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Résumé

L’imagerie optique par colorant potentiométrique est une méthode d’enregistrement de
l’activité corticale prometteuse, mais dont le potentiel réel est limité par la présence
d’artefacts et d’interférences dans les acquisitions. À partir de modèles existant dans la
littérature, nous proposons un modèle génératif du signal basé sur un mélange additif
de composantes, chacune contrainte dans une union d’espaces linéaires déterminés par
son origine biophysique. Motivés par le problème de séparation de composantes qui
en découle, qui est un problème inverse linéaire sous-déterminé, nous développons :
(1) des régularisations convexes structurées spatialement, favorisant en particulier des
solutions parcimonieuses ; (2) un nouvel algorithme proximal de premier ordre pour
minimiser e�cacement la fonctionnelle qui en résulte ; (3) des méthodes statistiques
de sélection de paramètre basées sur l’estimateur non biaisé du risque de Stein. Nous
étudions ces outils dans un cadre général, et discutons leur utilité pour de nombreux
domaines des mathématiques appliqués, en particulier pour les problèmes inverses ou
de régression en grande dimension. Nous développons par la suite un logiciel de sépa-
ration de composantes en présence de bruit, dans un environnement intégré adapté à
l’imagerie optique par colorant potentiométrique. Finalement, nous évaluons ce logiciel
sur di�érentes données, synthétiques et réelles, montrant des résultats encourageants
quant à la possibilité d’observer des dynamiques corticales complexes.

Mots-clés : imagerie optique par colorant potentiométrique, problème inverse, sépara-
tion de composantes, parcimonie structurée, optimisation convexe,méthode proximale,
estimation du risque, sélection de paramètre.

Abstract

Voltage-sensitive dye optical imaging is a promising recording modality for the cortical
activity, but its practical potential is limited bymany artifacts and interferences in the ac-
quisitions. Inspired by existing models in the literature, we propose a generative model
of the signal, based on an additive mixtures of components, each one being constrained
within an union of linear spaces, determined by its biophysical origin. Motivated by
the resulting component separation problem, which is an underdetermined linear in-
verse problem, we develop: (1) convex, spatially structured regularizations, enforcing in
particular sparsity on the solutions; (2) a new �rst-order proximal algorithm for mini-
mizing e�ciently the resulting functional; (3) statistical methods for automatic param-
eters selection, based on Stein’s unbiased risk estimate. We study those methods in a
general framework, and discuss their potential applications in various �elds of applied
mathematics, in particular for large scale inverse problems or regressions. We develop
subsequently a so�ware for noisy component separation, in an integrated environment
adapted to voltage-sensitive dye optical imaging. Finally, we evaluate this so�ware on
di�erent data set, including synthetic and real data, showing encouraging perspectives
for the observation of complex cortical dynamics.

Keywords: voltage-sensitive dye optical imaging, inverse problem, component separa-
tion, structured sparsity, convex optimization, proximal method, risk estimation, pa-
rameter selection.



4



Table of Contents

Introduction 7

I VSDOI: Ways and Customs 21

1 Monitoring Cortical Activity with VSDOI . . . . . . . . . . . . . . . . . . 22
2 �e Challenge of VSDOI in vivo . . . . . . . . . . . . . . . . . . . . . . . . 28
3 VSDOI Denoising: Previous Approaches . . . . . . . . . . . . . . . . . . . 30
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

II Sparse Morphological Component Separation for VSDOI 43

1 Preliminary Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2 �e Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3 Spatially Structured Penalizations . . . . . . . . . . . . . . . . . . . . . . . 49
4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

III A Generalized Forward-Backward Splitting Algorithm 57

1 Monotone Inclusion and Minimization Problems . . . . . . . . . . . . . . 58
2 Generalized Forward-Backward Splitting . . . . . . . . . . . . . . . . . . . 63
3 Convergence Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4 Conclusion and Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . 76
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

IV Splitting Spatially Structured Penalizations for Signal Processing 79

1 Norms and Sets in a Structured Euclidean Space . . . . . . . . . . . . . . 80
2 Yet Another Discrete Total Variation Semi-Norm . . . . . . . . . . . . . . 88
3 Proximal Splitting for Signal Processing . . . . . . . . . . . . . . . . . . . 92
4 E�cient Implementation of Splitting Algorithms . . . . . . . . . . . . . . 108
5 Illustration and Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 113
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

V Risk Estimation for Parameter Selection 125

1 Stein’s Unbiased Risk Estimate for Denoising . . . . . . . . . . . . . . . . 126
2 Derivation for Some Proximity Operators . . . . . . . . . . . . . . . . . . 130
3 Beyond Proximity Operators . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5



6 Table of Contents

4 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5 Risk Estimate Beyond Denoising . . . . . . . . . . . . . . . . . . . . . . . 154
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

VI A Full Component Separation Method for VSDOI 159

1 Scaling Penalizations for Noisy Component Separation . . . . . . . . . . 160
2 Component Approximations for Parameters Selection . . . . . . . . . . . 162
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

VII Exploration of VSDOIWith SMCS 171

1 Fluorescence, Gain, Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
2 Synthetic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
3 Orientation Selectivity in the Cat’s Visual Cortex . . . . . . . . . . . . . . 184
4 Propagations in the Mouse’s Somatosensory Cortex . . . . . . . . . . . . 194
5 Discussion and Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Conclusion 203

Bibliography 205



Introduction

A Signal Processing Approach

to Voltage-Sensitive Dye Optical Imaging

Voltage-sensitive dye optical imaging (VSDOI) is a recording modality of the corti-
cal neuronal activity which is very promising for understanding the low-level sensory
processing, particularly in mammals. In principles, this modality allows to observe in-
vivo entire neuronal networks operating, with a temporal precision in the order of the
millisecond and a spatial precision in the order of tens of microns. To put it di�erently,
it represents for neuroscientists the possibility to eventually link, within the same theo-
retical framework, microscopic knowledge with macroscopic observations.

Unfortunately, the complexity of the experimental protocols, the presence of arti-
facts and interferences in the acquisitions, and the current lack of knowledge on the
nature of the observed signal are so many limitations to unleash the true potential of
this method. However, since its introduction back in the eighties, VSDOI has been un-
der constant improvements, as reported by Davila et al. (1973); Grinvald et al. (1999);
Shoham et al. (1999); Grinvald and Hildesheim (2004); Frostig (2009); Chemla and
Chavane (2010b); Peterka et al. (2011) andmany others.Most of those improvements are
technological, in the sense that they can be attributed to more accurate recording de-
vices, more controlled experimental conditions, and chemical synthesis of better dyes,
i.e.more adapted �uorescent molecules enabling optical measurement of neuronal ac-
tivity.

Naturally, as VSDOI became more reliable, it gained in popularity, and has already
been used extensively by neurobiologists for in-vivo functional studies of the cortex,
in various experimental conditions and subjects, from the anesthetized rodent to the
awake monkey. In order to cope with the exceptionally high level of noise in the record-
ings, many authors developed, independently, their ownmethods for extracting the sig-
nal of interest. As reviewed in this thesis, these are o�en ad-hocmethods, for their par-
ticular experimental conditions and the speci�c phenomenon under investigation. In
other words, the denoising process is o�enmerged together with the biological analysis
of the data which would shed light on a neuroscienti�c question raised a priori.

It is at the heart of this thesis to step back from the actual goal of VSDOI, that is
understanding how information is processed within the cortex, in order to get a better
understanding of the signal itself, and confront VSDOI data to themost recent advances
in mathematical theories of signal processing.
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8 Introduction

Outline

�is work is a collaboration between the image processing team of Gabriel Peyré
from the research center CEREMADE (Université Paris-Dauphine, France), and the
neuroscience team of Yves Frégnac from the laboratory UNIC (Gif-sur-Yvette, France).
�e investigation of VSDOI was primarily possible thanks to Cyril Monier at UNIC,
and later thanks to Isabelle Ferezou.We also collaborated with another experimentalist,
Esin Yavuz, while shewasworking on her Ph.D. thesis atUNIC. Let usmention here that
she also developed a method of signal processing for VSDOI, but from a di�erent and
complementary perspective from ours, since she was investigating speci�c functional
properties within the cat’s visual cortex (Yavuz, 2012).

�is collaboration leads us to work on disparate domains. Because of this interdisci-
plinarity, the chapters of this thesis are intended to be as independent as possible; though
they are all linked by themain objective: developing a denoisingmethod general enough
to apply to most in-vivo VSDOI recordings.

First, we gather several issues and methods described in the VSDOI literature, and
cast them in the same theoretical framework. As far as we know, this is new and consti-
tutes our �rst contribution. We report it in Chapter I, setting the context and the gen-
eral terms of our problematic. In brief, the VSDOI signal is a translation of changes in
membrane potential, averaged over hundredth of neurons, into changes in emitted �u-
orescence.�is signal is perturbed by many artifacts presenting characteristic temporal
signatures. In addition, quantum light �uctuations induce high frequency variations.
Altogether, denoising VSDOI consists in estimating the reference baseline �uorescence
and the gain relating potential changes to �uorescence changes, and to extract the vari-
ations due to neuronal activity out of the other components.

We formulate then a linear component separation problem, that we intend to solve
within the sparse regularization framework, popular in all kind of applications. Inspired
in particular by the work of Reynaud et al. (2011), where temporal morphology of the
artifact components are characterized in detail, we extend it to a nonlinear sparsemodel
speci�cally adapted to VSDOI signal. �is is our second contribution, described in
Chapter II.

Our model de�nes the �nal component separation as the solution of a large scale,
complex minimization problem, involving many parameters. �e mathematical chal-
lenges raised by this model retain for a large part the focus of the subsequent work.
Diverting from our original application, we delve into general mathematical tools for
tackling generic inverse problems, extending already existing tools. In Chapter III, we
develop and analyze a new �rst-order proximal optimization algorithm which seems the
most suitable for addressing our minimization problem. We show then in Chapter IV
how this can be useful in many applications, notably by formulating the terms of our
VSDOI model in more general settings, de�ning in particular a new isotrope discrete
total variation semi-norm, and by exposing in a restrained but uni�ed framework the
extent of proximal methods for signal processing.

�is is however not su�cient yet for our VSDOI denoising purpose, because our
model involves numerous parameters in�uencing drastically the resulting component
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separation. InChapterVwe investigate practical use Stein’s unbiased risk estimator in the
context of signal processing, improving over some theoretical formulations existing in
the literature and exploring empirically some heuristics overcoming further theoretical
and practical concerns.

Finally, we turn back in Chapter VI to our main motivation and describe in de-
tails how the above theoretical developments can be adapted in practice to our VSDOI
model.�e full denoisingmethod is implemented in an integrated environment suitable
for visual and numerical explorations of VSDOI data, written in Matlab, interfacing
with Mex the optimization algorithms written in C.�is allows us to test our approach
on various data sets, and the �rst results that we obtained are presented in Chapter VII.
�is constitutes the basis for discussing some practical choices in our model and sug-
gesting research directions for improving the �nal method.

PreviousWorks and Contributions

As mentioned earlier, the examination of the VSDOI literature in a pure signal pro-
cessing point of view is in itself a contribution; we refer the reader directly to Chapter I
for the biological and technological context of this thesis. In the following, we precise
the mathematical context, introducing the particular perspectives that we adopt along
the di�erent chapters introduced above.

Spatially Structured Sparse

Morphological Component Separation

Sparsity and Structured Sparsity

�e vast majority of signal processing models falls into the range of linear genera-
tive models, where the signal is encoded within coe�cients of linear representations,
supposed to re�ect adequately its physical origin (Mallat, 2008). �e task of retrieving
such coe�cients from given observations of the phenomenon at hand is coined linear
inverse problem.

When dealing with underdetermined problems, i.e. one has access to less obser-
vations values than the number of coe�cients in the models, one of the most popu-
lar framework in modern signal processing relies on sparsity. �e main idea is that, in
spite of the possible complexity, which translates into a large number of coe�cients in
the linear representation, each particular instance of signal within the model can be
well approximated by only a few nonzero coe�cients. �is is referred to as the sparsity
prior, enabling the same model to capture a wide variety of signals, while using low-
dimensional representation, ensuring good properties like compressibility, separation
capability or robustness to noise. See again Mallat (2008) for a nice overview of the
theoretical properties of sparse models and of the extent of their applications.

In order to �nd a convenient sparse representation of a signal, a classical approach
is to solve a minimization problem de�ned as the sum of two terms: a data-�delity term
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which measures the distance between reconstruction and observed data, and a penal-
ization term which account for the number of selected regressors used for the recon-
struction (see § 2.3). �e solution of such a problem is thus a compromise between
accuracy of reconstruction and sparsity. Common choices are the sum of square errors
(o�en motivated by a Gaussian noise) for the data-�delity, and ℓ0-pseudo-norm (which
simply counts the number of nonzero coe�cients) for the penalization. �e latter term
being nonconvex, it is o�en replaced by the ℓ1-norm (equal to the sumof themodulus of
the coe�cients) which is convex and allows for more e�cient minimizations and more
stable results (see Tibshirani (1994) for its use on regression problems, and Chen et al.
(1998) for denoising and optimization considerations).

Sparsity principles can be adapted to re�ect existing structures in the model. A
meaningful example is the use of group sparsity, where the sparsity pattern (i.e. the
distribution of the nonzero coe�cients) is constrained to take into account relation-
ship between coe�cients. �e �rst attempts in that direction can be found in Hall et al.
(1997) or Cai (1999), and has been extensively used in signal processing and statistical
regression applications (Chaux et al., 2005; Yu et al., 2008; Gribonval et al., 2008; Zhao
et al., 2009; Obozinski et al., 2010; Jenatton et al., 2011).

�is can be done for instance by replacing the aforementioned sum of modulus of
isolated coe�cients by a sum of norms de�ned over well-chosen groups of coe�cients.
More precisely in our case, adjacent pixels of a VSDOI acquisition tend to be in�uenced
by the same biophysical phenomenon; and a sparse model that pools together coe�-
cients of such pixels might bene�t from their relationship.

Another popular spatially structured penalization is the total variation (TV) initially
introduced by Rudin et al. (1992) for image denoising. At each pixel, it penalizes the
coe�cients of the spatial gradient (the partial derivative of a signal with respect to spatial
coordinates) by pooling them together under an Euclidean norm.�is promotes sparse
gradients in the resulting signals, i.e. piecewise constant signals, see Chambolle et al.
(2010) for a comprehensive review in the context of image processing.

Sparsity in Source Separation

Sparsity has been used for blind source separation at least back to Zibulevsky and
Pearlmutter (2001), and has been applied successfully in various �elds ever since, as
reviewed in Bobin et al. (2008). Sparsity is introduced in a source separation problem
by mean of sparsifying dictionaries, which are (possibly redundant) sets of regressors in
which the sources are supposed to have sparse representations. Usually, one di�erent
dictionary is introduced for each source. �en, the sparsity prior is relevant when the
sources to be separated exhibits morphological diversity, that is when each source has
its sparsest representation (with the least nonzero coe�cients) in its corresponding dic-
tionary rather than in the dictionaries dedicated to the other sources. In this context,
one method of particular importance is the morphological components analysis (MCA,
Starck et al. (2004)) and its extensions, that �nd sparse representations of the sources
using iterative algorithms inspired by matching pursuit (Mallat and Zhang, 1993) and
basis pursuit (Chen et al., 1998).

Within suchmethods, sparsifying dictionaries are o�en speci�c transformsdesigned
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for the purpose. �e most important and broader class of such transforms corresponds
towavelet regressors, which are known to provide good sparse approximations of piece-
wise smooth signals (Mallat, 2008). In particular, sparse wavelet models can retrieve
transcient phenomena without prior knowledge on their localization in time.

Sparsity in Neuroimaging

Recently, sparsemethods received a lot of attention from the neuroimaging commu-
nity.�is is particularly true for fMRImodality, where the need for single trial (i.e.with-
out averaging multiple acquisitions), paradigm-free (i.e. without knowledge of the sig-
nal of interest) regression and deconvolution methods is increasing. Caballero-Gaudes
et al. (2013) for instance demonstrates the advantage of using sparse regression as an al-
ternative to the general linear model (GLM) (Friston et al., 1995), more classical in fMRI
studies.

Among di�erent sparse models developed for fMRI studies, many make use of the
spatial and/or temporal structure on the data. Some representative examples deal with
reverse inference problems (also dubbed as “brain reading”), which aim at predicting the
speci�c task or stimulus experienced by the subject, from the its brain activity. InMichel
et al. (2011) and in Jenatton et al. (2012), spatially structured sparsity priors are used to
enhance classi�cation and regression models, based on 3d volumes of fMRI activation
maps. More precisely, the former imposes the activity of interest to be localized within
hierarchical blocks of voxels, while the latter uses TV regularization (see above). Note
however that those approaches does not attempt to retrieve brain activity per se (the 3D
activation maps are actually obtained by GLM) and that the sparsity priors are applied
to predictive models. An even more signi�cant example of structured sparse model in
the context of retrieval of neuronal activity can be found in Karahanoğlu et al. (2013),
where the authors use the full spatiotemporal structure of fMRI data for an e�cient,
paradigm-free deconvolution.

Contributions: Application to Voltage-Sensitive Dye Optical Imaging

We develop along Chapter II a method that aims at both capturing complex spa-
tiotemporal dynamics ofVSDOI signalswhileworking at the single trial level.Wemodel
the VSDOI signal as the sum of three main components: bleaching, periodic artifacts
and neuronal activity. �ey are assumed to be modulated by a space-dependent gain
and perturbed by a random, spatially heteroscedastic, white, additive Gaussian noise.
Our method can be seen as a nonlinear extension of the GLM of Reynaud et al. (2011)
described in § I.3.5, where it is assumed that the time course of each component can
be well approximated as a linear combination of a few regressors with the right shape,
or morphology. However for each component we enlarge the family of possible regres-
sors: sinusoidal regressors of many di�erent frequencies for the periodic artifacts, and
an overcomplete set of wavelets for the neuronal activity.�en we look for a reconstruc-
tion which is close to the observation and in the same time involves as few regressors as
possible. �is sparsity prior enables a selection of the active regressors that is adaptive
to the observation, thus allowing to separate a broader class of artifacts and neuronal
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dynamics. In particular, no assumption is made about the activation time or the overall
dynamic of the neuronal activity.

In order to improve further the component separation, on top of the morphology
and sparsity priors on the time-course of the components, we take into account their
spatial structure. To this purpose, sparsity is promoted by carefully designed spatially
structured penalizations. Periodic artifacts coe�cients are penalized by a mixed ℓ1-ℓ2-
norm de�ned over spatial blocks of neighbouring coe�cients, leading to spatially co-
herent frequency selections. In addition of a similar ℓ1-ℓ2-norm, neuronal activity coef-
�cients are also penalized by a TV semi-norm, favouring piecewise homogeneous maps
of activity.

In source separation, the “blind” terminology refers to the fact that in some prob-
lems, not only the sources but also their linear combination leading to the observation
is unknown, and must be learn from the data; whereas in our case, the components are
simply supposed to add up to form the signal. We call the resulting method spatially-
structured sparse morphological component separation, abbreviated as SMCS. It is specif-
ically designed to target VSDOI applications. Of course, it can be adapted to any noisy
component separation problem, where the components have distinct temporal mor-
phologies that can be sparsely represented in known dictionaries, and suitable spatial
structures.�e SMCS shares many similarities with MCA, and qualitative comparisons
of those approaches are discussed.

Note �nally that in the same framework, we also explore the possibility to enforce
other priors than sparsity, such as bounds on amplitudes of certain components. Alto-
gether, recovering the components of our model requires the solution of a convex min-
imization problem of the form

�nd x̂ in argmin
x

1
2 ∣∣y − Dx∣∣22 + g

(Λ)(x) ,

where y is the observed signal, x are the coe�cients of the di�erent components within
the linear representation D, and g is a sum of complex penalizations, depending on
some parameter Λ.

Proximal Splitting Methods for Convex Optimization

�e above minimization problem is convex, but high-dimensional and nondi�er-
entiable, with complex relationships between the coe�cients. A striking feature of the
functional is, however, that the data �delity term 1

2 ∣∣y − Dx∣∣22 is di�erentiable, while the
penalization term g(Λ) can be decomposed as a sum of penalizations with simpler struc-
tures. �us, the problem can be naturally recast in a more general form, as

min
x
{F(x) def= f (x) +

n

∑
i=1

gi(x)} , (1)

where f is smooth, and each function gi is said to be simple, in the sense that one can
compute e�ciently itsMoreau’s proximity operator (Moreau, 1965), de�ned as

proxg i(x)
def= argmin

ξ

1
2 ∣∣x − ξ∣∣

2 + gi(ξ) .
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�is operator can be seen as an implicit version of a gradient descent, de�ned for pos-
sibly nonsmooth convex functions.

Simple functions can be iterativelyminimized through repeated applications of their
proximity operator (proximal point algorithm, Rockafellar (1976)); however, sums of
simple functions are not necessarily simple themselves. Nonetheless, a wide class of al-
gorithms enables minimizing such sums, essentially by using proximity operators of
each separated simple functions. �ey are thus called proximal splitting algorithms, and
we review below their main properties and conditions of applicability.

Taxonomy of Proximal Splitting Algorithms

Certainly the most popular proximal algorithm is the forward-backward, which ap-
plies for solving (1) on any real Hilbert spaceH when f is di�erentiable with a Lipschitz
continuous gradient, and n

set= 1 with g
set= g1 is simple. �is scheme consists in perform-

ing alternatively a gradient descent (corresponding to an explicit step on the function
f ) followed by a proximal step (corresponding to an implicit step on the function g).
Such a scheme can be understood as a generalization of the projected gradient method.
�is algorithm, which �nds its roots in numerical analysis for partial di�erential equa-
tions, has been well-studied for solving monotone inclusion and convex optimization
problems (Bredies and Lorenz, 2008; Chen and Rockafellar, 1997; Combettes andWajs,
2005; Gabay, 1983; Mercier, 1979; Passty, 1979; Tseng, 1991, 2000). In addition Beck and
Teboulle (2009) and Nesterov (2013) proposed accelerated multi-step versions for con-
vex optimization, enjoying a faster convergence rate of o(1/k2) on the objective F in the
general case, where k is the iteration counter.

Other splitting methods do not require smoothness on any part of the composite
functional F. �e Douglas-Rachford scheme was originally developed to �nd the zeros
of the sum of two linear operators (Douglas and Rachford, 1956), and then two non-
linear operators in Lieutaud (1969) or two maximal monotone operators in Lions and
Mercier (1979), see also Combettes (2004); Eckstein and Bertsekas (1992). �is scheme
applies tominimizing g1+g2, provided that g1 and g2 are simple.�e backward-backward
algorithm (Acker and Prestel, 1980; Bauschke et al., 2005; Combettes, 2004; Lions, 1978;
Passty, 1979) can be used to minimize F

def= g1 + g2 when the functions involved are
the indicator functions of nonempty closed convex sets, or involve Moreau envelopes.
Interestingly, if one of the functions g1 or g2 is a Moreau envelope and the other is sim-
ple, the backward-backward algorithm amounts to a forward-backward scheme.

Now, if L is a bounded injective linear operator, it is possible to minimize F
def=

g1 ○ L + g2 by applying these splitting schemes on the Fenchel-Rockafellar dual problem.
It was shown that applying the Douglas-Rachford scheme leads to the alternating direc-
tion method of multipliers (ADMM) (Gabay and Mercier, 1976; Fortin and Glowinski,
1983; Gabay, 1983; Glowinski and Tallec, 1989; Eckstein and Bertsekas, 1992). For non-
necessarily injective L and g2 strongly convex with a Lipschitz continuous gradient, the
forward-backward algorithmcanbe applied to the Fenchel-Rockafellar dual (Combettes
et al., 2010; Fadili and Peyré, 2010; Beck and Teboulle, 2014). Dealing with an arbitrary
bounded linear operator L can be achieved using primal-dualmethodsmotivated by the
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classical Kuhn-Tucker theory. Starting from methods to solve saddle-point problems
such as the Arrow-Hurwicz method (Arrow et al., 1958) and its modi�cation (Popov,
1980), or the extragradient method (Korpelevich, 1976), this problem received a lot of
attentionmore recently (Chen and Teboulle, 1994; Tseng, 1997; Solodov, 2004; Briceño-
Arias and Combettes, 2011; Chambolle and Pock, 2011; Monteiro and Svaiter, 2013).

It is also possible to extend the Douglas-Rachford algorithm to an arbitrary num-
ber n > 2 of simple functions. Inspired by the method of partial inverses of Spingarn
(1983, section 5), most methods rely either explicitly or implicitly on introducing auxil-
iary variables and bringing back the original problem to the case n set= 2 in the product
spaceHn. Doing so yields iterative schemes inwhich one performs independent parallel
proximal steps on each of the simple functions and then computes the next iterate by es-
sentially averaging the results. Variants have been proposed by Combettes and Pesquet
(2008), and by Eckstein and Svaiter (2009) who describe a general projective framework
that does not reduce the problem to the case n set= 2. �ese extensions however do not
apply to the forward-backward scheme, which can only handle n set= 1.

Recently proposed methods extend existing splitting schemes to handle the sum of
any number n of composite functions of the form gi ○ Li , where each gi is simple and
each Li are bounded linear operators. Let us denote Li

∗ the adjoint operator of Li . If Li

satis�es LiLi
∗ = ν Id for any ν ∈ R∗ (it is a so-called tight frame), gi ○Li is simple as soon

as gi is simple and Li
∗ is easy to compute (see Proposition IV.3.7).�is case thus reduces

to the previously reviewed ones. If Li is not a tight frame but (Id+Li
∗Li) or (Id+LiLi

∗) is
easily invertible, it is again possible to reduce the problem to the previous cases by aug-
menting the dimensionality by as many auxiliary variables as the number of linear op-
erator Li , each belonging to the range of Li (this is detailed in § IV.3.1.2). Note however
that, if solved with the Douglas-Rachford algorithm on the product space, the auxiliary
variables are also duplicated, which would increase signi�cantly the dimensionality of
the problem. Some dedicated parallel implementations were speci�cally designed for
the case where (∑i Li

∗Li) or (∑i LiLi
∗) is easily invertible, see for instance Eckstein

(1994); Pesquet and Pustelnik (2012). If an Li satisfy none of the above properties, it is
still possible to call on primal-dual methods, either by writing F

def= ∑i gi ○ Li = g ○ l
with l(x) def= (Li(x))i and g((xi)i)

def= ∑i gi(xi) (see for instance Dupé et al. (2011));
or by minimizing on the product space F̃((xi)i)

def= ∑i gi(Li(xi)) + ιS((xi)i) (Briceño-
Arias and Combettes, 2011), where ιS is the indicator function of the closed convex set S
de�ned in § III.1.2.

Contribution: A Generalized Forward-Backward Splitting Algorithm

In spite of thewide range of already existing proximal splittingmethods, none seems
satisfying to address explicitly the case where n > 1 and f is smooth but not necessarily
simple. A workaround that has been proposed previously used nested algorithms to
compute the proximity operator of ∑i gi within subiterations, see for instance Chaux
et al. (2009); Dupé et al. (2009); Huang et al. (2011); this leads to theoretical as well as
practical di�culties to select the number of subiterations.

In Chapter III, we extend the celebrated forward-backward algorithm to our needs.
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Since convex minimization problems can be recast as monotone inclusion problems,
we use the more general, and somewhat more elegant, monotone operator framework.
A�er recalling the main terminology and properties, we introduce an algorithm for
�nding a zero of a sum of maximal monotone operators B + ∑n

i=1 Ai , where B is coco-
ercive. It involves the computation of B in an explicit (forward) step and the parallel
computation of the resolvents of each Ai in a subsequent implicit (backward) step. We
prove its convergence in in�nite dimension, and robustness to summable errors on the
computed operators in the explicit and implicit steps.

In particular, this allows e�cient minimization of the sum of convex functions f +
∑n

i=1 gi , where f has a Lipschitz continuous gradient and each gi is simple in the sense
that its proximity operator is easy to compute. �e resulting method makes use of the
regularity of f in the forward step, and the proximity operators of the simple functions
are applied in parallel in the backward step.

To the best of our knowledge, it is among the �rst algorithms to tackle the case
where n > 1. Recently, Monteiro and Svaiter (2013) proposed an algorithm for minimiz-
ing F def= f + g under linear constraints. We show in § III.2.3 how this can be adapted to
address the general problem (1), while achieving full proximal splitting and using the
gradient of f . In the process of publishing our work, we became aware that other au-
thors (Combettes and Pesquet, 2012; Condat, 2013; Vũ, 2013) have independently and
concurrently developed primal-dual algorithms to solve problems that encompass the
one we consider here.�ese approaches and algorithms are however di�erent from ours
inmany important ways.�is will be discussed in detail in § III.2.3.We also report some
numerical experiments in § IV.5.3, suggesting that our primal algorithm ismore adapted
for imaging problems of the form (1).

�is work was done in close collaboration with Jalal Fadili from the research center
GREYC (Caen, France). A signi�cant part has been published in Raguet et al. (2013); a
notable di�erence with the article is a slight improvement on the relaxation constants
of the iterates, denoted ρk in Algorithm III.1 and Algorithm III.2. On this point, we are
grateful to Yuchao Tang, Xi’an Jiaotong university, for pointing out the result of Ogura
and Yamada (2002) on the composition of two α-averaged operators, reproduced here
in Lemma III.1.1 (iii).

Splitting Structured Penalizations for Signal Processing

Proximal Algorithms for Inverse Problems

As we have seen earlier in the particular context of sparsity, numerical solutions of
inverse problems o�en require the minimization of large scale objective functionals,
taking into account both a �delity term to the observations and regularization terms
re�ecting the priors one can have on the signal. Clearly, such functionals are composite
by construction, hence �tting in the class of problem considered in the previous chap-
ter. Within the present thesis, the most meaningful example is our SMCS variational
problem introduced in § II.2.3.
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In many situations, this leads to the minimization of a convex functional that can
be split into the sum of convex smooth and nonsmooth terms. �e smooth part of the
objective is o�en the data �delity term, re�ecting some knowledge about the forward
model, i.e. the noise and the measurement or degradation operator. �is is for instance
the case if the operator is linear and the noise is additive and Gaussian, in which case
the data �delity is a quadratic functional. In contrast, themost successful regularizations
that have been advocated are nonsmooth, what typically allows to preserve sharp and
intricate structures in the recovery. In order to better model the data, composite priors
can be constructed by summing several suitable regularizations, as it is the case for our
SMCS model. Moreover, while the proximity operator of the ℓ1-norm penalization is
a simple so�-thresholding (see § IV.3.4.3), the use of complex or mixed regularization
priors justi�es the splitting of nonsmooth terms into several simpler functions. In this
thesis, concrete examples are studied (see § IV.3) and applied to our SMCS model.

Nowadays, most popular approaches for facing continuous optimization problems
rely on second-order methods, such as the ubiquitous interior-point method (Wright,
2004; Boyd and Vandenberghe, 2004). Nondi�erentiable terms are taken into account
bywell-designed constraints; let usmention in particular that all optimization problems
considered in this thesis can be cast as conic programming (see for instance Ben-Tal and
Nemirovski (2001, section 3.3)). It is thus important here to point out the reasons why
�rst-order methods can be preferred for many signal processing applications. Keep in
mind that those are large scale problems (usually more than 106 variables), for which a
reasonable solution is not required with high-precision (because of high level of noise
and uncertainty over the parameters). While second-order methods are known to give
very accurate solutions in a limited number of iterations, each of those iterations re-
quires the solution of linear systems growing prohibitively large with the dimension
of the problem; up to the point where most machines simply cannot store the corre-
sponding matrices. On the contrary, �rst-order methods can quickly give reasonable
solutions, manipulating data whose size is of the same order of magnitude as the inputs.
A last point of importance for practitioners is that second-order schemes are usually
complicated to implement properly and e�ciently, in comparison to the relative sim-
plicity of �rst-order proximal algorithms.

�e composite structure of convex optimization problems raised when solving in-
verse problems explains the popularity of proximal splitting schemes in signal process-
ing. Depending on the structure of the objective functional, one can resort to the appro-
priate splitting algorithm as reviewed earlier. For instance, the forward-backward algo-
rithm and its modi�cations are commonly used for sparse regularization of a smooth
data �delity term, see for instance Figueiredo and Nowak (2003); Daubechies et al.
(2004); Combettes and Wajs (2005); Fadili et al. (2009); Chaux et al. (2007); Beck and
Teboulle (2009); Briceño-Arias and Combettes (2009). �e Douglas-Rachford and its
parallelized extensions are also used in a variety of inverse problems involving only
nonsmooth functions, see for instance Combettes and Pesquet (2007); Combettes and
Pesquet (2008); Chaux et al. (2009); Dupé et al. (2009); Dupé et al. (2011); Dupé et al.
(2012); Pustelnik et al. (2011); Briceño-Arias et al. (2011). �e ADMM is also applied
to some linear inverse problems in Afonso et al. (2010); Figueiredo and Bioucas-Dias
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(2010). Althoughwemake in thiswork only limitedmention of the primal-dual schemes
(Chambolle and Pock, 2011; Dupé et al., 2011), they are among themost �exible to handle
more complicated priors. �e interested reader may refer to Starck et al. (2010, chap-
ter 7) and Combettes and Pesquet (2011) for extensive reviews.

Contribution: Structured Penalizations and E�cient Proximal Splitting

In view of the success of both, nondi�erentiable priors for signal processing appli-
cations, and their minimizations through proximal splitting algorithms, we review and
extend a selective list of such priors and show how they can be split into simple func-
tions.

More precisely, we propose in Chapter IV a natural formalisation of structured pe-
nalizations over the Euclidean spaceRP, which permits to express all penalizations in-
troduced in our SMCS model (and beyond) in a uni�ed and concise way. We empha-
size in particular structures depending on an intrinsic spatial organization of the signal,
e.g. two-dimensional space for images. At this occasion, we introduce a novel discretiza-
tion of the total variation semi-norm, and discuss its theoretical and computational ad-
vantages over other discretization schemes.

�en, we derive the proximal formulae for each of those penalizations.�oughmost
of these results are already known, we detail them in our speci�c formalization for com-
prehensiveness; in addition, since they are ubiquitous in signal processing applications,
we also address the general case of linear constraints and quadratic functionals. To our
knowledge some results are new, such as the extensions of the proximal calculus with
the tight-frame property in § IV.3.3, and of some proximal composition properties in
§ IV.3.4.4.

�e above derivations shed some light on the practical computational needs of prox-
imal splitting algorithms applied to the class of problems that we consider. We iden-
tify common situations where subtle implementation considerations can signi�cantly
lighten computational needs; in our opinion such matters is too o�en neglected in the
literature, we thus expose those considerations in a setting as general as possible.

Finally, we design synthetic experiments inspired by classical inverse problems in
image processing, illustrating the use of most penalizations that we de�ned, and en-
abling comparison of various proximal splitting approaches, including our generalized
forward-backward.

Risk Estimation for Parameter Selection

So far, we have seen that increasingly complex signals can be retrieved in ill-posed
and noisy settings with the help of equally complex penalizations enforcing various
priors. �e underlying rationale is that one can replace the knowledge of the signal by
the knowledge of an adapted model for it. �e success of this approach is thus closely
related to the quality of the model, and in particular to the accuracy of the parame-
ters de�ning it. In the SMCS model described in § II, we intend to overcome the di�-
cult noisy component separation task with a variety of di�erent penalizations, and the
problem of parameter selection becomes overwhelming.
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Model Selection for Regression and Signal Reconstruction

�e idea behind model selection is to view the problem as a statistical estimation,
where predictions are inferred through a model �tted over a set of observations. One
can then design a convenient prediction error function which evaluates the quality of
an estimation given the actual observation. Typically, think at mean square errors or
correlation coe�cients in signal processing, or at success rate or explained variance in
the context of regression and classi�cation.

�en, following in particular Efron (2004), two main approaches for assessing the
quality of a model are cross-validation and covariance-penalties. In the cross-validation
approach, the model is solved for a reduced set of observations, and one computes
the prediction errors between the output of the model and the observations that has
not been used. In theory, this should be computed for many di�erent particulariza-
tions of the observations to achieve statistical signi�cance, but the generalized cross-
validation introduced by Golub et al. (1979) does not require so many computations of
the model.�e advantage of the cross-validation approach is that it usually does not as-
sume any generative model on the data, and is in that sense nonparametric. In contrast,
the covariance-penalties approach involves in someway an estimation of the covariance
between the estimations and the data, which requires assumptions about their statistical
distribution. In the context of signal processing, this o�en reduces to the knowledge of
the noise statistics, and can be estimated in many cases (see in particular § V.1.3).

For that reason, covariance-penalties approaches are preferred for the targeted ap-
plications (see Li (1985); Efron (2004)); one of the most popular being Stein’s unbiased
risk estimate (SURE), because it applies to a wide range of nonlinear models, and is es-
pecially well-designed for Gaussian noise. In brief, Stein’s lemma states that, provided
weak di�erentiability conditions of the estimation function (coined estimator), the above
covariance can be estimated on the derivatives of that function. Hence, the risk of the
estimation, which is the expectation of the squared error between the estimate and the
original signal, taken according to the noise statistics, can be unbiasedly estimated. By
computing it for di�erent values of a parameter tuning the model, one can select the
parameter minimizing the SURE.

Parameter selection with the SURE speci�cally for signal processing goes back at
least to Donoho and Johnstone (1995), where its expression is derived for the ℓ1-norm
denoising estimator and used for scaling the penalization. Extensions have been sub-
sequently developed to other penalizations such as the ones we consider in this work,
(Chaux et al., 2005; Zou et al., 2007; Chaux et al., 2008; Yu et al., 2008; Chesneau et al.,
2010; Solo and Ulfarsson, 2010; Dossal et al., 2013) and beyond (Vaiter et al., 2014).
Successful applications have been reported for numerous signal denoising tasks (see for
instance Blu and Luisier (2007); Van De Ville and Kocher (2009); Luisier et al. (2010a);
Deledalle et al. (2012a); Duval et al. (2011); VanDeVille andKocher (2011); Ramani et al.
(2012a)). In the same time, theoretical developments of Eldar (2009) enabled the adap-
tion of the SURE to non-Gaussian noise (Luisier et al., 2010b), and to inverse problems
beyond denoising (Pesquet et al., 2009). Let us �nally mention some numerical meth-
ods which do not require the computation of the derivatives of the estimator explicitly,
approximating them either by �nite di�erences (Ramani et al., 2008; Deledalle et al.,
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2014), or, in the case of estimators de�ned by iterative algorithms, by recursive deriva-
tions (Vonesh et al., 2008; Giryes et al., 2011; Ramani et al., 2012b).

Contribution: Risk Estimation for Proximal Denoising

In Chapter V, we �rst rede�ne rigorously the terms and conditions of the SURE
for denoising problems with arbitrary Gaussian noise. �en, in the continuity of the
previous chapters, we emphasize the fact that any proximity operator can be seen as a
denoising estimator, and satis�es the regularity conditions for estimating its risk with
the SURE.We give the SURE expressions of the proximity operators of the penalizations
de�ned previously, and study themore involved case of a denoising estimator penalized
by reweighted ℓ1,2-norm, inspired by the reweighted ℓ1-norm of Candès et al. (2008).

We then turn to denoising estimators that cannot be reduced to proximity opera-
tors of simple functionals, establishing in particular a proper chain rule for Lipschitzian
functions in arbitrary dimension, which is actually a theoretical prerequisite of the re-
cursive derivation method mentioned above. A�er describing the practical computa-
tional limitations of their use for our purpose, we propose a series of heuristics allowing
fast and e�cient approximations.

Finally, we exemplify the use of the SURE for parameter estimation in an image
denoising setting, and test empirically our heuristics.

A Full Component Separation Method

for Voltage-Sensitive Dye Optical Imaging

With all themathematical and computational tools developed in this thesis, it is pos-
sible to apply our spatially structured sparse morphological model to voltage-sensitive
dye optical imaging data. In Chapter VI, we expose brie�y the rationale that allows us
to adapt to component separation problems parameter selectionmethods originally de-
signed for simple denoising problems. �is adaptation requires notably successive ap-
proximations of the di�erent components involved in the problem and estimations of
the noise statistics.We show that under convenient assumptions, this is actually possible
for VSDOI data; in particular, some �rst approximations involve processing of blank ac-
quisitions, i.e. acquisitions recorded without speci�c stimulus presented to the animal,
where we assume that only few neuronal activity is present.

Note that the full method, from parameter selection to the resolution of the varia-
tional problems, is now decomposed into several interrelated steps. Moreover, at each
of those steps, some practical choices remain to be taken. Everything is explained in
details within Chapter VI, and summarized on Table VI.1.

Altogether, we implement the full methods and perform the �rst experiments for
evaluating it. In Chapter VII, we �rst investigate the contributions within the highest
frequencies of VSDOI recording, validating in particular the model of the noise pro-
posed in § II.2.1. �en, we run numerical experiments over synthetic data, mimicking
real VSDOI data, which allows us to work in a controlled environment and to know the
actual targeted components. On such an “oracle” setting, we attest relatively good per-
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formances of our method, and we evaluate its pros and cons in comparison to a GLM
method.�ird, we test the possibility of retrieving actual functional signals, on the well-
studied orientation selectivity of the cat’s primary visual cortex, thanks to data provided
by CyrilMonier.Without delving into further functional details, wemake use at this oc-
casion of preliminary results of the extensive study in Yavuz (2012). At last, we explore
visually the output of our method on data presenting propagating neuronal activity in
the mouse’s somatosensory cortex, provided by Isabelle Ferezou. Since such propaga-
tions can be evoked by speci�c stimuli but also spontaneous, we show in particular the
ability of our method to retrieve neuronal activity in paradigm-free conditions.

�anks to those preliminary sets of experiments, it is already possible to discuss
the validity of the method, especially concerning the assumptions that we made over
the VSDOI signal in Chapters I and II. In addition, we discuss the practical conditions
which render di�cult the use of the current version of the full method by practitioners.

∗
∗ ∗
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Voltage-Sensitive Dye Optical Imaging

Ways and Customs

In this chapter, we describe the optical imaging technique based on voltage-sensitive
dye formonitoring the cortical neuronal activity at population level. First, we brie�y de-
scribe its principles and capabilities, pointing out the interest of improving this acquisi-
tionmodality for the neuroscienti�c community. Doing so, we introduce themotivation
and problematic that are behind the whole work of signal processing presented in this
thesis.

We describe also the main causes of limitations encountered by experimentalists
and analysts, and the inevitable need for signal processing when dealing with voltage-
sensitive dye optical imaging. Finally, a critical review of approaches found in the liter-
ature is given and discussed as the starting point of our own re�ection.

21
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1 Monitoring Cortical Activity with VSDOI

1.1 Electrophysiological Background

It is common to consider that modern neuroscience starts with the work of Santiago
Ramón y Cajal and Camillo Golgi at the end of the nineteenth century, leading to the
neuron theory, mostly formulated by HeinrichWilhelm Gottfried vonWaldeyer-Hartz.
To date, it is still assumed that most if not all information in the brain is encoded within
electrical activity of the nerve cells, the neurons. In brief, the neurons are cells covered
by ion gates which control the relative concentrations of certain ions between the in-
tracellular and extracellular media, governing in turns the electrical potential between
each side of the cellularmembrane. Neurons are interconnected by their neurites, which
are projections of their cell body. Among them, the axon sends information to other
neurons, and the dendrites collect information from other neurons. �e neurons are
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considered as the elementary processing units, but even the simplest brain functions
emerge from the activity of millions of such neurons, interconnected into hierarchical
spatial structures, and following speci�c temporal dynamics.

In order to understand the brain from a computational point of view, it seems nec-
essary to have access to the operating modes of single neurons, as well as their relation-
ship one to the other within each organization level. To this end, the most direct way of
recording electrical activity is to put electrodes inside the brain tissue.�is can be done
either in vitro (in speci�c preparations, usually slices of animal brain), or in vivo in living
animals. Intracellular recordings have the highest accuracy and informs the best on how
single neurons work.�is allowed Alan Lloyd Hodgkin and Andrew Fielding Huxley to
explain the spiking nature of the neuronal activity. �e electrical potential of a neuron
�uctuates along time because of the activity of other neurons; whenever this potential
reaches a critical value, cellular mechanisms within the neuron trigger a fast additional
increase of potential of huge amplitude that lasts only for a very short period of time,
and propagates along its axon. �ose events are called action potentials, and take place
within the temporal order of the millisecond. In the same context, extracellular record-
ings are o�en easier to perform, and depending on the electrode size can probe the
activity of one or several neurons. In the last case, it is in general di�cult to isolate the
contribution of each neuron, but it already enables to study the relationships between
them.

�e biggest advantage of using electrodes is that they have high spatial and tem-
poral resolutions, i.e. they can capture every events that take place along time, at mi-
croscopic scales. Moreover, it enables recordings wherever it is physically possible to
introduce electrodes without damaging the surrounding tissues. Now, though it is pos-
sible to record simultaneously from several electrodes, this raises technical di�culties
(Lampl et al., 1999) and it is obvious that networks of thousands of neurons cannot be
observed by those techniques. In an other approach, electroencephalography consists in
many electrodes put all over the surface of the head.�ose can be recorded for days, and
even on human brain since it is noninvasive. However, the resulting spatial resolution
is very crude, and only the synchronous activity of thousands of neurons situated at the
surface of the brain can be detected that way.

Currently, no other technique gives such direct access to the electrical activity of the
neurons. Nevertheless, the brain functions can be investigated indirectly through physi-
ological phenomena that relate to them. For instance, intrinsic physiological changes oc-
cur locally whenever signi�cant neuronal activity is triggered, such as increase in blood
volume and changes in hemoglobin oxymetry.�en, labelling techniques can be used to
identify which brain regions are recruited during speci�c tasks.�ey usually involve the
injection of speci�c tracers in the blood of the animal under investigation.�ose tracers
are usually molecules that can be later on easily detected, either post mortem for sim-
ple dyes, or in vivo thanks to radioactive or magnetic properties. High concentration
of tracers indicates regions of high activity. �e most notable example is the positron
emission tomographywhich uses radioactive tracers and can be used in human subjects.
Labelling methods can screen the whole brain, but like electroencephalography pro-
vides only coarse, macroscopic functional information.Worst, each image usually takes
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minutes to acquire, so that dynamical aspects cannot be captured. �e development of
functional magnetic resonance imaging (fMRI) enhances drastically macroscopic obser-
vations of the brain functions.�emost commonmethod is to detect the intrinsic signal
by exploiting the di�erence of magnetization of the blood according to its oxygen con-
centration. Currently, the spatial resolution goes up to the order of the millimeter, and
the temporal resolution reaches the order of the second.

Intrinsic signal can also be observed with intrinsic optical imaging, by shedding near
infrared light on the surface of the cortex, and recording over time the changes in re-
�ectance induced by the intrinsic changes. Since the acquisition principle is simpler
than for fMRI, the spatial resolution reaches nowadays the tenth of amillimeter (Zepeda
et al., 2004). Only a limited part on the surface of the cortex can be studied this way,
but at this level of precision it becomes possible to distinguish specialized group of neu-
rons that acts as functional units, like orientation columns inmammalian primary visual
cortices (Rao et al., 1997). Still, temporal resolution cannot be improved because of the
time scale of the intrinsic changes, which happens seconds a�er an actual, signi�cant
neuronal activity.

�e great interest of the voltage-sensitive dye optical imaging (VSDOI), which is the
measurement modality at the heart of this thesis and is described in more details in the
next section, is that it can, in theory, combine the mesoscopic spatial scale of optical
imaging with the real-time temporal resolution of direct electrophysiological measure-
ments.

1.2 �e VSDOI Modality

1.2.1 Principles.

Sensitivity to membrane potential of some �uorescent dyes is known for long (at
least back to Cohen et al. (1974)), and its use for monitoring neuronal activity has been
considered ever since. Starting with recordings of action potentials in individual neu-
rons (Davila et al., 1973; Salzberg et al., 1973), the technique got continuously improved
along time, and is now a privileged modality for monitoring cortical activity simultane-
ously at several locations with both high spatial and temporal resolution (Grinvald and
Hildesheim, 2004).

To perform VSDOI one stains the neuronal tissue with voltage-sensitive dye, which
are �uorescentmolecules, also called �uorophores. Some of those bind to neuronemem-
branes. Each �uorophore, when illuminated with the correct exciting wavelength, emits
light in a di�erent wavelength in return. �e �uorophores that are bound to a neurone
membrane happen to emit di�erently according to the electrical potential at the mem-
brane. �us, �lming the emitted �uorescence provides access to the variations of the
potential of those membranes along time.�e whole process is schematized in Figure 1,
see for instance Grinvald et al. (1999) or Frostig (2009) for detailed practical method-
ologies of in vivo recordings.
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Figure 1: Schematic viewof aVSDOI set-up. Reproduced fromGrinvald andHildesheim
(2004).

1.2.2 Limitations.

Because the changes in �uorescence follow closely a change in membrane potential,
both in time (order of themicrosecond) and in space (atmolecular scale), the resolution
of VSDOI is in theory only limited by two main factors: the quantum nature of photon
emissions, and the precision of the optical recording device.

Recorded �uorescence intensity corresponds to the count of the number of pho-
tons reaching the detector during a certain time laps. At a given intensity, the number
of emitted photons during a given duration is best modeled by a Poisson distribution
(Foschini et al., 1975), for which the variance increases proportionally to the mean level.
Hence, the expected quality of a �uorescence measurement, quanti�ed by the ratio be-
tween the mean number of emitted photons and its standard deviation, is proportional
to the square root of the mean number of photons. As a consequence, it is important to
maximize the mean number of photons recorded at each measurement. �is is in turn
proportional to three main factors: the number of �uorophores within the focus of the
detector, the duration of each measurement, and the intensity of the exciting light. In
any experimental set-up, a compromise must be found between those three factors, in
accordance with the instrumental and material conditions.

On the one hand, the quantity of �uorophores reporting potential changes is limited
by the total area of neuronal membrane under investigation, and by the physical access
to those membranes. Moreover, the quantity of �uorophore introduced in the medium
must also be limited in order to avoid pharmacological e�ects, i.e. perturbations of the
functioning of the neurons due to the presence of the �uorophores. Similarly, the in-
tensity and the duration of the exposure of the exciting light is limited by photodynamic
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damage that can occur to themedium. See for instanceGrinvald et al. (1999) andPeterka
et al. (2011) for more details on those practical limitations.

On the other hand, optical precision is limited by light scattering and focal preci-
sion, while the quantity of data recorded during a certain amount of time is limited by
acquisition and data-storage speed. Horizontal spatial resolution (parallel to the cortical
surface and orthogonal to the optical axis) goes below a tenth of a micron when using
confocal (Holtho� et al., 2010) or two-photon (Acker et al., 2011) microscopy. �is ac-
tually allows to discriminate between neuron compartments. Unfortunately, only two-
photon techniques allows such precision in the vertical axis. For all other recording
techniques, the focal plan is much thicker. �is can be limited in vitro by reducing the
thickness of the sample itself (thin brain slices), but in vivo, contributions of several
cortical layers might be mixed in the signal, depending on the dye distribution along
the depth of the cortex. Concerning the spatial extent of the �eld of view, most com-
mercial devices available nowadays exceed 1000 × 1000 pixels, and temporal resolution
goes up to 10 kHz, allowing to capture every events of an action potential (Tominaga
and Tominaga, 2013).

�e �nal compromise between spatial and temporal resolution, data quantity, and
recording quality depends on the phenomena under investigation and on the exper-
imental conditions. In particular, in vitro experiments allows more �exibility than in
vivo, but does not give access to the same information. In all the present work we are
mostly interested in in vivo recordings, at population level, with spatial resolution be-
tween 10 and 100 µm, sampling frequency between 100Hz and 1 kHz, and spatial extent
no more than 100 × 100 pixels.

1.3 �e Targeted Signal

Before diving into the technical aspects of VSDOI signal processing, let us describe
the phenomena one would like to investigate thanks to the VSDOImodality.�ose con-
siderations are useful in order to understand the motivation and ambition that lies be-
hind the work developed in this manuscript.

1.3.1 �e Cortical Phenomena Under Investigation

�e use of VSDOI at single cells level is justi�ed when direct intracellular recording
is rendered impossible, o�en because it is too invasive or because the targeted site is too
small for the insertion of an electrode. However, the advantage of the VSDOI modality
which is the most interesting to us is its ability to record in real-time the activity of en-
tire networks comprising thousands of neurons. At the population level, VSDOI ismore
sensitive to subthreshold potential variations of many synchronous neurons than to in-
dividual spiking activity (Chemla and Chavane, 2010a). Although it does not reveal the
action potentials, suchmesoscopic information is useful to understand themechanisms
of integration of individual neurons activity within local networks. In particular, spa-
tiotemporal dynamics of functional structures, population encoding of sensory stimuli,
long-range connectivity, and propagating phenomenon can be studied; see Grinvald
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and Hildesheim (2004) and Chemla and Chavane (2010a) for more details on the cor-
tical mechanisms best revealed by VSDOI.

1.3.2 �e Question of the Ongoing Activity

When studying functional organization of the cortex, the usual approach is to ana-
lyze the activity evoked in vivo by certain stimuli. However, it has been observed that the
variability of the neuronal response to several repetitions of the same stimulus is some-
times as signi�cant as the response itself; see Arieli et al. (1995) and references therein.
Moreover, even in the absence of speci�c stimulus, neurons exhibit spontaneous activ-
ity that is o�en highly structured in space and time, at both at the single cell level and
at the population level. �is spontaneous or ongoing activity can be observed with any
recording modality, and presents a wide variety of dynamics, usually highly dependent
to the conscious state of the subject (anesthetized or awake).

Many important questions arise about the ongoing activity. Neither its origin and
mechanisms, nor its relationship to the activity evoked by a speci�c stimulus and its role
in perceptual attention are yet well understood. Experiments withVSDOI could provide
precious information, but let us emphasize here that ongoing activity is also an obstacle
for VSDOI recordings at population level. As described in the next section, VSDOI ac-
quisitions are corrupted by many nonneuronal artifacts, so that up to now information
is extracted by averaging over repetitions, or using ad-hoc processing methods retriev-
ing the evoked, reproducible signal and discarding the variability. Although VSDOI has
already been used in studies of ongoing dynamics (see again Arieli et al. (1995), or Arieli
et al. (1996)), precautionmust be taken for their interpretation.�is underlines the need
for new processing methods that would capture all the variability at the single acquisi-
tion (also dubbed trial) level.

On a VSDOI signal processing point of view, it is important to distinguish several
temporal and spatial scales of ongoing dynamics. At the lowest frequency scale, sponta-
neous organization of cortical assemblies presents up and down states, that are respec-
tively depolarized and hyperpolarized temporary states, resulting respectively in higher
and lower activity levels for durations in the order of the second. Such slow �uctua-
tions are usually associated with high level of synchrony, involving entire networks at
the spatial scale of the millimeter, see for instance Lampl et al. (1999); Petersen et al.
(2003). �en, faster spontaneous events that are o�en reported concern propagating
waves of activity running across neuronal networks, especially in the cortex. Such events
are highly structured, and usually closely resemble events that can be evoked by speci�c
stimuli. �ey are however very diverse, with many di�erent propagation velocities and
spatial extents, with frequency scales in order of magnitude from 1 up to 100Hz, see for
instance the review of Muller and Destexhe (2012). Finally, individual neurons within
networks always exhibit �uctuations of activity, both in term of spiking activity and of
subthreshold potential variations, due to a wide variety of sources and o�en considered
as randomnoise (Destexhe and Rudolph-Lilith, 2012). Notably, these �uctuationsmight
have characteristic frequency above 100Hz and show little correlation from one neuron
to another.

�is division according to three di�erent spatiotemporal frequency scales might,
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or might not, have actual biological relevance. However, they seem to relate to distinct
phenomena and, more importantly, their respective in�uences on VSDOI acquisitions
are as signi�cant as they are di�erent.

