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Introduction

Silica optical fiber networks are nowadays deployed all over the world and they connect
the continents by transmitting infrared light signals in 1.55 µm band. InP-based lasers
and photo-detectors are deployed to generate and to pick up light-signal transmitted
in long-haul telecommunication networks. The telecommunication infrastructure has
never stopped evolving, to meet the ever-increasing demand of Internet traffic. Many
InP-based devices are being researched on to enable even faster modulation, denser
multiplexing and more sophisticated modulation scheme. For example, InP-based light
source like InAs/InP quantum-dash lasers is able to generate clock signal at a repetition
rate over 300 GHz [1]. On the electronic side, InP-based GaInAs transistor can operate at
frequencies as high as 710 GHz [2] and it can be easily integrated with current InP-based
technologies.

Paradoxically, advanced signal processing in optical networks relies on electronics.
Various conversions between light and electronic signals are performed during the journey
of each bit of information and the limit of electronics will one day be a bottleneck to
achieving faster data exchange. At the same time, scaling up such electronics-based
infrastructure will lead to elevated energy cost [3].

To overcome such limits, full-optical signal processing has been proposed to by-
pass the electronics. The modulation of light signal boils down to rapid change of
optical functions of the transmitting medium. Inter-subband transition in a quantum-
well structure is one of the physical processes that enable fast attenuation and refractive
index change. It enables fast switching from ON-state to OFF-state in a fraction of
one pico-second [4, 5], which corresponds to a modulation rate even higher than 1 THz.
Besides the fastness, its high non-linear properties [6] also mark potential uses in efficient
modulation schemes like high-order phase-keying. Many quantum-well structures that
allow inter-subband transition at 1.55 µm have been studied for potential use in full-
optical signal processing, ranging from GaN/AlGaN [7], ZnSe/CdSe [8], to GaInAs/-
AlAsSb [5] quantum wells which is fully compatible with InP substrate.

Many of the aforementioned structures are developed using epitaxy technologies like
molecular beam epitaxy (MBE). For it can achieve sharp interface and thickness preci-
sion down to one atomic layer, this thin film growth technology is able to realize many
nanostructures as-designed. Also, its various adjustable growth parameters are indis-

1



Introduction

3.0

2.5

2.0

1.5

1.0

0.5

0.0
5.4 5.6 5.8 6.0 6.2 6.4 6.6

W
av

el
en

gt
h 

(µ
m

)

10
5

2

1

0.5

Lattice Constant (Å)

B
an

d 
ga

p 
(e

V
)

AlSb

GaSb
InSb

InAs

GaP

AlP
AlAs

InP
GaAs

AlAs0.56Sb0.44

Ga0.47In0.53As
GaAs0.51Sb0.49

Γ Valley
X Valley

0 K

Figure 1: Band-gaps and lattice constants of common III-V compound semiconductor com-
pounds and their alloys (0 K). Direct band-gap alloys are interpolated by solid curves while
indirect ones are dot or dashed lines. Reproduced according to [9].

pensable for structure optimization. Furthermore, various analyzing facilities integrated
in MBE growth chamber enable in situ observation of epitaxial growth mechanism. MBE
is hence the choice for the research of less adopted materials like antimonide alloys.

Figure 1 illustrates band gap and lattice parameters of commonly used III-V semi-
conductors. Antimonide compounds like GaSb and InSb have smaller band gaps than
most common III-V semiconductors, and they are found in lower part of figure 1. They
are found very useful in mid-infrared light generation and detection. However, it is diffi-
cult to integrate these compounds in InP-based devices for their large lattice constants.
Fortunately, by alloying antimonides with arsenic compounds, they can form ternary
alloys like AlAs0.56Sb0.44 and GaAs0.51Sb0.49 that are lattice-matched to InP substrate.
The incorporation of Sb in these alloys leads to smaller band-gap as compared to their
arsenic components. At the same time, they introduce new band line-up with mate-
rials that is commonly used on InP substrate like GaInAs. Together, they offer new
possibilities in InP-based applications.

Figure 2 shows several semiconductor alloys that are lattice-matched to InP sub-
strate. GaInAs/GaAsSb quantum wells possess a type-II line-up with an effective gap
as small as 0.3 eV. This makes it suitable for infrared generation and detection in 3-
5 µm band. On the other side of the spectrum, (Ga)InAs/AlAsSb quantum wells has a
conduction band offset as large as 1.6 eV [9]. Such deep electron confinement potential
profile allows inter-subband transition in mid-infrared and even near-infrared range. For
one thing, it allows quantum cascade laser operating at 3 µm. For another, it enables
inter-subband absorption near 1.55 3 µm(0.8 eV) that find its uses in full-optical signal
processing. Realizing inter-subband transition at 3 µm with these material is a major
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topic studied in this thesis.
Beside antimonide alloys, elemental Sb has also found important uses in the epitaxial

growth of lattice-mismatched materials. Usually, by depositing an epitaxial materials
that have much larger lattice constants than that of substrate, the deposit would organize
into quantum dots structures (three-dimensional nanometric islands). The use of Sb
in such growth can significantly increase the quality of the epitaxial thin film; and
yet Sb atoms incorporate little and mostly stay on the growth surface [10]. It was
demonstrated that the use of Sb can effectively delay the formation of quantum dots
or the generation of dislocations [11, 12]. This aspect of Sb is known as surfactant
effect for it being a surface active agent. Under other circumstances, the use of Sb has
also demonstrated enhancement to the properties of quantum-dot structures, including
increased island density, more uniform size distribution , as well as several other benefits
[13–15]. Although these Sb-related phenomena have important technological uses in
device elaboration, their mechanisms are often disputed.

The use of antimonides and surfactant effect of Sb being the clue of this thesis, it is
developed as follows:

• Chapter 1 will provide more details on MBE growth, especially the growth of
antimonide alloys on InP substrate. Following that, different epitaxial growth
modes of lattice-mismatched materials are introduced .

• Chapter 2 begins by attempting to tune inter-subband absorption wavelength of
Ga0.47In0.53As/AlAs0.56Sb0.44 quantum well structures to 1.55 µm, which is how-
ever not achieved. A series of growth optimization and microscopic study were con-
ducted, and these results indicate that multiple imperfections within such struc-
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tures, such as the unintended incorporation of Sb into GaInAs layer, could be
responsible.

• Chapter 3 advances the findings of chapter 2 and tries to shorten inter-subband
transition wavelength, by replacing lattice matched Ga0.47In0.53As/AlAs0.56Sb0.44

with strained InAs/AlAs0.56Sb0.44. At a first time, the surfactant effect of Sb has
well exercised its power and ensures good quality of single quantum well. Following
that, stacking of these quantum wells were obtained by means of “strain compen-
sation”. At the end of this chapter, preliminary investigation into inter-subband
transition in strained InAs/AlAs0.56Sb0.44 quantum wells will be presented.

• Chapter 4 explorers the influence of Sb on the InAs deposition on different substrate
orientations, in order to better understand the surfactant effect of Sb . Completely
different growth behaviors were observed for InAs deposition on (001) and (113)B
surfaces of GaAs0.51Sb0.49. The spectacular differences are interpreted by surface
orientation dependent surfactant effect of Sb.

• Chapter 5 closes this thesis with preliminary investigations on the incorporation
of Sb in highly-strained InAs layer on InP substrate. The use of Sb during the
deposition of InAs(Sb) introduces two competing effects: it helps maintain layer-
by-layer growth by covering the surface; at the same time, it favors the formation of
relaxed island for it contributes more strain energy by incorporating into InAs. The
practice of such growth could serve as a test of the effectiveness of Sb surfactant
effect, and at the same time it can gives some reflections on the magnitude of
competing energetic terms.
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Chapter 1

Epitaxial Growth of Antimonides
on InP Substrate

This chapter is dedicated to introducing all the epitaxially grown materi-
als studied in this thesis. At a first time, the solid source molecular beam epi-
taxy (MBE) system along with its major growth parameters are shortly cov-
ered in section 1.1. Following that, section 1.2 explains how lattice-matched
materials like Ga0.47In0.53As and AlAs0.56Sb0.44 are elaborated on InP sub-
strate, and the choice of their growth conditions. These ternary alloys are
essential to inter-subband applications studied in chapter 2 and 3. The fi-
nal section 1.3 walks through different manner in which the deposition of
lattice-mismatched material like InAs could would behave on InP substrate.
According to deliberately manipulated growth conditions, different degrees of
strain relaxation could result in either fully-strained two-dimensional InAs
layer or three-dimensional InAs quantum dots, which are essential to the
subjects studied in subsequent chapters 3-5.
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1.1. MBE system

1.1 MBE system

All the samples studied in this thesis were prepared using a Riber 21T compact solid-
source MBE system. Figure 1.1 illustrates its growth chamber, an ultra-high vacuum
(UHV) enclosing where the epitaxial growth takes place. In essential, it consists of a
set of evaporation cell sending molecular beams to a heated substrate. Therefore, they
define the most important growth parameters of MBE growth: substrate temperature
and flux intensities (pressures) of molecular beams.

Substrate for crystal growth is mounted onto molybdenum holders, which is heated
from its back side during the growth. The heater reading number is measured by
thermo-sensor, which is calibrated by well-known temperatures, like surface reconstruc-
tion transition temperature and melting points. The substrate temperature is stabilized
by partial-integral-differential controllers to ensure fluctuation smaller than 0.1 °C . The
eventual run-to-run temperature difference is estimated to be less than 5 °C.

Sif/fBe

dopants

substratef

shutter

heater

Pf/fAsf/fSb

valvedfcrackerfcell

Nf

RFfplasmafcell

heatingfwire

Alf/fGaf/fIn

effusionfcell

Figure 1.1: An illustrative representation of MBE growth chamber (Riber 21T)

The molecular beam fluxes are produced by different type of source cells. Group-
III elements like Al, Ga, In as well as doping atoms like Si and Be are evaporated
using Knudsen-type effusion cells. In these type of cell, molecular beams are produced
by heating substances contained in ceramic crucibles. A mechanic shutter plates is
installed in front of each cell to enable on-off flux modulation. Since flux intensities of
these elements are solely determined by the cell temperature, they cannot be changed
rapidly. In order to realize rapid change of a given elemental flux within one growth-
run, redundant cells should be equipped. Group-V elements like P, As, Sb are produced
by more sophisticated valved-cracker cell. In these cells, the micrometric valves enable
rapid flux variation. Also, pure solid are not only evaporated but also pyrolyzed at a
high-temperature cracking stage, turning Sb4 into Sb2 for example. The use of bi-atomic
molecules like Sb2 can significantly modifies the incorporation behavior of Sb, and this
will be further addressed in chapter 5.
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Chapter 1. Epitaxial Growth of Antimonides on InP Substrate

The output of each source cell is measured by a retractable flux gauge positioned
in front of the substrate. The gauge readings are recorded in beam equivalent pressure
; they are actively monitored before each growth-run and consistent output of each
cell is crucial for reproducible results. Tn the literatures beam equivalent pressures are
commonly given to describe growth conditions, but in practice growth parameters like
growth-rate are equally important. This will be explained shortly.

1.2 Epitaxial growth of lattice-matched alloys on InP sub-
strate

Figure 1.2 offers a microscopic view of substrate surface under MBE growth. At a first
time, the incoming molecules or atoms get adsorbed on the surface and then get involved
in a series of surface processes like massive migration across all kinds of features on the
growth surface (surface diffusion). Eventually, the ad-atoms could settle down and join
the lattice, or possibly gain enough energy and leave the growth system (desorption).
Many of these processes can be kinetically controlled, which makes MBE growth de-
pendent of substrate temperature and other specific growth parameters in a complex
manner.

nucleation

surface diffusion

desorption

adsorption

molecular / atomic beam

Figure 1.2: MBE growth surface

During the growth of binary compound like GaAs, over-saturated level of group-V
element (As) is usually supplied, that is, under a V/III beam equivalent pressure ratio
greater than 1. Under such circumstances, the desorption of group-III element (Ga) is
negligible and they have unity sticking coefficient. On the other side, the desorption of
group-V atoms (As) is significant and it has complex dependence on growth parameters.
In practice, growth rate is used to describe the incorporating rate of group-III element.
It is determined by thickness of materials grown in given time and it is usually expressed
in mono-layer per second (ML/s). Experimentally, the growth rate is measured with the
help of strained super-lattice composed of repeated InP/AlInP pairs of thick InP and
very thin AlInP layers for example. The thickness of GaAs layers can be approximated
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1.2. Epitaxial growth of lattice-matched alloys on InP substrate

by the thickness of one super-lattice period, which is in turn measured by ω-2θ scans in
X-ray diffraction.

The growth of ternary alloys like Ga0.47In0.53As and Al0.48In0.52As is simply done
by co-deposition of their constituent binary alloys GaAs, AlAs and InAs. For alloys
like GaInAs, which contains two types of cations (group-III elements) and one anion, its
composition can be well estimated by the growth rates of cations since cation desorption
is usually negligible. For example, the growth Ga0.47In0.53As is achieved by simultaneous
deposition of Ga and In, at growth rates of 0.11 ML/s and 0.12 ML/s respectively.

For the growth ternary alloys like AlAs0.56Sb0.44 or GaAs0.51Sb0.49, which contain
different anions (group-V elements), the achievement of lattice-matching condition is
more challenging. Due to the desorption of anions, the alloy composition is influenced
by the substrate temperature and even the growth rate of cation (group-III element) [1,
2]. Nevertheless, the desorption of anion can be reduced by sending equal amount of
anion and cation to growth surface. In practice, this corresponds to a low V/III beam
equivalent pressure ratio, and the desired AlAsSb composition can be found by varying
the growth rate of Al while keeping group-V flux at constant level. The composition
of such alloys is routinely checked, and the misfit of AlAs0.56Sb0.44 and GaAs0.51Sb0.49

grown on InP substrate are kept lower than 0.1% (AlAsSb 0.07%, GaAsSb 0.05%).

Unlike Ga0.47In0.53As, a classical material for InP substrate, much less information
is available about the growth of AlAs0.56Sb0.44 lattice-matched to InP substrate [1–7]
or about its optical properties [8–10]. Quaternary AlGaAsSb has been employed used
in integrated Bragg mirror for its low refractive index [2, 11] , while GaInAs/AlAsSb
are used in quantum cascade lasers [12–14] and inter-subband transition optical switch
for its high conduction band offset. Among these applications, a wide range of growth
temperatures have been reported from 540 °C [3] to as low as 400 °C[7], although mis-
cibility gap is predicted in a wide range of composition [15]. Actually, clusters of AlAs
were observed [5] in AlAsSb alloy grown under low growth rate and low temperature,
and these defects can be eliminated by raising growth temperature to above 500 °C.
Such elevated temperature poses yet another problem for the growth of Ga0.47In0.53As
: desorption of indium becomes significant at such elevated temperature. As the first
step towards InP-based inter-subband transition application, (Ga)InAs/AlAs0.56Sb0.44

structures presented in this thesis were all prepared at 450 °C, which is adapted to the
elaboration of other InP-based structures. We leave temperature optimization for future
studies.

Another issue concerning the growth of AlAsSb is the segregating nature of antimony.
Compared to arsenic, antimony has lower binding energy with cations. The first layers
of AlAsSb could be As-rich due to the segregation of Sb. In addition, Sb also has
much lower saturating pressure which allows it cumulates on growth surface rather than
evaporates into gas phase. This portion of segregated Sb could be incorporated into
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Chapter 1. Epitaxial Growth of Antimonides on InP Substrate

subsequent layers and smear the interface between antimonide and antimony-free layers.
Special surface termination method can be employed to counteract the segregation of
Sb. For example, long-time growth interruption under As2-flux can purge accumulated
surface Sb [16].

The aforementioned growth conditions described how alloys like Ga0.47In0.53As, Al-
As0.56Sb0.44, Al0.48In0.52As and GaAs0.51Sb0.49 can be grown individually; however, they
cannot be grown within the same growth-run, since no set of constant flux can accom-
modate the growth of these four alloys. This is currently solved by using redundant
gallium and indium source-cells.

1.3 Deposition of lattice-mismatched materials on InP sub-
strate

Growth modes of heteroepitaxy

The epitaxial growth of heterostructure may proceed under three distinct growth modes:
the Frank van der Merwe mode for two-dimensional layer-by-layer growth, the Stranski-
-Krastanow mode for layer-plus-island growth, and Volmer-Webber mode for three-
dimensional direct island formation; they are illustrated in figure 1.3. The growth mode
of a given material system is largely determined by strain energy stocked in the epi-
taxial thin film(ε2D

strain), the surface energies (γ2, γ3, γ4) and interface energy at the
substrate-epitaxial thin film interface (γ1).

For the growth of aforementioned lattice-matched materials like Ga0.47In0.53As, its
growth mode is solely determined by the interface and surfaces energies. Layer-by-layer
growth mode usually occurs if the surface and interface energies introduced by epitaxial
layer is lower than the surface energy of matrix ( γ2 + γ1 < γ3 in figure 1.3). The
epitaxial layer is considered to be wetting the matrix. Otherwise, the epitaxial growth
will proceed under Volmer-Webber growth mode and non-wetting islands are formed.

The growth of lattice-mismatched material is more complicated for it involves strain
energy and subsequently strain relaxation. The epitaxial layer may either maintain full
coherence with the substrate, form three-dimensional islands that enable partial strain
relaxation, or release strain energy by generating defects.

In case of high lattice-mismatch, the strain energy is so dominant that no other
energy term can compete with it (E2D

strain ≫ E3D
strain). The epitaxial grown material could

directly organize into islands under Volmer-Webber mode.
When the lattice mismatch is intermediate, the system can go under Stranski--

Krastanow growth mode : the epitaxial growth maintains two-dimensional wetting-layer
until a critical thickness is reached. The system then switches to three-dimensional mode,
forming islands upon the wetting layer. The critical thickness for two-dimensional-to-
three-dimensional transition depends on material system and growth conditions. For
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Figure 1.3: Three growth modes of heteroepitaxy : Frank-van der Merwe, Volmer-Webber, and
Stranski-Krastanow.

example, a critical thickness of 1.5–1.8 mono-layer (ML) is determined for InAs deposi-
tion on GaAs under a wide range of growth conditions, and a wetting layer of similar
thickness can still be observed by ex situ observations like cross-sectional scanning tun-
neling microscope [17]. Stranski-Krastanow growth mode is crucial to self-assembled
InAs quantum dots, for they can produce coherently strain islands that powers devices
like quantum-dot lasers.

Strain relaxation

Coherently strained layer or coherent islands can exist during the initial stage of de-
position; however, their growth cannot proceed without limit. The lattice strain will
cumulate until a critical thickness, beyond which strain energy would be released via
elastic relaxation by generating undulation, or via plastic relaxation by generating dis-
locations and other defects. These different ways of strain relaxation are illustrated in
figure 1.4. Neither of these relaxation is desired, since they degrade electronic properties
and device performance.

Figure 1.4: Coherent epitaxial layer, elastic relaxation and plastic relaxation

The degree of relaxation of a epitaxial thin film can be determined by measuring
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its lattice constants. As is demonstrated in figure 1.4, fully coherent epitaxial layer is
subject to elastically tetraorthogonal deformation. Its in-plane lattice constant a� is
deformed to match that of substrate asub, while its vertical lattice constant a⊥ can be
estimated by :

a⊥ = a0 − 2ν

1 − ν
(asub − a0) (1.1)

in which a0 is relaxed lattice constant of epitaxial material, and ν represents its Poisson’s
ratio. The vertical lattice constant a⊥ can be easily determined by X-ray diffraction
measurements, and deviation from the value predicted in equation (1.1) signifies strain
relaxation.

The critical thickness for plastic relaxation hc can be estimated by calculations prior
to actual growth. Matthews and Blakeslee [18] proposed a criterion for plastic relaxation
based on the movement of dislocations, which can often give an idea about the limit of
pseudomorphic growth regime [19] 1:

hc =
|b|

2 · 4 · πf

1 − ν cos2 θ

(1 + ν) cos λ
ln

(

hc

|b| + 1

)

(1.2)

a� is the lattice constant of substrate, f = (asub − a0)/a0 is the misfit between epitaxial
material and substrate, and ν is the Poisson’s ratio of epitaxial layers. If we choose
the most prevalent 60° dislocation in zinc-blende structure, its Burgers vector |b| =

a[1 0 1]/2 =
√

2a0/2, and direction cosines cos θ = cos λ = 1/2. Poisson ratio ν is taken
as 1/3, a good approximation for many compound semiconductor materials. Compared
to the original expression of Matthews-Blakeslee, the first factor of equation (1.2) has
an extra denominator 4. It counts for the fact that epitaxial thin film is constraint only
from one side [19]. Equation (1.2) is solved over a wide range of misfit and corresponding
solutions are shown in figure 1.5.

The lattice constant of InAs is 3.2% larger than that of InP, and its critical thickness
for plastic relaxation is only about 1.7 nm (∼3 ML) by the criterion of Matthews-
Blakeslee. Due to its band-gap as low as 0.4 eV, strained InAs quantum wells on InP
substrate can potentially extend the working wavelength of InP-based device to mid-
infrared range. In reality, InAs deposition on InP goes under Stransky-Krastanov growth
mode upon 1–2 ML (0.3–0.6 nm) deposition, which limits its emission wavelength below
2 µm.

Surfactant effect and Sb

The growth mode of InAs can be significantly modified by the deliberate introduction
of surfactant atoms like Sb. The use of Sb is known to help maintain two-dimensional
growth mode of lattice-mismatched epitaxial layers [20, 21]. By applying Sb flux during

1This critical thickness for plastic relaxation is different from critical thickness for growth-mode tran-
sition.
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1.2

their deposition, thick and yet defect free InAs layer of high quality was obtained on
InP substrate, and yet the incorporation level of Sb was negligible [21]. The use of
surfactant was taken as surface energy modifications, which increase energy barrier for
strain relaxation [22]. The use of surfactant was also considered to shift the balance
between competition between elastic and plastic relaxation [22] and subsequently critical
thickness for dislocation generation as well as critical thickness for elastic relaxation [20].
We attempt to achieve 1.55 µm inter-subband transition within strained InAs/AlAs0.56-
Sb0.44 quantum wells. The limit of such Sb-assisted growth as well as its relaxation
behavior is studied in chapter 3.

The effect of surfactant is also taken as modification of surface diffusivity of Indium
ad-atom, and a surfactant atoms can enhance or reduced diffusion length of cation ad-
atom [23]. In these scenario, the surfactant effect of Sb is attributed to its complete
surface coverage: arriving ad-atoms are instantly swapped with sub-surface Sb atoms
and by consequence their surface mobility is significantly reduced. [20, 24]. Such kinetic
diffusion blocking has also been employed to explain high density and uniform quantum
dot that were obtained under the influence Sb [25].

It has been demonstrated that the use of surfactant can modify the equilibrium
shape of strained Ge/Si deposition, and degree of energy modification is considered facet
orientation dependent [26]. In chapter 4, the effect of Sb on the deposition of strained
InAs is again examined on both (001) and (113)B surfaces of GaAs0.51Sb0.49. As a
matter of fact, very different behaviors were obtained. These results will be presented
in detail in chapter 4, which allow more insight into the mechanism of surfactant effect
than pure.
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Chapter 2

The Growth of
Ga0.47In0.53As/AlAs0.56Sb0.44
Quantum Wells for Inter-subband
Applications

Inter-subband transition between two conduction-band subbands in a
quantum well allows very flexible band-engineering due to its high depen-
dence on structure parameters. It has brought about many device applica-
tions like long-wavelength photo-detector [1], mid-infrared quantum cascade
laser [2] and near-infrared optical switch [3]. Section 2.1 begins this chapter
with a physical description of inter-subband transitions and how it enables
ultrafast light-signal modulation at 1.55 µm telecommunication band. Fol-
lowing that the state of art on GaInAs/AlAsSb optical switch will be shortly
presented. Section 2.2 and 2.3 will present our first efforts in making such
optical switch via a series of studies on the interband and inter-subband prop-
erties in Ga0.47In0.53As/AlAs0.56Sb0.44 quantum wells. Near infrared inter-
subband absorption was eventually observed but the goal of 1.55 µm was left
unfulfilled. Section 2.4 and 2.5 launch different optimizations together with
microscopic observations of such quantum-well structures, in order to have
a closer look at all kinds of imperfections that could have prevented us from
obtaining 1.55 µm inter-subband absorption.
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2.1. Inter-subband transition and devices

2.1 Inter-subband transition and devices

Physical descriptions of inter-subband transition

In a quantum well illustrated in figure 2.1, the energy separation between the ground
state (E1) and the first-excited state (E2) is roughly approximated by:

E2 − E1 =
3 ℏ

2

2m∗

(

π

L

)2

(2.1)

In this estimation, the quantum well is considered as an infinite potential well, and L

marks its extent (thickness). The conduction-band dispersion is assumed to be parabolic
so that the effective mass of electron m∗ is constant in the quantum well. Such estimation
reveals that the inter-subband transition energy is highly dependent on L. For example,
in a 10 nm-thick Ga0.47In0.53As quantum well 1, inter-subband transition energy asso-
ciated with first conduction-band subbands is about 260 meV, which corresponds to a
wavelength of 4.8 µm in the mid-infrared band. Meanwhile, when L is reduced to 6 nm,
its inter-subband transition energy becomes as high as 0.8 eV and its wavelength lies in
1.55 µm telecommunication band.
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Figure 2.1: Conduction-band subbands in a single quantum well. The gray lines describe the
band line-up of GaInAs/AlAsSb quantum well, while the black curves depict the wave-functions
envelope superposed on their energy levels.

Like inter-band transitions, both photon emission and absorption can take place via
inter-subband transition, leading to different applications like quantum cascade lasers [5]
or quantum-well inter-subband photo-detector [1]. The absorption coefficient associated

1Electron effective mass m∗

Γ is taken as 0.043 me [4].
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with inter-subband transition from E1 to E2 can be estimated by [6, pp. 299–301]:

αE1−E2(ℏω) ∝ e2
z⟨φ2|z|φ2⟩2(N1 − N2)

Γ/2

(E2 − E1 − ℏω)2 + (Γ/2)2
(2.2)

in which ez is the electric field component of incident radiation projected in quantum
confinement direction (z) 2. This term indicates that in a ridge wave-guide (figure 2.2a),
inter-subband transition interacts with transverse-magnetic (TM) polarized light but
not with transverse-electric (TE) polarized light. φ1 (φ2) is the envelope of electron
wave-function corresponding to eigenstate E1 (E2), which carries information on spatial
distribution of electron wave-function. The dipole matrix element ⟨φ2|z|φ1⟩ indicates
that inter-subband transition is weak where two wave-functions hardly overlap or when
they have the same parity. In practice, such selection rules could be relaxed by asymmet-
ric potential profile which breaks its mirror symmetry, as well as strain which induces
band mixing. N1 (N2) represents the electron population in the conduction-band ground
state (first excited state). This term indicates that the conduction-band ground-state
must be sufficiently populated for experimental observation of inter-subband absorp-
tion. The last term originates from energy conservation which requires the absorbed
photon has the same energy as the separation between subbands ℏω = E2 − E1. It
adds phenomenological broadening characterized by Lorentzian with line width Γ. This
suggests that an inter-subband absorption spectrum appears as individual absorption
peak, rather than step-like absorption spectrum in the case of inter-band transition in a
quantum well.

