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Abstract
With more than 1000 complete genomes available (among which, the vast majority
come from bacteria), comparative genomic analysis become essential for the functional
annotation of genomes, the understanding of their structure and evolution and have
applications in phylogenomics or vaccine design. One of the main approaches for
comparing genomes is by aligning their DNA sequences, i.e. whole genome alignment
(WGA), which means identifying the similarity regions without any prior annota-
tion knowledge. Despite the significant improvements during the last years, reliable
tools for WGA and methodology for estimating its quality, in particular for bacte-
rial genomes, still need to be designed. Besides their extremely large lengths that
make classical dynamic programming alignment methods unsuitable, aligning whole
genomes involves several additional difficulties, due to the mechanisms through which
genomes evolve: the divergence, which let sequence similarity vanish over time, the re-
ordering of genomic segments (rearrangements), or the acquisition of external genetic
material generating regions that are unalignable between sequences, e.g. horizontal
gene transfer, phages. Therefore, whole genome alignment tools implement heuristics,
among which the most common is the anchor based strategy. It starts by detecting
an initial set of similarity regions (phase 1), and, through a chaining phase (phase
2), selects a non-overlapping maximum-weighted, usually collinear, subset of those
similarities, called anchors. Phases 1 and 2 are recursively applied on yet unaligned
regions (phase 3). The last phase (phase 4) consists in systematically applying classical
alignment tools to all short regions still left unaligned.
This thesis addresses several problems related to whole genome alignment: the

evaluation of the quality of results given by WGA tools and the improvement of the
classical anchor based strategy. We first designed a protocol for evaluating the quality
of alignment results, based on both computational and biological measures. An eval-
uation of the results given by two state of the art WGA tools on pairs of intra-species
bacterial genomes revealed their shortcomings: the failure of detecting some of the
similarities between sequences and the misalignment of some regions. Based on these
results, which imply a lack in both sensitivity and specificity, we propose a novel, pair-
wise whole genome alignment tool, YOC, implementing a simplified two-phase version
of the anchor strategy. In phase 1, YOC improves sensitivity by using as anchors, for
the first time, local similarities based on spaced seeds that are capable of detecting
larger similarity regions in divergent sequences. This phase is followed by a chaining
method adapted to local similarities, a novel type of collinear chaining, allowing for
proportional overlaps. We give a formulation for this novel problem and provide the
first algorithm for it. The algorithm, implementing a dynamic programming approach
based on the sweep-line paradigm, is exact and runs in quadratic time. We show
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that, compared to classical collinear chaining, chaining with overlaps improves on real
bacterial data, while remaining almost as efficient in practice. Our novel tool, YOC,
is evaluated together with other four WGA tools on a dataset composed of 694 pairs
of intra-species bacterial genomes. The results show that YOC improves on divergent
cases by detecting more distant similarities and by avoiding misaligned regions. In
conclusion, YOC should be easier to apply automatically and systematically to in-
coming genomes, for it does not require a post-filtering step to detect misalignment
and is less complex to calibrate.

Keywords: comparative genomics, whole genome alignment, anchor based strat-
egy, spaced seeds, fragment chaining, dynamic programming, trapezoid graphs
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Résumé
Avec plus de 1000 génomes complets disponibles (la grande majorité venant de bac-
téries), les analyses comparatives de génomes deviennent indispensables pour leur
annotation fonctionnelle, ainsi que pour la compréhension de leur structure et leur
évolution, et s’appliquent par exemple en phylogénomique ou au design des vaccins.
L’une des approches les plus utilisées pour comparer des génomes est l’alignement de
leurs séquences d’ADN, i.e. alignement de génomes complets, c’est-à-dire identifier
les régions de similarité en s’affranchissant de toute annotation. Malgré des amélio-
rations significatives durant les dernières années, des outils performants pour cette
approche ainsi que des méthodes pour l’estimation de la qualité des résultats qu’elle
produit, en particulier sur les génomes bactériens, restent encore à développer. Outre
leurs grandes tailles qui rendent les solutions classiques basées sur la programmation
dynamique inutilisables, l’alignement de génomes complets pose des difficultés supplé-
mentaires dues à des mécanismes d’évolution particuliers: la divergence, qui estompe
les similarités entre les séquences, le réordonnancent des portions génomiques (réar-
rangements), ou l’acquisition de matériel génétique extérieur, qui produit des régions
non alignables entres les séquences, e.g. transfert horizontal des gènes, phages. En
conséquence, les solutions pour l’alignement de génomes sont des heuristiques, dont
la plus commune est la stratégie basée sur des ancres. Cette stratégie commence par
identifier un ensemble initial de régions de similarité (phase 1). Ensuite une phase
de chaînage sélectionne un sous-ensemble (non-chevauchantes et généralement col-
inéaires) de ces similarités de poids maximal, nommées ancres (phase 2). Les phases
1 et 2 sont appliquées de manière récursive sur les régions encore non-alignées (phase
3). La dernière phase consiste en l’application systématique des outils d’alignement
classiques sur toutes les régions courtes qui n’ont pas encore été alignées.
Cette thèse traite plusieurs problèmes liés à l’alignement de génomes complets

dont: l’évaluation de la qualité des résultats produits par les outils d’alignement et
l’amélioration de la stratégie basée sur des ancres. Premièrement, nous avons créé un
protocole pour évaluer la qualité des résultats d’alignement, comprenant des mesures
de calcul quantitatives et qualitatives, dont certaines basées sur des connaissances
biologiques. Une analyse de la qualité des alignements produits par deux des princi-
paux outils existants sur des paires de génomes bactériens intra-espèces révèle leurs
limitations: des similarités non détectées et des portions d’alignement incorrectes. À
partir de ces résultats, qui suggèrent un manque de sensibilité et spécificité, nous pro-
posons un nouvel outil pour l’alignement deux à deux de génomes complets, YOC,
qui implémente une version simplifiée de la stratégie basée sur des ancres, contenant
seulement deux phases. Dans la phase 1, YOC améliore la sensibilité en utilisant
comme ancres, pour la première fois dans cette stratégie, des similarités locales basées
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sur des graines espacées, capables de détecter des similarités plus longues dans des
régions plus divergentes. Cette phase est suivie par une méthode de chainage adap-
tée aux similarités locales, un nouveau type de chaînage colinéaire, permettant des
chevauchements proportionnels. Nous avons donné une formulation de ce nouveau
problème et réalisé un premier algorithme. L’algorithme, qui adopte une approche de
programmation dynamique basée sur le paradigme de la “sweep-line”, donne une solu-
tion optimale, i.e. est exacte, et s’exécute en temps quadratique. Nous avons montré
que cet algorithme, comparé au chainage colinéaire classique, améliore les résultats
sur des génomes bactériens, tout en restant aussi efficace en pratique. Notre nouvel
outil, YOC, a été évalué ensemble avec quatre autres outils d’alignement sur un en-
semble de données composé de 694 couples de génomes bactériens intra-espèces. Les
résultats montrent que YOC améliore les cas divergents en détectant des similarités
plus distantes et en évitant les régions mal alignées. En conclusion, YOC semble être
plus facile à appliquer de manière automatique et systématique, parce qu’il nécessite
pas un post-traitement des régions mal alignées, ni un paramétrage complexe.

Mots-clés: génomique comparative, alignement des génomes complets, stratégie
basée sur des ancres, graines espacées, chaînage des fragments, programmation dy-
namique, graphe trapézoïdal
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Introduction
Context The unprecedented sequencing capacity offered by High Throughput Se-
quencing technologies allows rapid whole genome sequencing at low costs. With more
than 1000 complete genomes available for bacteria, archea, and eukarya, compara-
tive genomic analysis become essential for the functional annotation of genomes, the
understanding of their structure and evolution, and for phylogenomics (Bigot et al.,
2005; Delsuc et al., 2005). Roughly speaking, comparative genomic analysis aim at
identifying the shared or specific genome parts of individuals, strains, species. These
parts may bear different names depending on the context, e.g. backbone and variable
segments for bacterial strains (Chiapello et al., 2008).
Many projects aim at sequencing several genomes of a species or of a genus to

acquire functional and evolutionary knowledge from the genomic variability, among
which the 1000 human genomes project (http://www.1000genomes.org) or the Micro-
bial Genome Program of U.S. Department of Energy (http://microbialgenomics.
energy.gov). With such genomic data at hand, comparative genomic analysis are
used in order to annotate genes and infer their homology/orthology relationships.
Further more, comparative analysis also unravelled the forces driving genome diver-
sity and evolution, e.g. (Leclercq et al., 2010). Similarly, the comparison of three
strains of the ruminants’ pathogen, E. ruminantium, underlined the importance of
tandem duplication as a source of diversity and annotated some strain specific genes
(Frutos et al., 2006). They also served to identify species specific genes that could
explain the increased capacity to cause disease in Candida albicans compared to its
closest relative, Candida dubliniensis (Jackson et al., 2009). Comparative analysis
represent an important step in post-genomic vaccine design (Serruto and Rappuoli,
2006; Serruto et al., 2009), in which shared and variable genes of multiple strains
are selected for further immunisation tests and may lead to design broadly protective
vaccines (Maione et al., 2005).
The two mostly used approaches for comparative genomics rely on different informa-

tion levels. The first involves comparing the proteomes, as sets of proteins, to predict
orthology (Tatusov et al., 1997). This requires the proteins to be correctly annotated.
The second solution is whole genome alignment (WGA) at the nucleotide level.
Despite the number of dedicated studies during the last years, see (Miller et al., 2004;

Blanchette, 2007) for reviews, whole genome alignments are still in an exploratory
phase. Moreover, the vast majority of the sequenced genomes are coming from bac-
teria, due to their short sequences and to their high economical and medical interest.
However, even with a WGA at hand, it is not straightforward to obtain the segmen-
tation of bacterial strains in backbone and variable segments (Chiapello et al., 2008).
Hence, reliable tools for WGA in particular for bacterial genomes, still need to be

1

http://www.1000genomes.org
http://microbialgenomics.energy.gov
http://microbialgenomics.energy.gov


Contents

designed.
Moreover, only few methods were established for estimating the quality of a WGA.

Recently, two studies dedicated to the precise examination of the quality of alignments
(Prakash and Tompa, 2007; Lunter et al., 2008), identified several types of alignment
errors and estimated, based on statistical methods, the amount of the alignment be-
ing suspiciously aligned. Compared to (Prakash and Tompa, 2007), (Lunter et al.,
2008) focuses on homology at the nucleotide level in pairwise alignments, based on
the assumption that the regions of homology are correctly assigned. In (Prakash
and Tompa, 2007) on the other hand, the accuracy at each aligned site in multi-
ple alignments is evaluated and alignment regions are classified into well aligned and
suspiciously aligned.

Existing methods Classical alignment solutions, based on the dynamic programming
strategy, cannot be adapted to the complex case of aligning whole genomes, because of
the lengths and the levels of divergence and shuffling of genomic sequences. Therefore,
WGA tools are heuristics and they are generally based on a complex strategy composed
of several phases, i.e. anchor based strategy (Delcher et al., 1999; Brudno et al., 2003b;
Hohl et al., 2002; Darling et al., 2004; Treangen and Messeguer, 2006; Darling et al.,
2010).
In the first phase of the anchor based strategy, methods look for sequence simi-

larities, i.e. fragments. Then, these similarities are filtered with a chaining phase,
i.e. that builds a highest scoring chain of fragments, with overlaps between adja-
cent fragments being forbidden. Fragments selected in the chain are used as anchor
points for the final alignment. Next, the first two phases are recursively applied, and
finally a more sensitive method aligns those regions that are left unaligned between
the identified anchor points.
For computing fragments in the first phase of the strategy, methods searching for ex-

act or approximate matches are employed. In the second phase, corresponding to the
chaining of fragments, two types of approaches exist: the classical method, (i) comput-
ing a collinear chain or (ii) computing a chain without imposing the collinearity con-
straint, i.e. allowing for rearrangements in the chain. If several dynamic programming
solutions exist for the collinear chaining problem (Felsner et al., 1995; Abouelhoda and
Ohlebusch, 2005), for the problem of chaining with rearrangements heuristics are used,
as the problem was proved to be NP -complete in (Bafna et al., 1996). Not dealing
with overlaps is also an important drawback of chaining methods. In fact, several
methodological and biological causes for overlaps can be identified. Small overlaps are
often caused by equality over a few base pairs of fragment ends due to randomness,
since the alphabet has only four letters. To handle such cases, one could set a constant,
large enough, maximal allowed overlap threshold. However, biological structures like
tandem repeats (TR) that vary in number of copy units generate overlaps that are
large relatively to the fragments involved. Such cases cannot be solved by fixing maxi-
mal length overlaps: only proportional overlaps can handle these. As variable-number
tandem repeats occur in genomes of numerous species coming from all kingdoms of
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life, the problem of dealing with proportional overlaps is of great importance. In the
collinear case, algorithms can be extended to handle fixed length overlaps between
adjacent fragments, however for proportional overlaps no method was proposed up to
now.
With the flood of genome alignment tools in the last few years, one needs to compare

the quality of alignments between different tools in order to identify their limitations
and to be able to choose the best suited method in each specific situation. Unfortu-
nately, very little work has been done on designing benchmarks, comparison protocols
and biological evaluation criteria for this task, which should allow systematic analy-
sis of WGA results. Two very recent studies (Swidan and Shamir, 2009; Chen and
Tompa, 2010) carried out assessments of the quality of WGA on bacteria, respectively
vertebrates, and came to a general similar conclusion: building accurate WGA remains
a challenge. The study presented in (Chen and Tompa, 2010), based on 28 vertebrate
genomes, concludes that there is a lack of general agreement between alignment meth-
ods, e.g. even for the well-known mouse genome. Moreover, they show that building
accurate multiple WGA remains an important challenge for non-coding regions and
distantly related species. Compared to (Chen and Tompa, 2010) who analyzed the
complete alignment at the nucleotide level, the goal of (Swidan and Shamir, 2009)
was to evaluate the quality of the segmentation of bacterial genomes with respect
to their mosaic structure, and to quantitatively assess the quality of the alignment.
They revealed that closely-related bacteria often have highly divergent gene content
and therefore WGA tools encounter unexpected difficulty in these cases.
Moreover, as most WGA tools are variations on the same strategy, studies addressing

the global evaluation of this strategy and the impact of each individual phase on the
final result, are needed.

Contributions In this manuscript we address several of the research directions men-
tioned above. First, we design a protocol for evaluating the correctness and perfor-
mance of WGA tools from both computational and biological view-points.
Second, based on an initial evaluation of existing tools on pairs of intra-species

bacterial genomes, we propose to improve the anchor based strategy by using, for
the first time in the first phase of the strategy for WGA, local similarities instead of
short matches. A preliminary evaluation of the impact of this first phase on the WGA
results, reveals the need of a chaining method adapted to local similarities, allowing
for overlaps.
We thus introduce a novel type of collinear chaining: allowing for proportional

overlaps. We give the first algorithm for this problem and show its impact on real
bacterial data, compared to classical collinear chaining.
Finally, we obtain a novel pairwise WGA tool, YOC, composed of only two phases,

unlike classical, four phase WGA tools: local similarities & chaining with overlaps.
This novel tool is evaluated together with other four WGA tools on a dataset composed
of 694 pairs of intra-species bacterial genomes, based on the protocol that we designed.
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Outline of the manuscript This manuscript has an introduction, a brief conclusion
and is organised in six additional chapters as follows.
Chapter 1 is a state of the art for classical sequence alignment. It begins with an

introduction to the alignment of biological sequences, while mentioning some of the
applications and the open research directions in the field. The second section is ded-
icated to the subject of mutations, whose discovery is one of the targets of sequence
comparison methods. It is followed by several sections addressing the classical solu-
tions for pairwise and multiple sequence alignment and their scoring models. Finally,
in the last section, we address the problem of evaluating alignments, meaning ex-
isting benchmarks, simulation approaches, and the definition of adapted comparison
measures and scores.
Chapter 2 gives an overview of the whole genome alignment problem. First, appli-

cations, limitations and further research directions are presented in the introduction
of this chapter. Next, we describe the classical method for WGA: the anchor based
strategy. We dedicate the following section to the methods implemented in the first
phase of this strategy. Next, we describe the most commonly used WGA tools for
both pairwise and multiple WGA, in both collinear and rearranged cases. Finally,
we discuss existing work on estimating the quality of alignment results and on doing
comparative assessments of WGA tools.
In Chapter 3 we present our first contributions to the whole genome alignment

field. In the first section, we describe a protocol for evaluating the correctness and
performance of WGA tools from a computational point of view. Second, we do a
preliminary evaluation of alignment results given by two state-of-art WGA tools: MGA
and Mauve on pairs of intra-species bacterial genomes. Next, we propose to improve
the anchor based strategy by using local similarities (LS) instead of short matches in
the first phase of the strategy. More precisely, we suggest to exploit programs that
detect LS based on spaced seeds, which prove to be both sensitive and efficient. Based
on these results we introduce a novel definition for chaining, allowing for overlaps.
This new problem is also addressed in this thesis and is the topic of Chapter 5.
Chapter 4 is an overview of the chaining problem. It begins by defining the clas-

sical collinear chaining problem, followed by a straightforward, quadratic, dynamic
programming algorithm solving it. Next, we give a short overview of the techniques
employed by chaining methods in order to speed up the solutions. We then give an
efficient solution for the collinear chaining problem in a formulation with k-trapezoid
graphs that can be adapted to the one-dimensional case too. Several other solutions
are briefly described in the following sections. In the end of the chapter, we address
two generalizations of the collinear chaining problem: glocal chaining and chaining
with rearrangements.
In Chapter 5 we give our contribution to the fragment chaining problem, i.e. intro-

duce a new problem and give the first exact algorithms for it. We start by defining
the novel collinear chaining problem with proportional overlaps. In this definition,
we allow for proportional overlaps between anchors, and seek to optimize a criterion
related to the coverage but without counting twice overlapping regions. We then give
a formulation for this problem and show that this problem can be solved naturally
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by a dynamic programming approach, which is not trivial at first glance. This yields
a fully quadratic dynamic programming algorithm, which sometimes requires unrea-
sonable running times for real case applications. Following the work by Felsner and
colleagues, we exploited a box representation of the set of genomic fragments, which
allows to adopt a sweep line paradigm for this problem. We thus exhibited another
dynamic programming algorithm that avoids computing certain dependencies for the
sake of efficiency, like sparse dynamic programming techniques. Although quadratic,
this sweep line algorithm turns out to be sufficiently efficient to compute a chain by
selecting among millions of input fragments, as shown by our comparisons. All 694
cases of pairwise bacterial strains comparisons were processed with this algorithm, and
its improvement compared to a chain without overlaps showed a real advantage.
In Chapter 6 we continue the experiments that we started in Chapter 3, this time by

combining local similarities with the novel chaining algorithm with overlaps. We thus
obtain a novel pairwise WGA tool, YOC, based on a simplified two-phase strategy. We
first compare YOC to four state-of-the-art WGA tools: MGA, Mauve, LAGAN and
ProgressiveMauve from a computational point of view, based on the computational
criteria defined in the previous experimentation chapter. Finally, using biological
criteria based on orthologous genes, we give a preliminary biological analysis of the
alignment results.
The thesis concludes with a brief overview of the contributions and perspectives.
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1 State-of-the-art. The basics of
sequence alignment

Despite all the progress that has been made
in sequence alignment, there are still many chal-
lenges to face. Amongst them, we mention (i)
improving existing methods for aligning highly
divergent genomes, (ii) developing better meth-
ods for aligning larger datasets, both more and
longer sequences, particularly at the scale of com-
plete genomes, (iii) designing objective functions
and parameters leading to reliable homology pre-
dictions, (iv) developing benchmarks for testing
alignment algorithms, (v) exploring the effects of
alignment error on bioinformatics analysis.
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1.1 Introduction to sequence alignment

1.1 Introduction to sequence alignment
Sequence alignment is a fundamental procedure in any biological study, comparing
two, i.e. pairwise alignment, or more biological sequences, i.e. multiple alignment
(MSA), whether DNA, RNA, or protein. The basic sequence alignment problem,
pairwise alignment, is in fact a particular case of the string alignment problem, i.e. a
way to display a transformation of one string to another.

A naive description of this task would be that aligning two strings is done by in-
serting spaces, i.e. gaps, either inside the strings, i.e. in between the characters, or
to their ends, so that when placing strings one above the other, identical or similar
characters are aligned. Starting from this description, one may imagine a text format
to represent sequence alignments with aligned columns containing identical or simi-
lar characters indicated with a system of symbols, see Figure 1.1 for such a pairwise
alignment representation of two protein sequences.

HBA_HUMAN GSAQVKGHGKKVADALTNAVAHVDDMPNAL SALSDLHAHK
G+ +VK+HGKKV A+++++AH+D++ +++++LS+LH K

HBB_HUMAN GNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDK

Figure 1.1: Pairwise sequence alignment of human alpha and beta globin (SWISS-
PROT database identifiers HBA_HUMAN and HBB_HUMAN), showing
the obvious similarity between the two amino-acid sequences. The central
line in the alignment indicates identical positions with letters and similar
positions with the + sign, i.e. pairs of residues having a positive score in
the substitution matrix used to score the alignment.

Many sequence visualization programs also use colour to display information about
the properties of the individual sequence elements, see Figure 1.5 for a multiple align-
ment representation. For multiple alignments, the last row is usually the consensus
sequence determined by the alignment, represented with a sequence logo in which the
size of each nucleotide or amino acid letter corresponds to its degree of conservation
in the column.
The edit distance is an alternate way of presenting the transformation of one string

into the other and the set of operations needed for this transformation is called an
edit transcript. From a mathematical point of view, alignments and edit transcripts
are equivalent, but an alignment alone hides the mutational process. In fact, different
evolutionary models are described by different permitted operations and yet those can
result in the same alignment. As they make no statement on the process, alignments
are usually preferred when comparing biological sequences (Gusfield, 1997).

The stated goal of biological sequence alignment is inferring which sites within se-
quences are homologous, meaning that they share a common evolutionary history.
This is not an easy task, as identity can be truly due to homology, but may often be
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due to substitutions and wrong residue pairing, i.e. misalignment. Thus, comparing
two or more biological sequences means much more than looking for a plausible align-
ment between them. When aligning biological sequences one searches for probabilistic
evidence that they evolved from a common ancestor, i.e. one is looking for the align-
ment that is most probable from a biological point of view. Alignment algorithms
try to reach this biological goal by doing an efficient optimization of an objective
function. One should keep in mind the fact that a solution being computationally
optimal is not necessarily biologically correct. This is one observation that can be
made for any computational biology task and not just for alignment. For example, it
has been shown through simulation (Kumar, 1996; Takahashi and Nei, 2000) that the
true phylogenetic tree is often not the optimal one for a given dataset.
One should consider distinctly pairwise and multiple sequence alignment (MSA),

i.e. an alignment of three or more sequences that are usually assumed to have an
evolutionary relationship and descend from a common ancestor.

Pairwise sequence alignment methods are used to find the best-matching pairs
of sequence pieces, i.e. local, or a correspondence between the characters on the
entire length of the sequences, i.e. global alignments, of two sequences, see Sec-
tion 1.6.1. Pairwise alignments are efficient to calculate and are often used for searching
a database for sequences with high similarity to a query, or as a basic step of multiple
sequence alignment methods. For both global and local pairwise alignment multi-
ple solutions exist: from techniques that compute optimal alignments with dynamic
programming, to involved heuristics adapted to longer, more divergent sequences, see
Section 1.6.1.

Multiple sequence alignments (MSA) methods MSA are among the most useful
objects in bioinformatics. Usually when speaking about MSA, one refers to global
multiple alignment. The resulting MSAs can thus be used to infer sequence homology
and conduct a phylogenetic analysis in order to assess the shared evolutionary origins
of the sequences, to detect regions of variability or conservation and to build profiles,
i.e. probabilistic models, for families of proteins. MSA requires more sophisticated
methodologies than pairwise alignment. Due to its computational complexity, most
multiple sequence alignment programs use heuristic methods rather than global opti-
mization because identifying the optimal alignment between more than a few sequences
of moderate length is prohibitive, see Section 1.6.2.

Scoring alignments An important point for the sequence alignment problem is to
choose between several potential alignments the one that is closer to the biologically
correct alignment. For this, one needs to compute a score that reflects the quality of
each alignment and that should be easily calculated. Formulas behind scores go from
simple additive scores to complex maximum likelihood values. Whatever the score for-
mula one uses, one has to estimate the apparition rate of each basic mutational event:
substitutions, insertions and deletions, rates that may differ a lot between different
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1.1 Introduction to sequence alignment

species, different sequences and in different regions of the same sequenc. Therefore,
sequence alignment is done by first, choosing a scoring model to rank alignments, see
Section 1.3, second, aligning the sequences with an algorithm based on an optimization
procedure during which the alignment score is computed, see Section 1.6 and finally,
evaluating the significance of the scores.

Comparison of alignments Facing the growing number of alignment tools, one needs
to compare their results, in order to determine the performance of methods under
different conditions. This should guide users in choosing the most appropriate program
for a given problem. For this, one needs benchmarks of real or simulated data and
comparison measures, see Section 1.7.

Applications There is a certain belief nowadays, namely that sequence alignment is
an easy and fast task and thus, that it has become a trivial subject in bioinformatics
(Rosenberg, 2009, chap. 1). In fact, sequence alignment as an area of research is
now an underappreciated aspect of comparative genomics, mostly because alignment
tools have become so numerous, reliable and fast. It is however a vital step when
studying deeper questions such as the identification and quantification of conserved
regions or functional motifs (Kirkness et al., 2003; Thomas et al., 2003b), profiling of
genetic disease (Miller and Kumar, 2001; Miller et al., 2003), phylogenetic analysis
(Felsenstein, 1981; Felsenstein, 2004), ancestral sequence profiling and prediction (Cai
et al., 2004; Hall, 2006), secondary structure identification (Coventry et al., 2004;
Dowell and Eddy, 2004; Holmes, 2005; Knudsen and Hein, 1999), noncoding functional
RNA detection (Di Bernardo et al., 2003; Rivas and Eddy, 2001).

Future work on sequence alignment A second opinion on the sequence alignment
subject makes surface lately: sequence alignment should not be taken for granted
(Rosenberg, 2009), as there are still many challenges and issues that need to be over-
come, see details below.

1. The overwhelming number of tools released over the last twenty years are a proof
of the fact that there is no tool that can be used in any situation only by tuning
the parameters. In fact, anyone working with sequence alignment asked himself
which program to use and understood that there is no simple answer to this
question. The best alignment program depends on several factors for a given
situation: the purpose of building an alignment and the nature of the data to be
aligned, i.e. the type of the sequences (e.g., DNA, RNA, protein), the number
of sequences, their lengths and their evolutionary divergence. Thus, an informed
user has to aware of the trade-off between the simplicity of use of a software and
the necessity of fixing a big number of parameters in order to make the best of
use in a given situation.

2. Moreover one may be submerged by the number of different alignment results
that obtained with different tools and choosing among them is not an easy task
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in itself. Therefore, benchmarks and evaluation measures for sequence
alignment are another important research directions, beside designing alignment
tools. In fact, benchmarks are vital in order to assure high quality tools, to
identify their strong and weak points, to measure the improvements introduced
by new methods and to enable users to choose among tools. As we shall see
in Section 1.7, such benchmarks exist mostly for protein sequences, while for
non-coding DNA sequences simulations are usually preferred. As researchers
started to show increasing interest to non-coding DNA sequences, a real need
for evaluation of such alignments appeared.

3. Increasing evidence is now indicating that what was before considered as junk
DNA, i.e. non-coding DNA (e.g., more than 98% of the human genome), is not
junk at all. In fact it has been found to have various regulatory roles, meaning
that non-coding DNA influences the behaviour of the genes, the coding DNA,
in important ways, e.g. it may work as a genetic “switch” regulating when
and where genes are expressed (Carroll et al., 2008), it may contain features
essential to chromosome structure, centromere function and homolog recognition
(Subirana and Messeguer, 2010), or even disease-causing genetic variants (Cobb
et al., 2008). Despite all these advancements, the relationship between non-
coding DNA and the DNA of genes remains globally a mystery.

4. Very recently, Next Generational Sequencing (NGS) technologies, capable
of sequencing DNA at unprecedented speed, enable impressive scientific achieve-
ments and novel biological applications (Schuster, 2007). The development of
NGS is forcing a reconsideration of the computational methods used for genome
analysis, with the problems of read mapping and genome assembly becoming
much more complex. Simultaneously, NGS addresses problems previously not
addressed with genome sequencing, such as the prediction of structural or copy
number polymorphisms. Moreover, the NGS data has a very different error
model, requiring modifications to classical algorithms, and the sheer size of the
data requires the use of effective algorithms, appropriate hardware, and effec-
tive implementations. See (Metzker, 2009) for a review on NGS methodological
needs and applications.

5. A relatively novel problem in sequence alignment is aligning whole genomic
sequences, see Chapter 2 and Chapter 3 that are entirely dedicated to this
problem.

This chapter is organized as follows: in Section 1.2 we shortly describe genome dy-
namics, in Section 1.3 we address the problem of scoring alignments, in Section 1.4
we discuss the differences between the global and local alignment problems, in Sec-
tion 1.6.1 we present several pairwise alignment methods, Section 1.6.2 is dedicated
to multiple alignment tools, and finally, in Section 1.7 we discuss the evaluation of
alignment results.
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1.2 Genome dynamics: from punctual mutations to
large-scale changes

Most new genes and proteins will evolve through changes in the DNA sequence of
existing genes and proteins, i.e. mutations. If one scores the differences occurring
between the sequences of related organisms, one can judge the distance between them.
Mutations can be caused by radiation, viruses, transposons and mutagenic chem-

icals, as well as by errors occurring during meiosis or DNA replication. They can
determine different types of changes in the DNA sequence that can either have no
effect, alter the product of a gene, or prevent the gene from functioning properly.
Due to the damaging effects that mutations may have on cells, organisms developed
mechanisms such as DNA repair in order to remove them. Mutation rates vary across
species, being even beneficial in rare situations as they allow organisms to adapt more
quickly to the environment and they may even propagate throughout the population.
One can classify mutations as follows:

• small-scale mutations affecting one or a few sites

– point mutations often caused by chemicals or malfunction of DNA repli-
cation, exchange a single character for another. For DNA sequences these
changes are classified as transitions (purine for purine A←→ G or pyrimi-
dine for pyrimidine C ←→ T ) or transversions. Point mutations occurring
within the protein coding region of a gene may be classified into three
kinds, depending upon what the erroneous codon codes for: silent muta-
tions (coding for the same amino acid), missense mutations (coding for a
different amino acid) and noncoding mutations (coding for a stop and thus
truncating the protein).

– insertions meaning adding extra characters. If added to the coding region
of a gene, they may alter splicing of the mRNA or cause a shift in the
reading frame (frameshift), both of which can alter the gene product.

– deletions remove one or more characters, and as the insertions, deletions
can alter the reading frame of the gene. We should note that even though
insertions and deletions are two completely different mechanisms, from the
computational point of view of the sequence alignment task, they are often
treated in the same way, grouped together and referred to as indels. This
is due to the lack of information on the common ancestral sequence of the
aligned sequences.

• large-scale mutations in chromosomal structure, i.e. genomic rearrangements

– duplications, leading to multiple copies of chromosomal regions;

– deletions of large chromosomal regions, leading to the loss of the genes
within these regions;
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– juxtaposition of previously separate pieces of DNA, potentially bringing
together separate genes to form functionally distinct fusion-genes, like:
translocations (interchange of genetic parts from two chromosomes), trans-
positions (interchange of genetic parts in a chromosome), interstitial dele-
tions (removing a DNA segment from a single chromosome thus apposing
previously distant genes), chromosomal inversions (reversing the orienta-
tion of a chromosomal segment), fission (breakage of one chromosome in
two) and fusion of two chromosomes (joining them into one).

The efficiency of the alignment of sequences can be increased by taking in account
the type of sequence in which the mutation is occurring and the likelihood that such a
mutation occurs in that context. Thus, small-scale mutations hardens the classical se-
quence alignment task (small-scale genomic sequences) and can be taken into account
in the scoring model, see Section 1.3. On the other hand, large-scale mutations de-
termine genomic rearrangements that need to be taken into account in whole genome
alignment, as we shall see in Chapter 2.

1.3 Scoring models
Most sequence alignment programs implement scoring functions to compute an overall
score of an alignment. The goal is to obtain enough evidence, i.e. scores high enough,
that they diverged from a common ancestor by several mutation and selection events.
The basic mutational events that are considered are substitutions, insertions and dele-
tions (indels) referred together as gaps in the scoring scheme.
No perfect model for scoring biological sequence alignments exists. Varying situa-

tions need appropriate scoring schemes. In the case of pairwise alignment, the most
common scoring models are based on an additive approach that needs to specify scores
for every possible way in which pairs of sites can be compared, see Section 1.3.1 for
a complete description of this kind of approaches. In order to use an additive scoring
scheme one has to make the assumption that mutations at different sites in a sequence
have occurred independently. This appears to be a reasonable approximation for DNA
and protein sequences.
Once the optimal alignments have been found, the question is how to assess the

significance of its score, i.e. whether it is meaningful from a biological sense by giving
enough evidence for a homology, or it is just the best alignment between two unrelated
sequences. For this, it is necessary to be very precise regarding the thresholds. In
fact, appropriate thresholds depend on the lengths of the sequences and the size of
the database containing the sequences. Moreover, raw score thresholds are affected by
the choice of parameters in the scoring function.
For assessing scores, two different approaches can be used: a Bayesian method based

on the comparison of different models and the classical method, namely the extreme
value distribution (EVD). The EVD calculates the chance of a match score greater than
the observed value, assuming a null model, which in this case is that the sequences
are unrelated. In (Karlin and Altschul, 1990) the appropriate EVD distribution for
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ungapped alignments was obtained analytically. In (Mott, 1992) it was suggested
that gapped alignment scores follow the same form of extreme value distribution as
ungapped scores, but for the moment there is no analytical theory sustaining this
observation.

1.3.1 Pairwise sequence alignment
When scoring pairwise biological sequence alignments, three different scores for three
different types of operations must be defined:

• the cost of aligning a pair of sites containing the same character in both se-
quences, i.e. match, usually corresponding to a positive value called a match
bonus;

• the cost of aligning a pair of sites containing different characters in the sequences,
i.e. mismatch, corresponding to a substitution score;

• the cost of aligning a character in one sequence to a gap in the second sequence,
i.e. indels, corresponding to a gap penalty.

Thus, operations may be positive, i.e. bringing a positive score as for matches and
some mismatches, or negative as for some mismatches and gaps, i.e. penalizing the
total alignment score. The total score assigned to an alignment is the sum of terms for
each aligned pair of residues plus the terms for the gaps. In this definition of scores,
which represents a similarity measure, better alignments have higher scores. In order
to find the best alignment, one needs to maximize the total score.
One must take into account the apparition rate of the basic mutational processes

for a given type of sequences. For example, if we take mismatches, we know that
they are not necessarily equal but they depend on the properties of the involved
characters. Therefore scores are usually differentiated based on standard models of
sequence evolution. This can be done by using appropriate substitution matrices, which
set the match bonuses and the mismatch costs, as well as appropriate gap penalties,
see below.

The substitution matrices that are usually used are empirically derived, i.e. for
protein sequences PAM (Dayhoff et al., 1978), JTT (Jones et al., 1992), BLOSUM62
(Henikoff and Henikoff, 1992), OPTIMA (Kann et al., 2000) matrices. These matrices
are based on biological factors such as the conservation, frequency, and evolutionary
patterns of single amino-acids. Similarly, for DNA sequences, various substitution
models give higher weights to transitions than to transversions. There exists no single
best substitution matrix; one usually chooses a suitable matrix depending on the
observed pairwise percentage of identity or divergence time.
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1 State-of-the-art. The basics of sequence alignment

Gaps and gaps penalties Gaps consist of maximal consecutive runs of spaces in
one sequence, facing a string of characters in the second sequence. They correspond to
insertion or deletion events. They may greatly affect the accuracy of the alignment and
thus they must be treated with much care. Knowing the type of sequence in which the
gap is occurring and the likelihood that a gap will occur in this context becomes crucial.
First, gap penalties for different characters should be different. Second, gap penalties
should be improved as to avoid treating them like identical single position events.
Explicitly, we do not want the cost of a gap covering three positions to correspond to
the triple the cost of a single gap, as it is the case for the linear gap penalty, i.e. g× l
where g is the gap penalty and l the length of the gap.
One avoids this by using one cost for opening a gap and a second one for extending

it, i.e. affine gap penalty (Altschul and Erickson, 1986; Gotoh, 1982; Gotoh, 1986;
Taylor, 1984). Based on the empirical observation that long gaps are more likely to
occur than several short gaps, in practice the opening of a gap is considered to cost
more than extending it. Nowadays, most alignment tools use some form of affine gap
cost. According to the affine scheme for the gap penalty, gaps are scored using the
formula o+ e× (l− 1), where o corresponds to the cost for opening a gap, e is a cost
for extending it, and l the length of the gap. The example in Figure 1.2, extracted
from (Rosenberg, 2009), shows a hypothetical alignment highlighting the advantage
of the affine gap penalty scheme.

GATCGCGCGCGCGCGCATGC
GATC - - G - - C - - G - - CATGC

(a)

GATCGCGCGCGCGCGCATGC
GATCGCG - - - - - - - - CATGC

(b)

Figure 1.2: Linear (a) versus affine gap penalties (b) in an alignment of two hypothet-
ical DNA sequences. By using a linear gap penalty, all gaps are scored
equally, which may result in an alignment with multiple short gaps. On
the other hand, the affine gap penalties, involving a score for opening a
gap and one for extending it, give a more accurate alignment. As opening
a gap costs more than extending it, when using affine gap penalties, we
obtain longer indel events, which are more likely than separate smaller
gaps corresponding to multiple indel events.

