞
≤ C‖(‖tν‖V )‖`p(F)(n+ 1)−s, n = n(k) = #(Λk). (3.1.7)

with C a given constant.

The goal in this chapter is to give a concrete algorithm that adaptively builds
near optimal sequence (Λk)k≥0 and the corresponding Taylor coefficients (tν)ν∈Λk at
a cost that scales linearly in #(Λk). We should point out that similar programs were
developed when solving a single PDE by either adaptive wavelet methods [30, 31, 49] or
by adaptive finite element methods [46, 67, 13, 78]. In these papers, it was proved that
certain iterative refinement algorithms based on a-posteriori analysis generate adaptive
wavelet sets or adaptive meshes such that the approximate solution converges with the
optimal rate allowed by the exact solution. A common point between these algorithms
and the ones that we are about to present is the use of a bulk chasing procedure in order
to build the set Λk+1 from the set Λk. However, our present setting is significantly
different, since the index sets Λk are picked from the infinite dimensional lattice F and
the coefficients associated to each ν ∈ Λk are functions in V instead of real numbers.

Based on the summability property `pm(F) of the Taylor coefficients, we show in
§3.2 that our goal in obtaining near optimality (3.1.7) can be reformulated in a more
convenient problem of finding near optimal lower sets for a problem of Taylor residual
reduction. After that, using recursive relations satisfied by Taylor coefficients and the
particular structure of the elliptic problem, namely the affine dependence of a in y
and the uniform ellipticity assumption, we establish reduction properties on the Taylor
residuals which are essential for the design of subsequent algorithms along the line of
ideas in [30, 31, 49].

In §3.3, we propose a first adaptive algorithm and prove that the index sets Λk gen-
erated by the algorithm are near optimal and satisfy (3.1.7). A defect of this algorithm
is that the bulk chasing procedure at step k requires at least the computation of d (the
parametric dimension) new coefficients tν for the indices ν that are in a certain neigh-
bourhoodMk of Λk. The algorithm is then costly for large values of d and impractical
in the case of infinite dimension d =∞ that we consider here.
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In §3.4, we remedy this defect by introducing a second algorithm which operates
at step k the bulk search on a restricted neighbourhood of Λk which is of moderate
cardinality even in the case d =∞. We prove that this new realistic algorithm generates
also index sets that are near optimal and satisfy (3.1.7).

In §3.5, we study the additional error which is induced on the approximation of the
map y 7→ u(y) by the spatial discretization when solving the boundary value problems
that give the Taylor coefficients, for example by a finite element method on D. We
prove that the additional error introduced by the finite element discretization of the
coefficients does not depend on the number of computed Taylor coefficients.

In §3.6, we propose alternative non-adaptive and adaptive strategies which are com-
putationally much cheaper than the bulk search strategy, yet might benefit from the
anisotropic nature of the problem or exhibit the same features of the bulk search. The
effectiveness of these algorithms is demonstrated in our numerical examples since some
strategies yield the same convergence rate as the bulk search strategy, yet without
complete theoretical justification.

Finally, numerical experiments are presented in §3.7, for finite but high dimensional
test cases (y ∈ [−1, 1]d with d up to 255), using finite element for the spatial discretiza-
tion. We test the adaptive bulk search strategy and compare it with the non-adaptive
and adaptive intuitive strategies discusses in §3.6. These experiments confirm that,
without any information based on a-priori analysis, the adaptive approach produces
near-optimal sets of active indices in terms of convergence rates. In the practically rel-
evant case where the goal of computation is to compute an average in y of the solution
(corresponding to an expectation of the random solution) we show that the results based
on our adaptive algorithm strongly outperform those using the Monte-Carlo method.

3.2 Taylor Residual formulation

3.2.1 Near optimality with lower sets

We have shown in Chapter 1, formula (1.3.11), that Taylor coefficients satisfy certain
recursive relations which can be obtained by differentiating with respect to y the vari-
ational formulation satisfied by the instances u(y) of the solution map u,∫

D

a(x, y)∇u(x, y)∇w(x)dx =

∫
D

f(x)w(x)dx, v ∈ V. (3.2.1)

Namely t0F = u(0) is the unique solution in V of∫
D

a(x)∇t0F (x)∇w(x)dx =

∫
D

f(x)w(x)dx, w ∈ V, (3.2.2)



Chapter 3: An adaptive algorithm for sparse Taylor approximations 129

then for multi-indices ν ∈ F \ {0}, the function tν is the unique solution in V of∫
D

a(x)∇tν(x)∇w(x) = −
∑
j:νj 6=0

∫
D

ψj(x)∇tν−ej(x)∇w(x), w ∈ V. (3.2.3)

In practice, these boundary value problems can only be solved approximately by space
discretization, for example by the finite element method. We shall deal with this issue
in §3.5 and assume for the moment that they can be all solved exactly at a constant
cost. In the light of this assumption, it is readily seen that the computation of all the
coefficient {tν}ν∈Λ, associated with a finite set Λ, by the weak formulations (3.2.3) is
linear in cost whenever Λ satisfies

ν ∈ Λ ⇒ ν − ej ∈ Λ for any j ≥ 1 such that νj 6= 0. (3.2.4)

This category of index sets is called lower sets, and it was already introduced in Chapter
1, Definition 1.5.1. In such case, we remark that the recursion (3.2.3) determines all
the Taylor coefficients tν for ν ∈ Λ uniquely. Determining them requires the successive
numerical solution of the “nominal” elliptic problems (3.2.2) with #(Λ) many right hand
sides. In particular, for computing numerical approximations of the coefficients (tν)ν∈Λ,
only a single discretized, parameter-independent “nominal” elliptic problem (3.2.2) in
the domain D must be solved but with #(Λ) many load cases.

As we have already mentioned in Chapter 1, it should be noted that the category
of lower sets for approximation with Taylor series was originally introduced in [22] for
the practical reason that we just explained. Then the approximation of u using Taylor
series truncated to lower index sets was investigated, which we have already done in
Chapter 1.

Working under the assumptions of Theorem 3.1.1, the stronger summability `pm(F)
conclusion allows us to localize the best n-term approximations to lower sets while
preserving the rate (n + 1)−s in (3.1.5). Indeed, denoting by (ΛT∗

n )n≥1 a lower reali-
sation associated with the monotone envelope of (‖tν‖V )ν∈F , see Definition 1.5.3, i.e.
a sequence of nested lower sets corresponding each to the n largest elements of the
monotone envelope of (‖tν‖V )ν∈F , we have as explained in (1.5.8)∥∥∥u− ∑

ν∈ΛT∗n

tνy
ν
∥∥∥
V∞
≤
∑
ν 6∈ΛT∗n

‖tν‖V ≤ ‖(‖tν‖V )‖`pm(F)(n+ 1)−s, s =
1

p
− 1. (3.2.5)

The sequence (ΛT∗
n )n≥1 is then near optimal in the sense of best n-term approximation

(3.1.5). However, as explained earlier with the sequence (ΛT
n )n≥1 used for (3.1.5), this

sequence is also out of reach.

In view of the practical property of lower sets for the computation of Taylor co-
efficients and the previous theoretical approximation result, we shall only search for
computable sparse Taylor series associated with lower sets. In particular, we consider
from now on the decay in (3.2.5) as the dacay we aim for near optimality.
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In the next section, we propose to simplify further the near optimality analysis by
exploiting the special features of the parametric elliptic problem. We will see that the
simplified objective meet the settings of the framework of adaptive wavelet methods
[30, 31, 49] which allows us later to design adaptive bulk chasing algorithms.

3.2.2 A quadratic Taylor residual

In view of the the recursive relation (3.2.3) satisfied by Taylor coefficients, we find it
convenient to work with the average energy norm

‖w‖a :=
(∫
D

a(x)|∇w(x)|2
) 1

2
, w ∈ V. (3.2.6)

Thanks to the uniform ellipticity assumption UEA(r, R), given in (1.1.3), considered
at y = 0, this norm is equivalent to the V -norm with

√
r‖w‖V ≤ ‖w‖a ≤

√
R‖w‖V , w ∈ V. (3.2.7)

It is then equivalent to search for near optimality using the norm ‖ · ‖a instead of ‖ · ‖V .
We introduce following abbreviated notation

cν := ‖tν‖a =
(∫
D

a|∇tν |2
) 1

2
. (3.2.8)

With a slight abuse, we say that cν is the energy of the Taylor coefficient tν . Now, for
Λ ⊂ F a given set of indices, we introduce the notations

e(Λ) :=
∑
ν∈Λ

c2
ν , σ(Λ) :=

∑
ν∈F\Λ

c2
ν . (3.2.9)

Although the polynomials yν do not form a Fourier basis of PF , we may consider that
e(Λ) and σ(Λ) measure the energy of the Taylor coefficients on Λ and on its complement
F \Λ respectively. In particular, we call σ(Λ) the quadratic Taylor residual associated
with Λ.

In view of the equivalence (3.2.7), under the assumptions of Theorem (3.1.1), the
sequence c := (cν)ν∈Λ belongs to `pm(F). Therefore, the monotone envelope c := (cν)ν∈F
of the sequence c, defined by

cν := sup
µ≥ν
|cµ|, ν ∈ F (3.2.10)

belongs to `p(F). Denoting (Λa
n)n≥1 a lower realisation associated with the sequence

c, i.e. a sequence of nested lower sets corresponding each to n largest values of cν , we
have from Stechkin lemma 1.2.1 applied with p and q = 1 that∑

ν 6∈Λan

cν ≤
∑
ν 6∈Λan

cν ≤ ‖c‖`p(F)(n+ 1)−s = ‖c‖`pm(F)(n+ 1)−s, s =
1

p
− 1. (3.2.11)
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Using the equivalence (3.2.7), it is easily checked that if (Λn)n≥1 is a sequence of lower
sets that is near optimal in the sense of (3.2.11) with a constant C then (Λn)n≥1 is near

optimal in the sense of (3.2.5) with constant C
√

R
r
.

For reasons that we shall explain in the next section, it is more convenient to work
with the squares c2

ν than with the values cν . We explain accordingly how the analysis
of the Taylor residuals can be used for the analysis of near optimality in the sense of
(3.2.11), hence near optimality in the sense of the the Taylor approximation (3.2.5).

First, using Stechkin lemma 1.2.1 with this time the values p and q = 2, we have√
σ(Λa

n) ≤ ‖c‖`p(F)(n+ 1)−s
∗

= ‖c‖`pm(F)(n+ 1)−s
∗
, s∗ :=

1

p
− 1

2
. (3.2.12)

The optimal rate s∗ associated with the best n-term approximations of the sequence
(cν)ν∈F ∈ `2(F) ⊂ `p(F) is better than the rate s := 1/p − 1 associated with best n-
term approximations in `1(F), both obtained by the same best n-term sets. For index
sets that are only near optimal in `1(F), there is no guarantee that they are optimal in
`2(F). In contrast, the following useful result states that the inverse is always true.
Lemma 3.2.1

Let (Λk)k≥1 be a sequence of (lower) sets that is near optimal in the sense of (3.2.12)
with a constant C ≥ 1, then (Λk)k≥1 is also near optimal in the sense of (3.2.11)
with constant (C + 1).

Proof : Let n := #(Λk) ≥ 2. We have that

F \ Λk ⊂ {F \ Λan} ∪ (Λan\Λk),

where Λan is lower and of cardinality n that we used both in (3.2.11) and (3.2.12).
Therefore∑

ν /∈Λk

cν ≤
∑
ν /∈Λan

cν +
∑

ν∈Λan\Λk

cν ≤ ‖c‖`pm(F)(n+ 1)−s +
√
n
√
e(Λan \ Λk),

where we have used (3.2.11) and Cauchy-Schwartz inequality. Since e(Λan\Λk) ≤ σ(Λk),
and Λk is near optimal in the sense of (3.2.12) with constant C, then∑
ν /∈Λk

cν ≤ ‖c‖`pm(F)(n+1)−s+
√
n+ 1 C ‖c‖`pm(F)(n+1)−s

∗ ≤ (1+C)‖c‖`pm(F)(n+1)−s.

It is readily seen that the previous simple argument can only be used with the value
q = 2 in order to infer near optimality in `1(F) from near optimality in `q(F). This
however meets more than enough our needs.

We now summarize the analysis of the present section, we have that if a sequence
(Λn)n≥1 of nested lower sets is near optimal in the sense of (3.2.12) with constant C,



132 3.2. Taylor Residual formulation

then it is near optimal in the sense of the benchmark inequality (3.2.5) with constant
(1 + C)

√
R/r. From this point on, our goal will be then to build computable lower

sets that are near optimal the sense of (3.2.12). In the next section, we explain how
the arguments of adaptive wavelet approximations can be applied in order to fulfill this
purpose.

3.2.3 Recursive estimates and reduction of Taylor residuals

The analysis of the adaptive algorithm is fundamentally based on the recursion (3.2.3).
We introduce the following abbreviated notations

dν,j :=

∫
D

|ψj||∇tν |2, ν ∈ F , j ≥ 1, (3.2.13)

which reflects to some extents contributions to the norm of the load functions in (3.2.3).
Our first result is concerned with the comparison of the energy of the Taylor coefficient
tν solution of (3.2.3) and such quantities.
Lemma 3.2.2

Under the uniform ellipticity assumption UEA(r, R), we have for any ν ∈ F ,∑
j≥1

dν,j ≤ (1− γ)c2
ν and (1 + γ)c2

ν ≤
∑
j:νj 6=0

dν−ej ,j. (3.2.14)

where γ := r
R
.

Proof : We have seen in Chapter 1, formula (1.4.2) that UEA(r,R) implies

0 < r ≤ a(x)−
∑
j≥1

|ψj(x)|, x ∈ D.

This is easily obtained by letting every yj to be equal −sign(ψj(x)) in (1.1.3) where
sign(t) is the sign of the real number t. Using that r ≤ a(x) ≤ R for any x ∈ D, this
implies

∑
j≥1 |ψj | ≤ (1−γ)a. Multiplying by |∇tν |2 and integrating over D, we deduce

the first inequality in (3.2.14).

As for the second, we take v = tν in (3.2.3) and use the identity |αβ| ≤ 1
2(α2 + β2)

with the integrands of the right hand side, we obtain

c2
ν ≤

∑
j:νj 6=0

∫
D

√
|ψj ||∇tν−ej |

√
|ψj ||∇tν | ≤

1

2

∑
j:νj 6=0

∫
D

|ψj | |∇tν−ej |2+
1

2

∑
j:νj 6=0

∫
D

|ψj | |∇tν |2.

Using the first inequality, we deduce the second.
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The previous two estimates turn out to be very useful for the estimation of energies
outside of lower set. In particular, they imply that the energy outside of any lower set
Λ can be controlled by the energy on a certain neighbourhood of Λ. We first define this
type of neighbourhood, then state the lemma.
Definition 3.2.3

Given a lower set Λ ⊂ F , we define its marginM :=M(Λ) as follows:

M(Λ) :=
{
ν /∈ Λ : ∃j > 0 : ν − ej ∈ Λ

}
, (3.2.15)

where ej ∈ F is the Kronecker sequence: (ej)i = δij for i, j ∈ N. An equivalent
definition ofM(Λ) is

M(Λ) = C(Λ) \ Λ where C(Λ) :=
{
ν + ej : ν ∈ Λ and j ≥ 1

}
. (3.2.16)

We have that Λ ∪M(Λ) = C(Λ) is a lower set.

The margin M(Λ) is an infinite set even for Λ finite. Indeed, since Λ finite then
all its elements are supported in {1, . . . , J} for some J , so that in view of the second
definition (3.2.16), for any ν ∈ Λ all the indices ν + ej for j > J belong toM(Λ). In
the finite dimensional setting d < ∞, the margin is a finite set whenever Λ is finite.
The reduction property of the energy outside of lower sets is given in the following.
Lemma 3.2.4

Under the uniform ellipticity assumption UEA(r, R), for any lower set Λ and its
marginM, the energies σ(Λ) and e(M) defined as in (3.2.9) satisfy

σ(Λ) ≤ 1

1− δ
e(M), with δ =

1− γ
1 + γ

< 1. (3.2.17)

where γ = r
R
. In particular, if S is any subset ofM such that e(S) ≥ θe(M) with

θ ∈]0, 1[, then Λ′ := Λ ∪ S satisfies

σ(Λ′) ≤ κσ(Λ), with κ := 1− θ(1− δ) < 1 (3.2.18)

Proof : From the definition (3.2.15) of the margin, we have that ν 6∈ Λ ∪ M implies
ν − ej 6∈ Λ for any j such that νj 6= 0. Therefore, The summation of the second
inequality in (3.2.14) over all ν 6∈ Λ ∪M yields

(1 + γ)σ(Λ ∪M) ≤
∑

ν 6∈Λ∪M

∑
j:νj 6=0

dν−ej ,j ≤
∑
µ6∈Λ

∑
j≥1

dµ,j .

This combined with the first inequality in (3.2.14) implies that (1 + γ)σ(Λ ∪M) ≤
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(1− γ)σ(Λ), which is equivalent to

σ(Λ ∪M) ≤ δσ(Λ).

Using that σ(Λ∪M) = σ(Λ)−e(M), we infer (3.2.17). As for the contraction property,
it follows from (3.2.17) using

σ(Λ ∪ S) = σ(Λ)− e(S) ≤ σ(Λ)− θe(M) ≤ (1− θ(1− δ))σ(Λ).

The previous lemma show that the margin M of any lower set Λ, although very
negligible in size compared to F \ Λ, captures a fraction of the total Taylor energy
outside of Λ. Therefore, in order to grow Λ and obtain Λ′ with energy outside reduced
by some factor, it is sufficient to enrich Λ by M or any subset S ⊂ M that in turn
captures a fraction “bulk” of the energy e(M) of the margin. Note however that in
order to grow Λ, while preserving the lower set structure of Λ′ = Λ ∪ S, one needs to
assume a structural condition on S, namely S lower inM(Λ), which we describe in the
following.

We localize the notion of monotone decreasing sequences and lower sets as follows:
if F0 ⊂ F is any subset, we say that the sequence (aν)ν∈F is monotone on F0 (or that
(aν)ν∈F0 is monotone) if and only if

µ, ν ∈ F0 and µ ≤ ν ⇒ aν ≤ aµ. (3.2.19)

Clearly, a monotone decreasing sequence is monotone decreasing on any set F0. Likewise
we say that a subset F1 ⊂ F0 is lower (or downward) in F0 if and only if

ν ∈ F1, µ ∈ F0 and µ ≤ ν ⇒ µ ∈ F1. (3.2.20)

In the case where F0 is lower, this is equivalent to saying that F1 is lower. If (aν) is
monotone decreasing on F0, a set Sk of indices corresponding to the k-largest aν in
absolute value with ν ∈ F0 is lower in F0 whenever it is unique. If it is not unique,
there exists at least one realization of such set which is lower in F0. One easy way to
obtain a realization is by sorting the indices of F0 according to

ν � µ if and only if |aµ| ≤ |aν | and |ν| ≤ |µ|, (3.2.21)

where |ν| is the `1 norm of ν, then take for Sk the k largest indices in the sorted F0.

Given a lower set Λ with marginM and S ⊂M, it is easily checked that

Λ ∪ S is lower ⇐⇒ S is lower inM. (3.2.22)

In particular, in Lemma 3.2.4, in order to grow Λ into a lower set Λ′ = Λ ∪ S, one
has to consider S lower inM. The general idea of residual reduction techniques, e.g.
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[30, 31, 49], adapted to our notations and the problem of near optimality in (3.2.12),
consists in optimizing the trade off between the value of θ and size of the enrichment
set S, here constrained to be lower inM, that allows to grow Λ into Λ′ = Λ ∪ S with
the following implication satisfied

(#(Λ) + 1)s
∗√

σ(Λ) ≤ C‖c‖`pm ⇒ (#(Λ′) + 1)s
∗√

σ(Λ′) ≤ C‖c‖`pm , (3.2.23)

where in our case s∗ = 1/p−1/2 and C the wanted near optimality constant. This way,
with a careful choice of successive values θn and successive enrichment Sn, one obtains
a sequence (Λn)n≥1 of nested lower set such that

(#(Λn) + 1)s
∗√

σ(Λn) ≤ C‖c‖`pm , (3.2.24)

hence getting the near optimality in the sense of best residual reduction (3.2.12), and
consequently near optimality in the sense of (3.1.7). In the following sections, we
investigate the design of algorithms along the lines of these ideas.

3.3 A bulk chasing algorithm

In this section, we show how the idea of bulk chase can be used to propose an adaptive
algorithm for generating a sequence of sets (Λn) that is near optimal in the sense of
(3.2.12). The algorithm that we propose is not numerically feasible, however it will
guide us in the construction of more practical algorithms in the following sections. We
consider the following algorithm:
Algorithm 3.3.1

Let 0 < θ < 1. Define Λ0 := {0F}, compute t0F := u(0) and c0F := ‖t0F‖ā. For
n = 0, 1, · · · do the following:

• Given that Λn has been built and (tν)ν∈Λn have been computed, defineMn =
M(Λn) and compute tν for ν ∈Mn by the recursion (3.2.3);

• Compute cν for every ν inMn and the monotone envelope of (cν)ν∈Mn inside
Mn defined by

cν(Mn) := sup{cµ : µ ≥ ν and µ ∈Mn}; (3.3.1)

• Compute Sn, the smallest lower set inMn associated with the largest cν(Mn)
such that

e(Sn) ≥ θe(Mn); (3.3.2)

• Set Λn+1 = Λn ∪ Sn and go to step n+ 1;
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We have to point out that giving a finite lower set Λ for which we have already
computed tν for all the indices ν ∈ Λ, we can directly compute certain tν for indices ν
inM the margin of Λ using the recurrence (3.2.3). Indeed, if I1(M) is the immediate
margin of Λ, i.e.

I1(M) :=
{
ν 6∈ Λ : ∀j ≥ 0, νj 6= 0⇒ ν − ej ∈ Λ

}
⊂M, (3.3.3)

then we can compute tν for all ν in I1(M) since we already know every tν−ej that occurs
in (3.2.3). We can then repeat this process and compute tν for any ν in I2(M) where
I2(M) is the set of indices ν in M\ I1(M) such that ν − ej ∈ Λ ∪ I1(M) whenever
νj ≥ 1. Continuing in this way, we can compute all of the tν ∈M.

Let us remark that I1(M) is of infinite cardinality because it contains the Kronecker
indices ej associated with the infinitely many coordinates yj which have not been acti-
vated yet. The same holds for I2(M) since it contains all the indices ei + ej with i, j
are such that ei ∈ Λ and ej 6∈ Λ. Indeed ei + ej − el is equal to either ei or ej which
in both cases belongs to Λ ∪ I1(M). It can also be proved that every Ij(M) contains
an infinite number of indices ν such that |ν| = j and are hence of infinite cardinality.
However, there exists only a finite number of Ij(M). Indeed, for all the indices ν in
M, we have that |ν| is bounded by J := maxµ∈Λ |µ|+ 1, hence it is easily checked that
Ij(M) = ∅ for any j > J .

In the algorithm above, the enrichment of the set Λn is based on sorting the indices
ν ∈ Mn by comparing the values cν(Mn) and then enriching Λn by adding to it the
indices ν in Mn with the largest cν(Mn) until the energy of the enriching set e(Sn)
captures a fraction θ of the energy of the margin e(Mn). The lower structure of the
obtained set Λn+1 is crucial in the analysis, one easy way to obtain it consists on
reinforcing the sorting as explained in (3.2.21).

We remark that a more natural way to grow Λn is by defining Λn+1 to be the
smallest monotone set containing Λn and contained in Λn ∪Mn that captures the bulk
energy and satisfies e(Λn+1∩Mn) ≥ θe(Mn). We shall see that this strategy also yields
the desired reduction result given in Theorem 3.3.2 below and consequently the near
optimality for Taylor approximations. However, it is not currently known to us how to
efficiently implement the search for such minimal lower set in linear time with respect
to the cardinality #(Λn+1\Λn).

Algorithm 3.3.1 is not satisfactory for several reasons. A first defect is that we can
only solve the boundary value problems (3.2.3) approximately, for example using a finite
element discretization. We analyze the additional error induced by this discretization
in §3.5. Another problem is that in our infinite dimensional setting the marginMn has
infinite cardinality, therefore there are infinitely many tν to be computed which requires
in principle solving infinitely many boundary value problems for the corresponding tν .
Although this problem does not occur in the finite dimensional setting d < ∞, it is
still reflected by the fact that the size of Mn is potentially much larger than that of
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Λn as d gets large and therefore solving the boundary value problems for all ν ∈ Mn

becomes the main source of computational complexity. Although the coefficients tν are
computed once and for all, one should note that at step n + 1 one computes the new
coefficients tν for ν in the setM(Λn+1) \M(Λn) which has a cardinality at least large
than d. We deal with these computational problems in §3.4.

For now, we remain with the above algorithm and prove its optimality. We first ob-
serve that the contraction property (3.2.18) implies σ(Λn+1) ≤ κσ(Λn) with κ depends
on θ as in (3.2.18), therefore

σ(Λn) ≤ κnσ(Λ0) ≤ κnc2
0F

(3.3.4)

The Taylor residuals then converge to 0. Thanks to the `pm summability of the sequence
(cν)ν∈F , the decay rate of this convergence can be described using the cardinality of the
lower sets Λn.
Theorem 3.3.2

Under the assumptions of Theorem 3.1.1, the sets Λn generated by Algorithm 3.3.1
satisfies √

σ(Λn) ≤ C1‖(cν)‖`pm(F)(#(Λn) + 1)−s
∗
, s∗ :=

1

p
− 1

2
, (3.3.5)

where C1 only depends on (r, R, θ, s∗).

Proof : In order to prove (3.3.5), we first control the cardinality of the updated set Sn.
Let µ be the last element added to obtain Sn in the third step of algortithm 3.3.1 and
denote S = Sn−{µ}. On the one hand, by the optimality of Sn in the sense of (3.3.2),
we have e(S) < θe(Mn), therefore using the control inequality (3.2.17), we deduce

(1− θ)(1− δ)σ(Λn) ≤ (1− θ)e(Mn) < e(Mn)− e(S),

where δ is given in (3.2.17). One the other hand, S corresponds to the (#(Sn) − 1)
largest elements of cν(Mn). Therefore by Stechkin lemma 1.2.1 with p as in the
theorem and q = 2, we deduce

e(Mn)− e(S) =
∑

ν∈Mn\S

c2
ν ≤

∑
ν∈Mn\S

|cν(Mn)|2 ≤ ‖(cν)‖2`pm(F)(#(Sn))−2s∗ ,

with s∗ is as in the theorem. Combining the two inequalities, we deduce

#(Sn) ≤ Cσ(Λn)−1/(2s∗) with C := [(1− δ)(1− θ)]−
1

2s∗ ‖cν‖
1
s∗
`pm(F)

.

Now, from the contraction property (3.2.18), σ(Λn+1) ≤ κσ(Λn) with κ < 1 only
depending on θ, r and R, hence σ(Λn) ≤ κn−kσ(Λk) for any k ≤ n. Therefore

#(Λn) ≤ #(Λ0)+
n−1∑
k=0

#(Sk) ≤ 1+C
n−1∑
k=0

σ(Λk)
−1/(2s∗) ≤ 1+Cσ(Λn)−1/(2s∗)

n−1∑
k=0

κ
n−k
(2s∗) ≤ 1+C ′σ(Λn)−1/(2s∗),
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where C ′ := C κ
1

(2s∗)

1−κ
1

(2s∗)
. Since #(Λn) ≥ 2, the last inequality implies

√
σ(Λn) ≤ (C ′)s

∗
(#(Λn)− 1)−s

∗ ≤ (C ′)s
∗
(2(#(Λn) + 1))−s

∗
.

We complete the proof by remarking
(
C′

2

)s∗
= C1‖cν‖`pm(F) with

C1 :=

√
κ

2s∗(1− κ1/(2s∗))s∗
[(1− δ)(1− θ)]−1/2, (3.3.6)

Since κ = 1− θ(1− δ), then the quantity C1 only depends on r,R, θ and s∗.

We have shown that the sets Λn generated by the algorithm are near optimal in the
sense of (3.2.12). In view of the discussion given at the end of §3.2.2, they also drive
near optimal approximations of u in the sense of best n-term approximation by lower
sets (3.2.5) with constant (1 + C1)

√
R/r.

Although Algorithm 3.3.1 yields satisfactory convergence results, it can not be im-
plemented in practice. The reason is that the number of the new boundary value
problems to solve at each iteration is infinite. In the following section, we investigate
strategies for truncating the marginM of a lower set Λ into a finite restricted margins
N whose energy can still control the energy outside of Λ as in (3.2.17). This shall allow
us to modify Algorithm (3.3.1) to a more realistic algorithm and yet obtain the same
rate of the above theorem.

3.4 A realistic bulk chasing algorithm

We now want to modify Algorithm 3.3.1 in order to restrict the computation of the tν
to a finite subset ofMn. In view of the procedure used in the design of the algorithm,
the most natural way to truncate the margin M while preserving the bulk chasing
approach, consists in finding a finite set N that is lower inM and captures a fraction
of e(M) the energy ofM, say for example, half of the energy, i.e.

e(N ) ≥ e(M)

2
, (3.4.1)

then in view of (3.2.17)

σ(Λ) ≤ 2

1− δ
e(N ), (3.4.2)

yielding an energy control which is crucial for the analysis. From this point on, the
design of the bulk chase algorithm is similar to the one in the previous section up
to the replacement of the margins by the finite restricted margins. In particular, if in
Algorithm (3.3.1), we replace the marginsMn by restricted finite margins Nn satisfying
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e(Nn) ≥ 1
2
e(Mn), then using the proof of Theorem 3.3.2, one easily check that the

generated index sets Λn satisfy (3.3.5) with a constant C ′1 obtained from (3.3.6) with
1−δ

2
instead of 1− δ. As a consequence, these sets would then yield near optimal Taylor

series.

The energy of a given marginM can only be computed if all the Taylor coefficients
{tν}ν∈M are known. The determination of a restricted margin N requires then knowing
them all which is the primal obstruction we intend to avoid. One possible way to
overcome this problem consists in using a priori estimates of the energy e(M). For
example, by the same arguments of Lemma 3.2.4, we may obtain

e(M) ≤ 1− γ
2γ

e(Λ), (3.4.3)

for any monotone set Λ with margin M. Unfortunately, the previous bound is very
pessimistic for indices sets Λn that grows with n. Indeed, e(Mn) which is smaller
than σ(Λn) decrease to 0 while e(Λn) grows. One can also use a priori estimates on
Taylor coefficients obtained in Chapter 1 for this purpose. However, this requires the
computation of a large number of estimates which in addition may not be very sharp.
We propose to construct the restricted sets N using an incremental strategy.

In order to restrict the margins to finite subsets, we will introduce a procedure
SPARSE that has the following properties: if Λ is a finite lower set, M its infinite
margin and if (cν)ν∈Λ are known, then for any η > 0,

N := SPARSE(Λ, (cν)ν∈Λ, η), (3.4.4)

is a finite subset ofM which is lower inM and such that

e(M\N ) ≤ η. (3.4.5)

In view of the `p summability of the sequence (‖ψj‖L∞(D))j≥1, the size of the function
ψj for j large are negligible. Accordingly, incremental polynomials approximation of u
tend to not activate the corresponding variables yj in the first iterations. Consequently,
one natural way to construct a restricted, yet representative, margin of a given lower
set is by not advancing in the direction ej for j large. For a given integer J ≥ 1, we
introduce then the following definition of a restricted margin

NJ(Λ) := CJ(Λ)\Λ, CJ(Λ) :=
{
ν + ej : ν ∈ Λ, j ≤ J

}
. (3.4.6)

In view of the definition (3.2.16) of the margin M(Λ), clearly NJ(Λ) is a subset of
M(Λ). Moreover, it is easily checked that CJ(Λ) := Λ ∪ NJ(Λ) is lower, hence in
view of the equivalence (3.2.22) the set NJ(Λ) is lower in M(Λ). The set is of finite
cardinality with #(NJ) ≤ J#(Λ). Finally, we have
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Lemma 3.4.1

Let Λ be a lower set andM its margin. If J ≥ 0 is such that
∑

j>J ‖ψj‖L∞ ≤ 2γr η
e(Λ)

then with the above definition of NJ , one has

e(M\NJ) ≤ η. (3.4.7)

Proof : We proceed in a similar way to the proof of Lemma 3.2.4. First, using (3.2.14)
we write

(1 + γ)e(M\NJ) ≤
∑

ν∈M\NJ

( ∑
j:νj 6=0

dν−ej ,j

)
.

From the definition (3.2.16) of the marginM and the definition (3.4.6) of the reduced
margin NJ , we have

M\NJ =
{
µ+ ek : µ ∈ Λ, k > J

}
\Λ. (3.4.8)

Let ν ∈ M\NJ that we write ν = µ+ ek with µ ∈ Λ and k > J . For j 6= k such that
νj 6= 0, we have ν − ej = (µ − ej) + ek is a sum of (µ − ej) ∈ Λ, because Λ is lower,
and ek with k > J , therefore ν− ej belongs necessarily to Λ∪{M\NJ}. If j = k, then
ν − ej = µ ∈ Λ. We can then divide the sum in the the above inequality as

(1 + γ)e(M\NJ) ≤
∑

ν∈M\NJ

( ∑
j:νj 6=0,

ν−ej∈Λ

dν−ej ,j

)
+

∑
ν∈M\NJ

( ∑
j:νj 6=0,

ν−ej∈M\NJ

dν−ej ,j

)
.

Next we remark that ν ∈ M\NJ and ν − ej ∈ Λ implies necessarily j > J , because
otherwise we would have ν = (ν−ej)+ej belongs to NJ which contradicts ν ∈M\NJ .
In view of this remark and letting µ = ν − ej , the previous inequality implies

(1 + γ)e(M\N ) ≤
∑
µ∈Λ

∑
j>J

dµ,j +
∑

µ∈M\NJ

∑
j≥1

dµ,j .

Using (3.2.14), the last term in the right side is smaller than (1− γ)e(M\NJ). As for
the first, from the definition (3.2.13) of the quantities dµ,j , we infer∑

µ∈Λ

∑
j>J

dµ,j =
∑
µ∈Λ

∫
D

(∑
j>J

|ψj |
)
|∇tµ|2 ≤

∥∥∥∑
j>J

|ψj
a
|
∥∥∥
L∞
e(Λ).

We deduce then that

2γ e(M\NJ) ≤ e(Λ)
∥∥∥∑
j>J

|ψj
a
|
∥∥∥
L∞
≤ e(Λ)

r

∑
j>J

‖ψj‖L∞ , (3.4.9)

where we have used the uniform ellipticity assumption at y = 0 to get 0 < r ≤ a. The
proof is complete.
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The previous lemma does not implies that NJ captures directly a fraction of the
energy e(M). We propose an incremental strategy

(N , η) := OVERGROW(M, (cν)ν∈M, θ), (3.4.10)

which givingM the margin of Λ, output the value η and a restricted margin N such
that e(M\N ) ≤ η and captures at least a fraction θ of the energy e(M). For example,
using the restricted margin defined in (3.4.6), this can be done by incrementing J , and
accordingly growing NJ until we captures the desired fraction.
Algorithm 3.4.2

Let Λ be a lower set, M its margin, θ ∈]0, 1[ and η > 0. Let j = 0, then do the
following:

• Define ηj := 2−jη andMj := SPARSE(Λ, (cν)ν∈Λ, ηj);

• Compute tν and cν for ν ∈Mj and compute e(Mj);

• If e(Mj) <
2(2−θ)

1−θ ηj, then go directly to step j + 1;

• Else, terminate the loop in j, and output the setMj and the value ηj.

We have
e(Mj) ≥ θe(M) (3.4.11)

Proof : The previous loop always terminates. Indeed, ηj decrease to 0, while the energies
of the restricted margins e(Mj) increase. Let J the last integer in the previous loop.
One the one hand e(MJ) ≥ 2(2−θ)

1−θ ηJ , therefore

e(MJ) ≥ θe(MJ) + 2(2− θ)ηJ ≥ θe(MJ) + (2− θ)ηJ .

One the other hand e(M\MJ) ≤ ηJ , it follows that e(MJ) ≥ e(M)− ηJ , hence

e(MJ) ≥ θ(e(M)− ηJ) + (2− θ)ηJ ≥ θe(M) + 2(1− θ)ηJ ≥ θe(M),

which finishes the proof.

We now consider the following algorithm:
Algorithm 3.4.3

Let 0 < θ < 1. Define Λ0 := {0F}, compute t0F := u(0), c0F = ‖t0F ‖a and set
η0 = c0F . For the values n = 0, 1, · · ·, do the following

• Given that Λn has been defined and (tν)ν∈Λn have been computed, define
Mn =M(Λn).
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• Output the reduced margin (Mjn , ηjn) := OVERGROW(Mn, (cν)ν∈Mn , θ)
and define ηn+1 := ηjn .

• Define
cν(Mjn) := sup{cµ : µ ≥ ν and µ ∈Mjn},

and compute Sn , the smallest lower set in Mjn associated with the largest
cν(Mjn) such that

e(Sn) ≥ 1

2
e(Mjn);

• Set Λn+1 = Λn ∪ Sn and go to step n+ 1;

At every step of the algorithm, we have e(Mjn) ≥ θe(Mn), therefore in view of
(3.2.17)

σ(Λn) ≤ 1

θ(1− δ)
e(Mjn). (3.4.12)

Then considering the restricted margin Mjn instead of Mn preserve the key features
of the bulk chasing algorithm. By exactly the same proof of Theorem 3.3.2, yet with
θ(1− δ) instead of (1− δ) and 1

2
instead of θ, we can prove that the previous algorithm

yields satisfactory results. We have

Theorem 3.4.4
Under the assumptions of Theorem 3.1.1, the sets Λn generated by the previous
algorithm satisfy√

σ(Λn) ≤ C2‖(cν)‖`pm(F)(#(Λn) + 1)−s
∗
, s∗ :=

1

p
− 1

2
, (3.4.13)

where C2 only depends on (r, R, θ, t).

Although Algorithm 3.4.3 meets the benchmark of the optimal rate (3.2.12) under
the minimal assumptions of Theorem 3.1.1, a closer inspection shows that it is not
completely optimal from a computational point of view. Indeed, consider the number
B = B(ε) = Bn∗ of boundary value problems which have actually been solved in order
to compute the functions tν for ν in the final set Λ = Λ(ε) = Λn∗ . Ideally, we would
hope that this number is not much larger than the cardinality of Λ, so that we may
actually retrieve the convergence estimates (3.2.12) in terms of B instead of #(Λ).

However, the number B involves the size of the restricted margin which is produced
by the procedure SPARSE, and which might in principle be substantially larger than
the set that is finally selected by the bulk search. Retrieving the same convergence rate
in terms of B would actually require that when the accuracy η prescribed in SPARSE
is of the same order as the current accuracy σ(Λ), then the cardinality of the produced
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set N should be bounded by the optimal rate

#(N ) ≤ C‖(cν)‖1/s∗

`pm(F)
η−1/(2s∗). (3.4.14)

A brief inspection seems to indicate that only a lower rate is achieved by our SPARSE
procedure: on the one hand we know that

#(N ) ≤ J#(Λ),

and that the set Λ has its cardinality optimally controlled by η−1/(2s∗), and on the other
hand the number J that ensures (3.4.7) is of the order η−1/s where s = 1

p
− 1 = s∗ − 1

2
.

Therefore η−1/(2s∗) in (3.4.14) is a-priori replaced by the non-optimal rate η−1/(2(s∗)2−s∗)

In order to remedy this defect, one would need to design more elaborate realizations
of SPARSE in order to obtain a set N of smaller, hopefully optimal, cardinality. One
option that could lead to such a SPARSE procedure would be to make use of the
available a-priori bounds on the ‖tν‖V such as such as obtained in Chapter 1 in order
to control the energy outside of the set N . Another option for lowering the CPU
cost, which appears to work quite well in practice yet without a complete theoretical
justification, will be proposed in §3.6.

3.5 Space discretization

In practice, we set a target accuracy ε > 0 and design the bulk chase procedures in such
a way that the algorithm terminates when σ(Λn) ≤ ε. In this section, we analyse the
additional error which occurs due to finite element spatial discretization, and therefore
a relevant choice for ε is an estimated value of this additional error, such as given by
standard residual-based finite element error estimator.

The boundary value problems that recursively give the Taylor coefficients tν cannot
be solved exactly. Instead, we would use a Galerkin method in a finite dimensional
space Vh ⊂ V , typically a finite element space although this is not crucial in the present
analysis which would also apply to spectral or wavelet discretization. We shall show in
this section that it is possible to choose the same space Vh to approximate all tν and
still retain the performance of Algorithm 3.3.1 and Algorithm 3.4.3.

For the purpose of simplicity, we consider here the situation where the same spatial
discretization is used for all tν . However, the analysis in §8 of [34] reveals that sub-
stantial computational gain may be expected if the spatial discretization is allowed to
vary with ν (typically, coarser discretizations should be used for the computation of
smaller Taylor coefficients). The possibility of adaptively choosing the approximation
space parameter h depending on ν should also be explored but requires a more involved
analysis. A future objective is therefore to design a solution algorithm that adaptively
monitors the spatial resolution as new coefficients are being computed.
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We define the Finite Element approximation map y 7→ uh(y) ∈ Vh, with each uh(y)
solution to ∫

D

a(x, y)∇uh(y)∇wh =

∫
D

fvh ∀wh ∈ Vh . (3.5.1)

By assumption UEA(r, R), for any closed subspace Vh ⊂ V the Finite Element ap-
proximation is uniquely defined and the analysis in [34, 33], which is recalled also in
Chapter 1, and all results of the present analysis apply to the discretized problem.

In particular, for every h > 0, the Finite Element approximation uh(y) ∈ Vh can be
represented as a convergent Taylor expansion about y = 0, i.e.

uh(y) =
∑
ν∈F

tν,h y
ν , where tν,h :=

∂νuh(0)

ν!
∈ Vh. (3.5.2)

Moreover, similarly to the norms ‖tν‖V , the norms ‖tν,h‖V can be estimated by the
same bound (1.4.19) which use only the uniform ellipticity assumptions

‖tν,h‖V ≤ inf
0<δ<r

{‖f‖V ∗h
δ

inf{ρ−ν : ρ is δ-admissible}
}

(3.5.3)

This consequently leads to a result similar to Theorem 3.1.1.
Theorem 3.5.1

Under the assumptions of Theorem 3.1.1, the sequence (‖tν,h‖V )ν∈F belongs to
`pm(F). Moreover the norm ‖(‖tν,h‖V )‖`pm(F) is bounded independently of h.

The coefficients tν,h can be computed recursively by solving linear systems corre-
sponding to the space-discretized boundary value problems. Indeed, by differentiating
the variational formula (3.5.1) at y = 0, we obtain that the descretized Taylor coeffi-
cients tν,h ∈ Vh are the solution to the elliptic boundary value problems given in weak
form by: t0F ,h := uh(0) satisfies∫

D

a(x)∇t0F ,h(x)∇wh(x)dx =

∫
D

f(x)wh(x)dx, wh ∈ Vh, (3.5.4)

and the others coefficients satisfy the recursions∫
D

a(x)∇tν,h(x)∇wh(x)dx = −
∑
j:νj 6=0

∫
D

ψj(x)∇tν−ej ,h(x)∇wh(x)dx, wh ∈ Vh.

(3.5.5)
For the approximate Taylor coefficients, we introduce once more their energies as cν,h :=
‖tν,h‖a. We may define energies eh(Λ) and σh(Λ) associated with discretized Taylor
coefficients as in (3.2.9). We introduce the quantity

cν,h := ‖tν,h‖a =
(∫
D

a|∇tν,h|2
) 1

2
. (3.5.6)
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We introduce also the quantities dν,h,j as in (3.2.13). The lemmas 3.2.2 and 3.2.4 can
be proved for the discretized case exactly by the same arguments. Finally, algorithms
3.3.1 or 3.4.3 are given in a similar way, by simply replacing tν and cν by tν,h and cν,h
respectively. For these algorithms, we obtain the convergence results by the exact same
approach as without space discretization.
Theorem 3.5.2

Under the assumptions of Theorem 3.1.1, the application of each of the algorithms
3.3.1 or 3.4.3 in the space discretized setting yields a sequence of sets (Λn) that
satisfies √

σh(Λn) ≤ Ci‖(cν,h)‖`pm(F)(#(Λn) + 1)−s
∗
, s∗ :=

1

p
− 1

2
, (3.5.7)

where Ci = C1 or C2 are as in the continuous setting (depending on r, R, θ and on
s∗, but being independent of h). Consequently, we have in both cases∥∥∥uh−∑

ν∈Λn

tν,hy
ν
∥∥∥
V∞
≤
√
R

r
(1+Ci)‖(‖tν,h‖V )‖`pm(#(Λn)+1)−s, s =

1

p
−1, (3.5.8)

with i = 1 or 2.

The previous rate is near optimal in the sense of the benchmark rate (3.2.5). We
need only to study the quantity ‖u− uh‖V∞ . In particular, through the quantification
of the space discretization error. The well-known theory of finite elements tells us that
the rate of convergence of

‖u(y)− uh(y)‖V , (3.5.9)

in terms of the decay of h is controlled by the smoothness of u(y) in the scale of the Hs

Sobolev space and the order of the finite element spaces Vh which are employed. For
example, when using Lagrange finite elements of order k, we have for every y ∈ U

‖u(y)− uh(h)‖V ≤ Chr‖u(y)‖H1+r(D), (3.5.10)

for all r ≤ k. This leads to the following result.
Corollary 3.5.3

Under the assumptions of Theorem 3.1.1 and assuming that supy∈U ‖u(y)‖H1+r <∞
and that we use Lagrange finite elements of order k ≥ r, then applying Algorithms
3.3.1 or 3.4.3 in the space discretized setting, we obtain∥∥∥u(y)−

∑
ν∈Λn

tν,hy
ν
∥∥∥
V∞
≤ Chr sup

y∈U
‖u(y)‖H1+r(D)+

√
R

r
(1+Ci)‖(cν,h)‖`pm(F)(#(Λn)+1)−s.

(3.5.11)
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The largest value of r for which supy∈U ‖u(y)‖H1+r <∞ depends on many consideration:
the smoothness of the right hand side f , the smoothness of the diffusion coefficient a
and the smoothness of the boundary of the spacial domain D.

As an example, we assume that f ∈ L2(D) and the diffusion coefficients a(y) satisfy

sup
y∈U
‖a(·, y)‖W 1,∞(D) <∞. (3.5.12)

In view of the elliptic model (1.1.1), we have that the functions u(y) satisfy the Poisson
equation

−∆u(y) =
1

a

[
f −∇a · ∇u(y)

]
in D , u(y)|∂D = 0 . (3.5.13)

Therefore, for every y ∈ U the solution u(y) belongs to the space

W =
{
v ∈ V : ∆v ∈ L2(D)

}
. (3.5.14)

If the domain D is convex, it is well known W = H2(D) ∩ H1
0 (D). For more general

Lipschitz domains, it is also known that W = H1+r(D) ∩H1
0 (D) for some 1

2
≤ r ≤ 1.

We refer to [54] for a general treatment of elliptic problems on non-smooth domains.

In the numerical experiment section, we deal with coefficients a(x, y) which are
piecewise constant on a partition of D = [0, 1]2 into fixed sub-squares independent of
y. Such coefficients obviously do not satisfy (3.5.12), however regularity results are also
known in this setting and give that the solution u(y) belong to H1+r(D) ∩H1

0 (D) for
some 0 < r < 1

2
that depends on the maximal contrast R/r, see for example [11].

3.6 Alternative algorithms (d <∞)

Although the algorithms 3.3.1 and 3.4.3 can be implemented in practice, with the first
in the finite dimension, we have seen that both can be computationally expansive if
the margins or the restricted margins have considerable sizes. Since a given Taylor
coefficient is computed once and for all, then at every step n of these algorithms, the
number of the newly computed Taylor coefficients is

#
(
Mr(Λn) \Mr(Λn−1)

)
(3.6.1)

whereMr stand for the margin or restricted margin depending on the algorithm. We
recall that Λn = Λn−1 ∪ Sn−1. In view of the definition of the reduced margin (3.4.6),
it is readily seen that given Λ lower and S lower inM(Λ), that

Mr(Λ ∪ S) \Mr(Λ) :=
{
ν + ej : ν ∈ S, j ≤ J

}
\ S (3.6.2)
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It is obvious that the cardinality of this set is smaller than J#(S). It can be however
very large. It is then crucial to consider algorithms that allow the construction of lower
index sets Λn in moderate time in #(Λn). We propose some algorithms for the gen-
eration of the sets Λn of “active” Taylor coefficients. We consider many non-adaptive
strategies that are based on a-priori choices of the sets Λn, and two adaptive strategies
that exploit the results of earlier computations. For the sake of notational simplic-
ity, we describe these algorithms without the additional finite element discretization
error, therefore using the notation tν and cν . The adaptation of these stratetgies and
algorithms 3.3.1 and 3.4.3 to the finite element setting is straightforward and can be
examined as in the previous section.