Inter-subband transition optical switch

The polarization-dependent nature of inter-subband absorption allows independent con-
trol of inter-band and inter-subband processes by using TE- and TM-polarized light. This
is illustrated in figure 2.2b using a three-level quantum well, of which the conduction-
band ground level is populated by high-level of doping. Without inter-subband exci-
tation, TE-polarized probing photon that correspond to the effective-gap of quantum
well can pass through the structure without large attenuation, because the final states
of inter-band transition is already occupied by electrons coming from dopant atoms and
thus absorption is prohibited. Under the presence of intense TM-polarized pumping, the
conduction-band ground level (E1) is bleached by inter-subband transition so that the
previously prohibited inter-band transition is now allowed and this will eventually induce
high attenuation to the TM-polarized probe-light. In essential, this simple scheme en-
ables the modulation of light and it is employed in experimental study of inter-subband
relaxation dynamics.

An alternative scheme, coupled-double-quantum-well has successfully demonstrated
2z is also the growth direction.
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demultiplexing operation at a frequency of about 1 THz [7]. When two quantum wells are
strongly coupled, each of the previously degenerated E1 E2 states would unfold into two
states and thus the double quantum-wells becomes a four-level system. This is similar
to what is illustrated in figure 2.2c. The signal light is adapted to the transition from E2

to E3, while control-light is adapted to transition from E1 to E4. Without inter-subband
excitation, E2 to E3 transition is allowed so that the attenuation of probe-light is strong
and the structure is in its “OFF” state. Under the excitation of strong control-light, the
lower levels are bleached so that E2 to E3 transition is prohibited and the probe-light can
pass through the structure without attenuation and the switch is in its “on” state. This
scheme thus also allows the implementation of “ON/OFF” modulation. Additionally,
inter-subband excitation can induce refractive-index change for TE polarized probe-light
near inter-band energy, so that the structure also allows cross-phase modulation between
pump and probe-light [8, 9].

control

signal output

inter-subband absorption

active waveguideTM
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probeprobe

TM

pump
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control

E2

E3

E4
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Figure 2.2: Inter-subband transition based light-signal modulation. (a) illustrates a ridge
wave-guide typically used in inter-subband modulators. (b) presents optical modulation using
three-level system in a single quantum well. (c) presents a four-level scheme using a coupled-
double quantum well.

Eligible material systems

Usually, phonon-assisted inter-subband relaxation has characteristic time in the order of
pico-second (10−12 s), which is well adapted for optical applications operating at tera-
hertz (1012 Hz) repetition rate. To operate in the 1.55 µm optical telecommunication
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band, the hosting structure should have sufficiently large confinement potential to host
two conduction-band sub-bands separated by 0.8 eV (1.55 µm). Essentially, this require-
ment calls for large conduction-band offset. Three eligible material systems are currently
being studied for applications based on inter-subband transition.

II-VI semiconductor CdS(/ZnSe)/BeTe quantum well has a conduction-band offset
as large as 3.1 eV, and it has been researched in optical switching applications in 1.55 µm
band. It allows a fast inter-subband relaxation with decay time lower than 600 fs , and
it enables 10 dB light switching using excitation pulse of about 7 pJ/µm2 [10]. Al-
though all the materials involved in this II-VI structure have similar lattice-constants,
they have no common element. The interface treatment is rather complicated: different
bonding schemes could result in lattice-mismatch up to 10%, which can significantly
influence device performance[11–13]. At the same time, no perfect substrate is commer-
cially available for these II-VI semiconductor structure and they are elaborated on GaAs
substrate with a lattice-mismatch of about 0.3%.

Wurtzite III-V GaN/AlGaN quantum well also offers a conduction band offset as
large as 2 eV. It enables continuously adjustable inter-subband transition wavelength
which covers both 1.3 µm and 1.55 µm telecommunication bands. Due to the strong cou-
pling between electrons and longitude-optical-mode phonons, inter-subband relaxation
time in this material can be as short as 100 fs. Usually, wurtzite GaN-based material
are elaborated on sapphire or SiC substrates, which could raise concerns in the crystal
quality of epitaxial thin-film. Also, the spontaneous polarization due to piezo-electric
effect should be carefully handled, which breaks the mirror symmetry of a quantum well
and subsequently the polarization selection rules of inter-subband absorption. [14, 15]

InP-based Ga0.47In0.53As/AlAs0.56Sb0.44 quantum wells also have a conduction band
offset as large as 1.6 eV [4], which makes it eligible for 1.55 µm inter-subband applications.

State of art of Ga0.47In0.53As/AlAs0.56Sb0.44 quantum wells for optical
switch

1.55 µm inter-subband absorption in Ga0.47In0.53As/AlAs0.56Sb0.44 quantum wells was
first reported by Mozume et al. [16] and this material system have shown inter-subband
relaxation time as short as 0.8 ps [17] (1.3 ps by [18]). In this material system, the
absorption coefficient of TM-polarized light was found to be highly nonlinear, which was
attributed to both the nonlinearity of inter-subband absorption at intermediate input
power and two-photon absorption at high excitation power regime [19]. Such nonlinearity
makes them suitable for applications like noise filter or saturable absorber. At the same
time, the inter-subband transition energy in this system was found to be very stable
against temperature variation [20], which ensures stable performance under fluctuating
working conditions.

The GaInAs/AlAs/AlAsSb coupled-double quantum well is a structure that is used
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by many research groups to achieve 1.55 µm inter-subband transition; figure 2.9a (page
30) presents a structure similar to it. The interaction between two quantum wells pushes
inter-subband transition to higher energies than in a single quantum well. The inter-
subband relaxation time in such a structure was found to be even shorter than 0.7 ps [21].
It has even higher inter-subband absorption nonlinearity, of which saturates at pulse en-
ergy density as low as 10 fJ/µm2 [22]. ON/OFF modulation at 1 THz was achieved with
a GaInAs/AlAsSb coupled-double quantum well waveguide [7], and it has demonstrated
reliable room temperature demultiplexing operation [23]. Furthermore, this four-level
system enable efficient (0.5 rad/pJ) cross-phase modulation between control and signal
light [8, 9] .

In this chapter, we will layout the foundation for the research of inter-subband tran-
sition applications based on InP substrate. In section 2.2 and section 2.3, Ga0.47In0.53As-
/AlAs0.56Sb0.44 quantum wells will be studied for its optical properties associated with
inter-band and inter-subband transition.

2.2 Inter-band properties of Ga0.47In0.53As/AlAs0.56Sb0.44

multiple quantum wells

Determination of optimal quantum well thickness

To determine the exact Ga0.47In0.53As/AlAs0.56Sb0.44 structure that is required to repro-
duce inter-subband transition at 1.55 µm, transition energies in GaInAs/AlAsSb quan-
tum wells were examined using empirical tight-binding calculations. In these calcula-
tions, the multiple quantum well structure is modeled by super-cells containing 34 ML of
AlAs0.56Sb0.44 and from 5 to 22 ML of Ga0.47In0.53As while the electron wave-function
are expended using an extended spds∗-basis[24]. The calculations were performed by
Soline Richard (FOTON).

The calculation results are reported in figure 2.3, in terms of inter-subband transition
energies at different Ga0.47In0.53As layer thickness. These results indicate inter-subband
transition energy as high as 0.9 eV (1.37 µm) can be achieved by a 5 ML (1.5 nm)
thick GaInAs quantum well. To achieve inter-subband transition at 1.55 µm (0.8 eV),
the Ga0.47In0.53As layer thickness has to be as small as 7 ML (2.1 nm). Such small
thicknesses pose stringent requirement on the control of quantum well thickness and
they demand high-quality interfaces between the material layers; 1 ML quantum well
thickness derivation would lead to inter-subband energy shift of around 70 meV, which
correspond to 150 nm wavelength-shift.
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Figure 2.3: Tight-binding simulated inter-band and inter-subband transition energies in Ga0.47-
In0.53As / AlAs0.56Sb0.44 single quantum wells.

Inter-band properties

Three GaInAs/AlAsSb multiple quantum-well samples were prepared for the study of
their inter-band properties. Their structure is illustrated in figure 2.4a: within each
period of these samples, the AlAsSb barrier thickness is fixed to 10 nm, and the GaInAs
layer thicknesses is chosen to be 7 ML (sample S1078), 14 ML (S1079) and 19 ML
(S1080). Each sample was made to contain 10 periods of quantum wells and no in-
tentional doping were applied to the quantum wells. These structures were grown on
conductive InP (001) substrates using solid source MBE, under the conditions described
in section 1.2 (page 9). To protect the Al-containing layers from oxidation in the air,
each of these samples was finished by a 5 nm-thick GaAs0.51Sb0.49 layer.
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Figure 2.4: (a) Structures of samples S1078–S1080 (b) Calculated transition energies (0K)
compared to PL energies recorded at 10 K. The excitation power density was 4 kW/cm2.

PL spectra of these samples were recorded under temperature ranging from 15 K
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up to about 250 K. A 532-nm laser was used as excitation source and the maximum
excitation power density was about 4 kW/cm2. Figure 2.4b presents a comparison of
PL peak energies obtained at 15 K along with those tight-binding calculated inter-band
transition energies. The PL energies follow the same trend as the calculations but they
are systematically lower than calculated values by about 200 meV. Many factors could
be responsible for such large difference, including the accuracy of calculations, the error
in quantum well thickness and the unintentional incorporation of Sb in GaInAs layer.

Precision of quantum well thickness

In order to examine the possible deviation of quantum well thickness, the structural
parameters of these quantum-well samples were check by X-ray diffraction (XRD). ω−2θ

scans were performed to find out the periodic thickness of these quantum wells, namely
the thickness of GaInAs layer plus that of AlAsSb layer. All the measured quantum-
well periods are found to be smaller than their nominal values by about 4-5 ML. The
“missing thicknesses”, that is, the difference between experimentally measured thickness
and those intended, are plotted in figure 2.5 versus their nominal thickness. The ‘missing’
period thickness is actually linearly correlated to the nominal quantum-well thickness.
This could be a result of rounding error in MBE growth rate calibration. Since the
only varying parameter among all three samples is the GaInAs layer thickness, the slope
formed by the three data points thus stands for the error in GaInAs growth rate, which
is about 10%.
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Figure 2.5: Missing thicknesses in GaInAs/AlAsSb quantum wells.

The error in growth rate calibration can be subtracted by extrapolating the ‘missing
thickness’ to zero-GaInAs thickness and the intersection in figure 2.5 shows that there’s
still 3.5 ML missing. To attribute the ‘missing thickness’ to the GaInAs and AlAsSb
layers composing each quantum well period, we performed X-ray reflectivity on one of
these samples. The result reveals that in each period of Ga0.47In0.53As/AlAs0.56Sb0.44
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quantum well sample S1078, about 1.1 ML of thickness is missing from GaInAs layer,
and 3.1 ML was missing within the AlAsSb layer. Therefore, out of the 3.5 ML missing,
3.1 ML is contributed by AlAsSb layer, leaving the segregation of indium to be the last
possible source of 0.4 ML ‘missing thickness’.

The above structural analysis gives an estimation of the magnitude of indium segre-
gation as well as a better growth rate calibration. But the detected thickness error is still
too small to cause the observed 200 meV difference between experimental PL energies
and calculated inter-band energies.

Unintentional incorporation of Sb

Sb is known to segregate during MBE growth and it can get unintentionally incorporated
into layers that next to antimonide alloys. In fact, elemental Sb can stay on the growth
front for a while even after its supply is interrupted [25]. To evaluate the Sb-incorporation
level in GaInAs/AlAsSb quantum well, we have simulated inter-band transition energy
in Ga0.53In0.47As1−ySby /AlAs0.56Sb0.44 single quantum wells using k · p method. In
figure 2.6, the calculated energies given in empty squares are compared with PL energies
in filled squares. The PL energies seem to coincidence with calculated energies for
y = 20% and the they seem to indicate the unintended Sb-incorporation level in GaInAs
layer could be about 20% , which is unexpectedly high. Microscopic studies is required
to confirm such high level of unintentional incorporation of Sb, and this issue will be
addressed in later section 2.4 using cross-sectional scanning tunneling microscopy.
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2.3 Inter-subband properties of Ga0.47In0.53As/AlAs0.56Sb0.44

multiple quantum wells

Effect of doping

Beside good control of quantum well thickness, another important aspect of achieving
strong inter-subband transition is to sufficiently populate conduction-band ground state.
This is commonly accomplished by high level n-doping using Si. Sheet carrier densities
higher than 1 × 1012 cm−2 is being used by many research groups [17, 19]. For a quan-
tum well as thin as 2 nm, it requires a bulk doping level of about 1 × 1019 cm−3. We
first performed calibration on n-doping in GaInAs with bulk GaInAs sample. With
the maximum Si flux and modest GaInAs growth rate of 0.2 ML/s, a doping level of
5 × 1018 cm−3 can be achieved.

Being aware that high-level of Si doping could introduce addition disorder at the
GaInAs/AlAsSb interface [26, 27], two GaInAs/AlAsSb multiple-quantum well samples
S1309 and S1310 were prepared to evaluate the impact of doping in such structures.
They were elaborated under the same conditions as previous GaInAs/AlAsSb structures
and they have the same structures as previous samples except for that the thickness of
GaInAs layer is fixed to 7 ML (2.1 nm) . The GaInAs layers in sample S1309 is doped
with Si while sample S1310 is kept intact for comparison.
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Figure 2.7: Low temperature PL spectra of sample S1309 and S1310. The incident laser power
density was about 4 kW/cm2.

The two samples are characterized by PL from 20 K up to room temperature. Fig-
ure 2.7 displays low temperature PL spectra of these two samples obtained under 20 K,
while other PL characteristics are summarized in table 2.1. Compared with the non-
doped sample S1310, doping in sample S1309 has led to neither broadening nor additional
peaks that were observed in reference [27]. On the contrary, the Si-doped sample has
a very similar line width as the non-doped sample. And it even demonstrates higher

— 26 —



Chapter 2. GaInAs/AlAsSb quantum wells for inter-subband applications

Table 2.1: PL characteristics of sample S1309 and S1310

Sample Peak energy (eV) Line width (meV)
EA (meV)24 K 300K 24 K 300 K

S1309 1.244 1.21 74 123 25.7
S1310 1.27 1.24 79 121 25.0

thermal activation energy EA for non-radiative process. These PL results indicate no
serious degradation was caused by doping.

Absorption measurement using a multi-pass waveguide

In order to observe the interaction between incident-light and inter-subband transitions,
it is necessary to couple the incident-light into transverse-magnetic (TM) mode in the
quantum wells. A ridge waveguide illustrated in figure 2.2a has 100% TM-mode coupling
efficiency. Nevertheless, fabrication of such a structure requires knowledge in technolog-
ical process of AlAsSb; without proper treatment, an AlAsSb-based ridge could oxide
by its lateral facets [28] and breaks down in the atmosphere. Alternatively, the multi-
ple reflection waveguide is a commonly adopted solution in optical studies, since it can
be easily fabricated and yet it has TM-mode coupling efficiency as high as 71% [29].
Figure 2.8 shows a schematic representation of such a waveguide, which is obtained by
shaping epitaxial samples into slabs with parallelogram cross-sections.

L

D

“TM” incidence TE-incidence

Ex
Ez

Ey

z

x
y

Figure 2.8: Geometry of a multi-pass waveguide. Double-headed arrows stand for p-polarized
light whose electric-field vector lies in the paper, and dots represents s-polarized light whose
electric-field is perpendicular to the paper.

Due to the strong refraction index contrast between the air and semiconductor ma-
terials, the internal surfaces of the waveguide are total-reflective for a large range of
angles. Light entering from the facets of parallelogram slabs can propagate along a
zigzag path inside the waveguide. For the parallelogram waveguide draw in 2.8, light
travels a distance of l =

√
2L in the guide and it passes through the epitaxial layers 2N

times, where N = ⌊L/2D + 1/2⌋. The length of waveguide L has to be sufficiently long
so that attenuation due to the absorption of epitaxial layer can be easily detected.

When s-polarized light enters such a sample, it transmits in “pure” TE-mode and its
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electric field vector is parallel to the in-plane direction (y) with regard to the quantum
wells. Its transmittance can be described as

TTE = exp [− (αE1-HH1,y + αE1-LH1,y + αothers) · l] (2.3)

in which αE1-HH1 is absorption coefficient associated with heavy-hole to conduction-band
transition. αE1-LH1,y stands for absorption due to the interaction TE-polarized light and
light-hole to conduction-band process. 3 All other polarization-independent optical loss
are included in αothers.

When p-polarized light passes through the wave-guide, it transmits in “TM”-mode
— which is not exactly the same as the TM-mode in a ridge waveguide. The electric-field
of propagating light is 45° away from both z and x directions so that it interacts with
both inter-subband (E1-E2) process and inter-band processes (HH1-E1, LH1-E1) :

TTM = exp

[

−
(

αHH1-E1,x + αLH1-E1,x + αothers
2

+
αLH1-E1,z + αE1-E2 + αothers

2

)

· l

]

(2.4)
Here, we acknowledge that HH1-E1 process only interacts with electric field vector par-
allel to in-plane directions (x and y), while LH1-E1 process interact with both in-plane
electric field vector and out-of-planes ones, resulting in absorption coefficients αLH1-E1,x

and αLH1-E1,z, respectively 4. Eventually, polarization dependent absorption can be
extract by comparing TE and “TM” absorption spectra :

ln
TTE(λ)

TTM(λ)
= [αinter-subband(λ) − αinterband(λ)] · l

2
(2.5)

where all contribution from inter-band process (HH1-E1, LH1-E1) are generalized in
αinterband(ℏω).

The above discussions even apply to situations where inter-band and inter-subband
energies are not well separated, and subsequently their contributions to polarization de-
pendent absorption cannot be easily isolated. However, in many cases, inter-subband
and inter-band energies are well separated. In one hand, at the wavelength range
where inter-subband absorption occurs, αHH1-E1 is supposed to be 0 so that in practice
log10 (TTE/TTM) ∝ αE1-E2 is commonly used to present the inter-subband absorption,
which appear as a peak centered at ℏω = E2 −E1. On the other hand, at the wavelength
range where inter-band absorption occurs, αE1-E2 is supposed to be 0, thus inter-band
absorptions αinter-band will appear in log10 (TTE/TTM) plot as a valley. The above dis-
cussions only apply to perfect quantum wells. In reality, the polarization selection-rules
may be relaxed due to asymmetric quantum well profile, strain and all kinds of inhomo-

3Here we only try to deal with transitions related to E1 or E2; absorption related to higher subband
or inter-valence-band absorption are not taken into account.

4The projections of LH1–E1 dipole moment along x (y) and z directions are different, so the values
of αLH1-E1,x and αLH1-E1,z are also expected to be different.
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geneity.
The absorption contributed by InP substrate is not yet taken into account in above

discussion. InP has a direct band-gap of 1.34 eV at room temperature and it can inter-
fere in the measurement of the absorption in two ways. For one thing, inter-subband
transition may be submerged in free-carrier absorption background. This can be avoided
by using semi-insulating substrate, which has very small free-carrier density. For an-
other, the inter-band absorption of a GaInAs/AlAsSb quantum well may overlap with
absorption originating from InP direct gap. As is indicated in figure 2.3, inter-band
absorption energy of a 5 ML GaInAs/AlAsSb quantum well is already very close to the
band-gap of InP. To better resolve the inter-band absorption spectra near band-gap of
InP, we used a reference scheme to subtract the absorption contributed by the substrate.
Each multi-pass waveguide is actually further divided into two equal parts by its width.
One piece stays intact and it becomes a ‘test’ sample for absorption measurement. The
other ‘reference’ sample goes through wet-etching process so that its epitaxial layers
are removed. Eventually the part of absorption contributed by InP substrate can be
removed by comparing the absorbance spectra of ‘test’ and ‘reference’ samples.

Reduction of barrier layer thickness

Another way to increase inter-subband absorbance is to integrate more quantum wells
in the structure. Since all materials in Ga0.47In0.53As/AlAs0.56Sb0.44 quantum wells are
lattice-matched to InP substrate, there’s no major difficulty in achieving arbitrary thick
structure. But it would be beneficial to reduce the thickness of AlAsSb layer in order to
reduce growth time of samples with high stacking-number.

Here we try to determine the minimum AlAsSb layer thickness that is required
to sufficiently separate two GaInAs quantum wells. We examine two Ga0.47In0.53As
quantum wells separated by a variable central barrier using k · p calculations.Figure 2.9a
shows the band schema of such a structure, and the energy split between the first two
eigenstates E2 − E1 was used an indication of the strength of the coupling between the
two quantum wells. Figure 2.9b displays the energy split as a function of central barrier
thickness. E1 and E2 are mostly degenerated until the barrier thickness is reduced to
about 5 nm. Thus 6 nm thick AlAsSb layers is considered sufficient and this value is
used in future GaInAs/AlAsSb samples prepared for inter-subband absorption studies.

Near-infrared Absorption of Ga0.47In0.53As/AlAs0.56Sb0.44

Samples preparation

Three Ga0.47In0.53As/AlAs0.56Sb0.44 multiple quantum well samples were prepared for
the study of inter-subband absorption. Figure 2.10a illustrates the structure of these
samples, in which the AlAsSb layer is now reduced to 6 nm. The three samples have
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Figure 2.9: The determination of minimal AlAs0.56Sb0.44 barrier layer thickness. (a) In coupled-
double quantum wells, the split between originally degenerated levels E2-E1 serves as an indi-
cation of coupling between them. (b) Calculated energy split as a function of central barrier
thickness.

5 ML (S1346), 7 ML (S1329) or 9 ML (S1347) of GaInAs in each period of their quantum
wells. These samples were grown under the same conditions as previous ones except
that semi-insulating InP:Fe substrate was used to suppress free-carrier absorption in
the substrate, and the GaInAs layers are intentionally doped with Si (5 × 1018 cm−3) to
populate conduction-band ground-level. To increase the inter-subband absorbance, the
number of quantum well contained in these samples is now increased to 100. To protect
surface AlAsSb layer from oxidation, all the samples were finished with a 5 nm thick
GaAs0.51Sb0.49 layer.

After the growth, the samples are made into multiple reflection waveguides: they are
first thinned to a thickness of about 280 µm and cleaved into slabs around 8 mm wide
and 16 mm long. After a series of mechanical polishing and chemical etching, they are
shaped into multi-reflection ‘test’ samples and their accompanying ‘reference’ samples
without epitaxial layer. The photo in figure A.2 (page 119) gives an example of such a
multi-reflection waveguide.

Room PL characteristics

To assure that the optical qualities of these samples were not degraded during mechan-
ical processing, PL experiments were performed on the epitaxial side of these multiple-
reflection waveguides. Figure 2.10b shows room temperature PL spectra of these sam-
ples. They are actually as strong as unprocessed samples and this assures the integrity
of epitaxial layer. The PL spectra of sample S1329 (7ML) has a line-width of 84 meV
, which is actually not broader than that of a similar 10 periods sample (S1309). This
suggests the no extra inhomogeneity has developed during the stacking of large number
of quantum wells. The PL peak of sample S1346 (5 ML) is centered at 950 nm, which is
not far from the absorption edge of InP substrate as well as the limit of our spectrometer.
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Although InP:Fe semi-insulation substrate do not appear in these PL spectra, it may
interfere with the measurement of inter-band absorption in this sample.
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Figure 2.10: (a) Structure of samples S1346, S1329 and S1347. (b) Their room-temperature
PL spectra.

Absorbance measurements

To help identify all source of absorption, absorbance measurement is first examined
under surface-normal incidence. Figure 2.11 shows the absorption spectra of sample
S1329 (7ML) and S1047 (9ML) along with their room temperature PL peak energies
marked by arrows. In these absorption spectra, each sample has a steep absorption
edge. Since the absorption edges red-shifts in the same manner as their PL energies,
they are attributed to inter-band absorption of GaInAs/AlAsSb quantum wells. The
PL energies are separated with absorption edges by a moderate Stokes-shift of about
50 meV, which could be either a result of inhomogeneity or band-filling (Moss-Burstein
shift) 5. The absorption spectrum of a third sample S1346 (5 ML) is not shown here,
for its inter-band absorption cannot be discriminated from the absorption coming from
InP substrate.

Following that, the absorption in these samples was measured under multiple-reflection
configuration. Figure 2.12 gives the absorption spectra of sample S1329 (7 ML) and
S1347 (9 ML) measured under the two orthogonal polarizations as an example. Under
TE-polarization, the absorption spectrum is composed of several steps. Each of these
steps could correspond to an absorption mechanism; the step located at 1150 nm is iden-
tified as the inter-band absorption edge in GaInAs/AlAsSb quantum wells, and the step
around 1600-1700 nm is attributed to the GaAs0.51Sb0.49 protection layer, which has a
band-gap of about 0.72 eV (1.7 µm) at room temperature. The TE-polarized absorbance

5At 300 K, n-doping level of 5 × 1018 cm−3 in a 7 ML-thick Ga0.47In0.53As quantum well would result
in a Fermi-level 13 meV above E1. E1 – EC = 0.47 eV is taken from tight-binding calculations.
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Figure 2.11: Absorption spectra of sample S1329 (7 ML) and S1347 (9 ML). Incident light enters
the sample by its epitaxial face. The arrows indicate the wavelength where room temperature
PL peaks appear.

steps down to almost zero when the wavelength is reaching reaches 2000 nm. In con-
trast, from 1400 nm until the detector limit of 2150 nm, the TM-polarized absorption
almost does not decrease. The gap between the TM and TE absorbance thus signifies
the polarization dependent (anisotropic) absorbance of GaInAs/AlAsSb quantum well.

The polarization dependent absorbance is better revealed when absorption data is
presented as log10 (TTE/TTM). Figure 2.13 presents the anisotropic absorption of samples
S1347 (9 ML) along with the other two samples under study S1346 (5 ML) and S1329
(7 ML). Although only a fraction of a full absorption peak is observed for sample S1047
(9 ML) within the limit of detector, complete anisotropy peaks are observed for the
other two samples. According to the discussion on equation (2.5) (page 28), the peaks
in log10 (TTE/TTM) plot thus represent the E1-E2 inter-subband absorption in GaInAs-
/AlAsSb quantum wells. Based on the magnitude of these anisotropy spectra and the
dimensions of the samples, we determine the inter-subband absorption coefficient αE1-E2

to be roughly in the order of 1 × 103 cm−1.
For the 7 ML quantum well sample S1329, its inter-subband absorption peak appear

at 1900 nm (0.65 eV) and it has a line-width of about 300 nm (120 meV). Its inter-
subband transition energy is lower than the 0.8 eV theoretical value expected for a
perfect Ga0.47In0.53As/AlAs0.56Sb0.44 quantum well. By further decreasing the quantum
well thickness to 5 ML (S1346), its inter-subband transition energy is almost the same
as the 7 ML sample (S1329), rather than continuing shifting towards shorter wavelength
as is predicted by tight-binding calculations. At the same time its 600 nm (210 meV)
line-width is even larger than the 7 ML sample (S1329). It seems the inter-subband
wavelength saturates at 1900 nm although quantum well as thin as 5 ML is used.