2 �e Challenge of VSDOI in vivo

In spite of the constant enhancement of theVSDOI technique along several decades,
in vivo recording remains a technical challenge, due to a wide variety of artifacts and
noise that corrupt the signal, and that can also di�er greatly according to the experi-
mental conditions.

2.1 From Fluorescence to Neuronal Activity:

What Are We Recording?

As introduced in § 1.2.1, the �uorophores bound to a neuronal membrane �uoresce
di�erently according to the electrical potential at the membrane.�is knowledge, how-
ever, is not su�cient to deduce changes in neurons membrane potential. First of all,
hundreds to thousands of neurons contribute to each single pixel of the recorded ac-
quisition and it is impossible to di�erentiate between contributions of axonal or den-
dritic activity, of inhibitory or excitatory neurons, or even of some nonneuronal cells
(glia, etc.). �e di�erent contributions have been studied in particular by Chemla and
Chavane (2010b). In general, the best information available is the variation ofmembrane
potential averaged over multiple compartments of multiple cells, integrated over several
cortical layers. Moreover the interpretation of this variation of membrane potential is
delicate because one does not know the baseline activity, the reference value to which
the variation should be computed.

Now, how does one link the VSDOI acquisition to this average potential variation?
�e mechanism linking variations in membrane potential to variations in �uorescence
has already been investigated (Peterka et al., 2011) and the relationship between those
variations is supposed to be linear. But what is the gain of this linear relationship? For
a given spatial position and at a given instant (a pixel of a frame in the acquisition), it
should depend on the quantity of �uorophores bound to the membrane and to the illu-
mination intensity. Here again one o�en assumes linear relationship between intensity
of �uorescence and �uorophore concentration, see for instance Tanke et al. (1982) in
the context of microscopy. Also, keep in mind that only �uorophores bound to a neu-
ronal membrane contribute to the desired signal, so that the area of stained membrane
should be taken into account as well. Unfortunately one does not have access to this
information.

Moreover, VSDOI records the absolute �uorescence intensity (i.e. the number of
photons detected during the frame duration at each pixel). In order to get variations of
�uorescence, one needs another baseline value, the baseline �uorescence, that is to say
the �uorescence intensity that would be recorded independently from any neuronal ac-
tivity (and from other existing biophysical sources of variations). Baseline activity and
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baseline �uorescence are hard to distinguish from the sole information of the recorded
�uorescence.�is is an important issue in VSDOI, becausemany studies could be in�u-
enced by the way baseline activity is de�ned and estimated. Indeed, recall from § 1.3.2
that ongoing activity can reach the order of magnitude of an evoked activity, so that
it is impossible to de�ne the baseline activity as the level of activity when no stimu-
lus is presented. It is common to estimate the baseline activity mixed with the base-
line �uorescence, as the recorded values in the �rst frames of the acquisition where no
evoked activity is expected. It is then subtracted from all the frames (see § 3). Using
such approach, in�uence of spontaneous activity over those �rst frames is passed on to
the entire acquisition, and should be taken into account. Unfortunately, this is di�cult:
variations of �uorescence in VSDOI that is actually due to neuronal activity is known
to be in the order of a thousandth of the baseline �uorescence (Grinvald et al., 1999).
Even worse: many nonneuronal sources of variations actually exceed this ratio.

2.2 Sources of Noise and Artifacts

Many phenomena causemeasurement errors. Like every �uorescence basedmodal-
ity, VSDOI is a�ected by dye photobleaching. When illuminated by exciting light, the
�uorophores have the tendency to degrade or to react with other molecules so that
they do not emit light anymore (Song et al., 1995). �is results in an overall decrease
of the recorded �uorescence over time, independently from any neuronal activity. It
is important to note that several mechanisms are involved and bring forth di�erent
bleaching dynamics. For instance, when �uorophores form non�uorescent complexes
with other molecules in a reversible fashion, they will �uoresce again when they re-
trieve their initial conformation. �is results in a fast �uorescence decrease a�ecting
the signal (as observed for instance in Chen et al. (2008); Reynaud et al. (2011)) as soon
as the observation �eld is illuminated for recording, until a steady-state equilibrium is
reached. Switching o� the illumination modi�es the equilibrium back to the previous
state and the concentration of �uorescing molecules progressively goes back close to
its initial value. Now, if a �uorophore degrades, it stops to �uoresce permanently. �is
process causes a slow �uorescence decrease (as reported for instance in Lippert et al.
(2007); Takagaki et al. (2008)), hardly detectable at the time scale of a single acqui-
sition. However, it can be seen by comparing successive acquisitions recorded during
several hours of experimental protocol, until the �uorescence is too low for recording.
�e term bleaching or photobleaching is used independently in the literature to refer to
both phenomena; and even sometimes to other phenomena that are strictly speaking
unrelated to photobleaching but lead to similar �uorescence dynamic, e.g. wash-out of
the dye along experimentation (see again Lippert et al. (2007); Takagaki et al. (2008)).

For in vivo experiments, emitted �uorescence due to neuronal activity su�ers from
other important interferences. �is is mainly due to absorption properties of the bio-
logical tissues and of the hemoglobin in the blood of the living animal, as described
extensively in Shoham et al. (1999). In particular most in vivo VSDOI acquisitions are
contaminated by periodic components corresponding to the heartbeats of the animal;
similarly, respiration artifacts are present. Also, the intrinsic signal described in § 1.1,
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which is actually the signal of interest when performing intrinsic imaging, causes in
VSDOI an intrinsic artifact. On acquisitions longer than one second, it leads to a slow
decrease followed by an increase of the �uorescence subsequently to high neuronal ac-
tivity.

Finally, we call shot noise the quantum �uctuations of the exciting light and of the
emitted �uorescence described in § 1.2.2. Let us also mention mechanical vibrations of
the experimental table, oscillations of the alternative current that supplies the experi-
mental device, and thermal noise of the camera as other possible nonneuronal sources of
�uorescence variations (Grinvald et al., 1999).�ose phenomena create high frequency
�uctuations of the VSDOI signal, which are di�cult to separate from high frequency
ongoing activity.

2.3 From Neuronal Activity to Fluorescence:

Modeling the Signal

Even though artifacts present distinctive dynamics, the way they act on the signal is
nontrivial. Supposing for instance that the bleaching a�ects uniformly all �uorophores
in the medium, its action on the signal should be strictly multiplicative, that is to say
bleaching is a modulation of the gain over time. Alternatively if bleaching a�ects mostly
�uorophores that are not bound to a neuronal membrane, its in�uence with respect to
the neuronal signal should be considered additive. Interestingly, those two opposed al-
ternatives are considered in the literature without furthermotivation, for instance when
performing blank subtraction and blank divisionmethods (see § 3.1). Note however that
since the baseline �uorescence dominates all other components in the signal, both as-
sumptions o�en lead to similar results (see Annex A), so that to our knowledge, the
question has never truly been discussed. Note also that in most processing techniques,
all contributions in the signal are considered additive (see § 3).

A similar question arises about the nature and statistics of random noise. On the
one hand, noise that results from a multitude of small contributions, like random �uc-
tuations of membrane potential, are usually modeled as Gaussian noise (Reynaud et al.,
2011), with neglected spatiotemporal correlations. On the other hand, recall from § 1.2.2
that shot noise is best modeled with a Poisson distribution, for which the variance in-
creases proportionally to the mean signal level. Note once again that since the con-
stant baseline �uorescence dominates all other components in the signal, this can be
neglected when analysing the time course of a single pixel. However important varia-
tions of the baseline �uorescence from one pixel to another can lead to signi�cant bias
when performing spatial analysis without taking it into account.

3 VSDOI Denoising: Previous Approaches

Depending on the acquisitionmaterial (type of dye, camera andother device-speci�c
conditions), on the observed cortical network (which animal, anesthetized or awake,
which cortical area), on the observed phenomenon (spontaneous or evoked activity),
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on the length of the acquisitions (from less than one second to several seconds), and
on the duration of the protocol (up to several hours of recording), the possible artifacts
and noise do not have the same in�uence on the observed signal. �is is why it exists in
the literature many di�erent approaches to extract the neuronal activity of interest from
the raw signal.

We make here a (nonexhaustive) list of those approaches, in order to illustrate their
variety and to infer some common priors that aremade on the nature of the components
in the VSDOI signal.

3.1 Blank Subtraction

�e most common processing is the blank subtraction (BkS). A blank is an acqui-
sition recorded while no stimulus is presented to the animal. With an acquisition in
stimulus condition (called stimulus acquisition in the following) and a corresponding
blank, one retrieves the stimulus evoked neuronal response by essentially subtracting
the latter from the former. Usually both acquisitions are �rst separately normalized by
dividing each frame (pixel-to-pixel) by a so-called zero-framewhich is the mean of sev-
eral frames taken at the beginning of the acquisition. �e blank subtraction method
relies on the assumption that the artifacts and noise act additively on the signal, and
that their time courses are the same in the blank and in the stimulus acquisitions. It is
thus better to record a corresponding blank just before or right a�er any stimulus ac-
quisition, so that the conditions are as similar as possible.�is is signi�cantly improved
by synchronizing the acquisitions with the heartbeat of the animal, and even with its
respiration in the case of anesthetized animals under intubation. �e division by the
zero-frame assumes that all the components are proportional to the same resting �uo-
rescence value which can be estimated on the �rst frames. �e division pixel-to-pixel
accounts for the di�erences of �uorophore concentration and of illumination from one
spatial position to another. Let us �nally note that simple subtraction assumes that the
baseline �uorescence of both the blank and the stimulus are the same (a�er zero-frame
division).

Variations on this method can be found. �e blank is sometimes smoothed by low-
pass �ltering or by averaging all blank acquisitions (Markounikau et al., 2010). It can also
be replaced by the so-called “cocktail blank”, which is themean over a set of acquisitions
supposed to active successively all regions of the observed cortical area, in an uniform
fashion (Grinvald et al., 1999). Also if a notion of orthogonality can be de�ned over
the space of stimuli (e.g. when studying ocular dominance or orientation selectivity in
the visual cortex) it is possible to subtract an orthogonal stimulus acquisition instead
of subtracting a blank (Shoham et al., 1999). �is does not give access to the evoked
neuronal dynamic but it is useful for revealing functional cortical maps. Sometimes a
division is considered in place of a subtraction (Grinvald et al., 1999; Jancke et al., 2004).
As discussed in § 2.3, there is no consensus about which approach is best.

�e blank subtraction method is illustrated in Figure 2, over a data set where acqui-
sitions are synchronized with the heartbeat of the animal. Without delving into details
about the observed signal (see § VII.3), the raw traces in (a) show the level of the noise
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Figure 2: Blank subtraction on the protocol Cat_Gratings. See opposite.
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Figure 2, opposite: Blank subtraction on the protocol Cat_Gratings used in § VII.3.
�e time courses correspond to spatial positions indicated on the frames by a square of
the same color. Vertical dashed line indicates stimulus onset and o�set.�e exact blank
subtraction method used is detailed in § VII.3.1.1.
(a) Stimulus condition acquisition normalized by the zero-frame, single trial.
(b) Blank acquisition normalized by the zero-frame and low-pass �ltered, single trial.
(c) Retrieved neuronal activity by subtraction, single trial.
(d) Retrieved neuronal activity, average across ten trials, with single trials time courses
plotted in transparency.

and artifacts in comparison to the reproducible evoked signal (d). One sees from (c) that
with the blank subtraction method, single trials are still too contaminated for analysis
without averaging.

3.2 Baseline Fluorescence, Gain and Bleaching

Chakraborty et al. (2007) performVSDOI in vitro (on brain slices) so that the signal
is not a�ected by physiological artifacts. �ey evaluate both baseline �uorescence and
gain by averaging the �rst 100ms of each acquisitions for each pixel.�e (fast) bleaching
is then handled by subtracting to the time course of all pixels a single linear function
�tted on the mean over the entire image. To avoid frames where evoked neuronal ac-
tivity is the most likely to appear, the �t is performed only on the second temporal half
of the acquisition. A similar method is used in Chen et al. (2008) but on spatial bins of
pixels.�e authors do not precise how they select the bins.�ey evaluate both a baseline
�uorescence and a gain for each bin by averaging the signals over all time frames of all
trials, even though slow bleaching can a�ect baseline �uorescence and gain from one
trial to the other. �en a linear function is �tted and subtracted for each bin. �e �t is
performed on the time frames before and a�er the expected neuronal response period.

As already mentioned, some authors reporting on VSDOI observe slow bleaching
(i.e. with a time constant between minutes and hours, see § 2.2) but no fast bleach-
ing (i.e. with time constant less than a second). Our guess is that they focus on long
recordings (10 s or more) for which the �rst seconds of illumination are not recorded.
Concerning the slow bleaching a�ecting the gain and the baseline �uorescence of the
acquisitions between trials, Takagaki et al. (2008) show that setting the gain as equal to
the baseline �uorescence (typically estimated by averaging the �rst frames) induces a
strong bias due to di�erent bleaching kinetics between gain and baseline �uorescence.
�ey propose to estimate the gain as the peak-to-peak amplitude of epileptiform spikes
elicited by injection of bicuculline methiodide. Unfortunately this is not practicable in
most physiological experiments. Moreover, in their setting, the way they measure the
baseline �uorescence is unclear and could also induce bias.
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3.3 Heartbeat Triggered Averaged

�e heartbeat triggered average method takes advantage of the fact that an elec-
trocardiogram is recorded simultaneously to the acquisitions and that all acquisitions
are triggered at the same phase of the electrocardiogram. Chen et al. (2008) model the
heartbeat artifact as the repetition of a pattern approximated by the concatenation of two
“half-Gaussian”: one for a rising edge and one for a falling edge. Width and amplitude
of those Gaussians are �tted on all available blanks. �e resulting heartbeat artifact of
a given acquisition is reconstructed by concatenation of several copies of this pattern,
shi�ed in time such that their centers correspond to the peaks of the simultaneously
recorded ECG, accounting for possible variations of heartbeat durations with time.�e
amplitude of each pattern is �xed constant along heartbeats to avoid over�tting. In the
subsequent analysis, the authors average the time courses within a spatial region of in-
terest in order to obtain a single time course for each acquisition; so it seems that only
one heartbeat time course by acquisition (i.e. as opposed to a heartbeat time course
for each pixel) is reconstructed and then subtracted to the acquisition. Other heartbeat
triggered average procedures for estimating and subtracting the heartbeat artifact can
be found in the literature for ECG-locked VSDOI acquisitions, see for instance Arieli
et al. (1995); Ma et al. (2004); Lippert et al. (2007).

3.4 Automatic Component Separation Methods

Methods like heart triggered average or bleaching �t are based on a priori knowledge
about the biophysical origin of those components. �e approach is to reconstruct them
according to this knowledge (e.g. heartbeat is synchronous with ECG), and subtract the
result from the observation. Other attempts have been made to identify and retrieve all
or parts of the components, directly from the acquisition with help of statistical esti-
mation methods. In particular, principal component analysis (PCA, Jolli�e (2002)) and
independent component analysis (ICA, Hyvärinen and Oja (2000)) are reported to be
quite e�cient. Both methods rely on the hypothesis that the signal is decomposed as a
sum of components (called modes) that are uncorrelated (PCA) or independent (ICA)
across observations.

Maeda et al. (2001) and Inagaki et al. (2003) consider ICA on the temporal domain,
within each single trial, to separate neuronal activity from heartbeat and respiration (no
bleaching is described). Later, Reidl et al. (2007) propose an ICA on the spatial domain
within each single trial. �e authors normalize their data by zero-frame (see § 3.1) and
then subtract a bleaching time course estimated as a low-pass �ltered average of blanks.
A�er ICA they obtain spatial modes which enable to identify functional maps over the
studied cortical surface. As a re�ned denoising process a�er blank subtraction, Onat
et al. (2011a); Onat et al. (2011b) use, on each single trial, singular value decomposition
(SVD) of the space-time data matrix (i.e. the matrix obtained a�er concatenation of
each frame reorganized as a column vector).�ey obtain several spatiotemporal modes
de�ned as the separable outer product between the le� singular vectors (which are noth-
ing but the principal components of an uncentered spatial PCA) and the corresponding
right singular vectors (which are the principal components of an uncentered tempo-
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ral PCA). �en they classify the spatiotemporal modes according to the corresponding
singular values, and to some other information such that the oscillatory behavior of the
time course of the modes. Some are attributed to neuronal activity, some to artifacts,
and the remaining ones (corresponding to small singular values) to residual noise.

In general, though ICA and PCA provide convenient ways for decomposing VSDOI
signals, it is di�cult to evaluate the nature (noise, artifact, or signal) of the resulting
modes; if even possible. Indeed, the statistical hypotheses are strong (for instance PCA
leads to orthogonal modes) and learning the modes on the data raises theoretical and
practical di�culties. Usually the underlying statistical model is either on the spatial
modes (in that case, each frame is an observation) or on the temporal modes (each pixel
is an observation). A full spatiotemporal model would require an enormous amount of
trials to be statistically accurate.

3.5 General Linear Model

A last method relying on the decomposition into several modes has been developed
in (Reynaud et al., 2011). �e authors use the general linear model (GLM1) framework,
widely used in fMRI (Friston et al., 1995). It is fundamentally di�erent from PCA or
ICA. Indeed in this framework the modes (called regressors) must be known prior to
the decomposition.�e idea is to introduce a set of regressors for each component con-
tributing to the signal, and to �nd a linear combination of those regressors which best
approximates the actual contribution of each component in the observed signal. �e
coe�cients of the linear combination are taken so as to minimize the distance between
the reconstructed and the observed signal. As long as the introduced regressors are all
together linearly independent, the set of minimizing coe�cients is unique and is the so-
lution of a small size linear system. If the regressors representing the artifacts and those
representing the neuronal activity are decorrelated enough, then the resulting linear re-
construction should separate well the artifacts from the neuronal activity. Meanwhile if
the regressors are well chosen the reconstruction should be accurate.

�e crucial task in this approach is the design of the regressors. Each set of regressors
constitutes a linear approximation basis, reducing the dimensionality of the component
to the number of corresponding regressors. If this dimension is too high, the linear ap-
proximation of the component may over�t and capture noise and other components. If
it is too low, the component cannot be recovered properly. In Reynaud et al. (2011) the
authors take advantage of the strong temporal morphology of the components, re�ning
their estimation through experiments designed to isolate asmuch as possible each com-
ponent from the others. In brief, they identify three components on top of the neuronal
response: bleaching, heartbeat and illumination �uctuation. Bleaching is modeled as a
decaying exponential (i.e. with a regressor decaying exponentially at a given rate) and
the two others are modeled as oscillating components (i.e. with sinusoidal regressors
at a given set of frequencies). Fluctuation of the light source is �rst characterized on
recordings of an illuminated paper surface, i.e. no dye is present. A�er a power spec-
trum analysis, �ve harmonics of a dominant fundamental frequency are selected. �en

1not to be confused with Generalized Linear Model, a broader class of models in statistics.
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the bleaching time constant and the fundamental frequency of the heart are estimated
simultaneously by �tting blank recordings. Two harmonics are introduced for the heart.
Finally, a constant regressor is added to account for the baseline �uorescence.

In the GLM framework, reducing the dimensionality of the response space is the
most delicate part. It strongly depends on the expected complexity of the response and
on the information one wishes to extract from the VSDOI acquisition. Consider for
instance the problem of establishing a map of orientation selectivity on the primary vi-
sual cortex of a mammal (as we do in § VII.3). A classical approach is to present full
�eld, dri�ing contrast gratings of well-chosen spatiotemporal frequency. In response to
such visual stimuli one expects VSDOI to record an overall synchronous raise of neu-
ronal activity. �e level of activity reached at a given pixel depends on the orientation
selectivity of the underlying neurons, and the space resolution of VSDOI allows to dis-
criminate between several preferred orientations. In such a setting, the information one
wishes to recover is only a scalar per pixel, namely the reached level of activity.�us the
response component’s dimensionality can be reduced to only one, by introducing a sin-
gle “gate-shaped” response regressor that mimics roughly the temporal morphology of
the response: zero-valued up to some plausible delay a�er stimulus onset, then nonzero
constant up to the stimulus o�set, then back again to zero. In Reynaud et al. (2011) the
stimuli used are also simple but more localized in space. Similar response morphology
is expected but with delays varying from pixel to pixel. Hence the response space is also
constituted by “gate-shaped” vectors, but with varying rising and decreasing times, as
illustrated on Figure II.1(d). SVD is further applied to the set of such vectors with all
plausible delays to �nally retain a ten-dimensional response space able to capture most
of the considered spatiotemporal dynamic.

3.6 Towards Better Denoising Methods

In general, it is clear to us that VSDOI has not yet released all its potential for in vivo
studies of the cerebral cortex. Up to now, only this modality provides real-time moni-
toring of neuronal activity atmesoscopic, population level; and understanding this scale
of organization is a mandatory step for understanding brain function. During the last
decades outstanding improvements have been made regarding the experimental tech-
nique, whether it is on the quality of the dyes, the building of the experimental set-up,
or the optical device. Even though developments of the hardware aspects of VSDOI,
i.e. attempts to overcome the biological and physical limitations presented above, can
still be expected, we believe that some e�orts remain to be made on its so�ware coun-
terparts, i.e. better signal modeling and application of state-of-the-art signal processing
techniques.We sumup here the general principles that, besides the previous approaches
presented above, has driven the work developed in this thesis.

3.6.1 Using the Spatiotemporal Structure.

On top of their strong temporal morphologies, many components in the VSDOI
signal have spatially structured origin, e.g. heartbeat artifact is stronger on veins, vi-
brations and illumination �uctuations a�ects the whole �eld, and neuronal activity is
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organized in functional units or can exhibit wave-like patterns. In spite of the variety of
VSDOI processing methods, none seems to take advantage of the entire spatiotempo-
ral structure of the observations. Consider for instance PCA or ICA on the spatial do-
main (§ 3.4).�e time frames aremodeled as independent observations, and permuting
them randomly results in exactly the same spatial modes. Hence, temporal structure is
not taken into account while learning the di�erent components. Similarly but the other
way around, the GLM proposed in Reynaud et al. (2011) (see § 3.5) processes each pixel
independently, without taking into account any spatial structure. As for the SVD used
in Onat et al. (2011a); Onat et al. (2011b), the signal is decomposed into modes that are
spatiotemporal but separable along space and time, limiting drastically the dynamic that
can be retrieved from a few modes.

Recently, Yavuz (2012) proposed a procedure for assessing and re�ning the source
separation provided by the GLM of Reynaud et al. (2011), mixing both spatial and tem-
poral information. First, a components separation in the temporal domain is obtained
using GLM, and the result is divided into two groups of components: one compris-
ing the sum of all artifacts (but the bleaching), and the other containing the neuronal
response and the residuals. �en, spatial PCA is performed on each of those groups,
and on the group of artifacts found within the blank acquisitions. Finally, the result-
ing components are compared with the blank components, based on the correlation
between their corresponding (temporal) coe�cients. Artifacts components presenting
low correlation with the blank are re-labeled as neuronal activity components, and neu-
ronal activity components presenting high correlation with the blank are re-labeled as
artifacts. �is approach has the double advantage of combining both model-based and
statistical methods, and of using both temporal and spatial information. However, each
step su�ers from the aforementioned limitations ofGLMandPCA, and combining tem-
poral then spatial information in two separated steps might not be optimal.

3.6.2 Using Nonlinear Representations.

In general, separating the sources using spatiotemporal components is a di�cult
task. Even when the temporal dynamic of each pixel is simple, the relative delays and
amplitudes from one pixel to another result in a wide variety of possible spatiotempo-
ral patterns, and the dimensionality of the problem becomes prohibitively large. �e
last decades of research in signal processing, both theory and practice, demonstrated
the advantages of nonlinear models of signals. Of particular interest to us is the sparsity
framework, whose principles are presented in the introuction of this thesis. Such frame-
work is perfectly suitable to enforce all kind of priors on the signal, without limiting its
potential diversity. In particular, we focus on representations that do not assume the
knowledge of activation time and shape of the signal.
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Appendix

A Subtraction ApproximatesDivision

Assuming that bleaching is modulating the gain (i.e. has a multiplicative e�ect), we
write the observed signal as Y(t) = gB(t) ⋅ S(t) where g is an arbitrary gain scaling the
signal, B accounts for variations of �uorophore concentration due to bleaching, and S
is the signal of interest (possibly mixed with artifacts other than bleaching).

Now, if the baseline �uorescence is much higher than any other components of the
signal we can write (we drop the dependence in t for brevity) B = 1 + b and S = 1 + s,
with b ≪ 1 and s ≪ 1. Developing Y gives Y/g = 1 + s + b + sb so that Y/g − B = s + sb.
We see that, a�er normalization by the overall gain g, performing bleaching subtraction
retrieves s up to a relative error b.

In practice, the order of magnitude of b never exceeds 10−2; in consequence, the rel-
ative di�erence between both approaches can usually be neglected.�e same argument
can of course be applied to components in the signal other than bleaching; in particular,
this phenomenon explains why some authors perform blank subtraction and others use
blank division (see § 3.1).
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II

Spatially Structured Sparse

Morphological Component Separation

for Voltage-Sensitive Dye Optical Imaging

Within this chapter, we detail our model of the signal acquired by in vivo voltage-
sensitive dye optical imaging and our theoretical approach for separating the neuronal
activity from the artifacts. In order to ful�ll the conclusive requirements of the previous
chapter, our method relies on the sparsity framework, presented in the introduction of
this thesis.

In the previous chapter, § I.3.5, we explained that in the GLM framework, the possi-
ble components that can be retrieved lie within a low-dimensional vector space, condi-
tioned by their corresponding set of regressors. It is di�cult to allow for more complex
dynamics, since it requires to increase the dimensionality of those vector space. Indeed,
the more correlated are the regressors of two di�erent components, the less robust to
noise is their separation capability. Increasing the complexity to the point where the
set of regressors span the whole space results in a model which captures any artifact
or noise. �e solution of the source separation problem is not unique as soon as regres-
sors representing di�erent components are not linearly independent; if two components
have representation spaces with nonzero intersection, the signal along this intersection
can be attributed arbitrarily to one component or to the other.

In the GLM terms, the idea of a sparsemodel is to introduce a large set of regressors,
typically richer than within the GLM framework, modeling the signal, and seek for a
sparse reconstruction where only a limited number of those regressors can be selected,
i.e.most regressors must be weighted with coe�cient zero.

�is chapter contains important notations that will be used all along this thesis, and
the de�nition of the functionals used to enforce our assumptions on the signal. A�er
setting the terms of our approach, we discuss the practical challenges that it raises before
being applicable to voltage-sensitive dye optical imaging data.
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1 Preliminary Notations

We represent a VSDOI acquisition comprising T frames of P pixels as a matrix

Ỹ
def= ( ỹt,p )1≤t≤T

1≤p≤P
∈ RT×P .

�e time course of the acquisition at the pixel indexed by p ∈ {1, . . . , P} is the column

vector Ỹp
def= ( ỹt,p )1≤t≤T ∈ RT .

�e signal is decomposed into di�erent spatiotemporal components

Y (c)
def= (y(c)t,p )t,p ∈ RT×P that have the same size as Ỹ . �e residual component, which is

the part of the signal that cannot be explained by the previous components, is denoted

R̃
def= (r̃t,p )t,p ∈ RT×P.�is residual is modeled as a Gaussian white noise whose standard

deviation varies in space and time; the matrix of those standard deviations is denoted
Σ̃ def= (σ̃t,p )t,p ∈ RT×P. In a similar fashion, since the gainmight vary in space and time,

we store its values in a matrix G def= (gt,p )t,p ∈ RT×P.
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�e time course of all pixels of a component (c) is linearly estimated in a certain
dictionary of Kc regressors (also called atoms),

D(c)
def= (d(c)t,k )1≤t≤T

1≤k≤Kc

∈ CT×Kc .

�e time course of the regressor indexed by a given k ∈ {1, . . . ,Kc} is then the column

vector D(c)k
def= (d(c)t,k )t ∈ CT .

�e coe�cients of the linear representation constitute the matrix

X(c)
def= (x(c)k,p)1≤k≤Kc

1≤p≤P
∈ CKc×P .

More precisely, we have for the pixel p of the frame t, y(c)t,p = ∑
Kc
k=1 d

(c)
t,k x

(c)
k,p ; in matrix

notation Y (c) = D(c)X(c).
Note that for notational convenience we allow the regressors and coe�cients to be

complex valued. Since we deal with real valued signals, it is always implied that we con-

sider the real part of the resulting component Y (c) =R(D(c)X(c)).
It is then possible to shorten further the notations by concatenating horizontally (re-

spectively vertically) the dictionaries D def= (D(c))
c
∈ CT×K (respectively the coe�cients

matrices X def= (X(c))
c
∈ CK×P), where K def= ∑c Kc. �is way, we can write with matrix

notation the sum of the components∑c Y
(c) = DX.

Some more matrix notations will be useful in the sequel. Given two matrices of the
same size M

def= (mi , j)i , j,N def= (ni , j)i , j ∈ CI×J , we de�ne the termwise matrix multi-

plication M ⋅ N def= P ∈ CI×J with P
def= (mi , jni , j)i , j, and the termwise matrix division

M/N def= Q ∈ CI×J with Q
def= (mi , j/ni , j)i , j. Also, we de�ne ℓ2-norm of M as1

∣∣M∣∣2 def=

¿ÁÁÀ I

∑
i=1

J

∑
j=1

∣mi , j∣2 .
Finally, we denote the transpose of M by

tM
def= (mi , j)1≤ j≤J

1≤i≤I
∈ CJ×I ,

and when M is a square matrix (i.e. I = J), we de�ne the trace of M as tra (M) def=
∑I

i=1mi ,i ∈ R.
In general, a variable with a tilde (˜) denotes a variable representing raw data, as it

is recorded during the acquisition. Alternatively, a variable with no tilde indicates that
it has been normalized by the gain. For instance, we de�ne Y def= Ỹ/G.

1note that it is called Frobenius norm in other contexts, and should not be confused with the matrix
operator norm.
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2 �eModel

Using above notations, our model for the VSDOI signal is

Ỹ = G ⋅ (∑
c

Y (c)) + R̃ . (1)

2.1 Gain and Residual

�e spatiotemporal matrixG represents the gain between the amplitude of the com-
ponents and the intensity of recorded �uorescence. �e gain is supposed to vary only
from one pixel to an other, and to be constant for the duration of an acquisition. �at
is, for each pixel p, there exists gp ∈ R such that for all time t, gt,p = gp. �e residual

R̃ takes into account modeling errors and random noise that corrupts the acquisition.
Wemodel mathematically this error as the sum of two independent random terms, one
Poissonian term accounting for �uorescence and camera shot noise, and one Gaussian
accounting for every other contributions. Now, a Poissonian variable with large mean
can be seen as a sum of many smaller, independent Poissonian variables. By the central
limit theorem, this is well approximated by a Gaussian variable whose standard devia-
tion is proportional to its mean. As a result, the errors at each pixel of each frame are
supposed to be realizations of Gaussians whose variances are determined by an a�ne
function of the mean �uorescence intensity. �e intercept of this a�ne function deter-
mines a part of the noise which is constant across the whole acquisition, while its slope
scales the in�uence of the shot noise. Recall that the baseline �uorescence dominates
all other components, so that the level of �uorescence is essentially determined by the
gain. As a consequence, noise level is also assumed to vary only from pixel to pixel and
to remain constant along time, i.e. for each pixel p, there exists σ̃p ∈ R such that for all
time t, σ̃t,p = σ̃p.

2.2 Components Regressors

Following Reynaud et al. (2011), we consider three components, namely bleaching,
periodic artifacts and neuronal activity, denoted respectively by (B), (P) and (A).
2.2.1 Bleaching.

�e regressors modeling the bleaching component are decaying exponentials,

d(B)t,k
set= exp (−t/τk) , (2)

for a set of time constantsT def= {τk}1≤k≤KB
, as illustrated on Figure 1(a). Since the bleach-

ing is usually the component with lowest frequency and highest amplitude, we model
the baseline �uorescence within the bleaching component by introducing one constant
regressor, corresponding to τk = +∞. Moreover those regressors are highly correlated
with the low-frequency regressors of the other components, making di�cult their sep-
aration with the sole sparsity framework. Hence for this component the sparsity level
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is imposed, that is to say the dictionary D(B) is very restrained. In practice one or two
regressors (on top of the constant one) are su�cient to capture most of the bleaching
dynamics; introducing more regressors leads to over�tting. In consequence, the choice
of the nonlinear parameter T is crucial; it is described in § VI.2.1.

2.2.2 Periodic Artifacts.

�e regressors modeling the periodic artifacts component are sinusoidal complex
exponentials,

d(P)t,k
set= exp (i2π fk t) , (3)

for a set of frequencies F def= { fk}1≤k≤KP
, as illustrated on Figure 1(b). Since relevant

frequencies are automatically selected thanks to sparsity regularization, this set can
be as large as one wants. Nevertheless it is not worth introducing frequencies higher
that the Nyquist-Shannon frequency (half the sampling frequency of the acquisition),
and frequencies lower than the inverse of the acquisition duration are hardly detected.
Moreover introducing toomany frequencies increases vainly the computational cost for
retrieving the coe�cients of the model as proposed in § 2.3.

2.2.3 Neuronal Acticity.

Finally, as brie�ymotivated in the introduction, wemodel the neuronal activity with
wavelet regressors. Wavelets are functions that are dilated, shi�ed replica of one given
mother wavelet ψ, a compactly supported function with a certain level of regularity. Up
to discretization, the wavelet regressors are thus de�ned as

d(A)t,k
set= ψ(2 jk t − tk) , (4)

where tk and jk are respectively the time and scale of the wavelet indexed by k, as il-
lustrated on Figure 1(b). More precisely, tk ranges from 1 to T , and jk ranges from 0 to
log2(T)−1, resulting in an order of T log2(T) possible regressors.�is allows to capture
interesting features of a signal, smooth parts as well as transients and singularities, with
a few regressors selected at the right temporal localization and scale.

By choosing an orthogonalmother wavelet (Daubechies, 1992), one can ensure that
tD(A)k D(A)k′ = 0, when k ≠ k′, jk ≤ jk′ and tk ≡ tk′[2log2(T)−1− jk]. In this case, D(A) can
be seen as the concatenation of several families of orthogonal regressors, and its right-
inverse can be computed from its adjoint. More precisely, for any Y ∈ RT

Y =
KA∑
k=1

2 jk−log2(T)−1D(A)k (tD(A)k Y) , (5)

where 2 jk−log2(T)−1 is a scaling coe�cient accounting for the redundancy of the scale jk.
�is property is of particular interest for computational purpose.

In practice wavelet synthesis and transforms (multiplication by D(A) and its adjoint)
are computed through �ltering, successively applied along the scales (Mallat andZhong,
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(a) Decaying exponentials with three di�erent time constants.

(b) Sinusoids at �ve di�erent frequencies, weighted by two complex phases in quadrature.

(c) Wavelets at �ve di�erent scales and three di�erent times.

(d) “Gate-shaped” regressors with three di�erent delays with respect to stimulus onset
and o�set, indicated by dashed lines.

Figure 1: Illustration of the components regressors in SMCS and GLM.
(a) Bleaching regressors (2);
(b) Periodic artifacts regressors (3);
(c) Neuronal activity regressors in SMCS (4);
(d) Neuronal activity regressors as can be designed for the GLM framework; see § I.3.5.
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1992). Low scale (i.e. low frequency) wavelets are o�en too correlated with other regres-
sors to be useful in source separation. Hence, we usually compute only the steps for j
ranging from a certain jmin up to log2(T) − 1.
2.3 Retrieving the Components

In order to retrieve the coe�cients of the model, our approach consists in two steps.
First, the gain G and the noise level Σ̃ must be estimated (details given in Chapter VI);
we get a noisy estimate of the mixture of components by dividing the observation by
the gain. We then retrieve the coe�cients by solving an optimization problem,

�nd X̂ in argmin
X∈CK×P

1
2 ∣∣(Y − DX)/Σ∣∣22 +Ψ(Λ)(X) . (6)

�e le�-hand term in the summand is the data-�delity term; the division by Σ accounts
for the con�dence one has on the observation depending on the noise level. Up to a
constant, it is actually equal to the opposite of the log-likelihood of the sum of the com-
ponents being DX given the noisy observation Y , under our statistical assumptions on
the residual R (see § 2.1).

�e right-hand term is a regularization ensuring that the resulting coe�cients are
relevant, in spite of the large number of regressors in D. Such approach, in which one
de�nes an optimization problem whose solutions have the properties of the signal one
is looking for, is called variational. In our model, Ψ is a sum of penalizations over the
coe�cients, notably promoting the sparsity of the solution: only a few coe�cients can
be nonzero.�e next section describes the penalizations that we design for noisy source
separation in VSDOI, and precise the dependancy on the parameters Λ. Note also that
the use of these penalizations is illustrated on simple problems inspired by image pro-
cessing applications in § IV.5.3 and in § V.4.

3 Spatially Structured Penalizations

A classical sparsity promoting penalization is the ℓ1-norm, weighted by a nonnega-

tive scaling parameter Λ def= (λk,p)k,p ∈ RK×P,

∣∣Λ ⋅ X∣∣1 = K∑
k=1

P∑
p=1

λk,p∣xk,p ∣ . (7)

However, this penalization considers each coe�cients of each pixel individually; this is
not robust enough to noise to provide good source separation for VSDOI. In order to
bene�t from the spatial structure of the components, we design some sparsity enforcing
penalizations utilizing spatial information.

3.1 Periodic Artifacts: ℓ1,2-Norm by Blocks

When performing VSDOI, �uctuations in the illumination supply a�ect the whole
observation �eld; animal respiration and cortical movements a�ect entire spatial areas
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in unison; heartbeat artifacts are much stronger along the veins. In general, because of
the biophysical origins of the periodic artifacts, when a given frequency a�ects the time
course of one given pixel, chances are that the same frequency also a�ects neighbouring
pixels, with similar intensity.

�us, detection of signi�cant frequencies is improved by replacing, in the ℓ1-norm,
the modulus of a single coe�cient by the norm of a group of coe�cients of neighboring
pixels.We call a block structure (over the k-th coe�cientmap) a family of spatial blocksof

neighboring pixels. �en, given a family B(P) def= (B(P)k )1≤k≤KP

, where for each frequency

k, B(P)k is a block structure, we de�ne the ℓ1,2-norm by blocks

∣∣X(P)∣∣
ℓ,Λ(P)B

def=
KP∑
k=1
∑
b∈B

(P)
k

λ(P)k,b ∣∣X(P)k,b ∣∣2 , (8)

where for a block b, we denote ∣∣X(P)k,b ∣∣2 def=
√
∑p∈b ∣x(P)k,p ∣2. �e scaling parameter Λ(P)B

def=

{B(P), (λ(P)k,b)
(k,b)∶

1≤k≤KP

b∈B
(P)
k

} allows to weight di�erently the penalization on each block.

�e choice of the block structures in B(P) is discussed in § 3.5. Note that in the partic-

ular case where for all k ∈ {1, . . . ,KP}, B(P)k comprises all blocks restrained to individual

pixels, i.e. ∀ k ∈ {1, . . . ,KP}, B(P)k
set= ({p})1≤p≤P, then the ℓ1,2-norm amounts to the ℓ1-

norm (7).

3.2 Re�nement: Reweighted ℓ1,2-Norm Penalization

Candès et al. (2008) introduced a method to improve sparse approximations based
on ℓ1 penalizations. �e idea is that smaller weights λ(P)k,p should be introduced for fre-
quencies and pixels known to be signi�cant in the model. A�er solving a problem of
the form argminX

1
2 ∣∣Y − DX∣∣22+ ∣∣Λ ⋅ X∣∣1 for some Λ, the authors propose to modify the

weights in Λ according to the solution: lower weights are chosen for high coe�cients
found in X.�en, the problem can be solved againwith thesemore adaptedweights, and
this procedure is repeated until the weights and the solution does not evolve anymore.

Following this approach, we propose a reweighted version of the ℓ1,2 penalizations,
which allows to re�ne adaptively the weights over the blocks for the periodic artifacts

penalization (1). Starting from some weights on spatial blocks Λ(P,rw)B , we solve succes-
sively (6) with weights updated according to

λ(P)k,b ← λ(P,rw)k,b∣∣X(P)k,b ∣∣2λ(P,rw)k,b + 1 , (9)

where X(P) are the periodic artifacts coe�cients for the current solution. One can see
that the highest is the norm of a block of coe�cients, the lowest is its corresponding
weight in the next optimization step. It should be noted however that, as opposed to the

reweighted ℓ1 proposed in Candès et al. (2008), the weights in Λ(P)B updated by (9) can

never exceed the weights in Λ(P,rw)B .
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3.3 Neuronal Activity: ℓ1,2-Norm for Sparse Temporal Wavelets

Total Variation for Sparse Spatial Gradients

Similarly to the periodic artifacts component, neuronal activity of neighboring pix-
els in VSDOI are o�en highly correlated. For instance, many publications on VSDOI
report wave-like patterns of activity (Wu et al., 2008), where at each time frame, re-
gions of homogeneous activity are distinguishable. In the same time, sharp di�erences
of activity can be present between these regions.

�us, we penalize the neuronal activity component by an other ℓ1,2-norm, parame-

terized by Λ(A)B
def= {B(A), (λ(A,ℓ)k,b )

(k,b)∶
1≤k≤KA

b∈B
(A)
k

}. Note however that ℓ1,2-norm is less adapted

for neuronal activity than for the periodic artifacts component. Indeed, it tends to select
groups of coe�cients with similar modulus, but without regards to their signs. A given
frequency may in�uence a spatial area with di�erent phases from pixel to pixel. On the
contrary, neuronal activity time course at pixels with similar intensity must have the
same sign.

�is can be modeled in our sparsity framework as the hypothesis that the spatial
gradient of each spatial map of coe�cients is sparse. �e spatial gradient is de�ned
by approximating the spatial derivatives in each direction by �nite di�erences. More
precisely, given a coe�cient index k ∈ {1, . . . ,KA} and a block b of size 2 × 2 pixels, the
spatial gradient of the k-th coe�cient map of X(A) at the center of b is de�ned as the
four-dimensional vector2

∆X(A)k,b
def= (x(A)k,p − x(A)k,b )p∈b

p

q

r

s
b (10)

where we denote x(A)k,b
def= 1

4 ∑p∈b x
(A)
k,p the average value of the coe�cients within the block

b.
�is approximates the spatial derivatives at the red dot in the diagram in (10), along

the directions indicated by the arrows. Note that other choices for the �nite di�erences
are possible; to our knowledge, such discrete spatial gradient with four coordinates is
new, and presents both theoretical and computational advantages, as detailed in § IV.2.

�en, we enforce sparsity on the spatial gradients of the coe�cients X(A) by using
the two-dimensional total variation semi-norm penalization over each coe�cient map,

∣∣X(A)∣∣
δ,Λ(A)TV

def=
KA

∑
k=1
∑
b∈BTV

λ(A,δ)k,b ∣∣∆X(A)k,b ∣∣2 ,
=

KA

∑
k=1
∑
b∈BTV

λ(A,δ)k,b

¿ÁÁÀ∑
p∈b

(x(A)k,p − x(A)k,b )2 ,
(11)

where BTV is the block structure containing all possible blocks of size 2 × 2, and Λ(A)TV

def={BTV , (λ(A,δ)t,b )(t,b)∶1≤k≤KA
b∈BTV

} allows to weight di�erently the penalization over each block.

2the notation ∆ for the discrete spatial gradient emphasizes the fact that the spatial derivatives are
approximated by �nite di�erences; it should not be confused with the usual notation for the Laplacian
operator.



52 II. SMCS for VSDOI

3.4 Some Suitable Hard Constraints

Using the variational framework that we de�ned in § 2.3 also allows to enforce other
properties of the signal we are looking for, not necessarily related to sparsity. Here,
we de�ne penalizations which are useful for VSDOI component separations. �ey are
dubbed “hard constraints” because they all have in common that they bear no compro-
mise: they de�ne subsets of the optimization space in which the solution of (6) must lie,
whatever might be the observations or other constraints in the problem. �ey are de-
�ned as convex indicator functionswhich are functions that take value 0 within a certain
set and +∞ outside.

3.4.1 Bleaching: Nonnegative Orthant.

�e bleaching component captures the �uctuations of the baseline �uorescence,
which is by nature a positive quantity. Since bleaching regressors are nonnegative, the
bleaching coe�cients are necessarily nonnegative as well. We ensure this with the con-
vex indicator function of the nonnegative orthant

ι+(X(B)) def=
⎧⎪⎪⎨⎪⎪⎩
0 if ∀ k ∈ {1, . . . ,KB},∀ p ∈ {1, . . . , P}, x(B)k,p ∈ R+ ,+∞ otherwise .

(12)

3.4.2 Periodic Artifacts: Bounded Amplitude.

In order to ensure stability of the component separation results and enforce prior
knowledge over the components amplitudes, one can bound from above the coe�cients
of the periodic artifacts. We introduce a hard constraint which is spatially structured
similarly to the ℓ1,2-norm by blocks, as

ι
ℓM
(P)
B

(X(P)) def=
⎧⎪⎪⎨⎪⎪⎩

0 if ∀ k ∈ {1, . . . ,KP},∀ b ∈ B(P)k , ∣∣X(P)k,b ∣∣2 ≤ µ
(P)
k,b ,+∞ otherwise ,

(13)

whereM(P)B
def= {B(P), (µ(P)k,b)

(k,b)∶
1≤k≤KP

b∈B
(P)
k

} sets the maximal amplitude of each spatial block

of coe�cients.

3.4.3 Neuronal Activity: Bounded Deviation and Known Bounds.

In a similar fashion, one can control the amplitude of the spatial gradients of the
neuronal activity coe�cients with a penalization which is spatially structured as like
the total variation, as

ι
δM
(A)
TV

(X(A)) def=
⎧⎪⎪⎨⎪⎪⎩

0 if ∀ k ∈ {1, . . . ,KA},∀ b ∈ BTV , ∣∣X
(A)
k,b ∣∣2 ≤ µ

(A)
k,b ,+∞ otherwise ,

(14)

where M(A)TV

def= {BTV , (µ
(A)
k,b )(k,b)∶1≤k≤KA

b∈BTV

} sets the maximal amplitude of each spatial gra-

dients.
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Moreover, it might happen that in some VSDOI experiments, the experimentalist
knows in advance that at some points in time, no neuronal activity should be expected;
or on the contrary, that the neuronal activity should be above a certain value.�is can be
easily transposed in our variational framework, again with a convex indicator function:

ι[Y(A) ,Y(A)](Y (A)) def=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if ∀ t ∈ {1, . . . , T},∀ p ∈ {1, . . . , P},
y
(A)
t,p ∈ [y(A)t,p

, y(A)t,p ] ,+∞ otherwise ,

(15)

where the spatiotemporal bounds Y (A) and Y
(A)

de�ne respectively the minimum and
maximum values of the neuronal activity. Some or all of those values can be ±∞ when
no bound is known.

3.5 Structure of the Parameters

Altogether, the penalization Ψ(Λ) in (6), where Λ stands for the set of all parameters
involved, expands for all X ∈ CK×P, as

Ψ(Λ)(X) set= ∣∣X(A)∣∣
ℓ,Λ(A)B

+ ∣∣X(A)∣∣
δ,Λ(A)TV

+ ι
δM
(A)
TV

(X(A)) + ι[Y(A) ,Y(A)](D(A)X(A))+ ι+(X(B)) + ∣∣X(P)∣∣ℓ,Λ(P)B

+ ι
ℓM
(P)
B

(X(P)) . (16)

In all generality, there can be one di�erent weight for each spatial block of each co-
e�cient map involved in (16). In practice, one should reduce as much as possible the
number of degrees of freedomof themodel to avoid over�tting and to be able to set rele-
vant parameters automatically (see the discussion § 4.2). Our approach is to set, for each
component (c) and each regressor k ∈ {1, . . . ,Kc}, a unique parameter. Such parameter

can be denoted λ
(c)
k , it is characteristic of the signi�cance of regressor k of component(c) over the entire spatiotemporal dynamic. �e �nal map of weights is set as a func-

tion of the spatially varying residual level σp, proportionnaly to λ
(c)
k ; such function is

explicited in § VI.1.1.
Since we are working with blocks instead of isolated coe�cients, we extend the pre-

vious principle to block structures. For each component (c) and each regressor k ∈{1, . . . ,Kc}, we chose �rst a block side length s
(c)
k . �en, the family of blocks B(c)k con-

tains all possible square blocks of s(c)k × s(c)k pixels. Note that this comprises incomplete
blocks at the boundary of the spatial domain, where we apply null boundary conditions,
as explained in § IV.1. Finally, for each of those blocks, the corresponding penalization

weight is set now as a function of ∣∣Σb∣∣2, where ∣∣Σb∣∣2 =√∑p∈b σp
2, proportionaly to λ(c)k .

�e setting of maximum amplitude values M(c)B is slightly di�erent, because they
should only depend on the underlying signal amplitude and not on the noise level.

Proportionaly to an overall scaling, µ(c)k , the maximum amplitude over each block is
then only a function of the block size.

�ose scalings are discussed in more details in § VI.1.1.
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4 Discussion

�e entire SMCS approach has been described, but many theoretical and technical
questions remain. Before going further on our way to VSDOI signal separation, it is
judicious to introduce those questions here.

4.1 Comparison with MCA

As already highlighted, themotivation behind SMCS is the possibility to take advan-
tage of the distinct morphologies of the components in the temporal domain, together
with their spatial structure. �e former is done by representing each component in an
adapted dictionary, and the latter by imposing over the corresponding coe�cients a
structured sparsity.

Alternatively, one could think of using the spatial information by applying sparsify-
ing spatial transforms over the coe�cients X of our model. �is would correspond to
representing the datawithin huge dictionaries of separable spatiotemporal regressors, as
advocated by the multichannel MCA approach, evoked in the introduction. Doing so,
one could get rid of the complex penalizations designed along this chapter. However,
the kind of spatial transforms that should be used for the di�erent components within
VSDOI data is not obvious to us. Moreover, using for instance the spatial equivalent of
our redundant wavelet transform presented in § 2.2.3 would multiply the number of co-
e�cients in the problem by a factor of order log2(P). Finally, the study of multichannel
MCA performances for component separation in the presence of noise are rather lim-
ited.�e approach advised in Bobin et al. (2008, §IV.E. or §V.A.3.b.), that tends to select
only coe�cients with amplitude three or four times higher than the noise standard de-
viation, is impracticable for VSDOI signals where noise and components have similar
orders of magnitude.

In spite of those limitations, adapting MCA to the context of VSDOI component
separation would be an interesting and instructive work; however, the SMCSmodel led
us to focus on other challenges, introduced below.

4.2 Many Parameters for Many Penalizations

In the GLM model, precise knowledge of the neuronal dynamic is needed for the
design of the regressors; in the case of Reynaud et al. (2011) this boils down to setting pa-
rameters controlling the possible neuronal response delays, rising and decreasing times,
as well as the dimensionality of the response component space. Other parameters are
the di�erent frequencies of oscillating artifacts and the bleaching time constant. In their
case, those parameters are estimated on speci�cally designed experiments, as outlined
in § I.3.5.

In our sparsity framework, precision on those settings can be drastically relaxed, at
the cost of new parameters.�ey typically are scaling parameters, tuning the relative in-
�uence between the data-�delity and the penalization. In variational signal processing
approaches, the values of these parameters are sometimes chosen arbitrarily by trial-
and-error, or according to some heuristics. When a quality criterion can be de�ned,



References 55

for instance in regression of classi�cation problems, parameters can be set by cross-
validation. More involved methods estimate those parameters directly from the data,
o�en based on statistical assumptions on the observed signal. A common drawback
of all those methods, however, is that they require, for each set of parameters that one
wants to test, a full solution of the model.

In the SMCSmodel, that means to �nd, for each set of parameters, a solution of (6),
where the penalization Ψ is the complex functional de�ned in (16). In contrast to the
GLM model described in § I.3.5, it is not the solution of a linear system, and it cannot
be solved for each pixel independently, because of the spatially structured penalizations.
�e resulting optimization problem is then high dimensional (X ∈ CK×P has an order
of PT log2(T) coe�cients). Moreover, it is convex but nondi�erentiable.

4.3 Splitting the Problem

�e above review is not encouraging; most of the obstacles are due to the complex
spatial penalizations in Ψ, especially the ℓ1,2-norm on overlapping blocks of coe�cients,
or the TV semi-norm, which both introduce dependencies between all pixels.

Along the three following chapters of this thesis, we propose and develop solutions
that relies on the same general principles: splitting the problem into several, simpler
subproblems. To give an illustration, consider for instance that a simple ℓ2-norm pe-
nalization is much easier to handle on an isolated block of coe�cients than within a
full ℓ1,2-norm with overlapping blocks. In the two next chapters, we de�ne rigorously
this kind of property, and develop an optimization algorithm that uses them in order
to minimize more complicated functions. Further on, we show how the same property
enables the use of statistical estimation of parameters for some subproblems. Finally, a
subsequent chapter details how those methods can be applied in the case of noisy com-
ponents source separation forVSDOI, thanks to successive approximations of thewhole
SMCS model.
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III

A Generalized

Forward-Backward

Splitting Algorithm

�e previous chapter de�nes a variational problem that must be solved e�ciently
for retrieving the coe�cients of our voltage-sensitive dye optical imaging model. As
underlined in § II.4.2, this is a minimization problem which is convex, but nondi�er-
entiable and high-dimensional, with complex relationships between the coe�cients. In
the same time, we observed that it can be decomposed as a sum of functionals which
are, individually, much simpler to handle.

In fact, in that particular context, simplicity is a well de�ned property: a functional
is called simple if one can compute e�ciently itsMoreau’s proximity operator, de�ned in
the introduction of this thesis. As explained at this occasion, functionals that are sums
of simple functions can be e�ciently minimized with help of the proximity operators
of each of their terms.

�e particular case of the forward-backward algorithm makes use of both the sim-
plicity of a term (through its proximity operator) and the smoothness of an other term
(through a gradient descent steps).�is is interesting to us because the data-�delity term
of our functional is smooth, but not simple. Unfortunately, only one simple function can
be involved in the splitting.

In this chapter, we present a generalized forward-backward splitting algorithm, al-
lowing e�cient minimization of the sum of convex functions f +∑n

i=1 gi , where f has a
Lipschitz continuous gradient and each gi is simple in the sense that its proximity op-
erator is easy to compute. �e resulting method makes use of the regularity of f in the
forward step, and the proximity operators of the simple functions are applied in parallel
in the backward step.

While the forward-backward algorithm cannot deal with more than n
set= 1 nons-

mooth function, we generalize it to the case of arbitrary n, without resorting to partial
resolutions of subproblems.
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�is chapter is the most technical part of this thesis, and many notations are spe-
ci�c to it and to the next one. �roughout this chapter,H denotes a real Hilbert space
endowed with scalar product ⟨⋅ ∣ ⋅⟩ and associated norm ∣∣ ⋅ ∣∣, Id is the identity opera-
tor on H , and n is a strictly positive integer, n ≥ 2. �en, Γ0(H) is the class of lower
semicontinuous, proper, convex functions fromH to ]−∞,+∞].
1 Monotone Inclusion and Minimization Problems

We consider the following monotone inclusion problem

Find x ∈ {zer (B + n∑
i=1

Ai) def= {x ∈H ∣ 0 ∈ Bx + n∑
i=1

Aix}} , (1)

where B∶H ↦ H is cocoercive, and for all i, Ai ∶H ↦ 2H is a maximal monotone set-
valued map.