In view of the previous works on the polynomial approximation of the elliptic model,
as discussed in the general introduction, it is of interest to first compare the approx-
imation based on Talyor series with other types of approximation, such as Neumann
series, Galerkin projection, interpolation...using as lower index sets those used for each
method. First, isotropic sets, namely the isotropic rectangular block, simplex and hy-
perbolic cross, i.e.

Bk :=
{
ν ∈ F : νj ≤ k

}
, Sk :=

{
ν ∈ F :

d∑
j=1

νj ≤ k
}
, Hk :=

{
ν ∈ F :

∏
j≥1

(νj+1) ≤ k
}
.

(3.6.3)
These sets are lower but of infinite cardinality for d =∞. They should only be consid-
ered in the first J coordinates for J a given finite integer or in the case d <∞ in which
F = Nd. In such case, we recall that the associated multi-variate polynomial spaces
PSk and PBk are respectively the space of polynomials of total degree at most k and of
polynomials of degree at most k in each variable. The dimensions of the polynomials
spaces are

#(Hk) ' k(log k)d−1 ≤ #(Sk) =

(
k + d

k

)
≤ #(Bk) = (k + 1)d. (3.6.4)

We observe that these dimensions grow exponentially with the dimension d of y, re-
flecting the curse of dimensionality. When used, even in a finite setting with d >> 1,
they should be considered only with few direction e1, . . . , eJ .

Anisotropic versions of the previous sets can be used in order to take into account
the anisotropy of the problem. adopting the notation in [7, 8, 69], yet with a slight
normalization difference, we let α = (αj)j≥1 be a sequence of strictly positive numbers
and then introduce the notations

Bk,α :=
{
ν : αjνj ≤ k

}
, Sk,α :=

{
ν :

d∑
j=1

αjνj ≤ k
}
, Hk,α :=

{
ν :
∏
j≥1

(νj+1)αj ≤ k
}
.

(3.6.5)



148 3.6. Alternative algorithms (d <∞)

The first set Bk,α define also a rectangular block Bµ := {ν : ν ≤ µ} where µ ∈ F is
defined by µj = b k

αj
c for every j. We observe that α = (1, 1, . . .) yields to the isotropic

setting.

In contrast to the isotropic sets, the anisotropic versions can be of finite cardinality
even in the case d = ∞. For instance, taking the values of αj relatively large for the
directions j > J , in the sense αj > k for the block and simplex or 2αj > k for the
cross, yields that the directions J + 1, J + 2, . . . are not activated in the index sets in
which case the latter are if considered in dimension d = J . Accordingly, the variables
yJ+1, yJ+2, . . . are inactive in the polynomial approximation. However, having (αj)j≥1

fixed and increasing the value of k, new directions are unlocked, with the new index set
at least doubling in cardinality, which also reflects the curse of dimensionality.

The parameter α should reflect the anisotropy of the problem: the smaller is the
dependance on the variable yj, the larger is the value of αj. For example, for the elliptic
model studied in this chapter, an intuitive choice can be given by

αj := ‖ψj‖−1
L∞(D), j ≥ 1. (3.6.6)

Since (‖ψj‖L∞(D))j≥1 ∈ `pm(F), then ‖ψj‖L∞(D) →j→∞ 0, so that approximations using
the anisotropic sets do not activate, for small values of k, the variables yj for j large.

The index sets described previously are all lower and known in advance. The com-
putation of the corresponding Taylor series is then linear in #(Λ). However, even in the
anisotropic case with α as above, the convergence may not be satisfactory. For instance
the previous choice of α might not capture coupling phenomena between the variables
yj. In the following, we propose algorithms that perform extra processing work, but
that hopefully yield to an acceleration of the convergence.

3.6.1 Largest estimates algorithm

The norms ‖tν‖V of Taylor coefficients were estimated in Chapter 1 by the bound
(1.4.19), which is given by

‖tν‖V ≤ hν := inf
0<δ<r

{‖f‖V ∗
δ

inf{ρ−ν : ρ is δ-admissible}
}

; (3.6.7)

with δ-admissibility is defined in (1.4.11). It can be then of interest to consider best
n-term sets associated with (hν)ν∈F for the truncation of Taylor series. Moreover, since
the sequence (hν)ν∈F is monotone decreasing, it is possible to choose best n-term sets
which are lower. The corresponding series will then yield approximations that are near
optimal in the sense of (3.2.5). For a discussion, we refer to formula (1.4.22).

The sequence of estimates is in general not easily computable, since it is obtained by
a double optimization problem. One simpler estimate can be obtained by eliminating
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the optimization on δ, for example taking simply δ = r
2
. Using the same notation hν ,

the new estimates are giving by

hν :=
2‖f‖V ∗

r
inf
{
ρ−ν : ρ is {r

2
}-admissible

}
, (3.6.8)

The new sequence (hν)ν∈F is also monotone decreasing since the ρj are by definition
greater that 1, see (1.4.11). Also, the inspection of the proof of Theorem 1.4.5 shows that
(hν)ν∈F belongs to `p(F). The sequence can then be used for best n-term approximation
as explained above. However, this sequence can be difficult to compute since it is also
obtained by optimization. We distinguish a particular case where the computation is
immediate then discuss the general case.

Piecewise constant diffusion coefficients

We consider a simple setting where a is constant equal to 1 and the functions ψj
have non-overlapping supports and are constant and have values bj > 0. The uniform
ellipticity assumption UEA(r, R) is here equivalent to maxj≥1(bj) < 1. We assume in
addition that the sequence (bj)j≥1 belongs to `p(F) for some p < 1.

The optimization problem giving hν has a simple solution since the numbers ρj
can be optimized separately. In view of the { r

2
}-admissibility condition according to

(1.4.11), it is easily checked that the optimization problem has a solution ρ∗ = (ρ∗j)j≥1

where
ρ∗j − 1 =

r − r
2

bj
, j ≥ 1, (3.6.9)

and therefore
hν :=

2‖f‖V ∗
r

∏
j≥1

( bj
bj + r

2

)νj
. (3.6.10)

Since the sequence (hν)ν∈F is monotone decreasing, the best n-term sets Λn associated
with the sequence (hν)ν∈F can be viewed as the set of those indices ν such that hν
exceeds a certain threshold t = t(n) > 0 that decreases with n, and are therefore of the
form

Λn :=

{
ν ∈ F :

∑
j≥1

αjνj ≤ Θ(n)

}
with αj := log

(bj + r
2

bj

)
and Θ(n) = log

(2‖f‖V ∗
t(n)r

)
.

(3.6.11)
Note that in finite dimensional setting (d <∞), if all bj (and therefore αj) were equal,
then this would give the same a-priori simplex choice Sk defined in (3.6.3). In our
case, the weight factors αj decrease with j, resulting in some anisotropy in the sets Λn.
Higher polynomial degrees are expected for small values of j which represent the most
“active” variables. We should note that the weights αj increase logarithmically in 1

bj
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which is different than the initial intuitive choice (3.6.6) where it seemed, in view of
the affine dependence a(y) = 1 +

∑
j yjbj, that the choice αj = 1

bj
is more judicious.

AJOUTER LA DESCRIPTION DE LA CONSTRUCTION DE L’ENSEMBLE

The general case

For a more general case, the computation of the values hν is not immediate. We show
here that one can rely on computable sequence, yet preserving the rate of best n-term
approximations.

First, we consider the setting where the number hν can be computed when needed
at a unit cost. We then consider Algorithm 1.5.2 introduced in Chapter 1, namely

• Set Λ1 := {0F}. For n ≥ 1 do;

• Λn has been defined, compute I1(Λn) := {ν 6∈ Λn : ν−ej ∈ Λn for any j such νj 6=
0};

• Get µn := argmaxµ∈I1(Λn)(hµ) and set Λn+1 := Λn ∪ {µn};

Although the immediate margin I1(Λ) of any lower set Λ is of infinite cardinality
(for d = ∞), the previous algorithm can be implemented in practice. One only needs
to have a full knowledge of the numbers hν for ν in I1({0F}) = {e1, e2, . . .} and has
them sorted. We give in the following a justification of this observation.

We introduce first the notation supp(Λ) for support of Λ, which is the set (of integer)
corresponding to all the directions activated by polynomial approximation in Λ, i.e.

supp(Λ) :=
⋃
ν∈Λ

supp(ν). (3.6.12)

We have the following lemma.
Lemma 3.6.1

Let Λ be a finite lower set, µ ∈ I1(Λ) and Λ′ = Λ∪{µ}. Then the set I1(Λ′)\I1(Λ)
is finite and of cardinality at most #(supp Λ) + 1.

Proof : It is easily checked that I1(Λ′) \ I1(Λ) ⊂ {µ+ ej : j ≥ 1}. This implies that

I1(Λ′) \ I1(Λ) ⊂ {µ+ ej : j ∈ supp(Λ′)},

Indeed, given j 6∈ supp(Λ′) and assuming for example µ1 6= 0, we have µ + ej − e1

is not supported in supp(Λ′) hence it is not in Λ′ which implies that µ + ej is not in
I1(Λ′). The set I1(Λ′)\I1(Λ) is then finite with cardinality smaller than #(supp Λ′) ≤
#(supp Λ) + 1.



Chapter 3: An adaptive algorithm for sparse Taylor approximations 151

Assuming the knowledge of all the values hej for j ≥ 1, the number of overall
boundary value problems resolutions needed to obtain a final set Λn∗ using the previous
algorithm then does not exceed

#(Λn∗) + #(supp(Λn∗)) + 1 ≤ 2#(Λn∗), (3.6.13)

hence the linearity in cost. In practice, assuming the knowledge of all the values
he1 , he2 , . . ., the algorithm can be executed as follows:

• Set Λ1 := {0F}, then S := I1(Λ1) = {e1, e2, . . .} and sort it in a decreasing order
comparing the values hν for ν ∈ S. For n ≥ 1 do;

• Λn has been defined. Compute the finite set I1(Λn) \ I1(Λn−1) and merge it with
S keeping the ordering;

• Get µn the first index in S and set Λn+1 = Λn ∪ {µn};

The algorithm might not be feasible since the numbers hν are sometime difficult to
compute. The inspection of the proof of Theorems 1.4.5 and 1.6.5 show that there exist
a computable sequence (qν)ν∈F which is monotone decreasing and in `p(F) and bounds
the sequence (hν)ν∈F . Indeed, we introduce the sequence b := (bj = ‖ψj‖L∞)j≥1 and let
J and κ defined by ∑

j>J

bj ≤
r

8e
, κ = 1 +

r

8‖b‖`1
(3.6.14)

We then define the sequence qν by q0F = 1, then for ν 6= 0F

qν = qE(ν)qF (ν), qE(ν) :=
∏

j≤J :νj 6=0

κ−νj , qF (ν) :=
∏

j>J :νj 6=0

(
e+

r/4

bj

νj
|νF |+ 1

)−νj
.

(3.6.15)
where |νF | =

∑
j≥J |νj| and qF (ν) is equal to 1 when ν is supported in {1, . . . , J}. By

the arguments used in the proof of Theorem 1.6.5, the sequence (qν)ν∈F is monotone
decreasing and belongs to `p(F). Moreover, we have

hν ≤
2‖f‖V ∗

r
qν , ν ∈ F . (3.6.16)

We can then use this computable sequence (qν)ν∈F with the algorithm above. However
we still need to address the problem of infinite cardinality of the first immediate margin
I1({0F}) = {e1, e2, . . .}.

From the definition of the sequence (qν)ν∈F , we have

qej = κ−1, j ≤ J and qej =
(
e+

r

8bj

)
κ−1, j > J (3.6.17)
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From this, one can compute all the values qej . However, one does not need to compute
them all at once. Indeed, since for any j > J

qej ≤
8

r
bj =

8

r
‖ψj‖L∞ →j→∞ 0, (3.6.18)

then one can first activate the directions e1, . . . , eJ and work in the finite dimensional
setting with J , then activates (unlock) progressively the remaining directions ej, j > J
whenever in the previous algorithm, the largest value in the sorted set S become smaller
than the estimate 8

r
‖ψj‖L∞ .

We should note that all the previous considerations are irrelevant in finite dimension.
However they can still be useful for reducing the numerical cost in the case where
d >> 1.

3.6.2 Largest neighbor algorithm

Since the previous algorithm yields near optimal approximation, yet using a relatively
simple greedy procedure, it is appealing to apply it directly with the Taylor energies.
We consider the following algorithm

• Set Λ1 := {0F}. For n ≥ 1 do;

• Λn has been defined, compute I1(Λn), the coefficients tν and their energies cν =
‖tν‖a for ν ∈ I1(Λn);

• Get νn+1 = argmaxν∈I1(Λn)(cν) and set Λn+1 = Λn ∪ {νn+1};

The intuition for considering such an algorithm is that if the sequence (cν)ν∈F were
monotone decreasing, then this would select the cν in decreasing order, yielding opti-
mality in (3.2.12). In comparison with the bulk chase algorithms 3.3.1 and 3.4.3, the
potential pay-off here is that the reduced margins I1(Λn) are much smaller thanMn =
M(Λn). In addition, as we already proved in Lemma 3.6.1, at most #(supp(Λn)) + 1
boundary value problems need to be solved at each step n. As we shall see in the nu-
merical results section, this strategy gives excellent results. However, unlike Algorithms
3.3.1 and 3.4.3, we have no theoretical justification that it should perform optimally in
the sense of convergence rates.

As explained in the previous section, the previous algorithm is feasible in infinite
dimension whenever we have full knowledge of the coefficient cej = ‖tej‖a for every
j ≥ 1 or of their decays. Since the Taylor coefficients satisfy recursive formulas (3.2.3),
we are able to retrieve a certain decay of the coefficients cej . We have for any j ≥ 1∫

D

a(x)∇tej(x)∇w(x) = −
∫
D

ψj(x)∇t0(x)∇w(x), w ∈ V. (3.6.19)
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Setting w = tej and using Cauchy-Schwartz inequality, we obtain that

cej ≤ c0F‖
ψj
a
‖L∞(D). (3.6.20)

Then as explained in the previous section, at step 1 we only compute the coefficients
tej and corresponding energies cej for values j = 1, . . . , J with J some integer and then
work as in dimension J . In the following steps n, we activate progressively the direction
ej for j > J whenever the greatest value in the reduced margin I1(Λn) is smaller than
the estimates c0F‖

ψj
a
‖L∞(D).

3.6.3 Largest neighbor estimate algorithm

In order to save further computational cost, we can use majorants of cν in order to
decide on the new set Λn+1. From (3.2.14), one straightforward upper estimate for cν
is

cν ≤ Eν :=
( 1

1 + γ

∑
j:νj 6=0

∥∥∥ψj
a

∥∥∥
L∞(D)

c2
ν−ej

) 1
2
, γ =

r

R
. (3.6.21)

One can then construct the new set Λn+1 as in the largest neighbour algorithm by using
the estimates Eν instead of cν . The saving comes from the fact that growing Λn into
Λn+1 does not require solving many boundary value problems. After each enrichment
step n, one only needs to compute tνn+1 and cνn+1 for the new added index νn+1 and then
go to step n+ 1. In particular, one merely solve J + #(Λn∗) boundary value problems
in order to output a final set Λn∗ where J is the number of directions e1, . . . , eJ one
choose to activate at step 1.

3.7 Numerical experiment

In this section, we study the numerical performance of the bulk chasing algorithms
described in this chapter. For such algorithms, the choice of Λn is made adaptively
and it is based on a bulk search procedure. We want to compare the effectiveness of
this procedure when compared with non-adaptive strategies or the adaptive alternative
strategies described in the previous section.

The algorithms that we analyzed in the previous sections were formulated in both
the case where d =∞ and d <∞. In the present numerical tests, we use a parameter
vector y = (yj)j=1,···,d, of dimension d that ranges up to 255. More precisely, we consider
on the unit square D := [0, 1]× [0, 1] the following problem,

−div(a∇u) = f in D, u = 0 on ∂D,
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where for illustration purposes we take f(x) = f(x1, x2) := x1x2. As to the diffusion
coefficient a(x, y) and the choice of the ψj we consider two different test cases.

Test 1: characteristic functions. We partition D into 64 (8 × 8) squares Dj of
equal shape and consider a diffusion coefficient that is piecewise constant on each sub-
domain:

a(x, y) = a(x) +
64∑
j=1

yjψj(x), where a = 1 and ψj = bjχDj . (3.7.1)

Since in this case the functions ψj have disjoint supports, the uniform ellipticity as-
sumption UEA(r, R) simply means that the weights bj = ‖ψj‖L∞(D) are all strictly
less than 1 − r for some number r ∈]0, 1[. To study the consistency of the numerical
results with our theory, we also require that the sequence αj has some decay, since in
the case of an infinite sequence we require that (‖ψj‖L∞(D))j≥1 is `p-summable for some
0 < p < 1. In our numerical test we take in (3.7.1)

bj =
0.9

j3
. (3.7.2)

The uniform ellipticity assumption UEA(r, R) therefore holds with r = 0.1 and R =
1.9. This test is not physically realistic: it corresponds to a diffusion which is un-
correlated between the different subdomains and with variability that strongly differs
between subdomains labelled by small and large values of j. Its main purpose is to
compare adaptive strategies with a non-adaptive one based on the estimates (3.6.7),
since these estimates can be explicitly computed for this test case as we explained in
Section 3.6.1.

Test 2: wavelets. For the same domain D = [0, 1] × [0, 1], we consider the bi-
dimensional Haar wavelet basis

hil,k(x) = hi(2lx− k), l ∈ N, k = (k1, k2) ∈ {0, . . . , 2l − 1}2, i = 1, 2, 3,

where the generating wavelets hi are defined by

h1(x1, x2) := ϕ(x1)h(x2), h2(x1, x2) := h(x1)ϕ(x2), h3(x1, x2) := h(x1)h(x2)
(3.7.3)

with
ϕ := χ[0,1] and h := χ[0,1/2[ − χ[1/2,1[ (3.7.4)

Any function in L2(D) has a unique expansion into the orthogonal basis composed of
all the above wavelets and of χD. We refer to [29] for a detailed treatment on wavelet
bases. We consider a diffusion coefficient of the form

a(x, y) := a(x) +
L∑
l=0

βl

3∑
i=1

∑
k∈{0,...,2l−1}2

yl,k,ih
i
l,k(x), (3.7.5)
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where L is a fixed integer representing the finest scale level, (βl)l=0,...,L a positive se-
quence and yl,k,i are the parametric variables ranging in [−1, 1]. As in Test 1, we take
a = 1.

With the above normalization ‖hil,k‖L∞ = 1, it is known that the wavelet coefficients
of a Cγ function decay like O(2−γl) as the scale level grows. The rate of decay of the
sequence βl therefore reflects the amount of smoothness (or correlation in the stochastic
context) in a. We consider the general form

βl := c2−γl c := 0.3
2γ − 1

1− 2−Lγ
, (3.7.6)

which ensures that the uniform ellipticity assumption UEA(r, R) holds with r = 0.1
and R = 1.9. In the numerical tests, we consider the two particular values

γ = 0.5 and γ = 3,

in order to compare the effect of low smoothness (short range correlation) and of high
smoothness (long range correlation) on the behaviour of our algorithms. Using the
relabelling

ψj := βlh
i
l,k and yj := yl,k,i, when j = 22l + 3(2lk1 + k2) + i− 1,

we may rewrite the above expansion (5.5.7) in the form a(x, y) := a(x) +
∑d

j=1 yjψj(x)
adopted in this paper, with

d := 22(L+1) − 1.

In order to study the robustness of the method to the dimensionality, we consider differ-
ent values L = 1, 2, 3 for the maximal scale, which corresponds to taking d = 15, 63, 255.
Note that after this relabelling, the sequence (‖ψj‖L∞)j≥0 decays like O(j−γ/2), and
therefore like O(j−1/4) and O(j−3/2) for γ = 0.5 and γ = 3 respectively.

As we considered in §3.5, we use one fixed finite element space for the spatial dis-
cretization of all the active Taylor coefficients. Therefore, for the different strategies of
building the coefficients sets Λn, we actually study the decay of Taylor expansion error
for the finite element solution∥∥∥uh −∑

ν∈Λn

tν,hy
ν
∥∥∥
V∞

:= sup
y∈U

∥∥∥uh(y)−
∑
ν∈Λn

tν,hy
ν
∥∥∥
V
, (3.7.7)

as #(Λn) grows, bearing in mind that the finite element discretization induces an ad-
ditional source of error supy∈U ‖u(y) − uh(y)‖V which can be bounded according to
(3.5.10).

We compare the three non-adaptive strategies (i) QN when Λk = Bk (ii) PN when
Λk = Sk where Bk and Sk are defined in (3.6.3), (ii) LE when are Λk generated by the
largest estimate algorithm described in Section 3.6.1, and the three adaptive strategies
(iv) BS when Λk generated by bulk chase algorithm (v) LN when Λk generated by
largest neighbour algorithm (vi) LNE when Λk generated by largest estimate neighbour
algorithm
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3.7.1 Numerical results for Test 1

We have compared the various strategies using 4 choices of finite element spaces based
on uniform triangulations of D obtained by splitting each element of a square mesh
into two triangles: (i) 8× 8 squares and P1 finite elements (dim(Vh) = 49), (ii) 16× 16
squares and P1 finite elements (dim(Vh) = 225) (iii) 16 × 16 squares and P2 finite
elements (dim(Vh) = 961), (iv) 32× 32 squares and P1 finite elements (dim(Vh) = 961).
We display on Figure 3.7.1 the error curves for the six strategies described above for
the generation of the sets Λn. These error curves represent the supremum error (3.7.7)
(estimated by taking the supremum over a random choice of 100 values of y) as a
function of #(Λn)). Note that for certain strategies, such as PN, QN and BS, the
number #(Λn) does not grow by 1 at each iteration and therefore only takes a few
integer values. In such cases, we obtain all intermediate values for the error curves by
filling the intermediates indices in Λn+1 \ Λn by lexicographic order.

We also indicate for each choice of finite element space an estimate of the FE error
supy∈U ‖u(y) − uh(y)‖V . This estimate is done by replacing u(y) by a finite element
solution on a very fine mesh obtained from 256×256 squares and taking the supremum
over the same random choice of 100 values of y.

We record three major observations about the error curves.

• First, not much difference in the error curves is observed as we modify the spatial
discretization, once it is finer than 8×8. In fact, a closer inspection also shows that
the sets Λn selected by the adaptive algorithms change very little as we modify
the spatial discretization. This suggests that the same sets and error curves would
be obtained if there were no spatial discretization at all, i.e. if we were computing
the tν by exactly solving the boundary value problems (3.2.3). In particular, the
portion of the error curves which is below the value of the finite element error
is still relevant to us, since this portion does not seem to change as this error is
diminished.

• Second, we observe that the adaptive strategies BS and LN outperform all non
adaptive strategies. They give almost identical error curves, which indicates that
the LN strategy is preferable since it is has lower computational cost. In contrast,
a loss in performance is observed if we instead use LNE. As to the non-adaptive
strategies, LE outperforms PN and QN which do not produce any anisotropy in
the coefficient sets. It is interesting to note that with 100 coefficients, the Taylor
approximation error of the adaptive strategies is dominated by the finite element
error, while it is still above it with 104 coefficients when using PN and QN.

• Finally, we observe a stagnation of order 10−9 in the supremum error. We in-
terpret this by the fact that our algorithm computes once and for all the Taylor
coefficients and that small numerical error resulting from linear system inversion
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Figure 3.7.1: Comparison the different strategies for finite element spaces (i) (upper
left), (ii) (upper right), (iii) (lower left) and (iv) (lower right).

accumulate in such computations. In turn the computed Taylor development
converges towards a limit which slightly differs from uh(y).

In order to obtain a fair comparison between the different algorithms, we also show
on Figure 3.7.2 their error curves in terms of the total number of boundary value
problems which have been solved, and which is a better reflection of the CPU time
(here we only consider the spatial discretization by 16× 16 squares P1 finite elements).
For non-adaptive strategies and for LNE, this number is the same as #(Λ), but it
exceeds it moderately for LN and more strongly for BS. In this new comparison, we
observe that the algorithm LN gives the best performance, followed by LNE and LE.

Since we have observed that the error curves and selected adaptive sets do not
depend much on the finite element space discretization, an interesting perspective for
gaining CPU time is to first use a coarse grid finite element space to find the adaptive
coefficients sets Λn. One may then use a finer grid for the computation of the coefficients
in such sets, therefore avoiding the overhead caused by solving more boundary value
problems than #(Λn) with the fine discretization. We may also use the coarse grid error
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Figure 3.7.2: Comparison of the different strategies in term of total number of solved
bvp

curves to estimate the number of Taylor coefficients that we need to compute with the
fine discretization in order to reach a prescribed accuracy.

Our analysis shows that we can set a stopping criterion for our adaptive algorithm
based on the accuracy of the Taylor approximation to uh(y): the algorithm terminates
at some step n such that

sup
y∈U
‖uh(y)−

∑
ν∈Λn

tν,hy
ν‖V ≤ ε, (3.7.8)

where ε > 0 is a prescribed tolerance. A natural choice is to take ε of the same order
as the finite element error

sup
y∈U
‖uh(y)− u(y)‖V . (3.7.9)

While this last quantity is not exactly known to us, it can be bounded according to
a-priori estimate (3.5.10) based on our knowledge of the maximal Sobolev smoothness
of u(y), or estimated in a finer way based on a-posteriori analysis.

In all three adaptive approaches, the specific choice of numbering coordinates yj
might influence the selection of the approximations once ties in certain quantities oc-
cur. In the present numerical experiments, the 64 coordinates were enumerated in
lexicographic order according to the location of the support of the ψj in D. We per-
formed the same experiments with several random reshufflings of the indexation (so
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that the most significant parameter yj does not appear as first coordinate) which ren-
dered indistinguishable results from the ones reported here; although this finding is, to
some extent, implementation dependent, it strongly suggests that the presented algo-
rithms will perform well also for more general parameter dependences, where the most
significant coordinate appears only in high dimension.

We also have investigated the convergence of the mean value solution ū = E(u) when
the yj are i.i.d. random variables which are uniformly distributed in [−1, 1]. Given a
Taylor approximation uΛ(y) :=

∑
ν∈Λ tνy

ν computed for a certain set Λ by one of the
proposed strategies, this mean value may thus be approximated by

ūΛ :=
∑
ν∈Λ

tνE(yν),

with

E(yν) =
d∏
j=1

E(y
νj
j ) =

d∏
j=1

( 1∫
−1

tνj
dt

2

)
=

d∏
j=1

1 + (−1)νj

2 + 2νj
.

We are ensured that the difference between the averages ū and ūΛ does not exceed the
supremum error in y between u(y) and uΛ(y) which was previously estimated for the
various methods. Since we do not know the exact value of ū for the computation of the
error, we replace it by the value ūΛ obtained with BS algorithm when #(Λ) = 10000,
which is thus accurate up to an error of order 10−10. This allows us to make the
comparison between performance of the various strategies for approximating ū by the
error curves in terms of the number of coefficients. In addition, we may compare
this with the accuracy of the Monte-Carlo method, which consists in computing the
empirical average

ūn :=
1

n

n∑
i=1

u(yi),

where y1, · · · , yn are independent random draws of the vector y. Since the MC method
requires solving n boundary value problems, we compare its performance to the previous
methods when the total number of solved boundary value problem is n, as n varies.
The results are displayed on Figure 3.7.3. For the MC method, we display the average
of the error curves for 6 independent realizations in order to illustrate the expected
error E(‖ū− ūn‖V ) rather than the error ‖ū− ūn‖V for a particular realization (which
is more oscillatory). The n−1/2 rate of decay of the MC method is clearly outperformed
by the Taylor approximation methods based on the adaptive selection of Λ, which is
rather striking in view of the large dimension d = 64. Note however, that in contrast
to the Taylor approximation method, the MC approach allows us to solve all boundary
value problems in parallel, however with a different stiffness matrix for each problem.
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Figure 3.7.3: Comparison of the different strategies with Monte Carlo method.

3.7.2 Numerical results for Test 2

For this test, we only display the comparison between Algorithms PN, QN, LE, BS and
LN, since we observed that the LNE algorithm does not perform as good as LN, similar
to Test 1. In contrast to Test 1, we cannot use the a-priori bound

hν :=
‖f‖V ∗
δ

inf{ρ−ν : ρ is δ-admissible}. (3.7.10)

with δ = r/2 = 0.05 to derive the choice of the active indices for the largest estimates
algorithm, since this optimization problem has no simply computable solution. We
therefore rely on sub-optimal bounds of the form

hν ≤ qν :=
2‖f‖V ∗

r
ρ−ν , (3.7.11)

where ρ = ρ(ν) is a particular sequence that is { r
2
}-admissible, which is chosen depend-

ing on ν, in contrast to Test 1. Our best results were obtained with the following choice
for ρ(ν):

ρj(ν) =
A(ν)

‖ψj‖L∞(D)

if νj 6= 0 and ρj(ν) = 0 if νj = 0, (3.7.12)
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where A(ν) is the largest positive number such that the result ρ(ν) is { r
2
}-admissible.

This number is thus defined in such a way that∥∥∥∥∥∥
∑

j s.t. νj 6=0

ρj(ν)|ψj|

∥∥∥∥∥∥
L∞

= 1− r

2
= 0.95.

The sets Λn chosen in Algorithm LE now correspond to the n largest qν .

Figure 3.7.4 displays the error curves in terms of the number of solved boundary
value problems, similar to Figure 3.7.2 for Test 1, for the two values γ = 0.5 and
γ = 3, and for different maximal scale level L = 1, 2, 3, corresponding to dimensions
d = 15, 63, 255. We record several observations about the error curves:

• In the low smoothness/correlation case γ = 0.5, Algorithms BS, LE and LN do
not perform significantly better than Algorithm PN which corresponds to the
standard choice of polynomials of fixed total degree. This can be explained by
the fact that, in this case, all ‖ψj‖L∞ have roughly the same range of magnitude
so that all variables yj are equally active. In turn, the active index sets selected
by BS, LE and LN are not highly anisotropic, and perform similar than those
of PN. In contrast, the high smoothness/correlation case γ = 3 highly benefits
from an anisotropic selection (higher degree tends to be allocated to the variables
associated to coarse scale wavelets), and in turn Algorithms BS, LE and LN
significantly outperform PN and QN.

• In the low smoothness/correlation case γ = 0.5, all algorithms are subject to
the curse of dimensionality in the sense that the error curves deteriorate as d
increases. This includes the adaptive algorithms, which is not in contradiction
with our theoretical results. Indeed, this value of γ corresponds to a decay in
O(j−1/4) for the sequence (‖ψj‖L∞)j≥0, which is therefore not `p summable for
any value p < 1. In contrast, the high smoothness/correlation case γ = 3 is
not subject to the curse of dimensionality when Algorithms LE and LN are being
used. Note that this value of γ corresponds to a decay in O(j−3/2) for the sequence
(‖ψj‖L∞)j≥0, which is therefore `p summable for p > 2/3.

• For both values of γ, Algorithms LN and LE gives the best performances, and
Algorithm BS is subject to the curse of dimensionality due to the cost of solving
boundary value problems for all indices in the marginMn.

• The error curves for Algorithm LN and BS start decreasing only after a certain
number of boundary value problems has been solved. This is simply due to the
fact that at the very first step, d boundary value problems have to be solved,
corresponding to the cardinality of the margin M0 of Λ0 = {0} (which at this
stage is the same as the reduced margin).
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Figure 3.7.4: Comparison the different strategies for for γ = 0.5 (left) and γ = 3 (right),
and different dimensionalities d = 15 (up), d = 63 (middle) and d = 255 (bottom).

In order to have an idea of the geometry of the coefficients sets Λ produced by the
different strategies, consider the projection on two variables j = 1, 5, associated to the
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first and second scale level l = 0, 1, i.e. the sets

{(ν1, ν5) : ν ∈ Λ}.

We compare these sets on Figure 3.7.5, when #(Λ) = 10000 for the strategies QN,
PN, LE and LN in the case γ = 3 and d = 63. As expected, the sets obtained for
the non-adaptive choices QN and PN do not reach a high degree due to the curse of
dimensionality: when d = 63 the dimension of the spaces PB1 of polynomials of degree at
most 1 in each variable and PS3 of total degree 3 clearly exceeds 10000 and therefore no
degree higher than 1 and 3 can be reached for any variable when using these two methods
respectively. In contrast, the adaptive strategies capture the anisotropic feature of the
problem and reach a higher polynomial degrees in the most active variable y1. We did
not plot the sets generated by BS which are quite similar to LN. Note however that their
geometry differs from that of the set generated by LE based on the a-priori estimates
qν .
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Figure 3.7.5: Comparison the index sets Λ with #(Λ) = 10000 projected on the com-
ponents (1, 5) for Algorithms QN (upper left), PN (upper right), LE (lower left) and
LN (lower right).
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3.8 Conclusion

In this chapter, we have introduced adaptive algorithms for sparse Taylor approximation
of parametric and stochastic PDEs. These algorithms have several remarkable features,
in particular:

(i) They build the polynomial expansion by solving a sequence of boundary value
problems (3.2.3) which all have the same stiffness matrix.

(ii) From a theoretical point of view, their convergence with respect to the polynomial
dimension can be proved to be near optimal.

This second property is reflected in the numerical tests. In contrast to other approaches
for selecting the active index sets, the algorithm does not use any information based on
a-priori analysis, and yet performs at least as good as when using such a-priori choices.

It is worth mentioning that this approach can be applied verbatim to other models,
such as a parabolic equation of the form

∂tu−div(a∇u) = f, in [0, T ]×D, u(x, 0) = u0(x), u(x, t) = 0, x ∈ ∂D, (3.8.1)

with a of the same parametric form as in this chapter and the functions ψj = ψj(x, t)
satisfying a similar condition as UEA(r, R). In that case, the solution space is V =
L2([0, T ], H1

0 (D)). However, let us stress that our approach is strongly tied to the affine
structure of a with respect to the parameter vector y, in contrast to other methods such
as collocation.

In the next chapter, we investigate the approximation in the mean square sense. We
have proved in chapter 1 that approximation of u by Legendre series truncated to their
best n-terms converge in this sense with the rate (n+ 1)−s

∗ with s∗ = 1
p
− 1

2
. Our goal

is then to retrieve this rate through practical algorithms.
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4.1 Introduction

In this chapter, we study the second intrusive method for the approximation of the
parametric elliptic model of Chapter 1. The model is given by the equation (1.1.1)
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where the diffusion coefficient a depends on the parameter y in an affine manner as
in (1.1.2) and satisfies the uniform ellipticity assumption UEA(r, R) given in (1.1.3).
In the present setting, y is a random vector with joint probability % and one is then
interested in approximating the solution map

y ∈ [−1, 1]N 7→ u(y) ∈ H1
0 (D), (4.1.1)

in the mean square sense, i.e. in the Bochner space

V2 := L2(U, V, d%), where U := [−1, 1]N and V := H1
0 (D). (4.1.2)

The diffusion coefficient a is a random field on a probability space (Ω,Σ, P ) over
L∞(D) (see, e.g., [61]) and the right hand side f is a given non random function on D.
In this model, the random parameter y := (yj)j≥1 is used to describe the uncertainty
in the diffusion coefficient a, through Karhunen-Loève expansion for example, see the
discussion in the general introduction.

Rather than striving for at most generality, we consider that the random variables
yj are independent and identically distributed with respect to the uniform measure in
[−1, 1]. Therefore %, the joint probability distribution of the random vector y, is the
uniform probably measure over U

d%(y) := ⊗j≥1
dyj
2
. (4.1.3)

Let us observe that

‖v‖V2 :=
(∫
U

‖v(y)‖2
V d%(y)

) 1
2

=
(∫
U

∫
D

|∇v(y)|2dxd%(y)
) 1

2
, (4.1.4)

induces on V2 the structure of a separable Hilbert space equipped with the inner product

〈v, w〉 :=

∫
U

∫
D

∇v(y)∇w(y)dxd%(y). (4.1.5)

As in chapter 3, we recall the theoretical approximation results of the solution map
u, which is here a random field over V , in the space V2. In chapter 1, it is shown that a
similar theorem of 3.1.1 holds with respect to tensor product Legendre expansions. We
state the result which is a benchmarks for Galerkin approximations discussed in this
chapter.

We use the same notations of the previous chapters. We consider F the (countable)
set of all sequences of nonnegative integers which are finitely supported. We consider
the Legendre expansions of the solution map u introduced in §1.2 of Chapter 1. Since
u ∈ V∞ ⊂ V2, it admits unique expansions

u(y) =
∑
ν∈F

vνLν =
∑
ν∈F

uνPν , (4.1.6)
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where
vν :=

∫
U

u(y)Lν(y)d%(y) ∈ V and uν := vν
∏
j≥1

√
1 + 2νj. (4.1.7)

The following theorem is the analog to Theorem 3.1.1 for Taylor expansions.
Theorem 4.1.1

If the sequence b := (‖ψj‖L∞)j≥1 belongs to `p(N) for some 0 < p < 1, then the
sequences (‖vν‖V )ν∈F and (‖uν‖V )ν∈F belongs to `pm(F).

Theorem 4.1.1 has certain implications on the approximation of the solution u in
the infinite and mean square senses by Legendre series. We denote by (ΛL

n)n≥1 and
(ΛP

n )n≥1 sequences of nested sets of indices ν ∈ F corresponding to the n largest values
of ‖vν‖V or ‖uν‖V respectively, We have the convergence estimate∥∥∥u−∑

ν∈ΛLn

vνLν

∥∥∥
V2

=
(∑
ν 6∈ΛLn

‖vν‖2
V

) 1
2 ≤

∥∥∥(‖vν‖V2)
∥∥∥
`p(F)

(n+ 1)−s
∗
, s∗ :=

1

p
− 1

2
. (4.1.8)

and ∥∥∥u− ∑
ν∈ΛPn

uνPν

∥∥∥
V∞
≤
∥∥∥(‖uν‖V )

∥∥∥
`p(F)

(n+ 1)−s, s :=
1

p
− 1. (4.1.9)

Considering rather the monotone envelopes of the sequences (‖vν‖V )ν∈F and (‖uν‖V )ν∈F ,
see the definition in (1.5.4), which are monotone decreasing, we can localize the best
n-term index sets to lower sets (by considering lower realizations, see Definiton 1.5.3),
yet preserving the same decay rate. Namely, if (ΛL∗

n )n≥1 and (ΛP∗
n )n≥1 are sequences of

nested lower sets associated with (‖vν‖V )ν∈F and (‖uν‖V )ν∈F , then∥∥∥u− ∑
ν∈ΛL∗n

vνLν

∥∥∥
V2

=
( ∑
ν 6∈ΛL∗n

‖vν‖2
V

) 1
2 ≤

∥∥∥(‖vν‖V2)
∥∥∥
`pm(F)

(n+ 1)−s
∗
, (4.1.10)

and ∥∥∥u− ∑
ν∈ΛP∗n

uνPν

∥∥∥
V∞
≤
∥∥∥(‖uν‖V )

∥∥∥
`pm(F)

(n+ 1)−s, (4.1.11)

with s and s∗ as above. We are able then to approximate simultaneously all the functions
of the solution manifold

M :=
{
u(y) ; y ∈ U

}
, (4.1.12)

at the cost of computing n coefficients uν ∈ V with the rate (n+ 1)−s which is as good
the rate one can get by truncated Taylor series. Moreover, Legendre series may also
provide approximation with the improved rate (n + 1)−s

∗ , s∗ = s + 1
2
, in the mean

square sense.

However, even if the index sets ΛL∗
n for example are known, the associated Legendre

series are computationally out of reach. Indeed, in contrast to Taylor coefficients, the
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affine dependance of the diffusion coefficient a on y does not yield a simple recursion
for the computation of Legendre coefficients. It is not even explicit how to compute the
Legendre coefficient

v0F :=

∫
U

u(y)d%(y) = E[u(y)], (4.1.13)

associated with the polynomial L0F ≡ 1.The rates in (4.1.8), (4.1.10), (4.1.9) and
(4.1.11) should then only be considered as benchmark rates. Near optimal computable
approximations are to be investigated. We focus our efforts in this direction in the sense
of (4.1.8) and (4.1.10) since we already have satisfactory results for approximations in
the sense of (4.1.9) and (4.1.11) by computable Taylor series. In others words, we
only target the approximation of the solution map u in the mean square sense with
convergence rate (n+ 1)−s

∗ .

The goal in this chapter is to give concrete algorithms that adaptively build near
optimal sequences (Λk)k≥0, at costs that scales linearly in #(Λk), and corresponding
Galerkin projection uΛk ∈ VΛk = V ⊗PΛk which converge toward u with a rate (n+1)−s

∗

where n = n(k) = #(Λk). The techniques developed for this purpose are, as in Chapter
3, the adaptive strategies for wavelet methods [30, 31, 49] or for finite element methods
[46, 67, 13, 78]. In particular, we use a bulk chasing procedure in order to build the set
Λk+1 knowing the set Λk.

The outline of this chapter is similar to that of Chapter 3. We first simplify the
problem into a residual reduction problem meeting to some extent the framework in-
vestigated in [30, 31, 49], then we show, as in Chapter 3, that the affine parametric
dependence (1.1.2) has numerically useful implications on the reduction of the residuals,
and finally propose algorithms that exploit such implications and yield near optimal
convergence. As in Chapter 3, we discuss the feasibility of the algorithms in the infinite
dimension setting d =∞ and the effects of numerical discretization.

In §4.2, using Legendre polynomials we show that the problem can be reformulated
in the more convenient problem of finding near optimal Galerkin projection associated
to an infinite system

Au = f , (4.1.14)
where A is an infinite matrix of operators from V into V ∗ and u and f are merely the
vectors of Legendre coefficients of the solution map u and the source term f in the
Legendre basis. We then establish some properties of the matrix A which are necessary
to the analysis of the bulk chasing algorithm discussed later. We should note however,
that unlike in [30, 31, 49] where A is an infinite real matrix which exhibits a fast decay
away from its diagonal, hereA is a matrix of operators which we can explicitly compute.
However the key points of the analysis are the same.

In §4.3, We show that the residual rΛ associated with a Galerkin projection uΛ

associated with (4.1.14) and an index set Λ ⊂ F is supported in a neighbourhood of Λ
which, in the case where Λ is lower, coincides with the marginM(Λ) of Λ, defined in
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Chapter 3. Using this property, we show how the residual can be reduced by growing
Λ in the mentioned neighbourhood. Then, using the `p(F) summability of Legendre
coefficients, we show that the cardinality of the enriching set can be controlled, leading
as in Chapter 3 to provable convergence results. Finally, using the stronger `pm(F)
summability of Legendre coefficients, we show that all the previous results can be
localized to lower sets.

Based on the reduction and cardinality controlability results found in §4.3, we pro-
pose in §4.4 two adaptive algorithms and prove that the index sets Λk generated by
the algorithms are near optimal in the sense of (4.1.8) and (4.1.10). In other words,
the associated Galekin projections converge toward u in the mean square sense with
the optimal rate (n + 1)−s

∗ with n = n(k) = #(Λk). As in Chapter 3, the algorithms
studied can not be implemented in the infinite dimension setting and are costly in the
setting d >> 1.

In §4.5, we remedy this defect by introducing a second algorithm which operates at
step k the bulk search on restricted neighbourhoods of Λk obtained incrementally and
which are of moderate cardinality even in the case d = ∞. We prove that this new
realistic algorithm generates also index sets that are near optimal in the sense of (4.1.8)
and (4.1.10).

In §4.6, we study the additional error which is induced on the approximation of the
map y 7→ u(y) by the spatial discretization when solving the boundary value problems
on D, for example by a finite element method on D. We prove that the additional
error introduced by the finite element discretization is independent of the number of
computed value problems.

Unlike Chapter 3 where Taylor series are computed exactly (or with controlled
discretization error) once an index set Λ is considered, the Galerkin projections can
only be approximated. We show in §4.7 that this can be done to any accuracy by
an iterative Jacobi method and then propose a bulk chasing algorithm that takes into
account this limitation, yet converges with a similar rate as the idealized algorithms.

In §4.8, we show that Galerkin projection can also be used to approximate the
solution map u in the uniform sense. Using a growth result on certain quadratic sum of
Legendre polynomials infinite norms, we show that the rate of convergence of Galerkin
projections using lower sets is at worse deteriorated by (n+ 1) when the uniform sense
is considered.
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4.2 Galerkin Approximations

4.2.1 Weak formulation

The solution map u belongs to V2 and can be defined as the unique solution of the
variational problem

B(u, v) = L(v), v ∈ V2, (4.2.1)

where we have defined the bilinear form B over V2 × V2 and the linear form L over V2

by

B(w, v) :=

∫
U

∫
D

a(x, y)∇w(x, y)·∇v(x, y)dxd%(y), L(v) :=

∫
U

∫
D

f(x)v(x, y)dxd%(y).

(4.2.2)
The integrals over D are understood as extensions by continuity from L2(D) × L2(D)
to duality pairings between V ∗ and V . The bilinear form B is clearly symmetric.
Moreover, the uniform ellipticity assumption UEA(r, R) implies that B is coercive and
continuous. We denote by ‖ · ‖E the norm induced by B on V2, i.e.

‖v‖E :=
√
B(v, v), v ∈ V2. (4.2.3)

This norm is then equivalent to the norm ‖ · ‖V2 with
√
r‖v‖V2 ≤ ‖v‖E ≤

√
R‖v‖V2 , v ∈ V2. (4.2.4)

For any index set Λ ⊂ F , we define the polynomials space

VΛ(L) :=

{∑
ν∈Λ

vνLν : vν ∈ V

}
= V ⊗ span

{
Lν , ν ∈ Λ

}
, (4.2.5)

It readily seen that this space coincides with the polynomials space VΛ := V ⊗ PΛ if
Λ is lower. Since we shall only work with Legendre polynomials and for the sake of
notational clearness, even when Λ is not lower, we drop L from the notation VΛ(L) .
We denote

uΛ :=
∑
ν∈Λ

uΛ,νLν ∈ VΛ (4.2.6)

the Galerkin approximation of u in the space VΛ with respect to the weak formulation
(4.2.1), i.e. the unique solution to the variational problem

B(uΛ, vΛ) = L(vΛ), vΛ ∈ VΛ. (4.2.7)

The computation of the Galerkin approximation requires a spacial discretization on the
space variable x. We postpone this discussion to §4.6 and focus our analysis on the
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approximation properties in y. First, the Galerkin approximation uΛ is the projection
of u with respect to the norm ‖ · ‖E, hence it is optimal in the sense

‖u− uΛ‖E ≤ inf
vΛ∈VΛ

‖u− vΛ‖E. (4.2.8)

The norm equivalency inequality (4.2.4) implies

‖u− uΛ‖V2 ≤
√
R

r
inf

vΛ∈VΛ

‖u− vΛ‖V2 =

√
R

r

∥∥∥u−∑
ν∈Λ

uνLν

∥∥∥
V2

. (4.2.9)

This shows that Galerkin approximations can provide approximations to u with similar
rates to Legendre series, up to a multiplicative constant factor

√
R
r
. In particular, the

Galerkin approximations uΛLn
and uΛL∗n

where the sequences (ΛL
n)k≥1 and (ΛL∗

n )k≥1 are
used in (4.1.8) and (4.1.10) are near optimal in the sense of the best n-term approxi-
mation. Unfortunately the construction of the sequences (ΛL

k )k≥1 and (ΛL∗
k )k≥1 suppose

the full knowledge of the sequence (‖vν‖V )ν∈F , which is the primary obstruction we
intend to avoid. To overcome this drawback, we will rely on adaptive algorithms in the
construction of the Galerkin approximations.

