
HAL Id: tel-01084095
https://theses.hal.science/tel-01084095v1

Submitted on 18 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptiveness and Social-Compliance in Trust
Management - A Multi-Agent Based approach

Mohamed Reda Yaich

To cite this version:
Mohamed Reda Yaich. Adaptiveness and Social-Compliance in Trust Management - A Multi-Agent
Based approach. Other. Ecole Nationale Supérieure des Mines de Saint-Etienne, 2013. English.
�NNT : 2013EMSE0717�. �tel-01084095�

https://theses.hal.science/tel-01084095v1
https://hal.archives-ouvertes.fr

No d’ordre : 2013 EMSE 0717

THÈSE

présentée par

Mohamed Reda YAICH

pour obtenir le grade de
Docteur de l’École Nationale Supérieure des Mines de Saint-Étienne

Spécialité : Informatique

Adaptation et Conformité Sociale dans

la Gestion de la Confiance –

Une approche multi-agent

soutenue à Saint-Étienne, le 29 Octobre 2013

Membres du jury:

Président : Pierre Maret - LaHC - Université Jean Monnet de Saint-Etienne

Rapporteurs : Timothy Norman - King’s College - University of Aberdeen
Laurent Vercouter - LITIS - INSA de Rouen
Mohand-Said Hacid - LIRIS - Université Claude Bernard Lyon 1

Examinateurs : Norra Cuppens-Boulahia - LABSTICC - Telecom Bretagne

Directeurs de thèse : Olivier Boissier - ENS des Mines de St-Etienne
Gauthier Picard - ENS des Mines de St-Etienne
Philippe Jaillon - ENS des Mines de St-Etienne

AVRIL Stéphane PR2 Mécanique et ingénierie CIS

BATTON-HUBERT Mireille PR2 Sciences et génie de l'environnement FAYOL

BENABEN Patrick PR1 Sciences et génie des matériaux CMP

BERNACHE-ASSOLLANT Didier PR0 Génie des Procédés CIS

BIGOT Jean Pierre MR(DR2) Génie des Procédés SPIN

BILAL Essaid DR Sciences de la Terre SPIN

BOISSIER Olivier PR1 Informatique FAYOL

BORBELY Andras MR(DR2) Sciences et génie de l'environnement SMS

BOUCHER Xavier PR2 Génie Industriel FAYOL

BRODHAG Christian DR Sciences et génie de l'environnement FAYOL

BURLAT Patrick PR2 Génie Industriel FAYOL

COLLOT Philippe PR0 Microélectronique CMP

COURNIL Michel PR0 Génie des Procédés DIR

DARRIEULAT Michel IGM Sciences et génie des matériaux SMS

DAUZERE-PERES Stéphane PR1 Génie Industriel CMP

DEBAYLE Johan CR Image Vision Signal CIS

DELAFOSSE David PR1 Sciences et génie des matériaux SMS

DESRAYAUD Christophe PR2 Mécanique et ingénierie SMS

DOLGUI Alexandre PR0 Génie Industriel FAYOL

DRAPIER Sylvain PR1 Mécanique et ingénierie SMS

FEILLET Dominique PR2 Génie Industriel CMP

FOREST Bernard PR1 Sciences et génie des matériaux CIS

FORMISYN Pascal PR0 Sciences et génie de l'environnement DIR

FRACZKIEWICZ Anna DR Sciences et génie des matériaux SMS

GARCIA Daniel MR(DR2) Génie des Procédés SPIN

GERINGER Jean MA(MDC) Sciences et génie des matériaux CIS

GIRARDOT Jean-jacques MR(DR2) Informatique FAYOL

GOEURIOT Dominique DR Sciences et génie des matériaux SMS

GRAILLOT Didier DR Sciences et génie de l'environnement SPIN

GROSSEAU Philippe DR Génie des Procédés SPIN

GRUY Frédéric PR1 Génie des Procédés SPIN

GUY Bernard DR Sciences de la Terre SPIN

GUYONNET René DR Génie des Procédés SPIN

HAN Woo-Suck CR Mécanique et ingénierie SMS

HERRI Jean Michel PR1 Génie des Procédés SPIN

INAL Karim PR2 Microélectronique CMP

KLOCKER Helmut DR Sciences et génie des matériaux SMS

LAFOREST Valérie MR(DR2) Sciences et génie de l'environnement FAYOL

LERICHE Rodolphe CR Mécanique et ingénierie FAYOL

LI Jean Michel Microélectronique CMP

MALLIARAS Georges PR1 Microélectronique CMP

MOLIMARD Jérôme PR2 Mécanique et ingénierie CIS

MONTHEILLET Franck DR Sciences et génie des matériaux SMS

PERIER-CAMBY Laurent PR2 Génie des Procédés DFG

PIJOLAT Christophe PR0 Génie des Procédés SPIN

PIJOLAT Michèle PR1 Génie des Procédés SPIN

PINOLI Jean Charles PR0 Image Vision Signal CIS

POURCHEZ Jérémy CR Génie des Procédés CIS

ROUSTANT Olivier MA(MDC) FAYOL

STOLARZ Jacques CR Sciences et génie des matériaux SMS

SZAFNICKI Konrad MR(DR2) Sciences et génie de l'environnement CMP

TRIA Assia Microélectronique CMP

VALDIVIESO François MA(MDC) Sciences et génie des matériaux SMS

VIRICELLE Jean Paul MR(DR2) Génie des Procédés SPIN

WOLSKI Krzystof DR Sciences et génie des matériaux SMS

XIE Xiaolan PR1 Informatique CIS

FORTUNIER Roland PR Sciences et Génie des matériaux ENISE

BERGHEAU Jean-Michel PU Mécanique et Ingénierie ENISE

DUBUJET Philippe PU Mécanique et Ingénierie ENISE

LYONNET Patrick PU Mécanique et Ingénierie ENISE

SMUROV Igor PU Mécanique et Ingénierie ENISE

ZAHOUANI Hassan PU Mécanique et Ingénierie ENISE

BERTRAND Philippe MCF Génie des procédés ENISE

HAMDI Hédi MCF Mécanique et Ingénierie ENISE

KERMOUCHE Guillaume MCF Mécanique et Ingénierie ENISE

RECH Joël MCF Mécanique et Ingénierie ENISE

TOSCANO Rosario MCF Mécanique et Ingénierie ENISE

GUSSAROV Andrey Andrey Enseignant contractuel Génie des procédés ENISE

EMSE : Enseignants-chercheurs et chercheurs autorisés à diriger des thèses de doctorat (titulaires d’un doctorat d’État ou d’une HDR)

ENISE : Enseignants-chercheurs et chercheurs autorisés à diriger des thèses de doctorat (titulaires d’un doctorat d’État ou d’une HDR)

Spécialités doctorales :
SCIENCES ET GENIE DES MATERIAUX

MECANIQUE ET INGENIERIE

GENIE DES PROCEDES

SCIENCES DE LA TERRE

SCIENCES ET GENIE DE L’ENVIRONNEMENT

MATHEMATIQUES APPLIQUEES

INFORMATIQUE

IMAGE, VISION, SIGNAL

GENIE INDUSTRIEL

MICROELECTRONIQUE

Responsables :
K. Wolski Directeur de recherche

S. Drapier, professeur

F. Gruy, Maître de recherche

B. Guy, Directeur de recherche

D. Graillot, Directeur de recherche

O. Roustant, Maître-assistant

O. Boissier, Professeur

JC. Pinoli, Professeur

A. Dolgui, Professeur

PR 0 Professeur classe exceptionnelle

PR 1 Professeur 1ère classe

PR 2 Professeur 2ème classe

PU Professeur des Universités

MA (MDC) Maître assistant

DR Directeur de recherche

Ing. Ingénieur

MCF Maître de conférences

MR (DR2) Maître de recherche

CR Chargé de recherche

EC Enseignant-chercheur

IGM Ingénieur général des mines

SMS Sciences des Matériaux et des Structures

SPIN Sciences des Processus Industriels et Naturels

FAYOL Institut Henri Fayol

CMP Centre de Microélectronique de Provence

CIS Centre Ingénierie et Santé

M
is

e
 à

 j
o

u
r

:
 0

7
/0

1
/2

0
1

3

To my children ...

Acknowledgments

If I have seen further it is by standing on the shoulders of Giants.

Isaac Newton

I would like to acknowledge the contributions of many people without whom I would not
have been able to complete this work.

The first and foremost of these is, of course, my wife Wassila Amel. Thank you for
your endless support and understanding. Thank you for everything you brought to my life.
Thank you for giving me three wonderful children Sami Ibrahim, Rami Ismaël and Hiba
Ikram. I’m lucky to have met you and I’m looking forward to spend the rest of my life with you.

I also owe my deepest gratitude and my warmest thanks to my supervisors, Olivier Boissier,
Gauthier Picard and Philippe Jaillon. You committed guidance, understanding, encouraging
and overly enthusiasm. You’ve made a deep impression on me and have provided a very
important basis for this manuscript. Above all, thank you for all the nights and week-ends
you’ve dedicated to read and correct my manuscript. Many thanks to your wives for their
concern and understanding.

I’m also very thankful for the guidance of the reviewers and the jury members:
Pr. Tim Norman, Pr. Laurent Vercouter, Pr. Mohand-Said Hacid, Pr. Pierre Maret
and Pr. Nora Cuppens. It was an honor that you’ve accepted to evaluate my modest con-
tribution. Thank you for spending your time reading my thesis and participating in my defense.

Many thanks to my family members. Above all, my mother which is my first fan and
supporter. My father for being my motivation to succeed in life. My sister Maroua for her love
and care. My sister Abbassia for her support. I want also to thank my brothers Samir and
Kadiro for taking care of our parents during my absence. I’m very grateful to my grandmother
“mima” for her blessings, to my uncles and aunts for their help. Also, I want to thank my
step-family for their understanding and encouragement. Thank you for trusting me all these
years.

When I joined the Ecole des Mines of Saint-Etienne, I was lucky to meet outstanding
researchers and great persons who rapidly became my nearest friends. From all these people,
I especially would like to thank Sonia Rouibi for her welcome, help and support in the two
first years of my PhD. I want also to thank Malik Eddine Chalal (aka mami) and Abdelhamid
Moutaouakil for their encouragements and advices in the last year. I’m also particularly
grateful to Oussama Ben Amar, Lounes Bentaha, Nadjim Ouaissa, Adnane Lazrak, Yann
Krupa, Rosine Kitio and Camille Persson. Thank you for the nice time we spent together, I
have learned a lot from you.

iii

I am grateful to the inhabitants of the Fayol Institute and beyond who have supported and
entertained me during my thesis. Thanks to the members of the ISCOD team, thanks for the
members of the DEMO team with whom I shared unforgettable moments during lunch and
coffee breaks. Thanks to Gabi, Nilou, JF, Alain and marie-line. Thank you for the enjoyable
moment we spent together at the “Espace Fauriel”.

I wrote this thesis while I was working as a research assistant at the Hubert Curien
CNRS Laboratory of the University Jean Monnet of Saint-Etienne. I’m naturally grateful to
the colleagues for their support and encouragement. I want to thank particularly Philippe
Ezequel, François Jacquenet Fabrice Muhlenbach and Elisa Fromont.

I had the chance to supervise an Erasmus Master student during my PhD. So I wanted to
thank Loredana Fau for her involvement and valuable contribution to my work.

I am thankful to my Algerian friends, who always supported me in my career. I especially
would like to thank Ayoub, Azzeddine, Fouad, Hicham, Houari, Kada, Mohamed, Nouré,
Raouf, Riad, Samir, Sid Ahmed and Zouaoui.

I would also like to acknowledge all my former teachers and professors, who hopefully still
recognize me after all these years.

I would like to thank everybody who I have forgotten to thank. If I have forgotten to
acknowledge you, I am in remiss. I want you to know that I am terribly sorry.

Last but not least, I want to thank you, you the reader of my manuscript, for your courage
and interest. Thank you for making the research legend “ nobody ever reads a thesis” false !

Mohamed Reda Yaich
Saint-Etienne, October 2013

iv

Contents

I Introduction 1

1 Introduction 3

1.1 Context . 3

1.2 Motivations and Challenges . 4

1.2.1 Social Aspects (C1): Social-Awareness 4

1.2.2 Dynamic Aspects (C2): Context-Awareness 5

1.3 Objective and Requirements . 5

1.3.1 Requirements . 5

1.3.2 Objectives . 6

1.4 Approach and Contributions . 7

1.5 Thesis Outline . 8

1.6 Related Publications . 9

1.7 French Summary . 11

1.7.1 Contexte . 11

1.7.2 Motivations et Challenges . 11

1.7.3 Objectives et Besoins . 12

1.7.4 Approche . 13

II State of the Art 15

2 On the Nature of Trust 17

2.1 A “brief” Retrospective Study About Trust . 17

2.1.1 The Philosophical Perspective . 17

2.1.2 The Psychological Perspective . 18

2.1.3 The Sociological Perspective . 19

2.1.4 The Economical Perspective . 19

2.1.5 The Computer Science Perspective . 20

2.2 An Attempt to Define Trust . 21

2.2.1 What Trust Is Not? . 21

2.2.2 What Is Trust? . 22

2.3 Trust Features . 24

2.3.1 Trust Nature . 24

2.3.2 Trust Sources . 25

2.3.3 Trust Properties . 27

2.4 Trust Models Analysis . 30

Contents

2.4.1 Trust Models in Distributed Artificial Intelligence 30
2.4.2 Trust Models in Security . 34

2.5 Discussion . 36
2.6 Conclusion . 38
2.7 French Summary . 41

2.7.1 Étude rétrospective sur la confiance . 41
2.7.2 Sur les traces de la confiance . 43
2.7.3 Analyse des modèles de confiance . 44

3 Trust Management Systems 47
3.1 From Access Control to Trust Management . 47

3.1.1 Access Control Model . 48
3.1.2 Identity-Based Access Control . 49
3.1.3 Lattice-Based Access Control . 50
3.1.4 Role-Based Access Control . 51
3.1.5 Organisation-Based Access Control . 52
3.1.6 Attribute-Based Access Control . 52

3.2 Trust Management . 54
3.2.1 Definition . 54
3.2.2 Trust Management System . 55
3.2.3 Foundations . 56
3.2.4 Automated Trust Negotiation . 60

3.3 Trust Management Systems Analysis . 62
3.3.1 Authorisation-Based TMSs . 62
3.3.2 Automated Trust Negotiation Systems 69

3.4 Discussion . 75
3.4.1 Credentials . 75
3.4.2 Policies . 76
3.4.3 Trust Engine . 78

3.5 Conclusion . 79
3.6 French Summary . 81

3.6.1 Du contrôle d’Accès à la Gestion de la Confiance 81
3.6.2 Gestion de la confiance . 82
3.6.3 Systèmes de gestion de la confiance . 83
3.6.4 Analyse des Systèmes de gestion de la confiance 84

4 The Social Dimension of Trust Management 87
4.1 Social dimension of Trust Management . 87

4.1.1 Policy Combination . 88
4.1.2 Policy Integration and Composition . 90
4.1.3 Algebra for Fine-Grained Integration of Policies 91

vi

Contents

4.2 The Social Influence Theory . 95

4.2.1 Majority Influence . 96

4.2.2 Minority Influence . 99

4.2.3 The Social Impact Theory . 100

4.3 Multi-Agent Systems . 101

4.3.1 Top-Down Perspective: Orchestrated Control 102

4.3.2 Bottom-Up Perspective: Emergent Control 105

4.3.3 Mixed Perspective: Micro-Macro Loop 108

4.4 Conclusion . 109

4.5 French Summary . 111

4.5.1 La dimension sociale dans la gestion de la confiance 111

4.5.2 La théorie de l’influence sociale . 112

4.5.3 Les systèmes multi-agent . 114

III The ASC-TMS Model 115

5 A Multi-Agent-Based Virtual Community 117

5.1 The System Model Specification . 118

5.2 Ontology . 119

5.3 Resources . 120

5.4 Agents . 123

5.5 Communities . 125

5.6 Interactions . 132

5.7 Conclusion . 134

5.8 French Summary . 135

5.8.1 Spécification de la communauté virtuelle 135

5.8.2 Ontologie . 136

5.8.3 Ressources . 137

5.8.4 Agents . 138

5.8.5 Communautés . 139

5.8.6 Interactions . 140

6 The Trust Management System 143

6.1 Overview of the Approach . 143

6.2 Trust Factors . 145

6.2.1 Definition . 145

6.2.2 Proofs and Indicators . 146

6.2.3 Trust Factors Ontology . 147

6.2.4 Trust Information . 148

6.3 Trust Policies . 151

vii

Contents

6.3.1 Trust Criteria . 152

6.4 Trust Mechanisms . 154

6.5 Trust Decision Making . 156

6.6 Building Trust Experiences . 157

6.7 The Trust Management Cycle: From Trust Factors to Trust 158

6.8 Bridging the trust model and the virtual community model 159

6.8.1 Ontology . 160

6.8.2 Resources . 160

6.8.3 Agents . 160

6.8.4 Interaction . 161

6.8.5 Organization . 161

6.9 Conclusion . 165

6.10 French Summary . 166

6.10.1 Aperçu de l’approche . 166

6.10.2 Les facteurs de confiance . 168

6.10.3 La politique de confiance . 170

6.10.4 Le schéma de confiance . 171

7 Adaptiveness and Social-Compliance in Trust Management 173

7.1 Adaptation Types . 173

7.1.1 Business-Context Adaptation . 174

7.1.2 Social-Context Adaptation . 176

7.1.3 Evolution . 178

7.2 Policy Adaptation . 178

7.2.1 Adaptation Conditions . 179

7.2.2 Expressing Condition . 181

7.2.3 Adaptation Operations . 182

7.2.4 Adaptation Meta-Policies . 185

7.3 The Policy Adaptation Cycle . 186

7.4 Adaptiveness: Adaptation to Business-Context 188

7.4.1 Instantiation . 189

7.4.2 Trust Negotiation . 190

7.5 Social-Compliance: Adaptation to Social-Context 195

7.5.1 Combination . 196

7.5.2 Integration . 198

7.5.3 Evolution . 200

7.6 Conclusion . 202

7.7 French Summary . 203

7.7.1 Types d’adaptation . 203

7.7.2 Adaptation des politiques . 206

viii

Contents

7.7.3 Les méta-politiques d’adaptation . 207

7.7.4 Le processus d’adaptation . 207

IV Implementation, Application and Experimentation of the ASC-
TMS 209

8 ASC-TMS Implementation 211

8.1 JaCaMo Framework . 211

8.1.1 Programming Agents with Jason . 211

8.1.2 Programming Environments with CArtAgO 214

8.1.3 Programming Organisations with Moise 215

8.2 The JaCaMo-Based Community Architecture 216

8.3 Implementation Details . 217

8.3.1 Implementing Agents in Jason . 217

8.3.2 Implementing Resources in Artefacts . 230

8.3.3 Implementing Virtual Communities with Moise 233

8.3.4 Implementing Interactions . 234

8.4 Conclusion . 237

8.5 French Summary . 238

8.6 L’architecture JaCaMo d’une communauté virtuelle 238

8.7 Détails d’implémentation . 239

8.7.1 Implémentation des agents . 240

8.7.2 Agent Assistant . 240

8.7.3 Gestionnaire de la confiance . 241

8.7.4 Implémentation des ressources . 242

8.7.5 Implémentation des communautés . 242

8.7.6 Implémentation des interactions . 243

9 ASC-TMS Application to Open Innovation 245

9.1 Open Innovation . 245

9.2 Illustrative Example: An Open Innovation Community 246

9.2.1 ASC-TMS for Communities Creation . 247

9.2.2 Request Management with the ASC-TMS 250

9.3 Conclusion . 258

9.4 French Summary . 259

9.5 Innovation Ouverte . 259

9.6 Communauté d’Innovation Ouverte . 260

9.6.1 Utilisation du ASC-TMS pour la création des communautés 261

ix

Contents

10 Evaluation of ASC-TMS 263
10.1 Repast Platform . 263
10.2 Simulation Model . 264

10.2.1 Solutions . 265
10.2.2 The Challenge . 266
10.2.3 The Community . 266

10.3 Simulation Scenario . 269
10.4 Simulation Settings . 272

10.4.1 Simulation Parameters . 272
10.4.2 Simulation Metrics . 273

10.5 Evaluations . 274
10.5.1 Results . 274

10.6 Conclusion . 282
10.7 French Summary . 283
10.8 La plateforme de simulation multi-agent Repast 283
10.9 Modèle de simulation . 283
10.10Scénario de simulation . 284
10.11Réglages de la simulation . 287

10.11.1 Paramètres de simulation . 287
10.11.2 Métriques de simulation . 288

10.12Évaluation . 288
10.12.1 Hypothèses . 288
10.12.2 Results . 288

V Conclusion 293

11 Conclusion 295
11.1 Summary and Contributions . 295
11.2 Open Issues and Future Works . 298
11.3 French Summary . 301

11.3.1 Synthèse des contributions . 301
11.3.2 Questions ouvertes et perspectives . 302

Bibliography 307

x

Part I

Introduction

Chapter 1

Introduction

The work presented in this dissertation addresses the problem of trust management in open and
decentralised virtual communities (VCs). We address this problem by proposing an Adaptive
and Socially-Compliant Trust Management System (ASC-TMS) adopting a multi-agent based
approach. Our proposal relies on the joint use of adaptive trust policies and adaptation meta-
policies, which allow VCs members to make adaptive and socially-compliant trust decisions.
This chapter introduces the context, challenges, research motivations and contributions of this
thesis.

1.1 Context

The astonishing recent advances in computer systems and networks boosted the use of the In-
ternet, especially via mobile devices. This new pervasive nature of the Internet enabled billions1

of worldwide distributed people to intensify their usage by creating, sharing, collaborating and
socialising in many different ways among open and decentralised social structures called Virtual
Communities (VCs).

The concept of virtual community was first proposed by Howard Rheingold as the title of his
book [Rheingold, 1993]. In this book, Rheingold reported his experience on WELL2 to advocate
the potential benefits of belonging to a virtual community. Thenceforth, and particularly in
the last decade, this concept has found a wide recognition in business and research.

Preece defined virtual communities as a “group of people with a common purpose whose
interactions are mediated and supported by computer platforms, and governed by formal
and informal policies” [Preece, 2001, Preece, 2004]. This definition characterises virtual com-
munities throughout four primary concepts that are people, purpose, platforms and policies
[Preece, 2001, Preece, 2004].

1List of virtual communities with more than 100 million active users http://en.wikipedia.org/wiki/

List_of_virtual_communities_with_more_than_100_million_active_users
2Whole Earth ’Lectronic Link is one of the oldest virtual communities which relies on the use of Internet

forums.

http://en.wikipedia.org/wiki/List_of_virtual_communities_with_more_than_100_million_active_users
http://en.wikipedia.org/wiki/List_of_virtual_communities_with_more_than_100_million_active_users

Chapter 1. Introduction

1.2 Motivations and Challenges

Generally, individuals get involved in virtual communities to collaborate for the purpose of
achieving a particular goal. More that any other form of interaction, collaboration relies on
resources, information and knowledge sharing, making security a critical issue for the success
of virtual communities [Renzl, 2008, Casimir et al., 2012].

In security, several access control (AC) models have been successfully used to prevent unau-
thorised access to private or sensitive resources. However, most of these models operate under
a known and finite universe of discourse; the system administrator needs to know beforehand
what are the resources to be protected and what are the criteria based on which users should
be granted to these resources. Due to the open nature of virtual communities, these solutions
are clearly not applicable. Additionally, virtual communities are decentralised systems in which
the existence of a unique central authority is neither possible nor desirable and each participant
is the security administrator of its own resources.

The advent of the Internet and the evolution of communication from standalone systems
to open and decentralised ones has driven research to think beyond security. In such context,
the concept trust management system [Blaze et al., 1996, Blaze et al., 1999b] has been used in
reference to systems that make use of credentials and policies to express delegation of rights
based on existing ad hoc trust relationships. In this approach, it is the resources’ owners, and
not the security administrators, that are responsible for specifying who and when an access
can be granted. So the role of a trust management system consists of evaluating whether the
specified policies and credentials allow the establishment of a trust relationship (materialised
by the delegation chain) between the resources owner and the resource requester. Using delega-
tion mechanism, rights and privileges are dynamically created, evaluated and revoked. These
systems do not need any-more to know beforehand the resources to be protected, or the users
that are allowed to access to these resources.

While most of the trust management systems that have been proposed so far get focused on
addressing decentralisation and distribution properties, the social and dynamic nature of virtual
communities are still challenging issues. In what follows, we delineate the characteristics of trust
management in virtual communities to derive the objectives of our thesis.

1.2.1 Social Aspects (C1): Social-Awareness

By using the concept of trust, research on trust management has made explicit the parallel
between human societies and distributed computer systems. So many of what we can learn
about human communities may be applicable in virtual ones (cf. Chapter 2). However, although
there have been several contributions that draw inspiration from social sciences, little work has
been done with respect to what mechanisms humans use to deal with situations in which the
trust decision they make may impact other members of the community. In the light of this, the
first challenge addressed in this thesis is to think about trust management mechanisms that
are not only safe for the individual using them but also collectively (or socially) harmful.

4

1.3. Objective and Requirements

1.2.2 Dynamic Aspects (C2): Context-Awareness

Open and decentralised virtual communities are by definition dynamic environments; resources
are unpredictably created, updated and destroyed and the population turnover is known to be
very high. However, the best practices in use by existing trust management system to handle
such dynamics are essentially manual and ad hoc; the human user analyses changes in the
environment and updates the used policies as required. Such practices lead, in large systems,
to high operational costs, broken closed loop automation, and reduced reactivity. In the light
of this, the second main challenge addressed in this thesis is to investigate trust management
mechanisms that are able to automatically adapt policies in reaction to environment changes.

1.3 Objective and Requirements

The purpose of this research is to investigate issues of automated trust assessment, and to
provide accordingly a system that assists members of open and decentralised virtual communities
in their trust decisions.

1.3.1 Requirements

The realisation of this objective, given the challenges identified in the previous section, involves
three important requirements that we describe below.

1.3.1.1 Communicability

In human-based virtual communities, the conditions on which members decide who to collab-
orate with are generally made implicit. However, given our objective (design a system that
assists VC user in their trust decisions), members must be able to communicate and exchange
these conditions, and thus make them explicit. Communicability in trust is important for sev-
eral reasons [Koster, 2012]. First, to assist humans in their trust decisions, the system must
have an explicit representation of the conditions on which it will make its trust evaluations.
Second, in open environments, members may interact with individuals that they have no prior
experience with. In such a situation, the ability to communicate about their trust conditions
allows these members to gather valuable information (either from the partner, or from the other
members of the community) that they can use in their trust evaluation. Finally, collaboration
within VCs involves shared resources and knowledge, the conditions used to made decisions
about these resources need to be explicitly discussed and shared within the community.

1.3.1.2 Expressiveness

In the previous section, we motivated the need for a specification language for virtual commu-
nities members to communicate about trust conditions among them selves and with their trust
management system. However, the majority of existing systems are built upon a controlled

5

Chapter 1. Introduction

–and limited– set of information based on which they base trust evaluations [Marsh, 1994].
Such limitation represents a lock for subjectivity and constrains the expressiveness of these
languages, and by the way the accuracy of the trust management system using them. This
language must be sufficiently expressive and rich to not constrain virtual community members
in the expression of their conditions, characterising the subjective nature of trust.

1.3.1.3 Flexibility

VCs are open environments that members can spontaneously join and leave, and where resources
are unpredictably created, updated and destroyed. In such systems, future interactions are
impossible to predict, making the specification of trust conditions hazardous and risky. In such
settings, the conditions based on which trust is evaluated cannot be specified ad vitam æternam
(specified once, used forever). So the general question that must guide the specification of these
conditions should not be “how efficient these conditions are”, but rather “how adaptive, in
response to an ever-evolving environment they could be”. However, in order to be adapted to
environmental changes, the formalism used to express trust conditions must be flexible enough
in order to be automatically adapted and evolved.

1.3.2 Objectives

Here are the aims and objectives addressed in thesis towards endowing trust management
systems with social-awareness and context-awareness capabilities.

O1 – Social trust management. According to Pearlman, “a key problem associated with
the formation and operation of distributed virtual communities is that of how to spec-
ify and enforce community policies” [Pearlman et al., 2002]. Collective policies are core
elements of a virtual community as suggested by the aforementioned definition. They
are used by the members of the community to govern the access to communities and the
resources shared among these communities. With respect to that, our first objective is to
design a trust management system that addresses this objective. This objective is further
decomposed into two sub-objectives:

O1.1 – Collective policy specification management. We address the issue of how
to specify collective policies in a decentralised way. The objective is to allow virtual
communities members to build and agree on a policy to use for trust decision-making
within the community.

O1.2 – Collective policy enforcement management. Once collective policies have been
specified, we address the issues of how to ensure that community members are aware
of these policies and how to enforce them.

O2 – Adaptive trust management. Policies constitute the bedrock of trust management
systems. But a policy that is not adequate for its context is doomed, sooner or later, to

6

1.4. Approach and Contributions

become either too restrictive or too permissive. Neither a too restrictive policy nor a too
permissive one are desirable, as both can be harmful for their user 3. So given the highly
dynamic environment in which virtual communities member evolve, our second objective
is to design a trust management system that is sensitive to changes. This objective
involves two sub-objectives:

O2.1 – Individual policy adaptation management. The objective is to provide vir-
tual community members with mechanisms throughout which they can make their
individual policies react to changes in their environment.

O2.2 – Collective policy adaptation management. Virtual community members need
mechanisms throughout of which they can adapt the collective policies to which they
are subject.

This thesis contributes to the field of trust management by achieving the objectives listed
above. In the next section, we describe the main approach advocated in this thesis and present
the contributions we have made towards the achievement of these objectives.

1.4 Approach and Contributions

In order to design a system that assists the members of open and decentralised VCs in their
trust decisions, we draw inspiration from Automated Trust Negotiation Systems (ATN) which
make the achievement of our objective easier due to the explicit use of policies. Then to achieve
the social trust management:

• First, we draw inspiration from existing literature in Decentralised Trust Management
Systems (DTM) in which algorithms and mechanisms have been proposed to make dis-
tributed systems make collective trust decisions. These mechanisms have been adapted
in our thesis to specify, use and adapt collective policies.

• Second, we have made explicit the parallel between virtual communities and human com-
munities. To that aim, we used models from sociology that explain in which conditions
collective policies emerge (i.e. they are specified), are enforced and/or adapted. These
mechanisms are drawn from the well-known Social Influence Theory (SIT) and have been
used in our thesis to formalise the concept of socially compliant trust management.

Finally, we opted for multi-agent techniques (i.e. MAS) to make our trust management
system work in a distributed and decentralised way. Concretely, we used normative MAS to
make virtual community members comply with collective policies (i.e. top-down social compli-
ance). We are also inspired by research in self-organised MAS to implement the specification
and adaptation of collective policies. The choice of MAS hits in with our objectives as we use

3Too restrictive policies are detrimental for the user activity, while too permissive policies are dangerous of

its security.

7

Chapter 1. Introduction

the reactive feature of agents to make our system react to environment changes, enabling the
adaptive trust management.

In order to expound this approach throughout this thesis, we will present the following
contributions:

• A multi-agent trust management system in which trust is evaluated in an open
and decentralised way (cf. Chapters 5, 6 and 7). The system assists virtual community
members in making trust decisions that are in compliance with their requirements (i.e.
individual policies) and those of their community (i.e. collective policies).

• A flexible trust policy language that makes possible the expression of individual
and collective policies. The language is inspired from weighted-logics as each condition
is associated a weight that expresses its importance with respect to the evaluated trust
level. The policy is also built on the top of an ontology that makes the policies intelligible
by both humans and artificial agents (cf. Chapter 5).

• A policy algebra throughout which the system can manipulate trust policies. This
algebra is defined in terms of operators that make virtual community members’ specify,
enforce and adapt their individual and collective policies (cf. Chapter 5). This algebra
also defines operations based on which the system can relax, restrict and update any of
the conditions stated by the policies it is manipulating. This is made possible thanks to
the use of an ontology that enables the system to reason about the policies it is uses.

• Social-awareness meta-policies that allow virtual community members to specify
when and how collective policies are specified and enforced. These meta-policies im-
plement our formalisation of Social Influence Theory (cf. Chapters 4 and 7). They are
expressed as event-condition-action (ECA) rules that users can personalise.

• Context-awareness meta-policies by means of which users specify to the system when
and how their individual and collective policies can be adapted. These meta-policies are
also expressed under the form of ECA rules (cf. Chapter 7)).

1.5 Thesis Outline

This thesis is structured into fives parts and organised as follows:

Part I contains this introductory chapter and motivates our research. We described objectives
of this thesis that we used to delineate the implied requirements. Finally, we presented
the approach we used to tackle these objectives and summarised our contributions.

Part II surveys the literature on trust, trust management, social influence theory and multi-
agent systems. The main disciplines that investigated this concept are presented and
their prominent characteristic defined. We identify types and properties of trust that we

8

1.6. Related Publications

used in Chapter 6 to frame our trust model. Then we reviewed models from the two main
approaches for trust management in computer science, namely distributed artificial intel-
ligence and security. Finally, we discuss the limits of each approach with respect to our
objectives. Then we explain why we decided to address the trust management in virtual
communities from the security perspective. Chapter 3 details the background concepts
of trust management systems. We identify important properties a TMS must exhibit and
compare existing systems with respect to these properties and our requirements as well.

Part III presents our contribution. In Chapter 5 we present the multi-agent framework that
we used to build open and decentralised virtual communities. It is on the top of this
framework that we deployed our trust management system. Chapter 6 presents our
contribution towards the management of trust. This contribution is composed of: (a)
a policy specification language that allows virtual community members to specify the
policies they require in their partners to consider them trustworthy, and (b) a trust
management system that makes use of these policies to compute trust evaluation and
eventually derive trust decisions. In Chapter 7, the mechanisms we used to bring social-
compliance and adaptiveness to our trust management system. We provide a mechanism
to specify (cf. Section 7.5.1), enforce (cf. Section 7.5.2), and adapt (cf. Section 7.5.3)
collective policies. We provide also mechanisms to make individual policies fit the context
of the interaction (cf. Section 7.4.1 and Section 7.4.2).

Part IV presents the evaluation of our contributions. In Chapter 8 we present the imple-
mentation of ASC-TMS. In Chapter 9, we apply our approach to an example of virtual
community (open innovation virtual community). In Chapter 10 we evaluate the perfor-
mance of ASC-TMS and discuss its benefits with respect to open innovation communities.

Part V summarises the main contributions proposed in this thesis. We present our conclusion
and discuss some future line of research.

1.6 Related Publications

Part of this thesis has been previously peer-reviewed and published. These publications are
listed below:

• Yaich, R., Boissier, O., Picard, G., and Jaillon, P. (2013). Adaptiveness and social-
compliance in trust management within virtual communities. Web Intelligence and Agent
Systems (WIAS), 11(4):315-338.

• Yaich, R., Boissier, O., Picard, G, and Jaillon, P. (2012b). An agent based trust man-
agement system for multi-agent based virtual communities. In Demazeau, Y., Müller, J.
P., Rodríguez, J. M. C., and Pérez, J. B., editors, Advances on Practical Applications of
Agents and Multiagent Systems, Proc. of the 10th International Conference on Practical

9

Chapter 1. Introduction

Applications of Agents and Multi-Agent Systems (PAAMS 12), volume 155 ofAdvances
in Soft Computing Series, pages 217-223. Springer.

• Yaich, R., Boissier, O., Jaillon, P., and Picard, G. (2012a). An adaptive and socially-
compliant trust management system for virtual communities. InThe 27th ACM Sympo-
sium On Applied Computing (SAC 2012), pages 2022-2028. ACM Press.

• Yaich, R., Boissier, O., Picard, G., and Jaillon, P. (2011b). Social-compliance in trust
management within virtual communities. In European Workshop on Multi-agent Systems
(EUMAS’11).

• Yaich, R., Boissier, O., Jaillon, P., and Picard, G. (2011a). Social-compliance in trust
management within virtual communities. In 3rd International Workshop on Web Intelli-
gence and Communities (WI&C’11) at the International Conferences on Web Intelligence
and Intelligent Agent Technology (WI-IAT 2011), pages 322-325. IEEE Computer Soci-
ety.

• Yaich, R., Jaillon, P., Boissier, O., and Picard, G. (2011). Gestion de la confiance et
intǵration des exigences sociales au sein de communautés virtuelles. In 19es Journées
francophones des systèmes multi-agents (JFSMA’11), pages 213-222. Cépaduès.

• Yaich, R., Jaillon, P., Picard, G., and Boissier, O. (2010). Toward an adaptive trust
policy model for open and decentralized virtual communities. InWorkshop on Trust and
Reputation. Interdisciplines.

10

1.7. French Summary

1.7 French Summary

Dans cette dissertation, nous nous intéressons à la problématique de la gestion de la confiance au
sein de communautés virtuelles ouvertes et décentralisée. Pour cela, nous proposons un système
de gestion de la confiance adaptatif et conforme aux exigences sociales (ASC-TMS). Notre
proposition repose sur l’utilisation conjointe de politiques adaptatives et de méta-politiques
d’adaptation. Ces méta-politiques permettent aux membres des communautés virtuelles de
prendre des décisions qui sont à la fois en accord avec l’environnement mais également avec
la communauté dans laquelle la décision a été prise. Dans ce chapitre, nous introduisons les
contextes, les challenges, les motivations ainsi que les contributions apportées dans cette thèse.

1.7.1 Contexte

L’évolution technologique fulgurante dont nous avons été témoins lors de cette dernière décen-
nie a dopé l’utilisation d’Internet et plus particulièrement via des dispositifs mobiles comme
les smartphones et les tablettes. Ce nouveau mode de communication ubiquitaire a amené les
utilisateurs à intensifier leurs activités de création, de partage, de collaboration et de sociabil-
isation de différentes manières et plus particulièrement au sein de nouvelles structure sociales,
virtuelles, ouvertes et décentralisées. Ces structures sont communément appelées communautés
virtuelles.

1.7.2 Motivations et Challenges

Généralement, les utilisateurs s’activent au sein de communautés virtuelles dans la perspective
d’atteindre un objectif commun. Par exemple, les personnes qui constituent la communauté
virtuelle des collaborateurs de Wikipedia ont pour objectif commun de construire la plus grande
encyclopédie ouverte en ligne. Plus que toute autre forme d’interaction, la collaboration repose
sur le partage de ressources, d’information et de connaissances. Cela place donc les probléma-
tiques de sécurité et plus particulièrement ceux liées à la confiance au centre des préoccupations
de chaque membre.

En sécurité, plusieurs modèles de contrôle d’accès on était utilisé avec succès pour empêcher
des manipulations non autorisés de ressources dites sensibles, privés ou confidentielles. Cepen-
dant, la plupart de ces modèles opèrent dans un univers connu et fini. La personne en charge
des droits d’accès doit connaître à l’avance quels sont les utilisateurs du système, quelles sont
les ressources sensibles et quels sont les droits de chaque utilisateur. Or, compte tenu de la
nature ouverte des communautés virtuelles, ces mécanismes ne peuvent fonctionner. De plus,
les communautés virtuelles sont décentralisés et l’existence d’une autorité centrale qui décide
des droits de chacun n’est ni possible ni souhaitable.

Ainsi, l’avènement de l’internet a poussé les chercheurs dans le domaine de la sécurité à
envisager de nouvelles pistes et à proposer des solutions qui vont au-delà de la sécurité. À
partir des années 2000, une nouvelle génération de systèmes a vu le jour sous la dénomination

11

Chapter 1. Introduction

des systèmes de gestion de la confiance. Alors que la plupart de ces systèmes s’est attelé à
soulever les défis liés à la distribution et la décentralisation des systèmes modernes, la nature
sociale et dynamique des communautés virtuelles demeure un défi pour la discipline. Dans
cette thèse nous nous intéresserons à ses deux propriétés qu’on considère comme étant les
principaux challenges pour la gestion de la confiance au sein de communautés virtuelles.

1.7.3 Objectives et Besoins

Dans ce contexte, l’objectif principal de cette thèse est de proposer un outil afin d’automatiser
l’évaluation de la confiance dans le but d’assister les membres de communautés virtuelles ou-
vertes et décentralisées dans leur prise de décision.

1.7.3.1 Besoins

La satisfaction de cet objectif implique trois besoins primordiaux que nous identifiions comme
suit:

• Communication: durant leurs activités au sein des communautés virtuelles, les hu-
mains reposent sur un ensemble de facteurs pour prendre leurs décisions. Ces facteurs
sont implicites car l’utilisateur à tout intérêt à les maintenir secrets au risque de voir
certains profiter d’éventuelles brèches. Or, dans notre objectif, nous souhaiterions que
ces utilisateurs soient assistés dans leur prise de décision. Ainsi, le premier besoin que
nous identifions est la nécessité d’avoir un moyen afin de permettent à chaque utilisateur
d’exprimer de manière personnelle et subjective les conditions à partir desquelles il prend
ses décisions.

• Expressivité: le besoin de communication fait appel directement à un autre besoin es-
sentiel dans le cadre de la réalisation de l’objectif de la thèse. Ce besoin n’est autre
que l’expressivité. En effet, le fait d’imposer aux utilisateurs l’expression de leurs exi-
gences en matière de décision de confiance nous impose une grande richesse en matière
d’expressivité. Or, à ce jour, les mécanismes utilisés reposent sur un ensemble connu et
fini de conditions à partir desquels les décisions sont prises. En plus d’être un obstacle
pour l’expressivité, ces solutions peuvent affecter la précision de l’évaluation fournie par
le système.

• Flexibilité: compte tenu du caractère ouvert et dynamique des communautés virtuelles,
les interactions futures sont presque impossibles à prédire rendant la spécification
d’exigences risquée et hasardeuse. N’ayant aucun moyen de prédire l’imprédictible ni
de le contrôler, il nous semble qu’un besoin essentiel pour la satisfaction de notre objectif
réside dans la capacité de notre système à réagir aux éventuelles évolutions du contexte
(à la fois sociale et environnementale). Ainsi, les exigences exprimées par les utilisateurs
des communautés virtuelles doivent être assez flexibles pour qu’elles puissent s’adapter et
évoluer avec le système.

12

1.7. French Summary

1.7.3.2 Objectifs

Compte tenu des besoins listés plus haut ainsi que l’objectif de la thèse, nous pouvons lister
ci-dessous les sous-objectifs suivants:

• Gestion de la confiance sociale (O1): D’après Pearlman, un des problèmes majeurs des
communautés virtuelles réside dans la spécification et la mise en œuvre de politiques
collectives [Pearlman et al., 2002]. Ainsi, un des objectifs de la thèse consistera à trouver
un moyen pour permettre cette gestion de la confiance sociale en offrant aux membres la
possibilité de : (O1.1) spécifier et (O1.2) mettre en œuvre des politiques collectives.

• Gestion de la confiance adaptative (O2): les politiques de confiance sont la pierre angulaire
de la gestion de la confiance. Cependant, une politique qui n’est pas en adéquation
avec son contexte est, tôt ou tard, condamné à devenir soit trop restrictive soit trop
permissive. Ainsi, le second objectif de la thèse consiste à proposer des mécanismes afin
de permettre aux politiques de s’adapter au contexte. Cet objectif se décompose en deux
sous-objectifs: (O2.1) adaptation des politiques individuelles et (O2.2) adaptation des
politiques collectives.

Cette thèse contribue au domaine de la gestion de la confiance en atteignant les objectifs
listés dessus.

1.7.4 Approche

Afin de concevoir un système qui assiste les membres de communautés virtuelles ouvertes et
décentralisées nous avons puisé notre inspiration dans le domaine des systèmes de négociation
automatique de la confiance. Ces systèmes ont l’avantage d’utiliser de manière explicite des
politiques de confiance. Cela qui facilite grandement l’implémentation de l’aspect adaptatif du
système de gestion de la confiance. Ensuite, pour ce qui concerne l’aspect social :

• Premièrement, nous avons tiré profit des mécanismes utilisés dans les systèmes de gestion
de la confiance décentralisées pour spécifier, utiliser et adapter les politiques collectives.

• Ensuite, nous avons utilisé des modèles sociologiques afin d’expliquer quand, pourquoi et
comment ces politiques collectives émergent, son utilisés et adaptées.

Enfin, nous avons opté pour une approche multi-agent (i.e. Système Multi-Agent – SMA–
) pour permettre à notre système de fonctionner de manière distribuée et décentralisée. Con-
crètement, nous avons utilisé un SMA normatif afin de faire en sorte que les membres des
communautés se conforment aux politiques collectives (i.e., conformité descendante). Et on
s’est inspiré des mécanismes proposés dans les systèmes auto-organisés afin de mettre en œuvre
la spécification et l’adaptation des politiques collectives.

13

Part II

State of the Art

Chapter 2

On the Nature of Trust

In the real world as well as in the virtual ones, trust constitutes a fundamental concept for
humans, without which they can neither act nor interact. This is probably why Abraham
Maslow placed trust in the second layer of his hierarchy of humans’ needs [Maslow, 1943], just
after the physical requirements for human survival.

So unsurprisingly, trust received in the last decades much attention from several disciplines
such as philosophy, psychology, sociology, economics and, more recently, computer science, each
one from a different perspective. Given this large and ever-increasing literature on trust, in
addition to the importance of this concept towards the contributions made in this thesis, it
seems essential for the sake of clarification, to dedicate a whole chapter to this concept and
review the state of knowledge to date.

This chapter aims at defining the concept of Trust in Computer Science and how it will
be understood in this document. To that goal, we first examine how Trust is considered in
Human societies by analyzing this concept through the looking glass of Philosophy, Psychology,
Sociology and Economics. From that first understanding we focus on Trust in Computer science.

2.1 A “brief” Retrospective Study About Trust

The objective of this section is not to review, exhaustively, all contributions on the subject, the
thesis format does not permit that. However, it seems fundamental for us to see how flagship
disciplines that are philosophy, psychology, economics, sociology, and finally computer science
addressed trust in order to be able to define (cf. Section 2.2), characterise (cf. Section 2.3.3)
and classify (cf. Section 2.3) this concept.

2.1.1 The Philosophical Perspective

Research on trust in philosophy has a long tradition dating back to the ancient Greece. During
that period, already, philosophers (e.g. Socrates, Plato and Aristotle) led a deep reflection on
what motivates a person to rely on trust. Their conclusions suggested that only reason and
rigorous examination of facts allows access to the truth [Plato, 1994]. So the philosophical
reflection, at that time, seems to be against the idea of trust even if they recognise its impor-
tance, particularly in the organisation of the society. This conclusion was further reinforced

Chapter 2. On the Nature of Trust

with the advent of modern rationalism in the seventeenth century. At that period, trust was
considered as an illusive belief that should be denied in favour of rationality. For instance,
when Descartes addressed uncertainty, he suggested to reject any knowledge that is uncertain
or based on testimonials [Taylor, 1941].

Nevertheless, few years later, some critics of rationalism came back on the controversial
relationship between trust and reason. For instance, Kant believes that human reason alone
cannot provide full access to knowledge [Kant, 1788]. He argues that beliefs such as trust do
not necessarily oppose rationality [Lovejoy, 1968, Harris, 1977].

Thenceforth, modern philosophers seem to have accepted the existence of trust in inter-
personal relationships. Also, there seems to be a form of consensus among philosophers that
trust should be conceptualised as a belief that is founded on knowledge. However, even if they
agree on the importance of knowledge, they still do not agree on the nature of this knowledge.
For instance, for the movement initiated by Kant trust appears to involve beliefs that are not
accepted on the basis of evidence (rational trust), while earlier philosophers (e.g. Aristotle and
Descartes) seem to ignore all what is not rationally proved (rational trust).

2.1.2 The Psychological Perspective

In psychology, trust typically involves two cognitive processes: the feeling of vulnerability, and
expectations towards the behaviour of the partner. These processes explain why there have
been two main approaches in research about trust in psychology: dispositional and interpersonal
trust.

Dispositional trust emerged from the works of earliest psychologists such as Deutsch
[Deutsch, 2011, Deutsch and Gerard, 1955] and Rotter [Rotter, 1967]. With respect to these
psychologists, trust can be conceptualised as an attitude that expresses the degree to which
an individual is willing to rely on, cooperate with, or help others. This view of trust was also
called person-centred as it highlights the likelihood of an individual to be vulnerable to others
behaviour [Deutsch, 2011, Deutsch and Gerard, 1955].

The Interpersonal trust aspect of trust emerged in psychology in the mid 80s
[Rempel et al., 1985]. This form of trust is conceptualised as a psychological state of an indi-
vidual (the trustor) towards a particular interlocutor (the trustee) with respect to a specific
purpose [Simpson, 2007].

So research on both dispositional and interpersonal considers trust as a cognitive process, a
mental state or a feeling that aims at reducing or at least accepting uncertainty. They explained
the process by the consent of an individual to shift from the confidence in their ability to predict
partner’s behaviour to the confidence on the partner’s values, motivations, intentions and goals
[Wieselquist et al., 1999].

18

2.1. A “brief” Retrospective Study About Trust

2.1.3 The Sociological Perspective

Sociology has been one of the most prolific disciplines in research on trust (Misztal
[Misztal, 1996] provided a comprehensive study about trust in sociology). For many sociol-
ogists (e.g. Luhmann [Luhmann, 1990] and Giddens [Khodyakov, 2007]), modern society is too
complex for humans’ decision making mechanisms. In consequence, they assume that humans
naturally tend to rely on trust to simplify the complexity of the interactions they are involved
in [Luhmann, 1990, Mahoney et al., 1994].

Sociologists described trust as a relationship and distinguished two types: trust in individ-
uals and trust in systems. Further, Zucker [Zucker, 1986] explained that trust in individuals is
produced based on the experience that an individual acquires after its repeated interactions.
Zucker explained also that trust in systems is related to the structure to which the individual
belongs and that guarantees specific attributes for individuals [Zucker, 1986]. For Luhmann,
technology as systems provides a certain level of guarantees that are required for the trust
establishment. Indeed, formal role descriptors (e.g. lawyer, doctor, professor) provide a par-
tial foundation of trust. Provided that these professional did not receive their credentials by
fraud, one may expect them to be trustworthy for the purpose of the role they committed to
[Shapiro, 1998].

Trust in individuals corresponds to the interpersonal trust we presented in the philosophical
perspective. The trust in systems was later used by economists in the context of conventions.
These links between disciplines can be explained by the fact that philosophy was used as a
basis for the works in sociology and that, in turn, concepts introduced in sociology was reused
in economics.

2.1.4 The Economical Perspective

For neoclassical economists (e.g. Williamson [Williamson, 1993]), individuals (homo economon-
icus as they call them) are purely rational; they seek their personal interest through a perma-
nent optimisation of utility [Mcallister, 1997, Mcallister, 1995]. So, a priori, economists refuse
to rely on trust to explain humans decisions. For instance, for Williamson the existence of mu-
tual interests is sufficient to enable cooperation and only the risk/opportunity ratio motivates
decisions in economics. Thus in neoclassical economics, trust is merely a rational calculation
of reciprocal interest.

However, in uncertain situations the individual calculus is made impossible due to the
insufficiency of information [Orléan, 2000, Mcknight and Chervany, 1996]. So in response, some
works conducted in economics consider that interactions between individuals requires a common
framework called convention [Salais, 1989, Eymard-Duvernay et al., 2003]. The convention has
been defined by Salais as “a system of reciprocal expectations about other’s competences and
behaviours” [Salais, 1989]. So a convention is a kind of trust that aims at increasing the
quality of information that an individual has about others and thus mechanically, to lower the
uncertainty with respect to their future behaviour [Hosmer, 1995]. With respect to that, Arrow

19

Chapter 2. On the Nature of Trust

defined trust as an “invisible institution” (i.e. institutional trust) having a real economical value,
which is distinct from the objects of the interaction [Arrow, 1984, Arrow, 1974].

Thenceforth, contemporary economists devoted significant attention to trust which they
consider as a lubricant for decision making within economical and social systems. This concep-
tualisation of trust has the merit of shedding the need to apprehend the phenomenon not only
from an individual (rational) perspective but also from a social perspective.

2.1.5 The Computer Science Perspective

In the previous sections, we evidenced the importance of trust (from different perspectives)
when humans are interacting with each other. The necessity of trust appeared with the ad-
vent of distributed computing (e.g. Internet) and the increasing use of electronic interpersonal
interactions rather than face-to-face ones, especially when interacting partners are software
agents [Grandison and Sloman, 2000]. In such settings, the inability to obtain complete infor-
mation, that is inherent to any distributed system, subjects the use of software programs to
great uncertainty.

Trust in computer science has been mainly investigated in distributed artificial intelligence
(DAI) and security disciplines wherein uncertainty constitute the most challenging issue. In
these disciplines, and more generally in computer science, it is not sufficient to just define it
(what other disciplines mainly focused on). For automation, the concept of trust must be for-
mally conceptualised and represented. The word formal here means that this concept should
be captured, represented and manipulated by software programs. As a consequence, the main
contribution of computer science to the research about trust constitute in formalisation, imple-
mentation and evaluation of theories introduced by scholars from the disciplines aforementioned.
In Section 2.4, we further detail the computer science perspective by presenting a literature
review of some models from both disciplines.

Discussion

After the brief retrospective study on trust, three important remarks may be made:

• Trust manifest itself in societies. Trust is relevant in situations involving two interacting
entities. These entities are generally humans, but researchers in computer science also
used trust in interactions between software agents too.

• Given the diversity of the disciplines in which trust has been investigated, this concept has
been defined in different ways: belief (in philosophy), cognitive process (in psychology),
decision (in economics), relationship (in sociology and computer science), and action/de-
cision (in computer science).

• A comprehensive classification of trust can be made base on the properties, nature and
origin of trust. These features are detailed in the following sections.

20

2.2. An Attempt to Define Trust

Finally, beyond their diversity, the different disciplines in which trust has been addressed
agree about the centrality of trust in humans interactions, and virtual ones as well. However,
and despite this agreement, up to date, there is no consensual definition about what is trust.
Indeed, one can easily imagine the difficulty of making the diverse trust perspectives studied
in previous sections fit into the same definition. For example, let us consider an e-commerce
transaction in which the buyer trusts the seller to keep his payment records private and that
the goods he bought will meet his expectation in terms of quality; in return, the seller trusts
the buyer that the credit card (or any other payment means) he used during the transaction
are not stolen or forged. In this example, trust is inherent to decisions made by the buyer and
the seller as well. However, their answers to the question “how would you define trust?” would
probably be different as each one uses trust for different reasons.

2.2 An Attempt to Define Trust

In this section, we will tackle the issue of defining trust from a computer science perspective.
To that aim, we first discuss in Section 2.2.1 related concepts that are misleadingly used as
synonyms of trust. Then we review in Section 2.2.2 some existing definitions and discuss their
relevance with respect to our objective. Finally, we conclude this section by providing our
definition of trust and discuss it.

2.2.1 What Trust Is Not?

In order to understand what trust really is, we must first clarify what trust is not. In this
section, we are particularly interested in few concepts that have been confused with trust in
recent works.

• Trust is not trustworthiness. Although trust and trustworthiness are two distinct con-
cepts, there is a strong link between them. Indeed, an individual A trusts an individual
B because B succeeds exhibiting trustworthiness characteristics that are relevant to A
requirements.

• Trust is not reliability. Reliability refers to the ability of an individual to perform as
expected even in unexpected circumstances. For instance, an individual A can rely on a
individual B (e.g. policeman, doctor, mechanical) without that A trusts B.

• Trust is not credibility. Credibility is generally used in the context of an information
provided by an individual. An individual says that another individual B is credible in
reference to its ability to provide consistent and believable information.

• Trust is not competence. Competence has often been used as a particular form of trust
(cf. [Deutsch, 2011, Deutsch and Gerard, 1955]). However, trust goes beyond the belief
that a trusted person is competent or not. Consequently, competence can be considered as

21

Chapter 2. On the Nature of Trust

a characteristic to consider a person trustworthy. But we can never say that all competent
persons are trusted persons.

• Trust is not reputation. Even if these concepts are closely linked and often used inter-
changeably. Therefore, it is paramount to discuss their differences, which can be easily
stressed by the following statements:

– “A trusts B because of B’s good reputation.”

– “A trusts B despite B’s bad reputation.”

Based on the above statements, Jøsang[Josang and Presti, 2004, Jøsang, 2007] argued
that trust is ultimately a personal and subjective concept while reputation is an objective
measure of an individual’s trustworthiness based on others’ opinions and observations. In
absence of personal experience, reputation is often used which explains why many scholars
used these concepts interchangeably.

2.2.2 What Is Trust?

In order to define what we mean by “trust”. We take the definition provided by Gambetta
[Gambetta, 2000]. The author defined trust (or, symmetrically, distrust) as a “particular level
of the subjective probability with which an individual, A, expects that another individual, B,
performs a given action, both before he can monitor such action (or independently of his ca-
pacity ever to be able to monitor it) and in a context in which it affects his own action”. First,
we notice here that Gambetta, which is a sociologist, conceptualised trust as a mathematical
concept, making its definition more concrete. Also, the part “a particular level” of the defi-
nition means that for Gambetta, trust can be somehow quantifiable. For Gambetta, 0 means
complete distrust and 1 full trust. Further, this definition makes explicit the idea that trust is
subjective and introduces the specificity of trust: trust is made with respect to a specific action
to be performed. This definition takes into account uncertainty induced by the behaviour of
the interacting partner, without which there would be no need for trust. Further, Gambetta
states that “if we were blessed with an unlimited computational ability to map out all possible
contingencies in enforceable contracts, trust would not be a problem”. With this statement,
Gambetta highlights the fact that trust involves decision in complex situations that are hard
to grasp for human minds (cf. bounded computational agents).

The complex nature of the situations involving trust is further reinforced by the definition
provided by Niklas Luhmann [Luhmann, 1990]. For Luhmann “the complexity of the future
world is reduced by the act of trust”. Luhmann approaches trust from a sociological back-
ground as he relates the use of trust to interactions among societies and questions the existence
of society without trust [Lamsal, 2001, Marsh, 1994]. He considers trust as one of the most
important “internal mechanisms for the reduction of complexity”. However, the authors de-
fined complexity in very abstract terms even if generally he used it in reference to uncertain
situations.

22

2.2. An Attempt to Define Trust

In computer science, the definitions proposed by McKnight
[Mcknight and Chervany, 1996], Grandison [Grandison, 2003] and Castelfranchi
[Castelfranchi and Falcone, 2000b, Falcone and Castelfranchi, 2001] are frequently used.
McKnight [Mcknight and Chervany, 1996] defined trust as “the extent to which one party is
willing to depend on something or somebody in a given situation with a feeling of relative
security, even though negative consequences are possible”. For Grandison and Sloman, trust
is “the firm belief in the competence of an entity to act dependably, securely, and reliably
within a specified context”. Finally, Castelfranchi adopted a more psychological approach to
trust [Reh, 2008]. According to the author, trust is “a mental state, a complex attitude of a
agent X towards another agent Y about the behaviour/action relevant for the result (goal)
g”. Common to the three definitions, trust is considered as a situation of vulnerability and
dependability towards the behaviour of another entity. Further, all definitions agree on the
subjective and context-dependant nature of trust. Finally, for Castelfranchi, and Chaveny as
well, trust is used as “the mental counterpart of delegation” [Falcone and Castelfranchi, 2001].
So the authors consider delegation as an action taking this mental state as an input. While
Grandison adopts a broader approach as it consider trust as a belief but he reduced this belief
to the knowledge about the competence of the trustee.

Each of the above definitions advanced our understanding of trust and provides important
building bricks for the definition of this concept. However, none of them matches perfectly our
conceptualisation of trust. In the light of this, we define trust as:

Definition 1 (Trust) Trust is the deliberate decision of an individual A (called trustor) to
be in a situation of vulnerability towards the behaviour of an individual B (called trustee) with
respect to an issue X (i.e. trust issue) and within a context C.

This definition highlights the most important concepts that are inherent to any trust deci-
sion. The uncertainty of the situation that makes the trustor vulnerable towards the behaviour
of the trustee. This decision is based on an evaluation and leads to a trusting action. It is this
trusting action that brings the trustor to the situation of vulnerability.

Discussion

In this section, we presented some of the well-known definitions of trust. Then we used impor-
tant elements of each definition to propose a generic one that best matches the meaning of trust
in the context of virtual environments. What our definition does not say however, is how the
trusting decision can be made. So if we consider trust as a physical concept, the question we did
not answer up to now is what is the recipe of a trust decision. For instance, taking the bread
recipe analogy, one can easily agree on the fact that almost everybody knows what the bread is
and what are the various contexts it is used in. However, if we ask people to describe its form
or the list the ingredients that are used to make it, they will probably not agree. This analogy
describes well the dilemma of defining trust. To that aim, we considered trust as a decision

23

Chapter 2. On the Nature of Trust

which is fabricated based on several and various ingredients. Some of them have already been
mentioned (e.g. reputation, competence, reliability) and others will be progressively introduce
throughout throughout the thesis.

2.3 Trust Features

In Section 2.1 we reviewed different disciplines to see how each of them handled trust. Based on
that review, we selected and studied the most relevant definitions. In this section, we adopt an
extensional approach to have a more concrete analysis of its features. To that aim, we will get
focus the natures in which it has been conceptualised, the sources from which trust is acquired,
and properties that has been associated to it. We will rely on these features in Section 2.4 to
analyse the trust models we reviewed.

2.3.1 Trust Nature

In this section, we identify four forms in which trust has been conceptualised in different
disciplines.

2.3.1.1 Trust as a “Belief”

As highlighted in our study, philosophers consider trust as a belief that a person places on
the statements of others [Deutsch and Gerard, 1955, Rotter, 1967, Deutsch, 2011]. In their
conceptualisation they distinguished rational beliefs (those that can be proved) and non-rational
ones. However, philosophers do not agree on which (rational and non-rational) beliefs should
be considered to characterise trustworthiness.

2.3.1.2 Trust as a “Mental State”

Principally used by psychologists, trust is represented as a mental state resulting
from a cognitive process [Castelfranchi and Falcone, 1998, Castelfranchi and Falcone, 2000a,
Falcone and Castelfranchi, 2001]. Also known as competence trust [Kaur, 2011], it addresses
trust form the perspective of perceived capabilities, expertises and skills of the concerned trustee.
Consequently, in this conceptualisation only cognitive entities are able to trust; so software that
are not endowed with beliefs and goals cannot exhibit trust. This vision is also shared by some
sociologists [Castelfranchi and Falcone, 2000b]. Nevertheless, the mental state nature of trust
is based on reasoning (knowledge-driven). Thus this form of trust joins somehow the previous
one in recognising the importance of beliefs (e.g. competences) based on which trust is built.

2.3.1.3 Trust as a “Measure”

Also known as calculative trust [Shapiro, 1998, Lewicki et al., 2006], its has been a domi-
nant type research in economics. Here the trust is considered as a threshold which is com-

24

2.3. Trust Features

pared to a computed value (measure of trust). Research on trust gave rise to numerous
different ways in which trust measures can be represented. For instance, some works (e.g.
[Udhayakumar et al., 2011, Artz and Gil, 2010, Kim et al., 2009]) make use of 0 and 1 binary
values to represent, respectively, trust and distrust. Even if such representation seems to be
simple and easy to understand and implement, it suffers from a lack of expressiveness. Other
approaches used a multi-valued evaluation (e.g. very untrustworthy, untrustworthy, trustworthy
and very trustworthy). It is also possible to represent trust as a continuous variable (e.g. in
[0, 1] or [−1, 1]) where trust is generally treated as a probability or a weighted evaluation of
evidence.

2.3.1.4 Trust as a “Relationship”

This type of trust constitutes the dominant point of view of sociologists to-
wards trust. In this conceptualisation, trust is built over acquaintances and
social bonds [Golbeck and Hendler, 2006, Singh and Liu, 2003, Grandison, 2003,
Falcone and Castelfranchi, 2001]. In many situations this form of trust is not cogni-
tive and cannot be explained or justified only by available beliefs. At most, it can
be merely justified with past experiences which does not explain how cold-start and
bootstrapping trust are addressed (i.e. no one knows how first trust decisions are made)
[Burnett et al., 2010, Artz and Gil, 2010].

2.3.1.5 Trust as a “Decision”

The decision nature of trust has been essentially stressed in disciplines such as economics,
politics and law [Ramchurn, 2004, Ramchurn et al., 2004a]. This kind of trust relies on the
comparison of perceived risk against the potential gains for making the trust decision. However,
a strict decisional interpretation of trust can be misleading in certain situations wherein trust
is not the unique factor influencing the decision (e.g. social pressures, business considerations,
etc.).

In our definition, we adopted this point of view by considering trust as a decision. How-
ever, what we wanted to exploit in the decision nature of trust is its pragmatism. This a
decision stresses the final stage with make an individual go for a choice rather another one
[Burnett et al., 2011, Venanzi et al., 2011].

2.3.2 Trust Sources

In the previous section, we evidenced the importance of beliefs with respect to trust, whatever
the form in which it has been conceptualised. In the light of this, we present in this section
another classification of trust based on the nature of the beliefs it relies on. Among the diverse
beliefs involved in the trust issue, we distinguish three ways which an individual can use to
acquire them resulting in three types of trust.

25

Chapter 2. On the Nature of Trust

2.3.2.1 Internal Trust

Also known as dispositional trust as discussed in Section 2.1.2, internal trust relates to the inter-
nal beliefs/mechanisms that an individual relies on to trust others [Deutsch and Gerard, 1955,
Rotter, 1967, Falcone and Castelfranchi, 2001]. These beliefs are personal and reflect the extent
to which an individual is willing to trust others independently from the trust characteristics
they exhibit. The disposition to trust also reflects the ability of an individual to rely on others.
This kind of trust can somehow be related to the belief trust and mental state trust (cf. Sections
2.3.2.1 and 2.3.1.2).

2.3.2.2 Direct Trust

Direct trust is the first type of trust that individuals develop in their lives. This kind of trust
is further divided into strong direct trust and weak direct trust [Khodyakov, 2007]. Strong di-
rect trust develops among individuals that have social ties (e.g. family members, relatives,
friends, colleagues, etc.), while weak social trust develops beyond boundaries of individuals’
acquaintances. Weak direct trust develops based on previous positive interactions, while the
basis of strong direct trust is familiarity and similarity [Mangematin, 1998]. Also known as
interpersonal trust [Lewicki et al., 2006, Wieselquist et al., 1999, Weinstock, 1999], direct trust
has been principally highlighted in sociology and social psychology fields in which trust was
conceptualised as a relationship. Consequently, direct trust is like dispositional trust main-
tained locally by the trustor and represents the trustor’s personal trust regarding the trustee
[Saadi et al., 2011].

2.3.2.3 Indirect Trust

In contrast to direct trust, indirect trust characterises the situations in which the trustor has
few or no prior interactions/information with respect to the trustee. In such situation, the
trustor does not have other choices but relying on third party trust. This can be achieve in two
different ways: vertical and horizontal trust [Lee and Yu, 2009].

Vertical Trust

Vertical trust is based on mechanisms provided by systems and institutions to facilitate the trust
establishment between the trustor and the trustee. This kind of trust aims at generating trust
when trustors and trustees are lacking interactions and reliable information about each other.
Thus institutional trust is particularly interesting in situations of cold-start or for bootstrapping
trust (i.e. unknown or little known entities) [Kaur, 2011].

Horizontal Trust

In horizontal trust the trustor uses the opinions of other individuals to assess the trust it can put
in the trustee. Horizontal trust can be split into two sub-categories: recommendation trust and

26

2.3. Trust Features

reputation trust. In recommendation trust, the trustee indirectly assess the trustworthiness of
the trustor based on the recommendation of a group of several recommending individuals. Thus
the trust that the trustor put in these recommending individuals is transferred to the trustee
using the aggregations of their recommendations. In reputation trust, the trust is computed (i.e.
reputation) for each individual and propagated among the users. Depending on the architecture
of the mechanisms used to make reputation available to others, existing approaches can be split
into centralised reputation (e.g. eBay, Amazon and Yahoo Reputation System) or decentralised
reputation (e.g. [Zhou et al., 2008, Zhou and Hwang, 2007]).

2.3.3 Trust Properties

In this section, we analyse trust in terms of properties. Surprisingly, agreement about trust
can easily be found when the discussion becomes more concrete and tackles trust properties.
Of course, each property does not necessary apply to each definition [Gray, 2006].

2.3.3.1 Multidimensional

Trust is a concept that involves a trustor, the individual that is according his trust, and a trustee
which represents the individual that is trusted [Grandison and Sloman, 2000, Grandison, 2003,
Baier, 1986] (i.e. two dimensions). However, trust is in general never accorded independently
from any purpose. Therefore, it is more likely admitted to represent it as a three-part concept
wherein the trustor trusts the trustee for a particular issue X [Farrell, 2009, Hardin, 1982] (i.e.
three dimensions). The advantage of this vision is that it shows the limited character of the trust
that usually involves a particular activity, a particular role or a particular domain (although
someone can be trusted for multiple activities, roles or domains). For instance, an individual
Alice trusts another individual Bob with respect to a particular issue X (e.g. driving her at
home). Finally, recent works (e.g. [Yew, 2011]) advocate the fact that trust is better captured
when considering four dimensions: an individual A trusts an individual B with respect to an
issue X in a context C (cf. Definition 1) (i.e. four dimensions). For instance, if Alice may trust
more a taxi-driver in the day to driver her to the airport as he is more likely to driver her in
time, however, she only trusts her friends to drive her by night. So here, the context affects
negatively (the taxi-driver) or positively (for the friends) the trust that Alice grants to others.

Multi-factor

Trust factors refer to the beliefs, information, percepts and stimuli that affects positively
or negatively trust. For instance, Jøsang considers trust as subjective phenomenon that
is based on various factors such reputation [Jøsang et al., 2007, Bhuiyan and Jøsang, 2010,
Huynh et al., 2006]. Here again, almost every researcher working on trust has their own idea
about what trust is made of. However, even if they do not agree on what are the particular
factors of trust, they still agree on the fact that these factors are numerous and different.

27

Chapter 2. On the Nature of Trust

Measurable

In human societies, the trust that one puts in another is not explicitly measured (i.e. without
explicit analysing of information, risk and context). However, when it comes to software pro-
grams, trust has to be represented, captured and thus measured in one way or another. For
instance, Jennings colleagues defined trust as a “measurable level of the subjective probability
[...]” [Huynh et al., 2006]. Marsh argued that “trust has no measurable units, but its value, its
worthwhileness, can be measured. It is, thus, a commodity, like information and knowledge”
[Marsh, 1994]. However, many scholars disagree with the fact that trust can be measured and
thus do not make explicit the way trust is measured. Instead, they only consider the outcome
of the measure based on which a trust decision is made.

Comparable

We mentioned in the previous section that for some scholars trust can/hase to be mea-
sured. This property suggests two important properties: (a) there should be a certain
threshold, above which, an individual can say that something or someone is trustworthy
[Grandison, 2003, Liu, 2011, Herzig and Lorini, 2010, Marsh, 1994] (e.g. to say that B is
trustworthy), (b) an individual is able to compare two partners based on their trust values
[Grandison, 2003, Herzig et al., 2008] (e.g. to say that B is more trustworthy than C), (c) one
can compare the trust values of the same individual for two distinct issues or at two different
moments (e.g. B is more trustworthy to view a Wikipedia page than to modify it).

Dynamic

Almost all researchers on trust agree on the fact that the trust that a trustor puts on a trustee
during two different interactions may be different (cf. Section 2.3.3.1). Thus, one can logically
imagine that if the trustee violated the trust he was granted in the first interaction, this must
affect (negatively) the trust put in him for the second interaction. Trust may also change
because the condition in which trust was initially accorded do not hold anymore. Thus trust
is intrinsically dynamic. It decreases with negative experiences an increases with positive ones
[Marsh, 1994, Grandison, 2003].

Subjective

The subjective nature of trust has been evidenced in almost all the definitions we presented in
Section 2.2. Gambetta used for instance the expression “the subjective probability” in its defi-
nition. Jonker and Treur [Jonker and Treur, 2001] provided a comprehensive study about how
different interpretations of observed evidence lead to different assessments, characterising the
subjective nature of trust. Their work is somehow comparable to the one proposed by Axelrod
in 1984 [Axelrod and Hamilton, 1981, Axelrod and Hamilton, 1984], and extended by Marsh
in 1994 [Marsh, 1994]. In Axelrod’s and Marsh’s models, artificial agents interact with each

28

2.3. Trust Features

other in a Prisoner Dilemma tournament according to subjective trusting strategies (optimist,
pessimist, and realist for Marsh) and (14 strategies for Axelrod). The results of these research
initiatives evidenced the important of the subjectivity in trust evaluation.

Trust is subjective for three reasons: (a) individuals making trust often use incomplete
information which leads to subjective evaluations of trust, (b) trust is a based on various
factors and evidence which vary from one individual to another, (c) even when too individuals
use the same set of factors, some of them carry more weight than others. Typically, personal
experience carries more weight than reputation, recommendations or others experiences. These
reasons put together characterise the subjective nature of trust in almost all situations.

Transitive

In previous section, we discussed the dynamic character of trust which is affected by posi-
tive and negative experiences. However, in situations of previously unknown or little known
partners such experiences may be lacking which makes trust evaluation difficult. In such situ-
ations, transitivity plays an important role to allow individuals building trust based on others’
experience. The idea behind transitivity in trust is illustrated in Figure 2.1.

A B C

Trust Trust

Transitive Trust

Recommendation

Figure 2.1 – Illustration of trust transitivity

In Figure 2.1, A trusts B, and B trusts C. So based on the recommendation of B to A
about C, A finished by trusting C in combination with his trust in B. Many researchers
however admit that trust is only conditionally transitive [Christianson and Harbison, 1997,
Bhuiyan and Jøsang, 2010]. For instance, one can trust her doctor to make good diagnosis
and her doctor trusts his mechanic to repair his car but one cannot trust her doctor’s mechanic
to make good diagnosis. Here, the trust one has for her doctor cannot be transferred to his
mechanic which confirms that trust is conditionally transferable and that trust is context-aware.

Symmetry

Unlike transitivity, symmetry in trust is not always verified [Grandison, 2003]. Indeed, if all
trust relationships were symmetric, then this would imply that trust relationships are always

29

Chapter 2. On the Nature of Trust

mutual which is not the case in almost all situations involving trust. Because individuals have
different experiences, psychological backgrounds, and histories, it is understandable why two
people may trust each other with different amounts [Golbeck, 2005]. For instance, an individual
A may trust another individual B to drive him, but B is not obliged to trust A knowing that A
trusts him. In this thesis, we prefer to talk about unidirectional trust and bidirectional trust.
In fact, the symmetry property has an implied and misleading understanding which suggests
that trust is symmetric or not for the same issue.

2.4 Trust Models Analysis

Trust has been extensively investigated in the last fifteen years which gave rise to numer-
ous trust models. Most of these models have been developed in distributed artificial intel-
ligence (DAI) or security. The objective of this section is not to review the complete lit-
erature on this subject, there exist several surveys that provided more comprehensive stud-
ies (c.f. [Jøsang et al., 2007, Grandison and Sloman, 2000, Ruohomaa and Kutvonen, 2005,
Suryanarayana and Taylor, 2004, Artz and Gil, 2010, Krukow et al., 2008, Grandison, 2003]).
Instead, our main concern is to classify representative models from each discipline and discuss
the nature (cf. Section 2.3.1) of trust they model, based on which sources of evidence (cf.
Section 2.3.2) and with what kind of properties (cf. Section 2.3.3). Following this analysis, we
compare existing models with respect to the requirements we discussed in Section 1.3, namely
communicability, expressiveness and flexibility.

2.4.1 Trust Models in Distributed Artificial Intelligence

Trust models in DAI fall into three categories; probabilistic models, reputation models and
socio-cognitive models.

2.4.1.1 Probabilistic Models

Marsh’s work [Marsh, 1994] on trust represents the first comprehensive and formal model of
trust using a probabilistic approach. Marsh experimented in his doctoral thesis the use of
trust as a basis for cooperation among autonomous agents. Starting from the assumption that
“neither full trust or distrust are actually possible” in such systems, he proposed a complex
calculation algorithm that computes a continuous value of trust based on several factors. This
value represents the probability that A will behave “as if” he trusts B.

Manchala developed the first trust model that explicitly uses the notion of risk
[Manchala, 1998]. Manchala specified a decision matrix in which he used the cost of the trans-
action, the expected outcome, and the history of the transactions. These factors are then used
together in a probabilistic function to determine whether a transaction with a partner should be
conducted or not. Manchala’s risk-trust matrices are intuitive and simple to apply. The higher
the value at stake, the more positive experiences are required to decide to trust [Jøsang, 2007].

30

2.4. Trust Models Analysis

Burnett and colleagues [Burnett, 2011], used recently the concept of stereotypical trust. In
their approach, an individual uses machine learning methods to build stereotypes based on the
agent past experience and the partners attributes. A stereotype represent a form of reputation
that associates to a class of agents (characterised by their attributes) to the behaviour they tend
to exhibit. These stereotypes are then used alongside with probabilistic model to make trust
decisions. Previous to this approach, in 2009, Liu and colleagues [Liu et al., 2009] already used
stereotypes in trust decision making. However, in their approach, they used the stereotypes
to predict whether the undergoing interaction of an individual will be successful or not. More
recently, Fang and colleagues proposed in [Fang et al., 2012] a new model in which they used
fuzzy semantic decision tree (FSDT) learning methods to improve the ability of learning trust
stereotypes based on only limited data about the partner.

Discussion

Probabilistic trust models consider trust as a measure that agents use to make trust decisions.
This measure is computed based on direct experience of the individual making the trust evalu-
ation. Probabilistic trust models consider trust as a concept involving a trustor, a trustee and
an issue. Besides trust, these models take into account the importance of the interaction, the
risk associated to the situation and other information such as the attributes of the interlocutor
in [Burnett, 2011]. Thus trust is considered to be multi-factor. It is measured and can be
compared. It also evolves over the time based on the experience of the individual. Trust is also
subjective as it depends on the individual’s one experience but is neither transitive nor asym-
metric [Manchala, 1998]. Theses models are very expressive and partially flexible as they are
able to adapt their evaluation using learning techniques. However, non of these models exhibits
communicability features. In [Burnett, 2011], argumentation could be applied to allow agent
to communicate, argument and agree on common stereotypes but to the best of our knowledge
this feature is not supported [Burnett et al., 2013a].

2.4.1.2 Reputation Models

Reputation is the social evaluation of a group, a community or a society of agents towards
the trustworthiness of an individual [Sabater and Sierra, 2001]. In DAI, and more particularly
in multi-agent systems, reputation has been considered as a substantial dimension of trust
[Jøsang and Ismail, 2002]. In the following, we review some predominant reputation models.

ReGreT [Sabater and Sierra, 2001] is a well known decentralised trust and reputation model
for e-commerce. Proposed by Sabater and Sierra in 2001, the main objective of ReGreT was
to make more accurate trust evaluations. To that aim, the authors used three factors based
on which trust was computed: the direct experience, the global reputation and an ontological
fine-grained reputation which defines reputation values for each trait of the individual using the
ontology. In ReGreT, the network to which the agent belongs is used to assess the credibility of
the information provided by each agent. Social relationship are presented in the form of fuzzy

31

Chapter 2. On the Nature of Trust

rules which are later used to determine whether the witness information provided by an agent
should be considered or not.

Jøsang [Jøsang and Ismail, 2002] proposed a reputation model (called the Beta Reputation
System) for the decision making in the context of e-commerce transactions. The authors used
the concept of reliability along with the probability of success to determine the trustworthiness
of a partner. The reliability of an individual is assessed in a direct and indirect way. The direct
reliability is computed based on previous knowledge about the partner, while the indirect one is
given by recommendation from other trust third party. The indirect reliability is then computed
by making the average of all recommendation weighted by the recommender trust degree. Then
this value is combined with the direct reliability in order to derive a trust degree. Once this
trust degree obtained, it forms a belief that is described as set of fuzzy propositions such as “A
believes that B is very trustworthy”.

FIRE [Huynh et al., 2006] is another important model which has been designed by Huynh
and colleagues for multi-agent systems. The authors compute trust based on past experiences,
the role of the agent, its reputation and a kind of certified reputation. Roles are used to
determine to which degree an agent that have a certain position in the society could be trusted.
The main idea is that trust depends on the fulfilment of the role ascribed to the agent. Also,
the authors make a distinction between witness reputation and certified reputation. Certified
reputation is a reputation that comes from certified presumably trusted witness, while normal
reputation comes from every agent of the society.

Vercouter and Muller proposed the LIAR model to process recommendations among multi-
agent systems [Vercouter and Muller, 2010a, Vercouter and Muller, 2010b]. The authors con-
sider trust as a multi-factor concept; they distinguished between the trust in a agent as a
partner and the trust in an agent as a recommender. This latter form of trust is used to
evaluate the witness information. The aggregation of witness information is performed using a
weighted average, in which the trustworthiness degree of the recommender is used as the weight.
Thus, the importance of witness information is proportional to the trustworthiness degree of
the recommending agent.

Discussion

In reputation models, trust is considered as a measure which is directly or indirectly (horizon-
tally) acquired. This measure reflects the evaluation of the society towards the trustworthiness
of one individual.

Reputation models generally use the concepts of reputation and trust interchangeably. Thus,
reputation is considered as an image of trust at the level of the society. In these models, trust
is dynamic (evolves based on past experiences) and generic (the reputation of an individual is
general and not purpose-specific). These models also rely on the transitive property of trust as
they make use of direct and indirect experiences. reputation models assume an unidirectional
trust but bidirectional trust is also supported as the trustee can evaluate the trustor before
initiating the interaction.

32

2.4. Trust Models Analysis

Further, reputation models rely on the exchange of subjective evaluations to build reputa-
tion. However, these models do not communicate about how these evaluation are computed
which makes social compliance hard to achieve. More recently, Koster [Koster, 2012], proposed
a formalism to align reputation evaluations but this alignment is reduced to translation of
evaluation without communicating about what information is used to make these evaluations.
Moreover, reputation models are not very flexible as the scheme used to compute the evaluation
is hard coded in the agents which makes it difficult to change.

Finally, the aggregation function used in these models is merely expressive; it relies mas-
sively on the past behaviour of the evaluated agent and ignores its intrinsic attributes (e.g.
competence).

2.4.1.3 Socio-Cognitive Trust Models

The model proposed by Castelfranchi and Falcone is the prime trust model that explicitly
stressed the importance of the socio-cognitive dimension of trust. They defined trust as a
mental state based on which artificial agents can make delegation decisions within multi-agent
systems. The authors consider trust as a combination of beliefs and goals that constitute this
mental state. In a nutshell, an agent i trusts another agent j for doing the action α to achieve
an objective ϕ iff [Krupa, 2012]:

• i has the objective ϕ,

• i believes that j is capable of doing α,

• i believes that j has the power to achieve ϕ by doing α,

• i believes that j intends to do α.

Recently, this model has been extended and formalised in the context of the ForTrust project
[Herzig and Lorini, 2010, Hübner et al., 2009b]. This new model has been used in the context
of detecting malicious (e.g. vandalism) contribution to Wikipedia [Krupa et al., 2009].

2.4.1.4 Discussion

In socio-cognitive models, trust is considered as a mental state which originates from an in-
ternal cognitive process. This process makes use of several types of beliefs (e.g. competence,
dependence or willingness) to assess whether a trustor can trust a trustee about a particular
issue (e.g. doing action α to achieve goal ϕ). In these models trust is not explicitly measured
and thus is not comparable. Trust is dynamic but does not evolve based on past experience.
Trust is also unidirectionally established as the process is performed by the agent delegating
the action α and does not trigger the same process in the agent to which the action has been
delegated (i.e. agent j).

Furthermore, socio-cognitive models are not very expressive too as the set of beliefs based
on which trust is built are limited and known (i.e. competence, willingness, disposition, etc.).

33

Chapter 2. On the Nature of Trust

For instance, the agent intrinsic attributes and its past experience are not considered at all. In
addition, socio-cognitive models do not support communicability as the cognitive process used
to derive trust is embodied in the agent. Consequently, this process is very hard to change
which makes these models not very flexible.

2.4.2 Trust Models in Security

With the advance of Internet, the objective of researchers on security was to propose decen-
tralised access control mechanisms to leverage the distributed nature of these systems. The
general idea was to allow resource owners to state who they trust and for which issue. Based on
this idea, several systems (called Trust Management Systems) have been proposed. We clas-
sify these models into two categories: Decentralised Trust Management (DTM) and Automated
Trust Negotiation (ATN). In the following, we present some works from both approaches. This
review is deliberately made succinct as most of the works presented hereafter will be presented
in more details in the next chapter.

2.4.2.1 Decentralised Trust Management Models (DTM)

Blaze and Lacy were the first to use the word trust management in the security domain
[Blaze et al., 1999b, Blaze et al., 1996]. The authors justified the use of trust in reference to
the delegation mechanisms they used to address distribution in modern systems (e.g. Internet).
Credentials (digitally signed documents) are used to allow an individual to express the trust
relationship it has with another individual with respect to a particular issue (e.g. accessing a
resource). For instance an individual A may issue a credential stating that he trusts another
individual B to access a resource R he owns. Subsequently, B can express the trust he puts in
another individual C with respect to the same issue. Now if C requests to A the access to R,
he will provide the credential by B and the objective of the model is to evaluate whether there
is a valid trust (delegation) chain from A to C about accessing the resource R (cf. Chapter 3).

Grandison and Sloman proposed the SULTAN (Simple Universal Logic-Oriented Trust Anal-
ysis Notation) trust model [Grandison and Sloman, 2003]. This model was developed with the
objective to support secure interactions in Internet applications. Typically, decisions derived
using SULTAN are about the evaluation trust (and distrust) relationship, which has been used
as a basis for developing distributed access control schemes (e.g. allowing users to access sensi-
tive resources). SULTAN makes use of recommendation and past experience which are filtered
based on rules (i.e. policies) stated by the user. The trust decision is then made based on this
evaluation along with a risk approximation.

Kagal and colleagues [Kagal et al., 2003] proposed a trust model for distributed security in
the context of multi-agent systems. They proposed a flexible representation of trust relation-
ships that they express in the form of permissions and delegations. Later, they extended their
model to integrate three new forms of trust relationships called obligations, entitlements and
prohibitions. Concretely, the notion of trust used by the authors is purely interpersonal as it

34

2.4. Trust Models Analysis

express the degree of privilege that one individual is willing to accord to its interlocutor. Ka-
gal and colleagues described a scheme for representing delegation and restricting re-delegation
among communities.

Discussion

In DTM, trust is represented as a binary evaluation. This evaluation is based on the the
existence or not of a trust relationship between the trustor and the trustee about a particular
issue (i.e. the action to be granted). Trust is multi-factor but only one type of information
is used; a key or a delegation credential. Trust can be measured but its evaluation is binary
making the comparison very hard to achieve. Trust is not dynamic as the policies used are
not affected by the behaviour of the trustee. However, it is possible to make it dynamic by
revoking credentials or by updating policies. Trust is subjective as existing trust relationships
are established based on personal criteria. Further, transitivity is a cornerstone property for
these models which is materialised by delegation and credentials concepts. Finally, trust is
unidirectionally established from the trustor to the trustee. So the trustee is assumed to trust
the trustor. However, in many situations the credentials disclosed during trust establishment
are sensitive.

These models are not very expressive as the condition stated in the policies are generally
limited to identity and delegation credentials. However, they are relatively flexible as the
policies can be (manually) updated without stopping the system. Finally, thanks to the concept
of policies, these models fully address the communicability requirement. In addition, the formal
and even standard (some policies are specified in XML (cf. Section 3.3.2) makes these models
easy to understand for both human and artificial agents.