The parameters corresponding to the affine gap penalties were first optimized by
(Barton and Sternberg, 1987). Afterwards several groups have worked on improving
these penalties (Altschul, 1998; Mott, 1999). To additionally refine the gap penalties,
the context and the mechanisms of indel events must be thoroughly studied. By
observing such patterns, gap penalties may be deduced empirically, as it is the case in
the studies of (Reese and Pearson, 2002; Chang and Benner, 2004).
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1.4 Global versus local alignment

1.3.2 Multiple sequence alignment (MSA)
A multiple sequence alignment (MSA) is a sequence alignment of three or more bi-
ological sequences, generally protein or DNA. In many cases, the input set of query
sequences are assumed to have an evolutionary relationship by which they share a
lineage and are descended from a common ancestor.
In order to deal with the more complex problem of scoring multiple alignments, a

scoring system should keep in mind the fact that sequences are not independent, but
in fact they are related by a phylogenetic tree. However, even if we are given a correct
phylogenetic tree for the sequences, the desired evolutionary model would still be very
complex as probabilities of evolutionary changes would depend on the evolutionary
times along branches in the tree, as well as on position specific constraints imposed
by natural selection. Unfortunately, as one does not have enough data to parametrize
such a model, simplifying assumptions must be made, like ignoring the phylogenetic
tree or using position independent models.
Depending on whether the phylogenetic relationships among the sequences to align

are provided or not, scoring systems can be classified into two categories. One cate-
gory assumes the phylogenetic relations given, i.e. weighted sum-of-pairs (WSP) and
maximum likelihood (ML), while the other does not, i.e. sum-of-pairs (SP), star or
consensus scores and minimum entropy (ME).
As in the case of MSA there are multiple characters in each aligned column, deciding

of the best way to score a column is not obvious for many different ways of scoring exist.
The sum-of-pairs scoring scheme for example, scores each column of the alignment
by summing the scores of all pairs of symbols in that column (based on a pairwise
substitution matrix), and then sums over all column scores. The weakness of this
method is that it tends to overweight the contributions to the score of many similar
sequences. The minimum entropy method (ME) tries to minimize the entropy of each
column, a convenient measure of the variability observed in an aligned column of
residues. The more variable the column is, the higher the entropy, i.e. a completely
conserved column would score 0. Thus, in this case, a good alignment minimizes the
total entropy of the alignment.

1.4 Global versus local alignment
In the simplest case, both pairwise and multiple alignment methods make several a
priori assumptions on the sequences under study, i.e. that:

• all input sequences are related by common structure, function and evolution,
meaning that they are homologous;

• their biological relatedness is detectable at the primary sequence level;

• similarity extends over the entire length of the input sequences.
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1 State-of-the-art. The basics of sequence alignment

Under these assumptions, homologies in a set of sequences can be properly represented
by a global alignment, which is an alignment extended from the beginning to the end
of the sequences.
In reality, assuming that sequences are perfectly alignable on their entire length may

be incorrect as a result of small and large scale mutations, and of genome shuffling
when aligning large scale sequences, see Section 1.2. Thus only subsections of the
sequences may be homologous and moreover, homologous subsections may be ordered
differently. If one would try to compute a global alignment of the sequences, disre-
garding the rearrangements they have been undergone, at best the alignment obtained
would contain a proper alignment of some true local homologies, surrounded by mean-
ingless alignments of non related parts. In the worst case, alignments can even make
no sense at all.
An alternative to global alignment is local alignment, which aligns subsections of

the sequences regardless the overall global order within the sequence. Local alignment
algorithms depend on a cutoff score, as only alignments that score above a threshold
are accepted. Deciding on this cutoff can be difficult: if it set too low too many false
positives will pass through and if it set too high some significant hits will be missed.
A technique called dynamic programming can be used to calculate an optimal global

alignment efficiently (Needleman andWunsch, 1970; Sellers, 1980; Durbin et al., 1998),
as we shall see in Section 1.6. Interestingly, some small modifications of the Needleman
& Wunsch (NW) algorithm are enough to solve the local alignment problem, which
at first look seems a lot more complex than the global version (Smith and Waterman,
1981).
Moreover, dealing with large genomic sequences has become the ultimate goal in

terms of sequence alignment due to the recent explosion of the number of sequenced
genomes. Large sequences have the particularity that they are rarely conserved along
their entire length. Therefore the alignment cannot be extended to the entire se-
quences, as conserved regions are usually interrupted by non conserved parts of the
sequences. Global alignment is thus useless in this case.
Local alignment methods can be helpful but they also have some disadvantages.

First, they do not suggest how the sequences could have evolved from their common
ancestor. Second, in the case where sequences have n paralog copies of a particular
feature, for the pairwise case, local aligners will return n2 local alignments between all
the pairs, whereas a global alignment reflects more clearly the evolutionary process.
Therefore, the best solution in this case is to use a combination between local and
global alignment, see Section 4.10 for a definition of alignment taking rearrangements
into account, and Section 4.18 for a combination between global and local alignment
called glocal alignment.

1.5 Visualize alignments
In order to visualize a pairwise sequence alignment, one usually uses a dot plot, i.e.
similarity matrix. Dot plots are in fact the easiest and oldest way to visualize the
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1.5 Visualize alignments

S

S1

2

(a)

S

S1

2

(b)

Figure 1.3: Dot plots representing pairwise sequence alignments, where the first se-
quence corresponds to the horizontal axis and the second sequence to the
vertical axis. (a) The alignment in the left image corresponds to a global
alignment, as it covers the two sequences entirely and it follows closely the
main diagonal of the plot. This suggests that the sequences were entirely
homologous and that the homologous regions kept the same order on the
two sequences. (b) The dot plot in the right image presents the case of
two shuffled genomic sequences, i.e. whose homologous subsections are
ordered differently. A global alignment makes no sense in this situation,
thus a set of local alignments has been selected, suggesting the numerous
mutational events that transformed the sequences.

similarity between two biological sequences. They correspond to two-dimensional ma-
trices that have the sequences being compared along the vertical and horizontal axes.
For a simple visual representation of the similarity between two sequences, individ-
ual cells in the matrix, i.e. representing pairs of positions in the two sequences, are
shaded black if residues are identical, so that matching sequence segments appear as
diagonal lines across the matrix. Insertions and deletions between sequences give rise
to disruptions in this diagonal. Regions of local similarity or repetitive sequences give
rise to further diagonal matches in addition to the central diagonal.

See Figure 1.3 for two examples of alignments presented as dot plots. If one uses a
dot plot to represent a pairwise sequence alignment, then a perfect global alignment,
i.e. due to identical sequences, corresponds to the complete main diagonal in the
dot plot. Large scale alignments can also be represented by dot plots but for this, a
zoom out of the similarity matrix needs to be done, meaning that a cell in the matrix
corresponds to an entire subsequence and not to an unique residue; for large scale
alignment representations, large scale rearrangements can be observed, however the
small scale mutations are not visible at this level.
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1 State-of-the-art. The basics of sequence alignment

1.6 Alignment algorithms
In this section we discuss the different solutions for small-scale sequence alignment.
First, one should understand that manually producing alignments is impossible even
for the pairwise case, as generating all the potential alignments and choosing among
them with a scoring function is an enormous task. In fact, the number of potential
alignments is extremely high. For example, we shall take the simple case of a 100
characters sequence, aligned with a sequence composed of 95 characters. If all we do
is add 5 gaps to the second sequence in order to obtain a total of 100 positions, there are
approximately 55 million possible alignments (Krane and Raymer, 2003). As in reality
we should probably add gaps to both sequences, the number of possible alignments
becomes significantly greater. Thus, automated methods for aligning sequences are
essential.

1.6.1 Pairwise alignment
Pairwise alignment is the basic task in the field of sequence alignment, see Figure 1.1 for
an example of a pairwise alignment output. Below, we distinguish between global and
local pairwise alignment and detail a classical dynamic programming global alignment
solution and several heuristics for local alignment.
Alternate approaches to alignment use statistical estimation based on either maximum-

likelihood or Bayesian methods. It was in the early 90s that important advances have
been made in this direction, consisting in the formal development of hidden Markov
models (HMMs) to describe the insertion-deletion process (Baldi et al., 1993; Baldi
et al., 1994; Krogh and Brown, 1994; Eddy, 1995) for the sequence alignment problem.
Additionally (Allison et al., 1992; Allison and Wallace, 1994) set the stage for Bayesian
approaches.

Exact global alignment solutions. Needleman & Wunsch (NW) algorithm The
first attempts of developing alignment methods for pairwise alignments were done in
the mid 60s in (Fitch, 1966; Needleman and Blair, 1969) but an elegant solution was
given by (Needleman and Wunsch, 1970). Their algorithm for two sequences, based on
the dynamic programming technique and allowing gaps is still nowadays a reference on
the matter. In (Gotoh, 1982) a more efficient version of this algorithm was proposed
by decreasing the number of computational steps. Below, we describe a version of this
technique for linear gap penalties; it can however be modified in order to deal with
affine gaps. The algorithm finds a unique optimal alignment given an additive score
even if several alignments may exist with the same score. Only few alignment tools
output more than one alignment and the choice of this unique alignment is not very
precise (Huang et al., 1990; Huang and Miller, 1991).
The main idea of the dynamic programming algorithm is to compose an optimal

alignment of the two sequences S1 of length n and S2 of length m by using previous
solutions for optimal alignments of smaller subsequences. For this, it builds a matrix
M , with the value M(i, j) being the score of the best alignment of the subsequences
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Figure 1.4: Two DNA sequences to be globally aligned, a substitution matrix (non
symmetric) fixing the match and mismatch scores for each pair of char-
acters, the corresponding gap penalties, and the resulted dynamic pro-
gramming matrix obtained with the NW algorithm. Among the potential
alignments of the two sequences, one was chosen as example.

S11...i
of S1 and S21...j

of S2. M(i, j) can be computed recursively. At the beginning,
M(0, 0) should be initialized with 0. Then, the matrix is filled from top left to bottom
right, as once M(i− i, j − 1), M(i− 1, j) and M(i, j − 1) are known, M(i, j) can be
computed. If s(S1i

, S2j
) is the individual score of aligning the S1i

, S2j
pair of residues

given by a substitution matrix, and g a gap cost, i.e. negative value, per inserted
residue (in the general case, gap costs may differ for each residue), there are three
possible ways of adding the last column to the alignment up to S1i

and S2j
:

• S1i
aligned to S2j

, M(i, j) = M(i− 1, j − 1) + s(S1i
, S2j

);

• S1i
aligned to a gap, M(i, j) = M(i− 1, j) + g

• S2j
aligned to a gap, M(i, j) = M(i, j − 1) + g

The best score up to S1i
, S2j

is the largest among these three options. This equation
is applied repeatedly to fill in the matrix, by calculating the value in the bottom right
corner of each square of four cells from one of the other three values (above left, left
or above), see Figure 1.4. As cells are filled in, we also keep a pointer in each cell back
to the cell from which M(i, j) was derived. In order to complete the specification of
the algorithm, the values M(i, 0) must be handled separately. As they correspond to
the alignment of a prefix of S1 to a gap in S2, M(i, 0) can be defined as ig. Likewise,
M(0, j) = jg. The value in the final cell of the matrix, M(n,m), is by definition the
best score for an alignment of S11...n and S21...m , which corresponds to the best global
alignment of S1 and S2. The optimal alignment itself can be constructed by following
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1 State-of-the-art. The basics of sequence alignment

the path of choices that led to this final value, a procedure known by the name of
traceback. In this manner, the algorithm finds a single alignment of an optimal score.
For more details on this basic approach for global alignment, see (Durbin et al., 1998,
chap. 2) and (Rosenberg, 2009, chap. 1).
In the case of equally scoring derivations at a particular point, the classical algo-

rithm above makes an arbitrary choice between them. However, this algorithm can
be modified to recover more than one optimal scoring alignment by using a sequence
graph structure (Altschul and Erickson, 1986; Hein, 1989). The modified algorithm
takes O(nm) time and O(nm) memory, and since n and m are usually comparable, the
algorithm is quadratic. A version that uses less memory is given by (Myers and Miller,
1988) and in order to speed up the classical method, banded dynamic programming
can be used (Chao et al., 1992).

Local alignment solutions. Blast heuristic Above we assumed that we are looking
for the best match between two sequences from one end to the other. A more common
situation is when looking for the best alignments between substrings of our initial
sequences, see Section 1.4. Unexpectedly, the NW algorithm can be easily adapted
to local alignment. This local version of dynamic programming alignment algorithm
was developed in the early 80s and it is known under the name of Smith & Waterman
(SW) algorithm (Smith and Waterman, 1981).
As local alignment is mostly employed in the case of large sequences, in this section

we shall give a special attention to the heuristics that are used in this case, mostly
due to speed issues. Heuristic approaches sacrifice some sensitivity, with the risk of
missing the best scoring local alignments, in order to speed the computation. For this,
they introduce a trade-off between two competing parameters: specificity directly
affecting the speed of the algorithm and sensitivity affecting its precision, i.e. the
number of relevant alignments missed. Achieving a good trade-off between sensitivity
and specificity is the key issue in local alignment tools. Fasta (Lipman and Pearson,
1985; Pearson and Lipman, 1988), Blast (Altschul et al., 1990) Gapped-Blast (Altschul
et al., 1997), i.e. Blast2, BlastZ (Schwartz et al., 2000) (an experimental version of the
Gapped-Blast program) and PatternHunter (Ma et al., 2002) (based on the optimal
spaced seed technology) are examples of such heuristic tools.
Below we chose to detail one of the best-known algorithms, Blast, a state of the

art method in the field. In Section 3.6.1 we describe a more recent approach, YASS
(Noé and Kucherov, 2005) that uses the recently introduced spaced seed technique,
allowing it to increase the sensitivity without loss in specificity.
Blast package provides several programs that search databases with a query se-

quence (that can either be DNA or protein) and look for high scoring local align-
ments. The basic idea, common to heuristic methods above, is that true alignments
are likely to contain a stretch of identities or a very high scoring match, i.e. seeds. So,
one can start by looking for such seeds that can be further on extended in search for
longer alignments. Below we detail the classical Blast strategy. However, the strat-
egy described below allows numerous variations regarding the way hits are extended,
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1.6 Alignment algorithms

the data structures in which words are kept, the choice of the parameters and the
implementation of the different phases.

• As biological sequences have locally biased base compositions, i.e. regions of
low-complexity (e.g. A + T or G + C rich regions), and repeated sequence ele-
ments, this may confuse the local alignment programs that will therefore produce
matches of little interest. The first step of all different versions of Blast is using
filters to eliminate such regions.

• Second, it makes a set of high-scoring words of fixed length k scoring more than
a given threshold in the query sequence (usually 3 bases for protein sequences
and 11 for DNA sequences). Thus, a k-word in the query may be represented by
no words in the set or by many. Different tools implement different variations
on this approach. E.g. Fasta, a precursor of Blast, uses a similar approach
but cares for all k-words in the query and not only high-scoring ones. A newer
version of Blast (Altschul et al., 1997) searches for two non-overlapping word
pairs on the same diagonal, within a limited distance of one another. To achieve
comparable sensitivity to the initial Blast algorithm, the threshold parameter
for word scores must be lowered, yielding more hits than previously. However,
because only a small fraction of these hits is used in the next step, the average
amount of required computation decreases.

• Next, it scans through the database, and wherever it finds a word from the
previous set, i.e. seed, it tries extending it as an ungapped alignment, i.e. high-
scoring segment pairs (HSPs), in both directions. The extension for one seed
does not stop until the accumulated total score of the HSP begins decreasing
below a given threshold. As for the scanning phase of the database to be fast,
high-scoring words are kept into efficient structures, like search trees. Extending
only to ungapped alignments is in fact the technique used in the initial version
of Blast. In a more recent version however, seeds are also extended to gapped
alignments, see (Altschul et al., 1997).

• Finally, it lists all of the HSPs in the database whose scores are high enough
to be considered, meaning that they are greater than an empirically determined
cutoff score (by comparing the alignment scores to random sequences).

1.6.2 Multiple alignment
In a multiple alignment, homologous residues among a set of sequences are aligned
together in columns. Except for trivial cases of almost identical sequences, it is not
possible to unambiguously identify a single correct multiple alignment. Thus our
ability to define correct alignments varies with the relatedness between sequences;
for cases of interest, where sequences have diverged, one should expect conserved
core structural elements that are meaningfully aligned but also other regions whose
alignment is not meaningful at all. See Figure 1.5, extracted from (Wallace et al.,
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hba_horse   ---------VLSAADKTNVKAAWSKVGGHAGEYGAEALERMFLGFPTTKTYFPHF-DLS-

hba_human   ---------VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF-DLS-

hbb_horse   --------VQLSGEEKAAVLALWDKVN--EEEVGGEALGRLLVVYPWTQRFFDSFGDLSN

hbb_human   --------VHLTPEEKSAVTALWGKVN--VDEVGGEALGRLLVVYPWTQRFFESFGDLST

glb5_petma  PIVDTGSVAPLSAAEKTKIRSAWAPVYSTYETSGVDILVKFFTSTPAAQEFFPKFKGLTT

myg_phyca   ---------VLSEGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHPETLEKFDRFKHLKT

lgb2_luplu  --------GALTESQAALVKSSWEEFNANIPKHTHRFFILVLEIAPAAKDLFSFLKGTSE

                      *:  :   :   *  . .         :  .:   * :   *  :   .

hba_horse   ----HGSAQVKAHGKKVGDALTLAVGHLDD-----LPGALSNLSDLHAHKLRVDPVNFKL

hba_human   ----HGSAQVKGHGKKVADALTNAVAHVDD-----MPNALSALSDLHAHKLRVDPVNFKL

hbb_horse   PGAVMGNPKVKAHGKKVLHSFGEGVHHLDN-----LKGTFAALSELHCDKLHVDPENFRL

hbb_human   PDAVMGNPKVKAHGKKVLGAFSDGLAHLDN-----LKGTFATLSELHCDKLHVDPENFRL

glb5_petma  ADQLKKSADVRWHAERIINAVNDAVASMDDT--EKMSMKLRDLSGKHAKSFQVDPQYFKV

myg_phyca   EAEMKASEDLKKHGVTVLTALGAILKKKGH------HEAELKPAQSHATKHKIPIKYLEF

lgb2_luplu  VP--QNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG-VADAHFPV

                  . .:: *.  :   .                      .  *  .  :    : .

hba_horse LSHCLLSTLAVHLPNDFTPAVHASLDKFLSSVSTVLTSKYR------

hba_human LSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR------

hbb_horse LGNVLVVVLARHFGKDFTPELQASYQKVVAGVANALAHKYH------

hbb_human LGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH------

glb5_petma LAAVIADTVAAG---------DAGFEKLMSMICILLRSAY-------

myg_phyca ISEAIIHVLHSRHPGDFGADAQGAMNKALELFRKDIAAKYKELGYQG

lgb2_luplu VKEAILKTIKEVVGAKWSEELNSAWTIAYDELAIVIKKEMNDAA---

            :   :  .:      .     ...       .   :     . . ..

Current Opinion in Structural Biology

Figure 1.5: ClustalW (Thompson et al., 1994) sequence alignment (left) and VAST
structural alignment (right) of seven globins, visualized using Cn3D. The
coloured regions within the sequence alignment correspond to the coloured
regions within the superposition. Both VAST and Cn3D are available
on the NCBI web site http://www.ncbi.nlm.nih.gov/Structure. The
figure was extracted from (Wallace et al., 2005).

2005), for an example of a MSA computed for several protein sequences, members
of the same protein family, i.e. globins, and the corresponding three-dimensional
representation.
In theory, one can extend the formulation and algorithm in Section 1.6.1 to more

than two sequences, thus for global multiple alignment (e.g. by building a three
dimensional cubic matrix for three sequences) (Jue et al., 1980; Murata et al., 1985).
Unfortunately this would necessitate O(nk) time and memory, i.e. n corresponds
to the maximum length among the k sequences. So computing the exact multiple
alignment by multidimensional dynamic programming is feasible only for few short
sequences. Even with improvements like reducing the volume of the multidimensional
matrix as in (Carrillo and Lipman, 1988), one can only use this method for less than
7 sequences of small lengths (< 300 residues).
Therefore, unlike pairwise algorithms, practical multiple alignment algorithms are

heuristic rather than exact solutions. By searching only a subset of the population
of alignments, they efficiently find an alignment that is approximately optimal but is
not guaranteed to be the most optimal alignment possible for the given cost function.
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1.6 Alignment algorithms

The approach for multiple sequence alignment that really caught on is known as pro-
gressive alignment (Corpet, 1988; Feng and Doolittle, 1987; Higgins and Sharp, 1988;
Thompson et al., 1994; Thompson et al., 1997).
Progressive alignment methods usually start by aligning closely related sequences,

as they likely result in a reliable alignment. For this, they build a guide tree meaning
a quick and dirty tree built with similar techniques to those used to construct phylo-
genetic trees, i.e. the Neighbor-Joining method (Saitou and Nei, 1987). The leaves
of a guide tree correspond to the input sequences. These sequences and, upper in the
tree, groups of sequences, i.e. alignments of alignments, are aligned two by two till
a single alignment is obtained. The complete multiple alignment can be found in the
root node. Finding a satisfactory guide tree remains however the most time consum-
ing step of this method and recently, several groups worked on improving it (Edgar,
2004b; Edgar, 2004a; Katoh et al., 2002; Katoh et al., 2005). The progressive align-
ment technique is implemented in widely used programs, like ClustalW (Thompson
et al., 1994), Muscle (Edgar, 2004a), T-Coffee (Notredame et al., 2000).
The drawback of progressive methods is that errors introduced in early phases of

the procedure cannot be corrected. Several iterative procedures were thus proposed
to improve the quality of the alignment (Sankoff et al., 1976; Hogeweg and Hesper,
1984). One common solution based on iterative refinement consists in using hidden
Markov models (HMMs).

Hidden Markov models (HMMs) are probabilistic models assigning likeli-
hoods to possible alignments, to determine the most likely multiple sequence
alignment or a family of possible alignments. HMMs can produce both global
and local alignments and they can be adapted for both pairwise and multiple
alignment. For a detailed explanation on how HMMs work, see (Rabiner and
Juang, 1986) and (Durbin et al., 1998).

An efficient dynamic programming search procedure adapted to HMMs, i.e. Viterbi
algorithm, is generally used to successively align the growing MSA to the next sequence
in the query set to produce a new MSA, (Hughey and Krogh, 1996; Eddy, 1995; Baldi
et al., 1994). Compared to progressive methods, the alignment of prior sequences is
updated with each new sequence being added. However, like progressive methods,
this technique can be influenced by the order in which the sequences in the query
set are integrated into the alignment, especially when the sequences are distantly
related. Moreover, HMM optimization can be easily trapped in a local optimum and
is unstable in gap-rich regions. Finally HMMs do not explicitly consider evolutionary
relationships among sequences.
Among other multiple alignment programs mostly for small-scale sequences we cite

3D-Coffee (O’Sullivan et al., 2004) for protein sequence alignments, MAFFT (Katoh
et al., 2002; Katoh et al., 2005) that ingeniously uses a fast Fourier transform in order
to speed the progressive alignment strategy, PROBCONS (Do et al., 2005), very close
to T-Coffee but more accurate thanks to the use of pair-hidden Markov models and
MUSCLE (Edgar, 2004b; Edgar, 2004a), an extremely fast and accurate method based
on log expectation.
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For a thorough description of multiple alignment algorithms and applications see
(Gotoh, 1999) and (Higgins and Taylor, 2000, chap. 3). Additional information on
recent improvements on multiple alignment methods and short descriptions of such
novel methods can be found in (Wallace et al., 2005; Notredame, 2007).

1.7 Benchmarks, simulations and comparison of
alignments

Face to the growing number of alignment applications, a vast array of alignment
programs have been developed. Moreover, in the last ten years, thanks to the new high-
throughput genomic and proteomic technologies, the size and complexity of the data
sets that need to be routinely analysed are increasing. Ideally, when new methods are
developed it is necessary to evaluate the improvement compared to existing methods.
Moreover, a detailed evaluation should be performed to determine the performance
of the different methods under different conditions, thus allowing to choose the most
appropriate one for a given alignment problem. This should also guide future research
on alignment algorithms.

1.7.1 Alignment benchmarks
Benchmarking is widely used in computer science to compare the performance of dif-
ferent technologies. Within a scientific discipline, it captures the community consensus
on which problems are worthy of study, and determines the scientifically acceptable
solutions. The characteristics that benchmarks should have in order to be considered
successful, i.e. leading to a faster progress and a more rigorous examination of research
results, are mentioned in (Sim et al., 2003). They must be: relevant, i.e. include tests
that need to be representative of the problems the system must handle, solvable, i.e.
achievable but not trivial tasks with solutions known in advance, accessible, i.e. tests
and results need to be publicly available, and evolving, i.e. the benchmark needs to
continuously develop in order to keep the pace with the optimization rhythm.
In the field of sequence alignment, when building a benchmark three main issues

need to be explored. First, what is the correct alignment of the sequences included in
the tests? Second, which particular alignment problems should be represented in the
benchmark? Finally, measures for comparing to the reference alignment need to be
specified. Moreover, in the particular case of sequence alignment, benchmarks need
to quickly evolve in order to provide larger test cases, more representative of the new
alignment requirements, i.e. large scale sequence alignment.
(McClure et al., 1994) is one of the first studies to compare the quality of different

alignment methods. It uses four sets of sequences from four different protein families
and shows that the performance of alignment programs mainly depends on the number
of sequences, the degree of similarity between sequences and the number of insertions
in the alignment. Moreover, factors as the length of the sequences, the existence of
large insertions and the over-representation of some members of the protein family,
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may also affect alignment quality. In the same study, McClure et al. measured the
ability of existing methods to identify conserved motifs and concluded that in general
global methods performed better than local methods. The relevance of these tests
was however limited, due to the small size of the benchmark. Since then, several pair-
wise and multiple sequence alignment benchmarks were created for protein sequences:
Homstrad (Mizuguchi et al., 1998), BAliBASE (Thompson et al., 1999b), OXBench
(Raghava et al., 2003), Prefab (Edgar, 2004b), SABmark (Van Walle et al., 2004).
See (Blackshields et al., 2006) for a comparison of the main benchmarks for protein
sequence alignment algorithms and (Aniba et al., 2010) for a survey on this subject.
For RNA sequences, BRAliBASE (Gardner et al., 2005) is the only benchmark

designed to evaluate and compare alignment programs. For DNA sequences on the
other hand, there are no adapted benchmarks and therefore there is a real shortage
of assessments of MSAs with real DNA data. One solution to this problem, in the
case of coding DNA sequences, would be to compare computed nucleotide alignments
against reference nucleotide alignments that are based on the biological features used
in protein benchmarks. Little work has been done to address this lack of reference
DNA alignments. Recently, (Carroll et al., 2007) introduce the first known collection
of protein-coding DNA benchmark alignments based on biological features such as the
tertiary structure of encoded proteins. These solutions are unfortunately of limited use,
as they only deal with protein coding DNA, while nowadays the interest of scientists
turns to non-coding DNA, the so-called junk DNA, see Section 1.1.
In (Pollard et al., 2004) a benchmarking tool for the alignment of non-protein cod-

ing DNA was created, using simulated data. Though this benchmark gives researchers
a starting point to evaluate DNA alignments, the degree to which the simulated se-
quences reflect those in nature is uncertain.

1.7.2 Simulations
Simulations are designed in order to model reality. In its simplest form, the evolution
of a DNA sequence can be modelled through a Markov process. It starts with an
initial sequence and emulates the mutation process by randomly choosing sites within
the sequence and allowing them to mutate to another nucleotide with a probability
based on a theoretical model of nucleotide change, such as the Jukes-Cantor model
(Jukes and Cantor, 1969), the Kimura two-parameter model (Kimura, 1980), or the
HKY model (Hasegawa et al., 1985), among others. Protein sequence evolution can be
simulated in the same manner by using amino acid change matrices such as Dayhoff
(Dayhoff et al., 1978) or JTT (Jones et al., 1992).
More complex experiments simulate sets of sequences across a phylogenetic tree. In

the simplest case, branching rates in the tree are assumed to be equal. Involved models
include different rates of evolution at different sites, different models of evolution for
different segments of sequence (separate modelling of functional domains, exons or
introns), or different models of evolution across different parts of a tree.
Simulations have a number of undeniable advantages. First, we can know the exact

and precise truth about the data. For the alignment, we know exactly which specific
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sites in a sequence are homologous to sites in the other sequences. We know with
absolute certainty the phylogenetic relationships and the history of the sequences.
In fact, for empirical data sets we never know the absolute truth and we can only
infer it from the data thus, in most cases, truths are merely hypotheses. Second, by
completely controlling the simulations, we can direct the tests on the effects of specific
variables and conditions, by leaving constant every aspect of the simulation but the
one we want to test. However, the main inconvenient of simulations is realism, as our
understanding of mutational processes is incomplete and the simulation can only be
as good as the model of the evolutionary process that underlies it.
The first widely used software for simulating alignments was Rose (Stoye et al.,

1998), which simulates a family of related sequences (RNA-, DNA-, or protein-like)
guided by a known evolutionary tree. It is one of the first simulation programs in-
cluding indels. With the help of their program, the authors showed that the optimal
alignment is not necessarily the correct one. Lately, additional sequence simulation
programs have been developed, like Simali (Blanchette et al., 2008) based on Rose,
Dawg (Cartwright, 2005) and MySSP (Rosenberg, 2005b) for DNA sequences, Indel-
Seq-Gen (Strope et al., 2007) and EvolveAGene3 (Hall, 2008) for DNA and protein
sequences.

1.7.3 Comparing alignments
One issue that needs to be discussed is how one should actually compare alternate
alignments, eventually with some form of benchmark alignment.
When comparing alignments from a program to some benchmark alignment, two

measures are usually used in order to assess the similarity between them: the sum-of-
pairs score (SP) and the column score introduced in (Thompson et al., 1999a). The SP
score is defined as the percentage of correctly aligned pairs of residues in the alignment
produced by the program, compared to the reference alignment. It is used to determine
the extent to which programs succeed in aligning some of the sequences, if not all of
them. The column score corresponds to the percentage of correctly aligned columns
in the alignment. It tests the ability of the programs to align all of the sequences
correctly.
Concerning gaps, neither one of the two measures takes them into account in the

computation. They deal with them as follows: the SP score ignores paired comparisons
containing gaps, while the column score computes the measure based only on residues
within the column. Moreover, both measures above consider only correctly aligned
residues. In OXBench benchmark (Raghava et al., 2003), an alternative approach was
included, i.e. the Position Shift Error score, which measures the average magnitude of
error by penalizing shifts between alignments. All of these scores are usually computed
in the regions of the alignment identified as being reliable, i.e. the alignment backbone,
see Section 2.1.3.
Among these measures, the most appropriate one depends on the set of sequences

to be aligned and the requirements of the user. For example, in the case of divergent
sequences, the SP score may be more useful since the programs will not be able to

28



1.7 Benchmarks, simulations and comparison of alignments

align all sequences correctly; the Position Shift Error score can also be useful in this
case. The column score is more meaningful for alignments containing many closely
related sequences and only a small number of divergent sequences. As most alignment
programs correctly align closely related sequences, this generates a high SP score, even
if the divergent sequences are misaligned. In this case, the column score discriminates
better among programs correctly aligning the divergent sequences compared to the
others.
When comparing several potential alignments, thus without a reference alignment,

the measures are sensibly similar to those above. The classical solution in this case,
is considering one by one each alignment as a reference alignment and compute scores
relatively to this reference. An average between the scores computed in this way is then
given as a final score. Such approaches can be found in (Lassmann and Sonnhammer,
2002; Rosenberg, 2005a).
Measures described above compare alignments at the pair of residues level or at

the column level. Another approach would be to use global measures, which com-
pute global scores for each alignment, and then compare these scores. Such three
fundamental types of scores exist in the literature. The first type of scores refers to
the coverage and the percentage identity. One may find different definitions for these
measures but the most common are as follows. The percentage identity is computed
as the number of identical pairs of residues in the alignment on either the length of
the alignment or the lengths of the sequences. The coverage corresponds to the to-
tal length of the regions covered by the alignment. For more details regarding these
measures see Section 3.3.
The second type of score is a raw Smith &Waterman score, see Section 1.6, meaning

the measure optimized by the SW algorithm. It is computed by summing the substi-
tution matrix scores for each position in the alignment and subtracting gap penalties.
As we have seen in Section 1.6, it is difficult to discriminate between such scores. To
overcome this problem, a third type has been introduced, the statistical score based
on the extreme value distribution (EVD). The power of statistical scores can be at-
tributed to their incorporation of more information than any other measure; it takes
into account the full substitution and gap data (like raw scores) but it also incorporates
details about the sequence lengths and composition (Brenner et al., 1998).
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More than 1000 complete genomes are avail-
able for bacteria and archea, and another 6000
genomes are ongoing. Because of this vast amount
of data, comparative genomics analyses at whole
genome scale become mandatory. Moreover, as
most probably only few reference genomes will be
consistently annotated in the next future, a need
for robust and rapid genome based comparison
tools not relying on gene annotations has emerged.
Several advances have been recently achieved in
terms of complete genome comparison tools not
relying on gene annotations. Due to genome sizes
and the task complexity, such tools generally im-
plement heuristic methods, i.e. the anchor-based
strategy. With the flood of data and tools, there
is also an increasing urge for improved datasets
and protocols for evaluating the correctness and
performance of genomic alignment software.
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2.1 Introduction to the alignment of whole genomes

A complete genome sequence of an organism may be considered to be the ultimate
genetic map, in the sense that the heritable characteristics are encoded within the DNA
and that the order of all the nucleotides along each chromosome is known (Hardison,
2003). One gains much insight into genome structure by analyzing such individual
genome sequences, however in order to understand genome function one sole sequence
is not enough material (Venter et al., 2001; Lander et al., 2001). In fact, a present
challenge for genome research is to distinguish functional DNA and assign roles to it
(Collins et al., 2003). Recently, genetic maps have been created for a wide range of
species and more recently even, DNA sequences of whole genomes have been sequenced
in a great number. This has led to the field of research called comparative genomics,
which analyzes characteristics of whole genomes, in contrast to comparative genetics
that analyzes single genes only.
The statement of comparing genomes covers a multitude of types of studies: studies

that focus on homologous genes (two genes that are both related by descent from a
gene in a common ancestral species) and look for how many homologous genes they
share and their order, or that are interested in comparing the protein structures and
functions, or that completely leave out genes and look at intergenic entities such as
transposable elements. Probably one of the most important applications of compara-
tive genomics is the functional annotation of genomes. Functional parts of sequences
are subject to negative selection, which causes slower changes than in the case of
nonfunctional sequences. In principle, by comparing genomic sequences one can find
signatures of selection and infer that the corresponding sequence parts are functional.
Moreover, the role of such sequences can also be predicted. As both analysis are pre-
dictions, experimental tests must be done, like those being currently implemented on
a large scale in the Encyclopedia of DNA Elements (ENCODE) project (Weinstock,
2007; Ewan Birney et al., 2007). For a thorough introduction to biological, statistical
and computational questions in comparative genomics see (Sankoff and Nadeau, 2000)
and (Balding et al., 2003, chap. Comparative genomics).
There are three main kinds of approaches used for whole genome comparisons:

approaches based on the genome as a “set of genes”, whole proteome comparison
(Tatusov et al., 1997) and whole genome sequence alignment studies. All three ap-
proaches are powerful tools to study genome organization and evolution rules with
different time scale considerations. For example, the information contained in the or-
der in which genes occur on the genomes of different species was used successfully for
reconstructing phylogenetic relationships, see (Gascuel, 2005, chap. 12) for a review.
The last two types of approaches have been employed with success in a recent study
comparing the genome of yeast S. Cerevisiae to three related yeast species genomes.
This comparative analysis of the yeast chromosomes has considerably improved gene
annotation and has permitted the prediction of new motifs conserved in intergenic
regions that act potentially as regulatory elements of gene expression (Kellis et al.,
2003; Kellis et al., 2004).
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2.1.1 The need for whole genome alignment (WGA) at DNA level
In particular, whole genome comparisons based on alignments at the DNA-level started
to develop very recently. The first sequenced genomes were evolutionary distant and
DNA alignment tools were not sufficiently powerful, therefore comparisons were limited
to protein sequences. In fact, exons of protein coding genes mutate substantially
slower than the non-coding DNA, as mutations changing an amino-acid are less likely
to be retained in a functional protein-coding gene (Li and Olmstead, 1997). Based on
comparisons at the amino-acid level, a large set of common proteins were identified
in yeast, worms and flies (Rubin et al., 2000), but non-coding sequences could not be
compared at that point. Genome alignments at the DNA-level were first used for the
comparison of whole genomes on species that are more closely related. An example
of such study on strains of bacteria from several species: Escherichia coli, species of
Salmonella, and Klebsiella pneumonia can be found in (McClelland et al., 2000).
Advances in the whole genome alignment (WGA) field became urging with the re-

cent developments in the area of comparative genomics. The most striking change in
this area is the sheer volume of available data due to the novel sequencing techniques
(Miller, 2001). At http://www.genomesonline.org/cgi-bin/GOLD/bin/gold.cgi,
one learns that 1364 genomic sequences have been completely published at the mo-
ment, among which 92 archaeal, 1139 bacterial and 133 eukaryal. Moreover, another
190 archaeal, 4897 bacterial and 1581 eukaryotic genomes are ongoing and to be pub-
lished in the near future.
If one says great amount of data from, till now, little unknown species, one implies

little knowledge and poor annotation of sequences. In situations like these, approaches
working at the level of the proteome become less helpful. Additionally, an evolution
of the research subjects has happened in the field, as researchers started to give an
important interest to non-coding regions (already discussed in this section and in
Section 1.1). Nowadays, one is interested in identifying conserved sequences in both
coding and non-coding regions. This made the use of WGA tools at the DNA level
mandatory.
Five years ago, such a quantity of data at such speed seemed out of the question.

This defines novel demands for DNA alignment tools, which should be capable of
dealing with both a great number of sequences and huge lengths. Frequently, WGA
tools have to work with incomplete, “draft”, sequence data consisting of pieces whose
relative order and orientation are difficult to determine. Unfortunately, little work
has been done on the subject. Moreover, comparison of complete genomes implies
genome shuffling events. Mechanisms like repeated inversions or translocations de-
termine a reordering of genetic elements (Tillier and Collins, 2000). In the case of
bacteria, horizontal transfer introduces new genetic elements (Hacker and Carniel,
2001). Furthermore, the apparition rates and patterns of such events depend on the
set of genomes being compared. For example, one is more likely to observe gene dupli-
cations and repetitive sequences in eukaryotes than in bacteria (Eichler and Sankoff,
2003). Genome comparison systems must account for all of these mechanisms in order
to provide a complete picture of genetic differences among organisms.
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2.1.2 The reality of whole genome aligners
Whole genome alignments are still in an exploratory phase, even though a great num-
ber of dedicated tools were created during the last years. See (Miller et al., 2004;
Blanchette, 2007; Miller, 2001; Treangen and Messeguer, 2006) for reviews on al-
gorithmic ideas and on available resources for computing, accessing, and visualizing
genomic alignments.
As classical alignment methods based on the dynamic programming strategy, see

Section 1.6 cannot be adapted to the case of long, divergent and shuffled genomic
sequence, WGA tools are generally heuristics based on a complex strategy composed
of several phases, (Brudno et al., 2003b; Hohl et al., 2002; Delcher et al., 1999; Darling
et al., 2004; Treangen and Messeguer, 2006). This strategy, known under the name
of anchored-based strategy, is meant to combine speed and sensitivity for genomic
alignment. In a first step, a fast search tool is used to identify sequence similarities.
Then, these similarities are filtered by using a chaining phase and the selected ones
are used as anchor points for the final alignment. Finally, a more sensitive method
aligns those regions that are left unaligned between the identified anchor points. See
Section 2.2 for additional details.
In (Miller et al., 2004) the following needs for WGA tools have been identified:

1. improved software for aligning two genomic sequences on rigorous statistical
basis;

2. reliable and automatic software for aligning three or more genomic sequences;

3. improved datasets and protocols for evaluating the correctness and performance
of genomic alignment software;

4. better methods for displaying and browsing genomic sequence alignments.