�e structured monotone inclusion problem (1) is fairly general, and a wide range
of iterative algorithms to solve it takes advantage of the speci�c properties of the oper-
ators involved in the summand. As we will see, one crucial property is the possibility to
compute the resolvent of a maximal monotone operator A, denoted JA. It is de�ned as
(see § 1.1 for details)

JAx = ξ
def⇔ x ∈ ξ + Aξ .



1. Monotone Inclusion and Minimization Problems 59

For a given x ∈H , computing JAx is in itself a monotone inclusion problem, but it turns
out that it can be solved e�ciently formany operators, e.g. the action of the resolvent can
be easily computed in closed form. Our interest is in splitting methods for solving prob-
lem (1): iterative algorithmswhich evaluate individually the operator B (cocoercive) and
the resolvents JA i , at various points ofH , but not the resolvents of sums.

While such inclusion problems arise in various �elds, our main motivation is to
solve convex minimization problems. Indeed, it is well-known that the subdi�erential
∂gi of a function gi ∈ Γ0(H) is amaximalmonotonemap. Its resolvent J∂g i can be shown
(see § 1.1) to be equal to theMoreau’s proximity operator of g (Moreau, 1965), de�ned for
all x ∈H as

proxg(x) def= argmin
ξ∈H

1
2 ∣∣x − ξ∣∣2 + g(ξ) . (2)

Note that, using strong convexity of the squared norm, one can show that the minimizer
exists and is unique, so that the proximity operator is well de�ned. Again, this can be
solved explicitly for many functions; such functions are dubbed simple.

If moreover f ∈ Γ0(H) is di�erentiable with a Lipschitz continuous gradient, then
Baillon-Haddad �eorem (Baillon and Haddad, 1977) asserts that ∇ f is cocoercive.
De�ning F

def= f + ∑n
i=1 gi , Fermat’s rule on convex optimization states that the set of

minimizers1 of F veri�es

argmin F def= {x ∈H ∣F(x) = inf
ξ∈H

F(ξ)} = zer (∂F) . (3)

Now, under domain quali�cation conditions, ∂F = ∇ f +∑n
i=1 ∂gi .�erefore, identifying

B with ∇ f and each Ai with ∂gi , solving (1) allows to solve

min
x∈H
{F(x) def= f (x) + n∑

i=1

gi(x)} . (4)

�is chapter introduces a novel generalized forward-backward (GFB) algorithm for
solving themonotone inclusion (1).�e algorithm achieves full splitting where all oper-
ators are used separately: an explicit step for B and a parallelized, implicit step through
the resolvent of each Ai . We prove convergence of the algorithm even when summable
errors contaminates the iterations.

We �rst recall some essential de�nitions and properties of monotone operator the-
ory that are necessary to our exposition. Note that the next chapter also makes use of
some of these results. �e interested reader may refer to Phelps (1993); Bauschke and
Combettes (2011) for a comprehensive treatment. As we will deal with maximal mono-
tone operator splitting, we also introduce speci�c notations on the product spaceHn.

�en, we present in § 2 the algorithm, and state our main theoretical results before
commenting on some relevant aspects and on alternatives in the literature. Finally, § 3
details the convergence analysis.

1throughout this thesis, if C ⊆H is a subset ofH , we also use the notation argminx∈C F(x) or simply
argminC F for the set {x ∈ C ∣ F(x) = inf ξ∈C F(ξ)}. Moreover, in the case where argminC F = {x} is a
singleton, i.e. the minimizer exists and is unique, we abusively use the notation argmin F for denoting
the element x.
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1.1 De�nitions and Properties

In the following, A∶H → 2H is a set-valued operator and T ∶domT →H is a single-
valued operator. Recall that Id denotes the identity operator onH .

De�nition 1.1 (graph, inverse, domain, range and zeros). �e graph of A is the set
graA def= {(x , y) ∈H2 ∣ y ∈ Ax}. �e inverse of A, noted A-1, is the operator whose graph
is graA-1 def= {(x , y) ∈H2 ∣ (y, x) ∈ graA}.�edomainofA is domA

def= {x ∈H ∣ Ax ≠ 0}.
�e range of A is ranA def= {y ∈H ∣ ∃ x ∈H , y ∈ Ax}, and its set of zeros is zerA def={x ∈H ∣ 0 ∈ Ax} = A-1(0).
De�nition 1.2 (resolvent and re�ection operators). �e resolvent of A is the operator

JA
def= ( Id+A)-1. �e re�ection operator associated to JA is the operator RA

def= 2JA − Id.
De�nition 1.3 (maximal monotone operator). A ismonotone if

∀ x , y ∈H , (u ∈ Ax and v ∈ Ay)⇒ ⟨u − v ∣ x − y⟩ ≥ 0 .
It is moreover maximal monotone if its graph is not strictly contained in the graph of
any other monotone operator.

De�nition 1.4 (uniformly monotone operator). A is uniformly monotone of modulus
ϕ∶ [0,+∞[→ [0,+∞] if ϕ is a nondecreasing function that vanishes only at zero, such
that

∀ x , y ∈H , (u ∈ Ax and v ∈ Ay)⇒ ⟨u − v ∣ x − y⟩ ≥ ϕ(∣∣x − y∣∣) .
De�nition 1.5 (nonexpansive and α-averaged operators). T is nonexpansive if

∀ x , y ∈ domT , ∣∣Tx − Ty∣∣ ≤ ∣∣x − y∣∣ .
For α ∈]0, 1[, T is α-averaged if there exists R nonexpansive such that T = (1−α) Id+αR.
We denoteA(α) the class of α-averaged operators onH . In particular,A( 12) is the class
of �rmly nonexpansive operators.

De�nition 1.6 (cocoercive operator). For β ∈ ]0,+∞[, T is β-cocoercive if βT ∈ A( 12).
�e following lemma is useful for manipulating averaged and cocoercive operators.

Lemma 1.1. Let α1, α2 ∈]0, 1[, β ∈ ]0,+∞[, T1 and T2 be respectively α1- and α2-averaged
operators, and T be β-cocoercive.�en,

(i) ∀ γ ∈ ]0, 2β[, Id−γT ∈ A( γ
2β);

(ii) ∀ ρ ∈ ]0, 1
α1
[, Id+ρ(T1 − Id) ∈ A(ρα1).

(iii) α
def= α1+α2−2α1α2

1−α1α2
∈ ]0, 1[, and T1T2 ∈ A(α).
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Proof. (i). By de�nition, βT = 1
2(Id+R) for some nonexpansive operator R, so that

Id−γT = (1 − γ
2β) Id+ γ

2β(−R). Since R is nonexpansive, −R is nonexpansive as well,
which terminates the proof.
(ii). By de�nition, T1 = (1 − α1) Id+α1R1 for some nonexpansive operator R, so that
Id+ρ(T1 − Id) = Id+ρα1(R1 − Id) = (1 − ρα1) Id+ρα1R1.
(iii). See Ogura and Yamada (2002, �eorem 3). Note that these authors actually de�ne
α-averaged operators with α ∈ [0, 1[, but the above result is easily derived from theirs,
noticing that α1 + α2 ≥ 2min(α1, α2) > 2α1α2, ensuring α ∈ R+∗. ∎

Let us establish some useful characterizations of �rmly nonexpansive operators.

Lemma 1.2. �e following statements are equivalent:

(i) T is �rmly nonexpansive with full domain (i.e. domT =H);

(ii) 2T − Id is nonexpansive and T has full domain;

(iii) ∀ x , y ∈H , ∣∣Tx − Ty∣∣2 ≤ ⟨Tx − Ty ∣ x − y⟩;
(iv) T is the resolvent of a maximal monotone operator A, i.e. T = JA.

Proof. (i)⇔ (ii): T ∈ A( 12)⇔ T = Id+R
2 for some R nonexpansive.

(i)⇔ (iii): see Zarantonello (1971). (i)⇔ (iv): see Minty (1962). ∎
Note that with (iii), one retrieves the characterization of the cocoercivity given in

§ 2.1. By the Cauchy-Schwarz inequality, β-cocoercivity implies β-1-Lipschitz continuity,
but the converse is not true in general. However, it turns out to be the case for gradients
of convex functionals. We summarize here some properties of the subdi�erential.

De�nition 1.7 (subdi�erential). For g∶H →]−∞,+∞], its subdi�erential is the set val-
ued operator

∂g∶ H Ð→ 2H ,
x z→ {u ∈H ∣ ∀ h ∈H , g(x) + ⟨u ∣ h⟩ ≤ g(x + h)} . (5)

In the following lemma, dom gi
def= {x ∈H ∣ gi(x) < +∞} is the domain of a function

g ∈ Γ0(H), and ri(C) (respectively sri(C)) denotes the relative interior (respectively the
strong relative interior), of a convex setC ⊆H (see for instance Bauschke andCombettes
(2011)).

Lemma 1.3. Let F ∈ Γ0(H), f ∶H →]0,+∞] be proper and convex, x ∈ dom f such that f
is (Gâteaux) di�erentiable in x, and for all i ∈ {1, . . . , n}, gi ∈ Γ0(H). Moreover, suppose
that

∀ i ∈ {2, . . . , n}, 0 ∈ sri (dom gi − ∩i−1j=1 dom g j) . (D)

�en,

(i) ∀ ξ ∈H , ξ ∈ argmin F⇔ 0 ∈ ∂F(ξ); (Fermat’s rule)
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(ii) ∂ f (x) = {∇ f (x)};
(iii) ∂(∑n

i=1 gi) = ∑n
i=1 ∂gi .

Proof. (i). ξ ∈ argmin F⇔ ∀ h ∈H , F(ξ) ≤ F(ξ + h).
(ii). See Bauschke and Combettes (2011, proposition 17.26).
(iii). See Bauschke and Combettes (2011, corollary 16.39); note that in the particular case
whereH is �nite-dimensional, ∩ni=1 ri (dom gi) ≠ 0 is a su�cient condition for (D). ∎
Lemma 1.4. Let β ∈ ]0,+∞[, f ∶H → R be a convex di�erentiable functionwhose gradient
is β-1-Lipschitz continuous, and g ∈ Γ0(H).�en,

(i) β∇ f ∈ A( 12), i.e. is �rmly nonexpansive;

(ii) ∂g is maximal monotone;

(iii) �e resolvent of ∂g is the proximity operator of g, i.e. proxg = J∂g .
Proof. (i) �is is Baillon-Haddad�eorem (Baillon and Haddad, 1977).
(ii) See Rockafellar (1970). (iii) See Moreau (1965). ∎

Finally, a speci�c case of a proximity operator is the orthognal projector onto a con-
vex subset, whose de�nitions and properties are recalled here.

De�nition 1.8 (indicator, orthogonal projector). Let C be a nonempty, convex, closed
subset of H . �e indicator function of C is the function ιC ∶H →]−∞,+∞] de�ned for
x ∈H by

ιC(x) def= ⎧⎪⎪⎨⎪⎪⎩
0 if x ∈ C ,

+∞ otherwise ,

C being nonempty and convex, ιC is proper and convex. Moreover, C being closed, ev-
ery convergent sequence in C converges in C so that ιC is lower semicontinuous. By
Lemma 1.4, ∂ιC is maximal monotone and the proximity operator of ιC is well de�ned.
We denote PC

def= proxιC and RC
def= rproxιC . In some context (see next chapter), we also

use the notation projC
def= proxιC .

Proposition 1.1 (orthogonal projector on a subspace). Let S be a closed convex subspace
ofH .�en,

(i) PS is linear;

(ii) PS is idempotent, i.e. PS ○ PS = PS.
(iii) PS is self-adjoint, i.e. ∀ x , y ∈H , ⟨PSx ∣ y⟩ = ⟨x ∣PSy⟩.
Proof. See for instance Deutsch (2001, Proposition 5.13). ∎
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1.2 Product Space

Let (wi)1≤i≤n ∈ ]0, 1]n such that∑n
i=1wi = 1. We considerH def= Hn endowed with the

scalar product ⟨⟨⟨ ⋅ ∣∣∣ ⋅ ⟩⟩⟩, de�ned as

∀ x def= (xi)i , y def= (yi)i ∈H , ⟨⟨⟨x ∣∣∣ y⟩⟩⟩ = n

∑
i=1

wi⟨xi ∣ yi⟩,
and with the corresponding norm ∣∣∣∣∣∣x∣∣∣∣∣∣ def= √∑n

i=1 ∣∣xi ∣∣2. �en, S ⊆ H denotes the closed

subspace S
def= {x def= (xi)i ∈H ∣ ∀ i , j, xi = x j}, whose orthogonal complement is the

closed subspace S� def= {x def= (xi)i ∈H ∣∑n
i=1wixi = 0}. We denote by Id the identity op-

erator onH , and we de�ne the canonical isometry

C∶ H Ð→ S ,
x z→ (x , . . . , x) .

We also introduce the following concatenated operators. Set B and each Ai in prob-
lem (1). Given γ = (γi)1≤i≤n ∈ ]0,+∞[n, we de�ne

γ⋅A∶ H Ð→ 2H ,
x

def= (xi)i z→ ⨉n
i=1 γiAi(xi) ,

i.e. its graph is

graγ⋅A def= n⨉
i=1

gra γiAi = {(x , y) ∈H2 ∣ ∀ i ∈ {1, . . . , n}, yi ∈ γiAixi} .
Finally, we de�ne B∶H → H , x def= (xi)i ↦ (Bxi)i . Using the maximal monotonicity of
each Ai (respectively the β-cocoercivity of B), it is an easy exercise to establish that γ⋅A
is maximal monotone (respectively that B is β-cocoercive) onH .

2 Generalized Forward-Backward Splitting

2.1 �e Algorithmic Scheme

Weconsider problem (1)where all operators aremaximalmonotone,B is β-cocoercive
with β ∈ ]0,+∞[, i.e.

∀ x , y ∈H , β∣∣Bx − By∣∣2 ≤ ⟨Bx − By ∣ x − y⟩ ,
and for all i ∈ {1, . . . , n} and any γ ∈ R+∗, the resolvent of γAi , denoted JγA i , is easy to
compute. Our generalized forward-backward algorithm is detailed in Algorithm 1.

To state our main theorem that ensures the convergence of the algorithm and its
robustness to summable errors, for each i ∈ {1, . . . , n}, let ε1,k,i be the error at iteration
k when computing J γ

wi
A i
, and let ε2,k be the error at iteration k when computing B. An
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Algorithm 1 Generalized forward-backward for solving (1).

Require
(zi)1≤i≤n ∈ Hn ; (wi)1≤i≤n ∈ ]0, 1]n s.t. ∑n

i=1wi = 1 ;
γ ∈ ]0, 2β[ ; ∀ k ∈N, ρk ∈ ]0, 4β−γ2β [ .

Initialization x ← ∑n
i=1wizi ; k ← 0.

repeat
Main Iteration
for i ∈ {1, . . . , n} do

zi ← zi + ρk(J γ
wi
A i
(2x − zi − γBx) − x) ; (6)

x ← ∑n
i=1wizi ;

k ← k + 1 .
until convergence;
Return x.

inexact GFB algorithm generates sequences (zi ,k)1≤i≤n
k∈N

, and (xk)k∈N, such that for all

i ∈ {1, . . . , n} and k ∈N,

zi ,k+1 = zi ,k + ρk(J γ
wi
A i
(2xk − zi ,k − γk(Bxk + ε2,k)) + ε1,k,i − xk) , (7)

where for all k ∈N, xk = ∑n
i=1wizi .

�eorem 2.1. Suppose that the following assumptions are satis�ed:

(i) zer (B +∑n
i=1 Ai) ≠ 0,

(ii) ∑k∈N ρk(4β−γ2β − ρk) = +∞,

(iii) ∑+∞k=0 ρk ∣∣ε2,k ∣∣ < +∞, and ∀ i ∈ {1, . . . , n}, ∑+∞k=0 ρk ∣∣ε1,k,i ∣∣ < +∞.

�en the sequence (xk)k∈N de�ned in (7) converges weakly towards a solution of (1).
If moreover

(iv) 0 < inf k∈N ρk ≤ supk∈N ρk ≤ 1,
(v) one of the following holds:

(1) B is uniformly monotone,

(2) ⨉n
i=1

γ
w i
Ai is uniformly monotone,

then the convergence is strong.
In addition, a su�cient condition for (2) is that for all i ∈ {1, . . . , n}, Ai is uniformly
monotone, all with the same modulus ϕ being either subadditive or convex.

Remark 2.1. �e de�nition of uniform monotonicity with modulus ϕ is provided in
Section 1.1.
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�e following corollary specializes �eorem 2.1 to the case of convex optimization
problems of the form (4), where all functions belong to Γ0(H), f is di�erentiable with∇ f being Lipschitz continuous with constant β-1, β ∈]0,+∞[, and for all i ∈ {1, . . . , n}
and any γ ∈ R+∗, the proximity operator of γgi is easy to compute.�e resulting scheme
is written explicitly in Algorithm 2.

Corollary 2.1. Let the sequence (xk)k∈N be de�ned by substituting, in (7), B with∇ f and
J γ
wi
A i
with prox γ

wi
g i
. Suppose that

(i) argmin F ≠ 0,
that the domain condition (D), and assumptions (ii)-(iii) of�eorem 2.1 are satis�ed.�en,
the sequence (xk)k∈N converges weakly towards a minimizer of (4).
If moreover assumption (iv) of�eorem 2.1 is satis�ed, and

(iv) one of the following holds:

(1) f is uniformly convex,

(2) ⨉n
i=1

γ
w i
∂gi is uniformly monotone,

then (xk)k∈N converges strongly to the unique minimizer of (4).
In addition, a su�cient condition for (2) is that for all i ∈ {1, . . . , n}, gi is uniformly
convex, all with the same modulus ϕ being either subadditive or convex.

Remark 2.2. Recall that a function f ∈ Γ0(H) is uniformly convex of modulus ϕ, if
ϕ∶ [0,+∞[→ [0,+∞] is a nondecreasing function that vanishes only at zero, such that
for all x and y in dom f , the following holds:

∀ t ∈]0, 1[, f (tx + (1 − t)y) + t(1 − t)ϕ(∣∣x − y∣∣) ≤ t f (x) + (1 − t) f (y) .
�e proofs are detailed in § 3. �e formulations of Algorithms 1 and 2 are general,

but they can be simpli�ed for practical purposes. In particular, the auxiliary variables zi
can all be initialized to 0, the weightswi set equally to 1/n, and the relaxation parameters
ρk can be set to 1, constant along iterations. See also next chapter, § IV.4, for important
implementation considerations.

2.2 Special Instances

Our GFB algorithm can be viewed as a hybrid splitting algorithm whose special
instances turn out to be classical splitting methods; namely the forward-backward and
Douglas-Rachford algorithms.

Relaxed forward-backward. For n set= 1, the core update operator (6) of Algorithm 1
specializes to

x ← x + ρk(JγA(x − γBx) − x) ,
so that xk given by (7) follows the iterations of the relaxed forward-backward algorithm
(Combettes, 2004, Section 6). In this case, convergence can be ensured with step size γ
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varying along iterations. For convex minimization problems, known results on conver-
gence rate analysis (on the objective in general) and accelerated versions of the forward-
backward algorithm (Beck and Teboulle, 2009; Bredies and Lorenz, 2008; Nesterov,
2013) might be inspiring to study those of our GFB.

Relaxed Douglas-Rachford. If we set B set= 0, the update of the auxiliary variables in
(6) becomes

zi ← zi + ρk(J γ
wi
A i
(2x − zi) − x) ,

so that (zi ,k)i ,k given by (7) follows the iterations of the relaxed Douglas-Rachford al-
gorithm on the product space Hn for solving 0 ∈ ∑n

i=1 Aix (Spingarn, 1983; Combettes
and Pesquet, 2008). Interestingly, B def= 0 is β-cocoercive for any β ∈ R+∗. Setting γ ∈
R+∗, observe that limβ→∞ 4β−γ

2β = 2. One retrieves at the limit the known conditions
on the relaxation parameters ρk for the relaxed Douglas-Rachford algorithm, namely∀ k ∈N, ρk ∈]0, 2[ and∑k∈N ρk(2 − ρk) = +∞.

Resolvent of the sumofmonotone operators. OurGFB scheme provides yet another
way for computing the resolvent of the sum of maximal monotone operators (Ai)i .
Given a point y ∈ ran (Id+∑n

i=1 Ai), simply consider (1) with B ∶ x ↦ x − y and β
set=

1. It would be interesting to compare this algorithm with the Douglas-Rachford and
Dykstra-based variants (Combettes, 2009); this is le� to a future work.

2.3 Comparison to Other Works

We make here a comparison of our GFB algorithm to the other proximal splitting
algorithms in the literature allowing to solve (4), by computing only proximity operators
of each individual gi and the gradient of f . Each of those algorithms are summed up
in Figure 1. Recall that ∇ f is supposed to be β-1-Lipschitz continuous. In addition, for
Algorithms 3 and 4, each gi ∈ Γ0(Hi) is composed with a linear operator Li ∶H → Hi ,
andwe de�neG def= ⨉n

i=1Hi and nL
def= ∣∣∑n

i=1 Li
∗Li ∣∣. Also, gi∗ denotes the Legendre-Fenchel

conjugate of gi ; recall that the proximity operator of gi∗ can be easily deduced from the
one of gi , using Moreau’s identity (Moreau, 1965). Finally, for Algorithms 2 and 5, the
weights (wi)1≤i≤n ∈ ]0, 1]n are such that∑n

i=1wi = 1.
Each algorithm has been simpli�ed and rewritten according to our setting, and we

identi�ed the parameters that played analogous roles. �is enables the comparison of
their allowed range, which are further illustrated in the numerical experiments pre-
sented within the next chapter.

Relation toCombettes andPesquet (2012). �ese authors developed an algorithm to
solve a general class of problems that covers (1). �ey rely on the classical Kuhn-Tucker
theory and propose a primal-dual splitting algorithm for solving monotone inclusions
involving a mixture of sums, linear compositions, and parallel sums (inf-convolution
in convex optimization) of set-valued and Lipschitzian operators. More precisely, the
authors exploit the fact that the primal and dual problems have a similar structure, cast
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Algorithm 2 Generalized forward-backward for solving (4).

Require (zi)1≤i≤n ∈Hn ; γ ∈ ]0, 2β[ ; ∀ k ∈N, ρk ∈ ]0, 4β−γ2β [ .
Main Iteration
for i ∈ {1, . . . , n} do

zi ← zi + ρk(prox γ
wi

g i
(2x − zi − γ∇ f (x)) − x) ;

x ← ∑n
i=1wizi .

Algorithm 3 Primal-dual of Combettes and Pesquet (2012).

Require x ∈H ; (vi)1≤i≤n ∈ G ; 0 < inf
k∈N

γk ≤ sup
k∈N

γk < β

1+β√∑n
i=1 ∣∣L i ∣∣2 .

Main Iteration
ξ ← x − γk(∇ f (x) +∑n

i=1 Li
∗vi) ;

for i ∈ {1, . . . , n} do
ui ← proxγk g i∗(vi + γkLix) ;
vi ← ui + γkLi(ξ − x) ;

x ← x − γk(∇ f (ξ) +∑n
i=1 Li

∗ui) .
Algorithm 4 Primal-dual of Condat (2013) and Vũ (2013).

Require x ∈H ; (vi)1≤i≤n ∈ G ; 0 < γ
1−nLγς ≤ 2β ; ρk ∈ ]0, 2 − 1

2β
γ

1−nLγς[ .
Main Iteration
ξ ← x − γk(∇ f (x) +∑n

i=1 Li
∗vi) ;

for i ∈ {1, . . . , n} do
vi ← vi + ρk(proxςg i∗ (vi + ςLi(2ξ − x)) − vi) ;

x ← x + ρk(ξ − x) .
Algorithm 5 Block-decomposition HPE of Monteiro and Svaiter (2013).

Require (zi)1≤i≤n ∈Hn ; (vi)1≤i≤n ∈Hn ; ς ∈]0, 1] ; γ = ς 2ςβ

1+√1+4ς2β2 .
Main Iteration
for i ∈ {1, . . . , n} do

zi ← prox γ
wi

g i
(γ2x + (1 − γ2)zi − γ∇ f (x) + γ(vi − u)) ;

vi ← vi + γ(x − zi) ;
x ← ∑n

i=1wizi ;
u ← ∑n

i=1wivi .

Figure 1: Proximal splitting algorithms for solving (4). See § 2.3 for details.
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the problem as �nding a zero of the sum of a Lipschitz continuous monotone map with
a maximal monotone operator whose resolvent is easy to compute. �ey solve the cor-
responding monotone inclusion using an inexact version of Tseng’s forward-backward-
forward splitting algorithm (Tseng, 2000).

Removing the parallel sum and setting each involved linear operators as the identity,
Combettes and Pesquet (2012, (1.1)) reduces to problem (1). For the sake of simplicity
and space saving we do not reproduce here in full their algorithm. However, we present
their scheme adapted to the optimization problemminx∈H { f (x)+∑n

i=1 gi(Lix)}, where
for each i, Li ∶H →Hi is a bounded linear operator and gi belongs to Γ0(Hi), for some
real Hilbert spaceHi . Taking Li

set= Id in Algorithm 3 solves (4).
Note that in their scheme, our cocoercivity assumption is relaxed to a Lipschitzianity

assumption, but for the application to convex optimization those assumptions are equiv-
alent, by Baillon-Haddad�eorem.While we solve the primal problem, their algorithm
solves both the primal and dual ones. Moreover, it allows the step size γ to vary along
iterations. However, this step size is bounded by a smaller constant than ours, which
scales as 1√

n
, i.e. the inverse of the square root of the number of simple functions in the

splitting. Note also that it requires two calls to ∇ f (and to L∗i ) per iteration; this may
signi�cantly increase the computational load of the algorithm.

Relation to Condat (2013) and Vũ (2013). �ese authors independently developed
primal-dual algorithms that solves a similar problem to the one ofCombettes andPesquet
(2012). �ey also use a similar approach, but requires cocoercivity of the Lipschitzian
operator and solve the resultingmonotone inclusion with an inexact forward-backward
algorithmon an appropriate augmented spacewith a nondiagonalmetric. Such a renorm-
ing technique was �rst introduced in He and Yuan (2012) for convergence analysis of
relaxations of the Arrow-Hurwiczmethod (Arrow et al., 1958).�e extension of Condat
(2013) takes into account a cocoercive operator; on top of that, Vũ (2013) deals with par-
allel sums. Note that, though very close, the two algorithms are not exactly equivalent,
and does not have the same assumptions on the parameters. We show here the version
of Condat (2013), which seems to allow slightly better bounds on the explicit step size γ

and implicit step size ς. Note that setting ς set= γ, the condition becomes γ ≤ √1+16β2nL−1
4βnL

,

which scales again as 1√
n
.

Relation to Monteiro and Svaiter (2013). Monteiro and Svaiter (2013, Section 5.3,
(51)) describe an instance of the block-decomposition hybrid proximal extragradient (BD-
HPE) for minimizing F set= f + g under linear constraints. Our problem (4) can be cast
in an equivalent linearly constrained convex programming overH def= Hn, as

min
z∈H

f (∑iwiz i) + n

∑
i=1

gi(z i) such that PS�(z) = 0 ,

where PS� is the orthogonal projector on the subspace S� de�ned in 1.2. As PS� is self-
adjoint, z is an optimal solution if, and only if, there exists v ∈H such that

0 ∈ (∇ f (∑ jw jz j))i + (∂gi(z i)/wi)i + PS�(v) and PS�(z) = 0 ,
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and a minimizer of F is given by x = ∑n
i=1wizi .

In the resulting iterations the gradient step size γ is bounded by 1, which is penalizing
for large values of β. Moreover, it seems necessary to keep track of two sets of auxiliary
variables; this may signi�cantly increase the memory load of the algorithm.

When publishing our work, it was claimed by an anonymous reviewer that another
application of the BD-HPE,more adapted to our speci�c problem, leads to the iterations
(7) with no under- nor over-relaxation, i.e. ∀ k ∈ N, ρk = 1. We would like to mention
here that the provided proof was incorrect, and deriving the GFB algorithm from the
HPE framework seems nontrivial to us.

3 Convergence Proofs

�is section is devoted to the convergence proof of the GFB, detailed in two steps.
First, we derive an equivalent �xed point equation satis�ed by any solution of (1). From
this, we draw an algorithmic scheme equivalent to GFB and establish its convergence
properties and its robustness to summable errors.

3.1 Fixed Point Equation

Now that we have all necessary material, let us characterize the solutions of (1).

Proposition 3.1. For any γ ∈ R+∗, x ∈ H is a solution of (1) if and only if there exists(zi)1≤i≤n ∈Hn such that

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∀ i ∈ {1, . . . , n}, zi = R γ

wi
A i
(2x − zi − γBx) − γBx ,

x =∑
i

wizi .
(8)

Proof. Set γ ∈ R+∗, we have the equivalence
0 ∈ Bx + n

∑
i=1

Aix ⇔ ∃ (zi)i ∈Hn , { ∀ i , wi(x − zi − γBx) ∈ γAix ,
x = ∑n

i=1wizi .

Now,

wi(x − zi − γBx) ∈ γAix ⇔ (2x − zi − γBx) − x ∈ γ

wi
Aix ,

(by Lemma 1.2 (i)⇔ (iv)) ⇔ x = J γ
wi
A i
(2x − zi − γBx) ,

⇔ 2x − (2x − zi) = 2J γ
wi
A i
(2x − zi − γBx)

− (2x − zi − γBx) − γBx ,⇔ zi = R γ
wi
A i
(2x − zi − γBx) − γBx . ∎

Before formulating our �xed point equation, we need the following preparatory
lemma.
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Lemma 3.1. Let z
def= (zi)i ∈H , b ∈ S, and γ = (γi)i ∈ ]0,+∞[n. �en,

(i) PS(z) = C(∑n
i=1wizi);

(ii) RS(z − b) = RSz − b;
(iii) Rγ⋅Az = (Rγ iA i(zi))i .
Proof. (i). PS(z) = argminy∈S ∣∣∣∣∣∣z − y∣∣∣∣∣∣2 = C( argminy∈H ∑i wi ∣∣zi − y∣∣2). Now, the func-
tional y ↦ ∑i wi ∣∣zi − y∣∣2 has gradient y ↦ 2∑i wi(y − zi) = 2(y −∑i wizi). �e result
follows from Lemma 1.3 (i)-(ii). (ii). PS is obviously linear and so is RS. Since b ∈ S,
RSb = b and the result follows. (iii). By separability of γ⋅A in terms of the components
of z, we have Jγ⋅Az = (Jγ iA i zi)i , and then Rγ⋅Az = (Rγ iA i(zi))i . ∎

In the sequel, we denote the set of �xed points of an operator T ∶H →H by �xT def={z ∈H ∣ Tz = z}.
Proposition 3.2. (zi)1≤i≤n ∈Hn satis�es (8) if and only if z

def= (zi)i is a �xed point of the
following operator

H Ð→ H

z z→ 1
2[Rγ⋅ARS + Id][Id − γBPS](z) , (9)

with γ = ( γ
w i
)
i
.

Proof. Using Lemma 3.1 in (8), we have PSz = C(x), BPS(z) = C(Bx) and RS − γBPS =
RS[Id − γBPS]. Altogether, this yields,

z satis�es (8) ⇔ z = Rγ⋅ARS[Id − γBPS]z − γBPSz⇔ 2z = Rγ⋅ARS[Id − γBPS]z + [Id − γBPS]z⇔ z = 1
2[Rγ⋅ARS + Id][Id − γBPS]z . ∎

3.2 Properties of the Fixed Point Operator

Expression (9) gives us the operator on which is based our GFB scheme. We �rst
study the properties of this operator that will play a crucial role in the convergence
proof.

Proposition 3.3. For any γ ∈ ]0,+∞[n, de�ne
T 1,γ∶ H Ð→ H

z z→ 1
2 [Rγ⋅ARS + Id] z . (10)

�en, T 1,γ is �rmly nonexpansive, i.e. T 1,γ ∈ A( 12).
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Proof. From Lemma 1.2 (i)⇔ (ii), Rγ iA i and RS are nonexpansive, and so is Rγ⋅A in view
of Lemma 3.1 (iii). Finally, as a composition of nonexpansive operators, Rγ⋅ARS is also
nonexpansive, and the proof is complete by de�nition ofA( 12). ∎
Proposition 3.4. For any γ ∈]0, 2β[, de�ne

T2,γ∶ H Ð→ H
z z→ [Id − γBPS] z . (11)

�en, T2,γ ∈ A( γ
2β).

Proof. By hypothesis βB ∈ A( 12), hence βB ∈ A( 12). �en for x , y ∈H ,

⟨⟨⟨βBPSx − βBPSy ∣∣∣ x − y⟩⟩⟩ = ⟨⟨⟨βPSBPSx − βPSBPSy ∣∣∣ x − y⟩⟩⟩ ,= ⟨⟨⟨βBPSx − βBPSy ∣∣∣PSx − PSy⟩⟩⟩ ,
≥ ∣∣∣∣∣∣βBPSx − βBPSy∣∣∣∣∣∣2 ,

where we derive the �rst equality using the fact that BPSx ∈ S, the second equality from
Proposition 1.1, and the inequality from Lemma 1.2 (i)⇔ (iii). �e same lemma proves
that βBPS ∈ A( 12), and Lemma 1.1 (i) terminates the proof. ∎

Proposition 3.5. For all γ ∈ ]0,+∞[n and γ ∈ ]0, 2β[, T 1,γT2,γ ∈ A(α), with α = 2β
4β−γ .

Proof. Combine Propositions 3.3 and 3.4 in Lemma 1.1 (iii). ∎
�efollowing proposition de�nes amaximalmonotone operatorA′γ whichwill be useful
for characterizing the operator T 1,γ.

Proposition 3.6. For all γ ∈ ]0,+∞[n there exists a maximal monotone operator A′γ such
that T 1,γ = JA′γ . Moreover for all γ ∈ R+∗,

y = T 1,γT2,γz⇔ z − y − γBPSz ∈ A′γy .
In particular,

�xT 1,γT2,γ = zer (A′γ + γBPS) .
Proof. �e existence of A′γ is provided by Proposition 3.3 and Lemma 1.2 (i)⇔ (iv).
�en for any y, z ∈H ,

y = T 1,γT2,γz ⇔ y = (Id + A′γ)-1(Id − γBPS)z⇔ z − γBPSz − y ∈ A′γy .
Taking y

set= z proves the second statement. ∎
Now, let us examine the properties of A′γ. For brevity, we denote for any z ∈ H , zS def=
PS(z) and z�

def= PS�(z).
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Proposition 3.7. For all γ ∈ ]0,+∞[n and (y, z) ∈H2

y ∈ A′γz⇔ yS − z� ∈ γ⋅A(zS − y�) .

Proof. First of all, by de�nition of T 1,γ we have

T 1,γ = 1
2 [(2Jγ⋅A − Id)(2PS − Id) + Id] ,= 1
2 [2Jγ⋅A(PS − PS�) − (PS − PS�) + PS + PS�] ,= Jγ⋅A(PS − PS�) + PS� . (12)

�erefore,

y ∈ A′γz ⇔ T 1,γ(y + z) = z ,
(by (12)) ⇔ Jγ⋅A((y + z)S − (y + z)�) = z − (y + z)� = zS − y� ,⇔ (y + z)S − (y + z)� − zS + y� ∈ γ⋅A(zS − y�) ,

⇔ yS − z� ∈ γ⋅A(zS − y�) . ∎
3.3 Convergence

We are now ready to state the main convergence result of our relaxed and inexact
GFB splitting algorithm (7) for solving (1).

�eorem 3.1. Let γ ∈]0, 2β[, and set γ = ( γ
w i
)
i
∈ ]0,+∞[n,

let (ρk)k∈N be a sequence in ]0, 4β−γ2β [ ,
let (ε1,k)k∈N and (ε2,k)k∈N be sequences inH ,
set z0 ∈H , and for every k ∈N, set

zk+1 = zk + ρk(T 1,γ(T2,γzk + ε2,k) + ε1,k − zk) , (13)

where T 1,γ and T2,γ are respectively de�ned in (10) and (11). If the following conditions are
satis�ed

(i) zer (B +∑n
i=1 Ai) ≠ 0,

(ii) ∑k∈N ρk(4β−γ2β − ρk) = +∞,

(iii) ∑+∞k=0 ρk∣∣∣∣∣∣ε1,k∣∣∣∣∣∣ < +∞ and∑+∞k=0 ρk∣∣∣∣∣∣ε2,k∣∣∣∣∣∣ < +∞,

then

(a) (T 1,γT2,γzk − zk)k∈N converges strongly to 0,

(b) (zk)k∈N converges weakly to a point z ∈ �xT 1,γT2,γ,
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(c) (xk def= ∑n
i=1wiz i ,k)k∈N converges weakly to x

def= ∑n
i=1wiz i ,

with x ∈ zer (B +∑n
i=1 Ai).

If moreover

(iv) 0 < inf k∈N ρk ≤ supk∈N ρk ≤ 1,
(v) one of the following holds:

(1) B is uniformly monotone,

(2) γ⋅A is uniformly monotone,

then

(d) (xk)k∈N converges strongly to x.

In addition, a su�cient condition for (2) is that for all i ∈ {1, . . . , n}, Ai is uniformly
monotone, all with the same modulus ϕ being either subadditive or convex.

Proof. (a)-(b). Denoting T
def= T 1,γT2,γ and α

def= 2β
4β−γ , Proposition 3.5 shows that there

exists R nonexpansive such that T = (1 − α)Id + αR. �en, we have for all k ∈N,

zk+1 = zk + ρk(αRzk + T 1,γ(T2,γzk + ε2,k) + ε1,k − zk − αRzk) ,= zk + µk(Rzk + εk − zk) ,
where µk

def= ρkα and εk
def= 1

α
(T 1,γ(T2,γzk + ε2,k) + ε1,k − (1 − α)zk − αRzk). Injecting

αR = T − (1 − α)Id gives εk = 1
α
(T 1,γ(T2,γzk + ε2,k) + ε1,k − T 1,γT2,γzk). By hypoth-

esis, for all k ∈ N, ρk ∈ ]0, 1
α
[ so that µk ∈ ]0, 1[. Moreover, condition (ii) provides

∑k∈N ρk( 1α − ρk) = ∑k∈N µk(1 − µk) = +∞. �en, 3.3 shows that T 1,γ is �rmly nonex-
pansive and in particular nonexpansive, so that for all k ∈ N, ∣∣∣∣∣∣εk∣∣∣∣∣∣ ≤ 1

α(∣∣∣∣∣∣ε1,k∣∣∣∣∣∣ + ∣∣∣∣∣∣ε2,k∣∣∣∣∣∣).
Hence, condition (iii) provides ∑k∈N µk∣∣∣∣∣∣εk∣∣∣∣∣∣ < +∞. Finally, in view of the de�nition
of R, we have �xR = �xT , so that condition (i) with Propositions 3.1 and 3.2 ensure
�xR ≠ 0. Altogether, all the hypotheses are satis�ed in order to apply Combettes (2004,
Lemma 5.1), where both (a) and (b) are proven.
(c). For any y ∈ H and k ∈ N, ⟨y ∣ xk − x⟩ = ⟨y ∣∑i wi(z i ,k − z i)⟩ = ∑i wi⟨y ∣ z i ,k − z i⟩= ⟨⟨⟨C(y) ∣∣∣ zk − z⟩⟩⟩. So, (b) provides weak convergence of (xk)k∈N towards x, which is a
zero of B +∑i Ai by Proposition 3.1.
(d). If moreover (iv) is satis�ed, in view of Propositions 3.3 and 3.4, the sequence de�ned
in (13) is immediately a particular instance of Combettes (2004, Algorithm 4.1). �en,
Combettes (2004, �eorem 3.1 and Remark 3.4) provides

∑
k∈N

∣∣∣∣∣∣(Id − T2,γ)zk − (Id − T2,γ)z∣∣∣∣∣∣2 = ∑
k∈N

γ2∣∣∣∣∣∣BPSzk − BPSz∣∣∣∣∣∣2 < +∞ . (14)

(1). Now, if B is uniformly monotone, then we have for all k ∈N,

⟨⟨⟨BPSzk − BPSz ∣∣∣ zk − z⟩⟩⟩ = ∑
i

wi⟨B(∑
i

wizi ,k) − B(∑
i

wizi) ∣ zi ,k − zi⟩
= ⟨B(xk) − B(x) ∣∑

i

wi(zi ,k − zi)⟩
≥ ϕ(∣∣xk − x∣∣) .
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From (b) and (14), we deduce that the right-hand side of the last inequality converges
to 0. In view of the properties of ϕ, we obtain strong convergence of (xk)k∈N towards x.

(2). Let u = −γBPSz and de�ne for all k ∈N,

yk = T 1,γT2,γzk and uk = (zk − yk) − γBPSzk .
We then have ∣∣∣∣∣∣uk − u∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣yk − zk∣∣∣∣∣∣ + γ∣∣∣∣∣∣BPSzk − BPSz∣∣∣∣∣∣ .
It follows from (a) and (14) that uk converges strongly to u. On the other hand, by
Proposition 3.6, we have

u ∈ A′γz and uk ∈ A′γyk .
�erefore, applying Proposition 3.7 to the pairs (z , u) and (yk , uk), and using the fact
that γ⋅A is uniformly monotone, we obtain

⟨⟨⟨(uS − z�) − (uS
k − y�k) ∣∣∣ (zS − u�) − (ySk − u�k)⟩⟩⟩ ≥ ϕ(∣∣∣∣∣∣(zS − u�) − (ySk − u�k)∣∣∣∣∣∣).

Now,

⟨⟨⟨(uS − z�) − (uS
k − y�k) ∣∣∣ (zS − u�) − (ySk − u�k)⟩⟩⟩= ⟨⟨⟨(uS − uS

k) − (z� − y�k) ∣∣∣ (zS − ySk) − (u� − u�k)⟩⟩⟩= ⟨⟨⟨uS − uS
k ∣∣∣ zS − ySk⟩⟩⟩ + ⟨⟨⟨z� − y�k ∣∣∣u� − u�k⟩⟩⟩ = ⟨⟨⟨u − uk ∣∣∣ z − yk⟩⟩⟩ .

Moreover,

ϕ(∣∣∣∣∣∣(zS − u�) − (ySk − u�k)∣∣∣∣∣∣) = ϕ(∣∣∣∣∣∣(zS − ySk) − (u� − u�k)∣∣∣∣∣∣)
= ϕ(√∣∣∣∣∣∣zS − ySk∣∣∣∣∣∣2 + ∣∣∣∣∣∣u� − u�k∣∣∣∣∣∣2)

(ϕ is nondecreasing) ≥ ϕ(∣∣∣∣∣∣zS − ySk∣∣∣∣∣∣)
Altogether, we arrive at ϕ(∣∣∣∣∣∣zS − ySk∣∣∣∣∣∣) ≤ ⟨⟨⟨u − uk ∣∣∣ z − yk⟩⟩⟩. By (a) and (b), yk converges
weakly to z and we have shown that uk converges strongly to u. We deduce then that⟨u − uk ∣ z − yk⟩ → 0 and therefore ySk converges strongly to zS = x in view of the prop-
erties of ϕ. �e latter in conjunction with (a) implies that zSk = xk converges strongly to
x.
It remains to show the special cases implying uniform monotonicity in (2). Indeed, if
for all i ∈ {1, . . . , n}, Ai is uniformly monotone with the same modulus ϕ which is also
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convex, then for (x , u), (y, v) ∈ graγ⋅A,
⟨⟨⟨u − v ∣∣∣ x − y⟩⟩⟩ = n∑

i=1

wi⟨ui − vi ∣ xi − yi⟩ ,
≥ n∑

i=1

wiγiϕ(∣∣xi − yi ∣∣) ,
≥ (mini γi) n∑

i=1

wiϕ(∣∣xi − yi ∣∣) ,
(ϕ is convex) ≥ (mini γi) ϕ( n∑

i=1

wi ∣∣xi − yi ∣∣) ,
(ϕ is nondecreasing) ≥ (mini γi) ϕ⎛⎝(mini wi)

¿ÁÁÀ n∑
i=1

∣∣xi − yi ∣∣2⎞⎠ ,
(wi ∈]0, 1]) ≥ (mini γi) ϕ⎛⎝(mini wi)

¿ÁÁÀ n∑
i=1

wi ∣∣xi − yi ∣∣2⎞⎠ ,
so that one �nally obtains ⟨⟨⟨u − v ∣∣∣ x − y⟩⟩⟩ ≥ (mini γi) ϕ((mini wi)∣∣∣∣∣∣x − y∣∣∣∣∣∣). �e proof
for ϕ subadditive follows the same lines using subadditivity instead of convexity in the
inequalities, and replacing mini γi by γ and mini wi by 1. ∎
Remark 3.1 (strong convergence). We have proved strong convergence of the sequence(xk)k∈N, but we did not elaborate on strong convergence of (zk)k∈N. It turns out that
the sequence (zk)k∈N is indeed quasi-Fejér monotone with respect to �xT . �us, by
Combettes (2004, Lemma 2.8(iv)), if int (�xT) ≠ 0 then (zk)k∈N converges strongly,
and so does (xk)k∈N. An alternative su�cient condition is that A′γ is demiregular; see
Attouch et al. (2010, De�nition 2.3) and Combettes and Wajs (2005, Condition 3.2) in
the case of convex optimization. Demiregularity occurs for instance if the operator has
a boundedly relatively compact domain (the intersection of its closure with any closed
ball is compact); see Attouch et al. (2010, Proposition 2.4). However, this condition is
rather abstract and it is not easy to translate it in terms of the properties of each Ai

involved in problem (1).

Finally, let us explicit the derivation of the claims of § 2.1 from�eorem 3.1.

Proof of�eorem 2.1. It is straightforward to see that the vector whose coordinates are
the sequences (zi ,k)k∈N de�ned in (7) follows iterations (13), with ε1,k = (ε1,k,i)i and ε2,k =
C(−γε2,k), which are summable under the required assumptions. Applying�eorem 3.1,
the claimed convergence properties follow. ∎
Proof of Corollary 2.1. Since it is continuously di�erentiable, f has full domain, so that
under (i) and (D), Lemma 1.3 provides argmin ( f + ∑i gi) = zer (∇ f +∑i ∂gi) ≠ 0.
Furthermore, in Lemma 1.4, (i) shows that∇ f is β-cocoercive, and for all i ∈ {1, . . . , n},
(ii) shows that ∂gi is maximal monotone and (iii) shows that J γ

wi
A i
= prox γ

wi
g i
. Hence,

weak convergence of (xk)k∈N towards a minimizer of (4) follows from�eorem 3.1 (c).
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�e proof of strong convergence is a consequence of �eorem 3.1 (d) together with the
fact that uniform convexity of a function in Γ0(H) with modulus ϕ implies uniform
monotonicity of its subdi�erential with modulus 2ϕ (Bauschke and Combettes, 2011,
Example 22.3(iii)). ∎
4 Conclusion and Perspectives

We proved convergence in a general setting of a novel inexact proximal algorithm,
which extends the forward-backward splitting algorithm to themore general case where
the operator that is not cocoercive is split into an arbitrary number of simpler maximal
monotone operators.

In a recent work, Liang et al. (2014) were able to prove iteration-complexity bounds
for the inexact relaxedGFB. In particular, if the sequences de�ned in�eorem 3.1 satisfy

inf
k∈N ρk(4β−γ2β − ρk) > 0 and ∑

k∈N k(∣∣∣∣∣∣ε1,k∣∣∣∣∣∣ + ∣∣∣∣∣∣ε2,k∣∣∣∣∣∣) < +∞ ,

then the pointwise iteration-complexity bound ensures the existence of a constant C ∈
R+∗ such that

∀ k ∈N, ∣∣∣∣∣∣zk+1 − zk∣∣∣∣∣∣ ≤ C√
k + 1 .

In addition, they propose a nonstationary version of our GFB, i.e. with parameter γ
varying along iterations.

As mentioned in the introduction, the forward-backward has revealed useful for
many practical purposes, and we believe that the GFB unlocks the possibility to address
e�ciently increasingly complex monotone inclusion and convex optimization prob-
lems. In particular it seems to be the best candidate to deal with the inverse prob-
lem (II.6) within our SMCS framework. In the next chapter, we further illustrate those
claims, both theoretically and numerically.
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IV

Splitting Spatially Structured

Penalizations for Signal Processing

�e previous chapter presented and analysed a generalized forward-backward algo-
rithm, enabling notably the minimization of functionals structured as F def= f +∑n

i=1 gi ,
where all considered functions are convex, f is smooth and each gi is simple. However,
concerning the optimization problem in our spatially structured sparse morphologi-
cal components separation presented in Chapter II, two points remain to be addressed;
�rst, how our variational problem can be split into the right structure, and second, why
is the generalized forward-backward the most adapted algorithm to date for solving it.

�is chapter deals with those questions in a more general perspective. On the one
hand, we derive proximity operators and splitting methods that covers many problems
encountered in signal processing; note that for didactic purpose, we re-establish some
basic results of convex analysis and extend some others. On the other hand, we demon-
strate the advantage of the proposedmethods in comparison to other proximal splitting
algorithms.

In this purpose, we de�ne rigorously the penalizations introduced in § II.3, and ex-
plain how they can be split into sums of simpler penalizations. Note that at this occasion,
we introduce a simple formalisation for dealing with spatially structured penalizations,
and propose a new total variation penalization.

�en, we give some practical hints for truly e�cient implementations of proximal
splitting algorithms.

Finally we design inverse problems inspired by classicalmodels of image processing,
delibarately chosen in such away that other proximal splitting algorithms can be applied
and compared fairly.

Although our numerical results are reported only on imaging applications, it should
be kept in mind that the functionals de�ned here, and their minimization with the gen-
eralized forward-backward, may prove useful for many other applications such as ma-
chine learning, statistical estimation or optimal control.
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1 Norms and Sets in a Structured Euclidean Space

Sparsity promoting penalizations for regularizing inverse problems have been pre-
sented in the introduction of this thesis. �e underlying sparsity property is illustrated
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in Figure 1(b). It represents the coe�cients of a natural image in an orthogonal wavelet
frame, where it can be seen that most of the coe�cients have small amplitude, or to
state it otherwise, most of the information is captured by a few coe�cients. �en in the
schematic view of Figure 1(c), we illustrate the concept of structured sparsity, where it
is assumed that the nonzero coe�cients satis�es speci�c spatial structure. Although it
is used here for the sake of illustration, it can be motivated by the presence of edges
or textures within natural images, leading to local dependencies in their wavelet coe�-
cients. A way to enforce sparsity while taking into account those local dependencies is
to replace the famous ℓ1-norm on the coe�cients by a structured ℓ1,2-norm by blocks.
Let us �rst de�ne such norms in a general setting.

In all the following, P is a strictly positive integer, and we consider the Euclidean
spaceRP, which can be the linear space where lies either a given signal, or its coe�cients
within a linear representation operator.

1.1 Groups of Coordinates over an Euclidean Space

De�nition 1.1 (group, subvector, group structure). Over the Euclidean spaceRP, a group
of coordinates is a nonempty subset b ⊆ {1, . . . , P}. For such a group and for x ∈ RP, it
is convenient to de�ne the subvector xb = (xp)p∈b ∈ R∣b∣. �en, a group structure is a

nonempty, �nite family of groups, B def= (bi)i∈I .
Note that when manipulating group structures, the indexing set I is usually im-

plicit. By abuse of notation, we also use B for the disjoint union of the elements of B
so that one can index the groups by b ∈ B instead of i ∈ I; and the cardinal of B is∣B∣ def= ∣I∣. Finally, if (B(i))i∈I is a nonempty family of group structures, their concatena-
tion, also abusively denoted (B(i))i∈I , is the group structure (bi ,b i)(i ,b i)∈∪i∈I{i}×B i

, where

for all (i , bi) ∈ ∪i∈I{i} × Bi , b(i ,b i) def= bi .

De�nition 1.2 (nonoverlapping, covering group structures). A group structure B over
the Euclidean spaceRP, is nonoverlapping if∀ b, b′ ∈ B, b ≠ b′⇒ b∩b′ = 0, and covering
if ∀ p ∈ {1, . . . , P}, ∃ b ∈ B, p ∈ b.
1.2 �e ℓ1,2-Norm

De�nition 1.3 (ℓ1,2-norm). Given a group structureB and a family of nonnegativeweights
indexed by B, Λ def= (λb)b∈B, the ℓ1,2-norm of parameter ΛB

def= {B, Λ} is
∣∣ ⋅ ∣∣ℓ,ΛB

∶ R
P Ð→ R+
x z→ ∣∣x∣∣ℓ,ΛB

def= ∑b∈B λb∣∣xb∣∣2 , (1)

where for a group b, ∣∣xb∣∣2 is the Euclidean norm of the subvector xb inR∣b∣.
Remark 1.1 (ℓ1-norm, ℓ2-norm). Note that in the particular case where B comprises
all groups restrained to individual coordinates, i.e. B set= ({p})1≤p≤P, then the ℓ1,2-norm
amounts to the classical ℓ1-norm; whereas in the particular case where B comprises a
single group covering all coordinates, i.e. B set= ({1, . . . , P}), then the ℓ1,2-norm boils
down to the ℓ2-norm, i.e. the Euclidean norm overRP.
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(a) La Boute, y(0).

j = 7
d = 1

d = 2

d = 3

j = 8

d = 1

d = 2

d = 3

j = 9

d = 1

d = 2

d = 3

(b) x(W) = D(W)-1y(0).

(c) B( j,d ,i). (d) (B( j,d ,1), B( j,d ,2), B( j,d ,3), B( j,d ,4)).
Figure 1: Illustration of sparsity and spatial block structure over two-dimensional
wavelet coe�cients. (a) A natural image. (b) Schematic view of the coe�cients of (a)
in an orthogonal wavelet frame. Positive values are in red, negative values are in blue,
and white pixels indicate coe�cients with low absolute value: we can see that most co-
e�cients are close to zero. �ree levels of decomposition are represented, regrouped
by scale j, direction d and in coherence with their spatial positions p. (c) Close up
on the coe�cients of scale j = 9 and direction d = 3, superposed with a block grid,
i.e. a set of adjacent, nonoverlapping blocks of coe�cients covering the whole domain.
One can see that the meaningful coe�cients are enclosed within a limited number of
blocks, illustrating spatially structured sparsity.�e block side length is approximatively
s( j,d) = 8. (d)�e same coe�cients, superposed with a block structure decomposed into
four block grids, in which each spatial position belongs to exactly four di�erent blocks.
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Remark 1.2. By continuity and convexity of eachEuclidean norm ∣∣ ⋅ ∣∣2 overR∣b∣, any ℓ1,2-
norm belongs to the class Γ0(RP). Moreover, each norm is in particular a semi-norm, it
is thus straightforward to establish that a ℓ1,2-norm is also a semi-norm, and that it is a
norm overRP if, and only if, B is covering with nonnegative weights. For convenience,
we keep the name ℓ1,2-norm in the general case.

1.3 �e δ1,2-Semi-Norm

Sometimes sparsity is assumed over the discrepancies between coe�cients rather
than on the coe�cients themselves. �is enforces signals with entire groups of coe�-
cients that are homogeneous, with only a few “jumps”within groups.�is is in particular
the case of the total variation semi-norm (TV) prior, also mentioned in the introduc-
tion. We develop here the more general δ1,2-semi-norm, well suited to our structured
Euclidean space framework.

De�nition 1.4 (�rst bisector, deviation operator). Given a group of coordinates b, the
�rst bisector ofR∣b∣ is the unidimensional subspace Sb

def= {x ∈ R∣b∣ ∣ ∀ p, q ∈ b, xp = xq}.
Its orthogonal complement is denoted S�b def= {x ∈ R∣b∣ ∣∑p∈b xp = 0}.
�en, the deviation operator over b is the linear operator

∆(b)∶ R
∣b∣ Ð→ R∣b∣
x z→ projS�

b
(x) .