2.4.2.2 Automated Trust Negotiation Models (ATN)

Credentials which are implemented in DTM as identity or delegation certificates are used in
trust negotiation systems to convey the identity and the attributes of the holder. So releasing
a credentials imply the disclosure of such sensitive information. To that aim, Winslett and
colleagues [Yu et al., 2003] introduced the concept of trust negotiation. Trust is established
through the gradual, iterative, and mutual disclosure of credentials and access control policies.
This model has been proposed to leverage privacy issues that may arise when the disclosed
credentials are sensitive. The authors build on exiting decentralised access control models to
allow bilateral establishment of trust.

Trust-X is a trust management system that was designed for trust negotiation in peer-to-
peer systems [Bertino et al., 2003, Bertino et al., 2004]. The Trust-X engine provides a mech-
anism for negotiation management. The main strategy used in Trust-X consists in releasing
policies to minimise the disclosure of credentials. So only credentials that are necessary for the
success of a negotiation are effectively disclosed [Squicciarini et al., 2007]. Trust-X provides
also a mechanism to protect sensitive policies. Another novel aspect of this system consists in

35

Chapter 2. On the Nature of Trust

the use of trust tickets. Trust tickets are issued upon successful completion of a negotiation.
These tickets can later be used in subsequent negotiations to speed up the process in case the
negotiation concerns the same resource.

Bonatti and colleagues [De Coi et al., 2008] proposed a flexible and expressive negoti-
ation model called PROTUNE (PRovisional TrUst NEgotiation). This framework is a
system that provides distributed trust management and negotiation [Bonatti et al., 2010,
Bonatti and Samarati, 2002] features to web services.PROTUNE consists in a policy language
(based on PSPL [Bonatti and Samarati, 2000]) and an inference engine based on (PeerTrust
[Nejdl et al., 2004]). The most innovative aspect of PROTUNE relies in its high degree of ex-
pressiveness. One of the main advances made by PROTUNE lies in the use of declaration along
with credentials during the policy evaluation process. Declarations are the unsigned equivalent
of credentials. They can also be considered as statements that are not signed by a certification
authority. However, the most novel part of the project remains the policy specification language
with combines access control and provisional-style business rules.

Discussion

ATN systems constitute the last generation of trust management systems. Therefore they
inherited most of their advantages and some of their disadvantages. Like their ancestors, these
systems consider trust as a decision which is made based on a binary evaluation. However,
unlike DTM systems, trust in these systems is built incrementally and bilaterally. Also, trust
is a multi-factor concept as all types of information can be used (including reputation and
recommendation [De Coi et al., 2008]), thanks to the fine-grained policy language proposed in
these systems.

ATN systems assume a dynamic trust which is gained through negotiation. It is also tran-
sitive as they rely on credentials and recommendation. Trust is difficult to compare as the
outcome of the evaluation is binary. It is subjective as each individual makes use of its per-
sonal policy to make trust decisions. As these systems inherit from DTN systems they inher-
its their communicability and their flexibility. But ATN systems are more expressive as the
policies used in these systems have been designed to enhance existing policies expressiveness
[Seamons et al., 2002].

2.5 Discussion

Distributed artificial intelligence and security tackled trust in a distinct but complementary way.
This distinction is explained by the difference among these disciplines in terms of objectives
and tools.

DAI exploited the agent’s ability to reason and communicate about the properties
of their partners [Sabater and Sierra, 2005, Ramchurn et al., 2004a, Ramchurn et al., 2004b,
Yew, 2011]. Based on this ability, researchers tried to reproduce/implement/extend models

36

2.5. Discussion

provided by flagship disciplines working on trust (i.e. philosophy, psychology, sociology and
economics) [Yew, 2011]. These models specify how to compute the amount of trust an agent
can place in its interlocutor, and what are the information this agent should gather to make
such computation [Vercouter and Muller, 2010b]. Information are obtained from the agent past
experience and observation (e.g. probabilistic models) or indirectly acquired based on other
agents testimonials (e.g. reputation models). This information is then used with respect to
a predefined scheme (e.g. aggregation function,) to derive a trust measure. This scheme is
hard-coded in the agents and used by all agents of the system [Ramchurn et al., 2004a].

In contrast, the main concern of the models that have been proposed in security was the
design of mechanisms to allow secure transmission of knowledge based on which the trust
decision (e.g. authorisation) can be made. The transmitted information represent encrypted
statement (i.e. credentials) that prove the identity, the rights and/or the attributes of their
holder. The particularity of this approach is the use of Trust Third Parties (TTP) which are
the entities that issues, validates and revokes that statements. As their names indicates, these
applications are presumably trusted and aims at bootstrapping trust in the system. Finally,
each individual makes use of an explicit and individual scheme (i.e. policies) that determines
which information the trustee must provide to be trusted.

The remainder of this section does not further discuss the difference between the models
proposed in each discipline, we assume that the discussions that followed each category of
model suffice to stress these models properties. The result of these discussions is summarised
in Table 2.1. Instead, we will focus on how the models proposed in each discipline addressed
the requirements we identified in Section 1.3.

Communicability

The use of policies makes systems using security models able to communicate about the in-
formation they require to make trust decisions. These features are particularly interesting to
enable bidirectional trust. These features also eases the process of collective decision making as
the members of the same community are able to communicate about the policies they use.

In contrast, systems using DAI models are embodied with the scheme which is implemented
as a function (e.g. aggregation, learning, stereotyping, etc.). Therefore, we consider these
systems as non communicative as agents cannot communicate about the scheme they used,
and thus will not be able to agree about a unique scheme they should use to make collective
decisions.

Expressiveness

We measure the expressibility of a model based on two indicators: (a) the range of informa-
tion based on which trust is computed, and (b) the way these information are aggregated in
the evaluation process. With respect to the first indicator, DAI models and security models
have similar expressiveness degree. While DAI models rely massively on direct and indirect

37

Chapter 2. On the Nature of Trust

experience, security model rely on the trustee’s attributes. However, recent models in security
advocates a hybrid approach in which all kinds of information (including those used in DAI
models) are considered during the trust evaluation (e.g. PROTUNE).

Besides, with respect to the second indicator (i.e. aggregation mode), security models are
clearly not very expressive [Sabater and Sierra, 2005]. Policies evaluation results in a binary
measure and the condition stated by the policy are considered to be of equivalent importance.
In contrast, DAI models offers a better expressiveness as the trust evaluation is nuanced using
weights and weighted sums [Marsh, 1994, Saadi et al., 2011].

Flexibility

The ad-hoc functions used in DAI models constitute a strength for these models in terms of
expressiveness. However, these functions constitute also a limit to flexibility of these models.
Therefore, we consider these systems as partially flexible as they are not able to easily adapt to
unpredictable changes. For instance, if one of the information used when computing the reputa-
tion becomes obsolete, the whole system should be stopped and each agent using the reputation
model should be re-factored in consequence. Such an approach is obviously inadequate for large
and dynamic systems such as virtual communities [Ruohomaa and Kutvonen, 2005].

At the opposite, security models make use of explicit policies which states what information
should be used to derive trust. This approach is more flexible as the policies can be separately
updated.

2.6 Conclusion

In this chapter we studied and analysed the trust issue from five different disciplines,
namely philosophy, psychology, economics, sociology and computer science. We have de-
liberately started with such a broad area in order to demonstrate the multi-facet nature
of this concept [Ramchurn et al., 2004b]. Then we reviewed and selected interesting defini-
tions based on which we proposed a new one that best serves our objective. Further, we
used our literature review to extract trust properties and types based on which we com-
pared some of the models that have been proposed in the computer science community
[Wehmeyer and Riemer, 2007, Ruohomaa and Kutvonen, 2005, Grandison, 2003]. Finally, in
the last section we discussed the benefit and limits of the reviewed models (grouped into cat-
egories) with respect to the requirements we identified in the introduction of this manuscript
(cf. Section 1.3).

In the light of this study, we decided to tackle the trust issue from a security perspective, and
more particularly using a automated trust negotiation model (ATN). This choice is made with
respect to communicability and flexibility which are better supported in these models compared
to the models proposed in DAI. Communicability and flexibility are core requirements without
which none of the objectives identified in Section 1.3 would be satisfied. However, as evidenced

38

2.6. Conclusion

in the previous section, much work has to be done to reduce the gap between the expressiveness
degree of security models and the one of DAI models. This observation will be further detail in
the next chapter where we analyse the trust management literature with more details.

39

Chapter 2. On the Nature of Trust

M
odels

C
lassification

P
rop

erties
R

equirem
ents

N
ature

Source
C

M
C

E
X

P
F

L
X

P
robabilistic

M
easure

D
irect

M
D

(4),
M

F
,

M
S,

C
P

,
SJ,

D
Y

-
+

±

R
eputation

M
easure

D
irect,

H
orizontal

M
D

(2),
M

S,
C

P
,

SJ,
D

Y
,

T
R

-
+

±

Socio-cognitive
M

ental-State
Internal

M
D

(3),
D

Y
,

T
R

-
-

-

D
ecentralised

T
M

R
elationship

V
ertical

M
D

(3),
SJ,

T
R

+
-

A
utom

ated
T

N
D

ecision
V

ertical,
H

orizontal
M

D
(3),

M
F

,
SJ,

D
Y

,
T

R
,

SY
+

±
+

D
esired

Features
M

easure
D

irect,
Indirect

M
D

(4),
M

F
,

M
S,

C
P

,
SJ,

D
Y

,
T

R
,

A
S

+
+

+

T
able

2.1
–

A
nalysis

of
the

review
m

odels

•
M

D
:

m
ultidim

ensional
in

ter

–
M

D
(2):

a
trustor

and
a

trustee

–
M

D
(3):

M
D

(2)
+

an
issue

–
M

D
(4):

M
D

(3)
+

a
context

•
M

F
:

m
ulti-factor

•
M

S:
m

easurable

•
C

P
:

com
parable

•
SJ:

sub
jective

•
D

Y
:

dynam
ic

•
T

R
:

transitive

•
SY

:
sym

m
etric

•
C

M
C

:
com

m
unicability

•
E

X
P

:
expressiveness

•
F

L
X

:
flexibility

40

2.7. French Summary

2.7 French Summary

Dans le monde réel comme dans le monde virtuel, la confiance est un concept fondamental pour
les humains sans lequel ils ne peuvent ni agir ni interagir. Ainsi, c’est sans grande surprise que
ce concept a été l’objet d’intenses travaux de recherche depuis des décennies, voire des siècles.
Le chapitre 2 de ce manuscrit avait donc pour objectif de clarifier ce concept et de présenter
comment est-ce qu’il doit être compris tout au long de ce manuscrit. Pour cela, nous avons dans
un premier temps examiné comment la confiance a été étudiée et interprétée dans les sciences
humaines et sociales. Ensuite, nous avons circonscrit notre étude aux travaux menés dans le
domaine informatique.

2.7.1 Étude rétrospective sur la confiance

L’objectif de cette section n’est évidemment pas de proposer une revue exhaustive de l’ensemble
des travaux réalisés sur la confiance. Cependant, il nous paraît essentiel de présenter comment
les disciplines phares des sciences humaines et sociales telles que la philosophie, la psychologie,
la sociologie et l’économie se sont appropriés ce concept dans le but de pouvoir, à notre tour,
le définir, le caractériser et le classifier.

En philosophie, la recherche sur la confiance à une longue tradition qui remonte à la Grèce
antique. Durant cette période, les philosophes grègues (e.g. Socrates, Plato and Aristotle) on
menait une profonde réflexion sur ce qui motivait les individus à recourir à la confiance. Leurs
conclusions suggéraient que la confiance est une forme de croyance qu’il fallait exclure du mé-
canisme de décision en faveur de la rationalité. Ce n’est qu’au 20ème siècle que des philosophes
tel que Kant [Kant, 1788] commencent à admettre le rôle de la confiance en complément de la
rationalité.

En psychologie la confiance est expliquée au travers de deux processus cognitifs: (a) le sen-
timent de vulnérabilité, et (b) les attentes vis-à-vis dû comportent du partenaire. Cela explique
pourquoi la confiance a été abordée de deux manières au sein de cette discipline. D’une part la
confiance disproportionnelle (cf. [Deutsch, 2011, Deutsch and Gerard, 1955, Rotter, 1967]) qui
permet de capturer la prédisposition des individus à faire confiance, et d’autre part la confiance
interpersonnelle qui caractérise l’état mental qui mène un individu à faire confiance à un autre
individu à un moment donné et pour un objectif donné [Rempel et al., 1985, Simpson, 2007].

La confiance est clairement un phénomène social, c-à-d que la confiance n’intervient que
lorsque deux individus ont besoin d’interagir. De ce fait, la sociologie est incontestablement
la discipline la plus prolifique sur ce sujet. Pour de nombreux sociologues, la vie moderne
est trop complexe pour les mécanismes de décision de l’humain et notamment la rationalité.
Cela explique en grande partie le rôle et l’intérêt de la confiance en tant que catalyseur et
simplificateur des relations interpersonnelles. Les sociologues (tels que Zucker [Zucker, 1986])
distinguent la confiance dans les individus et la confiance dans le système. La confiance dans
les individus provient de l’expérience qu’on acquiert après nos interactions avec les autres alors
que la confiance dans le système est assurée par la structure à laquelle l’individu appartient.

41

Chapter 2. On the Nature of Trust

Par exemple, la confiance que j’accorde à mon médecin provient essentiellement de la confiance
que j’accorde à l’état et l’université pour former des personnes compétentes.

En économie, les chercheurs ont longtemps refusé d’utiliser la confiance pour expliquer
les décisions humaines. En effet, pour les économistes l’humain (l’homo-economonicus) est
purement rationnel et l’existence d’intérêts réciproques ainsi que la ratio risque/opportunité
suffisent à expliquer les décisions de coopération. Néanmoins, beaucoup n’hésitent pas à évo-
quer la confiance notamment lorsque le calcul rationnel est rendu impossible par le manque
d’information. Ces chercheurs parlent de lubrifiants des prises de décisions ou d’institution
invisible mais le concept est le même et l’idée de la considération de la confiance a pris son
chemin dans la discipline.

Enfin, en informatique, la nécessité de la confiance apparaît avec l’avènement des systèmes
distribués tels que l’Internet. Dans de tels systèmes, la difficulté à obtenir des informations
complètes rend les interactions au sein de ces environnements incertaines et risquées ce qui
motive le recours à la confiance.

La confiance numérique, ou la confiance virtuelle en référence aux systèmes dans lesquelles
elle est mise en valeur, a été énormément étudiée dans le domaine de la sécurité et celui de
l’intelligence artificielle où l’incertitude et le risque représente un enjeu majeur. Dans ces
disciplines et en informatique de manière générale, définir ce que la confiance veut dire (ce que
les autres disciplines ont essayé de faire) n’est clairement pas suffisant car l’objectif final est de
permettre l’automatisation de ce mécanisme. En effet, pour être utilisée par des programmes,
la confiance doit être conceptualisée et représentée de manière formelle et non ambiguë. Par
formelle, nous entendons que la confiance doit être capturée, représentée et manipulée par des
programmes informatiques. Par conséquent, l’essentiel des travaux sur la confiance dans le
domaine informatique visait à formaliser, implémenter et évaluer des modèles et des théories
proposées par des chercheurs des disciplines abordées plus haut.

En conclusion, malgré leur diversité, ces disciplines sont d’accord sur la centralité de la
confiance dans les interaction réelles et virtuelles. Cependant, aucune définition consensuelle n’a
été proposé. En effet, on pourrait aisément imaginer la difficulté à concilier les avis divergents
en une seule définition. Afin d’illustrer cette difficulté, prenons l’exemple des sites de commerce
électronique (e-commerce). Dans chaque transaction, l’acheteur doit faire confiance au vendeur
pour qu’il garde les informations qu’il a utilisé pour le paiement sécrétés et que les produits
achetés satisfont ses exigences en terme de qualité. Et en contre-partie, le vendeur doit faire
confiance en l’acheteur pour que celui ci n’utilise pas des moyens de paiement volés et que celui
ci ne va pas l’évaluer négativement si tout se passe bien. Dans ce scénario, la confiance est
inhérentes à toute interaction, tandis que que si l’on demande à l’acheteur et au vendeur leur
définition de la confiance, la définition avancée sera probablement différentes car les raisons
pour lesquelles chacun fait confiance sont différentes.

42

2.7. French Summary

2.7.2 Sur les traces de la confiance

Dans cette section nous allons essayer de définir le concept de confiance du point de vue in-
formatique. Pour cela, nous allons tout d’abord débattre et clarifier certains concepts qui sont
souvent utilisés, à tort, en tant que synonymes de la confiance. Puis nous présenterons quelques
définitions et discuterons leur concordance avec notre interprétation de la confiance. Enfin, nous
conclurons cette section en proposant notre définition.

Ce que la confiance n’est pas: afin de comprendre ce que la confiance est réellement,
il faut avant tout commencer par écarter ce qu’elle n’est pas. Ainsi, dans la littérature on
trouve souvent des concepts qui sont utilisés en tant que synonymes de la confiance alors qu’ils
ne le sont pas. Nous citons ici à titre d’exemple quelques-uns de ces concepts. Être digne
de confiance n’est pas la confiance elle-même. En général, pour que la confiance s’établisse
le partenaire se doit de se montrer digne de confiance. Ainsi, être digne de confiance est un
prérequis de la confiance mais il ne peut être considéré comme un synonyme. Fiabilité et
confiance sont également souvent confondus. La fiabilité est la capacité d’un individu à se
comporter tel qu’il est supposé le faire. Par exemple, les policiers sont censés être fiable et
pourtant je peux avoir recours à un policier sans lui faire confiance. Ainsi, la fiabilité n’est
qu’un ingrédient de la confiance qui n’est souvent pas obligatoire. D’autres concepts tels que la
crédibilité, la compétence ou la réputation ont été confondu et donc utilisés à tort comme
synonyme de la confiance.

Alors c’est quoi la confiance au juste ? pour Gambetta [Gambetta, 2000] la définition
de la confiance repose sur deux concepts qui sont la probabilité subjective et les conséquences
de la décision. Pour Gambetta, la confiance est “un niveau particulier de la probabilité sub-
jective avec laquelle un agent accomplira une action spécifique, à la fois avant que nous ne
puissions suivre chaque action (ou indépendamment de sa capacité de même pouvoir la tracer)
et aussi dans un contexte dans lequel cela affecte notre propre action.”. De son coté, Luhmann
[Luhmann, 1990] met l’accent sur la complexité du monde dans lequel nous vivons. Ainsi, pour
l’auteur “la complexité du monde future est réduite par l’action de la confiance".

Par ailleurs, dans le domaine informatique, les définitions proposées par McK-
night [Mcknight and Chervany, 1996], Grandison [Grandison, 2003] et Castelfranchi
[Castelfranchi and Falcone, 2000b, Falcone and Castelfranchi, 2001] sont souvent citées.
Chacune de ces définitions à fait avancer notre analyse et compréhension du concept de
confiance. Cependant, aucun ne reflète fidèlement notre interprétation de la confiance. C’est
pour cela que nous définissons la confiance comme étant :

Definition 2 (Confiance) La décision délibérée d’un individu A (le confiant appelé également
trustor) dans une situation de vulnérabilité vis-à-vis d’un individu B (dépositaire appelé trustee)
par rapport à un objectif X et dans un contexte C.

43

Chapter 2. On the Nature of Trust

2.7.3 Analyse des modèles de confiance

Dans cette section, nous allons présenter, analyser et comparer quelques modèles de confiance.
Pour cela, nous nous sommes intéressés aux travaux proposés dans les disciplines phares qui
sont la sécurité et l’intelligence artificielle.

Les modèles de confiance étudiés dans l’intelligence artificielle peuvent être classés en trois
catégories: les modèles probabilistes, les modèles de réputation et les modèles socio-
cognitives. Dans ce qui suit, nous décrivons succinctement chaque catégorie.

• Modèles probabilistes: initiés par Marsh [Marsh, 1994], ces modèles assument qu’une
confiance absolue ne peut exister. Pour cela, ils proposent de calculer une valeur de
confiance en utilisant un algorithme qui agrège plusieurs facteurs de confiance. Cette
valeur représente la probabilité que le confiant A accorde sa confiance au dépositaire B.
Plusieurs modèles se sont inspirés de cette approche, on note par exemple l’approche
Manchala [Manchala, 1998] dans laquelle la notion de risque est explicitement considérée
comme étant un facteur de la probabilité de confiance. Plus récemment, Burnett et
ses collègues [Burnett, 2011] proposent l’utilisation de stéréotypes qui sont en réalité des
probabilités de comportement appris tout au long des interactions.

• Modèles de réputation: la réputation est l’évaluation de la fiabilité (dans le sens
digne de confiance) d’un individu par un groupe, une communauté ou une société
d’individus. En intelligence artificielle, et plus particulièrement dans la communauté
multiagent, la réputation a été considéré comme une dimension primordiale de la confi-
ance [Jøsang and Ismail, 2002]. À ce titre, de nombreux modèles ont été proposés dans
la dernière décennie dont l’objectif était d’améliorer l’évaluation, la propagation et la
mise à jour des mesures de réputation. Par exemple, Regret est l’un des premiers mod-
èles à base de réputation dans lequel les auteurs associaient un degré de confiance non
seulement à l’individu évalué mais également aux évaluateurs ce qui permet de pondérer
leurs évaluations en fonction de leur degré de confiance. Dans le Beta Réputation Sys-
tem [Jøsang and Ismail, 2002], Jøsang utilise un modèle en logique floue pour calculer
la réputation en se basant sur les recommandations directes et indirectes. Dans FIRE,
Huynh et ses collègues [Huynh et al., 2006] introduisent les rôles afin de filtrer au mieux
les évaluations et augmenter la précision de la réputation. Enfin, dans LIAR, Vercouter
et Muller [Vercouter and Muller, 2010a] distinguent entre la confiance d’un individu en
tant que partenaire est sa confiance en tant que fournisseur de recommandation. Cette
dernière mesure est utilisée ensuite pour filtrer les évaluations et pondérer la confiance.

• Modèles socio-cognitifs: Le modèle proposé par Castelfranchi et Falcone
[Castelfranchi and Falcone, 2000b, Falcone and Castelfranchi, 2001] est l’un des premiers
modèles computationnels à considérer la dimension cognitive de la confiance. Comme
vu précédemment, les auteurs considèrent la confiance comme étant un état mental que
l’individu construit à partir de faits, croyances et d’objectifs. Pour cela, ils ont construit

44

2.7. French Summary

un modèle formel dans lequel ces éléments sont utilisés pour déduire ou non une relation
de confiance. En résumé, un individu i est susceptible de faire confiance en un autre
individu j pour faire l’action α afin de réaliser l’objectif ϕ si et seulement si:

– i a comme objectif ϕ,

– i croit que j est capable de réaliser α,

– i croit que j a la capacité d’atteindre ϕ en réalisant α,

– i croit que j à l’intention de faire α.

Ce modèle a été récemment formalisé dans le contexte du projet ForTrust
[Herzig and Lorini, 2010, Hübner et al., 2009b].

En sécurité, l’usage de la confiance a commencé au début du 20ème siècle avec l’avènement
de l’Internet. L’objectif des chercheurs de la communauté était de trouver mes mécanismes
permettant une gestion distribuée et décentralisée du contrôle d’accès. Pour cela, il fallait per-
mettre aux propriétaires de ressources de spécifier en qui il avait confiance pour manipuler leurs
ressources et dans quelles circonstances. Dans cette perspective, plusieurs systèmes (appelés
Systèmes de gestion de la confiance) ont été proposé. Nous classons ces systèmes en deux caté-
gories: Systèmes de gestion de la confiance Décentralisée (GCD) et Systèmes de négociation
automatique de la confiance (NAC).

• Systèmes de gestion de la confiance Décentralisée: Avec leur système Policy-
Maker, Blaze et Lacy constituent les pionniers de ce type de systèmes [Blaze et al., 1999b,
Blaze et al., 1996]. Les auteurs utilisent le concept pour justifier le recours aux mécan-
ismes de délégation qu’ils ont mis en place afin de permettre un contrôle d’accès distribué
et décentralisé. Les certificats (credentials) sont utilisés pour exprimer la relation de
confiance qu’a un individu avec un autre individu. Le système repose sur ce graphe de
délégation pour déduire les droits qu’un individu possède dans un système donné. Dans
SULTAN, Grandison [Grandison and Sloman, 2003] intègrent l’utilisation des recomman-
dations en plus des certificats. Des politiques sont exprimées sous forme de règles afin de
filtrer les recommandations en fonction des besoins de l’utilisateur. À l’image de SULTAN,
de nombreux systèmes emboîtent le pas à PolicyMaker et suivent le même mécanisme de
fonctionnement. Commun à ces systèmes, l’évaluation de la confiance est toujours binaire
car elle est basée sur l’existence ou non d’une relation de confiance prouvée.

• Systèmes de négociation automatique de la confiance: les certificats utilisés dans
les systèmes de gestion de la confiance Décentralisée sont utilisés pour certifier les pro-
priétés de l’individu demandant l’accès à la ressource. Or, ces certificats contiennent
des informations sensibles et les donner à un interlocuteur implique un risque. C’est
pour cela que Winslett et ses collègues [Yu et al., 2003] ont proposés une nouvelle généra-
tion de systèmes de gestion de la confiance dans lesquelles une négociation automatique

45

Chapter 2. On the Nature of Trust

permettait de rationaliser la diffusion de ces certificats. L’objectif était d’empêcher la
diffusion de certains certificats durant une négociation si cela n’était pas nécessaire ou si
l’interaction était vouée à l’échec. Avec l’engouement que connaît la société de nos jours
pour le respect de la vie privée, ces systèmes ont de plus en plus de succès ce qui explique
l’explosion de leur nombre. À titre d’exemple nous citerons TrusBuilder [Yu et al., 2003],
Trust − mathcalX [Bertino et al., 2003, Bertino et al., 2004] et plus récemment PRO-
TUNE (Provisional Trust Negotiation) [De Coi et al., 2008].

46

Chapter 3

Trust Management Systems

The concept of trust has been recognised in Chapter 2 as an interaction enabler in situation of
risk and uncertainty. Based on this concept, several models have been proposed in distributed
artificial intelligence and in security. This chapter aims at analysing and identifying the basic
elements participating to the management of Trust in Trust Management Systems. The choices
that will be made in the light of the requirements and objective stated in the introduction (cf.
Section 1.3).

In order to better position the different works realized in Trust Management, this chapters
propose an historical view on the evolution of such systems from Access Control to a Trust
Management approach with respect the consideration of openness and decentralization. From
that first characterization, we provide the reader with the fundamental background concepts
supporting this approach. Section 3.3 includes a survey in which the most relevant trust
management systems are presented providing an overview of the existing systems. The systems
are presented chronologically in order to stress the contribution provided by each system with
respect to its predecessors. The systems are also structured by grouping similar systems into
three categories: authorisation-based, role-based and negotiation-based. This section is followed
in Section 3.4 by a discussion in which we compare the reviewed systems.

3.1 From Access Control to Trust Management

Trust management has its roots in security and more particularly in access control. Access
control (AC) is the traditional mechanism by means of which software applications (originally
operating systems) answer the question (i.e. request) “is the entity identified as being S can
manipulate the object O via the action A?”. Here the verb “can” should be understood in term
of rights and not in terms of capabilities. Further, as one may notice, this question can be
easily contextualised with respect to the trust issue into “Can I trust S enough to allow him
performing the action A on the object O?”. In this section, we present the different models that
have been proposed to answer such questions. Before we proceed, however, we introduce basic
terminology we will rely upon in our descriptions.

Chapter 3. Trust Management Systems

3.1.1 Access Control Model

Access control is the mechanism used by applications to determine who can be allowed to
manipulate local resources. The abstract model of an access control mechanism is depicted in
Figure 3.1.

AC
Mechanism

subject

<request> Object

Policy

<Autorization>

Figure 3.1 – A basic access control model (adapted from [Genovese, 2012])

• The request represents the type of interaction for which an authorisation is requested (e.g.
read, use or login),

• The subject, often called principal, is the abstract entity (a human, a program or an
artificial agent) requiring authorisation,

• The object1 is the abstract artefact representing the resource the requester wants to
interact with (e.g. a file, a service),

• The mechanism is the scheme that determines if the requesters is authorised to perform
the requested interaction.

Thus, the access control mechanism plays the role of guard for the manipulation of sensitive
local resources. It determines if a requester should or should not be authorised to manipulate the
resource he requested. The specification of the information based on which a requester can be
authorised represent permissions and is usually encoded in an access control policy. Based on the
nature the policies used to specify permissions, a wide range of mechanisms have been proposed
over the past decades to address the access control issue. These mechanisms can however be
grouped into five categories: identity-based, lattice-based, role-based, organisation-based and
attribute-based. The next sections provides a insight on how each mechanism addressed the
access control issue.

1In the remainder of this document, we will use interchangeably the terms subject and principal. We will do

so for the concepts of resource and object too.

48

3.1. From Access Control to Trust Management

3.1.2 Identity-Based Access Control

The general access control problem is often split into two main sub-problems: authentication
and authorisation. Authentication aims at proving that the identity claimed by a principal is
authentic, while authorisation tries to find whether there is a permission that allows this identity
to manipulate the requested resource, and how this manipulation can be done. Identity-based
Access Control (IBAC) has made implicit use of a closed world model, in which users and
resources are a priori known. Under such assumptions, the problem of authorisation reduces to
the one of authentication. Consequently, permissions to access a resource are directly associated
with the principal’s identifier (e.g. user name, login, public key) as illustrated in Figure 3.2.
Access to the resource (an object in Figure 3.1) is only possible when such an association exists.

IBAC
Mechanism

subject

<request> Object<Autorization>

Policy:
Identity to Permissions

Mappings

Figure 3.2 – An abstract IBAC Model

Here, the information used in the policy is the identity of the principal requesting access to
the resource. Therefore, these models are called identity-based. A concrete example is the im-
plementation using access control lists (ACL). ACL are the oldest and most basic form of access
control commonly found in operating systems such as UNIX. ACL are lists of principals and
the actions that each principal is permitted to perform on the resource. Here the access control
policies represent rules that determine if association between the principal and a permission
exists.

In the most general form, a permission is a triple (s, o, a), stating that a user s is permitted
to perform an action a on an object o. Let S be the set of all users of the system, O the
set of all objects and A the set of all possible actions. The access control policies represent a
function f : S × O → A. Consequently, f(s, o) determines the list of actions that the subject
s is permitted to perform over the object o. Table 3.1 illustrates (as a matrix A = |S| × |O|)
the access control list of a system where S = {s1, s2, s3}, O = {o1, o2, o3} and A = {a1, a2, a3}

[El Houri, 2010].
IBAC models are very easy to implement and use. However, such approaches are unable to

scale when the number of users increases [Yuan and Tong, 2005]. Moreover, the access control
decisions are not related to any characteristic of the resource, the subject of the business
application, making such approaches very vulnerable to attacks (ACL lists are easy to corrupt)

49

Chapter 3. Trust Management Systems

subject o1 o2 o3

s1 a1, a2, − a2 a2

s2 a2, a2 − −

s3 a1, a1, a2 a1, a2 a1, a2

Table 3.1 – Example of an access control list

and identity forgery (identity usurpation) [Chen, 2011].

3.1.3 Lattice-Based Access Control

Unlike IBAC models, lattice-based access control (LBAC) models (also known as mandatory
access control models) are deployed when the access to an object depends on its characteristics
and those of the subject, and not the wills of the object owner (i.e. ACL) [Sandhu, 1993].
Subjects’ and objects’ characteristics are represented by security labels (or levels) that are
assigned to users and resources of the system. Objects’ labels reflect the extent to which a
resource is sensitive while a subject’s label reflects the category of objects he is permitted
to access. The systems in which LBAC models are implemented are often called multi-level
security systems as the labels used in these systems represent a partial order (e.g. Top Secret,
Secret, Confidential, Unclassified) which is assumed to form a lattice.

In LBAC, the process of access control is reduced to a control of data flow. For example, a
read access to a resource is represented as a flow of data form the object to the subject, while
a write access represent a flow of data from the subject to the object. In the light of this, the
LBAC model’s objective is to guarantee that data coming from a higher level never flows to
lower level subjects, and that data coming from lowers level subject never flow up to objects
of higher level. In sum, the label of a subject must be at least as high as the label of the
object he wants to read, and to write on an object, the label must be at least as high as the
subject’s one [Chen, 2011]. These two security principles are respectively called “no-read-up”
and “no-write-down” as illustrated in Figure 3.3 hereafter.

LBAC
Mechanism

subject

<request + Identity> Object<Autorization>

Policy:
Labels Mapping

Figure 3.3 – Abstract lattice-based access control model

50

3.1. From Access Control to Trust Management

The Bell-LaPadula is the most famous model implementing LBAC. The Bell-LaPadula
model has been used in both military applications and commercial ones. Bell-LaPadula was
also used to implement the security mechanisms in the Multics operating systems.

The main limit of LBAC models is their lack of flexibility and scalability. Indeed, LBAC
models are quite efficient and remain relatively manageable in systems with a small number of
labels.

3.1.4 Role-Based Access Control

Both IBAC and LBAC have considerable deficiencies: LBAC models are clearly too rigid while
IBAC are very hard to maintain and administrate [Becker, 2005]. This ascertainment has led
several researchers in the early 1990s to investigate for alternative models such as role-based
access control (RBAC) [Sandhu et al., 1996]. The development of RBAC was motivated by the
fact that in most of the cases, sensitive resources were generally not owned by users but by the
institution wherein users act in the capacity of a role of a job function [Becker, 2005, Yao, 2004].
Therefore, the key components in RBAC are subjects, roles and permissions as illustrated in
Figure 3.4.

RBAC
Mechanism

subject

<request>

Policy:
Identity-Role

Mappings

Permission

Object Rights

Permission

Object Rights

Permission

Object Rights

.

.

.

Role
Role

Role

Figure 3.4 – Basic role-based access control model (adapted from [Genovese, 2012])

The policy represents here an assignment relation that associates users to the roles they
hold, and roles to the permissions they are granted. Thus, roles represent an intermediary layer
between subjects and permissions which makes RBAC a scalable access control mechanism, and
reduces considerably the complexity of access control policies specification and administration
when the subjects turnover is very high. When a subject joins or leaves the system, only the
link between the user identifier and the role has to be updated. Subjects are assigned roles
based on their duties, qualifications or competencies in the institution, while permissions are

51

Chapter 3. Trust Management Systems

associated to roles based on the institution activities and goals.

RBAC received in the last twenty years considerable attention that conducted
to the proposition of a whole family of models (e.g. [Ferraiolo and Kuhn, 2009,
Sandhu et al., 1996, Nyanchama and Osborn, 1999, Sandhu et al., 2000,
Dimmock et al., 2004, Ferraiolo et al., 2001, Li et al., 2002, Boella and van der Torre, 2005,
Wang and Varadharajan, 2007, Finin et al., 2008]). However, most of the researchers would
agree on the fact that RBAC0 is the core model [Chen, 2011, Becker, 2005]. RBAC0 is
the main and the simplest model. RBAC1 extends RBAC0 with the capability to specify
hierarchies of roles, introducing permissions’ inheritance between roles. RBAC2 extends it
with constraints to enforce separation of duties, while RBAC3 is a combination of RBAC1

and RBAC2.

3.1.5 Organisation-Based Access Control

Organisation-based access control (OrBAC) and RBAC have many similar aspects; e.g. in both
approaches the concept of role is central. Therefore, most of the scholars describe OrBAC as an
extension of RBAC [Kalam et al., 2003]. OrBAC aims at detailing the permissions that are used
in abstract terms within RBAC. Indeed, RBAC policies define the mapping between identities
and roles. Then based on these policies the access control mechanism grants permissions to
subjects with respect to the role it belongs to. So the interpretation of permissions remains the
responsibility of the administrator and may be very complex to perform; e.g. grouping similar
rights, preventing inadequate permission and managing conflicting roles are some of the main
issues to be addressed [Kalam and Deswarte, 2006].

3.1.6 Attribute-Based Access Control

The main idea of attribute-based access control (ABAC) models is to use policies that rely on the
characteristics of authorised individuals instead of their identities, roles or clearances for issuing
authorisations [Yuan and Tong, 2005, Lee, 2008]. These policies are then satisfied through the
disclosure of credentials issued by third party attribute certifiers (e.g. organisations, companies,
institutions, etc.). Consequently, subjects can gain access to resources without being priorly
known by the system administrator (or the resource owner) as illustrated in Figure 3.5.

Unlike IBAC, LBAC and RBAC, ABAC policies can define permissions based on any rele-
vant characteristic. Characteristics fall into three categories [Yuan and Tong, 2005]:

Subject attributes. Subjects are the entities requesting access to objects. Each subject can
be characterised via a set of attributes without explicitly referring to its identity. In the
ABAC literature, almost all information that can be associated to a subject is considered
as an attribute. Such attributes may include subject’s name, role, affiliation, address,
age, and so on. Of course, the subject identity can also be considered as an attribute.

Object attributes. Objects are resources that the subject wants to manipulate. Like subjects,

52

3.1. From Access Control to Trust Management

LBAC
Mechanism

subject

Object<Autorization>

Policy:
Attributes - Permission

Mapping

Environment

Subject
Attributes

Environment
Attributes

Object
Attributes

<Request>

Figure 3.5 – Abstract attribute-based access control model

resources have properties that are also called attributes in the ABAC model. Resource
attributes are also important in access control decision as they can affect the type of the
permission accorded (e.g. a read on a text file does not have the same consequence as
an execute on a program). Resource attributes may include the name of the resource, its
type (text file, image, serve, etc.), the owner, and so on. These information is generally
made public and can be extracted automatically from metadata.

Context attributes. The environment or more generally the context in which the interaction
is undertaken has been ignored for a long time by the security community. In previ-
ous approaches, permissions are attached to individuals (IBAC), roles (RBAC) or labels
(LBAC) and derive the same authorisation as long as the artefact to which they are at-
tached remains valid (or when they are revoked by the system administrator). Thus, the
context of the interaction never affects the access control decision, whereas environment
attributes such as time, date, threats are relevant in applying the access control policy.

Discussion

We presented in this section an insight on predominant access control models. Though effective
in many specific situations, the above classical approaches failed addressing the inherent prop-
erties (e.g. openness, distribution, decentralisation) of modern systems such as the Internet.
The main limitation of access control model lies in the fact that they heavily rely on identity
for policies evaluation. For instance, in IBAC, identity is the solely information based on which
access control decisions are granted. LBAC, RBAC and OrBAC do not perform better; they

53

Chapter 3. Trust Management Systems

only extend the IBAC approach to ease its application (e.g. permissions factorisation in most of
the case) using specific concepts such as labels, roles, and views. This issue limits these models’
scalability and rises several other problems such as privacy and confidentiality (e.g. people do
not to reveal their password as they tend to use the same for many several applications).

In addition, in IBAC, LBAC, RBAC and OrBAC, the subject must be known to the system
administrator (so that this latter adds a permission) before he would be able to request access
to the resource. So these systems operate under closed and finite settings in which both subjects
and objects must be known beforehand. This last issue, in addition to their limited scalability,
make these models clearly not relevant for application in the context of Internet.

In contrast, ABAC does not rely explicitly on subjects’ identities. Consequently, ABAC
can manage requests originating from unknown subjects, as long as they are able to prove that
they have the required attributes (i.e. specified in the ABAC policy). However, the approach
advocated in ABAC can neither be distributed nor decentralised; attributes are certified by a
central authority and the users themselves can not certify each other attributes. This representd
a real limit to the application of ABAC in large, open and distributed systems.

Finally, and common to all models we reviewed in previous sections, access control decisions
are the solely form of decision handled. However, distributed systems require more sophisticated
decisions that combines access control and delegation. It is this last form of decision that
motivated the advent of research on trust management.

3.2 Trust Management

We introduce in this section the trust management approach which encompasses distributed
trust management models (DTM) and automated trust negotiation models that have been in-
troduced in Section 2.4 of the previous chapter. Both models originate from the work of Blaze
and colleagues [Blaze et al., 1996, Blaze et al., 1999a] which tried to address the limits of the
above traditional access control models with respect to distribution and decentralisation limi-
tations.

In the remainder of this section, we will first define the concept of trust management, then
we will present in Section 3.2.3 primary concepts this approach relies upon.

3.2.1 Definition

Trust management has been defined by Blaze and colleagues as “a unified approach to specify-
ing and interpreting security policies, credentials, relationships which allow direct authorisation
of security-critical actions.” [Blaze et al., 1996, Blaze et al., 1999a]. The main novelty of the
approach introduced by Blaze et al. is that they unified the concepts of security policy, cre-
dentials and authorisation under the concept of trust management. However, their definition
is too abstract and not very intuitive to explain what trust management really is.

For Jøsang, trust management is “the activity of collecting, codifying, analysing and

54

3.2. Trust Management

presenting security relevant evidence with the purpose of making assessments and decisions
regarding e-commerce transactions”[Jøsang et al., 2007, Jøsang, 2007]. Although, broader
and more intuitive, this definition was criticised by Grandison in his doctoral thesis to be
too domain-specific (i.e. e-commerce) [Grandison, 2003]. Nonetheless, Grandison reused it
to define trust management as“the activity of collecting, encoding, analysing and present-
ing evidence relating to competence, honesty, security or dependability with the purpose
of making assessments and decisions regarding trust relationships for Internet applications”
[Grandison and Sloman, 2003, Grandison, 2003].

The main drawback in Grandison’s definition is that the author restricted the nature of the
evidences based on which the trust relationship can be established. Further, Grandison used
the verb “collecting” for evidence while some of them can not collected but should be requested
(e.g. credentials). Therefore, we prefer to adapt the above definitions to provide one that best
matches our understanding of trust management.

Definition 3 (Trust Management) The automated activity of collecting, requesting, provid-
ing and analysing information with the purpose of making trust decisions (e.g. access control,
delegation, collaboration) based on policies.

The main aspect we stress in this definition is the automated nature of trust management
process. It is the automation requirement that makes the trust management issue complex and
necessitates so much investigations (cf. Section 3.3). Further, we used the term information
instead of evidence in order to comply with the analysis we have made in Section 2.5. Finally,
we generalise the purpose of trust management to trust decisions rather than focusing on trust
relationships. From our perspective, a relationship implies some kind of continuation in time,
while a trust decision better reflects the dynamic nature of trust.

3.2.2 Trust Management System

Trust management systems (TMS) were originally designed to solve the problem of deciding
whether a request to perform a potentially harmful action on a sensitive resource comply with
the access control policy [Blaze et al., 1996, Blaze et al., 1999a]. Nevertheless, these systems
are currently used in a broader way to evaluate whether a trust decision complies with the
policy or not.

Definition 4 (Trust Management System) An abstract system that processes a symbolic
representation of trust relationship in the perspective of trust decision automation.

In the above definition, the “symbolic representation of trust” refers to the concepts of
credentials and policies by means of which the issuer states that he trusts the entity to which
the statement is applicable. Of course, this trust is not generic, thus is most of the cases the
statement concerns a specific issue (e.g. read a document). The symbolic representation of trust
relationships can be best illustrated through the everyday ticket experience [Wikipedia, 2013].

55

Chapter 3. Trust Management Systems

The ticket (let us say a tram ticket) can be considered as a symbol of trust between the tram
company and the ticker holder. The ticket acts as a proof that the holder paid for the journey
and consequently that he is entitled to get on the tram. Once bought, the ticket can be later
given to someone else, thus transferring the trust relationship. In the tram, only the ticket will
be verified and not the identity of the holder. Concretely, in the above example, the tram ticket
illustrates the importance for credentials while the tram inspector enforces the policy (which is
quite simple here).

Thus, a trust management system aims at linking the requester and the requested via a trust
relationship based on which a trust decision can be made. To that aim, trust management
systems provide a language for the specification of policies and credentials, and a trust
management engine (trust engine for short) that evaluates whether the provided credentials
satisfy the specified policy.

3.2.3 Foundations

As illustrated in the previous section, trust management systems are made possible thanks to
the introduction of credentials, policies and trust engine [Galinović, 2010, Nejdl et al., 2004,
Lee et al., 2009, Ryutov et al., 2005, Winsborough and Li, 2006]. These three components are
presented in the following sections.

3.2.3.1 Credentials

Credentials (or digital credentials) represent the counterpart of the paper credential we use
in the real world (e.g. passport, driving licence, student card). They represent digital docu-
ments or messages that are certified (i.e. signed) by certification authorities. They allow user
authentication but can also provide additional information such as the user’s attributes (cf. Sec-
tion 3.1.6), memberships or rights. Blaze, in his trust management jargon, defined credential
as “a signed message that allows a principal to delegate part of its own authority to perform ac-
tions to other principals”. It is this definition that we used as a basis in our thesis. For instance,
a public key "certificate" is an example of a credential. Public key infrastructures (PKI) have
been systemically used by trust management systems to create, distribute, validate, store and
revoke credentials. In what follows, we review two prominent approaches to PKI that are cer-
tification authorities (CA) and cross-certification (CC) [Linn, 2000]. Certification authorities
approach relies on the trust that exists between an individual and the organisation/institution
representing the certification authority, while cross-certification drew trust from the experience
of others. We illustrate both approaches with two concrete implementations of these approaches
that are, respectively, X.509 and PGP.

Certification Authorities: X.509

X.509 is a widely used standard for credentials management. Typically, an X.509 certificate
contains (but is not limited to) the following information: the issuer name, the subject name,

56

3.2. Trust Management

signature algorithm identifier (e.g. RSA, DSA, etc.), the validity period, and optional informa-
tion which can be an attribute-value pair [Samarati and Vimercati, 2001].

In X.509, the certification management process involves several entities: Certification au-
thorities (CA) that are the entities which issue and revoke certificates, Registration authorities
(RA) that vouch for the biding between public keys and, repositories that store and make
available certificates and certificate revocation lists (CRLs), certificate holders, and clients.

The certification process starts when the certificate holder requests a certificate from the
registration authority. The RA verifies the future holder identity and/or the attributes for
which he wants to be certified (e.g. in the case of driving capabilities, RA checks whether the
entity holds a driving licence in the real life). Once this step has performed, the RA forwards
the request to the CA which signs the certificate after verifying that the RA really approved
the request. Then the CA sends a copy of the certificate to the repositories so that clients who
want to communicate with the requester can get the public key. Analogously, when a certificate
needs to be revoked (e.g. a key has been compromised), the CA updates the repositories and
adds an entry to the revocation list. Certification authorities are organised in a hierarchical
way; the root CA certifies other CAs which in turn certify other CA or simple requester. This
issues represent the most controversial aspect of X.509 as root CAs are self-certified entities
[Yu, 2003, Conrad et al., 2012].

Cross-Certification: PGP

PGP (Pretty Good Privacy) is a public key infrastructure that has been initially designed
to guarantee authenticity, integrity and non-repudiation of exchanged data. Although it can
encrypt any data type, PGP has been most commonly used for emails exchange. Unlike X.509,
in PGP each user can generate a pair (public key, private key) which is associated to his unique
identity. However, the keys are used independently from the identity of the user, thus PGP
guarantees authenticity, integrity and non-repudiation while preserving the confidentiality of
the individual identity (i.e. privacy). A PGP certificate includes (but is not limited to) the
following information: the certificate holder, holder’s information (e.g. his name, his ID, his
email, photo, etc.), digital signature of the holder, validity period and the encryption algorithm.
Thanks to the holder’s information, a unique PGP certificate can contain several information
which can be certified via the same key [Yu, 2003].

In PGP, anyone can freely issue and certify its own certificates, thus everybody can act as a
certification authority. Thus, everyone can certify others’ public keys (PGP call this mechanism
introduction), making the trust issues central to PGP. Therefore, PGP relies on a “web of trust”
which is the network created by individuals introducing each other’s keys. To that aim, PGP
uses two distinct metrics: one quantitative (the key validity) and another qualitative (the trust
level of a key).

In PGP, a user always trusts his own key making the level of this key ultimate. The other
levels used in PGP are complete, marginal, unknown and untrusted (in decreasing order of
trust level). Similarly, the validity of a key can be either valid, marginally valid or invalid. The

57

Chapter 3. Trust Management Systems

amount of individuals signing the public key determines its validity, while the trust level of a
key is determined via recommendation. The more a key is trusted the less validity it requires
to be accepted [Gerck, 2000, Prohic, 2005].

3.2.3.2 Policies

Policies have been extensively used in the computer science literature (e.g. information systems,
security, multi-agent systems). Initially, policies have been introduced in computer science
to automate tasks and decision makings (e.g. batch instructions). But nowadays, the main
motivation for using policies is to make systems support dynamic and adaptive behaviour.
Policies allows a system to change its behaviour without being stopped.

Despite their extensive use in the literature, the concept of policies is still hard to define
and the provided definitions are either too generic or domain specific. For instance, Sloman
defined policies as “rules governing the choices in behaviour of a system” [Sloman, 1994]. While
this definition captures the meaning of a general policy, it failed addressing its role which is to
specify the circumstances under which the choices are made (in reaction to which conditions).
Further, this definition reduces the form of a policy to a set of rules and thus excludes many
of the approaches which do not rely on rules (cf. Section 3.3). Recently, De Coi and Olmedilla
stated that “policies specify who is allowed to perform which action on which object depending
on properties of the requester and of the object as well as parameters of the action and en-
vironmental factors” [De Coi and Olmedilla, 2008]. This definition makes explicit the ABAC
approach, and thus covers de facto IBAC, LBAC, RBAC and OrBAC policies. However, this
definition restricts the scope of a policy to situations in which an access request has to be
evaluated. Consequently, this definition could not be used to describe situations in which a
decision is not merely an access control decision (e.g. delegation). To avoid misunderstandings,
we clarify the meaning of trust policies and define it as follows.

Definition 5 (Policy) A policy is a statement that specifies under which conditions an entity
(human or artificial) can be trusted for a specific issue (e.g. resource action, task delegation)

With respect to Definition 1, a policy represents the expression of the conditions under
which the individual A deliberately takes the decision to trust B. Thus from our perspective,
the role of a policy is twofold: (i) it serves a means for A to express the policy that its trust
management system will rely on, and (ii) it is used as a common language that A and B
will use to exchange their respective trust conditions. In the light of that, the role of the
policy specification language is paramount. The language provides the basic syntax to express
conditions which represent the building blocks of a policy. Specification languages can be more
or less verbal and can have solid or weak formal basis. Thus, depending on the nature of
the policy specification language, policies fall into three categories: informal, semi-formal, and
formal. In this thesis, we limit our attention to formal policies that can be understood by both
artificial and human agents. In Section 3.3 we present the most important policies languages
that have been proposed in the last fifteen years.

58

3.2. Trust Management

3.2.3.3 Trust Engine

The objective of the trust engine is to assess if the credentials provided by the requester are
valid and whether they satisfy the specified policy. Importantly, trust management systems are
not responsible for making trust decisions. It is always the human or the application using the
TMS that decides whether to effectively trust the requester or not2. So the main advantage
in using a TMS is to offload applications of complex and tedious tasks that are credentials
verification and policies evaluation. Figure 3.6 illustrates this principle and shows the basic
functioning of a trust management system.

Application
A

Trust
Management

System

Object
(resource)

request + credentials credentials + policy

Yes / No Accept / Deny

Application
B

Figure 3.6 – Illustration of the functioning of a trust management system

In Figure 3.6, the application A invokes the trust management system to determine whether
application B can be allowed to perform an operation on a resource. To that aim, the appli-
cation A provides the TMS with its local policy for the resource concerned by the request and
the credentials provided by application B. The TMS produces an answer based on which the
application A decides to allow or deny the request of B.

Depending on their degree of sophistication, trust management systems can provide more
or less functionalities. In our thesis, we are particularly interested in the TMS that output
detailed answers. Figure 3.7 illustrates the degree of sophistication a TMS can achieve by
providing more or less elements in its answers.

Based on the type of information provided by the TMS, Seamons and colleagues identified
two functioning modes of trust management systems [Seamons et al., 2002]. In our work, we
distinguish four modes that we summarise as follows:

• Mode 1: In this mode, the TMS produces a boolean answer (trust/no trust) that states
whether the credentials provided satisfy the policy.

• Mode 2: In addition to the boolean answer, in this mode the TMS provides a justifica-
tion, when the request is denied, that states which conditions in the policy the provided

2The study of how trust decisions are made is out of the scope of this thesis

59

Chapter 3. Trust Management Systems

Trust
Management

System

request
+

credentials
+

policy

Answer :

Yes / No

Justification

Basic

Explanation

Detailed

Explanation

Figure 3.7 – Functioning modes of a trust management system

credentials were unable to satisfy.

• Mode 3: In this mode, the TMS provides an answer, a justification and an explanation
when the policy is satisfied. The explanation contains all credentials that satisfy the
policy.

• Mode 4: This last mode extends the third mode as it provides a detailed explanation.
The detailed explanation is obtained by providing all subsets of credentials that satisfy
the policy.

Modes 1 and 2 are often used by the resource owner to verify whether the credentials
its interlocutor provided satisfy its policy, while modes 3 and 4 are used by the requester to
determine whether the credentials it possesses (and which subset of credentials) satisfy the
policy stated by the owner of the resource. These latter modes were particularly introduced in
the context of trust negotiation that we will tackle in the next section.

3.2.4 Automated Trust Negotiation

Automated Trust Negotiation (ATN) (cf. Section 2.4.2.2) is an approach to trust manage-
ment in which trust is established through the gradual, iterative, and mutual disclosure of
credentials and access control policies [Ryutov et al., 2005, Yu, 2003]. Unlike the traditional
trust management systems that have have been presented in the previous section, automated
trust negotiation approach consider credentials as first class resources that should be protected
through release policies dedicated to them. Consequently, ATN systems provide users with bet-
ter fine-grained and flexible control over the disclosure of the potentially sensitive data conveyed

60

3.2. Trust Management

by their credentials [Lee, 2008, Ryutov et al., 2005, Yagüe, 2006].

However, negotiation generally refers to the process by which agents can reach an agreement
on matters of common interest [Parsons and Wooldridge, 2002]. In our thesis, we adapt this
well-established definition to the negotiation-based adaptation of trust policies.

Definition 6 (Automated Trust Negotiation) Automated trust negotiation is an iterative
process in which two interacting agents reach an agreement on the credentials they are willing
to release to gain each other’s trust.

The introduction of trust negotiation has several benefits. First, it better reflects the asym-
metric nature of trust as suggested in the previous chapter (cf. Section 2.3.3). It allows also the
establishment of bilateral trust as both participants in an interaction can request credentials
from each other. Finally, it allows a more flexible trust management as trust is established
gradually and incrementally. Research on trust negotiation has been principally focusing on
how to make trust management systems achieve trust negotiation? and how to make trust nego-
tiation successful?. The first question represents the requirements for trust negotiation, while
the latter represents trust negotiation strategies. The requirements are further divided into
requirements for trust management systems and requirements for policy specification languages.

Trust negotiation is inherently a strategy-driven process as the choice made by the individual
affects the amount of credentials it releases and the time it makes in this task [Lee, 2008].
Therefore, recent research in trust negotiation area has been primarily focusing on proposing
efficient and optimised negotiation strategies and protocols. Generally speaking, however, the
implemented negotiation strategies fall into three categories: eager, parsimonious and prudent
strategies [Grandison, 2003].

Eager Strategy: In the eager strategy, participants in the negotiation adopt a naive position
in which they disclose almost all credentials they possess. The negotiation is consid-
ered to be successful when each participant received enough credentials to be assured
about the interaction he is engaged in. The major advantage of this strategy is that
it does not require the use of release policies and it minimises the time of the negoti-
ation [Ardagna et al., 2007]. However, this strategy increases the amount of disclosed
credentials and thus the sensitive date they convey.

Parsimonious strategy: With this strategy, participant exchange only credentials requests
(no credential is released) and tries to find a possible sequence of credentials disclosure that
can lead to a successful negotiation [Grandison, 2003]. Also, in parsimonious strategies,
only credentials that are explicitly requested are released. Unlike the eager strategy, the
parsimonious one minimises the credentials exposure but increases considerably the time
of the negotiation without any guarantee of success.

Prudent strategy: is a mix of the previous strategies. An eager strategy is applied to creden-
tials that are not sensitive and a parsimonious strategy is used for the sensitive ones. This

61

Chapter 3. Trust Management Systems

strategy has been proved to over-perform the other strategies in situations where the ne-
gotiation involves the disclosure of sensitive and non sensitive credentials [Yu et al., 2000].

3.3 Trust Management Systems Analysis

Given the multiplicity of trust management systems3 one may argue that a comparison among
them is neither possible nor desirable. However, we think that from a higher perspective and
with a good abstraction level, a comparison of all these systems is not only possible but even
worth.

In this section, we review a selection of trust management systems. As discussed in Sec-
tion 2.4.2 (cf. Chapter 2), these systems are split into decentralised trust management sys-
tems (DTM) and automated trust negotiation systems. DTM systems are further divided into
authorisation-based TMS (ABTMS) and Role-Based TMS. These systems are presented in the
chronological order in which they have been published. We think that respecting this chrono-
logical causality helps the reader to understand key elements that motivated the contribution
of each system.

Each system is described with respect to the trust management key concepts that we pre-
sented above, namely credentials, policies and trust engines. For credentials we are interested
in the nature of information used by each system to derive trust and the formalism used to
express it. In policies, we will focus on the type, semantic, expressiveness and flexibility of the
formalism used to represent policies. Finally, for trust engines we will stress the limits of these
systems with respect to our objectives (cf. Section 1.2). We will particularly evaluate to which
extent these systems are able to support the social (cf. Section 1.2.1) and dynamic (cf. Section
1.2.2) aspect of virtual communities.

3.3.1 Authorisation-Based TMSs

The authorisation-based TMSs category relates to systems that pioneered the trust management
approach. Whilst most of these systems are considered nowadays as obsolete, the mechanisms
they proposed remain valid and can be found at the basis of most of modern trust management
systems. They inherit from IBAC and ABAC models. They build a trust chain in order to
map a credential holder to the authorisation it can be trusted for.

PolicyMaker [Blaze et al., 1996]

PolicyMaker is the first application stamped as a trust management system. This system
introduces the concept of programmable credentials and policies by means of an assertion

3judging from the list of surveys devoted to this subject; e.g. [Firdhous et al., 2012, Yao, 2004,

Grandison, 2003, Krukow et al., 2008, Bandara et al., 2007, Yu, 2003, Braghin, 2011, Gray, 2006,

Fernandez-Gago et al., 2007, Jøsang, 2007, Artz and Gil, 2010, Ruohomaa and Kutvonen, 2005,

Jøsang et al., 2007, Saadi et al., 2011, Yagüe, 2006, Liu, 2011]

62

3.3. Trust Management Systems Analysis

language. The syntax of an assertion is:

Source ASSERTS Subject WHERE Filter (3.1)

The above syntax can be used to specify both credentials and policies. Here, the statement
represent a credential by means of which a source authorises a subject to perform actions that
are accepted by the filter (i.e. interpreted program). The main difference between a credential
and a policy is that in policies the keyword policy is always used as the source of the assertion.
For instance, we can use the assertion given below to authorise the entity holding the public
key “rsa:123” to access all resources shared among the community.

policy ASSERTS “rsa:123” WHERE filter to access all shared resources (3.2)

In PolicyMaker, an assertion (whether credential or policy) is used to state that the source
(or the local application in the case of a policy) trusts the key holder to perform the actions
accepted by the filter. However, the formalism used to encrypt keys is left to the application
using PolicyMaker, thus PolicyMaker is generic with respect to the keys encryption scheme.
The semantic of the operations and the enforcement of the trust evaluation decisions are also
left to the application.

Typically, the application provides to the PolicyMaker trust engine a set of requested actions,
a set of credentials and a policy. The objective of PolicyMaker is to check whether the credentials
form a delegation chain by means of which the action can be linked to the key of the keys.
PolicyMaker then replies with an answer (“Trust” or “False”) and it is up to the application
to interpret the answer and take the appropriate decision. The functioning of the PolicyMaker
engine is similar to the architecture we described in Figure 3.6 (cf. Section 3.2.2). PolicyMaker
does not support negotiation. Policies are evaluated in a static and context-independent way.
Finally, PolicyMaker can not be used to manage resources that are owner by more that one
individual.

In PolicyMaker, the choice of the policy specification language is left open which
makes policy evaluation undecidable in most of the cases [Grandison, 2003]. KeyNote
[Blaze et al., 1999b], its successor, overcomes this drawback and imposes that the policies must
be written in a specific language. KeyNote makes also the cryptographic verification which was
left to the application in PolicyMaker.

REFEREE [Chu et al., 1997]

REFEREE (Rule-controlled Environment For Evaluation of Rules and Everything Else) is
a W3C and AT&T joint trust management system used for web document access control.
The system was developed based on the PolicyMaker architecture, but the functioning of the
system is somehow different. Here, it is the resource providers (i.e. authors of web content)
that are trying to gain the trust of the resource consumer (i.e. the site visitor). The system
was essentially used to prevent minors from accessing illegal content. The system uses PICS

63

Chapter 3. Trust Management Systems

(Platform for Internet Content Selection) labels as credentials that the REFEREE trust engine
(a browser plug-in) evaluates with respect to a local policy.

Profiles-0.92 is a rule-based policy language that was designed for REFEREE. As illustrated
in Listing 3.1, each policy is an “s-expression” that is evaluated in a top-down manner.
✞

(((invoke "load-label" STATEMENT-LIST URL "http://www.emse.fr/")

(false-if-unknown

(match

(("load-label" *)

(service "http://www.emse.fr/CA.html") *

(ratings (RESTRICT > trust 2)))))

STATEMENT-LIST))
✡✝ ✆

Listing 3.1 – Example of a policy specified in Profiles-0.92 (adapted from [Chu et al., 1997]).

The above policy states that any document having a label (certified by emse) with a trust
rating greater than 2 can be viewed by the user. The matching between labels and the conditions
specified in the policy is purely syntactic. Thus it remains to the application and the labelling
institution to define its semantic.

REFEREE trust engine evaluates the above policy in two steps. First, tries to find and
download labels provided by the server which URL has been specified in the policy. Then a
pattern-matcher is run to find a label with a trust rating. If the rating is greater than 2 the
result of the evaluation would be true, if not the result would be false and if no label was found
the result would be unknown. Thus, REFEREE trust engine implements a three-valued logic,
specially for the management of the meaning of unknown [Chu et al., 1997, Grandison, 2003].

Binder [DeTreville, 2002]

Binder is the first trust management system which uses a logic-based policy language
[DeTreville, 2002]. The particularity of Binder lies in its explicit specification of right dele-
gation though the extension of Datalog with the says construct [Ceri et al., 1989]. In Binder,
credentials represent keys which holder use to sign delegation assertions. Then policies are used
to filter these assertions and map them to their authors. The specification language proposed
in Binder allows the expression of two type of declarations: beliefs and policies. For instance,
the following declaration is used by a individual A to state that another individual B can be
trusted for joining his community and for reading his personal files.

can(B, read, MyFile).

can(B, join, MyCommunity).

can(X, join, MyCommunity) :- Y says trust(Y,X), can(Y,join,MyCommunity)
✡✝ ✆

Listing 3.2 – Examples of Binder declarations (beliefs and policies).

64

3.3. Trust Management Systems Analysis

The above example illustrated also the declaration of policies in Binder. In this example,
the policy states that if A trusts an individual Y to join his community and that Y trusts
another individual X, this latter can also be trusted to join the community. Worth noting in
this policy is the use of the says construct.

The role of the Binder trust engine is to evaluate policies with respect to local assertions (i.e.
beliefs) and assertions made by others (i.e. others’ beliefs). The main novelty of the system lies
in the addition of the says construct each time an assertion is received from others. Indeed,
each time an individual sends an assertion, the Binder trust engine transforms this assertion
into a certificate which is signed with the private key of the issuer. Then these assertions are
sent to other Binder engines in order to make trust decisions. When an assertion is received,
Binder verifies the validity of the certificate and automatically quotes the assertion with the
says construct to distinguish them from local assertions.

SULTAN [Grandison, 2003]

SULTAN (Simple Universal Logic-based Trust Analysis) is a TMS that has been proposed
for the specification and analysis of trust and recommendation relationships [Grandison, 2003].
In SULTAN, credentials represent certified statements about identity, qualification, risk as-
sessment, experience or recommendations. The system is provided with a policy specification
language in which policies are used to specify two types of policies: trust/distrust policies
and positive/negative recommendation policies. In fact, trust policies corresponds to classical
meaning of policies used in this thesis, while recommendation policies are statements by means
of which individuals make recommendations to each others. In the following, we provide the
syntax used to specify both types of policies.

PolicyName : trust(Tr, Te,As, L)← Cs; (3.3)

The above policy represent a trust policy by means of which a trustor (i.e. Tr) trusts
(or does not trust) to some extent (L corresponds to the level of trust) a trustee (i.e. Te)
with respect to an action set (i.e. As) and if the conditions hold (i.e. Cs). Similarly, the
recommendation policy defined hereafter specifies that the recommender (i.e. Rr) recommends
at a recommendation level (i.e. L) the recommended agent (i.e. Re) to perform the action (i.e.
As) if the conditions (i.e. Cs) hold.

PolicyName : recommend(Rr,Re,As, L)← Cs; (3.4)

The SULTAN trust engine is responsible of collecting the information required for the pol-
icy evaluation, making trust relationship decisions, and monitoring the environment in the
perspective of re-evaluating existing trust relationships.

Ponder [Damianou et al., 2001]

Ponder is merely a policy language for which there was no associated trust management system
[Damianou et al., 2001]. Ponder is the first object-oriented policy language that adopts a role-

65

Chapter 3. Trust Management Systems

based approach. Nevertheless, many of the features proposed by this language inspired other
systems which explains our motivation to review it. Ponder is a declarative language which can
be used for the specification of four types of policies, namely authorisation, obligation, refrain
and delegation. Ponder pioneered the use of a deontic approach which was reused later by other
languages such as Rei [Kagal et al., 2003] and KAos [Uszok et al., 2004, Uszok et al., 2003].
Furthermore, the main novel aspect of Ponder lies in the constructs it provides for updating,
organising and handling policies on runtime according to the environment context.

For instance, the following example is an instantiation of a positive authorisation policy
type called rights. The policy specifies that members (the subjects of the policy) can modify
the target objects of type file that are stored in the common space of the community com.

type auth+ rights(member, target <file> com) {action modify(); } (3.5)

Another interesting aspect of Ponder policies lies in the fact that subjects and objects to
which a policy applies can be grouped. For instance, in the above example, the policy concerns
all members of the community and all files, making factorisation of rights implicit and more
efficient that what can be expressed in RBAC models or any other role-based trust management
systems. Further, the authors assumed that their language is flexible, scalable and extensible;
flexible as it allows the reuse of policies since many instance of the same policy can be created
for many different conditions; scalable as it allows the definition of composite policies; and
extensible as it accepts the definition of new types of policies that can be considered as sub-
classes of existing policies, thanks to the object-oriented approach. However, due to the absence
of implementation, none of these properties have been proved to be valid.

Recently, Ponder has been redesigned, as Ponder2, to increase the functionality of autho-
risation policies (e.g. operators for all managed objects have been added). In contrast to the
previous version, which was designed for general network and systems management, Ponder2
has been designed as an entirely extensible framework that can be used at different scales: from
small embedded devices to complex services and virtual organisations.

3.3.1.1 Role-Based TMSs

In authorisation-based TMSs, the delegation of authority is used in a very restrictive way. For
instance, in PolicyMaker, a community member cannot simply specify that “all members of my
community can access my resources”. In these systems, the solution would be to delegate the
right to the members I know and authorise these members to further delegate the right to each
member they know. This approach makes trust decision complex and difficult to manage and
control (e.g. a member can delegate the right to non members).

In response, a new generation of role-based trust management systems that take advantage
of the strength of RBAC and trust management approaches have been used. From RBAC,
role-based TMS borrow the concept of role and from trust management, they borrow dele-
gation and distributed credentials certification. The combined use of roles and distributed

66

3.3. Trust Management Systems Analysis

credentials management makes these systems convenient for large scale systems such as virtual
communities.

IBM Trust Establishment [Herzberg et al., 2000]

IBM Trust Establishment (IBM-TE) is a role-based trust management system developed by
IBM for e-commerce applications. The main objective of IBM-TE is to map credential holders
to groups. Credentials are specified in a generic language but the system provides transcoding
mechanisms to handle X.509. Credentials are used to authenticate users, while policies are used
to express restrictions on how a credential holder could belong to a group. Groups are used in
the sense of roles which are mapped to authorisations (cf. Section 3.1.4). IBM-TE comes with
a dedicated XML-based policy specification language called Trust Policy Language (TPL). An
example that illustrates the TPL syntax is given in Listing 3.3.
✞

<GROUP NAME="Community">

<RULE>

<INCLUSION ID="reco"

TYPE="Recommendation"

FROM="members"

REPEAT="2">

</INCLUSION>

<FUNCTION>

<GT>

<FIELD ID="reco" NAME="Level"></FIELD>

<CONST>1</CONST>

</GT>

</FUNCTION>

</RULE>

</GROUP>
✡✝ ✆

Listing 3.3 – A fragment of a TPL Policy specifying a membership rule.

The above policy is used to add a new member to the group Community (role). The policy
states that a new member can be admitted if he can provide two recommendations of existing
members. For that, two XML tags are used: inclusion and function. Inclusion tag defines
the credentials that the requester must provide (e.g. two recommendation credentials), while
the function tag allows the definition of additional conditions over requested credentials (e.g.
recommendations must be greater than, GT, 1). The trust engine processes credentials in a tra-
ditional way. Along with his request, the requester provides the set of credentials he possesses.
These credentials are then evaluated by the engine to determine to which group the requester
can be mapped [Herzberg et al., 2000].

67

Chapter 3. Trust Management Systems

Role-Based Trust Management Framework [Li et al., 2002]

The Role-Based Trust Management Framework (RT) was initially designed to support trust
decision making in collaborative environments [Li et al., 2002].

In RT , roles are represented as attributes, so an individual is said to belong to a role if
it possesses a credential in which the role identifier is specified. Unlike IBM-TE, RT uses an
extension of Datalog [Ceri et al., 1989] to represent both credentials and policies. In RT , the
terms credential and policy are used interchangeably. However, RT uses the term certificate
in reference to the meaning of credential we use in our thesis. The formalism used to specify
certificates have not been defined, but some approaches proved the compatibility of RT with
both X.509, PGP and any certification mechanisms using PKI. The syntax used to specify
policies is defined as follows:

Com.evaluator(?X)← Com.recommender(?X) ∧ Com.Member (3.6)

The above policy states that any member of the community that recommended another
member is allowed to evaluate it. The RT policy specification language comes in five flavours
RT0, RT1, RT2, RTT and RTD [Li et al., 2002]. RT0 is the basic language that supports roles
hierarchies, delegation of authorities over roles, roles intersection and attribute-based delegation
of authority. RT1 adds to RT0 the possibility to add parameters to roles (e.g. in the previous
policy, the evaluator and the recommender roles are endowed with parameters), RT2 adds to
RT1 logical objects. They represent a way to group (logically) resources of access modes in
order to ease the specification of policies. RTT adds thresholds to roles, while RTD supports
delegation of roles activation (i.e. roles that are active only within a specific context).

Cassandra [Becker and Sewell, 2004]

Cassandra is a TMS that aims at enabling individuals involved in potentially large scale systems
(e.g. P2P systems) to share their respective resources under the restriction of local policies
[Becker and Sewell, 2004]. The system has been principally deployed in the context of electronic
health records access control. Cassandra is role-based and supports X.509 credentials. Policies
in Cassandra are expressed in a language based on Datalog with constraints [Ceri et al., 1989].
For instance, a policy can state that an individual A can delegate the role of moderator as long
as he commits to the role admin. This policy is specified using the constructor canActivate()

as follows:

canActivate(B,moderator)← hasActivated(A, admin) (3.7)

Cassandra provides flexible delegation mechanisms which allow the explicit specification
of delegation lengths [Becker and Sewell, 2004, De Coi and Olmedilla, 2008]. In addition, Cas-
sandra proposes a mechanism for roles revocation, including cascade roles revocation (e.g. if
an individual is revoked from its role, all individuals to which he delegated the role are re-
voked too). Finally, the Cassandra policy language allows the specification of roles hierarchies.

68

3.3. Trust Management Systems Analysis

Cassandra trust engine is only available as a proof of concept implementation in OCaml. The
main feature of the engine is the implementation of the semantic of Cassandra policies for their
evaluation.

3.3.2 Automated Trust Negotiation Systems

In trust management, a trust decision comes after a complex interaction process, where parties
exchange policies and credentials. Traditionally, in early TMS, trust is established in an uni-
directional way: the resource owner is assumed to be trusted by the requester. Consequently,
before manipulating the resource, the requester must provide its credentials to know whether
its request is accepted or not. So if the request was not accepted, the requester would have
uselessly released its credentials (which contains sensitive data such as its id, its age or its
address). Therefore, due to privacy considerations, such an approach is not acceptable. To
that aim, several negotiation-based TMS have been proposed.

TrustBuilder [Yu et al., 2003]

TrustBuilder was the first TMS to introduce the concept of trust negotiation. TrustBuilder
uses X.509 certificates and TPL policies (cf. Section 3.3.1.1). The authors reused also the
IBM-TE engine for the evaluation of policies. So TrustBuilder can be considered as an exten-
sion of IBM-TE to include negotiation features. The main novelty of this system lies in its
rational management of credentials disclosure. To that aim, the trust engine is endowed with
a negotiation module in which strategies are used to determine safe credentials disclosure for
both parties involved in the interaction.

P C

C

P

Negotiation
Module

Credentials
Verification

Compliance
Checker

Interlocutor's
policy

Interlocutor's
credentials

Local
credentials

Local
policy

Figure 3.8 – Architecture of the TrustBuilder TMS

69

Chapter 3. Trust Management Systems

As illustrated in Figure3.8, TrustBuilder engine is split into three sub-modules: credentials
verification module, negotiation module and compliance checker module. The core element
of this architecture is the negotiation module which is responsible of enforcing negotiation
strategies. The objective of a negotiation strategy is to minimise credentials disclosure. To
that aim, TrustBuilder evaluates iteratively the policy of the interlocutor and the set of local
credentials to compute the minimal set of credentials that satisfy the policy (as depicted in
Figure 3.8).

Recently, Lee and colleagues proposed an extension of TrustBuilder that they called Trust-
Builder2 [Lee et al., 2009]. This extension aims at endowing the TMS with four main function-
alities: support of arbitrary policy languages, support of arbitrary credentials format, integra-
tion of interchangeable negotiation strategies and flexible policies and credentials management.

Fidelis [Yao, 2004]

Fidelis is a TMS that originates from the OASIS (Open Architecture for Secure, Interworking
Services) distributed authorisation architecture project. Fidelis makes use of keys, X.509 and
PGP as credential, and policies and credentials are systematically specified by distinct entities.
Fidelis distinguishes two types of entities: simple and composite principals. Simple principals
are in fact public keys while composite principals are groups of public keys (e.g. groups or
communities).

The Fidelis Policy Language (FPL) is the core element of the system. The language is able
to express recommendations and trust statements. The syntax of the language is presented in
the following example.
✞

any-statement: ind -> statement

asserts any-statement: self -> statement

where ind == 0x14ba9b925 || ind == 0x5918b01a || ...
✡✝ ✆

Listing 3.4 – A blind delegation policy in Fidelis.

This policy represents a special type of delegation policies, called blind delegation. It is used
to make an individual “blindly” trust and assert all assertions made by other individuals. In
this example, the group of trusted individuals is constrained by the variable ind.

On the top of the FPL, the authors developed a trust negotiation framework in which meta-
policies are used to specify negotiation strategies. Meta-policies are designed to express four
types of conditions about when a credential could be disclosed: designated principal disclosure,
context-specific disclosure, trust-directed disclosure, and mutual exclusion [Yao, 2004]. For
instance, the following meta-policy is used to disclose the trust statement T2(a, b): self->p

(which is used as a credential here) when negotiating with the 0xb258d29f key holder.
✞

negotiator(): self -> 0xb258d29f

grants disclose(T2(a, b): self->p)

70

3.3. Trust Management Systems Analysis

✡✝ ✆

Listing 3.5 – A credential disclosure meta-policy in Fidelis.

Fidelis does not support standard negotiation strategies. Thus termination property is
not guaranteed making the evaluation of a policy not decidable in many situations. Finally,
Fidelis distinguishes between static policies and live policies. Static policies do not depend
on environment variables (e.g. date, time) to be evaluated, while live polices must be queried
dynamically and tailored to each request. Nevertheless, live policies were only used in the
context of negotiation as presented above and no adaptation mechanisms have been proposed
as the description may suggest.

Trust-X [Bertino et al., 2003]

Trust-X is a TMS that was designed for trust negotiation in peer-to-peer systems
[Bertino et al., 2003, Bertino et al., 2004]. Trust-X is built upon two bricks: X -profiles and
X -TNL. X -profiles are data structures used to store user’s credentials along with uncertified
declarations containing information about them (e.g. age, mail, address). X -TNL stands for
XML-based Trust Negotiation Language. X -TNL has been developed for the specification of
Trust-X certificates and disclosure policies.
✞

<policySpec>

<properties>

<certificate targetCertType= Corrier_employee>

<certCond>

//employee number[@code=Rental Car.requestCode]

</certCond>

<certCond> /.../[position=driver]

</certCond>

</certificate>

</properties>

<resource target="Rental_Car"/>

<type value="SERVICE"/>

</policySpec>
✡✝ ✆

Listing 3.6 – Example of X -TNL policy specification.

The code in Listing 3.6 shows an example of an X -TNL policy defined by a rental car
agency. The agency allows drivers of the Corrier society, which is part of the agency to rent
cars without paying. This policy can be satisfied by providing a credential which is specified
using the X -TNL too. The syntax of a credential is described in the example provided in
Listing 3.7.
✞

<Corrier Employee credID=’12ab’, SENS= ’NORMAL’ >

71

Chapter 3. Trust Management Systems

<Issuer HREF=’http://www.Corrier.com’ Title=Corrier Employees Repository/>

<name>

<Fname> Olivia </Fname>

<lname > White </lname>

</name>

<address> Grange Wood 69 Dublin </address>

<employee number code=34ABN/>

<position> Driver </position>

</Corrier Employee>
✡✝ ✆

Listing 3.7 – Example of X -TNL profile

The trust-X engine provides a mechanism for negotiation management. The main strategy
used in Trust-X consists in releasing policies to minimise the disclosure of credentials. So,
only credentials that are necessary for the success of a negotiation are effectively disclosed
[Squicciarini et al., 2007]. Thus Trust-X makes use of a prudent strategy (cf. Section 3.2.4).

The primary novel aspect proposed in Trust-X consists in the use of trust tickets. Trust
tickets are issued upon successful completion of a negotiation. These tickets can later be used
in subsequent negotiations to speed up the process in case the negotiation concerns the same
resource. Additionally, Trust-X provides also a mechanism to protect sensitive policies. This
is achieved using policy-precondition; policies are sorted logically so that the satisfaction of a
policy is the precondition of the disclosure of the subsequent policies.

Recently, Braghin [Braghin, 2011] proposed an interesting extension in which the frame-
work is used to handle negotiations between groups of individuals instead of only between two
individuals.

XACML

The XML Access Control Markup Language (XACML) [Humenn, 2003, Cover, 2007] is a generic
trust management architecture. Even if in most of the works X.509 certificates are used with
XACML, this framework accepts any credential format and thus is also generic with respect
to credentials. XACML is also a standardised and interoperable policy specification language
for expressing and exchanging policies using XML. The syntax of an XACML rule is defined as
follows:
✞

<Policy PolicyId="owner">

<Rule RuleId="owner-r" Effect="Permit">

<Condition>

<Apply FunctionId=

"urn:oasis:names:tc:xacml:1.0:function:string-equal">

<SubjectAttributeDesignator DataType=

"http://www.w3.org/2001/XMLSchema#string">

72

3.3. Trust Management Systems Analysis

urn:oasis:names:tc:xacml:1.0:subject:subject-id

</SubjectAttributeDesignator>

<ResourceAttributeDesignator DataType=

"http://www.w3.org/2001/XMLSchema#string">

urn:emc:edn:samples:xacml:resource:resource-owner

</SubjectAttributeDesignator>

</Apply>

</Condition>

</Rule>

</Policy>
✡✝ ✆

Listing 3.8 – A simple “owner” policy in XACML.

The above policy states that anybody can do anything with their own records. So in XACML
the policies building bricks are rules. Each rule is composed of three main components: a target,
a condition and an effect (cf. Listing 3.8). The target defines the rule scope (i.e. subject, actions
and resources that the rule applies to); the condition specifies restrictions on the attributes of
the subject and defines the applicability of the rule; the effect is either permit (the rule is called
then a permit rule), or deny (the rule is called then a deny rule). When a request meets the rule
target and satisfies the rule condition, the rule is applied and the decision specified in the effect
is built, otherwise, the rule is not applicable and the request yields the decision NotApplicable

[Li et al., 2009]. Policies group rules that relate to the same target and policies-sets group
policies that relate to the same target.

The trust engine architecture is composed of several points, each representing a separate
module: the Policy Decision Point (PDP) is the core of the architecture where policies are
evaluated and decisions are made; the Policy Enforcement Point (PEP) is the point in which
decisions are applied (e.g. issuing an authorisation); the Policy Retrieval Point (PRP) is the
point in which policies are selected and retrieved from repositories; The Policy Information Point
(PIP) is the point in which information is collected in the perspective of policies evaluation;
and the Policy Administration Point (PAP) is the point in which policies are administrated
(e.g, specified, updated, activated, deactivated, etc.).

Typically, the functioning of the XACML engine can be summarised as follows. The re-
quester sends a request to the PEP (typically the application using the TMS), this request is
then sent to the PDP which extracts the applicable policies with the help of the PRP. The
PIP is then requested to collect and retrieve the credentials required for the evaluation of the
policy. For that, the PIP interacts with the requester, the resources and the environment to
extract each entity’s attributes. Based on these information, the PDP evaluates the policy and
provides an answer along with an optional obligation. This result is transmitted to the PEP
that applies the obligation and grants access to the requester if the evaluation was positive.

Recently, Abi Haidar and colleagues [Abi Haidar et al., 2008] used an extended RBAC pro-
file of XACML in the context of XeNA (The XACML negotiation of access), an access negoti-

73

Chapter 3. Trust Management Systems

ation framework. XeNA brings together negotiation for trust establishment and access control
management within the same architecture. XeNA trust engine is based on the TrustBuilder2
extended to support XACML access control and negotiation policies.

ATNAC [Ryutov et al., 2005]

Adaptive Trust Negotiation and Access Control (ATNAC) is an integrated TMS that combines
two existing systems: GAA-API and TrustBuilder (already presented in Section 3.3.2). GAA-
API is a generic authorisation and access control system that captures dynamically changing
system security requirements. The system uses X.509 credentials to convey information between
negotiating partners. ATNAC uses TPL to express trust policies that, in addition to the
partner’s properties, explicitly refer to the context suspicion level (SL). In ATNAC, several
policies are specified and used to protect the same resource. So the main novelty of the system
lies in the trust engine that monitors the environment suspicion level (thanks to GAAI-API)
and adapts the selected policy based on the suspicion level. This mechanisms is used in ATNAC
to provide adaptive trust negotiation in order to counter malicious attacks.

Suspicion Level

low medium high

R1 freely freely freely

R2 freely freely C1

R3 freely C1 C1 and C2

Table 3.2 – Example of policies used in ATNAC (adapted from [Ryutov et al., 2005])

The above table illustrates the adaptive approach advocated by ATNAC. In this example,
the resource R1 is non sensitive and thus it is disclosed independently from the suspicion level.
In contrast, R3 can be freely disclosed in the context of low LS, requires a credential C1 when
SL is medium while both C1 and C2 are required when SL is high.

PROTUNE [Bonatti et al., 2008]

The PRovisional TrUst NEgotiation framework (PROTUNE) is a system that provides dis-
tributed trust management and negotiation [Bonatti and Olmedilla, 2005, Bonatti et al., 2008]
features to web services. The PROTUNE framework provides: (a) a trust management lan-
guage, (b) a declarative meta-language for driving decisions about information disclosure, (c) a
negotiation mechanism that enforces the semantics of the meta-language, (d) a general ontology-
based approach to support the policy language extension, and (e) an advanced policy expla-
nation mechanism that is able to output why, why not and how to answers that are important
during a negotiation process. One of the main advances made by PROTUNE lies in the use
of declarations along with credentials during the policy evaluation process. Declarations are

74

3.4. Discussion

the unsigned equivalent of credentials. They can also be considered as statements that are not
signed by a certification authority. However, the most novel part of the project remains the
policy specification language which combines access control and provisional-style business rules.

In PROTUNE, policies are specified using the rule language defined in
[Bonatti and Olmedilla, 2005]. The language is based on logic program rules extended
with an object-oriented syntax4.
✞

allow(X,access(Resource)) :-

goodReputation(X), validID(C).

validID(C) :-

credential(identity, C[subject:X]).

goodReputation(X) :-

declaration(Y,X,reputation(R)), Y!= X, R > 50.
✡✝ ✆

Listing 3.9 – Example of a PROTUNE access policy.

The above PROTUNE policy states that an individual must provide a valid credential prov-
ing its identity and that he must have a good reputation to be allowed to access a resource. This
kind of policy is called access policy. Similarly PROTUNE implements negotiation strategies
through release policies which states under which conditions a credential can be released. An
example of such resource is provided hereafter.
✞

allow(release(credential(C[type:identity]))) :-

credential(ta, Cred[issuer:’Trusted Authories’]).
✡✝ ✆

Listing 3.10 – Example of a PROTUNE release policy.

This policy states that identity credentials can be released only to individuals providing a
credential that proves that they belong to the ‘Trusted Authorities’ group.

3.4 Discussion

In the previous section, we have reviewed and analysed several trust management systems that
we classified along basic components of trust management systems (cf. Section 3.2.3), namely
credentials, policies and trust engines. The result of this comparison is summarised in Table 3.3.

3.4.1 Credentials

All reviewed systems rely on credentials in their trust management process. Credentials are
used between the trustors and trustees to exchange information based on which trust can be
established. With respect to that, credentials are essentially used as a means for bootstrapping

4A.at : v means that the individual A has the attribute at and that this attribute has the value v. This

expression is in fact an abbreviation of the logic predicate at(A, v)

75

Chapter 3. Trust Management Systems

trust between individuals that know little about each other. As presented in Section 3.2.3.1,
there are two predominant approaches for credentials management, namely X.509 and PGP. So
unsurprisingly, these two approaches have been used in most of the systems we reviewed in this
chapter. However, due to its early availability X.509 was more supported than PGP. Neverthe-
less, even if they do not support PGP, many systems (e.g. IBM-TE) can easily integrate. This
due to the fact that TMSs have a separate module that is responsible of credentials verification.
Thus the consideration of a new formalism to represent credentials should be supported by all
TMSs.

In terms of information, systems are split into three categories. In the first category, systems
use credentials to support authentication. These systems inherit from IBAC models and use
credentials to convey the identity of the holder (generally a key). Other systems such as
PolicyMaker use credentials to represent delegation of rights. Finally, the last generation of
TMS (e.g. TrustBuilder) makes use of fine-grained credentials in which all attributes of the
holder can be represented (e.g. age, address, rights, roles). These systems inherit from ABAC
and raised the credentials privacy issue which motivated negotiation trust management systems.

3.4.2 Policies

Policy specification languages represent a formal interface between humans and software agents
(e.g. trust management systems). In order to be intelligible by both, these languages must
satisfy some important criteria. De Coi and Olmedilla, on the basis of the work of Seamons
and colleagues [Seamons et al., 2002], provided in [De Coi and Olmedilla, 2008] an exhaustive
and comprehensive list of properties and requirements a policy specification language should
satisfy in the context of trust negotiation. Some properties they reported are still valuable in
the context of our work but most of them are either out of date or non relevant. In this section,
we are interested in the formalism used to encode the policy, how expressive is this formalism,
to which extent it is flexible and whether its management was purely syntactic or semantic.