The points enumerated above remains of great relevance nowadays, regardless the
great amount of work having been done in this domain.
The context of this manuscript does not extend to the problem of visualizing and

browsing WGA, even though this is an extremely challenging problem in itself. In this
chapter and in Chapter 3, we shall focus on the first three points raised by W. Miller.
Below, we summarize the actual state of WGA methods and identify some of their
limitations and future directions of improvement. In Chapter 3, we give ideas meant
to improve WGA by addressing several of these limitations, and experimental results
sustaining our claim of improvement.

Algorithmic choices The strategies used by the WGA methods (see Section 2.2)
are composed of several phases and for each of these phases, WGA tools implement
different algorithms. The choice of these algorithms directly influences the speed and
the quality of the final alignments. We shall see in Section 2.4 and in Section 2.5 that
most tools use, at every step of the strategy, variations on the same methods. However,
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no study has been dedicated to measuring at which point these variations influence
the final result. Moreover, as such algorithmic solutions are similar and as they follow
similar strategies, the question that one should ask oneself is at which point they are
interchangeable, meaning that they could be plugged in with each other in order to
create new methods. Such ideas, consequences and underlying results are discussed in
Chapter 3.

Parameters Many WGA programs have a great number of parameters for each one
of the phases composing the strategy, parameters that may greatly affect the output,
are poorly understood and difficult to be adjusted. A very recent work on accurate
parameters for local alignments when used on complete genomic sequences (employed
as hits in the first step of WGA methods) can be found in (Frith et al., 2010). For
this study, 495 combinations of score parameters for alignment of animal, plant, and
fungal genomes were assessed, and it was found that the scoring schemes used in the
UCSC genome database are far from optimal, respectively the X-drop parameter and
the E-values. However, except for parameters used in the first phase of the strategy,
parameters in the other phases, seldom common between different WGA tools, also
need to be fixed, e.g. thresholds for the sizes of matches, fragment weights, maxi-
mal admitted distances between fragments when clustering them, number of recursive
phases. Authors usually make their choice on empirical criteria that are more or less
documented. To our knowledge, there is a lack of detailed studies regarding these
choices and their impact. Some of these parameters are also discussed in Chapter 3.

Quality of alignments and comparison of different WGA solutions Differences
in behaviour of WGA tools are difficult to predict and results even more difficult to
analyze as there are no statistical or empirical criteria available to evaluate the quality
of genome alignments. With few established methodology for estimating the quality of
the WGA, scientists have either trusted the alignments completely or developed their
own filters. Not being capable of estimating the quality of alignments complicates the
task of comparing and evaluating objectively the results of different WGA tools. See
Section 2.6 and Chapter 3 for a more detailed discussion on these subjects.

2.1.3 Applications of whole genome alignment at DNA level
Regardless these persisting problems, whole genome alignment tools have lately been
used in a variety of studies: for the identification of regulatory sites (Chapman et al.,
2003; Dubchak et al., 2000; Göttgens et al., 2000), prediction of genes in eukary-
otes (Alexandersson et al., 2003; Bafna and Huson, 2000; Carter and Durbin, 2006;
Flicek et al., 2003; Korf et al., 2001; Stanke et al., 2006), identification of signature
sequences for pathogenic microorganisms (Chain et al., 2003; Fitch et al., 2002), de-
tection of functional noncoding RNAs (Pedersen et al., 2006; Washietl et al., 2005),
motif identification (Bigot et al., 2005; Halpern et al., 2007), phylogenomic studies
(Delsuc et al., 2005).
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We already discussed that due to large structural changes, i.e. rearrangements, the
organization of genomic sequences is often modified. Regions that have been affected
by rearrangements are called breakpoints, while the ones that have not been touched by
such events are referred to as synteny blocks. Precise knowledge on breakpoint regions
should lead to a better understanding of the course of evolution and its functional
impact (Claire and Sagot, 2008). In order to study breakpoint related questions,
one has to precisely identify the genomic regions that underwent rearrangements.
This is usually done with WGA methods allowing for rearrangements (see Mauve,
CHAINNET, Shuffle LAGAN described in Section 2.5); breakpoint regions identified
in this manner are then refined and narrowed (Lemaitre et al., 2008), and thoroughly
studied as to investigate issues related to hotspots (Bourque et al., 2005) or to the
correlation between fragile sites, segmental duplications, and rearrangement locations
(Bailey et al., 2004; Armengol et al., 2003).
One easily observes that the vast majority of genomes already sequenced or close

to being completed, are bacterial genomes. In fact, since the publication of a second
strand of Helicobacter pylori in 1999 (Alm et al., 1999), sequence data on related
bacterial genomes has rapidly accumulated in public databases. Thus, a considerable
interest is given to the study of bacteria, as the availability of sequences for mul-
tiple strains of multiple species opens up new perspectives for studying short term
evolutionary processes (Chiapello et al., 2005).
One among the first comparative studies for bacteria was based on the pairwise

alignment of complete genomes of Escherichia coli (Sakai vs K12) and allowed the
identification of a highly conserved subsequence between the two strains (Hayashi
et al., 2001; Perna et al., 2001). They found that this common subsequence is in fact
the conserved part of chromosome, among the strains of E. coli.

Mosaic structure of bacterial genomes The conserved part among differ-
ent strains is termed the backbone. Is is interrupted by DNA segments specific
to each strain, called variable segments. This type of organization of genomic
sequences in backbone and variable segments is known as the mosaic structure
of genomes (Chiapello et al., 2005; Chiapello et al., 2008).

Studying the mosaic structure of bacterial species is extremely relevant as the back-
bone is more likely to be related to the essential functional elements of the cell (genes,
motifs or signals) (Hayashi et al., 2001; Perna et al., 2001; Lefébure and Stanhope,
2009), while variable segments most probably correspond to mobile elements (Schnei-
der et al., 2002; Vishnoi et al., 2007) and with high probability they might be putative
locations for the discovery of pathogenic islands.
Obtaining backbone/variable segments segmentation at a large scale, i.e. for a high

number of species each of them with several strains, needs competitive automatic tools
for whole genome alignment at the DNA level. Initial studies were limited to pairwise
comparisons and only recently systematic strategies for such segmentations have been
proposed in (Chiapello et al., 2005; Chiapello et al., 2008). The latter work was used
to analyze the mechanisms of genetic variability in E. coli, S. aureus, and S. pyogenes,
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and to analyze recombination, based on an alignment of backbones obtained from a
comparison of 20 E. coli/Shigella strains. In Chapter 3 we shall discuss the quality
of this systematic analysis of backbone/variable segments segmentations with existing
WGA tools.

2.2 Strategy for WGA
From the mid-1980s, with the arrival of the personal computer, hundreds of sequence
alignment programs and algorithms have been published. Moreover, from the mid-
1990s, tools for aligning extremely long sequences have appeared and rapidly reached
dozens. In Figure 2.1 extracted from (Treangen and Messeguer, 2006), one has an
approximate, and by no means complete, overview of alignment tools, including small-
scale sequence alignment and whole genome alignment tools. WGA tools need to
be able to efficiently handle comparisons involving mega-bases of genomic sequence.
Unfortunately, traditional alignment methods would require days and even months of
computation time even on competitive computers. Thus alignment tools are adapted
to the sizes of the sequences they deal with, i.e. small sequences, considered as such
if they are less than 10Kbp, or large ones, more than 10Kbp.
Small-scale sequence alignment tools and methods have been described in the pre-

vious chapter. Here, we focus on WGA tools, and more precisely on the strategy upon
which such tools are usually based. By looking in the phylogenetic tree in Figure 2.1,
one distinguishes rapidly several possible classifications of WGA tools, based on the
number of sequences they align, i.e. pairwise and multiple, based on the level of
shuffling of the sequences they deal with, i.e. tools designed for collinear sequences
(without large scale rearrangement events) and tools capable of handling rearranged
sequences.
Among pairwise WGA solutions one may identify a unifying thread: the orga-

nization in four phases known as the anchor based strategy, which can be summarized
as follows. For a graphical representation of the phases composing the anchor based
strategy, see Figure 2.2.

1. Preliminary phase. Before the first phase, most WGA tools use a preliminary
filtering step (or demand to the user to apply this kind of filtering) that consists
of masking low-complexity DNA regions, i.e. simple repeats, namely micro-
satellites (Turnpenny and Ellard, 2005) and A + T or G + C rich regions, and
interspersed repeats (Hess et al., 1983). This preliminary filtering is meant to
avoid uninformative and time-consuming alignments among repeats.

2. Fragments computation phase This first phase consists in the detection of
exact matching regions between the sequences, or in the case of more recent tools,
detection of approximate matches, i.e. allowing a small number of mismatches
and gaps. Such matching regions are known under the names of fragments or
potential anchors and they work as seeds for the following of the method.
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Figure 2.1: “An approximate phylogeny of genome comparison tools over
the past 30 years. Tracing the growth in related global genome compar-
ison tools over the past 30 years.” Figure extracted from (Treangen and
Messeguer, 2006).
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To be able to efficiently deal with entire genomes, the idea behind this seeding
phase is to limit the dynamic programming search space. In fact, methods for
computing different types of fragments are fast, i.e. they run in linear time, and
they allow an initial identification of interesting regions, more likely to be part of
true homologous subsequences. However, in order to avoid a number of spurious
matches, fragments are usually filtered by imposing a minimum allowable size,
adapted to the lengths of the genomic sequences, or in the case of approximate
matches, a minimum level of quality, e.g. a percentage identity cutoff. This
filtering step prevents from generating a great number of fragments that could
be due to random similarity between sequences, thus facilitating the task for
the second phase. Details on the methods that are employed for computing
fragments can be found in Section 2.3.
This first phase is probably the most important one in the strategy, as the
quality of the alignment mostly depends on the sensitivity of this phase. Using
exact or approximate matches of varying lengths and with varying characteristics
may greatly influence the final result. Thus working on this phase in order to
improve the quality of the WGA methods becomes mandatory. This point shall
be discussed in Chapter 3.

3. Chaining phase The second phase corresponds to the selection of a subset
of fragments. This step is an additional filtering of matches in order to fix
the boundaries of the final alignment. The fragment selection can be made
on different criteria depending on the characteristics of the sequences the tool is
supposed to align, i.e. collinear or shuffled sequences. This step is usually known
under the names of chaining or anchoring and the fragments that are selected
at this step are called anchors, as they form the basis of the final alignment and
cannot be discarded in the following phases.
The most common chaining strategy is intended for collinear sequences, meaning
that it looks for an optimal collinear sequence of non-overlapping fragments, i.e.
a set of increasing fragments on both sequences. Several exact solutions exist
for this variation of the chaining problem and they are thoroughly discussed in
Chapter 4.
For shuffled sequences, the restriction of collinearity of fragments has to be re-
laxed in order to accommodate eventual rearrangement events. An intermediary
solution is to impose the order between fragments on one sequence only, mean-
ing that on the second sequence, fragments may be taken in any order, see
Section 4.11. This however, is not the perfect answer to our problem, as frag-
ments on the second sequence may overlap. The complete solution is for one to
look for an optimal set of non-overlapping fragments, meaning that no constraint
is put on the order of the fragments in the two sequences, see Section 4.10 for
a complete definition. In this case, tools implement heuristics, like the greedy
breakpoint elimination technique described in 4.12, or the hierarchical greedy
strategy used in (Roytberg et al., 2002) and (Morgenstern et al., 1998).
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4. Recursive phase The first and the second phases described above are usu-
ally applied in a recursive manner on gaps in between the anchors, i.e. yet
unaligned pairs of regions. This corresponds to a divide-and-conquer strategy.
The goal is to examine the genomes for as much matching genomic sequence as
possible by searching the regions that lie between anchors for additional shorter
matches, thus creating new regions small enough to be efficiently aligned in the
last phase. Filters that are used in the first step to avoid spurious matches are
being relaxed when the phase is repeated, i.e. adapted to sequences that are con-
siderably shorter than the initial ones. This allows for a more sensitive research
of similarities, capable of digging out more divergent homologous regions.

5. Last chance alignment phase As the name suggests it, this fourth phase
consists of systematically applying small-scale sequence alignment methods on all
remaining unaligned regions, i.e. gaps, usually below a certain length threshold.
Aligned gaps We refer to these remaining unaligned regions, aligned by the
last chance alignment phase, as aligned gaps, a term that was first introduced
in (Darling et al., 2004).

Both pairwise and multiple WGA tools are mostly based on the anchor strategy.
In the particular case of multiple WGA, methods for computing fragments capable
of dealing with more than two sequences are needed. As we shall see in the second
part of the manuscript, chaining methods for the multi-dimensional case exist. The
third and the fourth phases are implemented on the same principle as for the pairwise
case. In the fourth phase, meant to close the gaps between the anchors, the programs
ClustalW (Thompson et al., 1994) and Muscle (Edgar, 2004b) are currently employed
(see Section 1.6.2 for a description of these two programs). For example, Mauve uses
the initial matches in order to compute a distance between each two sequences, on
which it bases further on the construction of a guide tree with the Neighbor Joining
method (Saitou and Nei, 1987). In this way, it avoids computing a new guide tree for
each two subsequences that it aligns with ClustalW.
In the following of the chapter, we detail the first phase of the anchor strategy and

some of the most common tools implementing it. We shall no longer insist on the third
and the fourth phase, as they tend to have little variation from one tool to another and
as there is little description on them.In Section 2.3 we summarize the basic techniques
employed in the first phase, i.e. the fragments computation phase. The second phase
algorithms are thoroughly explained in chapters 4 and 5. In Section 2.4 we describe
the most commonly used among tools designed for pairwise WGA, while in Section 2.5
the ones dealing with multiple alignment.

2.3 First phase of the anchor based strategy
The first phase of the anchor based strategy consists in identifying similarity regions
among the sequences, i.e. fragments, regions that represent potential anchors for the
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1

2 3

Figure 2.2: The anchor based strategy. The first plot corresponds to a pairwise
collinear WGA, i.e. a path between the bottom left and the top right
corner of the similarity matrix, the closest possible to the main diagonal.
(1) Fragments computation phase. Segments in the plot correspond to
fragments, i.e. matching regions between the two sequences. (2) Chaining
phase. In this example the chain consists of a collinear set of anchors; there
is also the version allowing for rearrangements in the chain. (3) Recursive
anchoring in gaps between the anchors and finally, alignment of still not
aligned regions.

final alignment. Thus the quality of the final WGA is essentially determined by the
quality of this initial set of similar regions.

2.3.1 Types of fragments

Fragments usually employed in the first phase of anchor based methods for WGA
are exact matches. An elementary type of exact matches initially used by WGA tools,
consists of exact k-mers, i.e. pairs of identically matching substrings of length k. Once
identifying k-mers, one usually extends them to maximal-length matches, see tools like
sim2 (Chao et al., 1995) and sim3 (Chao et al., 1997); this kind of approach is similar
to the Blast-like hashing scheme described in Section 1.6.1. More recent approaches
are based on the direct identification ofmaximal unique matches (MUMs), see (Delcher
et al., 1999).
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Maximal unique matches (MUMs) More precisely, a MUM is a sequence occurring
exactly once in each genome, which is not contained in any longer such sequence, see
Figure 2.3. The motivation for using this kind of match is that if a long, perfectly
matching sequence occurs exactly once in each genome, it is almost certain that it
should be part of the alignment.

A A G C T G c g a A T T C C T G A T T C g g c c t a g c t g t g
g c t A A G C T G a g t c t A T T C C T G A T T C c g a c g a t

Figure 2.3: Two maximal unique matching sequences (MUMs) shown in uppercase,
shared by the two sequences. Any extension of the MUMs will result in
a mismatch. Any contraction of the MUMs will result in a non maximal
match. By definition, a MUM does not occur anywhere else in either
genome, thus a sequence like cga is a match, but it is not unique.

Variations on exact matches Except for computational reasons, the restriction of
using only MUMs, i.e. maximal unique matches, as anchors seems unnecessary and
it is not justified from a biological point of view. Exact matches occurring more than
once in a genome may also be meaningful.
Thus, using maximal exact matches (MEMs) was the following innovation after the

use of MUMs. MEMs are more general than MUMs as they are allowed to have several
occurrences on each genome. Similar to a MUM, a MEM is defined as a substring
that occurs in the genomes to be aligned and cannot be simultaneously extended to
the left or right in every genome. It is however true that by relaxing the constraint
of uniqueness, one has to be more efficient in the chaining-filtering phase in order
to choose meaningful anchors of the alignment. New matches meant to combine the
advantages of both MUMs and MEMs, are maximal rare matches (MRMs), meaning
exact matches that occur at most k times on each sequence, where k is usually a small
number.
If fragments based on k-mers, MUMs and MEMs are the ones that are the most

commonly used, variations on these can be found in the literature. For example,
WABA (Kent and Zahler, 2000) treats wobble bases, i.e. third residues in codons,
differently from other bases, as it is known that mutations at this residue are often
silent in the sense that they do not change the corresponding amino-acid. The strategy
of WABA, is similar to that of Blast, only that for WABA the HSPs are not required
to match exactly but may contain a mismatch every three residues.

Approximate matches In order to accommodate sequences with higher degrees of
divergence, matches with degeneracies, i.e. approximate matches, were also employed
in the literature. Such approximate matches are for example k-mers matching with at
most c differences between the sequences, or ignoring translations and transversions,
see (Brudno et al., 2003a), the method used in the first phase of LAGAN and Shuffle
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LAGAN. Moreover, recent tools like Mauve (Darling et al., 2004) and its successor
ProgressiveMauve (Darling et al., 2010), use approximate matches based on spaced
seeds, see Section 3.6.1 for a description of spaced seeds.

A recent tool that assembles the types of matches that can be used in the first
phase of the anchor based strategy is VMatch (Kurtz, 2003), an extension of the
older REPuter (Kurtz et al., 2001). It efficiently solves large scale multiple sequence
matching tasks and can compute different kinds of matches, using state-of-the-art
algorithms, like: maximal exact matches, maximal unique matches, maximal repeats,
branching tandem repeats, supermaximal repeats and complete matches. Matches can
be selected according to their length, E-value or score. VMatch can also realize several
post-processings of the initial matches, as extending or clustering them.

2.3.2 Algorithmic solutions for computing exact matches
Unlike sim2 and sim3 that use hash-like methods to compute exact matches, see
Section 1.6.1, most recent methods are based on suffix-trees (Gusfield, 1997, chap. 5),
which directly find maximal matches that may be unique or not.

Suffix trees The name of suffix tree refers to a compact representation storing all
possible suffixes of an input sequence S, i.e. a suffix is a substring beginning at any
position in the sequence, which extends to the end of it. The suffix tree is a rooted
directed tree with as many leaves as characters in S. Each internal node, except the
root, has at least two children and each edge is labelled with a non-empty substring
of S. Edges out of a node have labels starting with different characters. The defining
property of a suffix tree is that for any leaf i, the concatenation of labels on the path
from the root to the leaf i spells out the suffix starting at position i. See Figure 2.4
for an example of suffix tree built for a given sequence.
Note that each internal node in the suffix tree corresponds to a repeat in S, with the

repeat number being equal to the number of leaf nodes below that node in the tree.
Based on this observation, one may use suffix trees for computing matches between
two genomic sequences, as following. First, the two genomic sequences, S1 and S2,
are concatenated in order to obtain a single sequence, i.e. S = S1&S2 where & is a
symbol neither occurring in S1 nor in S2. Second, a suffix tree is built for the newly
obtained sequence S, like in (Delcher et al., 1999). As it is straightforward that a
MUM is represented by an internal node with exactly two child nodes, such that the
child nodes are leaf nodes from different genomes, MUMs can be easily identified.
Querying a suffix tree to identify MUMs can be done in linear time and space. And,

if the basic algorithm to construct suffix trees is quadratic in the size of the sequence,
several solutions for building suffix trees in linear time exist, i.e. (McCreight, 1976;
Ukkonen, 1995; Weiner, 2008). Moreover, by using enhanced suffix arrays (Abouel-
hoda et al., 2004), which have an index structure that requires much less space than
the classical implementation (Kasai et al., 2001), solutions become even more efficient,
see VMatch (Kurtz, 2003).
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Figure 2.4: Suffix tree for the sequence gaaccgacct. Square nodes are leaves and rep-
resent complete suffixes. They are labelled by the starting position of the
suffix. Circular nodes represent repeated sequences and are labelled by the
length of these sequences. In this example the longest repeated sequence
is acc, occurring at positions 3 and 7. Figure adapted after (Delcher et al.,
1999).

Conclusion As detailed in the current section, fragment computation methods em-
ployed in the first phase of the anchor based strategy compute short, exact/approxi-
mate matches. However, one may want to use local similarities instead of such matches,
which seem likely to be better suited to the comparison of whole genomes, especially
when dealing with divergent sequences. This idea has been recently employed in Pro-
gressiveMauve (Darling et al., 2010), a WGA method described in Section 2.5.2 based
on ungapped local similarities. See chapters 3 and 6 for a study on the impact of local
similarities in WGA methods and for a novel WGA method based on local similarities.

2.4 Pairwise WGA tools

In this section we detail the main tools designed for pairwise WGA, all of them being
variations on the anchor based strategy. Based on Figure 2.1 where pairwise alignment
tools are classified on whether they deal or not with rearrangements, we organise the
current section as follows: first, we describe in Section 2.4.1 the tools designed for
collinear pairs of genomes, while in Section 2.4.2 we address methods dealing with
rearrangements.
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2.4.1 Pairwise WGA for collinear sequences
MUMmer (Delcher et al., 1999)

The arrival of MUMmer produced a major breakthrough in the alignment of whole
genomes. MUMmer is based on three phases that can be shortly described as follows:

1. Fragments computation phase This first phase provides a MUM decomposi-
tion for the two genomes. The minimal admitted length of a MUM is empirically
fixed, given the level of similarity of the genomes. For highly similar genomes
for example, their default length threshold is set to 50bp. For more distant se-
quences, this parameter is usually adjusted to 20bp, as it is about exact matches.

2. Chaining phase In order to select anchors, the initial matches are filtered with
a collinear chaining method allowing for overlaps (see Section 4.3). The authors
refer to a simple quadratic algorithm as a potential solution for this chaining
problem, but only a short description of it is provided. It seems that overlaps
between matches are allowed in the chaining algorithm and removed further
on by shortening matches. As a result of this post-processing, they obtain a
suboptimal chain, with no insurance on the length and quality of the chosen
matches. Even though they mention the the algorithm in (Jacobson and Vo,
1992) as a more efficient alternative solution, they do not test it in practice.

3. Last chance alignment phase Gaps in between anchors less than or equal to
a given limit (5000bp by default) are closed with the NW algorithm, described
in Section 1.4. Gaps longer than this limit remain unaligned.

Observe that MUMmer does not apply recursively the first and the second phases,
thus losing in sensitivity compared to other WGA methods. The idea of using only two
phases instead of four, is however interesting and must be looked into further on, see
Chapter 3. Even though revolutionary for its time, MUMmer had the disadvantage
to deal with only two, very close, genomic sequences and to be slow and memory
demanding. An improved variation of MUMmer appeared three years later and it
was described in (Delcher et al., 2002) as being three times faster and needing three
times less memory than the original version. Same as for VMatch (Kurtz, 2003), this
improvement is based on the use of enhanced suffix arrays (Abouelhoda et al., 2004).

GLASS (Batzoglou et al., 2000)

GLASS appeared not long after MUMmer. It however implements a slightly different
version of the anchor based strategy, as it was designed for serving a particular purpose:
to be the pre-processing step of a gene prediction tool, ROSETTA. It is thus conceived
based on the established model of eukaryotic DNA sequences, i.e. containing long,
weakly conserved introns and short, strongly conserved exons, thus not really adapted
to prokaryotic sequences.
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1. Fragments computation phase It searches for all exact matching k-mers,
initially k = 20. For each one of the k-mers, GLASS applies a dynamic pro-
gramming procedure to 12 residues at the left of the k-mer and to 12 residues
at its right. Based on this procedure, it computes a score for each k-mer.

2. Chaining phase In order to compute a collinear chain of k-mers, the two ge-
nomic sequences are converted into strings of characters, as following: one char-
acter replaces a k-mer, each occurrence of a k-mer in the sequence is replaced by
its corresponding character. k-mers only are represented in these strings, basi-
cally corresponding to exon parts, while the weakly conserved introns are com-
pletely ignored. Next, k-mers are filtered with a simple dynamic programming
procedure computing the maximal scoring collinear chain. Moreover, k-mers
taken in the chain are additionally filtered if they have scores below a certain
threshold and if they are inconsistent, i.e. their overlap on one sequence is dif-
ferent from the overlap on the second sequence. The resulting set of matches
corresponds to the anchors of the alignment.

3. Recursive phase The first two steps are recursively applied on gaps between
anchors with decreasing lengths for the k-mers, i.e. 15, 12, 9, 8, 7, 6 and 5.

4. Last chance alignment phase An intermediary step before the final phase
consists in extending the anchors by short local alignments in both directions.
Finally, all remaining gaps are aligned with a standard dynamic programming
algorithm.

In (Hohl et al., 2002), it has been argued that the major drawback of GLASS is its
huge space requirement and running time. Further more, as GLASS was entirely
thought for eukaryotic sequences, i.e. dealing with fixed length k-mers that are only
extended in the last phase, it cannot take advantage from long identical regions in the
two sequences, which are very common in prokaryotes. Experiments confirming this
hypothesis were conducted on the initial 200Kbp of two strains of E. coli, for which
GLASS was stopped after 25 hours of computation time.
The previous programs were both intended for the alignment of pairs of collinear

genomic sequences. Besides these two, plenty of solutions exist, some of which we cite
below with few details:

• WABA (Kent and Zahler, 2000), whose first key feature was already described
in the previous section, i.e. taking apart wobble bases from the others. After
a Blast-like phase, WABA aligns regions around HSPs using pairwise hidden
Markov models (Durbin et al., 1998). The clear disadvantage of this method is
being impractical for large genomes.

• OWEN (Roytberg et al., 2002) proposes an interesting approach: their solution
is based on the observation that in case of conflict between several similarities
(rearrangement events or overlaps), one should keep a strong similarity with
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respect to its score, instead of seeking to optimize a global scoring function. For
this, they proceed to a hierarchical greedy method that deals with fragments in
descending order of their score and builds a collinear chain that they assume
closer to the evolutionary true chain reflecting orthology. Unfortunately, even
though the idea seems pertinent, no biological proof was brought to sustain this
claim.

• PipMaker (Schwartz et al., 2000), a well known web-based tool that uses BlastZ
to compute local alignments between the two sequences, see Section 1.6.1. It
implements a chaining procedure, which returns the best scoring set of frag-
ments in the same order on both sequences but no exact description is given
of how this is done. The alignment tool is limited to these two phases of the
anchor based strategy. PipMaker was tested on the human-mouse comparison,
two nematode species and two bacteria, and the results have been compared
to the exons predicted by GenScan (Burge and Karlin, 1997). In (Schwartz
et al., 2003), the speed of BlastZ was improved, in order to align entire genomes.
This was obtained by adding a dynamic masking step and seeding with approx-
imate matches. In the same study, BlastZ was successfully used to verify the
conservation of synteny for the human chromosome 20 compared to the mouse
chromosome 2.

• AVID (Bray et al., 2003), very similar to MGA, is restricted to pairwise com-
parisons; it uses MEMs, collinear chaining and recursive alignment. Worthy to
mention is that AVID defines an interesting protocol for comparing WGA results
of different tools, see Section 2.6.

• LAGAN (Brudno et al., 2003b), whose strategy is similar to its version for
rearranged sequences Shuffle LAGAN, described below.

• ACANA (Huang et al., 2005) comes with an interesting idea: it begins by com-
puting local alignments with a heuristic version of the SW algorithm. Based
on their scores, it recursively selects anchors in a given region in order to form
a collinear chain and finally computes the optimal global alignment for regions
between fixed anchors. ACANA is however little known and used in practice.

2.4.2 Pairwise WGA allowing for rearrangements
Most of the WGA tools that deal with rearrangements are also dealing with multiple
sequences, as we shall see in the next section. Here we describe some of the few tools
dedicated to pairwise WGA in the presence of rearrangements.

CHAINNET (Kent et al., 2003)

CHAINNET proposes one of the first automated solutions for linking together tradi-
tional local alignments into several chains in order to accommodate inversions, translo-
cations, duplications and deletions. It starts by computing local alignments with
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BlastZ, from which only gapless parts are extracted. Next, three types of chaining
strategies are proposed.

1. A variation of the algorithm given in (Zhang et al., 1994), and shortly described
in Section 4.9, for building multiple collinear chains. A particular scoring scheme
is used, with greater penalties for mismatches than for gaps, meant to advantage
the opening of gaps rather than forcing alignments between non-homologous
regions. The disadvantage of this approach is that several chains may overlap
the same region, in the absence of any restriction.

2. Among chains computed with the method above, the best scoring chain can be
selected, i.e. it results in a collinear WGA of the two sequences as in the previous
section.

3. The third approach, and the most interesting one, builds a type of chain of local
alignments, not necessarily collinear, i.e. net of chains. The solution consists
of marking initially all bases in the chromosomes as unread, then processing
chains (obtained with the first chaining method) in descending order of their
scores. Parts of chains that intersect with bases already covered by previously
taken chains are thrown out. For keeping track of areas of the chromosome that
are already covered, the program uses red-black trees. Chains that fill in holes
of previous chains are marked as children of these previous chains. The idea,
slightly resembling that of (Roytberg et al., 2002), is rather interesting as it
allows for rearrangements.

Shuffle LAGAN (Brudno et al., 2003c)

Shuffle LAGAN, a generalization of LAGAN for rearranged genomes, is a classical
anchor based approach. It is considered as being the first method for WGA in the
presence of rearrangements.

1. Fragments computation phase Finds fragments using CHAOS tool (Brudno
et al., 2003a), a method that looks for small matching words, i.e. k-mers with
little degeneracy, which are further on linked together provided they are at a
maximum admitted distance and shift from one another. Finally, chains are
extended using a Blast-like extension method.

2. Chaining phase Compared to LAGAN, which builds a classical collinear chain
of fragments, in Shuffle LAGAN a novel type of chain is computed: a glocal chain
of fragments. This chain is composed of several collinear subchains, as described
in Section 4.11.

3. Last chance alignment phase The collinear subchains from the previous phase
are finally aligned with LAGAN.
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Comparisons with Mauve (see Section 2.5.1) on simulated data showed that Shuffle
LAGAN works well on divergent data without a big number of repetitive subsequences.
The difficulty that Shuffle LAGAN has in dealing with repetitive sequences can be
partly overcome by masking such repetitive elements with the program RepeatMasker
(http://www.repeatmasker.org/), as the authors of the paper propose. In (Darling
et al., 2004) it was discussed that this good performance on more divergent genomes
appears to be due in part to the simulation method and it is not likely to be observed
on real data. However, it is certain that CHAOS, with its local alignments, plays an
important role in the sensitivity of Shuffle LAGAN.
Besides CHAINNET and Shuffle LAGAN, the newest version of MUMmer, MUM-

mer3.0 (Kurtz et al., 2004) also deals with rearrangements, it is fast and uses little
memory compared to the initial version. MUMmer3.0 improves on the first version
of MUMmer by allowing all maximal exact matches and not only MUMs. More-
over, this time, exact matches are clustered and extended (an idea that we also found
in CHAOS). This is done with Nucmer (for nucleotide alignments) and Promer (for
amino-acid alignments) programs, which generate local alignments. The disadvantage
is that it produces a set of local alignments and not a complete WGA.

2.5 Multiple WGA tools

2.5.1 Tools for closely related sequences
MGA (Hohl et al., 2002)

MGA is considered to be the first tool capable of aligning three or more genomes,
though restricted to collinear ones, and it remains nowadays a reference in the domain
of WGA. MGA is what one could call a classical implementation of the anchor strategy:

1. Fragments computation phase Based on a virtual suffix tree, MGA detects
all MEMs in the genomic sequences, above a given threshold. Later, this first
phase was implemented separately in VMatch program, capable of doing a large
number of different match type searches besides the classical MUMs and MEMs,
see Section 2.3.

2. Chaining phase Anchors are selected by building a chain of collinear fragments
with the classical quadratic algorithm described in Section 4.4. In a more recent
tool, i.e. Chainer (Abouelhoda and Ohlebusch, 2005), this second phase was
developed independently based on an improved algorithm, see Section 4.9.

3. Recursive phase MGA closes the gaps between the anchors by recursively
applying the first two phases a certain number of times, while lowering the
length threshold for the MEMs.

4. Last chance alignment phase Remaining gaps, if lower than a given threshold,
are aligned with ClustalW. There is also the option of using a percentage identity
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threshold: force the alignment of gaps having a percentage identity above a fixed
value. Long gaps or low quality gaps remain unaligned as to cope with long
insertions/deletions.

Being the first multiple WGA tool, MGA was initially compared to the pairwise
aligner MUMmer. Moreover, as the comparisons were designed to assess the memory
and the speed of the two programs, MGA was made to reproduce MUMmer strategy,
by computing MUMs instead of MEMs. Thus, the real improvement brought by the
use of MEMs was not discussed in the paper.
A couple of years after MGA, EMAGEN was published. Compared to MGA, EMA-

GEN (Deogun et al., 2004) searches for MUMs with the novel technology employed
by VMatch, described in (Abouelhoda et al., 2004). Same as MGA, EMAGEN chains
fragments in a collinear chain. However the algorithm they use for chaining is similar
to that described in Section 4.6, thus faster than the one proposed in the initial MGA
publication. While gaps below a certain threshold are closed with ClustalW, EMA-
GEN has no recursive phase. Thus, though EMAGEN is faster than MGA and with
very good results on prokaryotic genomes thanks to the use of the functional matching
strategy, i.e. ignoring non-coding regions when aligning sequences, in practice MGA
remains a better alternative for the alignment of collinear genomes due to its increased
sensitivity.

Mauve (Darling et al., 2004)

Among the first WGA tools providing global alignments for more than two sequences
in the presence of rearrangements, Mauve combines the analysis of large-scale evolu-
tionary events with traditional multiple sequence alignment. Therefore, it adapts the
anchor based strategy as follows:

1. Fragments computation phase The published version of Mauve works with
MUMs, in order to avoid the problems arising with repetitive sequences. Con-
trarily to MGA, which computes matches directly on the complete set of genomes,
Mauve uses a seed and extend method. It starts by finding matches in a subset
of genomes only and then extends them to the remaining subset. However, since
the published version, Mauve improved its approach by using approximate in-
stead of exact matches, based on palindromic spaced seeds described in (Darling
et al., 2006), see Section 3.6.1 for details on spaced seeds. Fragments found in
this phase are exploited in order to compute a distance metric used to construct
a phylogenetic guide tree based on the Neighbor Joining method. The utility of
this tree becomes clear in the last phase.

2. Chaining phase The second phase consists of a particular heuristic strategy for
chaining fragments while allowing for rearrangements. The result corresponds
more to clusters than to chains but we chose to remain consistent in the terms
we employ, thus we refer to them as chains. Based on the breakpoint analysis
technique (Sankoff and Blanchette, 1998), it computes the minimum partitioning
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of the set of MUMs into collinear subchains, called Longest Collinear Blocks
(LCBs). LCBs correspond to homology regions without rearrangements. A
detailed description of the algorithm can be found in Section 4.12; a graphical
representation is given in Figure 4.13.

3. Recursive phase As the initial anchoring step may not be sensitive enough to
detect the full regions of homology within and surrounding the LCBs, several
steps of recursive anchoring are applied. Unlike other genome aligners perform-
ing a fixed number of recursive passes, Mauve computes a minimum anchor size
based on the lengths of the respective subsequences and stops recursive anchor-
ing when either no additional anchors are found or when the region is shorter
than a fixed length. Thus, regions in between LCBs are first concatenated and
then the new search for MUMs is done with parameters adapted to shorter se-
quences. Regions that were not unique in the initial configuration may become
unique outside the LCBs, therefore new MUMs may be discovered. Pairs of
facing unaligned regions inside LCBs are searched separately for determining
novel matches.

4. Last chance alignment phase Facing regions between anchors inside LCBs
are aligned using the progressive alignment method, ClustalW, based on the
guide tree computed in the first phase. Mauve refers to these unaligned facing
regions as aligned gaps (see page 41, Section 2.2). Unaligned regions above 10kb
are left unaligned and they correspond to specific regions, horizontal transfers,
or paralogous repetitive regions that may be identified as such during processing
with other tools.

Mauve was implemented as a genome alignment package with a visualization en-
vironment that depicts the rearrangement events. Mauve was thoroughly tested and
compared to other tools on simulated data. Given a rooted phylogenetic tree, the se-
quences were obtained with a nucleotide substitution model implemented in the Monte
Carlo simulation package called Seqgen (Rambaut and Grass, 1997); small insertions
and deletions were modelled as occurring with uniform frequency and distribution
throughout the genomes. Moreover, their model included horizontal transfer events
and inversions. Translocations, even though not explicitly taken into account, can
result from two inversion events. A dataset containing nine sequences resembling to
nine enterobacteria was generated in this manner. The experiments consisted of com-
parisons with Multi-LAGAN (Brudno et al., 2003b), the extension of LAGAN to the
multiple alignment case (briefly described in Section 2.5.2), and Shuffle LAGAN, at
the moment the only genome aligner available, capable of dealing with rearrangements
(for Shuffle LAGAN only two sequences were considered for comparisons).
As already explained for Shuffle LAGAN, the fact that both Multi-LAGAN and

Shuffle LAGAN use anchors containing substitutions and indels, makes them more
sensitive thus more appropriate for sequences with a high level of nucleotide sub-
stitutions; for lower levels of substitutions, Mauve obtains similar results to Multi-
LAGAN or Shuffle LAGAN. This problem is partly solved in ProgressiveMauve (see
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Section 2.5.2), with the use of approximate matches as anchors. Compared to Shuffle
LAGAN, Mauve clearly excels at aligning rearranged sequences. In conclusion, Mauve
seems to be better suited to closely related sequences that underwent modest amounts
of nucleotide substitutions. The experiments in Section 3.5 brought us to the same
conclusion, meaning that Mauve is very well adapted to sequences having a low level
of divergence but it has a hard time in dealing with divergent sequences.