Similar inter-subband wavelength limit has been separately reported by Neogi et al.
and Cristea et al. , and in their experiment the inter-subband absorption also saturates
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Figure 2.12: Absorption spectra of samples S1329 (7 ML) and S1347 (9 ML) under different
polarizations. The incident-light enters the multi-reflection samples by their facets.
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Figure 2.13: Anisotropic absorption spectra of GaInAs/AlAsSb quantum well samples S1346
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then normalized to enable comparison between the spectra.
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at about 1900 nm [19, 30]. In figure 2.14, the current inter-subband absorption data
are compared with both tight-binding calculations and experimental data of Neogi et al.
. The two sets of experimental results are very close to each other, which indicate
the results of Neogi et al. are reproducible, and in turn validate the experimental
results we have. Last but not least, unlike Ga0.47In0.53As, AlAs0.56Sb0.44 lattice-matched
to InP substrate is a less known material for many respects [31, 32]. Even reported
values of band-alignment between (Ga)InAs and AlAsSb differ [4, 19, 33, 34], which can
significantly influence energy simulations.
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Figure 2.14: Experimental PL and inter-subband absorption peak energies compared to tight-
binding calculated transition energies. “AIST” data are extract from [19]

Summary

In this section, we have presented a study of inter-subband properties of Ga0.47In0.53As/-
AlAs0.56Sb0.44 quantum wells. After a series of structure optimization, epitaxial growth,
waveguide fabrication, PL characterization and inter-subband absorption measurements
of these samples, we have obtained near-infrared inter-subband absorption for the first
time in FOTON laboratory.

However, the goal of inter-subband transition in 1.55 µm-band was still not achieved.
By reducing the GaInAs quatum-well thickness from 7 ML to 5 ML, the inter-subband
energy saturates at 1.9 µm rather than moving towards 1.55 µm. Through calculations,
Cristea et al. has suggested that further reducing GaInAs quantum well thickness won’t
help achieve shorter inter-subband absorption wavelength [30]. For an even thinner Ga-
InAs/AlAsSb quantum well, its perturbed interface region could be comparable or even
larger than its quantum-well thickness. All kind of imperfection coherent to GaInAs-
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/AlAsSb interface could have played its role in degrading its inter-subband properties.
In the coming sections, we will present an investigation on GaInAs/AlAsSb interfaces
using microscopic studies.

2.4 The effects of surface terminations

There are two types of interfaces in a GaInAs/AlAsSb quantum well: the AlAsSb-
on-GaInAs (upper) interface and GaInAs-on-AlAsSb (lower) interface. The different
cation/anion transitions at the interfaces deserve to be treated differently and surface
terminations should be adapted to the chemical nature of each interface.

In this section, we will first present a study on how different surface termination
methods can influence the structural and optical properties of GaInAs/AlAsSb quantum
wells. Following that, microscopic structure and composition analysis were performed
to enable a closer look at the various interfaces in these samples, which may give more
insight into all kinds of imperfections that have prevented us from achieving 1.55 µm
inter-subband absorption.

Table 2.2 lists three sets of surface terminations that will be examined in this section.
Surface terminations for AlAsSb-on-GaInAs (upper) interfaces are numbered in letters
(‹A›, ‹B›, ‹C›) while those for GaInAs-on-AlAsSb (upper) interfaces are referenced by
numbers (‹1›, ‹2›, ‹3›). These surface terminations could have different effects on the
growth surface. For example, long-time growth interruption under As2 flux is supposed
to help purge Sb floating on the surface, while long-time Sb2 growth interruption can
makes the growth surface Sb-rich in order to prevent the first layers of AlAsSb being
Sb-poor[25].

A series of three Ga0.47In0.53As/AlAs0.56Sb0.44 samples were prepared to incorporate
each of the three sets of surface terminations. The growth conditions were the same
as before and these structures were elaborated in three consecutive growth runs to en-
sure consistent growth conditions. Conductive n-type InP substrates were used but the
epitaxial structures were not intentionally doped. Figure 2.15 gives a representative
illustration of their structure. Each sample only contains 10 periods of quantum-well
and GaInAs layers as thick as 7 nm (24 ML) were used to better separate the two types
of interfaces.

Macroscopic studies

XRD structural characterizations were performed on these samples to assess the effect of
surface termination on their structural properties. Symmetric ω-2θ scans were recorded
in the vicinity of InP (004) reflection. Both period thickness and average lattice mismatch
of the epitaxial structure are extracted from such measurements and their results are
listed in table 2.3. The quantum-well period thicknesses of the three samples are very

— 35 —



2.4. The effects of surface terminations

InP    buffer

AlAsSb 15 nm

AlAsSb  15 nm

GaAsSb 5 nm

InGaAs   7 nm

× 10
upper 

interface

lower 

interface

Figure 2.15: Sample structure used in the study of surface termination methods. The different
types of interfaces are indicated by arrows.

Table 2.2: The various surface termination methods along with their numbering scheme that
is used throughout section 2.4 and section 2.5.

Sample S726 S727 S728
S831 S830 S829

Upper interface ‹A› (As + Sb) 5 s ‹B› As 5 s ‹C› As 5 s
AlAsSb-on-GaInAs then (As + Sb) 5 s then Sb 20 s

Lower interface ‹1› As 5 s ‹2› Sb 20 s ‹3› As 25 sGaInAs-on-AlAsSb then As 5s
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close to each other within an error margin of 1%, but the average lattice-mismatches in
these samples are significantly different.

Samples S829 has the largest compressive misfit strain (0.40%) among the three
samples, which means it has largest average lattice constant. Compared to samples S831
which has a mismatch of 0.24%, the long-time Sb2 growth interruption used in AlAsSb-
on-GaInAs interface treatment ‹C› in S829 seems to be responsible for increased average
lattice constant, and difference between S829 and S831 is equivalent to converting 4 ML
of AlAs0.56Sb0.44 into pure AlSb or to incorporate large amount of Sb in Ga0.47In0.53As
layer within each period of such quantum well. Similarly, S830 has a mismatch (0.38%)
comparable to samples S829 (0.40%), and the long-time Sb2 grow-interruption used in
GaInAs-on-AlAsSb interface ‹2› seems to have similar effect.

The XRD study thus indicates the surface terminations can have significant influence
on the structural properties of GaInAs/AlAsSb quantum wells, and they can be used to
tune the strain in quantum well structures [35].

Table 2.3: Structural parameters and PL characteristics of samples S829-S831

Sample Period Mismatch PL Energy Integrated Intensity. Line width
(nm) (%) (eV) (A.U.) (meV)

S829 20.2 0.40 0.849 2049 55
S830 20.3 0.38 0.855 2190 44
S831 20.1 0.24 0.855 4098 59

The optical properties of these samples were then characterized by low temperature
PL. The PL spectra were recorded from 15 K up to 160 K and 532 nm laser was used as
excitation source with a maximum excitation density of about 4 kW/cm2. Various PL
characteristics of these samples are listed in table 2.3.

Figure 2.16 displays 15 K PL spectra of the three samples. A first remark on these
spectra would be that samples (S831) has significant higher PL yields that the other
two samples. This samples actually has shortest growth interruption time among the
three samples and this seem to suggest that long-time growth interruption may not be
good to optical properties of GaInAs/AlAsSb quantum wells. Although MBE growth
proceeds under high-vacuum conditions, various impurities like O2 are still present in
the growth chamber and they are difficult to get rid of. Some of these impurities have
high affinity to III-V materials and they tend to can incorporated in epitaxy thin film
during long-time growth interruption. These impurities may form deep levels in the
materials and they become efficient non-radiative recombination centers; little amount
of their incorporation would significantly enhance non-radiative recombination rate and
thus the PL yield is reduced.

At the same time, these PL energy peaks are located at almost the same energy with
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Figure 2.16: Low temperature PL spectra of samples S829, S830 and S831. The sample
temperature was 15 K and excitation power was 4 kW/cm2

only 5 mV difference between samples S829 and the other two. This indicates that the
PL energy is actually independent of the surface termination methods used. Specifically
for sample S830, where long-time Sb2 growth interruption were used at GaInAs-on-
AlAsSb interface ‹2›, no extra mount of Sb should have been incorporated around the
GaInAs-on-AlAsSb than the other two samples; if so, the PL energy of sample S830
would red-shift by much larger than 5 meV with regard to the other two samples.

We thus have compared the three types of surface terminations at the interface
between GaInAs and AlAsSb using PL and XRD. The results of these macroscopic
characterizations show that surface terminations have significant influence on both the
structural properties and optical quality of GaInAs/AlAsSb quantum wells. Addition-
ally, they remind us that PL emission intensity can be influenced by unattended factors
so that it should not be used as the only criteria to evaluate the quality of a sample.
To understand how the surface terminations are correlated to the microscopic structures
near the GaInAs/AlAsSb interface, we have launched a series of microscopic investiga-
tions on all the interfaces we have studied.

Microscopic study by cross-sectional scanning tunneling microscopy

Another sample S844 was prepared specially for X-STM observations. It contains var-
ious GaInAs/AlAsSb pairs so that it integrates all the previously studied six surface
termination methods. The structure of this samples is illustrated in figure 2.17 . The
substrate as well as epitaxially grown InP layers in these samples are doped with Si
so as to make the whole structure conductive. By integrating all the interfaces into
one sample, all the layers and interfaces can be measured with the same STM tip and
tunneling conditions. In order to isolate all the interfaces from each other, the GaInAs/-
AlAsSb pairs are separated by 10 nm-thick InP spacer layers. The surface terminations
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are numbered in the same way as previously studied samples (table 2.2, page 36). The
STM cross-section was obtained by cleaving along one of its {1 1 0} natural cleavage sur-
face under ultra-high vacuum conditions. STM images were then taken under constant
current mode with negative samples bias. The X-STM observations and analyses were
performed by Samuel Mauger at Technische Universiteit Eindhoven.

InP buffer

AlAsSb 10 nm

InGaAs 7.5 nm
Interface 1

AlAsSb 10 nm

InGaAs 7.5 nm

InP 10 nm

AlAsSb 10 nm

InGaAs 7.5 nm

InP 10 nm

AlAsSb 10 nm

InGaAs 7.5 nm

InP 10 nm

AlAsSb 10 nm

InGaAs 7.5 nm

Interface 2

Interface 3

Interface A

Interface B

Interface C

InP 10 nm

AlAsSb 10 nm

InGaAs 7.5 nm

InP 20 nm

InP 10 nm

Figure 2.17: Sample structure of S844

Figure 2.18a displays a large-scale atomically resolved X-STM images of samples
S844. Under the large negative bias used, filled states of group-V elements are probed
and the image contrast mainly reflects topology (surface height) information of the
cleaved surface. Each spot in the image represents an anion atom, and antimony atoms
appear brighter than arsenic ones. Due to the vertical rearrangement of surface atoms
(buckling), only every other [1 1 0] atomic row is probed along [0 0 1] direction so that
the distance between these atomic row is actually 2 ML. Figure 2.18a presents a large-
scale X-STM image showing various alloy layers and interfaces of samples S844, while
figure 2.18b and figure 2.18c give a closer look at the GaInAs-on-AlAsSb interface ‹3›
and AlAsSb-on-GaInAs interfaces ‹B›.

In order to quantitatively assess the unintentional incorporation of Sb into subsequent
GaInAs layer, the distribution of antimony atoms is extracted from the STM image.
Since Sb atoms appear at higher altitude in STM image than arsenic atoms, they can be
identified on the STM image using automated procedures based on topology information.
Figure 2.19 illustrates how Sb-counting is performed in practice. At first, the original
STM image in 2.19a is flattened by a spatial filter to remove the slow varying components
in its topology information. Then Sb-atom identification algorithm is performed on the
processed image 2.19b, to identify Sb atoms by their altitudes and each ∗ symbol in
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(a) (b)

GaInAsGaInAs

AlAsSbAlAsSb

(c)
GaInAsGaInAs

AlAsSbAlAsSb

Figure 2.18: Large scale X-STM images of sample S844 (a). The image was taken under
constant current mode with negative samples bias (Vsample = −3.5 V, I = 40 pA). The scanned
area is 100 × 100nm2. The various interfaces are annotated in place and the growth direction
is indicated by the white arrow. (b) magnified view of AlAsSb-on-GaInAs interface ‹B›. (c)
magnified view near GaInAs-on-AlAsSb interface ‹3›.

(a) (b) (c)

GaInAsGaInAs

InPInP

AlAsSbAlAsSb

Figure 2.19: Sb-atom identification process in near InP-on-AlAsSb interface. (a) Original
image (b) after high-pass spatial filter (c) detected Sb-atoms.
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figure 2.19c represents a detected Sb atom. The central band where most Sb atoms
are concentrated correspond to the AlAsSb layer, while the Sb atoms lying out of this
region thus correspond to unintentionally incorporated Sb atoms segregated from AlAsSb
layers. Various useful statistics can be extract from such measurements.

Figure 2.20b presents the Sb-distributions obtained near the GaInAs-on-AlAsSb in-
terfaces of samples S844. Each data point in these figures represents the portion of Sb
atoms detected in a [1 1 0] atomic row over a length of 50 nm. The measured Sb content
in AlAs0.56Sb0.44 layer is around 0.23–0.45, which is sometimes lower than its nominal
Sb-content of 0.44 in AlAsSb layer. This is due to the fact the automated procedure
failed to recognize every Sb atoms, especially when they are closely packed. At the two
ends, these profiles presented in figure 2.20 show sharp Sb-concentration onset but they
also have segregation tails as long as 8 ML.
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Figure 2.20: Segregation profiles of Sb near three GaInAs-on-AlAsSb interfaces of samples
S844.

To have further meaningful quantitative description of the segregation of Sb, these
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Table 2.4: Fitting parameter for Sb segregation profiles in sample S844. The error bars represent
the standard deviation of the fitting results.

Interface x0 R S ± dS

GaInAs-on-AlAsSb
‹1› 0.40 ± 0.03 0.65 ± 0.10 0.9 ± 0.4
‹2› 0.27 ± 0.01 0.76 ± 0.05 1.0 ± 0.3
‹3› 0.36 ± 0.03 0.68 ± 0.10 0.9 ± 0.4

distribution are fit to the segregation model of Muraki [36] :






xn = x0(1 − Rn) N ≥ n ≥ 1

xn = x0(1 − RN )Rn−N n > N
(2.6)

This model has been successfully applied to the segregation profile of indium, and the
obtained segregation parameter R provides good quantitative description of indium’s
segregation behavior [36]. Applied to the current study, n is the index of atomic layers
and the two ends of AlAsSb layer marked by n = 0 and n = N . This model assumes
that during the formation of each AlAsSb layer, R fraction of Sb atoms segregates
into subsequent layers for every one portion of Sb deposited. The Sb concentration xn

reaches a stable concentration of x0 in the inner part of AlAsSb layer, but ‘transient’
Sb distribution present at the onset (n = 0) and at the termination (n = N) of the
AlAsSb layer. As is demonstrated in figure 2.20, Muraki’s model describes well the Sb
distribution near AlAsSb layer.

The similar procedure is repeated near three the GaInAs-on-AlAsSb interfaces and
their fitting parameters are given in table 2.4 by expressing the credibility of such fitting
in error margins. Segregation coefficients R ranging from 0.65 to 0.76 are found for
the different surface termination method used. To have an idea of Sb-incorporation in
GaInAs layer, the total number of segregated Sb atoms can be summed by :

S =
∞

∑

N

x0(1 − RN )Rn−N ≈ −x0/ ln R (2.7)

The integration results are listed in table 2.4, and the S values are found to be about one
full mono-layer for all the three interfaces under study in spite of the different surface
termination methods used. Interface ‹2› has experienced 20 s Sb2 growth interruption
followed by another 5 s under As2, but it has only get 0.1 ML more Sb incorporated in
the GaInAs layer following it than in the case of interface ‹3›, which has experienced as
long as 25 s Sb-purging As2 growth-interruption. The consistent Sb-incorporation levels
among the three samples thus agree well with the previous PL observation, where PL
energy is independent of surface termination method (table 2.3, page 37). However, to
understand why surface terminations had little effect on unintentional Sb-incorporation,
we need to know how Sb exists on the growth surface.
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A Sb-rich surface reconstruction is usually considered to be terminated with an in-
complete layer of Sb-Sb dimmers atop another complete Sb-mono-layer [37]. Steinshnider
et al. have pointed out that only the surface Sb-Sb dimers are responsible for the Sb-
atoms segregated into subsequent layers[38]. For the current study, this suggests that
the amount of segregated Sb atoms is actually determined by the surface reconstruction
of AlAsSb surface and the three surface termination methods used in this study may
had little or no effect on the amount of excess Sb on AlAsSb surface.

On the other hand, the 1 ML of Sb unintentionally incorporated into a 7 ML-thick
GaInAs layer would result into a Sb-concentration of 14%. This may account for the
large energy difference existing between calculated inter-band energy and experimental
PL energies in section 2.2 (figure 2.6, page 25).

Summary

In this section, we have studied the influence of different surface terminations on the
properties of GaInAs/AlAsSb quantum wells using both macroscopic and microscopic
analyses. The different surface termination methods have shown significant influence
on both the structural and optical properties of GaInAs/AlAsSb quantum wells. The
microscopic studies reveal that as much as 1 ML Sb can be unintentionally incorporated
into subsequent GaInAs layer, which could explains the 200 meV difference between
experimental PL energy observed in GaInAs/AlAsSb quantum wells and those calculated
theoretical values; it could also contribute to non-achievement of 1.55 µm inter-subband
transition.

2.5 The impact of digital alloy growth

The GaInAs / AlAsSb coupled double quantum well structure illustrated in 2.9a is used
by many research groups to achieve 1.55 µm inter-subband devices. Such structure has
many adjustable parameters like the composition of GaInAs quantum well and the thick-
ness AlAsSb central barrier. These parameters enable high degree of band-engineering
but they also jeopardize the controllability and reproducibility of epitaxial growth .
Different GaInAs compositions require additional set of calibrated indium and gallium
fluxes. At the same time, group-III elements fluxes cannot be rapidly changed during
MBE growth, so that it is difficult incorporate GaInAs of different composition in one
structure.

“Digital alloy” is an MBE technique than enable the growth of GaxIn1−xAs of ar-
bitrary composition x with the same set of molecular beam flux as Ga0.47In0.53As. It
mimics random GaInAs alloy by depositing GaAs and InAs alternately rather than
simultaneously, and the composition of ‘digital’ GaInAs is determined by the ratio be-
tween GaAs and InAs deposited in each deposition cycle. Digital alloy as a method has
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been practiced in the growth of several ternary alloys like AlGaAs, GaInAs and AlAsSb.
These digital alloys were found to have comparable or even superior properties than
their “conventional” counterparts[39].

In order to evaluate the impact of integrating digital alloy in the growth of GaIn-
As/AlAsSb structure, a set of three GaInAs/AlAsSb multiple quantum wells samples,
S728 S727 and S726, were grown using digital Ga0.47In0.53As alloy layers. In each digital
alloy deposition cycle, 0.43 ML GaAs and 0.48 ML InAs were deposited to match the
composition of Ga0.47In0.53As. To ensure flux stability, 5 s grow interruption is performed
between each GaAs/InAs flux switching, and the overall growth rate is equivalent to
0.07 ML/s, which is lower than the 0.2 ML/s conventional growth rate of Ga0.47In0.53As.
Except for the growth method of GaInAs layer, these three samples are made to have
identical structure and surface termination methods in previously studied samples S829,
S830 and S831. These samples are first characterized by XRD for structural parameters
and low temperature PL for optical properties.

Macroscopic properties

PL spectra of these samples were actually measured within the same test-run as previous
samples S829–S831, and their PL spectra were recorded from 15 K to about 160 K. Fig-
ure 2.21a gives a comparison of all the PL spectra while the various PL characteristics are
summarized in table 2.5. PL spectra of digital-alloy samples present more than 10 times
higher PL yield than conventional samples. Figure 2.21b further shows a comparison
of PL quenching speed of digital-alloy sample S728 and its counterpart S829 (conven-
tional). With increasing temperature, the PL signals of digital alloy attenuate slower
than a conventional sample, so that it has a higher barrier for the thermal activation
of non-radiative processes. These characteristics of digital alloy samples suggest the use
of digital GaInAs has significantly improved the optical properties of GaInAs/AlAsSb
quantum wells. Nevertheless, the various interface treatments have noticeable influence
on the PL emission energy of digital alloys, which is not observed in conventional sam-
ples. This is evidenced by a PL energies difference of 25 meV existing between samples
S726 and S728, while the PL peaks of conventional samples are separated by no more
than 5 meV.

Structural properties of these digital-alloy samples were then analyzed by XRD .
The ω-2θ scan of sample S727 is compared with its conventional counterpart S830 in
figure 2.22. The digital-alloy sample S727 displays only a few satellite peaks; in con-
trast, its conventional counterpart sample S830 shows much more satellite peaks and
even Pendellösung fringes were resolve. The abundant satellites peaks and fringes in
conventional samples suggest that the periodicity in the sample is good and all the lay-
ers within the samples are relatively flat and macroscopically homogeneous; this agrees
with the previous X-STM observations. For digital-alloy samples, the absence of these
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Figure 2.21: (a) Low temperature PL spectra of samples for digital-alloy samples and conven-
tional samples. (b) PL quenching in S728 and S829.

Table 2.5: Characteristics extracted from PL measurements

Sample Peak Energy Integrated Intensity Line width Ea

(eV) (A.U.) (meV) (meV)

Digital
S728 0.873 17273 65 15.0
S727 0.893 17193 46 10.5
S726 0.898 8069 54 -

Conventional
S829 0.849 2049 55 8.3
S830 0.855 2190 44 7.9
S831 0.855 4098 59 11.6
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Figure 2.22: XRD ω−2θ pattern of sample S831 and its digital-alloy counterpart S727. It is
superposed onto simulated XRD pattern in gray.

features could be a result of inhomogeneity layers and rough interfaces.
So far, the PL studies indicate the use of digital GaInAs enhances the optical proper-

ties of GaInAs/AlAsSb quantum wells, but the XRD structural analyses suggest digital
alloy samples have degraded structural properties as compared to conventional alloys.
In order to understand such contradicting interpretations, we again turn to X-STM for
a microscopic observation of digital GaInAs.

Microscopic study

An additional sample S680 was grown and prepared for X-STM studies of digital alloy
GaInAs. This sample has exactly the same structure as the previously studied S844
(figure 2.17, page 39) except that digital GaInAs layers were used instead of conventional
ones. The sample is cleaved by one of its {1 1 0} natural cleavage plane, and STM
measurements were performed under constant current mode with negative sample bias.
Under such conditions, filled states in group-V element are probed. Figure 2.23a shows
a large-scale X-STM image of sample S680, while figure 2.23b features a magnified view
of a GaInAs layer and an AlAsSb one.

Noticeable alternating contrast appears in the GaInAs layer. To better reveal this
feature, averaged height profile were extracted along [1 1 0] direction in digital GaInAs
layers. Figure 2.24 presents the height profile within digital GaInAs layer number ‹1›,
along with its counterpart extracted from the previously studied conventional GaInAs
samples. Fluctuations exist in both GaInAs layers, but the amplitude of fluctuation is
much larger in digital alloy than in conventional alloy.

Under the negative sample bias, only filled state of arsenic atoms are probed in
GaInAs layer. Although large negative samples bias was employed to suppress electronic
contrast, compositional inhomogeneity can still be reflected in STM image: since GaAs
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(a) (b)

AlAsSbAlAsSb

GaInAsGaInAs

Figure 2.23: (a) Large X-STM image of digital alloy sample S680. The growth direction is
marked by white arrow. (b) magnified view near the AlAsSb-on-GaInAs interface. The image was
taken under constant current-mode with negative samples bias (Vsample = −3.0 V, I = 43 pA).
The scanned area is 100 × 100nm2.

Figure 2.24: Comparison of STM surface profiles along [110] direction, taken in (upper) digital
GaInAs alloy layer 3 in samples S680 and (lower) conventional GaInAs layer 3 in samples S844.
SPS, short period super-lattice is synonym of digital alloy.

— 47 —



2.5. The impact of digital alloy growth

has a larger band-gap than InAs, the STM tip is descended to keep the tunneling current
constant when passing Ga rich-zones in GaInAs layer, while it is pulled up when passing
through InAs rich zones. Therefore, the columns with brighter contrast in figure 2.23b
are identified as indium-rich zone while darker ones are gallium-rich. Therefore, the
alternating contrast in digital GaInAs layers actually reflects lateral modulation of its
composition.

Such lateral composition modulation has been observed in the growth of quite a few
semiconductor alloys, including conventional GaInAsP layer [40, 41] and digital GaInAs
alloy when GaAs/InAs deposition cycle is long [42]. Lateral composition modulation is
propagated along with strain field but surface segregation could have played an important
role [43].

The observed lateral composition modulation in digital GaInAs alloy helps recon-
cile the disagreeing XRD and PL results. In one hand, the inhomogeneity in GaInAs
layer degrades X-ray diffracting conditions so that fewer satellite peaks appear in XRD
pattern. In the other, Indium-rich zones in the digital GaInAs layer effectively provide
better confinement for both electrons and holes due to its smaller band-gap. Carriers
inside such zones are less likely to participate in non-radiative processes that are related
to disorders and defects near the GaInAs/AlAsSb interface. Therefore, the carriers in
digital GaInAs layer with severe composition modulation are less sensitive to temper-
ature change than a conventional homogeneous GaInAs layer. Meanwhile, the surface
origin of lateral composition modulation and surface processes also explains why PL
emission energies of digital alloy are sensitive to interface treatment method used.

Summary

In this section, we have examined the possibility of using digital GaInAs alloy in Ga-
InAs/AlAsSb quantum wells. It was intended to increase flexibility in the growth of
future complex GaInAs/AlAsSb structures. However, the introduction of this technique
has incurred large inhomogeneity within the GaInAs layer. For the specific example of
GaInAs/AlAsSb quantum well, such inhomogeneity can be improve the PL yields and
it risks to be mistaken for an improvement in overall optical quality.

Conclusion

Through the studies presented in this chapter, we have achieved near-infrared inter-
subband absorption at 1.9 µm using InP-based Ga0.47In0.53As/AlAs0.56Sb0.44 quantum
wells from scratch. Since the goal of inter-subband transition in 1.55 µm telecommuni-
cation band was not achieved, we have launched a series microscopic investigation to
understand the underlying mechanisms that prevent us from reaching this goal. The
microscopic observations of GaInAs/AlAsSb quantum wells have found the interior of
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the alloys is not perfectly homogeneous. More importantly, these studies have shown
that as much as 1 ML Sb can be unintentionally incorporated into subsequently GaInAs
layer.