3.4.2.1 Policies Formalism

Policies have been specified using four different formalisms. Lisp was primarily used in early
systems such as PolicyMaker, KeyNote and REFEREE as their authors were interested in us-
ing the notion of programmable policies. For the same reasons, Ponder used an object-oriented
approach for the specification of Ponder policies. However, these languages were rapidly aban-
doned in favour of more rigorous and application independent languages. For instance logic
programming is the underlying formalism used in SULTAN, Fidelis and PROTUNE, while
Binder, Cassandra and RT uses Datalog which is a subset of logic programming. Moreover,
most of the commercial trust management systems (e.g. IBM-TE, XACML) used XML to
represent policies. The main motivation in using XML was to make these policies interoperable
and make policy specification more flexible [Yagüe, 2006].

76

3.4. Discussion

3.4.2.2 Policies Expressiveness

The main objective of a policy is to express conditions. Thus, expressiveness is the most impor-
tant property to be analysed in existing systems. Policy expressiveness have been interpreted
in two different ways: based on the richness of the information used to state the policy, and
based on the nature of the conditions stated by the policy.

The more a policy can express conditions on a wide range of information, the more it is
considered to be expressive. With respect to that, TMS that make use of attribute-based ap-
proaches are the richest. For instance, languages such as PROTUNE, XACML, REFEREE,
RT and ATNAC are known to be rich as they allow the specification of conditions over the at-
tributes of the requester, the resources and the environment. In contrast, first general languages
such as PolicyMaker or TrustBuilder have limited expressiveness as they rely on a unique type
of information, namely identities or delegation credentials.

In terms of condition expressiveness, all reviewed policy languages proceed in the same
way. Conditions are stated to set minimal values that are accepted for each information. Then
policies are expressed by a conjunction or a disjunction of these conditions. This approach
has a limited expressiveness as all conditions stated by a policy are considered to be equally
important.

Moreover, many policy languages we reviewed adopted a binary evaluation in which either
all conditions are satisfied or no condition is considered to be satisfied (e.g. early TMS). With
respect to that, trust negotiation systems (e.g. TrustBuilder, Trust-X , PROTUNE, etc.) are
more flexible as the evaluation of a policy is progressively achieved. Nevertheless, no system
considered partial policy evaluation in which the policy satisfaction level is computed even if
all conditions are not met.

3.4.2.3 Policies Flexibility

In the literature, flexibility refers to the ability of a policy to be changed without stopping
the system. With respect to that, almost all systems we reviewed are flexible as by definition
policies are flexible. However, in our thesis we use a narrow definition of flexibility: here,
flexibility refers to the ability of a policy to be adapted. Adaptation can be performed by
adding, removing and/or updating any of the conditions stated by the policy.

Reviewed policy languages have not been designed in that direction. Therefore, none of
these language can be easily adapted based on an automated process. However, some language
such as XACML, Cassandra, X -TNL, and Ponder have been designed with a particular care
for the extensibility of their policies. If automated, these extensibility mechanisms can be used
to produce a new policy which will substitute to the former one.

3.4.2.4 Policies Semantic

Semantic aspects was clearly not a concern for early TMS (e.g. PolicyMaker, REFEREE,
IBM-TE). The objective at that time was to enable decentralised trust management in which

77

Chapter 3. Trust Management Systems

all parties are assumed to agree on the semantics of the credentials and the policies they
exchange. And even if semantic was recognised as an important feature of negotiation TMS,
the interpretation of the semantic policies were limited to formal aspects. With respect to
that, logic-based policy languages (e.g. Binder, SULTAN RT and PROTUNE) are considered
to have a better and more formal semantic than XML-based ones (e.g. TPL, XACML and
X -TNL) or object-oriented ones (e.g. Ponder). Nevertheless, no policy language those that we
reviewed makes an explicit use of ontologies such it has been advocated in recent works (e.g.
[Sensoy et al., 2010] and [Finin et al., 2008]). In the light of this, all policy languages used in
trust management have limited semantic capabilities.

3.4.3 Trust Engine

As stated before, we are interested in evaluating the extent to which the TMSs we analysed
tackles the challenges we raised by virtual communities. To that aim, we compared these
systems with respect the objective we set up in our thesis (cf. Section 1.3).

3.4.3.1 Social-awareness (Objective 1)

While we evidenced in the previous chapter how trust is intrinsically a social concept, surpris-
ingly most of the reviewed trust management systems have neglected this dimension of trust.
Thus all system we review are simply not able make the user of the system specify (Objective
O1.1) and enforce (Objective O1.2) collective policies. In these system, a resource belongs to
one and only one individual. If not, there should be a system administrator that specifies the
policy to be used when granting access to common/shared resources. Such a centralised vision
is simple not application as we stressed in the introduction of this thesis.

As showed in Table 3.3, inly XACML provides some mechanisms that could be used to
implement social-awareness. These mechanisms allows independent entities, each having its
own policy, the made trust decisions about a shared resource. These mechanisms are quite
limited with respect to our objective but they represent interesting paths that we will explore
in the next chapter. For Objective O.1.2 which consist in enforcing collective policies, this issue
has not been addressed in existing systems too.

3.4.3.2 Context-awareness (Objective 2)

A system is said to be context-aware if the trust evaluations it makes are influenced by the
context in which these decisions are made. In other words, a trust management system is
said to be context-aware if the policies based on which it performs its trust evaluations can be
adapted in response to context changes. This capability is desired for both individual (Objective
O.2.1) and collective (O.2.2) policies.

Surprisingly, a wide range of the works we reviewed could not be considered to be context-
aware. Although, the policies used by some system consider the context in their trust evaluation,
this context is never used to change the conditions stated by the policy. However, we can

78

3.5. Conclusion

consider all trust management could be made (i.e. could be achieved) context-aware (cf. Table
3.3) as they make use of declarative policies and thus these policies could be adapted at runtime.

Worth noting, however, RT provides also a simple mechanism based on which running
policies are activated and deactivated. However, the conditions stated by these policies are
never updated based on the running context. Fidelis provides an interesting idea with the
concept of live policies. live policies were only used in the context of negotiation as presented
above and no adaptation mechanisms have been proposed as the description may suggest.
Finally, ATNAC is the only system that supports the automatic change of running policies.
These changes are based on the suspicion level but are limited to activation and deactivation of
the policies used by the system. In fact, the user specifies several policies, each for a particular
suspicion level, then the appropriate policy is used based on the current suspicion level. If
we have to use this system for virtual communities, that means that a resource owner has to
specify a policy not only for each resource, but also for each state this resource could reach. Of
course, performing such a complex task is likely to not be feasible.

3.5 Conclusion

In this chapter, we introduced basic concepts of trust management and analysed the most
interesting trust management systems.

We evidenced from the previous discussion that the surrounding context has been tackled in
a very limited way. The conditions stated in the policies make a clear reference to this context,
but when the context changes these policies are not updated. Importantly, existing trust
management systems seem to neglect or have not been designed for the social dimension that
may constrain/influence the trust decision. Although not explicitly mentioned, social context
can arguably be considered as included in all interactions involving more that on individual.
Thus any interaction is necessary influence or constrained by a social context. With respect to
that, almost all the system we presented in this chapter reveal to be inaccurate to handle this
social context.

In the light of these conclusions and limitations, we will explore in the next chapter existing
approaches with respect to the consideration of this social context. We will particularly focus
on how collective policies are specified, enforced and evolved in situations involving a social
structures such as virtual communities.

79

Chapter 3. Trust Management Systems
C

redentials
P

olicy
L

anguage
T

rust
E

ngine

F
orm

a
lism

I
n
f
orm

a
tion

F
orm

a
lism

E
x
p

F
lex

S
em

S
a
w

C
a
w

P
olicyM

aker
[B

laze
et

al.,
1996]

N
A

delegation
L

ISP
-

±
-

O
1

.1
O

1
.2

O
2

.1
O

2
.2

R
E

F
E

R
E

E
[C

hu
et

al.,
1997]

P
IC

S
attributes

L
ISP

±
-

-
O

1
.1
O

1
.2

O
2

.1
O

2
.2

B
inder

[D
eT

reville,
2002]

X
.509

delegation
D

atalog
±

±
-

O
1

.1
O

1
.2

O
2

.1
O

2
.2

SU
LT

A
N

[G
randison,

2003]
P

rolog
delegation

L
ogic

P
rogram

m
ing

O
1

.1
O

1
.2

O
2

.1
O

2
.2

P
onder

[D
am

ianou
et

al.,
2001]

N
A

identity
O

b
ject

O
riented

+
-

-
O

1
.1
O

1
.2

O
2

.1
O

2
.2

IB
M

T
E

[H
erzb

erg
et

al.,
2000]

X
.509/P

G
P

identity
X

M
L

-
±

+
O

1
.1
O

1
.2

O
2

.1
O

2
.2

R
T

[L
i

et
al.,

2002]
X

.509
attributes

D
atalog

±
-

-
O

1
.1
O

1
.2

O
2

.1
O

2
.2

C
assandra

[B
ecker

and
Sew

ell,
2004]

D
atalog

attributes
D

atalog
±

±
-

O
1

.1
O

1
.2

O
2

.1
O

2
.2

T
rustB

uilder
[Y

u
et

al.,
2003]

X
.509/P

G
P

attributes
X

M
L

+
±

-
O

1
.1
O

1
.2

O
2

.1
O

2
.2

F
idelis

[Y
ao,

2004]
P

rolog
identity

L
ogic

P
rogram

m
ing

±
±

-
O

1
.1
O

1
.2

O
2

.1
O

2
.2

T
rust-X

[B
ertino

et
al.,

2003]
X

-T
N

L
attributes

X
M

L
+

±
±

O
1

.1
O

1
.2

O
2

.1
O

2
.2

X
A

C
M

L
[C

over,
2007]

X
.509

attributes
X

M
L

+
±

±
O

1
.1
O

1
.2

O
2

.1
O

2
.2

A
T

N
A

C
[R

yutov
et

al.,
2005]

X
.509

attributes
and

context
X

M
L

+
±

-
O

1
.1
O

1
.2

O
2

.1
O

2
.2

P
R

O
T

U
N

E
[B

onatti
et

al.,
2008]

N
A

attributes
and

context
L

ogic
P

rogram
m

ing
+

±
+

O
1

.1
O

1
.2

O
2

.1
O

2
.2

T
able

3.3
–

Sum
m

ary
of

the
com

parison
of

trust
m

anagem
ent

system
s.

•
O

X
.X

:
A

chieved

•
O

X
.X

:
A

chieved
but

m
anually

•
O

X
.X

:
C

ould
b

e
achieved

•
O

X
.X

:
N

ot
achieved

•
E

xp:
E

xpressiveness

•
F

lex:
F

lexibility

•
Sem

:
Sem

antic

•
Saw

:
Social

A
w

areness

•
C

aw
:

C
ontext

A
w

areness

80

3.6. French Summary

3.6 French Summary

Dans le chapitre 2, nous avons montré comment la confiance était devenue un concept in-
contournable dans les systèmes combinant risque et incertitude. Dans ce chapitre, nous nous
positionnant dans le domaine de la sécurité et retraçons les évolutions qu’a connues ce domaine
pour arriver aux systèmes de gestion de la confiance telle que nous les connaissons d’aujourd’hui.

3.6.1 Du contrôle d’Accès à la Gestion de la Confiance

Les systèmes de gestion de la confiance puisent leurs racines dans la sécurité et plus particulière-
ment des mécanismes de contrôle d’accès. Le contrôle d’accès est le mécanisme qu’utilisent les
applications (à l’origine les systèmes d’exploitation) pour répondre à la question (i.e., requête)
“est ce que l’entité identifiée en tant S (i.e., sujet) peut manipuler l’objet O en performant
l’action A ”. Dans cette section, nous allons retracer l’évolution des différents modèles qui ont
été proposés pour répondre à cette question. Nous distinguons cinq types de modèles de contrôle
d’accès que nous décrivons brièvement ci-dessous.

• Contrôle d’accès à base d’identité (IBAC): le contrôle d’accès est généralement
subdivisé en deux étapes qui sont l’authentification et l’autorisation. L’authentification
vis a assurer que l’identité du demandeur est authentique alors que l’autorisation déter-
mine s’il existe une permission qui autorise le possesseur de cette identité de manipuler
la ressource et sous quelles conditions. Les contrôles d’accès à base d’identité confondent
les deux étapes et associent donc l’identité des individus avec leurs permissions.

• Contrôle d’accès à treillis (LBAC): Dans certaines situations, le contrôle d’accès
dépend plus des propriétés des objets et des caractéristiques du demandeur que sur son
identité. Dans ce type de mécanismes, les étiquettes ou labels sont associés aux objets
et au sujet du système. Ensuite, les mêmes réglés sont appliquées pour déterminer si
un individu ayant un label donné à droit d’accéder à une ressource. Ainsi, le processus
de contrôle d’accès se réduit en un contrôle du flot de données au sein du système. Par
exemple, une lecture dans un fichier est considérée comme un flot de données du fichier
vers le sujet. Afin d’assurer la protection des données confidentielle, deux principes sont
mis en œuvre: “pas de lecture vers le haut " et “pas d’écriture vers le bas ". Le premier
assure que les individus avec un label inférieur ne peuvent pas avoir accès à des données
d’ordre supérieur. Le second assume que les individus d’un niveau supérieur n’ont pas
autorisé à écrire sur des ressources de niveau plus bas.

• Contrôle d’accès à base de rôle (RBAC): les modèles à base d’identité comme les
modèles à base de treillis ont des limites considérables. Les premiers sont difficiles à
concevoir (il faut connaître tous les acteurs et les ressources à l’avance) et à maintenir,
alors que le second est trop rigide et ne donne aucune liberté au créateur de la ressource.
C’est en voulant proposer une alternative plus flexible que les chercheurs ont eu l’idée
d’utiliser les rôles pour gérer les droits d’accès au sein d’organisations.

81

Chapter 3. Trust Management Systems

• Contrôle d’accès à base d’organisations (OrBac):Le contrôle d’accès à base
d’organisations et les contrôles d’accès à base de rôles ont beaucoup de points en com-
mun. Par exemple, dans les deux modèles le concept de rôle est central. C’est pourquoi,
la plupart des chercheurs du domaine présentent OrBAC comme une extension de RBAC.
En réalité, OrBAC a permis d’affiner la définition de permission, tâche qui était laissée à
la charge de l’administrateur sur RBAC.

• Contrôle d’accès à base d’attributs (ABAC): la principale idée du modèle ABAC
consiste à utiliser les attributs des politiques font référence aux attributs du demandeur
au lieu de son identité, de label ou de son rôle comme ce fut le cas dans les modèles vus
précédemment (IBAC, LBAC, RBAC et OrBAC). La satisfaction de ces politiques repose
ensuite sur la production de certificats (credentials) établies par des autorités de certifi-
cation jouant le rôle de tiers de confiance dans l’interaction. Par exemple, un politique
pourrait statuer que seules les personnes capables de conduire une voiture peuvent en
louer une. Ainsi, les agents de locations vont devoir exiger de chaque client de produire
une preuve (i.e. un certificat) pour cet attribut. Le rôle de certificat est rempli ici par le
permis qui est établi par la préfecture de police. Cette institution joue le rôle d’autorité
centrale et permet l’établissement, de facto, de la relation de

À l’instar d’IBAC, LBAC, RBAC et OrBAC, dans ABAC les politiques peuvent utiliser
toutes sortes d’attributs pour l’établissement d’autorisations. Nous classons ces attributs
en trois catégories: (i) attributs relatifs au sujet de l’interaction, (ii) Attributs relatifs à
l’objet de l’interaction, (iii) attributs relatifs au contexte de l’interaction.

3.6.2 Gestion de la confiance

La principale limite des modèles de contrôle d’accès présentés dans la section précédente repose
sur leur dépendance vis-à-vis de l’identité. À l’aube de l’Internet, l’identité constituait un défi
technique pour les chercheurs (i.e., gestion décentralisée), mais également éthique (i.e., respect
de la vie privée). L’évolution des modèles de confiance vers du ABAC a permis certes d’améliorer
le second point, mais ABAC était incapable de permettre un contrôle d’accès décentralisé en
raison de sa dépendance vis-à-vis des autorités de certifications et la nécessite d’avoir recours
à un point d’évaluation centrale.

C’est dans ce contexte qu’au début des années deux mille, Matt Blaze et ses collègues
[Blaze et al., 1996, Blaze et al., 1999a] a introduit une nouvelle discipline de recherche dédiée
au mécanisme de contrôle d’accès distribué et décentralisé. Blaze et ses collègues ont introduit
alors le terme “gestion de la confiance " dans le dictionnaire de la sécurité et marqués de ce fait
la naissance d’une nouvelle branche dans le domaine de la sécurité informatique.

Jøsang [Jøsang et al., 2007], a défini la gestion de la confiance comme étant “l’activité de
collecte, codification, analyse et de représentation des preuves dans la perspective de faire des
évaluations et prendre des décisions dans le cadre de transaction électronique ". Cette définition
a été reprise par Grandison [Grandison, 2003] afin d’y ajouter la nature des preuves récoltées

82

3.6. French Summary

(compétence, honnêteté, sécurité) ainsi que l’objectif de cette évaluation (prendre des décisions
à propos de relations de confiance dans le cadre d”application internet).

Dans notre manuscrit, nous nous sommes basé sur ces deux définitions afin de proposer la
nôtre.

Definition 7 (Gestion de la confiance) L’activité automatique de collecter, réclamer,
fournir et analyser les informations dans la perspective de prendre des décisions de confiance
(e.g., contrôle d’accès, délégation, collaboration) à base de politiques.

3.6.3 Systèmes de gestion de la confiance

Les systèmes de gestion de la confiance permettent à une application de savoir si une requête de
réaliser une action, potentiellement dangereuse, sur une ressource sensible respect la politique de
contrôle d’accès [Blaze et al., 1996, Blaze et al., 1999a]. Néanmoins, ce terme est actuellement
utilisé dans un sens plus large pour décrire des systèmes permettant d’évaluer si une décision
se respecte une décision de confiance.

Concrètement, un système de gestion de la confiance permet d’établir une relation de confi-
ance entre le demandeur et le demandé. Cette relation permettra à au demandé d’appréhender
le risque et de prendre une décision de confiance. Pour cela, les systèmes de gestion de la
confiance fournissent un langage pour la spécification de politiques de confiance ainsi que de
certificats dits credentials. Ces systèmes proposent également un moteur de confiance qui va
permettre de vérifier si les credentials fournis satisfont la politique qui a été spécifiée. Ces trois
éléments constituent les briques de base de tout système de gestion de la confiance. Dans ce
qui suit, nous présentons brièvement chacun des trois éléments :

• Credentials : Ce sont le contrepartie des lettres de créance papier utilisée dans le monde
réel (e.g. passeport, permis de conduit, carte de crédit). Ils constituent des documents
numériques certifiées (i.e., signés) par des autorités de certification. Les carentiels perme-
ttent l’authentification des utilisateurs mais peuvent être également utilisée pour affirmer
des informations sur des attributs de l’utilisateur (e.g. son âge, son adresse, ses origines).
Il existe deux approches de définition de credentials: par autorités de certification et par
certification croisée. La première repose sur la confiance que portes l’individu aux insti-
tutions (e.g. préfecture, mairie) alors que la seconde fait référence à la confiance issue
de l’expérience des autres (réputation, bouche à oreille). Dans le manuscrit, nous avons
illustré chacune des deux approches avec des implémentations concrètes, respectivement,
X.509 [Samarati and Vimercati, 2001] et PGP [Gerck, 2000, Prohic, 2005].

• Politiques de confiance : Les politiques ont été largement utilisé en informatique. Ini-
tialement introduites pour automatiser des tâches (e.g. exécution en mode batch). Néan-
moins, les politiques sont de nos jours essentiellement pour permettre à des systèmes de
modifier leur comportement de manière dynamique. Ainsi, le système est en mesure de
changer de comportement dans avoir a être arrêté. Cependant, malgré leur succès, leur

83

Chapter 3. Trust Management Systems

définition demeure assez floue et les définitions avancées par certains auteurs sont soit
trop vagues ou au contraire trop spécifiques. Dans cette thèse, nous proposons de définir
les politiques de confiance en tant que expression des conditions qu’une entité (humain ou
agent) doit satisfaire pour qu’il soit considéré digne de confiance dans un contexte donné
(e.g. contrôle d’accès, délégation). Ainsi, de notre point de vu, les politiques ont un rôle
double: (i) ils permettent au propriétaire de ressources de spécifier les politiques que sont
systèmes de gestion de la confiance va utiliser pour faire ses évaluations, (ii) ils perme-
ttent a deux interlocuteur d’échanger les conditions respectives ainsi que les credentials
permettant la satisfaction de celles-ci.

• Moteur de confiance : L’objectif d’un moteur de confiance est d’évaluer si les crenden-
tials, ou plus largement les informations, fournis par le demandeur sont valides et s’ils
permettent de satisfaire la politique spécifiée par celui-ci. Il faut souligner que les mo-
teurs de confiance ne sont nullement responsables de la prise de décision de confiance.
Leur tâche se limiter à évaluer si le demandeur parvient à satisfaire la politique ou pas.
Ainsi, le principal intérêt d’utiliser un système de gestion de la confiance est de décharger
l’application y faisant appel des tâches fastidieuses de vérification des credentials ainsi
que l’évaluation des politiques comme évoqués précédemment.

3.6.4 Analyse des Systèmes de gestion de la confiance

Dans cette section, nous passons en revue une sélection des systèmes de gestion de la confiance.
Comme précisé dans le chapitre précédent, ces travaux sont scindés en deux catégories : les
Systèmes de négociation de confiance automatique et les Systèmes de gestion de la confiance
décentralisée. Cette dernière catégorie est ici divisée en deux sous-catégories: les Systèmes à
base d’autorisation et les Systèmes à base de rôles.

3.6.4.1 Systèmes à base d’autorisation

Cette catégorie comporte l’ensemble des travaux qui sont considérés comme étant les pio-
nniers de la discipline. Parmi ces travaux, on peut citer PolicyMaker dont les auteurs ont
introduit le terme gestion de la confiance [Blaze et al., 1996]. On peut citer égalent REF-
EREE [Chu et al., 1997], Binder [DeTreville, 2002], SULTAN [Grandison, 2003] et Ponder
[Damianou et al., 2001]. La plupart de ces systèmes peuvent être considérés comme étant
obsolètes de nos jours. Néanmoins, les mécanismes qu’ils ont introduits ont inspiré bon nombre
de systèmes utilisé de nos jours. Ces systèmes reposent sur le mécanisme de délégation. Chaque
utilisateur peut émettre un certificat qui va lui permettre de certifier la relation de confiance
qu’il a avec le bénéficiaire du certificat. De son coté, le propriétaire de la ressource définit une
politique qui délimitait la porté des personnes en qui il a confiance via ce mécanisme de délé-
gation. Finalement, le rôle du moteur de confiance consiste à trouver une chaîne de délégation
valide et qui satisfait la politique du propriétaire et qui permet de relier le demandeur à la
ressource demandé.

84

3.6. French Summary

3.6.4.2 Systèmes à base de rôles

Dans le système présenté dans la section précédente, la délégation des droits était utilisée d’une
manière assez restrictive. Par exemple, dans PolicyMaker, il est impossible à un individu A
de spécifier que tous les membres appartenant à son groupe ont droit d’accéder aux ressources
que A possède. Pour cela, il aurait fallu recenser l’ensemble des membres du groupe et spécifier
des autorisations individuelles. Sinon, donner le droit à un membre et donner le droit à celui-
ci de déléguer ce droit aux autres. Ces deux solutions demeurent faisable mais complexifient
grandement la gestion des autorisations. Afin de pallier à ce genre de situations, une nouvelle
génération de systèmes de gestion de la confiance à vu le jour. Ces systèmes se sont inspirés ont
essayé de tirer profit de la force de RBAC dans tout ce qui concerne la rationalisation des au-
torisations. Ainsi, l’utilisation combinée des rôles et la gestion distribuée des crendials à permis
à cette nouvelle génération de systèmes de prendre rapidement le dessus sur les systèmes clas-
siques reposant sur les autorisations individuelles. Parmi ces travaux, on peut citer IBM Trust
Establishment [Herzberg et al., 2000], Role-Based Trust Management (RT) [Li et al., 2002] et
Cassandra [Becker and Sewell, 2004].

3.6.4.3 Systèmes à base de négociation

Traditionnellement, les systèmes de gestion de la confiance permettent l’établissement de rela-
tions de confiance de manière unilatérale. Donc, le propriétaire de la ressource (demandé) est
supposé être digne de confiance pour le demandeur. Donc le demandeur doit fournir tous les
credentials requis par le propriétaire afin de savoir si sa demande est accepté ou non. Or, si
elle ne l’est pas, il aura divulgué des informations potentiellement sensibles (e.g. son âge, son
adresse et ses coordonnées) pour rien. Ainsi, suite à la sensibilisation croissante des utilisa-
teurs de l’Internet pour ce qui concerne la diffusion de leurs informations privées, les approches
classiques de gestion de la confiance ne sont plus tolérables. Pour ces raisons, une nouvelle
génération de systèmes de gestion de la confiance, appelé systèmes de négociation de confiance,
à vue le jour dans la perspective de permettre l’établissement de la relation de confiance de
manière incrémentale et sûre pour les deux interlocuteurs. Plusieurs systèmes tels que Trust-
Builder, Fidelis, Trust-X [Bertino et al., 2003], XACML [Humenn, 2003, Cover, 2007], ATNAC
[Ryutov et al., 2005] et PROTUNE [Bonatti et al., 2008]. Le principal facteur de différencia-
tion de ces systèmes réside sur l’expressivité du langage de politiques qu’ils proposent ainsi que
de l’efficacité de la stratégie de négociation qu’ils proposent.

85

Chapter 4

The Social Dimension of Trust
Management

In the previous chapter, we observed that the objective of existing trust management systems
was to make trust decisions safe for the individual. However, in this chapter we are interested
in mechanisms that make such decisions collectively harmful too.

Indeed, based on the assumption that individuals tend to perform better when they act
together than they can do alone, the concept of community has become very common to enable
collaboration in nowadays human societies and virtual ones as well. In such context, it is a
very common situation that individuals come to table with different backgrounds, skills, and
even policies. If backgrounds and skills heterogeneity represents the richness of these systems,
policies heterogeneity may represent a burden to collaboration if these policies conflict and no
mechanisms exists to resolve such conflicts.

In what follows, of this chapter, we analyse mechanisms that could be used to address such
issue. We are particularly concerned by answering the following questions:

1. how virtual community members make trust decisions which consequences may affect the
other members,

2. whether and how being in a community affects the way a member makes his trust deci-
sions,

3. whether and how a member may affect the way other members make their trust decisions.

In the light of this, we provide in Section 4.1 a detailed insight on how researchers in trust
management addressed the above issues. Drawing on this, we looked for other disciplines in
which similar phenomena have been studied and understood. To that aim, we reviewed exist-
ing theories and models that originate from flagship disciplines involving both individual and
collective dimensions, namely sociology and multi-agent systems [Coleman, 1990, Yao, 2004].

4.1 Social dimension of Trust Management

In trust management and access control, policies are used to make decisions that emanate from
and express the requirements of a single entity. However, when it comes to virtual communities,

Chapter 4. The Social Dimension of Trust Management

such assumption does not hold. The consequence of a trust decision is borne by all the mem-
bers, making the consideration of the policy of each individual paramount for the community
cohesion.

In what follows, present two main approaches, namely combination and integration, that
were proposed to address the above issue. The objective of these works were to allow differ-
ent partners with personal access control policies to make decisions that satisfy the policies
of all partners. Then we present the limitations of both approaches and discuss how trust
management systems failed to address the social dimension of trust decisions.

4.1.1 Policy Combination

Policy combination has been introduced in the context of XACML. As mentioned in Sec-
tion 3.3.2, XACML is a well established policy language which defines three principal ele-
ments : rules, policies and policies-sets. The effect (i.e. decision) of the policy is obtained
by combining the effects of the sub-policies or rules according to some combination strategy
[Li et al., 2008, Rao et al., 2009].

Before we delve in policy combination mechanisms, let us recall the basic elements XACML
is built upon. XACML rules are composed of three main components: target, condition and
effect. The target defines the rule scope (i.e. subject, actions and resources that the rule
applies to); the condition specifies restrictions on the attributes of the subject and defines the
applicability of the rule; the effect is either permit(P) (the rule is called a permit rule), deny(D)
(the rule is called then a deny rule). The decision output can be either Permit (P) or Deny (D)
or NotApplicable (NA).

Policies group rules that relate to the same target. Thus, policies are composed of a set
of rules, a target (which is identical to the one contained by the rule), a rule-combination
algorithm (RCA), and obligations. Similarly, policies-sets group policies that relate to the same
target. Consequently, policies-sets are composed of a set of policies (or policies-sets), a target,
a policy-combination algorithm (PCA) and obligations. Obligations represent actions to be
triggered when enforcing the (combined) decision. Finally, the (rule or policy) combination-
algorithm specifies how the decision of each policy (or rule) are combined to derive a unique
decision.

As sketched in Figure 4.1, for each request, several rules or policies may apply. So in order
to solve eventual conflicts (when rules/policies do not compute the same decision), XACML
provides six standard policy (resp. rule) combination algorithms. These algorithms applies to
both rules (RCA) and policies (PCA) except for the last algorithm that applies only to policies.
These algorithms are described as follows:

• Deny Overrides: This algorithm prefers “Deny” (D) to “Permit” (P) to
’“NotApplicable” (NA). In other words, if the evaluation of any policy or rule is D, the
result of the whole will be D. Otherwise, if no policy is evaluated to D and some policies
are evaluated to P (and thus the rest to NA), then the result will be P. Otherwise, the

88

4.1. Social dimension of Trust Management

Policy Evaluation

Policy Combination

Policies

{p1, ... , Pn}

Combination

Algorithms

Request

Results =

{E(P1) = {P,D,NA}

...

E(Pn) = {P,N,NA}}

Decision = {P,D,NA}

Figure 4.1 – A sample policy combination process.

result will be by default NA.

• Ordered Deny Overrides: This algorithm is similar to the Deny-Overrides except that
policies are evaluated in the order in which they appear.

• Permit Overrides: In this algorithm, “Permit” is preferred to “Deny” and “Deny” is
preferred to “NotApplicable”.

• Ordered Permit Overrides: This algorithm is similar to the Permit-Overrides except
that policies are here evaluated in the order they appear.

• First Applicable: This algorithm returns the result of the first policy (or rule) that can
be applied to the request.

• Only One Applicable: This algorithm only applies to policies and not rules. It returns
the result of the unique policy that applies to the request. If such policy does not exist,
it returns NA.

Conceptually, combination algorithm has as inputs the set of policies, and a set of credentials
provided by the application that wants to access the resource. The algorithm first selects the
policies that apply to the request based on their target field, then evaluates each policy with
respect to the set of credentials. Once all policies have been evaluated, the algorithm combines
all the decisions to compute a final one.

The policy combination approach assumes that all parties concerned by a decision are
available when a decision has to be made. In open and distributed systems, such condition
would be hard to satisfy. Therefore, we present in the next section two alternative approaches.

89

Chapter 4. The Social Dimension of Trust Management

4.1.2 Policy Integration and Composition

Policy integration and policy composition refer to the same concept: building a new (integrated
or composed) policy based on policies that have been specified by multiple and distinct parties.
Thus, in policy integration (we keep this term henceforth) decisions that concern multiple
individuals are made based on a process under which individual policies are integrated to build
a collective one.

In what follows, we present two approaches in which an algebra for policy integration has
been proposed.

4.1.2.1 Algebra for Composing Policies

Bonatti and colleagues [Bonatti and Samarati, 2002] were the first to propose an algebra for
policy integration. The authors integrate access control policies using logic programming and
partial evaluation techniques for algebraic expressions [Rao et al., 2009].

Bonatti and colleague used an abstract form of policies that are defined based on three
sets, S, O and A, denoting respectively subjects, objects and actions. So the authors assume
a generic approach as they do not make any assumption on the subject, the objects and the
actions. Likewise, the formalism in which policies are expressed is too generic to be considered
as a policy language. This explains why we did not present it in details neither here nor in
Section 3.3.

Depending on the particular application, subjects can be users, roles or groups, objects can
be files, relations or any artefact, while actions are operations that subjects can perform on
objects (e.g. read, write, update). Policies are defined as sets of ground (which do not contain
any free variables) authorisation terms. These policies specify constraints that are formulated
as first-order predicates (e.g. isOwner(s, o) that is evaluated as true if the subject s owns the
object o).

In order to understand and illustrate the composition operators we present hereafter a
concrete example. In the example we assume the existence of two policies (i.e. P1, P2) which
first authorises Alice to read a file1, and Bob to access service2. And the second policy states
that Alice is authorised to write on file1. These two policies are specified as follows:

• P1 = {(Alice, file1, read), (Bob, service2, access)}

• P2 = {(Alice, file1, write)}

Based on the policies framework, Bonatti and colleagues proposed a set of six composing op-
erators. Among the six operators, three worth to be explained as the others do not integrate
policies.

Addition (+) integrates two policies by returning their union. For instance, with respect to
the above example policies P1 and P2, the integrated policy would be defined as follows:

P1 + P2 = {(Alice, file1, read), (Bob, service2, access), (Alice, file1, write)}

90

4.1. Social dimension of Trust Management

This integrated policy would authorise Alice to read and write on file1 in addition to
authorising Bob to access service2 (cf. [Bonatti and Samarati, 2002] for a detailed de-
scription).

Conjunction (&) integrates two policies and returns their intersection. The integrated policy
would be defined as follows:

P1&P2 = {(Alice, file1, read)} (4.1)

The resulting policy will only authorise Alice to read file1 as both policies agreed on this
privilege. So while addition enforces maximum privilege, conjunction enforces minimum
privilege.

Subtraction (−) integrates two policies by eliminating all authorisations that are not per-
mitted by the second policy. The integrated policy would be defined as follows:

P1− P2 = {(Alice, file1, write)} (4.2)

The resulting policy will only authorise Alice to only write on file1 as the second policy
does not authorise to access service1.

The three remaining operators are not described either because they only restrict one policy
(e.g. closure (∗) and scoping restriction (̂)), or because they can be obtained using the three
operations aforementioned. In Figure 4.2, the authors summarised the operators of the algebra
we presented above and their semantics and illustrated two possible graphical representations
of algebraic operations.

The above algebra for policy composition is relatively intuitive despite the complexity of
its foundations. However, the authors did not provide any concrete implementation for their
framework and they did not specify how each operator could be implemented. Further, some
scholars criticised the fact this approach adopts a binary evaluation (e.g. Accept or Deny) and
does not handle three-valued outputs such the one presented in Section 4.1.1 (i.e. Accept, Deny,
NotApplicable).

4.1.3 Algebra for Fine-Grained Integration of Policies

Mazzoleni et al. developed a policy integration process on the top of the XACML policy
language [Mazzoleni et al., 2006]. This work represents an extension of combination mechanism
(cf. Section 4.1.1) in which integration algorithms are used in complement to combination
algorithms. These algorithms specify how individuals want their policies to be integrated in
case there is a need to integrate them with other policies (i.e. specified by other individuals).
Consequently, each individual involved in the system has to provide the policy he is using
and how this policy should be integrated with other policies. The decision regarding policy
integration is therefore automatically computed by taking into account the requirement of each
party involved in the system [Rao et al., 2011].

91

Chapter 4. The Social Dimension of Trust Management

Figure 4.2 – Operators of the algebra for composing policies and their graphical representation
[Bonatti and Samarati, 2002].

Even if they claim an algebraic approach, the main novelty of their work lies in the possibility
to define similarity-based combination algorithms. So the integrating algorithms rely heavily
on the mechanisms they defined for analysing the similarity of two policies which we consider
as the most important part of the work to be described.

Policies Similarity

Policies similarity aims at analysing the behaviour of the policies to be integrated based on their
effects (i.e. Permit, Deny or NotApplicable). Concretely, the process tries to detect if there
is any correlation between the effect of two (or more) policies. For instance, the integration
process may be confronted with situations in which requests that are permitted by the first
policy (P1) are denied by the second one (P2). The authors refer to such a situation by the
“Restricts” notion (i.e. P2 Restricts P2).

In the light of this, the authors proposed a three-phase process for integrating policies: (i)
policies are decomposed into rules and similarity between rules is computed, (ii) the similarities
of the groups are grouped and simplified based on their effects, (iii) the policy similarity is
extracted using the combination algorithms specified in the policies.

92

4.1. Social dimension of Trust Management

In rule similarity computing, the objective is to detect any similarity between each of the
rules that compose the policies to be integrated. Two rules are said to have a similarity if they
define conditions on the same attributes (e.g. age). Once the similarity is identified, the process
identifies which rule uses the most restrictive condition for these attributes.

Ri = Rj RjRi

RjRi Ri Rj

RjRi

Ri Converge Rj Ri Diverges Rj

Ri Extends Rj Ri Restricts Rj

Ri Suffles Rj / Rj Suffles Ri

Figure 4.3 – Types of similarities between rules.

As illustrated in Figure 4.3, the authors distinguish four forms of rule similarities that we
briefly summarise hereafter.

Converge: two rules converge if they are satisfied by the same set of credentials.

Diverge: two rules diverge if they are satisfied by two distinct sets of credentials.

Restrict and Extend: a rule restricts (resp. extends) another rule if it can be satisfied by a
subset (resp. a superset) of the credentials that satisfy the rule it restricts (resp. extends).

Shuffle: two rules shuffle if they are satisfied by two intersecting sets of credentials.

Once the similarity has been computed, rules are grouped based on their similarities and
their effects (i.e. Permit, Deny or NotApplicable). Then transformations are applied to
these rules to reduce the number of similarities to be considered. The objective is to ob-
tain two sets of rules; those having the effect Permit and those having the effect Deny (cf.

93

Chapter 4. The Social Dimension of Trust Management

[Mazzoleni et al., 2006] for more details). As a final step, the authors complete the policy simi-
larity process by considering rule combination algorithms specified by the issuer of the policies
that are integrated.

The process of computing policies similarities given by the authors is very important as it
gives valuable information about which policy is the most restrictive. However, the complete
integration process goes further as it uses this information alongside with the integration pref-
erences of all entities involved. To that aim, the authors introduced four preference types with
respect to policy integration. These preferences are defined as follows:

Converge Override: does not consider policies other than the ones it specified.

Restrict Override: does not consider policies that authorise requests it denies.

Extend Override: does not authorise policies that denies requests it accepts.

Deny Override: considers only policies which effect is Permit.

When two policies are integrated, the preferences specified by both policies must be satisfied.
To achieve such a goal, the two preferences are combined considering the policy similarity
computed previously.

Finally, [Rao et al., 2011] relied recently on this work to propose a language-independent
policy integration framework. The framework supports all combination and integration algo-
rithms presented above and adds new forms of integration such as policies jumps. To that aim,
the authors used Multi-Terminal Binary Decision Diagrams (MTBDD) to represent the policies
and generate the integrated policy [Rao et al., 2011]. The objective of this work was not to
propose new mechanisms for policy integration. Instead, the authors improved the performance
of the combination which was the main flaw of this work.

Discussion

Trust management in virtual communities raises several issues in which the decision made by
a member can affect the community as a whole. For instance, decisions by means of which
members admit a new member or grant access to a shared resource may be prejudicial to the
other members and motivates the need for mechanisms by means of which an individual can
make a decision that reflects the community position.

To that aim, we explored in this section two mechanisms, namely policies combination
and integration, by means of which similar issues have been addressed. Combination aims at
building a unique decision based on the evaluation of several policies, while integration tries to
build a unique policy from several policies and then to derive a decision based on this unique
policy.

Using combination means that for each decision made by a member, each member of the
community has to evaluate the same request and compute a decision. Then based on these

94

4.2. The Social Influence Theory

individual decisions the agent receiving the request computes a common decision using a com-
bination algorithm. This approach is clearly not applicable in the context of virtual communities
for two reasons. First, policy combination algorithms assume that all parties are available to
evaluate any request, and second there always exists an administrator who can solve conflicts.
However, in virtual communities this is not the case as members can unpredictably be available
in the system and any member will refuse to give up its autonomy to a unique administrator.
Thus, conflicts that may appear can never be solved and no decision can be made, penalising
the community.

In contrast, integration does not make such assumptions. However, integration is still
a recent research field in which most of the contributions are either purely theoretical, or
XACML-specific and thus inherit all the flaws that make this language inappropriate for the
trust management in virtual communities as discussed in Section 3.4.2. Moreover, works on
integration are not realistic as they do not make explicit the use of collective policy of the
community as it is done in human societies (cf. Section 4.2.1.1). Thus, each agent is assumed
to be aware of the policy used by the other members which poses two problems. First, the
integration has proven to fail when too many policies have to be integrated (besides complexity
and time consumption), and second, such approach could not be used when the policies used
by the members are sensitive.

4.2 The Social Influence Theory

According to Allport [Allport, 1985], most sociologists regard their discipline as “an attempt to
understand and explain how the thought, feeling, and behaviour of individuals are influenced by
the actual, imagined, or implied presence of others”. This phenomenon is called social influence.
Social influence can be assessed in all situations involving two entities; two people, two groups,
or a person and a group. In our thesis, we have limited our investigation to the influence
occurring between a person and the group that represents his community. The influence is a
directed relationship, thus systematically one entity plays the role of source of influence while
the other is the target. In the light of this, scholars such as Sherif, Asch, Milgram, Moscovici or
more recently Latané identified two forms of influence: influence from the group to the individual
and influence from the individual to the group. This two forms of influence are illustrated in
Figure 4.4.

The influence represents a special form of interaction which can be either verbal (i.e. the
medium of the interaction are opinions) or behavioural (i.e. the medium of the interaction is
a behaviour). In what follows, we review the principal theories that have been proposed to
analyse, understand and explain the social influence phenomena.

95

Chapter 4. The Social Dimension of Trust Management

Community / Society

Figure 4.4 – Illustration of the social influence process.

4.2.1 Majority Influence

Majority influence has been defined as the attempt by the majority of people in a group (or
a figure representing them) to impose its common position on an individual or a minority of
dissenters. In this section, we present theories that conducted the sociologists to establish the
existence of the majority influence.

4.2.1.1 The Autokinetic Effect

Muzafer Sherif was the first to investigate the influence that individuals among a group apply
to each others in the context of norms emergence [Sherif, 1936, Sherif, 1937]. Sherif recruited
a group of individuals that were thinking that their visual perception is being tested. The idea
was to ask person sat in a dark room in which a beam of light was displayed to estimate the
distance that the light had moved. In fact, Sherif was exploiting the autokinetic effect of the
eye. The autokinetic effect is when very small movements of the eyes make a spot of light
in a darkened room appear to move because the eyes lack a stable frame of reference. Sherif
repeated the experience several times in which the light never moved. At first, participants were
alone and they were asked to report individually their own perception (ranging from 1 to 10
inches). Then, they were grouped together. Each time the beam was displayed the participants
were asked to estimate the distance one by one.

As illustrated by Figure 4.5, after few iterations, individuals among the same group tend
to converge on a common distance, but each group agrees on a different distance. This early
study conducted by Muzafer Sherif evidenced the existence of influence phenomena within small
group of individuals.

96

4.2. The Social Influence Theory

Figure 4.5 – The results of autokinetic effect experience [Sherif, 1936, Sherif, 1937]

4.2.1.2 The Asch Effect

Shlomon Asch [Asch, 1955] is considered by modern sociologists to be the father of the social
influence theory. He conducted several experiments in the early 50s to investigate the extent
to which social influence from a majority group could affect a person to conform [Asch, 1955].
The participants were 123 male college students (from 17 to 25 years old) who participated in
vision test depicted in Figure 4.6. The participants were asked to look at a standard line (the
one at the left) and to compare it with three comparison lines (the ones at the right).

Figure 4.6 – Line-judgement experience in Asch’s Study: which line - A, B, or C - has the same
length as the standard line? [Asch, 1955]

Asch formed several groups of participants and in every group there was only one individual
that was the actual participant. Others were “confederates” who had previously agreed on a
wrong answer. Of course, none of the participants were aware of this agreement. The experience
was to ask each participant from the group to state aloud which comparison matched the
standard line. The participants disposition was such that the real participant would give his
opinion after hearing the confederates’ answers. Surprisingly, while the decision was an obvious

97

Chapter 4. The Social Dimension of Trust Management

choice, Asch demonstrated in this study that most of the participants (i.e. 79%) did conform
to the group opinion in most of the time. This phenomenon is called the Asch effect.

Though its relatively simple experiments, Asch evidenced the power of social influence and
introduced the concept of conformity in groups.

Definition 8 (Conformity) Conformity refers to the tendency of individuals to “publicly”
conform to the group norms while privately rejecting them.

Since Asch, many researchers have carried out hundreds of social influence and conformity
studies and confirmed that individuals tend to conform to the incorrect opinions of majorities
[Jongh, 2013].

4.2.1.3 The Milgram Experiment

Another famous series of social influence experiments were conducted by Milgram in the 1960s.
Milgram was particularly motivated to measure the willingness of an individual to conform (or
obey) instructions given by another individual representing an authority. Even if this situation
involves two people, the sociological construction implies that the authority represents a figure
representing the group that placed this individual at this position. The motivation of Milgram’s
experiment was to study the degree to which one individual is able to reach to follow order
even if these orders conflict with his personal motivations. The participants were invited (via
newspaper and direct mail) to participate in a study at the Yale University. All participants
were male persons (between 20 and 50) with various educational background.

Participants were instructed to inflict painful and potentially fatal electric shocks on another
person. This person was a team member but of course the shocks generator was a fake one,
but the participants were unaware of that. The generator had switches ranging from “slight
shock” to “Danger: severe shock”. The participants had to play the role of the teacher and the
“confederate” always played the role of learner. The teacher was asked to deliver a shock to
the learner each time this latter gives an incorrect answer. While the participants thought that
they were delivering real electrical shocks, “confederates” was asked to pretend to be shocked
and plead loudly to be released. At the final stage of the experiment, and after several wrong
answers and shocks, the “confederate” became silent and refused to answer any question. The
examiner (representing the authority in this experiment) instructed the participant to consider
silence as a wrong answer and to continue delivering shocks.

The results and conclusions made by Milgram following these experiments were disturbing.
None of the participants disobeyed before 300 volts, and a majority (65%) continued to obey
to the end of the experiments, and thus administrating the maximum voltage. After the
experiments, all participants confirmed that the order was again their personal conscience, but
they admit that they were unable to resist to authority. Milgram used the term obedience in
reference to this kind of social influence.

98

4.2. The Social Influence Theory

4.2.2 Minority Influence

As illustrated in previous sections, during the 1950s and 1960s, the study of the social influence
was principally focused on the phenomena majority influence, principally through the notions
of conformity and obedience. In majority influence, social researchers wanted to understand the
reasons why an individual changes its judgement, behaviour or attitudes in the direction of the
position held by the majority. However, in parallel to the majority influence, the minority is
able to influence too. Relying on the concept of social conflict, minorities have shown that it is
possible to bring change in the majority opinions, attitudes and behaviours.

4.2.2.1 Moscovici Experiment

Since the end of the 1960s, Moscovici started to investigate the reciprocal process of majority
influence [Moscovici, 1969]. His objective was to understand the social mechanisms by means
of which an individual (or a minority of individuals) exerts an influence that make the group
change its position in favour of the minority [Bowser, 2013]. Moscovici and colleagues researched
minority influence in a conformity situation in which 192 participants that were randomly
affected to either a consistent, inconsistent or control group. Each group was composed of
4 participants and 2 confederates representing the minority (except the control group). The
experience consists in asking the group members to state the colour of 36 slides, all were blue
but with varied brightness.

In the consistent group, the 2 confederates described all slides as green. In the inconstant
group, the confederates stated that 12 slides were blue and described the others as green. In
the control group, there were no confederates.

Figure 4.7 – The results of Moscovici experience [Moscovici, 1969].

The results of the study (cf. Figure 4.7) showed that a non neglectful portion of the group
(32%) gets converted to the incorrect statement made by the minority (i.e. the confederate
person). Thus, in these experiments, Moscovici evidenced the fundamental role of the minority
consistence in bringing changes to the majority position. For the author, being consistent is

99

Chapter 4. The Social Dimension of Trust Management

more likely to influence the majority than if the minority often changes its position.

Definition 9 (Conversion) Conversion is the ability of a minority to influence and convince
a majority that the point of view of the minority is correct.

The results of Moscovici were later confirmed by many other researchers proving that a
minority could, surprisingly, influence the decision made by a majority without relying on
power or authority.

4.2.2.2 Nemth Experience

Nemeth [Nemeth, 1986] explained that when majorities are faced with a consistent attitude
(the one of the minority) they are confused and try to understand why the minority is so
determined to express controversial opinions [Nemeth, 1986]. The majority influence is built
upon this questioning that disconcerts the majority and leads in some situation to changes.

Later, Nemeth questioned whether consistency alone was sufficient for a minority to exert
an influence over a majority. To explore this phenomenon, Nemeth used a mock jury in which
groups of three participants and a confederate had to decide the amount of compensation to
be accorded to a victim of an accident. Nemeth evidenced the importance of flexibility and
compromises to make the majority admit the minority opinion.

In fact, Nemeth provided valuable results about how the majority interprets the minority
attitude. The consistency argued by Moscovici is perceived as an inflexible, dogmatic and rigid
attitude, so the majority will unlikely change its view. In contrast, if the minority position is
perceived to be cooperative, reasonable and less extreme the influence of the minority over the
majority will have better chances to succeed.

4.2.3 The Social Impact Theory

In the previous sections, we presented several works that demonstrate the extent to which people
(majorities or minorities) can be influenced by others. In this section, we present works that
try to identify situational factors that makes people conform or not. Based on the findings and
results of previous works, Latané [Latané, 1981] formalised the concept of social impact in which
he tried to characterise the social situation that determines the extent to which an individual
is willing to confirm or to convert. To that aim, Latané assimilated the social influence (called
impact) on an individual to the way light-bulbs illuminate a surface. Having this analogy in
mind, Latané stated that the social influence felt by an individual is function of the strength,
immediacy and number of the source and the target of the influence [Rehm and Endrass, 2009].

SocialImpact =
(Strength× Immediacy ×Number)source

(Strength× Immediacy ×Number)target

(4.3)

where:

100

4.3. Multi-Agent Systems

• Strength states how important and valuable the influencing individuals are to the influ-
enced person,

• Immediacy represents the spatial or social closeness of the influencing individuals,

• Number expresses how many persons are exerting the influence on the influence person.

Discussion

Whether they represent a majority or a minority, individuals tend to change their opinions,
attitudes and behaviour under the pressure of the social structure to which they belong (groups,
communities or societies). What the reader should keep in mind after reading this is that (1)
individuals tend to rapidly converge towards a common opinion which represent the position
of the group with respect to a particular issue (the autokinetic effect investigated by Sherif in
Section 4.2.1.1), (2) when faced to the position of the group, people tend to conform to it even
if they still disagree privately. This kind of conformity is called normative conformity and has
been evidenced by Asch (cf. Section 4.2.1.2). Further, people tend to conform if their position
is conflicting with the one of the group. If there is no conflict, people always prefer to keep their
own position. Finally, (3) when the group does not meet the strength, immediacy and number
conditions or when individuals exhibit consistence and/or flexibility they can lead the group
to change its position in response to their pressure (cf. Section 4.2.2). This last phenomenon
represents an informational conformity in which a group is influenced by a minority and gets
converted to their position.

4.3 Multi-Agent Systems

Multi-Agent Systems (MAS) is a well-established software development paradigm in distributed
artificial intelligence. MAS research has taken its roots from the problems encountered in the
implementation of robust and scalable software systems. The implementation of such systems
led researchers to propose solutions that are composed of distributed computation units that
engage in flexible, high-level interaction with one another and with their environment as well
[Conte et al., 1998]. These computation units are called agents (initially intelligent agents) and
are defined as follows [Jennings and Wooldridge, 1998].

Definition 10 (Agent) An agent is a computer system situated in some environment, and
that is capable of autonomous action in this environment in order to meet its design objective
[Jennings and Wooldridge, 1998].

In the above definition, autonomy refers to the capability of an agent to per-
form actions in order to achieve its objective without the direct intervention of humans
[Wooldridge and Jennings, 1995]. However, what the above definition does not say is how
an agent can achieve its objectives. Wooldridge and Jennings [Jennings and Wooldridge, 1998]

101

Chapter 4. The Social Dimension of Trust Management

identified three characteristics that agents require to satisfy their design goals, namely reactiv-
ity, proactivity and sociability. Reactivity means that the agent should perceive its environment
and react to changes that occur in it. This is important for the agent to achieve simple goals
(e.g. report temperature). Proactivity refers to the ability of an agent to reason about its en-
vironment’s changes and exhibit goal-directed behaviour and/or take initiatives. This feature
is required when goals are complex and the agent needs to adapt to its environment. Finally,
sociability means that the agent is able to interact with other agents (or humans). This last
feature is paramount as agents have limited capabilities that prevent them from achieving am-
bitious complex objective. To that aim, they need to interact/collaborate with others in order
to achieve their objectives [Jennings and Wooldridge, 1998].

Agents are often involved in collective structures in which they engage together to achieve
a common objective. These collective structures are called multi-agent systems (MAS).

Definition 11 (Multi-Agent System) A multi-agent system is a collection of multiple,
eventually independent agents working together in a common environment to solve problems that
are beyond the capabilities or knowledge of individual agents [Jennings and Wooldridge, 1998,
Dignum, 2004].

MAS are often used to implement open systems in which a mix between autonomy and
cooperation is required (e.g. coalitions, communities, virtual organisations). However, in this
kind of systems, agents are developed by different persons, and thus cannot be assumed to
behave as expected (inadvertently or deliberately). Castelfranchi [Castelfranchi, 2000] defined
this issue as the social order problem [Castelfranchi, 2000]. The author described the social
order as “any form of systemic phenomenon or structure which is sufficiently stable”. It is
the existence of such a problem, and its analogy with the issues presented in this chapter
introduction, that motivated our choice in addressing the trust management problem from a
multi-agent perspective.

The social order problem stimulated MAS researchers for more then ten years during which
they proposed several control mechanisms that address this problem from two different per-
spectives: top-down and bottom-up. Top-down approaches are said to be system-centred. The
mechanisms by means of which agents are controlled are made explicit and are orchestrated
by the system (e.g. authorities or particular agents). In contrast, bottom-up approaches
are agent-centred and rely on implicit control that is performed by the agents themselves
[Castelfranchi, 2000, Grizard et al., 2007, Rakotonirainy et al., 2009, Andrighetto et al., 2010,
Villatoro, 2013, Bowser, 2013]

4.3.1 Top-Down Perspective: Orchestrated Control

In this approach, the problem of controlling the behaviour of the members of a group is solved
in a prescriptive and explicit way. Depending on the nature of these prescriptions and the
way they are made explicit to the agents, this approach is split into two sub-approaches: by
assigning organisations to systems, or by imposing norms to agents.

102

4.3. Multi-Agent Systems

4.3.1.1 Organisational Approach

The concept of organisation is not new. It has been introduced from the begging of MAS (cf.
Corkill’s doctoral dissertation [Corkill, 1983]). However, organisations as first class abstraction
for programming MAS were made famous in the team-oriented programming (TOP) model
[Tambe, 1997, Tambe, 1998, Pynadath et al., 2000].

Definition 12 (Organisation) Purposive supra-agent pattern of emergent or (pre)defined
agents cooperation, that could be defined by the designer or by the agents themselves
[Boissier et al., 2010].

Concretely, multi-agent organisations are defined in terms of roles, relationships and authir-
ity structures that govern agents behaviour. They are used by the system designer to impose
an expecteed behaviour to the agent that compose the system [Horling and Lesser, 2004]. The
expected behaviour is represented as a set of constraints to which each agent is subject once he
joins the system. These constraints are generally associated to roles that agents commit to in
the context of a particular objective [López y López and Luck, 2004]. Thus, roles represent the
cornerstone of an organisation by means of which the organisations prescribes the behaviour of
agents playing this role [Tinnemeier et al., 2009].

In order to implement such systems, the specification of the organisation has to
be made explicit so that the agents that belongs to this system can reason on them
[Hubner et al., 2007]. To the best of our knowledge, there exist four predominant approaches for
implementing organisations in multi-agent systems: ISLANDER [Esteva et al., 2002], STEAM
[Tambe and Zhang, 2000], AGRE [Ferber et al., 2005], MOISE+ [Hubner et al., 2002] and
OPERA [Dignum, 2004].

The specification of an organisation is usually defined with respect to two distinct dimen-
sions: functional and structural dimensions. The functioning of an organisation defines the
global objective of the systems and how this objective can be further defined into sub-objectives
(e.g. STEAM andMOISE+); while the structure of an organisation determines the roles, the
groups and how groups and roles are organised (e.g. STEAM, AGR and MOISE+).

Among these models and systems, the MOISE+ model is a good candidate since it com-
bines functional and structural dimensions while keeping them independent and extensible.
The glue which is used to bind both dimensions is a normative dimension that makes it possi-
ble to express obligations and permissions with respect to the achievement of collective goals
while playing roles participating to the structural dimension. Norms and normative multi-agent
systems are presented in the next section.

4.3.1.2 Normative Approach

In the previous section, we presented a top-down approach for controlling agents with or-
ganisation concepts. However, in many situations the orchestration of organisations can be
complex to be achieved, especially in presence of a large population and a high agent turnover

103

Chapter 4. The Social Dimension of Trust Management

[Haynes et al., 2013]. In that context, norms represent a flexible way by means of which agents
behaviour is constrained.

Normative multi-agent systems (NMAS) combine theories, mechanisms and frameworks
from normative systems (NS) with the ones from multi-agent systems (MAS). Boella and col-
leagues defined a normative multi-agent system as a “MAS composed of mechanisms to repre-
sent, communicate, distribute, detect, create, modify, and enforce norms, and mechanisms to
deliberate about norms and detect norm violation and fulfilment” [Boella et al., 2008]. Meyer
and Wieringa [Meyer and Wieringa, 1993] defined normative multi-agent systems as “systems
in the behaviour of which norms play a role and which need normative concepts in order to be
described or specified” [Meyer and Wieringa, 1993, Meyer et al., 1998].

Definition 13 (Norm) A norm is a formal specification of deontic statements that aims at
controlling the behaviour of software agents and interactions among them [Villatoro, 2013,
Tinnemeier et al., 2009, Governatori and Rotolo, 2009].

Norms are used to specify constraints on the behaviour of agents. In our thesis, we distin-
guish between legal norms and social norms. Legal norms are created, maintained and enforced
by entities that are outside the system (e.g. system designer or an authority). In contrast, so-
cial norms originate from inside the system and are enforced by the agents themselves. This
section addresses legal norms, while social norms will be presented in Section 4.3.2.

Both legal and social norms are stated in terms of obligations, permissions and prohibi-
tions. In what follows, we present how legal norms are implemented in multi-agent systems by
regimentation or by regulation [Campenni et al., 2009].

• In regimentation, norms are hard coded in the agents, thus each agent is by default norm
compliant. Regimentation can be achieved in two ways: mediation and hard-wiring. In
mediation, agents’ interactions are mediated by a reliable entity that controls their current
behaviour and prevents deviation from the expect one [Criado, 2013].

• In regulation makes the norms intelligible to agents and states what these agents are
obliged, permitted or prohibited to do. Regulation is achieved by a third party (e.g. sys-
tem designer, regulation authority, particular agent) that observes the agents’ behaviour
and sanctions those that do not comply with the norm.

In the light of this, and compared to regimentation, regulation represents a flexible, adaptive
and robust control mechanisms as agents can deliberately violate these norms when faced to
unexpected circumstances [Haynes et al., 2013]. Finally, the norms of an organisation define
the obligations, permissions and prohibitions that an agent is subject to within the organisation
(e.g. MOISE+ [Hubner et al., 2002] and OPERA [Dignum, 2004]). For instance, drivers in
France drive on the right side of the road, while the norm in United Kingdom is to drive on
the left side of the road.

104

4.3. Multi-Agent Systems

4.3.2 Bottom-Up Perspective: Emergent Control

In the previous section, we presented two top-down mechanisms (i.e. organisations and legal
norms) by means of which a group of agents copes with the autonomy of its members. Both
mechanisms rely on a third party entity that is responsible for enforcing these mechanisms
and sanctioning the deviant agents. However, in many situations having such an entity is not
feasible (e.g. self-organising multi-agent systems).

In this section, we present the bottom-up approach, called emergent control, which has been
proposed as an alternative solution for the social order problem. In this approach, all agents
in the system are collectively involved in creating, modifying and enforcing the constraints to
which they are subject [Burgemeestre et al., 2010]. These constraints represent social norms
that result from the agreement of agents about what represents an appropriate behaviour
[Conte et al., 2009].

Definition 14 (Social Norm) A social norm is a generally accepted way of behaving that
most agents in a group agree on and endorse as right and proper [Smith and Makckie, 2000].

It is relatively simple to understand how legal norms are created, updated and enforced (cf.
Section 4.3.1.2). However, is it much less obvious how the same process applies to social norms
[Campenni et al., 2009]. Therefore, most of works on social norms draw inspiration from works
on sociology and social-psychology. As presented in Section 4.2, sociology provided several
theories that directly address the concept of social norm. For instance, the autokinetic effect
demonstrated by Sherif in Section 4.2.1.1 studies the mechanisms by means of which norms
emerge.

Consequently, research on social norms has been particularly interested in interpreting and
reusing these models and theories to implement emergence of social norms and their enforce-
ment. Norms emergence studies the mechanisms used by agents to create and modify social
norms in the system, while social control focuses on how social norms are enforced by agents
[Criado, 2013].

4.3.2.1 Norms Emergence

In the context of social norms, the main objective of the MAS research community is to un-
derstand: (a) how norms appear in the mind of individuals, and (b) how these norms are
disseminated within the society until their adoption. Social norm creation is explained as a
manifestation of social influence which has two parts: (1) norms are developed through pres-
sures towards uniformity (cf. Section 4.2.1.1), and (2) they are propagated within the system
using conformity (cf. Section 4.2.1.2). As these mechanisms have already been presented in
previous sections, we focus the remainder of this section in the techniques used to implement
them.

Social norms emergence is generally implemented in multi-agent systems using the agents’
self-organising capabilities. Farley and Clark defined a self-organising system as “a sys-
tem which changes its basic structure as a function of its experience and environment”

105

Chapter 4. The Social Dimension of Trust Management

[Farley and Clark, 1954]. In this definition, the authors highlighted the two main features
of a self-organising system that are adaptation and learning [Ashby, 1947, Banzhaf, 2009]. In
self-organising systems, local interactions between individuals give rise to observable global
features such as robustness, scalability or social order. This phenomenon is commonly called
emergence [Alechina et al., 2013]. Conte and colleagues defined emergence as a macro-level
effect of interactions among agents, which are carried out at the micro-level.

The principal idea of self-organisation is to endow local agents with mechanisms that, when
these agents are in interaction, leads to the emergence of some desirable properties in the
existing system. Some of these properties have been identified and grouped as follows:

Self-configuration: refers to the ability of the system to reconfigure itself in order to achieve
its goals.

Self-optimisation: is used in reference to the ability of the system to adapt its behaviour to
improve its utility in achieving its goals.

Self-healing: refers to the ability of the system to overcome the states that prevent it from
achieving it goal. Concretely, it tries to bring the system back to the normal working
conditions.

Self-protection: aims at allowing the system to detect attacks that prevent it from achieving
the goal, and if possible detect threats and avoid them.

All these properties are generally called self-* properties as what they have in common is
that they are achieved autonomously and collectively by the agents that compose the system.

To that aim, the agent must be able to retrieve its internal variables and the ones of the
entities that compose its environment (monitor). It should also be able to interpret and process
such data (analyse), deliberate and take decision on how to react given this data (plan), and
finally trigger actions in order to apply the decision he took (execute). The overall process is
executed in a loop, called the MAPE-K loop (Monitor, Analyse, Plan, Execute, Knowledge),
that is supported by an internal knowledge base in which the agent stores the data it processed
during the cycle [Dubois, 2011, Koehler and Giblin, 2003].

4.3.2.2 Social Control

In self-organising systems, and in absence of a trusted authority, the agents themselves are
responsible for enforcing the social norms. The enforcement of social norms by the agent popu-
lation is called social control. Social control provides multi-agent societies with a decentralised
control mechanism. It is generally achieved with three punishment mechanisms: sanctions,
reputation and exclusion.

106

4.3. Multi-Agent Systems

Sanctions

Sanctions and punishment are well known mechanisms to exert a social control on wrongdoers.
In utilitarian systems, a sanction results in a loss of utility. Several works in multi-agent
systems have considered the use of sanction mechanisms to ensure social order. Pasquier and
colleagues provided in [Pasquier et al., 2006] an ontology of social control tools in which they
classified different types of sanctions that can be applied in MAS. The authors distinguish
negative sanctions from positive sanctions. Negative sanctions are used to discourage norms
violators, while positive sanctions represent rewards that encourage compliant behaviours.

Allowing peer sanctioning ensures a decentralised norms enforcement. However, in ab-
sence of a central authority, sanctioning non compliant implies bilateral cost; the sanction
has a cost for both the sanctioning and the sanctioned agents. Consequently, in a such
situation, agents tend to refrain from sanctioning as the sanction implies a loss of util-
ity [Burgemeestre et al., 2010, López y López and Luck, 2004, Boella and van der Torre, 2005,
Bocchiaro and Zamperini, 2012]. To that aim, recent works tried to propose mechanisms in
which sanctions are applied collectively [Villatoro, 2013].

Reputation

In non-utilitarian systems, sanction mechanisms we presented in the previous section are not
efficient or are impossible to apply. For instance, in social networks, the concept of utility
is hard to implement. In such context, social sanctions are used to alter the image of the
individual among the society.

Reputation is the most used mechanism to sanction non compliant agents
[Grizard et al., 2007]. As presented in Chapter 2, reputation reflects the image of an
individual as seen by the member of the society. So when an agent does not comply with
a norm, its reputation is negatively updated by all the agents that observed its deviance
[Eisenegger, 2009]. The new reputation value is propagated and thus all agents (even
those that did not observe the non-compliant behaviour) update their value. Nevertheless,
reputation has two main limits: how the system is initiated (cold start, bootstrap) and how to
deal with anonymity.

Exclusion

Sanctions and reputation are generally used as a warning to discourage non compliant agents
from violating the norms that govern the society. However, in many situations agents are not
sensitive to such warnings and pursue violating norms. Such behaviour does not only threaten
the system’s stability, but may also influence other agents to deviate if no effective action is
taken. For that, exclusion seems to be the ultimate solution for controlling non-compliant
agent.

Exclusion is also considered as a consequence of bad reputation. Agents tend to refuse
to interact with agents having a bad reputation. This situation is assimilated to an implicit

107

Chapter 4. The Social Dimension of Trust Management

exclusion even if the agent still belongs to the society. Nevertheless, in a fully decentralised
system combined with unreliable authentication mechanisms, ensuring exclusion remains an
open issue for research in MAS.

4.3.3 Mixed Perspective: Micro-Macro Loop

In previous sections, we presented two approaches by means of which a group of agents deals
with the autonomy of its members to ensure social order. In abstract terms, the difference
between these approaches are best described by the question “social order is the result of an
external entity imposing control on the behaviour of agents (via organisations or via norms),
or reflects patterns which appears from the interaction of these agents (via norm emergence
and self-organising mechanisms)”.

However, in what Keith Sawyer describes as “a fundamental intellectual problem”
[Sawyer, 2003], both approaches fail to adequately address the real interplay between top-down
and bottom-up. Also known as the micro-macro phenomena, some recent approaches rely on
this phenomena to seamlessly combine the previous approaches. Among these initiative, we are
particularly interesting in works about reorganisation and those that address norms adaptation
[Alechina et al., 2013].

4.3.3.1 Reorganisation

Reorganisation is defined as process by means of which an organisation is changed to a new one.
As presented in Section 4.3.1.1, an organisation can be described via two dimensions, namely
structural and functional. In the light of this, a reorganisation can affect both dimensions. For
instance, an organisation can change its structure by changing the groups and the roles that
compose it. An organisation can also be reorganised by changing the missions that agents must
achieves.

In [Hübner et al., 2004], the authors identified three types of reorganisation; predefined,
controlled and emergent. Predefined reorganisation is a planned reorganisation that is auto-
matically triggered when the conditions are met. For instance, an organisation can be specified
to change its structure after a certain time of execution. Controlled reorganisation will be
triggered by an entity (an agent of the system or a system designer). Emergent reorganisa-
tion is performed by one or many agents of the system based on their individual beliefs and
objectives. These two last forms of reorganisation reflect the micro-macro loop we are inter-
ested in. In [Alberola et al., 2011], the authors presented and compared existing approaches of
reorganisation in multi-agent systems.

4.3.3.2 Norms Adaptation

Norms adaptation tries to combine the mechanisms used in legal norms with those used to
build, update and maintain social norms. This approach is currently considered as one of the

108

4.4. Conclusion

most challenging properties of multi-agent systems that operate in dynamic, unpredictable and
eventually hostile environments.

Like reorganisation, norms adaptation can be achieved in three different ways: predefined,
controlled and emergent. Here again, we are interested in controlled and emergent norms
adaptation that can be achieved via a micro-macro loop.

With controlled adaptation, a system designer can allow its agents to dynamically re-
vise the norms to which they are subject in response to changes in the environment. In
[Lacey and Hexmoor, 2003], the authors presented a model in which agents are endowed with
capabilities to adapt norms to which they are subject when some conditions in the environment
hold.

In contrast, in emergent norms adaptation, agents are the masters of their own fate. Each
agent can reason on the norms governing its behaviour and can revise it if necessary. In absence
of a central authority, the updated norm is propagated and disseminated using the mechanisms
described in the social influence theory 4.2.

4.4 Conclusion

In this chapter, we reviewed existing literatures with respect to the social dimension of trust
management. Our objective was to analyse how research to date was dealing with situations in
which the decision made a member of a social structure (e.g. group, community, coalition,etc.)
affects all members of the structure. We presented in sections 7.5.1 and 7.5.2 two predominant
approaches for dealing with this issue and discuss their applicability in the context of virtual
communities.

In Section 4.2, we explored the social science discipline looking for explanations about how
humans take decisions within social structures. With respect to that, works from the social
influence theory answered most of our questions. The theories that have been proposed con-
firmed the limits of existing trust management systems with respect to the lack of consideration
of the social dimension in the trust decision making.

Finally, in Section 4.3 we presented basic concept of multi-agent systems and discussed the
adequacy of their techniques with the social influence theory. In the light of that, and with
respect to our objectives (cf. Section 1.3), and given the agents properties we presented in 4.3,
agents technology seems to be the perfect abstraction for the implementation of adaptive and
socially-compliant trust management systems.

Previously, we discussed how norms and organisations have been used to explicitly regulate
multi-agent systems by making agent comply with the behaviour expected by the system de-
signer. However, the use of such approach often requires the introduction of special entities
that are responsible of issuing, maintaining and in most of the case enforcing the organisation
specification and norms (sanctions, rewards or exclusions). However, in complex distributed
system, identifying such a unique entity is neither possible nor desirable. Impossible because it
would be very hard to reach an agreement about the entity responsible of issuing norms, and

109

Chapter 4. The Social Dimension of Trust Management

not desirable because such systems would not meet the requirements of scalability due to the
risk of bottlenecks and the presence of a unique point of failure and attack. Moreover, systems
in which the control reflects a unique perspective (the one of the system designer her) would
not be more powerful than that unique perspective. In other words, the control mechanism
will never be more efficient than that unique perspective [Dubois, 2011]. However, this system-
level control is the unique way to guarantee that unknown agents will behave as expected as it
imposed constraints on their behaviour.

110

4.5. French Summary

4.5 French Summary

Dans le chapitre précédent, nous avons pu constater que l’objectif des systèmes de gestion de
la confiance existants est de faire en sorte que les décisions prises par leurs utilisateurs soient
sûres à titre individuel. Dans ce chapitre, nous allons nous intéresser aux mécanismes qui
permettraient à ces systèmes d’être sûre à titre collective également.

En effet, à partir du principe que les individus ont tendance à aller plus loin lorsqu’ils
conjuguent leurs efforts, le concept de communauté est très à la mode de nos jours afin de
stimuler la collaboration dans les communautés réelles et virtuelles. Or, dans ce type de situa-
tion, les individus rejoignent les communautés avec des expériences, compétences et politiques
diverses. Tandis que l’hétérogénéité en matière d’expérience et de compétence est considérée
comme étant la richesse et la force de ces communautés, hétérogénéité dans leurs politiques
peut constituer un frein à la collaboration si celles-ci sont en conflit et qu’aucun mécanisme n’a
été prévu pour résoudre ces conflits.

Dans ce chapitre, nous explorons la littérature à la recherche de mécanismes qui seraient
susceptibles d’apporter une solution à ce problème. Nous somme particulièrement focalisés
à apporter une solution à ces trois questions : (1) comment les membres de communauté
virtuelles prennent des décimions quand les conséquences de celles-ci peuvent affecter les autres
membres, (2) est que le fait d’être dans une communauté affect la manière dont l’individu prend
ses décisions et comment, et (3) est ce qu’un individu peut affecter la manière dont les autres
membres de la communauté prennent leurs décisions et comment cela est-il possible.

Dans la suite de ce chapitre, nous complétons d’abord notre revue de la littérature en matière
de gestion de la confiance afin d’analyser comment les chercheurs de la discipline ont essayé de
répondre à la problématique soulevée plus haut. Ensuite, nous analyserons quelques théories
et modèles qui ont été proposés en sociologie et implémentés dans les systèmes multi-agent afin
de voir si ces disciplines ont sur répondre à cette problématique [Coleman, 1990, Yao, 2004].

4.5.1 La dimension sociale dans la gestion de la confiance

Dans la gestion de la confiance et le contrôle d’accès, les politiques sont utilisés pour prendre
des décisions qui proviennent et expriment les exigences d’une seule entité (le propriétaire).
Cependant, lorsqu’il s’agit de structures collectives comme les communautés virtuelles, cette
démarche ne s’applique plus. Les conséquences de la décision d’un individu sont supportées
et affectent tous les membres de la communauté. Cela implique que la prise en compte de
la politique de chaque individu lors de la décision est un élément-clé de la cohésion de la
communauté. Dans cette perspective, nous avons recensé deux approches (combinaison et
intégration) qui ont été proposé dans le domaine de la gestion de la confiance pour faire face à
cette problématique.

111

Chapter 4. The Social Dimension of Trust Management

4.5.1.1 Combinaison

La combinaison a été proposé dans le cadre de l’infrastructure XACML. Dans ce langage, il
existe trois niveaux de granularité pour définir des politiques : des conditions, des politiques
et des ensembles de politiques. Ainsi, le résultat de l’évaluation d’une politique est obtenu en
combinant les résultats des l’ensemble des conditions (ou des politiques) composant la politique
(ou l’ensemble des politiques). La contribution consiste alors à proposer différentes heuristiques
afin de proposer à l’utilisateur des approches de combinaisons qui couvent tous ces besoins (e.g.,
si une des décisions acceptes, la décision finale est d’accepter) [Li et al., 2008, Rao et al., 2009].

La limite de cette approche réside dans le fait que la combinaison nécessite que l’ensemble des
individus impliqué dans la décision soient présents et fournissent leurs évaluations respectives
pour que la décision puisse être prise. Or, dans un système ouvert et distribuée, une telle
condition serait difficile à satisfaire. De plus, cette approche implique une complexité si on
prendre en compte la négociation et mobilise l’ensemble des membres ce qui peut poser des
problèmes de rendement et de passage à l’échelle.

4.5.1.2 Intégration et Composition

L’intégration et la composition font référence à la même approche: construire une nouvelle poli-
tique à partir de politiques qui ont été spécifié par plusieurs individus. Ainsi, dans l’intégration
(nous utiliserons ce terme dorénavant), la décision qui peut concerner tout le monde est prise
en se basant sur une politique intégrée qui n’est que le produit de l’intégration des politiques in-
dividuelle de chaque membre. Une fois cette politique intégrée obtenue, son évaluation permet
d’obtenir une décision qui reflète l’avis de tous ou du moins la majorité.

Bonatti et ses collègues [Bonatti and Samarati, 2002] furent les premiers à explorer cette
piste. Ils ont proposé une algèbre de composition de politiques qui permet d’additionner, de
conjuguer et de soustraire des politiques entre elles. L’addition produit l’union des politiques,
la conjugaison permet d’obtenir leur intersection et la soustraction permet de soustraire d’une
politique les effet non existants dans l’autre. Par exemple, l’addition de deux politiques aura
pour effet de créer une politique qui va autoriser toute ce que les deux politiques autorisaient.
Ainsi, c’est un addition des autorisations véhiculés par les les politiques qui est effectuée.

Plus récemment, Mazzoleni et ses collèges [Mazzoleni et al., 2006] se sont inspiré des travaux
de Bonatti afin de proposer un mécanisme similaire pour l’intégration de politiques XACML.
Dans leurs travaux, l’intégration ne prend plus la forme d’opérateur dans une algèbre de poli-
tique mais d’algorithmes qu’ils appellent heuristiques de combinaison [Rao et al., 2011].

4.5.2 La théorie de l’influence sociale

D’après Allport [Rao et al., 2011], “La psychologie sociale tend à comprendre et à expliquer
comment les pensées, les sentiments et les comportements moteurs des êtres humains sont in-
fluencés par un autrui, réel, imaginaire ou implicite”. Ainsi, la psychologie sociale s’intéresse
aux interactions de l’individu afin de comprendre comment est-ce qu’il agit ou réagit à l’égard

112

4.5. French Summary

d’autrui. Ce phénomène est appelé influence sociale. Dans notre thèse, nous nous somme con-
centré sur l’étude de l’influence qui s’exerce entre un individu et le groupe auquel il appartient.
Dans ce type d’influences, les travaux de chercheurs comme Sherif, Asch, Milgram, Moscovici
ou plus récement Latané, on permit d’identifier deux formes d’influence : l’influence du groupe
sur l’individu et l’influence de l’individu sur le groupe. La première est appelée l’influence ma-
joritaire et la seconde l’influence de la minorité. Dans ce qui suit, nous décrivons brièvement
chaque type d’influence en précisant les modèles et théorie qui y ont été proposés.

4.5.2.1 L’influence majoritaire

L’influence majoritaire a été définie comme étant la tentative de la majorité des membres d’un
groupe (ou une figure les représentants) d’imposer son point de vue, son attitude ou son avis
sur un individu ou sur une minorité dissidente. Dans cette section, nous étudions les principaux
travaux qui ont permis d’identifier puis d’établir l’existence de cette influence.

La première expérience dans ce sens fut menée par Muzafer Sherif au travers de son effet
autocinétique. Dans ces expériences [Sherif, 1936, Sherif, 1937], Sherif observa que les individus
avaient tendance à construire des normes communes quand ils sont au sein de groupes. En
réalité, chaque individu était apte à fléchir sa position pour s’approche de cette adoptée par les
autres créant de ce fait un capital commun différent de la position initiale de chaque individu.

L’expérience de Asch quelques années après à permise de mettre en évidence le phénomène
de conformité (ou l’effet Asch). En effet, 80% des individus évalué avait tendance à changer
leur position pour adopter celle prise par un groupe.

Enfin, dans l’expérience de Milgram, le chercheur a mis en évidence que la conformité
pouvait s’opérer également en présence d’un unique individu mais uniquement quand celui-ci
constituait une figure qui représentait la majorité (e.g., autorité). Là aussi, bien que contraires
à leurs principes, les individu ont montré une nette tendance à changer de position pour se
conformer (obéir) à l’avis de la majorité représenté ici par l’autorité.

4.5.2.2 L’influence minoritaire

Dans l’influence majoritaire, les chercheurs ont essayé de comprendre pourquoi un individu était
amené à changer sa position pour se conformer (ou obéir) à une majorité. Or, tout le monde sait
que tout comme la majorité, une minorité est également capable d’influencer la majorité. Nous
expérimentons tous les jours ce phénomène à travers les concepts de modèle, de star ou de figure
publique influente. Ainsi, à partir des années 1960, le français Serge Moscovie a commencé à
étudier le processus réciproque de l’influence majoritaire. Ses expériences [Moscovici, 1969] ont
permis de démontrer que quand une minorité est constante, elle peut amener une partie de la
majorité à se convertir en adoptant leur position. Poussé à l’extrême, ce processus permettrait
à long terme de faire en sorte qu’une minorité devienne la majorité.

Quelques années plus tard, Nemeth [Nemeth, 1986] poursuivit ces expériences afin
d’expliquer davantage ce phénomène. Nemeth expliquait que face à une minorité conflictuelle

113

Chapter 4. The Social Dimension of Trust Management

et consistante, la majorité était poussée à se questionner à la position de cette minorité, et c’est
justement ce questionnement qui pousse certains d’entre eux à se convertir.

Nous avons utilisé ces résultats dans notre modèle (cf. Chapitre 7)afin de permettre à des
membres de communauté virtuelle d’adapter leurs politiques collectives.

4.5.3 Les systèmes multi-agent

Les systèmes multiagents (SMA) sont un paradigme de programmation dont les origines se
trouvent dans le domaine de l’intelligence artificielle. La recherche en SMA se nourrit des
problèmes rencontrés lors de l’implémentation des systèmes robustes et capables de passer
à l’échelle. Ainsi, les chercheurs ont proposé l’utilisation d’entité computationnelle distribuée
qui seraient capables d’entrer en collaboration avec d’autres unités ainsi que son environnement
[Jennings and Wooldridge, 1998]. Ces entités sont appelées agents et sont souvent caractérisées
à travers leur autonomie, réactivité et proactivité. Les agents sont également caractérisés par
leur dimension sociale car ils évoluent souvent au sein de structures collectives au sein desquelles
ils collaborent afin de réaliser un objectif commun. Sur cet aspect, les SMA se rapprochent
beaucoup du concept de communauté virtuelle ce qui a motivé davantage notre objectif d’en
analyser le mode de fonctionnement.

Les SMAs ont été souvent utilisé pour implémenter des systèmes ouverts et décentralisé dans
lesquels un juste milieu entre autonomie et coopération est requis (e.g., coalitions, organisations
virtuelles et plus récemment communautés virtuelles). Or, ces systèmes sont souvent développés
par différentes personnes et dont ne peuvent être supposés fonctionner comme prévu (par
inadvertance ou délibérément). Ce problème a été défini par Castelfranchi par l’ordre social
[Castelfranchi, 2000].

Le problème d’ordre social a enthousiasmé la recherche dans les SMAs durant la dernière
décennie. Durant cette période, plusieurs travaux ont été réalisés dans la perspective de mettre
en place des mécanismes de contrôle afin de résoudre ce problème. On distingue deux types de
mécanismes : le contrôle descendant et le contrôle ascendant. Dans la première, le problème de
contrôler le comportement des agents se traduit par des approches explicites qui imposent le
comportement escompté aux agents du système. Nous citons à titre d’exemples les approches
par organisation ainsi que celles par normes. Or, ces deux approches requièrent l’introduction
d’une entité spéciale qui a la charge de spécifier, maintenir et dans le plus souvent appliquer
ces mécanismes. En réponse, dans la seconde approche, le contrôle repose sur l’implication de
chaque agent dans le contrôle des autres et ne nécessite donc aucune entité tierce. Dans cette
catégorie, nous avons présenté les travaux sur l’émergence de normes ainsi que ceux liés au
concept d’ordre social [Dubois, 2011, Koehler and Giblin, 2003].

Enfin, dernière approche en cours d’expérimentation vit à équilibrer les deux approches en
proposant un bouclage individu-collectif dans lesquelles. Nous évoquons à titre d’exemple les
travaux sur la réorganisation [Hübner et al., 2004] ainsi que ceux sur l’adaptation de normes
[Alechina et al., 2013].

114

Part III

The ASC-TMS Model

Chapter 5

A Multi-Agent-Based
Virtual Community

The adoption of agent and multi-agent technologies is a trending approach for modelling and
implementing collaborative virtual communities (VC) as well as social networks (SN) in general
[Camarinha-Matos et al., 2003, Rupert et al., 2007, Gupta and Kim, 2004]. As illustrated in
Chapter 4, multi-agent systems as a virtual workspace where agents are interacting, competing,
cooperating and negotiating for the fulfilment of their (individual and collective) goals are a
good abstraction model for supporting virtual communities.

In this chapter, we will describe from a theoretical point of view, fundamental concepts
that we will rely upon in Chapters 6 and 7. First, we will introduce in Section 5.1 a general
view of the multi-agent-based framework that underpins the contribution of this thesis. Then
we will delve into more details to present each of the elements that comprise this framework.
We start our description in Section 5.3 with the environment in which the agents evolve, then
we present, respectively, in Section 5.4 and Section 5.5, the agents that represent human users
and the communities to which they belong. Finally, Section 5.6 is dedicated to the interactions
that are taking place between the three concepts aforementioned. We conclude this chapter by
a summary in which we discuss what is essential to be retained from these descriptions.

Before proceeding, however, we will present a motivating example that we will use through-
out this chapter and the subsequent chapters to illustrate the forthcoming concepts.

Example 5.0.1 (Running Example) In this example, we consider a set of participants (e.g.
Alice, Bob, Chris, Dave, Eric and Felix) which aims at developing mobile applications. To
that aim, these members tend to join together and create dynamic open source communities
wherein applications are developed collaboratively.

Open source software development is one of the most successful collaboration models. Based
on this model, a number virtual communities have been formed in the last decade to make dis-
tributed individual collaborate for the production of a common good. The number of people
participating in open source projects is very large and the created communities are open with-
out any central authority. In such context, the development of trust is especially important
as empirical evidences [Osterloh and Rota, 2005] show that many participants in open source
project are conditionally cooperative and that trust represents the principal motivation leading
these individuals to cooperate.

Chapter 5. A Multi-Agent-Based Virtual Community

We will refer to this example in subsequent chapters whenever it serves to illustrate our
approach.

5.1 The System Model Specification

In this section, we present the multi-agent-based virtual community model S. As discussed in
Section 4.4, we have chosen a normative multi-agent system in order to put in place a mixed
control loop using the top-down and bottom-up mechanisms presented in the previous chapter
(cf. Section 4.3). These mechanisms will be used later in Chapter 7 to enable social and context
awareness trust management.

Agent Resource
Agent-Resource

Interactions

Agent-Agent
Interactions

Community

Figure 5.1 – An illustrative example of a population of agents with three multi-agent commu-
nities.

As illustrated in 5.1, agents are used as first level abstraction of virtual communities par-
ticipants. This system S can be defined at a time t by a 5-uplet:

St = 〈A,R, C, I,∆〉t

where:

• A is the set of agents involved in S,

• R is the set of resources that constitute the agents environment,

• C is the set of communities in which agents are organised,

• I is the set of interactions involving agents,

118

5.2. Ontology

• ∆ is the domain ontology.

In order to reduce the complexity of our descriptions, we wilfully refrain from delving
into MAS detailed properties. Instead, we focus on the agent (A), the environment (R), the
organisation (C) and the interaction (I) elementary dimensions with respect to the VOWELS
paradigm [da Silva and Demazeau, 2002]. Before detailing each dimension, we start by defining
the domain ontology ∆ on which most of the other definitions rely.

5.2 Ontology

The ontology represents the agents’ universe of discourse. It encapsulates all the knowledge
that an agent must be aware of to achieve its activities.

Definition 15 (Ontology) The domain ontology ∆ is defined by:

∆ = 〈T,A,R〉

Where:

• T and A are disjoint sets which elements are, respectively, terms and assertions (ABox).
These concepts are commonly called TBox for terms, and ABox for assertions.

• R = RT ∪RA∪RT A is a set of relations between, respectively, elements from T , elements
from A and elements from T ∪A such as :

– {⊐,≡, 6≡} are, respectively, subsumption, equivalence and disjunction relations
that compose RT ,

– {6=} is the DistinctFrom relation that compose RA and which is used to differentiate
elements from RA,

– {
.
=} is the IsA relation that links each element from RA to its corresponding class

from RT .