M-GCAT (Treangen and Messeguer, 2006)

M-GCAT is another multiple genome alignment and visualization system, a close rela-
tive of Mauve, published shortly after. Indeed, it was designed to align large, multiple,
closely related genomes involving rearrangements. M-GCAT searches for MUMs com-
mon to all genomes, based on a recursive approach. First an initial set of matches is
found, and then, a set of decreasing parameters is used in order to identify shorter
MUMs between the established anchors. Spurious matches are filtered with respect
to a minimum length parameter and then grouped into clusters containing collinear
matches within a maximal admitted distance (similar to the LCBs of Mauve). M-
GCAT was compared to Mauve regarding their ability to identify orthologous genes,
i.e. the percentage of known orthologous genes, as specified by COG (Tatusov et al.,
2000), located in the same clusters. These tests reveal Mauve’s increased accuracy
compared to M-GCAT, probably due to the use of approximate matches, but differ-
ences are however small between the two methods. Moreover, compared to Mauve,
M-GCAT is faster and deals with larger sets of genomes.

2.5.2 Progressive alignment methods
The four tools previously described are designed for closely related genomes. In
theory, for comparing more distant genomes, one uses progressive alignment tools,
instead those built on the anchor based strategy. Progressive methods like Multi-
LAGAN (Brudno et al., 2003b) and MAVID (Bray and Pachter, 2003) for collinear
genomes and ProgressiveMauve (Darling et al., 2010), an improved version of Mauve
for rearranged genomes, build an alignment of k genomes in (k−1) pairwise alignment
steps, based on a phylogenetic guide tree. The guide tree can be random and itera-
tively refined, or it can be considered as being known. The major shortcoming of this
kind of approach is that it can introduce a bias in the inference of the ordered series
of homologous regions, due to a possible over-representation of a subset of sequences.

ProgressiveMauve (Darling et al., 2010)

Very recently, a novel version of the Mauve algorithm, ProgressiveMauve, was pub-
lished in (Darling et al., 2010). This novel algorithm addresses some of the limitations
of the original one. The original Mauve algorithm aligned regions that are conserved
among all organisms. Unfortunately, the portion of a genome conserved among all
genomes shrinks as more sequences are added to the analysis. Therefore, as it could
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not align regions conserved among a subset of the genomes under study, the original
Mauve algorithm did not scale well to large numbers of genomes. ProgressiveMauve
strategy can be described as follows:

1. Fragments computation phase Instead of using a single seed pattern for
match filtration as in the latest versions of Mauve, ProgressiveMauve uses a com-
bination of three palindromic seed patterns for improved sensitivity, see (Darling
et al., 2006). Seed matches, which represent a unique subsequence shared by two
or more input genomes are subjected to ungapped extension until the seed pat-
tern no longer matches. The result is an ungapped local multiple similarity with
at most one component from each of the input genome sequences.

2. Computing a guide tree ProgressiveMauve uses a guide tree in order to pro-
gressively align the genomes. For building the guide tree, it employs the Neigh-
bor Joining method based on the shared gene content among each pair of input
genomes.

3. Anchor selection based on progressive genome alignment A genome
alignment is progressively built up according to the guide tree. At each step of
the progressive genome alignment, anchors are selected from the initial set of
local multiple alignments as to maximize a sum-of-pairs scoring scheme.

4. Global alignment Once anchors have been computed at a node in the guide
tree, they serve to build a global alignment. Given a set of anchors among
two genomes, an alignment or a pair of alignments, ProgressiveMauve applies
a modified Muscle global alignment algorithm to compute an anchored profile-
profile alignment.

5. Filtering the alignment of unrelated sequence Although we compute a
global alignment among sequences, genomes often contain lineage-specific se-
quence that makes them globally unrelated. Therefore global alignment will sel-
dom generate force alignment of unrelated sequence. A simple hidden Markov
model structure is used to detect forced alignment of unrelated sequence, which
are then removed from the alignment.

Compared to Mauve, ProgressiveMauve can be applied to a much larger number of
genomes, it can align more divergent genomes, it usually does not need manual ad-
justment of the alignment scoring parameters and it aligns regions conserved among
subsets of the input genomes. Moreover, thanks to the filtering phase, Progressive-
Mauve obtains highly accurate results, as observed in Section 6.3 and Section 6.5.
However, it is substantially slower than the original Mauve algorithm and it consumes
more memory than the original Mauve algorithm.
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Multi-LAGAN & MAVID for collinear sequences

Multi-LAGAN needs a phylogenetic tree as input and uses LAGAN to align the
closest two sequences in the tree; it obtains what it calls a multi-sequence. Among
the remaining sequences, two by two the closest ones are aligned. Next, it mounts in
the tree and aligns two by two the closest multi-sequences.

MAVID starts with a random binary guide tree for the set of genomes and it re-
cursively aligns the sequences at ancestral nodes with AVID program. At each node
of the tree, ancestral sequences are inferred from the existing alignments using maxi-
mum likelihood. Once the multiple alignment is completed, a novel phylogenetic tree
is inferred with the Neighbor Joining method. Based on the novel guide tree, the
procedure for obtaining a multiple alignment is repeated. The whole process is per-
formed three times altogether, i.e. tree + alignment. Judging by the experiments
published (Bray and Pachter, 2003), MAVID seems to be more accurate and faster
than Multi-LAGAN.

MABA & TBA for distant sequences

As we have seen in Section 1.6.2, Figure 1.5, a multiple alignment is generally rep-
resented as a linear sequence of alignment columns. This implies a global alignment
of sequences that are similar over their entire length. It is precisely the assumption
that tools like Multi-LAGAN and MAVID make. An interesting discussion on the
relevance of a linear representation of MSA can be found in (Lee et al., 2002). In an-
swer to this debate, a representation replacing the classical one was proposed, based
on a directed acyclic graph instead of a single directed path as in the classical linear
column representation. This kind of representation can depict additional evolutionary
events like recombinations of similarity regions, e.g. very common in the evolution of
multi-domain proteins (Doolittle, 1995). Still this type of representation is not flexible
enough to capture the entire complexity of biological sequence comparisons, as regions
of similarity may be shuffled or repeated. Below we describe two methods that further
improve the MSA representation.

For ABA (Raphael et al., 2004) an alignment representation with high-multiplicity
edges, allowing directed cycles, was proposed. Their graph representation, based on
A-Bruijn graphs, is perfectly suited to the alignment of protein sequences composed
of several domains that may be: not present in all proteins, present in different orders
in different proteins, present in multiple copies in the same protein. Moreover, ABA
is adapted to the alignment of genomic sequences rich in duplications and inversions.
They were the first to adapt A-Bruijn graphs to MSA, i.e. an A-Bruijn graph is an
extension of the classical de Bruijn graph first described in (De Bruijn, 1969; Good,
1946). de Bruijn graphs have already been used in bioinformatics problems (Pevzner
et al., 2001; Li and Waterman, 2003; Zhang and Waterman, 2003), while A-Bruijn
graphs were only recently introduced and applied to fragment assembly and repeat
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identification (Pevzner et al., 2004). Starting with a collection of pairwise similarities
between each two sequences, ABA computes a graph corresponding to a collection of
paths, where edges represent rearrangements of similarity regions.

TBA (Blanchette et al., 2004) is another multiple alignment tool, published right
before ABA, which represents a multiple alignment as a set of alignment blocks, i.e.
local alignments involving some (or all) of the sequences that contain every position
of each sequence only once. This set of blocks is called a threaded blockset. Even
though the concept of threaded blockset easily accommodates rearrangement events,
the version of TBA that we describe below works under the assumption that there are
no inversions, duplications or other rearrangement events.
The particularity of TBA is that it does not fix a reference sequence for its block-

set. The drawback when using a reference sequence is that regions conserved in a
subset of sequences but not in the reference sequence, are inevitably missed. More-
over, alignments obtained with different reference sequences, may differ and may even
be inconsistent, i.e. positions aligned to each other in one situation, are aligned to
different positions in another situation. No matter how TBA blocks are threaded, i.e.
by choosing a reference sequence and projecting blocks on it, one always obtains a
consistent set of blocks. Due to their consistency, one could obtain a classical global
alignment by simply sticking blocks together.
BlastZ (Schwartz et al., 2003) is used to compute the pairwise local alignments

between the original sequences, and MULTIZ (Blanchette et al., 2004) to compute
alignments between three or more sequences. Threaded blocksets are built as following:
sequences are added progressively to the blockset along a phylogenetic tree, from leaves
to the root. The blocks in the blockset at a node (different from the leaves) result
from intersections of the blocks at its children nodes, based on a guiding pairwise
blockset. The blocks are only split into smaller blocks during the progressive steps
of TBA, they are never expanded. The problem with such method is choosing the
reference sequences when running the pairwise alignments in order to build the guiding
pairwise blockset. Nothing guarantees that the alignments of these reference sequences
can be extended by transitivity to the other sequences in the blocksets. Moreover,
splitting blocks without closely analyzing the newly obtained subsequences and their
alignments, can be tricky, as one is not sure of the quality of such blocks.
TBA threaded blocksets are similar to the representation with high-multiplicity

edges introduced by ABA. In fact, ABA can be used to automatically generate block-
sets for TBA, even though the two algorithmic approaches are very different. The
published version of TBA however, deals only with similarity regions occurring in the
same order and direction in the sequences, while leaving open the problem of iden-
tifying in an automatic manner blocksets resulting from inversions, duplications and
other rearrangement events. Thus, this representation has the same drawbacks as the
one using directed acyclic graphs. As it removes restrictions on order, direction and
repetitions, ABA’s approach represents a solution to the open problem left by TBA.
Note that since its published version, TBA can now handle inversions.
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TBA (Blanchette et al., 2004) and ABA (Raphael et al., 2004) approaches are
both revolutionary solutions that produce (or could produce) multiple alignments
of sequences including shuffled and repeated regions, a feature that lacks in other
alignment methods. However, they do not give a precise alignment at residue level,
in order to obtain a complete multiple alignment, such tools need to be combined
with classical alignment methods. First they are used to uncover the structure of
the multiple alignment and then, similarity regions discovered in this manner have
their alignments refined with classical, progressive multiple alignment methods like
ClustalW, Muscle.

Other solutions

Even though progressive multiple alignment seems to be the best answer to MSA of
distantly related sequences, alignment solutions not relying on a phylogenetic tree
exist.
One among such solutions is called consistency-based MSA and it was first intro-

duced in the DIALIGN programs (Morgenstern et al., 1998). It starts, similar to tools
described above, by building pairwise local alignments. This time, pairwise anchors
are scored not only on the similarity of the two subsequences involved in the local
alignments, but also on the similarity of the other pairwise anchors aligning these
two subsequences in the other genomes. Thus a pairwise anchor with low similarity
between the two subsequences may find its score augmented thanks to a third subse-
quence in a third genome that aligns well with both of them. Next, optimal pairwise
alignments are built. Anchors that compose them are sorted according to their scores
and their overlaps on the other sequences (in order to emphasize motifs occurring in
several sequences). Finally, the multiple alignment is computed in a greedy manner.
The particularity of this method is that the greedy step needs to keep the “consis-
tency of the alignment”, i.e. without conflicting assignment of residues among the set
of sequences. The greedy approach was replaced by a probabilistic method in Prob-
Cons (Do et al., 2005) designed for protein sequences and Pecan (Paten et al., 2008)
for genomic sequences, presently used by the Ensembl browser.

2.6 Estimating quality and comparing WGA
Sequence alignment and in particular WGA are extremely difficult computational
problems. Researchers rely on the results of the alignment tools and are usually accus-
tomed to viewing their favourite genome aligned against other genomes, and examine
their zones of interest in the alignments. This is however imprecise and extremely
fastidious. Moreover, one has no means to know what the true solution is and with-
out a correct alignment as reference, a precise evaluation of accuracy cannot be done.
Thus, there is presently a great need for methods to assess whole-genome sequence
alignments and compare the alignments produced by different tools. Such methods
should be able to determine which tool is most accurate, especially on distantly related
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species, whether there is a difference in quality between the alignments of coding and
non-coding regions, whether methods that align a bigger percentage of the sequences
give accurate results on the additional aligned regions.
In order to assess the quality of the alignments produced by WGA tools, simulated

datasets are usually used (Darling et al., 2004; Blanchette et al., 2004; Treangen and
Messeguer, 2006). However, the quality of the evaluation in these cases is as high
as the simulation of the evolutionary history of the genomic sequences is faithful. In
this manuscript, we do not insist on this aspect, given that we chose to evaluate our
work on real data, instead of simulated sequences, see Section 3.2. Below we describe
approaches designed for the evaluation of alignments on real data.

2.6.1 Accuracy on regions with known features
When examining protein coding regions, one can benefit from the extensive results
on the subject, see Section 1.7.1. For example LAGAN and Multi-LAGAN were both
tested on protein-coding exons in orthologous sequences collected from the following
datasets: ROSETTA set containing 129 orthologous annotated genes between human
and mouse (Batzoglou et al., 2000) and the CFTR region consisting of 12 orthologous
sequences from human and another 11 species (Thomas et al., 2003a). The evaluation
done in (Brudno et al., 2003b), measures the capacity of LAGAN and Multi-LAGAN
to correctly align pairs of orthologous genes. However, one should be careful to avoid
over-fitting of tools for homologies in coding regions, as this could generate bad results
in non-coding regions. Moreover, orthologous sets are usually identified using some
aligner thus implying a certain circularity in the process. Finally due to the limited
size of the gene sequences (compared to a complete genomic sequence), these results
do not inform us on their ability to align whole genomes.
The problem becomes more difficult for non-coding regions, since the right-answer

is not known. Even though one may extract examples from databases containing
experimentally confirmed regulatory sites like (Kolchanov et al., 2002) and estimate
the quality of the alignments in these regions (Stojanovic et al., 1999; Wasserman
et al., 2000), this can only be of little help because these kinds of regions represent
only a small proportion of the non-coding regions.
With this type of approach, one has no information on the accuracy in regions in-

between known features. Moreover, in this way, tools that are especially designed
for WGA and whose interest is to correctly distinguish orthologous regions from the
others, are evaluated at the nucleotide level on short, relatively similar regions. In
fact, a good evaluation in this case says nothing on the real quality of these tools
when aligning whole genomic sequences.

2.6.2 Finding suspicious regions in alignments
Without orienting the analysis of alignments on known regions, one wants to be able
to verify the alignment as a whole and to distinguish suspicious from certified quality
regions. For this, basic filters can be applied on the pieces of the alignments in order to
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keep only high quality ones, e.g. a cutoff on the percentage identity or on the score like
in (Chiapello et al., 2005; Chiapello et al., 2008; Bray et al., 2003). However, cutoffs
are generally difficult to set, given that they should depend on multiple factors, i.e.
the level of divergence of the sequences, whether the piece of alignment corresponds
to a coding region or not.

StatSigMA-w method, assessment of homology regions An involved method for
examining precisely the quality of whole genome multiple alignment can be found
in (Prakash and Tompa, 2007). They classify alignment regions into well aligned
and suspiciously aligned by using a tool they implemented, i.e. StatSigMA-w. It is
capable of evaluating the accuracy at each aligned site in multiple alignments and
identifying suspiciously aligned regions, i.e. highly discordant and probably resulting
from non-homologous regions.
StatSigMA-w extends the ideas of another tool, StatSigMA. Given a multiple align-

ment of k sequences and a phylogenetic tree for these sequences, StatSigMA computes
a p-value for each of the k null hypothesis cases, i.e. one null hypothesis for each
branch in the tree, stating that there is “unrelated behaviour” between the two sub-
trees separated by the removal of k (corresponding alignments are independent rather
than homologous). If all of these hypothesis are rejected, one can say that all se-
quences are related. StatSigMA-w, on the other hand, performs this kind of analysis
on every region of a multiple alignment. Their bench-test consists of 17 vertebrate
alignments including the human chromosome 1, for which they identify 9.7% (21Mbp)
of the alignment as being suspicious.

GRAPe method, assessment of homology at the nucleotide level Contrarily to
(Prakash and Tompa, 2007) cited above, (Lunter et al., 2008) assumes that the regions
of homology are correctly assigned and they focus on homology at the nucleotide level.
Moreover, they deal with pairwise alignment only, as they explain that a thorough
understanding of the pairwise case shall guide the design of methods for the multiple
alignment problem.
For the sake of this study, pairwise DNA alignments of human and mouse were

thoroughly examined. They reveal the existence of three types of alignment errors
illustrated in Figure 2.5, i.e. gap wander caused by spurious high-sequence similarity
in non-homologous regions, gap attraction happening with two indels having little
separation and gap annihilation occurring when two indels have identical lengths and
the two deletions are on different sequences.
(Lunter et al., 2008) prove that such alignment errors generate biases for both

probabilistic and score based aligners, and depend only little on alignment parameters.
Moreover, they observe that accuracy is the lowest in columns close to gaps and found
that at least 15% of the aligned bases in the alignments were incorrect.
They also introduce a novel probabilistic alignment method, GRAPe, based on

a standard three-state pair HMM (see page 25 in Section 1.6.2). GRAPe uses the
posterior distribution of alignments to optimize the correct assignment of homology of
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Figure 2.5: “Three types of alignment bias. Alignment algorithms are consistently bi-
ased toward likely distributions of indels across sequences, despite the oc-
currence of less-likely configurations at low frequencies. The figure shows
four pairs of sequences with their homologies (left) and corresponding
most-likely alignments (right), with wrongly aligned bases highlighted. We
distinguish between three types of bias: gap wander (A), caused by spuri-
ous high-sequence similarity at nonhomologous sites; gap attraction (B,C),
occurring when two indels have little separation, and gap annihilation (D),
which occurs when two indels of equal size but opposite signature are found
near to each other, favouring explanations without indel events.” Figure
extracted from (Lunter et al., 2008).

individual nucleotides, instead of finding a single most probable alignment. However,
despite directed efforts for avoiding alignment errors, e.g. using probabilistic aligners,
they concluded that alignment accuracy is “fundamentally limited”. They estimate
that for alignments of species at distances comparable to human and mouse, it seems
likely that at least 10% of nucleotides in whole-genome alignments will remain wrongly
aligned.

2.6.3 Comparative assessment of the quality of WGA tools

Comparative assessment of WGA in vertebrates In a very recent study, Martin
Tompa and Xiaoyu Chen addressed different aspects on the comparison of alignment
results (Chen and Tompa, 2010), by examining the results of four tools: TBA, MAVID,
Multi-LAGAN and Pecan, on 28 vertebrate genomes. The test regions encompass 1%
of the human genome and the homologous regions in 27 other vertebrate genomes.
The alignment results, obtained by four expert teams from the ENCODE project after
applying these four tools on a total of 554Mbp of genomic sequence, were analyzed by
looking at the level of agreement between them, their coverage and their accuracy. A
similar study can be found in (Margulies et al., 2007).
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As to the problem of estimating accuracy, in an interview that can be found at 1, M.
Tompa argues on the other two approaches commonly used: simulations and known
features. He expresses very clearly his opinion on the use of simulated data, by call-
ing this approach as “one way to get around the problem” because “if you simulate
evolution then you do know what the ground truth is”. In fact, as evolution is still in-
completely understood, how come one is capable of modelling it? Moreover, M. Tompa
explains that limiting the evaluation of alignments on known orthologous exons is not
enough to draw a conclusion, as they do not extrapolate well to other genomic regions.
Thus, in order to assess accuracy, (Chen and Tompa, 2010) uses the method from

(Prakash and Tompa, 2007), described above. The conclusion of their study was that
there is a lack of general agreement between the four alignment methods, even on
the well-known mouse genome. When plotting the coverage and the percentage of
suspiciously aligned regions, Pecan emerges as the tool that obtains the best results
on distant species. However, their study shows that building accurate multiple WGA
remains an important challenge for non-coding regions and distantly related species.

Comparative assessment of WGA in bacteria In parallel with the work we con-
ducted and that is described in chapters 3 and 6, an interesting study regarding the
assessment of the quality of WGA in bacteria was published (Swidan and Shamir,
2009). Compared to (Chen and Tompa, 2010) who analyzed the complete alignment
at the nucleotide level, the goal of their work was to evaluate the quality of the seg-
mentation of the genomes with respect to the mosaic structure, see Section 2.1.1, and
to quantitatively assess the quality of the alignment. For this, they introduce two
types of measures based on:

1. first, how well the genome segmentation fits the gene annotation of the studied
organisms, where annotations were obtained through KEGG (Kyoto Encyclope-
dia of Genes and Genomes) (Ogata et al., 1999). For this, they look for break-
points of genes induced by the segmentation. Due to the high density of genes
in bacterial genomes, breakpoints are taken into account only if located deeply
inside genes. This should measure the level of imprecision of alignment tools
as it reflects their tendency to miscalculate segment ends or to report erroneous
correspondences between the segments.

2. second, the number of segments created by the alignment and the percentage of
the two genomes that is conserved, i.e. a whole genome percentage identity.

Both types of measures are very simple, intuitive from a biological point of view, and
easy to compute. Regarding the second type of measure, they argue that a segmen-
tation with a greater number of parts allows for more freedom in the correspondence
between them and therefore has a higher whole genome percentage identity. Moreover,
they observe that the two types of measures are not independent and that they should
be analyzed together. In a parallel study described in (Uricaru et al., 2009), we came

1http://www.genomeweb.com/informatics/qa-u-washingtons-martin-tompa-sizes-multiple-alignment-tools
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to a similar result. The number of segments influences the number of disrupted genes,
as more segments usually mean more breakpoints. Thus, based on the number of
genes disrupted by the segmentation, a score was computed by normalizing according
to the segmentation size.
These measures were used to estimate the quality of alignments for 41 intra-species

bacterial pairs, given by two WGA tools especially designed for bacterial genomes:
Mauve, described in Section 2.5.1, and MAGIC (Swidan et al., 2006), a tool published
by one of the authors of this work. MAGIC is based on an intuitive clustering approach,
which builds collinear blocks (similar to the LCBs of Mauve), while aiming towards
identifying orthologous segments. As the evaluation relies on gene annotations, the
alignment methods must be annotation independent. Thus, while MAGIC usually
employs annotated genes as anchors, for this study anchors were provided by Mauve
seeds. Regarding the disruption rate, the results of Mauve and MAGIC are close
and significantly better than random. For the majority of pairs, MAGIC has smaller
segmentation sizes and greater conserved percentages, while for the rest of them, the
results were not conclusive. However, the fact that MAGIC obtains better results than
Mauve in this evaluation setup is quite unsurprising, as it was designed to answer to
this exact kind of question.

Conclusion These two recently published studies are important advances in the com-
parative, systematic assessment of the quality of WGA on both vertebrates and bac-
teria. However, additional work needs to be done in this direction, by comparing more
tools on larger datasets based on highly accurate comparison criteria adapted to both
coding and non-coding regions. Moreover, such comparative genomic studies revealed
that closely-related bacteria often have highly divergent gene content and therefore
WGA tools encounter difficulty in these cases. These directions of study are being
pursued in Chapter 3.
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Unexpectedly, we found that the whole
genome alignment of intra-species bacterial strains
is incompletely solved nowadays. We begin this
chapter with a detailed study on this matter.
Then, we propose a new pairwise whole genome
alignment strategy, less complex than classical
WGA programs. This novel strategy is composed
of two phases only: fragment computation, with
fragments corresponding to local similarities (LS),
combined with a classical chaining method.
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3.1 Main contributions to WGA
In Chapter 2 we presented the latest achievements on the topic of whole genome
alignment not relying on gene annotations. We have also discussed the drawbacks of
existing methods and the potential directions of improvement in the field. Quoting
W. Miller in 2001: the genome alignment field needs improved datasets and protocols
for evaluating the correctness and performance of genomic alignment software (Miller,
2001). Although most genome alignment tools published since 2001 are variations on
the anchor based strategy (see Section 2.2), few studies have analyzed the quality of
alignments produced by such methods (Prakash and Tompa, 2007; Lunter et al., 2008;
Chen and Tompa, 2010), and large benchmark datasets are still missing.
Moreover, even for the particular case of bacterial strains genomes, results are not

convincing. In fact, things are far from being as simple as one may think. Recent efforts
in systematic bacterial genomic comparisons revealed the need to improve methods
and to build reliable resources in this field (Swidan and Shamir, 2009). Bacterial
genomes from the same species are theoretically considered to be extremely close.
The truth is that in practice, even intra-species genomes can be very different, due to
their rapid evolution. Moreover, even animal and plant species are sometimes difficult
to delimit, but microbes and especially prokaryotes seem to raise special problems.
Their small size and general uncultivability (only a very small percentage can grow in
the lab) complicate matters of description and classification of species (Konstantinidis
and Tiedje, 2005).
Our work focuses on pairwise whole genome alignment applied to complete

genomes of bacterial strains. We chose the pairwise aspect as it is easier than multiple
alignment, and because it is the basic step in progressive multiple alignment. In
fact, one needs reliable solutions for pairwise alignment before attacking the complex
problem of multiple alignment. In the current chapter, we present our first main
contributions to this field.

• First, we conducted an evaluation of anchor-based approaches for pairwise genome
alignment, for the particular case of bacterial genomes. We describe the dataset
in Section 3.2, and a protocol to evaluate the correctness and performance of
such alignment tools from the computational point of view in Section 3.3. Our
results were presented in parallel with those from (Swidan and Shamir, 2009)
that pursued a similar goal: produce a protocol for evaluating the quality of
the segmentation of the genomes and to quantitatively assess the quality of the
alignment, in the case of bacterial genomes.
Based on our initial evaluation of two state-of-art alignment tools, MGA (Hohl
et al., 2002) and Mauve (Darling et al., 2004), we tend to contradict the common
belief that the pairwise genome alignment problem in the case of bacteria is
correctly solved nowadays. We identify two limitations of current methods: a
lack of sensitivity generating the so-called unsolved cases and a specificity
problem producing incorrectly solved cases. These results are discussed in
Section 3.5.
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Furthermore, we sought to determine which steps in the anchor based strat-
egy were to be incriminated for incorrect or low quality alignments observed
in certain instances. For this, we implement several pairwise alignment proto-
types based on two steps: fragments computation and chaining (first and second
phases of the anchor based strategy) and compare them to MGA and Mauve.
These prototypes are described in Section 3.6. Experiments show that some of
our prototypes manage to improve alignment results in divergent cases.
This preliminary work was presented in a national bioinformatics conference, i.e.
Jobim 2009, (Uricaru et al., 2009).

• Second, thanks to the investigation described above, we concluded that: (i) the
last chance alignment phase (fourth phase) introduces regions of low alignment,
and (ii) sensitivity can be improved by exploiting local similarities as fragments.
Therefore, we propose a less complex strategy than the classical one (composed
of four phases). The innovative idea behind this novel strategy is the use of a
fragment computation method that has never been used before in the first phase
of anchor based tools: long local similarities (LS) obtained from spaced seeds.
However, as explained later in this chapter, we realised that using local similari-
ties in the first phase of the anchor based strategy requires an adapted chaining
method allowing for overlaps. In Chapter 5 we define this novel problem of
chaining with proportional overlaps and give an exact algorithm that we thor-
oughly describe and prove. Together with this novel chaining algorithm, we
propose further on a new pairwise WGA tool, YOC, that was tested along with
four other tools: MGA (Hohl et al., 2002), Mauve (Darling et al., 2004), Pro-
gressiveMauve (Darling et al., 2010) and LAGAN (Brudno et al., 2003b), on a
large dataset of intra-species couples of bacterial genomes, see Chapter 6. An
article presenting these results is in preparation.

3.2 Datasets
Our work addresses the WGA in the particular case of the alignment of bacterial
genomes. Knowing that most of the previous work related to the alignment of whole
genomes was based on simulations, as discussed in the previous chapter, we decided
to attack this problem from a different angle: use real bacterial genomic sequences in
order to perform thorough evaluations. As data have evolved really fast in the last
few years, our datasets also did. This is the reason why the results we present in this
manuscript have been obtained on two datasets (one that we use for the experiments in
this chapter, and a second one for those in Chapter 6), containing genomic sequences
available in the GenomeReviews database (Sterk et al., 2006).
GenomeReviews database was chosen for a start because the database Mosaic (Chia-

pello et al., 2005; Chiapello et al., 2008) uses it as a resource and, as we shall see below,
Mosaic is closely connected to our work. Second, and probably the most important
aspect, is that GenomeReviews provides standardized and up-to-date genomes and
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their annotations. These annotations were collected from several sources, including
the EMBL Nucleotide Sequence Database, the UniProt Knowledgebase, the InterPro
Protein Domain and Families database, the Gene Ontology Annotation Database, and
others.

3.2.1 Mosaic database
The Mosaic db is a generalist comparative bacterial genome database, providing to the
community easy access to comparisons of bacterial genomes at the intra-species level.
It represents an excellent benchmark for bacterial genome comparisons, containing a
complete set of alignments manually curated by experts, interpreted and classified,
giving quality metrics that have been thoroughly tested and which can be easily re-
produced. Thus, it is perfectly adapted to our needs, which consist in the evaluation of
different WGA tools on pairs of bacterial genomes to point out the current limitations
and to identify the tool that obtains the most accurate results.
MOSAIC updates regularly the bacterial genomes from the Genome Reviews (GR)

database, meaning all genomes from the same bacterial species, according to the
species names, which have more than two strains (without plasmids and extra chro-
mosomal sequences). Thus, MOSAIC db evolved and it is now at its fifth version.
For the comparisons, MOSAIC uses MGA 1 (Hohl et al., 2002) for cases without
rearrangements, and Mauve 2 (Darling et al., 2004) for rearranged genomes. These
two tools have been chosen for the Mosaic project as they are archetypes of WGA
tools, especially suited to bacterial genomes, they cover the two types of comparisons:
collinear and with rearrangements, they are fast and rather thoroughly described in
the literature (see Section 2.5 for more details on these two tools).
In Mosaic, a comparison strategy was established and it was systematically applied

on all intra-species pairs. First, as bacterial DNA is often circular, false rearrangements
may be induced by different cutting points. Therefore, Mosaic applies a pre-processing
step that consists in shifting sequences in order to eliminate such problems. Next,
the shortest of the genomes in the pair of genomes is chosen as reference. Mauve
is applied, with parameters that have been adjusted on E.coli strains and tested on
Shigella flexneri strains, to detect macro rearrangements. It is the number and the
size of Mauve LCBs that provide information on the existence of rearrangements (see
Mauve details in Section 2.5). If no macro rearrangements were detected, the pair of
strains is considered as being collinear. In the case of collinear genomes, MOSAIC
uses MGA, which has been observed as being more accurate on genomes without
rearrangements.
The complete Mauve parameters settings are as follows: seed-size = 19, island-

size = 20, backbone-size = 20, max-backbone_gap = 20, gapped-aligner = clustal,
max-gapped-aligner-length = 10000,min-recursive-gap-length = 5000, and weight =
5000. MGA parameters were set up as follows: l = 50 − 20 and gl = 3000. The ini-

1MGA version 2003-03-18
2Mauve version 1.2.3
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tial seed size limit was fixed to 19 as to correspond to the match size of 20 used
by MGA during the recursion. The max-gapped-aligner-length parameter represents
the maximum number of base pairs to attempt aligning with the gapped aligner, i.e.
ClustalW, producing the so-called aligned gaps, while the weight refers to the mini-
mum LCB weight in base pairs.
MGA and Mauve raw alignment results could have been used to directly define

backbone and variable segments (see page 37, Section 2.1.3). However, it has been ob-
served that such results are of unsatisfying quality (Chiapello et al., 2005). Moreover,
a recent study (Devillers et al., 2010) meant to measure the robustness of bacterial
genome segmentations, applied on the alignments included in the Mosaic db, revealed
the presence of biologically irrelevant backbone and variable segments and insisted on
the necessity of clearly identifying the limitations of WGA tools before using them on a
particular set of genomes. Thus, Mosaic employs a strategy for post-processing align-
ments in order to filter low quality parts and precisely identify more reliable backbone
and variable segments. An accurate identification of such segments allows comparative
and evolutionary analyzes of both coding and non-coding regions of bacterial genomes.
The post-processing strategy consists of a filtering step as follows. Based on the initial
alignment, matches are always kept in the backbone, while aligned gaps, added in the
fourth phase of the anchor based strategy (see page 41, Section 2.2), inferior to 76%
identity (id% calibrated on E. coli) are considered to be variable segments, together
with insertions and unaligned regions.
MOSAIC computes several metrics, including the backbone coverage, i.e. the total

length of the regions considered to be part of the backbone, the identity percentage
of the backbone, the number and the size of segments that are part of the backbone.
Similar metrics are described in the next section.
Comparisons giving as result too low coverage backbones are not included in the

MOSAIC database, i.e. backbone coverages smaller than 50% of the average length
of genomes. Five bacterial species, i.e. Buchnera aphidicola, Prochlorococcus marinus,
Pseudomonas fluorescens, Rhodopseudomonas palustris and Synechococcus sp were
thus excluded due to poor quality results. In fact, they either represent unusually
divergent bacterial genomes, or they are part of a genus composed of several species.

Dataset 1 The experiments described in this chapter, corresponding to the first part
of my thesis, were carried out on a preliminary dataset, to which we shall refer to as
dataset 1. The dataset 1 consists of all 236 pairs of bacterial strains of the same species
(140 different genomes), coming from 42 different species having at least two complete
genomes available in Genome Reviews database at mid-2008, as in the release 4.0 of
the Mosaic database (Chiapello et al., 2008).
• 199 pairs (84%) were inserted in the MOSAIC database according to the criterion

of 50% of minimum coverage of the backbone regions compared to the average
length of genomes;

• 95 pairs (40%) were considered as being collinear according to the criteria de-
scribed in (Chiapello et al., 2008), i.e. no inversion or translocation were detected
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with Mauve aligner, or none of the inverted or translocated segments detected
by Mauve exceeded a threshold of 20 kb in length.

3.3 Global qualitative and quantitative criteria for
assessing the quality of alignments

Newly implemented methods need to be compared to existing methods and alignment
results need to have their quality estimated. However, as discussed in the previous
chapter, a comparison protocol for global alignment has not yet been established.

The underlying biological question is which regions are common to both genomes
and which are specific. An alignment defines a partition in common and specific
regions. Precisely comparing two solutions would require to examine the boundaries
of each region and its local alignment in each solution. Such a detailed comparison
procedure is too long, at least for a systematic application, and inappropriate for
genome alignments that often disagree on many regions.

We need global quantitative criteria to assess the quality of alignments and com-
pare several programs on a large number of test cases. Below, we define two criteria:
the coverage, and the identity percentage, two global measures of alignments. Many
tools compute values of coverage and identity percentage, but not necessarily with the
same definition. First, one thing has to be made clear. In this chapter we refer to
the backbone as being the complete set of regions common to the compared sequences,
in the way that they are given by the WGA alignment. It is on the backbone that
we compute the coverage and the identity percentage. On the other hand, the results
presented in Chapter 6 are based on filtered backbones, i.e. obtained after applying
the filtering procedure described in Section 3.4.

Coverage We define the coverage as the total length of the set of regions
that are common to both sequences, i.e. the size of the backbone. We name
coverage% (cov%) the ratio between the coverage and the genome length.
Both the coverage and the coverage% are being computed for each of the
compared sequences.

The identity percentage is a well accepted measure of the alignment quality. It is
usually computed as the number of identical base pairs over the total alignment length
(e.g., as in BLAST). However, this makes the id% incomparable between alignments
that differ in length, which is the case with LS. Next, we give the definition of the id%
as employed in this chapter.
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Identity percentage We define the identity percentage (id%) to be the ratio
of identical base pairs in the segments of the backbone over the genome length.
Hence, at its maximum, the id% equals the coverage, i.e., when all aligned
segments are identical. Thus, the id% measures the quality of the genomes’
parts that can be aligned to each other, and is comparable across genome
pairs. Same as for the coverage, we compute one id% value for each of the
compared sequences .

The id% also refers to: first, the identity percentage of a segment, i.e. the ratio
of identical base pairs over the length of the alignment corresponding to the segment,
and second, the identity percentage of the coverage, i.e. the ratio of identical
base pairs in the segments of the backbone over the total length of the backbone. This
latter measure can be computed by dividing the id% by the coverage%.

Correlations between measures Defining the id% in relation to the length of the
aligned regions makes the id% be in complete correlation with the coverage, and not
explainable in the absence of the latter. However, it sharply estimates the quality
and the relevance of the aligned regions. On the contrary, defining the id% in relation
with the length of the genomic sequences, as in our case, makes it an independent
measure. This is an advantage when we need it for comparing different pairwise
alignment results. As our goal is to establish metrics that would help us compare
different alignment methods, we prefer to define the identity percentage in the second
manner.
Basically, high coverage and high id% is the perfect alignment case: a complete,

good quality alignment. High coverage and low id% means that most of the coverage
is given by low quality aligned regions and thus, we are probably dealing with very
divergent genomes. In this case, we suspect part of the anchors to be false positives.
If the coverage is low and we have an almost equal id%, it means that we probably got
good anchors but we deal with a difficult case (every tool has its own specific difficult
cases). This is probably the case of rearranged and/or divergent genomes if we work
with tools that don’t deal with rearrangements, and divergent genomes for tools that
treat rearrangements. Low coverage and low id% is clearly an unsolved case. This
means that whether we deal with genomes that have nothing in common, or we find
ourselves in a case that is not correctly treated by the tool that we are using.
Moreover, we can discuss the complexity of the segmentation, i.e. the number

of segments splitting up the backbone. Both the id% and the coverage are closely con-
nected to the complexity of the segmentation but the number of segments makes sense
only if the coverage and id% are not extremely small. A partition in a great number of
segments means difficult readability of the alignment and an unclear knowledge of the
genome evolution. Therefore, we prefer a partition of the alignment in a small number
of long segments. Exact matches, like in MGA, determine a big number of segments.
Approximate matches and especially local alignments, simplify the alignment segment
map.
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3.4 GRAPe filtering procedure

As to estimate the quality of aligned segments, we applied GRAPe (Lunter et al.,
2008), a probabilistic genome aligner capable of quantifying the uncertainty of every
position in a given alignment, see Section 2.6.2.
GRAPe is applied on a piece of (or on a complete) pairwise alignment obtained by

an alignment tool. Because of its inability to deal with long sequences, we proceeded to
the fragmentation of alignments in 500 length pieces and used GRAPe to realign these
pairs of short sequences. GRAPe parameters were fixed so as to cope with divergent
sequences, i.e. d = 1000 and a = 1000.
Lines in the alignments output by GRAPe were accompanied by an additional line

annotating the posterior probability of every column. The posterior probabilities
range from 0 to 1, represented by letters a-zA-Z, where a=0 and Z=1. For ungapped
columns, it refers to the posterior probability that those nucleotides align. For gapped
columns, the number represents the posterior probability of the nucleotide not being
aligned to any nucleotide. See Figure 3.1 for an example of a GRAPe alignment result.

Figure 3.1: GRAPe alignment output: the two alignment lines are followed by a line
annotating the posterior probability of every column, with probabilities
represented by letters a-zA-Z, where a=0 and Z=1.

Thus, the novel alignments produced by GRAPe and the probabilities associated to
them were interpreted as it follows:

• positions in the alignment that were aligned with a probability inferior to 0.05
were considered as being “unalignable”. If WGA tools aligned these position,
then they are considered to be false positives, and if not, they represent true
negatives.