�e �rst bisector inR∣b∣ is thus the space of subvectors xb that are constants, and the
deviation operator extracts in a subvector the contribution orthogonal to this space.�e
δ1,2-semi-norm simply measures the amplitude of this contribution, within each block.

De�nition 1.5 (δ1,2-semi-norm). Given a block structure B, and a family of nonnegative
weights indexed by B, Λ def= (λb)b∈B, the δ1,2-semi-norm with parameter ΛB

def= {B, Λ} is
∣∣ ⋅ ∣∣δ,ΛB

∶ R
P Ð→ R+
x z→ ∣∣x∣∣δ,ΛB

def= ∑b∈B ∣∣∆(b)xb∣∣2 . (2)

where for a group b, ∣∣∆(b)xb∣∣2 is the Euclidean norm of ∆(b)xb inR∣b∣.
Remark 1.3. By continuity and convexity of each Euclidean norm ∣∣ ⋅ ∣∣2 over R∣b∣, and
by continuity and linearity of each operator ∆(b) overR∣b∣, any δ1,2-semi-norm belongs
to the class Γ0(RP). Moreover, as for Remark 1.2, it is straightforward to establish that a
δ1,2-semi-norm is indeed a semi-norm.

Remark 1.4 (orthogonal projection, statistical interpretation). Given a group b, recall
from Lemma III.3.1 (i) that for all x ∈ RP, projSb(xb) is the constant vector ofR∣b∣ whose
coordinates are equal to themean of the coordinates of xb. De�ning then xb

def= 1∣b∣ ∑p∈b xp
and Ð→xb def= (xb , . . . , xb) ∈ R∣b∣, and since Sb and S�b are orthogonal complements in R∣b∣,
we get

∆(b)xb = xb −Ð→xb = (xp − xb)p∈b .
�us, ∣∣∆(b)xb∣∣2 is essentially the empirical standard deviation of the coe�cients in xb.
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1.4 Spatially Structured Euclidean Space

As introduced above, our speci�c interest is on groups that are spatial blocks, i.e. spa-
tially and locally structured, according to a spatial topology conditioning the signals or
its coe�cients. In all the following, D is a strictly positive integer, representing the di-
mensionality of this spatial topology.

De�nition 1.6 (spatial structure, cuboid, block, block structure). �e Euclidean space
RP is said to be spatially structured in dimension D by (Z, ϕ) if Z ⊂ ZD, and ϕ∶Z →{1, . . . , P} is bijective. Note that we have ∣Z∣ = P.
Given v ∈ ZD and s ∈N∗D, the cuboid of lower vertex v and size s is the subset

C(v, s) def= {z ∈ ZD ∣ ∀d ∈ {1, . . . ,D}, vd ≤ zd < vd + sd} .
�en, given a cuboid C ∈ ZD, such that C ∩ Z ≠ 0, the block of coordinates of support C
is the group

b(C) def= ϕ(C(v, s) ∩ Z) .
Finally, a block structure is a group structure in which all groups are blocks.

A block is thus the intersection of Z with a cuboid in ZD; this allows to gather local
information of a spatially structured signal. Since cuboids tile the space ZD, a natural
tool for handling block structures is the intersection of Z with each cuboid within a
tiling of ZD, as de�ned below, and illustrated in Figure 1(c) in dimension D

set= 2.
De�nition 1.7 (tile grid, block grid). Let RP be spatially structured in dimension D,
v ∈ ZD and s ∈ N∗D. �e tile grid of ZD generated by the lower vertex v and size s is the
set of cuboids

T(v, s) def= {C(v + ks, s) ∣ k ∈ ZD} .
where for k ∈ ZD, ks def= (kdsd)1≤d≤D ∈ ZD .�en, the block grid of lower vertex v and size s
is the block structure

B(v, s) def= (b(C))
C∈T(v,s)∶C∩Z≠0 .

Tile grids and block grids have the following fundamental properties.

Lemma 1.1. Let u, v ∈ ZD and s, t ∈N∗D.�en,

(i) C(u, s) = C(v, t), if, and only if, u = v and s = t;
(ii) there exists a unique z ∈ C(v, s) such that C(u, s) ∈ T(z, s);
(iii) C(u, s) ∈ T(v, s), if, and only if, T(u, s) = T(v, s);
(iv) there exists a unique z ∈ C(v, s) such that T(u, s) = T(z, s).
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Proof. (i). If C def= C(u, s), then u and s are uniquely de�ned, with for all d ∈ {1, . . . ,D},
ud = min{zd ∣ z ∈ C} and sd = max {zd − ud + 1 ∣ z ∈ C}. �e reciprocal is immediate.
(ii). Let z ∈ ZD, and de�ne r def= z − v.

C(u, s) ∈ T(z, s)⇔ ∃ k ∈ ZD, C(u, s) = C(z + ks, s) ,
by (i)⇔ ∃ k ∈ ZD, u = z + ks ,⇔ ∃ k ∈ ZD, u − v = r + ks .

We deduce that (C(u, s) ∈ T(z, s) and z ∈ C(v, s)) ⇔ ∀d ∈ {1, . . . ,D}, ∃ kd ∈ Z, ud −
vd = kdsd + rd and 0 ≤ rd < sd. Existence and uniqueness of such a z = r + v is ensured
by Euclidean division in Z. (iii). Suppose C(u, s) ∈ T(v, s), and �x k ∈ ZD such that
C(u, s) = C(v + ks, s). By (i), u = v + ks, so that T(u, s) = {C(u + k′s, s) ∣ k′ ∈ ZD} ={C(v + (k + k′)s, s) ∣ k′ ∈ ZD} = T(v, s), since {(k + k′) ∣ k′ ∈ ZD} = ZD. For the recipro-
cal, observe that C(u, s) ∈ T(u, s). (iv). Combine (ii) with (iii). ∎
Proposition 1.1. Let RP be spatially structured in dimension D, v ∈ ZD and s ∈ N∗D.
�en,

(i) T(v, s) is a partition ofZD, i.e. for all z ∈ ZD, there exists a unique cuboidC ∈ T(v, s)
such that z ∈ C;

(ii) B(v, s) is nonoverlapping;
(iii) B(v, s) is covering.
Proof. (i). Let z ∈ ZD, and C be a cuboid in ZD.

z ∈ C and C ∈ T(v, s)⇔ ∃ k ∈ ZD, C = C(v + ks, s) and z ∈ C(v + ks, s) ,⇔ ∃ k ∈ ZD, C = C(v + ks, s) and ∀d ∈ {1, . . . ,D},
0 ≤ zd − vd − kdsd < sd ,⇔ ∃ k, r ∈ ZD, C = C(v + ks, s) and ∀d ∈ {1, . . . ,D},

zd − vd = kdsd + rd and 0 ≤ rd < sd .
Existence and uniqueness of such a C is ensured by Euclidean division inZ. (ii) and (iii)
follow directly from (i). ∎

Properties (ii) and (iii) of Proposition 1.1 actually mean that a block grid constitutes
a partition of {1, . . . , P}. �is is an interesting property for constructing homogeneous
block structures that weight each coordinate equally. Indeed, for n ∈ N∗, the concate-
nation of n block grids results in a block structure in which each coordinate belongs to
n blocks. �is is illustrated in Figure 1(d).

Now, a natural question is how to construct a given block structure as the concate-
nation of block grids. �e following proposition addresses the special case when all the
blocks have the same size, e.g. when it is a characteristic of the spatial scale of the un-
derlying signal.
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Proposition 1.2. LetRP be spatially structured in dimensionD by (Z, ϕ), v ∈ ZD, s ∈N∗D,
and de�ne ns

def= ∏D

d=1 sd ∈N∗. �en,

(i) there exists exactly ns di�erent tile grids of size s in ZD, and their concatenation
constitutes a partition of the set of all possible cuboids of size s in ZD;

(ii) there exists at most ns di�erent block grids of size s overRP, and their concatenation
contains all possible blocks of size s overRP;

(iii) if moreover C(v, s) ⊆ Z, then there exists exactly ns di�erent block grids of size s
over RP, and their concatenation constitutes the smallest block grid containing all
possible blocks of size s overRP.

Proof. (i). In Lemma 1.1 (iv), the existence statements proves that any tile grid of size s
is of the form T(z, s) for some z ∈ C(v, s), and the uniqueness statement proves that
if z, z′ are in C(v, s) such that z ≠ z′, then T(z, s) ≠ T(z, s). �us, there exists exactly∣C(v, s)∣ = ns di�erent block grids of size s. Now, combining Lemma 1.1 (ii) (iii) shows
that any cuboid of size s belongs to a unique block grid of size s. (ii). �is is a direct
consequence of (i). (iii). Suppose now that C(v, s) ⊆ Z and let z ∈ C(v, s).
First, let z′ ∈ C(v, s)∖{z}. �ere exists d ∈ {1, . . . ,D} such that either zd < z′d or z′d < zd,
implying either z ∉ C(z′, s) or z′ ∉ C(z, s). Since z, z′ ∈ Z, we deduce b(z, s) ≠ b(z′, s).
However, de�ning u def= v+s−(1, . . . , 1), it is easy to verify u ∈ C(v, s)∩C(z, s)∩C(z′, s),
so that ϕ(u) ∈ b(z, s) ∩ b(z′, s), in particular b(z, s) ∩ b(z′, s) ≠ 0. Recalling b(z′, s) ∈
B(z′, s), we conclude from Proposition 1.1 (ii) that

z
′ ∈ C(v, s) ∖ {z} ⇒ b(z, s) ∉ B(z′, s) . (3)

Recalling also b(z, s) ∈ B(z, s), we have∀ z, z′ ∈ C(v, s), z ≠ z′⇒ B(z, s) ≠ B(z′, s), and
with (ii) we conclude that there exists exactly ns di�erent block grids of size s. Finally,
let B be a block grid of size s. By de�nition and Lemma 1.1 (iv), B = B(z′, s) for a unique
z′ ∈ C(v, s). By contraposition of (3), we get b(z, s) ∈ B ⇒ z′ = z, i.e. if a concatenation
of several block grids contain b(z, s), then B(z, s) is one of those block grids; this proves
the last statement. ∎
1.5 Convex Hard Constraints

It is o�en the case in signal processing that one knows in advance that the signal
interest lies in a speci�c subset of the Euclidean space RP. For instance, some signals
might be, because of their physical origins, always nonnegative. It is possible to incor-
porate such priors in variational reconstructions, by the mean of hard constraints. Some
are used in our SMCS model, § II.3.4; we write them here in a more general setting.

First, we de�ne useful subsets ofRP that do not assume any structure.

De�nition 1.8 (orthant and box inRP). Let (v , є) ∈ RP×{−1,+1}P, and (v , v) ∈ RP×RP

such that for all p ∈ RP, vp ≤ vp.
�e orthant ofRP of vertex v and direction є is the set

[v , є) def= {x ∈ RP ∣ ∀ p ∈ {1, . . . , P}, є(xp − vp) ≥ 0} .



1. Norms and Sets in a Structured Euclidean Space 87

In particular, [0, (+1, . . . ,+1)) = RP+ is the nonnegative or �rst orthant ofRP.
�en, the box inRP of lower vertex v and upper vertex v is the set

[v , v] def= {x ∈ RP ∣∀ p ∈ {1, . . . , P}, vp ≤ xp ≤ vp} .

v

x1

x2

(a) Orthant [v , (+1,−1)).
v

v

x1

x2

(b) Box [v , v].
Figure 2: Illustration of an orthant and a box inR2.

Note that, for instance, v ∈ [v , є), and v ∈ [v , v], so that these sets are nonempty.
Moreover, they are de�ned by linear, large inequalities, so that they are closed and con-
vex. Hence, their indicator functions (see § III.1.8) belongs to Γ0(RP). In particular,
when no confusion is possible, we shall denote ι+ def= ιRP

+
, and proj+ def= proxι+ .

Now, the following subsets ofRP are de�ned with help of group norms.

De�nition 1.9 (bounded amplitude and bounded deviation). Let B be a group struc-
ture over RP , and ΛB

def= {B, Λ} where Λ def= (λb)b∈B is a family of nonnegative weights
indexed by B.
�e set of bounded amplitudes ΛB is

ℓΛB
def= {x ∈ RP ∣ ∀ b ∈ B, ∣∣xb∣∣2 ≤ λb} ,

and the set of bounded deviations ΛB is

δΛB
def= {x ∈ RP ∣ ∀ b ∈ B, ∣∣∆(b)xb∣∣2 ≤ λb} .

Since 0 ∈ ℓΛB and 0 ∈ δΛB, these sets are also nonempty. By continuity and convexity
of the Euclidean norms over eachR∣b∣, they are intersections of closed and convex sets,
so that they are closed and convex. Once again, their indicator functions belongs to
Γ0(RP); we call them bounded amplitude (respectively bounded deviation) constraints
parameterized by ΛB.
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2 Yet Another Discrete Total Variation Semi-Norm

Roughly speaking, the total variation (TV) semi-norm of a scalar �eld is de�ned as
the sum, over all spatial positions, of the norms of its spatial gradients. Because of its
popularity in various �eld of appliedmathematics and particularly in signal processing,
this section is devoted to the analysis of a special case of a spatially structured δ1,2-semi-
norm which can be seen as a discrete TV semi-norm.

Indeed, if b is a block of size (2, . . . , 2), the deviation operator ∆(b) resembles a
spatial gradient operator at the center of b, whose coordinates are linear combinations
of spatial derivatives approximated by �nite di�erences, in the directions of the vertices
of b, as illustrated in dimension D

set= 2 on the diagram (7). De�ning BTV as the block
structure containing one exemplary of each possible block of size (2, . . . , 2), the δ1,2-
semi-norm associated to BTV plays the role of a TV semi-norm overRP.

In the literature, many choices have been proposed for discretizing the spatial gra-
dient and de�ning the TV semi-norm. One usually expects the spatial gradient to have
only one coordinate per spatial dimension, while ours necessitates inmost cases ∣b∣ = 2D
coordinates. However, and this is what motivated the introduction of the δ1,2-semi-
norm in this work in the �rst place, the resulting TV semi-norm can be e�ciently split
into simple functions, as explained along § 3 and illustrated in Figure 5.

Moreover, it is superior to other choices in several respects. First of all, dealing
with boundary conditions and regions of interest is straightforward within our spa-
tially structured Euclidean space framework: some blocks in BTV contain less that 2D

coordinates but the deviation operator over those blocks is still well-de�ned and rele-
vant to our purpose. Second, gradients discretized along grids always present anisotropy,
i.e. they are more sensitive in certain directions than in others, resulting in directional
bias on the corresponding TV semi-norm. We demonstrate below that our gradient is
less anisotropic than more classical ones.

2.1 Some Usual Discrete Spatial Gradients

When dealing with spatially structured signals, there is a choice to be made on the
underlying spatial structure over which the signals take their values. Most o�en, if not
all the time, it is assumed that the samples are regularly spaced over a multidimensional
square grid, analogous to the space ZD like we did all along this chapter. Indeed, most
measurement devices follow such structure; consider for instance, any numeric photo or
video camera, where the sensors are regularly arranged along a grid.�is choice is made
for practical engineering reasons, but a major drawback is that the distance between
spatially neighboring samples depends on the direction de�ned by those samples. For
two-dimensional grids, the (Euclidean) distance between diagonally neighboring pixels
is
√
2-fold the distance between laterally neighboring pixels. �is goes up to

√
3 for

three-dimensional grids.
Now, taking into account this phenomenon, for instance by using anisotropic dis-

tances, introduces signi�cant theoretical and computational overhead; and measure-
ment devices in which all neighboring samples are at the same distance (hexagonal
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grids in dimension two. . . ) are far from being the standard. �us, this matter is rarely
discussed. However, it can become signi�cant when it comes to estimate spatial deriva-
tives of the signal, as it is the case for the TV semi-norm. In the following, we shade light
on this problematic, and show the advantages in that respect of our deviation gradient
operator over other spatial gradient discretizations.

We �rst introduce the discretized gradients that we compare. For simplicity and
for graphical representation, we perform the analysis in dimension two; let then the
Euclidean spaceRP be structured in dimension D

set= 2 by (Z, ϕ) as de�ned in § 1.4.

One-sideddiscrete gradient∆ . �e one-sided discrete gradient is themost common
discretization in the literature. It approximates spatial derivatives according to the dia-
gram in (4). Ignoring boundary conditions, it is de�ned for x ∈ RP and all p ∈ {1, . . . , P}
as

(∆ (x))p def= (xq − xp, xr − xp) ,
p q

r
(4)

where we de�ned the pixels q def= ϕ(ϕ-1(p) + (1, 0)) and r
def= ϕ(ϕ-1(p) + (0, 1)).

Central di�erence discrete gradient ∆ . �e central di�erence discrete gradient is
another common discretization, with better symmetry than the one-sided discrete gra-
dient, but less spatial resolution. It approximates spatial derivatives according to the dia-
gram in (5). Ignoring boundary conditions, it is de�ned for x ∈ RP and all p ∈ {1, . . . , P}
as

(∆ (x))
p

def= (xq − xr , xs − xt) , p qr

s

t

(5)

where q def= ϕ(ϕ-1(p) + (1, 0)), r def= ϕ(ϕ-1(p) − (1, 0)), s def= ϕ(ϕ-1(p) + (0, 1)), and t
def=

ϕ(ϕ-1(p) − (0, 1)).
Note that the TV semi-norm derived from this gradient, like our δ1,2-semi-norm,

can be split into simple functions.

Roberts cross discrete gradient ∆ . �is gradient was originally developed in the
context of edge detection, but was considered for TV regularizations in Combettes and
Pesquet (2008); Pustelnik et al. (2011), because the resulting TV semi-norm can also be
split into simple functions, and has more spatial resolution than the central di�erence
discrete gradient. It approximates spatial derivatives according to the diagram in (6).
Ignoring boundary conditions, it is de�ned for x ∈ RP and all p ∈ {1, . . . , P} as

(∆ (x))p def= (xs − xp, xq − xr) ,
p q

r s
(6)

where q def= ϕ(ϕ-1(p) + (1, 0)), r def= ϕ(ϕ-1(p) + (0, 1)) and s
def= ϕ(ϕ-1(p) + (1, 1)).
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Deviation discrete gradient ∆ . Finally, let us specify in dimensionD set= 2 the expres-
sion of our deviation gradient operator. Recalling Remark 1.4, it yields for x ∈ RP and
all p ∈ {1, . . . , P},

(∆ (x))p def= (xp − xb , xq − xb , xr − xb , xs − xb) ,
p q

r s
(7)

where q, r and s are de�ned with respect to p as in (6), and xb
def= 1

4(xp + xq + xr + xs).
2.2 Spectral Analysis

Ignoring boundary e�ects, a spatial gradient is translation invariant, i.e. the gradient
of a translated signal is the gradient of the signal, translated by the same translation.
Since it is linear, each coordinate amounts to a convolution operator. Now, a convolution
boils down to a multiplication in the Fourier domain (see for instance Mallat (2008,
�eorem 3.9)). Hence, singular vectors of a gradient constitutes a Fourier basis, and the
corresponding singular values characterize the in�uence of each spatial frequency on
the gradient operator.

In order to have access to those singular values, we symmetrize the gradient oper-
ator by composing it by its adjoint, yielding a spatial Laplacian. �e eigenvalues of the
Laplacian are the squared singular values of the corresponding gradient. Once again, the
Laplacian is a translation invariant linear operator, so its amount to a convolution with
a certain �lter; the eigenvalues are thus the coe�cients of the discrete Fourier transform
(DFT) of this �lter. For each discrete spatial gradient ∆ considered here, we compute
the convolution �lter of the corresponding Laplacian ∆∗∆ by applying it to a discrete
dirac, i.e. an image with null values everywhere but on a single pixel. �en, we apply a
DFT to this �lter, and the modulus of the resulting map is represented in Figure 3.

In the center of each map, corresponding to null spatial frequencies, i.e. constant
signal, the eigenvalue is null for each gradient, as expected. �en, the general tendency
is that the eigenvalues increase with the spatial frequency, what is also expected since
more oscillations correspond to higher gradients. Now, if the gradients operator were
isotropic, the level sets of those maps would be concentric circles. One can see that the
one-sided gradient weights more diagonal gradients than vertical or horizontal gradi-
ents. �is is the contrary for the Roberts cross gradient, which exhibits an even worst
phenomenon: the eigenvalues in the diagonal directions starts to decrease with the fre-
quency a�er a certain value, reaching null value at the highest diagonal frequencies.
Indeed, checkerboard features, alternating high and low values, actually lie in the ker-
nel of this gradient. In that respect, the central di�erence gradient is the worst, since this
phenomenon appears also along vertical and horizontal directions, i.e. high frequency
vertical or horizontal stripes lie also in its kernel. At last, our deviation gradient operator
presents the best spectral properties of all four gradients introduced here, even though
not fully isotropic.

Finally, let us mention that, motivated by similar concerns, Moisan (2007) intro-
duces a speci�c spectral TV semi-norm, computed as a Riemann sum of norms of the
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Figure 3: Anisotropies in eigenvalues of discrete two-dimensional Laplacians, derived
from various �nite di�erences schemes. Eigenvectors constitute a Fourier basis, so that
they are indexed by spatial frequencies (ω1,ω2), normalized by the spatial sampling
frequency fs. Each colormap is linearly scaled between black (null modulus), and white
(highest eigenvalue modulus).

(a) ∣∣x∣∣ = 2. (b) ∣∣x∣∣ =√2.
Figure 4: Example of two edge orientations that are weighted di�erently by one-sided
discretization. On each �gure, the edge is represented on the le� side, and a schematic
view of the discretization is shown on the right side. �e values of the resulting one-
sidedTV semi-norms, de�ned as ∣∣x∣∣ def= ∑p ∣∣(∆ (x))p∣∣2, are given a�er normalization
by the side length of the square.
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analytical derivatives of the Shannon interpolate of the discrete signals. In spite of ideal
spectral properties, this TV semi-norm is rarely used to our knowledge, in particular
because of complexity overhead.

2.3 Anisotropies in Edge Orientations

Another important direction bias in common discretized gradients is due to their
lack of spatial symmetry. �is cannot be revealed by the previous spectral analysis, be-
cause gradient operators are symmetrized when computing their Laplacian. However,
as pointed out by Chambolle et al. (2009), it can induce drastic di�erences between the
TV semi-norms of an edge and of the same edge rotated by 90°. �is is illustrated in
Figure 4 for the TV semi-norm derived from the one-sided discrete gradient.

In contrast, our deviation TV semi-norm is invariant by rotations of 90°. Note that
such rotation invariance can be imposed by adding coordinates to the gradient, as pro-
posed in Chambolle et al. (2009) in the case of the one-sided discrete gradient; this,
however, does not cope with the spectral anisotropies described in § 2.2.

2.4 Consistency With the Bounded Variation Semi-Norm

It could be interesting to study the consistency of our discretizationwith the original,
continuous formulation of the TV semi-norm, the bounded variation (BV) semi-norm
(see for instance Ambrosio et al. (2000)). Supposing that a discrete signal is a sampling
of an underlying continuous one, it is possible to show that our TV semi-norm actually
Γ-converges to the BV semi-norm of the continuous signal, as the discrete sampling
tends to in�nity. �is is however beyond the scope of the present thesis, and we leave
it for a future publication. For now, keep in mind that the answer to this question has
little impact on the concrete applications of our discrete TV semi-norm, which, as one
can see along the pages of this chapter, serves our purpose: favoring piecewise-constant
solutions of variational signal reconstructions.

3 Proximal Splitting for Signal Processing

It is now time to derive the proximal splitting of all the functionals that we de�ned
along the previous pages of this thesis. �e aim of this section is to provide the tools for
applying �rst-order proximal methods to minimization problems, arising in particular
from inverse problems in signal processing; for the sake of completeness, we present
already known results together with elementary proofs, alongside our contributions.
Of course, we do not pretend to exhaustivity, since we restrain ourselves only to the
functionals that are of interest to us; however the formulations in the current chapter
are fairly general, and should already cover a large class of situations, where complex
structured penalizations are relevant. For a more general review of proximal calculus,
particularly in the context of signal processing, we refer the reader to Combettes and
Pesquet (2011) and references therein.
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In the continuity of the previous chapter, theoretical results are formulated in in�nite
dimensional settings, though practical results concern �nite dimension. �roughout
this chapter, we use the notations introduced in § III.1.1; H and H ′ are real Hilbert
spaces, and ∣∣ ⋅ ∣∣, ⟨⋅ ∣ ⋅⟩ and Id are respectively the norm, inner product and the identity
operator over the appropriate space to be understood from the context.

3.1 Quadratic Functionals

We �rst address the case of functionals of the form f (x) def= 1
2 ∣∣y −Φx∣∣2, where Φ is a

linear operator and y is a given vector.�is is probably the most common term appear-
ing in linear inverse problems, usually motivated as a data-�delity term as explained in
the introduction, where observations are supposed to be corrupted by white Gaussian
noise. Let us derive the gradient and proximity operators of f .

Proposition 3.1. Let Φ∶H → H ′ be a bounded linear operator, let y ∈ H ′ and de�ne
f ∶H → R∶ x ↦ 1

2 ∣∣y −Φx∣∣2. �e function f is di�erentiable everywhere, and its gradient
is the a�ne function

∇ f ∶ x ↦ Φ∗(Φx − y) , (8)

which is Lipschitz continuous, with constant β-1 = ∣∣Φ∣∣2.
Proof. For any x , h ∈ H , we have f (x + h) = 1

2⟨Φ(x + h) − y ∣Φ(x + h) − y⟩ = f (x) +
2
2⟨Φx − y ∣Φh⟩ + 1

2 ∣∣h∣∣2 = f (x) + ⟨Φ∗(Φx − y) ∣ h⟩ + o(∣∣h∣∣2), which is the de�nition
of the gradient. Finally, for any x1, x2 ∈ H , ∣∣∇ f (x1) −∇ f (x2)∣∣ = ∣∣Φ∗Φ(x1 − x2)∣∣ ≤∣∣Φ∗∣∣∣∣Φ∣∣∣∣x1 − x2∣∣ = ∣∣Φ∣∣2∣∣x1 − x2∣∣. ∎
Proposition 3.2. With the hypothesis of Proposition 3.1, f ∈ Γ0(H), (Id+γΦ∗Φ) is in-
vertible, and for any γ ∈ R+∗ and x ∈H ,

proxγ f (x) = (Id+γΦ∗Φ)-1(x + γΦ∗y) . (9)

Proof. �e�rst statement follows from the facts that Φ is linear and continuous and that
the squared norm is over H ′ a function of Γ0(H ′) with full domain. Now, for γ ∈ R+∗
and x ∈H , considering the variational problem (III.2) de�ning the proximity operator,
and using Lemma III.1.3 (i)-(ii) and Proposition 3.1, we obtain for all ξ ∈H ,

proxγ f (x) = ξ⇔ ξ − x + γΦ∗(Φξ − y) = 0 ,
⇔ (Id+γΦ∗Φ)ξ = x + γΦ∗y . (10)

By strong convexity of the squared norm, proxγ f (x) exists in H and is unique. Since
γΦ∗y is a �xed vector in H , we deduce from (10) that (Id+γΦ∗Φ) is bijective, hence
invertible. �e expression of proxγ f (x) follows. ∎
Remark 3.1. By Lemma III.1.4 (ii)-(iii), the subdi�erential of f ∈ Γ0(H) is a maxi-
mal monotone operator whose resolvent is the proximity operator of f ; the existence of
proxγ f can then be established with Minty’s theorem, Lemma III.1.2 (i)⇔ (iv).
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Remark 3.2. Noticing that (Id+γΦ∗Φ) is self-adjoint, bounded from below and injec-
tive, it is easy to establish invertibility using the closed range theorem in functional anal-
ysis. Interestingly, we retrieve here this result using only classical arguments of convex
analysis.

In a computational point of view, for repeated computations of the proximity oper-
ator of f given in (9), the vector Φ∗y can be precomputed, but inverting (Id+γΦ∗Φ) in
(9) may be in general demanding; see our concrete examples in § 5.2.1. In the following,
we derive some important special cases that are useful for proximal algorithms.

3.1.1 Switching Φ and Φ∗

It o�en happens that the composition ΦΦ∗ is easier to handle that Φ∗Φ. In this case,
consider the following proposition.

Proposition 3.3. Let Φ∶H → H ′ be a bounded linear operator. �en, for any γ ∈ R+∗,(Id+γΦΦ∗) is invertible, and1
(Id+γΦ∗Φ)-1 = Id−γΦ∗(Id+γΦΦ∗)-1Φ . (11)

Proof. �is is a special case of the Sherman-Morrison-Woodbury formula, which holds
true in in�nite-dimension. Invertibility of (Id+γΦΦ∗) is ensured by Proposition 3.2
because boundedness of Φ implies boundedness of Φ∗. �en, for γ ∈ R+∗,

( Id−γΦ∗(Id+γΦΦ∗)-1Φ)( Id+γΦ∗Φ)
= Id+γΦ∗Φ − γΦ∗(Id+γΦΦ∗)-1(Id+γΦΦ∗)Φ ,= Id+γΦ∗Φ − γΦ∗Φ = Id . ∎

3.1.2 Augmenting the Dimensionality

Another interesting situation is when neither Φ∗Φ nor ΦΦ∗ are easy to handle, but
the linear operator can be decomposed as Φ def= Φ1Φ2, where both Φ1 and Φ2 have nicer
computational properties. In such a case, a possible workaround, that has been used for
instance in Briceño-Arias et al. (2011), is to introduce an auxiliary variable, augmenting
H to H̃ def= H ×H ′, replacing f ∶H → R by f̃ ∶ H̃ →]−∞,+∞], de�ned by

f̃ (x , u) def= g1(x̃) + g2(x̃) , (12)

where x̃ def= (x , u) ∈H ×H ′, g1(x̃) def= 1
2 ∣∣y −Φ1u∣∣2, and g2∶ H̃ →]−∞,+∞] is de�ned by

g2(x̃) def= ⎧⎪⎪⎨⎪⎪⎩
0 if Φ2x = u ,

+∞ otherwise .

1in Raguet et al. (2013, (3.3)), a factor γ has been forgotten in the formula.



3 . Proximal Splitting for Signal Processing 95

In turn, a minimization problem of the formminx∈H {F(x) def= f (x) +Ψ(x)} is equiva-
lent to min

x̃
def
= (x ,u)∈H̃{F̃(x̃) def= f̃ (x̃) +Ψ(x̃)}, where Ψ does not depend on u.

Since g1 de�ned above does not depend on x, Proposition 3.2 provides directly

proxγg1(x , u) = (x , (Id+γΦ1
∗Φ1)-1(u + γΦ1

∗y)) . (13)

Now by de�ning the linear operator Φ̃2∶ H̃ → H ′∶ x̃ ↦ Φ2x − u, observe that g2 is the
indicator function of the set {x̃ def= (x , u) ∈ H̃ ∣Φ2x = u} = ker Φ̃2, which is closed and
convex. �us, proxγg2 is the orthogonal projector on the closed subspace ker Φ̃2. Such
projection is addressed in the following section, Proposition 3.4 .

3.2 Linear Constraints

�e function ιker Φ̃2
de�ned above is a special instance of the class of functionals

imposing linear constraints over solutions of optimization problems, also widely used
in linear reconstructions. Consider �rst the following lemma.

Lemma 3.1. Let Φ∶H →H ′ be a bounded linear operator with closed range.�en,

(i) Φ∗ has closed range and projkerΦ = Id−projranΦ∗ ;
(ii) we have ∀ x ∈H ,∀ υ ∈H ′, projranΦ∗(x) = Φ∗υ⇔ ΦΦ∗υ = Φx.

Proof. (i). By the closed range theorem, (kerΦ)� = ranΦ∗, and the result follows.
(ii). Let x ∈ H . By de�nition projranΦ∗(x) = argminξ∈ranΦ∗

1
2 ∣∣x − ξ∣∣2. Since ranΦ∗ ={ξ ∈H ∣ ∃u ∈H ′, ξ = Φ∗u}, we have

projranΦ∗(x) = ξ⇔ ∃ υ ∈ argminu∈H′
1
2 ∣∣x −Φ∗u∣∣2, ξ = Φ∗υ ,⇔ ∃ υ ∈H ′, Φ(Φ∗υ − x) = 0 and ξ = Φ∗υ , (14)

wherewederived the second equivalence using Lemma III.1.3 (i)-(ii) andProposition 3.1.
Establishing (ii) from (14) is straightforward. ∎

�e above lemma shows that one can compute the projection of a vector x on the
kernel of a linear operator Φ if one can �nd a vector υ such that ΦΦ∗υ = Φx. Let us
precise some important special cases.

First, we derive the projection over the linear equality imposed with an auxiliary
variable, as introduced above in § 3.1.2.

Proposition 3.4. Let Φ∶H →H ′ be a bounded linear operator with closed range. De�ne
the Hilbert space H̃

def= H ×H ′ endowed with the canonical inner product of the Cartesian
product of Hilbert spaces, and Φ̃∶ H̃ →H ′∶ (x , u)↦ Φx − u. �en,

(i) Φ̃ is a bounded linear operator with closed range, and its adjoint is Φ̃∗∶H ′ → H̃ ∶v ↦(Φ∗v ,−v).
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(ii) we have ∀ x̃ def= (x , u) ∈ H̃ , projker Φ̃(x̃) = (x −Φ∗υ, u + υ), where the vector υ is

de�ned by υ
def= (Id+ΦΦ∗)-1(Φx − u).

Proof. Let x̃ def= (x , u) ∈ H̃ and v ∈H ′.
(i). Φ̃ is obviously linear, andwe have ∣∣Φ̃x̃∣∣ ≤ ∣∣Φx∣∣+∣∣u∣∣ ≤ (∣∣Φ∣∣+1)∣∣x̃∣∣, so Φ̃ is bounded.
�en, (0,−v) ∈ H̃ , and Φ̃(0,−v) = v, showing that Φ̃ is surjective, and in particular has
closed range. Finally, Φ̃∗ as de�ned above is obviously linear, and ⟨Φ̃x̃∣v⟩ = ⟨Φx ∣ v⟩ −⟨u ∣ v⟩ = ⟨x ∣Φ∗v⟩ + ⟨u ∣ −v⟩ = ⟨x̃∣Φ̃∗v⟩.
(ii). We have Φ̃Φ̃∗v = Φ̃(Φ∗v ,−v) = ΦΦ∗v + v, showing that Φ̃Φ̃∗ = Id+ΦΦ∗. We
know from Proposition 3.3 with γ set= 1 that the latter operator is invertible, and applying
Lemma 3.1 (ii) gives projran Φ̃∗(x̃) = Φ̃∗(Φ̃Φ̃∗)-1Φ̃x̃ = Φ̃∗υ = (Φ∗υ,−υ), with υ de�ned
as above. Invoking Lemma 3.1 (i) terminates the proof. ∎
Remark 3.3. If Id+Φ∗Φ is easier to invert than Id+ΦΦ∗, it is still possible in (ii) to call
on Proposition 3.3 by switching the roles of Φ and Φ∗.

Now, a general linear equality constraint is the indicator function of a set Φ−({u}) def={x ∈H ∣Φx = u} for some Φ∶H →H ′ and u ∈H ′. Such a set is closed and convex, and
nonempty as soon as u ∈ ranΦ, i.e. there exists y ∈ H , such that Φy = u. Assuming
that such a vector y is known and that projkerΦ can be computed (for instance when
ΦΦ∗ is invertible), the following proposition gives the projection over a linear equality
constraint.

Proposition 3.5. Let Φ∶H → H ′ be a bounded linear operator with closed range, y ∈ H
and u ∈H ′ such that Φy = u. �en, for all x ∈H , projΦ−({u})(x) = y + projkerΦ(x − y).
Proof. For z ∈H , we have z = argmin

ξ∈Φ−({u})∣∣x − ξ∣∣⇔ z − y = argmin
ξ∈Φ−({0})∣∣(x − y) − ξ∣∣. ∎

Finally, when the linear operator Φ is a functional, i.e. takes values inR, then linear
equality constraint can be naturally extended to inequality. A linear inequality constraint
is the indicator function of a set Φ−(]−∞, u]) def= {x ∈H ∣Φx ≤ u}, for some Φ∶H → R

and u ∈ R. �e following proposition explicits the projection over a linear inequality
constraint. Recall that by Riesz representation theorem, there exists ϕ ∈ H such that for
all x ∈ H , Φ(x) = ⟨ϕ ∣ x⟩; it is easy to see that for such a vector ϕ, we have Φ∗∶R →
H ∶u ↦ uϕ.

Proposition 3.6 (projection on a half-space). Let ϕ ∈H be a nonzero vector, u ∈ R, and

de�ne Φ∶H → R such that for all x ∈H , Φ(x) def= ⟨ϕ ∣ x⟩. �en for all x ∈H ,

(i) if Φ(x) ≤ u, then projΦ−(]−∞,u])(x) = x;
and if Φ(x) > u, then
(ii) Φ(projΦ−(]−∞,u])(x)) = u, and
(iii) projΦ−(]−∞,u])(x) = x − ⟨ϕ ∣ x⟩∣∣ϕ∣∣2 ϕ + u∣∣ϕ∣∣2 ϕ.
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Proof. (i). Obvious. (ii). Let x , z ∈H , such that Φ(x) > u and Φ(z) < u. �en, de�ning
ξ = u−Φ(z)

Φ(x)−Φ(z)x + Φ(x)−u
Φ(x)−Φ(z)z, we have Φ(ξ) = u, hence ξ ∈ Φ−(]−∞, u]), and it is easy

to verify that ∣∣x − ξ∣∣ < ∣∣x − z∣∣, implying z ≠ projΦ−(]−∞,u])(x). �e result follows by
contraposition and the de�nition of projΦ−(]−∞,u])(x). (iii). We deduce from (ii) that
if Φ(x) > u, then projΦ−(]−∞,u])(x) = projΦ−({u})(x). Now, observe that ΦΦ∗∶R →
R∶u ↦ ⟨ϕ ∣uϕ⟩ = ∣∣ϕ∣∣2u is invertible, and that y def= u∣∣ϕ∣∣2 ϕ satis�es Φ(y) = u. Applying
Proposition 3.5 with Lemma 3.1 yields the given expression. ∎
Remark 3.4 (projection on a polytope). �e point (ii) above justi�es the term “half-
space”: the a�ne hyperplane Φ−({u}) separate the space H in two domains, one of
which is Φ−(]−∞, u]). A polytope in H is de�ned as a (nonempty) intersection of half-
spaces. Proposition 3.6 shows that any polytope constraint can be tackled with proximal
splitting algorithms by introducing as many auxiliary variables as the number of half-
spaces de�ning the polytope. In particular, we can show that the method of Llanas and
Moreno (1996) for computing an orthogonal projection over a polytope is a particular
instance of GFB for solving argminξ

1
2 ∣∣x − ξ∣∣2 +∑n

i=1 ιΦ−(]−∞,u])(ξ).
However, it should be noted that, as the number of inequality constraints grows,

the number of auxiliary variables required can become prohibitively large, and many
polytope constraints have speci�c structure that can be better exploited. For instance,
the orthant and box constraints de�ned in § 1.5 are actually polytope constraints, but
the corresponding projections are addressed speci�cally in § 3.5.

3.3 Proximal Calculus with the Tight Frame Property

When a functional g is simple and Φ is a linear operator, Proposition 3.4 shows that
in many circumstances, proximal splitting of the functional g ○ Φ can be achieved at
the cost of augmenting the dimensionality of the problem by the dimension of ranΦ,
following the technique described in § 3.1.2. �is allows to deal with simple functions
composed with linear operator, using primal-only (as opposed to primal-dual, men-
tioned in the introduction) proximal algorithms. �is section is devoted to an impor-
tant special case, where the introduction of an auxiliary variable is not required; such
case is characterized by the following property.

De�nition 3.1 (tight frame property). We say that a linear operator Φ∶H →H ′ has the
tight frame property with squared norm ν ∈ R+∗, if ΦΦ∗ = ν projranΦ.
Remark 3.5. One can show that an operator Φ has the tight frame property, if, and only
if, for all u ∈ ranΦ, ΦΦ∗u = νu. In �nite dimension (or more generally over separable
Hilbert spaces), an operatorwhich has the tight frame property can indeed be associated
to a tight frame of its range (see for instanceMallat (2008) for the concept of tight frame).

Tight frames are extensively used in signal processing; for instance, any concatena-
tion of orthogonal dictionaries results in a tight frame. For that reason, the following
proposition is of importance in the context of proximal algorithms.
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Proposition 3.7. Let Φ∶H → H ′ be a bounded linear operator with closed range which
has the tight frame propertywith squared norm ν ∈ R+∗, and g ∈ Γ0(H ′) such thatdom g∩
ranΦ ≠ 0.�en,

(i) projranΦ∗ = 1
νΦ
∗Φ;

(ii) g ○Φ ∈ Γ0(H);
(iii) ∀ x ∈H , proxνg(Φx) ∈ ranΦ⇒ proxg○Φ(x) = x + 1

νΦ
∗(proxνg − Id)Φx.

Proof. Let x ∈ H . (i). Obviously u
def= Φx ∈ ranΦ, so that ΦΦ∗u = νu. We deduce

1
νΦΦ∗u = Φx, and Lemma 3.1 (ii) proves projranΦ∗ (x) = 1

νΦ
∗u. (ii). Since dom g ∩

ranΦ ≠ 0, g ○ Φ is proper. Lower semicontinuity and convexity of g ○ Φ follows re-
spectively from lower semicontinuity of g and continuity of Φ, and convexity of g and
linearity of Φ. (iii).We know fromLemma 3.1 thatH is the orthogonal sum of kerΦ and
ranΦ∗. For ξ ∈H , denote then ξkerΦ

def= projkerΦ(ξ) and ξranΦ∗
def= projranΦ∗(ξ). Noticing

that Φξ = ΦξranΦ∗ , we get

proxg○Φ(x) = argmin
ξ∈H

1
2 ∣∣xkerΦ − ξkerΦ∣∣2 + 1

2 ∣∣xranΦ∗ − ξranΦ∗ ∣∣2 + g(ΦξranΦ∗) .
�us, the problem is separable along the complementary subspaces kerΦ and ranΦ∗,
and we deduce for ξ̂ ∈H , ξ̂ = ξ̂kerΦ + ξ̂ranΦ∗ and

ξ̂ = proxg○Φ(x)⇔
⎧⎪⎪⎨⎪⎪⎩

ξ̂kerΦ = xkerΦ , (15a)

ξ̂ranΦ∗ = argminξ∈ranΦ∗ 1
2 ∣∣xranΦ∗ − ξ∣∣2 + g(Φξ) . (15b)

Using (i), we get both (15a)⇔ ξ̂kerΦ = x − 1
νΦ
∗Φx, and

(15b)⇔ ∃ υ̂ ∈ argmin
υ∈H′

1
2 ∣∣xranΦ∗ −Φ∗υ∣∣2 + g(ΦΦ∗υ), ξ̂ranΦ∗ = Φ∗υ̂ ,

⇔ ∃ υ̂ ∈ argmin
υ∈H′

1
2 ∣∣ 1νΦ∗Φx −Φ∗υ∣∣2 + g(ΦΦ∗υ), ξ̂ranΦ∗ = Φ∗υ̂ . (16)

Notice that the right-hand side of (16) is independent from the component of υ along
kerΦ∗ = (ranΦ)�. In particular, if υ̂ satis�es it, then so does projranΦ(υ̂), hence the
minimization can be carried over ranΦ instead of H ′. Now, developing for any υ ∈
ranΦ, ∣∣ 1νΦ∗Φx −Φ∗υ∣∣2 = 1

ν
⟨Φ∗Φx − νΦ∗υ ∣ 1νΦ∗Φx −Φ∗υ⟩ = 1

ν ⟨Φx − νυ ∣Φx − νυ⟩ =
1
ν ∣∣Φx − νυ∣∣2, noticing that g(ΦΦ∗υ) = g(νυ), and substituting υ̂ to νυ̂ in (16) yields

(15b)⇔ ∃ υ̂ ∈ argmin
υ∈ranΦ

1
2 ∣∣Φx − υ∣∣2 + νg(υ), ξ̂ranΦ∗ = 1

νΦ
∗υ̂ .

Finally, if proxνg(Φx) ∈ ranΦ, then argmin
υ∈ranΦ

1
2 ∣∣Φx − υ∣∣2 + νg(υ) = proxνg(Φx), and the

result follows. ∎
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Remark 3.6 (surjective operator). If Φ is surjective, then Φ has closed range, dom g ∩
ranΦ ≠ 0, and the condition proxνg(Φx) ∈ ranΦ is satis�ed for all x ∈H . One retrieves
Combettes and Pesquet (2007, Proposition 11), where their hypothesis ΦΦ∗ = ν Id im-
plies surjectivity of Φ. In their proof, the authors make use of the fact that ∂(g ○Φ) =
Φ∗ ○ ∂g ○Φ. In the nonsurjective case, this condition is not su�cient anymore, as can
be seen in Example 3.1 below.

Example 3.1. To see that the requirement proxνg(Φx) ∈ ranΦ is necessary, set H def=
H ′ def= R2, Φ def= projD1

and g
def= ιD2 , where the subspaces D1 and D2 are de�ned by

D1
def= {(x1, x2) ∈ R2 ∣ x2 = 0} and D2

def= {(x1, x2) ∈ R2 ∣ x1 = x2}. We have ranΦ = D1,
and Φ has obviously the tight frame property with squared norm ν

def= 1. Moreover,
dom g =D2, so that dom g∩ranΦ = {(0, 0)} ≠ 0.�en, it is easy to see that g ○Φ = ιD3 ,
withD3

def= {(x1, x2) ∈ R2 ∣ x1 = 0}. Note moreover that for all x ∈ R2,

∂ιD3(x) = ⎧⎪⎪⎨⎪⎪⎩
D1 if x ∈D3

0 otherwise
= {projD1

(u) ∣ u ∈ ∂ιD2(projD1
(x))} ,

so that we have ∂(g ○ Φ) = Φ∗ ○ ∂g ○ Φ. However, considering for instance x set= (1, 1),
we have proxg○Φ(x) = projD3

(x) = (0, 1), but
x +Φ∗(proxg − Id)Φx = (1, 1) + projD1

(projD2
− Id )(1, 0)

= (1, 1) + projD1
(( 12 , 12) − (1, 0))= (1, 1) + ( 12 − 1, 0) = ( 12 , 1) .

Remark 3.7 (separability in singular vector basis). For simplicity, we consider here the
�nite dimensional case. Suppose in Proposition 3.7 that Φ does not have the time frame
property. Still, M∶ ranΦ → ranΦ∶u ↦ ΦΦ∗u, is bijective and self-adjoint. With the
spectral theorem, M def= UNU∗, where U is orthogonal and N

def= diag (ν1, . . . , νr), with
r

def= rankΦ and for all i ∈ {1, . . . , r}, νi ∈ R+∗. De�ne now Φ̃ def= M- 1
2Φ and g̃∶H ′ →]−∞,+∞] with for all u ∈H ′,

g̃(u) = ⎧⎪⎪⎨⎪⎪⎩
g(M 1

2u) if u ∈ ranΦ ,

+∞ otherwise .

Observe that g○Φ = g̃○Φ̃, that Φ̃ has the tight frame property with squared norm ν
set= 1,

and that g̃ ∈ Γ0(H ′) and dom g̃ ∩ ran Φ̃ ≠ 0. Let x ∈ H ; by de�nition of g̃, it is obvious
that proxg̃(Φ̃x) ∈ ranΦ. Since ranΦ = ran Φ̃, Proposition 3.7 gives

proxg○Φ(x) = proxg̃○Φ̃(x) = x + Φ̃∗(proxg̃ − Id)Φ̃x ,

= x +Φ∗M- 1
2 (proxg̃ − Id)M- 1

2Φx .
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Unfortunately, computing proxg̃ is not easier than proxg○Φ in the general case. However,

using that M
1
2 is bijective and U is an isometry (over ranΦ), we have

proxg̃(M- 1
2Φx) = argmin

υ∈ranΦ
1
2 ∣∣M- 1

2Φx − υ∣∣2 + g(M 1
2 υ) ,

= M- 1
2 argmin

υ∈ranΦ
1
2 ∣∣M- 1

2Φx −M- 1
2 υ∣∣2 + g(υ) ,

= M- 1
2 argmin

υ∈ranΦ
1
2 ∣∣N - 1

2U∗(Φx − υ)∣∣2 + g(υ) ,
where U is associated to an orthonormal basis (ui)1≤i≤r of ranΦ; these are actually the
le� singular vectors of Φ, associated to nonzero singular values. Suppose now that the
function g is separable according to the basis U over ranΦ, i.e. there exists r functions
gi ∈ Γ0(R) such that for all υ ∈ ranΦ, g(υ) = ∑r

i=1 gi(⟨ui ∣ υ⟩). We get for υ̂ ∈H ′,
proxg̃(M- 1

2Φx) = M- 1
2 υ̂⇔ υ̂ = argmin

υ∈ranΦ

r

∑
i=1

1
2ν i
⟨ui ∣Φx − υ⟩2 + gi(⟨ui ∣ υ⟩) ,

⇔ υ̂ = r

∑
i=1

proxν i g i(⟨ui ∣Φx⟩)ui .

Altogether, we established

proxg○Φ(x) = x +Φ∗( r

∑
i=1

1

νi
(proxν i g i − Id)(⟨ui ∣Φx⟩)ui) ,

extending Pustelnik et al. (2011, Proposition III.4) to non necessarily surjective Φ.

3.4 Proximal Splitting of Structured Penalizations

�e formalization introduced in § 1 simpli�es the manipulation of structured func-
tionals over the Euclidean space RP. We hereby make use of the same formalization to
describe a systematic proximal splitting approach that allows to take them into account
with primal, �rst-order proximal algorithms.

Beyond those that are of direct interest to us and presented here, the same frame-
work is actually suitable for many other functionals. In particular, let us mention the
immediate extension of the ℓ1,2-norm (respectively δ1,2-norm) to the ℓ1,q-norm (respec-
tively δ1,q-norm), where 0 < q ≤ ∞, by substituting a ℓq norm to the euclidean norm
in (1) (respectively (2)). In particular, the speci�c case q set= ∞ presents computational
properties similar to the Euclidean case q set= 2 developed below, and can be addressed
following the same lines with few modi�cations.

Structured penalizations are useful for su�ciently many applications, especially in
the sparsity framework, so that speci�c convex optimization techniques have been con-
sidered in the literature. Before mentioning some of them, we �rst describe our ap-
proach, because of its simplicity and generality. �e technical results are stated subse-
quently.
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3.4.1 Our Approach

It is well known that the proximity operators of the ℓ1,2- and ℓ1,∞-norms can be
computed e�ciently, as long as they are de�ned over nonoverlapping group structures;
see references in § 3.4.2, and developments in § 3.4.3, where we prove the same property
for the δ1,2-semi-norm and the bounded amplitude and bounded deviation constraints.

Let now B be a group structure which is the concatenation of n ∈ N∗ nonoverlap-
ping group structures, i.e. B def= (B(i))1≤i≤n. �e key point is that, if gΛB

is any structured

functional de�ned in § 1, parameterized by ΛB
def= {B, (λb)b∈B}, then we have

gΛB
= n∑

i=1

g
Λ(i)B

, (17)

where for each i ∈ {1, . . . , n}, g
Λ(i)B

is the same structured functional but parameterized

by Λ(i)B def= {B(i), (λb)b∈B(i)}.
Since each B(i) is nonoverlapping, (17) constitute a splitting of the structured func-

tional gΛB
into simple functions. Now, it easy to see that any group structure can be split

as above; in the worst case with n = ∣B∣ as B = (b)b∈B, i.e. each single group in B is con-
sidered as a separate group structure. In the general case, notice that a group structure
in which a given coordinate belongs to n di�erent groups cannot be split into less than
n nonoverlapping group structures. In the special case of block structures containing
only blocks of a given size, which is of special interest to us, Proposition 1.2 gives an
optimal splitting in terms of number of nonoverlapping block structures.

3.4.2 Di�erent Proximal Approaches

Although surprisingly simple, the above proximal splitting of structured functional
was never written, to our knowledge, in such generality. However, it is not the only ap-
proach possible. In direct continuity with § 3.2, consider that if B is any group structure,
it is possible to decouple the interactions between overlapping groups by introducing
the linear grouping operator

Φ(B)∶ RP Ð→ RB

x z→ (xb)b∈B . (18)

wherewe de�ne the Euclidean spaceRB def= ⨉
b∈B

R∣b∣ endowedwith the inner product natu-
rally induced on theCartesian product.Note that this space is indexeddirectly by groups
of coordinates. In brief, B̃ def= (b)b∈B is thus a nonoverlapping group structure over RB,

and one can de�ne the structured functional g̃ΛB̃
parameterized by ΛB̃

def= {B̃, (λb)b∈B̃},
such that gΛB

= g̃ΛB̃
○Φ(B). Since g̃ΛB̃

is simple, one can resort either to primal proximal

algorithms over the augmented space H̃ as de�ned in § 3.1.2, with help of Proposition 3.4
and Remark 3.3 (note that Id+Φ(B)∗Φ(B) is diagonal), or to primal-dual proximal algo-
rithms. We prefer the splitting (17) over this approach because the former yields more
symmetrical schemes, and require less auxiliary variables when applying primal meth-
ods.
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∆(BTV) =
( ∆(B(1)TV),

∆(B
(3)
TV),

∆(B
(2)
TV),

∆(B
(4)
TV) )

Figure 5: Illustration of the splitting of the deviation spatial gradient in dimensionD set= 2,
into four deviation operators over nonoverlapping block structures. On the le� side,
each dot is the center of a block of size 2×2; their color indicates which block grid they
belong to in the splitting. We can see that all possible blocks of size 2 × 2 are taken into
account.

Other approaches have been considered for tackling structured penalization with
proximal methods. In particular, Jenatton et al. (2011) derive the proximity operators of
ℓ1,2- and ℓ1,∞-norms de�ned over hierarchical group structures, i.e. satisfying ∀ b, b′ ∈
B, b ∩ b′ ≠ 0 ⇒ b ⊆ b′ or b′ ⊆ b. �e same group of authors subsequently developed
in Mairal et al. (2011) a procedure for computing the proximity operator of a ℓ1,∞-norm
de�ned over an arbitrary group structure; though at the cost of signi�cant theoretical
and computational complexity overheads.

�eir approach is di�erent than ours, in the sense that they derive procedures for
computing the proximity operators of structured norms, while we propose to split those
norms into simpler functionals whose proximity operators are easy to compute. �e
main advantage of their approach lies in problems where a structured norm regularizes
a smooth functional, with no other nonsmooth penalizations. Since their methods en-
able the computation of the proximity operator without further splitting, it is possible to
call on accelerated schemes of the forward-backward algorithm (asmentioned in the in-
troduction), which currently only allows for a single nonsmooth part in the splitting of
the objective functional, and do not apply in general to our GFB. It would be interesting
to compare the performances of both approaches over classical problems of signal pro-
cessing or machine learning. However, we leave this to a future work, especially because
the proximity operator of the ℓ1,2-norm over an overlapping group structure, which is
the one of interest to us in the present work, is not available. On this point let us pre-
cise that in the case of a ℓ1,2-norm de�ned over an overlapping group structure, Mairal
et al. (2011) actually propose the splitting approach involving the grouping operator (18),
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solved with a primal-dual proximal algorithm.
Finally, a last approach that should be mentioned here is proposed by Chen et al.

(2012), who apply the smoothing technique of Nesterov (2005) to the dual formulations
of originally nonsmooth sparsity inducing penalizations. To ensure that the solution
of the approximated problem is still sparse, they add a ℓ1-norm term to the objective
functional and solve it with a proximal splitting method. We did not investigate further
this approach for two main reasons. First, the smoothing technique involves speci�c
parameters that might have strong in�uence on the recovered solutions. Second, the
introduction of the additional ℓ1-norm in the objective seems rather arbitrary, and also
increases the number of parameters.