The TBox T of the ontology is invariant. It contains statements that describe the terms (i.e.
ontological concepts) used by the agents. The assertional box A can change over time, it
contains assertions (i.e. ontological instances). The set R contains relations that may exist
between elements from T , elements from A and elements from T ∪A. For instance, ⊐: A→ A

defines a partial order, called taxonomy or concepts hierarchy, over the elements of T . Similarly,
the relation is an instance of (IsA)

.
=: A → T maps each assertion from A to the term that

characterises its class.

Example 5.2.1 (Ontology) For instance, the term image belongs to the TBox T of the on-
tology ∆, while the relation JPEG

.
= image states that every assertion JPEG is considered as

an image.

The elements that constitute the ontology will be progressively defined in the remaining of
this chapter.

119

Chapter 5. A Multi-Agent-Based Virtual Community

5.3 Resources

The system environment is defined as a dynamic set R of passive entities called resources. R
is dynamic because the resources are unpredictably created, updated and destroyed.

Definition 16 (Resources) Resources are artefacts that agents create, update, share and use.
Each resource r is defined by:

∀r ∈ R, r = 〈ε, θ, P 〉

where ε is the resource unique identifier1 in S, θ is the content of the resource, P is the set of
properties that r possesses.

The content that resources encapsulate represents data, services or any functionality that sup-
ports agents individual and collective activities.

Remark 5.3.1 From now onward, we will use the standard dot “.” notation to refer to the
property of an entity (resource, agent or community). For example, we will use r.ε to refer to
the resource identifier.

Example 5.3.1 Let us consider r1 = "prog-v.13.jar" a file containing the Java source codes
of a particular application, while r2 = "calculator" is a web service that provides a scien-
tific calculator. Both resources are uniquely identified using their URIs (Uniform Resource
Identifier) as follows:

r1.ε = http//www.emse.fr/yaich/Eureka/ABC/prog− v.13.jar

r2.ε = http//www.emse.fr/calculator.jsp

The content of r1 constitutes the source code of the Java application, while the content of r2 is
the whole calculation methods provided by the calculator.

Resource Properties

Each resource is associated with a set of properties P that characterises it with respect to other
resources.

Definition 17 (Resource Properties) We define P = {τ, ϕ,Ω, ς, ν} as the set of mandatory
properties that any resource r from R possesses. τ refers to the resource type, ϕ is the identifier
of the resource owner, Ω is the set of operations that can be performed on the resource, ς is its
sensitivity and ν is the resource business value.

These resource properties are paramount as our trust model relies on them. Of course,
this set of properties can be further extended if other application-specific properties need to be
added.

1For simplicity, we will use interchangeably the name of the resource and its identifier. Also, all identifiers

correspond to unforgeable and verifiable via a public/private keys pairs.

120

5.3. Resources

Remark 5.3.2 In the remainder, instead of using r.P.x when referring to the property x of
the resource r, we will use a contracted form r.x to simplify our notation. For instance, r.τ
refers to the type of the resource r.

As defined above, each resource has a type that indicates which kind of content it encap-
sulates. The type of the resource determines also the nature of the operations that can be
performed on it.

Definition 18 (Resources Types) The type of a resource is defined by:

∀ r ∈ R, r.τ ∈ ∆τ

where ∆τ is the sub-ontology that defines all resources types (∆τ ⊂ ∆).

Example 5.3.2 In our illustrative example, the considered set of resources types is ∆τ = {text,
image, software, service}. This set is inspired from the taxonomies defined in the DCMI
(Dublin Core Metadata Initiative [Weibel, 2000]) and from the MIME (Multipurpose Internet
Mail Extensions [Borenstein and Freed, 1996]) as well. Of course, the resource types we give
here are only examples, in reality we can have as many types as we need.

Definition 19 (Resource Owner) Each resource r ∈ R has an owner ϕ. The resource
owner may be an agent or a community and is defined as follows:

∀r ∈ R, r.ϕ ∈ A ∪ C

A resource is considered as an individual resource when its owner is an agent. And a resource
is considered as a collective resource when its owner is a community (i.e. it is owned by all the
agents of the community).

Definition 20 (Resource Operations) The operations an agent can perform on a resource
are defined by:

∀r ∈ R, r.Ω = {ω1, . . . , ωm}/r.Ω ⊂ ∆R
ω ⊂ ∆ω

where the ontology ∆ω describes all possible operations agents can perform in S, and the sub-
ontology ∆R

ω contains the operations that can be performed on a resource.

Operations represent the actions that agents perform to get advantage of services and function-
alities that these resources offer. They represent also low level actions agents can use to sense
and manipulate the environment where they evolve.

Example 5.3.3 Let us consider the Jar file r1 aforementioned. r1 contains several Java files,
each representing a text document that contains the source code of the program that Alice is
developing. For instance, let us consider r3 one of these files. The type of r3 is text and the
operations that can be performed on this type of resources are defined as follows:

r3.Ω = {create, read, update, delete}

121

Chapter 5. A Multi-Agent-Based Virtual Community

Of course, it belongs to the resource owner to allow such operations to be performed or not
to others. This issue is not addressed by the system model S but by the trust model we will
introduce in Chapter 6.

Definition 21 (Resource Sensitivity) The resource sensitivity refers to the degree to which
a resource can be vulnerable with respect to malicious behaviours. It is defined by:

∀r ∈ R, r.ς ∈ ∆ς

The resource sensitivity (ς ⊂ ∆) expresses the negative consequences that an agent must
assume if its resource is affected by a malicious behaviour. For simplicity, resources sensitivity
constitutes an integer value that ranges from 0 to 10 (∆ς = [0, 10]). 0 means that the resource
is not sensitive and 10 means that the resource is extremely sensitive. Based on this property,
resources fall into two categories: public and private. Public resources are non sensitive re-
sources that can be manipulated by any agent, while the manipulation of sensitive resources is
limited to the resource owner and trusted agents. The model that agents use to decide which
agent can be trusted constitute one of contributions of this thesis. It will be described in details
in Chapter 6.

Definition 22 (Resource Value) The value of a resource expresses the benefit an agent gains
after manipulating it. We define this value by:

∀r ∈ R, r.ν ∈ N.

The value of a resource is domain-dependent and application-specific. For some resources,
the value is moral while for others it is purely economic. Therefore, and to refrain from going
into such details, we use a simple numeric value to represent it . This value is of course
dynamic; it increases if the resource has been further improved, and decreases if the resource
was deteriorated.

Example 5.3.4 The value of the resource r1 corresponds to the value of the program conveyed
by this resource. Thus if the program is further developed and improved, its value will increase.
Contrariwise, if the program source code is corrupted, vandalised or plagiarised its value will
decrease.

Now that all resource properties have been introduced, we can present an example to illus-
trate what we have presented so far with a complete example about a resource.

Example 5.3.5 (resource) Let us take the resource r1 aforementioned. r is described in the
system as follows:

〈r, θ, P 〉

where:

• r1.ε = http://www.emse.fr/yaich/Eureka/ABC/prog-v.13.jar

122

5.4. Agents

• θ is the prog-v.13.jar file containing the source code of the software program

• P = {alice, text, {read, update}, 5, 10}

In this example, the resource r1 is identified by its URI. r1 is owned by the agent alice.
r is a text document (r.τ = text) that other agents can read and update. However, as r is
sensitive (i.e r.ς > 0) only the agents that alice trusts are able to perform read and update

operations on r1.

5.4 Agents

Agents are the core entities in the system S. Agents are autonomous software entities able to
perform some tasks in line with their goals (cf. Section 5.4).

Definition 23 (Agent) We denote the set of agents A as a finite set such that is composed
of at least two agents (|A| ≥ 2). Each agent ai is defined by:

∀ai ∈ A, ai = 〈ε,G,Λ, L,R,C, P 〉

where ε is the agent unique identifier2 in A, G is the set of goals it is trying to achieve, Λ ⊂ ∆ω

is the set of actions (i.e. operations) that the agent ai can perform, L is a set of plans ai can
accomplish to achieve its goals, R is a set of identifiers of resources that ai owns, C is the set
of identifiers of communities to which ai belongs, and P is a set of properties that characterise
ai.

Each agent has a set G of goals to which the agent has to some extent committed. The
achievement of each goal involves the performance of a sequence of actions (i.e. plans) on re-
sources. These resources may be personal (i.e. owned by the agent) or non personal. Therefore,
the fulfilment of the goals of the agent may requires the access to sensitive resources that are
owned by other agents, making trust issue central in S. Goals and plans will be presented later
on in Section 5.5 and detailed in Chapter 9.

Agent Properties

A represents an heterogeneous population of agents. The heterogeneity of these agents is
characterised in terms of properties they possess. We will present hereafter this notion which
is fundamental in our thesis as the trust model we propose is inspired from the attribute-based
access control models (cf. Section 3.1.6). Agent properties from P represent the description of
the prevailing traits of an agent within the system.

2Again, for simplicity we will use interchangeably the name of an agent ai and its identifier ε.

123

Chapter 5. A Multi-Agent-Based Virtual Community

Definition 24 (Agent Properties) Each property p ∈ P is a property-value pair defined by
:

p = 〈η, v〉

where ∆p ⊂ ∆ corresponds to the set of all properties that agents can have in S, p.η ∈ ∆p.T

is the property name (i.e. the term defined in the ontology), and p.v ∈ ∆p.A is the property
value. We represent the properties of an agent ai in the following format:

ai.P = {〈p1, v1〉, 〈p2, v2〉, 〈p3, v3〉, . . . , 〈pn, vn〉}

where pj indicates the jth property of the agent ai and pj .v the value of the jth property of ai.

Properties are assigned values when the system is initialised. Any agent cannot have more
than one value for each property it possesses. Property values express how much credit is
accorded to the agent for each specific property. Importantly, we assume a total order over the
set ∆p.A such that any two distinct values can be compared. At this point, the operators we
use for comparing such values are not important. These operators and the algebra we use for
comparing properties values are outlined in Chapter 6.

Example 5.4.1 (Agent Properties) For instance, Alice which is member of the ABC com-
munity can be characterised as follows:

alice = 〈alice17@eureka,∆λ, {g1, g2, g3},Λ, {l1, l2, l3}, {r1}, P, {ABC}〉

where

• alice17@eureka is Alice’s identifier in the Eurêka platform,

• alice.Λ is the set of actions that Alice can perform. alice.Λ = ∆λ means that Alice can
perform all possible actions,

• alice.g1 = "earn money", alice.g2 = "gain esteem" and alice.g3 = "develop requested
application" are the goals to which Alice committed to,

• li is the plan that alice uses to achieve its goals. For instance, l1 = {r1.read(),r1.update}

is the plan by means of which Alice continuously updates its application r1.

• alice.r1 is the jar of the application developed by Alice (cf. Example 5.3.3),

• alice.P = {〈Identity, F 〉, 〈Competency,G〉,

〈Experience,G〉, 〈Recommendation,B〉, 〈Reputation,G〉},

• ABC is the community to which Alice belongs.

For simplicity, we considered in our example that all properties have the same set of values V =

{N , V B, B, F , G, V G } that refers, respectively to null, very bad, bad, fair, good and very
good values. We also assume a total order over these values when an agent has the value N
means that it has the worst value for p and V G means that the agent has the best value that
an agent can have for that specific property.

124

5.5. Communities

5.5 Communities

In this thesis, we are particularly interested by the situations where, for some specific reasons,
agents from the global population A form several temporary ad-hoc groups. We denote the set
of all possible groups in A by C where C = {c1, c2, c3, . . . , cm}. We refer to each member ci of
C as a virtual community.

Definition 25 (Communities) Virtual communities (communities for short) are sporadic
and ephemeral organisations in which agents group together to achieve a common objective.
Each community c is defined by:

c = 〈ε,OS,A,R, plays, commits〉

where:

• ε is the community unique identifier in C,

• OS is the community organisational specification,

• A the set of agents identifiers (these agents are called the community members),

• R is the set of resources identifiers. These resources represent collective resources that
are owned by the community, and by extension by all its members,

• plays : ℜ → 2A is a function that maps each role to the set of agents playing that role in
the community c (cf. Definition 27),

• commits : M → 2A is a function that maps each mission to the set of agents that are
responsible of achieving the mission.

We do not require that the set of communities C completely cover the set A of agents.
However, we suppose for the moment that ∀ci, cj ∈ C, ci 6= cj =⇒ ci.A∩ cj .A = ∅. Informally,
that means that an agent can be in only one community at a time.

The above community definition is based on the Moise meta-model [Hubner et al., 2002,
Hubner, 2011] and its recent extension [Hübner et al., 2010]. In the following, we adapt the
organisational specification as defined in Moise to virtual communities.

Definition 26 (Organizational Specification) An organisational specification (OS) is de-
fined by three dimensions (cf. Section 4.4):

OS = 〈SS, FS,NS〉

where:

• SS is the structural specification,

• FS is the functional specification,

125

Chapter 5. A Multi-Agent-Based Virtual Community

• NS is the normative specification.

As its name indicates, the community organisational specification is used by the agents to
understand and reasons about the structure, the functioning and the norms of the communities
to which they belong.

Consumer

<R>
Owner

Member

Provider

<R>

 Community

compatibility (∃ r ∈ R)

compatibility (∀r1, r2 / r1 ≠ r2)

communication link
Community

role
aggregation / cardinality

inheritance

le
g
e
n
d

min..max

1..*

1..1

1..*

1..*

Figure 5.2 – The structural specification of virtual communities.

Definition 27 (Structural Specification) The structural specification SS (cf. Figure 5.2)
of a community is defined by [Hubner, 2011]:

〈ℜ,⊏, GS〉

where:

• ℜ = {owner,member, provider, consumer} is the set of roles available in each community,

• ⊏ is an inheritance relation among roles,

126

5.5. Communities

• GS is the specification of the root group of the community.

Roles are descriptions of responsibilities and/or expected functions of agents adopting them.
A community structural specification is composed of four basic roles (cf. Figure 5.2): owner,
member, provider and consumer to which agents can commit. These roles constitute the
minimal set of roles that a community can propose. Of course, it can be further extended
locally by any community whenever there is a need for such an extension. An agent can adopt
as many roles as it wants but every agent must adopt at least the role member.

Definition 28 (Roles) We define a role by:

∀r ∈ ℜ, r = 〈ε,AR,LR〉

where ε is the role identifier, AR are the conditions that an agent must fulfil to adopt the role
and LR is the set of conditions that an agent must satisfy to leave the role.

We briefly describe hereafter each of the roles that comprises our structural specification:

Member. Once an agent joins the community, it automatically adopts the role of member.
This basic role permits agents to get access to the resources of the community.

Owner. This role is systematically adopted by the agent that created the community. It gives
him the power to admit new members. As our communities are decentralised, every new
members can adopt the role of community owner and have the same rights as the owner.

Provider. Whenever an agent creates a resource it adopts the role of resource provider. Com-
mitting to this role means that the agent is responsible of answering access requests to
the resource it is sharing. Subsequently, it is also responsible of issuing and enforcing
policies. Using these policies, the agent is able to select trustworthy agents to which it
will provide access.

Consumer. This is the role that agents adopt when they want to use a resource.

The roles of owner, provider and consumer are compatible. Thus, each owner participates
in the activities of the community as any other member. Based on Figure 5.2, the following
inheritance relationships exist:

owner ⊏ member, provider ⊏ member, consumer ⊏ member

Definition 29 (Group Specification) Based on Moise and its extensions, our group spec-
ification (GS) is defined by the elements of the following tuple:

〈Gr, SG,Linter, Lintra, Cinter, Cintra, cg, cr〉 (5.1)

where:

127

Chapter 5. A Multi-Agent-Based Virtual Community

• Gr is the set of roles available in the group (Gr ∈ ℜ); in our model, communities and
groups have the same set of roles,

• SG is the set of subgroups of the group; in our model, there is no subgroups therefore
SG = ∅,

• Linter = Lintra = {com} are, respectively, the inter-group and intra-group links such de-
fined in [Hübner et al., 2010] (The communication link is the only link that exists between
agents in S),

• Cinter = ∅ is an inter group compatibility constraint,

• Cintra = {consumer
r
⊲⊳ provider}3 is an intra-group compatibility constraint,

• cg : Gr → N is a group cardinality function that maps each group with the number
of instances that can be created within a community; there can be only one group in a
community so cg = 1,

• cr : Gr → N×N is a role cardinality function that maps each role of the group to minimal
and maximal number of agents that can adopt it in the community; with respect to that:

– community.cr(owner) = (1, ∗)4

– community.cr(member) = (1, 1)

– community.cr(consumer) = (0, ∗)

– community.cr(provider) = (0, ∗)

Definition 30 (Functional Specification) The functional specification (FS) of a virtual
community is defined by:

FS = 〈G,M,S〉

where:

• G = {createCom, build,manage, admit, exclude, destroy, cooperate, produce,
create, delete, consume, request, perform} is the set of community goals identi-
fiers,

• M = {mCreat,mCert,mProd,mCont,mCons,mMon} is the set of community mis-
sions identifiers,

• S = {ComCrSch} is the set of scheme specification of the community.

3The expression consumer
r

⊲⊳ provider means the roles of consumer and provider are compatible only for a

specific resource r.
4∗ means that the upper bound cardinality of the role does not have any limit

128

5.5. Communities

The functional specification of a community c aims at specifying the common goals c.G
that its members c.A try to accomplish, how these goals are subsequently divided into missions
to which agents can commit, and the social scheme that defines how goals are scheduled and
grouped into missions. Figure 5.3, illustrates the functional specification we defined on the top
of the structural specification presented above.

createCom
cooperate

produce consume

admit

build manage

Collaborate

destroy

exclude create
delete

grant

mCreat mCreat

mCreat
mCreat

mCert

mProd

mProd

mProd

perform
mCons

request
mCons

mCreat

Sequencial Choice Parallel

goal
missionsle

g
e
n
d

mCreat

Figure 5.3 – The functional specification of a virtual community.

Definition 31 (Scheme Specification) A scheme specification is defined through the ele-
ments of the following tuple:

S = 〈ε,max,min, gr〉

where:

• ε is a unique identifier of the scheme,

• max : M → N is a function that maps each mission from the functional specification FS

to the maximum number of commitments to that mission in the scheme,

• min : M → N is a function that maps each mission from the functional specification FS

to the minimum number of commitments to that mission to consider the scheme valid,

• gr = {community} is the root and unique group of the scheme.

129

Chapter 5. A Multi-Agent-Based Virtual Community

Definition 32 (Goal) Each agent goal is defined as follows:

〈ε, gr, type, card, ttf, P 〉

where:

• ε is the goal identifier,

• gm : 2M is the set of missions that comprise the goal,

• type ∈ {ach,maint} is the type of goal (either achievement on maintenance),

• card ∈ N is the cardinality of the goal (i.e. how many agents have to achieve the goal for
the goal to be considered satisfied),

• ttf ∈ N
∗ is the time to fulfil the goal,

• P is the plan to achieve the goal.

Definition 33 (Plan) A plan is defined by:

〈h,Gp, op〉 (5.2)

where h ∈ G is the head goal of the plan is trying to achieve, Gp = {g1, . . . , gn} is a set of sub-
goals and op ∈ {sequence, choice, parallel} is the operator among the sub-goals. The operator
is used to state whether one or all sub-goals have to be achieved to accomplish h and whether
their achievement has to be in sequence or in parallel.

The complete function specification of our model is depicted in Figure 5.2.
Roles are defined in term of responsibilities and/or expected functions but also in terms

of norms that governs them. We use norms to exert informational decentralised control by
specifying what constitutes acceptable behaviours within the community.

Definition 34 (Normative Specification) The normative specification of a community is
defined by:

NS = 〈N〉

where N is a set of norms.

The normative specification aims at bridging roles from the structural specification (SS) and the
missions from the functional specification (FS) through deontic operators[Hübner et al., 2010].

Definition 35 (Norm) A norm is defined by:

∀n ∈ N,n = 〈ε, c, r, t,m, ttf〉 (5.3)

where:

130

5.5. Communities

• ε is the norm identifier (or label),

• c is the norm activation condition (i.e. the condition that must hold to make the norm
active),

• r is the role to which the norm is subject,

• t ∈ {obligation, permission, forbidding} is the norm type that corresponds to the deontic
operator conveyed by the norm,

• m ∈ FS.M is the mission to which the norm is associated,

• ttf (time to fulfil) is the deadline to consider the norm either fulfilled or not.

The definition of norms given above can be read “when c holds, the agents adopting r are t
to achieve the missions m before ttf”. The initial norms defined in our model are presented in
Table 5.1.

n.ε condition role type mission TTF

n1 — owner permission mCreat —
n3 — provider obligation mProd —
n5 fulfilled(n3) controller obligation mCont2 —
n6 notfulfilled(n5) controller forbidding mCont1 —
n7 fulfilled(n3) consumer permission mCons —

Table 5.1 – Excerpt from the normative specification of a virtual community.

Whenever an agent adopts a certain role on which a norm is associated, this agent implicitly
and automatically adopts the norm to which the role is subject. So concretely, a norm is about
specifying what operations an agent playing some specific role is permitted, obliged, forbidden
to perform.

Permissions specify what is considered by the community members as a normal behaviour.
Permissions allows an agent to perform operations it is permitted to perform. In other
words, permissions represent the rights an agent has [Boella and Torre, 2005].

Obligations define what the community members are entitled to expect from the agent adopt-
ing the role. For instance, in the norm n1the agents adopting the role of owner has the
obligation to commit to the missions mCreat where they commit to create and manage
a community.

Forbiddings are obligations to not commit to certain missions or to not perform specific
operations. For instance, the norm n6 forbids agents adopting the role of controller to
grant or delegate the use of a resources without satisfying the norm n5.

131

Chapter 5. A Multi-Agent-Based Virtual Community

Assumption 5.5.1 By default, agents are prohibited from performing any operation on any
resource unless they have an authorisation.

Whenever an agent joins a community, it commits to a specific role and starts interacting
with another agent, it is systematically governed by some norms that should constraint his
behaviour. However, in our system agents (i.e. community members) are autonomous entities
that may choose to not comply with the norms of their community. Such situation constitutes
a violation and motivates the need for incentive mechanisms such as sanctions and rewards.

Definition 36 (Sanction and Reward) Sanctions and rewards constitute the principal mo-
tivation that lead an agent to fulfil the norms. Sanctions are negative actions toward the deviant
agent, while rewards are positive actions towards it. Agents tend to fear sanctions and desire
rewards [Boella and Torre, 2005], therefore we use them as a mechanisms of social control (cf.
Section 4.3.2.2).

5.6 Interactions

Based on the definitions given in Sections 5.3, 5.4 and 5.5, the system S can be seen as a digital
ecosystem where agents organised in communities coexist with the resources that compose their
environment. The existence of such an ecosystem presupposes the existence of interactions
among the entities that evolve in it.

An interaction has been defined in the Merriam-Webster Dictionary as a “mutual or recip-
rocal action or influence”. Our definition of interaction emerges from this.

Definition 37 (Interaction) An interaction is an interactive and iterative data exchange
(computation) that involves and affects at least one agent. The set of interactions I is de-
fined by:

I = Ir ∪ Ic ∪ Ic

where Ia is the set of interactions that take place between two agents, Ir is the set of interactions
that take place between and the agents and the resources of their environment, Ic is the set of
interactions that take place between the agents and their communities.

Agent-resource interactions refers to the ability of an agent to monitor and change the
environment in which it evolves. They represent the interactions that occur between an agent
and the resources of its environment. Agent-agent interactions refers to the agents’ capability to
achieve one-to-one communications with each others. Agent-community interactions refers to
the agents’ ability to understand, comply with, violate, reason about, and change the norms to
which they are subject. They describe the set of one-to-many interactions that occurs between
an agent and the members of its community.

By executing operations on resources, an agent can interact with its environment (cf. Sec-
tion 5.3). For instance, if the resource is a sensor it will encapsulate an information and by

132

5.6. Interactions

invoking the read operation on it, the agent will receive an information regarding its environ-
ment. Analogously, if the operation modifies a resource in the environment, the environment
will change. Then the agent’s (and other agents’) representation of the environment will change
as well. Consequently, this aspect of the agent interactions will not be further details.

In contrast, agents communicate with each others (whether in a one-to-one or a one-to-many
mode) using messages and based on a common protocol.

Definition 38 (Message) Ia ∪ Ic represents the set of communications taking place between
agents. Each element m ∈ Ia constitute a message that is defined as follows:

〈s, u, r, ε, θ, L,∆I , prot, t〉

This means that s ∈ A is using the performative utterance u to communicate with r ∈ A in
the context of the dialogue identified by ε, with the content θ, in the language L, using the
ontology ∆I , in the context of the protocol prot and at a time t [Pitt and Bellifemine, 1999].
However, for simplicity we will use in what follows a contracted version of the message in which
we abstract away, the dialogue identifier ε, the language L, the ontology ∆I , the protocol prot
and the time t. Thus a message can be defined as follows

〈s, u, r, θ〉

So agents are interacting with each others through message exchanges. In order to pro-
vide interoperability between messages that agents use in their communications, the defi-
nition of an interaction protocol is crucial. To that aim, a commonly understood agent
communication language (ACL) with a formal semantics has to be used. In MAS, com-
munication language semantics is typically characterised in terms of speech act theory
[Austin, 1962, Cohen and Levesque, 1997].

Definition 39 (Agent Communication Language) The communication language L that
agents use in S is defined by:

L = 〈Protocol, Utterance,Replay〉

where:

• Utterance = {request, inform, cfp, failure, inform_if, inform_ref, refuse, agree,
subscribe, request_when, request_whenever, propagate, null, not_understood} is a
set of performatives with respect to the semantics defined in FIPA-ACL SL language
[FIPA, 2002],

• Protocol = {FIPA_request, FIPA_query} is a set of protocols that agents use,

• replay : Utterance × Protocol × ℜ × N → Utterance × Utterance is mapping function
that maps each performative from Utterance to the set of performatives that can be used
in a reply to it given the role played by the agent.

133

Chapter 5. A Multi-Agent-Based Virtual Community

The replay function is easily determined by turning the Utterance set into a finite state
diagram. For instance, applying this transformation to the FIPA_request protocol is straight-
forward and gives the result shown in Figure 5.4 [Pitt and Bellifemine, 1999].

10

a:query a:inform

b:
failure
refuse
not_understood

Figure 5.4 – FIPA_request protocol represented using a finite state diagram.

5.7 Conclusion

In this chapter, we have presented the multi-agent-based virtual community framework as well
as fundamental concepts that underpin the contributions of this thesis. We adopted a top-
down description method in which we started by defining the system as a whole to end up
by describing each of the elements that compose it. We have also defined some notational
elements that we will rely on in subsequent chapters, and we used some examples to illustrate
our choices.

What the reader should keep in mind is that the system is composed of resources, agents and
communities, each having specific properties. We presented also how agents can interact with
each others and with the resources that compose their environment. While public resources
can be freely manipulated, private resources manipulation is limited to agents that are trusted
by the resource owner, making the trust issue central in this framework. Also, each agent can
be characterised through its properties. So agents are able to discriminate each other based on
they possess and those they lack. We will present in the next chapter how we built on these
elements to build a trust management systems that allows agent to evaluate the trust they put
in each others.

134

5.8. French Summary

5.8 French Summary

L’adoption du paradigme agent et multi-agent est considérée actuellement comme étant une des
approches les plus viables pour la modélisation et l’implémentation des communautés virtuelles
(CV) [Camarinha-Matos et al., 2003, Rupert et al., 2007, Gupta and Kim, 2004]. Ainsi, dans
ce chapitre, nous présenterons notre modèle de communautés virtuelles à base d’agents. Ce
modèle comporte les éléments de base de notre mécanisme de gestion de la confiance que nous
présenterons dans les chapitres 6 et 7. Cependant, avant de rentrer dans les détails du modèle,
nous introduisons l’exemple que nous utiliserons tout au long de ce chapitre et les chapitres
suivants pour illustrer les différents concepts abordés.

Example 5.8.1 (Exemple illustratif) Dans cet exemple, nous considérant un ensemble de
participants (e.g., Alice, Bob, Chris, Dave, Eric et Félix) dont l’objectif est de mettre à profit
leurs compétences informatiques pour développer des applications mobiles. Pour cela, ces par-
ticipants ont tendance à vouloir se regrouper afin de créer des communautés “open source” au
sein desquels les applications seront développées de manière collaborative.

Devant le succès grandissant que connaissent les modèles de collaboration du type “open
source”, plusieurs communautés virtuelles se sont formées durant cette dernière décennie. Leur
principal objectif est de permettre à des individus dispersés sur la surface de la terre de colla-
borer pour la production d’un produit commun. Le nombre de participant étant assez large et
les communautés créées étant souvent ouvertes et décentralisées (i.e., aucune autorité centrale),
des études ont démontré que la collaboration des membres de ces communautés est condition-
née par les degrés de confiance qu’ils s’accordent mutuellement. Ainsi, il est évident que la
confiance joue un rôle clé dans le succès et l’essor des communautés virtuelles telles que celle
qu’on a cité comme exemple.

5.8.1 Spécification de la communauté virtuelle

Dans cette section, nous présentons notre modèle de communauté virtuelle à base d’agents S.
Nous avons opté pour un système multi-agent dit normatif afin d’être en mesure de mimer le
contrôle mixte (ascendant et descendant) que nous avions décrit dans le chapitre 4 (cf. Section
4.3). C’est également sur ces mécanismes que nous nous appuierons dans le Chapitre 7 afin de
mettre en place la sensibilité sociale et contextuelle dans la gestion de la confiance.

Comme illustré dans la figure 5.5, les agents sont utilisés comme éléments d’abstraction de
premier ordre pour représenter les participants dans les communautés virtuelles. Le système S
est ainsi défini a un temps t par un quintuplet:

St = 〈A,R, C, I,∆〉t

où:

• A représente l’ensemble des agents impliqué dans S,

135

Chapter 5. A Multi-Agent-Based Virtual Community

Agent Resource
Agent-Resource

Interactions

Agent-Agent
Interactions

Community

Figure 5.5 – Exemple illustratif d’une population d’agents avec trois communautés.

• R est l’ensemble des ressources représentant l’environnement des agents,

• C est l’ensemble des communautés au sein desquels les agents s’organisent,

• I est l’ensemble des interactions dans lesquels les agents du système sont impliqués,

• ∆ est l’Ontologie du domaine.

Dans la suite de ce chapitre, nous allons décrire en détail chaque élément de ce système.
Cependant, afin de réduire la complexité de notre description, nous allons nous baser sur
l’approche voyelles [da Silva and Demazeau, 2002] afin de nous concentrer sur les agents (A),
l’environnement (R), l’organisation(C) et les interactions (I) de notre système. Néanmoins,
avant de présenter chaque élément, nous allons commencer par introduire notre Ontologie ∆

car c’est sur celle-ci que les autres définitions reposent.

5.8.2 Ontologie

L’Ontologie représente l’univers du discours des agents du système. Elle encapsule l’ensemble
des connaissances que chaque agent du système est censé savoir afin de réaliser ses objectifs.

Definition 40 (Ontology) L’Ontologie du domaine ∆ est définie par:

∆ = 〈T,A,R〉

où:

136

5.8. French Summary

• T et A sont des ensembles disjoints dont les éléments sont, respectivement, les termes et
les assertions. Ces éléments sont communément appelé TBox pour les termes, et ABox
pour les assertions.

• R = RT ∪ RA ∪ RT A est un ensemble de relations, respectivement, entre les éléments de
T , les éléments de A et les éléments de T ∪A tel que:

– {⊐,≡, 6≡} représentent, respectivement, les relations de subsomption, équivalence
et disjonction qui constituent RT ,

– {6=} est la relation DistinctDe qui est utilisée pour différencier les éléments de RA,

– {
.
=} est la relation Est qui relie chaque élément de A a sa classe de T .

5.8.3 Ressources

L’environnement des agents est défini dans notre modèle comme étant un ensemble R d’entités
passives appelées ressources. R est dynamique car ces ressources sont créées, modifiées et
détruites de manière imprédictible.

Definition 41 (Resources) Les Ressources sont des artefacts créées, modifiés, utilisés,
partagés et détruits par les agents. Chaque ressource r est définie par :

∀r ∈ R, r = 〈ε, θ, P 〉

où ε est l’identifiant unique de la ressource dans S, θ est le contenu de la ressource, P est
l’ensemble des propriétés.

Le contenu de la ressource représente des données, des services ou tout fonctionnalités perme-
ttant aux agents de réaliser leur activités individuelles ou collectives.

Remark 5.8.1 Dans la suite de ce document, nous allons utiliser la notation pointée “.”
pour faire référence à la fois aux propriétés des ressources mais également celles des agents
et des communautés. Par exemple, nous utiliserons r.ε pour faire référence à l’identifiant de la
ressource r.

Chaque ressource est associée à un ensemble de propriétés P qui permet de la caractériser.

Definition 42 (Propriétés des Ressources) Les propriétés sont définis par :

P = {τ, ϕ,Ω, ς, ν}

où:

• τ est le type de la ressource (e.g., image, texte, son, vidéo, dessin, etc.),

• ϕ est la propriétés de la ressource. Le propriétaire peut être un agent ou une communauté,

137

Chapter 5. A Multi-Agent-Based Virtual Community

• Ω est l’ensemble des opérations qu’admet la ressource. Par exemple, un texte peut être
modifié, supprimé, copié.

• ς est la sensibilité de la ressource. Cette valeur exprime le degré de vulnérabilité de la
ressource quant aux manipulations malveillantes.

• ν est la valeur métier de la ressource.

Example 5.8.2 (ressource) Prenons l’exemple d’une ressource r1. r1 peut être décrit dans
notre système par:

〈r1, θ, P 〉

où:

• r1.ε = http://www.emse.fr/yaich/Eureka/ABC/prog-v.13.jar

• θ est le fichier prog-v.13.jar contenant les sources de l’application,

• P = {alice, text, {read, update}, 5, 10}

Dans cet exemple, la ressource r1 est identifiée par son URI. r1 est la propriété de alice,
r1 est un document texte (r.τ = text) que les agents peuvent lire (read) et modifier (update).
Cependant, compte tenu que r1 est sensible (i.e r.ς > 0), seuls les agents en qui alice a confiance
peuvent le lire et y écrire. Bien sûre, à ce stade du manuscrit, nous n’avons pas encore abordé les
mécanismes sur lesquels alice pourrait s’appuyer pour décider en qui elle peut avoir confiance.
Nous les verrons dans le chapitre suivant.

5.8.4 Agents

Les agents sont l’élément central du système S. Les agents sont des entités logicielles autonomes
capables de réaliser des tâches en accord avec leurs objectifs (cf. Section 5.4).

Definition 43 (Agent) Soit A l’ensemble des agents du système S. Chaque agent ai ∈ A est
défini par:

∀ai ∈ A, ai = 〈ε,G,Λ, L,R,C, P 〉

où ε est l’identifiant de l’agent, G est l’ensemble des buts de l’agent, Λ ⊂ ∆ω est l’ensemble des
actions (i.e., opérations) que l’agent ai est en mesure de réaliser, L est l’ensemble des plans
que ai peut accomplir pour réaliser ses buts, R est l’ensemble des identifiants de ressources que
ai possède, C est l’ensemble des identifiants des communautés auxquelles ai appartient et P est
l’ensemble des propriétés qui permettent de caractériser ai.

La réalisation des objectifs de chaque agent implique la manipulation de ressources per-
sonnelles et non personnelles. Ainsi, pour accéder à des ressources non personnelles, l’agent
à besoin que l’agent qui possède la ressource lui fasse confiance pour la manipuler. Ainsi, la
problématique de la confiance apparaît ici encore comme un élément central de la réussite à

138

5.8. French Summary

la fois des agents mais également des communautés dans lesquelles ces agents s’activent. Les
concepts de but et de plan seront décrit plus tard dans la section 5.5 puis détaillés dans le
chapitre 9.

Enfin, chaque agent est caractérisé par un ensemble de propriétés. Ces propriétés constituent
une description des traits prévalents de l’agent dans le système.

Definition 44 (Propriétés des agents) Chaque propriétés p ∈ P est définie par une paire:

p = 〈η, v〉

où pj indique la jème propriétés de l’agent ai et pj .v est sa valeur. On assume un ordre
total sur ∆p.A tel que n’importe quelle paire de de valeurs puisse être comparés. À ce stade,
l’ensemble des opérateurs qu’on utilise pour comparer ces valeurs n’est pas important. Ces
derniers seront introduits dans le Chapitre 6.

5.8.5 Communautés

Dans cette thèse, nous somme particulièrement intéressés par les situations dans lesquels les
agents forment des groupes temporaires ad-hoc. On représente l’ensemble de ces groupes par
C = {c1, c2, c3, . . . , cm}. Chaque élément de C constitue une communauté virtuelle.

Definition 45 (Communautés) Les communautés virtuelles sont des organisations spo-
radiques et éphémères dans lesquels les agents se regroupent afin de réaliser un objectif commun.
Dans notre système, chaque communauté est définie par :

c = 〈ε,OS,A,R, plays, commits〉

où:

• ε est l’identifiant de la communauté dans C,

• OS est la spécification organisationnelle de la communauté,

• A est un ensemble d’identifiants d’agents (ces agents représentent les membres de la com-
munauté),

• R est un ensemble d’identifiant de ressources. Ces ressources sont des ressources collec-
tives car ils appartiennent à l’ensemble des membres de la communauté,

• plays : ℜ → 2A est une fonction qui associe à chaque rôle l’ensemble des agents qui jouent
ce rôle au sein de la communauté c,

• commits :M→ 2A est une fonction qui associe chaque mission à l’ensemble des agents
qui sont responsables de la satisfaction de cette mission.

139

Chapter 5. A Multi-Agent-Based Virtual Community

Notre définition de la communauté est basé sur le méta-modèleMoise [Hubner et al., 2002,
Hubner, 2011] ainsi que son extension récente [Hübner et al., 2010]. Pour des raisons de for-
mat, nous ne pouvons détailler l’ensemble des spécifications qui constituent la spécification
organisationnelle telle que définie dans Moise. Nous invitons le lecteur à lire la version com-
plète du manuscrit (en Anglais) pour plus de détails sur les aspects liés à la spécification de la
communauté.

5.8.6 Interactions

D’après les définitions présentées précédemment, le système S peut être considéré comme un
eco-système dans lequel les agents organisés en communautés coexistent avec les ressources
qui constituent leur environnement. L’existence d’un tel eco-système présuppose l’existence
d’intenses interactions entre les différentes entités qui le composent.

Definition 46 (Interaction) Une interaction est un échange de donnée itératif qui implique
et affect au moins un agent. L’ensemble des interactions I est défini comme suit:

I = Ir ∪ Ic ∪ Ic

Ici Ia dénote l’ensemble des interactions qui prennent lieu entre deux agents, Ir dénote
les interactions qui ont lieu entre les agents et les ressources et Ic dénote les interactions qui
prennent place entre les agents et leurs communautés.

Les interactions Agent-Ressources font référence à la capacité des agents à surveiller et
affecter l’environnement dans lequel ils évoluent. Les interactions de type Agent-Agent référent
à la capacité des agents à établir des communication mono-interlocuteur. Enfin, les interactions
de type Agent-Communauté font référence à la capacité des agents à comprendre, se conformer,
violer, raisonner sur modifier les normes qui lui sont imposées par la communauté à laquelle il
appartient. Ce type d’interaction fait également référence à la capacité des agents à entrer des
des communications multi-interlocuteur.

En exécutant des opérations sur des ressources, l’agent est capable de d’interagir de manière
simple avec son environnement. Par ailleurs, les communications entre agents (que ce soit mono
ou multi-interlocuteur) s’opèrent via un échange de messages.

Definition 47 (Message) Ia∪Ic représente l’ensemble des communications qui ont lieu entre
agents. Chaque élément de m ∈ Ia représente un message qu’on défini comme suit:

〈s, u, r, ε, θ, L,∆I , prot, t〉

Cette définition peut être traduite par l’agent s ∈ A qui utilise performative u pour com-
muniquer avec r ∈ A dans le contexte du dialogue identifié par ε. Le message est utilisé pour
transmettre le contenu θ, dans le langage L et en utilisant l’Ontologie ∆I , dans le contexte du
protocole ∆I au moment t. Pour des raisons de simplicité, nous définissons un message par la
forme contractée suivante:

140

5.8. French Summary

〈s, u, r, θ〉

Pour assurer l’interopérabilité des messages, la définition d’un protocole de communication
est une étape primordiale. Dans les systèmes multi-agent, la sémantique des messages est
caractérisée en matière de théorie d’acte de langage [Austin, 1962, Cohen and Levesque, 1997].

Definition 48 (Langage de Communication entre Agents) Le langage de communica-
tion entre agents L utilisé dans S est défini comme suit:

L = 〈Protocol, Utterance,Replay〉

où:

• Utterance = {request, inform, cfp, failure, inform_if, inform_ref, refuse, agree,
subscribe, request_when, request_whenever, propagate, null, not_understood} est
l’ensemble des performatives dont la sémantique est définie par le langage FIPA-ACL
[FIPA, 2002],

• Protocol = {FIPA_request, FIPA_query} est un ensemble de protocoles que les agents
utilisent,

• replay : Utterance×Protocol×ℜ×N→ Utterance×Utterance est une fonction de cor-
respondance qui associe chaque performative à l’ensemble des performatives que l’agent
interlocuteur peut utiliser pour répondre à un message donné.

141

Chapter 6

The Trust Management System

We framed in Chapter 5 a decentralised virtual community model that aims to make coop-
erate distributed participants based on common interests and/or objectives. In such socio-
technical systems (i.e. systems involving human users and man-made agents) participants
are massively interacting with each other through messages exchange and resources shar-
ing [Sterling and Taveter, 2009]. An interaction always bears the risk that one partner ex-
hibits uncooperative or malicious behaviour, making trust a central issue for each participant
[Falcone and Castelfranchi, 2001].

To this aim, this chapter presents the model used to build and manage trust among members
of virtual communities. In the following members will be called individuals to clearly make the
difference with communities. The chapter is organized in two separate parts. First we describe
our model (Section Section 6.1, 6.2, 6.3 and 6.4). Then we present in Section 6.8 how the
virtual community model presented in the previous chapter can be extended to integrate trust
management mechanisms proposed in this Chapter.

Finally, we conclude this chapter in Section 6.7 where we sketch the architecture of the trust
management system that implements our trust model and discuss some of its limits.

6.1 Overview of the Approach

Given the large number of interactions that take place in agent-based virtual communities, and
considering that many of these interactions are performed by agents acting on behalf of users,
the automation of the decision making process, especially the trust decision one, is a critical
concern. Thus, the main objective of our investigations is to design a model that contributes
to such an automation. However, before we proceed we will first clarify what we mean by a
trust management model.

Definition 49 (Trust Management Model) A trust management model (trust model for
short) is used to, (i) represent the information based on which trust is evaluated, (ii) define a
formalism to express constraints on these information, and (iii) specify the evaluation scheme
used to derive trust from that information.

Starting from the above definition, we provide in Figure 6.1 an abstract illustration of the
use of our trust model in a particular interaction. Here, the interaction involves a requester
(i.e. resource consumer in Section 5.5) and a controller. Controller is a role that a virtual

Chapter 6. The Trust Management System

community member adopts with respect to a particular resource. Being the controller of a
resource means that the member is the owner of the resource (i.e. provider) or that this agent
has been delegated the right to make decisions about this resource. The requester aims at
performing a particular operation on a resource controlled by the controller. To that aim, he
must gain a sufficient trust form this latter in order to see its request accepted.

t

t+n

 Policy

Evaluation

In
te

ra
ct

io
n

Requester Controller

Decision

Making

message: request (operation, resource)

 message: reply(accept/deny, request)

message: credentials message: declarations

Other

Individuals

Trust Evaluation Trust Management Model

Trust Factors

Trust Factors

 resourceRequests Controls

 Policy

Selection

Trust
Policy

Trust Decision Model

Figure 6.1 – Overview of the trust model.

To gain this trust, the controller selects a policy in which he specifies the conditions that the
requester must satisfy in order to be trusted, and consequently granted access to the resource.
The controller’s policy can be satisfied using information that proves that:

• the requester possesses the properties about which conditions are stated in the policy,
and that

• the values of the properties the requester possesses satisfy the threshold value specified
by the conditions.

A policy expresses constraints on properties that the controller considers as necessary to grant
its trust. So each property that is considered to be pertinent for the trust evaluation constitutes
a trust factor and its semantic is shared by all the participants in the system. The policy
indicates also to the controller what is the information he must acquire in order to evaluate the
policy. This information is either provided by the requester itself (i.e. credentials) or aggregated
based on other agents’ testimonials (i.e. declarations). Once all required information are

144

6.2. Trust Factors

collected, the controller can evaluate the policy. During the policy evaluation, the controller
checks whether the collected information satisfies each of the conditions stated in its policy. If
so, the controller will trust the requester to perform the requested operation. Otherwise, the
requester will not be trusted and its request to manipulate the resource will be denied.

This model reproduce is similar to the abstract architecture used by almost all trust man-
agement system (cf. Chapter 3). The evaluation of the trustworthiness level of an interlocutor
is thus separated of the decision of trusting him/her. As explained in the introduction, our
work is focused on the evaluation, letting out the decision since it is strongly connected to
applicative issues. Thus, the decision model which is presented in Section 6.6 aims only at
illustrating how the elements all put together work.

In the following, we build upon the above abstract model to present how trust is concretely
managed within virtual communities.

6.2 Trust Factors

In human-based virtual communities, participants rely on a wide range of trust factors to eval-
uate trust they put in each others. Most of these factors, like proximity [Bruneel et al., 2007],
feelings [Nepal et al., 2011] or moods [Dunn and Schweitzer, 2005] (cf. Chapter 2) are subjec-
tive and thus cannot be easily captured. Therefore, in our model we adopt a property-based
approach (cf. Section 3.1.6), a.k.a. attribute-based, and limit ourselves to trust factors that
represent individuals’ properties (c.f. Section 5.4). These factors are split into proofs and in-
dicators. Proofs are trust factors which evaluation requires a credential, while indicators are
evaluated by declarations.

In the following, we first define this concept of trust factors and illustrate our definition
with an example. Then in Section 6.2.4, we describe how agents use trust information to
communicate about these factors. Trust informations are split into credentials and declarations.
Credentials are issued by certification authorities, while declarations are stated by agents based
on their opinions (i.e. direct past experience). The information an agent gathers about its
interlocutor is stored in a profile.

6.2.1 Definition

Trust factors are the properties based on which virtual community members make their trust
evaluation.

Definition 50 (Trust Factors) We define the set F of trust factors as follows:

F ⊆ P

where P is the set of properties that individuals can have (e.g. those presented in Sec-
tion 5.4).

145

Chapter 6. The Trust Management System

Of course the set F is application-specific and can evolve over time. We assume that the set
F is built by the participants by identifying correlations between properties and trustworthy
behaviours. However, the definition of these mechanisms is out of the scope of our investigations
so they have not been addressed in this thesis.

Example 6.2.1 Based on Example 5.4.1, Alice has the following properties:
(

Name Id Competence Experience Recommendation Reputation

Alice F G G B G

)

The choice of using properties as trust factors in the context of trust management is quite
realistic. Indeed, using its experience, an individual can easily infer that individuals with
some specific property pi tend to misbehave if trusted in some context, while those having
another property pj happens to perform well (cf. Chapter 2). For example, one can say that
individuals having diploma in medicine are more likely to perform well if trusted for making
medical prescriptions. Similarly, in a medical virtual community it is totally excluded to find
any correlation between the trustworthiness of an individual and the fact that he owns a car
or not.

6.2.2 Proofs and Indicators

To break the “distrust”1 deadlock during an interaction, the information that the interact-
ing partners exchange must be acquired from a “Third Party”, preferably a “Trusted Third
Party” (TTP), a presumably trusted entity that is not involved in the current interaction. As
highlighted in Chapters 2 and 3, there exist in the literature two approaches for using TTP
in trust management: certification authorities (CA) and cross-certification (CC) [Linn, 2000].
Both approaches rely on the realm of cryptographic techniques involving public and private
keys. However, the first approach relies on the trust that exist between an individual and the
organisation to which it belongs, while the second drew trust from the experience of others (cf.
Section 3.2.3.1). Consequently, and depending on the nature of the TTP, the trust factors fall
into two categories: proofs and indicators.

Definition 51 (Proofs and Indicators) Proofs are trust factors that can be certified by a
certification authority, while indicators are trust factors that are validated using others’ state-
ments.

Example 6.2.2 The driving licence is a certificate which states that the individual holding
it may operate a motorised vehicle, such as a motorcycle, car, truck or a bus, on a public
roadway. This certificate is issued, for instance, by the police authorities which play the role of
certification authority in this situation.

1An individual gains the trust of its interlocutor by satisfying this latter’s policy. In order to ensure this,

he must provide information that satisfies each of the constraints expressed in its policy. But at the beginning

of an interaction, the interlocutors do not yet trust each others and thus, the information they will provide to

each other will not be trusted as well.

146

6.2. Trust Factors

6.2.3 Trust Factors Ontology

As discussed in Section 3.4.1, using CA to certify agent’s properties for trust management in
distributed systems is particularly suitable [Blaze et al., 1999a]. However, individuals involved
in virtual communities are heterogeneous and so are their properties (cf. Section 5.4).

Therefore, trust management systems need to understand and reason on these properties
and which ones could be used as trust factors in the system. This is the main objective of the
trust factors ontology. The whole set of trust factors forms the trust factors ontology denoted
by ∆f as shown in Figure 6.2.

Trust

Factor
IndicatorsProofs

Identity

Attributes

Recommand-
ation

Complete

Marginal

Undefined

Coding

None
Low

Fair

High

Experience
None

Low

Fair

High

Delegation

Full

Marginal Unknown

Untrusted

Reliability

Reputation

Cooperative
- ness

None

Low

Fair

High

High

Fair

Low
None

High

Fair

Low

None

High

Fair

Low
None

Skills

Higher SubSumption Equivalent

Lower InstanceOf Different

Figure 6.2 – A fragment of the trust factors ontology.

Definition 52 (Trust Factors Ontology) The trust factors ontology ∆f represents a formal
specification of the set of all trust factors F . ∀f ∈ F , f is an ontological concept defined by:

f = 〈T,A,R〉

where T is the term that corresponds to the trust factor’s name (TBox), A is the domain of
the trust factor (i.e. the assertions that represent the value the trust factor can take), and
R ⊆ {∆.R ∪ {Higher,Lower, Different,Equivalent}} is the set of relations that elements
from A can have between them (cf. Section 5.2).

The role of the trust factors ontology in our model is to define and capture essential features
that are the basis for trust establishment between two agents. The root concept is a generic
trust factor concept. It is further divided into two sub-types (proofs and indicators) that
represent the trust factors categories introduced in the previous section. The relations Higher

147

Chapter 6. The Trust Management System

(>) ,Lower (<), Different (6=) and Equivalent (=) define an order over the values that each
trust factor can have.

Example 6.2.3 For instance, the trust factor representing the diploma degree can be defined
as follows:

f = 〈StudiesDegree, {V G,G, F,B, V B}, {V G > G,G > F, f > B,B > V B}〉

6.2.4 Trust Information

If the aforementioned trust factors are essential for trust management, the means that agents
use to communicate about them are, in reality, more important. Agent uses what we call trust
information to exchange information about the values of the properties they possess.

6.2.4.1 Types of Trust Information

Trust information falls into two types: credentials and declarations. Credentials (also called
Electronic Credentials) constitute the counterpart of the paper credential we use in the real
world.

Definition 53 (Credential) Credentials represent digital certificates that are signed by certi-
fication authorities in order to establish properties for their holder.

For example, X.509 is one of the most popular credential formats used, nowadays, in the
Internet. A credential remains valid until its expiration or its revocation.

Definition 54 (Declaration) Declarations are testimonial statements issued by individuals
to exchange information about other individuals’ properties.

When a member wants to validate the properties of its interlocutor, he broadcasts a request
wherein he asks his fellows in the community to provide him with the information that confirms
or not that property. Likewise a declaration remains valid until a fresher information is received.

6.2.4.2 Representing Trust Information

The particular form in which trust information are represented is not critical in our model.
However, for uniformity, we adopt a generic representation form that we will use to illustrate
our approach.

Definition 55 (Trust Information) Each trust information is defined by a quadruplet as
follows:

ti = 〈t, i, s, f, v〉

where t ∈ {credential, declaration} is the trust information type, i is the individual issuing the
trust information, s is the individual concerned by the information, f is the trust factor the
information is about, and v ∈ f.A is the value that i associates to s for the trust factor f .

148

6.2. Trust Factors

Example 6.2.4 (Trust Information) With respect to our running example, the trust infor-
mation 〈declaration, Carl, Alice, reputation,High〉 is a declaration in which Carl testifies that
Alice has a good reputation.

Collect
Information

Requester ControllerThird Party : Certification Authority Third Party : Member

CA

request(declaration(Requester, reputation))

Provide
Information

reply((declaration, Member, Requester
reputation, Value))

reply((dredential, CA,Requester, Competence, Value))

Policy
Evaluation

request(credential, competence))

1. request(credential, competence)

Credential

request(operation, resource)

Policy
Selection

Provide
Information

Figure 6.3 – The process of trust information acquisition.

The process that controllers use to acquire these trust information is relatively straightfor-
ward. It is illustrated in Figure 6.3. When a controller receives a request, it selects the policy
and identifies whether the conditions stated in the policy requires to proofs or indicators.

If the condition requires a proof, the controller requests from the requester the credential
that satisfies the condition. Once the controller received all required credentials, he checks each
credential is still valid or not (cf. Section 6.2.4).

Assumption 6.2.1 (Trust Information Validation) We assume that any member of the
community is able to convert any “valid” credential or declaration to the representation form
defined above. With this assumption we ignore the mechanisms of encryption and decryption
that are inherent to this task. For instance, the validation of credentials can be achieved using
the mechanisms presented in [Lee, 2008].

Similarly, for each indicator the controller asks the other participants (the other members
are the trusted third party) to provide him with testimonials about the requester. The received
testimonials are grouped and aggregated to form unique value that the controller use to evaluate
its policy. In the following, we describe how individuals are able to issue testimonials (cf.
Section 6.2.4.3)

6.2.4.3 Opinions

In previous section, we presented how declarations are used as third party testimonials that
participants use to evaluate their policies.In this section, we will show how each participant

149

Chapter 6. The Trust Management System

builds these testimonials.

Declarations are built based on opinions that participants maintains about each others.
These opinions are made based on the individual past experience and individuals’ observations
as well. Observations are rudimentary opinions such as the value of a property (e.g. the
participant age), while experiences are computed (e.g. reputation).

Definition 56 (Opinions) Each individual maintains a set Θ of information about individu-
als it interacted with/observed previously. Each opinion θ ∈ Θ is defined by:

θ = 〈i, f, v〉 (6.1)

where i is the subject of the opinion (the individual the opinion is about), f is the trust factor
mentioned in the opinion, and v is the value the individual associated to the subject for the
trust factor f . For observation opinions, only the newest observation is stored in Θ, while for
experience, the new experience is aggregated with the old ones to compute the updated value.
Therefore, opinions are not time-stamped.

Example 6.2.5 For instance, Carle, Dave and Elvis can have the following opinions about
Alice :

• Carl : 〈Alice, reputation, 80%〉

• Dave : 〈Alice, reputation, 65%〉

• Elvis : 〈Alice, reputation, 70%〉

Once the controller receives all the declarations, it aggregates them based on the trust
factor they certify. For instance, if the controller requested the reputation of a requester, each
participant extracts from its opinions the one that relates to reputation and that concerns the
requester. Then this opinion is formatted as a declaration and sent to the controller. Once the
controller receives all declarations for the reputation, it uses its own aggregation function to
compute a reputation value.

We assume that each individual is capable to build the profile of its interlocutor. Once all
requested information received2 and their content validated, the controller is able to build the
profile of the requester.

6.2.4.4 Profiles

Profiles are data structures in which an individual keeps track of all information he gathers and
that concerns his interlocutor.

2We suppose that after a certain time period, the trust information request is considered as “unsuccessful”

and the individual proceeds with the policy evaluation without the requested information

150

6.3. Trust Policies

Definition 57 (Profile) A profile (ψaj ∈ ai.Ψ) built by an individual ai about an other indi-
vidual aj is defined by the triplet:

ψaj = 〈r, aj , S〉

where r is a request identifier and S is a set of statements wherein each statement si is repre-
sented as follows:

S.si = 〈f.T, f.A〉

such as f.T is a trust factor type and f.A is the value of the trust factor (cf. Section 6.2.3).

The set of profiles an individual builds are stored in its profile repository (Ψ).

Example 6.2.6
Credential(CA1, Alice, age, 30) (6.2)

Declaration(Carl, Alice, reputation, 80%) (6.3)

Declaration(Dave,Alice, reputation, 65%) (6.4)

Declaration(Elvis, Alice, reputation, 70%) (6.5)

Based on the trust information (6.2), (6.3), (6.4) and (6.5), Bob can build the following
profile in which it stores information it collected and that concern Alice.

〈req1304, Alice, {〈age, 30〉, 〈reputation, 72%〉}〉

6.3 Trust Policies

As defined in Chapter 3 (cf. Section 6.3), policies are statements that specify under which
conditions an individual can be trusted for a specific issue. In our thesis, we represent policies
as a collection of conditions, called trust criteria.

Definition 58 (Policy) A policy π is defined by:

πP attern
Issuer = {tc1, tc2, ..., tcn}

where Issuer is the individual which issues the policy, Pattern is the Trust Pattern to which
the policy applies, and {tc1, . . . , tcn} is a set of trust criteria.

Policies are used to state what properties an interlocutor must possess in order to be consid-
ered trustworthy. However, we defined in Chapter 2 trust as a decision that involve a particular
issue (cf. Definition 1). To that aim, we use the concept of trust pattern.

Definition 59 (Trust Pattern) Trust patterns (or patterns, for short) are used to specify the
issue of the decision a policy can be used for. They are defined as a pair:

〈action, target〉 (6.6)

Where action represent the action the requester requested to perform, and target defines the
entity (i.e. resource, agent, community) on which the action will be performed.

151

Chapter 6. The Trust Management System

Based on the target field of the trust pattern, two types of policies can be defined; specific
or general. Specific policies are policies in which the pattern refers to a particular resource,
community or agent (via their identifiers). In contrast, general policies are specified for a group
of resources (via their types) or a group of individuals (via their roles).

Example 6.3.1 (Trust Pattern) For instance, the target 〈read, text〉 is used to specify a
policy that manages read requests on text documents. This pattern is different from this on
〈read, r1〉 which is used in the policy that accepts or not requests about reading the file r1.

We believe that most of the policies that are used in virtual communities are/should be
general policies. Indeed, given the intense pace of resources creation, communities building,
and agents turnover. We think that stating a specific policy each time a new resources is created,
a new community is built or a new agent is admitted seems simply unrealistic. Nevertheless, the
policy formalism we used admits to express both even if policies we will use in the remainder
of this thesis are general policies.

6.3.1 Trust Criteria

Trust criteria, denoted tc, are the building blocks of policies. They are atomic conditions used
to express threshold values over trust factors. With atomic we mean that these constraints
cannot be further divided into other smaller conditions.

Definition 60 (Trust Criteria) Each trust criteria tc is defined by :

tc = 〈f, op, v, w, t〉 (6.7)

where

• f is a trust factor such as f ∈ ∆f ,

• op ∈ {=, >,<,≤,≥, 6=} is an operator,

• v is the criterion threshold value where v ∈ f.A,

• w ∈ Z is the criterion weight,

• t ∈ {m, o} is the criterion type; “m” means that the trust criteria is mandatory, while
“o” means that it is optional.

Trust factors specify what propertie values an interlocutor must satisfy in order to be
considered as trustworthy. Operators are used to define the nature of the conditions that the
individual wants to express. Basically, an individual can represent six types of conditions:

Upper-bound conditions (UBC) are expressed using the operator “≥”. They are used to
specify that acceptable values for that specific trust factors must be superior or equivalent
to the threshold value stated in the trust criterion.

152

6.3. Trust Policies

Strict upper-bound conditions (SUBC) are expressed using the operator “>”. They are
used to specify that the values must be strictly superior to the threshold value fixed in
the trust criterion.

Lower-bound conditions (LBC) are expressed using the operator “≤”. They are used to
specify that acceptable values for that specific trust factors must be inferior or equivalent
to the threshold value stated in the trust criterion.

Strict lower-bound conditions (SLBC) are expressed using the operator “<”. They are
used to specify that the values must be strictly inferior to the threshold value fixed in the
trust criterion.

Exception conditions (EPC) are expressed through the operator “=”. They are used to
specify that the only acceptable value is the value fixed by the threshold in the trust
criterion.

Exclusion conditions (ELC) are expressed by the operator “6=”. They are used to specify
that all values are acceptable except the value stated in the trust criterion.

Here, “superior” and “inferior” should not be understood only from a pure mathematical
semantics. Their meaning depends on the order relation that is stated (or not) in the trust
factors ontology.

The relationships between the concepts we saw previously (i.e. properties, trust factors
and trust information) and the concept of trust criteria that we introduced in this section are
illustrated in Figure 6.4.

Trust Factor

Trust
Criterion

Trust
Information

SatisfiesConstraints

Describes

CA

Declaration

Credential

Testify

Certify

Individuals

Certification Authorities

CA
CA

Constitutes

PropertyRepresents

Requires

Controller

Possesses

Requester

Concerns

Figure 6.4 – The correlation between the concepts of trust factors, trust criteria and trust
information.

153

Chapter 6. The Trust Management System

Properties are individual’s characterising features. When a correlation exists between a
property and the trustworthiness of individuals that possess it, the property is considered as
a trust factor. Using trust factors, individuals can express trust criteria (i.e. constraints or
conditions) to specify from which value the property holder can be considered as trustworthy.

Subsequently, trust criteria can be satisfied (or not) using trust information. These trust
information can be declarations or credentials. Declarations constitute other members testi-
monials that are directly provided to the controller, while credentials are certificates delivered
by certification authorities to the controller which decides to disclose them to the requester or
not.

Example 6.3.2 Let us take the example of the following trust criterion:

tc = 〈age,Op, 18, 2,m〉 (6.8)

Now let us see how the type of the operator can affect the nature of the condition stated by the
trust criterion:

• Op = “≥” signifies that only adult individuals satisfy the trust criteria (UBC),

• Op = “<” signifies that only minors satisfy the trust criteria (SLBC),

• Op = “=” signifies that only individuals aged 18 satisfy the criteria (EPC),

• Op = “6=” signifies all individuals except those that are aged 18 satisfy the criteria (ELC).

6.4 Trust Mechanisms

A trust mechanism refers to the scheme used by the controller to derive trust evaluations based
on its policies and the information it collected (i.e. credentials and declarations). To that aim,
we specified a policy evaluation function that computes to which degree the trust information
collected satisfy the policy of the controller. Worth noting that this function does not take any
trust decision, but instead computes a trust measure that is later used by the trust decision
model to derive a trust decision (cf. Section 6.6). This trust evaluation represent the amount
of trust that the controller accords to the requester.

Definition 61 (Policy Evaluation Function) The policy evaluation function is defined as
follows:

E : a.Π× a.Ψ→ [0, 1]

The above evaluation function is used by an individual a to compute the extent to which the
information he collected about his interlocutor (i.e. the profile a.Ψ) satisfies the trust criteria
stated in its policy (i.e. a.Π). To that aim, the function E maps a policy and the corresponding
profile to the weighted sum that corresponds to the policy evaluation.

154

6.4. Trust Mechanisms

Concretely, let πx
a be the policy used by the individual a to handle requests of the pattern

x (e.g. x = 〈read, text〉). Now let us consider the request r initiated by b. After receiving
the request, the controller a collects the trust information required by its policy and builds the
requester’s profile a.ψb.

The evaluation of πx
a is achieved by applying the function E(πx

a , ψ
b) as sketched by the

formula 6.9 below, knowing that:

πx
a = {〈f1, op1, v1, w1, t1〉, . . . , 〈fn, opn, vn, wn, tn〉}

is the policy under evaluation, and

ψb = 〈q, b, {〈f1, v
′
1〉, . . . , 〈fm, v

′
m〉}〉

is the profile that a built about b. The policy evaluation is then performed as follows:

E(πx
a , ψ

b) =

∑

n

i=1,j=1
E(〈fi,opi,vi,wi,ti〉,〈fj ,v′

j〉)
∑

n

i=1
wi

where 〈fi, opi, vi, wi, ti〉 ∈ π
x
a , 〈fj , v

′
j〉 ∈ ψ

b and fi = fj

0 if ∃ tci ∈ π
x
a/ E(〈fi, opi, vi, wi, ti〉, 〈fj , v

′
j〉) = 0 ∧ ti = m

(6.9)

The function E(〈fi, opi, vi, wi, ti〉, 〈fi, v
′
i〉) valued in [0, wfi

] performs the evaluation of a
trust criterion tci with respect to a trust information tij . The correspondence between the
trust criterion and the trust information is done based on the common trust factor they use.
For instance, a trust criterion that constraints the age of the interlocutor is evaluated with
the trust information that proves or testifies such trust factor. So for each trust criterion, the
function E looks for the corresponding trust information and evaluates whether this information
satisfies the criterion or not. If it satisfies it, the computed value is 1 which is further multiplied
by the weight of the criterion wi, otherwise the computed value is 0. A trust criterion is
computed to zero either because the trust information failed satisfying the criterion, or because
the appropriate trust information has not been acquired. Further, the results of the evaluation
of each trust criteria are summed and divided by the sum of all the weights. So the result
represents the mean of the weighted sum and constitutes the satisfaction level of the controller
policy with respect to the requester profile. Finally, if one of the criteria that are not satisfied
is mandatory, the evaluation of the policy fails and returns 0.

Example 6.4.1 Let us consider the following policy 3

π
〈join,community〉
Bob = {〈age,≤, 33, 2,m〉, 〈age,≥, 18, 2,m〉, 〈identity,>, complete, 1, o〉,
〈reputation,>, 70%, 1, o〉}
and let

Bob.ψAlice = 〈q, Alice, {〈age, 22〉, 〈identity,marginal〉, 〈reputation, 65%〉〉

be the profile Bob collected about Alice who wants to access the “juniors” community he created
in the Eurêka platform. The evaluation of the policy proceeds as follows:

3 With identity.A = {ultimate > complete > marginal > unknown > untrusted} (cf. Section 3.2.3.1).

155

Chapter 6. The Trust Management System

• 22 ≤ 33 =⇒ E(〈age,≤, 33, 2,m〉, 〈age, 22〉) = 2

• 22 ≥ 18 =⇒ E(〈age,≥, 18, 2,m〉, 〈age, 22〉) = 2

• marginal < complete =⇒ E(〈identity,>,marginal, 1, o〉, 〈identity,marginal〉) = 0

• 65% < 70%marginal =⇒ E(〈reputation,>, 70%, 1, o〉, 〈reputation, 60〉) = 0

The above example is illustrated in Figure 6.5

Policy Evaluation

Alice Bob

Decision

Making

request(operation, resource)

Trust decision

Trust Management Model

 resourceRequests Controls

Trust Decision Model

Other

Individuals

�age,≤, 33, 2,m�

�age,≥, 18, 2,m�
�identity,>, complete, 1, o�

�reputation,>, 70%, 1, o�
�credential, CA, age,Dave, 22�

�credential, CA, identity,Dave,marginal�
�credential, Carl, reputation,Alice, 80%�

�credential,Dave, reputation,Alice, 65%�

�credential, Elvis, reputation,Alice, 70%�

�credential, Fanny, reputation,Alice, 50%�

�credential, Gaby, reputation,Alice, 76%�

�credential,Helen, reputation,Alice, 49%�

E

0.66

�reputation,Alice, 65%�

Figure 6.5 – Illustration of the policy evaluation process

In this example, the comparison between the profile values and the threshold values in the
trust criteria is performed based on the relations that exist between these values in the trust
factors ontology. For instance, it is not because 33 is greater than 22 that the statement 22 ≤ 33
is computed to true. This is due to the fact that, there is a “Higher” relationship from 33
to 22 stated in ∆f .R of the trust factors ontology. This mechanism allows us to deal with all
kind of values (intervals, boolean, . . .). The evaluation of the above policy with respect to the
information contained in the profile would be as follows l = (2 + 2 + 0 + 0)/6 = 0.66 These
results corresponds to the satisfaction level of the policy. Now, it remains to the trust decision
model to make a trust decision based on this evaluation.

6.5 Trust Decision Making

As stated before, the process of evaluating trust is distinct from the one of making the trust
decision. In our thesis we only focus one the first one while the second one is left to the final

156

6.6. Building Trust Experiences

user. However, in order to be able to evaluate our model, we make use in this section of a
simple decision model. This model is encapsulated in the trust decision function defined below.

Definition 62 (Trust Decision Function) The trust decision function is defined by:

W : [0, 1]→ {permit, deny} (6.10)

How this trust decision function really works is not relevant in our investigations. The only
assumption we make is that this function makes use of the trust evaluation computed before
and that this value is compared with respect to a decision threshold fixed by the individual (or
agent) making the trust decision.

Example 6.5.1 Let us consider the case of Example 6.4.1, and let us suppose that Bob, the
individual taking the decision, decided to accept all requests from individuals that satisfy his
policies by at least 60%). In this situation, the trust decision function W will compute the
decision permit for the request q which was evaluated in that example to 66%.

When a request is accepted, the individual that initiates the request is permitted to perform
the operation he requested on the resources his is interested about. The acceptance of a request
is concretely materialised by the establishment of an authorisation (i.e. credential) in which
the resource controller testifies that the requester is trusted to perform what he is authorised
for. Once he gets this authorisation, the requester will be allowed by the resource to perform
the operation he is trusted for.

6.6 Building Trust Experiences

When a controller trusts a requester, the former exposes himself to the betrayal of its inter-
locutor. Thus, after each interaction, controllers evaluate the behaviour of their interlocutors
with respect to the trust decision they have made. To that aim, each individual makes use of
its personal outcome evaluation function to assess whether the interaction was satisfactory or
not.

Definition 63 (Outcome Evaluation Function (OEF)) The outcome evaluation func-
tion, denoted by Ξ, is defined by:

Ξ : {permit, deny} → {−1, 0,+1}

−1 means that the outcome was negative, while +1 is used when the outcome is positive.
The neutral outcome 0 means that the interaction did affect neither negatively nor positively
the individuals involved in it.

Based on the outcome evaluation function Ξ, each individual maintains an experience set
(Γ) in which its stores its individual experiences. Experiences represent traces of interaction
undertaken by the individual.

157

Chapter 6. The Trust Management System

Definition 64 (Experience) Each experience e is defined by :

e = 〈i, s, l, d, o, π, ψ〉 (6.11)

where

• i is the interaction identifier,

• s is the subject (i.e. interlocutor) which whom the individual is interacting,

• l is the trust level computed by the policy evaluation function E,

• d is the decision derived by the trust decision function W,

• o is the outcome computed by the outcome evaluation function Ξ,

• π is the policy used during the interaction,

• ψ are the profile it used to evaluate the policy.

We will see in the next chapter, in Section 7.2.1, how these experiences are used to improve the
quality and pertinence of trust policies.

6.7 The Trust Management Cycle: From Trust Factors to

Trust

Now that all the elements that comprise our trust model has been introduced, we are in position
to present how we put all these elements together to define the architecture of the trust man-
agement system that every agent of our communities relies on when making its trust decisions.

As depicted in Figure 6.6, first (1), the user of the TMS (e.g. the controller) initialises it by
specifying the policies that the TMS will use to handle each type of request (cf. Section 6.3).
Once the TMS initialised, it is now able to handle the requests that the controller receives (2).
The request management is then responsible of extracting the trust pattern from the request and
forwards it to the policy management. Based on this pattern, the policy management extracts
from the policies repository the policy that best handles the received request (4). Once this
policy selected (5), the policy management module triggers the policy evaluation function (cf.
Section 3.3). The policy evaluation function triggers the trust information collection (6) which,
depending on the nature of the trust criteria (i.e. proofs or indicators) specified in the policy,
requests the appropriate trust information (i.e. credentials or declarations) (7). Now, the policy
evaluation function is able to use the profile built by the trust information collector (8) with
the policies selected by the policies management. The result of the evaluation is then passed
to the trust decision function that computes the final trust decision (10). If the requester has
been trusted, an authorisation is established. In (11), the outcome evaluation function tries

158

6.8. Bridging the trust model and the virtual community model

Resource

Policies

Specification

Policies

Management
Policies

Trust

Information

Management

Experiences

2

1

45

6

7

8

7

9

10

11

Controller

R
e

q
u

e
s

te
r

7

Controls

W E(π, ψ)

ψ

π

Ξ Γ

Π

r = �a, b, request, x�

Auth Ontology

∆

Figure 6.6 – Abstract representation of our trust model.

to assess the outcome of the interaction that has been accepted by the TMS and updates the
experiences repository in consequence (12).

In the next chapter we present, in more details, the process behind the policies management
phase of the model above. That is actually where policies are built, maintained and, most
importantly, adapted. It is this adaptation mechanism that represents our solution to the
limits of trust management systems highlighted in Chapter 3.

6.8 Bridging the trust model and the virtual community

model

We present in this last section how the concepts we used to describe the multi-agent-based
virtual community framework (cf. Chapter 5) have been extended to integrate the concepts
related to the trust management that we introduced in the previous sections.

Again, we will rely on the VOWELS approach to describe what should be added in each of
its dimensions to bridge the two models. But first, we start by extending the definition of the
ontology to integrate trust concepts.

159

Chapter 6. The Trust Management System

6.8.1 Ontology

The trust factors ontology T defined in Section 6.2.3 is integrated to the domain ontology ∆

defined in Chapter 5. The relatively straightforward mapping between the definition of T and
the definition of ∆ is as follows:

∆f ⊂ ∆ =⇒

∆f .T ⊂ ∆.T

∆f .A ⊂ ∆.A

∆f .R ⊂ ∆.R

6.8.2 Resources

At the resource level, we extend the definition of resources given in Section 5.3 to endow each
resource with an access control mechanism that enables it to protect its content from not
permitted operations (cf. Section 3.1). This mechanism is symbolised by the authorisation
function Auth.

Definition 65 (Authorization function) The authorisation function Auth is defined by:

Auth : A→ O

The function Auth maps agents to the operation they are permitted to perform. Consequently,
resources are now defined as follows:

∀r ∈ R, r = 〈ε, θ, P,Auth〉

6.8.3 Agents

The definition of agents is extended as follows:

∀a ∈ A, a = 〈ε,G,Λ, L,R,C, P,Θ,Π,Ψ,Γ, E ,W,Ξ〉

where ε,G,Λ, LR,C and P are, respectively, the agent identifier, its goals, its plans, its re-
sources, its communities and its properties as defined in Section 5.4. To these elements, we add
the following concepts introduced in this chapter:

• Π which is the set of policies that the agent a uses in its trust decisions,

• Θ is a set of opinions it maintains about other agents of the community,

• Ψ is the set of profiles the agent gathered during its interactions,

• Γ is the experience that the agent built over its interactions,

• E is the policy evaluation function,

• W is the trust decision function,

• Ξ is the outcome evaluation function.

160

6.8. Bridging the trust model and the virtual community model

6.8.4 Interaction

In terms of interactions, we have made two important extensions to the interaction language
we have introduced in Section 5.6. First, we add two new performatives that agents use to
communicate about trust decisions: permit and deny.

In addition, we extended the agents communication language with a new protocol, called
TrustNegotiation. This protocol is used by the agents in the position of controller to request
credentials from the requesters.

Thus, the extension we have made to the interaction dimension are stated as follows:

• Perf = Perf ∪ {permit, deny}

• Prot = Prot ∪ {TrustNegotiation}

The TrustNegotiation protocol will be defined in the next Chapter (cf. Section 7.4.2).

6.8.5 Organization

At the organization level, we need to extend the structural, functional, and normative speci-
fications we presented in Section 5.5. The extension of the structural specification is justified
by the need for agent that endorse the role of certification authority and to express delegation
between agent. And the extension of the normative specification is mainly motivated by the
need for collective policies.

6.8.5.1 Structural Specification Extension

In the structural specification, we added three new roles to the specification of the community
as depicted in Figure 6.7.

The first added role is the controller role. This role is used to implement the delegation of
rights between agents. A provider or a community owner can delegate part of their right to
another agents. Consequently, this agent can handle requests about this resources/community
and issues permissions to other agents. Moreover, the agents adopting the role of authority are
responsible of issuing, validating and revoking credentials for other members. Thus they act as
certification authorities. Nevertheless, we assume that this role is incompatible with the role of
consumer. So an agent playing the role of authority cannot use the credentials he issued when
he is playing the role of provider and controller as well. Therefore, there is a compatibility
link between these roles. Consequently, there should be at least two agents playing the role of
authority. So an agent can decide which agents he trusts as an authority and which ones he
does not. However, this issue is not addressed in this thesis. Finally, the last role is an abstract
role (i.e. a role that cannot be adopted by any agent) that we used to structure the provider
and the controller roles which overlaps in the functional specification as we will see in the next
section.

161

Chapter 6. The Trust Management System

<< abstract >>

Manager

<R>

Owner

Member

Authority Consumer

Controller

<R>

Provider

<R>

 Community

compatibility (∃ r ∈ R)

compatibility (∀r1, r2 / r1 ≠ r2)

communication link
Community

role
aggregation / cardinality

inheritance

le
g
e
n
d

min..max

1..*

1..1
1..*

0..*

0..*

0..*

Figure 6.7 – Extended structural specification of virtual communities.

6.8.5.2 Functional Specification Extension

As we added three new roles, we need to update the functional specification of the virtual
community to add the goals and missions that belong to each of the three roles. The extended
functional specification is depicted in Figure 6.8 below.

createCom

control

cooperate

produce consume

certify

admit

handle

validate

build

Update

Reputation

Collaborate

destroy

exclude

issue

create

revoke

monitor

delete

issuePol

enforcePol

grant

delegate

reward sanction

mCont2

mCreatmCreat

mCert

mCert mCert

mProd mProd

mCont1

mCont1 mCont2

mCont2

perform
mCons

request
mCons

mRew

mCreat

Sequencial Choice Parallel

goal
missions

le
g
e
n
d

Observe

mMon mSanc

mSanc mRep

collect

Information

mCont1
Evaluate

Policy

mCont1

Figure 6.8 – Extended functional specification of a virtual community.

162

6.8. Bridging the trust model and the virtual community model

As illustrated in Figure 6.8, we extend the functional specification with the certify goal
which is further divided into issue, validate and revoke credentials. We add also a goal monitor
by means of which agents are able to monitor each other’s behaviour and sanction malevolent
agents (e.g. reputation loss, exclusion). We will present in the next section the norms for which
an agent can be sanctioned. Finally, we added a new goal control by means of which agents are
responsible of answering requests (e.g. join, access control and delegation). To that aim, they
need to specify policies, enforce these policies and make decisions (admit, delegate or grant).

Consequently, the new functional specification is defined as follows:

FS = 〈G,M,S〉

Where:

• G = {createCom, build,manage, admit, exclude, destroy, certify, issue, handle,
validate, revoke, cooperate, produce, create, delete, control, issuePol, enforcePol,
delegate, grant, consume, request, perform,monitor, reward, sanction} is the set of
community goals identifiers,

• M = {mCreat,mCert,mProd,mCont,mCons,mMon} is the set of community missions
identifiers,

• S = {ComCrSch, } is the set of scheme specification of the community.

6.8.5.3 Normative Specification Extension

The extension of the normative specification is twofold. First, we added the norms by means
of which we match each role with the related missions as presented in Table 6.1.

n.ε condition role type mission TTF

n1 — owner permission mCreat —
n3 — provider obligation mProd —
n4 fulfilled(n3) controller permission mCont1 —
n5 fulfilled(n3) controller obligation mCont2 —
n6 notfulfilled(n5) controller forbidding mCont1 —
n7 fulfilled(n3) consumer permission mCons —
n8 notfulfilled(ni) member permission mSac —
n9 fulfilled(n3) member obligation mRew —

Table 6.1 – Extended normative specification of a virtual communitiy.

Second, we enriched the definition of community with a set of policies Π that the community
members must use in their trust decisions alongside with their individual policies. As a result,
policies fall into two categories: individual policies and collective policies.

163

Chapter 6. The Trust Management System

Individual policies are the policies that agents individually issue and use in their trust deci-
sion.

Collective policies are policies that are issued, by consensus, by all members of the commu-
nity. These policy are then used by everyone during its trust evaluation.

Example 6.8.1 To illustrate the need for collective policies let us consider our running example
described in Section 5.0.1). Suppose that Alice, Bob and Carol are three members that joined
together and created a community called ABC. Any trust decision made by a community
member may impact the other members, making their agreement a prerequisite when taking
such decisions. For instance, if Alice decides to make public the source code of the application
she is involved in, this can affect the whole group.

In the above example, asking each member his opinion when making decisions that can
affect all the group is not realistic. Besides being a bottleneck strategy, in such approach no
one can guarantee that all members are online when the decision has to be made. A more
credible approach would be to make the community members agree on a policy based on which
they can make trust decisions. Accordingly, the opinion of each member of the community
has to be taken into consideration when issuing such collective policy. The consideration of
each member’s individual policy when building such a collective policy is paramount for the
community cohesion and the coherence of the decision undertaken within it.

Definition 66 (Collective Policy) We use policies to represent the constraints imposed by
the members of a community. So each community c is associated with a set of collective policies
that agents from c.A are obliged to use when making decisions about common resources (∀r ∈
c.R).

Assumption 6.8.1 (Compliance Norm) From the Definition 66, we advocate that there
should be a norm that imposes to each member of the community the use of the appropri-
ate collective policy when making decisions about shared resources. Consequently, every agent
that trusts agents which do not satisfy the collective policy violates the compliance norm.

The problem that can arise using norms such the one presented in Assumption 6.8.1 is
the problem of compliance checking. In other words, how can we guarantee that the agents
of the community will respect the norm and use the collective policies during their inter-
actions. Indeed, virtual communities are decentralised environments wherein no entity can
play the role of central authority and verify whether the imposed norms are respected or
not. Therefore, the only way to perform this task is to rely on a social control approach
[Falcone and Castelfranchi, 2001, Jøsang et al., 2007]. For that, we use a norm that obliges
agents detecting norms violation to sanction the agents committing the violation.

Assumption 6.8.2 (Compliance Control Norm) We propose a norm that obliges the com-
munity members to monitor and sanction all agents making decisions against the collective
policy.

164

6.9. Conclusion

The questions of “how collective polices are generated” and “how they are used alongside
with individual policies” will be discussed later on in Chapter 7. All we need to know for the
moment is that communities are endowed with collective policies. Consequently, the definition
of a community become as follows:

∀c ∈ C, c = 〈ε,OS,A, plays, commits,R,Π〉

where ε,OS,A, plays, commits and R are the concepts defined in Definition 28, while Π is a
set of policies that agents use to protect the resources they have in common and their personal
resources as well.

6.9 Conclusion

In this chapter, we specified a trust management based on which members of the communities
presented in Chapter 5 evaluate the trust they are willing to put in each others.

The most novel aspect of this model lies in its expressive, flexible and semantic policy
language that can express both individual and collective policies. Expressive as the conditions
the conditions used to express trust conditions (i.e. trust criteria) make use of a wide range of
trust factors (i.e. proofs and indicators), flexible as the evaluation of these policies is inspired
from weighted-logics, and thus fuzzified. Finally, this language is semantic as the conditions
express by these policies are defined using the terms and values of an ontology (trust factors
ontology).

Based on this policy language, we framed a trust management system (cf. Figure 6.6)
that allows virtual communities members to specify trust policies based on which they make
their trust decisions. In this system trust decisions are automated via the use of trust decision
function but our model only manages the evaluation of trust based on which these decisions
are made.

Finally, we presented in the last section, how the concepts introduced in this model and
the ones we defined in the multi-agent-based virtual community framework we presented in
Chapter 5 can be weaved. The integration of these models allows us to build a generic trust
management system that can assist virtual communities human users in their trust decisions.

In the next section, we will see how this policy language and the model we framed in this
section are used to achieves the objectives of this thesis (cf. Section 1.3).

165

Chapter 6. The Trust Management System

6.10 French Summary

Dans le hapitre 6, nous avons présenté un modèle multi-agent de communautés virtuelles qui
permettait à des individus distants géographiquement de coopérer dans le cadre d’un objectif
commun. Toute coopération comporte une part non négligeable de risque qu’un des partenaires
exhibe un comportement non coopératif ou malveillant. Ainsi, la problématique de la confiance
se trouve être au centre des préoccupation de chaque membre de ces communautés. À cet effet,
nous présentons dans ce chapitre le modèle que nous proposons afin de construire et gérer les
relations de confiance entre les membres de communautés virtuelles.

6.10.1 Aperçu de l’approche

Les communautés virtuelles sont le lieu d’intenses interactions dont la majorité concerne des
accès à des ressources potentiellement sensibles. De plus, la plupart de ces actions sont réal-
isées par des agents assistants qui agissent au nom des utilisateurs auxquels ils sont affectés,
l’automatisation de la prise de décision, et plus particulièrement les décisions de confiance,
est une préoccupation majeure de la conception de ces systèmes. Ainsi, l’objectif central des
contributions présenté dans ce chapitre vise à concevoir un modèle de gestion de la confiance
qui contribuera à cette automatisation. Cependant, avant de présenter notre modèle nous
commençons par clarifier ce que nous voulons dire par modèle de confiance.

Definition 67 (Modèle de confiance) Un modèle de confiance sert à (i) identifier les in-
formations à partir desquels la confiance est évaluée, (ii) définir un formalisme pour exprimer
les contraintes sur ces informations, (iii) spécifier le schéma d’évaluation qui sera utilisé pour
dériver une mesure de confiance à partir de ces informations.

À partir de cette définition, nous proposons dans la Figure 6.9 une illustration abstraite
de comment notre modèle pourrait être utilisé dans le cadre d’une interaction particulière.
Ici, l’interaction implique un demandeur (i.e., requester) et un contrôleur (i.e., controller). Le
demandeur a pour objectif d’exécuter une opération sur la ressource contrôlée par le contrôleur.
Pour cela, il doit gagner la confiance de ce dernier.

Tel illustré dans la figure 6.9, le processus d’établissement de la confiance commence lorsque
le contrôleur prend connaissance de la volonté du demandeur à manipuler sa ressource. Le
contrôleur extrait alors la politique de confiance qui s’applique à au type de manipulation et
au type de la ressource qui fait l’objet de la demande. Après, le contrôleur et le demandeur
entrent dans une phase d’interaction visant à satisfaire chacune des conditions exprimée dans
la politique du contrôleur. Le demandeur peut satisfaire la politique du contrôleur si ce dernier
est convaincu que :

• le demandeur possède les propriétés sur lesquels les conditions de sa politique sont ex-
primées, et que

166

6.10. French Summary

t

t+n

 Policy

Evaluation

In
te

ra
ct

io
n

Requester Controller

Decision

Making

message: request (operation, resource)

 message: reply(accept/deny, request)

message: credentials message: declarations

Other

Individuals

Trust Evaluation Trust Management Model

Trust Factors

Trust Factors

 resourceRequests Controls

 Policy

Selection

Trust
Policy

Trust Decision Model

Figure 6.9 – Overview of the trust model.

• les valeurs de chacune de ces propriétés satisfont les seuils de valeurs exprimées dans les
conditions.

Ainsi, une politique exprime des contraintes sur les propriétés des partenaires que le con-
trôleur considère comme étant un préalable à l’établissement de la relation de confiance.