4.2.2 Sequence Space Reformulation

We introduceA the linear operator form V2 = L(U, V, d%) into its dual V∗2 that associates
to each v, Av defined by

〈Av, w〉 = B(v, w), w ∈ V2, (4.2.10)

where the scalar product 〈·, ·〉 is the duality pairing between V∗2 and V2. The operator
A is bounded and invertible. Now, since f ∈ V ∗ ⊂ V∗2 , then the variational problem
(4.2.1) satisfied by u is equivalent to 〈Au, v〉 = 〈f, v〉 for every v ∈ V2 or equivalently

Au = f in V∗2 . (4.2.11)

We are interested in representing the previous system in the Legendre basis (Lν)ν∈F .
To this end, we introduce the Hilbert space

`2(F , V ) :=
{
w := (wν)ν∈F ∈ V F : ‖w‖2

`2(F ,V ) :=
∑
ν∈F

‖wν‖2
V <∞

}
, (4.2.12)

with the inner product induced by ‖ · ‖`2(F ,V ) defined in the obvious way. Since the
family (Lν)ν∈F is an orthonormal basis of V2, we may define an isometry between the
Hilbert spaces V2 and `2(F , V ) that associates to each w ∈ V2, the vector indexed by
F of its Legendre coefficients w := (wν)ν∈F ∈ `2(F , V ). Now, we introduce the space

`2(F , V ∗) := {W := (Wν)ν∈F ∈ V ∗F : ‖W‖2
`2(F ,V ∗) :=

∑
ν∈F

‖Wν‖2
V ∗ <∞}, (4.2.13)
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Since V∗2 = (L2(U, V, d%))∗ ' L2(U, V ∗, d%), we may also define in the same way an
isometry between the Hilbert space V∗2 and `2(F , V ∗). To be consistent with the no-
tation of the elements of the space `2(F , V ∗), we introduce the sequence u = (uν :=
vν)ν∈F ∈ `2(F , V ∗) for the vector of Legendre coefficients of the solution maps u. We
finally introduce the operator A defined from `2(F , V ) into `2(F , V ∗) ' (`2(F , V ))∗ by

〈Av,w〉 = 〈Av, w〉, v, w ∈ V2. (4.2.14)

where v,w ∈ `2(F , V ) the images of v, w by the isometry. The first duality product is
defined by

〈W,w〉 =
∑
ν∈F

〈Wν ,wν〉V ∗,V , W ∈ `2(F , V ∗), w ∈ `2(F , V ). (4.2.15)

We associate to f considered as an element in V∗2 ' L2(U, V ∗, d%), the vector f ∈
`2(F , V ∗). The system (4.2.11) is then equivalent to, the vector u, repressing the
solution map u, is solution of

Au = f in `2(F , V ∗). (4.2.16)

The operator A inherits the properties of the operator A and is then symmetric,
bounded and definite positive. By linearity,A can also be seen as a bi-infinite symmetric
matrix (Aνν′)ν,ν′∈F of bounded, linear operators Aνν′ ∈ L(V, V ∗) which are given as
Riesz’s representers

〈Aνν′w,w
′〉V ∗,V = B(w ⊗ Lν , w′ ⊗ Lν′) w,w′ ∈ V, ν, ν ′ ∈ F . (4.2.17)

The infinite vector f can also be defined by its coordinates which satisfies

〈fν , w〉V ∗,V = L(w ⊗ Lν), w ∈ V, ν ∈ F . (4.2.18)

Let us remark that fν = 0 for any ν 6= 0F . Indeed, for any such index, given w ∈ V

L(w ⊗ Lν) =

∫
U

∫
D

f(x)w(x)Lν(y)dxd%(y) =

∫
U

f(x)w(x)dx

∫
D

Lν(y)d%(y) = 0,

(4.2.19)
because Lν is orthogonal to L0F ≡ 1 with respect to the measure %. In the sequel, we
only work with the system (4.2.16) and consider A as an infinite matrix of operators.
Using the isometry between V2 and `2(F , V ), we equip the latter with the norm ‖ · ‖E
defined by

‖w‖E :=
√
〈Aw,w〉, w ∈ `2(F , V ). (4.2.20)

This notation is justified by ‖w‖E = ‖w‖E where w ∈ V2 and w its image by the
isometry.
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The primary objective of building adaptively Galerkin approximations uΛ that are
near optimal in the sense of (4.1.8) and (4.1.10) amount to building Galerkin projections
uΛ with respect to the formulation (4.2.16), that convergence to u the solution of the
system (4.2.16) with the prescribed rates of (4.1.8) and (4.1.10).

Given a set of indices Λ ⊂ F , we introduce the space

`2(Λ, V ) :=
{
v ∈ `2(F , V ) : vν = 0 for ν 6∈ Λ

}
. (4.2.21)

The use of `2 in the previous notation is justified by, v ∈ `2(F , V ) is supported in Λ
implies

∑
ν∈Λ ‖vν‖2

V = ‖v‖`2(F ,V ) <∞.

We introduce the notation supp(v) for the support of a vector v ∈ `2(F , V ), so that
if v ∈ `2(Λ, V ), we have necessarily supp(v) ⊂ Λ. We can now define the Galerkin
projections associated with the system (4.2.16) as follows: uΛ is the unique element in
`2(Λ, V ) such that

〈AuΛ,vΛ〉 = 〈f ,vΛ〉, vΛ ∈ `2(Λ, V ), (4.2.22)

4.2.3 Properties of the operator A

Following the methodology of [30, 31, 49], we investigate in the present section the
properties of the matrix A, namely the decay of its entries Aν,ν′ and the norms that are
related to it. We give in the next lemma, the explicit formulas of the operators Aν,ν′ ,
and then examine the norm related to A.
Lemma 4.2.1

For any ν, ν ′ ∈ F and any w,w′ ∈ V , we have

〈Aνν′w,w
′〉V ∗,V =



∫
ā∇w∇w′ if ν ′ = ν,

βνj

∫
ψj∇w∇w′ if ν ′ = ν + ej,

βνj−1

∫
ψj∇w∇w′ if ν ′ = ν − ej,

0 otherwise,

(4.2.23)

where the integrals are over D and βn = n+1√
2n+3

√
2n+1

for any n ≥ 0.

Proof : The univariate Legendre polynomials (Pn)n≥0 satisfy the Bonnet recursion for-
mula

P0 = 1, P1 = X and (n+ 1)Pn+1 = (2n+ 1)XPn − nPn−1, n ≥ 1,

As a consequence, the univariate Legendre polynomials (Ln)n≥0 satisfy the recursion

L0 = 1, L1 =
√

3X and
n+ 1√
2n+ 3

Ln+1 =
2n+ 1√
2n+ 1

XLn −
n√

2n− 1
Ln−1, n ≥ 1.
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Therefore, one has

tLn(t) = βnLn+1(t) + βn−1Ln−1(t), n ≥ 1, t ∈ Γ,

where the βj are defined as in the lemma. The orthonormality of the Legendre polyno-
mials (Ln)n≥0 with respect to the measure dt

2 combined with previous recursion yields
that for any (n,m) ∈ N2 − {(0, 0)}

1∫
−1

tLn(t)Lm(t)
dt

2
=


βn if m = n+ 1,

βn−1 if m = n− 1,

0 otherwise.

Rematk that the identity also holds for n = m = 0. Therefore, the tensorized Legendre
polynomials (Lν)ν∈F satisfies

∫
U

yjLν(y)Lν′(y)d%(y) =

1∫
−1

tLνj (t)Lν′j (t)
dt

2

∏
i≥1
i6=j

1∫
−1

Lνi(t)Lν′i(t)
dt

2
=


βνj if ν ′ = ν + ej ,

βνj−1 if ν ′ = ν − ej ,
0 otherwise.

(4.2.24)
Now given w,w′ ∈ V , we have

〈Aνν′w,w
′〉V ∗,V = B(w⊗Lν , w′⊗Lν′) =

∫
D

[∫
U

a(x, y)Lν(y)Lν′(y)dµ(y)
]
∇w(x)·∇w′(x)dx.

From the affine dependance of a on y, we infer∫
U

a(x, y)Lν(y)Lν′(y)d%(y) = ā(x)

∫
U

Lν(y)Lν′(y)d%(y)+
∑
j≥1

ψj(x)

∫
U

yjLν(y)Lν′(y)d%(y),

which in view of (4.2.24) implies

∫
U

a(x, y)Lν(y)Lν′(y)dµ(y) =


ā(x) if ν ′ = ν,

βνjψj(x) if ν ′ = ν + ej ,

βνj−1ψj(x) if ν ′ = ν − ej ,
0 otherwise,

The proof is then complete.

The previous sparsity result has an interesting implication on the inner product
defined by A. In the previous chapter, we introduced the notion of margin M(Λ) of
a lower set Λ in Definition 3.2.3 as the indices ν 6∈ Λ such that ν − ej ∈ Λ for some
j ≥ 1. For the purpose of the present analysis, we modify slightly the definition and
generalize it to arbitrary subset F .



Chapter 4: An adaptive algorithm for sparse Galerkin approximations 175

Definition 4.2.2

Given an index set Λ ⊂ F , we define its marginM :=M(Λ) as follows:

M(Λ) :=
{
ν /∈ Λ ; ∃j > 0 : ν− ej ∈ Λ

}
∪
{
ν /∈ Λ ; ∃j > 0 : ν+ ej ∈ Λ

}
(4.2.25)

where ej ∈ F is the Kronecker sequence: (ej)i = δij for i, j ∈ N.

This definition coincides with the definition (3.2.3) for a lower set Λ because for
such sets if ν 6∈ Λ, then necessarily for any j, ν + ej 6∈ Λ. Now given Λ arbitrary, ν ∈ Λ
and ν ′ 6∈ Λ ∪M(Λ), we have necessarily ν ′ 6= ν and ν 6= ν ′ ± ej for any j ≥ 1. In view
of Lemma 4.2.1, this implies

Aνν′ = 0, ν ∈ Λ, ν ′ 6∈ Λ ∪M(Λ). (4.2.26)

The previous identity implies in particular the following useful result.
Lemma 4.2.3

Let Λ be a non empty subset of F , M the margin of Λ and v, w two vector in
`2(F , V ) such that v is supported in Λ and w is supported in F \ {Λ ∪M}, then

〈Av,w〉 = 0. (4.2.27)

The definition of the margin (3.2.3) in the previous chapter was motivated by the
recursive relations relating Taylor coefficients tν to the coefficients tν−ej , which then is
used to establish the energy reduction properties in Lemma 3.2.4. Here the modified
definition is motivated by the sparsity of the matrix A which will also be used for
residual energy reduction. Both definitions are consequences of the affine dependance
of the diffusion coefficient a on the parameter y. In a more general case where a is a
polynomials in y, the definition of the margin should be modified accordingly.

For the sake of our analysis, we need to give further properties of the matrix A, or
more precisely, the different norms related to A. For notational convenience, as we have
denoted by ‖ · ‖E both the norm over V2 defined in (4.2.3) and the norm over `2(F , V )
defined in (4.2.20), we simply denote ‖ · ‖ the norms of the Hilbert spaces V2 and
`2(F , V ). Using the same notation every time is justified by the equality of each norm
and its counterpart for vectors (vν)ν∈F ∈ `2(F , V ) and functions v =

∑
ν∈F vνLν ∈ V2.

In particular, since the norms ‖ ·‖ and ‖ ·‖E are equivalent over V2 according to (4.2.4),
then theirs counterpart over `2(F , V ) are also equivalent

√
r‖v‖ ≤ ‖v‖E ≤

√
R‖v‖, v ∈ `2(F , V ). (4.2.28)

In order to have a notation that is compatible with [30, 31, 49], we denote by ‖ · ‖S
instead of ‖ · ‖`2(F ,V ∗) the norm over `2(F , V ∗). We have that `2(F , V ∗) ' (`2(F , V ))∗



176 4.2. Galerkin Approximations

and it can be easily checked by Cauchy-schwartz inequality that

‖g‖S = sup
‖v‖=1

|〈g,v〉|, g ∈ `2(F , V ∗). (4.2.29)

where 〈·, ·〉 is the duality pairing defined in (4.2.15). As for the two other norms, we
also denote if needed by ‖ · ‖S the norm over V∗2 . For operators defined from `2(F , V )
into `2(F , V ∗), such as A, we use the same notation ‖ · ‖S to define the spectral norm

‖A‖S := sup
‖v‖=1

‖Av‖S = sup
‖v‖=1
‖w‖=1

|〈Av,w〉|. (4.2.30)

Similarily, for operator defined from `2(F , V ∗) into `2(F , V ), such as A−1, we define
the following norm

‖A−1‖S = sup
g∈`2(F,V ∗)
‖g‖S=1

‖A−1g‖. (4.2.31)

The following lemmas gives results on the different equivalencies involving the defined
norms
Lemma 4.2.4

For any v ∈ `2(F ;V ) and g ∈ `2(F ;V ∗), it holds

r‖v‖ ≤ ‖Av‖S ≤ R‖v‖, (4.2.32)

R−1‖g‖S ≤ ‖A−1g‖ ≤ r−1‖g‖S. (4.2.33)

Consequently, the condition number κ(A) := ‖A‖S‖A−1‖S of A satisfies

κ(A) ≤ R

r
. (4.2.34)

Proof : Let v ∈ `2(F , V ). On the one hand, the assumption UEA(r,R) implies

r‖v‖2 ≤ |〈Av,v〉| ≤ ‖Av‖S‖v‖,

which gives the first inequality in 4.2.32. On the other hand, by Cauchy Schwartz
formula and (4.2.28), we have for any w ∈ `2(F , V )

|〈Av,w〉| ≤ |〈Av,v〉| · |〈Aw,w〉| ≤ R‖v‖‖w‖,

which implies, using the definition (4.2.29), the second inequality in (4.2.32). The
inequalities (4.2.33) and (4.2.34) are straightforward applications of (4.2.32) withA−1g
instead of v.
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Lemma 4.2.5

For any v ∈ `2(F ;V ),
√
r‖v‖E ≤ ‖A−1‖−1/2

S ‖v‖E ≤ ‖Av‖S ≤ ‖A‖1/2
S ‖v‖E ≤

√
R‖v‖E (4.2.35)

Proof : Let us first remark that

‖v‖E ≤
√
‖A‖S‖v‖, v ∈ `2(F , V ). (4.2.36)

Indeed, for v ∈ `2(F , V ), we have ‖v‖2E = |〈Av,v〉| ≤ ‖Av‖S‖v‖ ≤ ‖A‖S‖v‖2. Now,
the Cauchy-Schwartz formula applied with the scalar product 〈A·, ·〉 yields

|〈Av,w〉| ≤ ‖v‖E‖w‖E , v,w ∈ `2(F , V ).

This combined with the inequalities (4.2.36) and (4.2.32) implies

|〈Av,w〉| ≤ ‖v‖E
√
‖A‖S‖w‖ ≤ ‖v‖E

√
R‖w‖,

which implies the two last inequalities in (4.2.35). As for the two first inequalities, since
A is a isomorphism from `2(F , V ) into `2(F , V ∗), then proving them is equivalent to
prove that for any g ∈ `2(F , V ∗)

√
r‖A−1g‖E ≤ ‖A−1‖−1/2

S ‖A−1g‖E ≤ ‖g‖S ,

or equivalently
‖A−1g‖E ≤

√
‖A−1‖S‖g‖S ≤

√
r−1‖g‖S .

The second part in the last inequality is a straightforward application of (4.2.33). Now,
giving g ∈ `2(F , V ∗), we have by the definition of ‖ · ‖E

‖A−1g‖2E = |〈g,A−1g〉| ≤ ‖g‖S‖A−1g‖ ≤ ‖g‖S‖A−1‖S‖g‖S ,

which implies the first part in (4.2.3).

Having established these interesting properties of the operator A and related norms,
we have now the necessary tools for adjusting the techniques of adaptive wavelet meth-
ods studied in [30, 31, 49] to the present setting. To start, given Λ an index set and uΛ

the Galerkin projection in `2(Λ, V ) as in (4.2.22), we have by the previous inequalities

‖u− uΛ‖ ≤
1

r
‖Au−AuΛ‖S =

1

r
‖f −AuΛ‖S. (4.2.37)

Therefore, searching for near optimality with Galerkin projections amounts to find
index sets (Λk)k≥1 that yields a convergence for ‖f−AuΛk‖S with rate (n+1)−s

∗ where
n = n(k) = #(Λk).
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4.3 Reduction of Galerkin residuals

Our strategy for building the previously described sets is inspired from the adaptive
algorithms in [30, 31, 49] involving residuals. For Λ a subset of F , we define the residual
associated to Λ by

rΛ := Au−AuΛ = f −AuΛ ∈ `2(F , V ∗). (4.3.1)

Given an index setR in F and v a vector in `2(F , V ), we denote by PRv the orthogonal
projection with respect to the norm ‖ · ‖ of v into the space `2(R, V ). The projection
PRv is simply the vector in `2(F , V ) that agrees with v in the coordinates corresponding
to indices ν ∈ R and have null coordinates in ν 6∈ R. We define similarly PRg
if g ∈ `2(F , V ∗). We recall that the Galerkin solution uΛ is the unique solution in
`2(Λ,F) of the problem

PΛrΛ = 0, or equivalently PΛAuΛ = PΛAu. (4.3.2)

We shall use the notation uΛ,ν := (uΛ)ν to denote the coordinate of the vector uΛ ∈
`2(Λ, V ). Our first result is concerned with the quantification of the norms of the
residuals rΛ for arbitrary subsets Λ of F .
Lemma 4.3.1

Let Λ ⊂ F be a non empty index set containing 0F ,M the margin of Λ and uΛ the
Galerkin approximation of u associated with Λ. One has rΛ ∈ `2(M, V ∗) and

‖rΛ‖S =
∣∣∣ ∑
ν∈M

‖wΛ,ν‖2
V

∣∣∣ 1
2
, (4.3.3)

where the functions wΛ,ν are the solutions in V of the systems

−∆w = div φν in D, w = 0 on ∂D, (4.3.4)

with for each ν ∈M

φν = φν(Λ) :=
∑
j≥1

ν+ej∈Λ

βνjψj∇uΛ,ν+ej +
∑
j≥1

ν−ej∈Λ

βνj−1ψj∇uΛ,ν−ej , (4.3.5)

where the sequence (βn)n≥0 is as in Lemma 4.2.1.

Proof : The indices sets Λ,M and Q := F \{Λ∪M} form a disjoint union of F , therefore
given v ∈ `2(F , V ), one has

〈rΛ,v〉 = 〈rΛ,PΛv + PMv + PQv〉 = 〈rΛ,PΛv〉+ 〈rΛ,PMv〉+ 〈rΛ,PQv〉.
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The Galerkin equation (4.3.2) implies 〈rΛ,PΛv〉 = 〈PΛrΛ,PΛv〉 = 0. Now, from the
definition (4.3.1) of residuals 〈rΛ,PQv〉 = 〈f ,PQv〉− 〈AuΛ,PQv〉 = 0, where we have
used that f is supported in 0F , 0F 6∈ Q and Lemma 4.2.3. We infer that

〈rΛ,v〉 = 〈rΛ,PMv〉 = 〈f ,PMv〉 − 〈AuΛ,PMv〉 = −〈AuΛ,PMv〉,

where we have used again that f is supported in 0F and 0F 6∈ M. This show that rΛ

is supported inM and it implies

〈rΛ,v〉 = −
∑
ν∈M

∑
ν′∈Λ

〈Aνν′uΛ,ν′ ,vν〉V ∗,V .

Since Aνν′ = 0 unless ν = ν ′ or ν = ν ′ ± ej for some j and using that Λ ∩M = ∅, we
have

〈rΛ,v〉 = −
∑
ν∈M

∑
j≥1

ν+ej∈Λ

〈Aν,ν+ejuΛ,ν+ej ,vν〉V ∗,V −
∑
ν∈M

∑
j≥1

ν−ej∈Λ

〈Aν,ν−ejuΛ,ν−ej ,vν〉V ∗,V .

Using the explicit formulas of the operators Aνν′ given in Lemma (4.2.1), we get

〈rΛ,v〉 = −
∑
ν∈M

∫
D

φν(Λ)∇vν ,

where the functions φν(Λ) are as in (4.3.5). The coordinate operators rΛ,ν ∈ V ∗ for
ν ∈ M act individually on the corresponding coordinates vν of v for ν ∈ M and are
defined by

〈rΛ,ν , w〉V ∗,V := −
∫
D

φν(Λ)∇w, w ∈ V.

From the definition of the norm ‖ · ‖S , which is equal to ‖ · ‖`2(F ,V ), we deduce that
the norm of rΛ can be obtained from the norm of its coordinates rΛ,ν according to

‖rΛ‖S =
∣∣∣ ∑
ν∈M

‖rΛ,ν‖2V ∗
∣∣∣ 1

2
with ‖rΛ,ν‖S = sup

‖w‖V =1

∣∣∣∣∣
∫
D

φν(Λ)∇w

∣∣∣∣∣. (4.3.6)

It can be checked easily that the previous supremum are attained on wΛ,ν

‖wΛ,ν‖V ∈ V ,
where wΛ,ν is the unique solution in V of the PDE (4.3.4). Substituting by wΛ,ν

‖wΛ,ν‖V
and using Green identity, we deduce

‖rΛ,ν‖S =
1

‖wΛ,ν‖V

∣∣∣∣∣
∫
D

φν(Λ)∇wΛ,ν

∣∣∣∣∣ =
1

‖wΛ,ν‖V

∣∣∣∣∣
∫
D

div φν(Λ)wΛ,ν

∣∣∣∣∣ =
1

‖wΛ,ν‖V

∣∣∣∣∣
∫
D

∆wΛ,νwΛ,ν

∣∣∣∣∣,
so that that using again Green identity, we obtain ‖rΛ,ν‖S = ‖wΛ,ν‖V . This completes
the proof.

Before continuing our analysis, we should make the following remark
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Remark 4.3.2
The assumption 0F ∈ Λ in the previous lemma is redundant if Λ is lower. Moreover,
for such sets, ν+ ej 6∈ Λ for any ν ∈M(Λ) and j ≥ 0, therefore the functions φν(Λ)
are given by

φν = φν(Λ) :=
∑
j≥1

ν−ej∈Λ

βνj−1ψj∇uΛ,ν−ej . (4.3.7)

The previous lemma and its proof show us that the residual rΛ is supported in
M := M(Λ) and that the norms of its coordinates are given by ‖rΛ,ν‖V ∗ = ‖wΛ,ν‖V ,
therefore for any set of indices Λ̃, the vector PΛ̃rΛ is supported inM∩ Λ̃ and its norm
is given by

‖PΛ̃rΛ‖S = ‖PΛ̃∩MrΛ‖S =
∣∣∣ ∑
ν∈Λ̃∩M

‖wΛ,ν‖2
V

∣∣∣ 1
2
, (4.3.8)

where the functions wΛ,ν are as in Lemma 4.3.1. According to [30, 31], given an index
set Λ, an easy way to build an index set Λ̃ containing Λ with the reduction propriety
(4.3.11) below is by choosing Λ̃ satisfying the property

‖PΛ̃rΛ‖S ≥ θ‖rΛ‖S (4.3.9)

where θ is any number in ]0, 1[. In view of the localization of the residual property
(4.3.8), It is then obvious that instead of searching for an arbitrary set Λ̃ with the bulk
property (4.3.9), it is sufficient to search for it with the property that it contains Λ and
it is contained in Λ ∪M. Let us recall that this also was the case when we worked
with Taylor residuals in Chapter 3. The following lemma provides further results in
this direction.
Lemma 4.3.3

Let Λ ⊂ F be a set containing 0F and rΛ the residual associated with Λ. If 0 <
θ < min(1,

√
κ(A)) and S is any subset ofM(Λ) such that(∑

ν∈S

‖wΛ,ν‖2
) 1

2 ≥ θ
(∑
ν∈M

‖wΛ,ν‖2
) 1

2
, (4.3.10)

then Λ̃ = Λ ∪ S contains Λ and satisfies

‖u− uΛ̃‖E ≤ δ‖u− uΛ‖E, (4.3.11)

where δ =
√

1− θ2

κ(A)

Proof : The formulas (4.3.3) and (4.3.8) translates the bulk inequality (4.3.10) into ‖PΛ̃rΛ‖S ≥
θ‖rΛ‖S . In addition, we have

‖A(uΛ̃ − uΛ)‖S = ‖rΛ̃ − rΛ‖S ≥ ‖PΛ̃(rΛ̃ − rΛ)‖S = ‖PΛ̃rΛ‖S
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where we have used the Galerkin identity PΛ̃rΛ̃ = 0. Combining the two last inequal-
ities and the inequality (4.2.35), we obtain

θ‖A−1‖−
1
2 ‖u−uΛ‖E ≤ θ‖A(u−uΛ)‖S = θ‖rΛ‖S ≤ ‖PΛ̃rΛ‖S ≤ ‖A(uΛ̃−uΛ)‖S ≤ ‖A‖

1
2 ‖uΛ̃−uΛ‖E ,

therefore
θκ(A)−

1
2 ‖u− uΛ‖E ≤ ‖uΛ̃ − uΛ‖E .

By the orthogonality of the Galerkin solutions with respect to the energy norm ‖ · ‖E ,
we have

‖u− uΛ‖2E = ‖u− uΛ̃‖
2
E + ‖uΛ̃ − uΛ‖2E ,

therefore

‖u− uΛ̃‖E ≤

√
1− θ2

κ(A)
‖u− uΛ‖E ,

which finishes the proof.

Our next result is concerned with the control of the cardinality of the set Λ̃ under
certain assumptions on θ and S and is given in the next lemma. We use in particular
the arguments of [49] which shows that a control of the cardinality can be obtained if
θ is small enough. In order to lighten our notation, we introduce the notation (cν)ν∈F
for the sequence of the V -norm of the Legendre coefficients vν of u defined in (4.1.7),
i.e.

cν := ‖vν‖V , ν ∈ F . (4.3.12)

We recall that, according to Theorem (4.1.1), this sequence belongs to `pm(F) and any
sequence (ΛL

n)n≥1 of nested sets with #(ΛL
n) = n and Λn corresponds to n largest

value of cν can be used in the best n-term approximation (4.1.8). In view of (4.2.9),
this sequence of index sets also yields convergence of Galerkin approximations with
convergence rates (4.1.8).

Lemma 4.3.4

In the previous lemma, if in addition 0 < θ < κ(A)−
1
2 and S is the smallest set in

M(Λ) satisfying (4.3.10), then

#(S) ≤ Cθ‖(cν)‖1/s∗

`p
‖rΛ‖−1/s∗ , s∗ =

1

p
− 1

2
. (4.3.13)

where Cθ is a constant.

Proof : In view of (4.1.8) and (4.2.36), we have

‖u−PΛLn
u‖E ≤

√
‖A‖S‖u−PΛLn

u‖ ≤
√
‖A‖S‖(cν)‖`p(F)(n+ 1)−s

∗
,
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hence ‖u−PΛLn
u‖E tends to 0 as n tends to∞. Now, giving that 0 < θ < κ(A)−

1
2 , we

fix a number λ > 0 such that θ ≤ κ(A)−
1
2 (1 − λ2)

1
2 and let n be the smallest integer

such that
‖u−PΛLn

u‖E ≤ λ‖u− uΛ‖E .

On the one hand by Lemma 4.2.5

λ‖A‖−
1
2

S ‖rΛ‖S = λ‖A‖−
1
2

S ‖A(u− uΛ)‖S ≤ λ‖u− uΛ‖E .

On the other hand, by minimality of n

λ‖u− uΛ‖E ≤ ‖u−PΛLn−1
u‖E ≤

√
‖A‖S‖(cν)‖`p(F)n

−s∗ .

Combining the two inequalities, we deduce

n ≤ Cθ‖(cν)‖1/s
∗

`p(F)‖rΛ‖−1/s∗

S

where Cθ := ‖A‖1/s
∗

S λ−1/s∗ depends only on θ and ‖A‖S . At this stage, we observe
that proving #(S) ≤ n finishes the proof. Let Λ̂ = Λ ∪ ΛLn . The optimality of the
Galerkin projection uΛ̂ yields

‖u− uΛ̂‖E ≤ ‖u−PΛLn
u‖E ≤ λ‖u− uΛ‖E .

Now by Galerkin orthogonality, we have

‖u− uΛ‖2E = ‖u− uΛ̂‖
2
E + ‖uΛ̂ − uΛ‖2E .

Combining the two previous inequalities using how θ and λ are related, we obtain

‖uΛ̂ − uΛ‖2E ≥ (1− λ2)‖u− uΛ‖2E ≥ θ2κ(A)‖u− uΛ‖2E .

Using the inequalities of Lemma 4.2.5, we deduce

‖PΛ̂(Au−AuΛ)‖S = ‖PΛ̂(AuΛ̂ −AuΛ)‖S
= ‖PΛ̂A(uΛ̂ − uΛ)‖S

≥ ‖A−1‖−
1
2

S ‖uΛ̂ − uΛ‖E

≥ ‖A−1‖−
1
2

S θ
√
κ(A)‖u− uΛ‖E

= θ
√
‖A‖S‖u− uΛ‖E

≥ θ‖Au−AuΛ‖S ,

where we have used that A is a symmetric positive definite operator in the third line.
The previous result can be written equivalently as

‖PΛ̂rΛ‖S ≥ θ‖rΛ‖S .

Since by the observation (4.3.8), we havePΛ̂rΛ = P{Λ̂∩M(Λ)}rΛ, thenPΛ̂rΛ = P{ΛLk∩M(Λ)}rΛ,
so that

‖P{ΛLk∩M(Λ)}rΛ‖S ≥ θ‖rΛ‖S .
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The definition of the set S as the smallest subset ofM with the bulk property implies

#(S) ≤ #(ΛLn ∩M(Λ)) ≤ #(ΛLn) = n, (4.3.14)

and completes the proof.

In the previous proof, we have only used that (cν)ν∈F is `p-summable. However, the
sequence (cν)ν∈F is `pm-summable. This stronger summability allows us to prove that
the previous lemma can also holds for lower sets. More precisely, we have the following.
We recall that given Λ a lower set, the definition of a set S being lower in lower in
M(Λ) is given in (3.2.20). In particular, it should be noted, see (3.2.22), that in such
case Λ′ = Λ ∪ S is a lower set.
Lemma 4.3.5

If in Lemma (4.3.3) we have in addition 0 < θ < κ(A)−
1
2 and Λ is a non empty lower

set. Then withM the margin of Λ and S is the smallest lower set inM satisfying
(4.3.10), we have

#(S) ≤ Cθ‖(cν)‖1/s∗

`mp (F)‖rΛ‖−1/s∗ , (4.3.15)

with the same constant Cθ used in Lemma 4.3.4.

Proof : The proof is similar to the proof of Lemma 4.3.4 but uses the `pm(F) summability
of the sequence (cν)ν∈F . According to (4.1.10), we have that for any n ≥ 1, the index
set ΛL∗n is lower and

‖u−PΛL∗n
u‖E ≤

√
‖A‖S‖u−PΛL∗n

u‖ ≤ ‖(cν)‖`pm(F)(n+1)−s
∗
, s∗ =

1

p
− 1

2
. (4.3.16)

We consider λ and n as in the proof of Lemma 4.3.4 but n here depends on the lower
set ΛL∗n . By the same arguments there, we obtain

n ≤ Cθ‖(cν)‖1/s
`pm(F)

‖rΛ‖−1/s
S (4.3.17)

where Cθ := ‖A‖
1
s
Sλ
− 1
s is the same constant. To finish the proof, we only need to show

that #(S) ≤ n. To this end, we consider Λ̂ = Λ ∪ ΛL∗k . By the same arguments of the
proof of Lemma 4.3.5 , we can prove

‖PΛ̂rΛ‖S ≥ θ‖rΛ‖S .

therefore ‖P{Λ̂∩M(Λ)}rΛ‖S ≥ θ‖rΛ‖S . Since Λ̂ is the union of two lower sets, then it
is lower, which implies that Λ̂ ∩M(Λ) is lower in M(Λ). By the minimality of the
cardinality of S, we deduce that

#(S) ≤ #(Λ̂ ∩M) = #(ΛL∗n ∩M) ≤ #(ΛL∗n ) = n, (4.3.18)

which complete the proof.
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Similarly to chapter 3, given an index set Λ, which is here not necessarily lower, we
are able to enrich Λ by a set S ⊂ M(Λ), with a controlled cardinality as in (4.3.13)
and (4.3.15), that yields a reduction on the approximation error ‖u − uΛ‖. This can
then be a starting point for a bulk chasing procedure.

4.4 Bulk chasing algorithms

In this section, we develop adaptive iterative strategies for the construction of concrete
sequences (Λk)k≥1 ⊂ F such that the associated Galerkin approximations uΛn achieve
the optimal, best n-term convergence rates (4.1.8) and (4.1.10). We work in an idealized
setting, i.e. under the assumption that Galerkin projection uΛ and the elliptic problems
in D can be computed exactly at a unit cost

The set Λk will be generated adaptively. In other words, Λk depends on the given
datas of the problem, that is the functions ψj and f and on the previous solution set
Λk−1 through the Galerkin solution uΛk−1

. The idea of the algorithms is straightforward,
we carry a bulk chasing on the residuals rΛk using small values of θ allowing us to have
a control on the cardinality. For θ ∈]0, 1[, we consider the following algorithm
Algorithm 4.4.1

Define Λ1 := {0F} and compute uΛ1 . For n = 0, 1, · · · do the following:

• Given that Λn has been defined, buildMn =M(Λn) and compute the func-
tions wΛn,ν solution of (4.3.4) and theirs norms cΛn,ν := ‖wΛn,ν‖V for any
ν ∈Mn;

• Compute the smallest set Sn inMn that satisfies the bulk condition∑
ν∈Sn

c2
Λn,ν ≥ θ2

( ∑
ν∈Mn

c2
Λn,ν

)
; (4.4.1)

• Enrich Λn by adding the element of Sn, i.e. Λn+1 := Λn ∪ Sn;

• Go to step n+ 1;

We have the following theorem
Theorem 4.4.2

If 0 < θ < min
(
κ(A), κ(A)−

1
2

)
and (Λk)k≥0 a sequence of set generated by Algo-

rithm 4.4.1, then

‖u− uΛk‖E ≤ C‖(cν)‖`p(F)(#(Λk) + 1)−s
∗
, s∗ =

1

p
− 1

2
(4.4.2)
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with C is a constant depending only on θ.

Proof : First, let us observe that θ < min
(
κ(A), κ(A)−

1
2

)
implies necessarily that θ < 1.

The value θ belongs to the range of values for which both Lemma 4.3.3 and Lemma
4.3.4 hold. Following the notation in Algorithm 4.4.1, we denote by (Mn)n≥0 the
sequence of the margins of the sets Λn and by (Sn)n≥0 the sequence of intermediate
sets i.e. Sn = Λn+1 \ Λn. By Lemma 4.3.4, we have a control on the cardinalities of
the sets (Sn)n≥0 according to

#(Sn) ≤ Cθ‖rΛn‖
− 1
s∗

S ‖(cν)‖
1
s∗
`p(F),

where Cθ is a constant that depends only on θ and ‖A‖S . Using Lemma (4.2.5), we
deduce

#(Sn) ≤ C0‖u− uΛn‖
−1/s∗

E where C0 := Cθ‖A−1‖
1

2s∗ ‖(cν)‖
1
s∗
`p(F).

Now from the reduction identity (4.3.11)

‖u− uΛk+1
‖E ≤ δ‖u− uΛk‖E , k ≥ 0,

with δ =
√

1− θ2

κ(A) . we deduce that for any n ≥ 1 and k in {0, ...., n− 1}

‖u− uΛn‖E ≤ δn−k‖u− uΛk‖E .

Since Λn = Λ0 ∪ S1 ∪ · · · ∪ Sn−1, then

#(Λn) = #(Λ0)+

n−1∑
k=0

#(Sk) ≤ 1+C0

n−1∑
k=0

‖u−uΛk‖
−1/s∗

E ≤ 1+C0‖u−uΛn‖
−1/s∗

E

n−1∑
k=0

(δ
1
s∗ )n−k,

hence #(Λn) ≤ 1 + C1‖u− uΛn‖
−1/s∗

E , where C1 = C0

1−δ
1
s
, therefore

‖u− uΛn‖E ≤ (C1)s
∗
(#(Λn)− 1)−s

∗ ≤ (2C1)s
∗
(#(Λn) + 1)−s

∗
,

In view of the value of C0 above, the value C :=
(

2Cθ‖A−1‖
1

2s∗

1−δ
1
s∗

)s∗
, is valid for the

constant in the inequality (4.4.2) and it only depends on θ, ‖A‖S and s∗.

The previous theorem provides then a positive answer to the objective we have fixed
earlier, that is assuming we work in the semi-discrete setting and that the different
quantities involved in Algorithm 4.4.1 can be computed exactly, we are able to construct
a sequences of nested index sets such that the corresponding Galerkin approximation
are near-optimal in the sense of (4.1.8).

Now, we turn to the existence of such sequence of index sets but with the additional
lower structure constraint. One natural way to do so is by modifying Algorithm 4.4.1
and adding the constraint that the intermediate set S is the smallest monotone set in
M(Λ) with the bulk property (4.3.10).

For a fixed 0 < θ < 1, we consider the following algorithm:
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Algorithm 4.4.3

Define Λ1 := {0F} and compute uΛ1 . For n = 0, 1, · · · do the following:

• Given that Λn has been defined, buildMn =M(Λn) and compute the func-
tions wΛn,ν solution of (4.3.4) and theirs norms cΛn,ν := ‖wΛn,ν‖V for any
ν ∈Mn;

• Compute the smallest lower set Sn inMn that satisfies the bulk condition∑
ν∈Sn

c2
Λn,ν ≥ θ2

( ∑
ν∈Mn

c2
Λn,ν

)
; (4.4.3)

• Enrich Λn by adding the element of Sn, i.e. Λn+1 := Λn ∪ Sn;

• Go to step n+ 1;

The sequences (Λk)k≥1 generated by the previous algorithms are lower by construc-
tion. Similarly to Theorem 4.4.2, the sequence generated by 4.4.3 is near optimal in
the sense of optimality with lower sets (4.1.10). We have in particular

Theorem 4.4.4

If 0 < θ < min(κ(A), κ(A)−
1
2 ) and (Λk)k≥0 a sequence of nested lower sets generated

by Algorithm 4.4.3, then

‖u− uΛk‖E ≤ C‖(cν)‖`pm(F)(#(Λk) + 1)−s
∗
, s∗ =

1

p
− 1

2
(4.4.4)

with C the constant in Theorem 4.4.2.

The result of the theorem can be deduced using the same arguments of the proof of
Theorem 4.4.2 and Lemma 4.3.5. The only difference is that ‖(cν)‖`p(F) is replaced by
‖(cν)‖`pm(F). One remarks that the arguments of the proof of Theorem 4.4.2 yields the
same constant C in both theorems.

Although the two algorithms 4.4.1 and 4.4.3 provide construction of sets that are
near optimal in the sense of best n-term approximations (4.1.8) and (4.1.10), they are
impractical for several reasons. A first problem is that we can only solve the boundary
value problems (4.3.4) approximately, for example using a finite element discretization.
We analyze the additional error induced by this discretization in §4.5 . A second problem
is that, in our infinite dimensional setting the margins Mn have infinite cardinality,
and therefore there are infinitely many wΛn,ν to be computed at each iteration, which
requires in principle solving infinitely many boundary value problems. Although this
problem does not occur in the finite dimensional setting d < ∞, it is still reflected by
the fact that the size ofMn is potentially much larger than that of Λn as d gets large
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and therefore solving the boundary value problems for all ν ∈ Mn becomes the main
source of computational complexity. Finally, the third problem is the computation
of the intermediates sets Sn as the smallest set satisfying the bulk condition in both
Algorithm 4.4.1 and Algorithm 4.4.3, for which we do not have an algorithm in linear
time.

We propose a solution to the problem of space discretization in §4.5. As for the
second problem, we shall exploit the idea of margin truncation used in the previous
chapter. The analysis is similar for both algorithms. We restrict our efforts on the
modification of Algorithm 4.4.3 which yields near optimal lower sets, the ideas under-
lying the modification is the same if one consider Algorithm 4.4.1.

4.5 A realistic bulk chasing algorithm

In order to restrict the margins Mn to finite subsets, we introduce as in Chapter 3 a
procedure SPARSE that has the following properties: if Λ is a finite lower set, M its
infinite margin, and uΛ the Galerkin projection is known, then for any η > 0,

N := SPARSE(Λ,uΛ, η),

is a computable finite subset ofM which is lower inM and such that

‖PM\N rΛ‖S =
(∑
M\N

‖wΛ,ν‖2
V

) 1
2 ≤ η. (4.5.1)

where the functions wΛ,ν are as in Lemma 4.3.1 with the function φν(Λ) as in (4.3.7)
since Λ is lower. One way to construct N then is by growing incrementally a lower set
inM which corresponds to large values of ‖wΛ,ν‖V . However, we do not have a stoping
criterion since the norm ‖rΛ‖2

S of the residual associated with Λ which is the overall
sum of contributions ‖wΛ,ν‖2

V is unknown to us. As in Chapter 3, we can show that the
SPARSE procedure can be done by activating incrementally new directions. We have
the following theorem,
Theorem 4.5.1

Let Λ be a lower set and M the margin of Λ. For any η > 0, there exists N a
computable finite lower set inM such that ‖PM\N rΛ‖S ≤ η.

Proof : Let J > 0 be an integer large enough such that∥∥∥∥∑
j>J

|ψj |
∥∥∥∥
L∞(D)

≤ η

B
, (4.5.2)

where B is a constant that we precise later. We introduce the set NJ defined by

NJ := {ν + ej : ν ∈ Λ and j ≤ J} \ Λ. (4.5.3)
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It is easy to see that NJ is contained and lower in M. Let us remark also that its
definition coincides with the definition (3.4.6) for the set that we used in Chapter 3
for the same purpose with Taylor series. Let now wΛ,ν be the function defined in
Lemma 4.3.1. Since Λ is lower, then according to Remark 4.3.2, these functions are
the solutions in V of the PDEs

−∆w = div φν in D, w = 0 on ∂D,

where for each ν ∈M

φν = φν(Λ) :=
∑
j≥1

ν−ej∈Λ

βνj−1ψj∇uΛ,ν−ej .

From theses PDEs and using Green formula, we infer that

‖wΛ,ν‖2V = −
∫
D

φν∇wΛ,ν = −
∑
j≥1

ν−ej∈Λ

∫
D

βνj−1ψj∇uΛ,ν−ej∇wΛ,ν , ν ∈M.

Now we make the observation, made also in Chapter 3, that if ν ∈M\NJ and ν−ej ∈ Λ
then necessarily j > J . Indeed, if an index ν satisfies ν ∈ M and ν − ej = ν ′ ∈ Λ
with j ≤ J , then according to the definition of NJ , one has ν = ν ′ + ej ∈ NJ . This
observation shows in particular that

‖wΛ,ν‖2V = −
∑
j>J

ν−ej∈Λ

∫
D

βνj−1ψj∇uΛ,ν−ej∇wΛ,ν , ν ∈M \NJ . (4.5.4)

We introduce the function ΨJ defined on D × U by

ΨJ(x, y) :=
∑
j>J

yjψj(x), y ∈ U, x ∈ D, (4.5.5)

and introduce the operator TJ defined on `2(F , V )× `2(F , V ) by

〈TJv,w〉 :=

∫
U

∫
D

ΨJ(x, y)∇v∇wdxdy,

where v and w are the function in V2 with representations v and w in `2(F , V ). If v
supported in Λ and w supported inM, then by the same arguments used in the proof
of Lemma 4.2.1, we obtain

〈TJv,w〉 =
∑
ν∈M

∑
ν′∈Λ

∑
j>J

∫
D

(∫
U

yjLνLν′dy
)
ψj∇vν′∇wνdx =

∑
ν∈M

∑
j>J

∫
D

βν−ejψj∇vν−ej∇wνdx,

We introduce the notation wNJ for the vector supported in M \ NJ and have coor-
dinates wΛ,ν for each ν ∈ M \ NJ . By (4.3.8), we have ‖PM\NJ rΛ‖2S = ‖wNJ‖2.
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Moreover, summing the formulas (4.5.4) for the indices ν ∈ M \ NJ and using the
above equality with v = uΛ and w = wNJ , we infer

‖wNJ‖2 = 〈TJuΛ,w
NJ 〉, (4.5.6)

which implies
‖PM\N rΛ‖S = ‖wNJ‖ ≤ ‖TJ‖S‖uΛ‖. (4.5.7)

It is easy to see that the optimality of the Galerkin projection uΛ implies ‖uΛ‖2E ≤
‖u‖2E , therefore ‖uΛ‖ ≤ 2

√
R/r‖u‖. Also, elementary arguments show that

‖TJ‖S ≤ ‖ΨJ‖L∞(D×U) ≤
∥∥∥∥∑
j>J

|ψj |
∥∥∥∥
L∞(D)

.

We deduce that

‖PM\N rΛ‖S ≤ 2
√
R/r
‖f‖V ∗
r

∥∥∥∥∑
j>J

|ψj |
∥∥∥∥
L∞(D)

≤ η,

if B is the constant 1

2
√
R/r

r
‖f‖V ∗

, which completes the proof.

Now, we are able to define the practical algorithms with similar techniques used in
Chapter 3. For the sake of clarity, given a lower set Λ and S a subset of its marginM,
we introduce the notation

eΛ(S) := ‖PSrΛ‖2
S =

∑
ν∈S

‖wΛ,ν‖2
V , S ⊂M(Λ). (4.5.8)

The quantiy eΛ(S) is the contribution of S to the norm of the residual. It is to be
compared with

e(S) :=
∑
ν∈S

‖tν‖2
a (4.5.9)

the energy associated with S of Taylor coefficients as defined in Chapter 3. The previous
lemma does not implies that NJ captures directly a fraction of the energy eΛ(M) =
‖rΛ‖S. We propose to use an incremental strategy

(N , η) := OVERGROW(M,uΛ, θ), (4.5.10)

as in Chapter 3, which giving M the margin of Λ, output the value η and a finite
restricted margin N such that eΛ(M\N ) ≤ η and captures at least a fraction θ of the
energy eΛ(M) = ‖rΛ‖2

S. For example, using the restricted margin, this can be done by
incrementing J , and accordingly growing NJ until we captures the desired fraction.
Algorithm 4.5.2

Let Λ a lower set, M its margin, θ ∈]0, 1[ and η > 0. Let j = 0, then do the
following
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• Define ηj := 2−jη andMj := SPARSE(Λ,uΛ, ηj);

• Compute wΛ,ν and cΛ,ν for ν ∈Mj and then the quadratic sum eΛ(Mj);

• If eΛ(Mj) <
2(2−θ2)

1−θ2 η2
j , then go directly to step j + 1;

• Else, terminate the loop in j, and output the setMj and the value ηj.

We have
eΛ(Mj) ≥ θ2eΛ(M) = θ2‖rΛ‖2

S (4.5.11)

Proof : The previous loop always terminates, indeed, ηj decrease to 0, while the energies
of the residual on the restricted margin e(Mj) increases. Let J be the last integer in
the previous loop. On the one hand eΛ(MJ) ≥ 2(2−θ2)

1−θ2 η2
J , therefore

e(MJ) ≥ θ2e(MJ) + 2(2− θ2)η2
J ≥ θ2e(MJ) + (2− θ2)η2

J .

One the other hand from the defition of MJ , we have eΛ(M\MJ) ≤ η2
J , it follows

that eΛ(MJ) ≥ eΛ(M)− η2
J , hence

eΛ(MJ) ≥ θ2(eΛ(M)− η2
J) + (2− θ2)η2

J ≥ θ2eΛ(M) + 2(1− θ2)η2
J ≥ θ2eΛ(M),

which finishes the proof.

We are able to capture a bulk of the residual by a finite lower set inM. This allows
us to be delivered form the serious constraint of infinite cardinality of the set controlling
the energy. As in Chapter 3, we can now propose a realistic bulk chasing algorithm.
Fixing 0 < θ < 1, and consider the following algorithm.
Algorithm 4.5.3

Define Λ0 := {0F}, compute uΛ0 , and set η0 = c0F . For the values n = 0, 1, · · ·, do
the following

• Given that Λn has been defined and uΛn has be computed define Mn =
M(Λn).

• Output the restricted margin (Mjn , ηjn) := OVERGROW(Mn,uΛn , θ), and
define ηn+1 := ηjn .

• Enrich Λn by Sn the smallest lower set inMjn such that

eΛ(Sn) ≥ 1

4
eΛ(Mjn);

• Go to step n+ 1;
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At every step of the algorithm, we have eΛ(Sn) ≥ 1
4
eΛ(Mjn) ≥ θ2

4
e(Mn), therefore

‖PSnrΛn‖S ≥ θ
2
‖rΛn‖S. In view of (4.3.11)

‖u− uΛn+1‖E ≤ δ2‖u− uΛ‖E, (4.5.12)

where δ =
√

1− θ2

4κ(A)
. Using exactly the same arguments of the results following the

impractical algorithm 4.4.3, with the only difference of θ/2 replacing θ, we can prove
the following theorem
Theorem 4.5.4

If 0 < θ/2 < min(κ(A), κ(A)−
1
2 ) and (Λn)n≥0 a sequence of nested monotone set

generated by 4.5.3, then

‖u− uΛn‖E ≤ C‖(cν)‖`pm(F)(#(Λn) + 1)−s
∗
, s∗ =

1

p
− 1

2
(4.5.13)

with C the constant in Theorem 4.4.2.