3.4.3 Proximity Operators over Non-Overlapping Group Structures

For λ ∈ R+, we de�ne the closed ball of radius λ ofH byBλ
def= {u ∈H ∣ ∣∣u∣∣ ≤ λ}, and

denote λ∣∣ ⋅ ∣∣ the functional x ↦ λ∣∣x∣∣. Let us �rst re-establish the following fundamental
lemma; note thatmore general versions of it can be found for instance in Combettes and
Pesquet (2008).

Lemma 3.2. Let λ ∈ R+. For all x ∈H ,

(i) proxλ∣∣⋅∣∣(x) =
⎧⎪⎪⎨⎪⎪⎩
(1 − λ∣∣x∣∣)x if ∣∣x∣∣ > λ ,

0 if ∣∣x∣∣ ≤ λ .

(ii) projBλ
(x) = ⎧⎪⎪⎨⎪⎪⎩

λ∣∣x∣∣x if ∣∣x∣∣ > λ ,

x if ∣∣x∣∣ ≤ λ .

Proof. Since the norm is proper, continuous and convex, and Bλ is nonempty, closed
and convex, those proximity operators are well de�ned. Take then x ∈H .

(i). We have proxλ∣∣⋅∣∣(x) = argminz∈H {F(z) def= 1
2⟨x − z ∣ x − z⟩ + λ√⟨z ∣ z⟩}. For z ≠ 0,⟨z ∣ z⟩ > 0 so that F is di�erentiable in z, with for all h ∈ H , dF(z)(h) = ⟨z − x ∣ h⟩ +

λ 2⟨z ∣ h⟩
2
√⟨z ∣ z⟩ = ⟨(1 + λ∣∣z∣∣)z − x ∣ h⟩. Now if ∣∣x∣∣ > λ, de�ne ξ

def= (1 − λ∣∣x∣∣)x and observe that

∣∣ξ∣∣ = (∣∣x∣∣ − λ) > 0. Developing (1 + λ∣∣ξ∣∣)ξ = (1 + λ∣∣x∣∣−λ)(1 − λ∣∣x∣∣)x = x shows that

dF(ξ) = 0, and we deduce by convexity of F that ξ = proxλ∣∣⋅∣∣(x). Otherwise, if ∣∣x∣∣ ≤ λ,
then for all z ∈H , F(x) = 1

2 ∣∣x∣∣
2 + 1

2 ∣∣z∣∣
2 − ⟨x ∣ z⟩ + λ∣∣z∣∣. By Cauchy-Schwartz inequality,⟨x ∣ z⟩ ≤ λ∣∣z∣∣, so that F(z) ≤ 1

2 ∣∣x∣∣2 = F(0), hence proxλ∣∣⋅∣∣(x) = 0.
(ii). If ∣∣x∣∣ ≤ λ, then x ∈ Bλ and projBλ

(x) = x. Otherwise, de�ne ξ def= λ∣∣x∣∣x, and observe

that ∣∣ξ∣∣ = λ. �en, for all z ∈ Bλ, ∣∣x − z∣∣2 = ∣∣x − ξ∣∣2 + ∣∣ξ − z∣∣2 + 2⟨x − ξ ∣ ξ⟩ − 2⟨x − ξ ∣ z⟩.
Again by Cauchy-Schwartz inequality, we have ⟨x − ξ ∣ z⟩ ≤ (1 − λ∣∣x∣∣)∣∣x∣∣λ = ⟨x − ξ ∣ ξ⟩,
and we deduce for all z ∈ Bλ, ∣∣x − z∣∣2 ≥ ∣∣x − ξ∣∣2, that is to say ξ = projBλ

(x). ∎
Remark 3.8. In the proof, we voluntarily used only basic arguments. Interestingly, with
the identity proxg(x) = ξ⇔ x ∈ ξ + ∂g(ξ), one can deduce from (i) that ∂(λ∣∣ ⋅ ∣∣)(0) =
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Bλ, and from (ii) that if ∣∣x∣∣ = λ, then ∂ιBλ
(x) = {µx ∣ µ ∈ R+}. Moreover, observe that

we have proxλ∣∣⋅∣∣ +projBλ
= Id.�is is a particular instance ofMoreau’s identity (Moreau,

1962), ιBλ
being the Fenchel conjugate of λ∣∣ ⋅ ∣∣ (see for instance Boyd and Vandenberghe

(2004, Example 3.26)).

From now on, B is a nonoverlapping group structure over the Euclidean space RP

and Λ def= (λb)b∈B is a family of nonnegative weights indexed by B. �en, we de�ne the

group of coordinates complementary to B, as bc def= {1, . . . , P} ∖ ∪b∈Bb; note that the
concatenation (B, bc) is nonoverlapping and covering, so that any vector x ∈ RP can be
indexed uniquely as x def= ((xb)b∈B , xbc).

It is now straightforward to establish the proximity operator of the ℓ1,2-norm pa-
rameterized by ΛB and of the corresponding bounded amplitude constraint.

Proposition 3.8. For all x , ξ ∈ RP,

(i) prox∣∣⋅∣∣ℓ ,ΛB

(x) = ξ⇔ ξbc = xbc and ∀ b ∈ B, ξb = ⎧⎪⎪⎨⎪⎪⎩
(1 − λb∣∣xb ∣∣2 )xb if ∣∣xb∣∣2 > λb ,
0 if ∣∣xb∣∣2 ≤ λb ;

(ii) projℓΛB
(x) = ξ⇔ ξbc = xbc and ∀ b ∈ B, ξb = ⎧⎪⎪⎨⎪⎪⎩

λb∣∣xb ∣∣2 xb if ∣∣xb∣∣2 > λb ,
xb if ∣∣xb∣∣2 ≤ λb .

Proof. Let x ∈ RP. (i). Since (B, bc) constitutes a partition of {1, . . . , P}, we have for
all ξ ∈ RP, ∣∣ξ∣∣22 = ∑p∈{1,...,P} ξ2p = ∑b∈(B,bc)∑p∈b ξ2p = ∑b∈(B,bc) ∣∣ξb∣∣22. �us, we can write

prox∣∣⋅∣∣ℓ ,ΛB

(x) = argminξ∈RP
1
2 ∣∣xbc − ξbc ∣∣22 +∑b∈B ( 12 ∣∣xb − ξb∣∣22 + λb∣∣ξb∣∣2). Since (B, bc) is

nonoverlapping, the problem is separable along the groups, and we get for all ξ ∈ RP,
prox∣∣⋅∣∣ℓ ,ΛB

(x) = ξ ⇒ ξbc = xbc and ∀ b ∈ B, ξb = proxλb ∣∣⋅∣∣2(xb). Reciprocally, (B, bc)
is covering, so that this condition de�nes a unique vector in RP; by existence of the
proximity operator (Remark 1.2) this vector is equal to prox∣∣⋅∣∣ℓ ,ΛB

(x). Lemma 3.2 (i) over

each separated group withH
set= R∣b∣ completes the proof.

(ii). It is easy to verify that for all ξ ∈ RP , ιℓΛB
(ξ) = ∑b∈B ιBλb

(ξb), where for all b ∈ B,
Bλb is the closed ball of radius λb inR∣b∣. �en, projℓΛB

(x) = argminξ∈RP
1
2 ∣∣xbc − ξbc ∣∣22 +

∑b∈B ( 12 ∣∣xb − ξb∣∣22 + ιBλb
(ξb)). We conclude as above, with Lemma 3.2 (ii). ∎

Remark 3.9 (so�-thresholding). Recall from Remark 1.1 that the ℓ1-norm is a special
case of the ℓ1,2-norm, with groups restrained to individual coe�cients. In this case, the
proximity operator reduces to the celebrated so�-thresholding.

�e proximity operator of the δ1,2-semi-norm parameterized by ΛB and of the cor-
responding bounded deviation constraint can now be established, following almost the
same lines. Recall from Remark 1.4 that, given x ∈ RP and b ∈ B, de�ning in R∣b∣,Ð→xb def= (xb , . . . , xb), where xb = 1∣b∣ ∑p∈b xp, we have ∆(b)xb = xb −Ð→xb .
Proposition 3.9. For all x , ξ ∈ RP,
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(i) prox∣∣⋅∣∣δ ,ΛB

(x) = ξ⇔ ξbc = xbc and ∀ b ∈ B,
ξb = ⎧⎪⎪⎨⎪⎪⎩

Ð→xb + (1 − λb∣∣xb−Ð→xb ∣∣2 )(xb −Ð→xb) if ∣∣xb −Ð→xb ∣∣2 > λb ,
Ð→xb if ∣∣xb −Ð→xb ∣∣2 ≤ λb ;

(ii) projδΛB
(x) = ξ⇔ ξbc = xbc and ∀ b ∈ B,

ξb = ⎧⎪⎪⎨⎪⎪⎩
Ð→xb + λb∣∣xb−Ð→xb ∣∣2 (xb −Ð→xb) if ∣∣xb −Ð→xb ∣∣2 > λb ,
xb if ∣∣xb −Ð→xb ∣∣2 ≤ λb .

Proof. Let x ∈ RP. (i). Following the proof of Proposition 3.8 (i), we can �rst write
prox∣∣⋅∣∣δ ,ΛB

(x) = argminξ∈RP
1
2 ∣∣xbc − ξbc ∣∣22+∑b∈B ( 12 ∣∣xb − ξb∣∣22 + λb∣∣∆(b)ξb∣∣2), and deduce

for all ξ ∈ RP, prox∣∣⋅∣∣δ ,ΛB

(x) = ξ⇔ ξbc = xbc and ∀ b ∈ B, ξb = proxλb ∣∣⋅∣∣2○∆(b)(xb). Now,
for all b ∈ B, the linear operator ∆(b) is self-adjoint and idempotent (Proposition III.1.1),
hence ∆(b)∆(b)∗ = projS�

b
; since ran∆(b) = S�b , it has the tight frame property over its

range, with squared norm 1. Moreover, we see from Lemma 3.2 (i) that for all b ∈ B,
proxλb ∣∣⋅∣∣2(∆(b)xb) and ∆(b)xb are colinear, hence proxλb ∣∣⋅∣∣2(∆(b)xb) ∈ S�b . Altogether, ap-
plying Proposition 3.7 (iii) provides that for all b ∈ B,

proxλb ∣∣⋅∣∣2○∆(b)(xb) = xb + ∆(b)∗(proxλb ∣∣⋅∣∣2(∆(b)xb) − ∆(b)xb)= xb + proxλb ∣∣⋅∣∣2(xb −Ð→xb) − (xb −Ð→xb)=Ð→xb + proxλb ∣∣⋅∣∣2(xb −Ð→xb),
and we conclude again with Lemma 3.2 (i).
(ii). Now, as for the proof of Proposition 3.8 (ii), projδΛB

(x) = argminξ∈RP
1
2 ∣∣xbc − ξbc ∣∣22+

∑b∈B ( 12 ∣∣xb − ξb∣∣22 + ιBλb
(∆(b)ξb)). Similarly as above, we see from Lemma 3.2 (ii) that

projBλb
(∆(b)xb) ∈ S�b , and Proposition 3.7 (iii) gives for all b ∈ B, proxιBλb

○∆(b)(xb) =
Ð→xb + projBλb

(xb −Ð→xb), and we conclude with Lemma 3.2 (ii). ∎
3.4.4 Proximity Operators of Composite Structured Penalizations

In many applications, di�erent structured penalizations are considered within the
same functional to be minimized, in order to bene�t from various priors one can have
on the problem at hand. It is the case in our SMCS model for VSDOI, § II.3, where the
coe�cients of the periodic artifacts are penalized by both a ℓ1,2-norm and a bounded
amplitude constraint, and the coe�cients of the neuronal activity are penalized simulta-
neously by a ℓ1,2-norm, a δ1,2-semi-norm and a bounded deviation constraint. Another
example is the so-called fused LASSO penalization, which is nothing but the combina-
tion of a ℓ1,2-norm and a δ1,2-semi-norm. Introduced in dimension D

set= 1 in the context
of statistics by Tibshirani et al. (2005), it has been since used under di�erent versions in
other areas, see for instance Friedman et al. (2007); Liu et al. (2010); Nowak et al. (2011);
Nelson (2013).
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Ourwork generalizes such composite structured penalizations in any spatial dimen-
sion D, and propose state-of-the-art approaches for e�cient, large scale minimizations.
So far, we demonstrated that any structured penalization as de�ned in § 1 can be split
into a certain number of simple functionals; obviously, it is still the case for any sum of
such penalizations. However, for limiting the computational load of an iterative proxi-
mal algorithm applied to such splitting, one should always reduce as much as possible
the number of simple functionals involved in the splitting. For this reason, we demon-
strate here that under the right hypothesis, the proximity operator of a sumof structured
functionals can be e�ciently computed without further splitting. �e key point of this
result lie in the following lemma.

Lemma 3.3. Let Φ∶H →H ′ be a linear operator, and g∶H → R∶ x ↦ ∣∣Φx∣∣. �en, for all
x , ξ ∈H and ρ ∈ R+ such that Φξ = ρΦx, ∂g(x) ⊆ ∂g(ξ).
Proof. Let x , ξ ∈ H , and u ∈ ∂g(x). First, suppose that Φξ = 0. For all h ∈ H , on one
hand, using the triangular inequality we have g(x) + g(h) ≥ g(x + h) ≥ g(x) + ⟨u ∣ h⟩,
so that g(h) ≥ ⟨u ∣ h⟩, and on the other hand, g(ξ + h) = ∣∣Φ(ξ + h)∣∣ = ∣∣Φh∣∣ = g(h).
Since g(ξ) = 0, we have thus for all h ∈ H , g(ξ + h) ≥ g(ξ) + ⟨u ∣ h⟩, i.e. u ∈ ∂g(ξ).
Now, suppose that there exists ρ ∈ R+∗ such that Φξ = ρΦx. For all h ∈ H , we have

g(ξ + h) = ∣∣ρΦx +Φh∣∣ = ρ∣∣Φx +Φ 1
ρh∣∣ = ρg(x + 1

ρh) ≥ ρ(g(x) + ⟨u ∣ 1ρh⟩), and thus

g(ξ + h) ≥ g(ξ) + ⟨u ∣ h⟩. ∎
We have seen in § 3.4.3 that proximity operators of ℓ1,2-norm and bounded con-

straints over nonoverlapping group structures are groupwise shrinkage operators. Using
the above lemma, we can show that proximity operators of sums of some structured
functionals reduce to compositions of proximity operators, provided that the function-
als are de�ned over suitable block structures. Namely, in Proposition 3.10 below, (i) re-
quires block structures which aremutually hierarchical, while (ii) requires block struc-
tures which are identical.

Proposition 3.10. Let B, B′ and B′′ be nonoverlapping block structures over RP, such
that for any b ∈ B, b′ ∈ B′ and b′′ ∈ B′′, b ∩ b′ ≠ 0 ⇒ b ⊆ b′ and b′ ∩ b′′ ≠ 0 ⇒
b′ ⊆ b′′. Moreover, let Λ def= (λb)b∈B, Λ′ def= (λ′b′)b′∈B′ and Λ′′ def= (λ′′b′′)b′′∈B′′ be families of
nonnegative weights indexed respectively by B, B′ and B′′; denote �nally the parameters

ΛB
def= {B, Λ}, Λ′B def= {B′, Λ′} and Λ′′B def= {B′′, Λ′′}.�en,

(i) proxιℓΛ′′
B
+∣∣⋅∣∣ℓ ,Λ′

B
+∣∣⋅∣∣δ ,ΛB

= projℓΛ′′B ○prox∣∣⋅∣∣ℓ ,Λ′B ○prox∣∣⋅∣∣δ ,ΛB

,

in particular, proxιℓΛ′′
B
+∣∣⋅∣∣ℓ ,Λ′

B

= projℓΛ′′B
○prox∣∣⋅∣∣ℓ ,Λ′

B

, proxιℓΛ′′
B
+∣∣⋅∣∣δ ,ΛB

= projℓΛ′′B
○prox∣∣⋅∣∣δ ,ΛB

,

and prox∣∣⋅∣∣ℓ ,Λ′
B
+∣∣⋅∣∣δ ,ΛB

= prox∣∣⋅∣∣ℓ ,Λ′
B

○prox∣∣⋅∣∣δ ,ΛB

.

(ii) proxιδΛB
+∣∣⋅∣∣δ ,ΛB

= projδΛB
○prox∣∣⋅∣∣δ ,ΛB

.
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Proof. We denote by bc
def= {1, . . . , P} ∖ ∪b∈Bb, bc′ def= {1, . . . , P} ∖ ∪b′∈B′b′ and bc′′ def={1, . . . , P} ∖ ∪b′′∈B′′b′′ complementary to B, B′ and B′′, respectively. Let then x ∈H .

(i). De�ne �rst ξ def= prox∣∣⋅∣∣δ ,ΛB

(x). Following the proof of Proposition 3.9 (i), we have

ξbc = xbc and for all b ∈ B, ξb = proxλb ∣∣⋅∣∣2○∆(b)(xb). De�ning u def= x − ξ, the characteriza-
tion of the proximity operator in terms of subdi�erential shows that

ubc = 0 and ∀ b ∈ B, ub ∈ ∂(λb∣∣ ⋅ ∣∣2 ○ ∆(b))(ξb) . (19)

Now, de�ne ξ′ def= prox∣∣⋅∣∣ℓ ,Λ′
B

(ξ). On one hand, similarly as above, we can establish from

Proposition 3.8 (i) that with u′
def= ξ − ξ′, we have

u′bc′ = 0 and ∀ b′ ∈ B′, u′b′ ∈ ∂(λ′b′ ∣∣ ⋅ ∣∣2)(ξ′b′) . (20)

On the other hand, observe also with Proposition 3.8 (i) that for all b′ ∈ (B′, bc′), there
exists ρb′ ∈ R+ such that ξ′b′ = ρb′ ξb′ . Taking any b ∈ (B, bc), according to the properties
of B and B′, there exists a unique b′ ∈ (B′, bc′) such that b ⊆ b′, so that ξ′b = ρb′ ξb. Using,
for each b ∈ B, Lemma 3.3 withH

set= R∣b∣ and Φ set= Id, we get from (19)

ubc = 0 and ∀ b ∈ B, ub ∈ ∂(λb∣∣ ⋅ ∣∣2 ○ ∆(b))(ξ′b) . (21)

Finally, de�ne ξ′′
def= projℓΛ′′B

(ξ′). Similarly, we get from Proposition 3.8 (ii) that with

u′′
def= ξ′ − ξ′′,

u′′bc′′ = 0 and ∀ b′′ ∈ B′′, u′′b′′ ∈ ∂ιBλ′′
b

(ξ′′b′′) , (22)

and that for all b′′ ∈ (B′′, bc′′), there exists ρb′′ ∈ R+ such that ξ′′b′′ = ρb′′ ξ′b′′ . Using again
Lemma 3.3 with (20) and (21) gives respectively

u′bc′ = 0 and ∀ b′ ∈ B′, u′b′ ∈ ∂(λ′b′ ∣∣ ⋅ ∣∣2)(ξ′′b′) , (23)

and
ubc = 0 and ∀ b ∈ B, ub ∈ ∂(λb∣∣ ⋅ ∣∣2 ○ ∆(b))(ξ′′b ) . (24)

Using separability of the structured functionals along the blocks, it is now straightfor-
ward to establish that u′′ ∈ ∂ιℓΛ′′B(ξ′′), u′ ∈ ∂(∣∣ ⋅ ∣∣ℓ,Λ′B)(ξ′′), and u ∈ ∂(∣∣ ⋅ ∣∣δ,ΛB

)(ξ′′), from
(22), (23) and (24), respectively. Recalling Lemma III.1.3 (iii) on the subdi�erential of
sums, ∣∣ ⋅ ∣∣ℓ,Λ′B and ∣∣ ⋅ ∣∣δ,ΛB

having full domain, we deduce u′′ +u′ +u ∈ ∂(ιℓΛ′′B + ∣∣ ⋅ ∣∣ℓ,Λ′B +∣∣ ⋅ ∣∣δ,ΛB
)(ξ′′); and with ξ′′ + u′′ + u′ + u = x we conclude ξ′′ = proxιℓΛ′′

B
+∣∣⋅∣∣ℓ ,Λ′

B
+∣∣⋅∣∣δ ,ΛB

(x).
�e particular cases can be established with, respectively, for all b ∈ B, λb = 0, for all
b′ ∈ B′, λ′b′ = 0, and for all b′′ ∈ B′′, λ′′b′′ →∞.

(ii). As previously, we de�ne ξ def= prox∣∣⋅∣∣δ ,ΛB

(x) and u = x − ξ. However, we de�ne now
ξ′ = projδΛB

(ξ) and the proof of Proposition 3.9 (ii) shows that, for all b ∈ (B, bc), there
exists ρb ∈ R+ such that ∆(b)ξ′b = ρb∆(b)ξb. Using this time, for each b ∈ B, Lemma 3.3

withH set= R∣b∣ and Φ set= ∆(b), we get from (19) that u ∈ ∂(∣∣ ⋅ ∣∣δ,ΛB
)(ξ′). With u′ def= ξ− ξ′ ∈

∂ιδΛB
(ξ′) and ξ′ + u′ + u = x, we conclude as above ξ′ = proxιδΛB

+∣∣⋅∣∣δ ,ΛB

(x). ∎
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3.5 Projection on Simple Convex Sets

At last, let us explicit the simple projections over the orthant and box constraints,
making use, as in the previous section, of the separability of the Euclidean norm along
the coordinates.

Proposition 3.11. Let (v , є) ∈ RP × {−1,+1}P, and (v , v) ∈ RP × RP such that for all
p ∈ RP, vp ≤ vp. �en for all x ∈ RP,

(i) proj[v ,є)(x) = (єpmax(єpvp, єpxp))1≤p≤P;
(ii) proj[v ,v](x) = (max (vp, min(vp, xp)))

1≤p≤P.
In particular, proj+(x) = (max(0, xp))1≤p≤P.
Proof. Let x ∈ RP . (i). �e separation yields proj[v ,є)(x) = argmin

ξ∈RP

∑P
p=1 ( 12(xp − ξp)2 +

ι[vp ,єp)(ξp)) = (proj[vp ,єp)(xp))1≤p≤P. For all p ∈ {1, . . . , P}, if єp = +1, then [vp, єp) =
[vp,+∞[. By cases analysis, proj[vp ,+∞[(xp) =

⎧⎪⎪⎨⎪⎪⎩
xp if xp ≥ vp
vp if xp < vp , i.e. proj[vp ,+∞[(xp) =

max (vp, xp). Similarly if єp = −1, proj]−∞,vp]
(xp) =min (vp, xp) = −max (−vp,−xp).

(ii). proj[v ,v](x) = argmin
ξ∈RP

∑P
p=1 ( 12(xp − ξp)2 + ι[v p ,v p](ξp)) = (proj[v p ,v p](xp))1≤p≤P. For

p ∈ {1, . . . , P}, by cases analysis, proj[v p ,v p](xp) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
vp if xp < vp

xp if vp ≤ xp ≤ vp

vp if xp > vp

, and we deduce

proj[vp ,+∞[(xp) =max (vp, min(vp, xp)). ∎
4 E�cient Implementation of Splitting Algorithms

�etheoretical developments of the previous section enables the application of prox-
imal splitting algorithms to a wide range of convex optimization problems. As under-
lined in the introduction, such algorithms are especially interesting thanks to their rel-
ative simplicity of implementation. However, for generality of exposition and ease of
analysis, algorithms are written in abstract form, as we did for instance on Figure III.1.
�is might hide the structure of the speci�c problem at hand, so that a naive implemen-
tation is o�en suboptimal.

In this section, we expose situations that are common in variational problems for
signal processing, and we give some practical implementation considerations that may
reduce signi�cantly the computational load of proximal splitting methods. We specify
here the case of the generalized forward-backward algorithm for minimizing

min
x∈H
{F(x) def= f (x) + n

∑
i=1

gi(x)} , (25)
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though the following techniques can be adapted to other proximal splitting algorithms.
Let us �rst rewrite the main iteration of Algorithm III.2, where we use an auxiliary

variable p ∈H to avoid computing n times the gradient of f per iterations.

p ← 2x − γ∇ f (x) ;
for i ∈ {1, . . . , n} do

zi ← zi + ρk(prox γ
wi

g i
(p − zi) − x) ; (26)

x ← ∑n
i=1wizi .

4.1 GFB with Tight Frames

We have shown that, under suitable hypothesis, the composition of a simple func-
tional with a linear operator with the tight frame property is also a simple functional,
its proximity operator being given by Proposition 3.7 (iii).

Let now I ⊆ {1, . . . , n}, de�ne Ic def= {1, . . . , n} ∖ I, and extend the problem (25) to

min
x∈H
{F(x) def= f (x) +∑

i∈I

gi(Li(x)) +∑
i∈Ic

gi(x)} , (27)

where for each i ∈ I, Li ∶H → Hi is a linear operator (bounded, with closed range2),
gi ∈ Γ0(Hi) such that ran Li ∩ dom gi ≠ 0, and there exists νi ∈ R+∗ such that for all
u ∈ ran Li , LiL∗iu = νiu and prox ν i γ

wi
g i
(u) ∈ ran Li .

Using Proposition 3.7 (iii), for all i ∈ I, the update (26) becomes

zi ← zi + ρk(p − zi − x) + ρk
νi
L∗i(prox ν i γ

wi
g i
− Id )Li(p − zi) . (28)

�e following computational tricks rely on the same observation: the nonlinear part in
this update involves the knowledge of Lizi but not of zi . Hence, it is possible to store only
the values of Lizi , at the expense of a few auxiliary variables keeping track of themissing
information over ker Li . We detail here some circumstances where this can be useful.
Note that we suppose here that proper implementation does not necessitate auxiliary
variables for additions and/or applications of linear operators.

4.1.1 �e General Case

De�ne zI
def= ∑i∈I wizi ∈ H , and for all i ∈ I, ζi def= Lizi ∈ Hi . Note that, according to

the properties of gi and Li , (prox ν i γ

wi
g i
− Id )Li(p − zi) ∈ ran Li so that the update of ζi

can be reduced to
ζi ← ζi − ρkLix + ρk prox ν i γ

wi
g i
(Lip − ζi) . (29)

In the same time, in view of (28), the updates of zI can be ensured with an additional
auxiliary variable ζ ∈ Hi within the scope of the loop over i ∈ I, according to the fol-
lowing main iteration3

2in a computational context, the dimension is always �nite...
3the initializationmust satisfy zI = ∑i∈I w iz i ∈H , this can be done typically by initializing all variables

to zero.
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p ← 2x − γ∇ f (x) ;
zI ← (1 − ρk)zI + ρk(∑i∈I wi)(p − x) ;
for i ∈ I do

π ← Lip ;
ζ ← prox ν i γ

wi
g i
(π − ζi) ;

zI ← zI + ρk w i

ν i
L∗i(ζ − (π − ζi)) ;

ζi ← ζi + ρk(ζ − Lix) ;
for i ∈ Ic do

zi ← zi + ρk(prox γ
wi

g i
(p − zi) − x) ;

x ← zI +∑i∈Ic wizi .

We also introduced the auxiliary variable π ∈Hi within the scope of the loop over i ∈ I,
to avoid computing Lip twice.

�e above implementation is useful when, for each i ∈ I, the dimension of Hi is
much lower than the dimension of H : indeed, at the expense of storing zI and ζ , each
auxiliary variables zi is replaced by its image through Li . �is is particularly interest-
ing for dealing with highly redundant representations such as the undecimated wavelet
transform that we use for the neuronal activity component in our SMCS model (see
§ II.2.2.3).

4.1.2 No Relaxation

If we set for all k ∈ N, ρk
set= 1, one can get rid of the auxiliary variable ζ . �e main

iteration becomes

p ← 2x − γ∇ f (x) ;
zI ← (∑i∈I wi)(p − x) ;
for i ∈ I do

π ← Lip ;
ζi ← ζi + prox ν i γ

wi
g i
(π − ζi) ;

zI ← zI + w i

ν i
L∗i(ζi − π) ;

ζi ← ζi − Lix ;

for i ∈ Ic do
zi ← zi + prox γ

wi
g i
(p − zi) − x ;

x ← zI +∑i∈Ic wizi .

4.1.3 Identical Operators

�e last andmost interesting case is when the linear operators are the same, i.e. there
existsH ′, L∶H →H ′ and ν ∈ R+∗ such that for all i ∈ I,Hi =H ′, Li = L and νi = ν. It is
then easy to derive the following main iteration
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p ← γ∇ f (x) ;
π ← Lp ;
ξ ← Lx ;
ζI ← 0 ;
for i ∈ I do

ζ ← prox νγ
wi

g i
(2ξ − π − ζi) ;

ζI ← ζI + ρk w i

ν (ζ − (2ξ − π − ζi)) ;
ζi ← ζi + ρk(ζ − ξ) ;

zI ← (1 − ρk)zI + ρk(∑i∈I wi)(x − p) + L∗ζI ;
for i ∈ Ic do

zi ← zi + ρk(prox γ
wi

g i
(2x − p − zi) − x) ;

x ← zI +∑i∈Ic wizi .

Note that we introduced two additional variables ξ, ζI ∈ H ′. However, this implemen-
tation requires, per iteration, only two calls to the operator L and only one call to its
adjoint. Moreover, setting as in the above case, for all k ∈ N, ρk

set= 1, one can get rid of
the auxiliary variables ζ and zI .

Note also that p stores only the gradient step, so as to isolate the application of L to∇ f (x), for two reasons. First, this kind of situation where several functions are com-
posed with a given linear operator o�en arises when the target signal is represented in
a synthesis operator L and several terms in the objective functional apply in the signal
domain. For instance in our variational problem (31), this is the case of the data-�delity
term, the total variation penalization and the hard constraint term. When the smooth
term f is a quadratic data-�delity term, (8) shows that ∇ f (x) = L∗u for some u ∈ H ′.
In this case, provided that u ∈ ran L, the above variable π reduces to γLL∗u = γνu, so
that only one call to L is necessary per iteration. Second, recall that the relaxedDouglas-
Rachford algorithm is a special case of GFB with f

set= 0. In this case, the variables p and
π disappear, and, again, only one call to L is necessary per iteration.�is is a signi�cant
improvement over Pustelnik et al. (2011, Algorithm 3), which requires two calls to L per
iteration, and much more auxiliary variables than the implementation proposed here.

4.2 Di�erent Splitting Numbers Along Coordinates

In a computational context, one usuallyminimizes the functional over a given num-
ber P of coordinates, i.e. one can explicitH set= RP. It o�en happens that some terms in
the functional F does not depend on all the P coordinates, but only a subset of them.
Di�erent terms can require di�erent numbers of functionals in a proximal splitting, but
a naive implementation of the GFB does not take this into account; let us precise here
good practices regarding this aspect.

4.2.1 General Case

Let b ⊆ {1, . . . , P} be a group of coordinates, and bc
def= {1, . . . , P} ∖ b it’s comple-

mentary. Suppose that some functionals in (25) does not depend on the coordinates in
b, i.e. there exists I ⊆ {1, . . . , n} such that F(x) = f (x)+∑i∈I g(x)+∑i∈Ic gi(xbc), where



112 IV. Splitting Spatially Structured Penalizations

Ic
def= {1, . . . , n} ∖ I. In that case, for all i ∈ Ic, the update (26) can be particularized

according to the coordinates, as

(zi)bc ← (zi)bc + ρk(prox γ
wi

g i
(pbc − (zi)bc) − xbc) ,

(zi)b ← (1 − ρk)(zi)b + ρk(pb − xb) .
One sees in particular that the update of (zi)b is the same for all i ∈ Ic, so that if they are
all initialized to the same value (and there is no reason not to), only one variable (zIc)b
is necessary for keeping track of all updates. Each iteration of GFB becomes

p ← 2x − γ∇ f (x) ;
for i ∈ I do

zi ← zi + ρk(prox γ
wi

g i
(p − zi) − x) ;

for i ∈ Ic do(zi)bc ← (zi)bc + ρk(prox γ
wi

g i
(pbc − (zi)bc) − xbc) ;

(zIc)b ← (1 − ρk)(zIc)b + ρk(pb − xb) ;
xbc ← ∑n

i=1wi(zi)bc ;
xb ← ∑i∈I wi(zi)b + (∑i∈Ic wi)(zIc)b .

Moreover, without relaxation (i.e. ∀ k ∈ N, ρk
set= 1), one can get rid of the auxiliary

variable (zIc)b since it is always equal to pb − xb.
Note also that we particularized here only one group of coordinates b, but this can

be extended to any number of groups and any con�guration.

4.2.2 Separable Case

A particular case arises when a given functional is separable along several groups
of coordinates, each group requiring di�erent splitting numbers; see for instance the
structured penalizations over the wavelet and cosine coe�cients proposed in § 5.2.2. In
that case, we show here that, in contrast to the technique presented above, the auxiliary
variable (zIc)b is not necessary, and more importantly, the update of xb only involves
variables that underwent a proximal step.

For simplicity of exposition, consider �rst F def= f + g, where the functional g is
separable according to a nonoverlapping group structure B, i.e. for all x ∈ RP, g(x) =
∑b∈B gb(xb), and that for each b ∈ B, there exists nb ∈ N∗ such that the functional gb
can be split into nb simple functions, as gb = ∑nb

j=1 gb, j. Note that, up to adding in B
its complementary group of coordinates, we can suppose B covering without loss of
generality. A naive implementation of GFB would require to introduce n set= maxb∈B nb

auxiliary variables and as many updates per iterations. We show however that for each
b ∈ B, one only needs nb auxiliary subvectors of the size of xb, and only these are involved
in the update of xb at each iteration.

De�ne nB = ∏b∈B nb, and note that for all b ∈ B, gb = ∑nB/nb
j′=1 ∑nb

j=1
nb
nB
gb, j con-

stitutes a splitting of gb in a sum of nB simple functions indexed by j ∈ {1, . . . , nb}
and j′ ∈ {1, . . . , nB/nb}, and that one can re-index arbitrarily by (gb,i′)1≤i′≤nB . For all
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i′ ∈ {1, . . . , nB}, de�ne then gi′(x) def= ∑b∈B gb,i′(xb), and observe that F = f +∑nB
i′=1 gi′

is now of the form (25) with n
set= nB. �e key point here is that by separability along

the groups in B, and setting equal weights, i.e. for all i′ ∈ {1, . . . , nB}, wi′
set= 1

nB
, one can

apply GFB without making explicit the indexing over i′. �e main iteration becomes

p ← 2x − γ∇ f (x) ;
for b ∈ B, j ∈ {1, . . . , nb}, j′ ∈ {1, . . . , nB/nb} do(z j, j′)b ← (z j, j′)b + ρk(proxγnb gb , j (pb − (z j, j′)b) − xb) ; (30)

for b ∈ {1, . . . , B} do
xb ← ∑nb

j=1
1
nB
∑nB/nb

j′=1 (z j, j′)b .
So far, we only increased the number of auxiliary variables, since nB is much greater
thanmaxb∈B nb. However for all b ∈ B and j ∈ {1, . . . , nb}, the update of (z j, j′)b in (30) is
the same for all j′ ∈ {1, . . . , nB/nb}, so that by initializing them to the same value, only
one variable (z j)b is necessary for keeping track of all updates.

Extending this technique to the problem F
def= f +∑n

i=1 gi where for all i ∈ {1, . . . , n},
gi is separable according to a nonoverlapping (and covering) group structure Bi , is
straightforward. With obvious notations, the main iteration reads

p ← 2x − γ∇ f (x) ;
for i ∈ {1, . . . , n}, b ∈ Bi , j ∈ {1, . . . , nb} do(zi , j)b ← (zi , j)b + ρk(prox γnb

wi
g i ,b , j
(pb − (zi , j)b) − xb) ;

x ← 0 ;
for i ∈ {1, . . . , n}, b ∈ Bi do

xb ← xb + w i

nb
∑nb

j=1 (zi , j)b .
5 Illustration and Experiments

In this section, we illustrate the previously de�ned penalizations in classical image
processing settings, and we investigate the use of several �rst-order proximal splitting
algorithms for solving the resulting variational problems.

5.1 Variational Image Restoration

Over the set I ∼ RP of gray level images comprising P pixels, we consider a class
of regularized inverse problems, where one wants to recover a high resolution image
y(0) ∈ I, from noisy low resolution observations y = Ly(0) + ν ∈ I. �e values of y(0) lie
in the range [0, 1], the noise vector ν ∈ I is a realization of an additive white Gaussian
noise of variance σν2, and the linear operator L∶I → I models the observation process;
we focus our attention on convolution and masking operators, and their combination.

�e inpainting inverse problem deals with a masking operatorM∶I → I, de�ned for
each pixel p as

(My)p def
=

⎧⎪⎪⎨⎪⎪⎩
yp if p ∈ Ω ,

0 otherwise ,
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where Ω ⊆ {1, . . . , P} is a set of pixels. �is simulates for instance missing or defective
sensors in an image acquisition (see Figure 7, upper le�). It is an orthogonal projector,
diagonal in the pixel domain. �en, the deblurring inverse problem deals with a con-
volution operator, K∶I → I∶ y ↦ GσK ∗ y, where GσK is a discrete Gaussian �lter of
width σK and normalized to unit mass. �is simulates scattering or out-of-focus pix-
els in the image acquisition (see Figure 7, upper middle). Boundary conditions of the
two-dimensional convolution ∗ are periodic, so that K is a diagonal operator in Fourier
domain. �e operator L will be either M or K, or the composition of both, MK.

We represent the restored image ŷ ∈ I within the concatenation of two dictionaries
adapted to image compression and denoising, namely a discrete wavelet frame D(W)
and a discrete cosine frame D(C). �ey are complementary in the sense that the former
handles best local features, while the latter is nonlocal; see Mallat (2008) for details. To
deal with boundary conditions of the wavelet transform, the image is mirrored prior to
the wavelet transform; in this setting, the coe�cients of ŷ are vectors x̂ ∈ H set= I4 × I ∼
R5P (4P wavelet coe�cients, and P cosine coe�cients), and the synthesis operator reads

D∶ H Ð→ I

x
def
= (x(W), x(C)) z→ D(W)x(W) + D(C)x(C) .

�e wavelet and cosine atoms are normalized so that D is a Parseval tight frame, i.e. it
satis�es DD∗ = Id.

Our general variational problem for the recovery reads

min
x∈H {F(x) def

=
1
2 ∣∣y − LDx∣∣22 +Ψ(Λ)(x)} . (31)

�e �rst term in the summand is the data �delity term, which is taken as the squared
ℓ2-norm motivated by the additive white Gaussian noise, while the second term is a
regularization, enforcing priors assumed to be satis�ed by the original image. Note that
it closely resembles the variational problem (II.6) in our SMCS model; for the sake of
illustration, we use penalizations also inspired by our SMCS model,

Ψ(Λ)(x) def
= ∣∣x(W)∣∣

ℓ,Λ(W)B
+ ∣∣x(C)∣∣

ℓ,Λ(C)B
+ ∣∣Dx∣∣δ,ΛTV

+ ι[0,1](Dx) . (32)

�e�rst two regularizations enforces sparsity on the coe�cients, with a block-structured
ℓ1,2-norm over the wavelet coe�cients and a weighted ℓ1-norm on the cosine coe�-
cients. �e third regularization induces sparsity on the spatial gradient of the restored
image through the discrete total variation semi-norm. �e fourth and last term forces
the values of the restored image to lie in the range [0, 1], by mean of a box constraint.

Remark 5.1. �ough the link between the present variational problem and the one in-
troduced in our SMCS model is obvious (compare (31) and (32) to (II.6) and (II.16)),
they should not be confused.�e goal here is to retrieve only one image, in a linear rep-
resentation that happens to be a concatenation of complementary dictionaries, i.e. the
distribution of the representation between those dictionaries does not matter. In con-
trast, the goal of the SMCS model is to separate di�erent components represented by
di�erent dictionaries. Moreover, VSDOI data are spatiotemporal: the dictionaries are
temporal (i.e. unidimensional) and the penalization are spatially structured. Here, the
dictionaries are spatial (i.e. two-dimensional, see for instance Figure 1).
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5.2 Details On the Variational Problem

In the following, we detail each term of (31) and (32), and explicit their proximal
splitting properties as derived in a general settings along § 3.

5.2.1 Data Fidelity 1
2 ∣∣y − LDx∣∣22

Denoting Φ set= LD, the data �delity term reads f (x) set= 1
2 ∣∣y −Φx∣∣22. It is a smooth

functionalwhose gradient can be directly deduced fromProposition 3.1 and can be com-
puted e�ciently, ∇ f (x) = D∗L∗(LDx − y). Moreover, a Lipschitz constant of ∇ f is
β-1 = ∣∣LD∣∣2; one can estimate it numerically using the power method (Von Mises and
Pollaczek-Geiringer, 1929).

Now, the proximity operator of f cannot be directly computed fromProposition 3.2,
since Φ∗Φ = D∗L∗LD has no interesting properties for computing the required inverse.
However, applying Proposition 3.3 and using the fact that D is a Parseval tight frame,
the right-hand side of (11) becomes Id−γD∗L∗(Id+γLL∗)-1LD . For inpainting or deblur-
ring alone, since M (resp. K) is a diagonal operator in the pixel domain (resp. Fourier
domain), the inversion can be computed e�ciently.

Finally, one can deal with the composite case L set= MK by augmenting the dimen-
sionality fromH toH × I, following § 3.1.2, with Φ1

set= M and Φ2
set= KD. Accordingly,

(13) becomes
proxγg1(x , u) = (x , (Id+γM)-1(u + γMy)) , (33)

and using Proposition 3.4, we get

proxγg2(x , u) = (x − D∗K∗υ, u + υ) , (34)

where υ = (Id+KK∗)-1(KDx − u) can be computed e�ciently.

5.2.2 Sparsity Enforcing Penalizations ∣∣x(W)∣∣
ℓ,Λ(W)B

+ ∣∣x(C)∣∣
ℓ,Λ(C)B

Block structures over two-dimensional wavelet coe�cients. As illustrated on the
schematic view of Figure 1(b), the k-th atom in a two-dimensional wavelet dictionary is
characterized by its spatial position pk, its scale jk, and its direction dk (which can be hor-
izontal, vertical or diagonal). Within each scale j and direction d, the spatial positions
are naturally organized along a grid inZ2, over which we de�ne a block structure B( j,d).
�e whole ℓ1,2-norm by blocks is then ∣∣x(W)∣∣

ℓ,Λ(W)B

def= ∑ jmax

j= jmin
∑3

d=1 ∣∣x(W)∣∣ℓ,Λ( j ,d)B
, parame-

terized by Λ(W)B
def= {Λ( j,d)B

def= {Λ( j,d), B( j,d)} ∣ jmin≤ j≤ jmax
1≤d≤3 }. Of course, such group structure

over wavelet coe�cients can be generalized to any spatial dimension D.
In practice, for each scale j and direction d, the block structure B( j,d) is de�ned

as follows. We choose a block side length s( j,d) and a number of grids n( j,d) ∈ N∗,
1 ≤ n( j,d) ≤ s( j,d)2. �en, B( j,d) def= (B( j,d ,i))

1≤i≤n( j ,d)
is the concatenation of n( j,d) dif-

ferent block grids of size s def= (s( j,d), s( j,d)). Note that setting n( j,d) set= 1 can give too
much importance to a speci�c grid, while n( j,d) set= s( j,d)2 leads to heavy structures for
large block side length (consider that for blocks of size 10 × 10, there exists already 100
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di�erent grids!).�e actual setting of s( j,b) and of the weights in Λ(W)B is discussed in the
next chapter, § V.5.

Now, we have ∣∣x(W)∣∣
ℓ,Λ( j ,d)B

= ∑n( j ,d)

i=1 ∣∣x(W)∣∣ℓ,Λ( j ,d , i)B

, which is a splitting into simple

functionals, as shown by Proposition 3.8 (i). Note that n( j,d), the number of functionals
in the splitting, might vary according to directions and scales. See § 4.2.2 for proper
implementation of proximal splitting algorithms in that case.

Finally, ∣∣x(C)∣∣
ℓ,Λ(C)B

is a simple weighted ℓ1-norm, whose proximity operator is a so�-

thresholding.

5.2.3 Penalizations Over the Restored Image ∣∣Dx∣∣δ,ΛTV
+ ι[0,1](Dx)

�e speci�city of those last two penalizations is that they do not apply to the coef-
�cients x but to the resulting image Dx; they illustrate well the advantage of the tight
frame property for proximity operators. Here, D is surjective so that the minor premise
of Proposition 3.7 (iii) is always satis�ed with Φ set= D. In consequence,∑4

i=1 ∣∣ ⋅ ∣∣δ,Λ(i)TV
○D,

where for each i ∈ {1, . . . , 4}, Λ(i)TV

def= {Λ(i) , B(i)TV }, constitutes a splitting of the functional∣∣ ⋅ ∣∣δ,ΛTV
○ D into simple functions; and ι[0,1] ○ D is also simple.

Here, several functionals are composed with the same operator with the tight frame
property. In such a case, consider § 4.1.3 for e�cient implementation.

5.3 Numerical Experiments

We derived all the proximity and gradient operators required to apply various �rst-
order proximal algorithms to our variational image restoration (31). �is allows us to
compare the performance of several splitting strategies and algorithms forminimizing a
functional in high dimension involving usual tools of signal processing.�e competing
algorithms, already presented in § III.2.3, are summed up in Table 1. Note that GFB and
DR are only primal algorithms, while the others are primal-dual; note also that DR and
ChPo do not make use of the smoothness of any term.

GFB generalized forward-backward, see Algorithm III.2,

DR relaxed Douglas-Rachford, set f set= 0 in Algorithm III.2,

CoPe Combettes and Pesquet (2012), see Algorithm III.3,

CoVu Condat (2013) and Vũ (2013), see Algorithm III.4,

ChPo Chambolle and Pock (2011), set f set= 0 in Algorithm III.4,

BD-HPE Monteiro and Svaiter (2013), see Algorithm III.5.

Table 1: List of competing algorithms for solving (31).
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5.3.1 Methodology

We implemented the numerical experiments using Matlab, with some linear and
proximity operators in C interfaced with Mex. Each algorithm has been optimized as
much as possible for a fair comparison4. In particular for the concerned algorithms, the
smooth term f in the splitting is the data-�delity term. Note also that we adapted as
much as possible the implementation techniques described in § 4. Finally, let us men-
tion that we considered the diagonal preconditioning of ChPo proposed by Pock and
Chambolle (2011). However, this requires to compute the norms of rows and columns
of the matrix representation of the linear operators involved in the functional; this is
not adapted to linear operators implemented implicitly by successive �ltering, such as
the wavelet or cosine transforms that we use here.

Six di�erent experiments are performed: three di�erent tasks (inpainting, deblur-
ring, composite) and two di�erent penalizations (coe�cients sparsity only, and coe�-
cients sparsity jointly with total variation). For each experiment, we initialize all main
and auxiliary variables to zero and run �ve hundred iterations of each considered opti-
mization method.

Each run is performed twice, once for recording the evolution of the functional F,
and once for recording the elapsed computational time t. �en, we want to compare
the distance between the current value of the functional and its minimum. For each
experiment, this minimum is approximated by running �ve thousand iterations of the
best method (this was always GFB). Since for any nonzero observation the value of the
objective functional is strictly positive, it is convenient to normalize the distance by the
value of the minimum to obtain similar order of magnitudes. �e results are plotted
against time on a logarithmic scale in Figure 6. Note that we did not use in practice the
penalization ι[0,1](Dx) because it would yield a functional value of +∞ as soon as the
box constraint is not fully satis�ed, preventing proper comparison along iterations.

5.3.2 Results

�e observations y and restored image ŷ = Dx̂ (recovered with GFB) are plotted
in Figure 7, together with their signal-to-noise ratio relative to the original image y(0),
computed in decibels for any y ∈ RP by

SNR(y, y(0)) def= 20 log10 ( ∣∣y(0)∣∣2∣∣y − y(0)∣∣ 2) .
In all cases, introducing the total variation penalization in the variational problem im-
proves the quality of the restoration. Qualitatively, it reduces the “ringing artifacts” that
o�en appears when denoising natural images with sparse wavelet and cosine represen-
tations (see in particular the composite task, right column of Figure 7). Quantitatively,
we observe an improvement of almost 1 dB. �is is an empirical argument in favor of
combined penalizations.

As underlined in § III.2.3, the primal-dual algorithms designed to handle the com-
position of each functional in the splitting with any linear operator (CoPe, CoVu, ChPo)

4source code is available on request to the author.
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Figure 6: Results of the numerical experiments. See opposite.
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Figure 6, opposite: Results of the numerical experiments. Tasks, from top to bottom:
inpainting, deblurring, composite. Regularizations, le�: only coe�cients sparsity, right:
coe�cients sparsity jointly with total variation.

have more restrictive range of parameters ensuring convergence. �is might be the
reason why the objective functional decay is slower for them in all our experiments.
However, note that when introducing the composition of simple functions with linear
operators (in our case, the total variation functional), the computational load of ChPo
is less a�ected than the other methods (see the black curves in the right column of
Figure 6); nevertheless, in our experiments this is not su�cient to make it more in-
teresting. CoVu enjoys less of this property (because of the call to the gradient of the
data-�delity f , two calls of the synthesis operator D are still required per iterations).
CoPe, which requires two calls of the gradient of f and two calls of the adjoint of each
involved linear operators per iterations, has always the biggest computational load.

�en, we see that the algorithms using the smoothness of the data-�delity (i.e. the
gradient of f ) are more e�cient than their counterparts which use only proximity oper-
ators (see GFB versus DR, and CoVu versus ChPo). �is constitutes an empirical argu-
ments in favor of the use of the gradient of any smooth part of an objective functional
to be minimized, even when the corresponding proximity operator is available.

Finally, each iteration of BD-HPE are slightly more costly and less e�cient than the
ones of GFB;moreover, as observed in § III.2.3, the former requiresmore computational
memory.

5.4 Conclusion

We motivated and described some of the most popular convex penalizations used
to regularize inverse problems for signal processing. �eir popularity can be explained
notably by their convenience for proximal splitting method, as exposed all along this
chapter.We also presented some empirical evidence that it is possible to combine several
priors about a problem at hand, by summing several such penalizations. Finally in the
context of �rst-order proximal splitting algorithm for minimizing objective function-
als involving a smooth part, we have shown two interests of using an explicit gradient
descent step rather than an implicit proximity operators. First, computing the gradient
of a smooth functional might be easier than computing its proximity operator. Second,
the resulting optimization scheme might be more e�cient.

Concerning the original problemwhichmotivatedChapter III and the current chap-
ter of this thesis, recall that the SMCS synthesis dictionary D within the data-�delity
term of (6) is the concatenation of a variety of possibly redundant sub-dictionaries,
some of them being implemented implicitly through successive �ltering.�erefore, the
operator inversions required for computing the proximity operator of the data-�delity
(see § 3.1) are computationaly too demanding. Our numerical experiments con�rms our
guess that GFB is the best candidate for retrieving e�ciently the coe�cients within our
SMCSmodel for noisy components separation in voltage-sensitive dye optical imaging.
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Inpainting
L

set= M Deblurring
L

set= K Composite
L

set= MK

Observations
y = Ly(0) + ν

SNR(y, y(0)) 2.7 dB 13.7 dB 2.7 dB

Recovery

Ψ(Λ)(x) set=∣∣x(W)∣∣
ℓ,Λ(W)B

+
∣∣x(C)∣∣

ℓ,Λ(C)B

SNR( ŷ, y(0)) 22.6 dB 21.7 dB 21.0 dB

Recovery

Ψ(Λ)(x) set=∣∣x(W)∣∣
ℓ,Λ(W)B

+
∣∣x(C)∣∣

ℓ,Λ(C)B+∣∣Dx∣∣δ,ΛTV

SNR( ŷ, y(0)) 23.8 dB 22.6 dB 21.9 dB

Figure 7: Observations and restored images of the numerical experiments. See opposite.
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Figure 7, opposite: Observations and restored images of our example problem. For the
masking operatorM, the set of observed pixel Ω is drawn at random such that ∣Ω∣ ≈ P/2;
for the blur operatorK, the width of the Gaussian �lter is σK

set= 3 (in pixels); the standard
deviation of the noise ν is σν

set= 10−1 (recall that y(0) is scaled between 0 and 1).�e choice
of the penalizations parameters Λ is detailed in the next chapter, § V.4.

Before detailing the practical application of GFB to the SMCS model in Chapter II,
the crucial question on the actual selection of the values of the many parameters in-
volved in the model remains to be answered. �is is the subject of the next chapter.
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V

Risk Estimation for Parameter Selection

in Proximal Denoising

All along previous chapters, we motivated and exempli�ed the use of variational
problems for signal reconstruction. Such problems always involve parameters balanc-
ing the in�uence between terms, and these should be set carefully. In fact, parameter
selection is at least as important as optimization methods, as far as the relevance of the
solution to the problem at hand is concerned. However, while (convex) optimization
methods can all be discussed within the same mathematical framework (to which be-
long the two previous chapters), parameter selection is more problem-dependent.

As discussed in more details in the introduction, there have been numerous model
selection approaches developed in the literature, particularly in the context of statistical
learning, where automatic parameter selections apply more naturally. However, they
o�en do not apply directly to inverse problems in signal processing, and more impor-
tantly, they usually require to solve the problem many times, what is computationaly
too expensive for large scale problems.

Recall from previous chapters that proximal splitting algorithms are good candi-
dates for solving complex, large scale problems, by splitting them into “subproblems”
that are easily tractable. �ese subproblems are proximity operators that can be e�-
ciently computed, and as we will see, they can be seen as denoising problems of their
own; and when they are treated as such, it is much easier to �nd relevant values of their
parameters. �erefore in this chapter, we focus our attention on a statistical tool which
seems the most adapted to such situations, namely Stein’s unbiased risk estimate, and
investigate its use for signal processing applications.
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Within this chapter, P is a positive integer, and y(0) ∈ RP is a certain signal of interest.
Suppose that N def

∼ N(0,C) follows a Gaussian noise with zero mean and variance-

covariance C
def
= (cp,q)1≤p≤P

1≤q≤P ∈ R
P×P; then, an observation of y(0) corrupted additively by

N is a realization y of the random variable Y def
= y(0) + N .

1 Stein’s Unbiased Risk Estimate for Denoising

1.1 Denoising Problem and Risk of an Estimator

�e denoising problem is the problem of retrieving y(0) given the observation y. An
estimator of y(0) parameterized by Λ is a function ŷ(Λ)∶RP → RP ∶ y ↦ ŷ(Λ)(y). In this
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context, considering an estimator ŷ(Λ) and several possible values for its parameter Λ,
one wishes to select the values of Λ which minimizes the risk of this estimator, de�ned
as the expected value of the squared error,

risk ( ŷ(Λ)) def= EN ∣∣y(0) − ŷ(Λ)(Y)∣∣2 . (1)

Unfortunately, one does not have access to the target signal y(0), so that the risk (1) can-
not be estimated directly. However, one can develop ∣∣y(0) − ŷ(Λ)(Y)∣∣2 =∥y(0) − Y + Y − ŷ(Λ)(Y)∥2 = ∣∣N ∣∣2+∣∣Y − ŷ(Λ)(Y)∣∣2+2⟨−N ∣Y − ŷ(Λ)(Y)⟩, so that taking
the expectation over N provides

risk ( ŷ(Λ)) = EN ∣∣Y − ŷ(Λ)(Y)∣∣2 + 2EN⟨N ∣ ŷ(Λ)(Y)⟩ −EN ∣∣N ∣∣2 . (2)

�e �rst term in the right hand side of (2) accounts for the distance between the obser-
vations and the corresponding estimations. �e second term is the covariance between
the noise and the estimator; in the risk, it accounts for the sensitivity of the estima-
tor ŷ(Λ) to the noise. From a statistical point of view, it corresponds to the degrees of
freedom of the estimator (see in particular Efron (2004) and references therein); this
quanti�es the complexity of an estimator, hence its susceptibility to over�tting.�e last
term depends only on the statistics of the noise, as EN ∣∣N ∣∣2 = traC; in particular, it is
independent from the estimator ŷ(Λ).