Ainsi, nous considérons chaque propriété dont la pertinence pour l’évaluation de la confiance
est partagée par tous comme étant un facteur de confiance. La politique indique également
au contrôleur quelles informations ce dernier doit collecter afin d’évaluer la confiance. Cette
information peut être soit fournie par le demandeur lui-même (e.g., credentials) ou bien agrégée
à partir les témoignages des autres (i.e., déclarations). Une fois que toutes les informations
requises pour l’évaluation de la politique collectées, le contrôleur peut évaluer la satisfaction de
sa politique. Durant cette phase, le contrôleur évalue si les informations collectées satisfont les
conditions exprimées dans la politique. Si c’est le cas, le contrôleur va autoriser le demandeur
à exécuter l’opération souhaitées. Sinon, la relation de confiance ne s’établira pas et le requête
du demander sera rejeté.

Ce modèle reproduit fidèlement l’architecture abstraite des systèmes de gestion de la con-
fiance tel que nous l’avions décrit dans le Chapitre 3. L’évaluation du degré de confiance est
complètement séparée du mécanisme utilisé pour la prise de décision effective de faire confi-
ance ou non. Comme nous l’avions expliqué dans l’introduction de ce manuscrit, nous nous
intéressons plus particulièrement à l’évaluation de la confiance et non à la prise de décision

167

Chapter 6. The Trust Management System

de confiance. Cette dernière étant dépendante du domaine métier de l’application, nous nous
limiterons à un mécanisme de décision simple à base de seuil d’acceptation. Dans la suite, nous
présenterons rapidement les éléments-clés de ce modèle de gestion de la confiance.

6.10.2 Les facteurs de confiance

Dans cette section, nous introduisons le concept de facteur de confiance. Les facteurs de con-
fiance représentent les propriétés à partir desquels les membres des communautés virtuelles
réalisent leur évaluation de confiance.

Definition 68 (Facteurs de Confiance) Nous définissons l’ensemble des facteurs de confi-
ance F comme suit:

F ⊆ P

où P est l’ensemble des propriétés qu’un individu peut avoir (e.g. ceux présentées dans la
Section 5.4)

Bien sûr, cette ensemble est dépendant du domaine d’application et peut évoluer dans le temps.
On assume également que cet ensemble est construit par les participants à travers un processus
d’apprentissage des corrélations entre des propriétés est le degré de confiance d’un individu ainsi
que son comportement. La pratique d’utiliser les propriétés des individus en tant facteur de
confiance est assez réaliste. En effet, en se basant sur son expérience, l’individu peut facilement
déduire que les partenaires ayant une certaine propriété pi ont tendance à trahir notre confiance
dans certains contextes, alors que d’autres ayant une propriété pj se trouvent être dignes de
confiance (cf. Chapter 2).

6.10.2.1 Preuves et Indicateurs

On a vu précédemment que dans notre modèle, pour que le contrôleur fasse confiance au
demandeur il faut qu’il puisse collecter les informations nécessaires à l’évaluation de sa politique.
Or dans un climat de méfiance, dû à la nature virtuelle des interactions, ces informations doivent
provenir d’un tiers de confiance puisque les deux parties ne sont guère confiance. Comme vu
dans les chapitres 2 et 3, il existe deux approches d’utiliser des tiers de confiance: autorité de
certification (AC) et la certification croisée (CC) [Linn, 2000]. Dans la première, la validité
de l’information repose sur la confiance qu’un individu accore aux organisations auxquelles il
appartient, alors que dans la seconde repose sur la confiance que porte un individu à l’expérience
des autres. Ainsi, en fonction de l’origine de l’information nécessaire pour sa satisfaction, les
facteurs de confiance peuvent être classés en deux catégories: preuves et indicateurs. Par
exemple, un permis de conduire est une preuve de la capacité d’un individu à conduire une
voiture alors que la réputation est l’agrégation des avis qu’ont les gens à propos d’un individu
sur sa capacité à conduire.

168

6.10. French Summary

6.10.2.2 Ontologie des Facteurs de Confiance

Compte tenu de l’hétérogénéité des membres qui composent les communautés virtuelles en
matière de propriétés, il est nécessaire que notre système soit capable d’identifier, comprendre
et raisonner sur ces propriétés afin de savoir lesquels sont/peuvent être utilisé comme facteurs
de confiance confiances. Ceci est l’objectif principal de l’Ontologie des Facteurs de Confiance.
Une partie des facteurs de confiance proposé dans l’Ontologies est illustrée dans la Figure 6.10.

Trust

Factor
IndicatorsProofs

Identity

Attributes

Recommand-
ation

Complete

Marginal

Undefined

Coding

None
Low

Fair

High

Experience
None

Low

Fair

High

Delegation

Full

Marginal Unknown

Untrusted

Reliability

Reputation

Cooperative
- ness

None

Low

Fair

High

High

Fair

Low
None

High

Fair

Low

None

High

Fair

Low
None

Skills

Higher SubSumption Equivalent

Lower InstanceOf Different

Figure 6.10 – Un fragment de L’Ontologie des Facteurs de Confiance

La racine de l’Ontologie représente un facteur de confiance générique. Ce concept est en
fait sub-divisé en deux sous concepts (preuves et indicateurs) qui représente les deux catégories
définies plus haut. Higher (>) ,Lower (<), Different (6=) et Equivalent (=) définissent un
ordre sur les valeurs que chaque facteur de confiance peut avoir.

6.10.2.3 Informations de confiance

Dans cette section, nous introduisons le concept d’information de confiance. En faut, les infor-
mations de confiance servent à communiquer à propos des facteurs de confiance. Là aussi, en
fonction de la nature du facteur de confiance sur lequel les informations portent, les informa-
tions de confiance sont classé en deux catégories: credentials et déclarations. Les credentials
sont des certificats électroniques établis par des autorités de certification. Leur but est de cer-
tifier que l’individu porteur du certificat possède bien la propriété certifiée. Par ailleurs, les
déclarations sont des témoignages établis par des individus pour échanger des informations sur
les propriétés des autres.

Les informations de confiance sont définis par un quadruplet:

169

Chapter 6. The Trust Management System

ti = 〈t, i, s, f, v〉

où t ∈ {credential, declaration} est le type de l’information, i est l’auteur de l’information,
s est l’individu concerné par l’information (i.e., sujet), f est le facteur de confiance à propos
duquel l’information est établie, et v ∈ f.A est la valeur que i associe à s à propos du facteur
de confiance f .

6.10.3 La politique de confiance

Une politique de confiance constitue une spécification des conditions à partir desquels un in-
dividu peut être considéré comme étant digne de confiance par l’auteur de la politique. Dans
notre modèle, nous avons décidé de représenter les politiques de confiance par un ensemble de
conditions appelées critères de confiance.

Definition 69 (Politique) Une politique π est défini par:

πP attern
Issuer = {tc1, tc2, ..., tcn}

où Issuer est l’individu ayant établi la politique, Pattern est le type de requête auquel s’applique
la politique, et {tc1, . . . , tcn} est un ensemble de critères de confiance.

Le Pattern représente la finalité de la décision concernée par la politique. Ainsi, chaque
pattern est défini comme étant une paire 〈action, target〉 permettant de spécifier quelles actions
va être réalisé et sur quel type de ressource. Par ailleurs, les critères de confiance constituent
les briques de base de chaque politique. Elles permettent de spécifier des conditions atomiques
sur les facteurs de confiance.

Definition 70 (Trust Criteria) Chaque critère de confiance tc est défini par :

tc = 〈f, op, v, w, t〉 (6.12)

où:

• f est un facteur de confiance tel que f ∈ ∆f ,

• op ∈ {=, >,<,≤,≥, 6=} est un opérateur de comparaison des valeurs,

• v est le seuil pour les valeurs admises tel que v ∈ f.A,

• w ∈ Z est le poids du critère,

• t ∈ {m, o} est le type du critère; “m” veut dire que le critère est obligatoire, alors que “o”
veut dire qu’il est optionnel.

170

6.10. French Summary

6.10.4 Le schéma de confiance

Dans cette section, nous allons présenter le schéma utilisé dans notre modèle pour calculer
une valeur de confiance à partir d’une politique et des informations de confiance collectées.
Pour cela, nous avons défini une fonction d’évaluation des politiques de confiance. Le résultat
de cette évaluation représente le degré de confiance que le contrôleur accorde au demandeur.
Cette valeur ne présage en rien du fait que le contrôleur va effectivement lui faire confiance et
accepter sa requête. Comme dit précédemment, ceci est du ressort du modèle de décision qui
n’est pas abordé ici.

Definition 71 (Fonction d’Évaluation des Politiques) La fonction d’évaluation des poli-
tiques de confiance est définie comme suit:

E : a.Π× a.Ψ→ [0, 1]

Cette fonction est utilisée par un individu a pour calculer le degré auquel les informations qu’il a
collecté satisfont les critères de confiance spécifiés dans sa politique (i.e. a.Π). Les informations
que le contrôleur collecte à propos du demandeur dans le cadre de l’évaluation de la requête de
ce dernier sont stocké dans une structure qu’on appelle profile (a.Ψ) 4. Ainsi, la fonction E à
pour tâche de faire correspondre une politique et un profil à la somme pondérée qui correspond
à l’évaluation de cette politique.

4Pour plus de détails sur les profils nous invitons le lecteur à se référer à la Section 6.2.4.4 du manuscrit.

171

Chapter 7

Adaptiveness and
Social-Compliance in

Trust Management

In Chapter 6 we proposed a policy language that that VCs use to specify the properties they
require in their partners to consider them trustworthy. Then we extended this language to
address the social (and collective) dimension of these environment. We have made our lan-
guage able to express collective policies that express common requirements of the members of
community.

In this chapter, we describe how we used this policy language to make our trust manage-
ment system social and context aware. To that aim, we first motivate why we considered the
objectives of this thesis as adaptation problems. With respect to that, we classify the types
of pressures to which our policies get adapted and the required adaptation mechanisms. In
Section 7.2, we present the mechanism to adapt policies to the social and business context.
Finally, we conclude the chapter in Section 7.6.

7.1 Adaptation Types

From the perspective of behaviour science and psychology [Cervenka et al., 2006,
Rakotonirainy et al., 2009], changes in the behaviour of individuals is often correlated to, and
can be inferred by (to some extent), the information related to the context wherein its interac-
tion is undertaken. Dey defined context as :

Context is any information that can be used to characterise the situation of an
entity. An entity is a person, place, or object that is considered relevant to the
interaction.

So although not explicitly mentioned in the above definition, social-context can arguably
be consider as a relevant information to the interaction, and thus included in the above defi-
nition. Consequently, social and business can be considered as equally relevant from humans
interactions as both influence and constraints individuals behaviour.

Chapter 7. Adaptiveness and Social-Compliance in Trust Management

In the light of that, we consider social-awareness and context-awareness as a unique problem
of policies adaptation to the interaction context. In Figure 7.1 we characterise this context and
analyse the different types of pressures exerted on individuals, and hence their policies, within
virtual communities. We identify two kind of pressures: social pressure (c.f. Figure 7.1-2 and
7.1-4) and environment pressures (cf. Figure 7.1-1 and 7.1-3). Social pressures represent the
social nature of virtual communities emphasised in the thesis introduction (cf. Chapter 1),
while environment pressures materialise their dynamic aspect.

Environment
pressures

Interlocutor
pressures

Community

Community

Members
pressures

1 2

43

Community
pressures

Social-AwarenessContext-Awareness

Figure 7.1 – Pressures that may be exerted on policies.

Each of the above pressures affects policies in use within the community (either individual or
collective) and thus requires a dedicated adaptation mechanism. In the following, we motivate
the need for each type of adaptation and illustrate it with examples.

7.1.1 Business-Context Adaptation

During a trust interaction, the decisions of a trustor are generally affected by the context
in which the interaction is undertaken. This context is materialised by the resources that
constitute the agent environment (cf. Figure 7.1-1) and the other agent it is interacting with
(cf. Figure 7.1-2). In this section, we explain how these elements of the system S may affect
trust policies and suggest specific adaptation mechanisms.

174

7.1. Adaptation Types

7.1.1.1 Instantiation

In Chapter 6 we presented a policy language based on which two types of policies can be stated;
specific policies and generic policies. Specific policies are stated with respect to a particular
resource and a particular operation. Contrariwise, generic policies are stated with respect to
a whole category of resources (based on resources type τ). We motivated the need for such
generic policies with the high pace of resources creation that makes impossible the definition
of policies for each created resources. Accordingly, these policies are generic and requires to be
adapted to best fit the specific context in which they will be applied. We call such adaptation
instantiation (cf. the concept of policies refinement in [Barrett, 2004]).

Moreover, even specific policies require to be instantiated when the context for which they
are applied is different from the context in which they have been specified. For instance,
the particular resources concerned by the policy may evolve in terms of value or in terms of
sensitivity. This issue is illustrated in the following example.

Example 7.1.1 Let us take again the resources r1 owned by Alice in Example 5.3.3. Initially,
the file contains only an abstract description about what Alice wants to develop. Then pro-
gressively, these ideas will be implemented and become more elaborated. Thus, intuitively, one
can agree that the policy that Alice uses to govern the decision she makes about r1 would be
different for each version.

In the above situation, it is the file update, which represents here the business-context
pressures, that motivates the need for policy adaptation. Given the intense and sustained
pace of interactions and activities that characterises virtual communities, policy changes such
as the ones illustrated in Example 7.1.1 would be so frequent that the human intervention is
neither possible nor desirable. Impossible because including a human in the agent decision loop
represents a bottleneck strategy as the human can not be present each time an agent has to make
a decision [Grandison, 2003, Artz and Gil, 2010, Seamons et al., 2002, Blaze et al., 1999a]; and
not desirable as then the human intervention, besides being time-consuming and error-prone,
means a loss of any automation advantage made possible by using trust management systems.

7.1.1.2 Negotiation

The trust model we framed in Section 3.2.1 assumes an asymmetric conceptualisation of trust
(cf. Section 2.3.3.1). Thus in order to gain the trust of the controller, a requester (or a
resource consumer) needs to disclose its credentials, making itself vulnerable as well. Indeed,
the credentials that can be released to gain access to other’s resources can be as sensitive for
the requester as the resource itself. Therefore, in most of the cases, controllers and requesters
rely on trust negotiation to establish trust gradually by disclosing only credentials for which
policies have been satisfied by the interlocutor (cf. Section 3.2.4). The following example aims
at illustrating such issue.

175

Chapter 7. Adaptiveness and Social-Compliance in Trust Management

Example 7.1.2 Alice wants to access a resource owned by Bob. But the policy specified by Bob
requires that Alice discloses her identity credential to prove that she is an adult. The problem
is that Alice’s identity credential is a sensitive resource as it contains her personal and private
information such as her age, her address and her photo. The disclosure of such information
can be harmful for Alice as it represents a violation to her privacy. So using negotiation, Alice
is able to propose to Bob alternative credentials (e.g. social security credential) that minimises
her privacy loss.

In the above example, Alice’s alternative proposition may represent a pressure to Bob’s
policies. Thus a successful negotiation must necessary take into account such pressures, other-
wise negotiation would be reduced to strategies compatibility which has its limits as discussed
in Section 3.4. In the light of this, we propose a mechanism by means of which agents adapts
their policies during a negotiation.

7.1.2 Social-Context Adaptation

We presented in Section 4.2, social mechanisms that explains how norms emerges (cf. Sec-
tion 4.2.1.1), how individuals tend to conform to the norms of a community (cf. Section 4.2.1.2)
and how in certain circumstances, individuals succeed in changing the norms of the community.
In this section, we analyse the pressure exerted on policies in social context in the light of these
social theories. Consequently, we identify top-down pressure (cf. Figure 7.1-2) by means of
which the community forces its members to adapt their individual policies with respect to a
collective one (cf. Section 7.1.2.1), but also a bottom-up pressure (cf. Figure 7.1-4) in which
the individual policies of each member of the community shapes the collective policy. This
bottom-up pressure is then further detailed into two sub-pressures in reference to the process
by means of which agents builds the collective policy (cf. Section 7.1.4), and those they use to
change it (cf. Section 7.1.3).

7.1.2.1 Combination

We introduced in Chapter 5 the concept of collective policies that the members of the same
community use to constraint their autonomy and harmonise the trust decisions they make.
However, we omitted to mention where does these collective policies come from. This issue is
illustrated in the following example.

Example 7.1.3 Let us consider the community ABC composed of Alice, Bob and Carol. The
three members have a common project to develop an Android application. But even if the three
members share the same objective, they differ in terms of policies they use. For instance, Bob
is willing to accept new members having a reputation of 0.6. In turn, Alice does not trust other
agent having a reputation below 0.7. Finally, Carol does not rely on reputation and prefers a
marginal identity.

176

7.1. Adaptation Types

In the above example, if each member uses only its individual policy, request to join the
community will be accepted or rejected but not for the same reasons. Such situation can be
harmful for the community cohesion and stability. To avoid that, the members of the community
must agree on minimal conditions that a requester must meet to see its request accepted. As
illustrated in Figure 7.1, these conditions represent collective policies that emerge from agents’
interactions in which the individual policy of each agent constitutes the pressure that influences
the way this collective policy is built. In the light of this, we propose to use combination as
a way by means of which agents make emerge a collective policy by adapting their individual
policies (cf. Section 4.1.1).

7.1.2.2 Integration

Having collective policies is paramount for the community stability. But if these policies are not
used by the members, they become useless and the community would still be prone to instability.
Therefore, each member of the community has the obligation (via norms) to comply with these
collective policies, otherwise he should be punished (cf. Section 4.3.2.2 and Assumption 6.8.2).
To illustrate this issue, let us consider the example described hereafter.

Example 7.1.4 Bob received a request from an agent with a marginally trusted identity and a
reputation of 0.6. If Bob relies only on his individual policy, he would have trusted this agent
and accepted his request. However, the collective policy that Bob agreed on with Alice and Carol
states that a new member must have a marginally trusted identity and a minimum reputation
of 0.7.

In the above example, it remains to Bob to comply or not with this collective policy. Complying
with the collective policy means adapting its own one with respect to this policy. So this
collective policy aims at dealing with agents autonomy by prescribing trust decisions that
are too fare from the decisions that other agents would have made. Therefore, we consider
collective policies as an indirect form of social pressure that the individual policy is subject
to. To that aim, we suggest a third adaptation mechanism that is inspired from the policies
integration algorithms presented in Section 7.5.2. The objective is to consider trust management
as normative systems in which collective policies constitute the norms that all TMS must comply
to. In the light of this, integration endeavours at enabling agents to make their individual
policies comply with the collective ones when making decisions that may impact the whole
community.

Furthermore, policies integration can also be used by agents when making decisions that do
not necessary affect other members. For instance, a member can benefit from the experience of
others (via the collective policy) to make better trust decisions by integrating its policy with
the collective one.

177

Chapter 7. Adaptiveness and Social-Compliance in Trust Management

7.1.3 Evolution

Now that the motivations for instantiation, negotiation and integration are established, one
can wonder whether collective policies should be adapted, and if so, why and how this can
be achieved. The following example illustrates some situations requiring collective policies
adaptation.

Example 7.1.5 Let us consider the situation in which the members of the ABC community
need to enrol new members to help them developing the application they are involved in. How-
ever, the collective policy they use to admit new members is too restrictive and prevents them
to achieve their goal. While this policy fulfils well its role in preventing the membership of
untrusted agents, the conditions this policy conveys are far too restrictive for any trusted agent.

The above example illustrates that just like individual policies, collective policies require to
be adapted when it prevents the community members to achieve their goals. In the light of that,
we propose a policy adaptation mechanism by means of which agents can trigger changes in
the collective policy they are subject to. These adaptation can be triggered when the collective
policy is too restrictive like in the previous example; but it can also be triggered in situations
in which the collective policy is too permissive. For instance, one can imagine the situation
in which a majority of agents noticed that all bad experiences they had involved agent having
a particular property (e.g. agents having no recommendations). In such situations, the TMS
these agents are using should be able to reason on collective policies, detect eventual adaptation
and perform this adaptation in agreement with the other members of the community (via their
TMS). We refer to this mechanism as policies evolution.

7.2 Policy Adaptation

In this section, we present how agents are able to react to each of the above pressures by adapting
their policies. To that aim, we use adaptation meta-policies that each trust management systems
(ASC-TMS) relies on to automatically change running policies.

The objective is to establish a process, similar to the one used in norms adaptation (cf.
Section 4.3.3.2) and apply it to policies adaptation. By making adaptation meta-policies ex-
plicit, it becomes a relatively simple matter to guarantee that these agents are always using the
policies that best handles the context in which they evolve.

Definition 72 (Meta-policy) Let M be the set of meta-policies. Each meta-policy m ∈ M
is defined as a function :

m : Ia ×Π× St ×K → ΛΠ

where the function m maps an interaction Ia [which is in most of the cases a request], a policy,
an image of the system S at a time t and a condition expression to the appropriate set of actions
to be performed on the policy.

178

7.2. Policy Adaptation

So based on their meta-policies, agent are able to trigger changes on there policies when
some conditions of the context hold. In the following, we present based on what information
(cf. Section 7.2.1) and how these conditions are specified (cf. Section 7.2.2). Then in Section
7.2.3 we describe the kind of adaptation a meta-policy can bring to policies on which they
have been triggered. Finally, in Section 7.2.4 we present the formalism used to express these
meta-policies and illustrates with some examples.

7.2.1 Adaptation Conditions

The ASC-TMS is has been designed to monitor and reason about both the business-context
and the social-context in which the trust evaluation has to be made. The objective is to capture
all information that are relevant to policies adaptation. However, and in order to make our
proposal realistic, we assume that only some types of information that are available in S are
concretely monitored by the ASC-TMS for adaptation purpose. To that aim, the ASC-TMS
relies on a common ontology to know what information should be captured.

Definition 73 (Context Ontology) We define the context ontology ∆ctx ⊆ ∆ as a triplet:

〈T,A,R〉

where T represents the term that describes the context information to be captured, A are the
context values (∆ctx.A = {x/∃y ∈ ∆ctx.T ∧ x

.
= y}) and R are relationships between elements

from T ×A (such as
.
=).

The ontology ∆ctx constitutes a data structure in which all pertinent contextual information
with respect to policies adaptation are collected. The information captured by ∆ctx fall into
four categories, namely internal variables, interlocutor variables, environment variables and
social variables. These variables are presented in the next sub-sections.

7.2.1.1 Internal Variables

The first class of information used in adaptation concerns the agent itself. This class of infor-
mation includes the agent personality traits that affect the way that the agent adapts it policy.
These variables include but are not limited to:

• Cautiousness expresses the degree to which an agent is sensitive to threats such as
collisions, credentials forgery, etc.

• Opportunism expresses the degree to which an agent is keen to achieve its interactions,
an thus relax its policy.

• Cooperativeness determines whether an agent is altruist, cooperative or selfish.

• Compliance expresses to which extent an agent is willing to comply with the collective
policy.

179

Chapter 7. Adaptiveness and Social-Compliance in Trust Management

Example 7.2.1 (Internal Variables) With respect to our running example, Alice is very
cautious. So each time she instantiates a policy she tends to restrict it. But Alice has also a
high degree of opportunism which enables her to succeed in her negotiation by relaxing its policy
when the pressure of its interlocutor is very high.

7.2.1.2 Interlocutor Variables

The second class of information belongs to the business-context of the interaction. It concerns
the subject of the interaction (i.e. the interlocutor). This information includes the general
properties available in the system, collected from its profile or gathered from other agents.
Here, we identify three main information that may affect/influence the way an agent adapts its
policy.

• Proximity specifies the nature of social relation that links the resource controller and
its interlocutor.

• History expresses whether the past experiences with the interlocutor were good or not.

• Reward represents the pay-off that the agent will (potentially) gain if the interaction
succeed. It can be computed based on the interlocutor competence degree, but it can
also be stated by the interlocutor itself at the beginning of the interaction or during a
negotiation.

Example 7.2.2 (Interlocutor Variables) Agents that interact with Alice fall into three cat-
egories, acquaintances, fellows and strangers. Based on that Alice affects to each agent a prox-
imity value that determines how Alice will adapt (or not) is a specific way for each type of
proximity.

7.2.1.3 Environment Variables

The third category of context information completes the previous ones in characterising the
business-context of the interaction. It contains information that relates to the object of the
interaction (e.g. resource, community). It includes the following variables:

• Scarcity is computed by the agent and expresses the scarcity of the resources in the
system.

• Demand expresses the demand rate. This demand rate can be computed by each agent
based on the requests it receives or aggregated based on other agents testimonials.

• Type corresponds to the resource type (τ ∈ ∆τ) presented in Definition 18.

• Sensitivity corresponds to the resource sensitivity (ς ∈ ∆ς) presented in Definition 21.

• Value corresponds to the resource value (ν ∈ ∆ν) presented in Definition 22.

180

7.2. Policy Adaptation

Example 7.2.3 (Environment Variables) The policy that Alice uses to grant access to its
application materialised by r1 (Example 5.3.3) is directly influenced by variables such as scarcity
and demand. For instance, if few participants manifested interest to Alice project, she would be
accommodating and her policy less restrictive. Analogously, Alice would be less accommodating
if her resource is rare and very valuable.

7.2.1.4 Social Variables

This last class of contextual information includes general properties of the system S and the
activities that are undertaken in it. It relates also to reported facts and incidents such as
collusion, credentials forgery or norms violation. We summarise these variables as follows:

• Agents population contains the agents global population (i.e. |A|).

• Communities count contains the number of communities (i.e. |C|) that are available in
the system.

• Community attractiveness is computed based on the value of the collective resources
shared among the community, the value of the resources of each member of the community
and the perceived competence of the members that compose the community.

• Community size contains the number of agents that are members of the community
(i.e. ∀c ∈ C, Community Size = |c.A|).

• Collusions expresses the number of collusion incidents reported in S.

• Credentials forgery expresses the number of incidents that are related to the misuse
of credentials (fake, forged, untrusted CA).

Example 7.2.4 (Social Variables) Alice, which is a compliant member, makes use of the
community size and the community attractiveness to decide to comply or not with the collective
policy of her community. So these two variables determines when Alice policy could be adapted
with respect to the collective policy.

7.2.2 Expressing Condition

Now that the context ontology ∆ctx has been defined. We present hereafter how the elements
of this ontology are used to express conditions over the context. These conditions states what
value the variables we presented above should have to make the adaptation necessary.

Definition 74 (Context Condition) Let K be the set of all context conditions, each condi-
tion k ∈ K is defined by

k = (X.type operation value) (7.1)

181

Chapter 7. Adaptiveness and Social-Compliance in Trust Management

where X ∈ S is the agent, the resource, the community or any other element of S on which
the condition is stated, type ∈ ∆ctx.T is the type of the condition, operation ∈ ∆ctx.A is the
comparison operator, and value ∈ ∆ctx.A is the threshold value.

Example 7.2.5 For instance, a condition k1 that checks whether the size of the community c
is above a certain threshold (e.g. 100 agents) is defined as follows:

k1 = (c.ComSize ≥ 100) (7.2)

In this section, we presented some examples of variable that the ASC-TMS relies on to
determine when policies should be adapted. These variables are mandatory in the context
of our model but they can be easily extended or substituted with other application-specific
variables. Knowing when to adapt a policy is important, but more importantly, the ASC-
TMS needs to know how this can be done. To that aim, we introduce in the next section the
adaptation operators we endowed the ASC-TMS to make policies adaptation effective.

7.2.3 Adaptation Operations

In order to make policies adaptation possible, it is necessary to endow the ASC-TMS with a
set of adaptation operations that can be applied to policies. To that aim, we extend Λ, the set
of action that agents can perform, with the set ΛΠ of adaptation operations. Each operation
is an action by means of which an agent can change the policy in a particular way.

Definition 75 (Adaptation Operation) Adaptation operations are defined as follows:

∀ωi ∈ ΛΠ, ωi : 2Π → Π

In Definition 75, we consider adaptation operations as functions that map a set of policies
(eventually composed of one policy) to another policy, that represent the adapted policy. Based
on this definition, adaptation operations are split into two categories: simple operations and
complex operations. We assume in the following that a policy π is adapted, resulting in an
adapted policy π

′

. The definitions below details the preconditions and effects of each operations.

7.2.3.1 Simple operations

Simple operations are used to change a policy in three difference ways.

• A trust criterion that compose the policy can be deleted or a new trust criterion can be
added.

• The values of existing trust criteria can be altered and new values can be used.

• The weights of the trust criteria can be changed to make some trust criterion less or more
important during the policy evaluation.

182

7.2. Policy Adaptation

To that aim, we defined seven simple operations that we present hereafter:

1. AddCriterion(π, tci): this primitive adds, to the individual policy π, the trust criterion
tci.

Precondition: ∀tcj ∈ π, tcj .f 6= tci.f

Effect: π
′

= π ∪ {tci}

2. DelCriterion(π, fi): this primitive looks for a trust criterion of type fi and removes it
from the policy π.

Precondition: ∃ tcj ∈ π/tcj .f == fi

Effect: π
′

= π − {tcj}

3. UpdateCriterion(π, fi, opi, vi, wi, ti): this primitive looks for a trust criterion of type
fi and changes it with the new values. If such a criterion does not exist, it adds it to the
policy π.

Precondition: ∃ tcj ∈ π/tcj .f == fi

Effect: π
′

= {π − {tcj}} ∪ {〈fi, opi, vi, wi, ti〉}

4. RestrictCriterion(π, fi): this primitive looks for a trust criterion of type fi and restricts
its value v. The restriction of v is performed by assigning it a new value v

′

that is
considered as Lower (<) than v (i.e. ∆f .R.Lower) with respect to the trust factors
ontology ∆f .

Precondition: ∃ tcj ∈ π/tcj .f = fi

∃ v′ ∈ ∆f .A /v
.
= fi ∧ v

′ < v if tc_i.op is “≤” or “<”

∃ v′ ∈ ∆f .A /v
.
= fi ∧ v

′ > v if tc_i.op is “≥” or “>”

Effect: tcj .v ← v
′

Effect: HigherCriterion(π, fi) otherwise.

5. RelaxCriterion(π, fi): this primitive looks for a trust criterion of type fi and relaxes
its value v. This is performed by assigning it a new value v

′

that is considered as Higher
(>) than v with respect to the trust factors ontology ∆f .

Precondition: ∃ tcj ∈ π/tcj .f = fi

∃ v′ ∈ ∆f .A /v
.
= fi ∧ v

′ < v if tc_i.op is “≤” or “<”

∃ v′ ∈ ∆f .A /v
.
= fi ∧ v

′ > v if tc_i.op is “≥” or “>”

Effect: tcj .v ← v
′

if tc_i.op is “≤” or “<” or “≥” or “>”

Effect: LowerCriterion(π, fi) otherwise.

183

Chapter 7. Adaptiveness and Social-Compliance in Trust Management

6. LowerCriterion(π, fi): this primitive looks for a trust criterion of type fi and lowers its
weight w.

Precondition: ∃ tcj ∈ π/tcj .f = fi

Effect: tcj .w ←Max(w − 1, 1)

7. HigherCriterion(π, fi): this primitive looks for a trust criterion of type fi and highers
its weight w.

Precondition: ∃ tcj ∈ π/tcj .f = fi

Effect: tcj .w ←Min(w + 1, 10)

All these adaptations affect (by weakening or strengthening) the running policy making it
more restrictive or less restrictive. So these operations should used within cautious strategies.
Otherwise, using the adapted policy can lead to negative consequences. For instance, based on
the general rule “more restrictive policies are safer”, many are those who minimise the risk in
using too restrictive policies. However, it has been proven too permissive policies are breaches
to security and too restrictive policies are brakes to cooperation [Vogel and Giese, 2012]. So
to avoid both situations, the above adaptation operations are used based on a parsimonious
strategy; only in specific circumstances (cf. Section 7.1) and only under particular conditions
(cf. Section 7.2.1).

7.2.3.2 Complex operations

While simple operations adapt a policy to build another policy, complex operations adapt at
least two policies to build another policy. Moreover, complex operations are considered complex
because they use also simple operations to achieve their adaptation. These operations are
essentially used to implement the mechanism to adapt individual policies under the pressure
of collective policies. However, up to now, we omitted to talk about where do these collective
policies come from.

1. Integrate(π1, π2, ih): this primitive integrates two policies using the integration heuristic
ih. How the integration is performed needs detailed explanations. Therefore, we leave its
description to the Section 7.5.2 in which we provide the algorithm we used for that.

Precondition: ∃ π1, π2 ∈ Π

Effect: π′ = π1 ⋊⋉ π2

2. Combine (Π′, c,mh, π′): this operation is used to combine a set of policies Π′ = {πn, πm}

(where n 6= m are agents identifiers) into a policy π′ representing the collective policy of
the community c. 7.5.1

Precondition: Π′ = {πn, ..., πm} / ∀i ∈ [n,m], πi.Issuer ∈ c.M

184

7.2. Policy Adaptation

Effect: π′ = πn

⊎

...
⊎

pn

In Section 7.2.1, we presented the context information that defines what conditions the
context must satisfy in order to make the agent adapt its policy. Then we introduced in Sec-
tion 7.2.3 the adaptation operators that describe how agents can bring adaptation to policies.
In the next section, we illustrate how these concepts (i.e adaptation conditions and adaptation
operations) are used alongside to define adaptation meta-policies.

7.2.4 Adaptation Meta-Policies

Meta-policies are defined in our system using event-condition-action rules (ECA)
[Russell and Norvig, 2010]. The use of ECA rules is a well-known approach for enabling human
users to specify to agents the desired actions to be performed when they are subject to specific
constraints. The most salient feature of ECA-based meta-policies is their declarative semantics.
When one of the aforementioned pressures is detected (cf. Section 7.1), the matching meta-
policy is triggered and the corresponding adaptation operations are executed, if the conditions
hold.

Each meta-policy is composed of three parts: the event, the conditions and the actions as
illustrated hereafter:

〈event〉 : 〈condition〉 ← 〈action〉

The intuitive reading of an ECA meta-policy is “if the event occurs in a context where
the conditions are true then the actions must be executed". The event is generated by the
TMS whenever it identifies one of the situations requiring policy adaptation (i.e. instantiation,
negotiation, combination, integration, and evolution). The 〈condition〉 is a possibly empty set
of conditions ki ∈ K. These conditions represent filters over the agent’s context St, the 〈action〉
is a sequence of adaptation operations through which the agent can change its policy.

The 〈event〉 is the triggering event that will launch the adaptation. The triggering event
allows to associate a name to each adaptation meta-policy.

The above meta-policies syntax consists of three basic predicates: event predicates (St),
action predicates (∆Π

ω) and context condition predicates (K).
All predicates are system-defined and are given to the virtual community users through

their agents in order to allow them define adaptation meta-policies. Event, action and condition
predicates can be of different arities.

The event predicates represent basic events that trigger the adaptation phase. For example,
InstanciatePolicy(Π

〈r.τ,r.o〉
ai , q, aj , r, o, S

i) is the event symbol that triggers the instantiation of
the policy Π

〈r.τ,r.o〉
ai with respect to a requester aj that sends the request r in which he asks to

perform the operation o on the resource r in a context St (voir Section 7.4.1).
The context conditions represent expressions containing constants and variables. The vari-

ables can be related to the arguments that appear in the event part of the policy. For instance,
one can express conditions on the agent properties (i.e. internal variables) resource r (i.e.
environment variables) attributes, the partner aj properties (i.e. interlocutor variables), the

185

Chapter 7. Adaptiveness and Social-Compliance in Trust Management

community ci (i.e. community variables) properties and/or on the attributes of any elements
composing the context Si.

Example 7.2.6 In order to illustrate how meta-policies are defined, let us consider the follow-
ing examples :

Instantiate(ΠBob,_,_, R,_,_) : R.valuet > R.valuet−1

← RestrictCriterion(ΠBob, reputation).

In this example, Bob uses a meta-policy that systematically restricts the reputation of the
selected policy each time the requester resource value increases.

We presented here how meta-policies can be specified and how, based on these meta-policies,
policies are adapted in response to context constraints. Now, we need to think about the means
by which an agent can coordinate the various adaptations he needs to perform in order to make
its policy fit the constraints he is subject to. To that aim, we need to specify a policy adaptation
cycle that makes the agent aware of the ordering of process that a policy goes through since its
selection to its evaluation.

7.3 The Policy Adaptation Cycle

In this section, we extend the policy evaluation and selection mechanisms of ASC-TMS (cf.
Section 6.7) to support policy adaptation. The resulting architecture is depicted in Fig. 7.2
below.

As illustrated in Figure 7.2, now the policy repository contains both individual (i.e. Πa)
and collective policies (i.e. Πc). We added also a meta-policy repository. Finally, we added
a context management module which aims at collecting context information that are used to
verify whether context conditions stated in the meta-policies are satisfied or not.

The adaptation of policies is entirely handled by the policies management module. The
objective of this component is to automate the adaptation process based on a predefined adap-
tation cycle which is inspired from case-based reasoning (CBR) [Aamodt and Plaza, 1994].

CBR is a reasoning type that uses cases (past experiences) to solve new problems by adapting
solutions that have been used to solve similar problems in the past. A case can be defined as an
experience, and is composed of three elements: a description of the initial problem, the solution
that provides the sequence of actions carried out in order to solve the problem, and the final
state which describes the outcome of the used solution.

The functioning of the ASC-TMS depicted in Figure 7.2 reproduces a CBR cycle in which
solutions represent trust policies, problems constitute trust requests and cases are the agent
experience (cf. Definition 64). The way in which experiences (cases), requests (problems) and
policies (solutions) are managed is called the CBR cycle. This cycle is depicted in Figure 7.3
below.

186

7.3. The Policy Adaptation Cycle

Resource

Policies

Specification

Policies

Management
Policies

Policy

Evaluation

Trust

Information

Collection

Decision

Making

2

1

3

45

6

7

8

7

9

10

13

Controller

7

1. Requests / 12. manipulates Controls

W

 Ontology

E(π�,ψ)

ψ

πa

x,πc

x

Outcome

Evaluation

Ξ

Meta -

Policies

Γ

Πa,Πc

Auth ∆

11

14

M

m

Πc

r = �a, b, request, x�

Context

Management

Experiences

Figure 7.2 – Extension of the trust model illustrated in Figure 6.6.

The policies adaptation cycle shown in Figure 7.3 consists of five phases: select, reuse/adapt,
evaluate, decide and retain. The select phase starts once a new request is received. The request
is then parsed and an appropriate algorithm is applied to retrieve, from the policy repository,
the policy which best matches the pattern of the received request. Once the most appropriate
policy has been retrieved, the reuse/adapt phase can start. In this phase, the selected policy
is adapted to obtain a policy that best handles the running constraints. The adaptation is
performed by the heuristics defined by the VC member using adaptation meta-policies (cf.
Section 7.2). If the policy cannot be further adapted, it is reused as it is without change. The
evaluation phase consists of applying the policy evaluation function (cf. Definition 61) to assess
to which degree the partner’s profile information satisfies the resulting policy. In the decide
phase, the agent decides whether to trust or not the requester, and thus accept its request.

Finally, based on the interaction outcome, the agent updates in consequence its experience
repository and decides whether the policy that he used during the interaction should be retained
or not.

As the retrieve and evaluate phases has already been presented in Chapter 6, we dedicate
the next section to the presentation of the mechanisms and process we use to achieve the adapt
phase. Then we present how these adaptation meta-policies can be used by VC members to

187

Chapter 7. Adaptiveness and Social-Compliance in Trust Management

Selected
Policy

Adapted
Policy

Trust
Information

Trust
Evaluation

Reuse / Adapt

EvaluateDecide

Retain

Select

Experience

Meta

Policies

Context

Trust
Decision

Ourtcome

Request

Policies

Trust
Decision

Figure 7.3 – Policies adaptation cycle based on the CBR model.

define adaptation heuristics. Finally, the retain phase will be presented later on in Section 7.5.

7.4 Adaptiveness: Adaptation to Business-Context

In our approach, the instantiation of a policy is performed with respect to contextual infor-
mation as highlighted above. The main novelty of the ASC-TMS relies in its capacity of
monitoring the constraints to which the policy issuer is subject and to adapt consequently the
policies it is using. As illustrated in Figure 7.1, virtual communities include four types of con-
straints to which a policy can be subject. Each type of pressure needs a specific adaptation
heuristics. Thus, we identified in Section 7.1 four kinds of adaptation, namely instantiation,
negotiation, integration and combination. In this section, we describe how the meta-policies
and the adaptation operations introduced previously are used to specify adaptation heuristics
with respect to environment changes (the left part of Figure 7.1). In this form of adaptation,
we distinguished instantiation from negotiation. Instantiation will be described in the next
section while negotiation will be detailed later in Section 7.4.2.

188

7.4. Adaptiveness: Adaptation to Business-Context

7.4.1 Instantiation

Instantiation refers to the concept of exploiting environment information to produce accurate
trust policies. So instantiation aims at transforming running policies in order to fit environment
changes. Our hypothesis is that using the context information to tailor trust policies should
result in the most appropriate one.

The need for adapting trust policies based on the context in which the interaction is un-
dertaken has been long recognised. However, most of the proposals are ad-hoc or manual. For
these reasons, we propose here the use of environment variables (cf. Section 7.2.1.3), a.k.a.
context information, to dynamically and automatically trigger addition, removal, restriction,
. . . ,relaxation of the trust criteria contained in the selected trust policies.

In the following, we first define the concept of instantiation then we detail how the meta-
policies formalisms can help agent maintaining their trust policies.

Definition 76 (Instantiation) Instantiation is the process or outcome of a process by which
trust policies are adjusted in response to environment properties and stimuli.

In order to illustrate the benefit that agent can gain using meta-policies alongside with trust
policies, we start by presenting the following scenario.

Example 7.4.1 As an illustrative example, suppose that the community members have the
obligation to monitor and report any collusion incident 1[Liu et al., 2008]. Let us say that up
to 5 collusion incidents can be reported in normal circumstance. Now let us consider Dave, a
member who would like to restrict the use of its resources r to the members having a reputation
score above 0.7. Dave selected this score because he knew that this score means that the trusted
individual is a good member in the community. However, in presence of collusion , Dave’s
policy will be no longer valid as malicious members car easily gain such score. So ideally, Dave
would like to use a meta-policy that would guarantee that the conditions under which Dave

issued the policy remains valid, and to react consequently if not.

In the above example, the collusion incidents represent the context filter property on which
conditions will activate the meta-policy. So there is a context term associated to this condition,
say Collusion, in the contextual information ontology ∆ctx. So in the condition part of the
meta-policy we will need to check the count of collusion incidents to perform the appropriate
adaptation action. To that aim we need to extend the Collusion symbol with an attribute
named count. In general, context elements will have a set of attribute names associated with
them, each one having an associated type (cf. Chapter 5). For example, the type of count will be
an integer. We will use Collusion.count to refer to the count attribute of the collusion incidents
context attributes. Now, suppose we define an action that changes the required reputation
score from the policy. The action signature is UpdateCriterion(Π

〈τr,o〉
Dave , vfi

). When this action

1Collusion detection is a trending research issue that has been studied in many fields including PageRank

[Zhang et al., 2004], online auction systems and P2P file-sharing networks [Lian et al., 2007]

189

Chapter 7. Adaptiveness and Social-Compliance in Trust Management

is executed, the value of the reputation trust criteria expressed in the policy will take the new
value. The following meta-policy covers the actions required when the collusion incidents are
abnormal (i.e. exceeds 5).

Instantiate(Π〈r.τ,r.o〉
Dave , q, aj , r, o, S

i) : Si.Collusion.count > 5

∧ Π〈r.τ,r.o〉
Dave .reputation < 0.8

← UpdateCriterion(Π〈r.τ,r.o〉
Dave , reputation, 0.8, 1)

The above meta-policy can also be made generic. By generic we mean that its application
is not specific to some kind of policy but general to all running policies regardless of the policy
pattern, the requester and the request to which is applies. Such meta-policy can be defined as
follows:

Instantiate(Π〈_,_〉
Dave ,_,_,_,_, S) : S.Collusion.count > 5

∧ Π〈_,_〉
Dave .reputation < 0.8

← UpdateCriterion(Π〈_,_〉
Dave , reputation, 0.8,_)

This meta-policy states that whenever the amount of reputation collusion exceeds the normal
ratio, the reputation value will be changed to 0.8 and its weight will be reduced to its minimal
value. The policy update is performed using the adaptation operation UpdateCriteria. This
operation is a part of a set of adaptation operations that we presented in the previous section.

7.4.2 Trust Negotiation

Traditionally, negotiation was used in trust management to avoid unnecessary credentials dis-
colour and to prevent the untrusted agent from accessing the sensitive information conveyed by
these credentials (cf. Section 3.2.4). Based on that, several well-established negotiation models
have been proposed. In our thesis, we propose a new automated trust negotiation strategy that,
in addition to the focused disclosure of credentials, allows agents to adapt their policies based
on alternative disclosures proposed by their interlocutors. To that aim we have made the choice
to address the negotiation issue from a game theory perspective. In trust negotiation, game
theory can be applied to address two main concerns [Parsons and Wooldridge, 2002]:

1. the design of negotiation protocols that will govern the interactions between negotiating
participants,

2. the design of optimal strategies that agent can use while negotiating.

In the remainder of this section, we first define the protocol that our negotiation process
is built upon, then we present how we used the meta-policies we defined above to specify
negotiation strategies based on game theory foundations.

190

7.4. Adaptiveness: Adaptation to Business-Context

7.4.2.1 Trust Negotiation Protocol

The trust negotiation protocol TN aims at enabling the interacting agents to construct of-
fers and counter-offers and communicate about them in a structured manner [Yu et al., 2001].
Concretely, agents negotiate by sending messages. With respect to that, a negotiation protocol
defines the type and the ordering of the information conveyed by these messages. The type of a
message is determined by the utterance used in it. For instance, when the propose utterance is
used in a message, it specifies that the concerned message represent an offer in the negotiation
dialogue. The set of utterances we conceived for the trust negotiation process represent an
extension to the agent communication language L (cf. Section 5.6) that we defined by :

L = 〈Protocol, Utterance, replay〉

We specify here the negotiation utterances, denoted, Un, which represent an extension
of the utterances already included in the set L.Utterance. Un is defined as follows:
Un = {START-NEGOTIATION, REFUSE-NEGOTIATION, QUERY-IF, CONFIRM, DISCONFIRM, PROPOSE,
ACCEPT-PROPOSAL, REJECT-PROPOSAL, END-NEGOTIATION} (inspired from [Seamons et al., 2002]
[Winsborough and Li, 2006] and [Bhargav-Spantzel et al., 2007]).

0 1 2 3 4 5

7

6

b: REQUEST

a: START-

NEGOTIATION

b: ACCEP-

NEGOTIATION a: QUERY-IF

b: PROPOSE

a: ACCEPT/REJECT

-PROPOSAL

b: ACCEPT/REJECT

-PROPOSAL

b: CONFIRM/

DISCONFIRM

a: PROPOSE

a: CONFIRM / DISCONFIRM

b: QUERY-IF

a: QUERY-IF

b: REFUSE-

NEGOTIATION

a: END-

NEGOTIATION

b: END-

NEGOTIATION

b: END-

NEGOTIATION

a: END-

NEGOTIATION

Figure 7.4 – The ASC-TMS trust negotiation protocol TN .

Starting from this new set of utterances, we redefined the function L.replay so that it can
map each utterance used during the negotiation to the set of utterance from Un that an agent
can use to reply to it. Here again, the determination of the L.replay is made easy by turning
the Un set into a Finite State Diagram. Figure 7.4 illustrates how the utterances set Un can
be used to build the negotiation protocol to be used by an agent playing the role of resource
controller.

Example 7.4.2 Now let us consider the scenario described in Example 7.1.1.2. In this exam-
ple, Alice wants to use the resource provided by Bob but she is not willing to loose her privacy
by disclosing the private information contained in her identity credential. In such situation,

191

Chapter 7. Adaptiveness and Social-Compliance in Trust Management

trust negotiation is the unique solution that could lead Alice and Bob agree on what each party
is willing to disclose to make there interaction successful.

request(operation, resource)

start-negotiation

generate
policy

trigger
meta-policy

trigger
meta-policy

accept-negotiation

query-if (passport.id)

propose(studentCard.id)

accept-proposal

end-negotiation

trigger
meta-policy

trigger
meta-policy

Figure 7.5 – A sample execution of the ASC-TMS trust negotiation protocol.

Figure 7.5 illustrates how the trust negotiation protocol we proposed above can help Alice

and Bob exchange offers and counter-offers to reach (if possible) an agreement. In this example,
the policy used by Bob requires a passport credential. However, Alice is not willing to disclose
such a sensitive credential. Instead, Alice proposes to provide her student card which proves
that she is an adult. Here Bob can either accept Alice proposal and query the next credential.
He can also request another credential (e.g. social security card) or he can reject Alice’s proposal
and quit the negotiation.

The negotiation protocol we presented above defines the moves that an agent is allowed to
perform during a negotiation. However, each agent participating in a negotiation might have
different requirements for the decisions he will make during the negotiation (e.g. how much
and which credentials he is willing to disclose). For such decisions, each agent relies on its trust
negotiation strategies. Now we define how the negotiating agents can reason strategically to
make his negotiation successful. We call this strategy the adaptive negotiation strategy.

192

7.4. Adaptiveness: Adaptation to Business-Context

7.4.2.2 The Adaptive Negotiation Strategy

We present in this section the adaptive negotiation strategy that ASC-TMS relies on during
the negotiation. This strategy is used by the requester and the controller for different reasons
within the same negotiation. The objective of the controller is to maximise the guarantees and
minimise the risk of the decisions he makes. To that aim, the strategy used by the controller
will always try to keep the conditions stated in its policy unchanged. This issue is particularly
important since this policy may contain part of the conditions stated by the collective policy (cf.
Section 7.5.2). So, changing this policy may lead the agent to violate the compliance norm (cf.
Definition 6.8.1) and thus exposes him to sanctions. In contrast, the objective of the requester
is to prevent privacy breaches by minimising the number of credentials he discloses during the
negotiation.

In this thesis, we propose an adaptive negotiation strategy that is inspired from game theory.
To that aim, we model the negotiation as an extensive game in which we assume that agents’
decisions are always rational. The game is played by two agents {controller, requester} ∈ A
each having a set of alternative moves with respect to the protocol defined above. The moves
an agent can make represent offers and counter-offers that are made based an expected utility
function.

Definition 77 (Expected Utility Function) The expected utility function determines the
potential outcome of each move in the negotiation process. Let us consider a negotiation in
which the requester wants to update a resource controlled by a requester. We assume that
{x1, . . . , xn} is the set of credentials required by the policy of the controller, while {y1, . . . , ym}

is the set of credentials that unlock the release of credentials from {x1, . . . , xn}. As the controller
and the requester have different objectives in the negotiation process, they use different utility
functions, defined as hereafter.

The expected utility function of a controller is defined as follows:

uc = (O〈update,r〉
controller +

∑

(xi.ν))− (r.ς + r.ν + sanctions) (7.3)

where

• O
〈update,r〉
controller is the benefit that the resource controller can get if he accepts the request,

•
∑

(xi.ν) is the value of the credentials provided by the requester,

• r.ς is the sensitivity level of the requested resource,

• r.ν is the value of the requested resource,

• sanctions is the cost of the sanctions if the action violates a collective policy.

The expected utility function of a requester is defined as follows:

ur = (O〈update,r〉
requester +

∑

(xi.ν))−
∑

(yi.ς) (7.4)

193

Chapter 7. Adaptiveness and Social-Compliance in Trust Management

where

• O
〈update,r〉
requester is the benefit this agent will gain if his request was accepted,

•
∑

(yi.ν) is the value of the credentials provided by the controller,

•
∑

(xi.ς) is the sum of the sensitivity of the credentials required by the controller.

Based on the expected utility function used by the controller (cf. Equation 7.3) and the one
used by the requester (cf. Equation 7.4) we are able to define preferences on each move these
agents are able to perform in the game. So for each utterance provided by the L.replay function,
the agent are able to compute the expected utility and build consequently a negotiation game
tree based on which they will decide. For example, Figure 7.6 depicts a negotiation game played
by a controller and a requester about the disclosure of the identity credential.

C2: confirm

C1: dis- confirm

C3: propose

C3.2:accept-
proposal

C3.1:refuse-
proposal

query-If

RequesterController

C2.1 : end-
negotiation

C2.1:Query-If
(continue negotiation)

�1,−1�

�0, 0�

�0, 0��3, 2� �3, 3�

Figure 7.6 – The negotiation extensive game tree between a controller and a requester.

The game starts with the controller that the requester whether he is willing to disclose a
particular credential. For illustration, we suppose that the controller requires that the requester
provides a passport credential in order to prove that he is an adult. Once the requester receives
the query − if message asking him to disclose a private credential (i.e. a sensitive credential),
he invokes the L.replay function to retrieve the moves he can make in this game and decides
which move to select based on its strategy. In the game depicted in Figure 7.6 the requester
may refuse the negotiation (Case C1); he can also accept to disclose the required credential or
he may propose another credential which is less sensitive than the passport and that certifies
the same property (e.g. a student card).

194

7.5. Social-Compliance: Adaptation to Social-Context

Now it is the controller’s turn. He can accept the proposal (Case C2.1), refuse the proposal
(Case C3.2), continue the negotiation with another query − if (Case C2.1) or to end the
negotiation (having the credential but without delivering the resource) (Case C2.2). In this
scenario, both the controller and the requester would agree on.

The representation of extensive games into logic has been investigated in many works
[van Benthem, 2003, van Benthem et al., 2011, van Benthem, 2001, Harrenstein et al., 2002,
Parikh, 1985]. We get inspired from these works to translate the above negotiation game tree
into meta-policies. In the following, we illustrate the situation in which the game leads the
controller to relax its policy by accepting the proposal of the requester.

propose(TrustFactor, Proposal, Request) : step(S)

getUtility(propose, T rustFactor, Proposal, Request, S, PayOff)

∧ isMaxUtility(PayOff,Request, S)← policy(Policy,Request);

accept-proposal(Request, S);

UpdateCriteria(Policy, T rustFactor, proposal)

(7.5)

The above meta-policy is triggered each time a propose utterance is received. Here, the
meta-policy is a generic policy that will systematically update the active policy (the one as-
sociated to the particular request) with the received proposal if the expected utility of this
proposition outperforms all alternatives the controller can perform (i.e. reject-proposal and
end-negotiation). To that aim the meta-policy makes use of two internal actions in which the
expected utility of the next move is computed (i.e. getUtility). Then this value (PayOff) is
compared to the utility of the other alternatives at the same step s (i.e. isMaxUtility).

7.5 Social-Compliance: Adaptation to Social-Context

We presented in Chapter 4 how the social impact theory can help the description and under-
standing of the process of influence that affects individual’s decisions and behaviours within
virtual communities (cf. majority influence in Section 4.2.1). It describes also the reciprocal
mechanism by means of which individuals can modify the decisions and behaviours of other
individuals with whom they interact (cf. minority influence in Section 4.2.2). In this thesis,
we build on these theories and apply them to the trust management. First, agents make use of
policies combination to build their collective policies. Then, each agent use policies integration
to make its individual policy comply/or not with the collective policy. Finally, when collective
policies need to be updated, agents use evolution mechanisms to bring changes to the collective
policies they are subject to. The following sections describes how combination, integration and
evolution are performed in ASC-TMS.

195

Chapter 7. Adaptiveness and Social-Compliance in Trust Management

7.5.1 Combination

In Section 4.1.1, we saw that combination of policies refers to the process, proposed by Bertino
and colleagues in [Li et al., 2009], of deriving a decision based on decisions derived from several
policies using a combination heuristic. In our proposal, we use this concept in reference to the
process of building a policy from several policies. The policies to be combined are individual
policies of the members of the community. To achieve this combination, we draw inspiration
from the works presented in Section 4.1.2.1 to specify the combination Algorithm 1 sketched
hereafter.

Algorithm 1: combine(Π, Community, Pattern,Heuristic)

1 P ← ∅ ; P.Issuer ← Community; P.Pattern← Pattern;
2 foreach πi ∈ Π do
3 foreach tci ∈ πi do
4 if ∃ tcj ∈ P, tci.f = tcj .f and tci.op = tcj .op then
5 P ← P/{tcj}

6 if Heuristic == h1 then
7 P ←MostRestrictive(tci, tcj)
8 ComputeWeights();

9 end
10 if Heuristic == h2 then
11 P ← LeastRestrictive(tci, tcj)
12 ComputeWeights()

13 end
14 IP ← IP/{tci}

15 end
16 else
17 P ← tci

18 ComputeWeights()
19 IP ← IP/{tci}

20 end

21 end

22 end
23 return P

Informally, the algorithm generates the combined policy by making the union of the trust
criteria contained in the policies to be combined. When two criteria are stated using the same
trust factor (e.g. identity or reputation), the algorithm makes use of particular heuristics to
merge these two criteria.

Two heuristics have been specified: h1 and h2. h1 selects the criterion that is the most

196

7.5. Social-Compliance: Adaptation to Social-Context

restrictive, while h2 selects the least restrictive criterion. Thanks to the trust factors ontology,
a criterion tci is considered as more restrictive than another criterion tcj iff:

∃ tsi ∈ Pr, tsi |= tci =⇒ tsi 6|= tcj (7.6)

where tsi is a trust statement and tsi |= tci means that tsi satisfies the trust criteria tci.

The heuristic determines also whether the criterion should be mandatory or optional. If a
mandatory trust criterion has to be combined with an optional one, h1 will make the combined
criterion mandatory, while h2 will make it optional.

Finally, the weight of each trust criterion is computed. Computing weight aims at preserving
the proportion of the criterion in the policy. To that aim, the weights of all criterion are summed
over the same trust factor.

Now that we presented how the combine adaptation operation is achieve, we present in what
follows an example of the meta-policies that an agent ai uses to trigger the collective policy
creation. First, ai initiates the combination process by sending a message to all the members
of the community. In this message, the agent asks the members of its community to start the
combination. To that aim, the agent makes use of the following meta-policy

createCollectivePolicy(c, 〈x, y〉) : ∀πi ∈ c.Π, πi.Pattern 6= 〈x, y〉)

← ∀aj ∈ c.M, 〈ai, inform_if, aj , combine(π, 〈x, y〉, h1))〉
(7.7)

With the above meta-policy, the agent ai (i.e. the combination initiator) informs the mem-
bers of its community that he is starting the creation of a collective policy for a particular
pattern 〈x, y〉 and that he is willing to use the heuristic h1.

Now, each agent receiving the message from ai has to decide whether he wants to be involved
in building the collective policy. To proceed, the recipient agents make use of the following
meta-policy.

combine(π, 〈x, y〉, heuristic) : ∀πi ∈ c.Π, πi.Pattern 6= 〈x, y〉)

← ∀aj ∈ c.M, 〈ai, inform, aj , combine(π, 〈x, y〉, h1))〉
(7.8)

In this meta-policy, the agent first checks whether a collective policy that handles the same
pattern does not exist. If it is the case, the agent sends to the other members of the community
its individual policy for that particular pattern along with the heuristic he wants to use. This
choice of the heuristic is made based on the agent characterising properties (cf. Definition 24
in Section 5.4). When the agents prefers to use distinct heuristics, the conflict is resolved by
using the heuristic stated by the majority. After a certain period (e.g. fixed with a timer), all
members of the community should have sent their policies. Now each agent makes use of the
forthcoming meta-policy to combine all received policies using the most popular combination
heuristic.

197

Chapter 7. Adaptiveness and Social-Compliance in Trust Management

combinePolicies(Π′, c, 〈x, y〉, Heuristic) :

← combine(Π, c, heuristic)
(7.9)

In this meta-policy, the set Π′ represents the policies received by the agent ai, c is the
community to which ai belongs, 〈x, y〉 is the pattern for which the collective policy is going to be
built and heuristic is the heuristic to be used during the combination process. In Section 9.2.1.2,
we will illustrate this combination process with more details.

7.5.2 Integration

In this section, we present how we use policies integration to make individual policies comply
with collective ones. The integration process is fairly similar to one used for combination except
that integration considers only two policies. In addition, the integration consider two additional
heuristics which offers to the agent a better control on the outcome of the integration process.
The heuristics are used during the integration process to answer two important questions:

1. What to do when the trust criteria of the policies to be integrated are stated using the
same trust factor (in policies that converge, shuffle, extend and restrict each other):

• keep the most restrictive criterion?

• keep the least restrictive criterion?

2. What to do with trust criteria that are stated using a trust factor that is not used by
both policies (in policies that shuffle, extend, restrict and diverge each other):

• keep all trust criteria?

• keep those stated in one (particular) policy?

• do not keep any criteria that is not stated in both policies?

The above questions suggest the existence of six ways in which the integration could be
performed. Among these ways, we discarded the ones which do not keep trust criteria that
are not stated by both policies. We can easily prove that these ways are not relevant to the
integration as they can result in an integrated policy that rejects (resp. accepts) request that
both the individual policy and the collective policy would have accepted (resp. rejected). Thus,
ASC-TMS does not have any reason to provide such integration. The four remaining ways have
been implemented as heuristics into the integration algorithm sketched below.

The behaviour of the four heuristics can be summarised as follows:

1. Heuristic 1 (H1): the resulting policy will be at least as restrictive as the most restrictive
policy.

198

7.5. Social-Compliance: Adaptation to Social-Context

Algorithm 2: integrate(π1, π2, Pattern,Heuristic)

1 P ← ∅ ;
2 foreach tci ∈ π1 do
3 if ∃ tcj ∈ π2/tci.f == tcj .f and tci.op == tcj .op then
4 if (Heuristic == h1) or (Heuristic == h3) then
5 P ←MostRestrictive(tci, tcj)
6 end
7 if (Heuristic == h2) or (Heuristic == h4) then
8 P ← LeastRestrictive(tci, tcj)
9 end

10 end
11 else
12 if Heuristic 6= h4 then
13 P ← tci

14 IP ← IP/{tci}

15 end

16 end

17 end
18 ComputeWeights()
19 return P

2. Heuristic 2 (H2): the resulting policy will be at most as restrictive as the least restrictive
policy.

3. Heuristic 3 (H3): the resulting policy will be at least as as restrictive as the selected
policy.

4. Heuristic 4 (H4): the resulting policy will be at most as restrictive as the selected policy.

The idea behind H1 is to build policies that guarantee that the agent will never accept
requests that would be denied by both policies. At the opposite, H2 builds policies that guar-
antee that the agent, using the integrated policy, will never deny a policy that would accepted
by both policies. H3 and H4 give respectively the priority to one policy: H3 guarantees that
the integrated policy never accepts request that the policy having the priority would deny,
while H4 guarantees that the integrated policy never denies a request that the policy having
the priority would accept.

Our objective is not to specify when to select a particular heuristic but instead we propose
a toolkit for trust policies integration in order to allow agents to make socially-compliant trust
decisions. In the following, we present an example of a meta-policy in which we used findings
of social impact theory (cf. Section 4.2) about how the community context influences the way

199

Chapter 7. Adaptiveness and Social-Compliance in Trust Management

the agent complies with the collective policy (cf. Section 8.3.1.2 for more details about how
this meta-policy has been implemented).

integratePolicy(π, c, 〈x, y〉, Heuristic) :

population(c, Po)&((Po > 3)&(Po < 20))

← integrate(πc, πa, 〈x, y〉, Heuristic).

(7.10)

The above meta-policy makes the agent comply with the collective policy using the heuristic
H3 whenever the population of this community satisfies the compliance conditions as states
by Latané in [Latané, 1981] (cf. Section 4.2). Here the agent is called conditionally compliant.
In other words, its compliance is conditioned by the community context. Works on sociology
demonstrated that the attitude of an individual with respect to compliance fall into three
categories: compliant, deviant and conditionally compliant. Deviants are agents that refuse
the collective policy and consequently will always neglect it. In contrast, compliant agent
will blindly follow comply the collective policy each to avoid being in conflict with the other
community fellows. We will illustrate in Section 8.3.1.2 the meta-policies used by the agents to
exhibit each type of compliance.

7.5.3 Evolution

We presented in Section 7.5.1 how collective policies are built. But for many reasons (as
illustrated in Section 7.1), a collective policy can be brought to become obsolete. In this section,
we present our proposition to make the members of a community to adapt their collective
policies. The idea in this section is to be able to reproduce the minority influence phenomena
in terms of trust management. To that aim, we addressed collective policies evolution from the
social choice theory perspective. Consequently, we modelled the evolution of collective policies
as a voting process that helps distributed agents to produce consensus about when and how
their collective policies can be adapted.

The evolution process is specified using three kinds of meta-policies. The first kind of meta-
policies are responsible of detecting the situations necessitating the adaptation of collective
policy and to trigger the adaptation. These meta-policies are stated as follows:

evolution(πP attern, c) : k0, . . . , kn ← ∀ai ∈ c.A

〈aj .ε, inform, ai.ε, cfe(Pattern,Adaptation, TrustFactor)〉
(7.11)

In this meta-policy, the context conditions k0, . . . , kn captures the context in which the
collective policy has to be adapted. This context can be generic (e.g. performed systematically
by a new member) or specific to a particular situation (e.g. after several failures in negotiation
because of the same trust criterion). If the context holds, the initiator agent (i.e. aj) informs
its community fellows (∀ai ∈ c.A) about the adaptation he wants to perform on the collective
policy (i.e. (Pattern,Adaptation, TrustFactor)).

200

7.5. Social-Compliance: Adaptation to Social-Context

When a members of the community receives the call for evolution (i.e. cfe(Pattern,
Adaptation, TrustFactor)), the corresponding meta-policy is triggered to evaluate whether
the agent personal conditions to accept such proposal are met. Such meta-policy is stated as
follows:

cfe(Pattern,Adaptation, TrustFactor) : k0, ..., km ← ∀ai ∈ c.A

〈aj .ε, inform, ai.ε, vote(agree, Pattern,Adaptation, TrustFactor)〉

countV otes(Pattern,Adaptation, TrustFactor)

(7.12)

With the above meta-policy, the agent receiving the call for evolution will accept the call
and send an agreement statement that every agent will receive. Of course, the agreement of
an agent may influence the agreement of another agent but we do not consider/handle such
influence in our thesis. If the evolution conditions stated by the agent do not hold, the agent
will disagree and notify other agents in consequence. Worth noting that the set of conditions
used by the agent ai to trigger the evolution process are different from those used by each agent
to accept or not such proposition.

Once the agents have finished voting2, the evolution initiator and every member of the
community count the votes that agree with the proposition and those which do not. Then each
agent makes use of a voting system to determine whether the adaptation has been accepted by
the community members or not. This can be done via the following meta-policy:

countV otes(Pattern,Adaptation, TrustFactor) :

count(vote(_, Pattern,Adaptation, TrustFactor)) ≥ (|c.A| ∗ 2/3)

∧ (count(vote(disagree, Pattern,Adaptation, TrustFactor)) >

count(vote(agree, Pattern,Adaptation, TrustFactor)))

← makeEvolution(Pattern,Adaptation, TrustFactor)

(7.13)

This meta-policy counts the total votes and compares it with the community population.
If two-thirds of the population have voted, the vote is considered to be valid. When the vote is
valid and the agreeing voters are more outnumber the disagreeing voters, the collective policy is
adapted. When the proposition to adapt the collective policy is accepted, each agent (those who
agreed and those who did not) makes use of the following meta-policy to make the adaptation
of the collective policy effective.

makeEvolution(Pattern,Adaptation, TrustFactor) : policy(P, Pattern)

∧ P.Issuer == c ∧Adaptation == "restrict"

← RestrictCriterion(P, TrustFactor)

(7.14)

2We assume that agents make use of a timer to time the voting process.

201

Chapter 7. Adaptiveness and Social-Compliance in Trust Management

This last meta-policy selects the collective policy that corresponds to the pattern concerned
by the adaptation. Then the adaptation operation is performed on the policy. Of course, this
meta-policy applies only to the evolutions that makes the collective policy more restrictive.
Similarly, other meta-policies are defined for each adaptation operation.

7.6 Conclusion

In this chapter, we presented our proposition for the automation of policies adaptation. The
adaptation of a policy is made with respect to two kinds of contexts, namely business-context
and social-context. The business-context relates to the individual and the object of the inter-
action, while the social-context is materialised by the community to which the agent belongs
to.

We considered social-awareness as an adaptation process in which policies of each member
are adapted to specify (Objective O1.1) and enforce (Objective O1.2) collective policies. Indeed,
individual policies are adapted and weaved to enable the specification of the collective policy.
This process mimics the model reported by Sherif in the autokinetic effect. Likewise, the
policy used by an individual is adapted to make it compliant with the collective policy of its
community. Here we implement Asch [Asch, 1955] theory in which he proved that an individual
changes its opinion to make it comply with the one of the group. We also get inspiration from
social influence theory to propose a mechanism that makes VCs members trigger evolution (i.e.
adaptation) on their collective policies (Objective O2.2).

So we draw inspiration from the social impact theory to put in place a micro-micro loop
for trust policies adaptation. On the one hand, the micro-macro adaptation represents the
mechanisms we proposed to specify (cf. Section 7.5.1) and enforce (cf. Section 7.5.3) the
collective policy of a community. On the other hand, the macro-micro represent the mechanism
that agent use to make their policies comply with the collective policy (cf. Section 7.5.2).

Also, we presented adaptation mechanisms used by VCs members to adapt their policies
in reactions to changes in their environment (cf. Section 7.4.1) and those imposed by their
interlocutor (cf. Section 7.4.2).

Finally, we stress two important remarks with respect to the policies evolution process we
proposed above. First, we intentionally omitted to describe the voting scheme used by the
agents. In our proposal, we do not impose neither a voting scheme nor a voting protocol. The
only requirement we make is that all agents use the same voting scheme and protocol.

202

7.7. French Summary

7.7 French Summary

Dans le chapitre précédent, nous avons présenté notre modèle de gestion de la confiance. Ce
modèle comportait une ontologies des facteurs de confiance, un langage de spécification des
politiques de confiance et d’un schéma d’évaluation de ces politiques. Les politiques sont
utilisés dans notre modèle pour exprimer les conditions qu’un individu ou une communauté
estiment être nécessaires pour la prise de décision de la confiance. Dans ce chapitre, nous
allons présenter comment nous avons utilisé ce langage de politique pour faire en sorte que
notre gestion de la confiance soit sensible à l’environnement social et métier des communautés
virtuelles. Pour cela, nous allons d’abord justifier notre choix de considérer les objectifs de
la thèse comme une problématique d’adaptation. Ensuite, nous allons classifier les différents
catégories d’adaptations que nous adressons dans ce manuscrit. Enfin, nous présenterons les
mécanismes d’adaptation que nous proposons afin d’adapter les politiques aux deux types de
contexte (social en environnemental) ciblés.

7.7.1 Types d’adaptation

Un des points fondamentaux de cette thèse réside dans le fait que nous accordons le même degré
d’importance au contexte sociale et au contexte environnemental. Cela résulte de notre analyse
des travaux réalisés en informatique que ce soit sur les systèmes de gestion de la confiance (cf.
Chapitre 3) ou les systèmes multi-agent (cf. Chapitre 4) mais également et sur tout de notre
étude des travaux réalisés en sociologie (cf. Chapitre 4).

Environment
pressures

Interlocutor
pressures

Community

Community

Members
pressures

1 2

43

Community
pressures

Social-AwarenessContext-Awareness

Figure 7.7 – Les pressions exercées sur les politiques.

203

Chapter 7. Adaptiveness and Social-Compliance in Trust Management

Ainsi, sous l’éclairage de ces études, nous avons décidé de considérer la sensibilité au con-
texte sociale et la sensibilité au contexte environnemental comme étant un seul et unique prob-
lème d’adaptation des politiques. Dans la Figure 7.7, nous caractérisons la notion de contexte
et analysons les différents types de pressions auxquelles sont sujets les membres, et donc les
politiques au sein des communautés virtuelles. On identifies principalement deux types de
pressions : les pressions sociales (c.f. Figure 7.7-2 et 7.7-4) et les pressions environnementales
(cf. Figure 7.7-1 et 7.7-3). Les pressions sociales reflètent la nature sociale des communautés
virtuelles que nous avions souligné dans l’introduction du manuscrit tandis que les pressions
environnementales se réfèrent aux aspects dynamiques de ces communautés.

Chacune de ces pressions affects les politiques utilisées dans la communauté (que ce soit
individuelle ou collective) et de ce fait nécessitent un mécanisme d’adaptation dédié. Dans ce
qui suit, nous motivons brièvement la nécessite de chaque type d’adaptation.

7.7.1.1 Adaptation métier

Lors d’une interaction autour de la confiance, la décision de faire confiance est souvent influencée
par le contexte métier dans lequel cette décision a été prise. Ce contexte est dans la plupart du
temps matérialisé par les ressources qui constituent l’environnement de l’agent (cf. Figure 7.7-1)
ainsi que l’agent interlocuteur (cf. Figure 7.1-3). Dans cette section, nous allons voir comment
ces éléments de notre système S affectent les politiques de confiance et proposer en conséquence
des mécanismes d’adaptation dédiés.

• Instanciation : Le langage de politiques que nous avons présenté dans le chapitre précé-
dent utilisé le concept de Pattern pour définir le type de décision à laquelle s’applique la
politique. Or, le pattern permet de spécifier une opération et une ressource/communauté
particulière mais permet également de spécifier des politiques génériques qui s’appliquent
à l’ensemble des ressources d’un type donné (en se basant sur le le type τ). Ce choix se
justifie par le fait que l’intensité de la fréquence à laquelle les ressources sont créées au
sein de communautés virtuelles. Ainsi, il est quasi impossible et assez contraignant que
les membres spécifient une politique pour chaque ressource ils créent. Ainsi, il serait plus
judicieux d’utiliser la même politique pour tout un ensemble de ressources. Cependant,
ces politiques se doivent d’être adaptés pour coller au mieux à la réalité du monde dans
lequel elles seront utilisées. De ce fait, l’instanciation permet ce type d’adaptation.

• Négociation : Le modèle de confiance que nous avons repose sur une conceptualisation
asymétrique de la relation de confiance. Ainsi, pour qu’un demandeur se voit accorder
l’accès à une ressource, celui-ci doit montrer ces certificats au contrôleur. Or, ces certificats
peuvent contenir des informations sensibles ce qui rend le demandeur vulnérable vis-à-vis
du contrôleur. Pour éviter tout risque, le contrôleur et le demandeur passent par une
phase de négociation afin qu’une relation de confiance graduelle puisse s’établir. Dans ce
contexte, plusieurs travaux ont été proposé et que nous avions détaillé dans le Chapitre
2. Dans notre approche, nous avons, en plus des mécanismes de négociation de base

204

7.7. French Summary

proposées dans les autres travaux, introduit la notion d’adaptation de politiques au cours
de la négociation. Par exemple, considérons la situation ou le contrôleur A souhaite que
le demandeur B lui fasse part de son passeport pour prouver qu’il est adulte. Or, ce
dernier possède d’autres certificats (e.g., carte de sécurité sociale, carte de crédit, permis
de conduire) qui sont à son sens moins sensibles que le passeport et qui permettent autant
que le passeport de prouver qu’il est un adulte. Ainsi, notre approche va lui permettre de
faire savoir sa volonté au contrôleur ce qui pourrait entraîner l’adaptation de la politique
de ce dernier aux exigences du demandeur.

7.7.1.2 Adaptation sociale

Nous avons présente en Section 4.2 les mécanismes sociaux qui expliquent comment les normes
émergent (cf. Section 4.2.1.1), comment les individus au sein de communautés avaient tendance
à se conformer à ces normes (cf. Section 4.2.1.2) et comment dans certaines circonstances, ces
individus réussissent à changer les normes auxquelles ils sont sujets. Dans cette section, nous
analysons les pressions exercées sur les politiques dans la lumière de ces théories. Par con-
séquent, nous identifions les pressions descendantes à travers lesquels une communauté impose
à ses membres une politique collective afin de les forcer à changer leurs politiques individuelles
en conséquence (cf. Section 7.1.2.1), et les pressions ascendantes par lesquelles les politiques
individuelles des membres sont utilisées pour créer et mettre à jour les politiques collectives.
Cette pression ascendante est par la suite subdivisée en deux sous-pressions en référence au
processus avec lequel les membres construisent leurs politiques collectives (cf. Section 7.1.4) et
celui avec lequel ils la mettent à jour en cas de besoin (cf. Section 7.1.3).

• Combinaison : Dans notre modèle, les politiques de confiance sont spécifié à deux
niveaux : individuel et collectif. Les politiques individuelles reflètent les conditions per-
sonnelles d’un individu pour ce qui concerne les décisions de confiance. Par ailleurs, les
politiques collectives permettent aux membres d’une communauté d’harmoniser les déci-
sions de confiance prises par chaque membre d’une manière complètement décentralisée.
Ainsi, nous proposons dans cette thèse un mécanisme d’adaptation qui va permettre aux
membres de la communauté de façonner une politique collective à partir de la politique
individuelle de chaque membre.

• Intégration : L’existence d’une politique collective implique également la nécessité d’un
mécanisme permettant aux membres des communautés d’en prendre connaissance et de
l’utiliser. Ainsi, chaque individu doit être en mesure de considérer, à la fois, sa poli-
tique individuelles et la politique collective de sa communauté. Cette étape va l’amener
à adapter la politique qu’il utilise pour qu’elle soit en conformité avec la politique collec-
tive. Ici, notre objectif est de pouvoir proposer un mécanisme d’adaptation qu’on appelle
intégration en références aux travaux vus dans le chapitre 4.

• Évolution : Maintenant que l’intérêt des mécanismes d’instanciation, négociation, com-

205

Chapter 7. Adaptiveness and Social-Compliance in Trust Management

binaison et intégration, il est légitime de se demander si les politiques collectives à leur
tour doivent/peuvent être adaptées. Notre réponse est oui. Tout comme les politiques
individuelles, les politiques collectives nécessitent des mécanismes d’adoption leur perme-
ttant de répondre au mieux aux exigences des membres de la communauté. Pour cela,
nous présentons un mécanisme d’adaptation dédié aux politiques collectives que nous
appelons évolution. Ce mécanisme va permettre à tout membre de la communauté de
déclencher une reconsidération de la politique en modifiant un des critères de confiance
qui la composent.

7.7.2 Adaptation des politiques

Dans cette section nous présentons comment notre système est capable de réagir aux pressions
discutées plus haut et de mettre en œuvre les types d’adaptations correspondantes. L’idée ici
était d’utiliser des méta-politiques d’adaptation en s’inspirant des mécanismes utilisés dans la
communauté multi-agent pour mettre en œuvre l’adaptation des normes (cf. Section 4.3.3.2).
En rendant ces méta-politiques explicites, il devient plus simple de s’assurer que les agents
encapsulant les systèmes de gestion de la confiance utilisent constamment les politiques les plus
appropriées au contexte courant.

Definition 78 (Méta-politiques) Soit M l’ensemble des méta-politiques du système.
Chaque méta-politiques m ∈M est définie comme suit:

m : Ia ×Π× St ×K → ΛΠ

Où la fonction m fait correspondre une interaction Ia [qui est dans la plupart des cas une
requête], une politique, une image du système S à un temps t et une expression de conditions
à l’ensemble des actions qui doivent être exécutées sur la politique afin que celle-ci s’adapte à
son contexte.

Dans ce qui suit, nous présentons les conditions qui sont utilisées pour déclencher les méta-
politiques ainsi que les opérations d’adaptation réalisées sur les politiques.

7.7.2.1 Conditions d’adaptation

Notre système de gestion de la confiance (ASC-TMS) a été conçu afin qu’il puisse être en mesure
de surveiller et raisonner sur le contexte (social et environnemental) au sein duquel l’évaluation
de la confiance va avoir lieu. Cependant, il est assez difficile de faire en sorte que ce système
puisse surveiller et raisonner sur l’ensemble des informations disponibles dans S. Ainsi, nous
avons recensé puis circonscrit les éléments du contexte à ceux qui ont un lien direct avec les
pressions listées plus haut. Le fruit de ce travail constitue l’Ontologie du contexte ∆ctx qui est
en fait un sous-ensemble de l’ontologie du domaine ∆.

206

7.7. French Summary

7.7.2.2 Opérations d’adaptation

Afin que l’adaptation des politiques soit possible, il est nécessaire de doter notre système de
gestion de la confiance d’un ensemble d’opérations à travers lesquels il pourrait changer les
politiques qu’il manipule. À cet effet, nous avons avons proposé une extension de l’ensemble
A, l’ensemble des actions qu’un agent peut réaliser, avec l’ensemble ΛΠ contenant uniquement
les opérations qui s’appliquent à des politiques.

Definition 79 (Opération d’adaptation) Les opérations d’adaptation sont définies comme
suit:

∀ωi ∈ ΛΠ, ωi : 2Π → Π

Nous identifions deux types d’opérations: les opérations simples et les opérations complexes.
Les opérations simples permettent d’ajouter ou de supprimer un critère de confiance. Elles
permettent aussi de modifier la valeur et/ou le poids d’un critère existant. Par ailleurs, les
opérations complexes permettent de modifier ou générer une politique à partir d’au moins deux
politiques.

7.7.3 Les méta-politiques d’adaptation

Dans notre modèle, nous avons utilisé des règles événement-condition-action pour la mise en
œuvre effective des méta-politiques. Ainsi, chaque méta-politique est composée de trois parties:
l’événement, les conditions et les actions tel que c’est illustré ci-après:

〈événement〉 : 〈conditions〉 ← 〈actions〉

Ces types de méta-politiques se lisent comme suit “si l’événement a lieu dans le contexte
où les conditions sont satisfaites alors les actions doivent être exécutées”. Nous illustrons
l’utilisation de ces méta-politiques par un exemple.

Instantiate(ΠBob,_,_, R,_,_) : R.valuet > R.valuet−1

← RestrictCriterion(ΠBob, reputation).

Dans cet exemple, la méta-politique est une méta-politique d’instanciation. Elle sera utilisée
pour rendre le critère sur la réputation plus restrictif si la valeur de la ressource demandée a
augmentée.

7.7.4 Le processus d’adaptation

Dans la section précédente, nous avons présenté comment les méta-politiques d’adaptation sont
spécifiées et comment, à partir de ces méta-politiques, les politiques sont adaptées en réponse
à un contexte particulier. Désormais, il est nécessaire de présenter comme est ce que l’agent
encapsulant le système de gestion de la confiance sera en mesure de coordonner les différentes

207

Chapter 7. Adaptiveness and Social-Compliance in Trust Management

actions d’adaptation. En effet, il est plus que probable que pour une décidions donnée plus
d’une politique d’adaptation sera active. Ainsi, nous présentons dans cette section le cycle
d’adaptation qui va permettre à chaque agent de savoir dans quel ordre déclencher les différentes
adaptations depuis la sélection de la politique à sont évaluation. L’architecture décrivant ce
cycle est illustrée dans la Figure 7.8.

Resource

Policies

Specification

Policies

Management
Policies

Policy

Evaluation

Trust

Information

Collection

Decision

Making

2

1

3

45

6

7

8

7

9

10

13

Controller

7

1. Requests / 12. manipulates Controls

W

 Ontology

E(π�,ψ)

ψ

πa

x,πc

x

Outcome

Evaluation

Ξ

Meta -

Policies

Γ

Πa,Πc

Auth ∆

11

14

M

m

Πc

r = �a, b, request, x�

Context

Management

Experiences

Figure 7.8 – Architecture du système de gestion de la confiance ASC-TMS

Comme illustré dans la figure 7.8, le répertoire des politiques contient à la fois les politiques
individuelles (i.e. Πa) et les politiques collectives (i.e. Πc). Nous avons également les méta-
politiques qui sont stockés par le système dans un répertoire dédie. L’utilisateur dans un premier
temps va donc spécifier à son système ses politiques individuelles ainsi que les méta-politiques.
Le système aura ensuite pour objectif de récupérer les politiques collectives si celles-ci existent.
Une fois la requête reçu (2), le système va tout d’abord sélectionner les politiques individuelles
et collectives. Ces politiques vont servir à générer une politique adaptée qui sera évaluée. Enfin,
l’évaluation sera utilisée pour prendre une décision. Cette décision servira ensuite à établir une
autorisation.

Dans cette architecture, l’ensemble des mécanismes d’adaptation est géré par le mod-
ule de gestion des politiques (i.e., Policies Management). Ainsi, l’objectif de ce module est
d’automatiser entièrement les différentes étapes d’adaptation introduites plus haut. Ainsi,
nous avons défini le fonctionnement du module en nous basons sur un cycle inspiré des travaux
sur le raisonnement à base de cas [Aamodt and Plaza, 1994].

208

Part IV

Implementation, Application and
Experimentation of the

ASC-TMS

Chapter 8

ASC-TMS Implementation

In this chapter, we provide technical insights into the implementation of the agent-based virtual
community and the ASC-TMS we deployed on it. To that aim, we introduce in Section 8.1 the
multi-agent programming platform we used to implement and deploy our ASC-TMS. In Section
8.2 we present the general architecture of the JaCaMo based virtual community framework.
Then in Section 8.3, we delve into the details of our implementation and illustrate different
aspects of the implementation with codes. Finally, we conclude this chapter in Section 8.4 with
a summary and a discussion on the limits of our implementation.

Before we delve into implementation details, however, we introduce in the next chapter
JaCaMo, the multi-agent programming platform we used to implement ASC-TMS.

8.1 JaCaMo Framework

The JaCaMo is a multi-agent programming platform that originates from the integration of
three existing platforms, namely Jason, CArtAgO and Moise. So programming programming
in JaCaMo is: (a) programming agents and agent-agent interactions based on the Jason agent-
programming platform, (b) programming environments and agent-environment interactions
using the JaCaMo platform, and (c) programming multi-agent systems (i.e. organisations) and
agent-organisation interactions using the Moise framework.

Our main motivation in using JaCaMo is the seamless and synergistic integration of all the
dimensions of the system model we framed in Chapter 5. The full description of the JaCaMo
platform and the integration of the three multi-agent programming technologies is out of the
scope of this thesis. We refer interested readers to the existing literature or to the project web
site1. We present, however, in the following a brief description of the three components of this
platform.

8.1.1 Programming Agents with Jason

Jason is a java-based extension of AgentSpeak [Rao and Georgeff, 1995]. AgentSpeak(L) rep-
resents a computational formalisation of the BDI model. Figure 8.1 shows the architecture of a
Jason agent as well as the component functions that are executed during the reasoning cycle. In

1http://jacamo.sourceforge.net/

http://jacamo.sourceforge.net/

Chapter 8. ASC-TMS Implementation

this architecture, rectangles represent data structures that contain the main components that
determine the agent state (i.e. belief base, set of events, plans library and set of intentions),
while rounder boxes, diamonds and circles represent functions used in the reasoning cycle.

S
I

Events
External

Event
Selected

S
E

Beliefs to
Add and

Delete

Relevant

Plans

New Plan
Push

Intention
Updated

O
S

Applicable

Plans

Means

Intended

Events
External

Plan

Library

Events

Internal
Events

3

checkMail

Intentions

Execute

Intention

...New

New

9

Belief

Base

New
Intention

Percepts

act

Selected
Intention

Intentions

Action

Percepts
1 2

BUF

10

Events

Context

Check

Event

Unify

BRF

Beliefs

Agent

sendMsg

Beliefs

8

Messages

Plans

perceive

7

5

6

Actions

Beliefs

Suspended Intentions
(Actions and Msgs)

...

.send

SocAcc

4

Messages Messages
S
M

Figure 8.1 – The execution cycle of the AgentSpeak Architecture

Explaining each of the 10 steps of the reasoning cycle used by Jason agents is out of the
scope of this thesis as we do not make any contribution on this cycle. Instead, we are more
interested in defining the five core elements of a Jason agents that we will rely upon in the next
section to describe our implementation.

• beliefs represent the information known by the agent that it regularly updates based
on its perception. A Belief is represented in Jason as a ground (first-order) predicate
called belief atom and can be combined to form beliefs using logic connectives of negation
(not) and conjunction (∧ or &). For example, owner(resource1) is a belief atom, and not
owner(resource1) & owner(resource2) is a belief [Meneguzzi, 2009] .