As discussed is Chapter 3, the procedure SPARSE and OVERGROWmight produce
large restricted margins. In order to remedy this defect, one would need to design more
elaborate realizations of SPARSE in order to obtain a set N of smaller, hopefully
optimal, cardinality. One option that could lead to such a SPARSE procedure would
be to make use of the available a-priori bounds on the ‖wΛ,ν‖V .

4.6 Space discretization

The previous convergence results are benchmarks as to how well the functions u(y) may
be jointly approximated in the mean square sense with a prescribed accuracy by a finite
linear combination ∑

ν∈ΛL∗k

vνLν , or uΛ :=
∑
ν∈Λk

uΛ,νLν .

These results are semidiscrete in that any numerical realization of such a linear com-
bination would itself involve the approximation of the Legendre coefficient vν or the
coordinates of Galerkin projection uΛ,ν ∈ V through discretization in D, such as for
example by the Finite Element method in D.

Specifically, we consider the approximation of the functions in V = H1
0 (D) with

D a bounded Lipschitz polyhedron D by a one parameter affine family of continuous
piecewise linear Finite Element spaces (Vh)h>0 on a shape regular family of simplicial
triangulations of mesh-width h > 0 in the sense of [28] (higher order, iso-parametric
Finite Element families in curved domains could equally be considered; we confine
our analysis to affine, piecewise linear Finite Element families for ease of exposition
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only). Convergence rates of such Finite Element approximations are determined by
the regularity of the functions being approximated in D. For this, further regularity
assumptions on f are required. Again for ease of exposition, we shall assume f ∈
L2(D) ⊂ V ∗. Then

‖f‖V ∗ ≤ CP‖f‖L2(D), (4.6.1)

where CP is the Poincaré constant of D (i.e. CP = 1/
√
λ1 with λ1 being the smallest

eigenvalue of the Dirichlet Laplacian in D). Then the smoothness space W ⊂ V is the
space of all solutions to the Dirichlet problem

−∆u = f in D, u = 0 on ∂D, (4.6.2)

with f ∈ L2(D), that is
W =

{
v ∈ V : ∆v ∈ L2(D)

}
. (4.6.3)

We define the W -(semi) norm and the W -norm by

|v|W = ‖∆v‖L2(D), ‖v‖W := ‖v‖V + |v|W . (4.6.4)

It is well-known that W = H2(D) ∩ V for convex D ⊂ Rm. Then any w ∈ W may be
approximated in V with convergence rate O(h) by continuous, piecewise linear Finite
Element approximations on regular quasi-uniform simplicial partitions of D of mes-
hwidth h (cf. e.g. [28, 15]). Therefore, denoting M = dim(Vh) ∼ h−m the dimension of
the Finite Element space, we have for all w ∈ W the convergence rate

inf
vh∈Vh

‖w − vh‖V ≤ CM− 1
m |w|W . (4.6.5)

More generally, for non-convex polyhedra, the space W is not contained in H2(D), and
the convergence rate as M = dim(Vh)→∞ is reduced to

inf
vh∈Vh

‖w − vh‖V ≤ CtM
−t|w|W . (4.6.6)

with some 0 < t < 1
m
.

The discretised solution map uh belongs to Vh,2 = L2(U, Vh, d%) and it is the unique
solution of the variational problem

B(uh, vh) = L(vh), vh ∈ Vh,2, (4.6.7)

where we have defined the bilinear form B over Vh,2 × Vh,2 and the linear form L over
Vh,2 as in (4.2.2). In particular, the integrals over D are understood as extensions by
continuity from L2(D)× L2(D) to duality pairings between V ∗h and Vh. Using exactly
the same analysis of the previous sections, one reformulates the problem as a system

Auh = f (4.6.8)
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where A is an operator from `2(F , Vh) into `2(F , V ∗h ) with entries as in Lemma 4.2.1
defined over Vh × Vh and uh and f the sequence of Legendre coefficients of uh and f in
the basis (Lν)ν∈F . Assuming that the coordinates of Galerkin projections uh,Λ can be
computed exactly in Vh and that also the associated functions wh,Λ,ν can be computed
exactly in Vh, the various bulk chasing algorithms yields approximation uh,Λ to uh with
the rates

‖uh − uh,Λn‖E ≤ C‖(vh,ν)‖`pm(F)(#(Λn) + 1)−s, s =
1

p
− 1

2
. (4.6.9)

One only needs to quantify the additional discretization error ‖u−uh‖E. We have that

‖u− uh‖E ≤
√
R sup

y∈U
‖u(y)− uh(y)‖V (4.6.10)

4.7 Approximation of Galerkin Projection

In the previous sections, we have assumed that, given an index set Λ, we are able to
compute the Galerkin approximation uΛ of u or uh,Λ of uh exactly and in unit cost
in `2(Λ, V ) and `2(Λ, Vh) respectively. This is obviously not possible in practice. The
Galerkin projection can only be computed to a desired accuracy and the cost of the
approximation depends on this target accuracy and possibly on the size of the index
set Λ.

In this section, we show that the exact Galerkin projection uΛ and the discrete
Galerkin projection uΛ,h can be approximated to any given accuracy ε using iterative
Jacobi method. We then investigate how the adaptive algorithm can be modified in
order to take into account this approximation. Since the semi-discrete and fully-discrete
settings are similar in the sense they can be treated similarly if a unique space Vh is used
for discretization of all the function in V = H1

0 (D), we only consider the semi-discrete
setting and we work only with the space V .

4.7.1 Iterative Jacobi Method

The key point in the analysis of this section is that the uniform ellipticity assumption
implies that the matrix of operators A is “Diagonally dominant”. For the sake of
notational simplicity, we consider in this section the space `2(Λ, V ) defined in (4.2.21)
to be the space of V -valued sequences indexed in Λ which are square integrable, i.e.

`2(Λ, V ) :=

{
v = (vν)ν∈Λ :

∑
ν∈Λ

‖vν‖2
V <∞

}
. (4.7.1)

Remark that if Λ is finite, `2(Λ, V ) is merely the space of V -valued sequences indexed
in Λ. Given Λ ⊂ F a set of indices, we introduce the notations AΛ := (Aνν′)ν,ν′∈Λ
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and fΛ := (fν)ν∈Λ for the sections of the infinite matrix of operators A and the infinite
vector f restricted to the index set Λ. The matrix of operators AΛ can be seen as an
operator from `2(Λ;V ) into `2(Λ;V ∗). Indeed, for v,w ∈ `2(Λ;V ), we have

〈AΛv,w〉 = 〈Av,w〉, (4.7.2)

where with a slight abuse v and w in the right side are in `2(F , V ) with null elements
for indices ν 6∈ Λ. The duality products 〈·, ·〉 are considered with between `2(Λ;V ∗)
and `2(Λ;V ∗) and between `2(F ;V ∗) and `2(F ;V ) respectively, as in (4.2.15).

Since the Galerkin approximation uΛ is supported in Λ, we may consider it as a
vector in the newly defined space `2(Λ;V ). We have then that uΛ is the unique solution
to

AΛuΛ = fΛ. (4.7.3)
Since f is support in {0F}, then unless the null multi-index 0F belongs to Λ, the previous
system is trivial.

We suppose in the sequel that 0F ∈ Λ. As we suggested earlier, the key point for
the convergence of the Jacobi iterative method is that the section AΛ is diagonally
dominant. To see this, we introduce diagonal matrix ĀΛ of AΛ defined in the obvious
way by, ĀΛ := (Āνν′)ν,ν′∈Λ, with

(ĀΛ)νν′ = δν,ν′Aνν′ , ν, ν ′ ∈ Λ, (4.7.4)

and the matrix ΨΛ := AΛ − ĀΛ. The explicit formulas of the operators Aνν , given in
Lemma 4.2.1, implies: for any v,w ∈ `2(Λ;V ) and v and w the corresponding function
in V2

〈ĀΛv,w〉 =

∫
U

∫
D

ā(x)∇v∇w, hence 〈ΨΛv,w〉 =

∫
U

∫
D

(
a(x, y)− ā(x)

)
∇v∇w.

(4.7.5)
The uniform ellipticity assumption UEA(r, R) applied at y = 0 implies

0 < r ≤ ā(x) ≤ R <∞, x ∈ D, (4.7.6)

therefore the operator ĀΛ define a boundedly invertible operator from `2(Λ, V ) into
`2(Λ, V ∗). The operator ĀΛ induces a norm on `2(Λ, V ) defined by

‖v‖ā :=
√
〈ĀΛv,v〉, v ∈ `2(Λ, V ), (4.7.7)

This norm is equivalent to ‖ · ‖ and ‖ · ‖E. We have for any y ∈ U that

|a(x, y)− ā(x)| ≤
∑
j≥1

|ψj(x)| ≤ a(x)− r ≤ γa(x), x ∈ D, (4.7.8)

where γ = 1 − r
R
< 1. Therefore, given v,w ∈ `2(Λ, V ) and v and w as above, we

obtain by Cauchy-Schwartz formula

|〈ΨΛv,w〉| ≤ γ‖v‖ā‖w‖ā. (4.7.9)

Now, we are able to give the following result
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Lemma 4.7.1

Let (un)n≥0 be a sequence in `2(Λ, V ) defined by

u0 ∈ `2(Λ;V ), ĀΛu
n+1 = fΛ −ΨΛu

n, n ≥ 0.

This sequence satisfies
‖un − uΛ‖ā ≤ γn‖u0 − uΛ‖ā,

with γ = 1− r
R
.

Proof : Since uΛ is the unique solution to AuΛ = fΛ, then ĀΛuΛ = (fΛ−ΨΛuΛ). There-
fore for any n ≥ 0

ĀΛ(un+1 − uΛ) = −ΨΛ(un − uΛ), (4.7.10)

which combined with (4.7.9) implies for any n ≥ 0

‖un+1 − uΛ‖2ā ≤ γ‖un+1 − uΛ‖ā‖un − uΛ‖ā. (4.7.11)

The proof can then be completed by an immediate induction on n ≥ 0.

Remark 4.7.2
The principal of the iterative Jacobi method consists in writing the matrix A as
a sum A = D + M with D invertible and ρ(D−1M) < 1. The previous analysis
suggest that one can always find such decomposition in our present setting by only
constructing D by a similar construction of A but with ā(x) is used instead of
a(x, y) and setting M = A−D. We should also point out that this construction is
independent of the choice of the Legendre polynomials as the polynomials basis for
PΛ. The choice of the Legendre polynomials is rather motivated by the sparsity of
the matrix A obtained and analytic regularity that allows us to find a near optimal
sets Λ using these polynomials, see Chapter 1.

Remark 4.7.3

Given two index sets Λ ⊂ Λ̃ and assuming we know the Galerkin projection uΛ, one
may choose for the iterative computation of uΛ̃ the initial guess u0 to be the vector
in `2(Λ̃, V ) that coincides with uΛ for the indices ν ∈ Λ and has null coordinates for
the indices ν ∈ Λ̃ \ Λ. For this choice, we have

‖u0 − uΛ̃‖ā = ‖uΛ − uΛ̃‖ā . ‖uΛ − uΛ̃‖E ≤ ‖u− uΛ‖E (4.7.12)

where we have used the optimality of the Galerkin projection uΛ̃;

‖u− uΛ‖2
E = ‖u− uΛ̃‖

2
E + ‖uΛ̃ − uΛ‖2

E. (4.7.13)

Therefore, the sequence (un)n≥1 computed by the iterative algorithm for the ap-
proximation of uΛ̃ satisfies

‖un − uΛ̃‖ā . γn‖u− uΛ‖E, n ≥ 0. (4.7.14)
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In particular, if Λ = Λk and Λ̃ = Λk+1 are two set output by the adaptive algorithms
described earlier, then

‖un − uΛk+1
‖ā . γnC‖(cν)‖`pm(F)(#(Λk) + 1)−s

∗
, n ≥ 0. (4.7.15)

One can then decide to stop the iterative computation of the Galerkin approximation
uΛk+1

after a number of iterations N = N(k) such that

γN(#(Λk) + 1)−s
∗ ≤ (#(Λk+1) + 1)−s

∗
. (4.7.16)

Let us return to the iterative algorithm. We have a non empty set Λ containing 0F
and we want to compute the sequence (un)n≥0 that eventually converges to uΛ. We
shall explain more explicitly how the vector un+1 can be deduced from the vector un.
We introduce the notation unν , ν ∈ Λ for the coordinates of the vector un. Since for
any ν, ν ′ ∈ F , we have (AΛ)ν,ν′ = Aν,ν′ = 0 unless ν = ν ′ or ν = ν ′± ej for some j ≥ 1,
then the formula ĀΛu

n+1 = fΛ −ΨΛu
n is equivalent to

Aννu
n+1
ν = fν −

∑
j≥1:ν−ej∈Λ

Aν,ν−eju
n
ν −

∑
j≥1:ν+ej∈Λ

Aν,ν+eju
n
ν , ν ∈ Λ. (4.7.17)

Using the explicit formulas of the operators Aν,ν′ given in Lemma 4.2.1, we deduce that
the coordinates un+1

ν , ν ∈ Λ are the unique solutions in V of the following variational
formulas:∫

D

ā∇un+1
0 ∇w =

∫
D

fw −
∑

j≥1:ej∈Λ

β0

∫
D

ψj∇unej∇w, w ∈ V, (4.7.18)

and for any ν ∈ Λ− {0}∫
D

ā∇un+1
ν ∇w = −

∑
j≥1:ν+ej∈Λ

βνj

∫
D

ψj∇unν+ej
∇w−

∑
j≥1:ν−ej∈Λ

βνj−1

∫
D

ψj∇unν−ej∇w, w ∈ V.

(4.7.19)
The sequence (βn)n≥0 is defined in Lemma 4.2.1. As with the recursion formula (3.2.3)
used in Chapter 3 for the computation of Taylor coefficients, we remark that determining
un+1

Λ using unΛ requires the successive numerical solution of the same “nominal” elliptic
problems (4.7.18) with #(Λ) many right hand sides. In particular, in order to compute
a numerical approximation of the (un+1

Λ,ν )ν∈Λ, a single discretized, parameter-independent
“nominal” elliptic problem (4.7.18) in the domain D must be solved with #(Λ) many
load cases.

Unlike the Taylor coefficients, the recursive formulas for the computation of un+1
ν

for ν ∈ Λ depends also on the indices ν + ej. We should note that the numbers of such
indices does not exceed #(supp(Λ)), which is smaller than the parametric dimension d
and than #(Λ).
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We should finally remark that when Λ = {0F}, the Galerkin solution uΛ is merely
the vector with one coordinates uΛ,0F associated with the Legendre polynomial L0F = 1
satisfying A0F ,0FuΛ,0F = f . This implies that

u{0F} := u(0). (4.7.20)

A similar straightforward computation holds also if Λ is a rectangular block as we have
already mentioned in the general introcution, formula (3.24).

4.7.2 An adaptive algorithms with approximate Galerkin pro-
jection

In the previous sections, we have proposed adaptive algorithms where we suppose the
knowledge of uΛ for any set Λ in F . In fact, we can only approximate uΛ to any given
accuracy using for instance iterative methods as explained in §4.7. We suppose then
that given Λ lower, we can compute uεΛ an approximate to uΛ to any given accuracy ε,
i.e.

‖uεΛ − uΛ‖ ≤ ε (4.7.21)

Our objective is to design adaptive algorithm of the type proposed in sections 3.4 and
3.5 where at each iteration n we compute an approximate uεnΛn of the Galerkin approx-
imation uΛn yet the approximation of u by theses approximate Galerkin projections is
near-optimal in the sense of (4.1.8) and (4.1.10) up to a controlled numerical error.

Rather than striving for utmost generality, we only focus on adjusting the algorithm
4.4.3 that constructs near optimal lower sets in the sense of (4.1.10) and assume we
work on the finite dimension setting d < ∞, so that we ignore the problem of margin
truncation. At every step of the algorithm, we will only be able to compute uεnΛn an
approximate of uΛn to any target accuracy εn. We propose to keep to some extent the
same simple features of the algorithm.

Given a lower set Λ for which an approximate uεΛ in the sense of (4.7.21) is known
andM its margin, we introduce the notations wεΛ,ν for the solutions in V of the systems

−∆w = div φεν in D, w|∂D = 0, (4.7.22)

with for each ν ∈M

φεν = φεν(Λ) :=
∑
j≥1

ν−ej∈Λ

βνj−1ψj∇uεΛ,ν−ej . (4.7.23)

where uεΛ,ν , are the coordinates of uεΛ and the sequence (βn)n≥0 is as in Lemma 4.2.1.
The functions wεΛ,ν imitate the functions wΛ,ν defined similarly in Lemma 4.3.1 and Re-
mark 4.3.7 and used to quantify the contribution to the energy of residual rΛ supported
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in every ν ∈ M. However it should be noted that they do not play the same role for
the “approximate residual” rεΛ := f −AuεΛ. Now we introduce the notation

eεΛ(S) :=
∑
ν∈S

‖wεΛ,ν‖2
V , S ⊂M. (4.7.24)

This notation is the counterpart of the notation eΛ(S) = ‖PSrΛ‖2
S defined in (4.5.8) for

representing the energy of the residual supported by the subset S.
Our first result is concerned with the accuracy of approximation of the quantities

eΛ(S) by their counterparts eεΛ(S). We have the following lemma
Lemma 4.7.4

Let Λ be a lower set, uεΛ an approximate to uΛ as in (4.7.21) and the quantities
eεΛ(S) as above. Then we have for any S ⊂M(Λ)√

eΛ(S)−
√
eεΛ(S) ≤ ‖A‖S‖uΛ − uεΛ‖ ≤ ε‖A‖S (4.7.25)

Proof : In view of the the formulas (4.3.7) and (4.7.23), the function (wΛ,ν − wεΛ,ν) ∈ V
for ν ∈M is the unique solution of the system

−∆w = div (φν − φεν) in D, w|∂D = 0.

Therefore ∫
D

|∇(wΛ,ν − wεΛ,ν)|2 = −
∫
D

(φν − φεν)∇(wΛ,ν − wεΛ,ν)

We have seen in the proof of Lemma 4.3.1 that using only the form of the matrix A
given in Lemma 4.2.1, one has for any v ∈ `2(F , V )

〈AuΛ,PMv〉 =
∑
ν∈M

∫
D

φν∇vν ,

This holds true if one replaces uΛ by uεΛ and the functions φν by φεν . We deduce then
that

‖w −wε‖2`2(F ,V ) =
∑
ν∈M

∫
D

|∇(wΛ,ν − wεΛ,ν)|2 = −〈A(uΛ − uεΛ),w −wε〉,

where w and wε are the vectors supported inM that have coordinates wΛ,ν and wεΛ,ν
respectively. Since

|〈A(uΛ − uεΛ),w −wε〉| ≤ ‖A‖S‖uΛ − uεΛ‖ ‖w −wε‖,

then ‖w −wε‖ ≤ ‖A‖S‖uΛ − uεΛ‖ and for any S ⊂M it holds also ‖PS(w −wε)‖ ≤
‖A‖S‖uΛ − uεΛ‖. Using the reverse triangular inequality, we deduce that

‖PSw‖ − ‖PSwε‖ ≤ ‖A‖S‖uΛ − uεΛ‖,
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which is exactly the wanted result.

Given the previous result, we are able to get a bulk inequality of type (4.3.10) for the
real residual knowing the approximate function wεΛ,ν . Indeed, it is easily checked that√

eεΛ(S) ≥ θ
√
eεΛ(M) + ε‖A‖S(1 + θ) =⇒

√
eΛ(S) ≥ θ

√
eΛ(M). (4.7.26)

However one needs the assumption to be well defined, that is√
eεΛ(M) ≥ θ

√
eεΛ(M) + ε‖A‖S(1 + θ). (4.7.27)

Also to make full profit of previous adaptive approaches, a control on the cardinality of
the intermediate set S is needed. We propose an incremental strategy for performing
such tasks. We consider the following algorithm.
Algorithm 4.7.5

Let Λ be a lower set,M the margin of Λ, 0 < θ1 < θ2 < 1 and ε > 0. For j = 0, 1, · · ·
do the following:

• set εj = ε/2j, compute uεjΛ appoximating uΛ as in (4.7.21) and the associated
e
εj
Λ (M);

• If
√
e
εj
Λ (M) < εj‖A‖S 2(1+θ1)

θ2−θ1 then go to step j + 1;

• Else output the smallest lower set S inM such that√
e
εj
Λ (S) ≥ θ1

√
e
εj
Λ (M) + εj‖A‖S(1 + θ1). (4.7.28)

The previous algorithm always terminates and the relation (4.7.28) is well defined.
Indeed, we have that εj → 0 as j grows while eεjΛ (M) becomes closer to eΛ(M) > 0,
therefore the loop in j terminates. Moreover, when the loop terminates, we obtain
e
εj
Λ (M) ≥ εj‖A‖S 1+θ1

θ2−θ1 , hence

√
e
εj
Λ (M) ≥ θ2

√
e
εj
Λ (M) ≥ θ1

√
e
εj
Λ (M)+2εj‖A‖S(1+θ1) ≥ θ1

√
e
εj
Λ (M)+εj‖A‖S(1+θ1),

(4.7.29)
which justifies the existence of S. Now we have the following Lemma
Lemma 4.7.6

Let Λ a lower set,M the margin of Λ and 0 < θ1 < θ2 < min(κ(A), κ(A)−
1
2 ). Given
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S output by Algorithm 4.7.5 and Λ̃ = Λ ∪ S, one has

‖u− uΛ̃‖E ≤ δ1‖u− uΛ‖E, (4.7.30)

where δ1 =
√

1− θ2
1

κ(A)
, and

#(S) ≤ Cθ2‖(cν)‖
1/s∗

`mp (F)‖rΛ‖−1/s∗ , (4.7.31)

with the same expression for the constant Cθ2 used in Lemma 4.3.4.

Proof : Since (4.7.28) holds, then the implication (4.7.26) shows that
√
eΛ(S) ≥ θ

√
eΛ(M),

which by the reduction Lemma 4.3.3 implies the first inequality. As for the second in-
equality, we use the proof of Lemma 4.3.5 with the value θ2 instead of θ. Choosing Λ̂
as in there, we obtain that the set Ŝ = Λ̂ ∩M is lower inM and satisfies√

eΛ(Ŝ) ≥ θ2

√
eΛ(M), and #(Ŝ) ≤ Cθ2‖(cν)‖1/s

∗

`mp (F)‖rΛ‖−1/s∗ .

We have then that√
eεΛ(Ŝ) ≥ θ2

√
eεΛ(M)− εj‖A‖S(1 + θ1) ≥ θ1

√
e
εj
Λ (M) + εj‖A‖S(1 + θ1),

where we have used the over capturing of the bulk (4.7.29) in the last inequality. Since
S is the smallest set with the property (4.7.28), then #(S) ≤ #(Ŝ) and the proof is
complete.

In view of the the previous lemma, we now are able to propose an adaptive algorithm
that take into account the error on the approximation of the Galerkin projection. We
assume we have 0 < θ1 < θ2 < min(κ(A), κ(A)−

1
2 ), and we introduce the notation

S := OVERBULK(Λ, θ1, θ2), (4.7.32)

for the set output by Algorithm 4.7.5. we then consider the following
Algorithm 4.7.7

Define Λ1 := {0F} and compute uΛ1 = u(0). For n = 1, · · · do the following:

• Given that Λn has been defined, output Sn = OVERBULK(Λn, θ1, θ2).

• Enrich Λn by adding the element of Sn, i.e. Λn+1 := Λn ∪ Sn.

• Go to step n+ 1.

By the exact same arguments of the previous section, it is easily proven that the previous
algorithm yields index sets which are near optimal in the sense of (4.1.10).
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4.8 Convergence of Galerkin approximation in the uni-
form sense

In this section, we investigate the convergence of the Galerkin approximations in the
uniform sense. More precisely, given Λ a finite lower set of indices, we study how the
Galerkin projection uΛ can approximate the elements of the manifoldM = {u(y) : y ∈
U} in the uniform sense, by inspecting the quantity

‖u− uΛ‖V∞ = sup
y∈U
‖u(y)− uΛ(y)‖V (4.8.1)

The key point of our analysis is the following results in which we examine the stability
of the uniform norm ‖ · ‖V∞ with respect the least square norm ‖ · ‖V2 over spaces VΛ

for Λ lower.
Lemma 4.8.1

Let Λ ⊂ F be lower set. We have

sup
v∈VΛ\{0}

‖v‖V∞
‖v‖V2

≤ #(Λ). (4.8.2)

Proof : Let v =
∑

ν∈Λ vνLν be in VΛ. We have∥∥∥∥∑
ν∈Λ

vνLν

∥∥∥∥
V∞
≤
∑
ν∈Λ

‖vν‖V ‖Lν‖L∞(U) ≤
(∑
ν∈Λ

‖vν‖2V
) 1

2
(∑
ν∈Λ

‖Lν‖2L∞(U)

) 1
2

=
√
K0,0(Λ)‖v‖V2 ,

where we have defined

K0,0(Λ) :=
∑
ν∈Λ

‖Lν‖2L∞(U) =
∑
ν∈Λ

∏
j≥1

(2νj + 1). (4.8.3)

This definition coincides with the definition (A.4.6) given in the appendix. We show
there, Lemma A.4.1, that for Λ lower, one has K0,0(Λ) ≤ (#(Λ))2. The proof is then
complete.

The Legendre polynomials Lν attain all there supremums over U on the point
(1, 1, 1, . . .), therefore by setting vν = ‖Lν‖L∞(U) in the previous proof, we get only
equalities, showing that the supremum of the ratio of the norms is actually equal to√
K0,0(Λ). We should also mention that K0,0(Λ) is equal to (#(Λ))2 for Λ of rectan-

gular block shape, see Appendix. However, for anisotropic lower sets Λ, the bound
(#(Λ))2 might be overestimated. Also, let us remark that the result of the lemma is
valid regardless the shape of Λ.

The stability result is not usable immediately for relating (4.8.1) to the least square
norm of u−uΛ since the latter does not belong to a polynomial space. Instead, we have
the following result
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Lemma 4.8.2
Let Λ by a lower set of cardinality n and v ∈ VΛ, we have

‖u− v‖V∞ ≤ 3n‖u− v‖V2 + 4
∥∥∥(‖uν‖V )

∥∥∥
`pm(F)

(n+ 1)1−s∗ , s∗ =
1

2
− 1

p
(4.8.4)

Proof : Let ΛL∗n and ΛP∗n the lower sets used in the best n-term approximation (4.1.10)
and (4.1.11). We set Λ′ = Λ∪ΛL∗n ∩ΛP∗n . We have that Λ′ is lower as the union of three
lower sets and is cordiality smaller than 3n. We have for any w ∈ VΛ′ that v−w ∈ VΛ′ ,
hence

‖u−v‖V∞ ≤ ‖u−w‖V∞+‖w−v‖V∞ ≤ ‖u−w‖V∞+3n‖w−v‖V2 ≤ ‖u−w‖V∞+3n‖u−w‖V2+3n‖u−v‖V2

hence
‖u− v‖V∞ ≤ 3n‖u− v‖V2 + inf

w∈VΛ′

(
‖u− w‖V∞ + 3n‖u− w‖V2

)
The proof is finished by taking w to be the Legednre series of u, i.e w =

∑
ν∈Λ vνLν ,

using (4.1.10) and (4.1.11) and the property ‖vν‖V ≤ ‖uν‖V for any ν ∈ F

The previous lemma show that if v is any approximation that is near optimal in
the sense of (4.1.10), then it also yields convergence rate 1 − s∗ = 1

2
− s = 3

2
− p in

the uniform sense, which shows that only a deterioration (n + 1)
1
2 is to be expected

in the uniform sense when comparing with the best benchmark (4.1.10). In particular,
for small values of p, namely p < 3

2
, the Legendre series associated with the sets ΛL∗

n

provide convergence to u simultaneously in the uniform and least square sense.

4.9 Conclusion

In this chapter, we have introduced adaptive algorithms for sparse Galerkin approxi-
mation of the solution map u of the elliptic model in the mean squares sense. These
algorithms have remarkable features, in particular:

(i) They builds the Galerkin projection by an iterative method which at every step
amounts to solving a number of boundary value problems with fixed stiffness
matrix as in Chapter 3.

(ii) From a theoretical point of view, the convergence with respect to the polynomial
dimension can be proved to be near optimal in the mean square sense and slightly
deteriorated in the uniform sense.
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The analysis is strongly tied to the linearity of the model and the affine dependence
on y. It adaptation to other models might not be possible. For example, it is not
obvious how to adapt the analysis for the semi-linear problem

u3 − div(a∇u) = f (4.9.1)

where a is still affine in y.

The remainder of the thesis is concerned with methods that can be applied for
more general PDEs. We investigate in particular collocation methods, in others words
methods that are based only on the instances of the solution map u. We present an
interpolation scheme and a least square scheme and analyze theirs convergence and
theirs numerical effectiveness.
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5.1 Introduction

In this chapter, we introduce an interpolation scheme which can be used for non-
intrusive treatment of parametric PDE. This scheme gathers different aspects of poly-
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nomial approximation in high dimensions. In particular, it can be seen as a collocation
method as in [4, 7, 8], as a sparse grid method as in [9, 50, 70, 69] or as a sparse
polynomial approach as in [34, 33, 22, 53, 25].

We recall that the setting we are interested in is the setting of parametric PDEs of
the form

D(u, y) = 0, (5.1.1)

where u 7→ D(u, y) is a partial differential operator that depends on an infinite number
of parameters yj represented by the parameter vector y = (yj)j≥1 ∈ U := [−1, 1]N. We
assume that the problem (5.1.1) is well posed in some Banach space V for any y, so
that we may defined the solution map u by

y ∈ U 7→ u(y) ∈ V. (5.1.2)

We have seen in chapters 1-2 that under a mild anisotropic dependence of the
parametric PDE on the parameter y, the solution map u can be approximated by
multi-variate polynomials in y with algebraic rates. For the typical example of para-
metric elliptic PDEs studied in Chapter 1, given by the equation (1.1.1) with affine
parameter dependence (1.1.2) and uniform ellipticity assumption UEA(r, R) (1.1.3),
it is proven that if (‖ψj‖L)j≥1 ∈ `p(N) for some p < 1, then the solution maps u can
be approximated by its Taylor series with convergence rate (n + 1)−s with s = 1

p
− 1.

More generally, we have seen in Chapter 2 that when the operator D depends on y
through the expansion

∑
j≥1 ψjyj where the ψj are functions in some Banach space

L, then under the assumptions of Theorem 2.4.3, in which the anisotropy assumption
(‖ψj‖L)j≥1 ∈ `p(N) for some p < 1 is crucial, then the solution map u can be approxi-
mated by its Legendre series with convergence rate (n+ 1)−s, s = 1

p
− 1 in the uniform

sense and convergence rate (n+ 1)−s
∗
, s∗ = 1

p
− 1

2
in the mean square sense.

We use the notations of the set of multi-indices F , the Legendre polynomials
(Lν)ν∈F , the spaces V∞, V2 and theirs norms is as in §1.2 of Chapter 1 and define
the polynomials spaces

VΛ := V ⊗ PΛ, PΛ := span{Lν : ν ∈ Λ}. (5.1.3)

for Λ ⊂ F . Under the assumption of Theorem 2.4.3, there exists a sequence (Λn)n≥1 of
nested sets with Λn = n for which we have an approximation in the uniform sense, i.e.

inf
v∈VΛn

‖u− v‖V∞ ≤ C(n+ 1)−s, s :=
1

p
− 1, (5.1.4)

and an other sequence (Λn)n≥1 of nested sets with Λn = n for which we have an
approximation in the mean square sense,

inf
v∈VΛn

‖u− v‖V2 ≤ C ′(n+ 1)−s
∗
, s∗ :=

1

p
− 1

2
, (5.1.5)
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The previous rates where obtained through approximations by truncated Legendre
series, Theorem 2.2.2 and implications. We also recall that the sets Λn can be chosen
lower, i.e.

ν ∈ Λn and µ ≤ ν ⇒ µ ∈ Λn, (5.1.6)

The previous results are purely theoretical, we have not discussed for the abstract
equation (5.1.1) what are the strategies for computable approximations that preserve
the convergence rates. However we have seen, for the elliptic model (1.1.1) of Chapter
1 with the assumption (‖ψj‖L∞(D))j≥1 ∈ `p(N) for some 0 < p < 1, that in practice:

(i) Taylor expansions (Chapter 3) associated with lower sets can be recursively com-
puted. Adaptive methods based on such expansions have been proved to converge
in the uniform sense with the same rate as in (5.1.4).

(ii) Projection methods (Chapter 4) can be built adaptively using techniques of a-
posteriori analysis. We have proved the convergence in the mean square sense
with the same rate as in (5.1.5) and with a rate s − 1

2
in the uniform sense.

Galerkin projections are also considered and analyzed in [1, 5, 7, 34, 56, 57]

For the elliptic model (1.1.1) of Chapter 1, collocation methods [4, 7, 8, 66, 70, 69]
in the setting d <∞ can also produce polynomial approximations that converge toward
u with prescribed rates. Such approximations uΛk ∈ VΛk are only based on particular
solution instances u(yi) at well chosen values y1, . . . , y#(Λk) ∈ U of the parameter vector.

In contrast with the two first approaches, one significant advantage of the last ap-
proach is that it is non intrusive and can then be applied for general parametric PDE of
the form(5.1.1). The instances u(yi) are obtained by a numerical solver for the problem
(5.1.1) then polynomial approximations are built from these instances by numerical
techniques similar to those employed for scalar valued maps such as, sparse grids, in-
terpolation or least squares. However, the theoretical analysis of collocation methods
is less satisfactory in the sense that convergence rates similar to (5.1.4) and (5.1.5) do
not seem to have been established. This is in part due to the rigidity of the index sets
Λk that are considered, which grow rapidly in cardinality and the difficulty to control
the stability of interpolation operators in arbitrary high dimension. In addition, adap-
tive methods for building the sets Λk have not been much developed in the collocation
framework. We ask then the following legitimate questions:

• Given a parametric PDE such that the solution map can be approximated as in
(5.1.4) and (5.1.5), can one obtain easily approximations uΛn ∈ VΛn using collo-
cation methods and that converge with the same rates?

• Since Λn+1 is in general obtained from Λn by an enrichment procedure, is it pos-
sible to compute uΛn+1 easily using uΛn ?
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• How to control the stability of the collocation methods?

The objective of this chapter is to propose and study a collocation method that satis-
fies these three prescriptions. The method is based on a high dimensional interpolation
process that can naturally be coupled with an adaptive selection of the polynomial
spaces. We construct an interpolation operator IΛ that maps real or complex valued
functions defined on U into PΛ. A standard vectorization yields an interpolation op-
erator that maps V -valued functions defined on U into VΛ with the same properties.
Namely, given Λn with #(Λn) = n, we compute an approximation IΛnu ∈ VΛn that
coincides with u at n well chosen point y1, . . . , yn of U . We do not address the ques-
tions of unisolvency between the interpolation points and polynomials space with which
references such as [58, 60, 36] are concerned. Our approach consist in generalizing the
sparse grids interpolation methods [76, 50, 71, 7, 8, 70, 69], considered with specific
polynomials space , to more general polynomial spaces VΛ with Λ being any lower set.

This chapter is organized as follows. In §5.2.1, we build for any lower set, a grid
of points ΓΛ which is unisolvent for PΛ and provide a definition of the interpolation
operator IΛ. This construction is based on a univariate sequence of points (zk)k≥0 and
a standard tensorization and sparsification technique, originally due to Smolyak [76]
and that is already addressed for many type of lower sets, see for example [7, 8, 70, 69].
The main feature of this process is the inherent nested structures the grids, which is
well adapted to an adaptive construction of the index set: the enrichment of Λ by one
index is reflected by the enrichment of ΓΛ by one point. The amount of computation
is therefore minimized since all previously computed solution instances are used.

In §5.2.2, we establish a simple formula for the computation of the increments
IΛn+1u − IΛnu where Λn ⊂ Λn+1 are both lower and differ only by one index. We
show that the computation of such increments can be done by a Newton like formula in
one dimension that only requires, beside the evaluation of u in the new point ΓΛn+1\ΓΛn ,
at most 2#(Λn) usual operations in V . We shall show in particular that the incremental
procedure can be used to compute IΛ for any Λ lower at the cost of #(Λ) evaluations
of u plus at most (#(Λ))2 product and sum operation in V .

In §5.3, we study the stability of the interpolation operator IΛ. In particular we
establish bounds on the Lebesgue constant which only depends on the cardinality of
the set Λ (not on its shape or on the parametric dimension, here infinite d = ∞).
These bounds grow algebraically with #(Λ), provided that bounds that grow alge-
braically with (k+1) are available for the Lebesgue constants associated to the sections
{z0, . . . , zk} of the sequence (zk)k≥0. Algebraic growth are available in the univariate
case for the so-called <-Leja point [18, 19, 21] and will be recalled in Chapter 6.

When combining the approximation estimate (5.1.4) together with a bound of the
form (#(Λn))b for the Lebesgue constant associated with IΛnu , one expects the inter-
polation IΛnu to converge towards u with a deteriorated rate (n+ 1)−(s−b). In §5.4, we
show by a different error analysis that, under similar assumptions as in Chapter 2, one
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can construct a sequence (Λn)n≥0 for which the approximations IΛnu converge towards
u with the optimal rate (n + 1)−s. We present in §5.5 numerical results that illustrate
the performance of our adaptive interpolation scheme.

5.2 Interpolation on nested grids

As we already mentioned, we provide in this section the construction of the interpolation
operator associated with a lower set and corresponding unisolvent grid, following the
technique of Smolyak [76]. Here, we consider scalar valued functions and work in the
infinite dimension setting d =∞.

5.2.1 The sparse interpolation operator

Let (zk)k≥0 be any sequence of pairwise distinct points in [−1, 1]. We denote by Ik
the univariate Lagrange polynomial interpolation operators associated with the sections
{z0, . . . , zk}. Theses operators act on functions g ∈ C([−1, 1]) according to I0g = g(z0)1
and for k ≥ 1

Ikg :=
k∑
i=0

g(zi)l
k
i , where lki (t) :=

k∏
i=0
i6=j

t− zi
zj − zi

. (5.2.1)

The polynomials lk0 , . . . , lkk are the Lagrange polynomials associated with {z0, . . . , zk}.
The operator Ik is a projection operator on the space Pk of univariate polynomials of
degree at most k. We introduce the difference operators

∆k := Ik − Ik−1, k ≥ 0, (5.2.2)

with the convention that I−1 is the null operator. The operator ∆k is an increment
operator which is used to update the operator Ik−1 into Ik. Now given ν = (ν1, ν2, . . .) ∈
F , we define tensorized operators Iν = ⊗j≥1Iνj and ∆ν = ⊗j≥1∆νj on the space C(U)
of continuous functions over U by the following: For the null multi-index ν = 0F , one
has

∆0Fg = I0Fg = g(z0F )1, z0F := (z0, z0, . . .) ∈ U, (5.2.3)

then for a given multi-index ν 6= 0F supported in {1, . . . , J}, in other words νj = 0 for
j > J , one has

Iνg := (⊗Jj=1Iνj)gJ and ∆νg := (⊗Jj=1∆νj)gJ , (5.2.4)

where gJ is the function defined over [−1, 1]J by

gJ(y1, . . . , yJ) := g(y1, . . . , yJ , z0, z0, . . .) (5.2.5)

and the tensorizations ⊗Jj=1 are defined in the usual sense.
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For Λ ⊂ F an index set, we associate the operator IΛ and the grid ΓΛ defined by

IΛ :=
∑
ν∈Λ

∆ν , ΓΛ :=
{
zν := (zν1 , zν2 , . . .) : ν ∈ Λ

}
. (5.2.6)

Thanks to the tensor product structure of the rectangular blocks Bν := {µ ≤ ν} and
telescopic cancellations, we have that

IBν =
∑
µ≤ν

⊗j≥1∆µj = ⊗j≥1

∑
µj≤νj

∆µj = ⊗j≥1Iνj = Iν , (5.2.7)

is effectively the interpolation operator for the tensor product polynomial space PBν
associated with the tensor grid ΓBν . A similar result holds for lower sets Λ in general.
The lower sets Λ might significantly differ from the sparse grid sets which are usually
considered in the literature [76, 9, 50, 7, 8, 70, 69]. However, the argument showing
that IΛ is the polynomial interpolation operator on PΛ associated with the grid ΓΛ is
very similar. For convenience of the reader, we give a precise statement of this result.
Theorem 5.2.1

For Λ ⊂ F lower, the grid ΓΛ is unisolvent for PΛ and for any function g defined on
U , the unique element in PΛ which agrees with g on ΓΛ is given by IΛg.

Proof : We consider ν ∈ Λ and notice that the lower structure of Λ implies that Bν ⊂ Λ.
In view of (5.2.6) and the observation that IBν is the interpolation operator associated
with ΓBν to which zν belongs, we infer

IΛg(zν) = IBνg(zν) +
∑

µ∈Λ:µ
ν

∆µg(zν) = g(zν) +
∑

µ∈Λ:µ
ν

∆µg(zν).

Given µ 
 ν, there exists at least one j such that νj < µj . Since the points of
the univariate interpolations are nested, then the univariate operator ∆µj returns a
polynomial which vanishes at zνj , and so ∆µg vanishes at all points with jth coordinate
equal to zνj . In particular, ∆µg(zν) = 0 and we have thus proved that IΛg(zν) = g(zν)
for any ν ∈ F .

The fact that ΓΛ is unisolvent for the polynomial space PΛ when Λ is lower appears
to be known from early works on polynomial interpolation, see Chapter IV in the book
[58] in which bivariate polynomials associated to lower sets are referred to as “polynômes
pleins”. This also appears as a particular case of the theory of the “least polynomial
spaces” for interpolation of functions on general multivariate point sets, see in particular
[36]. In the previous reference, polynomials associated to lower sets Λ are referred to
as “order closed polynomials” and the spaces they generate are proved to be the least
polynomial spaces for sets of the form ΓΛ.

In order to establish the unisolvency, we have not used particularly that polynomials
defined over U are involved. One can generalize the construction in a straightforward



Chapter 5: Sparse high-dimensional polynomial interpolation 213

way to tensorized domains of the more general form U =
∏

j≥1 Uj with a different
univariate sequence (zjk)k≥0 in each coordinate domain Uj. Another straightforward
generalization is when the univariate polynomial spaces Pk are replaced by more general
nested spaces Sk such that {z0, . . . , zk} is unisolvent for Sk. In such case, ΓΛ is unisolvent
for the space

SΛ = ⊕ν∈Λ(⊗j≥1Sνj), (5.2.8)

which generalizes PΛ and the interpolation operator is defined in a similar manner as
IΛ. Sparse grid interpolation based on hierarchical finite element spaces are a particular
instance of this generalization.

The previous construction can also be generalized in order to meet the framework
of isotropic and anisotropic sparse grids as discussed in [7, 8, 70, 69]. We recall in
particular the notations (3.29) and (3.30) introduced in the general introduction for
a unified description of such methods. We denote by m a strictly increasing function
from N into N that satisfies m(0) = 0 and the convention m(−1) = −1. Given a lower
set Λ, we introduce the notation

m(Λ) :=
⋃
i∈Λ

Bm(i) with Bm(i) :=
{
ν ∈ F : m(ij − 1) < νj ≤ m(ij), j ≥ 1

}
. (5.2.9)

The set m(Λ) is a union of #(Λ) adjacent blocks, that coincides with Λ if m is the
identity function, and it is also a lower set. It resembles in shape to Λ if m is a
doubling rule, i.e. m(k) = 2k for k ≥ 1. We remark that a direction j is active in m(Λ)
if and only if it is active in Λ. In particular Λ and m(Λ) are supported in the same
support. We now define, using Smolyak formula as in (3.30), the following operator

Im(Λ) :=
∑
i∈Λ

⊗j≥1(Im(ij) − Im(ij−1)). (5.2.10)

The notation Im(Λ) is justified by the fact the right hand is equal to the sum in (5.2.6).
Indeed, thanks to the telescopic sum, we have for any i ∈ Λ that

⊗j≥1(Im(ij) − Im(ij−1)) =
∑

ν∈Bm(i)

∆ν . (5.2.11)

Therefore Im(Λ) is an interpolation operator associated with the sparse grids of points
Γm(Λ) defined as in (5.2.6), with m(Λ) instead of Λ. This generalize the results in
[7, 8, 70, 69] in which this was established for many types of lower sets Λ.

We should also note an interesting property of the Smolyak construction. For Λ
lower, the operator IΛ is an interpolation operator, so that in particular it is a projection
operator over PΛ. Another simple way to see this is by imitating the argument of the
proof of Theorem 5.2.1, namely for ν ∈ Λ we have

IΛy
ν = Iνy

ν +
∑

µ∈Λ:µ
ν

∆µy
ν =

∏
j≥1

Iνjy
νj
j +

∑
µ∈Λ:µ
ν

∏
j≥1

∆µjy
νj
j = yν , (5.2.12)
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where we have used that Ikyk = yk for any k ≥ 0 and ∆µjy
νj
j = Iµjy

νj
j − Iµj−1y

νj
j =

y
νj
j − y

νj
j = 0, whenever νj < µj for some j.

We remark that, for the previous result, we have only used the fact that for ev-
ery k ≥ 0, the operator Ik is a projection operator over the space Pk. Therefore, the
Smolyak construction also yield projection operators over PΛ by tensorization of projec-
tion operators over Pk. Having said that, we need to give a sense to infinite tensorization
of projection operators.

If the operator I0 is a projection from C([−1, 1]) into P0 the space of constant
polynomials, then it is defined by I0g = p0(g)1 where p0 is linear form over C([−1, 1]).
Since I01 = 1, then p0(1) = 1, so that necessarily p0 is defined over C([−1, 1]) by

p0(g) =

1∫
−1

g(t)dλ(t), (5.2.13)

where λ a measure over [−1, 1] with total mass 1. The infinite dimensional tensorization
can be obtained by considering the measure λ∞ defined by dλ∞(y) = ⊗j≥1dλ(yj) and
defining I0F and the function gJ in (5.2.5) by

I0Fg :=

∫
U

g(z)dλ∞(z), gJ(y1, . . . , yJ) :=

∫
U

g(y1, . . . , yJ , z)dλ∞(z). (5.2.14)

We have then the following lemma
Lemma 5.2.2

Let I−1, I0, I2, · · · a family of operators such that I−1 = 0, I0g = p0(g)1 with p0 as
in (5.2.13) and every operator Ik is a projection operator over Pk. For any Λ ⊂ F
lower, the operator IΛ defined as in (5.2.6) is a projection operator over PΛ.

A typical and interesting setting for the previous lemma is when the operators Ik
are polynomial interpolation operators associated with sets of mutually disjoint points
{zk0 , . . . , zkk} which are not necessarily nested. For instance the simple roots of a family
of orthogonal polynomials. The resulting operator IΛ in this case also generalize a type
of collocation methods on sparse grids [7, 8, 70, 69].

Finally, we should note that in the setting of the previous lemma, one can study
the stability of the operator IΛ through the study of Lebesgue constant, thanks to the
following classical inequality always valid with projectors

‖g − IΛg‖ ≤ (1 + LΛ) inf
P∈PΛ

‖g − P‖, (5.2.15)

where ‖ · ‖ is any given norm over C(U) and

LΛ := sup
P∈C(U):‖P‖=1

‖IΛP‖. (5.2.16)
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The study of the growth of Lebesgue constants will be investigated in more details in
§5.3.