Since many of the imperfections are inherent to the complexity of GaInAs/AlAsSb
structure and they are difficult to eliminate using normal growth techniques. Neverthe-
less, it has been reported that the use indium-rich Ga0.8In0.2As layer in GaInAs/AlAsSb
structure can effective shorten the inter-subband transition wavelength to about 1.73 µm
[30]. In the next chapter, we attempted to advance this idea by using pure InAs and to
fabricate strained InAs/AlAsSb quantum wells.
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Chapter 3

Sb-mediated Growth of
InAs/AlAs0.56Sb0.44 Strained
Quantum Wells for Inter-subband
Applications

InAs/AlAs0.56Sb0.44 quantum well has an even deeper electron confine-
ment potential than Ga0.47In0.53As/AlAs0.56Sb0.44 and this makes it yet an-
other candidate material system for InP-based near-infrared inter-subband
applications. Besides, since Ga is completely removed from the structure,
this new material system does not suffer from various inhomogeneity prob-
lem that is associated with Ga0.47In0.53As/AlAs0.56Sb0.44. However, the
growth of strained InAs layer on InP substrate is a challenge for conven-
tional MBE growth, because InAs deposition on InP substrate switches to
three-dimensional growth mode upon a very small quantity of InAs deposi-
tion.

In section 3.2, we will demonstrate that the use of Sb-mediated growth
makes the deposition of pseudomorphic InAs layer possible. Section 3.3 fur-
ther finds out the limit of the pseudomorphic InAs layer. To prepare such
quantum well for inter-subband absorption studies, strain compensation is
applied to enable stacking of multiple InAs/AlAs0.56Sb0.44 quantum wells
in section 3.4. Finally, a preliminary study on inter-subband absorption in
these structures will be presented in section 3.5.
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3.1. Properties of InAs/AlAsSb strained quantum well

3.1 Properties of InAs/AlAs0.56Sb0.44 strained quantum well

In figure 3.1, the band-alignment of InAs/AlAs0.56Sb0.44 quantum well is compared with
that of a Ga0.47In0.53As/AlAs0.56Sb0.44 quantum well. The InAs/AlAsSb quantum well
has a even larger conduction-band offset ∆EΓ

C ≈ 1.7 eV than the previously studied
GaInAs/AlAsSb. For two quantum wells with the same well-layer thickness, an InAs-
/AlAsSb quantum well has lower inter-band energy than a GaInAs/AlAsSb quantum
well, because pure InAs has a much smaller band gap (0.35 eV 300 eV eV, 300 K) than
Ga0.47In0.53As (0.74 eV). However, since InAs has smaller electron effective mass than
Ga0.47In0.53As, its conduction-band subbands are more widely separated than its GaIn-
As/AlAsSb counterpart, thus it has can achieve higher inter-subband transition energy
and larger oscillator strength.
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Figure 3.1: A comparison of conduction band subbands in Ga0.47In0.53As/AlAs0.56Sb0.44 and
InAs/AlAs0.56Sb0.44 quantum wells. The subband’s wave-functions are superposed on their en-
ergy levels. They were simulated using k · p calculations.

In order to determine the structural parameters of InAs/AlAs0.56Sb0.44 quantum for
1.55 µm inter-subband transition, the transition energies in InAs/AlAsSb quantum wells
were simulated by empirical tight-binding calculations. The InAs/AlAsSb quantum wells
were modeled by super cells containing 34 ML AlAs0.56Sb0.44 and InAs ranging from 5
to 10 ML while the wave-functions are expanded using an extended spds∗-basis. This
specific method is developed by Jean-Marc Jancu[1], and the simulations were performed
by Soline Richard.

Figure 3.2 plots simulated transition energies as a function of InAs layer thickness.
To obtain inter-subband transition at 0.8 eV (1.55 µm), it is necessary to achieve a 7 ML-
thick (2.1 nm) InAs layer in InAs/AlAsSb quantum well. This thickness is actually small
for a usual quantum well. However, it is larger than the Matthews-Blakeslee’s critical
thickness of plastic relaxation for InAs grown on InP substrate (presented in figure 1.5,
page 14). Direct InAs deposition on InP substrate usually leads to the formation of
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Figure 3.2: Transition energies of InAs/AlAs0.56Sb0.44 simulated by tight-binding calculations;
the inter-band transition energy are given in filled squares while inter-subband transition energies
in filled circles. For comparison, inter-band transition energies calculated using k · p method are
given in empty squares.

coherent three-dimensional nanostructures like quantum dots once the deposition is over
a critical thickness of 2 ML (section 4.1, page 76). The growth of coherent islands is not
without limit and continuing deposition after the formation of coherent islands will lead
to the formation of large relaxed islands (ripening), and eventually coarse thin film with
high density of defects formed by coalescence of these islands [2, p. 295].

Fortunately, there exists various growth technique that can delay the formation of
islands. At the same time, by introducing certain impurities known as surfactant during
the growth of strained material, it is possible to maintain layer-by-layer growth-mode
and delay the formation of three-dimensional islands. In the following sections, we will
demonstrate how Sb as a surfactant can assist the growth of pseudomorphic InAs layer
on InP (001) substrate.

3.2 Sb-mediated Growth of InAs on InP substrate

Surfactant Effect of Sb

Surfactant-mediated growth of strained epitaxial layer has great technological impor-
tance and the maintenance of two-dimensional growth mode was its earliest and most
intended use. The surfactant effect as a growth technique and existing theories on its
mechanisms have been thoroughly reviewed by many authors [2–4]. It is known that Sb
atoms tend to segregate and they virtually “float” on the growth front [5]. By forming
specific dimer arrangement, it effectively reduces surface energy of growth surface and
modifies the energetics and kinetics of underlying growth process.

Harmand et al. have demonstrated that the use of Sb-mediated growth can enable
the growth of strained Ga0.8In0.2As layer on GaAs substrate [6]. The FOTON labora-
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tory has also achieved “thick” InAs layer on InP substrate using Sb-mediated growth
[7]. Figure 3.3 shows a strained InAs/Ga0.47In0.53As quantum well grown on InP (001)
substrate using Sb-surfactant-mediated growth. Although the InAs-layer is as thick as
10 ML, it has flat interface and no defect like dislocation is observed around it. Further
TEM analyses indicate that only Sb-incorporation in the InAs layer was very low.

Figure 3.3: 10 ML thick InAs layer grown by Sb-mediated growth on InP (001) substrate. (a)
Its high-resolution TEM observation. (b) Accompanying map of Uz displacement in which the
InAs layer is more easily distinguished. In the map, variation of color signifies spatial variation
of lattice-constant (az), but there is no direct correspondence between a color and a specific
lattice-constant (material). [7].

In the growth of InAs/AlAsSb quantum well, the surface of AlAsSb buffer layer
itself is Sb-rich, and the accumulation of Sb on the growth surface could be sufficient
to help maintain two-dimensional growth mode of InAs layers. To verify this, we thus
have examined InAs/AlAsSb growth carried out both with and without the supply of
Sb during the deposition of InAs.

Effectiveness of surfactant effect

Two InAs/AlAs0.56Sb0.44 single quantum well structures, S845.1 and S846.1 were grown
with or without Sb co-deposition during the growth of InAs layer. Figure 3.4a illustrates
the structure of these samples. They were grown on InP (001) substrate under the same
conditions as previous Ga0.47In0.53As/AlAs0.56Sb0.44 samples. After the deoxidation of
InP substrate, a InP buffer layer was grown to ensure the flatness of growth surface.
However, due to a technique problem related to arsenic valved-cell, a significant portion
of arsenic is incorporated into their In(As)P buffer layer. Therefore, the thickness of
InP buffer layer was kept as low as possible. After that a 15 nm-thick AlAs0.56Sb0.44

layer was grown. The 10 ML thick InAs layer were grown either with Sb2 co-deposition
for S845.1, or without it for S846.1 by blocking the Sb2 flux using its shutter plate.
Following that, a 20 s growth interruption was performed under combined As2 and Sb2

fluxes, before the InAs(Sb) deposition was covered by another 15 nm-thick AlAs0.56Sb0.44

— 56 —



Chapter 3. Sb-mediated Growth of Strained InAs/AlAsSb Quantum Wells

layer . Finally, the top surface of the structure is finished by a final 5 nm GaAs0.51Sb0.49

protecting layer. Additionally, to enable comparisons of surfactant effect on different
substrate orientations, two extra InAs/AlAs0.56Sb0.44 samples S845.2 and S846.2 were
grown on InP (113)B substrates accompanying their “.1” counterparts grown on (001)
substrates 1.

The InAs/AlAs0.56Sb0.44 made on InP (001) substrate were characterized by XRD to
assess the crystalline quality of their InAs layer, and their ω−2θ scans in the vicinity of
InP (004) reflection are displayed in figure 3.4b. Three diffraction peaks are identified for
each sample: (004) reflection of InP substrate at 31.6°, the diffraction peak of In(As)P
buffer layer at about 31° and InAs-related peak between 29°-30°. The InAs peaks are
very weak and at the same time very broad. This is expected for the small volume
and small thickness of InAs layers. The diffraction from sample S845.1 (+Sb) is much
stronger than that of S846.1 and even Pendellösung fringes are resolved, which assures
relatively good interface flatness throughout the structure. In order to acquire strain
state of InAs layer within these samples, XRD pattern of a nominal 10 ML InAs/Al-
As0.56Sb0.44 quantum-well (with In(As)P buffer layer) was simulated by assuming that
the InAs layer be completely strained. The simulation result is overlayed with XRD
patterns in figure 3.4b, and its agreement with S845.1’s XRD pattern suggests that InAs
layer grown with Sb co-deposition is fully strained. In contrast, the InAs peak from
sample S846.1 is even weaker and it has shifted towards higher angles, which suggests
that plastic relaxation could have probably occurred within InAs layer when no Sb is
supplied during the deposition of InAs.
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Figure 3.4: Structural properties of InAs/AlAs0.56Sb0.44 single quantum well samples S845.1
and S846.1. (a) A schematic illustration of their structure (b) XRD ω−2θ scans near InP (004)
reflection.

Low temperature PL measurements were performed on these samples to assess their
1In case two samples are prepared in the same growth run, the one made on (001) substrate is given

“.1” suffix, while its counterpart made on high-index substrate like (113)B is named “.2”.
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optical properties. The PL spectra were recorded under 12 K and they are grouped by
the substrate orientations in figure 3.5. The PL energy of samples S845.1 is located at
about 0.81 eV, while PL of other samples are both red-shifted and broadened. Since
these samples contain almost the same materials, two factors may be responsible for
the observed PL energy shift: different level of Sb-incorporation into InAs layer, and
the formation of very rough InAs layer. The hypothesis of Sb-incorporation can be
dismissed, because if it is true, samples S845.1 should have contained more Sb than
S846.1 so that the PL energy of samples S845.1 would be lower than that of samples
S846.1, which conflicts with the experimental observations. Therefore, the very rough
InAs interfaces and even the formation of InAs islands are responsible for the observed
PL shifts: when Sb is supplied with InAs deposition, the surfactant effect of Sb ensures
the planarity of InAs deposition so that InAs quantum well is achieved. When Sb
is insufficient, rough interface or three-dimensional growth mode accompanies strain
relaxation of InAs, which actually agree with the XRD observations. The same strain
relaxation could have occurred for S845.2 made on (113)B substrate, even though Sb is
supplied during InAs deposition. This result seems to indicate that the Sb’s surfactant
effect behaves differently on (113)B oriented substrate, and this phenomena will be
investigated in chapter 4 (starting from page 75).
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Figure 3.5: Low temperature PL of samples S845.1/2 and S846.1/2

3.3 Sb-mediated growth of pseudomorphic InAs/AlAs0.56-
Sb0.44 single quantum well

In the previous section, we have demonstrated that it is possible to obtain relatively flat
InAs strained layer on InP substrate as thick as 10 ML by using Sb-mediated growth.
However, there’s still no guarantee that the strained layer is free of defects that is
commonly seen for strained epitaxial layer. More importantly, it is useful to know

— 58 —



Chapter 3. Sb-mediated Growth of Strained InAs/AlAsSb Quantum Wells

the upper limit of strained InAs layer thickness that can be achieved using Sb-mediated
growth. In this section, a series of InAs/AlAsSb were prepared for both macroscopic
and microscopic characterization of their qualities.

More InAs/AlAsSb single-quantum-well structures were fabricated in the same way
and under the same conditions as sample S845.1, except that the amounts of InAs
depositions now range from 5 to 13 ML. During the growth, the reflective high energy
electron diffraction (RHEED) pattern did not show clear chevron-like feature that is
characteristic to the formation of quantum dots. Therefore, XRD measurements were
performed at first to obtain the structural information about these single quantum wells.

Determination of the limit of pseudomorphic growth

Figure 3.6a displays XRD ω−2θ scans of these samples near the (004) reflection of InP
substrate. Abundant Pendellölsung fringes were resolved for samples with no more than
8 ML InAs deposition inside, while the fringes gradually fade as InAs quantity increases.
It is usually difficult to detect X-ray diffraction from as little as 7 ML material using a
laboratory equipped XRD instrument. Actually, these fringes originate from interference
between diffraction from different material layers, and their periodicities are reciprocally
related to distances between interfaces within the sample structure [8]. For most of the
samples, two set of fringes were identified by their different periodicities. The one with
larger period corresponds to the thicknesses of one of the AlAsSb barrier layers plus
InAs layer, while the fringes with small period correspond to total thickness of epitaxial
layer including In(As)P buffer layer 2. The presence of fringes for samples having no
more than 8 ML of InAs deposition suggests that the InAs layers have relatively good
crystalline quality, while their gradual disappearance for depositions over 10 ML is a sign
of roughened interfaces and strain relaxation could have occurred within these structures.

To determine the relaxation of in-plane lattice constant of these Sb-mediated InAs
layers, asymmetric ω−2θ scans were performed on these quantum well samples. Unfor-
tunately, due to the low volume of InAs within these samples, asymmetric diffraction
was only detected for the 13 ML samples. Figure 3.6b demonstrates its two-dimensional
reciprocal space map in the vicinity of InP (224)+ reflection. The qx and qz are directions
in reciprocal space, which are related to in-plane lattice constants along ⟨1 1 0⟩ directions
(a//) and vertical lattice constants (a⊥) along [0 0 1] direction, respectively. In the figure,
the spot with highest intensity represents InP substrate while the other one below it,
elongated along qz direction corresponds to the diffraction from InAs layer. Actually,
a vertical slice through the center of InP peak will obtain cross-section similar to those
ω−2θ scans in figure 3.6a. The InAs spot is located at lower vertical (qz) position for its
larger vertical lattice constant than that of InP, and its large vertical extension reflects

2The fact the interface of between In(As)P buffer layer and InP substrate is a consequence of un-
intended As incorporation in InP buffer layer; the In(As)P/InP interface itself is actually flat, as is
demonstrated by the TEM image in figure 4.8 (page 83).
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Figure 3.6: XRD analysis of InAs/AlAs0.56Sb0.44 quantum wells (a) ω−2θ scans with various
InAs thicknesses (b) reciprocal space mapping of the 13 ML sample in the vicinity of InP (224)+
reflection

the small thickness along [001] direction. In horizontal directions, the center of InAs
spot is nearly aligned with the InP spot but still it is shifted towards smaller qx by a
visible difference. Interpreted in real space, this indicates that the InAs deposition has
already plastically relaxed so that its in-plane lattice constant (aInAs,�) is slightly larger
than that of InP aInP,� = aInP.

To acquire microscopic structural information out of these samples, and also to vali-
date the results of XRD analysis, two InAs/AlAsSb single quantum wells with 7 ML and
12 ML-thick InAs layers were examined by conventional TEM at CEMES (Toulouse),
and their dark-field TEM images are displayed in figure 3.7. These images were taken
under (002) dark-field imaging conditions so that layers with different composition can
be discriminated by their contrasts. Figure 3.7a displays the sample containing 7 ML
of InAs deposition. All the layers and interfaces appear flat and homogeneous, with

(a) (b)

Figure 3.7: TEM (0 0 2) dark-field images of the (a) 7 ML sample and (b) 12 ML sample
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no trace of island or any other three-dimensional nanostructure. This assures the 7 ML
InAs layer intended for 1.55 µm inter-subband application is achieved. On the other side,
figure 3.7b shows a 13 ML InAs/AlAsSb quantum well structure. The both interfaces of
InAs layer is already undulated and several lines penetrating the upper AlAsSb layer are
present. These lines are characteristic to 60° dislocations 3 and the emergence of dislo-
cation confirms that plastic relaxation has occurred within the structure. Nevertheless,
it’s worth noting that the interface between InP buffer layer is already undulated, and
such undulation is carried on to InAs layer.

Optical properties of these Sb-mediated samples were then examined using low tem-
perature PL. Figure 3.8b shows their normalized PL spectra while the intensities are
separately compared in figure 3.8c. The PL peaks shift towards low energy as the InAs
layer thickness is increased, which is expected for their smaller effective gap. With
increasing InAs deposition quantity, the PL emission peak intensities increases before
the quantum well thickness reaches 8 ML and they decrease afterwards. The increased
intensity is expected since there’s more InAs in the structures. The diminished PL in-
tensities at large InAs thickness is then probably a result of overall degradation due to
plastic relaxation. The PL line width for the 5 ML samples is about 200 meV while the
value is smaller for a thicker InAs quantum well. The decreasing slope of inter-band
transition energy in figure 3.8a (page 61) indicates that, by adding or removing 1 ML
thickness from a thicker quantum well, the associated transition energy change would
be much smaller than that for a much thinner quantum well.
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Figure 3.8: Low temperature PL study of InAs/AlAs0.56Sb0.44 single quantum wells: (a) PL
energies compared with tight-binding calculations previously presented in figure 3.2 Low temper-
ature PL spectra are normalized in (b) to emphasize their the position and width of the emission
peaks; their intensities are presented in (c).

In figure 3.8a, these PL energies are compared with the simulated inter-band energies,
3The 60° dislocation in zinc-blende structure is a mixed-type dislocation. Its Burgers vector |b| =

a110/2 and it lies along one of the ⟨1 1 0⟩ directions, the dislocation line is parallel to another ⟨1 1 0⟩
direction and its gliding plane is one of the {1 1 1} planes.
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with PL line widths plotted as error margins. The line-widths are in fact no wider than
the energy difference brought about by the addition of one ML of InAs in the structure.
If the quantum well thickness fluctuation is deemed as the only source of PL line-width
broadening, such comparisons indicate the interface roughness within these samples is
equivalent to thickness fluctuation of 1 ML. Nevertheless, the experimental PL energies
are unanimously ∼80 meV lower than theoretical values. The incorporation of Sb in
InAs layer could again be responsible for such differences, and it’s worth studying by
quantitative TEM analyses.

Microscopic Study of InAs/AlAsSb Interface

The previously studied 7 ML InAs/AlAsSb TEM sample was examined at a second
time by high-resolution TEM to reveal microscopic structure of the InAs layer and its
adjacent zones. The analyses was performed by Julien Nicolaï (CEMES, Toulouse) on
a FEI TECNAI apparatus with spherical aberration corrections. Figure 3.9a shows a
high-resolution TEM image of this sample where atomic resolution was achieved. In this
kind of measurement, the composition of observed zone cannot be directly deduced from
image contrast. Rather, geometric phase analysis allows quantitative strain analyses
using the position of lattice points in high-resolution TEM image. In this technique, a
reference lattice constant is first sampled in the AlAs0.56Sb0.44 buffer layer. Following
that, the out-of-plane lattice constant (az) in the region selected by the white rectangle
in figure 3.9a is averaged along the in-plane direction and then compared to the reference.
Any difference in strain sate could reflect difference in composition. Here, the difference
of lattice constant is termed as “deformation” using the notation of strain. For instance,
figure 3.9b shows an εzz profile along the growth direction (z), which actually marks
by how much the measured vertical lattice constant (az) is larger or smaller than in a
reference that is taken from AlAs0.56Sb0.44 region.
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Figure 3.9: TEM study of the 7 ML InAs/AlAs0.56Sb0.44 sample. (a) Its high-resolution TEM
image and (b) εzz profile along z direction deduced by geometric phase analysis of the image.
(c) gives a schematic illustration of the lattice that the εzz profile may correspond to.
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In figure 3.9b, the regions where the deformation is lower than 0.01% (z < 4 nm)
is considered to still belong to AlAs0.56Sb0.44. In the vicinity of z = 5 nm, where the
lower InAs-on-AlAsSb interface is located, the out-of-plane (vertical) lattice constant
az is about 6% smaller than the reference. By examining possible compounds that can
be formed in the epitaxial growth, As-rich AlAs1−xSbx or even pure AlAs are found
to be candidate composition of this layer, for pure AlAs under tetragonal strain would
produce an εzz = −6.6%. Positively deformed region located between position z = 5.5

and z = 6.5 nm are related to the compressively strained InAs layer: when InAs is
deformed to be coherent to InP substrate, its vertical lattice constant az is 6.7% larger
than that of InP 4. In the zone between z = 7 and z = 8 nm, where the AlAsSb-on-
InAs interface is located, the deformation level has reached unexpectedly 10%. The
only materials that can produce such high-level of strain are Sb-rich InAs1−xSbx alloys.
Eventually, the phase analyses suggest that the region near the InAs-on-AlAsSb interface
is deprived of Sb, while the upper AlAsSb-on-InAs interface is enriched of it.

The Sb-rich interface could help explain the difference between experimental PL ener-
gies and those calculated by tight-binding calculations. We have simulated the transition
energies of InAs/AlAsSb quantum wells with various As-rich lower interface (AlAs) and
Sb-rich upper interface using k · p calculations. In figure 3.10 the calculated energies are
compared with experimentally observed PL peak energies. The introduction of 1 ML of
AlSb or InSb at the upper interface have both resulted in very good agreement between
simulated transition energies and experimentally observed PL energies. Although such
coincidence is not unequivocal, it does support Sb-rich upper interface concluded by
TEM analyses.
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Figure 3.10: Comparison between PL energies of InAs/AlAs0.56Sb0.44 single quantum wells
and simulated transition energies in InAs/AlAs0.56Sb0.44 quantum well with various types of
interface layers.

4Due to possible surface relaxation in the thinned TEM sample, the observed az could be smaller
than that in a un-cleaved sample; that is, the εzz = 5.2% may have underestimated the deformation in
this layer, and its true value could be closer to its theoretical value εzz = 6.7%.
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Summary

By applying Sb-mediated growth, we thus obtained 7 ML-thick InAs/AlAsSb single
quantum well of good quality, that is required for near-infrared inter-subband applica-
tions. At the same time, we determine that the pseudomorphic limit of Sb-mediated InAs
layer to be around 10 ML. However, the quantity of InAs in a single quantum well is still
too small for any practical use and it is necessary to produce multiple quantum wells by
stacking these unit quantum wells. Without proper strain management, the cumulated
strain will eventually lead to roughened surface or even plastic relaxation which severely
degrades the optical and electronic properties of such multiple quantum well. In the
coming section, a study will be presented on strain compensation in InAs/AlAs0.56Sb0.44

multiple quantum wells.

3.4 Strain compensation in InAs/AlAs0.56Sb0.44 multiple
quantum wells

Strain compensation on InP substrate is a technique that allow the epitaxial growth of
strained material with zero macroscopic strain [9]. Materials having smaller lattice con-
stants are employed to compensates in-plane lattice constant dilatation brought about
by materials having larger lattice constant, and vice versa. To compensate the strain
caused by InAs/AlAs0.56Sb0.44 quantum well, the simplest choice would be inserting cer-
tain amount of AlAs in each period of InAs/AlAs0.56Sb0.44 in the middle of AlAs0.56Sb0.44

barrier layer. This can be achieved by simply blocking Sb flux for certain time during
the growth of AlAs0.56Sb0.44 layer. The quantity of AlAs m required for compensating
the strain introduced by 7 ML of InAs can be found by letting :

m · aAlAs − aInP
aAlAs

+ 7 · aInAs − aInP
aInAs

= 0 (3.1)

in which a□ is natural (relaxed) lattice constant of each material. The solution to the
above equation indicates zero net-strain InAs/AlAs0.56Sb0.44 structure can be obtained
by inserting about 6 ML of pure AlAs in the middle of AlAs0.56Sb0.44 layer.

In order to find the actual quantity of AlAs required for compensating the strain
introduced by 7 ML of InAs, we prepared several series of InAs/AlAs0.56Sb0.44 multiple
quantum well samples with the amount of AlAs in each period of quantum well varying
from 6 to 8 ML. The unit structure in these samples is illustrated in figure 3.11a and it
is repeated ten-time in each sample.

In this study, we compare two series of the samples. For the first series of two
samples S980 and S981, their AlAsSb-on-InAs interfaces were terminated by 30 s As-
based growth interruptions, which is expected to help purge the excess amount of
Sb accumulated on InAs surface. For comparison, the second series of four samples
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Figure 3.11: Strain compensation studied by XRD. (a) Unit structure of a strain-compensated
samples. constant contraction. (b) The relation between amount of AlAs inserted into the
structure and the net-strain of the structures.

(S1317,S1318,S1349,S1350), were grown without such Sb-purging procedure.
The net-strain, namely average lattice mismatch, in these multiple quantum wells

were measured by routine XRD ω−2θ checks and the results are summarized in fig-
ure 3.11b. For samples grown with Sb-purge, the evolution of mismatch is well approxi-
mated by formula (3.1), and very low level of net-strain was achieved by inserting 6.7 ML
(S981) of AlAs in each period of the InAs/AlAs0.56Sb0.44 quantum well. In contrast, for
the samples without Sb-purge, one more ML of AlAs is generally needed, and 8 ML
(S1349) of AlAs is needed to compensate the strain brought about by 7 ML InAs. At
the same time, the evolution of residual strain follows different trend and they generally
requires one more ML of AlAs to completely compensate the strain. Such difference
suggests the Sb-purging growth interruption is equivalent to turning 1 ML of AlAsSb
into pure AlAs.

The shaded area in figure 3.11b corresponds to net-strain level lower than 0.05%. Ac-
cording to plastic-relaxation criterion proposed by Matthews-Blackslee (equation (1.2),
page 13), lattice mismatch of 0.05% can be tolerated by a epitaxial layer as thick as
760 nm. This thickness is equivalent to the 100-period Ga0.47In0.53As/AlAs0.56Sb0.44

samples made for inter-subband absorption studies presented in section 2.2. Since the
lowest net-strain levels achieved by strain compensation fall into the shaded area, they
can be further stacked to fabricate a 100-period InAs/AlAs0.56Sb0.44 multiple quantum
wells.