• events represent the notification an agent receives when changes occur in the environment
of in one of its data structures. These events are used to trigger the adoption of a plan
by an agent if the situation for which this plan applies holds. Jason propose four types
of events corresponding to the addition, deletion of beliefs and plans. The plus (+) sign
corresponds to the addition of a belief or a goal, whereas the minus (-) sign corresponds
to the deletion of a belief or a goal.

• plans represent the behaviours of the agent. Plans specify the means (it terms of actions
or other plans) for achieving a particular goal whenever certain events occur and under a

212

8.1. JaCaMo Framework

certain circumstance.Each plan has three distinct parts: the triggering event, the context
and the body. The three parts are separated by “:” and “< −” as follows:

triggering − event : context < −body. (8.1)

• intentions are instantiated plans that are currently adopted by the agent. When the
agent adopts a plan, that means that the agent commits to execute plan to completion.
Executing the plan means executing each interaction contained in the plan and those
contained in the sub-plans of the executed plan.

• goals correspond to a desired state the agent wants to reach by triggering the associ-
ated plan. Two types of goals can be used in Jason; achievement goals are represented
by a predicate that is preceded by an exclamation mark (e.g. !adaptPolicy(Policy)),
and test goals are represented by a predicate that is preceded by a question mark (e.g.
?owner(resource2)). Test goals are used by the agent to test if a belief is true, whereas
achievement goals are used to achieve a certain state of affairs [Bordini et al., 2007].

Now that we introduced the main components of the above Jason architecture, we briefly
describe the reasoning cycle used by Jason agents. We summarise this cycle into three phases:

1. The agent senses (or percepts) the environment for new percepts (1). Percepts are
symbolic representation of particular property of the current state of the environment
[Bordini et al., 2007]. Each percept can represent the adding, update or deletion of a
belief (i.e. update in the belief base), or it can represent an event based on which goals
are added or deleted (i.e. update in its events bases).

2. The agent selects an event (if the event queue is not empty). If the event concerns a belief
update, the beliefs base is updated in consequence. Otherwise, the event is unified with
the head of a plan from the ones present in its plans library. If the unification succeeds,
the plan is made active and thus becomes an intention.

3. The agent selects one of the active plans and executes the actions contained in the plan
one by one. Each action can generate an internal event (if it is a sub-goal), an update
of the beliefs base or an interaction with the environment (if the agent can perform such
action) or with other agents (typically messages exchange).

Even if we don’t leverage all aspects of the above BDI architecture, using this approach
to implement ASC-TMS was particularly interesting to provide adaptiveness features. This
approach allows ASC-TMS to sense its environment (1), to reason on its context (5,6 and 7)
and take the more appropriate action to perform (8 and 9). Thanks to the BDI architecture,
ASC-TMS constitute the first trust management system that is able to exhibit goal directed
functioning.Thus ASC-TMS is perpetually trying to achieve objectives such as maintaining the
context, providing opinions or computing reputation.

213

Chapter 8. ASC-TMS Implementation

8.1.2 Programming Environments with CArtAgO

CArtAgO (Common ARTifact infrastructure for AGents Open environments) is a generic frame-
work which makes it possible to program and execute virtual environment for multi-agent sys-
tems [Ricci et al., 2011]. The platform is based on the Agent & Artefacts (A&A) meta-model
developed by Omicini and colleagues [Omicini et al., 2008]. This meta-model aims at design-
ing multi-agent systems in which environment entities are considered as first level abstraction
concepts. A&A introduced a high-level that draws inspiration from the human cooperative
environment in which artefacts are used to support individual and collective activities. Anal-
ogously, CArtAgO allows multi-agent programmer to develop working environment as a set
of artefacts (representing resources and tools), collected in workplaces that agents can join
and leave and wherein they can create, use and manipulate artefacts in order to realise their
individual and collective goals.

Artefacts are non-proactive entities on which agents rely to achieve their goals
[Esparcia and Argente, 2010]. As illustrated in Figure 8.2, artefacts are provided with proper-
ties, operations and functional descriptions.

Property 1

Property 2

CartAgO
Artifact

Property 3

Operation 1

Operation 2

.............

.............

.............

.............
M
an
ua
l

Link Operation 1

Figure 8.2 – Illustration of an Artefact (Adapted from [Ricci et al., 2011])

Operations are the means by which agents interact with the artefacts that compose their
environment. There is also a special kind of operation (link operation) by means of which
artefacts can manipulate other artefacts to provide complex or composite resources. In com-
plement, artefacts provides a mechanism by means of which agents can be informed about the
state of the artefact without performing any operation, this mechanism is implemented using
observable properties. Finally, artefacts are enhanced with functional description that are used

214

8.1. JaCaMo Framework

as manuals by means of which an agent can discover new artefacts and reason on their descrip-
tion in order to evaluate whether they are of interest to the fulfilment of its goals. Recently,
a semantic description of these manuals has been proposed. With this extension, manuals are
described though OWL Ontologies which ease the reasoning on their capabilities.

8.1.3 Programming Organisations with Moise

We presented in Chapter 4 theMOISE+ meta-model which allows the specification of organi-
sations. Then we showed in Chapter 5 how we used this model for the definition of multi-agent
communities. In this section, we present the framework that aims at supporting the exe-
cution of normative multi-agent organisations based on the MOISE+[Hübner et al., 2009a,
Hubner, 2011, Boissier, 2011, Hubner et al., 2002].

In the actual current version of JaCaMo,Moise organisation are interpreted and managed
using three types of organisational artefacts, namely OrgBoard artefact, GroupBoard artefact
and SchemeBoardartefact. In particular, these artefacts provide the following functionalities:

• GroupBoard artefact is used to manage an instance of the group of agent that constitute
the community based on the structural specification defined in Section 5.5. For instance,
this artefact is used by the agents to adopt roles.

• SchemeBoard artefact is used to manage an instance of the social scheme which is defined
by the community functional specification. For instance, using this artefacts, an agent
commits to a mission or informs its the members of a community community about the
fulfilment of a mission.

• OrgBoard artefact is used to manage the general information about the current state of
the community. These artefacts are also used as a global registry in which instances of
the GroupBoard and the SchemeBoard are referenced as observable properties.

As a specific types of artefacts, organisational artefacts possess also observable properties
for making the dynamic state of a community observable by the agent. For instance, it is
using such observable properties that agents can be informed about the community variables
(cf. Section 7.2.1.4) that trigger their policies adaptation. It is also using theses observable
properties that agents are informed about roles, missions and norms that are available in their
communities.

One of the most interesting features inMOISE+, regards the implementation of the ASC-
TMS, is thatMOISE+ allows agents to change the organisation and parts of its specifications.
Of course, such changes are controlled via mechanisms that checks whether theses changes do
not violate norms. It is this feature that we rely on to implement the process by means of
which agents adapts the collective policies of their communities.

215

Chapter 8. ASC-TMS Implementation

8.2 The JaCaMo-Based Community Architecture

In this section, we present how the system model S we framed in Chapter 5 and the ASC-TMS
we proposed in chapters 6 and 7 have been implemented using the JaCaMo platform. As illus-
trated in Figure 8.3, we used Jason to develop and run our agents, we used CArtAgO to develop
and execute artefact-based environments where artefacts are used to wrap the resources of the
system, and we usedMoise to model and manage open and decentralized virtual communities
as an instance of the virtual community meta-model we framed in Section 5.5.

A

A

AA

A A

T

T

T

T

T

T

E
nviro

n
m
e
n
t

A
g
e
n
t

O
rg
a
n
isa

tio
n

P2

Op1

Op2

P1

P2

Op1

Op2

P1

P2

Op1

Op2

P1

P2

Op1

Op2

P1

P2

Op1

Op2

P1

P2

Op1

Op2

P1

P2

Op1

Op2

P1

Community

Role

Organisational
Specification

A
Assistant
Agent

Trust
Management
Agent

Resource

T

OS

Interaction

 Controls

Manipulates

Negotiation

P2

Op1

Op2

P1

Legend

 Association

Membership

OSOS

Figure 8.3 – The JaCaMo-Based Community Architecture

Thanks to JaCaMo, the proposed layered architecture matches perfectly the four dimensions
of the virtual community model we framed in Chapter 5. At first, the agents layer is composed
of the agents of the system (i.e. A). To make our system application generic, we have made
the choice to split the agents into two distinct types; assistants and trust management agents.
An assistant is an agent that assists virtual communities participants in their activities. Thus
this agent is endowed with application specific goals. The trust management agent integrate
the ASC-TMS and thus is responsible of the trust management issue. The objective of this
agent is to assist the assistant agent in its trust decision making.

Second, we defined the environment layer which integrates resources that assistants ma-
nipulate to during their activities. Resources have been implemented as artefacts and their
implementation will be discussed in Section 8.3.2.

Further, agents are grouped within organisational structures that represent the communities.

216

8.3. Implementation Details

Each community is defined based on its organisational specification and the set of resources
shared among the community (we use a different colour for each community). Section 8.3.3
details how communities are implemented using Moise. Here, we used colours to indicate the
entity to which this resource belongs. For instance, green resources belong to the left community
while black resources are owned by a single agent.

Finally, interactions do not have a dedicated layer in Figure 8.3 as this dimension is trans-
verse to the other three layers. Agents interact with each other through communication and
negotiation and they interact with resources via operations.

8.3 Implementation Details

In this section, we will delve into the details of the implementation of the agent-based virtual
community and ASC-TMS. Our objective is to show how elements of the above architecture
have been implemented using the corresponding JaCaMo technologies. To that aim, we start
from agents (cf. Section 8.3.1), continue with the environments (cf. Section 8.3.2), and finish
with the interactions (cf. Section 8.3.4) and the organisations (cf. Section 8.3.3).

8.3.1 Implementing Agents in Jason

In this section, we present the implementation of the assistant and the trust management
(TMA) agents. We are particularly motivated in showing what functionalities are provided
by the assistant and the TMA and how these agents collaborate to achieve the community
participant goals. To proceed, we start by showing the implementation of the assistant in the
next section we present the implementation of the TMA in Section 8.3.1.2.

8.3.1.1 Implementing the Assistant

The objective of the assistant is to help virtual communities members in their activities. To
that aim, the agent is provided with functionalities that are split into four categories: ac-
tivities management, interactions management, trust decision management and authorisations
management .

• activities management is an application specific functionality. It encapsulates plans that
relates to how assistants create, join and leave communities. It contains also plans for
resource creation, manipulation and destruction.

• interactions management is an application independent functionality. It contains plans
that the assistant use to interact with other assistants via message exchange as specified
in Section 5.6. In the remainder of this chapter, we will particularly get interested in a
particular form of interactions that are requests.

• trust decision management contains the plans that constitute the trust decision model
mentioned in Section 6.7. Even if we did not propose any contribution with respect to

217

Chapter 8. ASC-TMS Implementation

TMA
(ASC-TMS)

Trust

Policies

Trust Evaluation

protocol

 Assistant

Assistant
Solver

Assistant

Trust Management Agent
(ASC-TMS)

Plans Library

Beliefs

Base

Trust Decision

Management

P2

Op1

Op2

P1

Authorizations

Management

Activities

Management

Interactions

Management

P2

Op1

Op2

P1

P2

Op1

Op2

P1

P2

Op1

Op2

P1

GUI

Preferences

Domain

Ontology

PoliciesRequests

manipulation

authorisation

Solver
Assistant

TMA
(ASC-TMS)

Assistant

protocol

Virtual Community Participants

Figure 8.4 – Architecture of the Assistant Agent

the specification of a trust model, we will describe how a trust decision can be automated
using Jason plans.

• authorisation management allows the assistant agent to issue authorisations based on the
trust decision made by the previous functionality. This functionality is also application
generic and is achieve using specific plans.

In the following, we present how interaction, trust decision and authorisations are made.
The activities management will be illustrated in both sections 5.3 and 5.5. In Section 5.3 which
will show how an agent creates, manipulate and destroy a resource, while in Section 8.3.3 we
will present how agents create, joins and destroys communities.

Initialisation

Before that the assistant agent would be able to provide the aforementioned functionalities,
it needs to be initialised. To that aim, each assistant is launched with an abstract goal (i.e.
!start) that will be used to trigger the initial plan to be executed. This plan is presented
hereafter.
✞

1 +!start <−

2 !build_tma;

3 !work.
✝ ✆

Listing 8.1 – Example of an initialisation plan

218

8.3. Implementation Details

What the above plan states is that as soon as the assistant agent starts, he creates his
personal TMA. The creation of the TMA is performed using the following plan.
✞

1 @Initialisation

2 +!build_tma

3 <− .my_name(Me);

4 .concat(Me,’’_TMS’’,TMS);

5 .create_agent(TMA, ‘‘src/asl/asc−tms.asl’’,[agentArchClass(‘‘c4jason.CAgentArch’’)]);

6 +myTMA(TMA);

7 .send(TMA,tell,assistant(Me));

8 .findall(policy(P)[issuer(Me), flexible(F), pattern(X,Y)], policy(P)[flexible(F), pattern(X,Y)], Policies);

9 for(.member(policy(P)[issuer(Me), flexible(F), pattern(X,Y)], Policies)){

10 .send(TMA,tell, policy(P)[issuer(Me), flexible(F), pattern(X,Y)])}.
✝ ✆

Listing 8.2 – Plan used to build the TMA

All TMAs are created using the same Jason code (i.e-. "src/asl/asc-tms.asl"). So what
differentiates a TMA from another TMA is its name and the preferences that guides its be-
haviour. The instructions at lines 5 and 6 are used to keep track of the name of the TMA used
by the assistant and to inform the TMA for which assistant he is associated to. Finally, the
instruction at line 7 looks for policies that have been specified by the user to the assistant and
transmits theses policies to the TMA in lines 8 and 9.

Once the TMA is created, the assistant is ready to work. Working means that the assistant
is ready to execute orders transmitted by the user via the GUI (cf. Figure 8.4). That means
also that the assistant is now able to reply to requests coming from other agents. In our thesis
we consider three kind of requests, namely access request (i.e. request to access to a resource
owner by the assistant), release requests (i.e. request to release a credential) and membership
requests (i.e. requests to join the community).

Interactions Management

The interactions management functionality implements the management of interaction proto-
cols (cf. Section 5.6 in Chapter 5) based on which assistants communicate and interact with
each others. The presentation of the interaction protocol will be detail in Section 8.3.4. There-
fore, we will focus in this section on how the assistant handles requests and interacts with its
TMA to evaluate the trust he can put in the agent initiating the request (i.e. the requester).
In the following, we present the plan that the assistant uses to handle request about resources
(i.e. access requests).
✞

1 @InteractionsManagement

2 +request(Operation, Object)[source(Ag)] :

3 owner(Object) || controller(Object) // conditions that make the plan active

4 <− ?myTMA(TMA);

5 utils.req2id(Agent,Operation,Object,ReqId);

6 reqPattern(ReqId, pattern(Operation, utils.getType(Object)));

7 .send(TMA,achieve, handle(Agent, Operation, Object, ReqId)).

219

Chapter 8. ASC-TMS Implementation

✝ ✆

Listing 8.3 – Request Management Plan

In this plan, the assistant first checks whether he is the owner or the controller of the requested
resource. It not, the assistant simply ignores the request. Otherwise, it first generates (in line
3) the id of the request based on the requester, resource, and the operation names. This id will
be used in subsequent interactions with the requester and the TMA as well. Then the assistant
generates a belief to match the request id with the particular pattern the request belongs to.
Recall that the pattern indicates to the agent which kind of decision he has to make, and thus
which kind of policy his TMA should use (cf. Chapter 5). To that aim, we use the action
utils.getType to retrieve the type (resource or community) of the object for which the request
has been made. Then, in line 5, the assistant asks the TMA to handle the request. Here the
message type is achieve, so when the TMA receives this message it will have +!handle(Agent,

Operation, ResName, ReqId)[source(Assistant)] as a new goal. This new goal will trigger
the plans that will derive a trust evaluation. The plans used by the TMA to perform these
valuations will be presented in Section 8.3.1.2. Before, however, we describe how the assistant
agent makes a trust decision based on the TMA trust evaluation.

Trust Decision Management

Once the TMA has finished the trust evaluation, it transmits this value to its assistant. This
measure is then used by the assistant to decide whether to make a trusting decision or not.
Defining a trust decision model that determines how the assistant use the trust measure pro-
vided by the TMA was out of the scope of our thesis. However, we assume in our implementation
that the assistant is provided by the (VCs human) user with threshold values that defines its
preferences about how the measure provided by the TMA should be used. These preferences
are expressed as follows:
✞

1 decisionThreshold(pattern(read, _), 0.75).

2 decisionThreshold(pattern(update, _), 0.6).

3 decisionThreshold(pattern(delegate, _), 0.9).

4 decisionThreshold(pattern(join, community), 0.8).

5 decisionThreshold(pattern(delegate, community), 0.9).
✝ ✆

Listing 8.4 – Example of the agent’s preferences

The above believes associate each pattern to a decision threshold value. For example, the
first belief states the acceptance threshold for requests that tries to read the content of any all
types of resources. Then based on these values, the assistant makes its trust decision. The plan
used by this agent to accept a request that satisfies the minimum threshold is stated hereafter.
✞

1 @TrustDecisionManagement

2 +trustLevel(ReqId, TL)[source(TMA)]: myTMA(TMA) & pattern(ReqId, Pattern) &

3 decisionThreshold(Pattern, T) &

4 TL >= T

220

8.3. Implementation Details

5 <− !trust(ReqId); −trustLevel(ReqId, TL)[source(TMA)].
✝ ✆

Listing 8.5 – The trust decision plan

With this plan, the assistant checks whether the trust level computed by its TMA satisfies the
threshold fixed by the user. If so, the plan will be active and another plan (!accept(ReqId))
will be triggered. The last instruction performed by this plan deletes the belief containing the
trust level to avoid to use it in next evaluations.

Authorisations Management

Once the trust level of a request exceeds the threshold fixed by the user, we say that the
requester is trusted for the request he has made. The trust decision is then transformed into a
trusting action which is performed by the following plan.
✞

1 @AuthorisationManagement

2 +!trust(ReqId) <− id2req(ReqId, Agent, Operation, Object);

3 !authorise(Agent, Operation, Object);

4 .send(Agent,tell, accept(Operation,Object)).
✝ ✆

Listing 8.6 – The authorisation establishment plan

In this plan, the trusting acting is achieved by granting access to the requester (line 3) and
informing it about the status of its request (line 4). To grant access to the requester object, the
controller needs to manipulate artefacts. To that aim, we will detail this issue in Section 8.3.2.

8.3.1.2 Implementing Trust Management Agent

In the previous section, we described the assistant architecture that we illustrated by some
source codes. We showed how this agent builds the TMA, interacts with it and makes trust
decisions based on its trust evaluations. In this section, we build on that and describe the
behaviour of the TMA. Concretely, the functionalities provided by the TMA fall into four
categories: requests management, instantiation management, social compliance management,
negotiation management, and policy evaluation management (cf. Figure 8.5).

The above architecture reproduces the steps described in the adaptive and socially compliant
trust management system we framed in Section 7.3.

• Requests Management contains the plans that the TMA uses to select the policy that
best handles the received request (based on the request pattern).

• Instantiation Management contain the meta-policies based on which the TMA achieves
the instantiation of policies as introduced in Section 7.4.1.

• Social Compliance Management contains the meta-policies that the TMA use to achieve
combination, integration and evolution. Therefore, these plans make use of both individual
and collective policies as illustrated in the above architecture.

221

Chapter 8. ASC-TMS Implementation

Trust Management Agent (ASC-TMS)

Belief

Base

Instantiation

Management
Negotiation

Managment

Requests and Policies

Management

Policy

Evaluation

Management

OWL

Ontology

CP

IP

Trust Level

Assistant

requests

Solver
Assistant

Adapted Policy

Social

compliance

Management

1

updates Environment Context

Plans
 Library

TMA
(ASC-TMS)

Solver
AssistantAssistant

Jason

Internal

Actions

Semantic Layer

(JENA API)

2

3 5 6

Protocol

7

8

9

4

10

11

Figure 8.5 – Architecture of the Trust Management Agent

• Negotiation Management contains plans and meta-policies used by the TMA to achieve
automated trust negotiation.

• Policy Evaluation Management integrate plans used by the TMA to evaluate the policies.

In the following, we describe how each functionality (except negotiation which will be pre-
sented in Section 8.3.4) has been implemented and illustrate our explanations with the corre-
sponding Jason Code. Before we proceed, however, we briefly describe how policies and meta)
policies have been implemented in Jason.

Policies Implementation

We have made the choice to implement policies as structures in Jason. A structure starts with
an atom (called functor) and is followed by a number of terms (called arguments) separated
by commas and enclosed in parentheses. The difference between predicates that are used to
represent beliefs and structures is purely semantic; a structure is used as a term to represent
a policy, whereas a fact is used as a logical proposition that can be evaluated to be trust of
false. So policies are structures which functor is “policy” and their arguments are quaternary
predicates representing the trust criteria conveyed by the policy. To differentiate policies, we
use annotation to express the policies issuer, the pattern the policy handles and whether the
policy is flexible (i.e. can be adapted) or not. This annotation mechanism is further used for
many other reasons such as the specification of the combination algorithm (Cf. Section 4.1.1)
or the id of the request for which the policy has been instantiated as we will see in the next
section.

In the following, we present how the policy we used in Example 6.4.1 can be represented in
Jason.

222

8.3. Implementation Details

✞
1 policy(

2 tc(passport.age,‘‘>=’’, 33, 2, m),

3 tc(passport.age,‘‘<=", 18, 2, m),

4 tc(mail.identity,‘‘>=", complete, 2, o),

5 tc(reputation,‘‘>=", 70, 1, o),

6)[issuer(bob), flexible(yes), pattern(join, community)].
✝ ✆

Listing 8.7 – Example of a policy stated in Jason

Lines 1 and 6 represent the policy declaration, while lines 2, 3 and 4 contains the trust criteria
stated by the policy. As said before, trust criteria are expressed as quaternary predicates in
which the predicate name is tc. The first literal of the predicate resents the n this predicate,
the first literal represents the trust factor (f ∈ ∆f .T) on which the condition is formulated, the
second literal represent the comparison operator used to set the acceptable values, the third
literal represent the minimum value based on which the condition is satisfied ((v ∈ ∆f .A/v

.
=

f)), the fourth literal represent the weight the condition during the policy evaluation, and the
last literal specifies whether the condition is mandatory or not. Here, the policy makes use of
three Lower Bound Conditions and one Upper Bound condition (Cf. Section 6.3).

Requests Management

With this functionality, the TMA handles the received request by selecting the most appropriate
policy. The TMA selects the policy which pattern corresponds to the pattern of the request as
performed in the plan below.
✞

1 +!handle(Agent, Operation, Object, ReqId)[source(Assistant)]:

2 myAssistant(Assistant)

3 <− reqPattern(ReqId, pattern(Operation, utils.getType(Object)));

4 ?pattern(ReqId, Pattern);

5 ?policy(P)[request(ReqId), issuer(Me), pattern(Pattern)];

6 ?policy(P)[request(ReqId), issuer(Me), pattern(Operation, Object)];

7 !instantiate(P, Agent, Operation, Object);

8 !integrate(P, Agent, Operation, Object).
✝ ✆

Listing 8.8 – Request Management Plan

At first, the plan checks whether the agent sending the request is the assistant that created the
TMA. Then, the request pattern is identified and a new belief is added correspondingly. The
plan makes use of a test goal (?pattern(ReqId, Pattern)) to retrieves at first the pattern and
use this pattern to select the policy which is associated to the pattern. We used two times the
test goal to retrieve policy to select the most specialised policy. In other words, if a policy is
defined for a particular resource type and another policy is specified for a particular resource
which belongs to to this type, it is this second policy that will be selected as it is considered
as the most appropriate policy. Finally, once the policy has been selected, the plan triggers
the instantiation of the policy and its integration with the collective policy. These last goals

223

Chapter 8. ASC-TMS Implementation

are executed in sequence; the integration will not take place until all instantiation plans have
finished.

Instantiation Management

This functionality assume the instantiation of the selected policy to fit the context in which
the trust decision has to be made. To that aim, we make use of several meta-policies that
are actually expressed as plans. Each meta-policy constitute a known-how for the TMA with
respect to how selected policies could be adapted in response to the business-context. In our
implementation, we adapt the policies to three types of environment changes, namely collusion,
credentials forgery and resource updates. The following policy illustrates how we the meta-policy
that has been defined to react to resource update is specified.
✞

1 +!instantiate(Policy[pattern(Pattern)], Agent, Operation, Object) :

2 value(Old)[pattern(Pattern)] & valueOf(New)[artifact_name(Object)] & New > Old

3 <− Delta = New − Old ;

4 for(Delta>0){

5 policy.restrict(Policy, all);

6 Delta = Delta −1;

7 }

8 for(Delta<0){

9 policy.relax(Policy, all);

10 Delta = Delta + 1;

11 }

12 −+value(New)[pattern(Pattern)].
✝ ✆

Listing 8.9 – Policy Instantiation Plan

In the above meta-policy, the belief value(Old)[pattern(Pattern)] contains the value of the
resource for which the policy has been used last time. This value is compared to the value of
the current resource for which the policy is instantiated. Then the delta between these values
is computed and the policy is either restricted or relaxed consequently. Finally, the value belief
is updated with the value of the current resource. The idea of this meta-policy is to make the
policy evolve with the resource it is protecting. So the more the resource becomes valuables, the
more the policy will be restrictive. Therefore, the keyword all is used instead of a particular
trust factor meaning that all trust criteria that can be changed will be adapted.

In a similar way, we defined three other meta-policies to demonstrate the benefit of the
instantiation. Of course, the user can define its own meta-policies via the assistant agent. To
that aim, the assistant makes use of the tellHow message as follows.
✞

1 .send(TMA, tellHow, ‘‘!instantiate(Policy, Agent, Operation, Object): friend(Agent)

2 <− policy.delCriterion(P,identity).’’)
✝ ✆

Listing 8.10 – How the assistant personalises the meta-polices of the TMA

224

8.3. Implementation Details

Once then the assistant agent transmits this policy using a message. When the above instruction
is executed, the string in the message content will be parsed into Jason meta-policy and added
to the TMA meta-policies library.

Adaptation actions (e.g. policy.relax(...)) are not natively provided by Jason. However,
as Jason itself is developed in Java, the framework allows developer to specify user-defined
internal actions. Unlike standard internal action (e.g. .send, .my_name or .count) a user-
defined internal actions are accessed by the name of the library, followed by “.”, followed by the
name of the action. Libraries are defined as Java packages and each action in the user library
is a Java class within that package; the names of the package and class are the names of the
library (Adaptation Actions in Figure 8.5) and action as they will be used in Jason Plans.

Social Compliance Management

The social compliance functionality implements the adaptation to social-context as defined in
Section 7.5. This functionality is achieve by the TMA with three different types of meta-
policies; combination, integration and evolution. Combination allows the agent to build a
collective policy based on the policies provided by the members of its community, integration
make the agent complying or not with the collective policy of its community.

Combination meta-policies are triggered by the plans used in the activities management of
the assistant agent. It is used by the TMA to combine the policies transmitted by the assistant
to build a collective policy. This is performed using the following meta-policy.
✞

1 @socialComplianceManagement

2 +!doCombination(Policies, Community, Pattern, heuristic)[source(Assistant)] :

3 myAssistant(Assistant)

4 <− policy.combine(Policies, Pattern, Heuristic, CollectivePolicy);

5 .send(Assistant, tell, newCollectivePolicy(CollectivePolicy)[issuer(Community),

pattern(Pattern)]);

6 −+policy(CollectivePolicy)[issuer(Community), pattern(Pattern)].
✝ ✆

Listing 8.11 – How the assistant personalises the meta-polices of the TMA

The plan is triggered with a set of policies, a name of a community, a pattern, and a
combination heuristic. The TMA combines the set of policies to create a collective policy.
The combination is performed by the TMA following the algorithm presented in Section 7.5.1
which has been implemented in Java and made available to the TMA via an internal action
(i.e. polic.combine(...)). Once the TMA executes this internal action, the outcome of this
execution is used to ground the variable Collective policy with the policy resulting from the
integration. Then this policy is sent to the assistant which will make this newly generated
collective policy active. Finally, the TMA keeps track of the collective policy in order to use it
during integration.

Integration is performed in a similar way. However, integration is automatically triggered
by the TMA each time a request is received (cf. Requests Management). Recall, we defined in
Section 7.5.2 four types of heuristics, each generating an integrated policy that possess some

225

Chapter 8. ASC-TMS Implementation

desired properties (i.e. accepts when both policies accept, reject when both policies reject,
accept all requests accepted by one policy and reject all request rejected by a policy). Thus
the choice of the heuristic determines the behaviour exhibited by the assistant (compliant or
deviant). However, we demonstrated experimentally in [Yaich et al., 2013] that heuristic 1 and
heuristic 2 were inappropriate for compliance issues as they do not guarantee any property
when the policies to be integrated conflict (one accepts and the other one rejects the request).
Therefore, the integration is achieved using heuristic 3 and 4 based on beliefs that determines
the user preferences about how compliant he wants to be. These beliefs are stated as follows.
✞

1 complianceProfile(compliant).

2 complianceProfile(deviant).

3 complianceProfile(conditionally).
✝ ✆

Listing 8.12 – Compliance preferences

So by stating one of the above beliefs, the assistant transmits the preferences of the user to
the TMA. If the first preference is used, the agent will always and blindly comply with the
collective policy of its community. In contrast, if the second preference is used, the agent will
use only its individual policy and thus not complying with the collective policy. Finally, if the
agent makes use of the third preference, it will conditionally comply (i.e. when some conditions
are met). In the following, we present the three meta-policies that correspond to the above
preferences.
✞

1 @socialComplianceManagement

2 !integrate(IP[pattern(Pattern)], Agent, Operation, Object): complianceProfile(deviant) <− true.
✝ ✆

Listing 8.13 – Compliance Plan

The above meta-policy implements the simplest case in which the agent do not want to com-
ply with the collective policy. Therefore, the individual policy is kept as it is without being
integrated with the collective policy.
✞

1 @socialComplianceManagement

2 !integrate(IP[pattern(Pattern)], Agent, Operation, Object) : complianceProfile(compliant) &

3 myCommunity(Com) & member(Agent, Com)

4 <− ?collectivePolicy(CP)[pattern(Pattern), issuer(Com)];

5 policy.integrate(CP, IP Pattern, h3).
✝ ✆

Listing 8.14 – Compliance meta-policy

With the above policy, the agents that want to exhibit a compliant behaviour will always
use integration. The difference between this policy and the one we present hereafter lies in the
fact that the above policy is used for requests that originates from agents that are not members
of the community. Therefore, the meta-policy makes use of the heuristic h3 which guarantees
that the integrated request will reject any request rejected by the collective policy. However,
the heuristic allows the agent to be more restrictive than the community; the integrated policy
may reject requests that the collective policy would have accepted.

226

8.3. Implementation Details

✞
1 @socialComplianceManagement

2 !integrate(IP[pattern(Pattern)], Agent, Operation, Object) : complianceProfile(compliant) &

3 myCommunity(Com) & not member(Agent, Com)

4 <− ?collectivePolicy(CP)[pattern(Pattern), issuer(Com)];

5 policy.integrate(CP, IP, Pattern, h4).
✝ ✆

Listing 8.15 – Meta-policy used for integration

Besides, the above meta-policy is to be used when interacting with agents that are members
of the same community. Indeed, members of the same community may legitimately expect
that the policy used to handle their request are not more restrictive than the collective policy.
Nevertheless, a member is not obliged to have such a behaviour, one can use the same integration
meta-policy in both cases.

Finally, the agents that are conditionally complying with the collective policy make use of
the following meta-policy.
✞

1 @socialComplianceManagement

2 !integrate(IP[pattern(Pattern)], Agent, Operation, Object) : complianceProfile(conditionally)

3 & myCommunity(Com)

4 & collectivePolicy(CP)[pattern(Pattern), issuer(Com)]

5 <− getPopulation(Com, Population);

6 if((Population<3) ||(Population>=20)){

7 policy.integrate(IP, CP, Pattern, h3)

8 }

9 else((Population > 5) & (Population<20)){

10 policy.integrate(CP, IP, Pattern, h3)

11 }.
✝ ✆

Listing 8.16 – Compliance meta-policy

In this policy, if the agent is in a context that is suitable for compliance, with respect to the
conditions stated by Latané in its social impact theory, the agent will use heuristic h3 to avoid
entering in conflict with its community. Recall, h3, will never accept a request that the policy
having the priority would have rejected. Here the policy having the priority (line 7) is the
collective policy as it is the first argument of Algorithm 2 (cf. Section 7.5.2). Otherwise, if
the condition of compliance are not met, the meta-policy give the priority to the individual
policy during the integration. Giving the priority to the individual policy means that the agent
accepts to be in conflict with its community and thus exposes itself to sanctions.

Policy Evaluation Management

Policy evaluation management consist in collecting the trust information required for the eval-
uation of the policy, and computing the extent to which these information satisfy the trust
criteria express in the policy. To that aim, this functionality is achieve in several steps as
specified in the following plan.

227

Chapter 8. ASC-TMS Implementation

✞
1 @PolicyEvaluation

2 +!policyEvaluation(Policy, ReqId) <−

3 +profile([])[request(ReqId)];

4 !getTrustInformation(ReqId);

5 !collectInformation(ReqId);

6 .wait(100);

7 !evaluatePolicy(ReqId).
✝ ✆

Listing 8.17 – Evaluation Plan

First, the TMA creates a belief (i.e. profile) in which he will store all information (i.e.
credentials and declarations) required for the policy evaluation. This profile is annotated with
the request id to avoid confusion when several requests are handled in parallel. The second step
consist in creating a new goal (i.e. getTrustIInformation) which parse the policy to identity the
trust criteria that require credentials credentials (i.e. proofs) and those that require declarations.
Credentials are requested from the TMA of the requester, while credentials are requested from
the agents composing the system. The following plan illustrates how this issue is achieved.
✞

1 @PolicyEvaluation

2 +!getTrustInformation(ReqId): policy(Policy)[request(Req)] & ReqId== Req

3 <− utils.getRequester(ReqId, Requester);

4 for(.member(tc(Type, Value, Weight), Policy))

5 {

6 if(semanticLayer.isProof(Type))

7 {

8 .send(Requester, achieve, getCredentials(ReqId, List)

9 }

10 else

11 {

12 .broadcast(achieve, getCredentials(ReqId, List)

13 }

14 }.
✝ ✆

Listing 8.18 – Evaluation Plan

Once this plan executed, the TMA executes the plan by means of which the received information
is processed (i.e. collectInformation). Declarations are aggregated to derive a unique value,
while credentials are verified with respect to the public key used by the certification authority
issuing the credential. Then for each type of information, a belief having ti(Type, Value)

is added to the corresponding profile. Once the profile is built, the evaluatePolicy plan is
triggered. This plan computes the extent to which the information contained in the profile
satisfy the corresponding policy. The code of these plans is presented hereafter.
✞

1 +!evaluatePolicy(ReqId): ?profile(Profile)[request(ReqId)] & policy(Policy)[request(ReqId)]

2 <−

3 +weights(0)[request(ReqId)];

4 +sum(0)[request(ReqId)];

5 for(.member(tc(T, O, V, W, M), Policy))

228

8.3. Implementation Details

6 {

7 ?weights(Ws)[request(ReqId)];

8 neWeight = Ws + W;

9 −+weights(neWeight)[request(ReqId)];

10 for(.member(tic(Type,Value), Profile))

11 {

12 if((Type == T)) & (semanticLayer.satisfy(Type, Value, V, O)))

13 {

14 ?sum(S)[request(ReqId)];

15 newSum= S + W;

16 −+sum(newSum)[request(ReqId)];

17 }

18 else{

19 if(M == m)

20 +unsatisfiedMandatory[request(ReqId)];

21 }

22 }

23 ?sum(Sum)[request(ReqId)];

24 ?weights(Weight);

25 +trustLevel(Sum/Weight)[request(ReqId)].
✝ ✆

Listing 8.19 – Evaluation Plan

The above plan implements the policy evaluation function presented in Section 6.4. The
plan makes use of the ontology to check whether the values contained in the collected infor-
mation satisfy the threshold values set in the policy. In the current implementation of the
ASC-TMS, the ontology has been implemented in OWL DL using the Protege framework
[The Standfod Center for Biomedical Informatics Research (BMIR), 2000]. The mapping be-
tween Jason plans and the ontology is achieved by the semantic layer (cf. Figure 8.5) which
has been implemented as a library of internal actions (e.g. isProof, and satisfy)2.

The outcome of this evaluation represent computed trust level which is added to the belief
base of the TMA. The addition of this belief generates a new event which will trigger the plan
that informs the assistant about the outcome of the evaluation. This last step is achieve by
this plan.
✞

1 + trustLevel(TL)[request(ReqId)]: not unsatisfiedMandatory[request(ReqId)] & ?assistant(Assistant)

2 <− .send(Assistant, tell, trustLevel(ReqId, TL)).

3

4 + trustLevel(TL)[request(ReqId)]: unsatisfiedMandatory[request(ReqId)] & ?assistant(Assistant)

5 <− .send(Assistant, tell, trustLevel(ReqId, 0)).
✝ ✆

Listing 8.20 – Plan used by the TMA to send the computed trust evaluation to the assistant

With the above plan, the TMA informs its assistant about the result of the trust evaluation.
If one of the mandatory trust criteria was not satisfy, the final outcome of the evaluation is
considered to be null (line 5). Based on this evaluation, the assistant makes a trust decision as
presented in Section 8.3.1.1.

2This library makes use of the Jena library to manipulate the OWL ontology

229

Chapter 8. ASC-TMS Implementation

8.3.2 Implementing Resources in Artefacts

Artefacts are used to implemented the resources of our model (i.e ∀ri ∈ R). As presented in
Section 8.1.2, artefacts are characterised by a set of observable and non observable properties,
a set of operations, and a functional description.

The artefact private attributes represent non observable properties, the public attributes
represent the observable properties and the methods represent the operations provided by the
resource type.

We present hereafter how the concepts we used to describe the resources in our model are
mapped to the concepts used in CArtAgO.

• Observable properties have been used to implement the resource owner (ri.ϕ), sensitivity
(ri.ς) and its value (ri.ν). In their most general form, observable properties are repre-
sented by a tuple, with a functor and one or multiple arguments, of any type. In our
implementation, sensitivity and value are have integer value, while owner is an ArrayList
containing the identifiers of the resource owner.

• Non observable properties are classical Java object attributes which have been used to
implement the content (ri.θ) of the resource. We will see later in this section why we have
made the choice to implement part of the resource properties as observable properties,
while we kept the content non observable.

• Both observable and non observable properties are accessed via operations. So here the
mapping between the resources operations used in our model and the operations provided
by CArtAgO is straightforward.

• The authorisation function (ri.Auth) introduced in Section 6.8 is also implemented as a
particular operation called grant.

In the following, we will describe how the assistant, implemented in Jason, interacts with
the resources that are implemented in CArtAgO. We are particularly interested in showing
how these agents create, manipulates and grants access to the resources that compose its
environment.

Resource creation

In CArtAgO, artefacts are structured in workspaces. Each workspace constitute a sub-
environment containing dynamic set of artefacts. In our implementation, we have made the
choice to implement the environment dimension (R) as a unique workspace that is accessible
to all agents of the system (∀ai ∈ A). So each resource that is available in the system belongs
to the default workspace.

In order to create a resource, the assistant agent exploit the makeArtifact action. The
following plan presents the way resources are created.

230

8.3. Implementation Details

✞
1 @ResourceCreation

2 +!createResource(ResNam, ResType) : true

3 <− .my_name(Me);

4 makeArtifact(ResName,ResType,[Me, 0,0],ResId).
✝ ✆

Listing 8.21 – Plan used by the TMA to send the computed trust evaluation to the assistant

With this plan, the assistant creates a resources of type ResType which name is ResName. The
list [Name, 0,0] corresponds to the arguments transmitted after its creation. These arguments
corresponds to the values of the observable properties, namely owner, sensitivity and value.
The operations admitted by the resources depend on the type of this resources. In fact, the
type of the resource corresponds to the Java class which inherits from the default Artifact class
provided by CArtAgO. The name of the class corresponds to the artefact type.

Resource discovery

Without the resource identifier, an assistant will not be able to manipulate it. An agent can
discover the resources that are available in its environment (i.e. workspace) by means of the
following plan.
✞

1 @ResourceDiscovery

2 +?availableResource(Res, Operation) : true

3 <− lookupArtifact(Res, ResId);

4 !accessResource(Operation, ResId).

5

6 −?availableResource(Res, Operation) : true

7 <− .wait(100);

8 ?availableResource(Res).
✝ ✆

Listing 8.22 – Plan used by the TMA to send the computed trust evaluation to the assistant

Resources are discovered based on their name or their type. If a resource with the specified
name or type exists, its identifier is bound to the variable ResId. In case several the resource
types is specified and several resources of the same type are available, one resource is ran-
domly chosen. The second plan is used to manage the situation in which the first plan fails
finding a corresponding resource. In this case, the agent will wait for a certain period (e.g.
100 milliseconds), then try to discover the resource again. If the resource is found, the goal
accessResource(ResId) triggers the access the resource.

Resource Manipulation

Once the resource discovered, the assistant is able to manipulate it. The manipulation of the
resource is made based on the type of the resource. Each resource type offers a set of operations
by means of which the content of the resource can be updated.

We present hereafter a plan used to read and update the content of a TextFile resource.

231

Chapter 8. ASC-TMS Implementation

✞
1 @ResourceManipulation

2 +!accessResource(ResId) : profile(altruist)

3 <− read(Content)[artifact_id(ResId)];

4 utils.improve(Content, Content2);

5 update(Content2)[artifact_id(ResId)].

6

7 +!accessResource(ResId)[error_msg(Msg), operation(Op)] :

8 Msg =="not_authorized" <−

9 getControllers(Controllers)[artifact_id(ResId)] ;

10 ?myTMA(TMA);

11 for(.member(Agent, Controllers))

12 {

13 .send(Agent, tell, request(Operation, ResName));

14 .send(TMA, tell, pendingRequest(Agent, ResId, Operation));

15 }
✝ ✆

Listing 8.23 – Plan used by the TMA to send the computed trust evaluation to the assistant

With the first plan, the assistant agent, which has a altruist profile, wants to read the
content of a resource (line3), improve its quality (line4) and update the resource consequently
(line 5). However, the resource reveals to be private, and thus its manipulation is limited to
trusted agents. The failure of the first plan automatically triggers the execution of the second
plan. In this second plan, the agent will pars the error message to evaluate the reason of the
failure of the first plan 3. Here, the message corresponds to an unauthorised access. In such
situation, the agent will retrieve from the resource the list of agents controlling it (line 13) and
sends a request to each agent of the list. Finally, the agent informs its TMA (line 14) about
pending request so that this latter accepts the related negotiation demands.

Resource authorisation

We presented in Section 8.3.1.1, how the assistant agent makes trust decision based on the
trust evaluation performed by its TMA. In this section we will see how the decision is enforced
by the assistant. Once the +!authorise(Agent, Operation, Object) added to the assistant
belief base, the agent triggers the following plan
✞

1 @ResourceAuthorisation

2 +!authorise(Agent, Operation, Object) <− grant(Agent, Operation)[artifact_id(Object)].
✝ ✆

Listing 8.24 – Plan used by the TMA to send the computed trust evaluation to the assistant

Granting access to the resource is performed by invoking the operation grant which is
common to all resources. By default, CArtAgO has been designed to support role-based access
control. However, these mechanisms has not been implemented in the current version of the
distribution. Additionally, even if it was implemented, we would have to extend it in order be

3The message is sent automatically by the artefact whenever their is an unauthorised manipulation of the

resource. The artefact sends also the name of operation for which the signal was generated

232

8.3. Implementation Details

able to issue authorisation that entails on individual instead of a whole group. To that aim,
we implemented our resources with a hybrid (IBAC and RBAC) access control mechanism.

Consequently, the first argument of the grant operation can be either an agent identifier, or
the identifier of a community. In this case, every agent composing the community is granted
access to the resource. This feature is only used when the resource is a collective resource.

8.3.3 Implementing Virtual Communities with Moise

In our implementation of the virtual community functional specification defined using Moise,
we grouped the OrgBoard, GroupBoard and the SchemeBoard into one unique artefact called
ComArt (i.e. community artefact). In addition to the functionalities provided by these artefacts,
the community artefact encapsulates the collective policies that are in use within the community
and the operations based on which the members of the community are able to retrieve and
update these policies. Finally, we provide in the ComArt a grant operation by means of which
the community owner can grant privileges (e.g. membership, delegation, etc.) to other agents.
Worth noting that we consider that the owner of a community does not have any power on
other members. Also, we assume that when a community is initiated by several agents, only
one agent creates the community but the role of owner is adopted by all.

In the following, we present the plans used by assistant agents to create, configure and join
communities. These plans are generic and are embodied by all assistants.
✞

1 @CommunityCreation

2 +!createCom(ComName) <−

3 makeArtifact(ComName, ‘‘ComArt’’, ["community−os.xml", ComId);

4 adoptRole(owner)[artifact_id(ComId)];

5 .my_name(Me);

6 +owner(ComId, Me);

7 +myCom(ComId);

8 !admitMembers(ComName, ComId).
✝ ✆

Listing 8.25 – Community Creation Plan

With the above plan, the assistant agent creates a community by instantiating the ComArt

artefact. Like any artefact, the ComArt is created using the makeArtifact action. Once the
community created, the initiator of the community adopts the role of owner (line 4). As stated
in the definition of the functional specification (cf. Definition 30), the owner of a community
can admit new members. To that aim, the above plan triggers a new goals by means of which
the owner will admits new members (line 5). The plan used to handle this new plans is detail
in what follows.
✞

1 @CommunityManagement

2 +!admitMembers(ComId): trust(Candidate, join, community) &

3 owner(ComId, Me) & .my_name(Me)

4 <− grant(membership, Ag)[artifact_id(ComId)];

5 − trust(Candidate, join, community);

233

Chapter 8. ASC-TMS Implementation

6 .send(Candidate, achieve, adoptRole(member, ComId));

7 !admitMembers(ComId).
✝ ✆

Listing 8.26 – Plan for admitting new members

Here, the assistant agent playing the role of owner will systematically admit members that
have been trusted to be members of the community he created. Of course, trusting a members
means that follows the same process described in Section 8.3.1.2 in which the assistant makes
use of the evaluation of its TMA to decide whether the agents should be trusted or not. In
the above plan, the assistant invokes the grant to add the new member to the list of agents
that are admitted to perform the operation adoptRole. This agent is then requested (using an
achieve message) to adopt the role of member. The new member adopts this role in the same
way that the community creator adopted the role of owner in Listing 8.32. This is illustrated
in the following plan.
✞

1 @AdoptingRole

2 +!adoptRole(member, ComId) <− adoptRole(member)[artifact_id(ComId)].
✝ ✆

Listing 8.27 – The plan for adopting the member role

8.3.4 Implementing Interactions

The way agents interact with their environments is performed by CArtAgO through Artefacts.
This is achieved via their operations that allow agents to interact with the resources that
compose their environment. In this section we present how these agents communication with
each others.

As illustrated in Figure 8.1, at the beginning of each reasoning cycle, agents check for
messages they might have received from other agents using the checkMail (step 3). Any message
received by an agent has the following structure [Bordini et al., 2007]:

〈receiver, performative, content〉 (8.2)

The sender is an atom representing the id by means of which the agent receiving the message
is uniquely identified in the multi-agent system. The performative denotes the intention of the
sender (cf. Section 5.6), while content is a predicate which interpretation depends on the
performative used in the message.

Message are sent with a pre-defined Jason internal action that is used to inter-agent com-
munication. So to send messages like the one presented above, the agent has to use this internal
action within a plan. The following plan illustrates how a message is sent by an agent.
✞

1 +!event:

2 <− .send(receiver, performative, content)
✝ ✆

Listing 8.28 – A generic plan for sending a message

234

8.3. Implementation Details

In the above plan, the receiver represent the id of the agent that will received the mes-
sage. In Jason, provides nine performatives, namely tell, untell, achieve, unachieve, askOne,
askAll, tellHow, untellHow, askHow. In the following, we briefly describe the semantic of each
performative.

• tell (resp. untell): the sender intends the received (resp. not) to believe that the
predicate of in the message content is true.

• achieve (resp. unachieve): the sender requests the receiver to achieve (resp. drop) a
goal.

• askOne: the sender wants to know if the content is true for the receiver.

• askAll: the sender wants to know all the answer to a question.

• tellHow: the sender informs the receiver about a plan.

• untellHow: the sender request that the receiver deletes a plan from its library.

• askHow: the sender requests the receiver to provide him with all plans that are relevant
for the triggering event provided in the content.

The above performatives provided by Jason are different from the ones we specified in Section
5.6 and Section 7.4.2.1. So to implement the interaction protocol and the negotiation protocol
we developed in this thesis we had two alternatives; (a) changing the Jason interpreter to allow
or the interpretation of specific performatives, or (b) implement the protocol using Jason plans
to interpreter received messages. We have made the choice to implements interaction and
negotiation protocols as plans library that are included at the plan library of any agent when
it starts running. This approach has been also adopted by the authors of Jason to implement
an example about Contract Net Protocol [Bordini et al., 2007].

Consequently, all performatives used in our model (Section 5.6 and Section 7.4.2.1.) are
implemented using tell messages. In the following, we present two plans to show how the
sender and the receiver interact using the same protocol.
✞

1 @negotiationProtocol

2 +!Negotiate(Receiver, ReqId): true

3 <− .send(Receiver, tell, start−negotiation[request(ReqId)]).
✝ ✆

Listing 8.29 – Two plans implementing the initiation of a negotiation

All negotiation process is conducted by the TMAs, so the sender and the receiver of the
above plans represent the TMA of the requester and the TMA of the controller. The first
plan (line 2) is triggered by the TMA of the controller after performing the integration of the
individual and the collective policy (cf. Section 8.3.1.2). The plan execution will result in
the addition of the belief start-negotiation[source(Sender), request(ReqId)] to the belief
base of the TMA of the requester.

235

Chapter 8. ASC-TMS Implementation

Having this belief in its beliefs base, the TMA of the requester will have to find a plan that
will allow him to act so as to handle the new event (i.e. belief addition). So the first thing
this agent will do is to find in the plan library (cf. Figure 8.1) all plans which are relevant for
the given plan. This step corresponds to the execution of the L.Replay function we defined in
the interaction protocol (cf. Section 5.6). This is achieve by retrieving all plans that have a
triggering event that can be unified with the +start-negotiation event.

Once the TMA retrieves all relevant plans, the agent has to determine which ones are
applicable. Recall, plans have a context part which states when a plan can be used. It is these
information that are used to active or not a given plan.

The interaction protocol has been designed so that only one plan is possible at any moment
of the interaction. However, the trust negotiation protocol is strategic. So the agent has to eval-
uates several alternatives and select the one that maximises its expected utility. Consequently,
the TMA has to handle the situations in which several plans are applicable alternatives to han-
dle the selected event (e.g. here the TMA of the requester can answer with accept-negotiation

and refuse-negotiation). To that aim, we implemented the expected utility function specified
in Section 7.4.2.2 as an internal action that the TMA agent uses during the negotiation.
✞

1 @negotiationProtocol

2 +start−negotiation[source(Sender), request(ReqId)] :

3 getUtility(ReqId, accept−negotiation, U1) &

4 getUtility(ReqId, refuse−negotiation, U2) &

5 U1 >= U2

6 <− .send(Sender, tell, accept−negotiation[request(ReqId)]);

7 +currentNegotiation(requester, ReqId).

8 @negotiationProtocol

9 +start−negotiation[source(Sender), request(ReqId)] :

10 getUtility(accept−negotiation, U1)

11 & getUtility(refuse−negotiation, U2)

12 & U1 < U2 <− .send(Sender, tell, refuse−negotiation[request(ReqId)]).
✝ ✆

Listing 8.30 – Two plans implementing the initiation of a negotiation

The above plans illustrates how the TMA of the requester selects the next move in the ne-
gotiation game. Here, the agent makes use of the getUtility() internal action which computes
the expected if the agent accepts or refuses the negotiation. Then this value is compared with
each of the alternatives at the negotiation stage. The plan having the utility that outperforms
the other alternative are triggered.

Of course, the main contribution we we want to stress here not the negotiation protocol itself.
Rather, we prefer focusing on the functionality by means of which an agent is able to adapt its
policy when this adaptation improves its utility. This issue is illustrated by the following plan.
✞

1 @negotiationProtocol

2 +propose(Criterion, Value)[source(Sender), request(ReqId)] :

3 getUtility(ReqId, accept−proposal, U1) &

4 getUtility(ReqId, reject−proposal, U2) &

5 getUtility(ReqId, end−negotiation, U3) &

236

8.4. Conclusion

6 (U1 > U2) & (U1 > U3)

7 <− ?policy(P)[request(ReqId)];

8 policy.updateCriterion(P, Criterion, ,Value, ,);

9 .send(Sender, tell, accept−proposal[request(ReqId)]).
✝ ✆

Listing 8.31 – Two plans implementing the initiation of a negotiation

With the above plan, the TMA of the controller evaluate the utility of the three alternatives
to a proposal. This plan is triggered when the utility of accepting the proposal outperforms
the utility of rejecting the proposal or ending the negotiation (lines 3 to 6). Once the pro-
posal accepted, the agent update its policy consequently. To that aim, he makes use of the
policy.updateCriterion() internal function (line8). Then he informs the TMA of the con-
troller about its decision. In the next section, we illustrate this negotiation process using a
concrete example.

8.4 Conclusion

In this chapter, we discussed the implementation of ASC-TMS and the agent-based virtual
community platform on which it has been deployed. The overall system is used to build virtual
communities which user’s are assisted in their trust decisions by ASC-TMS. The main advantage
of ASC-TMS embodied in the trust management agent lies in its ability to unload VCs users
from trust management tasks. Thus these members can completely focus on their activities
while having the guarantees that their trust evaluations will remain accurate.

To that aim, we first we presented the JaCaMo multi-agent programming platform we used
to implement our system. We showed the adequacy of this platform with the architecture of
the system we presented in Chapter 5 and present the features that interested us in JaCaMo.

Then, we delve into implementation details to present how agents has been implemented
in Jason. We showed how the architecture of the system respects the principal of separation
of concerns as the functionalies that are application specific and those that relate to the trust
management issue are encapsulated in two different agents (i.e. assistant agent and trust
management agent). Then we presented how resources has been implemented into CArtAgO
artefacts and how the MOISE specification of communities was executed by Jason agents.
Finally, we described how the interaction and negotiation protocol introduced in this thesis
was implemented.

Our implementation of ASC-TMS has been made deliberately generic to allow the widest
possible application of our system.

237

Chapter 8. ASC-TMS Implementation

8.5 French Summary

Dans ce chapitre, nous fournissons des détails techniques sur l’implémentation de la commu-
nauté virtuelle d’agents et le système de gestion de la confiance (ASC-TMS) que nous avons
déployée dessus. Pour cela, nous commençons par décrire la plateforme de développement
multi-agent JaCaMo utilisée pour l’implémentation de notre système.

JaCaMo est né de l’intégration de Jason, CArtAgO et Moise, trois plateformes de
développement multi-agent. Ainsi, JaCaMo c’est : (i)programmer des agents et les interac-
tions agent-agent car c’est ce que permet de faire Jason, (ii) programmer des environnements
et des interactions agent-environnement en utilisant la plateforme CArtAgO, (iii) programmer
des des organisations d’agents ainsi que des interactions agents-organisation à travers la plate-
forme Moise.

Dans ce qui suit, nous détaillerons l’implémentation de chaque partie de l’architecture décrite
dans le chapitre précédent (Cf. Figure 7.8).

8.6 L’architecture JaCaMo d’une communauté virtuelle

Dans cette section, nous présentons comment le modèle de communauté virtuelle représentant
notre système S dans le chapitre 6 a été implémenté en utilisant la plateforme JaCaMo.

A

A

AA

A A

T

T

T

T

T

T

E
nviro

n
m
e
n
t

A
g
e
n
t

O
rg
a
n
isa

tio
n

P2

Op1

Op2

P1

P2

Op1

Op2

P1

P2

Op1

Op2

P1

P2

Op1

Op2

P1

P2

Op1

Op2

P1

P2

Op1

Op2

P1

P2

Op1

Op2

P1

Community

Role

Organisational
Specification

A
Assistant
Agent

Trust
Management
Agent

Resource

T

OS

Interaction

 Controls

Manipulates

Negotiation

P2

Op1

Op2

P1

Legend

 Association

Membership

OSOS

Figure 8.6 – L’architecture JaCaMo du système S

238

8.7. Détails d’implémentation

Comme illustré dans la figure 8.6, Nous avons utilisé Jason pour développer et exécuter nos
agents, nous avons également utilisé CArtAgO pour développer et faire vivre des environnements
à base d’artefacts. Ici les artefacts sont utilisés pour encapsuler les ressources de notre système.
Enfin, nous avons utilisé Moise pour pour modéliser et gérer des communautés virtuelles
ouvertes et décentralisées en suivant le modèle décrit dans le chapitre 5.

Grâce à l’utilisation de JaCaMo, l’architecture en couches illustrée dans la figure 8.6 se
trouve être en parfaite adéquation avec les quatre dimensions que comporte le modèle présenté
dans le chapitre 5.

Premièrement, la couche des agents est composée des agents du système (i.e. A) tel qu’on
les avaient décrit dans la Section 5.4. Afin de rendre notre système indépendant de toute
application métier, nous avons fait le choix de considérer deux types d’agents: assistants et
gestionnaires de confiance. Un assistant est un agent dont la principale tâche est d’assister un
membre de la communauté dans ses activités. Ainsi, cet agent est doté de but spécifiques à
l’application métier cible. Par ailleurs, l’agent gestionnaire de confiance encapsule l’architecture
du système de gestion de la confiance présentée dans le chapitre 7 et de ce fait est responsable des
tâches liées à la gestion de la confiance (i.e., instanciation, négociation, combinaison, intégration
et évaluation des politiques de confiance). L’objectif principal de cet agent est donc d’assister
l’agent assistant dans ses décisions de confiance.

Deuxièmement, dans la couche environnement (c.f. la couche basse de la figure 8.6) nous
avons placés les ressources que les agents assistant doivent manipuler dans le cadre de leurs
activités. Ces ressources ont été implémentes en tant qu’artefacts CArtAgO comme évoqué plus
haut.

Troisièmement, les agents sont groupés au sein de structures organisationnelles qui représen-
tent les communautés. Chaque communauté est définie à travers sa spécification organisation-
nelle (c.f. Moise) ainsi que l’ensemble des ressources partagées au sein de cette communauté.
Nous avons utilisé une couleur différente pour différencier les communautés dans la figure 8.6.
Ici la couleur indique la communauté à laquelle appartient chaque ressource.

Enfin, dans la figure 8.6, les interactions n’ont pas de couché dédiée car cette dimension est
transversale aux trois autres. Ainsi, les agents communiquent entre eux grâce à un protocole
de communication ou un protocole de négociation. Ils interagissent avec les ressources via les
opérations et ils peuvent interagir avec leur communauté via la spécification organisationnelle.

8.7 Détails d’implémentation

Dans cette section, nous décrivons brièvement comment les éléments de l’architecture décrite
plus haut (c.f., Figure 8.6) ont été implémentés en utilisant la technologie JaCaMo correspon-
dante.

239

Chapter 8. ASC-TMS Implementation

8.7.1 Implémentation des agents

Dans cette section, nous présentons comment l’agent assistant et le gestionnaire de la confiance
sont implémenté. nous sommes particulièrement intéressés par montrer quelles fonctionnalités
sont assurées par chaque type d’agent.

8.7.2 Agent Assistant

L’agent assistant a pour objectif d’aider les membres de communauté virtuelles dans leurs
activités. Pour cela, l’agent repose sur l’architecture illustrée dans la Figure 8.7.

TMA
(ASC-TMS)

Trust

Policies

Trust Evaluation

protocol

 Assistant

Assistant
Solver

Assistant

Trust Management Agent
(ASC-TMS)

Plans Library

Beliefs

Base

Trust Decision

Management

P2

Op1

Op2

P1

Authorizations

Management

Activities

Management

Interactions

Management

P2

Op1

Op2

P1

P2

Op1

Op2

P1

P2

Op1

Op2

P1

GUI

Preferences

Domain

Ontology

PoliciesRequests

manipulation

authorisation

Solver
Assistant

TMA
(ASC-TMS)

Assistant

protocol

Virtual Community Participants

Figure 8.7 – Architecture de l’agent assistant

Les fonctionnalités offertes par cet agent sont au nombre de quatre et nous les résumons
comme suit :

• activities management : cette fonctionnalité permet à l’agent de réaliser des objectifs
métier. Ainsi, ce module encapsule les plans (écrits en Jason) qui permettent à l’assistant
de créer, rejoindre et quitter les communautés. Ces plans lui permettent également de
créer, manipuler et détruire des ressources.

• interactions management : cette fonctionnalité contient des plans lui permettant
d’interagir avec les autres agents assistant en échangeant de messages.

• trust decision management : cette fonctionnalité encapsule les plans à partir desquels
l’assistant est en mesure de prendre des décisions à la place de l’utilisateur humain. Ces
plans représentent de ce fait le modèle de confiance évoqué au chapitre précédent.

240

8.7. Détails d’implémentation

• authorisation management : une fois qu’une décision de faire confiance a été prise, cette
fonctionnalité permet à l’assistant d’établir des autorisations qui vont permettre à l’agent
à qui il a décidé de faire confiance de manipuler la ressource convoitée.

Chacune des quatre fonctionnalités décrites plus haut est concrètement implémentée grâce
à des plans Jason. Nous invitons le lecteur à voir les exemples illustrant ces fonctionnalités
dans le manuscrit original.

8.7.3 Gestionnaire de la confiance

Dans la section précédente, nous avions décrit l’agent assistant était en mesure de prendre des
décisions à la place des membres humains de la communauté en se basant sur le travail du
gestionnaire de confiance. Dans cette section, nous allons donc voir comment ce dernier est
conçu pour permettre ce travail.

Trust Management Agent (ASC-TMS)

Belief

Base

Instantiation

Management
Negotiation

Managment

Requests and Policies

Management

Policy

Evaluation

Management

OWL

Ontology

CP

IP

Trust Level

Assistant

requests

Solver
Assistant

Adapted Policy

Social

compliance

Management

1

updates Environment Context

Plans
 Library

TMA
(ASC-TMS)

Solver
AssistantAssistant

Jason

Internal

Actions

Semantic Layer

(JENA API)

2

3 5 6

Protocol

7

8

9

4

10

11

Figure 8.8 – Architecture du gestionnaire de confiance

Comme l’illustre la figure 8.8, le travail du gestionnaire de confiance peut être décrit à
travers cinq fonctionnalités qu’on résume comme suit:

• Requests management: cette fonctionnalité assure le traitement des requêtes reçues. Pour
cela, les requêtes seront interprétées et les politiques correspondantes associées.

• Instantiation Management: cette fonctionnalité est assurée grâce aux méta-politiques
d’instanciation vues dans le chapitre 9.

• Social Compliance Management: cette fonctionnalité assure la combinaison, l’intégration
et l’évolution des politiques. Pour cela, le gestionnaire repose sur les méta-politiques
correspondantes ainsi que les politiques individuelles et les politiques collectives.

241

Chapter 8. ASC-TMS Implementation

• Negotiation Management: cette fonctionnalité assure la négociation avec les autres ges-
tionnaires. Des méta-politiques dédiées sont utilisées ici aussi en conjonction avec le
protocole de négociation présenté dans le chapitre 8.

• Policy Evaluation Management: cette fonctionnalité assure enfin l’évaluation des poli-
tiques.

Là aussi, les fonctionnalités ont été implémentée sous forme de plans Jason. Le format du
résumé ne permet pas de les présenter c’est pourquoi nous invitons le lecture à consulter les
exemples fournis dans le chapitre 8

8.7.4 Implémentation des ressources

Les artefacts CArtAgO sont utilisés pour implémenter les ressources de notre système S. Les
artefacts sont caractérisés par un ensemble de propriétés observables et non-observables, un
ensemble d’opérations ainsi qu’une désinscription fonctionnelle.

Les attributs privés de l’artefact représentent les propriétés observables, alors que les at-
tributs publics représentent les propriétés non-observables.Enfin, les méthodes constituent les
opérations fournies par chaque type de ressource. Dans ce qui suit, nous présentons comment
les concepts utilisés pour décrire les ressources dans notre modèle (cf. Chapitre 5) sont traduits
en terme de concepts CArtAgO.

• Les propriétés observables des artefacts ont été utilisé pour implémenter le propriétaire
(ri.ϕ), la sensibilité (ri.ς) et la valeur (ri.ν) d’une ressource. Dans notre implémentation,
la sensibilité et la valeur d’une ressource sont matérialisés par des entiers alors que la
propriété propriétaires est implémentée par une liste (i.e. ArrayList contenant les identi-
fiants des propriétaires d’une ressource. Les propriétaires peuvent être nombreux lorsqu’il
s’agit d’une ressource collective ce qui explique ce choix de structure de données.

• Les propriétés non-observables sont des attributs Java classiques. Ils sont utilisés pour
implémenter le contenu (ri.θ) des ressources.

• Les propriétés observables tout comme les propriétés non-observables sont accessibles via
des opérations. Ainsi, la correspondance entre le concept opération utilisé dans notre
modèle et les opérations utilisés dans CArtAgO.

• Enfin, la fonction d’autorisation ri.Auth) introduite dans la Section 6.8 est également
implémenté avec une opération spéciale appelée grant.

8.7.5 Implémentation des communautés

Dans Moise, les spécifications organisationnelles sont implémentés en utilisant des artefacts
appelés boards. Par défaut, il en existe 3 dans chaque organisation: OrgBoard, GroupBoard et
SchemeBoard. Dans notre implémentation, nous avons décidé de regrouper ces trois artefacts

242

8.7. Détails d’implémentation

en un unique ComArt (i.e. Community Artefact). En plus des fonctionnalités fournies par ces
artefacts, notre ComArt contient les politiques collectives utilisées par les membres de la commu-
nauté ainsi que les opérations d’adaptation qui permettent aux membres de ces communautés
d’y accéder et de les adapter. Engin, le ComArt encapsule également une opération grant à
travers laquelle le propriétaire de la communauté peut octroyer des privilèges à d’autres agents.
Enfin, on assume que lorsqu’une communauté est créée par plusieurs agents, seule un parmi eux
exécute le plan permettant sa création par contre tous les agents sont considérés comme étant
les propriétaires de la communauté. Pour illustrer cette étape de création, nous présentons
ci-dessous le plan utilisé par un agent pour créer une communauté donc le nom est ComName.
✞

1 @CommunityCreation

2 +!createCom(ComName) <−

3 makeArtifact(ComName, ‘‘ComArt’’, ["community−os.xml", ComId);

4 adoptRole(owner)[artifact_id(ComId)];

5 .my_name(Me);

6 +owner(ComId, Me);

7 +myCom(ComId);

8 !admitMembers(ComName, ComId).
✝ ✆

Listing 8.32 – Community Creation Plan

Dans ce plan, l’agent assistant crée une communauté en instanciant un artefact de type
ComArt. Comme tout artefact, le ComArt est créée en utilisant l’action makeArtifact (ligne 3).
Une fois la communauté créée, l’assistant adopte le rôle de propriétaire (Ligne 4) puis se met
en attente de requêtes d’admission émanant d’autres agents (Ligne8).

8.7.6 Implémentation des interactions

Les interactions des agents avec leur environnement sont assurées par CArtAgO à travers
les opérations sur les artefacts. Par contre, les interactions entre agents sont assurées par
Jason. Comme évoqué dans la Section 5.6, les interactions entre agents s’opèrent via des
échanges de messages. Chaque message recu ou envoyée par un agent à la structure suivante
[Bordini et al., 2007]:

〈receiver, performative, content〉 (8.3)

Le sender est un atome représentant l’identifiant de l’agent recevant le message, le
performative dénote l’intention de l’émetteur (i.e., force illocutoire) et le contenu est un prédi-
cat dont l’interprétation dépend du performative utilisé. L’enchaînement ainsi que l’ordre des
performatifs est défini par le protocole utilisé par les agents. Ainsi, c’est le protocole qui va
définir si le message envoyé fait partie d’une session de communication normale ou dans le cadre
d’une négociation.

Nous invitons le lecture à consulter le manuscrit pour plus de détails à propos de comment
les communications et les interactions sont traduites en terme de plans Jason.

243

Chapter 9

ASC-TMS Application to Open
Innovation

Previous chapters presented different aspects of ASC-TMS model, which include a generic
multi-agent based virtual community framework (Cf. Chapter 5), an expressive and flexible
(individual and collective) policy specification language (Cf. chapter 6) and a policy adaptation
mechanism (Cf. chapter 7). Finally, Chapter 8 described the implementation and deployment
of ASC-TMS on the JaCaMo multi-agent programming platform.

In this chapter, we emphasise the applicability of ASC-TMS on real life virtual communities.
To that aim, we present how ASC-TMS can be used to manage trust in open innovation virtual
communities. This use case has been selected due to our implication in the WINPIC project
funded by the Saint-Etienne Metropole 1.

The objective is to demonstrate how ASC-TMS may be applied in diverse settings to support
trust decision making in these systems.

9.1 Open Innovation

Open Innovation is currently recognised as an exciting new way to generate breakthrough
innovation at lower cost and fast time. This approach is adopted by companies and organi-
zations to enhance innovation in their R&D departments by harnessing external ideas. This
approach was made famous by Henry Chesborough, in his influential book Open Innovation
[Chesbrough, 2006] in which he argues that “ in today’s information rich environment, com-
panies can no longer afford to rely entirely on their own ideas to advance their business”
[Chesbrough, 2012b, Chesbrough, 2012a].

Open innovation paradigm treats research and development as an open system
[Ahonen and Lietsala, 2007, Vega, 2012]. It suggests that valuable ideas can come from inside
and outside companies. So by adopting open innovation, companies and organisations place
internal and external ideas at the same level of importance. Open innovation is often conflated
with the open source approach for software development. Indeed, both approaches rely on the
abundance of external source of idea to create value. However, open innovation incorporate
the business model in the innovation process, while open source approach downplays or denies

1https://iscod.emse.fr/winpic/

Chapter 9. ASC-TMS Application to Open Innovation

it [Cooke, 2009, Huizingh, 2011]. With respect to this issue, participants in open innovation
process are more concerned by trust as the business model represents the source of both value
creation and capture.

The open innovation activity involves two parties and an intermediary; Seekers are looking
for solving problems and Solver aims at providing solutions to these problems. Traditionally,
the role of intermediary has been performed by technology brokers [Vega, 2012]. However, in
the last few years, a number of commercial (e.g. Hypios, Nine Sigma or Innocentive) and
free (e.g. W3C Community Group) open innovation platforms (called markets) have emerged,
often making extensive use of on-line resources [Cooke, 2009]. These platforms plays the role a
technological, business and trust intermediary. Technological intermediary as they provide tools
for collaboration and resource sharing, business intermediary as they constitute a showcase for
R&D problems, and trust intermediary as they act as a trusted third party between seekers
and solvers.

In the next section, we present an open innovation virtual community example that we will
rely on throughout this Chapter to illustrate the application of ASC-TMS. In this example,
we will focus on the trust relationship between solvers which is not managed in current open
innovation platforms. The drawback has been highlighted by recent feedbacks from a number
of solvers [Cooke, 2009]. In these feedbacks, most of the solver confess that distrust was the
major factor affecting their decision to discontinue their involvement with innovation platforms.

9.2 Illustrative Example: An Open Innovation Commu-

nity

In this running example, we consider an open innovation system composed of 13 participants
(cf. Figure 9.1). For simplicity, we assume that one participant is playing the role of seeker
(i.e. michael) and the other participants are playing the role of solver.

As illustrated in 9.1, the scenario starts when the seeker proposes a new challenge. A
challenge is a problem to which the seeker (i.e. Michael) is willing to give a reward against a
solution that satisfies its requirements. Defining how a solution is considered satisfactory by
the seeker is out of the scope of this thesis,

Defining how solutions are selected and rewarded is out of the scope of this thesis, but we can
imagine that proposed solutions are evaluated by experts and ranked based on their fulfilment
of the initial objective of the challenge. Likewise, we do not manage the trust relationship
between solvers and seekers as suggested in the previous chapter.

The scenario starts after the introduction of a new challenges. Based on their propensity
to collaborate, solvers are split into two categories; collaborative and non collaboratives. Col-
laboratives solvers tend to prefer forming communities in which they engage to address the
submitted challenger collaboratively, while non collaborative solvers prefer to work alone. In
this scenario, we will focus on collaborative solvers but we admit that the system includes non

246

9.2. Illustrative Example: An Open Innovation Community

Open Innovation Platform

Michael
(Seeker)

Alice

Community C3

BobDave

Charlie

Lisa

Jack

Jim

Anne

Lina

Lara

Dina

Community C1

Challenge

Community C2

Alex

Legend

Propose

Concern

Participate

Solution

Figure 9.1 – An instantiation of an open innovation challenge

collaborative ones.

So collaborative solvers tend to group together and form communities in which the challenges
are solved collectively. This task is performed by the assistant agent but it is the human
members which decides at each step. The process of creating a community has not bean
investigated in our research. But we present hereafter a simplified protocol that we imagined
in order to emphasise the trust management issue in this process.

9.2.1 ASC-TMS for Communities Creation

In sum, we assume that participants are able to make estimation about how many person are
needed to solve the submitted problem. This estimation is made based on each one’s own
capabilities (i.e. degree of competence). Then these members make use of their assistant agent
to broadcast their estimation to the other participants in order to find potential community
fellows. Based on these estimation, communities are group are formed but not yet communities.
Indeed, participants with the same estimation won’t be able to until they fulfil two conditions:
(1) they mutually satisfy each others collaboration policy, and (2) they succeed in specifying
collective policies [Pearlman et al., 2002].

At this stage, already, appears the initial need for ASC-TMS. In the next section, we will
illustrate the benefits using ASC-TMS to fulfil the above conditions. To that aim, we illustrate

247

Chapter 9. ASC-TMS Application to Open Innovation

this issue with the formation of the community C3 depicted in Figure 9.1. The community
is not formed yet and there are four potential candidates that all made an estimation for a
community composed of three members. These participants are are Alice, Bob, Charlie and
Dave.

9.2.1.1 Policies Evaluation with the ASC-TMS

Once they consider creating the community, Alice, Bob, Charlie and Dave enter in a pairwise
trust establishment phase in which each member tries to satisfy the other participant collabora-
tion policy. In order to illustrate this process, we present how Bob succeed in satisfying Dave’s
policy and how Alice failed in this issue. To that aim, we present the collaboration policy used
by Dave in Listing 9.1
✞

1 policy([

2 lbc(mail.identity,‘‘>=’’, marginal, 5, m)

3 lbc(skilfulness, ‘‘>=’’, fair, 2,m),

4 lbc(reputation, ‘‘>=’’, 70 ,2,o),

5 lbc(recommendation, ‘‘>=’’, 3,1,o)

6])[issuer(dave), pattern(collaborate, _)].
✝ ✆

Listing 9.1 – Dave’s collaboration policy

In the above policy, Dave makes use of four trust factors, namely identity, skilfulness, rep-
utation and experience. Dave considers only lower-bound conditions and requires that the
identity of its trusted collaborators must be at least marginal (with respect to the PGP classifi-
cation) and that the credential provided to prove it should be her mail address He also requires
a fair level of skilfulness. In this scenario, we suppose that there exist an certification entity
which certifies the skilfulness of the solvers based on their solving capabilities. The certification
is a four level degree (none, bad, fair, good, very good) that the solver receives as a credential.
These conditions are mandatory, while the two remaining ones are optional. In these conditions,
Dave requires a 70 % reputation value and three recommendations. Finally, Dave associates
different weights to each of the above conditions.

In this demo, we make use of a simple reputation model in which an agent computes the
reputation of another agent based on the simple equation:

Reputation = (
P + 1
T + 2

)× 100 (9.1)

Where P represents the count of past positive experiences and T the total amount of past in-
teractions. So the reputation given to a member with whom we don’t have any prior experience
is 0.5. It is also the bootstrap value of the reputation in the scenario.

In order to satisfy Dave’s policy, Alice privided the credentials presented in 9.2 and Bob
provided the ones of Listing 9.3.
✞

1 credential(mail.identity, alice, unknown)[issuer(authority1), type(‘‘PGP’’)].

2 credential(certificate.skilfulness,Alice, good)[issuer(authority2), type(‘‘X.509’’)].

248

9.2. Illustrative Example: An Open Innovation Community

✝ ✆

Listing 9.2 – Credentials provided by Alice

✞
1 credential(mail.identity, bob, good)[issuer(authority1), type(‘‘PGP’’)].

2 credential(certificate.skilfulness,bob, fair)[issuer(authority2), type(‘‘X.509’’)].
✝ ✆

Listing 9.3 – Credentials provided by Bob

For simplicity, we only presented the informational consequence of receiving a credential.
In fact, once the TMA receives the credential he adds the above beliefs based on which he will
evaluate its policy. So the policy evaluation is performed based on beliefs about declarations
and credentials the TMA received.

In addition to the above credentials, Bob make use of declarations provided by other partic-
ipants. These declarations are aggregated to compute an unique value for each property. The
outcome of this process is presented in Listing 9.4.
✞

1 declaration(reputation,Alice, 50).

2 declaration(recommendation,Alice,0).

3 declaration(reputation, bob, 60).

4 declaration(experience,bob, 2).
✝ ✆

Listing 9.4 – Declarations collected by Bob

Based on the above policy and the acquired information, the trust management agent uses
the policy evaluation function presented in Definition 61 (Cf. Section 6.4 of Chapter 6). The
evaluation process undergone by this function for the assessment of Alice’s trust level is pre-
sented in figure 9.2 hereafter.

credential(identity, alex, unknown) tc(mail.identity, ” >= ”,marginal, 5,m)

tc(skillfulness, ” >= ”, fair, 2,m)

tc(reputation, ” >= ”, 70, 2, o)

tc(recommendation, ” >= ”, 3, 1, o)

E

credential(skillfulness, alex, good)

declaration(reputation, alex, 50)

declaration(recommendation, alex, 0)

0 + 2 + 0 + 1

5 + 2 + 2 + 1
× (1 ∗ 0) = 3.33× 0 = 0

Figure 9.2 – Evaluation of Alice’s trust level by Dave

249

Chapter 9. ASC-TMS Application to Open Innovation

Here, the computed trust level equals 0 because Alice failed satisfying the identity trust
criteria that Dave’s considers to be mandatory. Similar to this process, the four participants
(i.e. Alice, Bob, Charlie and Dave) compute the trust they put in each others. Table 9.1 below,
summarizes the trust level computed by each member. Based on the above table, participants

Solvers Alice Bob Charlie Dave

Alice - 0.6 0.8 0.9

Bob 0.4 - 0.7 0.7

Charlie 0.5 0.5 - 0.6

Dave 0 0.7 0.6 -

Table 9.1 – Summary of the evaluation of the four agent’s policies

decides to build a community with the most trusted participants. In our example, the group
of agents that can potentially form the community C3 reveals to be Bob, Charlie and Dave.

9.2.1.2 Policies Combination with the ASC-TMS

In the previous section, we saw how ASC-TMS is used to form a group based on which a com-
munity can be created. However, this community will not take place until the members builds
the collective policies they will use for their trust decision. To that aim, these participants will
rely on ASC-TMS and its combination operator to build these policies. The policy combina-
tion process is achieved using the combine() internal action defined in Section 8.3.1.2 based the
combination process described in Section 7.5.1. Figure 9.3 illustrates how the process can be
instantiated during the creation of the community C3.

The obtained policy constitute a combination of the three policies. In this example, the
agents used the heuristic h1 (cf. Section 7.5.1). So the resulting collective policy is composed
of trust criteria that are at least as restrictive as the trust criteria stated in the policies of
the three participants. Thus the resulting policy will never accept a request that one of the
participants would have rejected.

9.2.2 Request Management with the ASC-TMS

Previous section described how helpful ASC-TMS can be in situation of community creation in
order to bootstrap a minimum level of trust between its members. However, requests manage-
ment remains the primary situation in which the use of ASC-TMS can be better stressed.

In this section, we will consider the scenario in which Dave has to make a decision with
respect to a request that originates from Alice. Alice wants to read a common resource shared
among C3 members. This request belongs to the pattern pattern(read, text).

The second request concerns Bob who wants to read a personal resource owned by Dave.
Here, both requests belongs to the same pattern that is So based on this pattern, the TMA

250

9.2. Illustrative Example: An Open Innovation Community

1. Add distinct criteria.
2. Merge same-criteria with
respect to the heuristic h1.
3. Clean up the policy.
4. Comput weights.

�

Dave
Bob

tc(skillfulness, ” >= ”, fair, 1, o)

tc(reputation, ” >= ”, 70, 2, o)

tc(recommendation, ” >= ”, 3, 1, o)

tc(recommendation, ” >= ”, 3, 3, o)

tc(reputation, ” >= ”, 75, 6, o)

tc(skilfulness, ” >= ”, fair, 5, o)

tc(mail.identity, ” >= ”,marginal, 8,m)

tc(skilfulness, ” >= ”, fair, 2, o)

tc(reputation, ” >= ”, 65, 1, o)

tc(recommendation, ” >= ”, 2, 2, o)

tc(skilfulness, ” >= ”, fair, 2, o)

tc(reputation, ” >= ”, 75, 3, o)

tc(mail.identity, ” >= ”, fair, 3, 0) tc(mail.identity, ” >= ”,marginal, 5,m)

Charlie

Figure 9.3 – Illustration of the policy combination during the creation of Community C3

is able to retrieve the policy that handles this kind of request. In its policy, Dave uses three
trust factors, namely identity, reputation and cooperativeness. Using these trust factors, Dave
specified three lower-bound trust criteria which threshold values and weights are presented in
Listing 9.5.
✞

1 policy([

2 tc(mail.identity,‘‘>=’’, fair,2,m)

3 tc(reputation,‘‘>=’’, 70 ,2 ,o),

4 tc(cooperativeness,‘‘>=’’, 65, 3, o)

5])[issuer(dave), pattern(read, text)].
✝ ✆

Listing 9.5 – Policy used by Dave for the pattern read-text

In the following, we illustrate how the TMA will instantiate this policy with respect to the
context in which the interaction is undertaken, adapts the policy during the negotiation phase,
and integrates it with the collective policy of the community C3.

9.2.2.1 Instantiation

Now we present two sub-scenarios in which the selected policy is instantiated with respect
to environmental pressures, namely resource value and reputation collusions. The adaptation
meta-policy used to illustrate these scenarios are listed here below.
✞

1 +!instantiate(Policy[pattern(Pattern)], Agent, Operation, Object) :

2 value(Old)[pattern(Pattern)] & valueOf(New)[artifact_name(Object)] & New > Old

3 <− Delta = New − Old ;

4 for(Delta>0){

251

Chapter 9. ASC-TMS Application to Open Innovation

5 policy.restrict(Policy, all);

6 Delta = Delta −1;

7 }

8 for(Delta<0){

9 policy.restrict(Policy, all);

10 Delta = Delta + 1;

11 }

12 −+value(New)[pattern(Pattern)].
✝ ✆

Listing 9.6 – Adaptation meta-policy for resource value

This meta-policy has already been presented in Section 8.3.1.2 of the previous chapter. With
this above meta-policy the selected policy is instantiated with respect to the value of the
requested resource. The hypothesis that motivates this meta-policy is that the more a resource
is valuable the more its policy becomes restrictive. Analogously, the less a resource is valuable
the less its policy should be restrictive. With this meta-policy, the restrictiveness of the policy
is general. So all trust criteria used in the policy are adapted with more restrictive values. The
resulting instantiated after policy is illustrated below.
✞

1 policy([

2 lbc(mail.identity,marginal,2,o)

3 lbc(reputation, 71 ,2 ,o),

4 lbc(cooperativeness, 66 , 3, o)

5])[issuer(dave), pattern(read, text)].
✝ ✆

Listing 9.7 – Instantiated Policy

In the same way, another meta-policy has been defined to make the policy react to collusions
attacks. These attacks affect the way the participants consider the testimonials provided by
other participants.
✞

1 +!instantiate(Policy[pattern(Pattern)], Agent, Operation, Object) :

2 value(collusion, Old, New) &

3 threshold(collusion, T) & C = New − Old & C >= T

4 <−for(C>0){policy.restrict(ReqId,reputation), C=C−1;}
✝ ✆

Listing 9.8 – Adaptation meta-policy for reputation collusions

In the above policy, when collusions attacks are detected, ASC-TMS restricts all trust criteria
making use of indicators (i.e. testimonials). In its policy, Dave makes use of two types of indi-
cators, namely reputation and cooperativeness. Consequently, the value of these trust criteria
are made more restrictive. The resulting policy is illustrated below.
✞

1 policy([

2 lbc(identity,mail,2,o)

3 lbc(reputation, 75 ,2 ,o),

4 lbc(cooperativeness, 70 , 3, o)

5])[issuer(dave), pattern(read, text)].
✝ ✆

Listing 9.9 – Instantiated Policy

252

9.2. Illustrative Example: An Open Innovation Community

ASC-TMS makes use of several meta-policies that behave in a similar way. Some of them
are application specific and hence should be specified by the user, while others are generic and
can be considered as system level meta-policies.

Importantly, we specified rules to update and maintain the beliefs base on which instantia-
tion meta-policies operate. Listing 9.10 describes an example of such rules and beliefs.
✞

1 threshold(collusion, 2).

2 value(collusion,New, Collusion)[Pattern]:−

3 .count(alert(collusion)[source(Agent), Pattern], Collusions) &

4 value(collusion, Old, New)[Pattern] & reputation (Agent, R) & R > 0.5).
✝ ✆

Listing 9.10 – Beliefs and rules used to build and maintain the environmental context

Here, the belief threshold(collusion, 2) represents the tolerance threshold for collusion
incidents. These beliefs indicates to the TMA that if the number of collusions reported increased
by two since the last interaction (with the same pattern), the reputation threshold value should
increase accordingly. The rule (Line 2-4) updates this belief based on the collusions reported
by agents which reputation is above 0.5 (i.e. 60 %). With this mechanisms, an agent can filter
collusion reports.

9.2.2.2 Integration

Once the policy has been instantiate, ASC-TMS integrate the collective policy of the commu-
nity to which Dave belongs (i.e. community C3). To proceed, the operation integrate(...)

that implements the integration algorithm described in Section 7.5.2 is used. The figure 9.4
illustrates the integration of the individual policy used by Dave with the collective policy used
by its community.

In our example, Dave is willing to comply with the collective policy as long as the community
remains attractive. To that aim, he use a rule to compute the attractiveness of the community
to which he belongs. He uses also a beliefs by means of which he states to the TMA what
is the threshold value to consider a community attractive. Based on this, Dave specified the
collective policy illustrated in Listing 9.11.
✞

1 !integrate(IP[pattern(Pattern)], Agent, Operation, Object) : complianceProfile(compliant) &

2 attractiveness(C, Att) &

3 threshold(attractiveness, TA) & Att >= TA

4 myCommunity(Com) & not member(Agent, Com)

5 <− ?collectivePolicy(CP)[pattern(Pattern), issuer(Com)];

6 policy.integrate(CP, IP, Pattern, h3).
✝ ✆

Listing 9.11 – Adaptation meta-policy for resource value

Using the above meta-policy, ASC-TMS used by Dave guarantees that Dave will not ac-
cept any request which the collective policy would not have accepted. The resulting policy is
illustrated in Listing 9.12.