5.2.2 A Newton like recursive formula

The interpolation process introduced in the previous section can be seen as a general-
ization of Lagrange polynomial interpolation on nested sets of points in dimension 1.
In such setting, the hierarchical computation of the operators Ik is well understood.
Indeed, one has the representation by finite Newton series, for g ∈ C([−1, 1]) one has

Ikg =
k∑
j=0

[g(z0), . . . , g(zj)](z − zj) . . . (z − zj), k ≥ 0 (5.2.17)

where ([g(z0), . . . , g(zj)])j≥0 are the so-called divided difference associated with g and
the sequence (zj)j≥0, see [35] for more details. Up to a renormalization, the previous
form is equivalent to expanding the additive polynomial increment ∆kg = Ikg − Ik−1g,
which update the polynomial Ik−1g into Ikg, in the basis of Lagrange polynomials
associated with {z0, . . . , zk} according to Lagrange interpolation formula. Since for
every j ≤ k, we have Ikg(zj) = Ik−1g(zj) = g(zj), then we have

∆kg =
(
g(zk)− Ik−1g(zk)

)
hk, (5.2.18)

where the hierarchical polynomials (hk)k≥0 are defined by

h0 := 1, and hk(t) :=
k−1∏
j=0

t− zj
zk − zj

for k ≥ 1. (5.2.19)

A similar result holds in the multi-variate setting. We define the tensorized hierar-
chical polynomials (Hν)ν∈F defined by

Hν(y) :=
∏
j≥1

hνj(yj), y := (yj)j≥1 ∈ U. (5.2.20)

We have the following
Lemma 5.2.3

Let Λ ⊂ F be a lower set and ν an index in F such that Λ′ = Λ∪ {ν} is also lower.
Then, it holds

∆νg = IΛ′g − IΛg = gνHν , gν := g(zν)− IΛg(zν). (5.2.21)
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Proof : On the one hand, in view of (5.2.18), the tensorization of the operators ∆νj as
described in (5.2.4) necessarily yields a difference operator satisfying

∆νg = gν ⊗Jj=1 hνj = gνHν , (5.2.22)

where J is an integer such that ν is supported in {1, . . . , J} and gν is a constant
depending on the values of the function g on the tensorized grid of interpolation points
ΓBν . On the other hand, similarly to the one dimensional case above, using Lagrange
interpolation formula in order to expresses the polynomial ∆νg ∈ PΛ′ in the basis of
Lagrange polynomials (lΛ′,µ)µ∈Λ′ associated with PΛ′ and ΓΛ′ , we obtain

∆νg = IΛ′g−IΛg =
∑
µ∈Λ′

(
IΛ′g(zµ)−IΛg(zµ)

)
lΛ′,µ =

(
g(zν)−IΛg(zν)

)
lΛ′,ν , (5.2.23)

where we have used that for µ ∈ Λ ⊂ Λ′, one has IΛ′g(zµ) = IΛg(zµ) = g(zµ) and
IΛ′g(zν) = g(zν). Comparing (5.2.22) and (5.2.23) shows that Hν and lΛ′,ν are equal
up to constant. Since Hν(zν) = lΛ′,ν(zν) = 1, then they are actually equal, which
finishes the proof.

Let us remark that, in view of ∆µg(zν) = 0 for µ 
 ν showed in the proof of Theorem
5.2.1, the quantity gν defined in the previous lemma satisfies

gν = g(zν)−
∑

µ∈Λ:µ<ν

∆µg(zν) = g(zν)−
∑

µ∈Λ:µ<ν

gµHµ(zν), (5.2.24)

depends effectively only on the grid of points ΓBν .

As explained in the introduction, we are interested in performing polynomial inter-
polation for a nested sequence of lower sets (Λn)n≥1 with n = #(Λn). Accordingly the
grids (ΓΛn)n≥1 are also nested. The sets Λn may either be fixed in advance, or adap-
tively chosen based on information gained at earlier computational steps. We have that
for n ≥ 2 that Λn = Λn−1 ∪ {νn} for some multi-index νn, therefore using the previous
results, we have

IΛng = IΛn−1g +
(
g(zνn)− IΛn−1g(zνn)

)
Hνn . (5.2.25)

We have then the following lemma.
Lemma 5.2.4

Let (Λn)n≥1 be a sequence of nested lower sets with n = #(Λn) and denote by
(νk)k≥1 ∈ FN the indices such that Λ1 = {ν1} and for n ≥ 2, Λn = Λn−1 ∪ {νn} =
{ν1, . . . , νn}. For any n ≥ 1, we have

IΛng =
n∑
k=0

gνkHνk (5.2.26)
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where the coefficients gνk are defined recursively by

gν1 = g(z0F ), gνk := g(zνk)− IΛn−1g(zνk) = g(zνk)−
k−1∑
i=1

gνiHνi(zνk) . (5.2.27)

In the sum that appears on the right side of (5.2.27), only the terms such that
νi ≤ νk are non-zero. When evaluating the computational cost in the above operation,
one should make the distinction betwen the cost of the evaluation of g(zνk) and of
computing the linear combination

∑k−1
i=1 gνiHνi(zνk). In the case where the evaluation

of g requires running a heavy numerical code (for example when g(y) is an output
associated with u(y) the solution of a parametric PDE), the first cost dominates the
second one. Once the evaluation of g(zνk) is done, the cost of the computation of gνk
amounts, upon assuming that the values Hνi(zνk) are tabulated, to the execution of
2#({i : νi < νk}) usual sum and product operations. This shows that computing
IΛn by the recursive procedure is equal in cost to the ineluctable n evaluations of g at
interpolation points of the grid ΓΛn plus at most a number K(Λn) of usual operations
where for Λ lower, we have introducted

K(Λ) :=
∑
ν∈Λ

2#(Bν) ≤ 2(#(Λ))2. (5.2.28)

where we have used that #(Bν) ≤ #(Λ) which results from the lower structure of Λ. If
the index sets Λn in the context of parametric PDEs are known in advance, then the
complexity of the construction of the operators IΛn is dominated by the n evaluations
of the targeted function.

The algorithm in the above lemma is also efficient to construct the operator IΛg for
any given lower set Λ. Indeed, by iteratively removing its maximal elements, we see
that any such set can be written as Λ = Λk with k := #(Λ) and (Λn)1≤n≤k a sequence
of the type given in the lemma.

We have seen that the coefficients gν only depend on g and on the index ν and
are independent on the index set Λ. These coefficients can be viewed as the unique
coordinates of g in the hierarchical basis (Hν)νF . One should however be cautious
when writing the expansion

g =
∑
ν∈F

gνHν , (5.2.29)

since it may fail to converge for certain functions g regardless of the ordering of the sum-
mation. However, it will be proved to converge for functions that can be approximated
sufficiently well by polynomials, based on the stability analysis of the interpolation
operator which is the object of §5.3.
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5.3 The Lebesgue constant

In the construction of the previous section, any sequence (zk)k≥0 of pairwise distinct
points in [−1, 1] can be used for the contraction of interpolation grids. However, the
choice of the sequence is critical for the stability of the resulting interpolation operators
IΛ, expressed by the Lebesgue constant

LΛ := sup
g∈B(U)\{0}

‖IΛg‖L∞(U)

‖g‖L∞(U)

, (5.3.1)

where B(U) is the set of bounded functions g on U which are defined everywhere on U .
In the case where Λ is supported in one direction, for example Λ := {0F , e1, 2e1, . . . , ke1},
then IΛg = Ikg1 with g1 is defined over [−1, 1] by g1(t) = g(t, z0, z0, . . .). In this case,
studying the stability of IΛ amounts to the study of the stability of Ik. We are interested
in choosing sequences (zk)k≥0 such that the Lebesgue constants

Lk = max
g∈C([−1,1])\{0}

‖Ikg‖L∞([−1,1])

‖g‖L∞([−1,1])

, (5.3.2)

associated with the sections {z0, . . . , zk} have moderate growth with k. A classical
example of such univariate sequences are Leja sequence (5.4.18) which numerically
show moderate growth of Lk. In addition, the choice of a Leja sequence for (zk)k≥0 has
an interesting implication on the adaptive choice of the sets Λn as we explain in the
next section.

In this section, we analyzes the Lebesgue constant of the operators IΛ. We provide
bounds for theses constants and show that the stability of the operators IΛ is indeed
strongly tied to the stability of the univariate operator Ik. A crude, yet useful, way to
estimate LΛ is by using triangle inequality which gives

LΛ ≤
∑
ν∈Λ

δν , (5.3.3)

where we have defined for ν ∈ F

δν := sup
g∈B(U)\{0}

‖∆νg‖L∞(U)

‖g‖L∞(U)

, (5.3.4)

where B(U) is defined as for (5.3.1). It is readily seen that

δν :=
∏
j≥1

δνj , (5.3.5)

where
δk := sup

g∈C([−1,1])\{0}

‖∆kg‖L∞([−1,1])

‖g‖L∞([−1,1])

≤ Lk−1 + Lk , (5.3.6)
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with Lk as in (5.3.2) and the convention that L−1 := 0 since I−1 := 0. Let us remark
that the product in (5.3.5) is actually finite. Indeed, since I0 is defined by I0g = g(z0)1,
then δ0 = L0 = 1. We have then

LΛ ≤
∑
ν∈Λ

∏
j≥1

(Lνj−1 + Lνj) (5.3.7)

The bound (5.3.7) is of course crude, since we did not take advantage of the telescoping
nature in the summation of the ∆ν . For instance, when Λ is a rectangular block, i.e.
Λ = Bν for some ν ∈ F , then we have seen that IΛ = Iν = ⊗j≥1Iνj so that in such case,
the exact value of the Lebesgue constant is giving by the smaller value

LBν =
∏
j≥1

Lνj . (5.3.8)

Nevertheless, for general lower sets Λ, we can use the bounds (5.3.3) and (5.3.7) to study
the behaviour of the Lebesgue constant LΛ as the dimension #(Λ) of the polynomial
space PΛ grows. The following result shows that when certain algebraic bounds are
available for the Lk in term of (k + 1) the dimension of the polynomial space Pk, then
similar algebraic bounds can be derived for LΛ in terms of #(Λ) regardless of the
dimension d and of the shape of Λ.
Lemma 5.3.1

If the Lebesgue constants Lk satisfy

Lk ≤ (k + 1)θ, k ≥ 0, (5.3.9)

for some θ ≥ 1, then for any monotone set Λ, one has

LΛ ≤ (#Λ)θ+1 (5.3.10)

Proof : If θ ≥ 1, then for any k ≥ 0 one has Lk+Lk−1 ≤ (k+1)θ+kθ ≤ (2k+1)(k+1)θ−1,
therefore, for ν ∈ Λ∏

j≥1(Lνj + Lνj−1) ≤
(∏

j≥1(νj + 1)
)θ−1∏

j≥1(2νj + 1)

= (#(Bν))θ−1
∏
j≥1(2νj + 1)

≤ (#(Λ))θ−1
∏
j≥1(2νj + 1),

where we have used Bν ⊂ Λ which follows from Λ being a lower set. To complete the
proof, it remains to show that K0,0(Λ) ≤ (#Λ)2, where

K0,0(Λ) :=
∑
ν∈Λ

∏
j≥1

(2νj + 1) .

This is proved is the appendix, Lemma A.4.1.
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Remark 5.3.2
In order to establish the result in Lemma 5.3.1, one only needs to have

δk ≤ (2k + 1)(k + 1)θ−1. (5.3.11)

In the case where (zk)k≥0 is a Leja sequence defined by (5.4.18) for some initial point
z0 ∈ [−1, 1], the hierarchical polynomials hk defined by (5.2.19) satisfy |hk(t)| ≤
|hk(zk)| = 1 for any t ∈ [−1, 1]. Since, according to (5.2.18), we have

∆kg = (g(zk)− Ik−1g(zk))hk. (5.3.12)

It follows that
δk ≤ 1 + Lk−1, (5.3.13)

and
LΛ ≤

∑
ν∈Λ

∏
j≥1

(1 + Lνj−1) (5.3.14)

which are improvements over (5.3.6) and (5.3.14) and can be used to prove (5.3.1)
using only that

1 + Lk−1 ≤ (2k + 1)(k + 1)θ−1. (5.3.15)

Let us observe that since L−1 = 0 and L0 = 1, bounds of the form Lk ≤ (k+1)θ can
be established for some θ ≥ 1 provided that Lk are bounded as O((k + 1)θ) for some
θ > 0. Such bounds are available for sequences that we discuss in the next chapter.

We don’t have a simple argument for adapting the result of Lemma 5.3.1 when the
Lebesgue constant Lk grows logarithmically, i.e. Lk . log(k + 1) for k ≥ 1. We are
however able, using similar arguments as above, to bound Lebssgue constant for sparse
grids based on Clenshaw-Curtis points.

In the case of sparse grids interpolation operator as defined in (5.2.10), we can take
benefit from the telescopic sums in order to sharpen bound for the Lebesgue constant
Lm(Λ) of Im(Λ) as in (5.2.10). Indeed, one has

Lm(Λ) ≤
∑
i∈Λ

∏
j≥1

(Lm(ij) + Lm(ij−1)), (5.3.16)

In particular if m is a doubling rule, that is m(−1) = −1, m(0) = 0 and m(i) = 2i

for any i ≥ 1, and the point of interpolation used for Im(i) are the Clenshew-Curtis
abscissas of order 2i, i.e.

cos
(jπ

2i

)
, j = 0, . . . , 2i, (5.3.17)

then since
Lm(i) ≤

2

π
log(2i) + 1 =

2 log 2

π
i+ 1 ≤ i+ 1 (5.3.18)
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we deduce that
Lm(Λ) =

∑
i∈Λ

∏
j≥1

(2ij + 1) ≤ (#(Λ))2. (5.3.19)

The Lebesgue constant is moderate in view of the dimension of Pm(Λ) which is equal to

#(m(Λ)) =
∑
i∈Λ

2|i|. (5.3.20)

5.4 Application of high dimensional interpolation to
parametric PDEs

5.4.1 Interpolation of Banach valued functions

We are interested in applying our interpolation process to the solution map y 7→ u(y)
defined by exact or approximate resolution of the parametric PDE (5.1.1) for the given
parameter y. Therefore, we want to interpolate a function which is not real or complex
valued, but instead takes values in the solution space V . The generalization of the
interpolation operator IΛ to this setting is straighforward: IΛu is the unique function
in VΛ that coincides with u at the points {zν}ν∈Λ. As in the scalar case, it can be
expanded according to

IΛu =
∑
ν∈Λ

uνHν , (5.4.1)

where the coefficients uν ∈ V can be computed in a recursive way similar to (5.2.27):

uν1 = u(z0F ), uνk = u(zνk)−
k−1∑
i=1

uνiHνi(zνk), (5.4.2)

where Λn = {ν1, . . . , νn}, n = 1, 2, . . ., is a nested sequence of lower sets. We are
interested in the accuracy of the interpolant in the sense of the maximum error

‖u− IΛu‖V∞ := sup
y∈U
‖u(y)− IΛu(y)‖V . (5.4.3)

The same reasoning as for interpolation of scalar valued functions shows that

‖u− IΛu‖V∞ ≤ (1 + LΛ) inf
v∈VΛ

‖u− v‖V∞ , (5.4.4)

where LΛ is the Lebesgue constant associated to the interpolation operator IΛ which
was defined and studied in the previous section.
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5.4.2 Convergence rates for a parametric, elliptic model prob-
lem

As already explained in the introduction, for the model elliptic problem (1.1.1), one
can establish convergence rates in V∞ and V2 where V = H1

0 (D), for polynomial ap-
proximation that are robust with respect to the parametric dimension. This is also the
case for a large class of parametric models as we have shown in Chapter 2 with other
choices of the space V . Since the model in Chapter 1 can be viewed as a particular case
of the frameworks in Chapter 2, we only work with the notation of the latter involving
only Legendre polynomial.

Without going into details, the result of Chapter 2 is stated as following: If the
parametric PDE of the general form (5.1.1) is well posed in some Banach space V for
any y ∈ U and the operator D satisfies a (p, ε)-holomorphy assumption, see Definition
2.2.1, then the sequence (‖uν‖V )ν∈F of Legendre coefficients associated with the the
Legendre family (Pν)ν∈F belongs to `pm(F). Hence as in (2.2.7), there exists a sequence
(Λn)n≥1 of nested lower sets such that #(Λn) = n and

inf
v∈VΛn

‖u− v‖V∞ ≤ C(n+ 1)−s, s :=
1

p
− 1. (5.4.5)

where C > 0 does not depend on n. One way to compute an approximation of the
solution map u in the polynomial spaces VΛn is by using the incremental interpolation
process we introduced in the previous sections. One way to study the rate of conver-
gence of IΛnu towards u is through the analysis of stability using Lebesgue constant.
Combining (5.4.4) and (5.4.5), we obtain

‖u− IΛnu‖V∞ ≤ C(1 + LΛn)(n+ 1)−s . (5.4.6)

We have seen in §5.3 that the Lebesgue constant can be controlled by a bound of the
form

LΛn ≤ (#(Λn))θ+1 = nθ+1, (5.4.7)

when the univariate sequence (zk)k≥0 is chosen so that the growth of the Lebesgue
constants associated with the sections {z0, . . . , zk} satisfy Lk ≤ (k+ 1)θ for some θ ≥ 1.
Sequences with the previous property are studied in the next chapter for which the value
θ is proved to be smaller than 2. Using such sequences, we thus obtain a convergence
estimate of the form

‖u− IΛnu‖V∞ ≤ C(n+ 1)θ+1−s. (5.4.8)

With this simple stability (via the bound for the Lebesgue constant) plus consistency
(via the n-term approximation result) analysis, the convergence rate obtained in (5.4.8)
is deteriorated at worse by (θ + 1) compared to the n-term approximation rate s in
(5.4.5). Using only this analysis, one can not say if a convergence is guaranteed when
s ≤ θ + 1.
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The following result recovers the best n-term approximation rateO((n+1)−s) for the
interpolation based on a different choice of lower sets than the sequence (Λn) above.
This analysis is similar to an analysis that was developed in [70, 69, 7, 26] in the
particular case of the solution map u of elliptic model (1.1.1) with affine dependence
and uniform ellipticity assumption. It is based on the fact that the algebraic growth
of the univariate Lebesgue constants Lk can be absorbed inside the estimates obtained
for Legendre or Taylor coefficients based on analyticity.
Lemma 5.4.1

Assume that u =
∑

ν∈F uνPν in the sense of unconditional convergence in V∞. If
the univariate sequence (zk)k≥0 is chosen so that Lk ≤ (k+1)θ, for some θ ≥ 0, then
for any lower set Λ, one has

‖u− IΛu‖V∞ ≤ 2
∑
ν /∈Λ

pν(θ)‖uν‖V , (5.4.9)

where
pν(θ) :=

∏
j≥1

(1 + νj)
θ+1 . (5.4.10)

Proof : The unconditional convergence in V∞ of the Legendre series yields that for any
lower set Λ,

IΛu = IΛ

(∑
ν∈F

uνPν

)
=
∑
ν∈F

uνIΛPν =
∑
ν∈Λ

uνIΛPν +
∑
ν 6∈Λ

uνIΛPν .

The univariate polynomial Pk is of degree k, therefore for any ν ∈ F , the polynomial
Pν belongs to PBν where Bν := {µ ∈ F : µ ≤ ν}. If ν ∈ F , the lower structure of Λ
implies that Bν ⊂ Λ, hence Pν ∈ PΛ, so that IΛPν = Pν . For ν 6∈ Λ, since we have
∆µPν =

∏
j≥1 ∆µjPνj = 0 for any µ 
 ν, then for any ν ∈ F one has

IΛPν =
∑

µ∈Λ:µ≤ν
∆µPν = IΛ∩BνPν .

The two previous observations imply

u− IΛu =
∑
ν 6∈Λ

uν(I − IΛ∩Bν )Pν ,

where I denotes the identity operator defined over C(U). Therefore

‖u− IΛu‖V∞ ≤
∑
ν 6∈Λ

‖uν‖V (1 + LΛ∩Bν )‖Pν‖L∞(U) ≤ 2
∑
ν 6∈Λ

‖uν‖V LΛ∩Bν .

where we have used that the Legendte polynomials have infinite norms equal to 1 and
the Lebesgue constant always greater than 1. If the univariate sequence is such that
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λk ≤ (k + 1)θ for some θ > 0, then we have

LΛ∩Bν ≤ #(Λ ∩ Bν)θ+1 ≤ #(Bν)θ+1 =
(∏
j≥1

(1 + νj)
)θ+1

= pν(θ),

so that
‖u− IΛu‖V∞ ≤ 2

∑
ν 6∈Λ

pν(θ)‖uν‖V ,

which completes the proof.

The above lemma can be generalized to any polynomial expansion other than Leg-
endre series, for example the expansion into Taylor polynomials, provided that un-
conditional convergence holds and (Pν)ν∈F any family of tensorized polynomials, i.e.
Pν = ⊗j≥1Pνj , such that (Pk)k≥0 is a family of univariate polynomials with P0 = 1, Pk
is of degree k and ‖Pk‖L∞([−1,1]) = 1. This is in particular the case with the elliptic
linear model studied in Chapter 1. We focus here on the Legendre series, which allows
us to use the results of Chapter 2, applicable to more general parametric PDEs. We
have seen that unconditional convergence holds under assumptions on the anisotropic
dependence of the parametric PDE (5.1.1) on y and it is based on explicit bounds for
the V -norms of Legendre coefficients. These bounds are obtained by application of the
Cauchy formula, on the holomorphy extension of the solution map u as in the proof of
Theorem 1.6.9 and are of the form (2.2.5)

‖vν‖V ≤
(∏
j≥1

(νj + 1)
)
Cε inf

ρ∈Aε,b

{
ρ−ν

∏
j≥1:νj 6=0

ϕ(ρj)
}
, ν ∈ F (5.4.11)

where Cε is a constant not depending on ν and Aε,b denote the set of sequences ρ =
(ρj)j≥1 which are (b, ε)-admissible, see (2.2.2). Given now the solution map u which is
a sum of its Legendre series with algebraic rates and θ ≥ 1, we introduce the sequence
(αν)ν∈F defined by

αν = pν(θ)‖uν‖V , ν ∈ F (5.4.12)

where pν(θ) is as in the previous lemma. In view of the relation between Legendre
coefficients ‖vν‖V and ‖uν‖V , the sequence α is bounded according to αν ≤ CεCν(θ)gν
for any ν ∈ Λ, where (gν)ν∈F defined as in Chapter 1, formula (1.6.15) and

Cν(θ) :=
( ∏
j≥1:νj 6=0

√
2(νj + 1)θ+

5
2

)
, (5.4.13)

which is of the form of what we have called a multi-dimensional algebraic deterioration
in Chapter 1, formula (1.3.26). In view of Theorem 1.6.5, we have then the following,
Theorem 5.4.2

Assume that the differential operator D satisfies the (p, ε) holomorphy assumption
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for some 0 < p < 1 and ε > 0. Then for any θ ≥ 1 and for pν(θ) as in (5.4.10), the
sequence (pν(θ)‖uν‖V )ν∈F belongs to `pm(F).

We have thus established the following convergence result.
Theorem 5.4.3

Assume that D satisfies the (p, ε)-holomorphy for some 0 < p < 1 and ε > 0. If the
univariate sequence (zk)k≥0 is chosen so that the growth of the Lebesgue constant
satisfies Lk ≤ (k+ 1)θ for some θ > 0, then there exists a sequence (Λn)n≥1 of lower
sets Λn such that #(Λn) = n and

‖u− IΛnu‖V∞ ≤ C(n+ 1)−s, s =
1

p
− 1 . (5.4.14)

5.4.3 Adaptive selection of polynomial spaces

We now discuss the adaptive selection of a nested sequence (Λn)n≥1. Let us begin with
the following analogy: if (Hν)ν∈F was an orthonormal basis of L2(U) then the choice
of an index set Λn that minimize the L2 error when truncating the expansion (5.2.29)
would be the indices corresponding to the n largest |gν |.

In our current setting however, (Hν)ν∈F is not an orthonormal basis and we are
rather interested in controlling the error in an infinite sense. A possible greedy strategy
is to define Λn as the set of indices corresponding to the n largest contributions of
(5.2.29) measured in the L∞ metric, i.e. the n largest aν |gν |, where

aν := ‖Hν‖L∞(U) :=
∏
j≥1

‖hνj‖L∞([−1,1]). (5.4.15)

This strategy obviously can give rise to a nested sequence (Λn)n≥1, however the sets
Λn are not ensured to be lower. In addition, it is not computationally feasible since
finding the n largest contributions in (5.2.29) hints that we should have computed all
contributions. In order to correct these defects, we define for any lower set Λ a set of
neighbours

N (Λ) :=
{
ν /∈ Λ : Λ ∪ {ν} lower

}
. (5.4.16)

This set consists of those ν /∈ Λ satisfying ν − ej ∈ Λ for any j such that νj 6= 0. We
remark that a natural variant of the first strategy, that leads to a nested sequence of
lower sets, is the following greedy adaptive algorithm that we call adaptive interpolation
(AI) algorithm.
Algorithm 5.4.4
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• Start with Λ1 := {0F}.

• Assuming that Λn−1 has been computed, build N (Λn−1), compute gν for any
ν ∈ N (Λn−1) and find

νn := argmax
{
aν |gν | : ν ∈ N (Λn−1)

}
, (5.4.17)

• Set Λn = Λn−1 ∪ {νn}.

Let us observe that since Hν(zν) = 1, we obviously have that aν ≥ 1. On the other
hand, when (zk)k≥0 is a Leja sequence on [−1, 1] built according to z0 ∈ [−1, 1] and the
inductive construction

zk := Argmaxz∈P

k−1∏
j=0

|z − zj|, (5.4.18)

we obviously have maxz∈[−1,1] |hk(z)| = |hk(zk)| = 1 and therefore

aν = Hν(zν) = 1. (5.4.19)

In such a case, in view of (5.2.27), the greedy strategy (5.4.17) amounts in choosing
the new index in N (Λn−1) that maximizes the interpolation error at the corresponding
new grid point:

νn := argmax
{
|g(zν)− IΛn−1g(zν)| : ν ∈ N (Λn−1)

}
. (5.4.20)

Similarly to the algorithm “Largest Neighbour” described in Chapter 3, the algo-
rithm AI has many computational advantages. The quantities aν and gν depends only
on ν and are then computed for every multi-index once and for all. Although N (Λn) is
of infinite cardinality when d = ∞, the indices that update N (Λn−1) to N (Λn) are of
finite number smaller that #(supp Λn−1). One then only needs to compute aν and gν
for the infinite set

N ({0F}) :=
{
ej : j ≥ 1

}
(5.4.21)

which are giving by

aej =
1 + |z0|
|z1 − z0|

, gej = |g(zej)− g(z0F )| = |g(z0, . . . , z0, z1, z0, . . .)− g(z0, z0, . . .)|.

(5.4.22)
One can then either have access to all ej or use an argument such as mean value theorem
in order to deduce a-priori estimates on the quantities |gej | that can be used as hints in
order to make the algorithm feasible. We provide bounds for |gej | in the next section
for the particular setting of elliptic parametric PDEs.
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The greedy strategy has also several defects. The first one is that it may simply
fail to converge, even if there exist sequences (Λn)n≥0 such that IΛng converges to g
at a high rate. This is due to data oscillation that could return an artificially small
interpolation error at the new grid point. Consider for example a two dimensional
function of the form

g(y) = g(y1, y2) = g1(y1)g2(y2), (5.4.23)

where g1 and g2 are non-polynomial smooth functions such that g2 takes the same
values at the points z0 and z1. Then, the algorithm will select sets Λn that consist of
the indices ν = (k, 0) for k = 0, . . . , n − 1, since the interpolation error at the point
z(k,1) = (zk, z1) will always be null. Although this type of situation might be viewed as
pathological, it reflects the fact that the algorithm might fail in its first steps to identify
the significant variables. One way to avoid this is to impose that when all interpolation
errors |g(zν) − IΛn−1g(zν)| for ν ∈ N (Λn) are smaller than some prescribed tolerance
εn > 0 (that is either fixed or tends to 0 as n grows), then the new index νn is chosen
arbitrarily from N (Λn).

The second defect which we already encountered is that in the infinite dimensional
framework d = ∞, the set of neighbours N (Λ) has infinite cardinality. One way to
treat this defect is by modifying the algorithm and choosing at each iteration k, the
next element in the reduced set of neighbors

NJ(Λ) :=
{
ν ∈ N (Λ) : νj = 0 if j > J + 1

}
, (5.4.24)

where J = J(Λ) is such that νj = 0 for any ν ∈ Λ and j ≥ J . This means that we can
activate at most one new variable at each iteration step.

Even with such modifications, it is not clear to understand under which additional
assumptions on g the adaptive greedy selection procedure picks sets (Λn)n≥0 such that
the interpolation IΛng has a guaranteed convergence rate comparable to that of an
optimal choice of sets. We give in §5 several numerical examples that illustrate the
good practical behaviour of this algorithm.

5.5 Numerical experiments

5.5.1 Scalar valued functions

We first consider the interpolation of scalar valued functions u : U → R where now
U = [−1, 1]d. Our objective is to test the adaptive algorithm AI proposed in §5.4.3 in
various ways:

• Ability to select good lower index sets Λn, in particular when the function has
anisotropic dependence on the variables.
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• The effect of the choice of the univariate sequence (zk)k≥0, in particular on the
robustness of the interpolation with respect to noise in the measurements.

• Robustness of the performance with respect to the dimension d when the function
depends only on few unknown variables, or when the dependence with respect to
the variables is sufficiently anisotropic.

We consider three possible choices for the univariate sequence (zk)k≥0:

• Uniform sequence (Q): z0 = 1, z1 = −1, z2 = 0 and for k > 1 we set
z2k+1 = 1

2

∑n
j=0 εj2

−j where k =
∑n

j=0 εj2
j is the binary expansion of k and

z2k+2 = −z2k+1. Such a choice produces a uniform subdivision of [−1, 1] of step
size 2−j for the particular sections (z0, . . . , z2j), and avoids accumulation of points
on a region of the interval for the intermediate sections (z0, . . . , zk), 2j < k < 2j+1.

• Leja sequence (L): z0 = 1 and the sequence zk is defined recursively on [−1, 1]
by (5.4.18). Here also we have z1 = −1 and z2 = 0.

• <-Leja sequence (R): this is the projection on [−1, 1] of a Leja sequence for the
complex unit disk initiated at 1. The <-Leja sequence has an explicit structure
which is very similar to that of the sequence Q in the sense that (z0, . . . , z2j) are
Clenshaw-Curtis abscissas, that is the projections on the real axis of a uniform
subdivision of the upper half-circle with end-points at −1 and 1. This is explained
in details in the next chapter. The <-Leja sequence we use here has an explicit
formula. Namely z0 = 1, z1 = −1 and for 2n ≤ k < 2n+1 having the binary
expansion k = 2n +

∑n−1
j=0 aj2

j,

zk+1 = cos
( π

2n+1
+ π

n−1∑
j=0

aj2
−j
)
. (5.5.1)

Our first example is the function of d = 16 variables

u1(y) = u(y1, . . . , y16) = y3 sin(y4 + y16), (5.5.2)

that in fact depends only on 3 variables. Figure 5.5.1 displays the uniform error between
u and IΛnu in terms of n = #(Λn) for the AI algorithm based on 3 the possible choices
Q, L and R for the univariate sequence (zk)k≥0.

We observe that the error decays fastly and reaches machine precision with the
choices L and R for the univariate sequence, but not with the choice Q, although u1

is analytic over Rd. Inspection of the index sets Λn generated by the algorithm for the
three choices reveals that for n = 103, the polynomial degree in the active variables y4

and y16 reaches values above 30. This explains the bad behaviour of the error for the
choice Q. Indeed, it is well known that the univariate Lebesgue constant associated to
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k uniformly spaced points is higher than 2k and therefore the amplification of machine
precision measurement noise begins to deteriorate the precision. This does not occur
with the choices L and R for which the Lebesgue constant has moderate growth. For
these sequences, the algorithm identifies the three active variables (y3, y4, y16) in the
sense that all chosen indices ν have νj = 0 for j 6= 3, 4, 16.
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Figure 5.5.1: Uniform error of the AI algorithm applied to u1 based on the sequences
R, L and U .

In our next example, we consider the function

u2(y) =
(

1 +
d∑
j=1

γjyj

)−1

, γj :=
3

5j3
. (5.5.3)

This function now depends on all variables y1, . . . , yd but in an strongly anisotropic way
due to the decay of the weights γj. Since

∑∞
j=1 γj ≈ 0.72 < 1, the function u is analytic

on U in each variable around 0, regardless of the dimension d which can be even infinite
d = ∞. Moreover, the same analysis used in chapters 1 and 2 to prove (5.1.4) for
parametric PDEs based on holomorphy arguments, shows that since (γj)j≥1 ∈ `p for
any 1

3
< p < 1, then there exists a sequence (Λ∗n)n≥1 with n = #(Λ∗n) such that

inf
v∈PΛ∗n

‖u2 − v‖L∞(U) ≤ Cγ,p(n+ 1)−s, s =
1

p
− 1, (5.5.4)

where Cγ,p is independent of d. Figure 5.5.2 reveals that this robustness with respect to
d is also observed when using the AI algorithm (here based on the sequence R), since
its convergence behaviour is almost unchanged for d = 8, 16, 32 and 64.
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Figure 5.5.2: Uniform error for the AI algorithm applied to u2 based on the sequence
R for the dimensions d = 8, 16, 32, 64.

We next fix d = 16 and compare the error of the AI algorithm applied to u2 based on
the three sequences L, R and Q. Figure 5.5.3 reveals that, in contrast to the function
u1, the uniform sequence Q gives as good results as the sequences L and R. This can
be explained by inspecting more closely the index sets Λn, for which one finds that
for n = 104 the highest polynomial degree attained on the most active variable y1 is
17 (due the presence of many active variables) and therefore the amplification of the
machine precision noise is not yet visible.

We perform the same test with a higher additive noise, by interpolating the values
u2(zν)+εν where εν are independent realizations of a random variable with uniform law
on [−10−3, 10−3]. Figure 5.5.4 reveals that the error diverges when using the uniform
sequence Q, while it decays when using R or L (however not reaching arbitrarily small
values due to presence of the noise).

Finally, we consider with d = 16 the function

u3(y) =
(

1 + (
d∑
j=1

γjyj)
2
)−1

, γj :=
5

j3
. (5.5.5)

Similar to u2, this function has an anisotropic behaviour. However, in contrast to u2, it
is not analytic in each variable around 0 due to the fact that

∑d
j=1 γj > 1. As a result,

algorithm AI based on the uniform sequence Q does not converge, even in the noiseless
case, as illustrated by Figure 5.5.5. This can be viewed as a manifestation of the well
known Runge phenomenon.
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Figure 5.5.3: Uniform error of algorithm AI applied to u2 with d = 16 based on the
sequences R, L and Q.
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Figure 5.5.4: uniform error of algorithm AI applied to noisy evaluations of u2 with
d = 16 based on the sequences R, L and Q.

In summary, algorithm AI takes advantage of an anisotropic dependence on the
variables, however its success is critically tied to the choice of the univariate sequence
(zk)k≥0 in either one of these situations:

(i) the polynomial degree reaches high values in certain variables,
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Figure 5.5.5: Uniform error of algorithm AI applied to u3 with d = 16 based on the
sequences R, L and Q.

(ii) the measurements are noisy,

(iii) the function has not enough smoothness in certain variables.

In all cases, both sequences R and L are good choices.

5.5.2 Parametric PDE’s

We now turn to the interpolation of functions, u : U → V defined as the solution
map of a parametric PDE (5.1.1) where V is the solution space. In practice, the PDE
is solved by a numerical technique such as the finite element method applied with a
certain mesh, and therefore we rather interpolate the numerical solution map

uh : U → Vh, (5.5.6)

where Vh is finite dimensional.

In Chapter 3, several adaptive algorithms based on the Taylor partial sums were
proposed, analyzed and implemented for the linear model elliptic PDE (1.1.1) studied in
Chapter 1. The most practical and efficient of these algorithms acts in a very similar way
as algorithm AI, in the sense that the set Λn+1 is defined by adding to Λn the index ν that
maximizes the V -norm of the Taylor coefficient tν among the set of neighbours N (Λn).
In the sequel, we refer to this adaptive algorithm as Largest Neighbour Taylor (LNT).
Note that, in contrast to AI, algorithms based on the computation of the Taylor series
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such as LNT are by essence intrusive and strongly benefit from the particular structure
of the problem (1.1.1): a linear equation with affine dependence of the operator on the
parameters.

We compare the two algorithms AI and LNT when applied to (1.1.1) withD = [0, 1]2

and diffusion coefficient a(x, y) given by an expansion in the two dimensional Haar
wavelet basis similar to Test 2 in Chapter 3, namely

a(x, y) := a(x) +
L∑
l=0

βl

3∑
i=1

∑
k∈{0,...,2l−1}2

yl,k,ih
i
l,k(x), ā = 1. (5.5.7)

In the above expansion,

hil,k(x) := hi(2lx− k), l ∈ N, k = (k1, k2) ∈ {0, . . . , 2l − 1}2, i = 1, 2, 3, (5.5.8)

where the generating wavelets hi are defined by

h1(x1, x2) := ϕ(x1)h(x2), h2(x1, x2) := h(x1)ϕ(x2) and h3(x1, x2) := h(x1)h(x2),
(5.5.9)

with ϕ := χ[0,1] and h := χ[0,1/2[ − χ[1/2,1[. Using the relabelling

ψj := βlh
i
l,k and yj := yl,k,i, when j = 22l + 3(2lk1 + k2) + i− 1, (5.5.10)

we may rewrite the above expansion (5.5.7) in the form a(x, y) := a(x) +
∑d

j=1 yjψj(x)

adopted for the linear elliptic model with d := 22(L+1) − 1. We consider the general
form

βl := c2−γl, c := 0.3
1− 2−γ

1− 2−(L+1)γ
= 0.3

2γ − 1

2γ − 2−Lγ
, (5.5.11)

which ensures that the uniform ellipticity assumption UEA(r, R̃) holds with r = 0.1
and R̃ = 1.9. The value of the parameter γ > 0 reflects the decay of the high scale
oscillation and therefore the long range correlation in the diffusion field.

In our numerical test, we use the value γ = 3, which was among those tested in
Chapter 3 and we consider the maximal scale levels L = 1 and 2 which give parametric
dimension d = 15 and 63. In order to refine the comparison between AI and LNT,
we introduce a third process that builds the interpolation polynomials IΛnu ∈ VΛn by
using the sets Λn produced by the LNT algorithm. We refer to this algorithm as LNTI
(Largest Neighbour Taylor Interpolation). For both AI and LNTI we use the <-Leja
sequence R.

Several observations may be drawn from the error curves, displayed on Figures 5.5.6
and 5.5.7. We first notice that the error curve of LNTI is above that of LNT, with a
more oscillatory behaviour. Since the sets (Λn)n≥1 are the same for both algorithms,
this means that the deterioration is due to the instabilities in the interpolation operator
IΛn that is used in LNTI, that are reflected by the size of the Lebesgue constant. In
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addition, we notice that the error curve of AI is above that of LNTI, which means that
AI is slightly misled in the adaptive selection of the sets Λn which is better performed
by LNT. In all cases, we find that these algorithms are rather robust with respect to
the growth in the dimension, since they are able to capture the anisotropic feature of
the problem reflected by the decay in the weights βl.
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Figure 5.5.6: V∞-error of LNT, LNTI and AI for the model (1.1.1) with coefficients
(5.5.7) and d = 15.
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Figure 5.5.7: V∞-error of LNT, LNTI and AI for the model (1.1.1) with coefficients
(5.5.7) and d = 63.
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5.6 Extension to non polynomial hierarchical bases

The tensorization-sparsification approach used in the construction of the polynomial
interpolation procedure can be generalized to other type of interpolation. We describe
the approach in an abstract context using directly the Newton like formula. We consider
the following sets

(T ,≤), ZT := {zλ : λ ∈ T }, HT := {hλ : λ ∈ T }, (5.6.1)

that stands respectively for a countable partially ordered set of indices, a sequence
indexed in T of pairwise distinct abscissas in [−1, 1] and a hierarchical basis indexed in
T of functions on C([−1, 1]) satisfying

hλ(zλ′) = δλ,λ′ , if λ′ ≤ λ. (5.6.2)

We consider the set of multi-indices T d := {ν = (ν1, . . . , νd) : νj ∈ T } and define lower
sets Λ ⊂ T d similarly to (5.1.6) with here ≤ is the partial order over T . For a lower
set Λ, we introduce

ΓΛ :=
{
zν := (zν1 , . . . , zνd) : ν ∈ Λ

}
, HΛ := span

{
Hν := ⊗dj=1hνj : ν ∈ Λ

}
,

(5.6.3)
the grid of interpolation points and the space of interpolation. The same arguments as
used in the proof of Theorem 5.2.1 for the polynomial setting show that the grid ΓΛ

is unisolvant for the space HΛ. In the general context where T might not be totally
ordered, the Smolyak formula (5.2.6) does not make clear sense, yet we may still rely
on the recursive computation of the interpolation operators. Namely, if Λ is lower set
and ν ∈ T d \ Λ such that Λ′ = Λ ∪ {ν} is a lower set, then we have

IΛ′g = IΛg +
(
g(zν)− IΛg(zν)

)
Hν . (5.6.4)

Two simple applications for the previous construction are the dyadic hierarchical
piecewise linear or piecewise quadratic interpolation. For such interpolation procedures,
the set T is defined by

T = {λ−1, λ1, (0, 0)} ∪
{

(j, k) : −2j−1 ≤ k ≤ 2j−1 − 1, j = 1, 2, . . .
}

(5.6.5)

induced with the partial order λ−1 ≤ λ1 ≤ (0, 0) and

(j, k) ≤ (j + 1, 2k), (j, k) ≤ (j + 1, 2k + 1), (j, k) ∈ T . (5.6.6)

The set T is a binary tree, as represented on Figure 5.6.8, where λ−1 is the root node,
(0, 0) is a child of λ1 which is a child of λ−1, every node (j, k) has two children (j+1, 2k)
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Figure 5.6.8: The binary tree T and the corresponding univariate piecewise linear
hierarchical basis

and (j + 1, 2k + 1), and the relation λ′ ≤ λ means λ′ is a parent of λ. We associate
with T the set of abscissas

ZT := {zλ−1 , zλ1 , z(0,0)} ∪
{
z(j,k) :=

2k + 1

2j
: (j, k) ∈ T , j ≥ 1

}
, (5.6.7)

where zλ−1 = −1, zλ1 = 1 and z(0,0) = 0. We also associate with T the hierarchical
basis of piecewise linear functions HT = {hλ : λ ∈ T } defined over [−1, 1] by

hλ−1(s) = 1, hλ1(s) =
1 + s

2
, h(j,k)(x) = ψ(2j(s−zj,k)), ψ(s) := max{0, 1−|s|}, (j, k) ∈ T ,

(5.6.8)
as illustrated on Figure 5.6.8. It is easy to verify that the function hλ and the ab-
scissas zλ satisfy the condition (5.6.2), therefore the hierarchical interpolation can be
performed. Let us note that in dimension d = 1, the hierarchical interpolation amounts
in first approximating g by the constant function of value g(−1), second by the affine
function that coincides with g at −1 and 1, third by the piecewise affine function that
coincides with g at −1, 0 and −1, and in further steps refine by interpolating at the
midpoint of an interval between two adjacents interpolation points. The index j corre-
sponds to the level of refinement, or the depth of the node in the binary tree.

In the case of piecewise quadratic interpolation, the procedure is exactly the same
except that the hierarchical basis is given by

hλ−1(s) = 1, hλ1(s) =
(1 + s)2

4
, h(j,k)(x) = ψ(2j(s−zj,k)), ψ(s) := max{0, 1−s2}, (j, k) ∈ T .

(5.6.9)
which corresponds to interpolation by piecewise quadratic functions with the same
ordering on the interpolation points as in the piecewise affine case. We should note
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that in the two previous cases, the construction for d = ∞ is also possible. One
considers F the set of indices in ν ∈ T N for which only a finite number of indices νj
are different than λ−1 and imitate the procedure given for polynomials.

Having fixed the sparse interpolation procedure (piecewise affine or piecewise quadratic),
the objective is now, as in the polynomial case, to select lower sets Λ giving the best
possible interpolation spaces HΛ (or PΛ in the polynomial case) for the target function g.
In the non-intrusive treatment of parametric PDEs that motivated this work, no prior
information is known on g, whence the optimal approximation space HΛ for a given
N = #(Λ) is not accessible. Therefore, we may only rely on greedy type strategies such
as Algorithm 5.4.4. In view of the recursive formula (5.6.4), we couple the interpolation
algorithm with the adaptive strategy for the choice of best multi-index ν ∈ T d used to
enrich Λ. Given Λ a lower set, we denote N (Λ) the set of adjacent neighbours to Λ,
which are the multi-indices ν ∈ T d\Λ such that Λ′ := Λ∪{ν} is a lower set. Depending
on the approximation context, we choose to enrich Λ by ν ∈ N (Λ) that either satisfies:

• the supremum norm of the increment ‖IΛ′g − IΛg‖L∞(U) is maximal,

• the least square norm of the increment ‖IΛ′g − IΛg‖L2(U) is maximal,

• the value g(zν) is maximal.

The two first criterions are designed for the approximation of g in the L∞ and the
L2 sense, respectively, while the third criterion is designed for optimization and can be
seen as a way of exploring the local maxima of g.

Although the set of candidates N (Λ) might be very large, the enrichment step
requires at most d new evaluations of g. Indeed, for ν ∈ Λ and Λ′ = Λ ∪ {ν}, the set
N (Λ′) \N (Λ) contains at most d indices. We also note that for the two first strategies,
the computation of ‖IΛ′g − IΛg‖ for the new indices consists merely in computing

|g(zν)− IΛg(zν)|
d∏
j=0

‖hνj‖, (5.6.10)

with ‖ · ‖ being the L∞ or the L2 norm. This is computationally fast since the hn are
known in advance and their norm ‖hn‖ can be tabulated. The cost of the computation
‖IΛ′g − IΛg‖ is essentially dominated by the evaluation of g(zν) in cases where g is
evaluated through a heavy numerical solver.

While the above strategies often give good numerical results, they can be defeated
when the target function has oscillations that fail to be captured by the greedy selection
procedure. For example, consider the two first criterions for piecewise linear adaptive
interpolation of a univariate function g such that g(1

2
) = 1

2
(g(0) + g(1)). Then, the

increment corresponding to the point z(1,0) = 1
2
is ∆(1,1)g = 0. Therefore the adaptive

algorithm might fail to explore the region [0, 1] on which g could still oscillate away
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from its linear interpolation. Similarly an algorithm based on the third criterion could
be trapped in local maximas.

One way to remedy this defect consists in modifying the algorithm as follows: we
produce the nested sequence of lower sets

Λ1 ⊂ Λ2 ⊂ · · · ⊂ Λn ⊂ · · ·

with #(Λn) = n, by alternating p−1 adaptive steps where the new index ν ∈ N (Λn) is
picked based on the chosen criterion when n /∈ pN, and one “conservative” step where
we pick the most “ancient” index ν ∈ N (Λn) when n ∈ pN, in the sense that it has
been lying in N (Λk) for the smallest value of k ≤ n. This conservative step allows us
to explore the whole parameter space U , while retaining the adaptive feature of the
algorithm. In our numerical test we have used the value p = 5, based on empirical
observation that it gives a good balance between adaptivity and exploration.

5.7 Conclusion

In this chapter we have introduced an incremental interpolation scheme that can be
used in non-intrusive treatment of parametric PDE. The computation of interpola-
tion operators use a Newton like induction formula and its cost, in the framework of
parametric PDEs, is mainly dominated by the evaluation of the solution map to be
approximated. The scheme can be coupled with an adaptive strategy for the choice of
the next interpolation points. The interpolation points lie in a multidimensional grid
which is predefined in advance. The stability of the scheme can be controlled if the
interpolation grid is obtained by a tensorization of an <-Leja sequence. Such sequences
can have explicit formulas and are studied in the following chapter.

Although, we have not investigated the best choice of points that may yield Lebesgue
constant that are logarithmic or linear in the dimension of the polynomials space, we
have seen that the choice of a grid based on <-Leja points provide a cubic Lebesgue
constant which can easily absorbed in the convergence rates. This in particular shows
that the interpolation scheme presented is well adapted for the parametric PDE studied
in chapters 1 and 2.

However, we have only examined the approximation in the uniform sense. The
approximation in average sense has not been treated because stability results are not
available for such setting. We will propose a non-intrusive least square scheme in
Chapter 7 and show that it can yield convergence rates which are near optimal in the
average sense.

We have not addressed the convergence of the adaptive algorithm. Numerical exper-
iments suggest that this algorithm yields approximation with near-optimal convergence
rates. However, the analysis of its convergence is not clear since the algorithm only
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relies on point-wise evaluations of the solution map u and hence does not make full
benefit from the smoothness of u.
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6.1 Introduction

In the framework of high dimensional polynomial interpolation presented in the previous
chapter, we have seen that the stability of the interpolation process is strongly tied to
the stability of the univariate polynomial interpolation process based on the sequence
(zj)j≥0. More precisely, we have shown that given Z := (zi)i≥0 an infinite sequence
of mutually disjoint points in [−1, 1] (or in a general compact set X of R or C), with
moderate algebraic growth of the Lebesgue constants LZk associated with Lagrange
polynomial interpolation at the sections Zk := (z0, . . . , zk−1), then the multivariate
interpolation processes have also Lebesgue constants with algebraic growth.