Altogether, minimizing the risk according to Λ amounts to �nd the best compro-
mise between con�dence on the observations and robustness to noise of the estima-
tor, through estimates of (2). In a denoising problem, realizations of Y are observed, so
that the �rst term can be estimated. However, one does not observe the correspond-
ing realizations of the noise N , which would be useful for estimating the second term.
Fortunately, Stein’s lemma (Stein, 1981) stipulates that in the case of additive Gaussian
noise, this term can still be estimated, provided that the noise’s statistics are known and
that the estimator ŷ(Λ) has su�cient regularity, as described in the following.

1.2 Stein’s Unbiased Risk Estimate

Developed �rst for the case of an homoscedastic, whiteGaussian noise, the following
lemma has been extended to correlated Gaussian noise, and more generally to an arbi-
trary noise following an exponential family distribution, see in particular Eldar (2009);
Pesquet et al. (2009).We re-establish it here properly in the case of an arbitraryGaussian
noise. In particular, we specify the required weak di�erentiability assumption on the es-
timator1 ŷ, which are somewhat o�en imprecisely given in the literature. Notemoreover
that with our formulation, this assumption is slightly easier to check than with the orig-
inal formulation of Stein (1981), though they are equivalent.

For p ∈ {1, . . . , P}, we particularize the coordinate p of a vector x ∈ RP by denoting
the subvector x{p}c def= x{1,...,P}∖{p}; such an x is then uniquely determined by (x{p}c , xp).

1for the time being, we drop the dependency of ŷ on Λ.
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De�nition 1.1 (almost di�erentiability). Let P,Q ∈ N∗. A function ŷ∶RP → RQ is al-
most di�erentiable if it is absolutely continuous over almost all line segments parallel to
the coordinate directions, i.e. for all p ∈ {1, . . . , P} and q ∈ {1, . . . ,Q}, there exists a
locally integrable function ∂ ŷq

∂yp
∶RP → R such that for almost all y ∈ RP and for almost

all y′p ∈ R,

ŷq(y{p}c , y′p) = ŷq(yp) +
ˆ y′p

yp

∂ ŷq
∂yp
(y{p}c , t)dt ;

the function ∂ ŷq
∂yp

is called the weak partial derivative of ŷq along direction p. We denote

then ∂ ŷ
∂y ∶RP → RP×P ∶ y ↦ ( ∂ ŷq

∂yp
(y))1≤q≤Q

1≤p≤P the corresponding weak Jacobian matrix.

Lemma 1.1 (Stein’s lemma). Let y(0) ∈ RP, N
def
∼ N(0,C), Y def

= y(0)+N, and ŷ∶RP → RP

almost di�erentiable. If for all p, q ∈ {1, . . . , P}, EN ∣ ∂ ŷq∂yp
(Y)∣ < +∞, then

EN⟨N ∣ ŷ(Y)⟩ = EN[tra (C ∂ ŷ
∂y(Y))] . (3)

Proof. In Annex A, we correct the proof of Raphan and Simoncelli (2008), using the
modi�ed integration by part of Stein (1981). ∎
Remark 1.1. Following Evans and Gariepy (1992, �eorem 2 in Section 4.9.2), almost
di�erentiable functions that are locally integrable togetherwith theirweak partial deriva-
tives are actually the functions in the local Sobolev space W 1,1

loc(RP). In view of the in-
tegrability conditions required by Stein’s lemma, we conclude that (3) is valid for all
functions in the Sobolev space W 1,1(RP ,PN) equipped with the probability measure
induced by N . In that context, Lieb and Loss (2001, �eorem 6.9) shows that our de�-
nition of weak di�erentiability is equivalent to that of Stein (1981).

Remark 1.2. In the proof, it is easy to see that if the noise is uncorrelated along given
directions p, q ∈ {1, . . . , P}, i.e. cp,q = cq,p = 0, then the estimator does not need to be

absolutely continuous along these directions; in (3), the weak partial derivatives ∂ ŷq
∂yp

and
∂ ŷp
∂yq

can simply be replaced by 0.

Making use of analytic properties of the Gaussian distribution, Stein’s lemma allows
to replace the knowledge of the noise realizations by the knowledge of the weak partial
derivatives of the estimator to obtain an unbiased estimate of its risk. More precisely,
given one observation y ∈ RP, we de�ne Stein’s unbiased risk estimate (SURE) of the
estimator ŷ by

SURE( ŷ, y) def
= ∣∣y − ŷ(y)∣∣2 + 2 tra(C ∂ ŷ

∂y(y)) − traC ; (4)

combining (2) with Lemma 1.1, we get immediately EN[SURE( ŷ,Y)] = risk ( ŷ).
For su�ciently large observations, i.e. large values of P, only one observation is

enough to have a good approximation of the risk of a given estimator. As shown in § 4,
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this is typically the case in signal processing applications. Recall that estimators usually
depend on some parameter Λ; if one can compute the SURE for su�cientlymany values
of the parameters, one can thus select the values minimizing the risk.�is approach has
two main limitations. First, one must have access to the weak partial derivatives of the
estimators, which is not always the case; consider for instance that many estimators are
de�ned as solutions of optimization problems, computed through iterative algorithms,
and one does not have access to close form expressions. Second, testing for many values
of the parameters can become computationaly prohibitively expensive. In particular,
expressions of ŷ(Λ)(y) and of its weak partial derivatives must be computed e�ciently
in order to obtain the SURE value for thousands of parameters. Moreover, if the esti-
mator ŷ(Λ) depends on several parameters, and for each parameters several values must
be tested, there is a combinatorial explosions of the number of di�erent SURE values to
compute. In the following sections, we address those practical problems, illustrated by
typical signal processing situations, with a focus on our SMCS model for VSDOI.

1.3 Prerequisite: Estimating the Noise Level

Before delving into speci�c denoising estimators, keep in mind that all the risk esti-
mates given along this chapter require the knowledge of the noise statistics. In real-life
applications, this is not known a priori, and has to be estimated. We describe here the
most popular approach for dealing with natural signals corrupted by Gaussian noise.

Following for instance Donoho and Johnstone (1994), if the sampling resolution of
a signal is high enough, onemay assume that the “high frequencies” of Y are dominated
by the noise N . More precisely, if d ∈ RP is a vector presenting only transient features,
such as a discretized wavelet at a high frequency scale, then the random variable of
the correlation ⟨d ∣Y⟩ = ⟨d ∣ y(0)⟩ + ⟨d ∣N⟩ follows approximately the distribution of⟨d ∣N⟩ ∼N(0, tdCd). Using an appropriately chosen family (Dk)1≤k≤K of such vectors,
it is then possible to use classical variance estimators in order to estimate C from the
observations (⟨Dk ∣ y⟩)1≤k≤K .

We underline that the use of a robust estimator is recommended here, since those
observations might be corrupted by actual high frequency features of y(0). An interest-
ing special case is the white, homoscedastic noise, i.e. C set

= σ2 IdP. Suppose that D is an
orthonormal frame, for instance the high frequency subbands of an orthogonal wavelet
frame.�en, (Nk

def
= ⟨Dk ∣N⟩)1≤k≤K are independent and identically distributed random

variables following N0 ∼N(0, σ2). Given a realization of those variables, a popular esti-
mator of σ is based on themedian of absolute deviations. By de�nition, it is characterized
by m ∈ R∶PN0(∣N0∣ <m) def

=
1
2 . It satis�es

PN0( ∣N0 ∣
σ <

m
σ ) =

ˆ
m
σ

−m
σ

ϕ(ν)dν = 2Φ(mσ ) = 1
2 ,

where ϕ is the probability density function of the standard normal distribution, and
Φ∶R → R∶ x ↦ ´ x

0 ϕ(ν)dν is a strictly increasing function. Inverting Φ in the last
equality yields m

σ = Φ-1( 14). Since the sample median is a consistent estimator of the
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median, and (Φ-1( 14))-1 ≈ 1.4826, we deduce that
σ̂ ∶ (νk)1≤k≤K ↦ 1.4826 med (∣νk ∣)1≤k≤K ,

where med denotes the sample median, is a consistent estimator of σ . Note that the use
of the sample median median for robustness of the estimator is particularly relevant
when the signal is sparse in the chosen family of high frequency vectors, i.e. for only a
few k ∈ {1, . . . ,K}, ⟨Dk ∣ y(0)⟩ might have a signi�cant value and is then considered as
an outlier, with limited impact on the median.

Now and for the rest of this chapter, we suppose that the noise statistics are known
with su�cient accuracy.

2 Derivation for Some Proximity Operators

As underlined in the introduction of this chapter, proximity operators can be seen
as denoising estimators. More importantly, proximity operators of simple functions in-
volving few parameters do not su�er from the computational limitations introduced
above. In addition, proximity operators are nonexpansive (Lemma III.1.2 and III.1.3),
and in particular Lipschitzian. �e following lemma provides regularity properties for
Lipschitzian functions.

Lemma 2.1. Let P,Q ∈N∗, and ŷ∶RP → RQ . If ŷ is Lipschitzian, then it is almost di�er-
entiable, with weak partial derivatives bounded almost everywhere. In particular, for all

p ∈ {1, . . . , P} and all q ∈ {1, . . . ,Q}, EN ∣ ∂ ŷq∂yp
(Y)∣ < +∞.

Proof. According to Evans and Gariepy (1992, �eorem 5 in Section 4.2.3, �eorem 2
in Section 4.9.2 and �eorem 1 in Section 6.2), ŷ is di�erentiable almost everywhere,
almost di�erentiable, and its weak derivative equals its derivative almost everywhere.
Now by de�nition of the derivative, for almost all y ∈ RP and for all p ∈ {1, . . . , P} and
all q ∈ {1, . . . ,Q}, we have ∂ ŷq

∂yp
(y) = limy′p→yp

ŷq(y{p}c ,y′p)− ŷq(y{p}c ,yp)
y′p−yp .�us, ∂ ŷq

∂yp
is bounded

almost everywhere by any Lipschitz constant of ŷ, hence EN ∣ ∂ ŷq∂yp
(Y)∣ < +∞. ∎

In consequence, if a proximity operator is known in closed form, it su�ces then
to derive it almost everywhere to get its weak partial di�erentials. In this section, we
derive the SURE expressions for the proximity operators of structured penalizations
given in the previous chapter (§ IV.3.4.3), and discuss practical computational matters.
For brevity, and since it is the case of interest in our SMCSmodel (recall § II.2.1), we limit
the exposition to the heteroscedastic, uncorrelated noise, i.e. C def= diag (σ12, . . . , σP2).
We denote then σ

def= (σp)1≤p≤P ∈ RP and somewhat abusively ∇ ŷ(ΛB)∶RP → RP ∶ y ↦
( ∂ ŷp
∂yp

(Λ)(y))
1≤p≤P; the SURE expression (4) becomes

SURE ( ŷ(Λ), y) = ∣∣ ŷ(Λ)(y) − y∣∣2 + 2∣∣σ ⋅ ∇ ŷ(Λ)(y)∣∣2 − ∣∣σ ∣∣2 . (5)
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Figure 1: Group so�-thresholding; λb
set= 1.

Recall from § IV.3.4 that our structured penalizations are simple as soon as they are
de�ned over nonoverlapping group structures; let then B be a nonoverlapping group
structure over the Euclidean spaceRP, bc def= {1, . . . , P}∖∪b∈Bb its complementary group
of coordinates, and Λ def= (λb)b∈B be a family of nonnegative weights indexed by B. Recall
that (B, bc) constitutes a partition of {1, . . . , P}. All the following cases are similar, hence
only the ℓ1,2-norm denoising is well detailed.

2.1 ℓ1,2-Norm Denoising

Set �rst ŷ(ΛB) def= prox∣∣⋅∣∣ℓ ,ΛB

∶ y ↦ argminx∈RP ∣∣y − x∣∣2 + ∣∣x∣∣ℓ,ΛB
. Proposition IV.3.8(i)

provides that, for all y ∈ RP, ŷ(ΛB)
bc (y) = ybc , and for all b ∈ B,

ŷ(ΛB)
b (y) = ⎧⎪⎪⎨⎪⎪⎩

(1 − λb∣∣yb ∣∣2 )yb if ∣∣yb∣∣2 > λb ,
0 if ∣∣yb∣∣2 ≤ λb . (6)

�is estimator is sometimes called group so�-thresholding, canceling groups of coe�-
cients whose amplitude is lower than the corresponding threshold λb, and shrinking
the amplitude of the remaining groups by λb, as illustrated in Figure 1.

Proposition 2.1. With the above de�nitions, ŷ(ΛB) is almost di�erentiable, with for all

p ∈ bc, ∂ ŷp
∂yp

(ΛB) = 1, and for all b ∈ B, for all p ∈ b, and for almost all y ∈ RP,

∂ ŷp
∂yp

(ΛB)(y) = ⎧⎪⎪⎨⎪⎪⎩
(1 − λb∣∣yb ∣∣2 +

λb yp
2

∣∣yb ∣∣32 ) if ∣∣yb∣∣2 > λb ,
0 if ∣∣yb∣∣2 ≤ λb . (7)

Note that expression (7) presents discontinuity at points where there exists b ∈ B
such that ∣∣yb∣∣2 = λb; the partial derivative is actually not de�ned at those points. We
set it here as 0, which its the le� limit as λb tends to ∣∣yb∣∣2. As discussed below, this
indeterminacy is usually not a concern for practical applications.
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Corollary 2.1. With the above de�nitions,

SURE ( ŷ(ΛB), y) def= ∑
b∈B ∶

∣∣yb ∣∣2≤λb

∣∣yb∣∣22 + ∑
b∈B ∶

∣∣yb ∣∣2>λb

λb
2 + 2∣∣σbc ∣∣22 − ∣∣σ ∣∣22

+ 2 ∑
b∈B ∶

∣∣yb ∣∣2>λb

(∣∣σb∣∣22(1 − λb∣∣yb∣∣2) +
λb∣∣yb∣∣2
∣∣σb ⋅ yb∣∣22∣∣yb∣∣22 ) ,

(8)

is an unbiased estimate of the risk of ŷ(ΛB).
Optimizing expression (8) separately for each λb, even if possible, makes no practi-

cal sense. Indeed, that would correspond to handle each subvector yb separately, and by
doing so to lose the statistical signi�cance of the SURE computed over a single obser-
vation. A good practice here is to weight each group b by a �xed factor µb that depends
on some prior knowledge over the group b (usually on the noise σb or the group size∣b∣, as we do in our SMCS model, see § II.3.5) and de�ning for all b ∈ B, λb set= λµb for a

certain λ over which the SURE must be optimized. Denoting for each b ∈ B, rb def= ∣∣yb ∣∣2µb
,

the corresponding SURE (8) becomes

SURE ( ŷ(λ), y) =∑
b∈B µb

2min (λ, rb)2 + 2∑
b∈B ∶
rb>λ

(∣∣σb∣∣22(1 − λ

rb
) + λ

rb

∣∣σb ⋅ yb∣∣22∣∣yb∣∣22 )
+ 2∣∣σbc ∣∣22 − ∣∣σ ∣∣22 .

(9)

Under that form, it is easier to see that the value of λminimizing the estimated risk
is a compromise between the �rst term of the right-hand side of (9), favoring a small
shrinkage value to minimize bias, and the second term, favoring a large threshold value
to remove the noise.

Now, by ordering the observed values of (rb)b∈B, say rb1 < ⋯ < rb∣B∣ , observe that,
for i ∈ {1, . . . , ∣B∣ − 1} and λ ranging between the two consecutive values [rb i , rb i+1[,
the SURE (9) is a convex and continuously di�erentiable function of λ, with derivative

λ ↦ 2∑b∈B∶rb>rbi (µb2λ + 1
rb
( ∣∣σb ⋅yb ∣∣22∣∣yb ∣∣22 − ∣∣σb∣∣22)).We deduce that theminimumof the SURE

(9) over [rb i , rb i+1[ is attained at

λ̂i
def= max (rb i , min(rb i+1 , ∑

b∈B ∶
rb>rbi

1
rb
(∣∣σb∣∣22 − ∣∣σb ⋅yb ∣∣22∣∣yb ∣∣22 )/ ∑b∈B ∶

rb>rbi

µb
2)) . (10)

De�ning similarly λ̂0 with rb0
def= 0, and λ̂∣B∣ def= r∣B∣, it is thus possible to �nd the optimal

λ in O(P + ∣B∣ log ∣B∣) operations, by pre-computing norms involved in (9), ordering
the ratios (rb)b∈B and computing the SURE at points {λ̂i ∣ 0 ≤ i ≤ ∣B∣} using cumulative
sums2.

Recall that the points where λ = rb (or equivalently, λb = ∣∣yb∣∣2) are precisely the
ones for which the partial derivatives are not well de�ned. However, choosing between

2codes in Matlab are available at https://github.com/1a7r0ch3/SURE.

https://github.com/1a7r0ch3/SURE
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le� or right limit as λb tends to ∣∣yb∣∣2 only results in favoring one of two consecutive
values of rb i , rb i+1 . For su�ciently large observations, such two values are usually close
enough so that the di�erence is insigni�cant in practice.

Finally, let us mention that the selection method described above is generalized in
Chaux et al. (2008) to a large class of shrinking estimators. It is an extension of the
method proposed by Donoho and Johnstone (1995) for the so�-thresholding estima-
tor, which is the particular case where B set= ({p})1≤p≤P. Focusing on sparse wavelet de-
noising, they select one di�erent threshold value for each di�erent wavelet subband, by
ordering the absolute values of the observed coe�cients (note that when ∣bi ∣ = 1, then
λ̂i = rb i ) and computing the corresponding SURE. �e numerical experiments in § 4.1
are in the same spirit.

2.2 Bounded Amplitude Denoising

Let then ŷ(ΛB) def= projℓΛB
∶ y ↦ argminx∈RP ∣∣y − x∣∣2 + ιℓΛB

(x). Proposition IV.3.8(ii)

shows that, for all y ∈ RP , ŷ(ΛB)
bc (y) = ybc , and for all b ∈ B,

ŷ(ΛB)
b (y) = ⎧⎪⎪⎨⎪⎪⎩

λb∣∣yb ∣∣2 yb if ∣∣yb∣∣2 > λb ,
yb if ∣∣yb∣∣2 ≤ λb .

Proposition 2.2. With the above de�nitions, ŷ(ΛB) is almost di�erentiable, with for all

p ∈ bc, ∂ ŷp
∂yp

(ΛB) = 1, and for all b ∈ B, for all p ∈ b, and for almost all y ∈ RP,

∂ ŷp
∂yp

(ΛB)(y) = ⎧⎪⎪⎨⎪⎪⎩
λb∣∣yb ∣∣2 (1 − yp2∣∣yb ∣∣22 ) if ∣∣yb∣∣2 > λb ,

1 if ∣∣yb∣∣2 ≤ λb .
Corollary 2.2. With the above de�nitions,

SURE ( ŷ(ΛB), y) def= ∑
b∈B ∶

∣∣yb ∣∣2>λb

((∣∣yb∣∣2 − λb)2 + 2 λb∣∣yb∣∣2(∣∣σb∣∣22 −
∣∣σb ⋅ yb∣∣22∣∣yb∣∣22 ))

+ 2 ∑
b∈B ∶

∣∣yb ∣∣2≤λb

∣∣σb∣∣22 + 2∣∣σbc ∣∣22 − ∣∣σ ∣∣22 , (11)

is an unbiased estimate of the risk of ŷ(ΛB).
Introducing, as in § 2.1, the parameter λ, and for all b ∈ B, µb such that λb

set= λµb
and rb

def= ∣∣yb ∣∣2µb
, the SURE (11) becomes

SURE ( ŷ(λ), y) = ∑
b∈B ∶
rb>λ

(µb2(rb − λ)2 + 2 λ
rb
(∣∣σb∣∣22 − ∣∣σb ⋅ yb∣∣22∣∣yb∣∣22 ))

+ 2∑
b∈B ∶
rb≤λ

∣∣σb∣∣22 + 2∣∣σbc ∣∣22 − ∣∣σ ∣∣22 .
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Similarly to the expression (9), for all i ∈ {1, . . . , ∣B∣ − 1} and λ ranging between the two
consecutive values [rb i , rb i+1[, this is a convex and continuously di�erentiable function

of λ, with derivative λ ↦ 2∑b∈B∶rb>rbi (µb2(λ − rb) + 1
rb
(∣∣σb∣∣22 − ∣∣σb ⋅yb ∣∣22∣∣yb ∣∣22 )).We deduce that

the minimum of the SURE over [rb i , rb i+1[ is attained at

λ̂i
def= max (rb i , min(rb i+1 , ∑

b∈B ∶
rb>rbi

1
rb
(∣∣yb∣∣22 + ∣∣σb ⋅yb ∣∣22∣∣yb ∣∣22 − ∣∣σb∣∣22)/ ∑b∈B ∶

rb>rbi

µb
2)) .

2.3 δ1,2-Semi-Norm Denoising

Let now ŷ(ΛB) def= prox∣∣⋅∣∣δ ,ΛB

∶ y ↦ argminx∈RP ∣∣y − x∣∣2 + ∣∣x∣∣δ,ΛB
. For a vector x ∈ RP

and a goup of coordinates b, we denote as in Remark IV.1.4, xb
def= 1∣b∣ ∑p∈b xp and Ð→xb def=(xb , . . . , xb) ∈ R∣b∣, so that ∆(b)xb = xb − Ð→xb . For brevity of notations, we also denote∣∣xb∣∣δ def= ∣∣xb −Ð→xb ∣∣2; in particular, by Pythagoras theorem, we get ∣∣xb∣∣2δ = ∣∣xb∣∣22 − ∣∣Ð→xb ∣∣22.

According to Proposition IV.3.9(i), for all y ∈ RP, we have ŷ(ΛB)
bc (y) = ybc and for all

b ∈ B,
ŷ(ΛB)
b (y) = ⎧⎪⎪⎨⎪⎪⎩

Ð→yb + (1 − λb∣∣yb ∣∣δ )(yb −Ð→yb) if ∣∣yb∣∣δ > λb ,Ð→yb if ∣∣yb∣∣δ ≤ λb .
Proposition 2.3. With the above de�nitions, ŷ(ΛB) is almost di�erentiable, with for all

p ∈ bc, ∂ ŷp
∂yp

(ΛB) = 1, and for all b ∈ B, for all p ∈ b, and for almost all y ∈ RP,

∂ ŷp
∂yp

(ΛB)(y) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
1∣b∣ + (1 − λb∣∣yb ∣∣δ ) ∣b∣−1∣b∣ + λb∣∣yb ∣∣δ

(yp−yb)2∣∣yb ∣∣2δ if ∣∣yb∣∣δ > λb ,
1∣b∣ if ∣∣yb∣∣δ ≤ λb .

Corollary 2.3. With the above de�nitions,

SURE ( ŷ(ΛB), y) = ∑
b∈B ∶

∣∣yb ∣∣δ≤λb

∣∣yb∣∣2δ + ∑
b∈B ∶

∣∣yb ∣∣δ>λb

λb
2 − ∣∣σ ∣∣22 + 2∣∣σbc ∣∣22 + 2∑

b∈B
∣∣σb∣∣22∣b∣

+ 2 ∑
b∈B ∶

∣∣yb ∣∣δ>λb

⎛⎝(1 − λb∣∣yb∣∣δ )
∣b∣ − 1∣b∣ ∣∣σb∣∣22 + λb∣∣yb∣∣δ

∣∣σb ⋅ (yb −Ð→yb)∣∣22∣∣yb∣∣2δ
⎞⎠ ,

is an unbiased estimate of the risk of ŷ(ΛB).
Similarly to § 2.1, with the parameter λ, and for all b ∈ B, µb such that λb

set= λµb and
rb

def= ∣∣yb ∣∣δµb
, we get

SURE ( ŷ(λ), y) =∑
b∈B µb

2min (rb , λ)2 − ∣∣σ ∣∣22 + 2∣∣σbc ∣∣22 + 2∑
b∈B
∣∣σb∣∣22∣b∣

+ 2∑
b∈B ∶
rb>λ

⎛⎝(1 − λ

rb
)∣b∣ − 1∣b∣ ∣∣σb∣∣22 + λ

rb

∣∣σb ⋅ (yb −Ð→yb)∣∣22∣∣yb∣∣2δ
⎞⎠ ;

(12)
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and for all i ∈ {1, . . . , ∣B∣ − 1}, the minimum of this expression over two consecutive
values [rb i , rb i+1[ is attained at

λ̂i
def= max (rb i , min(rb i+1 , ∑

b∈B ∶
rb>rbi

1
rb
( ∣b∣−1∣b∣ ∣∣σb∣∣22 − ∣∣σb ⋅(yb−Ð→yb)∣∣22∣∣yb ∣∣2δ )/ ∑

b∈B ∶
rb>rbi

µb
2)) . (13)

2.4 Bounded Deviation Denoising

Let �nally ŷ(ΛB) def= projδΛB
∶ y ↦ argminx∈RP ∣∣y − x∣∣2 + ιδΛB

(x). For all y ∈ RP, ac-

cording to Proposition IV.3.9(ii), we have ŷ(ΛB)
bc (y) = ybc , and for all b ∈ B,

ŷ(ΛB)
b (y) = ⎧⎪⎪⎨⎪⎪⎩

Ð→yb + λb∣∣yb ∣∣δ (yb −Ð→yb) if ∣∣yb∣∣δ > λb ,
yb if ∣∣yb∣∣δ ≤ λb .

Proposition 2.4. With the above de�nitions, ŷ(ΛB) is almost di�erentiable, with for all

p ∈ bc, ∂ ŷp
∂yp

(ΛB) = 1, and for all b ∈ B, for all p ∈ b, and for almost all y ∈ RP,

∂ ŷp
∂yp

(ΛB)(y) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
1∣b∣ + λb∣∣yb ∣∣δ ( ∣b∣−1∣b∣ − (yp−(

Ð→yb)p)2∣∣yb ∣∣2δ ) if ∣∣yb∣∣δ > λb ,
1 if ∣∣yb∣∣δ ≤ λb ,

Corollary 2.4. With the above de�nitions,

SURE ( ŷ(ΛB), y) = 2∣∣σbc ∣∣22 − ∣∣σ ∣∣22 + 2 ∑
b∈B ∶

∣∣yb ∣∣δ≤λb

∣∣σb∣∣22
+ ∑

b∈B ∶
∣∣yb ∣∣δ>λb

⎛⎝(∣∣yb∣∣δ − λb)2 + 2 ∣∣σb∣∣
2
2∣b∣

+ 2λb∣∣yb∣∣δ
⎛⎝∣b∣ − 1∣b∣ ∣∣σb∣∣22 −

∣∣σb ⋅ (yb −Ð→yb)∣∣22∣∣yb∣∣2δ
⎞⎠⎞⎠

is an unbiased estimate of the risk of ŷ(ΛB).
Finally, with the parameter λ, and for all b ∈ B, µb such that λb set= λµb and rb def= ∣∣yb ∣∣δµb

,

SURE ( ŷ(λ), y) = 2∣∣σbc ∣∣22 − ∣∣σ ∣∣22 + 2∑
b∈B ∶
rb≤λ

∣∣σb∣∣22
+ ∑

b∈B ∶
rb>λ

⎛⎝ µb2(rb − λ)2 + 2 ∣∣σb∣∣
2
2∣b∣

+ 2λ

rb

⎛⎝∣b∣ − 1∣b∣ ∣∣σb∣∣22 −
∣∣σb ⋅ (yb −Ð→yb)∣∣22∣∣yb∣∣2δ

⎞⎠⎞⎠ ;
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and for all i ∈ {1, . . . , ∣B∣ − 1}, the minimum of this expression over two consecutive
values [rb i , rb i+1[ is attained at

λ̂i
def= max (rb i , min(rb i+1 , ∑

b∈B ∶
rb>rbi

1
rb
(∣∣yb∣∣δ + ∣∣σb ⋅(yb−Ð→yb)∣∣22∣∣yb ∣∣2δ − ∣b∣−1∣b∣ ∣∣σb∣∣22)/ ∑

b∈B ∶
rb>rbi

µb
2)) . (14)

2.5 Reweighted ℓ1,2-Norm Denoising

In § II.3.2, we introduced the reweighted ℓ1,2-norm penalization, directly inspired
by the reweighted ℓ1-norm proposed by Candès et al. (2008). A denoising estimator
de�ned with this penalization is not an explicit proximal operator, but the derivation of
its SURE is similar to the above cases. Let us �rst de�ne such an estimator properly and
exhibit some of its properties.

On top of B and ΛB set as above, let EB
def= (εb)b∈B be a family of nonnegative

weights indexed by B. Below, we de�ne the reweighted ℓ1,2-norm denoising estimator
in De�nition 2.1, with help of Proposition 2.5.

De�nition 2.1 (reweighted ℓ1,2-norm denoising sequences). With the above de�nitions,
let moreover y ∈ RP. Dropping the dependencies on ΛB, EB and y for brevity, the
reweighted ℓ1,2-norm denoising sequences are the sequence ( ŷ(n))n∈N in RP, and the se-

quence (Λ(n) def= (λ(n)b )b∈B)n∈N of families of nonnegative weights indexed by B, de�ned

by induction as ŷ(0) def= 0, and for all n ∈N,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
∀ b ∈ B, λ(n)b

def= λb∣∣ ŷ(n)b ∣∣2/εb + 1 , (15a)

ŷ(n+1) def= argmin
x∈RP

1
2 ∣∣y − x∣∣2 + ∣∣x∣∣Λ(n)B

. (15b)

where Λ(n)B
def= {Λ(n), B}.

Proposition 2.5. Any sequence ( ŷ(n))n∈N as de�ned above is convergent. We can thus
de�ne the reweighted ℓ1,2-norm denoising estimator parameterized by ΛB and EB, as
ŷ(ΛB ,EB)∶ y ↦ limn→+∞ ŷ(n). Moreover, this estimator is characterized, for all y ∈ RP, by

ŷ(ΛB ,EB)
bc (y) = ybc and for all b ∈ B,

ŷ(ΛB ,EB)
b (y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
2(1 − εb∣∣yb ∣∣2 +

√( εb∣∣yb ∣∣2 + 1)2 − 4 λb εb∣∣yb ∣∣22)yb if ∣∣yb∣∣2 > λb ,
0 if ∣∣yb∣∣2 ≤ λb .

(16)

Proof. Fix y ∈ RP and b ∈ B. Obviously, ∣∣ ŷ(0)b ∣∣2 ≤ ∣∣ ŷ(1)b ∣∣2. �en, for all n ∈ N, (15a)

shows that ∣∣ ŷ(n)b ∣∣2 ≤ ∣∣ ŷ(n+1)b ∣∣
2
⇒ λ

(n)
b ≥ λ

(n+1)
b , while (15b) together with (6) shows in

turn that λ(n)b ≥ λ(n+1)b ⇒ ∣∣ ŷ(n+1)b ∣∣
2
≤ ∣∣ ŷ(n+2)b ∣∣

2
. By induction, we have that (∣∣ ŷ(n)b ∣∣2)n∈N is

nondecreasing and (λ(n)b )n∈N is nonincreasing; the latter being bounded below by 0, it
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(a) λb
set= 1, εb set= 1.

0 1 2
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∣∣ ŷb∣∣2

∣∣yb ∣∣2λb

(b) λb
set= 1, εb set= 1.
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0
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2

∣∣ ŷb∣∣2

∣∣yb ∣∣2λb

(c) λb
set= 1, εb set= 0.5.

Figure 2: Reweighted ℓ1,2-norm denoising estimator. (a) Comparison to the so�- (red)
and hard- (blue) thresholding estimators. (b) Reweighted ℓ1,2-norm denoising sequence
for n set= 1 (red), 2 (green), and 5 (blue); we see that it converges quickly to the limit
estimator, in green on (a). (c) Idem, with εb < λb; the jump at ±λb induces instability,
and the estimator is not almost di�erentiable.

is convergent, and by continuity of (6) with respect to λb, so is the sequence ( ŷ(n)b )n∈N.
Now, if ∣∣yb∣∣2 ≤ λb, then it follows from (6) that ŷ(1)b = 0 and from (15a) that λ(1)b = λb; by
induction, for all n ∈ N, ŷ(n)b = 0, so that ŷ(ΛB ,EB)

b (y) = 0. Suppose then ∣∣yb∣∣2 > λb. By
continuity of (15a) with respect to yb, and then again by continuity of (6) with respect to

λb, we get at convergence ŷ
(ΛB ,EB)
b (y) = (1 − λb∣∣ ŷ(ΛB ,EB)

b
(y)∣∣

2
/εb +1)yb. Its norm satis�es thus

∣∣ ŷ(ΛB ,EB)
b (y)∣∣2

2
+(εb − ∣∣yb∣∣2)∣∣ ŷ(ΛB ,EB)

b (y)∣∣2
2
+ εb(λb − ∣∣yb∣∣2) = 0, i.e. it is a positive root of

a second-order polynomial. �e discriminant is ∆ = (εb + ∣∣yb∣∣2)2 − 4λbεb > 0 and the

only positive root yields 1
2(1 − εb∣∣yb ∣∣2 +

√( εb∣∣yb ∣∣2 + 1)2 − 4 λb εb∣∣yb ∣∣22 )∣∣yb∣∣2. �e result follows by

collinearity of ŷ(ΛB ,EB)
b (y) and yb. ∎

Recall the ℓ0-pseudo-norm penalization mentioned in the introduction, counting
the number of nonzero coe�cients of a vector, thus inducing sparsity in variational
reconstructions. We can de�ne a structured version of the ℓ0-pseudo-norm, where for
all b ∈ B, the subvector de�ned over b is penalized by λb if it is nonzero. �e denoising
estimator that derives from this penalization is the group hard-thresholding, such that for

all b ∈ B, ŷ(ΛB)
b

def= ⎧⎪⎪⎨⎪⎪⎩
yb if ∣∣yb∣∣2 > λb ,
0 if ∣∣yb∣∣2 ≤ λb . On top of its nonconvexity, another drawback of

the ℓ0-pseudo-norm is its noncontinuity. As a result, the hard-thresholding estimator
is not continuous either. In contrast, our reweighted ℓ1,2-norm denoising estimator is
computed as successive solutions of convex problems. Moreover, we can see from (16)
that it interpolates between the so�- (as εb → +∞) and hard- (as εb → 0) thresholding
estimators; this is also illustrated on Figure 2(a). In the following proposition, we precise
under which conditions this estimator has su�cient regularity for estimating its risk
with the SURE.
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Proposition 2.6. With the above de�nitions, ŷ(ΛB ,Eb) is almost di�erentiable if, and only

if, for all b ∈ B, εb ≥ λb. In that case, for all p ∈ bc, ∂ ŷp
∂yp

(ΛB ,EB) = 1, and for all b ∈ B, for all
p ∈ b, and for almost all y ∈ RP,

∂ ŷp
∂yp

(ΛB ,EB)(y) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣yb∣∣2-1
2
(∣∣yb∣∣2 − εb +√(εb + ∣∣yb∣∣2)2 − 4λbεb)
+ εb

2
(1 − (εb + ∣∣yb∣∣2) − 4λb√(εb + ∣∣yb∣∣2)2 − 4λbεb)

yp2∣∣yb∣∣32 if ∣∣yb∣∣2 > λb, (17a)

0 if ∣∣yb∣∣2 ≤ λb. (17b)

Proof. Let p ∈ {1, . . . , P}, y ∈ RP, and consider û∶R → R∶ y′p ↦ ŷ(ΛB ,EB)
p (y{p}c , y′p). If

p ∈ bc, then û reduces to the identity, and ∂ ŷp
∂yp

(ΛB) = 1. Otherwise, let b ∈ B be the unique

group of coordinates containing p, and denote {p}cb def= b ∖ {p}. �en for all y′p ∈ R, we
develop û(y′p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

y′p
2 − 1

2[∣∣y{p}cb ∣∣22 + y′p2]−
1
2(εb −

√(εb +√∣∣y{p}cb ∣∣22 + y′p2)2 − 4λbεb)y′p
if ∣∣y{p}cb ∣∣22 + y′p2 > λb2 ,

0 if ∣∣y{p}cb ∣∣22 + y′p2 ≤ λb2 ,
where ∣∣y{p}cb ∣∣2 is the Euclidean norm of y{p}cb ∈ R∣b∣−1 if ∣b∣ > 1, and is 0 otherwise. If

∣∣y{p}cb ∣∣22 > λb
2, then for all y′p ∈ R, (εb +√∣∣y{p}cb ∣∣22 + y′p2)2 − 4λbεb > 0, so that û is

continuously di�erentiable over R, hence absolutely continuous. If ∣∣y{p}cb ∣∣22 ≤ λb
2, de-

�ne z def= √λb
2 − ∣∣y{p}cb ∣∣22; û is obviously absolutely continuous over [−z, z]. Moreover,

û is continuously di�erentiable over ]z,+∞[ , so that for all y′p, y′′p ∈]z,+∞[, we have
û(y′′p) = û(y′p)+´ y′′p

y′p

∂û
∂y′p
(t)dt, where the weak derivative ∂û

∂y′p
(t) is given by (17a) by sub-

stituing (y{p}c , t) to yb and t to yp. Provided that the limit exists, we get the improper

integral û(y′′p) = limy′p→z+ û(y′p) + ´ y′′p
z

∂û
∂y′p
(t)dt ; verifying that ∂û

∂y′p
is nonnegative, it

is then integrable over [z, y′′p ] and its integral is equal to the above improper integral.

Now, if λb > 0, then we have limy′p→z+ û(y′p) = 1
2λb
(λb − εb + ∣εb − λb∣)z and if λb = 0,

then limy′p→z+ = 0. In any case, if εb ≥ λb, then limy′p→z+ û(y′p) = 0 = limy′p→z− û(z), and
we deduce that û is absolutely continuous over all line segments in [z,+∞[. Noticing
that it is an odd function, we deduce by symmetry that it is absolutely continuous over
all line segments in R. Conversely, if εb < λb, then for all y ∈ {y ∈ R ∣ ∣∣y{p}cb ∣∣2 < λb},
limy′p→z+ û(y′p) > limy′p→z− û(y′p), hence for all y′′p ∈]z,+∞[, û is not absolutely continu-

ous over [z, y′′p ]. Since the sets y ∈ {y ∈ RP ∣ ∣∣y{p}cb ∣∣2 < λb} and ]z,+∞[ have nonzero
measure (for the Lebesgue measures over RP and R, respectively), we conclude that
ŷ(ΛB ,Eb) is not almost di�erentiable. ∎
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Remark 2.1. Strictly speaking, one should also check the existence of the weak partial

derivatives ∂ ŷq
∂yp

(ΛB ,EB)

for q ≠ p to establish almost di�erentiability; this follows the same
lines as the case q = p. Note however that, in the case of uncorrelated noise, in view of

Remark 1.2, the existence and integrability of ∂ ŷp
∂yp

(ΛB ,EB)

for p ∈ {1, . . . , P} is su�cient for

(5) to be an unbiased estimate of the risk of ŷ(ΛB ,EB).
Corollary 2.5. With the above de�nitions, if for all b ∈ B, εb ≥ λb, then
SURE ( ŷ(ΛB ,EB), y) def= ∑

b∈B ∶
∣∣yb ∣∣2≤λb

∣∣yb∣∣22 + 2∣∣σbc ∣∣22 − ∣∣σ ∣∣22
+ ∑

b∈B ∶
∣∣yb ∣∣2>λb

⎛⎝ 14((εb + ∣∣yb∣∣2) −
√(εb + ∣∣yb∣∣2)2 − 4λbεb)2

+ ∣∣σb∣∣22∣∣yb∣∣2(∣∣yb∣∣2 − εb +
√(εb + ∣∣yb∣∣2)2 − 4λbεb)

+ εb∣∣yb∣∣2(1 −
(εb + ∣∣yb∣∣2) − 4λb√(εb + ∣∣yb∣∣2)2 − 4λbεb)

∣∣σb ⋅ yb∣∣22∣∣yb∣∣22
⎞⎠

(18)

is an unbiased estimate of the risk of ŷ(ΛB ,EB).
Proof. If for all b ∈ B, εb ≥ λb, then according to Proposition 2.6, ŷ(ΛB ,EB) is almost
di�erentiable, and in view of (17), its weak partial derivatives are nonnegative. In par-

ticular, for all p ∈ {1, . . . , P}, ∣ ∂ ŷp
∂yp

(ΛB ,EB)∣ is locally integrable. Moreover, we see from (17a)

that lim∣∣yb ∣∣2→+∞ ∂ ŷp
∂yp

(ΛB ,EB)(y) = 1, so that it is bounded outside a ball of su�ciently large
radius. Since the probability density of N is bounded over R and has �nite mass, we

conclude that EN ∣ ∂ ŷp∂yp

(ΛB ,EB)(Y)∣ < +∞. �e result follows by injecting (16) and (17) in
(5). ∎

Whenever the reweighted ℓ1,2-norm penalization seems relevant, one can set for all
b ∈ B, εb set= λb. As illustrated on Figure 2, it is the best compromise between in�uence
of the reweighting process, and regularity of the resulting denoising estimator. For op-
timizing the SURE e�ciently for only one parameter, one can then follow once again
the previous approach, introducing the parameter λ and for all b ∈ B, the factor µb such
that λb

set= λµb, and the ratios rb
def= ∣∣yb ∣∣2µb

. �e SURE (18) becomes

SURE ( ŷ(λ), y) def= ∑
b∈B ∶
rb≤λ

µb
2rb

2 + 2∣∣σbc ∣∣22 − ∣∣σ ∣∣22
+ ∑

b∈B ∶
rb>λ

⎛⎝µb
2

4
((λ + rb) −√(λ + rb)2 − 4λ2)2

+ ∣∣σb∣∣22
rb
(rb − λ +√(λ + rb)2 − 4λ2)

+ λ

rb
(1 − (λ + rb) − 4λ√(λ + rb)2 − 4λ2)

∣∣σb ⋅ yb∣∣22∣∣yb∣∣22
⎞⎠ .
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In comparison to (9), �nding the λ at which this expression reached its minimum over
two consecutive values [rb i , rb i+1[ is more involved. However, simply testing for each
observed values, i.e. λ̂i

set= rb i , is a good strategy in practice. Note also that it is compu-
tationaly more expensive than for the simple ℓ1,2-norm denoising, because for all b ∈ B,
the factor

√(λ + rb)2 − 4λ2 must be computed for each tested λ̂i , and cumulative sums
cannot be used anymore; the total cost scales then as O(P + ∣B∣3) operations. In con-
sequences, it is also a good practice to discard irrelevant observed values λ̂i , and to
subsample the remaining ones3

Remark 2.2. �e reweighting scheme presented along this section can be adapted with-
out much modi�cations to a δ1,2-norm penalization; corresponding conditions of weak
di�erentiability and SURE expressions can be similarly derived.

3 Beyond Proximity Operators

As explained in the introduction of this thesis, in the variational framework, denois-
ing estimators are written as solutions of minimization problems. However, the data-
�delity term is not necessarily reduced to a ℓ2-norm; alternatively, the penalizations
are not necessarily simple functionals. In such cases, the SURE (4) cannot necessarily
be computed e�ciently. In this section, we present some usual situations, and propose
practical workarounds.

3.1 Sum of Simple Penalizations

First, let us consider a direct extension of the estimators in § 2, namely denoising
estimators de�ned as the proximity operator of a given convex penalization g ∈ Γ0(RP)
which is not simple, i.e. ŷ def= proxg is not known as a closed form expression. We as-

sume however that g can be split as a sum of simple penalizations, as g
def= ∑n

i=1 gi
with n ∈ N∗, so that, as explained in the introduction, y ∈ RP being given, many
iterative proximal algorithms are available for computing the minimization problem
ŷ(y) def= argminx∈RP

1
2 ∣∣y − x∣∣2 +∑n

i=1 gi(x) at reasonable cost.
3.1.1 Partly Smooth Penalizations

Assuming that the computational cost of computing ŷ(y) is a�ordable, it remains
only to estimate the trace of its weak Jacobian in order to compute its SURE (4). Several
papers address this problem for di�erent penalizations; the most general result to date
can be found in Vaiter et al. (2014), unveiling the expression of the weak derivative of
ŷ for any functional g which is a piecewise regular gauge. Without delving into details,
this encompasses all the penalizations presented in this work, at the notable exception
of the indicator functions.

3codes in Matlab and C interfaced with Mex are available at https://github.com/1a7r0ch3/
SURE.

https://github.com/1a7r0ch3/SURE
https://github.com/1a7r0ch3/SURE
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A practical drawback of this approach is that the solution of theminimization prob-
lem de�ning ŷ(y)must be computed with high precision. In brief, the functional g de-
�nes certain subspaces of interest, and one must identify which of those subspaces con-
tains the solution ŷ(y) in order to compute the weak derivatives; and the dependencies
of the weak derivatives on those subspaces are highly unstable. A typical example is the
ℓ1,2-norm (and in general any sparsity promoting regularization), for which, as can be
seen in (7), the partial derivatives depends on the support (the nonzero groups of coe�-
cients) of the solution. For a problem comprising such sparsity promoting penalizations
mixed with other penalizations, iterative proximal algorithms o�en provides solutions
with coe�cients which are numerically of very small amplitudes, but not exactly zero.
�erefore, identi�cation of the support will fail, impacting drastically the risk estimate.

3.1.2 Iterative SURE and Monte Carlo SURE

When ŷ is computed as the output of an iterative algorithm, an other approach that
necessitates less precision than above consists in estimating iteratively the degrees of
freedom of the estimator. Choosing m ∈ N∗, one replaces ŷ by an approximation ŷ(m)
de�ned as the output of the algorithm, initialized at a given point ŷ(0), a�erm iterations.

Formost proximal splitting algorithms, ŷ(m) is a composition of Lipschitzian opera-
tors (essentially proximity operators and linear operators), and thus is itself Lipschitzian.
Moreover, we show in Proposition 5.1 that one can compute the weak partial deriva-
tives of the composition using the chain rule, provided than one knows the weak par-
tial derivatives of each individual functionals in an appropriate orthonormal basis (see
Annex B for details). More precisely, suppose that the algorithm is de�ned as, for all
l ∈ N, ŷ(l+1)(y) = T(l)( ŷ(l)(y), y), where T(l)∶RP ×RP → RP is Lipschitzian. �en we
have for all l ∈N and almost all y ∈ RP, in obvious matrix notations,

∂ ŷ
∂y

(l+1)(y) = ( ∂T
∂ ŷ

(l)( ŷ(l)(y), y))( ∂ ŷ
∂y

(l)(y)) + ∂T
∂y

(l)( ŷ(l)(y), y) .
Now, even if one has access, for each l ∈ {1, . . . ,m}, to the derivatives of T(l) in closed
form, the analytic expression of the derivatives of ŷ(m) becomes prohibitively compli-
cated as the number of iterationsm is increasing. However, recall that the weak Jacobian
matrix is involved in the SURE expression (4) only through its trace. Following for in-
stance Deledalle et al. (2012), a workaround relies on the Monte Carlo implicit matrix
trace estimator: if A ∈ RP×P is a given matrix and H is a random vector in RP fol-
lowing a convenient distribution (e.g. H ∼ N(0, IdP)), then tra(A) = EH⟨H ∣AH⟩;
see Roosta-Khorasani and Ascher (2013) and references therein for details. �us, one

can compute an empirical estimate of the term tra (C ∂ ŷ
∂y

(m)(y)) by computing itera-

tively the products ( ∂ ŷ
∂y

(l)(y))h for given random realizations h of H. For su�ciently

large observations, just as one can get acceptable estimate of EN ∣∣ ŷ(Y) − Y ∣∣2 from a
single observation ∣∣ ŷ(y) − y∣∣2, a single realization h is usually su�cient for estimating

of EN ,H⟨H ∣C( ∂ ŷ∂y(m)(Y))H⟩ from ⟨h ∣C( ∂ ŷ∂y(m)(y))h⟩.
In a similar spirit, let us mention the Monte Carlo SURE proposed by Ramani et al.

(2008), where the degrees of freedom is estimated by random �nite di�erences: under
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suitable regularity conditions, for all y ∈ R, EH limє→0
1
є⟨H ∣ ŷ(y + єH) − ŷ(y)⟩ =

tra( ∂ ŷ
∂y (y)). Approximating the limit with a “su�ciently small” value of є, this approach

presents the advantage of using the estimator as a black box, i.e. there is no need to com-
pute any actual weak partial derivative.

3.1.3 Fast Approximations

Unfortunately, inmany cases one cannot a�ordmany computations of ŷ. In order to
select e�ciently the parameters of the model, we propose crude heuristics that depends
on the nature of the penalizations (gi)1≤i≤n. Indeed, mixed penalizations in a variational
problem usually enforces di�erent priors on the signal; the idea is simply to select each
individual penalization gi by using the SURE of the estimator ŷ(i) def= proxg i , and to scale
them roughly according to their possible interactions.

Certain penalizations are independent from the others, as it the case for indicator
functions, constraining the estimator to lie in a certain convex set without any regards to
other penalizations or to the noise intensity. If gi enforces such a prior, it can be selected
considering ŷ(i) alone.

In contrast, di�erent penalizations can sometimes interfere one with the other, for
instance the ones which aim at capturing the noise. It is the case of the ℓ1,2-norm and
of the δ1,2-norm, which both tend to shrink the amplitude of the signal. If each individ-
ual ĝi is selected as above, then g

set= ∑n
i=1 ĝi would tend to overpenalize the denoising

problem. If one still wants to enjoy from a variety of priors, each one of them being
selected adaptively to the signal, a natural approach is to consider a convex combina-
tions of them, in particular ĝ set= 1

n ∑n
i=1 ĝi . We underline here that each ŷ(i) is usually a

nonlinear function of its parameters, so that no theoretical guarantee can be given over
the resulting estimator. However, as illustrated numerically with experiment 4.2.2, this
approach can be successful in simple cases.

A speci�c instance of the latter situation arises when a given penalization is split
into several simple terms, all parameterized by the same single parameter. For example,
a ℓ1,2-norm de�ned over a complex block structure can be split over arbitrary nonover-
lapping block structures, but the scaling parameter should be optimized over all of them
simultaneously. In this example, assuming that the signal of interest are spatially statis-
tically stationary, observe that the functions (gi)1≤i≤n are close to each other. In turn, for
each i ∈ {1, . . . , n}, ŷ(i) is close to prox 1

n
g ; and up to small variations, it is relevant to

approximate the latter by ỹ
def= 1

n ∑n
i=1 ŷ

(i).
Interestingly, it is easy to see that ỹ is exactly ŷ(1) de�ned in § 3.1.2 for approximating

prox 1
n
g , using a speci�c instance of our generalized forward-backward algorithm. In

contrast to the previous section, with only one iteration, weak partial derivatives of ỹ
can be directly deduced from the ones of each ŷ(i) by linearity. Developing for all y ∈ RP,
1
n ∑n

i=1 ∣∣y − ŷ(i)(y)∣∣2 = ∣∣y − ỹ(y)∣∣2 + 1
n ∑n

i=1 ∥ ỹ(y) − ŷ(i)(y)∥2, we deduce from (4) that

SURE( ỹ, y) = 1

n
SURE( ŷ(i)) − 1

n

n

∑
i=1

∣∣ ỹ(y) − ŷ(i)(y)∣∣2 . (19)
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One retrieves the fact that the risk of the average of several estimators is the average
of the risk of each one of them, reduced by the variance across them. Note that since
ỹ approximates prox 1

n
g , if all functions (ĝi)1≤i≤n are selected simultaneously by mini-

mizing (19), the corresponding optimal penalization is ĝ set= 1
n ∑n

i=1 ĝi . Selecting g that
way rather than selecting each gi individually seems more accurate; in particular, the
correction by the variance might sometimes prove useful, as illustrated numerically in
experiment 4.2.1.

3.2 Denoising in a Synthesis Frame

We have seen that convex penalizations in variational denoising estimators are sup-
posed to enforce knownpriors about the signal onewants to recover. Inmany situations,
such priors are not directly relevant over the signal domain, but rather over the coe�-
cients of the signal within a certain linear representation. Recall for instance that ℓ1,2-
norm penalization enforces sparsity; natural signals are not sparse in the pixel domain,
but usually admit good sparse approximations in the wavelet domain (see again the in-
troduction). Let K ∈ N∗, and D∶RK → RP be a linear operator represented by a dictio-
nary of K atoms inRP (a so-called frame, abusively also denoted D), and g ∈ Γ0(RK) be
a convex penalization. �e denoising estimator with synthesis frame D and penalization
g is de�ned as ŷ∶RP → RP ∶ y ↦ Dx̂ where

x̂ ∈ argmin
x∈RK

1
2 ∣∣y − Dx∣∣2 + g(x) . (20)

We assume that the set of minimizers in (20) is nonempty (it is the case for instance if
g is coercive, or if D is injective). In that case, note that all minimizers have the same
image by the operator D. Indeed, if two minimizers had di�erent images by D, then by
strict convexity of the squared norm, any strictly convex combination of them would
achieve a lower value of the objective, contradicting the fact that they are minimizers.
�us, ŷ is a well de�ned one-to-one mapping.

3.2.1 Orthonormal Frame

Let us �rst specify the important case of an orthonormal frame, i.e. D∗D = Id (over
RK), or in matrix notations, for all k, k′ ∈ {1, . . . ,K}, tDkDk′ = 1 if k = k′, 0 otherwise.
Note that the operator D is itself orthogonal if, and only if, ranD = RP , i.e. K = P.
Applying Lemma IV.3.1 (ii) to D∗, we have projranD = DD∗. �en, for all y ∈ RP and
x ∈ RK , we have by orthogonality ∣∣y − Dx∣∣2 = ∣∣DD∗y − Dx∣∣2+∣∣y − DD∗y∣∣2. Developing
and using the properties of the adjoint, ∣∣DD∗y − Dx∣∣2 = ⟨DD∗y − Dx ∣DD∗y − Dx⟩ =⟨D∗y − x ∣D∗DD∗y − D∗Dx⟩, we �nally get

∣∣y − Dx∣∣2 = ∣∣D∗y − x∣∣2 + ∣∣y − DD∗y∣∣2 . (21)

�e term ∣∣y − DD∗y∣∣2 in (21) is the square distance between y and ranD, and represents
the part of the signal that cannot be represented within the dictionary D. In particular,
it is independent from the coe�cients x. Injecting (21) in (20), we get for all y ∈ RP
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ŷ(y) = Dx̂(D∗y), where x̂∶RK → RK ∶ x ↦ proxg(x) is now a well de�ned one-to-one

mapping. Note that D∗y is a realization of D∗Y = D∗y(0)+D∗N , and we have moved the
denoising problem from the signal domain to the transformed domain, where the target
signal D∗y(0) is corrupted additively by the transformed noise D∗N ∼ N(0,D∗CD).
Following (4), the SURE for the estimator x̂, which is now a proximity operator as in
§ 2, is

SURE (x̂ ,D∗y) = ∣∣D∗y − x̂(D∗y)∣∣2 + 2 tra (D∗CD ∂x̂
∂x (D∗y)) − tra (D∗CD) , (22)

Now, it is easy to see that ŷ = D○x̂○D∗ is also almost di�erentiable and byProposition 5.1,
its weak Jacobian is for all y ∈ R, ∂ ŷ

∂y(y) = D ∂x̂
∂x (D∗y)D∗. By commuting the arguments

in the trace in (22) and reusing (21), we get SURE (x̂ ,D∗y) = SURE ( ŷ, y)−∣∣y − DD∗y∣∣2.
Altogether, we have established that the SURE for the denoising estimator in the trans-
formed domain is equal, up to a factor that depends only on the observed signal y
and the dictionary D, to the SURE of the denoising estimator in the signal domain.
Optimizing parameters for the penalization function g can then be performed directly
in the transformed domain, over the observation D∗y ∈ RK , which is nothing but
the vector of correlations of y with each element of the frame D; in matrix notations,(tDk y)1≤k≤K .
3.2.2 Orthogonal Approximation

If the frame is not orthonormal, previous considerations fail and we cannot resort
to the SURE of the proximity operator of g anymore. First, observe that a denoising
estimator in an arbitrary frame still falls within the frameworks discussed along § 3.1.1
and 3.1.2, so that on can resort to the approaches described therein.