253

Chapter 9. ASC-TMS Application to Open Innovation

1. Add distinct criteria
2. Merge same-criteria with
respect to the heuristic h3
3. Clean up policy.
4. Compute weights

Community
Dave

��

tc(reputation, ” >= ”, 70, 2, o)
tc(cooperativeness, ” >= ”, 70, 3, o)

tc(passport.identity, ” >= ”, fair, 3,m)

tc(passport.identity, ” >= ”,marginal, 4,m)

tc(mail.identity, ” >= ”,marginal, 1, o)

tc(reputation, ” >= ”, 75, 2, o)

tc(reputation, ” >= ”, 75, 4, o)

tc(cooperativeness, ” >= ”, 70, 3, o)

Figure 9.4 – Illustration of Dave’s policy with the collective policy used in C3

✞
1 policy([

2 tc(passport.identity,‘‘>=’’, marginal ,4 ,m),

3 tc(reputation,‘‘>=’’, 75 ,4 ,o),

4 tc(cooperativeness,‘‘>=’’, 70 , 3, o)

5])[issuer(dave), pattern(read, text)].
✝ ✆

Listing 9.12 – Integrated Policy

So as long as the community C3 remains attractive, Dave, as a compliant member, will
comply with the collective policy. This behaviour ensures the community cohesion and avoids
conflictual decisions. However, using the heuristic h3 means also that the integrated tend to be
more restrictive which can be a brake for the compliant agent as we will see in the next section.

In this example, Dave managed a request originating from a participant that is not a
member of the community. However, one can imagine that Dave would have to handle request
from participants that are inside the community. Of course, these members will not request
Dave access to collective resources as they are granted access to them de facto. Instead, we
are more interesting in the situations in which a member of a community request access to
Dave individual resource. In such situation, one can think that integration would be useless for
Dave. However, the requesting member (e.g. Bob) would expect that Dave will use a policy
that is not too much restrictive compared to the collective policy they agree on. However, h3 do

254

9.2. Illustrative Example: An Open Innovation Community

not prevent Dave from having a policy which is too restrictive if his policy is more restrictive
than the collective policy. Here, the most appropriate policy integration heuristic to be used
would be h2. Indeed, this heuristic guarantees that the integrated policy would never reject
any request that would be accepted by the collective policy. That means that Dave need to
have another meta-policy which is dedicated to requests originating from the members of its
community.

9.2.2.3 Negotiation

At this stage, Dave generated an integrated policy that he will use with his interlocutors. In
this section, we show the negotiation that Dave will conduct with Alice. The one with Bob

proceeds in an analogous way. The negotiation between Dave andAlice is depicted in Figure
9.5

accept-negotiation

query-if (passport.identity)

propose(mail.identity)

identify
proofs
criterions

compute
preferences compute

preferences
refuse-proposal(mail.identity)

propose(id.identity)

refuse-proposal(id.idenity)

end-negotiation

start-negotiation

compute
preferences

compute
preferences

compute
preferences

Figure 9.5 – The negotiation between Dave and Alice

In this example, each time Dave has to make a decision he builds the extensive game tree
in order to select the best alternative (cf. Figure 9.6). The value represent the payoffs of each
player (i.e. Dave and Alice) computer using the expected utility function defined in Definition
77. Howe these values are not very relevant. All what we need to show is that at some point,
each participant is able to compute the utility of each of the moves he can make in the game
and selects the moves that maximises its utility.

In this game, Alice is trying to minimise her privacy exposure by proposing the least sensitive
credentials that proves her identity (i.e. mail with sensitivity of 1). However, Dave will
systematically refuse the counter-offers of Alice because the initial identity he requested (i.e.
passport) is one of conditions stated by the collective policy. Thus when Dave computes his
preferences, the punishment cost he will have to assume if he accepts Alice proposal exceeds
the potential utility he will gain by providing Alice access to the resource. Thus, the only

255

Chapter 9. ASC-TMS Application to Open Innovation

Dis-
confirm

Propose

Query-If

�0, 0�
Reject ProposalAccept

Proposal

Confirm

Propose

Reject
Proposal

Confirm End-negotiation�−3, 3�

End-
negotiation

Query-If

�?, ?�

�1,−1� �0, 0�

�0, 0�

Accept
Proposal

End-negotiation

Confirm

�−3, 3�
Confirm

�0,−2�

Figure 9.6 – The negotiation game between Dave and Alice

alternative that Dave would have accepted would be the case in which Alice confirms that
she will provide the requester passport credential. However, Alice is not willing to accept it
because the privacy breach exceeds the utility she may gain by accessing the resource.

No matter what Alice will provide as credentials, the evaluation of Dave′s policy will always
compute to zero as the trust criterion on which the negotiation was performed was mandatory.
Consequently, Dave will systematically refuse Alice′s request, as well all requests originating
from individuals that will refuse to deliver their passport credential.

9.2.2.4 Evolution

In the previous section, Dave was unable to achieve its negotiation due the restrictiveness of the
collective policy of its community. If such situation becomes frequent, Dave will either violate
the compliance norm of its community or ask for the collective policy evolution. Here, Dave is
a compliant agent so he will always prefer to make his community follows adapt their collective
policy, otherwise he prefers to quit the community than violating the community norms (and
thus the collective policy).

We suppose that Dave detected in the last example that the identity trust criterion of
the collective policy was too restrictive. This observation can be the fruit of a careful count
of interactions that Dave refused because of this criterion. Based on this observation, Dave
maintains a belief that he will use as a condition in a meta-policy that aims at relaxing such
criterion. This meta-policy is illustrated in Listing 9.13 below.
✞

256

9.2. Illustrative Example: An Open Innovation Community

1 +!evolve():

2 failures(Pattern, Criterion, Adaptation, Count) & Count > 3

3 <− .broadcast(tell, evolve(relax, Criterion); .wait(1000);

4 !countVotes(Pattern, Scheme).
✝ ✆

Listing 9.13 – Evolution meta-policy

With the above meta-policy Dave states that he is willing to miss up to 3 interactions
because of the collective policy. So after three missed interactions, Dave will systematically try
to change the collective policy of its community using the voting scheme presented in Section
7.5.3. Worth noting that this meta-policy is generic, so it will be triggered for any adaptation.
In the above example, the “Adaptation” refers to the “relaxCriterion”. To make the collective
policy evolve, Dave will send a request to its community follows to know whether they are keen
to adapt the collective meta-policy as stated by the above meta-policy.

Once the other agents receive Dave′s proposal to vote for the collective policy evolution,
they will evaluate whether they have been also restricted by the same criterion at least one time
(i.e. Count >= 1). If so, the agents will accept the proposed adaptation, otherwise they will
refuse it. Such behaviour is also stated using a meta-policy which we illustrate in the following
meta-policy.
✞

1 +evolve(Pattern, Criterion, Adaptation):

2 failures(Pattern, Criterion, Adaptation, Count) & Count >= 1

3 <− .broadcast(tell,agree(Pattern, Criterion, Adaptation)).
✝ ✆

Listing 9.14 – Collective Decision Taking

Based on the other agents responses, Dave and each member of the community triggers the
voting scheme to evaluate whether the community agree about evolving the policy as suggested
by Dave or not (cf. Section 7.5.3). To that aim, each agent makes use of the following meta-
policy.
✞

1 +!countVotes(Pattern, Scheme):

2 .count(agree(Pattern, Criterion, Adaptation), V) & value(comPopulation, P)

3 & V >= (P/2) & Scheme == ‘‘majority’’

4 <− !AdaptPolicy(Pattern, Criterion, Adaptation).
✝ ✆

Listing 9.15 – Collective Decision Taking

Using the above meta-policy, all agents of the community collect and count the votes that
agree with the proposed adaptation. Then the specified voting scheme is used to compute a
decision based on the votes counts. In this example, the agents make use of a majority scheme
which evaluates whether the number of agents agreeing with the adaptation exceeds half of the
community population. If so, each agent will adapt the collective policy in consequence. To
that aim, the following meta-policy is used.
✞

1 !AdaptPolicy(Pattern, Criterion, Adaptation):

2 Adaptation ==’’relaxCriterion’’ & policy(Pattern, P)[Pattern]

257

Chapter 9. ASC-TMS Application to Open Innovation

3 <− policy.relaxCriterion(P, Criterion).
✝ ✆

Listing 9.16 – Collective Decision Taking

Thus we showed in this section that using four relatively simple meta-policies, how we make
agents coordinate about collective policies adaptation. Of course, the above policy should be
specified for each type of adaptation. The testing condition determines which kind of adaptation
should be triggered (i.e. Adaptation ==′′ relaxCriterion′′).

9.3 Conclusion

In this chapter, we illustrated the applicability of ASC-TMS on an open innovation virtual
community scenario. Nevertheless, we believe that ASC-TMS is general enough to be applicable
to many other different scenarios involving social structures.

This chapter aimed at illustrated how the contribution proposed in this thesis can be used
to meet the objectives of this thesis. We showed how ASC-TMS can be used by the participant
in innovation process to select the partners which whom that want to collaborate. We showed
also how these members can rely on it to build the collective policies of the communities they
create.

We demonstrated also how ASC-TMS prevent virtual community members from making
decisions that goes against the collective policies in their communities, and how in case this
policy is inadequate they can adapt it.

Also, this chapter aimed at illustrating the use of the trust negotiation strategy presented
in Chapter 7. The novel aspect of this strategy that we believe to be more adaptive as it
considers the possibility to adapt the policy if such adaptation is possible (e.g. do not violate
the collective police).

In the next section, we further motivate the benefits of ASC-TMS and evaluate experimen-
tally the performance of virtual communities using ASC-TMS compared to those that are not
using it.

258

9.4. French Summary

9.4 French Summary

Dans les chapitres précédents, nous avons présenté notre modèle de communautés virtuelles
à base d’agents (cf. Chapitre 5), notre langage de spécification des politiques – individuelles
et collectives – (cf. Chapitre 6) ainsi que notre mécanisme d’adaptation des politiques (cf.
Chapitre 7). Enfin, dans le chapitre précédent, nous avons décrit comment ces différentes con-
tributions ont été implémentées. Dans ce chapitre, nous allons mettre l’accent sur l’application
de notre approche aux communautés virtuelles de la vie de tous les jours. Pour cela, nous
présenterons comment nous avons utilisé notre système de gestion de la confiance pour gérer
la confiance dans des communautés virtuelles d’innovation ouverte. Ce scénario a été choisis
suite à notre collaboration avec le projet WINPIC financé par St-Étienne Métropole. 2

9.5 Innovation Ouverte

L’innovation ouverte est une nouvelle manière de générer des idées révolutionnaires rapidement
et à moindres coûts. Cette approche est de nos jours adoptée massivement par les entreprises
et les organisations pour stimuler l’innovation dans leur département R&D en mobilisant les
compétences externes à leurs locaux. Historiquement, le concept d’innovation ouverte à été
rendu célèbre par Henry Chesborough dans son livré “Open Innovation” [Chesbrough, 2006],
devenu une référence depuis.

Le paradigme de l’innovation ouverte considère la recherche et le développement comme
un système ouvert [Ahonen and Lietsala, 2007, Vega, 2012]. Cette approche suggère que les
bonnes idées peuvent émerger à la fois du sein de l’entreprise mais également de l’extérieure
de celles-ci. Par exemple, le principe de l’open source est souvent donné comme exemple
d’une application réussie des principes de l’innovation ouverte. La seule différence majeure
entre l’open source et l’innovation ouverte réside dans le fait que la seconde intègre le modèle
économique dans son mode de développement alors que la seconde a tendance à le rejeter
[Cooke, 2009, Huizingh, 2011]. Au vu de cette caractéristique, et du point de vue de la gestion
de la confiance qui nous concerne, l’innovation ouverte est de notre point de vu plus sensible
au mode de gestion de la confiance que ne l’est l’open source, bien que ce dernier n’y soit pas
insensible.

L’activité d’innovation ouverte implique souvent deux types d’acteurs et un intermédiaire.
Les Seekers sont les individus à la recherche d’idée pour résoudre des problèmes particuliers,
tandis que les solvers sont les têtes pensantes dont l’objectif est de résoudre ces problèmes.
Aussi, le rôle de l’intermédiaire consiste à fournir des moyens techniques et technologiques
afin de permettre à ces deux types d’acteurs de réaliser leurs objectifs. Ainsi, au cours des
dernières années, plusieurs plateformes commerciales (e.g. Hypios, Nine Sigma or Innocentive)
ou gratuites (e.g. W3C Community Group) ont vu le jour dans la perspective de jouer le rôle
d’intermédiaire à la fois technique, mais également économique et sur tout un intermédiaire de

2http://iscod.emse.fr/winpic/

259

Chapter 9. ASC-TMS Application to Open Innovation

confiance. Intermédiaire technique car ils fournissent des outils de collaboration et de partage
de ressources qui permettent au solvers et aux seekers de maintenir leur activités. Intermédi-
aires économiques car ils représentent une vitrine pour les problèmes mais également pour les
chercheurs de solutions. Enfin, intermédiaires de confiance car ils font office de tiers de confi-
ance entre solvers et seekers. Cependant, aucune des plateformes que nous avions ne permet
de gérer explicitement la relation de confiance entre les différents solvers.

Dans la section suivante, nous allons présenter l’exemple de communauté virtuelle
d’innovation que nous allons utiliser tout au long de ce chapitre pour illustrer l’application
de ASC-TMS. Dans ce scénario, nous allons nous intéresser essentiellement à la gestion des
relations de confiance entre solvers qui fait fait défaut aux plateformes existantes comme pré-
cisé plus haut. En effet, dans une étude récente [Cooke, 2009], la plupart des solvers avouent
que le manque de confiance fut le raison principalement de leur désintéressement des plate-
formes d’innovation ouverte. Dans la suite de ce chapitre, nous expliquerons comment nos
contributions constituent une solution à ce problème.

9.6 Communauté d’Innovation Ouverte

Dans cet exemple, nous considérons une communauté d’innovation ouverte composée de 13
membres. Pour des raisons de simplicité, nous assumons que seule un membre joue le rôle de
seeker (i.e., Michael). Dans ce scénario, le seeker cherche à trouver une solution à un problème
donné contre une récompense. Cette situation est illustré dans la figure 9.7

Open Innovation Platform

Michael
(Seeker)

Alice

Community C3

BobDave

Charlie

Lisa

Jack

Jim

Anne

Lina

Lara

Dina

Community C1

Challenge

Community C2

Alex

Legend

Propose

Concern

Participate

Solution

Figure 9.7 – Une instanciation d’une communauté d’innovation ouverte

Le scénario commence lorsque le seeker introduit dans le système un nouveau challenge –
description du problème auquel la communauté va essayer d’apporter une solution – .

260

9.6. Communauté d’Innovation Ouverte

9.6.1 Utilisation du ASC-TMS pour la création des communautés

En fonction de leurs aptitudes, les agents ont tendance à se grouper pour créer des communautés
au sein desquels ils vont collaborer pour relever le challenge. À ce stade déjà apparaît le premier
besoin de la gestion de la confiance car les participants ont tendance à choisir leur collaborateur
en fonction du degré de confiance qu’ils leur accordent.

9.6.1.1 Évaluation de politiques

Comme évoqué précédemment, avant de se mettre d’accord pour créer une communauté, les
participants doivent d’abord s’assurer que leurs collaborateurs satisfont leurs politiques de
confiance. Ainsi, le processus d’évaluation des politiques de chaque membre est un préalable à
la formation de toute communauté. Dans cette section, nous décrivons succinctement comment
le ASC-TMS va décharger les membres (humains) des communautés virtuelles ainsi que leurs
assistants (agent) de cette tâche complexe et fastidieuse. Pour cela, nous présentons la politique
utilisé par Dave pour prendre des décisions à propos de collaboration.
✞

1 policy([

2 lbc(mail.identity,‘‘>=’’, marginal, 5, m)

3 lbc(skilfulness, ‘‘>=’’, fair, 2,m),

4 lbc(reputation, ‘‘>=’’, 70 ,2,o),

5 lbc(recommendation, ‘‘>=’’, 3,1,o)

6])[issuer(dave), pattern(collaborate, _)].
✝ ✆

Listing 9.17 – Politique de collaboration utilisée par Dave

Maintenant, on considère la situation dans laquelle Dave souhaite évaluer le degré de confi-
ance qu’il peut accorder à Alice dans la perspective de former une communauté avec elle. Pour
cela, Dave doit collecter les informations nécessaire à l’évaluation de sa politique. Là aussi
c’est le ASC-TMS qui s’en charge et on suppose que le listing ci-dessous présente l’ensemble
des informations (credentials et déclarations) que Dave a récollté sur Alice (i.e. son profil).
✞

1 credential(mail.identity, alice, unknown)[issuer(authority1), type(‘‘PGP’’)].

2 credential(certificate.skilfulness,Alice, good)[issuer(authority2), type(‘‘X.509’’)].

3 declaration(reputation,Alice, 50).

4 declaration(recommendation,Alice,0).
✝ ✆

Listing 9.18 – Le profile d’Alice

À partir de ces informations, et en utilisant la fonction d’évaluation présentée dans le
Chapitre 7, le ASC-TMS va calculer le degré de confiance que Dave accorde au profile d’Alice.
Ce processus d’évaluation est décrit dans la figure 9.8

Lors de cette évaluation, on voit qu’Alice n’a pas été en mesure de satisfaire l’ensemble des
conditions spécifié par Dave dans sa politique. Le degré de confiance accordé à Alice est de zéro
car le certificat d’identité que celle-ci possède ne satisfait pas la condition correspondante dans
la politique de Dave. Et comme cette condition est obligatoire dans sa politique, le résultat de

261

Chapter 9. ASC-TMS Application to Open Innovation

credential(identity, alex, unknown) tc(mail.identity, ” >= ”,marginal, 5,m)

tc(skillfulness, ” >= ”, fair, 2,m)

tc(reputation, ” >= ”, 70, 2, o)

tc(recommendation, ” >= ”, 3, 1, o)

E

credential(skillfulness, alex, good)

declaration(reputation, alex, 50)

declaration(recommendation, alex, 0)

0 + 2 + 0 + 1

5 + 2 + 2 + 1
× (1 ∗ 0) = 3.33× 0 = 0

Figure 9.8 – Evaluation du degré de confiance accordé à Alice

l’évaluation est zéro. De manière analogue, les autres participants (i.e. Alice, Bob, Charlie et
Dave) ont put chacun calculer le degré de confiance qu’il s’accordent mutuellement. Le résultat
de ces différentes évaluations est illustré dans le tableau 9.2.

Solvers Alice Bob Charlie Dave

Alice - 0.6 0.8 0.9

Bob 0.4 - 0.7 0.7

Charlie 0.5 0.5 - 0.6

Dave 0 0.7 0.6 -

Table 9.2 – Résumé des évaluations respectives de Alice, Bob, Charlie et Dave

En se basant sur ce tableau, et grâce au travail du ASC-TMS, les participants ont décidé
de construire une communauté de confiance dans laquelle seuls les participant ayant obtenu
le plus haut degré de confiance sont admis. Ainsi, la communauté formée est composé de
Bob, Charlie et Dave. Mais avant que cette communauté ne puisse réellement prendre vie,
les membres de cette communauté doivent d’abord se mettre d’accord sur une base commune
qui va leur servir à prendre des décisions de confiance. Cette base représente les politiques de
confiance et là également apparaît l’intérêt du ASC-TMS car il va permettre à ces membres de
pouvoir construire de manière décentralisée leurs politiques collectives. Ensuite, une fois que ces
politiques collectives construites, le ASC-TMS va leur permettre de les appliquer conjointement
avec leurs politiques individuelles et les faire évoluer quand cela est nécessaire (cf. le manuscrit).

262

Chapter 10

Evaluation of ASC-TMS

In Chapter 8 we presented the implementation of the ASC-TMS and in Chapter 9 we illustrated
its application to an open innovation community. In this chapter, we will focus our attention
upon the evaluation of the ASC-TMS. Our implementation is based on the Recursive Porous
Agent Simulation Toolkit (Repast) .

The objective of this chapter is to have a systemic evaluation of the benefit of the mechanisms
proposed in this thesis. We are particularly interested in evaluating the benefits of using the
mechanisms drawn from social influence theory (i.e. combination, integration and evolution)
in terms of trust management within large systems. To that aim, we emphasise the impact of
these mechanisms on virtual communities in terms of stability.

To that aim, we first present in Section 10.2 the simulation model we implemented in our
simulator. Then, we present in Section 10.3 the scenario we used in our evaluation. This
scenario is inspired from the running example presented in the previous chapter. In 10.4, we
describe the settings, parameters and metrics we used in our evaluation. In Section 10.12, we
introduce our working hypothesis then we present the results we obtained and discuss their
relevance with respect to our hypothesis.

Before, we present in the next section the Repast Symphony platform on which the system
has been implemented.

10.1 Repast Platform

Repast [Collier, 2003] is a widely used free and open-source agent-based modelling and simula-
tion platform. RePast was developed in 2003 by the Social Science Research Computing Lab
of the University of Chicago specifically for creating agent based simulations in social sciences.
The framework makes use of a fully concurrent discreet event scheduling. It provides rich
logging and graphing built-in tools while allowing the direct connection with external analysis
tools such as MatLab, R, Spreadsheet (e.g. Excel) and Weka. Repast has multiple implemen-
tations in several languages (e.g. Java, Logo, .NET languages, Lisp, Prolog and Python). In
our implementation, we used the Repast-J, which is the Java based implementation of Repast.

Our principal motivation in using Repast lies in the fact that this platform is currently
considered as the most suitable simulation framework social scientific agent based computer
simulation [Tobias and Hofmann, 2004]. This makes Repast the most appropriate candidate
for experimenting the benefits of using the Social Influence Theory in Trust Management.

Chapter 10. Evaluation of ASC-TMS

10.2 Simulation Model

The model we implemented in Chapter 8 based on the specification made in Chapters 6 and 7
is quite complex to be implemented and properly evaluated as it is. Several aspects used in the
model are technically hard to implement into Repast (e.g. the BDI decision engine). Therefore,
we implemented a simplified version of the ASC-TMS which covers the contributions of our
model in a minimal way. Also, we have made the choice to merge the assistant and the trust
management agent into one single agent representing the solvers.

findChallenge()
JoinCom()
CreateCom()
LeaveCom()
DestroyCom()
Work()
Reward()

id:UUID
solution : Solution
com: Community
competence: Float
collaborativness: Float
cooperativeness: Float
combination: Boolean
integration: Float
instantiation: Boolean
negotiation: Boolean
evolution: Boolean
interProba: Float
tms: ASC_TMS

Solver

reward()
checkChallenge()

Seeker
id:UUID
ChallengeCount: Integer

grant()
join()
leave()
checkViolantions()
Sanction()

id:UUID
owner: Solver
members:ArrayList<Solver>
Solution: Solution
policy: ArrayList<Policy>

Community

read()
write()
grant()

id:UUID
owners: ArrayList<Solver>
controllers:ArrayList<Solver>
Sensivity: Float
challenge: Challenge
Value: Float

Solution

isExpired(): Boolean
isFulfilled(): Boolean
getWinner(): ArrayList<Solver>

Challenge
id: UUID
objective: Float
deadline: Integer
reward: Integer
fulfilled: Boolean
expired: Boolean

instantiate()
combine()
integrate()
evolve()
evaluate()

ASC_TMS
policy: ArrayList<Policy>
credentials: arrayList<Credential>

getContent()
getReceiver()
getSender()

Message
id:UUID
sender: Solver
receiver: Solver
perf: Performative
protocol: Protocol
content: Content

sender receiver

Figure 10.1 – Abstract UML class diagram of the simulated model

Figure 10.2 illustrates the principal Java class our simulation relies on. The simulated
model is composed of two classes, each representing a type of agent (Solver and Seeker),

264

10.2. Simulation Model

a class representing communities (Community), a class representing the solutions produced
by the Solvers, a class representing the challenges that are introduced by Seekers and class
encapsulating the functionalities provided by the ASC-TMS. Finally, we provide an message
class by means of which solvers interacts with each others. The remainder of this section is
dedicated to the description of these classes (except the message class).

10.2.1 Solutions

Solutions correspond to the resources of our model (∀ri ∈ R). In our simulation, we consider
only one type of resource which contains a solution to a specific problem. For instance, solutions
can represent notes on which specify their ideas to tackle the proposed problem. Each solution
is characterised by an identifier1, a list of owners, its sensitivity and its value. The description
of these attributes and the values they can take are reported in Table 10.1.

Attribute Values Description

So
lu

ti
on

id UUID2 Corresponds to the id (i.e. ri.ε) of the solution in
the system.

owners Solver Corresponds to the owner of the solution
(i.e.ri.ϕ). This value can be the identifier of an
agent if the solution is an individual individual
or an identifier of a community if it is a collective
solution.

value [0,104] Corresponds to the value of the solution. This
value materialises the extent to which the solution
fulfils the objective of the challenge (cf. Section
10.2.2).

sensitivity [0,100] Corresponds to the sensitivity (i.e. ri.ς) of the
resources as defined in the model.

Table 10.1 – The variables of a challenge

Solvers can manipulate Solutions via four methods, namely read(), update(), grant() and
notify(). These methods corresponds to the operations of the resources as defined in the model
(i.e. ri.ω). The grant() method is used by the solver to grant access a solution to another
solver. Access to solutions can be made via read() or write methods. The first method is
used by the solver to retrieve the content (i.e. value) of the solution, while the second one
allows the solver to modify it. The modification of a solution can be positive or negative. To
that aim, solutions are endowed with the notify() that is triggered by the solution after each
access. The method informs the resource owner(s) about the nature of the access performed

1A Java class that represents an immutable universally unique identifier (UUID). A UUID represents a 128-bit

value.

265

Chapter 10. Evaluation of ASC-TMS

on it. This information constitute the feedback of the trust decision as defined in Section 7.3
(cf. Chapter 7). Based on this feedback, an agent can decide to sanction or reward the agent
that he trusted.

10.2.2 The Challenge

Challenges represent the problems to which solvers are trying to provide solutions. Challenges
are proposed by solvers are goals they will try to achieve (i.e. gi ∈ aj .G). They are introduced
in the system by Seekers by instantiating the Challenge class. An instance of a challenge defines
the objective, deadline and reward of the problem. The description of these attributes and their
corresponding values are reported in Table 10.2.

Attribute Values Description

C
ha

lle
ng

e id UUID Corresponds to the unique identifier of the solution in
the system.

Objective [0, 104] Corresponds to the value that a solution should reach
to fulfil the challenge

Reward [0,103] Corresponds to the utility the agent(s) that proposed
the solution will gain in terms of utility. If the challenge
is fulfilled by the members of a community, they will
share the utility.

Deadline [0,103] Corresponds to the number of simulation steps that
the challenge will remain active before its expiration.

Table 10.2 – The variables of a challenge

The method, isExpired() and isFulfilled() prevents agent from working on challenges
that are expired or have been already met. When a challenge is expired, it is retrieved from the
system and a new challenge is introduced by the seeker. Similarly, if a challenge is fulfilled, the
Seekers rewards the solvers participating in the challenge and introduced a new one. So at any
moment of the simulation, only one challenge is made active. This choice has been made to
maximise the response time and to prevent inter-challenges conflicts (e.g. an agent abandoning
the current challenge for an easier challenge or one with a better reward). Experimenting
situations in which challenges are proposed by many agents is out of the scope of our thesis.
This issue was left as a perspective and will be discussed in Section 11.2.

10.2.3 The Community

The community class encapsulates attributes and methods that are necessary to emulate the
concept of community (∀ci ∈ C) as defined in Section 5.5. A community is defined by its
unique identifier, a set of members, a set of policies and a solution. We report in Table 10.3
the description of these attributes and their corresponding values.

266

10.2. Simulation Model

Attribute Values Description

C
om

m
un

it
y id UUID Corresponds to the unique identifier (i.e. ci.ε) of the

community in the system.
owner Solver Corresponds to Solver that created the community.
members Solver Corresponds to the set of solver that are members of

the community.
policies Policy Corresponds to the set of collective policies used in the

community.
solution Solution Corresponds to collective solution developed by the

members of the community.

Table 10.3 – The variables of a challenge

Each community provides a set of methods by means of which a Solver can join (i.e. join()),
leave (i.e. leave()) and destroy (i.e.destroy() a community. The community can be destroyed
by its owner, or by a solver which is he is the unique member of the community. Here we
simplified our model by choosing to implement only two roles, namely owner and member. Also,
norms that are used to evaluate deviation have been implemented in the control() method.
This method is automatically triggered after each access to determine if the access was positive
or negative. In this last situation, the checkViolation() method is invoked to evaluate whether
the collective policy has been violated while granting access to the resource. If so, the solver
that made the decision is sanctioned and the violation is reported to the other members of the
community.

10.2.3.1 The Solvers

Solvers are the agents responsible of providing solutions to challenges (i.e. problems) proposed
by seekers. The solver class is defined by a set of attributes and methods that determines the
solver’s behaviour in the system. These attributes are grouped into two categories: innovation
and trust management attributes.

Innovation attributes are application specific. They determine how the solver behaves with
respect to the innovation process. These attributes are presented in Table 10.4.

Based on their cooperativeness value, solvers are split into four categories:

• Altruist. Are solvers which cooperativeness value is 1. These solvers will devote all its
competence to improve the solution he is accessing. He will also benefit from the resource
it is accessing to. For example, if a solver accesses a solution which value exceeds the
value of its solution, he will benefit from this solution to make his solution as valuable as
the solution he accessed to.

• Cooperative. Are solvers which cooperativeness value belongs to the interval]0, 1[. This
value represent the proportion of competence used by the solver to improve solutions of

267

Chapter 10. Evaluation of ASC-TMS

Attribute Values Description
So

lv
er

-
(I

n
n

ov
at

io
n

) id UUID Corresponds to the unique identifier (i.e. ci.ε) of the
community in the system.

competence [-1,1] Corresponds to the solver’s competence degree. It
determines to which extent the solver is able to im-
prove a solution.

collaborativeness [-1,1] Expresses to which extent a solver is willing to work
collaboratively. It represents the probability to see
the solver creating/joining a community.

cooperativeness [-1,1] Determines how the solver behaves when accessing
resources that he does not own.

Solution [-1,1] Corresponds to the solution owed by the solver.

Table 10.4 – The variables of a challenge

other solvers. For instance, if a solver cooperativeness value is 0.2, that means that this
solver will use 20% of its competence capabilities to improve the solution to which he has
access. It will also benefit from the resource.

• Selfish. Are solvers which cooperativeness value is 0. These solvers will never improve
solutions of others. Instead, they benefit from the value of these solutions to improve
their own solution.

• Malicious. Are solvers which cooperativeness value is below belongs to the interval
]0,−1]. These solvers will first benefit from the solution of others, then they vandalise it.
Vandalising a solution means that the solver will make this solution loose part of its value.
For instance, a solution that has been manipulated by a solver which cooperativeness value
is −0.5 will loose half of its value.

Trust management attributes are used by the simulation to know which feature of the
ASC-TMS model are used by the agents. These attributes are summarised in Table 10.5.

The above attributes of the class Solver are used to activate and deactivate specific features
of our model. The objective is to be able to evaluate more accurately different aspects of
the adaptation mechanisms proposed in Chapter 7. For instance, instantiation attribute is set
to false or true depending on whether the solver should be sensitive to the changes in its
environment. Likewise, combination and evolution are attributes expresses the propensity of
the solver to use the feature. Moreover, each solver is endowed with a set of methods that
allows him to find a challenge to address (i.e. findChallenge()), create a community (i.e.
createCom()), join a community (i.e. joinCom()), leave a community (i.e. leaveCom()) and
destroy a community (i.e. destroyCom()).

A solver can also grant access to the solution he owns or to a community he belongs to.
A solver can reward (i.e. reward()) or sanction (i.e. sanction()) an other solver based on

268

10.3. Simulation Scenario

Attribute Values Description

So
lv

er
-

(T
ru

st
M

an
ag

em
en

t) id UUID Corresponds to the solver’s unique identifier in the
system.

combination Boolean Corresponds to the solver’s ability to combine several
policies.

integration [0,1] Corresponds to the solver’s propensity (i.e. prob-
ability) to comply with the collective policy of its
community. These features expresses the ability of
the agent to integrate the collective policy with its
individual one.

evolution Boolean Corresponds to the solver’s propensity to trigger the
adaptation of the collective policy of its community.

Table 10.5 – The variables of a challenge

this latter’s behaviour. They also solvers rate each others (i.e. rate()) with respect to the
cooperativeness attitude of the solver that manipulated their solution. This rating determines
if this solver exhibited an altruist (+2), a cooperative (+1), a selfish (-1) or a malicious (-
2) behaviour. Based on these ratings, an aggregated reputation value is shared among the
members of the system.

10.2.3.2 The Seeker

Seekers are the agents responsible of providing challenges in the simulation The attributes used
to instantiate seekers are defined in Table 10.6

Attribute Values Description

Se
ek

er id UUID Corresponds to the seeker’s unique identifier (i.e.
ai.ε) in the system (i.e. S).

chCount Integer Corresponds to the number of challenges each seeker
will introduce in the simulation.

Table 10.6 – The variables of a challenge

Each seeker is provided with a method that evaluates whether a challenge is met (i.e.
checkChallenge()), and a method used to reward the winners of the challenge (i.e. reward()).

10.3 Simulation Scenario

In the previous section, we defined the attributes and methods of the classes used in our
simulation. In this section, we describe the innovation process used in our simulations. This

269

Chapter 10. Evaluation of ASC-TMS

scenario is inspired from the running example presented in Chapter 9.

The simulation is initialised by creating one seekers and a given number of solvers. The
objective of the seeker is to find a solution to a given number of problems (i.e. chCount). Solvers
aspire to optimize their individual utility. This utility can be increased by winning a challenge
and obtaining the reward, or by being a member of a community which won a challenge.

Member of a

community ?

Community

Membership

Find New

Challenge

Joined

Community ?

Community

Creation

Work

Collaboratively

Work

Alone

Community

Created ?

Challenge

Met ?

Collaborate ?

Last

Challenge ?

Yes

Yes

Yes

Yes
End of Simulation

No

No

No

No

No

No

Get Rewarded

Yes

Yes

step = step +1

step = 1

Challenge

Expired ?

No

Start Simulation

Yes

Figure 10.2 – Flowchart describing the abstract innovation process

As illustrated in Figure 10.2, the simulation starts when a new challenge is made available
by a seeker. Once a new challenge found, the solver decides whether to work collaboratively or
to work alone. This decision is defined by its propensity to collaborate that we express as a

270

10.3. Simulation Scenario

probability drawn from a uniform distribution between 0 and 1 (i.e. collaborativeness). If the
solver decides to collaborate, he first checks whether he is not already member of a community.
If not, the solver will try to join a community otherwise, he will try to create a new one. At
this stage, if the member succeed to join or create a community, he will work collaboratively,
otherwise, he will work alone. A round of this simulation model is completed when every solver
has been given exactly one opportunity to work. Once the solver finishes working, he evaluates
whether the value of solution he participated reached the objective of the challenge. If it is the
case, the state of the challenge is set to met and the agent (or community of agent) is rewarded.
If not, the seeker checks whether the challenge did not expire, otherwise he introduces a new
one. If the seeker reaches the number of challenge he wanted to solve, the simulation stops.

Up to now, we describe the process followed by the solver during the simulation in abstract
terms. For instance, we did not detail what is really happening in the working (alone or
collaboratively) step. To that aim, we present in Figure 10.3 how the cooperativeness attribute
influences the behaviour of solvers.

Request Access

 c > 0

(c = cooperativeness)

gain = 0

com.solution.value +=

Math.max(gain, com.solution.value+value)+ competence

Find a Solution

x.solution.value += competence * c
gain = x.solution.value

x.solution.value += x.solution.value * c

Request

Accepted by

x ?

Yes

No

No

No

Challenge met

?
Get

Reward

Challenge

Expired ?

(cf. Figure 11.2)

Collaborate ?
this.solution.value +=

Math.max(gain, solution+value) + competence

Yes

YesNo

Figure 10.3 – Flowchart describing the abstract innovation process

As illustrated in the figure above, if the cooperativeness value is positive and not null (i.e. >
0), the solver will improve the solution (i.e. x.solution) to which he is accessing proportionally
to its cooperativeness. Contrariwise, if this value is null or negative, the solver will profit from

271

Chapter 10. Evaluation of ASC-TMS

the solution and vandalise it proportionally to its cooperativeness value. Rewards are determined
in terms of utility. At the beginning of the simulation, each solver is provided an initial utility
score of 100 units. Then this score is affected (positively or negatively) by the decisions made
by this solver. The way the decisions of the solver affect its utility are summarised in Table
10.7.

Name Utility Description

RESOURCE_IR + Value gain Reward gained by the solver which resource has been
improved by another solver.

RESOURCE_CR + (Value gain

/ size)

Reward gained by the solver which the resource of
its community has been improved by another solver.

RESOURCE_G + Value gain Reward gained by the solver following the access to
a resource that improved its own/collective resource.

RESOURCE_IS - Value Loss Utility loss in consequence of granting access to an
agent that vandalised the individual solution.

RESOURCE_CS - (Value Loss

/ population)

Utility loss in consequence of granting access to an
agent that vandalised the solution of the community.

CP_VIOLATION - Value Loss Sanction imposed to solvers that violates collective
policies. This sanction corresponds to the loss of
value caused by the decision made by the solver.

CH_IWIN + Reward Reward gained by a solver that won a challenge.

CH_CWIN + (Reward /

size)

Reward gained by a solver that is a member of a
community that won a challenge.

Table 10.7 – The utility payoffs during the simulation

A solver can gain utility units by winning a challenge or participating in a community which
won a challenge. A solver can also gain utility when accessing valuable resources or by letting
competent and cooperative solvers manipulate its resources, or the resource of its community.

A solver can also loose utility units. The utility of a solver decreases in three situations:
(1) when his solution has been vandalised by a malicious solver, (2) when the solution of its
community has been vandalised, and (3) when he violates the collective policy of its community.

10.4 Simulation Settings

In this section, we present the simulation settings we used to evaluate the ASC-TMS.

10.4.1 Simulation Parameters

In this section, we present the parameters used to setup our simulation. The parameters of
the the experimentations fall into two categories; parameters that relates to the challenges and

272

10.4. Simulation Settings

those that relates to the solvers. These parameters represent are default settings if not stated
otherwise:

• Challenges Parameters

1. Challenges Count - The number of challenges introduced.

2. Challenges Objectives - What is the objective (i.e. resource value) that the agents
much reach to win the challenge. The objective of each challenge was set to 104.
This value was fixed experimentally to have sufficiently long challenges.

3. Challenges Rewards - What is the reward that agents will gain in winning the
challenge. The reward of each challenge was set to 1000.

4. Challenges Deadline - What is the deadline of the challenge. The deadline of each
challenge was set to 1000.

• Solvers Parameters:

1. Policies - Each solver is endowed with two policies which type, value and weight
are randomly generated. The first policy is used for making decisions about access
to resources, while the second is used for to make decision about whom to collab-
orate with (i.e. community membership). Policies are defined using four types of
trust factors; two proofs, namely identity, competence, and two indicators, namely
reputation and recommendation.

2. Credentials- Each solver is provided with 10 credentials, five about its identity and
five about its competence. Consequently, more that one credential can be used to
vouch for the same property (i.e. identity or competence). However, these credentials
differ in terms of sensitivity.

3. Competence - The competence of solvers is drawn from a normal distribution between
0 and 1.

4. Collaborativeness - The collaborativeness of solvers is drawn from a uniform dis-
tribution between 0 and 1.

5. Cooperativeness- The cooperativeness of solvers was set manually in order to have a
population that is composed of 10% altruist, 40% cooperative, 40% selfish and 10%
malicious solvers. This population was selected experimentally.

6. Interaction: This parameter determines the probability of a solver to interact with
other solves (i.e. request access to solution). This parameter (i.e. interProba) has
been fixed to 0.8.

10.4.2 Simulation Metrics

Metrics represent the statistics that we rely on in the evaluation of our approach. These metrics
are presented in what follows:

273

Chapter 10. Evaluation of ASC-TMS

• sovCount: the number of solvers in the system.

• comsCount: the number of communities

• comsSize: the population of each community

10.5 Evaluations

This chapter aims at evaluating the benefits in using the mechanisms drawn from social influ-
ence theory in terms of trust management. The empirical evaluation of our system has been
performed based on the scenario presented in Section 10.3. We are particularly interested in
assessing whether the following working hypothesis are supported by ASC-TMS.

• Hypothesis 1: Communities that are formed by combining solvers are more stable than
communities formed by non combining agents.

• Hypothesis 2: Communities formed of compliant agent are more stable that communities
formed of non compliant agents.

• Hypothesis 3: Communities stability is function of the proportion of compliant members
composing it.

• Hypothesis 4: The agents ability to make evolve their collective policies affects positively
the stability of these communities.

Communities stability is thus an important evaluation indicator in our experiments. How-
ever, this concept is very confusing as it has been used differently in several researches. For
instance, in [Merida-Campos and Willmott, 2007], the authors assimilated communities (or
coalitions) stability to a stable marriage problem. They considered a community to be sta-
ble when any member do not prefer to be in another coalition rather staying in his current
community. Such approach could not be used in our experiments as our agents (solvers) do
not have any preferences with regard communities. Therefore, in our experiments, we will use
a mix between the number of communities, the mean size of each community and the social
welfare metrics to evaluate community stability.

10.5.1 Results

In this section, we discuss the results we we obtained in the evaluation of the hypothesis formu-
lated in the previous section. In this evaluation, we used 1000 solvers and 1 seeker which was
initialised with 10 challenges. Each challenge has a deadline of 1000, thus the average duration
of a simulation is around 10000 steps. The objective has been fixed with respect to the standard
settings presented in Section 10.4.1 (i.e. 104). Also, communities do not necessary explode after
the end of each challenge as as long as there is a challenge to meet, members prefers to remain
in a community rather then leaving it.

274

10.5. Evaluations

In the evaluation of the above hypothesis, we employ five experimental populations. A
summary of the parameters used for each population is provided in Table 10.8.

population Combination Integration Evolution

population 1 false 0 false

population 2 true 0 false

population 3 true 0.5 false

population 4 true 0.8 false

population 5 true 1 false

population 6 true 0.8 true

population 7 true 1 true

Table 10.8 – Populations used in the simulation

• Population 1: Solvers are are endowed with an ASC-TMS in which combination and in-
tegration features were deactivated. Thus theses solver are neither able to build collective
policies, nor to exhibit compliant behaviour.

• Population 2: Solvers are able to build collective policies, but they are not able to integrate
these collective. Thus the decision they make only considers their individual policies.

• Population 3: Solvers are endowed with combination and integration mechanisms. How-
ever, they tend to comply with a probability of 0.5. So globally, 50% of the population
will comply.

• Population 4: Solvers are able to build collective policies, and they exhibit a compliant
behaviour with a probability of 0.8. This value corresponds to the proportion of compliant
members in real settings as evidenced in the social influence theory (cf. Section 4.2).

• Population 5: Solvers are able to build collective policies and they always comply with
the collective policy.

• Population 6: Solvers are able to build and make evolve the collective policies to which
they are subject. However, they comply with these policies with a probability of 0.8.

• Population 7: Solvers systematically build, integrate and make evolve their collective
policies. This population is the perfect population with respect to the social influence
theory.

In our scenario, we make use of random draws which make our simulation stochastic. As
a stochastic simulation, our evaluation will produce different outcomes for different random
number streams, which are generally driven by choosing different random seeds. For instance,
some solvers may interact only with good solvers (i.e. altruist or cooperative) or bad solvers

275

Chapter 10. Evaluation of ASC-TMS

(i.e. selfish or malicious) solver. In addition, the result of each solver is also the consequence
of the values they have been initialised with. So in order to minimise this effect on our results,
and to explore the space of all possible outcomes, all graphs presented in the next sections plot
the mean of 100 execution of the simulation. Then we compared the results of each population
in terms of utility, social welfare and communities stability. The results of these evaluations are
presented in the next section.

10.5.1.1 Hypothesis 1

In this section, our objective is to evaluate if virtual communities members (i.e. solvers 3.)
would benefit from the ability to build collective policies. To that aim, we used populations 1
and 2 described above. Population 1 is used for control purpose, while population 2 is used to
assess the benefit of combination. As in population 1 there is no collective policy, agents are
excluded when they make three bad decisions (i.e. trust decisions with negative consequence)
and a community collapse when it loose all its members. In turn, agents from population 2 are
sanctioned when they make bad decisions (i.e. decisions that conflict with the collective policy
and which consequences are negative) and after three sanctions, they are excluded.

Figure 10.4 – Evolution of communities

As showed in Figure 10.4, the effect of combination on population 2 was quite negative. This
effect is not surprising as the objective of collective policies is to bring stability, but without
integration mechanisms, this feature will only have a prescribing effect. So agents are more
frequently sanctioned and communities collapse more often.

3In the remainder of this chapter, we will use interchangeably the terms member, solver and agent when

referring to virtual communities members

276

10.5. Evaluations

Also, in population 1, communities are formed more rapidly compared to the communities
formed in population 2. This effect can be explained by the process that agent use to form these
communities (cf. Section 9.2.1). Indeed, in population 2, agent need more time to trust each
others and agree on a collective polity. This process disadvantage these agents which explains
the delay that take communities to form in this population. In contrast, agents from population
1 get formed into communities only based on their respective competence and the trust level
they accord to each other. Thus these agents get more rapidly involved in communities.

Figure 10.5 – Population evolution

The negative effect of combination of collective policies on virtual communities is further
confirmed when analysing the average size of these communities. The average size of communi-
ties formed in population 2 remains very low (around 12) compared to this value in population
1 (around 15). So the population turnover is higher in population 2 than in population 1, but
in both cases, communities prove to be unstable.

10.5.1.2 Hypothesis 2

The disappointing results obtained in the previous section led us to ask whether it is worth
to endow solvers with combination features despite the apparent benefit advocated throughout
this thesis. In this section, we try to answer this question by evaluating whether collective
policies have any real impact on the stability of communities. For this purpose, we simulated
population 5 in the same settings that we used to simulate population 1 and population 2 in the
previous section. The results of these evaluations are plotted in Figures 10.6 and 10.7. Recall,
population 5 is composed of solvers that always comply with the collective policies of their
communities. So these agents never violates these policies. Thus this population constitute the
best choice to evaluate the benefit of collective policies if there were any.

277

Chapter 10. Evaluation of ASC-TMS

Figure 10.6 – Evolution of communities in populations 3, 4 and 5.

As expected, populations 5 produces the best results. The communities created in this
population are more stable as their members systematically comply with collective policies.
The average numbers of communities ranges from 30 to 35, while this value did not exceed 25
in the populations composed of non compliant members. This observation applies equally to
the population evolution as shown in Figure 10.7.

Figure 10.7 – Evolution of communities size in populations 3, 4 and 5.

In the same simulation, the size of the communities formed in population 1 and population
2 remains very low compared to size of communities formed in population5. These results also
shows that proportion of solvers that are members of a community in population 5 (around
560) is in average more important that those from populations 1 (around 380) and 2 (around
250).

278

10.5. Evaluations

Based on these indicators, we assume that population 5 reveals to be more stable. This
stability is explained by the fact that the solvers that compose these communities makes less
violations with respect to their collective policies and thus are less frequently ejected. However,
these results show that population 5 is less idyllic than what we could expect from a population
composed of agents that always comply with their collective policies. With respect to this issue,
much work have to be done to understand what prevents these communities from being stable.

10.5.1.3 Hypothesis 3

The experiments presented in the previous section showed that communities that are composed
of 100% of compliant solvers reveal to be more stable and less prone to population turnover.
We explained such results by the fact that these solvers are never sanctioned and thus, they
are never excluded. However, the social impact theory showed that such population never exists
in real setting. The experiences that were conducted by Ash [Asch, 1955] (cf. Section 4.2.1.2)
report a proportion of 80% of compliant individual in real life settings.

In the light of that, our main concern in this section is to evaluate whether populations
in which the proportion of compliant solver falls below 100% are able to maintain stability
property. To that aim, we make use of population 3 and population 4 with possess different
proportion of compliant solvers. Recall, population 3 is composed of agent which propensity
to comply with the collective policy of 0.5. That means that these agent will integrate the
collective policy with a probability of 0.5. So at any time, population 3 will have 50% of its
members complying with the collective policy. Similarly, population 4 will have a proportion
of 80% of complying agents. This population corresponds to the normal settings as discussed
above.

Figure 10.8 – Evolution of communities in populations 5, 6 and 7.

The average values of the number and the size of the communities formed in populations 1,

279

Chapter 10. Evaluation of ASC-TMS

2, 3, 4 and 5 is plotted in Figures 10.8 and 10.9. Populations 1,2 and 5 have been added as
control population.

Figure 10.9 – Evolution of communities size in populations 5, 6 and 7.

The results obtained in these experiments showed that communities stability is positively
affected by the amount of compliant agent composing the population. This result also reinforced
the findings of the previous section in the sense that the propensity of solvers to comply with the
collective policies of their communities affects significantly the stability of their communities.
This tendency is confirmed also in terms of communities size as depicted in Figure 10.9.

The average of the communities size is directly affected by the percentage of compliant
solvers. However, these values are not proportional; If we compare the number of agents that
belong to a community in population 3 (around 425) and the those from population 4 (around
600) we notice that population 4 performs better than expected (this value should be around
550), if we consider a strict correlation between the number of communities and the size of each
community.

10.5.1.4 Hypothesis 4

In previous sections, population 5 reveals to be the population sample having the most stable
communities. However, the experiments conducted in these sections showed also that this
population was not so idyllic as one could expect.

As discussed so far, a solver can leave a community because it has been excluded after having
violated the collective policy, or because the agent decided to leave the community because of
a too restrictive or a too permissive collective policy. The first situation is not relevant for
population 5 as the solvers of this population never violate their collective policies. Thus, the
solely explanation that we can defend is that these solvers leave their communities because
they enter in conflict with the collective policies in use in their communities. It is these issues

280

10.5. Evaluations

that we will investigate in this section. Our objective is to see whether putting in place the
complete social compliance micro-macro loop will reduce the number of agents leaving their
population, and thus participate in the improvement of communities stability.

For this purpose, we make use of population 6 and population 7 aforementioned. These
populations correspond to, respectively, population 4 and population 5 in which the evolution
features has been activated. So the solvers of both populations are able to trigger evolutions
in the collective policies of their communities. The results of these populations, compared to
population 5 represents the base case of all previous evaluations are plotted in Figures 10.10
and 10.11.

Figure 10.10 – Evolution of communities in populations 5, 6 and 7.

As shows in Figure 10.10, after allowing solvers to change their collective policies, the num-
ber of communities in population 4 (6 in this evaluation) had risen above 30, while this number
exceeded 35 for population 5 (7 in this evaluation). These results showed that populations in
which only 80% of complying solvers reveal to be able to have as much stable communities as
communities which members were 10% complying.

The analyse of the above results in terms of communities size revealed that the evolution
feature reduces substantially the members turnover. Surprisingly, population 6 (former 4) was
even able to perform better that population 5 as the average population of each community
was almost as good as in population 7. While, our experiments do not allow a explain these
effects, we thinks that the ability of solver to adapt their collective policies makes improves
their stability. This stability participates in the growth of the size of these communities, and
makes these communities scale.

In sum, based on the above evaluation, we assume that evolution has a positive impact
on the stability and even scalability of virtual communities. These results confirmed also the

281

Chapter 10. Evaluation of ASC-TMS

Figure 10.11 – Evolution of communities size in populations 5, 6 and 7.

benefit of applying social influence theory to trust management as socially compliance solvers
tend to form more stable and bigger communities.

10.6 Conclusion

In this chapter, we report part of the preliminary results towards the evaluation of ASC-TMS.
This evaluation was made based on the open innovation scenario presented in this chapter.
Our main concern was the assessment of the impact of applying social influence theory in
trust management within virtual communities. To that aim, we have empirically evaluated our
approach, and the results of our experiments show that integration and evolution significantly
improve the stability of virtual communities. In additions, the results show that combination
could be detrimental to communities stability unless it is used jointly with integration.

Of course, these results remains incomplete and more sound a clearer evaluations of the
impact of applying ASC-TMS to virtual communities has carried out to definitively confirm
whether the hypothesis formulated in this chapter are supported by ASC-TMS.

Also, several research question remain open and motivate for further investigation. For
instance, the populations used in this evaluation was selected manually based on social sci-
ence theories (e.g. [Moscovici, 1969, Bowser, 2013]). However, to be sound these evaluation
should consider a richer pool and heterogeneous (in terms of collaboratives, cooperativeness
and competence) set of populations.

282

10.7. French Summary

10.7 French Summary

Le chapitre précédent nous a permis d’évaluer en partie nos contributions en les confrontant aux
contraintes d’un scénario tiré de la vie réelle. Néanmoins, cette évaluation demeure incomplète
si on la couple pas à une évaluation à plus grand échelle de notre système. Ainsi, l’objectif de ce
chapitre est de tester l’impact à grand échelle de notre système sur les communautés virtuelles.
nous sommes plus particulièrement intéressés par l’évaluation des avantages de l’utilisation des
concepts inspirés de la théorie d’influence sociale (i.e., combinaison, intégration et évolution)
sur la gestion de la confiance au sein de systèmes larges comptant non pas des dizaines ou des
centaines de membres mais des milliers. Notre évaluation sera donc centrée sur l’impact de
notre système sur la stabilité et la dynamique des communautés le mettant en œuvre.

10.8 La plateforme de simulation multi-agent Repast

Repast [Collier, 2003], est une plateforme de simulation multi-agent libre et open source assez
connue. La plateforme a été développée en 2003 par le laboratoire de recherche en sciences
sociales de l’université de Chicago pour appliquer la simulation à base d’agent aux sciences
sociales. L’outil permet une simulation à événement discret ainsi que toute une panoplie d’outils
de monitoring et de visualisation de résultats. La plateforme possède plusieurs versions dont
chacune est dédiée à un langage particulier (e.g. Java , Logo , . NET, Lisp , Prolog et Python).
Dans notre implémentation, nous avions utilisés la version Repast-J qui est la version Java de
Repast.

Le choix de Repast nous est apparu évident de par sa vocation à réaliser des simulations
multi-agent en relation avec les théories émises par les chercheurs en sciences sociales. Ainsi,
souhaitant étudier l’impact de l’application des théories sociales de l’influence sociale à la gestion
de la confiance, Repast nous semble être la meilleur solution pour cela.

10.9 Modèle de simulation

Le modèle dont nous avions décrit l’implémentation dans le chapitre 8 est relativement complexe
pour être implémenté et évalué convenablement. Un bon nombre de concepts utilisés dans ce
modèle seraient techniquement difficiles à implémenter sous Repast (e.g. Le moteur BDI des
agents). Pour cela, nous avons identifié le sous-ensemble minimal du modèle qui permettrait
son implémentation sous Repast tout en reprenant l’esprit des contributions apportées dans
cette thèse. Par exemple, fusionner l’agent assistant et l’agent gestionnaire de confiance dans
une seule entité nous parait être un choix qui n’affecterait pas grandement les résultats de
notre évaluation. De manière analogue, nous avons fait un certain nombre de simplifications
de conception afin de rendre cette simulation réalisable. La figure 10.13 illustre les principales
classes Java utilisées dans notre simulation.

283

Chapter 10. Evaluation of ASC-TMS

findChallenge()
JoinCom()
CreateCom()
LeaveCom()
DestroyCom()
Work()
Reward()

id:UUID
solution : Solution
com: Community
competence: Float
collaborativness: Float
cooperativeness: Float
combination: Boolean
integration: Float
instantiation: Boolean
negotiation: Boolean
evolution: Boolean
interProba: Float
tms: ASC_TMS

Solver

reward()
checkChallenge()

Seeker
id:UUID
ChallengeCount: Integer

grant()
join()
leave()
checkViolantions()
Sanction()

id:UUID
owner: Solver
members:ArrayList<Solver>
Solution: Solution
policy: ArrayList<Policy>

Community

read()
write()
grant()

id:UUID
owners: ArrayList<Solver>
controllers:ArrayList<Solver>
Sensivity: Float
challenge: Challenge
Value: Float

Solution

isExpired(): Boolean
isFulfilled(): Boolean
getWinner(): ArrayList<Solver>

Challenge
id: UUID
objective: Float
deadline: Integer
reward: Integer
fulfilled: Boolean
expired: Boolean

instantiate()
combine()
integrate()
evolve()
evaluate()

ASC_TMS
policy: ArrayList<Policy>
credentials: arrayList<Credential>

getContent()
getReceiver()
getSender()

Message
id:UUID
sender: Solver
receiver: Solver
perf: Performative
protocol: Protocol
content: Content

sender receiver

Figure 10.12 – Diagramme de classes en UML des éléments du modèle de simulation

Le modèle se compose de deux classes d’agent; seeker et solver, d’une classe est utilisé
pour représenter les communautés (i.e. Community), d’une classe représentant les solutions
proposées par les solvers, une classe représentant les challenges. Enfin, nous avons encapsulé
toutes les fonctionnalités proposées par le ASC-TMS dans une classe dédié à laquelle la classe
solver délègue les questions liées à la gestion de la confiance. Les détails de chaque classe sont
présenté dans le manuscrit d’origine.

10.10 Scénario de simulation

Dans cette section, nous décrivons le scénario utilisé lors de nos simulations. Ce scénario est
inspiré de l’exemple de communauté virtuelles d’innovation vu dans le chapitre précédent (cf.
Chapitre 9).

Comme illustré dans la Figure 10.2, la simulation est initialisée par la création d’un seeker

284

10.10. Scénario de simulation

Member of a

community ?

Community

Membership

Find New

Challenge

Joined

Community ?

Community

Creation

Work

Collaboratively

Work

Alone

Community

Created ?

Challenge

Met ?

Collaborate ?

Last

Challenge ?

Yes

Yes

Yes

Yes
End of Simulation

No

No

No

No

No

No

Get Rewarded

Yes

Yes

step = step +1

step = 1

Challenge

Expired ?

No

Start Simulation

Yes

Figure 10.13 – Flowchart describing the abstract innovation process

et un certain nombre de solvers. L’objectif du seeker est de trouver des solutions à un certain
nombre de challenges (i.e. chCount). De leur côté, les solvers cherchent à optimiser leur utilité
en gagnant des challenges individuellement, ou en étant membres d’une communauté qui a
gagné un challenge.

La simulation commence donc quand le premier challenge est introduit dans le système.
L’objectif initiale de chaque solver est dont de trouver un challenge à relever. Dès lors, chaque
solver décide soit de travailler individuellement soit de collaborer avec d’autres au sein d’une
communauté. Cette décision, est propre à chaque solver en fonction de sa tendance à vouloir

285

Chapter 10. Evaluation of ASC-TMS

collaborer ou non. Cette tendance, suit une loi uniforme entre 0 et 1.

Une fois la décision de collaborer (ou non) prise, chaque solver se met à la recherche d’une
communauté, sinon il va en créer une. À ce stade, si le solver à réussi a rejoindre une com-
munauté, il vaut travailler de manière collaborative, sinon il va travailler tout seul. Un cycle
de simulation s’achève une fois que chaque solver a été en mesure de travailler. Une fois que
le solver a fini de travailler, il va évaluer si la ressource qu’il a amélioré a atteint l’objectif fixé
dans challenge. Si c’est le cas, le statut du challenge est mis à réussit et le ou les solvers qui
ont participé à sa résolution sont récompensés. Si non, le seeker vérifie que le challenge n’a pas
expiré, auquel cas il introduit un nouveau jusqu’à épuisement des challenges.

Request Access

 c > 0

(c = cooperativeness)

gain = 0

com.solution.value +=

Math.max(gain, com.solution.value+value)+ competence

Find a Solution

x.solution.value += competence * c
gain = x.solution.value

x.solution.value += x.solution.value * c

Request

Accepted by

x ?

Yes

No

No

No

Challenge met

?
Get

Reward

Challenge

Expired ?

(cf. Figure 11.2)

Collaborate ?
this.solution.value +=

Math.max(gain, solution+value) + competence

Yes

YesNo

Figure 10.14 – Flowchart describing the abstract innovation process

Dans la figure 10.14, nous détaillons le processus de création présentée de manière abstraite
dans la Figure 10.13. L’objectif est d’expliquer comment le degré de coopération des solvers (i.g.
cooperativeness) influe sur leur comportement quand ils accèdent aux ressources des autres.

Comme illustré dans la figure, si le degré de coopération est strictement positif (i.e. > 0),
le solver va améliorer la solution à laquelle il accède de manière proportionnelle à cette valeur.
Par contre, si cette valeur est négative ou nulle, le seeker va profiter de cette ressource est la
vandaliser de manière proportionnelle à cette valeur.

Enfin, au début de la simulation, chaque solver est doté de 100 unités en matière d’utilité.

286

10.11. Réglages de la simulation

La manière avec laquelle cette utilité est affectée par les actions des solver est présenté dans le
tableau 10.7.

10.11 Réglages de la simulation

Dans cette section, nous passons en revue les principaux réglages utilisés lors de notre sim-
ulation. Il s’agit essentiellement des paramètres et ainsi que les indicateurs qui ont servis à
l’évaluation du ASC-TMS.

10.11.1 Paramètres de simulation

Les paramètres utilisés lors de notre simulation se regroupent en deux catégories: les paramètres
des challenges et les paramètres des solvers. Ces paramètres sont considérés comme les
paramètres par défaut, sauf précisions contraires.

• Paramètres des challenges

1. Challenges Count - Le nombre de challenges introduits

2. Challenges Objectives - L’objectif à atteindre pour gagner le challenge. Cette
valeur a été fixée de manière expérimentale à 104 afin d’avoir des challenges assez
longs et disputés.

3. Challenges Rewards - L’utilité que les gagnants d’un challenge vont remporter.
Cette valeur a été fixée à 1000.

4. Challenges Deadline - Le temps alloué à chaque challenge. cette valeur a été fixée
à 1000.

• Paramètres de Solvers:

1. Policies - Chaque solver dispose de deux politiques ont les types, poids et valeurs
de seuil ont été fixé de manière aléatoire. La première politique est utilisée par les
seekers pour prendre des décisions sur l’accès aux ressources alors que la seconde est
utilisée pour des décisions sur la collaboration.

2. Credentials-Chaque solver est doté de 10 credentials dont cinq concerne sont iden-
tité et cinq concernent ses compétences.

3. Competence - La compétence des solvers suit un loi normale entre 0 et 1.

4. Collaborativeness - La degré collaboration des solvers suit une loi uniforme entre
0 et 1.

5. Cooperativeness- Le degré de coopération a été fixé manuellement afin d’avoir
une population composé de 10% altruistes, 40% coopératifs, 40% égoïstes and 10%
malveillants

6. Interaction: Ce paramètre détermine la probabilité à laquelle un solver va interagir
avec un autre solver. Ce paramètre représente une probabilité qui a été fixée à 0.8.

287

Chapter 10. Evaluation of ASC-TMS

10.11.2 Métriques de simulation

Les métriques représentent les sorties de notre simulation. Elles constituent les éléments statis-
tiques sur lesquels nous allons reposer lors de notre évaluation. Ces métriques sont décrites
dans ce qui suit:

• sovCount: le nombre de solvers dans la simulation.

• comsCount: le nombre de communautés.

• comsSize: la population de chaque communauté.

10.12 Évaluation

Dans ce chapitre, nous allons procéder à l’évaluation de l’intérêt des mécanismes inspiré de
la théorie de l’influence sociale et leur application à la gestion de la confiance au sein de
communautés virtuelles.

10.12.1 Hypothèses

Lors de notre évaluation, nous nous sommes particulièrement intéressé à vérifier l’impact de
notre système sur la dynamique des communauté dans quatre situations formulées sous forme
d’hypothèses. Ces hypothèses sont décrites dans ce qui suit :

• Hypothesis 1: Les communautés dans lesquels les membres sont capables de combiner ont
une dynamique positive.

• Hypothesis 2: Les communautés composées d’agents capables de se conformer ont une
meilleure dynamique que elles ou les agents en sont incapables de le faire.

• Hypothesis 3: La dynamique des communauté est fonction de la proportion d’agents
capables de se conformer.

• Hypothesis 4: Quand les agents sont capables de faire évoluer leurs politiques collectives,
la dynamique de leur communauté s’en trouve davantage améliorée.

10.12.2 Results

Dans cette section, nous présentons une partie des résultats obtenus dans cette thèse de doc-
torat. Les résultats ont été obtenu en utilisant un population composée de 1000 solvers et
un seekers qui introduit dans le système 10 challenges avec la configuration par défaut. Afin
d’évaluer la validité des hypothèses formulées dans la section précédente, nous avons utilisé 7
populations d’agents différentes.

Comme illustré dans le tableau 10.9, les populations se différencient entre elles en terme de
fonctionnalité du modèle (combinaison, intégration et évolution). En plus nous avons utilisé des

288

10.12. Évaluation

population Combination Integration Evolution

population 1 false 0 false

population 2 true 0 false

population 3 true 0.5 false

population 4 true 0.8 false

population 5 true 1 false

population 6 true 0.8 true

population 7 true 1 true

Table 10.9 – Populations used in the simulation

populations qui ont différents degrés d’intégration pour évaluer l’impact de la conformité sur
la dynamique des communautés. Aussi, afin de minimiser l’impact des paramètres aléatoires
utilisés dans la simulation, nous avons calculé la moyenne de 100 exécutions de de chaque
scénario. Dans ce qui suit, nous allons survoler les résultats obtenus pour ces évaluations.

10.12.2.1 Hypothèse 1

Dans cette simulation, la population 1 est utilisée comme population témoin (population de
contrôle) alors que la population 2 sera utilisée pour évaluer l’impact de la combinaison sur la
dynamique des communautés.

Figure 10.15 – Évolution des communautés et des populations

Comme le montrent les résultats (cf. 10.15), la population 2 est pire que la 1 ce qui peut
s’expliquer par le fait que les agents sont pénalisés par le processus de construction des politiques
alors qu’ils n’ont tirent aucun profit (pas d’intégration). Donc, l’hypothèse 1 n’est pas vérifiée
sans que cela remette en cause notre modèle.

289

Chapter 10. Evaluation of ASC-TMS

10.12.2.2 Hypothèse 2

La simulation précédente ne nous a pas permis de valider l’impact de la combinaison sur la
dynamique des communautés. Nous avions expliqué cela par le fait que les agents étaient
incapables de les prendre en considération. Ainsi, cette série de simulations vise à vérifier leur
réel impact quand les agents sont capables non seulement de créer leurs politiques collectives
mais également et sur tout de les prendre en considération.

Figure 10.16 – Évolution des communautés et des populations

Comme le montrent les résultats obtenus (cf. 10.15), la dynamique de la population 3 est
nettement meilleure que les deux autres populations. Cela par s’explique par la tendance de ces
agents à se conformer à leurs politiques collectives. Pour simplifier, ces agents ne violent jamais
leur politique et donc ne sont jamais exclus et les communautés n’implosent que rarement.

10.12.2.3 Hypothèse 3

Dans la simulation précédente, nous avions utilisé une population composée d’agents se confor-
mant à 100% avec leurs politiques collectives. Évidemment, cette configuration utopique n’est
pas réaliste. C’est pourquoi, dans cette série de simulations nous avons voulus tester différents
degrés de conformité afin de voir jusqu’à quel niveau les communautés arrivaient à se maintenir
avec des agents anticonformistes.

Les résultats montrent que la dynamique des communautés et leur stabilité est proportion-
nelle au degré de conformisme de leur population. Ainsi, l’aptitude des agents à se conformer
affecte significativement la stabilité de leurs communautés.

10.12.2.4 Hypothèse 4

Jusqu’à maintenant, nous avions passé sous silence les raisons pour lesquels les agents quittaient
leurs communautés. Deux raisons expliquent ce comportement, l’exclusion suite à des violations
de politiques de confiance ou l’abandon quand l’agent est confronté à des politiques collectives
trop restrictives. Ainsi, la capacité des agents à pouvoir changer ces politiques collectives

290

10.12. Évaluation

Figure 10.17 – Évolution des communautés et des populations

est normalement un élément favorisant la stabilité des communautés. C’est que nous voulions
vérifier en permettant aux agents de la population 4 d’adapter leurs politiques collectives quand
c’est possible.

Figure 10.18 – Évolution des communautés et des populations

Comme l’illustre la Figure 10.18), les résultats furent surprenants. La capacité des agents à
changeur de manière consensuelle leur politique collective a amélioré de manière substantielle
la stabilité des communautés formées dans la population 4. Cette population dépasse même les
résultats obtenus avec la population 6 considérée comme idéale en terme de conformité.

291

Part V

Conclusion

Chapter 11

Conclusion

The various contributions developed in this thesis are linked by the underlying theme of at-
tempting to assist open and decentralised virtual communities members in their trust decisions.
In this conclusion, we bring together these contributions and discuss how they achieve this
objective.

11.1 Summary and Contributions

Our main aim at the beginning of this thesis was to develop a system that assists members of
open and decentralised virtual communities in their trust decisions. We emphasised how the
inherent social and dynamic aspects of these systems are challenging the ways trust is currently
managed in these communities and the necessity to cope with them.

To that aim, we proposed in this thesis Adaptive and Socially-Compliant Trust Management
System (ASC-TMS). The novelty of ASC-TMS lies in its ability to exhibit social-awareness and
context-awareness features. Social-awareness refers to ability of the trust management system
(TMS) to handle the social nature of VCs by making trust evaluations that are collectively
harmful, while context-awareness refers to the ability of the system to handle the dynamic
nature of VCs by making trust evaluations that are always in adequacy with the context in
which these evaluations are undertaken.

The development of as so called socially-aware TMS involves two sub-objectives: the spec-
ification of collective policies and the enforcement of these collective policies. To meet these
objectives, we draw inspiration from decentralised trust management (cf. Chapter 3) and soci-
ology disciplines (cf. Chapter 4). The contributions made in this thesis towards the fulfilment
of these objectives are summarised as follows:

• We believe that this study is a step forward bridging the gap between social science and
trust management disciplines. This thesis also reinforces the interplay between trust man-
agement and distributed artificial intelligence. In the light of that, the state-of-the-art
presented in Part II constitutes the initial contribution of this thesis. In Chapter 3 we
reviewed and analysed existing trust management systems and stressed how these sys-
tems failed addressing the social dimension of nowadays environments. In Chapter 4,
we have made explicit the mapping between mechanisms proposed in trust management
such combination (cf. Section 7.5.1 and integration (cf. Section 7.5.2) and correspond-
ing concepts from social influence theory. We stressed how these mechanisms, although

Chapter 11. Conclusion

insufficient, could be adapted and used to implement concepts of social influence theory
and thus made the first steps towards the fulfilment of objectives O.1.1, O.1.2 and O.2.2.

• As a second step, we developed in Chapter 5 a trust management system in which the
social dimension of trust decisions is explicitly considered. To that aim, we designed a
policy specification language that is able to express both individual and collective trust
policies. While individual policies represent the personal conditions based on which an
individual makes its trust decisions, collective policies represent the conditions that should
be considered by every members of the community when making decisions that can affect
all the members of this community.

• The ability to specify collective policies calls for a mechanism that makes the specification
of such policies by several members, each having its own individual policy, possible. In
Chapter 7, we adapted mechanisms used in decentralised trust management systems to
attack this problem. The proposed mechanism allows VC members to build their collective
policies in a decentralised way. We proposed an mechanism that implements two of the
heuristics used in these works: deny overrides and permit overrides. The first heuristic
builds a policy that never accepts a request that one of the members would have accepted
(reject overrides), while the second heuristics guarantees that the resulting policy never
rejects a request that one member would have accepted (accept overrides). The difference
between using integration and directly using the collective policy lies in the fact that when
the individual policy is more accurate than the collective policy and does not conflict
with it, the individual one influences the most the trust evaluation. For instance, if the
collective policy is too permissive, if the individual policy is restrictive enough, the use
of integration will prevent the community from wrong decision that would not have been
possible only by using the collective policy (Objective O.1.1)

• Once the first sub-objective has been achieved (i.e. specification of collective policies),
we tackled the second one that consists in enforcing these collective policies. However, as
we target open and decentralised way, the enforcement of these collective policies must
necessary be done in a decentralised way by each member. To that aim, we proposed
an mechanism that VC members can use to integrate the collective policies along with
their individual ones. The integration is made based on four different heuristics, each
implementing a particular form of compliance. So the decision to comply and how to
comply is left to the VC member. The main advantage of this mechanism is that it
guarantees that, if the member wants, his trust evaluations will never be in conflict with
the collective policies of his community.

• Offering to VC members a way to enforce collective policies (i.e. comply) does not nec-
essary mean that they will do. To that aim, we draw inspiration from social sciences
to borrow models proposed in the social influence theory to understand when and how
collective policies are created and enforced in real societies. Based on these models, we

296

11.1. Summary and Contributions

selected multi-agent systems (MAS) as target technology to allow a decentralised and
socially-compliant trust management. At this stage, we were particularly interested in
the ability of MAS to express norms that oblige VC members to comply with the col-
lective policy of their communities. Thinking ASC-TMS as an agent allowed us to be
profit from the adequacy of the mechanisms proposed in MAS with the concepts of social
influence theory.

The development of a context-aware TMS involved two sub-objectives: the adaptation of
individual policies and the adaptation of collective policies. In the following, we discuss the
contributions made in this thesis toward the satisfaction of these objectives:

• The adaptation of policies, either individual or collective, calls for a policy specification
language that makes such adaptation possible. To that aim, our first contribution at this
stage was to make our policy language semantic. This has been done by describing the
terms and values used to specify policies into an ontology (i.e. trust factors ontology).
This ontology, makes the agents implementing ASC-TMS able to understand and reason
on conditions stated by the policies they use.

• Then we defined an algebra that ASC-TMS uses to adapt policies. Based on this algebra,
ASC-TMS can relax, restrict and update in many different ways the policy it is manipu-
lating. This algebra relies on the aforementioned ontology to bring the desired adaptation
to policies (Objective O.2).

• We defined meta-policies that react to environment changes and adapt active policies
in consequence. These meta-policies are expressed as event-condition-action rules that
virtual community members can personalise to adapt their policies in an appropriate way
(Objective O.2.1).

• Having this adaptation mechanism, we defined an adaptive trust negotiation strategy
that is able to relax the conditions stated by the policy used during the negotiation. This
adaptive strategy allows virtual community members to make their negotiation successful
by making compromises (Objective O.2.1).

• Finally, we used the adaptation mechanisms to make virtual communities members trigger
adaptation of their collective policies. To that aim, we make use of a voting scheme that
members rely on to communicate and agree about the adaptation they want to bring to
their collective policies (Objective O.1.2).

Moreover, we showed how the contributions presented in this section have been implemented
(cf.), applied (cf. Chapter 9) and evaluated (cf. Chapter 10).

In Chapter 8, we presented the implementation of ASC-TMS and the agent-based virtual
community platform. The system has been implemented and deployed using the JaCaMo
multi-agent programming platform. We motived the convenience of this choice and showed

297

Chapter 11. Conclusion

how the implementation of the theoretical concepts that underpin our contribution can be
simply implemented.

In Chapter 9, we illustrated the applicability of ASC-TMS based with an open innovation
virtual community scenario. We showed the extent the members of these communities could
be benefit from using ASC-TMS. We claimed also that ASC-TMS remains generic enough to
be applied to any form of social structure.

Finally, we presented in Chapter 10 some empirical evaluations based on which we tried
to observe the impact of using ASC-TMS on large scale populations. The objective of our
experiments was to confirm or disconfirm the benefit of integrating social influence theory in
trust management.

The preliminary results are promising as they show that population in which combination,
integration and evolution mechanisms are jointly used reveal to be more stable.

11.2 Open Issues and Future Works

Given the multidisciplinary nature of the theories and techniques used in this thesis, we did
not have the opportunity to explore some aspects of our proposal in greater depth. In the
following, we recognise the limits of our proposal and discuss how the contributions presented
in this thesis can be extended.

Social Influence Theory

Although our evaluations show that our approach has a reasonably positive impact on the
stability of virtual communities, we have not conducted in depth sophisticated analysis on per-
formance of ASC-TMS. Several questions remain open and motivate for further investigations.
For example, a basic question is “what would be the impact of ASC-TMS on populations
composed of only malicious or selfish participants, or different mixtures of such profiles?”.

Also, one of the main limits that we have been able to identify when evaluating ASC-TMS
relates to the impact of a malicious minority on the policy used by the majority. Indeed, in
our experiments we showed that the ability of agent to adapt their collective policies affects
positively the stability of these communities. However, we did not evaluate situations in which
malicious members collude to make the collective policy less restrictive.

Finally, more statistically sound and clearer evaluation should be conducted to definitively
validate or invalidate whether the hypothesis formulated in Chapter 10 are supported by ASC-
TMS or not. More particularly, ANOVA (analysis of variance) should be carried out to test
whether our results are statistically significant or not.

Learning Trust Factors

ASC-TMS relies on properties of agents to specify policies. For that purpose, we assume that
a certain correlation between partners’ properties and their degree of trustworthiness exists.

298

11.2. Open Issues and Future Works

Such assumption has been proved to be quite realistic in many works [Xin, 2011, Burnett, 2011].
However, in our approach we did not provide any mechanism based on which the users of our
system could discover such correlations, making our approaches incomplete. With respect to
this issue, the use of machine learning techniques could improve the accuracy of our approach
and its applicability in the same way [Burnett et al., 2013b].

Ghost Policies

The decentralised of ASC-TMS may lead virtual communities to inconsistant states. For in-
stance, if a member of the community was offline during the evolution of the collective policy,
thus the collective policy he will use will be probably obsolete. This situation may bring this
agent to violate the new collective policy in use, and consequently exposes him to the violation
of the social compliance norm (cf. Section 7.4.2.2. These policies are called ghost policies and
may affect the stability of the community. There exist some solutions in the literature (e.g.
[Serban and Minsky, 2009]) that address the safe evolution of policies that we could consider
to overcome this issue.

The Ontology

The trust factors ontology is cornerstone for ASC-TMS. Based on this ontology, the system
is able to understand, reason on and adapt the policies it is manipulating. Moreover, based
on this ontology, ASC-TMS accomplishes combination and integration tasks that are essential
for the implementation of the concept of social compliance. However, the expressiveness of
this ontology is obviously limited. In this regard, much work has to be done towards the
identification and specification of all relevant trust factors with respect to trust management
in VCs.

Furthermore, we assumed in this thesis that all agents are using the same ontology. However,
in real settings, such assumption may not hold; people may not agree on the semantic of each
trust factor. This issue constitutes a real problem for the applicability of our approach in
systems in which several ontologies may coexist. Even if we believe that existing ontologies
alignment techniques could, in theory, resolve such conflicts, we assume that this issue should
be explored more seriously to confirm our intuition.

Policy Language

The policy language we specified in Chapter 6 has been designed in the light of the objectives
of this thesis. Nevertheless, this language has to be more rigorously specified to be consider its
use realistic. Also the use of this language in the context of real-life scenarios (cf. Chapter 9),
allowed us to shed light on some of its limits. For instance, our policy language is not able
to express alternative policies; it is not possible to specify two policies that apply to the same

299

Chapter 11. Conclusion

pattern. If we want to add this features, we would allow ASC-TMS to evaluate all policies that
apply to a particular pattern then aggregate the results (e.g. provide the highest value).

Meta-Policies

Another research issue relates to the possibility to activate and deactivate meta-policies. In
Chapter 8, we showed how assistant agent can transmit to its TMA (i.e. ASC-TMS) meta-
policies. However, we did not explore how allowing the user to adapt their meta-policies could
impact the functioning of the system. In this regard, we could also evaluate whether meta-
meta-policies could be specified to automatically activate and deactivate meta-policies based on
the result of the adaptation they brought to policies.

Application areas

ASC-TMS has been specifically designed for VCs. However, we believe that is worth to ap-
ply the approach advocated in this system to other areas involving collective structures. For
instance, it may be possible to apply our trust management system to multi-agent coalitions.
Another interesting area where ASC-TMS can be used is the recently emerged federated cloud
[Buyya et al., 2010, Paraiso et al., 2012] (also called cloud federation). In these systems, mul-
tiple cloud services group together to match business needs of a client. So a federated cloud
is the union of several smaller parts that perform a common action. The functioning of these
systems correspond in several perspectives to the one of virtual communities. We expect that
the application of our approach to these environments produces the same impacts.

Deployment

We presented in Chapter 8, the implementation of the proof of concept ASC-TMS on the top of
the JaCaMo platform, a challenging research issue would be to make the mechanisms proposed
in this thesis available in real-world applications. Part of this implementation has already
been deployed on the top of the Android platform using the JaCa-Android 1. However, this
application does not cover all mechanisms provided in this thesis as JaCa-Android is built upon
Jason and CArtAgO, thus all aspects that relates to MOISE have not been deployed.

Finally, another interesting perspective would be to use JaCa-Web2 to develop a web version
of ASC-TMS to make it available to the largest public. Such deployment can bring much value
to the system and in depth understanding of VC members behaviour. It can also be used to
evaluate how the decisions supported by ASC-TMS aided VC members and will probably open
opportunities rooted in ground reality.

1http://jaca-android.sourceforge.net/
2http://jaca-web.sourceforge.net/

300

11.3. French Summary

11.3 French Summary

Le travail dont nous rendions compte dans ce manuscrit de doctorat avait pour objectif de
concevoir un outil pour assister les membres de communautés virtuelles dans leurs décisions de
confiance. Dans cette conclusion, nous dressons un bilan sur notre contributions et discutons
comment elles ont permis, de notre point de vue, d’atteindre cet objectif.

11.3.1 Synthèse des contributions

Le principal objectif de notre thèse était de développer un système qui assisterait les membres de
communautés virtuelles ouvertes et décentralisées dans leurs décisions de confiance. Nous avions
souligné dans l’introduction de cette thèse la nature sociale et dynamique de ces communautés et
auxquels il fallait absolument faire face. Pour cela, nous avons présenté un système de gestion
adaptatif et conforme socialement ASC-TMS (de l’anglais Adaptive and Socially-Compliant
Trust Management System).

Cette thèse est, à notre connaissance, la première à avoir proposé un système de gestion
de la confiance doté de propriétés sociales et adaptatives. L’aspect social du ASC-TMS
fait référence à la capacité de notre système à prendre des décisions qui soient sûres
non seulement pour l’individu mais également et sur tout pour la communauté. Par
ailleurs, l’aspect adaptatif du système fait référence à la capacité du système à prendre
des décisions qui soient en parfaite adéquation avec l’environnement dans lequel elles sont prises.

Le développement d’un système de gestion avec des capacités d’adaptation au contexte
impliquait deux sous objectifs: (i) la capacité d’adapter les politiques individuelles, et (ii) la
capacité d’adapter des politiques collectives. Que ce soit pour les politiques individuelles ou
collectives, la possibilité d’adapter une politique impliquait un langage de spécification de
politiques qui tolérerait une telle adaptation. Ainsi, notre première contribution dans ce sens
était de faire en sorte que la sémantique de nos politiques soit accessible à notre système de
gestion de la confiance. Pour cela, nous avons utilisé des technologies du web sémantique,
notamment des Ontologies, afin de permettre à notre système (et les agents dans lesquels il a
été implémenté) de comprendre et raisonner sur les politiques qu’il utilise. Ensuite, il a fallu
définir un ensemble d’opérateurs d’adaptation que nous avons appelé algèbre d’adaptation des
politiques. Ces opérateurs, qui reposent eux aussi sur l’Ontologie sus mentionnée, permettent
au système de changer les politiques de différentes manières. Enfin, nous avons étendu
notre langage de politiques afin d’exprimer des méta-politiques avec lesquels il était possible
d’exprimer quand (en réponse à quel contexte) et comment (en utilisant quels opérateurs
d’adaptation) une politique devait être adaptée.

Le développement d’un système de gestion de la confiance avec des capacités sociales
impliquait la satisfaction de deux sous objectifs: (i) la capacité de spécifier à la fois des
politiques individuelles mais aussi et surtout des politiques collectives, (ii) la capacité à veiller

301

Chapter 11. Conclusion

à l’application et au respect de ces politiques collectives. Pour répondre à ces deux objectifs,
nous avons puisé notre inspiration dans le domaine de la gestion de la confiance distribuée
(cf. Chapitre 3) ainsi que des théories sociales (cf. Chapitre 4). Du premier domaine nous
avons repris le concept de politiques ainsi que les mécanismes de combinaison et d’intégration,
alors que le second nous a offert des théories qui nous ont permis de comprendre quand et
pourquoi la politique d’un individu devait être adaptée pour se conformer à sa communauté.
Nous avions également utilisé le mécanisme d’adaptation présenté plus haut afin de permettre,
à la fois, à un individu d’adapter sa politique afin de se conformer à la politique collective,
mais également pour permettre aux membres d’une communauté virtuelle de déclencher
l’adaptation de leurs politiques collectives.

Enfin, nous avons présenté dans la dernière partie de ce manuscrit comment nous avions
implémenté notre système de gestion de la confiance en utilisant le paradigme multi-agent,
notamment avec la plateforme de programmation JaCaMo. Nous avions également évoqué
l’applicabilité de notre approche sur un scénario de la vie réelle. Il s’agissait d’un exemple
de communauté virtuelle d’innovation ouverte. Puis, nous avions vérifié l’intérêt de notre
approche en simulant une communauté virtuelle composé de 1000 membre en utilisant la
plateforme de simulation Repast. Les résultats préliminaires de notre évaluation empirique
montrent que les communautés utilisant notre modèle avaient une dynamique plus positive en
terme de nombre de communautés et de populations.

11.3.2 Questions ouvertes et perspectives

Compte tenu de la nature pluridisciplinaire des théories, modèles et techniques manipulés dans
cette thèse, il nous était difficile d’explorer en profondeur chaque aspect de notre approche.
Dans cette section, nous discuterons des limites de nos propositions tout en évoquant quelques
pistes d’amélioration.

• Bien que les premiers résultats montrent l’effet positif de notre approche sur les
communautés virtuelles, par manque de temps, nous n’avions pas pu réaliser des études
sophistiquées sur les performances de notre modèle comparées à d’autres approches. Par
exemple, nous aurions aimait pouvoir examiner l’impact d’une minorité malveillante sur
une politique collective. Aussi, il aurait fallu tester plusieurs types de population pour
voir si le modèle n’a pas de contrepartie en terme de performance dans des configurations
particulières. Enfin, il aurait été aussi intéressant de réaliser une analyse des données
et une étude statistiques plus rigoureuses sur les résultats obtenus (e.g., Analyse de la
variance) pour voir si les résultats sont statistiquement fiables et viables.

• Notre système repose sur une Ontologie des facteurs de confiance dans laquelle nous

302

11.3. French Summary

avions recensé les éléments essentiels à l’évaluation de la confiance. Or, ce facteur repose
sur l’existence d’une corrélation entre le comportement d’un individu et les propriétés
qu’il possède. Ainsi, il nous semble intéressant d’utiliser des techniques d’apprentissage
artificiel (i.e., Machine learning) tel que [Burnett et al., 2013b] afin de permettre au
système d’enrichir automatiquement cette Ontologie.

• Le caractère décentralisé des communautés virtuelles peut amener le système à créer un
état incohérent. Par exemple, quand une politique collective évolue alors que certains
membres n’étaient pas connectés. Dans cette situation, il existerait ce qu’on appelle
les politiques fantômes qui serait forcément en conflit avec la version à jour de la poli-
tique collective. Afin d’éviter cette situation, nous avons identifié quelques travaux (e.g.,
[Serban and Minsky, 2009]) qui ont été utilisés avec succès dans des situations analogues.
Ainsi, une perspective intéressante consisterait à appliquer ces solutions à notre modèle
afin de le prémunir de ces politiques fantômes.

• Dans notre système, nous supposons que l’ensemble des membres utilisent forcément la
même Ontologie. Or, pour être plus réalistes, il aurait fallut envisager la situation dans
laquelle plusieurs Ontologies sont utilisés. Bien que nous pensons que les techniques
d’alignement d’Ontologies sont capables d’assurer une certaine forme d’interopérabilité,
il est nécessaire de vérifier cette piste et de proposer des solutions en conséquence.