• positions in the alignment inside insertions/gaps, having a probability superior
to 0.95 of being a true insertion position, were also considered as being “un-
alignable”. Same as in the previous case, if WGA tools aligned these position,
then they are considered to be false positives, and if not, they represent true
negatives.

• 500 length pieces of alignments having more than half of their positions “un-
alignable” were removed, i.e. filtered, from the alignment.
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3.5 Initial assessment of alignments provided by two
state-of-the-art WGA tools

Before working on an improved solution for the pairwise whole genome alignment
problem, we did an initial analysis of the alignments provided by MGA and Mauve
on a set of intra-species pairs of bacteria (dataset 1), in order to identify their limita-
tions. MGA and Mauve are described in Section 2.5.1. Here, we summarize their main
characteristics: in the first phase, MGA uses MEMs, while Mauve uses approximate
matches, in the second phase, MGA computes a collinear chain and Mauve, an un-
constrained set of anchors; the third and the fourth phases are very resembling. Thus,
both tools are using short fragments, they do not allow overlaps and use recursion and
last chance alignment.
Parameters for the two tools, described in Section 3.2, have been retrieved from

the release 4.0 of the Mosaic db. Note that we are working with the raw alignments,
meaning alignments before the Mosaic specific post-processing step, and that low
quality alignments, not included in Mosaic db, have also been taken into account in
our study.
As to assess the quality of alignments and to compare the alignments given by the

two tools for the same sequences, we used the two measures: cov% and id% (detailed
in Section 3.3). To be certain that we are measuring the same things, we needed to
adapt the computation of these measures to the specific output of each of these two
tools.

(a) (b)

Figure 3.2: Dot plots representing pairwise local alignments of complete genomes, ob-
tained with YASS software, described in Section 3.6. (a) Alignment of
two very close strains of Chlamydia pneum. species. (b) Alignment of two
strains of Synechococcus sp. that seem to be completely unrelated, thus
unalignable by any alignment tool.

The segments taken into account in the coverage, for both tools, correspond to the

72



3.5 Initial assessment of alignments provided by two state-of-the-art WGA tools

anchors selected in the second and third phases of the anchor based strategy, together
with the aligned gaps added in the fourth phases, see page 41, Section 2.2. In our
definition of coverage, unlike the coverage computed by MGA and Mauve, insertions
are not taken into account.
As for the id%, we can exactly compute it for MGA alignments, based on the

segments taken in the coverage. For Mauve however, we know that the version used
for the alignments in Mosaic employs some sort of spaced seeds for detecting anchors,
thus anchors are not necessarily exact matches like in MGA’s case. As the alignments
of the anchors are not included in Mauve output, it is not possible to obtain their id%
without realigning them, which we did not do. Thus, for the id% of Mauve alignments,
we took anchors as if they were exact matches. This leads to an overestimation of the
true id%, however small, as in practice anchors are short and have few mismatches.

3.5.1 Discussion on results

When examining the alignments, the first striking result lies in the difference of cov-
erage between different species obtained by both tools. For some species, all pairwise
alignments cover more than 90% of the genome (e.g., Streptococcus thermophilus),
while for others the cov% is below 10% (e.g., Synechococcus sp). We also observe, but
more rarely, species for which the cov% of both methods varies greatly among pairs of
strains (for Prochlorococcus marinus, the cov% of MGA ranges in [0, 78]% and that of
Mauve in [6, 96]%). It is clear that these programs succeed in aligning some genome
pairs and fail on others.
The fact that tools fail to align some of the pairs could be due either to a high

level of divergence that makes the sequences unalignable (a biological explanation),
see Figure 3.2, or to a methodological failure in detecting the regions of similarity or
in chaining. Moreover, it is true that calibrating parameters on E. coli (not a very
divergent bacteria), could explain the unsatisfactory results obtained for species as
Buchnera aphidicola, Prochlorococcus marinus, Pseudomonas fluorescens, Rhodopseu-
domonas palustris and Synechococcus sp, which were not included in the Mosaic db.
In fact, it is known that even though the rate of recombination in bacteria is not as
high as that of animals, it can still be very high, several bacterial species present su-
perior divergence rates than others (e.g., Buchnera aphidicola) and others are in fact
genus composed of several species (e.g., Synechococcus sp). Therefore, the choice of
parameters should be adapted to the individual case of each species.
However, if unalignable sequences due to biological causes are likely to stay that

way in the future, one should try to improve solutions in the remaining cases. If we
leave the biological causes of unalignment aside and we focus only on methodological
failures, there are two possible explanations for the low quality results: first, they may
be incorrectly solved cases and second, they may be presently unsolved cases,
i.e. for which, tools are not yet able to give a solution. However, the frontier between
these two possible explanations is not always very clearly drawn.
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Figure 3.3: A 1298 bp Mauve alignment piece in an aligned gap of a P. marinus couple
of strains.

3.5.2 Incorrectly solved cases – specificity problem

Incorrectly solved cases are mostly due to methodological limitations that do not need
further explanation, e.g. tools that do not deal with rearrangements produce low
quality results on non-collinear pairs. However, a large number of incorrectly solved
cases are generated by the use of improper procedures at some point of the alignment
process.
An example of what we consider to be such an incorrectly solved case is the P. mar-

inus pair, CP000111 vs CP000095, a species known for its divergence and its abun-
dance of rearrangements. For this couple, MGA obtains 4% of coverage%; this low
result can be easily explained by the fact that MGA was designed for close, collinear
genomes, thus it cannot possibly deal with this pair of strains that has undergone mul-
tiple rearrangements. In fact, from the point of view of MGA, this case is practically
an unsolved case, like those we discuss in the following paragraph.
Mauve, on the other hand, was especially thought for dealing with this kind of

complex cases, therefore it reaches 84% of coverage%, however with only 45% of id%.
This can be interpreted as Mauve covering the genomes with segments that have in
average 54% of identities. Indeed, for the same pair, when plotting the cumulative
cov% of segments with the % of identities below a given threshold, see Figure 3.4, we
find that Mauve covers 22, respectively 30% of the genomes, with segments that have
≤ 50, resp. ≤ 55% of identities.
When looking into Mauve’s alignment, we observe that it is composed of 75Kbp

of anchors and 1400Kbp corresponding to 2926 “last chance alignment” segments,
i.e. aligned gaps (see page 41). As aligned gaps make most of Mauve alignment,
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Figure 3.4: Cumulative cov% on levels of id% for Mauve backbone segments on P.
marinus pair: CP000111 vs CP000095. Mauve covers 22, respectively
30% of the genomes, with segments that have ≤ 50, respectively ≤ 55% of
identities.

we examine them closer. For example, if we take a piece of such aligned gap, as in
Figure 3.3, we notice its extreme low quality.
Further on, we applied GRAPe (Lunter et al., 2008), a probabilistic genome aligner

capable of quantifying the uncertainty of each position in the alignments, see Sec-
tion 3.4 for a complete explanation on the protocol established for using GRAPe. In
average, on the 2926 segments, GRAPe points out 13% of positions as unalignable with
more than 0.95 probability. Moreover, with the same probability threshold, 12% of
segments (= 351) have > 50% of unalignable positions; in average on the two genomes,
these segments represent 516Kbp of alignment, meaning a quarter of the total Mauve
alignment. Based on these observations, we suppose that part of the aligned gaps
should not be taken into the final alignment.
In conclusion we can make the following remarks on this kind of incorrectly solved

cases that perfectly concord with (Chiapello et al., 2008), highlighting the necessity
of improving on the sensitivity and the reliability of methods like MGA and Mauve:

• are likely to appear in divergent sequences;
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• they contain false positives, i.e. alignments of unrelated regions;

• are mostly produced by the “last chance alignment” phase.

A straightforward solution to avoid taking unrelated regions in the alignment and
to avoid in this manner incorrect solutions, would be to post-process alignments by
filtering the alignment pieces, e.g. in GRAPe’s manner (Darling et al., 2010). Un-
fortunately this kind of solution is highly computationally expensive and is based on
the fact that the alignment is globally correct, meaning the order of pieces. A similar
solution, i.e. filtering based on a id% threshold, however simpler and less computa-
tionally expensive, is more arbitrary and difficult to adjust on each particular case
(Chiapello et al., 2008). Thus these solutions are of limited help and, moreover, we
consider that the pursued goal should be to directly produce correct alignments and
not to filter them.

3.5.3 Unsolved cases – sensitivity problem
What we name unsolved cases, often corresponds to couples having an extremely high
level of divergence for the intra-species level. Surprisingly often, these couples are
collinear couples.

Figure 3.5: 20bp MEMs on Buchnera aphidicola pair, AE016826 vs BA000003, ob-
tained in the first phase of MGA, before chaining.

In Figure 3.5 we show the plot of the alignment obtained by MGA (with MEMs) for
the Buchn. aphidicola pair, AE016826 vs BA000003. As it is clear from the image,
the Buchn. aphidicola pair is perfectly collinear but it suffers from a high level of
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divergence, i.e. observe the numerous discontinuities in the main diagonal of the plot.
Even though it may seem easy to build an alignment following the main diagonal in
the plot, in practice tools give very poor results for this case. If we examine the MGA
alignment for example, we learn that it covers 35% from the genomes (≈ 220Kbp),
partitioned in 800 pieces (an average of 0.2Kbp by piece). This is a clear example of
a “false negative”, i.e. an unsolved case due to methodological limitations that could
be highly improved once the sensitivity of the methods is improved.

3.6 Initial study of the impact of using local
similarities as fragments

In this section, we propose a solution for both, increased specificity and sensitivity:
the use of local similarities (LS) instead of exact/inexact matches. The fragments
computation phase is mainly responsible for the sensitivity of anchor based methods.
Indeed, the chaining phase only discards potential anchors. So in order to improve
the quality of such methods, the first idea is to work on the sensitivity of this initial
phase. We thus suggested to replace methods computing short exact (or approximate)
matches with seed-and-extend methods that generate local similarities, see Figure 3.7.
First, local similarities are capable of detecting larger similarity regions that are more
likely to make biological sense. Second, seed-and-extend methods are more adapted
to divergent sequences, finding significant similarity between sequences where short,
exact matches may be too rare.
In order to show that using large similarity regions truly improves the results of

the anchor based strategy, we had to assess the impact of different types of fragments
on the sensitivity of this strategy. For this, we tested several fragment computation
methods producing either short exact matches or local similarities, together with a
classical fragment chaining phase.
To generate exact matches we chose the classical MEM computing tool: VMatch3

(Kurtz, 2003), like in the first phase of MGA (see Section 2.3). For local similari-
ties, we chose two different seed-and-extend methods: the well-known Gapped-Blast
4 (Altschul et al., 1997) for nucleotide sequences based on contiguous seeds (see Sec-
tion 1.6.1), and YASS5 (Noé and Kucherov, 2005), a fast similarity search program
based on spaced seeds, described below.
Let us look first at the Buchn. aphidicola couple in Figure 3.5. For this same couple,

in Figure 3.6, we plot the LS obtained with YASS. The difference between the two
images is flagrant, as we can easily see that LS manage to perfectly cover the main
diagonal, with much less pieces than when using MEMs. This is an important clue
pointing to the hypothesis that LS help improving sensitivity of WGA.

3VMatch version 2004-03-10
4Blast version 2.2.18
5YASS version 1.14
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Figure 3.6: LS obtained with YASS on Buchnera aphidicola pair, AE016826 vs
BA000003.

3.6.1 YASS, a similarity search program based on spaced seeds

YASS (Noé and Kucherov, 2005) is a DNA pairwise local alignment tool based on
an efficient and sensitive filtering algorithm that uses a flexible hit criterion in order
to identify groups of seeds. Compared to the classical heuristic alignment tools (e.g.,
Blast, Fasta), which require an exactly matching k-mer, YASS uses the spaced seeds
technique (Ma et al., 2002) that allows an increase in sensitivity without loss in selec-
tivity. Moreover, YASS uses a transition-constrained seeds model, which capitalizes on
the statistical properties of real genomic sequences. Based on a statistically founded
hit criterion, it searches for closely located seeds, likely to belong to the same align-
ment.

Spaced seed patterns and seeds Seeds are formed by two words, one from
each sequence, which match a seed pattern. A spaced seed pattern is built over
a three-letter alphabet #, @ and –, where # stands for a nucleotide match,
– for a ”do not care symbol“ and @ for a match or a transition.

The selectivity of a seed depends on its weight, defined as the number of # and half
the number of @ characters. Less # and @ characters the seed contains, the higher
its sensitivity. In order to assess the sensitivity of a given seed, one may use the
approach described in (Kucherov et al., 2006), based on a Bernoulli model, simulating
alignments of non-coding DNA, and an HMM, for alignments of coding DNA.
For a given seed pattern, the program identifies seeds, which match at positions

78



3.6 Initial study of the impact of using local similarities as fragments

specified by the pattern. A seed occurring in the two sequences, means a hit of a
potential alignment. The search for seeds is being done on both strands. Moreover, one
may use groups of seed patterns, instead of a single pattern to increase the sensitivity.
Next, YASS extends the seeds in order to form groups of seeds (inside which seeds may
overlap) that respect several criteria related to the number of matches in the group,
with the inter-seed distance and the seed diagonal distance.
Comparative experiments show that with equal selectivity level and lower running

time, YASS reaches better sensitivity than traditional approaches like Gapped-Blast.
YASS detects similarities that cover about twice the overall length of those found by
Gapped-Blast, while it keeps only local alignments with E-values below 10−6 (Noé and
Kucherov, 2005).

Local similarity
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Figure 3.7: An example of local similarity versus an exact match.

3.6.2 Experimentation protocol

These three fragments computation methods: VMatch, Blast v.2 and YASS are com-
bined with Chainer, a tool described in Section 4.9, implementing the classical consis-
tent chaining defined in Section 4.3. We thus obtain three prototypes to test:
VC for VMatch and Chainer, BC for Blast and Chainer and YC for YASS
and Chainer, see Figure 3.8.
For each of the four tools we tested multiple parameter settings. We were seeking

for parameter values that would allow programs to stay fast but in the same time to be
the most sensitive possible. In fact, as we only used the first two phases of the anchor
strategy, the idea was to let the chaining phase do the filtering, instead of doing it
directly from the first phase. This should allow the detection of distant similarities.
For all three computing fragment tools, we looked for matches on both strands in

order to detect both forward and reverse fragments (local inversions). Matches on
the reverse strand were reversed and projected on the direct strand in order to be
taken into account in the chaining process, i.e. remember that the classical chaining
is collinear, thus fragments need to be in the the same direction on both strains.
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P1

P2

Yass Blast Vmatch

Chainer

YC BC VC
Figure 3.8: Three prototypes composed of two phases, i.e. fragments computation +

chaining, namely: VC for VMatch + Chainer, BC for Blast + Chainer and
YC for YASS + Chainer.

VMatch We fixed the minimum match size to 20bp. In fact, choosing a threshold
smaller than 20bp slows the computation process and does not improve the global
results (as tests for 10bp match size showed). On the other hand, by using a higher
threshold we would miss similarity regions in more divergent sequences: tests with
30bp showed that results were sensibly in favour of the 20bp value.

YASS We fixed the E-value threshold to 10, and kept the default values for the other
parameters, e.g. DNA matrix: −C 5,−4,−2, −4,−4, 5,−4,−2,−2,−4, 5,−4,−4,−2,
−4, 5. The set of seeds we used is−p ′′#@_##_## _#__@_###,#_##@___#
#___#___#@#_#“. These seed patterns are a default choice for YASS; they were
designed by Iedera program (Kucherov et al., 2007) and are meant to be a fair com-
promise for the sensitivity in both coding and non-coding regions. We tested several
E-value thresholds: 0.1, 1, 10, the first two ones limiting the number of local align-
ments. The differences in cov% revealed to be, with the exception of very few cases,
insignificant. By choosing the E-value threshold to be very permissive, we hoped to
detect fairly divergent sequences. This strategy pays in the case of B. aphidicola,
a divergent species not included in Mosaic db. In fact, for this case, the coverage
obtained by YASS+Chainer with E-value 10 outperforms by 7% the one given by
YASS+Chainer with both E-values 0.1 and 1. However, for less divergent cases, the
results are extremely close.

Blast We used the Blast version for nucleotide sequences with default parameter
settings, except for the E-value that we fixed to 10 as in the case of YASS.
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3.6 Initial study of the impact of using local similarities as fragments

Chainer We employ the global strategy of chaining (instead of the local one), as it
is more appropriate when building a WGA. Fragment weights were given by fragment
lengths in the case of exact matches produced by VMatch. For YASS and Blast, as
they output non-exact matches, we had to choose between several possibilities: their
length, the number of their identical base pairs and their score. As the results were
slightly better when using the number of identical base pairs, we finally kept this met-
ric. Moreover, in this way we merge the advantage of the other two ones: length and
quality.

These prototypes, VC, BC and YC, are in fact three WGA methods, based on a
simple two-phase strategy, i.e. without the third and fourth phases classically imple-
mented in the anchor based strategy. It is straightforward that if we want a precise
examination of the effect of solely the fragment computation phase, we do not need
the last two phases.
In Section 3.6.3, we test the three prototypes on dataset 1. For each strain pair in

the dataset, we computed the differences of cov% and id% between the method that
detects exact matches (VC) versus the two methods based on local similarities (BC
and YC). In Figure 3.9 we summarize the distribution of these differences using the
classical box plot representation.

Box plots In statistics, a box plot, also known as a box-and-whisker plot,
is a convenient way of describing groups of numerical data through their
five-number summaries: the smallest observation (sample minimum), lower
quartile (Q1), median (Q2), upper quartile (Q3), and largest observation
(sample maximum). A box plot may also indicate which observations, if any,
might be considered outliers. Outliers usually indicated by open dots are,
as in our case, those observations that lie more than 1.5 times the inter-
quartile distance below or above the first and third quartiles respectively, see
for example Figure 3.9.

3.6.3 Fragments computation sensitivity analysis
We would normally expect the spaced seed method, YC, and the Blast approach, BC,
to obtain better results than the MEM based approach, VC. In Figure 3.9, we can
observe that this is not the case. For instance, the median of (YC-VC) for both the
cov% and the id% lies around −10%.
An analysis of YC alignments showed that, surprisingly, the worst results were

obtained for pairs of close collinear genomes covered with long local similarities: YC
was unable to include some of them in the chain because of overlaps. In such
cases, VC detects multiple short fragments and chains them well. This suggested that
the classical chaining algorithm (Chainer) is unadapted to local similarities. Indeed,
this definition of a chain prohibits overlaps between adjacent anchors, see Figure 3.11.
For example, when comparing strains CP000046 and BA000018 of Staph. aureus,

YC obtains a cov% of 65%, while VC reaches 88%. Figure 3.10 perfectly depicts
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Figure 3.9: Box plots representing the distribution of cov% (a) and id% (b) differences,
corresponding to the alignments of pairs of strains in the dataset, for VC
vs BC and VC vs YC. BC obtains better or similar results to VC in a big
number of cases. YC improves on VC in some cases, but in most of the
cases it obtains surprisingly bad results, i.e. median close to −10 for both
cov% and id%.

(a) (b)

Figure 3.10: Dot plots for CP000046 vs BA000018 of Staph. aureus showing LS ob-
tained with YASS in (a) (before chaining) and the same LS after the
chaining phase in (b), showing the loss of quality between the two phases.
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3.7 Conclusion

the reason of such poor result obtained with LS, as it shows LS before and after the
chaining step, in order to observe the loss of quality from one step to another. In fact,
YC’s chain is interrupted by 17 holes of more than 10Kbp each. For 14 of these holes,
at least one large local similarity (average size 37Kbp) was not included in the chain,
because of an overlap with an adjacent segment on one or both genomes. All overlaps
measure between 1bp and 1.8Kbp in length, with an average at 218bp .
We observed that short overlaps are usually due to randomness. The probability of

having the same characters at the extremities of the fragments is high, due to the small
size of the DNA alphabet, which consists only of 4 characters. The lack of precision
at the extremities of fragments, caused by the extension strategies in seed-and-extend
approaches, also leads to short overlaps. Large overlaps on the other hand, are due to
variable tandem repeat structures that differ in number of copies between the strains
or that can be found in only one of the strains. If one would want to correctly align
such structures without breaking the region in two overlapping fragments, one would
require a more general alignment model and specific algorithms (Bérard and Rivals,
2003).

Figure 3.11: An example of fragment not included in the chain due to overlaps on two
adjacent fragments.

3.7 Conclusion
As discussed in Section 3.1, bacterial genomes from the same species, theoretically
considered as being extremely close, can be very divergent in practice. In Section 3.5,
we observe that tools fail to align some of the pairs, mainly due to specificity and
sensitivity problems.
In Section 3.6, we suggest replacing, in the anchor based strategy, methods computing

short exact (or approximate) matches with seed-and-extend methods that generate local
similarities. Based on initial experiments, we observe that local similarities have a
specific problem: frequent overlaps of various sizes. Moreover, we show that overlaps’
lengths cannot be easily bounded by a constant. Thus in order to take overlaps
between fragments in a chain into account, one should develop solutions that allow
overlaps with maximal accepted lengths related to the lengths of the fragments. In
Chapter 6 we introduce a novel definition of collinear chaining, allowing for overlaps
proportional with the lengths of the adjacent fragment. For this novel problem, we
propose an exact algorithm called OverlapChainer that we thoroughly describe and
prove. In Chapter 6, we employ this novel chaining method for the WGA of bacterial
genomes.
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4 State-of-the-art. Preliminaries,
formulations and solutions for
chaining

To cope with the large volume of data, soft-
ware tools designed for whole genome alignment
use an anchor-based approach composed of three
phases. The current chapter is dedicated to the
second phase of this approach: fragment chaining.
It consists of a thorough analysis of the different
versions of the chaining problem, from the classi-
cal collinear chaining to the complex chaining with
rearrangements, passing through the more novel
approach of glocal chaining.
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4.1 Introduction to the problem of chaining fragments

4.1 Introduction to the problem of chaining fragments
Several problems encountered in computational biology are special cases of the frag-
ment chaining problem. An example of such problem is mapping a large number of
cDNAs (mRNAs) or ESTs to the regions of the genome they are transcribed from
(Ogasawara and Morishita, 2003; Mott, 1997; Gelfand et al., 1996). Alignment of
draft sequences, where one or both of the sequences being aligned is split into a set
of unordered contigs is another such example (Sundararajan et al., 2004; Bray et al.,
2003; Delcher et al., 2002). Finding rearrangements between genomes (Abouelhoda
and Ohlebusch, 2003; Brudno et al., 2003c) or finding differences between two assem-
blies of a genome (Lippert et al., 2004) are also closely connected to the fragment
chaining problem. However, by far the most important application is linked to the
alignment of large scale genomic sequences.
Global alignments are valuable tools for comparing close related genomes, and with

some modifications that shall be discussed in the next chapter, for divergent genomes
too. (Wilbur and Lipman, 1983; Sobel and Martinez, 1986) were the first to come
up with the idea of fragmenting sequences in matching substrings, initially of fixed
length, in order to speed up sequence alignment. Nowadays, the vast majority of
tools for genome comparison (Hohl et al., 2002; Delcher et al., 2002; Brudno et al.,
2003b; Brudno et al., 2003c; Bray et al., 2003; Darling et al., 2004; Morgenstern et al.,
1998; Treangen and Messeguer, 2006) start by computing highly similar substrings,
i.e. fragments, between the set of sequences. These similar substrings may have been
identified by using several techniques and they can be exact matches, approximate
matches or local similarities. For details on such genome comparison methods see
Chapter 2 and Chapter 3.
The difficulty for the fragment chaining problem comes from the fact that fragments

in the initial set may overlap or even be included one within another. Thus, once
many such fragments have been found, the question is how one should select a subset
among them that covers best the given sequences. Generally, in computational biology
best is a difficult notion to define, as one does not have straightforward criteria for
choosing such a subset. Nevertheless in practice, one picks up a model that does allow
an efficient algorithm for selecting a best subset under that model. In such model,
fragments have associated weights that account for their goodness, distances between
fragments are being penalized, i.e. gap costs defined on page 97, Section 4.5, and all
of these values are combined in order to obtain a weight of a subset of fragments.
Another detail that can make the chaining problem more or less complicated is the
number of sequences that are being compared. Therefore, in the next chapter we shall
discuss separately the one-, two-, and multi-dimensional cases.
Moreover, several versions of the chaining problem exist but we shall give particular

attention to the original version of the chaining problem. The original problem is
known under the name of collinear chaining and it consists of selecting a best weighted
subset of fragments that are collinear and do not overlap on any of the compared
sequences. The subset of fragments computed in this way is what we usually call
a chain. All the other versions of the chaining problem are generalizations of the
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original one, usually by relaxing the collinearity constraint and, by abuse of language,
the subset of fragments they compute is still called a chain.
The straight-forward method for the collinear fragment chaining problem is a spe-

cial case of the classic optimum-path algorithm for directed acyclic graphs (Gusfield,
1997, chap. 13), which works for any definition of weights and gap costs. In this for-
mulation, a quadratic time and space, dynamic programming algorithm can be easily
applied by using a recurrence with respect to the partial order between fragments, see
(Abouelhoda and Ohlebusch, 2005) for an outline of this algorithm and (Morgenstern,
2002) for a quadratic time solution needing linear space.
In order to speed up this algorithm, multiple formulations and solutions for this

problem have been proposed in the literature. The general idea behind these solutions
is sparse dynamic programming (Eppstein et al., 1992a). They make use of the partial
order between fragments, employ weights that do not depend on independent positions
and partition the search space into several regions allowing an efficient solution.
In Chapter 4, we start by giving a detailed description and precise formulation

for the collinear chaining problem. Second, we present an efficient solution in this
formulation. Next, we give an insight of other existing formulations and solutions
for this problem. We then describe two generalization of the original problem: the
”glocal“ chaining and the chaining with rearrangements. Finally, even though there
have been twenty years of research on this subject, we shall see that an interesting
question still remain untackled. In practice, one would like to select all of the relevant
fragments but many of these fragments may be overlapping. Thus, one would need
an algorithm that efficiently selects these relevant fragments. In Chapter 5 we deal
with this problem precisely and detail our results recently published in (Uricaru et al.,
2010).

4.2 Preliminary notions for collinear chaining
Fragments are groups of highly similar substrings, one on each compared sequence.
Let k be the number of compared genomic sequences. We may represent these k
genomic sequences as k parallel lines, i.e. each sequence corresponds to one line.
In this representation, a fragment is denoted by a set of k segments, one segment
on each parallel line. Segments on a line are in a one to one correspondence with
substrings on the genomic sequence. Moreover, the position of each segment on the
line is given by the position of the corresponding substring in the genomic sequence.
This representation of fragments as k-trapezoids is perfectly intuitive, as in reality
when comparing genomic sequences, we visualize them as parallel lines. Now, if the
extremities of the segments are connected, we obtain what we call a k-trapezoid. In
Figure 4.1 a collection of two-dimensional fragments are represented as two-trapezoids.
Informally, we say that two k-trapezoids Ti and Tj are strictly increasing if the k

segments composing Ti end before the k segments of Tj. This corresponds exactly
to saying that the fragments they represent are collinear. Thus, a collinear set of
fragments can be seen as a set of trapezoids that are strictly increasing.
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Figure 4.1: A collection of two-dimensional fragments represented as trapezoids. (a)
Eight fragments on two genomic sequences. The example is purely ped-
agogic and consists of fragments of minimum size 5, allowing gaps and
mismatches. (b) The eight fragments above are now represented as eight
two-trapezoids on two parallel lines. One may easily observe that a set of
collinear fragments corresponds to a set of strictly increasing trapezoids,
i.e. trapezoids having a disjoint intersection. In our example, fragments
1, 3, 4, 7, 8 are collinear, i.e. trapezoids 1, 3, 4, 7, 8 are strictly increasing,
same as fragments 2, 6, 8.

Notation Let T be a k-trapezoid that is defined by its k segments, i.e. T = (I1, . . . , Ik)
where Iα, with 1 ≤ α ≤ k, is the segment on line α. The left extremity of a segment
Iα, respectively its right extremity, are denoted by beg(Iα), respectively by end(Iα).
By extension, beg(T ) = (beg(I1), . . . , beg(Ik)) and end(T ) = (end(I1), . . . , end(Ik))
are points in Rk that correspond to the left, respectively to the right extremity of the
trapezoid T . We remind the reader that if x = (x1, . . . , xk) and y = (y1, . . . , yk) are
two points in Rk, then x < y is the classical dominance order between points in Rk,
i.e. ∀p 1 ≤ p ≤ k, xp < yp.

Definition 4.1. Let Ti and Tj be two k-trapezoids. We say that Ti and Tj are strictly
increasing if end(Ti) < beg(Tj). It is straight-forward that Ti and Tj are strictly
increasing iff their intersection is disjoint, i.e. Ti ∩ Tj = ∅.

As collinear fragments are equivalent to strictly increasing trapezoids, meaning dis-
joint trapezoids, we obtain the following graph formulation of our problem. If we
consider the collection of k-trapezoids as being a trapezoid representation of a k-
trapezoid graph, we can model the collinear chaining problem as the problem of finding
a maximal independent set in a k-trapezoid graph. Below we define k-trapezoid graphs
as a special case of intersection graphs, see Definition 4.3, present an equivalent char-
acterization of them, see Definition 4.5, and formulate the collinear chaining problem
for this characterization in Section 4.3.

Definition 4.2 (Intersection graph). An intersection graph is an undirected graph
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formed from a family of sets Si, with i ≤ n, by creating n vertices, one vertex vi for each
set Si. Two vertices vi and vj are connected by an edge whenever the corresponding two
sets have a non empty intersection, i.e. {vi, vj} is an edge if and only if Si ∩ Sj 6= ∅.

Several special classes of intersection graphs may be defined with respect to the types
of sets that are used to form an intersection representation of them. For example, the
intersection graph for a family of intervals is called an interval graph (Golumbic, 1980).
In our case, the intersection graph for a family of k-trapezoids is called a k-trapezoid
graph (Dagan et al., 1988). A formal definition of a k-trapezoid graph follows below.

Definition 4.3 (Trapezoid graph for a trapezoid representation). A graph is a k-
trapezoid graph if there exists a collection of k-trapezoids between k parallel lines
such that for each vertex vi there is a trapezoid Ti and for every pair of vertices vi,
vj there is an edge {vi, vj} if and only if Ti ∩ Tj 6= ∅. This family of trapezoids is
called a trapezoid representation for the k-trapezoid graph. See Figure 4.2 for the
two-trapezoid graph corresponding to the two-trapezoid representation in Figure 4.1.

1
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7
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5

3

Figure 4.2: The trapezoid graph corresponding to the trapezoid representation in Fig-
ure 4.1, with each vertex corresponding to the trapezoid with the same
number in Figure 4.1. Vertices are connected if corresponding trapezoids
have a non empty intersection.

Next we introduce an equivalent characterization of trapezoid graphs: the box rep-
resentation, (Felsner et al., 1995). We chose to give this second representation because
it allows us to give an easier formulation for the collinear chaining problem. Instead
of representing fragments with trapezoids, we now associate to each fragment a box.
We shall see next how the two representations are connected.
For the trapezoid representation, genomic sequences were projected on parallel lines.

In the case of the box representation, each genome is associated with one axis and
boxes are axis parallel hyper-rectangles in Rk. Thus, in the two-dimensional case, the
input of the problem is represented as a set of rectangles drawn in the plane. For the
multi-dimensional case, fragments may be represented as hyper-rectangles in a multi-
dimensional space. As each side of a rectangle is parallel to one axis, it corresponds to
a substring in the associated genomic sequence. Therefore, the length on a genome of
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the fragment associated with a box is the projection of that box on the corresponding
axis.

Notation Let B be a box of Rk and let α ∈ {1, 2, . . . , k} index the axis. The interval
corresponding to the projection of B on axis α in the trapezoid representation is in
fact the segment Iα. The upper, resp. lower, corner of B is denoted by u(B), resp.
l(B). If T is the k-trapezoid corresponding to B in the trapezoid representation, then
l(B) is equivalent to beg(T ) and u(B) to end(T ).

Definition 4.4 (Box dominance order). Let Bi, Bj be two boxes of Rk. We say that
Bj dominates Bi, denoted Bi � Bj, if l(Bj) dominates u(Bi) in Rk. If neither Bi

dominates Bj, nor Bj dominates Bi, then Bi and Bj are incomparable.

Property 4.1 (Transitivity of the dominance order). The dominance order between
boxes is transitive.

We then obtain a novel definition for the k-trapezoid graphs.

Definition 4.5 (Box representation of a trapezoid graph). A graph is a k-trapezoid
graph if there exists a collection of boxes in a k-dimensional space such that for each
vertex vi there is a box Bi, and for every pair of vertices vi, vj there is an edge
{vi, vj} if and only if Bi and Bj are incomparable. We call this family of boxes a box
representation for the k-trapezoid graph.

In Figure 4.3 we illustrate the equivalent box representation for the trapezoid graph
above. In order to understand that these two representations of k-trapezoid graphs
are equivalent, we examine the two-dimensional case and observe that pairs of incom-
parable boxes are in one-to-one correspondence with trapezoid pairs linked by edges
in the two-trapezoid graph. It is enough to map lower and upper segments in the
trapezoid representation to the x-axis and the y-axis in the box representation, re-
spectively. For a box B, its projections on the x-axis and the y-axis coincide with
the lower and the upper segment, respectively of the two-trapezoid T . Thanks to the
example in Figure 4.3, it can easily been seen that two trapezoids are disjoint exactly
if the corresponding boxes are comparable. A similar reasoning remains valid for the
multi-dimensional case.
Moreover, we may completely leave out the graph formulation for the collinear

fragment chaining problem and switch between the k-trapezoid graph and the set
of boxes equipped with the dominance order, i.e. box order. The dominance order
between boxes, which is in fact a partial order between fragments, can be exploited
in order to obtain more efficient algorithms than in the graph formulation by using
computational geometry methods.
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Figure 4.3: The equivalent box representation for the trapezoid graph in Figure 4.2
corresponding to the trapezoid representation in Figure 4.1. For example,
we observe that 1 � 3 meaning that the box 3 dominates the box 1, i.e.
trapezoids 1 and 3 are strictly increasing, same as 3� 4, 4� 7, 7� 8.

4.3 The collinear chaining problem definition in a
k-trapezoid graph and an equivalent box order

Let us consider a k-trapezoid graph G = (V,E), whose trapezoid representation cor-
responds to a collection of fragments on k genomic sequences. On the vertices of G,
we define a weight function w : V → R. Then, we may say that the k-trapezoid graph
G is weighted. Moreover, the weight function can also be extended to the equivalent
box order. Thanks to the bijection between boxes and vertices in the graph G, we
may define w(Bi) = w(vi), where Bi is the box corresponding to the vertex vi in G.
We remember that an independent set of G is a set of vertices, such that for every

two vertices in this set, there is no edge connecting the two. As collinear fragments
correspond to disjoint trapezoids, thus to unconnected vertices in the trapezoid graph,
the Maximum Weighted Collinear Fragment Chain (MWCFC) problem is equivalent
to the Maximum Weighted Independent Set (MWIS) problem in a trapezoid graph.
Based on this equivalence, the weight of a collinear fragment chain can be defined as
the sum of the weights of fragments in the chain, in the same way as the weight of an
independent set of G is defined as the sum of the weights of its elements.

Definition 4.6. The Maximum Weighted Independent Set (MWIS) problem in a
graph G is to find the independent set of maximal weight among all independent sets
in G.

We remind the reader that a chain in an order is a set of mutually comparable
elements of that order. Given the definition of comparable boxes in a box order, i.e.
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4.4 Dynamic programming solution for the collinear fragment chaining in a box order

Definition 4.4, (Felsner et al., 1995) observed that an independent set of G corresponds
to a chain in the box order. Therefore, the relation between trapezoids and boxes
makes that the collinear fragment chaining problem is also equivalent to the Maximum
Weighted Chain (MWC) problem in the corresponding box order. From this point on,
we shall leave aside graphs and work with the box order formulation.
Given an order, recall that a maximal element in a set is one with no other ele-

ment dominating it. Each chain has exactly one maximal element. In the case of
fragment chaining, box weights are arbitrary and they usually measure the ”quality“
of fragments (length, number of identities), see for example the weights chosen in Sec-
tion 3.6.2. However, note that one should be able to obtain the weight of a box in
constant time. This is an important observation to make for the complexity of the
algorithms given in the next section. Moreover, the weight of a chain of the box order,
is defined as the sum of the weights of its elements.

Definition 4.7 (Weight of a chain). Let m ∈ N and B := (B1 � . . . � Bm) be a
chain of m boxes. The weight of B is W (B) := ∑m

i=1 w(Bi).

Let F be a set of fragments and its corresponding box representation B′ := {B2, . . . Bn−1}.
For convenience, we add two dummy boxes, B1, Bn, such that for all 1 < i < n:
B1 � Bi � Bn. Additionally, we set w(B1) = w(Bn) := 0. Now, the input consists in
B := {B1, . . . , Bn}.

Definition 4.8 (Maximum Weighted Chain). Let B := {B1, . . . , Bn} a set of boxes.
The Maximum Weighted Chain problem is to find in B, according to the dominance
order �, the chain C that starts with B1 and ends in Bn and whose weight W (C) is
maximal.

Property 4.2 (Best weighted collinear set of fragments). The best weighted chain in
the box order corresponds to the best weighted collinear set of fragments in F . See Fig-
ure 4.4 for an example of maximal weighted chain in a box order and its corresponding
best weighted collinear set of fragments.

For any 1 ≤ i ≤ n, let us denote by Ci the set of chains ending in Bi, and by W (Bi)
the weight of the maximal weighted chain in Ci (not to be confounded with w(Bi)).
From now on, all the considered boxes belong to B unless otherwise specified.

4.4 Dynamic programming solution for the collinear
fragment chaining in a box order

We begin this section by showing that the MWCFC problem can be solved by dynamic
programming. For this we shall examine the equivalent MWC problem. Next we give
a classical quadratic dynamic programming algorithm, before detailing in the next
section a more efficient algorithm as introduced by (Felsner et al., 1995).
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Figure 4.4: (a) A maximal weighted collinear set of fragments corresponding to the
example in Figure 4.1 and (b) the respective maximal weighted chain in
the equivalent box order in Figure 4.3.

Let us show that MWC can be solved by a dynamic programming algorithm. The
definition of the weight of a chain suggests a recurrence equation to compute W (Bi),
with W (B1) = 0 and for all 1 < i ≤ n:

W (Bi) = max
Bj : Bj�Bi

W (Bj) + w(Bi). (4.1)

Obviously, this implies that for all 1 ≤ j < n the value of W (Bj) will be reused
for computing W (Bi) for every box Bi such that Bj � Bi. Thus, MWC consists
of overlapping subproblems, which suits to the framework of dynamic programming
(Cormen et al., 2001, chap. 15). However, it is correct to use Equation 4.1 only if our
problem satisfies the condition of optimal substructures (Cormen et al., 2001, chap.
15). In Theorem 4.1, we easily show this is true.