For the domain [−1, 1] which is of interest to us in the application of the interpolation
for the approximation of parametric PDEs, there exists an immense literature dealing
with the practical construction of sets of points such that the Lebesgue constant has
moderate growth with the number of points k, see the survey [75] and references therein.
However, for this domain, the classical sets of optimal k points, for instance Chybeshev
abscissas, Gauss-Lobatto abscissas, or more generally the roots of orthogonal classical
polynomials, are not nested. This raises the challenge of the construction of infinite
sequence Z ∈ [−1, 1]N with moderate growth of the Lebesgue constants LZk .

Solutions for the previously discussed challenge are proposed by means of greedy
constructions, such as Leja sequences and magic points [62], and are widely used. Nu-
merical evidence shows that such constructions yield linear growth of the Lebesgue
constants, however without any theoretical justification. a simple construction with
provable agebraic growth was proposed by Calvi and Phung in [18, 19]. First, in [18],
the authors considered X = U the unit disc in the complex domain and show that
for any Leja sequence E = (ej)j≥1 with e0 picked on the boundary ∂U , there exists a
constant C such that

LEk = L{e0,...,ek−1} ≤ Ck log k, k ≥ 2. (6.1.1)

Such Leja sequences have a simple geometric structure identified in [17]: when e0 = 1,
the section E2n coincides as a set with the set of the 2n-roots of unity, and for a more
general e0 ∈ ∂U it coincides with the set of 2n-roots of unity multiplied by e0.

In addition Calvi and Phung have studied the so-called <-Leja sequences R = (rj)j≥0

obtained by projection of Leja sequences E with e0 = 1 onto the real interval [−1, 1],
hence taking successively the real parts of the numbers e1, e2, . . ., making sure not
to project the values ej for which ek = ej for some k < j, so that the sequence
R is of mutually disjoints values. They have proved for the corresponding sections
Rk := (r0, . . . , rk−1) of the sequence R an estimate of the form

LRk ≤ Ck3 log k, k ≥ 2. (6.1.2)

Note that, according to the particular structure of Leja sequences on U when e0 = 1,
i.e. E2n+1 coincides as a set with the 2n+1-roots of unity, the section R2n+1 coincides as
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a set with the so-called Gauss-Lobatto or Clemshaw-Curtis points,

cos(2−nkπ) for k = 0, . . . , 2n (6.1.3)

Also note that the sequence R is not a Leja sequence on [−1, 1].

For the same sequences as above, we have established in [21] improved algebraic
bounds. Namely

LEk ≤ 2k, LRk ≤ 5k2 log k, k ≥ 2. (6.1.4)

These improvements are obtained through a study of structural properties of the Leja
sequences E and their projections R. In this chapter, we recall and refine the approach
of [21] and establish a new estimate in the real interval case, namely

LRk ≤ 8k2, k ≥ 2. (6.1.5)

For this purpose, we exhibit new structural properties of Leja sequences and <-Leja
sequences. Exploiting such properties, we investigate the Lebesgue constant δk of the
difference operator ∆k, between the interpolation operators associated with nested sec-
tions {r0, . . . , rk−1} ⊂ {r0, . . . , rk}, used in the previous chapter. We have obviously
δk ≤ LRk+1

+ LRk ≤ 16(k + 1)2. Here we establish the better bound

δk ≤ (k + 1)2, (6.1.6)

which can be used directly, in view of Remark 5.3.2 of the previous chapter, in order
to establish that interpolation operators in high dimension based on <-Leja sequences
have cubic Lebesgue constant.

In §6.2, we introduce the notations that we adopt for the subsequent sections.

In §6.3, we investigate Leja sequences E on the unit disk U with starting point in
∂U . We recall their properties as identified in [18] and the simple construction of the
so-called simple Leja sequences. Using their definition, we establish, given a sequence
E, recursive estimates for the Lebesgue constants LEk showing that their growth can
be monitored by the value of the Lebesgue function on the next point ek. Combining
this with the particular structure of Leja sequences, we establish the growth bound 2k.

In §6.5, we describe the novelty of the analysis of this chapter compared to our
previous work [21]. First, we give the explicit formula giving an <-Leja sequence R =
(rj)j≥1 obtained from the projection of E a Leja sequence in U . We then establish a new
property of <-Leja sequences stating that R2 := (2r2

2j − 1)j≥1 is also a Leja sequence.
Finally, using a simple observation, we show that the analysis of Lebesgue constants
LRk on [−1, 1] can be implied from the the analysis of Lebesgue constant LEk′ on U
with k′ depending on k. This new approach, which is not the one we used in [21], allows
us to take benefit from the linear bound obtained in the complex case and recover the
bound (6.1.5).
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In §6.6, we study the growth of the Lebesgue constant of the difference operators ∆k

both in the complex and real case. Using the structural properties that we established
for the complex and real case, we established the bounds δk ≤ k + 1 and δk ≤ (k + 1)2

respectively.

Finally, in §6.7, we present a numerical illustration of the growth of exact Lebsgue
constants associated with Leja sequences E and associated <-Leja sequences R. We
compare the latter with intuitive choicea for sequences with moderate, however not
proven, growth of Lebesgue constant.

6.2 Polynomial interpolation on nested sequences

Let Zk := {z0, . . . , zk−1} be a set of k pairwise distinct points in a compact set X
contained either in R or C. Any function f ∈ C(X) admits a unique polynomial
interpolant of degree k − 1 at these points defined by

ΠZkf(z) :=
k−1∑
i=0

f(zi)li(z), (6.2.1)

where

lj(z) =
k−1∏
i=0
i6=j

z − zi
zj − zi

=
w(z)

w′(zj)(z − zj)
with w(z) =

k−1∏
i=0

(z − zi), (6.2.2)

are the associated Lagrange polynomials. The stability of the interpolation process is
quantized by the Lebesgue constant

LZk := max
f∈C(X)−{0}

‖ΠZkf‖L∞(X)

‖f‖L∞(X)

= max
z∈X

λZk(z), (6.2.3)

where

λZk(z) :=
k−1∑
i=0

|li(z)|, (6.2.4)

is the so-called Lebesgue function.

6.2.1 Leja sequences

Leja sequences on a compact set X are defined by picking an initial point e0 ∈ X and
defining inductively

ej = Argmaxz∈X |
j−1∏
l=0

(z − el)|. (6.2.5)
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We mean by (6.2.5) that ej can be any element in X maximizing the product in the
right hand side. Note that such a sequence is in general not uniquely defined since the
above maximum can be attained at several points. This procedure may be viewed as a
greedy selection that mimics the Fekete points which are defined for a given k as the set
of points {z0, . . . , zk−1} maximizing the product

∏
i6=j |zi − zj| over Xk and for which

the Lebesgue constant is always smaller than k. We refer to [37] for a survey on Leja
sequences. Note that other methods exist to efficiently compute approximate Fekete
points [14, 77], however they do not produce the sections of a single sequence, which is
our primary motivation. Other greedy approaches that do produce sections of a single
sequence have recently been studied in [62]. The points produced by the approaches of
[62] are the so-called magic points.

Let us observe that for k ≥ 1 and ΠZk the Lagrange interpolation operator associated
with {z0, . . . , zk−1}, one has

(z − z0) . . . (z − zk−1) = zk − ΠZk(z
k). (6.2.6)

Indeed, the real or complex polynomial zk−ΠZk(z
k) has degree k, has leading coefficient

1 and in view of Lagrange interpolation, has the roots z0, . . . , zk−1. This shows that for
Leja sequences, the next element zk is chosen among the points where the interpolation
error ‖zk − ΠZk(z

k)‖L∞(X) is maximal. Moreover, it is easily checked that (6.2.6) is
unchanged if one replaces zk by zk + P where P ∈ Pk−1. This shows that the proce-
dure giving Leja sequences is equivalent to the procedure of the so-called magic points
introduced in [62] obtained in X with polynomials spaces of increasing dimension Pk,
according to the following construction:

w0 = argmaxw∈P0
‖w‖L∞(X), z0 = argmaxz∈X |w0(z)|, (6.2.7)

and z0, . . . , zk−1 have being constructed and ΠZk being the polynomial interpolation
operator associated with {z0, . . . , zk−1}, then

wk = argmaxw∈Pk‖w − ΠZk(w)‖L∞(X) zk = argmaxz∈X |wk(z)− ΠZk(wk)(z)|. (6.2.8)

In the following, given a Leja sequence E := (ej)j≥0 on X, we shall call the finite
sequences Ek := (e0, . . . , ek−1) a k-Leja section. For general domains X, there is no
theoretical guarantee that Lebesgue constant LEk behaves polynomially. We will see in
Section 6.3 that the case of complex unit disc X = U can however be studied.

6.2.2 Binary expansion of integer

The binary representation of integers play a substantial role in the analysis of Leja
and <-Leja points. We shall present in details different related notations. Given an
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integer k ≥ 1 and the integer n ≥ 0 such that 2n ≤ k < 2n+1, we introduce the binary
expansion of k

k = a0a1 . . . an :=
n∑
j=0

aj2
j, aj ∈ {0, 1}. (6.2.9)

Let us remark that with this definition an = 1. We denote respectively by σ1(k), σ0(k)
and p(k) the number of ones and zeros in the binary expansion of k and the largest
integer p such that 2p divides k, i.e.

σ1(k) :=
n∑
j=0

aj, σ0(k) :=
n∑
j=0

(1−aj) = (n+1)−σ1(k), p(k) := inf{0 ≤ j ≤ n : aj = 1}.

(6.2.10)
In the following sections, we will use in various occasion the induction on binary expan-
sions of integer. For the sake of clarity, we provide here various identities relating the
quantities that we just defined. First, for the range of integer 2n ≤ k < 2n+1 considered,
we have

σ0(k) = σ1(2n+1 − 1− k), σ1(k − 1) = p(k) + σ1(k)− 1, (6.2.11)

with the latter equality valid for any k ≥ 2. The first equality follows from
∑n

j=0(1 −
aj)2

j = 2n+1 − 1 − k, while the second follows from the observation that for k =
2p(k)(1 + 2m), one has

k = 00 . . . 0︸ ︷︷ ︸
p(k)

1m so that k − 1 = 11 . . . 1︸ ︷︷ ︸
p(k)

0m,

in the sense of binary expansion. We also have the following identity

σ1(k) + σ1(2n − k) + p(k) = n+ 1, 0 ≤ n, 1 ≤ k ≤ 2n. (6.2.12)

This can be easily checked for k = 1. For k ≥ 2, writing k = l+1 and using (6.2.11), we
obtain σ1(k)+p(k) = σ1(l)+1 and σ1(2n−k) = σ1((2n−l)−1) = σ1(2n−l)+p(2n−l)−1,
so that the fact p(2n − l) = p(l) implies the result for k by induction.

Throughout this chapter, to any finite set S of real or complex numbers, we associate
the function

wS(x) :=
∏
s∈S

(x− s). (6.2.13)

Given a sequence E = (e0, e1, . . .) a finite or infinite sequence of real or complex num-
bers, we introduce the notations

El,m := (el, . . . , em−1), ρE := (ρe0, ρe1, . . .), <(E) := (<(e0),<(e1), . . .),
(6.2.14)

where the number l and m are such that l < m, ρ a complex or real number and <(s)
denote the real part of s. Finally, given two finite sequences A := (a0, . . . , ar−1) and
B := (b0, . . . , bs−1), we denote by A ∧B the concatenation of A and B, i.e.

A ∧B := (a0, . . . , ar−1, b0, . . . , bs−1) (6.2.15)
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6.3 Properties of Leja sequences on the unit disk

6.3.1 Construction of Leja sequences

We introduce the notation

UN :=
{
ρ0
N , · · · , ρN−1

N

}
, ρN = ei2π/N , (6.3.1)

for the set of the N roots of unity. The structure of Leja sequences on the complex unit
disk with initial value 1 is characterized by the following
Theorem 6.3.1 (Theorem 5 in [17])

Let E a Leja sequence on U with initial value e0 = 1 and n ≥ 0. The equality
E2n = U2n holds in the set sense and for any k such that 2n < k < 2n+1, the sequence
Uk−2n := e−1

2nE2n,k = 1
e2n

(e2n , . . . , ek−1) is a {k − 2n}-Leja section starting at 1.

The previous theorem already shows the strong dependence of Leja sequences on the
binary expansion of integers. Let us remark that the previous theorem also holds in
the case where e0 = ρ ∈ ∂U general, yet with the slight difference E2n = ρU2n in the set
sense. This implies in particular that for Ek a k-Leja section with initial value ρ ∈ ∂U ,
and n such that 2n ≤ k < 2n+1, one has

wEk(z) = (z2n − ρ2n)wE2n,k
(z), z ∈ U , (6.3.2)

with the convention wE2n,k
is the constant polynomial 1 when k = 2n. In the case

k > 2n, the section E2n,k is {k − 2n}-Leja section with initial value e2n ∈ ∂U and one
can start over and write wE2n,k

(z) as the previous product. This inductive process was
used in [18] in order to give a simple formula of wEk as a product of σ1(k) translated
monomials and to prove that the maximum of |wEk | over U is equal to 2σ1(k). We use
the same approach to prove the same results, yet with a more intuitive form of the
polynomial wEk . We have the following
Lemma 6.3.2

Let k ≥ 1 with binary expansion (6.2.9), Ek a k-Leja section in U with initial value
ρ ∈ ∂U and ek ∈ ∂U maximize |wEk |. Then with k =

∑n
j=1 aj2

n, we have

wEk(z) =
∏

0≤j≤n
aj=1

(z2j + e2j

k ), z ∈ U . (6.3.3)

In particular, supz∈U |wEk(z)| = |wEk(ek)| = 2σ1(k).

Proof : Let E be is any Leja sequence on U whose k-section coincides with Ek and (k+1)-
th element is ek. By the implications of Theorem 6.3.1, E2n,2n+1 = ρ(U2n+1 \U2n) holds
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in the set sense, so that E2n,2n+1 coincides as a set with the 2n-roots of −ρ. Since
2n ≤ k ≤ 2n+1 − 1, this implies that e2n

k = −ρ2n . We may then rewrite (6.3.2) as

wEk(z) = (z2n + e2n

k )wE2n,k
(z), z ∈ U .

We observe then that an induction on k ≥ 1 imposes to us. First, since e1 = −ρ, then
wE1 = (z − ρ) = (z + ej) and the result holds for k = 1. If k = 2n, then the previous
equality is exactly (6.3.3) since wE2n,k

= 1. We assume now that 2n < k < 2n+1.
From the previous equality ek maximize wE2n,k

. Moreover by Theorem 6.3.1, E2n,k is
a l-Leja section with l = k − 2n =

∑n−1
j=0 aj2

j , therefore (6.3.3) for Ek follows from
the induction hypothesis applied with E2n,k. The second conclusion of the lemma is a
straightforward application of the first one.

We should stress that Theorem 6.3.1 completely determines the structure of Leja
sequences on the unit disk with initial value in ∂U . The subsequent results on such
sequences are merely implication of this structural theorem. We shall also note that
the converse of Theorem 6.3.1 holds. It can be stated as follows
Lemma 6.3.3

Let n ≥ 0, 2n < k ≤ 2n+1 and l = k−2n. If E2n = (ej)0≤j≤2n−1 and Ul = (uj)0≤j≤l−1

are respectively a 2n and l-Leja sections starting at 1 and ρ is a 2n-root of -1, then
Ek = E2n ∧ ρUl is a k-Leja section.

Proof : First, by the assumptions of the lemma, for j = 1, . . . , 2n−1, ej maximizes |wEj |.
Now, by Theorem 6.3.1, E2n = U2n and Ul ⊂ U2n in the set sense. Therefore the
assumption ρ2n = −1 implies that for any j = 2n, · · · k − 1, ej := ρuj−2n is a 2n root
of −1, so that it maximizes |wE2n

(z)| = |z2n − 1|. Moreover, if j ≥ 2n + 1, then

|wEj (z)| = |z2n − 1||wUj−l
(z
ρ

)
|, z ∈ U ,

so that since ej maximizes |wUj−l( zρ)|, then it maximizes |wEj (z)| as well.

The previous lemma and Theorem 6.3.1 shows that the construction of a Leja sequence
on U with initial value in ∂U amounts to concatenating Leja sections according to a
particular rule. The most natural construction consists in defining a sequence E :=
(ξj)j≥0 inductively by

E1 := (e0 = 1) and E2n+1 := E2n ∧ e
iπ
2n E2n , n ≥ 0. (6.3.4)

This very uniform pattern of the sequence E yields an interesting distribution of its
elements, see Figure 6.3.1. Indeed, by an immediate induction, see [17], it can be
shown that the elements ξk are given by

ξk = exp
(
iπ

n∑
l=0

aj2
−j
)

for k =
s∑
j=0

aj2
j, aj ∈ {0, 1}. (6.3.5)
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The construction yields then a Low-discrepancy sequence on ∂U based on Van der
Corput enumeration. This sequence was known to be a Leja sequence over U in many
earlier works.

•

•

•
•••

•

•

•

•

•
• • •

•

•

ξ0

ξ1

ξ2

ξ3

ξ4

ξ5

ξ6

ξ7

ξ8

ξ9

ξ10

ξ11

ξ12

ξ13

ξ14

ξ15

Figure 6.3.1: Distribution of the first 16 elements of the Leja sequence E .

6.3.2 Symmetry properties of Leja sequences on the unit disk

In this paragraph, we give three symmetry properties inherited from the binary pattern
of the distribution of Leja sequences on U . The three result are very helpful in the
analysis of the Lebesgue constants on the complex unit disk addressed in Section 6.4.2
and the analysis of the Lebesgue constants on the real interval addressed in Section 6.5.
Lemma 6.3.4

Let E = (ej)j≥0 be a Leja sequence on U with initial value in ∂U . The sequences
E−1 := (e−1

j )j≥0 and E2 := (e2
2j)j≥0 are also Leja sequences on U .

Proof : Since the elements of E lie all in ∂U , the sequence E−1 is symmetric to E with
respect to the abscissas axis. As far as the distances are concerned, E−1 and E play
symmetric roles, therefore E−1 is a Leja sequence. For the second sequence, by Theo-
rem 6.3.1, E satisfies e2j+1 = −e2j for any j ≥ 0, therefore, for k ≥ 1, one has

wE2
k
(z2) =

k−1∏
j=0

(z2 − e2
2j) =

2k−1∏
l=0

(z − el) = wE2k
(z). (6.3.6)

Consequently, e2k maximizes |wE2
k
(z2)|, which is equivalent to e2

2k maximizes |wE2
k
|.
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The previous lemma implies immediately that E2n := (e2n

2nj)j≥0 is also a Leja se-
quence over U . We shall use this symmetry property in order to relate the Lebesgue
function associated with a {2nk}-Leja sections to the Lebesgue function associated a
k-Leja section.

The second result is concerned with the comparison of Leja sections with similar
length. It states that up to a rotation and a permutation, any two k-Leja section are
equal. More precisely, we have the following
Lemma 6.3.5

Let n ≥ 0, k an integer with 2n ≤ k < 2n+1 and Ek := (ek)0≤j≤k−1 and Fk :=
(fk)0≤j≤k−1 two k-Leja sections on U with e0 = f0 = 1. There exists ρ a 2n-roots of
unity such that

Ek = ρFk (6.3.7)

where the above equality is meant in the sets sense.

Proof : We use induction on n. When n = 0 then k = 1 is an equality holds. We suppose
now that n ≥ 0 and that the result holds for any k with 2n ≤ k < 2n+1. Let k an
integer with 2n+1 ≤ k < 2n+2 and Ek and Fk two k-Leja sections with e0 = f0 = 1.
According to Theorem 6.3.1, E2n+1 = F2n+1 = U2n+1 as sets and

Ek = E2n+1 ∧ ρ1Uk′ , Fk = F2n+1 ∧ ρ2Vk′ , k′ = k − 2n+1

where ρ1 and ρ2 are both 2n+1-roots of −1 and Uk′ and Vk′ are both two k′-Leja sections
starting at 1. By the induction hypothesis, there exists ρ a 2n-roots of unity such that
Uk′ = ρVk′ as sets, therefore in the set sense

Ek = E2n+1

⋃
ρ1Uk′ =

ρ1ρ

ρ2
E2n+1

⋃ ρ1ρ

ρ2
ρ2Vk′ =

ρ1ρ

ρ2
(F2n+1

⋃
ρ2Vk′) =

ρ1ρ

ρ2
Fk.

We have used the fact that E2n+1 = ρ1ρ
ρ2
E2n+1 as sets which follows from E2n+1 = U2n+1

and (ρ1ρ
ρ2

)2n+1
= 1.

The previous result is obviously true for general k-Leja sections with initial values in
∂U , yet with the difference ρ ∈ ∂U will not be necessarily a 2n-root of 1. Since the
Lebesgue constants associated with points in U are invariant by rotation of the points,
then the Lebesgue constants of all k-Leja sections Ek with e0 ∈ ∂U are equal and only
depends on k. We will denote by Lk the common value.

The last symmetry result is concerned with the structure of Leja sections when
enumerated in the backward sense. For a finite sequence Zk = (zj)0≤j≤k−1 of points on
U , we introduce the notation

B(Zk) := (zk−1−j)0≤j≤k−1 (6.3.8)

for the finite sequence of points of Zk with backward indexing. We are interested
in the structure of such sections for Leja sequences on U . Consider the sequence E
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defined in (6.3.5) and n ≥ 0. We claim that B(E2n) is a 2n-Leja section. Indeed, Given
j =

∑n−1
l=0 al2

l ∈ {0, · · · , 2n − 1}, one has 2n − 1− j =
∑n−1

l=0 (1− al)2l, so that

ξ2n−1−j = exp
(
iπ

n−1∑
l=0

(1− al)2−l
)

=
ρn
ξj
, ρn := e−

iπ
2n−1 . (6.3.9)

Therefore, according to Lemma 6.3.4, B(E2n) = ρnE−1
2n is indeed a 2n-Leja section. In

general, the following result also holds.
Lemma 6.3.6

For any n ≥ 0 and any 2n-Leja section E2n = (ej)0≤j≤2n−1 with e0 ∈ ∂U , B(E2n) is
also a 2n-Leja section on U .

Proof : Up to rotate F2n = B(E2n), we may suppose that f0 = 1 and use induction on
n ≥ 0. It is obvious for n = 0, and we assume it is true for a n ≥ 0. We consider
E2n+1 a 2n+1-Leja section with e0 = 1. By Theorem 6.3.1, E2n and E2n,2n+1 are 2n-
Leja sections, therefore by the induction hypothesis, so are B(E2n) and B(E2n,2n+1).
Moreover, with ρn = e2n−1 and ρn+1 = e2n+1−1, we have 1

ρn+1
B(E2n,2n+1) and 1

ρn
B(E2n)

are 2n-Leja section initiated at 1 and

B(E2n+1) = B(E2n,2n+1)∧B(E2n) = ρn+1

( 1

ρn+1
B(E2n,2n+1)∧ρ 1

ρn
B(E2n)

)
, ρ =

ρn
ρn+1

.

By theorem 6.3.1, ρn and ρn are 2n-root of 1 and −1 respectively, therefore ρ is a 2n-
root of −1. Applying finally Lemma 6.3.3, we deduce that B(E2n+1) which completes
the proof.

The previous lemma has an implication on the minimal growth of the polynomials
wEk for k-Leja sections Ek that turn out to be useful in the analysis of the growth of
Lebesgue constant in the real and complex case. We have the following
Corollary 6.3.7

Let n ≥ 0, 1 ≤ k ≤ 2n and Ek be a k-Leja section on U with initial value ρ ∈ ∂U .
For any ξ ∈ U \ Ek

1

|wEk(ξ)|
≤ 2σ1(l)

|ξ2n − ρ2n|
, l = 2n − k, (6.3.10)

with the convention σ1(0) = 1.

Proof : Let Fl be a finite sequence that completes Ek to a 2n-Leja section, i.e. E2n :=
Ek ∧Fl is a 2n-Leja section. By the previous lemma B(E2n) is a 2n-Leja section, hence
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B(Fl) is a l-Leja section. In view of Lemma 6.3.2 and the fact E2n = ρU2n in the set
sense, we deduce that

1

|wEk(ξ)|
=
|wFl(ξ)|
|wE2n

(ξ)|
=
|wB(Fl)(ξ)|
|ξ2n − ρ2n |

≤ 2σ1(l)

|ξ2n − ρ2n |
.

which is also valid for the case k = 2n, in which case l = 0.

6.4 Lebesgue constant of Leja sequences on U .

We have proved many interesting properties of Leja sequences on the unit disk. We
now are able to give the result on the growth of Lebesgue constant.

6.4.1 Logarithmic estimates

We consider n ≥ 0, 2n ≤ k < 2n+1 and Ek a k-Leja section starting at 1. Since
Ek = E2n ∧ E2n,k, then It is easily checked that

LEk ≤ Q(E2n,k, E2n)LE2n
+Q(E2n , E2n,k)LE2n,k

with Q(A,B) = sup
z∈U
ξ∈B

|wA(z)|
|wA(ξ)|

(6.4.1)

Since E2n = U2n in the set sense and E2n,k is a subset of the set 2n-root of −1, then
Q(E2n , E2n,k) = 1. In addition Corollary 6.3.7 applied with E2n,k that is a k′-Leja
section with k′ = k − 2n and ρ = e2n that is 2n-root of −1 implies in view of (6.2.12)

Q(E2n,k, E2n) ≤ 2σ1(k′)2σ1(2n−k′)

2
= 2n−p(k

′) = 2n−p(k) (6.4.2)

Since the Lebesque constant of k-Leja section with initial value in ∂U only depends on
k, we may rewrite (6.4.1) as

Lk ≤ 2n−p(k)LU2n
+ Lk−2n (6.4.3)

An immediate induction shows that for k =
n∑

j=p(k)

aj2
j

Lk ≤
n∑

j=p(k)
aj=1

2j−p(k)LU
2j

(6.4.4)

Knowing the growth of the Lebesgue constant LU
2j

from [55] or [21], we infer

Lk ≤
k

2p0(k)

2

π

(9

4
+ log 2n

)
, (6.4.5)

Let us remark that this formula is also valid for the case k = 2n since p(k) = n in this
case.
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6.4.2 Linear estimates

The bound (6.4.5) is asymptotically sharp for certain values of k, for instance k = 2n.
However, numerical evidence shows that (6.4.5) is a pessimistic bound. For example
if k is an odd integer, (6.4.5) only gives Lk <∼ k log k while numerical computations
indicate that Lk ≤ k. In [18] it was conjectured that Lk ≤ k. We have shown in [21]
that Lk ≤ 2k and therefore that the Lebesgue constant grows at worse linearly. We
shall give the steps of the proof of the result as in [21] yet with simpler arguments. We
begin first by a recursive result on the the growth of Lebesgue functions valid for Leja
sequences on any real or complex domain X.
Theorem 6.4.1

Let E be a Leja sequence on a real or complex compact X. For any k ≥ 1 and any
z ∈ X, it holds

λEk+1
(z) ≤ λEk(z) +

(
λEk(ek) + 1

)
. (6.4.6)

In particular LEk+1
≤ 2LEk + 1. Moreover

λEk(z) ≤ λEk+1
(z) +

(
λEk(ek)− 1

)
. (6.4.7)

Proof : We fix k ≥ 1 and denote l0, . . . , lk−1 the Lagrange polynomials associated with
the section Ek and L0, . . . , Lk the Lagrange polynomials associated with the section
Ek+1. By Lagrange interpolation formula, for j = 0, . . . , k − 1

lj(z) =

k∑
i=0

lj(ei)Li(z) = Lj(z) + lj(ek)Lk(z)

hence ∣∣∣|Lj(z)| − |lj(z)|∣∣∣ ≤ |Lj(z)− lj(z)| ≤ |lj(ek)||Lk(z)|
The summation over all j ∈ {0, . . . , k − 1} implies∣∣∣λEk+1

(z)− |Lk(z)| − λEk(z)
∣∣∣ ≤ λEk(ek)|Lk(z)|

Using the definition of Lagrange polynomials, Lk(z) = wEk(z)/wEk(ek), we observe
that the Leja defnition (6.2.5) implies |Lk(z)| ≤ 1 for any z ∈ X. Moreover, since any
Lebesgue function has a minimum value equal to 1, then λEk(ek) ≥ 1. The previous
inequality implies then the two inequalities of the Theorem.

The previous theorem shows that the growth of the Lebesgue constants of sections of
a Leja sequence E is strongly tied to the growth of the quantities λEk(ek). For instance,
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it can be easily shown by induction on k that the inequality (6.4.6) alone implies the
following

λk(ek) = O(log(k)) =⇒ Lk = O(k log(k)), (6.4.8)

and
λk(ek) = O(kθ) =⇒ Lk = O(kθ+1). (6.4.9)

For Leja sequences on the unit disk with initial value in ∂U , we shall show that λk(ek) ≤
k for any k ≥ 1, which implies Lk = O(k2). In order to sharpen this bound to 2k, we
should make use of the particular structure of Leja sequences on the unit disk.

For the sake of clarity, we only work with the particular Leja sequence E defined
in (6.3.5). The subsequents results can be stated for general Leja sequence, however,
this is irrelevant in our analysis for the growth of Lebesgue constants since they only
depends on k. Let us remark that the definition (6.3.5) induces on E = (ξj)j≥0 the
additional symmetry property

E2 = E , i.e. ξ2
2j = ξj, j ≥ 0. (6.4.10)

The binary patten of the sequence E yields the following first result.
Lemma 6.4.2

For any k ≥ 1 and n ≥ 0, one has

λE2nk(z) ≤ L2nλEk(z
2n), z ∈ U . (6.4.11)

In particular L2k ≤
√

2Lk.

Proof : By the particular structure of Leja sequences on the unit disk characterized in
Theorem 6.3.1, for any 0 ≤ j ≤ k − 1, E2nj,2n(j+1) = (ξ2nj , · · · , ξ2n(j+1)−1) is a 2n-Leja
section, therefore E2nj,2n(j+1) = ξ2nj U2n in the set sense. This yields, for any z ∈ ∂U

wE2nk(z) =
k−1∏
j=0

wE2nj,2n(j+1)
(z) =

k−1∏
j=0

(z2n − ξ2n

2nj) =

k−1∏
j=0

(z2n − ξj) = wEk(z2n). (6.4.12)

This implies that w′E2nk(z) = 2nz2n−1w′Ek(z2n), so that for any j = 0, · · · k− 1 and any
l = 0, · · · , 2n − 1

|w′E2nk(ξ2nj+l)| = 2n|w′Ek(ξ2n

2nj)| = 2n|w′Ek(ξj)|. (6.4.13)

We denote by l0, . . . , l2nk−1 the Lagrange polynomials associated with the section E2nk

and by L0, . . . , Lk−1 the Lagrange polynomials associated with the section Ek. Using
the two previous equalities, we infer that

|l2nj+l(z)| = Lj(z
2n)

|z2n − ξj |
2n|z − ξ2nj+l|

= Lj(z
2n)
|z2n − ξ2n

2nj |
2n|z − ξ2nj+l|



Chapter 6: Leja sequences on the unit circle and <-Leja sequences 255

Since as we have already stated Bj := E2nj,2n(j+1) = ξ2nj U2n , then

2n−1∑
l=0

|l2nj+l(z)| = |Lj(z2n)|
2n−1∑
l=0

|z2n − ξ2n
2nj |

2n|z − ξ2nj+l|
= |Lj(z2n)|λBj (z) ≤ |Lj(z2n)|LBj = |Lj(z2n)|L2n .

The summation over j = 0, . . . , k − 1 implies the desired inequality. The result shows
in particular that LE2k ≤ L2LEk , so that the elementary calculation L2 = L(−1,1) =

√
2

completes the proof of the lemma.

We now turn to the analysis of the Lebesgue function λEk in the case where k is an
odd integer. For the needs of our purpose, we only focus on the analysis of the growth
of the quantities λEk(ξk). We have the following
Lemma 6.4.3

For any k ≥ 1, we have
λEk(ξk) ≤ k (6.4.14)

Proof : First, we remark that Lemma 6.4.2 implies

λE2k(ξ2k) ≤
√

2λEk(ξ2
2k) =

√
2λEk(ξk).

Therefore, it is sufficient to prove (6.4.14) for k odd which we now assume and write
k = 2N + 1 with N ≥ 1. We have

wEk(z) = (z − ξ2N )wE2N (z) = (z − ξ2N )wEN (z2),

therefore taking ξk = ξ2N+1 = −ξ2N , one infers

|wEk(ξk)| = 2|wEN (ξN )| (6.4.15)

The derivation of wEk with respect to z and the evaluation at ξ2j and ξ2j+1 for j =
0, · · · , N − 1 yields

|w′Ek(ξ2j)| = 2|ξ2j − ξ2N ||w′EN (ξj)| and |w′Ek(ξ2j+1)| = 2|ξ2j+1 − ξ2N ||w′EN (ξj)|

Again, since ξk = ξ2N+1 = −ξ2N and ξ2
2j = ξ2

2j+1 = ξj , we deduce

|ξk−ξ2j ||w′Ek(ξ2j)| = 2|ξN−ξj ||w′EN (ξj)| and |ξk−ξ2j+1||w′Ek(ξ2j+1)| = 2|ξN−ξj ||w′EN (ξj)|
(6.4.16)

If we denote by l0, . . . , l2N the Lagrange polynomials associated with Ek and by L0, . . . , LN−1

the Lagrange polynomials associated with EN , then by (6.4.15) and (6.4.16), we have

|l2j(ξk)| = |l2j+1(ξk)| = |Lj(ξN )|, j = 0, . . . , N − 1.

Combining this with

L2N (ξk) =
wE2N (ξk)

wE2N (ξ2N )
=
wEN (ξ2

k)

wEN (ξN )
= 1,
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we deduce that the Lebesgue functions associated with Ek and EN satisfies

λEk(ξk) = 2λEN (ξN ) + 1. (6.4.17)

From this, the proof can be completed using induction on k.

Let us note that an induction on n ≥ 0 shows that an equality λEk(ξk) = k holds for
the values of type k = 2n − 1, n ≥ 0. This was proved in [18, Theorem 9] and shows
that the growth of the Lebesgue constant is at worse linear for such values of k. In the
following, we give the main result concerning the growth of Lebesgue constant for Leja
sequences on the unit circle.
Theorem 6.4.4

For any k ≥ 1, we have
Lk = LEk ≤ 2k, (6.4.18)

which yields

Lk ≤ 2
L2p(k)

2p(k)
k (6.4.19)

Proof : In view of (6.4.2), the second equality follows immediately from the first one. To
prove (6.4.18) We use induction on k. The result is true for k = 1, 2, 3, since direct
computation shows that Lk ≤ k for these values. Now we assume the bound (6.4.18)
true for any j < 4k, then the induction hypothesis combined with the inequalities
Lk+1 ≤ 2Lk + 1 and L2k ≤

√
2Lk given in Lemmas 6.4.1 and 6.4.2 implies

L4k ≤ 2Lk ≤ 4k ≤ 8k,

L4k+1 ≤ 2L4k + 1 ≤ 4Lk + 1 ≤ 8k + 1 ≤ 2(4k + 1),

and

L4k+2 ≤
√

2L2k+1 ≤
√

2(2L2k + 1) ≤ 4Lk +
√

2 ≤ 8k + 4 = 2(4k + 2).

In addition using (6.4.7) and (6.4.14), we deduce

L4k+3 ≤ L4k+4+λE4k+3
(E4k+3)−1 = L4k+4+4k+2 ≤ 2Lk+1+4k+2 ≤ 4(k+1)+4k+2 = 2(4k+3).

(6.4.20)
Therefore (6.4.18) holds for any j < 4(k + 1) which completes the induction and the
proof.

The bound 6.4.19 is not sharp since it implies the bound Lk ≤ 2k while numerical
computation (figure 6.7) shows that Lk is much smaller. We conjecture that given E a
Leja sequence with e0 ∈ ∂U , the exact value of the Lebesgue constant is given by

LEk = λEk(ek) (6.4.21)
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This is already known to be true for the values of type k = 2n and k = 2n − 1. Indeed,
if e0 = 1, then E2n = U2n and E2n−1 = U2n \ {e2n} and it was shown that in general the
Lebesgue fonction associated with UN attains its maximum at the N -roots of −1 and
that the Lebesgue fonction associated with UN \ {ρ} with ρN = 1 attains its maximum
at ρ, see [21] and [18] for justifications. For more general value of k, numerical evidence
shows that the conjecture seems to be true. In addition, given E a Leja sequence with
e0 = 1 and l0, . . . , lk−1 the Lagrange polynomials associated with the section Ek, it
seems that ek maximizes both

∑2n−1
j=0 |lj| and

∑k−1
j=2n |lj|. Since

k−1∑
j=2n

|lj| =
|z2n−1|

2
λE2n,k

(z) (6.4.22)

and E2n,k is a Leja section, then since e2n

k = −1 assuming that λE2n,k
(z) attains its

maximum at ek, the sum
∑k−1

j=2n |lj| will also attains its maximum at ek and we see that
an induction on k combined with the proof that

∑2n−1
j=0 |lj| is maximum at ek yields a

positive answer for the conjecture.

In the following, we provide a partial answer to the conjecture. We show that given
E a Leja sequence with e0 ∈ ∂U , then λEk considered on ∂U has a local maximum at
ek.
Lemma 6.4.5

Let E be a Leja sequence on U with e0 ∈ ∂U . For n ≥ 0 and k such that 2n ≤ k <
2n+1, We have

λEk(z) ≤ λEk(ek), z = eiθ, |θ − θk| ≤
π

2n
(6.4.23)

where θk is the argument of ek.

Proof : First, we observe that for a given i = 0, . . . , k − 1, we have that e2
k/ei is also an

element of Ek. Indeed, writing k =
∑n

j=0 aj2
j and using Lemma 6.3.2, we have that

there exists ji ∈ {0, . . . , n} such that e2ji
i + e2ji

k = 0, hence(e2
k

ei

)2ji

+ e2ji
k =

(ek
ei

)2ji

(e2ji
k + e2ji

k ) = 0

then again by Lemma 6.3.2, e2
k/ei is a root of wEk which is equivalent to e2

k/ei ∈ Ek.
Now, for i and ji as before, we have by Lemma 6.3.2,

|w′Ek(ei)| = 2ji
n∏
j=0,

j 6=ji,aj=1

|e2j

i + e2j

k | = |w′Ek(e2
k/ei)|, (6.4.24)

where the second equality is obtained by the same arguments above. We now are able
to prove the result of the lemma. We denote l0, . . . , lk−1 the Lagrange polynomials
associated with Ek and for i = 0, . . . , k − 1, we denote l̃i the Lagrange polynomial
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associated with e2
k/ei. Using that z 7→ e2

k/z is a bijection from Ek into Ek and pairing
the polynomials li with l̃i taking into account (6.4.24), we deduce

2λEk(z) =
k∑
i=0

(
|li(z)|+|l̃i(z)|

)
=

k∑
i=0

( |z2ji + e2ji
k |

2ji |z − ei|
+
|z2ji + e2ji

k |
2ji |z − e2

k/ei|

) n∏
j=0,

j 6=ji,aj=1

|z2j + e2j

k |
|e2j
i + e2j

k |

(6.4.25)
We claims that every term in the last sum attains it maximum at z = ek for the range
of z considered in the lemma. Indeed, we have

|z2ji + e2ji
k |

2ji |z − ei|
+
|z2ji + e2ji

k |
2ji |z − e2

k/ei|
=
|ξ2ji + 1|

2ji

( 1

|ξ − fi|
+

1

|ξ − fi|

)
where ξ = z/ek = eiφ, |φ| ≤ π

2n ≤
π

2ji
and fi = ei/ek satisfies (fi)

2ji = −1. The
previous quantity as a function of ξ is invariant by conjugation of ξ, hence can be
only considered for 0 ≤ φ ≤ π

2ji
. By elementary trigonometric arguments, it has been

shown that the previous quantity on ξ considered over {ξ = eiφ, 0 ≤ φ ≤ π
2ji
} attains its

maximum at ξ = 1, see Lemma 2.3 in [21] for a proof, hence over {z = eiθ, |θ−θk| ≤ π
2n },

the quantity on z is maximal at z = ek. Injecting this back into (6.4.25) and remarking
that the products are also maximal at z = ek, we infer 2λEk(z) ≤ 2λEk(ek), which
finishes the proof.

6.5 Lebesgue constant of the <-Leja sequences on [−1, 1].

In this section, we address the growth of Lebesgue constants of the projection on the
real interval X := [−1, 1] of Leja sequence on U starting at e0 = 1.

6.5.1 Construction of <-Leja sequences on [−1, 1].

We consider a Leja sequence E = (ej)j≥0 on the unit disk with e0 = 1 and project it
onto the real interval [−1, 1] and denote by R = (rj)j≥0 the sequence obtained. Since
E = (1,−1,±i, · · ·), one should make sure that no point is repeated on R simply by
not projecting a point ej such that ej = ei for some i < j. Such sequence R was
named an <-Leja sequence in [19]. The projection rule that prevent the repetition is
well understood. Indeed, it was in proved in [19, Theorem 2.4] that
Lemma 6.5.1

Let E be a Leja sequence on U with e0 = 1 and R the associated <-Leja sequence.
Then

R = <(Z), with Z := (1,−1) ∧
∞∧
j=1

E2j ,2j+2j−1 . (6.5.1)
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The previous formula obviously means that R is the projection element-wise of the
sequence Z. A straightforward cardinality argument shows that in addition to r0 = 1,
r1 = −1, for any n ≥ 0 and any k with 2n ≤ k − 1 < 2n+1, rk is explicitly given by

rk = <(e2n+k−1). (6.5.2)

For instance if E is the simple Leja sequence given in (6.3.5), then for any n ≥ 0 and
any k with 2n ≤ k < 2n+1 having the binary expansion k = 2n +

∑n−1
j=0 aj2

j, it holds
that

rk+1 = <(e2n+k) = cos
( π

2n+1
+ π

n−1∑
j=0

aj2
−j
)
. (6.5.3)

We observe that in such case, we may define the sequence R by R := (rk = cosφk)k≥0

where the sequence of angles (φk)k≥0 is defined recursively by φ0 = 0, φ1 = π, φ2 = π
2

and

φ2k+1 =
φk+1

2
, φ2k+2 = φ2k+1 + π, k ≥ 1. (6.5.4)

This recursion provide a very fast and simple process to construct an <-Leja sequence.

ξ0•
r0
×

ξ1

•
r1×

ξ2•

r2
×

ξ3

•

ξ4•

r3
×

ξ5
•

r4×

ξ6•

ξ7
•

ξ8•

r5
×

ξ9
•

r6×

ξ10•

r7
×

ξ11
•

r8×

ξ12•

ξ13
•

ξ14•

ξ15
•

Figure 6.5.2: Distribution of the first 8 elements of the <-Leja sequence R.
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6.5.2 Symmetry properties of <-Leja sequences on the unit in-
terval

<-Leja sequences possess interesting symmetry properties that are to some extent inher-
ited from the structural symmetry properties of Leja sequences on the unit disk. First,
since a Leja sequence E = (ej)j≥0 with initial value e0 = 1 satisfies e1 = −1, e2 = ±i,
e3 = −e2, · · · and the property e2j+1 = e2j for every j ≥ 0 then the corresponding
<-Leja sequence satisfies

r0 = 1, r1 = −1, r2 = 0 and r2j = −r2j−1, j ≥ 2. (6.5.5)

By the main property of Leja sequences on the unit disk identified in Theorem 6.3.1,
given an integer n ≥ 0, the section E2n+1 coincides as a set with U2n+1 the set of 2n+1-
roots of unity, therefore, the projection of E2n+1 onto [−1, 1] yields the set of Gauss
Lobatto abscissas of order 2n, namely

R2n+1 =

{
vnj := cos

(jπ
2n

)
: j = 0, . . . , 2n

}
, (6.5.6)

holds in the set sense. The third and most interesting symmetry property of <-Leja
sequences is implied from the symmetry property of Leja sequences identified in (6.3.4).
It can be stated as follows
Lemma 6.5.2

Let R := (rj)j≥0 be an <-Leja sequence. The sequence R2 := (2r2
2j − 1)j≥0 is also

an <-Leja sequence.

Proof : We consider E = (ej)j≥0 to be a Leja sequence associated with R and recall that
by Lemma (6.3.4), the sequences E2 = (e2

2j)j≥0 is also Leja sequence, here starting at
1 since e0 = 1. We propose to show that R2 can be obtained by projection of E2 onto
[−1, 1], which finishes the proof. The first two elements of R2 are 1 and −1, so that we
only need to show that (6.5.2) holds with R2 and E2. For n ≥ 0 and 2n ≤ k−1 < 2n+1,
one has 2n+1 ≤ (2k − 1)− 1 < 2n+2 so that by (6.5.2),

r2k−1 = <(e2n+1+2k−1−1) = <(e2(2n+k−1)).

Since 2k ≥ 4, then r2k = −r2k−1, then

2r2
2k − 1 = 2r2

2k−1 − 1 = <(e2
2(2n+k−1)),

where we have used <(z2) = 2<(z)2 − 1 for z ∈ ∂U . The proof is then complete.

The previous lemma has certain implications on the polynomials wRk associated with
the sections Rk which are very essential on the study of the growth of Lebesgue con-
stants. In order to lighten our notation, we find it convenient to work with normalized
versions of the polynomials wRk that we define by

WRk(x) = 2kwRk(x), x ∈ [−1, 1]. (6.5.7)



Chapter 6: Leja sequences on the unit circle and <-Leja sequences 261

In the same fashion of (6.3.6) in the complex case, we are interested in the relation
between the polynomial defined in (6.5.7) for sections of the sequences R and R2.
First, since all <-Leja sequences have initial elements 1 and −1, then it is immediate
that

WR2
1
(2x2 − 1) = WR2(x) x ∈ [−1, 1]. (6.5.8)

For higher value of k, we have the following
Lemma 6.5.3

Let R by an <-Leja sequence and R2 :=
(
sj := 2r2

2j − 1
)
j≥0

. For any k ≥ 2

WR2
k
(2x2 − 1) = 2x WR2k−1

(x), x ∈ [−1, 1] (6.5.9)

Consequently W ′
R2
k
(−1) = W ′

R2k−1
(0), W ′

R2
k
(1) = 1

2
W ′
R2k−1

(1) = 1
2
W ′
R2k−1

(−1) and

W ′
R2
k
(sj) =

1

2
W ′
R2k−1

(r2j) =
1

2
W ′
R2k−1

(r2j−1), j = 2, . . . , k − 1 (6.5.10)

Proof : From the definition of R2 and the property r2j = −r2j−1 for j ≥ 2, we infer that
if k ≥ 3

wR2
k
(2x2−1) = 2k

k−1∏
j=0

(x+r2j)(x−r2j) = 2k(x+1)(x−1)x2
k−1∏
j=2

(x−r2j−1)(x−r2j) = 2kx wR2k−1
(x),

which implies (6.5.9) for k ≥ 3. The verification for k = 2 is immediate. The derivation
with respect to x gives

4x W ′R2
k
(2x2 − 1) = 2

(
x W ′R2k−1

(x) +WR2k−1
(x)
)
. (6.5.11)

Since WR2k−1
(0) = 0, then the first result on derivatives is obtained by dividing by x

and letting x→ 0. The second result is obtained by the substitution of x by 1 or −1.
As for (6.5.10), we substitute x by r2j and r2j−1 = −r2j for j = 2 . . . , k − 1.

The previous Lemma has in particular an implication on the growth ofWRk(rk) that
we use in the next section
Lemma 6.5.4

Let R be an <-Leja section and denote S := R2. For any k ≥ 2, if k = 2N + 1 is
odd number, then 2rk WRk(rk) = WSN+1

(sN+1) and if k = 2N is an even number,
then

WRk(rk) = 2WSN (sN) (6.5.12)
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Proof : The first equality follows from the previous lemma since k = 2(N + 1) − 1 and
therefore 2r2

k − 1 = 2r2
2(N+1)− 1 = sN+1. As for the second equality, it can be checked

easily for N = 1 and for N ≥ 2. Using the fact rk = −r2N−1 and the previous lemma,
we infer that

WRk(rk) = 2(rk−r2N−1)WR2N−1
(rk) = 4rkWR2N−1

(rk) = 2WSN (2r2
2N−1) = 2WSN (sN ).