• Le langage de spécification des politiques utilisé dans notre système a été conçu de
manière explicite pour répondre aux objectifs de cette thèse. Cependant, pour que ce
langage soit ait sa place dans des systèmes réels, ce dont nous sommes convaincus, il faut
spécifier sa syntaxe et sa sémantique de manière plus rigoureuses et lever les quelques
limités qui ont pu être identifiées. Par exemple, il n’est actuellement pas possible de
spécifier des politiques alternatives (deux politiques pour la même décision). Bien que
les patterns permettent de la faire, nous n’avons pas encore réfléchi quel impact aurait
l’évaluation simultanée de deux politiques et si leurs résultats étaient en conflits. Là
aussi, les approches de combinaisons de politiques nous semblent assez matures pour
les appliquer à ce type de cas de figure, mais tant que nous l’avons pas testé nous ne
pouvons tolérer des politiques alternatives.

• Les métas-politiques sont un concept clé de notre contribution. Nous les utilisons pour
activer l’adaptation de politiques individuelles et collectives. Or, à ce stade, nous n’avons
pas envisagé que des métas-politiques puissent être adaptés de manière automatique.
Au moins, il serait intéressant de voir comment est-ce qu’on pourrait utiliser des
métas-politiques pour activer ou désactiver d’autre méta-politiques qui s’avérerait être
inefficaces.

303

Chapter 11. Conclusion

• Notre système a été conçu explicitement pour les communautés virtuelles. Or, nous
pensons que son application pouvait être étendue à d’autres systèmes dans lesquels
les dimensions individuelles et collectives existent. Par exemple, nous pensons que des
systèmes comme les coalitions multi-agent ainsi que les organisations virtuelles sont
de bons candidats pour étendre le champ d’application de notre approche. Une autre
piste d’application serait le domaine récent des fédérations de cloud (Federated Cloud)
[Buyya et al., 2010, Paraiso et al., 2012]. Dans ces systèmes, plusieurs fournisseurs de
services collaborent pour répondre à la commande d’un client. Le fonctionnement de ces
système rejoint sur plusieurs points celui des communautés virtuelles. Par conséquence,
nous avons de bonnes raisons de penser que les résultats que nous avons obtenus avec les
communautés virtuelles peuvent être reproduites sur ces systèmes.

304

Bibliography

Bibliography

[Aamodt and Plaza, 1994] Aamodt, A. and Plaza, E. (1994). Case-based reasoning: Foundational

issues, methodological variations, and system approaches. AI communications, 7:39–59. (Cited on

pages 186 and 208.)

[Abi Haidar et al., 2008] Abi Haidar, D., Cuppens - Boulahia, N., Cuppens, F., and Debar, H. (2008).

XeNA: an access negotiation framework using XACML. Annals of telecommunications - annales des

télécommunications, 64(1-2):155–169. (Cited on page 73.)

[Ahonen and Lietsala, 2007] Ahonen, M. and Lietsala, K. (2007). Managing Service Ideas and Sugges-

tions Information Systems in Innovation Brokering. Innovation. (Cited on pages 245 and 259.)

[Alberola et al., 2011] Alberola, J., Julian, V., and Garcia-Fornes, A. (2011). Open issues in multiagent

system reorganization. In Perez, J. B., Corchado, J. M., Moreno, M. N., Julian, V., Mathieu, P.,

Canada-Bago, J., Ortega, A., and Caballero, A. F., editors, Highlights in Practical Applications of

Agents and Multiagent Systems, volume 89 of Advances in Intelligent and Soft Computing, pages

151–158. Springer Berlin Heidelberg. (Cited on page 108.)

[Alechina et al., 2013] Alechina, N., Bassiliades, N., Dastani, M., Vos, M. D., Logan, B., Mera, S.,

Morris-Martin, A., and Schapachnik, F. (2013). Computational models for normative multi-agent

systems. In Andrighetto, G., Governatori, G., Noriega, P., and van der Torre, L. W. N., editors,

Normative Multi-Agent Systems, volume 4 of Dagstuhl Follow-Ups, pages 71–92. Schloss Dagstuhl -

Leibniz-Zentrum fuer Informatik. (Cited on pages 106, 108 and 114.)

[Allport, 1985] Allport, G. (1985). The historical background of social psychology, pages 1–46. Random

House. (Cited on page 95.)

[Andrighetto et al., 2010] Andrighetto, G., Campenni, M., Cecconi, F., and Conte, R. (2010). The

complex loop of norm emergence: A simulation model. In Takadama, K., Cioffi-Revilla, C., and

Deffuant, G., editors, Simulating Interacting Agents and Social Phenomena, volume 7 of Agent-Based

Social Systems, pages 19–35. Springer Japan. (Cited on page 102.)

[Ardagna et al., 2007] Ardagna, C. A., Damiani, E., Capitani di Vimercati, S., Foresti, S., and Sama-

rati, P. (2007). Trust management. In Petković, M. and Jonker, W., editors, Security, Privacy,

and Trust in Modern Data Management, Data-Centric Systems and Applications, pages 103–117.

Springer Berlin Heidelberg. (Cited on page 61.)

[Arrow, 1974] Arrow, K. J. (1974). The Limits of Organization. W W Norton & Company

Incorporated. (Cited on page 20.)

[Arrow, 1984] Arrow, K. J. (1984). The Economics of Agency. Institute for Mathematical Studies in

the Social Sciences, Stanford University. (Cited on page 20.)

[Artz and Gil, 2010] Artz, D. and Gil, Y. (2010). A survey of trust in computer science and the

Semantic Web. Web Semantics: Science, Services and Agents on the World Wide Web, 5(2):58–71.

(Cited on pages 25, 30, 62 and 175.)

[Asch, 1955] Asch, S. E. (1955). Opinions and Social Pressure. Scientific American, 193:31–35. (Cited

on pages 97, 202 and 279.)

Bibliography

[Ashby, 1947] Ashby, W. R. (1947). Principles of the self-organizing dynamic system. The Journal of

general psychology, 37(2):125–8. (Cited on page 106.)

[Austin, 1962] Austin, J. L. (1962). How to do Things with Words: The William James Lectures

delivered at Harvard University in 1955. Clarendon Press. (Cited on pages 133 and 141.)

[Axelrod and Hamilton, 1981] Axelrod, R. and Hamilton, W. (1981). The evolution of cooperation.

Science, 211(4489):1390–1396. (Cited on page 28.)

[Axelrod and Hamilton, 1984] Axelrod, R. and Hamilton, W. D. (1984). The Evolution of Cooperation

in Biological Systems. In The Evolution of Cooperation, pages 88–105. Basic Books. (Cited on

page 28.)

[Baier, 1986] Baier, A. (1986). Trust and antitrust. Ethics, 96(2):231–260. (Cited on page 27.)

[Bandara et al., 2007] Bandara, A., Damianou, N., Lupu, E., Sloman, M., and Dulay, N. (2007). Policy-

based management. In Bergstra, J. and Burgess, M., editors, Handbook of Network and System

Administration. Elsevier Science. (Cited on page 62.)

[Banzhaf, 2009] Banzhaf, W. (2009). Self-organizing systems. Encyclopedia of Physical Science &

Technology. (Cited on page 106.)

[Barrett, 2004] Barrett, K. (2004). The dynamic adaptation of security policies in pervasive environ-

ments , with contextual information as the catalyst. Technical report, M-Zones Research Programme,

Waterford Institute of Technology. (Cited on page 175.)

[Becker and Sewell, 2004] Becker, M. and Sewell, P. (2004). Cassandra: Distributed access control

policies with tunable expressiveness. In Proceedings of the Fifth IEEE International Workshop on

Policies for Distributed Systems and Networks, POLICY ’04, pages 159–, Washington, DC, USA.

IEEE Computer Society. (Cited on pages 68, 80 and 85.)

[Becker, 2005] Becker, M. Y. (2005). Cassandra: flexible trust management and its application to

electronic health records. Technical Report UCAM-CL-TR-648, University of Cambridge. (Cited on

pages 51 and 52.)

[Bertino et al., 2003] Bertino, E., Ferrari, E., and Squicciarini, A. (2003). X -tnl: An xml-based lan-

guage for trust negotiations. In Proceedings of the 4th IEEE International Workshop on Policies for

Distributed Systems and Networks, POLICY ’03, pages 81–, Washington, DC, USA. IEEE Computer

Society. (Cited on pages 35, 46, 71, 80 and 85.)

[Bertino et al., 2004] Bertino, E., Ferrari, E., and Squicciarini, A. C. (2004). Trust-x: A peer-to-peer

framework for trust establishment. IEEE Trans. on Knowl. and Data Eng., 16(7):827–842. (Cited

on pages 35, 46 and 71.)

[Bhargav-Spantzel et al., 2007] Bhargav-Spantzel, A., Squicciarini, A. C., and Bertino, E. (2007).

Trust negotiation in identity management. IEEE Security and Privacy, 5(2):55–63. (Cited on

page 191.)

[Bhuiyan and Jøsang, 2010] Bhuiyan, T. and Jøsang, A. (2010). Analysing Trust Transitivity and

The Effects of Unknown Dependence. International Journal of Engineering Business Management,

2(1):23–28. (Cited on pages 27 and 29.)

[Blaze et al., 1999a] Blaze, M., Feigenbaum, J., Ioannidis, J., and Keromytis, A. D. (1999a). The role

of trust management in distributed systems security. In Vitek, J. and Jensen, C. D., editors, Secure

308

Bibliography

Internet programming, pages 185–210. Springer-Verlag, London, UK. (Cited on pages 54, 55, 82, 83,

147 and 175.)

[Blaze et al., 1999b] Blaze, M., Feigenbaum, J., and Keromytis, A. (1999b). Keynote: Trust manage-

ment for public-key infrastructures. In Christianson, B., Crispo, B., Harbison, W., and Roe, M.,

editors, Security Protocols, volume 1550 of Lecture Notes in Computer Science, pages 59–63. Springer

Berlin Heidelberg. (Cited on pages 4, 34, 45 and 63.)

[Blaze et al., 1996] Blaze, M., Feigenbaum, J., and Lacy, J. (1996). Decentralized trust management. In

Proceedings of the 1996 IEEE Symposium on Security and Privacy, SP ’96, pages 164–, Washington,

DC, USA. IEEE Computer Society. (Cited on pages 4, 34, 45, 54, 55, 62, 80, 82, 83 and 84.)

[Bocchiaro and Zamperini, 2012] Bocchiaro, P. and Zamperini, A. (2012). Conformity, obedience, dis-

obedience: The power of the situation. In Rossi, G., editor, Psychology - Selected Papers, pages

275–294. InTech. (Cited on page 107.)

[Boella and Torre, 2005] Boella, G. and Torre, L. (2005). Permission and authorization in policies for

virtual communities of agents. In Moro, G., Bergamaschi, S., and Aberer, K., editors, Agents and

Peer-to-Peer Computing, volume 3601 of Lecture Notes in Computer Science, pages 86–97. Springer

Berlin Heidelberg. (Cited on pages 131 and 132.)

[Boella et al., 2008] Boella, G., Torre, L. V. D., and Verhagen, H. J. E. (2008). Introduction to

the special issue on normative multiagent systems. Autonomous Agents and Multi-Agent Systems,

17(1):1–10. (Cited on page 104.)

[Boella and van der Torre, 2005] Boella, G. and van der Torre, L. (2005). Role-based rights in artificial

social systems. In Proceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent

Technology, IAT ’05, pages 516–519, Washington, DC, USA. IEEE Computer Society. (Cited on

pages 52 and 107.)

[Boissier, 2011] Boissier, O. (2011). From organisation oriented programming to multi-agent oriented

programming. In Proceedings of the 9th German conference on Multiagent system technologies,

MATES’11, pages 1–1, Berlin, Heidelberg. Springer-Verlag. (Cited on page 215.)

[Boissier et al., 2010] Boissier, O., Bordini, R. H., Dastani, M., Hübner, J. F., and Ricci, A. (2010).

Multi-Agent Programming. (Cited on page 103.)

[Bonatti et al., 2010] Bonatti, P., De Coi, J. L., Olmedilla, D., and Sauro, L. (2010). A rule-based trust

negotiation system. IEEE Trans. on Knowl. and Data Eng., 22(11):1507–1520. (Cited on page 36.)

[Bonatti et al., 2008] Bonatti, P., Juri, L., Olmedilla, D., and Sauro, L. (2008). Policy-driven ne-

gotiations and explanations: Exploiting logic-programming for trust management, privacy &

security. Logic Programming, pages 779–784. (Cited on pages 74, 80 and 85.)

[Bonatti and Olmedilla, 2005] Bonatti, P. and Olmedilla, D. (2005). Driving and monitoring provi-

sional trust negotiation with metapolicies. In Proceedings of the Sixth IEEE International Workshop

on Policies for Distributed Systems and Networks, POLICY ’05, pages 14–23, Washington, DC,

USA. IEEE Computer Society. (Cited on pages 74 and 75.)

[Bonatti and Samarati, 2000] Bonatti, P. and Samarati, P. (2000). Regulating service access and in-

formation release on the web. In Proceedings of the 7th ACM conference on Computer and commu-

nications security, CCS ’00, pages 134–143, New York, NY, USA. ACM. (Cited on page 36.)

309

Bibliography

[Bonatti and Samarati, 2002] Bonatti, P. A. and Samarati, P. (2002). Regulating Service Access and

Information Release on the Web. Journal of Computer Security, 10(3):241 – 271. (Cited on pages 36,

90, 91, 92 and 112.)

[Bordini et al., 2007] Bordini, R. H., Hübner, J. F., and Wooldridge, M. (2007). Programming Multi-

Agent Systems in AgentSpeak using Jason (Wiley Series in Agent Technology). John Wiley and Sons.

(Cited on pages 213, 234, 235 and 243.)

[Borenstein and Freed, 1996] Borenstein, N. and Freed, N. (1996). Multipurpose Internet Mail Exten-

sions. (Cited on page 121.)

[Bowser, 2013] Bowser, A. S. (2013). To Conform or Not to Conform: An Examination of the Effects

of Mock Jury Deliberation on Individual Jurors. PhD thesis, East Tennessee State University. (Cited

on pages 99, 102 and 282.)

[Braghin, 2011] Braghin, S. (2011). Advanced languages and techniques for trust negotiation. PhD

thesis, University degli Studi dell’Insubria. (Cited on pages 62 and 72.)

[Bruneel et al., 2007] Bruneel, J., Spithoven, A., and Maesen, A. (2007). Building trust: a matter of

proximity? In Babson College Entrepreneurship Research Conference. (Cited on page 145.)

[Burgemeestre et al., 2010] Burgemeestre, B., Hulstijn, J., and Tan, Y.-H. (2010). Towards an archi-

tecture for self-regulating agents: a case study in international trade. In Proceedings of the 5th

international conference on Coordination, organizations, institutions, and norms in agent systems,

COIN’09, pages 320–333, Berlin, Heidelberg. Springer-Verlag. (Cited on pages 105 and 107.)

[Burnett, 2011] Burnett, C. (2011). Trust Assessment and Decision-Making in Dynamic Multi-Agent

Systems. PhD thesis, University of Aberdeen. (Cited on pages 31, 44 and 299.)

[Burnett et al., 2010] Burnett, C., Norman, T. J., and Sycara, K. (2010). Bootstrapping trust eval-

uations through stereotypes. In Proceedings of the 9th International Conference on Autonomous

Agents and Multiagent Systems: volume 1 - Volume 1, AAMAS ’10, pages 241–248, Richland, SC.

International Foundation for Autonomous Agents and Multiagent Systems. (Cited on page 25.)

[Burnett et al., 2013a] Burnett, C., Norman, T. J., and Sycara, K. (2013a). Stereotypical trust and

bias in dynamic multiagent systems. ACM Trans. Intell. Syst. Technol., 4(2):26:1–26:22. (Cited on

page 31.)

[Burnett et al., 2013b] Burnett, C., Norman, T. J., and Sycara, K. (2013b). Stereotypical trust and

bias in dynamic multiagent systems. ACM Trans. Intell. Syst. Technol., 4(2):26:1–26:22. (Cited on

pages 299 and 303.)

[Burnett et al., 2011] Burnett, C., Norman, T. J., and Sycara, K. P. (2011). Trust decision-making in

multi-agent systems. In IJCAI, pages 115–120. (Cited on page 25.)

[Buyya et al., 2010] Buyya, R., Ranjan, R., and Calheiros, R. N. (2010). Intercloud: utility-oriented

federation of cloud computing environments for scaling of application services. In Proceedings of the

10th international conference on Algorithms and Architectures for Parallel Processing - Volume Part

I, ICA3PP’10, pages 13–31, Berlin, Heidelberg. Springer-Verlag. (Cited on pages 300 and 304.)

[Camarinha-Matos et al., 2003] Camarinha-Matos, L., Castolo, O., and Rosas, J. (2003). A multi-agent

based platform for virtual communities in elderly care. In Proceedings of 2003 IEEE Conference

on Emerging Technologies and Factory Automation., volume 2, pages 421–428. IEEE. (Cited on

pages 117 and 135.)

310

Bibliography

[Campenni et al., 2009] Campenni, M., Andrighetto, G., Cecconi, F., and Conte, R. (2009). Normal

= normative? the role of intelligent agents in norm innovation. Mind & Society, 8(2):153–172.

(Cited on pages 104 and 105.)

[Casimir et al., 2012] Casimir, G., Lee, K., and Loon, M. (2012). Knowledge sharing: influences of

trust, commitment and cost. Journal of Knowledge Management, 16:740–753. (Cited on page 4.)

[Castelfranchi, 2000] Castelfranchi, C. (2000). Engineering social order. In Omicini, A., Tolksdorf,

R., and Zambonelli, F., editors, Engineering Societies in the Agents World, volume 1972 of Lecture

Notes in Computer Science, pages 1–18. Springer Berlin Heidelberg. (Cited on pages 102 and 114.)

[Castelfranchi and Falcone, 1998] Castelfranchi, C. and Falcone, R. (1998). Principles of trust for mas:

Cognitive anatomy, social importance, and quantification. In Proceedings of the 3rd International

Conference on Multi Agent Systems, ICMAS ’98, pages 72–79, Washington, DC, USA. IEEE Com-

puter Society. (Cited on page 24.)

[Castelfranchi and Falcone, 2000a] Castelfranchi, C. and Falcone, R. (2000a). Trust and control: A

dialectic link. Applied Artificial Intelligence, 14(8):799–823. (Cited on page 24.)

[Castelfranchi and Falcone, 2000b] Castelfranchi, C. and Falcone, R. (2000b). Trust is much more

than subjective probability: Mental components and sources of trust. In Proceedings of the 33rd

Hawaii International Conference on System Sciences-Volume 6 - Volume 6, HICSS ’00, pages 6008–,

Washington, DC, USA. IEEE Computer Society. (Cited on pages 23, 24, 43 and 44.)

[Ceri et al., 1989] Ceri, S., Gottlob, G., and Tanca, L. (1989). What you always wanted to know about

datalog (and never dared to ask). IEEE Trans. on Knowl. and Data Eng., 1(1):146–166. (Cited on

pages 64 and 68.)

[Cervenka et al., 2006] Cervenka, R., Trencansky, I., and Calisti, M. (2006). Modeling social aspects of

multi-agent systems: The aml approach. In Muller, J. P. and Zambonelli, F., editors, Agent-Oriented

Software Engineering VI, volume 3950 of Lecture Notes in Computer Science, pages 28–39. Springer

Berlin Heidelberg. (Cited on page 173.)

[Chen, 2011] Chen, L. (2011). Analyzing and Developing Role-Based Access Control Models. PhD

thesis, Royal Holloway, University of London. (Cited on pages 50 and 52.)

[Chesbrough, 2012a] Chesbrough, H. (2012a). Open Innovation. Research Technology Management,

55:20–27. (Cited on page 245.)

[Chesbrough, 2012b] Chesbrough, H. (2012b). Open innovation: Where we’ve been and where we’re

going. Research Technology Management, 55:20–27. (Cited on page 245.)

[Chesbrough, 2006] Chesbrough, H. W. (2006). Open Innovation: The New Imperative for Creating

and Profiting from Technology. Harvard Business Press. (Cited on pages 245 and 259.)

[Christianson and Harbison, 1997] Christianson, B. and Harbison, W. S. (1997). Why isn’t trust tran-

sitive? In Lomas, M., editor, Security Protocols, volume 1189 of Lecture Notes in Computer Science,

pages 171–176. Springer Berlin Heidelberg. (Cited on page 29.)

[Chu et al., 1997] Chu, Y.-H., Feigenbaum, J., LaMacchia, B., Resnick, P., and Strauss, M. (1997).

Referee: trust management for web applications. World Wide Web J., 2(3):127–139. (Cited on

pages 63, 64, 80 and 84.)

311

Bibliography

[Cohen and Levesque, 1997] Cohen, P. R. and Levesque, H. J. (1997). Communicative actions for

artificial agents. In Bradshaw, J. M., editor, Software agents, pages 419–436. MIT Press, Cambridge,

MA, USA. (Cited on pages 133 and 141.)

[Coleman, 1990] Coleman, J. S. (1990). Foundation of Social Theory. Harvard University Press. (Cited

on pages 87 and 111.)

[Collier, 2003] Collier, N. (2003). RePast : An Extensible Framework for Agent Simulation. (Cited on

pages 263 and 283.)

[Conrad et al., 2012] Conrad, E., Misenar, S., and Feldman, J. (2012). CISSP study guide. Syngress.

(Cited on page 57.)

[Conte et al., 2009] Conte, R., Andrighetto, G., and Campenni, M. (2009). The immergence of norms

in agent worlds. In Aldewereld, H., Dignum, V., and Picard, G., editors, Engineering Societies in

the Agents World X, volume 5881 of Lecture Notes in Computer Science, pages 1–14. Springer Berlin

Heidelberg. (Cited on page 105.)

[Conte et al., 1998] Conte, R., Gilbert, N., and Sichman, J. S. (1998). Mas and social simulation: A

suitable commitment. In Sichman, J. S., Conte, R., and Gilbert, N., editors, Multi-Agent Systems

and Agent-Based Simulation, volume 1534 of Lecture Notes in Computer Science, pages 1–9. Springer

Berlin Heidelberg. (Cited on page 101.)

[Cooke, 2009] Cooke, J. (2009). Resolving Open Innovation Contradictions. Technical Report

DLM2009-01, Systematic Innovation. (Cited on pages 246, 259 and 260.)

[Corkill, 1983] Corkill, D. D. (1983). A framework for organizational self-design in distributed prob-

lem solving networks. PhD thesis, University of Massachusetts Amherst. AAI8310275. (Cited on

page 103.)

[Cover, 2007] Cover, R. (2007). Extensible Access Control Markup Language (XACML). (Cited on

pages 72, 80 and 85.)

[Criado, 2013] Criado, N. (2013). Using norms to control open multi-agent systems. AI Communica-

tions, 26(3). (Cited on pages 104 and 105.)

[da Silva and Demazeau, 2002] da Silva, J. L. T. and Demazeau, Y. (2002). Vowels co-ordination

model. In Proceedings of the first international joint conference on Autonomous agents and mul-

tiagent systems: part 3, AAMAS ’02, pages 1129–1136, New York, NY, USA. ACM. (Cited on

pages 119 and 136.)

[Damianou et al., 2001] Damianou, N., Dulay, N., Lupu, E., and Sloman, M. (2001). The ponder policy

specification language. In Proceedings of the International Workshop on Policies for Distributed

Systems and Networks, POLICY ’01, pages 18–38, London, UK, UK. Springer-Verlag. (Cited on

pages 65, 80 and 84.)

[De Coi and Olmedilla, 2008] De Coi, J. L. and Olmedilla, D. (2008). A review of trust management,

security and privacy policy languages. In SECRYPT 2008, Proceedings of the International Confer-

ence on Security and Cryptography, Porto, Portugal, July 26-29, 2008, SECRYPT is part of ICETE

- The International Joint Conference on e-Business and Telecommunications, pages 483–490. IN-

STICC Press. (Cited on pages 58, 68 and 76.)

312

Bibliography

[De Coi et al., 2008] De Coi, J. L., Olmedilla, D., Bonatti, P., and Sauro, L. (2008). Protune: A

framework for semantic web policies. In Bizer, C. and Joshi, A., editors, Proceedings of the Poster

and Demonstration Session at the 7th International Semantic Web Conference (ISWC2008), volume

401. CEUR Workshop Proceedings. (Cited on pages 36 and 46.)

[DeTreville, 2002] DeTreville, J. (2002). Binder, a logic-based security language. In Proceedings of the

2002 IEEE Symposium on Security and Privacy, SP ’02, pages 105–, Washington, DC, USA. IEEE

Computer Society. (Cited on pages 64, 80 and 84.)

[Deutsch, 2011] Deutsch, M. (2011). Cooperation and competition. In Coleman, P. T., editor, Conflict,

Interdependence, and Justice, volume 11 of Peace Psychology Book Series, pages 23–40. Springer New

York. (Cited on pages 18, 21, 24 and 41.)

[Deutsch and Gerard, 1955] Deutsch, M. and Gerard, H. B. (1955). A study of normative and informa-

tional social influences upon individual judgment. The Journal of Abnormal and Social Psychology,

51(3):629–636. (Cited on pages 18, 21, 24, 26 and 41.)

[Dignum, 2004] Dignum, M. (2004). A model for organizational interaction: based on agents, founded

in logic. PhD thesis, Proefschrift Universiteit Utrecht. (Cited on pages 102, 103 and 104.)

[Dimmock et al., 2004] Dimmock, N., Belokosztolszki, A., Eyers, D., Bacon, J., and Moody, K. (2004).

Using trust and risk in role-based access control policies. In Proceedings of the ninth ACM symposium

on Access control models and technologies, SACMAT ’04, pages 156–162, New York, NY, USA. ACM.

(Cited on page 52.)

[Dubois, 2011] Dubois, D. (2011). Self-organizing Methods and Models for Software Development. PhD

thesis, Politecnico di Milano, Dipartimento di Elettronica e Informazione. (Cited on pages 106, 110

and 114.)

[Dunn and Schweitzer, 2005] Dunn, J. and Schweitzer, M. (2005). Feeling and Believing: The Influ-

ence of Emotion on Trust. Journal of personality and social psychology, 88(5):736–748. (Cited on

page 145.)

[Eisenegger, 2009] Eisenegger, M. (2009). Trust and reputation in the age of globalisation. In Klewes,

J. and Wreschniok, R., editors, Reputation Capital, pages 11–22. Springer Berlin Heidelberg. (Cited

on page 107.)

[El Houri, 2010] El Houri, M. (2010). A Formal Model to express Dynamic Policies Access Control

and Trust Negotiation a Distributed Environment. PhD thesis, Université Toulouse III Paul Sabatier

(UPS). (Cited on page 49.)

[Esparcia and Argente, 2010] Esparcia, S. and Argente, E. (2010). A functional taxonomy for artifacts.

In Corchado, E., Gra Romay, M., and Manhaes Savio, A., editors, Hybrid Artificial Intelligence Sys-

tems, volume 6077 of Lecture Notes in Computer Science, pages 159–167. Springer Berlin Heidelberg.

(Cited on page 214.)

[Esteva et al., 2002] Esteva, M., de la Cruz, D., and Sierra, C. (2002). Islander: an electronic insti-

tutions editor. In Proceedings of the first international joint conference on Autonomous agents and

multiagent systems: part 3, AAMAS ’02, pages 1045–1052, New York, NY, USA. ACM. (Cited on

page 103.)

[Eymard-Duvernay et al., 2003] Eymard-Duvernay, F., Favereau, O., Orléan, A., Salais, R., and

Thévenot, L. (2003). Values, Coordination and Rationality: The Economy of Conventions or the

313

Bibliography

Time of Reunification in the Economic, Social and Political Sciences. Conventions et Institutions:

approfondissements theoriques et contributions au debat politique, 11. (Cited on page 19.)

[Falcone and Castelfranchi, 2001] Falcone, R. and Castelfranchi, C. (2001). Social trust: a cognitive

approach. In Castelfranchi, C. and Tan, Y.-H., editors, Trust and deception in virtual societies,

pages 55–90. Kluwer Academic Publishers, Norwell, MA, USA. (Cited on pages 23, 24, 25, 26, 43,

44, 143 and 164.)

[Fang et al., 2012] Fang, H., Zhang, J., Sensoy, M., and Thalmann, N. M. (2012). A generalized

stereotypical trust model. In Proceedings of the 2012 IEEE 11th International Conference on Trust,

Security and Privacy in Computing and Communications, TRUSTCOM ’12, pages 698–705, Wash-

ington, DC, USA. IEEE Computer Society. (Cited on page 31.)

[Farley and Clark, 1954] Farley, B. G. and Clark, W. (1954). Simulation of self-organizing systems by

digital computer. Information Theory, Transactions of the IRE Professional Group on, 4(4):76–84.

(Cited on page 106.)

[Farrell, 2009] Farrell, H. (2009). Distrust, chapter Trust, Distrust, and Power, pages 85–105. Russell

Sage Foundation. (Cited on page 27.)

[Ferber et al., 2005] Ferber, J., Michel, F., and Baez, J. (2005). Agre: Integrating environments with

organizations. In Weyns, D., Dyke Parunak, H., and Michel, F., editors, Environments for Multi-

Agent Systems, volume 3374 of Lecture Notes in Computer Science, pages 48–56. Springer Berlin

Heidelberg. (Cited on page 103.)

[Fernandez-Gago et al., 2007] Fernandez-Gago, M. C., Roman, R., and Lopez, J. (2007). A Survey on

the Applicability of Trust Management Systems forWireless Sensor Networks. In Third International

Workshop on Security, Privacy and Trust in Pervasive and Ubiquitous Computing (SecPerU 2007),

pages 25–30. Ieee. (Cited on page 62.)

[Ferraiolo and Kuhn, 2009] Ferraiolo, D. and Kuhn, D. (2009). Role-based access controls. arXiv

preprint arXiv:0903.2171, pages 554 – 563. (Cited on page 52.)

[Ferraiolo et al., 2001] Ferraiolo, D. F., Sandhu, R., Gavrila, S., Kuhn, D. R., and Chandramouli, R.

(2001). Proposed NIST standard for role-based access control. ACM Transactions on Information

and System Security, 4(3):224–274. (Cited on page 52.)

[Finin et al., 2008] Finin, T., Joshi, A., Kagal, L., Niu, J., Sandhu, R., Winsborough, W., and Thu-

raisingham, B. (2008). Rowlbac: representing role based access control in owl. In Proceedings of the

13th ACM symposium on Access control models and technologies, SACMAT ’08, pages 73–82, New

York, NY, USA. ACM. (Cited on pages 52 and 78.)

[FIPA, 2002] FIPA (2002). FIPA SL Content Language Specification. (Cited on pages 133 and 141.)

[Firdhous et al., 2012] Firdhous, M., Ghazali, O., and Hassan, S. (2012). Trust management in cloud

computing: A critical review. International Journal on Advances in ICT for Emerging Regions

(ICTer), 4(2). (Cited on page 62.)

[Galinović, 2010] Galinović, A. (2010). Automated trust negotiation models. In Proceedings of the

33rd International Convention MIPRO, pages 1197–1202. (Cited on page 56.)

[Gambetta, 2000] Gambetta, D. (2000). Can We Trust Trust? In Gambetta, D., editor, Trust: Making

and Breaking Cooperative Relations, chapter 13, pages 213–237. Department of Sociology, University

of Oxford. (Cited on pages 22 and 43.)

314

Bibliography

[Genovese, 2012] Genovese, V. (2012). Modalities in Access Control: Logics, Proof-theory and Ap-

plications. PhD thesis, University of Luxembourg and University of Torino. (Cited on pages 48

and 51.)

[Gerck, 2000] Gerck, E. (2000). Overview of certification systems: X.509, ca, pgp and skip. Technical

report, Meta-Certificate Group. (Cited on pages 58 and 83.)

[Golbeck, 2005] Golbeck, J. (2005). Computing and applying trust in web-based social networks. PhD

thesis, University of Maryland, College Park. (Cited on page 30.)

[Golbeck and Hendler, 2006] Golbeck, J. and Hendler, J. (2006). Inferring binary trust relationships

in web-based social networks. ACM Trans. Internet Technol., 6(4):497–529. (Cited on page 25.)

[Governatori and Rotolo, 2009] Governatori, G. and Rotolo, A. (2009). How do agents comply with

norms? In Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web In-

telligence and Intelligent Agent Technology - Volume 03, WI-IAT ’09, pages 488–491, Washington,

DC, USA. IEEE Computer Society. (Cited on page 104.)

[Grandison and Sloman, 2000] Grandison, T. and Sloman, M. (2000). A survey of trust in internet

applications. Commun. Surveys Tuts., 3(4):2–16. (Cited on pages 20, 27 and 30.)

[Grandison and Sloman, 2003] Grandison, T. and Sloman, M. (2003). Trust management tools for

internet applications. In Proceedings of the 1st international conference on Trust management,

iTrust’03, pages 91–107, Berlin, Heidelberg. Springer-Verlag. (Cited on pages 34, 45 and 55.)

[Grandison, 2003] Grandison, T. W. A. (2003). Trust Management for Internet Applications. PhD

thesis, Imperial College of Science, Technology and Medicine, University of London. (Cited on

pages 23, 25, 27, 28, 29, 30, 38, 43, 55, 61, 62, 63, 64, 65, 80, 82, 84 and 175.)

[Gray, 2006] Gray, E. (2006). A trust-based reputation management system. PhD thesis, Dept. of

Computer Science, Trinity College Dublin. (Cited on pages 27 and 62.)

[Grizard et al., 2007] Grizard, A., Vercouter, L., Stratulat, T., and Muller, G. (2007). A peer-to-peer

normative system to achieve social order. In Noriega, P., Vazquez-Salceda, J., Boella, G., Boissier,

O., Dignum, V., Fornara, N., and Matson, E., editors, Coordination, Organizations, Institutions,

and Norms in Agent Systems II, volume 4386 of Lecture Notes in Computer Science, pages 274–289.

Springer Berlin Heidelberg. (Cited on pages 102 and 107.)

[Gupta and Kim, 2004] Gupta, S. and Kim, H. (2004). Virtual community: concepts, implications,

and future research directions. In Proceedings of the 10th American Conference on Information

System, pages 2679–2687. (Cited on pages 117 and 135.)

[Hardin, 1982] Hardin, R. (1982). Trust. Polity. (Cited on page 27.)

[Harrenstein et al., 2002] Harrenstein, P., van der Hoek, W., Meyer, J.-J. C., and Witteveen, C. (2002).

On modal logic interpretations of games. In van Harmelen, F., editor, ECAI, pages 28–32. IOS Press.

(Cited on page 195.)

[Harris, 1977] Harris, E. E. (1977). Kants Refutation of the Ontological Proof. Philosophy, 52:90.

(Cited on page 18.)

[Haynes et al., 2013] Haynes, C., Miles, S., and Luck, M. (2013). Monitoring the Impact of Norms

upon Organisational Performance: a Simulation Approach. In The 15th International Workshop on

Coordination, Organisations, Institutions and Norms. (Cited on page 104.)

315

Bibliography

[Herzberg et al., 2000] Herzberg, A., Mass, Y., Michaeli, J., Ravid, Y., and Naor, D. (2000). Access

control meets public key infrastructure, or: Assigning roles to strangers. In Proceedings of the 2000

IEEE Symposium on Security and Privacy, SP ’00, pages 2–, Washington, DC, USA. IEEE Computer

Society. (Cited on pages 67, 80 and 85.)

[Herzig and Lorini, 2010] Herzig, A. and Lorini, E. (2010). A logic of trust and reputation. Logic

Journal of IGPL. (Cited on pages 28, 33 and 45.)

[Herzig et al., 2008] Herzig, A., Lorini, E., H, J. F., Ben-naim, J., Boissier, O., Castelfranchi, C., Lon-

gin, D., Perrussel, L., and Vercouter, L. (2008). Prolegomena for a logic of trust and reputation.

In Boella, G., Pigozzi, G., Singh, M. P., and Verhagen, H., editors, Proceedings of the Third Inter-

national Workshop on Normative Multiagent Systems (NorMAS 2008), pages 143–157. (Cited on

page 28.)

[Horling and Lesser, 2004] Horling, B. and Lesser, V. (2004). A survey of multi-agent organizational

paradigms. The Knowledge Engineering Review. (Cited on page 103.)

[Hosmer, 1995] Hosmer, L. (1995). Trust: The connecting link between organizational theory and

philosophical ethics. Academy of Management Review, 20(2):379–403. (Cited on page 19.)

[Hübner et al., 2009a] Hübner, J., Bordini, R., and Picard, G. (2009a). Using Jason and MOISE+ to

develop a team of cowboys. Programming Multi-Agent Systems. (Cited on page 215.)

[Hübner et al., 2009b] Hübner, J., Lorini, E., Herzig, A., and Vercouter, L. (2009b). From cognitive

trust theories to computational trust. In Proceedings of The 12th Workshop on Trust in Agent

Societies. (Cited on pages 33 and 45.)

[Hubner, 2011] Hubner, J. F. (2011). Moise specifications. (Cited on pages 125, 126, 140 and 215.)

[Hübner et al., 2010] Hübner, J. F., Boissier, O., Kitio, R., and Ricci, A. (2010). Instrumenting multi-

agent organisations with organisational artifacts and agents. Autonomous Agents and Multi-Agent

Systems, 20(3):369–400. (Cited on pages 125, 128, 130 and 140.)

[Hubner et al., 2002] Hubner, J. F., Sichman, J. S., and Boissier, O. (2002). MOISE+ : Towards

a structural , functional , and deontic model for MAS organization. In Proceedings of the First

International Joint Conference on Autonomous Agents and Multi-Agent Systems, pages 1–2. ACM

Press. (Cited on pages 103, 104, 125, 140 and 215.)

[Hübner et al., 2004] Hübner, J. F., Sichman, J. S., and Boissier, O. (2004). Using the moise+ for a

cooperative framework of mas reorganisation. In Bazzan, A. L. C. and Labidi, S., editors, Advances

in Artificial Intelligence - SBIA 2004, 17th Brazilian Symposium on Artificial Intelligence, São Luis,

Maranhão, Brazil, September 29 - October 1, 2004, Proceedings, volume 3171 of Lecture Notes in

Computer Science, pages 506–515. Springer. (Cited on pages 108 and 114.)

[Hubner et al., 2007] Hubner, J. F., Sichman, J. S., and Boissier, O. (2007). Developing organised

multiagent systems using the moise+ model: programming issues at the system and agent levels.

Int. J. Agent-Oriented Softw. Eng., 1(3/4):370–395. (Cited on page 103.)

[Huizingh, 2011] Huizingh, E. K. R. E. (2011). Open innovation: State of the art and future perspec-

tives. Technovation, 31:2–9. (Cited on pages 246 and 259.)

[Humenn, 2003] Humenn, P. (2003). The formal semantics of XACML. Technical report, Syracuse

University. (Cited on pages 72 and 85.)

316

Bibliography

[Huynh et al., 2006] Huynh, T. D., Jennings, N. R., and Shadbolt, N. R. (2006). An integrated trust

and reputation model for open multi-agent systems. Autonomous Agents and Multi-Agent Systems,

13(2):119–154. (Cited on pages 27, 28, 32 and 44.)

[Jennings and Wooldridge, 1998] Jennings, N. R. and Wooldridge, M. (1998). Applications of intel-

ligent agents. In Jennings, N. R. and Wooldridge, M. J., editors, Agent technology, pages 3–28.

Springer-Verlag New York, Inc., Secaucus, NJ, USA. (Cited on pages 101, 102 and 114.)

[Jongh, 2013] Jongh, M. D. (2013). Group dynamics in the Citizens’ Assembly on Electoral Reform.

PhD thesis, Utrecht University. (Cited on page 98.)

[Jonker and Treur, 2001] Jonker, C. M. and Treur, J. (2001). An agent architecture for multi-attribute

negotiation. In Proceedings of the 17th International Joint Conference on AI, IJCAI’01, 2001, pages

1195–1201. Morgan Kaufman. (Cited on page 28.)

[Jøsang, 2007] Jøsang, A. (2007). Trust and reputation systems. In Aldini, A. and Gorrieri, R., editors,

Foundations of security analysis and design IV, pages 209–245. Springer-Verlag, Berlin, Heidelberg.

(Cited on pages 22, 30, 55 and 62.)

[Jøsang and Ismail, 2002] Jøsang, A. and Ismail, R. (2002). The Beta Reputation System. In Pro-

ceedings of the 15th Bled Electronic Commerce Conference, volume 160, pages 324–337. (Cited on

pages 31, 32 and 44.)

[Jøsang et al., 2007] Jøsang, A., Ismail, R., and Boyd, C. (2007). A survey of trust and reputation

systems for online service provision. Decision Support Systems, 43(2):618–644. (Cited on pages 27,

30, 55, 62, 82 and 164.)

[Josang and Presti, 2004] Josang, A. and Presti, S. (2004). Analysing the relationship between risk

and trust. In Jensen, C., Poslad, S., and Dimitrakos, T., editors, Trust Management, volume 2995 of

Lecture Notes in Computer Science, pages 135–145. Springer Berlin Heidelberg. (Cited on page 22.)

[Kagal et al., 2003] Kagal, L., Finin, T., and Joshi, A. (2003). A policy based approach to security

for the semantic web. In Fensel, D., Sycara, K., and Mylopoulos, J., editors, The Semantic Web

- ISWC 2003, volume 2870 of Lecture Notes in Computer Science, pages 402–418. Springer Berlin

Heidelberg. (Cited on pages 34 and 66.)

[Kalam et al., 2003] Kalam, A. A. E., Benferhat, S., Miège, A., Baida, R. E., Cuppens, F., Saurel, C.,

Balbiani, P., Deswarte, Y., and Trouessin, G. (2003). Organization based access control. In Pro-

ceedings of the 4th IEEE International Workshop on Policies for Distributed Systems and Networks,

POLICY ’03, pages 120–, Washington, DC, USA. IEEE Computer Society. (Cited on page 52.)

[Kalam and Deswarte, 2006] Kalam, A. A. E. and Deswarte, Y. (2006). Multi-OrBAC : a New Access

Control Model for Distributed, Heterogeneous and Collaborative Systems. In 8th International

Symposium on System and Information Security (SSI’2006), Sao Paulo (Brésil), 8-10 Novembre

2006. (Cited on page 52.)

[Kant, 1788] Kant, I. (1788). Kritik der praktischen Vernunft, volume 56. Gutenberg Project. (Cited

on pages 18 and 41.)

[Kaur, 2011] Kaur, P. (2011). Supporting users trust decisions on inter-enterprise collaborations. Mas-

ter’s thesis, Aalto University, School of Science. (Cited on pages 24 and 26.)

[Khodyakov, 2007] Khodyakov, D. (2007). Trust as a Process: A Three-Dimensional Approach. Soci-

ology, 41(1):115–132. (Cited on pages 19 and 26.)

317

Bibliography

[Kim et al., 2009] Kim, P. H., Dirks, K. T., and Cooper, C. D. (2009). The Repair of Trust: A

Dynamic Bilateral Perspective and Multilevel Conceptualization. Academy of Management Review,

34(3):401–422. (Cited on page 25.)

[Koehler and Giblin, 2003] Koehler, J. and Giblin, C. (2003). On autonomic computing architectures.

Technical report, IBM Research, Zurich. (Cited on pages 106 and 114.)

[Koster, 2012] Koster, A. (2012). Trust Alignment and Adaptation : Two Approaches for Talking about

Trust in Multi-Agent Systems. PhD thesis, Universitat Autonoma de Barcelona. (Cited on pages 5

and 33.)

[Krukow et al., 2008] Krukow, K., Nielsen, M., and Sassone, V. (2008). Trust models in ubiquitous

computing. Philosophical transactions of the Royal Society, 366(1881):3781–3793. (Cited on pages 30

and 62.)

[Krupa, 2012] Krupa, Y. (2012). PrivaCIAS: Privacy as Contextual Integrity in Decentralized Multi-

Agent Systems. PhD thesis, Ecole Nationale Supérieure des Mines de Saint-Etienne. (Cited on

page 33.)

[Krupa et al., 2009] Krupa, Y., Vercouter, L., Hubner, J. F., and Herzig, A. (2009). Trust based

evaluation of wikipedia’s contributors. In Aldewereld, H., Dignum, V., and Picard, G., editors,

Engineering Societies in the Agents World X, volume 5881 of Lecture Notes in Computer Science,

pages 148–161. Springer Berlin Heidelberg. (Cited on page 33.)

[Lacey and Hexmoor, 2003] Lacey, N. and Hexmoor, H. (2003). Norm Adaptation and Revision in a

Multi-Agent System. In The Florida AI Research Society Conference - FLAIRS, pages 27–31. (Cited

on page 109.)

[Lamsal, 2001] Lamsal, P. (2001). Understanding trust and security. Technical report, Department of

Computer Science University of Helsinki, Finland. (Cited on page 22.)

[Latané, 1981] Latané, B. (1981). The psychology of social impact. American Psychologist, 36:343–356.

(Cited on pages 100 and 200.)

[Lee, 2008] Lee, A. J. (2008). Towards Practical and Secure Decentraliz Attribute-Based Authorisation

Systems. PhD thesis, University of Illinois. (Cited on pages 52, 61 and 149.)

[Lee et al., 2009] Lee, A. J., Winslett, M., and Perano, K. J. (2009). Trustbuilder2: A reconfigurable

framework for trust negotiation. In Ferrari, E., Li, N., Bertino, E., and Karabulut, Y., editors, Trust

Management III, volume 300 of IFIP Advances in Information and Communication Technology,

pages 176–195. Springer Berlin Heidelberg. (Cited on pages 56 and 70.)

[Lee and Yu, 2009] Lee, A. J. and Yu, T. (2009). Towards a dynamic and composable model of trust.

In Proceedings of the 14th ACM symposium on Access control models and technologies, SACMAT

’09, pages 217–226, New York, NY, USA. ACM. (Cited on page 26.)

[Lewicki et al., 2006] Lewicki, R. J., Tomlinson, E. C., and Gillespie, N. (2006). Models of Interpersonal

Trust Development: Theoretical Approaches, Empirical Evidence, and Future Directions. Journal

of Management, 32(6):991–1022. (Cited on pages 24 and 26.)

[Li et al., 2002] Li, N., Mitchell, J. C., and Winsborough, W. H. (2002). Design of a role-based trust-

management framework. In Proceedings of the 2002 IEEE Symposium on Security and Privacy, SP

’02, pages 114–, Washington, DC, USA. IEEE Computer Society. (Cited on pages 52, 68, 80 and 85.)

318

Bibliography

[Li et al., 2009] Li, N., Wang, Q., Qardaji, W., Bertino, E., Rao, P., Lobo, J., and Lin, D. (2009).

Access control policy combining: theory meets practice. In Proceedings of the 14th ACM symposium

on Access control models and technologies, SACMAT ’09, pages 135–144, New York, NY, USA. ACM.

(Cited on pages 73 and 196.)

[Li et al., 2008] Li, N., Wang, Q., Rao, P., Lin, D., Bertino, E., and Lobo, J. (2008). A Formal

Language for Specifying Policy Combining Algorithms in Access Control. Technical Report 2008-9,

CERIAS. (Cited on pages 88 and 112.)

[Lian et al., 2007] Lian, Q., Zhang, Z., Yang, M., Zhao, B. Y., Dai, Y., and Li, X. (2007). An em-

pirical study of collusion behavior in the maze p2p file-sharing system. In Proceedings of the 27th

International Conference on Distributed Computing Systems, ICDCS ’07, pages 56–, Washington,

DC, USA. IEEE Computer Society. (Cited on page 189.)

[Linn, 2000] Linn, J. (2000). Trust models and management in public-key infrastructures. Technical

report, RSA Laboratories. (Cited on pages 56, 146 and 168.)

[Liu, 2011] Liu, W. W. (2011). Trust Management And Accountability for Internet Security. PhD

thesis, Department of Computer Science, Florida State University. (Cited on pages 28 and 62.)

[Liu et al., 2009] Liu, X., Datta, A., Rzadca, K., and Lim, E.-P. (2009). Stereotrust: a group based

personalized trust model. In Proceedings of the 18th ACM conference on Information and knowledge

management, CIKM ’09, pages 7–16, New York, NY, USA. ACM. (Cited on page 31.)

[Liu et al., 2008] Liu, Y., Yang, Y., and Sun, Y. (2008). Detection of collusion behaviors in online

reputation systems. In Signals, Systems and Computers, 2008 42nd Asilomar Conference on, pages

1368–1372. (Cited on page 189.)

[López y López and Luck, 2004] López y López, F. and Luck, M. (2004). A model of normative multi-

agent systems and dynamic relationships. In Lindemann, G., Moldt, D., and Paolucci, M., editors,

Regulated Agent-Based Social Systems, volume 2934 of Lecture Notes in Computer Science, pages

259–280. Springer Berlin Heidelberg. (Cited on pages 103 and 107.)

[Lovejoy, 1968] Lovejoy, A. O. (1968). Kant and evolution. In Forerunners of Darwin (1745-1859),

pages 173–206. JHU Press. (Cited on page 18.)

[Luhmann, 1990] Luhmann, N. (1990). Familiarity, confidence, trust: Problems and alternatives. In

Trust: Making and breaking cooperative relations, pages 15–35. Basil Blackwell. (Cited on pages 19,

22 and 43.)

[Mahoney et al., 1994] Mahoney, J., Huff, A., and Huff, J. (1994). Toward a new social contract theory

in organizatioon science. Journal of Management Inquiry. (Cited on page 19.)

[Manchala, 1998] Manchala, D. (1998). Trust metrics, models and protocols for electronic commerce

transactions. In Proceedings of 18th International Conference on Distributed Computing Systems

(Cat. No.98CB36183), pages 312–321. IEEE Comput. Soc. (Cited on pages 30, 31 and 44.)

[Mangematin, 1998] Mangematin, V. (1998). La confiance : un mode de coordination dont l’utilisation

dépend de ses conditions de production. In Harrisson, D., Mangematin, V., and Thuderoz, C., editors,

Confiance et entreprise, pages 1–21. Gaetan Morin. (Cited on page 26.)

[Marsh, 1994] Marsh, S. (1994). Formalising trust as a computational concept. PhD thesis, Department

of Computing Science and Mathematics, University of Stirling. (Cited on pages 6, 22, 28, 30, 38

and 44.)

319

Bibliography

[Maslow, 1943] Maslow, A. H. (1943). A Theory of Human Motivation. Psychological Review, 50:370–

396. (Cited on page 17.)

[Mazzoleni et al., 2006] Mazzoleni, P., Bertino, E., Crispo, B., and Sivasubramanian, S. (2006). Xacml

policy integration algorithms: not to be confused with xacml policy combination algorithms! In

Proceedings of the eleventh ACM symposium on Access control models and technologies, SACMAT

’06, pages 219–227, New York, NY, USA. ACM. (Cited on pages 91, 94 and 112.)

[Mcallister, 1995] Mcallister, D. J. (1995). Affect- and Cognition-Based Trust as Foundations for

Interpersonal Cooperation in Organizations. The Academy of Management Journal, 38(1):24–59.

(Cited on page 19.)

[Mcallister, 1997] Mcallister, D. J. (1997). The Second Face of Trust: reflections on the Dark Side of

Interpersonal Trust in Organizations. Research on Negotiation in Organizations, 6:87–111. (Cited

on page 19.)

[Mcknight and Chervany, 1996] Mcknight, D. H. and Chervany, N. L. (1996). The Meanings of trust.

Technical Report 612, University of Minnesota. (Cited on pages 19, 23 and 43.)

[Meneguzzi, 2009] Meneguzzi, F. (2009). Extending agent languages for multiagent domains. PhD

thesis, School of Physical Sciences and Engineering Department of Computer Science, University of

London. (Cited on page 212.)

[Merida-Campos and Willmott, 2007] Merida-Campos, C. and Willmott, S. (2007). Stable collabo-

ration patterns of self-interested agents in iterative request for proposal coalition formation envi-

ronments. International Transactions on Systems Science and Applications, 2(1):40–45. (Cited on

page 274.)

[Meyer et al., 1998] Meyer, J.-J., Wieringa, R., and Dignum, F. (1998). The role of deontic logic in the

specification of information systems. In Chomicki, J. and Saake, G., editors, Logics for Databases and

Information Systems, volume 436 of The Springer International Series in Engineering and Computer

Science, pages 71–115. Springer US. (Cited on page 104.)

[Meyer and Wieringa, 1993] Meyer, J.-J. C. and Wieringa, R. J., editors (1993). Deontic logic in

computer science: normative system specification. John Wiley and Sons Ltd., Chichester, UK.

(Cited on page 104.)

[Misztal, 1996] Misztal, B. (1996). Trust in Modern Societies: The Search for the Bases of Social

Order. Wiley. (Cited on page 19.)

[Moscovici, 1969] Moscovici, S. (1969). Studies in Social Influence. Journal of Experimental Social

Psychology, 16:270–282. (Cited on pages 99, 113 and 282.)

[Nejdl et al., 2004] Nejdl, W., Olmedilla, D., and Winslett, M. (2004). Peertrust: Automated trust

negotiation for peers on the semantic web. In Jonker, W. and Petković, M., editors, Secure Data

Management, volume 3178 of Lecture Notes in Computer Science, pages 118–132. Springer Berlin

Heidelberg. (Cited on pages 36 and 56.)

[Nemeth, 1986] Nemeth, C. (1986). Differential contributions of majority and minority influence. Psy-

chological review. (Cited on pages 100 and 113.)

[Nepal et al., 2011] Nepal, S., Sherchan, W., and Paris, C. (2011). Strust: A trust model for social

networks. In Proceedings of the 2011 IEEE 10th International Conference on Trust, Security and

320

Bibliography

Privacy in Computing and Communications, TRUSTCOM ’11, pages 841–846, Washington, DC,

USA. IEEE Computer Society. (Cited on page 145.)

[Nyanchama and Osborn, 1999] Nyanchama, M. and Osborn, S. (1999). The role graph model and

conflict of interest. ACM Transactions on Information and System Security, 2(1):3–33. (Cited on

page 52.)

[Omicini et al., 2008] Omicini, A., Ricci, A., and Viroli, M. (2008). Artifacts in the A&A meta-

model for multi-agent systems. Autonomous Agents and Multi-Agent Systems, 17(3):432–456. (Cited

on page 214.)

[Orléan, 2000] Orléan, A. (2000). La théorie économique de la confiance et ses limites. les Cahiers de

Socio-Économie, pages 59–77. (Cited on page 19.)

[Osterloh and Rota, 2005] Osterloh, M. and Rota, S. (2005). Trust and community in open source

software production. CREMA Working Paper Series 2005-11, Center for Research in Economics,

Management and the Arts (CREMA). (Cited on page 117.)

[Paraiso et al., 2012] Paraiso, F., Haderer, N., Merle, P., Rouvoy, R., and Seinturier, L. (2012). A

federated multi-cloud paas infrastructure. In Proceedings of the 2012 IEEE Fifth International Con-

ference on Cloud Computing, CLOUD ’12, pages 392–399, Washington, DC, USA. IEEE Computer

Society. (Cited on pages 300 and 304.)

[Parikh, 1985] Parikh, R. (1985). The logic of games and its applications. In Selected papers of the

international conference on "foundations of computation theory" on Topics in the theory of compu-

tation, pages 111–139, New York, NY, USA. Elsevier North-Holland, Inc. (Cited on page 195.)

[Parsons and Wooldridge, 2002] Parsons, S. and Wooldridge, M. (2002). Game theory and decision

theory in multi-agent systems. Autonomous Agents and Multi-Agent Systems, pages 1–14. (Cited

on pages 61 and 190.)

[Pasquier et al., 2006] Pasquier, P., Flores, R. A., and Chaib-draa, B. (2006). An ontology of social

control tools. In Proceedings of the fifth international joint conference on Autonomous agents and

multiagent systems, AAMAS ’06, pages 1369–1371, New York, NY, USA. ACM. (Cited on page 107.)

[Pearlman et al., 2002] Pearlman, L., Welch, V., Foster, I., Kesselman, C., and Tuecke, S. (2002). A

community authorization service for group collaboration. In Proceedings of the 3rd International

Workshop on Policies for Distributed Systems and Networks (POLICY’02), POLICY ’02, pages 50–,

Washington, DC, USA. IEEE Computer Society. (Cited on pages 6, 13 and 247.)

[Pitt and Bellifemine, 1999] Pitt, J. and Bellifemine, F. (1999). A Protocol-Based Semantics for

FIPA’97 ACL and its Implementation in JADE. In AI*IA, pages 1–10. The Imperial College of

Science Technology & Medicine and CSELT. (Cited on pages 133 and 134.)

[Plato, 1994] Plato (1994). The Republic. The Gutenberg Project. (Cited on page 17.)

[Preece, 2001] Preece, J. (2001). Sociability and usability in online communities: Determining and

measuring success. Behaviour & Information Technology, 20(5):347–356. (Cited on page 3.)

[Preece, 2004] Preece, J. (2004). Online communities: researching sociability and usability in hard to

reach populations. Australasian J. of Inf. Systems, 11(2). (Cited on page 3.)

[Prohic, 2005] Prohic, N. (2005). Public Key Infrastructures – PGP vs. X. 509. In INFOTECH Seminar

Advanced Communication Services (ACS). (Cited on pages 58 and 83.)

321

Bibliography

[Pynadath et al., 2000] Pynadath, D. V., Tambe, M., Chauvat, N., and Cavedon, L. (2000). Toward

team-oriented programming. In Jennings, N. R. and Lespérance, Y., editors, Intelligent Agents VI.

Agent Theories, Architectures, and Languages, volume 1757 of Lecture Notes in Computer Science,

pages 233–247. Springer Berlin Heidelberg. (Cited on page 103.)

[Rakotonirainy et al., 2009] Rakotonirainy, A., Loke, S., and Obst, P. (2009). Social awareness concepts

to support social computing. In International Conference onComputational Science and Engineering

(CSE’09), volume 4, pages 223–228. (Cited on pages 102 and 173.)

[Ramchurn, 2004] Ramchurn, S. D. (2004). Multi-agent negotiation using trust and persuasion. PhD

thesis, Faculty of Engineering and Applied Science, School of Electronics and Computer Science,

University of Southampton. (Cited on page 25.)

[Ramchurn et al., 2004a] Ramchurn, S. D., Huynh, D., and Jennings, N. R. (2004a). Trust in multi-

agent systems. Knowl. Eng. Rev., 19(1):1–25. (Cited on pages 25, 36 and 37.)

[Ramchurn et al., 2004b] Ramchurn, S. D., Huynh, T. D., and Jennings, N. R. (2004b). Trust in

multi-agent systems. The Knowledge Engineering Review, 19(1):1–25. (Cited on pages 36 and 38.)

[Rao and Georgeff, 1995] Rao, A. S. and Georgeff, M. P. (1995). Bdi agents: From theory to practice. In

Lesser, V. R. and Gasser, L., editors, Proceedings of the First International Conference on Multiagent

Systems, June 12-14, 1995, San Francisco, California, USA, pages 312–319. The MIT Press. (Cited

on page 211.)

[Rao et al., 2009] Rao, P., Lin, D., Bertino, E., Li, N., and Lobo, J. (2009). An algebra for fine-grained

integration of xacml policies. In Proceedings of the 14th ACM symposium on Access control models

and technologies, SACMAT ’09, pages 63–72, New York, NY, USA. ACM. (Cited on pages 88, 90

and 112.)

[Rao et al., 2011] Rao, P., Lin, D., Bertino, E., Li, N., and Lobo, J. (2011). Fine-grained integration of

access control policies. Computers & Security, 30(2-3):91–107. (Cited on pages 91, 94 and 112.)

[Reh, 2008] Reh, M. (2008). Multiagent Trust Modeling for Open Network Environments. PhD thesis,

Czech Technical University in Prague Faculty of Electrical Engineering. (Cited on page 23.)

[Rehm and Endrass, 2009] Rehm, M. and Endrass, B. (2009). Rapid prototyping of social group dy-

namics in multiagent systems. AI & Society, 24(1):13–23. (Cited on page 100.)

[Rempel et al., 1985] Rempel, J. K., Holmes, J. G., and Zanna, M. P. (1985). Trust in close relation-

ships. Journal of Personality and Social Psychology, 49(1):95–112. (Cited on pages 18 and 41.)

[Renzl, 2008] Renzl, B. (2008). Trust in management and knowledge sharing: The mediating effects

of fear and knowledge documentation. Omega, 36(2):206 – 220. Special Issue on Knowledge Man-

agement and Organizational Learning. (Cited on page 4.)

[Rheingold, 1993] Rheingold, H. (1993). The Virtual Community. Addison-Wesley Publishing Co.

(Cited on page 3.)

[Ricci et al., 2011] Ricci, A., Piunti, M., and Viroli, M. (2011). Environment programming in multi-

agent systems: an artifact-based perspective. Autonomous Agents and Multi-Agent Systems,

23(2):158–192. (Cited on page 214.)

[Rotter, 1967] Rotter, J. B. (1967). A new scale for the measurement of interpersonal trust. Journal

of Personality, 35(4):651–665. (Cited on pages 18, 24, 26 and 41.)

322

Bibliography

[Ruohomaa and Kutvonen, 2005] Ruohomaa, S. and Kutvonen, L. (2005). Trust management survey.

In Herrmann, P., Issarny, V., and Shiu, S., editors, Trust Management, volume 3477 of Lecture Notes

in Computer Science, pages 77–92. Springer Berlin Heidelberg. (Cited on pages 30, 38 and 62.)

[Rupert et al., 2007] Rupert, M., Hassas, S., Li, C., and Sherwood, J. (2007). Simulation of Online

Communities Using MAS Social and Spatial Organisations. World Academy of Science, pages 355–

360. (Cited on pages 117 and 135.)

[Russell and Norvig, 2010] Russell, S. and Norvig, P. (2010). Artificial Intelligence: A Modern Ap-

proach. Prentice Hall,. (Cited on page 185.)

[Ryutov et al., 2005] Ryutov, T., Zhou, L., Neuman, C., Leithead, T., and Seamons, K. E. (2005).

Adaptive trust negotiation and access control. In Proceedings of the tenth ACM symposium on

Access control models and technologies, SACMAT ’05, pages 139–146, New York, NY, USA. ACM.

(Cited on pages 56, 60, 61, 74, 80 and 85.)

[Saadi et al., 2011] Saadi, R., Rahaman, M., Issarny, V., and Toninelli, A. (2011). Composing trust

models towards interoperable trust management. Trust Management V, 358:51–66. (Cited on

pages 26, 38 and 62.)

[Sabater and Sierra, 2001] Sabater, J. and Sierra, C. (2001). Regret: reputation in gregarious societies.

In Proceedings of the fifth international conference on Autonomous agents, AGENTS ’01, pages 194–

195, New York, NY, USA. ACM. (Cited on page 31.)

[Sabater and Sierra, 2005] Sabater, J. and Sierra, C. (2005). Review on Computational Trust and

Reputation Models. Artificial Intelligence Review, 24(1):33–60. (Cited on pages 36 and 38.)

[Salais, 1989] Salais, R. (1989). L’analyse économique des conventions du travail. Revue économique,

40(2):199. (Cited on page 19.)

[Samarati and Vimercati, 2001] Samarati, P. and Vimercati, S. D. C. d. (2001). Access control: Poli-

cies, models, and mechanisms. In Revised versions of lectures given during the IFIP WG 1.7 Interna-

tional School on Foundations of Security Analysis and Design on Foundations of Security Analysis

and Design: Tutorial Lectures, FOSAD ’00, pages 137–196, London, UK, UK. Springer-Verlag.

(Cited on pages 57 and 83.)

[Sandhu et al., 1996] Sandhu, R., Coyne, E., Feinstein, H., and Youman, C. (1996). Role-Based Access

Control Models. Computer, 29(2):38–47. (Cited on pages 51 and 52.)

[Sandhu et al., 2000] Sandhu, R., Ferraiolo, D., and Kuhn, R. (2000). The nist model for role-based

access control: towards a unified standard. In Proceedings of the fifth ACM workshop on Role-based

access control, RBAC ’00, pages 47–63, New York, NY, USA. ACM. (Cited on page 52.)

[Sandhu, 1993] Sandhu, R. S. (1993). Lattice-based access control models. Computer, 26(11):9–19.

(Cited on page 50.)

[Sawyer, 2003] Sawyer, R. K. (2003). Artificial Societies: Multiagent Systems and the Micro-Macro

Link in Sociological Theory. Sociological Methods Research, 31(3):325–363. (Cited on page 108.)

[Seamons et al., 2002] Seamons, K., Winslett, M., Yu, T., Smith, B., Child, E., Jacobson, J., Mills, H.,

and Yu, L. (2002). Requirements for policy languages for trust negotiation. In Proceedings of the 3rd

International Workshop on Policies for Distributed Systems and Networks (POLICY’02), POLICY

’02, pages 68–, Washington, DC, USA. IEEE Computer Society. (Cited on pages 36, 59, 76, 175

and 191.)

323

Bibliography

[Sensoy et al., 2010] Sensoy, M., Norman, T. J., Vasconcelos, W. W., and Sycara, K. (2010). Owl-

polar: Semantic policies for agent reasoning. In Patel-Schneider, P., Pan, Y., Hitzler, P., Mika, P.,

Zhang, L., Pan, J., Horrocks, I., and Glimm, B., editors, The Semantic Web ISWC 2010, volume

6496 of Lecture Notes in Computer Science, pages 679–695. Springer Berlin Heidelberg. (Cited on

page 78.)

[Serban and Minsky, 2009] Serban, C. and Minsky, N. (2009). In vivo evolution of policies that govern

a distributed system. In Proceedings of the 10th IEEE international conference on Policies for

distributed systems and networks, POLICY’09, pages 134–141, Piscataway, NJ, USA. IEEE Press.

(Cited on pages 299 and 303.)

[Shapiro, 1998] Shapiro, S. (1998). Places and spaces: The historical interaction of technology, home,

and privacy. The Information Society. (Cited on pages 19 and 24.)

[Sherif, 1936] Sherif, M. (1936). The psychology of social norms. Journal for the Theory of Social

Behaviour, 41:53–76. (Cited on pages 96, 97 and 113.)

[Sherif, 1937] Sherif, M. (1937). An experimental approach to the study of attitudes. Sociometry,

1:90–98. (Cited on pages 96, 97 and 113.)

[Simpson, 2007] Simpson, J. a. (2007). Psychological Foundations of Trust. Current Directions in

Psychological Science, 16(5):264–268. (Cited on pages 18 and 41.)

[Singh and Liu, 2003] Singh, A. and Liu, L. (2003). Trustme: Anonymous management of trust re-

lationships in decentralized p2p systems. In Proceedings of the 3rd International Conference on

Peer-to-Peer Computing, P2P ’03, pages 142–, Washington, DC, USA. IEEE Computer Society.

(Cited on page 25.)

[Sloman, 1994] Sloman, M. (1994). Policy Driven Management For Distributed Systems. Journal of

Network and System Management, Vol., 2(4). (Cited on page 58.)

[Smith and Makckie, 2000] Smith, E. R. and Makckie, D. M. (2000). Social Psychology. Psychology

Press. (Cited on page 105.)

[Squicciarini et al., 2007] Squicciarini, A., Bertino, E., Ferrari, E., Paci, F., and Thuraisingham, B.

(2007). Pp-trust-x: A system for privacy preserving trust negotiations. ACM Trans. Inf. Syst.

Secur., 10(3). (Cited on pages 35 and 72.)

[Sterling and Taveter, 2009] Sterling, S. L. and Taveter, K. (2009). The Art of Agent-Oriented Model-

ing. The MIT Press. (Cited on page 143.)

[Suryanarayana and Taylor, 2004] Suryanarayana, G. and Taylor, R. (2004). A Survey of Trust Man-

agement and Resource Discovery Technologies in Peer-to-Peer Applications. Technical Report UCI-

ISR-04-6, ISR. (Cited on page 30.)

[Tambe, 1997] Tambe, M. (1997). Towards flexible teamwork. Journal of Artificial INtelligence Re-

search, 7:83–24. (Cited on page 103.)

[Tambe, 1998] Tambe, M. (1998). Implementing agent teams in dynamic multiagent environments.

Applied Artificial Intelligence, 12:189–210. (Cited on page 103.)

[Tambe and Zhang, 2000] Tambe, M. and Zhang, W. (2000). Towards flexible teamwork in persistent

teams: Extended report. Autonomous Agents and Multi-Agent Systems, 3(2):159–183. (Cited on

page 103.)

324

Bibliography

[Taylor, 1941] Taylor, A. E. (1941). Back to Descartes. Philosophy, 16. (Cited on page 18.)

[The Standfod Center for Biomedical Informatics Research (BMIR), 2000] The Standfod Center for

Biomedical Informatics Research (BMIR) (2000). Protege: open source ontology editor and

knowledge-base framework. (Cited on page 229.)

[Tinnemeier et al., 2009] Tinnemeier, N., Dastani, M., and Meyer, J.-J. (2009). Roles and norms

for programming agent organizations. In Proceedings of The 8th International Conference on Au-

tonomous Agents and Multiagent Systems - Volume 1, AAMAS ’09, pages 121–128, Richland, SC.

International Foundation for Autonomous Agents and Multiagent Systems. (Cited on pages 103

and 104.)

[Tobias and Hofmann, 2004] Tobias, R. and Hofmann, C. (2004). Evaluation of free Java-libraries for

social-scientific agent based simulation. Journal of Artificial Societies and Social Simulation, 7(1).

(Cited on page 263.)

[Udhayakumar et al., 2011] Udhayakumar, S., Chandrasekaran, S., Tamilselvan, L., and Ahmed, F.

(2011). An adaptive trust model for software services in hybrid cloud environment. In Proceedings of

the 15th WSEAS international conference on Computers, pages 497–502, Stevens Point, Wisconsin,

USA. World Scientific and Engineering Academy and Society (WSEAS). (Cited on page 25.)

[Uszok et al., 2003] Uszok, A., Bradshaw, J., Jeffers, R., Suri, N., Hayes, P., Breedy, M., Bunch,

L., Johnson, M., Kulkarni, S., and Lott, J. (2003). Kaos policy and domain services: Toward a

description-logic approach to policy representation, deconfliction, and enforcement. In Proceedings

of the 4th IEEE International Workshop on Policies for Distributed Systems and Networks, POLICY

’03, pages 93–, Washington, DC, USA. IEEE Computer Society. (Cited on page 66.)

[Uszok et al., 2004] Uszok, A., Bradshaw, J. M., Johnson, M., Jeffers, R., Tate, A., Dalton, J., and

Aitken, S. (2004). Kaos policy management for semantic web services. IEEE Intelligent Systems,

19(4):32–41. (Cited on page 66.)

[van Benthem, 2001] van Benthem, J. (2001). Games in Dynamic-Epistemic Logic. Bulletin of Eco-

nomic Research, 53(4):219–248. (Cited on page 195.)

[van Benthem, 2003] van Benthem, J. (2003). Rational dynamics and epistemic logic in games. Tech-

nical report, University of Siena, department of political economy. (Cited on page 195.)

[van Benthem et al., 2011] van Benthem, J., Pacuit, E., and Roy, O. (2011). Toward a Theory of Play:

A Logical Perspective on Games and Interaction. Games, 2(4):52–86. (Cited on page 195.)

[Vega, 2012] Vega, H. L. (2012). Open innovation: Organizational practices and policy implications.

PhD thesis, Universiteit Hasselt. (Cited on pages 245, 246 and 259.)

[Venanzi et al., 2011] Venanzi, M., Piunti, M., Falcone, R., and Castelfranchi, C. (2011). Facing open-

ness with socio-cognitive trust and categories. In IJCAI, pages 400–405. (Cited on page 25.)

[Vercouter and Muller, 2010a] Vercouter, L. and Muller, G. (2010a). L.i.a.r.: Achieving social control

in open and decentralised multi-agent systems. Journal Applied Artificial Intelligence, 24(8):723–768.

(Cited on pages 32 and 44.)

[Vercouter and Muller, 2010b] Vercouter, L. and Muller, G. (2010b). L.I.A.R.: Achieving Social Con-

trol in Open and Decentralized Multiagent Systems. Applied Artificial Intelligence, 24(8):723–768.

(Cited on pages 32 and 37.)

325

Bibliography

[Villatoro, 2013] Villatoro, D. (2013). Social Norms for Self-Policing Multi-agent Systems and Virtual

Societies. AI Communications. (Cited on pages 102, 104 and 107.)

[Vogel and Giese, 2012] Vogel, T. and Giese, H. (2012). Requirements and assessment of languages and

frameworks for adaptation models. In Kienzle, J., editor, Models in Software Engineering, volume

7167 of Lecture Notes in Computer Science, pages 167–182. Springer Berlin Heidelberg. (Cited on

page 184.)

[Wang and Varadharajan, 2007] Wang, Y. and Varadharajan, V. (2007). Role-based Recommendation

and Trust Evaluation. In The 9th IEEE International Conference on E-Commerce Technology and

The 4th IEEE International Conference on Enterprise Computing, E-Commerce and E-Services

(CEC-EEE 2007), pages 278–288. IEEE. (Cited on page 52.)

[Wehmeyer and Riemer, 2007] Wehmeyer, K. and Riemer, K. (2007). Trust-building potential of co-

ordination roles in virtual organizations. Journal of Organizational Virtualness, 8(5). (Cited on

page 38.)

[Weibel, 2000] Weibel, S. (2000). The Dublin Core Metadata Initiative. DLib Magazine, 6(2). (Cited

on page 121.)

[Weinstock, 1999] Weinstock, D. (1999). Building Trust in Divided Societies. Journal of Political

Philosophy, pages 1–27. (Cited on page 26.)

[Wieselquist et al., 1999] Wieselquist, J., Rusbult, C. E., Foster, C. a., and Agnew, C. R. (1999).

Commitment, pro-relationship behavior, and trust in close relationships. Journal of personality and

social psychology, 77(5):942–66. (Cited on pages 18 and 26.)

[Wikipedia, 2013] Wikipedia (2013). Trust management (information system). (Cited on page 55.)

[Williamson, 1993] Williamson, O. E. (1993). Calculativeness, trust, and economic organization. Jour-

nal of Law and Economics, 36(1):453–486. (Cited on page 19.)

[Winsborough and Li, 2006] Winsborough, W. H. and Li, N. (2006). Safety in automated trust nego-

tiation. ACM Trans. Inf. Syst. Secur., 9(3):352–390. (Cited on pages 56 and 191.)

[Wooldridge and Jennings, 1995] Wooldridge, M. and Jennings, N. (1995). Intelligent agents: Theory

and practice. Knowledge Engineering Review, 10:115—-152. (Cited on page 101.)

[Xin, 2011] Xin, L. (2011). Trust beyond reputation: Novel trust mechanisms for distributed environ-

ments. PhD thesis, School of Computer Engineering, Nanyang Technological University. (Cited on

page 299.)

[Yagüe, 2006] Yagüe, M. (2006). Survey on xml-based policy languages for open environments. Journal

of Information Assurance and Security, 1:11–20. (Cited on pages 61, 62 and 76.)

[Yaich et al., 2013] Yaich, R., Boissier, O., Picard, G., and Jaillon, P. (2013). Adaptiveness and Social-

Compliance in Trust Management within Virtual Communities. Web Intelligence and Agent Systems

(WIAS), Special Issue: Web Intelligence and Communities, 11(4). (Cited on page 226.)

[Yao, 2004] Yao, W. (2004). Trust management for widely distributed systems. Technical Report

UCAM-CL-TR-608, University of Cambridge Computer Laboratory. (Cited on pages 51, 62, 70, 80,

87 and 111.)

[Yew, 2011] Yew, C. (2011). Architecture Supporting Computational Trust Formation. PhD thesis,

University of Western Ontario. (Cited on pages 27, 36 and 37.)

326

Bibliography

[Yu, 2003] Yu, T. (2003). Automated trust establishment in open systems. PhD thesis, University of

Illinois at Urbana-Champaign, Champaign, IL, USA. AAI3102006. (Cited on pages 57, 60 and 62.)

[Yu et al., 2000] Yu, T., Ma, X., and Winslett, M. (2000). Prunes: an efficient and complete strategy

for automated trust negotiation over the internet. In Proceedings of the 7th ACM conference on

Computer and communications security, CCS ’00, pages 210–219, New York, NY, USA. ACM.

(Cited on page 62.)

[Yu et al., 2001] Yu, T., Winslett, M., and Seamons, K. E. (2001). Interoperable strategies in auto-

mated trust negotiation. In Proceedings of the 8th ACM conference on Computer and Communica-

tions Security, CCS ’01, pages 146–155, New York, NY, USA. ACM. (Cited on page 191.)

[Yu et al., 2003] Yu, T., Winslett, M., and Seamons, K. E. (2003). Supporting structured creden-

tials and sensitive policies through interoperable strategies for automated trust negotiation. ACM

Transactions on Information and System Security, 6(1):1–42. (Cited on pages 35, 45, 46, 69 and 80.)

[Yuan and Tong, 2005] Yuan, E. and Tong, J. (2005). Attributed based access control (ABAC) for

Web services. In IEEE International Conference on Web Services (ICWS’05). IEEE. (Cited on

pages 49 and 52.)

[Zhang et al., 2004] Zhang, H., Goel, A., Govindan, R., Mason, K., and Roy, B. (2004). Making

eigenvector-based reputation systems robust to collusion. In Leonardi, S., editor, Algorithms and

Models for the Web-Graph, volume 3243 of Lecture Notes in Computer Science, pages 92–104.

Springer Berlin Heidelberg. (Cited on page 189.)

[Zhou and Hwang, 2007] Zhou, R. and Hwang, K. (2007). Gossip-based reputation aggregation for

unstructured peer-to-peer networks. In IEEE International Parallel and Distributed Processing Sym-

posium (IPDPS 2007), pages 1–10. IEEE. (Cited on page 27.)

[Zhou et al., 2008] Zhou, R., Hwang, K., and Cai, M. (2008). Gossiptrust for fast reputation aggrega-

tion in peer-to-peer networks. IEEE Trans. on Knowl. and Data Eng., 20(9):1282–1295. (Cited on

page 27.)

[Zucker, 1986] Zucker, L. G. (1986). Production of Trust: Institutional Sources of Economic Structure.

Research in Organizational Behavior, 8:53–111. (Cited on pages 19 and 41.)

327

École Nationale Supérieure des Mines de Saint-Étienne

NNT :2013 EMSE 0717

Mohamed Reda yaich

Adaptiveness and Social-Compliance in Trust Management. A Multi-agent Based Approach

Major in Computer Science

Keywords: Trust Management, Virtual Communities, Multi-agent Systems, Open Decentralized

Systems, Open Innovation

Abstract:Virtual communities (VCs) are socio-technical systems wherein distributed individuals (hu-

man and/or artificial) are grouped together around common objectives and goals. In such systems,

participants are massively collaborating with each other by sharing their private resources and knowl-

edge. A collaboration always bears the risk that one partner exhibits uncooperative or malicious

behaviour. Thus, trust is a critical issue for the success of such systems.

The work presented in this dissertation addresses the problem of trust management in open and

decentralised virtual communities (VCs). To address this problem, we proposed an Adaptive and

Socially-Compliant Trust Management System (ASC-TMS). The novelty of ASC-TMS lies in its ability

to exhibit social-awareness and context-awareness features. Social-awareness refers to the ability of the

trust management system (TMS) to handle the social nature of VCs by making trust evaluations

that are collectively harmful, while context-awareness refers to the ability of the system to handle the

dynamic nature of VCs by making trust evaluations that are always in adequacy with the context in

which these evaluations are undertaken.

Thus, the contributions made in this thesis constitute an additional step towards the automation of

trust assessment. We provided accordingly a novel trust management system that assists members of

open and decentralised virtual communities in their trust decisions. The system has been implemented

and deployed using the JaCaMo multi-agent platform. We illustrated also the applicability of on a

real life open innovation virtual community scenario. Finally, the ASC-TMS has been experimentally

evaluated using the multi-agent based Repast simulation platform. The preliminary results show that

the use of our system significantly improves the stability of the virtual communities in which it has

been deployed.

Version: 21-01-2014

École Nationale Supérieure des Mines de Saint-Étienne

NNT : 2013 EMSE 0717

Mohamed Reda yaich

Adaptation et conformité social dans la gestion de la confiance. Une approche

multi-agents

Spécialité : Informatique

Mots Clefs : Gestion de la confiance, Communautés virtuelles, systèmes multi-agent, Systèmes Ouverts

et Décentralisés, Innovation Ouverte

Résumé : Les communautés virtuelles sont des systèmes sociotechniques dans lesquels des entités (hu-

maines et/ou artificielles) répartis à travers le monde se réunissent autour d’intérêts et/ou d’objectifs

communs. Afin de réaliser ces objectifs, les membres de la communauté doivent collaborer en parta-

geant leurs ressources et/ou connaissances. Or, toute collaboration comporte une part de risque dans

la mesure où les membres peuvent se comporter de manière non coopérative ou malveillante. Dans de

tels contextes, où les mécanismes de sécurité standard ne suffissent plus, la confiance est rapidement

devenue un facteur déterminant lors de la prise de décision.

Le travail présenté dans cette thèse s’attaque à la problématique de la gestion de la confiance dans

les communautés virtuelles ouvertes et décentralisées. Pour cela, nous avons proposé une infrastructure

de gestion de la confiance adaptative et conforme socialement (ASC-TMS). L’aspect novateur de ce

système réside dans sa faculté à exhiber des propriétés sociales et adaptatives. L’aspect social du ASC-

TMS fait référence à la capacité de notre système à prendre des décisions qui soient sûres non seulement

pour l’individu mais également et surtout pour les autres membres de la communauté. Par ailleurs,

l’aspect adaptatif du système fait référence à la capacité du système à prendre des décisions qui soient

en parfaite adéquation avec l’environnement dans lequel ces décisions sont prises.

Ainsi, cette thèse constitue une nouvelle étape vers l’automatisation de l’évaluation de la confiance

en assistant les membres des communautés virtuelles ouvertes et décentralisées dans leur prise de déci-

sion. Le système a été implémenté et déployé en utilisant la plateforme de développement multi-agent

JaCaMo. Nous avons également illustré l’applicabilité de notre approche sur un scénario réel de com-

munauté virtuelle d’innovation ouverte. Enfin, nous avons évalué notre système expérimentalement en

utilisant la plateforme de simulation multi-agent Repast. Les résultats obtenus montrent que l’utilisa-

tion de notre système avait un impact positif sur la dynamique des communautés dans lesquels il est

a été utilisé.

Version : 21-01-2014

	I Introduction
	Introduction
	Context
	Motivations and Challenges
	Social Aspects (C1): Social-Awareness
	Dynamic Aspects (C2): Context-Awareness

	Objective and Requirements
	Requirements
	Objectives

	Approach and Contributions
	Thesis Outline
	Related Publications
	French Summary
	Contexte
	Motivations et Challenges
	Objectives et Besoins
	Approche

	II State of the Art
	On the Nature of Trust
	A ``brief'' Retrospective Study About Trust
	The Philosophical Perspective
	The Psychological Perspective
	The Sociological Perspective
	The Economical Perspective
	The Computer Science Perspective

	An Attempt to Define Trust
	What Trust Is Not?
	What Is Trust?

	Trust Features
	Trust Nature
	Trust Sources
	Trust Properties

	Trust Models Analysis
	Trust Models in Distributed Artificial Intelligence
	Trust Models in Security

	Discussion
	Conclusion
	French Summary
	Étude rétrospective sur la confiance
	Sur les traces de la confiance
	Analyse des modèles de confiance

	Trust Management Systems
	From Access Control to Trust Management
	Access Control Model
	Identity-Based Access Control
	Lattice-Based Access Control
	Role-Based Access Control
	Organisation-Based Access Control
	Attribute-Based Access Control

	Trust Management
	Definition
	Trust Management System
	Foundations
	Automated Trust Negotiation

	Trust Management Systems Analysis
	Authorisation-Based TMSs
	Automated Trust Negotiation Systems

	Discussion
	Credentials
	Policies
	Trust Engine

	Conclusion
	French Summary
	Du contrôle d'Accès à la Gestion de la Confiance
	Gestion de la confiance
	Systèmes de gestion de la confiance
	Analyse des Systèmes de gestion de la confiance

	The Social Dimension of Trust Management
	Social dimension of Trust Management
	Policy Combination
	Policy Integration and Composition
	Algebra for Fine-Grained Integration of Policies

	The Social Influence Theory
	Majority Influence
	Minority Influence
	The Social Impact Theory

	Multi-Agent Systems
	Top-Down Perspective: Orchestrated Control
	Bottom-Up Perspective: Emergent Control
	Mixed Perspective: Micro-Macro Loop

	Conclusion
	French Summary
	La dimension sociale dans la gestion de la confiance
	La théorie de l'influence sociale
	Les systèmes multi-agent

	III The ASC-TMS Model
	A Multi-Agent-Based Virtual Community
	The System Model Specification
	Ontology
	Resources
	Agents
	Communities
	Interactions
	Conclusion
	French Summary
	Spécification de la communauté virtuelle
	Ontologie
	Ressources
	Agents
	Communautés
	Interactions

	The Trust Management System
	Overview of the Approach
	Trust Factors
	Definition
	Proofs and Indicators
	Trust Factors Ontology
	Trust Information

	Trust Policies
	Trust Criteria

	Trust Mechanisms
	Trust Decision Making
	Building Trust Experiences
	The Trust Management Cycle: From Trust Factors to Trust
	Bridging the trust model and the virtual community model
	Ontology
	Resources
	Agents
	Interaction
	Organization

	Conclusion
	French Summary
	Aperçu de l'approche
	Les facteurs de confiance
	La politique de confiance
	Le schéma de confiance

	Adaptiveness and Social-Compliance in Trust Management
	Adaptation Types
	Business-Context Adaptation
	Social-Context Adaptation
	Evolution

	Policy Adaptation
	Adaptation Conditions
	Expressing Condition
	Adaptation Operations
	Adaptation Meta-Policies

	The Policy Adaptation Cycle
	Adaptiveness: Adaptation to Business-Context
	Instantiation
	Trust Negotiation

	Social-Compliance: Adaptation to Social-Context
	Combination
	Integration
	Evolution

	Conclusion
	French Summary
	Types d'adaptation
	Adaptation des politiques
	Les méta-politiques d'adaptation
	Le processus d'adaptation

	IV Implementation, Application and Experimentation of the ASC-TMS
	ASC-TMS Implementation
	JaCaMo Framework
	Programming Agents with Jason
	Programming Environments with CArtAgO
	Programming Organisations with Moise

	The JaCaMo-Based Community Architecture
	Implementation Details
	Implementing Agents in Jason
	Implementing Resources in Artefacts
	Implementing Virtual Communities with Moise
	Implementing Interactions

	Conclusion
	French Summary
	L'architecture JaCaMo d'une communauté virtuelle
	Détails d'implémentation
	Implémentation des agents
	Agent Assistant
	Gestionnaire de la confiance
	Implémentation des ressources
	Implémentation des communautés
	Implémentation des interactions

	ASC-TMS Application to Open Innovation
	Open Innovation
	Illustrative Example: An Open Innovation Community
	ASC-TMS for Communities Creation
	Request Management with the ASC-TMS

	Conclusion
	French Summary
	Innovation Ouverte
	Communauté d'Innovation Ouverte
	Utilisation du ASC-TMS pour la création des communautés

	Evaluation of ASC-TMS
	Repast Platform
	Simulation Model
	Solutions
	The Challenge
	The Community

	Simulation Scenario
	Simulation Settings
	Simulation Parameters
	Simulation Metrics

	Evaluations
	Results

	Conclusion
	French Summary
	La plateforme de simulation multi-agent Repast
	Modèle de simulation
	Scénario de simulation
	Réglages de la simulation
	Paramètres de simulation
	Métriques de simulation

	Évaluation
	Hypothèses
	Results

	V Conclusion
	Conclusion
	Summary and Contributions
	Open Issues and Future Works
	French Summary
	Synthèse des contributions
	Questions ouvertes et perspectives

	Bibliography