Theorem 4.1 (Optimality of substructures for MWC). Let m, i1, . . . , im be integers
belonging to [1, n], and let D := (Bi1 , . . . , Bim) be an optimal weighted chain among
the chains in Cim. Thus, D′ := (Bi1 , . . . , Bim−1) is an optimal weighted chain among
those in Cim−1.
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Proof of Theorem 4.1 (Optimality of substructures). By hypothesis and Equation 4.1,
one has

W (D) = W (Bim)
= w(Bim) +W (Bim−1)
= w(Bim) +W (D′) .

We proceed by contradiction and assume that E ′ is a weighted chain ending in Bim−1

with W (E ′) > W (D′). Consider the chain E := E ′ ∪ {Bim}. By the same reasoning
as above, one has

W (E) = w(Bim) +W (E ′),
and hence,W (E) > W (D), contradicting the hypothesis thatD is an optimal weighted
chain ending in Bim . MWC problem satisfies the condition of substructures’ optimality.

The basic dynamic programming algorithm for this problem is given in Algorithm 1.

Algorithm 1: Dynamic Programming MWC in a Box Order
Data: B a set of n boxes
Result: W a vector of weights, with W [Bn] the weight of the best chain in B,

Pred a vector containing the previous boxes in the chain
begin1

sort(B);2

W [B1]←− 0;3

Pred[B1]←− null;4

foreach Bi ∈ B in order do5

pred[Bi]←− arg maxBj : Bj�Bi
W [Bj] + w(Bi);6

W [Bi]←− W [pred[Bi]] + w(Bi);7

traceback(Pred[Bn]);8

end9

The algorithm takes an initial set of n boxes, B, and orders them according to
Definition 4.4. For every box Bi taken in order, the algorithm finds the box Bj, which
precedes Bi in the best weighted chain in Ci, and stores it in Pred vector. The weight
of the best chain ending in Bi, i.e. W (Bi), is kept in a second vector W []. The actual
best chain of boxes, i.e. ending in Bn, is constructed by tracing Pred[] entries starting
from Pred[Bn].
As tracing back Pred[] can be done in linear time, the computation time of Algo-

rithm 1 depends on the sort() procedure, and on the time needed to obtain Pred[] for
a given box. Now, if we suppose that boxes are given already sorted, the computation
time of the algorithm is O(n × g(n)), where O(g(n)) is the time needed to compute
Pred[]. Moreover one should observe that this time complexity is based on the as-
sumption that the computation of w(B) is negligible, i.e. it can be done in O(1), like
mentioned in the previous section.
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If in the worst case, one needs to visit all the boxes in order to find the best
predecessor for a given box, then g(n) is in fact n. The whole running time complexity
of the algorithm is in this case O(n2).

Theorem 4.2. A dynamic programming algorithm solves the Maximum Weighted
Chain problem in O(n2) time and O(n) space.

However, in the box order formulation by using complex data structures that allow
less than O(n) time for query and update procedures, one manages to improve this
complexity and obtain a time bound inferior to O(n2), as shown in the next sections.

4.5 Common aspects among solutions for the collinear
chaining

On an initial set containing n fragments, we have seen in Theorem 4.2 that the collinear
chaining problem can be solved in O(n2) complexity with a classical dynamic program-
ming method. Several more efficient solutions have been proposed in the literature
starting from the early 90s. Even though they use different formulations, in order
to speed up the running time of the algorithms, existing solutions for this problem,
enumerated in Section 4.9, are essentially based on the following notions:

• Sparse dynamic programming technique. All of the efficient solutions that
we present in this chapter use the dynamic programming technique in order to
solve the chaining problem. As observed in (Eppstein et al., 1992a; Eppstein
et al., 1992b), for this problem, only a sparse set of entries of the dynamic pro-
gramming matrix matters for the optimization of the objective function. There-
fore, methods take advantage of this sparsity in order to obtain algorithms with
time complexities depending on the size of the sparse set and not on the size of
the dynamic programming matrix.

• Sweep line paradigm. Several solutions employ the sweep-line technique, a
key technique in computational geometry that consists in using an imaginary
vertical line sweeping the entire plane and stopping on each point (Cormen
et al., 2001, chap. 33). It deals with objects that either intersect or are in
the immediate vicinity of the sweep-line. Once the sweep-line passes one of the
objects, it usually places it into a dynamic data structure that takes advantage
of the relationship between the objects, i.e. partial order between fragments in
our case. The final results are available once the sweep-line has passed over all
the objects. See Algorithm 2 in Section 4.6 for a detailed algorithm using this
technique.

• Division of the search space into several regions. Based on the topological
order between fragments, for every point, regions in the plane may be identified
containing points that influence the computation of the current point.
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• Restrictions on gap costs

Gaps and gap costs The region between the extremities of two non-
overlapping fragments on a genomic sequence is called a gap. If one associates
a cost to placing a fragment after another in a chain, then this corresponds
to the so-called gap cost.

One may want to penalize long distances between fragments thus one may need
to take gaps into account when computing the best weighted collinear chain.
This adds an important difficulty to the problem of chaining. In fact, several
existing solutions do not deal with gaps, like (Felsner et al., 1995) in Section 4.6.
Solutions that choose to work with gaps use gap costs that essentially depend
on the distance between fragments on the different sequences. In order for the
solutions to stay efficient, gap costs must be defined in such a way that the
particular symbols occurring in the substring between consecutive fragments
must not count in the computation. This means that gap costs must be symbol
independent, otherwise one needs to examine every such symbol thus increasing
the overall time complexity.

Moreover, some of the solutions may require the use of special types of fragments,
i.e. having identical lengths on all sequences, no gaps or no mismatches. They may
also use data structures that take advantage of the fact that fragments coordinates
are integers between 0 and the maximum size of the sequences, thus obtaining better
time complexities.

4.6 An efficient solution for the collinear fragment
chaining in the box order formulation

In this section, we detail an efficient solution for the MWCFC problem, as defined
in Section 4.3. This solution was given in (Felsner et al., 1995). We shall see how,
thanks to its geometrical properties, the box order formulation is more convenient
than the trapezoid representation in designing efficient algorithms for the collinear
chaining problem. Below, the algorithm is described in the general multi-dimensional
case. However, examples, figures and additional explanations are given for the two-
dimensional case.

Notation We reuse the definitions and notation given in the previous sections: B a
set of n boxes with B1 and Bn such as for all 1 < i < n: B1 � Bi � Bn. For Bi a
box in B we have l(Bi), u(Bi) the lower, respectively the upper corner of the box Bi,
w(Bi) the weight of the box, W (Bi) the weight of the maximal weighted chain ending
in Bi, i.e. among chains in Ci. Moreover if α indexes an axis, for any point x ∈ Rk

let Pα(x) denote its projection on axis α.
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Boxes are represented in a multi-dimensional space and the weight W (B) for each
box B is computed with the aid of a sweep-line. A vertical sweep line sweeps the
boxes in the plane by increasing x-coordinates of their corners, stopping at the lower
left and upper right corners of each box. To avoid visiting all possible predecessors as
in the O(n2) dynamic programming algorithm when computing the best chain ending
in Bi, a set, A, of active boxes is maintained, with boxes that can compete for being
the optimal predecessors in all chains. We note that in order to simplify the message
of Felsner et al., we renounced to their formulation with markers on upper corners
and replaced the set of markers with a set of active boxes having the same utility as
the markers.
Let P be an array containing the 2n points corresponding to l() and u() corners

of the n boxes in B. For each point they store to which box and to which corner
it corresponds to. Points in P are ordered on their x-coordinates. Felsner et al.
assume that the points in P have mutually different x-coordinates. Otherwise, they
say slightly perturbing points having the same x-coordinates, such that lower corners
have smaller x-coordinates than upper corners. Similar perturbations are done for the
other coordinates.
In Algorithm 2, the main loop sweeps the points of P and processes in different

manner lower (lines 7-9) and upper corners (lines 10-16). The weight of a chain
ending in, say Bi, is computed when passing the lower corner of Bi. As mentioned
above, only useful boxes are in A, while the others are either not inserted, or deleted
from A when they become useless. When sweeping the lower corner of Bi, one needs
to examine boxes Bj ∈ A such that u(Bj) < l(Bi), meaning Bj � Bi, in order to find
the one having the best chain weight. In the two-dimensional case, due to the way
A was built, this box is the first one "below and to the left" of the point l(Bi), see
Figure 4.5.

Bi

B2

Bj

B1

l( )Bi

Figure 4.5: Two-dimensional example. The sweep line stops at the lower corner of the
box Bi, i.e. l(Bi). The best predecessor for Bi, Bj in this case, can be
found immediately to the left and below l(Bi).
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When stopping at the upper corner of a box one needs to test whether it should be
turned active and inserted in A (lines 12-13). The current box, Bi, is inserted only if
there is no box that makes a better predecessor inA. If it exists, this better predecessor
is one of the boxes Bj ∈ A such that u(Bj) < u(Bi). In the two-dimensional case,
one finds this box "below and to the left" of the point u(Bi), see Figure 4.6. If
W (Bj) > W (Bi), as the box Bj ends before the box Bi, then it necessarily makes a
better predecessor for the boxes that have not been yet swept. In this case, Bi needs
not be inserted in A.

Bi

B2

Bj
B1

u( )Bi

Figure 4.6: Two-dimensional example. The sweep line stops at the upper corner of the
box Bi, i.e. u(Bi). Bi is inserted in A if Bj, the first box below and to
the left of u(Bi), makes a worse predecessor than Bi, meaning that it has
a smaller chain weight.

If Bi was inserted in A, currently active boxes are investigated to determine if
they are less interesting than Bi. An active box Bj is less interesting than Bi if
Pα(u(Bj)) > Pα(u(Bi)), ∀α > 1, i.e. in the two-dimensional case Bj is higher than
Bi, and W (Bj) < W (Bi), i.e. Bj is lighter than Bi. In this case, Bj is deleted from
A (lines 14-16).
Felsner et al.. prove the correctness of their algorithm and set out the following

theorem stating its time complexity when computing a collinear chain for an initial
set of n fragments.

Theorem 4.3. A maximal weighted chain of a box order in Rk containing n boxes, can
be computed in O(n logk−1 n) time and O(n logk−2 n) space. This implies a O(n log n)
time complexity and linear space in the two-dimensional case.

The time complexity of the algorithm above depends on the time required by the
query (searching for a box in A), insert (inserting a box in A) and delete (deleting
a box from A) operations. It can be easily observed that the upper bound of the
number of times these operations are being carried out is 4n. In fact, for each point in
P a find operation is being performed, i.e. 2n times. Moreover, for each upper point,
the corresponding box is added or not to A, i.e. n boxes thus maximum n insert
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Algorithm 2: Efficient MWC (P)
Data: B a set of n boxes, P an array with the 2n box corners
Result: W a vector of weights, with W [Bn] the weight of the best chain in B,

Pred a vector containing the previous boxes in the chain
begin1

sort_on_x_coordinate(P);2

A ←− B1;3

W [B1]←− 0;4

Pred[B1]←− null;5

foreach p ∈ P in ascending order on x-coordinate do6

if p is a lower corner ( i.e. ∃Bi : p = l(Bi)) then7

Pred[Bi]←− arg max
Bj∈A,u(Bj)<l(Bi)

(W [Bj]);
8

W [Bi]←− W [Pred[Bi]] + w(Bi);9

else /* p is an upper corner, i.e. ∃Bi : p = u(Bi) */10

B ←− arg max
Bj∈A,u(Bj)<u(Bi)

(W [Bj]);
11

if W [Bi] > W [B] then12

A ←− A∪ {Bi};13

foreach Bk ∈ A with Pα(u(Bk)) > Pα(u(Bi)), ∀α > 1 do14

if W [Bk] < W [Bi] then15

A ←− A \ {Bk};16

traceback(Pred[Bn]);17

end18

operations. As boxes are inserted if ever, at maximum once, they can also be deleted
at maximum once from A, i.e. maximum n delete operations.
Now the time complexity depends on the characteristics of the data structure storing
A. In the two-dimensional case, boxes in A may be kept at the leaves of a balanced
binary tree ordered according to the y-coordinate of their upper corners. If each node
in the search tree points to the leaf corresponding to some box having maximal W ()
among all leaves in the subtree rooted by this node, then finding a box having maximal
W () among boxes dominated by a box B, i.e. find operation, can be done in O(log n).
Balancing the binary tree, inserting a new box, or deleting an existing one from the
tree, can also be carried out in O(log n) time. This gives a total time complexity of
O(n log n) as announced in Theorem 4.3. If storing active boxes from A in a binary
tree and the 2n points from P in an array, linear space is used, i.e. O(n).
For the multi-dimensional case, i.e. k > 2, a (k − 1)-dimensional range tree is

needed (De Berg et al., 2008, chap. 5). If the k − 1 coordinates are noted from 1 to
d, then the d dimensional range tree is built as follows. Boxes are represented by the
leaves of a binary tree ordered according to the d-coordinate of their upper corners. If
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d = 1 then every node points to the leaf corresponding to the box that has maximal
W () among all leaves in the subtree rooted by this node. If d > 1 the node points
to a (d− 1)-dimensional range tree with respect to the first d− 1 coordinates for the
boxes in the subtree rooted by this node. Finding a box having maximal W () among
boxes dominated by a box B can be done in O(logd n) if the d dimensional range tree
is balanced. The insertion and the deletion can be done in the same time. If at one of
the levels the range tree becomes unbalanced, then it needs to be balanced and this
can also be done in O(logd n). Thus, the total time complexity of the algorithm is
O(n logk−1 n). For the space complexity, as a box can be contained in at most log n
tree levels, the total amount of space needed is O(n logk−2 n).

Observation 4.1. Several observations on the solution presented above can be made:

• Felsner et al. do not take gaps into account when computing chain weights. In
the following sections we shall mention several other solutions that accomodate
gaps.

• The algorithm time complexity is due to the use of a set of active boxes, i.e. a
subset of the initial set of boxes that may compete for being predecessors, thus
to the fact that only a sparse set of boxes are being inspected at each step. Even
though they do not mention it, we observe that the Felsner et al. algorithm is
based on the sparse dynamic programming technique, similar to the other
solutions presented below.

• In the computation of the time complexity, the average number of boxes in the
set of active boxes is not taken into account, and it is upper bounded to the
number of fragments. In practice, however, this number is significantly smaller
than the total number of boxes. Thus, refining the time complexity remains an
open problem.

• This solution can be easily adapted in order to solve the one-dimensional case,
i.e. on a single sequence, see Section 4.7 for more details.

4.7 The one-dimensional case of collinear chaining in
the box order formulation

In computational biology, the one dimensional case of the collinear chaining problem,
i.e. on one genomic sequence, arises in a simple version of the gene assembly problem,
namely selecting a non-overlapping subset of exon candidates while ignoring intron
candidates (Gusfield, 1997, chap. 18). However this approach does not work extremely
well and more sophisticated approaches are being used in practice. It is the two-
dimensional and its generalization to the multi-dimensional case that have the most
interesting applications as previously enumerated.
First, remember the representations with trapezoids and then with boxes, and the

definition for the multi-dimensional collinear chaining given in Sections 4.2 and 4.3.
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For the one-dimensional case of the collinear chaining problem, fragments are in fact
intervals on a line where each interval has an associated weight, usually the length
of the interval. The simplest version of this problem consists in selecting a subset
of non-overlapping intervals whose weights sum to the largest number possibly, see
Figure 4.7.
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Figure 4.7: One-dimensional fragments represented as intervals on a genomic sequence
and the maximal weighted subset of nonoverlapping intervals among them.

Similar to the multi-dimensional problem that corresponds to finding a maximal
weighted independent set in a trapezoid graph, the one-dimensional case may be for-
mulated as the problem of finding a maximal weighted independent set in an interval
graph. Unfortunately, in this formulation, we do not obtain the most efficient algo-
rithm for this problem.
Now if one uses the box representation in Section 4.3 and the definition of a chain

in a box order, see Definition 4.8, one may adapt the algorithm of Felsner et al. and
obtain an efficient solution.
It is straightforward that in the one-dimensional case, boxes consist of points in R2,

i.e. l(B) = u(B) for each box B ∈ B. Thus, in this case only one action is taken for a
box, i.e. when the sweep line passes the corresponding point. In the same way as in
the original algorithm, one may use a balanced binary tree containing at maximum n
nodes. The upper bound of the number of times find, insert and delete operations are
carried out is 3n, and as each operation needs O(log n) time, the total time complexity
is O(n log n).

4.8 Another formulation for the two-dimensional
collinear chaining case: LCS based

K.P. Vo stumbled upon a problem intimately related to the collinear chaining, in a
completely different field than computational biology. He was in fact working on a
library for the cathode-ray tube (CTR) screen update to be distributed with System
V Unix systems. The screen update algorithm must reduce the screen disturbances
by matching screen lines, while giving preference to closely aligned matches. In this
purpose, he defined a weighted extension of the LCS problem (Gusfield, 1997, chap.
12) involving a weight function that combines the lengths of the common substrings
and the distances between them. The quadratic algorithm for this generalization of
the LCS problem, known as the Heaviest Common Subsequence (HCS) problem, is
detailed in (Vo, 1986).
Several years later, (Jacobson and Vo, 1992) proposed a faster solution derived from

the algorithm for the LCS problem presented in (Apostolico and Guerra, 1987), which
runs in O(n log n). Below, we detail their formulation, explain the relation with the
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collinear chaining problem and give a short insight of their solution, based on the
notion of dominant matches (Hirschberg, 1977).

Notation Let S = s1s2 . . . st be a string over some alphabet A. The ith symbol of S
is denoted by si.

Definition 4.9. A string S ′ is called a subsequence of S if there is a sequence of
integers i1 < i2 < . . . < il, such that S ′ is equal to si1si2 . . . sil.

Definition 4.10. By Si...j we denote a substring, meaning a contiguous subsequence
of S, consisting of symbols from the symbol at position i to the symbol at position j.
Similarly, the prefix of length j of the string S is represented by S1...j.

Definition 4.11. A common subsequence between two strings S1 and S2, over
some alphabet A, is a subsequence that appears both in S1 and in S2. The longest
common subsequence problem corresponds to finding a common subsequence whose
length is maximal.

We say that (i, j) is a match between S1 and S2 if the two symbols S1i
and S2j

are
identical.

Definition 4.12. A match (i, j) is considered to be dominant if every LCS of S11...i

and S21...j
ends at positions i in S1, respectively j in S2. Moreover, we say that a

dominant match (i, j) is k-dominant, with k ≥ 1, if the length of the LCS between
prefixes S11...i

and S21...j
is k.

Now, an LCS of S1 and S2 can be built by using only dominant matches. In fact,
the length of an LCS corresponds to maximum value of k such that there exists a
k-dominant match.
Let (i, j) and (i′, j′) be two k-dominant matches. If i ≥ i′ and j ≥ j′, then it is

said that (i′, j′) is a better k-dominant match than (i, j), since any (k + 1)-dominant
match that can be obtained from (i, j), can also be obtained from (i′, j′). Thus, in
order to recover the LCS we need to consider only dominant matches that are minimal
under the vector ordering. Based on this observation, Apostolico & Guerra propose a
dynamic programming algorithm for the LCS problem in O(n log n), where n is the
maximum length among the lengths of S1 and S2.
Compared to the LCS problem, for the HCS problem we need to define weights on

pairs of symbols. Given two strings S1 and S2, the weight of a common subsequence
S = s1s2 . . . sl is defined as W (S) = ∑l

p=1 f(ip, jp, sp), where (ip, jp) is a match for S1
and S2 and f is a weight function. The weight function f allows one to define weights
that, besides depending on the symbols involved, may depend on the positions of the
symbols in the two strings.

Definition 4.13. The heaviest common subsequence problem (HCS) corre-
sponds to finding a common subsequence of S1 and S2, S, having the biggest weight
W (S).
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(Jacobson and Vo, 1992) showed how to generalize the (Apostolico and Guerra,
1987) algorithm initially introduced for the LCS problem, in order to deal with the
HCS problem. They obtained an algorithm running in O(n log n), which, in the case
of constant weights, reduces to the (Apostolico and Guerra, 1987) LCS algorithm.
Now, if we return to the collinear chaining problem for two genomic sequences

sequences, we can transform it into an HCS problem. If we interpret fragments as
symbols composing a novel alphabet, we may define two new sequences, S1 and S2,
each consisting of all fragments in the order in which they appear on the first and on
the second genomic sequence respectively. However, directly transforming fragments
into symbols can only be done in the particular case where fragments do not overlap.
In general, fragments must be pre-processed so that they meet the previous property.
In Figure 4.8, we take the example introduced in Section 4.2, trim the eventual overlaps
between fragments, and build the S1 and S2 sequences. The HCS algorithm is then
employed on S1 and S2, by using a weight function f that depends on the level of
similarity of a fragment and on the cost for adding this fragment to the rest of the
chain. However, in practice, trimming fragments is not an easy task, and we were not
able to find any work on this subject, except some vague references.

1s
2s

1s 5s

5s

4s

4s

3s

3s

s2 8s7s6s

6s
7s

8s

S1 = 1s 2s 3s 4s 5s 6s 7s 8s

S2 = 1s 3s 2s 6s 4s 5s 7s 8s

Figure 4.8: Eight fragments on two genomic sequences, each fragment corresponding
to a symbol in S1 and S2. Compared to the example in Figure 4.1, in this
case overlapping fragments have been trimmed . The HCS algorithm on
S1 and S2 with a proper weight function returns a maximal weighted chain
of fragments on the initial genomic sequences.

4.9 A glossary of solutions for the collinear chaining
In this section we enumerate several other efficient solutions for the collinear chaining
problem, sorted on their year of publication. Some of these solutions deal with the
multi-dimensional case, while others have been conceived for the two-dimensional case
only and do not generalize readily to the multi-dimensional case. Obviously, the
solutions for the multi-dimensional case remain valid in two-dimensions.

Two-dimensional solutions

• LCS based formulation The CRT screen update problem first led K.P. Vo
in 1986 and finally Jacobson & Vo in 1992 to look into a weighted extension
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for the LCS problem involving a weight function that combines the lengths of
the common substrings and the distances between them. They generalize the
LCS problem in a Heaviest Common Subsequence (HCS) problem and propose
an algorithm that is a derivation of (Apostolico and Guerra, 1987) algorithm
initially given for the LCS problem. Their algorithm is based on the idea of
dominant matches and runs inO(n log n) for the two-dimensional case, (Jacobson
and Vo, 1992). For more details see Section 4.8 above.

• Two-track interval graph formulation. (Joseph et al., 1992) propose a for-
mulation for the two-dimensional fragment chaining problem based on a special
case of the two-interval graphs, called the two-track interval graphs. Compared
to common interval graphs, for the two-track interval graphs, intervals are placed
on two parallel lines, i.e. two-track interval graphs are in fact synonym to two-
trapezoid graphs seen in Section 4.2. Based on this formulation, they define
the notion of increasing independent set and give an algorithmic solution to the
collinear chaining problem that consists in finding an increasing independent set
with maximal total weight. By employing the sweep-line technique they obtain
an algorithm running in O(n log n). Even though their formulation does not
generalize for the multi-dimensional case, the solution they propose is extremely
similar to the solution explained in Section 4.6. Moreover, same as (Felsner et al.,
1995), they do not take gaps into account in the process of weight computation.

• Sparse dynamic programming approach. Probably the most important
advancement for the collinear chaining problem in the two-dimensional case is
done in (Eppstein et al., 1992a; Eppstein et al., 1992b). In fact, previous so-
lutions were already based upon the principle of sparse dynamic programming
without explicitly naming it, but Eppstein et al. thoroughly studied this as-
pect. As already mentioned in Section 4.5, they explain that even though the
recurrence for this problem is defined on a number of points that is quadratic
in the input size, only a sparse set needs to be taken into account for the re-
sult. For this, they work with a geometrical representation of fragments, similar
to the boxes representation in Section 4.2 and define the notion of range. By
range, they mean that for each point, a geometric region can be found in the
dynamic programming matrix, containing all the points that could have their
value influenced by the current point.
By considering fragments in order of increasing starting points on the first se-
quence, they need only to perform a one-dimensional search to find the appropri-
ate range area for chaining each fragment. Specifically, this may be accomplished
in O(log n) by storing range areas sorted by their main diagonal number in a
balanced binary tree. Similar to the previous solution, they obtain a total run-
ning time of O(n log n), while managing to incorporate gaps when computing
chain weights. Moreover, they manage to speed up this algorithm by taking into
account the fact that the coordinates of points are integers between 0 and the
maximum sequence length. Thanks to this observation, they use special data
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structures, like the priority queue of Johnson (Johnson, 1982), and obtain an
algorithm running in O(n log log n).

Multi-dimensional solutions

• Space division using kd-trees. (Zhang et al., 1994) use higher dimensional
computational geometry, namely kd-trees, in order to chain multiple alignment
blocks. To avoid considering every predecessor of a given block, the idea is to
cover the initial hyper-rectangle with smaller hyper-rectangles having sizes that
do not exceed the so called "bucket size". As under some conditions certain
hyper-rectangles do not need to be examined, thanks to this partition of the
search space they manage to speed up the processing. Each node in the kd-tree
corresponds to a hyper-rectangle. The root of the tree corresponds to the initial
hyper-rectangle and the leaves constitute a pairwise disjoint decomposition of
the initial hyper-rectangle. However, Zhang et al. are not capable of giving
a theoretical analysis of their method’s time complexity. In practice, for the
two-dimensional case, experiments indicate that their method is far better than
O(n2), although not as good as O(n log n). In fact, the running time behaviour
seems highly sensitive to parameters, i.e. the bucket size, and data dependent.

• Maximal weighted independent set in a k-trapezoid graph formulation.
(Felsner et al., 1995) work with the maximal weighted independent set in a k-
trapezoidal graph and obtain an algorithm having O(nlogk−1n) time complexity.
See the details on this solution in Section 4.6.

• In parallel with Felsner et al., (Myers and Miller, 1995) propose in 1995 an
algorithm for multiple chaining, incorporating gap costs, running in O(nlogkn).
Their solution, though it does not use a graph formulation, is also based on the
sweep-line paradigm and range trees. However, it is one log factor slower than
Felsner et al. method or than previous methods for two-dimensional chaining.
In 2005, (Abouelhoda and Ohlebusch, 2005) improve on their algorithm by a
factor of log2 n/ log log n by efficiently using range trees and adapted priority
queues (like Johnson priority queue). This is probably the solution with the best
asymptotic worst time complexity for the multi-dimensional collinear chaining.

A general criticism on solutions described above would be that none of them thor-
oughly details the way that the weights of the fragments are being chosen. They
usually name the length of the fragment, its statistical significance and the number of
identical symbols in the fragment as possible choices for its weight. Moreover, besides
restrictions on gap costs already discussed in Section 4.5, when dealing with gaps only
two types of gap cost functions have been studied: gap costs simply defined as the
distance between the end and start point of two fragments and the sum-of-pairs gap
cost introduced in (Myers and Miller, 1995).
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4.10 Chaining with rearrangements
Large scale alignment of genomic sequences involves new challenges compared with
traditional sequence alignment. In this chapter we discuss one of these particular
challenges, which makes collinear chaining insufficient: homologies do not necessarily
appear in the same relative order in a set of homologous genomic sequences. In fact,
genomes are known to undergo several types of large-scale evolutionary events: gene
duplications, gene losses, horizontal transfers, reordering of genetic elements occurring
by mechanisms such as repeated inversions or translocations. Genome comparison
systems must account for all of these evolutionary phenomena to provide a complete
picture of genetic differences among organisms. In this chapter, we do not insist on
the different causes behind rearrangements, see Section 1.2 for a detailed discussion
on this subject, but we deal with their effect on the disposition of fragments on the
genomic sequences.
One needs to generalize the original definition of collinear chaining in order to deal

with rearrangements, by removing the constraint on fragments being increasing on
every sequence. If we keep the same notation with boxes representing fragments, see
Section 4.3, we obtain the following formulation of the problem of chaining allowing
for rearrangements.
First, we call two boxes being conflicting if their projections overlap on at least one

of the axis; see Figure 4.9 for several configurations of conflicting boxes in the two-
dimensional case. Such conflicting boxes correspond to fragments whose respective
substrings on each genomic sequence are overlapping.
In Figure 4.9, boxes 2 and 3 are neither conflicting nor in a dominance relation;

they are in fact the example of a common type of rearrangement event discussed in
Section 1.2, i.e. translocation. Other rearrangement events that can be taken into
account by chaining algorithms are inversion events, i.e. a part of one of the genomic
sequences that has its direction reversed compared to the other sequences. One usually
chooses a reference genomic sequence and considers inversions with respect to this
sequence.

Definition 4.14. We call a fragment corresponding to an inversion event an inverted
fragment, i.e. on the reverse strand, in opposition to a direct fragment, i.e. on
the direct strand.

In the box formulation employed until this point, inversions cannot be directly ob-
served. In fact, as it can be seen in Figure 4.10, boxes representing inverted fragments
are identical to those representing direct fragments. Therefore, in order to deal with
rearrangements, for a graphical purpose we need to upgrade the box formulation by
adding diagonals inside boxes, i.e. the main diagonal for a direct fragment and the
anti-diagonal for an inverted fragment.

Definition 4.15 (Chain with rearrangements). A set of boxes forms a chain with
rearrangements if no two boxes in the set are mutually conflicting.
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Figure 4.9: Several configurations of boxes in the plane for the two-dimensional case:
boxes 1 and 3 are conflicting on x-axis, i.e. their projections on x-axis are
overlapping, boxes 2 and 4 are conflicting on both axis, 1� 2 and 1� 4,
boxes 2 and 3 are neither conflicting, nor in a dominance relation, and
boxes 3 and 4 are conflicting as 3 is included in 4 on the y-axis.

Similar to a collinear chain in Definition 4.7, the weight of a chain with rearrange-
ments is usually defined as the sum of the weights of boxes in the chain.

Definition 4.16. The problem of chaining with rearrangements consists in finding a
maximal weighted chain of boxes with rearrangements, see Figure 4.11.

Similarly to the original collinear chaining, see Section 4.2, the chaining with rear-
rangements problem can also be formulated as a graph problem. If each node in the
graph corresponds to a box in the set and there is an edge between two nodes if the
corresponding boxes are conflicting, then the resulting graph is an intersection graph.
Thus the current problem can be phrased as the maximal independent set problem
in a corresponding intersection graph. Unfortunately, this problem is showed to be
NP -complete in (Bafna et al., 1996) by reduction to the 3SAT problem. Therefore
one needs to use approximation algorithms adapted to the particular case of genome
comparison.
Besides the heuristics that one can use in order to find a satisfying solution to

this problem, an intermediary formulation between the collinear chaining and the
chaining with rearrangements, has been recently proposed in (Brudno et al., 2003c).
They call this novel strategy glocal chaining. At this point, only a two-dimensional
formulation and solution for the glocal chaining problem exists. Compared to the
collinear chaining, the glocal chaining sorts fragments on one sequence only and puts no
constraint on the second sequence, except for the fact that each two adjacent fragments
must not overlap. Below we detail this type of approach and list the shortcomings
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Figure 4.10: (a) Two fragments on two genomic sequences: fragment 1, a direct frag-
ment and fragment 2, an inverted fragment. (b) Representation of the
two fragments with boxes under the initial formulation; we observe that
we cannot differentiate between an inverted and a direct fragment repre-
sented as boxes. (c) Fragments represented as boxes with the diagonal
upgrade: main diagonal for fragment 1, anti-diagonal for fragment 2.

due to such method. Finally, we describe one of the heuristics used when dealing with
rearrangements.
Once a chain of fragments with rearrangements has been computed, one may try to

retrace a rearrangement scenario that transforms the reference sequence as to obtain
the other sequences (Friedberg et al., 2008; Bourque and Tesler, 2008; Bérard et al.,
2009).

4.11 Glocal chaining, a special type of chaining with
rearrangements

Brudno et al. introduce for the first time in (Brudno et al., 2003c) the notion of glocal
chaining in the two-dimensional case. In this section, we focus only on the chaining
phase of the alignment tool Shuffle LAGAN (Brudno et al., 2003c); see the previous
chapter for a global description of the method. The glocal strategy is a generalization
of the collinear chaining that accommodates rearrangements. In (Brudno et al., 2003c),
the glocal alignment is intuitively described as a series of operations that transform
one sequence into the other. As each operation comes with a penalty and as the
total transformation distance between the two sequences is given by the sum of these
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Figure 4.11: (b) A maximal weighted chain of fragments with rearrangements corre-
sponding to the example in Figure 4.1 and (b) the respective maximal
weighted chain with rearrangements in the equivalent box order in Fig-
ure 4.3. Several modifications have been made to the original example in
Figure 4.1 in order to accommodate some inversion cases.

penalties, the aim of a glocal chaining algorithm is to find the series of operations
that generates the smallest total penalty. A similar idea can be found in (Varré et al.,
1999), which proposed a distance metric between two DNA sequences that models
various rearrangement events. Their algorithm could build a second sequence from
an initially empty string using insertions and copying blocks from the first sequence,
however it is incapable to handle simple edit operations.
Below we give the formulation for the glocal chaining problem using boxes as in

the previous section, and give a short overview of the corresponding algorithm in this
formulation. Their algorithm is a generalization of that given in (Eppstein et al.,
1992a; Eppstein et al., 1992b) and shortly described in Section 4.9.

Notation Remember the following notation from the previous sections reduced to the
two-dimensional case. If α ∈ {1, 2} indexes an axis, for any point x ∈ R2, Pα(x)
denotes its projection on axis α. Let B be a box of R2, i.e. a rectangle in the plane.
The interval corresponding to the projection of B on axis α is denoted Pα(B). The
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upper, resp. lower, corner of B is denoted by u(B), resp. l(B).
Additionally, to identify the orientation of a box B in the two-dimensional case, we

use the flag strand, i.e. B.strand = + if the box corresponds to a direct fragment,
or B.strand = − if the box corresponds to an inverted fragment. Observe that even
for an inverted box their lower and upper corners stay the same, i.e. the lower corner
corresponds to the left lower corner of the box and the upper corner to its right upper
corner. We may now define the 1-monotonic order between boxes in a glocal chain (in
parallel with the box dominance order, from Definition 4.4, in a collinear chain).

Definition 4.17 (Box 1-monotonic order). Let Bi, Bj be two boxes of Rk. We say that
Bi and Bj are in 1-monotonic order, which we denote Bi <1monot Bj, if P1(u(Bi)) <
P1(l(Bj)), i.e. Bi and Bj are strictly increasing on the first axis, and non-overlapping
on the second axis, i.e. (i) P2(u(Bi)) < P2(l(Bj)) or (ii) P2(u(Bj)) < P2(l(Bi)).
Moreover, there is no constraint on their orientation: both boxes may be inverted, one
inverted and one direct, or none of them inverted.

Definition 4.18 (Glocal chain definition). A set of boxes B = {B1, B2, . . . , Bn}
composes a glocal chain if the set of boxes is 1-monotonic, meaning that for every
pair of boxes Bi and Bi+1 from B, Bi and Bi+1 are in a 1-monotonic relation, i.e.
Bi <1monot Bi+1.

Therefore, a set of boxes is 1-monotonic if it is strictly increasing on the first axis
and has no overlaps between adjacent boxes on the second one, compared to a collinear
chain of boxes that needs to be strictly increasing on both axis. A glocal chain of boxes
corresponds to a glocal chain of fragments.

Observation 4.2. Several observations on the glocal chain definition above can be
made:

• Every collinear chain of boxes is also a glocal chain. The opposite affirmation is
not true. In fact, the notion of glocal chain generalizes the notion of collinear
chain.

• Two boxes corresponding to a translocation event are in a 1-monotonic relation
and thus they can be taken together in a glocal chain.

• An essential observation, not mentioned in the paper of Shuffle LAGAN, is that
the glocal chaining algorithm does not avoid overlaps between boxes in different
LCBs on the second axis. More important even is that it allows overlaps without
regulating their sizes and without taking them into account in the computation of
weights. From what we know, boxes may even confound each other on the second
axis and unfortunately, this raises a delicate question on the pertinence of the
glocal strategy.

Next, we present some notation given in (Brudno et al., 2003c) that we shall use in
the rest of the section. When chaining a box Bi with a box Bj several configurations
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may appear that can be denoted by three bits, one for the orientation of Bi, one for the
position of Bi compared to Bj on the second axis, and a third one for the orientation
of Bj. For example (+ + +) codes for Bi.strand = +, P2(u(Bi)) < P2(l(Bj)) and
Bj.strand = +, while (−−−) for Bi.strand = −, P2(u(Bj)) < P2(l(Bi)), Bj.strand =
−. There are such eight combinations corresponding to eight possible configurations
between the box Bi and the box Bj. The original algorithm in (Eppstein et al., 1992a)
deals with the special case where a direct fragment is always connected to another
direct fragment, preceding it, i.e. (+ + +).
In order to compute an optimal glocal chain, penalties need to be fixed for chaining

a box to an already formed subchain. Four different penalties are used: the regular
gap penalty (+ + + and − − − cases), inversion penalty (+ + − and − − + cases),
translocated inversion penalty (+ − − and − + + cases) and translocation penalty
(+−+ and −+−). The sum of these penalties computed for a chain gives the total
penalty of the glocal chain, corresponding to the total edit distance between the two
sequences. The difficulty is finding good parameters for the various penalties, as there
is no sound mathematical basis for this.
For each box B having a certain orientation, the idea is to look for the optimal

collinear subchain with which to join B, in each of the four possible combinations
described above. This is done in O(log n) time using balanced binary trees as in Epp-
stein et al.. The algorithm may be seen as running for each box four parallel versions
of Eppstein et al. algorithm, one for each configuration, and taking the minimum over
the four cases to compute a unique glocal chain. This gives a total running time of
O(n log n). Once the 1-monotonic chain has been computed, it is partitioned in locally
collinear blocks (LCBs), i.e. maximal subchains of boxes corresponding to homolo-
gous regions among the two sequences having a total order on the second axis; see
a thorough definition of LCBs in the following section. In Figure 4.12 we give the
graphical overview of the algorithm as presented in (Brudno et al., 2003c).
Once the 1-monotonic chain is found, it can be used to classify various types of

rearrangements on it. In fact, one may determine whether most of one of the sequences
is inverted, or may may identify local inversions, translocations and duplications on
the second sequence. In fact, as one of the major drawbacks of the Shuffle LAGAN
algorithm is its lack of symmetry in the sequence order, it misses duplications on
the first sequence. Moreover, the scoring scheme is quite simplistic and it is likely
to obtain better glocal chains with a more sophisticated scheme taking into account
more operations and even combinations of operations. As mentioned above, the fact
that boxes may overlap on the second axis is not at all discussed in the paper. Finally,
an extension of the glocal alignment to multiple genomic sequences has not yet been
suggested.