S981, the structures showing lowest mismatch in routine XRD check was further
studied by other means. Figure 3.12 a displays an asymmetric XRD reciprocal space
map near its InP (2 2 4)+ 5 reflection. The red spot in the image corresponds to (224)

5The “+” symbol marks an asymmetric reflection with larger incident angle and smaller exiting angle.
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diffraction of InP substrate while InAs/AlAsSb super-lattice satellite peaks appear as
strips along in-plane directions. The lower panel of figure 3.12 demonstrates horizontal
cross-sections taken from the mapping at various satellite peaks and the substrate peak.
The horizontal directions in reciprocal space reflect the in-plane directions in real space.
The center of these satellite peaks is well aligned with InP (224) reflection, confirming
that the epitaxial layers are fully coherent to InP substrate. However, the in-plane line
widths of satellites are significantly larger than that of the InP spot. Such observation
suggests the interference condition is perturbed in in-plane direction of epitaxial layers.
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Figure 3.12: Upper panels: Reciprocal-space map of sample S981 and its vertical cross-section.
Lower panel: its horizontal cross-sections taken at several satellite peak as well as substrate peak.
The intensity is normalized to enable intuitive comparison of line shapes.

Figure 3.13 presents the low temperature PL emission of samples S981, compared
with a previously studied 7 ML InAs/AlAsSb single quantum well sample (S958). The
PL of multiple quantum well is both red-shifted as well as attenuated as compared to
an InAs/AlAs0.56Sb0.44 single quantum well, which could be a result of strain relaxation
or elevated quantum well thickness fluctuation.

The microscopic structure of this sample is further scrutinized by cross-sectional
TEM. Figure 3.14 presents a (002) dark-field TEM image of the structure, in which
different layers can be identified by their different contrast and thicknesses. Unlike the
previously studied 12 ML InAs/AlAsSb single-quantum-well sample (figure 3.7b), no
dislocation is spotted in the observed first periods of the multiple quantum well; this
suggests that the system has elastically relaxed by faceting, rather than plastic relaxation
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Figure 3.13: Low temperature PL of sample S981 compared to a previously studied 7 ML
InAs/AlAsSb single quantum well sample (S958). The reference sample (2435) contains 5
GaInAsP/InP quantum wells and it is diminished by 500 time in the figure. PL emission peak
intensity of AlAsSb-based samples is more than 500 times lower than it .

by generating dislocation as is the case of 12 ML InAs deposition (sample S977, TEM
image in figure 3.7b).

Figure 3.14: TEM (002) dark-field image of sample S981.

Figure 3.15a displays a high-resolution TEM image of samples S981, where the InAs
layers are identified by the spacing between them and their thicknesses were found to
be varying from 5 to 8 ML. Geometric phase analyses were also performed on the image
to help identify the composition of the layers, and figure 3.15b presents the result εzz

profile. εzz is strongly negative in the vicinity of z = 9 while the region from z = 9.5 to
z = 12 is significantly compressively deformed. These features respectively account for
the As-rich InAs-on-AlAsSb interface and the compressively strained InAs deposition,
which already have been observed the in single quantum well sample (S958, figure 3.9a,
page 62). Yet, the deformation level at its AlAsSb-on-InAs interface (5%) is not as
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elevated as in the case of the single quantum well sample (S958 10%), despite that the
same surface termination method was applied to them. It is also worth to be noted that
the AlAs layers already observed in dark field image is not easily identified in the phase
analyses; instead, constant negative deformation of 2% is found to be spreading in the
middle of AlAs0.56Sb0.44, ranging from z = 2.5 to z = 6 in figure 3.15b. The in-plane
inhomogeneity (undulations) observed in (002) dark-field image (figure 3.15a) could have
disturbed the phase analyses so as the measured deformation is spread and averaged
in z direction. Such interpretation needs further confirmation; nevertheless, the large
fluctuation of InAs layer thickness and inhomogeneity in this sample will unsurprisingly
lead to red-shifted PL energy and broadened PL peak in the PL studies.
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Figure 3.15: TEM observations of sample S981 (a) high-resolution TEM image (b) Geomet-
ric phase analysis εzz profile sampled at two different positions. The white rectangle in (a)
indicatively illustrates the area analyzed in (b).

Summary

To conclude this section, we thus have experimented strain compensation in InAs/Al-
As0.56Sb0.44 quantum well by inserting AlAs layers in its AlAs0.56Sb0.44 layer. We were
able to achieve InAs/AlAs0.56Sb0.44 quantum wells with very low-level of macroscopic
net-strain in XRD observation. However, microscopic observations on the same structure
indicate it has undulated layers and interfaces. This is thus the origin of broadened PL
emission peak and low PL yield.

3.5 Polarization-dependent absorption in InAs/AlAs0.56Sb0.44

multiple quantum wells

In this final section, we will present a preliminary study on inter-subband absorption
in InAs/AlAs0.56Sb0.44 quantum wells. Three strain-compensated InAs/AlAs0.56Sb0.44

multiple quantum-well samples, S1363, S1364 and S1365 were fabricated for this purpose.
They were prepared in the same manner as the strain-compensated samples presented in
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the previous section, except that they were grown on semi-insulating InP:Fe substrates
and their InAs layers are n-doped with Si. The three samples all contain 40 periods of
InAs/AlAs0.56Sb0.44 quantum wells, but they differ by the InAs layer thickness and sub-
sequently the thickness of AlAs strain compensation layer, too. The principal structural
parameters of these samples are listed in table 3.1.

Table 3.1: Structural parameters of strain-compensated InAs/AlAs0.56Sb0.44 quantum wells
made for inter-subband absorption study.

Sample InAs Quantity AlAs quantity Period Total thickness
(ML) (ML) (nm)

S1363 5 6.4 40 ≈680
S1364 6 7.4 40 ≈680
S1365 7 8.4 40 ≈680

After epitaxy growth, these samples were made into multi-reflection wave guide and
they were tested in the same way as the Ga0.47In0.53As/AlAs0.56Sb0.44 inter-subband
absorbance samples in chapter 2, using the same workbench. Unfortunately, no room-
temperature PL was detected for these samples so we assessed their inter-band properties
by absorption experiments.

Figure 3.16a shows surface-normal incident absorption spectra of these samples at
room temperature. The absorption edges in these spectra are in the shape of smooth
slope instead of a steep one. Since the strain compensation in these samples was not
optimized, the blurred absorption edge could be a result of growing inhomogeneity along
the growth direction caused by accumulation of lattice-strain. Nevertheless, these ab-
sorption edges do shift towards longer wavelength as expected for thicker InAs quantum
wells.

The absorption in these samples is then measured under multi-reflection mode, where
the light beam travels in the interior of the samples by several total reflection. Fig-
ure 3.16b presents the polarization dependent absorption spectra of these sample, which
are presented in (TTE/TTM). In this type of plot, inter-subband absorption between E1

and E2, of which TTE > TTM, would appear as a peak above y = 1. Nevertheless, the
current spectra are exactly the opposite, and valleys below y = 1 are observed for every
sample which means that TTE < TTM.

As is discussed for equation (2.5) (page 28), TTE < TTM is equivalent to αinter-subband <

αinterband, which indicate inter-band absorptions, especially the HH1-E1process, could
be responsible the observed anisotropy valleys. These valleys are in the same spectral
range as the above mentioned absorption edges, and the bottom of these valleys also
shift towards longer wavelength with increasing InAs thickness, which is also expected
for inter-band absorption. Additionally, the optical properties of highly strained InAs
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Figure 3.16: Room temperature absorption studies of strain-compensated InAs/AlAs0.56Sb0.44
multiple-quantum-well samples. (a) surface-normal incident absorption spectra; (b) anisotropic
absorption spectra under multi-reflection configuration (facet-incident).

quantum well could be anisotropic so that its in-plane absorption coefficients may differ
(αLH1-E1,y ̸= αLH1-E1,x for example); this can also contribute to anisotropy expressed
in TTE/TTM plot in figure 3.16b. On the other hand, the selection rules governing the
polarization dependence of inter-band absorption may also be relaxed due to the in-
homogeneity and microscopic strain existing in the material. So we cannot come to a
conclusion of the origin of these absorption valleys (anisotropy) at this time.

Nevertheless, the anisotropic absorption spectra in figure 3.16b seem to be rising
constantly and would probably arrive levels above y = 1 within the spectra range between
2300 nm and 3000 nm. Limited by the working wavelength of our current workbench,
we do not have information on absorption spectra of these samples over 2100 nm. For
the time of being, we are still on the development of a new workbench that enables
absorption measurement in longer wavelength using an InSb detector.

Photo-induced absorption measurements

At the same time, we have also performed anisotropic absorption measurements using
photo-induced absorption technique with the help of François Julien (IEF, Orsay). In
his workbench, a Fourier transform infrared spectrometer and an HgCdTe detector was
used so that absorption can be studied at longer wavelength.

The photo-induced absorption is a pump-probe technique that allows observation of
inter-subband absorption in quantum well without doping. Figure 3.17 schematically
demonstrates its experimental setup.

During the experiment, the epitaxial face of the multi-reflection waveguide is pumped
by a 514 nm laser operating at 400 mW output, while the absorbance is measured by an-
other probe-light beam that passes through the structure. The conduction-band ground-

— 70 —



Chapter 3. Sb-mediated Growth of Strained InAs/AlAsSb Quantum Wells

chopper

polarizor

probe

probe

p
u
m
p

MCT

detector

lock-in

amplifier

Figure 3.17: Schematic illustration of photo-induced absorption experimental setup.

level in a quantum well is populated by optical injection instead of using high-level n-
doping. The photo-induced absorption is then measured by comparing the absorption
spectra obtained with and without laser pumping. An advantage of this experiment is
that no reference sample is required. In practice, the pump laser is modulated by a me-
chanical chopper and the photo-induced absorption variation (∆T/T )TE and (∆T/T )TM

is picked up by a HgCdT detector connected to lock-in amplifier. Since the output of
lock-in amplifier is the magnitude of the signal that is in-phase with laser modulation,
it actually reflects the magnitude of photo-induced absorption change |∆T/T |TE (or
|∆T/|TE)

S1056 is a strain-compensated InAs/AlAsSb multiple quantum well sample prepared
for this study. This sample has the same structure as the previous studied sample S1361
(7 ML) except that the InAs layer inside S1054 is not doped with Si; it contains 40
periods of strain-compensated quantum wells, 7 ML of InAs is used in each InAs/AlAsSb
quantum well and the structure is grown on semi-insulating InP:Fe (001) substrate. XRD
check of this samples has shown its net-strain level is as low as -0.04%.

Figure 3.18 shows the photo-induced absorption spectra of sample S1054. The
gray solid/dotted lines in this figure represent photo-induced transmittance changes
(|∆T/T |□) measured under TM and TE probe-light polarizations. The transmittances
show significant attenuation in the spectral range from 1.1 µm to 1.6 µm, for which
both inter-subband transition (E2 − E1 = 0.8 eV, 1.55 µm and inter-band transitions
(E1 − HH1 = 1.1 eV, 1.1 µm) could be responsible. Especially, the two curves are
separated around 1.2 µm, which signifies an anisotropy of absorption.

The anisotropy absorption is better visualized by representing the data in :

log10

( |∆T/T |TM
|∆T/T |TE

)

and this is plotted as the solid black line in figure 3.18. The 1.2 µm peak flags significant
absorption anisotropy and it seems to suggest that the optical injection has increased
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Figure 3.18: Photo-induced absorption spectra of sample S1054.

TM-absorption. This may correspond to the following situation: optical injection fills
conduction-band ground-level E1 and TM-absorption is increased due to E1-E2 inter-
subband absorption. Thus the 1.2 µm anisotropy peak could represent inter-subband
transition in InAs/AlAsSb quantum wells. Judging by the inter-subband absorption line-
width as large as 600 nm (300 meV for sample S1346, page 33) that we have observed for
GaInAs/AlAsSb quantum wells, 1.2 µm (1.0 eV) is actually not far from its theoretical
position of 1.55 µm (0.8 eV). Nevertheless, in photo-induce absorption experiment, we
only measure the magnitude of absorption change |∆T/T |□. It is also possible that
the anisotropy peak in figure 3.18 stands for decreased TM-absorption. At the same
time, this anisotropy valley is not far from the anisotropy valleys previously presented in
figure 3.16b, so that the 1.2 µm anisotropic peak could also be attributed to inter-band
processes (E1 − HH1 = 1.1 eV, 1.1 µm for example).

The difficulty for inter-subband absorption measurement in InAs/AlAsSb quantum
wells lies in the fact its inter-band and inter-subband transition energies are actually close
to each other. For the time of being, we cannot confirm the above results of absorption
studies, without supplementary information on the subband positions in these sample
(using photo-reflectance studies for example). Therefore, we have to conclude the study
of InAs/AlAs0.56Sb0.44 quantum well without inter-subband properties in this thesis, but
it will remains a goal for future works.
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Conclusion

In this chapter, we have demonstrated how Sb-mediated growth is useful in the growth
of strained InAs layer on InP (001) substrate. We first found out that co-deposition of
Sb is necessary to maintain its surfactant effect in the growth of InAs/AlAs0.56Sb0.44

quantum well, albeit AlAs0.56Sb0.44 surface before InAs deposition is already Sb-rich.
Then using Sb-mediated growth we have achieved defect free InAs/AlAs0.56Sb0.44 single
quantum well as thick as 7 ML InAs deposition, which is required for realization of
inter-subband transition in 1.55 µm band. By inserting AlAs layer in AlAs0.56Sb0.44

barrier, we achieved InAs/AlAs0.56Sb0.44 multiple-quantum-well with very low level of
macroscopic strain. And eventually we performed preliminary studies on the absorption
properties of such structures.

Two additional issues arise through the study of Sb-mediated growth. For one thing,
it would be important to know how much Sb get incorporated in these InAs quantum
wells under Sb-mediated growth. This topic will be investigated in chapter 5 (Incorpo-
ration of Sb in Strained InAs(Sb) Heterostructures). For another, despite Sb-mediated
growth has induced two-dimensional growth InAs on InP (001) substrate, but it has
seemingly failed to have the same influence on InAs/AlAs0.56Sb0.44 structure grown
on InP (113)B substrate (S845.2). This surface-orientation dependent surfactant ef-
fect would become the central topic of the following chapter 4 (Sb-mediated Growth of
InAs/GaAs0.51Sb0.49 Heterostructures on InP Substrate).
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Chapter 4

Sb-mediated Growth of
InAs/GaAs0.51Sb0.49
Heterostructures on InP
Substrate

InAs/InP quantum-dot based laser is one of the main research activities
of FOTON laboratory. These nanostructures are usually obtained by directly
depositing InAs on buffer layers that are lattice-matched to InP substrate. In
this chapter, we will study the deposition of InAs on the surface of GaAs0.51-
Sb0.49 buffer layer. The growths of such structures on (001) and (113)B-
oriented InP substrate have led to very different results: InAs/GaAs0.51-
Sb0.49 quantum wells are obtained on InP (001) substrate, while InAs/Ga-
As0.51Sb0.49 quantum dots are formed under Volmer-Webber growth mode
on InP (113)B substrates. The structural and optical properties of these
nanostructures will be examined in section 4.2, but it takes another final
section 4.3 to understand how the surfactant effect of Sb is responsible for
these phenomena.
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4.1. InAs quantum dots on grown on (001) and (113)B substrates

4.1 InAs quantum dots on grown on (001) and (113)B sub-
strates

The InAs/InP nanostructures made for laser applications are usually obtained by de-
positing InAs on to a buffer layer that is coherent to InP substrates like GaxIn1−x-
AsyP1−y. These nanostructures are usually formed under Stranski-Krastanow growth
mode, in which the deposition of InAs switches to three-dimension growth mode only
after small amount of deposition. The formation of three-dimensional object is often
monitored by reflective high-energy electron diffraction during MBE growth. The on-
set of InAs nanostructures’ formation is accompanied by the appearance of chevron-like
diffraction patterns and thus a critical thickness required for island formation can be
measured. For the smaller lattice mismatch between InAs/InP (3.2%) than between
InAs/GaAs (7.2%), experimentally observed critical thickness of InAs deposition on InP
(001) substrate varies from 2 ML to 2.5 ML [1, 2], which is slightly larger than that of
InAs/GaAs quantum dots (1.5-1.8 ML).

Unlike InAs quantum dots obtained GaAs (001) substrate, the shape of MBE grown
InAs nanostructures on InP (001) substrates may vary from elongated ‘quantum dashes’
to more isotropic quantum dots. AFM images in figure 4.1a demonstrates the shape
of InAs/Ga0.20In0.80As0.44P0.57/InP (001) quantum dashes formed by 3 ML of InAs
deposition, where prism-like quantum dashes are aligned along one of the {1 1 0} di-
rections. The TEM image in figure 4.1b displays trapezoidal cross-sections of two InP-
capped InAs nanostructures [2]. By generalizing more RHEED and TEM observations of
InAs/InP(001) deposition, it is speculated that these InP-capped InAs/InP(001) nanos-
tructures have the shape of truncated pyramid with high Miller-index {1 1 4} facets [3,
4], as illustrated in the inset of figure 4.1b.

(a) (a) 

1×1 µm²
15 nm15 nm

(b)(b) 2.5 ML2.5 ML

InPInP

InPInP

Figure 4.1: AFM and TEM observation of InAs nanostructures grown on InP (001) substrates.
(a) AFM plan-view of InAs/Ga0.20In0.80As0.44P0.57 islands formed by 3 ML of InAs deposition
(b) (0 1 0) cross-section view of InP-capped InAs/InP quantum dots formed by 2.5 ML of InAs
deposition [2]. Inset of (b): The shapes of InAs/Ga0.47In0.53As nanostructures generalized by
more TEM observations [3]

On InP (001) substrate, isotropic InAs islands can be achieved by using very higher
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AsH3 flow rate (As2 flux) during the deposition of InAs ; however, by doing so the number
density of nanostructures is also reduced. The AFM image in figure 4.2a demonstrates
InAs/Ga0.20In0.80As0.44P0.57/InP(001) quantum dots obtained by 2.1 ML InAs deposi-
tion under such growth conditions, where large InAs islands are formed by coalescence
of smaller ones. The formation of these ripened islands may lead to plastic relaxation of
InAs deposition and degrades their optical and electrical properties.

The need for high-density InAs/InP quantum dots can be met by depositing InAs on
InP (113)B substrate. The AFM image in figure 4.2b shows InAs/Ga0.20In0.80As0.44P0.57-
/InP(113)B quantum dots obtained by the same 2.1 ML of InAs deposition. In contrast
to what is observed on InP (001) substrate, their density are as high as 5 × 1010 cm−2

and yet no coalesced islands are spotted. Figure 4.2c offers an STM plane-view of a
single InAs/Ga0.20In0.80As0.44P0.57/InP (113)B quantum dot formed by 2.1 ML of InAs
deposition. The island has different symmetry as compared to its counterparts formed
on InP (001) substrate, and its surface is dominated by low Miller-index side facets in
{0 0 1}, {1 1 0} and {1 1 1} family.

The critical thickness required for InAs island formation on InP (1 1 3)B substrate is
determined to be about 1.6 ML [5], which is even smaller than on InP (001) substrate.
Low-index surfaces like (0 0 1) have well-defined surface reconstruction and they usually
has lower surface energy than high-index surfaces like (1 1 3). Therefore, the surface
of an InAs/InP (1 1 3)B quantum dot which is mainly composed of low-index facets,
have lower free energy density than an island formed on InP (0 0 1) substrate which is
composed of high-index facets. By consequence, the nucleation of InAs quantum dot is
easier on InP (1 1 3)B substrate, so that InAs/InP (1 1 3)B quantum dots have smaller
critical thickness (volume), smaller average size and higher number density than their
counterparts formed on InP (0 0 1) substrate.

2×2µm² 2×2µm²

(b)(a) (c)

5×109 cm-2 5×1010 cm-2

Figure 4.2: (a) and (b) are AFM images of InAs quantum dots formed by 2.1 ML of InAs
deposition on (001) and (113)-oriented InP substrates, respectively. [6]. (c) STM plan-view of
an individual InAs/InP (113)B island formed by 2.1 ML of InAs deposition; crystallographic
orientations of its facets are annotated in-place. [7]. These samples were grown by gas-source
MBE.

Most optical applications requires quantum dots be covered by another layer of bar-
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rier material to isolate them from surface-related problems. However, this capping layer
may raise other concerns due to its intermixing with InAs islands [8]. Figure 4.3a shows
an X-STM view of an InP-capped InAs quantum dot sitting on its wetting layer [9]. Un-
like surface quantum dots observed by plan-view STM (figure 4.2c) which have relative
pointed shape, encapsulated quantum dots are much flatter and they have much larger
top facet (plateau).

As a matter of fact, the summit of InAs island is where strain is most concentrated;
hence, it is more likely to intermix with capping material so as to relax the strain
energy, which could be undesired. The shape of InAs quantum dots can be preserved
if Sb is involved in the growth. Figure 4.3b shows an InAs/InP (113)B quantum dot
encapsulated by a lattice-matched GaAs0.51Sb0.49 layer [10], which has more pointed
shape than the InP-capped island to its left. Judging by the form of its (1 1 0) cross-
section, the shape of the island should be similar to the uncapped InAs/InP(113) island
observed by plan-view STM in figure 4.2c. The same shape preserving effect is observed
even only elemental Sb is supplied in the growth of InAs quantum dot. Figure 4.3c shows
the cross-section of InP-capped InAs/InP (113)B quantum dot that has experienced
short Sb2 irradiation before the growth of capping layer. The island has also has even
more pointed shape and Sb atoms, which are identified as individual bright spot in
the image, only concentrate at the interface between the island and the InP capping
layer. This suggests the mechanism of island shape preservation has its origin in surface
processes.

(a) (a) (b) (b) (c) (c) 

InPInP InPInP InPInP

InPInP InPInPGaAsSb

Figure 4.3: High-resolution cross-sectional STM images of capped InAs/InP islands. (a) InP-
capped InAs/InP (113) islands [11]. (b) GaAs0.51Sb0.49-capped InAs/InP (113) islands (c) InP-
capped InAs/InP (113) island annealed under Sb2-based growth interruption [10]. These images
were taken under constant current mode with negative sample bias. These samples were prepared
using solid-source MBE.

Beneficial effect of Sb in the growth of InAs quantum dots have also been reported
by many researchers. They include higher island density [12, 13], more uniform island
size distribution [14, 15], suppression of coalesced islands [16] and enhanced optical
properties [15, 17, 18]. In many of these studies, Sb is supplied before the deposition of
InAs, via Sb-containing buffer layer for example. However, the majority of these studies
were conducted on GaAs (001) substrate only. In the next section, we will explore the
influence of Sb-rich GaAs0.51Sb0.49 buffer layer on the growth of InAs deposition on both
its (0 0 1) and (1 1 3)B surface. To begin with, we will shortly present InAs/GaAs0.51-
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Sb0.49 as a material system.

4.2 InAs/GaAs0.51Sb0.49 quantum wells on InP (001) sub-
strate

InAs/GaAs0.51Sb0.49 type-II heterostructure

GaAs0.51Sb0.49 is another frequently used antimonide ternary alloys that is lattice-
matched to InP substrate. It has a direct band-gap of EΓ

G = 0.7 eV at room temperature,
and it forms type-II heterostructures when paired with pseudomorphic InAs. Figure 4.4a
demonstrates the band-alignment of a quantum well formed by these two materials. Due
to the staggered type-II line-up, radiative recombination in such a structure has to occur
indirectly between electrons confined in InAs layer and holes distributed in GaAs0.51-
Sb0.49 layer.

The fundamental transition energies in InAs/GaAs0.51Sb0.49 quantum well can be
calculated using k · p method and figure 4.4b plots k · p simulated transition energies
as a function of InAs quantum well thickness. On one side, the calculations indicate
mid-infrared emission near 3 µm (0.4 eV) can be achieved with moderate quantum well
thickness of 10 ML (3 nm), which makes InAs/GaAs0.51Sb0.49 potentially useful for
extending emitting wavelength available on InP substrate. On the other side, as we
have demonstrated in chapter 3, strained InAs quantum well as thick as 10 ML (3 nm)
could be a challenge for MBE growth on InP substrate, even if Sb is used as a surfactant.
Fortunately InAs/GaAs0.51Sb0.49 quantum dot remains an alternative choice. Similar to
a quantum well, the energy levels in a quantum dot are largely determined by its height.
Nevertheless, for the same amount of InAs deposited, InAs quantum dots can reach
larger height thus longer emission wavelength than a quantum well. Partially relaxed
surface of quantum dots makes them less likely to generate carrier trapping defects like
dislocations, and at the same time their coherence with the matrix layer ensures their
good optical quality.

A very important aspect of type-II heterostructure is its excitation power dependent
PL emission wavelength. When the structure is photo-excited, photo-generated electrons
and holes are spatially separated by the type-II interface. Such separation creates band-
bending and introduces discretized hole-levels near the InAs/GaAsSb interface. This is
illustrated in the inset of figure 4.5. By increasing excitation power in PL experiment,
larger band-bending is induced and the energy levels of electrons and holes are further
separated so that radiative emission of the type-II heterostructure is shifted towards
higher energies.

In figure 4.5, calculated fundamental transition energies in a 4 ML (1.2 nm) thick In-
As/GaAs0.51Sb0.49 quantum well are plotted against excitation powers to the one-third
power (P 1/3). The quasi-linearity found between the two quantities is prevalently used
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as a signature of type-II hetero-structure. Such linearity also ensures that in case PL
emission cannot be measured at low excitation energies, one can still estimate funda-
mental transition energy of a type-II nanostructure by extrapolating power-dependent
PL energies to P = 0 (n = 0).

Growth of InAs/GaAs0.51Sb0.49 quantum well on InP (001) substrate

InAs deposition on (001) surface of GaAs0.51Sb0.49 is examined via three types of samples,
separately prepared for AFM, PL and cross-sectional TEM observations. All samples
presented in this study were grown by solid source MBE on n-type InP (001) substrates,
and the substrate temperature was fixed at 450 °C during all growth runs. Diatomic
As2 and Sb2 fluxes were used and the beam equivalent pressure ratio between group V
and III elements was kept low during the growth of GaAs0.51Sb0.49 alloy to ensure good
control over its composition [19, 20]. The lattice-matching condition of GaAs0.51Sb0.49

was assured by X-ray diffraction on test samples. The indium growth rate was set to
0.11 ML/s, which was calibrated using strained super-lattice samples.

Each AFM sample contains one layer of InAs deposition on its surface. After the
growth of GaAs0.51Sb0.49 layer, only 2 s growth interruption under As2 flux was per-
formed to stabilize the fluxes and immediately InAs of 3, 4 or 5 ML were deposited
without supplying Sb. Following that, another growth interruption of 30 s under As2

flux was performed before the samples were cooled down at the fastest rate possible
(∼1 °C/s) under protection of As2 flux.

Each sample made for PL characterization contains one layer of InAs deposition
embedded in two layers of GaAs0.51Sb0.49. These samples were elaborated under the
same conditions as those in the previous set, but the InAs deposition quantity now
ranges from 1 ML to 5 ML. The InAs deposition is also annealed under a 30 s As2

growth interruption and then it is covered by a 40 nm-thick GaAs0.51Sb0.49 capping
layer. The common structure of these PL samples is illustrated in figure 4.6. In order
to suppress type-II transition occurring at GaAsSb/InP interfaces [21], two additional
layers of AlAs0.56Sb0.44 were added around the two GaAs0.51Sb0.49 layers.