Once again, in practice this is o�en computationaly too expensive. For fast parame-
ter selection, we simply propose to select the penalization g using (22) as if the frame D
was orthonormal. Such an approximationmight be surprising, especially for redundant
frames containing highly correlated atoms, but keep inmind that any frame can be seen,
up to normalization, as the concatenation of several orthonormal frames. Based on that,
Raphan and Simoncelli (2008) consider estimators of the form y ↦ Dx̂(D∗y), where
x̂∶RK → RK is a given estimator acting over the transformed domain of an orthonor-
mal frame, and their natural extensions to a redundant frame. Under stationary noise
assumption, they show that such an estimator presents lower risk within the redundant
frame than within any individual orthonormal frame composing it.

�ough this does not apply directly to estimators de�ned as (20), let usmention that,
in the particular but important case of the sparsity framework, reconstructing a signal
with as few atoms as possible tends to select uncorrelated atoms. If g is separable accord-
ing to coe�cients corresponding to di�erent orthonormal frame, it seems reasonable to
select each separable part for the corresponding denoising in the orthonormal frame;
chances are that aggregating them in a redundant frame denoising will perform at least
as good as each orthonormal frame denoising. Following this rationale, recall that in our
SMCS model, some components are reconstructed within redundant temporal frames.
Since we penalize the coe�cients corresponding to each atom separately (see § II.3), we
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can thus select those penalizations separately for each atom k ∈ {1, . . . ,K}. Note that
this is rendered possible because we observe the correlations of a given atom with the

time course of each spatial locations, in the notations of Chapter II, (tD(c)k Yp)1≤p≤P; this
provides statistical signi�cance of the SUREof each denoising ofY within the dictionary

D(c)k reduced to a single temporal atom.
�e orthogonal approximation for sparse denoising within a redundant frame is

illustrated numerically on experiment 4.1.3.

4 Numerical Experiments

�is section is devoted to numerics illustrations of previous theoretical and com-
putational considerations. All experiments deal with the same denoising task, where
y(0) ∈ RP is a gray level natural image comprising P set= 512 × 512 pixels, corrupted by a
realization of an additive white Gaussian noise N set

∼ N(0,C set
= σ2 IdP), see Figure 5(a)

and (b); the values of y(0) are normalized in the range [0, 1], while the standard devia-
tion of the noise is σ set

= 10−1. Note that with the single realization y of our experiments,
using the method described in § 1.3, the relative error between our estimate σ̂ and the
actual σ lie below 10−2.

We test for relevance and accuracy of the previous developments by comparing,
for each estimator that we consider and various values of the parameters tuning it, the
approximation of the risk together with the actual squared error ∣∣y − y(0)∣∣2. For the
sake of comparison, all denoising results are depicted in Figure 5, together with their
respective signal-to-noise ratio, as de�ned by (IV.5.3.2).

4.1 Block Sparse Wavelet Denoising

�e�rst set of experiments dealswith the denoisingwithin a two-dimensionalwavelet
frame, in the sparsity framework. We use Daubechies wavelets with four vanishing mo-
ments (Daubechies, 1992), over four decomposition levels.

4.1.1 Block ℓ1,2-Norm Denoising in an Orthogonal Wavelet Frame

Estimators and parameters. �e block structured ℓ1,2-norm penalization that we use
to enforce spatially structured sparsity over the coe�cients of a two-dimensional or-
thogonal wavelet frame is described in details within the previous chapter, § IV.5.2.2. In

brief, the wavelet frame is the concatenations of subbands as D = (D( j,d)) jmin≤ j≤ jmax
1≤d≤3 , each

one being characterized by its scale j and direction d. For each subband, onemust select
a block size s( j,d) that will determine the block structure B( j,d), and set the correspond-
ing weights Λ( j,d). Following the strategy described within § 2.1, the latter depends only
on one scalar λ( j,d) ∈ R, de�ning for all b ∈ B( j,d), λb set

= λ( j,d)µb, where µb
set
=

√∣b∣σ̂
scales the weight of the block b according to the estimated ℓ1,2-amplitude of the noise
within the block.
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Since the frame is orthogonal and the penalization is separable along the subbands,
the parameters (s( j,d), λ( j,d)) can be selected within each subband independently, us-
ing SURE(x̂( j,d ,s,λ),D∗y) as described by (22). In addition, we have ∣∣Dx̂(y) − y(0)∣∣2 =
∑ jmax

j= jmin
∑3

d=1 ∥(x̂( j,d)(y)−tD( j,d)y(0))∥22, so that the squared error can also be decomposed
along the subbands.

We consider two denoising estimators. �e �rst one is penalized by a ℓ1,2-norm de-
�ned over a only one block grid per subband, i.e. B( j,d) is nonoverlapping. Hence, its
SURE can be computed exactly thanks to (9). In contrast, the penalization of the sec-
ond one de�ned over several block grids, and we approximate its SURE following (19),
by splitting the ℓ1,2-norm along the grids.

block size s( j,d) 1 2 3 4 6 8 10 12

separation between grids 1 1 1 1 2 2 3 3

resulting number of grids n( j,d) 1 4 9 16 9 16 9 16

Table 1: Tested block structures in experiments 4.1.1 and 4.1.2.

Results. We compute, within each subband ( j, d) and for each block size s( j,d) listed
in Table 1, the risk estimate and the squared error for values of λ( j,d) running across the
optimal values (λ̂i)0≤i≤∣B( j ,d)∣ de�ned by (10) (more precisely, a regularly spaced subset

of them, for subbands containing too many coe�cients). �en on Figure 3(a), we give
for each subband the block size achieving theminimumof the risk estimate, and for this
block size we plot the risk estimate (in transparency) and the squared error (in opacity)
as functions of λ.�e results concerning the estimator penalized over a single block grid
(respectively over multiple block grids) are given in blue (respectively in red).

�e overall shapes of the curves are similar across subbands, but their minima are
not attained for the same values of λ. In particular, the optimal penalization is increasing
with the scale j of the subband. �is is consistent with the hypothesis that the highest
frequencies in the observations are dominated by noise (see § 1.3). �e selected block
sizes also tend to increase with the scale j, certainly because the support of the wavelets
decreases with their scale j, so that a given spatially localized feature concerns more
spatially neighboring wavelet coe�cients.

In general, the risk estimates are in good accordance with the squared error. More
importantly, on each graph their minima are attained at values of λ which are close to
each others, i.e. the proposed risk estimates allows to select near optimal penalization
values. Now, the approximated SURE of the estimator penalized over multiple grids
nearly coincides with the exact SURE of the estimator penalized over a single grid.
�is indicates that the proximity operators of the ℓ1,2-norm over two di�erent block
grids are so similar that the correction by the variance across grids in (19) is negligi-
ble. Incidentally, on that particular denoising problem, using overlapping block struc-
tures does not improve much the denoising performance, as can be seen by comparing
Figure 5(e) and (f).
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4.1.2 Reweighted Version

Estimators and parameters. �e setting is the same as experiment 4.1.1, except that
we use the reweighted version of the ℓ1,2-norm. For the estimator penalized over a single
block grid, we set for all b ∈ B( j,d), εb set= λb. Note however that for the estimator penalized
over multiple block grids, since each coe�cient is penalized within exactly n( j,d) di�er-
ent blocks, the order ofmagnitude of each penalization tends to be decreased by a factor
n( j,d), compared to the nonoverlapping case. �us, we consider the above reweighting
parameters when computing the approximated SURE (19), but in the �nal estimator, we
set for all b ∈ B( j,d), εb set= n( j,d)λb.
Results. �e results are comparable to the above nonreweighted ℓ1,2-norm penaliza-
tion case. Note however that the curves of the risk estimates on Figure 5(b) are more
irregular. �is is due to the fact that the derivative of the estimator tends to in�nity
when for any block b, λb tends to ∣∣yb∣∣2 from below, as can be seen on Figure 2.�ough,
as long as the estimator is weakly di�erentiable (i.e. for all b ∈ B( j,d), εb ≥ λb), in spite of
irregular �uctuations, its SURE enables relevant selection of penalization parameters.
As expected, they are in general greater than for the corresponding nonreweighted ℓ1,2-
norm denoising estimator, allowing for higher sparsity. In our experiments, this trans-
lates to slightly better denoising, as shown in Figure 5(g) and (h).

4.1.3 ℓ1-Norm Denoising in a Redundant Wavelet Frame

Estimators and parameters. In the same setting as experiment 4.1.1, we consider only
blocks of size s

set= 1 (i.e. the penalization is a weighted ℓ1-norm) and investigate the
denoising in a redundant frame. More precisely, we use a nondecimated version of the
orthogonal wavelet frame, which can be seen as the concatenation of all its possible
spatial shi�s. Atoms are normalized within each scale so as to obtain a tight frame, and
penalizations weights are normalized accordingly. Similarly to the orthogonal case, we
select one penalization parameter per subband, independently from the other subbands,
following the orthogonal approximation discussed in § 3.2.2.

Results. As expected, the risk estimate and squared error curveswithin each subbands
closely resemble those of experiment 4.1.1 (data not shown); in particular, risk estimates
of orthogonal and redundant versions almost coincide, in coherence with the station-
arity assumption of the statistics of our image. As shown in Figure 5(c) and (d), using
the redundant version slightly improves the denoising performance.

At this occasion, note by comparing Figure 5(c) with (e) or (f), that using spatially
structured penalizations also improves the denoising.

4.2 Total Variation and Composite Denoising

We now turn to denoising estimators penalized by δ1,2-norms de�ned over the pixel
domain. For brevity, we consider in the block structure B only blocks of size s set= 2; recall
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Figure 3: Experiments 4.1.1 and 4.1.2: risk estimates (in transparency) and squared er-
ror (in opacity), as functions of the parameter λ( j,d), plotted for each subband ( j, d)
of the orthogonal wavelet transform. �e selected block sizes are indicated on top of
each corresponding graph. Both risk estimates and squared error are normalized by the
noise variance σ2 and the number of coe�cients within the considered subband, while
λ( j,d) is multiplied by the number of block grids de�ning the penalization. �e results
concerning the estimator penalized over a single block grid (respectively over multiple
block grids) are given in blue (respectively in red).
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from § IV.2 that a δ1,2-norm de�ned over the four di�erent possible block grids yields
a discretized two-dimensional total variation semi-norm.

4.2.1 δ1,2-Norm Denoising

Estimators and parameters. Following again the strategy described within § 2.1, only
one penalization scalar λ ∈ Rmust be selected by de�ning for all b in the block structure
B, λb

set= λµb, where µb
set= √∣b∣ − 1σ̂ scales the weight of the block b according to the

estimated δ1,2-amplitude of the noise within the block.
Again,we consider an estimator penalized over only one block grid, i.e. B is nonover-

lapping and its SURE can be computed exactly following (12), and an estimator penal-
ized by the total variation. We estimate the risk of the latter, both with the average ap-
proximation (19) by splitting the ℓd ,2-norm along the four di�erent grids, and with the
iterative SURE described in § 3.1.2.

Results. We compute the risk estimates and the squared error for values of λ running
across (an equally spaced subset of) the optimal values (λ̂i)0≤i≤∣B∣ de�ned in (13). On

Figure 4, the results for the estimator penalized over a single grid (respectively penalized
by the total variation) are plotted in blue (respectively in red).

As expected, the SURE of the estimator penalized over a single grid estimates accu-
rately the squared error. However, even at the parameter achieving its best performance,
this estimator performs poorly (21.8 dB, output image not shown). �is is not surpris-
ing, since there is no reason for the edges of the image to be aligned with the block grid,
and even so, averaging over blocks of size 2 would not be statistically enough to cancel
out noise.

Amore interesting result is that the iterative SURE (dashed curve) of the total varia-
tion denoising estimator is close to its squared error, providing an accurateway of tuning
the total variation penalization.

Now, and in contrast to what we observed for ℓ1,2-norm denoising, the approxi-
mated SURE (solid transparent red curve) is signi�cantly di�erent than the SURE of
the estimator penalized over a single block grid. Indeed, the proximity operators of the
δ1,2-norm over two di�erent block grids can yield drastically di�erent results on images
presenting sharp edges. Unfortunately, the approximation fails to give a good estimate of
the actual squared error of the total variation denoising estimator. However, recall that
one is actually interested in the value of λ achieving the minimum of the risk estimate,
regardless of the actual value of the risk. In that respect, we see on Figure 5(j) and (k)
that selecting λ with the fast SURE approximation yields as good an estimator as with
the iterative SURE. Finally, we check for the usefulness of the correction by the variance
across grids within the average approximation, by selecting λ without this correction.
We see on Figure 5(i) that the resulting denoising is less e�cient.

4.2.2 Composite Denoising

At last, we experiment the possibility of using e�ciently the SURE approach for
denoising with composite penalizations, involving several parameters.
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Figure 4: Experiment 4.2.1: risk estimates (in transparency) and
squared error (in opacity), both normalized by σ 2 and the num-
ber of pixels, as functions of λ times the number of block grids
de. Single grid ℓ1,2-norm in blue, total variation in red.�e solid
red transparent curve is the risk estimated with the average ap-
proximation (19), while the dashed curve is the risk estimated
with the iterative SURE. 1.00

0.06

0.33

3.93

Estimators and parameters. We consider a denoising estimator penalized by both
the weighted ℓ1-norm over the coe�cients of an orthogonal wavelet frame, and the total
variation semi-norm.We select the parameters of the former as in experiment 4.1.3, and
of the latter with the approximated SURE as in experiment 4.2.1. However, following the
heuristic advocated in § 3.1.3, each parameter is then halved to account for mixture of
two penalizations which tend to shrink the coe�cients amplitudes.

Results. As can be seen on Figure 5(l), the resulting estimator outperforms all other
estimators considered in those numerical experiments. Still, our parameter selection
might be far from optimal. Note however that, in order to evaluate optimality, testing
the estimator for one thousand values of each parameter would require to solve the
optimization problem de�ning it one million times. . .

With our fast approach, in spite of its simplicity and lack of theoretical guarantee,
the resulting estimator enjoys the advantages of both penalizations, getting rid of the
“ringing artifacts” that can be seen along contours on all sparse wavelet denoising ((c)-
(h)), and reducing the “cartoon e�ect” induced by the total variation penalization ((i)-
(k)).
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(a) Paulette, y(0). (b) Observation, y;
16.5 dB.

(c) ℓ1 orthogonal wavelet frame;
27.0 dB.

(d) ℓ1 redundant wavelet frame;
27.4 dB.

Figure 5: Original image and zoom over the noisy observation and the output of the
various estimators of the numerical experiments.
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(e) ℓ1,2 ortho. wav., single grid;
27.7 dB.

(f) ℓ1,2 ortho. wav., multiple grids;
27.8 dB.

(g) RW ℓ1,2 ortho. wav., single grid;
27.8 dB.

(h) RW ℓ1,2 ortho. wav., multiple grids;
28.1 dB.

Figure 5: (continued) original image and zoom over the noisy observation and the out-
put of the various estimators of the numerical experiments.
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(i) TV, selected with approximate SURE,
not corrected by variance across grids;

27.6 dB.

(j) TV, selected with approximate SURE,
corrected by variance across grids;

28.3 dB.

(k) TV, selected with iterative SURE;
28.3 dB.

(l) Composite TV and ℓ1 ortho. wav.;
28.6 dB.

Figure 5: (continued) original image and zoom over the noisy observation and the out-
put of the various estimators of the numerical experiments.
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5 Risk Estimate Beyond Denoising

In this chapter, we have reviewed the most popular uses of Stein’s unbiased risk es-
timate for fairly simple denoising estimators, and we have introduced fast methods for
dealing with more complex ones, together with some empirical validations.

Now, in inverse problems the signal of interest is not only corrupted by noise, but
also undergoes noninvertible transformations during the observation process. �is sit-
uation is illustrated in § IV.5, where the linear operator Lmodels blurring and/or mask-
ing transformation. At this occasion, we claimed that the parameters in the variational
problem were selected using methods presented within the current chapter; this is in
fact both unrealistic and suboptimal. Indeed, we computed various risk estimates over
a noisy version of the original image while such information was not supposed to be
available. More importantly, depending on the degradation operator L, parameters that
are optimal for a denoising task might be irrelevant for an inverse problem, even over
the same original signal and under the same noise conditions.4

In such cases, one can call on the projected generalized SURE (Eldar, 2009, Section
IV), which gives an unbiased estimate of the risk projected over the orthogonal com-
plement of the nullspace of the degradation operator L. �is also requires to solve the
variational problem for each value of the parameters one wishes to test, but the fast ap-
proximations proposed along this chapter could be adapted to the projected generalized
SURE by considering the denoising over (ker L)�.

Unfortunately, the inverse problem which motivates our work is a component sep-
aration problem. Here, the operator L is simply the sum of the components, and the
information that we are trying to recover, namely the distribution of the observation
amongst the components, lie precisely in the nullspace of L. In the next chapter, we
show that, using the speci�city of VSDOI acquisitions and further approximations, the
parameters of our SMCSmodel might still be automatically selected using the methods
developed here.

Appendix

A Proof of Stein’s Lemma

Proof of Lemma 1.1. Let ϕ be the probability density function of N , i.e. for all ν ∈ RP,
ϕ(ν) = 1√(2π)P ∣C∣ exp ( − 1

2⟨ν ∣C-1ν⟩). Since C is a symmetric matrix, we have for all

y ∈ RP, tra (C ∂ ŷ
∂y(y)) = ∑1≤p,q≤P cp,q ∂ ŷq

∂yp
(y). For all p, q ∈ {1, . . . , P}, EN ∣ ∂ ŷq∂yp

(Y)∣ <
4we did not address those limitations since themain purpose was to compare optimization algorithms

rather than solving accurately the inverse problem.
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+∞, hence tra (C ∂ ŷ
∂y(Y)) has �nite expectation; using Fubini’s theorem for each p, q ∈{1, . . . , P}, it expands to

EN[tra (C ∂ ŷ
∂y(Y))] = ∑

1≤p,q≤P
ˆ

RP−1

ˆ

R

cp,q
∂ ŷq
∂yp
(y)ϕ(ν)dνp dν{p}c , (23)

where in the integral, y def= y(0) + ν. Fix now p, q ∈ {1, . . . , P}. For all ν ∈ RP, observe
that ∂ϕ

∂νp
(ν) = −(C-1ν)p ϕ(ν) and lim∣ν′p ∣→∞ ϕ(ν{p}c , ν′p) = 0, hence we can rewrite ϕ(ν) =

´ +∞
νp
(C-1(ν{p}c , ν′p))p ϕ(ν{p}c , ν′p)dν′p = ´ νp−∞ −(C-1(ν{p}c , ν′p))p ϕ(ν{p}c , ν′p)dν′p . Up to

the factor cp,q, the inner integral over νp in (23) can in turn be written, for any α ∈ R,
ˆ

R

∂ ŷq
∂yp
(y)ϕ(ν)dνp = ˆ +∞

α

ˆ +∞
νp

∂ ŷq
∂yp
(y)(C-1(ν{p}c , ν′p))p ϕ(ν{p}c , ν′p)dν′p dνp

− ˆ α

−∞
ˆ νp

−∞
∂ ŷq
∂yp
(y)(C-1(ν{p}c , ν′p))p ϕ(ν{p}c , ν′p)dν′p dνp ,

and then switching the integrals with Fubini’s theorem

= ˆ +∞
α

ˆ ν′p

α

∂ ŷq
∂yp
(y{p}c , yp)(C-1(ν{p}c , ν′p))p ϕ(ν{p}c , ν′p)dνp dν′p

− ˆ α

−∞
ˆ α

ν′p

∂ ŷq
∂yp
(y{p}c , yp)(C-1(ν{p}c , ν′p))p ϕ(ν{p}c , ν′p)dνp dν′p .

For almost all ν{p}c ∈ RP−1 and almost all ν′p ∈ R, we can choose α ∈ R such that we can

integrate the weak di�erential ∂ ŷq
∂yp

over νp to get

= ˆ +∞
α

( ŷq(y{p}c , y′p) − ŷq(y{p}c , y(0)p + α))(C-1(ν{p}c , ν′p))p ϕ(ν{p}c , ν′p)dν′p
+ ˆ α

−∞ ( ŷq(y{p}c , y′p) − ŷq(y{p}c , y(0)p + α))(C-1(ν{p}c , ν′p))p ϕ(ν{p}c , ν′p)dν′p ,
where y′p def= y(0)p + ν′p. Now, we have

´ +∞−∞ − ŷq(y{p}c , y(0)p + α)(C-1(ν{p}c , ν′p))p
ϕ(ν{p}c , ν′p)dν′p = ŷq(y{p}c , y(0)p + α)[ϕ(ν{p}c , ν′p)]ν′p=+∞ν′p=−∞ = 0, so that we �nally obtain

for almost all ν{p}c ∈ RP−1,
ˆ

R

∂ ŷq
∂yp
(y) f (ν)dνp = ˆ

R

ŷq(y{p}c , y′p)(C-1(ν{p}c , ν′p))p ϕ(ν{p}c , ν′p)dν′p .
At last, injecting this in (23) leads to

EN[tra (C ∂ ŷ
∂y(Y))] = ∑

1≤q≤P
1≤p≤P

ˆ

RP−1

ˆ

R

cp,q ŷq(y)(C-1ν)
p
ϕ(ν)dνp dν{p}c ,

= ˆ
RP
∑

1≤q≤P
∑

1≤p≤P

cp,q(C-1ν)
p
ŷq(y)ϕ(ν)dν ,

= ˆ
RP
∑

1≤q≤P

νq ŷq(y)ϕ(ν)dw = EN⟨N ∣ ŷq(Y)⟩ . ∎
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B Chain Rule for Lipschitzian Operators

Proposition 5.1. Let P,Q , R ∈ N∗, f ∶RP → RQ be di�erentiable almost everywhere,
g∶RQ → RR be locally Lipschitzian, such that g ○ f ∶RP → RR is also di�erentiable almost
everywhere. �en, for all x ∈ RP such that f and g ○ f are both di�erentiable at x, g is

di�erentiable at f (x) along direction ran ( ∂ f
∂x (x)), i.e. the operator

Dg( f (x))∶ ran ( ∂ f∂x (x)) Ð→ RR

d z→ lim
є→0

1
є
(g( f (x) + єd) − g( f (x))) (24)

is well-de�ned and linear; moreover ∂(g○ f )
∂x (x) = Dg( f (x)) ∂ f

∂x (x). In particular, for al-

most all x ∈ RP, within any orthonormal basis of ran ( ∂ f
∂x (x)) completed into an orthonor-

mal basis ofRQ , the chain rule holds, i.e. for all p ∈ {1, . . . , P} and r ∈ {1, . . . , R},
∂(g○ f )r
∂xp
(x) = Q∑

q=1

∂gr
∂yq
( f (x)) ∂ fq

∂xp
(x) , (25)

with the convention that for all q ∈ {1, . . . ,Q}, ∂gr
∂yq
( f (x)) is the partial derivative of gr in

direction q at f (x) if it is well de�ned, and can be any real number otherwise.

Proof. Let x ∈ RP be a point of di�erentiability of f . Observe that for any d ∈ RP and
є ∈ R∗,

g( f (x) + є ∂ f
∂x (x)d) − g( f (x)) = g( f (x) + є ∂ f

∂x (x)d) − g( f (x + єd))
+ g( f (x + єd)) − g( f (x)) .

�en, we have ∥g( f (x) + є ∂ f
∂x (x)d)− g( f (x + єd))∥ ≤ L∣∣ f (x) + є ∂ f∂x (x)d − f (x + єd)∣∣,

where L ∈ R+,∗ is any local Lipschitz constant of g, and by de�nition of the di�erentia-

bility of f at x we can deduce limє→0
1
є(g( f (x) + є ∂ f∂x (x)d) − g( f (x + єd))) = 0. �us,

if x is also a point of di�erentiability of g ○ f , we get
lim
є→0

1
є(g( f (x) + є ∂ f∂x (x)d) − g( f (x))) = lim

є→0

1
є(g ○ f (x + єd) − g ○ f (x))

= ∂(g○ f )
∂x (x)d .

�is shows that Dg( f (x)) given in (24) is well-de�ned, and by linearity of both ∂ f
∂x (x)

and ∂(g○ f )
∂x (x), it is linear; the expression of ∂(g○ f )

∂x (x) follows. Finally, by Lipschitzianity
of f , for almost all x ∈ RP, both f and g ○ f are di�erentiable at x. Fix such an x and let,
up to reordering, (e′q)

1≤q≤rank( ∂ f
∂x (x)) be any orthonormal basis of ran ( ∂ f

∂x (x)) completed

as (e′q)1≤q≤Q into an orthonormal basis ofRQ . For all q ∈ {1, . . . ,Q}, if q ≤ rank ( ∂ f
∂x (x)),

then e′q ∈ ran ( ∂ f∂x (x)) and we have seen that for all r ∈ {1, . . . , R}, ∂gr
∂yq
( f (x)) exists. If

now q > rank ( ∂ f
∂x (x)), then e′q is orthogonal to ran ( ∂ f∂x (x)), so that for all p ∈ {1, . . . , P},

∂ fq
∂xp
(x) = ⟨ ∂ f

∂x (x)ep ∣ e′q⟩ = 0, where we denoted (ep)1≤p≤P the canonical basis of RP.

Altogether, developing the expression of Dg( f (x)) ∂ f
∂x (x) in those bases yields the chain

rule (25). ∎
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Example 5.1. �e need for an orthonormal basis of ran ( ∂ f
∂x (x)), completed into an or-

thonormal basis of RQ , is illustrated by the example given by Marcus and Mizel (1971,
Remark a�er �eorem 3, p. 40). Let f ∶R → R2∶ x ↦ (x , x), and g∶R2 → R∶ (y1, y2) ↦
max(y1, y2). Both functions are Lipschitzian, and g ○ f is the identity over R, di�er-
entiable everywhere. However, g is nowhere di�erentiable on the �rst diagonal, so that
the chain rule (25) is nowhere de�ned within the canonical basis. Nevertheless, let us
mention that in this basis we have for all x ∈ R, ∂ f

∂x (x) = (1, 1). �us, using the basis(e′1 set= 1√
2
(1, 1), e′2 set= 1√

2
(−1, 1)) ofR2, we have for all x ∈ R, ∂ f1

∂x (x) =√2, ∂ f2
∂x (x) = 0, and

∂g
∂y1
( f (x)) def= limє→0

1
є
(max(x + є√

2
, x + є√

2
) −max(x , x)) = 1√

2
; attributing any value

to ∂g
∂y2
( f (x)), we get ∂g

∂y1
( f (x)) ∂ f1

∂x (x) + ∂g
∂y2
( f (x)) ∂ f2

∂x (x) = 1 = ∂(g○ f )
∂x (x).
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VI

A Full Component Separation Method for

Voltage-Sensitive Dye Optical Imaging

�anks to the developments of the three previous chapters, we are now able to ad-
dress each one of the practical concerns raised in § II.4.2, in order to use our spatially
structured sparse morphological model. Within this chapter, we expose in details the
concrete application of this model to voltage-sensitive dye optical imaging.

Recall that the component separation de�ned by our model is given by the solution
of the convexminimization problem (II.6).�e optimization problem per se has already
been discussed extensively, and all necessary ingredients for e�cient implementation
can be found along Chapter IV.�erefore, the present chapter deals essentially with the
automatic setting of the numerous parameters involved in the penalizations. First, we
establish the simple theoretical rationale underlying our approach, consisting in a series
of approximations of the components involved in the problem. Only then, we detail the
practical conditions which make it suitable for applications to VSDOI acquisitions.

�e full method presented here is implemented in Matlab, together with the min-
imization algorithms in C interfaced with Mex, in an integrated environment, simpli-
fying notably display and analysis of the data.�e code is available on request; unfortu-
nately, due to the complexity of the method, the actual implementation cannot be used
without technical assistance by the author of this work.

159
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1 ScalingPenalizations forNoisyComponent Separation

Recall that the data-�delity term in (II.6) is normalized by the noise level at each
spatial positions, in order to account for di�erences of con�dence one can have on the
observations. Prior to all other considerations, we assume that this information can
actually be captured within the parameters of the penalization Ψ. Hence, we recast the
problem by rescaling the data-�delity term so as to obtain

�nd X̂ in {argmin
X∈CK×P

1
2 ∣∣Y − DX∣∣22 +Ψ(Λ)(X)} . (1)

Note that the scaling rules of the parameters in Λ depending on the noise level, orig-
inally given in § II.3.5, must be set accordingly. In this section, we justify our choices
concerning this question, and motivate the subsequent approximations, enabling even-
tually parameter selection for noisy component separation problems.

For brevity, as long as the relationship between Ψ and its parameter Λ is not made
explicit, we drop the dependency on Λ.
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1.1 Scaling an Ideal Frame Denoising

Supposing the presence of only one component in the SMCS model, i.e. Y = Y (0) +
R, then (1) reduces to a denoising estimator with synthesis frame D and penalization
Ψ. As we have seen in § V.3.2, X̂ might not be unique but all minimizers de�ne a

unique estimation Ŷ = DX̂ of the component Y (0). Di�erentiating (1) with help of
Proposition IV.3.1, and applying Fermat’s rule § III.3, a necessary and su�cient con-
dition for X̂ to be a minimizer is

tD(Y − DX̂) ∈ ∂Ψ(X̂) . (2)

Now, we say that the denoising is ideal if the dictionaryD and the penalization Ψ are

such that one retrieves exactly the component, i.e. Ŷ = Y (0). In view of (2), the denoising

is ideal if, and only if, Y (0) = DX̂ and tDR ∈ ∂Ψ(X̂).
Now for all σ ∈ R+∗, we have ∂(σΨ) = σ∂Ψ. An immediate consequence is that, if

D and Ψ are ideal for separating Y (0) from the residual R, then for all σ ∈ R+∗, D and

σΨ are ideal for separating Y (0) from the residual σR.
Unfortunately, this optimality relation only holds in the ideal case. Given a statistical

distribution over the residual R, D and Ψ are in general not ideal for all its realizations,
so that in terms of risk of the denoising estimator (see Chapter 4), the optimality of Ψ
for the noise R do not necessarily imply optimality of σΨ for the noise σR. Nonetheless,
in absence of any other information, this justi�es to scale a penalization that aims at
capturing additive Gaussian noise proportionally to its standard deviation.

In accordance with the structure over the parameters de�ned in § II.3.5, when a
penalization over a given regressor k ∈ {1, . . . ,K} is spatially structured according to a
block structureBk, we adapt theweights over each block b ∈ Bk as λk,b

set= λkER[Ψ(b)(R)],
where λk scales the whole block structure, Ψ(b) is the penalization restrained to the
block b with unit weight, and the expectation is taken over the noise model for the
residual R. In particular, for our heteroscedastic white Gaussian noise model and with
the notations of § II.3.5, if Ψ is a ℓ1,2-norm then ER[Ψ(b)(R)] = ∣∣Σb∣∣2, and if Ψ is a

δ1,2-norm then ER[Ψ(b)(R)] =√ ∣b∣−1∣b∣ ∣∣Σb∣∣2.
A notable exception to the above rule concerns the hard constraints, for which Ψ(b)

takes values only in {0,+∞}; this is not surprising, since hard constraints do not scale
with the noise. With no other knowledge over the underlying signal, a natural criterion
is to suppose an homogeneous signal; and to scale each hard constraint penalization so
as to allow for the same constant value of the signal over each block. Recalling the above
instances, if Ψ is a bounded amplitude constraint this translates to µk,b

set= µk

√∣b∣, and
if Ψ a bounded deviation constraint we get µk,b

set= µk

√∣b∣ − 1.
1.2 From Denoising to Component Separation

We now turn back to the component separation setting. Since the penalization Ψ

is separable along components, i.e. Ψ(X) = ∑c Ψ(c)(X(c)), we deduce that ∂Ψ(X) =
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⨉c ∂Ψ(c)(X(c)), and the condition (2) translates to

∀(c), tD(c)(Y − DX̂) ∈ ∂Ψ(c)(X̂(c)) . (3)

Hence, if for all component (c), D(c) and Ψ(c) de�ne an ideal estimator for denois-

ing Y (c) corrupted by R, i.e. there exists X̂(c) ∈ CKc×P such that Y (c) = D(c)X̂(c) and
tD(c)R ∈ ∂Ψ(X̂(c)), then X̂ = (X(c))

c
∈ CK×P is a minimizer of the variational problem

(1), achieving ideal component separation.
Although there might be other solutions of (1) yielding di�erent component separa-

tions, the above observation motivates the following approach for applying our SMCS
model to VSDOI data. By approximating the whole separation problem in a series of
isolated denoising steps, all parameters can be learnt adaptively on the data using the
SURE presented in Chapter V.

2 Component Approximations for Parameters Selection

Within this section, we detail each step of the full method for applying the SMCS
model to VSDOI data; they are summarized in Table 1. We make extensive use of the
notations introduced in § II.1; moreover, when dealing with approximations of compo-
nents, we will substitute Z to the notation Y .

�ose approximations involve notably a processing on a blank VSDOI acquisition,
where only few neuronal activities are expected; the blank and stimulus conditions are
indexed by the respective superscripts (b) and (s). Considering that the blank acquisi-
tion contains no signi�cant neuronal activity component, i.e. Ỹ (b,P) ≈ 0, the model (II.1)
yields

Ỹ (b) = G(b) ⋅ (Y (b,B) + Y (b,P)) + R̃(b) . (4)

2.1 Gain and Bleaching Approximation on Blank

Since the bleaching component presents constrained temporal dynamic and has
high amplitude comparatively to the periodic artifacts, it is possible to get a rough esti-
mation of the former by neglecting the latter. Once the number KB of bleaching regres-
sors has been chosen (usually one or two decreasing exponentials, on top of the constant
regressor), the bleaching time constants are �tted over all pixels of all the available blank

acquisitions {Ỹ (b)}
b
simultaneously, as

T ∈ argmin
τ
def
= {τk}1≤k≤KB

( ∑
b

min
X∈RKB×P

∣∣Ỹ (b) − D(B,τ)X∣∣2
2
) , (5)

where D(B,τ) depends on the time constants according to (II.2). Note that given amatrix

D(B,τ), the optimal coe�cients X ∈ RKB×P in (5) is given in closed form by X̃(b,B,τ) =
(tD(B,τ)D(B,τ))-1tD(B,τ)Ỹ (b). �e resulting objective function in (5) is di�erentiable and



2. Component Approximations for Parameters Selection 163

Table 1: Overview of the full method.

Input

Blank acquisitions {Ỹ (b)}
b
; stimulus condition acquisitions {Ỹ (s)}

s
;

Number of bleaching time constants KB in T (see § II.2.2.1);
Set of periodic artifacts frequencies F (see § II.2.2.2);
Neuronal activity wavelet �lter and minimum scale jmin (see § II.2.2.3);
Set of block sizes S for ℓ1,2-norm penalizations (see § II.3.5).

Processing Steps

1. Estimate T , Z(b,B) and G
(b) § 2.1

2. Estimate Σ(b) § 2.2

3. Select the ROI § 2.3

4. For all k ∈ {1..KP}, select B(b)k and λ(b,P)k § 2.4

5. Estimate Y (b,B), Y (b,P) and R(b) § 2.5

6. Estimate Z(s,B) and G
(s) § 2.7

7. For all k ∈ {1..KA}, select B(b)k , λ(s,A,ℓ)k , λ(s,A,δ)k and µ(s,A)k § 2.8

8. For all k ∈ {1..KP}, select B(s)k , λ(s,P)k and µ(s,P)k § 2.9

9. Estimate Y (s,B),Y (s,P),Y (s,A), R(s) § 2.10

Output

Estimated gain G, components Y (B),Y (P),Y (A), and residual R over all blank and stim-
ulus condition acquisitions.
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thus is minimized typically by gradient descent with line search. It is however noncon-
vex, hence sensitive to initialization. Typical values suitable for most VSDOI acquisi-
tions are 100ms for the �rst time constant and 1 000ms when a second one is required
(see also the numerical experiments in Chapter VII).

Recall that the bleaching component in our model accounts also for the baseline
�uorescence, which dominates all other components in the signal. Hence, we consider

that the optimal Z̃(b,B) def= D
(B)

X̃
(b,B) corresponding to the optimal T in (5) gives a good

approximation of the bleaching dynamic, multiplied by the gain G
(b). Following our

hypothesis on the gain (see § II.2.1 and Annex I.A), we estimate the latter, at each pixel

p ∈ {1, . . . , P}, as the average over time of Z̃(b,B)

g
(b)
p = 1

T

T∑
t=1

z̃
(b,B)
t,p . (6)

2.2 Noise Level on Blank

Recall (§ II.2.1) that the residual R̃(b) is modeled as a white heteroscedastic Gaussian

noise, and that the matrix Σ̃(b) of its standard deviations is supposed to be constant
along time. �anks to the high sampling frequency of VSDOI acquisitions, the highest
frequencies observed are dominated by the noise, and it is possible to evaluate the noise
level as explained in §V.1.3. Formore accuracy, we remove the already estimated bleach-
ing component from the acquisition. Using the highest frequency temporal variations
of the resulting signal, the median of absolute deviation standard deviation estimator
yields at each spatial positions p ∈ {1, . . . , P},

σ̂
(b)
p = 1.4826 med(∣( ỹ(b)t+1,p − z̃(b,B)t+1,p) − ( ỹ(b)t,p − z̃(b,B)t,p )∣)

1≤t≤T−1 . (7)

However, some high frequency contributions in the signal might not be due to noise,
and one needs to make the estimation more robust to outliers. In this purpose, recall
that our model assumes that the variance is an a�ne function of the gain along space,

i.e. there exists α(b), β(b) ∈ R such that for all pixel p ∈ {1, . . . , P}, (σ̃(b)p )2 = α(b)+β(b)g(b)p .

As demonstrated in Annex A, the following are consistent estimators of α(b) and β
(b),

making use of the values given in (7)

β̂
(b) =∑P

p=1 (σ̂(b)p )2g(b)p − 1
P
(∑P

p=1 (σ̂(b)p )2)(∑P
p=1 g

(b)
p )

∑P
p=1 (g(b)p )2 − 1

P
(∑P

p=1 g
(b)
p )2 ,

α̂
(b) = 1

P

P

∑
p=1

((σ̂(b)p )2 − β(b)g(b)p ) .
(8)

Note that this amounts to perform a linear regressionwith quadratic loss, explaining the

values ((σ̂(b)p )2)1≤p≤P from the values (g(b)p )1≤p≤P; this allows to test the coherence of the
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noise model with actual VSDOI data, see § VII.1. At last, we retrieve Σ̃(b) and Σ(b) with
for all p ∈ {1, . . . , P},

σ̃
(b)
p =√α̂

(b) + β̂(b)g(b)p , and σ
(b)
p = σ̃

(b)
p

g(b)p
. (9)

2.3 Selection of Clean Blank Acquisitions and Region of Interest

Let us precise that the estimation of the bleaching time constants and of the noise
level condition the accuracy of the subsequent processing. Once the �rst bleaching ap-
proximation and the gain are computed, we get for each blank acquisition

(Ỹ (b) − Z̃(b,B))/G(b) ≈ Y (b,P) + R(b) . (10)

At this stage, one must check visually these approximations in order to identify blank
acquisitions presenting strong patterns of spontaneous neuronal activity. Such blank

acquisition should be discarded from the set of blanks {Y (b)}
b
, because high amplitude

spontaneous neuronal activity would bias each processing proposed here. Moreover,
these blank acquisitions can be processed later for extraction of spontaneous neuronal
activity.

In addition, it is possible to identify, across the remaining blank acquisitions, the
spatial positions which are irrelevant for analysis, for instance because the gain is too
low or the noise is too high.

As a result, we get, for a given experimental protocol, a region of interest (ROI) and
a set of “clean” blank acquisitions, that we abusively still index respectively by (b) and
by p ∈ {1, . . . , P}. For improved accuracy, it is recommended to perform the processing
of § 2.1 and 2.2 all over again on the restrained data.

2.4 Selection of B
(b,P)

and Λ(b,P)

Equation (10) shows that, thanks to the bleaching and gain �rst approximations, we

can get a noisy observation of the periodic artifacts components Y (b,P). �is constitutes
indeed a denoising problem analogous to the framework of Chapter V, where we identify

Y (b,P) as the target signal y(0), (Ỹ (b) − Z̃(b,B))/G(b) as the observation y, and R(b) the
realization of the noise N .

Ignoring the bleaching and neuronal activity components in the SMCS recovery

leads to the periodic artifacts estimator, parameterized by Λ(P)B and M(P)B , and de�ned

as Ŷ
(Λ(P)B ,M(P)B )∶Y ↦ D(P)X̂, where

X̂ ∈ argmin
X∈CKP×P

1
2 ∣∣Y − D(P)X∣∣22 + ∣∣X∣∣ℓ,Λ(P)B

+ ι
ℓM
(P)
B

(X) . (11)

In the terms of Chapter V, this is a denoising estimator with synthesis frame D(P) and
penalization X ↦ ∣∣X∣∣

ℓ,Λ(P)B

+ ι
ℓM
(P)
B

(X).
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First, since there is no neuronal activity in the blank acquisitions, there is no need

for the bounded amplitude constraint; we thus only have to select the parameters Λ(P)B

for the ℓ1,2-norm by blocks.

For each blank acquisition, thanks to the estimated noise statistics Σ(b), we can con-
sider using the SURE of Ŷ

(Λ(b,P)B )
in order to set B(b,P) and Λ(b,P). Using the orthog-

onal approximation § V.3.2.2, we select the parameters separately for each regressor
k ∈ {1, . . . ,KP}. For each possible block size s ∈ S we compute the average SURE ap-
proximation described in §V.3.1.3 applied to the resulting ℓ1,2-normdenoising estimator

decomposed along the block grids; we select the block size s(b,P)k and the scaling param-

eter λ(b,P)k minimizing the estimated risk.
Note that, as suggested by the numerical experiment § V.4.1.1, one can neglect the

variance across grids when computing the average SURE approximation (V.19).

2.5 SMCS on Blank

Altogether, we can now solve the spatially structured sparse morphological com-
ponent separation adapted to the blank acquisition, i.e. without signi�cant neuronal
activity component. In the variational problem (1), this translates to K

set= KB + KP,

D
set= (D(B),D(P)), X set= (X(B), X(P)), and the penalization reduces to

Ψ(Λ)(X) set= ι+(X(B)) + ∣∣X(P)∣∣ℓ,Λ(b,P)B

. (12)

We mention also that for using the reweighted version of the ℓ1,2-norm penalization
de�ned over an overlapping block structure, the reweighting parameters EB should be
set adapted to the number of overlaps, as explained in § V.4.1.1.

Finally, the output of the algorithm provides us with the �nal estimations of the

components Y (b,B) and Y (b,P), and of the residual R(b), for each blank acquisition (b).
2.6 Stimulus and Spontaneous Neuronal Activity Condition

Assuming that all blank acquisitions of the protocol have been processed accord-
ing to the previous section, we now describe the processing of acquisitions contain-
ing neuronal activity component. As introduced earlier, this comprises stimulus condi-
tion, as well as blank acquisitions containing important spontaneous neuronal activity.
Nonetheless, unless stated explicitly otherwise, we will refer to both cases with the term
stimulus condition, and index them by the superscript (s).
2.7 Gain and Bleaching Approximation

Since large neuronal activity can be expected, in contrast to the blank acquisitions

case § 2.1, it is not possible to estimate accurately the bleaching approximation Z̃
(s,B) di-

rectly on the raw tracesY (s). However, we suppose that it changes only slowly along time,
so that it should be close to the bleaching dynamic found on the last blank recorded. Still,
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the gain may have changed between the stimulus condition acquisition and its corre-
sponding blank. In order to adjust it, we must then �nd for each pixel p ∈ {1, . . . , P}, a
scaling s ∈ R+∗ such that Z̃(s,B)p = spỸ (b,B)p . In order to evaluate this scaling without be-
ing in�uenced by the neuronal activity component, we propose a weighted least-square
regression

sp
def= argmin

s∈R
T∑
t=1

wt,p(y(s)t,p − s ỹ(b,B)t,p )2 , (13)

where for each pixel p and time frame t, the weightwt,p ∈ R+∗ quanti�es the con�dence
one has on the observation y

(s)
t,p for estimating the bleaching.We set the weights by eval-

uating how well the dynamic of Y (s)p can be retrieved by Y (b,B)p , locally around the time
frame t, following

wt,p
set= exp( −min

s∈R

t2∑
t′=t1

(y(s)t′ ,p − s ỹ(b,B)t′ ,p )2/((t2 − t1 + 1)(σ̃(b)p )2)) , (14)

where t1
def= max(1, t − tloc/2) and t2

def= min(T , t + tloc/2). �e parameter tloc de�nes
the number of time frames locally taken into account (we use 100ms), the minimum
mean squared error is normalized by the noise variance estimated on the blank, and
the exponential function penalizes speci�cally values below −1. Note also that if the
acquisition is stimulus-locked, it is also possible to set wt,p

set= 0 for time frames t from
stimulus onset up to a certain delay.

�e minimizations in (14) and then in (13) can be easily written in closed form, and

we obtain this way a robust �rst approximation of the bleaching component Z̃(s,P). From
that we estimate the gain G

(s) as in (6), with for all p ∈ {1, . . . , P}, g(s)p = 1
T ∑T

t=1 z̃
(s,P)
t,p .

2.8 Selection of Λ(s,A)B , Λ(s,A)TV andM
(s,A)
TV

Similarly to (10), we get now

(Ỹ (s) − Z̃(s,B))/G(s) ≈ Y (s,P) + Y (s,A) + R(s) . (15)

In that signal, there remains two signi�cant components, on top of the residual, so that
it does not reduce to a denoising setting.

Here, we make a signi�cant di�erence between VSDOI acquisitions that are syn-
chronized on the heartbeat of the animal (see § I.3.1), and those that are not. Indeed,
the strongest contribution in the periodic artifacts component is o�en due to heartbeat.

In the synchronized case, we have then the approximation Y (s,P) ≈ Y (b,P), and we can
simply subtract the periodic artifacts component already found on the blank from both
sides of (15) to get a noisy approximation of the neuronal activity component. In the
nonsynchronized case however, periodic artifacts can be drastically di�erent from one
acquisition to another, and (15) is the best approximation that we can get so far.
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SURE on single trial. In each case, we estimate the neuronal activity penalization pa-
rameters similarly to § 2.4 by considering the neuronal activity estimator, parameterized

by Λ(A)B , Λ(A)TV and M(A)TV , and de�ned as Ŷ
(Λ(A)B ,Λ(A)TV ,M(A)TV )∶Y ↦ D(A)X̂, where

X̂ ∈ argmin
X∈CKP×P

1
2 ∣∣Y − D(A)X∣∣22 + ∣∣X∣∣ℓ,Λ(A)B

+ ∣∣X∣∣
δ,Λ(A)TV

+ ι
δM
(P)
B

(X) . (16)

Note that, since we are provided with the residual R(b) found on the blank, we can get
an accurate estimate of the noise level. Moreover, recall from § II.2.2.3 that the neuronal
activity component is captured within a dictionary of temporal wavelet regressors. It is
then possible to re�ne the white noise model, allowing for di�erent noise levels along
di�erent wavelet scales. Within each scale j ∈ { jmin, . . . , jmax}, we compute the risk
estimation by setting the noise level at each pixel p ∈ {1, . . . , P} as

(σ(s)p, j )2 = 1∣{k ∶ jk = j}∣ ∑k∶ jk= j ⟨R
(b)
p ∣D(A)k ⟩2 , (17)

where it is assumed that each regressor has unit norm.
As advocated in § V.3.1.3, we actually select the parameters for each penalization

term involved in (16) separately. Noticing that the bounded deviation constraint does
not interfere with the two others, we keep it as-is. However, the two others tend to
shrink coe�cients in the reconstruction, and should be scaled accordingly. In practice,
we found out that it is better not to scale them, but rather to substitute the ℓ1,2- and δ1,2-
norm penalizations by their reweighted versions (§ II.3.2, § V.2.5), reducing the �nal
bias; see also § 2.10 for details.

SURE on average. In the speci�c case of stimulus-locked acquisitions, it is common
to consider that a reproducible pattern of neuronal activity will be evoked on all trials
with the same stimulus (see however § I.1.3.2). Although such a reproducible pattern is
in�uenced by many sources of variability, we believe that this could provide reliable in-
formation over the neuronal activity approximation, in order to re�ne the correspond-
ing penalization parameters.

Hence, when acquisitions are stimulus-locked, we apply the above risk estimation
of the estimator (16), but on observations constituted by the average of expressions (15)
across repetitions of the same stimulus. Note that in particular, the noise level is then
reduced by a factor equal to the number of trials in the average.

For each parameter involved in the penalizations, we are thus provided with two
values.We select eventually the value which imposes the less restrictive constraint on the
neuronal activity component. �at way, the �nal estimation keeps signi�cant features
of the average signal, without reducing the single trial variability.

2.9 Selection of Λ(s,P)B andM(s,P)B

As underlined in § 2.8, the periodic artifacts can be di�erent from one acquisition
to another. However, their biophysical origins are supposed to stay approximately the
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same overtime. It is thus reasonable to assume that on two consecutive acquisitions,
a given spatial position is a�ected, at a given frequency, with the same amplitude; the
di�erences being essentially due to changes of phase.

Now, recall that for estimating the risk of the periodic artifacts estimator (16), the
orthogonal approximation allows to work at the single regressor level, by considering
the correlations between the observations and the regressor. Moreover, the SURE ex-
pression for the ℓ1,2-norm denoising estimator (V.8) only involves the norms of the ob-
served correlations. �us, the risk estimation only takes into account amplitudes of the

observations, regardless to their phase. In particular, task of separating Y (s,P) from the

residual R(s), is statistically the same as separating Y (b,P) from R(b).
In consequence, we select the parameter Λ(s,P)B by estimating the risk of (16) (ig-

noring again the bounded amplitude constraint) over the observation Y (b,P) + R(b). In
addition, since this actual denoising instance is known, it is again possible to re�ne
the noise estimation in the same spirit as for the wavelet regressors (17), with for all

k ∈ {1, . . . ,KP}, for all p ∈ {1, . . . , P}, (σ(s)k,p)2 = ∣⟨D(P)k ∣R(b)p ⟩∣2, assuming again that the
regressors are normalized.

Finally, following again the assumption that the amplitudes of the periodic artifacts
are the same in the stimulus condition acquisition and in the corresponding blank ac-
quisition, it is straightforward to estimate an upper bound over the coe�cients ampli-

tude. For all k ∈ {1, . . . ,KP}, the block structure B(s,P)k being chosen thanks to the above,

we directly set for all b ∈ B(s,P)k ,

µ(s,P)k,b =max(∣∣(⟨D(P)k ∣Y (b)p ⟩)p∈b∣∣2, ∣∣(X(b)k,p)p∈b∣∣2) ;
note that the two values in the right-hand-sidemight be di�erent because the regressors

in D(P) are not exactly orthogonal.

2.10 SMCS on Stimulus Condition

At last, we are now provided with every parameters tuning the penalization Ψ, writ-
ten in full in (II.16), and we can solve the variational problem (1) to obtain the �nal
component separation. Again, it is advised to use the reweighted version of the block
norms penalizations. As discussed in § 2.8, this is an interesting way of debiasing pe-
nalizations which shrinks coe�cients amplitude, while keeping the ℓ1,2-norms over the
competing periodic artifacts and activity components approximately at the same level.

�e next chapter studies concrete applications of the entire method to VSDOI data.
In particular, § VII.5 precises important considerations on its overall computational
cost, and discusses some crucial steps described here.
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Appendix

A Consistent Estimator for the A�ne Noise Model

Proposition 2.1. Let P ∈ N∗ and R be a P-dimensional random vector with zero mean
and covariance matrix E[R tR] = αΓ + β IdP, where α, β ∈ R+ and Γ def= (γp,q)1≤p≤P

1≤q≤P is a

given symmetric matrix. Let A and B be de�ned as

A
def= tRΓR − 1

P
tR1PR tra(1PΓ)

tra(Γ2) − 1
P tra(1PΓ)2 , B

def= 1
P(tR1PR − A tra(1PΓ)) , (18)

where 1P is the P×P matrix whose all terms are equal to 1.�en,E[A] = α, andE[B] = β.
Proof. Develop E[tRΓR] = ∑p,q γp,qE[RpRq] = ∑p,q γp,q(αγp,q + β) = α∑p,q γp,q

2 +
β∑p,q γp,q = α tra(Γ2) + β tra(1PΓ), and E[tR1PR] = ∑p,qE[RpRq] = α tra(1PΓ) + βP.
Injecting this in (18) gives the desired result. ∎

When Γ is diagonal, i.e. for p ≠ q,E[RpRq] = 0, then 1P can be replaced by IdP in (18).
Applying this with Γ set= diag ((g(b)p )1≤p≤P), and since for all p ∈ {1, . . . , P}, the sample

variances σ̂ 2
p is a consistent estimators of σ̃ 2

p
def= E[Rp

2], we deduce that the expressions
given in (8) are consistent estimators of α and β of the a�ne noise model.



VII

Exploration of Voltage-Sensitive Dye

Optical Imaging With Our Method

We are now set for applying our noisy component separation method to voltage-
sensitive dye optical imaging data. Due to the di�culty of the task (recall Chapter I)
and the lack of ground truth, i.e. prior knowledge of what the neuronal signal should
look like through voltage-sensitive dye optical imaging, this work remains essentially
exploratory.We test the fundamental hypothesis of our spatially structured sparse mor-
phological model presented in Chapter II, and a�er analyzing various data sets, we dis-
cuss the potential of our method for revealing in-vivo spatiotemporal cortical dynamics
which are up to now out of reach. In particular, we provide some comparisons with the
blank subtraction and general linear model approaches, both described in Chapter II.

We investigate four di�erent data sets, acquired in various experimental conditions.
Two of them are in-vivo recordings of the visual cortex in the cat, acquired by Cyril
Monier at the UNIC laboratory. �e data set Cat_Gratings contains neuronal re-
sponses to full-�eld luminance gratings of di�erent orientations, dri�ing along di�er-
ent directions, and the data set Cat_Long consists in long acquisitions (more than �ve
seconds) with dri�ing gratings, dense noise and natural images stimuli. �e two others
are in-vivo recordings of the somatosensory cortex in the mouse, acquired by Isabelle
Férézou at the ESPCI ParisTech and UNIC laboratories. �e data set Mouse_All con-
tains neuronal responses to de�ections of all whiskers, while the data set Mouse_Single
investigates de�ections of a single whisker along di�erent directions. Each stimulus con-
dition is recorded for several trials, together with a corresponding blank acquisition.
Details concerning experimental protocols are given in Annex A.