4.12 Heuristic for chaining with rearrangements
Chaining with rearrangements is a NP -complete problem, thus tools usually use
heuristics approaches. Such heuristic for multiple chaining with rearrangements was
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Figure 4.12: Overview of Shuffle LAGAN algorithm. (a) Fragments generated between
the two sequences represented as boxes. (b) The optimal 1-monotonic
chain (composed of dashed boxes) is found. (c) The maximal subchains
of boxes, i.e. LCBs (dashed boxes inside rectangles); while boxes inside
LCBs are not conflicting, boxes in different LCBs may be overlapping on
the second axis, e.g. boxes 2, 7.

used in Mauve software (Darling et al., 2004) and is described below. Beside Mauve
solution, other methods implementing variations on the problem of chaining with rear-
rangements are usually based on clustering approaches, see (Treangen and Messeguer,
2006; Pevzner and Tesler, 2003; Pevzner and Tesler, 2003; Calabrese et al., 2003). The
main idea is to cluster fragments within some gap distance and then, to remove spu-
rious clusters based on a basic length criterion or on more complex statistical criteria.
Starting from an initial set of fragments, Mauve chaining method identifies a min-

imum partition in regions of local homology called locally collinear blocks (LCBs),
i.e. collinear subchains of fragments. In fact, each LCB is a homologous region of
sequence shared by all of the genomic sequences under study, similar to the blocks
composing the 1-monotonic chain in Shuffle LAGAN. In the general case, however, an
LCB may be composed of sequence regions shared only by a subset of genomes. The
collinear blocks selection is an intermediary step of Mauve global alignment method;
the method as a whole was described in Section 2.5. In order to avoid spurious ho-
mologous regions, the locally collinear blocks are required to meet a user-specified
minimum weight criteria, where the weight of an LCB provides a quality measure for
the homologous region. The choice of the value for this minimum weight is empirical
and it becomes a tradeoff between specificity and sensitivity.
Next we thoroughly define an LCB and explain the anchor selection algorithm meant

to compute a minimum partitioning of the initial set of fragments in locally collinear
blocks, which corresponds to a chain with rearrangements according to Definition 4.15.

Definition 4.19 (Locally Collinear Block (LCB)). A collection of k-dimensional boxes
{B1, B2, . . . , B|lcb|} is said to form an LCB if it satisfies a total ordering property such
that ∀axisα ∈ {1, 2, . . . , k} (i) Pα(u(Bi)) < Pα(l(Bi+1)) if boxes in the LCB have a
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Function 3: Partition into LCBs(B)
Data: B a set of n boxes
Result: CB a set of collinear blocks that partitions B
begin1

CB ←− {cb1};2

foreach B ∈ B do3

B.LCB ←− 1;4

B ←− Sort on P1(l(Bi))(B);5

label←− 1;6

foreach B ∈ B in ascending order of their P1(l(B)) do7

B.label ←− label;8

label←− label + 1;9

foreach α ∈ {2, . . . , k} do10

B ←− Sort on Pα(l(Bi))(B, α);11

aux←− 0;12

Seen_LCBs←− ∅;13

foreach Bi ∈ B in ascending order of their Pα(l(B)) except the last do14

Seen_LCBs←− Seen_LCBs ∪Bi.LCB;15

if Breakpoint on α(Bi, Bi+1) and (Bi.LCB = Bi+1.LCB or16

Bi+1.LCB = aux or Bi+1.LCB ∈ Seen_LCBs) then
CB ←− CB ∪ cb|CB|+1;17

aux←− Bi+1.LCB;18

Bi+1.LCB ←− |CB|;19

else20

if Bi+1.LCB = aux & Not(Breakpoint on α(Bi, Bi+1)) then21

Bi+1.LCB ←− Bi.LCB;22

foreach B ∈ B do23

cbB.LCB ←− cbB.LCB ∪B;24

return CB;25

end26

direct orientation on axis α or (ii) Pα(u(Bi+1)) < Pα(l(Bi)) if boxes have a reverse
orientation on axis α, for ∀i ∈ {1, 2, . . . , |lcb| − 1}.

Let us denote the initial set of boxes by B and the weight of a box B ∈ B by
w(B). In (Darling et al., 2004), boxes are hyper-cubes, meaning that they have the
same projection length on every axis (squares in the two-dimensional case), thus they
consider w(B) as being the length of such a projection, i.e. Pα(u(B))−Pα(l(B)). The
weight of an LCB, noted as w(cb), is defined as the sum of the weights of the boxes
composing it. Moreover, they consider a minimum weight threshold for a collinear
block, i.e. MinimumWeight.
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Algorithm 4: Greedy breakpoint elimination algorithm
Data: B a set of n boxes
Result: CB a set of collinear blocks that partitions B
begin1

z ←−MinimumWeight− 1;2

while z < MinimumWeight do3

CB ←− Partition into LCBs(B);4

foreach cb ∈ CB do5

w(cb)←− ∑
B∈cb

w(B);
6

z ←− min
cb∈CB

w(cb);7

if z < MinimumWeight then8

foreach cb ∈ CB with w(cb) = z do9

B ←− B \ ⋃
B∈cb

B;
10

end11

Darling et al. mention that the minimum partitioning of an initial set of boxes
into LCBs can be found by using breakpoint analysis (Sankoff and Blanchette, 1998).
Mauve implements a greedy algorithm that removes repeatedly low weight LCBs from
B, based on this minimum weight criteria. See Algorithm 4 and Figure 4.13, extracted
from (Darling et al., 2004), for a general overview of their algorithm. Observe that the
algorithm needs non-overlapping fragments, thus overlapping fragments are trimmed
before launching the partitioning algorithm. However the trimming procedure is not
described in the paper.
In Function 3 we given an insight of their procedure for a minimum partitioning

into collinear blocks. First, Mauve orders boxes in B on P1(l(Bi)) and assigns mono-
tonically increasing labels between 1 and |B| to each box, corresponding to its index
in the ordering. Let us denote by B.label the label of B. After this initial ordering
all boxes are a part of a unique LCB indexed with 1. We refer to the LCB to which a
box belongs to with B.LCB, and for now every box B has B.LCB = 1.
Next, they repeatedly re-order B on Pα(l(Bi)) for α ∈ {2, . . . , k}. After each re-

ordering, they search the B set for breakpoints, see Section 2.1.3 for a biological meaning
of breakpoint regions. In this formulation a breakpoint exists on axis α between two
boxes Bi and Bi+1 if Bi.label + 1 6= Bi+1.label and both Bi and Bi+1 are in direct
orientation on axis α, or Bi.label− 1 6= Bi+1.label and both Bi and Bi+1 are inverted.
Moreover, they also call a breakpoint if Bi is in a different orientation than Bi+1 on
axis α. For each two consecutive boxes Bi and Bi+1 in this ordering on axis α, if
they are part of the same LCB, i.e. Bi.LCB = Bi+1.LCB, and there is a breakpoint
between them, then the LCB is divided in two and an index for a novel LCB is created.
In the end, boxes are re-ordered on B.label and the LCB partition is traced back

based on LCB indexes of boxes, i.e. all boxes having the same LCB index are contained
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Figure 4.13: A pictorial representation of greedy breakpoint elimination strategy for
three genomes. (A) The algorithm begins with the initial set of frag-
ments represented as connected blocks. Blocks below a genome sequence
line are inverted relative to the reference sequence. (B) The fragments are
partitioned into a minimum set of collinear blocks. Each sequence of iden-
tically coloured blocks represents a collinear set of homologous regions.
One connecting line is drawn per collinear block. Block 3 (yellow) has a
low weight relative to other collinear blocks. (C) As low-weight collinear
blocks are removed, adjacent collinear blocks coalesce into a single block,
potentially eliminating one or more breakpoints. Figure extracted from
(Darling et al., 2004).

in the same LCB. See Function 3 for the complete algorithm.
Concerning the time complexities of Algorithm 4 and in particular of Function 3,

Darling et al. make no statement. However, we suspect that for Function 3 the
time complexity is upper bounded by the repeated orderings of the set of boxes, i.e.
O(kn log n). Therefore, we should obtain a total time complexity of O(kn2 log n).
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5 Personal contribution. Novel
problem of chaining with
proportional overlaps

Allowing overlaps between fragments in a
chain has proven to be mandatory. Therefore we
propose a generalization of the collinear chain-
ing problem by allowing proportional overlaps be-
tween adjacent fragments in the chain. We formal-
ize the newly introduced problem, give an efficient
algorithm for it, prove its correctness and discuss
its complexities.
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5.1 Introduction to collinear chaining allowing overlaps

5.1 Introduction to collinear chaining allowing overlaps
When chaining genomic fragments, overlaps of variable sizes between fragments, from
extremely small to extremely large, are very frequent. Such overlaps are due to ran-
domness, to methodological reasons during the fragment computation step, mostly
responsible for short overlaps, and also to biological reasons like tandem repeats, which
generate longer overlaps. More details on these reasons behind overlaps were given in
Section 3.6.3. The presence of overlaps prevents building the largest possible chain
of fragments, as conflicting fragments cannot be taken together in the chain. In Sec-
tion 3.6.3 we discuss that in practice, we would like to allow some of these overlaps in
order to avoid fragmented chains and thus maximize the total length of the chained
fragments.
Here we focus on the solutions that chaining algorithms should implement in order

to deal with overlaps. Unfortunately, there is not much work mentioned on this
subject in the literature. Up to now, chaining methods dealt with overlaps in two
different manners: whether (i) they completely interdicted them like Mauve and most
of the methods in Section 4.9, or (ii) they allowed them inside the chain, without
any restriction and no additional processing, like (Eppstein et al., 1992a; Pevzner and
Tesler, 2003; Brudno et al., 2003c). Overlaps between adjacent fragments in the chain
are usually prevented by defining dominance orders that do not allow overlaps. Other
methods, like Mauve, completely trim overlaps between fragments before the chaining
step; however, this pre-processing is usually not documented even though we consider
it as being far from trivial. In the following sections we shall address the problem of
collinear chaining with overlaps.
As we have seen in the previous chapter, chaining algorithms usually seek to max-

imize the total length of the chained fragments, whether the chain allows for rear-
rangements or not. In the case of collinear chaining, given the set of n shared genomic
intervals, i.e. fragments, the MWC problem is solved in O(n log n) time by dynamic
programming when overlaps between adjacent fragments are forbidden (Myers and
Miller, 1995; Abouelhoda and Ohlebusch, 2005). The algorithms enumerated in Sec-
tion 4.6 and in Section 4.9 can be extended to handle fixed length overlap between
adjacent fragments but, as we shall see next, this is not sufficient to deal with the
large differences in fragment lengths.
Small overlaps are often caused by equality over a few base pairs of fragment ends

due to randomness, since the alphabet has only four letters. To handle such cases,
a trivial solution would be to set a constant, large enough, maximal allowed overlap
threshold. An O(n log n) time algorithm for the MWC with Fixed Length Overlap
problem, whose chain weight function accounted for overlaps, was designed and used
for mapping spliced RNAs on a genome (Shibuya and Kurochkin, 2003), but the fixed
bound on overlaps remains a limitation. Another method that, based on their sayings,
deals with overlaps can be found in (Delcher et al., 1999). They implement a variation
of the LCS algorithm, described in Section 4.8. However, they give no details on the
chaining algorithm, which seems to have a O(n log n) time complexity. Regarding
overlaps they give no further details; they most probably put no constraint on the size
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Figure 5.1: (a) A maximal weighted collinear set of fragments with overlaps, corre-
sponding to the example in Figure 4.1 and (b) the respective maximal
weighted chain in the equivalent box order in Figure 4.3. Observe that
compared to the initial example, when allowing for overlaps we can take
box 5 together with the other boxes in the maximal weighted chain, even
it is conflicting with box 4 on the second axis.

of accepted overlaps or, in the best scenario, handle with fixed length overlaps as in
(Shibuya and Kurochkin, 2003).
However, biological structures like tandem repeats (TR) that vary in number of copy

units generate overlaps that are large relatively to the fragments involved. To illustrate
this case, let u, v, w be words and assume the sequences of two genomesGa, Gb areGa =
uvvw and Gb = uvvvw, i.e. contain a variable TR of motif v. Then, uvv generates a
local alignment between Ga and Gb, as well as vvw, but both fragments overlap over v
in both Ga and Gb. Since v can be large, such cases cannot be circumvented with fixed
length overlaps: only proportional overlaps can handle these. To raise the fixed length
limitation, we formulate the MWC with Proportional Length Overlap problem (MWC-
PLO) and exhibit the first collinear chaining algorithms allowing for overlaps that are
proportional to the fragment lengths, and whose chain weight function accounts for
overlaps.
In the next sections, we detail our results published in (Uricaru et al., 2010). We
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5.2 A novel tolerance definition for the Maximal Weighted Chain problem in a box order

define the collinear chaining with proportional overlaps based on a novel dominance
order between boxes called tolerance dominance order. See Figure 5.1 for an example
of a collinear chain with overlaps. We set the dynamic programming framework and
detail the algorithm that solves it. Next, following (Felsner et al., 1995), we use
the box representation of a trapezoid graph and adapt the sweep line paradigm to
this problem, see Section 4.6, in order to obtain an efficient solution. We prove its
correctness and discuss the complexities. The formulation and solution described in
the following sections correspond to the two-dimensional case. Even though a multi-
dimensional extension seems feasible, we did not tackle this problem for the time being
and we leave it as future work.

5.2 A novel tolerance definition for the Maximal
Weighted Chain problem in a box order

Notation In this section we follow the same notation for a box order given in Chap-
ter 4. We shall however extend this notation as to take overlaps into account. Let
α ∈ {1, 2} index the axis, and for any point x ∈ R2 let Pα(x) denote its projection on
axis α. Let I be an interval of R and I be a set of disjoint intervals of R; we denote
by |I| the length of I and by |I| the sum of the lengths of intervals in I. By extension,
the interval corresponding to the projection of B on axis α is denoted Pα(B).
To formulate a MWC with Proportional Length Overlap problem (MWC-PLO) in

our framework, we need to redefine the dominance order, i.e. the original is given in
Definition 4.4. The novel definition needs to accept overlaps that are proportional to
the boxes’ projection lengths, and the weight function has to truly measure the size
of the chain on each genome. This requires that the chain weight counts only once a
subinterval covered by several overlapping fragments.
Let r ∈ [0, 1[ represent the maximal allowed overlap ratio between any two boxes.

Definition 5.1 (r tolerant dominance order). Let Bu and Bv be two boxes. Bv dom-
inates Bu on axis α in this tolerant dominance order, denoted by Bu�r,αBv, iff

Pα(u(Bu))− Pα(l(Bv)) ≤ rmin(|Pα(Bu)| , |Pα(Bv)|).

Now, we denote by Bu �r Bv the fact that Bv dominates Bu if and only if for each
α ∈ {1, 2} Bu �r,α Bv.

A set of mutually comparable boxes with the order above is called a chain of boxes
in the tolerance dominance order. All chains we refer to in the following of the chapter
are such chains.
Next we show that the dominance between boxes implies the dominance between

their upper, resp. lower, corners. Moreover, this tolerant dominance order is transitive.

Property 5.1. Let Bu, Bv two boxes such that Bu�rBv. Then l(Bu) < l(Bv) and
u(Bu) < u(Bv).
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Proof of Property 5.1 (dominance between upper, resp. lower corners). We prove by con-
tradiction and first assume that l(Bu) ≥ l(Bv). We obtain on axis α

Pα(u(Bu))− Pα(l(Bv)) = Pα(u(Bu))− Pα(l(Bu)) + (Pα(l(Bu))− Pα(l(Bv)))
= |Pα(Bu)|+ (Pα(l(Bu))− Pα(l(Bv)))
≥ min(|Pα(Bu)| , |Pα(Bv)|)
> rmin(|Pα(Bu)| , |Pα(Bv)|)

Hence, as this contradicts Definition 5.1, we obtain l(Bu) < l(Bv). Proving that
u(Bu) < u(Bv) can be done in a similar manner.

Property 5.2. The dominance order �r is transitive.

Proof of Property 5.2 (transitivity of �r). Let Bt, Bu, Bv be three boxes such that
Bt �r Bu and Bu �r Bv. We will show that Bt �r Bv. Let α ∈ {1, 2}. By hy-
pothesis and from Property 5.1, we obtain both l(Bt) < l(Bu) < l(Bv) and u(Bt) <
u(Bu) < u(Bv). From these we get both

Pα(u(Bt))− Pα(l(Bv)) < Pα(u(Bt))− Pα(l(Bu)) ≤ rmin(|Pα(Bt)| , |Pα(Bu)|), (5.1)

and

Pα(u(Bt))− Pα(l(Bv)) < Pα(u(Bu))− Pα(l(Bv)) ≤ rmin(|Pα(Bu)| , |Pα(Bv)|) . (5.2)

When combined, these equations imply

Pα(u(Bt))− Pα(l(Bv)) ≤ rmin(|Pα(Bt)| , |Pα(Bu)| , |Pα(Bv)|)
≤ rmin(|Pα(Bt)| , |Pα(Bv)|)),

and hence Bt�rBv.

From Property 5.1, one deduces the following corollary, which will help to compute
efficiently the weight of overlapping boxes in a chain.

Corollary 5.1. Let Bt, Bu, Bv be three boxes such that Bt �r Bu �r Bv. Then
(Bt ∩Bv) ⊂ (Bu ∩Bv).

We define the weight of a box as the sum of lengths of its projections on all axis,
and the weight of a chain of boxes in the tolerance dominance order as the sum of
the projection lengths of all boxes on each axis, while counting only once subintervals
covered by several boxes.
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5.3 Dynamic programming framework and solution for the collinear chaining with overlaps

Definition 5.2 (Weight of a box, of a chain). Let B be a box and α ∈ [1, 2]. Its
weight on axis α is wα(B) := |Pα(B)|, and its weight is w(B) := ∑2

α=1 wα(B). Let
m ∈ N and C := (B1�r . . .�rBm) be a chain of m boxes. The weight of C on axis
α, denoted Wα(C), is

Wα(C) :=
∣∣∣∣∣
m⋃
i=1

Pα(Bi)
∣∣∣∣∣ ,

while its weight is W (C) := ∑2
α=1 Wα(C).

Note also that the weight of a box only depends on the endpoints of its projection
on each axis, and hence, can be computed in constant time.
Clearly, it can be easily seen that

Wα(C) = wα(Bm) +
m−1∑
j=1

∣∣∣∣∣∣Pα(Bj) \
m⋃

l=j+1
Pα(Bl)

∣∣∣∣∣∣
= wα(Bm) +

m−1∑
j=1
|Pα(Bj) \ Pα(Bj+1)| by Corollary 5.1. (5.3)

The following easy property will also prove useful.

Property 5.3. Let Bt, Bu two boxes such that Bt�rBu. Then

• Bt ∩Bu is an, eventually empty, axis parallel rectangle of R2, and

• for α ∈ [1, 2], |Pα(Bt) \ Pα(Bu)| = |Pα(Bt) \ Pα(Bt ∩Bu)| = wα(Bt)−wα(Bt ∩Bu).

Now, we can define the MWC-PLO problem. Let B′ := {B2, . . . Bn−1} be the set
of input boxes. As in Section 4.3, for convenience, we add two dummy boxes, B1, Bn,
such that for all 1 < i < n: B1�rBi�rBn. Additionally, we set w(B1) = w(Bn) := 0.
Now, the input consists in B := {B1, . . . , Bn}.

Definition 5.3 (MWC with Proportional Length Overlap). Let r ∈ [0, 1[ and B :=
{B1, . . . , Bn} a set of boxes. The MWC with Proportional Length Overlap problem is
to find in B, according to the dominance order �r, the chain C that starts with B1
and ends in Bn and whose weight W (C) is maximal.

Similar to Section 4.3, for any 1 ≤ i ≤ n, let us denote by Ci the set of chains
ending in Bi, and by W (Bi) the weight of the maximal weighted chain in Ci (not to
be confounded with w(Bi)). From now on, all the considered boxes belong to B unless
otherwise specified.

5.3 Dynamic programming framework and solution for
the collinear chaining with overlaps

In the same way as for MWC in Section 4.4, here we show that MWC-PLO can be
solved by a dynamic programming algorithm. Equation 5.3 suggests a recurrence
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equation to compute W (Bi), with W (B1) = 0 and for all 1 < i ≤ n:

W (Bi) = max
Bj : Bj�rBi

W (Bj) +
2∑

α=1
|Pα(Bi) \ Pα(Bj)| . (5.4)

Obviously, this implies that for all 1 ≤ j < n the value of W (Bj) will be reused
for computing W (Bi) for every box Bi such that Bj�rBi. Thus, MWC-PLO consists
of overlapping subproblems, which suits to the framework of dynamic programming
(Cormen et al., 2001, chap. 15). However, it is correct to use Equation 5.4 only if our
problem satisfies the condition of optimal substructures (Cormen et al., 2001, chap.
15). In Theorem 5.1, we show this is true.
Theorem 5.1 (Optimality of substructures for MWC-PLO). Let m, i1, . . . , im be in-
tegers belonging to [1, n], and let D := (Bi1 , . . . , Bim) be an optimal weighted chain
among the chains in Cim. Thus, D′ := (Bi1 , . . . , Bim−1) is an optimal weighted chain
among those in Cim−1.
Proof of Theorem 5.1 (Optimality of substructures). By hypothesis, Equation 5.3 and
Property 5.3, one has
W (D) = W (Bim)

= w(Bim) +
im−1∑
j=i1

∑
α

|Pα(Bj) \ Pα(Bj+1)|

= w(Bim)− w(Bim ∩Bim−1) + w(Bim−1) +
im−2∑
j=i1

∑
α

|Pα(Bj) \ Pα(Bj+1)|

= w(Bim)− w(Bim ∩Bim−1) +W (D′) .
We proceed by contradiction and assume that E ′, rather than D′, is an optimal

weighted chain ending in Bim−1 , i.e. W (E ′) > W (D′). Consider the chain E :=
D′ ∪ {Bim}. By the same reasoning as above, one has

W (E) = w(Bim)− w(Bim ∩Bim−1) +W (E ′),
and hence, W (E) > W (Bim), contradicting the hypothesis that D is an optimal
weighted chain ending in Bim . MWC-PLO satisfies the condition of substructures’
optimality.

The MWC with Proportional Length Overlap can thus be solved by a dynamic pro-
gramming algorithm. The basic algorithm for this problems is similar to Algorithm 1
in Section 4.4 and can be described as in Algorithm 5.
Algorithm 5 uses two n-element arrays: W [.] and Pred[.] to store for all 1 ≤ i ≤ n

resp. the values of W (Bi) and the predecessor of Bi in an optimal weighted chain
ending in Bi. If searching for the best predecessor of Bi consists in examining all
boxes Bj with Bj �r Bi, then this algorithm takes O(n2) time and O(n) space. In
Section 5.4 we give another algorithm for MWC-PLO that is more efficient in practice.
Theorem 5.2. A dynamic programming algorithm solves the MWC with Proportional
Length Overlap problem in O(n2) time and O(n) space.
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Algorithm 5: Dynamic Programming MWC-PLO in a Box Order
Data: B a set of n boxes
Result: W a vector of weights, with W [Bn] the weight of the best chain in B,

Pred a vector containing the previous boxes in the chain
begin1

sort(B);2

W [B1]←− 0;3

Pred[B1]←− null;4

foreach Bi ∈ B in order do5

Pred[Bi]←− arg max
Bj : Bj�rBi

(W [Bj] +
2∑

α=1
|Pα(Bi) \ Pα(Bj)|);

6

W [Bi]←− W [Pred[Bi]] +
2∑

α=1
|Pα(Bi) \ Pα(Pred[Bi])|;7

traceback(Pred[Bn]);8

end9

5.4 An efficient solution for the collinear fragment
chaining with overlaps in a box order

Following Felsner et al., we give a sweep line algorithm in which a vertical line sweeps
the boxes in the plane by increasing x-coordinates of their corners, stopping at the
lower left and upper right corners of each box. To avoid visiting, as in Algorithm 5,
all possible predecessors when computing the best chain ending in Bx, we maintain
a set, A, of active boxes that can compete for being the optimal predecessor in that
chain. The idea is the same as in Section 4.6 but as predecessors can overlap Bx,
this computation involves several steps, meaning that W [Bx] and Pred[Bx] can be
updated several times before getting their final value. This is the main difference with
Algorithm 5 and with Felsner et al..
As in Section 4.6, let P be an array containing the 2n points corresponding to l()

and u() corners of the n boxes in B. Points in P are ordered on their x-coordinates.
Compared to Felsner et al., we allow points to have identical x-coordinates, and among
these points having identical x-coordinates, lower corners are placed before upper
corners. For each point, we store to which box and to which corner it corresponds
to. In Algorithm 6, the main loop sweeps the points of P and processes in a different
manner lower (lines 8-11) and upper corners (lines 12-24). We say a box Bx is open
when the sweep line is located between l(Bx) and u(Bx) inclusive, closed when the
line has passed u(Bx), and future when it lies before l(Bx). These states are exclusive
of each other, and partition at each moment B in three disjoint sets (see Figure 5.2).
All open boxes at each point are kept in a set O (lines 9, 13). The weight of a chain
ending in, say Bi, and passing by a predecessor of Bi, Bx, can only be computed
when Bx is closed (when W [Bx] has reached its final value). If P1(u(Bx)) < P1(l(Bi))
then this can be done when stopping at l(Bi) (lines 10-11), while if Bx overlaps Bi on
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p

closed boxes

open boxes

B1

B2

B3

future boxes

Figure 5.2: Example of boxes in each disjoint set forming a partition of B, when sweep-
ing a point p, i.e. open, closed and future boxes.

x-axis, then this is done when stopping at u(Bx), and at the same time for all open
boxes having Bx as predecessor (lines 14-18). These two cases partition the possible
predecessors of Bi according to the location of their upper corners in two areas Ab(Bi)
and Ao(Bi) (cf. Figure 5.3).

Bi

r%

Bj

Bk

Ab(Bi) Ao(B)

Bl

i

Figure 5.3: Partition of the search space of possible predecessors of Bi, according to
the location of their upper corners, in two areas Ab(Bi) and Ao(Bi). Ab(Bi)
and Ao(Bi) partition the rectangle delimited by a solid line: Ab(Bi) is at
left from the dashed line, and Ao(Bi) at its right.

As above mentioned, we maintain in A the set of interesting predecessors for all
future boxes. Boxes in A are active boxes. Hence, once closing a box (stopping at
its upper corner), we test whether it should be turned active and inserted in A (lines
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19-21). The current box, Bi, is inserted only if we cannot find a better predecessor
in A. Afterwards, if Bi has been added, currently active boxes are investigated to
determine if they are less interesting than Bi, in which case they are deleted from A
(lines 22-24). Active boxes are consulted when opening a box Bi, for computing the
best chain ending in Bi with a predecessor in Ab(Bi) (lines 10-11).

5.4.1 Correctness of the Algorithm
For 1 ≤ i ≤ n, we show that W [Bi] and Pred[Bi] store the weight and the predecessor
of Bi in a maximum weighted chain ending in Bi. First, several simple invariants
emerge from Algorithm 6. I1: At any point, the set O contains all open boxes.
I2: Both W [Bi] and Pred[Bi] store their final values once u(Bi) has been processed,
since they are not altered after that point. I3: Hence, at any point all active boxes
(i.e. boxes in A), which are closed boxes, satisfy I2. For conciseness, as W [Bi] and
Pred[Bi] are computed jointly, from now on we deal only with W [Bi]. Since potential
predecessors of Bi are partitioned in Ab(Bi) (Figure 5.4) and Ao(Bi) (Figure 5.5), we
will prove two invariants: I4: partial optimality over Ab(Bi) at lower corners, and I5:
optimality at upper corners.

I4: partial optimality over Ab(Bi) at lower corners. We show that after processing
l(Bi), W [Bi] stores the weight of a maximum weighted chain ending in Bi with pre-
decessor in Ab(Bi). Given line 10, this is equivalent to showing that no better chain
ending in Bi passes through a potential predecessor that does not belong to A at that
point, which we prove by contradiction. While processing l(Bi), A contains a subset
of boxes in Ab(Bi), but obviously none from Ao(Bi). Let B be a closed box of B \ A
such that B�rBi and w(Bi)−w(B ∩Bi) +W [B] > W [Bi], in other words, B makes
a better predecessor for Bi than those in A. From B�rBi, we get

P2(u(B))− P2(l(Bi)) ≤ rmin(|P2(B)| , |P2(Bi)|) . (5.5)

As only two possibilities exist for B not belonging to A, we distinguish two exclusive
cases.

B was not turned active when sweeping u(B) (lines 19-21). B did not satisfy the
condition on line 20. Let B′ := arg max

Bj∈A:u(Bj)<u(B)
(W [Bj]). Our hypothesis means that

u(B′) < u(B) and

W [B] < W [B′] (5.6)
|P2(B)| ≤ |P2(B′)| . (5.7)

For B does not overlap Bi and u(B′) < u(B), we have B′ does not overlap Bi on the
x-axis. From u(B′) < u(B), we get P2(u(B′)) < P2(u(B)); this with equations 5.5
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Algorithm 6: MWC_Tolerance_Box_Order (P)
Data: r ∈ [0, 1[, B a set of n boxes, P an array with the 2n box corners
Result: W a vector of weights, with W [Bn] the weight of the best chain in B,

Pred a vector containing the previous boxes in the chain
begin1

sort_on_x_coordinate(P);2

A ←− B1;3

W [B1]←− 0;4

Pred[B1]←− null;5

O ←− ∅;6

foreach p ∈ P in ascending order on x-coordinate do7

if p is a lower corner ( i.e. ∃Bi : p = l(Bi)) then8

O ←− O ∪ {Bi};9

Pred[Bi]←− arg max
Bj�rBi,Bj∈A

(W [Bj] +
2∑

α=1
|Pα(Bi) \ Pα(Bj)|);

10

W [Bi]←− W [Pred[Bi]] +
2∑

α=1
|Pα(Bi) \ Pα(Pred[Bi])|;11

else /* p is an upper corner, i.e. ∃Bi : p = u(Bi) */12

O ←− O \ {Bi};13

foreach Bk ∈ O with Bi�rBk do14

wk ←− W [Bi] +
2∑

α=1
|Pα(Bk) \ Pα(Bi)|);15

if wk > W [Bk] then16

W [Bk]←− wk;17

Pred[Bk]←− Bi;18

B ←− arg max
u(Bj)<u(Bi),Bj∈A

(W [Bj]);
19

if W [Bi] ≥ W [B] or |P2(Bi)| > |P2(B)| then20

A ←− A∪ {Bi};21

foreach Bk ∈ A with P2(u(Bk)) > P2(u(Bi)) do22

if W [Bk] < W [Bi] and (|P2(Bk)| < |P2(Bi)| or23

P2(l(Bk)) > P2(u(Bi))) then
A ←− A \ {Bk};24

traceback(Pred[Bn]);25

end26

and 5.7 yields

P2(u(B′))− P2(l(Bi)) < P2(u(B))− P2(l(Bi))
≤ rmin(|P2(B)| , |P2(Bi)|)
≤ rmin(|P2(B′)| , |P2(Bi)|) . (5.8)
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Bi

r%

B2

B3Ab(Bi)

B1

Figure 5.4: When the sweep line passes l(Bi), Pred[Bi] is a partial optimum on the set
of possible predecessors of Bi lying in Ab(Bi). In the example, B3 is the
best current predecessor of Bi.

Equation 5.8 and B′ not overlapping Bi on the x-axis imply B′�rBi. Finally, from
equations 5.6, 5.7, and u(B′) < u(B) we obtain:

W [B] +
2∑

α=1
(wα(Bi)− wα(Bi ∩B)) < W [B′] +

2∑
α=1

(wα(Bi)− wα(Bi ∩B′)),

and thus B′ makes a better predecessor for Bi than B, a contradiction.

B was inactivated when sweeping u(Bk) for some box Bk ending before l(Bi)
(lines 22-24). The hypothesis means that B was deleted from A for it satisfied
P2(u(Bk)) < P2(u(B)), W [B] < W [Bk], and at least one of the conditions (a)
|P2(B)| < |P2(Bk)| or (b) P2(u(Bk)) < P2(l(B)).

a) As above (see Eq. 5.8), from Equation 5.6, from |P2(B)| < |P2(Bk)|, and P2(u(Bk)) <
P2(u(B)), we get

P2(u(Bk))− P2(l(Bi)) < rmin(|P2(Bk)| , |P2(Bi)|) . (5.9)

Moreover, as Bk does not overlap Bi on the x-axis, we obtain Bk�rBi. As
P2(u(Bk)) < P2(u(B)), Bk and B do not overlap Bi on x-axis, and W [B] <
W [Bk], we finally derive

W [B] +
2∑

α=1
|Pα(Bi) \ Pα(B)|) < W [Bk] +

2∑
α=1
|Pα(Bi) \ Pα(Bk)|) . (5.10)

b) By hypothesis, we know that P2(u(Bk)) < P2(l(B)) < P2(l(Bi)), and since
neither Bk nor B overlap Bi on the x-axis, we directly obtain Bk � Bi (Bi∩Bk =
∅). Thus, W [B] < W [Bk] also implies Equation 5.10.
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With either condition (a) or (b), Bk makes a better predecessor for Bi than B, a
contradiction.
Finally, after processing l(Bi), W [Bi] stores the weight of a maximum weighted

chain ending in Bi with predecessor in Ab(Bi), which concludes the proof of I4.

Bi

r%
Bk

Figure 5.5: When the sweep line passes u(Bk), Pred[Bi] is a partial optimum on the
set of possible predecessors of Bi from Ab(Bi) ∪ {B ∈ Ao(Bi)/P1(u(B)) <
P1(u(Bk))}.

I5: optimality at upper corners. We show that after processing u(Bi), W [Bi] stores
W (Bi) (a Maximum Weighted Chain with a predecessor in Ab(Bi) ∪ Ao(Bi)). As all
predecessors of Bi are closed, let us denote by B, the right most predecessor of Bi on
the x-axis: B := arg maxBj�rBi

(P1(u(Bj))).

1. If u(B) ∈ Ab(Bi) then all predecessors of Bi are contained in Ab(Bi). Hence,
this situation was handled when processing l(Bi), and Invariant I4 regarding the
partial optimality at lower corners, ensures that W [Bi] stores W (Bi).

2. If u(B) ∈ Ao(Bi), W [Bi] has been correctly updated (lines 14-18), while Bi

was open, when sweeping u(Bk) for each box Bk ∈ B such that Bk�rBi and
u(Bk) ∈ Ao(Bi).

Hence, all predecessors of Bi have been taken into account, and W [Bi] stores W (Bi).
This concludes the proof of I5, and closes the correctness proof.

5.4.2 Time and space analysis
The running time and space analysis of Algorithm 6 is similar to that of Algorithm 2
in Section 4.6 for the two-dimensional case. However, in the case of our algorithm we
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Figure 5.6: Running times in seconds of our algorithm (Algorithm 6) presented with
a box plot (see Section 3.6.2): in 75% of the cases the algorithm needs less
than 10 seconds. The box plot was truncated because of the 30 outlier
cases that made the plot completely unreadable. In these 30 cases the
algorithm needed between 3 and 54 minutes, as it had to deal with > 1
million fragments.

were not able to prove a O(n log n) time complexity, therefore we upper bound it to
O(n2).
Obviously, the sets O and A contain at most n boxes, and thus require together

with arrays Pred[.] and W [.], O(n) space. We use balanced binary search trees (BST)
to store A and O, with boxes at the leaves ordered on P2(u(.)), resp. P1(l(.)). Hence,
the amortised time needed for all insertions, deletions, and rebalancing is O(n log n)
(Knuth, 1998, chap. 6). However, looking for the active boxes that can be deleted at
each execution of the outer loop (lines 19-21) may force us to examine all boxes in A.
As this is the more complex operation in the outer loop, we obtain in the worst case an
O(n2) time and O(n) space complexity. Algorithm 6 maintains the subset of potential
predecessors in A instead of searching through the whole box set as in Algorithm DP,
which makes the practical difference.
The experimental running times observed when performing 694 whole genome pair-

wise comparisons (described in Chapter 6) show that this optimisation yields signifi-
cant improvements: Algorithm 6 needed ≈ 8 hours to compute the 694 chains, while
Algorithm DP took 3.5 days for the same computation. The improvement increases
with the number of input fragments, and becomes considerable above 50, 000 frag-
ments. In fact, below 50, 000 fragments, both Algorithm 6 and Algorithm DP take
seconds, i.e. less than 1 minute. However, for n ranging from 50, 000 to 100, 000
Algorithm 6 still takes less than a minute, while Algorithm DP needs between 1 and
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6 minutes to compute the chain.
Moreover, the gap between the two algorithms is widening beyond the threshold

of 100, 000 fragments. The following examples illustrate this statement: for a pair
of strains (CP000011 vs CP000548) from Burkholderia mallei species for which we
computed 144, 685 fragments, Algorithm DP takes ≈ 16 minutes, while Algorithm 6
only needs less than 1 minute; for two strains from Burkholderia pseudomallei species
(CP000573 vs CP000125) with n = 197, 310 fragments, Algorithm DP takes 34 minutes
and Algorithm 6 less than 3 minutes; for Neisseria meningitidis species (AM421808 vs
AE002098) having n = 307, 852, Algorithm DP needs 57 minutes and Algorithm 6 only
7 minutes. Finally, for a couple of strains (BX248333 vs AM408590) from Mycobac-
terium bovis with 1, 000, 000 fragments, Algorithm 6 needs ≈ 1 hour, while Algorithm
DP ended after 12 hours. More details on the running times of Algorithm 6 can be
found in Figure 5.6.