6.5.3 Growth of Lebesgue constant of <-Leja sequences.

The analysis of the growth of Lebesgue constants of <-Leja sequences is quite different
from the analysis for Leja sequences on the unit disk. Indeed, <-Leja sequences do
not satisfy the Leja definition (6.2.5) on [−1, 1], therefore, the machinery developed in
complex setting does not apply. However, the “binary” structure of Leja sequences on
the unit disk convey interesting symmetry properties to <-Leja sequences that we might
exploit in order to simplify the analysis. For instance, for the values k = 2n + 1, the
section R2n+1 coincides as set with the Gauss Lobatto points, see (6.5.6). This type of
abscissas tend to accumulate to the boundaries of [−1, 1] as with Tchybeshev abscissas
and are known to have optimal Lebesgue constant, in the sense of Lk ∼ 2

π
log(k), more

precisely, we have the bound

LR2n+1
≤ 1 +

2

π
log(2n). (6.5.13)

See [47, Formulas 5 and 13]. For more general value of k, we propose to relate the
analysis of the Lebesgue constant LRk to the analysis of the Lebesgue constant LGk
where Gk is the shortest Leja section on U that yields Rk when projected onto [−1, 1]
and take benefit from the machinery developed for the complex setting.

Applying a straightforward cardinality argument, it can be seen from (6.5.1) that
for any n ≥ 0 and any k with 2n + 1 < k < 2n+1 + 1,

Rk = R2n+1 ∧ <(E2n+1,2n+1+k′−1), k′ := k − (2n + 1). (6.5.14)

This shows that for such k, Gk := E2n+1+k′ = Ek+2n−1 is the section of E of minimal
length that yields Rk when projected onto [−1, 1]. We shall prove the following theorem
on the growth of the Lebesgue constants of <-Leja sequences.
Theorem 6.5.5

Let R an <-Leja sequence and E an associated Leja sequence on U . For n ≥ 0 and
k ≥ 3 such that 2n + 1 < k < 2n+1 + 1, we have

LRk ≤ 23/2+n−p(k′)LGk where k′ = k − (2n + 1). (6.5.15)

where Gk := E2n+1+k′ = Ek+2n−1.
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The previous theorem combined with (6.4.19) implies in particular that

LRk ≤ 25/2 2n(k + 2n − 1)

4p(k′)
L2p(k

′) ≤ 8
√

2k2 (6.5.16)

Clearly, in order to prove the theorem, we should relate the Lebesgue functions asso-
ciated with the real section Rk and the complex section Gk. In others word, we must
investigate how the Lagrange polynomials associated with Rk can be bounded using
the Lagrange polynomials associated with Gk. To this end, we explore how the section
Gk can be constructed knowing its projection Rk.

Lemma 6.5.6

Consider E = (ej)j≥0 a Leja sequence with e0 = 1 and R := (rj)j≥0 the associated
<-Leja sequence, and Z = (zj)j≥0 the sequence as in 6.5.1. For n ≥ 0 and k such
that 2n + 1 < k < 2n+1 + 1, we have

Gk = {z0, z1, z2, z2, · · · , z2n , z2n} ∪ {z2n+1, · · · , zk−1}. (6.5.17)

in the set sense.

Proof : We have that Gk = E2n+1 ∧E2n+1,2n+k−1. Applying cardinality considerations to
the definition of Z we infer E2n+1,2n+k−1 = Z2n+1,k. Therefore, we only need to show
that E2n+1 = {z0, z1, z2, z2, · · · , z2n , z2n}. By Theorem 6.3.1, E2n+1 coincides with the
set of 2n+1- root of unit, therefore E2n+1 is the union of {1,−1} and {z2, . . . , z2n} and
theirs conjugates, which finishes the proof.

In view of the above, we can relate the polynomials WRk and wGk and theirs deriva-
tives.
Lemma 6.5.7

Let n, k and Gk be as in the previous lemma. For z ∈ ∂U and x = <(z)

|WRk(x)| = |z2 − 1||wGk(z)||wFk(z)|. (6.5.18)

where Fk = {z2n+1, . . . , zk−1}. Consequently, for j = 0, · · · , k − 1

|W ′
Rk

(rj)| = 2αj|w′Gk(zj)||wFk(zj)|, (6.5.19)

where αj = 1 for every j except for j = 0 and j = 1, it is equal to 2.

Proof : Given x = 1
2(z + z) and x′ = 1

2(z′ + z′), |z| = |z′| = 1, one easily check that

2|x− x′| = |z − z′||z − z′|. (6.5.20)
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Since rj = <(zj) and zj ∈ ∂U for any j ≥ 0, then

|WRk(x)| =
k−1∏
j=0

2|x− rj | =
k−1∏
j=0

|z − zj |
k−1∏
j=0

|z − zj |.

In view of z0 = 1, z1 = −1 and the identity (6.5.17), the first result follows. This result
combined with the identity (6.5.20), shows that for every j = 1, · · · , k − 1

|W ′Rk(rj)| = lim
x→rj

|WRk(x)|
|x− rj |

= lim
z→zj

|z2 − 1||wGk(z)||wFk(z)|
1
2 |z − zj ||z − zj |

, (6.5.21)

where the limit limz→zj is meant in the circle ∂U . The second result follows then from
the fact that limz→ξ |z2 − 1|/|z − ξ| is equal to 1 for every ξ ∈ ∂U expect for ξ = 1 and
ξ = −1, it is equal to 2.

In view of the above, we are now able to give the formula giving the Lagrange polyno-
mials associated with the sections Rk and the set Gk and provide the proof of Theorem
6.5.5.

Proof of Theorem 6.5.5 : We denote by l0, · · · , lk−1 the Lagrange polynomials associ-
ated with Rk and by L0, L1, L(2,1), L(2,2), · · · , L(2n,1), L(2n,2), L2n+1, · · · , Lk−1 the La-
grange polynomials associated with the set Gk as given in (6.5.17). We propose to
relate the polynomial l0 to L0, the polynomial l1 to L1, the polynomial lj to L(j,1) and
L(j,2) for every j = 2, · · · 2n and the polynomial lj to Lj for every j = 2n + 1, · · · k− 1.
We note that for every j = 0, . . . , k − 1, we have

lj(x) =
WRk(x)

W ′Rk(rj)(x− rj)
, x ∈ [−1, 1]. (6.5.22)

Therefore, combining (6.5.18), (6.5.19) and the identity (6.5.20), we deduce that for
j = 0, . . . , k − 1

|lj(x)| = 1

αj

∣∣∣ z2 − 1

(z − zj)(z − zj)

∣∣∣ |wGk(z)||wFk(z)|
|w′Gk(zj)||wFk(zj)|

, z ∈ ∂U , x = <(z). (6.5.23)

where αj are defined as in 6.5.7. To lighten our notations, we introduce the quotients

qk(z, ξ) :=
|wFk(z)|
|wFk(ξ)|

, z ∈ ∂U , ξ ∈ ∂U \ Fk. (6.5.24)

Using elementary rational decomposition, with variable ξ and constant z ∈ ∂U , it can
be shown that∣∣∣ z2 − 1

(z − ξ)(z − ξ)

∣∣∣ =
∣∣∣ z − z
(z − ξ)(z − ξ)

∣∣∣ ≤ 1

|z − ξ|
+

1

|z − ξ|
=

1

|z − ξ|
+

1

|z − ξ|
(6.5.25)
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This last inequality applied with the real values ξ = z0 = 1 and ξ = z1 = −1 and
injected in (6.5.23) yields

|l0(x)| ≤ qk(z, z0)|L0(z)| and |l1(x)| ≤ qk(z, z1)|L1(z)| (6.5.26)

For the indices j = 2, . . . , 2n, since zj and zj play symmetric role in that <(zj) =
<(zj) = rj and zj , zj ∈ Gk, then one observes that (6.5.19) yields |w′Gk(zj)||wFk(zj)| =
|w′Gk(zj)||wFk(zj)|. Therefore, taking account of this equality when injecting the first
part of (6.5.25) in (6.5.23), we deduce

|lj(x)| ≤ qk(z, zj)L(j,1)(z) + qk(z, zj)L(j,2)(z), (6.5.27)

Finally for the indices j = 2n + 1, . . . , k− 1, we inject the second inequality of (6.5.25)
in (6.5.23) but taking account of |wGk(z)wFk(z)| = |wGk(z)||wFk(z)|, which follows
from Gk ∪ Fk = Gk ∪ Fk, we obtain

|lj(x)| ≤ qk(z, zj)Lj(z) + qk(z, zj)Lj(z). (6.5.28)

Combing the inequalities (6.5.26), (6.5.27) and (6.5.28), we infer the rough bound

LRk ≤ 2LGk sup
z∈∂U
ξ∈Gk

qk(z, ξ). (6.5.29)

By the structure of Leja sequences on U , we have that Fk = E2n+1,2n+k−1 is a k′-Leja
section with k′ = k− (2n+ 1) and 0 < k′ < 2n, therefore by Corollary 6.3.7, we deduce

qk(z, ξ) =
|wFk(z)|
|wFk(ξ)|

≤ 2σ1(k′)2σ1(2n−k′)

ξ
2n − e2n

2n+1

=
2n+1−p(k′)

ξ
2n − e2n

2n+1

Since e2n+1 is a 2n+1-root of −1, then e2n

2n+1 = ±i. As for ξ ∈ Gk, since Gk ⊂ E2n+2 =

UE2n+2 then ξ2n ∈ {1,−1, i,−i}. This shows that necessarily |ξ2n − e2n

2n+1 | ≥
√

2, so
that

sup
z∈∂U
ξ∈Gk

qk(z, ξ) ≤ 2n+ 1
2
−p(k′) (6.5.30)

This bound injected in (6.5.29) completes the proof of Theorem 6.5.5.

Remark 6.5.8
The previous approach can be applied to bound the Lebsgue constant associated
with the Gauss-Lobatto abscissas T ∗k := {cos jπ

k
: j = 0, · · · , k} using the Lebesgue

constant associated with the 2k-roots of unity U2k := {exp( j
k
iπ) : j = 0, · · · , 2k−1}.

Indeed, the same arguments shows that

LT ∗k ≤ LU2k
(6.5.31)

Using the known result LUN ≤ 2
π

logN +O(1), this shows that LT ∗k ≤
2
π

log k+O(1)
which is a new approach to prove this classical result.
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6.6 Norms of the difference operators

In this section, we focus our attention on the difference operators associated with inter-
polation on nested sequences. We first define theses operators on an abstract setting,
then we analyze them in the case of Leja sequences on U and <-Leja sequences on
[−1, 1].

We consider Z = (zj)j≥0 a sequence of pairwise distinct points in a compact set X
contained either in R or C and denote by ΠZk the interpolation operators associated
with the sections Zk. We introduce the difference operators (∆j)j≥0 defined by

∆0 = ΠZ1 , and ∆k = ΠZk+1
− ΠZk , k ≥ 1. (6.6.1)

We are interested in the norm of theses operator defined by

δk := sup
g∈C(X)−{0}

‖∆kg‖L∞(X)

‖g‖L∞(X)

(6.6.2)

We may write δk(Z) to emphasize the dependence on the sequence Z. It is immediate
that δ0 = LZ1 = 1 and δk ≤ LZk+1

+LZk for k ≥ 1. We shall sharpen the previous bound
when Z has a particular structure, for instance, if Z is a Leja or an <-Leja sequence.
As for Lebesgue constant, we can express δk using Lagrange polynomials. Indeed, using
Lagrange interpolation formula with the section Zk+1, it can be easily checked that for
any k ≥ 1

∆kg(z) =
(
g(zk)− ΠZkg(zk)

) wZk(z)

wZk(zk)
, z ∈ X. (6.6.3)

This implies that

δk = sup
z∈X

|wZk(z)|
|wZk(zk)|

sup
f∈C(X)−{0}

|g(zk)− ΠZkg(zk)|
‖g‖L∞(X)

(6.6.4)

The second supremum in the previous equality is obviously bounded by 1 + λEk(zk).
This bound is actually attained, to see this consider g to be a function in C(X) having
a maximum value equal to 1, and satisfying g(zk) = −1 and g(zj) =

|lj(zk)|
lj(zk)

for every
j = 0, . . . , k − 1 where l0, . . . , lk−1 are the Lagrange polynomials associated with Ek.
Therefore

δk =
(

1 + λEk(zk)
)

sup
z∈X

|wZk(z)|
|wZk(zk)|

. (6.6.5)

The previous formula shows in particular

Z is a Leja sequence on X =⇒ δk = 1 + λZk(zk). (6.6.6)

In particular, in view of the results on Leja sequences on the unit disk, Lemma 6.4.3,
we have the following
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Lemma 6.6.1
Let E be a Leja section in U with initial value e0 ∈ ∂U . The difference operators
associated with E satisfies, δ0(E) = 1 and for k ≥ 1

δk(E) ≤ 1 + k (6.6.7)

The formula (6.6.5) is convenient in the case of Leja sequences since it yields exact
values of the quantities δk. For the sake of convenience in the case of <-Leja sequences,
we opt for a different rearrangement of (6.6.5). From the formulas (6.2.2) of Lagrange
polynomials associated with Zk, we may write (6.6.5) as

δk =
( 1

|wZk(zk)|
+

k−1∑
j=0

1

|w′Zk(zj)||zk − zj|

)
sup
z∈X
|wZk(z)|. (6.6.8)

We remark that |wZk(zk)| = |w′Zk+1
(zk)| and |w′Zk(zj)||zk − zj| = |w′Zk+1

(zj)| for any
j = 0, . . . , k − 1, we may then rewrite (6.6.5) in the more compact form

δk =
( k∑
j=0

1

|w′Ek+1
(zj)|

)
sup
z∈X
|wZk(z)| (6.6.9)

Now giving R = (rj)j≥0 an <-Leja sequence on [−1, 1], using the polynomials WRk =
2kwRk defined in (6.5.7), the previous formula becomes

δk(R) = 2βk(R) sup
x∈[−1,1]

|WRk(x)| where βk(R) :=
k∑
j=0

1

|W ′
Rk+1

(rj)|
. (6.6.10)

We propose to bound the quantity βk(R) for any <-Leja sequence R.
Lemma 6.6.2

Let R by an <-Leja sequence. We have β2n(R) = 1
4
for any n ≥ 0 and for k ≥ 1,

such that 2n < k < 2n+1,

βk(R) ≤ C
2σ0(k)

2p(k)
, C =

1

2
. (6.6.11)

where σ0(k) is the number of zeros in the binary expansion of k.

Proof : First, we assume that k = 2N ≥ 4 is an even integer. We have

βk(R) =
1

|W ′R2N+1
(1)|

+
1

|W ′R2N+1
(−1)|

+
1

|W ′R2N+1
(0)|

+
N∑
j=2

( 1

|W ′R2N+1
(r2j−1)|

+
1

|W ′R2N+1
(r2j)|

)
.

(6.6.12)
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We introduce the shorthand S = R2. Using Lemma 6.5.3, we deduce that

βk(R) =
1

|W ′SN+1
(1)|

+
1

|W ′SN+1
(−1)|

+

N∑
j=2

1

|W ′SN+1
(sj)|

= βN (S). (6.6.13)

The same arguments implies that β2(R) = β1(S), so that β2N (R) = βN (S) is valid for
any N ≥ 1. Since S is also an <-Leja sequence, then the verification β1(S) = 1

4 for
any <-Leja sequence S implies the first result in the lemma β2n(R) = 1

4 for any n ≥ 0.

To prove the second part of the lemma, we use induction on k ≥ 3. First, since
r0 = 1, r1 = −1, r2 = 0 and r3 = ±

√
2, then it is easily checked that β3(R) =

√
2

8 ,
satisfies (6.6.11). Let now k ≥ 3 and assume the induction hypothesis holds for any
j < k. If k = 2N is even with N not a power of 2, then N ≥ 3, therefore (6.6.13)
combined with the induction hypothesis with N implies the result for k since σ0(N) =
σ0(k)− 1 and p(N) = p(k)− 1.

We now assume that k = 2N + 1 ≥ 5 is an odd integer. First, we isolate the last
quotient in the the sum giving βk(R) and multiply the other quotients by |rj−rk+1|

|rj−rk+1|
yielding

βk(R) =
1

WRk(rk)
+
k−1∑
j=0

|rj − rk+1|
|W ′Rk+2

(rj)|
.

Since k = 2(N+1)−1 and k+2 = 2(N+2)−1, then regrouping the sum as in (6.6.12)
and using Lemma 6.5.3, taking into account r0 = 1, r1 = −1 and r2 = 0, we deduce

βk(R) =
2|rk|

|WSN+1
(sN+1)|

+
|1− r2N+2|+ | − 1− r2N+2|

2|W ′SN+2
(1)|

+
|r2N+2|

|W ′SN+2
(−1)|

+

( N∑
j=2

|r2j−1 − r2N+2|+ |r2j − r2N+2|
2|W ′SN+2

(sj)|

)
Since |x− r|+ |x+ r| ≤ 2 for any x, r ∈ [−1, 1] and r2j−1 = −r2j , for every j ≥ 2, we
deduce that

βk(R) ≤ 2

|WSN+1
(sN+1)|

+
1

|W ′SN+2
(1)|

+
1

|W ′SN+2
(−1)|

+
N∑
j=2

1

|W ′SN+2
(sj)|

=
1

|WSN+1
(sN+1)|

+ βN+1(S) ≤ 2βN+1(S)

First, if k + 1 is a power of 2, i.e. k = 2q − 1, q ≥ 1, then N + 1 = 2q−1, so
that the previous inequality implies βk(R) ≤ 1

2 which is compatible with (6.6.11) since
σ0(k) = p(k) = 0. Now if k + 1 is not a power of 2, we write k =

∑n
j=0 aj2

j and
introduce q = inf{j ≥ 0 : aj = 0}. We have k = 2q − 1 + 2q+1m with m ≥ 1. The
induction hypothesis applied with N +1 = 2q−1(1+2m) combined with (6.6.13) yields

βk(R) ≤ 2β2q−1(1+2m)(R
2) = 2β1+2m(R2q) ≤ 2C

2σ0(1+2m)

2p(1+2m)
= C2σ0(k),
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where we have used that σ0(1 + 2m) = σ0(m) = σ0(k) − 1 since k = 11 . . . 1︸ ︷︷ ︸
q

0m in

the sense of binary expansions and that R2q is an <-Leja sequence. The proof is now
complete.

In view of the above lemma, we are now able to provide a bound on the growth of the
norms of the difference operators for <-Leja sequence.
Lemma 6.6.3

Let R be an <-Leja sequences in [−1, 1]. For any n ≥ 0 and for k ≥ 1, such that
2n ≤ k < 2n+1,

δk(R) ≤ 4n (6.6.14)

Proof : We have by Lemma (6.5.18) that for 2n + 1 < k < 2n+1 + 1

|WRk(x)| = |z2−1||wGk(z)||wFk(z)| ≤ 22σ1(2n+1+k′)2σ1(k′) = 44σ1(k′), k′ = k−(2n+1)

This result is also valid for any k. First, we treat the case k = 2n. We have in
such case 2n−1 + 1 < k < 2n + 1, so that the previous inequality implies |WRk(x)| ≤
44σ1(2n−1−1) = 44n−1 = 4n. This combined with the previous Lemma implies

δ2n(R) ≤ 2
1

4
4n ≤ 4n

For k not a power of 2, we have since 0 < k′ < 2n, the number of ones in the binary
expansion of k′ satisfies σ1(k′) = σ(k′+ 2n)−1 = σ(k−1)−1. It can be checked using
binary subtraction σ1(k − 1) = σ1(k)− 1 if k is odd and σ1(k − 1) = p(k)− 1 + σ1(k)
for k even, therefore

σ1(k′) = σ1(k) + p(k)− 1

We deduce then from (6.6.10) and the previous lemma that

δk(R) ≤ 4σ1(k)+p(k)−12σ0(k)2−p(k) =
1

4
2σ1(k)+p(k)2σ1(k)+σ0(k) ≤ 1

4
(2n+1)2 = 4n.

where we have used σ1(k) + p(k) ≤ σ1(k) + σ0(k) = n+ 1.

6.7 Numerical illustration

We have computed numerically the Lebesgue constants Lk of the Leja sections on the
unit disk and the Lebesgue constants LRk with R is the <-Leja sequence given by
(6.5.3), up to the value k = 129. Figure 6.7.3 display their behaviours with respect to
k.
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In the complex case, we notice the regular patterns in the graph of k 7→ Lk, which
reveal the particular role of divisibility by powers of 2 in k. This role also appears in
the estimate (6.4.5), due to the presence of 2pk in the denominator. The worst values
of Lk appear for the values k = 2n− 1 for which it was proved in [18] that Lk = k. The
conjecture Lk ≤ k seems reasonable in view of this graph.

In the real case, the patterns are also present yet less visible. One can also see that
LRk ≥ k for certain values of k. However, the graph does not give any clear intuition
on the best asymptotic estimate that should be expected.

We may think of other sequences of points in [−1, 1] for which the Lebesgue constant
could behave better than for the sequence R. As an example, we have numerically
computed, for k = 1, . . . , 129, the Lebesgue constants when using the k-sections of the
two following sequences:

• The standard Leja sequence L on [−1, 1] with starting point r0 = 1, which is
iteratively built by taking

rj ∈ Argmaxx∈[−1,1]

j−1∏
l=0

|x− rl|. (6.7.1)

The computation of this sequence becomes intensive for larger values of k.

• The sequence M on [−1, 1] with starting point r0 = 1, which is iteratively built
by maximization of the Lebesgue function of its sections according to

rj ∈ Argmaxx∈[−1,1]λMj−1
(x), (6.7.2)

where Mj denotes the j-section of M . The computation of this sequence is as
intensive as that of L.

Figure 6.7.4 displays the comparison between the Lebesgue constants for the three
sequences R, L and M . We observe that the behaviour for the sequences L and M is
very similar and generally better than for the sequence R, to the exception of isolated
values such as k = 2n + 1 for which the Rk coincide with the Gauss-Lobatto points
giving therefore LRk <∼ log k. Note however that we do not hove bounds for LLk and
LMk

that are comparable to the quadratic growing bounds obtained for LRk .

6.8 Conclusion

In this chapter, we have proved that the growths of the Lebesgue constants associ-
ated with Leja sequences on unit circle and their projections the <-Leja sequences are
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Figure 6.7.3: Exact Lebesgue constants Lk (left) and LRk (right) for k = 1, . . . , 129.
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Figure 6.7.4: Exact Lebesgue constants associated to the k-sections of R, L and M , for
k = 1, 3, . . . , 129.

respectively sub-linear and sub-quadratic. We have shown in addition that the asso-
ciated difference operator ∆k have norms which are bounded in k + 1 and (k + 1)2
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respectively. This implies in view of Remark 5.3.2 that the multi-dimensional polyno-
mial interpolation operators, introduced in Chapter 5, based on such sequences have
Lebesgue constant that are bounded in (#(Λ))2 and (#(Λ))3 respectively, see (5.2.6)
in Chapter 5.

For the purpose of our analysis in this chapter, we have exhibited many interesting
structural properties of both the Leja and <-Leja sequences. In addition, we have
introduced a new approach for the study of Lebesgue constants of <-Leja sequences.
The linear bound 2k for Leja sequences is somewhat satisfactory since the value k can
be attained for integer of the form 2n − 1, however for <-Leja sequence, the bound 8k2

is in some way pessimistic. It is of interest to investigate if linear bounds hold also in
this case.
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7.1 Introduction

In this chapter, we introduce a simple least-squares scheme which can be used for non-
intrusive treatment of parametric PDEs. We study a standard polynomial least-squares
process which turns out to be stable for projection spaces VΛ for Λ lower.

As in Chapter 5, we are interested in parametric PDEs of the general form

D(u, y) = 0, (7.1.1)

where u 7→ D(u, y) is a partial differential operator that depends on a parameter vector
y = (yj)j≥1 which varies in the parametric domain U = [−1, 1]N. We assume that the

273
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problem (7.1.1) is well posed in some Banach space V for any y ∈ U , so that we may
defined the solution map u by

y ∈ U 7→ u(y) ∈ V. (7.1.2)

We assume that D satisfies a (p, ε)-holomorphy assumption, see Definition 2.2.1, for
some 0 < p < 1. As a consequence, there exist sequences of nested lower sets (ΛP

n )n≥1

with #(Λn) = n such that u can be approximated in the spaces VΛPn
in the uniform

sense with algebraic rates,

inf
v∈V

ΛPn

‖u− v‖V∞ ≤ C(n+ 1)−s, s :=
1

p
− 1, (7.1.3)

or up to considering a different sequence (ΛL
n)n≥1, also in the mean squares sense with

a better rate,

inf
v∈V

ΛLn

‖u− v‖V2 ≤ C ′(n+ 1)−s
∗
, s∗ :=

1

p
− 1

2
, (7.1.4)

As discussed in Chapter 5, we have seen multiple polynomial approximation meth-
ods. For instance, Taylor series, Galerkin projection, interpolation and sparse grids
collocation method. Such methods provide computable approximation of u in the sense
of (7.1.3). However, computable approximation of u in the sense of (7.1.4) are only
available for the elliptic model, based on Galerkin projection, see Chapter 4. A typ-
ical challenge is then to compute approximation in the sense (7.1.4) for more general
models.

The objective of this chapter is to propose and study a collocation method based
on a high dimensional least-squares process using observation of the solution map u
on independent and identically distributed copies of the random vector y. Throughout
this chapter, we only work with lower sets Λ, which once again we recall are defined
according to

ν ∈ Λ and µ ≤ ν ⇒ µ ∈ Λ, (7.1.5)

The convergence analysis in least-squares sense of collocation methods is less sat-
isfactory in the sense that convergence rates similar to (7.1.4) do not seem to have
been established for such methods. This is in part due to the difficulty to control the
least-squares projection for general multivariate polynomial spaces. We have seen in
Chapter 5 that the convergence rate in (7.1.3) can be achieved if interpolation is used
with carefully selected points. least-squares methods have been recently analyzed in
[32, 66] in the stochastic setting, assuming that the samples yi are independent real-
izations of the random variable y, therefore identically distributed according to %. The
analysis reveals that in the univariate case where y ∈ [−1, 1] and for the uniform distri-
bution, the least-squares method is stable and produces a near best approximation in
L2([−1, 1], dt

2
), under the condition that the number of samples n scales quadratically
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(up to a logarithmic factor) with respect to the dimension m of the polynomial space
Pm−1.

The objective of this chapter is to address the problem of the stability and con-
vergence of the polynomial least-squares method in the general context of the spaces
VΛ associated to arbitrary lower sets Λ. We begin in Section 7.2 by discussing the
least squares method for a real-valued function in a general framework not limited to
polynomials and recalling recent stability and approximation results established in [32].
In Section 7.3, we focus on the particular framework of the multivariate polynomial
spaces PΛ. Our analysis reveals in particular that, with U = [−1, 1]d and the uniform
distribution, the same scaling n ∼ #(Λ)2 up to a logarithmic factor as in the univariate
case, ensures stability and near best approximation of the method independently of the
dimension d.

In Section 7.4, we show how a similar analysis applies to V -valued functions, where
V is a Hilbert space, and therefore to the solutions of parametric and stochastic PDEs.
As a relevant example, the equation (1.1.1) with random inclusions in the diffusion
coefficient is discussed in §5, and numerical illustration for this example are given in
§6.

7.2 Discrete least-squares approximations

Let (U,Θ, %) be a probability space. Here, the domain U and the measure % are not
necessarily [−1, 1]N and the uniform measure over [−1, 1]N. We denote by L2(U, d%) the
Hilbert space of real-valued squares integrable functions with respect to % and denote
by 〈·, ·〉 and ‖ · ‖ the associated inner product and norm, i.e.

〈v, w〉 :=

∫
U

v(y)w(y)d%(y), ‖v‖ :=
√
〈v, v〉, v, w ∈ L2(U, %). (7.2.1)

We consider Xm a finite dimensional space of L2(U, %) with dim(Xm) = m. We assume
that the functions belonging to Xm are defined everywhere over U . We let BL :=
(Lj)1≤j≤m be any orthonormal basis of Xm with respect to the above inner product.
The best approximation of a function u ∈ L2(U, d%) in Xm in the least-squares sense is
given by

Pmu := argmin
v∈Xm

∫
U

|u(y)− v(y)|2d% =
m∑
j=1

〈u, Lj〉 Lj, (7.2.2)

and its best approximation error by

em(u) := inf
v∈Xm

‖u− v‖ = ‖u− Pmu‖. (7.2.3)

The approximation Pmu is in general out of reach. It requires the knowledge of all
the coefficient 〈u, Lj〉 which in general can only be approximated using quadratures
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methods. This however might not produce a stable approximation. Also, in general u
is an unknown function, for instance a solution of a given partial differential equation,
for which one only has noisy observations. A popular way to approximate u is by virtue
of the least-squares method.

If the function u is an unknown function and (zi)i=1,···,n ∈ Rn are noiseless or noisy
observations of u at the points (yi)i=1,···,n ∈ U where the yi are i.i.d. random variables
distributed according to %. We introduce the discrete least-squares approximation

w := argmin
v∈Xm

n∑
i=1

|zj − v(yj)|2. (7.2.4)

More precisely, the observation model is

zi = u(yi) + ηi, i = 1, . . . ,m, (7.2.5)

where yi are i.i.d. random variable distributed according to % and where ηi represents
the noise. Several scenarii may be considered for modeling the noise:

(i) Noiseless model: one has ηi = 0.

(ii) Stochastic noise model: ηi are centered i.i.d. random variables, with uniformly
bounded variance

sup
y∈Γ
E(|η|2|y) <∞. (7.2.6)

(iii) Deterministic noise model: ηi = η(yi) where η is a uniformly bounded function
on Γ with

‖η‖L∞(Γ) <∞ (7.2.7)

In the framework of parametric PDE’s, the observation noise represents the discretiza-
tion error between the exact solution u(y) and the solution computed by deterministic
numerical solver, which is a function of y. The deterministic noise model is therefore
the appropriate one, with ‖η‖L∞(Γ) representing a uniform bound on the discretization
error guaranteed by the numerical solver.

The minimization problem (7.2.4) always has a solution, which may not be unique.
In particular, it is never unique in the regime m > n. In the following, we only consider
the regime m ≤ n. In the noiseless case (i) above where zi = u(yi), the solution may
be viewed as the orthogonal projection of u onto Xm with respect to the inner product
〈·, ·〉n associated with the empirical semi-norm

‖v‖n =
( 1

n

n∑
i=1

|v(yi)|2
) 1

2
. (7.2.8)
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In this case, we denote the solution w of the problem (7.2.9) by P n
mu, i.e.

P n
mu := argmin

v∈Xm

n∑
i=1

|u(yj)− v(yj)|2 = argmin
v∈Xm

‖u− v‖n. (7.2.9)

The projection P n
mu depends on the sample (yj)1≤j≤n, so that P n

mu is a “random” least-
squares projector. In both the noisy and noiseless case, the coordinate vector w ∈ Rm
of w in the basis BL is the solution to the system

Gw = Jz, (7.2.10)

where G, J and z are respectively the m × m matrix, the m × n matrix and the
n-dimensional vector of observations all given by

Gij := 〈Li, Lj〉n, Jij :=
Li(y

j)

n
, and zi = zi. (7.2.11)

Note that nJJt = G. In the case where the matrix G is not singular, the solution w of
the least-squares problem (7.2.9) is given by

w =
n∑
j=1

zjπj. (7.2.12)

where Bπ := {π1, . . . , πn} is a family of elements of Xm given by

Bπ :=
(
G−1J

)t BL, (7.2.13)

with the product matrix-basis to be understood in the obvious sense. In the case where
G is singular, we set by convention w := 0. If u satisfies a uniform bound |u(y)| ≤ L
over U , where L is known, we introduce the truncated least squares approximation

w̃ = TL(w), with TL(t) := sign(t) min{L, |t|}, (7.2.14)

which we also denote by P̃ n
mu in the noiseless case.

The analysis in [32, 66] investigates the minimal amount of sampling n = n(m) ≥
m that allows an accurate approximation of the unknown function u by the random
approximations w or w̃. The accuracy here is to be understood in the sense of a
comparison between the error ‖u − w‖ and the best approximation error em(u). This
analysis is based on probabilistic estimates comparing the norm ‖ · ‖ and its empirical
counterpart ‖·‖n uniformly over the space Xm. This comparison amounts in estimating
the deviation of the random matrix G from its expectation E(G) = I, where I is the
m×m identity matrix. Indeed, for v ∈ Xm and v the vector representing v in the basis
BL, one has

‖v‖2
n = vTGv and ‖v‖2 = vTv = vT Iv, (7.2.15)
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so that for any 0 < δ < 1,

|||G− I||| ≤ δ ⇔ |‖v‖2
n − ‖v‖2| ≤ δ‖v‖2, v ∈ Xm, (7.2.16)

where ||| · ||| denote the spectral norm of a matrix.

We recall in a nutshell the analysis in [32, 66]. First, we define a quantity that plays
a central role in both works. Namely, we consider

K(Xm) = sup
v∈Xm−{0}

‖v‖2
L∞(U)

‖v‖2
, (7.2.17)

The quantity can be viewed as a measure of the stability of the uniform norm with
respect to the mean square norm over Xm. We remark that K(Xm) is always greater
than 1. By writing v =

∑m
j=1 vjLj and using the fact that (Lj)j=1,...,m is an orthonormal

basis of Xm, we can show using Cauchy-Schwartz inequality that

K(Xm) := sup
y∈U

m∑
j=1

|Lj(y)|2. (7.2.18)

Although this last definition depends on the basis BL, one should keep in mind that
the definition above shows in the inverse. The quantity K(Xm) only depends on the
space Xm and the measure %. The quantity K(Vm) is also a uniform bound on the
Froebenius norm of the random matrix R = (Lj(y)Lk(y))1≤j,k≤m and therefore allows
to bound the deviation of G which is its empirical average from its expectation I, based
on concentration inequalities for matrix valued random variables.

The main theorem in [32] implies that given r > 0 and the number of samples n
large enough such that

n

log n
≥ K(Xm)

κ
, with κ :=

1− ln 2

2 + 2r
' 0.15

1 + r
, (7.2.19)

then the deviation between G and I satisfies the probabilistic estimate

Pr
{
|||G− I||| > 1

2

}
≤ 2n−r. (7.2.20)

This estimate implies that with probability at least 1− 2n−r the least square problem
is stable: indeed, with at least this probability, one has

|||G−1||| ≤ 2 and |||G||| ≤ 3

2
, (7.2.21)

and therefore since nJJt = G, then

|||J ||| ≤
√

3

2
n−1/2. (7.2.22)
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It follows from (7.2.10) that

‖w‖2
L2 ≤ 6

( 1

n

n∑
j=1

|zj|2
)
. (7.2.23)

This shows that in the noiseless case, we have

‖P n
mu‖2

L2 ≤ 6‖u‖2
n. (7.2.24)

Using this result, the following quasi-optimality results for the truncated least-square
approximation are proved in [32] for the noiseless and stochastic noisy models and in
[23] for the deterministic noisy model.

• In the noiseless model, if u satisfies a uniform bound L over U , then one has

E(‖u− P̃ n
mu‖2) ≤

(
1 + ε(n)

)
em(u)2 + 8L2n−r, where ε(n) :=

4κ

log(n)
(7.2.25)

• In the stochastic noise model, if u satisfies a uniform bound L over U , then

E(‖u− w̃‖2) ≤
(

1 + 2ε(n)
)
em(u)2 + 8L2n−r + 8σ2m

n
, (7.2.26)

where σ2 := maxy∈Γ E(|z − u(y)|2|y) is the noise level.

• In the deterministic noise model, if u satisfies a uniform bound L

E(‖u− w̃‖2) ≤ (1 + 2ε(n))em(u)2 + (8 + 2ε(n))‖η‖2 + 8L2n−r. (7.2.27)

It is also desirable to estimate the error between u and its estimator in probability
rather than in expectation. In the following we give such an estimate, in the noiseless
case and for the non truncated estimator w = P n

mu, however using the best approxima-
tion error in the uniform norm

em(u)∞ := inf
v∈Vm

‖u− v‖L∞(U), (7.2.28)

which is obviously larger than em(u). The next result was already proven in [66] for
the particular case of discrete least-squares on univariate polynomial spaces and for the
noiseless model. Here, we treat the more general deterministic noise model
Theorem 7.2.1

Under condition (7.2.19), one has

Pr
(
‖u− P n

mu‖ ≥ (1 +
√

2)em(u)∞

)
≤ 2n−r. (7.2.29)
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Proof : Introducing the event set Ωn
+ := {|||G − I||| ≤ 1

2}, we know from (7.2.20) that
Pr(Ωn

+) ≥ 1− 2n−r. Given any draw in Ωn
+, we have for any v ∈ Vm

‖u− Pnmu‖ ≤ ‖u− v‖+ ‖v − Pnmu‖ ≤ ‖u− v‖+
√

2‖v − Pnmu‖n, (7.2.30)

where we have used (7.2.16). By the orthogonality identity ‖u− v‖2n = ‖u− Pnmu‖2n +
‖Pnmu− v‖2n, we deduce

‖u− Pnmu‖ ≤ ‖u− v‖+
√

2‖u− v‖n ≤ (1 +
√

2)‖u− v‖∞, (7.2.31)

which completes the proof.

All these results above lead to the problem of understanding which minimal amount
n of sample ensures the validity of condition (7.2.19). In the one-dimensional case
d = 1, with Xm = Pm−1 being the space of polynomials of degree less or equal to m− 1
and % being the uniform measure over [−1, 1], we have

K(Pm−1) =
∥∥∥m−1∑
j=0

|Lj|2
∥∥∥
L∞([−1,1])

=
m−1∑
j=0

(2j + 1) = m2 (7.2.32)

where we have used the Legendre polynomials (Lj)0≤j≤m−1 normalised in L2([−1, 1], d%)
which form an orthonormal basis of Pm−1 and all attain their supremums

√
2j + 1 in

1. Therefore (7.2.19) holds for
n

log n
∼ m2, (7.2.33)

meaning that n scales likem2 up to a logarithmic factor. This relation between n andm
was also obtained and used in [66] in order to establish estimates for the discrete least-
squares error in probability, however, by different arguments which are more tied to the
use of univariate polynomials and the uniform measure. The next section discusses the
implications of condition (7.2.19) for the multivariate polynomial spaces PΛ.

7.3 least-squares for multivariate polynomials

In this section, we investigate the implications of the condition (7.2.19) in the setting of
multivariate polynomials spaces PΛ. The analysis apply for the domains [−1, 1]d with
d ≥ 1 and also can be generalized easily for the domain U := [−1, 1]N.We consider here
% the uniform measure over [−1, 1]d, i.e.

d% := ⊗dj=1

dyj
2
. (7.3.1)
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When U is considered, the definition of infinite product measure % is explained in §1.2
of Chapter 1. We use the notations L2([−1, 1]d, d%), 〈·, ·〉 and ‖·‖ of the previous section
and denote F := Nd. Given Λ a finite subset of F , u the unknown real valued function
and (zi)i=1,···,n noiseless or noisy observations of u at the points (yi)i=1,···,n where the
yi are i.i.d. random variables distributed according to %, we introduce the polynomial
discrete least-squares approximation

wΛ := argmin
v∈PΛ

n∑
i=1

|zj − v(yj)|2, (7.3.2)

In order to study the optimality of the least-squares approximation, we need to inves-
tigate the growth of the quantity of interest K(Xm) introduced in (7.2.17) and (7.2.18)
with Xm = PΛ. We shall show that under the minimal condition of lower structure of
the index set Λ, we have as in the one-dimensional case that K(PΛ) ≤ (#Λ)2.

We introduce (Lk)k≥0 the univariate Legendre polynomials normalized in L2([−1, 1], dt
2

)
and introduce (Lν)ν∈F the multivariate Legendre polynomials defined by

Lν(y) :=
d∏
j=1

Lνj(yj), y ∈ [−1, 1]d (7.3.3)

The family (Lν)ν∈F is an orthonormal basis of the space L2([−1, 1]d, %). We have seen
in the previous chapters that if Λ is a lower set, then (Lν)ν∈Λ is an orthonormal basis
of PΛ. Therefore, the multivariate extension of (7.2.18) reads

KL(PΛ) :=
∥∥∥∑
ν∈Λ

|Lν |
∥∥∥
L∞([−1,1]d)

(7.3.4)

Since the univariate Legendre polynomials Lk attain all their maximums
√

2k + 1 at 1,
then

K(PΛ) =
∑
ν∈Λ

‖Lν‖2
L∞([−1,1]d) =

∑
ν∈Λ

d∏
j=1

(2νj + 1) = K0,0(Λ) (7.3.5)

where the notation K0,0(Λ) is introduced in the appendix (A.4.6) for the same purpose.
According to Lemma A.4.1, we have
Lemma 7.3.1

For any finite lower set Λ ⊂ F , the quantity K(Λ) satisfies

#(Λ) ≤ K(PΛ) ≤ (#(Λ))2. (7.3.6)

The previous bound is valid for any lower set independently of its shape. In addition,
the inequality is sharp, in the sense that the equality K(Λ) = (#(Λ))2 holds for certain
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types of lower sets. Indeed, given ν ∈ F supported in {1, · · · , J} and considering a
rectangular block Bν := {µ ∈ F : µ ≤ ν}, we have

K(PBν ) =
∑
µ≤ν

∏
1≤j≤J

(2µj +1) =
∏

1≤j≤J

∑
µj≤νj

(2µj +1) =
∏

1≤j≤J

(νj +1)2 = (#Bν)2. (7.3.7)

However, we expect this bound to be pessimistic for lower sets that have shapes very
different from rectangles. For instance, we let k ≥ 1 and consider the simplex

Sk := {ν ∈ Nd0 : |ν| ≤ k} (7.3.8)

where |ν| :=
∑d

j=1 νj, associated to the polynomial space PSk of d-variate polynomials
of total degree k. By the inequality of arithmetic and geometric means, one has for any
ν ∈ Sk,d∏

1≤j≤d

(2νj + 1) ≤
(1

d

∑
1≤j≤d

(2νj + 1)
)d

=
(2|ν|
d

+ 1
)d
≤
(2k

d
+ 1
)d
. (7.3.9)

Therefore
K(PSk) ≤

(2k

d
+ 1
)d

#(Sk). (7.3.10)

The quantity
(

2k
d

+1
)d

is bounded by e2k, hence very small compared to #(Sk) =
(
d+k
k

)
for large values of d. On Figure 7.3.1, we provide a comparison between #(Sk), K(PSk)
and (#(Sk))2 for various dimensions d.

In light of Lemma 7.3.1, given a finite lower set Λ, if the number of samples n scale
like (#(Λ))2 with a logarithmic factor, according to

n

log n
≥ (#(Λ))2

κ
, κ :=

1− ln 2

2 + 2r
, (7.3.11)

then the stability and approximation results of the previous section hold in the the
present setting of multivariate polynomial least-squares approximation.

It is interesting to see if the estimates on the quantity K(PΛ) can be improved when
using other standard probability measures over [−1, 1]d. In what follows, we study this
quantity when the measure % is the tensorized Chebychev measure, i.e.

d%(y) := ⊗j≥1%(yj)dyj, with %(t) :=
1

π

1√
1− t2

. (7.3.12)

Using in this case the notation KT (PΛ) to denote the quantity of interest K(PΛ) with
the measure %. We have

KT (PΛ) :=
∥∥∥∑
ν∈Λ

|Tν |2
∥∥∥
L∞(U)

, (7.3.13)
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Figure 7.3.1: Comparison between #(Sk), K(PSk) and (#(Sk))2.Left: d = 2. Center:
d = 4. Right: d = 8.

where Tν(y) =
∏

j≥1 Tνj(yj) are the tensorized Chebyshev polynomials with (Tk)k≥0

normalized according to
1∫

−1

|Tk(t)|2
dt

π
√

1− t2
= 1. (7.3.14)

It is easily checked that the latter are related to the classical Chebyshev polynomials of
the first kind by Tk(cos θ) =

√
2 cos(kθ) for any k ≥ 1 and T0 = 1. Therefore, for every

k ≥ 2, the polynomial Tk attains the maximum value
√

2 at 1. It follows that

KT (PΛ) :=
∑
ν∈Λ

2#supp(ν) (7.3.15)

The quantity of interestKT (PΛ) is smaller than the quantityK(PΛ) defined with the
uniform measure and given in (7.3.5). Indeed, for k ≥ 2, ‖Tk‖L∞[−1,1] =

√
2 ≤
√

2k + 1.
Therefore, we obtain

KT (PΛ) ≤ (#(Λ))2, (7.3.16)

A sharper bound can be established by a finer analysis. This is done in the appendix
where we have used the notation K− 1

2
,− 1

2
(Λ) to denote the quantity in (7.3.15), see

(A.4.7). By Lemma A.4.4, we have
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Lemma 7.3.2

For any lower set Λ ⊂ F , the quantity KT (PΛ) satisfies

KT (PΛ) ≤ (#(Λ))
ln 3
ln 2 (7.3.17)

The previous bound is sharp for certain type of lower sets. For instance, if ν is the
multi-index such that ν1 = . . . = νJ = 1 and νj = 0 for j > J , then

KT (Bν) =
∑
µ≤ν

2#supp(µ) =
∑
µ≤ν

2µ1+···+µJ =
J∏
j=1

(1 + 2) = 3J = (2J)
ln 3
ln 2

. = (#Bν)
ln 3
ln 2 .

(7.3.18)
In the case of finite dimension d < +∞, the following bound can be easily obtained
from the result of Lemma 7.3.2:

KT (Λ) ≤ min
{

(#Λ)
ln 3
ln 2 , 2d#Λ

}
.

Algebraic bounds can also be obtained for the quantity K(PΛ) when the measure %
is any probability measure of the Jacobi type

%α,β(t) =
(1− t)α(1 + t)β

Wα,β

, Wα,β :=

1∫
−1

(1− t)α(1 + t)βdt, α, β > −1. (7.3.19)

We denote by (Lα,βk )k≥0 the corresponding Jacobi polynomials and by Kα,β(PΛ) the
corresponding quantity. We show in the appendix, formula (A.4.26), that we have a
rough bound

Kα,β(Λ) ≤ (#(Λ))max(2q+1,0)+γ, γ =
ln(C2

α,β + 1)

ln 2
(7.3.20)

where Cα,β is the best constant such that

‖Lα,βn ‖L∞([−1,1]) ≤ Cα,β(n+ 1)max(q+ 1
2
,0), q = max(α, β), n ≥ 1. (7.3.21)

This bound can of course be improved for particular values of α and β as it was done
for α = β = 0 and α = β = −1

2
. We do not pursue this direction. For more general

measures, one need to derive algebraic bounds of the infinite norm of the corresponding
orthogonal polynomials, then by similar argument as in the appendix derive algebraic
bounds on the quantity K(PΛ) for lower sets Λ.
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7.4 Discrete least-squares approximation of Hilbert-
valued functions

7.4.1 Stability and accuracy

In sections 7.2 and 7.3, the functions that we propose to approximate using the least-
squares method are real-valued. Motivated by the application to parametric PDEs,
we investigate the applicability of the least-squares method in the approximation of
V -valued functions, with V being any Hilbert space. Similar to §7.2 , we work in
the abstract setting of a probability space ([−1, 1]d,Θ, %). We study the least-squares
approximation of functions u belonging to the Bochner space

L2(U, V, d%) :=
{
u : U → V, ‖u‖ :=

∫
U

‖u(y)‖2
V d%(y) < +∞

}
. (7.4.1)

We have L2(U, V, d%) = V ⊗L2(U, d%) and we are interested in the least-squares approx-
imation in spaces of type V ⊗Xm where Xm is an m-dimensional subspace of L2(U, d%).
Given u ∈ L2(U, V, d%) an unknown function and (zi)i=1,···,n noiseless or noisy obser-
vations of u (belonging to V ) at the points (yi)i=1,···,n where the yi are i.i.d. random
variables distributed according to %, we consider the discrete least-squares approxima-
tion

w := argmin
v∈V⊗Xm

n∑
i=1

‖zj − v(yj)‖2
V . (7.4.2)

The purpose of this section is to briefly discuss the extension of the results from §7.2
to the present framework.

Let BL be an orthonormal basis of the space Xm with respect to the measure % and
consider the matrices G and J and the family Bπ ⊂ Xm obtained from the basis BL
and the points (yi)i=1,···,n as in §7.2. When the matrix G is not singular, we claim that
the solution to (7.4.2) has the same form as in the real case, namely

w =
n∑
j=1

zjπj, (7.4.3)

with zj ∈ V for all j = 1, . . . , n are the observation as in the real-valued case. Indeed,
from the analysis of §7.2, for any g ∈ V , the real-valued function wg :=

∑n
j=1〈zj, g〉πj ∈

Xm is the solution to the least-squares problem

wg = argmin
h∈Xm

n∑
i=1

|〈zi, g〉 − h(yi)|2, (7.4.4)
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which implies the following orthogonality relations over V ⊗Xm

n∑
i=1

〈 n∑
k=1

zkπk(y
i), gLj(y

i)
〉

=
n∑
i=1

〈zi, gLj(yi)〉, g ∈ V, j ∈ {1, · · · ,m}, (7.4.5)

showing that
∑n

j=1 z
jπj is the solution to (7.4.2). When the matrix G is singular, the

solution (7.4.2) is not unique and we set by convention w := 0.