Finally, concerning both the development and the applications of ourmethod,which
require extensive computations, we are very grateful to Laurent Demanet for providing
us access to theWave computing server at the Massachusetts Institute of Technology.
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�is chapter makes use of the notations introduced in § II.1. Note however that the
notation t indexing the time frames (discrete, 1 ≤ t ≤ T) will also be used abusively to
represent physical time (continuous, starting at 0 at the beginning of the acquisition, in
seconds). When both conventions appears in the same expression, it is implied that the
latter is converted into time frames, according to

tframes = 1 + ⌊tphysical fs⌋ for temporal instants,

and

sframes = ⌊sphysical fs⌋ for durations,

where fs is the sampling frequency of the acquisition (in Hz).
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1 Fluorescence, Gain, Noise

One of the most important aspects conditioning the application of the SMCSmodel
to VSDOI is the generative model of the signal, motivated all along § I.2 and exposed
in § II.2. Apart from the actual dynamics of the components, this model relies on a few
fundamental assumptions described in § II.2.1 which can be summarized as

(H1) the recorded signal is the sum of a baseline �uorescence, of di�erent components
scaled by a gain, and a residual;

(H2) the gain can be determined from the baseline �uorescence, varies from pixel to
pixel and stay constant for the duration of an acquisition;

(H3) the residual is a random noise whose variance is an a�ne function of the gain.

Notably, we formulate the hypotheses (H2) and (H3) from the fact that it has been re-
ported that the signal-to-noise ratio, which is the amplitude of the recovered compo-
nents divided by the standard deviation of the residual, roughly evolves as the square
root of the overall illumination intensity (Grinvald et al., 1999, §5.). �is is mostly due
to the statistical nature of the shot noise (see § I.1.2.2), modeled here as a Gaussian noise
whose variance is proportional to the gain.

1.1 Testing the Hypotheses

�e coherence of the hypotheses (H1)-(H3) with VSDOI data can be easily tested.
Recall from § VI.2.2 that we evaluate the noise level, over a given blank acquisition (b),
by performing a linear regression of a �rst estimated variance of the highest temporal

variations at each pixel, ((σ̂(b)p )2)1≤p≤P, against an estimate of the gain at those pixels,

(g(b)p )1≤p≤P. More precisely, we evaluate the coe�cients

(α̂(b)ℓ , β̂(b)ℓ ) def= argmin(α,β)∈R2

P∑
p=1

(α + βg(b)p − (σ̂(b)p )2)2 , (1)

and we �nally estimate the noise variance at each pixel p ∈ {1, . . . , P} as (σ̃(b,ℓ)p )2 =
α̂
(b)
ℓ + β̂(b)ℓ g(b)p . Resulting regressions are plotted on Figure 1 for a single blank acquisition

of each acquisition protocol. �e correlation between the model and the �rst estimated
values is

r(b)ℓ
def= ∑P

p=1 (σ̂(b)p )2(σ̃(b,ℓ)p )2√
∑P

p=1 (σ̂(b)p )4
√
∑P

p=1 (σ̃(b,ℓ)p )4 . (2)

�e distribution of those correlations and of the coe�cients α̂(b)ℓ and β̂
((b))
ℓ along the

blank acquisitions are reported on Figure 2. We can see that the noise model is accu-
rate: the correlations are high, and the values of the coe�cients lie in a narrow range,
indicating that they might have physical meaning, as further explained in § 1.2.
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(d) Mouse_Single, Blank_001.

Figure 1: Least-square linear regression of the empirical high frequency variances in
function of the gain at each pixel, for the �rst processed blank of each protocol. Values
are given in units of recorded �uorescence intensity. Size of the region of interest for
each protocol, in pixels: (a) 2597, (b) 2446, (c) 8871, and (d) 6109.

Note that for the protocols Mouse_All and Mouse_Single, some blank acquisi-
tions exhibit obvious patterns of spontaneous activity (see § 4.2), with high amplitude
and at a somewhat lower frequency than the high frequency �uctuations investigated
here. In order to focus on those high frequency �uctuations, in the present analysis we
discard blank acquisitions exhibiting such patterns; even though they qualitatively do
not change the results (data not shown).

1.2 Is�ere Neuronal Signal in the Highest Frequencies?

In the noise model, β̂(b)ℓ g(b)p is the part of the noise variance due to shot noise, while

α̂(b)ℓ represents a noise source a�ecting the whole acquisition �eld, independently from
the di�erences in illumination intensities. �is term can have di�erent origins, in par-
ticular the thermal noise of the camera.

Another important term that could also in�uence high frequency �uctuationswithin
the blank acquisitions is the ongoing neuronal activity. According to (H1), such neu-
ronal noise is supposed to be also scaled by the gain. If it is the case, then its in�uence
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on the high frequency variance should scale quadratically with the gain. Hence, we also
perform a quadratic regression

(α̂(b)q , β̂(b)q , γ̂(b)q ) def= argmin(α,β,γ)∈R2

P∑
p=1

(α + βg(b)p + γ(g(b)p )2 − (σ̂(b)p )2)2 , (3)

and compute the corresponding correlation coe�cients

r(b)q
def= ∑P

p=1 (σ̂(b)p )2(σ̃(b,q)p )2√
∑P

p=1 (σ̂(b)p )4
√
∑P

p=1 (σ̃(b,q)p )4 , (4)

where for all p, (σ̂(b,q)p )2 def= α̂
(b)
q + β̂(b)q g(b)p + γ̂(b)q (g(b)p )2.�e resulting coe�cients α and β

are not signi�cantly di�erent than for the simple linear regression, while the coe�cients

γ̂
(b)
q seemmeaningless, being sometimes even negative (data not shown).Moreover, one

can see on Figure 2 that adding the quadratic term did not signi�cantly improve the
correlation with the observed values.

Now, supposing that (H1) is not true, i.e. the neuronal signal does not scale with the
gain, it is possible that ongoing neuronal activity contributes to the constant part of the

noise variance α̂(b)ℓ . In order to evaluate the importance of the shot noise in the total
amount of high frequency noise, we compute for each blank acquisition the ratio

ρ(b) def= β̂
(b)
ℓ g(b)p

α̂
(b)
ℓ + β̂(b)ℓ g(b)p

, (5)

and report its distribution in Figure 2. One can see that shot noise accounts for a dom-
inant fraction of the noise level.

We conclude from those observations that

1. the high frequency noise is spatially signi�cantly homoscedastic, and this is accu-
rately modeled by a linear variation of the variance in function of our estimated
gain;

2. the neuronal activity contributes to, at most, a minor fraction of the high fre-
quency �uctuations in the blank acquisitions.

Given the amplitude of the high frequency �uctuations in VSDOI recordings, our opin-
ion is that macroscopic, in-vivo VSDOI is not a reliable tool for investigating, at the
single trial level, patterns of neuronal activity whose duration is less that 20ms (corre-
sponding to a characteristic frequency of 50Hz).

2 Synthetic Data

�e aim of this section is two-fold. First, we investigate the power of separability of
our SMCSmethod, in a controlled, noisy condition. Second, this allows to illustrate the
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Figure 2: Distribution along blank acquisitions of some coe�cients of the noise regres-
sions, displayed for each protocol using Tukey box plot.
αℓ , βℓ: coe�cients of the linear regression (1);
rℓ , rq: correlations of the linear (2) and quadratic (4) regressions, respectively;
ρ: fraction of the total high frequency variance attributed to shot noise (5).
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strengths and weaknesses of the GLM method presented in § I.3.5. To do so, synthetic
VSDOI data are generated according to our model detailed in § II.2, and both methods
are applied to decompose them into neuronal activity, periodic artifacts and residual
components; since the target signal is known, we can quantify then the quality of the
separation. However, it is important to keep in mind that the two methods are hardly
comparable. Indeed, the GLM requires precise knowledge of the dynamics of the com-
ponents, and can retrieve from a VSDOI acquisition only what is known in advance.
�is allows for only limited variability in the evoked response, and no ongoing activity,
as discussed further in this section, § 2.2.3.

2.1 Random Generative Model

For blank and stimulus condition acquisitions, we simulate T set= 256 frames of size
P

set= 50 × 50 pixels, with a sampling frequency of 500Hz and spatial resolution of
50 µm per pixels, leading to an acquisition duration of 512ms and observation �eld of
2.5 × 2.5 mm2. We de�ne a random generative model of synthetic data, so that the re-
sulting separations can be quanti�ed in terms of average and standard deviation. More

precisely, we generate ten realizations of Ỹ (b) = G(b) ⋅ (Y (b,B) + Y (b,P)) + R̃(b) and of

Ỹ (s) = G(s) ⋅ (Y (s,B) + Y (s,P) + Y (s,A)) + R̃(s), where each Ỹ (c) and R̃ are random variables

inspired by our real data (see Annex A) and VSDOI literature, mimicking recordings of
propagating waves in cat’s visual cortex. �e random generative model is precisely de-
tailed below, but the resulting components and acquisitions can be directly visualized
on Figure 3.

In all this section, the random variables U ∼ U([0, 1]), V ∼ N(1, 10−2) and W ∼

N(0, 1) follow respectively a uniform distribution over the set [0, 1], a Gaussian distri-
bution with zero mean and unit variance, and a standard distribution with unit mean
and hundredth variance.�ose distributions are used to introduce variability over some

parameters. Single terms inmatrices are nowwritten in uppercase notation (e.g. Y(c)t,p in-

stead of y(c)t,p ) when they are random variables.

2.1.1 Gain G

We simulate the gain with a Gaussian spatial pro�le, reaching its peak in the center
of the acquisition. For all pixel p and time frame t,

Gp = g exp(−d(p)22σG2
) , (6)

where d(p) is the distance between pixel p and the center of the acquisition. �e am-
plitude and the spatial width of the gain are set based on our own data, as

g
set
= 103 and σG

set
= 1.25mm .

�e gain is deterministic.
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2.1.2 Baseline Fluorescence and Bleaching Y (B)
�e baseline �uorescence is set constant equal to unity (the reference value), and we

simulate the bleaching component as a modulation of the baseline �uorescence with a
single decreasing exponential. For all time t and pixel p

Y (B)t,p = 1 + X(B)p (exp (−t/Tp) − 1

T

T∑
t′=1

exp (−t′/Tp)) , (7)

where X(B)p ∼ x(B)V and Tp ∼ τV are all independent. �e order of magnitude of the
amplitude and of the bleaching time constant are set based on our own data, as

x(B) set
= 10−2 and τ

set
= 300ms .

�e bleaching varies from pixel to pixel, but it is kept identical along trials.

2.1.3 Periodic Artifacts Y (P)

For each periodic artifact that we consider, we choose a fundamental frequency f k,
and the corresponding artifact is constructed as

Y (P)t,p =

+∞∑
h=1

X(P)kh ,p
h−αk cos(2πFkh t +Φkh ,p

) , (8)

where Fkh ∼ f khV are the (perturbed) harmonics of f k, αk is a damping factor, and(X(P)kh ,p
)
p
and (Φkh ,p

)
p
are spatial maps of amplitude and phases, respectively.

�ose maps are generated so as to exhibit some spatial structures, as described be-

low. �e spatial map of amplitude is characterized by four parameters: a seed (X(P)k,p)p ∈
RP, a correlation factor c(x)k ∈ R, an average amplitude µx(P)k ∈ R, and a dispersion of

amplitudes σx(P)k ∈ R. It is generated once and for all, that is to say it is identical for all
trials.

1. One generates the seed, which is a spatial map. Such seed can already present
spatial structure (e.g. the locations of the veins for heartbeat artifact, see below),
or can be totally random.

2. �is spatial map is convolved with a Gaussian kernel of width c(x)k to introduce
local spatial correlations.

3. �is map is rescaled and shi�ed so that its average equals µx(P)k and its standard

deviation equals σx(P)k .

Similarly, the spatialmapof phases is characterized by three parameters: a seed (Φ(P)k,p)p ∈
RP, a correlation factor c(ϕ)k , and an overall phase shi� ϕ

(P)
k ∈ R. It is generated as above,

following steps 1 and 2. However in step 3, it is not rescaled but simply shi�ed by ϕ
(P)
k .

In contrast to the spatial map of amplitude, a di�erent map of phases is generated for
each trials, i.e. the periodic artifacts are not synchronized.
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�e parameters for each periodic artifacts that we consider are listed below.
Heartbeat: (based on our own data)

fk
set= 3Hz, αk

set= 2, c(x)k

set= 100 µm, c
(ϕ)
k

set= 1.25mm,

µx(P)k

set= 2 × 10−4, σx(P)k

set= 1 × 10−4, ϕ
(P)
k ∼ 2πU ,

for all p, X
(P)
k,p ∼ 10Ωp +Wi.i.d., Φ

(P)
k,p ∼ 16πWi.i.d.,

where (Ωp)p ∈ {0, 1}P is a spatial mask indicating the positions of simulated veins over

the �eld of view (they can be distinguished on Figure 3(b)).
Illumination: (based on Reynaud et al. (2011))

fk
set
= 10Hz, αk

set
= 1.5, ; c(x)k

set
= 50µm, c(ϕ)k

set
= 50µm,

µx(P)k
set
= 3 × 10−4, σx(P)k

set
= 3 × 10−5, ϕ

(P)
k ∼ 2πU ,

for all p, X
(P)
k,p ∼Wi.i.d., Φ

(P)
k,p ∼ 4πWi.i.d.

Respiration: (based on our own data)

fk
set
= 1Hz, αk

set
= 2.5, c(x)k

set
= 1.25mm, c(ϕ)k

set
= 1.25mm,

µx(P)k
set
= 1 × 10−4, σx(P)k

set
= 1 × 10−4, ϕ

(P)
k ∼ 2πU ,

for all p, X
(P)
k,p ∼Wi.i.d., Φ

(P)
k,p ∼ 8πWi.i.d.

In practice, the in�nite sums in (8) are truncated at h = 10.

2.1.4 Neuronal Response Y (A)
�e neuronal activity component simulates propagating waves of activity. At each

pixel, it raises and decreases, with delays and amplitudes that depend on the distance to
local spatiotemporal sources. Such awave is generated as the solution of awave equation
with linear dissipation,

( ∂
∂t
+ 1

τd
Id)2y − c2∆y = s , (9)

where y is the spatiotemporal activity component, ∆ denotes here the spatial Laplacian,
and s is an exciting source term. Such linear equation can be derived from neural �eld
models, see for instance Deco et al. (2008). It produces waves propagating at speed c,
and exponentially dissipated along time with characteristic time τd . We set dissipation
time and propagation speed to

τd
set
= 100ms and c

set
= 7 × 10−2m.s−1 .

In order to emphasize the propagation phenomenon, the latter is voluntarily set slightly
slower than values reported for instance in Jancke et al. (2004) or Chavane et al. (2011),
but follows the same order of magnitude.

�e source term s is a short bump, simulating a short, localized stimulation, with a
short delay between stimulus and neuronal response. For all pixel p and time frame t,

st,p
set
=

⎧⎪⎪⎨⎪⎪⎩
exp ( − d(p,ps)2

2σs 2
) if ton ≤ t − tdelay ≤ to� ,

0 otherwise ,
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where d(p, ps) is the distance between pixel p and the center of stimulation ps. We
set ps at one third of the diagonal of the acquisition �eld, σs

set= 100 µm, ton
set= 200ms,

to�
set= 202ms, and tdelay

set= 10ms. An approximate solution y of (9) is computed on the
discretized observation gridwith a standard �nite di�erence schemeusing the code pro-

vided byNicolas Schmidt fromCEREMADE. Finally,Y (A) is obtained from the solution
y by linearly rescaling it, so its the maximum value reaches

x(A)k

set= 5 × 10−3 .
Note that Y (A) is actually deterministic: there is no trial-to-trial variability.

2.1.5 Random Noise R̃

According to our noise model (see § II.2.1 and § 1), we set, independently for each

pixel p of each time frame t, R̃t,p ∼

√
αnoise + βnoiseGt,p W , where

αnoise
set
= (1 × 10−8)g2 and βnoise

set
= (1 × 10−8)g .

2.2 Separation Results

Before analyzing separation performances, let us �rst detail the parameters used for
each method.

2.2.1 GLMDesigns (see § I.3.5)

In the regressor design, we include one constant regressor and a decreasing expo-
nential at time constant τ introduced in (7). �is decreasing exponential is shi�ed to
have zero mean, so that the gain can be estimated as the coe�cient of the constant re-
gressor.�en, for each periodic artifact in the experimental setting, we include the sine
and cosine regressors at frequencies { f kh ∣ h−αk > 5 × 10−2}, as introduced in (8). Note
however that, as for the SMCS (see below), periodic regressors with frequencies lower
than the inverse of the acquisition duration (about 2Hz) are discarded, because they are
likely to capture a signi�cant part of the bleaching, leading to aberrant results.

Now, recall that in our synthetic experimental setting, the neuronal response is the
same along all trials.We design the response regressors as the �rst le� singular vectors of

the SVD decomposition of the matrix Y (A). �is is known to be the best basis of a given
size for approximating linearly the response, in term of ℓ2-norm. Such knowledge in real
condition can never be achieved, so that our setting favors largely the GLMmethod.

Figure 3, opposite: Synthetic data and neuronal response recovery by SMCS andGLM 10.
�e time courses correspond to spatial positions indicated on the frames by a square of
the same color. Vertical dashed line indicates stimulus onset. (a) Observations normal-
ized by the gain, single trial. (b) Periodic artifacts, single trial. (c) Neuronal response,
identical in all trials. (d) Recoverywith SMCS, average across trials, single trials in trans-
parency. (e) Recovery with GLM 10.
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(a) Y (B) + Y (P) + Y (A) + R; Stim_001.
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(d) Ŷ (A), SMCS; Stim_001–010.

210ms 220 230 240 250 260

0 150 300 450
ms

0

3×10-3

500
µm

0

3×10-3
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Figure 3: Synthetic data overview. See opposite.
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We consider two designs: one with ten response regressors (GLM 10), and one with
��een response regressors (GLM 15).

2.2.2 SMCS Designs (see Table VI.1)

We use the following default parameters:
KB

set= 2, i.e. only one decreasing exponential.
Daubechies wavelets with four vanishing moments (Daubechies, 1992), jmin

set= 3.
F

set= {0.5 f ∣ f ∈ {4, . . . , 40}} ∪ {21, . . . , 60} ∪ {2 f ∣ f ∈ {31, . . . , 40}} ∪ {85, 90, 95}, in
Hz.
S(P) set= {1, 2, 3, 4, 6, 9, 12}, in pixels.
S(A)ℓ

set= {2, 3, 4}, in pixels.

S(A)δ

set= {2}, in pixels.
Note that we discard periodic artifacts frequencies F contains frequencies lower than
2Hz because the overall duration of the acquisition is only about half a second.

�en, we consider two di�erent box constraints design: the �rst one (SMCS) uses

none, i.e. Y (A) and Y
(A)

are identically equal to −∞ and +∞, respectively; the second
one (SMCSbox) uses box constraints enforcing a neuronal activity which is nonnegative
everywhere, and null outside frames of interest. More precisely, we set for all pixel p and
time frame t,

y(A)
t,p

set= 0 ; and y(A)t,p
set= ⎧⎪⎪⎨⎪⎪⎩
+∞ if t1 ≤ t ≤ t2 ,
0 otherwise .

(10)

Following roughly our synthetic response component (see Figure 3(c)), we set t1
set=

200ms and t2
set= 300ms.

2.2.3 Results

Similarity indicators. We quantify the quality of the component separation by com-
paring each retrieved component with its target component, over the whole spatiotem-
poral domain. We use both the signal-to-noise ratio, expressed in decibels as

SNR (Ŷ ,Y) def= 20 log10 ( ∣∣Ŷ ∣∣2∣∣Ŷ − Y ∣∣2) , (11)

and the correlation coe�cient

CC (Ŷ ,Y) def= tra (tŶY)
∣∣Ŷ ∣∣2∣∣Y ∣∣2 . (12)

Mean and standard deviation across trials of those similarity indicators, over neuronal
response and periodic artifacts components, are shown in Figure 4.

Component separation and denoisingwith SMCS. We see from Figure 3(d) that our
method approximately retrieves the neuronal response component, in spite of a highly
perturbed environment and no prior knowledge on the signal activation times.
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SMCS GLM 10 SMCS box GLM 15

(a) Retrieval of neuronal response component.

SNR on (y(A)t,p )t1≤t≤t2
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CC on (y
(A)
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(b) Retrieval of periodic artifacts component.
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(P)

0.6

1.0

Figure 4: Performance of the component separation for SMCS and GLM methods on
synthetic experiments. Results are given as average and standard deviation over ten real-
izations of the random generative model (see § 2.1). When speci�ed, the signal-to-noise
ratios (11) and the correlation coe�cients (12) are computed over the frames included
in [t1, t2].
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Comparison with GLM. As can be seen on Figure 4(a) [0, 512]ms, GLM (blue) out-
performs SMCS (dark blue) for the retrieval of the neuronal response over the whole
acquisition time course. �is is explained by the fact that the response regressors in
GLM are designed to retrieve only phenomena that take place between 200 and 300ms.
On the contrary, ourmethod seeks for neuronal events along the whole acquisition time
course, hence is more sensitive to artifacts occurring outside those time frames.

In order to evaluate sensitivity of the method to neuronal events, we compute the
similarity indicators (11) and (12) restricted to the time frames between 200 and 300ms.
Results Figure 4(a) [200, 300]ms shows better similarity indicator for SMCS, but not for
GLM.�is is further illustrated in Figure 5.

�en, speci�city of the SMCS method to neuronal events is enhanced by introduc-
tion of the box constraints (10). We see on Figure 4(a) that SMCS box (light blue) per-
forms on average as well as GLM 10. Moreover, it is more reliable than GLM since the
latter exhibits higher standard deviation.�is indicates that the separation performance
of GLM on a given trial might depend on the realization of the periodic artifacts.

In fact, it turns out that good performances of GLM are explained by the accurate
design of the response regressors (as explained above, § 2.2.1), and not by its component
separation ability. To see this, we compute the similarity indicators for the retrieval of
the periodic artifacts component. On Figure 4(b), it is obvious that periodic artifacts are
better captured by both versions of SMCS (dark and light blue) than byGLM.Moreover,
one might think that increasing the dimensionality of the response space in the GLM
allows for better reconstruction accuracy. �e white bars on Figure 4 show that this
actually degrades its performances, because the response component gets mixed with
noise and periodic artifacts; this can also be seen on Figure 5.

Finally, let us recall that according to the GLM approach proposed by Reynaud et al.
(2011), the residual is considered to be part of the signal of interest, and should be added
to the neuronal activity component a�er component separation.�is permits the GLM
method to capture more complexity and trial-to-trial variability in the neuronal activ-
ity, in spite of the restriction imposed over the response space. However, doing so in the
current study makes no sense, since the performance indicators measure proximity to
a deterministic response, known in advance, and from which the regressors are directly
designed. Given the poor periodic artifacts reconstruction with GLM (Figure 4(b)),
adding the residual would make the similarity indicators over the neuronal response
component drop drastically.

3 Orientation Selectivity in the Cat’s Visual Cortex

One of themost striking functional feature of most mammal’s primary visual cortex
is the orientation selectivity, �rst described by Hubel and Wiesel (1959). Many neurons
in this cortical area are sensitive to elongated luminance contrasts that constitute edges
in the visual �eld. Moreover, the intensity of the neuronal response depends on the sim-
ilarity between the orientation of the edge within the visual �eld, and an orientation of
reference, characteristic of the observed neuron.�e closer to this preferred orientation,
the higher the response.
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Figure 5: Close-up on the time courses of the targeted and retrieved synthetic neuronal
responses. �e plotted time courses correspond to spatial positions indicated on the
frames of Figure 3 by a square of the same color. Results are shown as average across
trials, together with the single trials in transparency.
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Following an organization which is common to many cortical functional features,
neurons sharing the same preferred orientation are gathered in columns, which are func-
tional units extending spatially perpendicularly to the cortical surface (Mountcastle,
1997). In addition, in the cat’s visual cortex, the variation of preferred orientation tan-
gentially to the cortical surface is smooth (except at singularity points, where all the ori-
entations are represented, see § 3.2.4).�us, using optical imaging with su�cient spatial
resolution, it is possible to identify the dominant preferred orientation underlying each
recorded location (see for instance Bonhoe�er and Grinvald (1993)).

When presenting full �eld, dri�ing luminance gratings to the subject, a raise of ac-
tivity is triggered in the entire primary visual cortex, which can last for the duration of
the stimulus. �ough most neurons are responding, their responses are modulated by
orientation selectivity according to the orientation of the grating. When investigating
time-independent orientation selectivity, the quantity of interest is only the response
intensity so that there is no need for high temporal resolution for recording it. �us,
VSDOI is not the �rst choice modality for that purpose, and for recordings at the pop-
ulation level, less noisy methods like intrinsic optical imaging should be favored. Since
our SMCS method aims at recovering complex temporal dynamics, it is precisely not
designed for such experiments. However, orientation selectivity is one of the most un-
derstood functional properties of the primary visual cortex, and one prerequisite for
delving into more complex features is to check that our denoising method does not
suppress this information.

For that reason, we study in this section the use of the SMCSmethod for estimating
orientation selectivity at the population level. We compare our method to the classical
blank subtraction (§ I.3.1) and to the GLM developed by Yavuz (2012). To our knowl-
edge, the latter is the most e�cient approach to date for extracting time-independent
orientation selectivity in the cat’s visual cortex from VSDOI recordings.

3.1 Data and Denoising Methods

�e data set Cat_Gratings consists in 1 280ms long recordings of the primary vi-
sual cortex of a single cat, in area 18. �e visual stimuli used are full �eld luminance
gratings of four possible orientations, dri�ing in two possible directions. Each stimulus
condition is recorded for ten trials, together with ten corresponding blank conditions.
See Annex A.1 for more details.

Before analyzing the orientation selectivity, let us review the di�erent component
separation and denoisingmethods of extraction of the neuronal responses that we com-
pare. Some resulting components on a given stimulus condition are shown for each
method in Figure 6.

3.1.1 Blank Subtraction (BkS)

All acquisitions of the protocol are triggered at the same phase of the simultaneously
recorded ECG, and respiration of the subject is arti�cially controlled (see Annex A.1).
�us, the blank subtraction method introduced in § I.3.1 is relatively e�cient. We detail
here our implementation.
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Each trial under stimulus condition Ỹ (s) is associated to its corresponding trial un-
der blank condition Ỹ (b). �e gain of each acquisition is evaluated at each pixel p as the
average �uorescence value over the frames before stimulus onset,

g(s)p = 1

ton
∑

1≤t≤ton Ỹ
(s)
t,p and g(b)p = 1

ton
∑

1≤t≤ton Ỹ
(b)
t,p .

�en, each acquisition is normalized by its gain, Y (s) = Ỹ (s)/G(s) and Y (b) = Ỹ (b)/G(b),
and we create a smoothed blank acquisition Υ(b) def= (υ(b)t,p )

t,p
, getting rid of the high

frequency noise by low-pass �ltering with a Gaussian kernel. For all pixel p,

υ(b)t,p = ∑t′∈{-w f ,...,w f } exp ( − t′2

2σ 2
f

)y(b)t+t′ ,p
∑t′∈{-w f ,...,w f } exp ( − t′2

2σ 2
f

) ,

with symmetric boundary convention, i.e. y(b)t+t′ ,p def= y(b)1−(t+t′),p if t + t′ < 1, and y(b)t+t′ ,p def=
y(b)
T−(t+t′),p if t + t′ > T . In our experiment, we use w f

set= 10ms and σ f
set= 10ms. Finally,

the neuronal response signal is estimated as Y (s,A) = Y (s) − Υ(b).
3.1.2 GLMDesign

We use the method described in Yavuz (2012, §6.2.2), which is a GLM approach (see
§ I.3.5) inspired by the work of Reynaud et al. (2011), adapted to VSDOI recordings of
neuronal responses to full �eld dri�ing luminance gratings in the cat’s visual cortex. In
this setting, there is only one response regressor, modeling rise and decrease of neuronal
activity following respectively stimulus onset and stimulus o�set. A�er source separa-
tion between neuronal signal, various artifacts, and residual, the latter is added to the
former, as advocated in both above references.

In the work of Yavuz (2012), the choice was made not to model the gain. Keep in
mind however that in the current study, the only quantity of interest is the polar angle
of the vectorial sums (15) described below (§ 3.2.3). Now, even if the gain varies greatly
from pixel to pixel, it does not vary much from trial to trial; hence, normalizing by the
gain greatly a�ects the amplitude, but not the polar angle (16) of those vectorial sums.

�e subsequent statistical re�nement by PCA in the denoising proposed in Yavuz
(2012) was not used here.

3.1.3 SMCS Design

We use the same parameters in this setting as in our synthetic data setting, § 2.2.2,
except for KB

set= 3, i.e. we model the bleaching with two decreasing exponentials (see
§ VI.2.1; we �nd T = {123ms, 584ms}), and for periodic artifacts frequencies lower
than 2Hz. Since the acquisition duration is more than one second here, frequencies
down to 1Hz would be considered in our procedure; we discard them because the ex-
pected neuronal signal is much more important than respiration artifacts around those
frequencies.
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Figure 6: Component separations for the protocol Cat_Gratings. See opposite.
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Figure 6, opposite: Component separations for the protocol Cat_Gratings, stimu-
lus condition: full �eld, gratings of orientation 0° (horizontal), dri�ing direction 90°
(upwards). �e time courses correspond to spatial positions indicated on the frames
by a square of the same color. Vertical dashed line indicates stimulus onset and o�-
set. (a) Neuronal activity retrieved by BkS. (b) Periodic artifacts retrieved by GLM.
(c) Neuronal activity retrieved by GLM. (d) Periodic artifacts retrieved by SMCS.
(e) Neuronal activity retrieved by SMCS. Results are shown as average across trials, to-
gether with single trials time courses plotted in transparency. Note that GLM results are
given in arbitrary units of recorded �uorescence level, since they have not been normal-
ized by the gain (see § 3.1.2).

3.1.4 Qualitative Comparisons

As expected, the BkS method (Figure 6(a)), gives a very noisy signal. Still, averages
across ten trials are informative about the simple, reproducible response to a dri�ing
grating. In comparison, time courses obtained by GLM are less noisy, even though the
residual is added to the response component to obtain the �nal neuronal activity, as
explained above § 3.1.2. On Figure 6(c), the overall response dynamic is more promi-
nent, relatively to the high frequency noise amplitude. Finally, traces obtained by SMCS
are almost free of high frequency noise, while still exhibiting signi�cant amplitude of
trial-to-trial variability (Figure 6(e)).

Because the heartbeat and respiration are approximately synchronized along tri-
als, their retrieved average contribution presents distinct spatiotemporal patterns. On
Figures 6(b) and (d), top rows, one can see �uorescence oscillations on large domains,
with phases varying from le� to right. Also, higher amplitudes distinguishes veins over
the �eld of view.Note that because the consideredGLM implementation does notmodel
the gain (see § 3.1.2), it is not possible to compare directly its results to SMCS. However,
periodic artifacts and neuronal activity have been normalized within each methods,
in terms of color map and traces amplitude. Hence, we can see that amplitudes of re-
trieved periodic artifacts are less important in GLM than in SMCS, relatively to the cor-
responding neuronal activity. Moreover, periodic artifacts retrieved by SMCS exhibit
more trial-to-trial variability, and more temporal complexity. We explain those facts
by the richer dictionary of sinusoidal regressors modeling periodic artifacts within the
SMCS, so that phase and frequency variations, both inter- and intra-trials, can be better
captured. See in particular the signi�cant contribution of the periodic artifacts around
12Hz, Figures 6(d), middle trace1. We believe it to be an harmonic of the heartbeat ar-
tifact, since the corresponding pixel (in cyan color) is clearly situated on a vein.

However, higher sensitivity of the periodic artifacts component also presents some
drawbacks. According to the SMCS results for the same cyan pixel, the neuronal activity
averaged across trials starts to decrease before stimulus o�set. Given the relative brevity

1note that in our data, 12Hz signal is absent from the periodic artifacts retrieved by GLM because this
frequency is actually not included in the regressor basis. However, as stated by Yavuz (2012, § 6.2.3), this
artifact is still badly captured by GLM when introducing it. �e reason for not including this frequency
at all is that subsequent statistical re�nements proposed by this author give better results that way.
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of the stimulus duration, this is not expected; indeed, both BkS and GLM results show
a longer sustained neuronal activity at this pixel. We explain the error made by SMCS
by the fact that around stimulus o�set, the heartbeat artifact at this location is at a ris-
ing phase, as indicated by brighter colors along the vein, on the frame 800ms of both
Figures 6(b) and (d).

An other signi�cant di�erence between GLM and SMCS is the important decrease
of the neuronal activity component, occurring around 1 s and until the end of the ac-
quisition.We believe it to be due to intrinsic artifact (described in § I.2.2), because of its
slow dynamic and emergence a�er signi�cant neuronal response. �e same trend can
be seen on the BkS traces, but much fainter. We believe that this e�ect is overestimated
by the SMCS method because the constant regressor (within the bleaching dictionary,
see § II.2.2.1) is not penalized and tends to adjust, at each pixel, to the mean value of the
signal along time. �is would also explain the slightly negative values before stimulus
onset, observed on the mean traces of Figure 6(e).

Finally, let us note the ability of our SMCS method to capture, at the single trial
level, a transient phenomenon that takes place between 40 and 80ms a�er stimulus on-
set (i.e. around 300ms a�er beginning of acquisition). A�er �rst increase, evoked ac-
tivity slightly and rapidly decreases, before increasing again. �is phenomenon, coined
deceleration-acceleration notch, have been documented in the literature, see in particular
Sharon and Grinvald (2002).

3.2 Estimation of Preferred Orientation

AVSDOI protocol investigating orientation selectivity over the whole cortical sam-
ple should usually contain recordings of neuronal responses to a set of full �eld dri�ing
luminance gratings of various orientations, taken in a set {θ1, . . . , θN}, sampling uni-
formly all possible orientations from 0° to 180° (in the case of our data set, N set= 4). We
describe here a procedure for extracting static (i.e.wedonot study evolution along time)

orientation selectivity from such neuronal responses, {Y (s,A)}
s
(which can be extracted

by any denoising method).

3.2.1 Mean Response Level

In order to estimate the dominant preferred orientation underlying a given spatial
location in VSDOI recordings, one must �rst extract the mean response level of that

spatial location to each presented orientation of the protocol. We denote it Ỹ (m,A) def=( ỹ(m,A)n,p )1≤n≤N
1≤p≤P , computed for each pixel p and orientation θn as

ỹ(m,A)n,p = 1∣s(θn)∣ ∑s∈s(θn) ∑t1≤t≤t2 y
(s,A)
t,p , (13)

where s(θn) denotes the set of all trials of all grating stimuli with orientation θn within
the protocol, and t1 ≤ t2 delimit the time frames where the most signi�cant response is
expected.

In our numerical application, we use t1
set= ton + 100ms and t2

set= to� = ton + 500ms.
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3.2.2 Normalization Step

On our data set, using the mean response levels directly as de�ned in (13) for de-
ducing preferred orientation is not satisfying. As can be seen on Figure 7(a), this leads
to an overwhelming representation of some preferred orientation angles; such a bias
in the distribution is not expected, considering the size of our cortical sample and the
distribution of preferred orientations generally accepted (see for instance Mountcastle
(1997)). We alleviate this bias by dividing the mean response levels of each orientation

by its average across pixels, obtaining Y (m,A) def= (y(m,A)n,p )
n,p

such that for all p and n,

y(m,A)n,p = P

∑1≤p′≤P ỹ(m,A)n,p′

ỹ(m,A)n,p . (14)

�is phenomenonmight be explained by lateral exciting connections between func-
tional columns enhancing drastically even a small imbalance in the distribution, but we
leave this point to future investigations. In the literature, the closest mention to such
preprocessing that we could �nd is Sharon and Grinvald (2002, Note 24.), where the
authors perform a spatial high-pass �ltering of their data, in order “to remove nonre-
producible global di�erences in the responses to di�erent orientations”. However, be-
sides the lack of clarity of this explanation, the nonreproducible terminology suggests
that these di�erences are stimulus independent, in contrast to what we observe in our
data set. �e same need for spatial high-pass �ltering is also reported in Chavane et al.
(2011, Appendix), in order “to remove slow gradients”.

3.2.3 Orientation Maps

Finally, we compute the preferred orientation at each spatial location using the vec-
torial sum technique, as brie�y described in Blasdel and Salama (1986). It represents the
orientation selectivity with a two-dimensional vector, which is the sum of unit vectors
of polar angle determined by a given orientation, weighted by the mean response level
to that orientation. More precisely, denoting for an angle θ, u⃗(θ) def= (cos(θ), sin(θ)),
the vectorial sum at pixel p is

v⃗p = ∑
1≤n≤N y(m,A)n,p u⃗(2θn) . (15)

Note the factor 2 applied to each orientation, so that the range of orientations [0, 180[°
is mapped to the complete circle [0, 360[° and that the mean response level to two ori-
entations that are orthogonal cancel out in the sum. �e preferred orientation angle at
pixel p is then half of the polar angle of v⃗p; expressed in degrees,

ϑp = ⎧⎪⎪⎨⎪⎪⎩
1
2 arccos( vp ,1∣∣v⃗p ∣∣) if vp,2 ≥ 0 ,
180 − 1

2 arccos( vp ,1∣∣v⃗p ∣∣) if vp,2 < 0 , (16)

wherewe denoted the coordinates of the vectorial sum v⃗p
def= (vp,1, vp,2) and its amplitude∣∣v⃗p∣∣ def= √vp,12 + vp,22. �is procedure provides a spatial map of preferred orientations
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Figure 7: Resulting orientation angle maps Θ, computed with vectorial sum technique
according to (15) and (16). �e preferred orientation at each pixel is color coded in a
circular color map; the colors corresponding to the four orientations of the stimuli used
in the protocol Cat_Gratings are represented on the le� side.

angle Θ def= (ϑp)1≤p≤P. �e amplitude carries some interesting information about the

overall response level and sharpness of orientation selectivity, but we do not use it in
the current study.

3.2.4 Results

Resulting orientation angle maps are displayed on �gure Figure 7. Observe �rst the
apparent need for the normalization described in (14): on all three panels of Figure 7(a),
preferred orientations around 60° are largely dominant; in contrast, the distribution
of preferred orientations on Figure 7(b) is well balanced. �is phenomenon appears
very similar for both GLM and SMCS methods, and seems less pronounced with BkS
denoising; we do not know the reason for that.

Now, a�er applying the normalization, the resulting orientation maps are in accor-
dancewith the literature. In particular (see Bonhoe�er andGrinvald (1993)), we observe
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Figure 8: Orientation bias due to the presence of stimulus-related neuronal signal within
non neuronal components, for the separations provided by GLM and SMCS methods.
�ose maps are computed as orientation angle maps but with non neuronal compo-
nents. Note that normalization (14) makes no sense here, so it is not applied.

a smooth variation of the preferred orientation along the cortical surface, covering the
whole orientation space within a characteristic distance of approximately 1mm, and or-
ganized around pinwheels, which are locations at the con�uence of homogeneous area,
around which all orientations are represented.

�e three compared denoising methods lead to almost undistinguishable orienta-
tion angle maps. �is suggests that, in spite of a strong denoising and very few priors
over the neuronal signal, SMCS succeeds in capturing orientation selective information.
In order to test further this fact, we then check for the presence of stimulus-related sig-
nals within other components of the separation. To do so, we apply exactly the same
computations of preferred orientations as above, but using the periodic artifacts or the
residual instead of the neuronal activity component. In the hypothesis that no stimulus-
related signals are present, resulting maps should be meaningless, with random distri-
bution of preferred orientations. On Figure 8(a), areas with dominant preferred orien-
tations are visible, at the same spatial scale as the homogeneous areas in the orienta-
tion maps of Figure 7.�is proves that stimulus-related neural signal has been captured
by the periodic artifacts during the process of component separation. Such bias seems
weaker for the SMCSmethod, probably thanks to the hard constraints on the amplitudes
of periodic artifacts (recall § II.3.4.2), which prohibit stronger periodic artifacts in ac-
quisitions with stimulus conditions than in blank acquisitions. Now, the orientation bias
on the residuals found by SMCS, Figure 8(b), appears to be completely random. Keep in
mind that there still could be neuronal signal le� out in the residual, like spontaneous
activity or even evoked activity over short periods of time, but this is an encouraging
result for our method.

In contrast, the residual found by GLM is strongly biased by the stimulus condition;
this was however already expected, and constitutes an additional argument for merging
the residual with the neuronal activity component when using a GLM approach.
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4 Propagations in the Mouse’s Somatosensory Cortex

In a last series of experiments, we explore visually the application of our method
to VSDOI recordings of the mouse’s somatosensory cortex. Observation of propagating
phenomenon have been reported in both awake and anesthetized animals, in response
to direct sensory inputs as well as in ongoing neuronal activity, see in particular Ferezou
et al. (2006).

�e data set Mouse_All consists in 1 024ms long recordings of the somatosensory
cortex of a single mouse, in the barrel cortex. In the stimulus condition, all the animal’s
whiskers are brie�y and simultaneously de�ected, evoking a large raise of neuronal ac-
tivity, �rst localized and then spreading rapidly to the entire recorded area (Figure 9(b)).
We apply our method to nine recordings with stimulus condition. Moreover, out of
twenty blank acquisitions considered, nine presented strong patterns of spontaneous
activity, closely resembling the evoked propagations.

�e neuronal activity patterns in those data are large, and their overall shape is dis-
tinguishable a�er simple normalization of the raw data by an estimation of the gain
(Figure 9(a) or Figure 10(a)). However, the level of high frequency noise is also im-
portant, and periodic artifacts are clearly visible. We apply the SMCS methods with the
same parameters as in our synthetic data setting, § 2.2.2, except for KB

set= 3, i.e.wemodel
the bleaching with two decreasing exponentials (we �nd T = {245ms, 5 576ms}).
4.1 Stimulus Condition Acquisitions

We show on Figure 9(b)-(d) the denoising of a single trial, at some spatial positions
and time frames of interest.We see that the high frequency noise has beenwell removed,
except perhaps right a�er stimulus onset (ton

set= 200ms, see that the amplitudes of R are
smaller on frames 210ms and 240ms). Indeed, the activity here is so reproducible that
the wavelets capturing the neuronal events occurring over this short time window are
not penalized (see second part of § VI.2.8).

Moreover, a substantial part of the periodic artifacts seems to have been removed as
well. Consider in particular the green pixel on Figure 9(c), whose time course is a�ected
by consequent heartbeat artifacts, because it is located right over a vein crossing the
�eld of view. However, remaining in�uence of the veins is still signi�cant on (b), see in
particular the �rst frame, 70ms: the neuronal activity component has captured periodic
artifacts. �is is in fact impossible to avoid completely, since we are seeking for any

Figure 9, opposite, and Figure 10, on page 197: Component separation results for
Mouse_All, for stimulus condition and spontaneous activity, respectively. �e time
courses correspond to spatial positions indicated on the frames by a square of the same
color. Vertical dashed line indicates stimulus onset, when present. (a) Observations nor-
malized by the estimated gain, single trial. (b) Neuronal activity, single trial. (c) Periodic
artifacts, single trial. (d) Residual, single trials. (d) Neuronal activity, average across tri-
als, single trials in transparency.
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Figure 9: Mouse_All data, stimulus conditions. See opposite.
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possible spatiotemporal neuronal activity, on data that are not synchronized with the
heartbeat of the animal (see § VI.2.8).

More worrisome, the confusion happens also the other way around. Indeed, each
temporal trace of (c) is biased upwards just a�er stimulus onset; and the overall ampli-
tude is higher on frame 240ms than on the others. We believe that such loss of signal
of interest is not a �aw of the SMCS approach itself, and could be prevented by �ner
tuning of the parameters. Indeed, on the trial presented on (b) and (c), observe that a
second, spontaneous neuronal propagation occurs (peaking around 890ms), with al-
most no in�uence on the periodic artifacts component. �is last feature is of particular
interest to us, regarding our attempt to capture inter-trial variability. Even though the
trial was processed for reproducible, evoked activity, our method was able to extract a
signi�cant neuronal event without prior knowledge of it.

4.2 Spontaneous Activity

�is last observation motivates the screening of blank acquisitions for spontaneous
activity. As described in § VI.2.3, a�er the �rst bleaching approximation on blank acqui-
sitions, we put apart those presenting obvious patterns of spontaneous activity, for two
reasons. First, they might bias the estimation of the periodic artifacts amplitude, what
will impact the processing of the stimulus condition acquisitions. Second, we can actu-
ally apply the SMCSmethod to extract spontaneous activity from noise and artifacts, at
the single trial level.

On Figure 9, (e) looks like a cleaner version of (b) (compare frames 210 and 240ms),
for the hundred milliseconds following the stimulus onset: the spread of activity arise
from the same spatial location, with the same delay, and similar amplitude.

In contrast, spontaneous activity can only be observed at the single trial level. As
shown in Figure 10(b) the SMCS method performs as well for spontaneous activity as
for evoked activity (note again, however, that some neuronal signal has been captured
by the periodic artifacts component). On that trial, the activity does not originates from
the same locations as the above evoked activity, neither does it occurs at the same time.
For that reason, a�er averaging over only nine blank acquisitions, individual neuronal
events are almost indistinguishable on (e).

5 Discussion and Perspectives

5.1 Assessment of the Model

As expected by considering Chapter I, the SMCSmodel appears rather well adapted
to VSDOI data. It seems general enough for processing various data sets, obtained with
di�erent experimental set-ups, over di�erent subjects, to investigate di�erent phenom-
enon. Of course, the results presented here should be completed by study from other
data sets and by investigatingmore complex cortical functional properties. In particular,
the direct next step is the exploration of the longer acquisitions in Cat_Long, and the
analysis of functional properties of the propagations in Mouse_Single.
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Figure 10: Mouse_All data, spontaneous activity. See bottom of page 194.



198 VII. Exploration of VSDOI With SMCS

�e�rst results presented here are already informative concerning the use of VSDOI
in-vivo. As we have seen in § 1, it is clear to us that the high frequency �uctuations are
dominated by noise, which should be removed prior to �ne analysis of VSDOI data.
Averaging acquisitions across trials is usually the bestway to do it, but this prevents anal-
ysis of trial-to-trial variability, as illustrated in § 4.2. Moreover, simple linear smoothing
of the data is not an option to us, since many sharp features of the signal would be lost.
All those arguments are in favor of a complex, nonlinear model such as the SMCS.

However, the di�culty of the problem at handmakes it necessary to enforce asmany
priors one can have on the signal; this plays against a method aiming to be general. As
far as we can tell from the above results, the wavelet sparsity of the signal is a good prior
for VSDOI, allowing in particular adaptive removal of the noise. In addition, it can also
separate the neuronal signal from periodic artifacts in many instances but this does not
seem very robust. �is task is actually what renders the whole method described in
Chapter VI so complex, but we believe that it can still be improved.

In particular the very de�nition of the periodic artifacts component is vague, es-
pecially since neuronal activity is known to present oscillatory behaviors at various
frequencies. In addition, important information over those artifacts is learnt from the
blank acquisitions, whichmight themselves contains important neuronal signals, which
would in turn be considered as artifacts later on. For those reasons, we insist on the
need of our method for clean blank acquisitions, and that synchronizing acquisitions
with heartbeat and respiration is useful. Note that the real data tested here are recorded
on anesthetized animals, and this last inconvenient might reveal worst in acquisitions
on awake animals.

Finer study of what actually lies in the periodic artifacts (notably according to the
frequency range) should also be considered.�is could be done either simply by looking
for spatio-temporal patterns (as veins over the �eld of view) or by testing for functional
bias (as we did with orientation selectivity, see Figure 8).

5.2 Practical Use of the Method

Until now, we made few mentions of the practical di�culty of applying the SMCS
model to VSDOI data. �e most important aspect is the computational load. It is hard
to quantify, since it depends on the size of the data, (the number of pixels in the ROI,
the number of time frames, the number of blank (b) and stimulus condition (s) acquisi-
tions), on some parameters of the method (the size of the penalization blocks, the level
of wavelet decomposition), and, more importantly, on the machine running it.

Our implementation of the minimization problems uses OpenMP speci�cations, so
that it can pro�ts from several clusters running in parallel. Consider that on the Wave
computing server mentioned in the introduction (sixteen cores of 1.6 GHz), the ten
blank and eighty stimulus condition acquisitions of Cat_Gratings could be processed
in less than 24 h. In contrast, in order to process a full acquisition of Mouse_All, a com-
plete hour is necessary, and since it requires more than 4GB of RAM, many personal
computers simply cannot handle it.

For those reasons, it is important to design a �nal method which is as automatic as



5. Discussion and Perspectives 199

possible, so that it does not necessitate user input during processing. �is is a strong
limitation; as suggested along this chapter, in most situations, there exists parameters
for which the SMCSmodel would yield excellent results, but they cannot be set by trial-
and-error.

Appendix

A Experimental Protocols

A.1 Cat Visual Cortex

�ese data were acquired by Cyril Monier at the UNIC laboratory; the following
description of the experimental set-up can be found in Yavuz (2012).

Set-up. Acquisition, visual stimulation andpreliminary online analysiswas controlled
by the Elphy so�ware, communicating with the acquisition program provided by the
imaging system. ACMOSMiCam camera was used, providing 100×100 pixel resolution
and up to 10 kHz temporal resolution.�e recording was performed at 200Hz temporal
resolution in order to obtain a better sampling of the emitted photons. One pixel in the
recording corresponds approximately to 60 × 60 µm2 of cortical sheet.

Animal preparation. VSDOI was performed on an adult cat. Data were recorded on
only one hemisphere, over area 18. �e animal was initially anesthetized with intra-
venous alfaxolone (10mg.kg−1). Following tracheotomy, the animal was kept under ar-
ti�cially respiration and anesthetized with 1-1.5 % (0.6-1 % during recording) iso�uo-
rane gas added to the 1 ∶1 N2O and O2 mixture. Minimum alveolar concentration was
kept above 1 %. �e animal was head �xed on the anti-vibration table. �e skull was
opened above areas 17 and 18 (the size of the craniotomy was approximately 1.5 cm in
diameter), and the dura was resected. Paralysis was maintained by pancuronium bro-
mide (0.4mg.kg−1.h−1, intravenous) administered starting less than three hours before
imaging in order to abolish eye movements. Accommodation and pupil contraction
was blocked by atropine and neosynephrine. Arti�cial pupils of 3mm were used and
appropriate corrective optical lenses were added when necessary. �e position of the
area centralis of each eye was projected on the screen with light source before and a�er
imaging. Respiration was controlled by an external pump. Electrocardiogram (ECG),
expired CO2, and body temperature were continuously monitored during the experi-
ment. Image acquisition was synchronized with ECG and respiration signals, in order
to provide synchronization of the corresponding oscillatory artifacts. For applying the
dye on the cortex, a stainless-steel chamberwasmounted on the skull over an areawhich
includes areas 17 and 18 of both hemispheres. �e cortex was stained for 2.5-3 h with
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the oxonol dye RH1691, and unbound dye was washed out a�er staining. �e chamber
was then �lled with CSF-saline or silicone oil and closed.

Visual stimulation (Cat_Gratings). In order to map orientation response on the
cortex, full-�eld dri�ing grating stimulations were used. �e protocol included grat-
ings of four possible orientations, spanning all the orientation domain, and dri�ing in
two possible directions. Stimuli consists in 100% contrast gratings of 0.2-0.6 cycles per
degree, dri�ing at 2-6Hz temporal frequency. �ey were pseudo-randomly interleaved
with recording epochs during which the screen was blank. Each stimulus was presented
for 300-500ms, while the recording duration of each trial was 1 280ms long.�e stimuli
were presented full-�eld on a 22′′ CRTmonitor placed 57 cm away from the eyes of the
animal, at a refresh rate of 150Hz.

A.2 Mouse Somatosensory Cortex

�ose data were acquired by Isabelle Férézou at the ESPCI ParisTech and UNIC
laboratories.

Set-up. �e voltage-sensitive dye was excited with 630 nm light from a 100W halo-
gen lamp gated by a Uniblitz shutter (Vincent Associates) under computer control via
an ITC-18 (Instrutech) communicating with custom so�ware running within IgorPro
(Wavemetrics). �e excitation light was re�ected using a 650 nm dichroic and focused
onto the cortical surface with a 25mm video lens (Navitar). Fluorescence was collected
via the same optical pathway, but without re�ection of the dichroic, long-pass �ltered at
665 nm, and focused onto the sensor of a high-speedMiCamUltima (Scimedia) camera
via a 135mm camera lens (Nikon).

Animal preparation. Mice aged one to �vemonthswere anesthetizedwith either ure-
thane (1.5mg.g−1) or iso�urane (1.5 %). Paw withdrawal, whisker movement, and eye-
blink re�exes were largely suppressed. A heating blanket maintained the rectally mea-
sured body temperature at 37 ○C.�e head of the mouse was �xed by a nose clamp.�e
skin overlying the somatosensory cortex was removed and the bone gently cleaned. A
2 × 2 mm2 craniotomy was made, centered on the location of the C2 barrel column.
Extreme care was taken at all times not to damage the cortex, especially during the re-
moval of the dura. Voltage-sensitive dye RH1691 was dissolved at 1mg.mL−1 in Ringer’s
solution containing the following (in mM): 135 NaCl, 5 KCl, 5 HEPES, 1.8 CaCl2, and
1 MgCl2. �is dye solution was topically applied to the exposed cortex and allowed to
di�use into the cortex over 1 h.�e cortex was subsequently washed to remove unbound
dye.�e cortexwas then sealed by gluing on a glass coverslipwhichwas in direct contact
with the cortical surface.

Whisker stimulation. 2ms-long de�ections of a C2whisker were generatedwith help
of a computer-controlled piezoelectric bimorph. Trials were imaged alternatively with
and without stimulus delivered to the C2 whisker.
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Conclusion

�is thesis is an in-depth exploration of mathematical tools motivated by a speci�c,
practical purpose: improving the extraction of neuronal signal in voltage-sensitive dye
optical imaging. �is leads us to various developments, theoretical as well as computa-
tional, re�ecting the challenges of interdisciplinarity, which is the raison d’être of applied
mathematics.

Our inspection of the literature in biology, described along Chapter I, suggests a
components mixture model, which is as simple as the resulting component separation
problem is di�cult. In an attempt to capture a wide range of possible spatiotemporal
dynamics, we recast in Chapter II the inverse problem as an underdetermined linear
problem, for which we adapt many popular regularizations in signal processing, in par-
ticular sparsity enforcing penalizations.

For solving the resulting variational problem, we have to dri� towardsmore abstract
convex analysis considerations in Chapter III, in order to develop a state-of-the-art �rst-
order primal proximal splitting algorithm suitable to our purpose. We show then in
Chapter IV the relevance of the tools developed so far for many other tasks, in signal
processing and beyond.

Despite the improvement over existing algorithms, the cost for solving the compo-
nent separation problem still justi�es the development ofmethods allowing to select the
parameters tuning the model without many calls to the complete separation algorithm.
In that context, we report in Chapter V our work around Stein’s unbiased risk estimate
for selecting parameters of denoising estimators which are computed by proximal split-
ting algorithms.

Out of concerns for generality, we endeavor to formulate our results independently
from our primarymotivation, so that they apply to virtually any signal processing prob-
lem. We believe that the contributions in Chapters II to V are useful to the signal pro-
cessing community, improving in the same time theoretical foundations and practical
e�ciency of popular approaches.

Last but not least, we describe in Chapter VI a step-by-step method enabling the
application of the above work to real voltage-sensitive dye optical imaging data, detail-
ing notably the crucial assumptions on which our �nal method relies. Its potential is
subsequently evaluated from preliminary model validations and results in Chapter VII;
at this occasion, it is necessary to perform some functional analysis and confront our
observations to the neuroscienti�c literature of voltage-sensitive dye optical imaging.

203
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�e �rst results are encouraging, but signal processing for voltage-sensitive dye op-
tical imaging, especially in-vivo, is still an ongoing research. In our perspective, we are
presented with two main directions. First, we believe that simpli�cations and modi�ca-
tions of our method remain to be done, in order to correct its most obvious �aws and
eventually make a public release for direct use by biologists. In parallel, revealing new
insights about the functional cortical mechanisms seems mandatory for assessing the
method, and this cannot be properly achieved without a more profound understanding
of the functional cortical mechanisms.

∗∗ ∗
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