5.5 Conclusion
As we have seen in the last two chapters, several versions of the chaining problem
exist, i.e. generalizations of the original version of the chaining problem. This original
problem, known under the name of collinear chaining, consists of selecting a best
weighted subset of fragments that are collinear and do not overlap on any of the
compared sequences, i.e. a chain. All the other versions of the chaining problem
usually relax the collinearity constraint and, by abuse of language, we may still refer
to the subset of fragments they compute, as chain.
For the collinear chaining problem we have seen that a quadratic time dynamic

programming algorithm can be easily applied by using a recurrence with respect to
the partial order between fragments. In order to speed up this algorithm, multiple
formulations and solutions for this problem have been proposed in the literature, usu-
ally based on the technique of sparse dynamic programming. With this optimization,
they manage to obtain an O(n log n) time complexity for the two-dimensional case.
Because of large scale alignment of genomic sequences, collinear chaining has be-

come insufficient and taking rearrangements into account is now mandatory. Unfortu-
nately, when taking rearrangements into account, the problem becomes NP -complete.
Therefore one needs to use a special type of chaining with rearrangements, i.e. glocal
chaining, or heuristics adapted to this particular case. If the collinear chaining prob-
lem is practically closed nowadays, for chaining with rearrangements there is a lot of
place for improvements. Even though glocal chaining seems a promising lead, only one
study on this problem exists and, for the moment, it has no mathematical basis, no
multi-dimensional extension and several interrogation points regarding the biological
relevance remain.
Moreover, we have seen that in order to maximize the length of the chain, one would

like to allow some of the overlaps between adjacent fragments. There is little work on
this subject and the only methods taking overlaps into account, allow them without
restriction or trim fragments in order to remove them. The only method that we found
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that explicitly deals with overlaps, (Shibuya and Kurochkin, 2003), fixes a maximal
overlap threshold, which proves to be insufficient because of variable overlap lengths.
In conclusion, in order to fulfil new needs in computational biology, we extended the
classical framework of Maximum Weighted Chain by authorizing overlaps between
fragments in the computed chain, and formalized the MWC with Proportional Length
Overlap problem where overlaps are proportional to the fragment lengths. Difficulties
arise from the fact that the weights of overlaps are deduced from the chain weight.
In (Uricaru et al., 2010), we exhibited the first two algorithms for this problem,

which both solve it in quadratic time in function of the number of fragments. It is
obvious that due to our definition of a collinear chain, we obtain chains of fragments
that are longer than those not allowing overlaps. The question of whether our results
are truly significant from a biological point of view is to be discussed in Chapter 6. At
that point we examine the experiments on real data sets, and showed that i/ overlaps
significantly improve global genome results, ii/ our sweep line algorithm outperforms
the truly quadratic dynamic programming solution in practice. Thus, we may say that
allowing for overlaps improves the global genome alignment results significantly, at a
reasonable cost. However, the study of the average time complexity of the sweep line
algorithm remains open. Comparing with fixed overlaps, as well as investigating the
robustness of chains with respect to the ratio of allowed overlaps are future lines of
research.
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6 Personal contribution. Applying
chaining with proportional overlaps
to WGA

We propose a novel WGA method that com-
bines the advantages of local similarities (LS) with
the ones of the chaining method with proportional
overlaps, described in the previous chapter. This
new pairwise whole genome alignment tool named
YOC is based on a less complex strategy than clas-
sical WGA programs. It implements a two phase
strategy: fragment computation combined with
adapted chaining, thus renouncing to the classical
recursivity and “last chance alignment” phases.
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6.1 Further study on the impact of using local
similarities as fragments

In this chapter, we continue the experiments from Chapter 3. However, note that the
results presented in the current chapter were obtained on a different dataset than the
one described in Section 3.2, as already explained at that time.

Dataset 2 This dataset extends and slightly modifies the first one, i.e. dataset
1. It includes 87 different species (346 different genomes) representing 694 intra-
species pairs. Once again, we consider all pairs of bacterial strains of the same species
extracted from the Genome Reviews database, this time at mid-2009, like in the release
5.0 of the Mosaic database.

• 588 pairs (85%) were inserted in the MOSAIC database according to the criterion
of 50% of minimum coverage of the backbone regions compared to the average
length of genomes;

• 174 pairs (25%) were considered as being collinear according to the criteria
described in (Chiapello et al., 2008), i.e. no inversion or translocation were
detected with Mauve aligner, or none of the inverted or translocated segments
detected by Mauve exceeded a threshold of 20 kb in length.

By pairing local similarities with an adapted type of chaining in a new strategy for
WGA, we are able to avoid the problems encountered in Section 3.6.3 and study LS’
true advantages compared to exact matches. We begin by analyzing the behaviour of
our novel chaining method with proportional overlaps, i.e. OverlapChainer, compared
to the classical collinear chaining, i.e. Chainer. Second, having an exact method for
chaining with overlaps allows us to do accurate tests on the true influence of spaced-
seed based local similarities compared to exact matches and to local similarities based
on contiguous seeds. This new two-phase strategy for WGA gave a WGA tool that
we name YOC. In Section 6.3, we conduct several global performance comparisons to
other four WGA tools, based on a protocol described in Section 6.2. We also describe
a protocol for biological evaluation based on orthologous genes in Section 6.4. The
biological evaluation is ongoing but some initial results are presented in Section 6.5.

6.1.1 Impact of the chaining algorithm
We first compare the results between six different methods, three using the collinear
chaining algorithm Chainer: VC, BC, YC (see details in Section 3.6) and three re-
lying on the OverlapChainer method: VOC (VMatch-OverlapChainer), BOC (Blast-
OverlapChainer), YOC (YASS-OverlapChainer), see Figure 6.1.
We computed the differences of coverage and identity percentages between the six

methods on dataset 2 composed of 694 pairs of genomes described above.

137



6 Personal contribution. Applying chaining with proportional overlaps to WGA

P1

P2

Yass Blast Vmatch

OverlapChainer

YOC BOC VOC
Figure 6.1: Three novel prototypes composed of two phases, i.e. fragments computa-

tion + chaining with proportional overlaps, namely: VOC for VMatch +
OverlapChainer, BOC for Blast + OverlapChainer and YOC for YASS +
OverlapChainer.

According to its definition, we expect the chaining allowing for overlaps combined
with the three computation fragments methods to give coverages and identity percent-
ages superior or equal to those obtained with the classical chaining. Moreover, results
of chaining allowing overlaps should be dramatically improved in the case of local sim-
ilarities, compared to other types of computing fragments methods, as they are the
ones more likely to overlap. In order to confirm these assumptions, we compared the
following three pairs of tools: VC to VOC (VOC−VC), BC to BOC (BOC−BC) and
YC to YOC (YOC−YC), see Table 6.1 and Figure 6.2 for the distribution of coverage
and identity percentages differences.

As expected, for local similarities, results were largely improved by using the chain-
ing algorithm with proportional overlaps, i.e. OverlapChainer, instead of the classical
chaining (average at 16.8 and 17, for identity percentage, respectively cov% differ-
ences). For example, when comparing strains CP000046 and BA000018 of S. aureus
discussed in Section 3.6.3, YC obtains a cov% of 65%. YOC, however, reaches a cov-
erage percentage of 94%. Remember that in this case 14 holes in the classical chain
have not been filled due to fragments overlapping, see page 83 in Section 3.6.3.

In the case of BOC−BC and VOC−VC, as Blast and VMatch produce shorter
fragments thus diminishing the impact of overlaps, the improvement of OverlapChainer
is less important. However, we can still account for 3.4%, respectively 2.4% of id%
improvement in average (3.4%, respectively 1.6% of cov% improvement in average).
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Figure 6.2: Differences of id% (upper image) and coverage percentages (lower im-
age), presented as box plots, between six methods on a dataset of
694 pairs of aligned bacterial genomes. Compared methods are VC
(VMatch-Chainer), BC (Blast-Chainer), YC (YASS-Chainer) and VOC
(VMatch-OverlapChainer), BOC (Blast-OverlapChainer), YOC (YASS-
OverlapChainer).
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id% diff minimum maximum average
VOC−VC 0 21 2.4
BOC−BC 0 25 3.4
YOC−YC 0 63 16.8
cov% diff minimum maximum average
VOC−VC 0 21 1.6
BOC−BC 0 25 3.4
YOC−YC 0 64 17

Table 6.1: Differences of identity and coverage percentages between six methods on a
dataset of 694 pairs of bacterial genomes (minimum, maximum, average).
Compared methods are VOC vs VC, BOC vs BC and YOC vs YC.

id% diff minimum maximum average
BOC−VOC −11 98 4.8
YOC−VOC 0 99 11.2
YOC−BOC 0 51 6.4
cov% diff minimum maximum average

BOC−VOC −11 98 6.2
YOC−VOC 0 100 15
YOC−BOC 0 73 8.9

Table 6.2: Differences of identity and coverage percentages between six methods on a
dataset of 694 pairs of bacterial genomes (minimum, maximum, average).
Compared methods are BOC vs VOC, YOC vs VOC and YOC vs BOC.

6.1.2 Impact of the seed type
In order to show the impact of spaced seed based local similarities, independently of
the chaining method, we compared three tools (among the six) that use the chaining
with proportional overlaps: VOC to BOC (BOC−VOC), VOC to YOC (YOC−VOC)
and BOC to YOC (YOC−BOC), see Table 6.2 and Figure 6.2. Our method based on
local similarities computed from spaced seeds, YOC, obtains in average better results
than the other two, i.e. 11.2% and 6.4% additional identity percentage compared to
VOC, respectively BOC. Moreover, YOC can even improve on VOC and BOC with
more than 50% (both identity and coverage percentages) in several cases.
Therefore, local similarities (computed with spaced seeds, YASS, or with inexact

matches, Blast), together with an adapted chaining, stand out as a better alternative
to short exact or inexact matches. Moreover, local similarities computed with spaced
seeds prove to be an even better alternative than those computed with inexact matches
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(6.4% additional id% in average). Finally, the chaining with proportional overlaps is
a novel chaining method perfectly adapted to local similarities.

Further conclusions on the use of local similarities with an exact algorithm for
chaining with overlaps One may argue that proving local similarities to be better
than short exact or inexact matches, is a predictable result, as it is obvious that local
similarities cover the genomes in a greater proportion than short matches. However,
this initial study allowed us to identify the specific problems brought by this kind of
fragments and to precisely assess the induced amount of improvement.
Next, we wanted to see to which extent the last two phases contribute to the coverage

and the identity percentage of the final alignment. Thus we consider YOC, which
implements only two phases, as an alternative to standard WGA tools. This is based
on the idea that long local similarities computed in one step could replace exact or
approximate matches computed in several recursive steps. Results in the following
sections, based on the comparison of our best prototype YOC, now a standalone
method, to four-phase WGA tools shed light on this issue.

6.2 Protocol for YOC global performance evaluation,
compared to four WGA tools

We compare our method, YOC, to four genome alignment tools, on dataset 2. Even
though we have seen in Section 2.6.3 that comparing the results of WGA tools is a
standalone problem far from being solved, we propose a global evaluation protocol
that should give us an idea on the performances of each method.

Methods The YOC algorithm relies on two simple ideas: (1) enhancing the comput-
ing fragments step, by using local alignments instead of short matches as anchors (2)
usage of a new chaining algorithm that takes into account overlapping fragments. Ob-
serve that YOC method implements only the first two phases of the anchor strategy,
see Section 6.1.1, avoiding in this manner the recursion and the “last chance alignment
phase” and thus the errors due to these phases.
YOC was clearly designed for dealing with collinear genomes, as it is based on a

collinear chaining phase. However, YOC may be considered an intermediate algo-
rithm, as it allows to detect and align “locally” inversed regions (but not translocated
segments): fragments located on the reverse strand are reversed in order to consider
them in the collinear chain, see Section 3.6.2.
YOC is compared to four WGA tools: three multiple alignment tools described in

Section 2.5, i.e. MGA (Hohl et al., 2002), Mauve (Darling et al., 2004) and Pro-
gressiveMauve (Darling et al., 2010), and one pairwise alignment tool described in
Section 2.4, LAGAN (Brudno et al., 2003b). Even though three of these tools were
designed for multiple alignment, in our experiments they are only employed for pair-
wise comparisons. In fact, their strategy suits in an equal measure the pairwise and

141



6 Personal contribution. Applying chaining with proportional overlaps to WGA

the multiple alignment problems.

First, note that MGA, Mauve, ProgressiveMauve and LAGAN are all variations
on the four phase anchor based strategy. However, ProgressiveMauve executes an
additional phase meant to filter low quality alignment regions.

Moreover, two of these four tools are clearly addressed to collinear genome com-
parisons (MGA and LAGAN), while two others are able to align rearranged genomes,
i.e. including inversions or translocations (Mauve and ProgressiveMauve). Regarding
rearrangements, YOC may be placed in between these two categories.

Other tools, like M-GCAT (Treangen and Messeguer, 2006) and Shuffle LAGAN
(Brudno et al., 2003c) selected at first for our experiments, were eliminated from
our set of tested tools as M-GCAT is an extremely close relative of Mauve, which in
addition obtains poor results on divergent couples, and Shuffle LAGAN is not always
able to cope with complete genomic sequences due to the high number of fragments
in the chaining phase.

Parameters and comparison strategy MGA and LAGAN, tools designed for collinear
comparisons, were used to process the 174 collinear pairs. Mauve, ProgressiveMauve
and YOC processed the entire dataset of 694 couples of bacterial genomes.

MGA and Mauve raw alignments were extracted from the release 5.0 of Mosaic db;
they were obtained with the parameters described in Section 3.2.1. YASS parame-
ters were described in Section 3.6.2 and OverlapChainer was applied with 0.1 ratio.
We used LAGAN version 1.1 and ProgressiveMauve version 2.3.1. For LAGAN we
employed the default parameter settings as detailed in (Brudno et al., 2003b). For
ProgressiveMauve the parameter settings were: max-gapped-aligner-length = 10000
and weight = 5000 as for Mauve, and the rest were left on the default values as
they were calibrated for divergent bacterial sequences. In fact, compared to Mauve,
ProgressiveMauve needs much less adjustment of parameters.

Based on the results described in Section 3.5 that questioned the quality of some
regions in the alignment, we decided to filter low quality regions. For this, we chose
GRAPe software (Lunter et al., 2008), see Section 2.6.2. The same filtering procedure,
described in Section 3.4, was used on raw pairwise alignments of all five WGA tools.
Alignments after filtering are what we call from now on filtered backbones. Observe
that due to its final filtering phase, filtering ProgressiveMauve alignments is redundant
but we applied it anyway, as to use the same exact protocol for all tools.

We analyzed the global genome alignment results before and after the filtering (i.e.
backbones derived from raw alignments, by studying the differences of identity and
coverage percentages as in the previous sections.
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6.3 Results of YOC global performance evaluation

Filtered cov% & id% for the 174 collinear cases
tools minimum maximum average

cov% id% cov% id% cov% id%
YOC 0 0 4 1 0.81 0.18
MGA 0 0 13 7 2.55 1
LAGAN 0 0 21 3 5 1.08
Mauve 0 0 35 23 2.44 0.57
ProgressiveMauve 0 0 1 1 0 0

Filtered cov% & id% for the 520 non-collinear cases
YOC 0 0 3 1 0.74 0.22
Mauve 0 0 56 34 5.21 1.62
ProgressiveMauve 0 0 1 1 0.01 0.01

Table 6.3: The amount of coverage and identity percentages (minimum, maximum,
average) filtered by GRAPe for YOC, MGA, LAGAN, Mauve and Progres-
siveMauve.

6.3 Results of YOC global performance evaluation

6.3.1 Study on the amount of coverage and identity percentages
filtered

First we analyzed the amount of identity and coverage percentages filtered by GRAPe
for each of the five tools, on both the collinear and the non-collinear datasets. As
one may observe in Table 6.3 and in Figures 6.3 and 6.4, GRAPe filtering affects the
coverage significantly more than it affects the identity percentages, for both collinear
and non-collinear cases, meaning that GRAPe truly removes low quality alignment
regions.
YOC and ProgressiveMauve have in average less than 1% of the entire genomes

filtered from the alignments (generating little changes in coverages and identity per-
centages) thus indicating a high quality of their alignments. This can be explained by
the statistical significance of the local similarities generated by YASS and the filtering
phase of ProgressiveMauve (avoiding errors due to the last phases of the anchor-based
strategy).
MGA, LAGAN and Mauve have in average more than 2% of the genomes filtered

(and in some cases, more than 10%), indicating that even if MGA, LAGAN and espe-
cially Mauve can reach extremely high coverages, they are in part due to low quality
regions, mostly added in the fourth phase of the anchor-based strategy. Biological
results in Section 6.5 corroborate these observations.
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Figure 6.3: Collinear pairs Box plots summarizing the amount of coverage (up-
per image) and identity percentages (lower image) filtered by GRAPe for
YOC, MGA, ProgressiveMauve, Mauve and LAGAN, on a dataset of 174
collinear pairs of bacterial genomes. Observe that YOC and Progressive-
Mauve have very little amount of cov% and id% filtered, while MGA,
LAGAN and especially Mauve may reach extremely high filtering percent-
ages.
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●●●●●●●●●●●●

●●●●●●●●●●

●

●

●●
●

●

●

●

●●
●
●
●●●

●

●

●
●

●

●

●
●
●

●

●

●●
●

●
●

●

●

●

●

●●

●●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

YOC PMV MV

0
5

10
15

20
25

30
35

40
45

50
55

fil
te

re
d 

co
v%

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●

●

●

●●●●

●

●

●

●

●

●●●●●●●●●●●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●

●●

●

●●●

YOC PMV MV

0
5

10
15

20
25

30
35

fil
te

re
d 

id
%

Figure 6.4: Non-collinear pairs Box plots summarizing the amount of coverage (up-
per image) and identity percentages (lower image) filtered by GRAPe for
YOC, ProgressiveMauve and Mauve, on a dataset of 520 rearranged pairs
of bacterial genomes. Observe that YOC and ProgressiveMauve have very
little amount of cov% and id% filtered, while Mauve may reach extremely
high filtering percentages.
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Figure 6.5: Collinear pairs Differences of coverage (upper part of the image) and
identity percentages (lower part of the image), before and after GRAPe
filtering, between YOC and another four methods on a dataset of 174
collinear pairs of bacterial genomes. The methods that we compare to
YOC are: MGA, LAGAN, Mauve and ProgressiveMauve. Observe the
important difference between cov% and id% results, both before and after
the filtering.

146



6.3 Results of YOC global performance evaluation

id% diff before filtering minimum maximum average
YOC−MGA −1 24 2.09

YOC−LAGAN −2 21 0.26
YOC−Mauve −5 2 −1.3

YOC−ProgressiveMauve −2 3 0.11
id% diff after filtering

YOC−MGA −1 25 2.85
YOC−LAGAN −1 20 1.16
YOC−Mauve −5 18 −0.91

YOC−ProgressiveMauve −2 3 −0.06

Table 6.4: Collinear pairs Differences of identity percentages, before and after
GRAPe filtering, between YOC and another four methods on a dataset
of 174 collinear pairs of bacterial genomes (minimum, maximum, average).
The methods that we compare to YOC are: MGA, LAGAN, Mauve and
ProgressiveMauve.

6.3.2 YOC compared to MGA, LAGAN, Mauve and
ProgressiveMauve

In Table 6.4 and Table 6.5 we compared YOC to the other methods, on the collinear
dataset, respectively on the non-collinear one. As YOC is mostly a method for collinear
genomes (not dealing with translocations, nor with complex inversions), results distri-
bution changes a lot between collinear and non-collinear pairs.
On the collinear dataset, see Table 6.4 and Figure 6.5, YOC obtains very good

results. It has a slight advantage for the average identity percentage when compared
to MGA and LAGAN, both before and after the filtering, advantage that can reach
more than 20% for pairs of divergent genomes. On the same dataset, YOC obtains
results that are comparable to those of ProgressiveMauve, and slightly worse than
those of Mauve in average.
As one may notice in Figure 6.5, regarding the cov%, YOC results are very low

compared to those of LAGAN. This can be explained based on the particularity of
LAGAN, which forces a complete alignment of the regions, i.e. leaves no unaligned
regions. In fact, when examining the id% results, we observe a completely different
configuration: YOC has better results than LAGAN, especially after filtering. This
suggests that LAGAN wrongly aligns sequence regions in order to maximize a collinear
complete global alignment.
On the non-collinear dataset, see Table 6.5 and Figure 6.6, YOC is obviously

in difficulty when compared to Mauve and ProgressiveMauve, two tools especially
designed for non-collinear alignment. However, several observations can still be made.
As for the collinear cases, for non-collinear cases GRAPe filters very little from YOC
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6 Personal contribution. Applying chaining with proportional overlaps to WGA

id% diff before filtering minimum maximum average
YOC−Mauve −71 14 −13.75
YOC−ProgressiveMauve −57 49 −9.54
YOC−ProgressiveMauve on B. aphidicola 8 19 11.75
id% diff after filtering
YOC−Mauve −71 21 −12.35
YOC−ProgressiveMauve −57 49 −9.75
YOC−ProgressiveMauve on B. aphidicola 8 19 11.75

Table 6.5: Non-collinear pairs Differences of identity percentages, before and after
GRAPe filtering, between YOC and another two methods on a dataset of
520 non-collinear pairs of bacterial genomes (minimum, maximum, aver-
age). The methods that we compare to YOC are: Mauve and Progressive-
Mauve. A snapshot of the B. aphidicola case.

alignments, therefore alignments are mostly correct but they are probably not com-
plete, because of the rearrangements that could not be accommodated. One cannot
say the same thing for Mauve that has 5.21% of cov% filtered in average, as seen in
Table 6.3.
Moreover, for extremely divergent cases, YOC obtains better results than the other

two methods, e.g. B. aphidicola. Indeed, for the six pairs of B. aphidicola, YOC has
in average 11.75% more than the identity percentage of ProgressiveMauve (with a
maximum at 19%), both before and after the filtering, see Table 6.5.

6.3.3 Conclusion for the global evaluation of YOC method
Based on the evaluation described in Section 6.1 and on the global evaluation in the
current section, we can make several observations on our new WGA method, YOC:

• the anchor chains computed by anchor based methods can be improved by using
local alignments instead of short matches, provided that the chaining algorithm
authorizes overlaps between adjacent anchors. This improvement measured in
terms of genome coverage and of id% is even more pronounced if local align-
ments are detected with highly sensitive spaced seeds. As most anchor-based
programs use the same type of similarities as MGA, Mauve, LAGAN and Pro-
gressiveMauve, our conclusion is likely to be general and should help improving
multiple alignments as well.

• as already suspected, unreliable parts of MGA, Mauve, ProgressiveMauve and
LAGAN alignments are generated by the fourth, “last chance alignment” phase,
which tries to align pairs of regions in which no anchors were found by the
previous phases. In fact, if Mauve or LAGAN often achieve higher genome

148



6.3 Results of YOC global performance evaluation
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Figure 6.6: Non-collinear pairs Differences of coverage (upper part of the image)
and identity percentages (lower part of the image), before and after GRAPe
filtering, between YOC and another two methods on a dataset of 520 non-
collinear pairs of bacterial genomes. The methods that we compare to
YOC are: Mauve and ProgressiveMauve.

coverages than YOC, the alignments they output usually require a “cleansing”
before attempting a biological interpretation. ProgressiveMauve on the other
hand has a filtering phase that removes these low quality regions, thus its results
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6 Personal contribution. Applying chaining with proportional overlaps to WGA

are to be trusted, see Section 2.5.2.
YOC obtains good alignment solutions, similar to ProgressiveMauve, but this
is done by using a different strategy: less complex, i.e. with less phases and
less parameters to configure. In fact, it directly computes trustworthy results,
without applying an additional filtering phase. For both ProgressiveMauve and
YOC, such a filtering phase has little influence on their results.

• it is true that YOC has an handicap in front of Mauve and ProgressiveMauve be-
cause it does not deal with rearrangements. This is why, results on non-collinear
pairs are not so encouraging. However, for collinear pairs, YOC obtains similar
results to those obtained by the most accurate method among the four meth-
ods, ProgressiveMauve, and better results than the other three. Interestingly,
YOC performs drastic improvements where the other tools fail, including Pro-
gressiveMauve: on species with highly divergent strains like B. aphidicola or P.
marinus.

• in addition, YOC chain contains 150 anchors in average vs several thousands for
MGA, Mauve or ProgressiveMauve (LAGAN gives a complete global alignment
thus it cannot be analyzed in this manner) making it simpler to visualize and to
grasp.

6.4 Protocol for biological evaluation based on
orthologous genes

In this section, we explain the protocol established for estimating the reliability and
robustness of WGA of bacterial genomes from a biological view-point.
One ideally expects orthologs to be properly aligned in backbone segments (BS).

To assess the biological relevance of alignments, we verified whether orthologous genes
were completely included in the backbone, and if their position is consistent on the
two genomes. The pairs of orthologs and their genomic positions were taken from the
OMA database (Schneider et al., 2007). The set of genome pairs having the same
accession numbers in our dataset 2 and in OMA contains 161 pairs from 34 species.
The results are summarized in Section 6.5.

6.4.1 OMA database
OMA db is one of the largest orthology projects, continuously updated, which un-
like similar projects like COGs database (Tatusov et al., 2000) or KEGG (Ogata
et al., 1999), the database used in (Swidan and Shamir, 2009) for a purpose similar
to ours, does not rely on human intervention. In fact, once a genome is integrated
into OMA db, the process is fully automated. The OMA project is based on a mas-
sive cross-comparison of complete genomes coming from all kingdoms of life, meant
to identify the evolutionary relation between any pair of proteins. One of the most
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6.4 Protocol for biological evaluation based on orthologous genes

notable qualities of the project consists in its strictness: in undecided cases (lacking of
discriminating information), it favours missing orthology relation classification, over
erroneous orthology assignment. More details can be found on OMA Browser web
page and in (Schneider et al., 2007).

6.4.2 Position of orthologous genes on the filtered backbones
The assumption underlying our evaluation is that orthologous genes, which are by
definition shared by the strains in comparison, should be located in conserved regions
of their genomes. Thus, we expect orthologous genes to be aligned generally over their
full length in what we call the backbone segments of these genomes.
We took the filtered backbones obtained on the 161 pairs by three tools: YOC, MGA

and ProgressiveMauve, as they are the ones with the most interesting results, each of
them being adapted to a type of genome comparison. Mauve and LAGAN were left
out of our testing set as, based on the results of the previous section, we considered
that their alignments were not reliable enough. For each one of the filtered backbones
among the 3 × 161 ones, we use the following two measures, meant to evaluate the
quality of the segmentation of the filtered backbones on every pair of genomes.

First measure On each genome from an aligned pair of genomes, we compute the
number of complete orthologous genes as well as the number of nucleotides from or-
thologous genes that were aligned, which are:

• included in a segment of the filtered backbone;

• included in a region that is outside the filtered backbone (corresponding to vari-
able segments);

• overlapping two segments, one in the filtered backbone, and a second one outside
of it.

See Figure 6.7 for a graphical representation of these three situations.

Figure 6.7: Genes are represented by arrows and variable segments by grey blocks.
Segments between blocks correspond to segments of the filtered backbone.
The first arrow corresponds to an ortholog completely included in a seg-
ment of the filtered backbone, the second arrow is an ortholog placed in a
variable segment and the third one is overlapping two segments.

This first measure verifies whether the segmentation produced on one genome is
precise, i.e. if a gene has even one position in a different segment, the entire gene
is counted as not being completely included in the filtered backbone. Moreover, it
analyzes whether the segmentation is globally correct, i.e. by counting the number of
nucleotides composing the genes, included in backbone segments.
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6 Personal contribution. Applying chaining with proportional overlaps to WGA

Second measure For every pair of orthologs placed in a segment of the filtered
backbone on at least one of the two genomes, we test whether their positions on the
two genomes are consistent, meaning whether the orthologs are:

• included in the same segment of the filtered backbone on both genomes, i.e.
identical positions;

• included in different segments of the filtered backbone on the two genomes, i.e.
different positions;

• included in a segment of the filtered backbone on one of the genomes and over-
lapping a backbone segment and a variable segment on the second one, i.e.
overlapping positions.

See Figure 6.8 for a graphical representation of these three situations.

Figure 6.8: The two parallel lines represent the two genomic sequences with their align-
ment. Genes are represented by arrows and variable segments by grey
blocks. Segments between blocks correspond to segments of the filtered
backbone. The first image corresponds to a pair of orthologs with identical
positions, i.e. placed in the same backbone segment on the two genomes.
The second image corresponds to a pair of orthologs with different posi-
tions in the two genomes. The last image represents a pair of orthologs
with overlapping positions on one of the genomes.

This second measure verifies the consistency of the backbone on the two genomes.

In Section 6.5, we give a summary of the results obtained for these measures and
present several case studies.

6.4.3 Classification of genome pairs based on the coverage of the
filtered backbone

Moreover, we wanted to analyze the quality of the segmentation in relation to the
coverage of the filtered backbone. In order to do this, we classified the 161 pairs of
genomes based on their coverage, as follows:

152



6.5 Biological evaluation results

• pairs on which the results of the tools were almost identical (≤ 2 cov% difference
on both genomes);

• pairs on which ProgressiveMauve obtains the best results (> 2 cov% difference
on both genomes);

• pairs that cannot be associated to any category (e.g. YOC obtains better cover-
age than all the others on one genome and on the second genome it is Progres-
siveMauve that gets the best coverage result)

Based on this classification of pairs we observe, as expected, that: ProgressiveMauve
obtains the best results on non-collinear pairs corresponding to 96 cases among the
161, while on collinear pairs the results of the three tools are very similar, 62 pairs.
For 3 pairs we could not choose a category.
Even though these results are in a preliminary phase, in Section 6.5 we attempt an

analysis of the segmentation based on this classification.

6.5 Biological evaluation results
Regarding the analysis of the segmentation in relation to the classification of genome
pairs based on the coverage (see Section 6.4.3), we can make the following observation.
For the first measure described in Section 6.4.2, when producing similar coverages,

the three tools obtain similar results. This means that they completely include in the
backbone the same number of orthologs, both in number of nucleotides and genes.
When rearrangements involve a large part of the genome, ProgressiveMauve achieves
better backbone coverages than MGA and YOC, and usually covers the same addi-
tional proportion of orthologous genes.
For the second measure on the other hand, we observe a different configuration. For

73 pairs among the 161, YOC obtains better results than the other tools. This means
that YOC completely includes in the same backbone segments, on both genomes, more
orthologs than the other tools, even when it reaches lower coverages, i.e. for divergent
cases.
In fact, for divergent cases, YOC alignments can provide pronounced improvements

compared to Mauve in terms of correctly aligned orthologous genes. If we take the
pair of P. marinus strains (CP000552_GR vs CP000553_GR), ProgressiveMauve and
YOC cover 62, respectively 53% of the genomes (9% of additional coverage for Pro-
gressiveMauve), but YOC completely includes in backbone segments 46% of the 1366
orthologous genes, while ProgressiveMauve only 25%; moreover YOC completely in-
cludes in the same backbone segments, on both genomes, 68% of the 1366 orthologs,
compared to only 29% for ProgressiveMauve.
Even though these results need to be further examined, we may assume that YOC

backbone bounds are more accurate than those of MGA and ProgressiveMauve. This
observation is comforted by the case study presented below.
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6.5.1 Case study: Lactococcus lactis pair
In this section we discuss the results in terms of orthologous genes for the pair of
Lactococcus lactis strains, IL1403 vs SK11, an example of divergent case.
In this case, both ProgressiveMauve and YOC cover ' 76% of the genomes, but

YOC completely includes in backbone segments 88% of the 1513 orthologous genes,
while ProgressiveMauve only 85%. Indeed for ProgressiveMauve, 15% of orthologs are
split into backbone and variable segments. Moreover YOC completely includes in the
same backbone segments, on both genomes, 91% of the 1513 orthologs, compared to
only 84% for ProgressiveMauve.
This phenomenon is clearly illustrated in Figures 6.9a & 6.9b, which show respec-

tively the ProgressiveMauve & YOC alignments of the first, 34Kbp, collinear block
on both genomes, with their annotated genes. This block contains only four non-
orthologous genes (yabC to yabF) in strain IL1403, and one in strain SK11. One
observes that these non-orthologous genes are hatched, containing both alignable and
unalignable regions (in green) in ProgressiveMauve alignment, while YOC detects two
homologous, aligned regions separated by a single large insertion encompassing yabC
to yabF genes (Figure 6.9b). Note that for ProgressiveMauve, some small aligned
segments can be found inside the non-orthologous region; for the genome alignment
problem, these small segments seem false positive subalignments. Moreover, a variable
segment is found inside the homologous region.
To further illustrate the hatching of orthologs by ProgressiveMauve, we consider the

yqjD gene. In Figure 6.10a, one sees that it is broken by ProgressiveMauve into 3 align-
ments. On the contrary, YOC yields a single > 33Kbp alignment of 82% id%, which
completely encompasses that gene, see Figure 6.10b. Note that this phenomenon, ob-
served globally throughout the genome, is not due to the higher coverage of YOC, as
YOC and ProgressiveMauve have similar coverages.

6.6 Conclusion
Based on initial experiments conducted in Chapter 3, we observe that local similarities
have a specific problem: frequent overlaps of various sizes. We thus introduce a novel
definition of collinear chaining, by allowing overlaps proportional with the lengths
of the adjacent fragments, and propose an exact algorithm, called OverlapChainer,
detailed in Chapter 5.
By using this novel chaining algorithm OverlapChainer, in Section 6.1, we show that

local similarities, together with an adapted chaining, stand out as a better alternative
to short exact or inexact matches. Moreover, local similarities computed with spaced
seeds prove to be an even better alternative than those computed with inexact matches.
We thus obtained a two-phase WGA method, YOC, that we compare to several four

phase anchor based tools (MGA, LAGAN, Mauve and ProgressiveMauve), based on
global measures in Section 6.3, and biological measures in Section 6.5.
Unlike MGA, LAGAN, Mauve or ProgressiveMauve, YOC does not need fine tun-
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(a) ProgressiveMauve

(b) YOC

Figure 6.9: Backbone segmentation differences between ProgressiveMauve and YOC
on a pair of L. lactis strains (IL1403 vs SK11). (a) & (b): Progres-
siveMauve and YOC alignments of the first 34Kbp collinear block of the
genomes. In each subfigure, the visualisation is done on the Mosaic server,
strain IL1403 is at the top, SK11 at the bottom. Genes are displayed as
arrows, and variable segments as green boxes.
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(a) ProgressiveMauve: zoom on yqjD gene

(b) YOC: zoom on yqjD gene

Figure 6.10: A zoom on the yqjD gene region in (a) ProgressiveMauve alignment and
(b) YOC alignment. In each subfigure, the visualisation is done on the
Mosaic server, strain IL1403 is at the top, SK11 at the bottom. Genes
are displayed as arrows, and variable segments as green boxes.

ing of numerous parameters or to implement a questionable “last chance alignment”
phase, making thus possible the complete automation of high quality, reliable align-
ment production without further post-processing. This is an important consideration
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when taking into account the increasing number of genomes that will be sequenced in
the near future.
Moreover, the results in Section 6.5, illustrate the tendency of ProgressiveMauve to

“hatch” the alignment of orthologs (even in a collinear block), while YOC can align
entire syntenic regions. This should help, e.g. to annotate or study the evolution
of operons. Interestingly, YOC performs improvements where other tools give lower
quality results: on species with highly divergent strains like B. aphidicola, P. marinus
or L. lactis.
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Conclusion and perspectives
This thesis focused on the whole genome alignment problem from two different per-
spectives: (i) establishing a protocol meant to assess the quality of WGA from both
computational and biological points of view and (ii) proposing a novel method for
whole genome alignment, YOC, based on two original ideas, the use of local similar-
ities in the first phase of the anchor based strategy together with a novel approach
for collinear chaining allowing for overlaps proportional to the lengths of the adjacent
fragments.
In the first part of this manuscript (Chapter 3), we presented several results on the

WGA problem. First, we defined a protocol for evaluating WGA results, based on
computational measures. By using this protocol, we observed that existing tools fail
to align pairs of bacterial strains with high levels of divergence. Second, we proposed
to improve the anchor based strategy, by replacing methods computing short exact (or
approximate) matches, with seed and extend methods generating local similarities, in
the first phase of the strategy.
In Chapter 5, we defined a novel collinear chaining problem by allowing proportional

overlaps between fragments in the chain, we formalized this problem, and showed
that it can be solved by a dynamic programming algorithm. We thus exhibited the
first two dynamic programming algorithms for this problem: one trivial algorithm
and one more complex based on the sweep line paradigm. Both algorithms solve
the problem in quadratic time in function of the number of fragments. However,
we showed that our sweep line algorithm outperforms the truly quadratic dynamic
programming solution in practice. Later in this manuscript, in Chapter 6, we also
showed that overlaps improve significantly global genome results. In conclusion, our
newly introduced definition and algorithms for the problem of collinear chaining with
overlaps answer to a biological relevant problem and allow one to improve the results
of WGA tools based on the anchor strategy.
Finally, in Chapter 6, we showed that by combining local similarities with an

adapted chaining allowing for overlaps, one improves results on divergent strains. The
results were obtained on a large dataset of intra-species bacterial genomes containing
both collinear and rearranged pairs with different levels of divergence. We introduced
a novel pairwise WGA tool that we called YOC, which unlike other tools, is composed
of only two phases instead of four. Based on our evaluation protocol, we showed that
our newly introduced tool has several advantages. Unlike other tools: (i) YOC does
not need fine tuning of numerous parameters, (ii) it does not implement a “last chance
alignment phase” that is suspected to generate unreliable results, and (iii) it does not
need an additional post-processing step. Moreover, by using biological criteria based
on orthologous genes, we showed that YOC outputs accurate backbone segmentations
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and performs improvements on divergent cases, where other tools obtain lower quality
results. In conclusion, YOC makes possible the complete automation of high quality,
reliable alignment production without further post-processing.
This work opens multiple perspectives. The idea of using local similarities in WGA

tools, can be extended to the multiple case. It is a research direction that we pursued
in parallel with the work presented in this manuscript, namely an alternative approach
to multiple alignment. This alternative approach gave QOD, a tool based on a segmen-
tation strategy that may be used in several genome comparison tasks as: identifying
novel genes and novel homologous/orthologous genes between several strains, trans-
ferring genomic annotations on newly sequenced genomes, comparing unassembled,
unfinished genomes, and, maybe most important, identifying specific regions. This
method is described in a paper that is under revision in Nucleic Acids Research jour-
nal. Thorough analysis of WGA segmentation results and of overlapping regions need
to be further pursued. Finally, our pairwise WGA method needs to be extended by
allowing rearrangements, in order to apply it to other genomes than those of bacteria.
As for the part of the work related to the chaining problem, comparing propor-

tional overlaps with fixed overlaps, as well as investigating the robustness of chains
with respect to the ratio of allowed overlaps, are two points that should be thoroughly
studied. Some results on this were included in a paper that is under revision in the
Journal of Computational Biology. Moreover, despite the reasonable running times
of our program for chaining with overlaps, further work needs to be done in order
to compute the average time complexity of the sweep line algorithm. One should
also examine different types of graphs instead of the trapezoid graphs, e.g. tolerance
graphs, that might allow obtaining an improved algorithm for the chaining with over-
laps problem. Extending this problem to the multiple case and also to chaining with
rearrangements, are necessary research directions. Going from chaining fragments in
sequence alignment to chaining seeds in ordered trees and allowing overlaps between
such seeds, might also be an interesting idea to pursue (Allali et al., 2011).
From a more general perspective, WGA nowadays needs curated benchmarks, com-

plete user guides for the use of alignment tools, evaluation measures and biological
criteria, in order to proceed to systematic alignments. Among other applications de-
scribed in the manuscript, this should allow, for example, precise orthology assignment.
There is also a great need of an up to date review paper, to help the user manage in
this mass of tools and WGA studies.
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genomes. In each subfigure, the visualisation is done on the Mosaic
server, strain IL1403 is at the top, SK11 at the bottom. Genes are
displayed as arrows, and variable segments as green boxes. . . . . . . . 155

6.10 A zoom on the yqjD gene region in (a) ProgressiveMauve alignment
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Genes are displayed as arrows, and variable segments as green boxes. . 156
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