An additional sample (S997.1) was prepared for TEM observation. Similar to the
PL sample, it contains only InAs deposit of 5 ML. However, this time the InAs surface
was annealed under As2 flux for 5 s before it is covered by a 50 nm-thick GaAs0.51Sb0.49

capping layer. The cross sections for TEM observation were prepared under standard
procedures consisting of mechanical material removal and ion milling. The TEM ob-
servations were performed on a FEI-TECNAI microscope equipped with field emission
electron gun and spherical aberration correctors to avoid interface delocalization. TEM
observations and analyses were performed by Julien Nicolaï from Centre d’Elaboration
de Matériaux et d’Etudes Structurales (Toulouse, France).

The contact mode AFM images in figure 4.7 presents the surface morphology of In-
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Figure 4.6: Sample structure of PL samples and their band-alignment. Two AlAs0.56Sb0.44
layers are added around the active region to suppress surface recombination and type-II transition
at the GaAs0.51Sb0.49/InP interface, which is marked by the crossed-out arrow.

As/GaAs0.51Sb0.49 (001) depositions, which are relatively flat. For 5 ML InAs deposition
sample (S1147.1) 1 , several island-like objects are scattered over figure 4.7c, but these
islands are actually small in height. This is marked by root-mean-square (RMS) surface
roughness of about 0.2 nm, which is small compared to cases where ‘real’ quantum dots
are formed (RMS> 1 nm). Since the critical thickness of InAs deposition on InP (001)
substrate is usually no larger than 2.5 ML without the presence of Sb, the formation
of InAs dash or dots is thus the expected behavior for 3–5 ML InAs deposition. We
thus attribute the relatively flat surfaces obtained on (001) surface of GaAs0.51Sb0.49

to surfactant effect of Sb, like in the 7 ML-thick InAs/AlAs0.56Sb0.44 quantum well
presented in chapter 3.

(a)  3 ML (S1145.1)(a)  3 ML (S1145.1) (b) 4 ML (S1146.1)(b) 4 ML (S1146.1) (c)  5 ML (S1147.1)(c)  5 ML (S1147.1)

RMS 0.159 nmRMS 0.159 nm RMS 0.125 nmRMS 0.125 nm RMS 0.240 nmRMS 0.240 nm

Figure 4.7: Surface InAs deposition on (001) surface of GaAs0.51Sb0.49, observed by contact
mode AFM. The scanned areas are 1 × 1 µm2

Figure 4.8a shows a TEM image of S997-1 (5 ML). This dark-field image was taken
under (0 0 2) conditions so that each material layer can be distinguished by its chemical
contrast. The InAs layer is identified as the bright line between two thick GaAsSb
layers, and it forms an entire layer although its interfaces do not appear perfectly flat.
Such observation agrees with the flat surfaces observed by AFM inspection and the

1The suffix “□.1” are given to samples made on (001) substrate, while their counterparts made on
(113)B substrates are named “□.2”.
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embedded InAs layers can thus be considered as quantum-wells. Figure 4.8b presents a
high-resolution TEM image near the InAs layer, which is represented by the dark area
that crosses the image diagonally. The InAs layer is fluctuating from place to place and
its thickness is determined to be 5–7 ML by applying geometric phase analyses (not
shown).

GaAsSbGaAsSb

GaAsSbGaAsSb

InP bufferInP buffer

InP substrateInP substrate
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Figure 4.8: TEM cross-section views of sample S997-1 which contains 5 ML of InAs deposition
sandwiched by two 50 nm-thick GaAsSb layers. (a) Its dark-field image demonstrating all the
layers in the sample (b) an high-resolution image near the InAs deposition.

PL characterization on InAs/GaAs0.51Sb0.49 quantum wells were at first performed
at room temperature. Figure 4.9a demonstrates PL spectra of InAs/GaAs0.51Sb0.49

quantum wells containing from 1 to 5 ML of InAs depositions. Two emission peaks
are present in each PL spectra except for the 1 ML sample. Low energy peaks located
between 0.6-0.7 eV red-shift with increased InAs deposition, while high-energy peaks
at about 0.75 eV are independent of it. Figure 4.9b shows two PL spectra of 4 ML
InAs/GaAs0.51Sb0.49 quantum well (S1340.1), obtained under different excitation power
of 40 times difference. While the high-energy peak remains at constant energy, the
lower energy peak blue-shifts as excitation power increases. The PL peak is plotted
as a function of cubic root of PL excitation power in the inset of figure 4.9b, and the
good linearity between the two quantities is the signature of type-II heterostructures.
The low energy peak is thus attributed to InAs quantum-well related type-II transition
and the constant PL peak at 0.75 eV is attributed to direct transition within GaAs0.51-
Sb0.49 layer. By comparing the PL energies–carrier density plot presented in figure 4.5,
we conclude that the maximum excess carrier density during PL experiment is about
4 × 1011 cm−2.

In the inset of figure 4.9a, and the low excitation power PL peak energies of all PL
samples are compared with transition energies calculated under zero-excitation (already
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presented in figure 4.5). The two datasets agree well with each other, and the calcula-
tions indicate that the fundamental level transition for 1 ML-thick InAs/GaAs0.51Sb0.49

quantum well is so close to the band-gap of GaAs0.51Sb0.49 that the emission from it
could have been submerged by PL emission from GaAsSb layer.

In figure 4.9b, the PL spectra are normalized by the intensities of quantum-well
related PL peak. The normalized intensity of GaAsSb peak increases at increased exci-
tation power. This indicate that its associated recombination rate is growing faster than
that of quantum-well related process, and it seems to suggest that the direct transition
of GaAsSb occurs in the part of GaAsSb layers that is adjacent to quantum well layer.
More carriers are generated at higher excitation power, the electrons have greater chance
escaping from InAs quantum well so that there is a competition between the indirect
transition at the InAs/GaAsSb interface and direct transition near the interface.

Finally, PL characterizations of these samples were also performed at temperatures
ranging from 15 K to room temperature. Figure 4.10 demonstrates the temperature
dependence of GaAsSb PL emission energy and it has obvious deviation from Varshini’s
empirical formula 2 at low temperature. This suggests that the direct transition in this
layer could be related to localized recombination centers, and this partly explains why
the PL emission of GaAs0.51Sb0.49 as a barrier material is observed.

In short, the above results show that InAs deposition on InP (001) substrate under
the presence of Sb leads to the formation of InAs quantum well despite that as much as
5 ML of InAs has been deposited. These results again demonstrate that the use of Sb
during InAs deposition on InP (001) substrate can effectively eliminate the formation of
islands.

Growth of InAs/GaAs0.51Sb0.49 quantum dots on InP (113)B substrate

In this section, the study of structural and optical properties of InAs/GaAsSb nanostruc-
tures is carried on InP (113)B substrates through three sets of samples, each prepared
for AFM, PL and cross-sectional STM studies. Accompanying each structure grown on
(113)B substrate, another sample is simultaneously grown on (001) substrate to facil-
itate various calibrations. And actually the (113)B AFM (PL) samples were prepared
in the same growth runs as the previously presented AFM (PL) samples made on InP
(001) substrate. Subsequently, the InAs deposition quantities in this section are actu-
ally expressed in (001) ML. (113) crystallographic planes has lower surface density than
(001) ones so that one (001) ML equals to 1.9 (113) ML; however, for the two samples
prepared in the same growth-run, the thicknesses of InAs deposition are the same on
the two types of substrates, and thus the total strain energies stored in InAs deposition
are the same on both substrate orientations.

2Varshini’s formula on temperature dependent band-gap: Eg(T ) = Eg(0) − αT 2/(T + β). α and β
are empirical parameters that have to be determined experimentally.
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Figure 4.9: Room temperature PL of InAs/GaAsSb (001) quantum well samples. (a) PL
spectra of InAs/GaAsSb, normalized by GaAsSb-related emission peak. (b) PL spectra of sample
S1340.1 (4 ML) under different excitation powers, normalized by quantum well related emission
peaks; the inset shows the excitation power dependence of InAs quantum well emission peak
energy.
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The sample made for X-STM observation contains four planes of InAs deposition of
3, 4, 5 and 6 ML-thick. These QD planes are separated by 40 nm-thick GaAsSb layers to
limit strain propagation. Their growth conditions were identical to PL samples, except
that the GaAsSb layers were doped with Si to make the entire structure conductive. In
X-STM measurements, clean cross-sections were obtained in situ by cleaving the samples
along one of its {1 1 0} natural cleavage planes under ultra-high vacuum environment.
The STM measurements and analyses were performed by Samuel Mauger at Technische
Universiteit Eindhoven (Eindhoven, the Netherlands).
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Figure 4.11: AFM observation of InAs islands obtained on GaAsSb (113)B surface. (a) (b)
and (c) : AFM surface profile of 3,4 and 5 ML InAs deposition on GaAs0.51Sb0.49 surface. The
scanned areas are 1 µm×1 µm. (d),(e) and (f): density, average height and average base diameter
of the islands extracted from the AFM images. The error margins for AFM measurements
represent the standard deviations of such statistics. The error margin for X-STM measurement
in (e) marks the dimension of smallest and largest quantum dot observed.
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Surface profiles of unburied InAs deposition were acquired using contact-mode AFM
and the recorded AFM images are shown in figure 4.11a-4.11c. In contrast to the flat InAs
surface obtained on InP (001) substrate (figure 4.7), InAs depositions on (113)B surface
of GaAs0.51Sb0.49 have led to the formation of abundant InAs islands. A ‘watershed’
algorithm was applied to these images to identify individual islands and to measure their
dimensions 3. Statistics on these islands are displayed in figure 4.11d-4.11f. Quantum
dot density has reached as high as 1 × 1011 cm−2 by 5 ML InAs deposition, and yet no
coalesced island was spotted. Similar high density of quantum dots without defective
islands had been observed when Sb is present during the growth of InAs/GaAs (001)
quantum dots [16, 18]. The AFM measured island height is constantly increasing from
1 nm to 4 nm as a function of InAs deposition, while their average diameters decrease
from over 40 nm to about 30 nm. This is in contrast to the cases where InAs is deposited
directly on (113)B surface of InP: the height of island would be independent of InAs
deposition once fully developed quantum dots appear after 3 ML InAs were deposited
[22]. It’s worth noting that, in figure 4.11a-4.11c, the quantum dots seem to be sitting
on periodically fluctuating surfaces; this could arise from slight faceting of underlying
GaAs0.51Sb0.49 buffer layer via step bunching [23].

PL spectra of the PL samples were recorded at 15 K. Figure 4.12 gives an example
of such PL spectra recorded from the 4 ML InAs/GaAsSb (113)B quantum dot sample
and two types of PL peaks were detected for this samples. The 0.8 eV peaks are also
observed in InAs/GaAsSb (001) samples so that they are attributed to the band-gap
of GaAs0.51Sb0.49. The other broad peak in the PL spectrum around 0.6-0.7 eV shift
towards higher energies under increasing excitation powers, and the peak maximum is a
linear function of the cubic root of excitation power (figure 4.13a,page 89). Such power
dependence is thus attributed type-II InAs quantum dots. It worth to be noted that
this quantum dot related broad peak is even observed with the sample containing only
one mono-layer of InAs deposition, which suggests that, the critical thickness for island
formation could be even smaller than 1 ML.

Unlike InAs/GaAsSb (001) quantum wells, it is interesting that the GaAsSb emis-
sion peaks in InAs/GaAsSb quantum dot structure are broadening and shifting towards
high energy under increasing excitation power. During the PL experiment, the photo-
generated electrons are confined in InAs quantum dots while the holes are attracted
around them. The InAs quantum dots have different shapes and sizes so that the elec-
tric field around them could be rather complex. At the same time, at low excitation
power electrons tend to occupies larger quantum dots than smaller ones so that the
distribution of carriers is also inhomogeneous. For these reasons, the GaAsSb recom-
bination which occurs in the region close to InAs quantum dots is more likely to be
influenced by the excitation power than in the case of InAs/GaAsSb quantum well.

3These procedures were performed with the help of software package ‘Gwyddion’
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Figure 4.12: Low temperature PL spectra of 4 ML InAs/GaAs0.51Sb0.49 quantum dot samples,
under different PL excitation power. The maximum excitation power 200 mW correspond to a
power density about 4 kW/cm2.

Limited by the sensitivity of detector used in PL experiment, some PL peaks cannot
be reliably extracted from PL spectra taken under small excitation power, which means
the measured PL energies are higher than the actual fundamental transition energies
associated with these quantum dots. Here, we estimate the fundamental transition en-
ergies of these InAs/GaAsSb quantum dots by extrapolating PL peak energies to zero
excitation power. Figure 4.13a demonstrates extrapolation and it suggests that the
measured fundamental transition energies could be over-estimated by 50 meV in certain
cases. In figure 4.13b the extrapolated PL energies are compared with transition energies
calculated for InAs/GaAsSb quantum wells (already presented in figure 4.4b). The PL
energies follow a slightly slower slope than those calculated for quantum wells, albeit
lateral carrier confinement in quantum dots is not taken into account in such calcula-
tions. This indicates that transition energies related to these quantum dots are largely
determined by vertical confinement, namely their heights. The PL energies decrease by
22 meV in average for each additional mono-layer of InAs deposited thus they reflect the
monotonously increasing height of the InAs/GaAsSb quantum dots already observed by
AFM. Such behaviors are radically different from a previous observation obtained of our
laboratory, where the height of InAs/InP (113)B quantum dot saturated at 3 ML InAs
deposition [22] and their emission energies is limited by its height. The possibility of
making large InAs/GaAsSb quantum dots makes this material system potentially useful
for mid-wave wavelength applications on InP substrate. At the same time, this suggests
that different island formation mechanism could have occurred under the presence of Sb.

We performed microscopic structural characterization of encapsulated quantum dots
using X-STM. Figure 4.14 presents large scale X-STM images showing quantum dots
formed by 3 and 4 ML InAs depositions. High quality cleaved surfaces were not achieved
for zones containing the 5 ML and 6 ML quantum dot planes, probably due to the high
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Figure 4.14: X-STM images of buried InAs/GaAsSb (113)B quantum dots obtained by (a) 3
ML and (b) 4 ML InAs deposition. Sample bias of -3.2 V was used and the presented area is
81 × 24 nm2.

level of strain. The images were taken under constant current mode with large negative
sample bias (−3.2 V). Under such conditions, filled states of group V elements are
imaged. The bright zones in the images correspond to indium-rich InAs QDs, while
their surroundings with randomly distributed bright dots reflects GaAsSb layers with
randomly distributed Sb atoms. The homogeneous contrast inside the quantum dots
indicates that they are consisted of almost pure InAs without segregated Sb atoms.

The inter-islands distance in the 4 ML plane is almost 50% smaller than that in
3 ML plan. This is coherent with the sharply increasing island density observed by
AFM. Besides, the inter-island spacing has become comparable to the diameter of AFM
tip (20 nm) and it explains why the spaces between those islands presented in figure 4.11
were not resolved. In figure 4.11e, the average heights of encapsulated quantum dots
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measured by X-STM image analysis are already compared with that of unburied quan-
tum dots measured by AFM, and these values are actually close to each other. Also the
height/length ratios of these Sb-mediated GaAs0.51Sb0.49-capped InAs quantum dots are
also higher than InP-capped ones. Such results affirm a previous observation that using
GaAs0.51Sb0.49 as capping layer can avoid the dissolution of InAs quantum dots during
encapsulation process (figure 4.3b) [8, 9].

However, by scrutinizing the region between quantum dots, it is also interesting that
no wetting layer connecting the quantum dots was observed in either image of figure 4.14.
As a matter of fact, the space between two islands, which is also the interface between
GaAsSb matrix and GaAsSb capping layer, has even darker contrast than the inner
part of GaAsSb. This could be a consequence of Sb depletion during the deposition
of InAs. For many quantum dot systems like InAs/GaAs (001) [24, 25], InAs/InP
(001) [2], InAs/AlGaInAs (113)B [26] and InAs/InP (113)B [9, 27], InAs islands are
formed under Stranski-Krastanow growth mode. Their wetting layer accompanying the
formation of InAs islands can be observed by various techniques including X-STM (for
example figure 4.3a-4.3a). Combining the fact that no wetting layer related PL emission
was detected for these InAs/GaAsSb (113)B quantum dots, we conclude that they were
actually formed under Volmer-Weber growth mode. To our knowledge, InAs quantum
dots formed under Volmer-Webber growth mode is rare on InP substrate.

Summary

In this section, we have walked through a comparison between InAs/GaAs0.51Sb0.49

heterostructures grown on (001) and (113)B-oriented InP substrate. On InP (001) sub-
strate, the InAs deposition remains as two-dimensional layer, where the formation of
large InAs island is expected for as much as 5 ML InAs deposition. The annihilation of
quantum dots thus agree with the normal surfactant effect of Sb, which is employed in
the growth of strained quantum well in chapter 3. And the segregating Sb originated
from GaAs0.51Sb0.49 surface is thus responsible for the altered growth mode.

On the other hand, when the same material is grown on (113)B substrate, the high-
density of quantum dots are formed for any InAs thickness deposited. Moreover, unusual
for InAs quantum dots obtained on InP substrates, no wetting layer was observed by
neither optical study nor by direct STM observation so that these quantum dots are
actually formed under Volmer-Weber growth mode. Such results suggest that the sur-
factant effect enhances the three-dimension growth mode of InAs instead of suppressing
it on InP (113)B substrate. Why Sb as a surfactant has behaved differently on (113)B-
oriented substrate is thus left as a question to be answered in the coming section.
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4.3 Surface-orientation dependent surfactant effect of Sb

Surfactant effect in epitaxial growth is frequently interpreted as its influence on surface
mass transport. They are consider to either globally reduce the diffusion length of cation
ad-atoms [28–32] or to create higher barrier for ad-atoms trying to climb surface steps
[33, 34], so that the migration of ad-atoms towards island is kinetically blocked.

Such kinetic argument allows a direct explanation to the flat InAs/GaAs0.51Sb0.49 lay-
ers obtained on (001) InP substrates. Nevertheless, it cannot explain the Volmer-Weber
quantum dots grown on GaAs0.51Sb0.49 (113)B substrate. For one thing, the formation
of high density InAs islands indicates that sufficient mass transport had occurred despite
the presence of Sb. For another, the existence of wetting layer in Stranski-Krastanow
growth mode is widely accepted as a result of the energetic balance between strain relax-
ation / facet creation accompanying the island formation and its thickness is supposed
to be constant overtime. Therefore, no direct connection can be established between
growth kinetics and the absence of InAs wetting layer.

On the other hand, the surfactant effect can also be explained by its capability of the
surface energy modification [35–37]. Surfactant elements like Sb tend to segregate and
stay on the growth surface; it can saturate dangling bonds on the surface, form dimers
structures between themselves, alter the surface reconstruction and reduce the free en-
ergy of the growth surface [38]. Figure 4.15 illustrates several possible configuration of
InAs deposition on (001) and (113)B surfaces of GaAs0.51Sb0.49 buffer layer, along with
energy terms governing the choice of growth mode. They are the strain energy (density)
εWL

2D , surface energy (density) of Sb-covered InAs wetting layer γWL
InAs:Sb, the strain energy

(density) stored in partially relaxed InAs island εQD
3D , surface energy of its Sb-covered

facets γ□
InAs:Sb and the interface energy due to wetting layer coverage on the substrate

γ♢
InAs-GaAsSb. The InAs/GaAs0.51Sb0.49 system will choose the configuration with lowest

total energy as its equilibrium shape.
In contrast to Stranski-Krastanow InAs quantum dots formed by less than 3 ML of

InAs deposition in Sb-free growth on InP substrate, InAs deposition on Sb-rich GaAs0.51-
Sb0.49 (001) surface undergoes two-dimensional growth mode (figure 4.15a) even if as
much as 5 ML of InAs has been deposited. This requires the surface energy of InAs (001)
wetting layer γ

(001)
InAs:Sb be low enough to compensate the need for strain relaxation. This

requirement can be satisfied by the presence of Sb during the growth, where it stabilizes
the surface of InAs surface by reducing its surface energy (γ□

InAs:Sb < γ□
InAs). However, we

have to point out that surface energy reduction regardless surface orientation does not
help maintain two-dimensional growth mode. In fact, by globally reducing the free energy
of InAs surface, the side facets of quantum dots are also stabilized (i.e. γ

{1 1 4}
InAs:Sb < γ

{1 1 4}
InAs

on (001) substrate in figure 4.15b) , so that it would become easier to create InAs islands.
Tersoff et al. have pointed out that in order to stabilize two-dimensional growth

mode, the surfactant has to reduce the surface energy of its wetting layer (top facet)
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Figure 4.15: Schematic representation of several possible outcome of InAs deposition on
(100) and (113) substrate: (a) two-dimensional growth mode on (001) substrate, (b) Stranski--
Krastanow growth mode on (001) substrate; (c) two dimensional growth mode on (113) substrate;
(d) Volmer-Weber growth mode on (113) substrate.

more than the side facets (edges) of islands [35]. For InAs deposition on (001) surface
of GaAs0.51Sb0.49, this criterion can be met if we assume the presence of Sb stabilize
the low-index (001) surface wetting layer while it does not stabilize islands’ high-index
{1 1 4} facets to the same extent (γ(001)

InAs:Sb < γ
(001)
InAs while γ

(114)
InAs:Sb > γ

(114)
InAs ). In other

words, surface energy modification of surfactant is actually anisotropic.
The hypothesis of surface-orientation dependent surface energy modification also

allows concise explanation to why InAs/GaAsSb (113)B quantum dots are formed under
Volmer-Weber growth mode. As has been pointed in section 4.1, InAs islands formed on
InP (113)B substrate are found to be composed of low-index facets in {0 0 1}, {1 1 0} and
{1 1 1} families. At the same time, the surface of InAs wetting layer, if it exists, would
be (113)-orientated. Therefore, on (113) substrate, when the presence of Sb reduces the
free energy of low-index surfaces like (001) while increases that for high-index surfaces
like (113), it actually enhances the formation of quantum dots while destabilizes InAs
wetting layer, or even eliminates it.

Similar surface-orientation dependent surfactant-induced surface energy modifica-
tion has already been observed experimentally in other material system. Through the
observation of equilibrium shape of Ge/Si island under the influence of Sb, Eaglesham
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et al. have concluded that the presence of Sb increases surface energy of 113 facets of
Ge islands as compared to the (001) top facets (plateau) [39]. In the lateral MOCVD
growth of GaN, Zhang et al. have demonstrated that the use of Sb favors the growth of
certain facets so that the shape of micrometric GaN ridges is altered [40].

Thus we have proposed anisotropic surfactant effect as an explanation to the different
shapes of InAs/GaAs0.51Sb0.49 nanostructure observed on (001) and (113)B substrate.

A weakness of the above argument on equilibrium shape is the omission of strain. As
is discussed in section 1.3 (page 11), lattice-mismatch and strain energy is essential to
the formation of coherent islands and it is a challenge to actually compare the magnitude
of strain energy and surfactant induced surface energy change, both theoretically and
experimentally.

Conclusion

In this chapter, we have studied surfactant effect of Sb through the comparison of InAs/-
GaAs0.51Sb0.49 nanostructures grown on InP (001) and (113)B substrates. It is intriguing
that quantum wells were obtained on (001) substrates, but quantum dots of high-density
were achieved on (113) substrates. We attribute such phenomena to the anisotropic
surface energy modification due to the presence of Sb: on (001) substrate Sb stabilize
(001) oriented InAs wetting layer so that flat InAs layers were achieved; on (113)B
substrate it enhances the faceting of InAs deposition and destabilize (113)B oriented
InAs wetting layer so that quantum dots are formed under Volmer-Weber growth mode.
By only 5 ML of InAs deposition, the emission wavelength of such type-II quantum dots
is already close to 2 µm and mid-infrared emission is expected for higher InAs deposition
quantity, which is to be studied in future works.
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Chapter 5

Incorporation of Sb in Strained
InAs(Sb) Heterostructures

In previous chapters, we have demonstrated how the use of Sb can modify
the growth behavior of InAs nanostructures via their surfaces . It is also
important to know to what extend Sb incorporates into InAs nanostructures
under strain. However, the determination of Sb-concentration at nano-scale
is rather tricky and it has become one of the goals of the ANR project
NAIADE.

In this final chapter, we will present a preliminary investigation on the in-
corporation of Sb in strained InAs layer. Using thermodynamic calculations,
section 5.1 seek for the right growth condition that can lead to significant Sb-
incorporation in strained InAs layer. And the following section 5.2 attempts
to assess the concentration of Sb in InAs(Sb)/Al0.48In0.52As nanostructures
through optical studies.
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5.1. Thermodynamics of Sb-incorporation in strained InAs

5.1 Thermodynamics of Sb-incorporation in strained InAs

The MBE growth of ternary alloys like InAs1−xSbx is thermodynamically equivalent to
the sequence of processes described in figure 5.1 1.

As
2
 (g)

In (g)

Sb
2
 (g)

ΔG
f,1

ΔG
f,2

ΔG
m

mix
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x
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ΔH
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Figure 5.1: Thermodynamics descriptions of the growth of pseudomorphic InAs1−xSbx layer
on InP substrate.

At first, the molecules in gas phase react and generate their corresponding solid
compounds InAs and InSb. By forming chemical bonds, the total free energy of the
system is reduced by ∆Gf,1 and ∆Gf,1 respectively, of which the magnitude is the order
of 200 kJ/mol: this becomes the main driving force for MBE growth. Then x part
of InAs mixes with (1 − x) part of InSb binary compounds to form relaxed ternary
alloy InAs1−xSbx, and the total energy of system further decreases by ∆Gm. If the
InAs1−xSbx epi-layer is coherent with its substrate, the relaxed InAs1−xSbx alloy then
undergoes tetragonal strain to have the same in-plane lattice constant as the substrate,
with associated strain energy ∆Hs(x) [1]. Provided the input molecular beam pressure
(P 0

In, P 0
As2, P 0

Sb2) and fixed growth temperature (T ) are known, the Sb composition
of InAs1−xSbx alloy under growth is equivalent to an x that satisfies thermodynamic
equilibrium between material in gas phase and solid phase. In order to make the main
text clear, the lengthy description and solution process to this thermodynamic problem
is left in appendix A.2 (page 120). In the following text, we solely present calculations
obtained for the growth of strained InAs1−xSbx layer on InP substrate under 450 °C.