The explicit formula of the least-squares approximation (7.4.2) being established,
we are interested in the stability and accuracy of the approximation. Similarly to the
analysis in §7.2, we investigate the comparability over V ⊗Xm of the norm ‖ · ‖ and its
empirical counterpart ‖ · ‖n defined by

‖v‖n =
( 1

n

n∑
j=1

‖v(yj)‖2
V

) 1
2
, v ∈ L2(U, V, %). (7.4.6)

It is easily checked that given v :=
∑m

j=1 vjLj ∈ V ⊗Xm, one has

‖v‖2
n − ‖v‖2 =

m∑
i=1

m∑
j=1

(G− I)ij〈vi, vj〉V = 〈v, (G− I)v〉Vm , (7.4.7)

where v := (v1, · · · , vm)t ∈ V m and the matrix-vector product is defined as in the real
case. Here the inner product 〈·, ·〉Vm is the standard inner product over V m constructed
from 〈·, ·〉V . Note that we have ‖v‖ = ‖v‖Vm . We next observe that ifM is anm×m real
symmetric matrix, then by diagonalizing M in an orthonormal basis, i.e. M = PtDP
with P a unitary m×m matrix and D diagonal, we easily check that

sup
‖v‖Vm=1

|〈v,Mv〉Vm| = sup
‖v‖Vm=1

|〈Pv,DPv〉Vm| = sup
‖w‖Vm=1

|〈w,Dw〉Vm| = |||D||| = |||M|||,

(7.4.8)
where |||M||| is the spectral norm of M . Therefore

‖v‖2
n − ‖v‖2 ≤ |||G− I||| ‖v‖2, v ∈ V ⊗Xm, (7.4.9)

so that similar to the results discussed in §7.3, we find that under the condition (7.2.19),
the norm ‖ · ‖ and its counterpart ‖ · ‖n are equivalent over V ⊗Xm with a probability
greater than 1− 2n−r, with ∣∣∣‖v‖2

n − ‖v‖2
∣∣∣ ≤ 1

2
‖v‖2, (7.4.10)

Similar to real valued functions, we want to compare the accuracy of the least-
squares approximation (7.4.2) with the error of best approximation in L2([−1, 1]d, V, %)

em(u) := inf
v∈V⊗Xm

‖u− v‖ = ‖u− Pmu‖, (7.4.11)
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where Pm is the orthogonal projector onto V ⊗Xm. We again use the notation P n
mu for

the least-squares solution in the noiseless model. If u satisfies a uniform bound

‖u(y)‖V ≤ L, y ∈ [−1, 1]d, (7.4.12)

where L is known, we define the truncated least-squares approximation

w̃ = TL(w), (7.4.13)

also denoted by P̃ n
mu in the noiseless model, where TL is the truncation operator, now

defined as follows

TL(v) := min
(
‖v‖, L

) v

‖v‖
=


v if ‖v‖ ≤ L,

L
‖v‖v if ‖v‖ > L.

(7.4.14)

Note that TL is the projection map onto the closed disc {‖v‖ ≤ L} and is therefore
Lipschitz continuous with constant 1. The following counterparts to the results of §7.3
are proved in the exact same way and therefore we only state them:

• Under condition (7.2.19), and if u satisfies a unifom bound ‖u(y)‖V ≤ L over
[−1, 1]d, one has

E(‖u− P̃ n
mu)‖2

V ) ≤
(

1 + ε(n)
)
em(u)2 + 8L2n−r. (7.4.15)

• In the noisy model, and under the same conditions as above, one has

E(‖u− w̃‖2
V ) ≤

(
1 + 2ε(n)

)
em(u)2 + 8

(
L2n−r + σ2m

n

)
, (7.4.16)

where σ2 := maxy∈Γ E(‖z − u(y)‖2
X |y) is the noise level.

• Under condition (7.2.19), one has

Pr
(
‖u− P n

mu‖V ≥ (1 +
√

2)em(u)∞

)
≤ 2n−r, (7.4.17)

where em(u)∞ = infv∈V⊗Xm ‖u− v‖L∞(U,V ).

7.4.2 Application to polynomials approximation of parametric
PDEs

As a general example of application,we consider a parametric PDE of the general form
(7.1.1) and assume that D satisfies a (p, ε)-holomorphy assumption for some p < 1 with
the solution space V a Hilbert space such as H1

0 (D). We assume that y is a random
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vector with the uniform probability distribution over U . Given a sequence (ΛL
n)n≥1 a

sequence of nested lower sets yielding the algebraic rate s∗ := 1
p
− 1

2
in the mean average

sense
eΛLm

(u) = inf
v∈V

ΛLm

‖u− v‖V2 ≤ C ′(m+ 1)−s
∗
, (7.4.18)

We propose to compute approximation to u using the least square methods.

From the (p, ε)-holomorphy, the solution satisfies a uniform bound ‖u(y)‖V ≤ L
over U . We can compute its trunctated least-squares approximation P̃ n

mu based on n
observations ui = u(yi) where the yi are i.i.d. with respect to the uniform measure over
U . Combining (7.4.15) and the bound we derived for K(Λ) with Legendre polynomials
(7.3.6), it follows that

E(‖u− P̃ n
mu)‖2) ≤ (1 + ε(n))C2(m+ 1)−2s∗ + 8L2n−r, (7.4.19)

provided that n
logn
≥ (m+1)2

κ
≥ m2

κ
with κ := 1−ln 2

2+2r
. In particular, taking r = s∗, we

obtain that if the number of samples n scales according to

n

log n
≥ (m+ 1)2

κ∗
where κ∗ = (1− ln 2)

p

p+ 2
. (7.4.20)

then we recover the optimal rate in expectation√
E[‖u− P̃ n

mu)‖2
V ] <∼ (m+ 1)−s

∗
. (7.4.21)

Remark 7.4.1
An analysis of the Chebychev coefficients of u reveals that the same approximation
rate as (7.4.21) hold for the L2 norm with respect to the tensorized Chebychev
measure. However, in view of (7.3.17), the condition between m and n is now
n

logn
≥ mβ

κ∗
with β := log 3

log 2
. It follows that the rate in (7.4.21) can be improved into√
E
[
‖u− P̃ n

mu)‖2
]
<∼ (m+ 1)−

log 3
log 2

s, (7.4.22)

if we use samples yi that are i.i.d with respect to the tensorized Chebychev measure
and if we use the L2 error with respect to this measure.

7.5 Conclusion

In the present chapter the approximation technique based on least-squares with random
evaluations has been analyzed. The condition between the number of sampling points
and the dimension of the polynomial space, which is necessary to achieve stability
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and optimality, has been extended to any lower set of multi-indices identifying the
polynomial space, in any dimension of the parameter set, and with the uniform and
Chebychev densities. When the density is uniform, this condition requires the number
of sampling points to scale as the squares of the dimension of the polynomial space.

Afterwards, this technique has been applied to a class of “inclusion-type” elliptic
PDE models with stochastic coefficients, and an exponential convergence rate in expec-
tation has been derived. This estimate clarifies the dependence of the convergence rate
on the number of sampling points and on the dimension of the parameter set. Moreover,
this estimate establishes a relation between the convergence rate of the least-squares
approximation with random evaluations and the convergence rate of the best m-term
“exact” L2 projection.

The numerical tests presented show that the proposed estimate is sharp, when the
number of sampling points is chosen according to the condition that ensures stability
and optimality. In addition, these results show that, in the aforementioned model class,
a linear scaling of the number of sampling points with respect to the dimension seems
to be sufficient to ensure the stability of the discrete projection, thus leading to faster
convergence rates, although we have no rigourous explaination of this fact.
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Appendix A

Jacobi polynomials

A.1 Definitions of Jacobi polynomials.

We consider the family of weight functions (wα,β)α>−1
β>−1

defined over [−1, 1] by

wα,β(t) = (1− t)α(1 + t)β, t ∈ [−1, 1]. (A.1.1)

For the range of values α and β considered, all these weight functions possess finite
positive integrals

Wα,β :=

1∫
−1

(1− t)α(1 + t)βdt = 2α+β+1 Γ(α + 1)Γ(β + 1)

Γ(α + β + 2)
. (A.1.2)

To see this, one make the change of variable s = 1+t
2

and get

Wα,β = 2α+β+1

1∫
0

(1− s)αsβds = 2α+β+1B(β + 1, α + 1), (A.1.3)

where B is the beta function and remark that β + 1 and α+ 1 are both positive, hence
the value of B(β + 1, α + 1) is known from the classical properties of beta function.
We denote by (pα,βn )n≥0 the family of the so-called Jacobi polynomials associated with
α and β. For any given α > −1 and β > −1, the family (pα,βn )n≥0 is orthonormal with
respect to wα,β. We denote by (Pα,β

n )n≥0 the family of the so-called orthogonal Jacobi
polynomials associated with α and β. Theses polynomials are orthogonal with respect
to wα,β but normalised according to

Pα,β
n (1) =

(
n+ α

n

)
:=

Γ(n+ α + 1)

Γ(n+ 1)Γ(α + 1)
, (A.1.4)

291



292 A.1. Definitions of Jacobi polynomials.

There exists an immense literature dealing with the study of theses polynomials,
e.g. [35, 20, 79]. The notation we have used for the family of polynomials above is
borrowed to [35]. We recall without proof the classical results on Jacobi polynomials
and we establish some others results that we have used for various purposes within the
thesis manuscript.

The polynomials Pα,β
n have closed formulas, known as Rodrigues formulas, namely

Pα,β
n (t) =

(−1)n

2nn!
(1− x)−α(1 + x)−β

dn

dxn

(
(1− x)n+α(1 + x)n+β

)
. (A.1.5)

This result is given and proved in [35, Theorem 10.3.1].

We consider the family of probabilistic weight functions (%α,β)α>−1
β>−1

defined over
[−1, 1] by

%α,β :=
wα,β
Wα,β

, (A.1.6)

and introduce the families (Lα,βn )n≥0 of “probabilistic Jacobi polynomials" in [−1, 1], i.e.
the polynomials (Lα,βn )n≥0 are orthonormal with respect to %α,β. For any given α > −1
and β > −1, the family (Lα,βn )n≥0 form an orthonormal basis of the Hilbert space
L2([−1, 1], d%α,β). It is immediate that

Lα,βn =
√
Wα,βp

α,β
n , n ≥ 0. (A.1.7)

We recall also the relation between the polynomials pα,βn and Pα,β
n established in in [35,

Corollary 10.3.6]
pα,βn = Mα,β

n Pα,β
n , n ≥ 0. (A.1.8)

where for any n ≥ 0

Mα,β
n :=

{
(2n+ α + β + 1)

2α+β+1

Γ(n+ 1)Γ(n+ α + β + 1)

Γ(n+ α + 1)Γ(n+ β + 1)

}1/2

. (A.1.9)

The three last equalities combined imply that

Lα,βn = Nα,β
n Pα,β

n , n ≥ 0 (A.1.10)

where for any n ≥ 0, Nα,β
n = Mα,β

n

√
Wα,β. Using the formula (A.1.2) and rearranging

the various terms to our convenience, we infer the explicit formulas

Nα,β
n =

{
(2n+ α + β + 1)

(α + β + 1)

(
n+α+β

n

)(
n+α
n

)(
n+β
n

)}1/2

. (A.1.11)

with 1 instead of (α + β + 1) in the case this sum is equal to 0. Let us note that from
theirs definitions, the polynomials Lα,β0 are all constant equal to 1 for any α, β > −1.
This can also be checked using that Nα,β

0 = 1 and Pα,β
0 is constant equal to Pα,β

0 (1) = 1
given by (A.1.4).
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A.2 Supremum norms of orthonormal Jacobi polyno-
mials

We are interested in bounding the supremum norm over [−1, 1] of the polynomials Lα,βn .
To this end, we first recall the exact values of these norms for the polynomials Pα,β

n

given in [79, Theorem 7.32.1] .
Theorem A.2.1

Given α > −1, β > −1, q = max(α, β) and t0 = β−α
α+β+1

, one has

‖Pα,β
n ‖L∞([−1,1]) =

{ (
n+q
n

)
∼ nq if q ≥ −1

2
,

|Pα,β
n (t′)| ∼ n−

1
2 if q < −1

2
,

(A.2.1)

where t′ is nearest point to t0 where a maximum is attained and ∼ the order of
magnitude as n→∞.

The previous theorem combined with (A.2.8) provides the exact values of ‖Lα,βn ‖L∞ for
the classical Jacobi polynomials. More precisely, for Legendre polynomials (α = β = 0),
Tchybeshev polynomials of the first and second kind (α = β = ±1

2
), a straightforward

application of the previous lemma taking into account the normalisation coefficient in
(A.2.8) shows that for any n ≥ 1

‖L0,0
n ‖L∞ =

√
2n+ 1, ‖L−

1
2
,− 1

2
n ‖L∞ =

√
2, ‖L

1
2
, 1
2

n ‖L∞ = n+ 1. (A.2.2)

Also, by direct computations, one has

‖L
1
2
,− 1

2
n ‖L∞ = ‖L−

1
2
, 1
2

n ‖L∞ = 2n+ 1. (A.2.3)

We now turn our attention to arbitrary values of α, β > −1. First, by Sterling equiva-
lents of the gamma function, we have

(
n+t
n

)
∼ nt for any t ∈ R. Therefore normalisation

coefficient in (A.2.8) is of order
√
n so that in view of the previous lemma

‖Lα,βn ‖L∞ . nmax(q,− 1
2

)+ 1
2 , q = max(α, β), n ≥ 1. (A.2.4)

We recall that ∼ stands here for the order of magnitude as n → ∞ and not the
equivalence an n→∞.

Our analysis of the quantities ‖Lα,βn ‖L∞ is motivated by the convergence of Jacobi
series in chapters I and II and by the study of the growth of sums of square supremum of
Jacobi polynomials from chapter VII. The analysis therein shows that one need precise
bound of ‖Lα,βn ‖L∞ for any n ≥ 1, note only their order of magnitude as n→ +∞. We
are therefore interested in finding sharp constants C > 0, c > −1 such that

‖Lα,βn ‖L∞ ≤ C(n+ c)max(q,− 1
2

)+ 1
2 , q = max(α, β), n ≥ 1. (A.2.5)
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In the case q = max(α, β) ≥ −1
2
, the values ‖Lα,βn ‖L∞ are explicit and sharp upper

bounds can be obtained using Sterling type inequalities. In the case when q < −1
2
, the

second bound in Lemma A.2.1 was obtained using the result [79, formula 8.21.10] which
shows that ‖Pα,β

n ‖L∞ ≤ 1√
πn

+O(n−
3
2 ), however the constant inO is not studied. Rather

than striving for at most generality, we only study the case where α = β ∈] − 1,∞[
which corresponds to the so-called ultra-spherical polynomials. The key points in the
analysis of ‖Lα,βn ‖L∞ are the Sterling inequalities. We shall rely on the following from
the paper [10],

tte−t
√

2π(t+ a) < Γ(t+ 1) < tte−t
√

2π(t+ b), t ≥ 0, (A.2.6)

with the best possible constants a = 1
6

= 0.166 . . . and b = e2

2π
− 1 = 0.176 . . .. The

previous inequality combined with function study and the classical inequality (1 +
t/x)x ≤ et for any t, x ≥ 0 implies the following growth result

Γ(x+ t+ 1)

Γ(x+ 1)
≤ (x+ t)t

√
1 + t+ b

1 + a
, t ≥ 0, x ≥ 1. (A.2.7)

Combining (A.2.8) and Theorem A.2.1, we have for any λ > −1
2
and any n ≥ 0,

‖Lλ,λn ‖L∞ =

{
2n+ 2λ+ 1

2λ+ 1

(
n+ 2λ

n

)}1/2

=

{
2n+ 2λ+ 1

Γ(2λ+ 2)

Γ(n+ 2λ+ 1)

Γ(n+ 1)

}1/2

.

(A.2.8)
We have then the following bounds
Theorem A.2.2

Let λ ∈]− 1
2
, 0], for any n ≥ 1

‖Lλ,λn ‖L∞ ≤
√

2/πC1

√
2n+ 1(n+ 1)λ, C1 := 1.2 (A.2.9)

Let λ ∈ [0, 1
2
], for any n ≥ 1

‖Lλ,λn ‖L∞ ≤
√

2C2(n+ 1)λ+ 1
2 , C2 := 1.002 (A.2.10)

Proof : If λ ∈] − 1
2 , 0], then 2λ + 1 > 0, therefore by (A.2.7) applied with x = n and

t = 2λ+ 1, we deduce

Γ(n+ 2λ+ 1)

Γ(n+ 1)
≤ (n+ 2λ+ 1)2λ

√
1 + 2λ+ 1 + b

1 + a
≤ (C1)2(n+ 1)2λ

where the second inequality is justified by λ ≤ 0 and a function study in the variable
λ ∈]− 1

2 , 0] on the part not depending on n. Since λ ∈]− 1
2 , 0], then 2n+2λ+1 ≤ 2n+1

and Γ(2λ + 2) ≥ 1, because the Gamma function in monotone decreasing over ]0,1].
the proof of the first part is complete.
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Now if λ ≥ 0, then by the growth inequality (A.2.7) applied this time with x = n
and t = 2λ ≥ 0, we obtain

Γ(n+ 2λ+ 1)

Γ(n+ 1)
≤ (n+ 2λ)2λ

√
1 + 2λ+ b

1 + a
≤ (C2)2(n+ 1)2λ

where the second inequality follows by function study of the part not depending on n
with λ ∈ [0, 1

2 ]. Since 2λ + 2 ∈ [2, 3] then Γ(2λ + 2) ≥ 1 and 2n + 2λ + 1 ≤ 2(n + 1),
which implies the second part in the lemma.

In view of (A.2.4), in the case q < −1
2
, the norms ‖Lα,βn ‖L∞[−1,1] stay bounded as n

grows. We provide a bound in the case α, β.

Theorem A.2.3

Let λ ∈]− 1,−1
2
[, we have

‖Lλ,λn ‖L∞ ≤
√

2C0

√
Γ(2λ+ 2)

2λ+ 1
2 Γ(2λ+1

2
+ 1)

(A.2.11)

with C0 =
√

1+b
1+a

1+2b
1+2a

∼ 1.018. The bound is sharp for n→∞.

Proof : First, we have

P λ,λn =

(
n+λ
n

)(
n+2λ
n

)P (λ+ 1
2

)
n (A.2.12)

where P (λ)
n denote the ultra spherical polynomials as defined in [79] in formula (4.7.1).

Now using (A.2.8),taking into account λ ∈]− 1,−1
2 [, we obtain

Nλ,λ
n =

{
(2n+ 2λ+ 1)

(2λ+ 1)

}1/2{(n+ 2λ

n

)}1/2 1(
n+λ
n

) (A.2.13)

Consequently by (A.1.10), we infer

‖Lλ,λn ‖ =

{
(2n+ 2λ+ 1)

(2λ+ 1)

}1/2{(n+ 2λ

n

)}−1/2

‖P (λ+ 1
2

)
n ‖L∞ .

Bounds of ‖P (λ+ 1
2

)
n ‖L∞ are given in [79, Theorem 7.33.1]. The inspection of the proof of

the theorem shows the following, we introduce k and p defined by k = n
2 , p = n+2λ+1

if n even and k = n−1
2 , p = n if n odd, then we have for any n ≥ 1

‖P (λ+ 1
2

)
n ‖L∞ ≤

∣∣∣(k + 2λ+1
2

k

)∣∣∣ 1
√
p

|2λ+ 1|√
n+ 2λ+ 1

,
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‖P (λ+ 1
2

)
n ‖L∞ ≤


|2λ+1|

(n+2λ+1)

(k+ 2λ+1
2

k

)
| if n even,

|2λ+1|√
n(n+2λ+1)

|
(k+ 2λ+1

2
k

)
| if n odd,

with an inequality in the case where n is even and the bound is sharp in the case
n → ∞ odd. Up to rearranging the different terms accordingly, we have the unified
formula

‖Lλ,λn ‖ ≤
√

Γ(2λ+ 2)

Γ(2λ+1
2 + 1)

{
2n+ 2λ+ 1

n+ 2λ+ 1

}1/2 1
√
p

{
Ck

Ck+2λ+1

} 1
2

,

where
Ct :=

Γ(t+ 1)

Γ( t2 + 1)Γ( t2 + 1)
, t ≥ 0. (A.2.14)

Using sterling inequality (A.2.6) above, we have for any t ≥ 0 that
√
t+ a

( t2 + b)
≤
√

2π
Ct
2t
≤
√
t+ b

( t2 + a)
,

therefore, for any t ≥ 1, we have

22λ+1 Ct
Ct+2λ+1

≤
√
t+ b

(t+ 2a)

((t+ 2λ+ 1) + 2b)√
(t+ 2λ+ 1) + a

The term to the right considered as a function of λ is increasing in ] − 1,−1
2 [, then

considered as a function of t ≥ 1 is decreasing, we deduce that it is always smaller than
C =

√
1+b
1+a

1+2b
1+2a and it is even smaller that 1 for values of λ far from −1

2 . This shows
that the bound given in the Lemma is valid for any n ≥ 1. The bound is sharp since
the bound for ‖P (λ+ 1

2
)

n ‖L∞ is sharp and the equivalences used are also sharp.

We now turn to the case q = max(α, β) ≥ −1
2
. We provide bounds for ‖Lα,βn ‖L∞ for any

values α and β with the sharpest bounds possible for the ultra spherical case for which
computation can be straightforward as we have just noted in the previous lemma.

A.3 Jacobi polynomials of the second kind on Bern-
stein ellipses

Having defined the Jacobi polynomials of the first kind, we now turn our attention to
the function Qα,β

n defined by

Qα,β
n (ξ) :=

1

2(1− ξ)α(1 + ξ)β

1∫
−1

Pα,β
n (t)

ξ − t
wα,β(t)dt, ξ 6∈ [−1, 1], n ≥ 0. (A.3.1)
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These functions are the so-called Jacobi function of the second kind and are also denoted
Qα,β
n and extensively studied in the literature, see [35, 79]. Here, we are mostly interested

in bounding these functions for ξ belonging to the Berstein ellipses Es. These ellipses
are the closed curve defined on the complex plane by

Es :=
{z + z−1

2
: |z| = s

}
, s > 1. (A.3.2)

The analysis for bounding the Jacobi function of second kind has already been done for
the particular Legendre case (α = β = 0). It has indeed been shown that∣∣∣Q0,0

n

(z + z−1

2

)∣∣∣ ≤ π

|z| − 1
|z|−n, |z| > 1. (A.3.3)

This result is given at the bottom of page 313 in [35] and is a direct application of
[35, Lemma 12.4.6]. We are interested in finding similar bounds for arbitrary value of
α > −1 and β > −1.

For the purpose of our analysis in Chapter I and II, we are only interested in bound-
ing the integral part in (A.3.1) for the polynomials Lα,βn and with the probability mea-
sure %α,β. From this point on, we drop the non integral part and normalise accordingly,
yet we keep the same notation. That is

Qα,β
n (ξ) :=

1∫
−1

Lα,βn (t)

ξ − t
%α,β(t)dt, ξ 6∈ [−1, 1], n ≥ 0. (A.3.4)

The reader can recover the classical Jacobi function of the second kind by multiplying
the previous functions by

1

2(1− ξ)α(1 + ξ)β
Wα,β

Nα,β
n

=
1

2(1− ξ)α(1 + ξ)β

√
Wα,β

Mα,β
n

(A.3.5)

where Wα,β, Mα,β
n and Nα,β

n are introduced in the previous section. To keep our doc-
ument self contained, we give and prove the result given in [35, Lemma 12.4.6] for
Legendre polynomials, for arbitrary values of α, β > −1.
Lemma A.3.1

Let α, β > −1, z ∈ C such that |z| > 1 and ξ = z+z−1

2
. We have

Qα,β
n (ξ) =

∞∑
m=n+1

σn,m
zm

(A.3.6)

with
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σn,m := 2

1∫
−1

Lα,βn (t)Um−1(t)%α,β(t)dt = 2

π∫
0

Lα,βn (cos θ) sin(mθ)%α,β(cos θ)dθ

(A.3.7)

Proof : Let z ∈ C with |z| > 1 and ξ = z+z−1

2 . It is easily checked that ξ 6∈ [−1, 1] and

ξ − t = z
2

(
1− 2t

z + 1
z2

)
for any t ∈ [−1, 1], therefore

Qα,βn (ξ) =
2

z

1∫
−1

Lα,βn (t)

1− 2t
z + 1

z2

%α,β(t)dt = 2

π∫
0

sin θ
z

1− 2 cos(θ)
z + 1

z2

Lα,βn (cos θ)%α,β(cos θ)dθ,

(A.3.8)
where we have used the change of variable t = cos(θ). Since |z| > 1, we have the
expansion

sin θ
z

1(
1− 2 cos(θ)

z
+ 1
z2

) = 1
2i(

eiθ

z −
e−iθ

z ) 1(
1− eiθ

z

)(
1− e−iθ

z

)
= 1

2i

(
eiθ

z

1− eiθ
z

−
e−iθ
z

1− e−iθ
z

)
= 1

2i

∞∑
m=1

[emiθ
zm
− e−imθ

zm

]
=
∞∑
m=1

sin(mθ)

zm

Multiplying the last equality by 2Lα,βn (cos θ)%α,β(cos θ) and integrating between 0 and
π, we infer

Qα,βn (ξ) = 2

π∫
0

∞∑
m=1

sin(mθ)

zm
Lα,βn (cos θ)%α,β(cos θ)dθ = 2

1∫
−1

∞∑
m=1

Um−1(t)

zm
Lα,βn (t)%α,β(t)dt

We only need to interchange the integral and the sum and show that σn,m = 0 for
m ≤ n. Using Cauchy-Schwartz inequality, the bound ‖Um−1‖L∞[−1,1] ≤ m and the
fact that %α,β is a probability measure, we infer that

∣∣∣ 1∫
−1

Lα,βn (t)Um−1(t)%α,β(t)dt
∣∣∣ ≤ ( 1∫

−1

Lα,βn (t)2%α,β(t)dt
) 1

2
( 1∫
−1

Um−1(t)2%α,β(t)dt
) 1

2 ≤ m.

(A.3.9)
The series

∑ m
zm converges since |z| > 1 and we may interchange the sum and the

integral. This yields

Qα,βn (ξ) =
∞∑
m=1

σn,m
zm

, with σn,m = 2

1∫
−1

Lα,βn (t)Um−1(t)%α,β(t)ds.
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Since Lα,βn is orthogonal to Pn−1 with respect to the measure %α,β(t)dt, then σm,n = 0
for any m such that m− 1 ≤ n− 1, which finishes the proof.

The previous lemma has implication on the growth of Qα,β
n on the ellipses Es. We

have
Corollary A.3.2

Let α, β > −1 and s > 1. For any n ≥ 1

sup
ξ∈Es
|Qα,β

n (ξ)| = sup
z∈Us

∣∣∣Qα,β
n

(z + z−1

2

)∣∣∣ ≤ 2(n+ 1)
s

(s− 1)2
s−n. (A.3.10)

Proof : We have shown in (A.3.9) that |σm,n| ≤ 2m for any m,n ≥ 1. Now, using classical
arguments, we have

∞∑
n+1

2mtm = 2t
((n+ 1)tn

1− t
+

tn+1

(1− t)2

)
≤ 2(n+ 1)

tn+1

(t− 1)2

for any t ∈ [0, 1[. Therefore, the triangular inequality applied to (A.3.6) and the
previous inequality with t = 1

|z| = 1
s for z varying in Us implies the result.

The upper bound in (A.3.10) is quite pessimistic. It is based on the bound |σm,n| ≤
2m, which has been obtained in (A.3.9) using Cauchy-Schwartz inequality and the
bound ‖Um−1‖L∞[−1,1] ≤ m. For example for Legendre polynomials α = β = 0, using
that ‖Lα,βn ‖L∞[−1,1] =

√
2n+ 1 and %α,β ≡ 1

2
, the second part in (A.3.7) implies |σn,m| ≤

π
√

2n+ 1, which combined with triangular inequality applied to (A.3.6) implies the
bound π

√
2n+ 1 s

−n

s−1
in (A.3.10). The same argument allow us to improve the bound

(A.3.10) for α, β ∈ [0, 1
2
], because for such values ‖Lα,βn ‖L∞[−1,1] . n

1
2

+max(α,β) and
%α,β . 1.

We propose to show that the bound in (A.3.10) can be improved for a large class
of values α, β > −1. First, we provide the result for α = β ∈ {0,±1

2
}, corresponding

to the classical Legendre and Tchybeshev polynomials of first and second kind, for
which closed formulas for Qα,β

n can be obtained. Then we treat the case α, β > 0
using elementary arguments. Finally, we treat the case α, β ∈] − 1

2
,+∞[ using finer

arguments.
Theorem A.3.3

Let s > 1. For any n ≥ 0, we have

sup
ξ∈Es
|Q0,0

n (ξ)| ≤
√

2π

s− 1
s−n.
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Proof : The Jacobi functions Qn associated with Legendre polynomials are given in [79]
using series of type (A.3.6). Taking into account the normalisation factor in (A.3.5)
which is equal to 1√

2n+1
, we have according to [79, formula 4.9.13], for z ∈ C with

|z| > 1, ξ = z+z−1

2 and for any n ≥ 1

Q0,0
n (ξ) =

2√
2n+ 1

4n(n!)2

(2n)!

∞∑
j=0

fj
zn+2j+1

,

where the fj are defined by

f0 := 1, fj := gj

(
n+ j

n

)/(n+ j + 1
2

n+ 1
2

)
with gj :=

1

4m

(
2m

m

)
.

By Sterling type equivalence formulas, we have 1√
2n+1

4n(n!)2

(2n)! ≤
√

π
2 for any n ≥ 1.

Using the bound |gj | ≤ 1 for any j ≥ 0, we infer |fj | ≤ 1 for any j ≥ 0. Therefore

|Q0,0
n (ξ)| ≤

√
2π

|z|n+1

∞∑
j=0

1

|z|2j
=
√

2π
|z|

(|z| − 1)(|z|+ 1)
|z|−n,

which implies the result. Sharper bounds can be obtained for gj and fj using Sterling
inequalities yielding fj .

√
n
j for any j ≥ 1 which yields to the replacement of 1

|z|−1 by
O(log(|z| − 1)) in the formula.

Lemma A.3.4

Let z ∈ C with |z| > 1 and ξ = z+z−1

2
. For any n ≥ 1, Q

1
2
, 1
2

n (ξ) = 2z−n−1 and

Q
− 1

2
,− 1

2
n (ξ) = 2

√
2z

z2−1
z−n. In particular, for any s > 1

max
ξ∈Es
|Q

1
2
, 1
2

n (ξ)| = 2s−n−1, and Q
− 1

2
,− 1

2
n (ξ) ≤ 2

√
2s

s2 − 1
s−n (A.3.11)

Proof : Let (Tn)n≥0 and (Un)n≥0 be the Tchybeshev polynomials of the first and second
kind defined by

U0 = T0 ≡ 1 and cos(nθ) = Tn(cos θ), sin((n+ 1)θ) = Un(cos θ) sin θ, n ≥ 1.

These two families are orthogonal with respect to the measures dt√
1−t2 and

√
1− t2dt

respectively with

1∫
−1

T 2
n(t)

1√
1− t2

dt =

1∫
−1

U2
n(t)

√
1− t2dt =

π

2
, n ≥ 1,
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Using (A.1.2) and the value Γ(1
2) =

√
π or elementary trigonometric computation, we

have % 1
2
, 1
2
≡ 2

π

√
1− t2 and %− 1

2
,− 1

2
≡ 1

π
√

1−t2 , so that for any n ≥ 1, L
1
2
, 1
2

n = Un and

L
− 1

2
,− 1

2
n =

√
2Tn. Therefore, if α = β = 1

2 , then

σn,m = 2

1∫
−1

Un(t)Um−1(t)% 1
2
, 1
2
(t)dt = 2δn+1,m =⇒ Q

1
2
, 1
2

n (ξ) =
2

zn+1
.

Now if α = β = −1
2 . We fix n ≥ 1 and use the identity Tm+1 = Um+1−Um−1

2 for m ≥ 1,
we infer that for any m ≥ 1

σn,m+2 − σn,m = 4

1∫
−1

√
2TnTm+1%− 1

2
,− 1

2
(t)dt

hence for any j ≥ 0, σn,n+2j = σn,n = 0 and σn,n+2j+1 = σn,n+1 + 2
√

2 = 2
√

2. We
deduce that that for any n ≥ 1

Q
− 1

2
,− 1

2
n (ξ) =

∞∑
j=0

2
√

2

zn+2j+1
= 2
√

2
z

z2 − 1
z−n. (A.3.12)

The bound of Qα,β
n can be sharpened for the values of α, β > 0 using elementary

arguments. We have the following
Lemma A.3.5

Let α, β > 0. For any n ≥ 1, we have

sup
ξ∈Es
|Qα,β

n (ξ)| = sup
z∈Us

∣∣∣Qα,β
n (

z + z−1

2
)
∣∣∣ ≤

√
(α + β + 1)(α + β)

αβ

s−n

s− 1
. (A.3.13)

Proof : Since Um(t)
√

1− t2 ≤ 1 for any t ∈ [−1, 1] and %α,β =
wα,β
Wα,β

, then for m ≥ 1

1∫
−1

Um−1(t)2%α,β(t)dt =
Wα−1,β−1

Wα,β

1∫
−1

Um−1(t)2(1−t2)%α−1,β−1(t)dt ≤
Wα−1,β−1

Wα,β
=

(α+ β)(α+ β + 1)

4αβ
,

where we have used the formula of Wα,β given in (A.1.2). In view of (A.3.9), this

implies σn,m ≤
√

(α+β)(α+β+1)
αβ . applying triangular inequality to (A.3.6) implies the

result.

The previous bound has limitation for values α and β close to 0. We may im-
prove it using finer argument on the growth of some functions associated with Jacobi
polynomials.
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Lemma A.3.6

Let α, β > −1
2
and s > 1. For any n ≥ 1, we have

sup
ξ∈Es
|Qα,β

n (ξ)| ≤ 2Cα,βcα,β
s−n

s− 1
, (A.3.14)

with Cα,β :=
√
e(2 +

√
α2 + β2) and cα,β = (α+β+1)(α+β+3)

(2α+1)(2β+1)
. In addition if α, β ≤ 1

2
,

the constant Cα,β can be replaced by 2.

Proof : The orthonormal Jacobi polynomials with respect to wα,β were noted pα,βn . We
have by (A.1.7) that Lα,βn =

√
Wα,βp

α,β
n for any n ≥ 0. We introduce the function ϕα,βn

defined by

ϕα,βn (t) = (1− t2)
1
4

√
%α,β(t)Lα,βn (t) = (1− t2)

1
4

√
wα,β(t)pα,βn (t)

For a large class of Jacobi polynomials, it is proven that the function ϕα,βn is bounded.
We do not investigate the best bound possible depending on α and β but use the
following bound which is given in [48]; For α, β ≥ −1

2

sup
t∈[−1,1]

|ϕα,βn (t)| ≤
√

2

π
Cα,β with Cα,β :=

√
e(2 +

√
α2 + β2)

We introduce the notation um = Um(t)
√

1− t2. We may bound σn,m using

σn,m ≤ 2

1∫
−1

|Lα,βn (t)||Um−1(t)|%α,β(t)dt =
2√
Wα,β

1∫
−1

|ϕα,βn ||um−1|w 1
2
α− 3

4
, 1
2
β− 3

4
≤ 2

√
2

π
Cα,β

W 1
2
α− 3

4
, 1
2
β− 3

4√
Wα,β

,

where we have used 1
2(α− 3

2), 1
2(β − 3

2) > −1. By Gamma function properties

W 1
2
α− 3

4
, 1
2
β− 3

4
= 2

1
2
α+ 1

2
β− 1

2

Γ
(

1
2α+ 1

4

)
Γ
(

1
2β + 1

4

)
Γ
(

1
2(α+ β) + 1

2

) = cα,β2
1
2
α+ 1

2
β+ 3

2

Γ
(

(1
2α+ 1

4) + 1
)

Γ
(

(1
2β + 1

4) + 1
)

Γ
(

1
2(α+ β) + 1

2 + 2
) ,

which is equal to cα,βW 1
2
α+ 1

4
, 1
2
β+ 1

4
with cα,β = (α+β+1)(α+β+3)

4(α+ 1
2

)(β+ 1
2

)
. Using Cauchy Schwartz

inequality, we have

W 1
2
α+ 1

4
, 1
2
β+ 1

4
=

1∫
−1

√
wα,β(t)(1−t2)

1
4dt ≤

( 1∫
−1

wα,β(t)dt
) 1

2
( 1∫
−1

√
1− t2dt

) 1
2

=

√
π

2

√
Wα,β,

hence σn,m ≤ 2Cα,βcα,β which implies the first result of the lemma. If in addition
α, β ≤ 1

2 , a sharp bound is known for the function ϕα,βn . Indeed, it is proven in [27]
that

sup
t∈[−1,1]

|ϕα,βn | ≤ 2
α+β+1

2 Mα,β
n

1√
π

Γ(n+ q + 1)

Γ(n+ 1)
N−q−

1
2 =

√
2

π
N−q

{
Γ(n+ q + 1)Γ(n+ p+ q + 1)

Γ(n+ 1)Γ(n+ p+ 1)

}1/2

.
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with p = min(α, β), q = max(α, β) and N = n + 1
2(α + β + 1). Using (A.2.7), we

deduce

Γ(n+ q + 1)Γ(n+ p+ q + 1)

Γ(n+ 1)Γ(n+ p+ 1)
≤ [(n+ q)(n+ p+ q)]q

1 + q + b

1 + a
≤ N q

3
2 + b

1 + a
≤ 2N q

Therefore supt∈[−1,1] |ϕ
α,β
n | ≤ 2

√
2
π which implies the second result.

For our purpose, the convergence of Jacobi series toward the solution map u in
Chapter I and II, the previous bounds are sufficient. Indeed, using very delicate argu-
ment, it can shown that the algebraic terms in n can be absorbed using the exponential
decay of |z|−n to prove the `p summability of the sequence of Jacobi coefficient norm
in high dimension. However, for numerical experiences, obtaining better bounds yield
the construction the Jacobi series that converge to the solution map u rapidly.

Remark A.3.7
The inspection of the various proofs in this section show that the previous result
(A.3.13) holds for any probability density function %0 over [−1, 1] and the corre-
sponding family of orthonormal polynomials (Ln)n≥0.

We now return to the bounding of qα,βn on the ellipses Es, s > 1 for more general
value of α, β > −1. For this purpose, we may use a crude triangle inequality on the
serie (A.3.6) and good bounds on the quantities σm,n, which is the method we used in
in the previous Lemma to sharpen the bound of q0,0

n with a factor 1√
2n+1

compared with
the bound given [35].

A.4 Growth of quadratic sums associated with Jacobi
polynomials

In this section, we give some results related to the growth of certain quantities that
we use in chapters 4-5-7. We introduce F the set of sequences of integer which are
infinitely supported, i.e.

F :=
{
ν := (ν1, ν2, . . .) : νj ≥ 1 and #{j ≥ 1 : νj 6= 0} <∞

}
(A.4.1)

and define the order ≤ on F by µ ≤ ν if and only if µj ≤ νj for any j ≥ 1. Given
α, β > −1, we i introduce the Tensorized Jacobi polynomials indexed in F by

Lα,βν (y) =
∏
j≥1

Lα,βνj (yj), ν ∈ F , y ∈ U := [−1, 1]N. (A.4.2)
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The infinite product is actually finite since Lα,β0 is constant and equal to 1. We are
interested in the growth of the quatity

Kα,β(Λ) =
∑
ν∈Λ

‖Lα,βν ‖2
L∞(U) =

∑
ν∈Λ

∏
j≥1:νj 6=0

‖Lα,βνj ‖
2
L∞([−1,1]), (A.4.3)

for lower sets Λ ⊂ F . We recall that Λ is lower if and only if

ν ∈ Λ and µ ≤ ν ⇒ µ ∈ Λ. (A.4.4)

We first prove good growth bounds for classical cases, namely Legendre polynomials
(α = β = 0) and Tchebychev polynomials (α = β = ±1

2
), then we provide a growth in

the general case, yet very pessimistic. We should note however that for any α, β > −1
and any Λ ⊂ F , one has

Kα,β(Λ) ≥ #(Λ). (A.4.5)

Indeed, since %α,β is a probability measure over [-1,1] then for any n ≥ 1, ‖Lα,βn ‖L2([−1,1],d%α,β) =
1 necessarily implies that ‖Lα,βn ‖L∞([−1,1]) ≥ 1.

In view of (A.2.2) and (A.2.3), we have

K0,0(Λ) =
∑
ν∈Λ

∏
j≥1

(2νj + 1), (A.4.6)

and
K− 1

2
,− 1

2
(Λ) =

∑
ν∈Λ

2# supp(ν), K 1
2
, 1
2
(Λ) =

∑
ν∈Λ

∏
j≥1

(νj + 1)2, (A.4.7)

We have then the following results
Lemma A.4.1

For any finite lower set Λ ⊂ F , the quantity K0,0(Λ) satisfies

K0,0(Λ) ≤ (#(Λ))2. (A.4.8)

Proof : we use induction on nΛ := #(Λ) ≥ 1. When nΛ = 1, then necessarily Λ = {0F}
and an equality holds. Let n ≥ 1 and Λ denote a monotone set with nΛ = n + 1.
Without loss of generality, we suppose that ν1 6= 0 for some ν ∈ Λ. We introduce the
indices sets

Λk :=

{
ν̂ ∈ F : (k, ν̂) ∈ Λ

}
, k ≥ 0. (A.4.9)

Here (k, ν̂) denote the multi-index (k, ν̂1, ν̂2, · · ·). Since Λ is lower and finite, then it is
easy to check that the sets Λk are finite, lower (when not empty) and satisfy

· · · ⊂ Λk ⊂ · · · ⊂ Λ1 ⊂ Λ0. (A.4.10)
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Let us also remark that there exists J ≥ 0 such that Λk = ∅ for any k > J and that
since ν1 6= 0 for some ν ∈ Λ, then #(Λ0) ≤ nΛ − 1 = n. Therefore the induction
hypothesis applied with the sets Λk, implies

K(Λ) =
J∑
k=0

(2k + 1)K0,0(Λk) ≤
J∑
k=0

(2k + 1)(#(Λk))
2 . (A.4.11)

Now, by the nestedess of the sets Λk, we have

k(#Λk)
2 ≤ #(Λk)#(Λ0) + ...+ #(Λk)#(Λk−1), 1 ≤ k ≤ J. (A.4.12)

Therefore

K(Λ) ≤
J∑
k=0

(#(Λk))
2 + 2

J∑
k=1

k−1∑
k′=0

#(Λk)#(Λk′) =
( J∑
k=0

#(Λk)
)2
. (A.4.13)

Using that #(Λ) =
∑J

k=0 #(Λk), we conclude the proof.

The previous bound is valid for any lower set and independently of its shape. In
addition, the second inequality is sharp, in the sense that equality holds for certain
types of lower sets. Indeed, given ν ∈ F supported in {1, · · · , J} and considering the
rectanglal block

Rν := {µ ∈ F : µ ≤ ν}, (A.4.14)

one has

K(Rν) =
∑
µ≤ν

∏
1≤j≤J

(2µj+1) =
∏

1≤j≤J

∑
µj≤νj

(2µj+1) =
∏

1≤j≤J

(νj+1)2 = (#Rν)
2. (A.4.15)

Using simply the bound∏
j≥1

(νj + 1)2 ≤
∏
j≥1

(νj + 1)
∏
j≥1

(2νj + 1) = #(Rν)
∏
j≥1

(2νj + 1), (A.4.16)

we infer the following
Lemma A.4.2

For any finite lower set Λ ⊂ F , the quantity K 1
2
, 1
2
(Λ) satisfies

K 1
2
, 1
2
(Λ) ≤ (#(Λ))3. (A.4.17)

This bound is obviously not sharp. We note however that for
∑k

j=0(j + 1)2 ∼ k3 which
show that the exponent 3 can not be improved for all lower sets. We now turn to the
case α = β = −1

2
which corresponds to Tchebychev polynomials of first kind. We prove

an intermediate proposition then provide the growth.
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Proposition A.4.3

For any real positive numbers a0 ≥ a1 ≥ ... ≥ ak and any γ ≥ ln 3
ln 2

, one has

aα0 + 2(aγ1 + . . .+ aγk) ≤ (a0 + . . .+ ak)
γ. (A.4.18)

Proof : We use induction on k. For k = 0, an equality holds in (A.4.18). For k = 1, since
the function x 7→ (x+a1)α−xα is increasing in [a1,+∞[ then its value at a0 is greater
than its value at a1, that is

2aγ1 ≤ (2γ − 1)aγ1 ≤ (a0 + a1)γ − aγ0 (A.4.19)

where we have used 2γ > 3. Now let k ≥ 1 and a0 ≥ a1 ≥ ... ≥ ak+1 be real positive
numbers. By the induction hypothesis at steps 1 and k, we infer

(a0 + ...+ ak+1)γ =
(

(a0 + ...+ ak) + ak+1

)γ
≥ (a0 + ...+ ak)

γ + 2aγk+1

≥ aγ0 + 2(aγ1 ...+ aγk) + 2aγk+1

= aγ0 + 2(aγ1 ...+ aγk+1).

(A.4.20)

The proof is then complete.

Lemma A.4.4

For any lower set Λ ⊂ F , the quantity K− 1
2
,− 1

2
(Λ) satisfies

K− 1
2
,− 1

2
(Λ) ≤ (#(Λ))

log 3
log 2 . (A.4.21)

Proof : We use induction on nΛ := #(Λ). When nΛ = 1, then necessarily Λ = {0F} and
an equality holds. Let n ≥ 1 and Λ denote a lower set with nΛ = n+ 1. Without loss
of generality, we suppose that ν1 6= 0 for some ν ∈ Λ. Defining J ≥ 0 and the sets Λk
as in the proof of Lemma A.4.1 and using the induction hypothesis with these sets, we
obtain

K− 1
2
,− 1

2
(Λ) =

J∑
k=0

γ(k)K− 1
2
,− 1

2
(Λk) ≤

J∑
k=0

γ(k)(#(Λk))
log 3
log 2 , (A.4.22)

where γ is defined by γ(0) = 1 and γ(k) = 2 for k ≥ 1. Using (A.4.18), we infer

K− 1
2
,− 1

2
(Λ) ≤ (#(Λ0))

log 3
log 2 +2

J∑
k=1

(#(Λk))
log 3
log 2 ≤

(
#(Λ0)+#(Λ1)+· · ·+#(ΛJ)

) log 3
log 2

= (#(Λ))
log 3
log 2 .

(A.4.23)
The proof is then complete.
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The previous bound (A.4.21) can also be sharp for certain type of lower sets. For
instance if ν is the multi-index such that ν1 = . . . = νJ = 1 and νj = 0 for j > J , then

K− 1
2
,− 1

2
(Bν) =

∑
µ≤ν

2#supp(µ) =
∑
µ≤ν

2µ1+···+µJ =
J∏
j=1

(1 + 2) = 3J = (2J)β = (#Bν)β.

(A.4.24)

For more general values of α and β, we have shown in (A.2.4), that

‖Lα,βn ‖L∞ ≤ Cα,β(n+ 1)max(q+ 1
2
,0), q = max(α, β), n ≥ 1. (A.4.25)

where Cα,β depending only on α and β. Since
∏

j≥1(νj+1)max(q+ 1
2
,0) = (#(Bν))max(q+ 1

2
,0),

then a rough bound on Kα,β(Λ) for lower sets Λ is given by

Kα,β(Λ) ≤ (#(Λ))max(2q+1,0)
∑
ν∈Λ

C
2#(supp ν)
α,β ≤ (#(Λ))max(2q+1,0)+γ, γ =

log(C2
α,β + 1)

log 2

(A.4.26)
where we have used the same argument as in the previous lemma exploiting that for
any real positive numbers a0 ≥ a1 ≥ ... ≥ ak one has

aγ0 + Cα,β(aγ1 + . . .+ aγk) ≤ (a0 + . . .+ ak)
γ, (A.4.27)

which can be proved by induction as in Proposition A.4.3
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