Figure 5.2 reports calculated compositions of relaxed InAsSb alloy under various
growth conditions, where the deformation energy Hs(x) is ignored. This scenario cor-
responds to the growth of thick and relaxed InAsSb layer, where no macroscopic strain
is implicated. For InAsSb layers prepared under beam pressure ratio between group-V
and group-III elements greater than unity, the Sb composition x is much lower than
Sb-content in gas phase PSb2/(PAs2 + PSb2). The relation between the two quantities is

1The object of these sequence of reactions is only to estimate the chemical potential change of each
species. The reactions listed here do not necessarily correspond to what occurs in actual MBE growth,
e.g. the gas phase reactions.
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a rather nonlinear function, which could make composition calibration of such alloy dif-
ficult. The free energy change associated with InSb generation is ∆Gf,2 = −237 kJ/mol,
while that for InAs is ∆Gf,1 = −241 kJ/mol. The relative small magnitude of InSb’s for-
mation energy is thus the origin of the disadvantageous Sb-incorporation in solid phase.
Alternatively, efficient Sb-incorporation can be achieved at sufficiently low V/III ratio.
It also makes the correspondence between x and PSb2/(PAs2 + PSb2) quasi-linear and
facilitates alloy composition calibrations.
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Figure 5.2: Thermodynamic calculations on the composition of relaxed InAs1−xSbx under
various growth conditions.

The lattice constant of InSb and InAs are respectively 10.4% and 3% larger than
their substrates InP. Therefore, strain energy stored in pseudomorphic InSb layer could
be as high as 44 kJ/mol in contrast to 5 kJ/mol for pseudomorphic InAs layer on InP
substrate. The high level of compressive stress induced by the addition of InSb in In-
As1−xSbx layer will makes the epitaxial layer further ‘repel’ the incorporation of Sb
atoms.

Figure 5.3 presents calculation similar to those presented above but with coherency
strain taken into account, so that such calculations correspond to scenario where In-
As1−xSbx layer is grown on InP substrate. At sufficiently low V/III ratio close to 0.5,
one can always achieve good Sb incorporation. However, when the epitaxial layer is
grown under V/III ratio greater than unity, the incorporation of Sb is only possible by
sending beam fluxes containing Sb concentration higher than a threshold value. This
threshold actually corresponds to the point where all the As2 in gas phase is consumed
by impinging indium atoms. Such calculated low Sb-incorporation level agrees well with
a previous observation on Sb-mediated InAs layer on InP (001) substrate, where TEM
analyses did not give signs of significant Sb incorporation in InAs [2].

Although the above results are generally not in favor of the incorporation of Sb in
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Figure 5.3: Calculated composition of strained InAs1−xSbx/InP layer, where the coherency
strain is taken into account.

stained InAs layer, it does gives some idea on how to increase its incorporation level.
For one thing, the comparison between the calculations with and without strain indicate
Sb-incorporation would be easier in partially relaxed nanostructures like quantum dot.
For another, it would be beneficial to grow InAs1−xSbx layer under low V/III ratio or
high indium growth rate if Sb-incorporation is desired.

In the practice of solid source MBE growth, the intensity of each beam flux is ex-
pressed in beam equivalent pressure, which is actually the reading of flux gauge. Current
response of such gauges varies for different gas molecules so that beam equivalent ratios
could be different from the gas pressure described in the thermodynamic calculations.
To correlated the calculations with MBE growth, one has to convert the beam equivalent
pressure into gas pressure Pi using :

Pi = BEPi · T gas
i /ηi (5.1)

ηi = 0.4Zi/14 + 0.6 (5.2)

For each impinging molecular beam i, T gas
i is the temperature the molecular beam, which

is associated with the kinetic energy of its directional motion. And ηi is the ionization
efficiency of the molecule, which corresponds to the chance of a molecule being ionized
and detected in a Bayard-Alpert vacuum gauge. This quantity is in turn (empirically)
estimated by the number of electron a molecule contains Zi .
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5.2 Sb-incorporation in InAs/Al0.48In0.52As quantum wells

Although there were various demonstrations of how Sb composition in level in InAs
deposition can be determined using optical studies [3, 4], the conclusions of such analyses
are disputable. For one thing, the use of Sb can extend the PL emitting wavelength in two
ways: Sb can get incorporated into InAs thus lowers its band gap; at the same time it can
protect InAs nanostructures from being dissolved during the capping process [5, 6]. Both
mechanisms would lead to observation of red-shifted PL energy. For another, it is known
that the dimensions of a quantum dot have great influence on its optical properties, as
we have shown in chapter 4. However, the input structures for the calculations of
transition energies are often based on AFM observations of uncapped nanostructures
[3, 4], which do not necessarily correspond to those of capped QDs [6, 7]. Therefore,
in order to estimate Sb-incorporation level in InAs deposition using optical studies, one
has to ensure the planarity of InAs deposition.

Therefore, we choose to study Sb incorporation in the growth of strained InAs(Sb)/-
Al0.48In0.52As quantum well using PL characterizations. For one thing, under the growth
temperature 450 °C, the mobility of Al ad-atoms is relatively low on the growth surface.
Under such conditions, the deposition is conform so that if InAs islands are formed
during the deposition of InAs(Sb), its outline will be carried on to the final surface of
Al0.48In0.52As capping layer. For another, the Al0.48In0.52As layer itself is lattice-matched
to InP and it is routinely grown in the laboratory. This alloy is also Sb free so that if
any Sb gets incorporated in InAs layer, it can be attributed to Sb supplied during InAs
co-deposition.

Figure 5.4a shows the band alignments of three InAs1−xSbx/Al0.48In0.52As quantum
wells with different Sb concentration. For Sb compositions x between 0 and 0.9, the het-
erostructure has type-I straddling band alignments. But it turns into type-II staggered
line-up when the quantum well is almost composed of pure InSb and this can be easily
identified using PL experiment under different excitation powers. To help correlate PL
emission energy with Sb incorporation level, we have calculated fundamental transition
energies in 5-7 ML-thick InAs1−xSbx/Al0.48In0.52As quantum wells with Sb-composition
x ranging from 0 to 1, and such results are plotted in figure 5.4b. In the region where
x < 0.8, the curves in figure 5.4b are almost parallel with each other, separated by about
65 meV for each additional mono-layer of InAs added. At the same time these curves
demonstrate constant slope, which indicate PL energy will decrease by 37 meV for each
10% Sb concentration enhancement.

Totally three InAs(Sb)/Al0.48In0.52As samples are compared in this study, for the
different PSb2/(PAs2 + PSb2) used in during their growth. Theses samples were all grown
under 450° on n-type InP (001) substrate. At first, a sufficiently thick InP buffer was
grown just following the deoxidation of InP surface to ensure the smoothness of the
surface. After that a 50 nm-thick Al0.48In0.52As layer is deposited. Then, the As2
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Figure 5.4: InAs1−xSbx/Al0.48In0.52As quantum wells of various Sb composition. (a) band
alignment x = 0, 0.9 and 1. (b) Calculated fundamental transition energy of an InAs1−xSbx/Al-
0.48In0.52As quantum well where x ranging from 0 to 1.

Table 5.1: Growth parameters for InAs1−xSbx/Al0.48In0.52As samples. Substrate temperature
was fixed at 450 °C. The “BEP”s are beam equivalent pressures, which correspond to flux gauge
readings. The “pressures” are gas pressure converted using formulas (5.2)-(5.1)

BEP As2 BEP Sb2 BEP In Pressure Pressure
10−7 Torr 10−7 Torr 10−7 Torr Sb2/(As2+Sb2) (As2+Sb2)/In

S1131 18 3.4 1.7 0.12 4.6
S1281 7.5 6.3 1.7 0.38 2.6
S1219 2 8 1.7 0.74 1.5

and Sb2 fluxes are adjusted to values given in table 5.1 using the action of valves. A
10 s growth interruption was performed to stabilization of the fluxes and 5 ML thick
InAs is deposited at indium growth rate of 0.1 ML/s under both As2 and Sb2 flux.
After that the fluxes are immediately switched back for the growth Al0.48In0.52As and
a second 50 nm-thick Al0.48In0.52As layer is deposited. Unlike AlAs0.56Sb0.44, Al0.48-
In0.52As does not require protection against oxidation in atmosphere so that the sample
temperature is down after the growth of this layer. The growth conditions for these
samples are also marked by circles in figure 5.2 and 5.3 (page 100) to estimate the level
of Sb-incorporation.

Figure 5.5 shows PL spectra of all the three samples recorded under 15 K. The
emission peaks general red-shift when higher Sb flux is used, which is also accompanied
by abrupt decrease in PL intensity. PL spectra of these samples were also taken under
different excitation power, and no power dependence of these PL peak was observed,
signifying that all of these InAs1−xSbx heterostructures are still of type-I and that their
real Sb concentration is lower than 0.90. The line-widths of all these PL peaks are
relatively narrow so that it is plausible that the InAs quantum well is formed instead
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of InAs quantum dots. Under such assumption, the PL peak energies are compared
with calculated transition energies (the 5 ML in figure 5.4b) in the inset of figure 5.5, in
attempt to reveal its Sb concentration x in InAs1−xSbx layer.
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Figure 5.5: PL spectra of InAs(Sb)/Al0.48In0.52As samples. The PL Peak energy is compared
with k · p calculations in the inset. Add temperature 15 K and cut the part superior than 1300
or 1250 (n type InP)

The PL peak of samples S1281(38%) is red-shifted by 94 meV as compared to sample
S1131(10%). According to the k · p calculations presented in figure 5.4b, this could be
related to either 25% higher Sb-incorporation or by +0.3 ML thickness fluctuation. The
PL peak of samples S1219 is even red-shifted by 250 meV as compared to S1131(10%),
which is equivalent to 70% more incorporated in InAs(Sb) quantum well, or 4 ML in-
crease in quantum well thickness. For sample S1131, relative low Sb flux was used for
during the deposition of InAs layer, thus the Sb-concentration in this samples can be
considered as 0, which in turn implies a 70% Sb-concentration in samples S1219.

The concentration determination using PL is based on the fact that the InAs1−x-
Sbx/Al0.48In0.52As forms quantum well with small thickness fluctuations. Whether this
assumption holds is yet to be examined by surface examinations. Figure 5.6 presents
contact-mode AFM images of the three samples under study. For samples S1131 which
is grown with relative high As2 flux (As2 7 × 10−7 Torr) and low Sb2 flux (10%), its
surface is quite flat, which is marked by a small root-mean-square roughness of 0.2 nm.
For samples S1281, of which Sb2 flux accounts for more than 30% of group-V beam
pressure, profiles of nano-object emerges and surface roughness is increased. Such ob-
servation suggest that nano structures like quantum dots or dashes may have formed
during the deposition of InAs1−xSbx layer. Such observation may thus invalidate the
above composition determination based on PL study results. Further more, for samples
S1219, a few deep pits is scattered on its surface, which may originate from defects due
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Figure 5.6: AFM surface examination of Al0.48In0.52As/InAs/Al0.48In0.52As samples.

to the formation of nanostructures. Therefore, it’s no surprise that its PL intensity has
decreased by a factor of 10 as compared to samples S1131.

Eventually, the fluctuated AlInAs final surface observed by AFM makes Sb-incorporation
level deduced by PL studies less eloquent. Nevertheless, whether islands are formed or
not in InAsSb layer and the chemical composition of these InAs(Sb) layers are yet to be
determined by future microscopic studies.

Summary and perspectives

In this short chapter, we attempted to evaluate Sb-incorporation in strained InAs layer
in two approaches. At first, Sb-incorporation is estimated by thermodynamics-based
calculations. The calculations indicate significant part of Sb can be incorporated in
relaxed InAs nanostructures; however, for fully strained InAs layer, the incorporation
level of Sb is very low unless molecular beams with very high Sb2 content is used, which is
difficult for our current experimental setup. Alternatively, the calculations also indicate
that the incorporation of Sb is more efficient when the InAsSb layer is deposited under
low V/III ratio, which will be tested in future grow experiments.

We also performed growth experiments of InAs1−xSbx/Al0.48In0.52As quantum wells
under different Sb2 flux and attempted to evaluate its Sb-incorporation level using optical
studies. The low temperature PL data shows strong PL energy red-shift when high
Sb flux is used during the growth. However, this cannot be attributed solely to Sb
incorporation, since AFM studies indicate nanostructures may have formed and their
larger vertical size may also have contributed to PL energy red-shift. We thus cannot
determine the Sb composition using only optical studies and calculations. It is necessary
to study these samples using microscopic chemical analyses in the coming future.
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Conclusions

This thesis presents molecular beam epitaxy growth and characterizations of four Sb-
based nanostructures on InP substrate.

Through the study of Ga0.47In0.53As/AlAs0.56Sb0.44 quantum wells presented in chap-
ter 2, near-infrared inter-subband absorption was achieved. We have launched growth
optimizations and microscopic studies in order to understand why the goal of 1.55 µm
inter-subband transition was not achieved. Microscopic observations of GaInAs/AlAsSb
interfaces indicate that the homogeneity inside the alloy layers is not perfect and that as
much as 1 ML of Sb can be unintentionally incorporated into subsequent GaInAs layer.

In chapter 3, we made an effort to achieve near-infrared inter-subband absorption
using strained InAs/AlAs0.56Sb0.44 quantum wells. Under conventional growth con-
ditions, deposition of InAs on InP (001) substrate would lead to the formation of
three-dimensional nanostructures, but we have demonstrated that the growth of two-
dimensional InAs layer is made possible by surfactant effect of Sb. Using Sb-mediated
growth, we have achieved defect-free InAs/AlAs0.56Sb0.44 single quantum well as thick
as 7 ML, which is required for the realization of 1.55 µm inter-subband transition. By
using AlAs layer for strain compensation, we were also able to achieve InAs/AlAs0.56-
Sb0.44 multiple quantum wells with zero net-strain. Eventually, we showed preliminary
investigations on the inter-subband properties of these structures.

In chapter 4, the study of surfactant effect of Sb continues through the growth of
type-II InAs/GaAs0.51Sb0.49 heterostructures. The growths of such structures on (001)
and (113)B-oriented InP substrates have led to very different results: InAs/GaAs0.51-
Sb0.49 quantum wells were obtained on InP (001) substrate, while high-density InAs-
/GaAs0.51Sb0.49 quantum dots are formed under Volmer-Webber growth mode on InP
(113)B substrates. We attribute such phenomena to the anisotropic surfactant effect
of Sb. It stabilizes low-index surfaces and it increases the surface energy of high-index
surfaces. On (0 0 1) substrate, Sb stabilizes (0 0 1)-oriented InAs wetting layer so that flat
InAs layers were achieved, while on (113)B substrate it enhances the low-index facets of
InAs island and destabilizes (113)B oriented InAs wetting layer so that InAs island are
formed without wetting layer. By only 5 ML of InAs deposition, the emission wavelength
of such type-II quantum dots is already close to 2 µm, which makes this material system
attractive for mid-infrared applications in future studies.
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Conclusion

The incorporation of Sb in InAs is an important issue concerning Sb-mediated
growth. In the final chapter 5, we attempted to evaluate the incorporation of Sb in
strained InAs layer in two approaches. At first, thermodynamics calculations indicate
the Sb-incorporation in strain InAs layer is very difficult under normal growth condi-
tions. Then Sb-incorporation in InAs(Sb)/Al0.48In0.52As quantum wells is experimen-
tally studied by photoluminescence. The optical data seem to suggest that a significant
portion of Sb is incorporated in this structure, but we do not conclude at this time
for cautions: because three-dimensional nanostructures have formed during the deposi-
tion of InAs(Sb), the composition determination in these nanostructures requires further
microscopic analyses.

Perspective

During this PhD thesis, we have developed technological processes and absorption mea-
surement workbench for the study of near-infrared inter-subband absorption on InP.
With these infrastructures, we were able to observe near-infrared inter-subband absorp-
tion for the first time in FOTON laboratory. However, the goal of producing a structure
that shows inter-subband absorption at 1.55 µm telecommunication band is left unful-
filled, and the inter-subband properties of InAs/AlAs0.56Sb0.44 multiple quantum wells
are yet to be studied in extended wavelength range. We are actually working on new
workbench for this purpose. For the study of surface-orientation dependent surfactant
effect in InAs/GaAs0.51Sb0.49 heterostructures, future theoretical studies would be help-
ful to rigorously compare the interplay between anisotropic surfactant effect and lattice
strain.
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Croissance et caractérisation optique des maté-
riaux à base d’antimoine sur substrat InP pour
les télécommunications optiques

Le contexte d’études

Désormais, tous les continents habitables sont incorporés dans un réseau d’informa-
tion unique. Des fibres optiques silice et des composants optoélectronique travaillant à
1,55 µm sont indispensables pour les télécommunications à très longue distance et en
même temps à grande vitesse. Les composants de la filière InP sont connus dans ce do-
maine, pour leurs applications comme émetteur et photodiodes à cette longueur d’onde
transmise dans un tel milieu avec la moindre perte.

Certains de ces composants de famille semi-conducteurs III-V sont souvent dévelop-
pés voire élaborés par épitaxie par jet moléculaire (également connu sous l’acronyme
anglais MBE) sur un substrat InP monocristallin. Reconnu pour ses capacités de réa-
liser des interfaces d’hétérostructures propres et pour ses contrôles précis d’épaisseur à
l’échelle de couche atomique, cette technologie est idéale pour la conception et même
pour la fabrication des nouveaux composants optoélectroniques.

L’utilisation des matériaux à base d’antimoine dans la filière InP peut apporter des
nouvelles applications de plusieurs façons. Des alliages antimoniures compatible avec
substrat InP peuvent former plusieurs alignements de bande qui sont encore peu ex-
ploités. La figure R.1 présente l’alignement de bande entre plusieurs alliages ternaires
antimoniure et arséniure. Un puits quantique Ga0,47In0,53As/AlAs0,56Sb0,44 disposent
un potentiel de confinement d’électron aussi fort qu’il est possible de produire transition
inter-sous-bandes à proche-infrarouge au sein d’une telle structure [1] ; cela fait l’objet
de l’objectif du chapitre 2 et 3. Cependant, des nanostructures (Ga)InAs/GaAs0,51Sb0,49

forment une hétérojonction de type-II où les porteurs sont séparés par cette interface.
Ce système de matériaux dispose d’une bande-interdite effective plus petite que celles de
chacun des matériaux constituant cette hétérostructure ; il est prometteur pour réaliser
des applications à des longueurs d’ondes plus longues que 3 µm dans la filière InP [2–4].

Par ailleurs, l’antimoine élémentaire est aussi connu pour ses effets surfactant durant
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Fig. R.1 : Des matériaux en accord de maille avec InP et leurs alignements de bandes. Les
données sont extraites de référence [5].

la croissance épitaxiale des composants désaccordés. D’une part, l’utilisation d’antimoine
peut annihiler le mode de croissance 3D et rendre possible la croissance des couches
contraintes sans défaut. Permettant ainsi l’introduction de nouvelles hétérostructures,
son importance pour la technologie est évidente [6]. Nous proposons cet effet au travers
d’études sur des puits quantiques InAs/AlAs0,56Sb0,44 pour obtenir des transitions inter-
sous-bandes à 1.55 µm dans le chapitre 3. De plus, il est aussi démontré dans certain cas
que l’utilisation d’antimoine peut moduler la densité et les dimensions des nanostruc-
tures voire améliorer leurs propriétés optiques [7]. Dans le chapitre 4, les dépôts d’InAs
ont été réalisés sur la surface de GaAs0,51Sb0,49 de différentes orientations pour mieux
comprendre l’effet surfactant de Sb.

Pour récapituler, ce travail de thèse porte sur la croissance et la caractérisation
optique des nanostructures à base d’antimoine faites sur substrats InP. Elle est composée
de quatre études :

• puits quantique Ga0,47In0,53As/AlAs0,56Sb0,44 pour réaliser la transition inter-sous-
bandes dans proche-infrarouge (chapitre 2, à partir de page 17)

• croissance de puits-quantiques InAs/AlAs0,56Sb0,44 sous contrainte sur substrat
InP, assistée par l’effet surfactant de Sb (chapitre 3, page 53)

• les différents rôles de l’effet surfactant d’antimoine sur la croissance des nanostruc-
ture InAs/GaAs0,51Sb0,49 sur substrat InP de différents orientations cristallines
(chapitre 4, page 75)

• l’efficacité d’incorporation de Sb dans une couche InAs contrainte (chapitre 5,
page 97).
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Puits quantiques Ga0.47In0.53As/AlAs0.56Sb0.44 en accord de
maille pour des applications inter-sous-bandes à proche-
infrarouge

La relaxation inter-sous-bandes est un processus qui permet de la modulation de
signaux optiques ultrarapide, souvent dans l’ordre d’une picoseconde, il peut alimenter
des futurs commutateurs du réseau optique [1, 8]. Disposant un offset de bande d’environ
1,6 eV et étant parfaitement en accord de maille avec substrat InP, le puits quantique
Ga0.47In0.53As/AlAs0.56Sb0.44 est l’un des candidats pour réaliser des transitions inter-
sous-bandes à 1,55 µm. (section 2.2, page 22)

Dans un premier temps, les paramètres structurels pour cet objectif ont été estimés
par des calculs liaison-forte [9]. Affiché dans figure R.2b, ces résultats indiquent qu’il faut
l’épaisseur de puits soit aussi fine que 7 monocouche (MC) (2,1 nm). Ensuite, plusieurs
multi-puits Ga0.47In0.53As/AlAs0.56Sb0.44 ont été élaborés avec épaisseurs de puits aux
alentours de cette valeur théorique. L’existence d’absorption inter-sous-bandes dans ces
structures a été confirmée par son anisotropie (figure R.2a). Cependant les énergies (au
pic) des transitions inter-sous-bandes ainsi que celles de transition inter-bandes de ces
structures se trouvent plus bas au terme d’énergie que leurs valeurs théorique. De plus
l’énergie du pic d’absorption inter-sous-bandes sature vers 0,65 eV (1,9 µm) pour un
puits de 5 MC avec un élargissement toutefois notable à plus faible longueur d’onde. Ces
résultats sont cohérents avec ceux obtenus par d’autre groupe de recherche et les écarts
pourraient être à l’origine de plusieurs non-idéalités dans ces structures ou même lié au
paramétrage des calculs. (Section 2.2 et 2.3)

1200 1400 1600 1800 2000 2200

(a)

1,0

300 K

5 MC

(S1046)

9 MC

(S1047)   
 T

T
E
/T

T
M

 (
re

n
o

rm
a
li

sé
)

Longueur d'ondes (nm)

7 MC

(S1039)

li
m

it
e 

d
e 

d
ét

ec
te

u
r

3 5 7 9
0,4

0,6

0,8

1,0

1,2

1,4

1,6 (b)

(300 K)

ISB (calc.)

Données AIST

Absorption

PL (300 K)

IB (calc.)

20 K PL

E
n

er
g

ie
 (

eV
)

Epaisseur de GaInAs  (MC)

limite du détecteur
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La qualité des interfaces Ga0,47In0,53As/AlAs0,56Sb0,44 a été examinée par microsco-
pie électronique à effet tunnel (acronyme anglais STM) sur la face clivée. Il est constaté
que les alliage Ga0,47In0,53As et AlAs0,56Sb0,44 se sont mélangés à l’échelle atomique dans
les zones d’interface. La distribution d’atomes d’antimoine est déduite de mesures STM
et elle met en évidence la ségrégation d’antimoine de la couche d’AlAs0,56Sb0,44 vers celle
de Ga0,47In0,53As suivante. La quantité de Sb incorporée non-intentionnelle est environ
1 MC et elle est quasiment indépendante de traitement d’interface utilisé. (section 2.4,
page 35)

Fig. R.3 : Fluctuation dans l’alliage Ga0,47In0,53As observée par microscope à effet tunnel. En
haut : alliage conventionnel ; en bas, l’alliage Ga0,47In0,53As est préparé sous mode d’épitaxie
digital alloy

En tentant d’améliorer sa qualité, la technique « digital alloy » a été expérimentée
sur cette structure. La pratique de ce mode d’épitaxie a considérablement amélioré les
propriétés optiques en termes de rendement photoluminescence. Pourtant, elle aurait
introduit de l’inhomogénéité importante dans l’alliage Ga0,47In0,53As, mise en évidence
par les observation STM (figure R.3) ; la dégradation structurelle le rend inapte pour
des applications éventuelles. (section 2.5, page 43)

La croissance de puits quantiques InAs/AlAs0,56Sb0,44 sous
contrainte à l’aide de l’effet surfactant de Sb

Les puits quantiques InAs/AlAs0,56Sb0,44 sont potentiellement des objets de choix
pour la réalisation de composants inter-sous-bandes travaillant à 1,55 µm, puisqu’ils
présentent un potentiel de confinement d’électron encore plus fort que dans le cas de
Ga0,47In0,53As/AlAs0,56Sb0,44. Les calculs liaison-forte sur telles structures indiquent que
la réalisation de transition inter-sous-bandes à 1,55 µm nécessite chaque période de puits
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contiennent une couche d’InAs de l’épaisseur de 7 MC. (section 3.1, page 54)
L’enjeu associé à ce système réside dans la croissance de structures contraintes. Ayant

un désaccord de maille de plus de 3%, il est attendu que le dépôt d’InAs sur un substrat
InP bascule vers le mode de croissance 3D où des ilots InAs se sont formés au lieu
d’une couche entière. Cependant, grâce à l’effet surfactant de Sb, nous avons pu obtenir
des puits quantiques InAs/AlAs0,56Sb0,44 contraints en fournissant un flux Sb pendant
le dépôt d’InAs. Pourtant, il est constaté que cette technique ne fonctionne que pour
le dépôt sur substrat InP dont la surface est orienté (001) mais pas pour celle orienté
(113)B. (section 3.2, page 55)

La figure R.4 présente des images de microscope électronique à transmission (acro-
nyme anglais TEM) de deux échantillons, chacun ne contient qu’une seule couche d’InAs.
Ces observations indiquent que la relaxation plastique avait eu lieu pour l’échantillon
contenant 12 MC d’InAs ; pourtant l’autre structure de 7 MC d’InAs est exempte de
défauts. La limite d’InAs pseudo-morphique a été déterminée à 8–10 MC par des études
diffraction de rayons-X sur des structures supplémentaire, et les structures faites sous
ce seuil disposent de bonnes propriétés optiques en terme de photoluminescence.

(a) (b)

Fig. R.4 : Images TEM de InAs/AlAs0,56Sb0,44, vue par le tranche. L’épaisseur des couches
InAs sont (a) 7 MC et (b) 12 MC.

Les énergies des transitions inter-bandes de ces structures ont été obtenues par pho-
toluminescence à basse température ; ses valeurs suivent la même tendance que celles
simulées avec un décalage, comme il est illustré dans figure R.5. Ce décalage pourrait
être attribué à l’interface riche en Sb, mis en évidence par des analyses géométrique de
phase sur des résultats TEM de haute résolution. (section 3.3, page 58 ).

Pour fabriquer des multi-puits InAs/AlAs0,56Sb0,44 destinés aux études optiques, il
est nécessaire d’éviter que contrainte provenant du dépôt d’InAs s’accumule et vienne
dégrader la qualité de l’ensemble de la structure. La symétrisation de la contrainte a
été obtenue par l’insertion de couches nanométriques d’AlAs dans les barrières AlAs0,56-
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Sb0,44, et des multi-puits InAs/AlAs0,56Sb0,44 sans contrainte macroscopique ont été réa-
lisés. Pourtant, les études microscopiques ont démontré que la distribution de contrainte
n’est pas parfaitement homogène à l’échelle microscopique. (section 3.4, page 64)

Finalement, de telles structures ont été fabriquées pour étudier la transition inter-
sous-bande. Des résultats préliminaires n’ont pu démontrer des signes de l’absorption
inter-sous-bande ; cependant il est relevé que les transitions inter-bandes entre le niveau
fondamental de bande de conduction et celui de trous légers apparait dans le spectre
d’anisotropie d’absorption, et cela peut masquer l’observation d’absorption inter-sous
bande puisque les deux mécanismes d’absorption ne soit pas bien séparées spectralement.

Les rôles de l’effet surfactant de Sb sur la croissance de
boites quantiques InAs/GaAs0,51Sb0,49

L’effet de l’antimoine en surface sur la croissance de structures InAs/GaAs0,51Sb0,49

a été également étudié sur substrats InP selon des différentes orientations de surface. En
présence d’antimoine, le dépôt d’InAs sur substrats InP d’orientation (001) conduit à
la formation de couche entière d’InAs et par conséquent des puits quantiques de type-II
ont été obtenus (image TEM dans figure R.6a). (sous-section 4.2, page 81)

Sur substrats InP (113)B, le même dépôt d’InAs mène à la formation d’ilots quan-
tiques de haute densité. En comparant des ilots observés par microscope à force atomique
et ceux vus par STM, il est mis en évidence que des ilots couverts par GaAs0,51Sb0,49

ont des dimensions similaires que leurs équivalents en surface ; cela confirme un résultat
précédant que la présence de Sb peut préserver la forme des ilots contre la dissolution
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Fig. R.6 : Des nanostructures InAs/GaAs0,51Sb0,49/InP vus par le tranche. (a) Image TEM
d’une telle structure faite sur substrat InP (001) ; (b) (c) images STM de celles élaborée sur
surface (113)B de InP

dans la couche d’encapsulation [11] (figure R.7b et R.7c).
Les caractérisations par photoluminescence montrent une forte dépendance des spectres

à la puissance d’excitation qui est caractéristique à hétérostructure de type-II. Cepen-
dant, le signal PL provenant de couche de mouillage n’a pas été observé, alors qu’elle
est couramment observée dans les ilots quantiques formés sous le mode de croissance
Stranski-Krastanow. L’absence de couche de mouillage dans ce système est ensuite confir-
mée par l’observation STM et il est conclu que ces ilots se sont formés sous le mode de
croissance Volmer-Webber. (sous-section 4.2, page 84)

Pour comprendre les comportements différents des dépôts d’InAs sur les différentes
surfaces de substrat, l’influence de l’antimoine est discutée en termes énergétiques. La
modification de l’anisotropie de l’énergie de surface induite par l’antimoine permet d’in-
terpréter nos résultats sur substrats (1 0 0) et (1 1 3)B. Sb réduit énergie de surface d’InAs
de bas-indices (par exemple {0 0 1} ) mais il augmente celle de surface d’InAs de haut-
indice comme {1 1 3} et {1 1 4}. Pour le dépôt d’InAs sur surface (001) de GaAs0,51Sb0,49,
la formation de couche de mouillage orienté (0 0 1) est favorisée alors que la formation
des ilots composés de facettes de haut-indice orienté {1 1 4} est défavorisée ; par consé-
quent, le dépôt d’InAs sur substrat InP reste plat en présence de Sb. Pour le même
dépôt sur un substrat InP (113)B, la compétition est inversée : l’utilisation d’antimoine
favorise la formation des facettes de bas-indices comme des ilots tandis que la formation
d’une couche entière d’InAs orienté (113) est défavorisée ; éventuellement des ilots de
forte densité sont obtenus. (section 4.3, page 91)
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Fig. R.7 : Des possibilités éventuelles de dépôts d’InAs sur les surfaces de GaAs0,51Sb0,49. (a)
couche de mouillage formée sur surface (001) ; (b) un ilot formé sous mode croissance Stranski-
-Krastanow sur substrat (001) ; (c) couche de mouillage sur substrat (113)B ; (d) Un ilot InAs
formé sous mode Volmer-Webber sur surface (113)B de GaAs0,51Sb0,49.
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L’incorporation de Sb dans une couche d’InAs sous contrainte
sur substrat InP

Ayant une bande-interdite encore plus petite qu’InAs, l’utilisation d’alliage InAs1−x-
Sbx pourrait aussi étendre des applications de filière InP dans moyen-infrarouge. Pour-
tant, le niveau d’incorporation de Sb dans une couche InAs pourrait être très limité du
à l’introduction d’une contrainte plus importante.

L’incorporation de Sb dans l’alliage InAs1−xSbx est d’abord estimée par des calculs
thermodynamiques. La figure R.8 présente les compositions d’InAs1−xSbx calculées pour
les conditions de croissance couramment utilisées, y compris le rapport de flux entre des
éléments de groupe V/III ainsi que le rapport entre les flux d’arsenic et antimoine. Quand
la contrainte de cohérence n’est pas inclue dans les calculs, le niveau d’incorporation
d’antimoine pourrait être important ; cette situation correspond au dépôt d’InAs(Sb)
massif où des couches sont relaxées. Par contre, quand la contrainte est prise en compte,
l’incorporation d’antimoine est devenue difficile telle que l’incorporation d’antimoine
devient très faible. (section 5.1, page 98 ; section A.2, page 120)

Finalement, l’incorporation d’antimoine dans InAs1−xSbx a été également exami-
née avec les puits quantique InAs1−xSbx/Al0,48In0,52As. Au contraire des calculs, les
différentes combinaisons de flux pendant le dépôt d’InAs(Sb) ont des influences impor-
tantes sur l’énergie de transition dans ces structures. Pour l’instant, ces influences sont
attribuées à la formation des nanostructures 3D d’InAs1−xSbx, mise en évidence par
l’observation AFM de surface. Cependant, cette conclusion nécessite des études plus
approfondies à l’échelle microscopique. (section 5.2, page 101)
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A.1 Inter-subband absorption workbench

Figure A.1 schematically illustrates the key components in the inter-subband absorption
workbench. A compact halogen lamp was employed as light source and a compact
spectrometer was used for detection. Since the spectrometer is grating based, second
order diffractions has to be filtered by long-pass filters. The fiber based optics makes the
experiment setup very portable. This workbench was initially developed by Marianne
Prévôt (FOTON).

Light source

long-pass filter polarizer

f = 50mm

sample

Compact 

Spectrometer

f = 50mm

Figure A.1: Current workbench

The photo in figure A.2 gives an example of multi-reflection waveguide used in inter-
subband absorption study.

Figure A.2: Multi-reflection waveguide sample S1346.

A concern that may intervene the inter-subband absorption measurements would
be chromatic aberrations of the optics. To counteract, we have chosen achromatic lens
doublets. To verify that such aberration does not disturb the inter-subband absorption
measurement, we have compared a GaN/AlGaN reference sample using the current
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Figure A.3: Tests of inter-subband absorption workbench, comparing results obtained with
FTIR (IEF Orsay), current workbench using compact spectrometer, and the new workbench
under development using grating spectrometer with InSb detector.

workbench and another workbench at IEF which is well tested. Figure A.3 shows a
comparison of the absorption anisotropy spectra. The current workbench was able to
reproduce every detail of the absorption anisotropy spectra in the 1100-2100 nm range,
which is the range of wavelength that inter-subband absorption of Ga0.47In0.53As/Al-
As0.56Sb0.44 would appear.

A.2 Thermodynamic calculations on the composition of In-
As1−xSbx

Thermodynamics

The MBE growth of ternary alloys like InAs1−xSbx is thermodynamically equivalent to
the sequence of processes described in figure A.4.

As
2
 (g)

In (g)

Sb
2
 (g)

ΔG
f,1

ΔG
f,2

ΔG
m

mix

reactions

x InSb (s)

(1-x) InAs (s)

InAs
1-x

Sb
x
 

(relaxed)

InAs
1-x

Sb
x
 

(pseudomorphic)

deform

ΔH
s

Figure A.4: Thermodynamics descriptions of the growth of pseudomorphic InAs1−xSbx layer
on InP substrate.
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When the materials in gas phase and solid are in equilibrium, their chemical poten-
tials satisfy the following equalities :

µIn(g) +
1

2
µAs2(g) = µInAs(s) (A.3)

µIn(g) +
1

2
µSb2(g) = µInSb(s) (A.4)

For molecules in gas phases like In, its chemical potential is determined by its stan-
dard formation free energy µΘ

In,f and its pressure over the growth surface (PIn). For In
this is termed as :

µIn(T ) = µΘ
In,f(T ) + RT ln(PIn/P Θ) (A.5)

in which P Θ = 101325 Pa.

The total free energy of InAs1−xSbx ∆Gtotal formed by N1 amount of InAs N2 amount
of InSb is expressed as the sum of their standard formation free energies, mixing free
energies and coherency strain energy :

∆Gtotal =N1 GΘ
InAs,f + N2 GΘ

InSb,f . . . standard formation energies
+ (N1 + N2)∆Gm(x) . . . mixing free energy
+ (N1 + N2)∆Hs(x) . . . strain energy

in which x = N2/(N1 +N2). The Chemical potential of InAs (InSb) in InAs1−xSbx alloy
is thus by definition the modification of total free energy by introducing unity amount
of InAs (InSb):

µInAs(x) =
∂∆Gtotal

∂N1
= GΘ

f,InAs+
∂(N1 + N2)∆Gm(x)

∂N1
+

∂(N1 + N2)∆Hs(x)

∂N1

(A.6)

µInSb(x) =
∂∆Gtotal

∂N1
= GΘ

f,InSb+
∂(N1 + N2)∆Gm(x)

∂N2
+

∂(N1 + N2)∆Hs(x)

∂N2

(A.7)

The standard Gibbs free energy of each material is the sum of its standard formation
enthalpy and entropy GΘ = HΘ

f − T · SΘ
f , which are directly available in standard

reference data. For reference, the thermodynamic data used in the calculations of Sb-
incorporation in InAsSb layer are listed in table A.2 and A.3.

Regular solution model describes the mixing related energy reduction as [1, pp. 123-
128]:

∆Gm(x) = x (1 − x) Ω + R T [ x ln x + (1 − x) ln(1 − x) ] (A.8)

in which Ω the “interaction parameter” is a quantity that describes the solubility and
miscibility of alloy components. Ω value is taken as 2250 kcal/mol for InAsSb , which is
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recommended in [1, p. 28]. Thus ‘mixing’ part of chemical potential becomes :

∂(N1 + N2)∆Gm(x)

∂N1
= x2Ω + R T ln(1 − x) (A.9)

∂(N1 + N2)∆Gm(x)

∂N2
= (1 − x)2Ω + R T ln x (A.10)

The strain energy associated with epitaxial layer under tetra-orthogonally deforma-
tion is [2]:

∆Hs(x) =

[

C11(x) + C12(x) − 2
C2

12(x)

C11(x)

]

NAa3
0

4

[

a(x) − a0

a(x)

]2

(A.11)

in which NA is Avogadro’s constant, a0 is the lattice constant of substrate, a(x) is
the lattice constant of relaxed InAs1−xSbx. Cnns are elastic constants of InAs1−xSbx,
obtained by linear interpolation the properties of InAs and InSb.

∂(N1 + N2)∆Hs(x)

∂N1
= H(x) − x · H ′(x) (A.12)

∂(N1 + N2)∆Hs(x)

∂N2
= H(x) + (1 − x) · H ′(x) (A.13)

Since almost every term in the expression of H(x) is a function of x = N1/(N1 +N2),
the expression for its derivations of N1 (N2) becomes rather complicated ; thanks to
symbolic math toolboxes, such error prone process can be performed automatically,
thus the detailed expression is not listed here. Eventually, the chemical potentials of
InAs and InSb in InAs1−xSbx become:

µInAs(x) = ∆GΘ
f,InAs + RT ln(1 − x) + x2Ω + Hs(x) − x · H ′

s(x) (A.14)
µInSb(x) = ∆GΘ

f,InSb + RT ln x + x2Ω + Hs(x) + (1 − x) · H ′
s(x) (A.15)

By substituting all quantities into equations , equations (A.3) and (A.4) turn into :

PInPAs2
1/2 = exp (∆µ1/RT ) (A.16)

PInPSb2
1/2 = exp (∆µ2/RT ) (A.17)

in which

∆µ1 = µInAs(s) − µIn(g) − 1

2
µAs2(g)

∆µ2 = µInSb(s) − µIn(g) − 1

2
µSb2(g)

This is equation is ready to be solved under growth condition the following constraints
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respectively established by the definition of x and the conservation of material:

x =
P 0

Sb2 − PSb2
P 0

As2 − PAs2 + P 0
Sb2 − PSb2

(A.18)

P 0
In − PIn = 2

(

P 0
As2 − PAs2 + P 0

Sb2 − PSb2
)

(A.19)

H ′(x) is a rather complicated expression due to every quantity depends on x. For-
tunately, such chores can be dealt with symbolic math tools.

Solution to equation

By dividing equation (A.16) by (A.17) and take the square root of the two side of
equation, we have

w1/2 = PAs2/PSb2 (A.20)

in which:

w = exp [(∆µ1 − ∆µ2) /RT ] (A.21)

Equations (A.18) and (A.20) can be written in the form of linear simultaneous equations:
[

1 −w1/2

1 1 − x

] [

PAs2

PSb2

]

=

[

0

P 0
As2 + (1 − x)P 0

Sb2

]

(A.22)

By solving the above matrix equation about PAs2 and PSb2, these two quantities can
be expressed using functions of x. The same is applied to PIn :

PIn = P 0
In − 2[PAs2 − PAs2] − 2[(PSb2 − PSb2)] (A.23)

By now, all the unknowns can be expressed in x, and the thermodynamic problem
can thus be solved by minimizing the sum of objective function

F (x) = ∆µ2
1(x) + ∆µ2

2(x)

The definition domain of x is sometimes non-continuous subsets of interval [0,1] so that
general solvers are not able to solve such a problem with singularities. We have designed
special solver codes for finding the solution x.
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Table A.2: Lattice constants and elastic constants of materials used in this study. Data taken
from [3].

a0 (300 K) C11 (300 K) C12 (300 K) C44 (300 K)
Å 10 GPa 10 GPa 10 GPa

GaAs (s) 5.653 11.90 5.34 5.96
GaSb (s) 6.096 8.83 4.02 4.32
InAs (s) 6.058 8.34 4.54 3.95
InSb (s) 6.479 6.67 3.65 3.92
InP (S) 5.869 10.11 5.61 4.56

Table A.3: Standard formation enthalpy and entropy. Elemental indium and gallium data
taken from “standard thermodynamic properties of chemical substances” (http://www.update.
uu.se/~jolkkonen/pdf/CRC_TD.pdf).

Material HΘ
f (289 K) SΘ

f (289 K) a b c

kJ/mol J/(K·mol)
Ga (g) 272 169 3/2 R – –
In (g) 243 173 3/2 R – –

As2 (g) 190.79 240.881 37.196 0.151 -0.201
As4 (g) 153.301 327.431 82.939 0.130 -0.515
Sb2 (g) 231.207 254.914 36.405 0 -0.1
Sb4 (g) 206.522 350.109 83.094 0.013 -0.209

GaAs (s) -74.056 64.183 45.187 6.067 0
GaSb (s) -43.932 76.056 44.35 14.226 0
InAs (s) -58.576 75.730 47.07 7.531 0
InSb (s) -30.543 87.111 44.769 15.062 0

The thermodynamic properties at given temperature is calculated by the following for-
mulae :

Hf (T ) = HΘ
f (298) + a · (T − 298) + b · 10−3(T 2 − 2982)/2 − 106c · (T −1 − 298−1)

Sf (T ) = HΘ
f (298) + a · [log(T ) − log(298))] + b · 10−3(T − 298) − c · 106(T −2 − 298−2)/2
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A.3 Surfactant effect on the surface of Ga0.47In0.53As

In order to clarity the influence of Sb on InAs surface while avoiding discussing the role
of strain, we have examined the surface of lattice-matched Ga0.47In0.53As annealed under
either Sb2-based surface termination or under As2 one.

Totally four samples were prepared in two growth-runs, accounting for two surface
termination methods and two substrate orientations. As usual, the growth rate of Ga0.47-
In0.53As was 0.23 ML/s, the V/III beam equivalent pressure ratio was about 6:1 and the
substrate temperature was set to 450 °C during all growth-runs. In the first growth-run,
two samples S1277.1 and S1277.2 were grown simultaneously on InP (001) and (113)B
substrates. To ensure the flatness of growth front, a thick InP buffer layer was deposited
before the deposition of Ga0.47In0.53As layer. Being aware that segregated indium atoms
may cumulate on its final surface, the thickness of this Ga0.47In0.53As layer was chosen
as small as 10 nm. Following that, the surface of Ga0.47In0.53As is exposed to As2 flux
for as long as 600 s to ensure that InAs deposition has reached its equilibrium shape.
And finally, the substrate temperature is ramped down at fastest rate possible under As2

flux. In the second growth-run, two samples S1283.1 and S1283.2 were grown under the
same procedures except that the Ga0.47In0.53As surfaces were annealed under combined
(As2+Sb2) flux. The beam equivalent pressure ratio between As2 and Sb2 flux was about
1:5.

(001)

(113)B

As
2
  (S1277) As

2
 +Sb

2
  (S1283)

S1283.1S1283.1

RMS 0.23 nmRMS 0.23 nm
S1277.1S1277.1

RMS 1.60 nmRMS 1.60 nm

S1283.2S1283.2

RMS 0.55 nmRMS 0.55 nm
S1277.2S1277.2

RMS 5.01 nmRMS 5.01 nm

<110>
<110>

Figure A.5: Surface of Ga0.47In0.53As annealed under As2 flux or (As2+Sb2) combined.

Figure A.5 reports contact-mode AFM observations of annealed Ga0.47In0.53As sur-
faces, and figure A.6 shows several line profiles taken from these AFM images. The most
striking feature among these images is the nanostructures formed on sample S1277.1/2
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Figure A.6: Line profiles taken in AFM images in figure A.5.

(As2 annealing). Further AFM profiles analyses also indicate that the inclination of
their facets can be as large as 25°, which correspond to well-defined facets rather than
vicinal surfaces. This is in clear contrast with the surfaces obtained under (As2+Sb2)
annealing, which remain relative flat. We consider the surface has reached its equilib-
rium shape after 600 s annealing, and the discrepancy between surface obtained under
two surface termination method has thus becomes a direct evidence that Sb can change
the equilibrium shape of lattice-matched Ga0.47In0.53As deposition.

It’s worth noting that the GaInAs islands formed on (001) surface are elongated
along one of its [1 1 0] directions while those island formed on (113) surface is more
isotropic. The shape of elongated islands agrees with the anisotropic surface diffusion
on GaInAs (001) surface [4]. Such strongly anisotropic surface morphology cannot be
achieved without extensive mass transport, which in turn confirms that the surface is
under equilibrium.

For (As2+Sb2)-annealed Ga0.47In0.53As surface (S1283.1/2), no ‘real’ quantum-dot
like object is detected on either of the two samples. Although the difference between
two substrate orientations is less pronounced, the ‘granular texture’ is more obvious on
(113)B surface than on (001) surface. In one hand, such result indicates that high-level of
strain/mismatch is crucial for the formation of InAs island in the case of InAs/GaAs0.51-
Sb0.49 (113)B quantum dots. On the other hand, the low surface energy of GaAs0.51Sb0.49

(113)B surface could be another driving force for the formation of InAs/GaAs0.51Sb0.49

Volmer-Weber quantum dots.
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A.4 Routine experimental methods

Photoluminescence experimental setup

For most of the PL spectra presented in this thesis, a 532 nm YAG:Nd double freqency
laser was used as excitation source. With the optics, it can achieve maximum power
density of 4 kW/cm2. Two additional 405 nm and 1064 nm laser were also used for
complementary studies like PL peak identification. In this setup, a Helium closed-cycle
cryostat was employed that enables PL studies from about 10 K to room temperature. A
compact grating spectrometer was used for light detection. Its detector is a CCD array
made of strained-GaInAs, and the working spectra range is from 890 nm to 2100 nm.

X-ray diffraction

All the X-ray diffraction and reflectivity studies presented in this thesis were performed
on a Bruker D8-Discover goniometer. This machine is equipped with LynxEyeTM multi-
channel 1D detector so that reciprocal space map measurement is as simple as ω−2θ

scans. We would like to thank to Valerie Demange from Université de Rennes 1 for
granting us the use of this equipment.

Contact-mode atomic force microscope

All the AFM studies in this thesis were performed on a Veeco diInnova system. The
AFM tip (nanoworld Arrow CONTR) has a typical tip radius of curvature of less than
10 nm. With such a tip, the inter-island space between high-density InAs/GaAsSb
quantum dots presented in chapter 4 cannot be easily resolved.
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Résumé 
 

Ce travail de thèse porte sur la croissance et sur la 
caractérisation optique de nanostructures à base d’antimoine 
sur substrats InP, en vue d’applications dans le domaine des 
télécommunications optiques. 
 
La transition inter-sous-bande est un processus ultrarapide qui 

permet la modulation de la lumière dans les réseaux de 
télécommunication optique. Durant cette thèse, une absorption 
inter-sous-bande dans le proche-infrarouge provenant de puits 
quantiques Ga0.47In0.53As/AlAs0.56Sb0.44 a été observée pour la 
première fois au laboratoire. Les analyses par microscopie 
électronique à effet tunnel sur la face clivée montrent 
cependant de nombreux déviations à l’idéalité de nos 
structures : mélange à l’échelle atomique aux interfaces entre 

GaInAs et AlAsSb, inhomogénéité de l’alliage GaInAs, 
incorporation non-intentionnel d’antimoine dans le GaInAs.  
 
Les puits quantiques InAs/AlAs0.56Sb0.44 sont potentiellement 
des objets de  choix  pour la réalisation de composants inter-
sous-bande travaillant à 1,55 µm. Des puits quantiques 
InAs/AlAs0.56Sb0.44 contraint, exempt de défauts ont été obtenus 
par croissance assistée par effet surfactant de Sb. En 

symétrisant la contrainte induite par le dépôt d’InAs par 
l’insertion de couches nanométriques de AlAs dans les 
barrières, des multi-puits InAs/AlAs0.56Sb0.44 sans contrainte 
macroscopique ont été réalisés. 
 
L’effet de l’antimoine en surface sur la croissance de structure 
InAs/GaAs0.51Sb0.49 a également été étudié. En présence 
d’antimoine sur substrats InP d’orientation (001), le dépôt 

d’InAs conduit à la formation de puits quantiques.  Par contre 
sur ceux orientés suivant (113)B des boites quantiques sont 
formées suivant le mode de croissance Volmer-Weber. Ces 
résultats sont discutés en termes d’effets cinétiques ou 
énergétiques de l’antimoine en surface. La modification de 
l’anisotropie de l’énergie de surface induite par l’antimoine 
permet d’interpréter nos résultats sur substrats (100) et (113) B.  
 
 

Mots-clés : épitaxie par faisceaux moléculaires ; 
nanostructures ; optoélectronique; composés semi-conducteurs 

 

N° d’ordre : 14ISAR01 / D14-01 

Abstract 
 

This PhD work presents molecular beam epitaxy growth and 
optical studies on several Sb-nanostructures on InP substrate, 
for their potential use in optical telecommunication. 
 

Inter-subband transition in Ga0.47In0.53As/AlAs0.56Sb0.44 quantum 
well is a useful physical process for implementing ultrafast full-
optical modulations. Near-infrared inter-subband transition in 
this material was achieved and microscopic studies on this 
structure has revealed that the intermixing at GaInAs/AlAsSb 
interface, unintentional Sb incorporation in GaInAs layer and the 
inhomogeneity within GaInAs layer could prevent Ga0.47In0.53As/ 
AlAs0.56Sb0.44 multiple quantum wells from achieving inter-

subband transition in 1.55 µm optical telecommunication band. 
 
The strained InAs/AlAs0.56Sb0.44 quantum well is another 
material that has potential use in 1.55 µm full-optical 
modulation. 2 nm-thick defect-free InAs/AlAs0.56Sb0.44 was 
obtained under Sb surfactant-mediated growth, and by using 
strain compensation techniques, InAs/AlAs0.56Sb0.44 multiple 
quantum wells with zero net-strain were realized. 

 
The study of Sb-mediated growth is also carried on to 
InAs/GaAs0.51Sb0.49 nanostructures. The growths of such 
structures on InP (001) substrate has led to the formation of flat 
InAs layer, while high-density InAs/GaAs0.51Sb0.49 quantum dots 
were obtained on InP (113)B substrates under Volmer-Weber 
growth mode. We attribute such phenomena to the surface-
orientation dependent surfactant effect of Sb. Emission 

wavelength close to 2 µm was achieved with only 5 ML of InAs 
deposition, which makes these quantum dots attractive to InP-
based mid-wave applications. 
 
Keywords: molecular beam epitaxy, nanostructure, 
optoelectronics, compound semiconductors 


	Contents
	Introduction
	Epitaxial Growth of Antimonides on InP Substrate
	MBE system
	Epitaxial growth of lattice-matched alloys on InP substrate
	Deposition of lattice-mismatched materials on InP substrate

	The Growth of Ga0.47In0.53As/AlAs0.56Sb0.44 Quantum Wells for Inter-subband Applications
	Inter-subband transition and devices
	Inter-band properties of GaInAs/AlAsSb multiple quantum wells
	Inter-subband properties of GaInAs/AlAsSb multiple quantum wells
	The effects of surface terminations
	The impact of digital alloy growth

	Sb-mediated Growth of InAs/AlAs0.56Sb0.44 Strained Quantum Wells for Inter-subband Applications
	Properties of InAs/AlAsSb strained quantum well
	Sb-mediated Growth of InAs on InP substrate
	Sb-mediated growth of pseudomorphic InAs/AlAsSb single quantum well
	Strain compensation in InAs/AlAsSb multiple quantum wells
	Polarization-dependent absorption in InAs/AlAs0.56Sb0.44 multiple quantum wells

	Sb-mediated Growth of InAs/GaAs0.51Sb0.49 Heterostructures on InP Substrate
	InAs quantum dots on grown on (001) and (113)B substrates
	InAs/GaAs0.51Sb0.49 quantum wells on InP (001) substrate
	Surface-orientation dependent surfactant effect of Sb

	Incorporation of Sb in Strained InAs(Sb) Heterostructures 
	Thermodynamics of Sb-incorporation in strained InAs
	Sb-incorporation in InAs/Al0.48In0.52As quantum wells

	Conclusion
	Résumé
	Appendices
	Inter-subband absorption workbench
	Thermodynamic calculations on the composition of InAs1-xSbx
	Surfactant effect on the surface of Ga0.47In0.53As
	Routine experimental methods

	Page 1
	Titles
	AVIS DU JURY SUR LA REPRODUCTION DE LA THESE SOUTENUE 

	Images
	Image 1
	Image 2



